VMS

File System Internals

VMS File System Internals

VMS File System Internals

Kirby McCoy

dlilgliltl]

DIGITAL PRESS

Copyright © 1990 by Digital Equipment Corporation.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, without prior written permission
of the publisher.

Printed in the United States of America.
98765432
Order number EY-F575E-DP

The following trademarks of Digital Equipment Corporation are cited in this book:
DECnet, the Digital logo, DIGITAL, HSC, UNIBUS, VAX, VAXcluster, VAX RMS, VMS.

Digital Equipment Corporation assumes no responsibility for any errors that may
appear in this book.

This book was produced by Digital’s Corporate User Publications Group with the
VAX DOCUMENT electronic publishing system.

Library of Congress Cataloging-in-Publication Data
McCoy, Kirby
VMS File System Internals/Kirby McCoy.
p. cm.
Includes index.
ISBN 1-55558-056-4
1. VAX/VMS (Computer operating system) 2. File organization
(Computer science) 1. Title.
QA76.76.063M385 1990
005.74-dc20 90-3746
CIP

Lovingly dedicated to the memory of my father,
C. C. McCoy, Sr.

Preface

1.1

1.2
121
1.2.2
1.2.3

1.2.3.1

1.3
1.3.1
1.3.2

2.1

2.2
221
2.2.2
223

2.2.3.1
2.2.3.2

2.3

23.1
232
2.3.3
2.3.3.1
2.3.3.2
2.3.3.3
2.3.3.3.1

Contents

Introduction to the VMS File System

Introduction

TasksofaFileSystem
Evolution of the VMS File System
Creationof the XQP. vin..
VMS File System in a VAXcluster
VAX/VMS Environment and the File System

User Interface to the File System
VMSI/OSystemc0iiiiiiiiinnn...
Queue I/O Request Service.ccovvue....

..................

Files—11 On-Disk Structure
Introduction

Basic Conceptofa Volume
Volume Identification
Volume Integrity
Volume Sets i
Tightly Coupled Volume Sets
Loosely Coupled Volume Sets......................

...............................

Basic ConceptofaFile..............
Logical to Virtual Mapping
File Identification.
File Header
Header Area................ciiiiiiniinnnnn. ..
Ident Areat i

.......................

...................................

.......................

O30 OOk BhW W

viii Contents

2.3.3.3.2
2.3.3.3.3
2.3.3.34
2.3.3.4
23341
2.3.3.4.2
2.3.3.4.3
23344
2.3.34.5
2.3.3.5
234
2.3.5

2.4
2.4.1
2.4.2
2.4.3

2.4.3.1

2.5
2.5.1
125.1.1
2.5.1.2
2.5.1.3
2.5.14
2.5.1.5
2.5.1.6
2.5.1.7
2.5.2
25.2.1
2.5.2.2
2.5.3
2.5.3.1
2.5.3.2
2.5.3.3
2.5.4
2.5.5
2.5.6
2.5.7
2.5.8
2.5.9

Retrieval Pointer Format1 34
Retrieval Pointer Format 2c.vunnn 35
Retrieval Pointer Format 3, 36
Access Control List Areao 37
Alarm Access Control Entry............... ..., 42
Application Access Control Entry................... 43
Directory Default Protection Access Control Entry 46
Identifier Access Control Entry 47
RMS Journaling Access Control Entries 48
User-Reserved Areaociivinnnnennesenns 52
Multiheader Files.o o vttt 52
Multivolume Files coviiii it 53
Basic Concept of a Directoryooon. 53
Directory Structureo, 53
Multiple Directory Records 56
Directory Hierarchies.y 56
Multivolume Directory Structure 57
Reserved Filescoiiiiiiiiiiiii e 58
Index File. . . oo i it e et 59
Bootstrap Block it 61
HomeBlockcivviiiiiiiii it 61
Cluster Fillerot e it i i in e 69
Backup Home Blockooviiiiiininneennn. 70
Backup Index File Headercovnnn 70
IndexFileBitmapcvviiiiiinennnnnns 70
FileHeadersc.uiiemiminnneeernnannnnnns 71
Storage Bitmap File.........conn. 71
Storage Control Block i 72
Storage Bitmapcoiiiiiiiiiiiiiiian 76
BadBlockFileciiiiiii i 76
Manufacturer’s Bad Block Descriptor 77
Software Bad Block Descriptor 79
Bad Block Processing on DSA Disks 80
Master File Directoryccoviiiiiieeennn 81
CoreImageFile i 81
Volume Set List File.ot 82
Continuation Fileo v ittt 82
BackupJournal File., 82
Pending Bad Block Log File 83

3.1

3.2
321
3.2.2
3.2.3
324
3.2.5
3.2.6
3.2.7
3.2.8

3.3
3.3.1
3.3.1.1
3.3.1.2
3.3.1.3
3.3.14
3.3.1.5
3.3.2
3.3.2.1
3.3.2.2
3.3.2.3
3324
3.3.2.5
3.3.2.6
3.3.2.7
3.3.2.8
3.3.2.9
3.3.2.10
3.3.2.11
3.3.2.12
3.3.3
3.3.3.1
3.3.3.2
3.3.4

3.4

3.4.1
34.1.1
3.4.1.2
3.4.13
3.4.13.1

Contents ix

Volume Structure Processing

Introduction i 87
Initializing the Volume 87
Checking the Preliminary Parameters 88
Formattingthe Disk 89
Processing Software Bad Blocks. 89
Performing a Data Security Erase 90
Locating the Volume Structures 91
Building the Storage Bitmap File 91
Setting UptheIndex File 92
Writing the Master File Directory 92
MountingaVolume 93
I/ODatabaseccvviiireiniennennnnnnn 94
Volume Control Block............................ 96
Window Control Block 102
ACPQueueBlock........... ... i, 106
FileControl Block iiiiiinnn.. 108
Relative Volume Table 114
Processing the Volume Mount 116
Obtaining User Input. 116
Searching for a Mountable Device 117
Setting Up Device Context 119
Establishing the Volume Defaults 124
Initializing the Prototype Index File FCB 126
Constructing the Prototype Index File Window 126
Readingthe SCB, 127
Establishing the Volume Lock 127
Locating the Highest File Number.................. 129
Allocating the I/O Database Structures 129
Creatingthe AQB i iinnnn.. 130
Establishing File System Context 131
Processinga Volume Set 132
CreatingaVolume Set 133
Mounting a Volume Set 133
Rebuilding the Bitmap and Disk Quota Files.......... 134
Dismountinga Volumecccvunn. 137
Beginning the Dismount Procedure 138
Preparing the Volume to be Dismounted 138
Validating the Volume Characteristics 139
Checking Privilegesc0iiiiiniinnnann. 140

Checking for a Private Mount 140

X

Contents

3.4.1.3.2
3.4.1.3.3
3.4.1.3.4

3.4.14
3.4.2
3.4.3

4.1

4.2
4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.2.6

4.2.6.1
4.2.6.2
4.2.6.3
4.2.64
4.2.7
4.2.8
4.2.9
4.2.10

4.3
4.3.1

4.4
4.5

4.6
4.6.1
4.6.2

Checking for a Volume Mounted with /ABORT or
JCLUSTERottt iite e
Checking for a Volume Mounted Privately by Another
ProCESS . i ittt e e e s
Checking for a Volume Mounted for Group or System
ACCESS v v ittt e e e
Setting Up the Local Mounted Volume Database
Device-Independent Dismount Processing
Final Dismount Processing

Cache Processing on a Single Node
Introductionc0iiir e

Buffer Initialization and Allocation
Layout of the I/O Buffer Cache
XQP Cache Headerccciuiiniiinnnne...
Buffer Descriptorsc.ciiiiiiieennnn.
Buffer Lock Block Descriptors
LBN and the Lock Basis Hash Tables
Buffer Poolsoiiii i i i
Storage Bitmap Cache
File Header and Index File Bitmap Cache
Directory Data Block Cache Ce
Directory Index Cache,
Specialized Caches i,
ExtentCachecoitteennnnnnnnnnnnns
FileIDCache..........coiiiitiiininiiinnnnnn
QuotaCache00 iiiiiiiieennnn.

Obtaining Buffers
Extending Buffer Credits

Multiblock Disk Read Operations
Disk Write Operationst

Systemwide Buffer Validation
InvalidatingaBuffer L.
Changing the LBNofaBuffer

5.1

5.2
5.2.1
5.2.2
5.2.3
52.4

5.3
53.1
5.3.2
5.3.3
53.4
5.3.5
5.3.6

5.4
54.1
54.1.1
54.1.2
5.4.1.3
5.4.14
5.4.1.5
54.2
5.4.3
54.4
5.4.5
5.4.5.1
5.4.5.2
5.4.6
5.4.7
5.4.8
5.4.8.1
5.4.8.2
5.4.9
5.4.9.1
5.4.9.2

5.5

Contents xi

The ACP Functions

Introduction, 195
ACP-QIO Interface.covuinunnnnnn.. 195
Gettingthe Request 197
Dispatching the Operation 199
Postingthe Results 199
Returning Resources 200
Major ACPFunctions.covvununnnnnn... 200
Access Function 201
Create Function 202
Delete Function vvn.... 204
Modify Function 205
Deaccess Function 205
ACP Control Functions 206
Miscellaneous File System Requests 207
Disk Quota Operations. 207
Quota File Operations 208
QuotaCache 209
Accessingthe Quota File 210
Processing the Quota File 211
Deaccessing the Quota File 211
Directory Manipulation 211
Space Management00.u.... 212
Attribute Handling 213
Dynamic Highwater Marking...................... 214
Basic Highwater Mark Algorithm 215
Highwater Mark Handling Routines 215
Spool File Processingccvuuuun.... 218
Access Control List Processing 219
Dynamic Bad Block Processing 219
HandlinganI/OError, .. 220
The Bad Block Scanner 220
Window Handling 222
Mappinga Window 226
TurningaWindow 228

xii Contents

6.1

6.2
6.2.1

6.3
6.3.1
6.3.2
6.3.3

6.4
6.4.1
6.4.2
6.4.3
6.4.4
6.4.5

6.5
6.5.1
6.5.2
6.5.3
6.5.4

6.6
6.6.1
6.6.2
6.6.3

6.7
6.7.1
6.7.2
6.7.3

7.1

7.2
7.2.1
7.2.2

72.2.1
7.2.2.2

7.3

7.4
7.4.1

The XQP and I/0 Processing

Introductionv vttt s 241
XQP Initializationcooitiiiiiia 242
Allocating Impure Storage 242
XQPCallInterface.covvvenevinnnnnn 257
I/ORequest Packet, 257
Function Decision Tableo 267
Driver Dispatch Table o 269
Internal Dispatching vty 269
$QIO System Service Dispatching 270
Function Decision Table Dispatching 274
Building the XQP /O Packetcout. 278
Checking the Volume Status 286
Queuing the I/O Packet tothe XQP 287
XQP Code Executionccovvuiniinnnnnnns 291
Dispatchinga Request oo, 293
Processing in Secondary Context 294
Switching Stacksooieiii i 296
Stalling a Transactionccovevuinennnn 298
Error Processing, Status, and Cleanup 301
XQP Normal Cleanupccovveeneennennnns 302
XQP Error Handlingot 303
Event Notificationccovveieeeennnnnnnn 303
Termination of Processingot 304
Completing File Functionsot 305
Device /O .o ov i e e e 306
Checking for Dismountot 307

Serialization of File System Activity

Introduction v i i e 311
Distributed Lock Managerccoeeuennneen 311
Locking Conventionscoiuviinena.. 312
Distributed Lock Manager System-Owned Locks 313
Volume Allocation Locko, 314
Serialization Lockcciiiiiiiiiii 320
Serializing Access to Files and Volumes.............. 325
Serializing Access to Shared Data Structures 327

Serializing the File Control Block 327

74.1.1
7.4.1.2
7.4.2
7.4.3
7.4.4

7.5
7.6
7.7
7.8

8.1
8.2

8.3
8.3.1
8.3.2
8.3.3
8.3.4
8.3.5

8.4
8.4.1

8.5
8.56.1
8.5.2
8.5.3
8.5.4

8.6
8.6.1
8.6.2
8.6.3
8.6.4
8.6.5
8.6.6
8.6.7

Index

Contents xiii

Using the Serialization Lock to Serialize Access 327
Synchronizing Access to FCBs and WCBs 328
Serializing the Volume Control Block................ 328
Serializing the File Number and Extent Caches 328
Serializing the Buffer Cache 329
Deadlock Considerations 330
File System Internal Serialization Checks............ 331
File System Lock Indexes 332
Ambiguity Queue e 335
File System Operation in a VAXcluster

Environment

Introduction 339
Mounting a Disk Clusterwide 339
Lockingin a VAXcluster.ccovivnvnn.. 341
Volume Allocation Lock e 342
Arbitration Lock. i, 343
Cache Flush Lock.................. 344
QuotaCache Lock 346
Blocking Lock.t 348
Access Arbitration 352
Delayed Truncationccvuiininn.. 354
System Blocking Routines 356
Volume Activity Blocking 357
Dynamic Quota Cache Entry Lock Passing 369
FCB Invalidation e 374
Cache Flushing 383
Cache Processingccoiii i, 386
Lock Value Blockscviiiivnnn. 386
Other Value Block Fields 389
Associating Locks with Buffers 390
Cache Invalidation 391
Directory IndexCache 393
RMS Directory Pathname Cache 397

User Invalidation of Cached Buffers 398

Preface

VMS File System Internals provides information about the internal components
of the VMS Version 5.2 file system, which is that part of the VAX/VMS operating
system responsible for storing and managing information and files in memory and
on secondary storage. '

Intended Audience

This book is intended primarily for software specialists, system programmers,
and other users who wish to understand the underlying components of the VMS
file system.

System managers may benefit from understanding the details of file system data
structures and caches when they configure the system. Application designers may
likewise benefit from understanding the file system structures and logic that may
affect various design decisions.

The audience is assumed to be familiar with the VAX architecture, the VMS
operating system as a whole, I/O devices, and device drivers.

Document Structure

This book contains the following eight chapters:

® Chapter 1 introduces the VMS file system. It provides insight into how
the file system has evolved, and gives an overview to the file system user
interface.

¢ Chapter 2 discusses the Files—11 On-Disk Structure, including the basic
structures of the VMS file system and general file system concepts.

