RSX-11M/M-PLUS
Task Builder Manual
Order No. AA-H266A-TC

RSX-11M Version 3.2
RSX-11M-PLUS Version 1.0

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maynard, massachusetts

First Printing, June 1979

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright C) 1979 by Digital Equipment Corporation

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0s/8
DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-11
DECCOMM DECSYSTEM-20 TMS-11
ASSIST-11 RTS-8 ITPS~10
VAX VMS SBI
DECnet IAS PDT
DATATRIEVE TRAX

7/80~14

CONTENTS

Page
PREFACE Xv
SUMMARY OF TECHNICAL CHANGES xi
CHAPTER 1 INTRODUCTION AND COMMAND SPECIFICATIONS 1-1
1.1 TASK COMMAND LINE 1-2
1.2 MULTIPLE LINE INPUT 1-3
1.3 OPTIONS 1-3
1.4 MULTIPLE TASK SPECIFICATIONS 1-4
1.5 INDIRECT COMMAND FILES 1-5
l.6 COMMENTS IN LINES 1-7
1.7 FILE SPECIFICATIONS 1-8
1.8 SUMMARY OF SYNTAX RULES 1-9
CHAPTER 2 TASK BUILDER FUNCTIONS 2-1
2.1 LINKING OBJECT MODULES 2-1
2.1.1 Allocating Program Sections 2-2
2.1.2 Resolving Global Symbols 2-7
2.2 ASSIGNING ADDRESSES 2-8
2,2.1 Unmapped Systems 2-8
2,2.2 Mapped Systems 2-10
2.3 BUILDING SYSTEM DATA STRUCTURES 2-14
2.4 TASK RELOCATION ON MAPPED SYSTEMS 2-15
CHAPTER 3 TYPICAL TASK BUILDER FACILITIES 3-1
3.1 SHARED REGIONS 3-1
3.1.1 The Symbol Definition File 3-3
3.1.2 Position~Independent Shared Regions 3-3
3.1.3 Absolute Shared Regions 3-6
3.1.4 Linking to a Shared Region 3-6
3.1.5 Example 1: Building and Linking to a Common
in MACRO-11 3-11
3.1.6 Example 2: Building and Linking to a Device
Common in MACRO-11 3-19
3.1.7 Example 3: Building and Linking to a
Resident Library in MACRO-11 3-23
3.1.8 Example 4: Building and Linking to a
Supervisor-Mode Library in MACRO-11
(RSX-11M-PLUS Only) 3-32
3.2 EXAMPLE 5: BUILDING A MULTIUSER TASK
(RSX-11M-PLUS ONLY) 3-44
3.3 EXAMPLE 6: BUILDING A TASK THAT CREATES A
DYNAMIC REGION 3-50
3.4 VIRTUAL PROGRAM SECTIONS 3-53
3.4.1 FORTRAN Run-Time Support for Virtual Program
Sections 3-56
3.4.2 Example 7: Building a Program that Uses a
Virtual Program Section 3-59
3.5 EXAMPLE 8: PRIVILEGED TASKS 3-62

iii

CONTENTS

CHAPTER 4 OVERLAY CAPABILITY

1 OVERLAY STRUCTURES
1.1 Disk-Resident Overlay Structures
1.2 Memory-Resident Overlay Structures (Not
Supported on RSX-118)
2 OVERLAY TREE
2.1 Loading Mechanism
2.2 Resolution of Global Symbols in a
Multisegment Task
2.3 Resolution of Global Symbols from the
Default Library
Allocation of Program Sections in a
Multisegment Task
OVERLAY DATA STRUCTURES AND RUN-TIME ROUTINES
OVERLAY DESCRIPTION LANGUAGE
.ROOT and .END Directives
.FCTR Directive
Exclamation Point Operator
.NAME Directive
.PSECT Directive
Indirect Command Files
MULTIPLE-TREE STRUCTURES
Defining a Multiple-Tree Structure
Multiple-Tree Example
OVERLAYING PROGRAMS WRITTEN IN A HIGH-LEVEL
LANGUAGE
EXAMPLE 9: BUILDING AN OVERLAY
SUMMARY OF THE OVERLAY DESCRIPTION LANGUAGE

[~
.
1~

B T R S L
o o o 8 s s o o & &
auTuiid bbb LAW [\
. o « o o o o o .
N AW

o
[co BN |

CHAPTER

(%]

OVERLAY LOADING METHODS

AUTOLOAD
.1 Autoload Indicator
.2 Path Loading
.3
.4

Autoload Vectors
Autoloadable Data Segments
MANUAL LOAD
.1 MACRO-11 Manual Load Calling Sequence
.2 FORTRAN Manual Load Calling Sequence
ERROR HANDLING
GLOBAL CROSS-REFERENCE OF AN OVERLAID TASK

vttt n

BWNNN R

CHAPTER

(o))

SWITCHES AND OPTIONS

SWITCHES '
/AC[:n] -- Ancillary Control Processor
/AL —-- Allocate Checkpoint Space
/CC —- Concatenated Object Modules
/CM -- Compatibility Mode Overlay Structure
/CP -- Checkpointable
/CR —-- Cross-Reference
/DA -- Debugging Aid
/DL —-- Default Library
/EA —-- Extended Arithmetic Element
" /FP -- Floating Point
/FU -=- Full Search
/HD == Header

[e)W) WerWe)Wer We)Wer o)W ey We) By We Ne]

ey el el el ek

HHRHRVONOOUMIdWNDHE

NE=EO

iv

[€; B

[L L L L R L
NoaouibhwWwNhERE H oW
N

[T T I T I | |
HREHEOVoNOYWU - = O w

AT O o3} oot n

CONTENTS

Page
6.1.13 /LB -- Library File 6-18
6.1.14 /MA -- Map Contents of File o 6-20
6.1.15 /MM -- Memory Management 6-21
6.1.16 /MP —-- Overlay Description 6-22
6.1.17 /MU -- Multiuser 6-23
6.1.18 /PI -- Position Independent 6-24
6.1.19 /PM -- Postmortem Dump 6-25
6.1.20 /PR[:n] =-- Privileged 6=-26
6.1.21 /RO —-- Resident Overlay 6-27
6.1.22 /SE =-- Send 6-28
6.1.23 /SH == Short Map 6-29
6.1.24 /SL, -- Slave 6-36
6.1.25 /SP == Spool Map Output 6-37
6.1.26 /SQ =-- Sequential 6-38
6.1.27 /88 —-- Selective Search 6-39
6.1.28 /TR == Traceable 6-42
6.1.29 /WI -- Wide Listing Format 6-43
6.1.30 /XT[:n] -- Exit on Diagnostic 6-44
6.2 OPTIONS 6-45
6.2.1 ABORT -- Abort the Task-Build 6-48
6.2.2 ABSPAT -- Absolute Patch 6-49
6.2.3 ACTFIL =-- Number of Active Files 6-50
6.2.4 ASG -~ Device Assignment 6-51
6.2.5 CMPRT —--~ Completion Routine 6-52
6.2.6 COMMON or LIBR =- System-Owned Resident
Common or System-Owned Resident Library 6-53
6.2.7 EXTSCT -- Program Section Extension 6-54
6.2.8 EXTTSK -- Extend Task Memory 6-55
6.2.9 FMTBUF -- Format Buffer Size 6-56
6.2.10 GBLDEF -~ Global Symbol Definition 6-57
6.2.11 GBLPAT -- Global Relative Patch 6-58
6.2.12 GBLREF -- Global Symbol Reference 6-59
6.2.13 GBLXCL -- Exclude Global Symbols 6-60
6.2.14 LIBR -- System-Owned Library 6-61
6.2.15 MAXBUF -- Maximum Record Buffer Size 6-62
6.2.16 ODTV -- ODT SST Vector 6-63
6.2.17 PAR -- Partition 6-64
6.2.18 PRI -- Priority 6-65
6.2.19 RESCOM or RESLIB -- Resident Common or
Resident Library 6-66
6.2.20 RESLIB -- Resident Library 6-68
6.2.21 RESSUP -- Resident Supervisor-Mode Library 6-69
6.2.22 ROPAR -- Read-Only Partition =-- RSX-11M-PLUS
Only 6-71
6.2.23 STACK -- Stack Size 6-72
6.2.24 SUPLIB =-- Supervisor-Mode Library =-
RSX~11M-PLUS Only 6-73
6.2.25 TASK -- Task Name 6-74
6.2.26 TSKV -- Task SST Vector 6-75
6.2.27 UIC —-- User Identification Code 6-76
6.2.28 UNITS —-- Logical Unit Usage 6=77
6.2.29 VSECT -- virtual Program Section 6-78
6.2.30 WNDWS -- Number of Address Windows 6-79
CHAPTER 7 HOST AND TARGET SYSTEMS 7-1
7.1 INTRODUCTION 7-1
7.2 EXAMPLE: TRANSFERRING A TASK FROM A HOST TO
A TARGET SYSTEM 7-2

CONTENTS

Page
CHAPTER 8 MEMORY DUMPS 8-1
8.1 POSTMORTEM DUMPS 8-1
8.2 SNAPSHOT DUMP 8-5
8.2.1 Format of the SNPBK$ Macro 8-6
8.2.2 Format of the SNAP$ Macro 8-7
8.2.3 Example of a Snapshot Dump 8-8
APPENDIX A TASK BUILDER INPUT DATA FORMATS A-1
A.l DECLARE GLOBAL SYMBOL DIRECTORY RECORD A-2
A.l.1 Module Name (Type 0) A-4
A.l.2 Control Section Name (Type 1) A-5
A.l.3 Internal Symbol Name (Type 2) A-5
A.l.4 Transfer Address (Type 3) A-6
A.l.5 Global Symbol Name (Type 4) A-6
A.l1.6 Program Section Name (Type 5) A-7
A.l.7 Program Version Identification (Type 6) A-10
A.l.8 Mapped Array Declaration (Type 7) A-10
A.l.9 Completion Routine Definition (Type 10) A-11
A.2 END OF GLOBAL SYMBOL DIRECTORY RECORD A-11
A.3 TEXT INFORMATION RECORD A-11
A.4 RELOCATION DIRECTORY RECORD A-12
A.4.1 Internal Relocation (Type 1) A-14
A.4.2 Global Relocation (Type 2) A-15
A.4.3 Internal Displaced Relocation (Type 3) A-15
A.4.4 Global Displaced Relocation (Type 4) A-16
A.4.5 Global Additive Relocation (Type 5) A-16
A.4.6 Global Additive Displaced Relocation
(Type 6) A-17
A.4.7 Location Counter Definition (Type 7) A-18
A.4.8 Location Counter Modification (Type 10) A-18
A.4.9 Program Limits (Type 11) A-18
A.4.10 Program Section Relocation (Type 12) A-19
A.4.11 Program Section Displaced Relocation
(Type 14) A-19
A.4.12 Program Section Additive Relocation
(Type 15) A-20
A.4.13 Program Section Additive Displaced
Relocation (Type 16) A-21
A.4.14 Complex Relocation (Type 17) A-22
A.4.15 Resident Library Relocation (Type 20) A-23
A.5 INTERNAL SYMBOL DIRECTORY RECORD A-24
A.6 END OF MODULE RECORD A-24
APPENDIX B DETAILED TASK IMAGE FILE STRUCTURE B-1
B.1l LABEL BLOCK GROUP B-1
B.2 CHECKPOINT AREA B~-7
B.3 HEADER B-7
B.3.1 Low-Memory Context B-8
B.3.2 Logical Unit Table Entry B-12
B.4 TASK IMAGE B-12
B.4.1 Autoload Vectors B-14
B.4.2 Segment Descriptor B-14
B.4.3 Window Descriptor B-16
B.4.4 Region Descriptor B-16
B.4.5 Supervisor-Mode Vectors (RSX-11M-PLUS
Only) B-17

vi

APPENDIX

APPENDIX

APPENDIX
APPENDIX

INDEX

FIGURE

WwwhnoNNN !}JNNNNNM

C

D

LU I N I |
HFEPROYONOLUL & (JJNI—‘:H\OQ NoorhkWwin e
(=]

o

L2 |
=

1
=
AU W

WWWWLWWWWLWWWWW
1

3-17
3-18
3-19
3-20
3=-21

3=-22

CONTENTS

RESERVED SYMBOLS
IMPROVING TASK BUILDER PERFORMANCE

EVALUATING AND IMPROVING TASK BUILDER
THROUGHPUT :
Overlay Latency
Table Storage
Input File Processing
Summary
MODIFYING COMMAND SWITCH DEFAULTS
THE SLOW TASK BUILDER

THE FAST TASK BUILDER

ERROR MESSAGES

FIGURES

Relocatable Object Modules

Modules Linked for Mapped and Unmapped Systems

Allocation of Task Memory
Unmapped Memory

Layout for Unmapped System

Task Relocation in a Mapped System

Memory Management Unit's Division of Virtual

Address Space

Mapping for 4K Word and 6K Word Tasks
Disk Image

Memory Image

Window Block 0

Typical Resident Common

Typical Resident Library

Specifying APRs for a Position-Independent

Shared Region
Mapping for an Absolute Shared Region

Windows for Shared Region and Referencing Task

Common Area Source File in MACRO-11
Task Builder Map for MACCOM.TSK
Allocation Diagram for MACCOM.TSK
MACRO-11 Source Listing for MCOM1
MACRO-11 Source Listing for MCOM2

11

NN
|

1 1
=

| I I I | |
HFrRrouJdO0n NNNHERFRERFR - POWOUNWN
S WN

Wwwwww (.I\J(A)I\JNNNN

Assigning Symbolic References Within a Common 3-17

Task Builder Map for MCOM1l.TSK
Assembly Listing for TTCOM
Task Builder Map for TTCOM
Assembly Listing for TEST
Memory Allocation Map for TEST

Source Listing for Resident Library LIB.MAC

Task Builder Map for LIB.TSK
Source Listing for MAIN.MAC
Task Builder Map for MAIN.TSK

Allocation of Virtual Address Space for

MAIN.TSK

Typical Mapping for Supervisor-Mode Library

vii

FIGURE

i O N
1 1 1
ol e o © ~ abdWwWwN

s
|

[l =

[N
1]
-
wN

4-14

NN mu;a
|
NN RS WD -

CONTENTS

FIGURES (Cont.)

Task Mapping while Running in Supervisor Mode
Source Listing for SUPLIB.MAC

Task Builder Map for SUPLIB.TSK

Source Listing for TSUP.MAC

Task Builder Map for TSUP.TSK

Allocation of Program Sections in a Multiuser
Task

Windows for a Multiuser Task

Source Listing for ROTASK.MAC

Task Builder Map for ROTASK.TSK

Source Listing for DYNAMIC.MAC

Task Builder Map for DYNAMIC.TSK

VSECT Option Usage

Source Listing for VSECT.FTN

Task Builder Map for VSECT.TSK

Mapping for /PR:4 and /PR:5

Source Code for PRIVEX

Task Builder Map for PRIVEX

Allocation of Virtual Address Space for PRIVEX
TK1 Bulilt as a Single-Segment Task

TK1 Built as a Multisegment Task

TK1 Built with Additional Overlay Defined

TK2 Built as a Single-Segment Task

TK2 Built as a Memory-Resident Overlay
Relationship Between Virtual Address Space

and Physical Memory -- Time 1 and Time 2
Relationship Between Virtual Address Space
and Physical Memory —- Time 3 and Time 4

Overlay Tree for TK1l

Resolution of Global Symbols in a Multiseg-
ment Task

Resolution of Program Sections for TK1
Typical Overlay Root Segment Structure
Tree and Virtual Address Space Diagram
Overlay Tree for Modified TK1

virtual Address Space and Physical Memory
for Modified TK1

Overlay Co-Tree for Modified TK1

Virtual Address Space and Physical Memory
for TK1l as a Co-Tree

Overlay Tree of Virtual Address Space for
OVR.TSK

Map File for OVR.TSK

Allocation of Virtual Address Space for
OVR.TSK

Map File for RESOVR.TSK

Allocation of Virtual Address Space for
RESOVR.TSK

Details of Segment C of TKl

Path-Loading Example

Autoload Vector Format

Sample Overlaid Cross-Reference Listing
Cross—-Reference Listing for OVR.TSK
Memory Allocation File (Map) Example
Task Builder Map for LIB.TSK

Task Builder Map for MAIN.TSK

viii

FIGURE

1 | 11
W

w&*w:vﬁiw © ©0m®

TEYA
VoOodaaUTIdWN - (5,]

B-3

wwwuluwmww
HFHYLVONO U
o

CONTENTS

FIGURES (Cont.)

Sample Postmortem Dump (Truncated)
Snapshot Dump Control Block Format

Sample Program that Calls for Snapshot Dumps
Sample Snapshot Dump (in Word Octal and
Radix-50)

Sample Snapshot Dump (in Byte Octal and
ASCII)

General Object Module Format

Global Symbol Directory Record Format
Module Name Entry Format

Control Section Name Entry Format

Internal Symbol Name Entry Format

Transfer Address Entry Format

Global Symbol Name Entry Format

Program Section Name Entry Format

Program Version Identification Entry Format
Mapped Array Declaration Entry Format
Completion Routine Entry Format

End of Global Symbol Directory Record Format
Text Information Record Format

Relocation Directory Record Format
Internal Relocation Entry Format

Global Relocation Entry Format

Internal Displaced Relocation Entry Format
Global Displaced Relocation Entry Format
Global Additive Relocation Entry Format
Global Additive Displaced Relocation Entry
Format

Location Counter Definition Entry Format
Location Counter Modification Entry Format
Program Limits Entry Format

Program Section Relocation Entry Format
Program Section Displaced Relocation Entry
Format

Program Section Additive Relocation Entry
Format

Program Section Additive Displaced Relocation
Entry Format

Complex Relocation Entry Format

Resident Library Relocation Entry Format
Internal Symbol Directory Record Format
End-of-Module Record Format

Task Image on Disk

Label Block 0 ~- Task and Resident Library
Data

Label Blocks 1 and 2 -- Table of LUN
Assignments

Label Block 3 =-- Segment Load List

Task Header, Fixed Part

Task Header, Variable Part
Vector Extension Area Format
Logical Unit Table Entry
Task-Resident Overlay Data Base
Autoload Vector Entry

Segment Descriptor

ix

Page

8-6
8-9

8-10

8-11
A-3
A-4
A-4
A-5
A-5
A-6
A-6
A-8
A-10
A-10
A-11
A-11
A-12
A-14
A-15
A-15
A-16
A-16
A-17

A-17
A-18
A-18
A-19
A-19

A-20
A-21

A-21
A-23
A-23
A-24
A-24

B-5

B-7
B-7
B~9
B-10
B-11
B-12
B-13
B-14
B-14

CONTENTS

FIGURES (Cont.)

Page
FIGURE B-12 Window Descriptor B-16
B-13 Region Descriptor B-17
B-14 Supervisor-Mode Vector B-17
TABLES
TABLE 2-1 Program Section Attributes 2-4
2=-2 Program Sections for Modules IN1l, INZ,
and IN3 2-6
2-3 Individual Program Section Allocations 2-6
2-4 Resolution of Global Symbols for IN1l, IN2,
and IN3 2-7
6-1 Task Builder Switches 6-2
6-2 Input Files for SEL.TSK 6-39
6-3 Task Builder Options 6-46
A-1 Symbol Declaration Flag Byte -- Bit
Assignments A-7
A-2 Program Section Name Flag Byte —-- Bit
Assignments A-8
A-3 Relocation Directory Command Byte =-- Bit
Assignments A-13
B-1 Task and Resident Library Data B-3
B-~2 Resident Library/Common Name Block Data B-6
D-1 Task File Switch Defaults D-9
D-2 Map File Switch Defaults D-10
D-3 Symbol Table File Switch Defaults D-10
D-4 Input File Switch Defaults D-11

PREFACE

MANUAL OBJECTIVES

This manual describes the concepts and capabilities of the
RSX--11M/M-PLUS Task Builder.

Working examples are used throughout this manual to introduce and
describe features of the Task Builder. Because RSX-11lM systems
support a large number of programming languages, it is not practical
to illustrate the Task Builder features in all of the languages
supported. 1Instead, most of the examples in the main text of this
manual are written in MACRO-11.

INTENDED AUDIENCE

Before reading this manual, you should be familiar with the
fundamental concepts of your operating system (RSX-11M or
RSX-11M-PLUS) and with the operating procedures described 1in the
RSX-11M/M-PLUS MCR Operations Manual. In addition, you should be
familiar with the programming concepts described in the RSX-11M/M-PLUS
Guide to Program Development.

STRUCTURE OF THIS DOCUMENT

This manual has eight chapters., Their contents are summarized as
follows:

® Chapter 1 describes the Task Builder command sequences that
you use to interact with the Task Builder.

e Chapter 2 describes the basic Task Builder functions,
including the Task Builder's allocation of virtual address
space, the resolution of global symbols, and privileged tasks.

e Chapter 3 describes some typical Task Builder features
including tasks that access shared regions and device commons,
multiuser tasks, tasks that create dynamic regions, virtual
program sections and privileged tasks.

e Chapter 4 describes the Task Builder's overlay capability and
the language you must use to define an overlay structure.

e Chapter 5 describes the two methods available to you to load
overlay segments.

e Chapter 6 lists the Task Builder switches and options in two
sections, Both switches and options are listed in
alphabetical order in their respective sections, and are
printed on colored stock to help you find them quickly.

e Chapter 7 describes the considerations for building a task on
one system to run on a system with a different hardware
configuration.

e Chapter 8 describes two memory dumps -- Postmortem and
Snapshot.
This manual also contains six appendixes. Their contents are

summarized as follows:

e Appendix A contains a detailed description of the Task Builder
input data structures.

e Appendix B contains a detailed description of the task image
file structure.

e Appendix C contains a list of the symbols and program section
names reserved for Task Builder use.

e Appendix D contains information on improving Task Builder:
performance.

e Appendix E describes the fast Task Builder.

e Appendix F contains the Task Builder error messages. These
are also printed on colored stock for quick reference.

