RSX-11M/M-PLUS
Executive Reference Manua!
Order No. AA-LB75A-TC

RSX-11M Version 4.0
RSX-11M-PLUS Version 2.0

digital equipment corporation - maynard, massachusetts

First Printing, May 1979
Revised, November 1981

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a 1license
and may be used or copied only in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright C) 1979, 1981 by Digital Equipment Corporation
All Rights Reserved.

Printed in U.S.A.

The postage-paid READER'S COMMENTS form on the 1last page of this
document requests the wuser's critical evaluation to assist us in
preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DECsystem-10 PDT
DECUS DECSYSTEM-20 RSTS
DIGITAL DECwriter RSX
PDP DIBOL VMS

UNIBUS Edusystem VT
pEC iaS dlilgliltlall
DECnet MASSBUS

ZK-2054-81

CONTENTS

Page
PREFACE ix
SUMMARY OF TECHNICAL CHANGES xi

CHAPTER 1 USING SYSTEM DIRECTIVES
1.1 INTRODUCTION ¢ & 4 2 o o o o o s o o o o o o o o o« 1=1
1.2 DIRECTIVE PROCESSING &« 4 ©o 4 o o o o o o o o o o o« 1=2
1.3 ERROR RETURNS . & & 4 ¢ « ¢ o o o o o o o o o o « 1-3
1.4 USING THE DIRECTIVE MACROS . ©+¢ © ¢« o o o o o o « o 1-4
1.4.1 Macro Name Conventions e o » o o 1=5
1.4.1.1 S FOIM 4 v ¢« 4 ¢ o o o o o o o o o o o o o . 1-5
1.4.1.2 SC FOIM v & 4 o o o o o o o o o o o o o o o« « 1-6
1.4.1.3 SS FOrm « v ¢ v ¢ v o o o W .« . . e « « . 1-6
1.4.2 DIRS MAGCIO + s + « « o o o o o o o o o« s o« o o « 1-6
1.4.3 Optional Error Routine Address . .« . + « o o + . 1-7
1.4.4 Symbolic Offsets « ¢ & & ¢ ¢ ¢ 4 ¢ ¢ ¢ v o o o o 1=7
1.4.5 Examples of Macro Calls . ¢« &« ¢« ¢« « o« « « o » o« 1-8
1.5 FORTRAN SUBROUTINES . & ¢ ¢ ¢ o o o o o o o o o » 1=90
1.5.1 Subroutine Usage « +« « & ¢ ¢ ¢ ¢« o o ¢ + o « « o 1=-9
1.5.1.1 Optional Arguments . . . & +« ¢ ¢« « ¢« o « « o 1=10
1.5.1.2 Task NaMeS + v « o « o o o o s o o o o o« « « 1=10
1.5.1.3 Integer Arguments ¢« . ¢ 4+ o & o . 1-11
1.5.1.4 GETADR Subroutine . . & ¢ ¢« ¢ ¢ ¢« v &« & « o 1-11
1.5.2 The Subroutine Calls . « +v « v« &« o « o o o« « o 1-11
1.5.3 Error Conditions . + +« ¢« o o ¢ o o o o &« . 1-16
1.5.4 AST Service Routines ¢« ¢« o .« + + o« 1-16
1.6 TASK STATES ¢ ¢« v o & o o o o o o o o o o o o o 1-17
1.6.1 Task State Transitions e o o o o e e o o o 1-18
l1.6.2 Removing an Installed Task e e o o s+ o « o 1=20
1.7 THE GENERAL INFORMATION DIRECTIVE e o o o o o o 1-20
1.8 DIRECTIVE RESTRICTIONS FOR NONPRIVILEGED TASKS . 1-20
1.9 RSX-1IM=PLUS . & & ¢ ¢ 4 o o o o o o o o o o « « 1-21
CHAPTER 2 SIGNIFICANT EVENTS, SYSTEM TRAPS, AND STOP-BIT
SYNCHRONIZATION
2.1 SIGNIFICANT EVENTS . & ¢ v 4 o o o o o o o o o o o« 2-1
2.2 EVENT FLAGS 4+ o« 4« o &+ ¢ o o o o o o o o s o o o o« 2=2
2.3 SYSTEM TRAPS v ¢« ¢ o o o o o o e e o o o s o o« o 2-4
2.3.1 Synchronous System Traps (SSTs) e e e o s o e . 2-4
2.3.2 SST Service Routines e o s o o s o« « 2=5
2.3.3 Asynchronous System Traps (ASTs) e o e o s e . . 2-6
2.3.4 AST Service ROULINES v v« v v ¢ o ¢ o o o o o o o 2=7
2.4 STOP-BIT SYNCHRONIZATION v ¢ v &4 o o o o o o o 2-11

iii

CHAPTER

CHAPTER

CHAPTER

3 MEMORY MANAGEMENT DIRECTIVES

Address Mapping« o e
Virtual and Logical Address Space
Supervisor-Mode Addressing . . .

s e o
W N

VIRTUAL ADDRESS WINDOWS
REGIONS .« ¢ & ¢ & + « &
Shared Regions
Attaching to Regions .
Region Protection . .
DIRECTIVE SUMMARY . . .
Create Region Directive (CRRGS$)
Attach Region Directive (ATRGS)
Detach Region Directive (DTRGS)

e o e o

o o
w N -

.
.
.
.
.
.

e & o o
¢« o

AUV UT S S S BRBLDLEEDDWWWWNRRFF -

.
= O 00~ W N

= O

e« o ¢ o 0
¢

¢ o o

USER DATA STRUCTURES
Region Definition Block (RDB) .
Using Macros to Generate an RDB

¢ o s s o o o
* o o
* e

N

Window Definition Block (WDB) .
Using Macros to Generate a WDB
Using FORTRAN to Generate a WDB

Assigned Values or Settings . .

PRIVILEGED TASKS . . . « ¢ « « « &

¢ o 0

D)
.

N -

WWWWWwWwWwwWwWwwWwwWwWwWwWwWwWwwwwwWwuwwwuwwwww ww
WNDNDN -
L]

=

PARENT/OFFSPRING TASKING

DIRECTIVE SUMMARY . . .« . « + + &

* e
N =

Task Communication Directives .
CONNECTING AND PASSING STATUS . .
SPAWNING SYSTEM TASKS e o o o o o

Spawning a Utility . . . « « .+ &

« o o
[YS IS ISR
.

L O - - T e T gL

B B B D W N NN
L] L]

wN -

w

DIRECTIVE DESCRIPTIONS

DIRECTIVE CATEGORIES
Task Execution Control Directives
Task Status Control Directives .
Informational Directives
Event-Associated Directives . .
Trap-Associated Directives ., . .

L] . L] . .
I T

(GG E N O R,)
] . « o 0 .
AU WN

DirectivesS o« o« ¢« ¢ ¢ o o o o o =
Memory Management Directives . .

[GECNS]
S e
-
.« . 0®
0 o~

RSX-11M-PLUS Directives

iv

Using FORTRAN to Generate an RDB

Parent/Offspring Tasking Directives

Spawning a Command Line Interpreter

Parent/offsprlng Tasking Dlrectlves

Spawning a Utility under RSX-11M .
Spawning a Utility under RSX-11M-PLUS
Passing Command Lines to Utilities

Create Address Window Directive (CRAWS)
Eliminate Address Window Directive (ELAWS)
Map Address Window Directive (MAPS)
Unmap Address Window Directive (UMAPS)
Send By Reference Directive (SREFS)
Receive By Reference Directive (RREFS)
Get Mapping Context Directive (GMCXS)
Get Region Parameters Directive (GREGS)

PARENT/OFFSPRING TASKING SUPPORT OVERVIEW

8]

ADDRESSING CAPABILITIES OF AN RSX-11M TASK

Mapping Structure of I- and D-Space Tasks

.

e o o e o o

e s e o o

I/0- and Intertask Communications- Related

e o e o o

¢ e o o

® e o ® e o & e o 8 o 0 o o

e o e o o

Page

WWwWwwwwwwwww

|
ol L L L L R R U
OO0 OWWOAASNUVTWWNMNDNDK

w W
|

www
1

b

o

3-15
3-17
3-19
3-20
3-20

e

B O O T~ ~ et
|
A UTUMUTUVTWN - -

WNNN -

(G210 0, O]
|
B W W

CONTENTS

Recommended) « o« « o o o o o o o o o o o o o
Disable Checkpointing ($S Form Recommended)

Detach Region ., « « & & ¢« & « « &
Eliminate Address Window
Eliminate Group Global Event Flags
Eliminate Virtual Terminal
Emit Status . . ¢« ¢ ¢ v ¢« o« o« & o« o
Enable AST Recognition ($S Form Recommend
Enable Checkpointing ($S Form Recommended
EXit If o ¢ ¢ ¢ o o« o « o & e s e o o

Task Exit ($S Form Recommended) .o .
Exit With Status . . . « ¢« « ¢« . « .
Extend Task .« ¢ ¢« ¢ ¢ & ¢ ¢ o o o &
Get Command for Command Interpreter
Get Command Interpreter Information
Get LUN Information

Get MCR Command Line . . .
Get Mapping Context . . .
Get Partition Parameters .
Get Region Parameters . .
Get Sense Switches ($S Form R
Get Time Parameters . . .
Get Task Parameters . . .
Map Address Window
Mark Time . . « « « o« o .
Map Supervisor D-Space . .
Move To/From User/Superviso
Queue I/O0 Request
Queue I/0 Request and Wait

d

e & e 0

Q
O e ¢ o
3
H e o o
[

~

mooo.cﬂ(bcauoooocoounto

Receive Data Or Stop . .
Receive Data . . « « . .
Receive Data Or Exit . .
Read All Event Flags . .
Read Event Flag . . .
Read Extended Event Flags . .
Remove Affinity ($S Form Recomm
Request and Pass Offspring Info
Request Task
Receive By Reference .,
Resume Task .« « « «
Run Task . . .

Specify Command Arrlval AST .
Supervisor Call ($S Form Recomm

e @ & ® e e e 6 @ o o e o o e o o 6 o o 6 o o 0 o o s s o+ o
6 6 6 o o 6 & & ¢ 0 0 0 e s e e s e 6 o e 8+ 6 e & e & o s

o o o o o o o 4o o o o o (D e o o

0000.00!100000
® o o e o o o o (Do o & o o (De o o o o o s 0 o o

® 6 e 6 e & 8 e g 8 6 6 & 0 9 & o 6 & e o 9 s =

m

Uittt om
. o o . . . * 0 L] ¢ o L]

WWWWWWWWWWwWwWwWwWwWwWwwwWwWwWwwWwwwWwwuwwwuwuwwwuwwwwuwuwwwwww
U UTNUAOOTE D RSB DBBELBBDBWWWWWWWWWWHINNNNNDNNDNNDNDFEE
WOJOMBWNFOWONAUTEWNFHFOWOWONAUIBDWNHFHFOWOWONAAMEWNEFOWO®

e o o o s & e 0 e o e @
e ® & e e e & ¢ 6 & e o T e 0 e 4 6 0 & s e+ s s ° s s 0 s o o e o o~ (e o s o o

e 8 & e 6 8 0 & 6 6 e & e e % 0 e 6 O B 6 0+ & o 6 & 0 o & e & & 6 ¢ ¢ ~0 o o o

s
nd
a
de

o o o ¢ o o e ¢

n

5.1.10 CLI Support Directives . ¢ ¢ v v ¢ & o o o & &
5.2 DIRECTIVE CONVENTIONS . . . e o e o o s e s o
5.3 SYSTEM DIRECTIVE DESCRIPTIONS e e s o s+ e o o
5.3.1 AbOort Task o o v & ¢« ¢ o o o o o o o o o o o
5.3.2 Alter Priority « v & v ¢ 4 ¢ ¢ ¢ o o o o o o @
5.3.3 Assign LUN o & &t ¢ 6 ¢ 4 v o o o o o o o o o @
5.3.4 AST Service Exit ($S form recommended)
5.3.5 Attach Region . . . & & ¢ ¢ ¢ ¢ ¢ o o o o o @
5.3.6 Connect to Interrupt Vector« . « . . .
5.3.7 Clear Event Flag « ¢ o« v o o « o o o o o o o
5.3.8 Cancel Mark Time RequestsS . . v & o v o o & &
5.3.9 ConnecCt & ¢ 4 ¢ o ¢ o o o o o o o o o o o o &
5.3.10 Checkpoint Common Region « « v o o« + o o o o @
5.3.11 Create Address Window . . . e e o o o o o o
5.3.12 Create Group Global Event Flags e s e e e o
5.3.13 Create Region . v . & v 4 4 4 4 4 o o o o o «
5.3.14 Create Virtual Terminal . . ¢« ¢ ¢« ¢ ¢ o o o« &
5.3.15 Cancel Time Based Initiation Requests
5.3.16 Declare Significant Event ($S Form Recommended)
5.3.17 Disable (or Inhibit) AST Recognition ($S Form

® e 9 6 0 9 e e & e e e e e+ s 0 9 6 o e 9t & 0 ¢ s s 0 e s 0 e+ 0 o

0 o e e e * ¢

CONTENTS

Page
5.3.60 Set Command Line Interpreter « « « . . 5-148
5.3.61 Send Data e + s o e s o o o o « 5-150
5.3.62 Send, Request and Connect e e e o s o o @ . 5-152
5.3.63 Send Data Request and Pass Offspring Control
BloCKk v ¢« ¢ & ¢ v 4 o o o o o o o o o o o « o 5=155
5.3.64 Set Event Flag . « « o ¢ o« « o ¢ o « o o » o o+ 5-159
5.3.65 Specify Floating Point Processor Exception AST 5-160
5.3.66 Send MeSSage « « o o « o« o o o o o o o o « » o 5-162
5.3.67 Send Next Command . « « ¢ o o « o« o« « « » « « 5=165
5.3.68 Specify Parity Error AST « « « « « o« « 5-167
5.3.69 Suspend ($S Form Recommended) . . « « « « « . 5-169
5.3.70 Specify Power Recovery AST . . . « « « « « « « 5-170
5.3.71 Spawn e e e 4 s e o o o s o s & o 5-172
5.3.72 Specify Recelve Data AST . .« . . s o+ s+ o o 5-182
5.3.73 Specify Requested Exit AST D1rect1ve - SREAS
OF SREXS &+ &« &« v ¢ ¢ ¢ o o« o o o o s o o o« « o 5-184
5.3.74 Send by Reference ¢« « & « « « « « « o 5-188
5.3.75 Specify Receive-by-Reference AST 5-191
5.3.76 Set Affinity + & v ¢ ¢ ¢« ¢« ¢ ¢ o o o o o o« o o« 5-193
5.3.77 Set System Time Directive 5-195
5.3.78 Stop For Logical OR Of Event Flags 5-198
5.3.79 Stop ($S Form Recommended) « « « 5-200
5.3.80 Stop For Single Event Flag . . e o o s o« o« 5=-201
5.3.81 Specify SST Vector Table For Debugglng Aid . . 5-202
5.3.82 Specify SST Vector Table For Task 5-204
5.3.83 Unlock Group Global Event Flags ($S Form
Recommended) . o« o« « o« o o o o o o o o o o« o« « 5=206
5.3.84 Unmap Address WindoWw . « + o & o« ¢ o & o « o « 5=-207
5.3.85 Unstop Task + ¢ o « o o o o o o o « o o o « o« 5=209
5.3.86 Variable Receive Data . . « « « o« o « « « - o 5=210
5.3.87 Variable Receive Data Or Stop . «. +. « « .« « o 5-212
5.3.88 Variable Receive Data Or Exit 5-214
5.3.89 Variable Send Data . . ¢« & o o« o « o s « » o« « 5-216
5.3.90 Variable Send, Request and Connect . . . o« o 5-218
5.3.91 Wait For Significant Event ($S Form
Recommended) e« o « o« o 5=221
5.3.92 Wait For Logical OR Of Event Flags e o o o o o 5=223
5.3.93 Wait For Single Event Flag . . « « « « « « o« o 5-225
APPENDIX A DIRECTIVE SUMMARY - ALPHABETICAL ORDER BY MACRO CALL
APPENDIX B STANDARD ERROR CODES
APPENDIX C DIRECTIVE IDENTIFICATION CODES
APPENDIX D RSX~-11 SYSGEN SELECTION OF EXECUTIVE DIRECTIVES

INDEX

vi

FIGURE

TABLE

CONTENTS
Page

FIGURES

Directive Parameter Block (DPB) Pointer on the

StaCKk & ¢ it h i e i e e e e e e e e e e e e e . 1l-a
Directive Parameter Block (DPB) on the Stack . . . 1-4
Virtual Address WindowsS . o v v« v « &« o o « o o « 3=5
Region Definition Block 3=7
Mapping Windows to Regions . . . « . . « « .+ . . . 3-8
Region Definition Block . . + ¢ & & ¢« ¢« « « « o« 3-13
Window Definition Block . . ¢ ¢ ¢ v v v v o o o 3-17

TABLES

FORTRAN Subroutines and Corresponding Macro Calls 1-12

vii

PREFACE

MANUAL OBJECTIVES

The RSX-11M/M-PLUS Executive Reference Manual describes the system
directives that allow experienced MACRO-11 and FORTRAN programmers to
use Executive services to control the execution and interaction of
tasks.

INTENDED AUDIENCE

The intended audience for this manual are software developers who are
experienced users of MACRO-11 or FORTRAN for user task generation.
Information contained in this manual is intended for reference only;
no attempt 1is made to describe the procedures involved in developing
user tasks beyond the detailed reference information normally required
for directive use. However, Chapters 1 through 4 do contain much
information that will aid in better understanding how directives can
be effectively used in the RSX-11M/M-PLUS multitasking environment.
Convenient quick-reference material is included in appendixes at the
end of the manual for use by the more advanced RSX-11M/M-PLUS
programmer.

STRUCTURE OF THIS DOCUMENT

A Summary Of Technical Changes provides the experienced RSX-11M
/RSX-11M-PLUS wuser with a quick summary of changes to system software
since the previous version of this manual. Comments are general and
serve only as a guide to areas of change.

Chapter 1 defines system directives and describes their wuse in both
MACRO-11 and FORTRAN programs.

Chapter 2 defines significant events, event flags, system traps, and
stop-bit synchronization, and describes their relationship to system
directives.

Chapter 3 introduces the concept of extended 1logical address space
within the framework of memory management directives.

Chapter 4 introduces the concept of parent/offspring tasking,
including associated directives, generated data structures, and task
communications.

Chapter 5 contains a

according to their func
detailed descriptions of
according to macro call.

short summary of all directives, arranged
tion i

hyr

~m b Ao mi., i X
categories. The summary is followed by

$ - -~
i1o0l1a
each system directive arranged alphabetically

ix

PREFACE

Appendix A contains directives arranged alphabetically according to
macro call. Abbreviated specifications 1include directive name,
FORTRAN call, macro call, and parameters only.

Appendix B lists the standard error codes returned by the RSX-11IM or
RSX-11M-PLUS Executive.

Appendix C lists Directive Identification Codes for all directives in
the same octal values that they have in the Directive Parameter Block.
A description of how the values are obtained is included.

Appendix D lists all directives, the operating systems where the
individual directives are available (RSX-118, RSX-11M, or
RSX-11M-PLUS), and the SYSGEN option required (if applicable) to
obtain that directive support.

ASSOCIATED DOCUMENTS

Manuals that are prerequisite sources of information for readers of
this manual are: the RSX-11M/M-PLUS Task Builder Manual and the
PDP-11 MACRO-11 Language Reference Manual, the IAS/RSX-11 FORTRAN Iv
User's Guide, or the FORTRAN-77 User's Guide.

Other documents related to the contents of this manual are described
briefly 1in the appropriate documentation directory supplied with the
software kit.

CONVENTIONS USED IN THIS DOCUMENT

Whenever necessary, information that 1is applicable to a specific
operating system (RSX-11M or RSX-11M-PLUS) is clearly indicated. In
addition, for ease of reference, those portions of text that apply to
RSX-11M-PLUS only are indicated by background shading on the printed
page.

SUMMARY OF TECHNICAL CHANGES

This revision of the RSX-11M/M-PLUS Executive Reference Manual
contains changes and additions to document two operating
systems: RSX-11M V4.0 and RSX-11M-PLUS V2.0.

The following new directives have been added to both RSX-11M and
RSX-11M-PLUS:

Request and Pass Offspring Information

Send, Request and Pass Offspring Control Block
Set System Time

Unlock Group Global Event Flags

The following directives that were formerly specific to RSX-11M-PLUS
are now common to both operating systems:

Send, Request and Connect
Specify Requested Exit AST

There are also four new directives that support alternate Command Line
Interpreters. These CLI support directives are common to both
operating systems:

Get Command for Command Line Interpreter
Get Command Interpreter Information

Set Command Line Interpreter

Specify Command Arrival AST

The description of the Spawn directive now includes an example that
shows how to use parent/offspring tasking to provide AST service
routines in FORTRAN. Guidelines for coding FORTRAN AST service
routines are included in Chapter 1.

xi

CHAPTER 1

USING SYSTEM DIRECTIVES

This chapter describes the use of system directives and the ways in
which they are processed. Some of the Executive services described in
this manual are optional RSX-11S, RSX-11M, or RSX-11M-PLUS features
and may not be present in the system you are currently using. The
discussion of the system directives assumes that all possible features
are present 1in your system. See the appropriate system generation
manual for a list of optional features.

1.1 INTRODUCTION
When a task requests the Executive to perform an indicated operation,
this process is called a system directive. You use the directives to
control the execution and interaction of tasks. If you are a MACRO-11
programmer, you usually issue directives in the form of macros defined
in the system macro library. If you are a FORTRAN programmer, issue
system directives in the form of calls to subroutines contained in the
system object module library.
System directives enable tasks to:

e Obtain task and system information

e Measure time intervals

e Perform I/0 functions

e Spawn other tasks

e Communicate and synchronize with other tasks

e Manipulate a task's logical and virtual address space

e Suspend and resume execution

e Exit

Directives are implemented by the EMT 377 instruction. EMT 0 through
EMT 376 (or 375 for unmapped tasks and mapped privileged tasks) are
considered to be non-RSX EMT synchronous system traps. They cause the
Executive to abort the task unless the task has specified that it
wants to receive control when such traps occur.

If you are a MACRO-11 programmer, use the system directive macros
supplied in the system macro library for directive calls, rather than
hand-coding calls to directives. Then you need only reassemble the
program to incorporate any changes in the directive specifications.

Sections 1.2, 1.3, and 1.6 are intended for all users. Section 1.4
specifically describes the use of macros, while Section 1.5 describes

1-1

USING SYSTEM DIRECTIVES

the wuse of FORTRAN subroutine calls. Programmers using other

supported languages should refer to the appropriate language reference
manual supplied by DIGITAL.

1.2 DIRECTIVE PROCESSING
Processing a system directive involves four steps:

1. The user task issues a directive with arguments that are only
used by the Executive. The directive code and parameters
that the task supplies to the system are known as the
Directive Parameter Block (DPB). The DPB can be either on
the user task's stack or in a user task's data section.

2. The Executive receives an EMT 377 generated by the directive
macro (or a DIRS macro) or FORTRAN subroutine.

3. The Executive processes the directive.

4. The Executive returns directive status information to the
task's Directive Status Word (DSW).

Note that the Executive preserves all task registers when a task
issues a directive.

The user task issues an EMT 377 (generated by the directive) together
with the address of a DPB or a DPB itself, on the top of the issuing
task's stack. When the stack contains a DPB address, the Executive
removes the address after processing the directive, and the DPB itself
remains unchanged. When the stack contains the actual DPB rather than
a DPB address, the Executive removes the DPB from the stack after
processing the directive. ’

The first word of each DPB contains a Directive Identification Code
(DIC) byte, and a DPB size byte. The DIC indicates which directive is
to be performed; the size byte indicates the DPB 1length in words.
The DIC 1is in the low-order byte of the word, and the size is in the
high-order byte.

The DIC is always an odd-numbered value. This allows the Executive to
determine whether the word on the top of the stack (before EMT 377 was
issued) was the address of the DPB (even-numbered value) or the first
word of the DPB (odd-numbered value).

The Executive normally returns control to the instruction following
the EMT. Exceptions to this are directives that result in an exit
from the task that issued them and an Asynchronous System Trap (AST)
exit.

The Executive also clears or sets the Carry bit in the Processor
Status Word (PSW) to indicate acceptance or rejection, respectively,
of the directive. The DSW, addressed symbolically as $DSWl, is set to
indicate a more specific cause for acceptance or rejection of the
directive. The DSW usually has a value of +1 for acceptance and a
range of negative values for rejection (exceptions are success return
codes for the directives CLEF$, SETF$, and GPRT$, among others).
RSX-11M/M-PLUS associate DSW values with symbols, using mnemonics that
report either successful completion or the cause of an error (see

1. The Task Builder resolves the address of $DSW. Users addressing
the DSW with a physical address are not guaranteed compatibility with
IAS and may experience incompatibilities with future RSX-11M releases.

1-2

USING SYSTEM DIRECTIVES

Section 1.3). (The Instrument Society of America (ISA) FORTRAN calls
CALL START and CALL WAIT are exceptions, since ISA requires positive
numeric error codes. See Sections 5.3.57 and 5.3.41 for details; the
specific return values are listed there with each directive.)
In the case of successful Exit directives, the Executive does not, of
course, return control to the task. If an Exit directive fails,
however, control is returned to the task with an error status in the
DSW.
On Exit, the Executive frees task resources as follows:

e Detaches all attached devices

e Flushes the AST queue and despecifies all specified ASTs

e Flushes the receive and receive-by-reference queues

e Flushes the clock queue for outstanding Mark Time requests for
the task

e Closes all open files (files open for write access are locked)

e Detaches all attached regions except in the case of a fixed
task, where no detaching occurs

e Runs down the task's I/O
e Deaccesses the group global event flags for the task's group
e Disconnects from interrupts

e Flushes all outstanding CLI command buffers for the task

® Breaks the connection with any offspring tasks

e Frees the task's memory if the task was not fixed

If the Executive rejects a directive, it usually does not clear or set
any specified event flag. Thus, the task may wait indefinitely if it
indiscriminately executes a Wait For directive corresponding to a
previously issued Mark Time directive that the Executive has rejected.
You should always ensure that a directive has been completed
successfully.

1.3 ERROR RETURNS

As stated above, RSX-11M/M-PLUS associate the error codes with
mnemonics that report the cause of the error. 1In the text of the
manual, the mnemonics are used exclusively. The macro DRERRS, which
is expanded in Appendix B, provides a correspondence between each
mnemonic and its numeric value.

Appendix B also gives the meaning of each error code. In addition,
each directive description in Chapter 5 contains specific,
directive-related interpretations of the error codes.

USING SYSTEM DIRECTIVES

1.4 USING THE DIRECTIVE MACROS

If you are programming in MACRO-11, you must decide how to create the
DPB before you issue a directive. The DPB may either be created on
the stack at run time (see Section 1.4.1.3, which describes the $S
form, of directive) or created in a data section at assembly time (see
Sections 1.4.1.1 and 1.4.1.2, which describe the $ form and $C form,
respectively). If parameters vary and the code must be reentrant, the
DPB must be created on the stack.

Figures 1-1 and 1-2 illustrate the alternative directives and also
show the relationship between the stack pointer and the DPB.

MOV # ADDR,-(SP) DPB
EMT 377
'y
DPB
ITEMS INCREASING
MEMORY
SP ————» | ADDRESSOFDPB | —» SIZE DIC ADDRESSES
STACK
GROWTH

ZK-305-81

Figure 1-1 Directive Parameter Block (DPB) Pointer on the Stack

Mov XX,-(SP)
PUSH REQUIRED
DPB ITEMS ON THE
STACK IN
REVERSE ORDER

MOV (PC)+,-(SP)

.BYTE DICSIZE 4
EMT 377
DPB
ITEMS
INCREASING
SP —————» SIZE DIC MEMORY
ADDRESSES
STACK
GROWTH

¥_308-81
K-306-81

Figure 1-2 Directive Parameter Block (DPB) on the Stack

1-4

USING SYSTEM DIRECTIVES

1.4.1 Macro Name Conventions

When you are programming in MACRO-11l, you use system directives by
including directive macro calls in your programs. The macros for the
RSX-11M directives are contained in the System Macro Library
(LB:[1,1]RSXMAC.SML). The .MCALL assembler directive makes these
macros available to a program. The .MCALL arguments are the names of
all the macros used in the program. For example:

CALLING DIRECTIVES FROM THE SYSTEM MACRO LIBRARY
AND ISSUING THEM.

EYSE TR TR T

.MCALL MRKTS$S,WTSESS

Additional .MCALLs or code

MRKTS$S #1,#1,#%#2,,ERR ;MARK TIME FOR 1 SECOND
WTSESS #1 ;WAIT FOR MARK TIME TO COMPLETE

.
.

Macro names consist of up to four letters, followed by a dollar sign
($) and, optionally, a C or an S. The optional letter or its absence
specifies which of three possible macro expansions the programmer
wants to use.

1.4.1.1 ¢ Form - The $ form is useful for a directive operation that
is to be issued several times from different locations in a
non-reentrant program segment. The $ form is most useful when the
directive is issued several times with varying parameters (one or more
but not all parameters change), or in a reentrant program section when
a directive is issued several times even though the DPB is not
modified. This form produces only the directive's DPB, and must be
issued from a data section of the program. The code for actually
executing a directive that is in the $ form is produced by a special
macro, DIRS (discussed in Section 1.4.2).

Because execution of the directive is separate from the creation of
the directive's DPB:

1. A $ form of a given directive needs to be issued only once
(to produce its DPB).

2. A DIRS macro associated with a given directive can be 1issued
several times without incurring the cost of generating a DPB
each time it is issued.

3. It is easy to access and change the directive's parameters by
labeling the start of the DPB and using the offsets defined
by the directive.

When a program issues the $ form of macro call, the parameters
required for DPB construction must be valid expressions for MACRO-11
data storage instructions (such as .bYTE, .WORD, and .RAD50). You can

alter individual parameters in the DPB. You might do this if you want
to use the directive many times with varying parameters.

USING SYSTEM DIRECTIVES

1.4.1.2 $C Form - Use the $C form when a directive is to be issued
only once. The $C form eliminates the need to push the DPB (created
at assembly time) onto the stack at run time. Other parts of the
program, however, cannot access the DPB because the DPB address is
unknown. (Note, in the $C form macro expansion of Section 1.4.5, that
the new value of the assembler's location counter redefines the DPB
address $S$$ each time an additional $C directive is issued.)

The $C form generates a DPB in a separate p-sectionl called $DPBSS.
The DPB is first followed by a return to the user-specified p-section,
then by an instruction to push the DPB address onto the stack, and
finally by an EMT 377. To ensure that the program reenters the
correct p-section, you must specify the p-section name in the argument
list immediately following the DPB parameters. If the argument is not
specified, the program reenters the blank (unnamed) p-section.

This form also accepts an optional final argument that specifies the
address of a routine to be called (by a JSR instruction) if an error
occurs during the execution of the directive (see Section 1.4.2).

When a program issues the $C form of a macro call, the parameters
required for DPB construction must be valid expressions for MACRO-11
data storage instructions (such as .BYTE, .WORD, and .RADS0). (This
is not true for the p-section argument and the error routine argument,
which are not part of the DPB.)

1.4.1.3 $S Form - Program segments that need to be reentrant should
use the $S form. Only the $S form produces the DPB at run time. The
other two forms produce the DPB at assembly time.

In this form, the macro produces code to push a DPB onto the stack,
followed by an EMT 377. 1In this case, the parameters must be valid
source operands for MOV-type instructions. For a 2-word Radix-50 name
parameter, the argument must be the address of a 2-word block of
memory containing the name. Note that you should not use the Stack
Pointer (or any reference to the Stack Pointer) to address directive
parameters when the $S form is used.2 (In the example in Section
1.4.1, the error routine argument ERR is a target address for a JSR
instruction; see Section 1.4.3.)

Note that in the $S form of the macro, the macro arguments are
processed from right to left. Therefore, when using code of the form:

MACROSS,, (R4)+, (R4)+

the result may be obscure.

i.4.2 DIRS Macro

The DIRS macro allows you to execute a directive with a DPB predefined
by the $ form of a directive macro. This macro pushes the DPB address
onto the stack and issues an EMT 377 instruction.

1. Refer to the PDP-11 MACRG-11 Language Reference Manual for a
description of p-sections (program sections).

2. Subroutine or macro calls can use the stack for temporary s

thereby destroying the positional relationship between SP
parameters.,

teorage,
a the

or
nd

USING SYSTEM DIRECTIVES

The DIR$ macro generates an RSX-11M Executive trap using a predefined
DPB:
Macro Call: DIRS adr,err

adr and err are optional

adr
The address of the DPB. (The address, if specified, must be a
valid source address for a MOV instruction.) If this address is
not specified, the DPB or its address must be on the stack.

err
The address of the error return (see Section 1.4.3). If this
error return is not specified, an error simply sets the carry bit

in the Processor Status Word.

NOTE

DIRS is not a $ form macro, and does not
behave as one. There are no variations
in the spelling of this macro.

1.4.3 Optional Error Routine Address

The $C and $S forms of macro calls and the DIR$ macro can accept an
optional final argument; note that the DIRS$ macro is not an Executive
directive (DIRS$C and DIR$S are not valid macro calls). The argument
must be a valid assembler destination operand that specifies the
address of a user error routine. For example, the DIRS macro

DIRS #DPB, ERROR

generates the following code:

MOV #DPB, - (SP)
EMT 377

BCC .+6

JSR PC, ERROR

o,

Since the $ form of a directive macro does not generate any executable
code, it does not accept an error address argument.

1.4.4 Symbolic Offsets

Most system directive macro calls generate local symbolic offsets
describing the format of the DPB. The symbols are unique to each
directive, and each is assigned an index value corresponding to the
offset of a given DPB element.

Because the offsets are defined symbolically, you can refer to or
modify DPB elements without knowing the offset values. Symbolic
offsets also eliminate the need to rewrite programs if a future
release of RSX-11M changes a DPB specification.

All $ and $C forms of macros that generate DBPs longer than one word
generate local offsets. All informational directives (see Section
6.1.3), including the $S form, generate local symbolic offsets for the
parameter block returned as well.

1-7

USING SYSTEM DIRECTIVES

If the program uses either the $ or $C form and has defined the symbol
$SSGLB (for example $$$GLB=0), the macro generates the symbolic
offsets as global symbols and does not generate the DPB itself. The
purpose of this facility is to enable the use of a DPB defined in a
different module. The symbol $$$GLB has no effect on the expansion of
. $S macros.

When using symbolic offsets, you should use the $ form of directives.

1.4.5 Examples of Macro Calls

The examples below show the expansions of the different macro call
forms.

1. The $ form generates a DPB only, in the current p-section.
MRKTS$ 1,5,2,MTRAP

generates the following code:

.BYTE 23.,5 ; "MARK-TIME" DIC & DPB SIZE
.WORD 1 ; EVENT FLAG NUMBER

-WORD 5 ; TIME INTERVAL MAGNITUDE
-WORD 2 ; TIME INTERVAL UNIT (SECONDS)

-WORD MTRAP AST ENTRY POINT

2. The $C form generates in p-section DPBS a DPB, and in the
specified section the code to issue the directive.

MRKTS$C 1,5,2,MTRAP, PROG1, ERR
generates the following code:

.PSECT $DPBSS

$$8=. DEFINE TEMPORARY SYMBOL
.BYTE 23.,5 "MARK-TIME" DIC & DPB SIZE
.WORD 1 EVENT FLAG NUMBER

.WORD 5 TIME INTERVAL MAGNITUDE
.WORD 2 TIME INTERVAL UNIT (SECONDS)

+WORD MTRAP
. PSECT PROG1

AST ENTRY POINT ADDRESS
RETURN TO THE ORIGINAL PSECT

Ne NS e e Ne we Me e me we wy

MOV #$$$,-(8P) PUSH DPB ADDRESS ON STACK

EMT 377 TRAP TO THE EXECUTIVE

BCC .+6 BRANCH ON DIRECTIVE ACCEPTANCE
JSR PC, ERR ELSE, CALL ERROR SERVICE ROUTINE

3. The $S form generates code to push the DPB onto the stack and
to issue the directive.

MRKTS$S #1,#5,%#2,R2,ERR

generates the following code:

MOV R2,-(SP) ; PUSH AST ENTRY POINT

MOV $#2,-(SP) ; TIME INTERVAL UNIT (SECONDS)

MOV #5,-(SP) ; TIME INTERVAL MAGNITUDE

MOV #1,-(5P) ; EVENT FLAG NUMBER

MOV (PC)+,-(SP) ; AND "MARK-TIME" DIC & DPB SIZE
.BYTE 23.,5 ; ON THE STACK

EMT 377 ; TRAP TO THE EXECUTIVE

BCC .+6 ; BRANCH ON DIRECTIVE ACCEPTANCE
JSR PC, ERR ; ELSE; CALL ERROR SERVICE ROUTINE

USING SYSTEM DIRECTIVES

4. The DIRS macro issues a directive that has a predefined DPB.
DIRS R1, (R3) ; DPB ALREADY DEFINED. DPB ADDRESS IN R1.

generates the following code:

MOV R1,-(SP) ; PUSH DPB ADDRESS ON STACK

EMT 377 ; TRAP TO THE EXECUTIVE

BCC .+ ; BRANCH ON DIRECTIVE ACCEPTANCE
JSR PC, (R3) : ELSE, CALL ERROR SERVICE ROUTINE

1.5 FORTRAN SUBROUTINES

RSX-11M/M-PLUS provide an extensive set of FORTRAN subroutines to
perform system directive operations.

The directive descriptions in Chapter 5 describe the FORTRAN
subroutine calls, as well as the macro calls.

The FORTRAN subroutines fall into three basic groups:

e Subroutines based on the Instrument Society of America (ISA)
Standard ISA 62.1 -- These subroutines are included in the
subroutine descriptions associated with the macro calls (see
Chapter 5).

e Subroutines designed to use and control specific process
control interface devices supplied by DIGITAL and supported by
the RSX-11M/M-PLUS operating systems.

e Subroutines for performing RSX-11M/M-PLUS system directive
operations -- In general, one subroutine is available for each
directive. (Exceptions are the Mark Time and Run directives.
The description of Mark Time includes both CALL MARK and CALL
WAIT. The description of Run includes both CALL RUN and CALL
START.)

All the subroutines described in this manual can be called by FORTRAN
programs compiled by either the FORTRAN IV or FORTRAN IV-PLUS
compiler.

These subroutines can also be called from programs written in the
MACRO-11 assembly language by using PDP-11 FORTRAN calling sequence
conventions. These conventions are described in the IAS/RSX-11
FORTRAN IV User's Guide and in the FORTRAN IV-PLUS User's Guide.

1.5.1 Subroutine Usage

All the subroutines described in this manual are added to the RSX-11M
system object module library when either FORTRAN compiler is generated
for RSX-11M. You call these subroutines by including the appropriate
CALL statement in the FORTRAN program. When the program is linked to
form a task, the Task Builder first checks to see whether each
specified subroutine is wuser defined. If a subroutine is not user
defined, the Task Builder automatically searches for it in the system
object module library. If the subroutine is found, it is included in
the linked task.

1-9

USING SYSTEM DIRECTIVES

1.5.1.1 Optional Arguments - Many of the subroutines described in
this manual have optional arguments. 1In the subroutine descriptions
associated with the directives, optional arguments are designated as
such by being enclosed in square brackets ([]). An argument of this
kind can be omitted if the comma that immediately follows it is
retained. If the argument (or string of optional arguments) is last,
it can simply be omitted, and no comma need end the argument list.
For example, the format of a call to SUB could be the following:

CALL SUB (AA,[BB],[CC],DD[,[EE][,FF]])

In that event, you may omit the arguments BB, CC, EE, and FF in one of
the following ways:

e CALL SUB (AA,,,DD,,)
e CALL SUB (AA,,,DD)

In some cases, a subroutine will use a default value for an
unspecified optional argument. Such default values are noted in each
subroutine description in Chapter 5.

1.5.1.2 Task Names - In FORTRAN subroutines, task names may be up to
six characters 1long. Characters permitted 1in a task name are the
letters A through Z, the numerals 0 through 9, and the special
characters dollar sign ($) and period (.). Task names are stored as
Radix-50 code, which permits up to three characters from the set above
to be encoded in one PDP-11 word. (Radix-50 is described in detail in
the IAS/RSX-11 FORTRAN IV User's Guide and the FORTRAN IV-PLUS User's
Guide.)

FORTRAN subroutine calls require that a task name be defined as a
2-word variable or array that contains the task name as Radix-50 code.
This variable may be any of the following:

e REAL
e INTEGER*4
® An INTEGER*2 array of 2 elements

This variable may be defined at program compilation time by a DATA
statement, which gives the real variable an initial value (a Radix-50
constant) .

For example, if a task name CCMFl is to be used in a system directive
call, the task name could be defined and used as follows:

DATA CCMF1/5RCCMF1/

CALL REQUES (CCMF1)

A program may define task names during execution by using the IRAD50
subroutine or the RAD50 function as described 1in the IAS/RSX-11
FORTRAN IV User's Guide or the FORTRAN IV-PLUS User's Guide.

USING SYSTEM DIRECTIVES

1.5.1.3 Integer Arguments - All the subroutines described in this
manual assume that integer arguments are INTEGER*2 type arguments.
Both the FORTRAN IV and FORTRAN IV-PLUS systems normally treat an
integer variable as one PDP-11 storage word, provided that its value
is within the range -32768 to +32767. However, if you specify the /I4
option switch when compiling a program, ensure that all integer array
arguments used in these subroutines are explicitly specified as type
INTEGER*2.

1.5.1.4 GETADR Subroutine - Some subroutine calls include an argument
described as an integer array. The integer array contains some values
that are the addresses of other variables or arrays. Since the
FORTRAN language does not provide a means of assigning such an address
as a value, you must use the GETADR subroutine described below.

Calling Segquence:
CALL GETADR (ipm,[argl]l,{arg2l,...{argn])

ipm
An array of dimension n.

argl,...argn
Arguments whose addresses are to be inserted in ipm. Arguments
are inserted 1in the order specified. If a null argument is
specified, then the corresponding entry in ipm is left unchanged.
When the argument is an array name, the address of the first
array element is inserted into ipm.

Example:

DIMENSION IBUF(80),IO0OSB(2),IPARAM(6)

CALL GETADR (IPARAM(1l),IBUF(1))
IPARAM(2)=80
CALL QIO (IREAD,LUN,IEFLAG,IOSB,IPARAM, IDSW)

In this example, CALL GETADR enables you to specify a buffer address
in the CALL QIO directive (see Section 5.3.44).

1.5.2 The Subroutine Calls

Table 1-1 is a list of the FORTRAN subroutine calls (and corresponding
macro calls) associated with system directives (see Chapter 5 for
detailed descriptions).

For some directives, notably Mark Time (CALL MARK), both the standard
FORTRAN-IV subroutine call and the ISA standard call are provided.
Other directives, however, are not available to FORTRAN tasks (for
example, Specify Floating Point Exception AST [SFPA$] and Specify SST
Vector Table For Task [SVTKS]).