¢ Chapter 3 covers volume structure processing. Major topics include the
Initialize, Mount, and Dismount Utilities, and the structures of the I/O
database.

xvi Preface

* Chapter 4 explains the fundamentals of cache processing on a single node.
This discussion includes cache structures, special caches, and basic caching
algorithms.

* Chapter 5 discusses major and miscellaneous ACP functions, including access,
create, delete, modify, deaccess, and ACP control. It also gives an overview to
the Queue I/0 (QIO) interface.

* Chapter 6 provides a detailed discussion of the XQP and I/O processing,
including an in-depth explanation of the the QIO interface. Topics also
include XQP dispatching, XQP code execution, and I/O postprocessing.

* Chapter 7 describes the various serialization techniques used to synchronize
file system activity, including the distributed lock manager, raised IPL, and
the file system structures themselves.

* Chapter 8 discusses the file system in a VAXcluster environment. It covers
the coordination of clusterwide file system structures and resources, and how
file system requests are passed to all nodes of a VAXcluster.

Acknowledgments

This project has been both long and hard, and I am thankful for the caliber of
help that I have had.

My first thanks go to Susan Denham and to Ann MacDonald, my current and my
former supervisor, for supporting me in what at times has seemed a neverending
endeavor. Both of these women were deeply committed to ensuring that I succeed
in writing this book.

I am grateful to all the people who provided editing and production support.

Lisl Urban edited the first versions of all the chapters. Judy Blachek provided a
comprehensive edit of the final version of the whole book out of the goodness of
her heart. Jill Angel magnificently coordinated the entire production. Lee Segal,
Chris Caron, Sheila Lawner and Brenda Rogers of Graphic Services provided
book design and production assistance. Paul King provided the art work, which is
particularly notable because it was given to him at the last minute.

I also thank Chase Duffy and Michael Meehan of Digital Press for their
publishing experience and their on-going support.

I am grateful for the help and suggestions provided by Ruth Goldenberg and the
rest of the VAXworks team. I also acknowledge the help provided by friends and
reviewers (you know who you are!) around the world, whom I never would have
met otherwise.

I also thank the many talented VMS engineers who reviewed and significantly
improved portions of the book: Paul Destefano, Paul Houlihan, Hai Huang, Mark
Pilant, and Ralph Weber. I appreciate all the errors and omissions they found.

Preface xvii

I also appreciate the help of Christian D. Saether, designer and implementer of
the XQP. He provided a document on XQP internals that later became the core
of Chapters 4, 6, and 7. He also helped establish the outline for the book and
provided reviews of some of the early chapters.

I am especially grateful to two brilliant engineers, without whom I would not
have been able to write this book. It has indeed been an honor and a privilege to
have been able to work with both of them.

Andy Goldstein was the original perpetrator of ODS-2, and he wrote a document
on the Files—11 On-Disk Structure that was later subsumed into Chapter 2.
Notoriously overworked, he nevertheless patiently answered a multitude of
questions, and took the time to provide a comprehensive, incisive, and generally
excellent review of the whole book, enlivened by his barbed sense of humor.

Keith Walls is the current architect and maintainer of the file system, and I

am deeply indebted to all the extra work he put in to make sure the book was
successful. This help included (but was not limited to) giving weekly tutorials
and code walk-throughs, answering innumerable questions, providing the original
version of Chapter 1, bringing a pizza to work at night so we could review a
chapter without missing dinner, bringing comments in at midnight and going
over them with me till the wee hours when I was under a deadline, and generally
helping me put the mysterious pieces of the file system together. Keith kept me
(and the book) going when the project stalled, and provided help of a nature that
went far above and beyond the call of duty.

Finally, I would like to thank all those who have designed, implemented, or
contributed to the VMS file system. This book is but a small tribute to their
monumental engineering effort.

Kirby McCoy
April 1990

Conventions

The following conventions are used in this manual:

<>
boldface text

UPPERCASE TEXT

numbers

data structures

system parameter

Executive

In examples, a horizontal ellipsis indicates one of the
following possibilities:

e Additional optional arguments in a statement have
been omitted. ‘

e The preceding item or items can be repeated one or
more times.

e Additional parameters, values, or other information
can be entered.

A vertical ellipsis indicates the omission of items from a
code example or command format; the items are omitted
because they are not important to the topic being discussed.
In format descriptions, angle brackets indicate that the
user must supply the information.

Boldface text represents the introduction of a new term or
the name of an argument, an attribute, or a reason.

Uppercase letters indicate that you must enter a command
(for example, enter OPEN/READ), or they indicate the
name of a routine, the name of a file, the name of a file
protection code, or the abbreviation for a system privilege.
Hyphens in coding examples indicate that additional
arguments to the request are provided on the line that

follows.

Unless otherwise noted, all numbers in the text are
assumed to be decimal. Nondecimal radixes—binary, octal,
or hexadecimal—are explicitly indicated.

All data structures are assumed to run right to left. That
is, the lowest addressed byte (or bit) in a longword is on the
right-hand side of a figure, and the most significant byte (or
bit) is on the left-hand side.

This term is used to describe any of the adjustable
parameters (also called SYSGEN parameters) that are
used to configure the system.

This term refers to those parts of the operating system that
reside in system virtual address space.

Chapter 1
Introduction to the VMS File System

Begin at the beginning . .. and go on till you come to the end: then stop.
Lewis Carroll -

If you want to fix something, you are first obliged to understand, in detail, the
whole system.
Lewis Thomas

Chapter 1
1.1

1.2
1.2.1
1.2.2
1.2.3

13
1.3.1
1.3.2
1.3.3
1.3.4

Outline

Introduction to the VMS File System
Introduction

Tasks of a File System

Evolution of the VMS File System
Creation of the XQP

VMS File System in a VAXcluster

User Interface to the File System
VMS I/O System

Queue I/O Request Service
Reserved Files

Major File Functions

Introduction to the VMS File System 3

1.1 Introduction

The file system of the VAX/VMS operating system has an interesting history and
has evolved to occupy an interesting and unique place in the computing industry.
This book is intended to deliver a detailed description of the VMS file system for
Version 5.0 of VAX/VMS. Particular attention is given to the methodology and
tactics employed in the file system to achieve the synchronization, efficiency, and
flexibility it does.

1.2 Tasks of a File System

File systems in general are exceptional pieces of code within operating systems.
They are relied upon to deliver data with absolute integrity and virtual immunity
to security problems and media defects. Furthermore, file systems are expected to
do this with minimal impact on system performance. For example, the XQP runs
‘as a kernel-mode asynchronous system trap (AST) delivered to the requesting
(and owning) process. As a result, the processing performed by the XQP is
absolute overhead, and is measured as such in all forms of monitoring.

A timesharing file system is, by its very nature, unique in the computer science
realm. Its implementation should provide the following:

® The imposition of a hierarchical name space on an otherwise flat logical space
* An immutable name space

¢ Multiplexed usage of block space

¢ Implicit synchronization

¢ A bridge between the unprivileged user and the privileged operating system

¢ File management on secondary storage

* Private and secure storage

¢ The sharing of files in a controlled fashion

* A fault-free environment for the upper layers and to the operating system

A failure (such as a security violation or the detection and repair of a bad
block) is either hidden from upper levels (in the case of bad block handling),
or it is returned to the user as an error (in the case of the security violation).
However, the latter case actually represents a success because the file system
successfully detected an attempted security violation and prevented it.

Most importantly, the file system is expected to perform all these tasks without
making a significant impact on the environment or the users whom it serves.

4 Introduction to the VMS File System

1.2.1 Evolution of the VMS File System

The VAX/VMS operating system evolved from the RSX-11M operating system

in the 1970s. On the RSX series of operating systems, the Files-11 On-Disk
Structure Level 1 (ODS-1) file system functions were implemented as a
separate process called an ancilliary control process (ACP). Thus, each request
that involved the file system ACP likewise involved a process context switch to
the ACP, as well as a context switch back to the requesting process.

Early versions of VAX/VMS also used a file system ACP to handle file I/O
functions. Although VAX/VMS provided a more secure domain than that provided
by RSX and, in Version 1.0, tightly bound volume sets under the heading of ODS-
2, these early implementations of the VMS file system still required the context
to be switched and data to be transferred between processes in order to perform
file system operations.

In addition to the overhead incurred by a separate process context, the ACP
design also suffered from being a systemwide bottleneck because all process
requests were funneled through a single ACP for any given disk. Despite

the apparent shortcomings of these early versions of the VMS file system
implementation, synchronization was implicit within the ACP. Updates and
privileged references to the file system in-memory data structures were
synchronized by processor interrupt priority level (IPL), but only one VMS
process had control of any given disk. In other words, all file-system-related
requests were channeled through an entity of atomic or implicit synchronization.

1.2.2 Creation of the XQP

In VAX/VMS Version 4.0, Digital introduced the VAXcluster system. In order
to maintain rational and useful file sharing within the cluster, the file system
had to adopt a different synchronization technique because processes could no
longer depend on the implicit synchronization offered by the scheduling entity
(the ACP). So it became necessary to develop a means by which many “ACPs”
could synchronize across the boundaries within the VAXcluster.

As an answer to the problems posed by the now-outdated ACP, the extended
QIO processor (XQP) was designed. It was intended to perform the following
tasks:

¢ Eliminate the ACP bottleneck
¢ Provide synchronization between processes within a VAXcluster

* Ensure that copies of data structures across the VAXcluster were properly
maintained (generally by an invalidation-and-update technique)

Introduction to the VMS File System 5

On the basis of these requirements, the XQP was developed as a “per-process
ACP.” In this way, each process mapped the code of the XQP from a global P1-only
image section and maintained per-process, private, in-memory data structures
relevant to the file system operations of that process. Thus, the file-system
activity of any one process had no impact on that of any other process on the
system, except where file (read and write) sharing was concerned.

The synchronization between processes became solely dependent on the
distributed lock manager, which allowed process-based XQPs to express interest
at a file granularity level as opposed to the volume granularity of the ACP
system. In-memory data structures were still protected by the IPL scheme offered
by VMS (and later by the spin lock mechanism implemented for symmetric
multiprocessing).

So where the ACP was a separate process, the XQP was merged into the process

(so that only the impure area was charged to the working set). The ACP handled
requests for all users; the XQP handled requests for the single user of its process.
The ACP was usually single threaded and lacked cluster synchronization, but the
XQP effectively provided multiple copies and cluster synchronization.

1.2.3 VMS File System in a VAXcluster

The VAX/VMS file system is further distinguished in its involvement in
the Digital VAXcluster technology. Users of VAXclusters have long enjoyed
transparent synchronization and transparent file-sharing by the cluster-
integrated VMS file system.

In fact, the development of the VMS operating system itself is now fully
dependent on its own VAXcluster technology and the accompanying file system.
In 1977, compiling a new VAX/VMS operating system from its source files
consumed the resources of an entire VAX-11/780 for 12 hours. In 1979, building
the VMS operating system consumed the resources of an entire VAX-11/782, with
nearly twice the horsepower, for the same amount of time.

Today, a complete build of the VAX/VMS operating system consumes the resources
of an entire VAXcluster consisting of two VAX 8800-class machines, three VAX
6000-class machines, and miscellaneous VUPs for still the same amount of time.
If it were not for VAXcluster technology, building VMS would probably be a very
lengthy process. Further, if all file activities went through a single-threaded ACP,
more time would be spent waiting for the ACP than for the operation to complete.

6 Introduction to the VMS File System

1.2.3.1 VAX/VMS Environment and the File System

The VMS file system stands out in many ways. Unlike many operating system
file systems, the VMS file system was designed as an integral component of the
operating system. In the architectural phase of VAX/VMS hardware and software
development, a successful file system was considered essential to the success of
the hardware-software architectural teams.

For example, data reliability features in the VAX architecture, such as the
CRC (Cyclic Redundancy Check) instruction, were used to advantage in the
VMS file system and related utilities. In addition, the memory-management
unit (the page) is the same size as the file system block. I/O postprocessing
performed by the operating system in response to I/0O completion consists of
explicit considerations of file system I/O.

In addition, the page fault handler of VMS deals directly with files and file blocks
(or pages). In fact, the VMS page-fault mechanism provides the means by which
image pages are read from disk images (files) into memory for execution.

Many parts of the VMS operating system have knowledge of the VMS file system.
The swapper, although it does not have PO or P1 space (and therefore is the only
VMS process that cannot map the XQP code) is involved in file-related I/O and in
file system synchronization.

The XQP has significantly influenced the VMS operating system. Without the
XQP, system-owned locks would not be necessary in the distributed lock manager.
The major premise of the distributed lock manager is that any lock has an owner
process. In the case of the file system, however, it is necessary for some locks to
outlive the process that created them (for example, a disk that has been mounted
clusterwide).

1.3 User Interface to the File System

Perhaps the most distinguishing feature of the VMS file system is that it makes
every attempt to detach itself from all the I/O operations it can. This is a benefit
inherited from the ACP design of the RSX and VMS file systems from which it
evolved. The VMS file system is involved only with I/O that requires access to
the file system metadata. Once the file system has been called to make an access
path to a file, it represents its presence, as far as it can reasonably do, by leaving
nonpaged data structures (window control block, file control blocks) that provide
a mapping from virtual (file-based) blocks to logical (disk-based) blocks.

In this way, the file system only needs to be involved in the initial open operation
(and associated synchronization) and in window turning (updating the virtual-to-
logical map) to provide the user with direct access to the blocks of the file through
the window control block. In this sense, the VMS file system is integrated
completely into the QIO subsystem of the operating system.

Introduction to the VMS File System 7

In fact, all I/O to a file can be expressed in terms of virtual QIOs, which allows

a record management subsystem (like RMS or Rdb) to impose its own structure

within files without the involvement of the file system. Despite the level of

integration between the operating system and its file system, the XQP presents

gn i)cll)ject-oriented and hierarchical layer upon which upper-level facilities can
uild.

In addition to these constraints and design decisions presented by the VMS file
system, I/O passed to the XQP can be made completely asynchronous to the upper
layers, and in a transparent manner to the application designer or programmer.

1.3.1 VMS /O System

The VAX/VMS /O system is composed of several layers. The top layer is the VAX
Record Management Services (RMS), which provides controlled access to files and
records. All VAX high level languages invoke VAX RMS to perform I/0. VAX RMS
is also the recommended I/O mechanism for the assembly language programmer.

The middle layer is the Queue I/O ($QI0) system service, which interfaces with
the XQP to perform device-dependent I/0O. A programmer would use the $QIO
system service when accessing devices not supported by RMS; when performing
I/0 operations not supported by RMS; or when performing I/O operations not
supported by the language’s interface to RMS.

