VAX BASIC User Manual
Order Number: AA-HY15B-TE

February 1990

This manual describes how to develop VAX BASIC programs, describes the features of
the language, and describes how to use VMS features from VAX BASIC programs.

Revision/Update Information: This revised manual supersedes the VAX BASIC
User Manual (Order Number AA-HY15A-TE).

Operating System and Version: VMS Version 5.0 or higher
Software Version: VAX BASIC Version 3.4

digital equipment corporation
maynard, massachusetts

First Printing, August 1986
Updated, April 1987
Updated, July 1988
Updated, February 1990

The information in this document is subject to change without notice and should not
be construed as a commitment by Digital Equipment Corporation. Digital Equipment
Corporation assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used
or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is
not supplied by Digital Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and
Computer Software clause at DFARS 252.227-7013.

© Digital Equipment Corporation 1986, 1987, 1988, 1990.

All Rights Reserved.
Printed in U.S.A.

The postpaid Reader’s Comments forms at the end of this document request your
critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

CDA LNO3 VAXCLUSTER
DDIF MASSBUS VAX RMS
DEC PrintServer 40 VAXstation
DEC GKS FOR VMS Q-bus VMS

DECnet ReGIS VT

DECUS ULTRIX XUt
DECwindows UNIBUS ™
DIGITAL VAX ﬂﬂ@ﬂﬁﬂ

The following is a third-party trademark:
PostScript is a registered trademark of Adobe Systems, Inc.

ZK5424

Contents

Preface e e xxiii
Summary of Technical Changes i, XXVii
Partl| Developing VAX BASIC Programs on VMS
Chapter 1 Overview of the VAX BASIC Language
Chapter 2 Introduction to the VMS Operating System
2.1 LoggingInand Out i, 2-1
2.2 Accessingthe HELP Facility 2-2
23 Entering and Editing DCLCommands 2-3
24 Understanding the Directory Structure 24
25 Using DCL File-HandlingCommands 2-8
2.5.1 Displaying Files i, 2-9
25.2 Printingand Typing Files 2-9
25.3 Deleting Files 2-10
25.4 Purging Files L 2-11
255 Renaming and Moving Files 2-11
25.6 Searching Files 2-12
257 Setting File Protection. 2-12
2.6 Using Command Procedurescuou.... 2-13
26.1 Defining DCL Symbols and Logical Names 2-13

iii

2.6.2 Creating and Executing Command Procedures 2-15

2.6.3 Sample Command Procedure 2-16
2.6.4 Login Command Procedures 2-18
2.7 DCL Commands for Program Development 2-19

Chapter 3 Developing Programs in the BASIC Environment

3.1 Enteringthe Environment 3—1
3.2 Creating and Running Programs 3-2
3.3 Immediate Mode 3-5
3.4 Debugging in Immediate Mode 3-7
3.5 CompilerCommandsc0iiuiirenn.. 3-9
3.5.1 EnteringCommentsc..... 3-11
3.5.2 Entering DCLCommands 3-12
3.5.3 The APPEND Commandcoovimenunnn.. 3-12
3.5.4 The ASSIGN Commandccuun.... 3-13
3.5.5 The COMPILECommandcuvuuunn... 3-18
3.5.6 The CONTINUECommandcoouvvnnn.. 3-17
3.5.7 The DELETECommandcovuuuu.... 3-18
3.5.8 The EDITCommandc¢coiuuuunn... 3-18
3.5.9 The EXITCommand. v, 3-19
3.5.10 The HELPCommandcvuuuunn.. 3-20
3.5.11 The IDENTIFY Commandcovvuun... 3-21
3.5.12 The LISTand LISTNHCommands 3-21
3.5.13 The LOADCommandcciiviuerenn.. 3-22
3.5.14 The LOCKCommandcc¢ouuuuuunn.. 3-22
3.5.15 The NEWCommandcovvinurnn.. 3-23
3.5.16 TheOLDCommandc.cuivivininnnnnn.. 3-23
3.5.17 The RENAME Commandcouvuunn.. 3-23
3.5.18 The REPLACECommandcovvvunenen... 3-24
3.5.19 The RESEQUENCE Command 3-24
3.5.20 The RUN and RUNNH Commands 3-24
3.5.21 The SAVECommandcuvivinennnenn.. 3-25
3.5.22 The SCALECommandcovvivenunn.. 3-26
3.5.23 The SCRATCHCommandcoviieennnnnn. 3-26
3.5.24 The SEQUENCE Command 3-26
3.5.25 The SETCommand0oviiirunneenn.. 3-27
3.5.26 The SHOW Commandcvtiriernnnnn. 3-27

3.5.27 The UNSAVE Commandc...... 3-29

Chapter 4 Developing VAX BASIC Programs at DCL Command Level

4.1 Creatinga VAXBASICProgram. euuun.. 4-1
4.1.1 Using VAXEDT i e e e 4-1

4.1.2 Using VAXTPU i 4-2

4121 The EVE Interface 4-2

41.22 The EDT Keypad Emulator Interface 4-3

4.2 Compiling a VAXBASIC Program 4-3
421 The BASICCommandc.0iuiuennn. 4-4

422 BASIC Command Qualifiers 4-5

4.2.3 Compiler Listings 4-15

4.2.31 Source Program Listing. 4-21

423.2 Cross-Reference Listing 4-23

4233 AllocatonMap. 4-25

4234 Qualifier Summary 4-27

4.23.5 Machine Code Listing 4-28

4.3 Linking a VAX BASIC Programcu... 4-30
4.3.1 The LINKCommand. e, 4-31

4.3.2 LINK Command Qualifiers 4-32

4.3.3 Linkerlnput Files 4-33

434 Linker Output Files 4-34

4.3.5 Using an Object Module Library 4-34

4.3.6 Linker Error Messagesc.vit i, 4-35

4.4 Runninga VAXBASICProgram. 4-36

Chapter 5 Using the VMS Debugger

5.1 Overview of the Debugger 5-1
5.2 Features of the Debugger 5-3
53 Getting Started with the Debugger. 5-4
5.3.1 Compiling and Linking to Prepare for Debugging.......... 5-4

5.3.1.1 Establishing the Debugging Configuration 54

5.3.2 Starting and Terminating a Debugging Session 5-5

533 Issuing Debugger Commands 5-6

534 Viewing Your Source Code 5-9
5.3.41 NoscreenMode 5-9
5.34.2 ScreenMode 5-9
5.3.5 Controlling and Monitoring Program Execution 5-11
5.3.5.1 Starting and Resuming Program Execution. 5-11
5.35.2 Determining the Current Location of the Program
Counter, 5-13
5.35.3 Suspending Program Execution 5-13
5.3.5.4 Tracing Program Execution 5-15
5.3.5.5 Monitoring Changes in Variables. 5-16
5.3.6 Examining and ManipulatingData. 5-17
5.3.6.1 Displaying the Values of Variables 5-17
5.3.6.2 Changing the Values of Variables 5-18
5.3.6.3 Evaluating Expressions 5-19
5.3.6.4 Stepping Into VAX BASIC Routines. 5-20
5.3.7 Controlling Symbol References. 5-21
5.3.7.1 Module Setting 5-21
53.7.2 Resolving Multiply-Defined Symbols 5-22
5.4 A Sample Debugging Session 5-24
55 Debugger Command Summary 5-26
Partll VAX BASIC Programming Concepts
Chapter 6 Getting Started with VAX BASIC
6.1 LineNumbers 61
6.1.1 Programs with Line Numbers 6-1
6.1.2 Programs Without Line Numbers 6-2
6.1.3 Labelst . 6—4
6.1.4 Continuation of Long Program Statements 6-5
6.2 Identifying Program Units 6-5
6.3 The VAX BASIC Character Set. 6-6
6.4 Program Documentation 6-6
6.5 Declarationsand Data Typescc..... 6-8
6.5.1 Implicit Data Typing 6-8
6.5.2 ExplicitData Typing, 6-9

vi

6.6 Constants0ttt 6-10
6.7 Variables e 6-12
6.7.1 Floating-Point Variables 6-12
6.7.2 Integer Variables 6-12
6.7.3 Packed Decimal Variables 6-13
6.7.4 String Variables o oo a, 6-13
6.7.5 Subscripted Variables 6-14
6.8 Keywords and Reserved Words 6-15
6.9 Operands, Operators, and Expressions 6-16
6.10 Assignment Statements oL 6-16
Chapter 7 Simple Input and Output

7.1 Programinput e 7-1
711 Providing Input Interactively 7-1
7111 The INPUT Statement 7-2
71.1.2 The INPUT LINE and LINPUT Statements 7-4

7113 Enabling and Disabling the Question Mark
Prompt............c. i 7-5
71.2 Providing Input from the Source Program. 7-6
7.1.241 The READ and DATA Statements. 7-6
7122 The RESTORE Statement 7-8
7.2 Program Output e 7-9
7.21 Print Zones—The Comma and the Semicolon. 7-10
7.2.2 Output Format for Numbers and Strings 7-13
7.3 Terminal-Format Files i, 7-15
7.31 Opening and Closing a Terminal-Format File 7-15
7.3.2 Writing Records to a Terminal-Format File 7-16

Chapter 8 Arrays

8.1 Introduction e 8-1
8.2 Creating Arrays Explicitly L 8-2
8.2.1 Creating Arrays with the DECLARE Statement 84

vii

8.2.2 Creating Arrays with the DIM Statement 84

8.2.2.1 Declarative DIM Statements. 8-5

8.2.2.2 Executable DIM Statements 8-6

8.2.3 Creating Arrays with the COMMON Statement 8-7

8.2.4 Creating Arrays with the MAP Statement 8-7

8.3 Determining the Bounds ofanArray 8-8
8.4 Creating Arrays Implicitly 8-8
8.5 Assigning and Displaying Array Values 8-10
8.5.1 Assigning Values with the LET Statement 8-10

8.5.2 Listing Array Elements with the PRINT Statement 8-11

8.6 UsingMAT Statements, 8-11
8.6.1 The MAT Statement 8-13

8.6.2 The MAT READ Statement 8-14

8.6.3 The MAT INPUT [#] Statement. 8-15

8.6.4 The MAT LINPUT [#] Statement 8-17

8.6.5 The MAT PRINT [#] Statement 8-18

8.6.6 Matrix I/O Functions (NUMand NUM2) 8-19

8.7 Matrix Operatorsc0iiiiiinninnnnnnnn. 8-20
8.7.1 * Arithmetic Matrix Operations 8-20

8.7.1.1 Assignment., 8-21

8.71.2 Addition and Subtraction 8-21

8.71.3 Multiplication 8-21

8.7.2 Matrix Functions 8-22

8.7.2.1 The TRNFunction 8-23

8.7.2.2 The INVFunction. 8-23

8.7.2.3 The DET Function 8-24

Chapter 9 Data Definition

9.1 Declarative Statements 9-1
9.2 DataTypesi i e, 9-2
9.3 Setting the Default Data Typeand Size 9-5
9.4 Declaring Variables Explicitly 9-6
9.5 Declaring Named Constants Explicitly 9-7
9.5.1 Declaring Constants Within a Program Unit 9-8

viii

9.5.2 Declaring Constants External to the Program Unit 9-8

9.5.3 Declaring a Default Constant Type 9-8

9.6 Operations with Multiple Data Types 9-9
9.7 Allocating Static Storage oo 9-12
9.7.1 The COMMON Statementt 9-13

9.7.2 The MAP Statement 9-14

9.7.2.1 SingleMaps i 9-15

9.7.2.2 MultipleMaps 9-16

9.7.3 FILLHBOMS . .ttt et et e e e it aee e 9-17

9.7.4 Using COMMON and MAP in Subprograms 9-19

9.8 Dynamic Mapping. oottt 9-21

Chapter 10 Creating and Using Data Structures

10.1 The RECORD Statement 101
10.1.1 Grouping RECORD Components 10-5

10.1.2 RECORD Variantsiiiiininirnnnns 10-5

10.1.3 Accessing RECORD Components. 10-8

Chapter 11 Program Control

1.4 Statement Modifiers i 11-1
11.1.1 The IFModifier 11-2

11.1.2 The UNLESS Modifiercoiiiiinenn.. 11-2

11.1.3 The FOR Modifiert iiiiinnnennnn 11-2

11.1.4 The UNTIL Modifier 11-2

11.1.5 The WHILE Modifier 11-3

11.1.6 Nesting Modifiers i i 11-3

1.2 LOOPS . ittt ittt e et e 11-4
11.2.1 FOR.NEXTLOOPSt iniiiiiiiiinnnnannnss 114

11.2.2 WHILE.NEXTLOOPS e ittt i it ittt i i e iean e 11-7

11.2.3 UNTIL.NEXTLOOPS .« -t e vvee i ieiiie i eemaanan 11-8

11.2.4 Nesting LOOPS« oo i ittt i 11-9

13 Unconditional Branching (the GOTO Statement) 11-10
1.4 Conditional Branching i 11-10
11.4.1 The ON...GOTO...OTHERWISE Statement 11-11

11.4.2 The IF..THEN...ELSE Statement 11-11

11.4.3 The SELECT...CASE Statement 11-14
115 The EXIT and ITERATE Statements 11-16
1.6 Executing Local Subroutines. 11-17
11.6.1 The GOSUB and RETURN Statements 11-17
11.6.2 The ON...GOSUB...OTHERWISE Statement 11-18
1.7 Suspending and Halting Program Execution. 11-20
1.71 The SLEEP Statement 11-20
11.7.2 The WAIT Statement 11-21
11.7.3 The STOP Statement 11-21
11.7.4 TheEND Statement 1122

Chapter 12 Functions

12.1 Built-ln Functions 12-1
12.1.1 NumericFunctions 12-2
12111 The ABSFunction 12-2

12112 The INTand FIX Functions 12-2

12.1.1.3 The SIN, COS, and TAN Functions 12-3

12.1.1.4 The LOG10 Function 124

12115 TheEXPFunction 12-5

12116 TheRND Function: S 12-5

12.1.2 Data Conversion Functions 12-6
12121 The ASCll Function 12-7

12122 TheCHR$ Function 12-7

12.1.3 String Numeric Functions 12-8
12.1.3.1 The FORMAT$ Function 12-8

12.1.3.2 The NUM$ and NUM1$ Functions 12-8

12.1.3.3 The VAL% and VAL Functions 12-10

12.1.4 String Arithmetic Functions 12-10
12.1.41 The SUM$ and DIF$ Functions 12-11

12.1.4.2 The QUOS$, PLACES$, and PROD$ Functions 12-12

12.1.5 Date and Time Functions 12-14
12.1.56.1 The DATE$ Function 12-14

12152 The TIME$ Function. 12-15

12153 The TIMEFunction 12-15

12.1.6 Terminal Control Functions 12-16
12.1.6.1 The CTRLC and RCTRLC Functions 12-16

12.1.6.2 The ECHO and NOECHO Functions 12-17

12163 The INKEY$ Function. 12-18

12.2 User-Defined Functions 12-18
12.21 Single-Line DEF Functions 12-19
12.2.2 Multiline DEF Functions it 12-21
Chapter 13 String Handling
13.1 Introduction e e e 13-1
13.2 UsingDynamic Strings i 13-2
133 Using Fixed-Length Strings 134
13.4 Using String Virtual Arrays oo .. 134
135 Assigning StringData. i 13-5
13.5.1 The LET Statement i, 13-6
13.5.2 The LSET Statement 13-6
13.5.3 The RSET Statement, 13-7
13.5.4 The MID$ Assignment Statement 13-9
13.6 Manipulating String Data with String Functions 13-10
13.6.1 The LEN Function s 13-10
13.6.2 The POS Functionttt i 13-11
13.6.3 The SEG Functiono ... 13-13
13.6.4 The MID$ Function0 e, 13-15
13.6.5 The STRING$ Function., 13-16
13.6.6 The SPACE$ Functionccuiinnnnn, 13-17
13.6.7 The TRM$ Functioncii it 13-17
13.6.8 The EDITS Functiono i ve s ittt ee it ene e 13-18
13.7 Manipulating String Data with Multiple Maps 13-19
Chapter 14 Program Segmentation
14.1 VAX BASIC Subprograms 0.ttt 141
14.1.1 SUB Subprogramsot vv i ina e 14-3
14.1.2 FUNCTION Subprogramsvviiinnnneeenenn. 14-3
14.2 Declaring Subprograms and Parameters 14-5
14.3 Compiling Subprograms 14-7

xi

144 Invoking Subprograms 14-8
14.4.1 Invoking SUB Subprograms 14-9
14.4.2 Invoking FUNCTION Subprograms 14-9
145 Returning Program Status................................ 14-10
Chapter 15 File Input and Qutput
15.1 RecordFormats 15-1
15.1.1 Fixed-Length Records 15-2
15.1.2 Variable-Length Records 15-2
15.1.3 SteamRecords. 15-2
15.2 File Organizations 15-3
15.2.1 Terminal-Format Files 15-3
15.2.2 Sequential Files 15-3
15.2.3 Relative Files 15-3
15.2.4 Indexed Files 154
15.2.5 VinualFiles. 15-5
15.3 Record Access and Record Context 15-5
154 l/OandRecordBuffers 15-6
15.5 Accessing the ContentsofaRecord 15-7
15.5.1 The MAP Statement 15-7
15.5.2 The MAP DYNAMIC and REMAP Statements. 15-8
15.5.3 The MOVE Statement. 15-9
15.6 File and Record Operations 15-11
15.6.1 OpeningFiles 15-12
15.6.2 Creating Virtual Array Files 15-14
15.6.3 LocatingRecords 15-15
15.6.4 ReadingRecords 15-17
15.6.5 Writing Records 15-19
15.6.6 DeletingRecords 15-21
15.6.7 Updating Recordso vu... 15-22
15.6.8 Controlling Record Access. 15-24
15.6.9 Gaining Access to Locked Records 15-25
15.6.10 Accessing Records by Record File Address 15-27
15.6.11 Transferring Data to Terminal-Format Files 15-29
15.6.12 Resetting the File Position. 15-30
15.6.13 Truncating Files 15-30

