VAX PASCAL
User Manual

Order Number: AI-H485E-TE

February 1987

This manual is designed for programmers who have full working knowledge
of VAX PASCAL. It describes how to interact with the VAX/VMS operating
system using VAX PASCAL and how to use the features of VAX PASCAL to
take full advantage of the VAX/VMS systems programming environment.

Revision/Update Information: This revised document supersedes infor-
mation in the VAX PASCAL User’s Guide
(Order Number AA—H485D-TE).

Operating System and Version: VAX/VMS Version 4.4 or higher
Software Version: VAX PASCAL Version 3.5

digital equipment corporation
maynard, massachusetts

First Printing, November 1979
Revised, March 1985
Revised, February 1987

The information in this document is subject to change without notice and
should not be construed as a commitment by Digital Equipment Corporation.
Digital Equipment Corporation assumes no responsibility for any errors that
may appear in this document.

The software described in this document is furnished under a license and may
be used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equip-
ment that is not supplied by Digital Equipment Corporation or its affiliated
companies.

Copyright ©1979, 1985, 1987 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this doc-
ument requests the user’s critical evaluation to assist in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL UNIBUS
DEC/CMS EduSystem VAX
DEC/MMS IAS VAXcluster
DECnet MASSBUS VMS
DECsystem-10 PDP VT
DECSYSTEM-20 PDT

DECUS RSTS

DECwriter RSX Enmﬂuau

ZK3231

This document was prepared using an in-house documentation production
system. All page composition and make-up was performed by TgX, the
typesetting system developed by Donald E. Knuth at Stanford University. TgX
is a trademark of the American Mathematical Society.

Contents

PREFACE

xvii

DEVELOPING VAX PASCAL PROGRAMS ON THE

VAX/VMS SYSTEM
CHAPTER 1 OVERVIEW 1-1
1.1 PASCAL STANDARDS AND PORTABILITY ISSUES 11
1.2 THE STRUCTURE OF A VAX PASCAL PROGRAM 1-2
1.3 MAJOR FEATURES OF VAX PASCAL 1-3
CHAPTER 2 INTRODUCTION TO THE VAX/VMS OPERATING SYSTEM 2-1
2.1 LOGGING IN AND OUT 2-2
2.2 ACCESSING THE HELP FACILITY 2-3
2.3 ENTERING AND EDITING DCL COMMANDS 2-4
2.4 UNDERSTANDING THE DIRECTORY STRUCTURE 2-5
25 USING DCL FILE-HANDLING COMMANDS 2-8
2.5.1 Displaying Files 2-8
252 Printing and Typing Files 2-9
253 Deleting Files 2-10
254 Purging Files 2-11

2.6

2.5.5
256
2.5.7

Renaming and Moving Files
Searching Files
Setting File Protection

USING COMMAND PROCEDURES
Defining DCL Symbols and Logical Names

2.6.1
2.6.2
2.6.3
2.6.4

Creating and Executing Command Procedures
Sample Command Procedure
Login Command Procedures

2-11
2-12
2-12

2-13
2-13
2-15
2-16
2-18

CHAPTER 3

iv

3.1

3.2

VAX PASCAL PROGRAM DEVELOPMENT

CREATING A VAX PASCAL PROGRAM

3.1.1
3.1.2

Using VAX EDT
Using VAXTPU

3.1.2.1
3.1.2.2

The EVE Interface ® 3-3

The EDT Keypad Emulator Interface ® 3-3

COMPILING A VAX PASCAL PROGRAM

3.21
3.2.2

PASCAL Command
PASCAL Command Qualifiers

3.2.21
3.2.2.2
3223
3.22.4
3.2.25
3.2.26
3.2.2.7
3.2.2.8
3.2.29
3.2.2.10
3.2.2.11
3.2.2.12
3.2.2.13
3.2.2.14
3.2.2.15
3.2.2.16
3.2.2.17
3.2.2.18
3.2.2.19

/ANALYSIS_DATA Qualifier ® 3-9
/CHECK Qualifier ® 3-9

/CROSS_REFERENCE Qualifier ® 3-10

/DEBUG Qualifier ® 3-11
/DIAGNOSTICS Qualifier ® 3-12
JENVIRONMENT Qualifier ® 3-12
/ERROR_LIMIT Qualifier ® 3-12
/G_FLOATING Qualifier ® 3-13
file-spec/LIBRARY Qualifier ® 3-13
JLIST Qualifier ® 3-13
/MACHINE_CODE Qualifier ® 3-14
/OBJECT Qualifier ® 3-14
/OLD_VERSION Qualifier ® 3-14
/OPTIMIZE Qualifier ® 3-15
/SHOW Qualifier ® 3-16
/STANDARD Qualifier ® 3-17
JTERMINAL Qualifier ® 3-18
JUSAGE Qualifier ® 3-18
/WARNINGS Qualifier ® 3-19

3-1

3-1
3-2

34
3-4

33

3.4

3.2.3 Specifying Attributes in the Compilation Unit
3.2.3.1 CHECK Attribute ® 3-20
3.2.3.2 ENVIRONMENT Attribute ® 3-21
3.2.3.3 G_FLOATING Attribute ® 3-21
3.2.3.4 OPTIMIZE Attribute ® 3-21