A Task Builder glossary follows the appendixes.

ASSOCIATED DOCUMENTS

Other manuals closely allied with this document are described in the
documentation directory for your operating system. This directory
defines the intended audience of each manual in the documentation set
and provides a brief synopsis of each manual's contents.

CONVENTIONS USED IN THIS DOCUMENT

In this manual, horizontal ellipses (...) indicate that additional,

optional arguments in a statement format have been omitted. For
example:

input-spec,...

This means that one or more input-spec items, separated by commas, can
be specified.

Vertical ellipses means that additional lines of code or 1lines 1in a
Task Builder map file are not pertinent to an example, have been
omitted. For example:

TKB>input-line

This means that one or more of the 1indicated TKB items have been
omitted.

xii

Finally, in the examples of Task Builder command sequences, the
portion of the command sequence that you type is printed in red. The
Task Builder's responses and prompts are printed in black.

xiii

SUMMARY OF TECHNICAL CHANGES

This manual documents RSX-11M-PLUS Task Builder enhancements. The
following RSX-11M-PLUS features have been added to the Task Builder.

The MU switch has been added to provide for the building of multiuser
tasks. Multiuser tasks allow more than one user to share the
read-only portions of a single task.

The following options have also been added:

e ROPAR (read-only partition) specifies the partition in which
the read-only portion of a multiuser task is to reside.

e GBLXCL (global exclusion) specifies the symbols that are to be
excluded from the symbol definition file of a resident
supervisor—-mode library.

e RESSUP (user-owned resident supervisor-mode library) specifies
that the task expects to access a resident supervisor-mode
library.

e SUPLIB (system-owned resident supervisor-mode library)
specifies that the task expects to access a system-owned
resident supervisor-mode library.

e CMPRT (completion routine) identifies the completion routine
in a supervisor-mode library.

These new features are described in Chapter 6. Chapter 3 contains
examples that illustrate them.

While you can specify these features in the Task Builder command

sequence on both RSX-11M V3.2 and RSX-11M~PLUS systems, the resulting
tasks can be installed and run only on RSX-11M-PLUS systems.

XV

CHAPTER 1

INTRODUCTION AND COMMAND SPECIFICATIONS

The basic steps in the development of a program are as follows:

1. You write one or more routines in an RSX-11M/M-PLUS supported
source language and enter each routine as an ASCII text file,
through an editor.

2. You submit each text file to the appropriate language
translator (an assembler or compiler), which converts it to a
relocatable object module.

3. You specify the object modules as input to the Task Builder,
which combines the object modules into a single task image
output file.

4. You install and run the task.

If you find errors in the task when you run it, you make corrections
to the text file, using the editor, and then repeat steps 2 through 4.

The Task Builder's main function 1is to convert relocatable object
modules (.OBJ files) into a single task image (.TSK file) that you can
install and run on a RSX-11lM or RSX-11M-PLUS system. The task is the
fundamental executable unit in both systems.

If your program consists of a single object module, the use of the
Task Builder 1is appropriately simple. You specify as input only the
name of the file containing the object module produced £from the
translation of the program, and specify as output the task image file.

Typically, however, programs consist of more than a single object
module. In this case, you name each of the object module files as
input. The Task Builder links the object modules, resolves references
between them, resolves references to the system library, and produces
a single task image ready to e irstalled and executed.

The Task Builder makes a set of assumptions (defaults) about the task
image based on typical wusage and storage requirements. You can
override these assumptions by including switches and options in the
task-building terminal sequence. Thus, you can build a task that is
tailored to its own input/output and storage requirements.

The Task Builder also produces (upon request) a memory allocation
(map) file that contains information describing the allocation of
address space, the modules that make up the task image, and the value
of all global symbols. 1In addition, you can request that a list of
global symbols, accompanied by the name of each referencing module, be
appended to the file (global cross reference).

INTRODUCTION AND COMMAND SPECIFICATIONS

The following example shows a simple sequence for building a task:

>MAC PROG=PROG
>TKB PROG=PROG
>INS PROG
>RUN PROG

The first command (MAC) causes the MACRO-11 assembler to translate the
source code of the file PROG.MAC intoc a relocatable object module in
the file PROG.OBJ. The second command (TKB) causes the Task Builder
to process the file PROG.OBJ to produce the task image file PROG.TSK.
The third command (INS) causes the INSTALL processor to add the task
to the Executive's directory of executable tasks (System Task
Directory). The fourth command (RUN) causes the task to execute.

The example just given includes the command
>TKB PROG=PROG

This command illustrates the simplest use of the Task Builder. It

gives the name of a single file as output and the name of a single
file as input.

This chapter describes basic Task Builder command forms and sequences.

1.1 TASK COMMAND LINE

The task command 1line contains the output file specifications,
followed by the input file specifications; they are separated by an
equal sign (=). You can specify up to three output files and any
number of input files.

You must give the output files in a specific order: the first file
you name is the image (.TSK) file, the second is the memory allocation
(.MAP) file, and the third is the symbol definition (.STB) file. The
map file 1lists information about the size and location of components
within the task. The symbol definition file contains the global
symbol definitions in the task and their wvirtual or relocatable
addresses in a format suitable for reprocessing by the Task Builder.
You specify this file when you are building a resident library or
common. (Resident libraries and commons are described in Chapter 3.)
The Task Builder combines the input files to create a single task
image that can be installed and executed.

The task command line has the form:
task-image-file,map-file,symbol-definition-file=input-file,...

You can omit any output file by replacing the file specification with

the delimiting comma that would normally follow it. The following

commands illustrate the ways the Task Builder interprets the output

file names,

Command Output Files

>TKB IMG1,IMGl,IMGl=INl1 The task image file is IMGl.TSK, the memory
allocation (map) £file 1is IMGl.MAP, and the
symbol definition file is IMG1.STB.

>TKB IMG1l=INl The task image file is IMG1l.TSK.

>TKB ,IMG1l=IN1 The map file is IMGl.MAP.

INTRODUCTION AND COMMAND SPECIFICATIONS

Command ‘ Output Files
>TKB ,,IMGl=IN1 The symbol definition file is IMG1.STB.
>TKB IMGl,,IMG1l=INl The task image file 1is IMG1.TSK and the
symbol definition file is IMGl.STB.
>TKB =IN1 This is a diagnostic run with no output
files.

1.2 MULTIPLE LINE INPUT

Although you can specify a maximum of three output £files, you can
specify any number of input files. When you specify several input
files, a more flexible format is sometimes necessary -- one that
consists of several 1lines. This multiline format is also necessary
when you want to include options in your command sequence (see Section
103) »

If you type TKB, the Monitor Console Routine (MCR) activates the Task
Builder. The Task Builder then prompts for input until it receives a
line consisting only of the terminating slash characters (//) For
example:

>TKB
TKB>IMG1,IMG1=INl
TKB>INZ2,IN3
TKB>//

This sequence produces the same result as the single line command:
>TKB IMG1,IMG1=IN1,IN2,IN3

Both command sequences produce the task image file IMGl1.TSK and the
map file IMGl1.MAP from the input files IN1.0BJ., IN2.0BJ, and IN3.0BJ.

You must specify the output file specifications and the equal sign (=)
on the first command line. You can begin or continue input file
specifications on subsequent lines.

When you type the terminating slash characters (//), the Task Builder
stops accepting input, builds the task, and returns control to MCR.

1.3 OPTIONS

You use options to specify the characteristics of the task you are
building. To include options in a task, you must use the multiline
format. If you type a single slash (/) following the input file
specification, the Task Builder requests option information by
displaying ENTER OPTIONS: and prompting for input. For example:

>TKB
TKB>IMGl,IMG1l=IN1
TKB>IN2,IN3

TKB>/

ENTER OPTIONS:
TKB>PRI=100
TKB>COMMON=JRNAL : RO
TKB>//

INTRODUCTION AND COMMAND SPECIFICATIONS

In this sequence there are two options: PRI=100 and COMMON=JRNAL:RO.
The two slashes end option input, initiate the task-build, and return
control to MCR upon completion.

NOTE

When you are building an overlaid task,
there are exceptions to the use of the
single slash (/). Overlaid tasks are
described in Chapter 4.

The RSX-11M/M-PLUS Task Builder provides numerous options. These are
described in Chapter 6. The general form of an option is a keyword
followed by an equal sign (=) and an argument list., The arguments in
the list are separated from one another by colons (:). 1In the example
above, the first option consists of the keyword PRI and a single
argument indicating that the task is to be assigned the priority 100.
The second option consists of the keyword COMMON and an argument list,
JRNAL:RO, 1indicating that the task accesses a resident common region
named JRNAL and that the access is read-only. You can specify more
than one option on a 1line, by wusing an exclamation point (!) to
separate the options. For example:

TKB>PRI=100!COMMON=JRNAL :RO
This command is equivalent to the two lines:

TKB>PRI=100
TKB>COMMON=JRNAL :RO

Some options accept more than one set of argument lists. You wuse a
comma (,) to separate the argument lists., For example:

TKB>COMMON=JRNAL :RO,RFIL:RW
In this command, the first argument list indicates that the task has
requested read-only access to the resident common JRNAL. The second
argument list indicates that the task has requested read/write access
to the resident common RFIL,
The following three sequences are equivalent:

TKB>COMMON=JRNAL :RO,RFIL:RW

TKB>COMMON=JRNAL : RO!COMMON=RFIL:RW

TKB>COMMON=JRNAL :RO
TKB>COMMON=RFIL:RW

1.4 MULTIPLE TASK SPECIFICATIONS

If you intend to build more than one task, you can use the single
slash (/) following option input. This directs the Task Builder to

stop accepting input, build the task, and request information for the
next task-build.

INTRODUCTION AND COMMAND SPECIFICATIONS

For example:

>TKB

TKB>IMG1l=IN1
TKB>IN2,IN3

TKB>/

ENTER OPTIONS:
TKB>PRI=100
TKB>COMMON=JRNAL :RO
TKB>/

TKB>IMG2=SUB1
TKB>//

The Task Builder accepts the output and input file specifications and
the option input; it then stops accepting input upon encountering the
single slash (/) during option input, The Task Builder builds
IMGl.TSK and then returns to accept more input for building IMG2.TSK.

1.5 INDIRECT COMMAND FILES

You can enter commands to the Task Builder directly from the keyboard,
or indirectly through the indirect command file facility. To use the
indirect command file facility, you prepare a file that contains ° the
Task Builder commands you want to be executed. Later, after you
invoke the Task Builder, you type an at sign (@) followed by the name
of the indirect command file.

For example, suppose you create a file called AFIL.CMD containing the
following:

IMG1,IMG1=IN1
IN2,IN3

/

PRI=100
COMMON=JRNAL : RO
//

Later, you can type:

>TKB
TKB>@AFIL
TKB>

or simply
>TKB @AFIL

When the Task Builder encounters the at sign (@), it directs its
search for commands to the file named AFIL.CMD. The example above is
equivalent to the keyboard sequence:

>TKB
TKB>IMG1l,IMG1=IN1
TKB>IN2,IN3

TKB>/

ENTER OPTIONS:
TKB>PRI=100
TKB>COMMON=JRNAL : RO
TKB>//

When the Task Builder encounters two terminating slash characters (//)
in the indirect command £file, it terminates indirect command file
processing, builds the task, and exits to MCR.

INTRODUCTION AND COMMAND SPECIFICATIONS

When the Task Builder encounters a single slash (/) in an indirect
command file and the slash is the last character in the file, the Task
Builder directs its search for commands to the terminal. For example,
suppose the file AFIL.CMD in the last example is changed to read:

IMG1,IMG1=INl
IN2,IN3
/

Later, you can type:

>TKB
TKB>@AFIL

In this case, the Task Builder goes to the terminal and prompts:

ENTER OPTIONS:
TKB>

From this point, you input options to the Task Builder directly from
the keyboard. If you then conclude option input from the keyboard
with double slashes (//), the Task Builder suspends command
processing, as described above, and exits to MCR following the
task-build. If you conclude option input with a single slash (/), the
Task Builder prompts for new command input following the task-build of
IMGl1.TSK, as follows:

TKB>

Using the single slash (/) following option input in indirect command
files 1is a convenient way to return control to your terminal between
successive task-builds. For example, suppose you create two indirect
command files. The first, AFIL.CMD, contains:

IMG1l,IMG1=INl
IN2,IN3
/

PRI=100
COMMON=JRNAL
/

The second, AFIL1.CMD, contains:

IMG2,IMG2=IN4
IN5,IN6

/
PRI=100
//

Then, the terminal sequence to build these two tasks is:

>TKB
TKB>@AFIL
TKB>@AFIL1
>

NOTE

For interaction with a Task Builder
indirect command file as described
above, you must use the multiline format
when you specify the indirect command
file.

INTRODUCTION AND COMMAND SPECIFICATIONS

The Task Builder permits two levels of indirection in file references.
That 1is, the indirect command file referenced in a terminal sequence
can contain a reference to another indirect command file, For
example, if the file BFIL.CMD contains all the standard options that
are used by a particular group of users at an installation, you can

modify AFIL to include an indirect command file reference to BFIL.CMD
as a separate line in the option sequence.

The contents of AFIL.CMD would then be:

IMG1,IMG1=IN1
IN2,IN3

/

PRI=100
COMMON=JRNAL : RO
@BFIL

//

To build these files, you type:

>TKB
TKB> @AFIL

Suppose the contents of BFIL.CMD are:

STACK=100
UNITS=51ASG=DT1:5

The terminal equivalent of building these files is:

>TKB
TKB>IMG1l,IMG1l=INl
TKB>INZ2,IN3

TKB>/

ENTER OPTIONS:
TKB>PRI=100
TKB>COMMON==JRNAL :RO
TKB>STACK=100
TKB>UNITS=51ASG=DT1:5
TKB>//

The indirect command file reference must appear on a separate line.
For example, 1if you modify AFIL.CMD by adding the @BFIL reference on
the same line as the COMMON=JRNAL:RO option, the substitution would
not take place and the Task Builder would report an error. ’

1.6 COMMENTS IN LINES

You can include comments at any point in the command sequence, except
in lines that contain file specifications. You begin a comment with a
semicolon (;) and terminate it with a carriage return. All text
between these delimiters is a comment.

For example, in the indirect command file, AFIL.CMD, described in

Section 1.5, vyou can add comments to provide more information about
the purpose and the status of the task.

INTRODUCTION AND COMMAND SPECIFICATIONS

TASK 33A

DATA FROM GROUP E-46 WEEKLY

N No we N e

MG1,IMG1l=

PROCESSING ROUTINES

[)

N1

STATISTICAL TABLES
N2

ADDITIONAL CONTROLS
N3

RI=100

Q)~e TN~ ~o we i~ e we

OMMON=JRNAL:RO ; RATE TABLES
TASK STILL IN DEVELOPMENT
/

\~. ~e “o

1.7 FILE SPECIFICATIONS

The Task Builder adheres to the standard RSX-11M/M-PLUS conventions
for file specifications, For any file, you can specify the device,
the User File Directory (UFD), the file name, the file type, the file
version number, and any number of switches,

The file specification has the form:

device: [group,member] filename.type;version/swl/sw2.../swn

When you specify files by name only the Task Builder applies the
default switch settings for device, group, member, type, version. For
example:

>TKB
TKB>IMG1l,IMG1=IN1
TKB>INZ2,IN3
TKB>//

If the current User Identification Code (UIC) of the terminal that the

Task Builder 1is running on 1is [200,200], the task 1image file
specification of the example is assumed to be:

SY0:[200,200] IMG1.TSK;1

That is, the Task Builder creates the task image file on the system
device (SY0:) under UFD [200,200]. The default type for a task image
file is .TSK and if the name IMGl.TSK is new, the version number is 1.
The default settings for all the task image switches also apply.
Switch defaults are described in detail in Chapter 6.

INTRODUCTION AND COMMAND SPECIFICATIONS

For example:

>TKB

TKB>[20,23] IMG1/CP/DA,IMG1/CR=IN1
TKB>IN2;3,IN3

TKB>//

This sequence of commands instructs the Task Builder to create a task
image file IMG1.TSK;l1 and a memory allocation (map) file MP1l.MAP;l
(actually, it produces IMGl.TSK and IMGl.MAP with versions one higher
than the current versions) under UFD [20,23] on the device SY:. The
task image is checkpointable and contains the standard debugging aid
(ODT) . The Task Builder outputs the map to the line printer with a
global cross-reference listing appended to it. The Task Builder
builds the task from the latest versions of IN1.0BJ, IN3.0BJ, and the
specific version of IN2.0BJ. The input files are all found on the
system device. ‘

For some files, a device specification is sufficient. In the example
above, the map file 1is fully specified by the device LP:. The map
listing is produced on the line printer, but is not retained as a
file.

This example also used switches /CP, /CR, and /DA. The code, syntax,
and meaning for each switch are given in Chapter 6.

1.8 SUMMARY OF SYNTAX RULES

The syntax rules for issuing commands to the Task Builder are as
follows:

1. A task-build command can take any one of four forms. The
first form is a single line:

>TKB task-command-line

The second form has additional lines for input file names:

>TKB
TKB>task-command-line
TKB>input-line

TKB>terminating-symbol
The third form allows you to specify options:

>TKB
TKB>task-command-line
TKB>/

ENTER OPTIONS:
TKB>option-line

TKB>terminating-symbol

INTRODUCTION AND COMMAND SPECIFICATIONS

The fourth form has both input lines and option lines:

>TKB
TKB>task-command-line
TKB>input-line

TKB>/
ENTER OPTIONS:
TKB>option-line

TKB>terminating-symbol
The terminating symbol can be:
/ if you intend to build more than one task

// 1if you want the Task Builder to return control
MCR

2, A task command line has one of the three forms:
output-file-list=input-file,...
=input-file,...

@indirect-command-£file

The third form is an indirect command file specification
described in Section 1.5.

3. An ouput file list has one of the three forms:
task-image-file,map-file,symbol-definition-file
task-image-file,map-file
task-image—-file

The task-image-file is the file specification for the
image file; map-file 1is the file specification for

memory allocation (map) file; and symbol-definition-file
the file specification for the symbol definition file.

to

as

task
the
is
Any

of the specfications can be omitted, so that, for example,

the following form is permitted:
task—-image-file, ,symbol-definition-file
4. An input line has one of two forms:
input-file,...
@indirect-command-file

Both input-file and indirect-command-file -are
specifications.

file

INTRODUCTION AND COMMAND SPECIFICATIONS

An option line has one of two forms:
optionl...
@indirect-command-file
The indirect-command-file is a file specification.
An option has the form:
keyword=argument~list,...
The argument-list is:
arg:...
The syntax for each option is given in Chapter 6.

A file specification conforms to standard RSX-1M/M-PLUS
comventions. It has the form:

device: [group,member] filename.type;version/swl/sw2.../swn

device: The name of the physical device on which the volume
containing the desired file is mounted. The name
consists of two ASCII characters followed by an
optional 1- or 2-digit octal unit number and a
colon; for example, LP: or DTl:.

group The group number, in the range of 1 through 377(8).
member The member number, in the range 1 through 377(8).

filename The name of the desired file. The file name can
contain up to 9 alphanumeric characters.

type The 3-character file type idectification. Files
having the same name but a different function are
distinguished from one another by the file type;
for example, CALC.TSK and CALC.OBJ.

version The version number, in octal, of the file. Various
versions of the same file are distinguished from one
another by this number; for example, CALC.OBJ;1 and
CALC.OBJ; 2.

All components of a file specification are optional. The
combination of the group number and the member number is the
User File Directory (UFD) that contains the file name.

CHAPTER 2

TASK BUILDER FUNCTIONS

The process of building a task involves three distinct Task Builder
functions. First, the Task Builder 1is a linker. It collects and
links the relocatable object modules that you specify to it into a

single task image and resolves references to global symbols across the
module boundaries.

Second, the Task Builder assigns addresses to the task image. On
mapped systems, the Task Builder assigns addresses for a task
beginning at zero. The Executive then relocates the addresses at
runtime. On unmapped systems, the Task Builder assighs addresses for
a task beginning at the base address of the partition in which the
task is to run. The addresses of tasks that run on unmapped systems
are not relocated at runtime.

NOTE

Unless otherwise indicated, references
to tasks that run on mapped systems
assume that the tasks are nonprivileged
and residing within system—-controlled
partitions.

Third, the Task Builder builds data structures 1into the task image

that are required by the INSTALL processor to install the task and by
the Executive to run it.

This chapter describes the three Task Builder functions in detail.

2.1 LINKING OBJECT MODULES

When the language translators convert symbolic source code within a
module to object code, they assign provisional 16-bit addresses to the
code, A single assembly or compilation produces a single object
module, In their simplest form, each module begins at 0 and extends
upward to the highest address in the module. Three object modules

produced at separate times might have the address limits shown in
Figure 2-1.

TASK BUILDER FUNCTIONS

1000

750—

500

MODULE #1 MODULE #3

MODULE #2

|

RELOCATABLE 0— RELOCATABLE O RELOCATABLE 0O-

Figure 2-1 Relocatable Object Modules

If these modules represent the separate modules of a single program,
the Task Builder 1links them together and modifies the provisional
addresses to one of the following:

e A single sequence of addresses beginning at 0 and extending
upward to the sum of all of the addresses of each module
(mapped system)

e A single sequence of addresses beginning at a base address
assigned at task build time and extending upward to the sum of
all the addresses of each module (unmapped system)

For example, Figure 2-2A shows the three modules linked for a mapped

system, and Figure 2-2B shows the modules linked for an unmapped
system.

