

ULTRIX-32TM
Programmer's Manual
Sections 1 and 6

Order No. AA-BG53A-TE

digital equipment corporation, merrimack, new hampshire

First printing, May 1984

Copyright © 1984 by Digital Equipment Corporation.

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by DIGITAL or its affiliated companies.

The postage-paid READER'S COMMENTS form on the last page of this docu­
ment requests your critical evaluation to assist us in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

DEC
DECUS
MASSBUS
PDP
ULTRIX
ULTRIX-11

ULTRIX-32
UNIBUS
VAX
VMS
VT

~D~DDmDTM

UNIX is a trademark of AT&T Bell Laboratories.

Information herein is derived from copyrighted material as permitted under a
license agreement with AT&T Bell Laboratories.

This software and documentation is based in part on the Fourth Berkeley Soft­
ware Distribution under license from the Regents of the University of California.
We acknowledge the Electrical Engineering and Computer Sciences Departments
at the Berkeley Campus of the University of California for their role in its
development.

1;\

;/

iii

This software and documentation is based in part on the Fourth Berkeley Software
Distribution under license from The Regents of the University of California. We ack­
nowledge the following individuals for their role in its development:

Eric Allman, Ken Arnold, Ozalp Babaoglu, Scott B. Baden, Jerry Berkman, John
Breedlove, Earl T. Cohen, Robert P. Corbett, Mike Curry, Steve Feldman, Tom Fer­
rin, John Foderaro, Susan L. Graham, Charles Haley, Robert R. Henry, Andy
Hertzfeld, Mark Horton, S.C. Johnson, William Joy, Howard Katseff, Peter Kessler,
Jim Kleckner, J.E. Kulp, James Larus, Kevin Layer, Mike Lesk, Steve Levine, Jeff
Levinsky, Louise Madrid, M. Kirk McKusick, Colin L. McMaster, Mikey Olson,
Geoffrey Peck, Ed Pelegri-Llopart, Rob Pike, Dave Presotto, John F. Reiser, Asa
Romberger, Bill Rowan, Jeff Schreibman, Eric P. Scott, Greg Shenaut, Eric Shien­
brood, Kurt Shoens, Keith Sklower, Helge Skrivervik, Al Stanberger, Ken Thompson,
Michael C. Toy, Richard Tuck, Bill Tuthill, Mike Urban, Edward Wang, David Was­
ley, Joseph Weizenbaum, Jon L. White, Glenn Wichman, Niklaus Wirth.

)

v

UL TRIX -32 Documentation Set

1. Organization

The ULTRIX-32 documentation set is organized into four separate binders. The docu­
mentation in each binder is so organized to better meet the needs of three separate
audiences in the performance of their respective tasks. The ULTRIX-32 documenta­
tion set comprises:

Programmer's Manual Binder 1 - General Users
Section 1 - Commands

Documentation for all user-invoked programs (commands)

Section 6 - Games
Documentation for all user-invoked game programs

Programmer's Manual Binder 2 - Programmers

Section 2 - System Calls
Documentation for the system calls (entries into the kernel)

Section 3 - Subroutines
Documentation for the library subroutines

Section 5 - File Formats and Conventions
Documentation for the output and system file structures

Section 7 - Macro Packages and Language Conventions
Documentation for miscellaneous information

Programmer's Manual Binder 3A - System Managers
Installation Guide

Documentation for installing an ULTRIX-32 system

Building an UL TRIX-32 System with the Config Program
Documentation for configuring an executable kernel image

4.2BSD Line Printer Spooler
Documentation for installing the line printer spooling system

Sendmail Installation and Operations Guide
Documentation for installing and operating the sendmail system

vi

UUCP Installation and Administration
Documentation for installing and administering the uucp system

Programmer's Manual Binder 3B - System Managers

Guidelines for System Management
Documentation for maintaining an installed ULTRIX-32 system

Section 4 - Special Files
Documentation for the special files (I/O devices and drivers)

Section 8 - .Maintenance Commands
Documentation for the system maintenance programs (commands)

2. Man(l) Format

Each numbered section in Binder 1, Binder 2, and Binder 3B contains an introduction
and separate entries that correspond to those created by the man (1) command. Each
entry, following the order in their respective binders, describes a user command or
game; a system call, library subroutine, file structure, or macro package; and a special
file or maintenance command.

Regardless of their respective binder, all entries have a single, consistent format.
First, the header provides information that quickly identifies the entry: name and sec­
tion number (enclosed in parentheses). For example, AARDVARK(6) identifies the
aardvark (6) game (Binder 1). Then, the listed subsections provide specific informa­
tion about the entry. Although each entry lists only those subsections that are appli­
cable, seven main subsections Iuay be used. Finally, the footer provides paging infor­
mation: section and consecutive page number. For 'example, the footers for section 6
(Binder 1) are 6-1 through 6-35.

The seven main subsections are:

NAME
This subsection lists the exact name and a short description of its function.

SYNTAX
This subsection lists the complete syntax. Boldface indicates literals. A
minus sign (-) indicates command options. Ellipses (...) indicate that the
preceding argument may be repeated. Square brackets [] indicate optional
arguments.

DESCRIPTION
This subsection provides a detailed description of function and background.

FILES
This subsection lists those related files that either are part of or are used
during execution.

vii

DIAGNOSTICS
This subsection lists those diagnostic messages that may be produced.
Since most self-explanatory messages are not listed, this subsection is not
comprehensive.

RESTRICTIONS
This subsection lists those restrictions that are known to apply.

SEE ALSO
This subsection lists the names of the related entries and other documenta­
tion.

3. Conventions

The following conventions apply specifically to these documents:

Installation Guide (Binder 3A)
Building an ULTRIX-32 System with the Config Program (Binder 3A)
UUCP Installation and Administration (Binder 3A)
Guidelines for System Management (Binder 3B)

bold Literals are printed in bold type. Literals frequently indicate a specific com­
mand option and should be entered exactly as printed.

case The ULTRIX-32 system differentiates between uppercase and lowercase.
Therefore, enter uppercase only where specifically indicated by an example or
the command syntax.

color Examples are printed in color. Examples represent command sequences or
information that the user enters from the terminal.

<CTRL/X> Terminal control characters are represented by <CTRL/X>, where X is a single
character. To generate a terminal control characters, hold down the CTRL
key while entering the character.

<DELETE> The DELETE key or ERASE character is represented by <DELETE>.

italics Substitutable parameters are printed in italics.

<RETURN> The RETURN key is printed as <RETURN>. To invoke a command, enter the
command sequence and depress the RETURN key.

viii

The superuser prompt (normally a #) is displayed at the console when the
system is in single-user mode or at a terminal when the superuser is logged in.

> > > The console subsystem prompt is represented by three right angle brackets,
»>. For further information about console commands, read the VAX
Hardware Manual.

INTRO(1)

NAME
intro - introduction to commands

DESCRIPTION
This section describes publicly accessible commands in alphabetic order. Certain distinc­
tions of purpose are made in the headings:

(1) Commands of general utility.

(lC) Commands for communication with other systems.

(IG). Commands used primarily for graphics and computer-aided design.

N.B.: Commands related to system maintenance used to appear in section 1 manual pages
and were distinguished by (1M) at the top of the page. These manual pages now appear in
section 8.

SEE ALSO
Section (6) for computer games.

DIAGNOSTICS
Upon termination each command returns two bytes of status, one supplied by the system
giving the cause for termination, and (in the case of 'normal' termination) one supplied by
the program, see wait and exit (2). The former byte is 0 for normal termination, the latter
is customarily 0 for successful execution, nonzero to indicate troubles such as erroneous
parameters, bad or inaccessible data, or other inability to cope with the task at hand. It is
called variously 'exit code', 'exit status' or 'return code', and is described only where special
conventions are involved.

1-1

ADB(1)

NAME
adb - debugger

SYNTAX
adb [-w] [-k] [-Idir] [objfil [corfil]]

DESCRIPTION
Adb is a general purpose debugging program. It may be used to examine files and to pro­
vide a controlled environment for the execution of UNIX programs.

Objfil is normally an executable program file, preferably containing a symbol table; if not
then the symbolic features of adb cannot be used although the file can still be examined.
The default for objfil is a.out. Corfil is assumed to be a core image file produced after exe­
cuting objfil; the default for corfil is core.

Requests to adb are read from the standard input and responses are to the standard out­
put. If the -w flag is present then both objfil and corfil are created if necessary and
opened for reading and writing so that files can be modified using adb.

The - k option makes adb do UNIX kernel memory mapping; it should be used when core
is a UNIX crash dump or /dev/mem.

The -I option specifies a directory where files to be read with $< or $« (see below) will
be sought; the default is /usr/lib/adb.

Adb ignores QUIT; INTERRUPT causes return to the next adb command.

In general requests to adb are of the form

[address] [, count] [command] [;]

If address is present then dot is set to address. Initially dot is set to o. For most com­
mands count specifies how many times the command will be executed. The default count
is 1. Address and count are expressions.

The interpretation of an address depends on the context it is used in. If a subprocess is
being debugged then addresses are interpreted in the usual way in the address space of the
subprocess. If the operating system is being debugged either post-mortem or using the spe­
cial file /dev/mem to interactive examine and/or modify memory the maps are set to map
the kernel virtual addresses which start at Ox80000000 (on the VAX). ADDRESSES.

EXPRESSIONS

1-2

+

"

The value of dot.

The value of dot incremented by the current increment.

The value of dot decremented by the current increment.

The last address typed.

integer A number. The prefixes 00 and 00 ("zero oh") force interpretation in octal radix;
the prefixes Ot and OT force interpretation in decimal radix; the prefixes Ox and OX
force interpretation in hexadecimal radix. Thus 0020 = 0t16 = Ox10 = sixteen. If
no prefix appears, then the default radix is used; see the $d command. The default

ADB(1)

radix is initially hexadecimal. The hexadecimal digits are 0123456789abcde­
fABCDEF with the obvious values. Note that a hexadecimal number whose most
significant digit would otherwise be an alphabetic character must have a Ox (or OX)
prefix (or a leading zero if the default radix is hexadecimal).

integer .fraction
A 32 bit floating point number.

'ecce' The ASCII value of up to 4 characters. \may be used to escape a '.

< name
The value of name, which is either a variable name or a register name. Adb main­
tains a number of variables (see VARIABLES) named by single letters or digits. If
name is a register name then the value of the register is obtained from the system
header in corfil. The register names are those printed by the $r command.

symbol A symbol is a sequence of upper or lower case letters, underscores or digits, not
starting with a digit. The backslash character x may be used to escape other char­
acters. The value of the symbol is taken from the symbol table in objfil. An initial
- will be prepended to symbol if needed.

symbol
In C, the 'true name' of an external symbol begins with . It may be necessary to
utter this name to distinguish it from internal or hidden variables of a program.

routine .name
The address of the variable name in the specified C routine. Both routine and
name are symbols. If name is omitted the value is the address of the most recently
activated C stack frame corresponding to routine. (This form is currently broken
on the VAX; local variables can be examined only with dbx (1).)

(exp) The value of the expression expo

Monadic operators

*exp The contents of the location addressed by exp in corfil.

@exp The contents of the location addressed by exp in objfil.

-exp Integer negation.

-exp Bitwise complement.

#exp Logical negation.

Dyadic operators are left associative and are less binding than monadic operators.

el +e2 Integer addition.

el-e2 Integer subtraction.

el *e2 Integer multiplication.

el % e2 Integer division.

el &e2 Bitwise conjunction.

1-3

ADB(1)

el\e2 Bitwise disjunction.

el #e2 El rounded up to the next multiple of e2.

COMMANDS

1-4

Most commands consist of a verb followed by a modifier or list of modifiers. The following
verbs are available. (The commands '?' and 'I' may be followed by '*'; see ADDRESSES
for further details.)

?f Locations starting at address in objfil are printed according to the format f. dot is
incremented by the sum of the increments for each format letter (q.v.).

If Locations starting at address in corfil are printed according to the format f and
dot is incremented as for '?'.

=f The value of address itself is printed in the styles indicated by the format f. (For
i format '?' is printed for the parts of the instruction that reference subsequent
words.)

A format consists Of one or more characters that specify a style of printing. Each format
character may be preceded by a decimal integer that is a repeat count for the format char­
acter. While stepping through a format dot is incremented by the amount given for each
format letter. If no format is given then the last format is used. The format letters avail­
able are as follows.

o 2
Print 2 bytes in octal. All octal numbers output by adb are preceded by o.

04
Print 4 bytes in octal.

q 2
Print in signed octal.

Q4
Print long signed octal.

d 2
Print in decimal.

D4
Print long decimal.

x 2
Print 2 bytes in hexadecimal.

X4
Print 4 bytes in hexadecimal.

u 2
Print as an unsigned decimal number.

U4
Print long unsigned decimal.

f 4
Print the 32 bit value as a floating point number.

F 8
Print double floating point.

)

b 1
Print the addressed byte in octal.

c 1
Print the addressed character.

C 1

ADB(1)

Print the addressed character using the standard escape convention where
control characters are printed as "X and the delete character is printed as "?

s n
Print the addressed characters until a zero character is reached.

S n
Print a string using the "X escape convention (see C above). n is the length of
the string including its zero terminator.

Y4
Print 4 bytes in date format (see ctime(3».

i n
Print as machine instructions. n is the number of bytes occupied by the
instruction. This style of printing causes variables 1 and 2 to be set to the
offset parts of the source and destination respectively.

a 0
Print the value of dot in symbolic form. Symbols are checked to ensure that
they have an appropriate type as indicated below.

/ local or global data symbol
? local or global text symbol

local or global absolute symbol

p 4 Print the addressed value in symbolic form using the same rules for sym­
bol lookup as a.

t 0 When preceded by an integer tabs to the next appropriate tab stop. For
example, 8t moves to the next 8-space tab stop.

r 0 Print a space.
n 0 Print a newline.
" ..• " 0 Print the enclosed string.

Dot is decremented by the current increment. Nothing is printed.
+ Dot is incremented by 1. Nothing is printed.

Dot is decremented by 1. Nothing is printed.

newline Repeat the previous command with a count of 1.

[?/]I value mask
Words starting at dot are masked with mask and compared with value until a
match is found. If L is used then the match is for 4 bytes at a time instead of 2.
If no match is found then dot is unchanged; otherwise dot is set to the matched
location. If mask is omitted then -1 is used.

[?/]w value ...
Write the 2-byte value into the addressed location. If the command is W, write 4

1-5

ADB(1)

1-6

bytes. Odd addresses are not allowed when writing to the subprocess address
space.

[?/1m bI el fI[?/]
New values for (bI, eI, fI) are recorded. If less than three expressions are given
then the remaining map parameters are left unchanged. If the '?' or '/' is followed
by '*' then the second segment (b2, e2 ,{2) of the mapping is changed. If the list is
terminated by'?' or 'I' then the file (objfil or corfil respectively) is used for subse­
quent requests. (So that, for example, '1m?' will cause 'I' to refer to objfil.)

>name Dot is assigned to the variable or register named.

A shell (/bin/sh) is called to read the rest of the line following '!'.

$modifier
Miscellaneous commands. The available modifiers are:

<f Read commands from the file f. If this command is executed in a file, further
commands in the file are not seen. If f is omitted, the current input stream is
terminated. If a count is given, and is zero, the command will be ignored.
The value of the count will be placed in variable 9 before the first command in
f is executed.

«f
Similar to < except it can be used in a file of commands without causing the
file to be closed. Variable 9 is saved during the execution of this command,
and restored when it completes. There is a (small) finite limit to the number
of «files that can be open at once.

>1 Append output to the file I, which is created if it does not exist. If I is omit­
ted, output is returned to the terminal.

? Print process id, the signal which caused stoppage or termination, as well as
the registers as $r. This is the default if modifier is omitted.

r Print the general registers and the instruction addressed by pc. Dot is set to
pc.

b Print all breakpoints and their associated counts and commands.
c C stack backtrace. If address is given then it is taken as the address of the

current frame instead of the contents of the frame-pointer register. If C is
used then the names and (32 bit) values of all automatic and static variables
are printed for each active function. (broken on the VAX). If count is given
then only the first count frames are printed.

d Set the default radix to address and report the new value. Note that address
is interpreted in the (old) current radix. Thus "10$d" never changes the
default radix. To make decimal the default radix, use "OtlO$d".

e The names and values of external variables are printed.
w Set the page width for output to address (default 80).
s Set the limit for symbol matches to address (default 255).
o All integers input are regarded as octal.
q Exit from adb.

1
/

v Print all non zero variables in octal.
m Print the address map.

ADB(1)

p (Kernel debugging) Change the current kernel memory mapping to map the
designated user structure to the address given by the symbol u. The
address argument is the address of the user's user page table entries (on the
VAX).

:modifier
Manage a subprocess. Available modifiers are:

be Set breakpoint at address. The breakpoint is executed count-1 times before
causing a stop. Each time the breakpoint is encountered the command c is
executed. If this command is omitted or sets dot to zero then the breakpoint
causes a stop.

d Delete breakpoint at address.

r Run objfil as a subprocess. If address is given explicitly then the program is
entered at this point; otherwise the program is entered at its standard entry
point. count specifies how many breakpoints are to be ignored before stop­
ping. Arguments to the subprocess may be supplied on the same line as the
command. An argument starting with < or > causes the standard input or
output to be established for the command.

cs The subprocess is continued with signal s, see sigvec(2). If address is given
then the subprocess is continued at this address. If no signal is specified then
the signal that caused the subprocess to stop is sent. Breakpoint skipping is
the same as for r.

ss As for c except that the subprocess is single stepped count times. If there is
no current subprocess then objfil is run as a subprocess as for r. In this case
no signal can be sent; the remainder of the line is treated as arguments to the
subprocess.

k The current subprocess, if any, is terminated.

VARIABLES
Adb provides a number of variables. Named variables are set initially by adb but are not
used subsequently. Numbered variables are reserved for communication as follows.

o The last value printed.
1 The last offset part of an instruction source.
2 The previous value of variable 1.
9 The count on the last $< or $« command.

On entry the following are set from the system header in the corfil. If corfil does not
appear to be a core file then these values are set from objfil.

b The base address of the data segment.
d The data segment size.
e The entry point.

1-7

ADB (1)

m The 'magic' number (0407,0410 or 0413).
s The stack segment size.
t The text segment size.

ADDRESSES
The address in a file associated with a written address is determined by a mapping associ­
ated with that file. Each mapping is represented by two triples (bI, eI, 11) and (b2, e2,12)
and the file address corresponding to a written address is calculated as follows.

bI ~address<eI => file address=address+lI-bI, otherwise,

b2~address<e2 => file address=address+12-b2,

otherwise, the requested address is not legal. In some cases (e.g. for programs with
separated I and D space) the two segments for a file may overlap. If a ? or / is followed by
an * then only the second triple is used.

The initial setting of both mappings is suitable for normal a.out and core files. If either
file is not of the kind expected then, for that file, bI is set to 0, el is set to the maximum
file size and 11 is set to 0; in this way the whole file can be examined with no address trans­
lation.

FILES
a.out
core

SEE ALSO
cc(l), dbx(l), ptrace(2), a.out(5), core(5)

DIAGNOSTICS
'Adb' when there is no current command or format. Comments about inaccessible files,
syntax errors, abnormal termination of commands, etc. Exit status is 0, unless last com­
mand failed or returned nonzero status.

RESTRICTIONS
Since no shell is invoked to interpret the arguments of the :r command, the customary
wild -card and variable expansions cannot occur.

STATUS
ADB (1) currently is not supported by Digital Equipment Corporation.

1-8

)

ADDBIB(1)

NAME
addbib - create or extend bibliographic database

SYNTAX
addbib [-p promptfile] [-a] database

DESCRIPTION
When this program starts up, answering "y" to the initial "Instructions?" prompt yields
directions; typing "n" or RETURN skips them. Addbib then prompts for various biblio­
graphic fields, reads responses from the terminal, and sends output records to a database.
A null response (just RETURN) means to leav,e out that field. A minus sign (-) means to go
back to the previous field. A trailing backslash allows a field to be continued on the next
line. The repeating "Continue?" prompt allows the user either to resume by typing "y" or
RETURN, to quit the current session by typing "n" or "q", or to edit the database with any
system editor (vi, ex, edit, ed).

The -a option suppresses prompting for an abstract; asking for an abstract is the default.
Abstracts are ended with a CTRL-d. The -p option causes addbib to use a new prompting
skeleton, defined in prompt/ile. This file should contain prompt strings, a tab, and the
key-letters to be written to the database.

The most common key-letters and their meanings are given below. Addbib insulates you
from these key-letters, since it gives you prompts in English, but if you edit the bibliogra­
phy file later on, you will need to know this information.

%A Author's name
% B Book containing article referenced
% C City (place of pUblication)
% D Date of publication
% E Editor of book containing article referenced
% F Footnote number or label (supplied by refer)
% G Government order number
% H Header commentary, printed before reference
% I Issuer (publisher)
% J Journal containing article
% K Keywords to use in locating reference
% L Label field used by - k option of refer
% M Bell Labs Memorandum (undefined)
%N Number within volume
% 0 Other commentary, printed at end of reference
% P Page number(s)
% Q Corporate or Foreign Author (unreversed)
%R Report, paper, or thesis (unpublished)
% S Series title
% T Title of article or book
%V Volume number
% X Abstract - used by roffbib, not by refer

1-9

ADDSIS (1)

% Y,Z ignored by refer

Except for 'A', each field should be given just once. Only relevant fields should be supplied.
An example is:

%A Bill Tuthill
% T Refer - A Bibliography System
% I Computing Services
%C Berkeley
%D 1982
% 0 UNX 4.3.5.

FILES
promptfile optional file to define prompting

SEE ALSO
refer(1), sortbib(I), roffbib(I), indxbib(I), lookbib(l)

STATUS
ADDBIB (1) currently is not supported by Digital Equipment Corporation.

1-10

~,

)

APPLY(1)

NAME
apply - apply a command to a set of arguments

SYNTAX
apply [-ac] [-n] command args ...

DESCRIPTION
Apply runs the named command on each argument arg in turn. Normally arguments are
chosen singly; the optional number n specifies the number of arguments to be passed to
command. If n is zero, command is run without arguments once for each argo Character
sequences of the form % d in command, where d is a digit from 1 to 9, are replaced by the
d'th following unused argo If any such sequences occur, n is ignored, and the number of
arguments passed to command is the maximum value of d in command. The character' % '
may be changed by the - a option.

Examples:
apply echo *

is similar to ls(I);
apply -2 cmp al bl a2 b2 ...

compares the 'a' files to the 'b' files;
apply -0 who 1 2 3 4 5

runs who(1) 5 times; and
apply 1n % 1 /usr/joe' *

links all files in the current directory to the directory /usr/joe.

SEE ALSO
sh(l)

RESTRICTIONS
Shell metacharacters in command may have unexpected results; it is best to enclose compli­
cated commands in single quotes".

There is no way to pass a literal' % 2' if '%' is the argument expansion character.

STATUS
APPL Y (1) currently is not supported by Digital Equipment Corporation.

1-11

APROPOS(1)

NAME
apropos - locate commands by keyword lookup

SYNTAX
apropos keyword ...

DESCRIPTION
Apropos shows which manual sections contain instances of any of the given keywords in
their title. Each word is considered separately and case of letters is ignored. Words which
are part of other words are considered thus looking for compile will hit all instances of
'compiler' also. Try

apropos password

and

apropos editor

If the line starts 'name(section) ... ' you can do 'man section name' to get the documentation
for it. Try 'apropos format' and then 'man 3s printf' to get the manual on the subroutine
print/.

Apropos is actually just the -k option to the man(1) command.

FILES
/usr/lib/whatis

SEE ALSO

data base

man(1), whatis(I), catman(8)

STATUS
APROPOS (1) currently is not supported by Digital Equipment Corporation.

1-12

)

AR(1)

NAME
ar - archive and library maintainer

SYNTAX
ar key [posname] afile name ...

DESCRIPTION
Ar maintains groups of files combined into a single archive file. Its main use is to create
and update library files as used by the loader. It can be used, though, for any similar pur­
pose.

This version of ar uses a ASCII-format archive which is portable among the various
machines running UNIX. Programs for dealing with older formats are available: see arcv(8).

Key is one character from the set drqtpmx, optionally concatenated with one or more of
vuaibclo. Afile is the archive file. The names are constituent files in the archive file. The
meanings of the key characters are:

d Delete the named files from the archive file.

r Replace the named files in the archive file. If the optional character u is used with
r, then only those files with 'last-modified' dates later than the archive files are
replaced. If an optional positioning character from the set abi is used, then the
posname argument must be present and specifies that new files are to be placed
after (a) or before (b or i) posname. Otherwise new files are placed at the end.

q Quickly append the named files to the end of the archive file. Optional positioning
characters are invalid. The command does not check whether the added members
are already in the archive. Useful only to avoid quadratic behavior when creating
a large archive piece-by-piece.

t Print a table of contents of the archive file. If no names are given, all files in the
archive are tabled. If names are given, only those files are tabled.

p Print the named files in the archive.

m Move the named files to the end of the archive. If a positioning character is
present, then the posname argument must be present and, as in r, specifies where
the files are to be moved.

x Extract the named files. If no names are given, all files in the archive are
extracted. In neither case does x alter the archive file. Normally the 'last­
modified' date of each extracted file is the date when it is extracted. However, if 0

is used, the 'last-modified' date is reset to the date recorded in the archive.

v Verbose. Under the verbose option, ar gives a file-by-file description of the mak­
ing of a new archive file from the old archive and the constituent files. When used
with t, it gives a long listing of all information about the files. When used with p,
it precedes each file with a name.

c Create. Normally ar will create afile when it needs to. The create option
suppresses the normal message that is produced when afile is created.

1-13

AR(1)

Local. Normally ar places its temporary files in the directory /tmp. This option
causes them to be placed in the local directory.

FILES
/tmp/v* temporaries

SEE ALSO
lorder(l), Id(l), ranlib(l), ar(5), arcv(8)

RESTRICTIONS
If the same file is mentioned twice in an argument list, it may be put in the archive twice.

The 'last-modified' date of a file will not be altered by the 0 option if the user is not the
owner of the extracted file, or the super-user.

STATUS
AR (1) is supported by Digital Equipment Corporation.

1-14

\
}

AS(1)

NAME
as - VAX-ll assembler

SYNTAX
as [-d124] [- L] [- W] [-V] [-J] [- R] [-t directory] [-0 objfile] [name ...]

DESCRIPTION
As assembles the named files, or the standard input if no file name is specified. The avail­
able flags are:

-d Specifies the number of bytes to be assembled for offsets which involve forward or
external references, and which have sizes unspecified in the assembly language.
The default is -d4.

- L Save defined labels beginning with a 'L', which are normally discarded to save
space in the resultant symbol table. The compilers generate such temporary
labels.

- V Use virtual memory for some intermediate storage, rather than a temporary file.

- W Do not complain about errors.

-J Use long branches to resolve jumps when byte-displacement branches are
insufficient. This must be used when a compiler-generated assembly contains
branches of more than 32k bytes.

- R Make initialized data segments read-only, by concatenating them to the text seg­
ments. This obviates the need to run editor scripts on assembly code to make ini­
tialized data read -only and shared.

-t Specifies a directory to receive the temporary file, other than the default /tmp.

All undefined symbols in the assembly are treated as global.

The output of the assembly is left on the file objfile; if that is omitted, a.out is used.

FILES
/tmp/as*
a.out

SEE ALSO

default temporary files
default resultant object file

Id(1), nm(1), adb(1), dbx(1), a.out(5)
Auxiliary documentation Assembler Reference Manual.

STATUS
AS (1) is supported by Digital Equipment Corporation.

1-15

AT(1)

NAME
at - execute commands at a later time

SYNTAX
at time [day] [file]

DESCRIPTION
At squirrels away a copy of the named file (standard input default) to be used as input to
sh(l) (or csh(l) if you normally use it) at a specified later time. A cd command to the
current directory is inserted at the beginning, followed by assignments to all environment
variables (excepting the variable TERM, which is useless in this context.) When the script
is run, it uses the user and group ID of the creator of the copy file.

The time is 1 to 4 digits, with an optional following 'A', 'P', 'N' or 'M' for AM, PM, noon or
midnight. One and two digit numbers are taken to be hours, three and four digits to be
hours and minutes. If no letters follow the digits, a 24 hour clock time is understood.

The optional day is either (1) a month name followed by a day number, or (2) a day of the
week; if the word 'week' follows invocation is moved seven days further off. Names of
months and days may be recognizably truncated. Examples of legitimate commands are

at 8am jan 24
at 1530 fr week

At programs are executed by periodic execution of the command /usr/lib/atrun from
cron(8). The granularity of at depends upon how often atrun is executed.

Standard output or error output is lost unless redirected.

FILES
/usr/lib/atrun

in /usr/spool/at:
yy.ddd.hhhh. *
lasttimedone
past

executor (run by cron(8».

activity for year yy, day dd, hour hhhh.
last hhhh
activities in progress

SEE ALSO
calendar(I), pwd(I), sleep(I), cron(8)

DIAGNOSTICS
Complains about various syntax errors and times out of range.

RESTRICTIONS
Due to the granularity of the execution of /usr/lib/atrun, there may be bugs in scheduling
things almost exactly 24 hours into the future.

STATUS
AT (1) currently is not supported by Digital Equipment Corporation.

1-16

AWK(1)

NAME
awk - pattern scanning and processing language

SYNTAX
awk [-Fe] [prog] [file] ...

DESCRIPTION
Awk scans each input file for lines that match any of a set of patterns specified in prog.
With each pattern in prog there can be an associated action that will be performed when a
line of a file matches the pattern. The set of patterns may appear literally as prog, or in a
file specified as -f file.

Files are read in order; if there are no files, the standard input is read. The file name '-'
means the standard input. Each line is matched against the pattern portion of every
pattern-action statement; the associated action is performed for each matched pattern.

An input line is made up of fields separated by white space. (This default can be changed
by using FS, vide infra.) The fields are denoted $1, $2, ... ; $0 refers to the entire line.

A pattern-action statement has the form

pattern { action }

A missing { action } means print the line; a missing pattern always matches.

An action is a sequence of statements. A statement can be one of the following:

if (conditional) statement [else statement]
while (conditional) statement
for (expression ; conditional ; expression) statement
break
continue
{ [statement] ... }
variable = expression
print [expression-list] [>expression]
printf format [, expression-list] [>expression]
next # skip remaining patterns on this input line
exit # skip the rest of the input

Statements are terminated by semicolons, newlines or right braces. An empty expression­
list stands for the whole line. Expressions take on string or numeric values as appropriate,
and are built using the operators +, -, *, /, %, and concatenation (indicated by a blank).
The C operators ++, --, +=, -=, *=, /=, and % = are also available in expressions. Vari­
ables may be scalars, array elements (denoted x[i]) or fields. Variables are initialized to the
null string. Array subscripts may be any string, not necessarily numeric; this allows for a
form of associative memory. String constants are quoted" ... ".

The print statement prints its arguments on the standard output (or on a file if >file is
present), separated by the current output field separator, and terminated by the output
record separator. The printf statement formats its expression list according to the format
(see printf(3S».

1-17

AWK(1)

The built-in function length returns the length of its argument taken as a string, or of the
whole line if no argument. There are also built-in functions exp, log, sqrt, and into The
last truncates its argument to an integer. substr(s, m, nJ returns the n-character substring
of s that begins at position m. The function sprintf(fmt, expr, expr, ... J formats the
expressions according to the printf(3S) format given by fmt and returns the resulting
string.

Patterns are arbitrary Boolean combinations (!, \ I ,&&, and parentheses) of regular expres­
sions and relational expressions.. Regular expressions must be surrounded by slashes and
are as in egrep. Isolated regular expressions in a pattern apply to the entire line. Regular
expressions may also occur in relational expressions.

A pattern may consist of two patterns separated by a comma; in this case, the action is per­
formed for all lines between an occurrence of the first pattern and the next occurrence of
the second.

A relational expression is one of the following:

expression matchop regular-expression
expression relop expression

where a relop is any of the six relational operators in C, and a matchop is either - (for con­
tains) or !- (for does not contain). A conditional is an arithmetic expression, a relational
expression, or a Boolean combination of these.

The special patterns BEGIN and END may be used to capture control before the first
input line is read and after the last. BEGIN must be the first pattern, END the last.

A single character e may be used to separate the fields by starting the program with

BEGIN { FS = "c" }

or by using the -Fe option.

Other variable names with special meanings include NF, the number of fields in the current
record; NR, the ordinal number of the current record; FILENAME, the name of the current
input file; OFS, the output field separator (default blank); ORS, the output record separa­
tor (default newline); and OFMT, the output format for numbers (default" % .6g").

EXAMPLES

1-18

Print lines longer than 72 characters:

length> 72

Print first two fields in opposite order:

{ print $2, $1 }

Add up first column, print sum and average:

{ s += $1 }
END { print "sum is", s, " average is", s/NR }

Print fields in reverse order:

{ for (i = NF; i > 0; --i) print $i }

Print all lines between start/stop pairs:

/start/, /stop/

Print all lines whose first field is different from previous one:

$1 != prev { print; prev = $1 }

SEE ALSO
lex(l), sed(l)

AWK(1)

A. V. Aho, B. W. Kernighan, P. J. Weinberger, Awk - a pattern scanning and processing
language

RESTRICTIONS
There are no explicit conversions between numbers and strings. To force an expression to
be treated as a number add 0 to it; to force it to be treated as a string concatenate "" to it.

STATUS
A WK (1) currently is not supported by Digital Equipment Corporation.

1-19

BASE NAME (1)

NAME
basename - strip filename affixes

SYNTAX
basename string [suffix]

DESCRIPTION
Basename deletes any prefix ending in 'I' and the suffix, if present in string, from string,
and prints the result on the standard output. It is normally used inside substitution marks
, , in shell procedures.

This shell procedure invoked with the argument /usr/src/bin/cat.c compiles the named file
and moves the output to cat in the current directory:

cc $1
mv a.out 'basename $1 .c'

SEE ALSO
sh(1)

STATUS
BASENAME (1) currently is not supported by Digital Equipment Corporation.

1-20

)

BCC 1)

NAME
bc - arbitrary-precision arithmetic language

SYNTAX
bc [-c] [-1] [file ...]

DESCRIPTION
Be is an interactive processor for a language which resembles C but provides unlimited pre­
cision arithmetic. It takes input from any files given, then reads the standard input. The
-1 argument stands for the name of an arbitrary precision math library. The syntax for be
programs is as follows; L means letter a-z, E means expression, S means statement.

Comments
are enclosed in /* and * /.

Names
simple variables: L
array elements: L [E]
The words 'ibase', 'obase', and 'scale'

Other operands
arbitrarily long numbers with optional sign and decimal point.
(E)
sqrt (E)
length (E)
scale (E)
L(E, ... ,E)

Operators

number of significant decimal digits
number of digits right of decimal point

+ - * / % A (% is remainder; A is power)
++ -- (prefix and postfix; apply to names)
== <= >= != < >
= += -= *= /= % = -

Statements
E
{ S; '" ; S }
if (E) S
while (E) S
for (E ; E ; E) S
null statement
break
quit

Function definitions
define L (L , ... , L) {

auto L, ... , L
S; ... S
return (E)

1-21

BCC 1)

1-22

Functions in -I math library
s(x) sine
c(x) cosine
e(x) exponential
l(x) log
a(x) arctangent
j(n,x) Bessel function

All function arguments are passed by value.

The value of a statement that is an expression is printed unless the main operator is an
assignment. Either semicolons or newlines may separate statements. Assignment to scale
influences the number of digits to be retained on arithmetic operations in the manner of
de(1). Assignments to ibase or obase set the input and output number radix respectively.

The same letter may be used as an array, a function, and a simple variable simultaneously.
All variables are global to the program. 'Auto' variables are pushed down during function
calls. When using arrays as function arguments or defining them as automatic variables
empty square brackets must follow the array name.

For example

scale = 20
define e(x) {

auto a, b, c, i, s
a=1
b = 1
s = 1
for(i=1; 1==1; i++){

a = a*x
b = b*i
c = alb
if(c = = 0) return(s)
s = s+c

defines a function to compute an approximate value of the exponential function and

for(i=1; i<=10; i++) e(i)

prints approximate values of the exponential function of the first ten integers.

Be is actually a preprocessor for de(l), which it invokes automatically, unless the -c (com­
pile only) option is present. In this case the de input is sent to the standard output
instead.

Bec 1)

FILES
/usr/lib/lib.b mathematical library
dc(l) desk calculator proper

SEE ALSO
dc(1)
L. L. Cherry and R. Morris, Be - An arbitrary precision desk-calculator language

RESTRICTIONS
For statement must have all three E's.
Quit is interpreted when read, not when executed.

STATUS
Be (1) currently is not supported by Digital Equipment Corporation.

1-23

BIFF (1)

NAME
biff - be notified if mail arrives and who it is from

SYNTAX
bi1f [yn]

DESCRIPTION
Biff informs the system whether you want to be notified when mail arrives during the
current terminal session. The command

bi1fy

enables notification; the command

bi1fn

disables it. When mail notification is enabled, the header and first few lines of the message
will be printed on your screen whenever mail arrives. A "biff y" command is often included
in the file .login or .profile to be executed at each login.

Biff operates asynchronously. For synchronous notification use the MAIL variable of sh(l)
or the mail variable of csh(I).· .

SEE ALSO
csh(I), sh(I), mail(I), comsat(8C)

STATUS
BIFF (1) currently is not supported by Digital Equipment Corporation.

1-24

\
;'

NAME
binmail - send or receive mail among users

SYNTAX
/bin/mail [+] [-i] [person] ...
/bin/mail [+] [-i] -f file

DESCRIPTION

BINMAIL(1)

Note: This is the old version 7 UNIX system mail program. The default mail command is
described in Mail(l), and its binary is in the directory /usr/ucb.

mail with no argument prints a user's mail, message-by-message, in last-in, first-out order;
the optional argument + displays the mail messages in first-in, first-out order. For each
message, it reads a line from the standard input to direct disposition of the message.

newline Go on to next message.

d Delete message and go on to the next.

p Print message again.

Go back to previous message.

s [file] ...
Save the message in the named files ('mbox' default).

w [file] ...
Save the message, without a header, in the named files ('mbox' default).

m [person] ...
Mail the message to the named persons (yourself is default).

EDT (control-D)
Put unexamined mail back in the mailbox and stop.

q Same as EOT.

!command
Escape to the Shell to do command.

* Print a command summary.

An interrupt normally terminates the mail command; the mail file is unchanged. The
optional argument..i tells mail to continue after interrupts.

When persons are named, mail takes the standard input up to an end-of-file (or a line with
just '.') and adds it to each person's 'mail' file. The message is preceded by the sender's
name and a postmark. Lines that look like postmarks are prep ended with '>'. A person is
usually a user name recognized by login (1). To denote a recipient on a remote system,
prefix person by the system name and exclamation mark (see uucp(lC».

The -f option causes the named file, for example, 'mbox', to be printed as if it were the
mail file.

1-25

BINMAIL(1)

When a user logs in he is informed of the presence of mail.

FILES
/etc/passwd to identify sender and locate persons
/usr/spool/mail/* incoming mail for user *
mbox saved mail
/tmp/ma* temp file
/usr/spool/mail/* .lock lock for mail directory
dead.letter unmailable text

SEE ALSO
Mail(l), write(l), uucp(lC), uux(lC), xsend(l), sendmail(8)

RESTRICTIONS
Race conditions sometimes result in a failure to remove a lock file.

Normally anybody can read your mail, unless it is sent by xsend (1). An installation can
overcome this by making mail a set-user-id command that owns the mail directory.

STATUS
BINMAIL (1) is supported by Digital Equipment Corporation.

1-26

CAL (1)

NAME
cal - print calendar

SYNTAX
cal [month] year

DESCRIPTION
Cal prints a calendar for the specified year. If a month is also specified, a calendar just for
that month is printed. Year can be between 1 and 9999. The month is a number between
1 and 12. The calendar produced is that for England and her colonies.

Try September 1752.

RESTRICTIONS
The year is always considered to start in January even though this is historically naive.

STATUS
CAL (1) currently is not supported by Digital Equipment Corporation.

1-27

CALENDAR (1)

NAME
calendar - reminder service

SYNTAX
calendar [-]

DESCRIPTION
Calendar consults the file 'calendar' in the current directory and prints out lines that con­
tain today's or tomorrow's date anywhere in the line. Most reasonable month-day dates
such as 'Dec. 7,' 'december 7,' '12/7,' etc., are recognized, but not '7 December' or '7/12'. If
you give the month as "*,, with a date, i.e. "* I", that day in any month will do. On week­
ends 'tomorrow' extends through Monday.

When an argument is present, calendar does its job for every user who has a file 'calendar'
in his login directory and sends him any positive results by mail(l). Normally this is done
daily in the wee hours under control of cron(8).

The file 'calendar' is first run through the "c" preprocessor, /lib/cpp, to include any other
calendar files specified with the usual "#include" syntax. Included calendars will usually
be shared by all users, maintained and documented by the local administration.

FILES
calendar
/usr/lib/calendar to figure out today's and tomorrow's dates
/etc/passwd
/tmp/cal*
/lib/cpp, egrep, sed, mail as subprocesses

SEE ALSO
at(l), cron(8), mail(l)

RESTRICTIONS
Calendar's extended idea of 'tomorrow' doesn't account for holidays.

STATUS
CALENDAR (1) currently is not supported by Digital Equipment Corporation.

1-28

CAT(1)

NAME
cat - catenate and print

SYNTAX
cat [-b] [-e] [-n] [-8] [-t] [-u] [-v] file ...

DESCRIPTION
Cat reads each file in sequence and displays it on the standard output. Thus

cat file

displays the file on the standard output, and

cat filel file2 >file3

concatenates the first two files and places the result on the third.

If no input file is given, or if the argument '-' is encountered, cat reads from the standard
input file. Output is buffered in 1024-byte blocks unless the standard output is a terminal,
in which case it is line buffered.

The - b option ignores blank lines and precedes all other output with line numbers.

The -e option displays a dollar sign ($) at the end of each output line.

The -n option precedes all output lines (including blank lines) with line numbers.

The -8 option squeezes adjacent empty lines so that the output is displayed single spaced.

The -t option displays all non-printing characters including tabs in the output. In addi­
tion to those representations used with the -v option, all tab characters are displayed as AI.

The -u option makes the output completely unbuffered.

The -v option displays non-printing characters (except tabs). <CTRL!x> (control character
x) prints as AX. The delete character (octal 0177) prints as A? Non-ascii characters (with
the high bit set) are printed as M- (for meta) followed by the character of the low 7 bits.

SEE ALSO
cp(l), ex(l), more(l), pr(1), tail(l)

RESTRICTIONS
Beware of 'cat a b >a' and 'cat a b >b', which destroy the input files before reading them.

STATUS
CAT (1) is supported by Digital Equipment Corporation.

1-29

es(1)

NAME
cb - C program beautifier

SYNTAX
cb

DESCRIPTION
Cb places a copy of the C program from the standard input on the standard output with
spacing and indentation that displays the structure of the program.

STATUS
CB (1) currently is not supported by Digital Equipment Corporation.

1-30

CC(1)

NAME
cc - C compiler

SYNTAX
cc [option] ... file ...

DESCRIPTION
Cc is the UNIX C compiler. Cc accepts several types of arguments:

Arguments whose names end with '.c' are taken to be C source programs. They are com­
piled, and each object program is left on the file whose name is that of the source with '.0'
substituted for '.c'. The '.0' file is normally deleted, however, if a single C program is com­
piled and loaded all at one go.

In the same way, arguments whose names end with '.s' are taken to be assembly source pro­
grams and are assembled, producing a '.0' file.

The following options are interpreted by cc. See ld(l) for load-time options.

-c Suppress the loadillg phase of the compilation and force an object file to be pro­
duced even if only op.e program is compiled.

-g Have the compiler produce additional symbol table information for dbx (1). Also
pass the -lg flag to Id(I).

-go Have the compiler produce additional symbol table information for the obsolete
debugger sdb(I). Also pass the -lg flag to ld(I).

-w Suppress warning diagnostics.

-p Arrange for the compiler to produce code which counts the number of times each
routine is called. If loading takes place, replace the standard startup routine by
one which automatically calls monitor(3) at the start and arranges to write out a
mon.out file at normal termination of execution of the object program. An execu­
tion profile can then be generated by use of prof(I).

-pg Causes the compiler to produce counting code in the manner of -p, but invokes a
run-time recording mechanism that keeps more extensive statistics and produces a
gmon.out file at normal termination. Also, a profiling library is searched, in lieu of
the standard C library. An execution profile can then be generated by use of
gprof(I).

-0 Invoke an object-code improver.

-R Passed on to as, making initialized variables shared and read-only.

-S Compile the named C programs, and leave the assembler-language output on
corresponding files suffixed '.s'.

- E Run only the macro preprocessor on the named C programs and send the result to
the standard output.

-C prevent the macro preprocessor from eliding comments.

-0 output

© Digital Equipment Corporation 1984 1-31

CC(1)

Name the final output file output. If this option is used, the file 'a.out' will be left
undisturbed. If the named file has a '.0' or '.a' suffix, displays error message: -0

would overwrite.

-Dname=def
-Dname

Define the name to the preprocessor, as if by '#define'. If no definition is given,
the name is defined as "1".

-Uname
Remove any initial definition of name.

-Idir '#include' files whose names do not begin with '/' are always sought first in the
directory of the file argument, then in directories named in - I options, then in
directories on a standard list.

-Bstring
Find substitute compiler passes in the files named string with the suffixes cpp,
ccom and c2. If string is empty, use a standard backup version.

-t[p012]
Find only the designated compiler passes in the files whose names are constructed
by a -B option. In the absence of a -B option, the string is taken to be '/usr/c/'.

Other arguments are taken to be either loader option arguments, or C-compatible object
programs, typically produced by an earlier cc run, or perhaps libraries of C-compatible rou­
tines. These programs, together with the results of any compilations specified, are loaded
(in the order given) to produce an executable program with name a.out.

FILES

1-32

file.c input file
file.o object file
a.out loaded output
/tmp/ctm? temporary
/lib/cpp preprocessor
/lib/ccom compiler
/usr/c/occom backup compiler
/usr/c/ocpp backup preprocessor
/lib/c2 optional optimizer
/lib/crtO.o runtime startoff
/lib/mcrtO.o startoff for profiling
/usr/lib/gcrtO.ostartoff for gprof-profiling
/lib/libc.a standard library, see intro(3)
/usr/lib/libc"'p.aprofiling library, see intro(3)
/usr/include' standard directory for '#include' files
mon.out file produced for analysis by prof(1)
gmon.out file produced for analysis by gprof(1)

© Digital Equipment Corporation 1984

ce(1)

SEE ALSO
B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, 1978
B. W. Kernighan, Programming in C-a tutorial
D. M. Ritchie, C Reference Manual
monitor(3), prof(l), gprof(l), adb(l), Id(l), dbx(l), as(l)

DIAGNOSTICS
The diagnostics produced by C itself are intended to be self-explanatory. Occasional mes­
sages may be produced by the assembler or loader.

RESTRICTIONS
The compiler currently ignores advice to put char, unsigned char, short or unsigned
short variables in registers.

STATUS
CC (1) is supported by Digital Equipment Corporation.

1-33

CDC 1)

NAME
cd - change working directory

SYNTAX
cd directory

DESCRIPTION
Directory becomes the new working directory. The process must have execute (search) per­
mission in directory.

Because a new process is created to execute each command, cd would be ineffective if it
were written as a normal command. It is therefore recognized and executed by the shells.
In csh(l) you may specify a list of directories in which directory is to be sought as a sub­
directory if it is not a subdirectory of the current directory; see the description of the
cdpath variable in csh(I).

SEE ALSO
csh(I), sh(I), pwd(I), chdir(2)

STATUS
CD (1) is supported by Digital Equipment Corporation.

1-34

CHECKNR(1)

NAME
checknr - check nroff/troff files

SYNTAX
checknr [-s] [-f] [-a.x1.y1.x2.y2 xn.yn] [-c.x1.x2.x3 xn] [file ...

DESCRIPTION
Checknr checks a list of nroff(l) or troff(l) input files for certain kinds of errors involving
mismatched opening and closing delimiters and unknown commands. If no files are
specified, checknr checks the standard input. Delimeters checked are:

(1) Font changes using \fx ... \fP

(2) Size changes using\sx ... \ sO.

(3) Macros that come in open ... close forms, for example, the .TS and .TE macros
which must always come in pairs.

Checknr knows about the ms (7) and me (7) macro packages.

Additional pairs of macros can be added to the list using the -a option. This must be fol­
lowed by groups of six characters, each group defining a pair of macros. The six characters
are a period, the first macro name, another period, and the second macro name. For exam­
ple, to define a pair .BS and .ES, use -a.BS.ES

The -c option defines commands which would otherwise be complained about as
undefined.

The -f option requests checknr to ignore\f font changes.

The -s option requests checknr to ignore\ s size changes.

Checknr is intended to be used on documents that are prepared with checknr in mind,
much the same as lint. It expects a certain document writing for \ f and \ s commands,
in that each \ fx must be terminated with \ fP and each \ sx must be terminated with \ sO.
While it will work to directly go into the next font or explicitly specify the original font or
point size, and many existing documents actually do this, such a practice will produce
complaints from checknr. Sine itis probably better to use the \ fP and \ sO forms anyway,you
should think of this as a contribution to your document preparation style.

SEE ALSO
nroff(l), troff(1), checkeq(l), ms(7), me(7)

DIAGNOSTICS
Complaints about unmatched delimiters.
Complaints about unrecognized commands.
Various complaints about the syntax of commands.

RESTRICTIONS
There is no way to define a 1 character macro name using - a.
Does not correctly recognize certain reasonable characters, such as conditionals.

STATUS
CHECKNR (1) currently is not supported by Digital Equipment Corporation.

1-35

CHFN (1)

NAME
chfn - change finger entry

SYNTAX
chfn [loginname]

DESCRIPTION
Chin is used to change information about users. This information is used by the finger pro­
gram, among others. It consists of the user's "real life" name, office room number, office
phone number, and home phone number. Chin prompts the user for each field. Included
in the prompt is a default value, which is enclosed between brackets. The default value is
accepted simply by typing <return>. To enter a blank field, type the word 'none'. Below
is a sample run:

Name [Biff Studs worth II]:
Room number (Exs: 597E or 197C) []: 521E
Office Phone (Ex: 1632) []: 1863
Home Phone (Ex: 987532) [5771546]: none

Chin allows phone numbers to be entered with or without hyphens. Because finger only
knows about UCB extensions, chin will insist upon a four digit number (after the hyphens
are removed) for office phone numbers. Also, room numbers must be in Evans or Cory;
again, this is because of finger.

It is a good idea to run finger after running chin to make sure everything is the way you
want it.

The optional argument loginname is used to change another person's finger information.
This can only be done by the super-user.

FILES
/etc/passwd, /etc/ptmp

SEE ALSO
finger(l), passwd(5)

RESTRICTIONS
The encoding of the office and extension information is installation dependent.

Because two users may try to write the passwd file at once, a synchronization method was
developed. On rare occasions, a message that the password file is "busy" will be printed.
In this case, chin sleeps for a while and then tries to write to the passwd file again.

STATUS
CHFN (1) currently is not supported by Digital Equipment Corporation.

1-36 © Digital Equipment Corporation 1984

CHGRP(1)

NAME
chgrp - change group

SYNTAX
chgrp [-f] group file ...

DESCRIPTION
Chgrp changes the group-ID of the files to group. The group may be either a decimal GID
or a group name found in the group-ID file.

The user invoking chgrp must belong to the specified group and be the owner of the file, or
be the super-user.

Only system messages and the usage message are reported when the -f (force) option is
given.

FILES
/etc/group

SEE ALSO
chown(2), passwd(5), group(5)

STATUS
CHGRP (1) is supported by Digital Equipment Corporation.

1-37

CHMOD(1)

NAME
chmod - change mode

SYNTAX
chmod mode file ...

DESCRIPTION
The mode of each named file is changed according to mode, which may be absolute or sym­
bolic. An absolute mode is an octal number constructed from the OR of the following
modes:

4000 set user ID on execution
2000 set group ID on execution
1000 sticky bit, see chmod(2)
0400 read by owner
0200 write by owner
0100 execute (search in directory) by owner
0070 read, write, execute (search) by group
0007 read, write, execute (search) by others

A symbolic mode has the form:

[who] op permission [op permission] ...

The who part is a combination of the letters u (for user's permissions), g (group) and 0

(other). The letter a stands for all, or ugo. If who is omitted, the default is a but the set­
ting of the file creation mask (see umask(2» is taken into account.

Op can be + to add permission to the file's mode, - to take away permission and = to
assign permission absolutely (all other bits will be reset).

Permission is any combination of the letters r (read), w (write), x (execute), s (set owner
or group id) and t (save text - sticky). Letters u, g or 0 indicate that permission is to be
taken from the current mode. Omitting permission is only useful with = to take away all
permissions.

To indicate multiple symbolic modes that are to be applied to a given file, separate the
modes with commas. These changes then will be applied in the sequence specified.

EXAMPLES
The first example denies write permission to others. The second makes a file executable' for
the user only. The third gives write permission to all group members, denies read permis­
sion to others, and makes the file executable for the user.

chmod o-w file
chmod +x file
chmod g+w,o-r,u+x file

RESTRICTIONS
The letter s is only useful with u or g.

1-38

CHMOD(1)

Only the owner of a file (or the super-user) may change its mode.

SEE ALSO
Is(l), chmod(2), stat(2), umask(2), chown(8)

STATUS
CHMOD (1) is supported by Digital Equipment Corporation.

1-39

CHSH(1)

NAME
chsh - change default login shell

SYNTAX
chsh name [shell]

DESCRIPTION
Chsh is a command similar to passwd (1) except that it is used to change the login shell
field of the password file rather than the password entry. If no shell is specified then the
shell reverts to the default login shell Ibinlsh. Otherwise only Ibinlcsh, Ibinloldcsh, or
lusrlnewlcsh can be specified as the shell unless you are the super-user.

An example use of this command would be

chsh bill /bini csh

SEE ALSO
csh(l), passwd(l), passwd(5)

STATUS
CHSH (1) currently is not supported by Digital Equipment Corporation.

1-40

NAME
clear - clear terminal screen

SYNTAX
clear

DESCRIPTION

CLEAR(1)

Clear clears your screen if this is possible. It looks in the environment for the terminal
type and then in /etc/termcap to figure out how to clear the screen.

FILES
/etc/termcap

STATUS

terminal capability data base

CLEAR (1) currently is not supported by Digital Equipment Corporation.

1-41

CMP(1)

NAME
cmp - compare two files

SYNTAX
cinp [-I] [-s] file1 file2

DESCRIPTION
The two files are compared. (If filel is '-', the standard input is used.) Under default
options, cmp makes no comment if the files are the same. If they differ, it announces the
byte and line number at which the difference occurred. If one file is an initial subsequence
of the other, that fact is noted.

Options:

-I Print the byte number (decimal) and the differing bytes (octal) for each difference.

-s Print nothing for differing files; return codes only.

SEE ALSO
diff(l), comm(1)

DIAGNOSTICS
Exit code 0 is returned for identical files, 1 for different files, and 2 for an inaccessible or
missing argument.

RESTRICTIONS
Only one option may be specified at a time.

STATUS
CMP (1) is supported by Digital Equipment Corporation.-

1-42

COL(n

NAME
col - filter reverse line feeds

SYNTAX
col [-bfx]

DESCRIPTION
Col reads the standard input and writes the standard output. It performs the line overlays
implied by reverse line feeds (ESC-7 in ASCII) and by forward and reverse half line feeds
(ESC-9 and ESC-8). Col is particularly useful for filtering multi column output made with
the '.rt' command of nroff and output resulting from use of the tbl(l) preprocessor.

Although col accepts half line motions in its input, it normally does not emit them on out­
put. Instead, text that would appear between lines is moved to the next lower full line
boundary. This treatment can be suppressed by the -f (fine) option; in this case the out­
put from col may contain forward half line feeds (ESC-9), but will still never contain either
kind of reverse line motion.

If the -b option is given, col assumes that the output device in use is not capable of back­
spacing. In this case, if several characters are to appear in the same place, only the last one
read will be taken.

The control characters SO (ASCII code 017), and SI (016) are assumed to start and end
text in an alternate character set. The character set (primary or alternate) associated with
each printing character read is remembered; on output, SO and SI characters are generated
where necessary to maintain the correct treatment of each character.

Col normally converts white space to tabs to shorten printing time. If the -x option is
given, this conversion is suppressed.

All control characters are removed from the input except space, backspace, tab, return,
newline, ESC (033) followed by one of 7, 8, 9, SI, SO, and VT (013). This last character is
an alternate form of full reverse line feed, for compatibility with some other hardware con­
ventions. All other non-printing characters are ignored.

SEE ALSO
troff(l), tbl(l)

RESTRICTIONS
Can't back up more than 128 lines.
No more than 800 characters, including backspaces, on a line.

STATUS
COL (1) currently is not supported by Digital Equipment Corporation.

1-43

COLCAT(1)

NAME
colcrt - filter nroff output for CRT previewing

SYNTAX
colert [-] [-2] [file...]

DESCRIPTION
Colcrt provides virtual half-line and reverse line feed sequences for terminals without such
capability, and on which overstriking is destructive. Half-line characters and underlining
(changed to dashing '-') are placed on new lines in between the normal output lines.

The optional - suppresses all underlining. It is especially useful for previewing allboxed
tables from tbl (1).

The option -2 causes all half-lines to be printed, effectively double spacing the output.
Normally, a minimal space output format is used which will suppress empty lines. The
program never suppresses two consecutive empty lines, however. The -2 option is useful
for sending output to the line printer when the output contains superscripts and subscripts
which would otherwise be invisible.

A typical use of colcrt would be

tbl exum2.n 1 nroff -ms 1 colcrt - 1 more

SEE ALSO
nroff/troff(l), col(l), more(l), ul(l)

RESTRICTIONS
Can't back up more than 102 lines.

General overstriking is lost; as a special case 'I' overstruck with '-' or underline becomes '+'.
Lines are trimmed to 132 characters.

STATUS
COLCRT (1) currently is not supported by Digital Equipment Corporation.

1-44

COlRM(1)

NAME
colrm - remove columns from a file

SYNTAX
colrm [startcol [endcol]]

DESCRIPTION
Colrm removes selected columns from a file. Input is taken from standard input. Output is
sent to standard output.

If called with one parameter the columns of each line will be removed starting with the
specified column. If called with two parameters the columns from the first column to the
last column will be removed.

Column numbering starts with column 1.

SEE ALSO
expand(1)

STATUS
COLRM (1) currently is not supported by Digital Equipment Corporation.

1-45

COMM(O

NAME
comm - select or reject lines common to two sorted files

SYNTAX
comm [- [123]] filel file2

DESCRIPTION
Comm reads filel and file2, which should be ordered in ASCII collating sequence, and pro­
duces a three column output: lines only in filel; lines only in file2; and lines in both files.
The filename '-' means the standard input.

Flags 1, 2, or 3 suppress printing of the corresponding column. Thus comm -12 prints
only the lines common to the two files; comm -23 prints only lines in the first file but not
in the second; comm -123 is a no-op.

SEE ALSO
cmp(l), diff(I), uniq(l)

STATUS
COMM (1) currently is not supported by Digital Equipment Corporation.

1-46

NAME
compact, un compact, ccat - compress and uncompress files, and cat them

SYNTAX
compact [name ...]
uncompact [name ...
ccat [file ...]

DESCRIPTION

COMPACT(1)

Compact compresses the named files using an adaptive Huffman code. If no file names are
given, the standard input is compacted to the standard output. Compact operates as an
on-line algorithm. Each time a byte is read, it is encoded immediately according to the
current prefix code. This code is an optimal Huffman code for the set of frequencies seen
so far. It is unnecessary to prepend a decoding tree to the compressed file since the
encoder and the decoder start in the same state and stay synchronized. Furthermore, com­
pact and uncompact can operate as filters. In particular,

... 1 compact 1 uncompact I ...

operates as a (very slow) no-op.

When an argument file is given, it is compacted and the resulting file is placed in file.C; file
is unlinked. The first two bytes of the compacted file code the fact that the file is com­
pacted. This code is used to prohibit recompaction.

The amount of compression to be expected depends on the type of file being compressed.
Typical values of compression are: Text (38%), Pascal Source (43%), C Source (36%) and
Binary (19%). These values are the percentages of file bytes reduced.

Uncompact restores the original file from a file compressed by compact. If no file names are
given, the standard input is uncompacted to the standard output.

Ccat cats the original file from a file compressed by compact, without uncompressing the
file.

RESTRICTION
The last segment of the filename must contain fewer than thirteen characters to allow space
for the appended '.C'.

FILES
*.C

SEE ALSO

compacted file created by compact, removed by uncompact

Gallager, Robert G., 'Variations on a Theme of Huffman', I.E.E.E. Transactions on Infor­
mation Theory, vol. IT-24, no. 6, November 1978, pp. 668 - 674.

STATUS
COMPACT (1) currently is not supported by Digital Equipment Corporation.

1-47

CP(1)

NAME
cp - copy

SYNTAX
cp [-i] [-r] file1 file2

cp [-i] [-r] file ... directory

DESCRIPTION
Filel is copied onto file2. The mode and owner of file2 are preserved if it already existed;
the mode of the source file is used otherwise.

In the second form, one or more files are copied into the directory with their original file­
names.

Cp refuses to copy a file onto itself.

If the -i option is specified, cp will prompt the user with the name of the file whenever the
copy will cause an old file to be overwritten. An answer of 'y' will cause cp to continue. Any
other answer will prevent it from overwriting the file.

If the -r option is specified and any of the source files are directories, cp copies each sub­
tree rooted at that name; in this case the destination must be a directory.

SEE ALSO
cat(l), pr(1), mv(l)

STATUS
CP (1) is supported by Digital Equipment Corporation.

1-48 © Digital Equipment Corporation 1984

CSH(1)

NAME
csh - a shell (command interpreter) with C-like syntax

SYNTAX
csh [-cefinstvVxX] [arg ...]

DESCRIPTION
Csh is a first implementation of a command language interpreter incorporating a history
mechanism (see History Substitutions) job control facilities (see Jobs) and a C-like
syntax. So as to be able to use its job control facilities, users of csh must (and automati­
cally) use the new tty driver fully described in tty(4). This new tty driver allows generation
of interrupt characters from the keyboard to tell jobs to stop. See stty(1) for details on set­
ting options in the new tty driver.

An instance of csh begins by executing commands from the file '.cshrc' in the home direc­
tory of the invoker. If this is a login shell then it also executes commands from the file
'.login' there. It is typical for users on crt's to put the command "stty crt" in their .login
file, and to also invoke tset(1) there.

In the normal case, the shell will then begin reading commands from the terminal, prompt­
ing with '% '. Processing of arguments and the use of the shell to process files containing
command scripts will be described later.

The shell then repeatedly performs the following actions: a line of command input is read
and broken into words. This sequence of words is placed on the command history list and
then parsed. Finally each command in the current line is executed.

When a login shell terminates it executes commands from the file '.logout' in the users
home directory.

Lexical structure

The shell splits input lines into words at blanks and tabs with the following exceptions.
The characters '&' 'I' ';' '<' '>' '(' ')' form separate words. If doubled in '&&', 'II', '«' or
'»' these pairs form single words. These parser metacharacters may be made part of
other words, or prevented their special meaning, by preceding them with '\'. A newline pre­
ceded by a ''\ is equivalent to a blank.

In addition strings enclosed in matched pairs of quotations, "', '" or '"', form parts of a
word; metacharacters in these strings, including blanks and tabs, do not form separate
words. These quotations have semantics to be described subsequently. Within pairs of ",
or '"' characters a newline preceded by a '\ gives a true newline character.

When the shell's input is not a terminal, the character '#' introduces a comment which con­
tinues to the end of the input line. It is prevented this special meaning when preceded by
'\ and in quotations using "', "', and '"'.

© Digital Equipment Corporation 1984 1-49

CSH(1)

Commands

A simple command is a sequence of words, the first of which specifies the command to be
executed. A simple command or a sequence of simple commands separated by 'I' characters
forms a pipeline. The output of each command in a pipeline is connected to the input of
the next. Sequences of pipelines may be separated by';', and are then executed sequen­
tially. A sequence of pipelines may be executed without immediately waiting for it to ter­
minate by following it with an '&'.

Any of the above may be placed in '(' ')' to form a simple command (which may be a com­
ponent of a pipeline, etc.) It is also possible to separate pipelines with 'II' or '&&' indicating,
as in the C language, that the second is to be executed only if the first fails or succeeds
respectively. (See Expressions.)

1-50

Jobs

The shell associates a job with each pipeline. It keeps a table of current jobs, printed by
the jobs command, and assigns them small integer numbers. When a job is started asyn­
chronously with '&', the shell prints a line which looks like:

[1] 1234

indicating that the jobs which was started asynchronously was job number 1 and had one
(top-level) process, whose process id was 1234.

If you are running a job and wish to do something else you may hit the key "z (control-Z)
which sends a STOP signal to the current job. The shell will then normally indicate that
the job has been 'Stopped', and print another prompt. You can then manipulate the state
of this job, putting it in the background with the bg command, or run some other com­
mands and then eventually bring the job back into the foreground with the foreground
command {g. A "z takes effect immediately and is like an interrupt in that pending output
and unread input are discarded when it is typed. There is another special key "Y which
does not generate a STOP signal until a program attempts to read (2) it. This can usefully
be typed ahead when you have prepared some commands for a job which you wish to stop
after it has read them.

A job being run in the background will stop if it tries to read from the terminal. Back­
ground jobs are normally allowed to produce output, but this can be disabled by giving the
command "stty tostop". If you set this tty option, then background jobs will stop when
they try to produce output like they do when they try to read input.

