
DECLIT
AA
CROSS
X023C

II'

DATATRIEVE-ll

User's Guide

Order Number: AA-X023C-TK

DATATRIEVE-11
User's Guide
Order Number: AA-X023C-TK

July 1989

This document describes how to use DATATRIEVE-11.

Operating Systems:

Software Version:

digital equipment corporation
maynard, massachusetts

RSX-11 M/M-PLUS
RSTS/E
Micro/RSX
Micro/RSTS
VMS with VAX-11 RSX

DATATRIEVE-11 Version 3.3

First Printing, September 1983
Revised, November 1987
Revised, July 1989

The information in this document is subject to change without notice and should not
be construed as a commitment by Digital Equipment Corporation. Digital Equipment
Corporation assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used
or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is
not supplied by Digital Equipment Corporation or its affiliated companies.

© Digital Equipment Corporation 1983, 1987, 1989.

All Rights Reserved.
Printed in U.S.A.

The postpaid Reader's Comments forms at the end of this document request your
critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DATATRIEVE
DATATRIEVE-11
DEC
DECnet
DECUS
Micro/RSTS
Micro/RSX
MicroVAX
MicroVMS
PDP
PDP-11

RdbNMS
ReGIS
RSTS
RSTS/E
RSX
RSX-11M
RSX-11 M-PLUS
UNIBUS
VAX
VAX CDD
VAX DATATRIEVE

VAX Information Architecture
VAX Rdb/ELN
VAXcluster
VAXinfo
VAX/VMS
VAX-11 RSX
VMS
VT

ZK5063

Contents

Preface. xv

Summary of Technical Changes xix

Chapter 1

1.1

1.2

1.3

Introduction to DATATRIEVE-11

Description of DATATRIEVE-11

DATATRIEVE Concepts and Terms
1.2.1 Files
1.2.2
1.2.3
1.2.4
1.2.5
1.2.6
1.2.7
1.2.8

Record Definitions
Domains
Data Dictionaries .
Commands and Statements.
Procedures
Command Files
DATATRIEVE Tables

Components of DATATRIEVE-11
1.3.1 Interactive DATATRIEVE-11
1.3.2 The DATATRIEVE-11 Distributed Server
1.3.3 The DATATRIEVE-11 Call Interlace
1.3.4 The DATATRIEVE-11 Remote Terminal Interface

1-1

1-1
1-2
1-2
1-3
1-3
1-3
1-4
1-4
1-5

1-5
1-6
1-6
1-7
1-7

iii

Chapter 2 Getting Started with DATATRIEVE

2.1 Invoking DATATRIEVE-11 2-1

2.2 Sample Domains, Records, and Data Files . 2-2

2.3 QUERY.INI Startup File . 2-2

2.4 Using READY, PRINT, and REPORT to Retrieve Data. 2-3

2.5 DATATRIEVE Input Line Prompts . 2-5

2.6 DATATRIEVE Syntax Line Prompts 2-5

2.7 DATATRIEVE Prompts for Storing and Modifying Values 2-6

2.8 DATATRIEVE Error Messages 2-6

2.9 Ending Your DATATRIEVE Session 2-6
2.9.1 Using the EXIT Command. 2-6
2.9.2 Exiting from DATATRIEVE with CTRUZ 2-7
2.9.3 Exiting from DATATRIEVE with CTRUC 2-7

2.10 Using Help. 2-7

2.11 Guide Mode. 2-8

Chapter 3 Using Data Dictionaries

3.1 Contents of a Data Dictionary . 3-1

3.2 Creating a Data Dictionary 3-2

3.3 Changing Dictionaries 3-2

Chapter 4 Defining Domains

4.1 Specifying Domain Names 4-1

4.2 Defining a Simple RMS Domain 4-2

4.3 Using the SHOW Command with Domains 4-3

iv

Chapter 5

5.1

5.2

5.3

5.4

Chapter 6

6.1

)

Defining Records

Planning a Record Definition .

Getting Started and Naming a Record

Defining the Parts of a Record Definition
5.3.1 Specifying Level Numbers
5.3.2 Naming Fields

5.3.2.1 Restrictions for Field Names
5.3.2.2 Using Duplicate Field Names
5.3.2.3 Using the Field Name FILLER

5.3.3 Using Field Definition Clauses .
5.3.4 Specifying Query Names .
5.3.5 Specifying Word Boundary Alignment with the ALLOCATION

Clause

Using the OCCURS Clause to Define Hierarchical Records
5.4.1 Defining Lists with a Fixed Number of Occurrences
5.4.2 Defining Lists with a Variable Number of Occurrences
5.4.3 Nesting Lists Within Lists to Form Sublists
5.4.4 Changing the Length of a List .

Defining Files

Choosing a Sequential or an Indexed File
6.1.1 Modifying and Deleting Records .
6.1.2 Summary of Differences ..

Defil1ing a File Using the DEFINE FILE Command
6.2.1 Defining a Sequential File
6.2.2 Defining an Indexed File .

6.2.2.1 Using a Group Field as the Primary Key
6.2.2.2 Defining Alternate Keys.
6.2.2.3 Summary of Rules for Defining Key Fields

6.2.3 Optional Clauses with the DEFINE FILE Command

5-1

5-3

5-4
5-5
5-7
5-8
5-9

5-10
5-12
5-14

5-15

5-16
5-18
5-19
5-21
5-21

6-1
6-2
6-2

6-3
6-3
~-4
6-5
6-6
6-7
6-7

v

Chapter 7

7.1

7.2

7.3

7.4

Chapter 8

8.1

8.2

8.3

Chapter 9

9.1

9.2

9.3

9.4

9.5

vi

Limiting Record Streams with Record Selection Expressions

Accessing All the Records in a Domain

Specifying the Number of Records in the Record Stream

Identifying Records with Conditional Expressions
7.3.1 'Comparing Records by Pattern Recognition
7.3.2 Grouping Records for a Range of Values
7.3.3 Grouping Records by Reference to a Table
7.3.4 Summary of the Relational Operators
7.3.5 Setting Up Multiple Tests with Compound Booleans

Sorting the Record Stream by Field Values

Using Compound Statements

Using REPEAT to Combine Statements

Using the FOR Statement . :

Using BEGIN-END Blocks to Combine Statements
8.3.1 BEGIN-END Blocks in FOR Statements
8.3.2 IF-THEN-ELSE Statements in BEGIN-END Blocks
8.3.3 BEGIN-END Blocks in STORE Statements
8.3.4 BEGIN-END Blocks in REPEAT Statements

Using DATATRIEVE Procedures

Defining a Procedure

Invoking a Procedure .

Contents of a Procedure
9.3.1 Commands and Statements in Procedures
9.3.2 Arguments and Clauses
9.3.3 Comments in Procedures

Using Procedures to Locate Errors

A Sample Procedure

7-2

7-3

7-4
7-4
7-6
7-7
7-8
7-9

7-10

8-1

8-3

8-4
8-4
8-5
8-5
8-6

9-1

9-2

9-4
9-4
9-5
9-5

9-7

9.6

9.7

9.8

9.9

9.10

9.11

Chapter 10

10.1

10.2

10.3

10.4

10.5

10.6

10.7

10.8

10.9

Nesting Procedures ...

Using a Procedure in a .Compound Statement

Aborting Procedures

Displaying Procedure Information

Editing Procedures

Deleting Procedures

Using DATATRIEVE Command Files

Creating a Command File

Contents of a Command File
10.2.1 ADT, EDIT, SET GUIDE
10.2.2 Comments in a Command File

Invoking a Command File
10.3.1 Invoking Command Files from the System Prompt
10.3.2 Invoking a Command File from a Procedure

Aborting Command Files

Editing a Command File

Sample Command File

Nesting Command Files

Using a Command File in a FOR or REPEAT Statement

Maintaining Command Files

9-9

9-11

9-13

9-15

9-15

9-16

10-2

10-3
10-3
10-3

10-4
10-4
10-5

10-6

10-6

10-6

10-8

10-9

10-10

vii

Chapter 11

11.1

11.2

11.3

11.4

11.5

Chapter 12

12.1

12.2

12.3

12.4

12.5

12.6

12.7

viii

Using DATATRIEVE Variables

Declaring Variables.

Assigning Values to Variables

Local and Global Variables
11 .3.1 Global Variables
11 .3.2 Local Variables .

Using Variables to Assign Values to Fields

Using Variables as Counters to Control Record Streams

Using DATATRIEVE Tables

Using a Dictionary Table

Creating Dictionary Tables

Sample Dictionary Tables

Using the IN Relational Operator with DATATRIEVE Tables
12.4.1 Using a Table in a Record Selection Expression

12.4.1 .1 Using a Table to Set Conditions in an
IF-THEN-ELSE Statement

12.4.1.2 Using a VALID IF Clause with a Table to Validate
Data

12.4.2 Using the Keyword VIA with DATATRIEVE Tables

DATATRIEVE Tables and Workspace

Accessing Tables
12.6.1 Listing Table Names .
12.6.2 Displaying Tables
12.6.3 Editing Tables
12.6.4 Deleting Tables .

Protecting Dictionary Tables

11-1

11-2

11-3
11-4
11-4

11-5

11-7

12-1

12-3

12-4

12-5
12-5

12-6

12-6
12-7

12-.:8

12-8
12-8
12-8
12-9

12-10

12-10

Chapter 13

13.1

13.2

Chapter 14

14.1

14.2

14.3

14.4

14.5

Chapter 15

15.1

15.2

15.3

15.4

Defining and Using Views

Defining Views
13.1 .1 Views Using Subsets of Records .
13.1.2 Views Using Subsets of Fields
13.1 .3 Views Using More than One Domain.

Using a View Domain
13.2.1 Using a View that Contains a List

Using Hierarchies

Retrieving Repeating Field Values with FIND and SELECT
Statements

Retrieving Repeating Field Values with Nested FOR Loops

Retrieving Repeating Field Values with Inner Print Lists

Retrieving List Items with Nested RSEs-Eliminating Empty Print
Lines '"

Retrieving Values from Sublists.

Restructuring Domains

A Sample Domain

Changing Record and File Definitions and Using New Names
15.2.1 Storing Data from All the Records in the Old Domain
15.2.2 "Storing Data from a Subset of the Records in the Old

Domain
15.2.3 Deleting References to the Old Domain

Changing Record and File Definitions and Using Old Names

Changing the Organization of a Data File .

13-2
13-3
13-3
13-4

13-6
13-7

14-3

14-4

14-5

14-9

14-11

15-2

15-3
15-4

15-5
15-5

15-6

15-9

ix

Chapter 16 Editing DATATRIEVE Files

16.1 When to Invoke EDT with EDIT

16.2 Invoking the Editor

16.3 Using EDT .. .
16.3.1 Line Command Mode
16.3.2 Character Change Mode .

Chapter 17 Optimizing Workspace and Response Time

17.1 Using Workspace

17.2 Effect of READY and FINISH on Workspace

17.3 Techniques to Optimize Workspace

17.4 Techniques to Optimize Response Time
17.4.1 Using the ALLOCATION Option of the DEFINE FILE

Command
17.4.2 Using Keyed Access Efficiently ,~

17.4.2.1 Using EQUAL Rather than CONTAINING
17.4.2.2 Choosing Domains or Collections as Record

Sources
17.4.2.3 Ordering the Domains in Nested FOR Loops
17.4.2.4 Restoring Indexed Files That Are Often

Modified
17.4.3 Avoiding Nested FOR Loops Followed by a Conditional

Statement

Chapter 18 Controlli ng Output

18.1 Changing the Columns-Page Setting
18.1.1 Increasing the Columns-Page Setting
18.1.2 Decreasing the Columns-Page Setting
18.1.3 Determining the Number of Columns You Need for a Print

Line

18.2 Using the SET ABORT Statement

18.3 Using the SET PROMPT Statement

x

16-1

16-2

16-4
16-4
16-5

17-1

17-1

17-6

17-7

17-7
17-7
17-8

17-9
17-10

17-10

17-11

18-1
18-1
18-2

18-3

18-4

18-4
('
\

Chapter 19 Controlling Access to Dictionary Objects

19.1 Contents of an Access Control List .
19.1.1 Sequence Numbers
19.1.2 Lock Types
19.1.3 Keys

19.1.3.1 Password Keys
19.1.3.2 UIC Keys

19.1.4 Access Privileges

19.2 Creating Access Control Lists

19.3 Processing Access Control Lists in DATATRIEVE

19.4 Maintaining an Access Control List
19.4.1 Guidelines for Ordering Entries
19.4.2 Assigning Privileges
19.4.3 Displaying an Access Control List
19.4.4 Adding Entries to an Access Control List
19.4.5 Deleting Entries from an Access Control List

Chapter 20 Maintaining Data Dictionaries

20.1 Displaying Dictionary Objects

20.2 Modifying Dictionary Objects

20.3 Deleting Dictionary Objects

20.4 Optimizing Disk Storage of Data Dictionaries with QCPRS.

20.5 Extracting Dictionary Content with the QXTR Utility '"

Appendix A Name Recognition and Single Record Context

A.1 Establishing the Context for Name Recognition

19-1
19-2
19-2
19-2
19-3
19-3
19-4

19-8

19-9

19-11
19-11
19-11
19-12
19-13
19-13

20-2

20-3

20-4

20-5

20-7

A-1

xi

A.2

Index

Figures

xii

5-1

5-2

5-3

5-4

5-5

5-6
5-7
5-8

12-1

17-1

17-2

17-3

17-4

19-1

A-1

A.1.1

A.1.2

A.1.3
A.1.4

The Right Context Stack .
A.1.1.1 The Content of a Context Block
A. 1 .1.2 Global Variables
A.1 .1.3 Collections.
A.1 .1.4 Record Streams.
A.1.1.5 Local Variables ., .
A.1.1.6 VERIFY Clause in the STORE Statement
A.1.1.7 VALID IF Clause in a Record Definition
Using Context Variables and Qualified Field Names.
A.1.2.1 Context Variables as Field Name Qualifiers
A.1 .2.2 Other Field Name Qualifiers
The Left Context Stack for Assignment Statements
Examples of Context Variables in STORE and MODIFY
Statements .

Single Record Context .
A.2.1 The SELECT Statement and the Single Record Context.
A.2.2 The CURRENT Collection as Target Record Stream
A.2.3 The OF rse Clause and Target Record Streams
A.2.4 FOR Statements and Target Record Streams

Data Items in a Personnel Record

PERSONNEL_REC Record Definition

Four Parts of the SALARY Field .

Level Numbers in the PERSONNEL Record Definition

Valid Field Names for EMPLOYEE_REC

Query Names for PERSONNEL_REC

A Flat Record .

A Hierarchical Record .

Code and Translation Pairs in a Dictionary Table

Empty DATATRIEVE Workspace

Workspace with One Readied Domain .•.......................

Workspace with Two Readied Domains•..................

Workspace When You Finish First Readied Domain

Sample Access Control List

Duplicate Field Names in YACHTS and OWNERS•.....

A-2
A-2
A-4
A-5
A-6
A-8
A-9
A-9
A-9

A-10
A-10
A-13

A-14

A-16
A-17
A-22
A-24
A-26

5-2

5-2

5-4
5-6
5-9

5-15

5-17

5-17

12-1

17-2
17-3
17-4
17-5

19-2

A-2

v--

I
/

Tables
5-1

6-1

7-1
19-1

19-2

19-3

Field Classes

A Comparison of Sequential and Indexed Files

Conditional Comparisons for an RSE

Access Privileges.

Commands/Statements by Privilege

Privilege Requirements by Command/Statement

5-14

6-3

7-8
19-5

19-6

19-11

xiii

Preface

This manual is a guide to the interactive use of DATATRIEVE-ll. It
explains how to define dictionaries and dictionary objects (domains, records,
tables, and procedures), and gives examples of using compound statements,
command files, views, and hierarchies. It also discusses the restructuring of
domains and the control of input and output.

In this manual, the DATATRIEVE-ll software is also referred to as
DATATRIEVE.

lntended Audience

This manual is intended for people who:

• Have read and tried the examples in the Introduction to DATATRIEVE-ll

• Have experience using DATATRIEVE

• Have experience in applications programming but are unfamiliar with
DATATRIEVE

For people who have no experience with DATATRIEVE, the Introduction to
DATATRIEVE-ll provides a tutorial for the basic DATATRIEVE-ll tasks.

Structure

This manual is divided into 20 chapters, an appendix, and an index:

Chapter 1 Introduces the basic concepts of DATATRIEVE-ll.

xv

xvi

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Chapter 12

Chapter 13

Chapter 14

Chapter 15

Chapter 16

Chapter 17

Chapter 18

Chapter 19

Describes how to enter and exit DATATRIEVE, display
data, use various prompts, and how to use DATATRIEVE
Help and Guide Mode.

Describes data dictionaries and how to create or change
them.

Describes how to name and define domains.

Describes how to plan a record definition, the rules
governing the definition, the optional clauses you can use
to specify certain conditions, and the use of lists to define
hierarchical records.

Describes the difference between indexed and sequential
data files, compares their advantages, and explains how
to define them.

Discusses record selection expressions (RSEs) and how to
use them to select particular records from your database.

Describes the use of REPEAT, FOR, and BEGIN-END
blocks to combine statements into compound statements.

Describes how to define and use DATATRIEVE proce­
dures.

Describes how to create and use DATATRIEVE command
files.

Discusses DATATRIEVE variables, the differences be­
tween local and global variables, and how to use them.

Describes the creation and use of DATATRIEVE tables.

Describes how to define and use view domains to examine
only part of one domain or to combine information from
more than one domain.

Discusses how to use lists to retrieve data.

Explains how to change record and file definitions to
restructure a domain.

Explains how to use the DATATRIEVE Editor.

Discusses the most effective ways of using your allotted
workspace.

Describes ways to control the format of your output"
and how to use the SET ABORT and SET PROMPT
commands.

Describes how to create, use, and maintain access control
lists.

I

Chapter 20

Appendix A

Related Manuals

Describes how to modify and delete data dictionaries,
optimize the disk storage space they use, and extract
their contents.

Explains in detail the way DATATRIEVE establishes
context, the context stacks, context variables, and single
record context.

For further information on the topics covered in this manual, refer to the
following manuals:

• Introduction to DATATRIEVE-ll

• DATATRIEVE-ll Call Interface Manual

• DATATRIEVE-ll Reference Manual

Conventions

This section explains the special symbols used in this book:

Convention

~

~
>

Color

UPPERCASE

lowercase

{}

[]

Meaning

This symbol indicates the RETURN key.

This symbol indicates the TAB key.

The right angle bracket symbol at the beginning of a new line,
or by itself, represents the system prompt.

Color in examples shows user input.

Uppercase words represent DATATRIEVE keywords.

Lowercase words are generic terms that indicate entries you
must provide.

Braces enclose clauses from which you must choose one alterna­
tive.

Square brackets enclose optional clauses from which you can
choose one or none.

Horizontal ellipsis means you can repeat the previous item.

Vertical ellipsis in an example means that information not
directly related to the example has been omitted.

xvii

Summary of Technical Changes

DATATRIEVE-ll Version 3.3 incorporates the following technical changes to
the software:

• The EDIT command now invokes the EDT text editor. In previous
versions, the EDIT command invoked the DATATRIEVE Query
Editor (QED), also known as the DATATRIEVE Editor, which is no
longer supported. The EDT language allows keypad editing of any
DATATRIEVE object.

• The DATE data type has been expanded to represent time values.

• Seventeen lexical functions have been added to the DATATRIEVE
language.

• Installation on RSX-IIM1M-PLUS and RSTSIE systems now uses
Auto-Install.

xix

!>"
I ;

Chapter 1

Introduction to DATATRIEVE-11

This chapter gives an overview of DATATRIEVE-II and explains its basic
concepts and terms.

1.1 Description of DATATRIEVE-11

DATATRIEVE-II is an interactive tool for inquiry, update, and maintenance
of information stored in data files. DATATRIEVE-Il runs on any PDP-II
computer with an RSX-IIM1M-PLUS, RSTSIE, MicrolRSX, or MicrolRSTS
operating system. In addition, it runs on a VAX. system with VAX-II RSX
installed under VMS.

The commands and statements you use are common English words that
have specific meaning within DATATRIEVE. With these commands and
statements, you can manipulate the information in selected data files.

1.2 DATATRIEVE Concepts and Terms

DATATRIEVE-II uses the following concepts and terms:

• Files, records, and domains

• Data dictionaries

• Commands and statements

• Procedures

• Command files

• Tables

Each of these are discussed in the following sections.

Introduction to DATATRIEVE-11 1-1

1.2.1 Files

A data file contains ordered data. The DATATRIEVE DEFINE FILE
command creates a data file and allows you to specify some of the charac­
teristics of the file. You can use your record definition to control the way
DATATRIEVE handles the data in other data files. You can also use a
number of different record definitions to work with the information stored in
one data file.

1.2.2 Record Definitions

A record is the basic unit of information management. It describes the
relationship between logically connected data items and consists of one or
more subunits called fields. DATATRIEVE uses both elementary and group
fields. An elementary field contains an item of data. A group field contains
group and elementary fields that are logically related. Thus, you might
have an EMPLOYEE_NAME group field that contains the elementary fields
FIRST_NAME, MIDDLE_INITIAL, and LAST_NAME.

DATATRIEVE enables you to interpret the data in the fields of a data
record. The DATATRIEVE record definition controls the way you look at and
interpret the information coded in your data files.

In the field definition clauses in a DEFINE RECORD command, you specify
the type of field, the length of each field, and the content of the fields:
character strings, numbers, or dates. You can also control the format
DATATRIEVE uses to display values from those fields.

Note that in field names (like FIRST_NAME), this manual uses underscores
(_). When you are using DATATRIEVE, you may use either underscores or
hyphens (-) in record or field definitions. DATATRIEVE accepts hyphens
as input but converts them to underscores before analyzing user input. To
use a hyphen as a minus sign, put spaces before and after it. Otherwise,
DATATRIEVE converts the minus sign to an underscore and issues an error
message.

Be consistent in your own practice. To avoid confusion when using the
manuals, you may want to use underscores instead of hyphens. Whichever
you use, Chapter 5 of this manual explains record definitions and field
definition clauses.

1-2 Introduction to DATATRIEVE-11

1.2.3 Domains

To manage the data in a file, you must explicitly connect that data file to a
record definition. DATATRIEVE makes this connection with a domain. You
use the DEFINE DOMAIN command to create a domain definition and to
store that definition in your current data dictionary.

The domain definition establishes a name for the domain and associates that
name with the names of a record definition and a data file. When you use
the name of the domain, you tell DATATRIEVE to use a particular record
definition to interpret the data stored in a specific file.

Do not confuse a domain with the data you want to manage. The data stored
in the data file does not constitute the domain. You can erase old records
and add new ones without disturbing the relationship between the data file
and the record definition, which remains fixed.

1.2.4 Data Dictionaries

A data dictionary is an RMS file that DATATRIEVE creates to store
definitions. It stores tables, procedures, and the definitions of domains and
records.

1.2.5 Com mands and Statements

You manage information with commands and statements based on the
DATATRIEVE keywords described in this manual.

Commands deal with the data dictionary and enable you to:

• Create, change, and display definitions in the dictionary (DEFINE,
SHOW, EDIT, DELETE and EXTRACT)

• Maintain the access control lists associated with those definitions
(DEFINEP, SHOWP, and DELETEP)

• Get access to domains (READY)

• Release access to domains, variables, collections, and DATATRIEVE
tables (RELEASE and FINISH)

• Determine the way DATATRIEVE displays data on your terminal (SET)

• Get online information about DATATRIEVE (HELP)

• End your DATATRIEVE sessions (EXIT)

Introduction to DATATRIEVE-11 1-3

Statements deal with data and enable you to:

• Store records (STORE)

• Form and manipulate groups of records (FIND, SELECT, DROP, and
SORT)

• Display data (PRINT, REPORT, and SUM)

• Modify records (MODIFY)

• Erase records (ERASE)

• Declare variables and assign values (DECLARE and assignment)

You can join statements to form compound statements in the BEGIN­
END, FOR, IF-THEN-ELSE, REPEAT, and THEN statements. You cannot
join commands with other commands or with statements. Furthermore,
only statements may contain DATATRIEVE value expressions and record
selection expressions.

You can enter statements at levels other than command level (indicated by
the DTR> prompt), but you can enter commands at command level only.

If you are not sure whether a given keyword is a command or a statement,
refer to the table showing an alphabetical summary of commands and
statements in the DATATRIEVE-l1 Reference Manual.

1.2.6 Procedures

Most DATATRIEVE-l1 applications involve sequences of commands and
statements that you use again and again. 1b avoid retyping such a sequence
you can store it in your dictionary as a procedure. You can also use proce­
dures within commands or statements. With the DEFINE PROCEDURE
command, you give the sequence a name and enter both the name and the
sequence into your dictionary. You invoke the procedure by entering a colon
(:) and the procedure name. DATATRIEVE then interprets the content of
the procedure just as though you had entered it at your terminal.

1.2.7 Command Files

You can use command files in DATATRIEVE in much the way you use
DATATRIEVE procedures. The primary difference between the two is that
you store command files in your operating system directory and procedures
in a DATATRIEVE dictionary.

1-4 Introduction to DATATRIEVE-11

)

1.2.8

When you invoke a command file, DATATRIEVE displays the text in the
command file on your terminal. When you invoke a procedure, however, the
procedure definition is not displayed on your terminal.

DATATRIEVE Tables

DATATRIEVE tables perform two functions. They let you:

• Specify one value and retrieve another that you have associated with the
first

• Validate data according to the presence or absence of a data item in the
table

A table contains pairs of character strings. The first member of each pair
is the code string and the second is the translation string. The last entry
in the table can be an ELSE clause that specifies a default translation
string. Thus your table might match department codes (such as AOI) with
department names (such as Accounting). For example, if you enter a code
not in the table, the ELSE clause can specify a message to be displayed on
your terminal, telling you the code is not valid.

1.3 Components of DATATRIEVE-11

DATATRIEVE-II consists of four components on your PDP-I! system:

• Interactive DATATRIEVE-II

The DTR. TSK task image allows you to access DATATRIEVE at your
terminal.

• The DATATRIEVE-II Distributed Server

DDMF.TSK allows users on other DECnet nodes to use DATATRIEVE
for accessing data files and data dictionaries on your node.

• The DATATRIEVE-ii Call Interface

The DTCLIB.OLB object module library allows application programs in
other high-level languages to call DATATRIEVE subroutines. The calls,
through a local or remote server, give you access to DATATRIEVE data
files and dictionaries.

Introduction to DATATRIEVE-11 1-5

• The DATATRIEVE-II Remote Terminal Interface

REMDTR.TSK is an interactive program that uses the Call Interface
and the remote server. When you run REMDTR as a program, it looks
as though you are running interactive DATATRIEVE on a remote node.

The following sections describe these four components and tell you where to
find information on each one.

1.3.1 Interactive DATATRIEVE-11

When you invoke DATATRIEVE-II on a PDP-II system, you are running
DTR.TSK, the interactive DATATRIEVE task image. This program accepts
DATATRIEVE commands and statements from the terminal and uses the
terminal as the default output device. DTR. TSK allows you to access data
stored in disk files as well as definitions stored in one of the data dictionaries
on your system, using DATATRIEVE commands and statements. The
Introduction to DATATRIEVE-ll, the DATATRIEVE-ll Reference Manual,
and this manual describe how to use interactive DATATRIEVE.

1.3.2 The DATATRIEVE-11 Distributed Server

The Distributed Data Manipulation Facility (DDMF) is also called the
DATATRIEVE Distributed Server. It is a "slave" program. Another
DATATRIEVE component sends it commands to execute, and it passes the
results back to that component. DDMF can perform all the DATATRIEVE
functions that DTR.TSK can perform, with the exception of the Application
Design Tool (ADT) and Guide Mode.

You use the Distributed Server in three ways:

• VAX DATATRIEVE uses the Distributed Server on a PDP-II or VAX
node to perform distributed operations. For example, when you type
READY YACHTS AT FRODO in VAX DATATRIEVE, DATATRIEVE
starts up DDMF on the node named FRODO and uses it to access
definitions and data files on that node.

• The DATATRIEVE-II Call Interface uses DDMF to give you access
to data dictionaries and data files, allowing you to write application
programs that call DATATRIEVE.

• The DATATRIEVE-II Remote Terminal Interface uses DDMF through
the Call Interface, allowing you to use your terminal to access
DATATRIEVE on other nodes.

1-6 Introduction to DATATRIEVE-11

1.3.3 The DATATRIEVE-11 Call Interface

The DATATRIEVE-ll Call Interface allows you to write high-level language
programs that call DATATRIEVE, either on your own system or on another
DECnet node. To use the Call Interface, you include calls to external
DATATRIEVE subroutines in your program. When you build the task
image, you link the program to the object module library DTCLIB.OLB. The
subroutines pass information between the calling program and a local or
remote DATATRIEVE Distributed Server. When you are running such a
program, there are actually two task images active:

• Your program linked to DTCLIB.OLB

• DDMF, the DATATRIEVE Distributed Server that has been activated to
serve your program

NOTE

You must have the DECnet software installed on your system
before you can access DATATRIEVE on a remote node.

The DATATRIEVE-ll Call Interface Manual tells you how to write programs
that use the Call Interface.

1.3.4 The DATATRIEVE-11 Remote Terminal Interface

The DATATRIEVE-ll Remote Terminal Interface (REMDTR) gives you
interactive access to DATATRIEVE on other nodes.

NOTE

You must have the DECnet software installed on your system
before you can use REMDTR.

To use the Remote Terminal Interface on both RSTS and RSX-llM/M-PLUS
systems, type RUN $REMDTR. If an error message is displayed, check with
your system manager to make sure the program is installed.

When REMDTR prompts you for a node name, you can type either a node
name or a complete network address specification. The address specification
includes a user name or account number and a password:

Enter node name: MYVAX

Enter node name: MYVAX"MYNAME PASWRD"

Enter node name: MYRSTS"130,34 PASWRD"

Introduction to DATATRIEVE-11 1-7

If you specify only the node name, you are logged in to the default DECnet
account and may not have access to the data files or dictionaries you want.
When you type the complete form of the specification, DECnet logs you into
that account.

After you have logged in successfully, you can use DATATRIEVE interac­
tively on that node as if you were using DATATRIEVE on your own node,
except that Guide Mode and ADT are not available.

You can use the Remote Terminal Interface for copying dictionary definitions
and data files across DECnet. It is also useful for testing a network path
and determining the default characteristics of DDMF, the DATATRIEVE
Distributed Server, on a remote node.

For more information on using the Remote Terminal Interface, see the
DATATRIEVE-ll Call Interface Manual.

1-8 Introduction to DATATRIEVE-11

Chapter 2

Getting Started with DATATRIEVE

This chapter tells you how to start and stop DATATRIEVE. It also tells you
how to:

• Work with sample domains, records, and files included in the
DATATRIEVE-ll installation kit

• Use the PRINT and REPORT statements

• Understand DATATRIEVE prompts

• Interpret DATATRIEVE error messages

• Use Help and Guide Mode

2.1 Invoking DATATRIEVE-11

The way you start DATATRIEVE can vary from one system to another. If
you cannot invoke DATATRIEVE using the method discussed in this section,
contact the person in charge of DATATRIEVE on your system.

See your system manager for the exact invocation line for your system. Here
is how to start the system if your invocation line is RUN $DTR:

> RUN $DTR~
PDP-II DATATRIEVE, DEC Query and Report System
Version: V3.3-nn, I3-JUN-89
Type HELP for help
DTR>

The startup banner in the previous example shows you that you have
successfully invoked DATATRIEVE.

Getting Started with DATATRIEVE 2-1

2.2 Sample Domains, Records, and Data Files

The DATATRIEVE-II installation kit includes four sample domains:
YACHTS, OWNERS, PERSONNEL, and FAMILIES. The domain definitions
and the record definitions are in the system data dictionary.

The following command creates a private dictionary for you called
SAMPLE.DIe which resides in your current default directory. The command
enters the domain and record definitions into the dictionary, and copies the
data files into your directory.

For RSTSIE and Micro/RSTS systems type the following:

DTR> @LB: SETUP. DTR ~
DTR>

For RSX, Micro/RSX, and VAX-II RSX systems type the following:

DTR> @LB: [1,2] SETUP .DTR~
DTR>

To see that the sample domain and record definitions are in place, use the
SHOW command:

DTR> SHOW DOMAINS, RECORDS~
Domains:

FAMILIES KETCHES OWNERS
PERSONNEL PERSONNEL_SEQ SAILBOATS
YACHTS_SEQUENTIAL

Records:

OWNERS_SEQUENTIAL
YACHTS

OWNER RECORD PERSONNEL REC PERSONNEL_SEQ_REC
YACHT

DTR>

The results of this command vary from one system to another, but you
should be sure that DATATRIEVE lists the needed domain and record def­
initions on your terminal. If you have difficulty, see the person responsible
for DATATRIEVE-II on your system.

2.3 QUERY.lNI Startup File

If you frequently start your DATATRIEVE sessien with the same series of
commands and statements, you can use a command file to execute the com­
mands and statements automatically each time you invoke DATATRIEVE.
DATATRIEVE recognizes QUERY.INI as the default startup file. However,
you can specify a different startup file at installation time if you choose.

2-2 Getting Started with DATATRIEVE

)

DATATRIEVE first looks for a QUERY.INI file in your default directory.
If one is there, DATATRIEVE executes the commands and statements it
contains before it accepts any other input.

If this file cannot be found in the current directory, DATATRIEVE searches
for QUERYINI in the same location as QUERYDIC. This allows for a
system-generated QUERY.INI as a default if the user does not provide
QUERYINI. Recommended file protection of the system QUERY.INI file is
World Read.

If you would like to be in Guide Mode as soon as you invoke DATATRIEVE,
for instance, you can include the SET GUIDE comand at the end of your
QUERY.INI file. You can put a SET DICTIONARY command in the
QUERYINI file to automatically change your default data dictionary. You
can ready domains you use frequently. Your QUERY.INI file, then, might
include the following lines:

SET DICTIONARY MYDIC.DIC
SET GUIDE
READY YACHTS

When you type your command to invoke DATATRIEVE, you are placed
in your own dictionary and in Guide Mode, and the YACHTS domain is
readied.

2.4 Using READY, PRINT, and REPORT to Retrieve Data

The basic keywords used to retrieve data are the READY command and
the PRINT and REPORT statements. To display a complete domain, for
example, first ready the domain. Then type PRINT followed by the domain
name:

DTR> READY PERSONNEL 0TII
DTR> PRINT PERSONNEL ~

Getting Started with DATATRIEVE 2-3

FIRST LAST START SUP
ID STATUS NAME NAME DEPT DATE SALARY ID

00012 EXPERIENCED CHARLOTTE SPIVA TOP 12-Sep-72 $75,892 00012
00891 EXPERIENCED FRED HOWL Fll 9-Apr-76 $59,594 00012
02943 EXPERIENCED CASS TERRY D98 2-Jan-80 $29,908 39485
12643 TRAINEE JEFF TASHKENT C82 4-Apr-81 $32,918 87465
32432 TRAINEE THOMAS SCHWEIK Fll 7-Nov-81 $26,723 00891
34456 TRAINEE HANK MORRISON T32 1-Mar-82 $30,000 87289
38462 EXPERIENCED BILL SWAY T32 5-May-80 $54,000 00012
38465 EXPERIENCED JOANNE FREIBURG E46 20-Feb-80 $23,908 48475
39485 EXPERIENCED DEE TERRICK D98 2-May-77 $55,829 00012
48475 EXPERIENCED GAIL CASSIDY E46 2-May-78 $55,407 00012
48573 TRAINEE SY KELLER T32 2-Aug-81 $31,546 87289
49001 EXPERIENCED DAN ROBERTS C82 7-Jul-79 $41,395 87465
49843 TRAINEE BART HAMMER D98 4-Aug-81 $26,392 39485
78923 EXPERIENCED LYDIA HARRISON Fll 19-Jun-79 $40,747 00891
83764 EXPERIENCED JIM MEADER T32 4-Apr-80 $41,029 87289
84375 EXPERIENCED MARY NALEVO D98 3-Jan-76 $56,847 39485
87289 EXPERIENCED LOUISE DEPALMA G20 28-Feb-79 $57,598 00012
87465 EXPERIENCED ANTHONY IACOBONE C82 2-Jan-73 $58,462 00012
87701 TRAINEE NATHANIEL CHONTZ Fll 28-Jan-82 $24,502 00891
88001 EXPERIENCED DAVID LITELLA G20 ll-Nov-80 $34,933 87289
90342 EXPERIENCED BRUNO DONCHIKOV C82 9-Aug-78 $35,952 87465
91023 TRAINEE STAN WITTGEN G20 23-Dec-81 $25,023 87289
99029 EXPERIENCED RANDY PODERESIAN C82 24-May-79 $33,738 87465

DTR>

For an explanation of the various forms of the PRINT statement, see the
Introduction to DATATRIEVE-ll and the DATATRIEVE-ll Reference
Manual. To retrieve information in a report format, use the REPORT state­
ment. This can provide you with a report title, a date, page numbers, and
various statistical functions. In its simplest form, the report specification
consists of a REPORT statement, followed by a PRINT statement specifying
the fields you want to report, and an END_REPORT statement to conclude
the specification:

DTR> REPORT YACHTS WITH BUILDER = "ALBERG" ~
RW> PRINT BOAT ~
RW> END_REPORT ~

MANUFACTURER

ALBERG

DTR>

15-Nov-87
Page 1

MODEL

37 MK II

LENGTH
OVER

RIG ALL

KETCH 37

WEIGHT BEAM PRICE

20,000 12 $36,951

For a complete explanation of the DATATRIEVE-ll Report Writer, see the
DATATRIEVE-ll Guide to Writing Reports.

2-4 Getting Started with DATATRIEVE

2.5 DATATRIEVE Input Line Prompts

Several types of prompts provide you with information during your
interactive DATATRIEVE session. There are four types of input line
prompts:

DTR> Marks the beginning of input lines and shows that DATATRIEVE is
ready for your input

CON> Prompts you to continue incomplete commands or statements and shows
what DATATRIEVE expects next

DFN>

RW>

Prompts you to continue a partially complete DEFINE command

Prompts you to complete unfinished Report Writer statements and enter
additional statements

2.6 DATATRIEVE Syntax Line Prompts

When you press RETURN before completing a command or statement,
DATATRIEVE prompts you with a phrase in square brackets telling you
what sort of input it expects to satisfy the syntax of the command or­
statement. The following example shows several of DATATRIEVE's syntax
prompts:

DTR> READY~
[Looking for Dictionary Element]
CON> YACHTS ~
DTR> FIND~
[Looking for "FIRST", domain name, or collection name]
CON> YACHTS WITH ~
[Looking for Boolean expression]
CON> LOA~
[Looking for relational operator (eq, gt, etc.)]
CON> BETWEEN~
[Looking for a value expression]
CON> 20~
[Looking for upper value of between]
CON> AND (@TI
[Looking for a value expression]
CON> 30 (@TI
[54 records found]
DTR>

Getting Started with DATATRIEVE 2-5

2.7 DATATRIEVE Prompts for Storing and Modifying Values

When you enter a STORE or MODIFY statement, DATATRIEVE usually
prompts you to enter new information to be stored in the record, or to
replace what was stored there previously. Unless the statement contains
a USING clause, you are prompted to enter information for each field
receiving a new value. The prompt is made up of the word "Enter" followed
by the name of the field. It takes the following general form:

Enter field-name:

2.8 DATATRIEVE Error Messages

Error messages are DATATRIEVE responses to faulty syntax or an error in
logic. When it detects an error, DATATRIEVE displays an error message
and returns you to DATATRIEVE command level. All data items remain
as they were before you made the error. The messages describe the error.
For instance, when you use an undefined name in a PRINT command,
DATATRIEVE responds with an error message:

DTR> PRINT RUBINS~
Field "RUBINS" is undefined or used out of context
DTR>

2.9 Ending Your DATATRIEVE Session

You can exit from DATATRIEVE by doing one of the following:

• Enter the EXIT command

• Press CTRUZ

• Press CTRUC two times

2.9.1 Using the EXIT Command

To end your DATATRIEVE session and return to the operating system com­
mand level, you can respond to the DTR> prompt with an EXIT command:

DTR> EXIT~
>

Entering the EXIT command at any other DATATRIEVE prompt is a syntax
error.

2-6 Getting Started with DATATRIEVE

~" 2.9.2 Exiting from DATATRIEVE with CTRL/Z

'\
)

You can also end your DATATRIEVE session by entering CTRUZ in response
to the DTR> prompt:

DTR> ICTRuzl
>

Entering CTRUZ in response to any prompt other than DTR> returns you
to DATATRIEVE command level (DTR».

2.9.3 Exiting from DATATRIEVE with CTRL/C

If you enter one CTRUC when DATATRIEVE is executing a command,
DATATRIEVE aborts its operation. If you enter CTRL/C two consecutive
times, the second aborts the task and returns you to your operating system
command level. Using either the EXIT command or CTRUZ is a' better way
to exit than using two CTRUCs, because EXIT and CTRUZ do not abort the
task.

2.10 Using Help

DATATRIEVE offers two levels of help: basic and advanced. Basic help is
information about elementary DATATRIEVE statements. Advanced help
provides instructions on statements that you are likely to use after some
experience with DATATRIEVE. To get information on the help topic itself,
type HELP in response to the DTR> prompt.

For a listing of the topics for which help is available, type:

DTR> HELP HELP ~

The topics of greatest interest to the beginning user are
the following:

EXIT
PRINT

FIND
READY

GUIDE
SORT

MODIFY
STORE

Getting Started with DATATRIEVE 2-7

Help is available for the following topics:

ABORT
COMPUTED
DEFINE
DICTIONARY
EDIT

ADT
CONDITION
DEFINEP
DISPLAY
EDIT-STRING

EXTRACT FILE
FN$ABS FN$DATE
FN$HOUR FN$HUNDREDTH
FN$MOD FN$MONTH
FN$STR EXTRACT FN$STR LOC
FN$YEAR FOR-
IF
PIC
RECORD
RSE
SHOWP
TABLE
VIEW

DTR>

LEXICALS
PRINT
RELEASE
SELECT
SORT
THEN

ASSIGNMENT
DATE
DELETE
DOMAIN
ERASE
FIND
FN$DAY
FN$JULIAN
FN$SECOND
FN$TIME
GUIDE
MODIFY
PROCEDURE
REPEAT
SET
STORE
USAGE

BEGIN
DECLARE
DELETEP
DROP
EXIT
FINISH
FN$DCL
FN$MINUTE
FN$SIGN
FN$UPCASE
HELP
OCCURS
READY
REPORT
SHOW
SUM
VALUE

To get help on one of these topics, type HELP followed by the name of the
topic and press the RETURN key.

For a listing of topics for which advanced help is available, type:

DTR> HELP ADVANCED HELP ~
Advanced help is available for the following topics:

CONDITION DICTIONARY DOMAIN EDIT
EDIT-STRING FILE FIND
MODIFY OCCURS PRINT PROCEDURE
RECORD RSE SELECT SORT
STORE TABLE USAGE VALUE
VIEW

DTR>

To get advanced help on one of these subjects, type HELP ADVANCED
followed by the name of the subject.

2.11 Guide Mode

The self-explanatory Guide Mode feature helps you:

• While you are learning to use DATATRIEVE

• Whenever you are unsure of the sequence of commands you need to
accomplish your task

2-8 Getting Started with DATATRIEVE

NOTE

To use Guide Mode, you must have a video display terminal.
Guide Mode does not work on any hardcopy terminal.

To get into Guide Mode, type:

DTR> SET GUIDE ~

DATATRIEVE then prompts you, step-by-step, for every operation you want
to perform. If you need help, type a question mark (?). DATATRIEVE shows
you a list of the possible commands and statements you can use to complete
your task:

DTR> SET GUIDE ~
Enter command, type ? for help

If you type?, DATATRIEVE displays the following information:

Enter command, type ? for help

The possible responses are:

READY
SHOW
LEAVE

Make domain available
Display status information
Return to normal Datatrieve

Notice that Guide Mode automatically spells out entire words and phrases
immediately after you type only one or two letters. You may find this
somewhat startling at first, but you soon get used to it. Guide Mode fills
in the word as soon as you enter characters it recognizes. If you type R,
it completes the word as READY. If you type RE, REA, and so on, it also
echoes the word READY.

You can get unexpected results with Guide Mode if you are not careful,
however. For example, suppose you want to ready a domain called EASELS.
If you type REA, Guide Mode does not expand the R to READY and the EA
to EASELS. Rather, it interprets the EA as part of a READY command with
no domain name supplied. To get the results you want, you could instead
type REA EA, which would be expanded to READY EASELS.

When you are ready to exit from Guide Mode and return to regular
DATATRIEVE, type LEAVE. The DTR> prompt indicates you are out of
Guide Mode.

Getting Started with DATATRIEVE 2-9

Chapter 3

Using Data Dictionaries

Invoking DATATRIEVE automatically connects you to a data dictionary:
an RMS file that DATATRIEVE creates to store definitions and protection
information. This chapter shows how to create and use a data dictionary.

~.1 Contents of a Data Dictionary

A data dictionary contains the definitions and protection information for the
following DATATRIEVE data structures:

• Domains

• Records

• Procedures

• Descri ption tables

Each definition describes the contents of the data structure:

• A domain definition contains the name of the domain, the name of the
record definition associated with the domain, and the file specification of
the file containing the data for the domain.

• A record definition contains the name of the record and a definition for
each field in the record.

• A procedure definition is the procedure itself, including the procedure
name and all commands and statements in the procedure.

• A table definition is the table itself, including its name and all code and
description pairs.

Using Data Dictionaries 3-1

Associated with each of these definitions is an access control list (ACL). It
protects the one definition with which it is associated and restricts its use.
Access control lists supplement the protection features of your operating
system.

3.2 Creating a Data Dictionary

You create a data.dictionary using the DEFINE DICTIONARY command.
The format of this command is:

DEFINE DICTIONARY file-spec

DEFINE DICTIONARY creates an empty indexed sequential RMS file that
is suitable for use as a data dictionary. You supply the file specification,
and the operating system creates an entry for it in your directory. You can
choose any file extension when you create it. If you use the default file
extension .DIC, you do not have to specify the file extension when referring
to your dictionary file from DATATRIEVE command level. In addition, if YOt
use the standard file extension, you can easily identify your dictionary files
when you list your directory.

When you enter a DEFINE DICTIONARY command, DATATRIEVE creates
a file and establishes the new dictionary as your current data dictionary,
just as if you had entered a SET DICTIONARY command:

DTR> SHOW DICTIONARY~
The current dictionary is SY: [1,3]NEWQ.DIC
DTR> DEFINE DICTIONARY MYDIC~
DTR> SHOW DICTIONARY~
The current dictionary is SY: [1,37]MYDIC.DIC

Note that because you did not specify any extension for the dictionary,
DATATRIEVE assigned .DIC by default.