The bottom layer is the device driver itself. The $QIO service acts as the
interface to the device driver, which is rarely accessed directly by the application
programmer.

A user program can interface with the I/O system at different levels, depending
on its requirements. At each level, the user program makes tradeoffs between
ease of use and execution speed. As a general rule, the lower the level at which
the user program interfaces with the VAX/VMS executive, the less overhead is
-involved in the I/O operation. On the other hand, less opportunity is provided for
data caching.

In most instances, a programmer uses VAX RMS either directly or implicitly to
perform input and output operations to file-structured devices. Access to real-
time devices is usually done by directly invoking the $QIO system service to the
driver level.

Any functions that can be performed on a device can also be enqueued with an
appropriate $QIO.

Figure 1-1 shows the relationship between the components of the I/O system.

8 Introduction to the VMS File System

Figure 1-1: The Components of the /0 System

PO and P1 Space SO Space
Application
Image [~ (8Pyy s
’ GET
..)
s RMS
\0®]
.\,‘“3\ o
NV _-
| 1
WCB
F11BXQP - — — |- = Nonpaged
Pool
\ ~
(o . N
Q'C‘a/ ~
Q/os N
\ 1/0O System
Services
JSB calls, ...
1/0
Drivers
MSCP, ...
Disk
Device

ZK-9709-HC

Introduction to the VMS File System 9

1.3.2 Queue I/O Request Service

The Queue I/O request service ($QIO) queues an I/O request to a channel
associated with a device. The $QIO service completes asynchronously; that is, it
returns to the caller immediately after queuing the I/O request, without waiting
for the I/O operation to complete.

$QIO operates only on assigned I/O channels and only from access modes that are
equal to or more privileged than the access mode from which the original channel
assignment was made.

$QIO consumes the process quota for the following resources:
¢ Buffered I/O limit (BIOLM) or direct I/O limit (DIOLM)

* Buffered I/O byte count (BYTLM)

¢ AST limit (ASTLM), if an AST service routine is specified

System dynamic memory is also required to hold a database to queue the I/O
request, and additional memory may be required on a device-dependent basis.

Chapter 2
Files—11 On-Disk Structure

Within that awful volume lies
The mystery, of mysteries!
Sir Walter Scott

Something deeply hidden had to be behind things.
Albert Einstein

Chapter 2
2.1

2.2
221
2.2.2
2.2.3

2.3
23.1
2.3.2
2.3.3
2.3.4
2.3.5

24
24.1
2.4.2
2.4.3

2.5
2.5.1
2.5.2
2.5.3
2.54
2.5.5
2.5.6
2.5.7
2.5.8
2.5.9

Outline

Files—11 On-Disk Structure
Introduction

Basic Concept of a Volume
Volume Identification
Volume Integrity

Volume Sets

Basic Concept of a File
Logical to Virtual Mapping
File Identification

File Header

Multiheader Files
Multivolume Files

Basic Concept of a Directory
Directory Structure
Multiple Directory Records
Directory Hierarchies

Reserved Files

Index File

Storage Bitmap File

Bad Block File

Master File Directory

Core Image File

Volume Set List File
Continuation File

Backup Journal File
Pending Bad Block Log File

Files—11 On-Disk Structure 13

2.1 Introduction

A major component of the VMS operating system is the file system. The file
system, also called the file control processor (FCP), maintains the structure

and integrity of data stored on file-structured devices such as disks.!
The file system is responsible for the following tasks:

* Maintaining the directory files on the volume

e Opening, closing, creating, deleting, extending, and truncating files
¢ Managing free space on the volume

¢ Ensuring the integrity of files

* Mapping logical blocks to virtual blocks

¢ Translating RMS data requests for device drivers

The standard file structure for all medium-to-large PDP-11 and VAX systems is
Files-11. This book, and this chapter in particular, describes the Files-11 On-
Disk Structure Level 2 (ODS-2) used by VAX/VMS systems. The following
sections provide a conceptual overview of the basic components of the file
system—volumes, files, and directories.

2.2 Basic Concept of a Volume

A volume is the basic medium with a Files—11 structure. It is an ordered set

of logical blocks. A logical block is an array of 512 8-bit bytes. If the volume
contains n logical blocks, the logical blocks are consecutively numbered from 0 to
n — 1. The number assigned to a logical block is called its logical block number
or LBN.

In practice, a volume should be at least 100 blocks to be useful, and Files-11 can
describe volumes up to 232 blocks.

The logical blocks of a Files—11 volume must be randomly addressable. The
volume must also allow transfers of any length up to 65,536 bytes in multiples of
four bytes. If the data is longer than 512 bytes, consecutively numbered logical
blocks are transferred until no more data remains to be transferred.

In other words, the volume can be viewed as a partitioned array of bytes. It
must allow read and write operations on arrays of any length up to 65,536 bytes,
provided that the array starts on a logical block boundary and that its length is
a multiple of four bytes. When only part of a block is written, the contents of the
remainder of that logical block are undefined.

1 Block addressable storage devices such as disks and TU58 magnetic tapes are the assumed media,
and they are generically referred to as disks.

14 Files—11 On-Disk Structure

The logical blocks of a volume are grouped into clusters. The cluster is the basic
unit of space allocation on the volume. Each cluster contains one or more logical
blocks, and the number of blocks in a cluster is called the volume cluster factor
or the storage bitmap cluster factor.

2.2.1 Volume ldentification

The file system identifies a volume as a Files—11 volume by its home block. The
home block is located at a defined physical location on the volume—usually LBN
1. The file system verifies the home block by its checksums and predictable
values. The home block also contains a volume label, which is an ASCII
character string, to identify the volume.

'The home block also serves another important function. It contains a pointer to
the index file INDEXF.SYS, which is the file that contains the information the file
system needs to access the rest of the files on the volume.

For more information on the home block, refer to Section 2.5.1.2.

2.2.2 Volume Integrity

One of the basic concepts of the file system is that it be robust, or tolerant of
system failure, particularly across a VAXcluster. The file system must be able to
tolerate the random failure of a node in the VAXcluster without destroying file
data or access to files from other nodes in the cluster. In other words, a critical
requirement of a robust file system is the integrity of a volume. It is imperative
that the data on a volume be correct and valid at any given time.

The essential way in which the integrity of a volume is ensured is the redundancy
of key structures on the volume. For example, multiple copies of the home block
along the home block search sequence allow access to the volume even if the
primary home block is corrupted. For more information on the home block, see
Section 2.5.1.2.

Another structure that is recorded multiple times on the volume is the index file
header. The backup index file header allows data on the volume to be recovered
even if the primary index file header is corrupted.

A second method that ensures volume integrity is the order in which specific
structures are updated so that a system failure in the middle of an operation does
not compromise the entire volume. For example, to extend a file, the file system
must allocate free storage from the disk. The desired number of blocks is first
reserved in the storage bitmap. Only then does the file system write out to disk
the file header of the file being extended, which associates those blocks with that
particular file.

Files—11 On-Disk Structure 15

If the header were written out to disk before the blocks were reserved in the
storage bitmap, two files could potentially map the same blocks, resulting in
multiply allocated blocks and file corruption. So any structure that involves
multiple disk blocks must be sensitive to the order in which they are written.

Yet another way that volume integrity is ensured is the distinction between
directory structure and file structure. This difference allows files to be recovered
from a directory that has been deleted or corrupted.

2.2.3 Volume Sets

A collection of related disks that is treated as one logical device is called a
volume set. Although each volume contains its own Files—11 structure, there
is only one directory structure on the volume set. Files on the volumes of the set
are referenced with a relative volume number, which uniquely determines the
disk in the set on which the file is located.

2.2.3.1 Tightly Coupled Volume Sets

A volume set that is consistent and self-identifying is called a a tightly coupled
volume set. The volume label of each volume in the set is unique within the
set and is different from the structure name, which is a string of up to twelve
ASCII characters which identifies the volume set. Relative volume 1 (the root
volume) of the set contains a file (VOLSET.SYS) that lists the volume labels of
all the volumes in the set and thus associates volume labels with relative volume
numbers. Each volume is identified as part of the set by its structure name,
volume label, and relative volume number. ‘

For more information on VOLSET.SYS, refer to Section 2.5.6.

2.2.3.2 Loosely Coupled Volume Sets

A loosely coupled volume set is a collection of volumes that is not self-
identifying. It does not contain a file that lists the volume labels. Moreover,
only one file per volume may cross from one volume in the set to the next, and
files that cross volumes may only be processed sequentially.

Loosely coupled volume sets emulate multivolume magnetic tape, which allows a
file to be sequentially read or written with only one volume mounted at a time.

Correct sequencing of the volumes that hold a particular file is the responsibility
of both the system operator and the application using the volume set, although
there are checks and corrections that can catch most handling errors.

The Backup Utility (BACKUP) produces a loosely coupled volume set when, for
instance, a large disk such as an RA81 is backed up onto multiple RA60s.

16 Files—11 On-Disk Structure

2.3 Basic Concept of a File

A file is an organized collection of data. Files contain any data on a volume
or volume set that is of interest (that is, all the blocks that are not currently
available for allocation).

To be independent of disk drivers, the file system imposes a logical structure on
the data on each disk. Essentially, the FCP treats a disk as a logically contiguous
series of data units called logical blocks. A logical block contains 512 8-bit bytes
and is numbered from 0 to n — 1, where n is the number of blocks on the disk.

2.3.1 Logical to Virtual Mapping

A file is an ordered set of virtual blocks, where a virtual block, like a logical
block, is an array of 512 8-bit bytes. The file system regards a file as being
virtually contiguous.

Unlike logical blocks, however, the virtual blocks of a file are consecutively
numbered from 1 to n, where n is the highest numbered block that has been
allocated to the file. A logical block and a virtual block describe the same physical
unit of storage on the disk; the only difference between them is the way they are
numbered.

Logical blocks have logical block numbers (LBNs), and virtual blocks have virtual
block numbers (VBNs). Virtual blocks have LBNs, but logical blocks do not have
VBN, unless they are allocated to a file.

Virtually contiguous does not necessarily mean logically contiguous. There is
more than one file on a disk. As these files consume space on the disk, there
are fewer available contiguous logical blocks. Eventually, the file system creates
or extends a file so that portions of it reside on different parts of the disk. The
blocks retain their serial VBNs, but they are no longer logically contiguous.

Files-11, which is device-independent, is responsible for associating, or mapping,
virtual blocks to unique logical blocks in a volume set. For example, if a user
requests access to a block within a file, the file system calculates the logical block
on the volume that corresponds to the VBN. It takes into account the fact that
the virtual blocks may or may not be logically contiguous.

After calculating the LBN, the file system requests that block from the disk driver
for the device containing the file. The driver then translates that request into the
cylinder/track/sector, or physical block, that the device hardware must read or
write.

Files can be either dense or sparse. A file in which all the VBNs less than or

equal to the highest allocated VBN have been mapped to a corresponding LBN in
the volume set is a dense file.

Files—11 On-Disk Structure 17

On the other hand, files that are sparse contain virtual blocks that have not been
allocated logical blocks. Unallocated virtual blocks are represented by mapping
data that contains an LBN of all 1s. Sparsely allocated files are not currently
supported.

2.3.2 File Identification

Every file in a volume set is uniquely described by a number called a file
identifier, a file ID, or simply a FID. A file ID is a 48-bit binary value that

is supplied by the file system when the file is created. Users must supply it when
they want to access a particular file. The file identifier points to the location of
the file header, which contains a listing of the extent or extents that locate the
actual data on the disk.

The file ID is divided into four fields:
¢ File number

¢ File sequence number

¢ Relative volume number

¢ File number extension

These fields are shown in Figure 2-1 and are described in Table 2-1.

Figure 2-1: Format of the File Identifier

FID$W_SEQ FID$W_NUM 0

FID$B_NMX FID$B_RVN

18 Files—11 On-Disk Structure

Table 2-1: Contents of the File Identifier

Field Name Description

FID$W_NUM File number. This field contains the low 16 bits of the file number. With
the FID$B_NMX field, it forms a 24-bit file number that locates the file
within a particular volume of the volume set.

The set of file numbers on a volume is not totally dense. The file
number uniquely identifies one file on that volume at any one time.
File numbers for a volume start with the number 1; 0 is not valid. File
numbers with zeros in the low 16 bits (multiples of 65,536) are not used.

FID$W_SEQ File sequence number. It represents the current use of a particular
file number on a volume. When a file is deleted, its file number can
be used again. Each time a file number is reused, a different file
sequence number is assigned to distinguish the uses of that particular
file number.

The file sequence number is essential. It prevents a user from
accidentally using the file ID of an already deleted file to access a
file that was later given the same file number.

File sequence numbers are assigned by maintaining the current
sequence number in each file header and incrementing it each time
the header is reused. If the previous value of the header’s sequence
number cannot be obtained, the file sequence number is generated
randomly.

FID$B_RVN Relative volume number. It indicates the volume of a volume set on
which a file is located. If this volume is not part of a volume set, then
this word contains a value of 0. If the volume is part of a volume set,
then the relative volume number (RVN) can range from 1 to 255.

When a file must be referenced in the context of the volume on which it
lies, a relative volume number of 0 is used, regardless of the RVN that
may be assigned to that volume.

FID$B_NMX File number extension. This byte is the high-order part of the file
number. Together with the FID$W_NUM field, it forms the complete
24-bit file number.

2.3.3 File Header

In addition to the file ID, every file on a Files—11 volume is described by a
file header. It is not actually part of the file; rather, it is contained in the
volume’s index file (see Section 2.5.1). The file header is essentially a catalog
of information about the file, such as where the data is located and how it is
structured. It is used by the file system itself, RMS, the Dump Utility, and the
Backup Utility.

Files—11 On-Disk Structure 19

The file header, also called the header block, contains all the information
necessary to access the file, including the list of extents that make up the file.
File extents describe where the file is physically located on the volume. If a file
has a large number of extents, multiple file headers are used to describe them.
The file header also contains such information as the file ownership, protection,
creation date, and creation time.

The file header has six areas:
* Header area

¢ Ident area

¢ Map area

* Access control list area

¢ Reserved area

¢ End checksum

The first five areas vary in size, and only the header area and the end checksum
are mandatory. Because the areas are variable in length, any software that
processes these structures must check their length before accessing any fields.
Fields contained within the fixed portion of the header (that is, the header area
up to, but not including, the FH2$L,_HIGHWATER field) can be assumed to be
present.