Xii

156.14 RenamingFiles o il 15-31

15.6.15 Closing Flesand Endingl/O 15-31

156.16 DeletingFiles i i 15-32

15.7 File-Related Functions 15-32
15.7.1 The FSP$ Function it ennn 15-32

15.7.2 The RECOUNT Function.ciiiivinnnn.n 15-33

15.7.3 The STATUS, VMSSTATUS, and RMSSTATUS Functions 15-34

15.8 OPEN StatementOptions 0. 15-35
15.8.1 The BUCKETSIZEClauseccvv vy 15-35

15.8.2 The BUFFER Clause i, 15-36

15.8.3 The CONNECT Clause i 15-37

15.8.4 The CONTIGUOUS Clausecovviiiinnnnenn. 15-38

15.8.5 The DEFAULTNAME Clauseoiivnnnn 15-38

15.8.6 The EXTENDSIZEClauseo i v it it i i e 15-39

15.8.7 The FILESIZEClause.o v i i i it i e i e 15-39

15.8.8 The NOSPANClausecciviiiiiiiiinnanns 15-40

15.8.9 The RECORDTYPEClause iiiian 1540

15.8.10 The TEMPORARY Clause...........c.coiiivunenns 1541

15.8.11 The USEROPENClauseot i 15-41

15.8.12 The WINDOWSIZEClause, 15-44

Chapter 16 Formatting Output with the PRINT USING Statement

16.1 Introduction e e 16-1
16.2 UsingFormat Strings i 16-2
16.3 Printing Numbersc i, 16—4
16.3.1 Specifying the Number of Digits 164

16.3.2 Specifying Decimal Point Location 16-6

16.3.3 Printing Numbers with Special Symbols 16-7

16.3.3.1 COMMAas.vetevenionnnnsvnnsnn 16-8

16.3.3.2 AsteriskFiliFields 16-9

16.3.3.3 Currency Symbols 16-9

16.3.3.4 Negative Fields 16-10

16.3.3.5 E (Exponential) Format................... 1611

16336 LleadingZeros.......... ..., 16-12

16.3.3.7 Blank-lf-ZeroFields 16-13

16.3.3.8 DebitsandCredits 16-13

164 Printing Strings i i e 16-14
Left-Justified Format o o L 16-16

16.4.1

xiii

16.4.2 Right-dustified Format 16-16

16.4.3 Centered Fields 16-17

16.4.4 Extended Fields. 16-17

16.5 PRINT USING Statement Error Conditions 16-19

Chapter 17 Handling Run-Time Errors

171 Default ErrorHandling 17-1
17.2 User-Supplied ErrorHandlers 17-2
17.21 Protected Regions 17-3

17.2.2 Handlers 174

17.2.3 ExitingfromHandlers 17-7

17231 The RETRY Statement 17-8

17.2.3.2 The CONTINUE Statement 17-8

17.23.3 The EXIT HANDLER Statement 17-9

17.2.4 Selecting the Severity of Errorsto Handle 17-11

17.2.5 Identifying Errors i 17-12

17.2.5.1 Determining the Error Number (ERR) 17-12

17.25.2 Determining the Error Line Number (ERL) 17-13

17.25.3 Determining Where the Error Occurred (ERN$). .. 17-14

17.2.5.4 Determining the Error Message Text (ERTS). 17-14

17.2.5.5 Determining VMS Error Information. 17-15

17.25.6 Determining RMS Error Information......... .. 17-16

17.2.6 CTRLC Trapping . . « v oo voe et e e e e 17-17

17.2.7 Handling Errors in Multiple-Unit Programs 17-18

17.2.8 Forcing Errorst 17-20

17.3 Using the ON ERROR Statements 17-21

Chapter 18 Compiler Directives

18.1 Introduction 18-1
18.2 Controlling the Compilation Listing 18-2
18.2.1 The %TITLE and %SBTTL Directives 18-2

18.2.2 The %IDENT Directive 184

18.2.3 The %PAGE Directive. 18-5

18.2.4 The %LIST and %NOLIST Directives 18-5

18.2.5 The %CROSS and %NOCROSS Directives 18-6

Xiv

18.3 Accessing External Source Files 18-7
184 Controlling Compllationt 18-9
18.4.1 The %LET Directive oo v v i it i it i i e it 18-10
18.4.2 The %VARIANT Directiveccoviiienn... 18-10
18.4.3 The %ABORT Directive, 18-11
18.4.4 The %PRINT Directive i, 18-11
18.4.5 The %IF-%THEN-%ELSE-%END %IF Directive 18-11
18.5 Record Dependency Relationships inCDD/Plus 18-13
Chapter 19 Data Representation
19.1 Integer Format 19-1
19.1.1 Byte-Length Integer Format e e 19-1
19.1.2 Word-Length Integer Format 19-2
19.1.3 Longword Integer Format 19-2
19.2 Real Number Format iiieeennnnn 19-3
19.2.1 SINGLE Floating-Point Number Format (F_floating) 19-3
19.2.2 DOUBLE Floating-Point Number Format (D_floating) 194
19.2.3 GFLOAT Floating-Point Number Format (G_floating) 19-5
19.2.4 HFLOAT Floating-Point Number Format (H_floating) 19-6
193 Packed Decimal Number Format 19-6
19.4 String and Array Descriptor Format 19-7
19.4.1 Fixed-Length String Descriptor Format. 19-7
19.4.2 Dynamic String Descriptor Format 19-8
19.5 Array Descriptors i 19-9
19.5.1 The Prototype Block oo it 19-10
19.5.2 The Multiplier Block oo 19-11
19.5.3 TheBounds Blocko iiiinininannn 19-11
19.6 Decimal Scalar String Descriptor (Packed Decimal String
DeSCHPIOr) i i e e 19-12

XV

Partlll Using VAX BASIC Features on VMS
Chapter 20 Advanced File Input and Output

20.1 Introduction, 20-1
20.2 RMS I/OtoMagneticTape. 20-2
20.2.1 Allocating and MountingaTape 20-2

20.2.2 Opening a Tape File forOutput 20-2

20.2.3 Opening a Tape File fornput 20-3

20.2.4 PositioningaTape 20-3

20.2.5 Writing Recordstoa File. 204

20.2.6 Reading Records fromaFile 20-5

20.2.7 Controlling Tape Output Format 20-5

20.2.8 RewindingaTape, 20-6

20.2.9 ClosingaFile 20-7

20.3 Device-Specific /O 20-7
20.3.1 Device-Specific I/O to Unit Record Devices 20-7

20.3.2 Device-Specific /O to Magnetic Tape Devices 20-8

20.3.2.1 Allocating and Mountinga Tape 20-8

20.3.22 Opening a Tape File for Output 20-8

20.3.2.3 Opening a Tape File forInput 20-9

20.3.24 Writing RecordstoaFile.................. 20-9

20.3.25 Reading Records fromaFile 20-10

20326 RewindingaTape 20-10

20327 ClosingaTapeovvueennnnnnnnn. 20-11

20.3.3 Device-Specific /Oto Disksccou... ... 20-11

20.3.3.1 Assigning and Mountinga Disk 20-11

20.3.3.2 Opening a Disk File for Output. 20-12

20.3.3.3 Opening a Disk File forinput 20-12

20.3.3.4 Writing Records to a Disk File 20-12

20.3.3.5 Reading Records from a Disk File 20-13

204 VOtoMailboxes............... ..., 20-13
205 Network /O 20-15
20.5.1 Remote File Access 20-15

20.5.2 Task-to-Task Communication 20-16

20.5.3 Accessing an Rdb/VMS Database 20-17

Chapter 21

Using VAX BASIC in the Common Language Environment

211 Specifying Parameter-Passing Mechanisms 21-2

21.1.1 Passing Parameters by Reference 21-2

21.1.2 Passing Parameters by Descriptor 21-2

2113 Passing Parameters by Value 21-3

21.1.4 VAX BASIC Default Parameter-Passing Mechanisms 21-3

21.1.5 Creating Local Copiesovv it 21-5

21.2 Calling External Routines 0t 21-6

21.241 Determiningthe Typeof Call 21-6

21.2.2 Declaring an External Routine and lts Arguments 21-6

21.2.3 Calingthe Routine., 21-7

213 Calling VAX BASIC Subprograms from Other Languages. 21-8

214 Calling System Routines 21-11

21.441 VMS Run-Time Library Routines. 21-11

21.4.2 System Service Routines, 21-12

2143 System Routine Arguments 21-12

2144 Including Symbolic Definitions 21-18

21.4.5 Conditon Valuesoiiiiiiininnnnnenns 21-19

215 Examples of Calling System Routines 21-20

21.6 The VAX Procedure Calling and Condition Handling Standard 21-23

21.6.1 The Argument List 21-24

21.6.2 The Return of the Function Value 21-25

2163 Registerand Stack Usagecovviinnn 21-26

21.7 Additional Information o e 21-27

Chapter 22 Libraries and Shareable Images

221 Introduction i e 221

222 System-Supplied Librarieso il 22-2

223 Creating User-Supplied Object Module Libraries 22-3
22.3.1 Accessing User-Supplied Object Module Libraries in the BASIC

Environmentottt i i e, 22-3

22.3.2 Accessing User-Supplied Object Module Libraries at DCL

Level 224

224 Shareablelmages.................. ..., 22-5
22.4.1 Accessing Shareable Images in the BASIC Environment 22-6

22.4.2 Accessing Shareable Images at DCL Level 22-6

Chapter 23 CDD/Plus Support in VAX BASIC

23.1 Overview of VAXCDD/PIUSoveinnnnnnnnn. 23-1
232 CDD/Plus Conceptscuvuiinenonnnennnnnnn. " 23-2
23.2.1 Dictionary Formats 23-2

23.2.2 Dictionary Path Names 23-3

23.2.3 Dictionary Enfittes 23-5

23.24 Dictionary Relationships 23-5

23.25 Extracting CDD/Plus Data Definitions in VAX BASIC 23-6

233 Using CDD/Plus with VAXBASIC.couuurun.. 23-9
23.3.1 The /DEPENDENCY_DATA Qualifier 23-9

23.3.2 Creating Relationships with Included Record Definitions 23-9

234 Creating Relationships for Referenced Dictionary Entities 23-11
23.5 Specifying a CDD History ListEntry 23-13
236 CDD/PIUS Arraysc.uuiiiienn. 23-14
237 CDD/Plus Variants0 uuuuinnnnni. .. 23-16
238 TheNAMEFORBASICClauseccuuuuun... 23-17
23.9 CDD/PlusDataTypescoiiiimennnnnn. .. 23-18
23.9.1 Character String Data Types 23-23

23.9.2 integer Data Types., 23-24

23.9.3 Floating-Point Data Types 23-27

23.9.4 Decimal Stting Data Typesccovvunn... 23-29

23.9.5 OtherDataTypesccoiiiinnnuunnnn. 23-31

xviii

Appendix A

Compile-Time Error Messages

A1 Compile-TIme EIrors.t A1
Appendix B Run-Time Error Messages
B.1 VAX BASIC Run-Time Errors By Mnemonic B-1
B.2 VAX BASIC Run-time Errors By Number B-32
B.3 Errors Not Generated By VAXBASIC B-37
Appendix C Optional Programming Productivity Tools

C.1 VAX Language-Sensitive Editor (LSE) and the VAX Source Code
Analyzer (SCA). e e C-1
C.141 Preparingan SCALibraryt Cc-3
C.1.2 Starting and Terminating an LSE or an SCA Session c+4
C.13 Compiling from Within LSEy c+4
C14 Notes on VAXBASIC Support C-5

C.1.4.1 Programming Language Placeholders and

TOKENS . & vt ittt e e C-6
C.1.4.2 Placeholder and Design Comment Processing . . . c-6
C.15 LSEand SCAExamples Cc-9
C.1.51 FUNCTION Declaration. C-10
C.1.5.2 FIND Statement. C-11
C.1.53 FORStatementccviinnn. C-12
C.2 VAX CDD/PIUSottt ittt e iie i e teaaeeenns Cc-13
C3 VAX Database Management System (VAXDBMS) C-13
C.4 VAXDEC/TestManager.« uinenennnnnns Cc-14
C5 VAX DEC/Code Management System (CMS) C-14

Xix

Index

Examples
2-1 Sample Command Procedure 2-16
4-1 VAX BASIC Compiler Listingoiiiinnennnnn. ... 4-16
4-2 Source Program Listing. 4-22
4-3 Cross-Reference Listingccuuuevuinunn.. .. 4-24
44 Qualifier Summary 4-27
4-5 Machine Code Listingot 4-28
21-1 VAXBASIC Main Programouuuuuummnnennnn o 21-10
21-2 VAX FORTRAN Subprogramc.ouummrnnnnnnnnn. .. 21-10
21-3 Calling System Servicesouuuuiinnnnn.. 21-21
21-4 Program Displaying the $QIOW System Service Routine 21-22
C-1 LSE Placeholders ina VAX BASIC Program.oovvun. ... c-7
Figures
2-1 Complete File Specification 2-5
2-2 ADirectory Hierarchy 2-7
2-3 DCL Commands for Developing Programs 2-20
3-1 Running Multiple-Unit Programs 34
5-1 Keypad Key Functions Predefined by the Debugger 5-8
9-1 Mixed-Mode Expression Results 9-12
9-2 Multiple Maps i, 9-17
19-1 Byte-length Integer Format 19-2
192 Word-Length Integer Format 19-2
19-3 Longword Integer Format 19-3
19-4 Single-Precision Real Number Format 194
19-5 Double-Precision Real Number Format 19-5
19-6 Fixed-Length String Descriptor Format. 19-8
19-7 Dynamic String Descriptor Format 19-8
19-8 Array Descriptor Format 19-10
19-9 Decimal Scalar String Descriptorouvuurun... 19-12
21-1 Structure of a VAX Argument List 21-24
21-2 Example of a VAX Argument Listcuurunrin.... 21-25

XX

Tables

File Protection User Categoriesc..ivivven.n. 2-12
File Access Variationso, 2-12
VAX BASIC CompilerCommandscoviiiuiirunnenns 3-10
Examples of EditinginLineMode. 3-18
Debugger Command Summary i, 5-27
Predefined Constants, 6-10
MAT Statementsttt 8-12
MAT Statement Keywordsttt 8-13
VAXBASIC Data Typescc..... e e 9-3
Result Data Types in VAX BASIC Expressions 9-9
FILL item Formats, Representations, and Default Allocations 9-18
String Arithmetic Functions i i, 12-11
Precision of String Arithmetic Functions 12-11
String Modification e 13-2
EDIT Options. v it it i i i e e 13-18
Record Context After a FIND Operation. 15-16
Record Context After a GET Operation 15-17
Record Context After a PUT Operation 15-20
VAX RMS Control Structures Set for the USEROPEN Clause 15-41
Format Characters for NumericFields 16-7
Format Characters for String Fields. 16-14
Valid Parameter-Passing Mechanisms 21-3
Run-Time Library Facilites oo, 21-11
SyStem ServiCesot iiit i e et 21-12
VMSB USageS . . . oottt ittt ittt i i e 21-13
VAX RegisterUsage.coii ittt it i 21-26
Supported CDD/Plus Data Types 23-18
Unsupported CDD/Plus Data Types i, 23-20
Errors Not Generated by VAXBASIC, B-38
LSE Commands Used to Examine Source Code c-5
Types of LSE Placeholders i, Cc-8
LSE Commands Used to Manipulate Tokens and Placeholders c-9

xxi

Preface

Intended Audience

This manual presents tutorial information on VAX BASIC language features
and describes how to develop and use VAX BASIC programs on VMS sys-
tems. Readers are presumed to have some previous knowledge of BASIC or
another high-level programming language. This manual should be used with
the other two manuals in the documentation set.