2.1.1 Allocating Program Sections
The language translators process source code and the Task Builder
links object modules within the context of program sections. A
program section is a block of code or data that consists of three
elements:

e a name

e a set of attributes

e a length

TASK BUILDER FUNCTIONS

2250 —

— 3250—

)
MODULE #3 MODULE #3
MODULE #2 MODULE #2
MODULE #1 MODULE #1

OJ- BASE1OOOJ—
MAPPED UNMAPPED

SYSTEM SYSTEM
2-2A 2-2B

Figure 2-2 Modules Linked for Mapped and Unmapped Systems

Program sections are important because they are the basic unit used by
the Task Builder to determine the placement of code and data in a task
image. The language translators maintain a separate location counter
for each program section 1in a program. The name of each program
section, its attributes, and its 1length are conveyed to the Task
Builder through the object module.

You can create as many program sections within a module as you wish by
explicitly declaring them (with the COMMON statement in FORTRAN or the
.PSECT directive in MACRO-11], for example) or you can leave the
creation of program sections to the language translator. If you do
not explicitly create a program section in your source code, the
language translator you are working with will create a "blank" program
section within each module translated. This program section will
appear on your listings and maps as . BLK.. For more information on

explicitly declared program sections, see your language reference
manual.

TASK BUILDER FUNCTIONS

A program section's name is the name by which the language translator
and Task Builder reference Iit. When processing files, both the
language translator and the Task Builder create internal tables that
contain program section names, attributes and lengths.

Program section attributes define a program section's contents, its

placement in a task image, and, in some cases, the allowed mode of
access (read/write or read-only).

A program section's length determines how much address space the Task
Builder must reserve for it.

When a program consists of more than one module, it is not unusual for
program sections of the same name to exist in more than one of the
modules. Therefore, as the Task Builder scans the object modules, it
collects scattered occurrences of program sections of the same name
and combines them into a single area of your task image file. The
attributes 1listed in Table 2-1 control the way the Task Builder
collects and places each program section in the task image.

Table 2-1
Program Section Attributes

Attribute Value Meaning

access-code RW Read/write: data can be read £from, and
written into, the program section

RO Read-only: data can be read from, but
cannot be written 1into, the program
section

type-code 1 D Data: the program section contains data

I Instruction: the program section
contains either instructions, or data and
instructions

scope-code GBL Global: the program section name is
recognized across overlay segment

boundaries, the Task Builder allocates
storage for the program section from
references outside the defining overlay

segment.

LCL Local: the program section name is
recognized only within the defining
overlay segment; the Task Builder

allocates storage for the program section
from references within the defining
overlay segment only

1 po not cenfuse these codes with the I and D space hardware on
PDP-1! system:.

(continued on next page)

TASK BUILDER FUNCTIONS

Table 2-1 (Cont.)
Program Section Attributes

Attribute Value Meaning

allocation-code | CON Concatenate: all references to a given
program section name are concatenated;
the total allocation is the sum of the
individual allocations

OVR Overlay: all references to a given
program section name overlay each other;
the total allocation is the length of the
longest individual allocation

relocation-code | REL Relocatable: the base address of the
program section is relocated relative to
the base address of the task

ABS Absolute: the base address of the
program section is not relocated; it is
always 0
memory-code 2 HIGH High: the program section 1is to be

loaded into high-speed memory

LOW Low: the program section is to be loaded
into low-speed memory

2 Not used by the Task Builder,.

The type-code and scope-code are meaningful only when you define an
overlay structure for a task. These codes are described in later
chapters within the context of the descriptions of overlays. The Task
Builder does not use the memory-code.

The Task Builder uses a program section's access-code and
allocation-code to determine its placement and size in a task image.
It divides address space into read/write and read-only areas, and
places. the program sections in the appropriate area according to
access-code,

The Task Builder uses a program section's allocation-code to determine
its starting address and length. If a program section's
allocation-code indicates that the Task Builder is to overlay it, the
Task Builder places each allocaticn to the program section from each
module at the same address within the task image. The Task Builder
determines the total size of the program section from the length of
the longest allocation to it.

If a program section's allocation-code indicates that the Task Builder
is to concatenate it, the Task Builder places the allocation from the
modules one after the other in the task image, and determines the
total allocation from the sum of the lengths of each allocation.

The Task Builder always allocates address space for a program section
beginning on a word boundary. If the program section has the D (data)
and CON (concatenate) attributes, the Task Builder appends to the last
byte of the previous allocation all storage contributed by subsequent
modules. It does this regardless of whether that byte is on a word or

TASK BUILDER FUNCTIONS

nonword boundary. For a program section with the I (instruction) and
CON attributes, however, the Task Builder allocates address space
contributed by subsequent modules beginning with the nearest following

word boundary.

For example, suppose three modules, INl, 1IN2, and 1IN3, are to be
task=-built. Table 2-2 lists these modules with the program sections
each contains and their access codes and allocation codes.

Table 2-2
Program Sections for Modules INl, IN2, and IN3

Program
Section | Access | Allocation | Size
File Name | Name Code Code (octal)
IN1 B RW CON 100
A RW OVR 300
C RO CON 150
IN2 A RW OVR 250
B RW CON 120
IN3 C RO CON 50

In this example, the program section named B, with the attribute CON
(concatenate), occurs twice. Thus, the total allocation for B is the
sum of the lengths of each occurence; that is, 100 + 120 = 220. The
program section named A also occurs twice. However, it has the OVR
(overlay) attribute so its total allocation is the largest of the two
sizes, or 300. Table 2-3 1lists the individual program section

allocations.

Table 2-3
Individual Program Section Allocations
Program Section Total
Name Allocation
B 220
A 300
C 220

The Task Builder then groups the program sections according to their
access codes, and alphabetizes each group as shown in Figure 2-3.

NOTE

The example shown in Figure 2-3
represents the Task Builder's default
allocation of program sections. For
information on altering this default,
see the description of the 8Q switch in
Chapter 6.

TASK BUILDER FUNCTIONS

/ C (220) READ-ONLY

ACCESS

B (220)
READ/WRITE TASK MEMORY
ACCE

A (300) CCESS

STACK

HEADER

Figure 2-3 Allocation of Task Memory

2.1.2 Resolving Global Symbols

The Task Builder resolves references to global symbols across module
boundaries and any references (explicit or implicit) to the system
library. When the language translators process a text file, they
assume that references to global symbols within the file are defined
in other, separately assembled or compiled modules. As the Task
Builder 1links the relocatable object modules, it creates an internal
table of the global symbols it encounters within each module. If,
after the Task Builder examines and links all the object modules,
references remain to symbols that have not been defined, the Task
Builder assumes that it will £ind the definition for the symbols
within the default system object module library (LB:([1,1]SYSLIB.OLB).
If wundefined symbols still remain after SYSLIB is examined, the Task
Builder flags the symbols as undefined. If you have not specified an
output map in your Task Builder command sequence, the Task Builder
reports the names of the undefined symbols to you on your terminal.
If you have specified an output map, the Task Builder outputs to your
terminal only the fact that the task contains undefined symbols. The
names of the symbols appear on your map listing.

When creating the task image file, the Task Builder resolves global
references as shown in the following example. Table 2-4 lists the
three files IN1l, IN2, and IN3, showing the program sections within
each file, the global symbol definitions within each program section,
and the references to global symbols in each program section.

Table 2-4
Resolution of Global Symbols for IN1, IN2, and IN3

File | Program Section Global Global
Name Name Definition | Reference
IN1 B Bl A
B2 L1
A Ci
XXX
C
IN2 A A
B BI B2
IN3 (o B1

TASK BUILDER FUNCTIONS

In processing the first file, INl, the Task Builder finds definitions
for Bl and B2 and references to A, L1, Cl, and XXX. Because no
definition exists for these references, the Task Builder defers the
resolution of these global symbols. 1In processing the next file, INZ,
the Task Builder f£inds a definition for A, which resolves the previous
reference, and a reference to B2, which can be immediately resolved.

When all the object files have been processed, the Task Builder has
three unresolved global references -- Cl, L1, and XXX. Assume that a
search of the system library LB:[1,1]SYSLIB.OLB resolves L1, and XXX
and the Task Builder includes the defining modules in the task's
image. Assume also that the Task Builder cannot resolve the global
symbol Cl. The Task Builder lists it as an undefined global symbol.

The relocatable global symbol Bl is defined twice. The Task Builder
lists it as a multiply-defined global symbol. The Task Builder uses
the first definition of a multiply-defined symbol.

Finally, an absolute global symbol (for example, symbol=100) can be
defined more than once without being listed as multiply defined as
long as each occurrence of the symbol has the same value.

2.2 ASSIGNING ADDRESSES

The primary addressing mechanism of the PDP-11 is the 16-bit computer
word. The maximum physical address space that the PDP-11 can
reference at any one time is a function of the length of this word.
The highest number that can be represented in 16 bits is 177777(8) or
65,535(10). Because the PDP-11 is a byte-addressable machine, the
16~bit word length allows it to address up to 65,535 bytes (32K words)
of physical address space at any one time. The amount of address
space that a machine can reference at any one time is called virtual
address space,

2.2.1 Unmapped Systems

In an unmapped system, the machine's virtual address space and its
physical address space coincide exactly, as shown in Figure 2-4.

In an unmapped system, the machine's address space is limited to 32K
words. All of the machine's physical memory and all of its device
registers are accessible to all tasks running on the system. The top
4K words of address space are reserved for the UNIBUS addresses that
correspond to the peripheral device registers (the I/O page), and a
segment of low memory is occupied by the Executive. Therefore, in an
unmapped system, the largest task size is 32K words minus the I/O page
and the size of the Executive., Figure 2-5 shows the memory layout for
an unmapped system.

Unmapped systems contain only user-controlled partitions. When the
Task Builder links the relocatable object modules of a task that is to
run on an unmapped system, it requires that you specify the partition
in which the task is to run, the partitions base address and length.
The Task Builder will set the base address of the task to the base
address of the partition. This means that the task's location in
physical memory is bound to the partition and does not change.
Because all of physical memory 1in an unmapped system is directly
addressable, and the task's location within memory does not change,
the addresses that the Task Builder assigns coincide exactly with the
physical addresses of the machine and, therefore, do not need to be
relocated at runtime.

TASK BUILDER FUNCTIONS

VIRTUAL PHYSICAL
32 K WORDS 32 K WORDS
VIRTUAL O PHYSICAL O
VIRTUAL PHYSICAL
ADDRESS SPACE MEMORY

Figure 2-4 Unmapped Memory

32 K WORDS

1/0 PAGE

* EXECUTIVE-

o L |

Figure 2-5 Layout for Unmapped System

TASK BUILDER FUNCTIONS

2.2.2 Mapped Systems

In a mapped system, the relationship between virtual address space and
physical address space is different from that of an unmapped system.
The primary addressing mechanism for a mapped system 1is still the
16-bit word, and virtual address space is still 32K words. However, a
mapped system has a much greater physical memory capacity and,
therefore, physical memory and virtual address space do not coincide.

To address all of physical memory in a mapped system, a machine must
have an effective word length of 18 or 22 bits, depending on the model
of the machine. When the Task Builder links the relocatable object
modules of a task that is to run on a mapped system, it assigns 16-bit
address to the task image. The memory management unit's function
(under control of the Executive) 1is to convert the task's 16-bit
addresses to effective 18- or 22-bit physical addresses. The
mechanical job of task relocation is performed by the Executive and
the memory management unit at task runtime. Figure 2-6 1illustrates
the relationship between physical memory and virtual address space in
a mapped system.

The memory management unit divides a machine's 32K words of virtual
address space into eight 4K word segments or pages. Each page has two
registers associated with it:

e A 16-bit Page Description Register (PDR) which contains
control and access information about the page with which it is
associated

e A 16-bit Page Address Register (PAR) which is an address
relocation register

The PDRs and PARs are always used as a pair. Each pair is called an
Active Page Register (APR). Figure 2-7 shows how the memory
management unit divides the 32K words of virtual address space.

NOTES

1, A detailed description of the Memory
Management unit 1is beyond the scope of
this manual. For a complete description
of your machine's memory management
unit, refer to the Processor Handbook
for your machine.

2. Mapped machines have up to three
modes of operation: Kernel, Supervisor,
and User (11/34 machines do not have
supervisor mode). The information in
this chapter is relevant to User mode
only.

The Executive allocates only as many APRs as are necessary to map a
given task into physical memory. Therefore, a 4K word task requires
one APR; a 6K word task requires two. Figure 2-8 1illustrates this
mapping.)

TASK BUILDER FUNCTIONS

+

HIGHEST
PHYSICAL
ADDRESS
PARTITION
BOUNDARY
32K — ////
MEMORY
MANAGEMENT
UNIT
TASK ////)'
MEMORY :
HEADER

VIRTUAL ADDRESS
SPACE
FOR 32 K WORD
TASK

Figure 2-6

PARTITION
BOUNDARY

TASK
MEMORY

HEADER

TASK
MEMORY

HEADER

TASK
MEMORY

HEADER

TASK
MEMORY

HEADER

® EXECUTIVE

ETC. ¢

S

PHYSICAL
MEMORY

SYSTEM-CONTROLLED
PARTITION

Task Relocation in a Mapped System

TASK BUILDER FUNCTIONS

PAGE 7 ‘
VIRTUAL 160000 — APR7 —
PAGE 6
VIRTUAL 140000 — APR6 —
PAGE 5
VIRTUAL 120000 — APR5 —
PAGE 4 32K WORDS OF
, VIRTUAL ADDRESS
VIRTUAL 100000 — APR4 — SPACE
PAGE 3
VIRTUAL 60000 — APR3 —
PAGE 2
VIRTUAL 40000 — APR2 —
PAGE 1
VIRTUAL 20000 — APR 1
I PAGE 0
VIRTUAL 0 APR 0

Figure 2-7 Memory Management Unit's Division of Virtual Address Space

TASK BUILDER FUNCTIONS

160000 APR 7 — APR 7—
140000 APR 6 = APR 6—
120000 APR 5 — APR 5—
100000 APR 4 — APR 4—
40000 APR 2 — APR 2 —

20000 APR 1 — APR 1 — TASK

TASK MEMORY 6 K WORDS
MEMORY 4 K WORDS
HEADER & STACK HEADER & STACK

VIRTUALO APRO— APR 0 —

TASK A (4 K WORDS) TASK B (6 K WORDS)

Figure 2-8 Mapping for 4K Word and 6K Word Tasks

TASK BUILDER FUNCTIONS

Finally, the layout of the virtual address space for a task that is to
run in a mapped system is different in most cases from that of a task
that is run in an unmapped system. Unless a task is privileged, the
I/0 page and the Executive are not normally part of a task's virtual
address space and, unlike an unmapped system, a task is inhibited by
the system from accessing any portion of physical memory that it does
not specifically own. Because the I/0 page and the Executive are not
part of a task's virtual address space, a task can be a full 32K words
long on a mapped system.

2.3 \BUILDING SYSTEM DATA STRUCTURES

It is the Task Builder's responsibility to build the data structures
required by other system programs, and to incorporate them into the
task image. The Executive (which is the system task responsible for
the allocation of system resources) must have access to the data for
all tasks on the system. It must know, for example, a task's size and
priority, and it must have information about the way each task expects
to use the system. It is the Task Builder's responsibility to
allocate space in the task image for the data structures required by
the Executive. The Task Builder initializes some of these structures,
while the INSTALL processor initializes others when you install the
task.

The disk image file created by the Task Builder contains the 1linked
task and all of the information required by the system programs to
install and run it. In its simplest form, the disk image file
consists of three physically contiguous parts:

e The label block group

e The task header

e The task memory image

Figure 2-9 illustrates the basic structure of this file.

. TASK
¢ MEMORY

HEADER

LABEL
BLOCK

0

Figure 2-9 Disk Image

TASK BUILDER FUNCTIONS.

NOTE

Non-runnable images such as resident
shared regions do not have a header.
Resident shared regions are described in
Chapter 3.

The label block group contains data produced by the Task Builder and
used by the INSTALL processor. It contains information about the task
such as the task's name, the partition in which it runs, its size,
priority, and the logical units assigned to it. When you install the
task, the INSTALL processor uses this information to create a Task
Control Block entry for the task in the System Task Directory (STD
file) and to initialize the task's header information.

The task's header contains information that the Executive uses when it
runs the task. The header also provides a storage area for saving the
task's essential data when the task is checkpointed. The Task Builder
creates and partially initializes the header; the INSTALL processor
initializes the rest of the header.

The task memory contains the linked modules of the program and
therefore the code and data. It also contains the task's stack. The
stack is an area of task memory that a task can use for temporary
storage and subroutine linkage. It can be referenced through general
register 6, the stack pointer (SP). The label block group, the task's
header and the task memory are described in detail in Appendix C.

The task's memory image is the part of your task that the system reads
into physical memory at runtime. The label block group is not
required in physical memory. Therefore, in its simplest form, the
task's memory image consists of only two parts: the task header and
task memory. Figure 2-10 shows the memory image.

. TASK
«+ MEMORY 2

HEADER

0]

Figure 2-10 Memory Image
2.4 TASK RELOCATION ON MAPPED SYSTEMS

As mentioned earlier, tasks that run on mapped systems must be
relocated at runtime. When you build a task that is to run on a
mapped system, the Task Builder creates and places in the header of
the task one or more 9-word data structures called window blocks.
When you install a task the INSTALL processor initializes the window
block (s). once initialized, a window block describes a range of
continuous virtual addresses called a window.

2-15

TASK BUILDER FUNCTIONS

A window can be as small as 32 words or as large as 32K words. When a
task consists of one continuous range of addresses (a single region
task) only one window block is required to describe the entire task
from the beginning of its header to the highest virtual address in the
task. When a task consists of two or more regions (such as a task
that references a shared region as described in Chapter 3), each
region must have at least one window block associated with it that
describes all or a portion of the region.

When the Executive maps a task into physical memory, it extracts the
information it requires to set up the APRs of the memory management
unit from the task's window block.

Regardless of the number of regions associated with a task, the region
that contains the task's header 1is always described by window 0.
Furthermore, this region is referred to as the task region and is
identified as region 0. Figure 2-11 illustrates window block 0.

When you run your task, the Executive determines where 1in physical
memory the task is to reside. The Executive then loads the Page
Address Register portion of the APRs with a relocation constant that,
when combined with the addresses of the task, yields the 18- or 22-bit
physical address range of the task. :

HIGHEST VIRTUAL -
ADDRESS \w

TASK REGION —

ION O
TASK > REGIO
MEMORY

WINDOW

WINDOW BLOCK 0

0

HEADER & STACK)

LOWEST VIRTUAL —
ADDRESS

Figure 2-11 Window Block 0

CHAPTER 3

TYPICAL TASK BUILDER FACILITIES

The Task Builder provides you with many facilities for tailoring your
tasks to meet your specific requirements. This chapter describes some
of these facilities and their applications.

This chapter contains eight working examples. The discussion of the
examples assume that you are familiar with the programming concepts
described in the RSX-11M/M-PLUS Guide to Program Development and with
the first two chapters of thls manual.

3.1 SHARED REGIONS

A shared region is a block of data or code that resides in memory and
can be used by any number of tasks. Shared regions are useful because
they make more efficient use of physical memory:

¢ By providing a way in which two or more tasks can share their
data. This is called a resident common.

e By providing a way in which a single copy of commonly used
subroutines can be shared by several tasks. This is called a
resident library.

The term "resident" is used to denote a shared region that is built
and installed into the system separately from the task that links to
it.

Figure 3-1 shows a typical resident common. Task ‘A stores some
results in resident common S, and Task B retrieves the data from the
common at a later time.

Figure 3-2 shows a typical resident library. In this case, common
reentrant subroutines are not included in each task image; instead, a
single copy is shared by all tasks.

TYPICAL TASK BUILDER FACILITIES

RESIDENT COMMON RESIDENT COMMON

S S

PARTITION BOUNDARY

TASK A

TASK B

PARTITION BOUNDARY

EXECUTIVE EXECUTIVE
PHYSICAL MEMORY PHYSICAL MEMORY
TIME 1 TIME 2

Figure 3-1 Typical Resident Common

RESIDENT LIBRARY
CONTAINING
PARTITION BOUNDARY ROUTINE R
ROUTINE R
TASK A
ROUTINE R TASK A
TASK B TASK B
PARTITION BOUNDARY
EXECUTIVE EXECUTIVE
NONSHARED SHARED
PHYSICAL MEMORY PHYSICAL MEMORY

Figure 3-2 Typical Resident Library

TYPICAL TASK BUILDER FACILITIES

When you build a shared region, you must specify in the Task Builder
command sequence an output image file name for it. But, because a
shared region is not an executable unit, it is not a task. It does
not require a header or a stack area. Therefore, when you build a
shared region, you always attach the negated header switch (/-HD) to
the image file specification. This switch tells the Task Builder to
suppress the header within the image. To suppress the stack area, in
the Task Builder command sequence during option input, you specify
STACK=0. (Refer to Chapter 6 for a complete description of the HD
switch and the STACK option.)

In an RSX-11M system, a shared region must reside 1in 1its own
partition. Therefore, when you generate your system, you must
consider the physical memory requirements of any shared regions that
you expect to reside within your system. If you do not consider these
requirements at system generation time, later, when you build a shared
region, you will have to go back and create a common partition for the
region.