3.24 Specifying Output Files

3.2.5 Compiler Listing Example
3.2.6 Compiler Listing Format

3.2.7 Table of Contents Listing

3.2.8 Source Code Listing
3.2.9 Cross-Reference Listing

3.2.10 Machine Code Listing

3.2.11 Inline Summary Listing
3.2.12 Compilation Statistics

LINKING A VAX PASCAL PROGRAM
3.3.1 LINK Command

3.3.2 LINK Command Qualifiers

3.3.3 Image-File Qualifiers

3.3.3.1 JEXECUTABLE Qualifier ® 3-48
3.3.3.2 /SHAREABLE Qualifier ® 3-49
3.34 Map File Qualifiers

3.3.5 Debugging and Traceback Qualifiers

3.3.6 File Qualifiers
3.3.7 /INCLUDE Qualifier

3.3.8 /LIBRARY Qualifier

3.3.9 JOPTIONS Qualifier

3.3.10 Identification Checking

3.3.11 Linker Input Files

3.3.12 Linker Output Files

3.3.13 Object Module Libraries

3.3.14 Linker Error Messages

RUNNING A VAX PASCAL PROGRAM

F

3-20

3-22
3-24
3-34
3-35
3-35
3-37
3-39
3-42
3-43

3-45
3-46
3-47
3-48

3-49
3-50
3-50
3-51
3-51
3-52
3-52
3-52
3-563
3-54
3-565

3-56

CHAPTER 4 USING THE VAX/VMS DEBUGGER

vi

4.1

4.2

4.3

4.4

4.5

OVERVIEW OF THE DEBUGGER

FEATURES OF THE DEBUGGER

GETTING STARTED WITH THE DEBUGGER

4.3.1
4.3.2
4.3.3
4.3.4

4.3.5

4.3.6

4.3.7

Compiling and Linking to Prepare for Debugging

Starting and Terminating a Debugging Session

Issuing Debugger Commands

Viewing Your Source Code

4.3.4.1 Noscreen Mode ® 4-8

4.3.4.2 Screen Mode ® 4-8

Controlling and Monitoring Program Execution

4.3.5.1 Starting and Resuming Program Execution ® 4-10

4.3.5.2 Determining the Current Location of the Program
Counter ® 4-12

4.3.5.3 Suspending Program Execution ® 4-12

4.3.5.4 Tracing Program Execution ® 4-14

4355 Monitoring Changes in Variables ® 4-16

Examining and Manipulating Data

4.3.6.1 Displaying the Values of Variables ® 4-17

4.3.6.2 Changing the Values of Variables ® 4-18

4.3.6.3 Evaluating Expressions ® 4-19

4.3.6.4 Notes on VAX PASCAL Support ® 4-20

Controlling Symbol References

4.3.7.1 Module Setting ® 4-21

4.3.7.2 Resolving Multiply-Defined Symbols ® 4-22

SAMPLE DEBUGGING SESSION

DEBUGGER COMMAND SUMMARY

4-1

4-1

4-3
4-4
4-4
4-6
4-6

4-10

4-21

4-23

4-26

USING VAX PASCAL FEATURES ON THE
VAX/VMS SYSTEM

CHAPTER 5 VAX PASCAL SYSTEM ENVIRONMENT 5-1
5.1 PROGRAM SECTIONS 5-1
5.1.1 Using Default Program Sections 5-2
5.1.2 Using the PSECT Attribute 5-3
5.1.3 Using the COMMON Attribute 5-4
5.1.4 Establishing Program Section Properties 5-4
5.1.5 Example _ 5-6
5.2 STORAGE ALLOCATION 5-7
5.2.1 Allocation of Variables 5-7

5.2.2 Allocation of Symbolic Constants and Executable
Blocks 5-8
5.2.3 Examples 5-8
5.3 ALLOCATION SIZES OF VARIABLES 5-11
5.3.1 Examples 5-15
5.4 ALIGNMENT BOUNDARIES 5-16
5.4.1 Examples 5-17
5.5 REPRESENTATION OF VARYING DATA 5-18
5.6 REPRESENTATION OF FLOATING-POINT DATA -19
5.6.1 Single-Precision (SINGLE and REAL Types) -20
5.6.2 Double-Precision (DOUBLE Type) 5-21

5.6.2.1 D_Floating-Point ® 5-21
5.6.2.2 G_Floating-Point ® 5-22
5.6.3 Quadruple-Precision (QUADRUPLE Type) —_________ 5-23

vii

CHAPTER 6 INPUT AND OUTPUT WITH RMS 6-1

6.1 RMS FILE CHARACTERISTICS 6-1
6.1.1 RMS Record Format 6-2
6.1.1.1 Fixed-Length Record Format ® 6-2

6.1.1.2 Variable-Length Record Format ® 6-2
6.1.1.3 Stream Record Format ® 6-3
6.1.2 RMS File Organization 6-3
6.1.2.1 Sequential Organization ® 6-3
6.1.2.2 Relative Organization ® 6-4
6.1.2.3 Indexed Organization ® 6-4
6.1.3 RMS Record Access 6-5
6.1.3.1 Sequential Access ® 6-5
6.1.3.2 Direct Access ® 6-6
6.1.3.3 Keyed Access ® 6-6
6.2 INPUT/OUTPUT ERROR DETECTION 6-7
6.3 OPEN PROCEDURE SYNTAX 6-8
6.4 CLOSE PROCEDURE SYNTAX 6-10
6.5 USER ACTION FUNCTIONS 6-11
6.6 FILE SHARING 6-14
6.7 RECORD LOCKING 6-16
6.8 INDEXED FILES 6-16
6.8.1 Creating an Indexed File 6-17
6.8.2 Using the Current Component and Next Component
Pointers 6-19
6.8.3 Writing Indexed Files 6-19
6.8.4 Reading Indexed Files 6-21
6.8.5 Updating Components 6-22
6.8.6 Deleting Components 6-23

