| | | | | | | | interoffice

| | | | | | | | memorandum

To: Jupiter design group Date: 11 May 83
From: Mike Uhler
Dept: Jupiter Engineering
DTN: (8-)231-6L448
Loc/Mail stop: MRO1-2/E85
Net mail: UHLER at 10

Subject: Overview of the Jupiter EBOX and [|BOX

i.0 introduction
2.0 The PDP-10 instruction set

One of the features of the PDP-10 instruction set is its
regularity. Although there are 400+ user-mode instructions, the
instructions are logically divided into a relatively small number
of instruction classes (e.g. compare, test, full word, etc.).
Even within each class, the instructions are regularly defined.

Because of this regularity, one can often make generalizations
about the operations that must be performed on any instruction.
This section discusses some of these generalizations.

2.1 Instruction operands

One can logically divide the instruction set up into six
categories based on the memory operand requirements for the
instruction. The classes are as follows:

1. Immediate instructions. This class consists of instructions
which neither fetch an operand from C(EA) nor store a result
back to that location. Note that this <class includes more
instructions than those that use EA as a number (e.g., MOVEI)
in that instructions like SETZ are immediate instructions, but
do not use EA.

2. Single memory operand instructions. This class consists of
instructions which fetch a single memory operand from C(EA),
€e.g. MOVE. The memory operand may be optionally write-tested
as it is read because certain instructions in this class
(e.g., AOS) store results back to C(EA) also.

Page 2

3. Single memory store instructions. This class consists of
instructions that store a single result to C(EA). They need
not fetch the word from C(EA) because the instruction does not
use that operand as input data to the instruction (e.qg.,
MOVEM) .

L. Double memory operand instructions. This class is similar to
class 2 except that two memory operands are fetched from C (EA)
and C(EA+1) (e.g., DMOVE). There is no write-test required in
this class because no instruction both fetches a double memory
operand and then stores back a double memory result.

5. Double memory store instructions. This class is similar to
class 3 except that two results are stored to C(EA) and
C(EA+1) (e.g., DMOVEM) .

6. Complex instructions. This class consists of the 'other"
instructions, that is, those that don't fit into any of the
classes given above. The number of instructions in this class
is small enough to list explicitly, and they are as follows:

LUUO MUUO

EXTEND

1BP ADJBP 1LDB LDB IDPB DPB
BLT

XCT

ADJSP PUSHJ PUSH POP POPJ PUSHM
POPM PUSHI

JRST JFCL JFFO

JSR JSP JSA JRA

Privileged instructions

2.2 Jump instructions

The PDP-10 architecture includes several classes of instructions
that jump, that is, that can change PC to something other than .+1
or .+2. Some of these instructions are unconditional jumps and
some are conditional jumps.

A useful observation about the conditional jump instructions is
that they always (with one exception) jump based on the data
contained in the AC specified by the AC field of the instruction.
Unlike architectures which jump based on condition codes, data
directed jumps have some possibly interesting implications for
IBOX prefetch. More on this later.

Not only do the conditional jump instructions jump based on data
in AC, they uniformly make the decision based on a test for
proximity to zero (i.e., <0, <=0, =0, /=0, >0, or > 0).

Some instructions add one to or subtract one from AC before making

Page 3

the proximity test for zero. If one wants to make the jump
decision based on the original contents of AC rather than the
contents after a +1 or -1 operations is carried out, one must have
the capability to test for proximity to -1, 0, or +1.

The result is that we have the following 18 possible tests:

< -] < 0 < +1
<= -] <=0 <= +]
= ..'| = O = +]
/= -1 /=0 /= +1
>= =] >= 0 >= +]
> -1 > 0 > +1]

There are a few exceptions to this rule and it's worth listing all
the jump instructions.

2.2.1 Unconditional jumps

The unconditional jump instructions are as fo!llows:

JRST

PUSHJ POPJ
JSP JSR
JSA JRA

JUMPA AOJA SOJA

Note that all instructions in this class don't jump to EA (e.g.,
JSR and POPJ) .