There are several ways to refer to jobs in the shell. The character '%' introduces a job
name. If you wish to refer to job number 1, you can name it as '% 1'. Just naming a job
brings it to the foreground; thus '% l' is a synonym for 'fg % 1', bringing job 1 back into the
foreground. Similarly saying '% 1 &' resumes job 1 in the background. Jobs can also be
named by prefixes of the string typed in to start them, if these prefixes are unambiguous,
thus' % ex' would normally restart a suspended ex (1) job, if there were only one suspended
job whose name began with the string 'ex'. It is also possible to say '% ?string' which
specifies a job whose text contains string, if there is only one such job.

© Digital Equipment Corporation 1984

CSH(1)

The shell maintains a notion of the current and previous jobs. In output pertaining to jobs,
the current job is marked with a '+' and the previous job with a '-'. The abbreviation
'% +' refers to the current job and' % -' refers to the previous job. For close analogy with
the syntax of the history mechanism (described below), '% %' is also a synonym for the
current job.

Status reporting

This shell learns immediately whenever a process changes state. It normally informs you
whenever a job becomes blocked so that no further progress is possible, but only just before
it prints a prompt. This is done so that it does not otherwise disturb your work. If, how­
ever, you set the shell variable notify, the shell will notify you immediately of changes of
status in background jobs. There is also a shell command notify which marks a single pro­
cess so that its status changes will be immediately reported. By default notify marks the
current process; simply say 'notify' after starting a background job to mark it.

When you try to leave the shell while jobs are stopped, you will be warned that 'You have
stopped jobs.' You may use the jobs command to see what they are. If you do this or
immediately try to exit again, the shell will not warn you a second time, and the suspended
jobs will be terminated.

Substitutions

We now describe the various transformations the shell performs on the input in the order
in which they occur.

History substitutions

History substitutions place words from previous command input as portions of new com­
mands, making it easy to repeat commands, repeat arguments of a previous command in
the current command, or fix spelling mistakes in the previous command with little typing
and a high degree of confidence. History substitutions begin with the character 'I' and may
begin anywhere in the input stream (with the proviso that they do not nest.) This 'I'
may be preceded by an '\' to prevent its special meaning; for convenience, a 'I' is passed
unchanged when it is followed by a blank, tab, newline, '=' or 'C. (History substitutions
also occur when an input line begins with ,t,. This special abbreviation will be described
later.) Any input line which contains history substitution is echoed on the terminal before it
is executed as it could have been typed without history substitution.

Commands input from the terminal which consist of one or more words are saved on the
history list. The history substitutions reintroduce sequences of words from these saved
commands into the input stream. The size of which is controlled by the history variable;
the previous command is always retained, regardless of its value. Commands are numbered
sequentially from 1-

For definiteness, consider the following output from the history command:

9 write michael
10 ex write.c
11 cat oldwrite.c

© Digital Equipment Corporation 1984 1-51

CSH(1)

1-52

12 diff *write.c

The commands are shown with their event numbers. It is not usually necessary to use
event numbers, but the current event number can be made part of the prompt by placing
an 'I' in the prompt string.

With the current event 13 we can refer to previous events by event number '!11', relatively
as in '!-2' (referring to the same event), by a prefix of a command word as in ltd' for event
12 or '!wri' for event 9, or by a string contained in a word in the command as in '!?mic?'
also referring to event 9. These forms, without further modification, simply reintroduce the
words of the specified events, each separated by a single blank. As a special case 'H' refers
to the previous command; thus 'I!' alone is essentially a redo.

To select words from an event we can follow the event specification by a ':' and a designator
for the desired words. The words of a input line are numbered from 0, the first (usually
command) word being 0, the second word (first argument) being 1, etc. The basic word
designators are:

o first (command) word
n n'th argument
fi first argument, i.e. '1'
$ last argument
% word matched by (immediately preceding) ?8? search
x -y range of words
-y abbreviates 'O-y'
* abbreviates 'fi-$', or nothing if only 1 word in event
x * abbreviates 'x -$'
x - like 'x *' but omitting word '$'

The ':' separating the event specification from the word designator can be omitted if the
argument selector begins with a 'fi', '$', '*' '-' or '% '. After the optional word designator
can be placed a sequence of modifiers, each preceded by a ':'. The following modifiers are
defined:

h Remove a trailing pathname component, leaving the head.
r Remove a trailing' .xxx' component, leaving the root name.
e Remove all but the extension '.xxx' part.
s/l /r / Substitut<Vt6"r(!)
t Remove all leading pathname components, leaving the tail.
& Repeat the previous substitution.
g Apply the change globally, prefixing the above, e.g. 'g&'.
p Print the new command but do not execute it.
q Quote the substituted words, preventing further substitutions.
x Like q, but break into words at blanks, tabs and newlines.

Unless preceded by a 'g' the modification is applied only to the first modifiable word. With
substitutions, it is an error for no word to be applicable.

© Digital Equipment Corporation 1984

CSH (1)

The left hand side of substitutions are not regular expressions in the sense of the editors,
but rather strings. Any character may be used as the delimiter in place of '/,; a ,~ quotes
the delimiter into the land r strings. The character '&' in the right hand side is replaced
by the text from the left. A'~ quotes '&' also. A nulll uses the previous string either from
a l or from a contextual scan string s in '!?s ?'. The trailing delimiter in the substitution
may be omitted if a newline follows immediately as may the trailing '?' in a contextual
scan.

A history reference may be given without an event specification, e.g. '!$'. In this case the
reference is to the previous command unless a previous history reference occurred on the
same line in which case this form repeats the previous reference. Thus '!?foo? t !$' gives the
first and last arguments from the command matching '?foo?'.

A special abbreviation of a history reference occurs when the first non-blank character of an
input line is a't'. This is equivalent to '!:st, providing a convenient shorthand for substitu­
tions on the text of the previous line. Thus 'tlbtlib' fixes the spelling of 'lib' in the previ­
ous command. Finally, a history substitution may be surrounded with '{' and '}' if neces­
sary to insulate it from the characters which follow. Thus, after 'Is -ld -paul' we might do
'!{l}a' to do 'Is -ld -paula', while '!la' would look for a command starting 'la'.

Quotations with' and"

The quotation of strings by'" and '"' can be used to prevent all or some of the remaining
substitutions. Strings enclosed in '" are prevented any further interpretation. Strings
enclosed in '"' may be expanded as described below.

In both cases the resulting text becomes (all or part of) a single word; only in one special
case (see Command Substitition below) does a '"' quoted string yield parts of more than
one word; '" quoted strings never do.

Alias substitution

The shell maintains a list of aliases which can be established, displayed and modified by
the alias and una lias commands. After a command line is scanned, it is parsed into dis­
tinct commands and the first word of each command, left-to-right, is checked to see if it has
an alias. If it does, then the text which is the alias for that command is reread with the
history mechanism available as though that command were the previous input line. The
resulting words replace the command and argument list. If no reference is made to the his­
tory list, then the argument list is left unchanged.

Thus if the alias for 'Is' is 'Is -1' the command 'Is /usr' would map to 'Is -l/usr', the argu­
ment list here being undisturbed. Similarly if the alias for 'lookup' was 'grep !t
/etc/passwd' then 'lookup bill' would map to 'grep bill /etc/passwd'.

If an alias is found, the word transformation of the input text is performed and the aliasing
process begins again on the reformed input line. Looping is prevented if the first word of
the new text is the same as the old by· flagging it to prevent further aliasing. Other loops
are detected and cause an error.

© Digital Equipment Corporation 1984 1-53

CSH(1)

1-54

Note that the mechanism allows aliases to introduce parser metasyntax. Thus we can 'alias
print 'pr \!* Ilpr" to make a command which pr's its arguments to the line printer.

Variable substitution

The shell maintains a set of variables, each of which has as value a list of zero or more
words. Some of these variables are set by the shell or referred to by it. For instance, the
argv variable is an image of the shell's argument list, and words of this variable's value are
referred to in special ways.

The values of variables may be displayed and changed by using the set and unset com­
mands. Of the variables referred to by the shell a number are toggles; the shell does not
care what their value is, only whether they are set or not. For instance, the verbose vari­
able is a toggle which causes command input to be echoed. The setting of this variable
results from the -v command line option.

Other operations treat variables numerically. The '@' command permits numeric calcula­
tions to be performed and the result assigned to a variable. Variable values are, however,
always represented as (zero or more) strings. For the purposes of numeric operations, the
null string is considered to be zero, and the second and subsequent words of multiword
values are ignored.

After the input line is aliased and parsed, and before each command is executed, variable
substitution is performed keyed by '$' characters. This expansion can be prevented by
preceding the '$' with a '\' except within '"'s where it always occurs, and within "'s where
it never occurs. Strings quoted by'" are interpreted later (see Command substitution
below) so '$' substitution does not occur there until later, if at all. A '$' is passed
unchanged if followed by a blank, tab, or end-of-line.

Input/output redirections are recognized before variable expansion, and are variable
expanded separately. Otherwise, the command name and entire argument list are expanded
together. It is thus possible for the first (command) word to this point to generate more
than one word, the first of which becomes the command name, and the rest of which
become arguments.

Unless enclosed in '"' or given the ':q' modifier the results of variable substitution may
eventually be command and filename substituted. Within '"' a variable whose value con­
sists of multiple words expands to a (portion of) a single word, with the words of the vari­
ables value separated by blanks. When the ':q' modifier is applied to a substitution the
variable will expand to multiple words with each word separated by a blank and quoted to
prevent later command or filename substitution.

The following metasequences are provided for introducing variable values into the shell
input. Except as noted, it is an error to reference a variable which is not set.

$name
${name}

Are replaced by the words of the value of variable name, each separated by a blank.
Braces insulate name from following characters which would otherwise be part of it.
Shell variables have names consisting of up to 20 letters and digits starting with a

© Digital Equipment Corporation 1984

CSH(1)

letter. The underscore character is considered a letter.
If name is not a shell variable, but is set in the environment, then that value is
returned (but : modifiers and the other forms given below are not available in this
case).

$name [selector]
$ { name [selector] }

May be used to select only some of the words from the value of name. The selector is
subjected to '$' substitution and may consist of a single number or two numbers
separated by a '-'. The first word of a variables value is numbered '1'. If the first
number of a range is omitted it defaults to '1'. If the last member of a range is omit­
ted it defaults to '$#name'. The selector ,*, selects all words. It is not an error for a
range to be empty if the second argument is omitted or in range.

$#name
${#name}

$0

Gives the number of words in the variable. This is useful for later use in a '[selector]'.

Substitutes the name of the file from which command input is being read. An error
occurs if the name is not known.

$number
${number}

Equivalent to '$argv[number],.

$*
Equivalent to '$argv[*],.

The modifiers ':h', ':t', ':r', ':q' and ':x' may be applied to the substitutions above as may
':gh', ':gt' and ':gr'. If braces '{' '}' appear in the command form then the modifiers must
appear within the braces. The current implementation allows only one ':' modifier
on each '$' expansion.

The following substitutions may not be modified with ':' modifiers.

$?name
${?name}

Substitutes the string '1' if name is set, '0' if it is not.

$?O
Substitutes '1' if the current input filename is known, '0' if it is not.

$$
Substitute the (decimal) process number of the (parent) shell.

$<
Substitutes a line from the standard input, with no further interpretation thereafter.
It can be used to read from the keyboard in a shell script.

© Digital Equipment Corporation 1984 1-55

CSH(1)

1-56

Command and filename substitution

The remaining substitutions, command and filename substitution, are applied selectively to
the arguments of builtin commands. This means tp,at portions of expressions which are not
evaluated are not subjected to these expansions. For commands which are not internal to
the shell, the command name is substituted separately from the argument list. This occurs
very late, after input-output redirection is performed, and in a child of the main shell.

Command substitution

Command substitution is indicated by a command enclosed in "'. The output from such a
command is normally broken into separate words at blanks, tabs and newlines, with null
words being discarded, this text then replacing tp,e original string. Within '"'s, only new­
lines force new words; blanks and tabs are preserved.

In any case, the single final newline does not force a new word. Note that it is thus possi­
ble for a command substitution to yield only part of a word, even if the command outputs a
complete line.

Filename substitution

If a word contains any of the characters '*', '?', '[' or '{' or begins with the character '-',
then that word is a candidate for filename substitution, also known as 'globbing'. This
word is then regarded as a pattern, and replaced with an alphabetically sorted list of file
names which match the pattern. In a list of words specifying filename substitution it is an
error for no pattern to match an existing file name, but it is not required for each pattern
to match. Only the metacharacters '*', '?' and '[' imply pattern matching, the characters ,-,
and' {' being more akin to abbreviations.

In matching filenames, the character '.' at the beginning of a filename or immediately fol­
lowing a 'I', as well as the character 'I' must be matched explicitly. The character ,*,
matches any string of characters, including the null string. The character '?' matches any
single character. The sequence '[... J' matches anyone of the characters enclosed. Within
'[...]', a pair of characters separated by '-' matches any character lexically between the two.

The character ,-, at the beginning of a filename is used to refer to home directories. Stand­
ing alone, i.e. ,-, it expands to the invokers home directory as reflected in the value of the
variable home. When followed by a name consisting of letters, digits and '-' characters the
shell searches for a user with that name and substitutes their home directory; thus '-ken'
might expand to '/usr/ken' and '-ken/chmach' to '/usr/ken/chmach'. If the character ,-, is
followed by a character other than a letter or 'I' or appears not at the beginning of a word,
it is left undisturbed.

The metanotation 'a{b,c,d}e' is a shorthand for 'abe ace ade'. Left to right order is
preserved, with results of matches being sorted separately at a low level to preserve this
order. This construct may be nested. Thus '-source/sl/{ oldls,ls }.c' expands to
'/usrlsource/sl/01dls.c /usrlsource/sl/ls.c' whether or not these files exist without any chance
of error if the home directory for 'source' is '/usrlsource,. Similarly ' . ./{memo,*box}' might
expand to ' . ./memo .. /box . ./mbox'. (Note that 'memo' was not sorted with the results of
matching '*box'.) As a special case '{', '}' and '{}' are passed undisturbed.

© Digital Equipment Corporation 1984

CSH(1)

Input/output

The standard input and standard output of a command may be redirected with the follow­
ing syntax:

< name
Open file name (which is first variable, command and filename expanded) as the stan­
dard input.

« word
Read the shell input up to a line which is identical to word. Word is not subjected to
variable, filename or command substitution, and each input line is compared to word
before any substitutions are done on this input line. Unless a quoting ''\, '"', '" or '"
appears in word variable and command substitution is performed on the intervening
lines, allowing ''\ to quote '$', '~ and "'. Commands which are substituted have all
blanks, tabs, and newlines preserved, except for the final newline which is dropped.
The resultant text is placed in an anonymous temporary file which is given to the
command as standard input.

> name
>! name
>& name
>&! name

The file name is used as standard output. If the file does not exist then it is created;
if the file exists, its is truncated, its previous contents being lost.

If the variable noclobber is set, then the file must not exist or be a character special
file (e.g. a terminal or '/dev/null') or an error results. This helps prevent accidental
destruction of files. In this case the 'I' forms can be used and suppress this check.

The forms involving '&' route the diagnostic output into the specified file as well as
the standard output. Name is expanded in the same way as '<' input filenames are.

» name
»& name
»! name
»&! name

Uses file name as standard output like '>' but places output at the end of the file. If
the variable noclobber is set, then it is an error for the file not to exist unless one of
the 'I' forms is given. Otherwise similar to '>'.

A command receives the environment in which the shell was invoked as modified by the
input-output parameters and the presence of the command in a pipeline. Thus, unlike
some previous shells, commands run from a file of shell commands have no access to the
text of the commands by default; rather they receive the original standard input of the
shell. The '«' mechanism should be used to present inline data. This permits shell com­
mand scripts to function as components of pipelines and allows the shell to block read its
input. Note that the default standard input for a command run detached is not modified
to be the empty file '/dev/null'; rather the standard input remains as the original standard

., Digital Equipment Corporation 1984 1-57

CSH(1)

input of the shell. If this is a terminal and if the process attempts to read from the termi­
nal, then the process will block and the user will be notified (see Jobs above.)

Diagnostic output may be directed through a pipe with the standard output. Simply use
the form '1&' rather than just 'I'.
Expressions

A number of the builtin commands (to be described subsequently) take expressions, in
which the operators are similar to those of C, with the same precedence. These expressions
appear in the @, exit, if, and while commands. The following operators are available:

II && I ft & == != =- !- <= >= < > « » + - * I % ! - ()

Here the precedence increases to the right, '==' '!=' '=-' and '!-', '<=' '>=' '<' and '>', '«'
and '»', '+' and '-', '*' 'I' and '%' being, in groups, at the same level. The '==' '!=' '=-'
and '!-' operators compare their arguments as strings; all others operate on numbers. The
operators '=-' and '!-' are like '!=' and '==' except that the right hand side is a pattern
(containing, e.g. '*'s, '?'s and instances of '[...]') against which the left hand operand is
matched. This reduces the need for use of the switch statement in shell scripts when all
that is really needed is pattern matching.

Strings which begin with '0' are considered octal numbers. Null or missing arguments are
considered '0'. The result of all expressions are strings, which represent decimal numbers.
It is important to note that no two components of an expression can appear in the same
word; except when adjacent to components of expressions which are syntactically significant
to the parser ('&' 'I' '<' '>' '(' ')') they should be surrounded by spaces.

Also available in expressions as primitive operands are command executions enclosed in '{'
and '}' and file enquiries of the form '-l name' where 1 is one of:

r read access
w write access
x execute access
e existence
0 ownership
z zero size
f plain file
d directory

The specified name is command and filename expanded and then tested to see if it has the
specified relationship to the real user. If the file does not exist or is inaccessible then all
enquiries return false, i.e. '0'. Command executions succeed, returning true, i.e. '1', if the
command exits with status 0, otherwise they fail, returning false, i.e. '0'. If more detailed
status information is required then the command should be executed outside of an expres­
sion and the variable status examined.

1-58 © Digital Equipment Corporation 1984

CSH(1)

Control flow

The shell contains a number of commands which can be used to regulate the flow of control
in command files (shell scripts) and (in limited but useful ways) from terminal input.
These commands all operate by forcing the shell to reread or skip in its input and, due to
the implementation, restrict the placement of some of the commands.

The foreach, switch, and while statements, as well as the if-then-else form of the if state­
ment require that the major keywords appear in a single simple command on an input line
as shown below.

If the shell's input is not seekable, the shell buffers up input whenever a loop is being read
and performs seeks in this internal buffer to accomplish the rereading implied by the loop.
(To the extent that this allows, backward goto's will succeed on non-seekable inputs.)

Builtin commands

Builtin commands are executed within the shell. If a builtin command occurs as any com­
ponent of a pipeline except the last then it is executed in a subshell.

alias
alias name
alias name wordlist

The first form prints all aliases. The second form prints the alias for name. The final
form assigns the specified wordlist as the alias of name; wordlist is command and
filename substituted. Name is not allowed to be alias or una lias.

a110c

bg

Shows the amount of dynamic core in use, broken down into used and free core, and
address of the last location in the heap. With an argument shows each used and free
block on the internal dynamic memory chain indicating its address, size, and whether
it is used or free. This is a debugging command and may not work in production ver­
sions of the shell; it requires a modified version of the system memory allocator.

bg %job ...
Puts the current or specified jobs into the background, continuing them if they were
stopped.

break
Causes execution to resume after the end of the nearest enclosing foreach or while.
The remaining commands on the current line are executed. Multi-level breaks are
thus possible by writing them all on one line.

breaksw
Causes a break from a switch, resuming after the endsw.

case label:
A label in a switch statement as discussed below.

1 Digital Equipment Corporation 1984 1-59

CSH(1)

1-60

cd
cd name
chdir
chdir name

Change the shells working directory to directory name. If no argument is given then
change to the home directory of the user.
If name is not found as a subdirectory of the current directory (and does not begin
with 'I', './' or ' . ./'), then each component of the variable cdpath is checked to see if it
has a subdirectory name. Finally, if all else fails but name is a shell variable whose
value begins with 'I', then this is tried to see if it is a directory.

continue
Continue execution of the nearest enclosing while or foreach. The rest of the com­
mands on the current line are executed.

default:

dirs

Labels the default case in a switch statement. The default should come after all case
labels.

Prints the directory stack; the top of the stack is at the left, the first directory in the
stack being the current directory.

echo wordlist
echo -n wordlist

else
end

The specified words are written to the shells standard output, separated by spaces,
and terminated with a newline unless the -n option is specified.

endif
endsw

See the description of the foreach, if, switch, and while statements below.

eval arg ...
(As in sh (1).) The arguments are read as input to the shell and the resulting
command(s) executed in the context of the current shell. This is usually used to exe­
cute commands generated as the result of command or variable substitution, since
parsing occurs before these substitutions. See tset(1) for an example of using eval.

exec command
The specified command is executed in place of the current shell.

exit
exit(expr)

The shell exits either with the value of the status variable (first form) or with the
value of the specified expr (second form).

© Digital Equipment Corporation 1984

CSH(1)

fg
fg %job ...

Brings the current or specified jobs into the foreground, continuing them if they were
stopped.

foreach name (wordlist)

end
The variable name is successively set to each member of wordlist and the sequence of
commands between this command and the matching end are executed. (Both foreach
and end must appear alone on separate lines.)

The builtin command continue may be used to continue the loop prematurely and the
builtin command break to terminate it prematurely. When this command is read
from the terminal, the loop is read up once prompting with '?' before any statements
in the loop are executed. If you make a mistake typing in a loop at the terminal you
can rub it out.

glob word list
Like echo but no 'Y escapes are recognized and words are delimited by null characters
in the output. Useful for programs which wish to use the shell to filename expand a
list of words.

goto word
The specified word is filename and command expanded to yield a string of the form
'label'. The shell rewinds its input as much as possible and searches for a line of the
form 'label:' possibly preceded by blanks or tabs. Execution continues after the
specified line.

hash stat
Print a statistics line indicating how effective the internal hash table has been at
locating commands (and avoiding exec's). An exec is attempted for each component
of the path where the hash function indicates a possible hit, and in each component
which does not begin with a'/'.

history
history n
history -r n
history -h n

Displays the history event list; if n is given only the n most recent events are printed.
The -r option reverses the order of printout to be most recent first rather than oldest
first. The - h option causes the history list to be printed without leading numbers.
This is used to produce files suitable for sourceing using the - h option to source.

if (expr) command
If the specified expression evaluates true, then the single command with arguments is
executed. Variable substitution on command happens early, at the same time it does
for the rest of the if command. Command must be a simple command, not a pipeline,
a command list, or a parenthesized command list. Input/output redirection occurs

© Digital Equipment Corporation 1984 1-61

CSH(1)

1-62

even if expr is false, when command is not executed (this is a bug).

if (expr) then

else if (expr2) then

else

endif
If the specified expr is true then the commands to the first else are executed; else if
expr2 is true then the commands to the second else are executed, etc. Any number of
else-if pajrs are possible; only one endif is needed. The else part is likewise optional.
(The words else and endif must appear at the beginning of input lines; the if must
appear alone on its input line or after an else.)

jobs
jobs -I

Lists the active jobs; given the -I options lists process id's in addition to the normal
information.

kill %job
kill -sig %job ...
kill pid
kill -sig pid ...
kill -I

Sends either. the TERM (terminate) signal or the specified signal to the specified jobs
or processes. Signals are either given by number or by names (as given in
lusrlinclude/signal.h, stripped of the prefix "SIG"). The signal names are listed by
"kill -I". There is no default, saying just 'kill' does not send a signal to the current
job. If the signal being sent is TERM (terminate) or HUP (hangup), then the job or
process will be sent a CONT (continue) signal as well.

limit
limit resource
limit resource maximum-use

Limits the consumption by the current process and each process it creates to not indi­
vidually exceed maximum-use on the specified resource. If no maximum-use is given,
then the current limit is printed; if no resource is given, then all limitations are given.

Resources controllable currently include cputime (the maximum number of cpu­
seconds to be used by each process), filesize (the largest single file which can be
created), datasize (the maximum growth of the data+stack region via sbrk(2) beyond
the end of the program text), stacksize (the maximum size of the automatically­
extended stack region), and coredumpsize (the size of the largest core dump that will
be created).

The maximum-use may be given as a (floating point or integer) number followed by a
scale factor. For all limits other than cputime the default scale is 'k' or 'kilobytes'

© Digital Equipment Corporation 1984

CSH(1)

(1024 bytes); a scale factor of 'm' or 'megabytes' may also be used. For cputime the
default scaling is 'seconds', while 'm' for minutes or 'h' for hours, or a time of the form
'mm:ss' giving minutes and seconds may be used.

For both resource names and scale factors, unambiguous prefixes of the names suffice.

login
Terminate a login shell, replacing it with an instance of Ibin/login. This is one way to
log off, included for compatibility with sh(I).

logout
Terminate a login shell. Especially useful if ignoreeof is set.

nice
nice +number
nice command
nice +number command

The first form sets the nice for this shell to 4. The second form sets the nice to the
given number. The final two forms run command at priority 4 and number respec­
tively. The super-user may specify negative niceness by using 'nice -number ... '.
Command is always executed in a sub-shell, and the restrictions place on commands
in simple if statements apply.

nohup
nohup command

The first form can be used in shell scripts to cause hangups to be ignored for the
remainder of the script. The second form causes the specified command to be run
with hangups ignored. All processes detached with '&' are effectively nohup'ed.

notify
notify %job ...

Causes the shell to notify the user asynchronously when the status of the current or
specified jobs changes; normally notification is presented before a prompt. This is
automatic if the shell variable notify is set.

onintr
onintr -
onintr label

Control the action of the shell on interrupts. The first form restores the default
action of the shell on interrupts which is to terminate shell scripts or to return to the
terminal command input level. The second form 'onintr -' causes all interrupts to be
ignored. The final form causes the shell to execute a 'goto label' when an interrupt is
received or a child process terminates because it was interrupted.

In any case, if the shell is running detached and interrupts are being ignored, all
forms of onintr have no meaning and interrupts continue to be ignored by the shell
and all invoked commands.

© Digital Equipment Corporation ll;l84 1-63

CSH(1)

1-64

popd
popd +n

Pops the directory stack, returning to the new top directory. With a argument '+n'
discards the nth entry in the stack. The elements of the directory stack are num­
bered from 0 starting at the top.

pushd
pushd name
pushd +n

With no arguments, pushd exchanges the top two elements of the directory stack.
Given a name argument, pushd changes to the new directory (ala cd) and pushes the
old current working directory (as in csw) onto the directory stack. With a numeric
argument, rotates the nth argument of the directory stack around to be the top ele­
ment and changes to it. The members of the directory stack are numbered from the
top starting at O.

rehash
Causes the internal hash table of the contents of the directories in the path variable
to be recomputed. This is needed if new commands are added to directories in the
path while you are logged in. This should only be necessary if you add commands to
one of your own directories, or if a systems programmer changes the contents of one
of the system directories.

repeat count command

set

The specified command which is subject to the same restrictions as the command in
the one line if statement above, is executed count times. I/O redirections occur
exactly once, even if count is O.

set name
set name=word
set name [index] =word
set name=(wordlist)

The first form of the command shows the value of all shell variables. Variables which
have other than a single word as value print as a parenthesized word list. The second
form sets name to the null string. The third form sets name to the single word. The
fourth form sets the index'th component of name to word; this component must
already exist. The final form sets name to the list of words in wordlist. In all cases
the value is command and filename expanded.

These arguments may be repeated to set multiple values in a single set command.
Note however, that variable expansion happens for all arguments before any setting
occurs.

setenv name value
Sets the value of environment variable name to be value, a single string. The most
commonly used environment variable USER, TERM, and PATH are automatically
imported to and exported from the csh variables user, term, and path; there is no

" Digital Equipment Corporation 1984

CSH(1)

need to use setenv for these.

shift
shift variable

The members of argv are shifted to the left, discarding argv{1]. It is an error for argv
not to be set or to have less than one word as value. The second form performs the
same function on the specified variable.

source name
source - h name

stop

The shell reads commands from name. Source commands may be nested; if they are
nested too deeply the shell may run out of file descriptors. An error in a source at
any level terminates all nested source commands. Normally input during source com­
mands is not placed on the history list; the - h option causes the commands to be
placed in the history list without being executed.

stop %job ...
Stops the current or specified job which is executing in the background.

suspend
Causes the shell to stop in its tracks, much as if it had been sent a stop signal with "Z.
This is most often used to stop shells started by su(l).

switch (string)
case str1:

breaksw

default:

breaksw
endsw

time

Each case label is successively matched, against the specified string which is first com­
mand and filename expanded. The file metacharacters '*', '?' and '[... r may be used
in the case labels, which are variable expanded. If none of the labels match before a
'default' label is found, then the execution begins after the default label. Each case
label and the default label must appear at the beginning of a line. The command
breaksw causes execution to continue after the endsw. Otherwise control may fall
through case labels and default labels as in C. If no label matches and there is no
default, execution continues after the endsw.

time command
With no argument, a summary of time used by this shell and its children is printed.
If arguments are given the specified simple command is timed and a time summary as
described under the time variable is printed. If necessary, an extra shell is created to
print the time statistic when the command completes.

© Digital Equipment Corporation 1984 1-65

CSH(1)

umask
umask value

The file creation mask is displayed (first form) or set to the specified value (second
form). The mask is given in octal. Common values for the mask are 002 giving all
access to the group and read and execute access to others or 022 giving all access
except no write access for users in the group or others.

unalias pattern

1-66

All aliases whose names match the specified pattern are discarded. Thus all aliases
are removed by 'unalias *'. It is not an error for nothing to be unaliased.

unhash
Use of the internal hash table to speed location of executed programs is disabled.

unlimit resource
unlimit

Removes the limitation on resource. If no resource is specified, then all resource limi­
tations are removed.

unset pattern
All variables whose names match the specified pattern are removed. Thus all vari­
ables are removed by 'unset *'; this has noticeably distasteful side-effects. It is not an
error for nothing to be unset.

unsetenv pattern

wait

Removes all variables whose name match the specified pattern from the environment.
See also the setenv command above and printenv (1).

All background jobs are waited for. It the shell is interactive, then an interrupt can
disrupt the wait, at which time the shell prints names and job numbers of all jobs
known to be outstanding.

while (expr)

end

%job

While the specified expression evaluates non-zero, the commands between the while
and the matching end are evaluated. Break and continue may be used to terminate
or continue the loop prematurely. (The while and end must appear alone on their
input lines.) Prompting occurs here the first time through the loop as for the foreach
statement if the input is a terminal.

Brings the specified job into the foreground.

%job&
Continues the specified job in the background.

© Digital Equipment Corporation 1984

CSH(1)

@
@ name = expr
@ name[index] = expr

The first form prints the values of all the shell variables. The second form sets the
specified name to the value of expr. If the expression contains '<', '>', '&' or 'I' then at
least this part of the expression must be placed within '(' ')'. The third form assigns
the value of expr to the index'th argument of name. Both name and its index'th com­
ponent must already exist.

The operators '*=', '+=', etc are available as in C. The space separating the name
from the assignment operator is optional. Spaces are, however, mandatory in separat­
ing components of expr which would otherwise be single words.

Special postfix '++' and '- -' operators increment and decrement name respectively,
i.e. '@ i++'.

Pre-defined and environment variables

The following variables have special meaning to the shell. Of these, argv, cwd, ·home, path,
prompt, shell and status are always set by the shell. Except for cwd and status this setting
occurs only at initialization; these variables will not then be modified unless this is done
explicitly by the user.

This shell copies the environment variable USER into the variable user, TERM into term,
and HOME into home, and copies these back into the environment whenever the normal
shell variables are reset. The environment variable PATH is likewise handled; it is not
necessary to worry about its setting other than in the file .cshrc as inferior csh processes
will import the definition of path from the environment, and re:-export it if you then
change it.

argv

cdpath

cwd

echo

histchars

history

Set to the arguments to the shell, it is from this variable that positional
parameters are substituted, i.e. '$1' is replaced by '$a.rgv[1]', etc.

Gives a list of alternate directories searched to find subdirectories in chdir
commands.

The full pathname of the current directory.

Set when the -x command line option is given. Causes each command and
its arguments to be echoed just before it is executed. For non-builtin com­
mands all expansions occur before echoing. Builtin commands are echoed
before command and filename substitution, since these substitutions are
then done selectively.

Can be given a string value to change the characters used in history substi­
tution. The first character of its value is used as the history substitution
character, replacing the default character !. The second character of its
value replaces the character ft in quick substitutions.

Can be given a numeric value to control the size of the history list. Any
command which has been referenced in this many events will not be

© Digital Equipment Corporation 1984 1-67

CSH(1)

home

ignoreeof

mail

noclobber

no glob

nonomatch

notify

path

prompt

savehist

1-68

discarded. Too large values of history may run the shell out of memory.
The last executed command is always saved on the history list.

The home directory of the invoker, initialized from the environment. The
filename expansion of ,-, refers to this variable.

If set the shell ignores end-of-file from input devices which are terminals.
This prevents shells from accidentally being killed by control-D's.

The files where the shell checks for mail. This is done after each command
completion which will result in a prompt, if a specified interval has elapsed.
The shell says 'You have new mail.' if the file exists with an access time
not greater than its modify time.

If the first word of the value of mail is numeric it specifies a different mail
checking interval, in seconds, than the default, which is 10 minutes.

If multiple mail files are specified, then the shell says 'New mail in name'
when there is mail in the file name.

As described in the section on Input/output, restrictions are placed on out­
put redirection to insure that files are not accidentally destroyed, and that
'> >' redirections refer to existing files.

If set, filename expansion is inhibited. This is most useful in shell scripts
which are not dealing with filenames, or after a list of filenames has been
obtained and further expansions are not desirable.

If set, it is not an error for a filename expansion to not match any existing
files; rather the primitive pattern is returned. It is still an error for the
primitive pattern to be malformed, i.e. 'echo [' still gives an error.

If set, the shell notifies asynchronously of job completions. The default is
to rather present job completions just before printing a prompt.

Each word of the path variable specifies a directory in which commands are
to be sought for execution. A null word specifies the current directory. If
there is no path variable then only full path names will execute. The usual
search path is '.', '/bin' and '/usr/bin', but this may vary from system to
system. For the super-user the default search path is '/etc', '/bin' and
'/usr/bin'. A shell which is given neither the -c nor the -t option will nor­
mally hash the contents of the directories in the path variable after reading
.cshrc, and each time the path variable is reset. If new commands are
added to these directories while the shell is active, it may be necessary to
give the rehash or the commands may not be found.

The string which is printed before each command is read from an interac­
tive terminal input. If a 'I' appears in the string it will be replaced by the
current event number unless a preceding'~ is given. Default is '% " or '# '
for the super-user.

is given a numeric value to control the number of entries of the history list

© Digital Equipment Corporation 1984

shell

status

time

verbose

CSH(1)

that are saved in -I. history when the user logs out. Any command which
has been referenced in this many events will be saved. During start up the
shell sources -I. history into the history list enabling history to be saved
across logins. Too large values of savehist will slow down the shell during
start up.

The file in which the shell resides. This is used in forking shells to inter­
pret files which have execute bits set, but which are not executable by the
system. (See the description of Non-builtin Command Execution below.)
Initialized to the (system-dependent) home of the shell.

The status returned by the last command. If it terminated abnormally,
then 0200 is added to the status. Builtin commands which fail return exit
status '1', all other builtin commands set status '0'.

Controls automatic timing of commands. If set, then any command which
takes more than this many cpu seconds will cause a line giving user, sys­
tem, and real times and a utilization percentage which is the ratio of user
plus system times to real time to be printed when it terminates.

Set by the -v command line option, causes the words of each command to
be printed after history substitution.

Non-builtin command execution

When a command to be executed is found to not be a builtin command the shell attempts
to execute the command via execve(2). Each word in the variable path names a directory
from which the shell will attempt to execute the command. If it is given neither a -c nor a
-t option, the shell will hash the names in these directories into an internal table so that it
will only try an exec in a directory if there is a possibility that the command resides there.
This greatly speeds command location when a large number of directories are present in the
search path. If this mechanism has been turned off (via unhash), or if the shell was given a
-c or -t argument, and in any case for each directory component of path which does not
begin with a'/', the shell concatenates with the given command name to form a path name
of a file which it then attempts to execute.

Parenthesized commands are always executed in a subshell. Thus '(cd; pwd) ; pwd' prints
the home directory; leaving you where you were (printing this after the home directory),
while 'cd; pwd' leaves you in the home directory. Parenthesized commands are most often
used to prevent chdir from affecting the current shell.

If the file has execute permissions but is not an executable binary to the system, then it is
assumed to be a file containing shell commands and a new shell is spawned to read it.

If there is an alias for shell then the words of the alias will be prepended to the argument
list to form the shell command. The first word of the alias should be the full path name of
the shell (e.g. '$shell'). Note that this is a special, late occurring, case of alias substitution,
and only allows words to be prepended to the argument list without modification.

© Digital Equipment Corporation 1984 1-69

CSH(1)

1-70

Argument list processing

If argument 0 to the shell is '-' then this is a login shell. The flag arguments are inter­
preted as follows:

-c The first argument word is taken to be a command string. All remaining argument
words are placed in argv.

-e The shell exits if any invoked command terminates abnormally or yields a non-zero
exit status.

-f The shell will start faster, because it will neither search for nor execute commands
from the file' .cshrc' in the invokers home directory.

-i The shell is interactive and prompts for its top-level input, even if stdin appears not
to be a terminal. Shells are interactive without this option if their inputs and outputs
are terminals.

-n Commands are parsed, but not executed. This aids in syntactic checking of shell
scripts.

-s Command input is taken from the standard input.

-t A single line of input is read and executed. A' x may be used to escape the newline at
the end of this line and continue onto another line.

-v Causes the verbose variable to be set, with the effect that command input is echoed
after history substitution.

-x Causes the echo variable to be set, so that commands are echoed immediately before
execution.

- V Causes the verbose variable to be set even before' .cshrc' is executed.

- X Causes the echo variable to be set before '.cshrc' is executed.

After processing of flag arguments if arguments remain but none of the -c, -i, -s, or-t
options was given the first argument is taken as the name of a file of commands to be exe­
cuted. The shell opens this file, and saves its name for possible resubstitution by '$0'.
Since many systems use either the standard version 6 or version 7 shells whose shell scripts
are not compatible with this shell, the shell will execute such a 'standard' shell if the first
character of a script is not a '#', i.e. if the script does not start with a comment. Remain­
ing arguments initialize the variable argv.

Signal handling

The shell normally ignores quit signals. Jobs running detached (either by '&' or the bg or
% ••• & commands) are immune to signals generated from the keyboard, including hangups.
Other ,signals have the values which the shell inherited from its parent. The shells handling
of interrupts and terminate signals in shell scripts can be controlled by onintr. Login shells
catch the terminate signal; otherwise this signal is passed on to children from the state in
the shell's parent. In no case are interrupts allowed when a login shell is reading the file
'.logout'.

© Digital Equipment Corporation 1984

CSH(1)

FILES
~/.cshrc
~/.login

~/.logout

/bin/sh
/tmp/sh*
/etc/passwd

SEE ALSO

Read at beginning of execution by each shell.
Read by login shell, after' .cshrc' at login.
Read by login shell, at logout.
Standard shell, for shell scripts not starting with a '#'.
Temporary file for '«'.
Source of home directories for '~name'.

sh(1), access(2), execve(2), fork(2), killpg(2), pipe(2), sigvec(2), umask(2), setrlimit(2),
wait(2), tty(4), a.out(5), environ(7), 'An introduction to the C shell'

RESTRICTIONS
Words can be no longer than 1024 characters.

The system limits argument lists to 10240 characters.

The number of arguments to a command which involves filename expansion is limited to
1/6'th the number of characters allowed in an argument list.

Command substitutions may substitute no more characters than are allowed in an argu­
ment list.

To detect looping, the shell restricts the number of alias substitutions on a single line to 20.

When a command is restarted from a stop, the shell prints the directory it started in. if this
is different from the current directory; this can be misleading (i.e. wrong) as the job may
have changed directories internally.

Shell builtin functions are not stoppable/restartable. Command sequences of the form 'a ;
b ; c' are also not handled gracefully when stopping is attempted. If you suspend 'b', the
shell will then immediately execute 'c'. This is especially noticeable if this expansion
results from an alias. It suffices to place the sequence of commands in O's to force it to a
subshell, i.e. '(a ; b ; c)'.

Commands within loops, prompted for by'?', are not placed in the history list. Control
structure should be parsed rather than being recognized as built-in commands. This would
allow control commands to be placed anywhere, to be combined with 'I', and to be used with
'&' and ';' metasyntax.

It should be possible to use the ':' modifiers on the output of command substitutions. All
and more than one ':' modifier should be allowed on '$' substitutions.

Symbolic links fool the shell. In particular, dirs and 'cd .. ' don't work properly once you've
crossed through a symbolic link.

STATUS
CSH (1) is supported by Digital Equipment Corporation.

1-71

CTAGS(1)

NAME
ctags - create a tags file

SYNTAX
ctags [- BFatuwvx] name ...

DESCRIPTION

1-72

Ctags makes a tags file for ex (1) from the specified C, Pascal and Fortran sources. A tags
file gives the locations of specified objects (in this case functions and typedefs) in a group of
files. Each line of the tags file contains the object name, the file in which it is defined, and
an address specification for the object definition. Functions are searched with a pattern,
typedefs with a line number. Spec,ifiers are given in separate fields on the line, separated by
blanks or tabs. Using the tags file, ex can quickly find these objects definitions.

If the -x flag is given, ctags produces a list of object names, the line number and file name
on which each is defined, as well as the text of that line and prints this on the standard
output. This is a simple index which can be printed out as an off-line readable function
index.

If the -v flag is given, an index of the form expected by vgrind(1) is produced on the stan­
dard output. This listing contains the function name, file name, and page number (assum­
ing 64 line pages). Since the output will be sorted into lexicographic order, it may be
desired to run the output through sort -f. Sample use:

ctags -v files I sort -f > index
vgrind -x index

Files whose name ends in .c or .h are assumed to be C source files and are searched for C
routine and macro definitions. Others are first examined to see if they contain any Pascal
or Fortran routine definitions; if not, they are processed again looking for C definitions.

Other options are:

-F use forward searching patterns (/ .. ./) (default).

- B use backward searching patterns (? ... ?).

- a append to tags file.

-t create tags for typedefs.

-w suppressing warning diagnostics.

-u causing the specified files to be updated in tags, that is, all references to them are
deleted, and the new values are appended to the file. (Beware: this option is imple­
mented in a way which is rather slow; it is usually faster to simply rebuild the tags
file.)

The tag main is treated specially in C programs. The tag formed is created by prepending
M to the name of the file, with a trailing .c removed, if any, and leading pathname com­
ponents also removed. This makes use of ctags practical in directories with more than one
program.

CTAGS(1)

FILES
tags output tags file

SEE ALSO
ex(l), vi(l)

RESTRICTIONS
Recognition of functions, subroutines and procedures for FORTRAN and Pascal
make no attempt to deal with block structure; if you have two Pascal procedures in
different blocks with the same name you lose.

Does not know about #ifdefs.

Does not know about Pascal types. Relies on the input being well formed to detect
typedefs. Use of -tx shows only the last line of typedefs.

STATUS
CTAGS (1) currently is not supported by Digital Equipment Corporation.

1-73

DATE (1)

NAME
date - print and set the date

SYNTAX
date [-u] [yymmddhhmm [.ss]]

DESCRIPTION
If no arguments are given, the current date and time are printed. If a date is specified, the
current date is set. The -u flag is used to display the date in GMT (universal) time. This
flag may also be used to set GMT time. yy is the last two digits of the year; the first mm is
the month number; dd is the day number in the month; hh is the hour number (24 hour
system); the second mm is the minute number; .BB is optional and is the seconds. For
example:

date 10080045
~

sets the date to Oct 8, 12:45 AM. The year, month and day may be omitted, the current
values being the defaults. The system operates in GMT. Date takes care of the conversion
to and from local standard and daylight time.

FILES
lusr/adm/wtmp to record time-setting

SEE ALSO
utmp(5)

DIAGNOSTICS
'Failed to set date: Not owner' if you try to change the date but are not the super-user.

RESTRICTIONS
The system attempts to keep the date in a format closely compatible with VMS. VMS,
however, uses local time (rather than GMT) and does not understand daylight savings time.
Thus if you use both UNIX and VMS, VMS will be running on GMT.

STATUS
DATE (1) is supported by Digital Equipment Corporation.

1-74

DaX(1)

NAME
dbx - debugger

SYNTAX
dbx [-r] [-i] [-I dir] [objfile [coredump]]

DESCRIPTION
Dbx is a tool for source level debugging and execution of programs under UNIX. The
objfile is an object file produced by a compiler with the appropriate flag (usually "-g")
specified to produce symbol information in the object file. Currently, cc(1) and /77(1) pro­
duce the appropriate source information and it is expected that in the future the Pascal
compiler will also be able to generate source level information. The machine level facilities
of dbx can be used on any program.

If no objfile is specified, dbx looks for a file named "a.out" in the current directory. The
object file contains a symbol table which includes the name of the all the source files
translated by the compiler to create it. These files are available for perusal while using the
debugger.

If a file named "core" exists in the current directory or a coredump file is specified, dbx can
be used to examine the state of the program when it faulted.

If the file ".dbxinit" exists in the current directory then the debugger commands in it are
executed. Dbx also checks for a ".dbxinit" in the user's home directory if there isn't one in
the current directory.

The command line options and their meanings are:

-r Execute objfile immediately. If it terminates successfully dbx exits. Otherwise the
reason for termination will be reported and the user offered the option of entering
the debugger or letting the program fault. Dbx will read from "/dev/tty" when -r
is specified and standard input is not a terminal.

-i Force dbx to act as though standard input is a terminal.

- I dir Add dir to the list of directories that are searched when looking for a source file.
Normally dbx looks for source files in the current directory and in the directory
where objfile is located. The directory search path can also be set with the use
command.

Unless -r is specified, dbx just prompts and waits for a command.

1-75

OSX(1)

1-76

Execution and Tracing Commands

run [args] [< filename] [> filename]
Start executing objfile, passing args as command line arguments; < or > can be
used to redirect input or output in the usual manner. If objfile has been written
since the last time the symbolic information was read in, dbx will read in the new
information.

trace [in procedure/function] [if condition]
trace source-line-number [if condition]
trace procedure/function [in procedure/function] [if condition]
trace expression at source-line-number [if condition]
trace variable [in procedure/function] [if condition]

Have tracing information printed when the program is executed. A number is
associated with the command that is used to turn the tracing off (see the delete
command).

The first argument describes what is to be traced. If it is a source-Line-number,
then the line is printed immediately prior to being executed. Source line numbers
in a file other than the current one must be preceded by the name of the file in
quotes and a colon, e.g. "mumble.p":17.

If the argument is a procedure or function name then every time it is called, infor­
mation is printed telling what routine called it, from what source line it was called,
and what parameters were passed to it. In addition, its return is noted, and if it's
a function then the value it is returning is also printed.

If the argument is an expression with an at clause then the value of the expression
is printed whenever the identified source line is reached.

If the argument is a variable then the name and value of the variable is printed
whenever it changes. Execution is substantially slower during this form of tracing.

If no argument is specified then all source lines are printed before they are exe­
cuted. Execution is substantially slower during this form of tracing.

The clause "in procedure/function" restricts tracing information to be printed
only while executing inside the given procedure or function.

Condition is a boolean expression and is evaluated prior to printing the tracing
information; if it is false then the information is not printed.

DSX(1)

stop if condition
stop at source-line-number [if condition]
stop in procedure/function [if condition]
stop variable [if condition]

Stop execution when the given line is reached, procedure or function called, vari­
able changed, or condition true.

status [> filename]
Print out the currently active trace and stop commands.

delete command-number
The trace or stop corresponding to the given number is removed. The numbers
associated with traces and stops are printed by the status command.

catch number
ignore number

cont

step

next

Start or stop trapping signal number before it is sent to the program. This is use­
ful when a program being debugged handles signals such as interrupts. Initially all
signals are trapped except SIGCONT, SIGCHILD, SIGALRM and SIGKILL.

Continue execution from where it stopped. Execution cannot be continued if the
process has "finished", that is, called the standard procedure "exit". Dbx does not
allow the process to exit, thereby letting the user to examine the program state.

Execute one source line.

Execute up to the next source line. The difference between this and step is that if
the line contains a call to a procedure or function the step command will stop at
the beginning of that block, while the next command will not.

Displaying and Naming Data

print expression [, expression ..•]
Print out the values of the expressions. Array expressions are always subscripted
by brackets ("[]"). Variables having the same identifier as one in the current
block may be referenced as "block-name. variable". The field reference operator
(".") can be used with pointers as well as records, making the C operator "->"
unnecessary (although it is supported). The construct typename(expression) can
be used to print the expression out in the format of the named type.

whatis name
Print the declaration of the given name, which may be qualified with block names
as above.

which identifier
Print the full qualification of the given identifer, i.e. the outer blocks that the
identifier is associated with.

w here is identifier

1-77

OBX(1)

1-78

Print the full qualification of all the symbols whose name matches the given
identifier. The order in which the symbols are printed is not meaningful.

assign variable = expression
set variable = expression

Assign the value of the expression to the variable.

call procedure(parameters)
Execute the object code associated with the named procedure or function.
Currently, calls to a procedure with a variable number of arguments are not possi­
ble. Also, string parameters are not passed properly for C.

where Print out a list of the active procedures and function.

dump [> filename]
Print the names and values of all active variables.

Accessing Source Files

edit [filename]
edit procedure/function-name

Invoke an editor on filename or the current source file if none is specified. If a
procedure or function name is specified, the editor is invoked on the file that con­
tains it. Which editor is invoked by default depends on the installation. The
default can be overridden by setting the environment variable EDITOR to the
name of the desired editor.

file [filename]
Change the current source file name to filename. If none is specified then the
current source file name is printed.

func [procedure/function]
Change the current function. If none is specified then print the current function.
Changing the current function implicitly changes the current source file to the one
that contains the function; it also changes the current scope used for name resolu­
tion.

list [source-Line-number [, source-Line-number]]
list procedure/function

List the lines in the current source file from the first line number to the second
inclusive. If no lines are specified, the next 10 lines are listed. If the name of a
procedure or function is given lines n-k to n+k are listed where n is the first state­
ment in the procedure or function and k is small.

use directory-list
Set the list of directories to be searched when looking for source files.

Machine Level Commands

tracei [address] [if cond]
tracei [variable] [at address] [if cond]
stopi [address] [if cond]
stopi [at] [address] [if cond]

Turn on tracing or set a stop using a machine instruction address.

stepi

OBX(1)

nexti Single step as in step or next, but do a single instruction rather than source line.

address ,address/ [mode]
[address] / [count] [mode]

Print the contents of memory starting at the first address and continuing up to the
second address or until count items are printed. If no address is specified, the
address following the one printed most recently is used. The mode specifies how
memory is to be printed; if it is omitted the previous mode specified is used. The
initial mode is "X". The following modes are supported:

print the machine instruction
d print a short word in decimal
D print a long word in decimal
o print a short word in octal
o print a long word in octal
x print a short word in hexadecimal
X print a long word in hexadecimal
b print a byte in octal
c print a byte as a character
s print a string of characters terminated by a null byte
f print a single precision real number
g print a double precision real number

Symbolic addresses are specified by preceding the name with an "&". Registers are
denoted by "$rN" where N is the number of the register. Addresses may be expressions
made up of other addresses and the operators "+", "-", and indirection (unary "*").

1-79

OBX(1)

Miscellaneous Commands

sh command-line
Pass the command line to the shell for execution. The SHELL environment vari­
able determines which shell is used.

alias new-command-name old-command-name
Respond to new-command-name as though it were old-command-name.

help Print out a synopsis of dbx commands.

gripe Invoke a mail program to send a message to the person in charge of dbx.

source filename
Read dbx commands from the given filename. Especially useful when the filename
has been created by redirecting a status command from an earlier debugging ses­
sion.

quit Exit dbx.

FILES
a.out
.dbxinit

object file
initial commands

SEE ALSO
cc(I), f77(1), pc(l)

COMMENTS
Non-local gotos can cause some trace/stops to be missed. Most of the command names are
too long. The alias facility helps, but is really quite weak. A csh-like history capability
would improve the situation. But then, who wants to duplicate the c-shell in a debugger?

Dbx suffers from the same "multiple include" malady as does sdb. If you have a program
consisting of a number of object files and each is built from source files that include header
files, the symbolic information for the header files is replicated in each object file. Since
about one debugger start-up is done for each link, having the linker (ld) re-organize the
symbol information won't save much time, though it would reduce some of the disk space
used. The problem is an artifact of the unrestricted semantics of #include's in C; for exam­
ple an include file can contain static declarations that are separate entities for each file in
which they are included.

STATUS
DBX (1) currently is not supported by Digital Equipment Corporation.

1-80

DC(1)

NAME
dc - desk calculator

SYNTAX
de [file]

DESCRIPTION
De is an arbitrary precision arithmetic package. Ordinarily it operates on decimal integers,
but one may specify an input base, output base, and a number of fractional digits to be
maintained. The overall structure of de is a stacking (reverse Polish) calculator. If an
argument is given, input is taken from that file until its end, then from the standard input.
The following constructions are recognized:

number
The value of the number is pushed on the stack. A number is an unbroken string of
the digits 0-9. It may be preceded by an underscore to input a negative number.
Numbers may contain decimal points.

+ _j * % A

The top two values on the stack are added (+), subtracted (-), multiplied (*),
divided (/), remaindered (%), or exponentiated n. The two entries are popped off
the stack; the result is pushed on the stack in their place. Any fractional part of an
exponent is ignored.

sx The top of the stack is popped and stored into a register named x, where x may be
any character. If the s is capitalized, x is treated as a stack and the value is pushed
on it.

Ix The value in register x is pushed on the stack. The register x is not altered. All
registers start with zero value. If the I is capitalized, register x is treated as a stack
and its top value is popped onto the main stack.

d The top value on the stack is duplicated.

p The top value on the stack is printed. The top value remains unchanged. P inter­
prets the top of the stack as an ascii string, removes it, and prints it.

f All values on the stack and in registers are printed.

q exits the program. If executing a string, the recursion level is popped by two. If q is
capitalized, the top value on the stack is popped and the string execution level is
popped by that value.

x treats the top element of the stack as a character string and executes it as a string of
dc commands.

X replaces the number on the top of the stack with its scale factor.

[...] puts the bracketed ascii string onto the top of the stack.

<x >x =x
The top two elements of the stack are popped and compared. Register x is executed
if they obey the stated relation.

1-81

DC(1)

v replaces the top element on the stack by its square root. Any existing fractional part
of the argument is taken into account, but otherwise the scale factor is ignored.

interprets the rest of the line as a UNIX command.

c All values on the stack are popped.

o

o
k

z

z
?

, .

The top value on the stack is popped and used as the number radix for further
input. I pushes the input base on the top of the stack.

The top value on the stack is popped and used as the number radix for further out­
put.

pushes the output base on the top of the stack.

the top of the stack is popped, and that value is used as a non-negative scale factor:
the appropriate number of places are printed on output, and maintained during mul­
tiplication, division, and exponentiation. The interaction of scale factor, input base,
and output base will be reasonable if all are changed together.

The stack level is pushed onto the stack.

replaces the number on the top of the stack with its length.

A line of input is taken from the input source (usually the terminal) and executed.

are used by be for array operations.

An example which prints the first ten values of nl is

[la1 +dsa*pla10>y]sy
Osa1
lyx

SEE ALSO
bc(l), which is a preprocessor for de providing infix notation and a C-like syntax which
implements functions and reasonable control structures for programs.

DIAGNOSTICS
'x is unimplemented' where x is an octal number.
'stack empty' for not enough elements on the stack to do what was asked.
'Out of space' when the free list is exhausted (too many digits).
'Out of headers' for too many numbers being kept around.
'Out of pushdown' for too many items on the stack.
'Nesting Depth' for too many levels of nested execution.

STATUS
DC (1) currently is not supported by Digital Equipment Corporation.

1-82

DD(1)

NAME
dd - convert and copy a file

SYNTAX
dd [option =value] ...

DESCRIPTION
Dd copies the specified input file to the specified output with possible conversions. The
standard input and output are used by default. The input and output block size may be
specified to take advantage of raw physical I/O.

option
if=
of=
ibs=n
obs=n
bs=n

cbs=n
skip=n
files=n

values
input file name; standard input is default
output file name; standard output is default
input block size n bytes (default 512)
output block size (default 512)
set both input and output block size, superseding ibs and obs; also, if no
conversion is specified, it is particularly efficient since no copy need be
done
conversion buffer size
skip n input records before starting copy
copy n input files before terminating (makes sense only where input is a
magtape or similar device).

seek = n seek n records from beginning of output file before copying
count=n copy only n input records
conv=ascii convert EBCDIC to ASCII

ebcdic convert ASCII to EBCDIC
ibm slightly different map of ASCII to EBCDIC
block convert variable length records to fixed length
unblock

lcase
ucase
swab
no error

convert fixed length records to variable length
map alphabetics to lower case
map alphabetics to upper case
swap every pair of bytes

do not stop processing on an error
sync pad every input record to ibs
.•• , •.. several comma-separated conversions

Where sizes are specified, a number of bytes is expected. A number may end with k, b or
w to specify multiplication by 1024, 512, or 2 respectively; a pair of numbers may be
separated by x to indicate a product.

Cbs is used only if ascii, unblock, ebcdic, ibm, or block conversion is specified. In the first
two cases, cbs characters are placed into the conversion buffer, any specified character map­
ping is done, trailing blanks trimmed and new-line added before sending the line to the
output. In the latter three cases, characters are read into the conversion buffer, and blanks

1-83

DD(1)

added to make up an output record of size cbs.

After completion, dd reports the number of whole and partial input and output blocks.

For example, to read an EBCDIC tape blocked ten SO-byte EBCDIC card images per record
into the ASCII file x:

dd if=/dev/rmtO of=x ibs=SOO cbs=SO conv=ascii,lcase

Note the use of raw magtape. Dd is especially suited to I/O on the raw physical devices
because it allows reading and writing in arbitrary record sizes.

SEE ALSO
cp(l), tr(l)

DIAGNOSTICS
f+p records in(out): numbers of full and partial records read(written)

RESTRICTIONS
The ASCIIIEBCDIC conversion tables are taken from the 256 character standard in the
CACM Nov, 1965. The 'ibm' conversion, while less blessed as a standard, corresponds
better to certain IBM print train conventions. There is no universal solution.
One must specify "conv=noerror,sync" when copying raw disks with bad sectors to insure
dd stays synchronized.

STATUS
DD (1) is supported by Digital Equipment Corporation.

1-S4

DEROFF (1)

NAME
derofi' - remove nrofi', trofi', tbl and eqn constructs

SYNTAX
deroft' [-w] file ...

DESCRIPTION
Deroff reads each file in sequence and removes all nroff and troff command lines, backslash
constructions, macro definitions, eqn constructs (between '.EQ' and '.EN' lines or between
delimiters), and table descriptions and writes the remainder on the standard output. Deroff
follows chains of included files ('.so' and '.nx' commands); if a file has already been
included, a '.so' is ignored and a '.nx' terminates execution. If no input file is given, deroff
reads from the standard input file.

If the -w flag is given, the output is a word list, one 'word' (string of letters, digits, and
apostrophes, beginning with a letter; apostrophes are removed) per line, and all other char­
acters ignored. Otherwise, the output follows the original, with the deletions mentioned
above.

SEE ALSO
trofi'(l), eqn(l), tbl(l)

RESTRICTIONS
Deroff is not a complete troff interpreter, so it can be confused by subtle constructs. Most
errors result in too much rather than too little output.

STATUS
DEROFF (1) currently is not supported by Digital Equipment Corporation.

1-85

DF(1)

NAME
df - disk free

SYNTAX
df [-i] [filesystem ...] [file ...]

DESCRIPTION
Df prints out the amount of free disk space available on the specified filesystem, e.g.
"/dev/rpOa", or on the filesystem in which the specified file, e.g. "$HOME", is contained. If
no file system is specified, the free space on all of the normally mounted file systems is
printed. The reported numbers are in kilobytes.

Other options are:

-i Report also the number of in odes which are used and free.

FILES
/etc/fstab list of normally mounted filesystems

SEE ALSO
fstab(5), icheck(8), quot(8)

STATUS
DF (1) is supported by Digital Equipment Corporation.

1-86

NAME
diction,explain - print wordy sentences; thesaurus for diction

SYNTAX
diction [-ml] [-mm] [-n] [-f pfile] file ...
explain

DESCRIPTION

DICTION (1)

Diction finds all sentences in a document that contain phrases from a data base of bad or
wordy diction. Each phrase is bracketed with []. Because diction runs dero/f before look­
ing at the text, formatting header files should be included as part of the input. The default
macro package -ms may be overridden with the flag -mm. The flag -ml which causes
deroft' to skip lists, should be used if the document contains many lists of non-sentences.
The user may supply her/his own pattern file to be used in addition to the default file with
-f pfile. If the flag -n is also supplied the default file will be suppressed.

Explain is an interactive thesaurus for the phrases found by diction.

SEE ALSO
deroff(l)

RESTRICTIONS
Use of non-standard formatting macros may cause incorrect sentence breaks.

STATUS
DICTION (1) currently is not supported by Digital Equipment Corporation.

1-87

DIFF(1)

NAME
diff - differential file and directory comparator

SYNTAX
dift' [-1] [-r] [-8] [-cefh] [-b] dir1 dir2
dift' [-cefh] [-b] file1 file2
dift' [-Dstring] [-b] file1 file2

DESCRIPTION

1-88

If both arguments are directories, di/f sorts the c()ntents of the directories by name, and
then runs the regular file diff algorithm (described below) on text files which are different.
Binary files which differ, common subdirectories, and files which appear in only one direc­
tory are listed. Options when comparing directories are:

-1 long output format; each text file di/f is piped through pr(l) to paginate it, other
differences are remembered and summarized after all text file differences are
reported.

-r causes application of di/f recursively to common subdirectories encountered.

-8 causes di/f to report files which are the same, which are otherwise not mentioned.

-Sname
starts a directory diff in the middle beginning with file name.

When run on regular files, and when comparing text files which differ during directory com­
parison, diff tells what lines must be changed in the files to bring them into agreement.
Except in rare circumstances, diff finds a smallest sufficient set of file differences. If nei­
ther filel nor file2 is a directory, then either may be given as '-', in which case the stan­
dard input is used. If filel is a directory, 'then a file in that directory whose file-name is the
same as the file-name of file2 is used (and vice versa).

There are several options for output format; the default output format contains lines of
these forms:

nl a n3,n4
nl,n2 d n3
nl,n2 c n3,n4

These lines resemble ed commands to convert filel into file2. The numbers after the
letters pertain to file2. In fact, by exchanging 'a' for 'd' and reading backward one may
ascertain equally how to convert file2 into filel. As in ed, identical pairs where nl = n2 or
n3 = n4 are abbreviated as a single number.

Following each of these'lines come all the lines that are affected in the first file flagged by
'<', then all the lines that are affected in the second file flagged by'>'.

Except for - b, which may be given with any of the others, the following options are mutu­
ally exclusive:

-e producing a script of a, c and d commands for the editor ed, which will recreate
file2 from filel. In connection with ~e, the following shell program may help

DIFF(1)

maintain multiple versions of a file. Only an ancestral file ($1) and a chain of
version-to-version ed scripts ($2,$3, ...) made by diff need be on hand. A 'latest
version' appears on the standard output.

(shift; cat $*; echo 'l,$p') c ed - $1

Extra commands are added to the output when comparing directories with -e, so
that the result is a sh(l) script for converting text files which are common to the
two directories from their state in dir 1 to their state in dir2.

-f produces a script similar to that of -e, not useful with ed, and in the opposite
order.

-c produces a diff with lines of context. The default is to present 3 lines of context
and may be changed, e.g to 10, by -clO. With -c the output format is modified
slightly: the output beginning with identification of the files involved and their
creation dates and then each change is separated by a line with a dozen * 'so The
lines removed from filel are marked with '-'; those added to file2 are marked '+'.
Lines which are changed from one file to the other are marked in both files with
'I'.

-b does a fast, half-hearted job. It works only when changed stretches are short and
well separated, but does work on files of unlimited length.

-Dstring
causes diff to create a merged version of filel and file2 on the standard output,
with C preprocessor controls included so that a compilation of the result without
defining string is equivalent to compiling filel, while defining string will yield
file2.

-b causes trailing blanks (spaces and tabs) to be ignored, and other strings of blanks
to compare equal.

FILES
/tmp/d?????
/usr/lib/diffu for -b
/bin/pr

SEE ALSO
cmp(l), cc(l), comm(l), ed(l), diff3(1)

DIAGNOSTICS
Exit status is 0 for no differences, 1 for some, 2 for trouble.

RESTRICTIONS
Editing scripts produced under the -e or -f option are naive about creating lines consist­
ing of a single '.'.

When comparing directories with the - b option specified, diff first compares the files ala
cmp, and then decides to run the diff algorithm if they are not equal. This may cause a
small amount of spurious output if the files then turn out to be identical because the only
differences are insignificant blank string differences.

1-89

DIFF(1)

STATUS
DIFF (1) is supported by Digital Equipment Corporation.

1-90

DIFF3(1)

NAME
diff3 - 3-way differential file comparison

SYNTAX
diff3 [-ex3] file1 file2 file3

DESCRIPTION
Diff3 compares three versions of a file, and publishes disagreeing ranges of text flagged with
these codes:

====1

====2

====3

all three files differ

filel is different

file2 is different

file3 is different

The type of change suffered in converting a given range of a given file to some other is indi­
cated in one of these ways:

f: nl a

f: nl , n2 c

Text is to be appended after line number nl in file f, where f = 1, 2, or 3.

Text is to be changed in the range line nl to line n2. If nl = n2, the
range may be abbreviated to nl.

The original contents of the range follows immediately after a c indication. When the con­
tents of two files are identical, the contents of the lower-numbered file is suppressed.

Under the -e option, diff3 publishes a script for the editor ed that will incorporate into
filel all changes between file2 and file3, i.e. the changes that normally would be flagged
==== and ====3. Option -x (-3) produces a script to incorporate only changes flagged
==== (====3). The following command will apply the resulting script to 'filel'.

(cat script; echo 'l,$p') led - file1

FILES
/tmp/d3?????
/usr/lib/diff3

SEE ALSO
diff(l)

RESTRICTIONS
Text lines that consist of a single'.' will defeat -e.