USING SYSTEM DIRECTIVES

Table 1-1
FORTRAN Subroutines and Corresponding Macro Calls
Directive Macro Call FORTRAN Subroutine
Abort Task ABRTS CALL ABORT
Alter Priority ALTPS CALL ALTPRI
Assign LUN ALUNS CALL ASNLUN
Attach Region ATRGS CALL ATRG
Cancel Time Based CRSQ$S CALL CANALL

Initiation Requests

Cancel Mark CMKTS$ CALL CANMT
Time Requests

Clear Event Flag CLEFS$ CALL CLREF
Connect CNCTS$ CALL CNCT
Create Address Window CRAWS CALL CRAW
Create Group Global CRGF$ CALL CRGF

Event Flags

Create Region CRRGS CALL CRRG

Declare Significant Event DECLSS CALL DECLAR
Disable AST Recognition DSARSS CALL DSASTR
Disable Checkpointing DSCPS$S CALL DISCKP
Detach Region DTRGS CALL DTRG
Eliminate Address Window ELAWS CALL ELAW
Eliminate Group Global ELGFS$ CALL ELGF

Event Flags

Emit Status EMSTS CALL EMST

Enable AST Recognition ENARSS CALL ENASTR
Enable Checkpointing ENCPSS CALL ENACKP
Exit If EXIFS$ CALL EXITIF
Exit With Status EXSTS$ CALL EXST

Extend Task EXTKS$ CALL EXTTSK
Get Command for GCCIS$ CALL GTCMCI

Command Interpreter

(continued on next page)

1-12

USING SYSTEM DIRECTIVES

Table 1-1 (Cont.)
FORTRAN Subroutines and Corresponding Macro Calls

Directive Macro Call FORTRAN Subroutine
Get Command GCIIS CALL GETCII
Interpreter Information
Get LUN Information GLUNS CALL GETLUN
Get Mapping Context GMCXS CALL GMCX
Get MCR Command Line GMCRS CALL GETMCR
Get Partition Parameters GPRTS$ CALL GETPAR
Get Region Parameters GREGS CALL GETREG
Get Sense Switches GSSWSS CALL READSW
CALL SSWTCH
Get Task Parameters GTSKS$ CALL GETTSK
Get Time Parameters GTIMS CALL GETTIM
Inhibit AST Recognition IHARSS CALL INASTR
Map Address Window MAPS CALL MAP
Mark Time MRKTS CALL MARK
CALL WAIT (ISA Standard
call)
Queue I/0 Request QI0$ CALL QIO
Queue I/0 Request And Wait QIOWS CALL WTQIO
Read All Event Flags RDAFS
RDXF$S single, local, common,

or group-global event
flag can be read by a
FORTRAN task)

Receive By Reference RREFS$ CALL RREF
Receive Data RCVD$ CALL RECEIV
Receive Data Or Exit RCVXS$ CALL RECOEX
Receive Data Or Stop RCST$ CALL RCST

Request and Pass Offspring RPOIS CALL RPOI
Information

(continued on next page)

USING SYSTEM DIRECTIVES

Table 1-1 (Cont.)
FORTRAN Subroutines and Corresponding Macro Calls

Directive Macro Call FORTRAN Subroutine
Request RQSTS CALL REQUES
Resume RSUMS CALL RESUME
Run RUNS CALL RUN
CALL START (ISA
Standard
call)
Send By Reference SREFS CALL SREF
Send Data SDATS CALL SEND
Send Message SMSG$ CALL SMSG
Send Next Command SNXC$ CALL SNXC
Send, Request And Connect SDRCS CALL SDRC

Set Command Line Interpreter SCLIS$ CALL SCLI

Send Data Redquest and Pass OCB SDRPS CALL SDRP

Set Event Flag SETFS$ CALL SETEF

Set System Time STIMS CALL SETTIM
Spawn SPWNS$ CALL SPAWN
Specify Power Recovery AST SFPAS EXTERNAL SUBNAM

CALL PWRUP (SUBNAM)

(to establish an AST)
CALL PWRUP

(to remove an AST)

Specify Requested Exit AST SREAS CALL SREA
SREXS CALL SREX
Stop STOPSS CALL STOP
Stop For Logical OR Of STLOS CALL STLOR
Event Flags
Stop For Single Event .Flag STSES CALL STOPFR
Suspend SPNDSS CALL SUSPND
Task Exit EXITSS CALL EXIT
Unlock Group Global Event ULGF$S CALL ULGF
Flags
Unmap Address Window UMAPS CALL UNMAP

{continued on nex

ot
T

o1}
)

[(]
~

1-14

USING SYSTEM DIRECTIVES

Table 1-1 (Cont.)
FORTRAN Subroutines and Corresponding Macro Calls

Directive Macro Call FORTRAN Subroutine

Unstop USTPS CALL USTP

Wait For Single Event Flag WTSES CALL WAITFR

Wait For Logical OR Of WTLOS CALL WFLOR

Event Flags

Wait For Significant Event WSIGSS CALL WFSNE
NOTE

The following directives are not
available as FORTRAN subroutines:

Directive Macro Call
AST Service Exit ASTXS$S
Connect To Interrupt Vector CINTS

KR

Specify Command Arrival AST SCAAS

Specify Floating Point SFPAS
Exception AST

Specify Receive By Reference AST SRRAS

Specify Receive Data AST SRDAS
Specify SST Vector Table For SVDB$
Debugging Aid

Specify SST Vector Table SVTKS
For Tasks

USING SYSTEM DIRECTIVES

1.5.3 Error Conditions

Each subroutine call includes an optional argument that specifies the
integer to receive the Directive Status Word (ids). When you specify
this argument, the subroutine returns a value that indicates whether
the directive operation succeeded or failed. If the directive failed,
the value indicates the reason for the failure. The possible values
are the same as those returned to the Directive Status Word (DSW) in
MACRO-11 programs (see Appendix B), except for the two ISA calls, CALL
WAIT and CALL START. The ISA calls have positive numeric error codes
(see Sections 5.3.41 and 5.3.57).

In addition, two types of error are reported by means of the FORTRAN
Object Time System (OTS) diagnostic messages. Both of these errors
result in the termination of the task. The error conditions are:

e DIRECTIVE: MISSING ARGUMENT (S)
This message indicates that at least one necessary argument
was missing from a call to a system directive subroutine (OTS
error number 100).

e DIRECTIVE: INVALID EVENT FLAG NUMBER
This message indicates that an event flag number in a call to
STLOR (Stop for Logical OR of Event Flags), or WFLOR (Wait For
Logical OR Of Event Flags) was not in the range 1 to 96 (OTS
error number 101).

1.5.4 AST Service Routines

The following FORTRAN callable routines provide support for ASTs in
FORTRAN programs:

e CALL CNCT

e CALL PWRUP

e CALL SDRC

e CALL SPAWN

e CALL SREA

e CALL SREX
Use great caution when coding an AST routine 1in FORTRAN. The
following types of FORTRAN operations may not be performed at AST

state:

e FORTRAN I/O of any kind (including ENCODE and DECODE
statements and internal file I/O)

FORTRAN I/0O is not reentrant, therefore the information in
the impure data area may be destroyed.

e Floating-point operations

The floating-point processor's context is not saved while
in AST state. Since the scientific subroutines use

floating-point operations, they may not be called at AST
state.

USING SYSTEM DIRECTIVES

e Traceback information in the generated code

Use of traceback corrupts the error recovery in the FORTRAN
run time library. Any FORTRAN modules that will be called
at AST state must be compiled without traceback. See the
FORTRAN IV or FORTRAN-77 User's Guide for more information.

e Virtual array operations

Use of virtual arrays at AST state remaps the current array
such that any operations at non-AST state will not be
executed correctly.

e Subprograms may not be shared between AST processing and
normal task processing.

e EXIT or STOP statements with files open

FORTRAN flushes the task's buffers, which could be in an
intermediate state. Therefore, data might be lost if any
output files are open when the EXIT or STOP is executed.

You can EXIT or STOP at AST state if no output files are
open.

Since the message put out by STOP uses a different
mechanism from the normal FORTRAN I/O routines, the act of
putting out this message does not corrupt impure data in
the run time system. Therefore, you can issue a STOP
statement at AST state unless there are output files open.

Note also the following:

e Any execution time error at AST state will corrupt the
program.

e Use extreme care if the FORTRAN task is overlayed. Both the
interface routine and the actual code of the FORTRAN AST
routine must be located in the root segment. Any routines
that are called at AST state must also be in the root segment.

1.6 TASK STATES

Many system directives cause a task to change from one state to
another. There are two basic task states in RSX-11M/M-PLUS: dormant
and active. The active state has three substates: ready-to-run,
blocked, and stopped.

The Executive recognizes the existence of a task only after it has
been successfully installed and has an entry in the System Task
Directory (STD). (Task installation is the process whereby a task is
made known to the system; see the RSX-11M/M-PLUS MCR Operations
Manual.) Once a task has been 1installed, it 1is either dormant or
active. These states are defined as follows:

e Dormant -- Immediately following the processing of an Install
command by the Monitor Console Routine, a task is known to the
system, but is dormant. A dormant task has an entry 1in the
STD, but no request has been made to activate it.

1.6.1

USING SYSTEM DIRECTIVES

Active -- A task is active from the time it is requested until
the time it exits. Requesting a task means issuing the RQSTS,
RUNS, SPWN$, SDRCS, VSRECS, RPOIS, or SDRP$ macro, or an MCR
Run command. An active task 1is eligible for scheduling,
whereas a dormant task is not.

The three substates of an active task are as follows:

a. Ready-to-run -- A ready-to-run task competes with other
tasks for CPU time on the basis of priority. The highest
priority ready-to-run task obtains CPU time and thus
becomes the current task.

b. Blocked -- A blocked task is unable to compete for CPU
time for synchronization reasons or because a needed
resource is not available. Task priority effectively
remains unchanged, allowing the task to compete for memory
space.

c. Stopped -- A stopped task is unable to compete for CPU
time because of pending I/O completion, event flag(s) not
set, or because the task stopped itself. When stopped, a
task's priority effectively drops to zero and the task can
be checkpointed by any other task, regardless of that
task's priority. If an AST occurs for the stopped task,
its normal task priority is restored only for the duration
of the AST routine execution; once the AST is completed,
task priority returns to zero.

Task State Transitions

Dormant to Active - The following commands or directives cause the
Executive to activate a dormant task:

A RUNS directive
RQSTS directive

A
A SPWNS$ directive
A

SDRCS directive

e A RPOIS$ directive
® A SDRP$ directive
e An MCR or DCL Run command
Ready-to-Run to Blocked - The following events cause an active,

ready—-to-run task to become blocked:

A SPND$ directive
An unsatisfied Wait For condition

Checkpointing of a task out of memory by the Executive

USING SYSTEM DIRECTIVES

Ready-to-Run to Stopped - The following events cause an active,
ready-to-run task to become stopped:

P$S directive is executed, or an RCSTS$, SDRPS, GCCIS, or
. directive is issued when no data packet is available.

e An unsatisfied Stop For condition.

e An unsatisfied Wait For condition while the task has
outstanding buffered I/0.1

Blocked to Ready-to-Run - The following events return a blocked task
to the ready-to-run state:

e A RSUMS directive issued by another task
e An MCR Resume command or a DCL Continue command
@ A Wailt For condition is satisfied

e The Executive reads a checkpointed task into memory

Stopped to Ready-to-Run - The following events return a stopped task
to the ready-to-run state, depending upon how the task became stopped:

e A task stopped by the STOP$, RCSTS,
unstopped by USTP$ directive execu
command or DCL START command.

. directive becomes
on, or an MCR Unstop

e A Wait For condition is satisified for a task with outstanding
buffered 1/0.

e A task stopped for an event flag (or flags) becomes unstopped
when the specified event flag (or flags) becomes (or become)
set.

Active to Dormant - The following events cause an active task to
become dormant:

e An EXITSS, EXIFS, RCVXS, directive, or a RREF$ or
GCCI$ directive that specifies the exit option

e An ABRTS directive
e An MCR or DCL Abort command

e A Synchronous System Trap (SST) for which a task has not
specified a service routine

Blocked to Stopped - The following event causes a task that is blocked
due to an unsatisfied Wait For condition to become stopped:

e The task initiates buffered I/0O at AST state and then exits
from AST state.

l. Only in systems at support the checkpointing of tasks during
buffered 1I/0. An I/0 request can be buffered only when the task is
checkpointable and the region that I/0 is being done to/from is

checkpointable.

USING SYSTEM DIRECTIVES

Stopped to Blocked - The following event causes a task that is stopped
due to an unsatisfied Wait For condition and outstanding buffered I/0
to return to a blocked state:

e Completion of all outstanding buffered I/0

1.6.2 Removing an Installed Task

You remove an installed task from the system by issuing the MCR or DCL
Remove command from a privileged terminal. Refer to the
RSX-11M/11M-PLUS MCR Operations Manual or the RSX-11M/M-PLUS Command
Language Reference Manual.

1.8 DIRECTIVE RESTRICTIONS FOR NONPRIVILEGED TASKS

Nonprivileged tasks cannot issue certain Executive directives, except
as listed below:

Directive Macro Call Comments
Rbort Task ABRTS In systems that support
multiuser protection, a

nonprivileged task can only
abort tasks with the same
TI: as the task issuing the

directive.
Alter Priority ALTPS In systems that support
multiuser protection, a

nonprivileged task can only
alter 1its own priority to
values less than or equal to

the task's installed
priority.
Cancel Time Based CSRQ$ Cannot be issued by a
Initiation Requests nonprivileged task in
systems that support

multiuser protection except
for tasks with the same TI:
as the issuing task.

Directive

Connect To interrupt
Vector

Set Command Line
Interpreter

USING SYSTEM DIRECTIVES

Macro Call

CINTS

SCLIS

Comments

Cannot be issued by a
nonprivileged task in mapped
systems.

Cannot be issued by a
nonprivileged task under any
circumstances.

CHAPTER 2

SIGNIFICANT EVENTS, SYSTEM TRAPS, AND STOP-BIT SYNCHRONIZATION

This chapter introduces the concept of significant events and
describes the ways in which your code can make use of event flags,
synchronous and asynchronous system traps, and stop-bit
synchronization.

2.1 SIGNIFICANT EVENTS

A significant event is a change in system status that causes the
Executive to reevaluate the eligibility of all active tasks to run
(For some significant events, specifically those in which the current
task becomes ineligible to run, only those tasks of lower priority are
examined.) A significant event is usually caused (either directly or
indirectly) by a system directive issued from within a task.
Significant events include the following:

e An I/O completion
® A task exit
e The execution of a Send Data directive (see Section 5.3.61)

e The execution of a Send Data, Request and Pass OCB directive
(see Section 5.3.63)

e The execution of a Send, Request, and Connect directive (see
Section 5.3.62)

e The execution of a Send By Reference or a Receive By Reference
directive (see Sections 5.3.74 and 5.3.55)

e The execution of an Alter Priority directive (see Section
5.3.2)

e The removal of an entry from the clock queue (for instance,
resulting from the execution of a Mark Time directive or the
issuance of a rescheduling request)

® The execution of a Declare Significant Event directive (see
Section 5.3.16)

e The execution of the round-robin scheduling algorithm at the
end of a round-robin scheduling interval

® The execution of an Exit, an Exit With Status, or an Emit
Status directive

SIGNIFICANT EVENTS, SYSTEM TRAPS, AND STOP-BIT SYNCHRONIZATION

2.2 EVENT FLAGS

Event flags are a means by which tasks recognize specific events.
(Tasks also use Asynchronous System Traps (ASTs) to recognize specific
events. See Section 2.3.3.) In requesting a system operation (such as
an I/O transfer), a task may associate an event flag with the
completion of the operation. When the event occurs, the Executive
sets the specified flag. Several examples later in this section
describe how tasks can use event flags to coordinate task execution.

Ninety-six event flags are available to enable tasks to distinguish
one event from another. Each event flag has a corresponding unique
Event Flag Number (EFN) Numbers 1 through 32 form a group of flags
that are unique to each task and are set or cleared as a result of
that task's operation. Numbers 33 through 64 form a second group of
flags that are common to all tasks, hence their name "common flags."
Common flags may be set or cleared as a result of any task's
operation. The 1last eight flags in each group, local flags (25-32)
and common flags (57-64), are reserved for use by the system. Numbers
65 through 96 form the third group of flags, known as "group-global
event flags." You can use these flags in any application where common
event flags can be used; however, only tasks running under UICs
containing the group code specified when the group-global event flags
were created can use them. Four directives (Create Group Global Event
Flags, Eliminate Group Global Event Flags, Unlock Group Global Event
Flags, and Read Extended Event Flags) provide the Executive support
for implementing group-global event flags.

Tasks can use the common or group global flags for intertask
communication or their own local event flags internally. They can
set, clear, and test event flags by using Set Event Flag (SETFS$),
Clear Event Flag (CLEF$), and Read All Event Flags (RDAFS$) directives.
(The Read All Event Flags directive will not return the group-global
event flags. When these flags are in use, read all event flags using
the Read Extended Event Flags (RDXFS$) directive.)

Take great care when setting or «clearing event flags, especially
common and group global flags. Erroneous or multiple setting and
clearing of event flags can result in obscure software faults. A
typical application program can be written without explicitly
accessing or modifying event flags, since many of the directives can
implicitly perform these functions. The Send Data (SDATS), Mark Time
(MRKT$), and the I/O operations directives can all implicitly alter an
event flag.

Examples 1 and 2 below illustrate the use of common event flags
(33-64) to synchronize task execution. Examples 3 and 4 illustrate
the use of local flags (1-32).

Example 1

Task B clears common event flag 35 and then blocks itself by
issuing a Wait For directive that specifies common event flag 35.

Subsequently another task, Task A, specifies event flag 35 in a
Set Event Flag directive to inform Task B that it may proceed.
Task A then issues a Declare Significant Event directive to
ensure that the Executive will schedule Task B.

Example 2

In order to synchronize the transmission of data between Tasks A
and B, Task A specifies Task B and common event flag 42 in a Send
Data directive.

2=-2

SIGNIFICANT EVENTS, SYSTEM TRAPS, AND STOP-BIT SYNCHRONIZATION

Task B has specified flag 42 in a Wait For directive. When Task
A's Send Data directive has caused the Executive to set flag 42
and to cause a significant event, Task B proceeds and issues a
Receive Data directive because its Wait For condition has been
satisfied.

Example 3

A task contains a Queue I/0 Request directive and an associated
Wait For directive; both directives specify the same local event
flag. When the task queues its I/O request, the Executive clears
the local flag. If the requested I/0O is incomplete when the task
issues the Wait For directive, the Executive blocks the task.

When the requested I/O has been completed, the Executive sets the
local flag and causes a significant event. The task then resumes
its execution at the instruction that follows the Wait For
directive. Using the 1local -‘event flag in this manner ensures
that the task does not manipulate incoming data until the
transfer is complete.

Example 4

A task specifies the same local event flag in a Mark Time and an
associated Wait For directive. When the Mark Time directive is
issued, the Executive first clears the local flag and
subsequently sets it when the indicated time interval has
elapsed.

If the task issues the Wait For directive before the 1local flag
has been set, the Executive blocks the task, which resumes when
the flag is set at the end of the proper time interval. If the
flag has been set first, the directive is a no-op and the task is
not blocked.

Specifying an event flag does not mean that a Wait For directive must
be 1issued. Event flag testing can be performed at any time. The
purpose of a Wait For directive is to stop task execution wuntil an
indicated event occurs. Hence, it is not necessary to issue a Wait
For directive immediately following a Queue I/O Request directive or a
Mark Time directive.

If a task issues a Wait For directive that specifies an event flag
that 1is already set, the blocking condition is immediately satisfied
and the Executive immediately returns control to the task.

Tasks can issue Stop For directives instead of Wait For directives.
When this 1is done, an event flag condition not satisfied will result
in the task's being stopped instead of being blocked until the event
flag(s) 1is set. A task that is blocked still competes for memory
resources at its running priority. A task that 1is stopped competes
for memory resources at priority O.

The simplest way to test a single event flag is to issue the directive
CLEFS or SETF$. Both these directives can cause the following return
codes:

IS.CLR - Flag was previously clear

IS.SET - Flag was previously set

2-3

SIGNIFICANT EVENTS, SYSTEM TRAPS, AND STOP-BIT SYNCHRONIZATION

For example, if a set common event flag indicates the completion of an
operation, a task can issue the CLEF$ directive both to read the event
flag and simultaneously to reset it for the next operation. If the
event flag was previously clear (the current operation was
incomplete), the flag remains clear.

2.3 SYSTEM TRAPS

System traps are transfers of control (also called software
interrupts) that provide tasks with a means of monitoring and reacting
to events. The Executive initiates system traps when certain events
occur. The trap transfers control to the task associated with the
event and gives the task the opportunity to service the event by
entering a user-written routine.

There are two kinds of system traps:

e Synchronous System Traps (SSTs) —-- SSTs detect events directly
associated with the execution of program instructions. They
are synchronous because they always recur at the same point in
the program when trap-causing instructions occur. For
example, an illegal instruction causes an SST.

e Asynchronous System Traps (ASTs) -- ASTs detect events that
occur asynchronously to the task's execution. That is, the
task has no direct control over the precise time that the
event -- and therefore the trap -- may occur. The completion
of an I/0 transfer may cause an AST to occur, for example.

A task that uses the system trap facility issues system directives
that establish entry points for user-written service routines. Entry
points for SSTs are specified in a single table. AST entry points are
set by individual directives for each kind of AST. When a trap
condition occurs, the task automatically enters the appropriate
routine (if its entry point has been specified).

2.3.1 Synchronous System Traps (SSTs)
SSTs can detect the execution of:
e Illegal instructions
e Instructions with invalid addresses
e Trap instructions (TRAP, EMT, IOT, BPT)
® FIS floating-point exceptions (PDP-11/40C only)

The user can set up an SST vector table, containing one entry per SST
type. Each entry is the address of an SST routine that services a
particular type of SST (a routine that services illegal instructions,
for example). When an SST occurs, the Executive transfers control to
the routine for that type of SST. If a corresponding routine is not
specified in the table, the task is aborted. The SST routine enables
the user to process the failure and then return to the interrupted
code. Note that if a debugging aid and the user's task both have an
SST vector enabled for a given condition, the debugging aid vector is
referenced first to determine the service routine address.

SIGNIFICANT EVENTS, SYSTEM TRAPS, AND STOP-BIT SYNCHRONIZATION

SST routines must always be reentrant if there is a possibility that
an SST can occur within the SST routine itself. Although the
Executive initiates SSTs, the execution of the related service
routines is indistinguishable from the task's normal execution. An
AST or another SST can therefore interrupt an SST routine.

2.3.2 SST Service Routines

The Executive initiates SST service routines by pushing the task's
Processor Status (PS), Program Counter (PC), and trap-specific
parameters onto the task's stack. After removing the trap-specific
parameters, the service routine returns control to the task by issuing
an RTI or RTT instructicn. Note that the task's general purpose
registers RO-R5 and SP are not saved. If the SST routine makes use of
them, it must save and restore them itself.

To the Executive, SST routine execution is indistinguishable from
normal task execution, so that all directive services are available to
an SST routine. An SST routine can remove the interrupted PS and PC
from the stack and transfer control anywhere in the task; the routine
does not have to return control to the point of interruption. Note
that any operations performed by the routine (such as the modification
of registers or the DSW, or the setting or clearing of event flags)
remain in effect when the routine eventually returns control to the
task.

A trap vector table within the task contains all the service routine
entry points. You can specify the SST vector table by means of the
Specify SST Vector Table For Task directive or the Specify SST Vector
For Debugging Aid directive. The trap vector table has the following
format:

Associated
Word Offest Vector Trap

0 S.COAD 4 0dd or nonexistent memory error
(Also, on some PDP-11 processors —-
for example, PDP 11/45 -- an illegal
instruction traps here rather than
through word 04).

1 S.CSGF 250 Memory protect violation

2 S.CBPT 14 T-bit trap or execution of a BPT
instruction

3 S.CIO0T 20 Execution of an IOT instruction

4 S.CILI 10 Execution of a reserved instruction

5 S.CEMT 30 Execution of a non-RSX EMT
instruction

6 S.CTRP 34 Execution of a TRAP instruction

7 S.CFLT 244 Synchronous floating-point exception

(PDP-11/40 only)

SIGNIFICANT EVENTS, SYSTEM TRAPS, AND STOP-BIT SYNCHRONIZATION

A zero appearing in the table means that no entry point is specified.
An odd address 1in the table causes an SST to occur when another SST
tries to use that particular address as an entry point. If an SST
occurs and an associated entry point is not specified in the table,
the Executive aborts the task.

An even vector entry causes the SST routine to be executed in the same
mode (either wuser or supervisor) that the processor was in when the
SST vector was specified. An odd vector entry causes the SST routine
to be executed in the other mode. For example, if the processor was
in supervisor mode and the vector entry was odd, the SST routine is
executed in user mode.

Depending on the reason for the SST, the task's stack may also contain
additional information, as follows:

Memory protect violation (complete stack)

SP+10 -- PS

SP+06 -- PC

SP+04 -~ Memory protect status register (SR0)1

SP+02 -- Virtual PC of the faulting instruction (SR2)l
SP+00 -- Instruction backup register (SR1)1

TRAP instruction or EMT other than 377 (and 376 in the case of
unmapped tasks and mapped privileged tasks) (complete stack)

SP+04 -- PS
SP+02 -- PC
SP+00 -- Instruction operand (low-order byte) multiplied by 2,

non-sign-extended

All items except the PS and PC must be removed from the stack before
the SST service routine exits.

2.3.3 Asynchronous System Traps (ASTs)

The primary purpose of an AST is to inform the task that a certain
event has occurred-for example, the completion of an I/O operation.
As soon as the task has serviced the event, it can return to the
interrupted code.

Some directives can specify both an event flag and an AST; with these
directives, ASTs can be used as an alternative to event flags or the
two can be used together. Therefore, you can specify the same AST
routine for several directives, each with a different event flag.
Thus, when the Executive passes control to the AST routine, the event
flag can determine the action required.

AST service routines must save and restore all registers used. If the
registers are not restored after an AST has occurred, the task's
subsequent execution may be unpredictable.

Although not able to distinguish execution of an SST routine from task
execution, the Executive 1is aware that a task is executing an AST
routine. An AST routine can be interrupted by an SST routine, but not
by another AST routine.

l. For details of SRO, SR1l, and SR2, see the section on the memory
management unit in the appropriate PDP-11 processor handbook.

2-6

SIGNIFICANT EVENTS, SYSTEM TRAPS, AND STOP-BIT SYNCHRONIZATION

The following notes describe general characteristics and uses of ASTs:

e If an AST occurs while the related task is executing, the task
is interrupted so that the AST service routine can be
executed.

e If an AST occurs while another AST 1is being processed, the
Executive queues the latest AST (First-In-First-Out or FIFO).
The task then processes the next AST in the queue when the
current AST service 1is complete (unless AST recognition was
disabled by the AST service routine).

o If a task is suspended or stopped when an associated AST
occurs, the task remains suspended or stopped after the AST
routine has been executed, unless it is explicitly resumed or
unstopped either by the AST service routine itself, or by
another task (the MCR and DCL Resume or UNSTOP command, for
example) .

e If an AST occurs while the related task 1is waiting (or
stopped) for an event flag to be set (a Wait For (Stop For)
directive), the task continues to wait after execution of the
AST service routine unless the event flag is set upon AST
exit.

e If an AST occurs for a checkpointed task, the Executive queues
the AST (FIFO), brings the task into memory, and then
activates the AST when the task returns to memory.

e The Executive allocates the necessary dynamic memory when an
AST is specified. Thus, no AST condition lacks dynamic memory
for data storage when it actually occurs. The AST re-uses the
storage allocated for I/0 and Mark Time directives.
Therefore, no additional dynamic storage is required.

e Two directives, Disable AST Recognition and Enable AST
Recognition, allow a program to dqueue ASTs for subsequent
execution during critical sections of code. (A critical
section might be one that accesses data bases also accessed by
AST service routines, for example.) If ASTs occur while AST
recognition 1s disabled, they are queued (FIFO) and then
processed when AST recognition is enabled.

2.3.4 AST Service Routines

When an AST occurs, the Executive pushes the task's Wait For mask
word, the DSW, the PS, and the PC onto the task's stack. This
information saves the state of the task so that the AST service
routine has access to all the available Executive services. The
preserved Wait For mask word allows the AST routines to establish the
conditions necessary to unblock the waiting task. Depending on the
reason for the AST, the stack may also contain additional parameters.
Note that the task's general purpose registers RO-R5 and SP are not
saved. If the routine makes use of them, it must save and restore
them itself.

On RSX-11IM systems that support stop-bit synchronization or
checkpointing during buffered I/0 and all RSX-11M-PLUS systems, the
Wait For mask word comes from the offset T.EFLM in the task's Task
Control Block (TCB). On systems that do not support those features,
the Wait For mask word comes from the offset H.EFLM in the task's
header. Its value and the event flag range to which it corresponds

SIGNIFICANT EVENTS, SYSTEM TRAPS, AND STOP-BIT SYNCHRONIZATION

depend on the last Wait For or Stop For directive issued by the task.
For example, if the 1last such directive issued was Wait For Single
Event Flag 42, the mask word has a value of 1000(8) and the event flag
range is from 33 to 48. Bit 0 of the mask word represents flag 33,
bit 1 represents flag 34, and so on.

The Wait For mask word is meaningless if the task has not issued any
type of Wait For or Stop For directive.

Your code should not attempt to modify the Wait For mask while in the
AST routine. For example, putting a zero in the Wait For mask results
in an unclearable Wait For state.

After processing an AST, the task must remove the trap-dependent
parameters from its stack; that is, everything from the top of the
stack down to, but not including, the task's Directive Status Word.
It must then issue an AST Service Exit directive with the stack set as
indicated in the description of that directive (see Section 5.3.4).
When the AST service routine exits, it returns control to one of two
places: another AST, or the original task.

There are 13 variations on the format of the task's stack, as follows:

e If a task needs to be notified when a Floating Point Processor
exception trap occurs, it issues a Specify Floating Point
Processor Exception AST directive. If the task specifies this
directive, an AST will occur when a Floating Point Processor
exception trap occurs. The stack will contain the following

values:
SP+12 -- Event flag mask word
SP+10 -- PS of task prior to AST
SP+06 -- PC of task prior to AST
SP+04 -- Task's Directive Status Word
SP+02 -~ Floating exception code
SP+00 -- Floating exception address

NOTE

Refer to the appropriate processor
handbook for a description of the FPU
exception code values.

e If the task needs to be notified of power failure recoveries,
it issues a Specify Power Recovery AST directive. &an AST will
then occur when the power is restored if the task 1is not
checkpointed. The stack will contain the following values:

SP+06 -- Event flag mask word

SP+04 -- PS of task prior to AST
SP+02 -- PC of task prior to AST
SP+00 -~ Task's Directive Status Word

e If a task needs to be notified when it receives either a
message or a reference to a common area, it issues either a
Specify Receive Data AST or a Specify Receive By Reference AST
directive. An AST will occur when the message or common
reference is sent to the task. The stack will contain the
following values:

SIGNIFICANT EVENTS, SYSTEM TRAPS, AND STOP-BIT SYNCHRONIZATION

SP+06 -- Event flag mask word

SP+04 -- PS of task prior to AST
SP+02 -- PC of task prior to AST
SP+00 -- Task's Directive Status Word

e When a task queues an I/O request and specifies an appropriate
AST service entry point, an AST will occur upon completion of
the I/0 request. The task's stack will contain the following

values:
SP+10 -- Event flag mask word
SP+06 -- PS of task prior to AST
SP+04 -- PC of task prior to AST
SP+02 —- Task's Directive Status Word
§P+00 -- Address of I/0 status block for I/0 request (or

zero if none was specified)

e When a task issues a Mark Time directive and specifies an
appropriate AST service entry point, an AST will occur when
the indicated time interval has elapsed. The task's stack
will contain the following values:

SP+10 -- Event flag mask word

SP+06 -- PS of task prior to AST

SP+04 -- PC of task prior to AST

SP+02 -- Task's Directive Status Word

SP+00 -- Event flag number (or zero if none was
specified)

e An offspring task, connected by a Spawn, Connect, or Send,
Request And Connect directive, returns status to the connected
(parent) task(s) upon exiting by the Exit AST. The parent
task's stack contains the following values:

SP+10 -- Event flag mask word

SP+06 -—- PS of task prior to AST
SP+04 -- PC of task prior to AST
SP+02 -- Task's Directive Status Word
SP+00 -- Address of exit status block

e If a command arrives for a CLI, the Command Arrival AST
routine is entered. The stack contains:

SP+10 -- Event flag mask word

SP+06 -- PS of task prior to AST
SP+04 -- PC of task prior to AST
SP+02 -- Task's Directive Status Word
SP+00 -- Command buffer address

SIGNIFICANT EVENTS, SYSTEM TRAPS, AND STOP-BIT SYNCHRONIZATION

: of task prior to AST
PC of task prior to AST
‘Task's Directive Status Word

e If a task becomes aborted via directive, DCL or MCR when the
Specify Requested Exit AST (SREAS) is in effect, the abort AST
is entered with the task's stack containing the following

values:

2-10

SIGNIFICANT EVENTS, SYSTEM TRAPS, AND STOP-BIT SYNCHRONIZATION

SP+06 -- Event flag mask word

SP+04 -- PS of task prior to AST
SP+02 -- PC of task prior to AST
SP+00 -- Task's Directive Status Word

e If a task becomes aborted by directive, DCL, or MCR when the
Extended Specify Requested Exit AST (SREX$) is in effect, the
abort AST is entered. The task's stack contains the following

values:
SP+12 -- Event flag mask word
SP+10 -- PS of task prior to AST
SP+06 -- PC of task prior to AST
SP+04 -- DSW of task prior to AST
SP+02 == Trap dependent parameter
SP+00 ~- Number of bytes to add to SP to clean the stack

e If a task issues a QIO IO.ATA function to the full-duplex
terminal driver,; unsolicited terminal input will cause entry
into the AST service routine. Upon entry into the routine,
the task's stack containing the following values:

SP+10 -- Event flag mask word

SP+06 =-- PS of task prior to AST

SP+04 -- PC of task prior to AST

SP+02 -- Task's Directive Status Word

SP+00 -- Unsolicited character in low byte; parameter 2

in the high byte

2.4 STOP-BIT SYNCHRONIZATION

Stop-bit synchronization allows tasks to be checkpointed during
terminal (buffered) I/0 or while waiting for an event to occur (for
example, an event flag to become set or an Unstop directive to become
issued). You can control synchronization between tasks by the setting
of the task's Task Control Block (TCB) stop bit.

When the task's stop bit is set, the task 1is blocked from further
execution, its priority for memory allocation effectively drops to
zero, and it may be checkpointed by any other task in the systenm,
regardless of priority. If checkpointed, the task remains out of
memory until its stop bit is cleared, at which time the task becomes
unstopped, its normal priority for memory allocation becomes restored,
and it is considered for memory allocation based on the restored
priority.

If the stopped task receives an AST, it becomes unstopped until it
exits the AST routine. Memory allocation for the task during the AST
routine is based on the task's priority prior to the stopped state.
Note that a task cannot be stopped when an AST is in progress, but the
AST routine can issue either an Unstop or Set Event Flag directive to
reference the task. This causes it to remain unstopped after it
issues the AST Service Exit directive.

There are three ways in which a nonprivileged task can become stopped

and three corresponding ways to become unstopped. Only one method for
stopping a task can be applied at a time.

2-11

SIGNIFICANT EVENTS, SYSTEM TRAPS, AND STOP-BIT SYNCHRONIZATION

e A task is stopped whenever it is in a Wait For state and has
outstanding buffered 1I/0. A task 1is unstopped when the
buffered I/O is completed or when the Wait For condition is
satisfied.

e You can stop a task for event flag(s) by issuing the Stop For
Single Event Flag directive or the Stop For Logical OR Of
Event Flags directive. 1In this case, the task can only be
unstopped by setting the specified event flag(s).

® You can stop a task by issuing a Stop; the Receive Data Or
Stop directive, or the Get Command Command for Command
Interpreter directive. 1In this case, the task can only be
unstopped by issuing the Unstop directive or by the MCR or DCL
Unstop command.

You cannot stop a task when an AST is in progress (AST state). Any
directives that can cause a task to become stopped are illegal at the
AST state.

When a task is stopped for any reason at the task state, it can still
receive ASTs. If the task has been checkpointed, it becomes eligible
for entrance back into memory when an AST is queued for it. The task
retains its normal priority in memory while it is at the AST state or
has ASTs queued. Once it has exited the AST routine with no other
ASTs queued, the task is again stopped and effectively has zero
priority for memory allocation.

You can use six directives for stop-bit synchronization:

e Stop - This directive stops the issuing task and cannot be
issued at the AST state.

e Receive Data Or Stop , — These
directives attempt to dequeue send data packets from the
specified task (or any task if none is specified). If there
is no such packet to be dequeued, the issuing task is stopped.
These directives cannot be issued at the AST state.

e Stop For Logical OR Of Event Flags - This directive stops the
issuing task until the specified flags in the specified group
of local event flags become set. If any of the specified
event flags are already set, the task does not become stopped.
This directive cannot be issued at the AST state.

® Stop For Single Event Flag - This directive stops the issuing
task until the indicated local event flag becomes set. If the
specified event flag is already set, the task does not become
stopped. This directive cannot be issued at the AST state.

e Unstop - This directive unstops a task that has become stopped
by the Stop or Receive Data Or Stop directive.

e Get Command for Command Interpreter - This directive stops a
CLI task when there is no command queued for it, The GC.CST
option must be specified to force the task to stop. See
Section 5.3.30. This directive cannot be issued at the AST
state.

CHAPTER 3

MEMORY MANAGEMENT DIRECTIVES

Within the framework of memory management directives, this chapter
discusses the concepts of extended logical address space, regions, and
virtual address windows.

3.1 ADDRESSING CAPABILITIES OF AN RSX-11M TASK

Without overlaying of tasks, an RSX-11M task cannot explicitly refer
to a 1location with an address greater than 177777 (32K words). The
16-bit word size of the PDP-11 imposes this restriction on a task's
addressing capability. Overlaying a task means that it must first be
divided into segments: a single root segment, which is always in
memory; and any number of overlay segments, which can be loaded into
memory as required. Unless an RSX-11M task uses the memory management
directives described in this chapter, the combined size of the task
segments concurrently in memory cannot exceed 32K words.

When resident task segments cannot exceed a total of 32K words, a task
requiring large amounts of data must access data that reside on disk.
Data are disk based not only because of limited memory space but also
because transmission of 1large amounts of data between tasks is only
practical by means of disk. An overlaid task, or a task that needs to
access or transfer large amounts of data, incurs a considerable amount
of transfer activity over and above that caused by the task's
function.

Task execution could obviously be faster if all or a greater portion
of the task were resident in memory at run time. RSX-11M includes a
group of memory management directives that provide the task with this
capability. The directives overcome the 32K-word addressing
restriction by allowing the task to dynamically change the physical
locations that are referred to by a given range of addresses. With
these directives, a task can increase its execution speed by reducing
its disk I/O requirements at the expense of increased physical memory
requirements.

MEMORY MANAGEMENT DIRECTIVES

3.1.1 Address Mapping

In a mapped system, the user does not need to know where a task
resides in physical memory. Mapping, the process of associating task
addresses with available physical memory, is transparent to the user
and 1is accomplished by the KT1ll memory management hardware. (See the
appropriate PDP-11 processor handbook for a description of the KT11l.)
When a task references a 1location (virtual address), the KT11
determines the physical address in memory. The memory management
directives use the KT1ll to perform address mapping at a level that is
visible to and controlled by the user.

3.1.2 Virtual and Logical Address Space

The three concepts defined below, physical address space, logical
address space, and virtual address space, provide a basis for
understanding the functions performed by the memory management
directives:

e Physical Address Space -- A task's physical address space is
the entire set of physical memory addresses.

® Logical Address Space —-- A task's logical address space is the
total amount of physical memory to which the task has access
rights. This includes various areas called regions (see
Section 3.3). Each region occupies a contiguous block of
memory.

e Virtual Address Space -- A task's virtual address space
corresponds to the 32K-word address range imposed by the
PDP-11's 16-bit word length. The task can divide its wvirtual
address space’ into segments called virtual address windows
(see Section 3.2).

If the capabilities supplied by the RSX-11M memory management
directives were not available, a task's virtual address space and
logical address space would directly correspond; a single wvirtual
address would always point to the same logical location. Both types
of address space would have a maximum size of 32K words. However, the
ability of the memory management directives to assign or map a range
of virtual addresses (a window) to different logical areas (regions)
enables the user to extend a task's logical address space beyond 32K
words.

MEMORY MANAGEMENT DIRECTIVES

3.2 VIRTUAL ADDRESS WINDOWS

In order to manipulate the mapping of virtual addresses to various
logical areas, you must first divide a task's 32K of virtual address
space into segments. These segments are called virtual address
windows. Each window encompasses a contiguous range of virtual
addresses, which must begin on a 4K-word boundary (that is, the first
address must be a multiple of 4K). The number of windows defined by a

s ;ﬁ %m ‘,1’;’\ . B
availab

r

he

For all task

availa . the = The size
minimum of 32 words to a maximum of 32K words.

A task that 1includes directives to manipulate address windows
dynamically must have window blocks set up in its task header. The
Executive uses window blocks to identify and describe each currently
existing window. You specify the required number of additional window
blocks (the number used for windows created by the memory management
directives) to be set up by the Task Builder when linking the task
(see the RSX-11M/M-PLUS Task Builder Reference Manual). The number of
blocks that you specify should equal the maximum number of windows
that will exist at any one time when the task is running.

MEMORY MANAGEMENT DIRECTIVES

o the window's corresponding window block.
The address window identified by 0 is the window that maps the task's
header and root segment.

The Task Builder automatically creates
window 0, which is mapped by the Executive and cannot be specified in
any directive.

Figure 3-1 shows the virtual address space of a task divided into four
address windows (windows 0, 1, 2, and 3). The shaded areas indicate
portions of the address space that are not included in any window (9K
to 12K and 23K to 24K). Addresses that fall within the ranges
corresponding to the shaded areas cannot be used.

When a task uses memory management directives, the Executive views the
relationship between the task's virtual and logical address space in
terms of windows and regions. Unless a virtual address is part of an
existing address window, reference to that address will cause an
illegal address trap to occur. Similarly, a window can be mapped only
to an area that is all or part of an existing region within the task's
logical address space (see Section 3.3).

Once a task has defined the necessary windows and regions, it can
issue memory management directives to perform operations such as the
following:

e Map a window to all or part of a region.

e Unmap a window from one region in order to map it to another
region.

o Unmap a window from one part of a region in order to map it to
another part of the same region.

MEMORY MANAGEMENT DIRECTIVES

VIRTUAL
ADDRESS

SPACE
32K
wINDOW3 | 3(8K) 28K
s
20K

WINDOW2 | 2(11K)
16K
12K
- 8K

WINDOW 1 1(5K)
aK

WINDOWO | 0(4K)
0K

= virtual address
window

= unused virtual
address space
ZK-307-81

Figure 3-1 Virtual Address Windows

3.3 REGIONS

A region is a portion of a physical memory to which a task has (or
potentially may have) access. The current window-to-region mapping
context determines that part of a task's logical address space that
the task can access at one time. A task's logical address space can
consist of various types of regions:

e Task region -- A contiguous block of memory in which the task
runs

e Static common region -- An area, such as a global common area,
defined by an operator at run time or at system generation
time

MEMORY MANAGEMENT DIRECTIVES

e Dynamic region -- A region created dynamically at run time by
issuing the memory management directives

Tasks refer to a region by means of a region ID returned to the task
by the Executive. A region ID from 0 to 23 refers to a task's static
i ID 0 ") ask's task region,

S are actually addresses of the
attachment descriptor maintained by the Executive in the system
dynamic storage area.

Figure 3-2 shows a sample collection of regions that could make up a
task's logical address space at some given time. The header and root
segment are always part of the task region. Since a region occupies a
contiguous area of memory, each region is shown as a separate block.

Figure 3-3 illustrates a possible mapping relationship between the
windows and regions shown in Figures 3-1 and 3-2.

3.3.1 Shared Regions

Address mapping not only extends a task's logical address space beyond
32K words, it also allows the space to extend to regions that have not
been linked to the task at task-build time. One result 1is an
increased potential for task interaction by means of shared regions.
For example, a task can create a dynamic region to accommodate large
amounts of data. Any number of tasks can then access that data by
mapping to the region. Another result is the ability of tasks to use
a greater number of common routines. Thus, tasks can map to required
routines at run time, rather than linking to them at task-build time.

3.3.2 Attaching to Regions

Attaching is the process by which a region becomes part of a task's
logical address space. A task can map only a region that is part of
the task's logical address space. There are three ways to attach a
task to a region:

e All tasks are automatically attached to regions that are
linked to them at task-build time.

e A task can issue a directive to attach itself to a named
static common region or a named dynamic region.

e A task can request the Executive to attach another specified
task to any region within the logical address space of the
requesting task.