2.2.2 Conditional jumps that don't make a proximity test

The conditional jump instructions that don't strictly adhere to
the proximity text on the full AC are:

AOBJN Jump if AC<0:17> < -]

AOBJP Jump if AC<0:17> >= -]

JFFO Jump if AC /=0

JFCL Jump if any specified flag was set

Note that AOBJN and AOBJP can simply test bit O of the result if
the test is made after the +1,,1 operation.

2.2.3 Conditional jumps that make a proximity test

Finally, there are several classes of conditional Jjump
instructions that do make a proximity test. The instructions and
the test that they use are as follows:

Page 4

Instruction within class

! L ! LE ! E ! N ! GE ! G !

—————— B R T e Sttt T TP

JUMAPx 1 < 0l <= 0t= 01! /= 0t!> 0!> 01
------ e it e e T L T p——

Class AOJx ! < =1 !l <==1 1= =11 /==115>=-11> =11
—————— R e e i Tl T D ——

SOUx < +1 b <=+4+1 1 = 41! /=41 ! >= 41 | > +1 !
------ e S s i Eaii Tt T SR ———

Note that all three classes reduce to the JUMPx case if the +1 or
-1 operation is performed before the test.

2.3 Skip instructions

The PDP-10 architecture also defines instructions that skip, i.e.,
they can change PC to .+2. As with the jump instructions, there
are unconditional and conditional skip instructions.

The conditional skip instructions are a bit more complex than the
conditional jump instructions in that the the test condition is

not simply a proximity test against a specified value. In fact,
the conditional skip instructions can be logically divided into
compare, skip, test, and miscellaneous sub-classes. Let's

consider each of these separately.

2.3.1 Unconditional skips

The unconditional skips consist of the "skip always" instructions
in the Compare, Skip, and Test instructions. They are:

CAIA CAMA

SKIPA AOSA SOSA

TLNA TLZA TLOA TLCA
TRNA TRZA TROA TRCA
TDNA TDZA TDOA TDCA
TSNA TSZA TSOA TSCA

2.3.2 Conditional skips - Compare

The compare instructions compare C(AC) with either 0,,EA or C(EA)
and skip if the appropriate condition is true. The conditions are
the same as those for the conditional jump instructions. The
instructions and the appropriate tests are given in the following
table:

Page 5

CAlx ! CAMX
L CO) < 0EA 1O < cEn
L& CAO) <= 0..6A 1 CRO <= C(EA)
: COO) = 0, 1 CO = C(EN
N CGO /= 0.EA 1 cth) /e CER)
GE CUAD) >- 0,.EA 1 CO) o= C(EA)
G E?XEJ";”Bf?EX'z'E2RE§'§"E2E£§

Note that these can be converted into a proximity test against
zero if the appropriate second operand (0,,EA or C(EA)) is
subtracted from C(AC). There are other algorithms that don't
require a subtract (e.g., see the KL10).

2.3.3 Conditional skips - Skip

The skip instructions are exactly symmetric with the JUMPx, AOJx,
and SOJx conditional jump instructions. The data being tested
against -1, O, or +1 is in C(EA) rather than in C(AC) as with the
jump instructions. These instructions, and the proximity test
that they user, are as follows:

Instruction within class

! L ! LE ! E ! N !' GE ! G !

------ Rl e s £ TSN NN S

SKIPx ! < 0!l <= 01! = ot /= 011> 01! > ot
------ e e e e R e TNy WU S

Class AOSx ! < =1l <==-1 1= =11 /==11>-11> =11
------ o i it e s T T Y

SOSx ! < +#1 1 <=+1 'V = 41! /=41 ! >= 41 1 > +1 1
------ el Rt S e ot TP NS

Note that, as with the conditional jump instructions, all three
cases reduce to the SKIPx case if the +1 or -1 operation is
performed before the test.

2.3.4 Conditional skips - Test

The test instructions logically AND C(AC) with a specified mask
and skip if the result meets the specified condition. The
instructions and the masking operation for each are as follows:

Page 6

TRxx ! (C(AC) AND 0,,E) =0 ! (C(AC) AND O,,E) /=0
Tiex 1RO AND £.,0) =01 (CGO AND £,10) /= 0
Toxx 1(CMO MND C(EN) =01 (CGO AND C(ER) /0
E;;"'E’(EERE{ TAND SC(E)) ';"8'}:'252;5 AND SC(EA)) /= 0

Note that in the TSxx case, the notation SC{(EA) means the datum
fetched from EA with the halves swapped.