In an RSX-11M-PLUS system, shared regions do not have to reside within
partitions of their own; you can install a shared region in any
partition large enough to hold it. 1In fact, the partition for which
the shared region was built does not have to exist in the system at
the time the shared region is installed. If you attempt to install a
shared region in a partition that does not exist, the INSTALL
processor will install it in partition GEN and print the following
message on your terminal:

INS--PARTITION parname NOT IN SYSTEM DEFAULTING TO GEN

When you build a shared region, you must specify the partition in
which the region is to reside. You specify the partition name in the
Task Builder command sequence during option input. (Refer to Chapter
6 for a description of the PAR option.)

3.1.1 The Symbol Definition File

When you build a shared region, you must specify a symbol definition
(.8TB) file in the Task Builder command sequence. This file contains
linkage information about the region. Later, when you build a task
that 1links to the region, the Task Builder uses this .STB file to
resolve calls from within the referencing task to locations within the
region.

The contents of an .STB file for a shared region depend on whether the
shared region 1is position independent or absolute. The effects of
declaring a shared region position independent or absolute and the
resulting contents of the .STB file are described in the following
sections.

3.1.2 Position-Independent Shared Regions

A position-independent shared region can be placed anywhere in a
referencing task's virtual address space when the system on which the
task runs has memory management hardware.

For example, in Figure 3-3, two tasks refer to the shared region s --
task A and task B. The shared region S is 4K words long and therefore
requires that much space in the virtual address space of both tasks.
Task A is 6K words long and requires two APRs (APR 0 and APR 1) to map

TYPICAL TASK BUILDER FACILITIES

its task region. The first APR available to map the shared region is
APR 2. Therefore, APR 2 can be specified when task A is built.

Task B is 16.5K words long. It requires five APRs to map 1its task
region. The first APR available to map the shared region S in task B
is APR 5. Therefore, APR 5 can be specified when task B is built.,

If you do not specify which APR the Task Builder is to use to map a
position-independent shared region, the Task Builder will
automatically select the highest set of APRs available 1in the
referencing task's virtual address space. In Figure 3-3, for example,
if APR 2 in task A and APR 5 in task B had not been selected at
task-build time, the Task Builder would have automatically selected
APR 7 in both cases.

Declaring a region to be position independent causes the Task Builder
to include in the .STB file for the region an entry for each program
section in the region. Each entry declares the program section's
name, attributes, and length. In addition, the Task Builder includes
in the .STB file every symbol in the shared region and its wvalue
relative to the beginning of the region.

You specify that a shared region 1is position independent when you
build it by attaching the PI switch to the image file specification
for the region. (Refer to Chapter 6 for a description of the PI
switch.) You should declare a region position independent if:

e The region contains code that will execute correctly
regardless of 1its location in the address space of the
referencing task.

e The region contains data that is not address dependent.

e The region contains data that will be referenced by a FORTRAN
program (such data must reside in a named common).

Because the program section name is preserved in a
position-independent region, you should observe the following
precautions when building and referring to the region:

e No code or data in the region should be included in the blank
(. BLK.) program section.

e No code or data in a referencing task should appear in a
program section of the same name as a program section in the
shared region. v

e The order in which memory is allocated to program sections
(alphabetic or sequential) must be the same for the shared
region and 1its referencing tasks. (Chapter 2 describes
alphabetic ordering of program sections. Refer to the
description of the SQ switch in Chapter 6 for an explanation
of sequential ordering of program sections.,)

APR 7—

APR 6—

APR 5—

APR 4—

APR 3—

APR 2—

APR 1—

APR 0-—

Figure 3-3

SHARED
REGION

TYPICAL TASK BUILDER FACILITIES

%

4 K WORDS

TASK A

6 K WORDS

SHARED
REGION
S

APR 7—

APR 6—

APR 5—

APR 4—

APR 3—

APR 2—

APR 1—

APR 0—

SHARED
REGION

TASK B

16.
wo

5K
RDS

Specifying APRs for a Position-Independent Shared Region

TYPICAL TASK BUILDER FACILITIES

3.1.3 Absolute Shared Regions

When a shared region is absolute, the only program section name that
will appear in the .STB file for the region will be the absolute
program section name (. ABS.). The Task Builder includes in the .STB
file for the region each symbol in the region and its value, But,
because the Task Builder does not include the program section names of
an absolute shared region in its .STB file, all code or data in the
region must be referred to by global symbol name.

When a shared region is absolute, you select the virtual addresses for
it when you build it. Thus, an absolute shared region is fixed in the
virtual address space of all tasks that refer to it.

Figure 3-4 shows three tasks (task C, task D, and task E) and a single
absolute shared region, L. The absolute shared region L is 6K words
long and is built to occupy virtual addresses 120000(8) to 150000(8).
These addresses correspond to APR 5 and APR 6, respectively. Tasks C
and D can be linked to region L because at the time they are built APR
5 and APR 6 are unused in both tasks. However, task E is 23K words
long and even though it has 8K words of virtual address space
available to map the shared region, APR 5 (which corresponds to
virtual address 120000, the base address of the shared region) has
been allocated to the task region. If shared region L were position
independent, task E could be linked to it.

You specify that a shared region is absolute when you build it by
simply omitting the PI switch from the task image file. You establish
the virtual address for the region by specifying the base address of
the region as a parameter of the PAR option.

You should build a shared region absolute if:

e The region contains code that must appear in a specific
location in the address space of a referencing task.

o The region contains data that is address dependent.

e The region contains program sections of the same name as
program sections in referencing tasks.

Because the Task Builder does not place program section names in the
.STB file of an absolute shared region, the Task Builder places no
restrictions on the way the program sections are ordered in either the
absolute shared region or the tasks that reference it.

3.1.4 Linking to a Shared Region

When you build a task that links to a shared region, you must indicate
to the Task Builder the name of the shared region and the type of
access the task requires to it (read/write or read-only). In
addition, if the shared region 1is position independent, you can
specify which APR the Task Builder is to allocate for mapping the

region into the task's virtual address space. Four options are
available for this action:

e RESLIB (Resident Library)
e RESCOM (Resident Common)
e LIBR (System-Owned Resident Library)

) COMMONb(System—Owned Resident Common)

3-6

TYPICAL TASK BUILDER FACILITIES

ABSOLUTE
SHARED
L
VIRTUAL
120000
UNUSED
APR 7— APR 7— APR 7—
APR 6— ABSOLUTE APR 6— ABSOLUTE APR 6—
SHARED SHARED
REGION REGION
L L
APR 5— APR 5— APR 5—
APR 4~ APR 4- APR 4—
TASK E
APR 3— APR 3— APR 3—
APR 2— APR 2— TASKD APR 2—
APR 1— APR 1— APR 1—
TASK C
APR 0— APR 0— APR 0—

Figure 3-4 Mapping for an Absolute Shared Region

TYPICAL TASK BUILDER FACILITIES

RESLIB and RESCOM accept a complete file specification as one of their
arguments. Thus, you can specify a device and UFD indicating to the
Task Builder the 1location of the Tregion's image file and, by
implication, its symbol definition file. (Refer to Chapter 1 for more
information on file specifications and defaults.)

LIBR and COMMON accept a 1l- to 6-character name. When you specify
either of these options, the shared region's image file and symbol
definition file must reside under UFD [1,1] on device LBO:.

The RESLIB and RESCOM options require that all wusers of the shared
region Kknow the UFD under which the shared region's image file and
.STB file reside. The LIBR and COMMON options require only that the
users of* the shared region know the name of the shared region. When
you specify either LIBR or COMMON, by default, the Task Builder
expects to find the shared region's image and .STB files on device LB:
under UFD [1,1].

All four options accept two additional arguments:
e The type of access the task requires (RO or RW)

e The first APR that the Task Builder is to allocate for mapping
the region into the task's virtual address space. As stated
earlier, this argument is valid only when the shared region is
position independent.

When you specify any of these options, the Task Builder expects to
find a symbol definition file of the same name as the shared region,
but with an extension of .STB, on the same device and under the same
UFD as the shared region's image file.

The syntax of these options is given in Chapter 6.

When the Task Builder builds a task, it processes first any options
that appear in the Task Builder command sequence. When the Task
Builder processes one of the four options above, it locates the disk
image of the shared region named in the option. The disk image of a
shared region does not have a header, but it does have a label block
that contains the allocation information about the shared region (for
example, its base address, load size, the name of the partition for
which it was built). The Task Builder extracts this data from the
shared region's label block and places it in the LIBRARY REQUEST
section of the label block for the referencing task.

The .STB file associated with the shared region is an object module
file. The Task Builder processes it as an input file. If the shared
region is position independent, its .STB file contains program section
names, attributes and lengths. However, the program section names are
flagged within the file as "library" program sections and the Task
Builder does not add their allocations to the task image it is
building.

If the task links to only one shared region, and if neither the shared
region nor the task that links to it contain memory-resident overlays,
the Task Builder will allocate two window blocks in the header of the
task. (Overlays are described in Chapter 4.) When the task is
installed, the INSTALL processor will initialize these window blocks
as follows:

e Window block 0 will describe the range of virtual addresses
(the window) for the task region.

e Window block 1 will describe the window for the shared region.

TYPICAL TASK BUILDER FACILITIES

Figure 3-5 shows the window-to-region relationship of such a task.

HIGHEST VIRTUAL —B—
ADDRESS

SHARED
REGION

WINDOW BLOCK
1

WINDOW BLOCK
0

TASK
- MEMORY

|HEADER AND STACK

LOWEST VIRTUAL
ADDRESS

'

Figure 3-5 Windows for Shared Region and Referencing Task

TYPICAL TASK BUILDER FACILITIES

A shared region need not be installed before a task that links to it
is built, The .STB file that you specify when you build the shared
region contains all the information required by the Task Builder to
resolve references from within a task to locations within the shared
region. The only requirement is that you install a shared region
before you install a task that links to it.

The number of shared regions to which a task can link is a function of
the number of window blocks required to map the task and the regions.
In an RSX-11lM operating system, if a task is 4K words or less, and
each shared region to which the task links is 4K words or less, then a
nonprivileged task can access as many as seven shared regions.

In an RSX-11M-PLUS operating system, if a task is 4K words or less,
and each shared region to which the task links is 4K words or less, a
nonprivileged task can refer to as many as 15 shared regions: seven
in user-mode and eight in supervisor-mode. (Supervisor-mode libraries
are described in later sections of this chapter.)

Finally, the way the Task Builder processes tasks that link to shared
regions 1leads to an important Task Builder restriction on tasks that
link to position-independent shared regions. The Task Builder places
all program section names into its internal control section table.
This includes program section names from the .STB file of the .shared
region as well as the program section names from the other input
modules. When the Task Builder builds a task that links to a shared
region, if the task contains program sections of the same name as
program sections in the shared region, the Task Builder will attempt
to add the program section allocation in the task to the already
existing allocation for the program section of the same name in the
shared region. This 1is not possible because the region's image has
already been built, is outside the address space of the task currently
being built and cannot be modified. Therefore, the program section
names within a task that links to a position-independent shared region
must normally be unique with respect to program section names within
the shared region.

Should this conflict occur and the program section within the
referencing task contain data, when the Task Builder attempts to
initialize the program section, it will recognize that it is
attempting to store data in an image outside the address limits of the
task it is building. The Task Builder will then print the following
message on the terminal:

TKB--*DIAG*-LOAD ADDR OUT OF RANGE IN MODULE module-name

One exception to the above restriction develops when all of the
following conditions exist:

e Both program sections (in the shared region and in the

referencing task) have the (D) data and the OVR (overlay)
attributes

e The program section in the task is equal to or shorter than
the program section in the shared region

e The program section in the task does not contain data.

When all of these conditions exist, there is nothing to be initialized
within the shared region. The Task Builder binds the base address of
the program section in the task to the base address of the program
section 1in the shared region. If the program section in the task
contains global symbols, the Task Builder will assign addresses to
them that reflect their 1location relative to the beginning of the

TYPICAL TASK BUILDER FACILITIES

program section. You can use this technique to establish symbolic
offsets into resident commons. Examples 1 and 2 in the following
sections illustrate how to establish these offsets.

3.1.5 Example l: Building and Linking to a Common in MACRO-11

The text in this section and the figures associated with it illustrate
the development of a MACRO-1l position-independent resident common and
the development of two MACRO-11 tasks that share the common, The

steps in building a position-independent common can be summarized as
follows:

1. You create a source file that allocates the amount of space
required for the common. In MACRO-11, either of the
assembler directives, .BLKB or .BLKW, provide the means of
allocating this space.

2. You assemble the source file.

3. You build the assembled module specifying both a task image
file and a symbol definition file.

You specify the -HD (no header) switch and declare the common
to be position independent with the PI switch.

Under options you specify:

STACK=0
PAR=parname

The parname in this PAR option is the name of the partition
in which the common is to reside. (The HD and PI switches
and the STACK and PAR options are described in Chapter 6.)

If your system is an RSX-11lM system, the common must reside
within a common partition of the same name as the common.

If your system is an RSX-1lM-PLUS system, the common can
reside within any partition large enough to hold it.

4, You install the common.
Figure 3-6 below shows a MACRO-11 source file that, when assembled and
built, will create a position-independent resident common area named

MACCOM. The common area consists of two program sections named COM1
and COM2, respectively. Each program section is 512(10) words long.

.TITLE MACCOM

COM1 - 512 WORDS
COM2 - 512 WORDS

~ weo wo we

.PSECT COM1,RW,D,GBL,REL,OVR
.BLKW 512.
.PSECT COM2,RW,D,GBL,REL,OVR
.BLKW 512.

.END

Figure 3-6 Common Area Source File in MACRO-11

3-11

TYPICAL TASK BUILDER FACILITIES

Once this common has been assembled, the Task Builder command sequence
shown below can be used to build it.

TKB>MACCOM/PI-HD,MACCOM/-SP,MACCOM=MACCOM
TKB>/

ENTER OPTIONS:

TKB> STACK=0

TKB> PAR=MACCOM:0:4000

TKB>//

This command sequence directs the Task Builder to build a
position-independent (/PI), headerless (/-HD), common image file named
MACCOM.TSK. It also specifies that the Task Builder is to create a
map file, MACCOM.MAP, and a symbol definition file, MACCOM.STB. The
Task Builder will create all three files, MACCOM.TSK, MACCOM.MAP, and
MACCOM.STB on device 8SY: under the UFD that corresponds to the
terminal UIC. Because /-SP is attached to the map file, the Task
Builder will not spool a map listing to the line printer.

Under options, STACK=0 suppresses the stack area in the common's
image.

The PAR option specifies that the common area will reside within a
common partition of the same name as the common, MACCOM. As stated
above, on an RSX-11lM system this is a requirement; on an RSX-11M-PLUS
system it 1is not. In addition, the parameters in the PAR option
specify a base of zero and a length of octal bytes for the common
(Refer to Chapter 6 for descriptions of the switches and options used
in this example.)

Figure 3-7 shows the map resulting from this command sequence.

The task attributes section of this map reflects the switches and
options of the command string. It indicates that the common resides
in a partition named MACCOM, that it was built wunder terminal UIC
[303,3], that it is headerless and position independent, and that it
requires one window block to map. The total length of the common is
1024 (10) words and 1its address limits range from 0 to 3777(8). The
common image (that portion of the disk image file that eventually will
be read into memory) begins at file-relative disk block 3 @ . The
last block in the file is file-relative disk block 6 @ and the common
image is four blocks long © .

The memory allocation synopsis details the Task Builder's allocation
for and the attributes of the program sections within the common. For
example, reading from left to right, the map indicates that the
program section COMl permits read/write access, that it contains data,
and that its scope 1is global. It also indicates that COMl is
relocatable and that all contributions to COMl are to be overlaid.
Because COM1l has the overlay attribute, the total allocation for it
will be equal to the largest allocation request from the modules that
contribute to it. (For more information on program section
attributes, see Chapter 2.)

Continuing to the right, the first 6-digit number is COMl's base
address which is 0@ . The next two digits are its length (bytes) in
octal and decimal, respectively @.

TYPICAL TASK BUILDER FACILITIES

The next line down lists the first object module that contributes to
COoMl. In this case there is only one: the module MACCOM from the
file MACCOM.OBJ;2. The numbers on this 1line 1indicate the relative
base address of the contribution and the length of the contribution in
octal and decimal @ . If there had been more than one module input to
the Task Builder that contained a program section named COM1l, the Task
Builder would have listed each module and its contribution in this
section.

Notice that there is a program section named . BLK. shown on the map
just above the field for COMl. This is the "blank" program section
that is automatically created by the language translators. The
attributes shown are the default attributes. The allocation for
. BLK. 1is zero because the program sections in MACCOM were explicitly
declared. If the program sections had not been explicitly declared,
all of the allocation for the common would have been within this
program section. .

MACCOM.TSK; 2 MEMORY ALLOCATION MAP TKB M36 PAGE 1
7-FEB-79 13:51

PARTITION NAME
IDENTIFICATION
TASK UIC : [303,3]
TASK ATTRIBUTES: -HD,PI Task
TOTAL ADDRESS WINDOWS: 1. Attributes
TASK IMAGE SIZE : 1024. WORDS Section
TASK ADDRESS LIMITS: 000000 003777

R-W DISK BLK LIMITS: 000003 000006 000004 00004.

MACCOM 7]

*** ROOT SEGMENT: MACCOM

R/W MEM LIMITS: 000000 003777 004000 02048.
DISK BLK LIMITS: 000002 000005 000004 00004.

MEMORY ALLOCATION SYNOPSIS:

SECTION ' TITLE IDENT FILE

. BLK.: (RW,I,LCL,REL,CON) 000000 000000 00000.

COM1 :(RW,D,GBL,REL,OVR) 000000 002000 01024. .

002000 MACCOM 01 MACCOM.0OBJ; 2
002000

002000 01VQ24.

COM2 :(RW,D,GBL,REL,OVR)

MACCOM 01 MACCOM.OBJ; 2

*#%% TASK BUILDER STATISTICS:

TOTAL WORK FILE REFERENCES: 178.

WORK FILE READS: 0.

WORK FILE WRITES: 0. .

SIZE OF CORE POOL: 8198, WORDS (32. PAGES)
SIZE OF WORK FILE: 768. WORDS (3. PAGES)

ELAPSED TIME:00:00:06

Figure 3-7 Task Builder Map for MACCOM.TSK

TYPICAL TASK BUILDER FACILITIES

Figure 3-8 is a diagram that represents the disk image file for
MACCOM. The circled numbers in Figure 3-8 correspond to the circled
numbers in Figure 3-7.

RELATIVE RELATIVE

DISK BLOCK LOAD
NUMBERS ADDRESSES
000006 — COM 2
000005 — : — 002000 _
o -
000004 — com 1 - 002000 (BYTES)
~ 000003 — — 000000 -
000002 — LABEL BLOCK
000001 —

DISK IMAGE FILE

i

Figure 3-8 Allocation Diagram for MACCOM.TSK

Once you have built MACCOM, you can install it. If your system is an
RSX-11M system, the common will be loaded into memory when you install
it. It will remain there until you explicitly remove it with the MCR
command, REMOVE.

If your system is an RSX-11M-PLUS system, the common will not be
loaded until either one of the following occurs:

e A task that is linked to it is run.

® You explicitly fix the common in memory with the MCR command,
FIX.

Figures 3-9 and 3-10 show two programs -- MCOM1 and MCOM2,
respectively. Both of these programs reference the common area MACCOM
created above. MCOMl1l in Figure 3-9 accesses the COMl1 portion of
MACCOM. It inserts into the first ten words of COMl the numbers 1
through 10 in ascending order. It then issues an Executive directive
request for the task MCOM2 and suspends itself.

TYPICAL TASK BUILDER FACILITIES

When MCOMZ2 runs, it sums the integers left in COM1 by MCOMl and leaves
the result in the first word of COM2. It then issues a resume
directive for MCOM1l and exits. '

When MCOM1 resumes, it retrieves the answer left in COM2 and calls the
system library routine $EDMSG (edit message) to format the answer for
output to device TI:

All of the Executive directives for both programs (RQST$C, SPND$S,
QIOW$S, RSUMSC, and EXIT$S) are documented in the RSX-11M-PLUS
Executive Reference Manual, The system library routine S$SEDMSG is
documented in the IAS/RSX-11 System Library Routines Reference Manual.

.TITLE MCOM1
.IDENT /01/

.MCALL EXITS$S,SPND$S,RQSTSC,QIOWSS

OouT: «BLKW 100. ; SCRATCH AREA
FORMAT: .ASCIZ /THE RESULT IS %D./
MES: .ASCII /ERROR FROM REQUEST/

LEN = ., - MES

« BVEN

PSECT - COM1l IS USED TO ACCESS THE FIRST 512. WORDS OF THE
COMMON.

- e

+PSECT COM1,GBL,0OVR,D
INT: +«BLKW 10.