Associated Documents

This manual is one of three manuals that form the VAX BASIC document
set. The other two manuals are:

VAX BASIC Reference Manual Provides reference material and syntax for all
VAX BASIC language elements except graphics
capabilities

Programming with VAX BASIC Provides tutorial and reference material for

Graphics VAX BASIC graphics capabilities

You may also be interested in the following supplementary manuals:
e VAX BASIC Syntax Summary

e Introduction to BASIC

e BASIC for Beginners

e More BASIC for Beginners

XXxiii

Document Structure

This manual has 23 chapters and 3 appendixes. The chapters are grouped
into three parts as follows:

Developing VAX BASIC Programs on VMS

Chapter 1 Provides a brief overview of VAX BASIC

Chapter 2 Shows you how to get started on VMS

Chapter 3 Describes how to develop programs in the BASIC environment

Chapter 4 Describes how to develop programs from DCL command level and
how to generate a compiler listing

Chapter 5 Describes how to use the VMS Debugger to debug VAX BASIC
programs

VAX BASIC Programming Concepts

Chapter 6 Explains the elements of VAX BASIC programs

Chapter 7 Explains simple input and output procedures

Chapter 8 Shows how to use VAX BASIC arrays

Chapter 9 Explains data definitions

Chapter 10 Explains how to create user-defined data structures with the
RECORD statement

Chapter 11 Shows how to control the flow of program execution

Chapter 12 Explains how to use VAX BASIC functions

Chapter 13 Explains how to handle strings in VAX BASIC

Chapter 14 Describes structured VAX BASIC programming techniques

Chapter 15 Explains how to manage files

Chapter 16 Describes how to format output with the PRINT USING
statement

Chapter 17 Explains error handling techniques

Chapter 18 Shows how to use compiler directives

Chapter 19 Describes how to represent data on VMS systems

XXiv

Using VAX BASIC Features on VMS

Chapter 20 Describes additional I/0 considerations on VMS systems

Chapter 21 Describes System Services and Run-Time Library routines
Chapter 22 Describes the use of user-supplied libraries and shareable images
Chapter 23 Describes VAX CDD/Plus support in VAX BASIC

Appendixes

Appendix A Lists compile-time error messages

Appendix B Lists run-time error messages

Appendix C Provides information on optional programming productivity tools

that can be used with VAX BASIC

Conventions

Convention

Meaning

$ BASIC progl

UPPERCASE letters

lowercase letters

The hardcopy version of this manual has in-
teractive examples that show user input in
red letters and system responses or prompts
in black letters. The online version differen-
tiates user input from system responses or
prompts by using a different font.

A vertical ellipsis indicates that code which
would normally be present is not shown.

Uppercase letters are used for VAX BASIC
keywords and must be coded exactly as
shown.

Lowercase letters are used to indicate
user-supplied names or characters.

Summary of Technical Changes

Summary of New and Changed Features for Version 3.4

Version 3.4 of VAX BASIC includes support for the Program Design Facility
(PDF). This new functionality can be implemented by appending the
/DESIGN qualifier to the DCL command BASIC. See Chapter 4 for more
information on the /DESIGN qualifier.

In addition, this documentation update contains numerous corrections and
clarifications to previous documentation. These documentation changes do
not reflect new features.

Xxvii

Partl
Developing VAX BASIC Programs on VMS

Chapter 1
Overview of the VAX BASIC Language

This brief overview highlights the features of the VAX implementation of
BASIC. The features listed here are described fully in subsequent chapters
of this manual, as well as in the other two manuals in the documentation
set.

BASIC was originally developed for students with little or no programming
experience. Since then, BASIC has become one of the most widely used
programming languages and is available on almost every computer system.
The VAX implementation of BASIC has evolved beyond the original design;
however, VAX BASIC still supports all of the traditional features of the
original language in addition to more recent programming techniques. It
has become much more than a teaching tool, and is used in a wide variety of
sophisticated applications.

VAX BASIC is a powerful structured programming language designed for
novice and application programmers alike. The language provides you with
both a highly interactive programming environment and a high-performance
development language. VAX BASIC supports such language constructs as:

¢ Code without line numbers (traditional line numbers are optional)
¢ Control structures, such as SELECT CASE

¢ Explicit variable declarations

* Capabilities for handling dynamic strings

* Adaptable file-handling capabilities for terminal-format files, and the
full range of RMS facilities

* Global and local run-time error handling with WHEN ERROR blocks
¢ Compile-time directives

* A variety of data types, including packed-decimal and user-defined
records

Overview of the VAX BASIC Language 1-1

e Extensive error checking with meaningful error messages

e Thirty-one-character names for variables, labels, functions, and
subprograms

VAX BASIC uses the VMS operating system to its full advantage and is
integrated with many other DIGITAL products. In particular, VAX BASIC
supports:

 Interactive graphics’

e The VAX standard calling procedures

* Record definitions included from the VAX Common Data Dictionary

e Code analysis with the VAX Performance and Coverage Analyzer (PCA)
e Creation of code with the VAX Language-Sensitive Editor

e Extensive online language help

e Exchange of data with other systems using DECnet

VAX BASIC supports the features of other versions of BASIC, including
PDP-11 BASIC-PLUS-2. VAX BASIC is a functional superset of
BASIC-PLUS-2. Compatibility flags for BASIC-PLUS-2 and ANSI Minimal
BASIC allow you to check whether your VAX BASIC programs will run on
other systems.

When you write programs in VAX BASIC, you can choose between two
program development methods: developing programs at DCL command
level, or developing programs from within the BASIC environment. When
you develop programs at DCL level, you write your source program with a
text editor, then compile, link, and run the program with commands to the
VMS operating system. Alternatively, when you develop programs within
the BASIC environment, you simply type the DCL command BASIC to enter
the environment, enter your program, then execute it with the VAX BASIC
command RUN.

The chapters in this part of the manual show you how to get started on the
VMS system and how to develop programs both at DCL command level and
within the BASIC environment.

1 The optional graphics capabilities are discussed in Programming with VAX BASIC Graphics.

1-2 Overview of the VAX BASIC Language

Chapter 2
Introduction to the VMS Operating System

When you develop VAX BASIC programs on the VMS operating system, you
use commands that are part of the DIGITAL Command Language (DCL).
This chapter explains how to use a VMS system. More specifically, this
chapter discusses how to:

* Log in to and out of the VMS system
* Access the HELP facility

* Use DCL commands

® Create directories and subdirectories
¢ Use DCL file-handling commands

* Develop command procedures

* Develop VAX BASIC programs

For a complete list of DCL commands, see the VMS DCL Dictionary.

2.1 Logging In and Out

Before you can log in to the VMS operating system, you must have an
account set up in your name. Your system manager is generally the person
responsible for establishing this account and will provide you with both
your user name and password. Both of these are unique to your session and
distinguish you from other users on the system. Once you are an authorized
user, you can regularly access the system.

When you log in, the system prompts you for your user name and password.
When you enter your user name, each character is displayed, or echoed, at
the terminal. However, when you enter your password, no characters are

Introduction to the VMS Operating System 2—1

echoed. This enables you to protect your account from others who may try
to access it. For example:

RET]
Username: SMITH
Password:

$

The system uses the dollar sign ($) as a prompt. When this prompt is
displayed, it indicates that the login procedure was successful and that you
can begin entering commands. If you enter your user name or password
incorrectly, the system displays an error message. To gain access to the
system, you must repeat the login procedure.

To change your password, type the SET PASSWORD command and press
the RETURN key as shown in the following example. The system prompts
you for your current password. The system then prompts you for your new
password, which can have up to 31 characters with any combination of the
letters A through Z, the numbers 0 through 9, a dollar sign ($), and an
underscore (_).

$ SET PASSWORD
0l1d password:
New password:
Verification:

To verify that you have entered your password correctly, the system prompts
you to enter your new password again. If the two new passwords do not
match, your original password remains in effect.

To end the current session, enter the LOGOUT command:
$ LOGOUT
The system responds with the following message:

SMITH logged out at DD-MMM-YYY HH:MM

2.2 Accessing the HELP Facility

The VMS system has an online HELP facility that is useful if documentation
on a particular command is not readily available. To gain access to the
HELP facility, you use the DCL command HELP. For example:

$ HELP

2-2 Introduction to the VMS Operating System

The system displays a list of topics for which help is available and prompts
you for a topic. If you want information on a specific command, such as
the DCL command BASIC, type that command after the topic prompt. For
example:

Topic? BASIC

The system displays a description of the command, and lists all the available
VAX BASIC qualifiers, parameters, and other topics for which help is
available. It then prompts you for a subtopic.

BASIC Subtopic? /SHOW

If you already know which subtopic you want information on, you can type
the HELP command followed by the BASIC topic and the subtopic you want
help on. For example:

$ HELP BASIC/SHOW

Note that all language HELP is available only from within the BASIC
environment or from within the VAX Language-Sensitive Editor.

To exit from the HELP facility, press CTRL/Z. Once the dollar sign prompt is
displayed, the system is ready to accept a new command.

2.3 Entering and Editing DCL Commands

Once you have gained access to the system, you can use DCL commands

to perform specific tasks. DCL commands are words, generally verbs, that
describe the action they perform. Following are some of the most important
rules for using DCL commands. Other rules are described in the VMS DCL
Dictionary.

* You can typically truncate any command name or qualifier name to four
characters. Fewer than four characters is acceptable if the truncated
name is unique to the command that you want.

* You must precede each qualifier name with a single slash character (/).
* You can type commands in either upper- or lowercase letters.

® If you omit a required parameter (for example, a file specification), the
DCL command interpreter will prompt you for it.

® You can type a command on as many lines as you wish, as long as you
end each line (except the last) with a hyphen (-).

® After you have typed a complete command line, you must press
RETURN to execute the command.

Introduction to the VMS Operating System 2-3

If you enter a command incorrectly (for example, if you misspell a command
or qualifier name), the command interpreter issues an error message and
you must either retype the entire command or edit the command and then
reenter it. Command-line editing enables you to correct errors in lengthy
command lines and saves you the trouble of retyping the entire line.

To edit DCL command lines, you can use various control characters as well
as keypad keys. The following list describes some of these editing functions:

DELETE Moves the cursor back one character and erases that
character.
Up arrow/(CTRL/B) Displays the most recent command line entered. You can

display up to twenty previously entered command lines
by continuing to press CTRL/B or the up arrow key. To
display command lines in the opposite direction, press
the down arrow key.

Left arrow/(CTRL/D) Moves the cursor one position to the left.
Right arrow/(CTRL/F) Moves the cursor one position to the right.
CTRL/U Deletes the current command line and issues a carriage

return so you can reenter the entire command line.
CTRL/C and CTRL/Y Cancels or interrupts an entire command line.

2.4 Understanding the Directory Structure

2-4

A directory is a catalog of files. Each file is distinguished by its name, file
type, and version number. It is not necessary to specify the complete file
specification every time you compile, link, or run a source program. Under
most conditions, it is necessary to specify only the file name.

Figure 2-1 illustrates a complete file specification.

Introduction to the VMS Operating System

Figure 2-1: Complete File Specification

MYVAX: : USER$SDISK: [SMITH]FIRST PROG.BAS;

3
0 node e device e directory e file name e file type @ version

ZK-5407-GE

Specifies a computer system that is part of a DECnet network.

Identifies the hardware device on which the file is either stored or
written.

Specifies the directory in which a file is cataloged.

Distinguishes a file from others contained in the same directory. A file
name can have up to 39 characters.

Identifies the type of data that a file contains.

Specifies the version number of a file. Each time a file is modified, its
version number is incremented by 1.

When you log in to the VMS operating system, you enter your default
directory, which generally has the same name as the account you log in
to. This default directory is also called your main or top-level directory.
The system allows you to create subdirectories from your main directory.
Subdirectories are helpful in organizing files. For instance, if you are a
multilanguage user, it may be helpful for you to keep all of your VAX
BASIC programs separate from your VAX COBOL programs. To create a
subdirectory, you issue the DCL command CREATE/DIRECTORY. In the
following example, the directory BASIC_PROG.DIR is created. You can
then specify the subdirectory name [SMITH.BASIC_PROG] in commands or
programs.

$ CREATE/DIRECTORY [SMITH.BASIC_PROG]

Introduction to the VMS Operating System 2-5

To move from one directory to another, you use the SET DEFAULT command
as shown in the following example:

$ SET DEFAULT [SMITH.COBOL_PROG]

The number of subdirectories you can create is limited only by the amount of
disk space you have available. Figure 2-2 illustrates the concept of directory
hierarchies.

2-6 Introduction to the VMS Operating System

Figure 2-2: A Directory Hierarchy

A volume’s Master File Directory (MFD)
$DIRECTORY [000000] contains entries for the user file
directories (UFDs) on the volume.
MALCOLM.DIR

301300.DIR
L HIGGINS.DIR
301301.DIR MFD

Level
Each UFD lists the files belonging (1
to that directory, and can contain

$DIRECTORY [HIGGINS] gntries for additional directories,

PAYROLL.DIRS called subdirectories.

525%?_?30 \ $DIRECTORY [HIGGINS.PAYROLL] (2]

LOGIN.COM INFO.COM A subdirectory can catalog files

i SOURCE.DIR and/or additional subdirectories.

LISTINGS.DIRA The subdirectory file named
DATADR < [HIGGINS]PAYROLL.DIR
DIRECT.DOC lists additional subdirectory files.

The subdirectory file named [HIGGINS.PAYROLLJDATA.DIR

lists additional subdirectory files.

$DIRECTORY [HIGGINS.PAYROLL . DATA}+

JANUARY .DIR $DIRECTORY [HIGGINS.PAYROLL LISTINGS] ()
FEBRUARY.DIR
|MARCH.DIR FICALIS $DIRECTORY [HIGGINS PAYROLL.SOURCE]
: TAXES.LIS
. FICA.PAS
TAXESMAR
PAYROLL.PAS
$DIRECTORY [HIGGINS.PAYROLL.DATA MARCH] 0
FICA.DAT
STATETAXDAT
FICADAT FEDTAX.DAT
FICA.DAT STATETAXDAT EMPTTLDAT
STATETAX.DAT FEDTAX.DAT .
FEDTAX.DAT EMPTTLDAT .
EMPTTL.DAT : nextievel.DIR \\

ZK-5781-GE

Introduction to the VMS Operating System 2-7

Often, you may refer to files that are contained in your directory hierarchy
but that are not contained in your current default directory. Two special
symbols exist to make references easier: the ellipsis (...) and the hyphen
(=). The ellipsis is used to search down a directory hierarchy and the
hyphen is used to search up a directory hierarchy.

For instance, [SMITH...] refers to the directory [SMITH] and all of the
subdirectories below [SMITH] in the hierarchy. The directory specification,
[...BASIC_PROG], refers to all subdirectories named BASIC_PROG below
the current default directory. You can specify the current default directory
with empty brackets ([]), and you can refer to the entire hierarchy under
your current default directory with [...].

Hyphens allow you to search up the hierarchy one directory at a time; each
hyphen stands for one level. For example, if your current default directory
is [SMITH.BASIC_PROG], you can refer to [SMITH] by specifying [-].

To delete a subdirectory, you must first remove any files that are contained
in it and change the protection on the directory file. You can then delete the
.DIR file.

Note that you can use both square brackets and angle brackets interchange-
ably to refer to directories.

For a more detailed discussion of the directory structure, see the
Introduction to VMS.

2.5 Using DCL File-Handling Commands

2-8

DCL file-handling commands allow you to modify and maintain your source
programs. The following sections describe how to use DCL commands to
perform common file operations such as displaying files, printing and typing
files, deleting files, purging files, renaming and moving files, searching files,
and setting file protection.

For a complete list of qualifiers to each command and for more detailed
information, see the VMS DCL Dictionary or type HELP at the DCL prompt
followed by the name of the command.