You can begin entering definitions immediately. If DATATRIEVE cannot
create a file because, for example, you do not have write access to the disk,
or the disk is not mounted, it prints a message on your terminal and leaves
you connected to your current dictionary.

3.3 Changing Dictionaries

When you invoke it, DATATRIEVE automatically connects you to a default
data dictionary. At the time of installation, your system manager determine I
what the default dictionary will be for your system. At the beginning of YOUl

DATATRIEVE session, that dictionary is your current dictionary.

3-2 Using Data Dictionaries

To find out the name of your current dictionary, use the following command:

DTR> SHOW DICTIONARY~
The current dictionary is SY: [~,37]MYDIC.DIC

SHOW DICTIONARY prints the file specification of the current data
dictionary.

If you want to use a different dictionary, use the following format of the SET
command:

SET DICTIONARY file-spec

To change from the default dictionary to another dictionary, you must specify
at least one element of the file specification of the other data dictionary. For
example, if you specify only the device name, DATATRIEVE searches that
device for a directory with your project-programmer number (PPN) or user
identification code (mC) and a file named QUERY.DIC. If DATATRIEVE
does not find the file you specify, it prints an error message on your
terminal and leaves you in your current dictionary. (At no time are you in
DATATRIEVE without being in a data dictionary.)

If you have readied a domain in your current dictionary and you change
dictionaries, that domain is still available when you are in the new
dictionary. This feature allows you to move records from that readied
domain into another domain in the new current dictionary.

If you want to return to the default data dictionary, issue the SET
DICTIONARY command without a file specification:

DTR> SET DICTIONARY @IT!

The following dialogue illustrates the setting and displaying of data
dictionaries. Note that if you try to set a dictionary that you have not
defined, DATATRIEVE prints an error message on your terminal. You must
first define the dictionary with a DEFINE DICTIONARY command. Note
also that DATATRIEVE returns the DFN> prompt when you omit the file
specification from the DEFINE DICTIONARY command. In this example,
DR1: represents the name of the device on which the default DATATRIEVE
system dictionary resides. DR2: is the name of the device on which your file
directory is stored:

Using Data Dictionaries 3-3

DTR> SHOW DICTIONARY ~
The current dictionary is DRl: [1,2]QUERY.DIC
DTR> SET DICTIONARY NEWDIC ~
File "NEWDIC" not found
DTR> DEFINE DICTIONARY ~
OFN> NEWOIC ~
DTR> SHOW DICTIONARY ~
The current dictionary is DR2: [200,200]NEWDIC.DIC
DTR> SET DICTIONARY ~
DTR> SHOW DICTIONARY [RET]
The current dictionary is DRl: [1,2]QUERY.DIC
OTR>

Note that you do not need an explicit SET DICTIONARY command after
entering DEFINE DICTIONARY NEWDIC, because that DEFINE sets the
dictionary to NEWDIC automatically.

3-4 Using Data Dictionaries

'\

J

Chapter 4

Defining Domains

When you define a DATATRIEVE domain, the domain associates the names
of a record definition and a data file with each other. When you use a
domain name, you tell DATATRIEVE to use a particular record definition to
interpret the data stored in a specific file.

Do not confuse the domain with the data you want to manage using the
domain. You can erase old records or add new ones to a data file without
disturbing the relationship between the file and a record definition. That
relationship is established when you define a domain and remains fixed.

This chapter explains hpw to define simple RMS domains. You can also use
the Application Design Tool (ADT) to define domains, records, and files. For
information on using ADT, see the Introduction to DATATRIEVE-ll.

4.1 Specifying Domain Names

In the DEFINE DOMAIN command, you specify the name of a domain,
the name of the record definition associated with the domain, and the file
specification of the file containing the data for the domain. The domain
name must:

• Begin with a letter (A-Z)

• Contain 31 characters or less

• End with a letter (A-Z) or a digit (0-9)

• Contain only letters, digits, dollar signs, hyphens, or underscores (A-Z,
0-9, $, -, or .J

Defining Domains 4-1

DATATRIEVE enters the domain definition in your current dictionary
directory.

NOTE

DATATRIEVE treats hyphens and underscores as identical
characters. You may use either underscores or hyphens in the
names you assign. When processing, DATATRIEVE automatically
converts hyphens to underscores. When it returns the output,
it shows underscores whether you have entered hyphens or
underscores. To use a hyphen as a minus sign, put spaces before
and after it.

4.2 Defining a Simple RMS Domain

To define a domain, you associate the name of the domain with a record
definition and file specification. The format for the DEFINE DOMAIN
command follows:

DEFINE DOMAIN domain-name USING record-name [(P~~;Wd)] ON file-spec

The domain name cannot duplicate a DATATRIEVE keyword or the name
of any other element in the current data dictionary. The record name refers
to the record definition to be associated with the domain. You can define
the domain before you define the record. (See Chapter 5 for information on
defining records.)

An optional password can be used to check for E (execute) privilege for
the record definition. If an asterisk prompt (*) is specified, DATATRIEVE
prompts you for the password.

Be sure to end the definition with a semicolon (;). If you omit the semicolon,
DATATRIEVE prompts you for one with DFN>.

The following rules apply to the DEFINE DOMAIN command:

• It must be preceded by a DATATRIEVE command level prompt DTR>.

• You cannot include a domain definition in a procedure.

• You cannot invoke a procedure in a domain definition.

• You cannot include a DEFINE DOMAIN command in a DATATRIEVE
statement.

4-2 Defining Domains

The following is an example of the DEFINE DOMAIN command:

DTR> DEFINE DOMAIN SCHEDULE USING SCHED_REC ON SCHED;~
DTR>

This command enters the definition for SCHEDULE in your current
dictionary. The domain uses a record definition called SCHED_REC and a
data file called SCHED.DAT. The file extension .DAT is assigned to the data
file by default.

4.3 Using the SHOW Command with Domains

You can use the SHOW command to see how a domain is defined. If
you enter SHOW followed by the domain name, the text you used in the
DEFINE DOMAIN command is displayed on your terminal. For example,
enter SHOW SCHEDULE to see how the domain SCHEDULE is defined:

DTR> SHOW SCHEDULE ~
DOMAIN SCHEDULE

USING SCHED_REC ON SCHED;
DTR>

Note that the domain must be defined in your current default dictionary.
(See Chapter 3 for information on dictionaries.)

To see if a domain is in your dictionary, enter the SHOW DOMAINS
command. This displays a listing of all domains in your default dictionary,
as follows:

DTR> SHOW DOMAINS~
Domains:

DTR>

FAMILIES KETCHES
OWNERS_SEQUENTIAL
YACHTS

OWNERS
SAILBOATS SCHEDULE
YACHTS_SEQUENTIAL

Defining Domains 4-3

)

'\
I

;'

Chapter 5

Defining Records

There are two ways to define a record in DATATRIEVE-l1. You can use the
interactive Application Design Tool (ADT), and DATATRIEVE creates the
record for you based on your responses to a series of questions. You can also
define the record yourself with the DEFINE RECORD command.

For simple records, the Application Design Tool is often an efficient way
to complete your definition. See the Introduction to DATATRIEVE-ll for
a sample ADT session. The DEFINE RECORD command, on the other
hand, lets you use options not available through ADT. For instance, it
lets you include clauses such as the COMPUTED BY clause, which asks
DATATRIEVE to calculate the value of a field from the values of other fields
or value expressions.

This chapter explains how to set up a record definition using the DEFINE
RECORD command. The DATATRIEVE-ll Reference Manual contains
additional information on defining records, including alphabetical listings of
all clauses you can use in your record definitions.

5.1 Planning a Record Definition

The first step in writing a DATATRIEVE record definition is to analyze
your data. Decide what data items you need to manage, their relative
importance, and ways to group related items.

You might want to maintain your personnel files with DATATRIEVE, for
example. As you analyze the information, you find that for each employee
you want to include an identification number, status (experienced or trainee),
name, department, starting date, salary, and supervisor identification
number. Your list of data items might look like that in Figure 5-1.

Defining Records 5-1

Figure 5-1 : Data Items in a Personnel Record

IDENTIFICATION NUMBER
STATUS
EMPLOYEE NAME
DEPARTMENT
START DATE
SALARY
SUPERVISOR'S IDENTIFICATION NUMBER

ZK-0971 A-He

With your DATATRIEVE installation kit, you receive a record called
PERSONNEL_REC made up of the data items listedin Figure 5-1. The
DATATRIEVE definition for that record appears in Figure 5-2.

Figure 5-2: PERSONNEL_REC Record Definition

DTR> SHOW PERSONNEL_REC~
RECORD PERSONNEL_REC
USING
01 PERSON.

05 ID
05 EMPLOYEE STATUS

05 EMPLOYEE NAI-1E
10 FIRST NAME

10 LAST NAME

05 DEPT
05 START DATE
05 SALARY

05 SUP ID
;
DTR>

PIC IS 9 (5) .
PIC IS X(ll)
QUERY_NAME IS STATUS
QUERY_HEADER IS "STATUS"
VALID IF STATUS EQ "TRAINEE", "EXPERIENCED".
QUERY NAME IS NAME.

PIC IS x (10)
QUERY_NAME IS F_NAME.
PIC IS X(10)
QUERY_NAME IS L_NAME.

PIC IS xxx.
USAGE IS DATE.
PIC IS 9(5)
EDIT_STRING IS $$$,$$$.
PIC IS 9 (5) .

To write a DATATRIEVE record definition yourself, you provide the elements
to transform a list of data items like that in Figure 5-1 into a formal record
definition like that in Figure 5-2. The rest of this chapter tells you how to
make such a change.

5-2 Defining Records

5.2 Getting Started and Naming a Record

When you define a record, you begin by ·specifying the name of a record.
You can define the record interactively by entering the DEFINE RECORD
command at the DTR> prompt followed by the complete record definition. If
you make a mistake, DATATRIEVE displays an error message and returns
you to the DATATRIEVE command level without saving the definition. You
must then retype it.

To avoid retyping, you can define the record in a procedure (see Chapter 9)
or a command file (see Chapter 10). You can define your record, or only a
few fields of the record, complete the definition (remember the semicolon),
and then revise it later. To add additional fields or make whatever other
changes you would like, you can use the EDIT command or your preferred
text editor to make the changes in a command file.

To make changes with the EDIT command:

1. Issue the EDIT command at the DTR> prompt, specifying the record
that you want to change:

DTR> EDIT record-name

2. Use EDT to make corrections. See Chapter 16 for a description of the
EDIT command. See EDT documentation for full information about the
EDT editing language.

3. When you exit the EDT command level, DATATRIEVE invokes the
edited definition automatically.

To make the changes with your preferred text editor in a command file:

1. Copy the record definition to a file, using the EXTRACT statement as
follows:

EXTRACT ON file-spec record-name

2. EXIT from DATATRIEVE.

3. Use your text editor to make corrections in the record definition.

Notice the file begins with the commands DELETE record-name and
DEFINE record-name. DATATRIEVE inserts these commands into the
command file when you use the EXTRACT command. When you invoke
the file, DATATRIEVE deletes the incorrect record definition and creates
the corrected one.

4. Return to DATATRIEVE.

Defining Records 5-3

5. Execute the command file just created by typing the at sign (@) and the
file name.

When you name the record, the name must:

• Begin with a letter (A-Z)

• Contain 31 characters or less

• Contain only letters, digits, dollar signs, hyphens, or underscores (A-Z,
0-9, $, -, or _)

• Not duplicate a DATATRIEVE keyword

• Not duplicate the name of an existing dictionary object

5.3 Defining the Parts of a Record Definition

Having named the record, you can define its parts. The complete record
definition consists of one or more field definitions for fields like PERSON,
EMPLOYEE_STATUS, and EMPLOYEE_NAME in Figure 5-2. Each field
definition describes the field itself with a name and a field definition clause.
It also describes the field's relationship to other fields with a level number.
Follow the definition with a period. Figure 5-3 shows the four parts of the
SALARY field in PERSONNEL_REC.

Figure 5-3: Four Parts of the SALARY Field

Level Field
Number Name

05 SALARY PIC IS 9 (5)
$$$t$$$f. EDIT_STRING IS

- Two Field Definition Clauses
- Period (.)

ZK-0978A-HC

Following are required parts of the field definition:

• A level number specifying the field's relationship to other fields in the
record

• A field name identifying the field

• A period (.) signifying the end of the field definition

5-4 Defining Records

In addition, most field definitions contain clauses describing the information
stored in the field. Among other things, field definitions can describe the
size of a field, the type of information stored in it, and how the information
will be displayed.

In Figure. 5-3, for example, the PIC (or PICTURE) clause describes the size
of the SALARY field and the type of information which can be stored there,
in this case a number with no more than five digits. The EDIT_STRING
clause specifies that information in the SALARY field will be displayed in
monetary format with a leading dollar sign ($) and a comma (,) in the
appropriate place.

Level numbers, field names, and field definition clauses are discussed in the
following sections.

5.3.1 Specifying Level Numbers

DATATRIEVE recognizes the levels of fields in the record definition accord­
ing to the level numbers you assign. The level number is the first element of
a field definition. Level numbers are 1- or 2-digit numbers, ranging from the
highest possible level (1) to the lowest possible level (65). Leading zeros, as
in 01 or 05, do not affect the value of the level number.

Figure 5-4 shows the level numbers for fields in the PERSONNEL record
definition.

Defining Records 5-5

Figure 5-4: Level Numbers in the PERSONNEL Record Definition

01 PERSON
05 ID
05 EMPLOYEE STATUS
05 EMPLOYEE-NAME

10 FIRST NAME
10 LAST NAME

05 DEPT
05 START DATE
05 SALARY
05 SUP ID

The level numbers apply to each group and elementary field:

• Group fields contain one or more group or elementary fields.

• Elementary fields contain one item of data and no other fields.

The group field PERSON is the top-level field and the only field with the
level number 01. Every record must have a top-level field. The group
field EMPLOYEE_NAME, numbered 05, contains the elementary fields
FIRST_NAME and LAST_NAME, numbered 10. The remaining fields,
numbered 05 like the group field EMPLOYEE_NAME, are elementary fields
at the same level as EMPLOYEE_NAME.

If one of the elementary fields numbered 05 (DEPT, for example), were
numbered 06, then that field would no longer be at the same level as the
group field preceding it. If DEPT were numbered 06, then it would become a
part of the group field EMPLOYEE_NAME.

A group field is not just a marker of record structure and relationships
among data items. A group field also gives you a way of using one
name to refer to more than one field. You can access all the data in the
PERSONNEL_REC record, for example, by using the group field PERSON.
The following example shows how you can display all the data in a selected
record in the PERSONNEL domain using the PERSON group field in a
PRINT statement:

DTR> READY PERSONNEL ~
DTR> FIND PERSONNEL ~
[23 records found]
DTR> SELECT 3 ~
DTR> PRINT PERSON ~

FIRST
1D STATUS NAME

02943 EXPERIENCED CASS

DTR>

5-6 Defining Records

LAST
NAME

TERRY

DEPT
START
DATE

D98 2-Jan-89

SUP
SALARY 1D

$29,908 39485

When you develop a record structure, keep in mind the following four
guidelines for using group and elementary fields:

• A record definition must define at least one elementary field.

• A record definition with more than one field definition must define a
top-level group field that includes all other fields in the record.

• A group field must contain at least one elementary field.

• A group field can contain both elementary and group fields.

Following are rules for level numbers:

• Level numbers need not be consecutive.

Only the relative value of level numbers determines the relationship
between fields. For example, the structure of the record would be no
different from its present form if the fields numbered 05 had level
numbers 02, and FIRST_NAME and LAST_NAME had level numbers
47. Using similar increments in the numbers of successive levels is
convenient but arbitrary. You do not have to use the same increment
between levels.

• Only the level numbers determine the relationships among fields.

The examples of records in this book indent field names to show the
relationships among levels of fields. Although indenting fields can make
a record definition easy to read, it has no effect on the levels of fields and
no effect on the relationships between fields.

• You must use one number for all the fields at the same level in a group
field, like FIRST_NAME and LAST_NAME in PERSONNEL_REC.

• The level number for a group field must be lower than the number for
any field it contains.

5.3.2 Naming Fields

You must name every field you define. You use field names to control the
way DATATRIEVE retrieves, modifies, and stores data. If you do not specify
a column header different from the field name, DATATRIEVE uses the field
name as the column header when displaying data.

Defining Records 5-7

5.3.2.1 Restrictions for Field Names

The names you choose for fields must conform to the general restrictions for
DATATRIEVE names, described in the DATATRIEVE-ll Reference Manual.
In summary, the name:

• Can consist of letters, digits, hyphens, dollar signs, and underscores

• Must begin with a letter

• Must not duplicate a DATATRIEVE keyword

• Must be from 1 to 31 characters long

• Must not duplicate the name of another dictionary object, domain,
procedure, or table

In most cases, DATATRIEVE displays an error message if you violate
these rules. However, if you duplicate dictionary object names you may not
receive an error message, or you may get unexpected results. For example,
suppose you want to display the contents of a field with the same name as a
readied domain in your workspace. If you enter PRINT and the field name,
DATATRIEVE associates the name with the domain rather than the field
and displays the contents of the domain. DATATRIEVE associates the name
with the field only if it is the second name in a print list.

You can continue a name from one input line to another by typing a hyphen
at the end of the input line, pressing RETURN, and completing the name
on the next line. To make the original information for the PERSONNEL
record (Figure 5-1) conform to the rules for field names, change some of
them. None of the names in the original information exceed 30 characters,
but several contain spaces, which are illegal characters in DATATRIEVE
names. Figure 5-5 shows the necessary changes.

5-8 Defining Records

5.3.2.2

.I

)

Figure 5-5: Valid Field Names for EMPLOYEE_REC

IDENTIFICATION -
STATUS -
EMPLOYEE NAME -

DEPARTMENT -
START DATE -
SUPERVISOR'S IDENTIFICATION NUMBER -

Using Duplicate Field Names

10
EMPLOYEE_STATUS
EMPLOYEE _ NAME

FIRST_NAME
LAST _NAME

DEPT
START_DATE
SUP_ID

ZK-0973A-HC

DATATRIEVE does not require field names to be unique. You can have
several fields in one record that have the same name. However, fields that
share one name must be in different group fields. To refer to a field name
that is a duplicate, prefix it with its group field name. The record is a field
tree, not a simple linear list. No other field is equivalent to the top-level
field. All other fields are at lower levels of the structure. The levels of
the field tree define the relationships among group and elementary fields
and determine the sequence DATATRIEVE follows in searching for the
names of fields. In PERSONNEL_REC the fields ID, EMPLOYEE_STATUS,
EMPLOYEE_NAME, DEPT, START_DATE, SALARY, and SUP _ID are at
the same level, one level below the top-level PERSON. FIRST_NAME and
LAST_NAME are on the third level in the field tree.

The following examples show some consequences of this structure:

• If you specify EMPLOYEE_NAME.LAST_NAME, DATATRIEVE looks
at the field names in the group field EMPLOYEE_NAME until it finds
the desired field. When DATATRIEVE searches for the specified field, it
finds the first field named EMPLOYEE_NAME. Then it looks at the next
lower level for the first field named LAST_NAME.

DTR> FIND PERSONNEL~
[23 records found]
DTR> SELECT 3 ~
DTR> PRINT ID, EMPLOYEE_NAME. LAST_NAME, SALARY~

Defining Records 5-9

ID
LAST
NAME

02943 TERRY

DTR>

SALARY

$29,908

If you had a duplicate field called LAST_NAME, perhaps under a group
field SUP_NAME, you could use the tree structure to tell DATATRIEVE
whether you wanted to print EMPLOYEE_NAME. LAST_NAME or
SUP _NAME.LAST_NAME.

• LAST_NAME, without any qualification, is also a valid and unique field
name in PERSONNEL_REC because there is no duplicate for it in the
present record.

- If you tell DATATRIEVE to store a value in ID.FIRST_NAME, it does
not find the field FIRST_NAME and does not store the value. It displays
the following error message:

Field "ID.FIRST_NAME" is undefined or used out of context

In general, though you can have duplicate and even multiple field names, it
is best to avoid duplicates. Unless you provide a qualified field name when
referring to a duplicate field, DATATRIEVE retrieves the value of the first
instance of the duplicate field name. If you intend to refer to an instance
other than the first but do not specify it, you will receive the output of the
first instance instead of what you intend. If you do choose to use duplicate
or multiple field names, you should be careful to use qualified names when
necessary.

5.3.2.3 Using the Field Name FILLER

Sometimes you want to preserve fields in a data file without using them,
usually for one of the following reasons:

• You may not need those fields for a particular application.

• You may want to control the display of records so that you do not display
certain data.

I- You may want to reserve space in the physical record of the data file.

For these purposes, you can specify the keyword FILLER as the name of
an elementary or group field. Like other fields, a field named FILLER must
have a level number, and it can contain field definition clauses. Unlike other
fields, the field name FILLER can belong to more than one field at the same
level in a group field. When you use the PRINT, LIST, MODIFY, STORE,
REPORT, and SUM statements, DATATRIEVE ignores values in FILLER

5-10 Defining Records

fields. When you use the DISPLAY statement, DATATRIEVE does display
the values in FILLER fields.

You cannot retrieve whole records or group fields containing a group field
named FILLER. You can, however, retrieve values from the elementary and
group fields included in a group field named FILLER. Each of those fields
has its own valid name, and you can retrieve the value by specifying that
name in a record selection expression, a print list, or a field list.

The following example shows a part of the YACHT record definition with
FILLER in place of TYPE, the group field that contains MANUFACTURER
and MODEL. It also shows the result of a SHOW FIELDS and two PRINT
statements, one of the top-level group field and one of an elementary field
(MODEL) in the group field FILLER.

Level numbers and field names of YACHT record with filler as group field:

01 BOAT
03 FILLER

06 MANUFACTURER
06 MODEL

03 SPECIFICATIONS
06 RIG
06 LENGTH_OVER_ALL
06 DISPLACEMENT
06 BEAM
06 PRICE

The effect of FILLER on SHOW FIELDS:

DTR> SHOW FIELDS ~
YACHTS

BOAT
SPECIFICATIONS (SPECS)

RIG [Character string]
LENGTH_OVER_ALL (LOA) [Character string]
DISPLACEMENT (DISP) [Number]
BEAM [Number]
PRICE [Number]

DTR>

The effect of FILLER as a group field on two PRINT statements:

DTR> FIND YACHTS; SELECT; PRINT~

LENGTH
OVER

RIG ALL WEIGHT BEAM PRICE

KETCH 37 20,000 12 $36,951

DTR> PRINT MODEL ~

Defining Records 5-11

MODEL

37 MK II

DTR>

5.3.3 Using Field Definition Clauses

DATATRIEVE handles the information in a field according to the type of
data in the field definition. DATATRIEVE recognizes the following field
definition clauses:

• COMPUTED BY

• EDIT_STRING

• OCCURS

• PICTURE

• QUERY_HEADER

• QUERY_NAME

• REDEFINES

• SIGN

• USAGE

• VALID IF

When you write a DATATRIEVE record definition, use a PICTURE, USAGE,
or COMPUTED BY clause to specify the type of data each elementary field
contains.

You can specify the following classes of fields:

• Alphanumeric

Define an alphanumeric field with a PICTURE clause of the form
PIC X(n), where n is an integer value describing the field width. The
EMPLOYEE_STATUS field in the record PERSONNEL_REC, for
instance, is defined as follows:

05 EMPLOYEE STATUS PIC IS x (11) .

You can store any combination of characters in alphanumeric fields: let­
ters, digits, and the special characters that are part of the DATATRIEVE
character set. See the DATATRIEVE-ll Reference Manual for a defini­
tion of the DATATRIEVE character set.

5-12 Defining Records

)

• Numeric
You can store digits and an optional sign (+ or -) in numeric fields.
DATATRIEVE assumes unsigned numbers to be positive in computa­
tions. In the YACHT record, DISPLACEMENT, BEAM, and PRICE are
numeric fields. Define a numeric field with a PICTURE clause of the
form PIC 9(n), where n is an integer value representing the field width,
or with any of these USAGE clauses:

COMP (or INTEGER)

COMP-1 (or REAL)

COMP-2 (or DOUBLE)

COMP-3 (or PACKED)

COMP-5 (or ZONED)

USAGE clauses follow a field definition, as in the following:

06 EMPLOYEE SALARY PIC IS 9(6) USAGE IS INTEGER.

See the DATATRIEVE-ll Reference Manual for explanations of the
internal storage for USAGE clauses.

• DATE
Define a date field with the USAGE clause in the form USAGE IS DATE.
The DATE datatype is an 8-byte field containing date and time values in
the form:

DD-MMM-YYYY hh:mm:ss.cc

For example, the date and time value of March 2,1989,4:29 p.m. is
stored as 02-MAR-1989 16:29:00.00. It may also contain values for
seconds and hundredths of a second.

You can store any date and time after 17-Nov-1858 in a date field. You
can use the values of date fields in various computations. For example,
you can subtract one date from another to get the number of days
elapsed between the two dates, or to calculate elapsed time. Refer to the
chapter on lexical functions in the DATATRIEVE-ll Reference Manual
for descriptions of the functions that extract fields fr<?m DATE items.

• COMPUTED BY
Define a computed by field with the COMPUTED BY clause. A computed
by field in a record definition does not correspond to a field in the
physical record stored in the data file and does not occupy space in a
record. It specifies a value expression. For example, you can define a
field named SALARY computed by multiplying the hourly pay of an
employee (the WAGE field of the same record) by the number of hours
worked (the HOURS field of the record):

Defining Records 5-13

05 SALARY
EDIT_STRING $$$9.99
COMPUTED BY WAGE * HOURS.

DATATRIEVE computes the value of the field when you refer to it in a
statement.

An elementary field can belong to anyone of the four classes of fields:
alphanumeric, numeric, date, or computed by. You do not need to use a
clause to specify the data type for a group field. A group field is always
alphanumeric. If you have stored only digits in a group field, you can use it
in arithmetic computations.

Table 5-1 summarizes the field classes and their content.

Table 5-1 : Field Classes

Field Type

Elementary field

Group field

Class

Alphanumeric

Numeric

DATE

COMPUTED BY

Alphanumeric

5.3.4 Specifying Query Names

Content

Any combination of characters.

Any combination of digits and optional
plus (+) or minus (-) sign.

A date.

None; the field definition specifies a
value expression, but no value is stored
in the record.

The values of the fields contained in
the group field.

You can use the QUERY_NAME field definition clause to specify an alter­
native name for any field in your record definition. When you name a field,
it is good to select a field name that is short enough to use easily but long
enough to be meaningful, especially to other people who may use the record.
At times, however, you may want to use an abbreviation or a memorable
short name in place of the formal field name. For example, the YACHT
record contains one field named LENGTH_OVER_ALL that is 15 characters
long. The name suggests the meaning of the data stored in that field and is
therefore helpful to a person unfamiliar with the YACHTS domain. The field
has a query name as well, LOA, to save you from typing the complete name
each time you refer to the field.

5-14 Defining Records

You can use a query name in any DATATRIEVE statement where you can
use the corresponding field name. Figure 5-6 shows a set of query names
for PERSONNEL_REC.

Figure 5-6: Query Names for PERSONNEL_REC

EMPLOYEE_STATUS
EMPLOYEE_ NAME
FIRST _NAME
LAST _NAME

QUERY _NAME IS STATUS.
QUERY _NAME IS NAME.
QUERY _ NAME IS F _ NAME.
QUERY _NAME IS L_NAME.

ZK-0972A-HC

5.3.5 Specifying Word Boundary Alignment with the ALLOCATION
Clause

The ALLOCATION clause determines which word boundary alignment
DATATRIEVE uses when storing records in the data file. You can specify
one of three kinds of alignment:

• LEFT_RIGHT

• MAJOR_MINOR

• ALIGNED_MAJOR_MINOR

For explanations of the three word boundary alignments, see the
DATATRIEVE-ll Reference Manual. If you do not specify otherwise,
DATATRIEVE-l1 uses LEFT_RIGHT alignment.

If you attempt to use DATATRIEVE-l1 on a data file created with an
alignment other than LEFT_RIGHT, be sure to specify the matching
alignment in the DATATRIEVE-l1 record definition. VAX DATATRIEVE,
for instance, uses MAJOR_MINOR as the default alignment. You must
specify MAJOR_MINOR in your DATATRIEVE-ll record definition if you
wish to use a data file created on VAX DATATRIEVE. If the alignment in the
record definition does not match the alignment in the data file, you receive
the following message:

File and domain record lengths don't match (D=57)

Defining Records 5-15

5.4 Using the OCCURS Clause to Define Hierarchical
Records

To save space in your record definition, you may want to define one or more
fields as list fields. Compare, for instance, the following two sample output
lines from the domain FAMILIES. The first does not use a list field but
instead includes a separate field in the record for each child. The second
does use a list field:

DTR> PRINT FIRST 1 FAMILIES~

FATHER MOTHER

JIM ANN

DTR>

KID
NAME

URSULA

AGE
KID
NAME

7 RALPH

DTR> PRINT FIRST 1 FAMILIES~

NUMBER KID
FATHER MOTHER KIDS NAME AGE

JIM ANN 2 URSULA 7
RALPH 3

DTR>

AGE

3

Records without lists are flat records, because the elementary fields in them
are logically equivalent to each other. When you print a flat record, all the
elementary fields display on the same line.

Without an OCCURS clause, the record for FAMILIES can look like the one
shown in Figure 5-7.

5-16 Defining Records

,
I

)

Figure 5-7: A Flat Record

01 FAMILY REC.
03 PARENTS.

06 FATHER PIC X(10).
06 MOTHER PIC X(10).

03 KIDS.
06 FIRST KID.

09 KID_NAME PIC X(10).
09 AGE PIC 99 EDIT_STRING IS Z9.

06 SECOND_KID.
09 KID_NAME PIC X(10).
09 AGE PIC 99 EDIT STRING IS Z9.

When using an OCCURS clause, however, you can define a record with fields
that are lists. A record containing a list or lists is not a flat record, but a
hierarchical record. In hierarchical records, elementary fields are not all
logically equivalent to each other. The list field displays on the same line as
the elementary fields with the same number, but the list items display on
additional lines beneath the list field. With an OCCURS clause for KIDS,
the record FAMILY_REC can look like the one in Figure 5-8, a sample
record installed with your system.

Figure 5-8: A Hierarchical Record

DTR> SHOW FAMILY_REC~
RECORD FAMILY REC
01 FAMILY. -

03 PARENTS.
06 FATHER PIC X(10).
06 MOTHER PIC X(10).

03 NUMBER_KIDS PIC 99 EDIT_STRING IS Z9.
03 KIDS OCCURS 0 TO 10 TIMES DEPENDING ON NUMBER KIDS.

06 EACH KID. -
09 KID_NAME PIC X(10) QUERY_NAME IS KID.
09 AGE PIC 99 EDIT STRING IS Z9.

DTR>

The OCCURS clause in the record definition creates the hierarchical struc­
ture. The clause can define a variable-length or a fixed-length list. The
following two sections discuss fixed-length and variable-length lists. for
hierarchical records.

Defining Records 5-17

5.4.1 Defining Lists with a Fixed Number of Occurrences

The OCCURS clause format for fixed-length lists is OCCURS n TIMES,
where n is the number of occurrences. If you define the record for FAMILIES
using OCCURS 2 TIMES, the record definition looks like the following:

03 KIDS NAMES OCCURS 2 TIMES.
05 FIRST NAME PIC X(10).
05 AGE PIC 99 EDIT STRING IS Z9.

The definition specifies that the group field KIDS_NAMES occurs twice.
Each occurrence of KIDS_NAMES contains two fields, FIRST_NAME and
AGE.

When DATATRIEVE displays the fixed record, the output looks like the
following:

DTR> PRINT FIRST 2 FAMILIES~

FIRST
NAME

FATHER MOTHER AGE

JIM ANN URSULA 7
RALPH 3

JIM LOUISE ANN 31
JIM 29

DTR>

You can use OCCURS n TIMES with an elementary or group field, and a
record definition can contain any number of OCCURS clauses in this format.
That is, an OCCURS clause can contain another fixed-length OCCURS
clause.

03 KIDS NAMES OCCURS 2 TIMES
05 FIRST_NAME PIC X(10).
05 AGE PIC 99 EDIT STRING IS Z9.
05 NICKNAME PIC X(lO)

OCCURS 3 TIMES.

If you define a hierarchical record with a list that occurs a fixed number
of times, every record in the domain contains enough space to store the
same number of list items. If the first two families had only one child, for
instance, the FAMILIES domain with a fixed number of occurrences would
print a blank line for the second child:

5-18 Defining Records

DTR> PRINT FAMILIES ~

FATHER

JIM

JIM

DTR>

MOTHER

ANN

LOUISE

FIRST
NAME

URSULA

ANNE

AGE

7
o

31
o

A field definition cannot contain both an OCCURS and a COMPUTED BY
clause. That is, you cannot specify multiple occurrences of a COMPUTED
BY field.

5.4.2 Defining Lists with a Variable Number of Occurrences

Using the OCCURS clause in a field definition defines a hierarchical record
that allows a variable number of list items from one record to another. The
following format lets you vary the number of list items in the records of a
domain:

OCCURS min TO max TIMES DEPENDING ON field-name

The record definition for FAMILIES uses the OCCURS clause to define KIDS
as a variable-length list. The KIDS variable-length list for FAMILY_REC
is shown in Figure 5-8. The output of the PRINT command shows the
relationship between NUMBER_KIDS and the fields KID_NAME and AGE.
The values of KID_NAME and AGE appear as a list in records with more
than one kid:

DTR> PRINT FAMILIES ~

Defining Records 5-19

NUMBER KID
FATHER MOTHER KIDS NAME AGE

JIM ANN 2 URSULA 7
RALPH 3

JIM LOUISE 5 ANNE 31
JIM 29
ELLEN 26
DAVID 24
ROBERT 16

JOHN JULIE 2 ANN 29
JEAN 26

JOHN ELLEN 1 CHRISTOPHR 0
ARNIE ANNE 2 SCOTT 2

BRIAN 0
SHEARMAN SARAH 1 DAVID 0
TOM ANNE 2 PATRICK 4

SUZIE 6
BASIL MERIDETH 6 BEAU 28

BROOKS 26
ROBIN 24
JAY 22
WREN 17
JILL 20

ROB DIDI 0
JEROME RUTH 4 ERIC 32

CISSY 24
NANCY 22
MICHAEL 20

TOM BETTY 2 MARTHA 30
TOM 27

GEORGE LOIS 3 JEFF 23
FRED 26
LAURA 21

HAROLD SARAH 3 CHARLIE 31
HAROLD 35
SARAH 27

EDWIN TRINITA 2 ERIC 16
SCOTT 11

DTR>

When you define a record with a variable-length list in it, you must put the
list at the end of the record definition. You can use only one field with an
OCCURS clause. That is, you cannot have an OCCURS clause within an
OCCURS clause. If you attempt to define another field after an OCCURS
clause and at the same level, you receive the following error message:

ONLY Subordinate fields allowed after OCCURS DEPENDING ON

5-20 Defining Records

\ 5.4.3 Nesting Lists Within Lists to Form Sublists

5.4.4

Although you can use only one OCCURS clause in a record definition, you
can define fixed-length lists within a variable-length list. In fact, you can
include any number of OCCURS n TIMES clauses within a field defined
with an OCCURS clause. This sample record definition with a sublist is an
extension of the FAMILY record. The list PET occurs twice for each kid, so
each kid in each family can record the data for two pets:

DTR> SHOW PETS ~
DOMAIN PETS
USING PET_REC ON PET.DAT;

DTR> SHOW PET _ REC ~
RECORD PET REC
01 FAMILY.

03 PARENTS.
06 FATHER PIC X(10).
06 MOTHER PIC X(10) .

03 NUMBER_KIDS PIC 99 EDIT_STRING IS Z9.
03 KIDS OCCURS 0 TO 10 TIMES DEPENDING ON NUMBER_KIDS.

06 EACH_KID.
09 KID NAME PIC X(10) QUERY NAME IS KID.
09 'KID-AGE PIC 99 EDIT STRING IS Z9.
09 .~ET-OCCURS 2 TIMES.-

DTR> REiiDY
DTR> PRINT

FATHER

JIM

JIM

13 PET NAME PIC X(10).
13 PET AGE PIC 99.

PETS~
FIRST 2 PETS ~

NUMBER KID
MOTHER KIDS NAME

LORAINE 2 GARY

SUE

ANN 2 URSULA

RALPH

Changing the Length of a List

KID PET
AGE NAME

24 POP
SODA

23 MOUSE
SHORTY

7 SQUEEKY
FRANK

3

PET
AGE

03
04
03
08
03
07
00
00

If you define a record with the OCCURS clause, you can change the number
of occurrences in a list. If you specify the MAX clause when defining
the data file, all records have enough space for the maximum number of
occurrences, and you can always change the number of occurrences up to the
limit you have set:

Defining Records 5-21

DTR> DEFINE FILE FOR FAMILIES MAX

If you do not specify the MAX clause when you define a sequential file,
DATATRIEVE sets the length of each record when you store it. In that case,
you cannot add examples to the list. You can always decrease the number of
occurrences, though, and you can increase the number of occurrences back
to the original number.

If you do not specify the MAX clause and the file organization is indexed,
you can still change the number of occurrences.

The following example shows how to add items to a list. Because you are
modifying an existing record, you use MODIFY rather than STORE to add
items to the list:

DTR> READY INDEXED_FAMILIES WRITE~
DTR> FIND FIRST 1 INDEXED_FAMILIES~
[1 Record found]
DTR> SELECT; PRINT ~

NUMBER KID
FATHER MOTHER KIDS NAME

JIM ANN 2 URSULA

DTR> MODIFY NUMBER KIDS~
Enter NUMBER_KIDS:-4~
DTR> FIND KIDS ~
[4 records found]
DTR> SELECT 3 ~
DTR> MODIFY~
Enter KID_NAME: NICKY~
Enter AGE: 2 ~
DTR> SELECT 4 ~
DTR> MODIFY~
Enter KID_NAME: TAM~
Enter AGE: 1 ~

RALPH

DTR> PRINT FIRST 1 INDEXED_FAMILIES~

NUMBER KID
FATHER MOTHER KIDS NAME

JIM ANN 4 URSULA
RALPH
NICKY
TAM

DTR>

AGE

7
3

AGE

7
3
2
1

For information on retrieving data from hierarchical records, see Chapter 14
in this manual.

5-22 Defining Records

I
V

Chapter 6

Defining Files

The way you define a data file determines how much storage space the file
occupies, how quickly you can retrieve data from the file, and whether you
can change or duplicate data fields in that file.

DATATRIEVE is based on RMS, the standard DIGITAL record and file
management software facility. Based on how you define your data files,
DATATRIEVE uses RMS to create, define, store, manipulate, and maintain
information within your files. Your operating system documentation will
give you more information on RMS.

You can define two types of files in DATATRIEVE:

• Sequential files, which store records in the order you enter them

• Indexed files, which store records according to the order of a specified
key field

This chapter discusses the DEFINE FILE command, the choices you have
when deciding whether to use sequential or indexed files, and other options
available to you when you define a file in DATATRIEVE.

6.1 ChOOSing a Sequential or an Indexed File

Sequential files require less storage space than indexed files, but it often
takes longer to retrieve data from sequential files.

To retrieve records from a sequential file, DATATRIEVE searches records
one by one according to their order in the file. To retrieve records from an
indexed file, DATATRIEVE searches the file according to specified key fields.
The key fields are searched first, regardless of their order in the data file.

Defining Files 6-1

Sequential organization is useful in certain applications. For example,
if your records contain a date field and you frequently retrieve them in
chronological order, it is often best to arrange the records in the order
you stored them. You are likely to want sequential access to banking
transactions, for example.

Use sequential files for accessing large groups of records in the order you
stored them.

In other cases, sequential organization may be unnecessarily slow. When
you use a record selection expression (RSE) to form a record stream or
collection of records from a sequential file, DATATRIEVE has to start at the
beginning of the file and read every record until it finds the ones that you
request.

If you use an RSE to form a record stream based on key fields, RMS searches
through the index it maintains without having to read every record. If you
need to access a small number of records distributed throughout a file, use
an indexed file.

6.1.1 Modifying and Deleting Records

Because of differences in file organization, you modify and delete records
differently for sequential and indexed files. In a sequential file, you can
use the MODIFY statement to change any field, but in an indexed file, you
cannot modify the primary key field. You also cannot modify secondary key
fields defined with the NO CHANGE clause explained in the section on
optional clauses later in this chapter.

RMS does not allow you to use the ERASE statement in a sequential file
where sequence is the basis of the file organization. If you need to erase
records from your data file, use an indexed file. You can, however, use the
MODIFY statement on records in sequential files and change every field to
zero or spaces depending on the data type.

6.1.2 Summary of Differences

Table 6-1 summarizes the differences between sequential and indexed files.

6-2 Defining Files

/

Table 6-1 : A Comparison of Sequential and Indexed Files

Sequential File

Stores records in the order you can
create them

Takes up less storage space than an
indexed file

Allows you to modify any field

Requires you to use MODIFY instead
of ERASE

Indexed File

Stores records according to the values in
the primary key field

Allows you to retrieve certain data faster
than a sequential file does

Does not allow you to modify primary
key field or any key field that has NO
CHANGE attribute

Lets you use ERASE statement

6.2 Defining a File Using the DEFINE FILE Command

DATATRIEVE can store and retrieve data using existing RMS data files, so
it is compatible with other languages or utilities that use RMS. It can also
create RMS files, including sequential files and multikey indexed files. The
DEFINE FILE command forms an RMS data file for the domain you specify.
It uses the following format:

DEFINE FILE [FOR] domain-name [,]

[

ALLOCATION = n]

~:ERSEDE [, ...]

{ KEY = field-name-1 [([NO] CHANGE[,] [NO] DUP)] } [, ...]

The DATATRIEVE-ll Reference Manual also discusses the DEFINE FILE
command.

6.2.1 Defining a Sequential File

If you decide you want your data file to be sequential, follow these steps:

1. Before you define a data file, the associated domain and record defini­
tions must be in your dictionary. You can use the SHOW command to be
sure that they are in place:

Defining Files 6-3

DTR> SHOW YACHTS_SEQUENTIAL, YACHT~
DOMAIN YACHTS_SEQUENTIAL

USING YACHT ON YACHT. SEQ
RECORD YACHT
USING
01 BOAT.

03 TYPE.
06 MANUFACTURER PIC X(10)

QUERY_NAME IS BUILDER.
06 MODEL PIC X(10).

03 SPECIFICATIONS
QUERY NAME SPECS.
06 RIG PIC X(6)

VALID IF RIG EQ "SLOOP", "KETCH", "MS","YAWL".
06 LENGTH_OVER_ALL PIC XXX

VALID IF LOA BETWEEN 15 AND 50
QUERY NAME IS LOA.

06 DISPLACEMENT PIC 99999
QUERY_HEADER IS "WEIGHT"
EDIT_STRING IS ZZ,ZZ9
QUERY NAME IS DISP.

06 BEAM PIC 99.
06 PRICE PIC 99999

VALID IF PRICE>DISP*1.3 OR PRICE EQ 0
EDIT_STRING IS $$$,$$$.

DTR>

2. Use the DEFINE FILE command to define the file. For a sequential
file, you need to specify only the domain name in the DEFINE FILE
command:

DTR> DEFINE FILE FOR YACHTS_SEQ~
DTR>

3. Select the options you want to use with the file, as explained in
Section 6.2.3

6.2.2 Defining an Indexed File

You use the KEY clause in the DEFINE FILE command to create an indexed
file. The clause creates an indexed file and specifies a field in the record
definition to be an index key for the domain's data file. The first key field
you name in the DEFINE FILE command is the primary key. All subsequent
keys are alternate keys.

If you decide you want your file to be indexed, first analyze your record
definition to decide which field or fields you want to be key fields.

6-4 Defining Files

You can designate only one primary key field, but you can name as many
alternate key fields as you wish from the remaining fields in the record.
DATATRIEVE searches the primary and alternate fields independently, so
defining alternate keys does not slow performance for queries based on the
primary key.

To choose a primary key, decide which field of the record you are likely to
name most often in queries. Make certain you will not want to change that
field, because DATATRIEVE does not allow you to change the values in
primary keys.

Finally, look for a field that has a unique value for each record. Unless you
specify otherwise, DATATRIEVE does not allow you to have the same value
in more than one primary key field. For instance, you could not have two
records in PERSONNEL with the ID 99883. You can use the DUP option
to allow duplicates, as explained later in this chapter, but duplicate values
slow performance.

If you were setting up a PERSONNEL domain, you might predict that
most users seeking information on an employee would base their search on
the ID. You would not want to change identification numbers, and no two
employees should have the same identification number. Consequently,ID
uniquely identifies a record and is a good primary key for your PERSONNEL
domain. This DEFINE FILE command would make ID the primary key for
the indexed file PERSONNEL:

DTR> DEFINE FILE FOR PERSONNEL, KEY=ID~
DTR>

6.2.2.1 Using a Group Field as the Primary Key

If the field you use most often does not uniquely identify each record, you
can find another field that, together with the first, does identify the record.
Then designate a group field made up of the two fields as the primary key.
In the domain YACHTS the elementary field MANUFACTURER does not
uniquely identify a record. ALBIN, for instance, is the builder of three of the
first five YACHTS:

DTR> PRINT FIRST 5 YACHTS~

Defining Files 6-5

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

ALBERG 37 MK II KETCH 37 20,000 12 $36,951
ALBIN 79 SLOOP 26 4,200 10 $17,900
ALBIN BALLAD SLOOP 30 7,276 10 $27,500
ALBIN VEGA SLOOP 27 5,070 08 $18,600
AMERICAN 26 SLOOP 26 4,000 08 $9,895

DTR>

The combination of MANUFACTURER and MODEL, however, is unique for
each record. These two fields are defined as the group field TYPE in the
YACHT record definition. Therefore, TYPE, which has no duplicate values,
makes a suitable primary key.

Note that when you use a group field as a primary key, you cannot modify
any of the elementary fields in the group. In addition, note that BUILDER
has been defined as a query name for MANUFACTURER in the YACHT
record definition. This means you can use the shorter name BUILDER in
place of MANUFACTURER in queries.

If a group field is the primary key, list the field most commonly used
in queries as the first elementary field in the group field. The field
MANUFACTURER (BUILDER) appears in queries more frequently than
MODEL, for example.

When a group .field such as TYPE is defined as a key field, keyed access will
work only for queries involving the group field itself or the first elementary
field in the group. With TYPE as the key field, DATATRIEVE conducts an
indexed search for TYPE or BUILDER but a sequential search for the second
elementary field, MODEL.