PSECT - COM2 IS USED TO ACCESS THE SECOND 512. WORDS OF THE
COMMON. IT WILL CONTAIN THE RESULT

~e we

.PSECT COMZ2,GBL,OVR,D

ANS: «BLKW 1
.PSECT
START:
MOV #10.,R0O ; NUMBER OF INTEGERS TO SUM
MOV #1,R1 ; START WITH A 1
MOV #INT,R3 ; PLACE VALUES IN 1ST 10 WORDS
; OF COMMON
105: MOV R1l, (R3)+ ; INITIALIZE COMMON
INC R1 ; NEXT INTEGER
DEC RO ; ONE LESS TIME
BNE 108 ; TO INITIALIZE
RQSTSC MCOM2 ; REQUEST THE SECOND TASK
BCS ERR1 ; REQUEST FAILED
SPND$S ; WAIT FOR MCOM2 TO SUM THE INTEGERS
MOV #0OUT ,RO ; ADDRESS OF SCRATCH AREA
MOV #FORMAT,R1 ; FORMAT SPECIFICATION
MOV #ANS,R2 ; ARGUMENT TO CONVERT
CALL $EDMSG DO CONVERSION
QIOWSS #IO.WVB,#5,%#1,,,,<#0UT, Rl $40>
EXITSS
ERR1:
QIOWSS #IO.WVB,#5,#%#1,,,,<#MES,#LEN,#40>
EXITSS
.END START

Figure 3-9 MACRO-11 Source Listing for MCOM1

TYPICAL TASK BUILDER FACILITIES

L.TITLE MCOM2
.IDENT /01/

.MCALL EXITS$S,QIOW$S,RSUMSC

MES: .ASCII /ERROR FROM RESUME/
LEN = . - MES
.EVEN

PSECT - COM1 IS USED TO ACCESS THE FIRST 10. WORDS OF THE
COMMON.

~ .

.PSECT COM1,GBL,OVR,D
INT: «BLKW 10.

PSECT - COM2 IS USED TO ACCESS THE SECOND 10. WORDS OF THE
COMMON. IT WILL CONTAIN THE RESULT

~ ~o

.PSECT COM2,GBL,OVR,D

ANS: « BLKW 1
+PSECT
START:
MOV #10.,R0O ; NUMBER OF INTEGERS TO SUM
MOV #INT,R3 ; PLACE VALUES IN 1ST 10 WORDS
; OF COMMMON
CLR ANS ; INITIALIZE ANSWER
108: ADD (R3)+,ANS ; ADD IN VALUES
DEC RO ; ONE LESS VALUE
BNE 108 ; TO SUM

RSUMSC MCOM1 RESUME MCOM1

- ~e

BCS ERR RESUME FAILED
EXITSS
ERR:
QIOWSS #IO.WVB,#5,#1,,,,<#MES,#LEN,#40>
EXITSS
.END START

Figure 3-10 MACRO-11 Source Listing for MCOM2

Note that both tasks MCOM1l and MCOM2 contain .PSECT declarations that
establish program section names that are the same as program section
names within the position-independent common to which the task is
linked (MACCOM). As stated earlier, in most circumstances this would
be illegal. 1In this application, however, the .PSECT directives have
been placed 1into the tasks to establish symbolic offsets in the
resident common. When either task is built, the Task Builder will
assign to the symbol INT: the base address of program section COM1,
and to the symbol ANS: the base address of program section COM2.
Figure 3-11 illustrates this assignment.

TYPICAL TASK BUILDER FACILITIES

ANS: L [~~~ -
~ < ~ - COM 2
\\\ \\\
~ - \\\
\\\ \\\
ANS:
INT: l [\‘\"‘*\\
=l - COM 1
\\\ =~
\\ \\
\'\ \\.
S \'\
\\\\ _._____._______}.1
.
—
INT:

Figure 3-11 Assigning Symbolic References Within a Common

Once you have assembled MCOM1 and MCOM2, you can build them with the
following Task Builder command sequences:

>TKB

TKB>MCOM1 ,MCOM1/~SP=MCOM1
TKB>/

ENTER OPTIONS:
TKB>RESCOM=MACCOM/RW
‘TKB>//

>TKB

TKB>MCOM2 ,MCOM2/~SP=MCOM2
TKB>/

ENTER OPTIONS:
TKB>RESCOM=MACCOM/RW
TKB>//

Under options in both of these command sequences, the RESCOM option
tells the Task Builder that these programs intend to reference a
common data area named MACCOM and that the tasks require read/write
access to it.

Because the RESCOM option is used, the Task Builder expects to find
the image file and the symbol definition file for the common on device
SY: under the UFD that corresponds to the terminal UIC. In addition,
because the optional APR specification was omitted from the RESCOM
option, the Task Builder allocates virtual address space for the
common starting with APR7 in both tasks (the highest APR available in
both tasks). '

The Task Builder map for MCOMl is shown in Figure 3-12. The map for
MCOM2 is not essentially different from that of MCOM1l and is therefore
not included here.

[

TYPICAL TASK BUILDER FACILITIES

MCOM1.TSK; 23 MEMORY ALLOCATION MAP TKB M36 PAGE 1
7-FEB-79 14:32

PARTITION NAME
IDENTIFICATION
TASK UIC . [303,3]
STACK LIMITS: 000212 001211 001000 00512, Task

PRG XFR ADDRESS: 001566 Attributes
TOTAL ADDRESS WINDOWS: 2. Section
TASK IMAGE SIZE : 1120. WORDS

TASK ADDRESS LIMITS: 000000 004273

R-W DISK BLK LIMITS: 000002 000006 000005 00005. |

GEN]
01

**%% ROOT SEGMENT: MCOMl

R/W MEM LIMITS: 000000 004273 004274 02236.
DISK BLK LIMITS: 000002 000006 000005 00005.

MEMORY ALLOCATION SYNOPSIS:

SECTION TITLE IDENT FILE
. BLK.: (RW,I,LCL,REL,CON) 001212 002630 01432,

001212 000574 00380. MCOM1 0l MCOM1.0BJ; 2
COM1 :(RW,D,GBL,REL,OVR) 160000 002000 01024,

160000 000024 00020. MCOM1l 01 MCOM1.0BJ; 2
COM2 :(RW,D,GBL,REL,OVR) 162000 002000 01024.

162000 000002 00002. MCOM1 01 MCOM1.0BJ; 2

LNC$D : (RW,D,GBL,REL,CON) 004042 000002 00002.
DPBS$: (RW,I,LCL,REL,CON) 004044 000016 00014.
004044 000016 00014. MCOM1l Ol MCOM1.0BJ; 2
$SRESL: (RW,I,LCL,REL,CON) 004062 000024 00020.
$SRESM: (RW,I,LCL,REL,CON) 004106 000166 00118.

**% TASK BUILDER STATISTICS:

TOTAL WORK FILE REFERENCES: 2125,

WORK FILE READS: 0.

WORK FILE WRITES: O.

SIZE OF CORE POOL: 8198. WORDS (32. PAGES)
SIZE OF WORK FILE: 1024. WORDS (4. PAGES)

ELAPSED TIME:00:00:06

Figure 3-12 Task Builder Map for MCOM1.TSK

Note that the Task Builder has placed two window blocks in MCOMl's
header. When MCOMl 1is 1installed, the INSTALL processor will
initialize these window blocks as follows:

e Window block 0 will describe the range of virtual addresses
(the window) for MCOMl's task region.

e Window block 1 will describe the window for the shared region
MACCOM.

/
TYPICAL TASK BUILDER FACILITIES

3.1.6 Example 2: Building and Linking to a Device Common in MACRO-11

A device common is a special type of common that occupies physical
addresses on the I/O page. When mapped into the virtual address space
of a task, a device common permits the task to manipulate peripheral
device registers directly.

NOTE

Because any access to the I/0 page is

. potentially hazardous to the running
system, you must exercise extreme
caution when working with device
commons,

The remaining text in this section and the figures associated with it
illustrate the development and use of a device common. Figure 3-13
shows an assembly listing for a position-independent device common
named TTCOM. When installed, TTCOM will map the control and data
registers of the console terminal. 1Its physical base address will be
777500. '

.TITLE TTCOM
.PSECT TTCOM
.=.+60
RCSR:: . BLKW
RBUF:: .BLKW
XCSR:: .BLKW
XBUF: ¢ « BLKW
+«END

e

Figure 3-13 Assembly Listing for TTCOM

The PDP-11 Peripherals Handbook defines the control and data register
addresses for the console terminal. In Figure 3-13, the register
addresses and the symbol names that correspond to them are as follows:

Register Address Symbol
Keyboard Status 777560 RCSR
Keyboard Data 777562 RBUF
Printer Status 777564 XCSR
Printer Data 7717566 XBUF

The double colon (::) following each symbol in Figure 3-13 establishes
the symbol as global. The first symbol, RCSR, is offset from the
beginning of TTCOM by 60(8) bytes. Each symbol thereafter is one word
removed from the symbol that precedes it. Thus, when TTCOM is
installed at 777500, each symbol will be located at its proper
address,

Once you have assembled TTCOM, you can build it using the following
Task Builder command sequence:

> TKB
TKB> LB:[1,1]TTCOM/-HD/PI,LB:[1,1]TTCOM/-WI ,LB:[1,1]TTCOM=TTCOM
TKB> /

ENTER OPTIONS:

TKB> STACK=0

TKB> PAR=TTCOM:0:100

TKB> //

TYPICAL TASK BUILDER FACILITIES

This command sequence directs the Task Builder to create a common
image named TTCOM.TSK and a symbol definition file named TTCOM.STB.
The Task Builder will place both files on device LB: under UFD [1,1].
The command sequence also specifies that the Task Builder is to spool
a map listing to the line printer. The -WI switch specifies an 80
column line printer listing format.

NOTE

For the command sequence above to work
in a multiuser protection system, it
must be input from a privileged
terminal.

Under options, STACK=0 suppresses the stack area in the common's image
file.

The PAR option specifies that the device common will reside within a
partition of the same name as the common. As with the data common in
Example 1 (Section 3.1.5), this 1is a requirement of the RSX-11lM
system; in an RSX-11M-PLUS system it is not. The PAR option also
specifies that the base of the common is 0 and that it is 100(8) bytes
long. ’

The Task Builder map for TTCOM that results from the command sequence
above is shown in Figure 3-14. The task attributes section of this
map indicates that the common is position independent and that no
header is associated with it. The common's 1image and symbol
definition file reside on device LB: under UFD [1,1].

The map in Figure 3-14 shows the global symbols defined in the common
with their relative offsets into the common region. You establish the
virtual base address for the common and the virtual addresses for the
symbols within it when you build the tasks that link to the common.

You establish the physical addresses for the common with the MCR
command, SET. The keyword that you use with the SET command depends
on which system you are running. If your system is an RS5X-11M system,
use the command:

>SET /MAIN=TTCOM:7775:1 "Deg\‘l"

If your system is an RSX-11M-PLUS system, use the command:

>SET /PAR=TTCOM:7775:1:DEV

Both sequences create a main partition named TTCOM that begins at
physical address 777500. The partition is one 64-byte block long,
(100(8) bytes). The arguments COM and DEV identify the partition
type. With the common built ‘and the partition for it created, you can
install TTCOM.

You can establish the partition for a device common at any time in
both the RSX-11M and the RSX-11M-PLUS systems. Partitions created to
accommodate a device common are not a system generation consideration
because they represent areas of physical address space above memory
and therefore cannot conflict with memory partitions.

 TYPICAL TASK BUILDER FACILITIES

TTCOM.TSK; 1 MEMORY ALLOCATION MAP TKB PAGE 1
9-NOV-78 14:25

PARTITION NAME : TTCOM

IDENTIFICATION :

TASK UIC ¢ [1,1] TASK

TASK ATTRIBUTES: -HD,PI ATTRIBUTES
TOTAL ADDRESS WINDOWS: 1. SECTION

TASK IMAGE SIZE : 32. WORDS
TASK ADDRESS LIMITS: 000000 000067
R-W DISK BLK LIMITS: 000003 000003 000001 00001.

**% ROOT SEGMENT: TTCOM

R/W MEM LIMITS: 000000 000067 000070 00056,
DISK BLK LIMITS: 000002 000002 000001 00O0OLl.

MEMORY ALLOCATION SYNOPSIS:

SECTION TITLE IDENT FILE

. BLK.: (RW,I,LCL,REL,CON) 000000 000000 0000O0.
TTCOM :(RW,I,LCL,REL,CON) 000000 000070 00056.
000000 000070 00056. TTCOM 01 TTCOM.OBJ;1

GLOBAL SYMBOLS:

RBUF 000062-R RCSR 000060-R XBUF 000066-R XCSR 000064-R

**%* TASK BUILDER STATISTICS:

TOTAL WORK FILE REFERENCES: 220.

WORK FILE READS: 0.

WORK FILE WRITES: O.

SIZE OF CORE POOL: 2062. WORDS (8. PAGES)
SIZE OF WORK FILE: 768. WORDS (3. PAGES)

ELAPSED TIME:00:00:02

Figure 3-14 Task Builder Map for TTCOM

Figure 3-15 shows an assembly 1listing for a demonstration program
named TEST. When built and installed, TEST will print the letters A
through Z on the console terminal by directly accessing the console
terminal status and data registers. It will access the status and
data registers through the device common TTCOM.

TYPICAL TASK BUILDER FACILITIES

.TITLE TEST
.IDENT /01/
.MCALL EXITSS

START: MOV #15,R0 ; START WITH A CARRIAGE RETURN
CALL OUTBYT ; PRINT IT
MOV #12,R0 ; THEN A LINE FEED
CALL OUTBYT ; PRINT IT
MOV #101,R0 ; FIRST LETTER IS AN "A"
MoV $#26.,R1 ; NUMBER OF LETTERS TO PRINT
OUTPUT: CALL OUTBYT : PRINT CURRENT LETTER
DEC R1 ; ONE LESS TIME
BNE OUTPUT : AGAIN
MOV $#15,R0 : ANOTHER CARRIAGE RETURN
CALL OUTBYT
MOV $#12,R0 ; ANOTHER LINE FEED
CALL OUTBYT
EXITS$S
OUTBYT: TSTB XCSR ; OUTPUT BUFFER READY?
BPL OUTBYT : IF NOT WAIT
MOV RO,XBUF ; MOVE CHARACTER TO OUTPUT BUFFER
INC RO ; INITIALIZE NEXT LETTER
RETURN
.END START

Figure 3-15 Assembly Listing for TEST

Once you have assembled TEST, you can build it with the following Task
Builder command sequence:

>TKB
TKB>TEST,TEST/-WI/MA=TEST
TKB>/

ENTER OPTIONS:
TKB>COMMON=TTCOM:RW:1
TKB>//

Under options, the COMMON option in this command sequence tells the
Task Builder that TEST intends to access the device common TTCOM and,
that TEST will have read/write access to it. It also directs the Task
Builder to reserve APR 1 for mapping the common into TEST's virtual
address space,

The Task Builder map that results from the command sequence above is
shown in Figure 3-16.

This map contains a global symbols section. The Task Builder included
it because the MA switch was applied to the memory allocation file at
task-build time. Note that the global symbols in this section, which
were defined in TTCOM, now have virtual addresses assigned to them.
The addresses assigned by the Task Builder are the result of the APR 1
specification in the COMMON= keyword during the task build.

It is important to remember that programs like TEST, which access the
I1/0 page, take complete control of the registers they reference.
Therefore, coding errors in such programs can disable the devices they
reference and can even make it impossible for the device drivers to
regain control of the device. If this happens, you must reboot the
system.,

TYPICAL TASK BUILDER FACILITIES

TEST.TSK; 2 MEMORY ALLOCATION MAP TKB
9-NOV-78 14:35

PARTITION NAME
IDENTIFICATION 0l

TASK UIC [301,356]

STACK LIMITS: 000212 001211 001000 00512,

PRG XFR ADDRESS: 001212

TOTAL ADDRESS WINDOWS: 2.

TASK IMAGE SIZE : 384. WORDS

TASK ADDRESS LIMITS: 000000 001317

R-W DISK BLK LIMITS: 000002 000003 000002 00002.

GEN

*** ROOT SEGMENT: TEST

R/W MEM LIMITS: 000000 001317 001320 00720.
DISK BLK LIMITS: 000002 000003 000002 00002.

MEMORY ALLOCATION SYNOPSIS:

PAGE 1

Task

Attributes

Section

SECTION TITLE IDENT

. BLK.: (RW,I,LCL,REL,CON) 001212 000104 00068.

001212 000104 00068. .MAIN. Ol

TTCOM : (RW,I,LCL,REL,CON) 020000 000070 00056.

020000 000070 00056. TTCOM Ol

GLOBAL SYMBOLS:

RBUF 020062-R RCSR 020060-R XBUF 020066-R XCSR

% TASK BUILDER STATISTICS:

TOTAL WORK FILE REFERENCES: 220.

WORK FILE READS: O.

WORK FILE WRITES: 0.

SIZE OF CORE POOL: 2062. WORDS (8. PAGES)
SIZE OF WORK FILE: 768. WORDS (3. PAGES)

ELAPSED TIME:00:00:04

Figure 3-16 Memory Allocation Map for TEST

FILE

TEST.OBJ;1

TTCOM.STB; 1

020064-R

3.1.7 Example 3: Building and Linking to a Resident Library in MACRO-1l1

Resident libraries consist of subroutines that are shared by

two or

more tasks. When such tasks reside in physical memory simultaneously,

resident libraries provide a considerable memory savings

subroutines within the library appear in memory only once.

because the

The text in this section and the figures associated with it illustrate
the development and use of a resident library, called LIB.

TYPICAL TASK BUILDER FACILITIES

Figure 3-17 shows five FORTRAN callable subroutines:

e An integer addition routine, AADD

e An integer subtraction routine, SUBB

e An integer multiplication routine, MULL

e An integer division routine, DIVV

e A register save and restore coroutine, SAVAL
These subroutines are contained in a single source file, LIB.MAC.
When assembled and built, they will constitute an example of a
resident library. FORTRAN callable routines were used in this example

so that the 1library can be accessed by either FORTRAN or MACRO-11
programs.

.TITLE LIB
.IDENT /01/

.PSECT AADD,RO,I,GBL,REL,CON

;** FORTRAN CALLABLE SUBROUTINE TO ADD TWO INTEGERS

AADD:: CALL $SAVAL ; SAVE RO-R5
MOV @2 (R5) ,RO ; FIRST OPERAND
MOV @4 (R5) ,R1 ;i SECOND OPERAND
ADD RO,R1 ; SUM THEM
MOV R1,@6 (R5) ; STORE RESULT
RETURN ; RESTORE REGISTERS AND RETURN

.PSECT SuBB,RO,I,GBL,REL,CON

;** FORTRAN CALLABLE SUBROUTINE TO SUBTRACT TWO INTEGERS

SUBB:: CALL $SAVAL ; SAVE RO-R5
MOV @2(R5) ,RO ; FIRST OPERAND
MOV @4 (R5) ,R1 ; SECOND OPERAND
SUB R1,RO ; SUBTRACT SECOND FROM FIRST
MOV R0,@6 (R5) ; STORE RESULT
RETURN ; RESTORE REGISTERS AND RETURN

.PSECT MULL,RO,I,GBL,REL,CON

Figure 3-17 Source Listing for Resident Library LIB.MAC

TYPICAL TASK BUILDER FACILITIES

;** FORTRAN CALLABLE SUBROUTINE TO MULTIPLY TWO INTEGERS

MULL:: CALL $SAVAL ; SAVE RO-R5
MoV @2(R5) ,RO ; FIRST OPERAND
MOV @4 (R5) ,R1 ; SECOND OPERAND
MUL RO,R1 ; MULTIPLY
MOV R1,@6 (R5) ; STORE RESULT
RETURN ; RESTORE REGISTERS AND RETURN

.PSECT DIVV,RO,I,GBL,REL,CON

:**%* FORTRAN CALLABLE SUBROUTINE TO DIVIDE TWO INTEGERS

DIVV:: CALL SSAVAL ; SAVE REGS RO-R5
MOV @2 (R5) ,R3 ; FIRST OPERAND
MOV @4 (R5) ,R1 ; SECOND OPERAND
CLR R2 ; LOW ORDER 16 BITS
DIV R1,R2 ; DIVIDE
MOV R2,06 (R5) ; STORE RESULT
RETURN ; RESTORE REGISTERS AND RETURN

.PSECT SAVAL,RO,I,GBL,REL,CON

; **ROUTINE TO SAVE REGISTERS

$SAVAL::
MOV R4 ,- (SP) ; SAVE R4
MOV R3,-(SP) ; SAVE R3
MOV R2,-(SP) : SAVE R2
MOV Rl ,-(SP) ; SAVE Rl
MOV RO,-(SP) ; SAVE RO
MOV 12(sSP),-(SP) ;COPY RETURN
MOV R5,14(SP) ;SAVE R5
CALL @(sSP)+ ; CALL THE CALLER
MOV (sp)+,R0O ;RESTORE RO
MOV (SP)+,R1 ;RESTORE R1
MOV (SP)+,R2 ;s RESTORE R2
MOV (SP)+,R3 ;RESTORE R3
MOV (SP)+,R4 ;RESTORE R4
MOV (sP)+,R5 ;s RESTORE R5
RETURN
+ END

Figure 3-17 (Cont.) Source Listing for Resident Library LIB.MAC

TYPICAL TASK BUILDER FACILITIES

Once you have assembled LIB, you can build it with the4following Task
Builder command sequence:

TKB>LIB/PI1/-HD,LIB/-WI ,LIB=LIB
TKB>/

ENTER OPTIONS:

TKB>STACK=0

TKB>PAR=LIB:0:200

TKB>//

This command sequence instructs the Task Builder to build a
position-independent (/PI), headerless (/-HD) 1library image named
LIB.TSK. It instructs the Task Builder to create a map file LIB.MAP
and to output an 80 column listing (/-WI) to the line printer. It
also specifies that the Task Builder is to create a symbol definition
file, LIB.STB. The Task Builder will create all three files, LIB.TSK,

LIB.MAP, LIB.STB on device SY: under the UFD that corresponds to . the
terminal UIC.

Under options, STACK=0 suppresses the stack area within the resident
library's image.

The PAR option tells the Task Builder that the resident library will
reside within a partition of the same name as the library. As with
all shared regions, this is a requirement in an RSX-11lM system; in an
RSX-11M-PLUS system it is not. 1In addition, the PAR option specifies
that the base of the library is 0 and that it is 200(8) bytes long.