Attaching identifies a task as a user of a region and prevents the
system from deleting a region until all user tasks have been detached
from it. (It should be noted that fixed tasks do not automatically
become detached from regions upon exiting.)

MEMORY MANAGEMENT DIRECTIVES

LOGICAL
ADDRESS
SPACE

'STATIC COMMON
REGION

ZK-308-81

Figure 3-2 Region Definition Block

WINDOW 3

WINDOW 2

WINDOW 1

WINDCW &

MEMORY MANAGEMENT DIRECTIVES

= 5K
» 8K
VIRTUAL
ADDRESS
SPACE
32K
3 (8K) —28K
IODOOOoL 24
20K
2 (11K)
16K
» 11K
HM-WK
-8K
1 (5K)
- ———————14K
A {4K) > 4K
A
,Ul\
Legend:

virtual address
window

[_—I__v=
HM:

= pointer to area
mapped by a window

unused virtual
address space

LOGICAL
ADDRESS

SPACE

00000 7))

DYNAMIC REGION

7

7,

STATIC COMMON
REGION

STATIC COMMON
REGION

TASK'’S HEADER/
7222

=

mapped areas of
logical address space

unmapped portions of
logical address space

7K-309-81

Figure 3-3 Mapping Windows to Regions

3-8

MEMORY MANAGEMENT DIRECTIVES

NOTE

Each Send By Reference directive issued
by a sending task creates a new
attachment descriptor for the receiving
task. However, multiple Send By
Reference directives referencing the
same region require only one attachment
descriptor. After the receiving task
issues a series of Receive By Reference
directives and all pending data requests
have been received, the task should
detach the region in order to return the
attachment descriptors to the pool.

3.3.3 Region Protection

A task cannot indiscriminately attach to any region. Each region has
a protection mask to prevent unauthorized access. The mask indicates
the types of access (read, write, extend, delete) allowed for each
category of user (system, owner, group, world). The Executive checks
that the requesting task's User Identification Code (UIC) allows it to
make the attempted access. The attempt fails if the protection mask
denies that task the access it wants.

To determine when tasks may add to their 1logical address space by
attaching regions, the following points must be considered. (Note
that all considerations presume there is no protection violation.):

e Any task can attach to a named dynamic region, provided it
knows the name. In the case of an unnamed dynamic region, a
task can attach to the region only after receiving a Send By
Reference directive from the task that created the region.

gion itself may not be one of the regio nv:
reference sent includes the access rights w
receiving task attaches to the region. The sending task can
only grant access rights that it has itself.

ay

e Any task can map to a named static common region.

3.4 DIRECTIVE SUMMARY

This section briefly describes the function of each memory management
directive.

MEMORY MANAGEMENT DIRECTIVES

3.4.1 Create Region Directive (CRRGS)

The Create Region directive creates a dynamic region in a designated
system—-controlled partition and optionally attaches the issuing task
to it (see Section 5.3.13).

3.4.2 Attach Region Directive (ATRGS)

The Attach Region directive attaches the issuing task to a static
common region or to a named dynamic region (see Section 5.3.5).

3.4.3 Detach Region Directive (DTRGS)

The Detach Region directive detaches the issuing task from a specified
region. Any of the task's address windows that are mapped to the
region are automatically unmapped (see Section 5.3.19).

3.4.4 Create Address Window Directive (CRAWS)

The Create Address Window directive creates an address window,
establishes its virtual address base and size, and optionally maps the
window. Any other windows that overlap with the range of addresses of
the new window are first unmapped and then eliminated (see Section
5.3.11).

3.4.5 Eliminate Address Window Directive (ELAWS)

The Eliminate Address Window directive eliminates an existing address
window, unmapping it first if necessary (see Section 5.3.20).

3.4.6 Map Address Window Directive (MAPS)

The Map Address Window directive maps an existing window to an
attached region. The mapping begins at a specified offset from the
start of the region and goes to a specified length. If the window is
already mapped elsewhere, the Executive unmaps it before carrying out
the map assignment described in the directive (see Section 5.3.40).

3.4.7 Unmap Address Window Directive (UMAPS)

The Unmap Address Window directive unmaps a specified window. After
the window has been unmapped, 1its virtual address range cannot be
referenced until the task 1issues another mapping directive (see
Section 5.3.85).

3.4.8 Send By Reference Directive (SREFS$)

The Send By Reference directive inserts a packet containing a
reference to a region into the receive queue of a specified task. The
receiver task is automatically attached to the region referred to (see
Section 5.3.74).

3-10

MEMORY MANAGEMENT DIRECTIVES

3.4.9 Receive By Reference Directive (RREFS)

The Receive By Reference directive requests the Executive f£first to
select the next packet from the receive-by-reference queue of the
issuing task, and then to make the information in the packet available
to the task. Optionally the directive can map a window to the
referenced region or cause the task to exit if the queue does not
contain a receive~by-reference packet (see Section 5.3.55).

3.4.10 Get Mapping Context Directive (GMCX$)

The Get Mapping Context directive causes the Executive to return to
the issuing task a description of the current window-to-region mappin
assignments. The description is in a form that enables the user to
restore the mapping context through a series of Create Address Window
directives (see Section 5.3.34).

3.4.11 Get Region Parameters Directive (GREGS)

The Get Region Parameters directive causes the Executive to supply the
issuing task with information about either its task region (if no
region ID is given) or an explicitly specified region (see Section
5.3.36).

3.5 USER DATA STRUCTURES

Most memory management directives are individually capable of
performing a number of separate actions. For example, a single Create
Address Window directive can unmap and eliminate up to seven
conflicting address windows, create a new window, and map the new
window to a specified region. The complexity of the directives
requires a special means of communication between the user task and
the Executive. The communication is achieved through data structures
that:

e Allow the task to specify which directive options it wants the
Executive to perform

e Permit the Executive to provide the task with details about
the outcome of the requested actions

There are two types of user data structures that correspond to the two
key elements (regions and address windows) manipulated by the
directives. The structures are called:

o The Region Definition Block (RDB)
e The Window Definition Block (WDB)

Every memory management directive, except Get Region Parameters, uses
one of these structures as its communications area between the task
and the Executive. Each directive issued includes in the Directive
Parameter Block (DPB) a pointer to the appropriate definition block.
Symbolic address offset values are assigned by the task, pointing to
locations within an RDB or a WDB. The task can change the contents of
these locations to define or modify the directive operation. After
the Executive has carried out the specified operation, it assigns
values to various locations within the block to describe the actions
taken and to provide the task with information useful for subsequent
operations.

3-11

MEMORY MANAGEMENT DIRECTIVES

3.5.1 Region Definition Block (RDB)

Figure 3-4 illustrates the format of an RDB. In addition to the
symbolic offsets defined in the diagram, the region status word R.GSTS
contains defined bits that may be set or cleared by the Executive or
the task. (RSX-11M reserves undefined bits for future expansion.) The
bits and their definitions follow.

Bit Definition
RS.CRR=100000 Region was successfully created.
RS.UNM=40000 At least one window was unmapped on a detach.
RS.MDL=200 Mark region for deletion on 1last detach.

When a region is created by means of a CRRGS
directive it is normally marked for deletion
on last detach. However, if RS.NDL is set
when the CRRGS$ directive 1is executed, the
region is not marked for deletion.
Subsequent execution of a DTRGS$ directive
with RS.MDL set marks the region for
deletion.

RS.NDL=100 Created region is not to be marked for
deletion on last detach.

RS.ATT=40 Attach to created region.

RS.NEX=20 Created region is not extendable.

RS.DEL=10 Delete access desired on attach.

RS.EXT=4 Extend access desired on attach.

RS.WRT=2 Write access desired on attach.

RS.RED=1 Read access desired on attach.

These symbols are defined by the RDBDF$ macro, as described in section
3.5.1.1.

The three memory management directives that require a pointer to an
RDB are:

Create Region (CRRGS)
Attach Region (ATRGS)
Detach Region (DTRGS)

When a task issues one of these directives, the Executive clears the
four high-order bits in the region status word of the appropriate RDB.
After completing the directive operation, the Executive sets the
RS.CRR or RS.UNM bit to indicate to the task what actions were taken.
The Executive never modifies the other bits.

3-12

MEMORY MANAGEMENT DIRECTIVES

Array Symbolic Byte
Element Offset Block Format Offset
0
irdb (1) R.GID REGION ID
2
irdb (2) R.GSIZ SIZE OF REGION (32w BLOCKS)
4
irdb (3)
R.GNAM NAME OF REGION (RAD50) — 8
irdb (4)
10
irdb (5)
R.GPAR REGION‘S MAIN PARTITION NAME (RADS50) — 12
irdb (6)
14
irdb (7) R.GSTS REGION STATUS WORD
16
irdb (8) R.GPRO REGION PROTECTION WORD

ZK-310-81

Figure 3-4 Region Definition Block

3.5.1.1 Using Macros to Generate an RDB - RSX-11M provides two
macros, RDBDF$ and RDBBKS, to generate and define an RDB. RDBDF$
defines the offsets and status word bits for a region definition
block; RDBBKS then creates the actual region definition block. The
format of RDBDFS is:

RDBDFS$
Since RDBBK$ automatically invokes RDBDFS, you need only specify
RDBBKS in a module that creates an RDB. The format of the call to
RDBBKS is:

RDBBKS siz,nam,par,sts,pro

siz

The region size in 32-word blocks.
nam

The region name (RAD50).
par

The name of the partition in which to create the region (RADS50).

3-13

MEMORY MANAGEMENT DIRECTIVES
sts
Bit definitions of the region status word.

pro
The region's default protection word.

The sts argument sets specified bits in the status word R.GSTS. The
argument normally has the following format:

<bitl[!...tbitnl>

bit
A defined bit to be set.

The argument pro is an octal number. The 16-bit binary equivalent
specifies the region's default protection as follows:

Bits 15 12 11 8 7 4 3 0

WORLD GROUP OWNER SYSTEM

Each of the four categories above has four bits, with each bit
representing a type of access:

Bit 3 2 1 0

DELETE | EXTEND | WRITE | READ

A bit value of 0 indicates that the specified type of access is to be
allowed; a bit value of 1 indicates that the specified type of access
is to be denied.

The macro call
RDBBKS 102. ,ALPHA,GEN,<RS.NDL!RS.ATT!RS.WRT!RS.RED>, 167000
expands to:

.WORD 0

.WORD 102.

.RADS0 /ALPHA/

.RAD50 /GEN/

.WORD 0

-WORD RS.NDL!RS.ATT!RS.WRT!RS.RED
«WORD 167000

If a Create Region directive pointed to the RDB defined by this
expanded macro call, the Executive would create a region 102 (decimal)
32-word blocks in length, named ALPHA, in a partition named GEN. The
defined bits specified in the sts argument tell the Executive:

e Not to mark the region for deletion on the last detach

e To attach region ALPHA to the task issuing the directive macro
call

e To grant read and write access to the attached task
The protection word specified as 167000 (octal) assigns a default

protection mask to the region. The octal number, which has a binary
equivalent of 1110 1110 0000 0000, grants access as follows:

System (1110) -- All access
Owner (1110) -- All access
Group (0000) -- Read access only
World (0000) -- Read access only

3-14

MEMORY MANAGEMENT DIRECTIVES

If the Create Region directive is successful, the Executive will first
return to the issuing task a region ID value in the location accessed
by symbolic offset R.GID, and then will set the defined bit RS.CRR in
the status word R.GSTS.

3.5.1.2 Using FORTRAN to Generate an RDB - When programming in
FORTRAN, vyou must create an 8-word, single-precision integer array as
the RDB to be supplied in the subroutine calls:

CALL ATRG (Attach Region directive)
CALL CRRG (Create Region directive)
CALL DTRG {Detach Region directive)

(See the PDP-11 FORTRAN Language Reference Manual for information on
the creation of arrays.) An RDB array has the following format:

Word Contents

irdb(1l) Region ID

irdb(2) Size of the region in 32-word blocks

irdb(3) Region name (2 words in Radix-50 format)

irdb(4)

irdb(5) Name of the partition that contains the region

irdb(6) (2 words in Radix-50 format)

irdb(7) Region status word (see the paragraph following
this list)

irdb(8) Region protection code

You can modify the region status word irdb(7) by setting or «clearing
the appropriate bits. See the list in Section 3.5.1 that describes
the defined bits. The bit values are listed alongside the symbolic
offsets.

Note that Hollerith text strings can be converted to Radix-50 values
by calls to the FORTRAN library routine IRADS50 (see the appropriate
FORTRAN User's Guide).

3.5.2 Window Definition Block (WDB)

Figure 3-5 illustrates the format of a WDB. The block consists of a
number of symbolic address offsets to specific WDB locations. One of
the locations is the window status word W.NSTS, which contains defined
bits that can be set or cleared by the Executive or the task.
(RSX-11M reserves all undefined bits for future expansion.) The bits
and their definitions follow.

Bit Definition
WS.CRW=100000 Address window was successfully created.
WS.UNM=40000 At least one window was unmapped by a Create

Address Window, Map Address Window, or Unmap
Address Window directive.

WS.ELW=20000 At least one window was eliminated in a

Create Address Window or Eliminate Address
Window directive.

3-15

MEMORY MANAGEMENT DIRECTIVES

WS.RRF=10000 Reference was successfully received.

it

WS.RES=2000 Map only if resident.

WS.64B=400 Defines the task's permitted alignment
boundaries -- 0 for 256-word (512-byte)
alignment, 1 for 32-word (64-byte) alignment.

WS.MAP=200 Window is to be mapped in a Create Address
Window or Receive By Reference directive.

WS.RCX=100 Exit if no references to receive.

WS.DEL=10 Send with delete access.

WS.EXT=4 Send with extend access.

WS.WRT=2 Send with write access.
or

Map with write access.

WS.RED=1 Send with read access.

MEMORY MANAGEMENT DIRECTIVES

Array Symbolic Byte
Element Offset Block Format Offset

0

W.NID

iwdb (1) W.NAPR BASE APR WINDOW 1D

2
iwdb (2) W.NBAS VIRTUAL BASE ADDRESS (BYTES)

4
iwdb (3) W.NSIZ WINDOW SIZE (32W BLOCKS)

6
iwdb (4) W.NRID REGION ID

10
iwdb (5) W.NOFF OFFSET IN REGION (32w BLOCKS)

12
iwdb (6) W.NLEN LENGTH TO MAP (32w BLOCKS)

14
iwdb (7) W.NSTS WINDOW STATUS WORD

16
iwdb (8) W.NSRB SEND/RECEIVE BUFFER ADDRESS (BYTES)

ZK-311-81

Figure 3-5 Window Definition Block

These symbols are defined by the WDBDF$ macro, as described in Section
3.5.2.1.

The following directives require a pointer to a WDB:

Create Address Window (CRAWS)
Eliminate Address Window (ELAWS)
Map Address Window (MAPS)

Unmap Address Window (UMAPS)
Send By Reference (SREFS)
Receive By Reference (RREFS)

When a task issues one of these directives, the Executive clears the
four high-order bits in the window status word of the appropriate WDB.
After completing the directive operation, the Executive can then set
any of these bits to tell the task what actions were taken. The
Executive never modifies the other bits.

3.5.2.1 Using Macros to Generate a WDB - RSX-11M provides two macros,
WDBDF$ and WDBBKS, to generate and define a WDB. WDBDF$ defines the
offsets and status word bits for a window definition block; WDBBKS
then creates the actual window definition block. The format of WDBDFS$
is:

WDBDF$

3-17

MEMORY MANAGEMENT DIRECTIVES

Since WDBBKS$ automatically invokes WDBDF$, vyou need only specify
WDBBKS in a module that generates a WDB. The format of the call to
WDBBKS is:

WDBBKS apr,siz,rid,off,len,sts,srb

apr
A number from 0 to 7 that specifies the window's base Active Page
Register (APR). The APR determines the 4K boundary on which the
window is to begin. APR 0 corresponds to virtual address 0, APR
1l to 4K, APR 2 to 8K, and so on.

siz
The size of the window in 32-word blocks.

rid
A region ID.

off
The offset within the region to be mapped, in 32-word blocks.

len
The length within the region to be mapped, in 32-word blocks
(defaults to the value of siz above).

sts
The bit definitions of the window status word.

srb

A send/receive buffer virtual address.

The argument sts sets specified bits in the status word W.NSTS. The
argument normally has the following format:

<bitl(!...!bitn]>

bit
A defined bit to be set.

The macro call
WDBBKS 5,76.,0,50.,,<WS.MAP!WS.WRT>

expands to:

.BYTE 0,5 (Window ID returned in low-order byte)
<WORD 0 (Base virtual address returned here)
.WORD 76.

.WORD 0

.WORD 50.

.WORD 0

.WORD WS.MAP!WS.WRT

.WORD 0

If a Create Address Window directive pointed to the WDB defined by the
macro call expanded above, the Executive would:

e Create a window 76 (decimal) blocks long beginning at APR 5
(virtual address 20K or 120000 octal)

e Map the window with write access (<KWS.MAP!WS.WRT>) to the

issuing task's task region (because the macro call specified 0
for the region ID)

3-18

MEMORY MANAGEMENT DIRECTIVES

e Start the map 50 (decimal) blocks from the base of the region,
and map an area either equal to the length of the window (76
{decimal] blocks) or to the length remaining in the region,
whichever is smaller (because the macro call defaulted the len
argument)

® Return values to the symbolic W.NID (the window's 1ID) and
W.NBAS (the window's virtual base address)

3.5.2.2 Using FORTRAN to Generate a WDB - You must create an 8-word,
single-precision integer array as the WDB to be supplied in the
subroutine calls:

CALL CRAW (Create Address Window directive)
CALL ELAW (Eliminate Address Window directive)
CALL MAP (Map Address Window directive)

CALL UNMAP {Unmap Address Window directive)
CALL SREF {(Send By Reference directive)

CALL RREF (Receive By Reference directive)

(See the PDP-11 FORTRAN Language Reference Manual for information on
the creation of arrays.) A WDB array has the following format:

Word Contents

iwdb (1) Bits 0 to 7 contain the window ID; bits 8 to 15
contain the window's base APR.

iwdb(2) Base virtual address of the window.

iwdb (3) Size of the window in 32-word blocks.

iwdb(4) Region ID.

iwdb(5) Offset length within the region at which map
begins, in 32-word blocks.

iwdb(6) Length mapped within the region in 32-word blocks.

iwdb (7) Window status word (see the paragraph following

this list).
iwdb (8) Address of send/receive buffer.

You can modify the window status word iwdb(7) by setting or clearing
the appropriate bits. See the list in Section 3.5.2 that describes
the defined bits. The bit values are listed alongside the symbolic
offsets.

Note that:

e The contents of bits 8 to 15 of iwdb(l) must normally be set
without destroying the value in bits 0 to 7 for any directive
other than Create Address Window.

@ A call to GETADR (see Section 1.5.1.4) can be used to set up
the address of the send/receive buffer. For example:

CALL GETADR (IWDB,,,,rs s+ IRCVB)

This call places the address of buffer TRCVB in array element
8. The remaining elements are unchanged. The subroutines
SREF and RREF also set up this value. If you use the SREF and

RREF routines, you do not need to use GETADR.

3-19

MEMORY MANAGEMENT DIRECTIVES

3.5.3 Assigned Values or Settings

The exact values or settings assigned to individual fields within the
RDB or the WDB vary according to each directive. Fields that are not
required as input can have any value when the directive 1is issued.
Chapter 5 describes which offsets and settings are relevant for each
memory management directive. The values assigned by the task are
called input parameters, whereas those assigned by the Executive are
called output parameters.

3.6 PRIVILEGED TASKS

When a privileged task maps to the Executive and the 1I/0 page, the
system normally dedicates five or six APRs to this mapping. A
privileged task can issue memory management directives to remap any
number of these APRs to regions. Take great care when using the
directives in this way, because such remapping can cause obscure bugs
to occur. When a directive unmaps a window that formerly mapped the
Executive or the I/O page, the Executive restores the former mapping.

NOTE

Tasks should not remap APRO. If APRO is
remapped, information such as the DSW,
overlay structures, or language runtime
systems will become inaccessible.

3-20

CHAPTER 4

PARENT/OFFSPRING TASKING

4.1 PARENT/OFFSPRING TASKING SUPPORT OVERVIEW

Parent/offspring tasking has many real-time applications in
establishing and controlling complex interrelationships between parent
and offspring tasks. A parent task is one that starts or connects to
another task, called an offspring task. A major application for the
parent-offspring task relationship is batch processing. When running
tasks in this manner, you can set up task relationships and parameters
on line to control the processing of a batch job (or Jjobs) that run
off line.

Starting (or activating) offspring tasks is called "spawning."
Spawning also includes the ability to establish task communications;
a parent task can be notified when an offspring task exits and can
receive status information from the offspring task.

Status returned from an offspring task to a parent task indicates

successful completion of the offspring task or identifies specific
error conditions.

4.2 DIRECTIVE SUMMARY

This section summarizes the directives for parent/offspring tasking
and inter-task communication.

4.2.1 Parent/Offspring Tasking Directives

There are two classes of parent/offspring tasking directives:
e Spawning -- directives that create a connection between tasks
e Chaining -- directives that transfer a connection

Three directives can connect a parent task to an offspring task:

e Spawn - This directive requests activation of, and connects
to, a specific offspring task.

An offspring task spawned by a parent task has the following
three task functions that are not provided by the Request or
Run directive.

PARENT/OFFSPRING TASKING

l. A spawned offspring task can be a command line interpreter
(CLI).

3. A spawned offspring task can return current status
information or exit status information to a connected
parent task or tasks.

Spawn directive options include:

. 1. Queuing a command line for the offspring task (which may
\ be a command line interpreter).

2. Establishing the offspring task's TI
terminal,

as a physical

3. For privileged or CLI tasks, designating any terminal as
the offspring TI:

® Connect - This directive establishes task communications for
synchronizing with the exit status or emit status issued by a
task that is already active.

e Send, Request, and Connect - This directive sends data to the
specified task, requests activation of the task if it is not
already active, and connects to the task.

There are also two directives that support task chaining:

e Request and Pass Offspring Information -- This directive
allows an offspring task to pass its parent connection to
another task thus making the new task the offspring of the
original parent. The RPOI$ directive offers all the options
of the Spawn directive.

e Send Data, Request and Pass Offspring Control Block -- This
directive sends a data packet for a specified task, passes its
parent connection to that task, and requests it if it is not
already active.

A parent task can connect to more than one offspring task wusing the
Spawn and Connect directives, as appropriate. In addition, the parent
task can use the directives in any combination to multiply connect to
offspring tasks.

An offspring task can be connected to multiple parent tasks. An
appropriate data structure, the Offspring Control Block, is produced
(in addition to those already present) each time a parent task
connects to the offspring task.

4.2.2 Task Communication Directives

Two directives in an offspring task return status to connected parent
tasks:

PARENT/OFFSPRING TASKING

e Exit With Status - This directive in an offspring task causes
the offspring task to exit, passing status words to all
connected parent tasks (one or more) that have been previously
connected by a Spawn, Connect, or Send, Request, and Connect
directive.

e Emit Status - This directive causes the offspring task to pass
status words to either the specified connected task or all
connected parent tasks if no task is explicitly specified.

When status is passed to tasks in this manner, the parent task(s) no
longer remains connected.

Standard offspring task status values that can be returned to parent
tasks are listed as follows:

EX$WAR 0 Warning - task succeeded, but
irregularities are possible

EX$sucC 1 Success - results should be as expected

EX$SERR 2 Error - results are unlikely to be as
expected

EX$SEV 4 Severe Error - one or more fatal errors

detected, or task aborted

These symbols are defined in DIRSYM.MAC. They become defined locally
when the EXST$ macro is invoked. However, the exit status may be any
16-bit value.

4.3 CONNECTING AND PASSING STATUS

Offspring task exit status can be returned to connected (parent)
task(s) by issuing the Exit With Status directive. Offspring tasks
can return status to one or more connected parent tasks at any time by
issuing the Emit Status Directive. Note that only connected
parent-offspring tasks can pass status.

The means by which a task connects to another task are
indistinguishable once the connect process is complete. For example,
Task A can become connected to Task B in one of the four ways shown
below.

e Task A spawned Task B when Task B was inactive.
e Task A connected to Task B when Task B was active.

e Task A issued a Send, Request, And Connect to Task B when Task
B was either active or inactive.

e Task A either spawned or connected to Task C, which then
chained to Task B by means of either an RPOI$ directive or an
SDRP$ directive.

Regardless of the way in which Task A became connected to Task B, Task
B can pass status information back to Task A, set the event flag
specified by Task A, or cause the AST specified by Task A to occur in
any of the five ways shown below. Note that once offspring task
status is returned to one or more parent tasks, the parent tasks

| S Y A3
become disconnected.

4-3

PARENT/OFFSPRING TASKING

e Task B issues a normal (successful) exit directive. Task A
receives a status of EXS$SUC.

e Task B is aborted. Task A receives a severe error status of
EXSSEV.

e Task B issues an Exit With Status directive, returning status
to Task A upon completion of Task B.

® Task B issues an Emit Status directive specifying Task A. If
Task A is multiply connected to Task B, the OCBs that contain
information about these multiple connections are stored in a
FIFO queue. The first OCB is used to determine which event
flag, AST address, and exit status block to use.

e Task B issues an Emit Status directive to all connected tasks
(no task name specified).

When a task has previously specified another task in a Spawn, Connect,
or Send, Request, and Connect directive and then exits, and if status
has not yet been returned, the OCB representing this connect remains
queued. However, the OCB is marked to indicate that the parent task
has exited. When this OCB is subsequently dequeued due to an Emit
Status directive, or any type of exit, no action is taken since the
parent task has exited. This procedure 1is followed to help a
multiply—-connected task to remain synchronized when parent tasks
unexpectedly exit.

Examples of using directives for intertask synchronization are
provided below (macro call form for directives are shown). Task A is
the parent task and Task B is the offspring task.

Task A Task B Action
SPWNS EXSTS Task A spawns Task B. Upon Task B completion,
Task B returns status to Task A.
CNCTS$ EXSTS Task A connects to active Task B. Upon Task B
completion, Task B returns status to Task A.
SDRCS$ RCVXS, Task A sends data to Task B, requests Task B if it
EMSTS is presently not active, and connects to Task B.

Task B receives the data, does some processing
based on the data, returns status to Task A
(possibly setting an event flag or declaring an
AST), and becomes disconnected from Task A.

SDRCS, RCSTS, Task A sends data to Task B, requests Task B if it

USTPS EMSTS$ is presently not active, connects to Task B, and
unstops Task B. Task B becomes unstopped {if Task
B previously could not dequeue the data packet),
receives the data, does some processing based on
the data, and returns status to Task A (possibly
setting an event flag or declaring an AST).

SDATS, RCSTS Task A queues a data packet for Task B and unstops

USTPS Task B; Task B receives the data.

SPWNS$ RPOIS Task A spawns Task B. Task B chains to Task C by
SDRPS issuing an RPOI$ or an SDRP$ directive. Task A is

now Task C's parent. Task A 1is no 1longer
connected to Task B.

PARENT/OFFSPRING TASKING

4.4 SPAWNING SYSTEM TASKS

One special use of the Spawn directive is to pass a command line to a
system task. You may use the Spawn directive to pass a command line
to a command line interpreter, or to an installed utility.

4.4.1 Spawning a Command Line Interpreter

Command line interpreters can be broken into three classes: MCR, the
CLI that is active from TI:, and all others.

e To pass a command line to MCR, use the task name MCR... .

e To pass a command line to the CLI that 1is currently active
from TI:, use the task name CLI... . You can determine which
CLI is active from your TI: by issuing the GCII$ directive.

e To pass a command to a specific CLI other than MCR or the CLI
active from TI:, simply use that CLI's task name in your Spawn
directive. The task name of DCL is ...DCL. Check with vyour
system manager for the task names of any user-written CLI's.

e On RSX-11M systems, you may pass a command to a specific CLI
only if the specified task name is not already active. If the
task name is already active, the Spawn directive will fail.

4.4.2 Spawning a Utility

Utilities are generally installed under task names of the form ...tsk.
This convention allows the utilities to be invoked as MCR commands.
{See the RSX-11M/M-PLUS MCR Operations Manual.)

You can pass commands to a utility in one of two ways. You can spawn
the wutility directly, using the task name ...tsk. Or, you can spawn
MCR and pass it a command line that begins with three-character task
name.

i(ﬂAttempt to actlvate the task ...tsk

e If that task name is alreadv actlve;‘ MCR 'wiilb,attempt to
s actlvate the task - under the name tsann, where: nn dis the 'unit
number of your TId, : ;
e if both ...tsk and tSKlnn are alreaay aCtlve,'ﬁ“R willryfeport
s failure - to:your task. b

PARENT/OFFSPRING TASKING

4,4.2.3 Passing Command Lines to Utilities - Even when you spawn a
utility directly, pass a command line that includes the entire command
as you would type it at the terminal or pass it to MCR. Include the
3-character task name followed by a space. This maintains
compatibility with the format used by MCR to pass commands to
utilities. (See the description of the GMCRS$ directive in Chapter 5.)

CHAPTER 5

DIRECTIVE DESCRIPTIONS

Each directive description consists of an explanation of the
directive's function and use, the names of the corresponding macro and
FORTRAN calls, the associated parameters, and possible return values
of the Directive Status Word (DSW). The descriptions generally show
the $§ form of the macro call (for instance, QIO0S), although the $C and
$Ss forms are also available. Where the $S form of a macro requires
less space and performs as fast as a DIR$ (because of a small DPB), it
is recommended. For these macros, the expansion for the $S form is
shown, rather than that for the $ form.

In addition to the directive macros themselves, you can use the DIRS

macro to execute a directive if the directive has a predefined DPB.
See Sections 1.4.1.1 and 1.4.2 for further details.

5.1 DIRECTIVE CATEGORIES
For ease of reference, the directive descriptions are presented
alphabetically in Section 5.3 according to the directive macro calls.
This section, however, groups the directives by function. The
directives are grouped into the following ten categories:

e Task execution control directives

e Task status control directives

e Informational directives

e Event-associated directives

e Trap-associated directives

e I/0- and intertask communications-related directives

e Memory management directives

e Parent/offspring tasking directives

e Command line interpreter (CLI) support directives

5.1.1 Task Execution Control Directives

The task execution control directives deal principally with starting
and stopping tasks. Each of these directives (except Extend Task)
results in a change of the task's state (unless the task is already in
the state being requested). These directives are:

5-1

DIRECTIVE DESCRIPTIONS

Macro Directive Name

ABRTS Abort Task

CSRQS$ Cancel Time Based Initiation Requests
EXITSS Task Exit ($S form recommended)

EXTKS Extend Task

RQSTS Request Task

RSUMS Resume Task

RUNS Run Task

SPNDS$S Suspend ($S form recommended)

5.1.2 Task Status Control Directives

Two task status control directives alter the checkpointable attribute
of a task. A third directive changes the running priority of an
active task. These directives are:

Macro Directive Name

ALTPS Alter Priority

DSCPS$S Disable Checkpointing ($S form recommended)
ENCPS$SS Enable Checkpointing ($S form recommended)

5.1.3 Informational Directives

Several directives provide the issuing task with system information
and parameters such as: the time of day, the task parameters, the

console switch settings, and partition or region parameters. These
directives are:

Macro Directive Name

GPRTS Get Partition Parameters

GREGS Get Region Parameters

GSSWSS Get Sense Switches ($S form recommended)
GTIMS Get Time Parameters

GTSKS Get Task Parameters

5.1.4 Event-Associated Directives

The event and event flag directives provide inter- and intratask
synchronization and signaling and the means to set the system time.
You must use these directives carefully since software faults
resulting from erroneous signaling and synchronization are often
obscure and difficult to isolate. The directives are:

Macro Directive Name

CLEFS$ Clear Event Flag

CMKTS$ Cancel Mark Time Requests

CRGF$ Create Group Global Event Flags
DECLSS Declare Significant Event ($S form recommended)
ELGF$ Eliminate Group Global Event Flags
EXIFS Exit If

MRKTS$ Mark Time

RDAFS Read All Event Flags

RDXFS Read Extended Event Flags

SETF$ Set Event Flag

STIMS Set System Time

DIRECTIVE DESCRIPTIONS

Macro Directive Name

STLOS Stop For Logical 'OR' of Event Flags

STOPSS Stop ($S form recommended)

STSES$ Stop For Single Event Flag

ULGFS$S Unlock Group Global Event Flags ($S form recommended)
USTPS Unstop

WSIGSS Wait For Significant Event ($S form recommended)
WTLOS Wait For Logical OR Of Event Flags

WTSES Wait For Single Event Flag

5.1.5 Trap-Associated Directives

The trap-associated directives provide trap facilities that allow
transfer of control (software interrupts) to the executing tasks.
These directives are:

Macro Directive Name

ASTXSS AST Service Exit ($S form recommended)

DSARSS Disable AST Recognition ($S form recommended)
ENARSS Enable AST Recognition ($S form recommended)
IHARSS Inhibit AST Recognition ($S form recommended)
SCAAS Specify Command Arrival AST

SFPAS Specify Floating Point Processor Exception AST
SPRAS Specify Power Recovery AST

SRDAS Specify Receive Data AST

SREAS Specify Requested Exit AST

SREXS Specify Requested Exit AST (extended)

SRRAS Specify Receive-By-Reference AST

SVDB$ Specify SST Vector Table For Debugging Aid
SVTKS$ Specify SST Vector Table For Task

5.1.6 I/0- and Intertask Communications-Related Directives

The I/0- and intertask communications-related directives allow tasks
to access I/0 devices at the driver interface level or interrupt
level, to communicate with other tasks in the system, and to retrieve
the MCR command line used to start the task. These directives are:

Macro Directive Name

ALUNS Assign LUN

CINTS Connect To Interrupt Vector
GLUNS Get LUN Information

GMCRS Get MCR Command Line

QIOS Queue I/0 Request

QIOWS Queue I/0 Request And Wait
RCVDS$ Receive Data

RCVXS$ Receive Data Or Exit

SDATS Send Data

SMSGS$ Send Message

5.1.7 Memory Management Directives

The memory management directives allow a task to manipulate its
virtual and 1logical address space, and to set up and control
dynamically the window-to-region mapping assignments. The directives
also provide the means by which tasks can share and pass references to
data and routines. These directives are:

5-3

DIRECTIVE DESCRIPTIONS

Macro Directive Name
ATRGS Attach Region

CRAWS Create Address Window
CRRGS Create Region

DTRGS Detach Region

ELAWS Eliminate Address Window
GMCXS$ Get Mapping Context
MAPS Map Address Window
RREFS Receive By Reference
SREFS Send By Reference
UMAPS Unmap Address Window

5.1.8 Parent/Offspring Tasking Directives

Parent/offspring tasking directives permit tasks to start other tasks,
and to connect to other tasks in order to receive status information.
These directives are:

Macro Directive Name

CNCTS Connect

EMSTS Emit Status

EXSTS Exit With Status

RPOIS Request and Pass Offspring Information
SDRCS Send, Request And Connect

SDRPS Send Data, Request and Pass OCB

SPWNS Spawn

superv sor-mo
“puffer j

DIRECTIVE DESCRIPTIONS

5.1.10 CLI Support Directives

The CLI support directives allow CLI tasks to get command lines,
request and pass offspring information, get command interpreter
information, and set a specified CLI for a terminal. These directives
are:

Macro Directive Name

GCCI$ Get Command for Command Interpreter
GCIIS Get Command Interpreter Information
SCLIS Set Command Line Interpreter

5.2 DIRECTIVE CONVENTIONS
The following are conventions for using system directives:

1. In MACRO-11 programs, unless a number is followed by a
decimal point (.), the system assumes the number to be octal.

In FORTRAN programs, use INTEGER*2 type unless the directive
description states otherwise.

DIRECTIVE DESCRIPTIONS

2. In MACRO-11 programs, task and partition names can be from
one to six characters long and should be represented as two
words in Radix-50 form.

In FORTRAN programs, specify task and partition names by a
variable of type REAL (single precision) that contains the
task or partition name in Radix-50 form. To establish
Radix-50 representation, either use the DATA statement at
compile time, or use the IRADS50 subprogram or RAD50 function
at run time.

3. Device names are two characters long and are represented by
one word of ASCII code.

4. Some directive descriptions state that a certain parameter
must be provided even though the system ignores it. Such
parameters are included to maintain compatibility between
RSX-11M, RSX-11M-PLUS, and IAS.

5. In the directive descriptions, square brackets ([]) enclose
optional parameters or arguments. To omit optional items,
either use an empty (null) field in the parameter 1list or
omit a trailing optional parameter.

6. Logical Unit Numbers (LUNs) can range from 1 to 255(10).

7. Event flag numbers range from 1 to 96(10). Numbers from 1 to
32(10) denote 1local flags. Numbers from 33 to 64 denote
common flags. Numbers 65 to 96 denote group-global event
flags.

Note that the Executive preserves all task registers when a task
issues a directive.

5.3 SYSTEM DIRECTIVE DESCRIPTIONS

Each directive description includes most or all of the following
elements:

Name:
This describes the function of the directive.
FORTRAN Call:

This shows the FORTRAN subroutine call, and defines each
parameter.

Macro Call:

This shows the macro call, defines each parameter, and gives the
defaults for optional parameters in parentheses following the
definition of the parameter. Since zero 1is supplied for most
defaulted parameters, only nonzero default values are shown.
Parameters ignored by RSX-11M/M-PLUS are required for
compatibility with IAS.

DIRECTIVE DESCRIPTIONS

Macro Expansion:

Most of the directive descriptions expand the $S form of the
macro. Where the $S form is recommended for a directive, the
expansion for that form 1is shown instead. Section 1.4.5
illustrates expansions for all three forms and for the DIRS
macro.

Definition Block Parameters:

Only the memory management directive descriptions include these
parameters. This section describes all the relevant input and
output parameters in the Region or Window Definition Block (see
Section 3.5).

Local Symbol Definitions:
Macro expansions usually generate local symbol definitions with
an assigned value equal to the byte offset from the start of the
DPB to the corresponding DPB element. This section 1lists these
symbols. The 1length in bytes of the element pointed to by the
symbol appears in parentheses following the symbol's description.
Thus:
A,BTTN ~-- Task name (4)

defines A.BTTN as pointing to a task name in the Abort Task DPB;
the task name has a length of four bytes.

DSW Return Code:
This section lists all valid return codes.
Notes:
The notes presented with some directive descriptions expand on

the function, use, and/or consequences of using the directives.
Always read the notes carefully.

DIRECTIVE DESCRIPTIONS

ABRTS$

5.3.1 Abort Task

The Abort Task directive instructs the system to terminate the
execution of the indicated task. ABRTS$ is intended for use as an
emergency or fault exit. ABRTS displays a termination notification
based on the described condition, at one of the following terminals:

1. The terminal from which the aborted task was requested

2. The originating terminal of the task that requested the
aborted task

3. The operator's console (CO:) if the task was started
internally from another task by a Run directive, or by an MCR
or DCL Run command that specified one or more time parameters

On systems without multiuser protection, a task may abort any task,
including itself. When a task 1is aborted, its state changes from
active to dormant. Therefore, to reactivate an aborted task, a task
or an operator must request it.
In systems that support multiuser protection, a task must be
privileged to issue the Abort Task directive (unless it is aborting a
task with the same TI:).
FORTRAN Call:

CALL ABORT (tsk[,ids])

tsk = Name of the task to be aborted (RAD50)

ids Directive status
Macro Call:
ABRTS tsk
tsk = Name of the task to be aborted (RAD50)
Macro Expansion:
ABRTS ALPHA
.BYTE 83.,3 ;ABRTS$ MACRO DIC, DPB SIZE=3 WORDS
.RADS50 /ALPHA/ ; TASK "ALPHA"
Local Symbol Definitions:

A.BTTN =-- Task name (4)

DSW Return Codes:

IS.SUC -~ Successful completion
IE.INS -~ Task not installed
IE.ACT -~ Task not active

DIRECTIVE DESCRIPTIONS

IE.PRI -- Issuing task is not privileged (multiuser
protection systems only)
IE.ADP -- Part of the DPB is out of the issuing task's address
space
IE.SDP -- DIC or DPB size is invalid
Notes:
1. When a task is aborted, the Executive frees all the task's
resources. In particular, the Executive:
e Detaches all attached devices.
e Flushes the AST queue and despecifies all specified ASTs.
e Flushes the receive and receive-by-reference queue.
e Flushes the clock queue for outstanding Mark Time requests
for the task.
e Closes all open files (files open for write access are
locked) .
e Detaches all attached regions except in the case of a
fixed task, where no detaching occurs.
e Runs down the task's I/O.
e Deaccesses the group global event flags for the task's
group.
e Disconnects from interrupts.
e Flushes all outstanding CLI command buffers for the task.
e DBreaks the connection with any offspring tasks.
e Returns a severe error status (EX$SEV) to the parent task
when a connected task is aborted.
e Frees the task's memory if the aborted task was not fixed.
2. If the aborted task had a requested exit AST specified, the
task will receive that AST instead of being aborted. No
indication that this has occurred is returned to the task
that issued the abort request.
3. When the aborted task actually exits, the Executive declares

a significant event.

5-9

DIRECTIVE DESCRIPTIONS

ALTPS

5.3.2 Alter Priority

The Alter Priority directive instructs the system to change the
running priority of a specified active task to either a new priority
indicated in the directive call, or the task's default (installed)
priority if the call does not specify a new priority.

The specified task must be installed and active. The Executive resets
the task's priority to its installed priority when the task exits.

If the directive call omits a task name, the Executive defaults to the
issuing task.

The Executive reorders any outstanding I/O requests for the task in
the I/0 queue and reallocates the task's partition. The partition
reallocation may cause the task to be checkpointed.

In systems that support multiuser protection, a non-privileged task
can issue ALTPS$ only for itself, and only for a priority equal to or
lower than its installed priority. A privileged task can change the
priority of any task to any value less than 250.

FORTRAN Call:

CALL ALTPRI ([tsk],[ipri][,ids])

tsk = Active task name

ipri = A l-word integer value equal to the new priority,
a number from 1 to 250 (decimal)

ids = Directive status

Macro Call:
ALTPS [tsk][,pril]

tsk = Active task name
pri = New priority, a number from 1 to 250 (decimal)

Macro Expansion:

ALTPS ALPHA, 75.

.BYTE 9.,4 ;ALTPS MACRO DIC, DPB SIZE=4 WORDS
«RAD50 /ALPHA/ ; TASK ALPHA

.WORD 75. sNEW PRIORITY

Local Symbol Definitions:
A.LTTN -- Task name (4)

A.LTPR -~ Priority (2)

5-10

DIRECTIVE DESCRIPTIONS

DSW Return Codes:

IS.SUC -- Successful completion.

IE.INS -- Task not installed.

IE.ACT -- Task not active.

IE.PRI -- Issuing task is not privileged (multiuser protection

systems only).

IE.IPR -- 1Invalid priority.

IE.ADP -- Part of the DPB is out of the issuing task's address
space.

IE.SDP —- DIC or DPB size is invalid.

5-11

DIRECTIVE DESCRIPTIONS

ALUNS

5.3.3 Assign LUN

The Assign LUN directive instructs the system to assign a physical
device unit to a logical unit number (LUN). It does not indicate that
the task has attached itself to the device.

The actual physical device assigned to the logical unit 1is dependent
on the logical assignment table (see the Assign command in the
RSX-11M/M-PLUS MCR Operations Manual or the RSX-11M/M-PLUS Command
Language Reference Manual). The Executive first searches the logical
assignment table for a device name match. If it finds a match, the
Executive assigns the physical device unit associated with the
matching entry to the logical unit. Otherwise, the Executive searches
the physical device tables and assigns the actual physical device unit
named to the 1logical wunit. In systems that support multiuser
protection, the Executive does not search the logical assignment table
if the task has been installed with the slave option (/SLV=YES).

When a task reassigns a LUN from one device to another, the Executive
cancels all 1I/0 requests for the issuing task in the previous device
queue.

FORTRAN Call:

CALL ASNLUN (lun,dev,unt[,ids])

Iun = Logical unit number
dev = Device name (format: 1A2)
unt = Device unit number
ids = Directive status
Macro Call:

ALUNS 1lun,dev,unt

lun = Logical unit number
dev = Device name (two characters)
unt = Device unit number

Macro Expansion:

ALUNS 7,TT,0 ;ASSIGN LOGICAL UNIT NUMBER

.BYTE 7,4 ;ALUNS MACRO DIC, DPB SIZE=4 WORDS
.WORD 7 ; LOGICAL UNIT NUMBER 7

«ASCII /TT/ ;DEVICE NAME IS TT (TERMINAL)
+WORD 0 ;DEVICE UNIT NUMBER=0

Local Symbol Definitions:

A.LULU -- Logical unit number (2)
A.LUNA -- Physical device name (2)
A.LUNU -~ Physical device unit number (2)

DIRECTIVE DESCRIPTIONS

DSW Return Codes:

IS.SUC —-- Successful completion.
IE.LNL -- LUN usage is interlocked (see Note 1 below).
IE.IDU -- 1Invalid device and/or unit.
IE.ILU -- 1Invalid logical unit number.
IE.ADP -- Part of the DPB is out of the issuing task's address
space.
IE.SDP ~-- DIC or DPB size is invalid.
Notes:
l. A return code of IE.LNL indicates that the specified LUN

cannot be assigned as directed. Either the LUN is already
assigned to a device with a file open for that LUN, or the
LUN 1is currently assigned to a device attached to the task,
and the directive attempted to change the LUN assignment. If
a task has a LUN assigned to a device and the task has
attached the device, the LUN can be reassigned, provided that
the task has another LUN assigned to the same device.

DIRECTIVE DESCRIPTIONS

ASTX$

5.3.4 AST Service Exit ($S form recommended)

The AST Service Exit directive instructs the system to terminate
execution of an AST service routine.

If another AST is queued and ASTs are not disabled, then the Executive
immediately effects the next AST. Otherwise, the Executive restores
the task's pre-AST state. See Notes below.

FORTRAN Call:

Neither the FORTRAN language nor the ISA standard permits direct
linking to system trapping mechanisms; therefore, this directive
is not available to FORTRAN tasks.
Macro Call:
ASTXS$S [err]
err = Error routine address

Macro Expansion:

ASTX$S ERR

MOV (PC)+, - (SP) ;PUSH DPB ONTO THE STACK

.BYTE 115.,1 ;ASTX$S MACRO DIC, DPB SIZE=1 WORD

EMT 377 ;TRAP TO THE EXECUTIVE

JSR PC, ERR ;CALL ROUTINE "ERR" IF DIRECTIVE
;UNSUCCESSFUL

Local Symbol Definitions:
None

DSW Return Codes:

IS.SUC -—- Successful completion.
IE.AST -- Directive not issued from an AST service
routine.
IE.ADP -- Part of the DPB or stack is out of the issuing task's
address space.
IE.SDP -- DIC or DPB size is invalid.
Notes:

l. A return to the AST service routine occurs if, and only 1if,
the directive 1is rejected. Therefore, no Branch on Carry
Clear instruction is generated if an error routine address is
given. (The return occurs only when the Carry bit is set.)

2. When an AST occurs, the Executive pushes, at minimum, the
following information onto the task's stack:

SP+06 -~ Event flag mask word
SP+04 -- PS of task prior to AST
SP+02 -- PC of task prior to AST
SP+00 -— DSW of task prior to AST

5-14

DIRECTIVE DESCRIPTIONS

The task stack must be in this state when the AST Service Exit
directive is executed.

In addition to the data parameters, the Executive pushes
supplemental information onto the task stack for certain ASTs.
For I/0 completion, the stack contains the address of the 1I/0
status block; for Mark Time, the stack contains the Event
Flag Number; for a floating-point processor exception, the
stack contains the exception code and address.

These AST parameters must be removed from the task's stack
prior to issuing an AST exit directive. The following example
shows how to remove AST parameters when a task uses an AST
routine on I/0 completion:

Example:

EXAMPLE PROGRAM

~e e Ng N N

LOCAL DATA
IOSB: .BLKW 2 ;I/0 STATUS DOUBLEWORD
BUFFER: .BLKW 30. ;1/0 BUFFER

START OF MAIN PROGRAM

e weo wp

START: . ;PROCESS DATA

QIOWSC I0.wvB, 2,1, ,I0SB,ASTSER,<BUFFER,60.,40>

. ; PROCESS & WAIT

EXITSS ;EXIT TO EXECUTIVE

AST SERVICE ROUTINE

~e weo we

ASTSER: ; PROCESS AST
TST (SP)+ ;REMOVE ADDRESS OF I/O STATUS BLOCK
ASTXSS ;AST EXIT

3. The task can alter its return address by manipulating the
information on its stack prior to executing an AST exit
directive. For example, to return to task state at an
address other than the pre-AST address 1indicated on the
stack, the task can simply replace the PC word on the stack.
This procedure may be useful in those cases in which error
conditions are discovered in the AST routine; but you should
use extreme caution when doing this alteration since AST
service routine bugs are difficult to isolate.

4. Because this directive requires only a 1l-word DPB, the §S
form of the macro is recommended. It requires less space and
executes with the same speed as the DIRS macro.

DIRECTIVE DESCRIPTIONS

ATRGS

5.3.5 Attach Region

The Attach Region directive attaches the issuing task to a static
common region or to a named dynamic region. (No other type of region
can be attached to the task by means of this directive.) The Executive
checks the desired access specified in the region status word against
the owner UIC and the protection word of the region. If there 1is no
protection violation, the Executive grants the desired access. If the
region is successfully attached to the task, the Executive returns a
16-bit region ID (in R.GID), which the task uses in subsequent mapping
directives.

You can also use the directive to determine the ID of a region already
attached to the task. In this case, the task specifies the name of
the attached region in R.GNAM and clears all four bits described below
in the region status word R.GSTS. When the Executive processes the
directive, it checks that the named region is attached. 1If the region
is attached to the issuing task, the Executive returns the region ID,
as well as the region size, for the task's first attachment to the
region. You may want to use the Attach Region directive in this way
to determine the region ID of a common block attached to the task at
task-build time.

FORTRAN Call:

CALL ATRG (irdb[,ids])

irdb = An 8-word integer array containing a Region Definition
Block (see Section 3.5.1.2)
ids = Directive status

Macro Call:
ATRGS rdb
rdb = Region Definition Block address
Macro Expansion:
ATRGS RDBADR
.BYTE 57.,2 ;ATRGS MACRO DIC, DPB SIZE=2 WORDS
.WORD RDBADR ;RDB ADDRESS

Region Definition Block Parameters:

Input parameters:

Array Offset

Element

irdb(3) (4) R.GNAM -- Name of the region to be attached

irdb(7) R.GSTS -~ Bit settings 1 in the region status word

{specifying desired access to the region):

1. If you are a FORTRAN programmer, refer to Section 3.5.1 to
determine the bit values represented by the symbolic names described.

5-16

DIRECTIVE DESCRIPTIONS

Bit Definition

RS.RED —- 1 if read access is desired
RS.WRT -- 1 if write access is desired
RS.EXT -- 1 if extend access is desired
RS.DEL —- 1 if delete access is desired

Clear all four bits to request the region
ID of the named region if it is already
attached to the issuing task.

Output parameters

irdb(1) R.GID -- ID assigned to the region
irdb(2) R.GSIZ —-— Size in 32-word blocks of the attached
region

Local Symbol Definition:
A.TRBA -- Region definition block address (2)

DSW Return Codes:

IS.SUC -- Successful completion.

IE.UPN -- An attachment descriptor cannot be allocated.
IE.PRI -- Privilege violation.

IE.NVR -- 1Invalid region ID.

IE.PNS -- Specified region name does not exist.

IE.ADP -- Part of the DPB or RDB is out of the issuing task's
address space.

IE.SDP —-- DIC or DPB size is invalid.

DIRECTIVE DESCRIPTIONS

CINTS

5.3.6 Connect to Interrupt Vector

The Connect to Interrupt Vector directive enables a task to process
hardware interrupts through a specified vector. The Interrupt Service
Routine (ISR) is included in the task's own space. In a mapped
system, the issuing task must be privileged.

The overhead entails the execution of about 10 instructions before
entry into the ISR, and 10 instructions after exit from the ISR. The
Executive provides a mechanism for transfer of control from the ISR to
task-level code, using either an AST or a local event flag.

After a task has connected to an interrupt vector, it can process
interrupts on three different levels: interrupt, fork, and task. The
task level may be subdivided into: AST level and non-AST level.

1. Interrupt Level

When an interrupt occurs, control is transferred, with the
Interrupt Transfer Block (ITB) that has been allocated by the
CINTS directive, to the Executive subroutine $INTSC. From
there control goes to the ISR specified in the directive.

The ISR processes the interrupt and either dismisses the
interrupt directly or enters fork level through a call to the
Executive routine SFORK2.

2. Fork Level

The fork-level routine executes at priority 0, the lowest
processor priority, allowing interrupts and more
time-dependent tasks to be serviced promptly. If required,
the fork routine sets a local event flag for the task and/or
queues an AST to an AST routine specified in the directive.

3. Task Level

At task level, entered as the result of a local event flag or
an AST, the task does final interrupt processing and has
access to Executive directives.

Typically, the ISR does the minimal processing required for an
interrupt and stores information for the fork routine or task-level
routine in a ring buffer. The fork routine is entered after a number
of interrupts have occurred as deemed necessary by the ISR, and
further condenses the information. Finally, the fork routine wakes up
the task-level <code for ultimate processing that requires access to
Executive directives. The fork level may, however, be a transient
stage from ISR to task-level code without doing any processing.

In a mapped system, a task must be built privileged in order to be
able to use the CINTS directive. However, it is legal to use the
/PR:0 switch to the Task Builder to have "unprivileged mapping," that
is, up to 32K words of wvirtual address space available. This
precludes use of the Executive subroutines from task-level code;
however, the ISR and fork-level routines are always mapped to the
Executive when they are executed. 1In any case, the Executive symbol
table file (RSX11M.STB) should be included as input to the Task
Builder.

DIRECTIVE DESCRIPTIONS

As will be described later, in a mapped system, special considerations

apply to the

mapping of the ISR, fork routine, and enable/disable

routine as well as all task data buffers accessed by these routines.

FORTRAN Call:

Not supported

Macro Call:

CINTS vec,base,isr,edir,pri,ast

vec =

base =

isr =

edir =

pri =

ast =

Interrupt vector address -- Must be in the range 60(8)
to highest vector specified during SYSGEN, inclusive,
and must be a multiple of 4.

Virtual base address for kernel APR 5 mapping of the
ISR, and enable/disable interrupt routines -- This
address is automatically truncated to a 32(10)-word
boundary. The "base" argument is ignored in an
unmapped system.

Virtual address of the ISR, or 0 to disconnect from
the interrupt vector

Virtual address of the enable/disable interrupt
routine

Initial priority at which the ISR is to
execute -- This 1is normally equal to the hard-wired
interrupt priority, and is expressed in the form n*40,
where n is a number in the range 0-7. This form puts
the value in bits 5-7 of pri. It is recommended that
the programmer make use of the symbols PR4, PR5, PR6,
and PR7 for this purpose. These are implemented via
the macro HWDDF$ found in [1l,1]EXEMC.MLB. Also, the
programmer should take care to specify the correct
value for this parameter. An incorrect initial
priority (for example, specifying PR4 for a device
that interrupts at PR5) may result in a system crash.

Virtual address of an AST routine to be entered after
the fork-level routine queues an AST

To disconnect from interrupts on a vector, the argument isr is set to
0 and the arguments base, edir, psw, and ast are ignored.

Macro Expansion:

CINTS 420,BADR, TADR, EDADR, PR5,ASTADR

.BYTE 129.,7 ;CINTS MACRO DIC, DPB SIZE = 7 WORDS
+WORD 420 ;s INTERRUPT VECTOR ADDRESS = 420
«WORD BADR ;VIRTUAL BASE ADDRESS FOR KERNAL APR
+WORD IADR ;VIRTUAL ADDRESS OF THE INTERRUPT

;SERVICE ROUTINE

«WORD EDADR ;VIRTUAL ADDRESS OF THE INTERRUPT

;ENABLE/DISABLE ROUTINE

«BYTE PR5,0 ; INITIAL INTERRUPT SERVICE ROUTINE

;PRIORITY (LOW BYTE). (HIGH BYTE = 0.)

+WORD ASTADR ;VIRTUAL ADDRESS OF AST ROUTINE

5-19

DIRECTIVE DESCRIPTIONS

Local Symbol Definitions:

C.INVE -- Vector address (2)

C.INBA -- Base address (2)

C.INIS -- ISR address (2)

C.INDI -- Enable/disable interrupt routine address (2)
C.INPS -- Priority (1)

C.INAS -- AST address (2)

DSW Return Codes:

IE.UPN -- An ITB could not be allocated (no pool space).

IE.ITS ~-- The function requested is "disconnect" and the task
is not the owner of the vector.

IE.PRI -~ 1Issuing task is not privileged (not applicable in
unmapped system).

IE.RSU -- The specified vector is already in use.

IE.ILV -- The specified vector 1is illegal (lower than 60 or

higher than highest vector specified during SYSGEN,
or not a multiple of 4).

IE.MAP -- ISR or enable/disable interrupt routine is not within
4K words from the value (base address & 177700).
IE.ADP -- Part of the DPB is out of the issuing task's address
space.
IE.SDP -- DIC or DPB size is invalid.
Notes:
1. Checkpointable Tasks

The following points should be noted for checkpointable tasks
only:

When a task connects to an interrupt vector, checkpointing of
the task is automatically disabled.

When a task disconnects from a vector and is not connected to
any other vector, checkpointing of the task is automatically
enabled, regardless of its state before the first connect, or
any change in state while the task was connected.

Mapping Considerations

In an unmapped system, the argument "base" is ignored, and
the arguments "isr," "edir," and "ast"™ are physical
addresses.

In a mapped system, however; the argument "base," after

being truncated to a 32(10)-word boundary, is the start of a
4K-word area mapped in kernel APR 5, All code and data in

5-20

DIRECTIVE DESCRIPTIONS

the task that is used by the routines must fall within that
area, or a fatal error will occur, probably resulting in a
system crash.

Furthermore, the code and data must be either position
independent (refer to the PDP-11 MACRO-11 Language Reference
Manual for more information on position-independent code) or

coded in such a way that the code can execute in APR 5

mapping. When the routines execute, the processor 1is in
kernel mode, and the virtual address space includes all of
the Executive, the pool, and the I/0O page.

References within the task image must be PC-relative or use a
special offset defined below. References outside the task
image must be absolute.

The following solutions are possible:

a. Write the ISR, enable/disable interrupt routines, and
data in position-independent code.

b. Include the code and data in a common partition,
task-build it with absolute addresses in APR 5
(PAR=ISR:120000:20000), and link the task to the common
partition.

c. Build the task privileged with APR 5 mapping and use the
constant 120000 as argument "base" in the CINTS
directive.

d. When accessing locations within the task image in
immediate or absolute addressing mode, use an offset of

<120000-<base & 177700>>
ISR

When the ISR is entered, R5 points to the fork block in the
Interrupt Transfer Block (ITB), and R4 is saved and free to
be used. Registers RO through R3 must be saved and restored
if used. If one ISR services multiple vectors, the
interrupting vector can be identified by the vector address,
which 1s stored at offset X.VEC in the ITB. The following
example loads the vector address into R4:

MOV X.VEC-X.FORK(R5),R4

The ISR either dismisses the interrupt directly by an RTS PC
instruction, or <calls $FORK2 if the fork routine is to be
entered. When calling $FORK2, R5 must point to the fork
block 1in the ITB, and the stack must be in the same state as
it was upon entry to the ISR. Note that the call must use
absolute addressing: CALL @#S$FORK2.

5-21

DIRECTIVE DESCRIPTIONS

Fork-Level Routine

The fork-level routine starts immediately after the call to
SFORK2. On entry, R4 and R5 are the same as when $FORK2 was
called. All registers are free to be |used. The first
instruction of the fork routine must be CLR @R3, which
declares the fork block free.

The fork-level routine should be entered 1if servicing the
interrupt takes more than 500 microseconds. It must be
entered if an AST is to be queued or an event flag is to be
set. (Fork 1level 1is discussed 1in greater detail in the
RSX-11M Guide to Writing an I/0 Driver.)

An AST is queued by calling the subroutine $QASTC.
Input: R5 -- ©pointer to fork block in the ITB
Output: if AST successfully queued -- Carry bit =0
if AST was not specified by CINTS$ -- Carry bit =1
Registers altered: RO, R1, R2, and R3

An event flag is set by calling the subroutine $SETF.

Input: RO -- event flag number
R5 -- Task Control Block (TCB) address of task for
which flag 1is to be set -- This is usually,

but not necessarily, the task that has
connected to the vector. This task's TCB
address is found at offset X.TCB in the ITB.

Output: specified event flag set

Registers altered: R1 and R2

Note that absolute addressing must be used when calling these

routines (and any other Executive subroutines) from fork

level:

CALL Q@#S$QASTC

CALL @#SSETF

Enable/Disable Interrupt Routine

The purpose of the enable/disable interrupt routine, whose

address is included in the directive call, is to allow the

user to have a routine automatically called in the following

three cases:

a. When the directive is successfully executed to connect to
an interrupt vector (argument isr nonzero) -- The routine

is called immediately before return to the task.

b. When the directive is successfully executed to disconnect
from an interrupt vector (argument isr=0).

c. When the task is aborted or exits with interrupt vectors
still connected.

DIRECTIVE DESCRIPTIONS

In case a, the routine is called with the Carry bit cleared;
in cases b and ¢, with the Carry bit set. 1In all three
cases, Rl is a pointer to the Interrupt Transfer Block (ITB).
Registers RO, R2, and R3 are free to be used; other
registers must be returned unmodified. Return is
accomplished by means of an RTS PC instruction.

Typically, the routine dispatches to one of two routines,
depending on whether the Carry bit is cleared or set. One
routine sets interrupt enable and performs any other
necessary initialization; the other clears interrupt enable
and cleans up.

Note that the ITB contains the vector address, in the event
that common code is used for multiple vectors.

AST Routine

The fork routine may queue as AST for the task through a call
to the Executive routine $QASTC as described above. When the
AST routine is entered (at task level), the top word of the
stack contains the vector address and must be popped off the
stack before AST exit (ASTXS$S).

ITB Structure

The following offsets are defined relative to the start of
the ITB:

X.LNK —-— Link word

X.JSR -~ Subroutine call to S$INTSC

X.PSW -—- PSW for ISR (low-order byte)

X.ISR -— ISR address (relocated)

X.FORK -- Start of fork block

X.REL --— APR 5 relocation (only in mapped systems)

X.DS1 —- Address of enable/disable interrupt routine
(relocated)

X.TCB -- TCB address of owning task

X.AST —-— Start of AST block

X.VEC -- Vector address

X.VPC —-—- ©Saved PC from vector

X.LEN -- Length in bytes of ITB

The symbols X.LNK through X.TCB are defined 1locally by the
macro ITBDFS$, which 1is included in [1,1]EXEMC.MLB. All
symbols are defined globally by [1,1]EXELIB.OLB.

5-23

DIRECTIVE DESCRIPTIONS

The following programming example illustrates the use of the CINTS

directive:

e %e we & s we Ne NG e we s s Ws Ne e NE e Ne Mo We We We Na Ne Mo Ne W We e We We Ve e We W We We Ne N Ne N6 Np %o We We N Se | Se N W N6 %6 Ne % %6 %

+
+

.TITLE PUNTSK PUNCH ASCII TEXT ON PAPER TAPE PUNCH

THIS TASK WILL PUNCH AN ASCII. STRING TO THE PAPER TAPE PUNCH
USING THE CINTS$ DIRECTIVE.

IT MUST BE BUILT USING THE /PR:0 TASK BUILDER SWITCH.
NOTE THAT THIS METHOD ALLOWS A TASK TO BE A FULL 32K
WORDS LONG. IF IT IS NECESSARY TO ACCESS THE I/O PAGE
IN OTHER THAN THE ENABLE/DISABLE ROUTINE OR THE ISR
THE TASK MUST BE LINKED TO A COMMON BLOCK COVERING
THE CORRECT PART OF THE I/O PAGE.

TASK BUILD COMMAND FILE:

PUNTSK/MM/PR:0/~FP, PUNTSK/-SP/MA=PUNTSK
[1,541RSX11M.STB/SS

/

GBLDEF=$VECTR:74
GBLDEF=S$DVCSR:177554
UNITS=1

ASG=TI:1
PAR=GEN:0:40000

IT IS POSSIBLE TO HAVE THIS TASK TYPE ON THE CONSOLE TERMINAL

IF THERE IS NO PAPER TAPE PUNCH AVAILABLE. TO DO THIS THE
VECTOR FOR THE CONSOLE OUTPUT MUST APPEAR TO BE UNUSED. THIS
MAY BE DONE BY (ON A TERMINAL OTHER THAN THE CONSOLE!) OPENING
THE VECTOR LOCATION (64) AND REPLACING ITS CONTENTS WITH

THE VALUE OF '$NSO' AS OBTAINED FROM A MAP OF THE SYSTEM. BE
SURE TO REMEMBER THE OLD VALUE OR YOUR CONSOLE WILL BE DEAD
UNTIL YOU REBOOT THE SYSTEM. NOW TASK BUILD USING THE FOLLOWING
COMMAND FILE:

PUNTTY/MM/PR:0,/~-FP, PUNTTY/-SP/MA=PUNTSK
{1,54]RSX11M,.STB/SS)

/

GBLDEF=$VECTR:64

GBLDEF=$DVCSR:177564

UNITS=1

ASG=TI:1

PAR=GEN:0:40000

NOTE THAT IN THE ABOVE TWO TKB COMMAND FILES THE FOLLOWING
CHANGES MUST BE MADE IN ORDER TO RUN ON AN UNMAPPED SYSTEM:

1) /MM SHOULD BE CHANGED TO /-MM
2) '"PAR=GEN:0:40000' SHOULD BE CHANGED TO
'PAR=GEN:40000: 40000

IN ADDITION, PLACE A SEMI-COLON IN FRONT OF THE SOURCE LINE
BELOW THAT DEFINE THE SYMBOL ‘M$SMGE'.

MCALL CINTS, QIOWS$, CLEFS$S, WTSESS, EXIT$S, DIRS

LOCAL SYMBOLS

5-24

DIRECTIVE DESCRIPTIONS

LUN.TT = 1 ;LUN FOR TERMINAL I/0
EFN.TT = 1 ;EFN FOR TERMINAL I/0
EFN.WF = 2 ;EFN TO WAIT FOR PUNCHING TO COMPLETE
MS$$SMGE = 0 ;DEFINE THIS SYMBOL TO RUN ON MAPPED SYSTEM
s+
; MACRO TO GENERATE AN ASCII STRING AND A QIO TO OUTPUT
; THE STRING TO THE TERMINAL.
;
; MESSG NAM, STRING
;
; WHERE:
:
; NAM IS THE NAME OF THE GENERATED QIO DPB
; STRING IS THE ASCII STRING TO OUTPUT
:
PR
.MACRO MESSG NAM, STRING, ?LBL
$CHR=0
. IRPC X, <STRING>
$CHR=SCHR+1
ENDR
.ENABL LSB
LBL: .ASCII /STRING/
.EVEN
NAM: QIOW$ IO,.WVB,LUN.TT,EFN.TT,,,,<LBL,$CHR,40>
.DSABL LSB
. ENDM
MESSG "HELLO,<CONNECT TO INTERRUPT TEST>
MESSG CINWRK,<CONNECT TO INTERRUPT WORKS--CHECK THE PAPER TAPE PUNCH>
CINT: CINT$ SVECTR,S$BASE,$PNISR,S$PNEDI, PR4

;CONNECT TO INTERRUPT
VECTOR=$VECTR
BASE.FOR.MAPPING=$BASE

7
r
H ISR=$PNISR
H ENB.DSABL.RTN=$PNEDI
H PRIO=PR4
DISCON:CINTS $VECTR,O0,0 ;DISCONNECT FROM INTERRUPT
H VECTOR=74
s
; ENTRY POINT TO THE PUNCH TASK. THE TASK WILL ANNOUNCE
; ITSELF ON THE INITIATING TERMINAL, CONNECT TO THE
; SPECIFIED VECTOR, OUTPUT THE ASCII STRING, AND THEN
H OUTPUT A MESSAGE THAT IT WAS SUCCESSFUL. IF THE TASK
H TERMINATES WITH AN I/0O TRAP THE CONNECT-TO-INTERRUPT
; DIRECTIVE FAILED, AND R1 WILL CONTAIN THE DSW RETURNED
; IN ORDER TO DIAGNOSE THE ERROR.
;-
$PUNTK: : DIRS #HELLO ;ANNOUNCE THAT WE ARE HERE

DIRS $CINT ;CONNECT TO THE PUNCH
THIS CAN BE EITHER THE TERMINAL
OR THE PAPER TAPE PUNCH.

.~ e

BCS$ ERR1 ;IF CS THEN DIRECTIVE ERROR
WTSES$S #EFN.WF ;WAIT FOR PUNCH TO FINISH
DIRS #DISCON ;DISCONNECT FROM INTERRUPTS
DIRS #CINWRK ;TELL USER THAT CINT WORKS
EXITS$S

5-25

DIRECTIVE DESCRIPTIONS

ERR1: MOV #1,R0 ;ERROR # 1
MOV $DSW,R1 ;GET THE DSW TO SHOW THE CINT ERROR RETURN
I0T ;DUMP REGISTERS
$BASE; ;THIS IS THE BASE OF THE MAPPING USED

;BY THE EXECUTIVE WHEN MAPPING TO THE
; 'DRIVER'. THIS MAPPING IS REQUIRED
;ONLY ON MAPPED SYSTEMS; UNMAPPED
;SYSTEMS DO NOT HAVE THIS PROBLEM.

;++
; FOLLOWING IS THE ASCII STRING PUNCHED BY THIS TASK.
;-
.NLIST BEX
PUNMSG: .ASCIZ /ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789!@#5%‘&*()_+-=/<15><12>
.LIST BEX
.EVEN
PUNPTR: .WORD 0 ;POINTER INTO PUNMSG FOR ISR
TSKTCB: .WORD 0 ;TCB ADDRESS OF TASK
PUNCSR: .WORD $DVCSR ;PAPER TAPE PUNCH CSR ADDRESS
PUNBUF: .WORD $DVCSR+2 ;PAPER TAPE PUNCH BUFFER ADDRESS
s

ENABLE/DISABLE ROUTINE.
THIS ROUTINE IS CALLED BY THE EXEC ON EITHER A CONNECT OR DISCONNECT
FROM INTERRUPT VECTOR REQUEST, OR WHEN THE TASK EXITS WITH INTERRUPT
VECTORS STILL CONNECTED.

ENTRY CONDITIONS:

C-CLEAR THIS IS A SUCCESSFUL CONNECT.

C~SET THIS IS A DISCONNECT.

$TKTCB THE TCB ADDRESS OF THE CURRENTLY EXECUTING TASK (MEM).
ACTION:

IF THE C-BIT IS SET WE MERELY DISABLE THE PUNCH AND RETURN. IF
THE C-BIT IS CLEAR WE WILL ENABLE THE PUNCH TO INTERRUPT. THIS
WILL IMMEDIATELY CAUSE AN INTERRUPT AND THE INTERRUPT SERVICE
ROUTINE WILL OUTPUT CHARACTERS TO THE PUNCH (ONE PER

INTERRUPT) UNTIL A ZERO BYTE IS OUTPUT. THE ISR WILL THEN FORK
AND SET THE LOCAL EVENT FLAG 'EFN.WF'. THIS WILL THEN CAUSE THE
TASK PORTION OF THIS TASK TO CONTINUE EXECUTING AND EVENTUALLY
EXIT.

SO Me Ne Ne e e e Ns Ne e e Ne e WS N Ne NE Ne N6 N N e Ne e “e

DIRECTIVE DESCRIPTIONS

$PNEDI: :BCS

20$;IF CS THEN DISCONNECT

MOV @#$TKTCB,TSKTCB ;COPY TASK TCB ADDRESS FOR LATER
;SC WE CAN SET EFN.

.IF DF M$SMGE ;MAPPED SYSTEM?

MOV #PUNMSG+120000-<$BASE&177700>, PUNPTR ;RELOCATE ADDRESS
;TO APR 5 MAPPING, AND SET UP
;BUEFER POINTER

.IFF MS$SSMGE ;UNMAPPED SYSTEM?

MoV #PUNMSG, PUNPTR ;SET UP BUFFER POINTER

. ENDC

BIS #100,@PUNCSR ;ALLOW INTERRUPTS

RETURN
;WHEN WE ARE DONE PUNCHING

208: BIC #100,@QPUNCSR ;DISABLE INTERRUPTS
RETURN
. END

DIRECTIVE DESCRIPTIONS

CLEF$

5.3.7 Clear Event Flag

The Clear Event Flag directive instructs the system to report an
indicated event flag's polarity and then clear it.
FORTRAN Call:
CALL CLREF (efn[,ids])
efn = Event flag number
ids = Directive status
Macro Call:
CLEFS efn
efn = Event flag number
Macro Expansion:
CLEFS$ 52.
.BYTE 31.,2 ;CLEF$ MACRO DIC, DPB SIZE=2 WORDS
.WORD 52. ;EVENT FLAG NUMBER 52.
Local Symbol Definitions:
C.LEEF -- Event flag number (2)
DSW Return Codes:
IS.CLR -- Successful completion; flag was already clear.
IS.SET -- Successful completion; flag was set.
IE.IEF -- 1Invalid event flag number (EFN<K1, or EFN>96, if group
global event flags exist for the task's group; or
EFN>64 if not).
IE.ADP -- Part of the DPB is out of the issuing task's address
space.
IE.SDP -- DIC or DPB size is invalid.

DIRECTIVE DESCRIPTIONS

CMKTS$

5.3.8 Cancel Mark Time Requests
The Cancel Mark Time Requests directive instructs the system to cancel
a specific Mark Time Request or all Mark Time requests that have been
made by the issuing task.
FORTRAN Call:

CALL CANMT ([efn][,ids])

efn = Event flag number

ids Directive status
Macro Call:

CMKT$ [efn,ast,err]

err = Error routine address
efn = Event flag number
ast = Mark time AST address

Macro Expansion:

CMKTS$ 52. ,MRKAST,ERR ;NOTE: THERE ARE TWO IGNORED ARGUMENTS

+«BYTE 27.,3 ;CMKTS$ MACRO DIC, DPB SIZE=3 WORDS

+WORD 52. ;EVENT FLAG NUMBER 52.

.WORD MRKAST ;ADDRESS OF MARK TIME REQUEST AST ROUTINE
NOTE

The above example will cancel only the
Mark Time requests that were specified
with efn 52 or the AST address MRKAST.
If no ast or efn parameters are
specified, all Mark Time requests issued
by the task are cancelled, and the DPB
size will equal 1.

Local Symbol Definitions:
C.MKEF -- Event flag number (2)

C.MRKAE -- Mark Time Request AST routine address (2)

DSW Return Codes:

IS.SUC -- Successful completion.

IE.ADP ~- Part of the DPB is out of the issuing task's address
space.

IE.SDP -- DIC or DPB size is invalid.

Notes:

DIRECTIVE DESCRIPTIONS

If neither the efn nor ast parameters
Time Requests issued by the task are
the DPB size will be one word. (When
ast parameters are specified, the
words.)

are specified, all Mark
canceled. In addition,
either the efn and/or

DPB size will be three

If both efn and ast parameters are specified (and nonzero),
only Mark Time Requests issued by the task specifying either
that event flag or AST address are canceled.

If only one efn or ast parameter is specified (and nonzero),

only Mark Time Requests issued by

the task specifying the

event flag or AST address are canceled.

If the specified event flag is a group global, then the use
count for the event flag's group is run down when a Mark Time

request is canceled.

DIRECTIVE DESCRIPTIONS

CNCTS$

5.3.9 Connect

The Connect directive synchronizes the task issuing the directive with
the exit or emit status of another task (offspring) that is already
active. Execution of this directive queues an Offspring Control Block
(OCB) to the offspring task, and increments the issuing task's rundown
count (contained in the 1issuing task's Task Control Block). The
rundown count is maintained to indicate the combined total number of
task tl ted ff i

‘ - The exit AST routine is
called when the offspring exits or emits status with the address of
the associated exit status block on the stack. This directive should
not be issued to connect to Command Line Interpreter (CLI) tasks: it
is illegal to connect to a CLI task.

FORTRAN Call:

CALL CNCT (rtname,[iefn],[iast],[iesb],[iparm]([,ids])

rtname = A single-precision, floating-point variable
containing the offspring task name in Radix-50
format.

iefn = Event flag to be set when the offspring task exits

or emits status

iast = Name of an AST routine to be called when the
offspring task exits or emits status
iesb = Name of an 8-word status block to be written when
the offspring task exits or emits status
Word 0 —- Offspring task exit status
Word 1 -- TKTN abort code
Word 2-7 -- Reserved
NOTE
The exit status block defaults to one word.
To wuse the 8-word exit status block, you
must specify the logical or of the symbol
SP.WX8 and the event flag number in the iefn
parameter above.
iparm = Name of a word to receive the status block address
when an AST occurs
ids = 1Integer to receive the Directive Status Word

Macro Call:

CNCTS tname,[efn], [east], [esb]

tname = Name (RAD50) of the offspring task to be connected
efn = The event flag to be cleared on issuance and set

when the offspring task exits or emits status

5-31

east

esb

DIRECTIVE DESCRIPTIONS

Address of an AST routine to be <called when

offspring task exits or emits status

= Address of an

the

Macro Expansion:

CNCTS
.BYTE
.RAD50
.BYTE
.BYTE
«WORD
.WORD

Local Symbol
C.NCTN
C.NCEF
C.NCEA

C.NCES

offspring task exits or emit status

word 0 —- Offspring task exit status
word 1 —- TKTN abort code
word 2-7 -- Reserved

NOTE

The exit status block defaults to one word.
To use the 8-word exit status block, you
must specify the logical or of the symbol
SP.WX8 and the event flag number in the efn
parameter above.

ALPHA,1,CONAST,STBUF

143.,6
ALPHA
1

16.
CONAST
STBUF

;CNCT$ MACRO DIC, DPB SIZE=6 WORDS
;OFFSPRING TASK NAME

;EVENT FLAG NO = 1

;EXIT STATUS BLOCK CONSTANT

;AST ROUTINE ADDRESS

;EXIT STATUS BLOCK ADDRESS

Definitions:

‘Task

name (4)

Event flag (2)

AST routine address (2)

Exit

DSW Return Codes:

Is.suC

IE.UPN

IE. INS

IE.ACT

IE.IEF

IE.ADP

IE.SDP

status block address (2)

Successful completion.

the

8-word status block to be written when

Insufficient dynamic memory to allocate an offspring
control block.

The specified task was a command line interpreter.

The specified task was not active.

Invalid event flag number (EFN<O, or EFN>96 if group
global event flags exist for the task's group;
EFN>64 if not).

Part

or

of the DPB or exit status block is not in the
issuing task's address space.

DIC or DPB size is invalid.

Notes:

DIRECTIVE DESCRIPTIONS

If the specified event flag is a group global, the use count
for the event flag's group 1is incremented to prevent
premature elimination of the event flags. The use count is
run down when:

e The connected task returns status
e The issuing task exits before status 1s returned

Do not change the virtual mapping of the exit status block
while the connection 1is in effect. Doing so may cause
obscure errors since the exit status block is always returned
to the virtual address specified regardless of the physical
address to which it is mapped.

DIRECTIVE DESCRIPTIONS

5-34

DIRECTIVE DESCRIPTIONS

DIRECTIVE DESCRIPTIONS

CRAWS

5.3.11 Create Address Window

The Create Address Window directive creates a new virtual address
window by allocating a window block from the header of the issuing
task and establishing its virtual address base and size. (Space for
the window block has to be reserved at task-build time by means of the
WNDWS keyword. See the RSX-11M/M-PLUS Task Builder Manual.) Execution

of this directive unmaps and then eliminates any existing windows that
overlap the specified range of virtual addresses. If the window is
successfully created, the Executive returns an 8-bit window ID to the
task.

o the task is a number from 1 to 15
which is an index to the window bloc
The window block describes the created address

window.

If WS.MAP in the window status word is set, the Executive proceeds to
map the window according to the Window Definition Block input
parameters.

A task can specify any length for the mapping assignment that is less
than or equal to both the window size specified when the window was
created, and the length remaining between the specified offset within
the region and the end of the region.

If W.NLEN is set to 0, the length defaults to either the window size
or the length remaining in the region, whichever is smaller. (Because
the Executive returns the actual length mapped as an output parameter,
the task must clear that offset before issuing the directive each time
it wants to default the length of the map.)

The values that can be assigned to W.NOFF depend on the setting of bit
WS.64B in the window status word (W.NSTS):

e If WS.64B = 0, the offset specified in W.NOFF must represent a
multiple of 256 words (512 bytes), Because the value of
W.NOFF is expressed in units of 32-word blocks, the value must
be a multiple of 8.

e If WS.64B = 1, the task can align on 32-word boundaries; the
programmer can therefore specify any offset within the region.

5-36

DIRECTIVE DESCRIPTIONS

NOTE

Applications dependent on 32-word or
64-byte alignment (WS.64B = 1) may not
be compatible with future RSX emulators.

To avoid future incompatibility,
programmers should write applications
adaptable to either alignment

requirement. The bit setting of WS.64B
could be a parameter chosen at assembly
time (by means of a prefix file), at
task-build time (as input to the GBLDEF
option), or at run time (by means of
command input).

FORTRAN Call:

CALL CRAW (iwdb[,ids])

iwdb = An 8-word integer array containing a window definition

block (see Section 3.5.2.2)

ids Directive status
Macro Call:
CRAWS wdb
wdb = Window Definition Block address
Macro Expansion:
CRAWS WDBADR
.BYTE 117.,2 ;CRAWS MACRO DIC, DPB SIZE=2 WORDS
<WORD WDBADR ;WDB ADDRESS

Window Definition Block Parameters:

Input parameters:

Array Offset

Element

iwdb (1), W.NAPR -- Base APR of the address window to be

bits 8-15 created.

iwdb (3) W.NSIZ -- Desired size, in 32-word blocks, of the
address window.

iwdb (4) W.NRID -- 1ID of the region to which the new window
is to be mapped, or 0 for task region (to
be specified only if WS.MAP=1).

iwdb(5) W.NOFF -- Offset in 32-word blocks from the start

of the region at which the window

is to

start mapping (to be specified only if

WS.MAP=1). Note that if WS.64B

in the

window status word equals 0, the value

specified must be a multiple of 8.

5-37

DIRECTIVE DESCRIPTIONS

iwdb (6) W.NLEN -- Length in 32-word blocks to be mapped, or
0 if the length is to default to either
the size of the window or the space
remaining in the region, whichever is
smaller (to be specified only if

WS.MAP=1).
iwdb (7) W.NSTS -- Bit settingsl in the window status word:
Bit Definition
WS.MAP 1 if the new window is to be
mapped
WS.WRT 1 if the mapping assignment
is to occur with write access
WS.64B 0 for 256-word (512-byte)
alignment; or 1 for 32-word
(64-byte) alignment
Output parameters
iwdb(1), W.NID ~- 1ID assigned to the window
bits 0-7
iwdb(2) W.NBAS -- Virtual address base of the new window
iwdb(6) W.NLEN -- Length, in 32-word blocks, actually
mapped by the window
iwdb (7) W.NSTS -- Bit settingsl in the window status word:
Bit Definition (if bit=1)
WS.CRW Address window was
successfully created.
WS.UNM At least one window was
unmapped.
WS.ELW At least one window was

eliminated.

WS.RRF Reference was successfully
received.

WS.RES Map only if resident.

l. If you are a FORTRAN programmer, refer to Section 3.5.2 to
determine the bit values represented by the symbolic names described.

5-38

DIRECTIVE DESCRIPTIONS

Bit Definition (if bit=1)
WS.64B Define the task's permitted
alignment boundaries -- 0

for 256-word (512-byte)
alignment; or 1 for 32-word
(64-byte) alignment.

WS.MAP Window is to be mapped.
WS.RCX Exit if no references to
receive.

WS.DEL Send with delete access.
WS.EXT Send with extend access.
WS.WRT Send with write access or map

with write access.

WS.RED Send with read access.
Local Symbol Definitions:
C.RABA -- Window definition block address (2)
DSW Return Codes:
IS.SUC -- Successful completion.
IE.HWR -- Directive failed in mapping storage because region

has incurred a parity error.

IE.PRI -- Requested access denied at mapping stage.
IE.NVR -- Invalid region ID.
IE.ALG -- Task specified either an invalid base APR and window

size combination, or an invalid region offset and
length combination 1in the mapping assignment; or
WS.64B = 0 and the value of W.NOFF is not a multiple

of 8.
IE.WOV —-- ©No window blocks available in task's header.
IE.ADP —- Part of the DPB or WDB is out of the issuing task's

address space.

IE.SDP -- DIC or DPB size is invalid.

DIRECTIVE DESCRIPTIONS

CRGFS$

5.3.12 Create Group Global Event Flags

The Create Group Global Event Flags directive creates a Group Global
Event Flag Control Block (GFB) and links it into the GFB list. If a
GFB for the specified group is not present when the directive is
issued, the Executive creates the GFB data structure with all event
flags initialized to zero. If a GFB is present when the directive is
issued, the Executive uses the present GFB and the event flags are not
initialized. However, 1if the GFB 1is marked for delete (by a
previously 1issued Eliminate Group Global Event Flags directive), the
Executive clears the GS.DEL bit (see Section 5.3.20).

If the specified group code matches the group code of the issuing
task's protection UIC (H.CUIC+l), this directive increments the access
count for the event flags. This locks the event flags so they cannot
be eliminated by another task that is sharing them. The issuing task
can explicitly unlock the event flags with an Unlock Group Global
Event Flags directive or an Eliminate Group Global Event Flags
directive. The Executive automatically unlocks the event flags when
the task exits if necessary. Note that a task may not lock the event
flags more than once in succession. Any attempt to lock event flags
that are already locked will return the IE.RSU error code.

FORTRAN Call:
CALL CRGF ([group][,ids])

group = Group number for the flags to be created. Only
privileged tasks can specify group numbers other than
the issuing task's group UIC. If not specified, the
task's protection UIC (H.CUIC+l) in the task's header
is used.

ids = Integer to receive the Directive Status Word.
Macro Call:
CRGF$ [group]
group = Group number for the flags to be created. Only
privileged tasks can specify group numbers other than

the issuing task's group UIC. If not specified, the
task's protection UIC (H.CUIC+l) in the task's header

is used.
Macro Expansion:
CRGFS 4
.BYTE 157.,2 ;CRGF$ MACRO DIC, DPB SIZE=2 WORDS
.WORD 4 ;GROUP 4 GLOBAL EVENT FLAGS

Local Symbol Definitions:

C.RGRP -- Group Number (2)

5-40

DIRECTIVE DESCRIPTIONS

DSW Return Codes:

IS.SUC -- Successful completion.

IE.UPN -- Insufficient dynamic storage.

IE.PRI -- Privilege violation.

IE.IUI -- Invalid group.

IE.RSU -- Event flags already exist or are already locked.

IE.APD —- Part of the DPB is out of the 1issuing task's address
space.

IE.DIC -- DIC or DPB size is invalid.
Note:

A privileged task may specify group numbers other than the group
UIC of the 1issuing task. However, the task can only lock the
event flags created for its own group. This directive does not
return an error if it does not lock the event flags.

DIRECTIVE DESCRIPTIONS

CRRG$

5.3.13 Create Region

The Create Region directive creates a dynamic region in a

system-controlled partition and optionally attaches it to the issuing
task.

If RS.ATT is set in the region status word, the Executive attempts to
attach the task to the newly created region. If no region name has
been specified, the wuser's program must set RS.ATT (see the
description of the Attach Region directive).

By default, the Executive automatically marks a dynamically created
region for deletion when the last task detaches from it. To override
this default condition, set RS.NDL in the region status word as an
input parameter. Be careful in considering to override the
delete-on-last-detach option. An error within a program can cause the
system to 1lock by leaving no free space in a system-controlled
partition.

If the region is not given a name, the Executive ignores the state of
RS.NDL. All unnamed regions are deleted when the last task detaches
from them.

The Executive returns an error 1if there is not enough space to
accommodate the region in the specified partition. See Notes below.

FORTRAN Call:

CALL CRRG (irdb[,ids])

irdb = An 8-word integer array containing a Region Definition
Block (see Section 3.5.1.2)
ids = Directive status

Macro Call:
CRRGS$ rdb
rdb = Region Definition Block address
Macro Expansion:
CRRGS RDBADR
.BYTE 55.,2 ; CRRG$ MACRO DIC, DPB SIZE = 2 WORDS
.WORD RDBADR ;RDB ADDRESS

Region Definition Block Parameters:

Input parameters:

Array Offset
Element
irdb(2) R.GSIZ -- Size, 1in 32-word blocks, of the region

to be created

DIRECTIVE DESCRIPTIONS

irdb(3)(4) R.GNAM -- Name of the region to be created, or 0
for no name

irdb(5)(6) R.GPAR -- Name of the system-controlled partition
in which the region is to be allocated,
or 0 for the partition in which the task
is running

irdb(7) R.GSTS -- Bit settingsl in the region status word:
Bit Definition (if bit=1)
RS.CRR Region was successfully
created.
RS.UNM At least one window was

unmapped on a detach.

RS.MDL Mark region for deletion on
last detach.

RS.NDL The region should not be
deleted on last detach.

RS.ATT Created region should be
attached.

RS.NEX Created region is not
extendible.

RS.RED Read access is desired on
attach.

RS .WRT Write access is desired on
attach.

RS. EXT Extend access is desired on
attach.

RS.DEL Delete access is desired on
attach.

irdb(8) R.GPRO -- Protection word for the region

(DEWR, DEWR, DEWR, DEWR)
Output parameters

irdb (1) R.GID

{
I

ID assigned to the created region
(returned if RS.ATT=1)

irdb(2) R.GSIZ -- Size 1in 32-word blocks of the attached
region (returned if RS.ATT=1)

irdb(7) R.GSTS -- Bit settingsl in the region status word:
Bit Definition

RS.CRR 1 if the region was
successfully created

1. If you are a FORTRAN programmer, refer to Section 3.5.1 to define
the bit values represented by the symbolic names described.

5-43

DIRECTIVE DESCRIPTIONS

Local Symbol Definitions:

C.RRBA -- Region Definition Block address (2)

DSW Return Codes:

IS.8UC -- Successful completion.

IE.UPN -- A Partition Control Block (PCB) or an attachment
descriptor could not be allocated, or the partition
was not large enough to accommodate the region, or
there is currently not enough continuous space in the
partition tc accommodate the region.

IE.PRI -- Attach failed because desired access was not allowed.

IE.PNS -- Specified partition in which the region was to be

allocated does not exist; or no region name was
specified and RS.ATT = 0.

IE.ADP ~-- Part of the DPB or RDB is out of issuing task's
address space.
IE.SDP ~-- DIC or RDB size is invalid.
Notes:
1. The Executive does not return an error if the named region

already exists. In this case, the Executive clears the
RS.CRR bit in the status word R.GSTS. If RS.ATT has been
set, the Executive attempts to attach the already existing
named region to the issuing task.

The protection word (see R.GPRO above) has the same format as
that of the file system protection word. There are four
categories, and the access for each category 1is coded into
four Dbits. From 1low order to high order, the categories
follow this order: system, owner, group, world. The access
code bits within each category are arranged (from low order
to high order) as follows: read, write, extend, delete. A
bit that 1is set indicates that the corresponding access is
denied.

The issuing task's UIC is the created region's owner UIC.

In order to prevent the creation of common blocks that are
not easily deleted, the system and owner categories are
always forced to have delete access, regardless of the wvalue
actually specified in the protection word.

DIRECTIVE DESCRIPTIONS

5-45

DIRECTIVE DESCRIPTIONS

The total numbef

of ‘bY£es transferred in
,blocks.; Note that offspr1ng tasks : 1n the fourth

4task is perfprmed on offsprlng ‘nput and ol tput requests'when the
goffsprlng task~1s checkpoxntable. '
2 'r.and Sny

DIRECTIVE DESCRIPTIONS

5-47

DIRECTIVE DESCRIPTIONS

g tlmeo

i 5 coreq then -
‘Yrequest, w1thout waitlng for the. d to be completed th driver
;queues the wrlte request to be:processed when the read is completed.

set the

'prevmous r ad
']not(ye at AST state, lth 1y

Qnot receive hoﬁi 1catzon Of the I/O

DIRECTIVE DESCRIPTIONS

5-49

DIRECTIVE DESCRIPTIONS

DIRECTIVE DESCRIPTIONS

CSRQ$

5.3.15 Cancel Time Based Initiation Requests

The Cancel Time Based 1Initiation Requests directive instructs the
system to cancel all time-synchronized initiation requests for a
specified task, regardless of the source of each request. These
requests result from a Run directive, or from any of the
time-synchronized variations of the MCR or DCL Run command.

In a multiuser protection system, a nonprivileged task can cancel
time-based initiation requests only for a task with the same TI:.

FORTRAN Call:
CALL CANALL (tsk[,ids])

tsk = Task name

ids Directive status
Macro Call:
CSRQS tsk
tsk = Scheduled (target) task name
Macro Expansion:
CSRQS$ ALPHA
.BYTE 25.,3 ;CSRQ$ MACRO DIC, DPB SIZE=3 WORDS
.RAD50 /ALPHA/ ; TASK "ALPHA"
Local Symbol Definitions:

C.SRTN -- Target task name (4)

DSW Return Codes:

IS.SUC -- Successful completion.

IE.INS =-- Task is not installed.

IE.PRI -- The issuing task is not privileged and is attempting
to cancel requests made by another task.

IE.ADP -- Part of the DPB is out of the issuing task's address
space.

IE.SDP -- DIC or DPB size is invalid.

Note:

If you specify an error routine address when using the $C or $§S
macro form, then vyou must include a null argument for RSX-11D
compatibility. For example:

CSRQS$S #TNAME, , ERR ;CANCEL REQUESTS FOR "ALPHA"

TNAME: ,RAD50 /ALPHA/

DIRECTIVE DESCRIPTIONS

DECLS

5.3.16 Declare Significant Event ($S Form Recommended)

The Declare Significant Event directive instructs the system to
declare a significant event.

Declaration of a significant event causes the Executive to scan the
Active Task List from the beginning, searching for the highest
priority task that is ready to run. Use this directive with
discretion to avoid excessive scanning overhead.
FORTRAN Call:

CALL DECLAR ([,ids])

ids = Directive status

Macro Call:

DECLS$S [,err]

err = Error routine address

Macro Expansion:

DECLS$S ,ERR ;NOTE: THERE IS ONE IGNORED ARGUMENT
MOV (PC)+,-(SP) ;PUSH DPB ONTO THE STACK

.BYTE 35.,1 ;DECLS$S MACRO DIC, DPB SIZE=1 WORD
EMT 3717 ;TRAP TO THE EXECUTIVE

BCC .+6 ;BRANCH IF DIRECTIVE SUCCESSFUL

JSR PC, ERR jOTHERWISE, CALL ROUTINE "ERR"

Local Symbol Definitions:
None

DSW Return Codes:

IS.8UC -- ©Successful completion.
IE.ADP -- Part of the DPB is out of the issuing task's address
space.
IE.SDP -- DIC or DPB size is invalid.
Note:
The $S form of the macro is recommended because this directive

requires only a l-word DPB.

DIRECTIVE DESCRIPTIONS

DSARS$
IHARS$S

5.3.17 Disable (or Inhibit) AST Recognition ($S Form Recommended)
The Disable (or Inhibit) AST Recognition directive instructs the
system to disable recognition of ASTs for the issuing task. The ASTs
are queued as they occur and are effected when the task reenables AST
recognition. There 1is an implied disable AST recognition directive
whenever an AST service routine is executing. When a task's execution
is started, AST recognition is enabled. See Notes below.
FORTRAN Call:

CALL DSASTR [(ids)]

or
CALL INASTR [(ids)]

ids = Directive status
Macro Call:
DSARSS [err]
err = Error routine address
Macro Expansion:

DSARSS ERR

MOV (PC) +,-(SP) ;PUSH DPB ONTO THE STACK
.BYTE 99.,1 ;DSARSS MACRO DIC, DPB SIZE=1 WORD
EMT 377 ;TRAP TO THE EXECUTIVE

BCC .+6 ;BRANCH IF DIRECTIVE SUCCESSFUL
JSR PC, ERR ;OTHERWISE, CALL ROUTINE "ERR"

Local Symbol Definitions:
None

DSW Return Codes:

IS.,SUC -- Successful completion.

IE.ITS -- AST recognition is already disabled.

IE.ADP -- Part of the DPB is out of the issuing task's address
space.

IE.SDP -- DIC or DPB size is invalid.

Notes:

DIRECTIVE DESCRIPTIONS

This directive disables only the recognition of ASTs; the
Executive still queues the ASTs. They are queued FIFO and
will occur in that order when the task reenables AST
recognition.

The FORTRAN calls, DSASTR (or INASTR) and ENASTR (see Section
5.3.24), exist solely to control the possible jump to the
PWRUP routine (power-up). FORTRAN is not designed to link to
a system's trapping mechanism. The PWRUP routine is strictly
controlled by the system, which both accepts the trap and
subsequently dismisses it. The FORTRAN program is notified
by a jump to PWRUP but must use DSASTR (or INASTR) and ENASTR
to ensure the integrity of FORTRAN data structures, most
importantly the stack, during power-up processing.

Because this directive requires only a 1l-word DPB, the $S
form of the macro is recommended. It requires less space and
executes with the same speed as that of the DIRS macro.

DIRECTIVE DESCRIPTIONS

DSCP$S

5.3.18 Disable Checkpointing ($S Form Recommended)
The Disable Checkpointing directive instructs the system to disable
the checkpointability of a task that has been installed as a
checkpointable task. Only the affected task can issue this directive.
A task cannot disable the ability of another task to be checkpointed.
FORTRAN Call:
CALL DISCKP [(ids)]
ids = Directive status
Macro Call:
DSCP$SS [err]
err = Error routine address

Macro Expansion:

DSCP$S ERR

MOV (PC)+,-(SP) ;PUSH DPB ONTO THE STACK

.BYTE 95.,1 ;DSCP$S MACRO DIC, DPB SIZE=1 WORD
EMT 377 ;TRAP TO THE EXECUTIVE

BCC .+6 ;BRANCH IF DIRECTIVE SUCCESSFUL
JSR PC, ERR ;OTHERWISE, CALL ROUTINE "ERR"

Local Symbol Definitions:
None

DSW Return Codes:

IS.SUC -- Successful completion.
IE.ITS -~ Task checkpointing is already disabled.
IE.CKP -- Issuing task is not checkpointable.
IE.ADP -- Part of the DPB is out of the issuing task's address
space.
IE.SDP -- DIC or DPB size is invalid.
Notes:

1. When a checkpointable task's execution is started,
checkpointing is enabled (that 1is, the task can be
checkpointed).

2. Because this directive requires only a 1l-word DPB, the $S
form of the macro is recommended. It requires less space and
executes with the same speed as that of the DIRS macro.

DIRECTIVE DESCRIPTIONS

DTRGS

5.3.19 Detach Region

The Detach Region directive detaches the 1issuing task from a
specified, previously attached region. 2Any of the task's windows that
are currently mapped to the region are automatically unmapped.

If RS.MDL is set in the region status word when the directive Iis
issued, the task marks the region for deletion on the last detach. A
task must be attached with delete access to mark a region for
deletion.

FORTRAN Call:

CALL DTRG (irdb[,idsl])

irdb = An 8-word integer array containing a Region Definition
Block (see Section 3.5.1.2)
ids = Directive status

Macro Call:
DTRGS rdb
rdb = Region Definition Block address
Macro Expansion:
DTRGS RDBADR _
.BYTE 59.,2 ; DTRGS MACRO DIC, DPB SIZE=2 WORDS
.WORD RDBADR ;RDB ADDRESS
Region Definition Block Parameters:

Input parameters:

Array Offset

Element
irdb(l) R.GID -—- ID of the region to be detached
irdb(7) R.GSTS -- Bit settingsl in the region status word:
Bit Definition
RS.MDL 1 if the region should be marked

for deletion when the last task
detaches from it

1. If you are a FORTRAN programmer, refer to Section 3.5.1 to
determine the bit values represented by the symbolic names described.

5-56

DIRECTIVE DESCRIPTIONS

Output parameters:

irdb(7) R.GSTS -- BRit settingsl in the region status word:
Bit Definition
RS.UNM 1 if any windows were unmapped

Local Symbol Definitions:
D.TRBA -- Region Definition Block address (2)
DSW Return Codes:
IS.S5UC -- Successful completion.
IE.PRI -- The task, which is not attached with delete access,

has attempted to mark the region for deletion on
last detach, or the task has outstanding I1/0

IE.NVR -- The task specified an invalid region ID or attempted
to detach region 0 (its own task region).

IE.ADP -- Part of the DPD or RDB is out of the 1issuing task's
address space.

IE.SDP -- DIC or DPB size is invalid.

1. If you are a FORTRAN programmer, refer to Section 3.5.1 to
determine the bit values represented by the symbolic names described.

5-57

DIRECTIVE DESCRIPTIONS

ELAWS

5.3.20 Eliminate Address Window

The Eliminate Address Window directive deletes an existing address
window, unmapping it first if necessary. Subsequent use of the
eliminated window's ID is invalid.

FORTRAN Call:

CALL ELAW (iwdb[,ids])

iwdb = An 8-word integer array containing a Window Definition
Block (see Section 3.5.2.2)
ids = Directive status

Macro Call:
ELAWS wdb
wdb = Window Definition Block address
Macro Expansion:
ELAWS WDBADR
.BYTE 119.,2 ; ELAWS MACRO DIC, DPB SIZE=2 WORDS
.WORD WDBADR ;WDB ADDRESS

Window Definition Block Parameters:

Input parameters:

Array Offset

Element

iwdb (1) W.NID —-- ID of the address window to be eliminated
bits 0-7

Output parameters

iwdb (7) W.NSTS =-- Bit settingsl in the window status word:
Bit Definition
WS.ELW 1 if the address window was
successfully eliminated
WS. UNM 1 if the address window was
unmapped

l. If you are a FORTRAN programmer, refer to Section 3.5.2 to
determine the bit values represented by the symbolic names described.

5-58

DIRECTIVE DESCRIPTIONS

Local Symbol Definitions:

E.LABA

DSW Return Codes:

IS.SUC

IE.NVW

IE.ADP

IE.SDP

Window Definition Block address (2)

Successful completion.
Invalid address window ID.

Part of the DPB or WDB is out of the issuing task's
address space.

DIC or DPB size is invalid.

DIRECTIVE DESCRIPTIONS

ELGFS$

5.3.21 Eliminate Group Global Event Flags

The Eliminate Group Global Event Flags directive marks group-global
event flags for deletion. If no tasks in this group are using the
group—global event flags (the use count for this group maintained by
the Executive in G.CNT 1is 0), the Group Global Event Flags Control
Block (GFB) is immediately unlinked and deallocated. If tasks are
using flags in this group, the Executive marks the flags for deletion
(GS.DEL is set to 1) and the GFB is eliminated when no remaining tasks
are using the flags in this group; however, if a Create Group Global
Event Flags directive is issued before the flags are eliminated, the
Executive clears GS.DEL. ‘

If the specified group code matches the group code of the issuing
task's protection UIC and the event flags are locked by this task (by
a previous Create Group Global Event Flags directive), this directive
unlocks the event flags by decrementing the access count. Note that a
task may not unlock the event flags more than once in succession. Any
attempt to unlock event flags that are already unlocked will return
the IE.RSU error code.

FORTRAN Call:

CALL ELGF ([group][,ids])

group Group number of flags to be eliminated. Only
privileged tasks can specify group numbers other than
the issuing task's group UIC. If not specified, the
task's protection UIC (H.CUIC+l) in the task's header

is used.

ids Integer to receive the Directive Status Word.

Macro Call:
ELGFS$ [group]
group = Group number of flags to be eliminated. Only
privileged tasks can specify group numbers other than

the issuing task's group UIC. If not specified, the
task's protection UIC (H.CUIC+l) in the task's header

is used.
Macro Expansion:
ELGFS$ 303
.BYTE 159,,2 ;ELGF$ MACRO DIC, DPR SIZE=2 WORDS
.WORD 303 ;GROUP NUMBER 303 FLAGS

Local Symbol Definitions:

E.LGRP —- Group number (2)

5-60

DIRECTIVE DESCRIPTIONS

DSW Return Codes:

IS.SUC -- Successful completion.
IE.PRI -- Privilege violation.
IE.IUI -- Invalid group (group>377 octal).

IE.IEF -- Group is not found.
IE.RSU -- Event flags are already marked for deletion.

IE.ADP -- Part of the DPB is out of the 1issuing task's address
space.

IE.DIC -- DIC or DPB size is invalid.

5-61

DIRECTIVE DESCRIPTIONS

5-62

DIRECTIVE DESCRIPTIONS

5-63

DIRECTIVE DESCRIPTIONS

EMSTS

5.3.23 Emit Status

The Emit Status directive returns the specified 16-bit quantity to the
specified connected task. It possibly sets an event flag or declares
an AST if previously specified by the connected task in a Send,
Request And Connect, a Spawn, or a Connect directive. If the
specified task 1is multiply connected to the task 1issuing this
directive, the first (oldest) Offspring control Block (OCB) in the
queue is used to return status. If no task name is specified, this
action is taken for all tasks that are connected to the issuing task
at that time. In any case, whenever status is emitted to one or more
tasks, those tasks no longer remain connected to the task issuing the
Emit Status directive.

FORTRAN Call:

CALL EMST ([rtname],status[,ids])

rtname = Name of a task connected to the 1issuing task to
which the status is to be emitted
status = A 16-bit quantity to be returned to the connected
task
ids = Integer to receive the Directive Status Word
Macro Call:

EMSTS$ [tname] ,status

tname = Name of a task connected to the 1issuing task to
which the status is to be emitted
status = 16-bit quantity to be returned to the connected task

Macro Expansion:

EMSTS$ ALPHA,STWD

.BYTE 147, ,4 ;EMSTS$ MACRO DIC, DPB SIZE=4 WORDS

.RAD50 ALPHA ;NAME OF CONNECTED TASK TO RECEIVE STATUS
.WORD STWD ;VALUE OF STATUS TO BE RETURNED

Local Symbol Definitions:
E.MSTN -- Task name (4)
E.MSST -- Status to be returned (2)

DSW Return Codes:

IS.SUC -- Successful completion.

IE.ITS -- The specified task is not connected to the issuing
task.

IE.ADP -- Part of the DPB is out of the issuing task's address
space.

IE.SDP -- DIC or DPB size is invalid.

DIRECTIVE DESCRIPTIONS

ENARSS

5.3.24 Enable AST Recognition ($S Form Recommended)
The Enable AST Recognition directive instructs the system to recognize
ASTs for the issuing task; that is, the directive nullifies a Disable
AST Recognition directive. ASTs that were queued while recognition
was disabled are effected at issuance. When a task's execution is
started, AST recognition is enabled.
FORTRAN Call:
CALL ENASTR [(ids)]
ids = Directive status
Macro Call:
ENARSS f[err]
err = Error routine address

Macro Expansion:

ENARSS ERR

MOV (PC)+,~(SP) ;PUSH DPB ONTO THE STACK

.BYTE 101.,1 ; ENARSS MACRO DIC, DPB SIZE=1 WORD
EMT 377 ; TRAP TO THE EXECUTIVE

BCC .+6 ;BRANCH IF DIRECTIVE SUCCESSFUL
JSR PC, ERR ;OTHERWISE, CALL ROUTINE "ERR"

Local Symbol Definitions:
None

DSW Return Codes:

IS.SUC -- Successful completion.
IE.ITS -- AST recognition is not disabled.
IE.ADP -- Part of the DPB is out of the issuing task's address
space.
IE.SDP -- DIC or DPB size is invalid.
Notes:

1. Because this directive requires only a 1l-word DPB, the $§S
form of the macro is recommended. It requires less space and
executes with the same speed as that of the DIRS macro.

2. The FORTRAN calls DSASTR (or INASTR) (see Section 5.3.17) and
ENASTR exist solely to control the jump to the PWRUP routine
(power-up) . FORTRAN is not designed to link to a system's
trapping mechanism. The PWRUP routine is strictly controlled
by the system. It is the system that both accepts the trap
and subsequently dismisses it. The FORTRAN program 1is
notified by a jump to PWRUP but must use DSASTR (or INASTR)
and ENASTR to ensure the integrity of FORTRAN data
structures, most importantly the stack, during power-up
processing.

DIRECTIVE DESCRIPTIONS

ENCP$S

5.3.25 Enable Checkpointing ($S Form Recommended)
The Enable Checkpointing directive instructs the system to make the
issuing task checkpointable after 1its checkpointability has been
disabled; that is, the directive nullifies a DSCP$S directive. This
directive cannot be used to enable checkpointing of a task that was
built noncheckpointable.
FORTRAN Call:
CALL ENACKP ([(ids)]
ids = Directive status
Macro Call:
ENCPSS [err]
err = Error routine address

Macro Expansion:

ENCP$S ERR

MOV (PC)+,-(SP) ;PUSH DPB ONTO THE STACK

.BYTE 97.,1 ;ENCP$S MACRO DIC, DPB SIZE=1 WORD
EMT 377 ;TRAP TO THE EXECUTIVE

BCC . +6 ;BRANCH IF DIRECTIVE SUCCESSFUL
JSR PC, ERR ;OTHERWISE, CALL ROUTINE "ERR"

Local Symbol Definitions:
None
DSW Return Codes:
IS.SUC -- Successful completion.

IE.ITS -- Checkpointing is not disabled or task is connected to
an interrupt vector.

IE.ADP -- Part of the DPB is out of the issuing task's address
space.
IE.SDP -- DIC or DPB size is invalid.

Note:
Because this directive requires only a l-word DPB, the $S form of

the macro 1is recommended. It requires less space and executes
with the same speed as that of the DIR$ macro.

5-66

DIRECTIVE DESCRIPTIONS

EXIFS

5.3.26 Exit If

The Exit If directive instructs the system to terminate the execution
of the 1issuing task if, and only if, an indicated event flag is not
set. The Executive returns control to the issuing task if the
specified event flag is set. See Notes below.

FORTRAN Call:

CALL EXITIF (efn[,ids])

efn Event flag number

Directive status

ids
Macro Call:

EXIF$ efn

efn Event flag number

Macro Expansion:

EXIFS 52.
.BYTE 53.,2 ;EXIF$ MACRO DIC, DPB SIZE=2 WORDS
.WORD 52. ;EVENT FLAG NUMBER 52.

Local Symbol Definitions:
E.XFEF —-- Event flag number (2)
DSW Return Codes:
IS.SET -- 1Indicated EFN set; task did not exit.
IE.IEF -- 1Invalid event flag number (EFN<1, or EFN>96, if group

global event flags exist for the task's group; or
EFN>64 if not).

IE.ADP —- Part of the DPB is out of the issuing task's address
space.
IE.SDP -- DIC or DPB size is invalid.
Notes:

1. The Exit If directive is useful in avoiding a possible race
condition that can occur between two tasks communicating by
means of the Send and Receive directives. The race condition
occurs when one task executes a Receive directive and finds
its receive queue empty; but before the task can exit, the
other task sends it a message. The message is lost because
the Executive flushed the receiver task's receive queue when
it decided to exit. This condition can be avoided if the
sending task specifies a common event flag in the Send
directive and the receiving task executes an BExit If
specifying the same common event flag. If the event flag is
set, the Exit If directive will return control to the issuing
task, signaling that something has been sent.

5-67

2.

DIRECTIVE DESCRIPTIONS

A FORTRAN program that issues the Exit If call must first
close all files by issuing Close calls. See the IAS/RSX-11
FORTRAN IV or FORTRAN IV-PLUS User's Guide for instructions
on how to ensure that such files are closed properly if the
task exits. To avoid the time overhead 1involved 1in the
closing and reopening of files, the task should first issue
the appropriate test or clear event flag directive. If the
directive status word indicates that the flag was not set,
then the task can close all files and issue the call to Exit
If.

On Exit, the Executive frees task resources. In particular,
the Executive:

o Detaches all attached devices
e Flushes the AST queue and despecifies all specified ASTs
e Flushes the receive and receive-by-reference queues

e Flushes the clock queue for any outstanding Mark Time
requests for the task

e Closes all open files (files open for write access are
locked)

e Detaches all attached regions, except in the case of a
fixed task

e Runs down the task's I/0

e Deaccesses the group global event flags for the task's
group

e Disconnects from interrupts
e Flushes all outstanding CLI command buffers for the task
e Breaks the connection with any offspring tasks

® Returns a success status (EX$SUC) to any parent tasks

e Frees the task's memory if the exiting task was not fixed

If the task exits, the Executive declares a significant
event.

5-68

DIRECTIVE DESCRIPTIONS

EXITSS

5.3.27 Task Exit ($S Form Recommended)

The Task Exit directive instructs the system to terminate the
execution of the issuing task.

FORTRAN Call:
See Note 5 below.
Macro Call:
EXITSS [err]
err = Error routine address
Macro Expansion:

EXIT$S ERR

MOV (PC)+,-(SP) ;PUSH DPB ONTO THE STACK

.BYTE 51.,1 ;EXIT$S MACRO DIC, DPB SIZE=1 WORD
EMT 377 ;TRAP TO THE EXECUTIVE

JSR PC, ERR ;CALL ROUTINE "ERR"

Local Symbol Definitions:
None

DSW Return Codes:

IE.ADP ~-- Part of the DPB is out of the issuing task's address
space.
IE.SDP -- DIC or DPB size is invalid.
Notes:

1. A return to the task occurs if, and only if, the directive is
rejected. Therefore, no Branch on Carry Clear instruction is
generated if an error routine address is given, since the
return will only occur with carry set.

2. Exit causes a significant event to be declared.

3. On Exit, the Executive frees task resources. In particular,
the Executive:

e Detaches all attached devices
e Flushes the AST queue and despecifies all specified ASTs
e Flushes the receive and receive-by-reference queues

e Flushes the clock queue for any outstanding Mark Time
requests for the task

e Closes all open files (files open for write access are
locked)

5-69

DIRECTIVE DESCRIPTIONS
e Detaches all attached regions, except in the case of a
fixed task, where no detaching occurs
e Runs down the task's I/0

e Deaccesses the group global event flags for the task's
group

e Disconnects from interrupts
e Flushes all outstanding CLI command buffers for the task

e Breaks the connection with any offspring tasks

® Returns a success code (EXS$SUC) to any parent task

e Frees the task's memory if the exiting task was not fixed

Because this directive requires only a 1l-word DPB, the $S
form of the macro is recommended. It requires less space and
executes with the same speed as that of the DIRS macro.

You can terminate FORTRAN tasks with the STOP statement or
with CALL EXIT. CALL EXIT 1is a FORTRAN OTS routine that
closes open files and performs other cleanup before it issues
an EXITSS directive (or an EXSTS directive in FORTRAN
IV-PLUS). FORTRAN tasks that terminate with the STOP
statement result in a message being displayed on the task's
TI:. This message includes task name (as it appears 1in the
Active Task List), the statement causing the task to stop,
and an optional character string specified in the STOP
statement. Tasks that terminate with CALL EXIT do not
display a termination message. For example, a FORTRAN task
containing the following statement:

20 STOP 'THIS FORTRAN TASK'

exits with the following message displayed on the tasks TI:
(TT37 in this example):

TT37 -- STOP THIS FORTRAN TASK

5-70

DIRECTIVE DESCRIPTIONS

5.3.28 Exit With Status

The Exit With Status directive causes the issuing task to exit,
passing a 16-bit status back to all tasks connected (by the Spawn,
Connect, or Send, Request And Connect directive). If the issuing task
has no connected tasks, then the directive simply performs a Task
Exit. No format of the status word is enforced by the Executive;
format conventions are a function of the cooperation between parent
and offspring tasks. However, if an offspring task aborts for any
reason, a status of EXS$SEV i ke |
- Furthermore,
i a ask perfo nnected to it, a
status of EX$SUC (successful completion) is returned to all connected
tasks.

FORTRAN Call:
CALL EXST (istat)
istat = A 16-bit quantity to be returned to parent task
Macro Call:
EXSTS status
status = A 16-bit quantity to be returned to parent task

Macro Expansion:

EXST$ STWD
.BYTE 29.,2 ;EXSTS MACRO DIC, DPB SIZE=2 WORDS
.WORD STWD ;VALUE OF STATUS TO BE RETURNED

Local Symbol Definitions:
E.XSTS -- Value of status to be returned (2)
DSW Return Codes:

No status is returned if the directive is successfully completed
since the directive causes the issuing task to exit.

IE.ADP -- Part of the DPB is out of the issuing task's address
space.
IE.SDP -- DIC or DPB size is invalid.

5-71

Notes:

DIRECTIVE DESCRIPTIONS

The executive does the following to free a task's resources
on Exit:

Detaches all attached devices
Flushes the AST queue and despecifies all specified ASTs
Flushes the Receive and Receive-by-reference queues

Flushes the clock queue for any outstanding Mark Time
requests for the task

Closes all open files (files open for write access are
locked)

Detaches all attached regions except in the case of a
fixed task

Runs down the task's I/O

Deaccesses the group global event flags for the task's
group

Disconnects from interrupts
Flushes all outstanding CLI command buffers for the task

Breaks the connection with any offspring tasks

Returns the specified exit status to any parent tasks

Frees the task's memory if the exiting task was not fixed

If the task exits, the executive declares a significant
event.

5-72

DIRECTIVE DESCRIPTIONS

EXTKS

5.3.29 Extend Task

The Extend Task directive instructs the system to modify the size of
the issuing task by a positive or negative increment of 32-word
blocks. If the directive does not specify an increment wvalue or
specifies an increment value of zero, the Executive makes the issuing
task's size equal to its installed size. The issuing task must be
running in a system-controlled partition and cannot have any
outstanding I/O when it issues the directive. The task must also be
checkpointable to 1increase its size; if necessary, the Executive
checkpoints the task, and then returns the task to memory with Iits
size modified as directed.

In a system that supports the memory management directives, the
Executive does not change any current mapping assignments if the task
has memory-resident overlays. However, if the task does not have
memory-resident overlays, the Executive attempts to modify, by the
specified number of 32-word blocks, the mapping of the task to Iits
task region.

If the 1issuing task 1is checkpointable but has no preallocated
checkpoint space available, a positive increment may require dynamic
memory and extra space in a checkpoint file sufficient to contain the
task.

There are several constraints on the size to which a task can extend
itself using the Extend directive:

e No task can extend itself beyond the maximum size set by the
MCR command SET /MAXEXT or DCL command SET EXTENSION LIMIT or
the size of the partition in which it is running. [See the
RSX-11M/M-PLUS MCR Operations Manual or the RSX-11M/M-PLUS
Command Language Manual.)

e A task that does not have memory-resident overlays cannot
extend itself beyond 32K minus 32 words.

® A task that has preallocated checkpoint space in its task
image file cannot extend itself beyond its installed size.

e A task that has memory-resident overlays cannot reduce its
size below the highest window in the task partition.

FORTRAN Call:

CALL EXTTSK ([incl[,ids])

inc = A positive or negative number equal to the number of
32-word blocks by which the task size is to be extended
or reduced

ids = Directive status

5-73

DIRECTIVE DESCRIPTIONS

Macro Call:
EXTKS [inc]
inc = A positive or negative number equal to the number of
32-word blocks by which the task size is to be extended
or reduced

Macro Expansion:

EXTKS$ 40
.BYTE 89.,3 ;EXTKS MACRO DIC, DPB SIZE=3 WORDS
.WORD 40 ;EXTEND INCREMENT, 40(8) BLOCKS (1K
;WORDS))
.WORD 0 ;RESERVED WORD
Local Symbol Definitions:
E.XTIN -- Extend increment (2)
DSW Return Codes:
IS.SUC -- Successful completion.
IE.UPN -- Insufficient dynamic memory, or insufficient space in

a checkpoint file.

IE.ITS -- The 1issuing task is not running in a system
controlled partition.

IE.ALG -- The issuing task attempted to reduce its size to less
than the size of its task header; or the task tried
to increase its size beyond 32K words or beyond the
maximum set by the MCR SET /MAXEXT command or the DCL
SET EXTENSION_ LIMIT command; or the task tried to
increase its size to the extent that one virtual
address window would overlap another; or the task
has memory-resident overlays and it attempted to
reduce its size below the highest window mapped to
the task partition.

IE.IOP

I/0 is in progress for this task

IE.CKP -- The issuing task is not checkpointable and specified
a positive integer.

IE.NSW -- Attempt to extend to larger than installed size (when
checkpoint space is allocated in the task).

IE.ADP -- Part of the DPB is out of the issuing task's address
space.

IE.SDP -- DIC or DPB size is invalid.

DIRECTIVE DESCRIPTIONS

GCCIS$

5.3.30 Get Command for Command Interpreter

The Get Command for Command Interpreter directive instructs the system
to retrieve a command buffer for a Command Line Interpreter (CLI) task
and copy it to a buffer in the task's address space. Information
about the issuing terminal can also be returned to the CLI task.

Only CLI tasks can issue this directive.

FORTRAN Call:

CALL GTCMCI (icbf,icbfl,[iibuf],[iibfl],[iaddr],[incp][,ids])

icbf = Name of a byte array to receive the command
icbfl = Integer containing the size of the icbf array in bytes
iibuf = Name of an integer array to receive the optional
information buffer
iibfl = Name of an integer containing the 1length of the
optional information buffer. If you specify a length
shorter than the information buffer, as much
information as will fit in the length you specified is
returned.
jaddr = Name of an integer that contains the address in pool of
the command desired. This address was obtained by a
previous call to GTCMCI with GC.CND specified.
incp = Name of an integer containing a bit mask indicating the
action to take if there is no command queued:
Octal
Bit Value Definition
GC.CCs 000 Return with carry set (default).
GC.CEX 001 Force CLI to exit instead of
returning.
GC.CST 002 Force CLI to stop instead of
returning.
GC.CND 200 Copy command into buffer but do not
dequeue it from the list.
You must specify these as decimal values in your
FORTRAN program.
ids = Integer to receive the Directive Status Word

Macro Call:
GCCI$ cbuf,cbfl,[ibuf]l,[ib£fl],[addr}, [ncp]

cbuf = Address of buffer to receive command string

5-75

DIRECTIVE DESCRIPTIONS

cbfl = Length of buffer. Maximum buffer size is
. e

ibuf = Address of buffer to receive information on the issuing
terminal

ibfl = Length of buffer to receive information

addr = Address of command.

This address is returned in G.CCCA of the information
buffer if GC.CND is specified in the ncp argument. If
this argument is nonzero then only the command with the
address specified by this argument is copied and/or
dequeued. Note that this address is only filled in if
the command is not dequeued.

ncp = Action to take if no command buffer present:
Octal
Bit Value Definition
GC.CCS 000 Return with carry set (default).
GC.CEX 001 Force CLI to exit instead of

returning.

GC.CST 002 Force CLI to stop instead of
returning.

GC.CND 200 Copy command into buffer but do not
dequeue it from the list.

NOTE
GC.CND can be supplied with one of

the other options, for example,
GC.CND!GC.CEX.

Command Buffer Format:

G.CCDV -- ASCII device name of issuing terminal (2)

G.CCCT ~-- Number of characters (1)

G.CCUN -- Octal unit number of issuing terminal (1)
G.CCCL =-- Number of characters in command line (2)
G.CCFL -- Flags (1)

The values returned in the flag byte, G.CCFL, are:

Flag Value Definition
GC.CNL = 1 Null command line
GC.CTE = 2 Prompt from a task exit

DIRECTIVE DESCRIPTIONS

G.CCTC ~-- Terminator (1)

G.CCBF --

Command text in ASCII

Information Buffer Format:

The format of the information buffer in the CLI address task
space is:

G.CCW2 =- U.CW2 of ‘issuing terminal (2)

G.CCPT -~ Name of parent task (if any) (4)

G.CCOA -- Address of offspring control block from parent (2)
G.CCPU =-- Login UIC of issuing terminal (2)

G.CCCU —-- Current UIC of issuing terminal (2)

G.CCCA -- Address of command, if not dequeued (2)

Macro expansion:

GCCI$ CBUF,CBFL, IBUF, IBFL,ADDR,NCP

.BYTE 127.,17. ;DIC= 127., DPB SIZE=7 WORDS

.BYTE NCP ;ACTION TO TAKE IF NO COMMAND QUEUED
.BYTE 0

.WORD ADDR ;ADDRESS OF COMMAND

.WORD CBUF ;COMMAND BUFFER ADDRESS

.WORD CBFL ;COMMAND BUFFER LENGTH

-WORD IBUF ; INFORMATION BUFFER ADDRESS

-WORD IBFL ;INFORMATION BUFFER LENGTH

Local Symbol Definitions:

G.CCNC -- Action if no command queued (2)

G.CCAD -- Address of command to be returned (2)
G.CCBA -—- Address of command buffer (2)

G.CCBL -- Length of task's command buffer (2)

G.CCIA -- Address of optional information buffer (2)
G.CCIL -- Length of optional information buffer (2)

DSW Return Codes:

IE.AST -- The stop-on-no-command option was set and the
directive was issued from AST state.

IE.PRI -- Task is not a CLI.
IE.RSU -- The issuing task has a group global context active

and next command to be received would have caused the
task's protection group to have changed.

5-77

DIRECTIVE DESCRIPTIONS

IE.ITS -- No command was queued for the CLI and the directive

was issued with the return-with-carry-set option.

IS.CLR -- Returned with carry clear when the CLI was unstopped

due to command arrival, after having been stopped by
a GCIIS$ with the stop-on-no-command-option set.

IE.ADP ~-- DPB, send buffer or information buffer was outside

the task's address space, or the information buffer
was shorter than nine bytes.

IE.SDP -- DIC and DPB size is invalid.
Notes:
l. The number of characters returned (G.CCCT) could be less than

the number of characters in the command (G.CCCL) if the
length of the command buffer in the task, as specified by
cbfl argument, is smaller than the actual command line. IFf
there is sufficient room, a carriage return is placed at the
end of the command 1line returned at G.CCBF in the command
buffer inside the task to ease parsing.

If a command is successfully returned, the protection and
default UICs for the 1issuing task are changed by this
directive to match the UICs of the originating terminal.
These UICs are returned in words G.CCPU and G.CCCU of the
optional information buffer.

DIRECTIVE DESCRIPTIONS

GCII$

5.3.31 Get Command Interpreter Information

The Get Command Interpreter Information directive instructs the system
to fill a buffer with information about a specified CLI or the CLI
associated with a given terminal. A task must be privileged in order
to issue this directive for any terminal other than its own TI:, or a
CLI to which its TI: 1is not set.

FORTRAN Call:

CALL GETCII (ibuf,ibfl,{icli],{idevi,{iunit](,ids])

ibuf = Name of an integer array to receive the CLI
information
ibfl = Length in bytes of the integer array to receive the

CLI information

icli = ©Name of a two-word array element containing the
Radix-50 name of the CLI

idev = ©Name of an integer containing the ASCII name of
terminal (default = TI:)

iunit = Name of an integer containing the Octal unit number
of terminal

ids = Directive status

MACRO Call:

GCIIS$ buf,bufl,{cli],[dev,unit]

buf = Address of buffer to receive information
bufl = Length of information buffer
cli = Name in Radix-50 of the CLI that information is

requested on

dev = ASCII name of terminal whose CLI should be used
(default = TI:)

unit = Octal unit number of terminal

Information Buffer Format:

G.CICL -- Name of CLI
G.CICS -- Bit settings in the CLI status word:
Bit Value Definition

CP.NUL= 1 Pass empty command lines to CLI.

CP.MSG= 2 CLI wants system messages.

CP.LGO= 4 CLI wants commands from logged-off
terminals.

CP.DSB= 10 CLI is disabled. (Note that MCR
does not check this bit.)

5-79

DIRECTIVE DESCRIPTIONS

Bit Value Definition

CP.PRV= 20 User must be privileged to set
terminal to this CLI.

CP.SGL= 40 Don't handle conti tions.
A g '

CP.NIO= 100 MCR..., HEL, BYE do no 1I/O to

terminal; HEL, BYE also do not
set CLI, and so forth.

CP.RST= 200 Restricted access; only this CLI
task can set a terminal to this
CLI.
CP.EXT= 400 Pass task exit prompt requests to
CLI.
G.CITK -- Name of task serving as CLI
G.CIW2 =-- Terminal's U.CW2
G.CIPU -- Terminal's protection UIC
G.CICU -- Terminal's current UIC
G.CIDP =-- CLI default prompt string (16-byte block. First byte

is length of string.)

Macro Expansion:

GCII$ buf,bufl,cli,dev,unit

.BYTE 173,7 ;DIC to be supplied. DPB SIZE=5
«WORD buf ;ADDRESS OF BUFFER

+WORD bufl ;LENGTH OF BUFFER

.RAD50 /cli/ ;RAD50 NAME OF CLI

.ASCII /dev/ ;ASCII NAME OF TERMINAL

«WORD unit ;TERMINAL UNIT NUMBER

DSW Returns:

IE.MAP -- Both a terminal and a CLI were specified.

IE.INS -- ©Specified CLI does not exist.

JE.IDU -- ©Specified device was not a terminal or does not
exist.

IE.PRI -- Nonprivileged task attempted to get information on a

CLI other than it's own.

IE.ADP -- Part of the DPB or buffer was out of the issuing

task's address space.

IE.SDP -- DIC or DPB size is invalid.
Notes:
l. If the buffer 1is not 1long enough to contain all the

information, the data that does not fit will not be supplied.
No indication of this is returned to the issuing task. The
buffer is filled from left to right.

You may not specify both 2 CLI and a2 terminal. If the ¢
argument is present, the dev and unit arguments must be zer

5-80

DIRECTIVE DESCRIPTIONS

GLUNS

5.3.32 Get LUN Information

The Get LUN Information directive instructs the system to fill a
6-word buffer with information about a physical device unit to which a
LUN is assigned. If requests to the physical device unit have been
redirected to another unit, the information returned will describe the
effective assignment.

FORTRAN Call:

CALL GETLUN (lun,dat{,ids]}

lun = Logical unit number
dat = A 6-word integer array to receive LUN information
ids = Directive status

Macro Call:

GLUNS lun,buf

lun = Logical unit number
buf = Address of 6-word buffer that will receive the LUN
information
Buffer Format:
Word 0 -- Name of assigned device
Word - -- Unit number of assigned device and flags byte (flags

byte equals 200 if the device driver is resident or
0 if the driver is not loaded)

Word 2 -- First device characteristics word:

Bit 0 -- Record-oriented device
(DV.REC, 1=yes) [FD.REC] 1

Bit 1 -- Carriage-control device
(DV.CCL, 1=yes) [FD.CCL]

Bit 2 -- Terminal device (DV.TTY, l=yes) [FD.TTY]

Bit 3 -- Directory (file—structured)
device (DV.DIR,1l=yes) [FD.DIR]

Bit 4 -- Single directory device
(DV.SDI, l1=yes) [FD.SDI]

Bit 5 -- Sequential device (DV.SQD,l=yes) [FD.SQD]
Bit 6 -- Mass storage device (DV.MSD,l=yes)
Bit 7 -- User-mode diagnostics supported (DV.UMD, l=yes)

l. Bits with associated symbols have the symbols shown in square
brackets. These symbols can be defined for use by a task by means of
the FCSBTS macro. See the IAS/RSX-11 I/0 Operations Reference Manual.

5-81

Word 3
Word 4
Word 5

Macro Expansion:

GLUNS
«BYTE
-WORD
«WORD

Local Symbol
G.LULU

G.LUBA

DIRECTIVE DESCRIPTIONS

Bit 8 -- Device supports extended 22-bit UNIBUS
controller (DV.EXT,l=yes)

Bit 9 -- Unit software write-locked (DV.SWL,l=yes)

Bit 10 -- Input spooled device (DV.ISP,l=yes)

Bit 11 -- Output spooled device (DV.OSP,l=yes)

Bit 12 -- Pseudo device (DV.PSE, l=yes)

Bit 13 -- Device mountable as a communications

channel (DV.COM, l=yes)

Bit 14 -- Device mountable as a Files-11 device
(DV.F1l1, 1=yes)

Bit 15 -- Device mountable (DV.MNT,l=yes)
Second device characteristics word

Third device characteristics word (words 3 and 4 are
device driver specific)

Fourth device characteristics word (normally
buffer-size as specified in the MCR or DCL SET/BUFF
command)

7, LUNBUF

5,3 ;GLUNS MACRO DIC, DPB SIZE=3 WORDS
7 ;LOGICAL UNIT NUMBER 7

LUNBUF ;ADDRESS OF 6-WORD BUFFER

Definitions:

Logical unit number (2)

Buffer address (2)

The following offsets are assigned relative to the start of the LUN
information buffer:

G.LUNA

G.LUNU

G.LUFB

G.LUCW

DSW Return Codes:

IS.SsuC

IE.ULN

IE.ILU

IE.ADP

Device name (2)
Device unit number (1)
Flags byte (1)

Four device characteristics words (8)

Successful completion.
Unassigned LUN.
Invalid logical unit number.

Part of the DPB or buffer 1is out of the 1issuing
task's address space.

DIC or DPB size is invalid.

5-82

DIRECTIVE DESCRIPTIONS

DIRECTIVE DESCRIPTIONS

GMCR$

5.3.33 Get MCR Command Line

The Get MCR Command Line directive instructs the system to transfer an

80-byte command line to the issuing task.

When a task is installed with a task name of
where "tsk" consists of three alphanumeric
octal terminal number, the MCR dispatcher

execution when a user issues the command
>tsk command-line

from terminal number n. A task invoked in this
call to Get MCR Command Line, which results
line" following the prompt being placed into an
buffer. (The MCR dispatcher is described in
Operations Manual.)

FORTRAN Call:

CALL GETMCR (buf[,ids])

buf

ids Directive status
Macro Call:
GMCRS$S

Macro Expansion:

GMCR$

.BYTE 127.,41.

.BLKW 40. ;:80.
Local Symbol Definitions:

G.MCRB =- MCR line buffer (80)

DSW Return Codes:

;GMCRS MACRO DIC, DPB SIZE=41l.

"...tsk®™ or "tskTn",
characters and n is an
requests the task's

manner must execute a
in the entire "command
80-byte command 1line
the RSX-11M/M-PLUS MCR

An 80-byte array to receive command line

WORDS

CHARACTER MCR COMMAND LINE BUFFER

+n —-— Successful completion; n is the number of data bytes

transferred (excluding the termination character).
The termination character is, however, in the buffer.

IE.AST -- No MCR command line exists for the issuing task;
that is, the task was not requested by a command line
as follows:

>tsk command-string

or the task has already issued the Get MCR Command
Line directive.

IE.ADP -- Part of the DPB is out of the issuing task's address
space.

IE.SDP -- DIC or DPB size is invalid.

5-84

DIRECTIVE DESCRIPTIONS

Notes:

1. The GMCRS$S form of the macro is not supplied, since the DPB
receives the actual command line.

2. The system processes all lines to:
e Convert tabs to a single space
e Convert multiple spaces to a single space
e Convert lowercase to uppercase

e Remove all trailing blanks

The terminator (<KCR> or <ESC>) is the last character in the
line.

DIRECTIVE DESCRIPTIONS

GMCXS$

5.3.34 Get Mapping Context

The Get Mapping Context directive causes the Executive to return a
description of the current window-to-region mapping assignments. The
returned description is in a form that enables the user to restore the
mapping context through a series of Create Address Window directives
(see Section 5.3.11). The macro argument specifies the address of a
vector that contains one Window Definition Block (WDB) for each window
block allocated in the task's header, plus a terminator word.

For each window block in the task's header, the Executive sets up a
WDB in the vector as follows:

1. If the window block is wunused (that 1is, if it does not
correspond to an existing address window), the Executive does
not record any information about that block in a WDB.
Instead, the Executive uses the WDB to record information
about the first block encountered that corresponds to an
existing window. In this way, unused window blocks are
ignored in the mapping context description returned by the
Executive.

2. If a window block describes an existing unmapped address
window, the Executive £fills 1in the offsets W.NID, W.NAPR,
W.NBAS, and W.NSIZ with information sufficient to re-create
the window. The window status word W.NSTS is cleared.

3. If a window block describes an existing mapped window, the
Executive fills in the offsets W.NAPR, W.NBAS, W.NSIZ,
W.NRID, W.NOFF, W.NLEN, and W.NSTS with information
sufficient to create and map the address window. WS.MAP is
set in the status word (W.NSTS) and, if the window is mapped
with write access, the bit WS.WRT is set as well.

Note that in no case does the Executive modify W.NSRB.

The terminator word, which follows the last WDB filled in, is a word
equal to the negative of the total number of window blocks in the
task's header. It 1is thereby possible to 1issue a TST or TSTB
instruction to detect the 1last WDB used in the vector. The
terminating word can also be used to determine the number of window
blocks built into the task's header.

When Create Address Window directives are used to restore the mapping
context, there 1is no guarantee that the same address window IDs will
be used. The user must therefore be careful to use the latest window
IDs returned from the Create Address Window directives.

FORTRAN Call:

CALL GMCX (imcx[,ids])

imex = An integer array to receive the mapping context. The
size of the array is 8%*n+l where n is the number of
window blocks i ! um. -

ids = Directive status.

DIRECTIVE DESCRIPTIONS

Macro Call:
GMCX$ wvec
wvec = The address of a vector of n Window Definition Blocks,
followed by a terminator word; n is the number of
window blocks in the task's header.
Macro Expansion:
GMCX$ VECADR
.BYTE 113.,2 ;GMCX$ MACRO DIC, DPB SIZE=2 WORDS
.WORD VECADR ;WDB VECTOR ADDRESS
Window Definition Block Parameters:
Input parameters:

None

Output parameters:

Array Offset
Element
iwdb (1) W.NID ~= ID of address window
bits 0-7
iwdb (1) W.NAPR -- Base APR of the window
bits 8-15
iwdb(2) W.NBAS -- Base virtual address of the window
iwdb (3) W.NSIZ -- Size, in 32-word blocks, of the window
iwdb(4) W.NRID -- 1ID of the mapped region, or no change if
the window is unmapped
iwdb (5) W.NOFF -- Offset, in 32-word blocks, from the start
of the region at which mapping begins, or
no change if the window is unmapped
iwdb (6) W.NLEN ~- Length, in 32-word blocks, of the area
currently mapped within the region, or no
change if the window is unmapped
iwdb (7) W.NSTS -- Bit settingsl in the window status word
(all 0 if the window is not mapped):
Bit Definition
WS.MAP 1 if the window is mapped
WS.WRT 1 if the window 1is mapped
with write access
WS.SIS 1 if the window is mapped 1in
supervisor-mode instruction
space

1. If you are a FORTRAN programmer, refer to Section 3.5.2 to
determine the bit values represented by the symbolic names described.

5-87

DIRECTIVE DESCRIPTIONS

Bit Definition

WS.UDS 1 if the window is mapped in
user-mode data space

WS.NBP 1 if the window was created
with cache bypass disabled
(on multiprocessor systems
only)

WS.RCX 1l if cache bypass has been
enabled for the current
mapping of the window (on
multiprocessor systems only)

Note that the length mapped (W.NLEN) can be less than the size of
the window (W.NSIZ) 1if the area from W.NOFF to the end of the
partition is smaller than the window size.

Local Symbol Definitions:

G.MCVA -- Address of the vector (wvec) containing the window
definition blocks and terminator word (2)

DSW Return Codes:

IS.SUC -- Successful completion.
IE.ADP ~-- Address check of the DPB or the vector (wvec) failed.
IE.SDP -- DIC or DPB size is invalid.

DIRECTIVE DESCRIPTIONS

GPRT$

5.3.35 Get Partition Parameters

The Get Partition Parameters directive instructs the system to £fill an
indicated 3-word buffer with partition parameters. If a partition is
not specified, the partition of the issuing task is assumed.

FORTRAN Call:

CALL GETPAR ([prt],buf[,ids])

prt = Partition name
buf = A 3-word integer array to receive partition parameters
ids = Directive status

Macro Call:

GPRTS [prt],buf

prt Partition name

buf

Address of a 3-word buffer
Buffer Format:

Word 0 -- Partition physical base address expressed as a
multiple of 32 words (partitions are always aligned
on 32-word boundaries). Therefore, a partition
starting at 40000(8) will have 400(8) returned in
this word.

Word 1 -- Partition size expressed as a multiple of 32 words.

Word 2 -- Partition flags word. This word is returned equal
to 0 to indicate a system-controlled partition, or
equal to 1 to indicate a user-controlled partition.

Macro Expansion:

GPRTS$ ALPHA,DATBUF

.BYTE 65.,4 ;GPRTS$ DIC, DPB SIZE=4 WORDS
.RAD50 /ALPHA/ ; PARTITION "ALPHA"
.WORD DATBUF ;ADDRESS OF 3-WORD BUFFER

Local Symbol Definitions:
G.PRPN -- Partition name (4)

G.PRBA -- Buffer address (2)

5-89

DIRECTIVE DESCRIPTIONS
The following offsets are assigned relative to the start of the
partition parameters buffer:

G.PRPB -- Partition physical base address expressed as an
absolute 32-word block number (2)

G.PRPS ~-- Partition size expressed as a multiple of 32-word
blocks (2)
G.PRFW -- Partition flags word (2)

DSW Return Codes:

Successful completion is indicated by a cleared Carry bit, and
the starting address of the partition is returned in the DSW. 1In
unmapped systems, the address is physical. In mapped systems,
the returned address is virtual and is always zero if it is not
the task partition. Unsuccessful completion is indicated by a
set Carry bit and one of the following codes in the DSW:

IE.INS -- Specified partition not in system.

IE.ADP -- Part of the DPB or buffer is out of the issuing
task's address space.

IE.SDP -- DIC or DPB size is invalid.

Notes:

1. For Executives that support the memory management directives,
a variation of this directive exists called Get Region
Parameters (see Section 5.3.36). When the first word of the
2-word partition name 1is 0, the Executive interprets the
second word of the partition name as a region 1ID. If the
2-word name 1is 0,0, it refers to the task region of the
issuing task.

2. Omission of the partition-name argument returns parameters

for the 1issuing task's wunnamed subpartition, not for the
system-controlled partition.

5-90

DIRECTIVE DESCRIPTIONS

GREGS$

5.3.36 Get Region Parameters

The Get Region Parameters directive instructs the Executive to fill an
indicated 3-word buffer with region parameters. If a region is not
specified, the task region of the issuing task is assumed.

This directive 1is a wvariation of the Get Partition Parameters
directive (see Section 5.3.35) for Executives that support the memory
management directives.

FORTRAN Call:

CALL GETREG ([rid],buf[,ids])

rid = Region id
buf = A 3-word integer array to receive region parameters
ids = Directive status

Macro Call:

GREGS [rid] ,buf

rid Region ID

buf Address of a 3-word buffer

Buffer Format:
Word 0 -- Region base address expressed as a multiple of 32
words (regions are always aligned on 32-word
boundaries). Thus, a region starting at 1000(8)
will have 10(8) returned in this word.
Word 1 -- Region size expressed as a multiple of 32 words.
Word 2 -- Region flags word. This word is returned equal to O
if the region resides in a system-controlled
partition, or equal to 1 if the region resides in a
user—-controlled partition.
Macro Expansion:

GREGS RID,DATBUF

.BYTE 65.,4 ;GREGS$ MACRO DIC, DPB SIZE=4 WORDS

.WORD 0 ;WORD THAT DISTINGUISHES GREGS$
;FROM GPRTS

-WORD RID ;REGION ID

«WORD DATBUF ;ADDRESS OF 3-WORD BUFFER

Local Symbol Definitions:
G.RGID -- Region ID (2)

G.RGBA -- Buffer address

5-91

DIRECTIVE DESCRIPTIONS

The following offsets are assigned relative to the start of the region
parameters buffer:

G.RGRB --

G.RGRS --

G.RGFW --

DSW Return Codes:

Region base address expressed as an absolute 32-word
block number (2)

Region size expressed as a multiple of 32-word
blocks (2)

Region flags word (2)

Successful completion 1is indicated by <carry clear, and the
starting address of the region 1is returned 1in the DSW. 1In
unmapped systems, the returned address is physical. In mapped
systems, the returned address is virtual and is always zero if it
is not the task region. Unsuccessful completion is indicated by
carry set and one of the following codes in the DSW:

IE.NVR -- 1Invalid region ID.

IE.ADP -- Part of the DPB or buffer is out of the 1issuing

task's address space.

IE.SDP —-- DIC or DPB size is invalid.

5-92

DIRECTIVE DESCRIPTIONS

GSSWSS

5.3.37 Get Sense Switches ($S Form Recommended)

The Get Sense Switches directive instructs the system to obtain the
contents of the console switch register and store it in the issuing
task's Directive Status word.

FORTRAN Call:

CALL READSW (isw)

isw = 1Integer to receive the console switch settings

The following FORTRAN call allows a program to read the state of a
single switch:

CALL SSWTCH (ibt,ist)
ibt = The switch to be tested (0 to 15)
ist = Test results where:
1 = switch on
2 = switch off
Macro Call:
GSSWSS [err]
err = Error routine address
Macro Expansion:
GSSWSS ERR
MOV (PC)+,-(SP) ;PUSH DPB ONTO THE STACK
.BYTE 125.,1 ;GSSWSS MACRO DIC, DPB SIZE=1 WORD
EMT 377 ;s TRAP TO THE EXECUTIVE
BCC .+6 ;BRANCH IF DIRECTIVE SUCCESSFUL
JSR PC, ERR ;OTHERWISE, CALL ROUTINE "ERR"

Local Symbol Definitions:
None

DSW Return Codes:
Successful completion 1is indicated by carry clear, and the
contents of the console switch register are returned in the DSW.
Unsuccessful completion is indicated by carry set and one of the
following codes in the DSW:

IE.ADP -- Part of the DPB is out of the issuing task's
address space.

IE.SDP =-= DIC or DPB size is invalid.

5-93

DIRECTIVE DESCRIPTIONS

Note:

1. Because this directive requires only a 1l-word DPB, the §S
form of the macro is recommended. It requires less space and
executes with the same speed as that of the DIRS macro.

DIRECTIVE DESCRIPTIONS

GTIMS

5.3.38 Get Time Parameters
The Get Time Parameters directive instructs the system to £fill an
indicated 8-word buffer with the current time parameters. All time
parameters are delivered as binary numbers. The value ranges (in
decimal) are shown in the table below.
FORTRAN Call:

CALL GETTIM (ibfpl[,ids])

ibfp = An 8-word integer array

Macro Call:
GTIMS buf
buf = Address of 8-word buffer

" Buffer Format:

Word 0 -- Year (since 1900)

Word 1 =-- Month (1-12)

Word 2 -- Day (1-31)

Word 3 =-- Hour (0-23)

Word 4 -- Minute (0-59)

Word 5 —-- Second (0-59)

Word 6 -- Tick of second (depends on the frequency of the
clock)

Word 7 —-- Ticks per second (depends on the frequency of the
clock)

Macro Expansion:
GTIMS DATBUF

.BYTE 61.,2 ;GTIMS$ DIC, DPB SIZE=2 WORDS
-WORD DATBUF ;ADDRESS OF 8.-WORD BUFFER

Local Symbol Definitions:

G.TIBA -- Buffer address (2)

DIRECTIVE DESCRIPTIONS

The following offsets are assigned relative to the start of the time
parameters buffer:

G.TIYR -~ VYear (2)

G.TIMO -- Month (2)

G.TIDA -- Day (2)

G.TIHR =-- Hour (2)

G.TIMI ~- Minute (2)

G.TISC -- Second (2)

G.TICT -- Clock Tick of Second (2)
G.TICP -- Clock Ticks per Second (2)

DSW Return Codes:
IS.S8UC -- Successful completion.

IE.ADP -- Part of the DPB or buffer is out of the issuing
task's address space.

IE.SDP -- DIC or DPB size is invalid.

Note:

The format of the time buffer is compatible with that of the
buffers used with the Set System Time directive.

5-96

DIRECTIVE DESCRIPTIONS

GTSKS$

5.3.39 Get Task Parameters

The Get Task Parameters directive instructs the system to £fill an
indicated 16-word buffer with parameters relating to the issuing task.

FORTRAN Call:

CALL GETTSK (buf[,ids])

buf

ids

Macro Call:

GTSKS

buf

Buffer Format:

Word
Word
Word
Word

Word

Word

Word

Word

Word

Word

Word

Word

10

11

12

13

A 16-word integer array to receive the task parameters

Directive status

buf

Address of a l6-word buffer

Issuing task's name in Radix-50 (first half)
Issuing task's name in Radix-50 (second half)
Partition name in Radix-50 (first half)
Partition name in Radix-50 (second half)

Undefined in RSX-11M/M-PLUS (this word exists for
RSX-11D compatibility)

Undefined in RSX-11M/M-PLUS (this word exists for
RSX~11D compatibility)

Run priority

User identification code (UIC) of issuing task (in a
multiuser protection system, the task's default
UIc)l

Number of logical I/O units (LUNs)

Undefined in RSX-11M/M-PLUS (this word exists for
RSX-11D compatibility)

Undefined in RSX-11M/M-PLUS (this word exists for
RSX-11D compatibility)

(Address of task SST vector tables)?2

1. See note in RQSTS$ description (Section 5.3.54) on contents of words

07 and 17.

2. Words 13 and 14 will contain valid data if word 14 is not zero. If
word 14 is zero, the contents of word 13 are meaningless.

5-97

DIRECTIVE DESCRIPTIONS

Word 14 -- (Size of task SST vector table in words)2

Word 15 -- Size (in bytes) either of task's address window 0 in
mapped systems, or of task's partition in unmapped
system (equivalent to partition size)

Word 16 —-—- System on which task is running:
0 for RSX-11D
1 for RSX-11M
2 for RSX~11S8
3 for IAS
4 for RSTS
5 for VAX/VMS
6 for RSX-11M-PLUS
7 for RT11 single Job Monitor
10 for RT11l Foreground/Background
and Extended Memory Monitor
Word 17 -- Protection UIC (in multiuser system, the 1log-in
vic)l
Macro Expansion:
GTSKS$ DATBUF
.BYTE 63.,2 ;GTSKS DIC, DPB=2-WORDS
.WORD DATBUF ;ADDRESS OF 16-WORD BUFFER

Local Symbol Definitions
G.TSBA -~ Buffer address (2)

The following offsets are assigned relative to the task parameter
buffer:

G.TSTN -- Task name (4)

G.TSPN -- Partition name (4)

G.TSPR —-- Priority (2)

G.TSGC —-- UIC group code (1)

G.TSPC -- UIC member code (1)

G.TSNL -- Number of logical units (2)

G.TSVA —-- Task's SST vector address (2)
G.TSVL =-- Task's SST vector length in words (2)
G.TSTS -- Task size (2)

G.TSSY —-- System on which task is running (2)
G.TSDU -- Protection UIC (2)

1. See note in RQST$ description (Section 5.3.54) on contents of words
07 and 17.

2., Words 13 and 14 will contain data if word 14 is not zero. If word
14 is zero, the contents of word 13 are meaningless.

5-98

DSW Return Codes:

IS.SUC

IE.ADP

IE.SDP

DIRECTIVE DESCRIPTIONS

Successful completion.

Part of the DPB or buffer 1is out of the
task's address space.

DIC or DPB is invalid.

issuing

DIRECTIVE DESCRIPTIONS

MAP$

5.3.40 Map Address Window

The Map Address Window directive maps an existing window to an
attached region. The mapping begins at a specified offset from the
start of the region. If the window is already mapped elsewhere, the
Executive unmaps it before carrying out the mapping assignment
described in the directive.

For the mapping asssignment, a task can specify any length that is
less than or equal to both:

e The window size specified when the window was created

e The length remaining between the specified offset within the
region and the end of the region

A task must be attached with write access to a region in order to map
to it with write access. To map to a region with read-only access,
the task must be attached with either read or write access.

If W.NLEN is set to 0, the length defaults to either the window size
or the 1length remaining in the region, whichever is smaller. (Since
the Executive returns the actual length mapped as an output parameter,
the task must clear that parameter in the WDB before issuing the
directive each time it wants to default the length of the map.)

The values that can be assigned to W.NOFF depend on the setting of bit
WS.64B in the window status word (W.NSTS):

e If WS.64B = 0, the offset specified in W.NOFF must represent a
multiple of 256 words (512 bytes). Because the value of
W.NOFF is expressed in units of 32-word blocks, the value must
be a multiple of 8.

e If WS.64B = 1, the task can align on 32-word boundaries; the
programmer can therefore specify any offset within the region.

NOTE

Applications dependent on 32-word or
64-byte alignment (WS.64B = 1) may not

be compatible with future
implementations of RSX emulators.
Therefore, programmers should write
applications adaptable to either

alignment requirement. The bit setting
of WS.64B could be a parameter chosen at
assembly time (by means of a prefix
file), at task-build time (as input to
the GBLDEF option), or at run time (by
means of command input).

FORTRAN Call:
CALL MAP (iwdb[,ids})

iwdb = An 8-word integer array containing a Window Definition
Block (see Section 3.5.2.2)

ids Directive status

5-100

DIRECTIVE DESCRIPTIONS

Macro Call:
MAPS$ wdb
wdb = Window Definition Block address
Macro Expansion:

MAPS WDBADR
.BYTE 121.,2 ;MAP$ MACRO DIC, DPB SIZE=2 WORDS
.WORD WDBADR ;WDB ADDRESS

Window Definition Block Parameters:
Input parameters:

Array Offset
Element

iwdb (1) W.NID —— ID of the window to be mapped.
bits 0-7

iwdb (4) W.NRID -- 1ID of the region to which the window 1is
to be mapped, or 0 if the task region is
to be mapped.

iwdb (5) W.NOFF -- Offset, in 32-word blocks, within the
region at which mapping is to begin.
Note that if WS.64B in the window status
word equals 0, the value specified must
be a multiple of 8.

iwdb(6) W.NLEN -- Length, in 32-word blocks, within the
region to be mapped, or 0 if the length
is to default to either the size of the
window or the space remaining in the
region from the specified offset,
whichever is smaller.

iwdb(7) W.NSTS -- Bit settings1 in the window status word:
Bit Definition
WS.WRT 1 if write access 1is desired
WS.64B 0 for 256-word (512-byte)
alignment, or 1 for 32-word

(64-byte) alignment

Output parameters:

iwdb(6) W.NLEN -- Length of the area within the region
actually mapped by the window
iwdb(7) W.NSTS -- Bit settingsl in the window status word:
WS.UNM -- 1 if the window was unmapped
first

1. If you are a FORTRAN programmer, refer to Section 3.5.2 to
determine the bit values represented by the symbolic names described.

5-101

DIRECTIVE DESCRIPTICNS

Local Symbol Definitions:

M.APBA

DSW Return Codes:

IS.SsuC

IE. PRI

IE.NVR

IE.NVW

IE.ALG

Window Definition Block address (2)

Successful completion.
Privilege violation.
Invalid region ID.

Invalid address window ID.

Task specified an invalid region offset and
combination in the Window Definition

length
Block

parameters; or WS.64B = 0 and the value of W.NOFF is
not a multiple of 8. :

IE.ADP

IE.SDP

Part of the DPB or WDB is out of the 1issuing
address space.

DIC or DPB size is invalid.

task's

he reqlonﬂﬁ,

5-102

DIRECTIVE DESCRIPTICONS

MRKTS$

5.3.41 Mark Time

The Mark Time directive instructs the system to declare a significant
event after an indicated time interval. The interval begins when the
task issues the directive; however, task execution continues during
the interval. If an event flag is specified, the flag is cleared when
the directive is issued, and set when the significant event occurs.
If an AST entry point address is specified, an AST (see Section 2.3.3)
occurs at the time of the significant event. When the AST occurs, the
task's PS, PC, directive status, Wait For mask words, and the event
flag number specified in the directive are pushed onto the issuing
task's stack. If neither an event flag number nor an AST service
entry point is specified, the significant event still occurs after the
indicated time interval. See Notes below.

FORTRAN Calls:

CALL MARK (efn,tmg,tnt[,ids])

efn = Event flag number

tmg = Time interval magnitude (see Note 5)
tnt = Time interval unit (see Note 5)

ids = Directive status

The ISA standard call for delaying a task for a specified time
interval is also provided:

CALL WAIT (tmg,tnt[,ids])
tmg = Time interval magnitude (see Note 5 below)

tnt Time interval unit (see Note 5 below)

ids Directive status
Macro Call:

MRKTS$ [efn] ,tmg,tnt(,ast]

efn = Event flag number

tmg = Time interval magnitude (see last Note below)
tnt = Time interval unit (see last Note below)

ast = AST entry point address

5-103

DIRECTIVE DESCRIPTIONS

Macro Expansion:

MRKT$ 52.,30.,2,MRKAST

.BYTE 23.,5 ;MRKT$ MACRO DIC, DPB SIZE=5 WORDS
.WORD 52. ;EVENT FLAG NUMBER 52.

.WORD 30. ;TIME MAGNITUDE=30.

-WORD 2 ; TIME UNIT=SECONDS

.WORD MRKAST ;ADDRESS OF MARK TIME AST ROUTINE

Local Symbol Definitions:

M.KTEF -- Event flag (2)

M.KTMG -- Time magnitude (2)

M.KTUN -- Time unit (2)

M.KTAE -- AST entry point address (2)

DSW Return Codes:

For CALL MARK and MRKTS:

IS.sucC —- Successful completion.

IE.UPN —-— Insufficient dynamic memory.

IE.ITI -- Invalid time parameter.

IE. IEF -— Invalid event flag number (EFN<O, or EFN>96 if

group global event flags exist for the task's
group; or EFN>64 if not).

IE.ADP -— Part of the DPB is out of the issuing task's
address space.

IE.SDP

DIC or DPB size is invalid.
For CALL WAIT:

RSX-11M/M-PLUS provides the following positive error codes to be
returned for ISA calls:

1 -- Successful completion

2 -— Insufficient dynamic storage

3 -— Specified task not installed

94 -~ Invalid time parameters

98 —~ 1Invalid event flag number

99 -— Part of DPB out of task's range
100 -- DIC or DPB size invalid

5-104

DIRECTIVE DESCRIPTIONS

1. Mark Time requires dynamic memory for the clock queue entry.

2. If an AST entry point address is specified, the AST service
routine is entered with the task's stack in the following
state:

SP+10 - Event flag mask wordl

SP+06 - PS of task prior to AST

SP+04 - PC of task prior to AST

SP+02 - DSW of task prior to AST

SP+00 - Event flag number or zero (if none was
specified in the Mark Time directive)

The event flag number must be removed from the task's stack
before an AST Service Exit directive (see Section 6.3.4) is
executed.

3. If the directive is rejected, the specified event flag is not
guaranteed to be cleared or set. Consequently, if the task
indiscriminately executes a Wait For directive and the Mark
Time directive 1is rejected, the task may wait indefinitely.
Care should always be taken to ensure that the directive was
successfully completed.

4. TIf a task issues a Mark Time directive that specifies a
common or group global event flag and then exits before the
indicated time has elapsed, the event flag is not set.

5. The Executive returns the code IE.ITI (or 94) 1in the
Directive Status Word if the directive specifies an invalid
time parameter. The time parameter consists of two

components: the time interval magnitude and the time
interval unit, represented by the arguments tmg and tnt,
respectively.

A legal magnitude value (tmg) is related to the value
assigned to the time interval unit (tnt). The unit values
are encoded as follows:

For an ISA FORTRAN call (CALL WAIT):

0 = Ticks. A tick occurs for each clock interrupt and
is dependent on the type of clock installed in the
system.

For a line frequency clock, the tick rate is either
50 or 60 per second, corresponding to the power-line
frequency.

For a programmable clock, a maximum of 1000 ticks
per second is available (the exact rate is
determined at system generation time).

1. The event flag mask word preserves the Wait For conditions of a
task prior to AST entry. A task can, after an AST, return to a Wait
For state. Because these flags and the other stack data are in the

user task, they can be modified. Such modification is strongly
discouraged, however, since the task can easily fault on obscure
conditions. For example, clearing the mask word results in a

permanent Wait For State.

5-105

DIRECTIVE DESCRIPTIONS

1 = Milliseconds. The subroutine converts the specified
magnitude to the equivalent number of system clock
ticks. On systems with 1line frequency clocks,
millisecond Mark Time requests can only be
approximations.

For all other FORTRAN and macro calls:
1 = Ticks. See definition of ticks above.

For both types of FORTRAN calls and all macro calls:

2 = Seconds
3 = Minutes
4 = Hours

The magnitude (tmg) is the number of units to be clocked.
The following 1list describes the magnitude values that are
valid for each type of unit. In no case can the value of tmg
exceed 24 hours. The list applies to both FORTRAN and macro
calls.

If tnt = 0, 1, or 2, tmg can be any positive value with a
maximum of 15 bits.

If tnt = 3, tmg can have a maximum value of 1440(10).

If tnt = 4, tmg can have a maximum value of 24(10).
If the specified event flag is a group global, the use count
for the event flag's group is incremented to prevent
premature elimination of event flags. The use count is run
down when:
¢ The Mark Time event occurs.

e The Mark Time event is cancelled.

e The issuing task exits with the Mark Time event still on
the clock queue.

The minimum time interval is one tick. If you specify a time
interval of zero, it will be converted to one tick.

5-106

DIRECTIVE DESCRIPTIONS

5-107

DIRECTIVE DESCRIPTIONS

;DIC=201. DPB SIZE= 1 WORD

Pty

Part of the DPB lS out of the 1ssu ng. ,task' :}"ayddxre'ss“
space. e : s g G e T

'DICJO:IDPB giié;;-

5-108

DIRECTIVE DESCRIPTIONS

e

ESSA

5-109

DIRECTIVE DESCRIPTIONS

ro

. from use

5-110

DIRECTIVE DESCRIPTIONS

5-111

DIRECTIVE DESCRIPTIONS

QlOo$

5.3.44 Queue I/0 Request

The Queue I/O Request directive instructs the system to place an 1I1I/0
request for an indicated physical device unit into a queue of
priority-ordered requests for that device unit. The physical device
unit is specified as a 1logical unit number (LUN) assigned to the
device,

The Executive declares a significant event when the 1I/0 transfer
completes. If the directive call specifies an event flag, the
Executive clears the flag when the request is queued and sets the flag
when the significant event occurs.

The I/0 status block is also cleared when the request is queued and is
set to the final I/O status when the I/0 request is complete. If an
AST service routine entry point address is specified, the AST occurs
upon I/0 completion, and the task's Wait For mask word, PS, PC, DSW,
and the address of the I/O status block are pushed onto the task's
stack.

The description below deals solely with the Executive directive; the
device-dependent information can be found in the RSX-11M/M-PLUS I/O
Drivers Reference Manual. See Notes below.

FORTRAN Call:

CALL QIO (fnc,lun,[efnl,[pri],[isb],([prl]([,ids])

fnc = I/0 function codel

lun = Logical unit number

efn = Event flag number

pri = Priority; 1ignored, but must be present

isb = A 2-word integer array to receive final I/O status

prl = A 6-word integer array containing device-dependent
parameters to be placed in parameter words 1 through 6
of the DPB. Fill in this array by using the GETADR
routine (see Section 1.5.1.4).

ids = Directive status

Macro Call:

QIOS fnec,lun,[efn],[pril,[isb],[ast],[prl]

]

fnc I1/0 function codel

lun Logical unit number

‘1. I/0 function code definitions are included in the RSX-11M/M-PLUS
I/0 Drivers Reference Manual.

5-112

DIRECTIVE DESCRIPTIONS

efn = Event flag number

pri = Priority; ignored, but must be present

isb = Address of I/0 status block

ast = Address of entry point of AST service routine
prl = Parameter list of the form <Pl,...P6>

Macro Expansion:

QIO0$ 10.RVB,7,52.,,I0STAT, IOAST,<IOBUFR,512.>

.BYTE 1,12, ;0I0$ MACRO DIC, DPB SIZE=12
.WORD I0.RVB ;FUNCTION=READ VIRTUAL BLOCK
+WORD 7 ; LOGICAL UNIT NUMBER 7

.BYTE 52.,0 ;EFN 52., PRIORITY IGNORED
.WORD IOSTAT ;ADDRESS OF 2-WORD I/O STATUS BLOCK
-WORD IOAST ;ADDRESS OF I/0O AST ROUTINE
-WORD IOBUFR ;ADDRESS OF DATA BUFFER
-WORD 512. ;BYTE COUNT=512.

+WORD 0 ;ADDITIONAL PARAMETERS...
.WORD 0 7+..NOT USED IN...

.WORD 0 ;+..THIS PARTICULAR...

.WORD 0 ; ..+ INVOCATION OF QUEUE I/O

Local Symbol Definitions:

0.IOFN -- 1I/0 function code (2)

0.IOLU -- Logical unit number (2)

Q.IOEF -- Event flag number (1)

0.I0OPR —-- Priority (1)

Q.I0SB -- Address of I/0 status block (2)

Q.IOAE -- Address of I/O done AST entry p;int (2)
Q.IOPL -- Parameter list (6 words) (1l2)

DSW Return Codes:

IS.SUC -- Successful completion.

IE.UPN —-- Insufficient dynamic memory.

IE.ULN -- Unassigned LUN.

IE.HWR -- Device driver not loaded.

IE.PRI -- Task other than despooler attempted a write 1logical

block operation.

IE.ILU -- 1Invalid LUN.

IE.IEF -- 1Invalid event flag number (EFN<O, or EFN>96 if group
global event flags exist for the task's group; or
EFN>64 if not).

IE.ADP -- Part of the DPB or I/0 status block 1is out of the
issuing task's address space.

IE.SDP -- DIC or DPB size is invalid.

5-113

Notes:

1.

DIRECTIVE DESCRIPTIONS

If the directive call specifies an AST entry point address,
the task enters the AST service routine with its stack in the
following state:

SP+10 - Event flag mask word

SP+06 - PS of task prior to AST
SP+04 - PC of task prior to AST
SP+02 - DSW of task prior to AST

SP+00 - Address of I/0 status block, or zero, if none
was specified in the QIO directive

The address of the 1I/0 status block, which is a
trap-dependent parameter, must be removed from the task's
stack before an AST Service Exit directive (see Section
5.3.4) is executed.

If the directive is rejected, the specified event flag is not
guaranteed to be cleared or set. Consequently, if the task
indiscriminately executes a Wait For or Stop For directive
and the QIO directive is rejected, the task may wait
indefinitely. Care should always be taken to ensure that the
directive was successfully completed.

Tasks

0 Roa-11p cannot normally be
checkpointed with I/0 outstan

reasons:

e If the QIO directive results in a data transfer, the data
transfers directly to or from the user-specified buffer.

e If an I/0 status block address is specified, the directive
status is returned directly to the I/O status block.

The Executive waits until a task has no outstanding 1I/0
before 1initiating checkpointing in all cases except the one
described below.

In systems that support buffered I/0, drivers that buffer I/0
check for the following conditions for a task:

e That the task is checkpointable
e That checkpointing is enabled

If those two <conditions are met, the driver and/or the
Executive buffers the I/0 request internally and the task is
checkpointable with this outstanding I/0. If the task also
entered a Wait For state when the I/0 was issued (see the
QIOWS directive) or subsequently enters a Wait For state, the
task 1is stopped. Any competing task waiting to be loaded
into the partition can checkpoint the stopped task,
regardless of priority. If the stopped task is checkpointed,
the executive does not bring it back into memory until the
stopped state is terminated by completion of buffered I/0 or
satisfaction of the Wait For condition.

Not all drivers buffer I/0 requests. The terminal driver is
an example of one that does,

5-114

4.

DIRECTIVE DESCRIPTIONS

A privileged task on RSX-11M
that is 1linked to a common (read-only) area can issue QIO
write requests to that area.

If the specified event flag is a group global, the use count
for the event flag's group 1is incremented to prevent
premature elimination of the event flags. The use count 1is
run down when:

e The I/0 is completed.

e The I/0 is killed by reassigning the specified LUN with
the ALUNS directive.

e The I/0 is killed by issuing the IO.KIL function for the
specified LUN.

e The task exits before I/0 is completed.

5-115

DIRECTIVE DESCRIPTIONS

QIOW$

5.3.45 Queue I/0 Request and Wait

The Queue I/O Request And Wait directive is identical to the Queue I/0
Request in all but one aspect. If the Wait variation of the directive
specifies an event flag, the Executive automatically effects a Wait
For Single Event Flag directive. If an event flag is not specified,
however, the Executive treats the directive as if it were a simple
Queue I/0 Request.

The following description lists the FORTRAN and macro calls with the
associated parameters, as well as the macro expansion. Consult the
description of Queue I/0 Request for a definition of the parameters,
the 1local symbol definitions, the DSW return codes, and explanatory
notes.

FORTRAN Call:

CALL WTQIO (fnc,lun,[efn],([pril,[isb],[prl](,ids])

fnc = 1I/0 function codel

lun = Logical unit number

efn = Event flag number

pri = Priority; 1ignored, but must be present

isb = A 2-word integer array to receive final I/0 status

prl = A 6-word integer array containing device-dependent
parameters to be placed in parameter words 1 through 6
of the DPB

ids = Directive status

Macro Call:

QIOWS fnc,lun,[efn], [pril,{isb],[ast][,prl]

fnc = 1I/0 function codel

lun = Logical unit number

efn = Event flag number

pri = Priority; ignored, but must be present

isb = Address of I/0 status block

ast = Address of entry point of AST service routine
prl = Parameter list of the form <Pl,...P6>

l. I/0 function codes are defined in the RSX-11M/M-PLUS 1I/0 Drivers
Reference Manual.

5-116

Macro Expansion:

QIOWS
.BYTE
.WORD
.WORD
.BYTE
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD

DIRECTIVE DESCRIPTIONS

I0.RVB,7,52.,,I0STAT, IOAST,<IOBUFR,512.>

3,12.
I0.RVB
7
52.,0
IOSTAT
IOAST
TIOBUFR
512.

0

0
0
0

;QI0$ MACRO DIC, DPB SIZE=12.
;FUNCTION=READ VIRTUAL BLOCK
; LOGICAL UNIT NUMBER 7

:EFN 52., PRIORITY IGNORED
;ADDRESS OF 2-WORD I/O STATUS BLOCK
;ADDRESS OF I/C AST ROUTINE
;ADDRESS OF DATA BUFFER

;BYTE COUNT=512.

;ADDITIONAL PARAMETERS...
7++.NOT USED IN...

;...THIS PARTICULAR...

;... INVOCATION OF QUEUE I/O

5-117

DIRECTIVE DESCRIPTIONS

RCSTS

5.3.46 Receive Data Or Stop

The Receive Data Or Stop directive instructs the system to dequeue a
13-word data block for the issuing task; the data block was queued
for the task with a Send Data Directive or a Send, Request and Connect
directive.

A 2-word task name of the sender (in Radix-50 format) and the 13-word
data block are returned in an indicated 15-word buffer. The task name
is contained in the first two words of the buffer.

If no data has been sent, the issuing task is stopped. 1In this case,
the sender task is expected to issue an Unstop directive after sending
data. A success status code of IS.SUC indicates that a packet has
been received. A success status code of IS.SET indicates that the
task was stopped and has been unstopped. The directive must then be
reissued to retrieve the packet.

When a slave task issues the Receive Data or Stop directive, it
assumes the UIC (if it has no outstanding group global context) and
TI: terminal of the task that sent the data.
FORTRAN Call:

CALL RCST ([rtname],ibuf[,ids])

rtname = Sender task name (if not specified, data may be
received from any task.)

ibuf = Address of 15-word buffer to receive the sender task
name and data
ids = Integer to receive the directive status word

Macro Call:
RCSTS [tname] ,buf

tname = Sender task name (If not specified, data may be
received from any task.)

buf = Address of 15-word buffer to receive the sender task
name and data

Macro Expansion:

RCSTS ALPHA, TSKBUF

.BYTE 139.,4 ;RCSTS$ MACRO DIC, DPB SIZE=4 WORDS
.RAD50 ALPHA ;DATA SENDER TASK NAME

«WORD TSKBUF ;BUFFER ADDRESS

Local Symbol Definitions:
R.CSTN -- Task name (4)

R.CSBF -- Buffer address (2)

5-118

DIRECTIVE DESCRIPTIONS

DSW Return Codes:

IS.SUC -- Successful completion.

IS.SET -- ©No data was received and task was stopped (note that
the task must be Unstopped before it can see this
status).

IE.RSU -- The issuing task is a slave task with a group global

context active, and the next packet received would
have changed the task's group number.

IE.AST -- The issuing task is at AST state.

IE.ADP -- Part of the DPB is out of the issuing task's address
space.

IE.SDP -- DIC or DPB size is invalid.

5-119

DIRECTIVE DESCRIPTIONS

RCVD$

5.3.47 Receive Data
The Receive Data directive instructs the system to dequeue a 13-word
data block for the 1issuing task; the data block has been queued
(FIFO) for the task by a Send Data Directive.
A 2-word sender task name (in Radix-50 form) and the 13-word data
block are returned in an indicated 15-word buffer, with the task name
in the first two words.
When a slave task issues the Receive Data directive, it assumes the
UIC (if it has no outstanding group global event flag context) and TI:
terminal of the task that sent the data.
FORTRAN Call:

CALL RECEIV ([tsk],bufl,,ids])

tsk = Sender task name (If not specified, data may be
received from any task.)

buf = A 15-word integer array for received data

ids Directive status
Macro Call:

RCVDS [tsk],buf

tsk = Sender task name (If not specified, data may be
received from any task.)
buf = Address of 15-word buffer

Macro Expansion:

RCVDS$S ALPHA,DATBUF ;TASK NAME AND BUFFER ADDRESS
.BYTE 75.,4 ;RCVD$ MACRO DIC, DPB SIZE=4 WORDS
-RAD50 /ALPHA/ ; SENDER TASK NAME

«WORD DATBUF ;ADDRESS OF 15.-WORD BUFFER

Local Symbol Definitions:
R.VDTN -- Sender task name (4)
R.VDBA -- Buffer address (2)

DSW Return Codes:

IS.SUC -- Successful completion.
IE.ITS -~ No data currently queued.
IE.RSU -- The issuing task is a slave task with a group global

context active, and the next packet to be received
would have changed the task's group number.

IE.ADP -- Part of the DPB or buffer 1is out of the 1issuing
task's address space.

IE.SDP -- DIC or DPB size is invalid.

5-120

Notes:

DIRECTIVE DESCRIPTIONS

If the sending task specifies a common or group global event
flag in the Send Data directive, the receiving task may use
that event flag for synchronization. However, between the
time that the receiver issues this directive and the time the
receiver issues it's next instruction, the sender can send
data and set the event flag. If the next instruction is an
Exit directive, any data sent during this time will be lost
because the Executive flushes the task's receive list as part
of exit processing. Therefore, use the Exit If directive or

the Receive Data or Exit directive in order to avoid the race
condition.

5-121

DIRECTIVE DESCRIPTIONS

RCVX$

5.3.48 Receive Data Or Exit

The Receive Data Or Exit directive instructs the system to dequeue a
13-word data block for the 1issuing task; the data block has been
queued (FIFO) for the task by a Send Data directive.

A 2-word sender task name (in Radix-50 form) and the 13-word data
block are returned in an indicated 15-word buffer, with the task name
in the first two words.

If no data has been sent, a task exit occurs. To prevent the possible
loss of Send packets, the user should not rely on I/0 rundown to take
care of any outstanding I/O or open files; the task should assume
this responsibility.

When a slave task issues the Receive Data Or Exit directive, it
assumes the UIC (if it has no outstanding group global event flag
context) and TI: terminal of the task that sent the data. See Notes
below.
FORTRAN Call:

CALL RECOEX ([tsk],buf[,,ids])

tsk = Sender task name (If not specified, data may be
received from any task.)

buf = A 15-word integer array for received data

ids Directive status
Macro Call:
RCVX$ [tsk] ,buf

tsk = Sender task name (If not specified, data may be
received from any task.)

buf

Address of 15-word buffer

Macro Expansion:

RCVX$ ALPHA,DATBUF ;TASK NAME AND BUFFER ADDRESS
.BYTE 77.,4 ;RCVX$ MACRO DIC, DPB SIZE=4 WORDS
.RADS0 /ALPHA/ ; SENDER TASK NAME

«WORD DATBUF ;ADDRESS OF 15.-WORD BUFFER

Local Symbol Definitions:

R.VXTN = Sender task name (4) R.VXBA = Buffer address (2)

DIRECTIVE DESCRIPTIONS

DSW Return Codes:
IS.SUC -- Successful completion.
IE.RSU -- The issuing task is a slave task with a group global

context active, and the next packet to be received
would have changed the task's group number.

IE.ADP -- Part of the DPB or buffer 1is out of the 1issuing
task's address space.
IE.SDP -- DIC or DPB size is invalid.
Notes:

1. A FORTRAN program that issues the RECOEX call must £irst
close all files by issuing CLOSE calls. See the IAS/RSX-11
FORTRAN IV or the FORTRAN IV-PLUS User's Guide for
instructions concerning how to ensure that such files are
closed properly if the task exits.

To avoid the time overhead involved in the closing and
reopening of files, the task should first issue the RECEIV
call. If the directive status indicates that no data were
received, then the task can close all files and issue the
call to RECOEX. The following example illustrates the same
overhead saving in MACRO:

RCVBUF: .BLKW 15. Receive buffer

~

START: RCVXS$SC ,RCVBUF ; Attempt to receive message
CALL OPEN Call user subroutine to open files.
PROC: .

~

Process packet of data

RCVD$C ,RCVBUF
BCC PROC
CALL CLOSE

Attempt to receive another message
If CC successful receive

Call user subroutine to close files
and prepare for possible task exit

JMP START Make one last attempt at receiving

~e Ne we Ne ve

2. If no data have been sent, that is, i1f no Send Data directive
has been issued, the task exits. Send packets may be lost if
a task exits with outstanding I/0 or open files (see third
paragraph of this section).

3. The Receive Data Or Exit directive is useful in avoiding a
possible race condition that can occur between two tasks
communicating by the Send and Receive directives. The race
condition occurs when one task executes a Receive directive
and finds its receive queue empty; but before the task can
exit, the other task sends it a message. The message is lost
because the Executive flushes the receiver task's receive
queue when it exits. This condition can be avoided by the
receiving task's executing a Receive Data Or Exit directive.
If the receive queue is found to be empty, a task exit occurs
before the other task can send any data; thus, no 1loss of
data can occur.

5-123

DIRECTIVE DESCRIPTIONS
4, On Exit, the Executive frees task resources. In particular,
the Executive:
e Detaches all attached devices
e Flushes the AST queue and despecifies all specified ASTs
e Flushes the receive and receive-by-reference queues

@ Flushes the clock queue for outstanding Mark Time requests
for the task

e Closes all open files (files open for write access are
locked)

e Detaches all attached regions except in the case of a
fixed task, where no detaching occurs

e Runs down the task's I/0

e Deaccesses the group global event flags for the task's
group

e Disconnects from interrupts

e Flushes all outstanding CLI command buffers for the task

e Returns a success status (EX$SUC) to any parent tasks

e Breaks the connection with any offspring tasks
o Frees the task's memory if the exiting task was not fixed

5. If the task exits, the Executive declares a significant
event.

5-124

DIRECTIVE DESCRIPTIONS

RDAF$

5.3.49 Read All Event Flags

The Read All Event Flags directive inscructs the system to read all 64
event flags for the issuing task and record their polarity in a 64-bit
{(4-word) buffer.

NOTE
This directive does not return
group-global event flags (event flags

65 - 96).

FORTRAN Call:

A FORTRAN task can read only one event flag. The call is:

CALL READEF (efn[,ids])

efn Event flag number
ids = Directive status

The Executive returns the status codes IS.SET (+02) and IS.CLR
(00) for FORTRAN calls in order to report event flag polarity.

Macro Call:
RDAFS buf

Buffer Format:

Word 0 -- Task Local Flags 1-16
Word 1 -~ Task Local Flags 17-32
Word 2 -- Task Common Flags 33-48
Word 3 ~-- Task Common Flags 49-64

Macro Expansion:

RDAFS$ FLGBUF
.BYTE 39.,2 ;RDAF$ MACRO DIC, DPB SIZE=2 WORDS
.WORD FLGBUF ;ADDRESS OF 4-WORD BUFFER

Local Symbol Definitions:
R.DABA -- Buffer address (2)

DSW Return Codes:

IS.SUC -- Successful completion.

Part of the DPB or buffer is out of the issuing
task's address space.

IE.ADP

IE.SDP DIC or DPB size is invalid.

5-125

DIRECTIVE DESCRIPTIONS

5-126

DIRECTIVE DESCRIPTIONS

RDXF$

5.3.51 Read Extended Event Flags
The Read Extended Event Flags directive instructs the system to read
all 1local, common, and group-global event flags for the issuing task
and record their polarity in a 96-bit (6-word) buffer.
FORTRAN Call:

A FORTRAN task can read only one event flag. The call is:

CALL READEF (efn(,ids])

efn Event flag number

I}

ids Directive status

The Executive returns the status codes IS.SET (+02) and IS.CLR
(00) for FORTRAN calls to report event flag polarity.

Macro Call:
RDXF$ buf

Buffer Format:

Word 0 —-- Task Local Flags 1-16

Word 1 -- Task Local Flags 17-32

Word 2 -- Task Common Flags 33-48

Word 3 -- Task Common Flags 49-64

Word 4 -- Task Group-Global Flags 65-80
Word 5 —-- Task Group-Global Flags 81-96

Macro Expansion:

RDXF$ FLGBUF
.BYTE 39.,3 ;RDXF$ MACRO DIC, DPB SIZE=3 WORDS
-WORD FLGBUF ;ADDRESS OF 6-WORD BUFFER

Local Symbol Definitions:
R.DABA -- Buffer address (2)

DSW Return Codes:

IS.SUC -- Successful completion.

IS.CLR ~-- Group-global event flags do not exist. Words 4 and 5
of the buffer contain 0.

IE.ADP -- Part of the DPB or buffer 1is out of the 1issuing
task's address space.

IE.SDP -- DIC or DPB sige is invalid.

5-127

DIRECTIVE DESCRIPTIONS

5-128

DIRECTIVE DESCRIPTIONS

RPOI$

5.3.53 Request and Pass Offspring Information

This directive instructs the system to request the specified task, and
to chain to it by passing any or all of the parent connections from
the issuing task to the requested task. Optionally, the directive can
pass a command line to the requested task. Only a privileged or CLI
task may specify the UIC and TI: of the requested task.

FORTRAN Call:

CALL RPOI (tname,{iugci,{iumci,{ipareni,{ibuf],{ibfl],[{isc],
[idnam],[iunit],[itask],[ocbad][,ids])

tname = Name of an array containing the actual name (in
RAD50) of the task to be requested and optionally
chained to.

iugce = Name of an integer containing the group code number
for the UIC of the requested target chain task.

iumc = Name of the integer containing the member code number
for the UIC of the requested target chain task.

iparen = Name of an array (or 1I*4 integer) containing the
RAD50 name of the parent task. This is returned in
the information buffer of the GTCMCI subroutine,

ibuf = Name of an array that contains the command line text
for the chained task.

ibfl = Name of an integer that contains the number of bytes
in the command in the ibuf array.

isc = Flag byte controlling the actions of this directive

request when executed. The bit definitions of this
byte (only the 1low order byte of the integer
specified in the call is ever used) are as follows:

RP.OEX 128. Force this task to exit on
successful execution of the RPOI
directive.

Pass all of this task's
connections to the requested

task. (The default is none.)

RP.OAL

I
—

NOTE
You cannot pass all

connections if the target
task is a CLI task.

RP.ONX = 2 Pass the first connection
in the queue if there is one.

5-129

idnam

iunit

itask

ocbad

ids

Macro Call:

DIRECTIVE DESCRIPTIONS

Name of an integer containing the ASCII device name
of the requested task's TI:

Name of an integer containing the unit number of the
requested tasks TI: device.

Name of an array which contains th RAD50 name the
k i un unde

Name of an integer containing the pool address of the
parent OCB. This value may only be obtained in the
information buffer of the GTCMCI subroutine, which
only a CLI can issue, so therefore, only a CLI can
specify this argument.

Name of an integer to receive the directive status
word

RPOI$ tname,,,[ugc], [umc],[parent],[bufadr],[buflen],[sc],[dnam],
[unit], [task], [ocbad]

tname
ugc
umc

parent

bufadr
buflen

scC

Name of task to be chained to

Group code for UIC of the requested task

Member code for UIC of the requested task

Name of issuing task's parent task whose connection
is to be passed. If not specified, all connections
are passed.

Address of buffer to be given to the requested task
Length of buffer to be given to requested task

Flags byte:

RP.OEX -~ (200) Force issuing task to exit
RP.OAL -- (1) Pass all connections (Default is
none.)
NOTE
You cannot pass all

connections 1f the target
task is a CLI task.

RP.ONX =-- (2) Pass the first connection in the
queue, if there is one.

5-130

DIRECTIVE DESCRIPTIONS

dnam = ASCII device name for TI:

unit = Unit number of task TI:

task = RADS50 name that the requested task is to run under.
=

ocbad = Address of OCB to pass (CLIs only)

Local Symbol Definitions:

R.POTK -- RAD50 name of task to be chained to (2)
R.POUM -- UIC member code (1)

R.POUG -~ UIC group code

R.POPT -- Name of parent whose OCB should be passed (4)
R.POOA -- Address of OCB to pass (CLIs only) (2)
R.POBF -- Address of command buffer (2)

R.POBL -- Length of command (2)

R.POUN —-- Unit number of task TI: (1)

R,POSC -- Flags byte (1)

R.PODV -- ASCII device name for TI: (2)

R.POTN -- RAD50 name of task to be started (4)

Macro Expansion:

RPOIS tname,, ,ugc,umc,ptsk,buf,buflen,sc,dev,unit,task,ocbad

.BYTE 11,16 ;DIC 11 DPB SIZE = 16. words

.RAD50 /tname/ ;NAME OF TASK TO CHAIN TO

«BLKW 3 ;RESERVED

.BYTE umc ;UIC MEMBER CODE

.BYTE ugc ;UIC GROUP CODE

.RAD50 ptsk :NAME OF TASK WHOSE OCB SHOULD BE PASSED

+WORD ocbad ;ADDRESS OF OCB

«WORD buf ;ADDRESS OF BUFFER TO SEND

-WORD buflen ;LENGTH OF BUFFER

.ASCII /dev/ ;ASCII NAME OF TI: OF REQUESTED TASK

.BYTE unit ;UNIT NUMBER OF TI: DEVICE

.BYTE sc ; PASS BUFFER AS SEND PACKET OR COMMAND
;CODE

5-131

DIRECTIVE DESCRIPTIONS

DSW Return Codes:

IE.UPN -- Insufficient dynamic memory to allocate an offspring
control block, command 1line buffer, task control
block, or partition control block.

IE.INS -- The specified task was not installed, or it was a CLI
but no command line was specified.

IE.ACT -- The specified task was already active and it was not
a command line interpreter.

IE.ITS ~-- A task that is not a CLI specified a CLI only
parameter or specified passing all connections to a
CLI.

IE.NVR -- There 1is no offspring control block from the

specified parent task.

IE.ALG -- A CLI specified a parent name and an offspring
control block address that did not describe the same
connection, or either a parent name or an offspring
control block address was specified and the pass all
connections flag or the pass next connection flag was
set.

IE.PNS -- The task control block cannot be created in the same
partition as its prototype.

IE.ADP —-- Part of the DPB, exit status block, or command 1line
is out of the issuing task's address space.

IE.SDP -- DIC or DPB size is invalid.

5-132

DIRECTIVE DESCRIPTIONS

RQST$

5.3.54 Request Task

The Request Task directive instructs the system to activate a task.
The task 1is activated and subsequently runs contingent upon priority
and memory availability. The Request Task directive 1is the basic
mechanism used by running tasks to initiate other installed (dormant)
tasks. The Request Task directive is a frequently used subset of the
Run directive. See Notes below.

FORTRAN Call:

CALL REQUES (tsk,[opt][,ids])

tsk = Task name
opt = A 4-word integer array
opt(l) = Partition name first half; ignored, but
must be present
opt(2) = Partition name second half; ignored, but
must be present
opt(3) = Priority; 1ignored, but must be present
opt(4) = User Identification Code
ids = Directive status
Macro Call:

RQSTS tsk,[prt],[pril [,ugc,umc]

tsk = Task name

prt = Partition name; ignored, but must be present
pri = Priority; ignored, but must be present

ugc = UIC group code

umc = UIC member code

Macro Expansion:

RQSTS ALPHA,,,20,10

«.BYTE 11.,7 ;RQSTS MACRO DIC, DPB SIZE=7 WORDS
.RAD50 /ALPHA/ ; TASK "ALPHA"

.WORD 0,0 ;PARTITION IGNORED

«WORD 0 ;PRIORITY IGNORED

«BYTE 10,20 ;UIC UNDER WHICH TO RUN TASK

5-133

DIRECTIVE DESCRIPTIONS

Local Symbol Definitions:

R.QSTN -~ Task name (4)
R.QSPN —-- Partition name (4)
R.QSPR =-- Priority (2)
R.QSGC ~-- UIC group (1)
R.QSPC -- UIC member (1)

DSW Return Codes:

IS.S8UC =-- Successful completion.

IE.UPN -- 1Insufficient dynamic memory.

IE.INS -- Task is not installed.

IE.ACT -- Task is already active.

IE.ADP -- Part of the DPB is out of the issuing task's address

space.

IE.SDP -- DIC or DPB size is invalid.

Notes:

1. The requested task must be installed in the system.

2., If the partition in which a requested task is to run is
already occupied, the Executive places the task in a queue of
tasks waiting for that partition. The requested task then
runs, depending on priority, and resource availability, when
the partition 1is free. Another possibility is that
checkpointing may occur. If the current occupant(s) of the
partition is checkpointable, has checkpointing enabled, and
is of 1lower priority than the requested task, it is written
to disk when its current outstanding I/0 completes; the
requested task is then read into the partition.

3. Successful completion means that the task has been declared
active, not that the task is actually running.

4. The requested task acquires the same TI: terminal assignment
as that of the requesting task.

5. The requested task always runs at the priority specified 1in
its task header.

6. A task that executes 1in a system-controlled partition

requires dynamic memory for the partition control block used
to describe its memory requirements.

5-134

DIRECTIVE DESCRIPTIONS

In a system that does not support multiuser protection, a
task can be requested under any UIC, regardless of the UIC of
the requesting task. If no UIC is specified in the request,
the system uses the UIC from the task's header, which was
specified at task-build time.

In a system that supports multiuser protection, each active
task has two UICs: a protection UIC and a default UIC.
These are both returned when a task issues a Get Task
Parameters directive (GTSKS). The UICs are used in the
following ways:

e The protection UIC determines the task's access rights for
opening files and attaching to regions. When a task
attempts to open a file, the system compares the task's
protection UIC against the protection mask of the
specified UFD; the comparison determines whether the task
is to be considered for system, owner, group, or world
access.

o The default UIC is used by the File Control Subroutines
(FCS) to determine the default UFD when a file-open
operation does not specify a UIC. (The default UIC has no
significance when a task attaches to a region.)

In a multiuser protection system, each terminal also has a
protection UIC and a default UIC. If a terminal |is
nonprivileged, the protection UIC is the log-on UIC, and the
default UIC is the UIC specified in the last SET /UIC command
issued. If no SET /UIC command has been issued, the default
UIC is equal to the 1log-on UIC. If the terminal Iis
privileged, both the protection and the default UICs are
equal either to the UIC specified in the last SET /UIC
command or to the log-on UIC if a SET /UIC command has not
been issued.

The system establishes a task's UICs when the task is
activated. In general, when the MCR Dispatcher or the MCR
Run command activates a task, the task assumes the protection
and default UICs of the issuing terminal. However, if the
user specifies the /UIC keyword to the MCR or DCL Install or
Run command, the specified UIC becomes the default UIC for
the activated task; and if the issuing terminal is
privileged, the specified UIC becomes the activated task's
protection UIC as well.

The system establishes UICs in the same manner when one task
issues a Request directive to activate another task. The
protection and default UICs of the 1issuing task generally
become the corresponding UICs of the requested task.
However, if a nonprivileged task specifies a UIC in a Request
directive, the specified UIC becomes only the default UIC for
the requested task. If a privileged task specifies a UIC 1in
a Request directive, the specified UIC becomes both the
protection and default UIC for the requested task.

5-135

DIRECTIVE DESCRIPTIONS

RREF$

5.3.55 Receive By Reference

The Recelive By Reference directive requests the Executive to dequeue
the next packet in the receive-by-reference queue of the issuing
(receiver) task. Optionally, the task will exit if there are no
packets in the dqueue. The directive may also specify that the
Executive proceed to map the region referred to.

If successful, the directive declares a significant event.

BEach reference in the task's receive-by-reference queue represents a
separate attachment to a region. If a task has multiple references to
a given region, it is attached to that region the corresponding number
of times. Because region attachment requires system dynamic memory,
the receiver task should detach from any region that it was already
attached to in order to prevent depletion of the memory pool. That
is, the task needs to be attached to a given region only once.

If the Executive does not find a packet in the queue, and the task has
set WS.RCX in the window status word (W.NSTS), the task exits. If
WS.RCX is not set, the Executive returns the DSW code IE.ITS.

If the Executive finds a packet, it writes the information provided to
the corresponding words in the Window Definition Block. This
information provides sufficient information to map the reference,
according to the sender task's specifications, with a previously
created address window.

If the address of a 10-word receive buffer has been specified (W.NSRB
in the Window Definition Block), then the sender task name and the
eight additional words passed by the sender task (if any) are placed
in the specified buffer. If the sender task did not pass on any
additional information, the Executive writes in the sender task name
and eight words of zero.

If the WS.MAP bit in the window status word has been set to 1, the
Executive transfers control to the Map Address Window directive (see
Section 6.3.40) to attempt to map the reference.

When a task that has unreceived packets in 1its receive-by-reference
queue exits or is removed, the Executive removes the packets from the
queue and deallocates them. Any related flags are not set.

FORTRAN Call:

CALL RREF (iwdb,[isrb][,ids])

iwdb = An 8-word integer array containing a Window Definition
Block (see Section 3.5.2.2)

isrb = A 10-word integer array to be wused as the receive
buffer. If the call omits this parameter, the
contents of iwdb(8) are unchanged.

ids = Directive status

Macro Call:
RREF$ wdb
wdb = Window Definition Block address

5-136

DIRECTIVE DESCRIPTIONS

Macro Expansion:
RREF$ WDBADR
.BYTE 8l.,2 ; RREF$ MACRO DIC, DPB SIZE=2 WORDS
+WORD WDBADR ;WDB ADDRESS

Window Definition Block Parameters:

Input parameters:

Array Offset

Element

iwdb(1)

bits 0-7 W.NID ——- 1ID of an existing window if region is to be
mapped

iwdb(7) W.NSTS -- Bit settingsl in the window status word:

Bit Definition
WS.MAP 1 if received reference is to
be mapped '

WS.RCX 1 if task exit desired when no

packet is found in the queue

iwdb(8) W.NSRB Optional address of a 10-word buffer, to

contain the sender task name and additional

information
OQutput parameters:
iwbd (4) W.NRID -~ Region ID (pointer to attachment
description)
iwdb (5) W.NOFF -- Offset word specified by sender task
iwdb(6) W.NLEN -- Length word specified by sender task
iwdb(7) W.NSTS -- Bit settingsl in the window status word:
Bit Definition
WS.RED 1 if attached with read access
WS.WRT 1 if attached with write access
WS. EXT 1 if attached with extend
access
WS.DEL 1 if attached with delete
access
WS.RRF 1 if receive was successful

The Executive clears the remaining bits.

1. If you are a FORTRAN programmer, refer to Section 3.5.2 to
determine the bit values represented by the symbolic names described.

5-137

DIRECTIVE DESCRIPTIONS

Local Symbol Definitions:

R.REBA -~ Window definition block address (2)

DSW Return Codes:

IS.SUC -- Successful completion.

IE.ITS -- No packet found in the receive-by-reference queue.,

IE.ADP -- Address check of the DPB, WDB, or the receive buffer
(W.NSRB) failed.

IE.SDP -~ DIC or DPB size is invalid.

5-138

5.3.56 Resume Task

DIRECTIVE DESCRIPTIONS

RSUMS$

The Resume Task directive instructs the system to resume the execution
of a task that has issued a Suspend directive.

FORTRAN Call:

CALL RESUME (tsk[,ids])

tsk

ids

Macro Call:
RSUMS$

tsk

Macro Expansion:

RSUMS$
.BYTE
.RAD50

Task name

Directive status

tsk

Task name

ALPHA
47.,3
/ALPHA/

;RSUM$ MACRO DIC, DPB SIZE=3 WORDS
; TASK "ALPHA"

Local Symbol Definitions:

R.SUTN

DSW Return Codes:

IS.suC
IE.INS
IE.ACT
IE.ITS

IE.ADP

IE.SDP

Task na

Success
Task is
Task is
Task is

Part of
space.

DIC or

me (4)

ful completion.
not installed.
not active.

not suspended.

the DPB is out of the issuing task's address

DPB size is invalid.

5-139

DIRECTIVE DESCRIPTIONS

RUNS$

5.3.57 Run Task

The Run Task directive causes a task to be requested at a specified
future time, and optionally to be requested periodically. The
schedule time is specified in terms of delta time from issuance. If
the smg, rmg, and rnt parameters are omitted, Run is the same as
Request except that:

1. Run causes the task to become active one clock tick after the
directive is issued.

2. The system always sets the TI: device for the requested
task, to CoO:.

See Notes below.
FORTRAN Call:

CALL RUN (tsk,[opt]l,[smg],snt,[rmg],[rnt][,ids])

tsk = Task name
opt = A 4-word integer array
opt(l) = Partition name first half; ignored, but
must be present
opt(2) = Partition name second half; ignored,
but must be present
opt(3) = Priority; ignored, but must be present
opt(4) = User Identification Code
smg = Schedule delta magnitude
snt = Schedule delta unit (either 1, 2, 3, or 4)
rmg = Reschedule interval magnitude
rnt = Reschedule interval unit
ids = Directive status

The ISA standard call for initiating a task is also provided:

CALL START(tsk,smg,snt([,ids])

tsk = Task name

smg = Schedule delta magnitude

snt = Schedule delta unit (either 0, 1, 2, 3, or 4)
ids = Directive status

5-140

DIRECTIVE DESCRIPTIONS

Macro Call:

RUNS tsk,[prtl,Ipril, [ugcl, [umc],[smgl,snt[,rmg,rnt]
tsk = Task name
prt = Partition name; ignored, but must be present
pri = Priority; 1ignored, but must be present
ugc = UIC group code
umc = UIC member code
smg = Schedule delta magnitude
snt = Schedule delta unit (either 1, 2, 3, or 4)
rmg = Reschedule interval magnitude
rnt = Reschedule interval unit

Macro Expansion:

RUNS ALPHA,,,20,10,20.,3,10.,3

BYTE 17.,11. ;RUNS MACRO DIC, DPB SIZE=11l. WORDS
.RAD50 /ALPHA/ ; TASK "ALPHA"

.WORD 0,0 ;PARTITION IGNORED

.WORD 0 ;PRIORITY IGNORED

.BYTE 10,20 ;UIC TO RUN TASK UNDER

-WORD 20. ;SCHEDULE MAGNITUDE=20

-WORD 3 ;SCH. DELTA TIME UNIT=MINUTE (=3)
-WORD 10. ;RESCH., INTERVAL MAGNITUDE=10.

-WORD 3 ;RESCH. INTERVAL UNIT=MINUTE (=3)

Local Symbol Definitions:

R.UNTN -- Task name (4)

R.UNPN -- Partition name (4)
R.,UNPR =-- Priority (2)

R.UNGC -- UIC group code (1)
R.UNPC -- UIC member code (1)
R.UNSM -- Schedule magnitude (2)
R.UNSU -- Schedule unit (2)
R.UNRM -- Reschedule magnitude (2)
R.UNRU -- Reschedule unit (2)

5-141

DIRECTIVE DESCRIPTIONS

DSW Return Codes:

For CALL RUN and RUNS:

IS.SsUC —— Successful completion.

IE.UPN —— Insufficient dynamic memory.

IE.ACT ~— Multiuser task name specified.

IE.INS -~ Task is not installed.

IE.PRI -~ Nonprivileged task specified a UIC other than its
own,

IE.ITI -- Invalid time parameter.

IE.ADP -- Part of the DPB is out of the 1issuing task's

address space.

IE.SDP -- DIC or DPB size is invalid.

For CALL START:

Notes:

RSX~-11M/M-PLUS provides the following positive error codes to

be returned for ISA calls:

2 -~ Insufficient dynamic storage.

3 -- Specified task not installed.

94 -- Invalid time parameter.

98 —— Invalid event flag number.

99 -- Part of DPB is out of task's address space.
100 -— DIC or DPB size is invalid.

In a multiuser protection system, a nonprivileged task cannot
specify a UIC that is not equal to its own protection UIC.
(See Note 8, Section 5.3.54, for a definition of the
protection UIC.) A privileged task can specify any UIC.

In a system that does not support multiuser protection, a
task may be run under any UIC, regardless of the UIC of the
requesting task. If no UIC is specified in the request, the
Executive wuses the default UIC from the requested task's
header. The priority 1is always that specified in the
requested task's Task Control Block.

5-142

DIRECTIVE DESCRIPTIONS

The target task must be installed in the system.

If there is not enough room in the partition 1in which a
requested task is to run, the Executive places the task in a
queue of tasks waiting for that partition. The requested
task will then run, depending on priority and resource
availability, when the partition is free. Another
possibility is that checkpointing will occur. 1If the current
occupant(s) of the partition is checkpointable, has
checkpointing enabled, is of 1lower priority than the
requested task, or is stopped for terminal input, it will be
written to disk when its current outstanding I/O completes.
The requested task will then be read into the partition.

Successful completion means the task has been made active;
it does not mean that the task is actually running.

Time Intervals

The Executive returns the code IE.ITI in the DSW if the
directive specifies an invalid time parameter. A time
parameter consists of two components: the time interval
magnitude, and the time interval unit.

A legal magnitude value (smg or rmg) is related to the wvalue
assigned to the time 1interval unit snt or rnt. The unit
values are encoded as follows:

For an ISA FORTRAN call (CALL START):

0 = Ticks -- A tick occurs for each clock interrupt and
is dependent on the type of clock installed in the
system.

For a line frequency clock, the tick rate is either
50 or 60 per second, corresponding to the power-line
frequency.

For a programmable clock, a maximum of 1000 ticks
per second is available (the exact rate is
determined during system generation).

1 = Milliseconds -- The subroutine converts the
specified magnitude to the equivalent number of
system clock ticks.

For all other FORTRAN and all macro calls:
1 = Ticks -- See definition of ticks above.

For both types of FORTRAN calls and all macro calls:

2 = Seconds
3 = Minutes
4 = Hours

5-143

10.

DIRECTIVE DESCRIPTIONS

The magnitude is the number of units to be clocked. The
following 1list describes the magnitude values that are valid
for each type of unit. 1In no case can the magnitude exceed
24 hours. The list applies to both FORTRAN and macro calls.

If unit = 0, 1, or 2, the magnitude can be any positive
value with a maximum of 15 bits.,.

If unit = 3, the magnitude can have a maximum value of
1440(10).

If unit
24 (10).

4, the magnitude can have a maximum value of

The schedule delta time is the difference in time from the
issuance of the RUNS$ directive to the time the task is to be
run. This time may be specified in the range from one clock
tick to 24 hours.

The reschedule interval is the difference in time from task
initiation to the time the task is to be reinitiated. TIf
this time interval elapses and the task is still active, no
reinitiation request will be issued. However, a new
reschedule interval will be started. The Executive will
continually try to start a task, wait for the specified time
interval, and then restart the task. This process continues
until a CSRQ$ (Cancel Time Based Initiation Requests)
directive or an MCR or DCL Cancel command is issued.

Run requires dynamic memory for the clock queue entry used to
start the task after the specified delta time. If the task
is to run in a system-controlled partition, further dynamic
memory is required for the task's dynamically allocated
partition control block (PCB).

If optional rescheduling is not desired, then the macro call
should omit the arguments rmg and rnt.

5~144

DIRECTIVE DESCRIPTIONS

SCAAS

5.3.58 Specify Command Arrival AST
This directive instructs the system to enable or disable command
arrival ASTs for the issuing CLI task. If command arrival ASTs are
enabled, the executive transfers control to a specified address when
commands have been queued to the CLI.
Only CLI tasks can use this AST.
The format of the stack when the AST routine is entered is as follows:
SP+10 - zero since no event flags are involved
SP+06 - PS of task prior to AST
SP+04 - PC of task prior to AST
SP+02 - DSW of task prior to AST
SP+00 - address of command buffer just queued

The AST routine must remove the command buffer address from the stack
before issuing an ASTX$ directive.

The command buffer address may be used when issuing a GCCI$ directive.
FORTRAN Call:
Not supported.
Macro Call:
SCAAS [ast]
ast = AST service routine entry point. Omitting this
parameter disables command arrival ASTs for the

issuing task until the directive is respecified.

Macro Expansion:

SCAAS ast
.BYTE 173.,2 :DIC = 173 , DPB SIZE = 2 WORDS
.WORD ast ;ADDRESS OF AST ROUTINE

Local Symbol Definitions:
S.CAAE -- Address of AST routine

DSW Return Codes:

IE.ITS -- ASTs are already not desired.

IE.AST -- Directive issued from AST state.

IE.PRV -- 1Issuing task is not a CLI.

IE.UPN -- Insufficient dynamic memory.

IE.ADP -- Part of the DPB was out of the issuing task's address
space.

IE.SDP -- DIC or DPB size is invalid.

5-145

DIRECTIVE DESCRIPTIONS

5-146

DIRECTIVE DESCRIPTIONS

5-147

DIRECTIVE DESCRIPTIONS

SCLI$

5.3.60 Set Command Line Interpreter
The Set Command Line Interpreter directive instructs the system to set
up the specified CLI as the CLI for the indicated terminal. The
issuing task must be privileged or a CLI.
If the restricted access flag (CP.RST) in the CLI status word is set,
the 1issuing CLI task is the only CLI task that can set a terminal to
that CLI.
FORTRAN Call:

CALL SETCLI (icli,idev,iunit[,ids])

icli = Name of a two-word array element containing the name
of the CLI the terminal is to be set to

idev = ©Name of an integer containing the ASCII name of the
terminal to be set (default = TI:)
iunit = Name of an integer containing the wunit number of
terminal
ids = Directive status
Macro Call:

SCLI$ cli,[dev],[unit}

cli = Name of the CLI the terminal is to be set to
dev = ASCII name of the terminal to be set (default = TI:)
unit = Unit number of terminal

Local Symbol Definitions:

S.CIDV ~- ASCII name of the terminal whose CLI is to be set

S.CIUN -~ Octal unit number of terminal

S.CICN -- RADS50 name of the CLI that the terminal is to be set
to

Macro Expansion:

SCLI$ ¢li,dev,unit

.BYTE 173.,5 ;DIC 173. DPB SIZE = 5 WORDS
+RAD50 /cli/ ;CLI NAME

.ASCII /dev/ ;ASCII NAME OF TERMINAL TO BE SET
«WORD unit ;UNIT NUMBER

5-148

DIRECTIVE DESCRIPTIONS

DSW Returns:

IE.PRI -- Task not privileged or not a CLI. If CP.RST was set,
task was not the CLI itself.

IE.IDU ~- Device not a terminal or does not exist.

IE.INS -- Specified CLI does not exist.

IE.UPN -~ Insufficient dynamic memory.

IE.ADP -- Part of the DPB was out of the issuing task's address
space.

IE.SDP ~-- DIC or DPB length is invalid.

5-149

DIRECTIVE DESCRIPTIONS

SDAT$

5.3.61 Send Data
The Send Data directive instructs the system to declare a significant
event and to queue (FIFO) a 13-word block of data for a task to
receive.
NOTE

When a local event flag 1is specified,

the 1indicated event flag is set for the

sending task; a significant event Iis

always declared.

FORTRAN Call:

CALL SEND (tsk,buf,[efn][,ids])

tsk = Task name

buf = 13-word integer array of data to be sent
efn = Event flag number

ids = Directive status

Macro Call:

SDATS tsk,buf[,efn]

tsk = Task name
buf = Address of 13-word data buffer
efn = Event flag number

Macro Expansion:

SDATS ALPHA,DATBUF, 52.

.BYTE 71.,5 ;SDAT$ MACRO DIC, DPB SIZE=5 WORDS
«RADS0 /ALPHA/ ;RECEIVER TASK NAME

+WORD DATBUF ;ADDRESS OF 13.-WORD BUFFER

«WORD 52. ;EVENT FLAG NUMBER 52,

Local Symbol Definitions:

S.DATN -- Task name (4)
S.DABA -- Buffer address (2)
S.DAEF -- Event flag number (2)

5-15¢0

DIRECTIVE DESCRIPTIONS

DSW Return Codes:

IS.SUC -- Successful completion.

IE.INS -- Recelver task is not installed.

IE.UPN -- Isufficient dynamic memory.

IE.IEF —-- 1Invalid event flag number (EFN<K0, or EFN>»96 if group

global event flags exist for the task's group; or
EFN>64 if not).

IE.ADP -- Part of the DPB or data block is out of the 1issuing
task's address space.
IE.SDP -- DIC or DPB size is invalid.
Notes:
1. Send Data requires dynamic memory.

2.

If the directive specifies a local event flag, the flag Iis
local to the sender (issuing) task. RSX-11M does not allow
one task to set or clear a flag that 1is 1local to another
task.

Normally, the event flag is used to trigger the receiver task
into some action. For this purpose, the event flag must be
common (33 through 64) or group global (65 through 96) rather
than 1local. (Refer to the descriptions of the Receive Data
directive and the Exit IF directive.)

5-151

DIRECTIVE DESCRIPTIONS

SDRCS$

5.3.62 Send, Request and Connect

The Send, Request And Connect directive performs a Send Data to the
specified task, Requests the task if it is not already active, and
then Connects to the task. The receiver task normally returns status
by an Emit Status or Exit With Status directive.

FORTRAN Call:

CALL SDRC (rtname, ibuf,(iefn],[iast],[iesb],[iparm][,ids])

rthame = Target task name of the offspring task to be
connected
ibuf = Name of 13-word send buffer
iefn = Event flag to be set when the offspring task exits
or emits status
iast = Name of an AST routine to be called when the
offspring task exits or emits status
iesb = Name of an 8-word status block to be written when
the offspring task exits or emits status
Word 0 -- Offspring task exit status
Word 1 -- TKTN abort code
Word 2-7 -- Reserved
NOTE
The exit status block defaults to 1 one
word. To use the 8-word exit status block,
you must specify the 1logical or of the
symbol SP.WXB and the event flag number in
the iefn parameter above.
iparm = Name of a word to receive the status block address
when an AST occurs
ids = Integer to receive the Directive Status Word

Macro Call:

SDRCS$ tname,buf,[efn], [east], [esb]
tname = Target task name of the offspring task to be
connected
buf = Address of 13-word send buffer
efn = The event flag to be cleared on 1issuance and set

when the offspring task exits or emits status

east = Address of an AST routine to be <called when the
offspring task exits or emits status

5-152

esb

DIRECTIVE DESCRIPTIONS

= Address of an 8-word status block to be written when
the offspring task exits or emits status

Word O -= Offspring task exit status
Word 1 -- TKTN abort code

Word 2-7 -- Reserved

NOTE

The exit status block defaults to 1 one
word. To use the 8-word exit status block,
you must specify the logical or of the
symbol SP.WXB and the event flag number in
the efn parameter above.

Macro Expansion:

SDRCS
.BYTE
.RADS50
.WORD
.BYTE
.BYTE
.WORD
.WORD

Local Symbol
S.DRTN
S.DRBF
S.DREF
S.DREA

S.DRES

ALPHA,BUFFR, 2,SDRCTR, STBLK

141.,7 :SDRCS MACRO DIC, DPB SIZE=7 WORDS

ALPHA ; TARGET TASK NAME

BUFFR ;SEND BUFFER ADDRESS

2 ;EVENT FLAG NUMBER = 2

16. ;EXIT STATUS BLOCK CONSTANT

SDRCTR ;ADDRESS OF AST ROUTINE

STBLK ;ADDRESS OF STATUS BLOCK
Definitions:

—-- Task name (4)

- Buffer address (2)

-- Event flag (2)
—— AST routine address (2)

—- Status block address (2)

DSW Return Codes:

Is.sucC

IE.UPN

IE.INS

IE.IEF

IE.ADP

IE.SDP

—-- Successful completion.

—— Insufficient dynamic memory to allocate a send
packet, Offspring Control Block,
or Partition Control Block.

-— The specified task is an ACP or has the no-send
attribute.

-— An invalid event flag number was specified (EFN < 0
or EFN > 96 if group global event flags exist for the
task. EFN > 64 if not.).

—— Part of the DPB or exit status block is not in the
issuing task's address space.

—— DIC or DPB size is invalid.

5-153

Notes:

DIRECTIVE DESCRIPTIONS

If the specified event flag is group global, the use count
for the event flag's group 1is 1incremented to prevent
premature elimination of the event flags. The use count 1is
run down when:

e Status is returned from the connected task.

e The issuing task exits before status is returned.

The virtual mapping of the exit status block should not be
changed while the connection 1is in effect. Doing so may

result in obscure errors.

If the directive is rejected, the state of the specified
event flag is indeterminate.

5-154

DIRECTIVE DESCRIPTIONS

SDRP$

5.3.63 Send Data Request and Pass Offspring Control Block

This directive instructs the system to send a send data packet for the
specified task, chain to the requested task, and request it if it is
not already active.

FORTRAN Call:

CALL SDRP(task,ibuf,[ibfl],[iefn],[iflag],[iparen],[iocbad]
[,ids])

task

Name of an array (REAL,INTEGER,I*4) that contains the
RAD50 name of the target task

ibuf

Name of an integer array containing the data to be
sent

ibfl

Name of an integer containing the number of words
i i h t b t

argument is not specified, a default value of
13. 1is assumed.

iefn Name of an integer containing the number of the event
flag that is to be set when this directive is

executed successfully.

iflag Name of an integer <containing the flag bits
controliing the execution of this directive. They

are defined as follows:

SD.REX

[}

128. Force this task to exit upon
successful execution of

this directive

Pass all connections to the
requested task (default is pass
none). If vyou specify this
flag, do not specify the parent
task name.

SD.RAL

]
=

NOTE

The target task may not be
a CLI task.

SD.RNX = 2 Pass the first connection
in the queue, if there is one,
to the requested task. If
you specify this flag, do not
specify the parent task name.

iparen = Name of an array containing the RAD50 name of the
parent task whose connection should be passed to the
target task. The name of the parent task was
returned in the information buffer of the GTCMCI
subroutine.

5-155

iocbad

ids =

Macro Call:

DIRECTIVE DESCRIPTIONS

Name of an integer containing the pool address of the
OCB to pass. This value was returned 1in the
information buffer of the GTCMCI subroutine. Only
CLI tasks may specify this parameter.

Name of an integer to receive the contents of the
Directive Status Word.

SDRPS task,bufadr,[buflen],[efn],[flag], [parent], [ocbad]

task =

bufadr

buflen

efn =

flag

parent

ocbad

Macro Expansion:

Name of task to be chained to

Address of buffer to be given to the requested task
Length of buffer to be given to requested task
Event flag

Flags byte controlling the execution of this
directive. The flag bits are defined as follows:

SD.REX = 128. Force this task to exit upon
successful completion of this
directive.

SD.RAL =1 Pass all connections to the
requested task (default 1is pass
none). If you specify this flag,
do not specify the parent task
name.

NOTE
The target task may not be
a CLI task.
SD.RNX = 2 Pass the first connection in the

queue, if there 1is one, to the
requested task. If you specify
this flag, do not specify the
parent task name.

Name of issuing task's parent task whose connection
is to be passed. If not specified, all connections
or no connections are passed depending on the flag
byte.

Address of OCB to pass (CLI tasks only)

SDRP$ task,bufadr,[buflen],[efnl]l,[flag]l,[parent], [ocbad]

.BYTE 141.,9. ;DIC = 141, DPB LENGTH =9 WORDS
.RAD50 /task/ ; TASK NAME IN RADIX-50

-WORD BUFADR ;BUFFER ADDRESS

«BYTE EFN, FLAG ;EVENT FLAG, FLAGS BYTE

«WORD BUFLEN ;BUFFER LENGTH

.RADSQ /PARENT/ ; PARENT TASK NAME

+WORD OCBAD ADDRESS OF OCB

5-156

DIRECTIVE DESCRIPTIONS

Local Symbol Definitions:

S.DRTK =-- RAD50 name of task to be chained to
S.DRAD -- Send data buffer address
S.DREF -- Event flag
S.DRFL -- Flags byte:
SD.REX —-- (200) Force task to exit (task issuing
directive)
SD.RAL -- (1) Pass all connections to the

requested task (default is pass
none). If you specify this

flag, do not specify the parent task
name.

SD.RNX -- (2) Pass the first connection in the
queue, if there is one, to the
requested task. If you specify
this flag, do not specify the
parent task name.

S.DRBL -- Length of send data acket
S.DRPT -- Name of parent whose OCB should be passed
S.DROA -—- Address of OCB to pass (CLIs only)

DSW Return Codes:

IE.ITS -- A task that is not a CLI specified a CLI only
parameter, or attempted to pass all connections to a
CLI.

IE.NVR -- No offspring control block from specified parent.

IE.ALG -- A CLI specified a parent name and an offspring
control block address that did not describe the same
connection, or either a parent name or an OCB address
was specified and the pass all connections flag was
set.

IE.IBS -- Length of send packet is illegal.

; ’ - s

IE.UPN -- Insufficient dynamic memory to allocate a send
packet, offspring control block, task control block,
or partition control block.

IE.INS -- The specified task is an ACP or has the no-send
attribute.

{E.IEF -- An invalid event flag number was specified (EFN<KO or
EFN >96 if group global event flags exist. EFN >64
if not).

IE.ADP -- Part of the DPB or exit status block is out of the
issuing task's address space.

IE.SDP -- DIC or DPB size is invalid.

5-157

DIRECTIVE DESCRIPTIONS

If the directive is rejected, the state of the specified
event flag is indeterminate.

If the specified event flag is group global, the use count
for the event flag's group is incremented to prevent

premature elimination of the event flags. The use count is
run down when:

e Status is returned from the connected tasks

e The issuing task exits before status is returned.

5-158

DIRECTIVE DESCRIPTIONS

SETF$

5.3.64 Set Event Flag

The Set Event Flag directive instructs the system to set an indicated
event flag, reporting the flag's polarity before setting.

FORTRAN Call:
CALL SETEF (efn[,ids])

efn = Event flag number

ids Directive status
Macro Call:

SETF$ efn

efn Event flag number

Macro Expansion:

SETFS$ 52.
.BYTE 33.,2 ; SETFS MACRO DIC, DPB SIZE=2 WORDS
.WORD 52. ;EVENT FLAG NUMBER 52.

Local Symbol Definitions:
S.ETEF -- Event flag number (2)

DSW Return Codes:

IS.CLR -- Flag was clear.
IS.SET -- Flag was already set.
IE.IEF -- Invalid event flag number (EFN<1l, or EFN>96 if group

global event flags exist for the task's group; or
EFN>64 if not).

IE.ADP -- Part of the DPB is out of the issuing task's address
space.
IE.SDP -- DIC or DPB size is invalid.

Note:

Set Event Flag does not declare a significant event; it merely
sets the specified flag.

5-159

DIRECTIVE DESCRIPTIONS

SFPAS$

5.3.65 Specify Floating Point Processor Exception AST

The Specify Floating Point Processor Exception AST directive instructs
the system to record one of the two following cases:

e Floating Point Processor exception ASTs for the issuing task
are desired, and the Executive is to transfer control to a
specified address when such an AST occurs for the task.

e Floating Point Processor exception ASTs for the issuing task
are no longer desired.

When an AST service routine entry point address is specified, future
Floating Point Processor exception ASTs will occur for the issuing
task, and control will be transferred to the indicated location at the
time of the AST's occurrence. When an AST service entry point address
is not specified, future Floating Point Processor exception ASTs will
not occur wuntil the task issues a directive that specifies an AST
entry point. See Notes below.

FORTRAN Call:

Not supported

Macro Call:
SFPAS [ast]
ast = AST service routine entry point address

Macro Expansion:

SFPAS FLTAST
.BYTE 111.,2 ;SFPAS MACRO DIC, DPB SIZE=2 WORDS
.WORD FLTAST ;ADDRESS OF FLOATING POINT AST

Local Symbol Definitions:
S.FPAE -- AST entry address (2)

DSW Return Codes:

IS.SUC -- Successful completion.
IE.UPN ~-- Insufficient dynamic memory.
IE.ITS -- AST entry point address is already unspecified or

task was built without floating-point support (FP
switch not specified in Task Builder .TSK file
specification).

IE.AST -- Directive was issued from an AST service routine, or
ASTs are disabled.

IE.ADP -- Part of the DPB is out of the issuing task's address
space.
IE.SDP ~-- DIC or DPB size is invalid.

5-160

DIRECTIVE DESCRIPTIONS

A Specify Floating Point Processor Exception AST requires
dynamic memorye.

The Executive queues Floating Point Processor exception ASTs
when a Floating Point Processor exception trap occurs for the
task. No future ASTs of this kind will be queued for the
task until the first one queued has actually been effected.

The Floating Point Processor exception AST service routine is
entered with the task stack in the following state:

SP+12 - Event flag mask word

SP+10 - PS of task prior to AST
SP+06 - PC of task prior to AST
SP+04 - DSW of task prior to AST
SP+02 - Floating exception code
SP+00 - Floating exception address

The task must remove the floating exception code and address
from the task's stack before an AST Service Exit (see Section
5.3.4) directive is executed.

This directive cannot be issued either from an AST service
routine or when ASTs are disabled.

This directive applies only to the Floating Point Processor.

5-161

DIRECTIVE DESCRIPTIONS

SMSGS$

5.3.66 Send Message

The Send Message directive instructs the system to create and send a
formatted data packet to a system-defined target task. The only wvalid
target for the Send Message directive is Error Logger, and the Error
Logging formatted data packet is an Error Log packet. The task that
issues the SMSG$ directive must be privileged. The wvalid system
defined target and identifier are:

TARGET CODE
IDENTIFIER
Error Logging SM.SER

FORTRAN Call:

CALL SMSG (itgt,ibuf,ibufl,iprm,iprml,ids)

itgt = The name of the integer containing the target object
(currently only SM.SER is defined)

ibuf = The name of an integer array containing the data to
be inserted into the formatted data packet.

ibufl = The name of an integer containing the length of the
ibuf array.

iprm = The name of an integer array containing any
additional parameters.

iprml = The name of an integer containing the number of
parameters in the iprm array.

ids = The name of an optional integer to receive the

directive status.
MACRO Call:

SMSG$ tgt,buf,len,<pri,...,prnd>

tgt = Target identifier

buf = Address of optional data buffer

len = Length in bytes of optional data buffer
pri,...,prn = Target-specific parameter list:

Parameter list for Error Logging

SMSGS$ SM.SER,buf,len,<typ,sub,lun,msk>

typ = Error Log packet type code
sub = Error Log packet subtype code
lun = Logical unit number of device
msk = Control mask word

5-162

DIRECTIVE DESCRIPTIONS

The directive creates an Error Log packet of the specified type and
subtype codes. If you specify a LUN, the directive also records
information about the device to which the LUN refers. The control
mask word sets flags to zerc I/0 and error counts on the device
specified, as shown below:

Control mask word flag:

SM.ZER -- Zeroes device I/0 and error counts for device
specified by LUN

The directive also creates the following subpackets and places them in
the Error Log packet in the order listed below:

1. Header Subpacket - The header subpacket, which contains the
ype and subtype codes, the time stamp, and system
dentification, is always recorded.

o+

i

2. Task Subpacket - The task subpacket, which identifies the
task that issued the directive, is always recorded.

3. Device Subpacket - The device subpacket, which identifies the
device, is recorded if the directive specifies a LUN
argument.

4. Data Subpacket - The data subpacket 1is recorded if the
directive specifies an address and length of an optional data
buffer.

Macro Expansion (with Error Logging target)

SMSGS SM.ERR DATBUF,DATLEN,<PR1,PR2,PR3,PR4>
.BYTE DIC,8. ;SMSGS$ MACRO DIC, DPB SIZE=8 WORDS
.WORD SM.ERR ;TARGET IDENTIFIER - ERROR LOGGING
.WORD DATBUF ;DATA BUFFER ADDRESS

«WORD DATLEN ;DATA BUFFER LENGTH

.WORD PR1 ; PARAMETER 1
-WORD PR2 ; PARAMETER 2
.WORD PR3 ; PARAMETER 3
.WORD PR4 ; PARAMETER 4
Local Symbol Definitions:
S.MTGT -- Target identifier kz)
S.MDBA -- Buffer address (2)
S.MDBL -- Buffer length (2)
S.MPRL -- Parameter list
S.MERR -- Error Log Target Identifier
DSW Return Codes:
IS.SUC -- Successful completion.
IE.ILU =-- 1Invalid LUN (Error Log target only).
iE.SDP -- DIC or DPB size is invalid.

5-163

IE.ULN
IE.UPN
IE.INS
IE.ITS

IE.ADP

DIRECTIVE DESCRIPTIONS

Unassigned LUN (Error Log target only).
Insufficient dynamic memory.

Target task is not installed.

Invalid target identifier or invalid control mask.

Part of the DPB or data buffer is out of the
task's address space.

5-164

issuing

DIRECTIVE DESCRIPTIONS

5-165

DIRECTIVE DESCRIPTIONS

5-166

DIRECTIVE DESCRIPTIONS

5-167

DIRECTIVE DESCRIPTIONS

5-168

DIRECTIVE DESCRIPTIONS

SPND$S

5.3.69 Suspend ($S Form Recommended)

The Suspend directive instructs the system to suspend the execution of
the issuing task. A task can suspend only itself, not another task.
The task can be restarted either by a Resume directive, or by an MCR
or DCL Resume command.

FORTRAN Call:

CALL SUSPND [(ids)]
ids = Directive status
Macro Call:
SPNDS$S [err]
err = Error routine address

Macro Expansion:

SPNDS$S ERR

MOV (PC)+,~-(SP) ;PUSH DPB ONTO THE STACK
.BYTE 45.,1 ; SPND$SS MACRO DIC, DPB SIZE=1 WORD
EMT 377 ;TRAP TO THE EXECUTIVE
BCC «+6 ;BRANCH IF DIRECTIVE SUCCESSFUL
JSR PC, ERR ;OTHERWISE, CALL ROUTINE "ERR"
Local Symbol Definitions:
None
DSW Return Codes:
IS.SPD -- Successful completion (task was suspended).
IE.ADP -- Part of the DPB is out of the issuing task's address
space,
IE.SDP -- DIC or DPB size is invalid.
Notes:
1. A suspended task retains control of the system resources

allocated to it. The Executive makes no attempt to free
these resources until a task exits.

A suspended task is eligible for checkpointing unless it is
fixed or declared to be noncheckpointable.

Because this directive requires only a 1l-word DPB, the $S

form of the macro is recommended. It requires less space and
executes with the same speed as that of the DIRS macro.

5-169

DIRECTIVE DESCRIPTIONS

SPRAS

5.3.70 Specify Power Recovery AST

The Specify Power Recovery AST directive instructs the system to
record one of the two following cases:

1. Power recovery ASTs for the issuing task are desired, and
control is to be transferred when a powerfail recovery AST
occurs.

2. Power recovery ASTs for the 1issuing task are no longer
desired.

When an AST service routine entry point address is specified, future
power recovery ASTs will occur for the issuing task, and control will
be transferred to the indicated location at the time of the AST's
occurrence. When an AST service entry point address is not specified,
future power recovery ASTs will not occur until an AST entry point is
again specified. See Notes below.

FORTRAN Call:

To establish an AST:

EXTERNAL sub
CALL PWRUP (sub)

sub = Name of a subroutine to be executed upon power
recovery. The PWRUP subroutine will effect a

CALL sub (no arguments).
The subroutine is called as a result of a power
recovery AST, and therefore may be controlled at
critical points by using DSASTR and ENASTR subroutine
calls.
To remove an AST:
CALL PWRUP
Macro Call:
SPRAS [ast]
ast = AST service routine entry point address
Macro Expansion:
SPRAS PWRAST
.BYTE 109.,2 ;SPRAS MACRO DIC, DPB SIZE=2 WORDS
-WORD PWRAST ;ADDRESS OF POWER RECOVERY AST

Local Symbol Definitions:

S.PRAE -- AST entry address (2)

5-170

DIRECTIVE DESCRIPTIONS

DSW Return Codes:

IS.SUC -- Successful completion.

IE.UPN -- Insufficient dynamic memory.

IE.ITS -- AST entry point address is already unspecified.
IE.AST -- Directive was issued from an AST service routine, or,

ASTs are disabled.

IE.ADP -- Part of the DPB is out of the issuing task's address
space.
IE.SDP -- DIC or DPB size is invalid.
Notes:
1. Specify Power Recovery AST requires dynamic memory.

2.

3‘

The Executive queues power recovery ASTs when the power-up
interrupt occurs following a power failure. No future
powerfail ASTs will be queued for the task until the first
one queued has been effected.

The task enters the powerfail AST service routine with the
task stack in the following state:

SP+06 Event flag mask word
SP+04 - PS of task prior to AST
SP+02 - PC of task prior to AST
SP+00 - DSW of task prior to AST

No trap-dependent parameters accompany a power recovery AST;
therefore, the AST Service Exit directive (see Section 5.3.4)
can be executed with the stack in the same state as when the
AST was entered.

This directive cannot be issued either from an AST service
routine or when ASTs are disabled.

Refer to Chapter 1 for a 1list of the restrictions on
operations that may be performed in a FORTRAN AST routine.

5-171

DIRECTIVE DESCRIPTIONS

SPWNS$

5.3.71 Spawn

The Spawn directive requests a specified task for execution,
optionally queuing a command linel and establishing the task's TI: as
a physical terminal.

When this directive is issued, an Offspring Control Block (OCB) is
queued to the offspring TCB and a rundown count is incremented in the
parent task's TCB. The rundown count is used to inform the Executive

i parent task and has one or more offspring tasks !
; cleanup is necessary if a parent task exits
tasks. The rundown count is decremented when the
spawned task exits. The OCB contains the TCB address as well as
sufficient information to effect all of the specified exit events when
the offspring task exits.,

If a command line is specified, it is buffered in the Executive pool
and queued for the offspring task for subsequent retrieval by the
offspring task with the Get MCR Command Line di ti Maximum

: l s s e 5 oy g

If an AST address is specified, an exit AST routine is effected when
the spawned task exits with the address of the task's exit status
block on the stack. The AST routine must remove this word from the
stack before issuing the AST Service Exit directive.

Special action is taken if the task being spawned is a Command Line
Interpreter (CLI), such as MCR or DCL. 1In this case, a command line
must be specified, and both the OCB and the command 1line are queued
for the interpreter task. MCR and DCL either handle commands directly
or dispatch them to another task. In the case of direct execution of
the command, the OCB may be used to immediately effect the proper exit
conditions and return exit status by an Executive routine. If MCR or
DCL dispatch another task, they simply move the OCB from their own OCB
queue directly to the OCB queue of the dispatched task. They also
queue the command 1line for the dispatched task as usual. At this
point, the situation is exactly the same as if the SPWN$ directive had
specified the dispatched task directly. No exit conditions occur
until the dispatched task exits.

FORTRAN Call:

CALL SPAWN (rtname,[iugc],[iumc],{iefn],[iast],[iesb],[iparm],
[iecmlin],{icmlen], [iunit], [dnam][,ids])

rtname = Name (RAD50) of the offspring task to be spawned.

iugc = Group code number for the UIC of the offspring task.

iumc = Member code number for the UIC of the offspring
task.

iefn = Event flag to be set when the offspring task exits

or emits status.

1. Command line processing is not available for RSX-11S tasks.

5-172

iast

iesb

iparm

icmlin

icmlen

iunit

dnam

ids
Macro Call:

SPWNS$

tname
ugc

umc

efn

east

DIRECTIVE DESCRIPTIONS

Name of an AST routine to be called when the
offspring task exits or emits status.

Name of an 8-word status block to be written when
the offspring task exits or emits status.

Word 0 -- Offspring task exit status
Word 1 -- TKTN abort code

Word 2-7 -- Reserved

NOTE

The exit status block defaults to one word.
To use the 8-word exit status block, you
must specify the logical or of the symbol
SP.WX8 and the event flag number in the iefn
parameter above.

Name of a word to receive the status block address
when the AST occurs.

Name of a command line to be gqueued for the
offspring task.

Length of the command line (79. characters
maximum) .

Unit number

. if a value of 0 is specified, the TI: of the
ing task is propagated. A task must be
privileged or must be a CLI task in order to specify
a TI: other than the parent task's TI:

Integer to receive the directive status word.

tname,,,[ugc],[umc],[efn],[east],[esb],[cmdlin],[cmdlen],
[unum], [dnam]

Name (RAD50) of the offspring task to be spawned.
Group code number for the UIC of the offspring task.

Member code number for the UIC of the offspring
task.

The event flag to be cleared on issuance and set
when the offspring task exits or emits status.

Address of an AST routine to be called when the
offspring task exits or emits status.

QLI=p2 210 <

5-173

DIRECTIVE DESCRIPTIONS

esb = Address of an 8-word status block to be written when
the offspring task exits or emits status.

Word 0 -- Offspring task exit status
Word 1l -- TKTN abort code
Word 2-7 -- Reserved

NOTE

The exit status block defaults to one
word. To use the 8-word exit status
block, you must specify the logical or
of the symbol SP.WX8 and the event flag
number in the efn parameter above.

cmdlin = Address of a command 1line to be queued for the
offspring task.

cmdlen = Length of the command line (maximum length is 79.).
unum = Unit number of terminal to b
he i tas
!] a value of 0 is specified, the TI of the
issuing task is propagated. A task nmust be
privileged or must be a CLI task in order to specify
a TI: other than the parent task's TI:.
dnam =

Device name mnemonic.

Macro Expansion:

SPWNS$ ALPHA,,,3,7,1,ASTRUT,STBLK,CMDLIN, 72.,2

.BYTE 11.,13. ;SPWNS$ MACRO DIC, DPB SIZE=13 WORDS
.RAD50 ALPHA ;:NAME OF TASK TO BE SPAWNED

«BLEKW 3 ;RESERVED

«BYTE 7,3 ;UMC = 7 UGC = 3

.BYTE 1 ;EVENT FLAG NUMBER = 1

.BYTE 16. ;EXIT STATUS BLOCK CONSTANT

«WORD ASTRUT ;AST ROUTINE ADDRESS

«WORD STBLK ;EXIT STATUS BLOCK ADDRESS

«WORD CMDLIN ;ADDRESS OF COMMAND LINE

WORD 72 ;COMMAND LINE LENGTH 72. CHARA

NOTE

iona parameter (device name)
can be added for a haj i
name. For example, TT2
would have the same
shown above, plus the following:

.ASCII [/TT/ ;ASCII DEVICE NAME

The DPB size will then be 14 words.

5-174

DIRECTIVE DESCRIPTIONS

Local Symbol Definitions:

S.PWTN -- Task name (4)

S.PWXX -- Reserved (6)

S.PWUM -- User member code (1)

S.PAWUG -- User group code (1)

S.PWEF -- Event flag number (2)

S.PWEA -- Exit AST routine address (2)
S.PWES —- Exit status block address (2)
S.PWCA -- Command line address (2)
S.PWCL —-- Command line length (2)
S.PWVT -- Terminal unit number (2)
S.PWDN —-- Device name (2)

DSW Return Codes:

IS.SUC -- Successful completion.

IE.UPN -- Insufficient dynamic memory to allocate an offspring
control block, command 1line buffer, task control
block, or partition control block.

IE.INS -- The specified task was not installed, or it was a
command line interpreter but no command line was
specified.

IE.ACT -- The specified task was already active and it was not
a command line interpreter.

IE.PRI -- Nonprivileged task attempted to specify an offspring

task's TI: to be different from its own.

5-175

DIRECTIVE DESCRIPTIONS

DSW Return Codes:

IE.IDU -- terminal unit does not
specified TI device 1s not a terminal.

IE.IEF -- 1Invalid event flag number (EFN<O, or EFN>96 if group
global event flags exist for the task's group; or
EFN>64 if not).

IE.ADP -- Part of the DPB, exit status block, or command 1line
is out of the issuing task's address space.

IE.SDP ~- DIC or DPB size is invalid.

Notes:

1. TIf the UIC is defaulted and the offspring task 1is not a
Command Line Interpreter (CLI), that task is requested to run
under the UIC of the parent task. If the UIC is defaulted,
the offspring task is a CLI, and the CLI passes the specified
command line to a dispatched task, the dispatched task will
run under the UIC of its TI: terminal. See the notes for
the Request Task (RQSTS) directive for more information about
task UICs.

2. If the specified event flag is group global, then the use
count for the event flag's group is incremented to prevent
premature elimination of event flags. The use count 1is run
down when:

e Status is returned from the spawned task.
e The issuing task exits before status is returned.

3. The virtual mapping of the exit status block should not be
changed while the connection is 1in effect. Doing so may
cause obscure errors.,

4. The types of operations that a FORTRAN AST routine may
perform are extremely limited. Please refer to Chapter 1 for
a list of restrictions.

The following program illustrates the wuse of the FORTRAN callable
SPAWN routine and the mechanism for handling ASTs from a FORTRAN
program:

PROGRAM SPWAST

This program illustrates the use of the FORTRAN callable

SPAWN routine and the use of a FORTRAN subprogram at AST state.

This example keeps "ITMAX" tasks active at any point in time

without having several copies of each utility installed under

different names. The input file consists of single line commands

of up to 45 characters in length which invoke tasks in the system
library UIC. The first three characters of the input command line

are the name of the task to be invoked(ie: MAC). The output file
consists of a log file containing the command lines and the exit status
of the program invoked.

OO0O000O0OO0000

5-176

QOO0 NOOOOOO0QO00O0O00OO0O000000N000

[eNeNe}

DIRECTIVE DESCRIPTIONS

The above is accomplished as follows:

A command is read from the input file "CMDFIL.CMD" which has the
form "NAM COMMAND", where NAM is the name of the task and COMMAND is the
command to be passed to this task. This input command line is transformed
into an MCR "RUN" command line such as

"RUN $MAC/TASK=TSK#/EST=NO/CMD="COMAND".
where # is a number assigned by this task so that the target task name
is both known and unique. The MCR dispatcher (MCR...) is spawned with this
transformed command line, which in turn causes the MCR... task to dispatch
a copy of ...MCR under the name MCRTnn to execute this command. When
this copy of ...MCR exits, an exit AST is serviced by this task which
issues a "CONNECT" to the target task "TSK#". This method introduces a timing
window such that the target task could exit before the CONNECT is made. In
this case, an error message is written to the log file indicating that
éxit status could not be returned due to a connect failure.

This non-privileged FORTRAN IV-PLUS program is compiled and
built as follows:

MCR>F4P SPWAST, SPWAST/-SP=SPWAST
MCR>TKB SPWAST/FP,SPWAST=SPWAST,LB:[1,1]F4POTS/LB

Define data structures

The following variables are kept on a per active "invoked task" basis
For lack of a better name, each respective entry is called task
inforamation block.

IESTAT (8, XXX) IEXSAD (XXX) ISTAT (XXX) ICMDLN (45, XXX)

PARAMETER ITMAX=3

COMMON /KOM1/IESTAT (8, ITMAX) , IEXSAD(ITMAX) , ISTAT (ITMAX) , IPARM, RTNAME (2)
COMMON /KOM2/THISTK (16)
COMMON /COMMAN/ICMDLN (45, ITMAX)

INTEGER IESTAT !exit status array for each task

INTEGER IEXSAD larray containing the address of each task's iestat

INTEGER ISTAT tarray containing the status (active vs free) of
each task information block.

INTEGER IPARM tcontains address of IESTAT at AST state

INTEGER RTNAME !contains the RADS50 name of the target task to be
tconnected to at AST state

INTEGER THISTK

BYTE ICMDLN tsaved input command line per task

Local input buffer variables
DIMENSION INPCOM(3)
DIMENSION INPBUF (45)
EQUIVALENCE (INPBUF (1),INPCOM(1))

BYTE INPBUF I'INPUT BUFFER
BYTE INPCOM ! COMPONENT NAME FIELD OF INPBUF

5-177

[eXeNe]

[eXeNe!

N0 oo

[eXeN?]

[eXeNeNeNe N Ne!

w

[oNoXeXel

DIRECTIVE DESCRIPTIONS

Local variables for SPAWN call

EXTERNAL EXTAST tdefine the name of the AST routine externally
DIMENSION CMDLIN(79) imaximum command line passed to is 79. bytes
BYTE CMDLIN tactual command line passed to MCR...
INTEGER*4 DSPNAM fvariable containing RAD50 task name of MCR...
DATA DSPNAM/6RMCR.../!fill in name of ...MCR at compile time

Local control variables

INTEGER ITCNT tcount of number of free task information blocks
LOGICAL EOF 1flag indicating EOF detected on command input file

Misc. local variables
INTEGER IDSW linteger to contain directive status
Open files

OPEN (UNIT=1,TYPE='OLD',READONLY,NAME='CMDFIL.CMD")
OPEN (UNIT=2,TYPE='NEW',CARRIAGECONTROL='FORTRAN',NAME='CMDFIL.LOG')

Initialize Vvariables

ITCNT=ITMAX+1 Iset current count of available task info blocks
EOF=,FALSE, lreset EOF flag

CALL IRADS0(3,'TSK',RTNAME (1)) !setup first half of target task name
CALL GETTSK(THISTK(1l)) tdetermine this task's name so that
STOPing and UNSTOPing may be done

Initialize the IEXSAD array such that each entry contains the address

of the exit status block which has the corresponding index. This is
necessary so that the correct exit status block may be determined at AST
state.

DO 5 I=1,ITMAX
CALL GETADR(IEXSAD(I),IESTAT(1,I))
CONTINUE

Read a command line from the input file and initialize a free task info
block.

READ (1,900,END=30)I,INPBUF tread input command line

ITCNT=ITCNT-1 fone less free block

DO 20 K=1,ITMAX 1search for the free block

IF (ISTAT(K) .NE. 0) GOTO 20 ITF NE, block is in use

ISTAT(K)=1 'ELSE found one, mark it in use

DO 15 J=1,1I tsave command line for output later

ICMDLN (J,K)=INPBUF (J)

CONTINUE

DO 16 J=I+1,45 Ipad saved command line with spaces

ICMDLN (J,K)="40

CONTINUE

GOTO 40 texit search loop

CONTINUE

EOF=.TRUE. !set EOF flag

GOTO 55 tcontinue to log exit status of what's currently
ltactive

5-178

DIRECTIVE DESCRIPTIONS

C

C Construct the actual command line specified in the SPAWN call

C

C Write saved command line to TI: so that any MCR "RUN" error messages
C have context.

40 WRITE (5, 710) (ICMDLN (J, K) ,J=1,45)

710 FORMAT (1X, 45A1)
ENCODE (I+35,800,CMDLIN)INPCOM,K, (INPBUF(J),J=1,1)

800 FORMAT('RUN $',3Al1,'/TASK=TSK',Il,'/EST=NO/CMD=""',45a1)
CMDLIN (I+32)="42 tadd terminating quote
CMDLIN(I+33)="15 tand terminator.

Cc

C Spawn MCR... with the command line such as:

C .

C "RUN $MAC/TASK=TSK1l/EST=NO/CMD="MAC TEST1=TEST1""

C

C At this point the second half of the RAD50 target task name is calculated
C so that the first exit AST may issue a connect after ...MCR exits.

RTNAME (2)=40*%40* (30+K) !calculate second half of RAD50 taskname

C Spawn the MCR dispatcher with the constructed command line. The dispatcher
C will then spawn a copy of ...MCR which will in turn process the "RUN" command.

45 CALL SPAWN (DSPNAM,,,1,EXTAST,IESTAT(1,K),IPARM,CMDLIN,I+33,0,,IDSW)

C An error could be received from the SPAWN call. This could be due to a

C variety of reasons, such as the task file specified was not found or there
C was insufficient system resources at the time the executive directive

C was issued. Only the IE.RSU errors will be recovered by waiting for

C a significant event and reissuing the call to SPAWN.

IF(IDSW+1l) 50,52,54 Icheck directive status returned
C
C Spawn error
C
50 IESTAT(1,K)=5 1if mi, uncorrectable error mark status
IESTAT(2,K)=IDSW tsave directive status returned for log
ISTAT(K)=3 “lindicate status present
GOTO 60 1go write error to log file and cleanup
C
C Spawn error due to insufficient resources
c
52 CALL WFSNE twait for significant event
GOTO 45 ireissue SPAWN
Cc

C Spawn successful, wait till ...MCR exits and first AST has been serviced.
C

54 CALL WAITFR(1) twait for ...MCR to exit
C

C Do not STOP if connect failed, just process task info block and continue..

(9]

IF(IESTAT(1,K) .EQ. 6) GOTO 60 !exit status code of 6 indicates
c connect failure..
C
C At this point a check is made to determine whether this task has
C completed its quest. If there is no more input and all task information
C blocks are free, then exit processing will be performed.
C

5-179

w

O oo a0 [eNeNeNeNe KO RS,
=}

61

62
c

63
64
65
66

67
68

70

900
901
902
903
904
905
906
907
908

C

DIRECTIVE DESCRIPTIONS

IF (EOF ,AND. (ITCNT .EQ. ITMAX+l)) GOTO 500

Next, if all the task information blocks are being used, or if there
is no more input to process, this task is stopped so as to lower its
priority effectively to zero. This task will once again wake up when
the connect AST unstops this task.

IF(ITCNT .EQ. 1 .OR. (EOF)) CALL STOP

Scan all the task information blocks to process task information blocks
which are now waiting for cleanup and log file processing.

DO 70 K=1, ITMAX tsearch task information blocks for
the task(s) which exited

IF (ISTAT(K) .NE. 3) GOTO 70 1if eq, then offspring task connect AST
has not occurred for this task

WRITE (2,901) (ICMDLN(J,K),J=1,45) 'write cmdlin to log file

GOTO (62,63,64,61,65,66,67),(IESTAT(1,K) .AND. "377)+1 !decode exit status
WRITE (2,902) (IESTAT(1,K) .AND. "377) l!unknown exit status
GOTO 68
WRITE (2,903) 1EX$WAR -- warning
lor none returned

GOTO 68

WRITE (2,904) IEX$SSUC —-- success

GOTO 68

WRITE (2,905) 1EXSERR -- error

GOTO 68

WRITE (2,906) 1EX$SEV ~-- severe error

GOTO 68

WRITE (2,907)IESTAT(2,K) linternal -- SPAWN failure
GOTO 68

WRITE (2,908)IESTAT (2,K) tinternal -- CONNECT failure
ISTAT(K)=0 1free up task info block
IESTAT(1,K)=0 tinitialize exit status
ITCNT=ITCNT+1 tadjust free task info block ct
CONTINUE

GOTO 10

FORMAT (Q, 45A1)

FORMAT ('$',45A1)

FORMAT ('+','Unknown exit status =',I3)
FORMAT ('+','<< Warning')

FORMAT ('+','<< Success')

FORMAT ('+','<< Error')

FORMAT('+','<< Severe error')

FORMAT ('+','<< Spawn error, DSW =',I3)
FORMAT ('+',"'<< Connect error, DSW =',I3)

C Exit cleanly by closing all files

c
500

CLOSE (UNIT=1) tclose input file on LUN 1
CLOSE (UNIT=2) tclose output file on LUN 2
CALL EXIT lexit

END

5-180

DIRECTIVE DESCRIPTIONS

SUBROUTINE EXTAST

PARAMETER ITMAX=3
COMMON /KOM1/IESTAT (8, ITMAX) ,IEXSAD(ITMAX),ISTAT (ITMAX), IPARM, RTNAME (2)
COMMON /KOM2/THISTK(16)

INTEGER IESTAT !exit status array for each task
INTEGER IEXSAD !array containing the address of each task's IESTAT
INTEGER ISTAT tarray containing the status (active vs free) of
c each task information block.
INTEGER IPARM lcontains address of IESTAT at AST state
INTEGER RTNAME !contains the RAD50 name of the target task to be
C lconnected to at AST state
INTEGER THISTK

EXTERNAL TSKEXT
C
C Using IPARM, which contains the address of the exit status block array,
C find the task information block, by comparing this with the address of each
C exit status block array.(contained in IEXSAD)
C
DO 10 I=1,ITMAX
IF (IEXSAD(I) .EQ. IPARM) GOTO 20 !found the task info block
10 CONTINUE

GOTO 30
20 ISTAT(I)=2 tindicate ...MCR has exited
[
C Try to connect to the target task
(o]
CALL CNCT(RTNAME(1l),2,TSKEXT,IESTAT(1,I),IPARM,IDSW)
IF(IDSW .EQ. 1) GOTO 30 1IF EQ, then successful connect
IESTAT(1,I)=6 lelse pass connect failed status
IESTAT(2,I)=IDSW
ISTAT(I)=3 imark task info block as done.
30 RETURN treturn from AST state (returns to internal AST handler)
END
S UBROUTINE TSKEXT
PARAMETER ITMAX=3
COMMON /KOMl/IESTAT(B,ITMAX),IEXSAD(ITMAX),ISTAT(ITMAX),IPARM,RTNAME(Z)
COMMON /KOM2/THISTK(16)
INTEGER IESTAT l!exit status array for each task
INTEGER IEXSAD !array containing the address of each task's IESTAT
INTEGER ISTAT tarray containing the status (active vs free) of
C each task information block.
INTEGER IPARM tcontains address of IESTAT at AST state
INTEGER RTNAME !Icontains the RAD50 name of the target task to be
C tconnected to at AST state
INTEGER THISTK !This task's name (so that an UNSTOP may be performed)
C
C Find exit status block
o}

DO 10 I=1,ITMAX
IF (IEXSAD(I) .EQ. IPARM) GOTO 20 !found the task info block
10 CONTINUE

GOTO 30

20 ISTAT(I)=3 tindicate AST has been serviced
CALL USTP(THISTK) IUNSTOP this task

30 RETURN !return from AST state (returns to internal AST handler)
END

5-181

DIRECTIVE DESCRIPTIONS

SRDAS

5.3.72 Specify Receive Data AST

The Specify Receive Data AST directive instructs the system to record
one of the following two cases:

® Receive data ASTs for the issuing task are desired, and the
Executive transfers control to a specified address when data
has been placed in the task's receive queue

e Receive data ASTs for the issuing task are no longer desired.
When the directive specifies an AST service routine entry point,
receive data ASTs for the task will subsequently occur whenever data

has been placed in the task's receive dueue; the Executive will
transfer control to the specified address.

When the directive omits an entry point address, the Executive
disables receive data ASTs for the issuing task. Receive data ASTs
will not occur until the task issues another Specify Receive Data AST
directive that specifies an entry point address. See Notes below.
FORTRAN Call:
Neither the FORTRAN language nor the ISA standard permits direct
linking to system trapping mechanisms; therefore, this directive
is not available to FORTRAN tasks.
Macro Call:

SRDAS [ast]
ast = AST service routine entry point address
Macro Expansion:
SRDAS RECAST
.BYTE 107.,2 ;SRDA$ MACRO DIC, DPB SIZE=2 WORDS
.WORD RECAST ;ADDRESS OF RECEIVE AST
Local Symbol Definitions:

S.RDAE =-- AST entry address (2)

DSW Return Codes:

IS.SUC -- Successful completion.

IE.UPN -- Insufficient dynamic memory.

IE.ITS =-- AST entry point address is already unspecified.

IE.AST -- Directive was issued from an AST service routine, or
ASTs are disabled.

IE.ADP -- Part of the DPB is out of the issuing task's address
space.

IE.SDP ~-- DIC or DPB size is invalid.

5-182

Notes:
1.

2.

DIRECTIVE DESCRIPTIONS

A Specify Receive Data AST requires dynamic memory.

The Executive queues receive data ASTs when a message is sent
to the task. No future receive data ASTs will be queued for
the task until the first one queued has been effected.

The task enters the recieve data AST service routine with the
task stack in the following state:

SP+06 - Event flag mask word

SP+04 - PS of task prior to AST
SP+02 - PC of task prior to AST
SP+00 - DSW of task prior to AST

No trap-dependent parameters accompany a receive data AST;
therefore, the AST Service Exit directive (see Section 5.3.4)
must be executed with the stack in the same state as when the
AST was effected.

This directive cannot be issued either from an AST service
routine or when ASTs are disabled.

5-183

DIRECTIVE DESCRIPTIONS

SREAS
SREXS$

5.3.73 Specify Requested Exit AST Directive — SREAS or SREX$

The Specify Requested Exit AST directive allows the task issuing the
directive to specify the AST service routine to be entered if an
attempt is made to abort the task by a directive or MCR or DCL ABO
command. This allows a task to enter a routine for clean-up instead
of abruptly aborting.

If an AST address is not specified, any previously specified exit AST
is canceled.

Privileged tasks enter the specified AST routine each time an abort is
issued. However, subsequent exit ASTs will not be queued until the
first exit AST has occurred.

Nonprivileged tasks enter the specified AST routine only once.
Subsequent attempts to abort the task will actually abort the task.

SREX$ is the preferred form of this directive. The differences are
explained in Notes 1 and 2 below.

FORTRAN Call:

CALL SREA(ast[,ids])

ast Name of the externally declared AST subroutine

ids Name of an optional integer to receive the Directive

Status Word
CALL SREX(ast,ipblk,ipblkl,{dummy] [,ids])
ast = ©Name of the externally declared AST subroutine

ipblk

Name of an integer array to receive the
trap-dependent parameters

ipblkl = Number of parameters to be returned into the ipblk
array.

dummy = Reserved for future use

ids = Name of an optional integer to receive the Directive

Status Word
Macro Call:
SREAS [ast]
SREXS$ [ast] [,dummy]

ast = AST service routine entry point address
dummy = Reserved for future expansion

5-184

Macro Expansion:

DIRECTIVE DESCRIPTIONS

SREAS REQAST
~.BYTE 167.,2 :SREAS MACRO DIC, DPB SIZE=2 WORDS
+WORD REQAST ;EXIT AST ROUTINE ADDRESS
SREXS REQAST
+.BYTE 167.,3 ; SREX$ MACRO DIC, DPB SIZE=3 WORDS
+WORD REQAST ;EXIT AST ROUTINE ADDRESS
+WORD 0 ;RESERVED FOR FUTURE EXPANSION
NOTE
The DPB length for the SREAS form of the
directive 1is two words. For the SREXS$
form of the directive, it 1is three
words.

Local Symbol Definitions:

S.REAE

DSW Return Codes:

Is.sucC

IE.UPN

IE.AST

IE.ITS

IE.ADP

IE.SDP

Exit AST routine address (2)

Successful completion.
Insufficient dynamic storage.

Directive was issued from an AST service routine,
ASTs are disabled.

or

ASTs already not desired,
attempted to respecify
had already occurred.

or nonprivileged task
or cancel the AST after one

Part of the DPB is out of the issuing task's
space.

address

DIC or DPB size is invalid.

5-185

Notes:

DIRECTIVE DESCRIPTIONS

The SREXS$ form of the directive is recommended for tasks that
wish to handle all privileged and nonprivileged abort
attempts that do not wviolate multiuser protection checks.
The 1issuing task can use the information returned on the
stack for this version of the directive to decide how to
handle the abort attempt.

After specifying a requested exit AST using the SREXS$ form of
the directive, the 1issuing task will enter the AST service
routine if any attempt is made to abort the task. On systems
with multiuser protection, nonprivileged abort attempts must
originate from the same TI: as that of the issuing task.

When the AST service routine is entered and the AST has been
specified using the SREX$ version of the directive, the
task's stack is in the following state:

SP+12 - Event flag mask word

SP+10 - PS of task prior to AST

SP+06 - PC of task prior to AST

SP+04 - DSW of task prior to AST

SP+02 - Trap-dependent parameter

SP+00 - Number of bytes to add to SP to clean stack (4)

The trap-dependent parameter is formatted as follows:

Bit 0 = 0 if the abort attempt was privileged
= 1 if the abort attempt was nonprivileged
Bit 1 0 if the ABRTS directive was issued

[}

1 if the MCR or DCL abort command was used
Bits 2-15 are reserved for future use

The task must remove the trap-dependent parameters from the
stack before an AST Service Exit directive is executed. The
recommended method is to add the value stored in SP+00 to SP.
This is also the only recommended way to access the
non-trap-dependent parameters on the stack.

The SREAS$ form of the directive is recommended for privileged
tasks that do not wish abort attempts from a nonprivileged
user's MCR or DCL abort command to be allowed, and do not
otherwise care about the nature of the abort attempt. It is
also recommended for any nonprivileged tasks that simply do
not care about the nature of the abort attempt.

After specifying a requested exit AST using the SREAS form of
the directive, privileged tasks will enter the AST service
routine if any of the following abort attempts is made:

e Any privileged ABRTS$ directive or privileged MCR or DCL
abort command

e Any nonprivileged ABRTS$ directive on systems without
multiuser protection

® Any nonprivileged ABRTS$ directive from the same TI: on
systems with multiuser protection

5-186

3‘

5.

DIRECTIVE DESCRIPTIONS

Nonprivileged tasks will enter the AST service routine for
all of the abort attempts listed above, plus the following:

e Any nonprivileged MCR or DCL abort command on systems
without multiuser protection

® Any nonprivileged MCR or DCL abort command from the same
TI: on systems with multiuser protection

When the AST service routine is entered, the task's stack is
in the following state:

SP+06 - Event flag mask word
SP+04 - PS of task prior to AST
SP+02 - PC of task prior to AST
SP+00 - DSW of task prior to AST

No trap-dependent parameters accompany an AST specified by
SREAS; therefore, the AST Service Exit directive can be
executed with the stack in the same state as when the AST was
entered.

The event flag mask word at the bottom of the stack preserves
the Wait For conditions of a task prior to AST entry. A task
can, after an AST, return to a Wait For state. Because these
flags and other stack data are in the user task, they can be
modified. However, modifying the stack data may cause
unpredictable results. Therefore, such modification is not
recommended.

If an SREXS requested exit AST is not specified for a task,
it is impossible to abort a privileged task from a
nonprivileged terminal using either MCR or DCL on systems
with multiuser protection.

The two forms of this directive should not be mixed 1in the
same code, since the stack format and the trap-dependent
parameters differ. Any mismatch between the form of the
directive and the AST routine will have unpredictable
results.

Please see Chapter 1 for a list of restrictions on operations
that can be performed in a FORTRAN AST routine.

5-187

DIRECTIVE DESCRIPTIONS

SREF$

5.3.74 Send by Reference

The Send By Reference directive inserts a packet containing a
reference to a region into the receive-by-reference dueue of a
specified (receiver) task. The Executive automatically attaches the
receiver task for each Send By Reference directive issued by the task
to the specified region (the region identified in W.NRID of the Window
Definition Block). The attachment occurs even if the receiver task is

‘Window | De] 1 The successful execution of this
directive causes a significant event to occur.

The send packet contains:

e A pointer to the created attachment descriptor, which becomes
the region ID to be used by the receiver task

e The offset and length words specified in W.NOFF and W.NLEN of
the Window Definition Block (which the Executive passes
without checking)

e The receiver task's permitted access to the region, contained
in the window status word W.NSTS

e The sender task name

e Optionally, the address of an 8-word buffer that contains
additional information (If the packet does not include a
buffer address, the Executive sends 8 words of 0.)

The receiver task automatically has access to the entire region as
specified in W.NSTS. The sender task must be attached to the region
with at least the same types of access. By sétting all the bits in
W.NSTS to 0, the receiver task can default the permitted access to
that of the sender task.

If the directive specifies an event flag, the Executive sets the flag
in the sender task -- when the receiver task acknowledges the
reference -- by issuing the Receive By Reference directive (see
Section 5.3.55). When the sender task exits, the system searches for
any unreceived references that specify event flags, and prevents any
invalid attempts to set the flags. The references themselves remain
in the receiver task's receive-by-reference queues.

FORTRAN Call:

CALL SREF (tsk,{efn],iwdb,{isrb}[,ids])

tsk = A single-precision, floating-point variable containing
the name of the receiving task in Radix-50 format

efn = Event flag number

iwdb = An 8-word integer array containing a Window Definition
Block (see Section 3.5.2.2)

isrb = An 8-word integer array containing additional
information (If specified, the address of isrb is
placed in iwdb(8). If isrb is omitted, the contents
of iwdb(8) remain unchanged.)

ids = Directive status

5-188

DIRECTIVE DESCRIPTIONS

Macro Call:

SREFS task,wdb[,efn]

task = Name of the receiver task
wdb = Window Definition Block address
efn = Event flag number

Macro Expansion:

SREF$ ALPHA ,WDBADR, 48.

.BYTE 69.,5 ; SREF$ MACRO DIC, DPB SIZE=5 WORDS
.RAD50 /ALPHA/ ;RECEIVER TASK NAME

+WORD 48. ;EVENT FLAG NUMBER

.WORD WDBADR ;WDB ADDRESS

Window Definition Block Parameters:
Input parameters:

Array Offset

Element
iwdb(4) W.NRID -- 1ID of the region to be sent by reference
iwdb(5) W.NOFF -- Offset word, passed without checking
iwdb(6) W.NLEN -- Length word, passed without checking
iwdb(7) W.NSTS -- Bit settingsl in window status word (the
receiver task's permitted access):
Bit Definition
WS.RED 1 if read access is permitted
WS.WRT 1 if write access is permitted
WS. EXT 1 if extend access is permitted
WS.DEL 1 if delete access is permitted
iwdb(8) W.NSRB -- Optional address of an 8-word buffer

containing additional information
Output parameters
None

Local Symbol Definitions:

S.RETN ~-- Receiver task name (4)
S.REBA ~-- Window Definition Block base address (2)
S.REEF -- Event flag number (2)

1. If you are a FORTRAN programmer, refer to Section 3.5.2 to
determine the bit values represented by the symbolic names described.

5-189

DIRECTIVE DESCRIPTIONS

DSW Return Codes:

IS.SUC -- Successful completion.

IE.UPN -- A send packet or an attachment descriptor could not

be allocated.

IE.INS -- The sender task attempted to send a reference to an

Ancillary Control Processor (ACP) task, or task not
installed.

IE.PRI -- Specified access not allowed to sender task itself.
IE.NVR -~ 1Invalid region ID.
IE.IEF -~ 1Invalid event flag number (EFN<0, or EFN>96 if group

global event flags exist for the task; or EFN>64 if
not).

IE.ADP -- The address check of the DPB, the WDB, or the sen<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>