If you want DATATRIEVE to use the first elementary field in a group field
as a key, you must define that first field as either PIC X or PIC 9 in the
group field definition. When you ready the domain, DATATRIEVE uses the
group field as the key. If the first elementary field is anything but a simple
numeric or character string, it is not treated as a key when the domain is
readied.

6.2.2.2 Defining Alternate Keys

If there are additional fields that you often use in queries, you can define
them as alternate keys. DATATRIEVE performs an indexed search when
you refer to an alternate key in a query.

For example, you could make LENGTH_OVER_ALL an alternate key for
YACHTS, using the following DEFINE FILE command:

6-6 Defining Files

DTR> DEFINE FILE FOR YACHTS KEY = TYPE, KEY = LOA ~
DTR>

DATATRIEVE allows duplicate values for the alternate keys unless you
specify otherwise with the NO DUP option explained in Section 6.2.3.

Chapter 17 in this manual describes how to use key fields for optimum
processing.

6.2.2.3 Summary of Rules for Defining Key Fields

To set up key fields that DATATRIEVE can process most efficiently, use the
following guidelines:

• When defining data, make the field most commonly used in queries the
primary key.

• If the most commonly used field does not uniquely identify a record,
combine it with another field in a field group so that the group field
identifies the record.

• Avoid duplicate values of a primary key when possible because duplica­
tions slow performance.

• If you decide to make a group field the primary key, list the field most
commonly used in queries as the first elementary field.

• If your record has other fields you often use with the primary key in
queries, designate them as alternate keys.

6.2.3 Optional Clauses with the DEFINE FILE Command

You can use the following options in your DEFINE FILE command for both
sequential and indexed files:

• ALLOCATION = n

ALLOCATION in the DEFINE FILE command refers to the allocation of
disk blocks to a file. If you do not specify an allocation for a sequential
file that you create, DATATRIEVE allots 0 blocks to the file and then
assigns space as needed. For an indexed file, it allots a small space
when you create the file and additional space as needed.

If you know your file is going to be large, however, you can use the
ALLOCATION = n clause to reserve storage space for the file and
increase the speed at which you can store records:

DTR> DEFINE FILE FOR YACHTS ALLOCATION = 2000~
DTR>

Defining Files 6-7

See Chapter 17 for a discussion of techniques for optimizing response
time and workspace.

• SUPERSEDE
If you specify SUPERSEDE in your DEFINE FILE command,
DATATRIEVE deletes the existing file with the same name and replaces
it with the new one.

Because RSTSIE systems keep only one version of a file, you must
specify SUPERSEDE on RSTSIE systems when defining a file to replace
one that already exists. If you do not, DATATRIEVE sends you an error
message and does not create the new file:

DTR> DEFINE FILE FOR YACHTS ~
File "YACHT.DAT" already exists
DTR>

On RSX systems, be sure that the complete file specification, including
version number, duplicates the one you want to replace. Otherwise,
DATATRIEVE keeps both the old and the new files. If the file you want
to replace is YACHT.DAT;l, you would specify the replacement file as
follows:

DTR> DEFINE DOMAIN YACHTS USING YACHT ON YACHT.DAT;l~
DTR> DEFINE FILE FOR YACHTS SUPERSEDE~
DTR>

• MAX
As explained in G~apter 5, a record defined with the OCCURS clause
allows you to vary the number of occurrences in a list.

For a record with an OCCURS clause, use the MAX clause when defining
the file. This reserves space in every record for the maximum possible
number of list items. The record for FAMILIES, for instance, has the
following OCCURS clause:

03 KIDS OCCURS 0 TO 10 TIMES DEPENDING ON NUMBER KIDS.

If you request the MAX option when defining a file for FAMILIES, you
reserve space for 10 kids in each record. Use the following form of the
command:

DTR> DEFINE FILE FOR FAMILIES MAX ~
DTR>

If you do not specify the MAX clause when you define a sequential file,
DATATRIEVE sets the length of each record when you store it. In that
case, you cannot add additional elements to the list. You can decrease
the number of occurrences, and you can also increase the number of
occurrences back to the original number.

6-8 Defining Files

If you specify more than one option in the DEFINE FILE command, separate
each from the next with a comma. You do not have to specify the options in
any particular order.

DTR> DEFINE FILE FOR FAMILIES SUPERSEDE, ALLOCATION = 2000, MAX~
DTR>

You can use the following optional clauses with indexed files:

• CHANGE or NO CHANGE
The CHANGE or NO CHANGE clause determines whether or not you
can modify the contents of the key field associated with the clause.
To specify the CHANGE or NO CHANGE option, put the clause in
parentheses after the name of the key field:

DTR> DEFINE FILE FOR YACHTS KEY = TYPE (NO CHANGE) ~
DTR>

You cannot specify CHANGE for a primary key. CHANGE is in effect for
alternate keys unless you specify otherwise.

• DUP or NO DUP

The DUP or NO DUP clause determines whether or not you can assign
the same value to the specified key field in more than one record. Can
more than one YACHTS record, for instance, have the value ALBIN for
the key field BUILDER?

NO DUP is the default for primary keys. However, DATATRIEVE allows
you to specify DUP for primary keys. You may slow performance in
retrieving records if you do so, because DATATRIEVE performs an
indexed search to find the primary key and then a sequential search
through the duplicates when it finds them.

For alternate keys you can, by default, use duplicate values. You can
specify NO DUP if you like, but eliminating duplicates from an alternate
key field can limit the number of records you can store successfully. If
you assigned RIG as an alternate key and specified the NO DUP option,
for instance, you could store only four records in YACHTS: one sloop, one
ketch, one yawl, and one MS.

If you do not want duplicates and you do not want the alternate key
values to change, put both sets of keywords in parentheses and separate
them with a comma: KEY = field-name (NO DUP, NO CHANGE).

Defining Files 6-9

The following example defines an indexed file for YACHTS. It uses the
group field TYPE as the primary key with the DUP option in effect, and
RIG as an alternate key with the NO CHANGE option in effect:

DTR> DEFINE FILE FOR YACHTS KEY = TYPE (DUP), ~
DFN> KEY = RIG (NO CHANGE) ~
DTR>

6-10 Defining Files

Chapter 7

Limiting Record Streams with Record Selection
Expressions

You define and store data so you can retriev~ information in whatever form
is most useful. You may want to perform any of the following activities:

• Display a group of records (PRINT or REPORT statements)

• Form a temporary collection of records (FIND statement)

• Update a group of records (MODIFY statement)

To carry out any of these tasks, you must identifY a record stream, that
is, a group of records from a domain or collection. You form record streams
with DATATRIEVE by specifYing a record selection expression (RSE).

By including various clauses in the RSE, you can determine the content of
the record stream in several ways:

• By specifying the number of records in the record stream (FIRST n
clause)

• By limiting the record stream to records that meet a conditional test
(WITH clause)

• By sorting the records according to the values of one or more fields
(SORTED BY clause).

This chapter presents many examples to teach you how to use RSEs. The
examples use RSEs with the PRINT statement, but you may use them with
FIND, REPORT, or other DATATRIEVE statements.

In addition, see Chapter 14 for information about another form of RSE that
lets you access list items from hierarchical records.

Limiting Record Streams with Record Selection Expressions 7-1

7.1 Accessing All the Records in a Domain

If a domain does not contain many records, you may be satisfied to display
all of the records. You form one type of PRINT statement by typing PRINT
followed by an RSE; for example:

DTR> READY YACHTS~
DTR> PRINT YACHTS ~

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

ALBERG 37 MK II KETCH 37 20,000 12 $36,951
ALBIN 79 SLOOP 26 4,200 10 $17,900
ALBIN BALLAD SLOOP 30 7,276 10 $27,500
ALBIN VEGA SLOOP 27 5,070 08 $18,600
AMERICAN 26 SLOOP 26 4,000 08 $9,895
AMERICAN 26-MS MS 26 5,500 08 $18,895
BAYFIELD 30/32 SLOOP 32 9,500 10 $32,875
BLOCK I. 40 SLOOP 39 18,500 12
BOMBAY CLIPPER SLOOP 31 9,400 11 $23,950
BUCCANEER 270 SLOOP 27 5,000 08
BUCCANEER 320 SLOOP 32 12,500 10
C&C CORVETTE SLOOP 31 8,650 09

VENTURE 222 SLOOP 22 2,000 07 $3,564
WESTERLY CENTAUR SLOOP 26 6,700 08 $15,245
WESTSAIL 32 SLOOP 32 19,500 11
WINDPOWER IMPULSE SLOOP 16 650 07 $3,500
WRIGHT SEAWIND II SLOOP 32 14,900 00 $34,480

DTR>

The PRINT YACHTS statement gives a display of all the records in the
YACHTS domain. The source for the RSE is YACHTS, the name of the
domain. Each RSE must include a source for the records, either a domain
name, collection name, or list name.

For clarity, you may want to specify the keyword ALL when you want a
record stream to include all the records in a domain. The keyword ALL
is optional. For example, PRINT ALL YACHTS and PRINT YACHTS are
equivalent.

7-2 Limiting Record Streams with Record Selection Expressions

7.2 Specifying the Number of Records in the Record Stream

The keywords ALL and FIRST let you indicate the number of records in
the record stream. To specify the number of records in the record stream,
type FIRST followed by a number before typing the source for the RSE. For
example:

DTR> PRINT FIRST 5 YACHTS~

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

ALBERG 37 MK II KETCH 37 20,000 12 $36,951
ALBIN 79 SLOOP 26 4,200 10 $17,900
ALBIN BALLAD SLOOP 30 7,276 10 $27,500
ALBIN VEGA SLOOP 27 5,070 08 $18,600
AMERICAN 26 SLOOP 26 4,000 08 $9,895

DTR>

In this case FIRST 5 YACHTS is the RSE. DATATRIEVE displays the first
five records in YACHTS according to their order in the data file. An RSE
can have either of the following forms, where n is any number less than or
equal to the total number of records in the domain or collection:

FIRST n domain-name ... for a domain
FIRST n collection-name ... for a collection

If n is greater than the number of records in the source, DATATRIEVE gives
you all the records that fulfill the RSE and does not display a message on
your terminal.

Limiting the record stream can be useful when you are testing procedures,
complex RSEs, or report specifications. You can conduct your tests without
having to wait for DATATRIEVE to display the complete set of records.

Specifying the number of records can be useful, too, when you want to
display a fixed number of those records that meet the requirements of the
RSE:

DTR> PRINT FIRST 5 YACHTS WITH PRICE NE o~

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

ALBERG 37 MK II KETCH 37 20,000 12 $36,951
ALBIN 79 SLOOP 26 4,200 10 $17,900
ALBIN BALLAD SLOOP 30 7,276 10 $27,500
ALBIN VEGA SLOOP 27 5,070 08 $18,600
AMERICAN 26 SLOOP 26 4,000 08 $9,895

DTR>

Limiting Record Streams with Record Selection Expressions 7-3

7.3 Identifying Records with Conditional Expressions

There are several ways to limit the number of records in the record stream.
Often you are interested in grouping similar records together, regardless of
their position in the domain or record stream. You can restrict the record
stream to those records that satisfy a specified condition by using the WITH
clause of the RSE. Different forms of the WITH clause specify different types
of relationships between the values of the same field for different records.
You can form record streams based on:

• Patterns among the field values (EQUAL, NOT EQUAL, CONTAINING)

• Field values that fall within a specified range (BETWEEN ... AND . . . ,
LESS THAN, GREATER THAN)

• Field values you can or cannot find in a table

7.3.1 Comparing Records by Pattern Recognition

You can group records if the characters of a field value are equal or not
equal to a specified value; for example:

DTR> PRINT YACHTS WITH BUILDER = "ALBIN" ~

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

ALBIN 79 SLOOP 26 4,200 10 $17,900
ALBIN BALLAD SLOOP 30 7,276 10 $27,500
ALBIN VEGA SLOOP 27 5,070 08 $18,600

DTR>

This statement asks DATATRIEVE to examine each record of the YACHTS
domain and display only those records with the value "ALBIN" for the
BUILDER field. After testing each record of YACHTS, DATATRIEVE
identifies and then displays each record that meets the specified condition.
WITH BUILDER = "ALBIN" lets you limit the record stream to the records
you wish to access.

The expression, BUILDER = "ALBIN", is a Boolean expression. A
Boolean expression controls a comparison between value expressions. A
Boolean expression is either true or false depending on the values of the
field and the value expression specified. The term that relates the value
expressions is called a relational operator. In this example the relational
operator is the equal sign (=).

7-4 Limiting Record Streams with Record Selection Expressions

When you use EQUAL (=) or NOT EQUAL, you can list more than one
value expression in the same Boolean expression. The following queries
specify a group of value expressions for DATATRIEVE to compare with each
field value. The comma here is equivalent to saying AND BUILDER =, so
that the statement tells DATATRIEVE to print all yachts by ALBIN and all
yachts by ALBERG:

DTR> PRINT YACHTS WITH BUILDER = "ALBIN", "ALBERG"

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

ALBIN 79 SLOOP 26 4,200 10 $17,900
ALBIN BALLAD SLOOP 30 7,276 10 $27,500
ALBIN VEGA SLOOP 27 5,070 08 $18,600
ALBERG 37 MK II KETCH 37 20,000 12 $36,951

DTR> PRINT YACHTS WITH RIG NOT EQUAL "SLOOP" , "KETCH"

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

AMERICAN 26-MS MS 26 5,500 08 $18,895
EASTWARD HO MS 24 7,000 09 $15,900
FJORD MS 33 MS 33 14,000 11
LINDSEY 39 MS 39 14,500 12 $35,900
ROGGER FD MIS MS 35 17,600 11

DTR>

Note that the EQUAL (=) and NOT EQUAL operators are case sensitive.
They see uppercase and lowercase letters as different:

DTR> FIND YACHTS WITH BUILDER = "Albin" ~
[0 records found]
DTR> FIND YACHTS WITH BUILDER = "ALBIN" ~
[3 records found]

Because the builders' names are in uppercase letters in the data file but
lowercase letters in the first query, DATATRIEVE did not find any record for
a builder named "Albin". However, for "ALBIN", it found three records.

On the other hand, the CONTAINING operator is indifferent to the case of
the letters. It finds matches if there is agreement with all of the letters in
the field value or with a substring derived from the field value. Thus the
CONT operator finds the "ALBIN" record if you specify either "Albin" or
"bin", a three letter substring:

Limiting Record Streams with Record Selection Expressions 7-5

DTR> FIND YACHTS WITH BUILDER CONT "Albin" ~
[3 records found]
DTR> PRINT YACHTS WITH BUILDER CONT "bin" ~

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM

ALBIN 79 SLOOP 26 4,200 10
ALBIN BALLAD SLOOP 30 7,276 10
ALBIN VEGA SLOOP 27 5,070 08

DTR>

PRICE

$17,900
$27,500
$18,600

DATATRIEVE finds and displays each record that contains the substring
"bin" in the value for BUILDER.

Note that another difference between EQUALS and CONTAINING is that
DATATRIEVE can optimize EQUALS if the field is an RMS key, but it
cannot optimize for CONTAINING. The CONTAINING operator always
reads every record in the file. The EQUALS operator does not have to read
each record if the field is a key.

7.3.2 Grouping Records for a Range of Values

DATATRIEVE allows you to use a variety of relational operators to test
whether a field value for a record falls within a specified range. These
operators are GREATER_THAN (> or GT), GREATER_EQUAL (GE),
LESS_THAN « or LT), LESS_EQUAL (LE), and BETWEEN (BT):

DTR> PRINT YACHTS WITH PRICE GREATER THAN 50000~

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

CHALLENGER 41 KETCH 41 26,700 13 $51,228
ISLANDER FREEPORT KETCH 41 22,000 13 $54,970
OLYMPIC ADVENTURE KETCH 42 24,250 13 $80,500

DTR> PRINT YACHTS WITH PRICE GREATER_EQUAL 50000~

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

CHALLENGER 41 KETCH 41 26,700 13 $51,228
ISLANDER FREEPORT KETCH 41 22,000 13 $54,970
NORTHERN 37 KETCH 37 14,000 11 $50,000
OLYMPIC ADVENTURE KETCH 42 24,250 13 $80,500

DTR>

7-6 Limiting Record Streams with Record Selection Expressions

Note the difference between the two record streams. NORTHERN, priced
at exactly $50,000, appears when the Boolean expression is PRICE
GREATER_EQUAL 50000, but it does not appear when you use the
GREATER_THAN operator.

The LESS_THAN and LESS_EQUAL operators work in a similar manner.
The LESS_EQUAL operator includes a record if its field is either less than
or equal to the value expression specified.

The BETWEEN operator is the equivalent of the GREATER_EQUAL and
LESS_EQUAL operators combined. It searches for records with field values
that are within the range specified or equal to either of the value expressions
that determine the range. For the BETWEEN operator to work, the range
must go from a smaller value to a larger one. In the following example, the
Boolean expression identifies a record stream that includes records with
values for PRICE between $50,000 and $90,000:

DTR> PRINT YACHTS WITH PRICE BETWEEN 50000 AND 90000~

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

CHALLENGER 41 KETCH 41 26,700 13 $51,228
ISLANDER FREEPORT KETCH 41 22,000 13 $54,970
NORTHERN 37 KETCH 37 14,000 11 $50,000
OLYMPIC ADVENTURE KETCH 42 24,250 13 $80,500

DTR>

7.3.3 Grouping Records by Reference to a Table

Some domains are associated with dictionary tables containing code strings
that correspond to values in a field in the record. You can form an RSE
that causes DATATRIEVE to look up the field value in the table. You can
use the relational operator IN to compare the contents of a field with the
code strings in a dictionary table or domain table. If there is a match on
the code string in the table, DATATRIEVE includes the record in the record
stream. Two queries using table-based RSEs are FIND YACHTS WITH RIG
IN RIG_TABLE and FIND YACHTS WITH RIG NOT IN RIG_TABLE.

See Chapter 12 for a discussion of tables.

Limiting Record Streams with Record Selection Expressions 7-7

7.3.4 Summary of the Relational Operators

Table 7-1 summarizes all of the relational operators available to form
Boolean expressions in the WITH clause of an RSE.

Table 7-1: Conditional Comparisons for an RSE

Type of Relationship of Relational
Comparison Values in Boolean Operator Boolean Expression

Pattern Exact match (case BUILDER = "ALBIN"
recognition sensitive) EQUAL "ALBIN" = BUILDER

EQ

No match (case NE BUILDER NE
sensitive) NOT_EQUAL "ALBIN"

NOTEQUAL "ALBIN" NE
BUILDER

Substring matches CONT BUILDER CONT
(not case sensitive) CONTAINING "bin"

Substring does not NOTCONT BUILDER NOT
match (not case NOT CONTAINING CONT "bin"
sensitive)

Value within a Value is greater > PRICE> 50000
range than GT 50000 > PRICE

GREATER_THAN

Value is greater GE PRICE GE 50000
than or = GREATER_EQUAL 50000 GE PRICE

Value is less than < PRICE < 20000
LT 20000 < PRICE
LESS_THAN

Value is less than LE PRICE LE 20000
or = LESS_EQUAL

Value is between BT PRICE BETWEEN
the two values or = BETWEEN 30000 AND 54000
to one

Look up in Field value is in IN table-name RIG IN RIG_TABLE
table the table

Field value is not NOT IN table-name RIG NOT IN RIG_
in the table TABLE

(continued on next page

7-8 Limiting Record Streams with Record Selection Expressions

Table 7-1 (Cont.): Conditional Comparisons for an RSE

Type of Relationship of Relational
Comparison Values in Boolean Operator Boolean Expression

Record stream Record stream is ANYrse FAMILIES WITH
empty not empty ANY KIDS

Record stream is NOT ANY rse FAMILIES WITH
empty NOT ANY KIDS

7.3.5 Setting Up Multiple Tests with Compound Booleans

Thus far, each Boolean expression imposed just one test for records to
be included in the record stream. To set up multiple or complex tests for
records, you can join two or more Boolean expressions together. Expressions
that join Booleans are called Boolean operators.

There are four Boolean operators: AND, OR, NOT, and BUT. With AND, OR,
and BUT you can join two or more Boolean expressions together to form a
single Boolean expression. NOT allows you to reverse the value of a Boolean
expression.

If you link Boolean expressions with AND or BUT, the resulting Boolean
expression is true only if all the Booleans linked with AND or BUT are true.

If you link Boolean expressions with OR, the resulting Boolean expression is
true if anyone of the Booleans linked with OR is true.

If you precede a Boolean expression with NOT, the resulting Boolean
expression is true if the Boolean expression following NOT is false.

The following exam pIe shows the use of the Boolean operator:

DTR> PRINT YACHTS WITH RIG = MS OR LOA = 39~

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

AMERICAN 26-MS MS 26 5,500 08 $18,895
BLOCK I. 40 SLOOP 39 18,500 12
EASTWARD HO MS 24 7,000 09 $15,900
FJORD MS 33 MS 33 14,000 11
LINDSEY 39 MS 39 14,500 12 $35,900
PEARSON 39 SLOOP 39 17,000 12
ROGGER FD MiS MS 35 17,600 11

DTR>

Limiting Record Streams with Record Selection Expressions 7-9

The query displays data on all yachts that have a RIG that is MS or an LOA
equal to 39. For DATATRIEVE to include a record in the record stream, it
must find that the record from YACHTS satisfies either condition or both. \

7.4 Sorting the Record Stream by Field Values

When you use a PRINT statement to display a record stream, the primary
key defined for the data file determines the order of the records. However,
you can use the SORTED BY clause of the RSE to sort the record stream in
a different order. For example, the records in YACHTS are already sorted b)
BUILDER, the first part of the primary key (TYPE) for the data file.

If you are interested in the length of the boats, you can sort the records by
LOA. To break down each length yacht by weight, specify DISP, the query
name for displacement, as an additional sort key. The following query first
sorts the YACHTS records according to LOA and DISP, then limits the
record stream to the first five records:

DTR> FIND YACHTS SORTED BY LOA, DISP~
[113 records found]
DTR> PRINT FIRST 5 CURRENT ~

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

WINDPOWER IMPULSE SLOOP 16 650 07 $3,500
CAPE DORY TYPHOON SLOOP 19 1,900 06 $4,295
ENCHILADA 20 SLOOP 20 2,300 07
SAN JUAN 21 SLOOP 21 1,250 07
VENTURE 21 SLOOP 21 1,500 07 $2,823

DTR>

The SORTED BY clause takes precedence over the original sort order for
the record stream. It does not change the file organization of the records.
The SORTED BY clause enables you to produce reports with data records
organized into groups. Certain fields will control how the organization of
these reports takes place. For more information on control group reports,
see the DATATRIEVE-ll Guide to Writing Reports.

7-10 Limiting Record Streams with Record Selection Expressions

Chapter 8

Using Compound Statements

When you want to do something in DATATRIEVE that involves definitions
in a data dictionary, you usually need to use a DATATRIEVE command.
When you want to manipulate data in a dictionary, you usually use
DATATRIEVE statements, such as STORE, MODIFY, PRINT, and FIND.

You can enter individual statements or combine them into compound
statements. You can enter statements at DATATRIEVE command level (the
DTR> prompt), in procedures, or in command files.

You can also enter individual commands at DATATRIEVE command level, in
procedures, or command files. However, you cannot combine DATATRIEVE
commands into compound commands, mix commands and statements to
form compound statements, or include commands in BEGIN·END blocks.

The DATATRIEVE-ll Reference Manual tells you whether a DATATRIEVE
keyword is used in commands or statements.

This chapter describes the use of compound statements, REPEAT and FOR
statements, and BEGIN-END blocks.

8.1 Using REPEAT to Combine Statements

Often you want to use the same DATATRIEVE statement over and over. For
instance, if you are storing five new boats into the domain YACHTS, you
could ready the domain for WRITE access and then repeat the instruction
STORE YACHTS five times.

By using a compound statement, however, you can combine the STORE
statement with a REPEAT statement and then type the STORE statement
only once for the five records. The following example shows a frequent use
of a compound statement-combining STORE with REPEAT:

Using Compound Statements 8-1

DTR> READY YACHTS WRITE ~
DTR> REPEAT 3 STORE YACHTS ~
Enter MANUFACTURER: HaBlE ~
Enter MODEL: CAT ~
Enter RIG: SLOOP ~
Enter LENGTH_aVER_ALL: 22~
Enter DISPLACEMENT: 4000~
Enter BEAM: 8 ~
Enter PRICE: 6500 ~
Enter MANUFACTURER: RIDGE~
Enter MODEL: ACT ~
Enter RIG: SLOOP ~
Enter LENGTH_aVER_ALL: 22 ~
Enter DISPLACEMENT: 3500 ~
Enter BEAM: <TAB> ~
Enter PRICE :<TAB> ~
Enter MANUFACTURER: ROBERTS ~
Enter MODEL: Zl1 ~
Enter RIG: SLOOP ~
Enter LENGTH_aVER_ALL: 25~
Enter DISPLACEMENT: 4500~
Enter BEAM: 10 ~
Enter PRICE: 7500 ~
DTR>

Prompts are repeated for each field in the record until data is stored in
the specified number of records or until you end the operation by entering
CTRUZ.

When you use a REPEAT statement with MODIFY, PRINT, and REPORT
statements, you may also want to use a prompting value expression
(*.prompt). You probably do not want to PRINT, MODIFY, or REPORT on
a single record more than once. However, you can use a prompting value
expression to supply new information each time a statement is repeated.

The following example uses the prompting value expression with a REPEAT
loop:

DTR> SET NO PROMPT ~
DTR> READY YACHTS ~
DTR> REPEAT *. "NUMBER OF TIMES TO REPORT" ~
CON> BEGIN~
CON> REPORT FIRST 1 YACHTS WITH LOA = *. "THE LOA" ~
RW> PRINT BOAT~
RW> END_REPORT ~
CON> END~
Enter NUMBER OF TIMES TO REPORT: 2~
Enter THE LOA: 37 ~

MANUFACTURER MODEL RIG

ALBERG 37 MK II KETCH

8-2 Using Compound Statements

LENGTH
OVER
ALL WEIGHT

37 20,000

23-0ct-8
Page 1

BEAM PRICE

12 $36,951

,
\

Enter THE LOA: 36~

MANUFACTURER MODEL RIG

CABOT 36 SLOOP

DTR>

LENGTH
OVER
ALL

36

WEIGHT

15,000

BEAM

12

23-0ct-87
Page 1

PRICE

A compound statement can include any DATATRIEVE statement except
FIND, SELECT, DROP, RELEASE, or SORT.

Note that if you follow the REPEAT statement with a procedure,
DATATRIEVE repeats only the first statement in the procedure. To re­
peat the complete procedure, you must use a BEGIN-END block, described
in Section 8.3. Note also that a procedure in a REPEAT statement cannot
include DATATRIEVE commands.

8.2 Using the FOR Statement

You can use a FOR statement when you want to access individual fields
more than once. Suppose you want to supply a price for yachts with no
price listed. You do not want to change all the fields in the target records.
You want to change only the price field for specific yachts. First, form a
collection of the boats you want to modify. Then, use a FOR statement to
modify the target records:

DTR> SET NO PROMPT ~
DTR> READY YACHTS MODIFY ~
DTR> FIND FIRST 3 YACHTS WITH PRICE = o~
[3 records found]
DTR> PRINT ALL ~

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM

BLOCK I. 40 SLOOP 39 18,500 12
BUCCANEER 270 SLOOP 27 5,000 08
BUCCANEER 320 SLOOP 32 12,500 10

DTR> FOR CURRENT ~
CON> MODIFY USING PRICE = DISP * 1. 3 + 5000~
DTR> PRINT CURRENT ~

PRICE

Using Compound Statements 8-3

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

BLOCK I. 40 SLOOP 39 18,500 12 $29,050
BUCCANEER 270 SLOOP 27 5,000 08 $11,500
BUCCANEER 320 SLOOP 32 12,500 10 $21,250

DTR>

8.3 Using BEGIN-END Blocks to Combine Statements

Another way to combine statements is to use a BEGIN-END block, which
causes DATATRIEVE to treat several statements as one statement.
BEGIN-END blocks are especially useful within FOR, STORE, and REPEAT
statements.

8.3.1 BEGIN-END Blocks in FOR Statements

You can, for instance, use a BEGIN-END block in a FOR statement to
modify the p'rice field in specific records. The BEGIN-END block lets you
include two PRINT statements within the MODIFY statement: the first
to display the unchanged records, the second to show the records after
DATATRIEVE has modified them. For example:

DTR> SET NO PROMPT ~
DTR> READY YACHTS WRITE ~
DTR> FOR YACHTS WITH PRICE o~
CON> MODJ;FY USING ~
CON> BEGIN~
CON> PRINT~
CON> PRICE = *. "NEW PRICE" ~
CON> PRINT~
CON> END~

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

BLOCK I. 40 SLOOP 39
Enter NEW PRICE: 29050~

LENGTH
OVER

MANUFACTURER MODEL RIG ALL

BLOCK I. 40 SLOOP 39
BUCCANEER 270 SLOOP 27

Enter NEW PRICE: ICTRuzl
Execution terminated by operator
DTR>

8-4 Using Compound Statements

18,500 12

WEIGHT BEAM PRICE

18,500 12 $29,050
5,000 08

8.3.2 IF-THEN-ELSE Statements in BEGIN-END Blocks

You can include an IF-THEN-ELSE statement with a prompting expression
within the block to allow you to decide whether or not to modify each record
stream:

DTR> SET NO PROMPT ~
DTR> FOR FIRST 3 YACHTS WITH PRICE = o~
CON> BEGIN~
CON> IF *. "Y TO MODIFY PRICE, N TO SKIP" CONT "Y" ~
CON> THEN MODIFY PRICE ELSE ~
CON> PRINT "NO CHANGE" ~
CON> END~
Enter Y TO MODIFY PRICE, N TO SKIP: Y ~
Enter PRICE: 23456 ~
Enter Y TO MODIFY PRICE, N TO SKIP: N ~
NO CHANGE
Enter Y TO MODIFY PRICE, N TO SKIP: N ~
NO CHANGE

DTR>

Conversely, if there are several DATATRIEVE statements required in the
THEN and ELSE clauses, include them in BEGIN-END blocks.

8.3.3 BEGIN-END Blocks in STORE Statements

Often you may want to include a number of lines in the BEGIN-END block.
The following example shows how to use:

• A BEGIN-END block within the STORE statement

• A prompting value expression to request user response

• A BEGIN-END block in a VERIFY clause

• A VERIFY clause with a USING clause to allow you to decide whether
or not to store the record displayed in the PRINT statement

• A context variable (A) to establish DATATRIEVE context

See Appendix A for more information on DATATRIEVE context.

Using Compound Statements 8-5

DTR> READY YACHTS WRITE ~
DTR> STORE A IN YACHTS USING~
CON> BEGIN~
CON> BUILDER = * .BUILDER~
CON> MODEL = *. MODEL ~
CON> RIG = * .RIG~
CON> LOA = *. LENGTH ~
CON> DISP = *. WEIGHT ~
CON> BEAM = *. BEAM ~
CON> PRICE = DISP * 1.3 + BEAM * 100~
CON> END VERIFY USING~
CON> BEGIN~
CON> PRINT A.BOAT, SKIP ~
CON> IF *. CONFIRMATION CONT "N" THEN ~
CON> ABORT "BAD RECORD" ~
CON> END~
DTR>

When you press RETURN to enter the compound statement, DATATRIEVE
prompts for each of the fields in the YACHTS record, then requests a
confirmation:

Enter BUILDER: CRIS-CRAFT~
Enter MODEL: ~ ~
Enter RIG: KETCH~
Enter LENGTH: 32 ~
Enter WEIGHT: 8, 725 ~
Enter BEAM: 10 ~

MANUFACTURER MODEL RIG

LENGTH
OVER
ALL WEIGHT BEAM PRICE MANUFACTURER

CRIS-CRAFT KETCH 32 8,725 10 $12,343 CRIS-CRAFT

Enter CONFIRMATION: N ~
ABORT: BAD RECORD
DTR> FIND YACHTS WITH BUILDER = CRIS-CRAFT~
[0 records found]

8.3.4 BEGIN-END Blocks in REPEAT Statements

If you want to repeat a sequence of statements, use a BEGIN-END block
inside a REPEAT statement. Suppose you wanted to store 50 new yachts
using the MANUFACTURER, LOA, DISPLACEMENT, and PRICE fields.
You could use the following BEGIN-END block to repeat the sequence of
prompting statements:

8-6 Using Compound Statements

~
)

DTR> SET NO PROMPT ~
DTR> READY YACHTS WRITE ~
DTR> REPEAT 50 STORE YACHTS USING~
CON> BEGIN~
CON> MANUFACTURER = *.MANUFACTURER~

LOA = *.LOA~ CON>
CON> DISPLACEMENT = *.DISPLACEMENT~
CON>
CON> END~

PRICE = *. PRICE ~

Enter MANUFACTURER: GRAMPIAN~
Enter LOA: 40~'
Enter DISPLACEMENT: 1400~
Enter PRICE: 23456~
Enter MANUFACTURER: HIGGINS~
Enter LOA: 37~
Enter DISPLACEMENT: 1375~
Enter PRICE: 14765~

DTR>

For information on invoking a procedure in a REPEAT statement, see
Chapter 9.

Because statements that use BEGIN-END blocks can be quite long, it is
often useful to put them into DATATRIEVE procedures so that you can edit
and reuse them without having to retype them.

Using Compound Statements 8-7

Chapter 9

Using DATATRIEVE Procedures

Often you want to execute the same series of commands and statements
over and over again, and you may want to have other users execute those
same commands and statements. Unless you use procedures, you have to
retype the input each time. By using procedures, however, you can develop
the series of steps once and then simply invoke the procedure each time you
want to do the same steps over again.

A procedure is a fixed sequence of DATATRIEVE commands and statements
you create, name, and store in your data dictionary. A procedure can also
contain portions of a command or statement, such as a complex value
expression.

9.1 Defining a Procedure

For almost any series of statements you use over and over again, you
can save yourself time by defining a single procedure. For example,
you repeatedly perform a simple query to display information about the
manufacturers of large yachts:

DTR> READY YACHTS~
DTR> FIND BIGGIES IN YACHTS WITH LOA GT 40 SORTED BY BUILDER~
[8 records found]
DTR> PRINT ALL ~

Using DATATRIEVE Procedures 9-1

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

CHALLENGER 41 KETCH 41 26,700 13 $51,228
COLUMBIA 41 SLOOP 41 20,700 11 $48,490
GULFSTAR 41 KETCH 41 22,000 12 $41,350
ISLANDER FREEPORT KETCH 41 22,000 13 $54,970
NAUTOR SWAN 41 SLOOP 41 17,750 12
NEWPORT 41 S SLOOP 41 18,000 11
OLYMPIC ADVENTURE KETCH 42 24,250 13 $80,500
PEARSON 419 KETCH 42 21,000 13

DTR>

Rather than type this query repeatedly, you can put it into a procedure.
To define a procedure, enter the DEFINE PROCEDURE command at
DATATRIEVE command level. After typing the keywords DEFINE
PROCEDURE, enter a name for the procedure and press RETURN:

DTR> DEFINE PROCEDURE BUILDERS~

DATATRIEVE then prompts with DFN> to indicate that it expects a
procedure definition. Enter the commands or statements that form the
procedure definition. DATATRIEVE continues to prompt with DFN> until
you enter the keyword END _PROCEDURE on a line by itself.

DTR> DEFINE PROCEDURE BUILDERS~
DFN>
DFN>
DFN>
DFN>
DTR>

END_PROCEDURE ~

As soon as you enter END_PROCEDURE, DATATRIEVE stores the
procedure definition in your current dictionary. It checks the syntax of the
DEFINE PROCEDURE statement, but not the syntax of the statements
the procedure contains. DATATRIEVE checks for syntax errors in those
statements only when you invoke the procedure.

9.2 Invoking a Procedure

You invoke a procedure by preceding its name with a colon:

:procedure-name

The content of a procedure determines where you can invoke it. In general,
you can invoke a procedure anywhere you can use the commands or
statements contained in the procedure. For example, if the procedure
contains only complete DATATRIEVE commands and statements, you can
invoke it at the DATATRIEVE command level:

9-2 Using DATATRIEVE Procedures

'\
I

J

DTR> : BUILDERS ~

Note that you cannot invoke a procedure during an ADT, EDIT, or GUIDE
Mode session or in a domain, record, or table definition.

In addition, when DATATRIEVE executes a procedure, you do not see
the commands and statements in the procedure or the system messages
that are normally displayed. You see only the output that follows the last
statement or command in the procedure. In the following example, the only
output is in response to FIND YACHTS SORTED BY DESC PRICE, the last
statement in the procedure EXPENSIVE:

DTR> SHOW EXPENSIVE~
PROCEDURE EXPENSIVE
READY YACHTS
FIND YACHTS SORTED BY DESC PRICE
END PROCEDURE
DTR> :EXPENSIVE~
[113 records found]
DTR>

If you follow the FIND statement in the command procedure with another
statement, you no longer receive the message about the number of records
found when you invoke the procedure:

DTR> SHOW EXPENSIVE~
PROCEDURE EXPENSIVE
READY YACHTS
FIND YACHTS SORTED BY DESC PRICE
PRINT FIRST 5 CURRENT
END PROCEDURE
DTR> :EXPENSIVE~

LENGTH
OVER

MANUFACTURER" MODEL RIG ALL

OLYMPIC ADVENTURE KETCH 42
ISLANDER FREEPORT KETCH 41
CHALLENGER 41 KETCH 41
NORTHERN 37 KETCH 37
COLUMBIA 41 SLOOP 41

DTR>

WEIGHT BEAM PRICE

24,250 13 $80,500
22,000 13 $54,970
26,700 13 $51,228
14,000 11 $50,000
20,700 11 $48,490

Using DATATRIEVE Procedures 9-3

9.3 Contents of a Procedure

A procedure can contain any number of the following DATATRIEVE
elements:

• Full DATATRIEVE commands and statements

• Command and statement clauses and arguments

• Comments

9.3.1 Commands and Statements in Procedures

You might define a procedure containing complete DATATRIEVE commands
and statements. The following procedure definition, for instance, finds and
displays the biggest yachts in the domain:

DTR> DEFINE PROCEDURE BIG_YACHTS~
DFN> FIND BIGGIES IN YACHTS WITH LOA GT 40 SORTED BY BUILDER~
DFN> PRINT ALL ~
DFN> END_PROCEDURE ~
DTR>

When you execute the procedure BIG_YACHTS, the results are the same as
entering the FIND and PRINT statements at the DATATRIEVE command
level, indicated by the DTR> prompt:

DTR> READY YACHTS~
DTR> :BIG_YACHTS~

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

CHALLENGER 41 KETCH 41 26,700 13 $51,228
COLUMBIA 41 SLOOP 41 20,700 11 $48,490
GULFSTAR 41 KETCH 41 22,000 12 $41,350
ISLANDER FREEPORT KETCH 41 22,000 13 $54,970
NAUTOR SWAN 41 SLOOP 41 17,750 12
NEWPORT 41 S SLOOP 41 18,000 11
OLYMPIC ADVENTURE KETCH 42 24,250 13 $80,500
PEARSON 419 KETCH 42 21,000 13

DTR>

9-4 Using DATATRIEVE Procedures

9.3.2 Arguments and Clauses

Besides full commands and statements, a procedure can contain fragments
of statements or commands. It can contain an argument or clause from
a command or statement. For example, a procedure can contain a record
selection expression:

DTR> DEFINE PROCEDURE BIG_YACHTS_RSE~
DFN> BIGGIES IN YACHTS WITH LOA GT 40 SORTED BY BUILDER~
DFN> END_PROCEDURE~
DTR>

Having separated the record selection expression from the FIND statement,
you can then use the procedure name as the argument of a FIND statement:

DTR> FIND :BIG_YACHTS_RSE~
[8 records found]
DTR>

In fact, you can use this procedure in any command or statement containing
an RSE argument, such as the PRINT statement:

DTR> PRINT ALL : BIG_YACHTS _ RSE ~

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

CHALLENGER 41 KETCH 41 26,700 13 $51,228
COLUMBIA 41 SLOOP 41 20,700 11 $48,490
GULFS TAR 41 KETCH 41 22,000 12 $41,350
ISLANDER FREEPORT KETCH 41 22,000 13 $54,970
NAUTOR SWAN 41 SLOOP 41 17,750 12
NEWPORT 41 S SLOOP 41 18,000 11
OLYMPIC ADVENTURE KETCH 42 24,250 13 $80,500
PEARSON 419 KETCH 42 21,000 13

You can begin a procedure with the end fragment of a command or statement
and include other whole commands or statements. You can also end a
procedure with the beginning fragment of a command or statement after a
series of complete commands and statements.

9.3.3 Comments in Procedures

A comment contains explanatory information for you or other users that
DATATRIEVE does not interpret as input. To put a comment in a procedure,
put an exclamation point (!) before the information that you want to include.

Using DATATRIEVE Procedures 9-5

When you invoke a procedure, DATATRIEVE processes it without displayin~
the contents of the procedure. To display the comments, use the SHOW
command with the procedure name. You could, for instance, put a comment
into the procedure BIG_YACHTS_QUERY. The results of the procedure are
the same as without the comment, but when you use a SHOW command,
you can see the explanatory comment:

DTR> SHOW BIG YACHTS QUERY~
SET ABORT - .~ -

DECLARE LENGTH PIC 99
VALID IF LENGTH GT 35.

!THIS PROCEDURE SHOWS YACHTS GE SPECIFIED LENGTH

LENGTH = *."MIN LOA"
IF LENGTH GT 42
THEN ABORT "NO BOATS THAT BIG"
FIND BIGGIES IN YACHTS WITH LOA GE LENGTH SORTED BY BUILDER
PRINT BUILDER, RIG, LOA, PRICE OF BIGGIES
END PROCEDURE
DTR>

9.4 Using Procedures to Locate Errors

When you invoke a procedure, DATATRIEVE processes the contents of the
procedure. If it finds an error, it issues a message. Suppose, for instance,
you created the following long procedure:

DTR> DEFINE PROCEDURE WAGE_REPORT~
DFN> REPORT WAGES~
DFN> SET REPORT_NAME = WEEKLY WAGE REPORT~
DFN> SET COLUMNS_PAGE = 70~
DFN> PRINT LAST_NAME, GROSS_PAY, FICA, ~
DFN> FEDERAL_TAX, STATE_TAX, ~
DFN> GROSS PAY - (FICA + FEDERAL TAX + STATE TAX) * ("NET PAY") USING~
DFN> $ $, $ $"$. 9 9 ~ - -
DFN> AT BOTTOM OF REPORT PRINT SKIP 2, COL 1, "TOTAL:", ~
DFN> TOTAL GROSS_PAY USING $$$,$$$.99, ~
DFN> TOTAL FICA USING $$$,$$$.99, ~
DFN> TOTAL FEDERAL_TAX USING $$$,$$$.99, ~
DFN> TOTAL STATE_TAX USING $$$,$$$.99, ~
DFN> TOTAL (GROSS PAY - (FICA + FEDERAL TAX + STATE_TAX)) USING ~
DFN> $$$,$$$.99~ -
DFN> END_REPORT~
DFN> END_PROCEDURE ~
DTR>

9-6 Using DATATRIEVE Procedures

If you have made any errors, DATATRIEVE stops executing when it finds
the first error and sends you an error message, as in this example:

DTR> :WAGE_REPORT~
Invalid column header or report name (WEEKLY)
DTR> EDIT WAGE_REPORT~

Edit the procedure to place quotation marks around ''WEEKLY WAGE
REPORT". Then try the procedure again:

DTR> :WAGE_REPORT~
Field "WAGES" is undefined or used out of context
DTR> EDIT WAGE_REPORT~

To correct this second error, edit the procedure to place the READY WAGES
command before the REPORT statement. Then invoke the procedure again:

DTR> : WAGE_REPORT ~
Enter COLUMNS PER PAGE: 80~

LAST GROSS
NAME PAY

BLAKE $1,000.00
DUNN $1,500.00
HILL $500.00
CHONTZ $999.99
MOONY $1,900.98
STARK $9,500.00

TOTAL: $15,400.97

DTR>

9.5 A Sample Procedure

WEEKLY WAGE REPORT

FEDERAL
FICA TAX

$103.86 $204.77
$145.87 $297.98

$52.93 $79.75
$103.85 $204.76
$145.87 $375.98
$145.87 $999.84

$698.25 $2,163.08

STATE
TAX

$.01
$54.32
$32.98
$57.90
$75.90

$106.90

$328.01

23-0ct-87
Page 1

NET PAY

$691. 36
$1,001.83

$334.34
$633.48

$1,303.23
$8,247.39

$12,211.63

You can create your own procedures now using the following example as a
model. The following is a procedure that uses the Report Writer to write a
summary report of yacht data:

Using DATATRIEVE Procedures 9-7

DTR> DEFINE PROCEDURE YACHT_SUMMARY~
DFN> SET ABORT~
DFN> PRINT "THIS REPORT REQUIRES AN ESTABLISHED COLLECTION," ~
DFN> pRINT "SORTED BY LOA AND BEAM." ~
DFN> PRINT "HAVE YOU ESTABLISHED A COLLECTION?" ~
DFN> IF *."YES OR NO" CONTAINING "N" THEN ABORT "COLLECTION NEEDED."~
DFN> REPORT ON *. "OUTPUT DEVICE OR FILE" ~
DFN> SET REPORT_NAME="EXAMPLE: REPORT FROM A PROCEDURE"~
DFN> SET LINES_PAGE=55, COLUMNS_PAGE=60~
DFN> PRINT BUILDER, MODEL, LOA, BEAM, PRICE~
DFN> AT BOTTOM OF LOA PRINT SKIP, COL 30 "AVERAGE PRICE =", ~
DFN> AVERAGE (PRICE), SKIP ~
DFN> AT BOTTOM OF REPORT PRINT COL 17, "NUMBER OF BOATS = ", ~
DFN> COL 35, COUNT, SKIP, "AVERAGE PRICE OF ALL BOATS =", ~
DFN> AVERAGE (PRICE) ~
DFN> END_REPORT ~
DFN> END_PROCEDURE ~
DTR>

This example illustrates some statements that are particularly useful in
procedures:

• Use the PRINT statement to display a message when the procedure is
invoked.

• The prompting value expression *.''YES OR NO" requires a response
to the question: HAVE YOU ESTABLISHED A COLLECTION? The
Boolean expression CONTAINING checks the user's response to the
question. If the response is N or NO, the procedure aborts.