2.3.5 Conditional skips - Miscellaneous

This class of «conditional skips is quite small. The only
instructions in this class are certain complex EXTEND instructions
‘and some of the privileged instructions (e.g., SNPI1).

Page 7

3.0 The IBOX

The job of an IBOX is to prefetch instructions and operands along
an instruction stream that the EBOX or FPA will execute. I|f there
were no conditional jump or skip instructions in the instruction
set, this would be a straight-forward task because the IBOX would
always know which instruction the EBOX or FPA would execute next.

The presence of conditional jump or skip instructions makes the
job more difficult. In the general case, the |BOX might have to
""guess' what the EBOX will do to a conditional jump or skip
instruction. This is especially true if the IBOX is fetching far
ahead of EBOX execution.

There have been several schemes in the past for solving the 'where
will the EBOX go?'" problem, including:

o Static branch prediction based on the opcode.

o Dynamic branch prediction based on both the opcode and what
the EBOX did with the instruction the last "n" times that it
was executed.

© Multi-stream prefetching to attempt to follow all possible
paths.

o '"Pause and wait" schemes that forced the IBOX to wait for the
EBOX to make a decision.

Combinations of these schemes have also been used.

As indicated in the previous section, the PDP-10 architecture has
the advantage that the Jlarge majority of conditional jumps and
skips jump or skip based on the data in AC or C(EA). The current
scheme for the Jupiter IBOX is to make use of this fact and have
the 1BOX determine what the EBOX will do with the instruction as
it sends it to the EBOX for execution. Note that such a scheme
will never be 100% effective because the EBOX may be modifying AC
or C(EA) as the IBOX is making the test. On the other hand,
compiler technology exists to re-order instruction streams so that
such conflicts are avoided. We may gain significant benefit in
the future by teaching programmers the implications of programming
for a pipelined machine design.

3.1 Functions that the IBOX provides.

As currently envisioned, the IBOX is responsible for setting up
instructions for EBOX or FPA =xecution. It also provides certain
other services to the EBOX. In particular, the IBOX does the
following:

1. Instruction prefetch. The IBOX prefetches all instructions
for EBOX and FPA execution. To do this effectively, it must

Page 8

know what the EBOX is going to do with conditional jump and
skip instructions. The result is that the IBOX needs the
logic necessary to make the jump/skip tests that were listed
in the section on the instruction set above.

An interesting aspect of such a decision is that the EBOX need
not execute any instruction which affects only PC. Studies
from the Dolphin project indicate that such instructions may
be as high at 30% of the total executed instructions.

Instruction EA-calc. The [IBOX performs atl EA-calc's,
including those that involve indirect chains. Because of
finite conflict compare on indirect words, the IBOX must pause
and wait for the EBOX to complete execution of the current
instruction if the EA-calc includes multi-level indirect
words.

Because many indirect words are in the ACs, the IBOX must have
the ability to fetch the indirect word from either memory or
the ACs.

Note that the IBOX may find an illegal indirect word (bit
O=bitl=1 if fetched from a non-zero section) at some point in
the EA-calc. |If it does, the |[IBOX should terminate the
EA-calc and provide some sort of indication to the EBOX so
that it can start a page fail trap to the monitor.

Instruction operand fetch and/or writability test. Based on
the instruction opcode, the |[IBOX should fetch and/or
write-test one or two operands at E or E+1.

Instruction setup for complex instructions. For a subset of
performance critical instructions, the |IBOX should perform
more extensive setup for EBOX or FPA execution. This is
discussed in more detail below.

Requests for service from the EBOX. The IBOX must service a
limited number of EBOX requests (previously called ICMDs).
The most obvious request is one to load a new PC. This is
also discussed in more detail below.

3.2 Operand setup for simple instructions

As mentioned in the section on the instruction set, the vast
majority of instructions can be divided into five classes based on
the operand requirements of the instruction. The following list
indicates what the IBOX must do for each class:

1.