(For more information on the switches and options used in this
example, refer to Chapter 6.)

Figure 3-18 shows the Task Builder map that results from the command
sequence above.

Note in the global symbols section of the map in Figure 3-18 that the
Task Builder has assigned offsets to the symbols for each library
function. When the task that links to this library is built, the Task
Builder will assign virtual addresses to these symbols.,

The program MAIN in Figure 3-19 exercises the routines in the resident
library LIB.TSK. When you assemble and build it, MAIN will call upon
the library routines to add, subtract, multiply, and divide the
integers contained in the labels OPl and OP2 within the program. MAIN
will print the results of each operation to device TI:.

TYPICAL TASK BUILDER FACILITIES

LIB.TSK;12 MEMORY ALLOCATION MAP TKB M36 PAGE 1
7-FEB-79 14:47

PARTITION NAME : LIB
IDENTIFICATION : 01
TASK UIC : [303,3] TASK
TASK ATTRIBUTES: -HD,PI ATTRIBUTES
TOTAL ADDRESS WINDOWS: 1. SECTION
TASK IMAGE SIZE : 64. WORDS
TASK ADDRESS LIMITS: 000000 000163
R-W DISK BLK LIMITS: 000003 000002 000000 00000. |
*** ROOT SEGMENT: LIB
R/W MEM LIMITS: 000000 000163 000164 00l1l6.
DISK BLK LIMITS: 000002 000002 000001 000O1l.
MEMORY ALLOCATION SYNOPSIS:
SECTION TITLE IDENT
. BLK.: (RW,I,LCL,REL,CON) 000000 000000 00000.
AADD :(RO,I,GBL,REL,CON) 000000 000024 00020,

000000 000024 00020, LIB 0l
bpivv :(RO,I,GBL,REL,CON) 000024 000026 00022,

000024 000026 00022, LIB 0l
MULL :(RO,I,GBL,REL,CON) 000052 000024 00020.

000052 000024 00020, LIB 01
SAvAL :(RO,I,GBL,REL,CON) 000076 000042 00034.

000076 000042 00034. LIB 0l
suBB :(RO,I,GBL,REL,CON) 000140 000024 00020.

000140 000024 00020. LIB 0l

GLOBAL SYMBOLS:

AADD 000000-R MULL 000052-R SUBB 000140-R

DIVV 000024-R $SAVAL 000076-R

*** TASK BUILDER STATISTICS:

TOTAL WORK FILE REFERENCES: 376.

WORK FILE READS: O.

WORK FILE WRITES: O.

SIZE OF CORE POOL: 8198. WORDS (32. PAGES)
SIZE OF WORK FILE: 768. WORDS (3. PAGES)

ELAPSED TIME:00:00:04

Figure 3-18 Task Builder Map for LIB.TSK

FILE

LIB.OBJ;2
LIB.OBJ; 2
LIB.OBJ;?2
LIB.OBJ; 2

LIB.OBJ;2

TYPICAL TASK BUILDER FACILITIES

.TITLE MAIN
.IDENT /01/

* +

*MAIN - CALLING ROUTINE TO EXERCISE THE ARITHMETIC ROUTINES
FOUND IN THE RESIDENT LIBRARY, LIB.TSK.

~e we we we

.MCALL QIOWSS,EXITSS

OP1l: -WORD 1 ; OPERAND 1
OP2: -WORD 1 ; OPERAND 2
ANS: «BLKW 1 ; RESULT
OUT: «BLKW 100. ; FORMAT MESSAGE
FORMAT: .ASCIZ /THE ANSWER = %D./
-EVEN

.ENABL LSB :

START:
MOV $ANS , - (SP) ; TO CONTAIN RESULT
MOV $0P2,- (SP) ; OPERAND 2
MOV $0P1,-(SP) ; OPERAND 1
MOV #3,-(SP) ; PASSING 3 ARGUMENTS
MOV SP,R5 : ADDRESS OF ARGUMENT BLOCK
CALL AADD ; ADD TWO OPERANDS
CALL PRINT ; PRINT RESULTS
MOV SP,R5 ; ADDRESS OF ARGUMENT BLOCK
CALL SUBB ; SUBTRACT SUBROUTINE
CALL PRINT ; PRINT RESULTS
MOV SP,R5 ; ADDRESS OF ARGUMENT BLOCK
CALL MULL ; MULTIPLY SUBROUTINE
CALL PRINT ; PRINT RESULTS
MOV SP,R5 ; ADDRESS OF ARGUMENT BLOCK
CALL DIVV ; DIVIDE SUBROUTINE
CALL PRINT ; PRINT RESULTS
EXITSS

+

*% PRINT - PRINT RESULT OF OPERATION.

~e wo wo

PRINT: MOV #0OUT,RO ; ADDRESS OF SCRATCH AREA
MOV #FORMAT ,R1 ; FORMAT SPECIFICATION
Mov #ANS ,R2 ;i ARGUMENT TO CONVERT
CALL SEDMSG ; FORMAT MESSAGE
QIOWSS #IO.WVB,#5,#1,,,,<#0OUT,R1,#40>
RETURN ; RETURN FROM SUBROUTINE
. END START

Figure 3-19 Source Listing for MAIN.MAC

TYPICAL TASK BUILDER FACILITIES

- Once you have assembled MAIN, you can use the following Task Builder
command sequence to build it:

TKB>MAIN,MAIN/MA/-WI/-SP=MAIN
TKB>/

ENTER OPTIONS:
TKB>RESLIB=LIB/RO:3

TKB>//

This command sequence instructs the Task Builder to build a task file
named MAIN.TSK on device SY: under the UFD that corresponds to the
terminal UIC. It also specifies that the Task Builder is to create a
map file MAIN.MAP., The MA switch requests an extended map format. 1In
this example, /MA was applied to the device specification so that the
Task Builder would include in the map for the task the symbols within
the library LIB. The negated form of the wide listing switch (/-WI1)
was appended to the map specification to obtain an 80-column map
format. In this example, the Task Builder will not output a map
listing to the line printer

Under options, the RESLIB option specifies that the task MAIN 1is to
access the library LIB and that it requires read-only access to LIB.
The Task Builder will use APR3 to map the library.

The Task Builder map that results from this command sequence is shown
in Figure 3-20.

MAIN.TSK; 15 MEMORY ALLOCATION MAP TKB M36 PAGE 1
30-APR-79 10:33

PARTITION NAME GEN N
IDENTIFICATION 0l
TASK UIC : [303,3]
STACK LIMITS: 000212 001211 001000 00512. TASK

PRG XFR ADDRESS: 001552 ATTRIBUTES
TOTAL ADDRESS WINDOWS: 2. SECTION
TASK IMAGE SIZE : 1120. WORDS
TASK ADDRESS LIMITS: 000000 004213
R-W DISK BLK LIMITS: 000002 000006 000005 00005. _

**%* ROOT SEGMENT: MAIN

R/W MEM LIMITS: 000000 004213 004214 02188.
DISK BLK LIMITS: 000002 000006 000005 00005.

Figure 3-20 Task Builder Map for MAIN.TSK

TYPICAL TASK

MEMORY ALLOCATION SYNOPSIS:

SECTION
. BLK.: (RW,I,LCL,REL,CON) 001212
001212
001742
002760
003176
003324
003420
003530
AADD :(RO,I,GBL,REL,CON) 060000
060000
DIVV :(RO,I,GBL,REL,CON) 060024
060024
LNC$D : (RW,D,GBL,REL,CON) 003776
003776
MULL :(RO,I,GBL,REL,CON) 060052
060052
SAVAL :(RO,I,GBL,REL,CON) 060076
060076
SUBB :(RO,I,GBL,REL,CON) 060140
060140
$$RESL: (RW,I,LCL,REL,CON) 004000
004000
$$RESM: (RW,I,LCL,REL,CON) 004024
004024
004112
GLOBAL SYMBOLS:
AADD 060000-R SAVAL 060076-R
DIVV 060024-R SUBB 060140-R
I0.WVB 011000 $CBDAT 002760-R
MULL 060052-R SCBDMG 002766-R

MAIN.TSK;15

MEMORY ALLOCATION

BUILDER FACILITIES

002564
000530
001016
000216
000126
000074
000110
000246
000024
000024
000026
000026
000002
000002
000024
000024
000042
000042
000024
000024
000024
000024
000166
000066
000100

01396.
00344.
00526.
00142.
00086.
00060.
00072,
00166.
00020.
00020.
00022.
00022,
00002.
00002.
00020.
00020.
00034.
00034.
00020.
00020.
00020.
00020.
00118.
00054.
00064.

CDDMG
CATB
C5TAa
EDDAT
LIB
LIB
EDTMG
LIB
LIB
LIB
SAVRG

ARITH

01
12
0l
01
01
03

03.02

DARITH 0005

FILE

MAIN.OBJ;1
SYSLIB.OLB; 40
SYSLIB.OLB; 40
SYSLIB.OLB; 40
SYSLIB.OLB; 40
SYSLIB.OLB; 40
SYSLIB.OLB; 40
LIB.STB; 13
LIB.STB;1l3
SYSLIB.OLB; 40
LIB.STB;13
LIB.STB; 13
LIB.STB;13
SYSLIB.OLB; 40

SYSLIB.OLB; 40
SYSLIB.OLB; 40

$CBDSG 002774-R
$CBOMG 003002-R
$CBOSG 003010-R
SCBTA 003040-R

MAP TKB M36

MAIN 30-APR-79 10:33
$COTB 003332-R $DDIV 004150-R $EDMSG 002036-R
$C5TA 003420-R $DIV 004054-R SLNCNT 003776-R
$DAT 003574-R $DMUL 004112-R $MUL 004024-R
% TASK BUILDER STATISTICS:

TOTAL WORK FILE REFERENCES: 2518.

WORK FILE READS: O.

WORK FILE WRITES: O.

SIZE OF CORE POOL: 8200. WORDS (32. PAGES)

SIZE OF WORK FILE: 1024. WORDS (4. PAGES)

ELAPSED TIME:00:00:19

Figure 3-20 (Cont.)

Task Builder Map for

$CBTMG 003016-R
$CBVER 003002-R
$CDDMG 003176-R
$CDTB 003324-R

PAGE 2

$SAVRG 004000-R
$TIM 003652-R

MAIN.TSK

TYPICAL TASK BUILDER FACILITIES

This map contains a global symbols section. Note that the symbols
within the 1library now have virtual addresses assigned to them and
~ that these addresses begin at 60000(8) -- the virtual base address of
APR 3. The Task Builder's allocation of virtual address space for
MAIN.TSK is represented diagrammatically in Figure 3-21.

APR 7—

APR 6—

APR 5—

APR 4—

LIB. TSK } WINDOW 1 REGION 1

VIRTUAL 60000 APR 3—

APR 2—

APR 1—

MAIN. TSK }WINDOWO REGION O
VIRTUALO APRO—

Figure 3-21 Allocation of Virtual Address Space for MAIN.TSK

The library LIB is position independent and can therefore be mapped
anywhere in the referencing task's virtual address space. APR 3 was
used in this example to contrast this mapping arrangement with the
mapping of MACCOM in the virtual address space of task MCOM1 in
Example 1 (Section 3.1.5). If the optional APR parameter in the
RESLIB option above had been left blank, the Task Builder would have
allocated the highest available APR to map the library.

As described in earlier sections of this chapter, program section
names within position-independent shared regions must normally be
unique with respect to program section names within tasks that
reference them. When a shared region 1is a position-independent
resident common and you explicitly declare the program section names
within it, avoiding program section name conflicts is an easy matter.
However, when a shared region 1is a position-independent resident
library that contains calls to routines within an object module
library (SYSLIB, for example), conflicts may develop that are not
apparent to you. The problem arises when the position-independent
resident library and one or more tasks that link to it contain calls
to separate routines residing within the same program section of an
object module library.

When the Task Builder resolves a call from within a module it is
processing to a routine within an object module library, it places the
routine from the library into the image it 1is building. It also
enters into its internal table the name of the program section in the

TYPICAL TASK BUILDER FACILITIES

object module 1library within which the routine resides. If a
position-independent resident 1library contains a call to a routine
within a given program section of SYSLIB, for example, and then
subsequently a task that links to the resident library contains a call
to a different routine within the same program section of SYSLIB, both
the resident library and the referencing task will contain the program
section name. When you build the referencing task, the library's .STB
file will contain the program section name and a program section
conflict will develop. (Refer to Section 3.1.4 for additional
information on the sequence in which the Task Builder processes tasks
and the potential program section name conflicts that can result.)

This situation and one possible solution to it can be illustrated with
Example 3. When this example was first created, only the arithmetic
routines were included in the source file of the resident library
(LIB.MAC in Figure 3-17). The system library coroutine ($SAVAL) was
resolved from SYSLIB. Because the first instruction of each
arithmetic routine called $SAVAL, the Task Builder included a copy of
it in the resident library's image at task-build time. This turned
out to be unsatisfactory because of a call to the SYSLIB routine
SEDMSG (edit message) within the program MAIN that 1links to the
resident library. Both routines ($SAVAL and SEDMSG) reside within the
unnamed or blank program section (. BLK.) within SYSLIB. Therefore,
a program section name conflict developed when MAIN was built.

To circumvent this problem, the source code for $SAVAL was included
into the source file for the resident library under the explicitly
declared program section name, SAVAL.

Another solution would have been to build the resident library
absolute. In this case, the Task Builder would not have included
program section names from the resident 1library into the symbol
definition file for the library when the library was built.

It is important to note that the above program section name <conflict
develops only when two different routines residing within the same
program section of an object module library are involved. It presents
no problem when a resident library and a task that links to it contain
a call to the same routine in an object module library. 1In that case,
the Task Builder copies the routine and the program section name in
which it resides into the resident library when the library is built.
Then, when the task that calls the same routine is built, the Task
Builder will resolve the reference to the routine in the resident
library instead of in the object module library.

3.1.8 Example 4: Building and Linking to a Supervisor-Mode Library in
MACRO-11 (RSX-11M-PLUS Only)

Supervisor-mode libraries are a special type of resident library that
provide you with the means to effectively double the address space of
your task and thereby extend the physical memory to which your task
has access. Supervisor-mode 1libraries are particularly useful when
used to accommodate large run-time systems.

Supervisor-mode libraries are mapped with the instruction space APRs
of the processor's supervisor mode (Supervisor APR 0 through
Supervisor APR 7). Once you have linked your task to a
supervisor-mode library, a 'call from within your task to a global
symbol within the library automatically causes a context switch from
user mode to supervisor mode. Control of the processor is then
assumed by the called 1library routine. When the 1library routine
executes a return, control of the processor 1is transferred to a

TYPICAL TASK BUILDER FACILITIES

completion routine within the library. It is the completion routine's
responsibility to perform the return context switch from supervisor
mode to user mode. (Completion routines are described later in this
section.) :

When you build a task that links to a supervisor-mode library, the
Task Builder replaces each call from the task to a routine within the
library with a 4-word vector. This vector contains a transfer of
control instruction to a routine ($SUPL) that switches the processor
from user mode to supervisor mode. It also contains the address of
the completion routine and the address of the entry point of the
called library routine. (Refer to Figure B-14 in Appendix B.)

Figure 3-22 shows a typical mapping arrangement for a 14K word
supervisor-mode library and a 24K word task that refers to it.

SUPERVISOR MODE USER MODE
(INSTRUCTION SPACE) (INSTRUCTION SPACE)
|
APR7 — I APR 7 —
" SUPERVISOR- I
APRG6 — MODE | APR 6 —
LIBRARY |
APRB — l APR b5 —
APR4 — | APR4 — | REFERENCING
| TASK
APR3 — I APR3 —
APR2 — | APR 2 —
APR1 — ' APR1 —
| HEADER & STACK
APRO — APR 0 —

Figure 3-22 Typical Mapping for Supervisor-Mode Library

When the processor context switches from user mode to supervisor mode,
the system copies the user-mode instruction APRs (which map the task
image) into the supervisor-mode data space APRs. Therefore, when the
processor is running in supervisor mode under control of a library
routine, any data within the task image is available to the routine.
For example, library routines that require parameters or pointers to
parameters in registers or through low core impure area pointers can
obtain the parameters transparently. Figure 3-23 shows a typical
mapping arrangement when a supervisor-mode routine is in control of
the processor.

TYPICAL TASK BUILDER FACILITIES

SUPERVISOR MODE USER MODE
(INSTRUCTION SPACE) (INSTRUCTION SPACE)
UNUSED |
APR 7 — I
__ | supervisor-
APR 6 VIODE I
LIBRARY I
APR 5 —
APR 4 — APR4— | REFERENCING
/ TASK
APR 3 — / APR 3 —
APR 2 — / APR 2 —
APR 1 — / APR 1 —
/ HEADER & STACK
APR 0 — / APR 0 —
SUPERVISOR MODE
(DATA SPACE) / /
APR7 — /
APR 6 — /

APR 5 — /

APR 4 —
COPY - /
OF

APR3— | REFERENCING /
TASK

APR 2 — /
APR 1 — /

HEADER & STACK / I

APRO —

Figure 3-23 Task Mapping while Running in Supervisor Mode

TYPICAL TASK BUILDER FACILITIES

Building a supervisor-mode library is essentially the same as building
a conventional resident 1library. When you build a supervisor-mode
library, you suppress the header by attaching /-HD to the task image
file. During option input, you suppress the stack area by specifying
STACK=0. You specify the partition in which the library is to reside

and, optionally, the base address and length of the library with the
PAR option,

You indicate to the Task Builder that you are building a
supervisor-mode library with the CMPRT option. The argument for this
option identifies the entry symbol of the completion routine. When
the Task Builder processes this option, it places the completion
routine entry point in the library's .STB file. (Refer to Chapter 6
for more information on the CMPRT option).

The following restrictions are placed on the contents of a
supervisor-mode library.

1. Only subroutines using JSR PC, X should be used within the
library.

2. The library must not contain subroutines that use the stack
to pass parameters if tasks referring to the library call the
same routines.

3. The library must not contain data of any kind. This
includes: user data, buffers, 1I/0 status blocks, and
directive parameter blocks (the $S directive form can be used
because the directive parameter block for this form of
directive is pushed onto the stack at run time).

When you build a supervisor-mode library, you must include within it a
completion routine that performs the following:

1. Transfers any condition code bits that are relevant to your
user-mode task from the Processor Status Word (PSW) to the
Processor Status Word on the stack. All condition code bits
in the stacked PSW are set to 0 during the context switch
from user to supervisor-mode.

2. Writes an appropriéte value into the wuser stack pointer,
because the user stack will not be context switched.

3. Executes an RTI instruction.

Following is an example of a completion routine from the system
library, LB:[1,1]SYSLIB.OLB which returns the carry bit:

SCOMPL:: ADC 2(spP) ;i TRANSFER CARRY BIT
MOV #6,-(SP) ;CALCULATE USER SP VALUE
ADD Ssp, (SP) H
MTPI SP ;CHANGE USER STACK POINTER VALUE
RTI ;RETURN TO CALLER

The system library contains two other completion routines:

e S$SCMPAL -- which returns status bits NZVC
e SCMPRV -- which sets up PS for privileged tasks

Figure 3-24 shows a module containing three routines: a sort routine
(SORT::), a search routine (SEARCH::), and a completion routine
(SCOMPL::). When assembled and built, these routines will constitute
an example of a supervisor-mode library.

SORT::

108$:

20$:

30s:

408:

SEARCH::

10$:

208:

308$:

.TITLE
« IDENT

CALL
TST
MOV
MOV
MOV
MOV
DEC

MOV
MOV

TST
CMP
BLE
MOV
Mov
MOV

DEC
BNE
DEC
BEQ
TST
BR

RETURN

CALL
CMP
BNE
MOV
MOV
MOV
MOV
MOV
MOV

CMP
BEQ
BMI
DEC
BNE

MOV
RETURN

SUB
INC
MoV
RETURN

TYPICAL TASK BUILDER FACILITIES

SUPLIB
/01/

$SAVAL
(R5)+
(R5)+,R0
(R5)+,R4
(R4) ,R4
RO,R5

R4

R5,R0
R4,R3

(RO) +
(R5), (RO)
30%

(R5) ,R2
(RO) , (R5)
R2, (RO)

R3
20$
R4
408
(R5)+
108

$SAVAL
#4, (R5)+
208
(R5)+,RO
(R5)+,R1
(R5)+,R2
(R2) ,R2
(R5) ,R5
R2,R3

(RO), (R1)+
308
208
R2
108

#-1,(R5)
R2,R3

R3
R3, (R5)

Figure 3-24

~e e e e Ne we e

~ e

s we We W we W

~e ws Ne Ne we

N6 me Ne Ne N Ns we we we

~e wo ws wo W

-

~ N we

Source

SAVE ALL REGISTERS
SKIP OVER NUMBER OF ARGUMENTS
GET ADDRESS OF LIST
GET ADDRESS OF LENGTH OF LIST
GET LENGTH OF LIST

COoPY
COPY LENGTH OF LIST

MOVE POINTER TO NEXT ITEM
COMPARE ITEMS

IF LE IN CORRECT ORDER
SWAP ITEMS

DECREMENT LOOP COUNT
IF NE LOOP
DECREMENT
IF EQ SORT COMPLETED

GET POINTER TO NEXT ITEM TO BE COMPARED

SAVE ALL THE REGISTERS
FOUR ARGUMENTS?
IF NE NO

GET ADDRESS OF NUMBER TO LOCATE

ADDRESS OF LIST SEARCHING

GET ADDRESS OF LENGTH OF LIST
GET LENGTH OF LIST

ADDRESS OF RETURNED VALUE
COPY LENGTH

IS THIS THE NUMBER?