The fixed portion includes any fields in the header area before the start of the
ident area. The FH2$B_IDOFFSET field points to the ident area, which is the
first available area in which to store data. In other words, the header may
contain variable-length areas, but its size is fixed at 512 bytes.

A valid file header is defined by the following rules:

¢ The header end checksum in the FH2$W_CHECKSUM field must be correct.
The end checksum (or block checksum) is a word occupying the last two bytes
of the file header, and it is a simple additive checksum of all other words in
the header block. It is verified every time a header is read and is recalculated
every time a header is written.

¢ The value (that is, the address) contained in the FH2$B_IDOFFSET field is
no less than the value represented by wﬁ.

¢ The four offset bytes are related such that the value contained in the
FH2$B_IDOFFSET field is less than or equal to the value in the FH2$B_
MPOFFSET field, which is less than or equal to the value in the FH2$B_
ACOFFSET field, which is less than or equal to the value in the FH2$B_
RSOFFSET field.

¢ The high byte of the FH2$W_STRUCLEYV field contains the value 2.

20 Files—11 On-Disk Structure

e The low byte of the FH2$W_STRUCLEYV field contains a value greater than
or equal to 1.

e The word FH2$W_FID_NUM contains\the file number.
¢ The word FH2$W_FID_SEQ contains the file sequence number.

e The high byte of the FH2$W_FID_RVN field (the FH2$B_FIX_NMX field)
may contain the file number extension. "

e The contents of the byte FH2$B_MAP_INUSE must be less than or equal to
the value given by FH2$B_ACOFFSET — FH2$B_.MPOFFSET.

A deleted file header conforms to the format of a valid file header, with the
following exceptions:

e The FH2$V_MARKDEL bit is set in the FH2$L,_FILECHAR field.

e The FH2$W_FID_NUM, FH2$B_FID_NMX, and the FH2$B_FID_RVN fields
all contain a value of 0.

e The FH2$W_CHECKSUM field contains a value of 0.

2.3.3.1 Header Area

The header area of the file header always starts at byte 0. It contains information
that allows the file system to make sure that this block is a valid file header and
that this header is the correct one. It contains the file number and file sequence
number of the file as well as its ownership and protection codes.

This area also contains offsets to the other areas of the file header, so it defines
their size as well. Unlike the header area and the end checksum, the ident, map,
access control list, and reserved areas are optional. If an area is not defined, the
offset does not contain a value of 0; rather, the two offsets from which the size
of the area can be calculated are equal. All areas except the end checksum are
variable in length.

The symbol FH2$C_LENGTH contains the size of the header area, excluding the
last field, FH2$R_CLASS_PROT.

The fields in the header area are illustrated in Figure 2-2, and each field is
described in Table 2-2.

Figure 2-2: Format of the Header Area

Files—11 On-Disk Structure

21

FH2$B_RSOFFSET FH2$B_ACOFFSET

FH2$B_MPOFFSET FH2$B_IDOFFSET

FH2$W_STRUCLEV

FH2$W_SEG_NUM

FH2$W_FID

12

FH2$W_EXT_FID

FH2$W_RECATTR (32 bytes)

s 20

FH2$L_FILECHAR

52

FH2$B_ACC_MODE | FH2$B_MAP_INUSE

reserved

56

FH2$L_FILEOWNER

60

FH2$W_FILEPROT

FH2$W_BACKLINK

reserved

FH2$B_RU_ACTIVE FH2$B_JOURNAL

72

FH2$L_HIGHWATER

76

reserved

80

FH2$R_CLASS_PROT (20 bytes)

22 Files—11 On-Disk Structure

Table 2-2: Contents of the Header Area
Field Name Description

FH2$B_IDOFFSET Ident area offset. This byte contains the number of 16-bit words
between the start of the file header and the start of the ident
area. It defines both the location of the ident area and the size of
the header area.

FH2$B_MPOFFSET Map area offset. This byte contains the number of 16-bit words
between the start of the file header and the start of the map
area. It defines both the location of the map area and, with the
FH2$B_IDOFFSET field, the size of the ident area.

FH2$B_ACOFFSET Access control list offset. This byte contains the number of 16-
bit words between the start of the file header and the start of
the access control list. It defines both the location of the access
control list and, with the FD2$B_MPOFFSET field, the size of
the map area.

FH2$B_RSOFFSET Reserved area offset. This byte contains the number of 16-
bit words between the start of the header and the start
of the reserved area. The reserved area is not used by
Files—11, so it may be used for special applications. With the
FH2$B_ACOFFSET field, this byte defines the size of the access
control list. The size of the reserved area can be calculated from
the value in the FH2$B_RSOFFSET field and the end of the
header block (excluding the end checksum).

FH2$W_SEG_NUM Extension segment number. This word contains a value n, which
indicates the header’s ordinal position in the file. However, file
headers are numbered sequentially starting with 0, so the header
of value n is actually the header of position n+ 1 in the file. For
example, a header defined by the value 2 is the third header in
the file.

1Any free space in the file header should be allocated to the map area. In the primary header of a
file, at least 8 bytes must be available for the map area.

(continued on next page)

Files—11 On-Disk Structure 23

Table 2-2 (Cont.): Contents of the Header Area

Field Name

Description

FH2$W_STRUCLEV

FH2$W_FID

FH2$W_EXT_FID

FH2$W_RECATTR

Structure level and version. This word is used to identify
different versions of Files—11 because they affect the structure of
the file header.

This field also identifies the version of Files—11 used to create a
file, which permits upward compatibility of file structures. Under
the Files—11 On-Disk Structure Level 2, the high byte of this
field must contain the value 2. ‘

The low byte contains the version number (currently version 1 of
structure level 2), which must be greater than or equal to 1. The
version number will be incremented when compatible additions
are made to the Files—-11 structure.

File identifier. This field contains the file ID of the file. The
format of a file ID is described in Section 2.3.2. This field
contains the following four subfields:

FH2$W_FID_NUM Low-order file number

FH2$W_FID_SEQ File sequence number

FH2$B_FID_RVN Relative volume number. Because the

: file ID refers to itself (and therefore
always points to the same volume), the
value of this field is always 0.

FH2$B_FID_NMX High-order file number

Extension file identifier. This field contains the file ID of the file’s

next extension header, if one exists. A value of 0 indicates that

no extension header exists. This field contains the following four

subfields: '

FD2$W_EX_FIDNUM Low-order file number

FH2$W_EX_FIDSEQ File sequence number
FH2$B_EX_FIDRVN Relative volume number
FH2$B_EX_FIDNMX High-order file number

File record attributes. This area is used by the record manager
or any other high-level access mechanism to store information
necessary for processing the file, such as record control data or
an end-of-file (EOF) mark.

(continued on next page)

24 Files—11 On-Disk Structure

Table 2-2 (Cont.): Contents of the Header Area

Field Name Description
FH2$L_FILECHAR File characteristics. The followmg flag bits are defined relative to
the start of this field:

FCH$V_NOBACKUP Set if the file contents are not to
be copied by the Backup Utility
(BACKUP).

FCH$V_WRITEBACK Set if a write-back cache may be used.
With this type of caching operation,
the cached data is written to the
disk only when it is removed from
the cache. This bit is clear for write-
through cache operations.

FCH$V_READCHECK Set if read-check operations are to
be performed. All read operations
on the file, including the file header,
are verified with a read-compare
operation to ensure data integrity.

FCH$V_WRITCHECK Set if write-check operations are to
’ be performed. All write operations
on the file, including modifications of
the file header, are performed with
a read-compare operation to ensure
data integrity.

FCH$V_CONTIGB Set if the file is to be allocated
contiguously in as few contiguous
sections as possible. The storage
bitmap is scanned for this purpose,
causing the file system to perform
extra I/O operations.

The file system allocates the three
largest contiguous pieces. If the
request has not been satisfied, the
file system disregards this bit and
satisfies the request as best it can.
The resulting allocation cannot be
determined.

This bit may be implicitly set or
cleared by file system operations that
allocate space to the file.

(continued on next page)

Table 2-2 (Cont.):

Files—11 On-Disk Structure 25

Contents of the Header Area

Field Name

Description

FCH$V_LOCKED

FCH$V_CONTIG

FCH$V_BADACL

FCH$V_SPOOL

FCH$V_DIRECTORY
FCH$V_BADBLOCK

FCH$V_MARKDEL

Set if the file was locked on deaccess.
This bit warns that the file was not
properly closed and may contain
inconsistent data. Access to the file is
denied if this bit is set.

Set if the file is logically contiguous
(that is if, for all virtual blocks in the
file, virtual block ¢ maps to logical
block k + ¢ on one volume for some
constant k).

This bit may be implicitly set or
cleared by file system operations that
allocate space to the file. The user
may only clear it explicitly.

Set if the access control list of this
file is not valid (if, for example, a
system failure occurred while the list
was being updated). In this case, the
access control list for the file is not
used for protection checking.

Set if the file is a spool file (for
example, a temporary storage area
for files that are to be printed later).
File operations not related to spool
file handling are not allowed.

Set if the file is a directory.

Set if there is a bad data block in the
file. It indicates that deferred bad
block processing is to be done on the
file at some suitable later time, such
as after the file is deleted.

Set if the file is marked for deletion.
If this bit is set, further access to the
file is denied, and the file is physically
removed from the disk after the last
user has closed it.

(continued on next page)

26 Files—11 On-Disk Structure

Table 2-2 (Cont.): Contents of the Header Area
Field Name Description
FCH$V_NOCHARGE Set if the space used by this file is not
to be charged to its owner.
FCH$V_ERASE Set if the file is to be erased or

FH2$B_MAP_INUSE

FH2$B_ACC_MODE

FH2$L_FILEOWNER

FH2$W_FILEPROT

overwritten when it is deleted.

Map words in use. This byte contains a count of the number of
map area words currently in use.

Accessor privilege level. This byte defines the lowest privilege
level that an accessor must have to access the file.

Each privilege level is a 2-bit integer. A value of 0 indicates
the lowest privilege and 3 the highest. Privilege levels may be
assigned separately to the basic file access modes, using this bit
assignment in the access mode byte:

Read Bits <0:1>

Write Bits <2:3>
Execute Bits <4:5>
Delete Bits <6:7>
File owner identication. This field may be a user identification

code (UIC) identifier or a general identifier. The file owner is
usually, but not necessarily, the creator of the file.

File protection code. This word controls what access all users

in the system can have to the file. When a user tries to open a
file, the user’s UIC is compared to the UIC of the owner of the
file. Depending on the relationship of the UICs, the user may be
classified in one or more of the categories below. Each category is
controlled by a 4-bit field in the protection word.

(continued on next page)

Table 2-2 (Cont.):

Files—11 On-Disk Structure 27

Contents of the Header Area

Field Name

Description

System Bits <0:3>

Owner Bits <4:7>

Group Bits <8:11>

World Bits <12:15>

One of these four conditions must
be met:

¢ The group number of the
user’s UIC is less than
or equal to the value set
with the system parameter
MAXSYSGRP (the default is
10g).

¢ The user holds SYSPRV
privilege.

¢ The user holds GRPPRV
privilege and is in the same
group as the file’s owner.

e The user is the owner of the
volume.

The UIC exactly matches the file
owner UIC.

The group number of the UIC
matches the group number of the
file owner UIC. If a file is owned
by a general identifier, however,
group protection checking is not
done.

The user does not fit into any of
the categories above.

Four types of access are defined in Files—11: read (R), write (W),
execute (E), and delete (D). Each 4-bit field in the protection
word is bit-encoded to permit or deny any combination of the four
types of access to that category of accessors. Setting a bit denies
that type of access to that category. The bits within each 4-bit

field have the following uses:

Bit <0> Set to deny read access.
Bit <1> Set to deny write access.
Bit <2> Set to deny execute access.

Bit <3> Set to deny delete access.

(continued on next page)

28 Files—11 On-Disk Structure

Table 2-2 (Cont.):

Contents of the Header Area

Field Name

Description

FH2$W_BACKLINK

FH2$B_JOURNAL

When a user tries to access a file, protection checks are
performed in each category in this order: system, owner, group,
and world. Access to the file is granted if any of the categories
match.

A fifth type of access—control access—governs the right

to change the attributes of a file, such as its protection or

its characteristics. In other words, control access allows
modifications to the file header. Control access is not granted
by a protection mask. It is always available to the system and
owner categories but never to the group and world categories.
Back link file ID. This field contains the file’s back link pointer.
It contains the file ID of the directory file that contains the
primary directory entry for the file. If the file header is an
extension header, the back link contains the file ID of the
primary header. A value of 0 indicates that no back link exists.
This field contains the following four subfields:
FH2$W_BK_FIDNUM Low-order file number

FH2$W_BK_FIDSEQ File sequence number
FH2$W_BK_FIDRVN Relative volume number
FH2$W_BK_FIDNMX High-order file number

Journal control flags. This field is reserved. This field contains
flags used to control the journaling facility provided by a high-

level access method. The following flag bits are defined relative
to the start of this field:

FIJN$V_ONLY_RU Set if the file is to be accessed only
in a recovery unit.

FJN$V_RUJINL Set if recovery-unit journaling is to
be enabled.

FIN$V_BIJNL Set if before-image journaling is to
be enabled.

FIN$V_AIJNL Set if after-image journaling is to be
enabled.

FIN$V_ATJINL Set if audit-trail journaling is to be
enabled.

(continued on next page)

Files—11 On-Disk Structure 29

Table 2-2 (Cont.): Contents of the Header Area

Field Name

Description

FH2$B_RU_ACTIVE

FH2$L_HIGHWATER

FH2$R_CLASS_PROT

FJN$V_NEVER_RU Set if the file is not to be accessed
‘ from within a recovery unit.

FIN$V_JOURNAL_FILE Set if the file is an RMS journal file.

Recoverable facility ID number. This field contains an identifier
of the facility managing the file in an active recovery unit.

File highwater mark. This field contains the virtual block
number, plus 1, of the highest block written. This form of
security protection prevents blocks past this point from being
read. ’

If the highwater mark field contains 0, or if the header area is
too short to contain this field (if the disk predates VMS Version
4.0), then no highwater mark has been maintained for the file.
In this case, the file system does not use highwater marking.

Security classification mask. This field contains the security
classification of the file, which is used when the file system
enforces a lattice-model security system incorporating the Bell
and La Padula secrecy model and the Biba integrity model. This
field is not currently supported.