6.8.7 Recovering from Exception Conditions ______ 6-23

viii

6.9 INPUT/OUTPUT CONSIDERATIONS FOR TEXT FILES 6-25
6.9.1 Text File Buffering 6-25

6.9.2 FILE OF CHAR File Type 6-25

6.9.3 Prompting of Text Files 6-26

6.94 Delayed Device Access to Text Files 6-27

6.9.5 Writing Partial Lines to Terminals 6-29

6.10 INTERPROCESS COMMUNICATION (MAILBOXES) 6-29
6.11 COMMUNICATION WITH REMOTE COMPUTERS (NETWORKS) 6-32
CHAPTER 7 ERROR PROCESSING AND CONDITION HANDLING 7-1
7.1 RUN-TIME LIBRARY DEFAULT ERROR PROCESSING 7-2
7.2 DEFINITIONS OF TERMS 7-2
7.3 OVERVIEW OF CONDITION HANDLING 7-3
7.3.1 Condition Signals 7-4

7.3.2 Handler Responses 7-4

7.4 WRITING CONDITION HANDLERS 7-5
7.4.1 Establishing and Removing Handlers 7-6

7.42 Declaring Parameters for Condition Handlers 7-7

7.4.3 Handler Function Return Values 7-9

7.4.4 Condition Values and Symbols 7-10

7.5 FAULT AND TRAP HANDLING 7-11
7.6 EXAMPLES OF CONDITION HANDLERS 7-12

CHAPTER 8

8.1

8.2

8.3

8.4

8.5

8.6

CALLING CONVENTIONS

VAX PROCEDURE CALLING STANDARD
8.1.1 Parameter Lists
8.1.2 Function Return Values
8.1.3 Contents of the Call Stack

PARAMETER-PASSING SEMANTICS

8.2.1 Value Passing Semantics
8.2.2 Variable Passing Semantics
8.2.3 Foreign Passing Semantics

PARAMETER-PASSING MECHANISMS
8.3.1 By Immediate Value Passing Mechanism ______
8.3.1.1 %IMMED Mechanism Specifier and IMMEDIATE
Attribute ® 8-11
8.3.2 By Reference Passing Mechanism
8.3.2.1 %REF Mechanism Specifier and REFERENCE
Attribute ® 8-13
8.3.3 By Descriptor Passing Mechanism
8.3.3.1 CLASS_S Attribute ® 8-18
8.3.3.2 CLASS_A and CLASS_NCA Attributes ® 8-18
8.3.3.3 %STDESCR Mechanism Specifier ® 8-18
8.3.3.4 %DESCR Mechanism Specifier ® 8-19

8.34 Mechanism Specifiers on Actual Parameters
8.3.5 Summary of Passing Mechanisms and Passing
Semantics

PASSING PARAMETERS FROM VAX PASCAL TO
NON-VAX PASCAL ROUTINES

PASSING PARAMETERS FROM NON-VAX PASCAL TO
VAX PASCAL ROUTINES

VAX/VMS SYSTEM ROUTINES
8.6.1 Inheriting the System Services Definitions File
8.6.2 Including the Symbol Definitions Files

8-1
8-2

8-3

8-7
8-8

8-10

8-13

8-14

8-20

8-22

8-23

8-25

8-26
8-27
8-29

8.6.3 Declaring System Routines 8-30
8.6.3.1 Methods Used to Obtain VMS Data Types ® 8-31
8.6.3.2 Methods Used to Obtain Access Methods ® 8-31
8.6.3.3 Methods Used to Obtain Passing Mechanisms ® 8-32
8.6.3.4 Data Structure Parameters ® 8-34
8.6.3.5 Default Parameters ® 8-35
8.6.3.6 Arbitrary Length Parameter Lists ® 8-37
8.6.4 Calling System Routines 8-37
8.6.5 System Routine Example 8-39
CHAPTER 9 PROGRAM OPTIMIZATION AND EFFICIENCY 9-1
9.1 COMPILER OPTIMIZATIONS 9-2
9.1.1 Compile-Time Evaluation of Constants 9-3
9.1.2 Elimination of Common Subexpressions ____ 9-4
9.13 Elimination of Unreachable Code 9-6
9.1.4 Code Hoisting from Structured Statements ___ 9-6
9.15 Inline Code Expansion for Predeclared Functions ____ 9-7
9.1.6 Inline Code Expansion for User-Declared Routines ___ 9-7
9.1.7 Operation Rearrangement 9-9
9.1.8 Partial Evaluation of Logical Expressions 9-9
9.1.9 Value Propagation 9-10
9.1.10 Alignment of Compiler-Generated Labels __ 9-11
9.1.11 Error Reduction Through Optimization _____ 9-11
9.2 PROGRAMMING CONSIDERATIONS 9-12
9.3 OPTIMIZATION CONSIDERATIONS 9-13
9.3.1 Subexpression Evaluation 9-14
9.3.2 Lowest Negative Integer 9-14
9.3.3 Pointer References 9-15
9.34 Variant Records 9-16
9.3.5 Type Cast Operations 9-16
9.3.6 Effects of Optimizationon Debugging = 9-17