• If you invoke YACHT_SUMMARY and answer NO to the first prompt,
the procedure aborts:

DTR> : YACHT_SUMMARY ~
THIS REPORT REQUIRES AN ESTABLISHED COLLECTION,
SORTED BY LOA AND BEAM.
HAVE YOU ESTABLISHED A COLLECTION?
Enter YES OR NO: NO~
ABORT: COLLECTION NEEDED
DTR>

• If you answer YES to the first prompt, but you do not actually have a
current collection, the Report Writer aborts the procedure and prints an
error message:

DTR> : YACHT_SUMMARY ~
THIS REPORT REQUIRES AN ESTABLISHED COLLECTION,
SORTED BY LOA AND BEAM.
HAVE YOU ESTABLISHED A COLLECTION?
Enter YES OR NO: YES ~
A current collection has not been established.
DTR>

• The prompting value expression *."OUTPUT DEVICE OR FILE" allows
you to select the device or file to contain the report when DATATRIEVE
executes the procedure.

9-8 Using DATATRIEVE Procedures

• If you make a collection of YACHTS with LOA between (and including)
36 and 37 and price not equal to 0, DATATRIEVE displays the following
report on your terminal:

DTR> READY YACHTS~
DTR> FIND YACHTS WITH LOA BETWEEN 36 37 AND PRICE NE O~
[5 records found]
DTR> SORT CURRENT BY LOA, BEAM ~
DTR> : YACHT_SUMMARY ~
THIS REPORT REQUIRES AN ESTABLISHED COLLECTION,
SORTED BY LOA AND BEAM.
HAVE YOU ESTABLISHED A COLLECTION?
Enter YES OR NO: YES~
Enter OUTPUT DEVICE OR FILE: TI:~

EXAMPLE: REPORT FROM A PROCEDURE 01-Apr-1987
Page 1

MANUFACTURER MODEL

ISLANDER 36
I. TRADER 37

AVERAGE PRICE

IRWIN 37 MARK II
NORTHERN 37
ALBERG 37 MK II

AVERAGE PRICE

NUMBER OF BOATS

LENGTH
OVER
ALL

36
36

37
37
37

5

BEAM

11
12

11
11
12

PRICE

$31,730
$39,500

$35,615

$36,950
$50,000
$36,951

$41,300

AVERAGE PRICE OF ALL BOATS $39,026

9.6 Nesting Procedures

A nested procedure is a procedure within another procedure.

The following procedure calculates the price per pound of a boat and assigns
a column header and edit string for that value expression:

DTR> DEFINE PROCEDURE PRICE_PER_POUND~
DFN> PRICE/DISPLACEMENT ("PRICE" /"PER" /"POUND") USING $$9. 99 ~
DFN> END_PROCEDURE ~
DTR>

You cannot invoke this procedure by itself, but you can invoke the
PRICE_PER_POUND procedure in another procedure that prints the
builder, model, and price per pound of all boats in the CURRENT collection,
as follows:

Using DATATRIEVE Procedures 9-9

DTR> DEFINE PROCEDURE PRICE_REPORT~
DFN> PRINT ALL BUILDER, MODEL, :PRICE_PER_POUND~
DFN> END_PROCEDURE ~
DTR>

When you invoke the procedure PRICE_REPORT, DATATRIEVE displays
three fields for each YACHTS record. First the builder and model are
displayed as a result of the procedure's PRINT statement. Then the
PRICE_PER_POUND procedure is called to compute and format the
price/displacement before it is displayed.

The following example uses the BIG_YACHTS procedure to establish the
CURRENT collection and PRICE_REPORT to print a short report:

DTR> : BIG_YACHTS; :PRICE_REPORT~

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

CHALLENGER 41 KETCH 41 26,700 13 $51,228
COLUMBIA 41 SLOOP 41 20,700 11 $48,490
GULFSTAR 41 KETCH 41 22,000 12 $41,350
ISLANDER FREEPORT KETCH 41 22,000 13 $54,970
NAUTOR SWAN 41 SLOOP 41 17,750 12
NEWPORT 41 S SLOOP 41 18,000 11
OLYMPIC ADVENTURE KETCH 42 24,250 13 $80,500
PEARSON 419 KETCH 42 21,000 13

PRICE
PER

MANUFACTURER MODEL POUND

CHALLENGER 41 $1. 92
COLUMBIA 41 $2.34
GULFSTAR 41 $1. 88
ISLANDER FREEPORT $2.50
NAUTOR SWAN 41 $0.00
NEWPORT 41 S $0.00
OLYMPIC ADVENTURE $3.32
PEARSON 419 $0.00

DTR> EXIT~

When nesting procedures, do not let a procedure invoke itself. You can
create an infinite loop. (Should you create such a loop, press CTRUC two
times to stop your process.)

9-10 Using DATATRIEVE Procedures

9.7 Using a Procedure in a Compound Statement

To execute a procedure a number of times, you can invoke it within a
REPEAT or FOR statement. You should be careful when invoking a
procedure in these statements, however. For example, the following
procedure appears to be correct but produces unexpected results:

DTR> SHOW EX1 ~
PROCEDURE EX1
FOR

YACHTS WITH PRICE = 0 AND LOA BT 16 AND 23
PRINT BUILDER, MODEL, LOA

PRINT "Printing Test Record"
END PROCEDURE
DTR> REPEAT 3 :EX1

LENGTH
OVER

MANUFACTURER MODEL ALL
ENCHILADA 20 20
ERICSON 23/ SPECIA 23
SAN JUAN 21 21
ENCHILADA 20 20
ERICSON 23/ SPECIA 23
SAN JUAN 21 21
ENCHILADA 20 20
ERICSON 23/ SPECIA 23
SAN JUAN 21 21

Printing Test Record

Only the FOR statement in the EXl procedure is repeated. The PRINT
statement is executed only once at the very end. When DATATRIEVE
encounters the first complete statement in a procedure, it assumes that the
REPEAT statement is also complete. Therefore, it repeats only the first

. statement in the procedure and executes each of the remaining statements
once.

To repeat the entire procedure, enclose the procedure call or the procedure
definition in a BEGIN-END block. For example, the following sequence
of statements puts a procedure in a BEGIN-END block and repeats the
procedure three times:

DTR> REPEAT 3 BEGIN ~
[Looking for statement]
CON> :EX1~
CON> END~

Using DATATRIEVE Procedures 9-11

LENGTH
OVER

MANUFACTURER MODEL ALL
ENCHILADA 20 20
ERICSON 23/ SPECIA 23
SAN JUAN 21 21

Printing Test Record
ENCHILADA 20 20
ERICSON 23/ SPECIA 23
SAN JUAN 21 21

Printing Test Record
ENCHILADA 20 20
ERICSON 23/ SPECIA 23
SAN JUAN 21 21

Printing Test Record

The following example uses a FOR statement, includes a BEGIN-END block
in the procedure, and invokes the procedure in a REPEAT statement:

DTR> SHOW EX3 ~
PROCEDURE EX3
FOR

YACHTS WITH PRICE = 0 AND LOA BT 16 AND 23
BEGIN

PRINT BUILDER, MODEL, LOA
PRINT "Print Test Record"

END
END_PROCEDURE

DTR> REPEAT 3 :EX3 ~
LENGTH

OVER
MANUFACTURER MODEL ALL

ENCHILADA 20 20
Print Test Record

ERICSON 23/ SPECIA 23
Print Test Record

SAN JUAN 21 21
Print Test Record

ENCHILADA 20 20
Print Test Record

ERICSON 23/ SPECIA 23
Print Test Record

SAN JUAN 21 21
Print Test Record

ENCHILADA 20 20
Print Test Record

ERICSON 23/ SPECIA 23
Print Test Record

SAN JUAN 21 21
Print Test Record

DTR>

9-12 Using PATATRIEVE Procedures

If you invoke a procedure in a FOR statement, you must use the same
technique. Enclose the call or the procedure definition in a BEGIN-END
block as in the following example:

DTR> SHOW PRICE _REPORT2 ~
PROCEDURE PRICE REPORT2
PRINT BUILDER, MODEL, :PRICE_PER_POUND
END_PROCEDURE

DTR>

DTR> FOR YACHTS WITH PRICE GT 20000 AND LOA LT 29~
[Looking for statement]
CON> BEGIN~
[Looking for statement]
CON> :PRICE_REPORT2 ~
[Looking for statement or "END"]
CON> END~

MANUFACTURER

CAPE DORY
SABRE

DTR>

PRICE
PER

MODEL POUND

28 $2.44
28 $2.97

Remember that if you use a procedure in a loop, do not include a FIND,
SELECT, DROP, or RELEASE statement. These statements cannot appear
in BEGIN-END blocks.

9.8 Aborting Procedures

You can abort a procedure by including a SET ABORT statement in the
procedure definition. If the abort conditions arise and SET ABORT is in
effect, DATATRIEVE aborts the procedure and prints a message on your
terminal. If SET NO ABORT is in effect, DATATRIEVE aborts the command
or statement that contains the ABORT but continues to execute the other
commands and statements in the procedure.

The default setting in DATATRIEVE is SET ABORT. You can ensure that
SET ABORT is in effect by including that statement in the procedure
definition:

DECLIT AA CROSS X023C

DATATRIEVE-l1 user's guide

Using DATATRIEVE Procedures 9-13

DTR> DEFINE PROCEDURE BIG_YACHTS_QUERY~
DFN> SET ABORT ~
DFN> DECLARE LENGTH PIC 99~
DFN> VALID IF LENGTH GT 35. ~
DFN> LENGTH = *. "MIN LOA" ~
DFN> IF LENGTH GT 42 ~
DFN> THEN ABORT "NO BOATS THAT BI.G" ~
DFN> FIND BIGGIES IN YACHTS WITH LOA GE LENGTH~
DFN> SORTED BY BUILDER ~
DFN> PRINT BUILDER, RIG, LOA, PRICE OF BIGGIES~
DFN> E1~D _PROCEDURE ~
DTR>

If you invoke BIG_YACHTS_QUERY and supply a length of 35 or smaller,
DATATRIEVE reprompts you for a valid length. If you supply a length
greater than 42, the procedure aborts, prints the specified abort message,
and returns you to DATATRIEVE command level:

DTR> :BIG_YACHTS_QUERY ~
Enter MIN LOA: 35 ~
Validation error for LENGTH
Re-enter MIN LOA: 43~'
ABORT: NO BOATS THAT BIG
Execution terminated by "ABORT" statement
DTR>

If you assign a value between 36 and 42 to length, DATATRIEVE prints the
appropriate collection:

DTR> :BIG_YACHTS_QUERY~
Enter MIN LOA: 3 9 ~

LENGTH
OVER

MANUFACTURER RIG ALL PRICE

BLOCK I. SLOOP 39
CHALLENGER KETCH 41 $51,228
COLUMBIA SLOOP 41 $48,490
GULFSTAR KETCH 41 $41,350
ISLANDER KETCH 41 $54,970
LINDSEY MS 39 $35,900
NAUTOR SLOOP 41
NEWPORT SLOOP 41
OLYMPIC KETCH 42 $80,500
PEARSON SLOOP 39
PEARSON KETCH 42

9-14 Using DATATRIEVE Procedures

.~.9 Displaying Procedure Information

You can list the names of all procedures in your default directory with the
SHOW command:

DTR> SHOW PROCEDURES ~
Procedures:

BIG BIG_YACHTS_QUERY CHEAP
MS SEARCH PHONE REP TEST YACHT SUMMARY

DTR>

If you want to display a procedure on your terminal, you can use the SHOW
command and specify the name of the procedure to be displayed:

DTR> SHOW MS _ SEARCH ~
PROCEDURE MS SEARCH
READY YACHTS
FIND YACHTS WITH RIG = "MS"
FOR CURRENT PRINT BUILDER,
(BUILDER VIA COMPANY_TABLE) ("ADDRESS")

END PROCEDURE

DTR>

1,9.10 Editing Procedures

You can correct an error with the EDIT command. Invoke EDT using the
following format at the DTR> prompt:

ED IT procedure-name

When you find the error, use EDT to correct it or follow this sequence:

1. EXTRACT the procedure from DATATRIEVE to a command file on your
system using the following statement:

EXTRACT ON file-spec procedure-name

Use the file extension . CMD in the file specification to distinguish the
extracted file as a command file.

2. Exit from DATATRIEVE.

3. Use the text editor you normally use on your system to revise the
command file containing the procedure.

4. Return to DATATRIEVE.

5. Invoke the command file by typing the at sign (@) and the name of the
file to bring the corrected procedure into DATATRIEVE.

Using DATATRIEVE Procedures 9-15

See Chapter 10 for information on DATATRIEVE command files and
Chapter 16 in this manual for information on the EDIT command that
invokes EDT. See EDT documentation for full information on the EDT
editing language.

9.11 Deleting Procedures

You can delete a procedure from your dictionary with the DELETE
command:

DTR> SHOW PROCEDURES ~
Procedures:

BIG BIG_YACHTS_QUERY CHEAP
MS SEARCH PHONE REP YACHT SUMMARY

DTR> DELETE BIG;~
DTR> SHOW PROCEDURES ~
Procedures:

BIG_YACHTS_QUERY CHEAP MS SEARCH
PHONE_REP YACHT SUMMARY

DTR>

Note that the DELETE command must end with a semicolon (;).

You should maintain a backup copy of your procedure, especially if it
is a long one. Use the DATATRIEVE EXTRACT command to copy your
procedure to a command file for backup. Once you have a backup copy, you
can always recover the procedure if you happen to delete it accidentally.

The following example illustrates how you can create a backup file, delete a
procedure, and replace it without ever leaving DATATRIEVE:

DTR> SET COLUMNS_PAGE = 80~
DTR> SHOW PROCEDURES ~
Procedures:

BIG YACHTS BIG_YACHTS_QUERY
BREAK_REP
FAMREC
MULTIPLE PRINT
P
R
SALARY TOTALS

CTRL EXPENSIVE
INFLATION REPORT
MULTIPLE STORE NEW YACHTS
PAGE HEADER PICKBOATS
SALARY REPORT SALARY REPORTl
SUM TAB TEST

TITLE PAGE V WAGE REPORT
XP YACHTS REPORT YACHT PER LB

DTR> EXTRACT ON SAVBIG BIG_YACHTS_QUERY~ - -
DTR> DELETE BIG YACHTS QUERY;~
DTR> SHOW PROCEDURES ~

9-16 Using DATATRIEVE Procedures

BP
F
JOB HISTORY
NME
PRICE INCREASE
SALARY REPORT2
TEST WAGE
WP
YACHT PRICE

Procedures:
BIG YACHTS
EXPENSIVE
JOB HISTORY
NME
PRICE INCREASE
SALARY REPORT2
TEST WAGE
WP
YACHT_PRICE

DTR> @SAVBIG
DELETE BIG_YACHTS_QUERY;

BP
F
MULTIPLE PRINT
P
R
SALARY TOTALS
TITLE PAGE
XP

BREAK REP CTRL
FAMREC INFLATION_REPORT
MULTIPLE STORE NEW YACHTS
PAGE HEADER PICKBOATS
SALARY REPORT SALARY_REPORTl
SUM TAB_TEST
V WAGE REPORT
YACHTS REPORT YACHT PER LB

"BIG_YACHTS_QUERY" has not been defined in the dictionary
DEFINE PROCEDURE BIG_YACHTS_QUERY
SET ABORT
DECLARE LENGTH PIC 99
VALID IF LENGTH GT 35.
LENGTH = *."MIN LOA"
IF LENGTH GT 42'
THEN ABORT "NO BOATS THAT BIG"
FIND BIGGIES IN YACHTS WITH LOA GE LENGTH SORTED BY BUILDER
PRINT BUILDER, RIG, LOA, PRICE OF BIGGIES
END PROCEDURE
DTR> SHOW PROCEDURES ~
Procedures:

BIG YACHTS BIG_YACHTS_QUERY BP
BREAK REP CTRL EXPENSIVE F
FAMREC
MULTIPLE PRINT
P
R
SALARY TOTALS
TITLE PAGE

INFLATION REPORT
MULTIPLE_STORE
PAGE HEADER
SALARY REPORT
SUM
V

XP YACHTS REPORT
DTR> :BIG_YACHTS_QUERY~ -
Enter MIN LOA:- I CTRUZ I
Execution terminated by operator
DTR>

NEW_YACHTS NME
PICKBOATS PRICE INCREASE
SALARY REPORTl SALARY REPORT2
TAB_TEST TEST WAGE
WAGE REPORT
YACHT PER LB

WP

Using DATATRIEVE Procedures 9-17

Chapter 10

Using DATATRIEVE Command Files

Many people use DATATRIEVE by typing in single commands in the form
@ENTERC or :MONTHLY_REPORT and then watching the results scroll
on their screens. Someone else has prepared a command file or procedure
for them. Within the command file or procedure are the DATATRIEVE
commands and statements to carry out a given task.

Command files are much like procedures. Both contain fixed sequences of
DATATRIEVE commands and statements and both allow you to execute
frequently used operations. They have the following differences:

• You invoke a command file by typing the at sign (@) before the file
specification, a procedure by typing a colon (:) before the procedure
name.

• You store the procedures in your dictionary. You can see your procedures
with a SHOW PROCEDURES command from within DATATRIEVE.
Your command files, on the other hand, reside outside DATATRIEVE in
your operating system directory. You must exit from DATATRIEVE and
use operating system commands to display them.

• You edit procedures with the EDIT command (which invokes EDT). You
edit command files with your preferred text editor.

• When you invoke command files, you see the command statements and
comments echo on your terminal.

You can use command files for the following purposes:

• To create a startup command file that will automatically execute certain
commands and statements each time you invoke DATATRIEVE. Default
name for the file is QUERY.INI. See Chapter 2.

• To create and then invoke command files to add definitions of dictionary
objects to your dictionary.

Using DATATRIEVE Command Files 10-1

• To use as backup files of your dictionary. If something happens to
corrupt the dictionary and you need to restore the definitions it
previously contained, you can use your backup files of domain, record,
table, and procedure definitions.

DATATRIEVE executes the command file and returns to your operating
system's command level.

• To process files in batch mode. You can include invocation command
lines to execute DATATRIEVE commands and statements.

• To develop and test a procedure you want to store in your dictionary:

1. Put the steps of the procedure into a command file. Do not yet
include the DEFINE PROCEDURE command.

2. Execute the command file from your operating system's command
level.

3. The steps in the command file will appear on the screen and stop at
the point where an error occurs. Use the message to help you decide
what is wrong with the series of statements you have entered.

4. When you have eliminated all errors from the command file, insert
a DEFINE PROCEDURE statement at the beginning of the file and
an END_PROCEDURE statement at the end of the file. If you have
an earlier version of the procedure or another element with the same
name that you do not need any more, insert a DELETE command
and the file name before the DEFINE PROCEDURE statement. Be
careful not to delete anything important, however.

5. Execute the command file by typing an at sign (@) and the file name
to load the procedure into your dictionary.

10.1 Creating a Command File

You create a command file at the operating system level with a text editor.
Invoke an editor and enter the sequence of DATATRIEVE commands
and statements just as you would in DATATRIEVE. Do not include
DATATRIEVE prompts such as DTR>, CON>, DFN>, or RW>, only
the commands and statements you enter following a prompt. When you
complete the sequence of commands and statements and exit from the editor,
your operating system stores the command file in your system directory.

It is usually a good idea to specify .CMD as the file extension of a
DATATRIEVE command file. Because it is the default file extension,
you do not have to type the .CMD extension when you invoke the command

10-2 Using DATATRIEVE Command Files

,
I

I

file in DATATRIEVE. For example, to invoke the command file HELLO.CMD
in DATATRIEVE, you can type the following:

DTR> @HELLO

10.2 Contents of a Command File

A command file can contain any DATATRIEVE command or statement,
including commands that place you at other command levels. In addition,
comments are recommended to document the actions of the command file.

10.2.1 ADT, EDIT, SET GUIDE

You can include ADT, EDIT, or SET GUIDE commands in a command file.
DATATRIEVE places you in ADT, EDT, or Guide Mode and displays an ADT,
EDT, or Guide prompt. You cannot include responses to prompts in your
command file, however. The file can contain only commands or statements.

DATATRIEVE executes the next line in the command file only after you
mtit from EDT, Guide Mode, or ADT. Even if that line is a valid response
to an ADT, EDT, or Guide Mode prompt, DATATRIEVE displays an error
message and returns you to DATATRIEVE command level unless it is a
valid DATATRIEVE command or statement.

10.2.2 Comments in a Command File

You can also include comments in a command file by placing an exclamation
point (!) before each comment line. Comments echo on your terminal when
you invoke the file.

If your command file defines a procedure and you put comments into the
procedure definition, DATATRIEVE stores the comments in the dictionary
along with the rest of the definition. DATATRIEVE displays those comments
when you invoke the command file. When you invoke the procedure,
however, DATATRIEVE does not display the comments on your terminal.

Using DATATRIEVE Command Files 10-3

10.3 Invoking a Command File

To invoke a command file that you have catalogued in your directory, precede
the file specification with an at sign (@). To invoke a command file, enter
the invocation on a line by itself. For RSTS systems, use the following
format:

@device:[PPN]filename.cmd

For RSX systems, use the following format:

@device:[UIC]filename.cmd;version

If the file extension is .CMD (the default) and the file is in your default
directory, only the file name is needed:

@filename

10.3.1 Invoking Command Files from the System Prompt

You need not enter DATATRIEVE to invoke a DATATRIEVE command file;
you can invoke it from the system level by preceding the command file
invocation with DTR. For example, to invoke PRT.CMD in your operating
system directory, type the following in response to the system level prompt
(»:

Ready

> DTR @PRT~

Invoking a command file in this way differs from invoking one in response to
the DTR> prompt. DATATRIEVE executes all the commands and statements
in the command file as though you had entered them interactively. However,
it does not show the DTR> prompt on your terminal, and after executing
the last command or statement in the file, it automatically exits from
DATATRIEVE. If the command file is in another user's directory, you invoke
it by specifying all the necessary information in the following format:

@device:[UIC]filename.extension

For RSX systems, you can also specify a version number after the extension.

10-4 Using DATATRIEVE Command Files

)

10.3.2 Invoking a Command File from a Procedure

You can invoke a command file from a procedure that you define with
the DEFINE PROCEDURE command. For example, suppose you create
a procedure PICKBOATS to form a collection of boats that cost more than
$10,000. Invoke a command file SAMPLE.CMD containing report-generating
statements within PICKBOATS to produce a report:

DTR> DEFINE PROCEDURE PICKBOATS~
DFN> READY YACHTS~
DFN> FIND YACHTS WITH PRICE GT 10000 SORTED BY LOA, BEAM~
DFN> @SAMPLE~
SET ABORT
!THIS REPORT REQUIRES AN ESTABLISHED COLLECTION,
!SORTED BY LOA AND BEAM.

!HAVE YOU ESTABLISHED A COLLECTION?
IF *."YES OR NO" CONTAINING "N" THEN ABORT "SORRY, NO COLLECTION."
REPORT ON *."OUTPUT DEVICE OR FILE"
SET REPORT_NAME="SAMPLE REPORT"/"FROM A PROCEDURE"
SET LINES_PAGE=55, COLUMNS_PAGE=60
PRINT BUILDER, MODEL, LOA, BEAM, PRICE
AT BOTTOM OF LOA PRINT SKIP, "AVERAGE PRICE =",

AVERAGE (PRICE), SKIP
AT BOTTOM OF REPORT PRINT COL 17, "NUMBER OF BOATS

COL 40, COUNT, SKIP, "AVERAGE PRICE OF ALL BOATS
END REPORT
DFN> END_PROCEDURE ~
DTR> :PICKBOATS~
Enter YES OR NO: Y ~
Enter OUTPUT DEVICE OR FILE: TI:~
DTR>

- " - ,
=", AVERAGE (PRICE)

SAMPLE REPORT
FROM A PROCEDURE

25-Aug-82
Page 1

LENGTH
OVER

MANUFACTURER MODEL ALL BEAM PRICE

EASTWARD HO 24 09 $15,900

AVERAGE PRICE $15,900

IRWIN 25 25 12 $10,950

AVERAGE PRICE $10,950

AMERICAN 26-MS 26 08 $18,895
GRAMPIAN 26 26 08 $11,495
WESTERLY CENTAUR 26 08 $15,245
TANZER 26 26 09 $11,750
ALBIN 79 26 10 $17,900

DTR>

Using DATATRIEVE Command Files 10-5

You cannot invoke command files while you are in ADT or Guide Mode.

You can invoke a command file in response to the RW> prompt of the Report
Writer. The file must begin with valid report statements. If you complete
the report specification in the file with an END_REPORT statement, you
can follow the specification with other valid DATATRIEVE commands or
statements. When you invoke a command file, DATATRIEVE prints each
command or statement on your terminal and executes it as if you had
entered it directly from your keyboard. If an error occurs, DATATRIEVE
prints an error message and stops executing the command file.

10.4 Aborting Command Files

To abort a command file that may contain an error, include an ABORT
statement in the file. If the responses meet the abort conditions and SET
ABORT is in effect, DATATRIEVE aborts the command file and prints the
message specified for the ABORT command. If SET NO ABORT is in effect,
DATATRIEVE aborts the command or statement that contains the ABORT
but continues to execute the commands and statements that follow in the
file.

10.5 Editing a Command File

To edit a command file you must exit from DATATRIEVE and use a text
editor. When you correct any error, return to DATATRIEVE, ready the
necessary domains, establish any appropriate collections, and execute the
command file again.

10.6 Sample Command File

In contrast to the sample procedure, the sample command file prints each
statement and command in the file as DATATRIEVE executes it.

When DATATRIEVE encounters the statement with the *. "YES OR NO"
prompting value expression, it pauses to wait for your response to the
question: HAVE YOU ESTABLISHED A COLLECTION? The Booleah
expression CONTAINING checks your response to the question. If the
response contains a letter N anywhere, the command file aborts.

When DATATRIEVE encounters the *."OUTPUT DEVICE OR FILE"
prompt, it pauses again for you to select the device or file for output of the
report.

1 ~ Using DATATRIEVE Command Files

Note that, except for the report name, the report that the command file pro­
duces is the same as the one produced by the procedure YACHT_SUMMARY
in Chapter 9.

The file YSUM.CMD contains the following sequence of commands and
statements:

SET ABORT
!THIS REPORT REQUIRES AN ESTABLISHED COLLECTION,
!SORTED BY LOA AND BEAM.

!HAVE YOU ESTABLISHED A COLLECTION?
IF *."YES OR NO" CONTAINING "N" THEN ABORT "SORRY, NO COLLECTION."
REPORT ON *."OUTPUT DEVICE OR FILE"
SET REPORT_NAME="SAMPLE REPORT"/"FROM A COMMAND FILE"
SET LINES_PAGE=55, COLUMNS_PAGE=60
PRINT BUILDER, MODEL, LOA, BEAM, PRICE
AT BOTTOM OF LOA PRINT SKIP, "AVERAGE PRICE =",

AVERAGE (PRICE), SKIP
AT BOTTOM OF REPORT PRINT COL 13,"NUMBER OF BOATS = ",

COL 33, COUNT, SKIP, "AVERAGE PRICE OF ALL BOATS =", AVERAGE (PRICE)
END REPORT

When you have readied the domain and established the appropriate
collection, you invoke the command file with an at sign (@). You do not have
to include the .CMD extension. DATATRIEVE prints each command and
statement as it executes them:

DTR> READY YACHTS~
DTR> FIND FIRST 5 YACHTS WITH LOA BETWEEN 36 37 AND PRICE NE O~
[5 records found]
DTR> SORT BY LOA, BEAM ~
DTR> @YSUM~
SET ABORT
!THIS REPORT REQUIRES AN ESTABLISHED COLLECTION,
!SORTED BY LOA AND BEAM.

!HAVE YOU ESTABLISHED A COLLECTION?
IF *."YES OR NO" CONTAINING "N" THEN ABORT "SORRY, NO COLLECTION."
Enter YES OR NO: YES~
REPORT ON *."OUTPUT DEVICE OR FILE"
SET REPORT NAME="SAMPLE REPORT"/"FROM A COMMAND FILE"
SET LINES_PAGE=55, COLUMNS_PAGE=60
PRINT BUILDER, MODEL, LOA, BEAM, PRICE
AT BOTTOM OF LOA PRINT SKIP, "AVERAGE PRICE =",

AVERAGE (PRICE), SKIP
AT BOTTOM OF REPORT PRINT COL 17,"NUMBER OF BOATS - ",

COL 40, COUNT, SKIP, "AVERAGE PRICE OF ALL BOATS =", AVERAGE (PRICE)
END REPORT
Enter OUTPUT DEVICE OR FILE: TI:~

Using DATATRIEVE Command Files 10-7

MANUFACTURER

ISLANDER
I. TRADER

AVERAGE PRICE

IRWIN
NORTHERN
ALBERG

AVERAGE PRICE

SAMPLE REPORT
FROM A COMMAND FILE

LENGTH
OVER

MODEL ALL

36 36
37 36

37 MARK II 37
37 37
37 MK II 37

NUMBER OF BOATS =

AVERAGE PRICE OF ALL BOATS

10.7 Nesting Command Files

01-Apr-87
Page 1

BEAM PRICE

$31,730
$39,500

11
12

11
11
12

5

$35,615

$36,950
$50,000
$36,951

$41,300

$39,026

You can invoke both procedures and command files from within a command
file. For example, the command file MSMOD creates a loop with a FOR
statement and then invokes the command file MOD. MOD contains
a BEGIN-END block of statements that allows you to modify prices
interactively:

DTR> @MSMOD ~
READY YACHTS WRITE
FOR YACHTS WITH RIG = "MS"
@MOD

BEGIN
PRINT
IF *."Y TO MODIFY, N TO SKIP" CONTAINING "Y"
THEN MODIFY PRICE ELSE
PRINT "NO CHANGE"
IF *."Y TO CONTINUE, N TO ABORT" CONTAINING "N"
ABORT "END OF PRICE CHANGES"

END

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

AMERICAN 26-MS MS 26 5,500 08 $18,950
Enter Y TO MODIFY, N TO SKIP: Y~
Enter PRICE: 19350~
Enter Y TO CONTINUE, N TO ABORT: Y~

EASTWARD HO MS 24 7,000 09 $15,900
Enter Y TO MODIFY, N TO SKIP: N ~
NO CHANGE
Enter Y TO CONTINUE, N TO ABORT: N~
ABORT: END OF PRICE CHANGES
DTR> FIND YACHTS WITH RIG = "MS" ~
[5 records found]

10-8 Using DATATRIEVE Command Files

DTR> SELECT ~
DTR> PRINT~

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

AMERICAN 26-MS MS 26 5,500 08 $19,350

DTR>

When nesting command files, do not allow a command file to invoke itself,
either directly or indirectly .. If you do, you receive the following message:

Command file nesting limit e?ceeded

1 0.8 Using a Command File in a FOR or REPEAT Statement

You can invoke a command file in a loop you create with the FOR or
REPEAT statements. As the following example shows, you must be sure
to invoke the command file on a separate line, and you must include its
statements within a BEGIN-END block:

DTR> SET NO PROMPT ~
DTR> READY YACHTS WRITE ~
DTR> FIND YACHTS WITH RIG = "KETCH"~
[13 records found)
DTR> FOR CURRENT @MOD~
Expected statement, encountered "@".
DTR> FOR CURRENT~
CON> @MOD~
BEGIN

PRINT
IF *."Y TO MODIFY, N TO SKIP" CONTAINING "Y"
THEN MODIFY PRICE ELSE
PRINT "NO CHANGE"
IF *."Y TO CONTINUE, N TO ABORT" CONTAINING "N"
ABORT "END OF PRICE CHANGES"

END

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

ALBERG 37 MK II KETCH 37
Enter Y TO MODIFY, N TO SKIP: AZ
Execution terminated by operator
DTR>

20,000 12 $36,951

Using DATATRIEVE Command Files 10-9

10.9 Maintaining Command Files

Your operating system directories (not the dictionary) store the command
files. If you adopt the convention of using .CMD as the extension for
command files, you can display the names of the command files on your
terminal by requesting a directory listing of *. CMD at the command level.
You can adopt any other convention you wish and use the wildcard in the
same manner:

READY

>DIR * .CMDi ~
Name .Typ Size

BLD11M.CMD 2
CLASSE.CMD 3
SAMPLE.CMD 4

Prot Date
< 60> 24-Sep-82
< 60> 24-Sep-82
< 60> 24-Sep-82

SY: [1,37]

You can display the contents of a command file with the TYPE command at
the system level:

>TYPE SAMPLE.CMDi~
SET ABORT
!THIS REPORT REQUIRES AN ESTABLISHED COLLECTION,
!SORTED BY LOA AND BEAM.

!HAVE YOU ESTABLISHED A COLLECTION?
IF *."YES OR NO" CONTAINING "N" THEN ABORT "SORRY, NO COLLECTION."
REPORT ON *."OUTPUT DEVICE OR FILE"
SET REPORT_NAME="SAMPLE REPORT"/"FROM A COMMAND FILE"
SET LINES_PAGE=55, COLUMNS_PAGE=60
PRINT BUILDER, MODEL, LOA, BEAM, PRICE
AT BOTTOM OF LOA PRINT SKIP, "AVERAGE PRICE =",

AVERAGE (PRICE), SKIP
AT BOTTOM OF REPORT PRINT COL 17, "NUMBER OF BOATS = ",

COL 40, COUNT, SKIP, "AVERAGE PRICE OF ALL BOATS =", AVERAGE (PRICE)
END REPORT

You can delete a command file from your directory with the operating system
command level DELETE command.

>DELETE SAMPLE.CMDi~

10-10 Using DATATRIEVE Command Files

\
I

/

Chapter 11

Using DATATRIEVE Variables

A variable is a symbol whose value can change as you execute a program.
You can use the letter A as a variable, for instance. The name of the
variable stays the same, but its value can change during a DATATRIEVE
session.

You use variables in DATATRIEVE:

• To assign values to fields in STORE and MODIFY statements

• As counters in FOR, REPEAT, and WHILE loops

• As conditional values in Boolean expressions

11.1 Declari ng Variables

You declare a variable with a statement in this form:

DECLARE variable-name variable-definition

The variable name is the name you give to the variable. The variable
definition consists of field definition clauses.

The following is an example of a DECLARE statement. Notice the similarity
between the DECLARE statement and the definition of a field in a record:

DTR> DECLARE X PIC 9(7)V99 EDIT_STRING IS $$,$$$,$$$.99.

When you declare a variable, you can use any of the DATATRIEVE field
definition clauses except OCCURS and REDEFINES. You must include at
least one PIC, COMPUTED BY or USAGE clause. You can also use the
QUERY_HEADER, QUERY_NAME, EDIT_STRING, VALID IF, and SIGN
clauses.

Using DATATRIEVE Variables 11-1

11.2 Assigning Values to Variables

DATATRIEVE assigns a starting value to, or initializes, variables at the
time you create them. Numeric variables are initialized to the value o.
Alphabetic or alphanumeric string variables are initialized to a blank field
(spaces). You can assign an initial value of 0 to numeric fields or space to
string fields, but it is not necessary to do this. Of course, you must always
initialize a variable when you want the starting value to be other than the
DATATRIEVE default.

In most cases, you use the assignment statement (=) to give a value to a
variable. The assignment statement takes the following form:

variable-name = value-expression

Variable name is the name you gave the variable in the DECLARE
statement. Value expression can be anyone of the following:

• A literal

• A field name

• Another variable

• A prompting value expression

• Values from a table

• A statistical function

• An arithmetic expression

• A concatenated expression

Remember, however, to assign a value that is consistent with the definition
of the variable. If you assign a value that is larger or of a different data
type than you specified in the PIC or USAGE clauses, your results might not
be what you intended.

You can also use the assignment statement to change the value of a variable
at any time after initialization. The following example declares a variable,
prints its initial value, then changes its value using two methods:

DTR> DECLARE X PIC 999 EDIT_STRING ZZ9.~
DTR> PRINT X ~

X

o
DTR> x = 23; PRINT X~

X

23

11-2 Using DATATRIEVE Variables

\I~,

/

/

DTR> X = *. "VALUE FOR X" ~
Enter VALUE FOR X: 456~
DTR> PRINT X (-) ~
456

DTR>

The minus sign (-) in the preceding example suppresses the heading, in this
case the name of the variable (X), in a PRINT statement.

The following example illustrates another way of assigning values to a
variable. The procedure NAME_LIST creates a variable (NEAT_NAME).
The values of the variable are supplied from the PERSONNEL domain and
computed by two fields (FIRST_NAME and LAST_NAME) in the record
definition for that domain. The values for the variable change as the values
for the COMPUTED BY fields change.

The procedure uses the variable both to restrict the print display to the two
name fields in the record and to improve the appearance of, each name by
eliminating extra spaces between the first and last names:

DTR> SHOW NAME_LIST ~
PROCEDURE NAME LIST
DECLARE NEAT_NAME COMPUTED BY FIRST_NAME I I" "ILAST_NAME

QUERY_HEADER IS "EMPLOYEE NAMES".
READY PERSONNEL
PRINT NEAT_NAME OF FIRST 2 PERSONNEL
END PROCEDURE
DTR> :NAME_LIST~

EMPLOYEE NAMES

CHARLOTTE SPIVA
FRED HOWL

DTR>

11.3 Local and Global Variables

You use the DECLARE statement to define both local and global variables.
A variable you define with a BEGIN-END block is a local variable, and you
can use it only within that block. A variable you define at DATATRIEVE
command level is a global variable. It remains in your workspace until
you release it or exit from DATATRIEVE. Use the assignment statement
(variable = value) to set the variable equal to a particular value.

Using DATATRIEVE Variables 11-3

11.3.1 Global Variables

You can use a global variable to change values in every record in a domain.
Suppose you want to assign to each boat in YACHTS a new price that is
two-thirds of the present price. By using a COMPUTED BY clause in a
global variable, you can apply a single formula to every yacht, as in the
example that follows:

DTR> READY YACHTS MODIFY~
DTR> DECLARE SALE PRICE COMPUTED BY PRICE/1.5~
CON> EDIT_STRING IS $Z9,999.99.~
DTR> SALE_PRICE = O~
DTR> FOR FIRST 5 YACHTS PRINT BOAT, SALE_PRICE~

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM

ALBERG 37 MK II KETCH 37 20,000 12
ALBIN 79 SLOOP 26 4,200 10
ALBIN BALLAD SLOOP 30 7,276 10
ALBIN VEGA SLOOP 27 5,070 08
AMERICAN 26 SLOOP 26 4,000 08

DTR>

SALE
PRICE PRICE

$36,951 $24,634.00
$17,900 $11,933.33
$27,500 $18,333.33
$18,600 $12,400.00

$9,895 $ 6,596.67

The variable SALE_PRICE declared at DATATRIEVE command level
remains in the workspace throughout the session. It changes its value
whenever the value of PRICE changes. The variable remains in your
workspace until you release it with the RELEASE command or declare
another variable with the same name.

11.3.2 Local Variables

You define local variables with DECLARE statements entered in BEGIN­
END blocks and THEN statements. The local variable has an effect only
within the clause or statement in which you declare it.

In the following example the local variable declared in the inner statement
supersedes one with the same name declared in an outer statement. Notice
that the different value or different data type assigned to the inner variable
has no effect on the value of the variable in the outer statement. Note also
that neither local variable exists when DATATRIEVE finishes executing the
compound statements containing them both:

11-4 Using DATATRIEVE Variables

DTR> SET NO PROMPT ~
DTR> BEGIN~
CON> DECLARE X PIC xxx. ~
CON> X = "TOP" ~
CON> PRINT X ~
CON> BEGIN~
CON> DECLARE X PIC 9.99.~
CON> X = 1. 2 3 ~
CON> PRINT X ~
CON> END~
CON> PRINT X ~
CON> END~

X

TOP

X

1.23

X

TOP

DTR> PRINT X ~
Field "X" is undefined or used out of context

DTR>

If you declare a global variable and then use the same name for local vari­
ables, the value of the global variable is not affected by value assignments
and changes made to its local counterparts.

11.4 Using Variables to Assign Values to Fields

You can use variables to assign values to fields in the USING clauses of
STORE and MODIFY statements. You cannot, however, use a variable to
respond to a prompt for a field value, whether the prompt is the result of
the syntax of the STORE or MODIFY statement or of a prompting value
expression.

In USING clauses of STORE and MODIFY statements, you can use value
expressions on the right side of assignment statements to supply values for
fields. In some circumstances, you can use variables in those assignments to
control the uniformity of input data.

In this example, WORK is a domain you want to contain uniform names.
The data file is indexed on WHO and allows duplicates:

Using DATATRIEVE Variables 11-5

DTR> SHOW WORK _ REC ~
RECORD WORK REC

USING
01 TOP.

DTR>

03 JOB PIC X(1S).
03 RESPONSIBLE_PERSON PIC X(4)

QUERY_NAME WHO.

NAME_TABLE translates the varying inputs into uniform values to store in
the work domain:

DTR> SHOW NAME_TABLE ~
TABLE NAME TABLE
E ED,
ED ED,
EM ED,
M ED,
F FRED,
FH FRED,
FRED FRED,
H FRED,
L RICK,
R RICK,
RBL RICK,
RICK RICK,
RL RICK,
ELSE .,????.,
END TABLE

In the following STORE statement, the USING clause uses the variable
PERSON with a prompting value expression for the responsible person. The
table translates the value supplied to that prompt and stores the uniform
results in the field WHO.

DTR> SET NO PROMPT ~
DTR> DECLARE PERSON PIC X(S).~
DTR> READY WORK WRITE ~
DTR> REPEAT 3 STORE WORK USING~
CON> BEGIN~
CON> JOB = * .JOB~
CON> PERSON = *.WHO~
CON> WHO = PERSON VIA NAME_TABLE ~
CON> END!@]
Enter JOB: CLEANING ~
Enter WHO: E ~
Enter JOB: DRYING ~.
Enter WHO: FR~
Enter JOB: SELLING!@]
Enter WHO: R ~
DTR> PRINT WORK ~

11-6 Using DATATRIEVE Variables

~\

RESPONSIBLE
JOB PERSON

CLEANING ED
DRYING ????
SELLING RICK

DTR>

11.5 Using Variables as Counters to Control Record Streams

You can use a counter to keep track of how many times DATATRIEVE
performs a task. When you use a counter to control a record stream,
however, it can also limit the number of times DATATRIEVE executes FOR
and WHILE statements.

Suppose you want to keep a running count of the yachts you are repricing.
You can define a global variable and use it as a counter. Each time
DATATRIEVE prints the corresponding record, it increases A by one:

DTR> DECLARE A PIC 999. ~
DTR> A = o~
DTR> PRINT A ~

A

000

DTR> SET NO PROMPT ~
DTR> FOR YACHTS ~
CON> BEGIN~
CON> A = A + 1~
CON> PRINT A, BOAT ~
CON> END

A MANUFACTURER MODEL

001 ALBERG 37 MK II
002 ALBIN 79
003 ALBIN BALLAD
004 ALBIN VEGA
005 AMERICAN 26
006 AMERICAN 26-MS
007 BAYFIELD 30/32

LENGTH
OVER

RIG ALL

KETCH 37
SLOOP 26
SLOOP 30
SLOOP 27
SLOOP 26
MS 26
SLOOP 32

113 WRIGHT SEAWIND II SLOOP 32

DTR>

WEIGHT BEAM PRICE

20,000 12 $36,951
4,200 10 $17,900
7,276 10 $27,500
5,070 08 $18,600
4,000 08 $9,895
5,500 08 $18,895
9,500 10 $32,875

14,900 00 $34,480

Using DATATRIEVE Variables 11-7

When you use a global variable as a counter in FOR and WHILE statements,
you must initialize the variable to ensure that DATATRIEVE executes the
loop the number of times you intend. If you use the same variable to control
two loops, you must reinitialize the variable before DATATRIEVE executes
the second loop. If you do not, DATATRIEVE may execute the loop fewer
times than you intend. It may not execute the loop at all if the value of the
variable is greater than the value specified in the IF-THEN-ELSE statement
in the second loop.

Either at the beginning or the end of the loop, you can use an IF-THEN­
ELSE statement to evaluate the variable against a set of conditions.
Depending on the evaluation, DATATRIEVE will continue to loop or will
execute an ABORT statement to end the loop. This example shows the use
of a global variable to control a FOR statement and force an end to the loop:

DTR>
DTR>
DTR>
DTR>
DTR>
CON>
CON>
CON>

SET NO PROMPT ~
READY YACHTS ~
DECLARE B PIC 9.~
B = o~
FOR YACHTS~

BEGIN~
B = B + 1~
PRINT B, BOAT ~

CON> IF B = 7 THEN ABORT "END OF LOOP" ~
CON> END~

LENGTH
OVER

B MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

1 ALBERG 37 MK II KETCH 37 20,000 12 $36,951
2 ALBIN 79 SLOOP 26 4,200 10 $17,900
3 ALBIN BALLAD SLOOP 30 7,276 10 $27,500
4 ALBIN VEGA SLOOP 27 5,070 08 $18,600
5 AMERICAN 26 SLOOP 26 4,000 08 $9,895
6 AMERICAN 26-MS MS 26 5,500 08 $18,895
7 BAYFIELD 30/32 SLOOP 32 9,500 10 $32,875
ABORT: END OF LOOP
Execution terminated by "ABORT" statement
DTR>

You can also assign a value greater than zero to the variable and use it as a
decremental counter, as in the following example:

DTR> DECLARE A PIC 9.
DTR> A=8
DTR> PRINT A ~

A

8

11-8 Using DATATRIEVE Variables

DTR> SET NO PROMPT~
DTR> FOR YACHTS~
CON> BEGIN~
CON> PRINT A, BOAT ~
CON> A = A - 1~
CON> IF A = 0 THEN ABORT "END OF LOOP" ~
CON> END~

LENGTH
OVER

A MANUFACTURER MODEL RIG ALL WEIGHT

8 ALBERG 37 MK II KETCH 37 20,000
7 ALBIN 79 SLOOP 26 4,200
6 ALBIN BALLAD SLOOP 30 7,276
5 ALBIN VEGA SLOOP 27 5,070
4 AMERICAN 26 SLOOP 26 4,000
3 AMERICAN 26-MS MS 26 5,500
2 BAYFIELD 30/32 SLOOP 32 9,500
1 BLOCK I. 40 SLOOP 39 18,500
ABORT: END OF LOOP
Execution terminated by "ABORT" statement
DTR>

BEAM PRICE

12 $36,951
10 $21,659
10 $27,500
08 $18,600
08 $9,895
08 $18,895
10 $32,875
12 $29,050

The WHILE statement causes DATATRIEVE to repeat a statement as
long as the condition specified in the Boolean expression is "true." The
command file (WH.CMD) in the following example uses a variable in a
WHILE statement:

DTR> @WH~
DECLARE A USAGE INTEGER.
A = 0
PRINT A

A

o
FOR YACHTS
WHILE A < 5

BEGIN

END

A = A + 1
PRINT A, BOAT

A MANUFACTURER MODEL

1 ALBERG 37 MK II
2 ALBERG 37 MK II
3 ALBERG 37 MK II
4 ALBERG 37 MK II
5 ALBERG 37 MK II

DTR>

LENGTH
OVER

RIG ALL WEIGHT BEAM PRICE

KETCH 37 20,000 12 $36,951
KETCH 37 20,000 12 $36,951
KETCH 37 20,000 12 $36,951
KETCH 37 20,000 12 $36,951
KETCH 37 20,000 12 $36,951

Using DATATRIEVE Variables 11-9

The variable in the next example changes with the value expression
PRICEILOA and stops the FOR loop when the value expression meets the
condition specified in the IF-THEN-ELSE statement:

DTR> SET NO PROMPT ~
DTR> FIND FIRST 15 YACHTS ~
[15 records found]
DTR> DECLARE X PIC 9999 EDIT STRING IS $$,$$$.99. ~
DTR> X = O~
DTR> FOR CURRENT ~
CON> BEGIN~
CON> X = PRICE/LOA ~
CON> PRINT TYPE, X ("PRICE"/"PER FOOT") ~
CON> IF X GE 1000 THEN ABORT "TOO SHORT FOR THE MONEY" ~
CON> END~

PRICE
MANUFACTURER MODEL PER FOOT

ALBERG 37 MK II $998.00
ALBIN 79 $688.00
ALBIN BALLAD $916.00
ALBIN VEGA $688.00
AMERICAN 26 $380.00
AMERICAN 26-MS $726.00
BAYFIELD 30/32 $1,027.00

ABORT: TOO SHORT FOR THE MONEY
Execution terminated by "ABORT" statement
DTR>

11-10 Using DATATRIEVE Variables

~\

Chapter 12

Using DATATRIEVE Tables

Tables save space. They save space in record definitions and data files.
They also save space when you type in commands and statements.
With a DATATRIEVE table, you can associate codes with corresponding
translations-for example, products with price codes.