STATUS
DIFF3 (1) currently is not supported by Digital Equipment Corporation.

1-91

Due 1)

NAME
du - summarize disk usage

SYNTAX
du [-8] [-a] [name ...]

DESCRIPTION
Du gives the number of kilobytes contained in all files and, recursively, directories within
each specified directory or file name. If name is missing, '.' is used.

The argument -8 causes only the grand total to be given. The argument -a causes an
entry to be generated for each file. Absence of either causes an entry to be generated for
each directory only.

A file which has two links to it is only counted once.

SEE ALSO
df(1), quot(8)

RESTRICTIONS
Non-directories given as arguments (not under -a option) are not listed.
If there are too many distinct linked files, du counts the excess files multiply.

STATUS
DU (1) is supported by Digital Equipment Corporation.

1-92

ECHO(1)

NAME
echo - echo arguments

SYNTAX
echo [-n] [arg] ...

DESCRIPTION
Echo writes its arguments separated by blanks and terminated by a newline on the stan­
dard output. If the flag -n is used, no newline is added to the output.

Echo is useful for producing diagnostics in shell programs and for writing constant data on
pipes. To send diagnostics to the standard error file, do 'echo ... 1>&2'.

STATUS
ECHO (1) is supported by Digital Equipment Corporation.

1-93

ED(1)

NAME
ed - text editor

SYNTAX
ed [-] [name]

DESCRIPTION

1-94

Ed is the standard text editor.

If a name argument is given, ed simulates an e command (see below) on the named file;
that is to say, the file is read into ed's buffer so that it can be edited. The optional -
suppresses the printing of explanatory output and should be used when the standard input
is an editor script.

Ed operates on a copy of any file it is editing; changes made in the copy have no effect on
the file until a w (write) command is given. The copy of the text being edited resides in a
temporary file called the buffer.

Commands to ed have a simple and regular structure: zero or more addresses followed by a
single character command, possibly followed by parameters to the command. These
addresses specify one or more lines in the buffer. Missing addresses are supplied by
default.

In general, only one command may appear on a line. Certain commands allow the addition
of text to the buffer. While ed is accepting text, it is said to be in input mode. In this
mode, no commands are recognized; all input is merely collected. Input mode is left by
typing a period '.' alone at the beginning of a line.

Ed supports a limited form of regular expression notation. A regular expression specifies a
set of strings of characters. A member of this set of strings is said to be matched by the
regular expression. In the following specification for regular expressions the word 'charac­
ter' means any character but newline.

1. Any character except a special character matches itself. Special characters are the
regular expression delimiter plus \ [. and sometimes" * $.

2. A. matches any character.

3. A \ followed by any character except a digit or () matches that character.

4. A nonempty string s bracketed [s] (or ["s]) matches any character in (or not in) s.
In s, \ has no special meaning, and] may only appear as the first letter. A sub­
string a-b, with a and b in ascending ASCII order, stands for the inclusive range
of ASCII cha.racters.

5. A regular expression of form 1-4 followed by * matches a sequence of 0 or more
matches of the regular expression.

6. A regular expression, x, of form 1-8, bracketed \(x \) matches what x matches.

7. A \ followed by a digit n matches a copy of the string that the bracketed regular
expression beginning with the nth \(matched.

ED(1)

8. A regular expression of form 1-8, x, followed by a regular expression of form 1-7, y
matches a match for x followed by a match for y, with the x match being as long
as possible while still permitting a y match.

9. A regular expression of form 1-8 preceded by A (or followed by $), is constrained to
matches that begin at the left (or end at the right) end of a line.

10. A regular expression of form 1-9 picks out the longest among the leftmost matches
in a line.

11. An empty regular expression stands for a copy of the last regular expression
encountered.

Regular expressions are used in addresses to specify lines and in one command (see s
below) to specify a portion of a line which is to be replaced. If it is desired to use one of
the regular expression metacharacters as an ordinary character, that character may be pre­
ceded by ''\. This also applies to the character bounding the regular expression (often 'I')
and to '\' itself.

To understand addressing in ed it is necessary to know that at any time there is a current
line. Generally speaking, the current line is the last line affected by a command; however,
the exact effect on the current line is discussed under the description of the command.
Addresses are constructed as follows.

1. The character '.' addresses the current line.

2. The character '$' addresses the last line of the buffer.

3. A decimal number n addresses the n-th line of the buffer.

4. "x' addresses the line marked with the name x, which must be a lower-case letter.
Lines are marked with the k command described below.

5. A regular expression enclosed in slashes 'I' addresses the line found by searching
forward from the current line and stopping at the first line containing a string that
matches the regular expression. If necessary the search wraps around to the begin­
ning of the buffer.

6. A regular expression enclosed in queries '?' addresses the line found by searching
backward from the current line and stopping at the first line containing a string
that matches the regular expression. If necessary the search wraps around to the
end of the buffer.

7. An address followed by a plus sign '+' or a minus sign '-' followed by a decimal
number specifies that address plus (resp. minus) the indicated number of lines.
The plus sign may be omitted.

8. If an address begins with '+' or '-' the addition or subtraction is taken with
respect to the current line; e.g. '-5' is understood to mean '.-5'.

9. If an address ends with '+' or '-', then 1 is added (resp. subtracted). As a conse­
quence of this rule and rule 8, the address '-' refers to the line before the current
line. Moreover, trailing '+' and '-' characters have cumulative effect, so '--'

1-95

ED(1)

refers to the current line less 2.

10. To maintain compatibility with earlier versions of the editor, the character ,A, in
addresses is equivalent to '-'.

Commands may require zero, one, or two addresses. Commands which require no addresses
regard the presence of an address as an error. Commands which accept one or two
addresses assume default addresses when insufficient are given. If more addresses are given
than such a command requires, the last one or two (depending on what is accepted) are
used.

Addresses are separated from each other typically by a comma ','. They may also be
separated by a semicolon ';'. In this case the current line '.' is set to the previous address
before the next address is interpreted. This feature can be used to determine the starting
line for forward and backward searches ('/" '?'). The second address of any two-address
sequence must correspond to a line following the line corresponding to the first address.
The special form' %' is an abbreviation for the address pair '1,$'.

In the following list of ed commands, the default addresses are shown in parentheses. The
parentheses are not part of the address, but are used to show that the given addresses are
the default.

As mentioned, it is generally illegal for more than one command to appear on a line. How­
ever, most commands may be suffixed by 'p' or by '1', in which case the current line iseither
printed or listed respectively in the way discussed below. Commands may also be suffixed
by 'n', meaning the output of the command is to be line numbered. These suffixes may be
combined in any order.

(.)a
<text>

The append command reads the given text and appends it after the addressed line. "
is left on the last line input, if there were any, otherwise at the addressed line.
Address '0' is legal for this command; text is placed at the beginning of the buffer.

(., .) c
<text>

1-96

The change command deletes the addressed lines, then accepts input text which
replaces these lines. '.' is left at the last line input; if there were none, it is left at the
line preceding the deleted lines.

(., .) d
The delete command deletes the addressed lines from the buffer. The line originally
after the last line deleted becomes the current line; if the lines deleted were originally
at the end, the new last line becomes the current line.

e filename
The edit command causes the entire contents of the buffer to be deleted, and then the
named file to be read in. '.' is set to the last line of the buffer. The number of

ED (1)

characters read is typed. 'filename' is remembered for possible use as a default file
name in a subsequent r or w command. If 'filename' is missing, the remembered name
is used.

E filename
This command is the same as e, except that no diagnostic results when no w has been
given since the last buffer alteration.

f filename
The filename command prints the currently remembered file name. If 'filename' is
given, the currently remembered file name is changed to 'filename'.

(1,$) g/regular expression/command list

(.)i

In the global command, the first step is to mark every line which matches the given
regular expression. Then for every such line, the given command list is executed with
'.' initially set to that line. A single command or the first of multiple commands
appears on the same line with the global command. All lines of a multi-line list
except the last line must be ended with '\'. A, i, and c commands and associated
input are permitted; the '.' terminating input mode may be omitted if it would be on
the last line of the command list. The commands g and v are not permitted in the
command list.

<text>

This command inserts the given text before the addressed line. '.' is left at the last
line input, or, if there were none, at the line before the addressed line. This command
differs from the a command only in the placement of the text.

(., .+l)j
This command joins the addressed lines into a single line; intermediate newlines sim­
ply disappear. '.' is left at the resulting line.

(•)kx
The mark command marks the addressed line with name x, which must be a lower­
case letter. The address form "x' then addresses this line.

(., .)1
The list command prints the addressed lines in an unambiguous way: non-graphic
characters are printed in two-digit octal, and long lines are folded. The l command
may be placed on the same line after any non-i/o command.

(., .)ma
The move command repositions the addressed lines after the line addressed by a.
The last of the moved lines becomes the current line.

(., .)n
The number command prints the addressed lines with line numbers and a tab at the
left.

1-97

ED(1)

(., .) p
The print command prints the addressed lines. '.' is left at the last line printed. The
p command may be placed on the same line after any non-i/o command.

(., .)P
This command is a synonym for p.

q The quit command causes ed to exit. No automatic write of a file is done.

Q This command is the same as q, except that no diagnostic results when no w has been
given since the last buffer alteration.

($) r filename
The read command reads in the given file after the addressed line. If no file name is
given, the remembered file name, if any, is used (see e and f commands). The file
name is remembered if there was no remembered file name already. Address '0' is
legal for r and causes the file to be read at the beginning of the buffer. If the read is
successful, the number of characters read is typed. '.' is left at the last line read in
from the file.

(., .) s/regular expression/replacement/ or,

1-98

(., .) s/regular expression/replacement/g
The substitute command searches each addressed line for an occurrence of the
specified regular expression. On each line in which a match is found, all matched
strings are replaced by the replacement specified, if the global replacement indicator
'g' appears after the command. If the global indicator does not appear, only the first
occurrence of the matched string is replaced. It is an error for the substitution to fail
on all addressed lines. Any punctuation character may be used instead of'/' to del­
imit the regular expression and the replacement. '.' is left at the last line substituted.

An ampersand '&' appearing in the replacement is replaced by the string matching the
regular expression. The special meaning of '&' in this context may be suppressed by
preceding it by , \ '. The characters '\n' where n is a digit, are replaced by the text
matched by the n-th regular subexpression enclosed between '\ (' and ' \)'. When
nested, parenthesized subexpressions are present, n is determined by counting
occurrences of ' \ (' starting from the left.

Lines may be split by substituting new-line characters into them. The new-line in the
replacement string must be escaped by preceding it by , \ '.

One or two trailing delimiters may be omitted, implying the 'p' suffix. The special
form's' followed by no delimiters repeats the most recent substitute command on the
addressed lines. The's' may be followed by the letters r (use the most recent regular
expression for the left hand side, instead of the most recent left hand side of a substi­
tute command), p (complement the setting of the p suffix from the previous substitu­
tion), or g (complement the setting of the g suffix). These letters may be combined in
any order.

(., .)ta
This command acts just like the m command, except that a copy of the addressed

ED(1)

lines is placed after address a (which may be 0). '.' is left on the last line of the copy.

(., .)u
The undo command restores the buffer to it's state before the most recent buffer
modifying command. The current line is also restored. Buffer modifying commands
are a, c, d, g, i, k, and v. For purposes of undo, g and v are considered to be a single
buffer modifying command. Undo is its own inverse.

When ed runs out of memory (at about 8000 lines on any 16 bit mini-computer such
as the PDP-H) This full undo is not possible, and u can only undo the effect of the
most recent substitute on the current line. This restricted undo also applies to editor
scripts when ed is invoked with the - option.

(1, $) v/regular expression/command list
This command is the same as the global command g except that the command list is
executed g with '.' initially set to every line except those matching the regular expres­
sion.

(1, $) w filename
The write command writes the addressed lines onto the given file. If the file does not
exist, it is created. The file name is remembered if there was no remembered file
name already. If no file name is given, the remembered file name, if any, is used (see
e and f commands). '.' is unchanged. If the command is successful, the number of
characters written is printed.

(1, $) W filename
This command is the same as w, except that the addressed lines are appended to the
file.

(1, $) wq filename
This command is the same as w except that afterwards a q command is done, exiting
the editor after the file is written.

(.+I)zn

($) =

This command scrolls through the buffer starting at the addressed line. 22 (or n, if
given) lines are printed. The last line printed becomes the current line. The value n
is sticky, in that it becomes the default for future z commands.

The line number of the addressed line is typed. '.' is unchanged by this command.

! <shell command>
The remainder of the line. after the 'I' is sent to sh(l) to be interpreted as a command.
'.' is unchanged.

(.+1,.+1) <newline>
An address alone on a line causes the addressed line to be printed. A blank line alone
is equivalent to '.+lp'; it is useful for stepping through text. If two addresses are
present with no intervening semicolon, ed prints the range of lines. If they are
separated by a semicolon, the second line is printed.

1-99

ED(1)

If an interrupt signal (ASCII DEL) is sent, ed prints '?interrupted' and returns to its com­
mand level.

FILES
/tmp/e*
edhup: work is saved here if terminal hangs up

SEE ALSO
B. W. Kernighan, A Tutorial Introduction to the ED Text Editor
B. W. Kernighan, Advanced editing on UNIX
ex(1), sed(I), crypt(l)

DIAGNOSTICS
'?name' for inaccessible file; '?self-explanatory message' for other errors.

To protect against throwing away valuable work, a q or e command is considered to be in
error, unless a w has occurred since the last buffer change. A second q or e will be obeyed
regardless.

RESTRICTIONS
Some size limitations:

512 characters per line
256 characters per global command list
64 characters per file name

The limit on the number of lines depends on the amount of core: each line takes 2 words.

When reading a file, ed discards ASCII NUL characters and all characters after the last
newline. It refuses to read files containing non-ASCII characters.

The l command mishandles DEL.
The undo command causes marks to be lost on affected lines.

STATUS
ED (1) currently is not supported by Digital Equipment Corporation.

1-100

EFL(1)

NAME
eft - Extended Fortran Language

SYNTAX
eft [option ...] [filename ...]

DESCRIPTION
Efl compiles a program written in the EFL language into clean Fortran. Efl provides the
same control flow constructs as does ratlor(l), which are essentially identical to those in C:

statement grouping with braces;
decision-making with if, if-else, and switch-case; while, for, Fortran do, repeat, and
repeat ... untilloops; multi-level break and next. In addition, EFL has C-like data
structures, and more uniform and convenient input/output syntax, generic func­
tions. EFL also provides some syntactic sugar to make programs easier to read
and write:

free form input:
multiple statementsl1ine; automatic continuation statement label names (not just
numbers),

comments:
this is a comment

translation of relationals:
>, >=, etc., become .GT., .GE., etc.

return (expression)
returns expression to caller from function

define: define name replacement

include: include filename

The Efl command option -w suppresses warning messages. The option -C causes com­
ments to be copied through to the Fortran output (default); -# prevents comments from
being copied through. If a command argument contains an embedded equal sign, that argu­
ment is treated as if it had appeared in an option statement at the beginning of the pro­
gram. Efl is best used with 177(1).

SEE ALSO
f77(1), ratfor(l).
S. I. Feldman, The Programming Language EFL, Bell Labs Computing Science Technical
Report #78.

STATUS
EFL (1) currently is not supported by Digital Equipment Corporation.

1-101

EQN(1)

NAME
eqn, neqn, checkeq - typeset mathematics

SYNTAX
eqn I - dxy) [- pn) [- sn) [- tn] [file]
checkeq [file) ...

DESCRJP11ON
Eqn is a troff(1) preprocessor for typesetting mathematics on a Graphic Systems photo­
typesetter, neqn on terminals. Usage is almost always

eqn file ... I troff
neqn file ... Inroff

If no files are specified, these programs reads from the standard input. A line beginning
with' .EQ' marks the start of an equation; the end of an equation is marked by a line begin­
ning with '.EN'. Neither of these lines is altered, so they may be defined in macro packages
to get centering, numbering, etc. It is also possible to set two characters as 'delimiters';
subsequent text between delimiters is also treated as eqn input. Delimiters may be set to
characters z and 11 with the command-line argument - <U1I or (more commonly) with 'delim
Zll' between .EQ and .EN. The left and right delimiters may be identical. Delimiters are
turned off by 'delim off'. All text that is neither between delimiters nor between .EQ and
.EN is passed through untouched.

The program checkeq reports missing or unbalanced delimiters and .EQ/.EN pairs.

Tokens within eqn are separated by spaces, tabs, newlines, braces, double quotes, tildes or
circumflexes. Braces {} are used for grouping; generally speaking, anywhere a single charac­
ter like z could appear, a complicated construction enclosed in braces may be used instead.
Tilde ~ represents a full space in the output, circumflex A half as much.

Subscripts and superscripts are produced with the keywords sub and sup. Thus z Iub i
makes Xi, a ,ub i IUP 2 produces G,2, and e IUP {z IUP 2 + 11 IUP 2} gives e%2+g2.

Fractions are made with over: a over b yields :.

1
sqrt makes square roots: lover Iqrt {az IUP 2 + bz+ c} results in ~=:::r:===-

Jax2+hx+c
n

The keywords trom and to introduce lower and upper limits on arbitrary things: lim I;Xi is
n-too 0

made with lim from {n- > inf} Ium from 0 to n z Iub i.

Left and right brackets, braces, etc., of the right height~e m~i with lett and right: left I z

,up 2 + 11 IUP 2 over alpha right J ~==~1 produces x2+L =1. The right clause is
a

optional. Legal characters after lett and right are braces, brackets, bars, c and t for ceiling
and floor, and "" for nothing at all (useful for a right-side-only bracket).

1-102

EQN(1)

Vertical piles or things are made with pile, Ipile, cpile, and rpile: pile {tl dOt/e b tlbot/e c}
a

produces b. There can be an arbitrary number of elements in a pile. Ipile left-justifies, pile
c

and cpile center, with different vertical spacing, and rpile right justifies.

Matrices are made with matrix: mtltriz { lcol { z ,ub i dOfle , ,ub e } ccol { 1 dOflt e } } pro­
Zi 1

duces 2' In addition, there is reol for a right-justified column.
Y2

Diacritical marks are made with dot, <btdot, hat, tilde, bar, vee, dyad, and under: z Jot -
1ft) btlr is Z M, dotdot btlr --- n under is ii =11, and z flec --- , d,tld is t =1/.
Sizes and ront can be changed with size n or size :I: n, roman, italic, bold, and tont n. Size
and ronts can be changed globally in a document by gaize n and gtant n, or by the
command-line arguments - sn and - tn.
Normally subscripts and superscripts are reduced by 3 point sizes rrom the previous size;
this may be changed by the command-line argument - pn.

Successive display arguments can be lined up. Place mark before the desired lineup point in
the first equation; place lineup at the place that is to line up vertically in subsequent equa.­
tions.

Shorthands may be defined or existing keywords redefined with define: define thing %
repltlcement % defines a new token called tMng which will be replaced by repltlcement when­
ever it appears thereafter. The %may be any character that does not occur in repl4cement.

Keywords like ,um (E) int (f) inl (00) and shorthands like >- (~) - > (-..), and !­
(,-') are recognized. Greek letters are spelled out in the desired case, as in .'pA. or
GAMMA. Mathematical words like sin, cos, log are made Roman automatically. TroD{ 1)
rour-character escapes like \(bs (@.) can be used anywhere. Strings enclosed in double
quotes ".~." are passed through unto-uched; this permits keywords to be entered as text, and
can be used to communicate with troJ! when all else rails.

SEE ALSO
troff(I), tbl(I), ms(7), eqnchar(7)
B. W. Kernighan and L. L. Cherry, TWeletting Mtlthemtdicl-U,er', Guide
J. F. Ossanna., NROFF/TROFF U,er', Mtlnutll

RESlRI all ONS
To embolden digits, parens, etc., it is necessary to quote them, as in 'bold "12.3"'.

STATUS
EQN (I) currently is not supported by Digital Equipment Corporation.

1-103

ERROR(1)

NAME
error - analyze and disperse compiler error messages

SYNTAX
error [-n] [-8] [-q] [-v] [-t suffixlist] [-I ignorefile] [name]

DESCRIPTION
Error analyzes and optionally disperses the diagnostic error messages produced by a
number of compilers and language processors to the source file and line where the errors
occurred. It can replace the painful, traditional methods of scribbling abbreviations of
errors on paper, and permits error messages and source code to be viewed simultaneously
without machinations of multiple windows in a screen editor.

Error looks at the error messages, either from the specified file name or from the standard
input, and attempts to determine which language processor produced each error message,
determines the source file and line number to which the error message refers, determines if
the error message is to be ignored or not, and inserts the (possibly slightly modified) error
message into the source file as a comment on the line preceding to which the line the error
message refers. Error messages which can't be categorized by language processor or content
are not inserted into any file, but are sent to the standard output. Error touches source
files only after all input has been read. By specifying the -q query option, the user is
asked to confirm any potentially dangerous (such as touching a file) or verbose action. Oth­
erwise error proceeds on its merry business. If the -t touch option and associated suffix
list is given, error will restrict itself to touch only those files with suffices in the suffix list.
Error also can be asked (by specifying -v) to invoke vi(l) on the files in which error mes­
sages were inserted; this obviates the need to remember the names of the files with errors.

Error is intended to be run with its standard input connected via a pipe to the error mes­
sage source. Some language processors put error messages on their standard error file; oth­
ers put their messages on the standard output. Hence, both error sources should be piped
together into error. For example, when using the csh syntax,

make -s lint 1& error -q -v

will analyze all the error messages produced by whatever programs make runs when making
lint.

Error knows about the error messages produced by: make, cc, cpp, ccom, as, ld, lint, pi, pc
and /77. Error knows a standard format for error messages produced by the language pro­
cessors, so is sensitive to changes in these formats. For all languages except Pascal, error
messages are restricted to be on one line. Some error messages refer to more than one line
in more than one files; error will duplicate the error message and insert it at all of the
places :referenced.

Error will do one of six things with error messages.

synchronize

1-104

Some language processors produce short errors describing which file it is process­
ing. Error uses these to determine the file name for languages that don't include
the file name in each error message. These synchronization messages are

ERROR(1)

consumed entirely by error.

discard Error messages from lint that refer to one of the two lint libraries, /usr/lib/llib­
lc and /usr/lib/llib-port are discarded, to prevent accidently touching these
libraries. Again, these error messages are consumed entirely by error.

nullify Error messages from lint can be nullified if they refer to a specific function,
which is known to generate diagnostics which are not interesting. Nullified error
messages are not inserted into the source file, but are written to the standard
output. The names of functions to ignore are taken from either the file named
.errorrc in the users's home directory, or from the file named by the -I option.
If the file does not exist, no error messages are nullified. If the file does exist,
there must be one function name per line.

not file specific
Error messages that can't be intuited are grouped together, and written to the
standard output before any files are touched. They will not be inserted into any
source file.

file specific

true errors

Error message that refer to a specific file, but to no specific line, are written to
the standard output when that file is touched.

Error messages that can be intuited are candidates for insertion into the file to
which they refer.

Only true error messages are candidates for inserting into the file they refer to. Other error
messages are consumed entirely by error or are written to the standard output. Error
inserts the error messages into the source file on the line preceding the line the language
processor found in error. Each error message is turned into a one line comment for the
language, and is internally flagged with the string "###" at the beginning of the error, and
"% % %" at the end of the error. This makes pattern searching for errors easier with an
editor, and allows the messages to be easily removed. In addition, each error message con­
tains the source line number for the line the message refers to. A reasonably formatted
source program can be recompiled with the error messages still in it, without having the
error messages themselves cause future errors. For poorly formatted source programs in
free format languages, such as C or Pascal, it is possible to insert a comment into another
comment, which can wreak havoc with a future compilation. To avoid this, programs with
comments and source on the same line should be formatted so that language statements
appear before comments.

Options available with error are:

-n Do not touch any files; all error messages are sent to the standard output.

-q The user is queried whether s/he wants to touch the file. A "y" or "n" to the question
is necessary to continue. Absence of the -q option implies that all referenced files
(except those referring to discarded error messages) are to be touched.

1-105

ERROR(1)

-v After all files have been touched, overlay the visual editor vi with it set up to edit all
files touched, and positioned in the first touched file at the first error. If vi can't be
found, try ex or ed from standard places.

-t Take the following argument as a suffix list. Files whose suffixes do not appear in the
suffix list are not touched. The suffix list is dot separated, and "*,, wildcards work.
Thus the suffix list:

".c.y.foo* .h"

allows error to touch files ending with ".c", ".y", ".foo*" and ".y".

-8 Print out statistics regarding the error categorization. Not too useful.

Error catches interrupt and terminate signals, and if in the insertion phase, will orderly ter­
minate what it is doing.

FILES
-/.errorrc
/dev/tty

RESTRICTIONS

function names to ignore for lint error messages
user's teletype

Opens the teletype directly to do user querying.

Source files with links make a new copy of the file with only one link to it.

Changing a language processor's format of error messages may cause error to not under­
stand the error message.

Error, since it is purely mechanical, will not filter out subsequent errors caused by
'floodgating' initiated by one syntactically trivial error.

Pascal error messages belong after the lines affected (error puts them before). The align­
ment of the 'I' marking the point of error is also disturbed by error.

Error was designed for work on CRT's at reasonably high speed. It is less pleasant on slow
speed terminals, and has never been used on hardcopy terminals.

STATUS
ERROR (1) currently is not supported by Digital Equipment Corporation.

1-106 ., Digital Equipment Corporation 1984

NAME
ex, edit - text editor

SYNTAX
ex [-] [-v] [-t tag] [-r] [+command] [-1] name '"
edit [ex options]

DESCRIPTION

EX(1)

Ex is the root of a family of editors: edit, ex and vi. Ex is a superset of ed, with the most
notable extension being a display editing facility. Display based editing is the focus of vi.

If you have not used ed, or are a casual user, you will find that the editor edit is convenient
for you. It avoids some of the complexities of ex used mostly by systems programmers and
persons very familiar with ed.

If you have a CRT terminal, you may wish to use a display based editor; in this case see
vi (1), which is a command which focuses on the display editing portion of ex.

The - option suppresses all interactive-user feedback. This option is useful in processing
editor scripts in command files.

The -v option is eqivalent to using vi rather than ex.

The -t option is equivalent to an initial tag command, that is, editing the file containing
the tag and positioning the editor at its definition.

The -r option is used to recover after an editor or system crash. It recovers by retrieving
the last saved version of the named file. If no file is specified, it displays a list of saved
files.

The -1 option sets up for LISP. That is, it sets the showmatch and lisp options.

DOCUMENTATION
The document Edit: A tutorial provides a comprehensive introduction to edit assuming no
previous knowledge of computers or the UNIX system.

The Ex Reference Manual - Version 3.5 is a comprehensive and complete manual for the
command mode features of ex, but you cannot learn to use the editor by reading it.' For an
introduction to more advanced forms of editing using the command mode of ex see the
editing documents written by Brian Kernighan for the editor ed; the material in the intro­
ductory and advanced documents works also with ex.

An Introduction to Display Editing with Vi introduces the display editor vi and provides
reference material on vi. All of these documents can be found in volume 2c of the
Programmer's Manual. In addition, the Vi Quick Reference card summarizes the com­
mands of vi in a useful, functional way, and is useful with the Introduction.

FILES
/usr/lib/ex? ?strings
/usr/lib/ex? ?recover
/usr/lib/ex? ?preserve
/etc/termcap

error messages
recover command
preserve command
describes capabilities of terminals

© Digital Equipment Corporation 1984 1-107

EX(1)

-/.exrc
/tmp/Exnnnnn
/tmp/Rxnnnnn
/usr /preserve

SEE ALSO

editor startup file
editor temporary
named buffer temporary
preservation directory

awk(l), ed(l), grep(l), sed(1), grep(l), vi(l), termcap(5), environ(7)

RESTRICTIONS
The undo command causes all marks to be lost on lines changed and then restored if the
mar ked lines were changed.

Undo never clears the buffer modified condition.

The z command prints a number of logical rather than physical lines. More than a screen
full of output may result if long lines are present.

File input/output errors don't print a name if the command line '-' option is used.

There is no easy way to do a single scan ignoring case.

The editor does not warn if text is placed in named buffers and not used before exiting the
editor.

Null characters are discarded in input files, and cannot appear in resultant files.

STATUS
EX (1) is supported by Digital Equipment Corporation.

1-108

NAME
expand, unexpand - expand tabs to spaces, and vice versa

SYNTAX
expand [-tabstop] [-tab1,tab2, ... ,tabn] [file ...
unexpand [-a] [file ...]

DESCRIPTION

EXPAND(1)

Expand processes the named files or t~e standard input writing the standard output with
tabs changed into blanks. Backspace characters are preserved into the output and decre­
ment the column count for tab calculations. Expand is useful for pre-processing character
files (before sorting, looking at specific columns, etc.) that contain tabs.

If a single tabstop argument is given then tabs are set tabstop spaces apart instead of the
default 8. If multiple tabstops are given then the tabs are set at those specific columns.

Unexpand puts tabs back into the data from the standard input or the named files and
writes the result on the standard output. By default only leading blanks and tabs are
reconverted to maximal strings of tabs. If the -a option is given, then tabs are inserted
whenever they would compress the resultant file by replacing two or more characters.

STATUS
EXPAND (1) currently is not supported by Digital Equipment Corporation.

1-109

EXPLAIN (1)

NAME
explain, diction-print wordy sentences; thesaurus for diction

SYNTAX
diction [-ml] [-mm] [-n] [-f pfile] file ...
explain

DESCRIPTION
Diction finds all sentences in a document that contain phrases from a data base of bad or
wordy diction. Each phrase is bracketed with []. Because diction runs dero/f before look­
ing at the text, formatting header files should be included as part of the input. The default
macro package -ms may be overridden with the flag -Mm. The flag -ml which causes
deroff to skip lists, should be used if the document contains many lists of non-sentences.
The user may supply her/his own pattern file to be used in addition to the default file with
-f pfile. If the flag -n is also supplied the default file will be suppressed.

Explain is an interactive thesaurus for the phrases found by diction.

SEE ALSO
deroff(1)

RESTRICTIONS
Use of non-standard formatting macros may cause incorrect sentence breaks.

STATUS
EXPLAIN (1) currently is not supported by Digital Equipment Corporation.

1-110

NAME
expr - evaluate arguments as an expression

SYNTAX
expr arg •..

DESCRIPTION

EXPR(1)

The arguments are taken as an expression. After evaluation, the result is written on the
standard output. Each token of the expression is a separate argument.

The operators and keywords are listed below. The list is in order of increasing precedence,
with equal precedence operators grouped.

expr I expr
yields the first expr if it is neither null nor '0', otherwise yields the second expr.

expr & expr
yields the first expr if neither expr is null or '0', otherwise yields '0'.

expr relop expr
where relop is one of < <= = != >= >, yields '1' if the indicated comparison is
true, '0' if false. The comparison is numeric if both expr are integers, otherwise
lexicographic.

expr + expr
expr - expr

addition or subtraction of the arguments.

expr * expr
expr / expr
expr % expr

multiplication, division, or remainder of the arguments.

expr : expr
The matching operator compares the string first argument with the regular expres­
sion second argument; regular expression syntax is the same as that of ed (1). The

\(... \) pattern symbols can be used to select a portion of the first argument. Oth­
erwise, the matching operator yields the number of characters matched ('0' on
failure).

(expr) parentheses for grouping.

Examples:

To add 1 to the Shell variable a:

a='expr $a + l'
To find the filename part (least significant part) of the pathname stored in variable a,
which mayor may not contain '/':

expr $a: ',*/ \ (.* \)' 'I'$a

1-111

EXPR(1)

Note the quoted Shell metacharacters.

SEE ALSO
sh(1), test(1)

DIAGNOSTICS
Expr returns the following exit codes:

o if the expression is neither null nor '0',
1 if the expression is null or '0',
2 for invalid expressions.

STATUS
EXPR (1) currently is not supported by Digital Equipment Corporation.

1-112

EYACC(1)

NAME
eyacc - modified yacc allowing much improved error recovery

SYNTAX
eyacc [-v] [grammar]

DESCRIPTION
Eyacc is an old version of yacc(l), which produces tables used by the Pascal system and its
error recovery routines. Eyacc fully enumerates test actions in its parser when an error
token is in the look-ahead set. This prevents the parser from making undesirable reduc­
tions when an error occurs before the error is detected. The table format is different in
eyacc than it was in the old yacc, as minor changes had been made for efficiency reasons.

SEE ALSO
yacc(l)
"Practical LR Error Recovery" by Susan L. Graham, Charles B. Haley and W. N. Joy; SIG­
PLAN Conference on Compiler Construction, August 1979.

STATUS
EY ACC (1) currently is not supported by Digital Equipment Corporation.

1-113

F77(1)

NAME
f77 - Fortran 77 compiler

SYNTAX
f77 [option] ... file ...

DESCRIPTION
F77 is the UNIX Fortran 77 compiler. It accepts several types of arguments:

Arguments whose names end with '.f' are taken to be Fortran 77 source programs; they are
compiled, and each object program is left on the file in the current directory whose name is
that of the source with '.0' substituted for '.f'.

Arguments whose names end with '.F' are also taken to be Fortran 77 source programs;
these are first processed by the C preprocessor before being compiled by {77.

Arguments whose names end with' .r' or '.e' are taken to be Ratfor or EFL source programs
respectively; these are first transformed by the appropriate preprocessor, then compiled by
f77.

Arguments whose names end with' .c' or '.s' are taken to be C or assembly source programs
and are compiled or assembled, producing a '.0' file.

The following options have the same meaning as in cc(l). See ld(l) for load-time options.

-c Suppress loading and produce' .0' files for each source file.

-g Have the compiler produce additional symbol table information for dbx (1). Also
pass the -lg flag to ld(l).

-0 output
Name the final output file output instead of 'a.out'.

-p Prepare object files for profiling, see pro{(l).

-pg Causes the compiler to produce counting code in the manner of -p, but invokes a
run-time recording mechanism that keeps more extensive statistics and produces a
gmon.out file at normal termination. An execution profile can then be generated by
use of gpro{(l).

-w Suppress all warning messages. If the option is '-w66', only Fortran 66 compati­
bility warnings are suppressed.

-Dname=de{

-Dname
Define the name to the C preprocessor, as if by '#define'. If no definition is given,
the name is defined as "1". ('.F' suffix files only).

- Idir '#include' files whose names do not begin with '/' are always sought first in the
directory of the file argument, then in directories named in -I options, then in
directories on a standard list. ('.F' suffix files only).

-0 Invoke an object-code optimizer.

1-114

F77 (1)

-8 Compile the named programs, and leave the assembler-language output on
corresponding files suffixed '.s'. (No '.0' is created.).

The following options are peculiar to i77.

-i2 On machines which support short integers, make the default integer constants and
variables short. (-i4 is the standard value of this option). All logical quantities
will be short.

-m Apply the M4 preprocessor to each '.r' file before transforming it with the Ratfor
or EFL preprocessor.

-onetrip
Compile DO loops that are performed at least once if reached. (Fortran 77 DO
loops are not performed at all if the upper limit is smaller than the lower limit.)

-u Make the default type of a variable 'undefined' rather than using the default For­
tran rules.

-v Print the version number of the compiler, and the name of each pass as it exe­
cutes.

-C Compile code to check that subscripts are within declared array bounds.

- F Apply the C, EFL, or Ratfor preprocessors to relevant files, put the result in the
file with the suffix changed to '.f, but do not compile.

-Ex Use the string x as an EFL option in processing '.e' files.

- Rx Use the string x as a Ratfor option in processing' .r' files.

-N[qxscn]nnn
Make static tables in the compiler bigger. The compiler will complain if it
overflows its tables and suggest you apply one or more of these flags. These flags
have the following meanings:

q Maximum number of equivalenced variables. Default is 150.

x Maximum number of external names (common block names, subroutine and
function names). Default is 200.

s Maximum number of statement numbers. Default is 40l.

c Maximum depth of nesting for control statements (e.g. DO loops). Default is
20.

n Maximum number of identifiers. Default is 1009.

- U Do not convert upper case letters to lower case. The default is to convert Fortran
programs to lower case except within character string constants.

Other arguments are taken to be either loader option arguments, or F77 -compatible object
programs, typically produced by an earlier run, or perhaps libraries of F77 -compatible rou­
tines. These programs, together with the results of any compilations specified, are loaded
(in the order given) to produce an executable program with name 'a.out'.

1-115

F77 (1)

FILES
file. [±Fresc]
file.o
a.out
/usr /lib/f77pass 1
/lib/fl
/lib/c2
/lib/cpp
/usr/Iib/libF77.a
/usr/Ii b/libI77.a
/usr/Iib/libU77.a
/usr/Iib/libF77 p.a
/usr /Ii b/libI77 -p.a
/usr /Ii b/lib U71J>.a
/lib/libc.a
mon.out
gmon.out

SEE ALSO

input file
object file
loaded output
compiler
pass 2
optional optimizer
C preprocessor
intrinsic function library
Fortran I/O library
UNIX interface library
profiling intrinsic function library
profiling Fortran I/O library
profiling UNIX interface library
C library, see section 3
file produced for analysis by prof(1).
file produced for analysis by gprof(1).

S. I. Feldman, P. J. Weinberger, .:4 Portable Fortran 77 Compiler
D. L. Wasley, Introduction to the {77 I/O Library
prof(l), gprof(1), cc(1), Id(1), efi(1), ratfor(1)

DIAGNOSTICS
The diagnostics produced by {77 itself are intended to be self-explanatory. Occasional mes­
sages may be produced by the loader.

RESTRICTIONS
The optimizer occasionally makes mistakes; it should be avoided when debugging if
apparently incorrect results are obtained.

Complaints about long branches may occur with very large source files; such errors can be
avoided by splitting the sources into smaller sections.

STATUS
F77 (1) currently is not supported by Digital Equipment Corporation.

1-116

FALSE(1)

NAME
false, true - provide truth values

SYNTAX
true

false

DESCRIPTION
True and false are usually used in a Bourne shell script. They test for the appropriate
status "true" or "false" before running (or failing to run) a list of commands.

EXAMPLE

SEE ALSO

while false
do

command list
done

csh(1), sh(1), true(1)

DIAGNOSTICS
False has exit status nonzero.

STATUS
FALSE (1) currently is not supported by Digital Equipment Corporation.

1-117

FED(1)

NAME
fed - font editor

SYNTAX
fed [-i] [-q] name

DESCRIPTION
Fed is an editor for font files. It is display oriented and must be used on an HP 2648
graphics terminal. Fed does the necessary handshaking to work at 9600 baud on the 2648.

The -i flag requests inverse video mode, where all dots are dark and the background is
bright. This provides a setting similar to the hardcopy output of the plotter, and is useful
for fonts such as the shadow font where shading is important.

The -q flag requests quiet mode, where all graphic output is suppressed. This mode is
useful on terminals other than the HP 2648 (assuming you are editing blindly) and for
operations such as the # and A commands, since these operations do not make essential use
of graphics, and since suppression of the graphic output speeds of fed considerably.

FONTS
A font is a collection of up to 256 glyphs, each of which is some pattern or design. Glyphs
are represented on Unix as a rectangular array of dots, each of which is either dark or
blank. Each location in the array is called a pixel. There are 200 pixels per inch due to
the hardware of the Versatec and Varian plotters.

Each glyph has, in addition to its bit pattern, a base and a width. The base is a point, typ­
ically near the lower left of the array, that represents the logical lower left point of the
glyph. The base is not restricted to be within the array, in fact, it is usually a few locations
to the left of the edge. The vertical position of the base defines the baseline, which is held
constant for all glyphs when a line is typeset. Letters with descenders, such as "g", go
below the baseline. Other glyphs typically rest on the baseline.

The width is used by troff(1) to determine where to place the next glyph. It need not be
the same as the width of the array, although it is usually about the same.

The size of the array, location of the base, and the width can vary among glyphs in a font.
Fonts where all glyphs have the same width are called fixed width fonts, others are vari­
able width fonts.

Attributes which do not vary among glyphs include the font name, which can be up to 11
alphabetic characters, and the point size, which is a positive integer indicating the overall
size of the font. A point is 1/72 inch. The point size of a font is the distance, in points,
from the top of the tallest glyph to the bottom of the lowest. The software of troff
currently restricts point sizes to 6, 7, 8, 9, 10, 11, 12, 14, 16, 18, 20, 22, 24, 28, and 36 point.
Normal text is usually 10 point.

Font files conventionally have names of the form
name.pointsize

for example, "bocklin.14" to indicate 14 point bocklin. Fed will look for such a file in both
the current directory and /usr/lib/vfont. Vtroff will only look in /usr/lib/vfont.

1-118

FED(1)

There is a correspondence between glyphs and characters in a font. For a given font, each
glyph has an ASCII character associated with it. The glyph is obtained in troff by typing
the associated character, and in fed glyphs are also referred to by their character. However,
it is not required for all characters to have a glyph, fonts never have more than 128 glyphs
and usually have fewer.

There is usually a natural correspondence between glyphs and characters. For example, the
glyph which is a roman lower case 'a' will generally have the ascii character 'a' as its
corresponding character. In the special font, the Greek lower case alpha has 'a' as it's
corresponding character, upper case delta has 'D' as it's corresponding character, etc. How­
ever, special fonts such as the chess font have glyphs that do not appear to be related to
their corresponding characters.

\

It is easy to confuse glyphs and characters. Note, however, that the three glyphs roman a,
bold 8, and italic a, are all different, yet all three correspond to the character 'a'. When
this is multiplied by the large number of font styles and point sizes, there are many glyphs
that match a single character, (but only one in a particular font).

FED ORGANIZATION
Fed organizes the screen into 21 windows in a 3 by 7 array. Each window is 100 by 100
pixels, meaning that the maximum height and width of a glyph is 100 pixels. Since the HP
2648 has a resolution of 100 dots per inch, glyphs displayed on the screen and printer will
be double the actual height and width, even when fully zoomed out. There is a current
window, which will be marked with a square border. There are two pens, called fine and
bold. The fine pen is one pixel wide, the bold pen can range from two pixels to ten pixels
in diameter. The default width of the bold pen is taken from the point size implied by the
file name. The point size is not otherwise used. There are also fine and bold erasers.

There are two locations in the window, called the cursor and the mark. These tools are
used to draw on glyphs.

Sometimes the cursor is on, in which case it is indicated by the hardware graphics cursor of
the terminal, a cross. The cursor is considered to be located at the center of the cross.
Sometimes the rubber band line is turned on, showing the path a line drawn would
traverse. This line runs from the mark to the cursor, and is the only way the mark is
graphically visible.

COMMANDS
Commands to fed are single characters, sometimes followed by any needed arguments. The
commands used by fed were chosen to be as similar to vi (1) commands as was reasonable.
Another distinction is that certain commands are in upper case. These commands were
deliberately made hard to type because they cause a large change in the state of the editor
and should not be done by accident. In a few cases there are both upper and lower case
commands with the same letter.

Alphanumeric Keypad: Note that this is the keypad on the far right. The graphics keypad
on the near right will not work. These keys are each synonyms for other commands. They
are arranged in a manner that causes the five arrow keys to behave sensibly, but the others
need to be memorized or stickers placed on the keys~ They are provided for convenience

1-119

FED (1)

only, and the user can avoid memorization simply by using the mnemonic letter keys
instead.

The layout is as follows:
undo (u)
move (m)
left (h)
setdot (.)

rezoom ()
up (k)
base (b)
down (j)

fiUin (f)
draw (d)
right (1)
cleardot (»

The arrow keys move the cursor one pixel in the indicated direction. The cursor is turned
on if it was off. Note that the alphanumeric keys (far right) must be used. The graphics
keys (near right) will appear to move the cursor but it will not be moved internally. The
cursor cannot be moved outside the current window.

"L: Redraw the screen. This is useful if an I/O error or background process has caused the
screen to get messed up.

b: Move the cursor to the base of the window. This is the default location of the cursor.

c: If the cursor is on, turn it off. Otherwise, turn it on.

d: Draw a line from the mark to the cursor. The currently selected tool (fine pen, bold pen,
fine eraser, bold eraser) is used. The cursor is turned off. The mark is moved to the loca­
tion of the cursor.

f: Fill in the current hole. The cursor must be in a completely enclosed empty (white) area.
The area is set to black. If this command is invoked on the outside or there are any leaks
to the outside, the entire outside will be filled in. (Undo is useful in this case.) Filling in
cannot jump diagonals, but can rather only sprea~ in the four orthogonal directions.

g <x>: Get a glyph. X can be any character. The glyph corresponding to x is put in a win­
dow, and this window is made the current window. The glyph is centered horizontally in
the window. The baseline is located at row 70 from the top of the window. The pen and
cursor are placed at the base, and the cursor is turned off. The glyph must exist.

h, j, h, and l are accepted to mean left, down, up, and right, respectively. They are
synonymous with the alphanumeric arrow keys. They have the same meanings as in vi (1) .

m: Move the mark to the current location of the cursor. The cursor is turned on.

n <x>: New glyph. This is similar to g, except that the glyph must not exist. It is used to
create a new glyph. A blank window is created, centered at (50, 70) as in g.

p: Print the contents of the screen. An HP 2631 printer must be connected to the terminal.
The screen is copied to the printer. If in inverse video mode, the screen is changed to nor­
mal video mode before the print, and then changed back after the print.

r: If the rubber band line is on, turn it off. Otherwise, turn it on.

s <what> [<where> J: Set <what> to <where>. What and where are single characters.
The possibilities are:

1-120

spf: Set pen fine. ('1' for light is also accepted.)

spb: set pen bold. ('h' for heavy is also accepted.)

sd: Set draw. The pen is used instead of the eraser.

se: Set erase. The eraser is used instead of the pen.

FED (1)

ss<n>: Set size of bold pen. <n> is a digit from 1 to 9. The size of the bold pen
is set accordingly. This also affects the bold eraser.

u: Undo. The previous change to the current window is undone. Note that undo is on a
window by window basis, so that commands that affect characters or more than one window
cannot be undone.

z <n>: Zoom to level n. The screen is blown up by a factor of n. This only affects the
appearance of the screen to make it easy to see the individual dots, and does not affect the
size of the glyph or the result of a print command. Zooming to 1 shows the entire screen, a
level of 3 or 4 is probably good for editing glyphs. When a message is printed on the
screen, fed automatically zooms out to level 1 so you can read the message. Hitting space
will zoom back. z followed by <return> zooms out without changing the previous zoom.

space: Zoom back to the level most recently requested by the z command.

A <i/e/r> <first> <last> [<oldps> <newps> J:
Artificially italicize/embolden/resize a range of glyphs in the current font. Enter i for itali­
cize, e for embolden, or r for resize, and the first and last character in the range desired. If
you are resizing you will also have to enter the old and new point size, each terminated by a
return. Each glyph is gotten and changed on the screen visibly. Glyphs are italicized by
slanting them to the right at a slope of 1/5. They are emboldened by smearing them to the
right a number if pixels equal to the current heavy pen size. They are resized with an algo­
rithm which translates all on bits to the new position. These operations will be consider­
ably faster if the -q option is in effect, since much overhead is involved in the graphic
display.

B: Move the base to the cursor. The cursor is turned on.

e <from> <to>: Copy the glyph in character <from> to character <to>. If <from> has a
window on the screen, that window is given to <to>.

D <from> <through>: Delete a range of characters in the font, from <from> through
<through> inclusive. To delete a single character type it twice.

E <file>: Edit the named file. If changes have been made to the current file, confirmation
will be requested. (Either 'y' or 'E' is accepted.) The file name is terminated with return.

F <first> <last>: Show the font on the screen. The characters in the specified range are
shown. The width values are used to get natural spacing. The display will remain until
another command is typed, at which time the previous display will be redrawn and the new
command will be executed. As..{l special case, a "p" command will print the results of the
"F" command instead of the previous display.

1-121

FED(1)

I <hlv>: Invert the current glyph about a horizontal or vertical axis, as indicated by h or v.
The axis runs up the center of the window. The base can be subsequently positioned with
the B command.

K: Kill the current glyph. All dots are set to blank. The glyph is not removed from the
font. This is used for redrawing a glyph from scratch or replacing it with another glyph.

M <from> <to>: Move a glyph from <from> to <to>. This is just like the copy command
but the original is deleted.

N <file>: Write out the current file, if necessary, and edit the new file specified. The file
name is terminated with return.

P <first> <last> <file>: Partial read from a file. A file and the first and last characters in
the range are prompted for. Characters not in the range are left unmodified, characters in
the range are handled as in the R command.

Q: Quit the editor, without saving any work. If changes have been made confirmation will
be required (either 'Q' or 'y' is taken as 'yes'.)

R <file>: Read in the named file on top of the current file. Glyphs are merged wherever
possible. If there is a conflict, you will be asked whether fed should take the glyph from
the file (f) or buffer (b). Responding with F or B will lock in that mode for the remainder
of the read. The file name is terminated with a return.

T <text>:

Typeset the line of text on the terminal. This is similar to the F command except that the
given text is arranged on the screen, so you can see how some particular combination of
characters would look.

V: Toggle whether editing is being done in inverse video mode.

W <file>: Write the buffer out onto the named file, which is terminated by return. A null
file name means the current file name.

ZZ: Exit fed. A write is done, if necessary, followed by a quit. This is the normal way to
leave fed. The Z must be doubled for compatibility with vi .

. : Turn on the dot under the cursor. The cursor is turned off.

>: Turn off the dot under the cursor. The cursor is turned off.

<char> <field> <value>: Edit a numerical field. This only makes sense if the glyph has
not been gotten (g or n) yet, since otherwise the values are taken from window specific
things such as the base. Fed does not do any sanity checking, but just substitutes the value
input. Fields are the first letter of any field from the dispatch structure (see vfont(5»,
specifically, these fields are addr, nbytes, left, right, up, down, and width. The number,
which may be signed, is terminated by a newline.

FILES
lusr/lib/vfont/*. *

1-122

FED(1)

SEE ALSO
vfont(5), vfontinfo(l), vtroff(1), vwidth(l)

RESTRICTIONS
Attempting to use the second 128 characters would be folly. Fed has never been tested on
such fonts, and at a bare minimum there would be problems trying to input 8 bit charac­
ters.

The character DEL is interpreted by the tty driver to mean interrupt. Hence the
corresponding glyph cannot be accessed. The start, stop, and quit characters are turned
off, but other characters used by the new tty driver must be quoted with ''V.

Changed widths are not copied to the width table used by troff. This only matters if logical
widths are changed, or if glyphs are moved around. For these cases, vwidth(1) must be
used.

STATUS
FED (1) currently is not supported by Digital Equipment Corporation.

1-123

FILE (1)

NAME
file - determine file type

SYNTAX
file file ...

DESCRIPTION
File performs a series of tests on each argument in an attempt to classify it. If an argu­
ment appears to be ascii, file examines the first 512 bytes and tries to guess its language.

RESTRICTIONS
It often suggests that command files are C programs.

Does not recognize Pascal or LISP.

STATUS
FILE (1) currently is not supported by Digital Equipment Corporation.

1-124

FIND(1)

NAME
find - find files

SYNTAX
find pathname-list expression

DESCRIPTION
Find recursively descends the directory hierarchy for each pathname in the pathname-list
(i.e., one or more pathnames) seeking files that match a boolean expression written in the
primaries given below. In the descriptions, the argument n is used as a decimal integer
where +n means more than n, -n means less than nand n means exactly n.

-name filename
True if the filename argument matches the current file name. Normal Shell
argument syntax may be used if escaped (watch out for '[', '?' and '*').

-perm onum
True if the file permission flags exactly match the octal number onum (see
chmod(1». If anum is prefixed by a minus sign, more flag bits (017777, see
stat (2» become significant and the flags are compared: (flags&onum) = =onum.

-type c True if the type of the file is c, where c is b, c, d, f or I for block special file,
character special file, directory, plain file, or symbolic link.

-links n True if the file has n links.

-user uname
True if the file belongs to the user uname (login name or numeric user ID).

-group gname
True if the file belongs to group gname (group name or numeric group ID).

-size n True if the file is n blocks long (512 bytes per block).

-inum n True if the file has inode number n.

-atime n
True if the file has been accessed in n days.

-mtime n
True if the file has been modified in n days.

-exec command
True if the executed command returns a zero value as exit status. The end of
the command must be punctuated by an escaped semicolon. A command argu­
ment '{}' is replaced by the current pathname.

-ok command
Like -exec except that the generated command is written on the standard out­
put, then the standard input is read and the command executed only upon
response y.

-print Always true; causes the current pathname to be printed.

1-125

FIND(1)

-newer file
True if the current file has been modified more recently than the argument file.

The primaries may be combined using the following operators (in order of decreasing pre­
cedence):

1) A parenthesized group of primaries and operators (parentheses are special to the Shell
and must be escaped).

2) The negation of a primary ('I' is the unary not operator).

3) Concatenation of primaries (the and operation is implied by the juxtaposition of two
primaries).

4) Alternation of primaries (,-0' is the or operator).

EXAMPLE
To remove all files named 'a.out' or '* .0' that have not been accessed for a week:

find / \(-name a.out -0 -name '* .0' \) -atime +7 -exec rm {} \ ;

FILES
/etc/passwd
/etc/group

SEE ALSO
sh(l), test(l), fs(5)

STATUS
FIND (1) currently is not supported by Digital Equipment Corporation.

1-126

FINGER(1)

NAME
finger - user information lookup program

SYNTAX
finger [options] name ...

DESCRIPTION
By default finger lists the login name, full name, terminal name and write status (as a '*'
before the terminal name if write permission is denied), idle time, login time, and office
location and phone number (if they are known) for each current UNIX user. (Idle time is
minutes if it is a single integer, hours and minutes if a ':' is present, or days and hours if a
'd' is present.)

A longer format also exists anq is used by finger whenever a list of peoples names is given.
(Account names as well as first and last names of users are accepted.) This format is multi­
line, and includes all the information described above as well as the user's home directory
and login shell, any plan which the person has placed in the file .plan in their home direc­
tory, and the project on which they are working from the file .project also in the home
directory.

Finger options include:

-m Match arguments only on user name.

-I Force long output format.

-p Suppress printing of the .plan files

-8 Force short output format.

FILES
/etc/utmp
/etc/passwd
/usr/adm/lastlog
-/.plan
-/.project

SEE ALSO
w(1), who(1)

RESTRICTIONS

who file
for users names, offices, ...
last login times
plans
projects

Only th~ first line of the .project file is printed.

The encoding of the gcos field is UCB dependent - it knows that an office '197MC' is
'197M Cory Hall', and that '529BE' is '529B Evans Hall'.

STATUS
FINGER (1) currently is not supported by Digital Equipment Corporation.

1-127

FMT(1)

NAME
fmt - simple text formatter

SYNTAX
fmt [name ...]

DESCRIPTION
Fmt is a simple text formatter which reads the concatenation of input files (or standard
input if none are given) and produces on standard output a version of its input with lines
as close to 72 characters long as possible. The spacing at the beginning of the input lines is
preserved in the output, as are blank lines and interword spacing.

Fmt is meant to format mail messages prior to sending, but may also be useful for other
simple tasks. For instance, within visual mode of the ex editor (e.g. vi) the command

!}fmt
will reformat a paragraph, evening the lines.

SEE ALSO
nroff(1), mail(l)

RESTRICTIONS
The program was designed to be simple and fast - for more complex operations, the stan­
dard text processors are likely to be more appropriate.

STATUS
FMT (1) currently is not supported by Digital Equipment Corporation.

1-128

FOlD(1)

NAME
fold - fold long lines for finite width output device

SYNTAX
fold [-width] [file...]

DESCRIPTION
Fold is a filter which will fold the contents of the specified files, or the standard input if no
files are specified, breaking the lines to have maximum width width. The default for width
is 80. Width should be a multiple of 8 if tabs are present, or the tabs should be expanded
using expand (1) before coming to fold.

SEE ALSO
expand(1)

RESTRICTIONS
If underlining is present it may be messed up by folding.

STATUS
FOLD (1) currently is not supported by Digital Equipment Corporation.

1-129

FP(1)

NAME
fp - Functional Programming language compiler/interpreter

SYNTAX
fp

DESCRIPTION
Fp is an interpreter/compiler that implements the applicative language proposed by John
Backus. It is written in FRANZ LISP.

In a functional programming language intent is expressed in a mathematical style devoid
of assignment statements and variables. Functions compute by value only; there are no
side-effects since the result of a computation depends solely on the inputs.

Fp "programs" consist of functional expressions - primitive and user-defined fp functions
combined by functional forms. These forms take functional arguments and return func­
tional results. For example, the composition operator '@' takes two functional arguments
and returns a function which represents their composition.

There exists a single operation in fp - application. This operation causes the system to
evaluate the indicated function using the single argument as input (all functions are
monadic).

GETTING STARTED
Fp invokes the system. Fp compiles functions into lisp (1) source code; lisp(l) interprets
this code (the user may compile this code using the liszt (1) compiler to gain a factor of 10
in performance). Control D exits back to the shell. Break terminates any computation in
progress and resets any open file units.)help provides a short summary of all user com­
mands.

FILES
/usr/ucb/lisp
/usr/ucb/liszt
/usr/doc/fp

SEE ALSO
lisp(l), liszt(l).

the FRANZ LISP interpreter
the liszt compiler
the User's Guide

The Berkeley FP user's manual, available on-line. The language is described in the
August 1978 issue of CACM (Turing award lecture by John Backus).

RESTRICTIONS
If a non-terminating function is applied as the result of loading a file, then control is
returned to the user immediately, everything after that position in the file is ignored.

FP incorrectly marks the location of a syntax error on large, multi-line function definitions
or applications.

STATUS
FP (1) currently is not supported by Digital Equipment Corporation.

1-130

FPR(1)

NAME
fpr - print Fortran file

SYNTAX
fpr

DESCRIPTION
Fpr is a filter that transforms files formatted according to Fortran's carriage control con­
ventions into files formatted according to UNIX line printer conventions.

Fpr copies its input onto its output, replacing the carriage control characters with charac­
ters that will produce the intended effects when printed using lpr(l). The first character of
each line determines the vertical spacing as follows:

C

A blank line is treated as if its first character is a blank. A blank that appears as a carriage
control character is deleted. A zero is changed to a newline. A one is changed to a form
feed. The effects of a "+" are simulated using backspaces.

EXAMPLES
a.out I fpr Ilpr

fpr < f77.output Ilpr

RESTRICTIONS
Results are undefined for input lines longer than 170 characters.

STATUS
FPR (1) currently is not supported by Digital Equipment Corporation.

1-131

FROM(1)

NAME
from - who is my mail from?

SYNTAX
from [-8 sender] [user]

DESCRIPTION
From prints out the mail header lines in your mailbox file to show you who your mail is
from. If user is specified, then user's mailbox is examined instead of your own. If the -s
option is given, then only headers for mail sent by sender are printed.

FILES
/usr/spool/mail/*

SEE ALSO
biff(I), mail(I), prmail(l)

STATUS
FROM (1) currently is not supported by Digital Equipment Corporation.

1-132

FSPLlT(1)

NAME
fsplit - split a multi-routine Fortran file into individual files

SYNTAX
fsplit [-e efile] ... [file]

DESCRIPTION
Fsplit takes as input either a file or standard input containing Fortran source code. It
attempts to split the input into separate routine files of the form name.f, where name is the
name of the program unit (e.g. function, subroutine, block data or program). The name for
unnamed block data subprograms has the form blkdtaNNN.f where NNN is three digits
and a file of this name does not already exist. For unnamed main programs the name has
the form mainNNN.f. If there is an error in classifying a program unit, or if name.f already
exists, the program unit will be put in a file of the form zzzNNN.f where zzzNNN.f does
not already exist.

Normally each subprogram unit is split into a separate file. When the -e option is used,
only the specified subprogram units are split into separate files. E.g.:

fsplit -e readit -e do it prog.f
will split readit and doit into separate files.

DIAGNOSTICS
If names specified via the -e option are not found, a diagnostic is written to standard error.

RESTRICTIONS
Fsplit assumes the subprogram name is on the first noncomment line of the subprogram
unit. Nonstandard source formats may confuse fsplit.

It is hard to use -e for unnamed main programs and block data subprograms since you
must predict the created file name.

STATUS
FSPLIT (1) currently is not supported by Digital Equipment Corporation.

1-133

FTP(1C)

NAME
ftp - file transfer program

SYNTAX
ftp [-v] [-d] [-i] [-n] [-g] [host]

DESCRIPTION
Ftp is the user interface to the ARPANET standard File Transfer Protocol. The program
allows a user to transfer files to and from a remote network site.

The client host with which ftp is to communicate may be specified on the command line. If
this is done, ftp will immediately attempt to establish a connection to an FTP server on
that host; otherwise, ftp will enter its command interpreter and await instructions from the
user. When ftp is awaiting commands from the user the prompt "ftp>" is provided the
user. The following commands are recognized by ftp:

Invoke a shell on the local machine.

append local-file [remote-file]
Append a local file to a file on the remote machine. If remote-file is left
unspecified, the local file name is used in naming the remote file. File transfer
uses the current settings for type, format, mode, and structure.

ascii Set the file transfer type to network ASCII. This is the default type.

bell Arrange that a bell be sounded after each file transfer command is completed.

binary Set the file transfer type to support binary image transfer.

bye Terminate the FTP session with the remote server and exit ftp.

cd remote-directory
Change the working directory on the remote machine to remote-directory.

close Terminate the FTP session with the remote server, and return to the command
interpreter.

delete remote-file
Delete the file remote-file on the remote machine.

debug [debug-value]
Toggle debugging mode. If an optional debug-value is specified it is used to set
the debugging level. When debugging is on, ftp prints each command sent to the
remote machine, preceded by the string "-->".

dir [remote-directory] [local-file]
Print a listing of the directory contents in the directory, remote-directory, and,
optionally, placing the output in local-file. If no directory is specified, the current
working directory on the remote machine is used. If no local file is specified, out­
put comes to the terminal.

form format
Set the file transfer form to format. The default format is "file".

1-134

FTP(1C)

get remote-file [local-file]
Retrieve the remote-file and store it on the local machine. If the local file name is
not specified, it is given the same name it has on the remote machine. The current
settings for type, form, mode, and structure are used while transferring the file.

hash Toggle hash-sign ("#") printing for each data block transferred. The size of a data
block is 1024 bytes.

glob Toggle file name globbing. With file name globbing enabled, each local file or
pathname is processed for csh(1) metacharacters. These characters include
"*?[]-O". Remote files specified in mutliple item commands, e.g. mput, are
globbed by the remote server. With globbing disabled all files and pathnames are
treated literally.

help [command]
Print an informative message about the meaning of command. If no argument is
given, ftp prints a list of the known commands.

led [directory]
Change the working directory on the local machine. If no directory is specified,
the user's home directory is used.

Is [remote-directory] [local-file]
Print an abbreviated listing of the contents of a directory on the remote machine.
If remote-directory is left unspecified, the current working directory is used. If no
local file is specified, the output is sent to the terminal.

mdelete remote-files
Delete the specified files on the remote machine. If globbing is enabled, the
specification of remote files will first be expanded using Is.

mdir remote-files local-file
Obtain a directory listing of multiple files on the remote machine and place the
result in local-file.

mget remote-files
Retrieve the specified files from the remote machine and place them in the current
local directory. Ifglobbing is enabled, the specification of remote files will first be
expanding using Is.

mkdir directory-name
Make a directory on the remote machine.

mls remote-files local-file
Obtain an abbreviated listing of multiple files on the remote machine and place the
result in local-file.

mode [mode-name]
Set the file transfer mode to mode-name. The default mode is "stream" mode.

mput local-files
Transfer multiple local files from the current local directory to the current working

1-135

FTP(1C)

directory on the remote machine.

open host [port]

prompt

Establish a connection to the specified host FTP server. An optional port number
may be supplied, in which case, ftp will attempt to contact an FTP server at that
port. If the auto-login option is on (default), ftp will also attempt to automatically
log the user in to the FTP server (see below).

Toggle interactive prompting. Interactive prompting occurs during multiple file
transfers to allow the user to selectively retrieve or store files. If prompting is
turned off (default), any mget or mput will transfer all files.

put local~file [remote-file]
Store a local file on the remote machine. If remote-file is left unspecified, the local
file name is used in naming the remote file. File transfer uses the current settings
for type, format, mode, and structure.

pwd Print the name of the current working directory on the remote machine.

quit A synonym for bye.

quote argJ arg2 ...
The arguments specified are sent, verbatim, to the remote FTP server. A single
FTP reply code is expected in return.

recv remote-file [local-file]
A synonym for get.

remotehelp [command-name]
Request help from the remote FTP server. ff a command-name is specified it is
supplied to the server as well.

rename [from] [to]
Rename the file from on the remote machine, to the file to.

rmdir directory-name
Delete a directory on the remote machine.

send local-file [remote-file]
A synonym for put.

sendport
Toggle the use of PORT commands. By default, ftp will attempt to use a PORT
command when establishing a connection for each data transfer. If the PORT
command fails, ftp will use the default data port. When the use of PORT com­
mands is disabled, no attempt will be made to use PORT commands for each data
transfer. This is useful for certain FTP implementations which do ignore PORT
commands but, incorrectly, indicate they've been accepted.

status Show the current status of ftp.

struct [struct-name]

1-136

FTP(1C)

Set the file transfer structure to struct-name. By default "stream" structure is
used.

tenex Set the file transfer type to that needed to talk to TENEX machines.

trace Toggle packet tracing.

type [type-name]
Set the file transfer type to type-name. If no type is specified, the current type is
printed. The default type is network ASCII.

user user-name [password] [account]
Identify yourself to the remote FTP server. If the password is not specified and
the server requires it, ftp will prompt the user for it (after disabling local echo). If
an account field is not specified, and the FTP server requires it, the user will be
prompted for it. Unless ftp is invoked with "auto-login" disabled, this process is
done automatically on initial connection to the FTP server.

verbose
Toggle verbose mode. In verbose mode, all responses from the FTP server are
displayed to the user. In addition, if verbose is on, when a file transfer completes,
statistics regarding the efficiency of the transfer are reported. By default, verbose
is on.

? [command]
A synonym for help.

Command arguments which have embedded spaces may be quoted with quote (") marks.

