Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Mica Working Design Document
Object Architecture

Revision 2.1
2--Decernber—1987

issued by:
Lou Perazzoli

dliig|i|tial!

......

.......

.....

TABLE OF CONTENTS

..

..

..

..

--

..

..

..

..

..

..

1.2.6.6 Process Level Director Mutex
1.2.7 Container Directory Index Field of the ObjectID

1.2.8 Container Directory

..

1.2.8.1 Object Index Field of the Object ID
1.2.9 Expressibility of Object IDs oovoe i e
1.2.10 Shareability of Object IDs ovr s e
1.2.11 Translation of an Object ID to an Object Header Address
1.2.12 Container Directory IDS
1.2.13 Object Access By IDOnly
12.14 Object ServiceRoutines 00 ..

13.1.1
13.1.2
13.1.3
13.14
13.15
13.1.6
1.3.1.7
13.1.8

otd$type Field (Static) 0o
otd$objhdr_listhead Field (Dynamic)
otd$count Field (Dynamic)

otd$create_disable Field (Dynamic).

otd$mutex Field

..

wowmmmmm\lﬂqqqqqmmmmmmm L R N R S T

11
11
12
12
12
13
13
13
13
13

iv

1.4 Object Header

.....................................

.....................................

.....................................

.....................................

.....................................

.....................................

1.4.1 Object Header Data Structuret uunnunnnn.
1.4.1.1 objhdr$pointer_count Field (Dynamic)c.0ou.....
1.4.1.2 objhdr$object_id_count Field (Dynamic) PR
1.4.1.3 objhdr$type Field (Static)t nnnn..
1.4.1.4 objhdr$otd Field (Static)0viiiinnieennnnn..
1.4.1.5 objhdr$link Field (Dynamic)0vivieneneuennnnnn..
1.4.1.6 objhdr$container Field (Dynamic).o vteienneennnnnnn.
1.4.1.7 objhdr$level Field (Dynamic)ttt ittt e e eeeeennn.
1.4.1.8 objhdr$index Field (Dynamic)cuuiiteuenrmnenennn..
1.4.1.9 objhdr$seq number_low and objhdr$seq_number_high Fields (Dynamic) . . .
1.4.1.10 objhdr$dispatcher_object Field (Static).0ovuu....
1.4.1.11 objhdr$name Field (Dynamic).o v vt in e e eeeeeeenn..
1.4.1.12 objhdr$owner Field (Static)ot reunnnnnnn..
1.4.1.13 objhdr$acl Field (Dynamic) 0ot emennnnnnn..
1.4.1.14 objhdr$allocation_block (Dynamic)coovveunenennnnn
1.4.1.15 objhdr$access_mode Field (Static) viir ...
1.4.1.16 objhdr$transfer_action Field (Static) v ...
1.4.1.17 objhdr$reference_inhibit Field (Dynamic)
1.4.1.18 objhdr$temporary_flag Field (Dynamic)covvvuen...
1.4.1.19 objhdr$temporary_operation Field (Dynamic)

1.42 object_body Record

.....................................

1.5 Object Container Duta Structures0iiit it rennnensn.
1.5.1 Container Directories as Compared with Object Containers

1.5.1.1 Object Container OTD

RemoveProcedure

1.5.2 Object Container Object Header. vnrnnn..

1.5.3 Object Container Body . .
1.5.3.1 con$objtbl Field. . ..

.....................................

.....................................

1.5.3.2 con$objnamtbl Field (Static or Dynamic, Depending on Implementation) . . .
1.5.3.3 condir$display_index Field (Static)o vnvn...
1.5.3.4 objcon$mutex Field (Static) i,
1.54 Object Array Data Structuret rennn.
1.54.5 opjeol$max index Field.

1.5.4.6 objtbi$count Field . .
1.54.7 objtbl$next_free Field

.....................................

.....................................

1.5.4.4 objtbl$table Field (Object Array) enenn..
1.5.5 Name Table Data Structure
1.5,5.1 Name Definition Block ittt it i

1.5.6 Object Namirg Principles

.....................................

14
14
14
15
15

15
16
16
17
18
18
18
18
18
18

19
19
19
19
19
20
20
20
20
20
20

21
22
22
22
22
23
23
23
24
24
24
25
25
25
26
26
26

1.5.7 Naming

..

15.7.1 Logical Namesouuuuununno
1.5.7.2 Object Services Providing Name Support
1.5.7.3 Container Directory Names
1.5.8 Object Name Translation

1.7 Object Creation
1.7.1 Creating an Object
1.7.2 Object Names. . .

..

..

...

..

..

--

..

..

..

..

..

1.11.1 obj$reference_object by id0 '
1.11.2 obj$translate object mame.
1.11.3 obj$create_initialize_object
1.11.4 obj$insert_object_in_container
1.11.5 obj$insert object_and reference
1.11.6 obj$remove_obj_from_container
1.11.7 obj$dereference object e
1.11.8 obj$get_principal object id

1.11.9 ob;$set_ubject_acl

..

FIGURES

TABLES

1.17 Revision History, 14 January, 1987

1-1
1-2
1-3
14
1-5
1-6
1-7
1-8
1-9
1-10
1-11

1-1

Object ID Format
TheBigPicture
Object Type Descriptor (OTD) Format . . .
Object Header Format

........

.........................

.........................

.........................

.........................

Object Container Data Structure Relationships

Object Container Body Data Structure . . .

.........................

Container Directory Header Display Index Field Usage

Container Object Array Format
Address of Object Header
Free Object Array Element Format

.........................

.........................

Process Level Container Directory Initialization

Object Architecture: Terms and Definitions

.........................

49

10
12
17
21
22
24
25
25
26
29

Digital Equipment Corporation - Confidential and
For Internai Use Only

Revision History

Proprietary

Date

Revision Number

Summary of Changes

18-Feb-1986
27-Feb-1986
28-Feb-1986

21-Mar-1986
19-May-1986

06-Jun-1986
17-Jun-1986

10-Jul-1986

02-Dec-1986

28-Jan-1987

20-Mar-1987

30-May-1987
15-Sep-1987

24-Nov-1987

0.1
0.1
0.2

02
03

0.3
04

1.0

1.1

1.2

1.3

1.4
20

21

Original (Jim Kelly)
Sent out for initial review (Jim Kelly)

Add more detail, incorporate review changes. Primary
changes include changes in terminology, making pro-
cess level root abject containers visible to descendants,
allowing an object container to be transferred, adding in
an "identifer” level, adding object driver description.(Jim
Kelly)

Sent out for second review.

Reformatted to adhere to WDD structure. Incorpo-
rated changes from second review. Changes included
changes in terminology, adding an additional process
root container, changing the way transferability of an
object container is determined, adding temporary object
support, and various other minor changes.(Jim Kelly)

Sent out for third review (Jim Kelly)

Incorporated changed from third review. Delivered for
incorporation into the WDD.

Incorpated changes from WDD consistency review. The
most significant of these changes included removal of
the identifier level, definition of the name table structure
and capabilities, remaval of bonded objects apabilities,
addition of alias objects,addition of temporary objects.
(Jim Kelly)

Attempted to simplify and unify. Major changes include-
the removal of acronyms, simpiification of lock strategy,
unification of name strategy, addition of logical names,
addition of object allocation. (Lou Perazzoli)

Removal of rooted containers and addition of directory
containers. Added object services (e$ routines). (Lou
Perazzoli)

Remove alias, etc, add support for UNIX fork and exec.
Added algorithums for object services. (Lou Perazzoli)
Minor changes(Lou Perazzoli)

Removal of fork and exec support for UNIX, minor fix-
ups, added SIL definitions for object structures and
quota section. (Lou Perazzoli)

Minor changes. Changed E$ routines to OBJS$ routines
and changed names to match the coding standard. (Lou
Perazzoli)

iv

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

CHAPTER 1
OBJECT ARCHITECTURE

1.1 Overview
1.1.1 Introduction

This chapter describes the software architecture of objects. It describes what objects are, and defines
the data structures and operations necessary to support objects.

1.1.2 What Is an Object?

Objects are abstract elements provided by an operating system that may be accessed by a user or
a program. Typically, objects are defined in terms of the operations that may be performed upon
them (for example, create, clear, set, get information, wait, delete) and their relationships to other
objects. The reason for categorizing these elements as objects is to provide a single, standardized set
of rules for creating, naming, protecting, accessing, and managing them. For example, each object
has a unique ID value (called an object ID) which may be used to identify it. Objects at the job and
process levels are only directly expressible by threads in that job or process.

1.1.3 Scope

It is important to understand that this chapter only defines the architecture of objects, not all object
types. It is necessary that some objects or parts of objects be defined as part of this architecture.

1.1.4 Requirements and Goals

* Software development goals

— Provide an extensible, yet rigorous framework for the definition and manipulation of
executive-controlled data structures.

— Maintain management consistency. The management of objects, in terms of actions taken
to fulfill service requests, should be as object-type independent as possible. For example,
standard routines and procedures can be established for determining whether access to an
object should be granted.

— Provide new object definition support. It should be possible to add new object types to
the system without having to modify existing system code. This means that the interface
between the kernel/executive system software and objects must be well-defined, and that
the kernel/executive need not have knowledge of the internals of all objects.

¢ Interface goals

— Provide consistent specification. The ways in which each object in the system may be spec-
ified by users should be minimized and kept consistent with the manner in which other
objects are referenced.

Object Architecture 1

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

— Provide consistent operations. There are some operations that apply to a set of objects within
the system, such as wait. The definition of what these operations mean to each object should
be kept simple and similar to their definition for other objects.

— Support level independence. Where possible, the operations that may be performed on
an object type, and the behavior of that object, should not be dependent upon the level
(system, job, or process) at which that object has been created. This allows applications to
be developed in the relative safety of process and job levels before being moved to a more
shareable level, with minimal change in behavior.

— Provide security and protection. The method of determining which objects a user may refer
to, and which operations may be performed on those objects, should be the same for all
objects. This is the basis for Mica security.

1.1.5 Functional Description

The object architecture runs in kernel mode at IPL 0. Through the use of mutexes, object architecture
procedures can simultaneously execute on multiple processors.

The object architecture provides a framework for creating object-specific services. These services
include creating, deleting, allocating, referencing, name translating, and getting information about
objects. For example, the object service to create an event, and the object service to create a thread
both invoke the same object architecture-defined routine to create the object.

The object architecture provides a hierarchical visibility structure for objects. When an object is
created, it is placed at one of three levels: system, job, or process. Objects at the system level are
visible to all threads on the system. Objects at the job level for a particular job are only visible to
threads in that job. Objects at the process level for a particular process are only visible to threads in
that process. For example, a thread cannot access an object that is at the process level for another
process, because it cannot express an object ID for that object.

Each level can contain one or more object containers to catalog objects at that level. There are two
types of object containers at the process level: Process-private object containers and display object
containers. Objects stored in a process-private object container are only visible to the process with
which the container is associated. Objects stored in a display object container are visible to the
associated process, and any of its descendant processes.

Objects are referred to by object ID. If a program refers to an object name, this name must be
translated to an object ID. An object name is unique within a container for each object type at each
processo- mode. When a user attempts to refer to an object using an object ID, the user’s access
rights are compared to the access rights associated with an object. If there is a match, the user may
access the object.

An object may be allocated to a user, resource ID, job, process, or thread. This allows objects to be
shared among restrictive classes of users. ‘

An object ID is deleted when the object container holding the corresponding object is deleted, or when
the object ID is explicitly deleted. The object itself, however, is not deleted until the ID is deleted,
and there are no outstanding references to the object.

Table 1-1 summarizes key object architecture terms and components.

Table 1-1: _Object Architecture: Terms and Definitions
Object Identification and Names

Term Type - Definition

Object ID 64-bit Vaiue Usaed to refer to an object.

2 Object Architecture

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Table 1—1 (Cont.): Object Architecture: Terms and Definitions

Object Identification and Names

Term Type Definition

Principal Object ID Object ID Associated with an object at object creation. An object
has exactly one principal object ID.

Reference Object ID Object ID - Optionally associated with an object. An object may
have zero, one, or more reference IDs.

Object Name Character String Together with type and mode, an object name can be

translated to an object ID. The combination of object
type, mode, and name string is unique within a single
object container. g

Object Name Table Data Structure Tracks both logical names and object names within an
object container. When an object container is created,
a name table is also allocated, and that address is
stored in the object container's body.

Object Hierarchy

Term Definition Description

Object Container Object Type Objects of this type contain pointers to other objects.
They are used to organize large numbers of objects.

Object Level - Indicates the scope of visibility of an object container.

System Level Object Level Objects at this level are potentially accessible to ail
processes on the system.

Job Level Object Level Objects at this level are potentially accessible to all
processes in a given job.

Process Level Object Level Objects at this lavel are potentially accessible to all

threads in a given process. Containers at this level
can be ether display or private.

Display Object Container Object Container Objects in such containers are accessible to a given
-- process and all of its descendants.
Private Object Container Objezt Cc. ‘siner Objects in such containers are accessible only to a
given process, and not to its descendants.
Container Directory Data Structure Used to organize large numbers of object containers.

All threads have the same system container directory.
All threads in a job have the same job container direc-
tory. All threads in a process have the same process
container directory.