Immediate instructions. Since no operands are required, the
IBOX need only provide the effective address. Note that the
effective address is always 31 bits of information; a 30-bit
effective address (including default section number, if

Page 9

necessary) and a 1-bit local/global flag.

2. Single memory operand instructions. For this class, the [BOX
must provide the effective address and the memory operand from
C(EA) . Depending on the opcode, the operand fetch may include
an optional write-test.

3. Single memory store instructions. For this <class, the |BOX
must provide the effective address and write-test the memory
location at EA.

L. Double memory operand instructions. For this class, the IBOX
must provide EA and EA+1, and fetch the two memory operand
from C(EA) and C(EA+1).

5. Double memory store instructions. for this class, the |BOX
must provide EA and EA+1, and write-test the memory locations
at EA and EA+1.

Note that in all cases, EA+1 is computed following the rules of
extended -addressing. That is, if the original EA is local
(according to the local/global flag), the result is also local and
the addition wraps in-section. As with EA, the EA+1 result is
also a 31-bit quantity.

For all instructions, the EBOX must have access to the PC of the
instruction. This is a global requirement that is independent of
the instruction being executed.

3.3 Operand setup for complex instructions

In the section on the instruction set above, a number of
instructions were classified as 'complex". |In general, this group
of instructions does not fit into one of the five categories of
"simple'" instructions from the point of view of |IBOX prefetch.

In most cases, the instructions in this class are also critical to
the performance of the machine. For this reason, special handling
of these instructions by the IBOX is warrented. The discussion
that follows treats each instruction independently.

3.3.1 Luuo

The EBOX processing of LUUOs differs depending on whether PC is in
section zero or a non-zero section. From the standpoint of IBOX
setup, however, the requirements are similar. The |1BOX must
provide EA and the opcode and AC field of the instruction so that
they may be stored in the LUUO block. The preferred format for
the opcode and AC field is BYTE (18)0(9) opcode (4) AC(5)0, but this
is not critical.

Page 10

Note that a section 2zero LUUO is processed by XCTing the
instruction in location 41 of the address space in which the
instruction was executed. This means that the EBOX must be able
to request that the |IBOX perform an XCT of an instruction at a
specified location as the next instruction.

3.3.2 MUUO

For MUUOs, the IBOX must provide EA and the opcode and AC field of
the instruction. The prefered format is the same as for LUUO.

3.3.3 EXTEND

With the exception of a few pieces of necessary information, the
EXTEND instruction simply addresses another instruction. The
necessary information from the EXTEND instruction itself is the
opcode (for initial EBOX microcode address), the AC field of the
instruction (the block of ACs is addressed by the AC field of the
EXTEND and not the AC field of the EXTENDed instruction), and EA
of the EXTEND.

For EXTEND, the IBOX should compute EA and fetch the EXTENDed
instruction word. The opcode of the EXTENDed instruction word
should be used to address a second early-decode array that is
exactly analogous to the one used to provide information about the
un-EXTENDed instruction set. The IBOX then uses this information
to process the instruction in a manner similar to that done for a
normal instruction.

Note that the EXTENDed opcode must also be latched to be used as
an EBOX dispatch. To avoid using up 512 microinstructions as the
destination of the EXTENDed opcode dispatch, there should be a
valid bit in the early-decode array that indicates whether the
opcode is assigned or not. If it is not, the EXTENDed opcode
should be forced to a single value (possibly 0 since that value is
already illegal).

The EBOX processing of the EXTEND instruction would then consist
of executing one EFAST and one ESLOW microinstruction from
location 123. The first ESLOW location would dispatch on the
latched EXTENDed opcode directly to the processing routine in a
(potentially) 1-of-512 dispatch.

The list of EXTENDed opcodes can be broken down into three
classes: G-floating conversion, string, and XBLT. The (BOX
processing for each of these classes is covered separately below.

Page 11

3.3.3.1 G-floating conversion

A1l EXTENDed instructions in this class are either single or
double memory operand instructions. In addition, they are also
executed by the FPA. As a result, the IBOX should compute EA of
the EXTENDed instruction and fetch one or two memory operands from
EA and EA+1.