The classification mask block has the structure shown in

Figure 2-3. The following field names are defined relative to

the start of the classification mask block:

CLS$B_SECUR_LEV Secrecy level. This byte contains the
secrecy classification level. A value of
0 indicates the least sensitive level,
and 255 the most sensitive.

CLS$B_INTEG_LEV Integrity level. This byte contains the
integrity classification level. A value
of 0 indicates the least trustworthy
level, and 255 the most trustworthy.

CLS$Q_SECUR_CAT Secrecy category mask. This 8-
byte field contains a bit mask of
the secrecy classes applicable to the
file. In other words, to protect the
confidentiality of the file, a user must
hold the identifiers corresponding to
the individual bits in this mask.

(continued on next page)

30 Files—11 On-Disk Structure

Table 2-2 (Cont.): Contents of the Header Area

Field Name Description

CLS$Q_INTEG_CAT

Integrity category mask. This 8-
byte field contains a bit mask of the
integrity classes applicable to the
file. In other words, to protect the
veracity of the file, a user must hold
the identifiers corresponding to the

individual bits in this mask.

Figure 2-3 shows the classification mask block.

Figure 2-3: Format of the Classification Mask Block

reserved

CLS$B_INTEG_LEV

CLS$B_SECUR_LEV

CLS$Q_SECUR_CAT

CLS$Q_INTEG_CAT

2.3.3.2 Ident Area

The ident area of a file header is an optional area that stores the identification
and accounting data about the file. It contains the primary name of the file; its

12

creation date and time; revision count, date and time; expiration date and time;

and backup date and time.

The ident area of the file begins at the word indicated by the FH2$B_IDOFFSET

field. To allow more room for map pointers and access control list entries, the

ident area is usually truncated in extension headers.
The symbol FI2$C_LENGTH contains the size of the ident area.

Files—11 On-Disk Structure

31

The field names of the ident area are illustrated in Figure 2—4 and are described

in Table 2-3.

Figure 2-4: Format of the Ident Area

FI2$T_FILENAME (20 bytes)

FI2$W_REVISION

FI2$Q_CREDATE

FI2$Q_REVDATE

FI2§Q_EXPDATE

FI2$Q_BAKDATE

JL
«

FI2$T_FILENAMEXT (66 bytes)

20

28

36

52

32 Files—11 On-Disk Structure

Table 2-3: Contents of the Ident Area

Field Name

Description

FI2$T FILENAME

FI2$W_REVISION

FI12$Q_CREDATE

FI2$Q REVDATE

FI2$Q_EXPDATE

FI2$Q BAKDATE

FI2$T_FILENAMEXT

File name. This field contains the file name in ASCII form. A
period separates the file name from the file type, and a semicolon
separates the file type from the version number; both are always
present. Names shorter than 20 bytes are padded with blanks.
Longer names are continued in the FI2$T_FILENAMEXT field.

Revision number. This word contains the revision count of the
file in binary form. The revision count is the number of times the
file has been accessed for writing.

Creation date and time. These eight bytes contain the date
and time at which the file was created. The time is expressed
in the standard internal time format, which is a 64-bit integer
representing tenths of microseconds elapsed since midnight,
November 17, 1858.1 «

Revision date and time. The revision time is the time at which
the file was last closed after being accessed for write. It is
expressed in the same format as the FI2$Q_CREDATE field.

Expiration date and time. These eight bytes contain the date and
time at which the file becomes eligible for deletion. The format is
the same as that of the FI2$Q_CREDATE and FI12$Q_REVDATE
fields above.

Backup date and time. These eight bytes contain the date and
time at which the file was last backed up. The format is the
same as the other dates and times.

File name extension. This field contains the remainder of the file
name, continued from the FI2$T_FILENAME field above. The
86-character file name field allows for the 80 characters of the
file name and type, plus the five digits of the version number. -

1This date, base date for the Smithsonian astronomical calendar, is derived from the Julian Date.
Julian Date (JD) is used by astronomers and is expressed in days elapsed since January 1, 4713
B.C. The modified Julian Date base of JD 2,400,000 was adopted by the Smithsonian Astrophysical
Observatory for satellite tracking, and this date corresponds to the Julian date of November 17,

1858.

2.3.3.3 Map Area

The map area of the file header is an optional area that contains the information
necessary to map the virtual blocks of the file to the logical blocks of the
volume. This area of the file header starts at the word indicated by the
FH2$B_MPOFFSET field.

Files—11 On-Disk Structure 33

The map area consists of a list of retrieval pointers or map pointers describing
the logical blocks allocated to the file. Retrieval pointers are listed in the order of
the virtual blocks they represent.

Each retrieval pointer describes an extent, a consecutively numbered group of
logical blocks allocated to the file. The count field of the pointer contains the
binary value n, which represents a group of n + 1 logical blocks. The logical block
number field contains the logical block number of the first logical block in the

group.
Mapping can be described with the following formula:

* jis the total number, plus 1, of the virtual blocks represented by all preceding
retrieval pointers in the current and all preceding headers of the file.

® [k is the value contained in the logical block number field.
® nis the value contained in the count field.

Given the arguments in the previous list, then each retrieval pointer maps virtual
blocks j through j + n into logical blocks k through k + n, respectively. Note,
however, that 7, k, and n + 1 must always be integer multiples of the volume
cluster factor (the minimum disk allocation unit in blocks). The cluster factor
default is 3 for disks larger than 50,000 blocks. Otherwise, the default is 1.

Retrieval pointers have four formats, and they may be intermixed within a
file header. The format code of each retrieval pointer is contained in the
FM2$V_FORMAT field, which represents the two high-order bits of the first
word.

The four formats are described in the following sections.

2.3.3.3.1 Retrieval Pointer Format 0

Retrieval pointer format 0 describes a structure called a placement header.
This 2-byte field is represented by the value FM2$C_PLACEMENT, which means
the FM2$V_FORMAT bit contains a value of O(binary). It stores information

in the file header about a file’s allocation. It records the placement options
selected when the file was created so that the conditions of the allocation may
be duplicated.

The format of this retrieval pointer is illustrated in Figure 2-5.

34 Files—11 On-Disk Structure

Figure 2-5: Retrieval Pointer Format 0

FM2$C_PLACEMENT

—— FM2$V_FORMAT
15y y 0

FM2W_WORDO

ZK-9580-HC

A placement header, denoted by the FM2$W_WORDO field, contains the following
placement control bits.

Bit Name Description

.FM2$V_EXACT Set if exact placement is requested or if space must be allocated as

specified.

FM2$V_ONCYL Set if space is to be allocated on one cylinder of the volume.

FM2$V_LBN Set if space is to be allocated at the start of the LBN contained in the
next retrieval pointer in the list.

FM2$V_RVN Set if space is to be allocated on the specified volume (the volume on
which this extent is located).

2.3.3.3.2 Retrieval Pointer Format 1

Retrieval pointer format 1 is represented by the value FM2$C_FORMAT1, which
means that FM2$V_FORMAT contains a value of 1(binary). This 4-byte field
provides an 8-bit count field and a 22-bit LBN field. It is therefore capable of
representing a group of up to 256 blocks on a volume of up to 222 plocks in size.

The format of this retrieval pointer is illustrated in Figure 2-6.

Files—11 On-Disk Structure 35

Figure 2-6: Retrieval Pointer Format 1

FM2$C_FORMAT1

| FM2$V_FORMAT
31 ! 0
FM2$W_LOWLBN 01 | FM2$V_HIGHLBN |FM2$B_COUNT 1
ZK-9581-HC

The following three field names are associated with this format.

Field Name Description

FM2$B_COUNT1 Block count. This 8-bit count field contains the binary value n,
which represents a group of n + 1 logical blocks.

FM2$W_LOWLBN Low-order LBN. This field contains the logical block number of the
first LBN in the group described by the count field. This field and
the FM2$V_HIGHLBN field form the total 22-bit LBN.

FM2$V_HIGHLBN High-order LBN. This field contains the high 6 bits of the logical
block number. This field and the FM2$W_LOWLBN field form the
total 22-bit LBN.

2.3.3.3.3 Retrieval Pointer Format 2

Retrieval pointer format 2 is represented by the value FM2$C_FORMAT?2, which
means that FM2$V_FORMAT contains a value of 2(binary). This 6-byte field
provides a 14-bit count field and a 32-bit LBN field. It is capable of representing

a group of up to 16,384 blocks on a volume of up to 232 blocks.
The format of this retrieval pointer is illustrated in Figure 2-7.

36 Files—11 On-Disk Structure

Figure 2-7: Retrieval Pointer Format 2

FM2$C_FORMAT2

r—— FM2$V_FORMAT

31 A 0
FM2$L _LBN2 10 FM2$V_COUNT2
FM2S$L _LBN2

ZK-9582-HC
The following two field names are associated with this format.
Field Name Description
FM2$V_COUNT2 Block count. This 14-bit count field contains the binary value n,

which represents a group of n + 1 logical blocks.

FM2$L_LBN2 LBN. This 32-bit field contains the logical block number of the first

LBN in the group described.

2.3.3.3.4 Retrieval Pointer Format 3

Retrieval pointer format 3 is represented by the value FM2$C_FORMATS, which
means that FM2$V_FORMAT contains a value of 3(binary). This 8-byte field
provides a 30-bit count field and a 32-bit LBN field. It is capable of describing a
group of up to 230 blocks on a volume of up to 232 blocks.

The format of this retrieval pointer is illustrated in Figure 2-8.

Files—11 On-Disk Structure 37

Figure 2-8: Retrieval Pointer Format 3

FM2$C_FORMAT3

FM2$V_FORMAT

31 A 0
FM2$W_LOWCOUNT 1 FM2$V_COUNT2
FM2$L _LBN3
ZK-9583-HC
The following three field names are associated with this format.
Field Name Description
FM2$V_COUNT2 High-order 14 bits of the count field. This 30-bit count field
contains the binary value n, which represents a group of n + 1
logical blocks.

FM2$W_LOWCOUNT Low-order 16 bits of the count field. FM2$W_LOWCOUNT and
FM2$V_COUNT2 form the total 30-bit count field.

FM2$L_LBN3 Logical block number. This 32-bit field contains the logical block
number of the first LBN in the group described by the count
field.

2.3.3.4 Access Control List Area

The access control list (ACL) area is an optional area containing, among other
things, a list of users or identifiers who are allowed to access a file. The access
control list can describe user communities for a particular file that cannot be
expresssed with the regular protection classes.

This area may also be used for storing additional information about the file.

The individual access control entries (ACEs) are stored in the ACL area with
no surrounding structure. The access control list may span multiple headers,
occupying the ACL area in each header.

An ACE cannot cross a file header. A single ACE is limited to a total of 256 bytes
(including the size, type, flags, and access fields).

There may be up to 255 types of ACEs, but only five types are currently
supported. All other types are reserved. The five supported types are as follows:

¢ Alarm ACE—See Section 2.3.3.4.1
¢ Application ACE—See Section 2.3.3.4.2

38 Files—11 On-Disk Structure

¢ Directory default protection ACE—See Section 2.3.3.4.3
¢ Identifier ACE—See Section 2.3.3.4.4
¢ RMS journaling ACE—See Section 2.3.3.4.5

Each has a different format, and each is referenced by a unique symbolic
constant.

However, every ACE structure contains the basic fields shown in Figure 2-9 and
described in Table 2—4. Note, however, that access bits are stored true, as opposed
to existing protection masks. In other words, a bit containing a value of 0 (clear)
denies access, while a value of 1 (set) grants access.

Figure 2-9: Format of the Basic Access Control Entry

ACE$W_FLAGS ACE$B_TYPE ACE$B_SIZE 0

Table 24: Contents of the Basic Access Control Entry

Field Name Description

ACE$B_SIZE ACE size. This size includes the overhead area and all of the keys.

ACE$B_TYPE ACE type. This type code determines how the remainder of the ACE
is interpreted. A related field, ACE$W_FLAGS, contains both type-
dependent and type-independent flags. The type codes are as follows:

ACE$C_ALARM The name of the journal to
which a security alarm is to be
written when the file is accessed
successfully or unsuccessfully.
(See ACE$V_SUCCESS and
ACE$V_FAILURE for more
information.)

(continued on next page)

Files—11 On-Disk Structure 39

Table 24 (Cont.): Contents of the Basic Access Control Entry

Field Name Description

ACE$C_AUDIT The name of the journal to
which a security audit journal
record is to be written when
the file is either successfully or
unsucessfully accessed. This
format is not supported by VMS
Version 5.0.

ACE$C_DIRDEF The ACE contains default
protection for files created in
a directory. This protection
information is used instead of
the process default protection,
unless it is explicitly overridden.

ACE$C_INFO The ACE contains general
or application-dependent
information. The maximum
length of the information that
can be stored is 252 bytes
although there is no limit to
the number of INFO ACEs that
may appear in a file’s ACL. (See
ACE$V_INFO_TYPE for more
information.)

ACE$C_KEYID The longword identifiers used
to determine who may gain
access to the file. One type of
identifier is the UIC identifier.
The other types of identifiers are
general and system-defined. The
maximum number of identifiers
that can be defined is 62. (See
ACE$V_RESERVED for more
information.)

ACE$C_RMSJNL_AI The location of the RMS after-
image journal.
(continued on next page)

40 Files—11 On-Disk Structure

Table 2-4 (Cont.): Contents of the Basic Access Control Entry

Field Name Description
ACE$C_RMSJNL_AT The location of the RMS audit-
trail journal.
ACE$C_RMSJNL_BI The location of the RMS before-
image journal.
ACE$C_RMSJNL_RU The location of the RMS recovery-
unit journal.
ACE$C_RMSJNL_RU_DEFAULT The location of the default RMS
recovery-unit journal.
ACE$W_FLAGS Type flags. This field, along with the ACE$B_TYPE field, determines

how the ACE is used. This word is divided into two 1-byte fields:
type-dependent flags and type-independent flags.

The type-dependent flags augment the type code, which allows many
different subtypes to be defined. The type-independent flags are used to
provide features that do not depend on the ACE type.

The type-dependent flags are as follows:

ACE$V_INFO_TYPE This 4-bit flag contains a value to indicate
a subtype of the general information ACE.
The following three values are defined for
this field:

¢ The ACE$C_CUST value indicates
that the information belongs to a user
application.

¢ The ACE$C_CSS value indicates that
the information belongs to a Digital
Computer Special Services (CSS)
application.