One advantage to such code and translation pairs is that you can substitute
a short field for a long one. For instance, you can have a list of codes for job
titles such that you can put E01 into the definition and have a table that
translates the code into Tax Assessor First Class. A dictionary table looks
like the sample in Figure 12-1.

Figure 12-1: Code and Translation Pairs in a Dictionary Table

DICTIONARY TABLE

Code Translation

C "Customer Services"

E Engineering

ZK-0970A-HC

12.1 Using a Dictionary Table

Suppose, for example, that you are a manufacturer who needs to order vari­
ous items from clerks around the country. With the help of a DATATRIEVE
table, you can use one command to find out which products have reached

Using DATATRIEVE Tables 12-1

zero inventory, which clerks are responsible for the parts, and the phone
numbers for those clerks.

You can use a dictionary table, in this case a table called ORDER_TABLE, to .
pair clerks and phone numbers with the products you need to track. You can
define a procedure to determine which items are out of stock, then invoke a
table producing a list of clerks responsible for those parts.

The following example uses the domain PRODUCTS and a procedure TAB,
which finds the items no longer in stock and uses ORDER_TABLE to list the
clerks you need to call:

DTR> READY PRODUCTS~
DTR> PRINT ALL PRODUCTS~

VENDOR

ACME ASPHALT & SHINGLE
ACME ASPHALT & SHINGLE
ACME ASPHALT & SHINGLE
PURGE SYSTEMS
PURGE SYSTEMS
PURGE SYSTEMS
PURGE SYSTEMS
QUERY ENTERPRISES
QUERY ENTERPRISES

DTR> SHOW ORDER_TABLE ~
TABLE ORDER TABLE

ITEM

ASPHALT
SHINGLES
CUBE WALLS
ERASER-CHALK
ERASER-PENCIL
WHITE-OUT
MAGNETS-20 oz.
LISTINGS
REPORTS

PARTS
PART IN

NUMBER STOCK

1001 3
1002 0
1003 9999
3001 3
3002 1
3003 8645
3004 0
2001 4
2002 0

"ACME ASPHALT & SHINGLE"
"QUERY ENTERPRISES"

"L. LANDFILL (999) 555-1234",
"T. ABMOW (111) 555-4321",

"PURGE SYSTEMS"
ELSE "SOMETHING ELSE"
END TABLE
DTR> SHOW TAB ~
PROCEDURE TAB

"T. SKWAIRDEE (123) 555-9876",

FIND PRODUCTS WITH STOCK = 0 SORTED BY PART
FOR CURRENT PRINT ITEM, PART,
VENDOR VIA ORDER_TABLE ("CALL") USING X (30)
END PROCEDURE
DTR> :TAB~

ITEM

SHINGLES
REPORTS
MAGNETS-20 oz.

DTR>

12-2 Using DATATRIEVE Tables

PART
NUMBER CALL

1002 L. LANDFILL (999) 555-1234
2002 T. ABMOW (111) 555-4321
3004 T. SKWAIRDEE (123) 555-9876

~1,,12.2
v

Creating Dictionary Tables

To create a dictionary table, enter the DEFINE TABLE command:

DEFINE TABLE table-name

Then enter the pairs of codes and their translations on separate lines,
separating them by a colon (:). Make sure to place a comma after each pair
at the end of the line.

If the code or the translation contains more than one word, enclose it in
quotation marks. For example, the translation "New Hampshire" must be
placed in quotation marks so DATATRIEVE will recognize the two words
as one translation entry. You must also use quotation marks to preserve
lowercase letters in a code or translation.

If you use quotation marks, the rules for character string literals apply.
That is, neither the code nor the translation can exceed 132 characters, and
neither can contain a RETURN, line feed, space, or control character.

After the last code and translation pair, you can enter an optional ELSE
clause. DATATRIEVE substitutes the translation in the ELSE clause for
any values not found in the table. If your dictionary table does not contain
an ELSE clause, DATATRIEVE prints an error message when it cannot find
a value in the table.

Translations included in an ELSE clause are also enclosed in quotation
marks. Apply the same rules as with character string literals, except do not
place a comma after an ELSE clause.

To end a dictionary table definition, enter the keyword END_TABLE. The
END_TABLE statement must follow the ELSE clause, if specified, or the
last code and translation pair if there is no ELSE clause. If you omit the
ELSE clause, do not put a comma after the last code and translation pair.

After you enter the END_TABLE statement, DATATRIEVE stores the
definition in your current dictionary and creates an access control list for the
dictionary table.

When you first refer to a table, DATATRIEVE searches the current data
dictionary for the table and loads it into your DATATRIEVE workspace.
DATATRIEVE evaluates the value expression in your statement and
compares the value with the codes in the table. The comparison is case
sensitive and proceeds character-by-character. Thus, a value expression of 5
does not match a code of 05, and a value expression of Rig does not match a
code of RIG.

Using DATATRIEVE Tables 12-3

As you define a dictionary table, DATATRIEVE checks for syntax errors. For
example, if you use a semicolon in place of the required colon, DATATRIEVE,
prints an error message and aborts the DEFINE TABLE command.

DATATRIEVE does not store anything in the dictionary until you complete
the table definition without a syntax error. You can use the EDIT command
to change a table once it is in the dictionary.

If you want to edit the table as you create it, you can:

• Enter one code and translation pair, finish the definition with
END_TABLE, then use the EDIT command to extend the table to
include additional code and translation pairs.

• Leave DATATRIEVE and use the editor you usually use on your
operating system to define the table in a command file. Then enter
DATATRIEVE again and invoke the command file at the DTR> prompt.
DATATRIEVE checks the syntax, and if the definition contains an error
you can leave DATATRIEVE again and edit the command file.

See Chapter 10 for more information about command files.

12.3 Sample Dictionary Tables

This section show ways you can define and use dictionary tables.

For example, suppose you are a sales manager with a list of names and
phone numbers of potential customers, and you want to know where they
live. You can enter telephone area codes and their corresponding names in a
dictionary table, then refer to the table in a PRINT statement.

You can define a dictionary table as follows:

TABLE AREA CODE TABLE
207 "MAINE",-
603 "NEW HAMPSHIRE",
802 "VERMONT",
617 "BOSTON AREA",
508 "EAST-CENTRAL MASSACHUSETTS",
413 "WESTERN MASSACHUSETTS",
401 "RHODE ISLAND",
203 "CONNECTICUT",
ELSE "NOT A VALID AREA CODE"
END TABLE

12-4 Using DATATRIEVE Tables

Then you can prompt for an area code and print the corresponding state in
a single statement:

DTR> PRINT *. "AREA CODE" VIA AREA_CODE_TABLE USING X (21) ~
Enter AREA CODE: 203~
CONNECTICUT
DTR>

Suppose you also want to create a table of abbreviations for RIG, KETCH,
SLOOP, and MS from the YACHTS domain. You can create the following
dictionary table, RIG_TABLE, and store it in the data dictionary for
YACHTS:

DTR> DEFINE TABLE RIG TABLE~
DFN> "SLOOP" "ONE-MAST", ~
DFN> "KETCH" : "TWO MASTS, BIG ONE IN FRONT", ~
DFN> "YAWL" : "SIMILAR TO KETCH", ~
DFN> "MS" : "SAILS AND BIG MOTOR", ~
DFN> ELSE "SOMETHING ELSE" ~
DFN> END_TABLE ~
DTR>

12.4 Using the IN Relational Operator with DATATRIEVE
Tables

You can use tables with the relational operators IN and NOT IN to set
conditions in IF-THEN-ELSE statements and to validate data. The following
is the general format for using IN and NOT IN with a DATATRIEVE table:

field-name
* prompt [NOT] IN table-name
variable-name

12.4.1 Using a Table in a Record Selection Expression

In a record selection expression, you can use a Boolean expression that
refers to a dictionary table:

DTR> FOR YACHTS WITH RIG NOT IN RIG_TABLE PRINT BOAT~

Using DATATRIEVE Tables 12-5

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

AMERICAN 26-MS MS 26 5,500 08 $18,895
EASTWARD HO MS 24 7,000 09 $15,900
FJORD MS 33 MS 33 14,000 11
LINDSEY 39 MS 39 14,500 12 $35,900
ROGGER FD MiS MS 35 17,600 11

DTR> FIND YACHTS WITH RIG IN RIG_TABLE ~
[108 records found]
DTR>

12.4.1.1 Using a Table to Set Conditions in an IF-THEN-ELSE Statement

You can combine IN with a table reference to set the conditions of an
IF-THEN-ELSE statement:

DTR> SET NO PROMPT ~
DTR> FOR YACHTS WITH LOA = 26~
CON> BEGIN~
CON> PRINT~
CON> IF RIG NOT IN RIG_TABLE ~
CON> THEN ABORT "Does not meet requirements"~
CON> END~

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT

ALBIN 79 SLOOP 26 4,200
AMERICAN 26 SLOOP 26 4,000
AMERICAN 26-MS MS 26 5,500

ABORT: Does not meet requirements
Execution terminated by "ABORT" statement
DTR>

BEAM PRICE

10 $17,900
08 $9,895
08 $18,895

12.4.1.2 Using a VALID IF Clause with a Table to Validate Data

By referring to a dictionary table in a VALID IF clause, you can validate
data in a field before storing the data. The VALID IF clause must be part
of the record definition. The following definition of PHONE_REC illustrates
this method of automatic data validation:

DTR> DEFINE RECORD PHONE_REC USING~
DFN> 01 PHONE. ~
DFN> 02 NAME PIC X(20) . ~
DFN> 02 NUMBER PIC 9(7) EDIT STRING IS XXX-XXXX. ~
DFN> 02 LOCATION PIC X(9). ~
DFN> 02 DEPARTMENT PIC XX VALID IF~
DFN> DEPARTMENT IN DEPT_TABLE.~
DFN>; ~
DTR>

12-6 Using DATATRIEVE Tables

The table DEPT_TABLE looks like this:

DTR> SHOW DEPT_TABLE ~
TABLE DEPT TABLE
"T3" "TYPESETTING",
"DS" "FINANCE",
"R9" : "HOUSEKEEPING",
"X7" : "GROUNDSKEEPING" ,
"R7" : "BEEKEEPING",
ELSE "NOT A DEPARTMENT HERE"
END TABLE
DTR>

If you try to enter a department number that is not in the table,
DATATRIEVE rejects the entry and prompts you for a correct one:

DTR> READY PHONE WRITE ~
DTR> STORE PHONE ~
Enter NAME: "BENJAMIN PAUL" ~
Enter NUMBER: 7548769~
Enter LOCATION: POLE S~
Enter DEPARTMENT: T4~
Validation error for DEPARTMENT
Re-enter DEPARTMENT: T3~
DTR>

12.4.2 Using the Keyword VIA with DATATRIEVE Tables

To refer to tables in value expressions, combine the table name with the
keyword VIA. DATATRIEVE compares the codes in the table with the value
you supply. If the value matches one of the codes, DATATRIEVE uses the
corresponding translation in the table. Use the following format to refer to a
dictionary table in a value expression:

field-name

*.prompt VIA table-name

variable-name

You can refer to an entry in the dictionary table RIG_TABLE by using a
prompting value expression, as shown in the following PRINT statement:

DTR> PRINT *. "TYPE OF BOAT" VIA RIG TABLE USING X (30) ~
Enter TYPE OF BOAT: KETCH ~ -
TWO MASTS, BIG ONE IN FRONT

If you refer to a dictionary table in a PRINT statement, include an edit
string to specify the number of characters to be printed. If you omit the edit
string, DATATRIEVE uses an edit string that is 10 characters long.

Using DATATRIEVE Tables 12-7

12.5 DATATRIEVE Tables and Workspace

Once you have referred to a table, it remains in your DATATRIEVE
workspace until you either relinquish it with the RELEASE command
or end your DATATRIEVE session. If you are redefining a table, you
must release the old version before the new table takes effect. Note that
DATATRIEVE does not release tables when you switch data dictionaries.

You cannot have two tables with the same name in your workspace at the
same time. Use the SHOW READY command to display the names of tables
in your DATATRIEVE workspace. It is helpful for optimization to see the
tables in your workspace so you can release tables you do not need.

For a complete discussion of DATATRIEVE workspace, see Chapter 17 in
this manual.

12.6 Accessing Tables

This section describes how to display, edit, and delete tables using the
SHOW, EDIT, and DELETE commands.

12.6.1 Listing Table Names

You can use the SHOW TABLES command to list the names of all dictionary
tables in your default dictionary. For example:

DTR> SHOW TABLES ~

Tables:
DEPT TABLE

DTR>

12.6.2 Displaying Tables

JOB TITLE NAME TABLE RIG TABLE

To display a dictionary table on your terminal, use the SHOW command and
specify the name of the table. Use the following format to display a table:

SHOW table-name [(P~~;Wd)]

12-8 Using DATATRIEVE Tables

"ll"
For example:

DTR> SHOW AREA_CODE_TABLE~
TABLE AREA CODE TABLE

207 "MAINE",
603 "NEW HAMPSHIRE",
802 "VERMONT",
617 "BOSTON AREA",
508 "EAST-CENTRAL MASSACHUSETTS",
413 "WESTERN MASSACHUSETTS",
401 "RHODE ISLAND",
203 "CONNECTICUT",

ELSE "NOT A VALID AREA CODE"
END_TABLE
DTR>

12.6.3 Editing Tables

You can modify a table in the current data dictionary with EDT. Type
EDIT and the table name, then use EDT to make the desired changes.
Remember to end a new table entry with a comma. When you EXIT from
EDT, DATATRIEVE places the modified table in your workspace.

See Chapter 16 for more information on EDT.

The following example illustrates how to use EDT to add a new entry to an
existing table:

DTR> SHOW NUM_LIST!!!§]
TABLE NUM LIST
1: "ONE",
2: "TWO",
3: "THREE",
ELSE "NUMBER OUT OF TABLE RANGE"
END TABLE
DTR> EDIT NUM_LIST!!!§]
* "ELSE"~

ELSE "NUMBER OUT OF TABLE RANGE"
* CH~

At this point, you should see the entire text of the file, insofar as it will fit
on the display screen, with the cursor indicating the point where insertion
will occur. The previous example will show the cursor positioned after the
word ELSE. To add information before that word, use the arrow keys or
keypad to position the cursor. Then type the information that you wish to
add. Press CTRUZ to return to EDT line command mode. For example:

4: "FOUR", !!!§]

Using DATATRIEVE Tables 12-9

The text should then appear as follows:

1: "ONE",
2: "TWO",
3: "THREE",
4: "FOUR",
ELSE "NUMBER OUT OF TABLE RANGE"
END TABLE

You may need to add some spaces to correct the indentation. When you
press CTRUZ to exit EDT change mode, the line command prompt (*) will
reappear. Then you can type EXIT to return to the DTR> prompt.

*exit
DTR>

12.6.4 Deleting Tables

You can delete a table from your current data dictionary with the DELETE
command. Use the following format:

DELETE table-name [(P~~)SWd)]

The following example deletes AREA_CODE_TABLE from the default data
dictionary:

DTR> SHOW TABLES ~
Tables:

AREA CODE TABLE JOB TITLE
DTR> DELETE AREA_CODE_TABLE;~
DTR> SHOW TABLES ~
Tables:

JOB TITLE NAME TABLE
DTR>

12.7 Protecting Dictionary Tables

NAME TABLE

When you create a dictionary table, DATATRIEVE stores its definition in
the current data dictionary and creates an access control list (ACL) for it.
DATATRIEVE automatically stores one project-programmer number (PPN)
or user identification code (mC) in the ACL with full access privileges. An
account number is called a PPN under RSTS/E systems and a UIC under
other operating systems.

12-10 Using DATATRIEVE Tables

Your individual installation determines the actual PPNIUIC that is stored
in the ACL. Any user logged in under that PPNIUIC and the creator of the
table have R (Read), W (Write), E (Execute), M (Modify), and C (Control)
access to the dictionary table. Depending on the PPNIUIC in the ACL
other users in the installation may be able to delete, modify, or print the
dictionary table.

If you want to grant additional privileges to other users or further restrict
the use of the dictionary table, you must modify its ACL. For more
information on protecting dictionary tables and on modifying access control
lists, refer to Chapter 19.

To guard against accidental deletion of your dictionary table, you can
maintain a backup copy of it by using the DATATRIEVE EXTRACT
command to copy your table to a disk file or tape file. For example:

DTR> EXTRACT ON NAMTAB.BKP NAME_TABLE~

DTR>

Using DATATRIEVE Tables 12-11

)

Chapter 13

Defining and Using Views

A view is a special type of domain that lets you select some or all fields
in some (or all) records from one or more domains. Using a view, you can
refer to fields and field values in different domains without duplicating their
records and data. You can use views to do the following:

• Work with subsets of records

• Refer to subsets of fields in records

• Change the apparent order of the fields in records

• Combine subsets of records from more than one domain

• Modify the values in the fields you select

A view does not actually change the way fields are organized in records
or the way records are combined into data files. A view only changes how
existing data appears to you. You can modify values in the fields selected by
the view, but you cannot store or erase any records accessed by the view.

A view is like a window in a house. Just as a window might let you look into
more than one room, a view can let you look into more than one domain. A
window might give you a complete look at everything in one or more rooms,
restrict what you can see to a few items of furniture, or only let you see the
back of one chair. Similarly, a view can let you look at all records, a few
records, or parts of records.

Each window in a house gives you a different picture of what is inside, but
the actual locations of the items you see are the same no matter how you
look at them. In the same way, when you define a view, you do not affect the
way information is actually stored.

Defining and Using Views 13-1

13.1 Oefi n i ng Views

You define a view by creating a domain definition in your data dictionary
with the DEFINE DOMAIN command:

DEFINE DOMAIN view-name OF domain-name [, ...] USING
level-number-l field-name-l OCCURS FOR rse-l

level-number-2 field-name-2 OCCURS FOR rse-2 }.
FROM domain-name-2 }

After the keyword OF, you must list each domain that the view uses. The
domains you list cannot be views themselves. You may specify the domains
in any order, separating them with commas. You must end each field
definition with a period and end the view definition with a semicolon.

You can use two clauses to define the fields in a view:

• OCCURS FOR

• FROM

The top-level field must be defined with an OCCURS FOR clause. The
record selection expression in the first OCCURS FOR clause determines
the number of records in the view. Each subsequent OCCURS FOR clause
creates a list within the view. Consequently, a view that contains more than
one OCCURS FOR clause is always a hierarchy. (The first OCCURS FOR
clause does not make the view a hierarchy. It only establishes the source
record stream for the view.)

See Chapter 14 for more information about hierarchies.

You establish the fields of data for the view with the FROM clause. The
FROM clause specifies the name of the field and the domain from which it
is derived. The domain must be the same domain named in the preceding
OCCURS FOR clause. The field name must be either a field name or a
query name from that domain.

If two or more fields have the same name, you might have to qualify those
field names to avoid ambiguity. See Appendix A for more information about
qualified field names.

13-2 Defining and Using Views

13.1.1 Views Using Subsets of Records

A view lets you work with a specific subset of records from another domain.
For instance, you may want to work with the records for ketches only and
no other rig type. The following example shows a view definition that allows
you to work with four fields of the yachts that are ketches:

DTR> DEFINE DOMAIN KETCHES~
DFN> OF YACHTS USING ~
DFN> 01 KETCH OCCURS FOR YACHTS WITH RIG EQ "KETCH".~
DFN> 03 TYPE FROM YACHTS.~
DFN> 03 LOA FROM YACHTS. ~
DFN> 03 PRICE FROM YACHTS.~
DFN> ; ~
DTR> READY KETCHES ~
DTR> PRINT FIRST 4 KETCHES~

LENGTH
OVER

MANUFACTURER MODEL ALL PRICE

ALBERG 37 MK II 37 $36,951
CHALLENGER 41 41 $51,228
FISHER 30 30
FISHER 37 37

DTR>

The view domain KETCHES, which is based on the single domain YACHTS,
is not hierarchical because there is only one OCCURS FOR clause.

You cannot store or erase records in a view. Otherwise, you can use a view
just as you would any other domain.

13.1.2 Views Using Subsets of Fields

Another type of view lets you refer to a subset of fields from the records of
another domain. For example, the record definition for YACHTS contains
seven elementary fields and three group fields:

Defining and Using Views 13-3

DTR> READY YACHTS ~
DTR> SHOW FIELDS ~
YACHTS

BOAT
TYPE [Indexed field]

MANUFACTURER (BUILDER) [Character string, indexed key]
MODEL [Character string, indexed key]

SPEC.IFICATIONS (SPECS)
RIG [Character string]
LENGTH_OVER_ALL (LOA) [Character string]
DISPLACEMENT (DISP) [Number]
BEAM [Number]
PRICE [Number]

If you want to work with only a few fields of the record, you can create
a record definition for those fields and then create a domain and a data
file containing one record for each record in YACHTS. The result is a data
file that duplicates some field values in an existing data file (YACHT.DAT).
Maintaining these two files so that they always contain the same field values
would be difficult.

You can define a view, however, that lets you look at just the fields in
YACHTS that you need without duplicating field values. You also avoid
the additional time and overhead of creating another record definition and
creating and updating two data files:

DTR> DEFINE DOMAIN MAKERS~
DFN> OF YACHTS USING ~
DFN> 01 BOAT OCCURS FOR YACHTS.~
DFN> 03 TYPE FROM YACHTS.~
DFN> 03 RIG FROM YACHTS.~
DFN> ,
DTR> READY MAKERS~
DTR> PRINT FIRST 6 MAKERS~

MANUFACTURER MODEL RIG

ALBERG 37 MK II KETCH
ALBIN 79 SLOOP
ALBIN BALLAD SLOOP
ALBIN VEGA SLOOP
AMERICAN 26 SLOOP
AMERICAN 26-MS MS

13.1.3 Views Using More than One Domain

The preceding sections described how to use view domains to define a subset
of records or fields from a single domain. You can also use field values from
more than one domain.

13-4 Defining and Using Views

The domain OWNERS, for example, contains records of yacht owners. Each
record contains the owner's name and the name, builder, and model of the
owner's yacht:

DTR> SHOW OWNER_RECORD mTII
RECORD OWNER_RECORD
ALLOCATION IS LEFT RIGHT
01 OWNER. -

03 NAME PIC X(10) QUERY_HEADER IS "OWNER"/"NAME"
EDIT_STRING IS X(5).

03 BOAT_NAME PIC X(17) QUERY_HEADER IS "BOAT NAME".
03 TYPE.

,

06 BUILDER PIC X(10) .
06 MODEL PIC X(10).

DTR> READY OWNERS ~
DTR> PRINT FIRST 1 OWNERS ~

OWNER
NAME BOAT NAME BUILDER

SHERM MILLENNIUM FALCON ALBERG 35

DTR>

MODEL

If you define a view that refers to both the OWNERS domain and the
YACHTS domain, you can use any combination of fields and records in those
domains. For example, you can include the name and yacht fields from the
OWNERS domain and the price field from the YACHTS domain.

The view SAILBOATS in the following example uses every field and every
record in the YACHTS domain to match owners with the boats they own. It
uses records from the OWNERS domain and matches those records by boat
type with records in the YACHTS domain. It requests only the NAME field
from those records.

After the first OCCURS FOR clause, each OCCURS FOR creates a list
within the view. A domain that contains a list is a hierarchy. The view
SAILBOATS, therefore, is a hierarchical view:

DTR> SHOW SAILBOATS ~
DOMAIN SAILBOATS

OF YACHTS, OWNERS USING
01 SAILBOAT OCCURS FOR YACHTS.

03 BOAT FROM YACHTS.
03 SKIPPERS OCCURS FOR OWNERS WITH TYPE EQ BOAT. TYPE.

05 NAME FROM OWNERS.

DTR>

Defining and Using Views 13-5

The field SKIPPERS is a list of owner names. Each record in SAILBOATS
can contain a NAME field for each of several owners. This view allows
you to combine all the information on each yacht with the names of all its
skippers.

DTR> READY SAILBOATS~
DTR> PRINT FIRST 2 SAILBOATS WITH ANY SKIPPERS~

LENGTH
OVER OWNER

MANUFACTURER MODEL RIG ALL

KETCH 35

WEIGHT BEAM PRICE NAME

ALBIN VEGA 17,000 12 $33,000 STEVE

C & C CORVETTE SLOOP 31

DTR>

8,650 01
HUGH
JIM
ANN

See Section 13.2.1 for further examples of printing list field values.
Hierarchies are discussed in greater detail in Chapter 14.

In general, if you define a view that uses only one domain, use an OCCURS
FOR clause to define the top-level field and then use FROM clauses to
specify which fields the view contains. If you define a view using more than
one domain, group the field definitions by the domain they refer to, putting
the field definition with an OCCURS FOR clause first in each group.

13.2 Using a View Domain

You use a view as you do any other domain. To ready a view, you must
have R (Read) access privilege to the view, and you must also have the same
access privilege to each domain the view uses. You must have E (Execute)
access privilege to the record definition associated with each domain.

You cannot store or erase records in a view, but you can modify values of
fields. For example, here is how to modify a field in the view KETCHES:

DTR> READY KETCHES~
DTR> SHOW KETCHES ~
DOMAIN KETCHES

OF YACHTS USING
01 KETCH OCCURS FOR YACHTS WITH RIG EQ "KETCH".

03 TYPE FROM YACHTS.
03 LOA FROM YACHTS.
03 PRICE FROM YACHTS.

DTR> READY KETCHES MODIFY ~
DTR> FIND KETCHES WITH PRICE EQ o~
[4 records found]
DTR> PRINT ALL ~

13-6 Defining and Using Views

13.2.1

LENGTH
OVER

MANUFACTURER MODEL ALL PRICE

FISHER 30 30
FISHER 37 37
PEARSON 365 36
PEARSON 419 42

DTR> FOR CURRENT PRINT THEN MODIFY PRICE~

LENGTH
OVER

MANUFACTURER MODEL ALL PRICE

FISHER 30 30
Enter PRICE: 30000~

FISHER 37 37
Enter PRICE: 45000~

PEARSON 365 36
Enter PRICE: 32000~

PEARSON 419 42
Enter PRICE: 54000~

DTR> PRINT ALL

LENGTH
OVER

MANUFACTURER MODEL ALL PRICE

FISHER 30 30 $30,000
FISHER 37 37 $45,000
PEARSON 365 36 $32,000
PEARSON 419 42 $54,000

DTR>

USing a View that Contains a List

To refer to field values contained in a list, use one of the methods described
in Chapter 14. The following example uses the FIND and SELECT method
described in Section 14.1.

DTR> SHOW SAILBOATS~
DOMAIN SAILBOATS

OF YACHTS, OWNERS USING
01 SAILBOAT OCCURS FOR YACHTS.

03 BOAT FROM YACHTS.
03 SKIPPERS OCCURS FOR OWNERS WITH TYPE EQ BOAT. TYPE.

05 NAME FROM OWNERS.
,
DTR> READY SAILBOATS WRITE ~
DTR> FIND OWNED IN SAILBOATS WITH ANY SKIPPERS~
[6 records found]

DTR> PRINT ALL ~

Defining and Using Views 13-7

LENGTH
OVER OWNER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE NAME

ALBIN VEGA SLOOP 27 5,070 08 $18,600 STEVE
HUGH

C & C CORVETTE SLOOP 31 8,650 09 JIM
ANN

ISLANDER BAHAMA SLOOP 24 4,200 08 $6,500 JIM
ANN
STEVE
HARVE

PEARSON 10M SLOOP 33 12,441 11 TOM
PEARSON 26 SLOOP 26 5,400 08 DICK
RHODES SWIFTSURE SLOOP 33 14,000 10 JOHN

DTR> SELECT 3 ~
DTR> FIND SKIPPERS~
[4 records found]
DTR> PRINT ALL ~

OWNER
NAME

JIM
ANN
STEVE
HARVE

DT;R> SELECT 2~
DTR> MODIFY NAME~
Enter NAME: ANNE~
DTR> PRINT BOAT, ALL SKIPPERS SORTED BY NAME OF OWNED ~

LENGTH
OVER OWNER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE NAME

ALBIN VEGA SLOOP 27 5,070 08 $18,600 HUGH
STEVE

C & C CORVETTE SLOOP 31 8,650 09 ANN
JIM

ISLANDER BAHAMA SLOOP 24 4,200 08 $6,500 ANNE
HARVE
JIM
STEVE

PEARSON 10M SLOOP 33 12,441 11 TOM
PEARSON 26 SLOOP 26 5,400 08 DICK
RHODES SWIFTSURE SLOOP 33 14,000 10 JOHN

DTR>

13-8 Defining and Using Views

Chapter 14

Using Hierarchies

In DATATRIEVE, the term hierarchy refers to a one-to-many relationship
between record sources.

With hierarchies, you can nest record streams to see a single record from
one record source displayed with a combination of records from another
record source. This nesting established a parent-child relationship between
the two record streams. For each record in the outer, parent record stream,
you see all records in the inner, child record stream. Parent records are
displayed even if there are no corresponding child records in the inner
record stream. Some examples of how this can be useful are:

• One team with several players

• One project with several workers

• One employee with several previous jobs

• One library with many books

• One computer with several users

Hierarchies let you define records with fields that are lists. Items in a list
can contain more than one field, and the list itself may contain more than
one item. Therefore, a list lets you store more than one value for a field or
group of fields in one record. Lists are also called repeating fields.

When you retrieve a value from a record containing a repeating field, you
cannot always apply the same statements you do for other records. The
following sequence of statements shows what can happen when you try to
print the repeating field KIDS from the hierarchical record FAMILIES:

Using Hierarchies 14-1

DTR> READY FAMILIES~
DTR> SHOW FAMILY_REC~
RECORD FAMILY REC
01 FAMILY.

03 PARENTS.
06 FATHER PIC X(10).
06 MOTHER PIC X(10).

03 NUMBER_KIDS PIC 99 EDIT_STRING IS Z9.
03 KIDS OCCURS 0 TO 10 TIMES DEPENDING ON NUMBER_KIDS.

06 EACH KID.
09 KID NAME PIC X(10) QUERY NAME IS KID.
09 AGE-PIC 99 EDIT STRING IS Z9.

DTR> PRINT FATHER OF FAMILIES~

FATHER

JIM
JIM

DTR> PRINT MOTHER OF FAMILIES~

MOTHER

ANN
LOUISE

DTR> PRINT KIDS OF FAMILIES~
Expected end of statement, encountered "OF"
DTR>

You can print the names of fathers and mothers, but you get an error
message when you try to print the list field KIDS. If you form a collection,
you can again print information on fathers and mothers but not kids:

DTR> FIND FAMILIES~
[13 records found]
DTR> PRINT ALL FATHER~

FATHER

JIM
JIM

DTR> PRINT ALL MOTHER~

14-2 Using Hierarchies

MOTHER

ANN
LOUISE

DTR> PRINT ALL EACH_KID ~
Field "EACH KID" is undefined or used out of context
DTR> PRINT ALL KIDS ~
Field "KIDS" is undefined or used out of context
DTR> PRINT ALL KIDS OF FAMILIES~
Expected end of statement, encountered "OF"

In the first two examples, you get a message stating that the field name is
undefined or used out of context. The third example results in the same
message you got in the previous example. To retrieve the information, you
can apply one of the following methods to set up a DATATRIEVE context:

• Use a FIND statement to establish a context for the list. Then use a
SELECT statement to identify one record in the collection.

• Use nested FOR rse loops. The outer FOR loop forms a target stream of
hierarchical records and the inner FOR loop forms a stream of list items
within a hierarchical record.

• Use inner print lists (ALL print-list OF rse) to form a stream of list
items within a record stream.

The following sections describe these methods for retrieving items from lists.
For more information about DATATRIEVE context, see Appendix A in this
manual.

14.1 Retrieving Repeating Field Values with FIND and
SELECT Statements

You use the FIND statement to find all the records in the file that meet your
specifications. Then you can use the SELECT statement to request anyone
of these records:

DTR> READY FAMILIES ~
DTR> FIND FAMILIES ~
[14 records found]
DTR> SELECT 3; PRINT ~

NUMBER KID
FATHER MOTHER KIDS NAME AGE

JOHN JULIE 2 ANN 29
JEAN 26

Using Hierarchies 14-3

When you have selected a Tecord that contains a list, you can treat the list
as though it were a source of records like a domain or collection. You can
continue as follows:

DTR> PRINT KIDS ~

KID
NAME AGE

ANN 29
JEAN 26

DTR>

You can also combine the FIND and SELECT statements to single out one
list item. Then the context of the selected list item allows you to use the list
item name by itself in a PRINT statement. Continue the previous example
by forming a collection of the KIDS list field and selecting a list item from
the collection:

DTR> FIND KIDS ~
[2 records found]
DTR> SELECT 2; PRINT ~

KID
NAME AGE

JEAN 26

DTR> PRINT AGE ~

AGE

26

DTR>

14.2 Retrieving Repeating Field Values with Nested FOR
Loops

To retrieve values from list items by nesting FOR loops, start from the top
of the hierarchy and work toward the list items you want to retrieve. In the
following example, the source for the RSE in the first or outer FOR loop is
the hierarchical domain FAMILIES. The source in the second loop is the list
item KIDS:

DTR> FOR FAMILIES ~
[Looking for statement]
CON> FOR KIDS WITH AGE < 10 ~
[Looking for statement]
CON> PRINT KID_NAME ~

14-4 Using Hierarchies

II,;

v

KID
NAME

URSULA
RALPH
CHRISTOPHR
SCOTT
BRIAN
DAVID
PATRICK
SUZIE

DTR>

The FOR statement preceding the PRINT statement in the following
example loops through all the records in FAMILIES. For each of those
records, the RSE in the PRINT statement retrieves only the first kid whose
age is less than 10:

DTR> FOR FAMILIES ~
[Looking for statement]
CON> PRINT KID NAME OF FIRST 1 KIDS WITH AGE < 10~

KID
NAME

URSULA
CHRISTOPHR
SCOTT
DAVID
PATRICK

DTR>

The OF rse clause in the PRINT statement serves the same purpose as a
nested FOR rse statement. The inner RSE (FIRST 1 KIDS WITH AGE < 10)
identifies items from the list field KIDS that are included with a FAMILIES
record identified by the outer FOR rse statement.

You get the same results using the following nested FOR rse statements:

DTR> FOR FAMILIES FOR FIRST 1 KIDS WITH AGE < 10 PRINT KID NAME

14.3 Retrieving Repeating Field Values with Inner Print Lists

)

The simplest way to print a repeating field is to print the entire record
containing the repeating field:

DTR> READY FAMILIES ~
DTR> PRINT FIRST 1 FAMILIES ~

Using Hierarchies 14-5

NUMBER KID
FATHER MOTHER KIDS NAME AGE

JIM ANN 2 URSULA
RALPH

7
3

DTR>

To print selected fields from the record, you must specify a print list in
the PRINT statement. (Print lists consist of field names or other value
expressions and modifiers.) To specify a list item in a print list, you must
use an inner print list, which has the format:

ALL print-list OF rse

In the print list clause of the inner print list, include the list items you want
to display. The OF rse of the inner print list creates a context for the item in
the hierarchical list.

You can nest an inner print list in a PRINT statement using any of the
following formats. The arrows under each format show where the inner
print list begins and ends. A sample PRINT statement for the FAMILIES
domain illustrates each format:

1.

2.

PRINT ALL.ALL print-list OF rse. OF rse

DTR> PRINT ALL ALL KID NAME OF KIDS OF FIRST 1 FAMILIES~

KID
NAME

URSULA
RALPH

DTR>

PRINT [ALL] value-exp,.ALL print-list OF rse.OF rse

DTR> PRINT ALL MOTHER, FATHER, ALL KID_NAME OF~
[Looking for "FIRST", domain name, or collection name]
CON> FIRST 1 KIDS OF FIRST 1 FAMILIES~

KID
MOTHER FATHER NAME

ANN JIM URSULA

DTR>

14-6 Using Hierarchies

3. PRINT ALL ALL print-list OF rse, value-exp OF rse • • DTR> PRINT ALL ALL KID NAME OF FIRST 1 KIDS, FATHER OF~
[Looking for "FIRST", domain name, or collection name]
CON> FIRST 1 FAMILIES ~

KID
NAME FATHER

URSULA JIM

DTR>

There are two important points to remember when working with inner print
lists:

• To DATATRIEVE, an inner print list is just another print list element in
the outer print list.

• An inner print list establishes context for items in a list. See Appendix A
for more information about context.

While inner print lists can complicate statements, they allow you to control
completely how DATATRIEVE displays repeating fields. By using the
repeating field as the source for an RSE in an inner print list, you can
specify which occurrences of the repeating field DATATRIEVE displays.

As a rule of thumb, you can think of embedding an inner print list in a
PRINT statement the same way you think of nesting parentheses in an
arithmetic expression. Just as you put a matching left parenthesis for every
right parenthesis in an arithmetic expression, there must be a matching
ALL for every RSE in a PRINT statement. In the second format the first
ALL is optional, but it is easier to remember the rule of thumb than to
remember when ALL is optional.

The remainder of this section presents more examples to help you use inner
print lists effectively.

By limiting the RSEs in a PRINT statement, you can tailor a record stream
to suit your needs. These next three examples show the results of limiting
one or both of the RSEs in a PRINT statement that includes an inner print
list using the second format:

DTR> PRINT ALL MOTHER, ALL EACH_KID OF KIDS OF FIRST 1 FAMILIES~

KID
MOTHER NAME AGE

ANN URSULA 7
RALPH 3

DTR> PRINT ALL MOTHER, ALL EACH KID OF FIRST 1 KIDS OF FAMILIES~

Using Hierarchies 14-7

KID
MOTHER NAME AGE

ANN URSULA 7
LOUISE ANNE 31
JULIE ANN 29
ELLEN CHRISTOPHR 0
ANNE SCOTT 2
SARAH DAVID 0
ANNE PATRICK 4
MERIDETH BEAU 28
DIDI
RUTH ERIC 32
BETTY MARTHA 30
LOIS JEFF 23
SARAH CHARLIE 31
TRINITA ERIC 16

DTR> PRINT ALL MOTHER, ALL EACH_KID OF ~
CON> FIRST 1 KIDS OF FIRST 1 FAMILIES~

KID
MOTHER NAME AGE

ANN URSULA 7

DTR>

If you want to display only items from the list field, you must precede the
inner print list with two ALL keywords, one for each RSE you define. In
the following examples, the first ALL matches the RSE, FIRST 1 FAMILIES
WITH NUMBER_KIDS = 3. The second ALL matches the RSE, KIDS:

DTR> PRINT ALL ALL EACH_KID OF KIDS OF ~
[Looking for "FIRST", domain name, or collection name]
CON> FIRST 1 FAMILIES WITH NUMBER_KIDS = 3~

KID
NAME AGE

JEFF 23
FRED 26
LAURA 21

DTR> PRINT ALL ALL KID NAME OF KIDS WITH ~
[Looking for Boolean expression]
CON> AGE GT 25 OF FAMILIES ~

KID
NAME

ANNE
JIM
ELLEN
ANN
JEAN

14-8 Using Hierarchies

l_
~----------~

)

BEAU
BROOKS

ERIC
MARTHA
TOM
FRED
CHARLIE
HAROLD
SARAH

DTR>

The last display contains blank lines that you would probably want to
eliminate. Eliminating empty print lines is discussed in the next section.

Note that when you include a list field in a print list, you should specify the
list field as the last item. The following example shows what happens when
you specify some other field after the list. The display of that field begins on
the same line as the last item in the list:

DTR> PRINT ALL ALL EACH_KID OF KIDS, MOTHER OF FIRST 2 FAMILIES~

KID
NAME AGE MOTHER

URSULA 7
RALPH 3 ANN
ANNE 31
JIM 29
ELLEN 26
DAVID 24
ROBERT 16 LOUISE

DTR>

14.4 Retrieving List Items with Nested RSEs-Eliminating
Empty Print Lines

You can use Boolean expressions in the outer RSE to eliminate empty print
lines. Empty print lines occur when the outer RSE includes records that do
not satisfy the inner RSE. When DATATRIEVE processes a record that does
not contain information needed by the inner RSE, it generates a carriage
return and line feed. The following example illustrates empty print lines
that result from an outer RSE (FAMILIES) that forces nATATRIEVE to
include records that do not match inner RSE requirements:

DTR> PRINT ALL ALL EACH_KID OF KIDS WITH~
[Looking for Boolean expression]
CON> AGE GT 25 OF FAMILIES ~

Using Hierarchies 14-9

KID
NAME AGE

ANNE 31
JIM 29
ELLEN 26
ANN 29
JEAN 26

BEAU 28
BROOKS 26

ERIC 32
MARTHA 30
TOM 27
FRED 26
CHARLIE 31
HAROLD 35
SARAH 27

DTR>

In the following statement, the clause WITH ANY KIDS eliminates the
blank line caused by the record of the family without children:

DTR> PRINT ALL ALL EACH_KID OF KIDS WITH~
[Looking for Boolean expression]
CON> AGE GT 25 OF FAMILIES WITH ANY KIDS~

KID
NAME AGE

ANNE 31
JIM 29
ELLEN 26
ANN 29
JEAN 26

BEAU 28
BROOKS 26
ERIC 32
MARTHA 30
TOM 27
FRED 26
CHARLIE 31
HAROLD 35
SARAH 27

DTR>

The four blank lines in the preceding print display represent the records of
families who have kids, but whose kids have ages less than or equal to 25.
The following statement excludes those records from the record stream and
therefore eliminates the blank lines:

14-10 Using Hierarchies

DTR> PRINT ALL ALL EACH_KID OF KIDS WITH~
[Looking for Boolean expression]
CON> AGE GT 25 OF FAMILIES WITH ANY KIDS WITH~
[Looking for Boolean expression]
CON> AGE GT 25~

KID
NAME AGE

ANNE 31
JIM 29
ELLEN 26
ANN 29
JEAN 26
BEAU 28
BROOKS 26
ERIC 32
MARTHA 30
TOM 27
FRED 26
CHARLIE 31
HAROLD 35
SARAH 27

DTR>

You do not have to use an extra ALL before inner print lists if you put the
PRINT statement in a FOR statement:

DTR> FOR FAMILIES PRINT ALL EACH KID OF KIDS WITH~
[Looking for Boolean expression]
CON> KID_NAME CaNT "Y" ~

KID
NAME AGE

JAY 22
CISSY 24
NANCY 22

DTR>

14.5 Retrieving Values from Sublists

You can use collections, nested FOR loops, or inner print lists to retrieve
values from sublists (lists within lists).

When you work with sublists, you must remember to create a context for
each level of the hierarchy. The outermost context establishes the target
record or target record stream (source = FAMILIES); the second establishes
the context for the list (source = KIDS); and the third establishes the
context for the sublist (source = PET); and so on.

Using Hierarchies 14-11

This series of FIND and SELECT statements uses collections to retrieve one
list item from PET:

DTR> READY PETS ~
DTR> FIND PETS ~
[3 records found]
DTR> SELECT; FIND KIDS ~
[2 records found]
DTR> SELECT; FIND PET ~
[2 records found]
DTR> SELECT; PRINT PET_NAME, PET_AGE~

PET PET
NAME AGE

POP 03

DTR>

You can also use nested FOR loops for dealing with a sublist:

DTR> FOR PETS WITH ANY KIDS ~
[Looking for statement]
CON> FOR KIDS WITH ANY PET ~
[Looking for statement]
CON> FOR PET WITH PET_AGE GT O~
[Looking for statement]
CON> PRINT PET_NAME , PET_AGE ~

PET PET
NAME AGE

POP 03
SODA 04
MOUSE 03
SHORTY 08
SQUEEKY 03
FRANK 07
FRANK 14

DTR>

You can also use inner print lists to get at all three levels of the hierarchy:

DTR> PRINT ALL ALL ALL PET_NAME OF PET OF ~
[Looking for "FIRST", domain name, or collection name]
CON> KIDS WITH ANY PET WITH PET_AGE NE 0 OF~
[Looking for "FIRST", domain name, or collection name}
CON> PETS WITH ANY KIDS WITH ANY PET WITH PET_AGE NE O~

14-12 Using Hierarchies

~\

)

PET
NAME

POP
SODA
MOUSE
SHORTY
SQUEEKY
FRANK
FRANK

DTR>

Using Hierarchies 14-13

Chapter 15

Restructuring Domains

This chapter describes how to create new domains with data from existing
ones. You might do this to:

• Add new fields to the record definition associated with the domain

• Change field definitions to affect the values stored in the data file

• Create a copy of a domain for testing

• Change the file organization

• Change the index structure (key fields)

• Create a domain that contains a subset of records contained in another
domain

How you create the new domain depends on whether you want to keep the
old domain. If you want to keep the old domain, follow these steps when
creating the new domain:

1. Define a new domain, its record, and its data file.

2. Ready the new domain for WRITE or EXTEND access and the old
domain for READ access.

3. Use a statement with the following format to transfer field values from
the old data file to the new one:

FOR rse-FROM-old-domain-name
STORE new-do main-name USING

new-record-name = old-record-name

If you want to use old procedures on the new domain, you must edit them
if they refer to fields not included in the new domain. See Chapter 9 for
information about editing procedures.