FILE NAMING CONVENTIONS
Files specified as arguments to ftp commands are processed according to the following
rules.

1) If the file name "-" is specified, the stdin (for reading) or stdout (for writing) is
used.

2) If the first character of the file name is "I", the remainder of the argument is inter­
preted as a shell command. Ftp then forks a shell, using popen(3) with the argu­
ment supplied, and reads (writes) from the stdout (stdin). If the shell command
includes spaces, the argument must be quoted; e.g. ""lIs -It"". A particularly use­
ful example of this mechanism is: "dir Imore".

3) Failing the above checks, if "globbing" is enabled, local file names are expanded
according to the rules used in the csh(l); c.f. the glob command.

FILE TRANSFER PARAMETERS
The FTP specification specifies many parameters which may affect a file transfer. The
type may be one of "ascii", "image" (binary), "ebcdic", and "local byte size" (for PDP-10's
and PDP-20's mostly). Ftp supports the ascii and image types of file transfer.

1-137

FTP(1C)

Ftp supports only the default values for the remaining file transfer parameters: mode, form,
and struct.

OPTIONS
Options may be specified at the command line, or to the command interpreter.

The -v (verbose on) option forces /tp to show all responses from the remote server, as well
as report on data transfer statistics.

The -n option restrains ftp from attempting "auto-login" upon initial connection. If auto­
login is enabled, ftp will check the .netrc file in the user's home directory for an entry
describing an account on the remote machine. If no entry exists, ftp will use the login
name on the local machine as the user identity on the remote machine, and prompt for a
password and, optionally, an account with which to login.

The -i option turns off interactive prompting during mutliple file transfers.

The -d option enables debugging.

The -g option disables file name glob bing.

RESTRICTIONS
Many FTP server implementation do not support the experimental operations such as print
working directory. Aborting a file transfer does not work right; if one attempts this the
local ftp will likely have to be killed by hand.

STATUS
FTP (lC) currently is not supported by Digital Equipment Corporation.

1-138

GCORE(1)

NAME
gcore - get core images of running processes

SYNTAX
gcore process-id ...

DESCRIPTION
Gcore creates a core image of each specified process, suitable for use with adb(1) or dbx(1).

FILES
core. <process-id> core images

RESTRICTIONS
Paging activity that occurs while gcore is running may cause the program to become con­
fused. For best results, the desired processes should be stopped.

STATUS
GCORE (1) currently is not supported by Digital Equipment Corporation.

1-139

GPROF(1)

NAME
gprof - display call graph profile data

SYNTAX
gprof [options] [a.out [gmon.out ...]]

DESCRIPTION
gprof produces an execution profile of C, Pascal, or Fortran77 programs. The effect of
called routines is incorporated in the profile of each caller. The profile data is taken from
the call graph profile file (gmon.out default) which is created by programs which are com­
piled with the -pg option of cc, pc, and f77. That option also links in versions of the
library routines which are compiled for profiling. The symbol table in the named object file
(a. out default) is read and correlated with the call graph profile file. If more than one
profile file is specified, the gprof output shows the sum of the profile information in the
given profile files.

First, a flat profile is given, similar to that provided by prof(l). This listing gives the total
execution times and call counts for each of the functions in the program, sorted by decreas­
ing time.

Next, these times are propagated along the edges of the call graph. Cycles are discovered,
and calls into a cycle are made to share the time of the cycle. A second listing shows the
functions sorted according to the time they represent including the time of their call graph
descendents. Below each function entry is shown its (direct) call graph children, and how
their times are propagated to this function. A similar display above the function shows
how this function's time and the time of its descendents is propagated to its (direct) call
graph parents.

Cycles are also shown, with an entry for the cycle as a whole and a listing of the members
of the cycle and their contributions to the time and call counts of the cycle.

The following options are available:

-a suppresses the printing of statically declared functions. If this option is given, all
relevant information about the static function (e.g., time samples, calls to other
functions, calls from other functions) belongs to the function loaded just before the
static function in the a.out file.

- b supresses the printing of a description of each field in the profile.

-c the static call graph of the program is discovered by a heuristic which examines
the text space of the object file. Static-only parents or children are indicated with
call counts of O.

-e name
suppresses the printing of the graph profile entry for routine name and all its des­
cendants (unless they have other ancestors that aren't suppressed). More than one
-e option may be given. Only one name may be given with each -e option.

-E name
suppresses the printing of the graph profile entry for routine name (and its

1-140

-f name

GPROF(1)

descendants) as -e, above, and also excludes the time spent in name (and its des­
cendants) from the total and percentage time computations. (For example, - E
mcount - E mcleanup is the default.)

prints the graph profile entry of only the specified routine name and its descen­
dants. More than one -f option may be given. Only one name may be given with
each -f option.

-F name
prints the graph profile entry of only the routine name and its descendants (as -f,
above) and also uses only the times of the printed routines in total time and per­
centage computations. More than one - F option may be given. Only one name
may be given with each - F option. The - F option overrides the - E option.

-8 a profile file gmon.sum is produced which represents the sum of the profile infor­
mation in all the specified profile files. This summary profile file may be given to
subsequent executions of gprof (probably also with a -8) to accumulate profile
data across several runs of an a.out file.

-z displays routines which have zero usage (as indicated by call counts and accumu­
lated time). This is useful in conjunction with the -c option for discovering which
routines were never called.

FILES
a.out
gmon.out
gmon.sum

SEE ALSO

the namelist and text space.
dynamic call graph and profile.
summarized dynamic ~all graph and profile.

monitor(3), profi1(2), cc(1), prof(1)
"gprof: A Call Graph Execution Profiler", by Graham, S.L., Kessler, P.B., McKusick, M.K.;
Proceed~ngs of the SIGPLAN '82 Symposium on Compiler Construction, SIGPLAN
Notices, Vol. 17, No.6, pp. 120-126, June 1982.

RESTRICTIONS
Beware of quantization errors. The granularity of the sampling is shown, but remains sta­
tistical at best. We assume that the time for each\ execution of a function can be expressed
by the total time for the function divided by the number of times the function is called.
Thus the time propagated along the call graph arcs to parents of that function is directly
proportional to the number of times that arc is traversed.

Parents which are not themselves profiled will have the time of their profiled children pro­
pagated to them, but they will appear to be spontaneously invoked in the call graph listing,
and will not have their time propagated further. Similarly, signal catchers, even though
profiled, will appear to be spontaneous (although for more obscure reasons). Any profiled
children of signal catchers should have their times propagated properly, unless the signal
catcher was invoked during the execution of the profiling routine, in which case all is lost.

1-141

GPROF(1)

The profiled program must call exit (2) or return normally for the profiling information to
be saved in the gmon.out file.

STATUS
GPROF (1) currently is not supported by Digital Equipment Corporation.

1-142

GRAPH(1G)

NAME
graph - draw a graph

SYNTAX
graph [option] ...

DESCRIPTION
Graph with no options takes pairs of numbers from the standard input as abscissas and
ordinates of a graph. Successive points are connected by straight lines. The graph is
encoded on the standard output for display by the plot(lG) filters.

If the coordinates of a point are followed by a nonnumeric string, that string is printed as a
label beginning on the point. Labels may be surrounded with quotes " ... ", in which case
they may be empty or contain blanks and numbers; labels never contain newlines.

The following options are recognized, each as a separate argument.

-a Supply abscissas automatically (they are missing from the input); spacing is given
by the next argument (default 1). A second optional argument is the starting
point for automatic abscissas (default 0 or lower limit given by -x).

-b Break (disconnect) the graph after each label in the input.

-c Character string given by next argument is default label for each point.

-g Next argument is grid style, 0 no grid, 1 frame with ticks, 2 full grid (default).

-I Next argument is label for graph.

-m Next argument is mode (style) of connecting lines: 0 disconnected, 1 connected
(default). Some devices give distinguishable line styles for other small integers.

-8 Save screen, don't erase before plotting.

-x [I] If 1 is present, x axis is logarithmic. Next 1 (or 2) arguments are lower (and
upper) x limits. Third argument, if present, is grid spacing on x axis. Normally
these quantities are determined automatically.

-y [I] Similarly for y.

-h Next argument is fraction of space for height.

-w Similarly for width.

-r Next argument is fraction of space to move right before plotting.

-u Similarly to move up before plotting.

-t Transpose horizontal and vertical axes. (Option -x now applies to the vertical
axis.)

A legend indicating grid range is produced with a grid unless the -8 option is present.

If a specified lower limit exceeds the upper limit, the axis is reversed.

1-143

GRAPH(1G)

SEE ALSO
spline(1G), plot(1G)

RESTRICTIONS
Graph stores all points internally and drops those for which there isn't room.
Segments that run out of bounds are dropped, not windowed.
Logarithmic axes may not be reversed.

STATUS
GRAPH (1G) currently is not supported by Digital Equipment Corporation.

1-144 © Digital Equipment Corporation 1984

GREP(1)

NAME
grep, egrep, fgrep - search a file for a pattern

SYNTAX
grep [option]... expression [file] ...

egrep [option] ... [expression] [file] ...

fgrep [option] ... [strings] [file]

DESCRIPTION
Commands of the grep family search the input files (standard input default) for lines
matching a pattern. Normally, each line found is copied to the standard output. Grep pat­
terns are limited regular expressions in the style of ex (1), which uses a compact nondeter­
ministic algorithm. Egrep patterns are full regular expressions. It uses a fast deterministic
algorithm that sometimes needs exponential space. Fgrep patterns are fixed strings. It is
fast and compact. The following options are recognized.

-v All lines but those matching are printed.

-x (Exact) only lines matched in their entirety are printed (fgrep only).

-c Only a count of matching lines is printed.

-I The names of files with matching lines are listed (once) separated by newlines.

-n Each line is preceded by its relative line number in the file.

- b Each line is preceded by the block number on which it was found. This is some-
times useful in locating disk block numbers by context.

-i The case of letters is ignored in making comparisons. That is, upper and lower
case are considered identical. This applies to grep and fgrep only.

-s Silent mode. Nothing is printed (except error messages). This is useful for check­
ing the error status (see DIAGNOSTICS).

-w The expression is searched for as a word (as if surrounded by '\<' and '\>', see
ex (1).) (grep only)

-e expression
Same as a simple expression argument, but useful when the expression begins
with a-.

-f file The regular expression (egrep) or string list (fgrep) is taken from the file.

In all cases the file name is shown if there is more than one input file. Care should be
taken when using the characters $ * [A \ () and \ in the expression as they are also mean­
ingful to the Shell. It is safest to enclose the entire expression argument in single quotes'

Fgrep searches for lines that contain one of the (newline-separated) strings.

© Digital Equipment Corporation 1984 1-145

GREP(1)

Egrep accepts extended regular expressions. In the following description 'character'
excludes newline:

A \ followed by a single character other than newline matches that character.

The character A matches the beginning of a line.

The character $ matches the end of a line.

A. (period) matches any character.

A single character not otherwise endowed with special meaning matches that char­
acter.

A string enclosed in brackets [] matches any single character from the string.
Ranges of ASCII character codes may be abbreviated as in 'a-zO-9'. A] may
occur only as the first character of the string. A literal - must be placed where it
can't be mistaken as a range indicator.

A regular expression followed by an * (asterisk) matches a sequence of 0 or more
matches of the regular expression. A regular expression followed by a + (plus)
matches a sequence of 1 or more matches of the regular expression. A regular
expression followed by a ? (question mark) matches a sequence of 0 or 1 matches
of the regular expression.

Two regular expressions concatenated match a match of the first followed by a
match of the second.

Two regular expressions separated by I or newline match either a match for the
first or a match for the second.

A regular expression enclosed in parentheses matches a match for the regular
expression.

The order of precedence of operators at the same parenthesis level is [] then *+? then con­
catenation then I and newline.

Ideally there should be only one grep, but we don't know a single algorithm that spans a
wide enough range of space-time tradeoff's.

SEE ALSO
ex(1), sed(1), sh(1)

DIAGNOSTICS
Exit status is 0 if any matches are found, 1 if none, 2 for syntax errors or inaccessible files.

RESTRICTIONS
Lines are limited to 256 characters; longer lines are truncated.

STATUS
GREP (1) is supported by Digital Equipment Corporation.

1-146

GROUPS(1)

NAME
groups - show group memberships

SYNTAX
groups [user]

DESCRIPTION
The groups command shows the groups to which you or the optionally specified user
belong. Each user belongs to a group specified in the password file /ete/pas8wd and possi­
bly to other groups as specified in the file fete/group. If you do not own a file but belong
to the group which it is owned by then you are granted group access to the file.

When a new file is created it is given the group of the containing directory.

SEE ALSO
setgroups(2)

FILES
/etc/passwd, /etc/group

STATUS
GROUPS (1) currently is not supported by Digital Equipment Corporation.

1-147

HEAD(1)

NAME
head - give first few lines

SYNTAX
head [-count] [file ...]

DESCRIPTION
This filter gives the first count lines of each of the specified files, or of the standard input.
If count is omitted it defaults to 10.

SEE ALSO
tail(l)

STATUS
HEAD (1) currently is not supported by Digital Equipment Corporation.

1-148

HOSTIDC 1)

NAME
hostid - set or print identifier of current host system

SYNTAX
hostid [identifier]

DESCRIPTION
The hostid command prints the identifier of the current host in hexadecimal. This numeric
value is expected to be unique across all hosts and is normally set to the host's Internet
address. The super-user can set the hostid by giving a hexadecimal argument; this is usu­
ally done in the startup script /etc/rc.local.

SEE ALSO
gethostid(2), sethostid(2)

STATUS
HOSTID (1) currently is not supported by Digital Equipment Corporation.

1-149

HOSTNAME (1)

NAME
hostname - set or print name of current host system

SYNTAX
hostname [nameofhost]

DESCRIPTION
The hostname command prints the name of the current host, as given before the "login"
prompt. The super-user can set the hostname by giving an argument; this is usually done
in the startup script /etc/rc.local.

SEE ALSO
gethostname(2), sethostname(2)

STATUS
HOSTNAME (1) currently is not supported by Digital Equipment Corporation.

1-150

INDENT(1)

NAME
indent - indent and format C program source

SYNTAX
indent input [output] [flags]

DESCRIPTION
Indent is intended primarily as a C program formatter. Specifically, indent will:

indent code lines

• align comments

insert spaces around operators where necessary

break up declaration lists as in "int a,b,c;".

Indent will not break up long statements to make them fit within the maximum line length,
but it will flag lines that are too long. Lines will be broken so that each statement starts a
new line, and braces will appear alone on a line. (See the - bt option to inhibit this.) Also,
an attempt is made to line up identifiers in declarations.

The flags which can be specified follow. They may appear before or after the file names. If
the output file is omitted, the formatted file will be written back into input and a "backup"
copy of input will be written in the current directory. If input is named "lblahlblah/file",
the backup file will be named ".Bfile". If output is specified, indent checks to make sure it
is different from input.

The following flags may be used to control the formatting style imposed by indent.

-lnnn Maximum length of an output line. The default is 75.

-ennn The column in which comments will start. The default is 33.

-ednnn The column in which comments on declarations will start. The default is for
these comments to start in the same column as other comments.

-innn The number of spaces for one indentation level. The default is 4.

-dj, -ndj -dj will cause declarations to be left justified. -ndj will cause them to be
indented the same as code. The default is -ndj.

-v,-nv -v turns on "verbose" mode, -nv turns it off. When in verbose mode,
indent will report when it splits one line of input into two or more lines of out­
put, and it will give some size statistics at completion. The default is -nv.

-be,-nbe

-dnnn

If -be is specified, then a newline will be forced after each comma in a declara­
tion. -nbc will turn off this option. The default is -be.

This option controls the placement of comments which are not to the right of
code. Specifying -d2 means that such comments will be placed two indentation
levels to the left of code. The default -dO lines up these comments with the
code. See the section on comment indentation below.

1-151

INDENT(1)

-br,-bl Specifying -bl will cause complex statements to be lined up like this:
if (...)
{

code
}

Specifying -br (the default) will make them look like this:
if (...) {

code

You may set up your own "profile" of defaults to indent by creating the file ".indent.pro"
in your login directory and including whatever switches you like. If indent is run and a
profile file exists, then it is read to set up the program's defaults. Switches on the com­
mand line, though, will always override profile switches. The profile file must be a single
line of not more than 127 characters. The switches should be separated on the line by
spaces or tabs.

Multi-line expressions

Indent will not break up complicated expressions that extend over multiple lines, but it will
usually correctly indent such expressions which have already been broken up. Such an
expression might end up looking like this:

x=

);

Comments

(Arbitrary parenthesized expression)
+
(

(Parenthesized expression)

*
(Parenthesized expression)

Indent recognizes four kinds of comments. They are: straight text, "box" comments,
UNIX-style comments, and comments that should be passed through unchanged. The
action taken with these various types are as follows:

"Box" comments. Indent assumes that any comment with a dash immediately after the
start of comment (Le. "/*-") is a comment surrounded by a box of stars. Each line of such
a comment will be left unchanged, except that the first non-blank character of each succes­
sive line will be lined up with the beginning slash of the first line. Box comments will be
indented (see below).

1-152

INDENT(1)

"Unix-style" comments. This is the type of section header which is used extensively in
the UNIX system source. If the start of comment ("/*") appears on a line by itself, indent
assumes that it is a UNIX-style comment. These will be treated similarly to box com­
ments, except the first non-blank character on each line will be lined up with the '*' of the
"/*".
Unchanged comments. Any comment which starts in column 1 will be left completely
unchanged. This is intended primarily for documentation header pages. The check for
unchanged comments is made before the check for UNIX -style comments.

Straight text. All other comments are treated as straight text. Indent will fit as many
words (separated by blanks, tabs, or newlines) on a line as possible. Straight text com­
ments will be indented.

Comment indentation

Box, UNIX-style, and straight text comments may be indented. If a comment is on a line
with code it will be started in the "comment column", which is set by the -cnnn command
line parameter. Otherwise, the comment will be started at nnn indentation levels less than
where code is currently being placed, where nnn is specified by the -dnnn command line
parameter. (Indented comments will never be placed in column 1.) If the code on a line
extends past the comment column, the comment will be moved to the next line.

DIAGNOSTICS
Diagnostic error messages, mostly to tell that a text line has been broken or is too long for
the output line. "

FILES
.indent. pro

RESTRICTIONS

profile file

Does not know how to format "long" declarations.

STATUS
INDENT (1) currently is not supported by Digital Equipment Corporation.

1-153

INSTALL (1)

NAME
install - install binaries

SYNTAX
install [-c] [-m mode] [-0 owner] [-g group] [-s] binary destination

DESCRIPTION
Binary is moved (or copied if -c is specified) to destination. If destination already exists,
it is removed before binary is moved. If the destination is a directory then binary is moved
into the destination directory with its original file-name.

The mode for Destination is set to 755; the -m mode option may be used to specify a
different mode.

Destination is changed to owner root; the -0 owner option may be
different owner.

Destination is changed to group staff; the -g group option may be
different group.

If the -s option is specified the binary is stripped after being installed.

Install refuses to move a file onto itself.

SEE ALSO
chgrp(l), chmod(l), cp(l), mv(l), strip(l), chown(8)

STATUS

used

used

INSTALL (1) currently is not supported by Digital Equipment Corporation.

1-154

to specify a

to specify a

IOSTAT(1)

NAME
iostat - report I/O statistics

SYNTAX
iostat [interval [count]]

DESCRIPTION
Iostat iteratively reports the number of characters read and written to terminals, and, for
each disk, the number of seeks transfers per second, kilobytes transfered per second, and
the milliseconds per average seek. It also gives the percentage of time the system has spent
in user mode, in user mode running low priority (niced) processes, in system mode, and
idling.

To compute this information, for each disk, seeks and data transfer completions and
number of words transferred are counted; for terminals collectively, the number of input
and output characters are counted. Also, each sixtieth of a second, the state of each disk is
examined and a tally is made if the disk is active. From these numbers and given the
transfer rates of the devices it is possible to determine average seek times for each device.

The optional interval argument causes iostat to report once each interval seconds. The
first report is for all time since a reboot and each subsequent report is for the last interval
only.

The optional count argument restricts the number of reports.

FILES
/dev/kmem
/vmunix

SEE ALSO
vmstat(l)

STATUS
IOSTAT (1) currently is not supported by Digital Equipment Corporation.

1-155

JOIN(1)

NAME
join - relational database operator

SYNTAX
join [options] file1 file2

DESCRIPTION
Join forms, on the standard output, a join of the two relations specified by the lines of filel
and file2. If filel is '-', the standard input is used.

Filel and file2 must be sorted in increasing ASCII collating sequence on the fields on which
they are to be joined, normally the first in each line.

There is one line in the output for each pair of lines in filel and file2 that have identical
join fields. The output line normally consists of the common field, then the rest of the line
from filel, then the rest of the line from file2.

Fields are normally separated by blank, tab or newline. In this case, multiple separators
count as one, and leading separators are discarded.

These options are recognized:

-an In addition to the normal output, produce a line for each unpairable line in file n,
where n is 1 or 2.

-e s Replace empty output fields by string s.

-jn m Join on the mth field of file n. If n is missing, use the mth field in each file.

-0 list Each output line comprises the fields specified in list, each element of which has
the form n.m, where n is a file number and m is a field number.

-tc Use character c as a separator (tab character). Every appearance of c in a line is
significant.

SEE ALSO
sort(l), comm(l), awk(1)

RESTRICTIONS
With default field separation, the collating sequence is that of sort -b; with -t, the
sequence is that, of a plain sort.

STATUS
JOIN (1) currently is not supported by Digital Equipment Corporation.

1-156

NAME
kill - terminate a process with extreme prejudice

SYNTAX
kill [-sig] processid ...
kill-I

DESCRIPTION

KILL (1)

Kill sends the TERM (terminate, 15) signal to the specified processes. If a signal name or
number preceded by '-' is given as first argument, that signal is sent instead of terminate
(see sigvec(2». The signal names are listed by 'kill -1', and are as given in
lusrlincludelsignal.h, stripped of the common SIG prefix.

The terminate signal will kill processes that do not catch the signal; 'kill -9 ... ' is a sure
kill, as the KILL (9) signal cannot be caught. By convention, if process number 0 is
specified, all members in the process group (i.e. processes resulting from the current login)
are signaled (but beware: this works only if you use sh(I); not if you use csh(I).)'The killed
processes must belong to the current user unless he is the super-user.

The process number of an asynchronous process started with '&' is reported by the shell.
Process numbers can also be found by using Kill is a built-in to csh(I); it allows job
specifiers "% ... " so process id's are not as often used as kill arguments. See csh(l) for
details.

SEE ALSO
csh(I), ps(I), kill(2), sigvec(2)

RESTRICTIONS
An option to kill process groups ala killpg(2) should be provided; a replacement for "kill 0"
for csh(l) users should be provided.

STATUS
KILL (1) is supported by Digital Equipment Corporation.

1-157

LAST(1)

NAME
last - indicate last logins of users and teletypes

SYNTAX
last [- N] [name ...] [tty...]

DESCRIPTION
Last will look back in the wtmp file which records all logins and logouts for information
about a user, a teletype or any group of users and teletypes. Arguments specify names of
users or teletypes of interest. Names of teletypes may be given fully or abbreviated. For
example 'last 0' is the same as 'last ttyO'. If multiple arguments are given, the information
which applies to any of the arguments is printed. For example 'last root console' would list
all of "root's" sessions as well as all sessions on the console terminal. Last will print the
sessions of the specified users and teletypes, most recent first, indicating the times at which
the session began, the duration of the session, and the teletype which the session took place
on. If the session is still continuing or was cut short by a reboot, last so indicates.

The pseudo-user reboot logs in at reboots of the system, thus

last reboot

will give an indication of mean time between reboot.

Last with no arguments prints a record of all logins and logouts, in reverse order. The - N
option limits the report to N lines.

If last is interrupted, it indicates how far the search has progressed in wtmp. If interrupted
with a quit signal (generated by a control-~ last indicates how far the search has pro­
gressed so far, and the search continues.

FILES
lusr/adm/wtmp
lusr/adm/shutdownlog

SEE ALSO

login data base
which records shutdowns and reasons for same

wtmp(5), ac(8), lastcomm(1)

STATUS
LAST (1) currently is not supported by Digital Equipment Corporation.

1-158

LASTCOMM (1)

NAME
lastcomm - show last commands executed in reverse order

SYNTAX
lastcomm [command name] ... [user name] ... [terminal name 1 ...

DESCRIPTION
Lastcomm gives information on previously executed commands. With no arguments,
lastcomm prints information about all the commands recorded during the current account­
ing file's lifetime. If called with arguments, only accounting entries with a matching com­
mand name, user name, or terminal name are printed. So, for example,

lastcomm a.out root ttydO
would produce a listing of all the executions of commands named a.out by user root on the
terminal ttydO.

For each process entry, the following are printed.
The name of the user who ran the process.
Flags, as accumulated by the accounting facilities in the system.
The command name under which the process was called.
The amount of cpu time used by the process (in seconds).
The time the process exited.

The flags are encoded as follows: "S" indicates the command was executed by t~e super­
user, "F" indicates the command ran after a fork, but without a following exec, "C" indi­
cates the command was run in PDP-ll compatibility mode (VAX only), "D" indicates the
command terminated with the generation of a core file, and "X" indicates the command
was terminated with the signal SIGTERM.

SEE ALSO
last(l), sigvec(2), acct(5), core(5)

STATUS
LASTCOMM (1) currently is not supported by Digital Equipment Corporation.

© Digital Equipment Corporation 1984 1-159

LD (1)

NAME
Id - link editor

SYNTAX
Id [option] ... file ...

DESCRIPTION
Ld combines several object programs into one, resolves external references, and searches
libraries. In the simplest case several object files are given, and ld combines them, produc­
ing an object module which can be either executed or become the input for a further ld run.
(In the latter case, the -r option must be given to preserve the relocation bits.) The out­
put of ld is left on a.out. This file is made executable only if no errors occurred during the
load.

The argument routines are concatenated in the order specified. The entry point of the out­
put is the beginning of the first routine (unless the -e option is specified).

If any argument is a library, it is searched exactly once at the point it is encountered in the
argument list. Only those routines defining an unresolved external reference are loaded. If
a routine from a library references another routine in the library, and the library has not
been processed by ranlib(l), the referenced routine must appear after the referencing rou­
tine in the library. Thus the order of programs within libraries may be important. The
first member of a library should be a file named '_SYMDEF', which is understood to be a
dictionary for the library as produced by ranlib (1); the dictionary is searched iteratively to
satisfy as many references as possible.

The symbols '~text', '~data' and '-end' ('etext', 'edata' and 'end' in C) are reserved, and if
referred to, are set to the first location above the program, the first location above initial­
ized data, and the first location above all data respectively. It is erroneous to define these
symbols.

Ld understands several options. Except for -I, they should appear before the file names.

-A

-D

-d

-e

1-160

This option specifies incremental loading, i.e. linking is to be done in {:t manner so
that the resulting object may be read into an already executing program. The next
argument is the name of a file whose symbol table will be taken as a basis on
which to define additional symbols. Only newly linked material· will be entered
into the text and data portions of a.out, but the new symbol table will reflect
every symbol defined before and after the incremental load. This argument must
appear before any other object file in the argument list. The -T option may be
used as well, and will be taken to mean that the newly linked segment will com­
mence at the corresponding address (which must be a multiple of 1024). The
default value is the old value of end.

Take the next argument as a hexadecimal number and pad the data segment with
zero bytes to the indicated length.

Force definition of common storage even if the -r flag is. present.

The following argument is taken to pe the name of the entry point of the loaded

© Digital Equipment Corporation 1984

LD (1)

program; location 0 is the default.

-Ix This option is an abbreviation for the library name '/lib/libx.a', where x is a string.
If that does not exist, ld tries '/usr/lib/libx.a' A library is searched when its name
is encountered, so the placement of a -I is significant.

- H takes the next argument as a decimal integer, adds it to the end of text, and causes
the data section to start at a higher address.

- M produce a primitive load map, listing the names of the files which will be loaded.

-N Do not make the text portion read only or sharable. (Use "magic number" 0407.)

-n Arrange (by giving the output file a 0410 "magic number") that when the output
file is executed, the text portion will be read-only and shared among all users exe­
cuting the file. This involves moving the data areas up to the first possible 1024
byte boundary following the end of the text.

-0 The name argument after -0 is used as the name of the ld output file, instead of
a.out.

-r Generate relocation bits in the output file so that it can be the subject of another
ld run. This flag also prevents final definitions from being given to common sym­
bols, and suppresses the 'undefined symbol' diagnostics.

-8 'Strip' the output by removing all symbols except locals and globals.

-s 'Strip' the output, that is, remove the symbol table and relocation bits to save
space (but impair the usefulness of the debuggers). This information can also be
removed by strip(l).

-T The next argument is a hexadecimal number which sets the text segment origin.
The default origin is O.

-t ("trace") Print the name of each file as it is processed.

-u Take the following argument as a symbol and enter it as undefined in the symbol
table. This is useful for loading wholly from a library, since initially the symbol
table is empty and an unresolved reference is needed to force the loading of the
first routine.

-X Save local symbols except for those whose names begin with 'L'. This option is
used by cc(l) to discard internally-generated labels while retaining symbols local to
routines.

-x Do not preserve local (non-.globl) symbols in the output symbol table; only enter
external symbols. This option saves some space in the output file.

-ysym Indicate each file in which sym appears, its type and whether the file defines or
references it. Many such options may be given to trace many symbols. (It is usu­
ally necessary to begin sym with an ' " as external C, FORTRAN and Pascal vari­
ables begin with underscores.)

-z Arrange for the process to be loaded on demand from the resulting executable file

© Digital Equipment Corporation 1984 1-161

LD(1)

FILES

(413 format) rather than preloadecl. This is the default. Results in a 1024 byte
header on the output file followed by a text and data segment each of which have
size a multiple of 1024 bytes (being padded out with nulls in the file if necessary).
With this format the first few BSS segment symbols may actually appear (from the
output of size(l» to live in the data segment; this to avoid wasting the space
resulting from data segment size roundup.

/lib/lib* .a libraries
/usr/lib/lib*.a more libraries
/usr/local/lib/lib*.a still more libraries
a.out output file

SEE ALSO
as(l), ar(l), cc(1), ranlib(l)

RESTRICTIONS
There is no way to force data to be page aligned. Ld pads images which are to be demand
loaded from the file system to the next page boundary to avoid a bug in the system.

STATUS
LD (1) is supported by Digital Equipment Corporation.

1-162

LEARN(1)

NAME
learn - computer aided instruction about UNIX

SYNTAX
learn [-directory] [subject [lesson]]

DESCRIPTION
Learn gives Computer Aided Instruction courses and practice in the use of UNIX, the C
Shell, and the Berkeley text editors. To get started simply type learn. The program will
ask questions to find out what you want to do. Some questions may be bypassed by nam­
ing a subject, and more yet by naming a lesson. You may enter the lesson as a number
that learn gave you in a previous session. If you do not know the lesson number, you may
enter the lesson as a word, and learn will look for the first lesson containing it. If the les­
son is '-', learn prompts for each lesson; this is useful for debugging.

The subject's presently handled are

files
editor
vi
more files
macros
eqn
C

There are a few special commands. The command 'bye' terminates a learn session and
'where' tells you of your progress, with 'where m' telling you more. The command 'again'
re-displays the text of the lesson and 'again lesson' lets you review lesson.

The -directory option allows one to exercise a script in a nonstandard place.

FILES
/usr /lib/learn
/usr/tmp/pl*

SEE ALSO
csh(l), ex(l)

RESTRICTIONS

subtree for all dependent directories and files
playpen directories

The main strength of learn, that it asks the student to use the real UNIX, also makes pos­
sible bafHing mistakes. It is helpful, especially for nonprogrammers, to have a UNIX ini­
tiate near at hand during the first sessions.

Occasionally lessons are incorrect, sometimes because the local version of a command
operates in a non-standard way. Such lessons may be skipped with the 'skip' command,
but it takes some sophistication to recognize the situation.

To find a lesson given as a word, learn does a simple fgrep(l) through the lessons. It is
unclear whether this sort of subject indexing is better than none.

1-163

LEARN(1)

Spawning a new shell is required for each of many user and internal functions.

STATUS
LEARN (1) currently is not supported by Digital Equipment Corporation.

1-164

LEAVE(1)

NAME
leave - remind you when you have to leave

SYNTAX
leave [hhmm]

DESCRIPTION
Leave waits until the specified time, then reminds you that you have to leave. You are
reminded 5 minutes and 1 minute before the actual time, at the time, and every minute
thereafter. When you log off, leave exits just before it would have printed the next mes­
sage.

The time of day is in the form hhmm where hh is a time in hours (on a 12 or 24 hour
clock). All times are converted to a 12 hour clock, and assumed to be in the next 12 hours.

If no argument is given, leave prompts with "When do you have to leave?". A reply of new­
line causes leave to exit, otherwise the reply is assumed to be a time. This form is suitable
for inclusion in a .login or .profile.

Leave ignores interrupts, quits, and terminates. To get rid of it you should either log off or
use "kill -9" giving its process id.

SEE ALSO
calendar(1)

STATUS
LEA VE (1) currently is not supported by Digital Equipment Corporation.

1-165

LEX(1)

NAME
lex - generator of lexical analysis programs

SYNTAX
lex [-tvfn] [file] ...

DESCRIPTION
Lex generates programs to be used in simple lexical analyis of text. The input files (stan­
dard input default) contain regular expressions to be searched for, and actions written in C
to be executed when expressions are found.

A C source program, 'lex.yy.c' is generated, to be compiled thus:

cc lex.yy.c -11

This program, when run, copies unrecognized portions of the input to the output, and exe­
cutes the associated C action for each regular expression that is recognized.

The options have the following meanings.

-t Place the result on the standard output instead of in file "lex.yy.c".

-v Print a one-line summary of statistics of the generated analyzer.

-n Opposite of -v; -n is default.

-f "Faster" compilation: don't bother to pack the resulting tables; limited to small
programs.

EXAMPLE
lex lex commands

would draw lex instructions from the file lex commands, and place the output in lex.yy.c

%%
[A -Z] putchar(yytext[O] +' a' -'A');
[]+$
[]+ putchar{' ');

is an example of a lex program that would be put into a lex command file. This program
converts upper case to lower, removes blanks at the end of lines, and replaces multiple
blanks by single blanks.

SEE ALSO
yacc(I), sed(l)
M. E. Lesk and E. Schmidt, LEX - Lexical Analyzer Generator

STATUS
LEX (1) currently is not supported by Digital Equipment Corporation.

1-166

LINT (1)

NAME
lint - a C program verifier

SYNTAX
lint [-abchnpuvx] file ...

DESCRIPTION
Lint attempts to detect features of the C program files which are likely to be bugs, or non­
portable, or wasteful. It also checks the type usage of the program more strictly than the
compilers. Among the things which are currently found are unreachable statements, loops
not entered at the top, automatic variables declared and not used, and logical expressions
whose value is constant. Moreover, the usage of functions is checked to find functions
which return values in some places and not in others, functions called with varying
numbers of arguments, and functions whose values are not used.

By default, it is assumed that all the files are to be loaded together; they are checked for
mutual compatibility. Function definitions for certain libraries are available to lint; these
libraries are referred to by a conventional name, such as '-1m', in the style of ld(I). Argu­
ments ending in .In are also treated as library files. To create lint libraries, use the -C
option:

lint -Cfoo files ...

where files are the C sources of library foo. The result is a file llib-lfoo.ln in the correct
library format suitable for linting programs using foo.

Any number of the options in the following list may be used. The -D, -V, and -I
options of cc(l) are also recognized as separate arguments.

p Attempt to check portability to the IBM and GCOS dialects of C.

h Apply a number of heuristic tests to attempt to intuit bugs, improve style, and
reduce waste.

b Report break statements that cannot be reached. (This is not the default because,
unfortunately, most lex and many yacc outputs produce dozens of such com­
ments.)

v Suppress complaints about unused arguments in functions.

x Report variables referred to by extern declarations, but never used.

a Report assignments of long values to int variables.

c Complain about casts which have questionable portability.

u Do not complain about functions and variables used and not defined, or defined
and not used (this is suitable for running lint on a subset of files out of a larger
program).

n Do not check compatibility against the standard library.

z Do not complain about structures that are never defined (e.g. using a structure
pointer without knowing its contents.).

1-167

LlNT(1)

Exit(2) and other functions which do not return are not understood; this causes various
lies.

Certain conventional comments in the C source will change the behavior of lint:

/*NOTREACHED* /
at appropriate points stops comments about unreachable code.

/*V ARARGSn * /
suppresses the usual checking for variable numbers of arguments in the following
function declaration. The data types of the first n arguments are checked; a miss­
ing n is taken to be O.

/*NOSTRICT* /
shuts off strict type checking in the next expression.

/* ARGSUSED* /
turns on the -v option for the next function.

/*LINTLIBRARY* /
at the beginning of a file shuts off complaints about unused functions in this file.

FILES
/usr/lib/lint/lint[12]
/usr/lib/lint/llib-Ic.ln
/usr/lib/lint/llib-Ic
/usr/lib/lint/llib-port.ln
/usr/lib/lint/llib-port
llib-l* .In

SEE ALSO
cc(1)

programs
declarations for standard functions
human readable version of above
declarations for portable functions
human readable ...
library created with -C

S. C. Johnson, Lint, a C Program Checker

STATUS
LINT (1) currently is not supported by Digital Equipment Corporation.

1-168

LlSP(1)

NAME
lisp - lisp interpreter

SYNTAX
lisp

DESCRIPTION
Lisp is a lisp interpreter for a dialect which closely resembles MIT's MACLISP. This lisp,
known as FRANZ LISP, features an I/O facility which allows the user to change the input
and output syntax, add macro characters, and maintain compatibility with upper-case only
lisp systems; infinite precision integer arithmetic, and an error facility which allows the user
to trap system errors in many different ways. Interpreted functions may be mixed with
code compiled by liszt(1) and both may be debugged using the "Joseph Lister" trace pack­
age. A lisp containing compiled and interpreted code may be dumped into a file for later
use.

There are too many functions to list here; one should refer to the manuals listed below.

FILES
/usr /lib/lisp/trace.l
/usr /lib/lisp/toplevel.l

SEE ALSO
liszt(1), lxref(1)

Joseph Lister trace package
top level read-eval-print loop

'FRANZ LISP Manual, Version l' by John K. Foderaro
MACLISP Manual

STATUS
LISP (1) currently is not supported by Digital Equipment Corporation.

1-169

LlSZT(1)

NAME
liszt - compile a Franz Lisp program

SYNTAX
liszt [-mpqruwxCQST] [-e form] [-0 objfile] [name]

DESCRIPTION
Liszt takes a file whose names ends in '.1' and compiles the FRANZ LISP code there leaving
an object program on the file whose name is that of the source with '.0' substituted for '.1'.

The following options are interpreted by liszt.

-e Evaluate the given form before compilation begins.

-m Compile a MACLISP file, by changing the readtable to conform to MACLISP syntax
and including a macro-defined compatibility package.

-0 Put the object code in the specified file, rather than the default '.0' file.

-p places profiling code at the beginning of each non-local function. If the lisp system
is also created with profiling in it, this allows function calling frequency to be
determined (see prof(l).)

-q Only print warning and error messages. Compilation statistics and notes on
correct but unusual constructs will not be printed.

-r place bootstrap code at the beginning of the object file, which when the object file
is executed will cause a lisp system to be invoked and the object file fasl'ed in.

-u Compile a UCI-lispfile, by changing the readtable to conform to UCI-Lisp syntax
and including a macro-defined compatibility package.

-w Suppress warning diagnostics.

-x Create a lisp cross reference file with the same name as the source file but with
'.x' appended. The program lxref(l) reads this file and creates a human readable
cross reference listing.

-C put comments in the assembler output of the compiler. Useful for debugging the
compiler.

-Q Print compilation statistics and warn of strange constructs. This is the default.

-S Compile the named program and leave the assembler-language output on the
corresponding file suffixed '.s'. This will also prevent the assembler language file
from being assembled.

-T send the assembler output to standard output.

If no source file is specified, then the compiler will run interactively. You will find yourself
talking to the lisp(l) top-level command interpreter. You can compile a file by using the
function liszt (an nlambda) with the same arguments as you use on the command line. For
example to compile 'foo', a MACLISP file, you would use:

(liszt -m foo)

1-170

Note that liszt supplies the ".1" extension for you.

FILES
/usr /lib/lisp/machacks.l
/usr /lib/lisp/syscall.l
/usr /lib/lisp/ucifnc.l

SEE ALSO
lisp(1), Ixref(1)

STATUS

MAC LISP compatibility package
macro definitions of Unix system calls
UCI Lisp compatibility package

LISZT (1) currently is not supported by Digital Equipment Corporation.

© Digital Equipment Corporation 1984

LlSZT(1)

1-171

LN(1)

NAME
In - make links

SYNTAX
In [-f] [-8] name1 [name2]
In name ... directory

DESCRIPTION
A link is a directory entry referring to a file. A file (together with its size, all its protection
information, etc.) may have several links to it. There are two kinds of links: hard links and
symbolic links.

By default in makes hard links. A hard link to a file is indistinguishable from the original
directory entry. Any changes to a file are effective independent of the name used to refer­
ence the file. Hard links may not span file systems and may not refer to directories.

The -f option suppresses all but the usage message.

The -8 option causes In to create symbolic links. A symbolic link contains the name of the
file to which it is linked. The referenced file is used when an open(2) operation is per­
formed on the link. A stat(2) on a symbolic link will return the linked-to file. A istat(2)
must be done to obtain information about the link. The readiink (2) call may be used to
read the contents of a symbolic link. Symbolic links may span file systems and may refer
to directories.

Given one or two arguments, In creates a link to an existing file namel. If name2 is given,
the link has that name. The name2 may also be a directory in which to place the link.
Otherwise it is placed in the current directory. If only the directory is specified, the link
will be made to the last component of namel.

Given more than two arguments, in makes links to all the named files in the named direc­
tory. The links made will have the same name as the files being linked to.

SEE ALSO
rm(l), cp(l), mv(l), link(2), readlink(2), stat(2), symlink(2)

STATUS
LN (1) is supported by Digital Equipment Corporation.

1-172

NAME
lock - reserve a terminal

SYNTAX
lock

DESCRIPTION

LOCK(1)

Lock requests a password from the user, then prints "LOCKED" on the terminal and
refuses to relinquish the terminal until the password is repeated. If the user forgets the
password, he has no other recourse but to login elsewhere and kill the lock process. .

RESTRICTIONS
Should timeout after 15 minutes.

STATUS
LOCK (1) currently is not supported by Digital Equipment Corporation.

1-173

LOGIN(1)

NAME
login - sign on

SYNTAX
login [username]

DESCRIPTION
The login command is used when a user initially signs on, or it may be used at any time to
change from one user to another. The latter case is the one summarized above and
described here. See "How to Get Started" for how to dial up initially.

If login is invoked without an argument, it asks for a user name, and, if appropriate, a pass­
word. Echoing is turned off (if possible) during the typing of the password, so it will not
appear on the written record of the session.

After a successful login, accounting files are updated and the user is informed of the
existence of mail, and the message of the day is printed, as is the time he last logged in
(unless he has a ".hushlogin" file in his home directory - this is mostly used to make life
easier for non-human users, such as uucp).

Login initializes the user and group IDs and the working directory, then executes a com­
mand interpreter (usually sh(l» according to specifications found in a password file. Argu­
ment 0 of the command interpreter is "-sh", or more generally the name of the command
interpreter with a leading dash (" -") prepended.

Login also initializes the environment environ(7) with information specifying home direc­
tory, command interpreter, terminal type (if available) and user name.

If the file /etc/nologin exists login prints its contents on the user's terminal and exits. This
is used by shutdown(8) to stop users logging in when the system is about to go down.

Login is recognized by sh(l) and csh(l) and executed directly (without forking).

FILES
/etc/utmp
/usr/ adm/wtmp
/usr /spool/mail/*
/etc/motd
/ etc/passwd
/ etc/nologin
.hushlogin
/etc/securetty

SEE ALSO

accounting
accounting
mail
message-of -the-day
password file
stops logins
makes login quieter
lists ttys that root may log in on

init(8), getty(8), mail(l), passwd(l), passwd(5), environ(7), shutdown(8)

DIAGNOSTICS
"Login incorrect," if the name or the password is bad.
"No Shell", "cannot open password file", "no directory": consult a programming counselor.

1-174

LOGIN(1)

RESTRICTIONS
An undocumented option, -r is used by the remote login server, rlogind(8C) to force login
to enter into an initial connection protocol.

STATUS
LOGIN (1) is supported by Digital Equipment Corporation.

1-175

LOOK(1)

NAME
look - find lines in a sorted list

SYNTAX
look [-df] string [file]

DESCRIPTION
Look consults a sorted file and prints all lines that begin with string. It uses binary search.

The options d and f affect comparisons as in sort(l):

d 'Dictionary' order: only letters, digits, tabs and blanks participate in comparisons.

f Fold. Upper case letters compare equal to lower case.

If no file is specified, /usr/dict/words is assumed with collating sequence -df.

FILES
/usr/dict/words

SEE ALSO
sort(l), grep(l)

STATUS
LOOK (1) currently is not supported by Digital Equipment Corporation.

1-176

LOOKBIB(1)

NAME
indxbib, lookbib - build inverted index for a bibliography, find references in a bibliography

SYNTAX
indxbib database
lookbib database

DESCRIPTION
Indxbib makes an inverted index to the named databases (or files) for use by lookbib(1)
and refer(1). These files contain bibliographic references (or other kinds of information)
separated by blank lines.

A bibliographic reference is a set of lines, constituting fields of bibliographic information.
Each field starts on a line beginning with a "%", followed by a key-letter, then a blank, and
finally the contents of the field, which may continue until the next line starting with "%".

Indxbib is a shell script that calls /usr/lib/refer/mkey and /usr/lib/refer/inv. The first pro­
gram, mkey, truncates words to 6 characters, and maps upper case to lower case. It also
discards words shorter than 3 characters, words among the 100 most common English
words, and numbers (dates) < 1900 or > 2000. These parameters can be changed; see page
4 of the Refer document by Mike Lesk. The second program, inu, creates an entry file (.ia),
a posting file (.ib), and a tag file (.ic), all in the working directory.

Lookbib uses an inverted index made by indxbib to find sets of bibliographic references. It
reads keywords typed after the ">" prompt on the terminal, and retrieves records contain­
ing all these keywords. If nothing matches, nothing is returned except another ">" prompt.

It is possible to search multiple databases, as long as they have a common index made by
indxbib. In that case, only the first argument given to indxbib is specified to look bib.

If look bib does not find the index files (the .i[abc] files), it looks for a reference file with the
same name as the argument, without the suffixes. It creates a file with a '.ig' suffix, suitable
for use with fgrep. It then uses this fgrep file to find references. This method is simpler to
use, but the .ig file is slower to use than the .i[abc] files, and does not allow the use of mul­
tiple reference files.

FILES
~ .ia, x .ib, x .ic, where x is the first argument, or if these are not present, then x .ig, x

SEE ALSO
refer(1), addbib(1), sortbib(1), roffbib(1), 100kbib(1)

STATUS
LOOKBIB (1) currently is not supported by Digital Equipment Corporation.

1-177

LORDER(1)

NAME
lorder - find ordering relation for an object library

SYNTAX
lorder file ...

DESCRIPTION
The input is one or more object or library archive (see ar(l» files. The standard output is a
list of pairs of object file names, meaning that the first file of the pair refers to external
identifiers defined in the second. The output may be processed by tsort(l) to find an ord­
ering of a library suitable for one-pass access by ld(l).

This brash one-liner intends to build a new library from existing '.0' files.

ar cr library 'lorder *.0 I tsort'

The need for lorder may be vitiated by use of ranlib (1), which converts an ordered archive
into a randomly accessed library.

FILES
*symref, *symdef
nm(1), sed(l), sort(1), join(l)

SEE ALSO
tsort(l), Id(l), ar(l), ranlib(l)

RESTRICTIONS
The names of object files, in and out of libraries, must end with '.0'; nonsense results other­
wise.

STATUS
LORDER (1) currently is not supported by Digital Equipment Corporation.

1-178

LPQ(1)

NAME
Ipq - spool queue examination program

SYNTAX
Ipq [+[n]] [-I] [-Pprinter] [job # ...] [user ...]

DESCRIPTION
lpq examines the spooling area used by Ipd(8) for printing files on the line printer, and
reports the status of the specified jobs or all job~ associated with a user. lpq invoked
without any arguments reports on any jobs currently in the queue. A - P flag may be used
to specify a particular printer, otherwise the default line printer is used (or the value of the
PRINTER variable in the environment). If a + argument is supplied, Ipq displays the
spool queue until it empties. Supplying a number immediately after the + sign indicates
that Ipq should sleep n seconds in between scans of the queue. All other arguments sup­
plied are interpreted as user names or job numbers to filter out only those jobs of interest.

For each job submitted (i.e. invocation of Ipr(l» Ipq reports the user's name, current rank
in the queue, the names of files comprising the job, the job identifier (a number which may
be supplied to Iprm(1) for removing a specific job), and the total size in bytes. The-I
option causes information about each of the files comprising the job to be printed. Nor­
mally, only as much information as will fit on one line is displayed. Job ordering is depen­
dent on the algorithm used to scan the spooling directory and is supposed to be FIFO (First
in First Out). File names comprising a job may be unavailable (when Ipr(1) is used as a
sink in a pipeline) in which case the file is indicated as "(standard input)".

If Ipq warns that there is no daemon present (i.e. due to some malfunction), the Ipc(8)
command can be used to restart the printer daemon.

FILES
/etc/termcap
/ etc/printcap
/usr/spool/*
/usr/spool/* /cf*
/usr/spool/* /lock

DIAGNOSTICS

for manipulating the screen for repeated display
to determine printer characteristics
the spooling directory, as determined from printcap
control files specifying jobs
the lock file to obtain the currently active job

Unable to open various files. The lock file being malformed. Garbage files when there is no
daemon active, but files in the spooling directory.

SEE ALSO
Ipr(1), Iprm(l), Ipc(8), Ipd(8)

RESTRICTIONS
Due to the dynamic nature of the information in the spooling directory Ipq may report
unreliably. Output formatting is sensitive to the line length of the terminal; this can results
in widely spaced columns.

STATUS
LPQ (1) is supported by Digital Equipment Corporation.

© Digital Equipment Corporation 1984 1-179

LPR(1)

NAME
lpr - off line print

SYNTAX
Ipr [-Pprinter] [-#num] [-C class] [-J job] [-T title] [-inum] [-1234 font]
[-wnum] [-pltndgvcfrmhs] [name ...]

DESCRIPTION
Lpr uses a spooling daemon to print the named files when facilities become available. If
no names appear, the standard input is assumed. The -P option may be used to force out­
put to a specific printer. Normally, the default printer is used (site dependent), or the
value of the environment variable PRINTER is used.

The following single letter options are used to notify the line printer spooler that the files
are not standard text files. The spooling daemon will use the appropriate filters to print the
data accordingly.

-p Use pr(1) to format the files (equivalent to print).

-I Use a filter which allows control characters to be printed and suppresses page breaks.

-t The files are assumed to contain data from troff(l) (cat phototypesetter commands).

-n The files are assumed to contain data from ditroff (device independent troff).

-d The files are assumed to contain data from tex(l) (DVI format from Stanford).

-g The files are assumed to contain standard plot data as produced by the plot(3X) rou-
tines (see also plot(IG) for the filters used by the printer spooler).

-v The files are assumed to contain a raster image for devices like the Benson Varian.

-c The files are assumed to contain data produced by cifplot(l).

-f Use a filter which interprets the first character of each line as a standard FORTRAN
carriage control character.

The remaining single letter options have the following meaning.

-r Remove the file upon completion of spooling or upon completion of printing (with the
-s option).

-m Send mail upon completion.

- h Suppress the printing of the burst page.

-s Use symbolic links. Usually files are copied to the spool directory.

The -C option takes the following argument as a job classification for use on the burst
page. For example,

lpr -C EECS foo.c

causes the system name (the name returned by hostname(l» to be replaced on the burst
page by EECS, and the file foo.c to be printed.

1-180 © Digital Equipment Corporation 1984

LPR (1)

The -J option takes the following argument as the job name to print on the burst page.
Normally, the first file's name is used.

The -T option uses the next argument as the title used by pr(l) instead of the file name.

To get multiple copies of output, use the -#num option, where num is the number of
copies desired of each file named. For example,

lpr -#3 foo.c bar.c more.c

would result in 3 copies of the file foo.c, followed by 3 copies of the file bar.c, etc. On the
other hand,

cat foo.c bar.c more.c Ilpr -#3

will give three copies of the concatenation of the files.

The -i option causes the output to be indented the specified number of blank spaces. If a
numeric number is not specified, the output is indented 8 blank characters. This option is
to be used in conjunction with the -f and -I options only.

The -w option takes the immediately following number to be the page width for pr.

The -8 option will use symlink (2) to link data files rather than trying to copy them so
large files can be printed. This means the files should not be modified or removed until
they have been printed.

The option -1234 Specifies a font to be mounted on font position i. The daemon will
construct a .railmag file referencing /usr/lib/v{ont/name.size.

FILES
/etc/passwd
/ etc/printcap
/usr/lib/lpd *
/usr/spool/*
/usr/spool/* /cf*
/usr/spool/* /df*
/usr/spool/* /tf*

SEE ALSO

personal identification
printer capabilities data base
line printer daemons
directories used for spooling
daemon control files
data files specified in "cf" files
temporary copies of "cf" files

Ipq(l), Iprm(l), pr(l), symlink(2), printcap(5), Ipc(8), Ipd(8)

DIAGNOSTICS
If you try to spool too large a file, it will be truncated. Lpr will object to printing binary
files. If a user other than root prints a file and spooling is disabled, lpr will print a message
saying so and will not put jobs in the queue. If a connection to lpd on the local machine
cannot be made, lpr will say that the daemon cannot be started. Diagnostics may be
printed in the daemon's log file regarding missing spool files by lpd.

RESTRICTIONS
Fonts for troff and tex reside on the host with the printer. It is currently not possible to
use local font libraries.

® Digital Equipment Corporation 1984 1-181

LPR(1)

STATUS
LPR (1) is supported by Digital Equipment Corporation.

1-182

LPRM(1)

NAME
lprm - remove jobs from the line printer spooling queue

SYNTAX
lprm [- Pprinter] [-] [job #...] [user ...]

DESCRIPTION
Lprm will remove a job, or jobs, from a printer's spool queue. Since the spooling directory
is protected from users, using lprm is normally the only method by which a user may
remove a job.

Lprm without any arguments will delete the currently active job if it is owned by the user
who invoked lprm.

If the - flag is specified, lprm will remove all jobs which a user owns. If the super-user
employs this flag, the spool queue will be emptied entirely. The owner is determined by the
user's login name and host name on the machine where the lpr command was invoked.

Specifying a user's name, or list of user names, will cause lprm to attempt to remove any
jobs queued belonging to that user (or users). This form of invoking lprm is useful only to
the super-user.

A user may dequeue an individual job by specifying its job number. This number may be
obtained from the lpq (1) program, e.g.

% Ipq -I

1st: ken
(standard input)

% Iprm 13

[job #013ucbarpa]
100 bytes

Lprm will announce the names of any files it removes and is silent if there are no jobs in
the queue which match the request list.

Lprm will kill off an active daemon, if necessary, before removing any spooling files. If a
daemon is killed, a new one is automatically restarted upon completion of file removals.

The - P option may be usd to specify the queue associated with a specific printer (other­
wise the default printer, or the value of the PRINTER variable in the environment is used).

FILES
/etc/printcap printer characteristics file
/usr/spool/* spooling directories
/usr/spool/* /lock lock file used to obtain the pid of the current

daemon and the job number of the currently active job

SEE ALSO
Ipr(I), Ipq(I), Ipd(8)

DIAGNOSTICS
"Permission denied" if the user tries to remove files other than his own.

1-183

LPRM (1)

RESTRICTIONS
Since there are race conditions possible in the update of the lock file, the currently active
job may be incorrectly identified.

STATUS
LPRM (1) is supported by Digital Equipment Corporation.

1-184

LS(1)

NAME
Is - list contents of directory

SYNTAX
Is [-acdfgilqrstulACLFR] name ...

DESCRIPTION
For each directory argument, ls lists the contents of the directory; for each file argument, ls
repeats its name and any other information requested. By default, the output is sorted
alphabetically. When no argument is given, the current directory is listed. When several
arguments are given, the arguments are first sorted appropriately, but file arguments are
processed before directories and their contents.

There are a large number of options:

-I List in long format, giving mode, number of links, owner, size in bytes, and time of
last modification for each file. (See below.) If the file is a special file the size field
will instead contain the major and minor device numbers. If the file is a symbolic
link the pathname of the linked-to file is printed preceded by "->".

-g Include the group ownership of the file in a long output. To be used in conjunc­
tion with the -I option.

-t Sort by time modified (latest first) instead of by name.

-a List all entries; in the absence of this option, entries whose names begin with a
period (.) are not listed.

-s Give size in kilobytes of each file.

-d If argument is a directory, list only its name; often used with -I to get the status
of a directory.

- L If argument is a symbolic link, list the information for the file or directory the link
references rather than that for the link itself.

-r Reverse the order of sort to get reverse alphabetic or oldest first as appropriate.

-u Use time of last access instead of last modification for sorting (with the -t option)
andlor printing (with the -I option).

-c Use time of file creation for sorting or printing.

-i For each file, print the i-number in the first column of the report.

-f Force each argument to be interpreted as a directory and list the name found in
each slot. This option turns off -I, -t, -s, and -r, and turns on -a; the order is
the order in which entries appear in the directory.

-F cause directories to be marked with a trailing 'I', sockets with a trailing '=', sym­
bolic links with a trailing '@', and executable files with a trailing '*'.

- R recursively list subdirectories encountered.

-1 force one entry per line output format; this is the default when output is not to a

1-185

LS(1)

terminal.

-C force multi-column output; this is the default when output is to a terminal.

-q force printing of non-graphic characters in file names as the character '?'; this is
the default when output is to a terminal.

The mode printed under the -I option contains 11 characters which are interpreted as fol­
lows: the first character is

d if the entry is a directory;
b if the entry is a block-type special file;
c if the entry is a character-type special file;
I if the entry is a symbolic link;
s if the entry is a socket, or

if the entry is a plain file.

The next 9 characters are interpreted as three sets of three bits each. The first set refers to
owner permissions; the next to permissions to others in the same user-group; and the last to
all others. Within each set the three characters indicate permission respectively to read, to
write, or to execute the file as a program. For a directory, 'execute' permission is inter­
preted to mean permission to search the directory. The permissions are indicated as fol­
lows:

r if the file is readable;
w if the file is writable;
x if the file is executable;

if the indicated permission is not granted.

The group-execute permission character is given as s if the file has the set-group-id bit set;
likewise the user-execute perIIlission character is given as s if the file has the set-user-id bit
set.

The last character of the mode (normally 'x' or '-') is t if the 1000 bit of the mode is on.
See chmod(1) for the meaning of this mode.

When the sizes of the files in a directory are listed, a total count of blocks, including
indirect blocks is printed.

FILES
/etc/passwd to get user id's for 'Is -1'.
/etc/group to get group id's for 'Is -g'.

RESTRICTIONS
Newline and tab are considered printing characters in file names.

The output device is assumed to be 80 columns wide.

The option setting based on whether the output is a teletype is undesirable as "Is -s" is
much different than "Is -s Ilpr". On the other hand, not doing this setting would make old
shell scripts which used ls almost certain losers.

1-186

LS (1)

STATUS
LS (1) is supported by Digital Equipment Corporation.

1-187

LXREF (1)

NAME
lxref - lisp cross reference program

SYNTAX
lxref [- N] xref-file ... [-8 source-file ...]

DESCRIPTION
Lxre{ reads cross reference file(s) written by the lisp compiler liszt and prints a cross refer­
ence listing on the standard output. Liszt will create a cross reference file during compila­
tion when it is given the -x switch. Cross reference files usually end in '.x' and conse­
quently lxref will append a '.x' to the file names given if necessary. The first option to
lxref is a decimal integer, N, which sets the ignorelevel. If a function is called more than
ignorelevel times, the cross reference listing will just print the number of calls instead of
listing each one of them. The default for ignorelevel is 50.

The -8 option causes lxre{ to put limited cross reference information in the sources named.
lxref will scan the source and when it comes across a definition of a function (that is a line
beginning with '(del' it will preceed that line with a list of the functions which call this
function, written as a comment preceeded by'; .. ' . All existing lines beginning with '; .. ' will
be removed from the file. If the source file contains a line beginning ';.-' then this will dis­
able this annotation process from this point on until a ';.+' is seen (however, lines beginning
with '; .. ' will continue to be deleted). After the annoation is done, the original file '{oo.l' is
renamed to " '#.foo.l'" and the new file with annotation is named '{oo.l'

SEE ALSO
lisp(I), liszt(l)

STATUS
LXREF (1) currently is not supported by Digital Equipment Corporation.

1-188

M4(1)

NAME
~4 - ~acro processor

SYNTAX
m4 [files]

DESCRIPTION
M4 is a ~acro processor intended as a front end for Ratfor, C, and other languages. Each
of the argu~ent files is processed in order; if there are no argu~ents, or if an argu~ent is
'-', the standard input is read. The processed text is written on the standard output.

Macro calls have the for~

na~e(argl,arg2, ... , argn)

The '(' ~ust i~~ediately follow the na~e of the ~acro. If a defined ~acro na~e is not fol­
lowed by a '(', it is dee~ed to have no argu~ents. Leading unquoted blanks, tabs, and
newlines are ignored while collecting argu~ents. Potential ~acro na~es consist of alpha­
betic letters, digits, and underscore '-', where the first character is not a digit.

Left and right single quotes (") are used to quote strings. The value of a quoted string is
the string stripped of the quotes.

When a ~acro na~e is recognized, its argu~ents are collected by searching for a ~atching
right parenthesis. Macro evaluation proceeds nor~ally during the collection of the argu­
~ents, and any co~~as or right parentheses which happen to turn up within the value of a
nested call are as effective as those in the original input text. After argu~ent collection,
the value of the ~acro is pushed back onto the input strea~ and res canned.

M4 ~akes available the following built-in ~acros. They ~ay be redefined, but once this is
done the original ~eaning is lost. Their values are null unless otherwise stated.

define The second argu~ent is installed as the value of the ~acro whose na~e is the
first argu~ent. Each occurrence of $n in the replace~ent text, where n is a
digit, is replaced by the n-th argu~ent. Argu~ent 0 is the na~e of the ~acro;
~issing argu~ents are replaced by the null string.

undefine re~oves the definition of the ~acro na~ed in its argu~ent.

ifdef If the first argu~ent is defined, the value is the second argu~ent, otherwise the
third. If there is no third argu~ent, the value is null. The word unix is
predefined on UNIX versions of m4.

changequote
Change quote characters to the first and second argu~ents. Changequote
without argu~ents restores the original values (Le., ").

divert M4 ~aintains 10 output strea~s, nu~bered 0-9. The final output is the con­
catenation of the strea~s in nu~erical order; initially strea~ 0 is the current
strea~. The divert ~acro changes the current output strea~ to its (digit-string)
argu~ent. Output diverted to a strea~ other than 0 through 9 is discarded.

undivert causes i~~ediate output of text fro~ diversions na~ed as argu~ents, or all

1-189

M4(1)

diversions if no argument. Text may be undiverted into another diversion.
Un diverting discards the diverted text.

divnum returns the value of the current output stream.

dnl reads and discards characters up to and including the next newline.

ifelse has three or more arguments. If the first argument is the same string as the
second, then the value is the third argument. If not, and if there are more than
four arguments, the process is repeated with arguments 4, 5, 6 and 7. Otherwise,
the value is either the fourth string, or, if it is not present, null.

incr returns the value of its argument incremented by 1. The value of the argument
is calculated by interpreting an initial digit-string as a decimal number.

eval evaluates its argument as an arithmetic expression, using 32-bit arithmetic.
Operators include +, -, *, /, %, A (exponentiation); relationals; parentheses.

len returns the number of characters in its argument.

index returns the position in its first argument where the second argument begins (zero
origin), or -1 if the second argument does not occur.

substr returns a substring of its first argument. The second argument is a zero origin
number selecting the first character; the third argument indicates the length of
the substring. A missing third argument is taken to be large enough to extend
to the end of the first string.

trans lit transliterates the characters in its first argument from the set given by the
second argument to the set given by the third. No abbreviations are permitted.

include returns the contents of the file named in the argument.

sinclude is identical to include, except that it says nothing if the file is inaccessible.

syscmd executes the UNIX command given in the first argument. No value is returned.

maketemp
fills in a string of XXXXX in its argument with the current process id.

errprint prints its argument on the diagnostic output file.

dumpdef prints current names and definitions, for the named items, or for all if no argu­
ments are given.

SEE ALSO
B. W. Kernighan and D. M. Ritchie, The M4 Macro Processor

STATUS
M4 (1) currently is not supported by Digital Equipment Corporation.

1-190 © Digital Equipment Corporation 1984

NAME
mail - send and receive mail

SYNTAX
mail [-v] [-i] [-n] [-s subject] [user ...
mail [-v] [-i] [-n] -f [name]
mail [-v] [-i] [-n] -u user

INTRODUCTION

MAIL(1)

Mail is a intelligent mail processing system, which has a command syntax reminiscent of ed
with lines replaced by messages.

The -v flag puts mail into verbose mode; the details of delivery are displayed on the users
terminal. The -i flag causes tty interrupt signals to be ignored. This is particularly useful
when using mail on noisy phone lines. The -n flag inhibits the reading of lusr/lib/Mail.rc.

Sending mail. To send a message to one or more other people, mail can be invoked with
arguments which are the names of people to send to. You are then expected to type in
your message, followed by an EOT (control-D) at the beginning of a line. A subject may be
specified on the command line by using the -s flag. (Only the first argument after the -s
flag is used as a subject; be careful to quote subjects containing spaces.) The section below,
labeled Replying to or originating mail, describes some features of mail available to help
you compose your letter.