¢ The ACE$C_VMS value indicates that
the information is valid only for a
specific VAX/VMS utility, application,
or layered product.

(continued on next page)

Files—11 On-Disk Structure 41

Table 2-4 (Cont.): Contents of the Basic Access Control Entry

Field Name Description

ACE$V_RESERVED This flag is valid only for the ACE$C_KEYID
type. See Section 2.3.3.4.4 for more
information.

ACE$V_SUCCESS This flag is valid only for the ACE$C_ALARM
type. See Section 2.3.3.4.1 for more
information.

ACE$V_FAILURE This flag is valid only for the ACE$C_ALARM
type. See Section 2.3.3.4.1 for more
information.

The type-independent flag definitions are as follows:

ACE$V_DEFAULT The ACE is a directory default ACE.
This ACE is applied to all files created
in a common directory. When the ACE
is propagated, the DEFAULT option is
removed from the ACE before it is added
to the ACL of the created file.

This option is valid only for directory files.
A default ACE does not control access to
the directory to which it belongs. It only
specifies the ACL for files created in that
directory.

ACE$V_PROTECTED The ACE will not be deleted when
the ACL for the file is deleted (by the
ATR$C_DELETEACL attribute code).
Instead, the ACE must be deleted
explicitly with the ATR$C_DELACLENT
attribute code.

ACE$V_HIDDEN The ACE is not one that the user should
usually see, but it may be used by some
application. The DIRECTORY command,
for example, does not display it.

ACE$V_NOPROPAGATE This ACE should not be copied during any
form of ACL copy operation, either from
one version of a file to a later version of
the same file or from the parent directory
to a newly created file within it.

42 Files—11 On-Disk Structure

2.3.3.4.1 Alarm Access Control Entry

The alarm ACE provides a security alarm when an object is accesssed in a
particular way. It may be referenced by the symbol ACE$C_ALARM. Figure 2-10
shows the format of the alarm ACE type, and Table 2-5 describes the fields

unique to this format.

Figure 2-10: Format of the Alarm ACE

ACE$W_FLAGS ACE$B_TYPE ACE$B_SIZE 0
ACES$L_ACCESS 4
o ACES$T_AUDITNAME (16 bytes) A 8
Table 2-5: Contents of the Alarm ACE
Field Name Description
ACE$B_SIZE ACE size.
ACE$B_TYPE ACE type.
ACE$W_FLAGS Type flags. The following two type-dependent flags are valid for
the alarm ACE:

ACE$V_SUCCESS

ACE$V_FAILURE

This field specifies that a security alarm
should be generated when access is
granted to a file. This flag is valid only
for the ACE$C_ALARM type.

This field specifies that a security alarm
should be generated when access is
denied to a file. This flag is valid only
for the ACE$C_ALARM type.

(continued on next page)

Files—11 On-Disk Structure 43

Table 2-5 (Cont.): Contents of the Alarm ACE

Field Name Description

ACE$L_ACCESS Access type. This longword specifies the type of access for
which a security audit or alarm message is to be issued. The
following access rights are defined:

ACE$V_READ A message is issued if read access to
the file is attempted.

ACE$V_WRITE A message is issued if write access to
the file is attempted.

ACE$V_EXECUTE A message is issued if execute access to
the file is attempted.

ACE$V_DELETE A message is issued if delete privilege
for the file is attempted.

ACE$V_CONTROL A message is issued if any of the rights
of the file’s owner are attempted.

ACE$T_AUDITNAME Alarm journal name. This field is the start of the alarm-
journal-name counted string.

2.3.3.4.2 Application Access Control Entry

The application ACE (also called the INFO ACE) contains application-dependent
or user-defined information. It may be referenced by the symbol ACE$C_INFO. -
Figure 2-11 shows the format of the application ACE type, and Table 2-6
describes the fields unique to this format.

Figure 2-11: Format of the Application ACE

ACE$W_FLAGS ACE$B_TYPE ACE$B_SIZE 0

ACES$L_INFO_FLAGS 4

¢'»‘ ACES$T_INFO_START (248 bytes) F 8

44 Files—11 On-Disk Structure

Table 2-6: Contents of the Application ACE

Field Name Description

ACE$B_SIZE ACE size.

ACE$B_TYPE ACE type.

ACE$W_FLAGS Type flags. No type-dependent flags are valid for the

ACE$L_INFO_FLAGS

ACE$T_INFO_START

application ACE.

Application flags. This longword is used for VMS-specific
application ACEs. This field is currently interpreted as two
VMS-specific word subfields. RMS, for example, uses an
application ACE of this type as an extension of the file header
to store more information about a file, such as file statistics
(see Figure 2-12 and Table 2-7 for more information).
However, other applications are not restricted from using
these application-defined subfields.

The following word subfields are defined:

ACE$W_APPLICATION_FLAGS VMS application flags
field.

ACE$W_APPLICATION_FACILITY VMS application facility
field.

Information area. This location is the start of the application-
dependent information area. The RMS attributes ACE

uses this portion of the application ACE to store additional
information about a file. Figure 2—12 shows the format of the
RMS attributes ACE type, and Table 2-7 describes the fields
unique to this format.

Figure 2-12: Format of the RMS Attributes ACE

ACE$W_FLAGS ACE$B_TYPE ACE$B_SIZE 0
ACESL_INFO_FLAGS 4

reserved ACES$B_FIXLEN ACE$W_RMSATR_VARIANT 8
ACE$W_RMSATR_MAJOR_ID ACE$W_RMSATR_MINOR_ID 12
ACE$L_RMS_ATTRIBUTE_FLAGS 16

Files—11 On-Disk Structure 45

Table 2-7: Contents of the RMS Attributes ACE

Field Name Description

ACE$B_SIZE ACE size.

ACE$B_TYPE ACE type.

ACE$W_FLAGS Type flags. No type-dependent flags are valid for

ACES$L_INFO_FLAGS
ACE$W_RMSATR_VARIANT

ACE$B_RMSATR_FIXLEN

ACE$W_RMSATR_MINOR_ID

ACE$W_RMSATR_MAJOR_ID

ACE$L_RMS_ATTRIBUTE_FLAGS

the application ACE.
Application flags.

" Variant of the RMS attributes ACE. This field is

currently set to 0.

Fixed-format length. This field contains the
length of the fixed portion of the ACE in bytes,
which is currently 20 bytes.

RMS file attributes ACE minor identifier. This
field contains an integer that identifies the
current version of the ACE. This number is
incremented when compatible changes to the
ACE have been made. For VMS Version 5.0, this
field is set to 2.

RMS file attributes ACE major identifier. This
field contains an integer that identifies the
current version of the ACE. This number is
incremented when incompatible changes to the
ACE have been made. For VMS Version 5.0, this
field is set to 1.
RMS file attributes flags definitions. The
following flags are defined for this field:
STATISTICS If set, statistics monitoring is
enabled for the file.
XLATE_DEC If set, file semantics are private
to Digital. This field is not
supported for VMS Version 5.0.

46 Files—11 On-Disk Structure

2.3.3.4.3 Directory Default Protection Access Control Entry

The directory default protection ACE (also called the DIRDEF ACE) defines the
default protection for a directory so that protection can be propagated to the files
and subdirectoriés in that directory. This type of ACE specifies protection for one

directory structure that is different from the default protection applied to other
directories. Default protection ACEs can be applied only to directory files.

This ACE may be referenced by the symbol ACE$C_DIRDEF. Figure 2-13 shows
the format of the directory default protection ACE type, and Table 2-8 describes
the fields unique to this format.

Figure 2-13: Format of a Directory Default Protection Ace

ACESW_FLAGS

ACE$B_TYPE

ACE$B_SIZE

ACE$L_ACCESS (unused)

ACES$L_SYS_PROT

ACE$L_OWN_PROT 12
ACE$L_GRP_PROT 16
ACE$L_WOR_PROT 20

Table 2-8: Contents of the Directory Default Protection ACE

Field Name Description

ACE$B_SIZE ACE size.

ACE$B_TYPE ACE type.

ACE$W_FLAGS Type flags. No type-dependent flags are valid for the directory

default protection ACE.
ACE$L_ACCESS Access type. This longword is unused.
ACE$L_SYS_PROT Directory default system protection.

ACE$L_OWN_PROT Directory default owner protection.

(continued on next page)

Files—11 On-Disk Structure 47

Table 2-8 (Cont.): Contents of the Directory Default Protection ACE

Field Name Description

ACE$L_GRP_PROT Directory default group protection.
ACE$L_WOR_PROT Directory default world protection.

i

2.3.3.4.4 Identifier Access Control Entry

The identifier ACE (also called the KEYID ACE) controls the type of access
allowed to a particular user or group of users as specified by an identifier. Each
ACE contains a list of identifiers that control access to the file or volume. An
identifier is a logical extension to a UIC because it defines a particular entity in
the system. The identifier may represent a UIC or a process rights list entry. In
order to match a particular ACE, all of the identifiers must successfully match
the corresponding identifiers of the accessor. If no ACE is matched or an ACL

is not associated with the file, access is then granted or denied based on the
conventional protection fields.

The identifier ACE is referenced by the symbol ACE$C_KEYID. Figure 2-14
shows the format of the identifier ACE type, and Table 2-9 describes the fields
unique to this format.

Figure 2-14: Format of the Identifier ACE

ACE$W_FLAGS ACE$B_TYPE ACES$B_SIZE 0

ACES$L_ACCESS 4

ACES$L_KEY 8

48 Files—11 On-Disk Structure

Table 2-9: Contents of the Identifier ACE

Field Name Description

ACE$B_SIZE ACE size.

ACE$B_TYPE ACE type.

ACE$W_FLAGS Type flags. One type-dependent flag is valid for the identifier ACE:
ACE$V_RESERVED. This 4-bit flag field indicates the number of
longwords to reserve for CSS or the user. Up to 15 longwords
may be reserved. The reserved area starts at the ACE$L_KEY
field. The actual keys then follow. This field is valid only for the
ACE$C_KEYID type.

ACES$L_ACCESS Access type. This longword specifies the type of access to be
granted if all the keys are matched. The following access rights
are defined:

ACE$V_READ Read access to the file is granted.

ACE$V_WRITE Write access to the file is granted.

ACE$V_EXECUTE Execute access to the file is granted.

ACE$V_DELETE Delete privileges for the file are granted.

ACE$V_CONTROL The right to change the protection and file
characteristics of the file (that is, access to
the file header) is granted.

ACE$L_KEY Key field. This longword is the start of the variable-length key

field. The number of identifiers listed in the ACE is implied by its
size.

2.3.3.4.5 RMS Journaling Access Control Entries

RMS journaling provides a way to store changes that have been made to a file.
Some journal information may be stored in access control entries. There are five
types of RMS journaling access control entries. Table 2-10 shows each type of
ACE, the symbolic name by which each may be referenced, and a description of

each one.

Files—11 On-Disk Structure 49

Table 2-10: RMS Journaling ACE Types

Type of ACE

Description

RMSJNL_AI

RMSJNL_AT ACE

RMSJNL_BI

RMSJNL_RU

RMSJNL_RU_DEFAULT

The location of the after-image journal. A BI journal records
changes to a file so that the journal can be used to roll the
current copy of the file backward. In other words, the changes
are undone. The journal name must be specified with the SET
FILE/AI_JOURNAL command before a file is modified. Only
one Al ACE may exist per file.

The symbolic name is ACE$C_RMSJNL_AI

The location of the audit-trail journal. An AT journal records
information about file and record accesses. Only one AT ACE
may exist per file.

The symbolic name is ACE$RMSJNL_AT.

The location of the before-image journal. An Al journal
records changes to a file so that the journal can be used to roll
a backup copy of the file forward. In other words, the changes
are redone. The journal name must be specified with the SET
FILE/BI_JOURNAL command before a file is modified. Only
one BI ACE may exist per file.

The symbolic name is ACE$C_RMSJNL_BI.

The location of a particular instance of a journal file. An RU
journal records changes made during a recovery unit so that if
the recovery unit aborts, the changes can be undone. The RU
ACE is created at run time when a process uses the file in a
recovery unit for the first time. It is removed when the file is
closed. The RU ACE does not represent a particular journal
stream; instead, it represents the existence of a potentially
active transaction. Multiple RU ACES may exist per file.

The symbolic name is ACE$C_RMSJNL_RU.

The default location of a new journal file. The RU_DEFAULT
ACE allows the RU journal to be created on a different volume
than the volume on which the data file is being journaled,
chiefly for performance reasons. If this ACE is not set, the RU
journal is created on the same volume as the data file being
journaled. Only one RU_DEFAULT ACE may exist per file.

The symbolic name is ACE$C_RMSJNL_RU_DEFAULT.

All these ACEs are created as hidden, protected, and nopropagate.

50 Files—11 On-Disk Structure

These ACEs all have the same format, but not all fields apply to each
type of ACE. For example, the RMSJNL_RU_DEFAULT ACE uses only the
ACE$T_VOLNAM field. Figure 2-15 shows the format of these ACEs, and
Table 2-11 describes the fields unique to this format.

Figure 2-15: Format of the RMS Journaling ACEs

ACE$SW_FLAGS

ACE$B_TYPE ACES$B_SIZE

ACES$T_VOLNAM (12 bytes) 3

<]

ACE$B_RJRVER ACE$B_VOLNAM_LEN

ACE$W_FID

ACESL_JNLIDX

ACE$W_RMSJUNL_FLAGS

ACES$L_JNLIDX

ACE$Q_CDATE

ACES$L_BACKUP_SEQNO

ACE$L_BACKUP_SEQNO

ACE$Q_MODIFICATION_TIME

Table 2-11: Contents of the RMS Journaling ACEs

16

24

: 28

36

;40

Field Name Description
ACE$B_SIZE ACE size.
ACE$B_TYPE ACE type.

(continued on next page)

Files—11 On-Disk Structure 51

Table 2-11 (Cont.): Contents of the RMS Journaling ACEs

Field Name

Description

ACE$W_FLAGS
ACE$T_VOLNAM

ACE$B_VOLNAM_LEN

ACE$B_RJRVER

ACE$W_FID

ACE$W_RMSJNL_FLAGS

ACE$L_JNLIDX

ACE$Q_CDATE

Type flags.

Volume name. This 18-byte field contains the
volume label in ASCII form, padded to 12 bytes
with spaces, plus the 6-byte binary file ID. The
RU_DEFAULT ACE uses only the basic ACE fields
plus this field.