Restructuring Domains 15-1

If the old procedures refer only to fields included in the new domain, you
need not change the procedures. You can ready the new domain with the
old domain name as an alias (READY NEW AS OLD) and execute the old
procedures.

If you do not want to keep the old domain, you can still use the old
procedures if you follow these steps:

1. Define the new domain (NEW), record (NEW _REC), and file (NEW.DAT).

2. Use a statement with the following format to transfer the data from the
old domain (OLD) to the new one (NEW):

FOR rse-FROM-old-domain-name

STORE new-domain-name USING

new-record-name = old-record-name

3. Use the REDEFINE command, which deletes the old domain and creates
a new domain with same name as the old domain. The new domain uses
the old domain name (OLD), the new record definition (NEW_REC), and
the new data file (NEW.DAT):

DTR> REDEFINE DOMAIN OLD USING NEW_REC ON NEW.DAT;~
DTR>

4. Check the old procedures for any references to field names not included
in the new record definition and edit where necessary.

The following sections provide examples to help you restructure your own
domains.

15.1 A Sample Domain

PROJECTS is a sample domain you can create to practice restructuring:

DTR> SHOW PROJECTS, PROJECTS_REC~
DOMAIN PROJECTS

USING PROJECTS_REC ON PROJEC.DATi
RECORD PROJECTS REC

USING
01 PROJECT.

03 PROJ_CODE
03 PROJ_NAME
03 MANAGER NUM

DTR>

15-2 Restructuring Domains

PIC 9(3) QUERY_NAME IS CODE.
PIC X(lO) QUERY NAME IS NAME.
PIC 9(5) QUERY_NAME IS NUM.

The data file PROJEC.DAT is a sequential file and contains these records:

DTR> PRINT PROJECTS ~

PROJ PROJ MANAGER
CODE NAME NUM

002 GROUNDS 00006
005 BUILDING 2 00003
008 SHED 00002
018 RESEARCH 00006
037 PUB REL 00008
073 MATERIALS 00002

DTR>

15.2 Changing Record and File Definitions and Using New
Names

This section shows you how to change record and file definitions using new
names for the record and data file.

To create a new domain with two fields added to PROJECTS_REC, follow
these steps:

1. Define a new domain:

DTR> DEFINE DOMAIN NEW_PROJECTS~
DFN> USING NEW_PROJECTS_REC ON NWPROJ.DAT;~
DTR> 0

2. Use the EXTRACT command to copy the old record definition to a
command file:

DTR> EXTRACT ON TEMP PROJECTS_REC~
DTR>

3. Exit DATATRIEVE and edit the command file TEMP.CMD. Remove the
DELETE command from the first line of the file, change the name of the
record, add the new fields, and include any other changes you want.

4. Enter DATATRIEVE again and invoke the modified command file to
enter the new record definition in the data dictionary:

Restructuring Domains 15-3

DTR> @TEMP~
DEFINE RECORD NEW PROJECTS REC - -

USING
01 NEW PROJECT.

03 -PROJ CODE
03 PROJ NAME
03 PROJ COST
03 MANAGER NUM
03 MANAGER NAME

PIC 9(3) QUERY_NAME IS CODE.
PIC X(10) QUERY_NAME IS NAME.
PIC 9(6)V99 EDIT_STRING IS $$$,$$9.99.
PIC 9 (5) .
PIC X (15) .

[Record NEW_PRO.JECTS_REC is 41 bytes long]
DTR>

5. Define a data file for NEW_PROJECTS. This example creates an indexed
file to replace the sequential file associated with PROJECTS:

DTR> DEFINE FILE FOR NEW_PROJECTS KEY=CODE ~
DTR>

You are now ready to transfer the data from the old domain to the new one.

15.2.1 Storing Data from All the Records in the Old Domain

This section tells you how to transfer data from all the records in the old
domain. The next section explains how to transfer data from a subset of the
records in the old domain.

You must first ready both domains. Ready the new domain for WRITE
or EXTEND access and ready the old domain for READ access. Use the
STORE statement in a FOR loop to transfer the data:

DTR> READY NEW_PROJECTS WRITE ~
DTR> READY PROJECTS ~
DTR> FOR PROJECTS ~
[Looking for statement]
CON> STORE NEW PROJECTS USING~
[Looking for assignment statement(s)]
CON> NEW_PROJECT S _ REC = PROJECTS _ REC ~
DTR>

For each field name in NEW _PROJECTS_REC that matches a field name
in PROJECTS_REC, the STORE statement transfers field values from
the record in PROJECTS to a record in NEW_PROJECTS. If a field
in NEW _PROJECTS_REC does not match a field in PROJECTS_REC,
DATATRIEVE initializes the field according to its data type and field def­
inition (zero for numeric fields; spaces for alphabetic and alphanumeric
ones).

15-4 Restructuring Domains

)

The data file associated with NEW_PROJECTS now has records in it. When
you display its contents on the terminal, you can see the values transferred
from the PROJECTS domain, as well as initial values for the two new fields,
PROJ_COST and MANAGER_NAME:

DTR> PRINT NEW_PROJECTS~

PROJ PROJ PROJ MANAGER MANAGER
CODE NAME COST NUM NAME

002 GROUNDS $0.00 00006
005 BUILDING 2 $0.00 00003
008 SHED $0.00 00002
018 RESEARCH $0.00 00006
037 PUB REL $0.00 00008
073 MATERIALS $0.00 00002

DTR>

15.2.2 Storing Data from a Subset of the Records in the Old Domain

You can create the new domain from a subset of the old domain records. You
specify the limiting conditions in the RSE following the FOR statement. For
example, you could have limited NEW_PROJECTS to the projects of only
two managers:

DTR> FOR PROJECTS WITH MANAGER_NUM EO 2, 6~
[Looking for statement]
CON> STORE NEW_PROJECTS USING~
[Looking for assignment statement(s)]
CON> NEW_PROJECTS_REC = PROJECTS_REC~
DTR> PRINT NEW_PROJECTS ~

PROJ PROJ PROJ MANAGER MANAGER
CODE NAME COST NUM NAME

002 GROUNDS $0.00 00006
008 SHED $0.00 00002
018 RESEARCH $0.00 00006
073 MATERIALS $0.00 00002

DTR>

15.2.3 Deleting References to the Old Domain

After you store records from the old domain in your new one, you can
delete the old data file from your directory. You can continue to use your
old procedures with the new record definition and data file, however, by
using the REDEFINE command. As described earlier in this chapter, the
REDEFINE command deletes the old domain and creates a new domain

Restructuring Domains 15-5

with same name as the old domain. The domain is now defined with the
new record definition and data file:

DTR> REDEFINE DOMAIN PROJECTS USING~
DFN> NEW_PROJECTS_REC ON NWPROJ.DAT;~
DTR>

15.3 Changing Record and File Definitions and Using Old
Names

This section explains how to restructure domains when you do not want to
access old data, but you want to keep the domain, record, and file names
you created for the old domain. The sample statements use the domain
PROJECTS.

Using an alias is the easiest way to change data structures without changing
the names you use for them.

NOTE

Notice that the changes made to the PROJECTS record and file
definitions are not associated with the names you want until you
use the FINISH command and ready the PROJECTS domain
again.

The following steps explain how to restructure domains. Steps preceded by
(RSTSIE only) are necessary only if you are working on a RSTSIE system:

1. (RSTSIE only) At the system command level, rename the data file
associated with the domain you are restructuring. The examples in
the remaining steps assume that PROJEC.DAT has been renamed
OLDPRO.DAT.

2. At the DATATRIEVE command level, use the EXTRACT command to
copy the old record definition to a command file:

DTR> EXTRACT ON TEMP PROJECTS_REC~
DTR>

3. At the system command level, edit the command file TEMP.CMD to add
the desired field definitions. Do not remove the DELETE command from
the first line of the file.

4. (RSTSIE only) At the DATATRIEVE command level, redefine the domain
specifying the renamed data file:

15-6 Restructuring Domains

(
\

DTR> REDEFINE DOMAIN PROJECTS USING~
DFN> PROJECTS_REC ON OLDPRO.DAT; ~
DTR>

5. At the DATATRIEVE command level, ready the domain as an alias:

DTR> READY PROJECTS AS OLD_PROJECTS~
DTR> SHOW READY~
Ready domains:

OLD_PROJECTS: RMS SEQUENTIAL, PROTECTED READ
DTR>

6. Invoke the modified command file to enter the revised record definition
in the data dictionary:

DTR> @TEMP~
DELETE PROJECTS_REC;
DEFINE RECORD PROJECTS REC

USING
01 PROJECT.

03 PROJ_CODE
03 PROJ_NAME

PIC 9(3) QUERY_NAME IS CODE.
PIC X(10) QUERY NAME IS NAME.

03 PROJ_COST
03 MANAGER NUM
03 MANAGER NAME

PIC 9(6)V99 EDIT_STRING IS $$$,$$9.99.
PIC 9(5).
PIC X (15) .

[Record PROJECTS_REC is 41 bytes long]
DTR>

7. (RSTSIE only) Redefine the domain PROJECTS using your original
name for the data file:

DTR> REDEFINE DOMAIN PROJECTS USING~
DFN> PROJECTS_REC ON PROJEC.DAT; ~
DTR>

8. Define a new data file for the domain. When you ready a domain with
an alias, as in Step 5, defining a new file does not interfere with the
link between that readied domain and the file containing the old data.
Do not use the SUPERSEDE option of the DEFINE FILE command.
The following example changes the file organization from sequential to
indexed:

DTR> DEFINE FILE FOR PROJECTS KEY = NUM~
DTR>

9. Ready the domain as a different alias and specify WRITE access mode.
This READY command uses the new record definition and opens the
new data file created by the DEFINE FILE command:

Restructuring Domains 15-7

DTR> READY PROJECTS AS NEW_PROJECTS WRITE~
DTR> SHOW READY ~
Ready domains:

NEW_PROJECTS: RMS INDEXED, PROTECTED WRITE
OLD_PROJECTS: RMS SEQUENTIAL, PROTECTED READ

DTR>

10. Use the STORE statement in a FOR loop to move the data from the
original domain to the new one.

If you plan to use all the records in the domain, you simply specify the
alias of the old domain in the FOR statement:

DTR> FOR OLD_PROJECTS~
[Looking for statement]
CON> STORE NEW_PROJECTS USING~
[Looking for assignment statement(s)]
CON> PROJECTS_REC = PROJECTS_REC ~
DTR>

If you plan to use a subset of the records in the old domain, specify a
more restrictive RSE including the alias of the old domain. The following
example limits the record stream to the projects of two managers:

DTR> FOR OLD PROJECTS WITH MANAGER NUM EQ 2, 6~
[Looking for-statement] -
CON> STORE NEW_PROJECTS USING~
[Looking for assignment statement(s)]
CON> PROJECTS_REC = PROJECTS_REC~
DTR>

11. When you type FINISH and ready the domain again, you can access
data as you restructured it. DATATRIEVE no longer recognizes either
alias. The following example assumes that the RSE specified in the FOR
loop included all the records from the domain:

DTR> FINISH~
DTR> READY PROJECTS~
DTR> SHOW READY ~
Ready domains:

PROJECTS: RMS INDEXED, PROTECTED READ
DTR> PRINT PROJECTS~

PROJ PROJ PROJ MANAGER MANAGER
CODE NAME COST NUM NAME

002 GROUNDS $0.00 00006
005 BUILDING 2 $0.00 00003
008 SHED $0.00 00002
018 RESEARCH $0.00 00006
037 PUB REL $0.00 00008
073 MATERIALS $0.00 00002

DTR>

15-8 Restructuring Domains

15.4

12. (RSTSIE only) At the system command level, delete the data file
associated with your domain before you changed the file organization.
Using the PROJECTS domain as an example, you would delete the file
OLDPRO.DAT.

Changing the Organization of a Data File

You can also use an alias with the READY command to change only the
organization of a data file associated with a domain.

The following steps make the indexed file created for PROJECTS a
sequential file again:

1. (RSTSIE only) At the system command level, rename the data file
associated with PROJECTS. The examples in the following steps assume
that PROJEC.DAT has been renamed IDXPRJ.DAT.

2. (RSTSIE only) At the DATATRIEVE command level, redefine the
PROJECTS domain specifying the renamed data file:

DTR> REDEFINE DOMAIN PROJECTS USING~
DFN> PROJECTS_REC ON IDXPRJ.DAT; ~
DTR>

3. Ready the domain using an alias:

DTR> READY PROJECTS AS IDX_PROJECTS~
DTR> SHOW READY ~
Ready domains:

IDX_PROJECTS: RMS INDEXED, PROTECTED READ
DTR>

4. (RSTSIE only) Redefine PROJECTS again, using the original name of
the data file:

DTR> REDEFINE DOMAIN PROJECTS USING~
DFN> PROJECTS_REC ON PROJEC.DATi ~
DTR>

5. Define for the domain a data file that has the organization you want.
The following example defines a sequential file:

DTR> DEFINE FILE FOR PROJECTS~
DTR>

6. Ready the domain for WRITE access using another alias:

DTR> READY PROJECTS AS SEQ_PROJECTS WRITE~
DTR>

Restructuring Domains 15-9

7. Using a STORE statement in a FOR loop, transfer records from the old
domain to the new one:

DTR> FOR IDX_PROJECTS~
[Looking for statement]
CON> STORE SEQ_PROJECTS USING~
[Looking for assignment statement(s)]
CON> PROJECTS_REC = PROJECTS_REC~
DTR>

8. Type FINISH. When you ready the domain again, access records in the
reorganized file:

DTR> FINISH~
DTR> READY PROJECTS~
DTR> SHOW READY ~
Readied domains:

PROJECTS: RMS SEQUENTIAL, PROTECTED READ
DTR>

9. (RSTSIE only) You may want to print some records to ensure that
records were successfully copied to your reorganized file. Then, at the
system command level, delete the data file with the organization you no
longer want. Using the PROJECTS domain as an example, you would
delete IDXPRJ.DAT from your directory.

15-10 Restructuring Domains

;'

Chapter 16

Editing DATATRIEVE Files

There are two basic ways to edit DATATRIEVE dictionary objects:

• At operating system command level, use your preferred editor language
to create and edit command files.

• At DATATRIEVE-ll command level, use the EDIT command to
invoke the EDT editor. (In DATATRIEVE-ll Version 3.3, EDT is the
DATATRIEVE-resident editor. It replaces the Query Editor (QED), also
known as the DATATRIEVE Editor, that was used in previous versions.)

Chapter 10 explains how to use command files. If you are accustomed to
using a text editor other than EDT, you may prefer that method of changing
DATATRIEVE objects.

The rest of this chapter explains:

• How to invoke EDT with the EDIT command

• How to use EDT to edit DATATRIEVE objects

This manual does not contain a detailed description of the EDT editing
language. Refer to EDT documentation for full tutorial and reference
information. EDT is a popular and flexible general-purpose text editor,
available with all operating systems that support DATATRIEVE-l1.

16.1 When to Invoke EDT with EDIT

You can use the EDIT command only to modify dictionary objects that are
defined in your current data dictionary. To edit DATATRIEVE commands
and statements, you must store them as a procedure.

Editing DATATRIEVE Files 16-1

Edit with caution, especially when changing record definitions. The editor
does not check for DATATRIEVE syntax errors as you edit dictionary objects.
Errors show up only when you try to load in or invoke the edited dictionary
object; that is, after you have exited the editor and purged the old version of
the object. You might prefer to do large editing jobs in stages and thus make
it easier to localize possible errors.

Changing objects with the editor does not affect domains that you currently
have readied in your workspace. For example, if first you ready the domain
PERSONNEL and then edit its record definition, you are not changing the
record definition currently being used by the PERSONNEL domain. For
the new record definition to take effect, you must finish the PERSONNEL
domain and ready it again. Similarly, edits do not change a dictionary table
loaded into your DATATRIEVE workspace until you release the table and
refer to it again.

16.2 I nvoki ng the Ed itor

You invoke the editor at the DATATRIEVE command level with the following
command:

EDIT [Object-name [(P~;Wd) 1] ...

Arguments

object-name

(passwd)
(*)

Is the name of a dictionary object in the current data
dictionary.

Is an asterisk enclosed in parentheses (*) or the password
necessary to gain C (control) access to the dictionary
object. If you specify a password, you must enclose it in
parentheses. If you specify (*), DATATRIEVE prompts
you for the password but does not print the response on
your terminal. If you omit this argument, DATATRIEVE
uses your login UICIPPN to verify that you have C
(control) access privilege to the dictionary object you
want to edit.

The following example invokes EDT to edit the record YACHT in the default
directory. In this case, EDT displays the first line of the file and then
prompts for command input:

16-2 Editing DATATRIEVE Files

\
/

DTR> EDIT YACHT ~
1 DELETE YACHT;

*QUIT~
DTR>

The EDT command QUIT terminates the EDT process without changing
anything.

The EDIT command spawns a process to run EDT. If you specify one or more
dictionary objects, the objects are extracted from the dictionary and copied
to a .TMP file. The .TMP file is automatically displayed on the terminal,
where you can edit it using the EDT language.

When you EXIT from EDT, DATATRIEVE invokes the edited .TMP file as
an ordinary command file. This causes your changes to be made in the
dictionary. The previous version of each edited dictionary object is purged at
this time; therefore, any errors you have made during the edit session can
be corrected only by updating the dictionary with another edit session. You
can prevent your edits from updating the dictionary by terminating EDT
with QUIT.

If you EXIT from EDT, the contents of the . TMP file will be invoked
automatically, allowing you to check whether your edited object is valid.

Any editing process is subject to human error, however. If, after exiting
EDT, you see error messages indicating that you have introduced syntax
errors, type the EDIT command without specifying any dictionary object.
DATATRIEVE-ll will spawn EDT and initiate editing on whatever .TMP
file was last edited from that terminal. This allows you to recover and edit
an object that was left invalid by a previous editing session at a particular
terminal. . TMP files are not deleted automatically; they are retained in your
directory until you delete them.

If you specify a dictionary object that does not exist, you will receive an
error message. For example:

EDIT Faa

'Faa' has not been defined in the dictionary

You may sometimes see an error such as the following when you try to
invoke EDIT:

Cannot spawn EDIT job - procedure aborting

You should bring such an error to the attention of the system manager.

Editing DATATRIEVE Files 16-3

16.3 Using EDT

The remainder of this chapter introduces the EDT language. See EDT
documentation for detailed information on the EDT editing language.

EDT has a set of line mode commands (similar to the DATATRIEVE Editor
used in previous versions) that you enter in response to prompts. One line
mode command, CHANGE, switches you to character change mode, which
allows you to edit at the character level, guided by a cursor. You can tailor
EDT with specialized functions that you define in the EDT initialization file,
EDTINLEDT.

EDT is a general-purpose editor that often provides several ways to achieve
a particular result. You may find that you can do all your work with just
a small portion of EDT's full capability, or you may prefer to tailor the
EDTINLEDT file with many special functions.

When you invoke EDT, it can begin in either line command mode or keypad
mode, depending on the contents of the EDT initialization file.

16.3.1 Line Command Mode

In line command mode, you enter all input in response to a prompt, and
EDT interprets all your input as commands. The default prompt is an
asterisk (*), but you can change it to any character string that you prefer.

You can move to various parts of the file by specifying line numbers or
character strings. You display and alter the text of the dictionary object,
and you can insert the entire contents of another file into the object you are
working on. One command, CHANGE, switches you to character change
mode (see Section 16.3.2).

In line command mode, EDT uses a line pointer to keep track of the current
line. The line pointer points to the entire current line, not to any part of the
line.

You can display the current line by typing a period (.) and pressing
RETURN in response to the command prompt.

The line pointer can also point to the end of the text buffer, where you can
add text to the end of the dictionary object. The symbol [EOB] marks the
end of the text buffer.

16-4 Editing DATATRIEVE Files

16.3.2

Range Specification

The EDT line commands for deleting, inserting, replacing, and typing lines,
and for substituting strings all contain an optional argument that specifies
the range of lines on which the command operates. The range may be a
single line, a series of consecutive lines, or a set of lines that contain a
particular character string.

Character Change Mode

There are two forms of character change mode: keypad mode and character
command mode. Keypad mode is the commonly-used form; character
command mode must be used on terminals that do not support keypad
editing. On terminals with a keypad, you can use whichever form of
character change mode that you prefer.

In keypad mode, all keyboard input is treated as text, not commands. You
can enter text directly into the dictionary object at the location indicated by
a moving cursor. Instead of commands, you use various keypad functions to
move and delete text and to change the cursor position. You leave keypad
mode (and return to line command mode) by pressing CTRUZ.

In character command mode, you enter new text as keyboard input, as
in keypad mode. However, a set of special keyboard commands are used
instead of keypad functions. Thus you enter both commands and new
text through the keyboard. Although character command mode may seem
indirect and arcane compared to keypad mode, it is worth learning. With
practice, you may find it to be faster on certain text operations.

Editing DATATRIEVE Files 16-5

".
I

/

Chapter 17

Optimizing Workspace and Response Time

This chapter explains the concept of DATATRIEVE workspace. It shows you
how to use memory space efficiently during a DATATRIEVE session and
suggests ways to optimize DATATRIEVE performance.

17.1 Using Workspace

Your DATATRIEVE workspace is the area in physical memory that is
available to you during your DATATRIEVE session. Sometimes referred to
as "pool space," the workspace is not the same as disk space. Workspace
refers instead to the size of the current DATATRIEVE task you are
performing. The maximum workspace allowed for each DATATRIEVE
session is 32K words. If the task you perform requires DATATRIEVE to
use more than 32K words of memory, you receive an error message, such as
"Compiler storage pool exhausted," and are unable to complete your task.

17.2 Effect of READY and FINISH on Workspace

Before you ready any domains, the workspace looks like that in Figure 17-l.
All the workspace is available, some of it for carrying out tasks related to
Record Management Services (RMS), some for carrying out tasks related
to DATATRIEVE domains, and some for sorting the records as you issue
DATATRIEVE commands and statements.

Optimizing Workspace and Response Time 17-1

Figure 17-1: Empty DATATRIEVE Workspace

RMS WORKSPACE

SORT WORKSPACE

SMALL BLOCK WORKSPACE

ZK-0974A-HC

The dashed lines indicate temporary boundaries. DATATRIEVE takes
space from the sort workspace and allocates it to the RMS workspace and
the small block workspace when they need more space. A readied domain
uses space in both the RMS workspace and the small block workspace.
Collections, variables, and tables all use space in the small block workspace.

If you use the SHOW SPACE command, you see that the proportions of
space used are comparable to those in the diagram. The numbers you see
for your system will not be identical with those in the following example:

DTR> SHOW SPACE ~

RMS pool
Small block pool
Sort pool
Total
DTR>

Current Memory Usage
Allocated Used Free

4384 4148 236
312 312 0

14024 0 14024
18720 4460 14260

of Fragments
3
o
o
3

When using the SHOW SPACE command, pay particular attention to the
total used space and the total free space. As you take up more workspace,
the used space increases and free space decreases.

When you ready a domain, you begin to use up the available workspace, as
shown in Figure 17-2.

17-2 Optimizing Workspace and Response Time

Figure 17-2: Workspace with One Readied Domain

YACHTS BUFFERS

FREE SORT WORKSPACE

YACHTS BLOCKS

ZK-0975A-HC

If you type SHOW SPACE, you can see how the values change for current
use of memory:

DTR> READY YACHTS ~
DTR> SHOW SPACE~

RMS pool
Small block pool
Sort pool
Total
DTR>

Current Memory Usage
Allocated Used Free

4384 4292 220
2300 1588 712

12036 0 12036
18720 5880 12840

=It of Fragments
1

15
o

16

If you ready a second domain, you use additional space as shown in
Figure 17-3.

Optimizing Workspace and Response Time 17-3

Figure 17-3: Workspace with Two Readied Domains

YACHTS BUFFERS
--

PERSONNEL BUFFERS

~---
FREE SORT WORKSPACE

PERSONNEL BLOCKS

YACHTS BLOCKS

ZK-0976A-HC

Type SHOW SPACE to see values for current memory use after readying
two domains:

DTR> READY PERSONNEL~
DTR> SHOW SPACE~

RMS pool
Small block pool
Sort pool
Total
DTR>

Current Memory Usage
Allocated Used

4944 4388
3416 2656

10360 0
18720 7044

Free
220
760

10360
11676

of Fragments
5

21
o

26

If you finish a domain, you free the workspace that the domain was occupy­
ing. The sort workspace recovers free space only if the free space is adjacen
to the sort workspace. If you free space in the interior of the RMS workspac4
or small block workspace, then it remains in that workspace as a fragment,
as shown in Figure 17-4.

17--4 Optimizing Workspace and Response Time

Figure 17-4: Workspace When You Finish First Readied Domain

FREE RMS WORKSPACE
--

PERSONNEL BUFFERS

FREE SORT WORKSPACE

--
PERSONNEL BLOCKS

FREE SMALL BLOCK WORKSPACE

ZK-0977 A-He

The following SHOW SPACE command illustrates that releasing the first
readied domain does not increase the amount of free sort workspace:

DTR> FINISH YACHTS~
DTR> SHOW SPACE~

RMS pool
Small block pool
Sort pool
Total
DTR>

Current Memory Usage
Allocated Used Free

4944 4244 700
3416 1380 2036

10360 0 10360
18720 5624 13096

iF of Fragments
5

12
o

17

You use the sort workspace each time you specify the order of a record
stream with the SORTED BY clause in an RSE or a collection with the
SORT statement. DATATRIEVE immediately seizes space from the sort
workspace and releases it when it finishes the sort. DATATRIEVE sorts
slowly when it has little space to work with, so keeping the sort workspace
as large as possible saves computing time. If the sort workspace is too small,
DATATRIEVE returns the message:

Sort workspace exhausted

Execution failed

Optimizing Workspace and Response Time 17-5

17.3 Techniques to Optimize Workspace

The following techniques for readying and finishing domains can help you
optimize your workspace:

• Try to reduce the number of files you have open at a time. If you no
longer need a domain, FINISH it.

• Pay attention to the order in which you open the files. As the illustra­
tions show, when you finish a domain you do not always free a complete,
contiguous block of workspace. If you finish the first domain before you
finish the second, your workspace looks like that in Figure 17-4. It is
best, therefore, first to ready the domains you plan to use the longest
and then ready and finish those you need for only a short time.

You can also save space in the way you define your records too. Each
time you define a field, you add overhead cost in addition to the size of
the item being stored. Using EDIT_STRING, QUERY_HEADER, and
QUERY_NAME clauses also adds to the storage space your record requires.
Use the following guidelines when defining your record:

• Keep record definition clauses short, in particular EDIT_STRING,
QUERY_HEADER, and QUERY_NAME clauses. Do not use any of these
clauses unnecessarily.

• Use short names and eliminate unnecessary fields. Unnecessary group
fields are a particular waste of space.

• When you use FILLER, try to combine two or more elementary fields
into one FILLER field.

Additional space-saving techniques are as follows:

• Release collections, tables, and variables that you do not need.

• Avoid using long BEGIN-END blocks, and the THEN connector to form
compound statements. DATATRIEVE compiles the complete statement
all at once, at the cost of workspace.

• Use a small file bucket size. The file bucket size determines the size of
the RMS buffers needed. A bucket size of 8 would use approximately
half of DATATRIEVE workspace and would cause you to run out of
space repeatedly. A bucket size of 1 or 2 reduces the requirements for
DATATRIEVE workspace.

17-6 Optimizing Workspace and Response Time

y

• For the REPORT statement, first use the FIND statement to form a
collection and the SORT statement to sort and then report on the sorted
collection. Avoid including the SORTED BY clause in the REPORT
statement. The REPORT and SORT statements both require large
amounts of workspace.

17.4 Techniques to Optimize Response Time

As mentioned earlier, DATATRIEVE performs best when it has adequate
space to work with. Therefore, when you keep the sort pool in your
workspace as large as possible, you improve response time. The following
sections suggest other ways you can improve DATATRIEVE performance.

17.4.1 Using the ALLOCATION Option of the DEFINE FILE Command

If you know approximately how many blocks of storage your data file will re­
quire and you want to enter records quickly, you can use the ALLOCATION
option in the DEFINE FILE command to reserve contiguous storage space
for the file. This option is particularly useful if you know your data file will
be large. The format for the ALLOCATION option is ALLOCATION = n,
where n is the number of blocks you want as the initial allocation for the
file.

17.4.2 Using Keyed Access Efficiently

DATATRIEVE allows you to define indexed or sequential files for your data.
Sequential files require less storage, but DATATRIEVE must search records
one by one according to their physical order in the file. This organization
may be optimal in certain cases. For example, a domain's records may
contain a field for the current date, so you may want records physically
arranged in the order in which you stored them. For instance, you are
likely to want to have sequential access to banking transactions. If you
access groups of records in chronological order, you might find sequential
organization efficient.

In other cases, your access needs may not be suited to sequential orga­
nization. You may need to access a group of records that are distributed
throughout the file. If you have stored the records in a sequential file,
DATATRIEVE may have to read all the records to find the one or two that
you request. In this case, indexed file organization is probably a better
choice. Although indexed files require more storage, DATATRIEVE can

Optimizing Workspace and Response Time 17-7

search indexed files quickly to find the records you want, if you base the
search on a key field.

When defining data, try to decide which field of the record you are likely to
name most often in queries. Make that field the primary key if its value
is likely to be unique for each record. For example, if you are setting up a
personnel domain, you might predict that most users seek information based
on employee ID. In that case, make the ID field the primary key.

By default, primary key values are unique. That is, the primary key value
by itself is enough to identify a record. It is legal in DATATRIEVE to specify
that primary keys can have duplicate values. However, allowing duplicate
primary key values is not recommended; having too many duplicate key
values slows DATATRIEVE searches that are based on key fields.

If the leading candidate for the primary key does not uniquely identify the
record, find another field such that the two fields combined can uniquely
identify the record. You can then designate a group field, encompassing the
two fields, as the primary key. For example, in the YACHTS domain, the
group field TYPE (consisting of BUILDER and MODEL) is the primary key,
uniquely determining records in· YACHTS.

Avoid using a field defined as USAGE IS DATE as a key field. The value
stored in a date field is larger than the maximum value allowed for a key
by RMS. Therefore, specifying a date field as a key provides no response
time advantage when you base a query on a comparison of the field value
and the range of values (for example, LT, GT, LE, GE, and BETWEEN). If
you base your query of an indexed data field on an equality comparison,
DATATRIEVE uses the index and performs faster than if it did a sequential
search of the records.

After organizing your indexed file and storing records in the file, you should
structure DATATRIEVE queries to take advantage of keyed access. A query
is a request for DATATRIEVE to identify all the records that satisfy a
specified condition. Not all the DATATRIEVE queries you can formulate use
keyed access to indexed files. The following sections tell you how to produce
queries that give you the fastest response time.

17.4.2.1 Using EQUAL Rather than CONTAINING

A Boolean expression that tests records with the EQUAL (=) relational
operator is more efficient than a Boolean with CONTAINING (CaNT) when
the expression refers to a key field. For example, compare the following two
queries:

17-8 Optimizing Workspace and Response Time

DTR> PRINT YACHTS WITH BUILDER = "PEARSON" ~

DTR> PRINT YACHTS WITH BUILDER CaNT "PEARSON"~

Although both queries yield the same results, the first query is twice as fast
as the second one.

To resolve the first query, DATATRIEVE conducts a fast search through the
index to retrieve the desired records. In the second case, DATATRIEVE
must search through the values of BIDLDER looking for matches with the
string following CONT. DATATRIEVE must check all substrings of each
BUILDER value that are equal in length to the string specified in the
Boolean.

To take advantage of the increased efficiency of EQUAL (=), you must
specify a value that matches the field value exactly. EQUAL (=) is case
sensitive but CONT is not. In the last example, if a record had the value
"Pearson" for BUILDER, only the second query would find the record.

To get around the problem of case sensitivity, you might consider using
only uppercase letters when entering data. Otherwise, to use the EQUAL
operator, you must remember the case of each character of a field value.

17.4.2.2 Choosing Domains or Collections as Record Sources

When you form a collection, DATATRIEVE can no longer use key-based
access for retrieving records. In most cases, you get the best performance on
key-based queries when you specify a domain rather than a collection in the
RSE.

Furthermore, if you form a query that relates to more than one record
source, all but the last source specified is an implied collection. Therefore,
you cannot have key-based access for any but the last record source in a
relational query. When you use nested FOR loops and specify domains and
key fields in each loop, for example, DATATRIEVE can use a key-based
index only for evaluating the RSE in the last FOR loop.

If all other conditions are equal, it is better to use a domain name than
a collection name in the last position of a key-based relational query. But
there is one more factor to consider: collections are efficient to use if you
need to refer back to the same group of records in the same DATATRIEVE
session. This is especially true if the collection is much smaller than the
data file from which it is formed. In such a case, you may get better perfor­
mance by forming and naming a collection so that DATATRIEVE does not
have to retrieve the same group of records over and over again.

Optimizing Workspace and Response Time 17-9

To summarize, you gain efficiency with a domain when you can use keyed
access. You gain efficiency with a collection if you reduce the number of
times DATATRIEVE must isolate the same small group of records from a \
large body of records.

17.4.2.3 Ordering the Domains in Nested FOR Loops

If one FOR loop must process many more records than the others and all
have the same key field, include the larger record stream in the last (inner)
FOR loop. Similarly, if only one FOR loop can use keyed access, make sure
that FOR loop is the last, or innermost, loop you specify.

17.4.2.4 Restoring Indexed Files That Are Often Modified

If you add, erase, or change many records in an indexed file, that file can
degrade DATATRIEVE performance. When you have erased many records
from an indexed file, records in the file can occupy many noncontiguous
areas of the disk. This slows down record access. When you add records
to a file or change many values in key fields, the index for the file can be
split over many noncontiguous areas of the disk. This also slows down
record access. The more keys you define for each file, the more quickly
DATATRIEVE response time degrades when you make many changes to the
file.

If you have a DATATRIEVE performance problem and you have made many
modifications to your indexed file, restructuring your domain might improve
DATATRIEVE response time. When you restructure a domain, you are
recreating the data file. When the new file is created, the records and index
are stored as much as possible on contiguous areas of the disk.

Follow the same steps given in Chapter 15 for reorganizing a data file. In
this case, however, specify the same organization for your new file rather
than a different one. If you have defined many different keys for your file,
you might want to eliminate any keys that you seldom use in queries. If you
define as keys only those fields that you often use in queries, modifying your
file has less effect on DATATRIEVE response time.

You can also restructure files and indexes using the RMS-11 utilities
CONVERT and IFL. These utilities are explained in the RMS-11 manu-
als in your operating system documentation set. The DATATRIEVE-11
utility program QCPRS, explained in Chapter 20 of this manual, can be used
to restructure files and indexes.

17-10 Optimizing Workspace and Response Time

.~ 17.4.3 Avoiding Nested FOR Loops Followed by a Conditional
Statement

Try to avoid using nested FOR loops to control the execution of a conditional
statement. The following example is extremely inefficient:

DTR> FOR A IN OWNERS~
CON> FOR YACHTS~
CON> IF TYPE = A. TYPE ~
CON> THEN PRINT BOAT, A.NAME~

Wherever possible, include conditional tests as Boolean expressions within
one of the RSEs. This effectively limits the number of records that
DATATRIEVE has to process. The following example works much more
efficiently than the preceding one:

DTR> FOR A IN OWNERS~
CON> FOR YACHTS WITH TYPE = A.TYPE~
CON> PRINT BOAT, A. NAME ~

Optimizing Workspace and Response Time 17-11

I
;1

Chapter 18

Controlling Output

When you invoke DATATRIEVE, several characteristics are set that control
your display of input and output:

• The number of columns in an output display (COLUMNS_PAGE)

• The way DATATRIEVE responds to an ABORT statement ([NO] ABORT)

• The presence or absence of "Looking for ... " prompts ([NO] PROMPT)

You can change these characteristics at any time during a DATATRIEVE
session by using the forms of the SET command discussed in the following
sections.

18.1 Changing the Columns-Page Setting

The default for the columns-page setting is 80 characters, the width of most
video display screens. You can change this setting to fit your application and
terminal characteristics.

18.1.1 Increasing the Columns-Page Setting

You may want to increase the columns-page setting on your video terminal
or hardcopy terminal if you want to display detail lines more than 80
characters long. If you have a Digital-supported video terminal and your
command language is DCL, do the following:

1. Use the DCL SET TERMINAL command to tell your system to increase
the width of lines it can send you:

$ TERMINAL/WIDTH=132 ~

Controlling Output 18-1

2. Use the SET COLUMNS_PAGE command to increase the length of the
line DATATRIEVE can display on your terminal. The maximum limit on
the columns-page setting is 255.

DTR> SET COLUMNS_PAGE = 132~

Whatever the column setting on your terminal, you can continue a long
input line by using a hyphen (-) continuation character at the end of the
line. When you use a. hyphen, DATATRIEVE does not check the syntax
of your input until you press RETURN after a line that does not end in a
hyphen. If the line you want to extend ends with a complete word, separate
the hyphen from the word by entering a space. Otherwise, DATATRIEVE
considers the characters at the beginning of the next line to be part of the
same character string.

18.1.2 Decreasing the Columns-Page Setting

To decrease the number of columns displayed, enter a SET COLUMNS_PAGE
command:

DTR> SET COLUMNS_PAGE = 60~
DTR>

Decreasing the columns-page setting may cause problems when you display
your output, however. If one of the elements in a print line is longer than
the columns-page setting, DATATRIEVE displays an error message:

DTR> SET COLUMNS_PAGE = 15~
DTR> PRINT "1234567890123456" ~
Print object too large for line width

DTR>

Notice that the columns-page setting does not affect the length of your input
lines or the messages you receive from DATATRIEVE.

Reducing the columns-page setting can also distort the display of a record as
in the following example:

DTR> READY YACHTS~
DTR> PRINT FIRST 1 YACHTS~

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

ALBERG 37 MK II KETCH 37 20,000 12 $36,951

DTR> SET COLUMNS-PAGE = 12~
DTR> PRINT FIRST 1 YACHTS ~

18-2 Controlling Output

~\
I

I!.
\

MANUFACTURER

ALBERG
37 MK II
KETCH

37
20,000 12
$36,951

DTR>

18.1.3 Determining the Number of Columns You Need for a Print Line

Several considerations determine the number of spaces, or columns, needed
for each print object in the output line:

• The actual length of the character string literal or numeric literal, or the
length of the field or variable as specified by the record definition or the
DECLARE command

• The length of the field name, query name, query header, or longest
segment of the query header

• The length of the edit string

The longest of these determines how many columns you need.

To prevent crowding, DATATRIEVE also adds one space to the length of
all fields except the last one on a line. To print a record from the YACHTS
domain requires a minimum of 57 columns:

• MANUFACTURER takes 13 columns; the query header is 12 characters
long.

• MODEL takes 11 columns; the field is defined as 10 characters long:
PIC X(10).

• RIG takes 7 columns; the field is defined as 6 characters long: PIC X(6).

• LENGTH_ OVER_ALL takes 7 columns; the longest segment of the query
header (LENGTH) is 6 characters long.

• DISPLACEMENT takes 7 columns; both the query header (WEIGHT)
and the edit string (ZZ,ZZ9) are 6 characters long.

• BEAM takes 5 columns; the query header (BEAM) is 4 characters long.

• PRICE takes 7 columns; the edit string ($$$,$$$) is 7 characters long,
but no column is added because PRICE is the last field in the detail line.

Controlling Output 18-3

If you set the columns to 56, the PRICE field no longer fits on one line.
DATATRIEVE displays the price on the following line and omits the PRICE
header:

DTR> SET COLUMNS_PAGE = 56~
DTR> PRINT FIRST 1 YACHTS~

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM

ALBERG 37 MK II KETCH 37 20,000 12
$36,951

DTR>

18.2 Using the SET ABORT Statement

When DATATRIEVE executes an ABORT statement in a command file or
procedure while SET NO ABORT is in effect, it affects only the compound
statement containing the ABORT statement. If SET ABORT is in effect,
DATATRIEVE terminates the remainder of the command file or procedure.
The same rules apply if you enter CTRUZ in response to a prompt.

If DATATRIEVE encounters a syntax or logical error in a command file
or procedure, it returns you to the DTR> prompt whether or not you have
used SET ABORT. SET NO ABORT is the default setting when you invoke
DATATRIEVE.

See Chapters 9 and 10 for a discussion of using ABORT and NO ABORT in
controlling procedures and command files.

18.3 Using the SET PROMPT Statement

When you invoke DATATRIEVE, SET PROMPT is in effect. If you press
RETURN before finishing a command or statement, DATATRIEVE prompts
you for the remaining required elements of that command or statement.

The following sequence of commands and statements shows how
DATATRIEVE responds when SET PROMPT is in effect. After the line
of text indicates the next required element, DATATRIEVE displays the
CON> (continuation) prompt. As long as the syntax of a command or
statement is incomplete, DATATRIEVE uses CON> to tell you it is ready for
further input.

18-4 ContrOlling Output

DTR> READY~
[Looking for Dictionary Element]
CON> YACHTS ~
DTR> FIND~
[Looking for "FIRST", domain name, or collection name]
CON> FIRST~
[Looking for a value expression]
CON> 1~
[Looking for collection or domain name]
CON> YACHTS ~
[1 Record found]

DTR>

Notice that DATATRIEVE stops prompting as soon as you enter elements
that comprise a syntactically complete command or statement. For example,
READY YACHTS is complete, and DATATRIEVE does not prompt for
any further element. Similarly, when you enter FIND FIRST 1 YACHTS,
DATATRIEVE does not prompt you for a Boolean expression or a SORTED
BY clause.

When SET NO PROMPT is in effect, DATATRIEVE does not display the text
about the next required element. It does, however, use the CON> prompt
when the syntax is incomplete. The following example is identical to the
previous one but has SET NO PROMPT in effect:

DTR> SET NO PROMPT ~
DTR> READY~
CON> YACHTS ~
DTR> FIND~
CON> FIRST~
CON> 1~
CON> YACHTS ~
[1 Record found]
DTR>

Note that SET NO PROMPT does not suppress the messages DATATRIEVE
displays about the results of commands and statements.

Controlling Output 18-5

19.1

Chapter 19

Controlling Access to Dictionary Objects

To supplement your operating system protection, DATATRIEVE uses access
control lists (ACLs) to protect your data and dictionary definitions. An ACL,
stored in the data dictionary, regulates user access to an object in the data
dictionary.

Every dictionary object (domain, record, procedure, and table) has an
associated ACL. This chapter describes the contents of an ACL and the
commands you use to maintain the ACL. It also shows a strategy to help
ensure the integrity of your data.

Carefully maintained ACLs can be effective against unauthorized browsing
through files and accidental corruption of the dictionary or data. Use them
to improve the overall security system for your installation.

Contents of an Access Control List

An ACL consists of one or more entries. Each entry contains the following
information:

• A sequence number

• A lock type

• Akey
• One or more access privileges

Figure 19-1 shows a sample ACL containing three entries that illustrate the
parts and options in an ACL. The table within Figure 19-1 identifies the
parts of each entry.

Controlling Access to Dictionary Objects 19-1

Figure 19-1: Sample Access Control List

DTR> SHOWP SAMPLE~
1, UIC, [254,203], "RWEMC"
2,PW, "SWORDFISH", "RM"
3, UIC, [*, *], liRE"

Sequence Lock Key Privileges
Number

1

2

3

UIC

PW

UIC

19.1.1 Sequence Numbers

[254,203] RWEMC

SWORDFISH RM

[*, *] RE

Sequence numbers are sequential integers beginning with 1 that
DATATRIEVE assigns to identify ACL entries. Use sequence numbers
to identify entries you are adding to or deleting from the ACL.

19.1.2 Lock Types

Each entry in the ACL has a lock type that indicates whether you access
the associated dictionary object by specifying a password or by using
a UIC/PPN. There are two lock types: PW for password, and UIC for
UIC/PPN. (A UIC/PPN represents an operating system account number.)

19.1.3 Keys

DATATRIEVE uses keys to identify you when you request access to dic­
tionary objects. When you attempt to access a dictionary object, you must
provide the correct password for a PW lock or own the correct mC/PPN for
a UIC lock.

19-2 Controlling Access to Dictionary Objects

19.1.3.1 Password Keys

If the lock type is PW, the key is a 1- to 10-character password. You can
use any character from the ASCII character set except the dollar sign ($).
Examples of legal passwords include: FISH-FRY, SWORDFISH, 1234, and
PASSWD-9.

To execute a command or statement that requires access privileges pro­
tected by a password, you include the password directly in the command or
statement. For example, the domain YACHTS might contain only one ACL
entry:

1 PW SWORDFISH RWEMC

To delete the YACHTS domain definition from the dictionary, you can specify
the password enclosed in parentheses in the DELETE command:

DTR> DELETE YACHTS (SWORDFISH);~

For security reasons, you can also suppress the display of the password
on your terminal. To do this, type an asterisk enclosed in parentheses (*)
instead of the password. DATATRIEVE then prompts for the password but
does not display the password when you enter it:

DTR> DELETE YACHTS (*);~
Enter password for YACHTS: ~

This technique for specifying a password is especially useful if you have a
hardcopy terminal.

19.1.3.2 UIC Keys

If the lock type is UIC (for mCIPPN), the key is an account number known
to the operating system. Under RSTS/E systems, an account number is
called a project-programmer number, or PPN. Under other operating sys­
tems, the account number is called the user identification code, or mc.
The mCIPPN consists of a three digit octal group number followed by a
three digit octal user number. The nUillbers are separated by a comma and
enclosed in brackets, for example [253,201].

A mCIPPN lock can include specific numbers, asterisks, or a combination
of an asterisk and a number. Asterisks allow all users or only users in a
specified group to access a dictionary object. The following are valid ACL
lock entries:

Controlling Access to Dictionary Objects 19-3

• [253,201], allowing only the user with the account number [253,201] to
have access

• [253, *], allowing any user with group number 253 to have access

• [*, *], allowing any user to have access

For the UIC lock type, you do not include a UIC or PPN in a command or
statement. Rather, DATATRIEVE verifies that you have access by checkin~
the UICIPPN you used to log in. For example, if the ACL for the procedure
BIG-YACHTS contains just the following entry, then you must log in under
[253,201] in order to access the procedure:

1 UlC [253,201] RWEMC

If the ACL contains the following entry, you can access the procedure
regardless of your UICIPPN:

1 UlC [*,*] RWEMC

Because you cannot use a password when invoking a procedure, you may
want to use the UICIPPN lock type to protect procedures.

NOTE

On RSX and VAX-II RSX systems, a UIC must be in the range of
[0,0] to [377,377]. On RSTS systems, a mc must be in the range
of [0,0] to [256,256].