Object Header Data Structure Fixed-format data structure that contains object type-
independent data. This header is used by the exec-
utive without necessarily knowing the type of object it
is accessing.

Object Rody - Data Structure A data structure that is specific to an abject type.

Object Architecture 3

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Table 1-1 (Cont.):

Object Architecture: Terms and Definitions

Object Type
Term Definition Description
Object Type : - Object type determines what operations can be per-

Object Type Descriptor (OTD) Data Structure

formed on an object.

Describes what operations are supported for what ob-
ject types. There is one OTD for each object type.

Miscellaneous

Description

Torm Definition
Object Service Routines System Routines
Object Allocation Block Data Structure

Implement operations that can be performed on ob-
jects. Some object service routines are particular to a
certain type of object; others are supported across ail
object types.

Contains information about object allocation.

1.1.6 Object-Related Operations
The following types of operations can be performed on most types of objects:

Creating an object

Protecting an object

Translating an object ID

Deleting an object

Creating references to an object
Making a temporary object
Marking a new object as temporary
Allocating an object '
Deallocating an object

Getting information about an object
Changing the name of an object

1.1.7 Summary of Proposed Changes to Object Architecture
We propose that the following changes be made to the existing object architecture chapter:

Removal of ail ULTRIX dependencies. These include clone procedures and executive actions.

Addition of Pillar definition records.
Deduction of quota rules.

Object Architecture

Digital Equipment Corporation - Confidential and Proprietary
For internai Use Only

1.2 Functional Interface and Description

An object is a set of data structures representing an abstraction. Processes and events are examples
of objects. In the case of an event object, the object represents the abstraction of an event that either
has or has not taken place.

An object consists of a standard data structure called the object header, described in Section 1.4, and
an object type-dependent data structure called the object body.

1.2.1 When Should an Element in the Executive be an Object?

An element should be an object when it:

* Needs a name for sharing.

* Needs to be referenced by user-mode software, and there are multiple instances of these eléments.

* Needs to be protected via ACLs. Exceptions to this include structures that are exported by an
RPC, such as job controller queues.

* Can be allocated.

No object can be dependent on another object such that there is an order dependence during object ID
deletion. This allows various rundown operations to delete object IDs in any order, yet the rundown

proceeds efficiently.

122 Object IDs

When an object is created, it is assigned a 64-bit value called its object ID. This value provides the
fastest means for a user-mode routine to identify and access the object.

When an object is created, the ID returned is called the principal ID. Every object has only one
principal ID. An object may also have one or more reference IDs which also point to the object.
Reference IDs are discussed in Section 1.7.9.

The principal ID of an object that is accessible by two processes is the same in both processes.
This extends to objects at all levels (including those in ancestors’ process-display object containers,
described in Section 1.5.9). This property allows IDs of shared objects to be communicated between
cooperating threads. ‘

1.23 Object ID Format

Object IDs are used to uniquely identify objects within the system. Object IDs are not addresses of
objects, but values that may be used to generate the addresses of objects.

Object IDs are comprised of the following fields:

* Sequence number (0bj_idseq_number_low, obj_idseq_number_high)
¢ Level (obj_id$level)

* Object contain~r index (obj_id$obj_index)

* Container directory index (obj_id$con_index)

The format of an object ID is shown in Figure 1-1.

Object ID value zero (0) is reserved for use as an invalid value.

Objeci Architecture 5

Digital Equipment Corporation - Confidential and Proprietary
For internai Use Only

Figure 1-1: Object ID Format

31 2 2 210
OBJ_IDSSEQ_NUMBER_LOW OBJ_IDSCON_INDEX LEVEL
OBJ_IDSSEQ_NUMBER_HIGH OBJ_IDSOBJ_INDEX SBZ
&3 54 53 3433 32

1.2.4 Object ID Sequence Numbers

Three object ID fields are used to locate the adires; of the object.They are the level field, the object
container index field, and the container directory index field. In addition, the sequence number high
and low are used to help catch programming errors. Such an error might occur if a program used an
object ID after the corresponding object had been deleted, and another object had been created with
the same ID as the previously deleted object.

For example, consider a program with the following error. First, the program creates a FIZBOT
object (which receives a corresponding object ID). Sometime later, the program deletes the FIZBOT
object and creates a WALZOL object. Suppose that, due to a programming error, an operation on
the FIZBOT object is attempted (such as a wait operation). If the WALZOL object had coincidentally
received the same object ID that had been used for the FIZBOT object, a wait on the wrong object
might go undetected.

To catch this type of error, each time an object ID iz created, the sequence number fields (two 10 bit
fields) are different each time an object ID is assigned to the same "sl~t".

When an object ID is created, the old sequence high field, which was saved, is incremented and reset
to zero in the overflow case. In our example above, the improper use of the FIZBOT object ID would
be detected and flagged as an error (no such object). Notice that the sequence high field cycles every
1024 allocations of an object ID.

The sequence low field receives a random value.

The use of sequence numbers does not totally eliminate the problem; it just reduces it to an extremely
small probability for most programming situations.

1.2.5 Object Containers

Since programs are likely to have many objects at any point in time, it is desirable to be able to group
objects together in some logical manner. For this purpose, a type of object called an object container
is defined. When creating an object, it is necessary to specify the ID of the object container in which
a pointer to the newly created object is to be stored.

From the executive’s point of view, object containers are used when translating an object ID into a
pointer to the object.

126 Object Levels

There are three levels of object visibility: process, job and system. The principal object ID level
field determines the visibility of an object. The software process control block (SWPCB) contains
level directors for the object levels. For each level, there is a pointer to the container directory
corresponding to that level.

6 Object Architecture

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.2.6.1 System Level

The purpose of the system level is to provide a place to keep objects shared by multiple jobs. Imple-
mentation of the group concept supported by VMS uses this level of sharing, by creating an object
container at the system level that is only accessible to threads with the proper group identifier.

Objects at this level are potentially accessible by all processes in the system. If access to an object
at this level is to be restricted, then access protection must be explicitly assigned.

1.2.6.2 System Level Director Mutex

A system-wide mutex exists for synchronizing access to the system level containers. A pointer to
this mutex is located in each software process control block. This mutex is acquired for object ID
translations at the system level and for other system-level operatiuns, such as Delete Object ID.

1.2.6.3 Job Level

The purpose of the job level is to allow objects to be shared by all processes within a single job. If
access to an object at this level is to be restricted so that only some processes within a job may access
it, then access protection must be explicitly assigned.

1.2.6.4 Job Level Director Mutex

A job-wide mutex exists for synchronizing access to the job level containers. A pointer to this mutex
is located in each process control block. This mutex is acquired for object ID translations at the job
level, and for other job level operations.

1.2.6.5 Process Level
The process level has two types of containers, display and private.

The purpose of process-private object containers is to provide a location for objects that are not
accessible to any other process. No access protection needs to be assigned to objects in this type of
object container. This simplifies the programming effort, and also provides the fastest possible object
access.

The purpose of process-display object containers is to provide a location for objects that are accessible
to the associated process, and to all descendant processes of that process. Objects in this object
container do not typically require any access protection. Note, however, that if access protection is
assigned to objects at the process level, it is checked at the time of each access.

It is important to note that the process-display object containers are only accessible to a process and
its descendant processes.

1.2.6.6 Process Level Director Mutex

A job-wide mutex exists for synchronizing access to the process level containers. A pointer to this
mutex is located in each process control block. This mutex is acquired for object ID translations at
the process level, and for other process-level operations.

This mutex must be job-v-ide to allow proper synchronization on display containers which are shared
among a process and its descendants.

1.2.7 Container Directory Index Fleld of the Object ID

The container directory index field is used as an index into the object array of the container directory.
This yields a pointer to the object container, which contains a pointer to the object represented by
the object ID.

Object Architecture 7

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.2.8 Container Directory

For each level there is a corresponding container directory. All threads share the same system
container directory. All threads within the same job share the same job container directory. All
threads within a process shares the same process container directory.

The total number of container directories within the system at any given time is equal to the number
of jobs plus the number of processes plus one (for the system level container directory).

The container directory provides a structure containing pointers to all the object containers within
that level. It also provides a method of naming object containers.

1.2.8.1 Object Index Field of the Object ID

The object index field is used as an index inio the object array of the object container located by the
directory index. This yields a pointer to the object header of the object represented by the object ID.

129 Expressibility of Object iDs

One characteristic of the architecture is that threads are not able to directly express the ID of all
objects. Here, the term "directly express” means to generate an ID value that corresponds to an
object.

All threads are able to directly express the ID of all objects at the system level. However, objects
at the job and process levels are only directly expressible by threads in that job or process. For
example, there is no object ID value a thread in Jjob X can use to directly refer to an object at the
job or process level in job Y. Also, a thread in process Q cannot directly refer to process level objects
in any other process, unless the object is in a process-display object container of an ancestor process
(process-display object containers are discussed in Section 1.2.6.5). .

1.2.10 Shareability of Object IDs

If two threads can both express the principal ID of an object, then those ID values are the same
value. This allows cooperating threads in different processes or jobs to communicate object IDs to
one another.

Notice that this property even extends to objects in ancestor process-display object containers. This
allows a thread in one process to communicate an object ID of an object in its process-display object
container to a thread in a descendaut process (process-display object containers are discussed in
Section 1.2.6.5).

1.2.11 Translation of an Object ID to an Object Header Address

In order to translate an object ID to the address of the associated object, Mica performs the following
steps:

1. Uses the level number as an index into the process control block to locate the corresponding level
directory mutex.

2. Acquires the directory mutex.

3. Uses the level nuiuber us an index into the process control block to locate the corresponding
container directory.

4. Compares the container directory index field to the size of the table to ensure that index is within
the object array.

5. Uses the container directory index field to index into the object array.
6. Checks the object crray element to ensure it contains the address of an object header.
7. Uses the resulting system address to locate the object container header for the object container.

8 Object Architecture

Digital Equipment Corporation - Confidential and Proprietary
For Internai Use Only

8. Compares the object index field to the size of the table to ensure that index is within the object
array.

9. Uses the object index field to index into the object array. Checks the resulting value to ensure
that it is the address of an object.

10. Compares both sequence number fields in the object header to the sequence number fields in the
object ID. To do this, Mica checks the address of the object header, which is found in the object
array. If they are not identical, then that object ID is not valid.

11. Increments the pointer count field in the object header so the object’s storage cannot be deallo-
cated while a pointer to the object is held.

12. Releases the directory mutex, and returns a pointer to the object body to the caller.

The routine obj$reference_object_by_id described in Section 1.7.6 provides the mechanism to translate
an object ID to the address of the object header. All routines within the executive use obj$reference_
object_by_id for translating object IDs.

Figure 1-2 indicates how the structures fit together.

1.2.12 Conteiner Directory IDs

It is necessary for programs to find container directories for each level. Since no consume._ .f (ho
object architecture may have any knowledge about the construction of an object ID, programs call a
system service that returns the object ID of the desired container directory. ‘

The container directories are named as follows:
* The system level container directory is named exec$system_container_directory.
* The job level container directory is named exec$job_container_directory.

* The process level container directory is named exec$process_container_directory.

The exec$transiate_object_name service may be used to obtain the object ID of a container directory
by translating one of these three names. The caller must specify the container directory name for
both the object name to locate and the container directory in which to locate the name.

1.2.13 Object Access By ID Only

One guideline to follow in system software design is that user-mode access to objects is only allowed
by object ID, and is not allowed by name. If the object must be located via a name, the translation
from name to ID is performed in a separate call preceding the object access call. This simplifies the
coding of the object service routines, since they do not have to do any name translations or deal with
logical names.

1.2.14 Object Service Routines

Each type of object has an associated set of services called object service routines. The service routines
for a particular object type perform the operations supported by that object type.

For example, a FRAMITZ object type may define the operations:
* create_framitz

e get_framitz_information

* clear_framitz

* juggle_framitz

Object Architecture 9

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Figure 1-2: The Big Picture

PROCESS CONTROL BLOCK
THREAD PROCESS
CONTROL LEVEL J08B
BLOCK DIRECTORS
\. SYSTEM
| LOCK PROCESS MUTEX
DIRECTORS \ JOB MUTEX
SYSTEM MUTEX
CONTAINER DIRECTORY HEADER -
SEQUENCE NUMBER (TYPE = DIRECTORY)
POINTER TO OBJECT INDEX TABLE
OBJECT NAME TABLE POINTER TO OBJECT NAME TABLE ——I
LOGICAL NAME AND EQUIVALENCE STRING

OBJECT NAME AND CORRESPONDING ID

OBJECT ARRAY |
BACK POINTER TO OBJECT HEADER

POINTER TO OBJECT CONTAINER HEADER
POINTER TO OBJECT CONTAINER HEADER
-

OBJECT CONTAINER HEADER
SEQUENCE NUMBER (TYPE=CONTAINER)
POINTER TO OBJECT ARRAY

OBJECT NAME TABLE) POINTER TO OBJECT NAME TABLE
LOGICAL NAME AND EQUIVALENCE STRING MUTEX

OBJECT NAME AND GOHRESPONDING ID

OBJECT ARRAY
BACK POINTER TO OBJECT HEADER
POINTER TO OBJECT HEADER
POINTER TO OBJECT HEADER
L]

OBJECT HEADER

* read_framitz
* close_framitz

Each of these operations is represented by a separate object service routine. These object service
routines can be added to the system dynamically, but only as a complete group.