Reading mail. In normal usage mail is given no arguments and checks your mail out of the
post office, then prints out a one line header of each message there. The current message is
initially the first message (numbered 1) and can be printed using the print command
(which can be abbreviated p). You can move among the messages much as you move
between lines in ed, either with the commands '+' and '-' moving backwards and forwards
or with simple numbers.

Disposing of mail. After examining a message you can delete (d) the message or reply
(r) to it. Deletion causes the mail program to forget about the message. This is not
irreversible; the message can be undeleted (u) by giving its number, or the mail session
can be aborted by giving the exit (x) command. Deleted messages will, however, usually
disappear never to be seen again.

Specifying messages. Commands such as print and delete can be given a list of message
numbers as arguments to apply to a number of messages at once. Thus "delete 1 2" deletes
messages 1 and 2, while "delete 1-5" deletes messages 1 through 5. The special name "*,,
addresses all messages, and "$!' addresses the last message; thus the command top which
prints the first few lines of a message could be used in "top *" to print the first few lines of
aU messages.

Replying to or originating mail. You can use the reply command to set up a response to a
message, sending it back to the person who it was from. Text you then type in, up to an
end-of-file, defines the contents of the message. While you are composing a message, mail
treats lines beginning with the character ,-, specially. For instance, typing "-m" (a.lone on a
line) will place a copy of the current message into the response right shiftin~ it by a

© Digital Equipment Corporation 1984 1-191

MAIL(1)

tabstop. Other escapes will set up subject fields, add and delete recipients to the message
and allow you to escape to an editor to revise the message or to a shell to run some com­
mands. (These options are given in the summary below.)

Ending a mail processing session. You can end a mail session with the quit (q) command.
Messages which have been examined go to your mbox file unless they have been deleted in
which case they are discarded. Unexamined messages go back to the post office. The-f
option causes mail to read in the contents of your mbox (or the specified file) for process­
ing; when you quit, mail writes undeleted messages back to this file. The -u flag is a short
way of doing "mail -f /usr/spool/mail/user".

Personal and systemwide distribution lists. It is also possible to create a personal distribu­
tion lists so that, for instance, you can send mail to "cohorts" and have it go to a group of
people. Such lists can be defined by placing a line like

alias cohorts bill ozalp jkf mark kridle@ucbcory

in the file .mailrc in your home directory. The current list of such aliases can be displayed
with the alias (a) command in mail. System wide distribution lists can be created by
editing /usr/lib/aliases, see aliases(5) and sendmail(8); these are kept in a different syntax.
In mail you send, personal aliases will be expanded in mail sent to others so that they will
be able to reply to the recipients. System wide aliases are not expanded when the mail is
sent, but any reply returned to the machine will have the system wide alias expanded as all
mail goes through sendmail.

Network mail (ARPA, UUCP, Berknet) See mailaddr(7) for a description of network
addresses.

Mail has a number of options which can be set in the .mailre file to alter its behavior; thus
"set askcc" enables the "askcc" feature. (These options are summarized below.)

SUMMARY
(Adapted from the 'Mail Reference Manual')

Each command is typed on a line by itself, and may take arguments following the command
word. The command need not be typed in its entirety - the first command which matches
the typed prefix is used. For commands which take message lists as arguments, if no mes­
sage list is given, then the next message forward which satisfies the command's require­
ments is used. If there are no messages forward of the current message, the search
proceeds backwards, and if there are no good messages at all, mail types "No applicable
messages" and aborts the command.

?

Print

1-192

Goes to the previous message and prints it out. If given a numeric argument
n, goes to the n-th previous message and prints it.

Prints a brief summary of commands.

Executes the UNIX shell command which follows.

(P) Like print but also prints out ignored header fields. See also print and
ignore.

© Digital Equipment Corporation 1984

MAIL(1)

Reply (R) Reply to originator. Does not reply to other recipients of the original mes­
sage.

Type (T) Identical to the Print command.

alias (a) With no arguments, prints out all currently-defined aliases. With one
argument, prints out that alias. With more than one argument, creates an new
or changes an on old alias. These aliases are in effect for the current mail ses­
sion only.

alternates (alt) The alternates command is useful if you have accounts on several
machines. It can be used to inform mail that the listed addresses are really
you. When you reply to messages, mail will not send a copy of the message to
any of the addresses listed on the alternates list. If the alternates command
is given with no argument, the current set of alternate names is displayed.

chdir (ch) Changes the user's working directory to that specified. If no directory is
given, then changes to the user's login directory.

copy (co) The copy command does the same thing that save does, except that it
does not mark the messages it is used on for deletion when you quit.

delete (d) Takes a list of messages as argument and marks them all as deleted.
Deleted messages will not be saved in mbox, nor will they be available for
most other commands.

dp (also dt) Deletes the current message and prints the next message. If there is
no next message, mail says "at EOF."

edit (e) Takes a list of messages and points the text editor at each one in turn. On
return from the editor, the message is read back in.

exit (ex or x) Effects an immediate return to the Shell without modifying the
user's system mailbox, his mbox file, or his edit file in -f.

file

folders

folder

from

headers

(fi) The same as folder.

List the names of the folders in your folder directory.

(fo) The folder command switches to a new mail file or folder. With no argu­
ments, it tells you which file you are currently reading. If you give it an argu­
ment, it will write out changes (such as deletions) you have made in the
current file and read in the new file. Some special conventions are recognized
for the name. # means the previous file, % means your system mailbox,
% user means user's system mailbox, & means your -/mbox file, and +folder
means a file in your folder directory.

(f) Takes a list of messages and prints their message headers in the order that
they appear in the mail directory, not in the order given in the list.

(h) Lists the current range of headers, which is an 18 message group. If a "+"
argument is given, then the next 18 message group is printed, and if a "-"
argument is given, the previous 18 message group is printed.

© Digital Equipment Corporation 1984 1-193

MAIL(1)

help

hold

ignore

mail

mbox

next

preserve

print

quit

reply

respond

save

set

shell

size

1-194

A synonym for ?

(ho, also preserve) Takes a message list and marks each message therein to
be saved in the user's system mailbox instead of in mbox. Does not override
the delete command.

Add the list of header fields named to the ignored list. Header fields in the
ignore list are not printed on your terminal when you print a message. This
command is very handy for suppression of certain machine-generated header
fields. The Type and Print commands can be used to print a message in its
entirety, including ignored fields. If ignore is executed with no arguments, it
lists the current set of ignored fields.

(m) Takes as argument login names and distribution group names and sends
mail to those people.

Indicate that a list of messages be sent to mbox in your home directory when
you quit. This is the default action for messages if you do not have the hold
option set.

(n like + or CR) Goes to the next message in sequence and types it. With an
argument list, types the next matching message.

(pre) A synonym for hold.

(p) Takes a message list and types out each message on the user's terminal.

(q) Terminates the session, saving all undeleted, unsaved messages in the
user's mbox file in his login directory, preserving all messages marked with
hold or preserve or never referenced in his system mailbox, and removing
all other messages from his system mailbox. If new mail has arrived during
the session, the message "You have new mail" is given. If given while editing
a mailbox file with the -f flag, then the edit file is rewritten. A return to the
Shell is effected, unless the rewrite of edit file fails, in which case the user can
escape with the exit command.

(r) Takes a message list and sends mail to the sender and all recipients of the
specified message. The default message must not be deleted.

A synonym for reply.

(s) Takes a message list and a filename and appends each message to the end
of the file. The messages are saved in the order in which they appear in the
mail directory, not in that given in the message list. The filename in quotes,
followed by the line count and character count is echoed on the user's termi­
nal.

(se) With no arguments, prints all variable values. Otherwise, sets option.
Arguments are of the form "option = value" or "option."

(sh) Invokes an interactive version of the shell.

Takes a message list and prints out the size (in characters) of each message.

© Digital Equipment Corporation 1984

MAIL(1)

The size of the messages are printed in the order that they appear in the mail
directory, not in that given in the list.

source (so) The source command reads mail commands from a file.

top Takes a message list and prints the top few lines of each. The number of lines
printed is controlled by the variable toplines and defaults to five.

type (t) A synonym for print.

unalias Takes a list of names defined by alias commands and discards the remem­
bered groups of users. The group names no longer have any significance.

undelete (u) Takes a message list and marks each one as not being deleted.

unset Takes a list of option names and discards their remembered values; the
inverse of set.

visual (v) Takes a message list and invokes the display editor on each message.

write (w) A synonym for save.

xit (x) A synonym for exit.

Z Mail presents message headers in windowfuls as described under the headers
command. You can move mail's attention forward to the next window with the
z command. Also, you can move to the previous window by using Z-.

Here is a summary of the tilde escapes, which are used when composing messages to per­
form special functions. Tilde escapes are only recognized at the beginning of lines. The
name "tilde escape" is somewhat of a misnomer since the actual escape character can be set
by the option escape.

~!command Execute the indicated shell command, then return to the message.

~c name... Add the given names to the list of carbon copy recipients.

~d Read the file "dead.letter" from your home directory into the message.

~e Invoke the text editor on the message collected so far. After the editing ses­
sion is finished, you may continue appending text to the message.

~f messages Read the named messages into the message being sent. If no messages are
specified, read in the current message.

~h Edit the message header fields by typing each one in turn and allowing the
user to append text to the end or modify the field by using the current termi­
nal erase and kill characters.

~m messages
Read the named messages into the message being sent, shifted right one tab.
If no messages are specified, read the current message.

~p Print out the message collected so far, prefaced by the message header fields.
~q Abort the message being sent, copying the message to "dead.letter" in your

@ Digital Equipment Corporation 1984 1-195

MAIL(1)

home directory if save is set.

-r filename Read the named file into the message.

-s string Cause the named string to become the current subject field.

-t name ... Add the given names to the direct recipient list.

-v Invoke an alternate editor (defined by the VISUAL option) on the message
collected so far. Usually, the alternate editor will be a screen editor. After
you quit the editor, you may resume appending text to the end of your mes­
sage.

-w filename Write the message onto the named file.

-Icommand Pipe the message through the command as a filter. If the command gives no

-string

output or terminates abnormally, retain the original text of the message. The
command fmt(1) is often used as command to rejustify the message.

Insert the string of text in the message prefaced by a single -. If you have
changed the escape character, then you should double that character in order
to send it.

Options are controlled via the set and unset commands. Options may be either binary, in
which case it is only significant to see whether they are set or not, or string, in which case
the actual value is of interest. The binary options include the following:

append Causes messages saved in mbox to be appended to the end rather than
prepended. (This is set in /usr/lib/Mail.rc on version 7 systems.)

ask

askcc

autoprint

debug

dot

hold

ignore

ignoreeof

1-196

Causes mail to prompt you for the subject of each message you send. If
you respond with simply a newline, no subject field will be sent.

Causes you to be prompted for additional carbon copy recipients at the end
of each message. Responding with a newline indicates your satisfaction
with the current list.

Causes the delete command to behave like dp - thus, after deleting a
message, the next one will be typed automatically.

Setting the binary option debug is the same as specifying -d on the com­
mand line and causes mail to output all sorts of information useful for
debugging mail.

The binary option dot causes mail to interpret a period alone on a line as
the terminator of a message you are sending.

This option is used to hold messages in the system mailbox by default.

Causes interrupt signals from your terminal to be ignored and echoed as
@'s.

An option related to dot is ignoreeof which makes mail refuse to accept a
control-d as the end of a message. Ignoreeof also applies to mail command
mode.

© Digital Equipment Corporation 1984

MAIL(1)

msgprompt When sending mail, prompts you for the message text and indicates how to
terminate the message.

metoo Usually, when a group is expanded that contains the sender, the sender is
removed from the expansion. Setting this option causes the sender to be
included in the group.

nos ave Normally, when you abort a message with two RUBOUT, mail A copies the
partial letter to the file "dead.letter" in your home directory. Setting the
binary option nosave prevents this.

quiet Suppresses the printing of the version when first invoked.

verbose Setting the option verbose is the same as using the -v flag on the com­
mand line. When mail runs in verbose mode, the actual delivery of mes­
sages is displayed on he users terminal.

The following options have string values:

EDITOR

SHELL

VISUAL

crt

escape

folder

record

toplines

FILES

Pathname of the text editor to use in the edit command and -e escape. If
not defined, then a default editor is used.

Pathname of the shell to use in the! command and the -! escape. A default
shell is used if this option is not defined.

Pathname of the text editor to use in the visual command and -v escape.

The valued option crt is used as a threshold to determine how long a mes­
sage must be before more is used to read it.

If defined, the first character of this option gives the character to use in the
place of - to denote escapes.

The name of the directory to use for storing folders of messages. If this
name begins with a 'I', mail considers it to be an absolute pathname; other­
wise, the folder directory is found relative to your home directory.

If defined, gives the pathname of the file used to record all outgoing mail.
If not defined, then outgoing mail is not so saved.

If defined, gives the number of lines of a message to be printed out with
the top command; normally, the first five lines are printed.

lusr I spool/mail/*
-/mbox

post office
your old mail

-I.mailrc
Itmp/R#
lusr llib/Mail.help*
lusr/lib/Mail.rc
Message*

file giving initial mail commands
temporary for editor escape
help files
system initialization file
temporary for editing messages

© Digital Equipment Corporation 1984 1-197

MAIL(1)

SEE ALSO
binmail(I), fmt(I), newaliases(I), aliases(5),
mailaddr(7), sendmail(8)
'The Mail Reference Manual'

STATUS
MAIL (1) is supported by Digital Equipment Corporation.

1-198

MAKE(1)

NAME
make - maintain program groups

SYNTAX
make [-f make file] [option] ... file ...

DESCRIPTION
Make executes commands in makefile to update one or more target names. Name is typi­
cally a program. If no -f option is present, 'makefile' and 'Makefile' are tried in order. If
makefile is '-', the standard input is taken. More than one -f option may appear

Make updates a target if it depends on prerequisite files that have been modified since the
target was last modified, or if the target does not exist.

Makefile contains a sequence of entries that specify dependencies. The first line of an
entry is a blank-separated list of targets, then a colon, then a list of prerequisite files. Text
following a semicolon, and all following lines that begin with a tab, are shell commands to
be executed to update the target. If a name appears on the left of more than one 'colon'
line, then it depends on all of the names on the right of the colon on those lines, but only
one command sequence may be specified for it. If a name appears on a line with a double
colon :: then the command sequence following that line is performed only if the name is out
of date with respect to the names to the right of the double colon, and is not affected by
other double colon lines on which that name may appear.

Two special forms of a name are recognized. A name like a (b) means the file named b
stored in the archive named a. A name like a«b)) means the file stored in archive a con­
taining the entry point b.

Sharp and newline surround comments.

The following makefile says that 'pgm' depends on two files 'a.o' and 'b.o', and that they in
turn depend on '.c' files and a common file 'incl'.

pgm: a.o b.o
cc a.o b.o -1m -0 pgm

a.o: incl a.c
cc -c a.c

b.o: incl b.c
cc -c b.c

Makefile entries of the form

string1 = string2

are macro definitions. Subsequent appearances of $(stringJ) or ${ stringl} are replaced by
string2. If stringl is a single character, the parentheses or braces are optional.

Make infers prerequisites for files for which makefile gives no construction commands. For
example, a '.c' file may be inferred as prerequisite for a '.0' file and be compiled to produce
the '.0' file. Thus the preceding example can be done more briefly:

1-199

MAKE(1)

pgm: a.o b.o
cc a.o b.o -1m -0 pgm

a.o b.o: incl

Prerequisites are inferred according to selected suffixes listed as the 'prerequisites' for the
special name '.SUFFIXES'; multiple lists accumulate; an empty list clears what came
before. Order is significant; the first possible name for which both a file and a rule as
described in the next paragraph exist is inferred. The default list is

.SUFFIXES: .out .0 .c .e .r .f .y .1 .s .p

The rule to create a file with suffix 82 that depends on a similarly named file with suffix 81
is specified as an entry for the 'target' 8182. In such an entry, the special macro $* stands
for the target name with suffix deleted, $@ for the full target name, $< for the complete
list of prerequisites, and $? for the list of prerequisites that are out of date. For example, a
rule for making optimized '.0' files from '.c' files is

.c.O: ; cc -c -0 -0 $@ $*.c

Certain macros are used by the default inference rules to communicate optional arguments
to any resulting compilations. In particular, 'CFLAGS' is used for cc(l) options, 'FFLAGS'
for f77(1) options, 'PFLAGS' for pc(l) options, and 'LFLAGS' and 'YFLAGS' for lex and
yacc (1) options. In addition, the macro 'MFLAGS' is filled in with the initial command
line options supplied to make. This simplifies maintaining a hierarchy of makefiles as one
may then invoke make on makefiles in subdirectories and pass along useful options such as
-k.

Command lines are executed one at a time, each by its own shell. A line is printed when it
is executed unless the special target '.SILENT' is in makefile, or the first character of the
command is '@'.

Commands returning nonzero status (see intro(l» cause make to terminate unless the spe­
cial target' .IGNORE' is in makefile or the command begins with <tab><hyphen>.

Interrupt and quit cause the target to be deleted unless the target is a directory or depends
on the special name '.PRECIOUS'.

Other options:

-i Equivalent to the special entry '.IGNORE:'.

-k When a command returns nonzero status, abandon work on the current entry, but
continue on branches that do not depend on the current entry.

-n Trace and print, but do not execute the commands needed to update the targets.

-t Touch, i.e. update the modified date of targets, without executing any commands.

-r Equivalent to an initial special entry '.SUFFIXES:' with no list.

-s Equivalent to the special entry '.SILENT:'.

1-200

MAKE(1)

FILES
makefile, Makefile

SEE ALSO
sh(l), touch(l), f77(1), pc(l)
S. I. Feldman Make - A Program for Maintaining Computer Programs

RESTRICTIONS
Some commands return nonzero status inappropriately. Use -i to overcome the difficulty.
Commands that are directly executed by the shell, notably cd(l), are ineffectual across new­
lines in make.

STATUS
MAKE (1) currently is not supported by Digital Equipment Corporation.

1-201

MAN(1)

NAME
man - find manual information by keywords; print out the manual

SYNTAX
man - k keyword ...
man -f file ...
man [-] [-t] [section] title ...

DESCRIPTION
Man is a program which gives information from the programmers manual. It can be asked
for one line descriptions of commands specified by name, or for all commands whose
description contains any of a set of keywords. It can also provide on-line access to the sec­
tions of the printed manual.

When given the option - k and a set of keywords, man prints out a one line synopsis of
each manual sections whose listing in the table of contents contains that keyword.

When given the option -f and a list of file names, man attempts to locate manual sections
related to those files, printing out the table of contents lines for those sections.

When neither - k nor -f is specified, man formats a specified set of manual pages. If a
section specifier is given man looks in the that section of the manual for the given titles.
Section is an Arabic section number (3 for instance). The number may followed by a single
letter classifier (lg for instance) indicating a graphics program in section 1. If section is
omitted, man searches all sections of the manual, giving preference to commands over sub­
routines in system libraries, and printing the first section it finds, if any.

If the standard output is a teletype, or if the flag - is given, man pipes its output through
cat(l) with the option -s to crush out useless blank lines, ul(l) to create proper underlines
for different terminals, and through more (1) to stop after each page on the screen. Hit a
space to continue, a control-D to scroll 11 more lines when the output stops.

The -t flag causes man to arrange for the specified section to be troff'ed to a suitable ras­
ter output device; see vtroff(1).

FILES
/usr/man/man? /*
/usr/man/cat?/*

SEE ALSO
more(l), ul(l), whereis(l), catman(8)

RESTRICTIONS
The manual is supposed to be reproducible either on the phototypesetter or on a type­
writer. However, on a typewriter some information is necessarily lost.

STATUS
MAN (1) currently is not supported by Digital Equipment Corporation.

1-202

MESG(1)

NAME
mesg - permit or deny messages

SYNTAX
mesg [n] [y]

DESCRIPTION
Mesg with argument n forbids messages via write and talk (1) by revoking non-user write
permission on the user's terminal. Mesg with argument y reinstates permission. All by
itself, mesg reports the current state without changing it.

FILES
/dev/tty*

SEE ALSO
write(1), talk(1)

DIAGNOSTICS
Exit status is 0 if messages are receivable, 1 if not, 2 on error.

STATUS
MESa (1) currently is not supported by Digital Equipment Corporation.

1-203

MKDIR(1)

NAME
mkdir - make a directory

SYNTAX
mkdir dirname ...

DESCRIPTION
Mkdir creates specified directories in mode 777. Standard entries, '.', for the directory
itself, and ' .. ' for its parent, are made automatically.

Mkdir requires write permission in the parent directory.

SEE ALSO
rmdir(1)

STATUS
MKDIR (1) is supported by Digital Equipment Corporation.

1-204

MKSTR(1)

NAME
mkstr - create an error message file by massaging C source

SYNTAX
mkstr [-] messagefile prefix file ...

DESCRIPTION
Mkstr is used to create files of error messages. Its use can make programs with large
numbers of error diagnostics much smaller, and reduce system overhead in running the pro­
gram as the error messages do not have to be constantly swapped in and out.

Mkstr will process each of the specified files, placing a massaged version of the input file in
a file whose name consists of the specified prefix and the original name. A typical usage of
mkstr would be

mkstr pistrings xx *.c

This command would cause all the error messages from the C source files in the current
directory to be placed in the file pistrings and processed copies of the source for these files
to be placed in files whose names are prefixed with xx.

To process the error messages in the source to the message file mkstr keys on the string
'error('" in the input stream. Each time it occurs, the C string starting at the ,,,, is placed
in the message file followed by a null character and a new-line character; the null character
terminates the message so it can be easily used when retrieved, the new-line character
makes it possible to sensibly cat the error message file to see its contents. The massaged
copy of the input file then contains a lseek pointer into the file which can be used to
retrieve the message, i.e.:

char efilname[) = "/usr/lib/pi strings";
int efil = -1;

error(a1, a2, a3, a4)
{

oops:

char buf[256];

if (efil < 0) {
efil = open(efilname, 0);
if (efil < 0) {

perror(efilname);
exit(l);

}
}
if (lseek(efil, (long) aI, 0) II read(efil, buf, 256) <= 0)

goto oops;
printf(buf, a2, a3, a4);

1-205

MKSTR(1)

The optional - causes the error messages to be placed at the end of the specified message
file for recompiling part of a large mkstr ed program.

SEE ALSO
Iseek(2), xstr(l)

STATUS
MKSTR (1) currently is not supported by Digital Equipment Corporation.

1-206

MORE(1)

NAME
more, page - file perusal filter for crt viewing

SYNTAX
more [-cdflsu] [-n] [+linenumber] [+Ipattern] [name ...

page more options

DESCRIPTION
More is a filter which allows examination of a continuous text one screenful at a time on a
soft-copy terminal. It normally pauses after each screenful, printing --More-- at the bottom
of the screen. If the user then types a carriage return, one more line is displayed. If the
user hits a space, another screenful is displayed. Other possibilities are enumerated later.

The command line options are:

-n An integer which is the size (in lines) of the window which more will use instead of
the default.

-c More will draw each page by beginning at the top of the screen and erasing each
line just before it draws on it. This avoids scrolling the screen, making it easier to
read while more is writing. This option will be ignored if the terminal does not
have the ability to clear to the end of a line.

-d More will prompt the user with the message "Hit space to continue, Rubout to
abort" at the end of each screenful. This is useful if more is being used as a filter
in some setting, such as a class, where many users may be unsophisticated.

-f This causes more to count logical, rather than screen lines. That is, long lines are
not folded. This option is recommended if nroff output is being piped through ul,
since the latter may generate escape sequences. These escape sequences contain
characters which would ordinarily occupy screen positions, but which do not print
when they are sent to the terminal as part of an escape sequence. Thus more may
think that lines are longer than they actually are, and fold lines erroneously.

-I Do not treat "'L (form feed) specially. If this option is not given, more will pause
after any line that contains a "'L, as if the end of a screenful had been reached.
Also, if a file begins with a form feed, the screen will be cleared before the file is
printed.

-s Squeeze multiple blank lines from the output, producing only one blank line.
Especially helpful when viewing nrof/ output, this option maximizes the useful
information present on the screen.

-u Normally, more will handle underlining such as produced by nrof/ in a manner
appropriate to the particular terminal: if the terminal can perform underlining or
has a stand-out mode, more will output appropriate escape sequences to enable
underlining or stand-out mode for underlined information in the source file. The
-u option suppresses this processing.

+linenumber
Start up at linenumber.

1-207

MORE(1)

+Ipattern
Start up two lines before the line containing the regular expression pattern.

If the program is invoked as page, then the screen is cleared before each screenful is
printed (but only if a full screenful is being printed), and k - 1 rather than k - 2 lines are
printed in each screenful, where k is the number of lines the terminal can display.

More looks in the file /etc/termcap to determine terminal characteristics, and to determine
the default window size. On a terminal capable of displaying 24 lines, the default window
size is 22 lines.

More looks in the environment variable MORE to pre-set any flags desired. For example, if
you prefer to view files using the -c mode of operation, the csh command setenv MORE -c
or the sh command sequence MORE='-c' ; export MORE would cause all invocations of
more , including invocations by programs such as man and msgs , to use this mode. Nor­
mally, the user will place the command sequence which sets up the MORE environment
variable in the .cshrc or .profile file.

If more is reading from a file, rather than a pipe, then a percentage is displayed along with
the --More-- prompt. This gives the fraction of the file (in characters, not lines) that has
been read so far.

Other sequences which may be typed when more pauses, and their effects, are as follows (i
is an optional integer argument, defaulting to 1) :

i<space>
display i more lines, (or another screenful if no argument is given)

AD display 11 more lines (a "scroll"). If i is given, then the scroll size is set to i.

d same as AD (control-D)

i z same as typing a space except that i, if present, becomes the new window size.

is skip i lines and print a screenful of lines

if skip i screenfuls and print a screenful of lines

q or Q Exit from more.

Display the current line number.

v Start up the editor vi at the current line.

h Help command; give a description of all the more commands.

ilexpr search for the i -th occurrence of the regular expression expr. If there are less than
i occurrences of expr, and the input is a file (rather than a pipe), then the position
in the file remains unchanged. Otherwise, a screenful is displayed, starting two
lines before the place where the expression was found. The user's erase and kill
characters may be used to edit the regular expression. Erasing back past the first
column cancels the search command.

1-208

MORE(1)

in search for the i -th occurrence of the last regular expression entered.

(single quote) Go to the point from which the last search started. If no search has
been performed in the current file, this command goes back to the beginning of the
file.

!command
invoke a shell with command. The characters '%' and 'I' in "command" are
replaced with the current file name and the previous shell command respectively.
If there is no current file name, '%' is not expanded. The sequences "\%" and "\!"
are replaced by "%" and "I" respectively.

i:n skip to the i -th next file given in the command line (skips to last file if n doesn't
make sense)

i:p skip to the i -th previous file given in the command line. If this command is given
in the middle of printing out a file, then more goes back to the beginning of the
file. If i doesn't make sense, more skips back to the first file. If more is not read­
ing from a file, the bell is rung and nothing else happens.

:f display the current file name and line number.

:q or:Q
exit from more (same as q or Q).

(dot) repeat the previous command.

The commands take effect immediately, i.e., it is not necessary to type a carriage return.
Up to the time when the command character itself is given, the user may hit the line kill
character to cancel the numerical argument being formed. In addition, the user may hit the
erase character to redisplay the --More--(xx %) message.

At any time when output is being sent to the terminal, the user can hit the quit key (nor­
mally control-\). More will stop sending output, and will display the usual --More-­
prompt. The user may then enter one of the above commands in the normal manner.
Unfortunately, some output is lost when this is done, due to the fact that any characters
waiting in the terminal's output queue are flushed when the quit signal occurs.

The terminal is set to noecho mode by this program so that the output can be continuous.
What you type will thus not show on your terminal, except for the / and! commands.

If the standard output is not a teletype, then more acts just like cat, except that a header is
printed before each file (if there is more than one).

A sample usage of more in previewing nroff output would be

nroff -ms +2 doc.n I more -s

FILES
/ etc/termcap
/usr/lib/more.help

Terminal data base
Help file

1-209

MOREe 1)

SEE ALSO
csh(l), man(1), msgs(l), script(l), sh(l), environ(7)

STATUS
MORE (1) currently is not supported by Digital Equipment Corporation.

1-210

MSGS(1)

NAME
msgs - system messages and junk mail program

SYNTAX
msgs [-fhlpq] [number] [-number]

DESCRIPTION
Msgs is used to read system messages. These messages are sent by mailing to the login
'msgs' and should be short pieces of information which are suitable to be read once by most
users of the system.

Msgs is normally invoked each time you login, by placing it in the file .login (.profile if you
use /bin/sh). It will then prompt you with the source and subject of each new message. If
there is no subject line, the first few non-blank lines of the message will be displayed. If
there is more to the message, you will be told how long it is and asked whether you wish to
see the rest of the message. The possible responses are:

y type the rest of the message

RETURN
synonym for y.

n skip this message and go on to the next message.

redisplay the last message.

q drops you out of msgs; the next time you run the program it will pick up where you
left off.

s append the current message to the file "Messages" in the current directory; 's-' will
save the previously displayed message. A's' or 's-' may be followed by a space and
a filename to receive the message replacing the default "Messages".

m or 'm-' causes a copy of the specified message to be placed in a temporary mailbox
and mail(l) to be invoked on that mailbox. Both 'm' and's' accept a numeric argu­
ment in place of the '-'.

Msgs keeps track of the next message you will see by a number in the file .msgsrc in your
home directory. In the directory /usr/msgs it keeps a set of files whose names are the
(sequential) numbers of the messages they represent. The file /usr/msgs/bounds shows the
low and high number of the messages in the directory so that msgs can quickly determine if
there are no messages for you. If the contents of bounds is incorrect it can be fixed by
removing it; msgs will make a new bounds file the next time it is run.

Options to msgs include:

-f which causes it not to say "No new messages.". This is useful in your .login file
since this is often the case here.

-q Queries whether there are messages, printing "There are new messages." if there
are. The command "msgs -q" is often used in login scripts.

-h causes msgs to print the first part of messages only.

1-211

MSGS(1)

-I option causes only locally originated messages to be reported.

num A message number can be given on the command line, causing msgs to start at the
specified message rather than at the next message indicated by your .msgsrc file.
Thus

msgs -h 1

prints the first part of all messages.

-number
will cause msgs to start number messages back from the one indicated by your
.msgsrc file, useful for reviews of recent messages.

-p causes long messages to be piped through more(l).

Within msgs you can also go to any specific message by typing its number when msgs
requests input as to what to do.

FILES
/usr/msgs/*
~/.msgsrc

SEE ALSO
mail(l), more(l)

STATUS

database
number of next message to be presented

MSGS (1) currently is not supported by Digital Equipment Corporation.

1-212

)

MT(1)

NAME
mt - magnetic tape manipulating program

SYNTAX
mt [-f tapename] command [count]

DESCRIPTION
Mt is used to give commands to a magnetic tape drive. If a tape name is not specified, the
environment variable TAPE is used; if TAPE does not exist, mt uses the device
/dev/rmt12. Note that tapename must reference a raw (not block) tape device. By default
mt performs the requested operation once. Operations may be performed multiple times by
specifying count.

The available commands are listed below. Only as many characters as are required to
uniquely identify a command need be specified.

eof, weof
Write count end-of-file marks at the current position on the tape.

fsf Forward space count files.

fsr Forward space count records.

bsf Back space count files.

bsr Back space count records.

rewind
Rewind the tape (Count is ignored.)

ofBine, rewofB
Rewind the tape and place the tape unit off-line (Count is ignored.)

status Print status information about the tape unit.

Mt returns a 0 exit status when the operation(s) were successful, 1 if the command was
unrecognized, and 2 if an operation failed.

FILES
/dev/rmt* Raw magnetic tape interface

SEE ALSO
mtio(4), dd(1), ioct1(2), environ(7)

STATUS
MT (1) currently is not supported by Digital Equipment Corporation.

1-213

MV(1)

NAME
mv - move or rename files

SYNTAX
mv [-i] [-f] [-] file1 file2

mv [-i] [-f] [-] file ... directory

DESCRIPTION
Mv moves (changes the name of) filel to file2.

If file2 already exists, it is removed before filel is moved. If file2 has a mode which forbids
writing, mv prints the mode (see chmod(2)) and reads the standard input to obtain a line; if
the line begins with y, the move takes place; if not, mv exits.

In the second form, one or more files (plain files or directories) are moved to the directory
with their original file-names.

Mv refuses to move a file onto itself.

Options:

-i stands for interactive mode. Whenever a move is to supercede an existing file, the
user is prompted by the name of the file followed by a question mark. If he
answers with a line starting with 'y', the move continues. Any other reply prevents
the move from occurring.

-f stands for force. This option overrides any mode restrictions or the -i switch.

means interpret all the following arguments to mv as file names. This allows file
names starting with minus.

SEE ALSO
cp(1), 111(1)

RESTRIC~rIONS

If filel and file2 lie on different file systems, mv must copy the file and delete the original.
In this case the owner name becomes that of the copying process and any linking relation­
ship with other files is lost.

STATUS
MV (1) is supported by Digital Equipment Corporation.

1-214

NETSTAT(1)

NAME
netstat - show network status

SYNTAX
netstat [-Aahimnrs] [-a] [interval] [system] [core]

DESCRIPTION
The netstat command symbolically displays the contents of various network-related data
structures. If no options are specified, netstat displays the state of all active sockets from
those using any of the protocols listed in /ete/protoeols. The options ~re:

- A show the address of any associated protocol control blocks; used for debugging.

-a show the state of all sockets; normally sockets used by server processes are not
shown.

- h show the state of the IMP host table.

-i show the state of interfaces which have been auto-configured (interfaces statically
configured into a system, but not located at boot time are not shown).

-m show statistics recorded by the memory management routines (the network
manages a "private share" of memory).

-n show network addresses as numbers (normally netstat interprets addresses and
attempts to display them symbolically).

-s show per-protocol statistics.

-r show the routing tables.

-t show time until interface watchdog routine starts up (used in conjunction with -i
option only).

The arguments, system and core allow substitutes for the defaults "/vmunix" and
"/dev/kmem" .

If an interval is specified, netstat will continuously display the information regarding
packet traffic on the configured network interfaces, pausing interval seconds before refresh­
ing the screen.

There are a number of display formats, depending on the information presented. The
default display, for active sockets, shows the local and remote addresses, send and receive
queue sizes (in bytes), protocol, and, optionally, the internal state of the protocol.

Address formats are of the form "host. port" or "network.port" if a socket's address specifies
a network but no specific host address. When known the host and network addresses are
displayed symbolically according to the data bases fete/hosts and /ete/networks, respec­
tively. If a symbolic name for an address is unknown, or if the -n option is specified, the
address is printed in the Internet "dot format"; refer to inet (3N) for more information
regarding this format. Unspecified, or "wildcard", addresses and ports appear as "*".

© Digital Equipment Corporation 1984 1-215

NETSTAT(1)

The interface display provides a table of cumulative statistics regarding packets transferred,
errors, and collisions. The network address (currently Internet specific) of the interface and
the maximum transmission unit ("mtu") are also displayed.

The routing table display indicates the available routes and their status. Each route con­
sists of a destination host or network and a gateway to use in forwarding packets. The flags
field shows the state of the route ("U" if "up"), and whether the route is to a gateway
("G"). Direct routes are created for each interface attached to the local host. The refcnt
field gives the current number of active uses of the route. Connection oriented protocols
normally hold on to a single route for the duration of a connection while connection less
protocols obtain a route then discard it. The use field provides a count of the number of
packets sent using that route. The interface entry indicates the network interface utilized
for the route.

When netstat is invoked with an interval argument, it displays a running count of statistics
related to network interfaces. This display consists of a column summarizing information
for all interfaces, and a column for the interface with the most traffic since the system was
last rebooted. The first line of each screen of information contains a summary since the
system was last rebooted. Subsequent lines of output show values accu.mulated over the
preceding interval. .

SEE ALSO
iostat(1), vmstat(1), hosts(5), networks(5), protocols(5), services(5), trpt(8C)

STATUS
NETST AT (1) is supported by Digital Equipment Corporation.

1-216

NAME
newaliases - rebuild the data base for the mail aliases file

SYNTAX
newaliases

DESCRIPTION

NEWALIASES (1)

Newaliases rebuilds the random access data base for the mail aliases file /usr/lib/aliases.
It must be run each time /usr/lib/aliases is changed in order for the change to take effect.

SEE ALSO
aliases(5), sendmail(8)

STATUS
NEW ALIASES (1) is supported by Digital Equipment Corporation.

1-217

NICE(1)

NAME
nice, nohup - run a command at low priority (sh only)

SYNTAX
nice [-number] command [arguments]

nohup command [arguments]

DESCRIPTION
Nice executes command with low scheduling priority. If the number argument is present,
the priority is incremented (higher numbers mean lower priorities) by that amount up to a
limit of 20. The default number is 10.

The super-user may run commands with priority higher than normal by using a negative
priority, e.g. '--10'.

Nohup executes command immune to hangup and terminate signals from the controlling
terqlinal. The priority is incremented by 5. Nohup should be invoked from the shell with
'&' in order to prevent it from responding to interrupts by or stealing the input from the
next person who logs in on the same terminal. The syntax of nice is also different.

FILES
nohup.out

SEE ALSO

standard output and standard error file under nohup

csh(l), setpriority(2), renice(8)

DIAGNOSTICS
Nice returns the exit status of the subject command.

RESTRICTIONS
Nice and nohup are particular to sh(l). If you use csh(l), then commands executed with
"&" are automatically immune to hangup signals while in the background. There is a buil­
tin command nohup which provides immunity from terminate, but it does not redirect out­
put to nohup.out.

Nice is built into csh(l) with a slightly different syntax than described here. The form
"nice + 10" nices to positive nice, and "nice -10" can be used by the super-user to give a
process more of the processor.

STATUS
NICE (1) currently is not supported by Digital Equipment Corporation.

1-218 © Digital Equipment Corporation 1984

NM(1)

NAME
nm - print name list

SYNTAX
nm [-gnopru] [file ...]

DESCRIPTION
Nm prints the name list (symbol table) of each object file in the argument list. If an argu­
ment is an archive, a listing for each object file in the archive will be produced. If no file is
given, the symbols in "a.out" are listed.

Each symbol name is preceded by its value (blanks if undefined) and one of the letters U
(undefined), A (absolute), T (text segment symbol), D (data segment symbol), B (bss seg­
ment symbol), C (common symbol), f file name, or - for sdb symbol table entries (see -a
below). If the symbol is local (non-external) the type letter is in lower case. The output is
sorted alphabetically.

Options are:

-g Print only global (external) symbols.

-n Sort numerically rather than alphabetically.

-0 Prepend file or archive element name to each output line rather than only once.

-p Don't sort; print in symbol-table order.

-r Sort in reverse order.

-u Print only undefined symbols.

DIAGNOSTICS
bad format indicates that the file is neither an archive file nor a '.0' file.

cannot open indicates that the file could not be opened.

invalid argument indicates an invalid option was specified.

no name list indicates that the file does not contain a symbol table.

ran out of memory
indicates that the string table in either the archive or '.0' file is too
big.

SEE ALSO
ar(l), ar(5), a.out(5), stab(5)

STATUS
NM (1) is supported by Digital Equipment Corporation.

1-219

NROFF(1)

NAME
nroff - text formatting

SYNTAX
nroft' [option]... [file] ...

DESCRIPTION
Nroff formats text in the named files for typewriter-like devices. See also troff(1). The full
capabilities of nroff are described in the Nroff/Troff User's Manual.

If no file argument is present, the standard input is read. An argument consisting of a sin­
gle minus (-) is taken to be a file name corresponding to the standard input.

The options, which may appear in any order so long as they appear before the files, are:

-olist Print only pages whose page numbers appear in the comma-separated list of
numbers and ranges. A range N-M means pages N through M; an initial -N
means from the beginning to page N; and a final N - means from N to the end.

-nN Number first generated page N.

-sN Stop every N pages. Nroff will halt prior to every N pages (default N=l) to
allow paper loading or changing, and will resume upon receipt of a newline.

-mname
Prepend the macro file lusr/lib/tmac/tmac.name to the input files.

-raN Set register a (one-character) to N.

-i Read standard input after the input files are exhausted.

-q Invoke the simultaneou~ input-output mode of the rd request.

-Tname Prepare output for specified terminal. Known names are 37 for the (default)
Teletype Corporation Model 37 terminal, tn300 for the GE TermiNet 300 (or
any terminal without half-line capability), 300S for the DASI-300S, 300 for the
DASI-300, and 450 for the DASI-450 (Diablo Hyterm).

-e Produce equally-spaced words in adjusted lines, using full terminal resolution.

-h Use output tabs during horizontal spacing to speed output and reduce output

FILES

character count. Tab settings are assumed to be every 8 nominal character
widths.

/tmp/ta* temporary file
/usr/lib/tmac/tmac. * standard macro files
/usr/lib/term/* terminal driving tables for nroff

SEE ALSO
J. F. Ossanna, Nroff/Troff user's manual
B. W. Kernighan, A TROFF Tutorial
troff(l), eqn(l), tbl(l), ms(7), me(7), man(7), col(l)

1-220

NROFF(1)

STATUS
NROFF (1) currently is not supported by Digital Equipment Corporation.

1-221

ODe 1)

NAME
od - octal, decimal, hex, ascii dump

SYNTAX
od [-format] [file] [[+]offset[.][h] [label]]

DESCRIPTION
Od displays file, or it's standard input, in one or more dump formats as selected by the first
argument. If the first argument is missing, -0 is the default. Dumping continues until
end -of-file.

The meanings of the format argument characters are:

a Interpret bytes as characters and display them with their ACSII names. If the p
character is given also, then bytes with even parity are underlined. The P character
causes bytes with odd parity to be underlined. Otherwise the parity bit is ignored.

h Interpret bytes as unsigned octal.

c Interpret bytes as ASCII characters. Certain non-graphic characters appear as C
escapes: null=\O, backspace=\b, formfeed=\f, newline=\n, return=\r~ tab=\t~ others
appear as 3-digit octal numbers. Bytes with the parity bit set are displayed in octal.

d Interpret (short) words as unsigned decimal.

f Interpret long words as floating point.

h Interpret (short) words as unsigned hexadecimal.

Interpret (short) words as signed decimal.

Interpret long words as signed decimal.

o Interpret (short) words as unsigned octal.

s[n] Look for strings of ascii graphic characters, terminated with a null byte. N specifies
the minimum length string to be recognized. By default, the minimum length is 3
characters.

v Show all data. By default, display lines that are identical to the last line shown are
not output, but are indicated with an "*,, in column 1.

w[n]
Specifies the number of input bytes to be interpreted and displayed on each output
line. If w is not specified, 16 bytes are read for each display line. If n is not specified,
it defaults to 32.

x Interpret (short) words as hexadecimal.

An upper case format character implies the long or double precision form of the object.

The offset argument specifies the byte offset into the file where dumping is to commence.
By default this argument is interpreted in octal. A different radix can be specified; If "." is
appended to the argument, then offset is interpreted in decimal. If offset begins with "x"
or "Ox", it is interpreted in hexadecimal. If "h" ("B") is appended, the offset is

1-222

ODe 1)

interpreted as a block count, where a block is 512 (1024) bytes. If the file argument is
omitted, an offset argument must be preceded by "+".
The radix of the displayed address will be the same as the radix of the offset, if specified;
otherwise it will be octal.

Label will be interpreted as a pseudo-address for the first byte displayed. It will be shown
in "0" following the file offset. It is intended to be used with core images to indicate the
real memory address. The syntax for label is identical to that for offset.

SEE ALSO
adb(1)

RESTRICTIONS
A file name argument can't start with "+". A hexadecimal offset can't be a block count.
Only one file name argument can be given.

It is an historical botch to require specification of object, radix, and sign representation in a
single character argument.

STATUS
OD (1) is supported by Digital Equipment Corporation.

1-223

PAGE SIZE (1)

NAME
pagesize - print system page size

SYNTAX
page size

DESCRIPTION
Pagesize prints the size of a page of memory in bytes, as returned by getpagesize(2). This
program is useful in constructing portable shell scripts.

SEE ALSO
getpagesize (2)

STATUS
P AGESIZE (1) currently is not supported by Digital Equipment Corporation.

1-224

PASSWD(1)

NAME
passwd - change login password

SYNTAX
passwd [name]

DESCRIPTION
This command changes (or installs) a password associated with the user name (your own
name by default).

The program prompts for the old password and then for the new one. The caller must sup­
ply both. The new password must be typed twice, to forestall mistakes.

New passwords must be at least four characters long if they use a sufficiently rich alphabet
and at least six characters long if monocase. These rules are relaxed if you are insistent
enough.

Only the owner of the name or the super-user may change a password; the owner must
prove he knows the old password.

FILES
/etc/passwd

SEE ALSO
login(l), passwd(5), crypt(3)
Robert Morris and Ken Thompson, UNIX password security

STATUS
P ASSWD (1) is supported by Digital Equipment Corporation.

1-225

pe(1)

NAME
pc - Pascal compiler

SYNTAX
pc [option] [-i name ...] name ...

DESCRIPTION
Pc is a Pascal compiler. If given an argument file ending with .p, it will compile the file
and load it into an executable file called, by default, a.out.

A program may be separated into more than one .p file. Pc will compile a number of argu­
ment .p files into object files (with the extension .0 in place of .p). Object files may then be
loaded into an executable a.out file. Exactly one object file must supply a program state­
ment to successfully create an executable a.out file. The rest of the files must consist only
of declarations which logically nest within the program. References to objects shared
between separately compiled files are allowed if the; objects are declared in included
header files, whose names must end with .h. Heade~ files may only be included at the
outermost level, and thus declare only globally available objects. To allow functions and
procedures to be declared, an external directive has been added, whose use is similar to
the forward directive but restricted to appear only in .h files. Function and procedure
bodies may not appear in .h files. A binding phase of the compiler checks that declarations
are used consistently, to enforce the type checking rules of Pascal.

Object files created by other language processors may be loaded together with object files
created by pc. The functions and procedures they define must have been declared in .h
files included by all the .p files which call those routines. Calling conventions are as in C,
with var parameters passed by address.

See the Berkeley Pascal User's Manual for details.

The following options have the same meaning as in cc(l) and f77(1). See ld(l) for load­
time options.

-c Suppress loading and produce' .0' file(s) from source file(s).

-g Have the compiler produce additional symbol table information for dbx (1).

-w Suppress warning messages.

-p Prepare object files for profiling, see prof(l).

-0 Invoke an object-code improver.

-S Compile the named program, and leave the assembler-language output on the
corresponding file suffixed '.s'. (No '.0' is created.).

-0 output
Name the final output file output instead of a.out.

The following options are peculiar to pc.

-C Compile code to perform runtime checks, verify assert calls, and initialize all vari­
ables to zero as in pi.

1-226

PC(1)

-b Block buffer the file output.

-i Produce a listing for the specified procedures, functions and include files.

-I Make a program listing during translation.

-s Accept standard Pascal only; non-standard constructs cause warning diagnostics.

-t directory
Use the given directory for compiler temporary files.

-z Allow execution profiling with pxp by generating statement counters, and arranging
for the creation of the profile data file pmon.out when the resulting object is exe­
cuted.

Other arguments are taken to be loader option arguments, perhaps libraries of pc compati­
ble routines. Certain flags can also be controlled in comments within the program as
described in the Berkeley Pascal User's Manual.

FILES
file.p
/usr/lib/pcO
/lib/fl
/usr/lib/pc2
/lib/c2
/usr /lib/pc3
/usr/lib/pc2. * strings
/usr /lib/howJ>c
/usr/lib/libpc.a
/usr /lib/libm.a
/lib/libc.a

SEE ALSO
Berkeley Pascal User's Manual
pi(1), pxp(1), pxref(1), sdb(1)

DIAGNOSTICS
For a basic explanation do

pc

pascal source files
compiler
code generator
runtime integrator (inline expander)
peephole optimizer
separate compilation consistency checker
text of the error messages
basic usage explanation
intrinsic functions and I/O library
math library
standard library, see intro(3)

See pi(1). for an explanation of the error message format. Internal errors cause messages
containing the word SNARK.

RESTRICTIONS
The keyword packed is recognized but has no effect.

The binder is not as strict as described here, with regard to the rules about external
declarations only in '.h' files and including' .h' files only at the outermost level.

The -z flag doesn't work for separately compiled files.

1-227

PC(1)

Because the -8 option is usurped by the compiler, it is not possible to pass the strip option
to the loader. Thus programs which are to be stripped, must be run through strip (1) after
they are compiled.

STATUS
PC (1) currently is not supported by Digital Equipment Corporation.

1-228

PDX(1)

NAME
pdx - pascal debugger

SYNTAX
pdx [-r] [objfile]

DESCRIPTION
Pdx is a tool for source level debugging and execution of Pascal programs. The objfile is an
object file produced by the Pascal translator pi(1). If no objfile is specified, pdx looks for a
file named "obj" in the current directory. The object file contains a symbol table which
includes the name of the all the source files translated by pi to create it. These files are
available for perusal while using the debugger.

If the file ".pdxinit" exists in the current directory, then the debugger commands in it are
executed.

The -r option causes the objfile to be executed immediately; if it terminates successfully
pdx exits. Otherwise it reports the reason for termination and offers the user the option of
entering the debugger or simply letting px continue with a traceback. If -r is not
specified, pdx just prompts and waits for a command.

The commands are:

run [args] [< filename] [> filename]
Start executing objfile, passing args as command line arguments; < or > can be
used to redirect input or output in the usual manner.

trace [in procedure/function] [if condition]
trace source-Line-number [if condition]
trace procedure/function [in procedure/function] [if condition]
trace expression at source-Line-number [if condition]
trace variable [in procedure/function] [if condition]

Have tracing information printed when the program is executed. A number is
associated with the command that is used to turn the tracing off (see the delete
command).

The first argument describes what is to be traced. If it is a source-Line-number,
then the line is printed immediately prior to being executed. Source line numbers
in a file other than the current one must be preceded by the name of the file and a
colon, e.g. "mumble.p:17".

If the argument is a procedure or function name then every time it is called, infor­
mation is printed telling what routine called it, from what source . line it was called,
and what parameters were passed to it. In addition, its return is noted, and if it's
a function then the value it is returning is also printed.

If the argument is an expression with an at clause then the value of the expression
is printed whenever the identified source line is reached.

1-229

POX (1)

If the argument is a variable then the name and value of the variable is printed
whenever it changes. Execution is substantially slower during this form of tracing.

If no argument is specified then all source lines are printed before they are exe­
cuted. Execution is substantially slower during this form of tracing.

The clause "in procedure/function" restricts tracing information to be printed
only while executing inside the given procedure or function.

Condition is a Pascal boolean expression and is evaluated prior to printing the
tracing information; if it is false then the information is not printed.

There is no restriction on the amount of information that can be traced.

stop if condition
stop at source-Line-number [if condition]
stop in procedure/function [if condition]
stop variable [if condition]

Stop execution when the given line is reached, procedure or function called, vari­
able changed, or condition true.

delete command-number
The trace or stop corresponding to the given number is removed. The numbers
associated with traces and stops are printed by the status command.

status [> filename]

cont

step

next

Print out the currently active trace and stop commands.

Continue execution from where it stopped. This can only be done when the pro­
gram was stopped by an interrupt or through use of the stop command.

Execute one source line.

Execute up to the next source line. The difference between this and step is that if
the line contains a call to a procedure or function the step command will stop at
the beginning of that block, while the next command will not.

print expression [, expression ...]
Print out the values of the Pascal expressions. Variables declared in an outer
block but having the same identifier as one in the current block may be referenced
as "block-name. variable".

whatis identifier
Print the declaration of the given identifier.

which identifier
Print the full qualification of the given identifer, i.e. the outer blocks that the
identifier is associated with.

assign variable expression

1-230

Assign the value of the expression to the variable.

call procedure(parameters)
Execute the object code associated with the named procedure or function.

help Print out a synopsis of pdx commands.

gripe Invokes a mail program to send a message to the person in charge of pdx.

POX (1)

where Print out a list of the active procedures and functions and the respective source
line where they are called.

source filename
Read pdx commands from the given filename. Especially useful when the
filename has been created by redirecting a status command from an earlier
debugging session.

dump [> filename]
Print the names and values of all active data.

list [source-Line-number [, source-line-number]]
list procedure/function

List the lines in the current source file from the first line number to the second
inclusive. As in the editor "$" can be used to refer to the last line. If no lines are
specified, the entire file is listed. If the name of a procedure or function is given
lines n-k to n+k are listed where n is the first statement in the procedure or func­
tion and k is small.

file [filename]
Change the current source file name to filename. If none is specified then the
current source file name is printed.

edit [filename]
edit procedure/function-name

Invoke an editor on filename or the current source file if none is specified. If a
procedure or function name is specified, the editor is invoked on the file that con­
tains it. Which editor is invoked by default depends on the installation. The
default can be overridden by setting the environment variable EDITOR to the
name of the desired editor.

pi Recompile the program and read in the new symbol table information.

sh command-line
Pass the command line to the shell for execution. The SHELL environment vari­
able determines which shell is used.

alias new-command-name old-command-name
This command makes pdx respond to new-command-name the way it used to
respond to old-command-name.

quit Exit pdx.

1-231

POX (1)

The following commands deal with the program at the px instruction level rather than
source level. They are not intended for general use.

tracei [address] [if cond]
tracei [variable] [at address] [if cond]
stopi [address] [if cond]
stopi [at] [address] [if cond]

Turn on tracing or set a stop using a px machine instruction addresses.

xi address [, address]
Print the instructions starting at the first address. Instructions up to the second
address are printed.

xd address [, address]
Print in octal the specified data location(s).

FILES
obj
.pdxinit

SEE ALSO
pi(I), px(l)
An Introduction to Pdx

RESTRICTIONS

Pascal object file
Pdx initialization file

Pdx does not understand sets, and provides no information about files.

The whatis command doesn't quite work for variant records.

Unexpected results occur if a procedure invoked with the call command does a non-local
goto.

STATUS
PDX (1) currently is not supported by Digital Equipment Corporation.

1-232

PI (1)

NAME
pi - Pascal interpreter code translator

SYNTAX
pi [option] [-i name...] name.p

DESCRIPTION
Pi translates the program in the file name.p leaving interpreter code in the file obj in the
current directory. The interpreter code can be executed using px. Pix performs the func­
tions of pi and px for 'load and go' Pascal.

The following flags are interpreted by pi; the associated options can also be controlled in
comments within the program as described in the Berkeley Pascal User's Manual.

-b Block buffer the file output.

-i Enable the listing for any specified procedures and functions and while processing
any specified include files.

-I Make a program listing during translation.

-n Begin each listed include file on a new page with a banner line.

-p Suppress the post-mortem control flow back trace if an error occurs; suppress state-
ment limit counting.

-s Accept standard Pascal only; non-standard constructs cause warning diagnostics.

-t Suppress runtime tests of subrange variables and treat assert statements as com-
ments.

-u Card image mode; only the first 72 characters of input lines are used.

-w Suppress warning diagnostics.

-z Allow execution profiling with pxp by generating statement counters, and arranging
for the creation of the profile data file pmon.out when the resulting object is exe­
cuted.

FILES
file.p
file.i
/usr/lib/pi2. *strings
/usr/lib/how pi*
obj -

SEE ALSO
Berkeley Pascal User's Manual
pix(l), px(l), pxp(l), pxref(1)

DIAGNOSTICS
For a basic explanation do

input file
include file(s)
text of the error messages
basic usage explanation
interpreter code output

pi

1-233

PI (1)

In the diagnostic output of the translator, lines containing syntax errors are listed with a
flag indicating the point of error. Diagnostic messages indicate the action which the
recovery mechanism took in order to be able to continue parsing. Some diagnostics indicate
only that the input is 'malformed.' This occurs if the recovery can find no simple correction
to make the input syntactically valid.

Semantic error diagnostics indicate a line in the source text near the point of error. Some
errors evoke more than one diagnostic to help pinpoint the error; the follow-up messages
begin with an ellipsis ' .. .'.

The first character of each error message indicates its class:

E
e
w
s

Fatal error; no code will be generated.
Non-fatal error.
Warning - a potential problem.
Non-standard Pascal construct warning.

If a severe error occurs which inhibits further processing, the translator will give a diagnos­
tic and then 'QUIT'.

RESTRICTIONS
The keyword packed is recognized but has no effect.

When include files are present, diagnostics relating to the last procedure in one file may
appear after the beginning of the listing of the next.

STATUS
PI (1) currently is not supported by Digital Equipment Corporation.

1-234

PIX(1)

NAME
pix - Pascal interpreter and executor

SYNTAX
pix [-blnpstuwz] [-i name ...] name.p [argument ...

DESCRIPTION
Pix is a 'load and go' version of Pascal which combines the functions of the interpreter code
translator pi and the executor px. It uses pi to translate the program in the file name.p
and, if there were no fatal errors during translation, causes the resulting interpreter code to
be executed by px with the specified arguments. A temporary file is used for the object
code; the file obj is neither created nor destroyed.

FILES
/usr/ucb/pi
/usr/ucb/px
/tmp/pix*
/usr /lib/how_pix

SEE ALSO
Berkeley Pascal User's Manual
pi(I), px(l)

DIAGNOSTICS
For a basic explanation do

pix

STATUS

Pascal translator
Pascal executor
temporary
basic explanation

PIX (1) currently is not supported by Digital Equipment Corporation.

1-235

PLOT(1G)

NAME
plot - graphics filters

SYNTAX
plot [-Tterminal [raster]]

DESCRIPTION
These commands read plotting instructions (see plot(5» from the standard input, and in
general produce plotting instructions suitable for a particular terminal on the standard out­
put.

If no terminal type is specified, the environment parameter $TERM (see environ (7» is
used. Known terminals are:

4014

450

300

300S

ver

Tektronix 4014 storage scope.

DA8I Hyterm 450 terminal (Diablo mechanism).

DA8I 300 or G8I terminal (Diablo mechanism).

DA8I 3008 terminal (Diablo mechanism).

Versatec D1200A printer-plotter. This version of plot places a scan-converted
image in '/usr/tmp/raster' and sends the result directly to the plotter device rather
than to the standard output. The optional argument causes a previously scan­
converted file raster to be sent to the plotter.

FILES
/usr/bin/tek
/usr/bin/t450
/usr /bin/t300
/usr /bin/t300s
/usr /bin/vplot
/usr/tmp/raster

SEE ALSO
plot(3X), plot(5)

RESTRICTIONS
There is no lockout protection for /usr/tmp/rast~r.

STATUS
PLOT (lG) currently is not supported by Digital Equipment Corporation.

1-236

PMERGE(1)

NAME
pmerge - pascal file merger

SYNTAX
pmerge name.p ...

DESCRIPTION
Pmerge assembles the named Pascal files into a single standard Pascal program. The
resulting program is listed on the standard output. It is intended to be used to merge a
collection of separately compiled modules so that they can be run through pi , or exported
to other sites.

FILES
/usr/tmp/MG* default temporary files

SEE ALSO
pc(I), pi(I),
Auxiliary documentation Berkeley Pascal User's Manual.

RESTRICTIONS
Very minimal error checking is done, so incorrect programs will produce unpredictable
results. Block comments should be placed after the keyword to which they refer or they are
likely to end up in bizarre places.

STATUS
PMERGE (1) currently is not supported by Digital Equipment Corporation.

© Digital Equipment Corporation 1984 1-237

PR(1)

NAME
pr - print file

SYNTAX
pr [option] ... [file] ...

DESCRIPTION
Pr produces a printed listing of one or more files. The output is separated into pages
headed by a date, the name of the file or a specified header, and the page number. If there
are no file arguments, pr prints its standard input.

Options apply to all following files but may be reset between files:

-n Produce n-column output.

+n Begin printing with page n.

-b Take the next argument as a page header.

-wn For purposes of multi-column output, take the width of the page to be n characters
instead of the default 72.

-f Use formfeeds instead of newlines to separate pages. A formfeed is assumed to use
up two blank lines at the top of a page. (Thus this option does not affect the
effective page length.)

-In Take the length of the page to be n lines instead of the default 66. Since the
minimum page length is 10 lines, n must be greater than 10.

-t Do not print the 5-line header or the 5-line trailer normally supplied for each page.

-sc Separate columns by the single character c instead of by the appropriate amount
of white space. A missing c is taken to be a tab.

-m Print all files simultaneously, each in one column,

Inter-terminal messages via write (1) are forbidden during a pr.

FILES
Idev/tty? to suspend messages.

SEE ALSO
cat(l)

DIAGNOSTICS
There are no diagnostics when pr is printing on a terminal.

STATUS
PR (1) is supported by Digital Equipment Corporation.

1-238

PRINT(1)

NAME
print - pr to the line printer

SYNTAX
print file ...

DESCRIPTION
Print pr's a copy of each named file on the line printer. It is a one line shell script:

lpr -p $*

SEE ALSO
Ipr(l), pr(l)

STATUS
PRINT (1) currently is not supported by Digital Equipment Corporation.

1-239

PRINTENV (1)

NAME
printenv - print out the environment

SYNTAX
printenv [name]

DESCRIPTION
Printenv prints out the values of the variables in the environment. If a name is specified,
only its value is printed.

If a name is specified and it is not defined in the environment, printenv returns exit status
1, else it returns status O.

SEE ALSO
sh(1), environ(7), csh(1)

STATUS
PRINTENV (1) is supported by Digital Equipment Corporation.

1-240

PRMAIL(1)

NAME
prmail - print out mail in the post office

SYNTAX
prmail [user ...]

DESCRIPTION
Prmail prints the mail which waits for you, or the specified user, in the post office. The
mail is not disturQed.

FILES
/usr/spool/mail/* post office

SEE ALSO
biff(I), mail(I), from(I), binmail(l)

STATUS ...
PRMAIL (1) currently is not supported by Digital Equipment Corporation.

1-241

PROF(1)

NAME
prof - display profile data

SYNTAX
prof [-a] [-I] [-n] [-z] [-s] [-v [-low [-high]]] [a.out [mon.out ...]]

DESCRIPTION
Prol interprets the file produced by the monitor subroutine. Under default modes, the
symbol table in the named object file (a. out default) is read and correlated with the profile
file (man. out default). For each external symbol, the percentage of time spent executing
between that symbol and the next is printed (in decreasing order), together with the
number of times that routine was called and the number of milliseconds per call. If more
than one profile file is specified, the output represents the sum of the profiles.

In order for the number of calls to a routine to be tallied, the -p option of cc, 177 or pc
must have been given when the file containing the routine was compiled. This option also
arranges for the profile file to be produced automatically.

Options are:

-a all symbols are reported rather than just external symbols.

-I the output is sorted by symbol value.

-n the output is sorted by number of calls

-s a summary profile file is produced in mon.sum. This is really only useful when
more than one profile file is specified.

-v all printing is suppressed and a graphic version of the profile is produced on the
standard output for display by the plot (1) filters. When plotting, the numbers low
and high, by default 0 and 100, may be given to cause a selected percentage of the
profile to be plotted with accordingly higher resolution.

-z routines which have zero usage (as indicated by call counts and accumulated time)
are nevertheless printed in the output.

FILES
mon.out for profile
a.out for namelist
mon.sum for summary profile

SEE ALSO
monitor(3), profi1(2), cc(1), plot(lG)

RESTRICTIONS
Beware of quantization errors.

Is confused by 177 which puts the entry points at the bottom of subroutines and functions.

STATUS
PROF (1) currently is not supported by Digital Equipment Corporation.

1-242

PS(1)

NAME
ps - process status

SYNTAX
ps [acegklstuvwx#]

DESCRIPTION
Ps prints information about processes. Normally, only your processes are candidates to be
printed by ps; specifying a causes other users processes to be candidates to be printed;
specifying x includes processes without control terminals in the candidate pool.

All output formats include, for each process, the process id PID, control terminal of the
process TT, cpu time used by the process TIME (this includes both user and system time),
the state STAT of the process, and an indication of the COMMAND which is running.
The state is given by a sequence of four letters, e.g. "RWNA". The first letter indicates the
runnability of the process: R for runnable processes, T for stopped processes, P for
processes in page wait, D for those in disk (or other short term) waits, S for those sleeping
for less than about 20 seconds, and I for idle (sleeping longer than about 20 seconds)
processes. The second letter indicates whether a process is swapped out, showing W if it is,
or a blank if it is loaded (in-core); a process which has specified a soft limit on memory
requirements and which is exceeding that limit shows >; such a process is (necessarily) not
swapped. The third letter indicates whether a process is running with altered CPU
scheduling priority (nice); if the process priority is reduced, an N is shown, if the process
priority has been artificially raised then a '<' is shown; processes running without special
treatment have just a blank. The final letter indicates any special treatment of the process
for virtual memory replacement; the letters correspond to options to the vadvise (2) call;
currently the possibilities are A standing for V A_ANOM, S for V A..SEQL and blank for
V A_NORM; an A typically represents a lisp (1) in garbage collection, S is typical of large
image processing programs which are using virtual memory to sequentially address volumi­
nous data.

Here are the options:

a asks for information about all processes with terminals (ordinarily only one's own
processes are displayed).

c prints the command name, as stored internally in the system for purposes of account­
ing, rather than the command arguments, which are kept in the process' address
space. This is more reliable, if less informative, since the process is free to destroy the
latter information.

e Asks for the environment to be printed as well as the arguments to the command.

g Asks for all processes. Without this option, ps only prints "interesting" processes.
Processes are deemed to be uninteresting if they are process group leaders. This nor­
mally eliminates top-level command interpreters and processes waiting for users to
login on free terminals.

k causes the file /vmcore is used in place of /dev/kmem and /dev/mem. This is used for
postmortem system debugging.

1-243

PS(1)

asks for a long listing, with fields PPID, CP, PRI, NI, ADDR, SIZE, RSS and
WCHAN as described below.

s Adds the size SSIZ of the kernel stack of each process (for use by system maintainers)
to the basic output format.

tx restricts output to processes whose controlling tty is x (which should be specified as
printed by ps, e.g. t3 for tty3, tco for console, tdO for ttydO, t? for processes with no
tty, t for processes at the current tty, etc). This option must be the last one given.

u A user oriented output is produced. This includes fields USER, %CPU, NICE, SIZE,
and RSS as described below.

v A version of the output containing virtual memory statistics is output. This includes
fields RE, SL, PAGEIN, SIZE, RSS, LIM, TSIZ, TRS, %CPU and %MEM, described
below.

w Use a wide output format (132 columns rather than 80); if repeated, e.g. ww, use arbi­
trarily wide output. This information is used to decide how much of long commands
to print.

x asks even about processes with no terminal.