3.3.3.2 String

The string instructions are a mixture of complex operations
performed by the EBOX. For these instructions, the 1BOX should
compute EA of the EXTENDed instruction and provide that, along
with EA of the EXTEND instruction to the EBOX for execution.
Because the string instructions have the potential for storing to
multiple locations, the 1BOX should stop prefetching and wait for
the EBOX to complete execution of the instruction before
continuing.

3.3.3.3 XBLT

XBLT is an extended case of BLT. There is nothing that the [IBOX
can provide to the EBOX in terms of instruction setup. See the
section on BLT below for a discussion of the EBOX processing of
BLT.

3.3.4 IBP

For IBP, the IBOX should compute EA and fetch the byte pointer
from EA and EA+1 (if two-word global) with write-test. It
provides EA and the byte pointer to the EBOX for execution.

3.3.5 ADJBP

ADJBP is an |IBP with a non-zero AC field. At present, it's not
clear what the IBOX should do for this instruction.

3.3.6 ILDB

For ILDB, the {BOX should compute EA and fetch the byte pointer
from EA and EA+1 (if two-word global) with write-test. It then
increments the Y field of the byte pointer if necessary, EA-calc's
the byte pointer and fetches the byte data word. It provides EA,
the byte pointer, the byte data word to the EBOX for execution.

Page 12

3.3.7 LDB

For LDB, the 1BOX should compute EA and fetch the byte pointer
from EA and EA+1 (if two-word global). It then EA-calc's the byte
pointer, and fetches the byte data word. It provides EA, the byte
pointer, and the byte data word to the EBOX for execution.

3.3.8 I1DPB

For IDPB, the IBOX should compute EA and fetch the byte pointer
from EA and EA+1 (if two-word global) with write-test. |t then
increments the Y field of the byte pointer if necessary, EA-calc's
the byte pointer, and fetches the byte data word with write-test.
I't provides EA, the byte pointer, the address of the byte data
word, and the byte data word to the EBOX for execution.

3.3.9 DPB

For DPB, the IBOX should compute EA and fetch the byte pointer
from EA and EA+1 (if two-word global). It then EA-calc's the byte
pointer, and fetches the byte data word with write-test. It

provides EA, the byte pointer, the address of the byte data word,
and the byte data word to the EBOX for execution.

3.3.10 BLT

BLT is an instruction that can store to many Jlocations. As a
result, the IBOX must stop prefetching until the EBOX completes
execution. Other than performing the EA-calc and presenting the
result to the EBOX for execution, there is nothing that the I1BOX
should do to complete setup for the instruction.

During EBOX execution of the instruction, however, the IBOX plays
an important role. The goal is to use EBOX/IBOX cooperation to
maintain maximum word transfer rate by causing the IBOX to
increment the read/write addresses for the next request while the
EBOX is completing the current request. The exact coupling must
be thought out in more detail.

3.3.11 XCT

There is no particular reason that XCT has to be executed by the
EBOX, and the |IBOX should do all of the processing for the
instruction. |If the instruction was executed in exec mode, the
IBOX should latch the AC field bits for PXCT control of the XCTed
instruction. Finally, the IBOX should compute EA for the XCT and
fetch the new instruction from EA (without changing PC) and

Page 13

process it as if it were a normal instruction fetch.

Note that the PXCT control bits that were latched from the AC
field of the XCT in exec mode must be cleared when the XCTed
instruction is completed.

3.3.12 ADJSP

Because there are no memory references involved in ADJSP, the |BOX
setup is limited to computing EA and setting the stack global flag
as appropriate.

The stack global flag is set based on the format of the stack
pointer in AC and is wused for EBOX main ALU carry control and
microcode dispatch. |t may be more efficient to set this flag in
the EBOX based on the currently addressed AC.

3.3.13 PUSHJ

For PUSHJ, the IBOX should compute EA (the jump address), set the
stack global flag as appropriate, compute the new address of
top-of-stack by incrementing the address portion of the stack
pointer, and write-test the top-of-stack location. It provides
the new address of top-of-stack to the EBOX for execution.