Length of the journal file volume name in bytes.
In other words, this field contains the length of the
nonblank portion of the ACE$T_VOLNAM field.

RMS journal file structure level. This field
contains the version number of the journal format.
Currently, this field is set to 1.

File identifier of the journal file. The format of a
file ID is described in Section 2.3.2.

RMS journaling flags. The following flags are
defined:

¢ ACE$V_JOURNAL_DISABLED—Indicates
that journaling has been disabled. This bit
applies only to after-image, before-image, and
audit-trail journaling, and it is set by the
Backup Utility.

¢ ACE$V_BACKUP_DONE—Indicates that this
file has been backed up and that RMS needs
to write a backup marker to the journal file.

Journal stream index number. More than one
file can post entries to a journal file. This field
contains a unique number used to distinguish the
entries posted for one file from the entries posted
for another.

Creation date and time of the journal file, in
standard VMS format.

(continued on next page)

52 Files—11 On-Disk Structure

Table 2-11 (Cont.): Contents of the RMS Journaling ACEs
Field Name Description

ACE$L_BACKUP_SEQNO Backup sequence number. This field indicates
where to start in the journal. In other words,
this field is incremented each time RMS posts a
backup marker to the journal file. This number is
compared to the backup marker to determine if the
journal entries bracketed by the backup markers
need to be processed.

ACE$Q_MODIFICATION_TIME Time-stamp of the last backup or last journal entry
recovered, in standard VMS format.

2.3.3.5 User-Reserved Area

The optional reserved area of the file header starts at the word indicated by the
byte FH2$B_RSOFFSET. It is only available in the primary header. This area
is not used by the Files—11 file system, so it can be used by Computer Special
Services (CSS) or a user’s applications.

Application-dependent information may also be stored in an information ACE.

2.3.4 Multiheader Files

The size of the file header is fixed, so the mapping or access control information
for some files will not fit in the allocated space. A file in which the information
overflows the allocated space is called a multiheader file. It is represented by a
chain of file headers called an extension linkage.

Each header in the chain maps a consecutive set of virtual blocks, and the
extension linkage links the headers together in the order of ascending virtual
block numbers. The extension pointer (located in the FH2$W_EXT_FID field) in
each file header is the file ID of the next header in the sequence.

The access control list segments in the various headers are likewise considered
one large access control list, concatenated in the order of the file headers. Access
control lists and arrays of map pointers may be intermixed in the various headers
of a file. In other words, each header may contain any amount of map or access
control data regardless of its position in the sequence.

Technically, each header of a multiheader file could be accessed as a file because
it has a file ID of its own. However, since the complete access control information
is visible only from the primary header of a file, the file system prevents access to
extension headers as files so that file protection can be correctly enforced.

Files—11 On-Disk Structure 53

2.3.5 Multivolume Files

Multiple headers are also needed for files that span volumes in a volume set. A
header maps only those logical blocks of a file located on its volume. However,
a multivolume file is represented by a header on each volume that contains a
portion of that file.

If the multivolume file is contained on a loosely coupled volume set, the file ID of
the first header on each continuation volume always has the value 7,7, n, where
n is the RVN of the volume on which the file starts plus the number of preceding
volumes containing portions of the file.

2.4 Basic Concept of a Directory

A directory is siinply a file used to locate other files on a volume. It contains a
list of files and their unique internal identifications.

Files—11 provides directories to allow the organization of files in a meaningful
way. The file ID uniquely locates a file on a volume set, but it is not very easy to
remember. Directories are the special files that match alphabetic names with file
identifiers.

2.4.1 Directory Structure

A directory file is always contiguous, and it is identified as a directory by the set
FCH$V_DIRECTORY bit in the file characteristics field (FH2$L_FILECHAR). It

is organized as a sequential file with variable-length records. The FAT$V_NOSPAN
bit is also set, specifying that records may not cross block boundaries. No carriage
control attributes are set.

The last word of the directory file’s record attributes area (FAT$W_VERSIONS) is
used to store the directory’s default version limit. This version limit is assigned
to all new files created in the directory if a version limit is not specified by the
creator.

Directory records within each block of the directory file are packed together

to conform to the variable-length record format. At the end of the sequence of
records in each block, a word containing —1 signals the end of records for that
block. This word is always present in a directory block, but it is optional in the
variable-length record format itself.

The entries in a directory are sorted alphabetically, which allows for optimized
searching. Entries which are multiple versions of the same name and type are
arranged in order of decreasing version numbers to optimize version-related
operations. Each directory record consists of the fields shown in Figure 2-16.

54 Files—11 On-Disk Structure

Figure 2-16: Format of a Directory Record

DIR$W_VERLIMIT DIR$W_SIZE 0
DIR$B_NAMECOUNT DIR$B_FLAGS 4
DIR$T_NAME
12
Value Field

Table 2-12 shows the contents of a directory record.

Table 2-12: Contents of a Directory Record

Field Name

Description

DIR$W_SIZE

DIR$W_VERLIMIT

DIR$B_FLAGS

DIR$B_NAMECOUNT

Record byte count. This field is the standard byte count field
of a variable length record. It contains the length in bytes of
the record (not including the two bytes of the count). The byte
count is always an even number.

File version limit. This word contains the maximum number
of versions that are retained for this file name and type. An
attempt to create more versions than the limit will either cause
the oldest version of the file to be deleted, or it will cause an
error to be returned (if the oldest version cannot be deleted).

Flags. This byte contains the type code of the directory entry

and assorted flag bits. It contains the following subfields and
status bits:

DIR$V_TYPE The type code is contained in the three
low bits of the flags byte.
DIR$C_FID The value field is a list of version

numbers and 48-bit file identifiers.

File name length. This field contains the length (in bytes) of
the file name.

(continued on next page)

Table 2-12 (Cont.):

Files—11 On-Disk Structure 55

Contents of a Directory Record

Field Name

Description

DIR$T NAME

Value field

File name string. This field contains the file name and file type
in ASCII form, separated by a period. The period is present
even if either the name or the type, or both, are null. The

file name and type may be composed of any of the standard
name characters: alphanumerics (including the Multinational
Character Set), the dollar sign (reserved for special use by
Digital), the underscore, and the hyphen. The name and type
fields are each limited to 39 characters.

If the length of the name is an odd number, the name string is
padded with a single null character.

Directory entry information. This variable field contains

the information returned to the user by a directory lookup
operation. Its interpretation depends on the directory record
type.

For a file ID record type (the type field is DIR$C_FID), a

list of version numbers and corresponding file identifiers, in
descending order by version number, is returned to the value
field. The number of entries in the list can be calculated with
this formula: ‘

recordlength — overhead — namestring = entries

Figure 2-17 and Table 2-13 describe the format and contents of
an individual directory entry.

Figure 2-17: Format of a Directory Entry

DIR$W_VERSION 0

DIR$W_FID

56 Files—11 On-Disk Structure

Table 2-13: Contents of a Directory Entry

Field Name Description

DIR$W_VERSION Version number. This word contains the version number of the
directory entry in binary form. Version numbers can range from 1 to
32,767.

DIR$W_FID File ID. These three words are the file identifier to which the
directory entry points.

2.4.2 Multiple Directory Records

Directory records may not cross block boundaries, so there is a limit to the
number of file versions that can be contained in one directory record. That
number is 62 for the shortest possible file name.

To represent more versions of a file than will fit into one directory block, multiple
directory records are used. The records are ordered by descending version
numbers, as are the versions within each record. Each record contains the full
file name.

2.4.3 Directory Hierarchies

Because directories are files with no special attributes, they may list files that
are in turn directories. The user may construct directory hierarchies of arbitrary
depth and complexity to structure files as needed. The maximum depth of a
directory hierarchy is nine levels.

Historically, Files—11 on PDP-11 systems supported a two-level directory
hierarchy that relied on UIC syntax. Each UIC was associated with a user
file directory (UFD) and was referenced by a UIC construction of the form
[mnnmmm]. This construction then translated to a user file directory name
of nnnmmm.DIR;1 in the master file directory (MFD).

The current file system uses a multilevel directory hierarchy. The first level below
the volume’s master file directory is the user file directory, but further levels in
the directory structure may be defined; these are called subfile directories (SFDs).
The top-level directory is generally used to represent individual system users

or important facilities. As a result, MFD entries would correspond to the user
names in a multiuser system.

Figure 2-18 shows the hierarchical directory structure.

Files—11 On-Disk Structure 57

Figure 2-18: Hierarchical Directory Structure

MFD

HOBART

DARWIN

PERTH

SuB D

ZK-9705-HC

A directory specifier has the format [namel.name2.name3. ...]. Each name in
the list translates to a directory file name of the form name.DIR;1 in the current

directory level.

The current file system still supports the former UIC-based directory structure.

2.4.3.1 Multivolume Directory Structure
In a volume set, the MFD for all the user files on the volume set is the MFD of
relative volume 1. Its entries point to UFDs located on any volume in the set.
The UFD entries in turn point to files and subdirectories on any volume in the
set. The MFDs of the remaining volumes in the set list only the reserved files on

each volume.

58 Files—11 On-Disk Structure

2.5 Reserved Files

Any file system must maintain some data structures on the medium that are used
to control the file organization. In Files—11, this data structure is kept in several
files. These files are created when a new volume is initialized. They are unique
in that their file identifiers are known constants.

The relative volume number used when accessing one of these files depends upon
the context. The exact number of these files which is present on a particular
volume may vary, but at least five must be present. None of these files can be
deleted. Table 2-14 shows the nine reserved files.

Table 2-14: Reserved Files
File ID File Name Description

1,1 INDEXF.SYS;1 Index file. This file is the root of the entire Files—11
structure. It contains the volume’s bootstrap block (or
boot block) and the home block, which identifies the
volume and locates the rest of the file structure. The
index file also contains all of the file headers for the
volume and a bitmap to control their allocation.

2,2 BITMAP.SYS;1 Storage bitmap file. This file controls the allocation of
logical blocks on the volume.

3,3 BADBLK.SYS;1 Bad block file. This file contains all the known bad blocks
on the volume.

44 000000.DIR; Master file directory (MFD). This file forms the root of

the volume’s directory structure. The MFD lists the nine
known files, all first-level user directories, and whatever
other files the user chooses to enter.

5,5 CORIMG.SYS;1 System core image file. This file provides a file of
known file identification for the operating system. Its
use depends on the operating system. This file is not
currently used.

6,6 VOLSET.SYS;1 Volume set list file. This file contains a list of the labels of
the volumes in a tightly coupled volume set if this volume
is the first relative volume of such a set.

YN CONTIN.SYS;1 Standard continuation file. This file contains the first
segment of the portion of the multivolume file that resides
on a loosely coupled volume set if this volume is part of
such a set.

(continued on next page)

Files—11 On-Disk Structure 59

Table 2-14 (Cont.): Reserved Files

File ID File Name Description

8,8 BACKUP.SYS;1 Backup file. This file logs and controls an incremental
backup system. This file is not currently used.

9,9 BADLOG.SYS;1 Pending bad block log file. This file contains a list of

suspected bad blocks on the volume that have not yet
been turned over to the bad block file.

NOTE: Digital may reserve more file identifiers in the future,
so users should make no assumptions about the values of user-
created file identifiers.

2.5.1 Index File

The index file has file ID 1,1. It is listed in the MFD as INDEXF.SYS;1. The
index file is the root of the Files—11 structure in that it provides the means for
identification and initial access to a Files—11 volume. It also contains the access
data for all files on the volume, including itself. This file has the record format of
512-byte fixed-length records with no carriage control.

Figure 2-19 shows the layout of the blocks in the index file. This figure assumes
a storage map cluster factor greater than 2.

60 Files—11 On-Disk Structure

Figure 2-19: Layout of the First Extgnt of the Index File

Boot Block
Home Block
Cluster 1
More Home Blocks
J
More Home Blocks
Cluster 2
Backup Home Block
More Home Blocks Cluster 3
Backup Index File Header
Cluster 4
(Not Used)
Index File Bitmap
Contiguous
16 File Headers
More File Headers

ZK-9584-HC

Files—11 On-Disk Structure 61

2.5.1.1 Bootstrap Block

Virtual block 1 of the index file is the volume’s bootstrap block, or boot block.
It is almost always mapped to logical block 0 of the volume. If the volume is
the system device of an operating system, the boot block contains an operating-
system-dependent program that reads the operating system into memory when
the boot block is read and executed by a machine’s hardware bootstrap.

If the volume is not a system device, the boot block contains a small program that
outputs a message on the system console to inform the operator to that effect. If
block 0 of a volume is bad, VBN 1 of the index file can be mapped to some other
block. However, the volume cannot be used as a system volume.

2.5.1.2 Home Block

Virtual block 2 of the index file is the volume’s home block. The home block
identifies the volume as a Files—11 volume, establishes the specific identity of the
volume, and serves as the entry point into the volume’s file structure. The home
block is recognized as a home block by the presence of checksums in known places
and by the presence of predictable values in certain locations.

The home block is located on the first good block of the home block search
sequence. The formula of the search sequence is

1+ n +delta

where n is a positive integer (such as 0,1, 2,3, ...).

The home block search delta is calculated from the geometry of the volume.

If the volume is viewed as a three-dimensional space, the search sequence
approximately travels down the body diagonal of the space. Since volume failures
tend to occur across one dimension, this algorithm minimizes the chance of a
single failure destroying both home blocks of the search sequence.

The volume geometry is expressed in sectors (s), tracks or surfaces (t), and
cylinders (c), and the search delta is calculated according to the following rules, to
handle the cases where one or two dimensions of the volume have a size of 1.

Geometry Delta

sx1lx1 1

lxtx1 1

1x1zxc 1

s xtx1 s + 1

s x1zxc s + 1
l1xtzxc t +1

s xtzxc (t +1) x s + 1

In most cases, however, the home block is located on LBN 1.

62

The fields of the home block are shown in Figure 2-20 and are described in

Files—11 On-Disk Structure

Table 2-15. All copies of the volume’s home block contain the same data, with the
exception of the fields containing the block’s VBN and LBN.