A process number may be given, (indicated here by #), in which case the output is
restricted to that process. This option must also be last.

A second argument is taken to be the file containing the system's name list. Otherwise,
/vmunix is used. A third argument tells ps where to look for core if the k option is given,
instead of /vmcore. If a fourth argument is given, it is taken to be the name of a swap file
to use instead of the default /dev/drum.

Fields which are not common to all output formats:
USER name of the owner of the process
%CPU cpu utilization of the process; this is a decaying average over up to a minute of

previous (real) time. Since the time base over which this is computed varies
(since processes may be very young) it is possible for the sum of all % CPU fields

NICE
SIZE
RSS
LIM

to exceed 100%.
(or NI) process scheduling increment (see setpriority(2»
virtual size of the process (in 1024 byte units)
real memory (resident set) size of the process (in 1024 byte units)
soft limit on memory used, specified via a call to setrlimit (2); if no limit has
been specified then shown as xx

TSIZ size of text (shared program) image
TRS size of resident (real memory) set of text
%MEM percentage of real memory used by this process.
RE residency time of the process (se(!onds in core)
SL sleep time of the process (seconds blocked)
PAGEIN number of disk i/o's resulting from references by the process to pages not loaded

in core.
UID numerical user-id of process owner

1-244

PPID
CP

numerical id of parent of process
short-term cpu utilization factor (used in scheduling)
process priority (non-positive when in non-interruptible wait)
swap address of the process

PS(1)

PRI
ADDR
WCHAN event on which process is waiting (an address in the system), with the initial

part of the address trimmed off e.g. 80004000 prints as 4000.

F flags associated with process as in <sys/proc.h>:
SLOAD 000001 in core
SSYS 000002 swapper or pager process
SLOCK 000004 process being swapped out
SSWAP 000008 save area flag
STRC 000010 process is being traced
SWTED 000020 another tracing flag
SULOCK 000040 user settable lock in core
SP AGE 000080 process in page wait state
SKEEP 000100 another flag to prevent swap out
SDL YU 000200 delayed unlock of pages
SWEXIT 000400 working on exiting
SPHYSIO 000800 doing physical i/o (bio.c)
SVFORK 001000 process resulted from vforkO
SVFDONE 002000 another vfork flag
SNOVM 004000 no vm, parent in a vforkO
SPAGI 008000 in it data space on demand from inode
SANOM 010000 system detected anomalous vm behavior
SUANOM 020000 user warned of anomalous vm behavior
STIMO 040000 timing out during sleep
SDETACH 080000 detached inherited by init
SOUSIG 100000 using old signal mechanism

A process that has exited and has a parent, but has not yet been waited for by the parent is
marked <defunct>; a process which is blocked trying to exit is marked <exiting>; Ps
makes an educated guess as to the file name and arguments given when the process was
created by examining memory or the swap area. The method is inherently somewhat
unreliable and in any event a process is entitled to destroy this information, so the names
cannot be counted on too much.

FILES
/vmunix
/dev/kmem
/dev/drum
/vmcore
/dev

system namelist
kernel memory
swap device
core file
searched to find swap device and tty names

1-245

PS(1)

SEE ALSO
kill(1), w(1)

RESTRICTIONS
Things can change while ps is running; the picture it gives is only a close approximation to
reality.

STATUS
PS (1) is supported by Digital Equipment Corporation.

1-246

PTI (1)

NAME
pti - phototypesetter interpreter

SYNTAX
pti [file ...]

DESCRIPTION
Pti shows the commands in a stream from the standard output of troff(1) using troff's -t
option, interpreting them as they would act on the typesetter. Horizontal motions shows as
counts iJl internal units and are marked with '<' and '>' indicating left and right motion.
Vertical space is called lead and is also indicated.

SEE ALSO
troff(1)

STATUS
PTI (1) currently is not supported by Digital Equipment Corporation.

1-247

PTX(1)

NAME
ptx - permuted index

SYNTAX
ptx [option]... [input [output]]

DESCRIPTION
Ptx generates a permuted index to file input on file output (standard input and output
default). It has three phases: the first does the permutation, generating one line for each
keyword in an input line. The keyword is rotated to the front. The permuted file is then
sorted. Finally, the sorted lines are rotated so the keyword comes at the middle of the
page. Ptx produces output in the form:

.xx "tail" "before keyword" "keyword and after" "head"

where .xx may be an nroff or troff(l) macro for user-defined formatting. The before key­
word and keyword and after fields incorporate as much of the line as will fit around the
keyword when it is printed at the middle of the page. Tail and head, at least one of which
is an empty string "", are wrapped-around pieces small enough to fit in the unused space at
the opposite end of the line. When original text must be discarded, '/' marks the spot.

The following options can be applied:

-f Fold upper and lower case letters for sorting.

-t Prepare the output for the phototypesetter; the default line length is 100 charac-
ters.

-w n Use the next argument, n, as the width of the output line. The default line length
is 72 characters.

-g n Use the next argument, n, as the number of characters to allow for each gap among
the four parts of the line as finally printed. The default gap is 3 characters.

-0 only Use as keywords only the words given in the only file.

-i ignore
Do not use as keywords any words given in the ignore file. If the -i and -0

options are missing, use lusrllibleign as the ignore file.

-b break
Use the characters in the break file to separate words. In any case, tab, newline,
and space characters are always used as break characters.

-r Take any leading nonblank characters of each input line to be a reference
identifier (as to a page or chapter) separate from the text of the line. Attach that
identifier as a 5th field on each output line.

The index for this manual was generated using ptx.

FILES
lusr /binI sort
lusr/lib/eign

1-248

PTX(1)

RESTRICTIONS
Line length counts do not account for overstriking or proportional spacing.

STATUS
PTX (1) currently is not supported by Digital Equipment Corporation.

1-249

PWD(1)

NAME
pwd - working directory name

SYNTAX
pwd

DESCRIPTION
Pwd prints the pathname of the working (current) directory.

SEE ALSO
cd(1), csh(l), getwd(3)

RESTRICTIONS
In csh(l) the command dirs is always faster (although it can give a different answer in the
rare case that the current directory or a containing directory was moved after the shell des­
cended into it).

STATUS
PWD (1) is supported by Digital Equipment Corporation.

1-250

PX(1)

NAME
px - Pascal interpreter

SYNTAX
pX [obj [argument ...]]

DESCRIPTION
Px interprets the abstract machine code generated by pi. The first argument is the file to
be interpreted, and defaults to obj; remaining arguments are available to the Pascal pro­
gram using the built-ins argv and argc. Px is also invoked by pix when running 'load and
go'.

If the program terminates abnormally an error message and a control flow backtrace are
printed. The number of statements executed and total execution time are printed after
normal termination. The p option of pi suppresses all of this except the message indicating
the cause of abnormal termination.

FILES
obj
pmon.out

SEE ALSO

default object file
profile data file

Berkeley Pascal User's Manual
pi(I), pix(l)

DIAGNOSTICS
Most run-time error messages are self-explanatory. Some of the more unusual ones are:

Reference to an inactive file
A file other than input or output was used before a call to reset or rewrite.

Statement count limit exceeded
The limit of 500,000 executed statements (which prevents excessive looping or recur­
sion) has been exceeded.

Bad data found on integer read
Bad data found on real read

Usually, non-numeric input was found for a number. For reals, Pascal requires digits
before and after the decimal point so that numbers like '.1' or '21.' evoke the second
diagnostic.

panic: Some message
Indicates a internal inconsistency detected in px probably due to a Pascal system
bug.

RESTRICTIONS
Post-mortem traceback is not limited; infinite recursion leads to almost infinite traceback.

STATUS
PX (1) currently is not supported by Digital Equipment Corporation.

1-251

PXP(1)

NAME
pxp - Pascal execution profiler

SYNTAX
pxp [-acdefjnstuw_] [-23456789] [-z [name ...]] name.p

DESCRIPTION
Pxp can be used to obtain execution profiles of Pascal programs or as a pretty-printer. To
produce an execution profile all that is necessary is to translate the program specifying the
z option to pi or pix, to execute the program, and to then issue the command

pxp -z name.p

A reformatted listing is output if none of the c, t, or z options are specified; thus

pxp old.p > new.p

places a pretty-printed version of the program in 'old.p' in the file 'new.p'.

The use of the following options of pxp is discussed in sections 2.6, 5.4, 5.5 and 5.10 of the
Berkeley Pascal User's Manual.

-a Print the bodies of all procedures and functions in the profile; even those which were
never executed.

-c Extract profile data from the file core.

-d Include declaration parts in a profile.

-e Eliminate include directives when reformatting a file; the include is replaced by
the reformatted contents of the specified file.

-f Fully parenthesize expressions.

-j Left justify all procedures and functions.

-n Eject a new page as each file is included; in profiles, print a blank line at the top of
the page.

-s Strip comments from the input text.

-t Print a table summarizing procedure and function call counts.

-u Card image mode; only the first 72 characters of input lines are used.

-w Suppress warning diagnostics.

-z Generate an execution profile. If no name s, are given the profile is of the entire pro-
gram. If a list of names is given, then only any specified procedures or functions
and the contents of any specified include files will appear in the profile.

Underline keywords.

-d With d a digit, 2 ~ d ~ 9, causes pxp to use d spaces as the basic indenting unit.
The default is 4.

1-252

FILES
name.p
name.i
pmon.out
core
/usr/lib/how pxp

SEE ALSO

input file
include file(s)
profile data
profile data source with -c
information on basic usage

Berkeley Pascal User's Manual
pi(I), px(l)

DIAGNOSTICS
For a basic explanation do

pxp

PXP(1)

Error diagnostics include 'No profile data in file' with the c option if the z option was not
enabled to pi; 'Not a Pascal system core file' if the core is not from a px execution; 'Pro­
gram and count data do not correspond' if the program was changed after compilation,
before profiling; or if the wrong program is specified.

RESTRICTIONS
Does not place multiple statements per line.

STATUS
PXP (1) currently is not supported by Digital Equipment Corporation.

1-253

PXREF(1)

NAME
pxref - Pascal cross-reference program

SYNTAX
pxref [-] name

DESCRIPTION
Pxref makes a line numbered listing and a cross-reference of identifier usage for the pro­
gram in name. The optional '-' argument suppresses the listing. The keywords goto and
label are treated as identifiers for the purpose of the cross-reference. Include directives
are not processed, but cause the placement of an entry indexed by '#include' in the cross­
reference.

SEE ALSO
Berkeley Pascal User's Manual

RESTRICTIONS
Identifiers are trimmed to 10 characters.

STATUS
PXREF (1) currently is not supported by Digital Equipment Corporation.

1-254

QUOTA(1)

NAME
quota - display disc usage and limits

SYNTAX
quota [-qv] [user]

DESCRIPTION
Quota displays users' disc usage and limits. Only the super-user may use the optional user
argument to view the limits of users other than himself.

The -q flag prints a more terse message, containing only information on file systems where
usage is over quota.

If a -v flag is supplied, quota will also display user's quotas on file systems where no
storage is allocated.

Quota reports only on file systems which have disc quotas. If quota exits with a non-zero
status, one or more file systems are over quota.

SEE ALSO
quota(2), quotaon(8)

STATUS
QUOTA (1) currently is not supported by Digital Equipment Corporation.

1-255

RANLlB(1)

NAME
ranlib - convert archives to random libraries

SYNTAX
ranlib archive ...

DESCRIPTION
Ranlib converts each archive to a form which the loader can load more rapidly. Ranlib
does this by adding a table of contents callecL.SYMDEF to the beginning of the archive.
Ranlib uses ar{l) to reconstruct the archive, so that sufficient temporary file space must be
available in the file system which contains the current directory.

SEE ALSO
Id(1), ar(1), 10rder(1)

RESTRICTIONS
Because generation of a library by ar and randomization of the library by ranlib are
separate processes, phase errors are possible. The loader, ld, warns when the modification
date of a library is more recent than the creation date of its dictionary; but this means
that you get the warning even if you only copy the library.

STATUS
RANLIB (1) is supported by Digital Equipment Corporation.

1-256

RATFOR(1)

NAME
ratfor - rational Fortran dialect

SYNTAX
ratfor [option ...] [filename ...]

DESCRIPTION
Ratfor converts a rational dialect of Fortran into ordinary irrational Fortran. Ratfor pro­
vides control flow constructs essentially identical to those in C:

statement grouping:
{ statement; statement; statement }

decision -making:
if (condition) statement [else statement]
switch (integer value) {

case integer: statement

[default:] statement

loops: while (condition) statement
for ,(expression; condition; expression) statement
do limits statement
repeat statement [until (condition)]
break
next

and some syntactic sugar to make programs easier to read and write:

free form input:
multiple statements/line; automatic continuation

comments:
this is a comment

translation of relationals:
>, >=, etc., become .GT., .GE., etc.

return (expression)
returns expression to caller from function

define: define name replacement

include: include filename

Ratfor is best used with f77(1).

SEE ALSO
f77(1)
B. W. Kernighan and P. J. Plauger, Software Tools, Addison-Wesley, 1976.

1-257

RATFOR(1)

STATUS
RATFOR (1) currently is not supported by Digital Equipment Corporation.

1-258

RCP (1C)

NAME
rcp - remote file copy

SYNTAX
rcp file1 file2
rcp [-r] file ... directory

DESCRIPTION
Rcp copies files between machines. Each file or directory argument is either a remote file
name of the form "rhost:path", or a local file name (containing no ';' characters, or a 'I'
before any ':'s.)

If the -r is specified and any of the source files are directories, rcp copies each subtree
rooted at that name; in this case the destination must be a directory.

If path is not a full path name, it is interpreted relative to your login directory on rhost. A
path on a remote host may be quoted (using \ ", or ') so that the metacharacters are inter­
preted remotely.

Rcp does not prompt for passwords; your current local user name must exist on rhost and
allow remote command execution via rsh(1C).

Rcp handles third party copies, where neither source nor target files are on the current
machine. Hostnames may also take the form "rhost.rname" to use rna me rather than the
current user name on the remote host.

SEE ALSO
ftp(lC), rsh(lC), rlogin(lC)

RESTRICTIONS
Doesn't detect all cases where the target of a copy might be a file in cases where only a
directory should be legal.
Is confused by any output generated by commands in a .login, .profile, or .cshrc file on the
remote host.

STATUS
RCP (lC) is supported by Digital Equipment Corporation.

1-259

REFER(1)

NAME
refer - find and insert literature references in documents

SYNTAX
refer [-a] [-b] [-c] [-e] [-fn] [-kx] [-lm,n] [-n] [-p bib] [-skeys] [
-Bl.m] [-P] [-S] [file '"]

DESCRIPTION
Refer is a preprocessor for nroff or troff(1) that finds and formats references for footnotes
or endnotes. It is also the base for a series of programs designed to index, search, sort, and
print stand-alone bibliographies, or other data entered in the appropriate form.

Given an incomplete citation with sufficiently precise keywords, refer will search a biblio­
graphic database for references containing these keywords anywhere in the title, author,
journal, etc. The input file (or standard input) is copied to standard output, except for
lines between -. [and .] delimiters, which are assumed to contain keywords, and are replaced
by information from the bibliographic database. The user may also search different data­
bases, override particular fields, or add new fields. The reference data, from whatever
source, are assigned to a set of troff strings. Macro packages such as ms (7) print the
finished reference text from these strings. By default references are flagged by footnote
numbers.

The following options are available:

-ar Reverse the first n author names (Jones, J. A. instead of J. A. Jones). If n is omitted
all author names are reversed.

-b Bare mode: do not put any flags in text (neither numbers nor labels).

-ckeys
Capitalize (with CAPS SMALL CAPS) the fields whose key-letters are in keys.

-e Instead of leaving the references where encountered, accumulate them until a
sequence of the form

. [
$LIST$
.]

is encountered, and then write out all references collected so far. Collapse references
to same source.

-fn Set the footnote number to n instead of the default of 1 (one). With labels rather
than numbers, this flag is a no-oPe

- kx Instead of numbering references, use labels as specified in a reference data line
beginning % x; by default x is L.

-lm,n

1-260

Instead of numbering references, use labels made from the senior author's last name
and the year of publication. Only the first m letters of the last name and the last n
digits of the date are used. If either m or n is omitted the entire name or date
respectively is used.

REFER(1)

-n Do not search the default file /usr/dict/papers/lnd. If there is a REFER environ­
ment variable, the specified file will be searched instead of the default file; in this
case the -n flag has no effect.

-p bib
Take the next argument bib as a file of references to be searched. The default file is
searched last.

-skeys
Sort references by fields whose key-letters are in the keys string; permute reference
numbers in text accordingly. Implies -e. The key-letters in keys may be followed
by a number to indicate how many such fields are used, with + taken as a very large
number. The default is AD which sorts on the senior author and then date; to sort,
for example, on all authors and then title use -sA+T.

-Bl.m
Bibliography mode. Take a file composed of records separated by blank lines, and
turn them into troff input. Label l will be turned into the macro .m with l defaulting
to %X and .m defaulting to .AP (annotation paragraph).

- P Place punctuation marks .,:;?! after the reference signal, rather than before. (Periods
and commas used to be done with strings.)

-8 Produce references in the Natural or Social Science format.

To use your own references, put them in the format described below. They can be searched
more rapidly by running indxbib (1) on them before using refer; failure to index results in a
linear search. When refer is used with the eqn, neqn or tbl preprocessors refer should be
first, to minimize the volume of data passed through pipes.

The refer preprocessor and associated programs expect input from a file of references com­
posed of records separated by blank lines. A record is a set of lines (fields), each containing
one kind of information. Fields start on a line beginning with a "%", followed by a key­
letter, then a blank, and finally the contents of the field, and continue until the next line
starting with" %". The output ordering and formatting of fields is controlled by the mac­
ros specified for nroff/troff (for footnotes and endnotes) or roffbib (for stand-alone
bibliographies). For a list of the most common key-letters and their corresponding fields,
see addbib(l). An example of a refer entry is given below.

EXAMPLE
%A M. E. Lesk
% T Some Applications of Inverted Indexes on the UNIX System
% B UNIX Programmer's Manual
%V 2b
% I Bell Laboratories
%C Murray Hill, NJ
%D 1978

1-261

REFER(1)

FILES
/usr/dict/papers directory of default publication lists
/usr/lib/refer directory of companion programs

SEE ALSO
addbib(l), sortbib(l), roffbib(l), indxbib(l), lookbib(l)

RESTRICTIONS
Blank spaces at the end of lines in bibliography fields will cause the records to sort and
reverse incorrectly. Sorting large numbers of references causes a core dump.

STATUS
REFER (1) currently is not supported by Digital Equipment Corporation.

1-262

RESET(1)

NAME
reset - reset the teletype bits to a sensible state

SYNTAX
reset

DESCRIPTION
Reset sets the terminal to cooked mode, turns off cbreak and raw modes, turns on nl, and
restores special characters that are undefined to their default values.

This is most useful after a program dies leaving a terminal in a funny state; you have to
type "<LF>reset<LF>" to get it to work then to the shell, as <CR> often doesn't work;
often none of this will echo.

It is a good idea to follow reset with tset(1)

SEE ALSO
stty(1), tset(1)

RESTRICTIONS
Doesn't set tabs properly; it can't intuit personal choices for interrupt and line kill charac­
ters, so it leaves these set to the local system standards.

STATUS
RESET (1) is supported by Digital Equipment Corporation.

1-263

REV(1)

NAME
rev - reverse lines of a file

SYNTAX
rev [file] ...

DESCRIPTION
Rev copies the named files to the standard output, reversing the order of characters in
every line. If no file is specified, the standard input is copied.

STATUS
REV (1) currently is not supported by Digital Equipment Corporation.

1-264

NAME
rlogin - remote login

SYNTAX
rio gin rhost [-ee] [-I username]
rhost [-ee] [-I username]

DESCRIPTION

RLOGIN(1C)

Rlogin connects your terminal on the current local host system lhost to the remote host
system rhost.

Each host has a file /ete/hosts.equiv which contains a list of rhost's with which it shares
account names. (The host names must be the standard names as described in rsh(1C).)
When you rlogin as the same user on an equivalent host, you don't need to give a password.
Each user may also have a private equivalence list in a file .rhosts in his login directory.
Each line in this file should contain a rhost and a username separated by a space, giving
additional cases where logins without passwords are to be permitted. If the originating user
is not equivalent to the remote user, then a login and password will be prompted for on the
remote machine as in login(1). To avoid some security problems, the .rhosts file must be
owned by either the remote user or root and may not be a symbolic link.

Your remote terminal type is the same as your local terminal type (as given in your
environment TERM variable). All echoing takes place at the remote site, so that (except
for delays) the rlogin is transparent. Flow control via AS and AQ and flushing of input and
output on interrupts are handled properly. A line of the form "-." disconnects from the
remote host, where "-H is the escape character. A different escape character may be
specified by the -e option. There is no space separating this option flag and the argument
character.

SEE ALSO
rsh(1C)

FILES
/usr/hosts/*

STATUS

for rhost version of the command

RLOGIN (1C) is supported by Digital Equipment Corporation.

© Digital Equipment Corporation 1984 1-265

RM(1)

NAME
rm, rmdir - remove (unlink) files or directories

SYNTAX
rm [-f] [-r] [-i] [-] file ...

rmdir dir ...

DESCRIPTION
Rm removes the entries for one or more files from a directory. If an entry was the last link
to the file, the file is destroyed. Removal of a file requires write permission in its directory,
but neither read nor write permission on the file itself.

If a file has no write permission and the standard input is a terminal, its permissions are
printed and a line is read from the standard input. If that line begins with 'y' the file is
deleted, otherwise the file remains. When the -f (force) option is specified, no questions
are asked, and only system or usage messages are displayed.

If a designated file is a directory, an error comment is printed unless the optional argument
-r has been used. In that case, rm recursively deletes the entire contents of the specified
directory, and the directory itself.

If the -i (interactive) option is in effect, rm asks whether to delete each file, and, under -r,
whether to examine each directory.

The null option - indicates that all the arguments following it are to be treated as file
names. This allows the specification of file names starting with a minus.

Rmdir removes entries for the named directories, which must be empty.

SEE ALSO
rm(l), unlink(2), rmdir(2)

STATUS
RM (1) is supported by Digital Equipment Corporation.

1-266

RMAIL(1)

NAME
rmail - handle remote mail received via uucp

SYNTAX
rmail user ...

DESCRIPTION
Rmail interprets incoming mail received via uucp(lC), collapsing "From" lines in the form
generated by binmail(l) into a single line of the form "return-path!sender", and passing the
processed mail on to sendmail(8).

Rmail is explicitly designed for use with uucp and sendmail.

SEE ALSO
binmail(l), uucp(lC), sendmail(8)

STATUS
RMAIL (1) currently is not supported by Digital Equipment Corporation.

1-267

RMDIR(1)

NAME
rmdir, rm - remove (unlink) directories or files

SYNTAX
rmdir dir ...

rm [-f] [-r] [-i] [-] file ...

DESCRIPTION
Rmdir removes entries for the named directories, which must be empty.

Rm removes the entries for one or more files from a directory. If an entry was the last link
to the file, the file is destroyed. Removal of a file requires write permission in its directory,
but neither read nor write permission on the file itself.

If a file has no write permission and the standard input is a terminal, its permissions are
printed and a line is read from the standard input. If that line begins with 'y' the file is
deleted, otherwise the file remains. No questions are asked and no errors are reported
when the -f (force) option is given.

If a designated file is a directory, an error comment is printed unless the optional argument
-r has been used. In that case, rm recursively deletes the entire contents of the specified
directory, and the directory itself.

If the -i (interactive) option is in effect, rm asks whether to delete each file, and, under -r,
whether to examine each directory.

The null option - indicates that all the arguments following it are to be treated as file
names. This allows the specification of file names starting with a minus.

SEE ALSO
rm(1), unlink(2), rmdir(2)

STATUS
RMDIR (1) is supported by Digital Equipment Corporation.

1-268

)

ROFFBIB(1)

NAME
roffbib - run off bibliographic database

SYNTAX
rotfbib [-e] [- h] [-n] [-0] [-r] [-8] [-Tterm] [-x] [-m mac] [-V] [
-Q] [file ...]

DESCRIPTION
'Roffbib prints out all records in a bibliographic database, in bibliography format rather
than as. footnotes or endnotes. Generally it is used in conjunction with sortbib:

sortbib database I roffbib

Roffbib accepts most of the options understood by nroff(l), most importantly the -T flag
to specify terminal type.

If abstracts or comments are entered following the % X field key, roffbib will format them
into paragraphs for an annotated bibliography. Several % X fields may be given if several
annotation paragraphs are desired. The -x flag will suppress the printing of these
abstracts.

A user-defined set of macros may be specified after the -m option. There should be a
space between the -m and the macro filename. This set of macros will replace the ones
defined in lusr/lib/tmac/tmac.bib. The -V flag will send output to the Versatec; the -Q
flag will queue output for the phototypesetter.

Four command-line registers control formatting style of the bibliography, much like the
number registers of ms(7). The command-line argument -rN1 will number the references
starting at one (1). The flag -rV2 will double space the bibliography, while -rV1 will dou­
ble space references but single space annotation paragraphs. The line length can be
changed from the default 6.5 inches to 6 inches with the -r L6i argument, and the page
offset can be set from the default of 0 to one inch by specifying -rOli (capital 0, not zero).
Note: with the -V and -Q flags the default page offset is already one inch.

FILES
lusr/lib/tmac/tmac.bib file of macros used by nroffltroff

SEE ALSO
refer(l), addbib(l), sortbib(l), indxbib(l), lookbib(l)

STATUS
ROFFBIB (1) currently is not supported by Digital Equipment Corporation.

1-269

RSH(1C)

NAME
rsh - remote shell

SYNTAX
rsh host [-1 username] [-n] command
host [-1 username] [-n] command

DESCRIPTION
Rsh connects to the specified host, and executes the specified command. Rsh copies its
standard input to the remote command, the standard output of the remote command to its
standard output, and the standard error of the remote command to its standard error.
Interrupt, quit and terminate signals are propagated to the remote command; rsh normally
terminates when the remote command does.

The remote username used is the same as your local username, unless you specify a
different remote name with the -1 option. This remote name must be equivalent (in the
sense of rlogin(lC» to the originating account; no provision is made for specifying a pass­
word with a command.

If you omit command, then instead of executing a single command, you will be logged in on
the remote host using rlogin(lC).

Shell metacharacters which are not quoted are interpreted on local machine, while quoted
metacharacters are interpreted on the remote machine. Thus the command

rsh other host cat remdtefile > > localfile

appends the remote file remotefile to the local file localfile, while

rsh otherhost cat remotefile "»" otherremotefile

appends remotefile to otherremotefile.

Host names are given in the file /etc/hosts. Each host has one standard name (the first
name given in the file), which is rather long and unambiguous, and optionally one or more
nicknames. The host names for local machines are also commands in the directory
/usr/hosts; if you put this directory in your search path then the rsh can be omitted.

FILES
/etc/hosts
/usr/hosts/*

SEE ALSO
rlogin(lC)

RESTRICTIONS
If you are using csh(l) and put a rsh(lC) in the background without redirecting its input
away from the terminal, it will block even if no reads are posted by the remote command.
If no input is desired you should redirect the input of rsh to /dev/null using the -n option.

You cannot run an interactive command (like vi(l»; use rlogin(lC).

1-270

RSH(1C)

Stop signals stop the local rsh process only.

STATUS
RSH (lC) is supported by Digital Equipment Corporation.

© Digital Equipment Corporation 1984 1-271

RUPTIME (1 C)

NAME
ruptime - show host status of local machines

SYNTAX
ruptime [-a] [-I] [-t] [-u]

DESCRIPTION
Ruptime gives a status line like uptime for each machine on the local network; these are
formed from packets broadcast by each host on the network once a minute.

Machines for which no status report has been received for 5 minutes are shown as being
down.

Users idle an hour or more are not counted unless the -a flag is given.

Normally, the listing is sorted by host name. The -I , -t , and -u flags specify sorting by
load average, uptime, and number of users, respectively. If more than one sort option is
specified, ruptime ignores all but the last and sorts the data accordingly.

FILES
lusrlspool/rwho/whod. * data files

SEE ALSO
rwho(1C)

STATUS
RUPTIME (IC) is supported by Digital Equipment Corporation.

1-272

RWHO(1C)

NAME
rwho - who's logged in on local machines

SYNTAX
rwho [-a]

DESCRIPTION
The rwho command produces output similar to who, but for all machines on the local net­
work. If no report has been received from a machine for 5 minutes then rwho assumes the
machine is down, and does not report users last known to be logged into that machine.

If a users hasn't typed to the system for a minute or more, then rwho reports this idle time.
If a user hasn't typed to the system for an hour or more, then the user will be omitted from
the output of rwho unless the -a flag is given.

FILES
/usr/spool/rwho/whod. * information about other machines

SEE ALSO
ruptime(IC), rwhod(8C)

STATUS
RWHO (IC) is supported by Digital Equipment Corporation.

1-273

SCRIPT(1)

NAME
script - make typescript of terminal session

SYNTAX
script [-a] [file]

DESCRIPTION
Script makes a typescript of everything printed on your terminal. The typescript is written
to file, or appended to file if the -a option is given. It can be sent to the line printer later
with lpr. If no file name is given, the typescript is saved in the file typescript.

The script emls when the forked shell exits.

This program is useful when using a crt and a hard -copy recor<l of the dialog is desired, as
for a student handing in a program that was developed on a crt when hard-copy terminals
are in short supply.

STATUS
SCRIPT (1) currently is not supported by Digital Equipment Corporation.

1-274

SED(1)

NAME
sed - stream editor

SYNTAX
sed [-n] [-e script] [-f sfile] [file] ...

DESCRIPTION
Sed copies the named files (standard input default) to the standard output, edited accord­
ing to a script of commands. The -f option causes the script to be taken from file sfile;
these options accumulate. If there is just one -e option and no -f's, the flag -e may be
omitted. The -n option suppresses the default output.

A script consists of editing commands, one per line, of the following form:

[address [, address]] function [arguments]

In normal operation sed cyclically copies a line of input into a pattern space (unless there
is something left after a 'D' command), applies in sequence all commands whose addresses
select that pattern space, and at the end of the script copies the pattern space to the stan­
dard output (except under -n) and deletes the pattern space.

An address is either a decimal number that counts input lines cumulatively across files, a
'$' that addresses the last line of input, or a context address, '/regular expression/', in the
style of ed(1) modified thus:

The escape sequence' \n' matches a newline embedded in the pattern space.

A command line with no addresses selects every pattern space.

A command line with one address selects each pattern space that matches the address.

A command line with two addresses selects the inclusive range from the first pattern space
that matches the first address through the next pattern space that matches the second. (If
the second address is a number less than or equal to the line number first selected, only one
line is selected.) Thereafter the process is repeated, looking again for the first address.

Editing commands can be applied only to non-selected pattern spaces by use of the nega­
tion function '!' (below).

In the following list of functions the maximum number of permissible addresses for each
function is indicated in parentheses.

An argument denoted text consists of one or more lines, all but the last of which end with
'\' to hide the newline. Backslashes in text are treated like backslashes in the replacement
string of an's' command, and may be used to protect initial blanks and tabs against the
stripping that is done on every script line.

An argument denoted rfile or wfile must terminate the command line and must be preceded
by exactly one blank. Each wfile is created before processing begins. There can be at most
10 distinct wfile arguments.

(1)
text

1-275

SED(1)

Append. Place text on the output before reading the next input line.

(2) b label

(2)c \
text

Branch to the ':' command bearing the label. If label is empty, branch to the end
of the script.

Change. Delete the pattern space. With 0 or 1 address or at the end of a 2-
address range, place text on the output. Start the next cycle.

(2) d Delete the pattern space. Start the next cycle.

(2) D Delete the initial segment of the pattern space through the first newline. Start the
next cycle.

(2) g Replace the contents of the pattern space by the contents of the hold space.

(2) G Append the contents of the hold space to the pattern space.

(2) h Replace the contents of the hold space by the contents of the pattern space.

(2) H Append the contents of the pattern space to the hold space.

(1) i\
text

Insert. Place text on the standard output.

(2) n Copy the pattern space to the standard output. Replace the pattern space with
the next line of input.

(2) N Append the next line of input to the pattern space with an embedded newline.
(The current line number changes.)

(2) p Print. Copy the pattern space to the standard output.

(2) P Copy the initial segment of the pattern space through the first newline to the stan­
dard output.

(1) q Quit. Branch to the end of the script. Do not start a new cycle.

(2) r rfile
Read the contents of rfile. Place them on the output before reading the next input
line.

(2) s/regular expression/replacement/flags

1-276

Substitute the replacement string for instances of the regular expression in the
pattern space. Any character may be used instead of 'I'. For a fuller description
see ed(l). Flags is zero or more of

g Global. Substitute for all nonoverlap ping instances of the regular expression
rather than just the first one.

p Print the pattern space if a replacement was made.

w wfile

SED(1)

Write. Append the pattern space to wfile if a replacement was made.

(2)t label
Test. Branch to the ':' command bearing the label if any substitutions have been
made since the most recent reading of an input line or execution of a 't'. If label is
empty, branch to the end of the script.

(2)w wfile
Write. Append the pattern space to wfile.

(2) x Exchange the contents of the pattern and hold spaces.

(2) y/stringl/string2/
Transform. Replace all occurrences of characters in string 1 with the corresponding
character in string2. The lengths of stringl and string2 must be equal.

(2)! function
Don't. Apply the function (or group, if function is '{') only to lines not selected by
the address(es).

(0): label
This command does nothing; it bears a label for 'b' and 't' commands to branch to.

(1) = Place the current line number on the standard output as a line.

(2) { Execute the following commands through a matching '}' only when the pattern
space is selected.

(0) An empty command is ignored.

SEE ALSO
ed(1), grep(1), awk(1), lex(1)

STATUS
SED (1) currently is not supported by Digital Equipment Corporation.

1-277

SENDBUG(1)

NAME
sendbug - mail a system bug report to 4bsd-bugs

SYNTAX
sendbug [address]

DESCRIPTION
Bug reports sent to '4bsd-bugs@BERKELEY' are intercepted by a program which expects
bug reports to conform to a standard format. Sendbug is a shell script to help the user
compose and mail bug reports in the correct format. Sendbug works by invoking vi (1) on a
temporary copy of the bug report format outline. The user must fill in the appropriate
fields and exit vi. Sendbug then mails the completed report to '4bsd-bugs@BERKELEY'
or the address specified on the command line.

FILES
/usr/ucb/bugformat

SEE ALSO
vi(1), sendmail(8)

STATUS

contains the bug report outline

SENDBUG (1) currently is not supported by Digital Equipment Corporation.

1-278

SH(1)

NAME
sh, for, case, if, while, :, ., break, continue, cd, eval, exec, exit, export, login, read, readonly,
set, shift, times, trap, umask, wait - command language

SYNTAX
sh [-ceiknrstuvx] [arg] ...

DESCRIPTION
Sh is a command programming language that executes commands read from a terminal or a
file. See invocation for the meaning of arguments to the shell.

Commands.
A simple-command is a sequence of non blank words separated by blanks (a blank is a tab
or a space). The first word specifies the name of the command to be executed. Except as
specified below the remaining words are passed as arguments to the invoked command.
The command name is passed as argument 0 (see execve(2». The value of a simple­
command is its exit status if it terminates normally or 200+status if it terminates abnor­
mally (see sigvec(2) for a list of status values).

A pipeline is a sequence of one or more commands separated by I·. The standard output of
each command but the last is connected by a pipe(2) to the standard input of the next
command. Each command is run as a separate process; the shell waits for the last com­
mand to terminate.

A list is a sequence of one or more pipelines separated by;, &, && or II and optionally ter­
minated by ; or &. ; and & have equal precedence which is lower than that of && and II
&& and II also have equal precedence. A semicolon causes sequential execution; an amper­
sand causes the preceding pipeline to be executed without waiting for it to finish. The
symbol && (II) causes the list following to be executed only if the preceding pipeline
returns a zero (non zero) value. Newlines may appear in a list, instead of semicolons, to
delimit commands.

A command is either a simple-command or one of the following. The value returned by a
command is that of the last simple-command executed in the command.

for name [in word ...] do list done
Each time a for command is executed name is set to the next word in the for
word list If in word... is omitted, in "$ @" is assumed. Execution ends when
there are no more words in the list.

case word in [pattern [I pattern] ...) list ;;] ... esac
A case command executes the list associated with the first pattern that matches
word. The form of the patterns is the same as that used for file name generation.

if list then list [elif list then list] ... [else list] Ii
The list following if is executed and if it returns zero the list following then is
executed. Otherwise, the list following elif is executed and if its value is zero the
list following then is executed. Failing that the else list is executed.

while list [do list] done

1-279

SHe 1)

A while command repeatedly executes the while list and if its value is zero exe­
cutes the do list; otherwise the loop terminates. The value returned by a while
command is that of the last executed command in the do list. until may be used
in place of while to negate the loop termination test.

(list) Execute list in a subshell.

{ list} list is simply executed.

The following words are only recognized as the first word of a command and when not
quoted.

if then else elif fi case in esac for while until do done { }

Command substitution.
The standard output from a command enclosed in a pair of back quotes (") may be used as
part or all of a word; trailing newlines are removed.

Parameter substitution.
The character $ is used to introduce substitutable parameters. Positional parameters may
be assigned values by set. Variables may be set by writing

name=value [name=value] ...

$ {parameter}
A parameter is a sequence of letters, digits or underscores (a name), a digit, or any
of the characters * @ # ? - $!. The value, if any, of the parameter is substi­
tuted. The braces are required only when parameter is followed by a letter, digit,
or underscore that is not to be interpreted as part of its name. If parameter is a
digit, it is a positional parameter. If parameter is * or @ then all the positional
parameters, starting with $1, are substituted separated by spaces. $0 is set from
argument zero when the shell is invoked.

$ {parameter -word}
If parameter is set, substitute its value; otherwise substitute word.

$ {parameter sword}
If parameter is not set, set it to word; the value of the parameter is then substi­
tuted. Positional parameters may not be assigned to in this way.

$ {parameter? word}
If parameter is set, substitute its value; otherwise, print word and exit from the
shell. If word is omitted, a standard message is printed.

$ {parameter sword}
If parameter is set, substitute word; otherwise substitute nothing.

In the above word is not evaluated unless it is to be used as the substituted string. (So
that, for example, echo ${ d-'pwd'} will only execut~ pwd if d is unset.)

The following parameters are automatically set py the shell.

The number of positional parameters in decimal.

1-280

Options supplied to the shell on invocation or by set.
? The value returned by the last executed command in decimal.
$ The process number of this shell.

The process number of the last background command invoked.

The following parameters are used but not set by the shell.

HOME
The default argument (home directory) for the cd command.

PATH
The search path for commands (see execution).

MAIL

SHe 1)

If this variable is set to the name of a mail file, the shell informs the user of
the arrival of mail in the specified file.

PSI
Primary prompt string, by default '$ '.

PS2
Secondary prompt string, by default '> '.

IFS
Internal field separators, normally space, tab, and newline.

Blank interpretation.
After parameter and command substitution, any results of substitution are scanned for
internal field separator characters (those found in $IFS) and split into distinct arguments
where such characters are found. Explicit null arguments ("" or ") are retained. Implicit
null arguments (those resulting from parameters that have no values) are removed.

File name generation.
Following substitution, each command word is scanned for the characters *, ? and [. If one
of these characters appears, the word is regarded as a pattern. The word is replaced with
alphabetically sorted file names that match the pattern. If no file name is found that
matches the pattern, the word is left unchanged. The character . at the start of a file name
or immediately following a /, and the character /, must be matched explicitly.

*
?
[...]

Matches any string, including the null string.
Matches any single character.
Matches anyone of the characters enclosed. A pair of characters separated by -
matches any character lexically between the pair.

Quoting.
The following characters have a special meaning to the shell and cause termination of a
word unless quoted.·

; & () \ < > newline space tab

A character may be quoted by preceding it with a \. \ newline is ignored. All characters
enclosed between a pair of quote marks ("), except a single quote, are quoted. Inside dou­
ble quotes ("") parameter and command substitution occurs and \ quotes the characters \
" and $.

1-281

SH(1)

"$*" is equivalent to "$1 $2 .•. " whereas
"$ @" is equivalent to "$1" "$2" ..•.

Prompting.
When used interactively, the shell prompts with the value of PSI before reading a com­
mand. If at any time a newline is typed and further input is needed to complete a com­
mand, the secondary prompt ($PS2) is issued.

Input output.
Before a command is executed its input and output may be redirected using a special nota­
tion interpreted by the shell. The following may appear anywhere in a simple-command or
may precede or follow a command and are not passed on to the invoked command. Substi­
tution occurs before word or digit is used.

<word Use file word as standard input (file descriptor 0).

> word Use file word as standard output (file descriptor 1). If the file does not exist, it is
created; otherwise it is truncated to zero length.

»word Use file word as standard output. If the file exists, output is appended (by seeking
to the end); otherwise the file is created.

«word The shell input is read up to a line the same as word, or end of file. The resulting
document becomes the standard input. If any character of word is quoted, no
interpretation is placed upon the characters of the document; otherwise, parameter
and command substitution occurs, \ newline is ignored, and \ is used to quote the
characters \ $' and the first character of word.

< & digit
The standard input is duplicated from file descriptor digit; see dup(2). Similarly
for the standard output using> .

<&- The standard input is closed. Similarly for the standard output using >.

If one of the above is preceded by a digit, the file descriptor created is that specified by the
digit (instead of the default 0 or 1). For example,

... 2>&1

creates file descriptor 2 to be a duplicate of file descriptor 1.

If a command is followed by & then the default standard input for the command is the
empty file (ldev/null). Otherwise, the environment for the execution of a command con­
tains the file descriptors of the invoking shell as modified by input output specifications.

Environment.
The environment is a list of name-value pairs that is passed to an executed program in the
same way as a normal argument list; see execve(2) and environ(7). The shell interacts with
the environment in several ways. On invocation, the shell scans the environment and
creates a parameter for each name found, giving it the corresponding value. Executed com­
mands inherit the same environment. If the user modifies the values of these parameters
or creates new ones, none of these affects the environment unless the export command is

1-282

SHe 1)

used to bind the shell's parameter to the environment. The environment seen by any exe­
cuted command is thus composed of any unmodified name-value pairs originally inherited
by the shell, plus any modifications or additions, all of which must be noted in export
commands.

The environment for any simple-command may be augmented by prefixing it with one or
more assignments to parameters. Thus these two lines are equivalent

TERM =450 cmd args
(export TERM; TERM=450; cmd args)

If the - k flag is set, all keyword arguments are placed in the environment, even if the
occur after the command name. The following prints 'a=b c' and 'c':
echo a=b c
set -k
echo a=b c

Signals.
The INTERRUPT and QUIT signals for an invoked command are ignored if the command
is followed by &; otherwise signals have the values inherited by the shell from its parent.
(But see also trap.)

Execution.
Each time a command is executed the above substitutions are carried out. Except for the
'special commands' listed below a new process is created and an attempt is made to execute
the command via an execve(2).

The shell parameter $PATH defines the search path for the directory containing the com­
mand. Each alternative directory name is separated by a colon (:). The default path is
:/bin:/usr/bin. If the command name contains a /, the search path is not used. Otherwise,
each directory in the path is searched for an executable file. If the file has execute permis­
sion but is not an a.out file, it is assumed to be a file containing shell commands. A sub­
shell (Le., a separate process) is spawned to read it. A parenthesized command is also exe­
cuted in a subshell.

Special commands.
The following commands are executed in the shell process and except where specified no
input output redirection is permitted for such commands.

No effect; the command does nothing .
• file Read and execute commands from file and return. The search path $P A TH is

used to find the directory containing file.
break [n]

Exit from the enclosing for or while loop, if any. If n is specified, break n levels.
continue [n]

cd [arg]

Resume the next iteration of the enclosing for or while loop. If n is specified,
resume at the n -th enclosing loop.

Change the current directory to argo The shell parameter $HOME is the default

1-283

SH(1)

argo
eval [arg ...]

The arguments are read as input to the shell and the resulting command(s} exe­
cuted.

exec [arg ...]

exit [n]

The command specified by the arguments is executed in place of this shell without
creating a new process. Input output arguments may appear and if no other argu­
ments are given cause the shell input output to be modified.

Causes a non interactive shell to exit with the exit status specified by n. If n is
omitted, the exit status is that of the last command executed. (An end of file will
also exit from the shell.)

export [name ...]
The given names are marked for automatic export to the environment of
subsequently-executed commands. If no arguments are given, a list of exportable
names is printed.

login [arg ...]
Equivalent to 'exec login arg ... '.

read name ...
One line is read from the standard input; successive words of the input are
assigned to the variables name in order, with leftover words to the last variable.
The return code is 0 unless the end-of-file is encountered.

readonly [name ...]
The given names are marked readonly and the values of the these names may not
be changed by subsequent assignment. If no arguments are given, a list of all
readonly names is printed.

set [-eknptuvx [arg ...]]
-e If non interactive, exit immediately if a command fails.
- k All keyword arguments are placed in the environment for a command, not

just those that precede the command name.
-n Read commands but do not execute them.
-t Exit after reading and executing one command.
-u Treat unset variables as an error when substituting.
-v Print shell input lines as they are read.
-x Print commands and their arguments as they are executed.

Turn off the -x and -v options.

These flags can also be used upon invocation of the shell. The current set of flags
may be found in $-.

Remaining arguments are positional parameters and are assigned, in order, to $1,
$2, etc. If no arguments are given, the values of all names are printed.

shift The positional parameters from $2 ... are renamed $1. ..

times Print the accumulated user and system times for processes run from the shell.

1-284

SHe 1)

trap [arg] [n] ...
Arg is a command to be read and executed when the shell receives signal(s) n.
(Note that arg is scanned once when the trap is set and once when the trap is
taken.) Trap commands are executed in order of signal number. If arg is absent,
all trap(s) n are reset to their original values. If arg is the null string, this signal is
ignored by the shell and by invoked commands. If n is 0, the command arg is exe­
cuted on exit from the shell, otherwise upon receipt of signal n as numbered in
sigvec (2). Trap with no arguments prints a list of commands associated with each
signal number.

umask [nnn]
The user file creation mask is set to the octal value nnn (see umask(2». If nnn is
omitted, the current value of the mask is printed.

wait [n]
Wait for the specified process and report its termination status. If n is not given,
all currently active child processes are waited for. The return code from this com­
mand is that of the process waited for.

Invocation.
If the first character of argument zero is -, commands are read from $HOME/. profile, if
such a file exists. Commands are then read as described below. The following flags are
interpreted by the shell when it is invoked.
-c string If the -c flag is present, commands are read from string.
-s If the -s flag is present or if no arguments remain then commands are read

from the standard input. Shell output is written to file descriptor 2.
-i If the -i flag is present or if the shell input and output are attached to a termi­

nal (as told by gtty) then this shell is interactive. In this case the terminate
signal SIGTERM (see sigvec (2» is ignored (so that 'kill 0' does not kill an
interactive shell) and the interrupt signal SIGINT is caught and ignored (so
that wait is interruptible). In all cases SIGQUIT is ignored by the shell.

The remaining flags and arguments are described under the set command.

FILES
$HOME/.profile
/tmp/sh*
/dev/null

SEE ALSO
csh(l), test(l), execve(2), environ(7)

DIAGNOSTICS
Errors detected by the shell, such as syntax errors cause the shell to return a non zero exit
status. If the shell is being used non interactively then execution of the shell file is aban­
doned. Otherwise, the shell returns the exit status of the last command executed (see also
exit).

1-285

SH(1)

RESTRICTIONS
If« is used to provide standard input to an asynchronous process invoked by &, the shell
gets mixed up about naming the input document. A garbage file /tmp/sh* is created, and
the shell complains about not being able to find the file by another name.

STATUS
SH (1) is supported by Digital Equipment Corporation.

1-286

SIZE(1)

NAME
size - size of an object file

SYNTAX
size [object ...]

DESCRIPTION
Size prints the (decimal) number of bytes required by the text, data, and bss portions, and
their sum in hex and decimal, of each object-file argument. If no file is specified, a.out is
used.

SEE ALSO
a.out(5)

STATUS
SIZE (1) currently is not supported by Digital Equipment Corporation.

1-287

SLEEP(1)

NAME
sleep - suspend execution for an interval

SYNTAX
sleep time

DESCRIPTION
Sleep suspends execution for time seconds. It is used to execute a command after a certain
amount of time as in:

(sleep 105; command)&

or to execute a command every so often, as in:

while true
do

done

SEE ALSO

command
sleep 37

setitimer(2), alarm(3C), sleep(3)

RESTRICTIONS
Time must be less than 2,147,483,647 seconds.

STATUS
SLEEP (1) is supported by Digital Equipment Corporation.

1-288

SOELlM(1)

NAME
soelim - eliminate .so's from nroff input

SYNTAX
soelim [file ...]

DESCRIPTION
Soelim reads the specified files or the standard input and performs the textual inclusion
implied by the nroff directives of the form

.so somefile

when they appear at the beginning of input lines. This is useful since programs such as tbl
do not normally do this; it allows the placement of individual tables in separate files to be
run as a part of a large document.

An argument consisting of a single minus (-) is taken to be a file name corresponding to
the standard input.

Note that inclusion can be suppressed by using ", instead of '.', i.e.

'so /usr/lib/tmac.s

A sample usage of soelim would be

soelim exum?n I tbll nroff -ms I colilpr

SEE ALSO
colcrt(l), more(l)

RESTRICTIONS
The format of the source commands must involve no strangeness - exactly one blank must
precede and no blanks follow the file name.

STATUS
SOELIM (1) currently is not supported by Digital Equipment Corporation.

1-289

SORT(1)

NAME
sort - sort or merge files

SYNTAX
sort [-mubdfinrtx] [+posl [-pos2]] ... [-0 name] [-T directory] [name] ...

DESCRIPTION
Sort sorts lines of all the named files together and writes the result on the standard output.
The name '-' means the standard input. If no input files are named, the standard input is
sorted.

The default sort key is an entire line. Default ordering is lexicographic by bytes in machine
collating sequence. The ordering is affected globally by the following options, one or more
of which may appear.

b Igriore leading blanks (spaces and tabs) in field comparisons.

d 'Dictionary' order: only letters, digits and blanks are significant in comparisons.

f Fold upper case letters onto lower case.

i Ignore characters outside the ASCII range 040-0176 in nonnumeric comparisons.

n An initial numeric string, consisting of optional blanks, optional minus sign, and zero
or more digits with optional decimal point, is sorted by arithmetic value. Option n
implies option b.

r Reverse the sense of comparisons.

tx 'Tab character' separating fields is x.

The notation +posl -pos2 restricts a sort key to a field beginning at posl and ending just
before pos2. Posl and pos2 each have the form m.n, optionally followed by one or more of
the flags bdfinr, where m tells a number of fields to skip from the beginning of the line
and n tells a number of characters to skip further. If any flags are present they override all
the global ordering options for this key. If the b option is in effect n is counted from the
first nonblank in the field; b is attached independently to pos2. A missing .n means .0; a
missing -pos2 means the end of the line. Under the -tx option, fields are strings
separated by x; otherwise fields are nonempty non blank strings separated by blanks.

When there are multiple sort keys, later keys are compared only after all earlier keys com­
pare equal. Lines that otherwise compare equal are ordered with all bytes significant.

These option arguments are also understood:

c Check that the input file is sorted according to the ordering rules; give no output
unless the file is out of sort.

m Merge only, the input files are already sorted.

o The next argument is the name of an output file to use instead of the standard out­
put. This file may be the same as one of the inputs.

T The next argument is the name of a directory in which temporary files should be
made.

1-290

SORT(1)

u Suppress all but one in each set of equal lines. Ignored bytes and bytes outside keys
do not participate in this comparison.

EXAMPLES
Print in alphabetical order all the unique spellings in a list of words. Capitalized words
differ from uncapitalized.

sort -u +Of +0 list

Print the password file (passwd(5» sorted by user id number (the 3rd colon-separated
field).

sort -t: +2n /etc/passwd

Print the first instance of each month in an already sorted file of (month day) entries. The
options -um with just one input file make the choice of a unique representative from a set
of equal lines predictable.

sort -um +0 -1 dates

FILES
/usr/tmp/stm*, /tmp/* first and second tries for temporary files

SEE ALSO
uniq(1), comm(1), rev(1), join(1)

DIAGNOSTICS
Comments and exits with nonzero status for various trouble conditions and for disorder
discovered under option -c.

RESTRICTIONS
Very long lines are silently truncated.

STATUS
SORT (1) is supported by Digital Equipment Corporation.

1-291

SORTSIS(1)

NAME
sortbib - sort bibliographic database

SYNTAX
sortbib [-sKEYS] database ...

DESCRIPTION
Sortbib sorts files of records containing refer key-letters by user-specified keys. Records
may be separated by blank lines, or by .[and .] delimiters, but the two styles may not be
mixed together. This program reads through each database and pulls out key fields, which
are sorted separately. The sorted key fields contain the file pointer, byte offset, and length
of corresponding records. These records are delivered using disk seeks and reads, so sort bib
may not be used in a pipeline to read standard input.

By default, sort bib alphabetizes by the first % A and the % D fields, which contain the
senior author and date. The -s option is used to specify new KEYS. For instance, -sATD
will sort by author, title, and date, while -sA+D will sort by all authors, and date. Sort
keys past the fourth are not meaningful. No more than 16 databases may be sorted
together at one time. Records longer than 4096 characters will be truncated.

Sortbib sorts on the last word on the % A line, which is assumed to be the author's last
name. A word in the final position, such as "jr." or "ed.", will be ignored if the name
beforehand ends with a comma. Authors with two-word last names or unusual construc­
tions can be sorted correctly by using the nroff convention "\ 0" in place of a blank. A % Q
field is considered to be the· same as % A, except sorting begins with the first, not the last,
word. Sortbib sorts on the last word of the % D line, usually the year. It also ignores lead­
ing articles (like "A" or "The") when sorting by titles in the %T or %J fields; it will ignore
articles of any modern European language. If a sort-significant field is absent from a
record, sortbib places that record before other records containing that field.

SEE ALSO
refer(1), addbib(1), roffbib(1), indxbib(1), 100kbib(1)

STATUS
SORTBIB (1) currently is not supported by Digital Equipment Corporation.

1-292

SPELL(1)

NAME
spell, spellin, spellout - find spelling errors

SYNTAX
spell [-v 1 [-b 1 [-x 1 [-d hlist 1 [-s hstop 1 [-h spellhist 1 [file 1 ...
spellin [list 1
spellout [-d 1 list

DESCRIPTION
Spell collects words from the named documents, and looks them up in a spelling list.
Words that neither occur among nor are derivable (by applying certain inflections, prefixes
or suffixes) from words in the spelling list are printed on the standard output. If no files
are named, words are collected from the standard input.

Spell ignores most trolt, tbl and eqn(l) constructions.

Under the -v option, all words not literally in the spelling list are printed, and plausible
derivations from spelling list words are indicated.

Under the -b option, British spelling is checked. Besides preferring centre, colour, speci­
ality, travelled, etc., this option insists upon -ise in words like standardise, Fowler and the
OED to the contrary notwithstanding.

Under the -x option, every plausible stem is printed with '=' for each word.

The spelling list is based on many sources. While it is more haphazard than an ordinary
dictionary, it is also more effective with proper names and popular technical words. Cover­
age of the specialized vocabularies of biology, medicine and chemistry is light.

The auxiliary files used for the spelling list, stop list, and history file may be specified by
arguments following the -d, -s, and -h options. The default files are indicated below.
Copies of all output may be accumulated in the history file. The stop list filters out
misspellings (e.g. thier=thy-y+ier) that would otherwise pass.

Two routines help maintain the hash lists used by spell. Both expect a set of words, one
per line, from the standard input. Spellin combines the words from the standard input and
the preexisting list file and places a new list on the standard output. If no list file is
specified, the new list is created from scratch. Spellout looks up each word from the stan­
dard input and prints on the standard output those that are missing from (or present on,
with option -d) the hashed list file. For example, to verify that hookey is not on the
default spelling list, add it to your own private list, and then use it with spell,

echo hookey I spellout /usr/dict/hlista
echo hookey I spellin /usr/dict/hlista > myhlist
spell -d myhlist huckfinn

FILES
/usr/dict/hlist[abl
/usr / dict/hstop
/dev/null

hashed spelling lists, American & British, default for -d
hashed stop list, default for -s
history file, default for - h

1-293

SPELL(1)

/tmp/spell.$$* temporary files
/usr/lib/spell

SEE ALSO
deroff(l), sort(l), tee(l), sed(1)

RESTRICTIONS
The spelling list's coverage is uneven; new installations will probably wish to monitor the
output for several months to gather local additions.
British spelling was done by an American.

STATUS
SPELL (1) currently is not supported by Digital Equipment Corporation.

1-294

SPLINE (1G)

NAME
spline - interpolate smooth curve

SYNTAX
spline [option] ...

DESCRIPTION
Spline takes pairs of numbers from the standard input as abcissas and ordinates of a func­
tion. It produces a similar set, which is approximately equally spaced and includes the
input set, on the standard output. The cubic spline output (R. W. Hamming, Numerical
Methods for Scientists and Engineers, 2nd ed., 349ft') has two continuous derivatives, and
sufficiently many points to look smooth when plotted, for example by graph (1G).

The following options are recognized, each as a separate argument.

-a Supply abscissas automatically (they are missing from the input); spacing is given by
the next argument, or is assumed to be 1 if next argument is not a number.

- k The constant k used in the boundary value computation

is set by the next argument. By default k = O.

-n Space output points so that approximately n intervals occur between the lower and
upper x limits. (Default n = 100.)

-p Make output periodic, i.e. match derivatives at ends. First and last input values
should normally agree.

-x Next 1 (or 2) arguments are lower (and upper) x limits. Normally these limits are cal­
culated from the data. Automatic abcissas start at lower limit (default 0).

SEE ALSO
graph(1G), plot(1G)

DIAGNOSTICS
When data is not strictly monotone in x, spline reproduces the input without interpolating
extra points.

RESTRICTIONS
A limit of 1000 input points is enforced silently.

STATUS
SPLINE (1) currently is not supported by Digital Equipment Corporation.

1-295

SPLIT (1)

NAME
split - split a file into pieces

SYNTAX
split [-n] [file [name]]

DESCRIPTION
Split reads file and writes it in n-line pieces (default 1000), as many as necessary, onto a
set of output files.· The name of the first output file is name with aa appended, and so on
lexicographically. If no output name is given, x is default.

If no input file is given, or if - is given in its stead, then the standard input file is used.

STATUS
SPLIT (1) currently is not supported by Digital Equipment Corporation.

1-296

STRINGS(1)

NAME
strings - find the printable strings in a object, or other binary, file

SYNTAX
strings [-] [-0] [-number] file ...

DESCRIPTION
Strings looks for ascii strings in a binary file. A string is any sequence of 4 or more print­
ing characters ending with a newline or a null. Unless the - flag is given, strings only looks
in the initialized data space of object files. If the -0 flag is given, then each string is pre­
ceded by its offset in the file (in octal). If the -number flag is given then number is used
as the minimum string length rather than 4.

Strings is useful for identifying random object files and many other things.

SEE ALSO
od(l)

STATUS
STRINGS (1) currently is not supported by Digital Equipment Corporation.

1-297

STRIP(1)

NAME
strip - remove symbols and relocation bits

SYNTAX
strip name ...

DESCRIPTION
Strip removes the symbol table and relocation bits ordinarily attached to the output of the
assembler and loader. This is useful to save space after a program has been debugged.

The effect of strip is the same as use of the -s option of ld.

FILES
/tmp/stm?

SEE ALSO
Id(l)

STATUS

temporary file

STRIP (1) currently is not supported by Digital Equipment Corporation.

1-298

STRUCT(1)

NAME
struct - structure Fortran programs

SYNTAX
struct [option] ... file

DESCRIPTION
Struct translates the Fortran program specified by file (standard input default) into a Rat­
for program. Wherever possible, Ratfor control constructs replace the original Fortran.
Statement numbers appear only where still necessary. Cosmetic changes are made, includ­
ing changing Hollerith strings into quoted strings and relational operators into symbols
(.e.g. ".GT." into ">"). The output is appropriately indented.

The following options may occur in any order.

-s Input is accepted in standard format, i.e. comments are specified by a c, C, or * in
column 1, and continuation lines are specified by a nonzero, non blank character in
column 6. Normally input is in the form accepted by {77(1)

-i Do not turn computed goto statements into switches. (Ratfor does not turn
switches back into computed goto statements.)

-a Turn sequences of else ifs into a non-Ratfor switch of the form

switch
case predl: code
case pred2: code
case pred3: code
default: code

The case predicates are tested in order; the code appropriate to only one case is
executed. This generalized form of switch statement does not occur in Ratfor.

- b Generate goto's instead of multilevel break statements.

-n Generate goto's instead of multilevel next statements.

-tn Make the nonzero integer n the lowest valued label in the output program (default
10).

-cn Increment successive labels in the output program by the nonzero integer n
(default 1).

-en If n is 0 (default), place code within a loop only if it can lead to a!l iteration of the
loop. If n is nonzero, admit a small code segments to a loop if otherwise the loop
would have exits to several places including the segment, and the segment can be
reached only from the loop. 'Small' is close to, but not equal to, the number of
statements in the code segment. Values of n under 10 are suggested.

1-299

SlRUel(1)

FILES
/tmp/struct*
/usr/lib/struct/*

SEE ALSO
f77(1)

RESTRICTIONS
Struct knows Fortran 66 syntax, but not full Fortran 77.
If an input Fortran program contains identifiers which are reserved words in Ratfor, the
structured version of the program will not be a valid Ratfor program.
The labels generated cannot go above 32767.
If you get a goto without a target, try -e .

STATUS
STRUCT (1) currently is not supported by Digital Equipment Corporation ..

1-300

STTY(1)

NAME
stty - set terminal options

SYNTAX
stty [option ...]

DESCRIPTION
Stty sets certain I/O options on the current output terminal, placing its output on the diag­
nostic output. With no argument, it reports the speed of the terminal and the settings of
the options which are different from their defaults. With the argument "all", all normally
used option settings are reported. With the argument "everything", everything stty knows
about is printed. The option strings are selected from the following set:

even
-even
odd
-odd

allow even parity input
disallow even parity input
allow odd parity input
disallow odd parity input

raw raw mode input (no input processing (erase, kill, interrupt, ...); parity bit passed
back)

-raw negate raw mode
cooked same as '-raw'
cbreak make each character available to read (2) as received; no erase and kill process­

ing, but all other processing (interrupt, suspend, ...) is performed
-cbreak make characters available to read only when newline is received
-nl allow carriage return for new-line, and output CR-LF for carriage return or

new-line
nl accept only new-line to end lines
echo echo back every character typed
-echo do not echo characters
lease map upper case to lower case
-lease do not map case
tandem enable flow control, so that the system sends out the stop character when its

internal queue is in danger of overflowing on input, and sends the start character
when it is ready to accept further input

-tandem
disable flow control

-tabs replace tabs by spaces when printing
tabs preserve tabs
ek set erase and kill characters to # and @
For the following commands which take a character argument c, you may also specify c as
the "u" or "under', to set the value to be undefined. A value of "AX", a 2 character
sequence, is also interpreted as a control character, with ""?" representing delete.

erase c
kill c
intr c
quit c

set erase character to c (default '#', but often reset to "H.)
set kill character to c (default '@', but often reset to "U.)
set interrupt character to c (default DEL or "? (delete), but often reset to "C.)
set quit character to c (default control \.)

© Digital Equipment Corporation 1984 1-301

STTY(1)

start c
stop c
eof c
brk c

set start character to c (default control Q.)
set stop character to c (default control S.)
set end of file character to c (default control D.)
set break character to c (default undefined.) This character is an extra wakeup
causing character.

erO er 1 er2 er3
select style of delay for carriage return (see ioctl(2»

nIO nIl nI2 nI3
select style of delay for linefeed

tabO tabl tab2 tab3
select style of delay for tab

if 0 ifl select style of delay for form feed
bsO bsl select style of delay for backspace

tty33
tty37
vt05
dec

set all modes suitable for the Teletype Corporation Model 33 terminal.
set all modes suitable for the Teletype Corporation Model 37 terminal.
set all modes suitable for Digital Equipment Corp. VT05 terminal
set all modes suitable for Digital Equipment Corp. operating systems users;
(erase, kill, and interrupt characters to "?, "U, and "C, decctlq and "newcrt".)

tn300 set all modes suitable for a General Electric TermiNet 300
ti700 set all modes suitable for Texas Instruments 700 series terminal
tek set all modes suitable for Tektronix 4014 terminal
o hang up phone line immediately
5075 110 134 150200300600 1200 1800240048009600 ext a extb

Set terminal baud rate to the number given, if possible. (These are the speeds
supported by the DH-ll interface).

A teletype driver which supports the job control processing of csh(l) and more functional­
ity than the basic driver is fully described in tty(4). The following options apply only to it.

new Use new driver (switching flushes typeahead).
crt Set options for a CRT (crtbs, ctlecho and, if >= 1200 baud, crterase and crtkill.)
ertbs Echo backspaces on erase characters.
prterase For-printing terminal echo erased characters backwards within "\" and "I".
erterase Wipe out erased characters with "backspace-space-backspace."
-erterase

Leave erased characters visible; just backspace.
crt kill Wipe out input on like kill ala crterase.
-crt kill Just echo line kill character and a newline on line kill.
etlecho Echo control characters as ""x" (and delete as ""?".) Print two backspaces fol­

lowing the EOT character (control D).
-etleeho Control characters echo as themselves; in cooked mode EOT (control-D) is not

echoed.

decctlq After output is suspended (normally by "S), only a start character (normally"Q)
will restart it. This is compatible with DEC's vendor supplied systems.