APPENDIX A DIAGNOSTIC MESSAGES A-1

A1 COMPILER DIAGNOSTICS A-1

A.2 RUN-TIME DIAGNOSTICS A-57

APPENDIX B ERRORS RETURNED BY STATUS AND

STATUSV FUNCTIONS B-1

APPENDIX C ENTRY POINTS TO VAX PASCAL UTILITIES C-1

Cc.1 PASSFAB (F) C-1

Cc.2 PASSRAB (F) Cc-2

C.3 PASSMARK2 (S) C-3

c4 PASSRELEASE2 (P) C-4
APPENDIX D DIFFERENCES BETWEEN VERSION 1 AND SUBSEQUENT

VERSIONS D-1

D.1 DECOMMITTED FEATURES D-2

D.1.1 Dynamic Array Parameters D-2

D.1.2 LOWER and UPPER Functions D-3

D.1.3 Printing Hexadecimal and Octal Values D-4

D.1.4 The OPEN Procedure D-5

D.1.5 Specifying Qualifiers in the Source Code D-6

D.2 JOLD_VERSION QUALIFIER D-7

D.2.1 Comment Delimiters D-8

D.2.2 %INCLUDE Files D-8

D.2.3 Multidimensional Packed Arrays D-8

Xii

D.2.4 Storage of Components D-9

D.2.5 Storage of Sets D-9

D.2.6 TEXT Files and FILE OF CHAR D-9

D.2.7 MOD Operator D-10

D.2.8 String Variable Parameters to the READ Procedure _ D-10

D.2.9 Field Widths D-10

D.2.10 Global Identifiers D-11

D.2.11 Allocation in Program Sections D-11

D.3 MINOR LANGUAGE CHANGES D-11
APPENDIX E EXAMPLES OF USING SYSTEM ROUTINES E-1
E.1 CALLING RMS PROCEDURES E-1
E.2 SYNCHRONIZING PROCESSES USING AN AST ROUTINE E-6
E.3 ACCESSING DEVICES USING SYNCHRONOUS INPUT/OUTPUT E-9
E.4 COMMUNICATING WITH OTHER PROCESSES E-10
E.5 SHARING CODE AND DATA E-15
E.6 GATHERING AND DISPLAYING DATA AT TERMINALS E-17
E.7 CREATING, ACCESSING, AND ORDERING FILES E-25
E.8 MEASURING AND IMPROVING PERFORMANCE E-35
E.9 ACCESSING HELP LIBRARIES E-36
E. 10 CREATING AND MANAGING OTHER PROCESSES E-39
E.11 TRANSLATING LOGICAL NAMES E-43

Xiii

APPENDIX F OPTIONAL PROGRAMMING PRODUCTIVITY TOOLS F-1
F.1 USING VAXLSE WITH VAX PASCAL F-1
F.1.1 Entering Source Code Using Tokens and
Placeholders F-2
F.1.2 Compiling Source Code F-4
F.1.3 Examples F-5
F.1.3.1 TYPE Definition ® F-7
F.1.3.2 FOR Statement ® F-9
F.1.3.3 OPEN Statement ® F-11
F.2 USING THE VAX SOURCE CODE ANALYZER F-13
F.2.1 Setting up a VAXSCA Environment F-16
F.2.1.1 Creating a VAXSCA Library ® F-16
F.2.1.2 Generating Data Analysis Files ® F-17
F.2.1.3 Selecting a VAXSCA Library ® F-17
F.2.1.4 Loading Data Analysis Files into a Local Library ® F-17
F.2.2 Using VAXSCA for Cross-Referencing F-18
INDEX
FIGURES
2-1 Complete File Specification 2-5
2-2 A Directory Hierarchy 2-7
3-1 VAX PASCAL Compiler Listing 3-25
4-1 Keypad Key Functions Predefined by the Debugger 4-7
5-1 Storage of Varying Data 5-19
5-2 Single-Precision Floating-Point Data Representation 5-20
5-3 D_Floating-Point Double-Precision Representation 5-21
5-4 G_Floating-Point Double-Precision Representation 5-22
5-5 Quadruple-Precision Floating-Point Representation 5-24
8-1 Contents of the Run-Time Stack 8-5
F-1 Using VAXSCA for Multimodular Development F-15

Xiv

TABLES
2-1
2-2
31
3-2
3-3
34
3-5
3-6
3-7
3-8
3-9
4-1
5-1
5-2
5-3
5-4
6-1

6-2
6-3
8-1
8-2
8-3
814
8-5
8-6
8-7
8-8
B-1
D-1

User Categories

File Access Types
PASCAL Command Qualifiers

/CHECK Qualifier Options

/DEBUG Qualifier Options

/OPTIMIZE Qualifier Options

/SHOW Qualifier Options
/STANDARD Qualifier Options

/TERMINAL Qualifier Options
JUSAGE Qualifier Options

LINK Command Qualifiers

Debugger Command Summary
Program Section Properties

Program Section Data

Required Program Section Properties

Storage of Types

Valid Combinations of Record Access Method and File

Organization

Summary of OPEN Procedure Parameters
Summary of CLOSE Procedure Parameters

Function Return Methods

Parameter-Passing Semantics
Parameter-Passing Mechanisms
Parameter Descriptors

Summary of Passing Mechanisms and Passing Semantics

Foreign Mechanism Parameters
Access Type Translations

Mechanism Type Translations

STATUS and STATUSV Return Values
Summary of Version 1 OPEN Parameters

2-12
2-12

3-7
3-10
3-11
3-15
3-16
3-17
3-18
3-19
3-47
4-26

5-1

5-5
5-12

6-9
6-11

8-3

8-8
8-11
8-15
8-22
8-24
8-32
8-32

D-5

Xv

Preface

Intended Audience

This manual is designed for programmers who have full working knowl-
edge of VAX PASCAL. It describes how to interact with the VAX/VMS
operating system using VAX PASCAL and how to use the features of VAX
PASCAL to take full advantage of the VAX/VMS systems programming
environment.

Structure of This Document

This manual consists of the following chapters and appendixes:

Chapter 1 contains an overview of the VAX PASCAL language.
Chapter 2 explains how to use the VAX/VMS operating system.