3.3.14 PUSH

For PUSH, the IBOX should compute EA and fetch the datum to be
pushed from that location. It also sets the stack global flag as
appropriate, computes the new address of top-of-stack by
incrementing the address portion of the stack pointer, and
write-tests the new top-of-stack location. It provides the datum
to be pushed and the new address of top-of-stack to the EBOX for
execution.

3.3.15 POP

For POP, the IBOX should compute EA and write-test that location.
It also sets the stack global flag as appropriate, computes the
address of top-of-stack from the stack pointer in AC and fetches
the datum to be popped from that location. |t provides the datum
to be popped and EA to the EBOX for execution.

Page 14

3.3.16 POPJ

For POPJ, the |[IBOX should set the stack global flag as
appropriate, compute the address of top-of-stack from the stack
pointer in AC, and fetch the datum from that location. The next
instruction is taken from the location addressed by the word
fetched from top-of-stack. It provides the datum from
top-of-stack to the EBOX for execution.

3.3.17 PUSHM

- For PUSHM, the IBOX should set the stack global flag as
appropriate, compute EA, and fetch the control word from that
location. It provides EA and the word fetched from EA to the EBOX
for execution.

Because PUSHM may write to multiple locations, the |BOX should

stop prefetching and wait for the EBOX to complete execution of
the instruction before continuing.

3.3.18 POPM

For POPM, the IBOX should set the stack global flag as appropriate
and compute EA. It provides EA to the EBOX for execution.

Because POPM may write to multiple ACs, the IBOX should stop

prefetching and wait for the EBOX to complete execution of the
instruction before continuing.

3.3.19 PUSHI

For PUSHI, the IBOX should compute EA and set the stack global

flag as appropriate. It also computes the new address of
_top-of-stack by incrementing the address portion of the stack
pointer, and write-tests the new top-of-stack location. It

provides EA and the new address of top-of-stack to the EBOX for
execution.

3.3.20 JRST

The AC field of the JRST instruction is used as a 1-of-16 decode
to determine how to process the instruction. The most common use
of JRST is the JRST 0, case which is an unconditional jump to EA.
All others are more complex.

The 1BOX should special-case the JRST 0, case and simply fetch the
next instruction from C(EA). Since this case affects nothing

Page 15

other than PC, it need not be executed by the EBOX at all.
Because the operation of the other JRST decodes are so varied, the
IBOX should probably stop prefetching and wait for the EBOX to
complete execution of the instruction if something other than
JRST 0, is seen.

3.3.21 JSR

For JSR, the IBOX should compute EA and write-test that location.
It should treat the instruction as an unconditional jump that
jumps to EA+1. It provides EA to the EBOX for execution.

3.3.22 JSP

For JSP, the IBOX should compute EA and provide that to the EBOX
for execution. The next instruction will be taken from that
location.

3.3.23 JSA and JRA

Because the interpretation of the effective address of these
instructions is non-standard, the IBOX should simply compute EA
and provide it to the EBOX for execution. The {BOX should then
stop prefetching and wait for the EBOX to complete execution of
the instruction.

3.3.24 Privileged (1/0) instructions

The privileged 1/0 instructions are those instructions which are
used to control functions which are both internal and external to
the processor. The first four instructions in this class use the
AC field of the instruction as a l1-of-16 decode to determine how
to process the instruction. The function to be performed has been
assigned to one of the opcodes based on their instruction setup
requirements.

The rest of the privileged 1/0 instructions use an individual
opcode for each function. These instructions are covered
separately below.

3.3.2L.1 APRO (opcode 700) - Complex instructions

This class of instructions includes all those which are too
complex to group into one of the other classes. This complexity
may be because the instruction stores to multiple locations,

Page 16

because it is a conditional skip, etc. For this class of
instructions, the I1BOX should compute EA and provide that to the
EBOX for execution. It should then stop prefetching and wait for
the EBOX to complete execution of the instruction.

3.3.2k.2 APR1 (opcode 701) - Immediate

This class of instructions includes all those which nejther fetch
from, nor store to the location addressed by EA. For this class,
the IBOX should compute EA and provide that to the EBOX for
exectution. No instructions in this class skip or jump.

3.3.24.3 APR2 (opcode 702) - Operand fetch from EA

This class of instructions includes all those which fetch a single
memory operand from EA. For this class, the IBOX should compute
EA and fetch the operand from that location. It provides EA and
the operand to the EBOX for execution. No instructions in this
class skip or jump.

3.3.2k.4 APR3 (opcode 703) - Result store to EA

This class of instructions includes all those which store a single
memory result to EA. For this class, the IBOX should compute EA
and write-test that location. It should provide EA to the EBOX
for execution. No instructions in this class skip or jump.

3.3.24.5 APRL (opcode ?77?) - Double result store to EA and EA+1

This class of instructions includes all those which store a double
memory result to EA and EA+1. For this class, the IBOX should
compute EA and EA+1, and write-test both locations. It should
provide EA and EA+] to the EBOX for execution. No instructions in
this class jump or skip.

3.3.2L.6 UMOVE

The UMOVE instruction performs the EA-calc in current context and
then fetches the computed location from previous context. |f the
IBOX has the capability to unconditionally force a previous
context memory reference, it should treat UMOVE as a MOVE that
fetches the operand from previous context. In this case, the IBOX
would provide EA and the operand to the EBOX for execution.

If the IBOX cannot force an unconditional previous context memory

Page 17

reference, it should provide EA to the EBOX for execution and the
EBOX will make the operand reference.

3.3.24.7 UMOVEM

The UMOVE instruction performs the EA-calc in current context and
stores the result into the location in previous context. |If the
IBOX has the <capability to unconditionally force a previous
context write-test, it should treat UMOVEM as a MOVEM that stores
the result into previous context.

If the °‘IBOX cannot force an unconditional previous context
write-test, it will have to stop prefetching until the EBOX can
complete execution of the instruction.

3.3.24L.8 PMOVE and PMOVEM

For PMOVE and PMOVEM, the IBOX should compute EA and fetch the
physical EA-calc word from C(EA). |t provides EA and the physical
EA-calc word to the EBOX for execution.

3.3.24.9 RNGB and RNGBW

The RNGB and RNGBW instructions are immediate instructions which
may skip based on some complex events. The IBOX should compute EA
and then assume that they always skip. This is a safe assumption
because the non-skip case is an exception condition that rarely
happens.

If the EBOX determines that the instruction will not skip, it must
do a LOAD PC.

3.3.2L.10 SNBSY

The SNBSY instruction is an immediate instruction which may skip
based on some complex events. The IBOX should compute EA and then
assume that the instruction always skips. This is probably a safe
assumption because the BUSY signal on the [/0 bus should be
asserted for minimum time relative to the total time spent
executing instructions.

If the EBOX determines that the instruction will not skip, it must
do a LOAD PC.

Page 18

3.3.24.11 LDPAC and STPAC

The LDPAC and STPAC instructions are complex instructions that
reference multiple memory or AC locations. For these
instructions, the 1BOX should provide EA to the EBOX for execution
and then stop prefetching until the EBOX completes execution of
the instruction.

3.3.2L.712 INSQHI, INSQT!, REMQH!, and REMQT |

For the queue instructions, the IBOX should compute EA and fetch
the physical EA-calc word from C(EA). It provides EA and the
physical EA-calc word to the EBOX for execution.

Because the queue instruction write to multiple locations, the
IBOX should stop prefetching and wait for the EBOX to complete
execution of the instruction.

3.4 Summary of operand setup

This section uses symbolic notation to summarize the information
presented in English in the previous section. The following
pseudo-registers are assumed to exist:

o PC. This is a 30-bit register that addresses the instruction
being executed by the EBOX. Note that this register is not
changed as the result of XCT or EXTEND.

o EAl and EA2. These are two 31-bit registers that hold 30-bit
addresses plus a 1-bit local/global flag. The local/global
flag is set according to the extended addressing rules during
an EA-calc.

o OP2, OP3, and OP4. These are three 36-bit data registers that
hold operands for the instruction.

o INS. This is a 13-bit register that contains the opcode and
AC field of the instruction.

The notation that is used should be fairly self-explanatory. ':="
is used to indicate that the entity on the right-hand-side is
latched in the pseudo-register specified on the left-hand-side.

The function "MEM[xxx]" indicates that a memory reference is made
to the location indicated by the argument.

The function "WT[xxx]" indicates that a write test is performed on
the location specified by the argument.

Braces (e.g. {WT[xxx]}) indicate that the item contained in the
braces is optional based on the exact instruction involved.

Immediate instructions:

Single

Single

Double

Double

LUUO:

PC := address of instruction
EAl := EA-calc

memory operand instructions:
PC := address of instruction

EAl := EA-calc
0P2 := MEM[EA1] {WT[EA1]}

memory store instructions:
PC := address of instruction

EAl := EA-calc
WTL[EA1]

memory operand instructions:

PC := address of instruction
EA1 := EA-calc
EA2 := EAl + 1
OP2 := MEM[EA1]
O0P3 := MEM[EA2]

memory store instructions:

PC := address of instruction
EAl := EA-calc

EA2 := EAl + 1

WTLEA1]

WTL[EA2]

PC := address of instruction
EA1l := EA-calc
INS := opcode and AC field

Page 19

MUUO:

EXTEND

EXTEND

EXTEND

EXTEND

IBP:

ILDB:

PC :~= address of instruction
EAl := EA-calc
INS := opcode and AC field

(G-floating conversion with single memory operand) :

PC := address of instruction
EA1 := EA-calc of G-floating conversion opcode
OP2 := MEM[EA1]

(G-floating conversion with double memory operand) :
PC := address of instruction

EA1 := EA-calc of G-floating conversion opcode

EA2 := EA1 + 1

OP2 := MEM[EA1]

OP3 := MEM[EA2]

(string):

PC := address of instruction
EAl := EA-calc of EXTEND
EA2 := EA-calc of EXTENDed opcode

(XBLT)

PC := address of instruction
EAl := EA-calc of EXTEND

PC := address of instruction
EA1 := EA-calc

OP2 := MEM[EA1] WT[EA1]

{0P3 := MEM[EA1+1] WT[EAI+1]} (if two-word global)

PC := address of instruction
EA1 := EA-calc
OP2 := MEM[EA1] WT[EA1]

Page 20

LDB:

IDPB:

DPB:

PUSHJ:

PUSH:

{OP3 := MEM[EA1+1] WT[EA1+1]} (if two-word global)
EA2 := EA-calc of byte pointer
OPL := MEM[EA2]

PC := address of instruction

EAl := EA-calc

0P2 := MEM[EA1]

{0P3 := MEM[EA1+1]} (if two-word global)
EA2 := EA-calc of byte pointer

OPL := MEM[EA2]

PC := address of instruction

EA1 := EA-calc

0P2 := MEM[EA1] WT[EA1]

{OP3 := MEM[EA1+1] WT[EAI+1]} (if two-word global)
EA2 := EA-calc of byte pointer

OPL := MEM[EA2] WT[EA2]

PC := address of instruction

EAl := EA-calc

OP2 := MEM[EA1]

{0P3 := MEM[EAI+1]} (if two-word global)

EA2 := EA-calc of byte pointer
OPL := MEM[EA2] WT[EA2]
PC := address of instruction

EA1l := EA-calc
EA2 := top-of-stack + 1
WT[EA2]

PC := address of instruction
EAIT EA-calc

OP2 := MEM[EA1]

EA2 := top-of-stack + 1
WT[EA2]

nonn

Page 21

POP:

POPJ:

PUSHM:

POPM:

PUSHI :

JSR:

PC := address of instruction
EA1 := EA-calc

WTLEA1]
EA2 := top-of-stack
OP3 := MEM[EA2]

PC := address of instruction

EA1 := EA-calc
EA2 := top-of-stack
0P3 := MEM[EA2]

PC := address of instruction

EAl := EA-calc
0P2 := MEM[EA1]
PC := address of instruction
EA1 := EA-calc

PC := address of instruction
EAl := EA-calc

EA2 := top-of-stack + 1
WTLEA2]

PC := address of instruction
EAl := EA-calc

WTLEA1]

EA2 := EAl + 1

Page 22