1-302 if) Digital Equipment Corporation 1984

STTY(1)

-decctlq After output is suspended, any character typed will restart it; the start character
will restart output without providing ~ny input. (This is the default.)
Background jobs stop if they attempt terminal output.
Output from background jobs to the terminal is allowed.
Convert "-,, to ",,, on output (for Hazeltine terminals).
Leave poor "-,, alone.

tostop
-tostop
tilde
-tilde
flusho
-flusho

Output is being discarded usually because user hit control 0 (internal state bit).
Output is not being discarded.

pendin Input is pending after a switch from cbreak to cooked and will be re-input when
a read becomes pending or more input arrives (internal state bit).

-pendhi Input is not pending.
mdmbuf Start/stop output on carrier transitions (not implemented).
-mdmbuf

Return error if write attempted after carrier drops.
litout Send output characters without any processing.
-litout Do normal output processing, inserting delays, etc.
nohang Don't send hangup signal if carrier drops.
-nohang

Send hangup signal to control process group when carrier drops.
etxack Diablo style etx/ack handshaking (not implemented).

The following special characters are applicable only to the new teletype driver and are not
normally changed.

susp c
dsusp c
rprnt c
flush c
werase c

set suspend process character to c (default control Z).
set delayed suspend process character to c (default control V).
set reprint line character to c (default control R).
set flush output character to c (default control 0).

set word erase character to c (default control W).
Inext c set literal next character to c (default control V).

SEE ALSO
ioct1(2), tabs(I), tset(1), tty(4)

STATUS
STTY (1) is supported by Digital Equipment Corporation.

1-303

STYLE (1)

NAME
style - analyze surface characteristics of a document

SYNTAX
style [-ml] [-mm] [-a] [-e] [-I num] [-r num] [-p] [-P] file ...

DESCRIPTION
Style analyzes the surface characteristics of the writing style of a document. It reports on
readability, sentence length and structure, word length and usage, verb type, and sentence
openers. Because style runs deroff before looking at the text, formatting header files should
be included as part of the input. The default macro package -ms may be overridden with
the flag -Mm. The flag -ml, which causes deroff to skip lists, should be used if the docu­
ment contains many lists of non-sentences. The other options are used to locate sentences
with certain characteristics.

-a print all sentences with their length and readability index.

-e print all sentences that begin with an expletive.

-p print all sentences that contain a passive verb.

-Inum print all sentences longer than num.

-rnum print all sentences whose readability index is greater than num.

- P print parts of speech of the words in the document.

SEE ALSO
deroff(l), diction(1)

RESTRICTIONS
Use of non-standard formatting macros may cause incorrect sentence breaks.

STATUS
STYLE (1) currently is not supported by Digital Equipment Corporation.

1-304

SUe 1)

NAME
su - substitute user id temporarily

SYNTAX
su [userid]

DESCRIPTION
Su demands the password of the specified use rid, and if it is given, changes to that userid
without changing the current directory. The user environment is unchanged except for
HOME and SHELL which are taken from the password file entry for userid. The shell run
also is taken from the password file entry for userid. The new user ID stays in force until
the Shell exits.

If no userid is specified, 'root' is assumed. To remind the super-user of his responsibilities,
the Shell substitutes' #' for its usual prompt.

SEE ALSO
sh(l), csh(l), passwd(5), environ(7)

STATUS
SU (1) is supported by Digital Equipment Corporation.

1-305

SUM(1)

NAME
sum - sum and count blocks in a file

SYNTAX
sum file

DESCRIPTION
Sum calculates and prints a 16-bit checksum for the named file, and also prints the number
of blocks in the file. It is typically used to look for bad spots, or to validate a file communi­
cated over some transmission line.

SEE ALSO
wc(l)

DIAGNOSTICS
'Read error' is indistinguishable from end of file on most devices; check the block count.

STATUS
SUM (1) currently isnot supported by Digital Equipment Corporation.

1-306

SYMORDER (1)

NAME
symorder - rearrange name list

SYNTAX
symorder order list symbolfile

DESCRIPTION
Orderlist is a file containing symbols to be found in symbolfile, 1 symbol per line.

Symbolfile is updated in place to put the requested symbols first in the symbol table, in the
order specified. This is done by swapping the old symbols in the required spots with the
new ones. If all of the order symbols are not found, an error is generated.

This program was specifically designed to cut down on the overhead of getting symbols
from /vmunix.

SEE ALSO
nlist(3)

STATUS
SYMORDER (1) currently is not supported by Digital Equipment Corporation.

1-307

SYSLlNE(1)

NAME
sysline - display system status on status line of a terminal

SYNTAX
sysline [-bcdehDilmpqrsj] [-H remote] [+N]

DESCRIPTION
Sysline runs in the background and periodically displays system status information on the
status line of the terminal. Not all terminals contain a status line. Those that do include
the h19, concept 108, Ann Arbor Ambassador, vt100, Televideo 925/950 and Freedom 100.
If no flags are given, sysline displays the time of day, the current load average, the change
in load average in the last 5 minutes, the number of users (followed by a 'u'), the number of
runnable process (followed by a 'r')[VAX only], the number of suspended processes (fol­
lowed by a 's')[VAX only], and the users who have logged on and off since the last status
report. Finally, if new mail has arrived, a summary of it is printed. If there is unread mail
in your mailbox, an asterisk will appear after the display of the number of users. The
display is normally in reverse video (if your terminal supports this in the status line) and is
right justified to reduce distraction. Every fifth display is done in normal video to give the
screen a chance to rest.

If you have a file named .who in your home directory, then the contents of that file is
printed first. One common use of this feature is to alias chdir, pushd, and popd to place
the current directory stack in -/.who after it changes the new directory.

The following flags may be given on the command line.

- b Beep once every half hour and twice every hour, just like those obnoxious
watches you keep hearing.

-c Clear the status line for 5 seconds before each redisplay.

-d Debug mode -- print status line data in human readable format

-D Print out the current day/date before the time.

-e Print out only the information. Do not print out the control commands neces-

-H remote

sary to put the information on the bottom line. This option is useful for put­
ting the output of sysline onto the mode line of an emacs window.

Print the load average on the remote host remote [VAX only]. If the host is
down, or is not sending out rwhod packets, then the down time is printed
instead.

-h Print out the host machine's name after the time [VAX only].

-1 Don't print the names of people who log in and out.

-m Don't check for mail.

-p Don't report the number of process which are runnable and suspended.

-r Don't display in reverse video.

1-308

SYSlINE(1)

+ N Update the status line every N seconds. The default is 60 seconds.

-q Don't print out diagnostic messages if something goes wrong when starting up.

-i Print out the process id of the sysline process onto standard output upon
startup. With this information you can send the alarm signal to the sysline
process to cause it to update immediately. sysline writes to the standard
error, so you can redirect the standard output into a file to catch the process
ide

-8 Print "short" form of line by left-justifying iff escapes are not allowed in the
status line. Some terminals (the Televideos and Freedom 100 for example) do
not allow cursor movement (or other "intelligent" operations) in the status
line. For these terminals, sysline normally uses blanks to cause right­
justification. This flag will disable the adding of the blanks.

-j Force the sysline output to be left justified even on terminals capable of cursor
movement on the status line.

If you have a file .syslinelock in your home directory, then sysline will not update its statis­
tics and write on your screen, it will just go to sleep for a minute. This is useful if you
want to momentarily disable sysline. Note that it may take a few seconds from the time the
lock file is created until you are guaranteed that sysline will not write on the screen.

FILES
/etc/utmp
/dev/kmem
/usr /spool/rwho/whod. *
${HOME}/.who
$ {HOME} /.syslinelock

RESTRICTIONS

names of people who are logged in
contains process table [VAX only]
who/uptime information for remote hosts [VAX only]
information to print on bottom line
when it exists, sysline will not print

If you interrupt the display then you may find your cursor missing or stuck on the status
line. The best thing to do is reset the terminal.
If there is too much for one line, the excess is thrown away.

STATUS
SYSLINE (1) currently is not supported by Digital Equipment Corporation.

1-309

TABS(1)

NAME
tabs - set terminal tabs

SYNTAX
tabs [-n] [terminal]

DESCRIPTION
Tabs sets the tabs on a variety of terminals. Various terminal names given in term(7) are
recognized; the default is, however, suitable for most 300 baud terminals. If the -n flag is
present then the left margin is not indented as is normal.

SEE ALSO
stty(l), term(7)

STATUS
TABS (1) currently is not supported by Digital Equipment Corporation.

1-310

TAIL(1)

NAME
tail - deliver the last part of a file

SYNTAX
tail [±number[lbc][fr]] [file]

DESCRIPTION
Tail copies the named file to the standard output beginning at a designated place. If no
file is named, the standard input is used.

Copying begins at distance +number from the beginning, or -number from the end of the
input. Number is counted in units of lines, blocks or characters, according to the appended
option I, b or c. When no units are specified, counting is by lines.

Specifying r causes tail to print lines from the end of the file in reverse order. The default
for r is to print the entire file this way. Specifying f causes tail to not quit at end of file,
but rather wait and try to read repeatedly in hopes that the file will grow.

SEE ALSO
dd(1)

RESTRICTIONS
Tails relative to the end of the file are treasured up in a buffer, and thus are limited in
length.

Various kinds of anomalous behavior may happen with character special files.

STATUS
TAIL (1) currently is not supported by Digital Equipment Corporation.

1-311

TALK(1)

NAME
talk - talk to another user

SYNTAX
talk person [ttyname]

DESCRIPTION
Talk is a visual communication program which copies lines from your terminal to that of
another user.

If you wish to talk to someone on you own machine, then person is just the person's login
name., If you wish to talk to a user on another host, then person is of the form :

host/user or
host. user or
host.·user or
user@host

though user@host is perhaps preferred.

If you want to talk to a user who is logged in more than once, the ttyname argument may
be used to indicate the appropriate terminal name.

When first called, it sends the message

Message from TalkDaemon@hiLmachine ...
talk: connection requested by youLname@your.JIlachine.
talk: respond with: talk your_name@your_machine

to the user you wish to talk to. At this point, the recipient of the message should' reply by
typing

talk you~ name@you1Z-machine

It doesn't matter from which machine the recipient replies, as long as his login-name is the
same. Once communication is established, the two parties may type simultaneously, with
their output appearing in separate windows. Typing control L will cause the screen to be
reprinted, while your erase, kill, and word kill characters will work in talk as normal. To
exit, just type your interrupt character; talk then moves the cursor to the bottom of the
screen and restores the terminal.

Permission to talk may be denied or granted by use of the mesg command. At the outset
talking is allowed. Certain commands, in particular nroff and pr(l) disallow messages in
order to prevent messy output.

FILES
/etc/hosts
/etc/utmp

SEE ALSO

to find the recipient's machine
to find the recipient's tty

mesg(l), who(l), mail(l), write(l)

STATUS
TALK (1) currently is not supported by Digital Equipment Corporation.

1-312

TAR (1)

NAME
tar - tape archiver

SYNTAX
tar [key] [name ...).

DESCRIPTION
Tar saves and restores multiple files on a single file (usually a magnetic tape, but it can be
any file). Tar's actions are controlled by the key argument. The key is a string of charac­
ters containing at most one function letter and possibly one or more function modifiers.
Other arguments to tar are file or directory names specifying which files to dump or restore.
In all cases, appearance of a directory name refers to the files and (recursively) subdirec­
tories of that directory.

The function portion of the key is specified by one of the following letters:

r write the named files to the end of the tape. The c function implies this.

x extract the named files from the tape. If the named file matches a directory whose
contents had been written onto the tape, this directory is (recursively) extracted.
The owner, modification time, and mode are restored (if possible). If no file argu­
ment is given, the entire content of the tape is extracted. Note that if multiple
entries specifying the same file are on the tape, the last one overwrites all earlier.

t list the names of the designated files each time they occur on the tape. If no file
argument is given, all of the names on the tape are listed.

u add the named files to the tape either if they are not there already or if they have
been modified since last put on the tape.

c create a new tape. Writing begins on the beginning of the tape instead of after the
last file. This command implies r.

The following characters may be used in addition to the letter which selects the function
desired.

o suppress the normal directory information. On output, tar normally places
information specifying owner and modes of directories in the archive. Former
versions of tar, when encountering this information will give error message of the
form

" <name> /: cannot create".

p restore the named files to their original modes, ignoring the present umask(2).
Setuid and sticky information will also be restored to the super-user.

0 •.• 9 select the named drive as an alternate drive on which the tape is mounted. The
default is drive 0 at 1600 bpi, which is normally /dev/rmt8.

v write the name of each file treated (preceded by the function letter) to diagnostic
output.·· Normally tar does its work silently. With the t function, this verbose
option gives more information about the tape entries than just their names.

w print the action to be taken followed by file name, then wait for user

© Digital Equipment Corporation 1984 1-313

TAR(1)

confirmation. If a word beginning with 'y' is given, the action is done. Any other
input means don't do it.

f use the next argument as the name of the archive instead of /dev/rmt? If the
name of the file is '-', tar writes to standard output or reads from standard
input, whichever is appropriate. Thus, tar can be used as the head or tail of a
filter chain. Tar can also be used to move hierarchies with the command

cd fromdir; tar cf - . I (cd todir; tar xf -)

b use the next argument as the blocking factor for tape records. The default is 20
(the maximum). This option should only be used with raw magnetic tape
archives (See f above). The block size is determined automatically when reading
tapes (key letters 'x' and 't').

1 complain if it cannot resolve all of the links to the files dumped. If this is not
specified, no error messages are printed.

m do not restore the modification times. The modification time will be the time of
extraction.

k keep from following symbolic links. Normally, tar follows symbolic links as if
they were normal files or directories.

B forces input and output blocking to 20 blocks per record. This option was added
so that tar can work across a communications channel where the blocking may
not be maintained.

-i ignore checksum errors found in the archive.

- F[F] operate in "fast mode." When - F is specified, tar skips all SCCS directories,
core files, and errs files. When - FF is specified, tar also skips all 'a.out' and
'* .0' files.

If a file name is preceded by -C, then tar will perform a chdir(2) to that file name. This
allows multiple directories not related by a close common parent to be archived using short
relative path names. For example, to archive files from /usr/include and from /etc, one
might use

tar c -C /usr include -C / etc

Previous restrictions dealing with tar's inability to properly handle blocked archives have
been lifted.

FILES
/dev/rmt?
/tmp/tar*

DIAGNOSTICS
Complaints about bad key characters and tape read/write errors.
Complaints if enough memory is not available to hold the link tables.

1-314 ~ Digital Equipment Corporation 1984

RESTRICTIONS
There is no way to ask for the n-th occurrence of a file.
Tape errors are handled ungracefully.
The u option can be slow.
The current limit on file name length is 100 characters.
There is no way to follow symbolic links selectively.

STATUS
TAR (1) is supported by Digital Equipment Corporation.

TAR(1)

1-315

TBL(1)

NAME
tbl - format tables for nroff or troff

SYNTAX
tbl [files 1 ...

DESCRIPTION
Tbl is a preprocessor for formatting tables for nroff or troff(l). The input files are copied
to the standard output, except for lines between and are reformatted. Details are given in
the tbl (1) reference manual.

EXAMPLE
As an example, letting \ represent a tab (which should be typed as a genuine tab) the
input

yields

.TS
css
ccs
ccc
1 n n.
Household Population
Town tHouseholds
\ tNumber \ tSize

Bedminster \ t789 \ t3.26
Bernards Twp. \ t3087 \ t3.7 4
Bernardsville \ t20181 \ t3.30
Bound Brook \,t3425 \ t3.04
Branchburg \ tl644 \ t3.49
Bridgewater \ t7897 \ t3.81
Far Hills \ t240 \ t3.19
.TE

Household Population
Town Households

Bedminster
Bernards Twp.
Bernardsville
Bound Brook
Branchburg
Bridgewater
Far Hills

Number Size
789 3.26

3087 3.74
2018 3.30
3425 3.04
1644 3.49
7897 3.81

240 3.19

If no arguments are given, tbl reads the standard input, so it may be used as a filter. When
tbl is used with eqn or neqn the tbl command should be first, to minimize the volume of
data passed through pipes.

1-316

SEE ALSO
troff(l), eqn(l)
M. E. Lesk, TBL.

STATUS
TBL (1) currently is not supported by Digital Equipment Corporation.

TBl(1)

1-317

Te(1)

NAME
tc - photoypesetter simulator

SYNTAX
tc [-t] [-sN] [-pL] [file]

DESCRIPTION
Tc interprets its input (standard input default) as device codes for a Graphic Systems pho­
totypesetter (cat). The standard output of tc is intended for a Tektronix 4015 (a 4014 ter­
minal with ASCII and APL character sets). The sixteen typesetter sizes are mapped into
the 4014's four sizes; the entire TROFF character set is drawn using the 4014's character
generator, using overstruck combinations where necessary. Typical usage:

troff -t file I tc

At the end of each page tc waits for a newline (empty line) from the keyboard before con­
tinuing on to the next page. In this wait state, the command e will suppress the screen
erase before the next page; sN will cause the next N pages to be skipped; and !line will
send line to the shell.

The command line options are:

-t Don't wait between pages; for directing output into a file.

-sN Skip the first N pages.

-pL Set page length to L. L may include the scale factors p (points), i (inches), c (cen-
timeters), and P (picas); default is picas.

'-1 w' Multiply the default aspect ratio, 1.5, of a displayed page by l/w.

SEE ALSO
troff(1), plot(1G)

RESTRICTIONS
Font distinctions are lost.
tc's character set is limited to ASCII in just one size.

STATUS
TC (1) currently is not supported by Digital Equipment Corporation.

1-318

TEE(1)

NAME
tee - pipe fitting

SYNTAX
tee [-i] [-a] [file] ...

DESCRIPTION
Tee transcribes the standard input to the standard output and makes copies in the files.
Option -i ignores interrupts; option -a causes the output to be appended to the files
rather than overwriting them.

STATUS
TEE (1) currently is not supported by Digital Equipment Corporation.

1-319

TELNET(1C)

NAME
telnet - user interface to the TEL NET protocol

SYNTAX
telnet [host [port]]

DESCRIPTION
Telnet is used to communicate with another host using the TEL NET protocol. If telnet is
invoked without arguments, it enters command mode, indicated by its prompt ("telnet>").
In this mode, it accepts and executes the commands listed below. If it is invoked with
arguments, it performs an open command (see below) with those arguments.

Once a connection has been opened, telnet enters input mode. In this mode, text typed is
sent to the remote host. To issue telnet commands when in input mode, precede them with
the telnet "escape character" (initially ""["). When in command mode, the normal terminal
editing conventions are available.

The following commands are available. Only enough of each command to uniquely identify
it need be typed.

open host [port]
Open a connection to the named host. If the no port number is specified, telnet
will attempt to contact a TELNET server at the default port. The host
specification may be either a host name (see hosts(5» or an Internet address
specified in the "dot notation".

close Close a TEL NET session and return to command mode.

quit Close any open TELNET session and exit telnet.

z Suspend telnet. This command only works when the user is using the csh (1).

escape [escape-char]
Set the telnet "escape character". Control characters may be specified as """ fol­
lowed by a single letter; e.g. "control-X" is ""X".

status Show the current status of telnet. This includes the peer one is connected to, as
well as the state of debugging.

options
Toggle viewing of TELNET options processing. When options viewing is enabled,
all TEL NET option negotiations will be displayed. Options sent by telnet are
displayed as "SENT", while options received from the TEL NET server are
displayed as "RCVD".

crmod Toggle carriage return mode. When this mode is enabled any carriage return char­
acters received from the remote host will be mapped into a carriage return and a
line feed. This mode does not affect those characters typed by the user, only those
received. This mode is not very useful, but is required for some hosts that like to
ask the user to do local echoing.

? [command]

1-320

STATUS

TELNET(1C)

Get help. With no arguments, telnet prints a help summary. If a command is
specified, telnet will print the help information available about the command only.

TEL NET (1C) currently is not supported by Digital Equipment Corporation.

1-321

TEST (1)

NAME
test - condition command

SYNTAX
test expr

DESCRIPTION
test evaluates the expression expr, and if its value is true then returns zero exit status; oth­
erwise, a non zero exit status is returned. test returns a non zero exit if there are no argu­
ments.

The following primitives are used to construct ex pr.

-r file true if the file exists and is readable.

-w file true if the file exists and is writable.

-f file true if the file exists and is not a directory.

-d file true if the file exists exists and is a directory.

-s file true if the file exists and has a size greater than zero.

-t [fildes]
true if the open file whose file descriptor number is fiides (1 by default) is associ­
ated with a terminal device.

-z sl true if the length of string s1 is zero.

-n sl true if the length of the string s1 is nonzero.

sl = s2 true if the strings s1 and s2 are equal.

sl t= s2 true if the strings s1 and s2 are not equal.

sl true if s1 is not the null string.

n1 -eq n2
true if the integers n1 and n2 are algebraically equal. Any of the comparisons
-ne, -gt, -ge, -It, or -Ie may be used in place of -eq.

These primaries may be combined with the following operators:

unary negation operator

-a binary and operator

-0 binary or operator

(expr) parentheses for grouping.

-a has higher precedence than -0. Notice that all the operators and flags are separate
arguments to test. Notice also that parentheses are meaningful to the Shell and must be
escaped.

SEE ALSO
sh(1), find(1)

STATUS
TEST (1) currently is not supported by Digital Equipment Corporation.

1-322

TIME(1)

NAME
time - time a command

SYNTAX
time command

DESCRIPTION
The given command is executed; after it is complete, time prints the elapsed time during
the command, the time spent in the system, and the time spent in execution of the com­
mand. Times are reported in seconds.

On a PDP-ll, the execution time can depend on what kind of memory the program hap­
pens to land in; the user time in MOS is often half what it is in core.

The times are printed on the diagnostic output stream.

Time is built in to csh(l), using a different output format.

RESTRICTIONS
Elapsed time is accurate to the second, while the CPU times are measured to the 100th
second. Thus the sum of the CPU times can be up to a second larger than the elapsed
time.

Time is a built-in command to csh(l), with a much different syntax. This command is
available as "/bin/time" to csh users.

STATUS
TIME (1) currently is not supported by Digital Equipment Corporation.

1-323

TIP(1C)

NAME
tip, cu - connect to a remote system

SYNTAX
tip [-v] [-speed] system-name
tip [-v] [-speed] phone-number
cu phone-number [-t] [-s speed] [-a acu] [-IUne] [-#]

DESCRIPTION
Tip and cu establish a full-duplex connection to another machine, giving the appearance of
being logged in directly on the remote cpu. It goes without saying that you must have a
login on the machine (or equivalent) to which yoU wish to connect. The preferred interface
is tip. The cu interface is included for those people attached to the "call UNIX" command
of version 7. This manual page describes only tip.

Typed characters are normally transmitted directly to the remote machine (which does the
echoing as well). A tilde ('-') appearing as the first character of a line is an escape signal;
the following are recognized:

-D -. Drop the connection and exit (you may still be logged in on the remote
machine).

-c [name]
Change direGtory to name (no argument implies change to your home directory).

1 Escape to a shell (exiting the shell will return you to tip).

-> Copy file from local to remote. Tip prompts for the name of a local file to
transmit.

-< Copy file from remote to local. Tip prompts first for the name of the file to be
sent, then for a command to be executed on the remote machine.

-p from [to]
Send a file to a remote UNIX host. The put command causes the remote UNIX
system to run the command string "cat> 'to"', while tip sends it the "from" file.
If the "to" file isn't specified the "from" file name is used. This command is
actually a UNIX specific version of the "->" command.

-t from [to]
Take a file from a remote UNIX host. As in the put command the "to" file
defaults to the "from" file name if it isn't specified. The remote host executes
the command string "cat 'from';echo "A" to send the file to tip.

i Pipe the output from a remote command to a local UNIX process. The com­
mand string sent to the local UNIX system is processed by the shell.

-# Send a BREAK to the remote system. For systems which don't support the
necessary ioctl call the break is simulated by a sequence of line speed changes
and DEL characters.

-s Set a variable (see the discussion below).

1-324

TIP(1C)

-"Z Stop tip (only available with job control).

-? Get a summary of the tilde escapes

Tip uses the file /etc/remote to find how to reach a particular system and to find out how it
should operate while talking to the system; refer to remote(5) for a full description. Each
system has a default baud rate with which to establish a connection. If this value is not
suitable, the baud rate to be used may be specified on the command line, e.g. "tip -300
mds".

When tip establishes a connection it sends out a connection message to the remote system;
the default value, if any, is defined in fete/remote.

When tip prompts for an argument (e.g. during setup of a file transfer) the line typed may
be edited with the standard erase and kill characters. A null line in response to a prompt,
or an interrupt, will abort the dialogue and return you to the remote machine.

Tip guards against multiple users connecting to a remote system by opening modems and
terminal lines with exclusive access, and by honoring the locking protocol used by
uucp(lC).

During file transfers tip provides a running count of the number of lines transferred. When
using the -> and -< commands, the "eofread" and "eofwrite" variables are used to recog­
nize end-of-file when reading, and specify end-of-file when writing (see below). File
transfers normally depend on tandem mode for flow control. If the remote system does not
support tandem mode, "echocheck" may be set to indicate tip should synchronize with the
remote system on the echo of each transmitted character.

When tip must dial a phone number to connect to a system it will print various messages
indicating its actions. Tip supports the DEC DN-ll and Racal-Vadic 831 auto-call-units;
the DEC DF02 and DF03, Ventel 212+, Racal-Vadic 3451, and Bizcomp 1031 and 1032
integral call unit/modems.

VARIABLES

Tip maintains a set of variables which control its operation. Some of these variable are
read-only to nOl:mal users (root is allowed to change anything of interest). Variables may
be displayed and set through the "s" escape. The syntax for variables is patterned after
vi(l) and Mail(l). Supplying "all" as an argument to the set command displays all vari­
ables readable by the user. Alternatively, the user may request display of a particular vari­
able by attaching a '?' to the end. For example "escape?" displays the current escape char­
acter.

Variables are numeric, string, character, or boolean values. Boolean variables are set
merely by specifying their name; they may be reset by prep ending a 'I' to the name. Other
variable types are set by concatenating an '=' and the value. The entire assignment must
not have any blanks in it. A single set command may be used to interrogate as well as set a
number of variables. Variables may be initialized at run time by placing set commands
(without the "-s" prefix in a file .tiprc in one's home directory). The -v option causes tip

1-325

TIP(1C)

to display the sets as they are made. Certain common variables have abbreviations. The
following is a list of common variables, their abbreviations, and their default values.

beautify
(bool) Discard unprintable characters when a session is being scripted; abbreviated
be.

baudrate
(num) The baud rate at which the connection was established; abbreviated ba.

dialtimeout
(num) When dialing a phone number, the time (in seconds) to wait for a connec­
tion to be established; abbreviated dial.

echocheck
(bool) Synchronize with the remote host during file transfer by waiting for the
echo of the last character transmitted; default is off.

eofread
(str) The set of characters which signify and end-of-tranmission during a -<file
transfer command; abbreviated eofr.

eofwrite

eol

escape

(str) The string sent to indicate end-of-transmission during a -> file transfer com­
mand; abbreviated eofw.

(str) The set of characters which indicate an end-of-line. Tip will recognize escape
characters only after an end-of-line.

(char) The command prefix (escape) character; abbreviated es; default value is '-'.

exceptions

force

(str) The set of characters which should not be discarded due to the beautification
switch; abbreviated ex; default value is "\t \n \f .\b".

(char) The character used to force literal data transmission; abbreviated fo; default
value is 'AP'.

framesize

host

prompt

1-326

(num) The amount of data (in bytes) to buffer between file system writes when
receiving files; abbreviated fro

(str) The name of the host to which you are connected; abbreviated ho.

(char) The character which indicates and end-of-line on the remote host; abbrevi­
ated prj default value is '\n'. This value is used to synchronize during data
transfers. The count of lines transferred during a file transfer command is based

raise

TIP(1C)

on recipt of this character.

(bool) Upper case mapping mode; abbreviated ra; default value is off. When this
mode is enabled, all lower case letters will be mapped to upper case by tip for
transmission to the remote machine.

raisechar

record

script

(char) The input character used to toggle upper case mapping mode; abbreviated
rc; default value is '''A'.

(str) The name of the file in which a session script is recorded; abbreviated rec;
default value is "tip.record".

(bool) Session scripting mode; abbreviated se; default is off. When script is true,
tip will record everything transmitted by the remote machine in the script record
file specified in record. If the beautify switch is on, only printable ASCII charac­
ters will be included in the script file (those characters betwee 040 and 0177). The
variable exceptions is used to indicate characters which are an exception to the
normal beautification rules.

tabexpand
(bool) Expand tabs to spaces during file transfers; abbreviated tab; default value is
false. Each tab is expanded to 8 spaces.

verbose
(bool) Verbose mode; abbreviated verb; default is true. When verbose mode is
enabled, tip prints messages while dialing, shows the current number of lines
transferred during a file transfer operations, and more.

SHELL
(str) The name of the shell to use for the -! command; default value is "/bin/sh", or
taken from the environment.

HOME
(str) The home directory to use for the -c command; default value is taken from
the environment.

FILES
/etc/remote
/etc/phones
${REMOTE}
${PHONES}
-/.tiprc
/usr /spool/uucp/LCK .. *

global system descriptions
global phone number data base
private system descriptions
private phone numbers
initialization· file.
lock file to avoid conflicts with uucp

1-327

TIP (1C)

DIAGNOSTICS
Diagnostics are, hopefully, self explanatory.

SEE ALSO
remote(5), phones(5)

STATUS
TIP (IC) is supported by Digital Equipment Corporation.

1-328

TK(1)

NAME
tk - paginator for the Tektronix 4014

SYNTAX
tk [-t] [- N] [-pL] [file]

DESCRIPTION
The output of tk is intended for a Tektronix 4014 terminal. Tk arranges for 66 lines to fit
on the screen, divides the screen into N columns, and contributes an eight space page offset
in the (default) single-column case. Tabs, spaces, and backspaces are collected and plotted
when necessary. Teletype Model 37 half- and reverse-line sequences are interpreted and
plotted. At the end of each page tk waits for a newline (empty line) from the keyboard
before continuing on to the next page. In this wait state, the command !command will send
the command to the shell.

The command line options are:

-t Don't wait between pages; for directing output into a file.

- N Divide the screen into N columns and wait after the last column.

-pL Set page length to L lines.

SEE ALSO
pr(l)

STATUS
TK (1) currently is not supported by Digital Equipment Corporation.

1-329

TOUCH(1)

NAME
touch - update date last modified of a file

SYNTAX
touch [-c] [-f] file ...

DESCRIPTION
Touch attempts to set the modified date of each file. If a file exists, this is done by reading
a character from the file and writing it back. If a file does not exist, an attempt will be
made to create it unless the -c option is specified. The -f option will attempt to force the
touch in spite of read and write permissions on a file.

SEE ALSO
utimes(2)

STATUS
TOUCH (1) currently is not supported by Digital Equipment Corporation.

1-330

TP(1)

NAME
tp - manipulate tape archive

SYNTAX
tp [key] [name ...]

DESCRIPTION
Tp saves and restores files on DECtape or magtape. Its actions are controlled by the key
argument. The key is a string of characters containing at most one function letter and pos­
sibly one or more function modifiers. Other arguments to the command are file or directory
names specifying which files are to be dumped, restored, or listed. In all cases, appearance
of a directory name refers to the files and (recursively) subdirectories of that directory.

The function portion of the key is specified by one of the following letters:

r The named files are written on the tape. If files with the same names already
exist, they are replaced. 'Same' is determined by string comparison, so './abc' can
never be the same as '/usr/dmr/abc' even if '/usr/dmr' is the current directory. If
no file argument is given, '.' is the default.

u updates the tape. u is like r, but a file is replaced only if its modification date is
later than the date stored on the tape; that is to say, if it has changed since it was
dumped. u is the default command if none is given.

d deletes the named files from the tape. At least one name argument must be given.
This function is not permitted on magtapes.

x extracts the named files from the tape to the file system. The owner and mode are
restored. If no file argument is given, the entire contents of the tape are extracted.

t lists the names of the specified files. If no file argument is given, the entire con­
tents of the tape is listed.

The following characters may be used in addition to the letter which selects the function
desired.

m

0, ... ,7

v

c

i

f

Specifies magtape as opposed to DECtape.

This modifier selects the drive on which the tape is mounted. For DECtape, x is
default; for magtape '0' is the default.

Normally tp does its work silently. The v (verbose) option causes it to type the
name of each file it treats preceded by the function letter. With the t function,
v gives more information about the tape entries than just the name.

means a fresh dump is being created; the tape directory is cleared before begin­
ning. Usable only with rand u. This option is assumed with magtape since it is
impossible to selectively overwrite magtape.

Errors reading and writing the tape are noted, but no action is taken. Normally,
errors cause a return to the command level.

Use the first named file, rather than a tape, as the archive. This option

1-331

TP(1)

currently acts like m; i.e. r implies c, and neither d nor u are permitted.

w causes tp to pause before treating each file, type the indicative letter and the file
name (as with v) and await the user's response. Response y means 'yes', so the
file is treated. Null response means 'no', and the file does not take part in what­
ever is being done. Response x means 'exit'; the tp command terminates
immediately. In the x function, files previously asked about have been extracted
already. With r, u, and d no change has been made to the tape.

FILES
/dev/tap?
/dev/rmt?

SEE ALSO
ar(I), tar(l)

DIAGNOSTICS
Several; the non-obvious one is 'Phase error', which means the file changed after it was
selected for dumping but before it was dumped.

RESTRICTIONS
A single file with several links to it is treated like several files.

Binary-coded control information makes magnetic tapes written by tp difficult to carry to
other machines; tar(l) avoids the problem.

STATUS
TP (1) is supported by Digital Equipment Corporation.

1-332

TR(1)

NAME
tr - translate characters

SYNTAX
tr [-cds] [string1 [string2]]

DESCRIPTION
Tr copies the standard input to the standard output with substitution or deletion of
selected characters. Input characters found in stringl are mapped into the corresponding
characters of string2. When string2 is short it is padded to the length of stringl by dupli­
cating its last character. Any combination of the options -cds may be used: -c comple­
ments the set of characters in stringl with respect to the universe of characters whose
ASCII codes are 01 through 0377 octal; -d deletes all input characters in stringl; -s
squeezes all strings of repeated output characters that are in string2 to single characters.

In either string the notation a -b means a range of characters from a to b in increasing
ASCII order. The character '\' followed by 1, 2 or 3 octal digits stands for the character
whose ASCII code is given by those digits. A '\' followed by any other character stands for
that character.

The following example creates a list of all the words in 'file1' one per line in 'file2', where a
word is taken to be a maximal string of alphabetics. The second string is quoted to protect
'\1 from the Shell. 012 is the ASCII code for newline.

tr -cs A-Za-z ' \ 012' <file1 >file2

SEE ALSO
ed(l), ascii(7), expand(l)

RESTRICTIONS
Won't handle ASCII NUL in stringl or string2; always deletes NUL from input.

STATUS
TR (1) currently is not supported by Digital Equipment Corporation.

1-333

TRMAN(1)

NAME
trman - translate version 6 manual macros to version 7 macros

SYNTAX
trman [file]

DESCRIPTION
Trman reads the input file, which should be nroff/troff input and attempts to translate the
version 6 manual sections therein to version 7 format. It is largely successful, but seems to
have trouble with indented paragraphs and complicated font control. You should expect to
have to fix up long sections by hand somewhat.

SEE ALSO
man(7)

STATUS
TRMAN (1) currently is not supported by Digital Equipment Corporation.

1-334

TROFF(1)

NAME
troff, nroff - text formatting and typesetting

SYNTAX
troff [option] ... [file] ...

nroff [option] ... [file] '"

DESCRIPTION
Troff formats text in the named files for printing on a Graphic Systems C/ A/T photo­
typesetter; nroff is used for for typewriter-like devices. Their capabilities are described in
the Nroff/Troff user's manual.

If no file argument is present, the standard input is read. An argument consisting of a sin­
gle minus (-) is taken to be a file name corresponding to the standard input. The options,
which may appear in any order so long as they appear before the files, are:

-olist Print only pages whose page numbers appear in the comma-separated list of
numbers and ranges. A range N-M means pages N through M; an initial -N
means from the beginning to page N; and a final N - means from N to the end.

-nN Number first generated page N.

-sN Stop every N pages. Nroff will halt prior to every N pages (default N=1) to
allow paper loading or changing, and will resume upon receipt of a newline. Troff
will stop the phototypesetter every N pages, produce a trailer to allow changing
cassettes, and resume when the typesetter's start button is pressed.

-mname

-raN

-i

-q

Prepend the macro file /usr/lib/tmac/tmac.name to the input files.

Set register a (one-character) to N.

Read standard input after the input files are exhausted.

Invoke the simultaneous input-output mode of the rd request.

Troff only

-t Direct output to the standard output instead of the phototypesetter.

-f Refrain from feeding out paper and stopping phototypesetter at the end of the
run.

-w Wait until phototypesetter is available, if currently busy.

-b Report whether the phototypesetter is busy or available. No text processing is
done.

-a Send a printable ASCII approximation of the results to the standard output.

-pN Print all characters in point size N while retaining all prescribed spacings and
motions, to reduce phototypesetter elapsed time.

-Ffontdir
The directory fontdir contains the font width tables /usr/lib/fonts. This option

1-335

TROFF(1)

can be used to produce output for devices besides the phototypesetter.

If the file /usr/adm/tracct is writable, troff keeps phototypesetter accounting records there.
The integrity of that file may be secured by making troff a 'set user-id' program.

FILES
/tmp/ta*
/usr/lib/tmac/tmac. *
/usr /lib/term/*
/usr /lib/font/*
/dev/cat
/usr/adm/tracct

SEE ALSO

temporary file
standard macro files
terminal driving tables for nroff
font width tables for troff
phototypesetter
accounting statistics for /dev/cat

J. F. Ossanna, Nroff/Troff user's manual
B. W. Kernighan, A TROFF Tutorial
eqn(l), tbl(l), ms(7), me(7), man(7), col(l)

STATUS
TROFF (1) currently is not supported by Digital Equipment Corporation.

1-336

TRUE(1)

NAME
true, false - provide truth values

SYNTAX
true

false

DESCRIPTION
True and false are usually used in a Bourne shell script. They test for the appropriate
status "true" or "false" before running (or failing to run) a list of commands.

EXAMPLE

SEE ALSO

while true
do

command list
done

csh(l), sh(l), false(l)

DIAGNOSTICS
True has exit status zero.

STATUS
TRUE (1) is supported by Digital Equipment Corporation.

1-337

TSET(1)

NAME
tset - terminal dependent initialization

SYNTAX
tset [options] [-m [ident] [test baudrate]:type] ... [type]

reset ...

DESCRIPTION
Tset sets up your terminal when you first log in to a UNIX system. It does terminal
dependent processing such as setting erase and kill characters, setting or resetting delays,
sending any sequences needed to properly initialized the terminal, and the like. It first
determines the type of terminal involved, and then does necessary initializations and mode
settings. The type of terminal attached to each UNIX port is specified in the /etc/ttytype
database. Type names for terminals may be found in the termcap(5) database. If a port is
not wired permanently to a specific terminal (not hardwired) it will be given an appropriate
generic identifier such as dialup.

In the case where no arguments are specified, tset simply reads the terminal type out of the
environment variable TERM and re-initializes the terminal. The rest of this manual con­
cerns itself with mode and environment initialization, typically done once at login, and
options used at initialization time to determine the terminal type and set up terminal
modes.

When used in a startup script (.profile for sh{l) users or .login for csh(l) users) it is desir­
able to give information about the type of terminal you will usually use on ports which are
not hardwired. These ports are identified in /etc/ttytype as dialup or plugboard or
arpanet, etc. To specify what terminal type you usually use on these ports, the -m (map)
option flag is followed by the appropriate port type identifier, an optional baud rate
specification, and the terminal type. (The effect is to "map" from some conditions to a ter­
minal type, that is, to tell tset "If I'm on this kind of port, guess that I'm on that kind of
terminal".) If more than one mapping is specified, the first applicable mapping prevails. A
missing port type identifier matches all identifiers. Any of the alternate generic names
given in termcap may be used for the identifier.

A baudrate is specified as with stty(l), and is compared with the speed of the diagnostic
output (which should be the control terminal). The baud rate test may be any combination
of: >, @, <, and !; @ means ",at" and! inverts the sense of the test. To avoid problems
with metacharacters, it is best to place the entire argument to -m within "'" characters;
users of csh(l) must also put a "\" before any"!" used here.

Thus

tset -m 'dialup>300:adm3a' -m dialup:dw2 -m 'plugboard:?adm3a'

causes the terminal type to be set to an adm3a if the port in use is a dialup at a speed
greater than 300 baud; to a dw2 if the port is (otherwise) a dialup (i.e. at 300 baud or less).
(The examples given here appear to take up more than one line, for text processing reasons.
When you type in real tset commands, you must enter them entirely on one line.) If the

1-338

TSET(1)

type finally determined by tset begins with a question mark, the user is asked if s/he really
wants that type. A null response means to use that type; otherwise, another type can be
entered which will be used instead. Thus, in the above case, the user will be queried on a
plugboard port as to whether they are actually using an adm3a.

If no mapping applies and a final type option, not preceded by a -m, is given on the com­
mand line then that type is used; otherwise the identifier found in the /etc/ttytype data­
base will be taken to be the terminal type. This should always be the case for hardwired
ports.

It is usually desirable to return the terminal type, as finally determined by tset, and infor­
mation about the terminal's capabilities to a shell's environment. This can be done using
the - option; using the Bourne shell, sh{l):

export TERM; TERM='tset - options ... '

or using the C shell, csh{l):

setenv TERM 'tset - options ... '

With csh it is convenient to make an alias in your .cshrc:

alias tset 'setenv TERM 'tset _ \ !*"
Either of these aliases allow the command

tset 2621
to be invoked at any time from your login csh. Note to Bourne Shell users: It is not
possible to get this aliasing effect with a shell script, because shell scripts cannot set the
environment of their parent. (If a process could set its parent's environment, none of this
nonsense would be necessary in the first place.)

These commands cause tset to place the name of your terminal in the variable TERM in
the environment; see environ (7).

Once the terminal type is known, tset engages in terminal driver mode setting. This nor­
mally involves sending an initialization sequence to the terminal, setting the single charac­
ter erase {and optionally the line-kill (full line erase~) characters, and setting special charac­
ter delays. Tab and newline expansion are turned off during transmission of the terminal
initialization sequence.

On terminals that can backspace but not overstrike (such as a CRT), and when the erase
character is the default erase character ('#' on standard systems), the erase character is
changed to BACKSPACE (Control-H).

The options are:

-ec set the erase character to be the named character c on all terminals, the default
being the backspace character on the terminal, usually AH. The character c can
either be typed directly, or entered using the hat notation used here.

- kc is similar to -e but for the line kill character rather than the erase character; c
defaults to AX (for purely historical reasons). The kill characters is left alone if - k
is not specified. The hat notation can also be used for this option.

1-339

TSET(1)

The name of the terminal finally decided upon is output on the standard output.
This is intended to be captured by the shell and placed in the environment vari­
able TERM.

-n On systems with the Berkeley 4BSD tty driver, specifies that the new tty driver
modes should be initialized for this terminal. For a CRT, the CRTERASE and
CRTKILL modes are set only if the baud rate is 1200 or greater. See tty(4) for
more detail.

- I suppresses transmitting terminal initialization strings.

-Q suppresses printing the "Erase set to" and "Kill set to" messages.

If tset is invoked as reset, it will set cooked and echo modes, turn off cbreak and raw
modes, turn on newline translation, and restore special characters to a sensible state before
any terminal dependent processing is done. Any special character that is found to be NULL
or "-I" is reset to its default value.

This is most useful after a program dies leaving a terminal in a funny state. You may have
to type "<LF>reset<LF>" to get it to work since <CR> may not work in this state. Often
none of this will echo.

EXAMPLES
These examples all assume the Bourne shell and use the - option. If you use csh, use one
of the variations described above. Note that a typical use of tset in a .profile or .login will
also use the -e and -k options, and often the -n or -Q options as well. These options
have not been included here to keep the examples small. (NOTE: some of the examples
given here appear to take up more than one line, for text processing reasons. When you
type in real tset commands, you must enter them entirely on one line.)

At the moment, you are on a 2621. This is suitable for typing by hand but not for a
.profile, unless you are always on a 2621.

export TERM; TERM = 'tset - 2621'

You have an h19 at home which you dial up on, but your office terminal is hardwired and
known in / etc/ttytype.

export TERM; TERM='tset - -m dialup:hI9'

You have a switch which connects everything to everything, making it nearly impossible to
key on what port you are coming in on. You use a vt100 in your office at 9600 baud, and
dial up to switch ports at 1200 baud from home on a 2621. Sometimes you use someone
elses terminal at work, so you want it to ask you to make sure what terminal type you have
at high speeds, but at 1200 baud you are always on a 2621. Note the placement of the
question mark, and the quotes to protect the greater than and question mark from interpre­
tation by the shell.

export TERM; TERM='tset - -m 'switch>1200:?vtl00' -m 'switch<=1200:2621'

1-340

TSET(1)

All of the above entries will fall back on the terminal type specified in /etc/ttytype if none
of the conditions hold. The following entry is appropriate if you always dial up, always at
the same baud rate, on many different kinds of terminals. Your most common terminal is
an adm3a. It always asks you what kind of terminal you are on, defaulting to adm3a.

export TERM; TERM = 'tset - ?adm3a'

If the file /etc/ttytype is not properly installed and you want to key entirely on the baud
rate, the following can be used:

export TERM; TERM='tset - -m '>1200:vtlOO' 2621'

Here is a fancy example to illustrate the power of tset and to hopelessly confuse anyone
who has made it this far. You dial up at 1200 baud or less on a conceptlOO, sometimes over
switch ports and sometimes over regular dialups. You use various terminals at speeds
higher than 1200 over switch ports, most often the terminal in your office, which is a vt100.
However, sometimes you log in from the university you used to go to, over the ARPANET;
in this case you are on an ALTO emulating a dm2500. You also often log in on various
hardwired ports, such as the console, all of which are properly entered in /etc/ttytype. You
want your erase character set to control H, your kill character set to control U, and don't
want tset to print the "Erase set to Backspace, Kill set to Control U" message.

export TERM; TERM='tset -e -k"U -Q - -m 'switch<=1200:concept100' -m
'switch:?vt100' -m dialup:conceptlOO -m arpanet:dm2500'

FILES
/ etc/ttytype
/ etc/termcap

SEE ALSO

port name to terminal type mapping database
terminal capability database

csh(l), sh(l), stty(1), ttytype(5), termcap(5), environ(7)

RESTRICTIONS
For compatibility with earlier versions of tset a number of flags are accepted whose use is
discouraged:'

-d type equivalent to -m dialup:type

-p type equivalent to -m plugboard:type

-a type equivalent to -m arpanet:type

--E c Sets the erase character to c only if the terminal can backspace.

prints the terminal type on the standard output

-r prints the terminal type on the diagnostic output.

STATUS
TSET (1) currently is not supported by Digital Equipment Corporation.

1-341

TSORT(1)

NAME
tsort - topological sort

SYNTAX
tsort [file]

DESCRIPTION
Tsort produces on the standard output a totally ordered list of items consistent with a par­
tial ordering of items mentioned in the input file. If no file is specified, the standard input
is understood.

The input consists of pairs of items (nonempty strings) separated by blanks. Pairs of
different items indicate ordering. Pairs of identical items indicate presence, but not order­
ing.

SEE ALSO
lorder(1)

DIAGNOSTICS
Odd data: there is an odd number of fields in the input file.

STATUS
TSORT (1) currently is not supported by Digital Equipment Corporation.

1-342

TTY (1)

NAME
tty - get terminal name

SYNTAX
tty [-s]

DESCRIPTION
Tty prints the pathname of the user's terminal unless the -s (silent) is given. In either
case, the exit value is zero if the standard input is a terminal and one if it is not.

DIAGNOSTICS
'not a tty' if the standard input file is not a terminal.

STATUS
TTY (1) is supported by Digital Equipment Corporation.

1-343

UL(1)

NAME
ul- do underlining

SYNTAX
ul [-i] [-t terminal] [name ...

DESCRIPTION
Ul reads the named files (or standard input if none are given) and translates occurrences of
underscores to the sequence which indicates underlining for the terminal in use, as specified
by the environment variable TERM. The -t option overrides the terminal kind specified
in the environment. The file /etc/termcap is read to determine the appropriate sequences
for underlining. If the terminal is incapable of underlining, but is capable of a standout
mode then that is used instead. If the terminal can overstrike, or handles underlining
automatically, ul degenerates to cat(1). If the terminal cannot underline, underlining is
ignored.

The -i option causes ul to indicate underlining onto by a separate line containing
appropriate dashes '-'; this is useful when you want to look at the underlining which is
present in an nroff output stream on a crt-terminal.

SEE ALSO
man(1), nroff(1), colcrt(1)

RESTRICTIONS
Nroff usually outputs a series of backspaces and underlines intermixed with the text to
indicate underiining. No attempt is made to optimize the backward motion.

STATUS
UL (1) currently is not supported by Digital Equipment Corporation.

1-344

UNIQ(1)

NAME
uniq - report repeated lines in a file

SYNTAX
uniq [-udc [+n] [-n]] [input [output]]

DESCRIPTION
Uniq reads the input file comparing adjacent lines. In the normal case, the second and
succeeding copies of repeated lines are removed; the remainder is written on the output file.
Note that repeated lines must be adjacent in order to be found; see sort(l). If the -u flag
is used, just the lines that are not repeated in the original file are output. The -d option
specifies that one copy of just the repeated lines is to be written. The normal mode output
is the union of the -u and -d mode outputs.

The -c option supersedes -u and -d and generates an output report in default style but
with each line preceded by a count of the number of times it occurred.

The n arguments specify skipping an initial portion of each line in the comparison:

-n The first n fields together with any blanks before each are ignored. A field is
defined as a string of non-space, non-tab characters separated by tabs and spaces
from its neighbors.

+n The first n characters are ignored. Fields are skipped before characters.

SEE ALSO
sort(l), comm(l)

STATUS
UNIQ (1) currently is not supported by Digital Equipment Corporation.

1-345

UNITS(1)

NAME
units - conversion program

SYNTAX
units

DESCRIPTION
Units converts quantities expressed in various standard scales to their equivalents in other
scales. It works interactively in this fashion:

You have: inch
You want: em

* 2.54000e+OO
/ 3.93701e-Ol

A quantity is specified as a multiplicative combination of units optionally preceded by a
numeric multiplier. Powers are indicated by suffixed positive integers, division by the usual
sign:

You have: 15 pounds force/in2
You want: atm

* 1.0206ge+OO
/ 9. 79730e-Ol

Units only does multiplicative scale changes. Thus it can convert Kelvin to Rankine, but
not Centigrade to Fahrenheit. Most familiar units, abbreviations, and metric prefixes are
recognized, together with a generous leavening of exotica and a few constants of nature
including:

pi
c
e
g
force
mole
water
au

ratio of circumference to diameter
speed of light
charge on an electron
acceleration of gravity
same as g
Avogadro's number
pressure head per unit height of water
astronomical unit

'Pound' is a unit of mass. Compound names are run together, e.g. 'light year'. British units
that differ from their US counterparts are prefixed thus: 'brgallon'. Currency is denoted
'belgiumfranc', 'britainpound', ...

For a complete list of units, 'cat /usr/lib/units'.

FILES
/usr/lib/units

STATUS
UNITS (1) currently is not supported by Digital Equipment Corporation.

1-346

UPTIME(1)

NAME
uptime - show how long system has been up

SYNTAX
uptime

DESCRIPTION
Uptime prints the current time, the length of time the system has been up, the number of
current users, and the average number of jobs in the run queue over the last 1, 5 and 15
minutes. It is, essentially, the first line of a w(l) command.

FILES
/vmunix system name list

SEE ALSO
w(l)

STATUS
UPTIME (1) is supported by Digital Equipment Corporation.

1-347

USERS()

NAME
users - compact list of users who are on the system

SYNTAX
users

DESCRIPTION
Users lists the login names of the users currently on the system in a compact, one-line for­
mat.

FILES
/etc/utmp

SEE ALSO
who(1}

STATUS
USERS () currently is not supported by Digital Equipment Corporation.

1-348

NAME
uucp, uulog, uuname - unix to unix copy

SYNTAX
uucp [option] ... source-file ... destination-file

uulog [option] .. .

uuname [option] ...

DESCRIPTION
Uucp.

UUCP (1C)

Uucp copies files named by the source-file arguments to the destination-file argument. A
file name either may be a path name on your machine or may have the form

system-name!pathname

where 'system-name' is taken from a list of system names which uucp knows about. Shell
metacharacters ?*[] appearing in the pathname part will be expanded on the appropriate
system.

Pathnames may be:

1) a full pathname.

2) a pathname preceded by ~user, where user is a userid on the specified system and
is replaced by that user's login directory.

3) anything else is prefixed by the current directory.

If the result is an erroneous pathname for the remote system, the copy will fail. If the
destination-file is a directory, the last part of the source-file name is used.

Uucp preserves execute permissions across the transmission and gives 0666 read and write
permissions (see chmod(2».

The following options are interpreted by uucp.

-d Make all necessary directories for the file copy.

-c Use the source file when copying out rather than copying the file to the spool
directory.

-m Send mail to the requester when the copy is complete.

-W Prevent local expansion of remote file names. Normally files names are prep ended
with the current working directory if a full path is not specified. - W tells uucp to
expand local files only.

Uulog.

Uulog prints a summary of uucp and uux(lC) transactions that were recorded in the file
/usr/spool/uucp/LOGFILE.

© Digital Equipment Corporation 1984 1-349

UUCP(1C)

The options cause uulog to print logging information:

-ssys Print information about work involving system sys.

-uuser Print information about work done for the specified user.
Uuname

Uuname lists the uucp names of known systems. The -1 option returns the local system
name.

FILES
/usr/spool/uucp - spool directory
/usr/lib/uucp/* - other data and program files

SEE ALSO
uux(IC), mai1(l)
D. A. Nowitz, Uucp Implementation Description

WARNINGS
The domain of remotely accessible files can (and for obvious security reasons, usually
should) be severely restricted. You will very likely not be able to fetch files by pathname.
Ask a responsible person on the remote system to send them to you. For the same reasons,
you will probably not be able to send files to arbitrary pathnames.

RESTRICTIONS
All files received by uucp will be owned by uucp.
The -m option will only work sending files or receiving a single file. (Receiving multiple
files specified by special shell characters ?*[] will not activate the -m option.)

STATUS
UUCP (IC) is supported by Digital Equipment Corporation.

1-350

UUENCODE (1 C)

NAME
uuencode,uudecode - encode/decode a binary file for transmission via mail

SYNTAX
uuencode [source] remotedest I mail sysl!sys2!..!decode
uudecode [file]

DESCRIPTION
Uuencode and uudecode are used to send a binary file via uucp (or other) mail. This com­
bination can be used over indirect mail links even when uusend(IC) is not available.

Uuencode takes the named source file (default standard input) and produces an encoded
version on the standard output. The encoding uses only printing ASCII characters, and
includes the mode of the file and the remotedest for recreation on the remote system.

Uudecode reads an encoded file, strips off any leading and trailing lines added by mailers,
and recreates the original file with the specified mode and name.

The intent is that all mail to the user "decode" should be filtered through the uudecode
program. This way the file is created automatically without human intervention. This is
possible on the uucp network by either using sendmail or by making rmail be a link to
Mail instead of mail. In each case, an alias must be created in a master file to get the
automatic invocation of uudecode.

If these facilities are not available, the file can be sent to a user on the remote machine who
can uudecode it manually.

The encode file has an ordinary text form and can be edited by any text editor to change
the mode or remote name.

SEE ALSO
uuencode(5), uusend(1C), uucp(IC), uux(1C), mail(1)

RESTRICTIONS
The file is expanded by 35% (3 bytes become 4 plus control information) causing it to take
longer to transmit.

The user on the remote system who is invoking uudecode (often uucp) must have write
permission on the specified file.

STATUS
UUENCODE (IC) currently is not supported by Digital Equipment Corporation.

1-351

UUSEND(1C)

NAME
uusend - send a file to a remote host

SYNTAX
uusend [-m mode] sourcefile sysl!sys2!..!remotefile

DESCRIPTION
Uusend sends a file to a given location on a remote system. The system need not be
directly connected to the local system, but a chain of uucp(IC) links needs to connect the
two systems.

If the -m option is specified, the mode of the file on the remote end is taken from the octal
number given. Otherwise, the mode of the input file is used.

The source file can be "-", meaning to use the standard input. Both of these options are
primarily intended for internal use of uusend.

The remotefile can include the -userid syntax.

DIAGNOSTICS
If anything goes wrong any further away than the first system down the line, you will never
hear about it.

SEE ALSO
uux(IC), uucp(IC), uuencode(l)

RESTRICTIONS
All systems along the line must have the uusend command available and allow remote exe­
cution of it.

Some uucp systems have a bug where binary files cannot be the input to a uux command.
If this bug exists in any system along the line, the file will show up severly munged.

STATUS
UUSEND (IC) is supported by Digital Equipment Corporation.

1-352

UUSTAT(1C)

NAME
uustat - uucp status inquiry and job control

SYNTAX
uustat [options]

DESCRIPTION
Uustat either displays the status of or cancels previously specified uucp commands, or it
provides general status on uucp connections to other systems.

The following options are recognized:

-mmch Report the status of accessibility of machine mch. If mch is specified as all, then
the status of all machines known to the local uucp are provided.

-kjobn Kill the uucp request whose job number is jobn. The killed uucp request must
belong to the person issuing the uustat command unless that person has "super­
user" privilege.

-chour Remove the status entries which are older than hour hours. This option can only
be executed by the user uucp or the super-user.

-uuser Report the status of all uucp requests issued by user.

-ssys Report the status of all uucp requests which are destined for remote system sys.

-ohour Report the status of all uucp requests which are older than hour hours.

-yhour Report the status of all uucp requests which are younger than hour hours.

-jall Report the status of all uucp requests or the specified job (request) number.

-v Report uucp status verbosely. If this option is not specified, a status code is
printed with each uucp request.

When no options are given, uustat outputs the status of all uucp requests issued by the
current user. Note that only one of the options -j, -m, -k, -c, can be used with the other
options. For example, the command

uustat -usteve -slimbo -y63 -v

will print the verbose status of all uucp jobs that were issued by user steve destined for sys­
tem limbo within the last 63 hours. The format of each job status entry is:

job# user destination spool time status time status

where the status may be either an octal number or a verbose description. The octal code
corresponds to the following description:

OCTAL STATUS
00001 the copy failed for unknown reasons.
00002 permission to access local file is denied.
00004 permission to access remote file is denied.

1-353

UUSTAT(1C)

00010
00020
00040
00100
00200
00400
01000
02000
04000

bad uucp command is generated.
remote system cannot create temporary file.
cannot copy to remote directory.
cannot copy to local directory.
local system cannot create temporary file.
cannot execute uucp.
copy succeeded.
copy finished, job deleted.
job is queued.

The format for the machine accessibility status entries is:

system status time last success time status

where

system
is the system in question

status time
is the time the last status entry was made.

last success time
is the last time a connection was successfully made to this system. A conversation
could be ended prematurely after a successful connection.

status is a self-explanatory description of the machine status.

In the current implementation uux requests are not recorded in the uustat logging files.
This implies that mail and news requests are not recorded by uustat.

FILES
/usr/spool/uucp/ spool
/usr/lib/uucp/R stat

SEE ALSO
uucp(IC)

STATUS

directory (top level) /usr/lib/uucp/L stat
request status file

UUSTAT (lC) is supported by Digital Equipment Corporation.

1-354 © Digital Equipment Corporation 1984

system status file

UUX(1C)

NAME
uux - unix to unix command execution

SYNTAX
uux [-] command-string

DESCRIPTION
Uux gathers 0 or more files from various systems, executes a command on a specified sys­
tem and sends standard output to a file on a specified system.

The command -string is made up of one or more arguments that look like a shell command
line, except that the command and file names may be prefixed by system-name!. A null
system-name is interpreted as the local system.

File names may be:

1) a full pathname.

2) a pathname preceded by ~xxx, where xxx is a use rid on the specified system and is
replaced by that user's login directory.

3) anything else is prefixed by the current directory.

For example, the command

uux "!diff usg!/usr/dan/fl pwba!/a4/dan/fl > !fi.diff"

gets the fl files from the usg and pwba machines, executes a diff command and puts the
results in f1.diff in the local directory.

Any special shell characters such as <>;1 should be quoted either by quoting the entire
command-string, or quoting the special characters as individual arguments.

Uux attempts to get all files to the execution system. If both the file and command are
located on different remote sites, the file is first brought to the local system and is then
transferred to the execution system.

For files that are used as arguments to a command and not be processed by uux at the local
system, the file name must be escaped by using parentheses. For example, the command

uux a!uucp b!/usr/file \ (c!/usr/file)

sends a uucp command to system "a". lusr/file is transferred from system "b" to the local
system and then shipped along to system "a". When lusr/file arrives at system "a" the
uucp command executes and sends /usr/file to system "c".

Uux notifies you if the requested command on the remote system was disallowed. The
response comes by remote mail from the remote machine.

The following options are interpreted by uux:

The standard input to uux is made the standard input ot the command-string

-n Send no notification to user.

© Digital Equipment Corporation 1984 1-355

UUX(1C)

FILES
/usr/spool/uucp spool directory
/usr/lib/uucp/* other data and programs

SEE ALSO
uucp(IC)
D. A. Nowitz, Uucp Implementation Description

WARNING
An installation may, and for security reasons generally will, limit the list of commands exe­
cutable on behalf of an incoming request from uux. Typically, a restricted site will permit
little other than the receipt of mail via uux.

RESTRICTIONS
Only the first command of a shell pipeline may have a system-name!. All other commands
are executed on the system of the first command.
The use of the shell metacharacter * will probably not do what you want it to do.
The shell tokens «and > > are not implemented.
There is no notification of denial of execution on the remote machine.
Only commands listed in /usr/lib/uucp/L.cmds on the remote system will be executed at
the remote system.

STATUS
UUX (lC) is supported by Digital Equipment Corporation.

1-356

VFONTINFO (1)

NAME
vfontinfo - inspect and print out information about UNIX fonts

SYNTAX
vfontinfo [-v] fontname [characters]

DESCRIPTION
Vfontinfo allows you to examine a font in the UNIX format. It prints out all the informa­
tion in the font header and information about every non-null (width> 0) glyph. This can
be used to make sure the font is consistent with the format.

The fontname argument is the name of the font you wish to inspect. It writes to standard
output. If it can't find the file in your working directory, it looks in lusrlliblvfont (the
place most of the fonts are kept).

The characters, if given, specify certain characters to show. If omitted, the entire font is
shown.

If the -v (verbose) flag is used, the bits of the glyph itself are shown as an array of X's and
spaces, in addition to the header information.

SEE ALSO
vpr(l), vfont(5)
The Berkeley Font Catalog

STATUS
VFONTINFO (1) currently is not supported by Digital Equipment Corporation.

1-357

VGRIND(1)

NAME
vgrind - grind nice listings of programs

SYNTAX
vgrind [-f] [-] [-t] [-n] [-x] [-w] [-sn] [-h header] [-d file] [
-llanguage] name ...

DESCRIPTION
Vgrind formats the program sources which are arguments in a nice style using troff(l)
Comments are placed in italics, keywords in bold face, and the name of the current function
is listed down the margin of each page as it is encountered.

V grind runs in two basic modes, filter mode or regular mode. In filter mode vgrind acts as
a filter in a manner similar to tbl(I). The standard input is passed directly to the standard
output except for lines bracketed by the troff-like macros:

. vS - starts processing

• v E - ends processing

These lines are formatted as described above. The output from this filter can be passed to
troff for output. There need be no particular ordering with eqn(l) or tbl(I).

In regular mode vgrind accepts input files, processes them, and passes them to troff(l) for
output.

In both modes vgrind passes any lines beginning with a decimal point without conversion.

The options are:

-f forces filter mode

forces input to be taken from standard input (default if -f is specified)

-t similar to the same option in troff causing formatted text to go to the standard
output

-n forces no keyword bolding

-x outputs the index file in a "pretty" format. The index file itself is produced when-
ever vgrind is run with a file called index in the current directory. The index of
function definitions can then be run off by giving vgrind the -x option and the file
index as argument.

-W forces output to the (wide) Versatec printer rather than the (narrow) Varian

-s specifies a point size to use on output (exactly the same as the argument of a .ps)

-b specifies a particular header to put on every output page (default is the file name)

-d specifies an alternate language definitions file (default is /usr/lib/vgrindefs)

-I specifies the language to use. Currently known are PASCAL (-Ip), MODEL

1-358

(-lm),C (-Ie or the default), CSH (-Iesh), SHELL (-Ish), RATFOR (-Ir), and
ICON (-11).

)
FILES

index
/usr/lib/tmac/tmac. vgrind
/usr/lib/vfontedpr
/usr /lib/vgrindefs

SEE ALSO
vlp(1), vtroff(1), vgrindefs(5)

RESTRICTIONS

file where source for index is created
macro package
preprocessor
language descriptions

Vfontedpr assumes that a certain programming style is followed:

VGRIND(1)

For C - function names can be preceded on a line only by spaces, tabs, or an
asterisk. The parenthesized arguments must also be on the same line.

For PASCAL - function names need to appear on the same line as the keywords
function or procedure.

For MODEL - function names need to appear on the same line as the keywords
is beginproc.

If these conventions are not followed, the indexing and marginal function name comment
mechanisms will fail.

More generally, arbitrary formatting styles for programs mostly look bad. The use of
spaces to align source code fails miserably; if you plan to vgrind your program you should
use tabs. This is somewhat inevitable since the font used by vgrind is variable width.

STATUS
VGRIND (1) currently is not supported by Digital Equipment Corporation.

1-359

VI (1)

NAME
vi - screen oriented (visual) display editor based on ex

SYNTAX
vi [-t tag] [-r] [+command] [-I] [-wn] name ...