IF EQ YES

IF MI NUMBER NOT THERE
DECREMENT LOOP COUNT

IF NE NOT AT END OF LIST

END OF LIST PASS BACK ERROR

NUMBER FOUND - GET INDEX INTO LIST

RETURN INDEX

Listing for SUPLIB.MAC

TYPICAL TASK BUILDER FACILITIES

SCOMPL::
ADC 2(SP) ; COMPLETION ROUTINE
MOV #6,- (SP) :
ADD SP, (SP) ;
. MTPI SP :
RTI ; RETURN TO USER MODE
.END

Figure 3-24 (Cont.) Source Listing for SUPLIB.MAC

Once you have assembled SUPLIB, you can build it with the following
Task Builder command string:

TKB>SUPLIB/-HD,SUPLIB/MA/~SP,SUPLIB=SUPLIB
TKB>/ ‘
ENTER OPTIONS:

TKB>STACK=0

TKB>CMPRT=$COMPL
TKB>PAR=SUPLIB:160000:2000
TKB>GBLXCL=$SAVAL

TKB>//

This command sequence directs the Task Builder to create a headerless
image file (/-HD) named SUPLIB.TSK and to create an extended map file
(/MA) named SUPLIB.MAP. Because /-SP is appended to the map file, the
Task Builder will not output it to the 1line printer. It also
specifies that the Task Builder is to <create a .STB file named
SUPLIB.STB.

Under options, STACK=0 suppresses the stack area in SUPLIB's task
image. The CMPRT option identifies the global symbol of the
completion routine within SUPLIB. The Task Builder will place this
global symbol in a special entry in the library's .STB file. The PAR
option specifies to the Task Builder that SUPLIB will reside within a
partition of the same name as the library. This is not a requirement.
The PAR option also specifies to the Task Builder that SUPLIB will
have a base address of 160000, and that it will be 2000(8) bytes long.

The GBLXCL option directs the Task Builder to exclude from SUPLIB's
.STB file the global symbol $SAVAL. . $SAVAL 1is a system library
coroutine that saves the contents of all general registers. It uses
the stack to pass parameters. When SUPLIB is built, the Task Builder
will resolve the reference to $SAVAL by including the $SAVAL routine
into SUPLIB's image file. Since it 1is known that the task TSUP
(described below) will be linked to SUPLIB at a later time, and that
TSUP also contains a call to $SAVAL, the symbol $SAVAL must be
excluded from SUPLIB's .STB file ‘.0 prevent the Task Builder from
resolving the <call in TSUP to the $SAVAL routine in SUPLIB. The net
result of excluding the symbol from SUPLIB's .STB file 1is that the
Task Builder will include separate copies of $SAVAL in SUPLIB and in
the task that links to it TSUP. (For more information on the switches
and options used in this example, refer to Chapter 6.)

Suppose the symbol $SAVAL were not excluded from SUPLIB's .STB file.
When the Task Builder built TSUP, instead of resolving the reference
to SYSLIB, ‘it would resolve the reference to the routine existing
within SUPLIB. When TSUP ran, the call to $SAVAL within it would
cause a context switch from user mode to supervisor mode. $SAVAL
would execute but, because it 1s a coroutine, it would attempt a
direct call back to TSUP (which resides 1in wuser mode) instead of
returning to user mode through a completion routine.

TYPICAL TASK BUILDER FACILITIES

This illegal return call would fail and cause the system to trap.

Note also, that SUPLIB 1is built absolute. That is, the PI
(position-independent) switch is not attached to the library image
file. As written, SUPLIB must be absolute to prevent a program
section name conflict between SUPLIB and the task that links to it,
TSUP. Even though the symbol $SAVAL was excluded from SUPLIB's .STB
file, the program section in which $SAVAL resides in SYSLIB was not.
When the Task Builder resolves the reference to $SAVAL in TSUP, it
will place the routine into TSUP's image file and the program section
name in which it resides will be placed into the Task Builder's
internal section table. 1If, when TSUP is built, the program section
name were allowed to remain in the .STB file, a conflict would
develop. (Refer to Section 3.1.4 for additional information.)

The map that results from the above command sequence is shown in
Figure 3-25. Note that the virtual addresses for the symbols SEARCH,
SORT, $COMPL, and the entry point for the system 1library coroutine
$SAVAL have already been established. The Task Builder establishes
the virtual addresses for these symbols when it builds SUPLIB because
SUPLIB 1is absolute. If SUPLIB were built position independent, the
Task Builder would defer the assignment of virtual addresses for these
symbols until the tasks that link to the library are built.

The program TSUP in Figure 3-26 uses the sort and search routines in
the example in Figure 3-24. When you link TSUP to SUPLIB, install and
run it, TSUP will prompt for a number by printing ARRAY= on your
terminal. When you type a number, TSUP will place the number you have
typed into an array and prompt you again in the same manner. It will
continue to prompt you until it has prompted you 10 times or until you
type a 0, whichever comes first. After you have input 10 numbers or
typed a 0, TSUP will use the sort routine in SUPLIB to sort the
numbers in ascending order. It will then print them on your console
terminal. Once it has printed the numbers, it will prompt for a
number with the following message:

NUMBER TO SEARCH FOR?

When you respond by typing a number, TSUP will use the search routine
in SUPLIB to search the array for the number. If the number is in the
array, TSUP will print it on your terminal. If the number is not in
the array, TSUP will report that fact.

TSUP uses three system library routines: $SAVAL (save all registers
coroutine), $EDMSG (edit message routine), and $CDTB (decimal to
binary conversion routine). These routines are described in the
IAS/RSX-11 ©System Library Routines Reference Manual. The Executive
directives used by TSUP (QIOWS, DIRS, and QIOWSS) are described in the
RSX-11M/M-PLUS Executive Reference Manual.

TYPICAL TASK BUILDER FACILITIES
SUPLIB.TSK;17 MEMORY ALLOCATION MAP TKB M35 PAGE 1

29-DEC-78 09:18

PARTITION NAME : SUPLIB
IDENTIFICATION : 01

TASK UIC : [301,356] TASK

TASK ATTRIBUTES: —-HD

TOTAL ADDRESS WINDOWS: 1. z;ggﬁgums
TASK IMAGE SIZE : 96. WORDS N

TASK ADDRESS LIMITS: 160000 160213
R-W DISK BLK LIMITS: 000003 000002 000000 00000. _

**% ROOT SEGMENT: SUPLIB

R/W MEM LIMITS: 160000 160213 000214 00140.
DISK BLK LIMITS: 000002 000002 000001 00001l.

MEMORY ALLOCATION SYNOPSIS:

SECTION TITLE IDENT FILE

. BLK.: (RW,I,LCL,REL,CON) 160000 000214 00140.
160000 000152 00106. SUPLIB Ol " SUPLIB.OBJ;1l
160152 000042 00034. SAVAL 00 SYSLIB.OLB;6

GLOBAL SYMBOLS:

SEARCH 160056-R SORT 160000-R S$COMPL 160134-R $SAVAL 160152-R

*** TASK BUILDER STATISTICS:

TOTAL WORK FILE REFERENCES: 229.

WORK FILE READS: 0.

WORK FILE WRITES: 0.

SIZE OF CORE POOL: 2076. WORDS (8. PAGES)
SIZE OF WORK FILE: 768. WORDS (3. PAGES)

ELAPSED TIME:00:00:05

Figure 3-25 Task Builder Map for SUPLIB.TSK

TYPICAL TASK BUILDER FACILITIES

.TITLE TSUP
.IDENT /01/

+MCALL QIOWS$,DIRS,QIOWSS

WRITE: QIOWS I0.WvB,5,1,,,,<OUT,,40>
READIN: QIOW$ IO.RVB,5,1,,,,<OUT,5>

IARRAY: .BLKW 12.
LEN: +«BLKW 1
IART: «BLKW 1
INDEX: .BLKW 1
OUT: «BLKW 100.
ARGBLK:

EDBUF: .BLKW 10.

FMT1: +ASCIZ /%2SARRAY(%D)=/
FMT2: .ASCIZ /$N%2SNUMBER TO SEARCH FOR?/
FMT3: .ASCIZ /%$N%$2S%D WAS FOUND IN ARRAY (%D)/

FMT4: .ASCIZ /%N%2S%D WAS NOT IN ARRAY/
FMT5: .ASCIZ /%2SARRAY (%D)=%D/
.EVEN
START:
MOV # IARRAY,RO ; GET ADDRESS OF ARRAY
MOV #10,R1 ; SET LENGTH OF ARRAY
58%:
CLR (RO)+ ; INITIALIZE ARRAY
DEC R1 ; LOOP
BNE 58
MOV # IARRAY ,RO ;
MOV #INDEX,R2
108$:
MOV #FMT1,R1 ; FORMAT SPECIFICATION (ADDRESS
; OF INPUT STRING)
MOV (R2) ,EDBUF ; GET INDEX
INC EDBUF ;
CALL PRINT ; PRINT MESSAGE
CALL READ ; READ INPUT
MOV IART, (RO)+ ; PUT BINARY KEYBOARD INPUT INTO ARRAY
BEQ 208 ; ZERO MARKS END OF INPUT
INC (R2) ;
CMP (R2) ,#10.
BNE 108 ; IF NE YES
20$:
MOV (R2) ,LEN ; CALCULATE LENGTH OF ARRAY
MOV #ARGBLK,R5 ; GET ADDRESS OF ARGUMENT BLOCK
MOV $#2,(R5)+ ; NUMBER OF ARGUMENTS
MOV #IARRAY, (R5)+ ; PUT ADDRESS OF ARRAY '
MOV $#LEN, (R5) ;
MOV #ARGBLK ,R5 ;
CALL SORT ; SORT ARRAY
CLR R2 :
MOV # IARRAY ,RO ; GET ARRAY ADDRESS

Figure 3-26 Source Listing for TSUP.MAC

30$:

40S:

100S:

PRINT:

READ:

INC
MOV
MOV
MOV
CALL
CMP
BLT
MOV
CALL
CALL
MOV
MOV
MOV
MOV
MoV
MOV
MOV
CALL
TST
BLT
MOV
MOV
MOV
CALL
BR

MOV
MOV
CALL

CALL

CALL
MOV
MOV
CALL
MOV

DIRS
RETURN

CALL
DIRS
MOV
CALL
MOV
RETURN

. END

Figure 3-26 (Cont.)

TYPICAL TASK BUILDER FACILITIES

R2

R2,EDBUF
(RO)+,EDBUF+2
#FMT5 ,R1
PRINT

R2,LEN

308

#FMT2,R1
PRINT

READ

#ARGBLK ,R5
#4, (R5)+
#IART, (R5)+
#IARRAY, (R5)+
#LEN, (R5)+

INDEX, (R5)
#ARGBLK ,R5
SEARCH

INDEX

40%
IART,EDBUF
INDEX ,EDBUF+2
#FMT3,R1
PRINT

1008

#FMT4,R1
IART ,EDBUF
PRINT

SEXST

$SAVAL
#0UT,RO ;
#EDBUF,R2
SEDMSG

R1,WRITE+Q.IOPL+2 ;

#WRITE

$SAVAL
#READIN ;
#0UT,RO ;
$CDTB
R1,IART

START

INCREMENT INDEX

GET INDEX FOR PRINT

GET CONTENTS OF ARRAY

GET ADDRESS OF FORMAT SPECIFICATION

MORE TO PRINT?

IF LE YES

GET ADDRESS OF FORMAT SPECIFICATION
OUTPUT MESSAGE

READ RESPONSE

SET NUMBER OF ARGUMENTS

SET ADDRESS OF NUMBER LOOKING FOR
SET ADDRESS OF ARRAY

SET ADDRESS OF LEN OF ARRAY
ADDRESS OF RESULT

SEARCH FOR NUMBER IN IART
WAS NUMBER FOUND?

IF LT NO

GET NUMBER LOOKING FOR
GET ARRAY NUMBER

GET FORMAT ADDRESS

e O NS Ne W Ne W We We Mo We e We Ve Ve Wp We Ve We Vo We No No N o

DONE

GET FORMAT ADDRESS
GET NUMBER

~ ~

EXIT WITH STATUS

~

; SAVE ALL REGISTERS

4
ADDRESS OF QUTPUT BLOCK

; START ADDRESS OF ARGUMENT BLOCK
; FORMAT MESSAGE

PUT LENGTH OF OUTPUT

BLOCK INTO PARAMETER BLOCK
WRITE OUTPUT BLOCK

-~ ~

; SAVE ALL REGISTERS

READ REQUEST
GET KEYBOARD INPUT

; CONVERT KEYBOARD INPUT TO BINARY
; PUT INPUT INTO BUFFER

Source Listing for TSUP.MAC

TYPICAL TASK BUILDER FACILITIES

Once you have assembled TSUP, you can build it with the following Task
Builder command sequence:

TKB>TSUP,TSUP/MA/-WI/-SP=TSUP
TKB>/

ENTER OPTIONS:
TKB>RESSUP=SUPLIB/SV

TKB>//

This command sequence directs the Task Builder to build a task image
file TSUP.TSK and to <create an extended (/MA) 80 column (/-WI) map
file named TSUP.MAP., Because /-SP is appended to the map file, the
Task Builder will not output the map file to the line printer.

Under options, the RESSUP option tells the Task Builder that the task
intends to access a supervisor-mode library and that context switching
vectors are required. The Task Builder expects to £find a 1library
image file SUPLIB.TSK and a symbol definition file SUPLIB.STB, on
device LB: under the UFD that corresponds to the terminal UIC. In
addition, the Task Builder expects to find a special entry in the .STB
file that contains the symbol definition for the supervisor-mode
library's completion routine ($COMPL). This entry was created by the
Task Builder when SUPLIB was built as a result of the CMPRT option.
(Refer to Chapter 6 for more information on the switches and options
used in this example.) A portion of the map that results from the Task
Builder command sequence above is shown in Figure 3-27.

Note under global symbols in Figure 3-27 that the Task Builder has
changed the wvirtual addresses for symbols SEARCH, SORT, and $SAVAL
while leaving the virtual address of symbol $COMPL the same as it was
when SUPLIB was built. The new virtual addresses for the first three
symbols are addresses to the context switching vectors that the Task
Builder placed in TSUP's code. The Task Builder did not change the
virtual address of $COMPL because it is referenced only from within
the library. Therefore, calls to it do not constitute an initial
processor—-mode context switch.

Finally, note that building a resident library as a supervisor-mode
library in no way precludes its use as a "standard" user-mode resident
library. A given resident library might be mapped by one task as a
supervisor-mode 1library while simultaneously being mapped by another
as a user-mode library.

TYPICAL TASK BUILDER FACILITIES

TSUP.TSK; 6 MEMORY ALLOCATION MAP TKB M35 PAGE 1
29-DEC-78 16:39

PARTITION NAME : GEN

IDENTIFICATION : 01

TASK UIC ¢ [301,356]

STACK LIMITS: 000212 001211 001000 00512. TASK

PRG XFR ADDRESS: 002046 ATTRIBUTES
TOTAL ADDRESS WINDOWS: 2. SECTION

TASK IMAGE SIZE : 1312. WORDS
TASK ADDRESS LIMITS: 000000 005017
R-W DISK BLK LIMITS: 000002 000007 000006 00006. |

% ROOT SEGMENT: TSUP

R/W MEM LIMITS: 000000 005017 005020 02576.
DISK BLK LIMITS: 000002 000007 000006 00006.

MEMORY ALLOCATION SYNOPSIS:

SECTION TITLE IDENT FILE

. BLK.: (RW,I,LCL,REL,CON) 001212 003312 01738.
001212 001234 00668. MAIN 01 TSUP.OBJ;1

$$SUPL: (RW,I,LCL,REL,CON) 004760 000040 00032.

004760 000040 00032. S$SUPL 01 SYSLIB.OLB;6
GLOBAL SYMBOLS:
I0.RVB 010400 $CBOSG 003632-R $C5TA 004146-R SMUL 004552-R
I0.WvB 011000 $CBTA 003662-R S$SDAT 004322-R $SAVAL 003540-R

SEARCH 004740-R $CBTMG 003640-R $DDIV 004676-R S$SAVRG 004526-R
SORT 004750-R SCBVER 003624-R SDIV 004602-R S$SUPL 004766-R
SCBDAT 003602-R $CDDMG 004020-R $DMUL 004640-R S$TIM 004400-R
$CBDMG 003610-R $CDTB 002446-R S$EDMSG 002632-R
$CBDSG 003616-R $COMPL 160134 SEXST 003522-R
$CBOMG 003624-R $COTB 002454-R SLNCNT 004524-R

**¥* TASK BUILDER STATISTICS:

TOTAL WORK FILE REFERENCES: 2544.

WORK FILE READS: 0.

WORK FILE WRITES: 0.

SIZE OF CORE POOL: 2076. WORDS (8. PAGES)
SIZE OF WORK FILE: 1024. WORDS (4. PAGES)

ELAPSED TIME:00:00:12

Figure 3-27 Task Builder Map for TSUP.TSK

TYPICAL TASK BUILDER FACILITIES

3.2 EXAMPLE 5: BUILDING A MULTIUSER TASK (RSX-11M-PLUS ONLY)

A multiuser task is a task that shares the pure (read-only) portion of
its code with two or more copies of the impure (read/write) portion of
its code. When the system receives an 1initial run request for a
multiuser task, a copy of both the read-only and read/write portions
of the task are read into physical memory. As long as the task is
running, all subsequent run requests for it result in the system
duplicating only the read/write portion of the task 1in physical
memory. Thus, multiuser tasks are memory efficient.

You designate a task as multiuser when you build it by applying the MU
switch to the task image file. This switch directs the Task Builder
to create two regions for the task. One region (region 0) will
contain the read-write portion of the task; the other region (region
1) will contain the read-only portion of the task.

As with all other tasks, the Task Builder wuses a program section's
access code to determine its placement within a multiuser task's
image. It divides address space into read/write and read-only
sections. Unlike a " single user task, however, in a multiuser task,
the read-only portion of the task is hardware protected. In addition,
the Task Builder separates the read/write portions of a multiuser task
from the read-only portions and places them in separate regions at
opposite ends of the task's address space. It allocates the low
address APRs to the read/write portion (which includes the task's
header and stack area) and the highest available APRs to the read-only
portion. Figure 3-28 illustrates this allocation.

APR 7 — READ-ONLY
PROGRAM
SECTIONS
APR 6 —
APR 5—
APR 4 —
APR 3—
READ/WRITE
APR 2— PROGRAM
SECTIONS
APR 1—
HEADER & STACK
APR 0—

Figure 3-28 Allocation of Program Sections in a Multiuser Task

TYPICAL TASK BUILDER FACILITIES

If neither the read-only nor the read/write portion of the task
contain memory-resident overlays the Task Builder will allocate two
window blocks in the header of the task. When the task is installed,
the INSTALL processor will initialize these window blocks as follows:

e Window block 0 will describe the range of virtual addresses
(the window) for the read/write portion of the task. This
region will always contain the task's header.

e Window block 1 will describe the range of virtual addresses
for the read-only portion.,

Figure 3-29 below shows the window-to-region relationship of a
multiuser task.

HIGHEST VIRTUAL -
ADDRESS

WINDOW BLOCK
1

WINDOW BLOCK
0

READ/WRITE
REGION O

LOWEST VIRTUAL - —
ADDRESS

Figure 3-29 Windows for a Multiuser Task

If a multiuser task is an overlaid task, the read-only portion of the
task can be made up of the following:

e The read-only program sections of the root segment

TYPICAL TASK BUILDER FACILITIES

® Branches of an overlay structure if the complete branch is
memory resident and read-only

e A co-tree structure if the entire co-tree is memory resident
and read-only.

(Overlaid tasks are described in Chapter 4.)

Finally, the disk image of a multiuser task is somewhat different from
that of a single-user task. The read-only portion of the task is
placed at the end of the disk image. The relative block number of the
read-only portion and the number of blocks it occupies appears in the
label block. The read-only portion of the image is described in the
first library descriptor of the LIBRARY REQUEST section of the label
block. (Refer to Appendix B for more information on the task image
data structures.

The remainder of the text in this section and the figures associated
with it illustrate the development of a multiuser task. This example
was created by concatenating into a single file the resident library
file (LIB.MAC) and the task that links to it (MAIN.MAC) from Example
4. It is not intended to represent a typical multiuser task
application. However, it does 1illustrate the Task Builder's
allocation of program sections in a multiuser task and that 1is its
primary ' value. The concatenated source file, named ROTASK.MAC, for
this example is shown in Figure 3-30.

.TITLE ROTASK
.IDENT /01/

.MCALL QIOWSS,EXITSS

OP1l: .WORD 1 ; OPERAND 1
OopP2: «WORD 1 ; OPERAND 2
ANS: « BLKW 1 ; RESULT
OuT: +BLKW 100. ; FORMAT MESSAGE
FORMAT: .ASCIZ /THE ANSWER = %D,/
«EVEN
START:
MOV #ANS, - (SP) ; TO CONTAIN RESULT
MOV #0P2,~-(SP) ; OPERAND 2
MOV #0OP1,-(SP) ; OPERAND 1
MOV #3 ,-(SP) ; PASSING 3 ARGUMENTS
MOV SP,R5 ; ADDRESS OF ARGUMENT BLOCK
CALL AADD ; ADD TWO OPERANDS
CALL PRINT ; PRINT RESULTS
MOV SP,R5 ; ADDRESS OF ARGUMENT BLOCK
CALL SUBB ;7 SUBTRACT SUBROUTINE
CALL PRINT ; PRINT RESULTS
MOV SP,R5 ; ADDRESS OF ARGUMENT BLOCK
CALL MULL ; MULTIPLY SUBROUTINE
CALL PRINT ; PRINT RESULTS
MOV SP,R5 ; ADDRESS OF ARGUMENT BLOCK
CALL DIVV ; DIVIDE SUBROUTINE
CALL PRINT ; PRINT RESULTS
EXITSS

Figure 3-30 Source Listing for ROTASK.MAC

* +

- we “o

PRINT: MOV
MOV
MOV
CALL
QIOWSS
RETURN

TYPICAL TASK BUILDER' FACILITIES

#0UT,RO
$FORMAT,R1
#ANS,R2
$EDMSG

* PRINT -~ PRINT RESULT OF OPERATION.

FORMAT SPECIFICATION
ARGUMENT TO CONVERT
; FORMAT MESSAGE

~ we ~o

#I0.WVB,#5,#1,,,,<#0UT,R1,#40>

; RETURN FROM SUBROUTINE

+** FORTRAN CALLABLE SUBROUTINE TO ADD TWO INTEGERS

.PSECT AADD,RO,I,GBL,REL,CON

AADD:: CALL
MOV
MOV
ADD
MOV

RETURN

:** FORTRAN CALLABLE SUBROUTINE

.PSECT

sUBB:: CALL
MOV
MOV
SUB
MOV

RETURN

; ** FORTRAN CALLABLE SUBROUTINE

$SAVAL
@2 (R5),R0
@4 (R5),R1
RO,R1
R1,@6 (R5)

we Wo We we we wo

SAVE RO-R5

FIRST OPERAND

SECOND OPERAND

SUM THEM

STORE RESULT

RESTORE REGISTERS AND RETURN

TO SUBTRACT TWO INTEGERS

suBB,RO,I,GBL,REL,CON

$SAVAL
@2 (R5),R0O
@4 (RS) ,R1
R1,RO
R0O,@6 (R5)

e we w0 we we we

SAVE RO-R5

FIRST OPERAND

SECOND OPERAND

SUBTRACT SECOND FROM FIRST
STORE RESULT

RESTORE REGISTERS AND RETURN

TO DIVIDE TWO INTEGERS

.PSECT DIVV,RO,I,GBL,REL,CON

CALL
MOV
MOV
CLR
DIV
MOV
RETURN

DIVV::

;** FORTRAN CALLABLE SUBROUTINE

$SAVAL

@2 (R5),R3
@4 (R5) ,R1
R2

R1,R2
R2,@6 (R5)

e we N wmp we we we

SAVE REGS RO-R5

FIRST OPERAND

SECOND OPERAND

LOW ORDER 16 BITS

DIVIDE

STORE RESULT

RESTORE REGISTERS AND RETURN

TO MULTIPLY TWO INTEGERS

.PSECT MULL,RO,I,GBL,REL,CON

MULL:: CALL
MOV
MOV
MUL
MOV
RETURN
. END

Figure 3-30

$SAVAL
@2(R5),RO
@4 (R5) ,R1
RO,R1
R1,@6 (R5)

START

(Cont.)

w0 we we we N we

SAVE RO-R5

FIRST OPERAND

SECOND OPERAND

MULTIPLY

STORE RESULT

RESTORE REGISTERS AND RETURN

Source Listing for ROTASK.MAC

ADDRESS OF SCRATCH AREA

TYPICAL TASK BUILDER FACILITIES

Once you have assembled ROTASK, you can build it with the following
command sequence:

TKB>ROTASK/MU ,ROTASK /-WI /-SP=ROTASK
TKB>/

ENTER OPTIONS:

TKB>ROPAR=RDONLY

TKB>//

This command sequence directs the Task Builder to build a multiuser
(/MU) task image named ROTASK.TSK and to create an 80 column (/-WI)
map file named ROTASK.MAP. Because /-SP is attached to the map file,
the Task Builder will not output a map to the line printer.

Under options, the ROPAR option specifies that the system is to 1load
the read-only portion of the task 1into a partition named RDONLY.
Specifying a separate partition for the task's read-only region is not
a system requirement. The system will load the read/write portion
into partition GEN. The system will not load either region until it
receives a run request for the task.

The map that results from this command sequence 1is shown in Figure
3-31. Note that the Task Builder has added one field to the task
attributes section of this map describing the disk block limits of the
read-only portion of the task. It has also added a field to the root
segment portion of the map that describes the memory 1limits of the
read-only portion of the task.

Finally, note that the Task Builder has allocated space for all the
program sections with the read-only attribute beginning with the
highest available APR (in this case, APR 7).

TYPICAL TASK BUILDER FACILITIES

ROTASK.TSK;6 MEMORY ALLOCATION MAP TKB M35
6-JAN-79 13:58

PARTITION NAME
IDENTIFICATION 0l

TASK UIC [301,356] ,
STACK LIMITS: 000212 001211 001000 00512.

PRG XFR ADDRESS: 001552

TASK ATTRIBUTES: MU

TOTAL ADDRESS WINDOWS: 2.

TASK IMAGE SIZE : 1120. WORDS -

TASK ADDRESS LIMITS: 000000 004217

R-W DISK BLK LIMITS: 000002 000006 000005 00005.

GEN

R-0 DISK BLK LIMITS: 000007 000007 000001 00001. |

**% ROOT SEGMENT: ROTASK

R/W MEM LIMITS: 000000 004217 004220 02192.
R-0 MEM LIMITS: 160000 160177 000200 00128.
DISK BLK LIMITS: 000002 000006 000005 00005.

MEMORY ALLOCATION SYNOPSIS:

PAGE 1

TASK
ATTRIBUTES
SECTION

SECTION TITLE IDENT

. BLK.: (RW,I,LCL,REL,CON) 001212 002570 01400.

01 ROTASK.OBJ ;6
AADD : (RO,I,GBL,REL,CON) 160000 000024 00020.

01 ROTASK.OBJ ;6
pIvv :(RO,I,GBL,REL,CON) 160024 000026 00022.

001212 000530 00344. ROTASK

160000 000024 00020. ROTASK

160024 000026 00022. ROTASK

01 ROTASK .OBJ ;6
LNCSD : (RW,D,GBL,REL,CON) 004002 000002 00002.
MULL :(RO,I,GBL,REL,CON) 160052 000024 00020.

160052 000024 00020. ROTASK

- 01 ROTASK.OBJ ;6
suBB :(RO,I,GBL,REL,CON) 160076 000024 00020.

160076 000024 00020. ROTASK

0l ROTASK .OBJ ; 6 ,
$$RESL: (RW,I,LCL,REL,CON) 004004 000024 00020.
$$RESM: (RW,I,LCL,REL,CON) 004030 000166 00118.

GLOBAL SYMBOLS:

AADD 160000-R DIVV 160024-R MULL 160b52—R SUBB

**%% TASK BUILDER STATISTICS:

TOTAL WORK FILE REFERENCES: 2365.

WORK FILE READS: O.

WORK FILE WRITES: O.

SIZE OF CORE POOL: 2076. WORDS (8. PAGES)
SIZE OF WORK FILE: 1024. WORDS (4. PAGES)

ELAPSED TIME:00:00:06

Figure 3-31 Task Builder Map for ROTASK.TSK

FILE

160076-R

TYPICAL TASK BUILDER FACILITIES

3.3 EXAMPLE 6: BUILDING A TASK THAT CREATES A DYNAMIC REGION

In all the examples of tasks shown thus far in this chapter, the Task
Builder has automatically constructed and placed in the header of the
task all of the window blocks necessary to map all of the regions of
the task's image. The INSTALL processor has been responsible for
initializing the window blocks when the task was installed. In all
the examples, this has been possible because both the Task Builder and
the INSTALL processor have had all the information concerning the
regions available to them.

When a task creates regions while it is running (dynamic regions), the
information concerning the regions is not available to either the Task
Builder on the INSTALL processor. Therefore, when the Task Builder
builds such a task, it does not automatically create window blocks for
the dynamic regions. It creates only the window blocks necessary to
map the task region (the region containing the header and stack) and
any shared regions that the task references.

Dynamic regions are created and mapped with Executive directives that
are imbedded in the task's code. When you build a task that creates
dynamic regions, you must explicitly specify to the Task Builder how
many window blocks (in excess of those created by the Task Builder for
the task region and any shared regions) it is to place in the task's
header. The Executive will initialize these window blocks when it
processes the region and mapping directives. 1In all (including window
blocks for the task region and shared regions), you can inlcude as
many as eight window blocks to a task in an RSX-11M system and as many
as 16 in an RSX-11M-PLUS system.

The text in the remainder of this section and the figures associated
with it 1illustrate the development of a task that creates dynamic
regions. Figure 3-32 shows a task (DYNAMIC.MAC) that creates a 128
word dynamic region. This task simply creates an unnamed region, maps
to it, and fills it with an ascending sequence of numbers beginning at
the region's base and moving upwards. When the region is full,
DYNAMIC detaches from it and prints the following message on your
terminal: :

DYNAMIC IS NOW EXITING
The region is automatically deleted on detach.
All of the Executive directives wused by DYNAMIC (RDBBKS, WDBBKS,
DTRGS$S, EXITS$S, CRRGS$S, CRAWSS, QIOWSS, and QIOWSC) to create and

manipulate the region are described in the RSX-11M/M-PLUS Executive
Reference Manual.

s we We ms %o % Mo we

RDB:

Ne we Ne We We We e

=
=}
w

MES1:
ERR1:
ERR2:

ERR3:

START:

208

TYPICAL TASK BUILDER FACILITIES
.TITLE DYNAMIC
.IDENT /VOl/

.MCALL RDBBKS$,WDBBK$,DTRGSS,EXITS$S,CRRGSS,CRAWSS
.MCALL QIOWS$C,QIOWSS

.NLIST BEX
REGION DESCRIPTOR BLOCK

WORD 0 SIZE OF REGION IN 32 DECIMAL WORD BLOCKS
WORD 1 REGION NAME

WORD 2 ne

WORD 3 NAME OF SYSTEM CONTROLLED PARTITION IN
WORD 4 WHICH REGION WILL BE CREATED

WORD 5 STATUS WORD

WORD 6 PROTECTION WORD

RDBBKS 128.,,GEN,<RS.MDL!RS.ATTIRS.DEL!RS.RED!RS.WRT>,170017

WINDOW DESCRIPTOR BLOCK

WORD 0 APR TO BE USED TO MAP REGION

WORD 1 SIZE OF WINDOW IN 32-WORD BLOCKS
WORD 2 REGION ID

WORD 3 OFFSET INTO REGION TO START MAPPING
WORD 4 LENGTH IN 32-WORD BLOCKS TO MAP
WORD 5 STATUS WORD

WDBBKS$ 7,128,,0,0,,<WS.MAPIWS.WRT>

.ASCIZ /DYNAMIC IS NOW EXITING/
Sl = . - MESl

.ASCII /CREATE REGION FAILED/
SIZ1 = . - ERRI1

.ASCII /CREATE ADDRESS WINDOW FAILED/
SIz2 = . - ERR2

.ASCII /DETACH REGION FAILED/
SIZ3 = . - ERR3

.EVEN

.PAGE

.ENABL LSB

CRRG$S #RDB ; CREATE A 128 WORD UNNAMED REGION

BCS 1s$; FAILED TO CREATE REGION

MOV RDB+R.GID,WDB+W.NRID ; COPY REGION ID INTO WINDOW BLOCK
CRAWSS #WDB CREATE ADDR WINDOW AND MAP

’
BCS 2$; FAILED TO CREATE ADDR WINDOW
MOV WDB+W.NBAS,RO ; BASE ADDR OF CREATED REGION
MOV WDB+W.NSIZ,R2 ; NUMBER OF 32. WORDS IN REGION
.REPT 5 " ; MULTIPLY
ASL R2 ; BY
.ENDR ; 32.
MOV $#1,R1 ; INITIAL VALUE TO PLACE IN REGION
MOV R1l, (RO)+ ; MOVE VALUE INTO REGION
INC R1 ; NEXT VALUE TO PLACE IN REGION
DEC R2 ; ONE LESS WORD LEFT
BGT 208 : TO FILL IN
DTRGS$S #RDB ; DETACH AND DELETE REGION
BCS 3 ; DETACH FAILED
QIOWS$C 1I10.WVB,5,1,,,,<MES1,S51,40>
EXITS$S :

Figure 3-32 Source Listing for DYNAMIC.MAC

TYPICAL TASK BUILDER FACILITIES

ERROR ROUTINES

= we we we

S MOV #ERR1 ,RO ; CREATE FAILED

MOV #SI121,R1 ; SIZ OF MESSAGE
BR 65 ; WRITE MESSAGE

28 MOV #ERR2,R0O ; CREATE ADDRESS WINDOW FAILED
MOV $#s1z22,R1 ; SIZE OF MESSAGE
BR 6$

3S: MOV #ERR3,R0O ; DETACH FAILED
MOV $#S121,R1 ; SIZE OF MESSAGE

65: QIOWSS #IO.WVB,#5,#1,,,,<RO,R1,#40>
EXITSS
.END START

Figure 3-32 (Cont.) Source Listing for DYNAMIC.MAC

Once you have assembled DYNAMIC, you can build it with the following
Task Builder command sequence:

TKB>DYNAMIC,DYNAMIC/-WI/-SP=DYNAMIC
TKB>/

ENTER OPTIONS:

TKB>WNDWS=1

TKB>//

This command sequence directs the Task Builder to create a task image
named DYNAMIC.TSK and an 80 column (/-WI) map file named DYNAMIC.MAP
on device SY: under the terminal UIC. Because /-SP is attached to
the map file, the Task Builder will not output the file to the line
printer.

Under options, the WNDWS option directs the Task Builder to create one
window block over and above that required to map the task region.
Note that one window block must be created for each region the task
expects to be mapped to simultaneously.

The map that results from this command sequence is shown in Figure
3-33.

Note that creating dynamic regions always involves the assumption that
there will be enough room in the partition named in the task's region
descriptor block to create the region when the task is run. In this
example, if DYNAMIC were to be run in a system whose partition GEN was
not large enough to accommodate the region it creates, the CREATE
REGION directive would fail.

TYPICAL TASK BUILDER FACILITIES

DYNAMIC.TSK;1 MEMORY ALLOCATION MAP TKB M35 PAGE 1
6-JAN-79 14:13

PARTITION NAME : GEN

IDENTIFICATION : VOl

TASK UIC : [301,356]

STACK LIMITS: 000212 001211 001000 0O512. TASK

PRG XFR ADDRESS: 001406 ATTRIBUTES
TOTAL ADDRESS WINDOWS: 2. SECTION
TASK IMAGE SIZE : 480. WORDS

TASK ADDRESS LIMITS: 000000 001673

R-W DISK BLK LIMITS: 000002 000003 000002 00002. |

***% ROOT SEGMENT: DYNAMI

R/W MEM LIMITS: 000000 001673 001674 00956.
DISK BLK LIMITS: 000002 000003 000002 00002.

MEMORY ALLOCATION SYNOPSIS:

SECTION TITLE IDENT FILE

. BLK.:(RW,I,LCL,REL,CON) 001212 000430 00280.

001212 000430 00280. DYNAMI VOl DYNAMIC.OBJ;1
$DPB$$: (RW,I,LCL,REL,CON) 001642 000030 00024.

001642 000030 00024, DYNAMI VOl DYNAMIC.OBJ;1

*** TASK BUILDER STATISTICS:

TOTAL WORK FILE REFERENCES: 518.

WORK FILE READS: O.

WORK FILE WRITES: O.

SIZE OF CORE POOL: 2076. WORDS (8. PAGES)
SIZE OF WORK FILE: 768. WORDS (3. PAGES)

ELAPSED TIME:00:00:03

Figure 3-33 Task Builder Map for DYNAMIC.TSK

3.4 VIRTUAL PROGRAM SECTIONS

A virtual program section is a special Task Builder storage allocation
facility that permits you to create and refer to large data structures
by means of the mapping directives. Virtual program sections are
supported in the Task Builder through the VSECT option and in FORTRAN
through a set of FORTRAN-callable subroutines that issue the necessary
mapping directives at runtime. With the Task Builder VSECT option you
can specify the following parameters for a relocatable program section
or FORTRAN common block that you have defined in your object module:

e Base virtual address
e Virtual length (window size)

e Physical length

TYPICAL TASK BUILDER FACILITIES

By specifying the base address, you can align the program section on a
4K address boundary as required by the mapping directives.
Thereafter, references within the program need only point to the base
of the program section or to the first element in the common block, to
ensure proper boundary alignment.

By specifying the window size, you can £fix the amount of wvirtual
address space that the Task Builder allocates to the program section.
If the allocation made by a module causes the total size to exceed
this 1limit, the allocation wraps around to the beginning of the
window.

By specifying the physical size, you can allocate, before runtime, the
physical memory that the program section will be mapped into at
runtime, The Task Builder allocates this physical memory within an
area that precedes the task image. This area is called the mapped
array area.

The physical length parameter is optional. If you intend to allocate
physical memory at runtime through the Create Region directive, you
can specify a value of 0.

Note that when you specify a nonzero value for the physical memory
parameter, the resulting allocation affects only the task's memory
image, not its disk image.

Note also that the Task Builder will attach the virtual attribute to a
relocatable program section you have specified in the VSECT option
only if the section 1is defined 1in your task through the common
statement. For example:

TKB>VSECT=VIRT:160000:20000:2000

In this example, virtual program section VIRT 1is allocated with a
window size of 4K words and a base virtual address of 160000. 1In

physical memory, 32K words are reserved for mapping the section at
runtime.

Assume the program is written in FORTRAN, and includes the following
statement:

COMMON /VIRT/ARRAY (4)...
This statement generates a program section to which the Task Builder
attaches the wvirtual attribute. A reference to the first element of

the section, ARRAY (1), is translated by the Task Builder to the
virtual address 160000.

Figure 3-34 shows the effect of this use of the VSECT option.

TYPICAL TASK BUILDER FACILITIES

WINDOW © (WINDOW SIZE)
160000 APR 7 —— \—\— —————————————
©) (VIRTUAL BASE ADDRESS)

APR 6~—
APR 5-—

TASK TASK
APR 4 IMAGE IMAGE
APR 3-—

— | @ (PROGRAM

APR 2 SECTION

DEFINITION)
APR1-= | COMMON/VIRT/...| COMMON/VIRT/. ...

HEADER & STACK HEADER & STACK
APRO-—m b —— 2 e -
VIRTUAL ADDRESS

SPACE
TKB >/ i PHYSICAL LENGTH MAPPED
ENTER OPTIONS: oL BYTE BLOCKS ARRAY
TKB >VSECT = VIRT:160000:20000:2000 AREA

. NN A

PHYSICAL MEMORY

Figure 3-34 VSECT Option Usage

TYPICAL TASK BUILDER FACILITIES

As mentioned previously, the Task Builder restricts the amount of
virtual address space allocated to the section to a value that is less
than or equal to the window size, wrapping around to the base 1if the
window size is exceeded.

This process is illustrated in the following example, in which three
modules, A, B, and C, each contain a program section named VIRT that
is 3000 words long. A window size of 4K words has been set through
the VSECT option. If the program section has the concatenate
attribute, the Task Builder allocates memory to each module as
follows:

Module Low Limit Length High Limit
A 160000 14000 174000
B 174000 14000 170000
C 170000 14000 164000

The address limits for modules B and C illustrate the effect of
address wrap around when a component of the total allocation exceeds
the window boundary. Note that the addresses generated will be
properly aligned with the contents of physical memory if the virtual
section is remapped in increments of the window size.

3.4.1 FORTRAN Run-Time Support for Virtual Program Sections

FORTRAN supports subroutines to make use of the mapping directives.
FORTRAN also supports <calls to the following subroutines, which are
related to virtual program sections:

Subroutine Function
ALSCT Allocates a portion of physical memory for use as a
virtual section
RLSCT Releases all physical memory allocated to a virtual
section

As mentioned earlier, the effect of one or more VSECT= declarations at
task-build time is to create a pool of physical memory below the task
image (the mapped array area). Before a virtual section 1is referred
to, the task must allocate a portion of this memory through a call to
ALSCT. When space is no longer required, it is released through a
call to RLSCT.

Note that these subroutines issue no mapping directives. They
allocate and release space using region and window descriptor arrays
that you supply. The resulting physical offsets are wused in the
task's subsequent calls, that perform the actual mapping.

The subroutine ALSCT is called to allocate physical memory to a
virtual program section as follows:

CALL ALSCT (ireg,iwnd[,ists])

ireg

iwnd

TYPICAL TASK BUILDER FACILITIES

A one-dimensional integer array that is 9 words long. Elements 1
through 8 of the array contain a region descriptor for the
physical memory to be mapped. The descriptor has the following
format:

ireg(l) Region ID

ireg(2) Size of region in units of 64-byte blocks

ireg(3) Name of region in Radix-50 format (first three
characters)

ireg(4) (Second three characters)

ireg(5) Name of main partition containing region

ireg(6) The name is in'Radix—SO format

ireg(7) Region status word

ireg(8) Region protection code

ireg(9) Thread word: this element 1links window descriptors

that are wused to map portions of the region. It is
maintained by the subroutine.

The elements of the array that you set up consist of ireg(l), and
ireg(3) through ireg(8). The thread word, ireg(9), must be zero
on the initial call; thereafter, the subroutine maintains it.

When your task makes an allocation, ireg(l) and ireg(2) must be 0
on the initial call. 1In this case, ALSCT obtains and stores the
region size in ireg(2). When the alloc