10 Object Architecture

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Every set of object service routines must supply a method for creating the object and providing
information about the object. These services are named create_object_type, and get_object_type_
information. Each set of object service routines must also implement routines to provide system
defined object type-specific operations.

These operations are:

* Remove

¢ Delete

¢ Shutdown °
e Allocate

¢ Deallocate

These operations are used by the executive, and, in some cases, by the object’s service routines.
The availability and location of these functions, as well as some status and control information, are
provided in object type descriptors (OTDs).

1.3 Object Type Descriptor (OTD)

There is a single object type descriptor (OTD) object for each object type defined by the system. All
OTD objects are created in a single system container.

An OTD object, hereafter referred to as just OTD, contains general information about an object type,
not a particular instance of an object type. For example, an OTD indicates whether an object type
supports the notion of wait. Anything an OTD specifies about an object type applies to all instances
of that object type.

Part of the information in an OTD is the location of a number of routines that may be called by the
executive. These routines have standard definitions across all object types but require object type-
specific processing. These routines are located by the executive via standard offsets into the OTD.
The operations are listed in the previous section.

Users of an object type do not need to know anything about the routines pointed to by the OTD. The
designer of an object type, however, must specify and implement them.

1.3.1 Object Type Descriptor Body Format

eSobject_type_descriptor : RECORD
otd$type : eSobject type;
otdSobjhdr_ listhead : e$linked list;
otd$count : integer;
otd$dispatcher object offset : integer;
otd$access mask : POINTER eSaccess_mask;
odtSallocation listhead offset : integer;
otd§create_disable : bit; ! O - enable, 1 - disable
otd$mutex : k$dispatcher object (mutex);
otdSallocate : obj$obj_allocate_procedure;
otd$deallocate : obj$obj_deallocate_procedure;
otd$remove : obj$obj_remove procedure;
otd$delete : obj$obj_delete_procedure;
otd$shutdown : obj$obj_shutdown_procedure;

END RECORD;

All fields of the OTD have a standard definition. This allows the executive to use the information in
an OTD without having detailed knowledge of the corresponding object type.

Object Architecture 11

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Figure 1-3: Object Type Descriptor (OTD) Format

OTDS$TYPE (Type)

OTD$OBJHDR_USTHEAD (Linked List)

OTDSCOUNT (Count)

OTDSDISPATCHER_OBJECT_OFFSET (Dispatcher Offset)

OTD$ACCESS_MASK (Access Mask)

OTDSALLOCATION_LISTHEAD_OFFSET (Aliocation Listhead Oftset)

OTD$CREATE_DISABLE (Create Disable)

OTDSMUTEX (Mutex)

OTDSALLOCATE (Allocate)

OTDSDEALLOCATE (Deallocate)

OTD$REMOVE (Remove)

OTDSDELETE (Delete)

OTD$SHUTDOWN (Shutdown)

The purpose of each of these fields is described below.

1.3.1.1 otdStype Fleld (Static)
This field contains a value indicating the type of object the OTD represents.

1.3.1.2 otd$objhdr_listhead Field (Dynamic)

Thus Seid contains the forward link to the first object header of this type, and the backward link to
the last object header of this type. These links are used for consistency checking within the object
1.3.1.3 otd$count Field (Dynamic)

This field contains a count of the number of objects of the corresponding type that currently exist in
the system. Modification of this field must be done using the RMALI instruction.

12 Object Architecture

Digitai Equipment Corporation - Confidential and Proprietary
For Internal Use Only

13.1.4 otd$dispatcher_object offset Field

When nonzero, this object type supports the notion of wait. The value in this field is the offset of
the dispatcher object (dispatcher objects are described in Chapter 6, The Kernel) from the start of
the object body. Thus, when a wait operation is performed on the object, the executive adds the field
cgntents to the address of the object header and issues a kernel wait operation on the dispatcher
object.

The dispatcher objects that support waiting are:

e Events

¢ Semaphore
e Timer

¢ Thread

* Queue

These objects are created by providing the necessary structure in the object body and calling the
kernel routine k$initialize_xxxxx, where xxxxx is the type of dispatcher object to be initialized. Once
initialized, these objects can then be manipulated by using other kernel routines. For more details
on the kernel support provided, see Chapter 6, The Kernel.

Any object type which has a non zero dispatcher field must allocate the object body from nonpaged
pool. The wait routines which accept object types with non-zero dispatcher offsets call the kernel
wait routines which operate at JPL 2 and cannot take page faults.

1.3.1.5 otd$Saccess_mask Fleid (Static)

This field points to the supported access mask for use by the security routines in access validation.
For more information, see the Chapter 11, Security and Privileges.

1.3.1.6 otd$allocation_listhead_offset Field

When nonzero, this object type'may have objects allocated to it. For example, thread, process and
job objects all support the notion of object allocation. Object allocation is described in Section 1.8.

1.3.1.7 otd$create_disable Fieiu (L ynamic)

This flag may be set by the executive to prevent additional objects of this type from being created. It
can be used to shut down the system in an orderly fashion.

Once set, this field may not be cleared. Therefore, access does not have to be interlocked. This flag
is set when it contains a nonzero value.

1.3.1.8 otd$Smutex Fleld
Provides synchronization for creation, deletion, and state changes among objects within a type.

Object Architecture 13

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.3.1.9 otd$allocate Fleld

This field points to an allocate procedure. The allocate procedure is called in kernel mode at IPL 0
with the allocation mutex acquired. The address of the object body to be allocated and the allocation
type are passed as input parameters.

The allocate procedure has the following type declaration:

obj$object_allocate_procedure :
PROCEDURE (
IN object body : POINTER anytype CONFORM;
IN allocation_object hdr : POINTER eSobject_header;
)z

The procedure obj$null_allocate_procedure is provided for use by object types which do not have an
allocate procedure.

1.3.1.10 otd$deallocate Field

This field points to a deallocate procedure. The deallocate procedure is called in kernel mode at IPL
0 with the allocation mutex acquired. The address of the object body to be deallocated is passed as
an input parameter.

The deallocate procedure has the following type declaration:

obj$object_deallocate procedure :
PROCEDURE (
IN object_body : POINTER anytype CONFORM;
IN allocation_object_hdr : POINTER e$object_header;

)z

The procedure obj$null_deallocate_procedure is provided for use by object types which do not have
an deallocate procedure.

1.3.1.11 otd$remove Field

This field points to a remove procedure. The remove procedure is called when an object’s object ID
count field is decremented to 0. It is called in kernel mode, at IPL zero. It is passed two arguments,
the address of the object body and the mode (user or kernel). ‘

The remove procedure allows the object type-specific procedure to perform any necessary actions now
that the ID of the object is removed. Once object ID count field is zero, it is impossible for a user to
translate an object ID which points to this object.

The remove procedure has the following type declaration:

obj$obj_remove procedure :
PROCEDURE (
IN object_body : POINTER anytype CONFORM;
IN access mode : k$processor_mode;

Y

The procedure obj$null_remove_procedure is provided for use by object types which do not have a
remove procedure.

14 Object Architecture

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

1.3.1.12 otd$delete Fleld

This field points to a delete procedure. The delete procedure is called when an object’s pointer count
ﬁﬁld is decremented to zero. It is called in kernel mode at IPL zero. It is passed the address of the
object body.

The delete procedure is responsible for manipulating object type-dependent data structures and deal-
locating the storage allocated for the object body extensions.

The delete procedure has the following type declaration:

obj$obj_delete_procedure :
PROCEDURE (
IN object _body : POINTER anytype CONFORM;
):

The procedure obj$nwl_dekwjroadwe is provided for use by object types which do not have a delete
procedure.

13.1.13 otd$shutdown Field

This field points to a shutdown procedure. The shutdown procedure is called once when an object
type is permanently removed frora the system (presumably at system shutdown time). It is called by
the executive in kernel mode at IPL 0 with ASTs enabled. The purpose of this routine is to provide
a way to perform object type-specific shutdown operations. Among other things, this provides the
opportunity to dump any statistics that may have been gathered relating to the object type.

The parameters passed to this routine include the address of the OTI. and the address of a callback
routine that can be used to output information to a shutdown log file. This routine must be provided
even if it simply returns without performing any actions.

The shutdown procedure has the following type declaration:

obj$obj_shutdown procedure :
PROCEDURE (
IN otd hdr : POINTER eSobject header;
IN log procedure : e$log procedure;
);

The procedure obj$null_<kutdown_procedure is provided for usé by object types which do not have a
shutdown procedure. procedure. .

1.4 Object Header

The object header is a fixed-format data structure that contains object type-independent data. This
header is used by the executive without necessarily knowing the type of object it is accessing.

eSobject_header : RECORD
objhdr$pointer_count : integer;
objhdr$object_id count : integer;

objhdr$type : eSobject_type;
objhdr$otd : POINTER e$object _header;
objhar$iink : e$linked_list;

objhdr$container : POINTER e$object_header;
objhdr$level : e$level;

objhdr$index : e$index;

objhdr$seq number low : e$seq_number;
objhdrSseq_pumber_high : e$seq_number;

Object Architecture 15

Digital Equipment Corporation - Confidentlal and Proprietary
For internal Use Only ’

objhdrsdispatcher_object : POINTER anytype CONFORM; !4 POINTER ksdispatcher_objec';
objhdr$name : POINTER e$object name block; '
objhdrSowner : e$identifier;
objhdr$acl : POINTER e$access_control_list;
objhdr$allocation_block : POINTER e$object_allocation block;
objhdr$access mode : k$processor_mode;
objhdrstransfer_flag : bit; ! 0 - transfer not allowed
! 1 - transfer allowed
objhdr$reference_inhibit flag : bit; ! 0 - reference ids allowed
! 1 - reference ids not allowed
objhdr$temporary flag : bit; ! 0 - permanent
. ! 1 - temporary
objhdr$temporary_operation : bit; ! 0 - make temporary
! 1 - mark temporary
END RECORD;

1.4.1 Object Header Data Structure

Each of the fields in the object header are defined to be either static or dynamic. If a field is defined as
static, its value is established during object creation, and remains constant for the life of the object.
Static fields may be accessed any time the pointer count field has a nonzero value (see the description
of the objhdr8pointer_count field in Section 1.4.1.1). However, if a field is defined to be dynamic, it
is subject to modification. Access to dynamic fields is controlled by a protocol that is specific to each
field. The specific protocol indicating when each dynamic field may be accessed is defined w.t. the
description of the field.

1.4.1.1 objhdr$pointer_count Fleld (Dynamic)

Whenever an access to an object will span a period of time that can not be protected by use of mutex
locks on appropriate data structures, the pointer count field must be incremented. In particular, an
address of an object may not be used to regain access to the object unless the pointer count has been
previously incremented.

The pointer count represents the number of pointers that have been taken out on the object, plus
one for a nonzero object ID count. When an object ID is translated by an object service routine, the
pointer count is incremented by one. The pointer count for an object signifies the number of reasons
the storage for an object should not be deallocated.

To increment this field, the directory-level mutex must first be held (see Section 1.5.3.4, below). This
is necessary to avoid race conditions with the object ID being deleted.

When an object ID, object container pointer, or reference object ID is deleted, the object ID count of
the principal object is decremented. If the resultant object ID count is zero, the object type-specific
remove routine is called to initiate any object specific removal action such as canceling I/O. A zero
object ID count also causes the pointer count to be decremented, as does the dereferencing of a pointer.
When the pointer count of an object reaches zero, the object type-specific delete routine is called, and
the object header storage is deallocated.

Note, if the object ID count is zero then no object container has a pointer to that object header.

One of the major goals of the lock strategy for objects is to allow the pointer count to be decremented
(using the RMALI instruction) without having to hold a lock to do so. This allows low overhead
dereferencing of objects on such operations as VO, wait, and the deleting of a reference object.

If the pointer count is zero and the object ID count is nonzero, a bug check is issued.

13 Obiject Architecture

Digital Equipment Corporation - Confidential and Proprietary

Figure 1-4: Object Header Format

For Internal Use Only

OBJHDRSPOINTER_COUNT (Pointer Count)

OBJHDRS$OBJLC? _IL_COUNT (Object ID Count)

OBJHDRSTYPE (Object Type)

OBJHDRS$OTD (Object Type Descriptor)

OBJHDRSUINK (Linked List)

OBJHDRS$CONTAINER (Container)

OBJHDRSLEVEL (Level)

OBJHDRSINDEX (Index)

OBJHDR$SEQ_NUMBER_LOW (Sequence Number)

OBJHDR$SEQ_NUMBER_HIGH (Sequence Number)

. OBJHDRS$DISPATCHER_OBJECT (Dispatcher Object)

OBJHDRSNAME (Name)

OBJHDRSOWNER (Owner)

OBJHDRSACL (ACL)

OBJHDRS$ALLOCATICN_SLOCK (Aliocation Block)

OBJHDRSTEMPORARY_
OPERATION

OBJHDR$ACCESS_MODE OBJHDRSTRANSFER_FLAG
(Access Mode) (Transter Flag)

OBJHDRSREFERENCE _
INHIBIT_FLAG

OBJHDRSTEMPORARY _
FLAG (Temporary Flag)

OBJECT BODY

1.4.1.2 objhdr$object_id_count Fleld (Dynamic)

The object ID count represents the number of object IDs or container directory index table pointers
that can be used to refer to the object. For all objects except container objects, this is the number of
object IDs that refer to the object. For container objects, this is the number of container directories
that can refer to this object container (note that the object ID itself is not counted). Hence, for object
containers, the object IL count is one unless the container is a display container.

Object Architecture 17

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

) bT:xe object ID count signifies the number of reasons that the remove action for an object should not
invoked. '

If an object is marked as temporary (as discussed in Section 1.4.1.18, below), then it must have at
least one reference to it.

To increment this field, the mutex field of the object container in which the object resides and the
directory-level mutex must first be acquired (see Section 1.5.3.4, below). This is necessary to ensure
that the object cannot be deleted while another reference is being established.

Note that this field is never directly incremented or decremented; the executive routines for object
support operate upon this field.

1.4.1.3 objhdr$type Fleld (Static)

This field contains the integer value of the object type. When an object ID is translated to an object
header, the type field is compared to the desired object type.

1.4.1.4 objhdr$otd Field (Static)

The object type descriptor field contains a pointer to the object type descriptor (OTD) for this particular
object type. The executive and the object type’s service routines use this field to use information or
routines associated with the OTD. Note that there is exactly one OTD per object type defined in the
system.

The OTD is described in detail in Section 1.3.1.

1.4.1.5 objhdrslink Field (Dynamic)

This field contains the forward link to the next object header of this type, as well as the backward
link to the previous object header of this type. It is used for debugging purposes.

1.4.1.6 objhdr§container Field (Dynamic)
The container field is a pointer to the object container in which the object resides.

This field is dynamic only because th= object may be transferred to a new object container. Such a
transfer would result in the assignment of a new object ID. This field is zeroed when the principal
object ID is removed from its object container.

This field may only be accessed by a thread holding both the directory level mutex and the mutex
within the object container.

1.4.1.7 objhdr§ievel Field (Dynamic)

The level (system, job, process) at which the object’s principal ID exists. This field is unaffected if
the principal ID is deleted.

1.4.18 objhdr$inder Field (Dynamic)

This field is the index into the object array of the container object specified in the container field for
this object.

This field is dynamic only because the object may be transferred to a new objeci container. Such a
transfer would result in a new object ID being assigned. This field may only be accessed by a thread
holding both the directory-level mutex and the mutex within the object container. '

18 Object Architecture

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only
14.1.9 objhdr$seq_number_low and objhdr$seq_number_high Fields (Dynamic)

When an object ID is translated into the address of an object, the value in the object ID’s sequence
field is compared to the value in the object header’s sequence field. If they are not identical, then the
object ID has been reallocated, and the one specified for translation is no longer valid.

This field is dynamic only because the object may be transferred to a new object container. Such
a transfer would result in the assignment of a new object ID. This field may only be accessed by a
thread holding both the directory-level mutex, and the mutex within the object container.

Note that it is possible to construct the object ID given an object header. Two parts of the object ID
are in the object header, the sequence number and the object index. The container field points to the
object header of a container. The index field in that container is the directory index. The level value
in the container directory body is the level portion of the ID.

1.4.1.10 objhdr$dispatcher_object Fieid (Static)

If the object type allows wait operations this field points to the dispatcher object to be used in the
kernel wait operation. If the object type does not support the notion of wait, this field has the value
nil.

1.4.1.11 objhdr$name Fleld (Dynamic)

This field is used to associate a name string with an object. If the object has an associated name,
this field contains a pointer to an name definition block which contains the name. Otherwise, this
field has a value of zero.

When the object ID is deleted, the associated name, if any, must also be deleted.

The level directory, the object container, and the type-specific mutex must all be acquired in order to
modify this field. '

See Section 1.5.5 for a complete description of how object names are managed.

1.4.1.12 objhdr$owner Field (Static)

The identifier of the owner of the object. This field is used by the security access validation routines.
For more information see Chapter 11, Security and Privileges.

1.4.1.13 objhdr$acl Fleld (Dynamic)

The format and use of this field is defined in Chapter 11, Security and Privileges.

This field is a pointer to the ACL for the object. A value of nil indicates that no ACL exists for the
object.

1.4.1.14 objhdrgallocation_block (Dynamic)

The field is used by the object translation routines to ensure that the thread has access to the object.
In order to translate an object ID to an object header, the requesting thread must have access to the
object as determined by the ACL, and must be in the allocation class of the object. Object allocation
and allocation classes are discussed in Section 1.8.

The allocation mutex and the type mutex must be acquired in order to modify this field.

Object Architecture 19

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.4.1.15 objhdr$access_mode Fleld (Static)

This field contains the owner mode (kernel or user) of the object. Kernel-mode objects may not be
created in user owned containers. Mode is also used to verify access to the object by the access
validation procedures as described in Chapter 11, Security and Privileges.

1.4.1.16 objhdr$transfer_action Field (Static)

When clear (false) this flag indicates that the object cannot be transferred to another container. The
transfer action field state is determined at object creation from the transfer state flag in the OTD.
This flag is examined when an attempt is made to transfer an object using the execSmake_temporary
service or job/process creation services.

Transfer action is discussed in Section 1.7.8.

1.4.1.17 objhdr$reference_inhibit Field (Dynamic)
When set (true) an attempt to create a reference ID to this object results in a failure.

14.1.18 objhdr$temporary_fiag Field (Dynamic)

When set, this tlag indicates the object is a temporary object. A temporary object has the property that
when all reference objects to the object are deleted, then the object itself is also deleted. The ¢ ore,
when the object ID count field is decremented to one, this field is checked. If it is set, then object
deletion may be invoked. See Section 1.7.7 for more information.

The level directory, the object container, and the type-specific mutex must all be acquired in order to
modify this field. :

14.1.19 objhdrStemporéry_operatlon Fleld (Dynamic)

This flag describes the type of operation that was used (make temporary or mark temporary) to make
the object temporary. This flag is only meaningful when the objhdr$temporary_flag is set.

142 object_body Record
The purpose and use of \.1is record is left to the designer of a particular object type.

The object_body record is used to store object type information. The format and meaning of fields
within this record are entirely the responsibility of the object’s designer. It is also up to the designer
of the object type to define the protocols for accessing various fields within this record.

In many cases, the object_body record can be allocated in a single block (with the object header) and
is sufficient to hold all the object type-specific information associated with an object. Certainly this
is true for simple objects like events. For more complex objects, like object containers, it may be
necessary to have other data structures associated with the object.

The content and management of these additional data structures is entirely the responsibility of the
object’s designer. They must be connected in some fashion to the object_body record so that they are
deleted when the ohject, is deleted.

Object bodies are allocated from paged or nonpaged pool. If the object body contains any kernel
dispatcher objects or kernel control objects it must be allocated from nonpaged pool.

Object bodies should riot contain the object IDs of any objects. If a need exists to refer to another
object a pointer to that object’s body should be used. This prevents dependencies on other object IDs
being valid.

20 Object Architecture

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only
1.5 Object Container Data Structures
Object containers are objects. Therefore, their primary data structures are:
¢ Object container object type descriptor (OTD)
¢ Object container object header
¢ Object container body
To track objects and their associated names, object container bodies have two primary associated
data structures. These data structures are:
¢ Object array
¢ Name table

Figure 1-5 illustrates the relationships between these object container data structures.
Figure 1-5: Object Container Data Structure Relationships

OBJECT CONTAINER
oTD

OBJECT ARRAY

STANDARD

OBJECT
HEADER NAME TABLE

OBJECT
BODY

In addition to these data structures, object names are stored. in name definition blocks.

\The exact data structures used to support object rna.ics, and is subject to change following perfor-
mance analysis yet to be performed. The algorithms for manipulating the ultimate data structures
will have to be implemented to match the data structures, and so, are also subject to change.\

The aspects of the current design that are not expected to change are:

* The name field of the object header points to a data structure containing the case-sensitive name
of the object. This pointer provides the link necessary to delete the object name when the object
is deleted.

* A field in the object container body (currently called the name table field) is used to locate the
name management data structures for name assignment and translation purposes.

Object Architecture 21

Digital Equipment Corporation - Confidential and Proprietary
For Internai Use Only
1.5.1 Container Directorles as Compared with Object Containers

Container directories are similar in structure to object containers. The object header is the same,
except for type, and the object body is nearly identical. The only differences are:

* Container directories do not have a mutex in their object bodies.
* Only container directories have a display index field.

There are some restrictions placed on the container directory that are enforced by the executive object
manipulation routines. They are:

® The only objects that can be pointed to by (contained within) a container directory object are
object containers.

* The only names that can be stored in a container directory are the names of the object containers
that are pointed to by the container directory and logical names.

1.5.1.1 Object Container OTD Remove Procedure

When an object container is deleted, the OTD remove procedure removes the ID of each object within
that container by calling the routine obj$remove_obj_from_container.

1.5.2 Object Container Object Header

The fields of the object container’s object header are initialized and used as defined in Section 1.4.
Note that the object container is an object, and is pointed to by the first pointer in the object index
table.

Also, the object index field of the object header has a value of zero for a container directory. Ob-
Jject containers contain the value corresponding to the object index array element in the container
directory, which points to this object container.

The following restrictions exist for object containers:
® An object container (or container directory) cannot be allocated.
* An object container (or container directory) cannot be temporary.

1.5.3 Object Container Body
The format of the object container’s body is shown in Figure 1-6.
Figure 1-6: Object Container Body Data Structure

CONSOBUTBL (Pointer to Object Aray)

CONSOBJNAMTBL (Pointer to Name Table)

CONDIRSNISPLAY_INDEX (Display index - found only in container directories)

OBJCONSMUTEX (Mutex ~ Found only in object containers)

The purpose of each of these fields is described below.

The object array field is a pointer to the object container’s object array. The object array is described
in Section 1.5.4, below.

22 Object .Archltecture

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Note that the first object pointer of this table points to the object header for this container.

1.5.3.1 con$obijtbl Fleld
This field contains a pointer to the object array.

1.5.3.2 con$objnamtbi Fleld (Static or Dynamic, Depending on Implementation)

The name table field is a pointer to the table used to translate names for objects and logical names
in this object container. The name table is described in Section 1.5.5, below.

1.5.3.3 condir§display_Index Fleld (Static)
This field is only in the container directory.

The purpose of the display index field supports the capability of a process to access objects in its
ancestors’ display object containers (as discussed in Section 1.2.6.5).

The first element in the object array (element 0) always points to its own object header.

In all cases except process level, the second element (element 1) always points to the first object
container for that level. In these cases, the display index field contains the value one.

However, for process level container directories, the process’s ancestors’ display containers are pointed
to by the second through nth elements (elements 1, 2, 3, etc.). In this case, the display index field
contains the element number cor.*aining the current process’s display object container. This element.
is then followed immediately by private process object containers. Figure 1-7 illustrates the use of
the display index field in a process level container directory.

Object Architecture 23

Digital Equipment Corporation - Confidential and Proprietary
For Internai Use Only

Figure 1-7: Container Directory Header Display Index Field Usage

CONDIRSDISPLAY_INDEX Field

Object Array

0 I Pointer to this container's directory header

1 Pointer to display container of grandparent process

Pointer to dispiay container of parent process

= 3 | Pointer to dispiay container for this process

Pointer to private container for this procees

see b

Other process level private object containers

1.5.3.4 objcon$mutex Field (Static)

The mutex field is a kernel mutex which is operated on by issuing calls to procedures within the
kernel. These procedures are described in Chapter 6, The Kernel.

This mutex is used to synchronize access to certain fields in the object header.

1.5.4 Object Array Data Structure

The primary function of the object array is to hold a pointer to each created object in the object
container. The format of the object array is shown in Figure 1-8.

The purpose of each of these fields is described below.

1.5.4.5 objtbi$Smax_index Fleld

This field indicates the current length of the object array by providing a count of the number of
elements in it minue ore. The value in this field is the maximum valid array index value.

This field value has an architectural limit of 1,048,575 (20 bits).

24 Object Architecture

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Figure 1-8: Container Object Array Format

OBJTBLSMAX_INDEX (Object Array Length)

OBJTBLSCOUNT (Count)

OBJTBLSNEXT_=RIE ‘Next Free)

OBJTBLSTABLE (Object Array):
-

Figure 1-9: Address of Object Header
31 0

ADDRESS OF OBJECT HEADER

1.54.6 objtbiScount Fleid

This field is initialized to 1 when the object container is created, to represent the fact that this object
container ID is in the array. It is then incremented each time an object ID within this object container
is created. Similarly, it is decremented when an object ID in this object container is removed from
the container as part of deletion.

1.5.4.7 obijtbiSnext_free Fleid

When created, an object container has a pointer to itself as the first element of the object array, and
the remaining elements are free (unused). To facilitate quick allocation of free object array elements,
they are organized into a linked "free list".

The next free field is the listhead of the free list, and contains the index of the next object array
element to be allocated. The free list link field of the first element contains the index of the second,
which contains the index of the third, and so on. The last element has a free list link value of zero
to indicate the end of the list has been reached.

1.5.4.4 objtbiStable Fleid (Object Array)

Object array elements are used for two purposes. First, each object in the object container has an
element in the object array that is associated with it. Such an element contains a pointer to the
header of the object. In this case, the object element is referred to as "in use.” The format of an object
array element when it is in use is discussed below.

As discussed in Section 1.2.4, each time an object ID is allocated, it receives a new sequence number.
This sequence number high field is associated with an object array element, and is stored within the
element when the element is not in use. When the element is in use, the sequence number is moved
to the sequence high field of the associated object’s header. When the object is removed from the
object container, the sequence number is incremented, reset to zero on overflow, and moved back into
the object array element.

Object Architecture 25

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Figure 1-10: Free Object Array Element Format

31 30 29 20 19 0
8 |¥] omsTBLENTSSEQ_NUMBER OBJTBLENTSFREE_LIST_LINK
z|z (Sequence Number High) (Free List Link)

The format of a free object array element is:

The free list link field is used to link all unused object array elements together on a single list for
quick allocation (as discussed in the next section).

Notice that the most significant bit (MSB) of ooject array elements may be used to determine whether
the element is currently in use or free. If the MSB is 1, then the element contains an address in
system address space and the element is currently in use. If the MSB is 0, then the element is
currently free and contains the next sequence number to use and a link to the next element on the
free list.

Object array element index values begin at 0 and extend to the value in the objtbl$max_index field.

1.5.5 Name Table Data Structure
The purpose of the name table is to track both logical and object names within an object container.

When an object container is created, a name table must also be allocated, and the address of the
name table must be stored in the name table field of the object container’s body. The name table
contains both object names which translate to an object ID and logical names which translate to an
equivalence string.

The name table provides for a mechanism to translate names to name definition blocks. The actual
implementation details of the name table need not be defined, only the functions provided by the
name table are necessary. For example, the name table could be implemented as a hash table or a

binary tree.

1.5.5.1 Name Definition Block

The name definition block contains information describing the name associated with a particular
object or logical name. This information includes the type, mode, object ID, and other information
about the name. .

1.5.6 Object Naming Principles

Names are qualified by object type and mode. The combination of object type, mode, and name string
is unique within a single object container. ‘

For example, you can have two widget objects named SYS$ZEBRA in a single object container, but
only if one is a user-mode object, and the other is a kernel-mode object. Likewise, you can have two
user-mode objects named DEVICE_CONTROL in the same object container, but only if they have
different object types.

Object names are limited to 255 characters in length. All object names are stored exactly as received
(that is, case-sensitive) and may be looked up (translated) either case-sensitive or case-blind.

When a case-sensitive name translation is requested, either one or zero object IDs is returned. How-
ever, when a case-blind name translation is requested, many object IDs may match the name. To
illustrate this, consider two objects, one named "pQr” and the other named "pqR". If a case-sensitive
translation of "PQR" is requested, no object IDs is returned. If a case-blind translation of the same
string, "PQR”", is requested, then only the first name found which matches is returned.

26 Object Architecture

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

Software which intends to use the case-blind feature of name translation is responsible for ensuring
consistency. For example, all names strings could be converted to upper case before calling the object
service routines. This prevents multiple names from matching in a case-blind search.

1.5.7 Naming

Names are used io the object architecture to label objects and equivalence strings. The same naming
mechanism is used when a name is applied to either an object or an equivalence string. The only
difference is the translation of an object name yields an object ID, while the translation of a logical
name yields an equivalence string.

A name, like an object, exists within an object container. It is further qualified by the type of the
object it names (logical names have the special object type of 0), and the mode in which it was created
(user or kernel).

Through use of object name translation services a name can be searched for in any object container to
which the user has access. The object name translation services provide recursion. See the description
of exec$translate_object_name for more details.

The logical name translation services do not automatically provide recursion, rather it is the respon-
sibility of the facility using the logical name translation services to provide for recursion, search lists,
and parsing. This allows for a facility such as RMS to have different logical name evaluation rules.

1.5.7.1 Logical Names

Logical names are names that translate to equivalence strings. Each logical name can have up to 127
equivalence strings. The term "multivalued logical name" means a logical name with more than one
equivalence string. Each equivalence string can be up to 255 bytes in length, and each equivalence
string can have any, all, or none of the following attributes: :

* Terminal—The equivalence string is not to be subjected to further logical name translations.
* Concealed—The application should not return the equivalence string to the user.

Logical names can have the following attributes:
* No show—The logical name should not be displayed in general show logical name services.

® No alias—The logical name cannot be duplicated in this table at an outer access mode. If another
logical name with the same name already exists in the table at an outer access mode when a
new logical name with no alias is created, it is deleted.

* Confine—The logical name is not copied from the process to its spawned subprocesses. This
applies only to logical names at the process level in private object containers.

1.5.7.2 Object Services Providing Name Support

The following object services provide generalized name support.
* exec$set_object_name

* exec$translaic_object_name

* exec$clear_object_name

* exec§create_logical_name

* exec$translate_logical_name

* exec$delete_logical_name

These routines are described in the Internal System Services Manual.

Object Architecture 27

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

1.5.7.3 Container Directory Names

The three container directories to which the process control block points are named. The process
container directory is named exec$process_container_directory, the job container directory is named
exec$job_container_directory, and the system container directory is named exec$system_container_
directory.

Each of the container directories has a name table (see Figure 1-2). This name table contains object
container names wuicn ranslate to the ID of an object container, and logical names, which translate
to equivalence strings. When an object container is created, the name, if specified, is stored in the
container directory’s name table.

By creating "multivalued” logical names in the container directory name table, a search list for object
containers can be created.

1.5.8 Object Name Translation

Object name translation involves taking a specified name and object type, and returning the related
object ID (if any). The name table performs this function such that given a name, all name definition
blocks containing that name are searched for the specified type.

The executive object support routine obj$translate_object_name provides the mechanism for object
service routines to translate an object name to an ID. :

PROCEDURE obj$translate object_ name (
IN container_id : e$object_id;
IN name : string (*):
IN object_type : eSobject type;
IN access _mode : k$processor_mcde;
IN case blind : boolean;
OUT object_id : e$object_id;
) RETURNS STATUS;
By specifying an OBJECT_TYPE of zero, the first object found which matches the name is returned.
obj$translate_object_name performs the following:
1. Acquires the directory-level mutex.

2. Translates the ID c* the object container to a pointer to an object header and check access for
read.

3. Ensures that the object header is a container or a directory.
Acquires the container mutex and releases the directory mutex if the object type is container.

5. Looks up the specified name in the container name table that matches the specified object type
and mode.

6. Raises an error condition if the specified name is not found.
7. Returns the object ID which corresponds to the name if the name is found.
8. Releases the mutex.

28 Object Architecture

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Oniy

1.5.9 Initializing a Process Level Container Directory

. Container directories at system and job levels are always initialized to be empty (that is, they initially

do not point to any object containers other than themselves). Container directories at the process level,
however, must be initialized so that all of the process’s ancestors’ display containers are accessible.
Also, in order to preserve the object ID of objects in its ancestors’ display containers, it is necessary
that they be pointed to by the same object array element in each process’s container directory. To
achieve this, process-display object containers are always the second through nth entries of a process
level container directory.

A new process level container directory is initialized by copying elements starting at element one,
and continuing through the value specified in the display index from the parent process’s container
directory. These entries are followed immediuately by the new process’s display and then private object
containers. Figure 1-11 illustrates the initialization of a new (child) process’s container directory.

Figure 1-11: Process Level Container Directory Initialization

CONTAINER DIRECTORY: PARENT PROCESS CONTAINER DIRECTORY: CHILD PROCESS

CONDIRSDISPLAY_INDEX CONDIRSDISPLAY_INDEX
(Dispiay Index) (Display Index)
asw [N B |
POINTER TO SELF 0 POINTER TO SELF 0
PARENT'S DISPLAY 1 — GRANDPARENT'S DISPLAY 1
e OWN DISPLAY 2 ——— PARENT'S DISPLAY 2
PRIVATE 3 e | OWN DISPLAY 3
OTHER CONTAINERS 4 PRIVATE 4
|
|]
[]

In this example, the condir$display_index field of the panerit’s container directory indicates the last
object container which must be copied to the new process’s container directory. The new process’s
condir$display_index field is then updated to point to its own display container.

If the user deletes a display container, the table element within the container directory that pointed
to the display container cannot be reused. If this were allowed, a private container could be copied
as a display container.

1.5.10 System Global Variables and Data Structures

This section identifies the system global variables and data structures required to support the object
architecture. The data structures that are accessible via known system locations include:

* System level container directory (see Section 1.2.8)
¢ System level directory mutex (see Section 1.2.6.2)
¢ Allocation mutex

Object Architecture 29

Digital Equipment Corporation - Confidential and Proprietary
For Internail Use Only

1.5.10.1 OTD Objects

Each object of type OTD is created in a reserved system level object container. When a set of object
services for an object type is loaded, the object service image is called at its initialization entry point.
During the initialization operations, the corresponding OTD object must be created by calling the
obj$create_otd service. - -

The obj$create_otd ;;mcedure has the following declaration:

PROCEDURE obj$create__otd (
OUT otd object_id : exec$object_id;
IN object item list : ITEM LIST CONFORM OPTIONAL;
IN transfer state : boolean;
IN dispatcher offset : integer:;
IN shutdown procedure : PROCEDURE e$shutdown _procedure;
IN remove procedure : PROCEDURE obj$remove_procedure;
IN delete_procedure : PROCEDURE obj$delete _procedure;
IN allocate procedure : PROCEDURE obj$allocate _procedure;
IN deallocate procedure : PROCEDURE obj$deallocate_procedure;
OUT otd_value : integer;
)z '

At system shutdo;n, the operating system searches the OTD object container to locate each object
type: .

Each object type is unloaded by:

1. Setting the OTD’s create disable flag (to prevent additional objects of that type from being cre-
ated). N

2. Calling the shutdown routine specified in that object type’s OTD when all objects of a particular
type have been deleted.
1.5.10.2 Aliocation Mutex

The allocation mutex is a system-wide mutex which is acquired when an object’s allocation is checked,
modified, or deleted.

1.6 Relative Ordering of Object Architecture Mutexes

The following lists illustrates the relative ordering of object architecture mutexes. The mutexes are
listed in order of lowest value to Lighest value.

Process level container directory mutex

¢ Process level object container mutex

* Job level container directory mutex

¢ Job level object container mutex

* System level container directory mutex
¢ System level object container mutex

* OTD type mutex)

* Allocation mutex

30 Object Architecture

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.7 Object Creation
1.7.1 Creating an Object

Each type of object is supplied with one or more service routines which create the object type. For
example, a FRAMITZ object might be created with a create _framitz object service.

Object creation routines should have the following procedure declaration:

PROCEDURE execS$create xxxxxx (!where xxxxxx is the object name
OUT xxxxxx id : exec$object_id;
IN object_independent_items : exec$obiject _parameters CONFORM OPTIONAL;
IN object_dependent_items : exec$item list CONFORM OPTIONAL;
) RETURNS STATUS;

The object independent items consist of the following:

® Object ID of object container in which the new object is to be created
* Name to associate with the object

® Access control information

The format anc processing of object ownership and access control information is discussed in Chapter
11, Security and Privileges.

In addition to these standard parameters, object creation services may accept type-specific parame-
ters. For example, an event creation service may accept an initial state of the event, The name of
an object creation routine and the parameters allowed by that routine are specified by the designer
of the object type. .

1.7.2 Object Names

When creating an object, it is possible to assign a character string name to the object. This is
particularly useful for objects that are to be shared. It allows one process to create an object (assigning -
it a name) and then, sometime later, another process can locate and access the object via its name.

Also, object names provide "create if” semantics. An attempt to create an object of same type, mode
and name in the same container will fail, but the ID of the object which had the same name, type
and mode is returned as is a warning status code.

1.7.3 Create Object Algorithm

The user calls an exec$create_object service specifying the container ID, ACL, returned object ID, and
optionally a name. Other object type-specific arguments may be required.

Every create object service performs the following steps:.
1. Probes the user’s arguments.
2. Calls objcreate_initialize_object passing in the following:
® Object ID of OTD object
* Pool type (paged or nonpaged)
* The number of bytes of storage to allocate with the object header for the object body
¢ The object name, if any
* Ownership mode (kernel or user)
e ACL
¢ Transfer flag state

Object Architecture 31

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

The obj$create_initialize_object routine locates the specified object type and allocates the storage.

At this point the object header has been created and initialized. The pointer count field is one,
the object ID count and the container fields are zero.

3. Initializes the object body. This action is object type-dependent, for example, if the object supports
waiting, a call to k$initialize_xxxx, where xxxx is a dispatcher initialization routine, is issued.

At this point the object has been created but has no ID.

4. Attempts to add a pointer to the object header in the specified object container by calling
objdinsert_object_into_container with the address of the object header, the container ID, the
mode, and the object ID to be returned. '

obj$insert_object_into_container does the following:
® Acquires the specified directory-level mutex.

* Translates the ID of the object container to a pointer to an object header, and checks for
write access. Ensures that the object header is a container.

* Checks the transfer state of the container. If the container is transferable, and the object is
not transferable, objfinsert_object_into_container returns an error status to the caller.

® Acquires the container mutex.
* Releases the directory mutex.

* If an object name was specified, obj$insert_object_into_container checks to see if the same
name already exists within this container with the same type and mode. If a name conflict
occurs, obj$insert_object_into_container calls the OTD delete routine, releases the container
mutex, and returns the ID that corresponds to the collided name.

* The next free field in the object container’s body is examined.
— If the next free field is nonzero obj$insert_object_into_container does the following:

* Removes the element specified in the next free field from the free list, and creates
a new next free element.

* Constructs the sequence number high field by using the value found in the object
array, stored in the object header, and the address of the object header is stored in
the element.

* Constructs the object ID from the element number, the sequence number high, a
random 10-bit number for the sequence number low, and the object index field of
the object container.

The object header is completed.

* Sets the object ID count to 1, the container field points to the header of the object
container, and so on. ,

* Increments the create count field in the OTD for this object type using the RMALI
instruction.
* Increments the total ID field in the object container.
* Releases the object container mutex, and returns the object ID to the user.
— If the next free field is zero, obj$insert_object_into_container does the following:

* Checks some resource quota to see if the object container can be expanded. If
the object container cannot be expanded, obj$insert_object_into_container calls the
OTD delete procedure. The container mutex is released, and a container full error
is returned to the user.

32 Objeci Architecture

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only
* Allocates a new (larger) object array data structure.
* Copies the contents of the old object array to the new object array.

* Links all new object array entries beyond the length of the old object array into
the free list.

* Sets the new object array’s length.

* Changes the object array field in the object container to point to the new object
array.

* Deallocates the old object array data structure.
* Creates the object ID as in the above case with a nonzero objtbl$next _free field.

At this point, if the object header is successfully added to the specified object container, both
object ID count and pointer count fields contain the value one.

5. Adds the name, if any, to the object container name table. The container, the sequence number
and object index fields are initialized.

6. Returns the object ID and status to the user.

If an ID cannot be created, the object type-specific delete procedure found in the OTD is invoked.
Note that the container field and object ID count in the object’s header were zero prior to the object’s
deletion. An error status is returned.

Once the object has been inzertod in the specified container, the object creation routine may not
reference the object body without calling the obj$reference_object_by_id routine. '

The following status values could be returned from objdinsert_object_into_container:
* Invalid object container—Returned object ID is set to zero (error).

* Container full—Returned object ID is set to zero (error).

* Resource limit exceeded—Returned object ID is set to zero (error).

* Name collision—Returned object ID is set to the ID of the object with the same name and type
(warning).

* Success—Returned object ID points to newly created object.

These rules cause all objects to be created in a uniform way. If two users attempt to create an object
in the same container with the same name, type, and mode, only one is created, yet both users get
returned a valid ID. One user gets a success code indicating the object was created, the other gets a
warning code indicating the object already exists.

1.7.4 Object Modes

When creating an object, its mode (user or kernel) is established. Any object creation routine which
is called from user mode creates a user-mode object.

Object creatic.. rouiines which are called from kernel mode allow the mode to be specified as an
argument. Object se_ e rcatines that are called from user mode have the argument supplied by
the jacket routine, which calls the corresponding entry point of the routine with the mode argument
supplied.

This capability allows executive software to create objects that are either inaccessible to user mode
or cannot be deleted from user mode.

Note that it is not possible to create an object owned by kernel mode in an object container owned
by user mode. If this were allowed, the user would be able to delete the kernel mode object ID by
deleting the container.

Object Architecture 33

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

1.7.5 Object Access Protection

Object access protection is provided by a combination of user identifiers and access control lists
(ACLs), and mode (user or kernel). This access protection information is stored for each object in its
object header, and is processed by system-wide access validation routines without taking the object
type into consideration.

Each object service routine is required to request access validation each time an object is accessed.

The exact format of the access protection information and procedures for performing access validation
are provided in Chapter 11, Security and Privileges.

1.7.6 Object ID Transiation

The executive procedure obj$reference_object_by_id provides translations from an object ID to a
pointer to an object body. The procedure has the following declaration:

PROCEDURE obj$reference object by id (
IN object_id : e$object_id;
IN object_type : e$object type;
IN access mode : k$processor _mode;
IN desired_access : e$access_type;
OUT object_body : POINTER anytype CONFORM;
) RETURNS STATUS;

In order to translate an object ID to the address of the associated object, obj$reference_object_by_id
performs the following steps:

1. Uses the level number as an index into the process control block to locate the corresponding level
directory mutex.)

2. Acquires the directory mutex.

3. Uses the level number as an index into the process control block to locate the corresponding
container directory.

4. Compares the container directury index field to the size of the table to ensure that index is within
the object array.

5. Uses the container directory index field to index into the object array.
6. Checks the resulting value to ensure that it is the address.
7. Uses the resulting system address to locate the object container header for the object container.

8. Compares the object index field to the size of the table to ensure that index is within the object
array.

9. Uses the object index field to index into the object array.
10. Checks the resulting value to ensure that it is the address of an object.
At this point, the address found in the object array is the address of the object header.

11. Compares boih sequence number fields in the object header to the sequence number fields in the
object ID. If they ave nc. identical, that object ID is not valid.

12. Checks the object type to ensure this object is of the desired type.
13. Validates the intended access to the object by calling the security procedure e$validate_access.

14. Releases the directory mutex and returns the error status indicated by e$validate_access to the
user if access is denied.

15. Does not validate allocation access if the intended access is show.

34 Object Architecture

16.

17.

18.

19,

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

Checks to see if the object is allocated by examining the allocation information field in the object
header.

If the allocation information field is not nil, then obj$reference_object_by_id performs the follow-
ing steps: '

¢ Acquires the allocation mutex.

® Checks the :ll-cation information field in the object header again. If the field is nil,

obj$reference_object_by_id releases the allocation mutex and continue as if the field was
always nil.

* Checks to ensure that the current thread is within the allocation class by calling the proce-
dure e$validate_allocation.

* Releases the allocation mutex.

* Releases the directory mutex, and obj$reference_object_by_id returns the error indicated by
eSvalidate_allocation to the user if allocation does not match.

Increments the pointer count field in the object header so the object cannot be deleted while a
pointer to the object is held.

Releases the directory mutex, stores the pointer to the object bodj, and returns to the caller.

1.7.7 Object Deletion
The user calls the execdelete_object_id service specifying the object ID of the object to delete.
The exec$delete_object_id routine performs the following steps:

1.
2.

Probes the user’s argument.
Calls obj$remove_obj_from_container with the source ID and the mode of access.

The obj$remove_obj_from_container routine performs the following steps:

1.

3
4.
5

Acquires the source container directory-level mutex.
Acquires the source container mutex.
Translates the source object ID to a pointer.

Acquires the type-specific mutex.

If address of the source container matches the container field in the source object header, then
obj$remove_obj_from_container zeros the container field and removes the object’s name (if any)
from the name table (in this case, this is the principal ID).

Decrements the object ID count of the source object.
Decrements the total ID field of the object container.

The obj$remove_obj_from_container routine performs the following steps if the resultant object
ID count is zero:

* Releases the type-specific mutex.

* Checks the allocation block field in the object header. If the field is not nil obj$remove_obj _
from_container does the following:

— Acquires the allocation mutex.
— Ensures the allocation block field is not nil.

— Calls the type-specific deallocate routine, passing in the address of the object body and
the allocation type.

Object Architecture 35

Digital Equipment Corporation - Confidential and Propﬂetary
For internail Use Only

10.

The

36

— Clears the allocation pointer in the object’s header.

— Unlinks the object allocation block and calls obj$dereference_object.

— Releases the allocation mutex.

— Returns the storage occupied by the object allocation block to the system.

* Removes the object ID and name from the source container. This frees the slot, updates the
sequence number, and links it into the free list.

® Releases the source container directory level and the source container mutexes.
* Calls the type-specific remove object ID routine.

* Calls obj$dereference_object to decrement the pointer count.

®* Returns to the caller.

If the resultant object ID count is one, the source object is temporary, and the container field in
the source object’s header is not zero, then obj$remove_obj_from_container performs the following
steps:

* Constructs the object ID of the principal object.
* Deletes object ID and name from source container.

* Releases the source container directory level, the source container, and the type-specific
mutexes.

* Calls an internal object routine to delete the principal ID. TLis routine is identical in func-
tion to obj$remove_obj_from_container with the following exception: The object ID count is
examined once all the mutexes have been acquired. If the object ID count is not one, the
principal ID is not deleted.

* Returns to caller.

If the resultant object ID count is greater than one, or the object ID count is one and the source
object is either not temporary or its principle object ID has already been deleted, then obj$remcuve_
obj_from_container performs the following steps:

* Removes the object ID and name from the source container.

* Releases the source container directory level, the source container, and the type-specific
mutexes. . .

* Return to caller.

procedure obj$dereference_object performs the following steps:

Decrements the pointer count field in the object header using the RMALI instruction.

If the pointer count field becomes zero, obj$dereference_object performs the following steps:
* Issues a bug check if the object ID field is not zero.

¢ Calls the OTD delete routine to deallocate the object body extensions and any associated
structures.

* Unlinks the object header from the OTD list.
* Decrements the create count field in the OTD.

* Deletes the object header and object body storage allocated in the obj$create_initialize_object
object call.

Returns to the caller.

Object Architecture

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

There is one interesting race condition that can arise during the deletion of an object ID that refers to
a temporary object. This race condition, however, does not cause any system database to be corrupted.
Assume that there are two threads that are simultaneously executing on two different processors:
one is creating a reference to a temporary object, and the other is deleting a reference to the same
temporary object. Further assume that the reference being deleted is the only reference to the object
save its principle object ID.

Both threads execute the locking sequence using two different object IDs, and thus possibly acquiring
different mutexes for the container directory and object container. The type-specific mutex, however,
is the same, and one or the other of the threads acquires the mutex first. If the thread that acquires
the mutex is the thread creating a reference, then nothing unusual can occur. If the thread that is
deleting a reference acquires the mutex first, then the following anomaly can occur.

The thread deleting the reference discovers that the resultant object ID count is one, the subject object
is temporary, and that its principle object ID has not been deleted. The reference object ID is deleted,
the mutexes are released, and the Delete Object ID routine is called, specifying the principle object
ID. But before the principle object ID can be deleted, the other thread completes the creation of the
reference, thus incrementing the object ID count back to 2. It then releases its mutexes, whereupon
the original thread now acquires the appropriate mutexes and checks the object ID count. The object
ID count is not one and the principle object ID of the object is not deleted.

1.7.8 Transferring an Object Container

When a new process is created, it is given two object containers to serve as its display- and private-
process level object containers. These object containers are created as part of process creation. See
Chapter 5, Process Structure for more details on the Create Process and Job system service.

The object architecture provides support for the process and job creation services to transfer object”
containers from one job/process to a new job/process. ‘

When an attempt is made to transfer an object container, every object in the container must meet
the following conditions:

1. The thread issuing the system service must have write access to the object container.

2. The object being transferred must have an object ID count of one. This also prevents temporary
objects from being transferred.

3. Reference objects must refer to a system level object.
The object being transferred must have the transfer action flag in the TRANSFER state.
5. Ifthe object is allocated, the thread doing the transfer must pass the allocation check.

When an object is transferred, its name, if any, is transferred as well. If the object was allocated at
the job, process, or thread level, then its allocation is transferred to the new entity being created.
For example, if a job is being created, the object’s allocation would transfer to the job level.

When a container is transferred, Mica performs the following steps:
1. Acquires the directory mutex.
2. Translates the container ID to an object header pointer with access as write.

3. Ensures that the resulting container object transferable. An error condition is raised if the
container is not transferable. Displayed containers or the default private container are set as no
transfer.

4. For each element in the object container Mica performs the following steps:
® Checks to see if the object ID is a reference ID.

® Checks the allocation of the object if the object ID is not a reference ID. If the allocation is
at at thread level, then Mica transfers the allocation to the new entity.

Object Architecture 37

Digital Equipment Corporation - Confidential and Proprietary
_For Internal Use Only

If the object ID is a reference ID, checks to ensure that the principal ID is at the system
level.

If all objects satisfy the criteria, removes the object container from the container directory
and release the directory mutex.

5. Adds a pointer to the object container in the new container directory.

6. Updates the object header to point to the new container directory, also, the ownership of the
objects needs to be changed to match the owner of the new entity.

1.7.9 Create Reference

When an object has a pointer to it outstandirg, its data structures cannot be deleted. The executive
can increment the pointer count field in the object header to prevent an object’s storage from being
deleted. A user-mode program may achieve similar behavior by creating a reference ID to the object
ID. ’

Creating a reference ID creates another object ID for an object. When a reference ID is created for
an object, the object ID count in the object’s header is incremented. This allows a user to create
a reference ID to an object, and thus ensures that the object’s storage cannot be deleted until the
reference object ID is deleted.

The level of the target container that receives the new reference ID must be less visible than the
container of the principal object ID.

The exec$create_reference_id servire, and the exec$make_temporary service both create reference IDs
to the specified object.

The declaration for this executive function is:

PROCEDURE e$create reference_ id (
IN mode : INTEGER;
IN source_object body : execS$object id;
IN target container : exec$object id;
) RETURNS reference_object id;

The efcreate_reference_id routine performs the following steps:

1. Raises an error condaition if the level of the target_container is not less visible than the level of
the source container.

Acquires the target_container directory-level mutex.
3. Acquires the target_container mutex.

Acquires the source container directory-level mutex.
5. Translates the source object ID to a pointer.
6. Checks for read access.

Checks the allocation class of source object container.

8. Ifthesour.e opjectis of type container, then exec$create_reference_id releases the target container
directory level, ta. zct container, and source container directory-level mutexes. An error condition
is raised.

9. Allocates the object index in the target container.

10. If allocation of the object index fails, then exec§create_reference_id releases the target container
directory level, target container, and source container directory-level mutexes. An error condition
is raised.

11. Acquires the source object type-specific mutex.

38 Object Architecture

12.
13.
14.

15.

16.

Digital Equipment cérporatlon - Confidential and Proprietary
For Internal Use Only
Increments the object ID count of the source object.
Stores a pointer to the source object in target container at allocated index position.

Constructs the object ID of reference using the target container directory, the allocated target
container index, and the sequence number of the source object.

Releases the target container directory level, target container, source container directory level,
and type-specific mutexes.

Returns the object ID of newly created reference.

1.7.10 Make Temporary

Making an object temporary creates a new principal object ID for the object at a more visible level
and marks the object as temporary. The original object ID becomes a reference object ID. If the object
has a name, then the name is moved to the target object container.

When an object is made temporary, it is possible that a name conflict exists in the target container.
The caller can specify that the object that is being made temporary is to be deleted and its object ID
is to become a reference to the object which caused the name conflict. This provides the capability
for two or more processes to share objects without regard to who created them first.

The declaration for this executive function is:

PROCEDURE eS$make_ temporary (
IN mode : INTEGER;
IN replacement : BOOLEAN;
IN source : execSobject_id;
IN target_container : exec$object id;
) RETURNS reference_id : exec$object_id;

The e$make_temporary routine performs the following steps to make an object temporary:

1.

o

10.

1.
12.

If the level of the target container is not more visible than the source container, then e$make_
temporary raises an error condition. .

Acquires source container directory-level mutex.
Translates source object ID to a pointer.

Releases the source container directory-level mutex and raises an error condition if the source
object is of type container.

Checks for delete access on source object.

Acquires target container directory-level mutex.

Acquires target container mutex.

Checks for temporary create access on target object container.
Acquires source object type-specific mutex.

If the source object ID is not the principle object ID, the source object ID count is not 1, or
the source object is already temporary, then e$make_temporary releases the source container
directory level, the target container directory, the target container, and the type-specific mutexes.
An error condition is raised.

Checks for name‘conﬂict in target container if source object has a name.

If a name conflict exists and replacement is not specified, then e$make_temporary releases the
source container directory level, the target container directory, the target container, and type-
specific mutexes. An error condition is raised.

Object Architecture 39

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

13. If a name conflict exists and replacement is specified, then e$make_temporary performs the
following stepas:
* Raises an error condition if the object whose name conflicts is not temporary.

* Increments the object ID count of the object in the target container whose name conflicts
with the source object and save pointer to object.

* Releases th: ta: jet container directory level and target container mutexes.
* Decrements the object ID count of the source object (the result is guaranteed to be zero).
* Releases the type-specific mutex.
* Calls the type-specific remove object ID routine for the source object.
* Deletes the name of source object from source container.
* Stores a pointer to the target container object in source container at the source object ID.
* Retrieves the sequence number from the target object, and inserts in the source object ID.
* Releases the source container directory-level mutex.
* Returss the source object ID with the new sequence number inserted.

14. Allocates an object ID in the target container.

15. If allocation of the object index fails, then e$make_temporary releases the source container
directory-level, the target container directory, the target container, and type-specific mutexes.
An error condition is raised.

16. Stores a pointer to the source object in target container at the allocated index position.

17. Removes the source object name, if any, from its previous name table, and inserts it in the new
target container name table.

18. Sets the principle object container address to the target container address.

19. Marks the source object temporary and indicates that a make temporary operation was per-
formed.

20. Increments the obje-t ID count of source object.

21. Releases the source container directory-level, the target container directory, the target container,
and the type-specific mutexes.

22. Returns the source object ID.

1.7.11 Mark Temporary

The Mark Temporary routine allows an object to be marked as temporary after it has been created.
This operation is used to cause a permanent object to be deleted when all its reference object IDs are

deleted. If the object has no reference object IDs, then its principle object ID is deleted immediately.
Objects can only be marked temporary that reside at the job or system levels.

The declaration for this executive procedure is:

PROCEDURE e$mark_ temporary (
IN mode : INTEGER;
IN source : exec$object_id;

)
The e$mark_temporary routine performs the following steps.

1. Raises an error ccrdition if the level of the source object is a process.

40 Object Architecture

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only
2. Acquires the source container directory-level mutex.
3. Acquires the source container mutex.
4. Translates the source object ID to a pointer.
5. Checks for delete access on source object.
6. Acquires the source object type-specific mutex.

7. Sets the temporary flag in the source object and indicates that a mark temporary was performed.
Note, if the object was already temporary, it does not change the state of the objhdr$temporary_
operation flag. - ’

8. If object ID count of source object is 1 and the source object ID is the principle object ID, then
e$mark_temporary performs the following steps:

* Decrements the object ID count (it is guaranteed to be Zero).

® Releases the type-specific mutex.

* Calls the type-specific remove object ID routine.

* Deletes the object ID and name from source container.

* Releases the source container directory-level and source container mutexes.
¢ Returns fo the caller. '

9. If object ID count of source object is not 1 or the source object ID is not the principle object ID,
then e$mark_temporary releases the source container directory level, the source container, and

the type-specific mutexes.
10. Returns to the caller.

1.8 Allocating an Object

An object may be allocated to one of the following classes:

¢ Identifier object

* User object (This is the user object which exists for each active user on the system.)

* Job object '

¢ Process object

* Thread object

The identifier object class consists of all the identifiers in the rights database which have correspond-

ing identifier allocation objects. Identifier allocation objects are created with the following service
and exist in the system level container mica$identifier_allocation.

PROCEDURE exec$create_identifier allocation (
ouT identifier_allocaticn_id : exec$object_id;
IN object_item list : exec$item_list;
IN identifier : INTEGER:
) RETURNS STATUS:

The active user ID class consists of the set of all user IDs currently active on the system. An object
which is allocated to an active user ID is automatically deallocated when no users of that ID are
currently on the system. For example, if an object is allocated to user KOLSEN, it is automatically
deallocated when the last user with the ID KOLSEN is removed from the system.

The job class consists of the set of all threads within the job. When the job terminates, all objects
allocated to the job class are automatically deallocated.

Object Architecture 41

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

The process class consists of the set of threads within the specified process, and any thread within a
_descendant process. When the specified process terminates, all objects allocated to that process class
are automatically deallocated.

The thread class consists of the thread that allocated the object. When the thread terminates, all
objects allocated to the thread class are automatically deallocated.

The e$allocate_object argument that specifies the visibility of the object ID determines the allocation
classes to which an object can be allocated. The rules for determining allocation class are as follows:

¢ Ifthe ID is at the system level, the object may be allocated to any one of the five classes.
* IftheID is at the job level, the object may only be allocated to the job, process, or thread classes.
* Ifthe ID is at the process level, the object may only be allocatec to the process or thread classes.

1.8.1 Object Allocation Block

When an object is allocated the object header contains a pointer to the object allocation block. The
object allocation block contains:

* A forward link to the next allocation block in this class.
* A backward link to the previous allocation block in this class.
® The allocation type (identifier, active user, job, process or thread).

* The allocation ID which identifies the allocation. For example, if the allocation is identifier, the
ID of the identifier object is stored here.

® A pointer to the object header which refers to this allocation block.

Each allocation class has a listhead. The listhead for the thread allocation class is located in the
tread object, the process in the process object, the job in the job object. The listhead for each active
user is maintained in the "user” object structure. Job, process, thread and user objects are defined in
Chapter 5, Process Structure. The listhead for an identifier object is located in the specific identifier
object.

The listhead offset is stored in the OTD for the object type. This allows the object architecture to
deallocat. all object allocated to a particular object (like a thread) when that object is deleted.

There is a single mutex which guards access to all allocation class listheads. This mutex is known
as the allocation mutex. :

The edailocate_object routine allocates the specified object to the specified allocation object. The
declaration of this procedure is:

PROCEDURE e$allocate_object (
IN object_id : exec$object_id;
IN allocation_id : execSobject_ id;
IN ac:ess_mode : integer;

)i
The e$allocate_object routine performs the following:

1. Translates the allocation_id with an access type of read to obtain the object class and other
information.

2. Ensures that the calling thread is within the specified allocation class.
3. Ensures that the allocation class is compatible with the visibility of the specified object ID.

42 Object Architecture

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

4. '(I:‘ranslates the specified ID by calling obj$reference_object_by_id, with an access type of ALLO-
ATE,
5. Acquires an allocation mutex if the translation succeeds.
This prevents other threads from attempting to allocate the same object simultaneously.
6. Checks to ensure that the object ID count for the object is 1.
7. Checks to ensure that the object is not currently allocated.

8. If all checks pass, e$allocate_object calls the OTD allocate routine for that object type, passing
in the object body and the allocation type.

9. If the allocate routine does not return denial, e$allocate_object allocates an object allocation
block, initializes the block, and links it into the appropriate allocation list.

10. Adds a pointer to the object allocation block to the object header and from the object header to
the allocation block.

11. Releases the allocation mutex.
12. Dereferences the allocation object.
13. Dereferences the allocated object.
14. Returns status to the user.

\We need to be able to have a potected subsystem assume the allocation class as the thread whose
behalf it is working \

1.9 Deallocating an Object

Allocated objects may be explicitly deallocated via a call to exec$deallocate_object or implicitly deallo-
cated when an allocation class ceases to exist. For example, when a process terminates, any objects
allocated to that process are implicitly deallocated.

The e$deallocate_object procedure deallocates the specified object. The declaration of this procedure
is:

PROCEDURE e$deallocate object (
IN object_id : execsobject_id;
) RETURNS STATUS;
The e$deallocate_object routine performs the following:

1. Translates the specified object ID by calling obj$reference_object_by_id with an aﬁcess type of
DEALLOCATE.

2. If obj$reference_object_by_id succeeds and the object was allocated, then the thread is in the
allocation class of the object.

3. Acquires the allocation mutex.

Checks i< sec if the object is currently allocated, if the object is not allocated, release the allocation
mautex, call 0bj§ "= cfcre ice_object and return an error status of not allocated.

5. Calls the type-specific deallocate routine, passing in the address of the object body and the
allocation type.

6. Clears the allocation pointer in the object’s header.

7. Unlinks the object allocation block, and calls obj$dereference_object.
Releases the allocation mutex.

9. Returns the storage occupied by the object allocation block to the system.

Object Architecture 43

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

10. Returns status to the user.

Implicit deallocation which occurs when an allocation class terminates. For example, upon thread
termination, efdeallocate_object does the following:

1. Acquires the allocation mutex.
2. Removes the first entry from the terminating class’s allocation list.
3. Uses the back pointer to the object header get the object type.

Calls the type-specific deallocate routine passing in the address of the object header and the
allocation type.

Clears the allocation pointer in the object’s header.

Unlinks the object allocation block.

Releases the allocation mutex.

Returns the storage occupied by the object allocation block to the system.

© ® N o o

Repeats from step 1 until there are no more entries on the list.

1.10 Quotas and Objects

Objects are allocated from system paged and nonpaged pool, and as such are charged against the
quota for a process or a job. The following rules indicate how and what is charged for object creation
and reference. When an object is deleted, the same rules are used to ~eturn quota.

* Objects created in system level object containers are not charged against quotas. Objects at this
level are permanent, and may outlive the life of the entity which created the object.

* Objects which are created at job or process level are charged to the level at which the object was
created.

¢ If an object is permanent or was at one time permanent, (that is, marked as temporary) there
are no charges for references. Note, objects of this type are in job or system containers.

¢ If an object was made temporary, a charge is made for the reference at the level of the reference.
Since the creator of the object did not desire to create a permanent object, each referencer of the
object is charged the total cost of the object. Note, the entity that initially created the object was
charged for the object creation, and is not charged again when the object is made temporary.

\The exact methodology of charging and releasing quotas is still under discussion. One method is
to add a field to the object header that indicates the charged amount for this object. This charged
amount field would be used for creation, references, transfers, and deletion.\

\Chapter 5, Process Structure should describe a pair of procedures to charge and return quotas that
allow the user to specify the amount, the type, and the entity to charge. \

1.11 Executive Support Functionality

This section describes the executive procedures which are invoked by object service routines for stan-
dard operations. Usiug a single set of executive procedures for common object operations erhsnces
reliability and maintainability.

44 Obiject Architecture

Digital Equipment Corporation - Confidential and Proprietary

1.11.1 obj$reference_object_by id

For Internal Use Only

Given an object ID, type, mode and desired access, this procedure returns the address of the object
body for the ID and increments the pointer count field for the object. An error is returned if the

object ID is invalid.

PROCEDURE obj$reference_object by id (
IN object id : e$object_id;
IN object_type : eSobject type;
IN access mode : k$processor mode;
IN desired_access : eSaccess_type;
OUT object_body : POINTER anytype CONFORM;
) RETURNS STATUS;

1.11.2 obj$transiate_object_name

Given an object container, object name, object type and access mode, this procedure returns the object

ID corresponding to the name.

PROCEDURE obj$translate_object_ name (
IN container_id : e$object_id;
IN name : string (*);
IN object type : e$object_ type;
IN access mode : k$processor_mode;
IN case_blind : boolean;
OUT object id : e$object_id;
) RETURNS STATUS;

1.11.3 obj$create_lnitialize_object

This routine is called with the number of bytes to allocate in addition to the object header. It allocates:

the storage from the appropriate pool, and initializes the object header.

PROCEDURE obj$create_initialize object (
IN otd_id : eSobject id;
IN access mode : k$processor mode;
IN acl : POINTER e$access control list;
IN name : stri=zg (*);
IN transfer : boolean;
IN reference_inhibit : boolean;
IN pool_type : e$pool index;
IN object_size : integer;
OUT object body : POINTER anytype CONFORM;
) RETURNS STATUS;

1.11.4 obj$insert_object_in_container

This routine accepts an object body pointer and a object container ID, and adds the object to the

specified object container returning the new object ID.

PROCEDURE opj$insert_object_in container (
IN object_body : POINTER anytype CONFORM;
IN access_mode : k$processor_mode;
IN container_id : e$object_id;
OUT object_id : e$object_id;
) RETURNS STATUS;

Object Architecture 45

Digital Equipment Corporation - Confidential and Proprietary
For Internai Use Only

1.11.5 objSinsert_object_and_reference

This routine accepts an.object body pointer and a object container ID, and adds the object to the
specified object container returning the new object ID and pointer to the corresponding object body.
The reference count on the object is increased by one.

This procedure is provided for object services which need to immediately reference an object after
it has been created. It avoids race conditions with the object name colliding, the ID of the colliding
object being returned, and before the object can be referenced, the object is deleted.

PROCEDURE obj$insert_object_and_reference (
IN object_body : POINTER anytype CONFORM;
IN access_mode : k$processor_mode;
IN container_id : e$object_id;
OUT object_id : eSobject_id;
QUT new_object_body : POINTER anytype CONFORM;
) RETURNS STATUS;

1.11.6 objSremove_obj from_container -
This routine accepts an object ID and removes the object ID from its associated object container.
PROCEDURE obj$remove obj_from container (
IN object_id : exec$object_id;

IN access mode :k$processor_mode;
) RETURNS STATUS;

1.11.7 obj$dereference_object
This routine decrements the pointer count of the specified object. If the resulting pointer count is
zero, the object deletion routine for the specified object is invoked.

PROCEDURE obj$dereference_object (
IN object_body : POINTER anytype CONFORM;

)

1.11.8 obj$get_principal_object_Id
This routine returns the principal object ID for a given object body. If the object has no principal ID,
the invalid ID zero is returned. - :

PROCEDURE obj$get_principal object_id (
IN object body : POINTER anytype CONFORM;
) RETURNS e$object_id;

1.11.9 obj$set_object_acl

This procedure updates the ACL field in the object header.
PROCEDURE obj$set ocbject_acl (
IN object body : pointer exec$object_body;

IN acl : pointer execS$acl;
) RETURNS old_acl POINTER execS$acl;

46 Object Architecture

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.12 Revision History, 31 AUG 1987

ol A

5.

Removed ULTRIX fork and exec semantics.
Added Pillar record definitions.

Added e$insert_object_and_reference procedure.
Added allocation listhead offset to OTD.

Added quota rules.

1.13 Revision History, 04 MAY 1987

1.
2,
3.

Added fork and transfer actions for reference IDs. The actions are essentially share.
Added identifier allocation objects.
Added e$create_otd service.

1.14 Revision History, 30 April, 1987

1.
2.
3.

1.

12.

13.
14.
15.

Changed names of container directories to exec$level_container_directory.
Changed show_xxxx routines to get_xxx_information routines.

Changed the Object type descriptor to be an object of type OTD.
Removed OTD flink from OTD body.

Changed all internal object routines which returned a pointer to an object header to return a
pointer to the object body.

Added reference ID inhibit flag to object header.

Removed group owner and acl modification time from object header.
Added sequence number field to object header.

Added no show attribute to logical names.

Changed generic object creation procedure definition to reflect current thoughts on system ser-
vices.

Changed semantics of when the OTD remove routine is called. It is now called after the object
ID has been removed from the object container with no mutexes held.

Changed semantics of how a temporary object is deleted when it’s object ID count is one so the
race condition on deleting the principal ID is eliminated.

Added e$set_object_acl service.
Removed exenftransfer_object service.

changed the name of the following internal services to make their names more descriptive of
their operations:

1. e$allocate_initialize_object becomes e$create_initialize_object
2. e$deallqcate_object becomes efdelete_object
3. efcreate_object_id becomes e$insert_object_into_container

4. e$remove_objeci_id becomes e$remove_object_from_container

Object Architecture 47

Digital Equipment Corporation - Confidential and Proprietary
For internal Use Only

5. e$translate_id becomes e$reference_object_by_id
6. e$decrement_pointer_count becomes eddereference_object

1.15 Revision History, 20 March, 1987

1. Removed alias okject.
2. Removed allocate object.
3. Added reference IDs.
4. Added allocation classes.
5. Added allocation mutex.
6. Added OTD object flink/blink and sequence number.
7. Added exec action to object header.
8. Added allocate procedure to OTD.
. Added deallocate procedure to OTD.
10. Removed transfer procedure from OTD.
11. Added fork action of transfer.
12. Added ACL time to object header.
13. Added algorithms for the following:
1. create object
2. delete object
3. remove object
4. fork action
5
6.
7.

make temporary
mark temporary)
translate ID

8. allocate

9. deallocate

10. translate name

1.16 Revision History, 28 January, 1987

Restructure a..d i eorganize material.

Remove CIT and replface with container directory
Added additional allocation size field to OTD.
Added container pointer to object header.

Added object creation rules.

Added object deleticn rules.

G U S o

48 Obiject Architecture

Digital Equipment Corporation - Confidential and Proprietary
For Internal Use Only

1.17 Revision History, 14 January, 1987

Eliminated concept of nested object containers. Object containers are in a flat name space.

Eliminated concept of support for general wait mechanism in objects. Wait is supported by using
a kernel support object within the object.

Simplified naming and eliminate CINB, ENB, and other naming structures.
Added support for logical names.

- Simplified locking rules on containers and objects.

Added rules for alias object creation.

Added allocate objects.

Added rules for temporary objects. v .

Added FORK dispatch element to SSVT for support of ULTRIX style fork services.
Changed security mechanism to ACL based and removed object types reserved for security.
Changed definition of reference count in object header.

Removed alias count and added share count to object header.

Removed container lists. This functionality may be obtained through logical names.
Added definitions of executive routines for internal object support.

. Added definitions of object services for user object support.

Object Architecture 49

The rfollowing system services will exist in the chapter on MICA
system services. They have been included with the object chapter
for the chapter review and have not been reviewed or finalized.

Please note that the names for various parameters
may not match the current naming guidelines. These will be remedied
in the future.

PROCEDURE exec$create_xxxxxx (
OUT principal_id : exec$type object id;
IN obj_independent_items : execStype item list (*) CONFORM OPTIONAL;
IN obj dependent_ items : execitype item 1Tst (*) CONFORM OPTIONAL;
) RETURNS INTEGER; ISTATUS; -
EXTERNAL;

' PROCEDURE exec$get_xxxxxx_information (
IN object_id : exec$type object id;
IN items : exec$type _item list (*) CONFORM;
) RETURNS INTEGER; !STATUS;
EXTERNAL;

PROCEDURE exec$translate_object name (
IN object_name : STRING (*)3
IN object_type : LONGWORD;
IN container_id : exec$type object id OPTIONAL;
IN container_name : STRING {*) OPTIONAL;
IN case_blina : BOOLEAN = FALSE;
IN substitute : BOOLEAN = FALSE;
OUT principal_id : execStype_object_id;
) RETURNS INTEGER; !STATUS;
EXTERNAL;

PROCEDURE exec$get_object_information {
IN object_id : exec$type object id;
IN object_id_items : execStype Ttem list (*) CONFORM OPTIONAL;
IN object items : exec$type item list (*) CONFORM OPTIONAL;
) RETURNS INTEGER; !STATUS;
EXTERNAL;

PROCEDURE exec$allocate object (
IN object_id : execStype object id;
IN allocation_object_id execStype_object id;
) RETURNS INTEGER; !STATUS;
EXTERNAL;

PROCEDURE exec$get_allocated object id ({
IN allocation_object_id i exec$type object id;
IN object_type : LONGWORD OPTIONAL;
IN OUT context : QUADWORD;
OUT object_id : exec$type object id;
) RETURNS INTEGER; !STATUS;
EXTERNAL;

PROCEDURE execsdeallocate _object {
IN object_id : exec$type object id;
) RETURNS INTEGER; !STATUS;
EXTERNAL;

PROCEDURE execS$set object name (
IN principal_id : exec$type_object_id;
IN object_name : STRING (*)3
) RETURNS INTEGER; ! STATUS;
EXTERNAL;

PROCEDURE exec$clear ob]ect name (
IN principal_id exec$type object_id;
) RETURNS INTEGER, ! STATUS;
EXTERNAL,

PROCEDURE execS$delete _object_id (
IN object_id : exec$type object id;
) RETURNS INTEGER; !STATUS;
EXTERNAL;

PROCEDURE execScreate_reference id (
IN principal_id : exec$type” _object_id;
IN object_container id : exec$type object_id OPTIONAL;
OUT reference id : exec$type_ob3ect id;

) RETURNS INTEGER; !STATUS;
EXTERNAL;

PROCEDURE exec$transfer obj make_ temp (
IN principal id : execS$type _object id;
IN object container id : exec$type object id;
IN replace : BOOLEAN = FALSE;
OUT reference_id : execS$type _object_id;
) RETURNS INTEGER; !STATUS;
EXTERNAL;

PROCEDURE exec$make_object _temporary (
IN object_id : exec$type _object_id;
) RETURNS INTEGER; | STATUS;
EXTERNAL;

PROCEDURE exec$get contr dir information (
IN container dlrectory id : exec$type _object_id;
IN items : exec$type item llst (*) CONFORM;
) RETURNS INTEGER; !STATUS;
EXTERNAL;

PROCEDURE execS$get object_container_id (
IN container_directory id : execS$type _object _id;
IN OUT context : QUADWORD;
OUT object_container_id : execStype _object id;
) RETURNS INTEGER; !STATUS;
EXTERNAL;

——.—_—-.—_——.————————--—_——__-——-—-————————_————————_.._—..-—————-.————_—_—_——

PROCEDURE exec$create object container (
OUT principal id exec$type object id;
IN obj 1ndependent items : exec$type item_list (*) CONFORM OPTIONAL;
) RETURNS INTEGER; !STATUS;
EXTERNAL;

PROCEDURE exec$get _obj_contr_information (
IN object_container_id : execS$type _object_id;
IN items : exec$type_item list (*) CONFORN;
) RETURNS INTEGER; !STATUS;
EXTERNAL;

PROCEDURE exec$get _object id (
IN object_container id : execstype object_id;
IN ob]ect type : LONGWORD OPTIONAL;
IN OUT context : QUADWORD;
OUT object_id : exec$type_object id;
) RETURNS INTEGER; !STATUS;
EXTERNAL;

PROCEDURE exec$get_otd _information (
IN object_type desc _id : execS$type _object_id;
IN items : exec$type item list (*) CONFORM,
) RETURNS INTEGER; !STATUS;
EXTERNAL;

PROCENURF exec$create logical name (
IN logical_name : STRING (*);
IN container id : exec$type object_id OPTIONAL;
IN container name : STRING (*) OPTIONAL;
IN create if : BOOLEAN = FALSE;
IN logical name items : exec$type item list (*) CONFORM;
IN equivalence_name items : exec$type Item list (*) CONFORM;
) RETURNS INTEGER; 'STATUS;
EXTERNAL;

PROCEDURE exec$translate_logical name (
IN logical name : STRING (*);
IN container_id : exec$type object id OPTIONAL;
IN container name : STRING (*) OPTIONAL;
IN case_blind : BOOLEAN = FALSE;
IN logical name_items : exec$type item list (*) CONFORM OPTIONAL;
IN equlvalence name items : exec$type 1tem list (*) CONFORM OPTIONAL;
) RETURNS INTEGER; [STATUS;
EXTERNAL;

PROCEDURE execS$delete_logical name (
IN logical_name : STRING (*) OPTIONAL;
IN container_id : exec$type object id OPTIONAL;
IN container_name : STRING (*) OPTIONAL;
OUT deleted_container_id : exec$type_object id OPTIONAL;
) RETURNS INTEGER; !STATUS;
- EXTERNAL;

PROCEDURE exec$get logical name (
IN container_id : execStype_object id;
IN OUT context : QUADWORD;
OUT logical name : STRING (*);
) RETURNS INTEGER; 1STATUS;
EXTERNAL;