Chapter 3 gives a description of various editors and provides informa-
tion on how to compile, link, and execute VAX PASCAL programs.

Chapter 4 provides information on debugging VAX PASCAL pro-
grams.

Chapter 5 provides information on program section use, storage
allocation, and data representations.

Chapter 6 provides information on input and output operations.

Chapter 7 discusses error processing, in particular, how to use the
VAX/VMS condition-handling facility.

Chapter 8 describes conventions followed in calling procedures.

Chapter 9 explains optimizations performed by the VAX PASCAL
compiler and techniques for writing efficient programs and modules.

Appendix A lists complete run-time and compile-time error messages.

Appendix B lists errors detected by the STATUS and STATUSV
functions.

Xvii

Appendix C describes the entry points to utilities in the VAX/VMS
Run-Time Library that can be called as external VAX PASCAL rou-
tines.

Appendix D discusses the differences between VAX PASCAL Version
1 and all subsequent versions of VAX PASCAL.

Appendix E contains examples of using system routines.

Appendix F describes how to use two optional programming produc-
tivity tools: the VAX Language-Sensitive Editor (VAXLSE) and VAX
Source Code Analyzer (VAXSCA).

Associated Documents

The VAX PASCAL Reference Manual provides detailed language infor-
mation.

The VAX PASCAL Installation Guide provides information on how to
install VAX PASCAL on your VAX/VMS operating system.

The manuals that accompany the VAX/VMS operating system provide
full information about the system. The VAX/VMS Master Index briefly
describes all VAX/VMS system documentation, defines the intended
audience for each manual, and provides a synopsis of each manual’s
contents.

Conventions Used in This Document

xviii

This document uses the following conventions.

Convention

Meaning

{1}

(...

(...

[]

Large braces enclose lists from which you must
expression }

choose one item; for example: {
statement

A horizontal ellipsis means that the item preceding
the ellipsis can be repeated; for example:

digit. ..

Braces followed by a comma and a horizontal ellipsis
mean that you can repeat the enclosed item one

or more times, separating two or more items with
commas; for example:

{labell},...

Braces followed by a semicolon and a horizontal
ellipsis mean that you can repeat the enclosed item
one or more times, separating two or more items
with semicolons; for example:

REPEAT {statement};...
UNTIL expression

A vertical ellipsis in a figure or example means that
not all of the statements are shown.

Square brackets mean that the statement syntax
requires the square bracket characters. This notation
is used with arrays, sets, and attribute lists; for
example:

ARRAY [index1]

xix

XX

Convention

Meaning

(1

Items in UPPERCASE
letters and special
symbols

Items in lowercase
letters

#

$ PASCAL
$_File:

Double brackets enclose items that are optional; for
example:

EOLN [(file-variable)]]

Uppercase letters and special symbols in syntax
descriptions indicate VAX PASCAL reserved words
and predeclared identifiers; for example:

BEGIN
END

Lowercase letters represent elements that you must
replace according to the description in the text.

The number sign denotes special nonprinting charac-
ters.

In examples showing commands that you enter
and the system’s responses, all output lines and
prompting characters that the system prints or
displays are shown in black leters. All the lines you
type are shown in red letters.

In this manual, complex examples and syntax diagrams have been divided
into several lines to make them easy to read. PASCAL does not require
that you format your programs in any particular way; therefore, you
should not regard the formats used in this manual as mandatory.

Developing VAX PASCAL Programs on the
VAX/VMS System

Chapter 1
Overview

Pascal is a high-level, structured programming language; it is widely used
in the writing of both system and application software. VAX PASCAL
offers programmers all the features of standard Pascal, many powerful
extensions, and the advantages of the VAX/VMS operating system.

VAX PASCAL extensions allow for the use of additional data types, add
flexibility when accessing files, permit more ways to compile programs and
procedures, including separate compilation of procedures and functions
and provides a variety of parameter-handling mechanisms.

1.1 Pascal Standards and Portability Issues

VAX PASCAL contains FIPS-109 (Federal Information Processing
Standard) validation support. Currently, there are two Pascal standards:
® American National Standard—ANSI/IEEE770X3.97-1983 (ANSI)

e International Standard—ISO 7185-1983(E) (ISO)

The ISO standard is divided into two levels of standardization, Level 0
and Level 1. The technical differences between the ANSI standard and
the ISO standard include the following:

e ANSI does not include conformant arrays. The ISO standard Level 0
does not, but Level 1 does.

e ANSI specifies parameter evaluation order for READ, READLN,
WRITE, and WRITELN. The ISO standard does not address this issue.

Overview 1-1

VAX PASCAL has passed the validation suite for Pascal compilers. It
received a CLASS A certificate for both levels of the ISO standard as well
as the ANSI standard. CLASS A certificates are given to compilers with a
fully conforming implementation.

In addition, VAX PASCAL provides a /STANDARD qualifier that instructs
the compiler to generate messages when the compilation unit uses non-
standard Pascal features. This feature is an aid to meeting portability
goals.

1.2 The Structure of a VAX PASCAL Program

1-2 Overview

VAX PASCAL programs are structured; that is, they use English-like
statements that allow the programmer to make the logical flow efficient
and understandable. The structure of a VAX PASCAL program and the
wide range of available data structures encourage modular programming.

In modular programming, you can divide the solution to a problem
into individual parts that can be developed relatively independently. In
standard Pascal, the entire program must be in a single source file.

VAX PASCAL, however, offers the option of writing modules that can

be combined with other separately compiled, but logically coordinated,
modules for execution as a single program; or writing modules that can be
developed independently but used as library modules bound into larger
systems at link time.

VAX PASCAL also offers a means for separately compiled modules to
communicate with each other by allowing modules to share declarations
and definitions. The modules can share variables and routines through
the use of global and external identifiers; they can also share variables,
routines, constants, and types through the use of environment files.

1.3 Major Features of VAX PASCAL

The three major features of VAX PASCAL include the numerous ex-
tensions to standard Pascal, integration into the VAX/VMS Common
Language Environment, and the use of the VAX/VMS Architecture
Environment.

The numerous extensions to standard Pascal provide for effective general
use of the language. These extensions are designed to improve program-
ming efficiency, as well as allow programs to run more efficiently. Some
of the extensions include a wider variety of floating-point data types,
numerous predeclared routines, enhanced string manipulation capabilities,
a separate compilation facility, and more flexibility when accessing files
and their records.

VAX PASCAL is integrated into the VAX/VMS Common Language
Environment. Included among other capabilities, this environment pro-
vides the VAX PASCAL user support for the VAX Procedure Calling
Standard, allowing for easy access to all VAX/VMS system routines and
external routines written in other VAX languages, access to the VAX/VMS
Debugger, full use of the VAX/VMS Linker, and support for three RMS
record access methods (sequential, direct and keyed). In addition, VAX
PASCAL permits programmers to include data definitions from the VAX
Common Data Dictionary.

The VAX PASCAL compiler makes full use of the VAX/VMS Architecture
Environment features by using the VAX hardware floating-point and
character-string instruction sets and virtual memory capabilities of the
VAX/VMS operating system. ’

The VAX Common Data Dictionary helps eliminate inconsistencies among
programs and allows variable declarations to be shared by many programs
in multiple programming languages.

Two productivity tools can be purchased separately: the VAX Language-
Sensitive Editor (VAXLSE) and the VAX Source Code Analyzer (VAXLSE).
VAXLSE provides syntactic models or templates that fit together to form
programs that are free of syntax errors. VAXSCA can help you under-
stand the complexities of large-scale software projects by letting you
make inquires about the symbols used in such projects. This tool is ex-
tremely useful during the implementation and maintenance phases of a
development project, regardless of your familiarity with the project.

Overview 1-3

1-4 Overview

Additionally, you can tune VAX PASCAL applications using the VAX
Performance and Coverage Analyzer to pinpoint execution bottlenecks
and other performance problems. This tool provides detailed data in
a variety of reporting formats to make performance and test coverage
analysis a routine part of every program development cycle.

Chapter 2

Introduction to the VAX/VMS Operating
System

When you develop VAX PASCAL programs on a VAX/VMS system, you
use commands that are part of the DIGITAL Command Language (DCL).
This chapter teaches you what you need to know to use the VAX/VMS
system and some common DCL commands. The following topics are
discussed:

e Logging in to and out of the VAX/VMS system
* Accessing the HELP facility

¢ Using DCL commands

¢ Developing VAX PASCAL programs

* Creating directories and subdirectories

* Using DCL file-handling commands

e Developing command procedures

For a complete list of all of the DCL commands available, see the
VAX/VMS DCL Dictionary.

Introduction to the VAX/VMS Operating System 2-1

2.1 Logging In and OQut

2-2

Before you can log in to the VAX/VMS operating system, you must have
an account set up for you. Your system manager is generally the person -
responsible for establishing this and will provide you with a user name
and a password. Once you are an authorized user, you can regularly
access the system.

When you log in to the VAX/VMS operating system, the system prompts
you for your user name and password. Both of these are unique to your
account and distinguish you from other users on the system. When you
enter your user name, each character is displayed, or “echoed”, on the
screen. However, when you enter your password, no characters are
displayed. This enables you to protect your account from others trying to
access it. For example:

Username: SMITH
Password:
$

The dollar sign ($) is a symbol that the VAX/VMS system uses as a
prompt. When this prompt is displayed, it indicates that the login proce-
dure was successful and that you can begin entering commands. If you
incorrectly enter your user name or password, the system displays an
error message. To gain access to the system, you must repeat the login
procedure.

To change your password, type the SET PASSWORD command and
press the RETURN key. The VAX/VMS system prompts you for your
current password. Note that when you enter your current password, the
VAX/VMS system does not echo it to your terminal. The VAX/VMS
system then prompts you for your new password, which can have a
maximum of 31 characters composed of the letters A through Z and the
numbers 0 through 9, as well as the dollar sign ($) and the underscore
(—). Note that when you enter your new password, VAX/VMS does not
echo it to your terminal.

To verify that you have entered your password correctly, VAX/VMS
prompts you to enter your new password again. If the two new passwords
do not match, your original password remains in effect.

Introduction to the VAX/VMS Operating System

$ SET PASSWORD

01d password:
New password:
Verification:
$

To end the current session, enter the LOGOUT command:

$ LOGOUT

The system responds with the following message:

SMITH logged out at DD-MMM-YYY HH:MM

2.2 Accessing the HELP Facility

The VAX/VMS system provides you with an online HELP facility. This
can be very useful if you do not have documentation on a particular
command readily available. To gain access to the HELP facility, you use
the DCL command HELP. For example:

$ HELP

The VAX/VMS system displays a list of topics for which help is available
and prompts you for your choice of topic. If you want information on a
specific command, such as the PASCAL command, type that command
after the topic prompt. For example:

Topic? PASCAL

When this command line is executed, the VAX/VMS system displays a
description of the command, lists all VAX PASCAL qualifiers, parameters
and other topics for which help is available, and prompts you for a choice
of subtopic. For example:

PASCAL Subtopic? /DEBUG

If you know which subtopic you want information on beforehand, you
can type the HELP command directly followed by the PASCAL command
and the subtopic you want help on. For example:

$ HELP PASCAL /DEBUG

To exit from the HELP facility, press CTRL/Z. Once the dollar sign prompt
is displayed, the VAX/VMS system is ready to accept a new command.

Introduction to the VAX/VMS Operating System 2-3

2.3 Entering and Editing DCL Commands

2-4

Once you have gained access to the system, you can use DCL commands
to perform specific tasks. DCL commands are words, generally verbs,
that describe the action they perform. Following are the most important
rules for entering DCL command lines Other rules are described in the
VAX/VMS DCL Dictionary.

* You can typically truncate any command name or qualifier name
to four characters. Fewer than four characters is acceptable if the
truncated name is unique to the command that you want.

* You must precede each qualifier name with a single slash character
(/)

®* You can enter commands and qualifiers in either uppercase or lower-
case letters.

e If you omit a required parameter (for example, a file specification), the
DCL command interpreter will prompt you for it.

* You can type a command on as many lines as you wish, as long as
you end each line (except the last) with a hyphen (-).

* After you have typed a complete command line, you must press
RETURN to execute the command.

If you enter a command incorrectly (for example, if you misspell a com-
mand or qualifier name), the command interpreter issues an error message
and you must either retype the entire command or edit the command and
then reenter it. Command line editing enables you to correct typograph-
ical errors and other errors in lengthy command lines and saves you the
trouble of retyping the entire line.

To edit DCL command lines, you can use various control characters and
keypad keys. The following list describes some of these editing functions:

Introduction to the VAX/VMS Operating System

DELETE key Deletes the last character entered at the terminal.

CTRL/B or up arrow Displays the last command line entered. You can

key display up to twenty previously entered command
lines by continuing to press CTRL/B or the up arrow
key. To display command lines in the opposite
direction, press the down arrow key.

CTRL/D or left arrow Moves the cursor one character to the left.

key

CTRL/F or right arrow ~ Moves the cursor one character to the right.

key

CTRL/U Deletes characters from the beginning of the line to the
cursor.

CTRL/C or CTRL/Y Cancels or interrupts command processing.

CTRL/A Switches between overstrike mode and insert mode.

2.4 Understanding the Directory Structure

A directory is a catalog of files. Each file is distinguished by its name,
file type, and version number. It is not necessary to specify the complete
file specification every time you compile, link, or run a source program.
Under most conditions, it is necessary only to specify the file name.

Figure 2-1 illustrates a complete file specification.

Figure 2-1: Complete File Specification

MYVAX USER$$DISK [SMITH]FIRST_PROG PAS 3

(/)]

©@node @device @directory @file name @file type @version

ZK-5758-86

© Specifies a computer system that is part of a network.

Introduction to the VAX/VMS Operating System 2-5

2-6

Identifies the hardware device on which the file is either stored or
written. '

Specifies the directory in which a file is catalogued.

Distinguishes a file from others contained in the same directory. A file
name can have up to 39 characters.

Identifies the type of data that a file contains.

Q60 060606 ©o

Specifies the version number of a file. Each time you edit a file, its
version number is incremented by 1.

When you log into the VAX/VMS operating system, by default you are
placed in your default directory, which generally has the same name as
the account you log into. This default directory is often referred to as your
main or top level directory. The VAX/VMS system allows you to create
subdirectories from your main directory. Subdirectories are helpful in
organizing files. For instance, if you are a multilanguage user, it may be
helpful for you to keep all of your VAX PASCAL programs separate from
your FORTRAN programs. To create a subdirectory, you enter the DCL
command CREATE/DIRECTORY as shown in the following example:

$ CREATE/DIRECTORY [SMITH.PASCAL_PROG]

To move from one directory to another, you use the SET DEFAULT
commiand:

$ SET DEFAULT [SMITH.FORTRAN_PROG]

The number of directories you are able to create is limited only by the
amount of disk space you have available. Figure 2-2 illustrates the
concept of directory hierarchies.

To refer to files that are contained in your directory hierarchy but that are
not contained in your current default directory, you can use two special
symbols: the ellipsis (...) and the hyphen, or minus sign (-). The
ellipsis is used to search down a directory hierarchy and the hyphen is
used to search up a directory hierarchy.

For instance, [SMITH . . .] refers to the directory [SMITH] and all of the
subdirectories in the hierarchy below [SMITH]. The directory specification
[... PASCAL] refers to all subdirectories named PASCAL below the
current default directory. Because you can specify the current default
directory with empty brackets ([]), you can refer to the entire hierarchy
under your current default directory with [...].

Introduction to the VAX/VMS Operating System

Figure 2-2: A Directory Hierarchy

$DIRECTORY [000000]

MALCOLM.DIR
301300.DIR
HIGGINS.DIR
/ 301301.DIR

$DIRECTORY [HIGGINS]

PAYROLLDIR _|
USER.DOC N
MEMO.LIS
LOGIN.COM

The subdirectory file named [HIGGINS.PAYROLL]DATA.DIR
lists additional subdirectory files.

$DIRECTORY [HIGGINS.PAYROLL DATA]

JANUARY.DIR
. FEBRUARY.DIR
I MARCH.DIR

FICA.DAT
STATETAX.DAT
FEDTAX.DAT
EMPTTL.DAT

A volume’s Master File Directory (MFD)
contains entries for the user file
directories (UFDs) on the volume.

MFD

Each UFD lists the files belonging
to that directory, and can contain
entries for additional directories,

called subdirectories.

INFO.COM
SOURCE.DIR
LISTINGS.DIR _
DATA.DIR
DIRECT.DOC

FICA.LIS
TAXES.LIS

$DIRECTORY [HIGGINS.PAYROLL.LISTINGS)

$DIRECTORY [HIGGINS.PAYROLL]

A subdirectory can catalog files
and/or additional subdirectories.
The subdirectory file named
[HIGGINS]PAYROLL.DIR

lists additional subdirectory files.

$DIRECTORY [HIGGINS.PAYROLL.SOURCE]

FICA.PAS
TAXES.MAR
PAYROLL.PAS

$DIRECTORY [HIG

GINS.PAYROLL.DATA.MARCH]

FICA.DAT
STATETAX.DAT
FEDTAX.DAT
EMPTTL.DAT

FICA.DAT
STATETAX.DAT
FEDTAX.DAT
EMPTTL.DAT

nextlevel.DIR

LEVEL

(6]

ZK-5781-HC

Introduction to the VAX/VMS Operating System 2-7

Hyphens allow you to search up the hierarchy one directory at a time;
each hyphen stands for one level. If, for example, your current default
directory is [SMITH.PASCAL _PROG], you can refer to [SMITH] by
specifying [-].

Every subdirectory is maintained by a file in the directory above it that
has a DIR file type. To delete a subdirectory, you must first remove any
files that are contained in it. You can then delete the DIR file for that
subdirectory.

Note that you can use square brackets ([]) and angle brackets (<>)
interchangeably to refer to directories.

For a more detailed discussion of the directory structure, see the VAX/VMS
DCL Concepts Manual.

2.5 Using DCL File-Handling Commands

DCL file-handling commands allow you to modify and maintain your
source programs. The following sections describe how to use DCL com-
mands to perform basic file operations such as displaying files, printing
and typing files, deleting files, purging files, renaming and moving files,
searching files, and setting file protection.

For more information on the commands discussed in this section and their
qualifiers, see the VAX/VMS DCL Dictionary or type HELP followed by the
command name at the DCL prompt.

2.5.1 Displaying Files

2-8

To display a list of all of the files that are contained in a directory, you use
the DIRECTORY command. When you enter the DIRECTORY command
with no parameters or qualifiers, the VAX/VMS system displays an entire
list of all of the files that are contained in your current directory. For
example:

$ DIRECTORY
Directory USER$$DISK: [SMITH]

PROG1.DIA;22 PROG1 .EXE;2 PROG1.0BJ;3 PROG1.0BJ;5
PROG1.0BJ;53 PROG1.PAS;53

Introduction to the VAX/VMS Operating System

If you want to know how many versions of a specific file exist in your
current directory, you enter the DIRECTORY command along with a
specific file name and file type as shown in the following example:

$ DIRECTORY PROG1.PAS
Directory USER$$DISK: [SMITH]
PROG1.PAS;53

Total of 1 file.

The VAX/VMS system displays a list of all the versions of the file that
currently exist.

However, if you want to view only a selected group of files that contain
a specific file type, you can use an asterisk (*) and percent sign (%)
individually or together as wildcard characters. An asterisk signifies any
number of characters including zero, whereas a percent sign signifies
exactly one character. Therefore, *.PAS represents all files that end with
the file type, PAS, whereas 3%.PAS represents only those files that
contain two characters for a file name, the first of which is a 3, and have
the .PAS file type. The following example uses an asterisk as a wildcard
character.

$ DIRECTORY *.0BJ

Directory USER$$DISK: [SMITH]

PROG1.0BJ;3 PROG1.0BJ;5 PROG1.0BJ; 563
Total of 3 files.

The VAX/VMS system displays only those files that end with the file type
OB]J.

2.5.2 Printing and Typing Files

To examine the contents of a file, you can use either the PRINT command
or the DCL TYPE command. The PRINT command outputs the contents
of a file to a printer, and the TYPE command outputs the contents of a file
to your screen.

In the following example, the PRINT command outputs the file
PROGL1.PAS to a printer:

$ PRINT PROG1.PAS

Introduction to the VAX/VMS Operating System 2-9

By default, the VAX/VMS system prints the most recently created version
of PROG1.PAS. To print a specific version of PROG1.PAS, you must
specify a version number. For instance, in the following example, the
VAX/VMS system prints the third version of PROG1.PAS.

$ PRINT PROG1.PAS;3

With the PRINT command, you can specify command qualifiers. For
example, the /AFTER qualifier allows you to specify that the job not be
printed until a specific time of day.

With the TYPE command, you can display the contents of a file on
your screen. If you specify the /PAGE qualifier, you can display one
screen of text at a time. If you do not specify the /PAGE qualifier, you
can press CTRL/S to interrupt the display for careful examination of a
particular section and then resume the display by pressing CTRL/Q. If
your keyboard has a NOSCROLL or HOLD SCREEN key, you can use it
to toggle between interrupting and resuming the display.

2.5.3 Deleting Files

2-10

To delete a file, you use the DELETE command. With the DELETE
command, you must specify the file name, the file type, and the version
number of the file you want to delete. For instance, in the following
example, the VAX/VMS system deletes the first version of PROG1.PAS.

$ DELETE PROG1.PAS;1

If you want to delete all versions of a file, you can use an asterisk (*) as a
wildcard character. For example:

$ DELETE PROG1.PAS;*

Similarly, if you want to delete all files with a particular file type, you
can use asterisks (*) and percent signs (%) as wildcard characters. For
instance, in the following example, the VAX/VMS system deletes all files
that have the file type LIS:

$ DELETE *.LIS;*

You can specify command qualifiers with the DELETE command. For
instance, if you specify /CONFIRM, a request is issued before each
ind