Figure 2-20: Format of the Home Block

HM2$L_HOMELBN

HM2$L_ALHOMELBN

HM2$L_ALTIDXLBN

HM2$W_CLUSTER

HM2$W_STRUCLEV

HM2$W_ALHOMEVBN

HM2$W_HOMEVBN

HM2$W_IBMAPVBN

HM2$W_ALTIDXVBN

HM2$L_IBMAPLBN

HM2$L_MAXFILES

HM2$W_RESFILES

HM2$W_IBMAPSIZE

HM2$W_RVN

HM2$W_DEVTYPE

HM2$W_VOLCHAR

HM2$W_SETCOUNT

HM2$L_VOLOWNER

reserved

HM2$W_FILEPROT

HM2$W_PROTECT

HM2$W_CHECKSUM1

reserved

HM2$Q_CREDATE

HM2$W_EXTEND

HM2$B_LRU_LIM

HM2$B_WINDOW

12

16

20

24

28

32

36

40

44

48

52

56

60

68

(continued on next page)

Files—11 On-Disk Structure 63

Figure 2-20 (Cont.): Format of the Home Block

h)Y

b)Y

HM2$Q_RETAINMIN 72

HM2$Q_RETAINMAX 80

HM2$Q_REVDATE 88

4 HM2$R_MIN_CLASS (20 bytes) A% 96
4 HM2$R_MAX_CLASS (20 bytes) 116
3 reserved (320 bytes) #136
HM2$L_SERIALNUM 456

4 HM2$T_STRUCNAME (12 bytes) #7460
4 HM2$T_VOLNAME (12 bytes) 472
7 HM2$T_OWNERNAME (12 bytes) 2484
4 HM23T_FORMAT (12 bytes) | 77496
HM2$W_CHECKSUM2 reserved | 508

64 Files—11 On-Disk Structure

Table 2-15: Contents of the Home Block

Field Name

Description

"HM2$L_HOMELBN

HM2$L_ALHOMELBN

HM2$L_ALTIDXLBN

HM2$W_STRUCLEV

HM2$W_CLUSTER

Home block LBN. This longword contains the logical block
number of this particular copy of the home block. This value
must be nonzero for a valid home block.

Alternate home block LBN. This longword contains the LBN
of the volume’s secondary home block. When scanning the
home block search sequence, the user may determine whether
the block read is the primary or the secondary home block by
comparing the HM2$HOMELBN field with this field. This
value must be nonzero for a valid home block.

Backup index file header LBN. This longword contains the
logical block on which the backup index file header is located.
This value must be nonzero for a valid home block.

Structure level and version. The volume structure level and
version is used to identify different versions of Files~11 when
they affect the structure of all parts of the volume except
the file header. Because the structure level word identifies
the version of Files—11 that created this particular volume,
upward compatibility of file structures as Files—11 evolves is
assured.

The current structure level of Files—11 is level 2, so the high
byte of this field must contain the value 2. The low byte
contains the version number, which must be greater than or
equal to 1. The version number will be incremented when
compatible additions are made to the Files—11 structure. The
current version is version 1 of structure level 2.

Storage bitmap cluster factor. This word contains the cluster
factor used in the storage bitmap file. The cluster factor is
the number of blocks represented by each bit in the storage
bitmap. This value is also called the volume cluster factor.
It must be nonzero for a valid home block.

(continued on next page)

Files—11 On-Disk Structure 65

Table 2-15 (Cont.): Contents of the Home Block

Field Name

Description

HM2$W_HOMEVBN

HM2$W_ALHOMEVBN

HM2$W_ALTIDXVBN

HM2$W_IBMAPVBN

HM2$L_IBMAPLBN

HM23$L_MAXFILES

HM2$W_IBMAPSIZE

HM2$W_RESFILES

HM2$W_DEVTYPE

Home block VBN. This word contains the virtual block that
this particular copy of the home block occupies in the index
file. This value must be nonzero for a valid home block.

Backup home block VBN. This word contains the virtual
block number that the cluster containing the secondary home
block occupies in the index file. The contents of this word is
calculated with the formula v * 2 + 1, where v is the storage
map cluster factor.

Backup index file header VBN. This word contains the virtual
block number that the backup index file header occupies in
the index file. The contents of this word is calculated with the
formula v * 3 + 1, where v is the storage map cluster factor.

Index file bitmap VBN. This word contains the starting virtual
block number of the index file bitmap. The contents of this
word is calculated with the formula v * 4 + 1, where v is the
storage map cluster factor.

Index file bitmap LBN. This longword contains the starting
logical block address of the index file bitmap. Once the home
block of a volume has been found, this value provides access to
the rest of the index file and to the volume. This value must
be nonzero for a valid home block.

Maximum number of files. This longword contains the
maximum number of files that may be present on the volume
at any time. This value must be greater than the contents
of HM2$W_RESFILES for the home block to be valid. The
maximum number of files cannot exceed 2% — 1.

Index file bitmap size. This 16-bit word contains the number
of blocks that make up the index file bitmap. This value must
be nonzero for a valid home block.

Number of reserved files. This word contains the number of
reserved files on the volume. The file sequence number of
each reserved file is always equal to its file number. Reserved
files may not be deleted, and at least five must be present on
a volume. To be valid, this word cannot contain a value less
than 5.

Disk device type. This word is an index identifying the type
of disk that contains this volume. It is currently not used and
always contains a value of 0.

(continued on next page)

66 Files—11 On-Disk Structure

Table 2-15 (Cont.):

Contents of the Home Block

Field Name

Description

HM2$W_RVN

HM2$W_SETCOUNT

HM2$W_VOLCHAR

HM2$L_VOLOWNER

Relative volume number. This word contains the relative
volume number that this volume has been assigned in a
volume set. If the volume is not part of a volume set, then
this word contains a value of 0.

Number of volumes. This word contains the total number of
volumes in a tightly coupled volume set if this volume is the
first volume of the set (the HM2$W_RVN field contains 1). In
a loosely coupled volume set, this word contains a value of 0.

Volume characteristics. This word contains bits that provide
additional control over access to the volume. The following
bits are defined:

HM2$V_READCHECK Set if read-check operations
are to be performed. All read
operations on the file, both for
data and for file structure, are
verified with a read-compare
operation to ensure data
integrity.

HM2$V_WRITCHECK Set if write-check operations
are to be performed. All write
operations on the file, both
for data and for file structure,
are performed with a read-
compare operation to ensure
data integrity.

HM2$V_ERASE Set if all files on the volume
are to be erased or overwritten
when they are deleted.

HM2$V_NOHIGHWATER Set if highwater mark
enforcement is to be disabled
on the volume.

Volume owner. This longword contains the binary identifica-

tion code of the owner of the volume. The format is the same

as that of the file owner stored in the file header.

(continued on next page)

Files—11 On-Disk Structure 67

Table 2-15 (Cont.): Contents of the Home Block

Field Name

Description

HM2$W_PROTECT

HM2$W_FILEPROT

HM2$W_CHECKSUM1

HM2$Q_CREDATE

HM2$B_WINDOW

HM2$B_LRU_LIM

HM2$W_EXTEND

Volume protection code. This word contains the protection
code for the entire volume. All operations on all files on the
volume must pass both the volume protection and the file
protection checks to be allowed.

Just as in file protection, accessors to the volume are
categorized into system, owner, group and world. Each
category is controlled by the standard 4-bit field, which is
encoded in the following manner:

Bit <0> If set, files cannot be read.
Bit <1> If set, existing files cannot be written to
(modified).

Bit <2> If set, files cannot be created.
Bit <3> If set, files cannot be deleted.

Default file protection. This word contains the file protection
that is assigned to files created on this volume if no file
protection is specified by the user or the operating system.
This field is not currently supported.

First checksum. This word is an additive checksum of all
preceding entries in the home block. It is computed by the
same sort of algorithm as the file header checksum.

Volume creation date. This quadword contains the date and
time that the volume was initialized. It has the same binary
format as the file header.

Default window size. This byte contains the number of
retrieval pointers that are used for the window (in core file
access data) when files are accessed on the volume, if this
value is not specified by the user.

Directory preaccess limit. This byte contains a count of

the number of directories to be stored in the file system’s
directory access cache. It is also an estimate of the number of
concurrent users of the volume.

Default file extend. This word contains the number of blocks
allocated to a file when a user extends the file and asks for
the system default value for allocation.

(continued on next page)

68 Files—11 On-Disk Structure

Table 2-15 (Cont.):

Contents of the Home Block

Field Name

Description

HM2$Q_RETAINMIN

HM2$Q_RETAINMAX

HM2$Q_REVDATE

HM2$R_MIN_CLASS

HM2$R_MAX_CLASS

HM2$L_SERIALNUM

Minimum file retention period. This field contains the
minimum length of time that a file will be retained by a

file expiration system after that file is last accessed. Its value
is expressed in the standard delta time format (minus the
time in tenths of microseconds).

Maximum file retention period. This field contains the
maximum length of time that a file will be retained by a

file expiration system after that file is last accessed. Its value
is also expressed in the standard delta time format.

The minimum and maximum retention fields are used
together in this way: when a file is accessed, if the sum of
the current time plus the minimum retention period exceeds
the current expiration date of the file, then the file’s expiration
date is reset to the sum of the current time plus the maximum
retention period.

In other words, how often the expiration date of a frequently
accessed file is updated is determined by the difference
between the minimum and the maximum retention periods.

Volume revision date. This field contains the date and time at
which the last significant modification, such as copying during
a full backup, was made to the volume.

Minimum security class. This field contains a classification
mask that represents the minimum secrecy and integrity
classification of files that may be created on this volume.
The structure of this field is the same as that of the secrecy
classification mask (FH2$R_CLASS_PROT) in the header
area.

Maximum security class. This field contains a classification
mask that represents the maximum secrecy and integrity
classification of files that may be created on this volume.
The structure of this field is the same as that of the secrecy
classification mask (FH2$R_CLASS_PROT) in the header
area.

Media serial number. This field contains the binary serial
number of the physical medium on which the volume is
located.

(continued on next page)

Files—11 On-Disk Structure 69

Table 2-15 (Cont.): Contents of the Home Block

Field Name

Description

HM2$T_STRUCNAME

HM2$T_VOLNAME

HM2$T_OWNERNAME
HM2$T_FORMAT

HM2$W_CHECKSUM2

Structure name. This area contains the name of the volume
set (in ASCII form) to which this volume belongs, padded to 12
bytes with spaces. The characters must be ASCII characters
that can be printed (that is, no control or delete characters).
Moreover, using only alphanumerics is also recommended to
avoid conflicts with command languages. ‘

This field may not be null. If this volume is not a member of a
volume set, this area is filled with spaces.

Volume name. This area contains the volume label in ASCII
form. It is padded to 12 bytes with spaces. The characters
must be ASCII characters that can be printed (that is,

no control or delete characters). Moreover, using only
alphanumerics is also recommended to avoid conflicts with
command languages. This field may not be null.

If the volume is a member of a shadow set, the name is the
same across all the members.

Volume owner. This area contains an ASCII string identifying
the owner of the volume. The area is padded to 12 bytes with
trailing spaces.

Format type. This field contains the ASCII string “DECFILE11B”
padded to 12 bytes with spaces. It identifies the volume as
being of Files—11 format, structure level 2.

Second checksum. This word is the last word of the home
block. It contains an additive checksum of the preceding 255
words of the home block, calculated by the same algorithm
used to calculate the end checksum of the header area.

2.5.1.3 Cluster Filler

If the cluster factor v of the volume is greater than 1, then the next v*2—2 blocks
of the index file are copies of the home block used to fill out the first two clusters
of the index file. Note that, for cluster factors greater than 1, this method results
in a wasted disk cluster. The benefit of this technique is a much simpler rule for
finding the VBN of parts of the index file.

70 Files—11 On-Disk Structure

2.5.1.4 Backup Home Block

The backup home block is a copy of the home block that is located farther
along the home block search sequence. It permits the volume to be used even if
the primary home block is destroyed.

In general, the backup home block should be allocated on the second good block of
the search sequence. If it is not, then no preceding block of the sequence can be
available for allocation. Otherwise, a malicious user could construct a counterfeit
index file which would be used if the primary home block were corrupted.

The cluster which contains the backup home block is mapped into the index file
as virtual blocks v * 2 + 1 through v * 3, where v is the volume cluster factor.

The backup home block may be located anywhere within this cluster because
there is no definite relationship between the cluster factor and the volume’s track
and cylinder boundaries. The entire cluster is therefore filled out with copies of
the home block. The file system must be able to allocate two good home blocks
on the home block search sequence. The blocks in the sequence preceding the
two home blocks that are not used for home blocks must be marked both bad and
allocated, especially LBN 1.

2.5.1.5 Backup Index File Header

The next cluster of the index file contains the backup index file header so data
on the volume can be recovered if the index file header is corrupted. The cluster
occupies virtual blocks v * 3 + 1 through v *4, where v is the volume cluster factor.

The LBN of the backup index file header is stored in location HM2$L,_ALTIDXLBN
in the home block. The backup index file header occupies the first block of this
cluster. The remaining blocks are not used, so their contents are undefined.

2.5.1.6 Index File Bitmap

The index file bitmap is used to control the allocation of file numbers and file
headers. It is simply a bit string of length n, where n is the maximum number of
files allowed on the volume. This value is stored in the HM2$L,_MAXFILES field
in the home block.

The bitmap spans as many blocks as needed to map the allocation of the files
on the volume. This number is the maximum number of files divided by 4096
and rounded up. The number of blocks in the bitmap is contained in the
HM2$W_IBMAPSIZE field of the home block.

The bits in the index file bitmap are numbered sequentially from 0 to n— 1 from
right to left in each byte, and in order of increasing byte address. Bit 7 is used to
represent file number 5 + 1. If the bit is set (or 1), then that file number is in use;
if the bit is clear (or 0), then that file number is not in use and may be assigned
to a newly created file. The index file bitmap is not used to determine whether a
header is valid when accessing an existing file; the validation is done using the
contents of the header itself.

Files—11 On-Disk Structure 71

The index file bitmap starts at virtual block »*4+1 of the index file and continues
through VBN v % 4 + m, where m is the number of blocks in the bitmap, and v is
the storage map cluster factor. It is located at the logical block indicated by the
HM2$L_IBMAPLBN field in the home block.

2.5.1.7 File Headers

The rest of the index file contains all the file headers for the volume. The first
sixteen file headers (for file numbers 1 to 16) are logically contiguous with the
index file bitmap to make them easy to locate, but the rest may be suitably
allocated wherever the file system decides. Thus, the first sixteen file headers
may be located from the information in the home block (HM2$W_IBMAPSIZE
and HM2$L_IBMAPLBN) while the rest must be located through the mapping
data in the index file header. The file header for file number n is located at
virtual block v * 4 + m + n, where m is the num<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>