Introduction to the VMS Operating System

2.5.1 Displaying Files

To display a list of all the files that are contained in a directory, you use the
DCL command DIRECTORY. When you enter the DIRECTORY command
with no parameters or qualifiers, the system displays an entire list of all the
files that are contained in your current directory. For example:

$ DIRECTORY

Directory USER$$DISK: [SMITH]

PROG1.DIA;22 PROGL.EXE; 2 PROGL.0OBJ; 50 PROG1.BAS; 53

If you want to know how many versions of a specific file exist in your
current directory, you enter the DIRECTORY command along with a specific
file name and file type as shown in the following example:

$ DIRECTORY PROGL.BAS

Directory USERSDISK: [SMITH]

PROG1.BAS; 53

Total of 1 file.
The system displays a list of all the versions of the file that currently exist.

However, if you wish to view only a selected group of files that contain

a specific file type, you can use an asterisk (*) or a percent sign (%) as

a wildcard character. The asterisk signifies any number of characters,
including zero, whereas the percent sign signifies exactly one character.
Therefore, *. BAS represents all files that end with the file type BAS,
whereas 3%.BAS represents only those files that contain two characters for
a file name, where 3 is the first character. For example:

$ DIRECTORY *.0BJ

Directory USER$$DISK: [SMITH]

PROG1.0BJ; 53 PROG2.0BJ; 54 PROG4 .0BJ; 55

Total of 3 files.

The system displays only those files that end with the file type OBJ.

2.5.2 Printing and Typing Files

To examine the contents of a file, you can use either the DCL command
PRINT or the DCL command TYPE. The PRINT command allows you to
output the contents of a file to a line printer, whereas the TYPE command
allows you to output the contents of a file to your terminal screen.

Introduction to the VMS Operating System 2-9

In the following example, the PRINT command outputs the file FIRST
PROG.BAS to a printer:

$ PRINT FIRST PROG.BAS

By default, the system prints the most current version of FIRST_PROG.BAS.
To print a specific version of FIRST_PROG.BAS, you must specify a version
number. For instance, in the following example, the system prints the
second version of FIRST_PROG.BAS:

$ PRINT FIRST_PROG.BAS;2

With the PRINT command, you can specify command qualifiers. For
example, the /AFTER qualifier specifies that the job not be printed until
a specific time of day. For a complete list of all the command qualifiers
available with the PRINT command, see the VMS DCL Dictionary.

With the TYPE command, you can display the contents of a file on your
terminal screen. If you specify the /PAGE qualifier, you can display one
screen of text at a time. If you do not specify the /PAGE qualifier, you can
press CTRL/S to interrupt the display for closer examination of a particular
section and then resume the display by pressing CTRL/Q. If your keyboard
has a NOSCROLL or a HOLD SCREEN key, you can use it to toggle between
interrupting and resuming the display.

2.5.3 Deleting Files

2-10

To delete a file, you use the DCL command DELETE. With the DELETE
command, you must specify the file name, the file type, and the version

number of the file you want to delete. For instance, in the following
example, the system deletes the first version of FIRST_PROG.BAS:

$ DELETE FIRST_PROG.BAS;1

If you want to delete all versions of a file, you can use an asterisk (*) as a
wildcard character. For example:

$ DELETE FIRST PROG.BAS;*

Similarly, if you want to delete all files with a particular file type, you can
use the asterisk (*) or the percent sign (%) as a wildcard character. For
instance, in the following example, the system deletes all files that have the
file type LIS:

$ DELETE *.LIS;*

Introduction to the VMS Operating System

You can specify command qualifiers with the DELETE command. For
instance, if you specify /CONFIRM, a request is issued before each individual
DELETE operation so that you can confirm that the operation should be
performed on a particular file.

2.5.4 Purging Files

The DCL command PURGE deletes all but the most recently modified
version of files. Unlike the DELETE command, you can specify the PURGE
command without specifying a file name or file type. The system deletes all
files except the most recent version in your current directory.

$ PURGE

By default, only the most recent version of each file is kept. You can,
however, specify the number of versions that are kept by specifying the
/KEEP qualifier. This command qualifier specifies the maximum number of
versions of a specified file to be kept in your directory. For instance, in the
following example, the system deletes all but the two highest versions of
FIRST_PROG.BAS:

$ PURGE FIRST_ PROG.BAS/KEEP=2

2.5.5 Renaming and Moving Files

To change the identification of one or more files, use the DCL command
RENAME. For instance, in the following example, FIRST_PROG.BAS is
changed to SECOND_PROG.BAS:

$ RENAME FIRST PROG.BAS SECOND_PROG.BAS

Note that because a version number is not specified, the most current
version is renamed by default.

You can also use the RENAME command to move a file from one directory
to another. For instance, in the following example, the file SECOND_
PROG. BAS is moved from the directory [SMITH] to the subdirectory
[SMITH.BASIC_PROG]:

$ RENAME [SMITH]SECOND_PROG.BAS [SMITH.BASIC_PROG]

To move an entire set of files that have a common file name or file type, you
can use the asterisk (*) as a wildcard character. For instance, the following
command line changes the directory name of all files that contain the file
name SECOND_PROG:

Introduction to the VMS Operating System 2-11

$ RENAME [SMITH]SECOND_PROG.*;* [SMITH. BASIC _PROG]*.*;*

2.5.6 Searching Files

To search a file or a group of files for a specified string, use the DCL
command SEARCH. This command allows you to search the contents of a
specified file or group of files for a particular string or strings and lists all
the lines in which the string or strings appear. In the following example, the
directory [SMITH.BASIC_PROG] is searched for any files that contain the
string “Course_Data”:

$ SEARCH [SMITH.BASIC_PROG]*.*;* "Course Data"

2.5.7 Setting File Protection

To prevent others from gaining access to a file, you use the

SET FILE/PROTECTION command. With this command, you specify user
categories with access types. Table 2-1 lists the four user categories and
Table 2-2 lists the four access types.

Table 2-1: File Protection User Categories

User Category Description
OWNER The user who created the file
GROUP All users, including the owner, who have the same group

number in their user identification codes (UICs) as the
owner of the file

WORLD All users

SYSTEM All users who have the same system privilege (SYSPRV),
or low group numbers (usually from 1 through 10)

Table 2-2: File Access Variations

Access Description
READ The ability to examine, print, or copy a file
WRITE The ability to modify or write a file

(continued on next page)

2-12 Introduction to the VMS Operating System

Table 2-2 (Cont.): File Access Variations

Access Description

EXECUTE The ability to execute a file that contains executable
program images

DELETE The ability to delete a file

When you specify the SET FILE/PROTECTION command, the class names
and access types can be spelled out or abbreviated to the first letter. For
example, you may want to give system users and your project members
complete access to the file TEST.BAS, and give others read access only. To
do this, you would enter the following command:

$ SET FILE TEST.BAS/PROTECTION = (S:RWED,O:RWED,G:RWED,W:R)

2.6 Using Command Procedures

A command procedure is a group of DCL commands in a file that can

be executed by the DCL command interpreter. You can use command
procedures to generate sequences of command lines that you type frequently.
For example, you could create a command procedure that compiles, links,
and runs your source programs while checking for error status. Moreover,
you could create a command procedure that deletes all files that end with a
particular file type. Instead of typing each command separately, you would
execute the command procedure.

The following sections briefly discuss the rules for defining DCL symbols and
logical names as well as how to create and execute a command procedure. In
addition, this section contains a sample command procedure and a sample
LOGIN.COM file. For more information, see the Guide to Using VMS
Command Procedures.

2.6.1 Defining DCL Symbols and Logical Names

You define a symbol by placing the equal sign (=) or the double equal sign
(==) between the symbol and the string it represents. If you use the
double equal sign operator, the system inserts the symbol in the global
symbol table; if you use the equal sign operator, the system inserts the
symbol in a local symbol table. When a symbol is local, it is recognized only
within the procedure in which it is contained. However, when a symbol is
global, it is recognized by many other procedures.

Introduction to the VMS Operating System 2-13

2-14

For example, the following command defines the global symbol BASIC as a
command to invoke the VAX BASIC compiler, with two added qualifiers:

$ BASIC == "BASIC/DEBUG/LIST"

Briefly, the VMS system creates a global symbol table for you when you log
in. Then, each time you execute a command procedure, the system creates a
new command level and a local symbol table for that level. If one command
procedure executes another procedure, the system creates another new—
lower—command level and another local symbol table, and so forth. Every
command level can access the symbols in the global symbol table, as well as
symbols in local symbol tables at higher command levels. In other words,
you can define local symbols in a command procedure that are available to
lower-level procedures. The VMS DCL Dictionary describes symbol tables in
detail.

Note that the system discards local symbols and their values when a
procedure exits. A command procedure can create local symbols, but the
symbols are deleted when the procedure ends. However, when you define
local symbols at DCL command level, these symbols remain until you
explicitly remove them or until you log out.

You can pass information to a higher-level command procedure by defining
a global symbol to contain the information. Because there is only one global
symbol table, and it is accessible at all command levels, the higher-level
command procedure can test the value of the symbol.

To allow abbreviations of a symbol, insert an asterisk (*) in the symbol
where you want to end the acceptable abbreviation. For example, if you
wanted to abbreviate the command BASIC to BAS, you could define a
symbol as follows:

$ BAS*IC == "BASIC/DEBUG/LIST"

Once you have defined this symbol, you can type BAS (plus any remaining
letters in the command) to invoke the VAX BASIC compiler with the
/DEBUG and /LIST qualifiers. Note that the double equal sign in this
symbol definition causes the creation of a global symbol.

You can determine the definition of a symbol by typing SHOW SYMBOL,
followed by the symbol name. For example:

$ SHOW SYMBOL BAS
BAS*IC == "BASIC/DEBUG/LIST"

Introduction to the VMS Operating System

To delete a symbol, type DELETE/SYMBOL, followed by the symbol name.
If you do not specify a symbol table qualifier, /[LOCAL is the default. If the
symbol is in the global table, type DELETE/SYMBOL/GLOBAL followed by
the symbol name. For example, you could delete the symbol BAS*IC that
you had previously defined, by typing the following:

$ DELETE/SYMBOL/GLOBAL BASIC

To create a logical name, you use either the DCL command DEFINE or
the DCL command ASSIGN. A logical name is a name that is equated to
an equivalence string, or a list of equivalence strings. For example, the
following command assigns the logical name INFO to the file specification
USER$$DISK:[SMITHIINFO.DAT;12:

$ DEFINE INFO USERSDISK: [SMITH]INFO.DAT;12

You can determine the definition of a logical name by typing SHOW
LOGICAL, followed by the logical name. For example:

$ SHOW LOGICAL INFO
"INFO" = "USER$$DISK: [SMITH]INFO.DAT;12" (LNM$PROCESS_TABLE)

When you create a logical name, it is maintained in a logical name table.
For more information on logical name tables, see the VMS DCL Dictionary.

You can keep a file of symbols and logical names for the system to define
every time you log in, thus creating a set of personal commands for special
purposes. For information on login command procedures, see Section 2.6.4.

2.6.2 Creating and Executing Command Procedures

To create a command procedure, you can invoke a text editor or you can use
the DCL command CREATE. If you use the default file type COM, you need
not include the file type when you execute the procedure.

Once you have created your command procedure, you can execute it either
interactively or in batch. To execute a command procedure interactively,
type the at sign (@) execute procedure command followed by the name of
the file. In the following example, the procedure SAMPLE.COM is executed:

$ @SAMPLE

To execute a command procedure in batch, you use the DCL command
SUBMIT. This command allows you to submit your procedure to a system
batch job queue for execution. Once the job completes, the system prints a
log file indicating the status of the job and then deletes the log file from your

Introduction to the VMS Operating System 2-15

directory. In the following example, SAMPLE.COM is placed in the system
batch job queue. A log file entitled SAMPLE.LOG will be created.

$ SUBMIT SAMPLE

2.6.3 Sample Command Procedure

Example 2-1 is included to help you understand how command procedures
can aid in the programming process. This command procedure incorporates
many of the DCL commands discussed throughout this chapter. Any text
that follows an exclamation point (!) is interpreted by the DCL command
interpreter as a comment and is ignored.

Example 2-1: Sample Command Procedure

!The following command procedure tests to see if the file name you
linput exists. If it does exist, the procedure will automatically
!compile, link, and run your source program. If the file does not
'exist, the procedure will ask you if you want to create the file.
!If you respend YES, the default text editor is invoked so that you

!can create the source file.
]

!
IF P1 .EQS. "" THEN INQUIRE Pl "FILE NAME"

FILETYPE = “.BAS"
FILESPEC = Pl + FILETYPE "
IF F$SEARCH(FILESPEC) .EQS. "" THEN GOTO MESSAGE

SHOW SYMBOL FILESPEC
!
!

!
ON ERROR THEN GOTO PRINT_ ROUTINE

WRITE SYS$OUTPUT "Compiling..." (2]
BASIC/LIST ’'P1l’
1

WRITE SYS$SOUTPUT "Linking..." (3]
LINK ‘P1/

-

WRITE SYS$SOUTPUT "Running..." e’
SET NOON

DEFINE/USER_MODE SYS$INPUT SYS$SCOMMAND

RUN ’P1’

GOTO END

1

WL e ey v e

(continued on next page)

2-16 Introduction to the VMS Operating System

Example 2-1 (Cont.): Sample Command Procedure

$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$

PRINT ROUTINE: @
WRITE SYS$OUTPUT "Error in program - processing stops"
PRINT 'P1’

END:

!

PURGE

]

EXIT

!

MESSAGE: (6]
WRITE SYS$OUTPUT "Can’t find requested file"
INQUIRE ANS "Do you want the file created?"
IF ANS .EQS. "YES" THEN GOTO EDIT ROUTINE

EXIT

!

EDIT ROUTINE: 0
DEFINE/USER_MODE SYS$INPUT SYS$COMMAND
WRITE SYS$OUTPUT "Invoking editor..."
EDIT FILESPEC

EXIT

Marks the beginning of the command procedure and prompts the user
for a source file name if the user has not supplied one. If the file is not
found, control is transferred to a routine called MESSAGE.

Marks the start of the compilation process. The procedure outputs an
informational message and invokes the VAX BASIC compiler.

© Marks the start of the linking process. Again, the procedure outputs an

information message and invokes the VMS Linker.

O Marks the start of the running process. Once again, the procedure

outputs an informational message and runs the program. The input
device is equated to the user’s terminal to allow data to be entered.

Identifies the actions of the command procedure in the event an error
occurs during execution. When an error does occur, control is transferred
to this routine. The procedure outputs an informational message and
prints the LIS file.

Marks the routine that alerts the user that the source file has not been
found. If the user chooses to create the file, control is transferred to the
routine called EDIT_ROUTINE.

Marks the start of the edit routine. Again, the input device is equated
to the user’s terminal to allow data to be entered. The procedure then
outputs an informational message and creates the supplied source file by
invoking the user’s default text editor.

Introduction to the VMS Operating System 2-17

2.6.4 Login Command Procedures

If you are a frequent user of the VMS system, you may find that you are
typing the same long command lines on a regular basis. To avoid such
repetition, you can create a special command procedure that contains these
commands and statements. This special command procedure is called a
LOGIN.COM file.

When you log in, the system automatically searches your default device
and directory for a file named LOGIN.COM. If the file exists, the system
automatically executes the commands within that file.

A LOGIN.COM file might appear as follows:

!If the current process is noninteractive then exit
IF F$MODE () .NES. "INTERACTIVE" THEN EXIT
]

!i**
1* Convenient Commands *
!***
!

PURGE == "PURGE/KEEP=2/CONFIRM"
ST == "SHOW TIME"

QUE == "SHOW QUEUE"

M*AIL == "MAIL"

1

!***
1% Symbols for my directories *
!***
1

HOME == "SET DEFAULT [SMITH]"

WORK == "SET DEFAULT [SMITH.WORKSP]"

EXAMPLES == "SET DEFAULT [SMITH.PROG_EXAMPLES]"

1

1% de v sk e de ok e ek ok ok ok ok e ok ok e ok ok ok ok ok Sk ok ok ok ok Sk sk sk 3k Sk gk ok ok %k e vk ok Sk Sk ok ok Sk ok ok ok ok ok ok ok ok ok ok ok e ok
!* Logical names for the people I frequently send mail to *
AR AR A AR AR R R AR A KA AR KRR AR KRR A AR A AR A A KRR A A KRR AR A RA KRR AR KRR R AR Ak k k&
1

DEFINE JEN MYVAX::BROWN

DEFINE SUE MYVAX::KELLY

DEFINE BOB MYVAX::CONNELL

EXIT

R R R R R R R R R R R RO R RO R R OR RO E R R OR I I I

For more information on creating a login command file, see the Guide to
Using VMS Command Procedures.

2-18 Introduction to the VMS Operating System

2.7 DCL Commands for Program Development

VAX BASIC can function as both a standard compiler or as a programming
environment. When using VAX BASIC as a standard compiler, you create
programs at DCL command level. This section describes the DCL commands
that are used to create, compile, link, and run a VAX BASIC program on a
VMS system. These commands are illustrated in Figure 2-3. For a more
detailed description of each command, see Chapter 4. For more information
on using VAX BASIC as a programming environment, see Chapter 3.

Introduction to the VMS Operating System 2-19

Figure 2-3: DCL Commands for Developing Programs

COMMANDS ACTION | INPUT/OUTPUT FILES|
$ EDIT AVERAGE.BAS
Use the file type of BAS to Create a AVERAGE.BAS
indicate that the file source program
contains a VAX BASIC
program
$ BASIC AVERAGE
The BASIC command
assumes that the file type] AVERAGE.OBJ
of an input file is BAS Compile the :
P source program .(AV.ERAGE'US)
(If you use the LIST libraries
qualifier the compiler
creates a listing file)
$ LINK AVERAGE
The ’-ANK.°°""“a"d assumes Link the AVERAGE.EXE
that the file type of aninput | piact moduie (AVERAGE.MAP)
file is OBJ
(If you use the /MAP qualifier
the linker creates a map file)
$ RUN AVERAGE Run th
The RUN command assumes " u Iele
that the file type of an image EXe
is EXE image
ZK-1598A-GE

2-20 Introduction to the VMS Operating System

The following example shows each of the commands shown in Figure 2-3
executed in sequence:

$ EDIT/AVERAGE.BAS
$ BASIC AVERAGE

$ LINK AVERAGE

$ RUN AVERAGE

To create a VAX BASIC source program at DCL level, you must invoke a
text editor. In the previous example, the VAX EDT editor is invoked to
create the source program AVERAGE.BAS. You can, however, use another
editor, such as the VAX Text Processing Utility (VAXTPU) or the VAX
Language-Sensitive Editor. BAS is used as the file type to indicate that you
are creating a VAX BASIC source program. BAS is the conventional file type
for all VAX BASIC source programs.

When you compile your program with the BASIC command, you do not have
to specify the file type; VAX BASIC searches for BAS by default.

If your source program compiles successfully, the VAX BASIC compiler
creates an object file with the file type OBJ. However, if the VAX BASIC
compiler detects errors in your source program, the system displays each
error on your screen and then displays the DCL prompt. You can then
reinvoke your text editor to correct each error.

You can include command qualifiers with the BASIC command. Command
qualifiers cause the VAX BASIC compiler to perform additional actions.
For instance, in the following example, the /LIST qualifier causes the VAX
BASIC compiler to produce a listing file:

$ BASIC/LIST FIRST_PROG

For a complete list and explanation of all the command qualifiers available
with the BASIC command, see Chapter 4.

Once your program has compiled successfully, you invoke the VMS Linker
to create an executable image file. The VMS Linker uses the object file
produced by VAX BASIC as input to produce an executable image file as
output. '

You can specify command qualifiers with the DCL command LINK. For a
complete list and explanation of all the command qualifiers available with
the LINK command, see Chapter 4.

Once the executable image file has been created, you run your program with
the DCL command RUN.

Introduction to the VMS Operating System 2-21

Chapter 3

Developing Programs in the BASIC Environment

The BASIC environment has capabilities and features that make the process
of program development easier for both novice and expert users. This
chapter describes how to work within the BASIC environment.

3.1 Entering the Environment

To enter the BASIC environment, type the DCL command BASIC and press
RETURN. VAX BASIC responds with an identification line and the Ready
prompt:

$ BASIC[RET]
VAX BASIC V3.4

Ready

Once you are in the BASIC environment, you interact directly with the
compiler. In this mode of operation, you can enter any of the following:

¢ VAX BASIC program lines
¢ Immediate mode statements
¢ Compiler commands and qualifiers

When you enter program statements, VAX BASIC stores them in ascending
line number sequence as part of the current program in memory. If you
enter a program line with the same line number as an existing program
line, the new line replaces the old one.

When you create a program in the environment, the first line of the program
must have a line number. If you enter a subsequent program line without

a line number, you must precede it with a space or a tab. Inside the
environment, only those program lines that begin with line numbers can
start in the first character position on a line.

Developing Programs in the BASIC Environment 3-1

NOTE

To develop programs in the environment that have no line
numbers at all, you must use an editor or copy your program into
the environment with the OLD command.

If a program line is too long for one text line, you can continue it by typing
an ampersand (&) and pressing RETURN. (Note that only spaces and tabs
are valid between the ampersand and the carriage return.)

See Section 3.3 for more information about immediate mode statements and
Section 3.5 for more information about VAX BASIC compiler commands.

3.2 Creating and Running Programs

Inside the BASIC environment, there are two ways to type in and edit a
program. You can type in and edit the program directly using line mode, or
you can use the compiler command EDIT to invoke a text editor when you
are in the environment.

The EDIT command invokes the default text editor for your system. After
entering the BASIC environment, you can type the EDIT command, create
your program with a text editor, and then exit from this editor back to the
environment. At this point, the program you created is the current program
in memory, and you can now type RUN or RUNNH to compile, link, and
execute your program. (RUNNH suppresses header information such as the
name of the program and the time of day.)

You also have the option of creating your program with a text editor accessed
from DCL. In this case, once you have created the program, you can either
enter the BASIC environment and use the OLD command to read your
program into memory, or compile your program at DCL level. Chapter 4
discusses how to compile your programs at DCL level.

The following example shows a simple program being entered and run in the
environment. The program accepts three numbers entered at the terminal,
averages them, and displays the result.

Example

$ BASIC

VAX BASIC V3.4
Ready

NEW FIRSTTRY

Ready

3-2 Developing Programs in the BASIC Environment

10 PRINT "Please enter three‘numbers"
INPUT A, B, C

PRINT "Their average is"; (A + B+ C) / 3
END

RUNNH

Output

Please enter three numbers

? 5

? 10.3

? 4.7

Their average is 6.66667

Ready

In the preceding example, the DCL command BASIC invokes VAX BASIC
and places you in the BASIC environment. The compiler command NEW
informs VAX BASIC that you want to create a new program and assigns the
program a name. Here the program is named FIRSTTRY.BAS. If you do not
enter a program name with the NEW command, VAX BASIC assigns the
name NONAME by default. BAS is the default file type.

The RUNNH command compiles, links, and executes the program you
create. To save this program, enter the SAVE command at the Ready
prompt.

You can execute multiple-unit programs while in the BASIC environment.
To execute multiple-unit programs, follow these steps:

1. Compile all subprograms to generate object modules
2. Use the OLD command to read the main program into memory

3. Use the LOAD command to read the subprogram object modules into
memory

4. Type the RUN command

Figure 31 illustrates how to execute multiple-unit programs.

Developing Programs in the BASIC Environment 3-3

Figure 3-1:

Running Multiple-Unit Programs

/,r""‘~\\ ’,/“—“\\\
Source
Program Object
(Subprogram Module
One)
L OLD N COMPILE, P LoD
BASIC
~ N\ OLD _ COMPILE ~~ N
pource LOAD RUN
Program Object
(Subprogram Module BASIC >
Two)
/—\ /\
T OLD
Source
Program
(Main
Program)
/—\

ZK-5169-GE

The following is an example of a program that contains multiple units:

Example

10 REM This program calls SUBPROGRAM SB1
20 PRINT "NOW IN MAIN PROGRAM"

30 CALL SB1

40 PRINT "BACK IN MAIN PROGRAM"

50 END

10 SUB SBl

20 PRINT "NOW IN SUBPROGRAM"

30 SUBEND

3-4 Developing Programs in the BASIC Environment

To execute this program in the BASIC environment, enter the following
commands:

OLD SB1
Ready

COMPILE
Ready

OLD MAIN
Ready

LOAD SB1
Ready

RUN

Output

NOW IN MAIN PROGRAM
NOW IN SUBPROGRAM
BACK IN MAIN PROGRAM
Ready

If a STOP statement or CTRL/C is encountered in a module other than
the currently compiled module, VAX BASIC signals “Compiled procedure
is currently not active”. At this point, you cannot use immediate mode
statements.

When you run multiple-unit programs in the BASIC environment, only one
module is currently compiled. Normally, the currently compiled program is
the one you read into memory with the OLD command. However, if a source
file contains more than one program module, the last one (the one closest to
the end of the source file) is the currently compiled module. In the previous
example, MAIN is the currently compiled module.

For more information on loading multiple object modules, see Section 3.4.

3.3 Immediate Mode

You do not have to write a complete program in order to use VAX BASIC.
Many statements are executable in immediate mode.

Immediate mode statements are BASIC statements that are executed
immediately after you press the RETURN key. Immediate mode statements
cannot be preceded by a line number, space, or tab and can be used only if
you are working directly in the environment.

Developing Programs in the BASIC Environment 3-5

In the following example, VAX BASIC interprets the first line as a comment
because it begins with an exclamation point (!). VAX BASIC interprets the
second line as part of a larger program because it begins with a line number.
This line will not execute until a RUN command is specified. The third

line does not begin with a line number, a space, or an exclamation point.
Therefore, VAX BASIC treats the line as an immediate mode statement and
immediately displays the specified text.

Example

!In the environment, this is a comment [RET]
10 PRINT ’This is an executable VAX BASIC statement’
PRINT ‘THIS IS AN IMMEDIATE MODE STATEMENT'

Output

THIS IS AN IMMEDIATE MODE STATEMENT
Ready

The Ready prompt indicates that VAX BASIC is ready to receive compiler
commands, immediate mode statements, or new program lines.

You can precede each executable statement with a backslash (\). You can
also have more than one VAX BASIC statement on a line if you separate
them with a backslash. However, programs with backslashes are often
difficult to read.

Example
Ready

A = (54.37 / 1.25) \ B = (328.15%2) \ PRINT (B / A)

2475.69
Unless the compiler has executed a STOP statement, VAX BASIC compiles
and executes each immediate mode statement as if it were a self-contained
program.

Example

Ready
PRINT PI * 67.3
211.421

Even if the current program has executed a STOP statement, you can still
perform independent calculations. However, you should understand that
after a stop, any immediate mode statement referencing program variables
uses the values assigned in the program. Note that you cannot create new
program variables after a STOP statement has been executed.

3-6 Developing Programs in the BASIC Environment

If the current program has not executed a STOP statement, each immediate
mode line exists by itself, and any variables used by the statements on that
line are temporary.

Example V

Ready
A = 2”5 \ PRINT A
32

READY

PRINT A
0

The second PRINT statement causes VAX BASIC to display a zero because
the compiler treats A as a new variable, and initializes it to zero.

You can use the IF, WHILE, UNTIL, UNLESS, and FOR statement modifiers
in immediate mode statements. The following example shows how you can
generate a table of square roots by using the immediate mode statement:

Example

Ready

PRINT I, SQR (I) FOR I = 1 TO 10
1 1

2 1.41421
3 1.73205
4 2
5 2.23607
6 2.44949
7 2.64575
8 2.82843
9 3
10 3.16228

Ready

Certain statements are invalid in immediate mode. In general, invalid
statements are statements that require the allocation of new storage, or
statements that make no sense in the context of a single line. If you try to
execute such a statement, VAX BASIC signals the error “Illegal in immediate
mode”.

3.4 Debugging in Inmediate Mode

To debug in immediate mode, you insert STOP statements in your program

at the points where you wish to examine the values of variables. When VAX
BASIC encounters a STOP statement, program execution is interrupted. At
this point, you can use immediate mode statements to display the values of

Developing Programs in the BASIC Environment 3-7

variables or to assign them new values. After changing or examining data,
you can use the CONTINUE command to resume program execution.

The following restrictions apply when you are debugging in immediate mode:

* You cannot continue execution if you have changed any program code;
for example, you cannot create new variables after VAX BASIC has
encountered a STOP statement. Neither can you use the CONTINUE
command after you have inserted a STOP statement into your program
in immediate mode. In both cases, you have changed program code and
you must reexecute the program with the RUN command.

* You can debug only one module at a time; VAX BASIC lets you examine
and change variables only in the current module (the most recently
compiled module) of a multiple-unit program.

When you are debugging multiple program units in the environment, you
should follow these guidelines:

e Use the OLD command to read in the source file for the module you
want to debug. This source file becomes the current module, that is, the
one available for immediate mode debugging.

e TUse the LOAD command to read in the object files for the remaining
program modules.

An object module is the file that results from compiling a source file; its
format is an intermediate step between a source file and an executable
image. The LOAD command removes any previously loaded object modules,
whether or not the command specifies any object module files. Therefore,
you must use a single LOAD command to specify all the object files you
need. In addition, you must separate multiple object modules with plus
signs.

The object files are not linked with the current program or executed until
you issue the RUN command. Therefore, run-time errors in the loaded
modules are not detected until you execute the program.

When you want to run a program, you can load all the object modules for
that program and then execute the program with the RUN command. If you
want to debug a program, you use the OLD command for the module you
want to debug and then load the remaining program modules. The module
to be debugged can be either a main program or a subprogram because,
when you enter the RUN command, VAX BASIC transfers control to the
main program, whether it is in object-module format or source-program
format.

For information on using the VMS Debugger, see Chapter 5.

3-8 Developing Programs in the BASIC Environment

3.5 Compiler Commands

Compiling is the process of translating a source program to an object
module. An object module is an intermediate step between source code and
an executable image. It contains information that the linker uses to create
an image.

You can compile, link, and execute your programs in the environment simply
by typing the RUN command. This greatly reduces the number of steps you
have to go through to develop VAX BASIC programs. When you are satisfied
with a portion of code, you can simply run that program to examine whether
or not it functions as expected. If you use the COMPILE command instead,
you can eliminate all compile-time errors before you link and execute the
program.

VAX BASIC has certain defaults that are in effect each time you enter the
BASIC environment. Unless you explicitly override these defaults, they
remain in effect until you leave the environment. You can see a listing of
these defaults by typing the SHOW command when in the environment.
The following example displays the standard BASIC environment defaults
that are in effect when you enter the environment:

SHOW

VAX BASIC V3.4 Current Environment Status 22-JUN-1989 10:12:12.05
DEFAULT DATA TYPE INFORMATION: LISTING FILE INFORMATION INCLUDES:
Data type : REAL NO Source
Real size : SINGLE NO Cross reference
Integer size : LONG CDD Definitions
Decimal size : (15,2) Environment
Scale factor : 0 NO Override of %$NOLIST
NO Round decimal numbers NO Machine code
Map
COMPILATION QUALIFIERS IN EFFECT: INCLUDE files
Object file

Overflow check integers
Overflow check decimal numbers
Bounds checking

FLAGGERS:
NO Declining features
NO BASIC PLUS 2 subset

NO Syntax checking
Lines
Variant : 0 DEBUG INFORMATION:
Warnings Traceback records
Informationals NO Debug symbol records
Setup

Ready

Object Libraries : NONE

Developing Programs in the BASIC Environment 3-9

You can override any of these defaults with qualifiers to the COMPILE or
SET commands, or with the OPTION statement in your program. Table 3-1
lists and describes all the VAX BASIC compiler commands, including
qualifiers to both the COMPILE and RUN commands. For more information
on the OPTION statement, see the VAX BASIC Reference Manual.

Table 3-1: VAX BASIC Compiler Commands

Command Description

! comment Identifies a comment.

$ command Starts a subprocess to execute the specified DCL command.

APPEND Merges the specified program with the program currently in memory.

ASSIGN Assigns a logical name to a complete file specification (the
equivalence name).

COMPILE Generates an object module (file type OBJ) from a VAX BASIC
source program.

CONTINUE Resumes execution after a STOP statement or a CTRL/C.

DELETE Erases the specified line or lines from a VAX BASIC source program.

EDIT Changes source text or calls a text editor.

EXIT Returns to DCL command level.

HELP Displays HELP text.

IDENTIFY Causes VAX BASIC to print an identification header on the terminal.

LIST Displays the current source program on the terminal.

LISTNH Displays the current source program without header information.

LOAD Loads an object module into memory.

LOCK Specifies default values for compiler command qualifiers (identical to
the SET command).

NEW Clears memory for the creation of a new program and assigns a new
program name.

OLD Reads a specified VAX BASIC source program into memory.

RENAME Changes the name of the program currently in memory.

REPLACE Replaces a stored program with the program currently in memory.

RESEQUENCE Supplies new line numbers for the program currently in memory.

(continued on next page)

3-10 Developing Programs in the BASIC Environment

Table 3-1 (Cont.): VAX BASIC.Compiler Commands

Command Description

RUN Executes the program currently in memory, or a specified VAX
BASIC source program. The program in memory can be:

* A VAX BASIC source program placed in memory with the OLD

command
* One or more object modules placed in memory with the LOAD
command
¢ A combination of the first two
RUNNH Identical to RUN but does not display header information.
SAVE Creates a copy of the current source program on a specified device.
SCALE Controls accumulated round-off errors for numeric operations.

SCRATCH Erases the current program and any loaded object modules.
SEQUENCE Generates line numbers for input text.

SET Specifies default values for compiler command qualifiers.
SHOW Displays the current default compiler qualifiers.
UNSAVE Deletes a specified file.

The following sections describe these compiler commands. For more detailed
information, see the VAX BASIC Reference Manual.

3.5.1 Entering Comments
VAX BASIC allows you to enter comments into the BASIC epvironment by

specifying an exclamation point. Any text that follows the exclamation point
(1) is treated as a comment. For example:

Developing Programs in the BASIC Environment 3-11

$ TYPE build_ special.com
$ SET VERIFY

$ BASIC

'+

! Set the compilation unit options by uncommenting
! the appropriate ones

[-

!SET LIST

SET WORD

SET DEBUG

t+

! Get the source module.
-

OLD SPECIAL

1+

! Compile it.

1 -

COMPILE

'+

! All done.

-

EXIT

3.5.2 Entering DCL Commands

You can enter a DCL command while in the environment by preceding it
with a dollar sign ($). VAX BASIC passes the command to the DCL for
execution. The program currently in memory does not change.

VAX BASIC starts a subprocess to execute the command, and the command
executes in the context of that subprocess. This can sometimes produce
unexpected results. For example, a $ SET DEFAULT command typed in
the BASIC environment sets the default for the subprocess but not for the
process in which VAX BASIC executes. The newly set default exists only
until control returns to VAX BASIC.

3.5.3 The APPEND Command

The APPEND command merges a VAX BASIC source program with the
program currently in memory. The program in memory must be a VAX
BASIC source program that has been placed in memory with the OLD
command and entered in the environment. The program must also contain
at least one line number.

If both programs contain a line with the same number, the appended
program line replaces the current program line.

3-12 Developing Programs in the BASIC Environment

If you type APPEND without specifying a file name, VAX BASIC prompts
with:

Append file name—-

You should respond with a file name. If you respond by typing the RETURN
key, VAX BASIC searches for a file called NONAME with the default file
type of BAS. If the compiler cannot find the file, it signals an error.

The APPEND command does not change the name of the program in
memory.

3.5.4 The ASSIGN Command

The ASSIGN command equates a logical name to a complete file
specification, a device, or another logical name.

If the logical name translates to a device name and will be used in place of
a device name in a file specification, terminate the equivalence name with a
colon.

This example uses the ASSIGN command to make the system HELP library
available from within VAX BASIC:

Ready

ASSIGN SYS$HELP:HELPLIB HLP$LIBRARY

The ASSIGN command does not support search lists. To assign a logical
name to a search list from within the environment, use the

$ system-command to execute the DCL command ASSIGN with the /JOB
qualifier. For example:

$ ASSIGN/JOB DUAO:[MR.X],DUAO: [MR.Y] TWO$DIRECTORIES:

3.5.5 The COMPILE Command

When you compile a program in the BASIC environment, there are three
levels at which you can specify options for the compiler:

¢ You can accept the defaults of the BASIC environment as options

¢ You can specify options with qualifiers to the COMPILE or SET
command

¢ You can specify options in the source program with the OPTION
statement

Developing Programs in the BASIC Environment 3-13

The COMPILE command creates an object module from a source program
in memory. You can control the compilation of your program with the
COMPILE command and its qualifiers. These qualifiers duplicate many of
the qualifiers available to the DCL command BASIC. You can abbreviate
all COMPILE qualifiers to four letters. For example, you can compile a
program currently in memory and specify the creation of a listing file:

COMPILE/LIST

The following two commands both specify that a listing file should be
created. Note that the SET command sets a particular default until you
leave the BASIC environment or until you specify a different default for that
value, whereas the qualifiers to the COMPILE command set the defaults
only for that particular compilation.

SET/LIST
COMPILE/LIST

If you do not specify any qualifiers with the SET command, VAX BASIC
resets the defaults to the values that were in effect when you entered the
BASIC environment.

The qualifiers to the COMPILE command are shown in the following list.
Note that you can also use many of these qualifiers with the SET command
to establish these compiler options. The qualifiers are described fully in the
VAX BASIC Reference Manual.

¢ The /[NOIANSI_STANDARD qualifier causes VAX BASIC to compile
the program according to ANSI Minimal BASIC rules and to flag
statements that do not conform to the ANSI Minimal BASIC standard.
Note that the /ANALYSIS_DATA qualifier cannot be in effect when
compiling with the /ANSI_STANDARD qualifier. The default is
/NOANSI_STANDARD.

¢ The /[INOJAUDIT qualifier causes VAX BASIC to include a history
entry in the Common Data Dictionary/Plus (CDD/Plus) database when a
CDD/Plus definition is extracted. The default is NOAUDIT.

¢ The /[[INOIBOUNDS_CHECK qualifier causes VAX BASIC to perform
range checks on array subscripts. That is, it checks that all array

references are to addresses within the array boundaries. The default is
/BOUNDS_CHECK=(BOUNDS,OVERFLOW).

* The /BYTE qualifier specifies that integers not explicitly typed with
a data type keyword use 8 bits of storage, which lets you use integer
values between —128 and 127. The default is INTEGER_SIZE=LONG.

3~14 Developing Programs in the BASIC Environment

The /[NOICROSS_REFERENCE[=[NOJKEYWORDS] qualifier
causes VAX BASIC to generate a cross-reference listing. If you
specify KEYWORDS, VAX BASIC provides a cross-reference list of
VAX BASIC keywords. If you specify /CROSS_REFERENCE, the
default is /CROSS_REFERENCE=NOKEYWORDS. The default is
/NOCROSS_REFERENCE.

The /INOIDEBUG qualifier provides the debugger with local symbol
definitions for program variables, constants, line numbers, and labels. If
you make changes to a program within the environment, you must first
save or replace the program before attempting to compile the program
with the /DEBUG qualifier; otherwise, VAX BASIC signals the error
“Unsaved changes, no source line debugging available”.

The default is /DEBUG=(TRACEBACK,NOSYMBOLS).

The /DECIMAL_SIZE qualifier specifies the default size and precision
for all DECIMAL data not explicitly assigned size and precision in the
program. You specify the total number of digits (d) and the number
of digits to the right of the decimal point (s). VAX BASIC signals

the error “Decimal error or overflow” (ERR=181) when DECIMAL
values are outside the range specified with this qualifier. The default is
/DECIMAL_SIZE=(15,2).

The /DOUBLE qualifier specifies that floating-point data use 64 bits of
storage in D_float format, which lets you use floating-point values in the
range 2.9 * 10739 to 1.7 * 1038 and with up to 16 digits of precision. The
default is /REAL_SIZE=SINGLE.

The /[INOIFLAG[=(INOIBP2COMPATIBILITY,[INOIDECLINING)]
qualifier causes VAX BASIC to issue informational messages when
your program includes statements that are not compatible with the
functionality you specify. You can specify a flag for BASIC-PLUS-2, and
declining VAX BASIC language features. The default is /NOFLAG.

The /GFLOAT qualifier specifies that floating-point data use 64 bits of
storage in G_float format, which lets you use floating-point values in the
range 5.6 * 107308 10 9.0 * 10309 and with up to 15 digits of precision.
The default is /REAL_SIZE=SINGLE.

The /HFLOAT qualifier specifies that floating-point data use 128 bits of
storage in H_float format, which lets you use floating-point values in the
range 8.4 * 1074933 t5 5.9 * 104933 and with up to 33 digits of precision.
The default is /REAL_SIZE=SINGLE.

The /INO]ILINES qualifier enables the executing program to report
the line number of statements causing errors and to use the RESUME
statement without specifying a line number. The default is /LINES.

Developing Programs in the BASIC Environment 3-15

e The /INOJLIST qualifier creates a program listing with a default file
type of LIS. The default is /NOLIST.

® The /LONG qualifier specifies that untyped integers use 32 bits of
storage, which lets you use integer values between —2147483648 and
2147483647. The default is INTEGER_SIZE=LONG.

* The //INOIMACHINE_CODE qualifier includes the compiler-generated
assembly code listing. The default is /NOMACHINE_CODE.

e The /INOJOBJECT qualifier generates a linkable object module. This
object module has the same file name as the VAX BASIC source program
and a default file type of OBJ. The default is /OBJECT.

¢ The /INOJOVERFLOW[=(INOJINTEGER,[INOJDECIMAL)] qualifier
enables the detection of arithmetic overflow on integer or packed decimal
data. If you do not supply a value, OVERFLOW affects both data types.
The default is /OVERFLOW=(INTEGER,DECIMAL).

¢ The /[NOJROUND qualifier specifies whether VAX BASIC rounds or
truncates packed decimal numbers. The default is /NOROUND.

¢ The /[NOISETUP qualifier causes VAX BASIC to optimize the
executable image by omitting certain calls to the Run-Time Library
at the start and end of each program unit. Note that variables are not
initialized when /NOSETUP is in effect. The default is /SETUP.

e The /INOISHOW qualifier allows you to specify what VAX BASIC
should include in the listing file. For a list of items you can include in
the listing file, see the VAX BASIC Reference Manual. The default is
/SHOW.

* The /SINGLE qualifier specifies that floating-point data use 32 bits of
storage, which lets you use floating-point values in the range
2.9 * 10739 t0 1.7 * 10%8 and with up to 6 digits of precision. The default
is /REAL_SIZE=SINGLE.

e The /[NOIJSYNTAX_CHECK qualifier enables line-by-line syntax
checking. Because VAX BASIC automatically performs syntax checking
when you compile a program, you normally use /SYNTAX CHECK with
the SET command to enable line-by-line syntax checking while you are
typing program lines. The default is /NOSYNTAX_CHECK.

¢ The /[INOITRACEBACK qualifier provides line numbers for the
debugger and error reporter so they can translate virtual addresses
into source program module names and line numbers. The default is
/TRACEBACK.

3-16 Developing Programs in the BASIC Environment

¢ The /TYPE_DEFAULT qualifier allows you to specify the default data
type for all data not explicitly typed in your program. See the VAX
BASIC Reference Manual for a list of data types you can include. The
default is /TYPE_DEFAULT=REAL.

¢ The /VARIANT=value qualifier provides a value to be tested in
conditional compilations. The default is /VARIANT=0.

¢ The /INOITWARNINGS[=[NO]JWARNINGS,[INOJINFORMATIONALS]
qualifier tells VAX BASIC whether to display warning or informational
error messages. /NOWARNINGS means that VAX BASIC does

not display any informational or warning errors. The default is
/WARNINGS=WARNINGS,INFORMATIONALS.

¢ The /WORD qualifier specifies that all integer data not explicitly typed
use 16 bits of storage, which lets you use integer values in the range
—32768 to 32767. The default is INTEGER_SIZE=LONG.

If you use these qualifiers with the COMPILE command, the BASIC
environment default values remain the same, but your program is compiled
using the specified defaults. When you use these qualifiers with the SET
command, you set the defaults for the period you are within the BASIC
environment. You can also set compiler options from inside the source
program by using the OPTION statement. See the VAX BASIC Reference
Manual for more information on the OPTION statement.

If you specify the /DIAGNOSTICS qualifier or the /ANALYSIS_DATA
qualifier with the BASIC command to enter the VAX BASIC environment,
then make changes to a program and attempt to compile the program before
saving or replacing it, VAX BASIC signals the error “Unsaved changes, no
diagnostics file produced” or “Unsaved changes, no analysis file produced”.
You must save or replace the program before you compile it to generate a
diagnostics or data analysis file.

3.5.6 The CONTINUE Command
The CONTINUE command resumes program execution after VAX BASIC
encounters a STOP statement or a CTRL/C. After a STOP statement or a
CTRL/C is encountered in the BASIC environment, you can enter immediate

mode statements to display or change program variables. Then, type
CONTINUE to resume execution with the new values.

DECLIT AA VAX HY1SB

vAX BASIC user manual

loping Programs in the BASIC Environment 3-17

3.5.7 The DELETE Command

The DELETE command removes a specified line or lines from the source
program currently in memory. If you separate line numbers with commas,
VAX BASIC deletes only the specified program lines. If you separate line
numbers with a hyphen (-), VAX BASIC deletes the specified program lines
and all program lines between them. For example:

DELETE 10 Removes line 10 from the program

DELETE 50, 100 Removes lines 50 and 100 from the program

DELETE 50, 100-190 Removes line 50 and lines 100 through 190 from the
program

If you do not specify a line number, the DELETE command is ignored.

3.5.8 The EDIT Command

The EDIT command replaces text in the current program with text you
supply in the command. If you type EDIT with no argument, VAX BASIC
invokes a text editor and reads the current program into the editor’s buffer.

Table 3-2 shows examples of editing in line mode.

Table 3-2: Examples of Editing in Line Mode

EDIT 100 /LEFT$/RIGHT$/ Replaces the first occurrence of LEFT$ with
RIGHTS on line 100.

EDIT Invokes the default editor and reads the current
program into the editor’s buffer.

EDIT 2000 Lists line 2000 (line 2000 becomes the default EDIT
line).

EDIT 30 /LEFT$/RIGHT$/,3 Starts the search on the third text line of program
line 30 and replaces the first occurrence of LEFT$
with RIGHTS.

EDIT 300/LEFT$//2 Removes the second occurrence of the string LEFT$
from line 300. Note that you must specify delimiters
around the null replacement string. Otherwise, the
EDIT command would replace the first occurrence of
LEFT$ with 2.

Entering EDIT with no argument causes VAX BASIC to save your program
temporarily in a file called BASEDITMP.BAS. The editor is then invoked
and you can edit the program in the usual manner. Exiting from the editor

3-18 Developing Programs in the BASIC Environment

causes the changed program to become the new current program. VAX
BASIC then displays the Ready prompt. Note that VAX BASIC deletes all
versions of BASEDITMP.BAS when control returns from the editor.

VAX BASIC supports the following callable text editors:
¢ VAXEDT

¢ VAX Text Processing Utility (VAXTPU)
¢ VAX Language-Sensitive Editor (LSE)

The default editor for VAX BASIC is EDT. In DCL, you or your

system manager can override this default by defining the logical name
BASIC$EDIT. To find out if a system assignment exists, enter the following
DCL command:

$ SHOW LOGICAL BASICSEDIT

The name you assign to BASIC$EDIT must be in the form nnn$EDIT, where
the characters nnn represent the acronym for the editor. For example, you
can assign LSE to be the default editor with the following command:

$ ASSIGN "LSESEDIT" BASICSEDIT

If the translation of BASIC$EDIT does not conform to nnn$EDIT, VAX
BASIC creates a temporary file containing your source code and spawns
a subprocess. VAX BASIC passes the translation of BASIC$EDIT to the
subprocess.

3.5.9 The EXIT Command

The EXIT command clears memory and returns control to DCL command
level. If you modify a program and issue the EXIT command before you
copy it to disk with the SAVE or REPLACE command, VAX BASIC signals
“Unsaved change has been made, CTRL/Z or EXIT to exit”. This message
warns you that any changes will be lost if you do not save the program. You
can then store the program or retype the EXIT command (or press CTRL/Z)
to exit from VAX BASIC.

Developing Programs in the BASIC Environment 3-19

3.5.10 The HELP Command

The HELP command lets you display the contents of the VAX BASIC HELP
library on the terminal. Entering HELP causes the HELP facility to display
a long list of VAX BASIC commands and language topics for which there is
help available. You are then prompted to name a command or topic with the
following prompt:

Topic?

To obtain help on the environment commands, you can type COMMANDS
at the Topic? prompt. A list of commands is displayed on your terminal
followed by the prompt COMMANDS Subtopic?. When you type a command
name in response to this prompt, the HELP facility displays the following:

¢ An explanation of the command’s purpose
¢ An example of its use
* A list of any further subtopics available

You can also display help text for VAX BASIC errors. The help texts

for the VAX BASIC error messages are grouped under two categories:
compile-time errors and run-time errors. A run-time error refers to any
error that occurs during program execution. All other errors are referred

to as compile-time errors. Typing HELP RUN displays a list of the 3- to
9-character error mnemonics for the VAX BASIC list of run-time errors, and
typing HELP COMPILE displays a list of the 3- to 9-character compile-time
€rror mnemonics.

For example, suppose your program invokes a user-defined DEF function
with a null argument. This causes VAX BASIC to signal actual argument
must be specified. The actual error message looks like this:

$BASIC-E-ACTARGMUS, actual argument must be specified
You display the help text by typing:

HELP COMPILE ACTARGMUS

The following text is then displayed on your screen.

ACTARGMUS

ERROR - A DEF function reference contains a null argument, for
example FNA(l,,2). Specify all arguments when referencing a DEF
function.

3-20 Developing Programs in the BASIC Environment

You can access run-time errors with either the mnemonic or the error
number. You specify the error number with the letters “ERR” followed by
the error number. For example, you can display the HELP text for the
end-of-file error by using the mnemonic as shown:

HELP RUN ENDFILDEV
If you know only the error number, type:
HELP RUN ERR11

VAX BASIC displays the appropriate mnemonic for that error.

3.5.11 The IDENTIFY Command

The IDENTIFY command prints a header containing the VAX BASIC
compiler name and version number. For example:

IDENTIFY

VAX BASIC V3.4

Ready

3.5.12 The LIST and LISTNH Commands

The LIST and LISTNH commands display a specified line or lines. If you
type LIST or LISTNH without specifying line numbers, VAX BASIC displays
a copy of the source program currently in memory, in ascending line number
order.

The LIST command prints a header displaying the program name and the
current time and date before displaying the specified lines. The LISTNH
command suppresses the header information and prints the specified lines
only. For example:

LIST 10 Displays header information, then displays line 10.

LISTNH 50, 100 Displays lines 50 and 100.

LIST 50, 90, 100-190 Displays header information, then displays lines 50, 90, and
100 through 190.

Developing Programs in the BASIC Environment 3-21

3.5.13 The LOAD Command

The LOAD command makes an object module available for execution with
the RUN command. You can load only object files created by VAX BASIC.

The LOAD command accepts multiple device, directory, and file
specifications. The LOAD command deletes all previously loaded object
files; therefore, to load several files at the same time, you must separate
the file specifications with plus signs. Multiple file specifications separated
with commas cause each file to be loaded separately, thereby deleting the
previously loaded file.

If you do not specify any file specification, the LOAD command erases any
previously loaded object files.

LOAD OLD1 + OLD2 + OLD3
Ready
RUN

The previous example loads the files OLD1.0BJ, OLD2.0BJ, and OLD3.0BJ
for execution. These object files are not linked with the current program or
executed until you issue the RUN command. Therefore, run-time errors in
the loaded modules are not detected until you execute the program.

Each device and directory specification applies to all following file
specifications until you specify a new directory or device. For example:

LOAD DUAL: [SMITH]PROG3+ [JONES] PROG4+DUA2: PROG5
This command loads three object files:
* PROGS3 from the directory SMITH on the device DUA1:

* PROGH4 from the directory JONES on DUAI:
¢ PROGS5 from the directory JONES on DUA2:

3.5.14 The LOCK Command

The LOCK command changes default values for COMPILE command
qualifiers. It is equivalent to the SET command. The following command
specifies that all subsequent compilations use double-precision, floating-point
numbers as the default. You can use any valid COMPILE command qualifier
as an argument to LOCK.

LOCK /DOUBLE

Ready

3-22 Developing Programs in the BASIC Environment

3.5.15 The NEW Command

The NEW command clears the memory and assigns a name to a program
to be entered. The following command assigns the name PROG1 to the
program. You can then enter program lines.

NEW PROG1
If you do not specify a name, VAX BASIC issues the following prompt:
New file name--

You should respond with a name. If you press the RETURN key in response
to the prompt, VAX BASIC assigns the name NONAME.

3.5.16 The OLD Command

The OLD command brings a previously created VAX BASIC source file into
memory. The following command reads PROG1.BAS into memory:

OLD PROG1

If you do not specify a file name, VAX BASIC issues the prompt:

0ld file name--

You should respond with a file name. If you do not specify a file type, VAX
BASIC reads a file with the specified file name and the default file type. If
you press the RETURN key in response to the prompt, VAX BASIC searches
for a file with the default file name and default file type: NONAME.BAS.

3.5.17 The RENAME Command

The RENAME command assigns a new name to the program currently in
memory. For example, the following command sequence brings a program
named PROG1 into memory and changes its name and directory:

OLD [KELLY]PROGL
Ready

RENAME [MCKAY.BASIC]}PROG2

The name of the program is changed to PROG2. If you perform a REPLACE
operation, PROG2 is copied to the subdirectory [MCKAY.BASIC] instead of
[KELLY]. The remaining portion of the specification is unchanged. If you
do not specify a program name, VAX BASIC renames the current program
NONAME.

Developing Programs in the BASIC Environment 3-23

3.5.18 The REPLACE Command

The REPLACE command writes the program in memory to a specified
device. The REPLACE command always writes a copy of the current
program back to disk. It replaces it using the file specification specified

in the last OLD command. Part or all of this file specification can be
overwritten with the RENAME command; whatever parts are not specifically
changed remain the same. RENAME is similar to SAVE except that while
SAVE copies the current program to the default directory, REPLACE copies
the current program to the location specified in the program’s current file
specification.

After execution of a REPLACE command, VAX BASIC issues an
informational message confirming the file specification.

3.5.19 The RESEQUENCE Command

The RESEQUENCE command allows you to resequence the line numbers of
the program currently in memory. VAX BASIC also changes all references
to the old line numbers so they reference the new line numbers. You can
specify a starting line number and a value by which to increase each
subsequent line number. The following command resequences the line
numbers from 10 to 10000, making the first line number 100 and increasing
each subsequent line number by 20:

RESEQUENCE 10-10000 100 STEP 20

The RESEQUENCE command is not allowed on programs without line
numbers.

3.5.20 The RUN and RUNNH Commands
The RUN command executes a program. This program can be any one of the
following:
* The current program
* One or more object modules placed in memory with the LOAD command
¢ A combination of the first two
¢ A specified VAX BASIC source program

3-24 Developing Programs in the BASIC Environment

If you do not supply an alternative file specification, VAX BASIC executes
the program in memory.

Ready

OLD
0ld file name--PROG1
Ready

RUN

The RUN command compiles, links, and executes PROG1. It prints a header
displaying the program name and the current date and time. To execute a
program without displaying this header, type RUNNH.

The RUN command does not create an object module file or a list file. It
uses whatever qualifiers have been set. The following qualifiers are always
in effect for the RUN and RUNNH commands:

¢ NOCROSS

¢ NODEBUG

* NOLIST

* NOMACHINE
¢ NOOBJECT

e SETUP

The RUN command can invoke only VAX BASIC procedures and other
procedures that reside in shareable image libraries. See Chapter 22 for
more information on creating shareable images.

3.5.21 The SAVE Command

The SAVE command copies a VAX BASIC source program from memory to

a file. You can specify a storage device, a file name, and a file type in the
SAVE file-spec. For example, if you type the following program, a SAVE
command causes VAX BASIC to arrange the program in ascending line
number order and copy it to a file on MTAL:, in the current default directory
with file name TEST and the default file type of BAS.

Example

10 REM THIS IS A TEST
30 PRINT "THIS IS A TEST"
SAVE MTAl:TEST.BBB

Developing Programs in the BASIC Environment 3-25

VAX BASIC saves the program on magnetic tape MTA1: in the current
default directory with a file name of TEST and a file type of BBB. If the
program in memory has no name and you issue the SAVE command with no
argument, VAX BASIC copies the program to a file named NONAME with
the default file type in your current default device and directory. Note that
if you perform a RENAME operation, before you issue the SAVE command
followed by no argument, VAX BASIC still copies the program to the current
default directory.

3.5.22 The SCALE Command

The SCALE command can overcome accumulated round-off errors by
multiplying double-precision, floating-point values by 10 raised to the
specified scale factor before storing them.

3.5.23 The SCRATCH Command

The SCRATCH command clears memory by doing one of the following:

¢ Resetting the program name to NONAME
* Removing any object files previously loaded with the LOAD command
¢ Removing the source file currently in memory

3.5.24 The SEQUENCE Command

The SEQUENCE command automatically generates line numbers for input
text. After a SEQUENCE command, VAX BASIC prompts with a line
number and prompts again after each source line you enter. If you press
CTRL/Z (either in response to the line number prompt or at the end of

a program line), VAX BASIC stops prompting and you can enter source

text in the normal way. If you specify a starting line number that already
contains a statement, VAX BASIC signals “Attempt to sequence over existing
statement” and returns to normal input mode.

Note that the SEQUENCE command is not allowed on programs without
line numbers.

3-26 Developing Programs in the BASIC Environment

3.5.25 The SET Command

The SET command specifies defaults for compiler command qualifiers. For
example:

SET /SINGLE

Ready

This command makes /SINGLE the default for the COMPILE or RUN
command, thereby making SINGLE the default data type for all untyped

values. Typing SET with no arguments resets the defaults to their state
when you entered into the BASIC environment.

For a full list of options, see the COMPILE command.

3.5.26 The SHOW Command

The SHOW command displays the current default qualifiers and user

libraries.
SHOW
VAX BASIC V3.4 Current Environment Status 22-JUN-1989 10:12:12.05
DEFAULT DATA TYPE INFORMATION: LISTING FILE INFORMATION INCLUDES:
Data type : REAL Source
Real size : SINGLE NO Cross reference
Integer size : LONG CDD Definitions
Decimal size : (15,2) Environment
Scale factor : 0 NO Override of %NOLIST
NO Round decimal numbers NO Machine code
Map
COMPILATION QUALIFIERS IN EFFECT: INCLUDE files
Object file
Overflow check integers FLAGGERS:
NO Overflow check decimal numbers Declining features
Bounds checking NO BASIC PLUS 2 subset
NO Syntax checking
Lines
Variant : 0 DEBUG INFORMATION:
NO Warnings Traceback records
NO Informationals NO Debug symbol records
Setup

Object Libraries : NONE
Ready

Developing Programs in the BASIC Environment 3-27

3-28

This DEFAULT DATA TYPE INFORMATION display gives you the following
information:
* The default data type is REAL.

* The default size for floating-point numbers is SINGLE, the default size
for integers is LONG, and the default size for packed decimal numbers
is (15,2).

* There is no scale factor in effect.
¢ Packed decimal numbers are truncated rather than rounded.

The LISTING FILE INFORMATION display tells you which parts of the
program listing are included if you create a compilation listing:

¢ The source program is listed.
¢ No cross-reference information is listed.
* CDD definitions are displayed as RECORD statements.

¢ The qualifiers in effect when the program was compiled are listed. This
means that the program listing contains the equivalent of this SHOW
command.

¢ The %NOLIST compiler directive is not overridden.
¢ No compiler-generated machine code is listed.

* An allocation map is listed. This contains the sizes and offsets of any
variables.

¢ Files accessed with the ZINCLUDE directive are listed.

The COMPILATION QUALIFIERS IN EFFECT section gives you the
following information:

¢ An object file is produced.

¢ Overflow checking for integers is enabled.

¢ Overflow checking for packed decimal numbers is disabled.

* Bounds checking is enabled.

¢ Line-by-line syntax checking is disabled.

¢ Line number information is included in the object file.

¢ The VARIANT value is zero.

¢ No warning or informational error messages are displayed.

* VAX BASIC performs normal initialization calls at run time (SETUP).
¢ No user-supplied object module libraries are searched.

Developing Programs in the BASIC Environment

The FLAGGERS section gives you the following information:

¢ Declining features are reported.

¢ BP2 compatibility issues are not reported.

The DEBUG INFORMATION section gives you the following information:

e Traceback information is included in the object module.

e No debug records are included in the object module. This means you
cannot access program symbols with the VMS Debugger.

See Chapter 22 for more information about user libraries.

3.5.27 The UNSAVE Command

The UNSAVE command deletes the specified version of a file from disk.
If you do not specify a file, UNSAVE deletes the disk file associated with
the program currently in memory. If you do not specify a version number,
UNSAVE deletes the newest version. For example:

OLD PROG1

Ready

UNSAVE

Ready

The OLD command copies a program named PROG1.BAS from disk to
memory. The UNSAVE command deletes the program from disk.

You can delete a VAX BASIC source program other than the one in memory
by specifying the program name. The following command deletes the most
recent version of the file PROG2.BAS:

UNSAVE PROG2

To delete a file other than a source program, specify the file name and
file type. The following command deletes the newest version of the object
module generated from the compilation of PROG2:

UNSAVE PROGZ.0BJ

Developing Programs in the BASIC Environment 3-29

Chapter 4

Developing VAX BASIC Programs at DCL
Command Level

The process of developing a VAX BASIC program involves four steps:
creating, compiling, linking, and running. You accomplish each of these
steps using DCL commands. This chapter describes how to create, compile,
link, and run a VAX BASIC program.

4.1 Creating a VAX BASIC Program

To create and modify a VAX BASIC program, you must invoke a text editor.
VMS provides you with two text editors: VAX EDT (EDT) and the VAX
Text Processing Utility (VAXTPU). You may also have other editors that
are supported on your system, such as the VAX Language-Sensitive Editor
(LSE). The following sections describe briefly how to use both VAX EDT and
VAXTPU.

4.1.1 Using VAX EDT

EDT is an interactive, general-purpose text editor that offers three editing
modes: keypad, nokeypad, and line. Both keypad and nokeypad modes are
screen editors. Keypad mode uses the numeric keypad that appears to the
right of your main keyboard. With nokeypad mode, you enter commands on
a command line, which EDT processes when you press RETURN. Line mode
focuses on the line as the basic unit of text. The appearance of a line mode
asterisk prompt (*) indicates that you can enter a line mode command.
When you begin your editing session, editing in line mode is the default.
Unlike line mode, keypad mode and nokeypad mode continuously display
the contents of the file on your screen.

Developing VAX BASIC Programs at DCL Command Level 4-1

The following command line invokes the EDT editor and creates the file,
PROG_1.BAS:

$ EDIT/EDT PROG_1.BAS

To change from line mode to keypad mode, enter the CHANGE command
at the asterisk prompt. To return to line mode from keypad mode, press
CTRL/Z. To change from line mode to nokeypad mode, enter the SET
NOKEYPAD command and then enter the CHANGE command.

If you are in the middle of an editing session and your system fails, you
can recover your edits by reentering the EDIT command followed by the
/RECOVER qualifier. EDT re-creates your last editing session on your
screen up to the point where it was interrupted. It uses the contents of a
journal file that is maintained during the editing session.

EDT provides an online HELP facility that you can access during an editing
session. In line mode, you can enter the HELP command. EDT displays
general information on EDT as well as detailed information on both line
mode editing and nokeypad mode editing. In keypad mode, you can press
the HELP key or the PF2 key. EDT displays a keypad diagram on your
terminal screen, and a list of keypad editing keys. For help on a specific
keypad function, press the key you want help on.

For details on how to use the EDT editor, see the VAX EDT Reference
Manual.

4.1.2 Using VAXTPU

The VAX Text Processing Utility (VAXTPU) is a high-performance,
programmable editor. With VAXTPU, you can use one of two editing
interfaces to edit your VAX BASIC programs: the Extensible VAX Editor
(EVE) and the VAXTPU EDT Keypad Emulator. You can also create your
own interfaces. The following sections briefly describe how to use the EVE
interface and the EDT Keypad Emulator interface.

4.1.2.1 The EVE Interface

The EVE editor is efficient and easy to use. You can execute common editing
functions by using the EVE keypad, or execute more advanced functions by
entering commands on the EVE command line. The following command line
invokes the EVE editor and creates the file PROG_1.BAS:

$ EDIT/TPU PROG_1.BAS

4-2 Developing VAX BASIC Programs at DCL Command Level

You can define a global symbol for the EDIT/TPU command by placing
a symbol definition in your LOGIN.COM file. For more information on
defining global symbols, see Chapter 2.

Like EDT, VAXTPU provides you with an online HELP facility that you
can access during your editing session. It also provides you with a journal
facility. Unlike EDT, VAXTPU provides you with multiple windows. This
feature allows you to view two files on your screen at the same time.
VAXTPU also provides you with other advanced features.

For more information on using the features of EVE, see the VAX Text
Processing Utility Manual.

4.1.2.2 The EDT Keypad Emulator Interface

The EDT Keypad Emulator interface provides all the functions associated
with EDT and uses the same keys to perform each function. To access the
EDT Keypad Emulator, enter the following command line:

$ EDIT/TPU/SECTION=EDTSECINI.GBL

To minimize the number of characters you must enter each time you
invoke the EDT Keypad Emulator, you can define a global symbol for the
command line and place it in your LOGIN.COM file. See Chapter 2 for more
information on defining global symbols.

For details on how to use the EDT Keypad Emulator, see the VAXTPU EDT
Keypad Emulator Quick Reference Guide.

4.2 Compiling a VAX BASIC Program

The primary functions of the VAX BASIC compiler are to:

* Detect errors in your source program

¢ Generate any appropriate error messages

* Generate machine language instructions from the source statements

® Group these language instructions into an object module for the linker
To invoke the VAX BASIC compiler, you use the DCL command BASIC. With
the BASIC command, you can specify command qualifiers. The next two

sections discuss in detail the BASIC command as well as all of the command
qualifiers available with the command.

Developing VAX BASIC Programs at DCL Command Level 4-3

4.2.1 The BASIC Command

When you compile your source program, use the BASIC command, which
has the form:

BASIC [/qualifier...][file-spec [/qualifier...]},...

/qualifier

The name of a qualifier that indicates a specific action to be performed by
the compiler on all files or specific files listed. When a qualifier appears
directly after the BASIC command, it affects all files listed.

file-spec

Indicates the name of the input source file that contains the program or
module to be compiled. You are not required to specify a file extension; the
VAX BASIC compiler assumes the file to be of the default file type, BAS.

If you enter the BASIC command with no parameters, you will enter the
BASIC environment. For more information on the BASIC environment, see
Chapter 3.

Most of the command qualifiers to the BASIC command affect all files
specified in the command line, no matter where the qualifiers are placed;
these are called global qualifiers. However, the qualifiers /LISTING,
/OBJECT, and /DIAGNOSTICS are positional qualifiers; that is, depending
on their position in the command line, they can affect all or only some of the
specified files. The rules for positional qualifiers are as follows:

* If the positional qualifier is located directly following the command
name, it affects all the specified files.

e If the file specifications are separated by commas, then any positional
qualifier directly following a file specification affects only that file.

e If the file specifications are separated by plus signs, then any positional
qualifier directly following a list of file specifications affects only the
resulting appended file.

¢ The rightmost qualifier overrides any conflicting qualifier previously
specified in the command line.

The placement of these positional qualifiers causes VAX BASIC to produce
or not produce listing files, object files, and diagnostics files. For example:

$ BASIC/LIST/OBJ PROG1/NOOBJ/DIAG, PROG2+PROG3/NOLIST

This command does the following:
¢ Compiles PROG1 and produces a listing file called PROG1.LIS

4-4 Developing VAX BASIC Programs at DCL. Command Level

* Produces no object file for PROG1
* Produces a diagnostics file for PROG1 called PROG1.DIA

¢ Appends PROG2 and PROGS3 for compilation, producing a temporary
source file called PROG2

¢ Compiles the new PROG2 and produces an object file called PROG2.0BJ
® Produces no listing file for the new PROG2

Because VAX BASIC appends source files that are separated by plus signs,
you should make sure that these files contain line numbers. VAX BASIC
does not allow you to append programs without line numbers. You must also
make sure that these files do not contain duplicate line numbers. If there
are duplicate line numbers, VAX BASIC replaces the first instance of that
numbered line with the second.

You should be careful when using positional qualifiers inside a list of files
separated with plus signs, because a positional qualifier specified for a single
file affects all the files in that list. In the following example, the /NOOBJ
positional qualifier appears to apply only to PROG2. However, since VAX
BASIC appends PROG1, PROG2, and PROGS3 to form one file called PROG1,
the /NOOBJ qualifier applies to the new PROG1 and VAX BASIC does not
produce an object module.

$ BASIC PROG1+PROG2/NOOBJ+PROG3

4.2.2 BASIC Command Qualifiers

The following list represents all the command qualifiers and their defaults
available with the DCL command BASIC. The SINGLE, DOUBLE,
WORD, and LONG qualifiers are supported for compatibility with older
versions of VAX BASIC. However, DIGITAL recommends that you use the
/TYPE_DEFAULT, /INTEGER_SIZE, /REAL_SIZE, and /DECIMAL_SIZE
qualifiers to set the default data type and size. A description of each

qualifier follows the list.
Command Qualifier Default
/INOJANALYSIS_DATA [= file-spec] /NOANALYSIS_DATA
/[INOJANSI_STANDARD /NOANSI_STANDARD
/INOJAUDIT [= text-entry] /NOAUDIT

/INOJCHECK [= (check-clause,...)] /CHECK=(BOUNDS,OVERFLOW)
/INOJCROSS_REF [= [NOJKEYWORDS] /NOCROSS_REF

/INO]DEBUG [= (debug-clause,...)] /DEBUG=(TRACEBACK,NOSYMBOLS)
/DECIMAL_SIZE = (d,s) /DECIMAL_SIZE=(15,2)

Develobing VAX BASIC Programs at DCL Command Level 4-5

/INO]DEPENDENCY_DATA /NODEPENDENCY_DATA

/INO]DESIGN /NODESIGN

/INO]DIAGNOSTICS [= file-spec] /NODIAGNOSTICS

/DOUBLE

/INOJFLAG [= (flag-clause,...)] /FLAG = (NODECLINING, NOBP2COMPATIBILITY)
/INTEGER_SIZE = data-type /INTEGER_SIZE = LONG

/[INOILINES /LINES

/INOJLISTING [= file-spec] /NOLISTING (from terminal) /LISTING (batch)
/LONG

/INOJMACHINE_CODE /NOMACHINE_CODE

/INOJOBJECT [= file-spec] /OBJECT
/INOJOLD_VERSION=CDD_ARRAYS /NOOLD_VERSION

/REAL_SIZE = data-type /REAL_SIZE = SINGLE
/[INOJROUND_DECIMAL /NOROUND_DECIMAL

/SCALE =n /SCALE =0

/INOISHOW [= (show-item,...)] /SHOW

/SINGLE

/INOJSYNTAX_CHECK /NOSYNTAX_CHECK

/TYPE_DEFAULT = default-clause /TYPE_DEFAULT = REAL

/VARIANT = int-const /VARIANT =0

/INO]WARNINGS [= (warn-clause,..)] /WARNINGS = (INFORMATIONALS, WARNINGS)

/WORD

/[NOJANALYSIS_DATA [= file-spec]

If the VAX Source Code Analyzer (SCA) is installed on your system, you can
use the /ANALYSIS_DATA qualifier to create a file containing data analysis
information. The file generated by the /ANALYSIS_DATA qualifier has a
default file type of .ANA. You load .ANA files into an SCA library. SCA uses
the ANA file to display cross-reference information and analyze source code.

Note that you cannot use the /ANALYSIS_DATA qualifier with the
/ANSI_STANDARD qualifier. The default is NOANALYSIS_DATA.

/[NOJANSI_STANDARD

The /ANSI_STANDARD qualifier causes VAX BASIC to allow only
statements valid for ANSI Minimal BASIC and to compile programs
according to the ANSI Minimal BASIC rules.

The /NOANSI_STANDARD qualifier causes VAX BASIC to allow extensions
and implementation-defined features.

4-6 Developing VAX BASIC Programs at DCL Command Level

Note that you cannot use the /ANSI_STANDARD qualifier with the
/ANALYSIS_DATA qualifier. The default is /NOANSI_STANDARD. See the
VAX BASIC Reference Manual for more information about ANSI standard
BASIC.

str-lit

/[NOJAUDIT = file-spec

The /AUDIT qualifier causes VAX BASIC to include a history entry in
CDD/Plus when extracting a CDD/Plus definition. You can specify either a
string literal or a file specification with the /AUDIT qualifier. If you specify
a string literal, VAX BASIC includes it as part of the history entry. If you
specify a file specification, VAX BASIC includes up to the first 64 lines of
the specified file. When you specify /AUDIT, VAX BASIC also includes the
following information about the CDD/Plus record extraction in the history
entry:

* The name of the program module making the extraction

¢ The time and date of the extraction

* A note that access was made by way of a VAX BASIC program
* A note that the access was an extraction

* The username and UIC of the process accessing CDD/Plus

The /NOAUDIT qualifier causes VAX BASIC not to include a history entry
in CDD/Plus when extracting a CDD/Plus definition.

The default is /NOAUDIT.

[NO]JBOUNDS
/[NOJCHECK = [NOJOVERFLOW [=(INTEGER,DECIMAL)]
ALL

The /CHECK quali'fictgl':l Eauses VAX BASIC to test for arithmetic overflow and
for array references outside array boundaries when the program executes.
Specifying /CHECK=NOBOUNDS means that your program is smaller and
runs faster. However, no error is signaled for an array reference outside
the bounds of an array. This means that the program may get a memory
management or access violation error at run time. Therefore, this option
should be used only for programs that have been thoroughly debugged

and whose execution time is critical. If you specify /CHECK=OVERFLOW,
overflow checking is enabled for both integers and packed decimal numbers.
Similarly, specifying /CHECK=NOOVERFLOW disables overflow checking
for both types of numbers.

Developing VAX BASIC Programs at DCL Command Level 4-7

The /NOCHECK qualifier causes VAX BASIC to not test for arithmetic
overflow and for array references outside array boundaries when the
program executes.

/CHECK = ALL is the same as /CHECK = (BOUNDS,OVERFLOW).
/CHECK = NONE is the same as /NOCHECK.

The default is /CHECK = (BOUNDS,OVERFLOW).

/[NOJCROSS_REFERENCE [= [NOJKEYWORDS]

The /CROSS_REFERENCE qualifier causes VAX BASIC to generate a
cross-reference listing. The cross-reference list shows program symbols,
their class, and the program lines in which they are referenced.
/CROSS_REFERENCE=KEYWORDS specifies that the cross-reference
listing includes all references to VAX BASIC keywords. If you specify
/CROSS_REFERENCE alone, the default is NOKEYWORDS. See
Chapter 18 for more information on cross-reference listings.

The /NOCROSS_REFERENCE qualifier specifies that no cross-reference
listing be produced.

The default is/ NOCROSS_REFERENCE.

[NOJSYMBOLS
/[NOJDEBUG = H‘L?_]TRACEBACK

The /DEBUG qualg‘%ice!:l Eauses VAX BASIC to provide information for the
VMS Debugger and the system run-time error traceback mechanism.
Neither TRACEBACK nor SYMBOLS affects a program’s executable code.
For more information on debugging, see Chapter 5.

The /NODEBUG qualifier causes VAX BASIC to suppress information for
the VMS Debugger and the system run-time error traceback mechanism.

/DEBUG = ALL is the same as /DEBUG = (TRACEBACK,SYMBOLS).
/DEBUG = NONE is the same as /NODEBUG.

The default is /DEBUG = (TRACEBACK,NOSYMBOLSS).

/IDECIMAL_SIZE = (d,s)

The /DECIMAL_SIZE qualifier lets you specify the default size for packed
decimal data. You specify the total number of digits in the number and the
number of digits to the right of the decimal point.

/DECIMAL,_SIZE = (15,2) is the default. This default decimal size applies to
all decimal variables for which the total number of digits and digits to the
right of the decimal point are not explicitly declared. See the VAX BASIC
Reference Manual for more information about packed decimal numbers.

4-8 Developing VAX BASIC Programs at DCL Command Level

/[NOJDEPENDENCY_DATA

If you have CDD/Plus Version 4.0 installed on your system, and

if your current CDD$DEFAULT is a CDO-format dictionary, the
/DEPENDENCY_DATA qualifier generates a compiled module entity in
the CDD$DEFAULT for each compilation unit.

You must specify this qualifier if you want 2INCLUDE %FROM %CDD
and %REPORT %DEPENDENCY directives to establish dependency
relationships.

/NODEPENDENCY_DATA is the default. No compiled module entity is
generated in this case.

- | COMMENTS
INOIDESIGN = { L oL DERS
The /DESIGN qualifier enables Program Design Facility (PDF) processing.

Therefore, if you specify the /DESIGN qualifier on the BASIC command
line, PDF instructs the VAX BASIC compiler to recognize placeholders and
comments as valid program elements.

In order to use all the capabilities of PDF, you must have the VAX
Language-Sensitive Editor Version 3.0 or higher and the VAX Source Code
Analyzer Version 2.0 or higher installed on your system. If you specify the
/ANALYSIS_DATA qualifier, the VAX BASIC compiler includes information
on comments and placeholders in the analysis data file.

To enable comment processing, you should specify /DESIGN=COMMENTS.
To enable placeholder processing in place of VAX BASIC syntax, you should
specify /DESIGN=PLACEHOLDERS.

If you specify the /DESIGN qualifier but do not select an option, the default
is /DESIGN=(COMMENTS,PLACEHOLDERS); otherwise, the default is
/NODESIGN.

/[[NO]DIAGNOSTICS [= file-spec]

If you have the VAX Language-Sensitive Editor (LSE) installed on your
system, you can use the /DIAGNOSTICS qualifier to create a diagnostics file
containing compiler messages and diagnostic information. The diagnostics
file is used by LSE to display diagnostic error messages and to position the
cursor on the line and column where a source error exists.

If you do not supply a file specification with the /DIAGNOSTICS qualifier,
the diagnostics file has the same name as its corresponding source file

and a file type of DIA. All other file specification attributes depend on the
placement of the qualifier in the command. See the VMS documentation set
for more information.

Developing VAX BASIC Programs at DCL Command Level 4-9

The /NODIAGNOSTICS qualifier specifies that no diagnostics file will be
created. The default is NODIAGNOSTICS.

[NO]JBP2COMPATIBILITY
_ } [NOJDECLINING
/[NOJFLAG = AL

NONE
The /FLAG qualifier lets you specify whether VAX BASIC warns you about
declining features and compatibility with PDP-11 BASIC-PLUS-2.

The /INOFLAG qualifier causes VAX BASIC to not warn you about declining
features and compatibility with PDP-11 BASIC-PLUS-2.

/FLAG = ALL is the same as /FLAG = (BP2COMPATIBILITY,DECLINING).
/FLAG = NONE is the same as /NOFLAG.

The default is /FLAG = (NODECLINING,NOBP2COMPATIBILITY).

BYTE
INTEGER_SIZE = { WORD

LONG
The /INTEGER_SIZE qualifier lets you specify the default size for integer
data.

The default is INTEGER_SIZE = LONG. The default integer size applies to
all integer variables whose data type is not explicitly declared. See the VAX
BASIC Reference Manual for more information about integer data types.

/[NOJLINES

The /LINES qualifier makes line number information available for the ERL
function, the RESUME statement (with no target), and the VAX BASIC
error reporter. If your program contains a RESUME statement with no
target, or a reference to the error-handling function ERL, the compiler
overrides NOLINES and signals “ERL overrides NOLINE” or “RESUME
overrides NOLINE”. Note that the VAX BASIC error reporting facility is
separate from that of system traceback.

The /NOLINES qualifier causes line number information to be unavailable
for the ERL function, the RESUME statement (with no target) and the VAX
BASIC error reporter. Specifying /NOLINES makes your program run faster
and reduces program size (this eliminates five bytes of code and four bytes of
data for each program line number). However, specifying /NOLINES causes
the following restrictions to be in effect:

* You cannot use RESUME without a line number
* You cannot use the ERL function
* No VAX BASIC line number is given in run-time error messages

4-10 Developing VAX BASIC Programs at DCL Command Level

Therefore, this option should be used only for programs that have been
thoroughly debugged and whose execution time is critical.

The default is /LINES.

/INOJLISTING
The /LISTING qualifier causes VAX BASIC to produce a source listing file.

To produce a listing file with an explicit file specification, you must use the
/LISTING qualifier in the form /LISTING = file-spec. Otherwise, the listing
file has the same name as its corresponding source file and a file type of LIS.
All other file specification attributes depend on the placement of the qualifier
in the command. See the VMS DCL Concepts Manual for more information.
Note that the /LISTING qualifier only controls whether or not VAX BASIC
produces a listing file. The /SHOW qualifier controls which parts of the
listing are produced.

The /NOLISTING qualifier specifies that no source listing file be produced.

At a terminal, the default is /NOLISTING. In batch mode, the default is
/LISTING.

/[NOJMACHINE_CODE

The /MACHINE_CODE qualifier specifies that the listing file includes
the compiler-generated object code. If /LISTING is not specified,
/MACHINE_CODE causes VAX BASIC to produce a listing file containing
only the compiler-generated object code.

The /NOMACHINE_CODE qualifier specifies that the listing file not include
compiler-generated object code.

The default is NOMACHINE_CODE.

/[NOJOBJECT

The /OBJECT qualifier causes VAX BASIC to produce an object module, and

optionally specifies its file name. By default, VAX BASIC generates object

files as follow