19.1.4 Access Privileges

An access privilege determines the access you have to the associated
dictionary object. You designate an access privilege by a single letter, a
string of letters, or a space. Table 19-1 contains a list of access privileges
and their description.

19-4 Controlling Access to Dictionary Objects

'\

11,,\

)

Table 19-1: Ac'cess Privileges

Access
Privilege

R

W

E

M

C

Spaces

Description

READ. The user can SHOW or EXTRACT the associated dictio­
nary object. For a domain, the user can ready the domain for
READ access only.

WRITE. The user can ready the domain for READ, EXTEND,
MODIFY, or WRITE access to retrieve, modify, store, or erase
records.

EXTEND or EXECUTE. For a domain, the user can ready
the domain for EXTEND access only to store records. For a
procedure, the user can execute the procedure. For a table, the
user can refer to the table (using VIA or IN clauses). The user
must have E access to a record to ready the associated domain.

MODIFY. The user can ready the domain for READ or MODIFY
access to read or change records in the domain but not to add or
delete.

CONTROL. The user can issue the commands DEFINEP,
DELETE, REDEFINE, DELETEP, EDIT, and SHOWP.

No access. The user cannot access the dictionary object.

Each entry in an ACL can include from one to five access privileges or
designate no access. A space indicates that no access is permitted to a user
with the corresponding key. For example, the single letter R specifies that
a user with the corresponding key has read access only. The letters RW
specify that the user has both read and write access. Full access, designated
by RWEMC, allows a user complete access to the dictionary object. If you
specify a space, the user has no access to the dictionary object.

Each access privilege allows you to issue certain commands and statements.
For example, with R privilege, you can issue an EXTRACT command or
ready a domain for read access. If you ready a domain to READ, you can
then use commands and statements that display and manipulate the domain
database. With only R privilege, you cannot ready a domain to WRITE,
MODIFY, or EXTEND. Therefore, you cannot add to, delete, or modify data.

Table 19-2 contains a list of commands that you can issue if you are granted
the corresponding access privilege. The table also shows the statements you
can use after issuing the command.

Controlling Access to Dictionary Objects 19-5

,

Table 19-2: Commands/Statements by Privilege

Privilege
for Domain

R

E

M

w

Commands
Permitted

EXTRACT

READY ... READ

READY ... EXTEND

READY ... READ

READY ... EXTEND

READY ... MODIFY

READY ... READ

READY ... EXTEND

READY ... MODIFY

19-6 Controlling Access to Dictionary Objects

Query
Statements Permitted

FIND
PRINT
SELECT
SORT
SUM

STORE

FIND
PRINT
SELECT
SORT
SUM

STORE

FIND
MODIFY
PRINT
SELECT
SORT
SUM

FIND
PRINT
SELECT
SORT
SUM

STORE

FIND
MODIFY
PRINT
SELECT
SORT
SUM

(continued on next page

Table 19-2 (Cont.): Commands/Statements by Privilege

Privilege
for Domain

C

Commands
Permitted

READY ... WRITE

DEFINEP

DELETE

REDEFINE

DELETEP

EDIT

SHOWP

NOTE

Query
Statements Permitted

ERASE
FIND
MODIFY
PRINT
SELECT
SORT
STORE
SUM

You must have E access to the associated record definition to
ready a domain.

The meaning of E privilege differs depending on the dictionary object to
which an ACL corresponds. In an ACL for a domain, E means extend
privilege; that is, the user can store records in a file or extend it. In an ACL
for a table, procedure, or record definition, E means execute privilege. The
user can use a table or procedure, or ready the domain associated with the
record definition.

Only users with C (control) access to a dictionary object can directly access
its associated ACL or edit or delete the dictionary object. However, any user
with a group (or project) code of 1 (that is, a mC/PPN in the form [I,n]) is
automatically granted C (control) access to all ACLs.

Controlling Access to Dictionary Objects 19-7

19.2 Creating Access Control Lists

When you define a dictionary object, DATATRIEVE automatically creates al
ACL for that object. The ACL initially contains only one entry, a UICIPPN
that is granted full access privileges to the dictionary object. The specific
UIC/PPN stored in the ACL is installation-dependent and is determined
when the DATATRIEVE software is installed. The entry can be in one of th
following format~:

[m,n]
Full access privileges are granted to any user with the same UICIPPN as
the creator of the dictionary definition. For example, if you log in under
[253,201] and create a procedure definition, then an entry for [253,201]
is stored in the access control list for the procedure. Only users with a
UICIPPN of [253,201] can access the procedure.

[m,*]
Full access privileges are granted to any user with the same group (or
project) code (m) as the creator of the definition. For example, if you log in
under [253,201] and create a procedure definition, then an entry for [253,*]
is stored in the access control list for the procedure. Any user with a group
(or project) code of 253 (such as [253,222]) also has full access privileges to
the procedure.

[*,*]
All DATATRIEVE users, regardless of their UICIPPN, are granted full
access to the dictionary object.

Regardless of the default UICIPPN stored in the ACL, the creator of the
definition always has full access privileges (RWEMC) to the dictionary objec
at the time he or she creates the definition.

If you have C access to a dictionary object, you can grant privileges to addi­
tional users or further restrict the use of the dictionary object by changing
its ACL. The commands you use to change the table are summarized later i:
this chapter and described fully in theDATATRIEVE-ll Reference Manual.

19-8 Controlling Access to Dictionary Objects

~~9.3 Processing Access Control Lists in DATATRIEVE

DATATRIEVE checks the appropriate access control list to verify that you
have access privilege whenever you use a table, invoke a procedure, or issue
one of the following commands:

• DEFINEP

• DELETE

• DELETEP

• EDIT

• EXTRACT

• READY

• REDEFINE

• SHOW

• SHOWP

To verify that you have the correct access privilege, DATATRIEVE searches
the ACL, checking each entry until it finds a match between the ACL key
and your UICIPPN or between the password you supply and one in the ACL.
DATATRIEVE searches the table in the following sequence:

1. DATATRIEVE stores your UICIPPN and determines if you are a
privileged user. A privileged user is one with a group (or project) code of
1 (that is, a UICIPPN in the form [1,n]). At a minimum, DATATRIEVE
grants a privileged user C (control) access. It may grant additional
privileges, depending on the results of the remaining steps.

2. DATATRIEVE checks the first entry in the access control list.

If the lock type is PW, DATATRIEVE checks to see if you specified a
password in the command. If you did and the password matches the
entry's key, DATATRIEVE stops searching the access control list and
grants you the privilege or privileges listed in the entry. If the password
does not match or you did not specify a password, DATATRIEVE
performs the next step.

If the lock type is UIC, DATATRIEVE checks to see if your UICIPPN
matches the key. If it does, DATATRIEVE stops searching the list and
grants you the privileges listed in the entry. If the UICs do not match,
DATATRIEVE performs the next step.

3. DATATRIEVE checks the next entry in the list, following the same
procedure as in the previous step.

Controlling Access to Dictionary Objects . 19-9

When there are no more entries, DATATRIEVE denies access to the
dictionary object and rejects your command or statement.

The following examples show how DATATRIEVE handles some user
requests. The examples use the following ACL for the domain YACHTS:

DTR>SHOWP YACHTS ~

DTR>

l,UIC, [253,201],
2,UIC, [214,217], "CW"
3,PW, "FISH-FRY", "M"
4,UIC, [*.*], "R"

A user with UICIPPN [253,201] enters a SHOW command to look at the
definition of the YACHTS domain. DATATRIEVE checks the user's UICIPPN
and finds it as the first entry. Because no access privilege is granted, access
to the domain is denied to the user:

DTR> SHOW YACHTS
Access denied to dictionary resource "YACHTS"
DTR>

A user with UICIPPN [214,217] readies YACHTS for write access. The first
match in the ACL (at entry 2) grants the user write (and control) privilege.
The READY command executes:

DTR> READY YACHTS WRITE ~
DTR>

A user with UICIPPN [253,201] tries to ready YACHTS for modify access
by including a password in the READY command. Because the entry in the
ACL that contains the password FISH-FRY appears after the entry denying
all privileges to the user, modify access to YACHTS is denied:

DTR> READY YACHTS MODIFY (FISH-FRY) ~
Access denied to dictionary resource "YACHTS"
DTR>

A user with UICIPPN [234,231] issues the same command as in the previous
example. Because the user does not have the UICIPPN that is denied all
access and has included the correct password key for modify access, the
READY command executes:

DTR> READY YACHTS MODIFY (FISH-FRY) ~
DTR>

19-10 Controlling Access to Dictionary Objects

I 19.4 Maintaining an Access Control List

To maintain an ACL that implements your security strategy, you must have
C (control) access to the dictionary object associated with the ACL. Control
access allows you to display an ACL and add or delete ACL entries.

19.4.1 Guidelines for Ordering Entries

When you add entries to an ACL, the order of entries in the ACL controls
the access to the dictionary object. Place the most restrictive entries first in
an ACL and the least restrictive entries last. The most restrictive entries
completely deny access to a specific UICIPPN, while the least restrictive
entries allow access by any UICIPPN.

The following rules apply when adding entries to the ACL:

• Place entries that deny all privileges first. Use a lock type mc (instead
of PW) for these entries.

• Place restrictive entries that limit access to a specific UICIPPN next.

• Place the less restrictive entries (such as those requiring a password)
next.

• If access is allowed for any UICIPPN (that is, if the key is [*,*]), place its
entry last in the list.

19.4.2 Assigning Privileges

If you know which commands or statements you want to permit a user to
issue, use Table 19-3 to find the privileges you must assign to that user.

Table 19-3: Privilege Requirements by Command/Statement

Command Statement

DEFINEP
DELETE
DELETEP
EDIT

Privilege Required

C privilege for the dictionary object

C privilege for the dictionary object

C privilege for the dictionary object

C privilege for the procedure or table

(continued on next page)

Controlling Access to Dictionary Objects 19-11

Table 19-3 (Cont.): Privilege Requirements by Command/Statement

Command Statement Privilege Required

EDIT ADVANCED

ERASE

EXTRACT
READY ... READ

... WRITE

... MODIFY

... EXTEND

SHOW domain-name
record-name
proc-name
table-name

SHOWP

C privilege for the domain or record

W privilege for the domain and E privilege for the associ­
ated record

R privilege for the dictionary object

R, W, or M privilege for the domain and E privilege for the
associated record

W privilege for the domain and E privilege for the associ­
ated record

M or W privilege for the domain and E privilege for the
associated record

E, W, or M privilege for the domain and E privilege for the
associated record

R privilege for the dictionary object

C privilege for the dictionary object associated with the
ACL

Use care when assigning the W privilege, particularly if a more restrictive
privilege (such as R or M) would suffice. The W privilege allows the user to
perform the same functions as the R, M, and E privileges but also allows the
user to issue the ERASE command to delete records.

19.4.3 Displaying an Access Control List

Use the SHOWP command to display an ACL:

. [(paSSWd)]
SHOWP Object-name (*)

19-12 Controlling Access to Dictionary Objects

19.4.4 Adding Entries to an Access Control List

Use the DEFINEP command to add an entry to an ACL:

. [(paSSWd)] { PW, new-passwd }
DEFINEP object-name (*) sequence-no, UIC, [m,n] ,priv

Before adding any entry to an ACL, display the ACL using SHOWP. The
following example illustrates adding one entry to an ACL:

DTR> SHOWP YACHTS (FISH-FRY) ~

1,PW, "FISH-FRY", "RWEMC"

DTR> DEFINEP YACHTS (FISH-FRY) 2, UIC, [201,213], R~

DTR> SHOWP YACHTS (FISH-FRY) ~

DTR>

1,PW, "FISH-FRY", "RWEMC"
2, UIC, [201,213], "R"

When you add an entry to an ACL, DATATRIEVE renumbers the entries
that follow it so that their numbers occur in proper sequence.

19.4.5 Deleting Entries from an Access Control List

The DELETEP command deletes one entry from an ACL:

. [(paSSWd)] DELETEP object-name (*) sequence-number

Use the SHOWP command before deleting an entry to verify that you are
deleting the correct entry. For example:

DTR> SHOWP YACHTS (FISH-FRY) ~

1,PW, "FISH-FRY", "RWEMC"
2, UIC, [201,213], "Rn

DTR> DELETEP YACHTS (FISH-FRY) 2~
DTR> SHOWP YACHTS (FISH-FRY) ~

1,PW, "FISH-FRY", "RWEMC"
DTR>

After you delete an entry, DATATRIEVE renumbers the entries so that they
are sequential, beginning with l.

An ACL must have at least one entry. DATATRIEVE does not allow you to
delete an entry when that entry is the only one in the ACL.

Controlling Access to Dictionary Objects 19-13

If you delete all entries that have C (control) privilege, there is only
one way to change the ACL. Log in using a privileged mCIPPN, invoke
DATATRIEVE, and use the DEFINEP command to create an entry that
gives one or more users C privilege.

19-14 Controlling Access to Dictionary Objects

Chapter 20

Maintaining Data Dictionaries

A data dictionary holds domain, record, procedure, and table definitions.
The items that you define in a data dictionary are called dictionary
objects. DATATRIEVE supplies you with a default dictionary called
QUERY.DIC. When you invoke DATATRIEVE, your current dictionary is
QUERY.DIC. You can keep all your data definitions in QUERY.DIC, but it
is orderly and efficient to store related definitions in separate dictionaries.
You can create other data dictionaries with the CREATE DICTIONARY
command.

You can change from one dictionary to another, and you can display general
and specific information about your current dictionary. You can also display
information about readied domains, established collections, tables currently
in memory, and selected records.

You can transfer definitions stored in one dictionary to another dictionary
by copying the definitions you want to a command file. You then set the
destination dictionary as the current dictionary and execute the command
file to store the definitions.

You can also edit dictionary definitions. If you need to make changes to
an existing procedure or table, use the EDIT command to invoke EDT, as
described in Chapter 16. If you need to make extensive modifications to a
procedure or table or want to edit a domain or record definition, you might
prefer to copy the definition to a command file, exit from DATATRIEVE, edit
the command file with the editor of your choice, and return to DATATRIEVE
to execute the command file and store the new definition.

The following sections discuss dictionary maintenance in detail.

Maintaining Data Dictionaries 20-1

20.1 Displaying Dictionary Objects

You can list the names of all domains, records, procedures, and tables
defined in the current data dictionary with the SHOW ALL command.
SHOW ALL also lists the names of any established collections and readied
domains:

DTR> SHOW ALL ~
Domains:

COMPANIES
OLD FAMILIES
YACHTS_SEQUENTIAL

Records:

DDMF TEST
OWNERS

FAMILIES
PROJECTS

FOOYAC
YACHTS

COMPANIES REC
Procedures:

FAMILY REC OWNER_RECORD PROJECTS REC

LOA REPORT PRICE PER POUND TMP VERIFY
Tables:
The current dictionary is SY: [2,1]QUERY.DIC
No established collections
No ready domains
DTR>

You can print the definition of any dictionary object to which you have read
access:

DTR> SHOW FAMILIES~
DOMAIN FAMILIES

USING FAMILY_REC ON FAMILY.DAT;
DTR>

The kind of access you have to a dictionary object depends on the access
control list (ACL) associated with that object. The ACL specifies whether
you have R (read), W (write), M (modify), E (execute), C (control) or no
privilege for a dictionary object. You can only display the ACL for a
dictionary object if you have C (control) privileges. The following example
prints the ACL for the domains FAMILIES and PROJECTS:

DTR> SHOWP FAMILIES ~
1, UIC, [*, *J, "RWMEC"

DTR> SHOWP PROJECTS ~
1, UIC, [23,45], "RWMEC"
2,PW, "SESAME", liRE"

DTR>

See Chapter 19 for further information on controlling access to dictionary
objects.

20-2 Maintaining Data Dictionaries

~ 20.2 Modifying Dictionary Objects
I

;

To modify the definition of a dictionary object, you must have M (modify)
access to the dictionary object. You can modify dictionary objects in the
following ways:

• You can use the EDIT command to modify any dictionary object, using
the EDT editing language.

• You can use the REDEFINE command to create a new definition.
DATATRIEVE deletes the previous version of the object and allows you
to define it a different way. The domain FAMILIES, for example, can be
redefined as follows:

DTR> SHOW FAMILIES~
DOMAIN FAMILIES

USING FAMILY REC ON FAMILY.DAT;
DTR> REDEFINE-FAMILIES USING~
DFN> NEW_FAMILY_REC ON NEW_FAMILY.DAT;~
DTR> SHOW FAMILIES~
DOMAIN FAMILIES

USING NEW_FAMILY_REC ON NEW_FAMILY.DAT;
DTR>

NOTE

The previous definition of an element will be permanently
lost after a REDEFINE command is entered. If you make a
mistake while entering the definition, you must enter it again
from the beginning.

• Another way to modify an object is to copy the definition to a command
file using the EXTRACT command:

DTR> EXTRACT ON TEI-1P. CMD PERSON _REC ~
DTR>

Exit DATATRIEVE and edit the command file using the text editor of
your choice. After making the needed changes, return to DATATRIEVE
and execute the command file.

The EXTRACT command adds both a DELETE command and a
DEFINE command to the beginning of the indirect command file. When
you execute the command file, the DELETE command removes the old
definition of the dictionary object from the current data dictionary, and
the DEFINE command stores the new definition in that dictionary.

Maintaining Data Dictionaries 20-3

NOTE

Use extreme caution when changing record definitions. If you
change the record definition so that the record it describes no
longer matches the record stored in your file, you can no longer
access your data. Chapter 15 explains the relationship between
your record definition and data access.

The REDEFINE and EXTRACT commands do not copy the ACL associated
with your record definition. When you redefine your record with the
command file, DATATRIEVE also defines a new ACL for the record. This
new ACL specifies the default privileges that have been set up for your
system. .

The QXTR utility, discussed later in this chapter, enables you to copy the
ACL associated with your record to a command file.

20.3 Deleting Dictionary Objects

To remove the definition of a dictionary object from the current data
dictionary, you must have C (control) access to the dictionary object. To
remove a dictionary definition, use the DELETE command:

DTR> SHOW DOMAINS ~
Domains:

DDMF TEST FAMILIES
OWNERS PROJECTS

DTR> DELETE FOOYACi ~
DTR> SHOW DOMAINS I@]
Domains:

DDMF TEST FAMILIES
PROJECTS YACHTS

DTR>

FOOYAC
YACHTS

OLD FAMILIES
YACHTS_SEQUENTIAL

OLD FAMILIES OWNERS
YACHTS_SEQUENTIAL

Remember to terminate the DELETE command with a semicolon.

DELETE removes from the dictionary both the definition of the dictionary
object and its associated ACL. This command does not delete the data file
associated with a domain. The data file still resides in the directory where it
was stored. Therefore, you can delete a domain definition and redefine it to
access the same data file.

20-4 Maintaining Data Dictionaries

20.4 Optimizing Disk Storage of Data Dictionaries with
QCPRS

The data dictionary is an indexed file stored on a disk. When you add
and delete definitions from a dictionary, that file accumulates unused
areas of disk space. To reclaim this wasted disk space, run the utility
program QCPRS. QCPRS compresses the contents of the dictionary,
eliminating unused disk space. Compressing your dictionary can also
improve DATATRIEVE performance.

To compress a data dictionary, you should first determine how many blocks
of storage your dictionary occupies. The following example determines the
size of the dictionary KELLER.DIC that resides in directory [100,120] on the
system disk. The example uses the DCL DIRECTORY command:

$ DIRECTORY/FULL SY: [lOO,120lKELLER.DIC~

The resulting display tells you the size (in blocks) of the dictionary. Later
on, QCPRS prompts you for the number of blocks it should allocate for the
compressed file. The number you supply should equal or exceed the number
of blocks the dictionary currently uses.

On a RSTSIE system, you should rename the dictionary before invoking the
QCPRS utility. The easiest way to do this is to change the file extension:

$ RENAME KELLER.DIC KELLER.BAK~
$

Then you invoke QCPRS in response to the operating system prompt. The
following example assumes that you are using DCL to invoke QCPRS, and
that the QCPRS utility is resident in your current default directory. When
invoked, QCPRS prints an identification message and displays a prompt, as
follows:

$ RUN $QCPRS
QUERY FILE COPY-COMPRESS UTILITY

CPR>

Use the following format to compress the dictionary:

new-file = old-file

New-file is the file specification for the compressed copy of the dictionary.
Old-file is the file specification of the dictionary to be compressed. If you
omit a field in either file specification, QCPRS uses the following defaults:

Maintaining Data Dictionaries 20-5

Field

dev:

UICIPPN

file-name

extension

Default

SY: (the system device)

Your default UICIPPN

QUERY

DIC

Under all operating systems but RSTSIE, the file specifications for new-file
and old-file can be the same. QCPRS merely creates a new copy of the file
using the next higher version number.

Under RSTSIE, the file specifications for new-file and old-file must be
different. Using the renamed dictionary from a previous example:

CPR> KELLER.DIC = KELLER.BAK~

After you have entered the file specifications, QCPRS asks you to specify a
number of disk blocks as an allocation for the new version of the dictionary:

ENTER ALLOCATION FOR AREA 0:

Enter the number of disk blocks you want to allocate for the compressed
dictionary. If the number is too low, QCPRS automatically extends the file
to hold the contents of the original file. If the number is too high, the extra
blocks remain in the file and give room for contiguous expansion of the
dictionary. An allocation greater than what the file currently needs can help
maintain DATATRIEVE performance for a longer period of time; however,
the higher number wastes disk space over the short run.

QCPRS then prompts again with CPR>, and you can compress another
dictionary file or terminate QCPRS with CTRLlZ.

Because QCPRS does not alter the contents of the original file, you can save
the file as a backup, or you can delete it.

You can use QCPRS to compress an indexed data file associated with a
DATATRIEVE domain as well as to compress a dictionary. If you have
added many records to the indexed data file since the time you created it,
compressing the file can help reduce DATATRIEVE response time to queries
that access the file. Simply follow the steps you use to compress a dictionary,
but specify the name and extension of the indexed file.

20-6 Maintaining Data Dictionaries

)

20.5 Extracting Dictionary Content with the QXTR Utility

You might want to transfer dictionary objects from one data dictionary to
another or transport your dictionary objects to VAX DATATRIEVE. You can
use the QXTR utility to create a command file containing all the definitions
extracted from a DATATRIEVE-ll data dictionary. Like QCPRS, QXTR
is a dictionary maintenance program supplied with the DATATRIEVE-ll
installation kit.

Running the QXTR program is equivalent to specifying all the objects in
your dictionary in an EXTRACT command. However, the QXTR program
also allows you to preserve the access control lists (ACLs) associated with
each dictionary object.

You must invoke QXTR from the system command level. The following
example uses the DCL RUN command:

$ RUN $QXTR~

Extract Utility for DTR Dictionaries V02.00

QXTR then prompts you for the following information:

• The file specification of the dictionary to be processed.

• Whether you want to extract the access control list for each dictionary
object.

• If you respond with Y to the question on access control lists, whether
you want those lists to use VAX DATATRIEVE syntax.

• The name of the output command file to contain the extracted defini­
tions. (The default is QXTR. CMD in your default directory.)

When QXTR finishes processing your dictionary, it returns you to system
command level. The file QXTR creates an RMS sequential file you can
invoke as an indirect command file for DATATRIEVE.

The following example processes the dictionary KELLER.DIC and copies the
dictionary object definitions to LESLIE.CMD. The ACLs are extracted along
with the objects. The ACLs remain in DATATRIEVE-ll syntax:

Dictionary Filespec to Extract from? KELLER. DIC ~

Should Protection Tables be Extracted (Y or N)? Y ~

Extract in VAX-ll DATATRIEVE Syntax? N ~

Filespec to Extract elements to? LESLIE. CMD ~

$

Maintaining Data Dictionaries 20-7

Like the EXTRACT command in DATATRIEVE, the QXTR utility precedes
each dictionary object definition with a DELETE command. It also adds an
ALLOCATION LEFT_RIGHT clause if no ALLOCATION clause is specified
for record definitions.

QXTR checks that you have R (read) privilege for the objects in the
dictionary before extracting them. If you do not, it prints a message that
the objects were not extracted, and the program continues. If you are
logged in under a privileged account (with a mCIPPN [l,x]), you can extract
everything regardless of the access control list. If the access· control list
allows only password access and not UICIPPN access, you must run QXTR
from a privileged account to extract the element. The program checks your
current mc against the access control list.

QXTR aborts if it encounters a corrupt dictionary object. In this case, the
command file contains definitions extracted before QXTR encountered the
corrupt object. It does not contain the definition of the corrupt object or
the definitions that would follow. DATATRIEVE extracts definitions in the
following order: domains, procedures, records, and tables. Definitions of
specific objects within these four types are extracted in alphabetical order
according to the name of the object. Examine the incomplete command file
to determine which dictionary object is corrupt. You must delete the corrupt
object from the dictionary before running QXTR again.

20-8 Maintaining Data Dictionaries

(

\

Appendix A

Name Recognition and Single Record Context

When you use a field name as a value expression and when you display,
modify, or erase one or more records, DATATRIEVE determines exactly
which record or records are the targets of the action you propose.

For each of these actions, DATATRIEVE must first determine the context
within which the action occurs. The context is the set of conditions that
govern the way DATATRIEVE recognizes field names and determines which
records are the targets of DATATRIEVE statements. Understanding the
way DATATRIEVE manages context is especially important when you begin
nesting DATATRIEVE statements.

A.1 Establishing the Context for Name Recognition

DATATRIEVE does not require that every field name be unique. You can
use the same name in several record definitions. You can even use the same
name several times in the same record definition, as long as the fields with
the identical name do not have the same level number in one group field.

Both the YACHTS and OWNERS domains, for example, have group fields
named TYPE, and both group fields contain elementary fields you can refer
to with the names BUILDER and MODEL. (In YACHTS, DATATRIEVE
recognizes the query name BUILDER as equivalent to MANUFACTURER.
Other query names for YACHTS are SPECS, LOA, and DISP.) Figure A-I
shows the fields in both record definitions and points out the duplicate
names.

When you work with several record streams from the same domain, the field
names in all record streams are identical. Whether you form collections or
record streams of records from the YACHTS domain, DATATRIEVE has a
mechanism for identifying which record to act on when you want to retrieve
or change data from only one field of one record.

Name Recognition and Single Record Context A-1

Figure A-1: Duplicate Field Names in YACHTS and OWNERS

+--------+ +--------+
I OWNERS I I YACHTS I
+--------+ +--------+

OWNER
NAME
BOAT NAME BOAT
TYPE -----> TYPE

BUILDER -----> MANUFACTURER (BUILDER)
MODEL -----> MODEL

SPECIFICATIONS (SPECS)
RIG
LENGTH_OVER_ALL (LOA)
DISPLACEMENT (DISP)
BEAM
PRICE

When you understand the way DATATRIEVE establishes the context for
recognizing names, you can use the names of domains, fields, collections,
and variables to form both simple and complex relationships among fields.
One of the keys to mastering the use of context is understanding the two
DATATRIEVE context stacks.

A.1.1 The Right Context Stack

When you issue a statement, DATATRIEVE builds a context stack, a
linked list that controls the DATATRIEVE search for names to match the
ones you use in statements. The context stack consists of context blocks,
or lists of names. These context blocks are linked together by pointers that
control the sequence of search by DATATRIEVE for values to associate with
the names you use in statements.

DATATRIEVE searches the right context stack for values to associate with
names you use in print lists, Boolean expressions, and the right side of
assignment statements such as x = y. The left context stack is discussed
later in this appendix.

A.1.1.1 The Content of a Context Block

When you use a record selection expression, DATATRIEVE creates a con­
text block to establish a context for name recognition. That context block
contains, among other things, a list of names.

A-2 Name Recognition and Single Record Context

~\

)

At the top of the list is a slot for the name of a context variable (see the
section on context variables later in this appendix). N ext is the name of
the domain referred to in the record selection expression. The rest of the
list contains the names of fields in the record associated with that domain.
Those field names are arranged according to the field tree associated with
the source.

The field tree contains the names of all the group fields, elementary fields,
COMPUTED BY fields, REDEFINES fields, and lists in the record and
preserves the hierarchical relationships among them.

When DATATRIEVE searches for a name in the context stack, it is looking
for a value to associate with that name. The search ends, and DATATRIEVE
takes the associated value when it finds the first name that matches the one
in your statement.

A DATATRIEVE name can consist of several names joined together. They
resemble dictionary path names in form and function. To be recognized,
these compound or qualified names must represent a valid path through the
hierarchy of a context block and the field tree it contains.

When DATATRIEVE encounters a name, it begins its search in the context
block on top of the stack. DATATRIEVE first looks at the slot in the context
block reserved for the name of a context variable. For unnamed CURRENT
collections, this slot contains the name CURRENT. For named CURRENT
collections, the name CURRENT and the collection name are equivalent.
Named collections that are not the CURRENT collection have the collection
name in this slot.

If the top block on the context stack refers to a record stream, this slot is
empty unless you use a context variable in the RSE that forms the record
stream. The context variable gives a record stream a temporary name;
this name fills the first slot in the context block for these "named" record
streams.

If DATATRIEVE finds that the first segment of a qualified name matches
the name in the collection name/context variable slot, it continues its search
in that block for a match for the rest of the name. If the name in your
statement does not match the name in the collection name/context variable
slot, or if that slot is empty, DATATRIEVE continues to look through the
first context block to find a match.

Next in the context block is the name of the source of the records referred
to by that block. For collections and record streams, that source can be the
name of a domain, collection, or list for hierarchical records. The source can
also be the name of a collection if you use the collection as the basis for a .
record stream in a FOR statement and you use a context variable.

Name Recognition and Single Record Context A-3

If the source name does not match the name in your statement, DATATRIEVE
next looks for the name in the slot reserved for names.

Next DATATRIEVE looks at the name of the top-level (the 01 level) field
name. If no match occurs, DATATRIEVE looks at each succeeding field
name in the order they are displayed when you enter a SHOW FIELDS
command. That order can take you through the entire hierarchy of the field
tree, traversing first the left branch then the right, wherever there is a
branching point in the hierarchy.

If DATATRIEVE finds no match in the first block on the context stack, it
goes to the next context block on the stack and begins its search there.

DATATRIEVE stops its search as soon as it finds an exact match for the
name in your statement. Then it associates the value assigned to the name
on the context stack with the name of the field in your statement.

If DATATRIEVE finds no match for the name in any of the context blocks, it
displays a message on your terminal that the field name is either undefined
or used out of context. The only remedies are to change the context so that
the name in your statement resolves properly or to remove any ambiguity by
qualifying the name further with group field names or context variables.

For the sake of clarity, the following description of the various types of
context blocks starts with the bottom of the context stack, that is, with the
context block that DATATRIEVE checks last.

A.1.1.2 Global Variables

The bottom context block contains the names of any global variables you
have established and have not released. This block is different from the
others on the stack because its content is not determined by a record
selection expression. Nevertheless, DATATRIEVE treats the name of a
global variable as though it were the name of a field in a simple record.
Just as DATATRIEVE associates the value of a field with the field name,
DATATRIEVE associates the value of a global variable with its name.

DATATRIEVE looks at the global variables last when trying to find a name
to match one in your statement. No two global variables can have the
same name. When you issue a DECLARE statement at command level
(indicated by the DTR> prompt), DATATRIEVE checks the names of the
global variables you have declared. If it finds one with the same name, it
releases the old variable and its value and replaces it with the new one.
DATATRIEVE initializes the new variable with a default value, a zero, or a
space depending on the clauses you include in the DECLARE statement.

A-4 Name Recognition and Single Record Context

A.1.1.3 Collections

The next higher set of blocks in the context stack refers to existing collec­
tions. Each collection with a block on the context stack must have one record
singled out as a selected record. Although a collection can have a number
of records in it, only one of those records can be used in the search for the
context of a name. DATATRIEVE can assign only one value to the name.
Consequently, that one value can come from only one of the records in the
collection.

Remember, the reason for resolving the context of a name you use in a state­
ment is to assign a value to the name that can be used in the statement.

For an existing collection, you can designate one record at a time as the
selected record for that collection. The SELECT statement lets you desig­
nate the selected record in a collection by relative reference (FIRST, NEXT,
and LAST) or by absolute reference to the position number of the record in
the collection. A collection has a block on the context stack only if it has a
selected record.

If you have more than one existing collection with a selected record, the
block immediately above the one for global variables refers to a named
collection with a selected record. That collection is the one you formed with
a FIND statement before you formed any of the other collections that have
selected records.

The rest of the context blocks for the collections with selected records are
ordered according to the sequence in which you formed them, not the order
in which you entered the SELECT statement to establish the selected
records.

If the CURRENT collection has a selected record, the context stack contains
a block referring to the CURRENT collection. That block is above the blocks
of all other collections. DATATRIEVE searches for names in the context
block of the CURRENT collection before it searches the context block of any
other collection.

The key to understanding the way DATATRIEVE recognizes names is that
except for the global variables, the context stack is ordered on a last-in, first­
out basis. The most recently formed context block is the one DATATRIEVE
searches first.

You do not have to rely on your memory to recall the order in which
you formed your existing collections. You need only issue a SHOW
COLLECTIONS command. DATATRIEVE displays the most recently formed
collection (always the CURRENT collection, whether it has a name or not)
at the top of the list and the "oldest" one at the bottom.

Name Recognition and Single Record Context A-5

The SHOW COLLECTIONS command, however, lists all the existing col­
lections whether or not they contain selected records. Remember, only the
collections with selected records are represented on the context stack.

With the SHOW collection-name command, you can inspect each existing
collection to see how many records are in the collection, whether it has a
selected record, and, if it does, what the position number of the selected
record is in the collection.

If DATATRIEVE searches the context stack and does not find a match for
the name in your statement, it displays an error message that may seem
puzzling unless you understand the way DATATRIEVE forms the context
stack:

Field "name" is undefined or used out of context

You may know that the name has been defined, and that it is the name
of a field in a record associated with one or more existing collections. If,
however, none of the collections containing that field has selected records,
DATATRIEVE cannot tell if the field is defined or not.

If a collection containing the named field has no selected record, that col­
lection has no block on the context stack. Consequently, DATATRIEVE
neither finds a match for the field name nor has a way of discovering from
the search of the context stack if the field name is defined at all.

The order of context blocks at the higher levels of the context stack depends
on the order in which DATATRIEVE encounters the elements containing
names associated with values. The order of the following sections does not
imply any relative position on the stack. Only the order DATATRIEVE
encounters those elements determines their order on the stack.

A.1.1.4 Record Streams

Before DATATRIEVE looks at the context block of the most recently formed
collection with a selected record, it first looks at the context blocks created
explicitly in the statement. One type of context block created by a statement
refers to the field names of a record stream formed by a statement.

Context blocks of record streams act differently from those of collections.
The context block for a collection stays on the stack as long as the collection
has a selected record. The context block of a collection is removed from the
stack only if you release the collection or remove its selected record with a
DROP statement.

A-6 Name Recognition and Single Record Context

)

The context block for a record stream, however, stays on the stack only as
long as the statement containing it is being executed. When DATATRIEVE
finishes processing the statement, the block is removed from the context
stack and is not available when DATATRIEVE rebuilds the stack after it
encounters the next statement.

Only three statements and one command make lasting changes to the
context stack:

• FIND
The FIND statement can remove the CURRENT collection from the con­
text stack by forming a new CURRENT collection. The new CURRENT
collection releases the old collection but does not put a block on the
context stack because a newly formed collection has no selected record.

• SELECT
The SELECT statement puts a collection on the context stack by estab­
lishing a selected record. SELECT cannot change the relative order of
collections on the stack. That order is determined by the relative order
in which you formed the collections with the FIND statement.

• DROP
The DROP statement removes a collection from the context stack by
dropping the selected record from the collection. The SHOW collection­
name command still notes the position number of the previously selected
record, but the record has been removed from the collection and you
cannot retrieve it unless you form a new collection that contains it.

• RELEASE
The RELEASE command also removes a collection from the context
stack. The released collection no longer exists, thus freeing the space it
occupied. Records and domains associated with a collection named in
the RELEASE command are not affected.

These three statements, however, share a restriction that separates them
from all other statements: you cannot use FIND, SELECT, or DROP state­
ments in compound statements. They must be entered at command level by
themselves. Furthermore, these statements do not form temporary record
streams; they affect only collections.

You can, however, have several context blocks for record streams on the
context stack at one time. The block for a record stream stays on the context
stack until DATATRIEVE finishes the statement. Because you can nest
statements in FOR loops, BEGIN-END blocks, IF-THEN-ELSE statements,
THEN, and WHILE statements, the inner statements can form record
streams before DATATRIEVE finishes the outermost statement.

Name Recognition and Single Record Context A-7

DATATRIEVE has to keep the context of outer statements separate from
that of inner ones. It keeps them separate by putting a block on the context
stack when it encounters an element that requires one. DATATRIEVE
begins processing compound statements with the outermost statement and
works progressively toward the innermost one. The context blocks it forms
for elements in the innermost statement are at the top of the stack when the
innermost statement is being processed.

When DATATRIEVE finishes processing the innermost statement, it removeE
the blocks created by that statement. DATATRIEVE works its way back out
toward the outermost statement, removing blocks created by statements as
soon as it finishes processing the statement. For example, in the case of
nested FOR loops, the context block for the innermost FOR loop is higher in
the stack than the blocks for the outer loops.

When DATATRIEVE completes the execution of the innermost loop, it
removes the context block of that FOR statement, leaving the blocks of the
outer FOR statement on the stack. As DATATRIEVE completes each loop,
the context block for that loop is removed from the stack. This same pattern
applies to statements in BEGIN-END blocks.

When a statement that forms a record stream is followed by a second
statement that is not contained in the first, DATATRIEVE removes the
context block created for the first statement from the stack and puts a
context block for the second statement in its place. For example, in a
BEGIN-END block, one PRINT statement containing an OF rse clause
follows another. The context block of the first statement is in effect only
during the execution of that first statement. That block is replaced by the
one for the second PRINT statement when DATATRIEVE begins processing
the second statement.

DATATRIEVE handles the context block of a FOR loop the same as it
handles statements containing an OF rse clause.

DATATRIEVE creates four other types of context blocks that affect the order
of the context stack: those for local variables, VERIFY clauses, VALID IF
clauses, and context variables.

A.1.1.5 Local Variables

Local variables are variables defined in com pound statements. A local
variable and its effect on the context stack last only from the DECLARE
statement that defines it until DATATRIEVE completes the execution of the
statement containing the DECLARE statement.

A-8 Name Recognition and Single Record Context

A.1.1.6 VERIFY Clause in the STORE Statement

Like the context for local variables, the context for resolving field names
in a VERIFY clause of the STORE statement is short-lived. The STORE
statement does not access or change any existing record. Consequently, for
each STORE statement, DATATRIEVE creates a context block to associate
the field names with the values in the new record. DATATRIEVE executes
the VERIFY clause after you have assigned values to all the fields prescribed
by the syntax of the statement but before DATATRIEVE stores the record in
the data file.

A.1.1.7 VALID IF Clause in a Record Definition

When you assign a value to a field name in either a STORE or MODIFY
statement, DATATRIEVE looks in the appropriate record definition for a
VALID IF clause. If the value is unacceptable according to the conditions
specified in the VALID IF clause, DATATRIEVE displays a message on
your terminal and reprompts you for an acceptable value. It uses the same
context to associate the field name with your response to the reprompt.

The context for resolving field names in the VALID IF clause is established
by the context block set up for either:

• The STORE statement

• The MODIFY statement

In either case, the value associated with the field name is the one just
assigned to it by your response to a prompt or by an assignment statement
in the USING clause of the STORE or MODIFY statement.

DATATRIEVE executes the VERIFY clause only after the values you assign
meet the conditions of VALID IF clauses in the record definition. As a
result, there can be no conflict between the context established for these
two clauses. The context for the VALID IF clause no longer exists when
DATATRIEVE executes the VERIFY clause.

A.1.2 Using Context Variables and Qualified Field Names

The ways of establishing context discussed to this point deal with resolving
the connections between names and values by finding the first instance of
a valid field name or variable name. When several context blocks on the
stack contain fields with the same names, you need a way to skip over some
instances of the name to get to the field that contains the value you want to
retrieve.

Name Recognition and Single Record Context A-9

DATATRIEVE gives you two methods of forcing name recognition: context
variables and qualified field names. Although they require different actions
from you, these two methods have an underlying similarity.

A.1.2.1 Context Variables as Field Name Qualifiers

A context variable is a dummy variable specified in a record selection
expression for the purpose of name recognition. When DATATRIEVE en­
counters a context variable, it puts a new block on the context stack. That
new block connects the name of the context variable with the field names
and values of the records identified by the record selection expression.

The context established by the context variable lasts until DATATRIEVE
completes the execution of the statement containing the record selection
expression in which the context variable occurs. However, that context does
not affect any outer loops or nesting statements that contain the statement
in which you use the contextvaria5Ie--. -------- ---~

A context variable, however, does affect all inner statements nested in the
statement that contains the record selection expression in which the context
variable occurs.

You can use the context variable as a prefix for each field name of the
records identified by the record selection expression. Citing a field name
with a context variable prefix can make a field name unique, even when the
domains and field trees of a record in a record stream are identical.

Putting a prefix on a field name produces a qualified field name. The context
variable must be the first prefix added to a field name.

A.1.2.2 Other Field Name Qualifiers

Using other qualifiers as prefixes to field names is the second method of
overriding the DATATRIEVE default mechanism of name recognition.

Each fully qualified field name must be unique. The fully qualified field
name consists of the record name, the top-level group field name, the names
of any group field to which the elementary field belongs, and the elementary
field name. You must separate each element of the fully qualified name
from the next with a period. For example, in the domain YACHTS, the fully
qualified field name of MODEL is the following:

YACHT.BOAT.TYPE.MODEL

You can use these elements in any combination that preserves their hierar­
chical order to distinguish the MODEL field in YACHTS from the MODEL
field in another domain, such as OWNERS.

A-10 Name Recognition and Single Record Context

When DATATRIEVE encounters a qualified field name, it searches the
context stack for the first match of the name you specify. For example,
if you use BOAT.MODEL in a record selection expression, DATATRIEVE
searches the context stack for the first valid occurrence of the name BOAT
and searches the branches of the hierarchy under BOAT for the first valid
occurrence of the name MODEL.

The success of the search is not jeopardized because you omit the group
field name TYPE from the qualified name MODEL. DATATRIEVE searches
the entire hierarchy under BOAT until it finds the first valid occurrence of
TYPE. When an intermediary group field name is omitted, DATATRIEVE
searches the hierarchy according to the order in which the fields of the
record were defined.

Fully qualified field names are adequate when working with two or more
domains that share elementary or group field names, or both. However,
when you are working with two record streams from the same domain, you
must further qualify the field name with a context variable. This extra
qualification is especially necessary when dealing with lists in hierarchical
records.

Suppose you want to display information about all builders who build boats
with more than one type of rig. YACHT is the given name of the record
associated with the domain YACHTS. The field tree of YACHT has the
following structure:

YACHTS
01 BOAT

03 TYPE
06 MANUFACTURER
06 MODEL

03 SPECIFICATIONS
06 RIG
06 LENGTH OVER ALL
06 DISPLACEMENT
06 BEAM
06 PRICE

You can print the desired information with nested FOR loops. For each boat
from the outer FOR statement, you want DATATRIEVE to loop through all
the boats and find all the ones with the same builder. For each one it finds,
you want to compare its rig with the rig of the boat from the outer loop.
Then you want to separate out the ones for which the rigs are not the same.
At first, you might be tempted to use the following statement to produce the
desired list:

Name Recognition and Single Record Context A-11

DTR> SET NO PROMPT ~
DTR> FOR YACHTS~
CON> FOR YACHTS WITH BUILDER = BUILDER AND~
CON> RIG NE RIG ~
CON> PRINT BUILDER, RIG, RIG~
DTR>

After a long search for records, DATATRIEVE displays no records. The
problem is that the preceding syntax asks DATATRIEVE to look for a boat
with a rig that is not equal to itself-an obvious contradiction. Both of the
fields named RIG resolve to the record stream formed by the second FOR
statement. The name BUILDER also resolves to the same record stream.

When you enter this statement, DATATRIEVE takes the first record from
YACHTS but does not look at any of the values in its fields. Then it looks at
every record in YACHTS and discovers that for every one of them, the name
of the builder equals itself, but that no rig is not equal to itself. Thus every
record in YACHTS fails to meet the condition set by the statement.

DATATRIEVE then takes the second record in YACHTS and once again
goes through all the boats, finding that the two values are always equal to
themselves and thus fail to meet the impossible demands of the statement.
And so it goes for each record: two comparisons for 113 times 113 records,
and no records meet the self-contradictory conditions.

The problem is how to get DATATRIEVE to look at the builder and rig of the I

outer FOR statement when making the comparison. The context variable .
provides one solution:

DTR> FOR A IN YACHTS~
CON> FOR YACHTS WITH BUILDER = A.BUILDER AND RIG NE A.RIG~
CON> PRINT BUILDER, A.RIG, RIG~

MANUFACTURER RIG RIG

AMERICAN SLOOP MS
AMERICAN MS SLOOP
CHALLENGER SLOOP KETCH

PEARSON KETCH SLOOP
PEARSON KETCH SLOOP

DTR>

In this case, the use of the context variable A forces DATATRIEVE to look
to the record stream formed by the outer FOR statement. At the same
time, DATATRIEVE recognizes the unqualified names, RIG and BmLDER,
in the context established by the most recent RSE: the one in the second
FOR statement. The conditions in the second FOR statement are no longer
impossible, and information from 62 records is displayed.

A-12 Name Recognition and Single Record Context

The way DATATRIEVE treats the unqualified names in this example illus­
trates another rule for context resolution: the left-hand member of a Boolean
expression must resolve to the record selection expression of which it is a
part. If you start the Boolean expression in the second FOR statement with
A.BUILDER, DATATRIEVE tells you that A.BUILDER is undefined or used
out of context.

You can add a second context variable in the previous example to make sure
the resolution of the names is explicitly stated:

DTR> FOR A IN YACHTS ~
CON> FOR B IN YACHTS WITH B.BUILDER = A.BUILDER AND B.RIG NE A.RIG~
CON> PRINT B.BUILDER, A.RIG, B.RIG~

You gain two advantages by specifying the second context variable: clarity
of representation and certainty that DATATRIEVE will display an error
message if you make a syntax error. U sing the second context variable,
however, does not allow you to violate the rule for resolving field names on
the left side of Boolean expressions.

A.1.3 The Left Context Stack for Assignment Statements

When you make assignment statements at DATATRIEVE command level
or as part of STORE or MODIFY statements, DATATRIEVE must assign
values to the field or variable you intend. It uses the left context stack
to associate the values you supply with the fields and variables you want
the values assigned to. Blocks on the left context stack are for records and
variables that you can update.

Whenever DATATRIEVE begins to process a statement, the left context
stack contains the global variables you have declared and not released.
Any local variables you declare in compound statements are also on the left
context stack. The local variables are removed when the statement in which
you declared them ends.

Local and global variables are on both stacks. Each type of variable has a
value that can be assigned to a field or another variable; hence, they are on
the right context stack. Both can be updated with new values you assign
them; hence, they are on the left context stack.

Context blocks for a record you want to modify is also on both context stacks.
The record has a value you can use in Boolean expressions and assignment
statements. You can update that value in a MODIFY statement. Because a
field is on both stacks at the same time, you can use the old value of the field
to calculate the new value. You can use the following form of assignment
statement:

Name Recognition and Single Record Context A-13

DTR> MODIFY USING PRICE = PRICE * l.l~
DTR>

DATATRIEVE retrieves the old value of PRICE associated with the name on
the right context stack and multiplies the old PRICE by a constant. It then
associates that value with the name PRICE on the left context stack and
updates the value of the PRICE field.

When you enter a STORE statement, the only context block for the new
record is on the left context stack. No record exists yet, and, of course, no
values are associated with fields of a record. The fields can only receive
values.

However, as soon as DATATRIEVE associates a value with a field, you can
move that value to the right context stack and use it on the right side of
assignment statements. You can make this shift before you finish assigning
values to all the fields of the new record. In fact, you can use the values of
new fields to calculate the values DATATRIEVE stores in other new fields in
the same record.

To shift newly stored values to the right context stack, include a context
variable with the domain name when you enter the STORE statement:

DTR> STORE A IN YACHTS USING . . .

Then in the USING clause, you use the context variable to qualify the names
of any field whose value you want to use on the right side of an assignment
statement:

DTR> STORE A IN YACHTS USING~
CON> BEGIN~
CON> Fl = value-expression~
CON> F2 = value-expression~
CON> F3 = A.Fl + A.F2 ~
CON> END~
DTR>

The context variable allows you to associate a field name on the right
context stack with its new value as soon as you assign the value to the field.
You cannot, however, use a field name on the right side of an assignment
statement until you have assigned a value to the field.

A.1.4 Examples of Context Variables in STORE and MODIFY Statements

You can combine STORE and MODIFY statements to keep an audit trail of
modifications made to records in a domain and to change statistical records
when you store new records.

A-14 Name Recognition and Single Record Context

to,.

I

.
"

To form an audit trail you need a domain for the audit records. This domain
can use the same record definition as the original domain, but it must have
its own domain definition and its own data file. The following is a simple
example:

DTR> SHOW AUDIT_YACHTS~
DOMAIN AUDIT_YACHTS USING

YACHT ON AUD_YACHT;
DTR> FOR A IN YACHTS MODIFY USING~
CON> BEGIN~
CON> BUILDER = *.BUILDER~
CON> MODEL = * . MODEL ~
CON> RIG = * .RIG ~
CON> LOA = *.LOA~
CON> DISP = *. WEIGHT ~
CON> BEAM = * . BEAM ~
CON> PRICE = * . PRICE ~
CON> STORE B IN AUDIT YACHTS USING~
CON> B.BOAT = A.BOAT~
CON> END~
Enter BUILDER:

If you have a VERIFY USING clause in the MODIFY statement, put the
STORE statement as the last statement in the VERIFY clause. If you put
the VERIFY clause after the STORE statement and the VERIFY clause
aborts the change, you have a record of the change, but you have not
changed the record.

You can also embed a MODIFY statement in a STORE statement. In this
example, the embedded MODIFY statement updates a record of the last date
that a new record was added to the data file, and records the TYPE field of
the record stored. The file LAST.DAT is a sequential file with one record in
it .

Name Recognition and Single Record Context A-15

DTR> SHOW LAST_ENTRY ~
DOMAIN LAST ENTRY USING LAST REC ON LAST.DATi
DTR> SHOW LAST_REC~ -

RECORD LAST_REC USING
01 TOP.
03 LAST DATE USAGE DATE.
03 TYPE-PIC X(20) •

DTR> STORE YACHTS USING~
CON> BEGIN~
CON> BUILDER = *. BUILDER ~
CON> MODEL * . MODEL ~
CON> RIG = * .RIG~
CON> LOA = * . LOA ~
CON> DISP' = *. WEIGHT ~
CON> BEAM = * . BEAM ~
CON> PRICE = * . PRICE ~
CON> MODIFY LAST_ENTRY USING~
CON> BEGIN
CON> LAST_DATE = "TODAY" ~
CON> B. TYPE = A. TYPE~
CON> END
CON> END~
Enter BUILDER:

With the proper use of context variables, you can also store or change data
in fields shared by two or more domains.

A.2 Single Record C~ntext

The DATATRIEVE statements PRINT, MODIFY, and ERASE can act on one
record at a time or on an entire record stream or collection. The records on
which they act are called target records. You can identify target records
for these statements in four ways:

• A SELECT statement identifies one target recotd in a collection.

• The keyword ALL in the statement without an OF rse clause makes all
records in a collection the targets of the statement.

• An OF rse clause in the statement forms a target record stream.

• The RSE clause in a FOR statement forms a stream of target records for
the statement contained in the FOR loop.

A-16 Name Recognition and Single Record Context

A.2.1 The SELECT Statement and the Single Record Context

Before discussing the SELECT statement and context, a short review of
facts about collections is in order.

DATATRIEVE keeps a list of the collections you form with the FIND
statement. The most recent one formed is always at the top of the list
and is called the CURRENT collection. The only other collections on the
list are the ones to which you assigned a name when you formed them.
The next collection you form then becomes the new CURRENT collection.
DATATRIEVE discards the old CURRENT collection unless you give it a
name when you form it.

With the RELEASE command, you can remove a collection from that list. If
you release the CURRENT collection, the next one on the list becomes the
CURRENT collection.

No collection on this list, however, is represented by a block on the context
stack unless you use the SELECT statement to single out one record in the
collection. When you select a record in a collection, DATATRIEVE puts a
block for that collection on the context stack. If every existing collection has
a selected record, then DATATRIEVE keeps a block on the context stack for
each of those collections.

The relative ages of the collections with selected records determine the order
of context blocks for collections. The "oldest" collection with a selected record
is nearest the bottom of the context stack. Because the CURRENT collection
is always the "youngest," its context block, if it has one, is nearest the top.

This order of context blocks for collections establishes the order
DATATRIEVE uses not only for recognizing field names as described
previously, but also for identifying single target records. When you enter the
most abbreviated forms of the PRINT, MODIFY, and ERASE statements,
DATATRIEVE looks on the context stack for the first valid single record
context to carry out the specified action. It looks for the youngest collection
with a selected record and either prints the record, erases it, or changes it.

The following sequence of examples illustrates the effect of the SELECT and
DROP statements on single record context and the subsequent actions of the
PRINT, MODIFY, and ERASE statements.

Form a collection of records from the YACHTS domain, call it BIGGIES,
select the third record as the target record and display it:

Name Recognition and Single Record Context A-17

DTR> READY YACHTS WRITE ~
DTR> FIND BIGGIES IN YACHTS WITH LOA > 40~
[8 records found]
DTR> SELECT 3 ~
DTR> PRINT~

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

GULFSTAR 41 KETCH 41 22,000 12 $41,350

DTR>

Store a new record in the YACHTS domain and form a collection that
consists of that one record. Later you can modify and erase this record:

DTR> STORE YACHTS ~
Enter MANUFACTURER: HINKLEY~
Enter MODEL: BERMUDA 40~
Enter RIG: YAWL~
Enter LENGTH OVER ALL: 40~
Enter DISPLACEMENT: 20000~
Enter BEAM: 12 ~
Enter PRICE: 82, 000 ~
DTR> FIND YACHTS WITH BUILDER = "HINKLEY" ~
[1 record found]
DTR>

You now have two collections, CURRENT (the younger) and BIGGIES (the
older):

DTR> SHOW COLLECTIONS~
Collections:

CURRENT
BIGGIES

DTR> SHOW CURRENT ~
Collection CURRENT

Domain: YACHTS
Number of Records: 1
No Selected Record

DTR> SHOW BIGGIES ~
Collection BIGGIES

DTR>

Domain: YACHTS
Number of Records: 8
Selected Record: 3

The CURRENT collection has no selected record, but BIGGIES still does.
Consequently, when you type PRINT and press the RETURN key again,
DATATRIEVE prints the record in the first valid single record context, that
is, the selected record in BIGGIES:

A-18 Name Recognition and Single Record Context

)

DTR> PRINT~

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

GULFSTAR 41 KETCH 41 22,000 12 $41,350

DTR>

When you type SELECT and press the RETURN key, DATATRIEVE selects
the first and only record in the CURRENT collection. Now when you type
PRINT and press the RETURN key, the single record context has changed.
The selected record in the CURRENT collection is the target record of the
PRINT statement:

DTR> SELECT ~
DTR> PRINT mTII

MANUFACTURER MODEL RIG

HINKLEY BERMUDA 40 YAWL

DTR> SHOW CURRENT ~
Collection CURRENT

DTR>

Domain: YACHTS
Number of Records: 1
Selected Record: 1

LENGTH
OVER
ALL WEIGHT BEAM PRICE

40 20,000 12 $82,000

Modify the PRICE of the target record and display the result. The MODIFY
and PRINT statements both act on the record in the first valid single record
context, that is, the selected record in the CURRENT collection:

DTR> MODIFY PRICE ~
Enter PRICE: 75, 000 ~
DTR> PRINT mTII

MANUFACTURER MODEL RIG

HINKLEY BERMUDA 40 YAWL

DTR>

LENGTH
OVER
ALL WEIGHT BEAM PRICE

40 20,000 12 $75,000

Type ERASE and press the RETURN key. The ERASE statement also acts
on the record in the first valid single record context, and the record for the
HINKLEY boat is removed from the data file YACHT.DAT. Even though .
you erase the only record in the collection, DATATRIEVE does not discard
the collection. It takes note that you have erased the selected record and
removes the context block for the CURRENT collection from the context
stack. You can verify the change in single record context by typing PRINT
and pressing RETURN. The selected record from BIGGIES is again in the
first valid single record context:

Name Recognition and Single Record Context A-19

DTR> ERASE~
DTR> SHOW CURRENT~
Collection CURRENT

Domain: YACHTS
Number of Records: 1
Selected Record: 1

DTR> PRINT~

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

GULFSTAR 41 KETCH 41 22,000 12 $41,350

DTR>

If you type MODIFY or ERASE and press the RETURN key, and no existing
collection has a selected record, DATATRIEVE displays a message that there
is no target record for the action you propose:

DTR> ERASE~
No target record for ERASE.
DTR> MODIFY ~
No selected record for modify
DTR>

However, if you type PRINT and press the RETURN key, and no existing
collection has a selected record, DATATRIEVE displays a message that there
is no selected record and then prints out the whole collection:

DTR> FIND YACHTS WITH BUILDER = "ALBIN" ~
[3 records found]
DTR> PRINT~
No record selected, printing whole collection

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM

ALBIN 79 SLOOP 26 4,200 10
ALBIN BALLAD SLOOP 30 7,276 10
ALBIN VEGA SLOOP 27 5,070 08

DTR>

PRICE

$17,900
$27,500
$18,600

You can change the single record context with the DROP statement. The
DROP statement removes the selected record from a collection but does
not erase the record from the data file. When you type DROP and press
the RETURN key, and the CURRENT collection has no selected record,
DATATRIEVE displays a message on your terminal:

DTR> FIND BIGGIES IN YACHTS WITH LOA > 40~
[8 records found]
DTR> DROP~
No collection with selected record for DROP
DTR>

A-20 Name Recognition and Single Record Context

\
I

V

If the CURRENT collection has a selected record, the DROP statement
removes that record from the collection when you type DROP and press the
RETURN key. If other collections have selected records, you must specify
the collection name in the DROP statement.

The CURRENT collection is BIGGIES. Select and display the first record in
BIGGIES and form a new CURRENT collection of boats built by ALBIN:

DTR> SELECT; PRINT ~

MANUFACTURER MODEL RIG

LENGTH
OVER
ALL WEIGHT BEAM PRICE

CHALLENGER 41 KETCH 41 26,700 13 $51,228

DTR> FIND YACHTS WITH BUILDER = "ALBIN"~
[3 records found]
DTR>

Now select, display, and drop the first record of the CURRENT collection.
Then enter a SHOW CURRENT command to see how DATATRIEVE
records the results of your actions. The SELECT statement creates a
single record context for the current collection, thus the target record of the
PRINT statement is the selected record in the CURRENT collection, not in
BIGGIES:

DTR> SELECT ~
DTR> PRINT~

MANUFACTURER MODEL RIG

LENGTH
OVER
ALL WEIGHT BEAM PRICE

ALBIN 79 SLOOP 26 4,200 10 $17,900

DTR> DROP~
DTR> SHOW CURRENT~
Collection CURRENT

DTR>

Domain: YACHTS
Number of Records: 3
Selected Record: 1

When you drop a selected record from a collection, you change the single
record context. The context block for that collection is removed from the
context stack.

Consequently, when you type PRINT and press the RETURN key again,
DATATRIEVE displays the selected record in BIGGIES, the record in the
first valid single record context:

Name Recognition and Sir:gle Record Context A-21

DTR> PRINT~

MANUFACTURER MODEL

CHALLENGER 41

DTR>

LENGTH
OVER

RIG ALL WEIGHT BEAM PRICE

KETCH 41 26,700 13 $51,228

Like PRINT, MODIFY, and ERASE, the DROP statement acts on the record
in the first valid single record context.

If you type PRINT and press RETURN when you have no valid single record
context, DATATRIEVE displays the whole CURRENT collection because
there is no selected record in either of the two existing collections. Because
you dropped one record from the CURRENT collection, it contains only two
records now:

DTR> PRINT~
No record selected, printing whole collection

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

ALBIN BALLAD SLOOP 30 7,276 10 $27,500
ALBIN VEGA SLOOP 27 5,070 08 $18,600

DTR>

To show that you have not erased the record dropped from the CURRENT
collection, form and display a new CURRENT collection of boats by ALBIN:

DTR> FIND YACHTS WITH BUILDER = "ALBIN" ~
[3 records found]
DTR> PRINT ALL ~

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM

ALBIN 79 SLOOP 26 4,200 10
ALBIN BALLAD SLOOP 30 7,276 10
ALBIN VEGA SLOOP 27 5,070 08

DTR>

PRICE

$17,900
$27,500
$18,600

A.2.2 The CURRENT Collection as Target Record Stream

The preceding example shows the effect of the keyword ALL on a PRINT
statement that does not contain an OF rse clause.

A-22 Name Recognition and Single Record Context

\
;:/

Although DATATRIEVE acts on only one record at a time, you can identify
more than one record for a single DATATRIEVE statement to act on. With
the keyword ALL, you can make every record in the CURRENT collection
the target of a single PRINT, MODIFY, or ERASE statement. Such a
statement, however, cannot also contain an OF rse clause.

If you have a CURRENT collection and type PRINT ALL and press the
RETURN key, DATATRIEVE displays the whole CURRENT collection. If
you have no CURRENT collection, DATATRIEVE displays a message on
your terminal. To illustrate this effect, release all collections and enter the
statement PRINT ALL:

DTR> SHOW COLLECTIONS~
Collections:

CURRENT
BIGGIES

DTR> RELEASE CURRENT, BIGGIES~
DTR> SHOW COLLECTIONS~
No established collections
DTR> PRINT ALL ~
A current collection has not been established
DTR>

DATATRIEVE displays the same message on your terminal when you have
no CURRENT collection and you enter an ERASE ALL or MODIFY ALL
statement.

When you have a CURRENT collection and enter an ERASE ALL statement,
DATATRIEVE removes every record in the CURRENT collection from the
data file. Although frequently useful, this operation can jeopardize valuable
data if you use it carelessly.

Note that if your collection contains many records and you mistakenly
enter an ERASE ALL or MODIFY ALL statement, you can enter CTRUC
to prevent all the records in the CURRENT collection from being erased
or changed. How many records get erased or changed under such circum­
stances depends on how quickly you enter CTRUC, the processing load on
your system, and the priority of your process.

The various forms of the MODIFY ALL statement change the data in each
record of the CURRENT collection (see the DATATRIEVE-ll Reference
Manual). Make a collection of the first three yachts with no listed price.
Display the CURRENT collection, modify the PRICE to $30,000, display the
results of the change, and change the price back to zero using a different
form of the MODIFY ALL statement:

Name Recognition and Single Record Context A-23

DTR> FIND FIRST 3 YACHTS WITH PRICE 0 ~
[3 records found]
DTR> PRINT ALL ~

MANUFACTURER MODEL

BLOCK 1. 40
BUCCANEER 270
BUCCANEER 320

RIG

SLOOP
SLOOP
SLOOP

DTR> MODIFY ALL PRICE ~
Enter PRICE: 30, 000 ~
DTR> PRINT ALL ~

MANUFACTURER MODEL RIG

BLOCK I. 40 SLOOP
BUCCANEER 270 SLOOP
BUCCANEER 320 SLOOP

DTR> MODIFY ALL USING PRICE =

MANUFACTURER MODEL RIG

BLOCK I. 40 SLOOP
BUCCANEER 270 SLOOP
BUCCANEER 320 SLOOP

DTR>

LENGTH
OVER
ALL WEIGHT BEAM

39 18,500 12
27 5,000 08
32 12,500 10

LENGTH
OVER
ALL WEIGHT BEAM

39 18,500 12
27 5,000 08
32 12,500 10

0; PRINT ALL ~

LENGTH
OVER
ALL WEIGHT BEAM

39 18,500 12
27 5,000 08
32 12,500 10

PRICE

PRICE

$30,000
$30,000
$30,000

PRICE

A.2.3 The OF rse Clause and Target Record Streams

The OF rse clause in a PRINT, ERASE, or MODIFY statement lets you
create a new context for that statement. The OF rse clause specifies a
target record stream that overrides any context established for your existing
collections. For each such clause, DATATRIEVE puts a new block on the
context stack. When DATATRIEVE completes execution of the statement, it
removes that block from the context stack.

The following example contrasts the effect of PRINT, PRINT ALL, and
PRINT OF rse. (When the PRINT statement does not include a list of fields,
you can omit the OF from the statement). The record selection expression
here is FIRST 3 YACHTS WITH PRICE = O. This RSE identifies a new
target record stream for the PRINT statement that overrides the CURRENT
collection as a target record stream. It also overrides the single record
context of the selected record in the CURRENT collection:

A-24 Name Recognition and Single Record Context

\

v

DTR> FIND FIRST 3 YACHTS~
[3 records foundl
DTR> SELECT; PRINT ~

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

ALBERG 37 MK II KETCH 37 20,000 12 $36,951

DTR> PRINT ALL ~

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

ALBERG 37 MK II KETCH 37 20,000 12 $36,951
ALBIN 79 SLOOP 26 4,200 10 $17,900
ALBIN BALLAD SLOOP 30 7,276 10 $27,500

DTR> PRINT FIRST 3 YACHTS WITH PRICE O~

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

BLOCK I. 40 SLOOP 39 18,500 12
BUCCANEER 270 SLOOP 27 5,000 08
BUCCANEER 320 SLOOP 32 12,500 10

DTR>

To reduce the risk to your data, DATATRIEVE forces you to include both
keywords ALL and OF when using the OF rse clause in MODIFY and
ERASE statements. Although the results are not shown here, you must
use MODIFY and ERASE statements similar to the following examples
(but with your choice of record selection expressions). The record selection
expression used in these statements is PHONES WITH DEPT = "32T":

DTR> MODIFY ALL OF PHONES WITH DEPT = "32T"

DTR> MODIFY ALL DEPT OF PHONES WITH DEPT = "32T"

DTR> MODIFY ALL USING DEPT = *."NEW DEPT" OF PHONES WITH DEPT "32T"

DTR> ERASE ALL OF PHONES WITH DEPT = "32T"

Unless you include an assignment statement in the USING clause of a
MODIFY statement, DATATRIEVE prompts you once to supply a value
for each elementary field specified or implied in the statement. After you
respond to the last of the prompts, DATATRIEVE begins to change each
of the records in the CURRENT collection to correspond to the values you
supplied to the prompts. You can prevent any changes from taking effect by
entering CTRUZ when responding to any of the prompts.

Name Recognition and Single Record Context A-25

A.2.4 FOR Statements and Target Record Streams

You can use FOR statements to create target record streams for the
DATATRIEVE statements that use single-record context. Using FOR
loops has an advantage over using target record streams formed by the OF
rse clause and the target record stream formed of the CURRENT collection
by the keyword ALL. The FOR statement lets you work with each record
individually; you do not have to perform the same operation on all target
records. By putting STORE and MODIFY statements and prompting value
expressions in a FOR loop, you can act on each member of a record stream
or collection one at a time.

When you put a MODIFY statement in a FOR statement, DATATRIEVE
prompts you once for each field in the record if you do not specify a field list
or a USING clause in the MODIFY statement.

This FOR statement creates a record stream of boats that have no price
listed. The MODIFY statement prompts you to supply a price for each
record in the record stream. You can put a unique value in the PRICE field
for each boat:

DTR> READY YACHTS MODIFY~
DTR> FOR YACHTS WITH PRICE = 0 MODIFY PRICE~
Enter PRICE: 12900 ~
Enter PRICE: 15600 ~
Enter PRICE:

DTR>

Another valuable feature of FOR loops is the complex relationships you
create between record streams when you include one FOR loop inside
another. Each FOR statement puts a block on the context stack. As a result,
you can use the context mechanism to transfer values between records.

By putting a MODIFY statement inside two FOR statements, you can
automatically update master records with the data from periodic transaction
records:

DTR> FOR A IN DAILY_TRANSACTIONS~
CON> FOR B IN MASTER_DATA WITH B.ACCOUNT = A.ACCOUNT~
CON> MODIFY USING~
CON> BEGIN~
CON> MASTER BAL = MASTER BAL - WITHDRAW + DEPOSIT~
CON> TOT_WITHDRAW = TOT_WITHDRAW + WITHDRAW~
CON> TOT DEPOSIT = TOT DEPOSIT + DEPOSIT~
CON> END m:@ -
DTR>

A-26 Name Recognition and Single Record Context

The Boolean expression in this example limits the record stream for the
inner FOR statement to one record.

You can also create nested FOR statements in which DATATRIEVE executes
a series of statements at each level of nesting. For each owner record in
the next example, DATATRIEVE asks you if you want to modify the SPECS
of every boat in the YACHTS inventory built by the manufacturer of the
owner's boat. The third time through the outer loop, DATATRIEVE again
begins the cycle of prompting for the boats by Albin because the third person
in the OWNERS domain also owns a boat by Albin. Notice that the record
changed during the second loop appears during the third:

DTR> SET NO PROMPT~
DTR> FOR OWNERS~
CON> BEGIN~
CON> PRINT SKIP, BUILDER, SKIP ~
CON> FOR YACHTS WITH BOAT.BUILDER = OWNER.BUILDER~
CON> BEGIN~
CON> PRINT SPECS ~
CON> IF *. "DO YOU WANT TO CHANGE THIS" CONT "Y" ~
CON> THEN MODIFY SPECS ~
CON> END~
CON> END

BUILDER

ALBERG

LENGTH
OVER

RIG ALL WEIGHT BEAM PRICE

KETCH 37 20,000 12 $36,000
Enter DO YOU WANT TO CHANGE THIS: N~

ALBIN

~LOOP 26 4,200 10 $17,900
Enter DO YOU WANT TO CHANGE THIS: N~
SLOOP 30 7,276 10 $27,500
Enter DO YOU WANT TO CHANGE THIS: N~
SLOOP 27 5,070 08 $18,600
Enter DO YOU WANT TO CHANGE THIS: Y~
Enter RIG: KETCH~'
Enter LENGTH_aVER_ALL: 35~
Enter DISPLACEMENT: 17000 ~
Enter BEAM: 12 ~
Enter PRICE: 33000~

Name Recognition and Single Record Context A-27

ALBIN

SLOOP 26 4,200 10 $17,900
Enter DO YOU WANT TO CHANGE THIS: N~
SLOOP 30 7,276 10 $27,500
Enter DO YOU WANT TO CHANGE THIS: N~
KETCH 35 17,000 12 $33,000
Enter DO YOU WANT TO CHANGE THIS: N~

C&C

SLOOP 31 8,650 09
Enter DO YOU WANT TO CHANGE THIS: ICTRUZI
Execution,terminated by operator
DTR>

A-28 Name Recognition and Single Record Context

A
Aborting procedures, 9-13 to 9-14
ABORT statement

in command file, 10-6
Access control list

adding entries to, 19-12 to 19-13
contents, 19-1 to 19-7
control (C) privilege, 20-2
creating, 19-7 to 19-8
deleting entries, 19-13 to 19-14
displaying, 19-12,20-2
execute (E) privilege, 20-2
key, 19-1 to 19-7
lock type, 19-1 to 19-7
maintaining, 19-11 to 19-14, 20-7
modify (M) privilege, 20-2
privileges, 19-4 to 19-7
processing, 19-8 to 19-11
protecting data, 19-1
read (R) privilege, 20-2
sample, 19-1 F
sequence number, 19-1 to 19-7
write (W) privilege, 20-2

\CL
See Access control list

\DT
See Application Design Tool

\DT command, 10-3
\OVANCEO HELP command, 2-8
~LLOCATION clause, 6-7
~Iphanumeric fields, 5-12
~ND Boolean operator, 7-9
~pplication Design Tool, 4-1

defining records, 5-1

Arguments

in procedures, 9-4 to 9-5
Assignment statement, 11-2
AT (@) sign

executing command files, 5-3

B
BEGIN-END statement, 8-3 to 8-7
BETWEEN relational operator, 7-6,7-7
Boolean expressions

compound, 7-9 to 7-10
Boolean operators, 7-9
Brackets []

used as syntax prompts, 2-5
BUT Boolean operator, 7-9

c
Call Interface, 1-7
Case sensitivity

with relational operators, 7-5
CHANGE, 6-9
Character change mode, 16-5
Clauses

in procedures, 9-4 to 9-5
Colon (:)

using to invoke procedures, 1-4
Column-page setting

Index

See SET COLUMNS_PAGE command
Command files, 1-4, 10-1 to 1 0-1 0

aborting, 10-6
comments, 1 Q-3

compared with procedures, 1 0-1
contents, 10-3
creating, 10-2 to 1 Q-3

Index-1

Command files (cont'd.)
editing, 10-6
editing with, 16-1
in FORand REPEAT statements, 10-9
invocation command lines, 10-4
invoking, 10-3 to 10-6
maintaining, 10-9 to 10-10
nesting, 10-8 to 10-9
restrictions on invoking, 10-4 to 10-6
sample, 10-6 to 1o-a
SET ABORT/SET NO ABORT, 10-6
uses, 10-1

Commands and statements, 1-3 to 1-4
in procedures, 9-4
in QUERY.INI file, 2-2

Compound statements, 1-4,8-1 to 8-7
BEGIN-END, 8-4 to 8-7

IF-THEN-ELSE in, 8-5
in REPEAT, 8-6 to 8-7
in STORE, 8-5 to 8-6

FOR in, 8-3 to 8-4
BEGIN-END, 8-4

REPEAT in, 8-1 to 8-3
Compressing data dictionary, 20-4 to 20-6
Computed by clause, 5-13
COMPUTED BY clause, 5-1
CON> prompt, 2-5
Conserving memory

See Optimizing workspace
CONTAINING relational operator, 7-5
Context, A-1

establishing, A-1 to A-16
Context block

content of, A-2 to A-4
existing collections, A-5 to A-7
global variables, A-4
record streams, A-6 to A-8

Context stack, A-2 to A-9
lasting changes, A-7
left

assignment statements, A-13
Context variables, A-9 to A-13

field name qualifiers, A-1 0
with MODIFY statement, A-14
with STORE statement, A-14

Controlling output, 18-1 to 18-5
column width, 18-1 to 18-4

Corruption of data
protection against, 19-1

CREATE DICTIONARY command, 20-1
CTRUC, 2-6

Index-2

CTRUZ
exiting from DATATRIEVE, 2-6

CURRENT
as target record stream, A-22 to A-24

D
Data dictionary, 1-3

access privileges, 20-2
changing, 3-2 to 3-4
contents, 3-1 to 3-2
creating, 2-2,3-2
default extension (.DIC), 3-2
deleting definitions in, 20-4
determining size of, 20-5
displaying, 3-3, 20-2
editing definitions, 20-1
extracting from, 20-7 to 20-8
function, 3-1
maintaining, 20-1 to 20-8
modifying, 20-2 to 20-4
objects, 20-1
optimizing disk storage, 20-4 to 20-6
QCPRS utility, 20-5
QXTR utility, 20-6
security, 19-1 to 19-14
setting, 3-3
transferring definitions, 20-1

DATATRIEVE
components, 1-5 to 1-8
concepts and terms, 1-1 to 1-5

Date fields, 5-13
DDMF

See Distributed Server
DECLARE statement, 1-4

variable-name, 11-1
Declaring variables, 11-1
Default dictionary

QUERY.DIC, 20-1
DEFINE command, 1-3
DEFINE DICTIONARY command, 3-2 to 3-4
DEFINE DOMAIN command, 1-3,4-1 to 4-3

entered interactively, 5-3
optional password, 4-2
syntax, 4-3
terminated by semicolon, 4-2
usage rules, 4-2

DEFINE FILE command, 1-2,6-3 to 6-10
optional clauses, 6-7 to 6-10
syntax, 6-3
used with sequential files, 6-4

"DEFINEP command, 1-3
jDEFINE PROCEDURE command, 1-4,9-2

DEFINE RECORD command
advantage over ADT, 5-1

DEFINE TABLE command, 12-3
Defining

alternate keys, 6-6
domains, 1-3,4-1
records, 5-1 to 5-22

DELETE command, 1-3
removing data dictionary definition, 20-4
terminated by semicolon, 20-4

DELETEP command, 1-3
DFN> prompt, 2-5
Dictionary

See Data dictionary
Dictionary objects

controlling access to, 19-1 to 19-14
Dictionary tables

See Tables
Disk space

conserving with QCPRS utility, 20-4 to 20-6
Displaying

established collections, 20-2
readied domains, 20-2

"'I Distributed Server
/ function and use of, 1-6 to 1-8

Domains
access all records, 7-2
defining, 1-2, 3-1, 4-1
restructuring, 15-1 to 15-10

examples, 15-2 to 15-1 0
rules for naming, 4-1
sample, 2-2
views, 13-1 to 13-8

defining, 13-2
DROP statement, 1-4
DTR.TSK, 1-6
DTR> prompt, 2-5
DUP, 6-9

E
EDIT

CHANGE command, 16-4
EDIT command, 1-3,10-3
Editor, 16-1 to 16-5

changing record definitions, 5-3
editing procedures, 9-15
invoking, 16-2 to 16-4
line pointer, 16-4

Editor (cont'd.)
modes, 16-4 to 16-5
range specifiers, 16-5

EDIT_STRING clause
in field definition, 5-5

Elementary fields
defined, 5-6 to 5-7

EMPLOYEE_REC
valid field names, 5-8F

END_PROCEDURE clause, 9-2
END_REPORT statement (Report Writer), 2-4
END_TABLE clause, 12-3
EQUAL relational operator, 7-5
ERASE statement, 1-4

restrictions, 6-2
Error messages, 2-6

incorrectly named fields, 5-8
located by a procedure, 9-6 to 9-7

EXIT command, 1-3, 2-6
Exiting DATATRIEVE, 2-6 to 2-7
EXTRACT command, 1-3,9-15,20-3 to 20-4

copying record definitions, 5-3
Extracting data dictionary information, 20-6

F
FAMILIES sample domain, 2-2

using list field, 5-16
using SHOWP, 20-2

Field definitions, 5-4 to 5-14
clauses, 5-12 to 5-14
clauses in, 1-2
EDIT_STRING clause, 5-5
elementary fields, 5-6 to 5-7
group fields, 5-6 to 5-7
level numbers, 5-4 to 5-7
naming fields, 5-7
PICTURE clause, 5-5
rules for writing, 5-4 to 5-14
terminated by period (.), 5-4
valid field names, 5-8F

Field names
duplicate, 5-9 to 5-10
FILLER, 5-10 to 5-12
restrictions, 5-8 to 5-9
use of hyphens or underscores, 1-2

Fields
alphanumeric, 5-12
Computed by, 5-13
date, 5-13
definition clauses, 5-12 to 5-14

Index-3

Fields
definition clauses (cont'd.)

PICTURE, 5-12
USAGE, 5-13 to. 5-14

elementary and group, 1-2
list, 5-16
naming, 5-7
numeric, 5-13
specifying types of data, 5-12 to 5-14

Files
changing structure of, 15-1 to 15-10
comparison of sequential and indexed, 6-2T
defining, 1-2,6-1 to 6-10
indexed, 6-1 to 6-1 0

criteria for using, 6-2
defining, 6-4 to 6-5

sequential, 6-1 to 6-9
criteria for using, 6-2
defining, 6-3 to 6-4

FILLER fields
as group field name, 5-11

FIND statement, 1-4
FINISH command, 1-3
FIRST n clause

in RSE, 7-3
Flat records, 5-16F
FOR statement, 8-3

creating target record streams, A-26 to A-28
FROM clause, 13-2

G
Global variables, 11-4

named in context block, A-4
GREATER_EQUAL relational operator, 7-6
GREATER_THAN relational operator, 7-6
Group fields

as primary key, 6-5 to 6-6
defined, 5-6 to 5-7
using FILLER field, 5-11

Guide Mode, 2-3, 2-8 to 2-9
invoking, 2-9
using a question mark (?), 2-9

H
HELP command, 1-3,2-7 to 2-8

ADVANCED HELP, 2-8
Hierarchies, 14-1 to 14-13

defining, 5-16 to 5-22
eliminating empty print lines, 14-9

Index-4

Hierarchies (cont'd.)
retrieving values

sublists, 14-11 to 14-13
using ALL in nested print lists, 14-6
using FIND and SELECT statements,
using nested RSEs, 14-9
using OF rse clause, 14-5
with nested FOR loops, 14-9

saving space, 5-16
using, 5-17 to 5-22

Hyphen (-)
continuation character, 5-8
conversion to underscore (_), 1-2,4-2
in record name, 5-4

IF-THEN-ELSE statement, 8-5
Indexed files, 6-1 to 6-10

compared with sequential, 6-2T
compressing, 20-7
defining, 6-4 to 6-5
multikey, 6-3
optimizing storage, 20-7

Input line prompt, 2-5
IN relational operator, 12-5
Installation kit, 2-2
Interactive DATATRIEVE-11, 1-6
Invoking

DATATRIEVE, 2-1 to 2-2

K
KEY clause, 6-4
Keys

L

accessing dictionary objects, 19-2
defining alternate keys, 6-6
defining key fields

rules for, 6-7

LESS_EQUAL relational operator, 7-6
LESS_THAN relational operator, 7-6
Line pointer, 16-4
Lists

changing length of, 5-21 to 5-22

14-3

defining fixed occurrences, 5-18 to 5-19
defining variable occurrences, 5-19 to 5-20
defining with OCCURS clause, 5-16 to 5-22
nesting to form sublists, 5-21 to 5-22

(

.ists, in records
~ See Hierarchies
~cal variables, 11-4 to 11-5

effect on context stack, A-8
.ock types, 19-2

VI
~AX clause, 5-21, 6-8
~emory, conserving

See Optimizing workspace
~ODIFY statement, 1-4,2-6

changing fields, 6-2

JO CHANGE, 6-9
JO DUP, 6-9
JOT Boolean operator, 7-9
JOT EQUAL relational operator, 7-5
JOT IN relational operator, 12-5
Jumeric fields, 5-13

)

)CCURS clause, 5-16 to 5-22
changing list length, 5-21

1 defining hierarchical records, 5-17
fixed number of occurrences, 5-18 to 5-19
variable number of occurrences, 5-19 to 5-20

)CCURS FOR clause, 13-2
)F rse clause

targeting record streams, A-24 to A-25
)perating systems

for DATATRIEVE, 1-1
)ptimizing

response time, 17-7 to 17-11
with keyed access, 17-7 to 17-10
workspace, 17-5 to 17-7

)R Boolean operator, 7-9
)utput

controlling, 18-1 to 18-5
default settings, 18-1

)WNERS sample domain, 2-2

:»

'asswords
keys, 19-2

'eriod
in field definition, 5-4

PERSONNEL sample domain, 2-2, 2-4
record data items, 5-1 F

PERSONNEL_REC
record level numbers, 5-5
sample record definition, 5-2F

PICTURE clause, 5-12
in field definition, 5-5

Pool space
See Workspace

PRINT statement, 1-4
lists, 14-9
retrieving data, 2-3 to 2-4

Privileges
assigning, 19-11

Procedures, 1-4, 9-1 to 9-17
aborting, 9-13 to 9-14
comments in, 9-5 to 9-6
compared with command files, 10-1
contents, 3-1, 9-4 to 9-6
defining, 9-1 to 9-2
deleting, 9-16 to 9-17
displaying, 9-15
editing, 9-15 to 9-16
in compound statements, 9-11 to 9-13
invoking, 9-2 to 9-4
locating errors, 9-6 to 9-7
maintaining, 9-14 to 9-17
nesting, 9-9 to 9-11
samples, 9-7 to 9-9
SET ABORT/SET NO ABORT, 9-13 to 9-14

Prompting value expressions
for storing and modifying values, 2-5

Prompts
CON>, 2-5
DFN>, 2-5
DTR>, 2-5
RW>, 2-5
syntax, 2-5

Protecting dictionary tables, 12-10

Q
QCPRS utility

conserving disk space, 20-4 to 20-6
data dictionary compression, 20-5
defaults, 20-5
improving performance, 20-5
invoked by Digital Command Language, 20-5

QUERY.DIC default dictionary, 20-1
QUERY.INI file, 2-2

sample, 2-3

Index-5

QUERY.lNI file (cont'd.)
SET DICTIONARY in, 2-3
SET GUIDE in, 2-3

QUERYHEADER clause, 5-12
Query names

specifying, 5-14 to 5-15
QUERY_NAME clause, 5-12
Question mark (?)

used in Guide mode, 2-9
QXTR utility, 20-7 to 20-8

R

creating command files, 20-7
transferring data dictionary objects, 20-7

READY command
gaining access to domains, 1-3
retrieving data, 2-3 to 2-4

Record definition
changing, 15-1 to 15-10
contents, 3-1
field definitions within, 5-4 to 5-14
steps in writing, 5-1 to 5-22
using OCCURS clause, 5-17
VALID IF clause, A-9

Records
comparing, 7-4 to 7-6
defining, 1-2,5-1 to 5-22

field definitions within, 5-4 to 5-14
field level numbers, 5-5 to 5-7
specifying names, 5-2 to 5-4
with variable length list, 5-19 to 5-20

deleting, 6-2
example data items, 5-1 F
flat, 5-16F
grouping

by table reference, 7-7
in range of values, 7-6 to 7-7

hierarchical, 5-17 to 5-22
limiting access, 13-3
limiting fields in a, 13-3
modifying, 6-2
rules for naming, 5-4
sample definition, 5-2F
selecting

conditional expressions, 7-4
Record selection expression, 7-1 to 7-10

accessing records, 7-1 to 7-2
ALL clause, 7-2
Boolean expressions, 7-4 to 7-6
definition, 7-1

Index-6.

Record selection expression (cont'd.)
FIRST n clause, 7-1 to 7-3
limiting the number, 7-3
retrieving field values, 5-11
SORTED BY clause, 7-1,7-10
tables, 7-7, 12-5
WITH clause, 7-1,7-4 to 7-10

Record stream, 7-1
sorting

by field values, 7-10
Record streams

context block, A-6 to A-8
REDEFINE command

changing domain definitions, 15-2 to 15-10
REDEFINES clause, 5-12
Relational operators, 7-4 to 7-9

summary of, 7-8T
RELEASE command, 1-3
Remote Terminal Interface, 1-7 to 1-8
REPEAT statement, 8-1 to 8-3
REPORT statement, 1-4

retrieving data, 2-3 to 2-4
Response time

reducing with QCPRS utility, 20-5
Restructuring domains

examples, 15-1 to 15-10
Retrieving data, 2-3 to 2-4
RMS facility

capabilities, 6-1 to 6-3
RSE

See Record selection expression
RW> prompt, 2-5

s
Security

dictionary definitions, 19-1 to 19-14
Semicolon

with DEFINE DOMAIN command, 4-2
with DELETE command, 20-4

Sequence numbers, 19-2
Sequential files, 6-1 to 6-9

compared with indexed, 6-2T
defining, 6-3 to 6-4

SET ABORT command, 10-6, 18-4
effect on ABORT statement, 18-4

SET COLUMNS_PAGE command, 18-1 to 18-4
SET command

terminal control, 1-3
SET DICTIONARY command, 3-3 to 3-4

in QUERY.INI file, 2-3

\ SET GUIDE command, 2-9, 10-3
,; in QUERY.lNI file, 2-3

SET NO ABORT command, 1 Q-6

SET PROMPT command, 18-4 to 18-5
SET TERMINAL command, 18-1
SHOW ALL command, 20-2
SHOW command, 1-3, 2-2

with domains, 4-3
SHOW DICTIONARY command, 3-2 to 3-4
SHOWP command, 1-3
SHOW TABLES command, 12-8
SIGN clause, 5-12
Single record context, A-16
SORTED BY clause, 7-10
SORT statement, 1-4
Specifying domain names

DEFINE DOMAIN command, 4-1 to 4-3
Startup banner, 2-1
Statements

See Commands and statements
STORE statement, 1-4, 2-6
Sublists, 5-21 to 5-22

retrieving values, 14-11 to 14-13
SUM statement, 1-4
SUPERSEDE clause, 6-8
System security

\, using access control lists, 19-1 to 19-14

T
Tables, 12-1 to 12-11

and workspace, 12-7 to 12-8
code/translation strings, 1-5, 12-1 to 12-7
creating, 12-2 to 12-5
defining, 3-1
defining and using, 12-4 to 12-5
deleting, 12-1 0
displaying, 12-8
displaying contents, 12-8 to 12-9
editing, 12-4, 12-9 to 12-10
functions and uses of, 1-5
IF-THEN-ELSE statement, 12-6
in a record selection expression, 12-5
maintaining, 12-10
protecting, 12-10 to 12-11
sample, 12-1 to 12-2
using IN relational operator, 12-5
validating data, 12-6 to 12-7
VALID IF clause, 12-6 to 12-7
VIA value expression, 12-7
WITH in, 12-5 to 12-6

Task size, reducing
See Optimizing workspace

u
UIC

See User identification code
Underscore (_), 1-2,4-2
Underscore U

in record name, 5-4
USAGE clause, 5-12,5-13 to 5-14
User identification code, 3-3

keys, 19-2 to 19-4

v
VALID IF clause, 5-12

in record definition, A-9
Variables, 11-1 to 11-10

as counters, 11-7 to 11-10
declaring, 11-1
global, 11-4
local, 11-4 to 11-5
storing values, 11-2 to 11-7

VERIFY clause
in STORE statement, A-8

VIA value expression, 12-7
View domains, 13-1 to 13-8

combining data, 13-4 to 13-6
containing a list, 13-7 to 13-8
defining, 13-2
limiting record access, 13-3
using, 13-6 to 13-8

w
WHILE statement, 11-9
Workspace, 12-7

defined, 17-1
optimizing use of, 17-5 to 17-7

y
YACHTS sample domain, 2-2,2-4

access all records, 7-2
comparing records, 7-4 to 7-6
SET COLUMNS PAGE command, 18-2 to 18-4 - ,

Index-7

1-\

;/ How to Order Additional Documentation

Technical Support
If you need help deciding which documentation best meets your needs, call 800-343-4040
before placing your electronic, telephone, or direct mail order.

Electronic Orders

To place an order at the Electronic Store, dial 800-DEC-DEMO (800-332-3366) using
a 1200- or 2400-baud modem. If you need assistance using the Electronic Store,
call 800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Your Location

Contin.ental USA,
Alaska, or Hawaii

Puerto Rico

Canada

International

Internal 1

Call

800-DIGITAL

809-754-7575

800-267-6215

Contact

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

Local DIGITAL subsidiary

Digital Equipment of Canada
Attn: DECdirect Operations KA02/2
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

Local DIGITAL subsidiary or
approved distributor

SDC Order Processing - WMOlE15
or
Software Distribution Center
Digital Equipment Corporation
Westminster, Massachusetts 01473

IFor internal orders, you must submit an Internal Software Order Form (EN-01740-07).

" I
Reader's Comments DATATRIEVE-11

User's Guide
AA-X023C-TK

Please use this postage-paid form to comment on this manual. If you require a written
reply to a software problem and are eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR form.

Thank you for your assistance.

I rate this manual's:

Accuracy (software works as manual says)
Completeness (enough information)
Clarity (easy to understand)
Organization (structure of subject matter)
Figures (useful)
Examples (useful)
Index (ability to find topic)
Page layout (easy to find information)

I would like to see morelless

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:
Page Description

Excellent

o
o
o
o
o
o
o
o

Good

o
o
o
o
o
o
o
o

Additional comments or suggestions to improve this manual:

I am using Version ___ of the software this manual describes.
N amefl'itle Dept.

Company

Mailing Address

Phone

Fair Poor

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

Date

Do Not Tear - Fold Here and Tape

I
I
I
I
I
I ---------------------------------------I(

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGIT AL EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK01-3/J35
110 SPIT BROOK ROAD

No Postage
Necessary
if Mailed

in the
United States

NASHUA, NH 03062-9987 I
1
1

1
I,
1 \

111'111111.11'11.1111111.11.1111.11111.1.1'111.11111 l
1

. Do Not Tear - Fold Here --1

I
I
I.
I­
I"
I:
I,
I
1
I.
I'
I·
It
I

Reader's Comments DATATRIEVE-11
User's Guide

AA-X023C-TK

Please use this postage-paid form to comment on this manual. If you require a written
reply to a software problem and are eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (software works as manual says) 0
Completeness (enough information) 0
Clarity (easy to understand) 0
Organization (structure of subject matter) 0
Figures (useful) 0
Examples (useful) 0
Index (ability to find topic) 0
Page layout (easy to find information) 0

I would like to see morelless

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:
Page Description

Good

o
o
o

-0
o
o
o
o

Additional comments or suggestions to improve this manual:

I am using Version ___ of the software this manual describes.
Nametritle Dept.

Company

Mailing Address

Phone

Fair Poor

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

Date

Do Not Tear - Fold Here and Tape

-- Do Not Tear - Fold Here

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POST AGE WILL BE PAID BY ADDRESSEE

DIGIT AL EOUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK01-3/J35
110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

111,11 •• 11. 11 1111 .. 1.11.1 .. 1.11' 1 •• 1. 1 ••• 1.11 .. I

No Postage
Necessary
if Mailed

in the
United States

Printed in U.S.A.