DESCRIPTION
Vi (visual) is a display oriented text editor based on ex(l). Ex and vi run the same code; it
is possible to get to the command mode of ex from within vi and vice-versa.

The -t option is equivalent to an initial tag command, that is, editing the file containing
the tag and positioning the editor at its definition.

The -r option is used to recover after an editor or system crash. It recovers by retrieving
the last saved version of the named file. If no file is specified, it displays a list of saved
files.

The -I option sets up for LISP. That is, it sets the showmatch and lisp options.

The -w option sets the window size to n.

The Vi Quick Reference card and the Introduction to Display Editing with Vi provide full
details on using vi.

FILES
See ex (1).

SEE ALSO
ex (1), edit (1), "Vi Quick Reference" card, "An Introduction to Display Editing with Vi".

RESTRICTIONS
Software tabs using AT work only immediately after the autoindent.

Left and right shifts on intelligent terminals don't make use of insert and delete character
operations in the terminal.

The wrapmargin option can be fooled since it looks at output columns when blanks are
typed. If a long word passes through the margin and onto the next line without a break,
then the line won't be broken.

Insert/delete within a line can be slow if tabs are present on intelligent terminals, since the
terminals need help in doing this correctly.

Saving text on deletes in the named buffers is somewhat inefficient.

The source command does not work when executed as :source; there is no way to use the
:append, :change, and :insert commands, since it is not possible to give more than one
line of input to a : escape. To use these on a :global you must Q to ex command mode,
execute them, and then reenter the screen editor with vi or open.

STATUS
VI (1) is supported by Digital Equipment Corporation.

1-360

VLP(1)

NAME
vIp - Format Lisp programs to be printed with nroff, vtroff, or troff

SYNTAX
vIp [-p pointsize] [-d] [-f] [-I] [-v] [-T titlel] file1 [-T title2] file2 ...

DESCRIPTION
Vlp formats the named files so that they can be run through nroff, vtroff, or troff to pro­
duce listings that line-up and are attractive. The first non-blank character of each line is
lined-up vertically, as in the source file. Comments (text beginning with a semicolon) are
printed in italics. Each function's name is printed in bold face next to the function. This
format makes Lisp code look attractive when it is printed with a variable width font.

Normally, vlp works as a filter and sends its output to the standard output. However, the
-v switch pipes the output directly to vtroff. If no files are specified, then vlp reads from
the standard input.

The following options are available:

-p The -p switch changes the size of the text from its default value of 8 points to one
of 6, 8, 10, or 12 points. Once set, the point size is used for all subsequent files.
This point size does not apply to embedded text (see -f below).

-d The -d switch puts vlp into debugging mode.

-f Vlp. has a filtered mode in which all lines are passed unmodified, except those lines
between the directives .Ls and .Le. This mode can be used to format Lisp code
that is embedded in a document. The directive .Ls takes an optional argument
that gives the point size for the embedded code. If not size is specified, the size of
the surrounding text is used.

-I The -I switch prevents vlp from placing labels next to functions. This switch is
useful for embedded Lisp code, where the labels would be distracting.

-v This switch cause vlp to send its output to vtroff rather than the standard output.

-T A title to be printed on each page may be specified by using the -T switch. The
-T switch applies only to the next file name given. Titles are not printed for
embedded text (see -f, above). This switch may not be used if vip is reading from
the standard input.

FILES
/usr/lib/vlpmacs

SEE ALSO
vgrind(1}, lisp(l}

RESTRICTIONS

troff/nroff macros

vlp transforms \ into \ \ so that it will be printed out. Hence, troff commands cannot be
embedded in Lisp code.

1-361

VLP(1)

STATUS
VLP (1) currently is not supported by Digital Equipment Corporation.

1-362

\
I

VMSTAT(1)

NAME
vmstat - report virtual memory statistics

SYNTAX
vms tat [-fs] [interval [count]]

DESCRIPTION
Vmstat delves into the system and normally reports certain statistics kept about process,
virtual memory, disk, trap and cpu activity. If given a -f argument, it instead reports on
the number of forks and vforks since system startup and the number of pages of virtual
memory involved in each kind of fork. If given a -s argument, it instead prints the con­
tents of the sum structure, giving the total number of several kinds of paging related events
which have occurred since boot.

If none of these options are given, vmstat will report in the first line a summary of the vir­
tual memory activity since the system has been booted. If interval is specified, then succes­
sive lines are summaries over the last interval seconds. "vmstat 5" will print what the sys­
tem is doing every five seconds; this is a good choice of printing interval since this is how
often some of the statistics are sampled in the system; others vary every second, running
the output for a while will make it apparent which are recomputed every second. If a count
is given, the statistics are repeated count times. The format fields are:

Procs: information about numbers of processes in various states.

r in run queue
b blocked for resources (i/o, paging, etc.)
w runnable or short sleeper « 20 sees) but swapped

Memory: information about the usage of virtual and real memory. Virtual pages are con­
sidered active if they belong to processes which are running or have run in the last 20
seconds. A "page" here is 1024 bytes.

avm
fre

active virtual pages
size of the free list

Page: information about page faults and paging activity. These are averaged each five
seconds, and given in units per second.

re
pi
po
fr
de
sr

page reclaims (simulating reference bits)
pages paged in
pages paged out
pages freed per second
anticipated short term memory shortfall
pages scanned by clock algorithm, per-second

up/hp/rk: Disk operations per second (this field is system dependent). Typically paging
will be split across several of the available drives. The number under each of these is the
unit number.

1-363

VMSTAT(1)

Fauits: trap/interrupt rate averages per second over last 5 seconds.

in
sy
cs

(non clock) device interrupts per second
system calls per second
cpu context switch rate (switches/sec)

Cpu: breakdown of percentage usage of CPU time

us
sy
id

FILES

user time for normal and low priority processes
system time
cpu idle

/dev/kmem, /vmunix

SEE ALSO
The sections starting with "Interpreting system activity" in Installing and Operating
4.2bsd.

STATUS
VMSTAT (1) is supported by Digital Equipment Corporation.

1-364

VPR(1)

NAME
vpr, vprm, vpq, vprint - raster printer/plotter spooler

SYNTAX
vpr [-W] [-I] [-v] [-t [-1234 font]] [-w] [-wwidth] [-m] [name ...]
vprm [id ...] [filename ...] [owner ...]
vpq
vprint [- W] file ...

DESCRIPTION
Vpr causes the named files to be queued for printing or typeset simulation on one of the
available raster printer/plotters. If no files are named, the standard input is read. By
default the input is assumed to be line printer-like text. For very wide plotters, the input
is run through the filter /usr/lib/sidebyside giving it an argument of -w106 which
arranges it four pages adjacent with 90 column lines (the rest is for the left margin). Since
there are 8 lines per inch in the default printer font, vpr thus produces 86 lines per page
(the top and bottom lines are left blank).

The following options are available:

-I

-W

-1234

-m

-w

-wwidth

-v

-t

Print the input in a more literal manner. Page breaks are not inserted, and
most control characters (except format effectors: \ n, \f, etc.) are printed
(many control characters print special graphics not in the ASCII character
set.) Tab and underline processing is still done. If this option is not given,
control characters which are not format effectors are ignored, and page
breaks are inserted after an appropriate number of lines have been printed
on a page.

Queues files for printing on a wide output device, if available. Normally,
files are queued for printing on a narrow output device.

Specifies a font to be mounted on font position i. The daemon will con­
struct a .railmag file referencing /usr/lib/vjont/name.size.

Report by mail (1) when printing is complete.

(Applicable only to wide output devices.) Do not run the input through
sidebyside. Such processing has been done already, or full (440 character)
printer width is desired.

Use width width rather than 90 for sidebyside.

Use the filter /usr/lib/vrast to convert the vectors to raster. The named
files must be a parameter and vector file (in that order) created by
plot (3X) routines.

Use the filter /usr/lib/vcat to typeset the input on the printer/plotter. The
input must have been generated by troff(l) run with the -t option. This is
not normally run directly to wide output devices, since it is wasteful to run
only one page across. The program vtroff(l) is normally used and arranges,
using vsort for printing to occur four pages across, conserving paper.

1-365

VPR(1)

Vprm removes entries from the raster device queues. The id, filename or owner should be
that reported by vpq. All appropriate files will be removed. Both queues are always
searched. The id of each file removed from the queue will be printed.

Vpq prints the queues. Each entry in the queue is printed showing the owner of the queue
entry, an identification number, the size of the entry in characters, and the file which is to
be printed. The id is useful for removing a specific entry from the printer queue using
vprm

Vprint is a shell script which pr's a copy of each named file on one of the electrostatic
printer/plotters. The files are normally printed on a narrow device; - W option causes them
to be printed on a wide device.

FILES
/usr/spool/v?d/*
/usr/lib/v?d
/usr/lib/vpd
/usr/lib/vpf
/usr/lib/*vcat
/usr/lib/vrast
/usr/lib/sidebyside

SEE ALSO

device spool areas
daemons
Versatec daemon
filter for printer simulation
filter for typeset simulation
filter for plot
filter for wide output

troff(l), vfont(5), vp(4), pti(I), vtroff(I), plot(3X)

RESTRICTIONS
The l's (one's) and 1's (lower-case e1's) in a Benson-Varian's standard character set look
very similar; caution is advised.

STATUS
VPR (1) currently is not supported by Digital Equipment Corporation.

1-366

VTROFF(1)

NAME
vtroff - troff to a raster plotter

SYNTAX
vtroft" [-w] [- F majorfont] [-123 minorfont] [-llength] [-x] troff arguments

DESCRIPTION
Vtroff runs troff{l) sending its output through various programs to produce typeset output
on a raster plotter such as a Benson-Varian or or a Versatec. The - W option specifies that
a wide output device be used; the default is to use a narrow device. The -I (lower case 1)
option causes the output to be split onto successive pages every length inches rather than
the default 11".

The default font is a Hershey font. If some other font is desired you can give a - F argu­
ment and then the font name. This will place normal, italic and bold versions of the font
on positions 1, 2, and 3. To place a font only on a single position, you can give an argu­
ment of the form -n and the minor font name. A.r will be added to the minor font name
if needed. Thus "vtroff -ms paper" will set a paper in the Hershey font, while "vtroff - F
nonie -ms paper" will set the paper in the (sans serif) nonie font. The -x option asks for
exact simulation of photo-typesetter output. (I.e. using the width tables for the C.A.T.
photo-typesetter)

FILES
/usr/lib/tmac/tmac. vcat
/usr/lib/fontinfo/*
/usr/lib/vfont

SEE ALSO
troff{I), vfont(5), vpr{l)

RESTRICTIONS

default font mounts and bug fixes
fixes for other fonts
directory containing fonts

Since some macro packages work correctly only if the fonts named R, I, B, and S are
mounted, and since the Versatec fonts have different widths for individual characters than
the fonts found on the typesetter, the following dodge was necessary: If you don't use the
".fp" troff directive then you get the widths of the standard typesetter fonts suitable for
shipping the output of troff over the network to the computer center A machine for photo­
typesetting. If, however, you remount the R, I, Band S fonts, then you get the width
tables for the Versatec.

STATUS
VTROFF (I) currently is not supported by Digital Equipment Corporation.

1-367

VWIDTH(1)

NAME
vwidth - make troff width table for a font

SYNTAX
vwidth fontfile pointsize > ftxx.c
cc -c ftxx.c mv ftxx.o /usr/lib/font/ftxx

DESCRIPTION
Vwidth translates from the width information stored in the vfont style format to the format
expected by troff. Troff wants an object file in a.out(5) format. (This fact does not seem to
be documented anywhere.) Troff should look directly in the font file but it doesn't.

Vwidth should be used after editing a font with {ed(1). It is not necessary to use vwidth
unless you have made a change that would affect the width tables. Such changes include
numerically editing the width field, adding a new character, and moving or copying a char­
acter to a new position. It is not always necessary to use vwidth if the physical width of
the glyph (e.g. the number of columns in the bit matrix) has changed, but if it has changed
much the logical width should probably be changed and vwidth run.

Vwidth produces a C program on its standard output. This program should be run through
the C compiler and the object (that is, the .0 file) saved. The resulting file should be placed
in /usr/lib/font in the file ftxx where is a one or two letter code that is the logical (internal
to troff) font name. This name can be found by looking in the file /usr/lib/fontinfo/{name*
where {name is the external name of the font.

SEE ALSO
fed(I), vfont(5), troff(I), vtroff(l)

RESTRICTIONS
Produces the C file using obsolete syntax that the portable C compiler complains about.

STATUS
VWIDTH (1) currently is not supported by Digital Equipment Corporation.

1-368

W(O

NAME
w - who is on and what they are doing

SYNTAX
w [- h] [- 8] [user]

DESCRIPTION
W prints a summary of the current activity on the system, including what each user is
doing. The heading line shows the current time of day, how long the system has been up,
the number of users logged into the system, and the load averages. The load average
numbers give the number of jobs in the run queue averaged over 1, 5 and 15 minutes.

The fields output are: the users login name, the name of the tty the user is on, the time of
day the user logged on, the number of minutes since the user last typed anything, the CPU
time used by all processes and their children on that terminal, the CPU time used by the
currently active processes, the name and arguments of the current process.

The -h flag suppresses the heading. The -8 flag asks for a short form of output. In the
short form, the tty is abbreviated, the login time and cpu times are left off, as are the argu­
ments to commands. -I gives the long output, which is the default.

If a user name is included, the output will be restricted to that user.

FILES
/etc/utmp
/dev/kmem
/dev/drum

SEE ALSO
who(I), finger(1), ps(l)

RESTRICTIONS
The notion of the "current process" is muddy. The current algorithm is "the highest num­
bered process on the terminal that is not ignoring interrupts, or, if there is none, the
highest numbered process on the terminal". This fails, for example, in critical sections of
programs like the shell and editor, or when faulty programs running in the background fork
and fail to ignore interrupts. (In cases where no process can be found, w prints "-".)

The CPU time is only an estimate, in particular, if someone leaves a background process
running after logging out, the person currently on that terminal is "charged" with the time.

Background processes are not shown, even though they account for much of the load on the
system.

Sometimes processes, typically those in the background, are printed with null or garbaged
arguments. In these cases, the name of the command is printed in parentheses.

W does not know about the new conventions for detection of background jobs. It will
sometimes find a background job instead of the right one.

1-369

W(1)

STATUS
W (1) is supported by Digital Equipment Corporation.

1-370

WAIT(1)

NAME
wait - await completion of process

SYNTAX
wait

DESCRIPTION
Wait until all processes started with & have completed, and report on abnormal termina­
tions.

Because the wait (2) system call must be executed in the parent process, the Shell itself exe­
cutes wait, without creating a new process.

SEE ALSO
sh(1)

RESTRICTIONS
Not all the processes of a 3- or more-stage pipeline are children of the Shell, and thus can't
be waited for. (This bug does not apply to csh(1).)

STATUS
WAIT (1) currently is not supported by Digital Equipment Corporation.

1-371

WALL(1)

NAME
wall - write to all users

SYNTAX
wall

DESCRIPTION
Wall reads its standard input until an end-of-file. It then sends this messaget preceded by
'Broadcast Message ... t t to all logged in users.

The sender should be super-user to override any protections the users may have invoked.

FILES
/dev/tty?
/etc/utmp

SEE ALSO
mesg(l), write(l)

DIAGNOSTICS
'Cannot send to ... t when the open on a userts tty file fails.

STATUS
WALL (1) currently is not supported by Digital Equipment Corporation.

1-372

we(1)

NAME
wc - word count

SYNTAX
we [-lwe] [name ...]

DESCRIPTION
We counts lines, words and characters in the named files, or in the standard input if no
name appears. A word is a maximal string of characters delimited by spaces, tabs or new­
lines.

If an argument beginning with one of "lwc" is present, the specified counts (lines, words, or
characters) are selected by the letters 1, w, or e. The default is -lwe.

STATUS
WC (1) currently is not supported by Digital Equipment Corporation.

1-373

WHAT (1)

NAME
what - show what versions of object modules were used to construct a file

SYNTAX
what name ...

DESCRIPTION
What reads each file and searches for sequences of the form "@(#)" as inserted by the
source code control system. It then prints the remainder of the string after this marker, up
to a null character, newline, double quote, or ">" character.

RESTRICTIONS
As sees is not licensed with UNIX/32V, this is a rewrite of the w.hat command which is
part of sees, and may not behave exactly the same as that command does.

STATUS
WHAT (1) currently is not supported by Digital Equipment Corporation.

1-374

WHATIS(1)

NAME
whatis ~ describe what a command is

SYNTAX
whatis command ...

DESCRIPTION
Whatis looks up a given command and gives the header line from the manual section. You
can then run the man (1) command to get more information. If the line starts
'name(section) ... ' you can do 'man section name' to get the documentation for it. Try
'whatis ed' and then you should do 'man 1 ed' to get the manual.

Whatis is actually just the ~f option to the man(1) command.

FILES
lusr/lib/whatis Data base

SEE ALSO
man(1), catman(8)

STATUS
WHATIS (1) currently is not supported by Digital Equipment Corporation.

1-375

WHEREIS(1)

NAME
where is - locate source, binary, and or manual for program

SYNTAX
whereis [-sbm 1 { -u] [-SBM dir ... -f] name ...

DESCRIPTION
Whereis locates source/binary and manuals sections for specified files. The supplied names
are first stripped of leading pathname components and any (single) trailing extension of the
form ".ext", e.g. ".c". Prefixes of "s." resulting from use of source code control are also
dealt with. Whereis then attempts to locate the desired program in a list of standard
places. If any of the -b, -s or -m flags are given then where is searches only for binaries,
sources or manual sections respectively (or any two thereof). The -u flag may b~ used to
search for unusual entries. A file is said to be unusual if it does not have one entry of each
requested type. Thus "whereis -m -u *" asks for those files i:q. the current directory which
have no documentation.

Finally, the -B -M and -S flags may be used to change or otherwise limit the places
where whereis searches. The -f file flags is used to terminate the last such directory list
and signal the start of file names.

EXAMPLE
The following finds all the files in /usr/bin which are not documented in /usr/man/man1
with source in /usr/src/cmd:

cd /usr/ucb
whereis -u -M /usr/man/man1 -S /usr/src/cmd -f *

FILES
/usr/src/*
/usr/ { doc, man } /*
/lib, /etc, /usr/{lib,bin,ucb,old,new,local}

RESTRICTIONS
Since the program uses chdir(2) to run faster, pathnames given with the -M -S and -B
must be full; i.e. they must begin with a "I".

STATUS
WHEREIS (1) currently is not supported by Digital Equipment Corporation.

1-376

WHICH (1)

NAME
which - locate a program file including aliases and paths (csh only)

SYNTAX
which [name] ...

DESCRIPTION
Which takes a list of names and looks for the files which would be executed had these
names been given as commands. Each argument is expanded if it is aliased, and searched
for along the user's path. Both aliases and path are taken from the user's .cshrc file.

FILES
-/.cshrc

DIAGNOSTICS

source of aliases and path values

A diagnostic is given for names which are aliased to more than a single word, or if an exe­
cutable file with the argument name was not found in the path.

RESTRICTIONS
Must be executed by a csh, since only csh's know about aliases.

STATUS
WHICH (1) currently is not supported by Digital Equipment Corporation.

1-377

WHO(1)

NAME
who - who is on the system

SYNTAX
who [who-file] [am I]

DESCRIPTION
Who, withollt an argument, lists the login name, terminal name, and login time for each
current UNIX user.

Without an argument, who examines the /etc/utmp file to obtain its information. If a file is
given, that file is examined. Typically the given file will be /usr/adm/wtmp, which contains
a record of all the logins since it was created. Then who lists logins, logouts, and crashes
since the creation of the wtmp file. Each login is listed with user name, terminal name
(with '/d~v/' suppressed), and date and time. When an argument is given, logouts produce
a similar line without a user name. Reboots produce a line with 'x' in the place of the dev­
ice name, and a fossil time indicative of when the system went down.

With two arguments, as in 'who am I' (and also 'who are you'), who tells who you are logged
in as.

FILES
/etc/utmp

SEE ALSO
getuid(2), utmp(5)

STATUS
WHO (1) is supported by Digital Equipment Corporation.

1-378

NAME
whoami - print effective current user id

SYNTAX
whoami

DESCRIPTION

WHOAMI(1)

Whoami prints who you are. It works even if you are su'd, while 'who am i' does not since
it uses /etc/utmp.

FILES
/etc/passwd

SEE ALSO
who (1)

STATUS

Name data base

WHOAMI (1) currently is not supported by Digital Equipment Corporation.

1-379

whois(1)

NAME
whois - DARPA Internet user name directory service

SYNTAX
whois name

DESCRIPTION
whois help produces a helpful message similar to the following:

Please enter a name or a handle ("ident"), such as "Smith" or "SRI-NIC". Start­
ing with a period forces a name-only search; starting with exclamation point forces
handle-only. Examples:

Smith [looks for name or handle SMITH]
!SRI-NIC [looks for handle SRI-NIC only]
.Smith, John [looks for name JOHN SMITH only]

Adding " ... " to the argument will match anything from that point, e.g. "ZU ... " will match
ZUL, ZUM, etc.

To have the ENTIRE membership list of a group or organization, if you are asking about a
group or org, shown with the record, use an asterisk character "*" directly preceding the
given argument. [CAUTION: If there are a lot of members this will take a long time!] You
may of course use exclamation point and asterisk, or a period and asterisk together.

FILES
lusr I doc/local/netinfo/rfc812

SEE ALSO
RFC 812: NICNAME/WHOIS

STATUS
whois (1) currently is not supported by Digital Equipment Corporation.

1-380

WRITE(1)

NAME
write - write to another user

SYNTAX
write user [ttyname]

DESCRIPTION
Write copies lines from your terminal to that of another user. When first called, it sends
the message

Message from yoursystem!yourname yourttyname ...

The recipient of the message should write back at this point. Communication continues
until an end of file is read from the terminal or an interrupt is sent. At that point write
writes 'EOT' on the other terminal and exits.

If you want to write to a user who is logged in more than once, the ttyname argument may
be used to indicate the appropriate terminal name.

Permission to write may be denied or granted by use of the mesg command. At the outset
writing is allowed. Certain commands, in particular nroff and pr(l) disallow messages in
order to prevent messy output.

If the character '!' is found at the beginning of a line, write calls the shell to execute the
rest of the line as a command.

The following protocol is suggested for using write: when you first write to another user,
wait for him to write back before starting to send. Each party should end each message
with a distinctive signal-(o) for 'over' is conventional-that the other may reply. (00) for
'over and out' is suggested when conversation is about to be terminated.

FILES
/etc/utmp
/bin/sh

SEE ALSO

to find user
to execute '!'

mesg(I), who(I), mail(l)

STATUS
WRITE (1) is supported by Digital Equipment Corporation.

1-381

XSTR(1)

NAME
xstr - extract strings from C programs to implement shared strings

SYNTAX
xstr [-c] [-] [file]

DESCRIPTION
Xstr maintains a file strings into which strings in component parts of a large program are
hashed. These strings are replaced with references to this common area. This serves to
implement shared constant strings, most useful if they are also read-only.

The command

xstr -c name

will extract the strings from the C source in name, replacing string references by expres­
sions of the form (&xstr[number]) for some number. An appropriate declaration of xstr is
prepended to the file. The resulting C text is placed in the file x.c, to then be compiled.
The strings from this file are placed in the strings data base if they are not there already.
Repeated strings and strings which are suffices of existing strings do not cause changes to
the data base.

After all components of a large program have been compiled a file xs.c declaring the com­
mon xstr space can be created by a command of the form

xstr

This xS.c file should then be compiled and loaded with the rest of the program. If possible,
the array can be made read-only (shared) saving space and swap overhead.

Xstr can also be used on a single file. A command

xstr name

creates files x.c and xS.c as before, without using or affecting any strings file in the same
directory.

It may be useful to run xstr after the C preprocessor if any macro definitions yield strings
or if there is conditional code which contains strings which may not, in fact, be needed.
Xstr reads from its standard input when the argument '-' is given. An appropriate com­
mand sequence for running xstr after the C preprocessor is:

cc - E name.c I xstr -c -
cc -c x.c
mv x.o name.o

Xstr does not touch the file strings unless new items are added, thus make can avoid
remaking xs.o unless truly necessary.

FILES
strings
x.c
xS.c

1-382

Data base of strings
Massaged C source
C source for definition of array 'xstr'

)

XSTR(1)

/tmp/xs* Temp file when 'xstr name' doesn't touch strings

SEE ALSO
mkstr{l)

RESTRICTIONS
If a string is a suffix of another string in the data base, but the shorter string is seen first
by xstr both strings will be placed in the data base, when just placing the longer one there
will do.

STATUS
XSTR (1) currently is not supported by Digital Equipment Corporation.

1-383

YACC(1)

NAME
yacc - yet another compiler-compiler

SYNTAX
yacc [-vd] grammar

DESCRIPTION
Yaee converts a context-free grammar into a set of tables for a simple automaton which
executes an LR(l) parsing algorithm. The grammar may be ambiguous; specified pre­
cedence rules are used to break ambiguities.

The output file, y.tab.e, must be compiled by the C compiler to produce a program
yyparse. This program must be loaded with the lexical analyzer program, yylex, as well as
main and yyerror, an error handling routine. These routines must be supplied by the user;
Lex(l) is useful for creating lexical analyzers usable by yaee.

If the -v flag is given, the file y.output is prepared, which contains a description of the
parsing tables and a report on conflicts generated by ambiguities in the grammar.

If the -d flag is used, the file y.tab.h is generated with the define statements that associate
the yaee-assigned 'token codes' with the user-declared 'token names'. This allows source
files other than y.tab.e to access the token codes.

FILES
y.output
y.tab.c
y.tab.h defines for token names
yacc.tmp, yacc.acts temporary files

SEE ALSO
lex (1)
LR Parsing by A. V. Aho and S. C. Johnson, Computing Surveys, June, 1974.
YACC - Yet Another Compiler Compiler by S. C. Johnson.

DIAGNOSTICS
The number of reduce-reduce and shift-reduce conflicts is reported on the standard output;
a more detailed report is found in the y.output file. Similarly, if some rules are not reach­
able from the start symbol, this is also reported.

RESTRICTIONS
Because file names are fixed, at most one yaee process can be active in a given directory at
a time.

STATUS
Y ACC (1) is supported by Digital Equipment Corporation.

1-384

YES (1)

NAME
yes - be repetitively affirmative

SYNTAX
yes [expletive]

DESCRIPTION
Yes repeatedly outputs "y", or if expletive is given, that is output repeatedly. Termination
is by rubout.

STATUS
YES (1) currently is not supported by Digital Equipment Corporation.

1-385

NAME
aardvark - yet another exploration game

SYNTAX
lusr/games/aardvark

DESCRIPTION

AARDVARK(6)

Aardvark is yet another computer fantasy simulation game of the adventure/zork genre.
This one is written in DDL (Dungeon Definition Language) and is intended primarily as an
example of how to write a dungeon in DDL.

FILES
/usr/gamesllib/ddlrun ddl interpreter
/usr/gamesllib/aardvarkinternal form of aardvark dungeon

STATUS
AARDVARK (6) currently is not supported by Digital Equipment Corporation.

6-1

ADVENTURE(6)

NAME
adventure - an exploration game

SYNTAX
/usr/ games/ ad venture

DESCRIPTION
The object of the game is to locate and explore Colossal Cave, find the treasures hidden
there, and bring them back to the building with you. The program is self-describing to a
point, but part of the game is to discover its rules.

To terminate a game, type 'quit'; to save a game for later resumption, type 'suspend'.

STATUS
ADVENTURE (6) currently is not supported by Digital Equipment Corporation.

6-2

ARITHMETIC (6)

NAME
arithmetic - provide drill in number facts

SYNTAX
/usr/games/arithmetic [+-x/] [range]

DESCRIPTION
Arithmetic types out simple arithmetic problems, and waits for an answer to be typed in.
If the answer is correct, it types back "Right!", and a new problem. If the answer is wrong,
it replies "What?", and waits for another answer. Every twenty problems, it publishes
statistics on correctness and the time required to answer.

To quit the program, type an interrupt (delete).

The first optional argument determines the kind of problem to be generated; +-x/ respec­
tively cause addition, subtraction, multiplication, and division problems to be generated.
One or more characters can be given; if more than one is given, the different types of prob­
lems will be mixed in random order; default is +-
Range is a decimal number; all addends, subtrahends, differences, multiplicands, divisors,
and quotients will be less than or equal to the value of range. Default range is 10.

At the start, all numbers less than or equal to range are equally likely to appear. If the
respondent makes a mistake, the numbers in the problem which was missed become more
likely to reappear.

As a matter of educational philosophy, the program will not give correct answers, since the
learner should, in principle, be able to calculate them. Thus the program is intended to
provide drill for someone just past the first learning stage, not to teach number facts de
novo. For almost all users, the relevant statistic should be time per problem, not percent
correct.

STATUS
ARITHMETIC (6) currently is not supported by Digital Equipment Corporation.

6-3

BACKGAMMON (6)

NAME
backgammon - the game

SYNTAX
/usr/games/backgammon

DESCRIPTION
This program does what you expect. It will ask whether you need instructions.

STATUS
BACKGAMMON (6) currently is not supported by Digital Equipment Corporation.

6-4

BANNER(6)

NAME
banner - print large banner on printer

SYNTAX
lusr/games/banner [-wn] message ...

DESCRIPTION
Banner prints a large, high quality banner on the standard output. If the message is omit­
ted, it prompts for and reads one line of its standard input. If -w is given, the output is
scrunched down from a width of 132 to n , suitable for a narrow terminal. If n is omitted,
it defaults to 80.

The output should be printed on a hard-copy device, up to 132 columns wide, with no
breaks between the pages. The volume is enough that you want a printer or a fast hardcopy
terminal, but if you are patient, a decwriter or other 300 baud terminal will do.

RESTRICTIONS
Several ASCII characters are not defined, notably <, >, [,], \,"', ,{,}, I, and~. Also, the
characters ", " and & are funny looking (but in a useful way.)

The -w option is implemented by skipping some rows and columns. The smaller it gets,
the grainier the output. Sometimes it runs letters together.

STATUS
BANNER (6) currently is not supported by Digital Equipment Corporation.

6-5

BeD(6)

NAME
bcd - convert to antique media

SYNTAX
/usr/games/bcd text

DESCRIPTION
Bcd converts the literal text into a form familiar to old-timers.

SEE ALSO
dd(1)

STATUS
BCD (6) currently is not supported by Digital Equipment Corporation.

6-6

BOGGLE(6)

NAME
boggle - play the game of boggle

SYNTAX
lusr/games/boggle [+] [++]

DESCRIPTION
This program is intended for people wishing to sharpen their skills at Boggle (TM Parker
Bros.). If you invoke the program with 4 arguments of 4 letters each, (e.g. "boggle appl
epie moth erhd") the program forms the obvious Boggle grid and lists all the words from
lusr/dict/words found therein. If you invoke the program without arguments, it will gen­
erate a board for you, let you enter words for 3 minutes, and then tell you how well you did
relative to lusr/dict/words.

The object of Boggle is to find, within 3 minutes, as many words as possible in a 4 by 4 grid
of letters. Words may be formed from any sequence of 3 or more adjacent letters in the
grid. The letters may join horizontally, vertically, or diagonally. However, no position in
the grid may be used more than once within anyone word. In competitive play amongst
humans, each player is given credit for those of his words which no other player has found.

In interactive play, enter yoqr words separated by spaces, tabs, or newlines. A bell will ring
when there is 2:00, 1:00, 0:10, 0:02, 0:01, and 0:00 time left. You may complete any word
started before the expiration of time. You can surrender before time is up by hitting
'break'. While entering words, your erase character is only effective within the current word
and your line kill character is ignored.

Advanced players may wish to invoke the program with 1 or 2 +'s as the first argument.
The first + removes the restriction that positions can only be used once in each word. The
second + causes a position to be considered adjacent to itself as well as its (up to) 8 neigh­
bors.

STATUS
BOGGLE (6) currently is not supported by Digital Equipment Corporation.

6-7

CANFIELD (6)

NAME
canfield, cfscores - the solitaire card game canfield

SYNTAX
/usr/games/canfield
/usr/games/cfscores

DESCRIPTION
If you have never played solitaire before, it is recommended that you consult a solitaire
instruction book. In Canfield, tableau cards may be built on each other downward in alter­
nate colors. An entire pile must be moved as a unit in building. Top cards of the piles are
available to be able to be played on foundations, but never into empty spaces.

Spaces must be filled from the stock. The top card of the stock also is available to be
played on foundations or built on tableau piles. After the stock is exhausted, tableau spaces
may be filled from the talon and the player may keep them open until he wishes to use
them.

Cards are dealt from the hand to the talon by threes and this repeats until there are no
more cards in the hand or the player quits. To have cards dealt onto the talon the player
types 'ht' for his move. Foundation base cards are also automatically moved to the founda­
tion when they become available.

The command 'c' causes canfield to maintain card counting statistics on the bottom of the
screen. When properly used this can greatly increase ones chances of winning.

The rules for betting are somewhat less strict than those used in the official version of the
game. The initial deal costs $13. You may quit at this point or inspect the game. Inspec­
tion costs $13 and allows you to make as many moves as is possible without moving any
cards from your hand to the talon. (the initial deal places three cards on the talon; if all
these cards are used, three more are made available.) Finally, if the game seems interesting,
you must pay the final installment of $26. At this point you are credited at the rate of $5
for each card on the foundation; as the game progresses you are credited with $5 for each
card that is moved to the foundation. Each run through the hand after the first costs $5.
The card counting feature costs $1 for each unknown card that is identified. If the infor­
mation is toggled on, you are only charged for cards that became visible since it was last
turned on. Thus the maximum cost of information is $34. Playing time is charged at a
rate of $1 per minute.

With no arguments, the program cfscores prints out the current status of your canfield
account. If a user name is specified, it prints out the status of their canfield account. If the
-a flag is specified, it prints out the canfield accounts for all users that have played the
game since the database was set up.

FILES

6-8

/usr /games/ canfield
/usr/games/cfscores
/usr/gamesnib/cfscores

the game itself
the database printer
the database of scores

CANFIELD (6)

STATUS
CANFIELD (6) currently is not supported by Digital Equipment Corporation.

6-9

CHESS(6)

NAME
chess - the game of chess

SYNTAX
/usr/games/cbess

DESCRIPTION
Chess is a computer program that plays class D chess. Moves may be given either in stan­
dard (descriptive) notation or in algebraic notation. The symbol '+' is used to specify
check; '0-0' and '0-0-0' specify castling. To play black, type 'first'; to print the board, type
an empty line.

Each move is echoed in the appropriate notation followed by the program's reply.

FILES
/usr/lib/chess

DIAGNOSTICS

binary image to run in compatibility mode

The most cryptic diagnostic is 'eh?' which means that the input was syntactically incorrect.

RESTRICTIONS
Pawns may be promoted only to queens.

STATUS
CHESS (6) currently is not supported by Digital Equipment Corporation.

6-10

CHING(6)

NAME
ching - the book of changes and other cookies

SYNTAX
/usr/games/ching [hexagram]

DESCRIPTION
The I Ching or Book of Changes is an ancient Chinese oracle that has been in use for cen­
turies as a source of wisdom and advice.

The text of the oracle (as it is sometimes known) consists of sixty-four hexagrams, each
symbolized by a particular arrangement of six straight (---) and broken (- -) lines.
These lines have values ranging from six through nine, with the even values indicating the
broken lines.

Each hexagram consists of two major sections. The Judgement relates specifically to the
matter at hand (E.g., "It furthers one to have somewhere to go.") while the Image
describes the general attributes of the hexagram and how they apply to one's own life
("Thus the superior man makes himself strong and untiring.").

When any of the lines have the values six or nine, they are moving lines; for each there is
an appended judgement which becomes significant. Furthermore, the moving lines are
inherently unstable and change into their opposites; a second hexagram (and thus an addi­
tional judgement) is formed.

Normally, one consults the oracle by fixing the desired question firmly in mind and then
casting a set of changes (lines) using yarrow-stalks or tossed coins. The resulting hex­
agram will be the answer to the question.

The oracle simply reads a question from the standard input (up to an EOF) and hashes the
individual characters in combination with the time of day, process id and any other magic
numbers which happen to be lying around the system. The resulting value is used as the
seed of a random number generator which drives a simulated coin-toss divination. The
answer is then piped through nroff for formatting and will appear on the standard output.

For those who wish to remain steadfast in the old traditions, A the oracle will also accept
the results of a personal divination using, for example,' coins. To do this, cast the change
and then type the resulting line values as an argument.

SEE ALSO
fortune(6)

STATUS
CHING (6) currently is not supported by Digital Equipment Corporation.

6-11

CRIBBAGE (6)

NAME
cribbage - the card game cribbage

SYNTAX
/usr/games/cribbage [-req] name ...

DESCRIPTION

6-12

Cribbage plays the card game cribbage, with the program playing one hand and the user
the other. The program will initially ask the user if the rules of the game are needed - if
so, it will print out the appropriate section from According to Hoyle with more (1).

Cribbage options include:

-e When the player makes a mistakes scoring his hand or crib, provide an explanation
of the correct score. (This is especially useful for beginning players.)

-q Print a shorter form of all messages - this is only recommended for users who
have played the game without specifying this option.

-r Instead of asking the player to cut the deck, the program will randomly cut the
deck.

Cribbage first asks the player whether he wishes to playa short game ("once around", to
61) or a long game ("twice around", to 121). A response of's' will result in a short game,
any other response will playa long game.

At the start of the first game, the program asks the player to cut the deck to determine who
gets the first crib. The user should respond with a number between 0 and 51, indicating
how many cards down the deck is to be cut. The player who cuts the lower ranked card
gets the first crib. If more than one game is played, the loser of the previous game gets the
first crib in the current game.

For each hand, the program first prints the player's hand, whose crib it is, and then asks
the player to discard two cards into the crib. The cards are prompted for one per line, and
are typed as explained below.

After discarding, the program cuts the deck (if it is the player's crib) or asks the player to
cut the deck (if it's its crib); in the later case, the appropriate response is a number from 0
to 39 indicating how far down the remaining 40 cards are to be cut.

After cutting the deck, play starts with the non-dealer (the person who doesn't have the
crib) leading the first card. Play continues, as per cribbage, until all cards are exhausted.
The program keeps track of the scoring of all points and the total of the cards on the table.

After play, the hands are scored. The program requests the player to score his hand (and
the crib, if it is his) by printing out the appropriate cards (and the cut card enclosed in
brackets). Play continues until one player reaches the game limit (61 or 121).

A carriage return when a numeric input is expected is equivalent to typing the lowest legal
value; when cutting the deck this is equivalent to choosing the top card.

CRIBBAGE (6)

Cards are specified as rank followed by suit. The ranks may be specified as one of: 'a', '2',
'3', '4', '5', '6', '7', '8', '9', 't', 'j', 'q', and 'k', or alternatively, one of: "ace", "two", "three",
"four", "five", "six", "seven", "eight", "nine", "ten", "jack", "queen", and "king". Suits
may be specified as: 's', 'h', 'd', and 'c', or alternatively as: "spades", "hearts", "diamonds",
and "clubs". A card may be specified as: <rank> " " <suit>, or: <rank> " of" <suit>. If
the single letter rank and suit designations are used, the space separating the suit and rank
may be left out. Also, if only one card of the desired rank is playable, typing the rank is
sufficient. For example, if your hand was "2H, 4D, 5C, 6H, JC, KD" and it was desired to
discard the king of diamonds, any of the following could be typed: "k", "king", "kd", "k d",
"k of d", "king d", "king of d", "k diamonds", "k of diamonds", "king diamonds", or "king
of diamonds".

FILES
/usr/games/cribbage

STATUS
CRIBBAGE (6) currently is not supported by Digital Equipment Corporation.

6-13

DOCTOR(6)

NAME
doctor - interact with a psychoanalyst

SYNTAX
lusr/games/doctor

DESCRIPTION
Doctor is a lisp-language version of the legendary ELIZA program. This script "simulates"
a Rogerian psychoanalyst. Type in lower case, and when you get tired or bored, type your
interrupt character (either control-C or Rubout). Remember to type two carriage returns
when you want it to answer.

In order to run this you must have a Franz Lisp system in /usr/ucb/lisp.

STATUS
DOCTOR (6) currently is not supported by Digital Equipment Corporation.

6-14

NAME
fish - play "Go Fish"

SYNTAX
/usr/games/fish

DESCRIPTION

FISH(6)

Fish plays the game of "Go Fish", a childrens' card game. The Object is to accumulate
'books' of 4 cards with the same face value. The players alternate turns; each turn begins
with one player selecting a card from his hand, and asking the other player for all cards of
that face value. If the other player has one or more cards of that face value in his hand, he
gives them to the first player, and the first player makes another request. Eventually, the
first player asks for a card which is not in the second player's hand: he replies 'GO FISH!'
The first player then draws a card from the 'pool' of undealt cards. If this is the card he
had last requested, he draws again. When a book is made, either through drawing or
requesting, the cards are laid down and no further action takes place with that face value.

To play the computer, simply make guesses by typing a, 2, 3, 4, 5, 6, 7, 8, 9, 10, j, q, or k
when asked. Hitting return gives you information about the size of my hand and the pool,
and tells you about my books. Saying 'p' as a first guess puts you into 'pro' level; The
default is pretty dumb.

STATUS
FISH (6) currently is not supported by Digital Equipment Corporation.

6-15

FORTUNE(6)

NAME
fortune - print a random, hopefully interesting, adage

SYNTAX "-
lusr/games/for-t1!ne [-] [-wsl]

DESCRIPTION
Fortune with no arguments prints out a random adage. The flags mean:

-w Waits before termination for an amount of time calculated from the number of char­
acters in the message. This is useful if it is executed as part of the logout procedure
to guarantee that the message can be read before the screen is cleared.

-s Short messages only.

-I Long messages only.

FILES
/usr/games/lib/fortunes.dat

STATUS
FORTUNE (6) currently is not supported by Digital Equipment Corporation.

6-16

HANGMAN(6)

NAME
hangman - Computer version of the game hangman

SYNTAX
lusr/games/hangman

DESCRIPTION
In hangman, the computer picks a word from the on-line word list and you must try to
guess it. The computer keeps track of which letters have been guessed and how many
wrong guesses you have made on the screen in a graphic fashion.

FILES
/usr/dict/words On-line word list

STATUS
HANGMAN (6) currently is not supported by Digital Equipment Corporation.

6-17

MILLE(6)

NAME
mille - play Mille Bournes

SYNTAX
/usr/games/mille [file]

DESCRIPTION
Mille plays a two-handed game reminiscent of the Parker Brother's game of Mille Bournes
with you. The rules are described below. If a file name is given on the command line, the
game saved in that file is started.

When a game is started up, the bottom of the score window will contain a list of com­
mands. They are:

P Pick a card from the deck. This card is placed in the 'P' slot in your hand.

D Discard a card from your hand. To indicate which card, type the number of the
card in the hand (or "P" for the just-picked card) followed by a <RETURN> or
<SPACE>. The <RETURN or <SPACE> is required to allow recovery from
typos which can be very expensive, like discarding safeties.

U Use a card. The card is again indicated by its number, followed by a <RETURN>
or <SPACE>.

o Toggle ordering the hand. By default off, if turned on it will sort the cards in your
hand appropriately. This is not recommended for the impatient on slow terminals.

Q Quit the game. This will ask for confirmation, just to be sure. Hitting
<DELETE> (or <RUBOUT» is equivalent.

S Save the game in a file. If the game was started from a file, you will be given an
opportunity to save it on the same file. If you don't wish to, or you did not start
from a file, you will be asked for the file name. If you type a <RETURN>
without a name, the save will be terminated and the game resumed.

R Redraw the screen from scratch. The command "L (control 'L') will also work.

W Toggle window type. This switches the score window between the startup window
(with all the command names) and the end-of-game window. Using the end-of­
game window saves time by eliminating the switch at the end of the game to show
the final score. Recommended for hackers and other miscreants.

If you make a mistake, an error message will be printed on the last line of the score win­
dow, and a bell will beep.

At the end of each hand or game, you will be asked if you wish to play another. If not, it
will ask you if you want to save the game. If you do, and the save is unsuccessful, play will
be resumed as if you had said you wanted to play another hand/game. This allows you to
use the "S" command to reattempt the save.

SEE ALSO

6-18

curses(3X), Screen Updating and Cursor Movement Optimization: A Library Package,
Ken Arnold

MILLE(6)

CARDS
Here is some useful information. The number in parentheses after the card name is the
number of that card in the deck:

Hazard

Out of Gas (2)
Flat Tire (2)
Accident (2)
Stop (4)
Speed Limit (3)

RULES

Repair

Gasoline (6)
Spare Tire (6)
Repairs (6)
Go (14)
End of Limit (6)

Safety

Extra Tank (1)
Puncture Proof (1)
Driving Ace (1)
Right of Way (1)

25 - (10), 50 - (10), 75 - (10), 100 - (12), 200 - (4)

Object: The point of game is to get a total of 5000 points in several hands. Each hand is a
race to put down exactly 700 miles before your opponent does. Beyond the points gained
by putting down milestones, there are several other ways of making points.

Overview: The game is played with a deck of 101 cards. Distance cards represent a
number of miles traveled. They come in denominations of 25, 50, 75, 100, and 200. When
one is played, it adds that many miles to the player's trip so far this hand. Hazard cards
are used to prevent your opponent from putting down Distance cards. They can only be
played if your opponent has a Go card on top of the Battle pile. The cards are Out of Gas,
Accident, Flat Tire, Speed Limit, and Stop. Remedy cards fix problems caused by Hazard
cards played on you by your opponent. The cards are Gasoline, Repairs, Spare Tire, End
of Limit, and Go. Safety cards prevent your opponent from putting specific Hazard cards
on you in the first place. They are Extra Tank, Driving Ace, Puncture Proof, and Right of
Way, and there are only one of each in the deck.

Board Layout: The board is split into several areas. From top to bottom, they are:
SAFETY AREA (unlabeled): This is where the safeties will be placed as they are played.
HAND: These are the cards in your hand. BA TTLE: This is the Battle pile. All the
Hazard and Remedy Cards are played here, except the Speed Limit and End of Limit
cards. Only the top card is displayed, as it is the only effective one. SPEED: The Speed
pile. The Speed Limit and End of Limit cards are played here to control the speed at
which the player is allowed to put down miles. MILEAGE: Miles are placed here. The
total of the numbers shown here is the distance traveled so far.

Play: The first pick alternates between the two players. Each turn usually starts with a
pick from the deck. The player then plays a card, or if this is not possible or desirable, dis­
cards one. Normally, a play or discard of a single card constitutes a turn. If the card
played is a safety, however, the same player takes another turn immediately.

6-19

MILLE(6)

6-20

This repeats until one of the players reaches 700 points or the deck runs out. If someone
reaces 700, they have the option of going for an Extension, which means that the play con­
tinues until someone reaches 1000 miles.

Hazard and Remedy Cards: Hazard Cards are played on your opponent's Battle and
Speed piles. Remedy Cards are used for undoing the effects of your opponent's nastyness.

Go (Green Light) must be the top card on your Battle pile for you to play any mileage,
unless you have played the Right of Way card (see below).

Stop is played on your opponent's Go card to prevent them from playing mileage until
they play a Go card.

Speed Limit is played on your opponent's Speed pile. Until they play an End of Limit
they can only play 25 or 50 mile cards, presuming their Go card allows them to do even
that.

End of Limit is played on your Speed pile to nullify a Speed Limit played by your
opponent.

Out of Gas is played on your opponent's Go card. They must then play a Gasoline
card, and then a Go card before they can play any more mileage.

Flat Tire is played on your opponent's Go card. They must then playa Spare Tire
card, and then a Go card before they can play any more mileage.

Accident is played on your opponent's Go card. They must then play a Repairs card,
and then a Go card before they can play any more mileage.

Safety Cards: Safety cards prevent your opponent from playing the corresponding
Hazard cards on you for the rest of the hand. It cancels an attack in progress, and always
entitles the player to an extra turn.

Right of Way prevents your opponent from playing both Stop and Speed Limit cards
on you. It also acts as a permanent Go card for the rest of the hand, so you can play
mileage as long as there is not a Hazard card on top of your Battle pile. In this case only,
your opponent can play Hazard cards directly on a Remedy card besides a Go card.

Extra Tank When played, your opponent cannot play an Out of Gas on your Battle
Pile.

Puncture Proof When played, your opponent cannot play a Flat Tire on your Battle
Pile.

Driving Ace When played, your opponent cannot play an Accident on your Battle
Pile.

Distance Cards: Distance cards are played when you have a Go card on your Battle pile,
or a Right of Way in your Safety area and are not stopped by a Hazard Card. They can be
played in any combination that totals exactly 700 miles, except that you cannot play more
than two 200 mile cards in one hand. A hand ends whenever one player gets exactly 700
miles or the deck runs out. In that case, play continues until neither someone reaches 700,
or neither player can use any cards in their hand. If the trip is completed after the deck
runs out, this is called Delayed Action.

MILLE(6)

Coup Fourre: This is a French fencing term for a counter-thrust move as part of a parry
to an opponents attack. In Mille Bournes, it is used as follows: If an opponent plays a
Hazard card, and you have the corresponding Safety in your hand, you play it immediately,
even before you draw. This immediately removes the Hazard card from your Battle pile,
and protects you from that card for the rest of the game. This gives you more points (see
"Scoring" below).

Scoring: Scores are totaled at the end of each hand, whether or not anyone completed the
trip. The terms used in the Score window have the following meanings:

Milestones Played: Each player scores as many miles as they played before the trip
ended.

Each Safety: 100 points for each safety in the Safety area.
All 4 Safeties: 300 points if all four safeties are played.
Each Coup Foure: 300 points for each Coup Foure accomplished.

The following bonus scores can apply only to the winning player.
Trip Completed: 400 points bonus for completing the trip to 700 or 1000.
Safe Trip: 300 points bonus for completing the trip without using any 200 mile cards.
Delayed Action: 300 points bonus for finishing after the deck was exhausted.
Extension: 200 points bonus for completing a 1000 mile trip.
Shut-Out: 500 points bonus for completing the trip before your opponent played any

mileage cards.

Running totals are also kept for the current score for each player for the hand (Hand
Total), the game (Overall Total), and number of games won (Games).

STATUS
MILLE (6) currently is not supported by Digital Equipment Corporation.

6-21

MONOP(6)

NAME
monop - Monopoly game

SYNTAX
/usr/games/monop [file]

DESCRIPTION

6-22

Monop is reminiscent of the Parker Brother's game Monopoly, and monitors a game
between 1 to 9 users. It is assumed that the rules of Monopoly are known. The game fol­
lows the standard rules, with the exception that, if a property would go up for auction and
there are only two solvent players, no auction is held and the property remains unowned.

The game, in effect, lends the player money, so it is possible to buy something which you
cannot afford. However, as soon as a person goes into debt, he must "fix the problem", i.e.,
make himself solvent, before play can continue. If this is not possible, the player's property
reverts to his debtee, either a player or the bank. A player can resign at any time to any
person or the bank, which puts the property back on the board, unowned.

Any time that the response to a question is a string, e.g., a name, place or person, you can
type I?' to get a list of valid answers. It is not possible to input a negative number, nor is it
ever necessary.

A Summary of Commands:

quit:

print:

quit game: This allows you to quit the game. It asks you if you're sure.

print board: This prints out the current board. The columns have the following
meanings (column headings are the same for the where, own holdings, and
holdings commands):

Name The first ten characters of the name of the square

Own The number of the owner of the property.

Price The cost of the property (if any)

Mg This field has a '*' in it if the property is mortgaged

If the property is a Utility or Railroad, this is the number of such owned
by the owner. If the property is land, this is the number of houses on it.

Rent Current rent on the property. If it is not owned, there is no rent.

where: where players are: Tells you where all the players are. A '*' indicates the current
player.

own holdings:

holdings:

List your own holdings, i.e., money, get-out-of-jail-free cards, and property.

holdings list: Look at anyone's holdings. It will ask you whose holdings you wish
to look at. When you are finished, type "done".

shell:

MONOP(6)

shell escape: Escape to a shell. When the shell dies, the program continues
where you left off'.

mortgage:
mortg~ge property: Sets up a list of mortgageable property, and asks which you
wish to mortgage.

unmortgage:
unmortgage property: Unmortgage mortgaged property.

buy: buy houses: Sets up a list of monopolies on which you can buy houses. If there
is more than one, it asks you which you want to buy for. It then asks you how
many for each piece of property, giving the current amount in parentheses after
the property name. If you build in an unbalanced manner (a disparity of more
than one house within the same monopoly), it asks you to re-input things.

sell: sell houses: Sets up a list of monopolies from which you can sell houses. it
operat~s in an analogous manner to buy

card: card for jail: Use a get-out-of-jail-free card to get out of jail. If you're not in jail,
or you don't have one, it tells you so.

pay: pay for jail: Pay $50 to get out of jail, from whence you are put on Just Visiting.
Difficult to do if you're not there.

trade: This allows you to trade with another player. It asks you whom you wish to
trade with, and then asks you what each wishes to give up. You can get a sum­
mary at the end, and, in all cases, it asks for confirmation of the trade before
doing it.

resign: Resign to another player or the bank. If you resign to the bank, all property
reverts to its virgin state, and get-out-of-jail free cards revert to the deck.

save: save game: Save the current game in a file for later play. You can continue play
after saving, either by adding the file in which you saved the game after the
manop command, or by using the restore command (see below). It will ask you
which file you wish to save it in, and, if the file exists, confirm that you wish to
overwrite it.

restore: restore game: Read in a previously saved game from a file. It leaves the file
intact.

roll: Roll the dice and move forward to your new location. If you simply hit the
<RETURN> key instead of a command, it is the same as typing roll.

FILES
/usr/games/lib/cards.pck Chance and Community Chest cards

6-23

MONOP(6)

RESTRICTIONS
No command can be given an argument instead of a response to a query.

STATUS
MONOP (6) currently is not supported by Digital Equipment Corporation.

NUMBER(6)

NAME
number - convert Arabic numerals to English

SYNTAX
/usr/games/number

DESCRIPTION
Number copies the standard input to the standard output, changing each decimal number
to a fully spelled out version.

STATUS
NUMBER (6) currently is not supported by Digital Equipment Corporation.

6-25

QUIZ(6)

NAME
quiz - test your knowledge

SYNTAX
/usr/games/quiz [-i file] [-t] [category 1 category2]

DESCRIPTION
Quiz gives associative knowledge tests on various subjects. It asks items chosen from
categoryl and expects answers from category2. If no categories are specified, quiz gives
instructions and lists the available categories.

Quiz tells a correct answer whenever you type a bare newline. At the end of input, upon
interrupt, or when questions run out, quiz reports a score and terminates.

The -t flag specifies 'tutorial' mode, where missed questions are repeated later, and
material is gradually introduced as you learn.

The -i flag causes the named file to be substituted for the default index file. The lines of
these files have the syntax:

line = category newline I category':' line
category = alternate I category 'I' alternate
alternate = empty I alternate primary
primary = character I '[' category']' I option
option =' {' category '}'

The first category on each line of an index file names an information file. The remaining
categories specify the order and contents of the data in each line of the information file.
Information files have the same syntax. Backslash ''\ is used as with sh (1) to quote syntac­
tically significant characters or to insert transparent newlines into a line. When either a
question or its answer is empty, quiz will refrain from asking it.

FILES
/usr/games/quiz.k/*

RESTRICTIONS
The construct 'alab' doesn't work in an information file. Use 'a{b}'.

STATUS
QUIZ (6) currently is not supported by Digital Equipment Corporation.

6-26

RAIN(6)

NAME
rain - animated raindrops display

SYNTAX
/usr/games/rain

DESCRIPTION
Rain's display is modeled after the V AXNMS program of the same name. The terminal
has to be set for 9600 baud to obtain the proper effect.

As with all programs that use termcap, the TERM environment variable must be set (and
exported) to the type of the terminal being used.

FILES
/etc/termcap

STATUS
RAIN (6) currently is not supported by Digital Equipment Corporation.

6-27

ROGUE(6)

NAME
rogue - Exploring The Dungeons of Doom

SYNTAX
/usr/games/rogue [-r] [save file] [-8] [-d]

DESCRIPTION
Rogue is a computer fantasy game with a new twist. It is crt oriented and the object of the
game is to survive the attacks of various monsters and get a lot of gold, rather than the
puzzle solving orientation of most computer fantasy games.

To get started you really only need to know two commands. The command ? will give you
a list of the available commands and the command / will identify the things you see on the
screen.

To win the game (as opposed to merely playing to beat other people high scores) you must
locate the Amulet of Yendor which is somewhere below the 20th level of the dungeon and
get it out. Nobody has achieved this yet and if somebody does, they will probably go down
in history as a hero among heros.

When the game ends, either by your death, when you quit, or if you (by some miracle)
manage to win, rogue will give you alist of the top-ten scorers. The scoring is based
entirely upon how much gold you get. There is a 10% penalty for getting yourself killed.

If save file is specified, rogue will be restored from the specified saved game file. If the -r
option is used, the save game file is presumed to be the default.

The -8 option will print out the list of scores.

The -d option will kill you and try to add you to the score file.

For more detailed directions, read the document A Guide to the Dungeons of Doom.

FILES
/usr/games/lib/rogue roll Score file
-/rogue.save Default save file

STATUS
ROGUE (6) currently is not supported by Digital Equipment Corporation.

6-28

NAME
snake, snscore - display chase game

SYNTAX
/usr/games/snake [-wn] [-In]
/usr/games/snscore

DESCRIPTION

SNAKE(6)

Snake is a display-based game which must be played on a CRT terminal from among those
supported by vi(1). The object of the game is to make as much money as possible without
getting eaten by the snake. The -I and -w options allow you to specify the length and
width of the field. By default the entire screen (except for the last column) is used.

You are represented on the screen by an I. The snake is 6 squares long and is represented
by S's. The money is $, and an exit is #. Your score is posted in the upper left hand
corner.

You can move around using the same conventions as vi(l), the h, j, k, and I keys work, as
do the arrow keys. Other possibilities include:

sefc These keys are like hjkl but form a directed pad around the d key.

HJKL These keys move you all the way in the indicated direction to the same row or
column as the money. This does not let you jump away from the snake, but rather
saves you from having to type a key repeatedly. The snake still gets all his turns.

SEFC Likewise for the upper case versions on the left.

ATPB These keys move you to the four edges of the screen. Their position on the key-
board is the mnemonic, e.g. P is at the far right of the keyboard.

x This lets you quit the game at any time.

p Points in a direction you might want to go.

w Space warp to get out of tight squeezes, at a price.

Shell escape

"z Suspend the snake game, on systems which support it. Otherwise an interactive
shell is started up.

To earn money, move to the same square the money is on. A new $ will appear when you
earn the current one. As you get richer, the snake gets hungrier. To leave the game, move
to the exit {#).

A record is kept of the personal best score of each player. Scores are only counted if you
leave at the exit, getting eaten by the snake is worth nothing.

As in pinball, matching the last digit of your score to the number which appears after the
game is worth a bonus. .

To see who wastes time playing snake, run /usr/games/snscore .

6-29

SNAKE(6)

FILES
lusr/games/lib/snakerawscores database of personal bests
lusr/games/lib/snake.log log of games played
lusr/games/busy program to determine if system too busy

RESTRICTIONS
When playing on a small screen, it's hard to tell when you hit the edge of the screen.

The scoring function takes into account the size of the screen.

STATUS
SNAKE (6) currently is not supported by Digital Equipment Corporation.

6-30

TREK(6)

NAME
trek - trekkie game

SYNTAX
/usr/games/trek [[-a] file]

DESCRIPTION
Trek is a game of space glory and war. Below is a summary of commands. For a complete
description, see Trek. documentation.

If a filename is given, a log of the game is written onto that file. If the -a flag is given
before the filename, that file is appended to, not truncated.

The game will ask you what length game you would like. Valid responses are "short'''
"medium", and "long". You may also type "restart", which restarts a previously saved
game. You will then be prompted for the skill, to which you must respond "novice", "fair",
"good", "expert", "commadore", or "impossible". You should normally start out with a
novice and work up.

In general, throughout the game, if you forget what is appropriate the game will tell you
what it expects if you just type in a question mark.

SEE ALSO
/usr / doc/trek

COMMAND SUMMARY
abandon
cloak up/down
computer request; ...
destruct
help
Irscan
phasers automatic amount
phasers manual amtl course1 spread1 ...
torpedo course [yes] angle/no
ram course distance
shell
srscan [yes/no]
status
undock
warp warp_factor

STATUS

capture

damages
dock
impulse course distance
move course distance

rest time
shields up/down

terminate yes/no
visual course

TREK (6) currently is not supported by Digital Equipment Corporation.

6-31

WORM(6)

NAME
worm - Play the growing worm game

SYNTAX
/usr/games/worm [size]

DESCRIPTION
In worm, you are a little worm, your body is the "o"'s on the screen and your head is the
"@". You move with the hjkl keys (as in the game snake). If you don't press any keys, you
continue in the direction you last moved. The upper case HJKL keys move you as if you
had pressed several (9 for HL and 5 for Ji() of the corresponding lower case key (unless
you run into a digit, then it stops).

On the screen you will see a digit, if your worm eats the digit is will grow longer, the actual
amount longer depends on which digit it was that you ate. The object of the game is to see
how long you ca.n make the worm grow.

The game ends when the worm runs into either the sides of the screen, or itself. The
current score (how much the worm has grown) is kept in the upper left corner of the screen.

The optional argument, if present, is the initial length of the worm.

RESTRICTIONS
If the initial length of the worm is set to less than one or more than 75, various strange
things happen.

STATUS
WORM (6) currently is not supported by Digital Equipment Corporation.

6-32

WORMS(6)

NAME
worms - animate worms on a display terminal

SYNTAX
lusr/games/worms [-field] [-length #] [-number #] [-trail]

DESCRIPTION
Worms is based on the TOPS-20 program on the DEC-2136 machine called WORM.

-field makes a "field" for the worm(s) to eat; -trail causes each worm to leave a trail
behind it. You can figure out the rest by yourself.

FILES
/etc/termcap

RESTRICTIONS
The lower-right-hand character position will not be updated properly on a terminal that
wraps at the right margin.

STATUS
WORMS (6) currently is not supported by Digital Equipment Corporation.

6-33

WUMP(6)

NAME
wump - the game of hunt-the-wumpus

SYNTAX
/usr/games/wump

DESCRIPTION
Wump plays the game of 'Hunt the Wumpus.' A Wumpus is a creature that lives in a cave
with several rooms connected by tunnels. You wander among the rooms, trying to shoot
the Wumpus with an arrow, meanwhile avoiding being eaten by the Wumpus and falling
into Bottomless Pits. There are also Super Bats which are likely to pick you up and drop
you in some random room.

The program asks various questions which you answer one per line; it will give a more
detailed description if you want.

This program is based on one described in People's Computer Company, 2, 2 (November
1973).

STATUS
WUMP (6) currently is not supported by Digital Equipment Corporation.

6-34

ZORK(6)

NAME
zork - the game of dungeon

SYNTAX
/usr/games/zork

DESCRIPTION
C Dungeon is a computer fantasy simulation based on Adventure and on Dungeons & Dra­
gons. In it you explore a dungeon made up of various rooms, caves, rivers, and so on. The
object of the game is to collect as much treasure as possible and stow it safely in the trophy
case (and, of course, to stay alive.)

Figuring out the rules is part of the game, but if you are stuck, you should start off' with
"open mailbox", "take leaflet", and then "read leaflet". Additional useful commands that
are not documented include:

quit (to end the game)

!cmd (the usual shell escape convention)

> (to save a game)

< (to restore a game)

FILES
/usr/games/lib/d *

STATUS
ZORK (6) currently is not supported by Digital Equipment Corporation.

6-35

HOW TO ORDER ADDITIONAL DOCUMENTATION

DIRECT TELEPHONE ORDERS

In Continental USA
and Puerto Rico
call 800-258-1710

In Canada
call 800-267-6146

In New Hampshire,
Alaska or Hawaii
call 603-884-6660

DIRECT MAIL ORDERS (U.S. and Puerto Rico*)

DIGITAL EQUIPMENT CORPORATION
P.O. Box CS2008

Nashua, New Hampshire 03061

DIRECT MAIL ORDERS (Canada)

DIGITAL EQUIPMENT OF CANADA LTD.
940 Belfast Road

Ottawa, Ontario, Canada K1 G 4C2
Attn: A&SG Business Manager

INTERNATIONAL

DIGITAL EQUIPMENT CORPORATION
A&SG Business Manager

c/o Digital's local subsidiary
or approved distributor

Internal orders should be placed through the Software Distribution Center (SOC), Digital
Equipment Corporation, Northboro, Massachusetts 01532

* Any prepaid order from Puerto Rico must be placed
with the Local Digital Subsidiary:

809-754-7575

Reader's Comments

ULTRIX - 32
Programmer's Manual

AA-BG53A-TE

Note: This form is for document comments only. DIGITAL will use comments
submitted on this form at the company's discretion. If you require a writ­
ten reply and are eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please
make suggestions for improvement. __________________ _

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

o Assembly language programmer

o Higher-level language programmer

o Occasional programmer (experienced)

o User with little programming experience

o Student programmer
o Other (please specify) _________________ _

Name Date ___________ _

Organization ___________________________ _

Street ______________________________ _

City ________________ State ___ Zipof'°de ____ _

Country

1
1
1

·------Do Not Tear· Fold Here and Tape ----------------------------- _______ ...J
t

IIIIII

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO 33 MAYNARD MASS

POSTAGE WILL BE PAID BY ADDRESSEE

Documentation Manager
ULTRIX-32TM Documentation Group
MK02-1/HlO
Continental Blvd.
Merrimack, N.H.

03054

No Postage

Necessary

if Mailed in the

United States

------Do Not Tear· Fold Here and Tape - - --- - - ---- ----------------- - - - - -----1
1
1
1
1 Q/

1.5
I....J

1
Q

r o
:;:
~
U

Notes:

Notes:

Notes:

Notes:

Notes:

Notes:

Notes:

Notes:

Notes:

Notes:

Notes:

Notes:

Notes:

Notes:

