IAS/RS X-11
MACRO-11 Reference Manual

Order No. DEC-11-OIMRA-B-D

digital equipment corporation - maynard. massachusetts

First Printing, December 1975
Revised: December 1976

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use

or reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright C) 1975, 1976 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0s/8

DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-10

DECCOMM DECsystem-20 TYPESET-11

7/80~14

CONTENTS

Page
PREFACE ‘ ix
0.1 MANUAL OBJECTIVES AND READER ASSUMPTIONS ix
0.2 STRUCTURE OF THE DOCUMENT ix
0.3 ASSOCIATED DOCUMENTS X
0.4 DOCUMENT CONVENTIONS X
PART I INTRODUCTION TO MACRO-11
CHAPTER 1 MACRO-11 FEATURES 1-1
1.1 OVERVIEW OF MACRO-11 1-1
1.1.1 Assembly Pass 1 1-1
1.1.2 Assembly Pass 2 1-2
CHAPTER 2 SOURCE PROGRAM FORMAT 2-1
2.1 PROGRAMMING STANDARDS AND CONVENTIONS 2-1
2.2 STATEMENT FORMAT 2-1
2.2.1 Label Field 2-2
2.2.2 Operator Field 2-4
2.2.3 Operand Field 2-4
2.2.4 Comment Field 2-5
2.3 FORMAT CONTROL 2-6
PART II PROGRAMMING IN MACRO-11 ASSEMBLY LANGUAGE
CHAPTER 3 SYMBOLS AND EXPRESSIONS 3-1
3.1 CHARACTER SET 3-1
3.1.1 Separating and Delimiting Characters 3-2
3.1.2 Illegal Characters 3-3
3.1.3 -Unary and Binary Operators 3-4
3.2 MACRO-11 SYMBOLS 3-5
3.2.1 Permanent Symbols 3-5
3.2.2 User-Defined and Macro Symbols 3-5
3.3 DIRECT ASSIGNMENT STATEMENTS 3-7
3.4 REGISTER SYMBOLS 3-9
3.5 LOCAL SYMBOLS 3-10
3.6 CURRENT LOCATION COUNTER 3-11
3.7 NUMBERS 3-13
3.8 TERMS 3-14
3.9 EXPRESSIONS 3-15
CHAPTER 4 RELOCATION AND LINKING 4-1
CHAPTER 5 ADDRESSING MODES 5-1
5.1 REGISTER MODE 5-1
5.2 REGISTER DEFERRED MODE 5-2

iii

CHAPTER

[SLRV, S WO RV, NV, NE, N, NE,]

» s e e s e = &

HHWedoNnUT W
o

&
[
LV

.

(%)]
Ladliad
o> W

5.15

o)}

.« e e . « s e e e e ne e
BB BB WWWWWWWWN e

[RN We e We W) We We Mo Wo We) We Wo W W e We We We

« e o

e
N

6.4.2
6.4.2.1

6.4.2.2

QOoooo~JJaononmutaren
P « o e
w N =

[N e\ We) e\ We We) e e We) o) We)We)
« e s e
N =

* s e 8 e

CONTENTS (CONT.)

AUTOINCREMENT MODE
AUTOINCREMENT DEFERRED MODE
AUTODECREMENT MODE
AUTODECREMENT DEFERRED MODE
INDEX MODE

INDEX: DEFERRED MODE
IMMEDIATE MODE

ABSOLUTE MODE

RELATIVE MODE

RELATIVE DEFERRED MODE
SUMMARY OF ADDRFESSING FORMS
BRANCH INSTRUCTION ADDRESSING
USING TRAP INSTRUCTIONS

PART III MACRO-11 DIRECTIVES
GENERAL ASSEMBLER DIRECTIVES

LISTING CONTROL DIRECTIVES
.LIST and .NLIST Directives
Page Headings
.TITLE Directive
.SBTTL Directive
.IDENT Directive
.PAGE Directive/Page Ejection
FUNCTION DIRECTIVES: .ENABL and .DSABL
DATA STORAGE DIRECTIVES
.BYTE Directive
.WORD Directive
ASCII Conversion Characters
.ASCII Directive
.ASCIZ Directive
.RAD50 Directive
Temporary Radix-50 Control Operator: +R
RADIX AND NUMERIC CONTROL FACILITIES
Radix Control and Unary Control Operators
.RADIX Directive
Temporary Radix Control Operators: +D,
40, and 4B
Numeric Directives and Unary Control
Operators
.FLT2 and .FLT4 - Floating Point Storage
Directives
Temporary Numeric Control Operators: +C
and +4F
LOCATION COUNTER CONTROIL DIRECTIVES
.EVEN Directive
.ODD Directive
.BLKB and .BLKW Directives
TERMINATING DIRECTIVES
.END Directive
.EOT Directive
PROGRAM BOUNDARIES DIRECTIVE: .LIMIT
PROGRAM SECTIONING DIRECTIVES -
.PSECT Directive
Creating Program Sections
Code or Data Sharing

iv

g
o]
Q
(1]

1

L

U'lU'lUlU‘lU'IU'I({lU‘IUIU‘IUILﬂU‘I
OO UTTE A DWWWN

CONTENTS (CONT.)

Page

L)
.8.1.3 Memory Allocation Considerations 6-38
8.2 .ASECT and .CSECT Directives 6-38
9 SYMBOL CONTROL DIRECTIVE: .GLOBL 6-39
.10 CONDITIONAL ASSEMBLY DIRECTIVES 6-41
.10.1 Conditional Assembly Block Directives:
.IF, .ENDC 6-41
6.10.2 Subconditional Assembly Block Directives:
.IFF, .IFT, .IFTF
6.10.3 Immediate Conditional Assembly Directive:
.IIF
6.10.4 PAL-11R Conditional Assembly Directives

(o)}
!
f N
w

|
oy OV

~ (o) N2}
I

CHAPTER MACRO DIRECTIVES
DEFINING MACROS

1 .MACRO Directive

2 .ENDM Directive

3

4

1
WwwNh - [l o

.MEXIT Directive
MACRO Definition Formatting
CALLING MACROS
ARGUMENTS IN MACRO DEFINITIONS AND MACRO
CALLS
Macro Nesting
Special Characters in Macro Arguments
Passing Numeric Arguments as Symbols
Number of Arguments in Macro Calls
Creating Local Symbols Automatically
Keyword Arguments
Concatenation of Macro Arguments
MACRO ATTRIBUTE DIRECTIVES: .NARG, .NCHR,
AND .NTYPE
.NARG Directive
.NCHR Directive 7-12
.NTYPE Directive 7-13
«-ERROR AND .PRINT DIRECTIVES 7-14
INDEFINITE REPEAT BLOCK DIRECTIVES: .IRP
AND .IRPC 7-15
6.1 .IRP Directive 7-15
6.2 .IRPC Directive 7-16
7 REPEAT BLOCK DIRECTIVE: .REPT, .ENDR 7-17
8 MACRO LIBRARY DIRECTIVE: .MCALL 7-18

\Il\l\!\l\l\l
!

! I
O~ oo U

o

Noodswh e

. e

HdWWwWwwwww
* e« o
[i

NN
L I B] L
.
NN NN NN
I

D
-
e

« o @
W=

NN NN
.

PART IV OPERATING PROCEDURES

CHAPTER OPERATING PROCEDURES 8-
RSX-11D AND RSX-11M OPERATING PROCEDURES 8
Initiating MACRO-11 Under RSX-11M/RSX-11D 8
1 Method 1 - Direct MACRO-11l Call 8-
2 Method 2 - Using RUN Facility 8
3 Method 3 - Single Assembly 8
4 Method 4 -~ Install, Run Immediately, and
Remove On Exit 8-2
1.5 Method 5 - Using Indirect Filename
Facility . 8-2
2 RSX-11 Command String Format 8-3
3 RSX~1l File Specification Switches 8~5

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

S WNNDNODND N

CO0 00 00 CO 00 00 OO OO
.

N

W
wN =

lw) an (@} Www
N

o
~

]

e o * o L] L . .
MO LM UTOTUTULE SR D DB DR _BWNDH
L]
Moo WNDHFRRFERF
L] . o
W

B W N -

¢ & e e o s & o e
e o o
« e

" .

B R D W N

e o o e

e B e B e B el e B s B e B o B s I B e e B s I e s B o s Bl el o e e B s B e sl

e e & * o o o

CONTENTS (CONT.)

¥

Cross—-Reference Processor (CREF)
IAS MACRO-11 OPERATING PROCEDURES

Initiating MACRO-11 Under IAS

IAS Command String Format

IAS Indirect Command Files

IAS Command String Examples
IAS/RSX~-11 FILE SPECIFICATION FORMAT
MACRO-11 ERROR MESSAGES

MACRO-11 CHARACTER SETS

ASCII CHARACTER SET
RADIX-50 CHARACTER SET

MACRO-11 ASSEMBLY LANGUAGE AND ASSEMBLER
DIRECTIVES

SPECIAL CHARACTERS
SUMMARY OF ADDRESS MODE SYNTAX
ASSEMBLER DIRECTIVES

PERMANENT SYMBOL TABLE (PST)

OP CODES
MACRO-11 DIRECTIVES

DIAGNOSTIC ERROR MESSAGE SUMMARY
MACRO-11 ERROR CODES
SAMPLE CODING STANDARD

INTRODUCTION

LINE FORMAT

COMMENTS

NAMING STANDARDS
Register Standards
General Purpose Registers
Hardware Registers
Device Registers
Processor Priority
Other Symbols
Using the Standard Symbolics
Symbols
Global Symbols
Symbol Examples
Program-Local Symbols
Macro Names

PROGRAM MODULES
General Comments on Programs
The Module Preface
Formatting the Module Preface
Modularity
Calling Conventions (Inter-Module)
Exiting
Intra-Module Calling Conventions
Success/Failure Indication
Module Checking Routines

vi

Page

8-8

8-10
8-10
8-10
8-12
8-12
8-13
8-14

mmmmmmmmmmmmr;:mmmmmmmmmmmmm
VWWOWWOWWOWORNNTUNUTNE R WWWWWNONNDNNNDNDE -

APPENDIX

APPENDIX

APPENDIX

APPENDIX

INDEX

FIGURE

TABLE

P
wn -

¢« e &

. . . L] . .
=

- . .
HHFEMFWWO~IGOOOGO
OO O

. .

H HOHoHOHdHHHEHEmEHE
[\

o G "o
w N

jacfiies]
NN

LI |
WNHEN -

| A B N I |
NHK O U

MmN oo~Naoo Ao WW

CONTENTS (CONT.)

Page
FORMATTING STANDARDS E-9
Program Flow E-9
Common Exits E-11
Code with Interrupts Inhibited E-12
PROGRAM SOURCE FILES E-12
FORBIDDEN INSTRUCTION USAGE E-12
RECOMMENDED CODING PRACTICE E-13
Conditional Branches E-13
PDP-11 VERSION NUMBER STANDARD E-13
Displaying the Version Identifier E-14
Use of the Version Number in the Program E-15
ALLOCATING VIRTUAL MEMORY F-1
GENERAL HINTS AND SPACE-SAVING GUIDELINES F-1
MACRO DEFINITIONS AND EXPANSIONS F=-2
OPERATIONAL TECHNIQUES F-4
FEATURES/FUNCTIONS NOT SUPPORTED BY THE
RSX-11M 8K ASSEMBLER G-1
WRITING POSITION INDEPENDENT CODE H-1
INTRODUCTION TO POSITION INDEPENDENT CODE H-1
EXAMPLES H-2
SAMPLE ASSEMBLY AND CROSS REFERENCE LISTING I-1
Index-1
FIGURES
Assembly Listing Showing Local Symbol Block 3-11
Sample Assembly Results 3-12
Example of Line Printer Assembly Listing 6-6
Example of Terminal Assembly Listing 6-7
Listing Produced With Listing Control
Directives 6-9
Assembly Listing Table of Contents 6-12
Example of .ENABL and .DSABL Directives 6-16
Example of .BLKB and .BLKW Directives 6-30
Example of .IRP and .IRPC Directives 7-17
Sample CREF Listing 8-9
Position-Dependent Code H-3
Position-Independent Code H-3

TABLES

Special Characters Used in MACRO-11l
Legal Separating Characters

Legal Argument Delimiters

Legal Unary Operators

Legal Binary Operators

vii

CONTENTS (CONT.)

TABLES (CONT.)

+

Page
TABLE 6-1 Symbolic Arguments of Listing Control
Directives 6-3
6-2 Symbolic Arguments of Function Control
Directives 6~-14
6-3 Symbolic Arguments of .PSECT Directive 6-33
6-4 Non-IAS/RSX-11 Program Section Default
Values 6-39
6-5 Legal Condition Tests for Conditional
Assembly Directives 6-41
6-6 Subconditional Assembly Block Directives 6-44
8-1 File Specification Default Values 8-5
8-2 MACRO-11 File Specification Switches for
RSX-11 8-6

viii

: PREFACE

0.1 MANUAL OBJECTIVES AND READER ASSUMPTIONS

The intent of this manual is to enable users to develop programs coded
in the MACRO-11 assembly language. No prior knowledge of the MACRO-1l1
Relocatable Assembler is assumed.

Although the description of the assembly language is wholly
self-contained within this manual, the reader is assumed to be
familiar with the PDP-11 processors and related terminology, as
presented in the PDP-11 Processor Handbooks. No attempt is made in
this document to describe the PDP-11 hardware or the functions of the
various PDP-11 instructions.

Since the development of programs necessarily involves the use of the
Task Builder to <create an executable task image, the reader is
encouraged to become familiar with this system program, as presented
in the applicable Task Builder reference manual (see Section 0.3).

In presenting MACRO-11, a tutorial bias has been adopted to enlarge
upon the reference material. This posture 1is reflected 1in the
examples and the accompanying commentary describing MACRO-11 1language
elements in typical applications.

0.2 STRUCTURE OF THE DOCUMENT

This manual contains four parts. Part I, consisting of two chapters,
briefly introduces MACRO-11. Chapter 1 1lists the key features of
MACRO-11, and Chapter 2 identifies the advantages of following
programming standards and conventions. Also described is the format
used in coding MACRO-11 source programs.

Part II, consisting of three chapters, presents general information
essential to programming with the MACRO-11 assembly language. Chapter
3 describes the symbols, terms, and expressions that form the elements
of MACRO-11 instructions. The character set is listed, and the types
of programming symbols that may be defined by the user are discussed.
Chapter 4 describes the output of MACRO-11 and presents concepts
essential to the proper relocation and linking of object modules by
the Task Builder. Chapter 5 briefly describes how data stored in
memory can be accessed and manipulated wusing the addressing modes
recognized by the PDP-11 hardware.

Part III, consisting of two chapters, describes the MACRO-11
directives that control the processing of source statements during
assembly. Chapter 6 discusses directives which accomplish generalized
MACRO-11 functions, while Chapter 7 deals with directives used in the
definition and expansion of macros.

ix

Part IV, consisting only of Chapter 8, presents the operating
procedures essential to the assembly, 1linking, and initiating of
MACRO-11 programs.

Finally, several appendixes are provided, supplying additional
information of interest to the MACRO-11 programmer.

¥

Appendix A lists the ASCII and Radix-50 character sets that may be
used in MACRO-11 programs. Appendix B lists the special characters
recognized by MACRO-11, summarizes the syntax of the various
addressing modes used in PDP-11 processors, and briefly describes the
MACRO-11 directives in alphabetical order. The permanent symbols that
have been defined for use with MACRO-11 are listed alphabetically in
Appendix C.

The diagnostic error codes produced by MACRO-11 to identify wvarious
types of errors detected during the assembly process are listed
alphabetically in Appendix D. Appendix E contains a sample coding
standard that is recommended practice in preparing MACRO-11 programs.
Appendix F discusses several methods of conserving dynamic memory
space for users of small systems who may experience difficulty in
assembling MACRO-11 programs.

Appendix G lists the features and functions that are not supported in
the 8K RSX-11M version of MACRO-11. MACRO-11 is available in two
versions under RSX-11M. One is a 14K version which 1is functionally
identical to the RSX-11D assembler and which has all the features
described in this manual. The other assembler is an 8K version which,
because of size limitations, supports an extensive subset of MACRO-11
features. Appendix H is a discussion of position independent code
(PIC) .

0.3 ASSOCIATED DOCUMENTS

The reader should refer to the applicable documentation directory
listed below for descriptions of documents associated with this
manual.

IAS Documentation Directory

RSX-11D Documentation Directory

RSX-11M/RSX-11S Documentation Directory

0.4 DOCUMENT CONVENTIONS
The symbols defined below are used throughout this manual.
Symbol ’ Definition

(1 Brackets indicate that the enclosed argument is
' optional.

I Vertical bars indicate that a single choice must be
made from a list of arguments.

.o Ellipsis indicates optional continuation of an argument
list in the form of the last specified argument.

UPPER-CASE
CHARACTERS

lower—-case
characters

(n)

Upper-case characters indicate elements of the language
that must be used exactly as shown.

Lower-case characters indicate elements of the language
that are supplied by the programmer.

In some instances the symbol (n) is wused following a
number to indicate the radix. For example, 100(8)
indicates that 100 is an octal value, while 100(10)
indicates a decimal value.

xi

PART I

INTRODUCTION TO MACRO-11

CHAPTER 1

MACRO-11 FEATURES

The MACRO-11 Assembler provides the following features:
1. Program and command string control of assembly functions
2. Device and filename specifications for input and output files
3. Error listing on command output device

4. Alphabetized, formatted symbol table listing; optional
cross-reference listing of symbols

5. Relocatable object modules

6. Global symbols for linking independent object modules
7. Conditional assembly directives

8. Program sectioning directives

9. User-defined macros and macro libraries
10. Comprehensive system macro library

11. Extensive program and command string control of 1listing
functions

12, An indirect command file facility for controlling the
assembly process.

1.1 OVERVIEW OF MACRO-11

MACRO-11 is a 2-pass assembler. The functions and operations relevant
to each assembly pass are described in the following sections.

1.1.1 Assembly Pass 1

The main purpose of assembly pass 1 is to locate and read all required
macros from libraries; to build symbol tables and program section
tables for the program; while also performing a rudimentary assembly
of each source statement.

The first stage of assembly pass 1 is the initialization of all impure
data areas that MACRO-11 wuses internally for the assembly process.
These areas include all dynamic storage areas and buffer areas used as
file storage regions.

MACRO-11 FEATURES

After initializing.memory areas, MACRO-11 issues a call to a system
subroutine which transfers a command line into memory. This command
line contains the specifications of the files to be used during
assembly. After scanning the command line for proper syntax, MACRO-11
initializes the specified output files. These files are opened to
determine if valid output file specifications have been passed in the
command line. They are then c¢losed to minimize requirements for
active file space.

As the assembly process begins, MACRO-11 initiates a routine which
retrieves source lines from the input file. If no such file is
currently open, as is the case at the beginning of assembly, MACRO-11
opens the next input file specified in the command line previously
read and begins to assemble the source statements. MACRO-11
determines the length of each instruction and assembles it accordingly
as one word, two words, or three words.

At the end of assembly pass 1, MACRO-11 reopens the output files
described above and writes out information that is to be used later by
the Task Builder in linking the object modules. Such information as
the object module name, the program version number, and the global
symbol directory (GSD) entries for each program section are output to
the object file. After writing out the GSD entries for a given
program section, MACRO-11 scans through the symbol tables to find all
the global symbols that are bound to that particular program section.
MACRO-11 then writes out GSD records to the object file for these
symbols. This process continues for each program section, bringing to
a close assembly pass 1.

1.1.2 Assembly Pass 2

As an integral part of pass 2, MACRO-11 simultaneously writes the
object records to the output file and generates the assembly listing,
followed by the symbol table listing for the program. A
cross-reference listing may also be generated. See Section 8.1.4.

Basically, assembly pass 2 consists of the same steps performed in
assembly pass 1, except that all source statements containing
MACRO-11-detected errors are flagged with an error code as the
assembly 1listing file is created. The object file that is created as
the final consequence of pass 2 contains all the object records,
together with relocation records containing information necessary for
subsequent Task Builder linking of the object file.

The information thus passed to the Task Builder enables the global
symbols in the object modules to be associated with absolute or
virtual memory addresses, thereby forming an executable body of code.

The user may wish to become familiar with the macro object file format
and description. This information is presented in the applicable Task "
Builder Reference Manual (see Section 0.3 in the Preface).

CHAPTER 2

SOURCE PROGRAM FORMAT

2.1 PROGRAMMING STANDARDS AND CONVENTIONS

Assembly level programming deals directly with the host hardware.
Hence, great care must be exercised in establishing programming
standards and conventions to enable code written by one group to be
interchanged easily with another group. Standards provide a number of
advantages. When applied to the program development process,
standards make the programming effort easier to:

Plan
Comprehend
Test
Modify
Convert.

Even though standards must accommodate 1local requirements, many
aspects of the program development process have universal
applicability. The standards common to all of DIGITAL's PDP-11
software products are presented in Appendix E as a model for users.
Observance of these standards is beneficial to DIGITAL and its users,
by simplifying both communications and the continuing task of software
maintenance and enhancement.

2.2 STATEMENT FORMAT

A source program is composed of a sequence of source coding 1lines.
Each 1line contains a single assembly-language statement. MACRO-11
will accept a source line of 132 characters, but 80 characters is the
recommended length, because of constraints imposed by listing format
and terminal line size.

A MACRO-11 statement may consist of as many as four fields. These
fields are 1identified by their order of appearance within the
statement and/or by specified separating characters between fields.
The general format of a MACRO-11 statement is:

Label: Operator Operand ;Comment (s)

The label and comment fields are optional. The operator and operand
fields are interdependent, 1i.e., when both fields are present in a
source statement, each field is evaluated by MACRO-11 in the context
of the other.

A statement may contain an operator field and no operand field, but
the reverse 1is not true. A statement containing an operand with no
operator does not conform to established MACRO-11 coding conventions;
such a statement is currently interpreted by MACRO-11 during assembly
as an implicit .WORD directive (see Section 6.3.2).

2-1

SOURCE PROGRAM FORMAT

MACRO-11 interprets and processes source program statements one by
one, generating one or more binary instructions or data words, or
performing a specified assembly process. Blank lines, although legal,
have no significance in the source program.

An assembly-language statement must be completed on one source 1line;
no continuation lines are allowed in MACRO-11.

The tab character can be used in the source statement to format the
fields into aligned columns in accordance with DIGITAL's standard
source program format, as shown below:

Label - begins in column 1

Operator - begins in column 9
Operand(s) - begin(s) in column 17
Comment (s) - begin(s) in column 33.

For example, the following statement should be formatted in the source
program into specific columns, increasing 1its readability in the
assembly listing:

REGTST:BIT#MASK,VALUE; COMPARES BITS IN OPERANDS.
1 9 17 33 (columns)
REGTST: BIT $#MASK,VALUE ~ ;COMPARES BITS IN OPERANDS.

The above formatting conventions are not mandatory in coding MACRO-11
programs (free-field coding is permissible). However, it is
recommended that source programs be prepared in accordance with these
conventions for consistency and clarity.

2.2.1 Label Field

A label is a means of symbolically referring to a 1location in a
program.

A label is a user-defined symbol which is assigned the value of the
current location counter and entered into the user-defined symbol
table. The current location counter is the means by which MACRO-11
assigns memory addresses to the source program statements as they are
encountered during the assembly process. The address value of the
label 1is absolute or relocatable, depending on whether the current
program section being assembled is absolute or relocatable. (The
concept of program sections and the attributes that may be specified
for them are discussed in detail in Section 6.8.)

In the case of an absolute program section, the value of the current
location counter 1is likewise absolute, i.e., its value references an
absolute virtual memory address (such as location 100). Similarly,
the wvalue of the current location counter in a relocatable program
section is also relocatable; however, a relocation bias calculated by
the Task Builder will be added to the apparent value of the current
location counter to establish its effective absolute virtual address
at execution time.

SOURCE PROGRAM FORMAT

If present, a label always appears as the first field in a source

statement and must kg tfrminated by a colon. For example, if the
" current location counter value 1s absolute), the statement:

&

aBcDf] mov A,B

assigns the value 100(8) to the label ABCD. Subsequent references to
this 1label would then yield a value of absolute 100(8). 1In this
example, if the location counter value were relocatable, the final
value of ABCD would be 100(8)+K, where K represents the relocation
bias of the program section, as calculated by the Task Builder at link
time.

More than one label may appear within a _single label field, Each
labe so specified is assigned the same address value. or example,
if the current location counter yalue is 100(8), the multiple labels
e TS LI STt

ABC: SDD: A7.7: MOV A,B

are each assigned the value 100(8).

Multiple labels may also appear on successive lines. For example, the
statements

ABC:
SDD:
A7.7: MOV A,B

likewise cause the same current location counter value to be assigned
to all three labels.

Of the two methods of assigning multiple 1labels shown above, the
second 1is preferred, because consistency of field positioning within
\EHE-SUGFEE program improves readability.

A_double colon (;:: i lobal _symbol. Such a
labe can e referenced by independently-assembled object modules.
References to this label in other modules will be resolved by the Task
Builder when the modules are linked as a composite executable task.
For example, the statement

ABCD:: MOV A,B

establishes the label ABCD as a global symbol. The distinguishing
attribute of a global symbol is that it can be referenced from within
an object module other than the module in which the symbol is defined
(see Section 6.9). '

The legal characters for defining labels are:

A through 2

0 through 9
(Period)

$ (Dollar Sign)

NOTE

By convention, the dollar sign ($) and period (.)
are reserved for use in defining DIGITAL system
software symbols. Therefore these characters
should not be used in defining labels in MACRO-11
source programs.

SOURCE PROGRAM FORMAT

A label may be any length; onl

significant and, therefore,
1Y) . abe

(L T ECMEg -.—-...m-!'m A

code (M) 1s ge in Yy listing le first six
characters in two or more labels are the same (see Appendix D).

however, the first six characters are

A symbol used as a label must not be redefined within the source
program. If the symbol is redefined, a 1label with a multiple
definition results, causing MACRO-1l to generate an error code (M) in
the assembly listing (see Appendix D). Furthermore, any statement in
the source program which references a multi-defined label results in
an additional diagnostic message; in this case, an error code (D) is
generated in the assembly listing (see Appendix D).

2.2.2 Operator Field

The operator field specifies the action to be performed. It may
consist of an instruction mnemonic (op code), an assembler directive,
or a macro call.

The operator field follows the label field in a source statement.
Chapters 6 and 7 describe these three types of operator field entries.

When the operator is an instruction mnemonic, the mnemonic op code

specifies the machine instruction to be generated. MACRO-11 then-
continues with the evaluation of the address(es) of the operand(s)

which follow(s). When the operator 1is a directive, the directive

causes MACRO-11 to perform certain control actions or processing

operations during the assembly of the source program. When the

operator is a macro call, MACRO-1l1l inserts the code generated by the

macro expansion.

The operator field need not be preceded by a label; but it may be
preceded by one or more labels and followed by one or more operands
and/or a comment. Furthermore, leading and trailing spaces or tabs in
the operator field have no significance; such characters serve only
to separate the operator field from the preceding and following
fields.

An operator is terminated by a space, tab, or any non-RADS50 character,
as in the following examples:

MOV A,B sTHE SPACE TERMINATES THE OPERATOR

s MOV.
MOV A,B ;THE TAB TERMINATES THE OPERATOR MOV.
MOV@A,B ;THE @ CHARACTER TERMINATES THE

;OPERATOR MOV.

Although the statements above are ,all equivalent in function, the
second statement 1is the recommended form because it conforms to
MACRO-11 coding conventions.

2.2.3 Operand Field

When the operator field contains an instruction mnemonic (op code),
the operand field specifies those program variables that are to be

2-4

SOURCE PROGRAM FORMAT

evaluated/manipulated by the operator. The operand field may also be
used to supply arguments to MACRO-1l directives and macro calls, as
described in Chapters 6 and 7, respectively.

Operands may be expressions or symbolic arguments (within the context
of the specified operation). Multiple expressions used in the operand
field of a MACRO-11 statement must be separated by a comma; multiple
symbolic arguments similarly used may be delimited by any legal
separator, i.e., a comma, tab, and/or space. An operand should be
preceded by an operator field; if it is not, the statement is treated
by MACRO-11 as an implicit .WORD directive (see Section 6.3.2).

When the operator field contains an op code, associated operands are
always expressions, as shown in the following statement:

MOV RO,A+2(R1)

On the other hand, when the operator field contains a MACRO-11
directive or a macro call, associated operands are normally symbolic
arguments, as shown in the following statement:

.MACRO ALPHA ARG1,ARG2

Refer to the description of each MACRO-11 directive to determine the
type and number of operands required in issuing the directive.

The operand field is terminated by a semicolon when the field is
followed by a comment. For example, in the following statement:

LABEL: MOV A,B ; COMMENT FIELD

the tab between MOV and A terminates the operator field and defines
the beginning of the operand field; a comma separates the operands A
and B; and a semicolon terminates the operand field and defines the
beginning of the comment field. When no comment field follows, the
operand field is terminated by the end of the source line.

2.2.4 Comment Field

The comment field normally begins in column 33 and extends through the
end of the 1line. This field is optional and may contain any ASCII

characters except nul RUBOUT, iage-return, %}ng;jg%%*
vertical-tab or . er characters appearfng in e
comment Tield, even special characters reserved for use in MACRO-11,

are checked only for ASCII legality and then included in the assembly
listing as they appear in the source text.

All comment fields musg_EggLgaﬂ%éB_;hg_ﬁgmi;glgn__gha;ag;g;4;). When
lengthy comments extend beyon e end of the source line (column 80),
the comment may be resumed in a following line. Such a 1line must
contain a lﬁﬁﬂiﬂﬂ-ﬁemiaalggd and it is suggested that the body of the
comment be continued in the same c¢olumnar position in which the
comment began. A comment 1line can also be included as an entirely
separate line within the code body.

Comments do not affect assembly processing or program execution.
However, comments are useful in source listings for later analysis,
debugging, or documentation purposes.

SOURCE PROGRAM FORMAT

2.3 FORMAT CONTROL

Horizontal formatting of the source program is controlled by the space
and ‘tab characters. These characters have no effect on the assembly
process unless they are embedded within a symbol, number, or ASCII
text string, or unless they are used as the operator field terminator.
Thus, the space and tab characters can be used to provide an orderly
and readable source program, as reflected by the following statements:

LABEL:MOV(SP) +,TAG; POP VALUE OFF STACK.

No spaces or tabs have been used to separate the fields in this
statement. Note the difficulty in recognizing where one field ends
and the next begins.

LABEL: MoV (SP) +,TAG ;POP VALUE OFF STACK.

This statement conforms to the standard horizontal formatting
conventions, i.e., the statement elements are separated into four
distinct fields and are therefore easily discernible.

Page formatting and assembly listing considerations are discussed in
Chapter 6 in the context of MACRO-11 directives that may be specified
to accomplish desired formatting operations. Appendix E describes the
coeding conventions used in all DIGITAL PDP-11 operating system
scoftware.

PART II

PROGRAMMING
IN MACRO-11 ASSEMBLY
LANGUAGE

CHAPTER 3

SYMBOLS AND EXPRESSIONS

This chapter describes the components of MACRO-11 instructions. The
character set, the conventions observed in constructing symbols, and
the use of numbers, operators, terms and expressions are discussed as
they relate to MACRO-11l programming.

3.1 CHARACTER SET
The following characters are legal in MACRO-11 source programs:

1. The letters A through Z. Both upper- and lower-case letters
are acceptable, although, upon input, lower-case letters are
converted to upper-case (see Section 6.2, .ENABL LC).

2. The digits 0 through 9.

3. The characters . (period) and $ (dollar sign). These
characters are reserved for wuse as Digital Equipment
Corporation system program symbols.

4., The special characters listed in Table 3-1.

Table 3-1
Special Characters Used in MACRO-11

Character Designation ' Function
: Colon Label terminator.
13 Double colon Label terminator; defines the

label as a global label.

Equal sign Direct assignment operator;

and macro keyword indicator.
== Double egqual Direct assignment operator;
sign defines the symbol as a global
symbol.
% Percent sign Register term indicator.
Tab Item or field terminator.
Space Item or field terminator.

SYMBOLS AND EXPRESSIONS

Table 3-1 (Cont.)

Special Characters Used in MACRO-11

Character Designation Function

Number sign Immediate expression
indicator.

@ At sign Deferred addressing indicator.

(Left parenthesis Initial register indicator.

) Right parenthesis Terminal register indicator.

. Period Current location counter

' Comma Operand field separator.

; Semicolon Comment field indicator.

< Left angle Initial argument or expression

bracket indicator.

> Right angle Terminal argument or expres-

bracket sion indicator.

+ Plus sign Arithmetic addition operator
or autoincrement indicator.

- Minus sign Arithmetic subtraction opera-
tor or autodecrement indica-
tor.

* Asterisk Arithmetic multiplication op-
erator.

/ Slash Arithmetic division operator.

& Ampersand Logical AND operator.

[Exclamation point Logical inclusive OR operator.

" Double quote Double ASCII character indica-
tor.

! Single quote Single ASCII character indica-
tor; or concatenation
indicator.

~ Up arrow or Universal unary operator or

circumflex argument indicator.

\ Backslash Macro call numeric argument

indicator.

3.1.1 Separating and Delimiting Characters

Legal separating characters and legal argument delimiters are defined
below in Tables 3-2 and 3-3 respectively.

SYMBOLS AND EXPRESSIONS

Table 3-2

Legal Separating Characters

Character

Definition

Usage

Space

One or more spaces
and/or tabs

Comma

A space is a legal separator
between instruction fields and
between symbolic arguments
within the operand field.

Spaces within i
£§55==a (See Section 3.9).

separator
arguments
field.
used in
must be

A comma is a
between
within

legal
symbolic
the operand
Multiple expressions
the operand field
separated by a comma.

Table 3-3

Legal Argument Delimiters

Character

Definition

Usage

Koo Paired angle brackets Paired angle brackets may be
used anywhere in a program to
enclose _.an expression for
treatment as a single term.
Paired angle brackets are also
used to enclose a macro
argument, particularly when
that argument contains separ-
ating characters (see Section
7.3).

XoeoX Up-arrow (unary oper- This construction 1is equiva-
ator) construction, lent in function to the paired
where the up-arrow is angle brackets described above
followed by an argu- and 1is generally used only
ment that is bracketed where the argument itself con-
by any paired printing tains angle brackets.
characters (x).

3.1.2 1Illegal Characters !

A character is determined to be illegal for one of two reasons:

1.

A character is not an element
character set.
oti

in the

ion mark, an
assembly listing (see

this is an embedded null which, when detected,

scan of the current line.

of the recognized MACRO-11

A character of this kind is replaced in the

ode (I) is printed
Appendix D). The exception to
terminates the

SYMBOLS AND EXPRESSIONS

2. A legal MACRO-11 character is illegal in the context of its
usage within the source statement, i.e., 1its syntax is
illegal or questionable. Such a character causes an error
code (Q) to be printed in the assembly listing.

3.1.3 Unary and Binary Operators

Legal MACRO-1ll unary operators are described in Table 3-4. Unary
operators are wused 1in connection with single terms (arguments or
operands) to indicate an action to be performed on that term during
assembly. A term preceded by a unary operator is considered to
contain that operator. The term so specified thus becomes a value
which can be used alone or as an element of an expression.

Table 3-4
Legal Unary Operators

Unary
Operator| Explanation Example Effect
+ Plus sign +A Produces the positive
value of A.
- Minus sign -A Produces the negative
(2's complement) value of
A.
~ Up-arrow, univer=- “C24 Produces the 1l's comple-
sal unary operator. ment value of 24(8).
(This usage is
described in detail “D127 Interprets 127 as a
in Section 6.4.) decimal number.
“"F3.0 Interprets 3.0 as a
l-word, floating-point
number .
034 Interprets 34 as an octal
number.

“B11000111 Interprets 11000111 as a
binary number.

“RABC Evaluates ABC in Radix-50
form.

Unary operators can be used adjacent to each other or in constructions
involving multiple terms, as shown below:

-"D50 (Equivalent to -<"D50>)
"C"0l12 (Equivalent to "C<"012>)

Legal MACRO-11 binary operators are described in Table 3-5. In
contrast to wunary operators, binary operators specify actions to be
performed on multiple items or terms within an expression. Table 3-5
shows the relationships that can be established between expression
terms through the use of binary operators.

SYMBOLS AND EXPRESSIONS

Table 3-5
Legal Binary Operators
Binary
Operator | Explanation Example
+ Addition A+B
- Subtraction A-B
* Multiplication A*B (16-bit product returned)
/ Division A/B (l6~bit quotient returned)
& Logical AND AgB
! Logical inclusive OR AlB
All binary operators have equal priority. Items or terms can be

grouped for evaluation within an expression by enclosing them within
angle brackets. Terms so enclosed are evaluated first, and remaining
operations are performed from left to right, as shown in the examples
below:

«WORD 1+2*3 ;EQUALS 11(8).
.WORD 1+<2%3> ;EQUALS 7(8).

3.2 MACRO-11 SYMBOLS

Three types of symbols may be defined for use within MACRO-11 source
programs: permanent symbols, user-defined symbols, and macro symbols.
MACRO-11 maintains three types of symbol tables: the Permanent Symbol
Table (PST), the User Symbol Table (UST), and the Macro Symbol Table
(MST). The PST contains all the permanent symbols defined within (and
thus automatically recognized by) MACRO-11 and is part of the MACRO-11
task image. The UST and MST are constructed as the source program is
assembled.

3.2.1 Permanent Symbols

Permanent symbols consist of the instruction mnemonics (see Appendix
C) and MACRO-11 directives (see Chapters 6 and 7 and Appendix B).
These symbols are a permanent part of the MACRO-11 task image and need
not be defined before being used in the operator field of a MACRO-11
source statement (see Section 2.2.2).

3.2.2 User-Defined and Macro Symbols

User-defined symbols are those symbols treated by the programmer as
labels (see Section 2.2.1) or that are equated to a specific value
through a direct assignment statement (see Section 3.3) or appear as
macro names or dummy arguments. These symbols are added to the User
Symbol Table as they are encountered during assembly. Macro symbols
are those symbols used as macro names (see Section 7.1). Similarly,
these symbols are added to the Macro Symbol Table as they are
encountered during assembly.

3-5

SYMBOLS AND EXPRESSIONS

User-defined and macro symbols can be composed of alphanumeric
characters, dollar signs ($), and periods (.) only; any other
character is illegal.

NOTE

The dollar sign ($) and period (.) characters are
reserved for use in defining Digital Equipment
Corporation system software symbols. For example,
READS is a file-processing system macro. The user
is cautioned not to employ these characters 1in
constructing user-defined symbols or macro symbols
in order to avoid possible conflicts with existing
or future Digital Equipment Corporation system
software symbols.

The following rules govern the <creation of user-defined and macro
symbols:

1. The first character of a symbol must ;§?Ligg_g_numbg: (except
in the case of local symbols; see Section 3.5).
2. The first six characters of a symbol must be unique.

3. A symbol can be written with more than six legal characters,
but the seventh and subsequent characters are checked only
for ASCII legality and are not otherwise evaluated or
recognized by MACRO-11.

4. Spaces, tabs, and illegal characters must not be embedded
within a symbol. The legal MACRO-11 character set is defined
in Section 3.1.

The value of a symbol depends upon its use in the program. When a
symbol appears in the operator field, it may be any one of the three
symbol types described above i.e., permanent, user-defined, macro. To
determine the value of an operator-field symbol, MACRO-11l searches the
symbol tables in the following order:

1. Macro Symbol Table
2. Permanent Symbol Table
3. User-Defined Symbol Table

This search order allows redefinition of Permanent Symbol Table
entries as macro symbols. That is, permanent symbols may be used as
macro symbols. But the user must keep in mind the sequence in which
the search for symbols is performed in order to avoid incorrect
interpretation of the symbol's use.

When a symbol appears in the operand field, the User-Defined Symbol
Table is searched first, then the Permanent Symbol Table is searched.

Depending on their use in the source program, user-defined symbols
have either a local (internal) attribute or a global (external)
attribute.

Normally, MACRO-11 treats all user-defined symbols as local, that 1is,
their definition is 1limited to the module in which they appear.
However, symbols can be explicitly declared to be global symbols
through one of three methods:

SYMBOLS AND EXPRESSIONS

l. Use of the .GLOBL directive (see Section 6.9).

2. Use of the double colon (::) in defining a label (see Section
2.2.1).

3. Use of the double equal (==) sign in a direct assignment
statement (see Section 3.3).

All symbols within a module that remain undefined at the end of
assembly are treated as default global references.

NOTE

Undefined symbols at the end of assembly are
assigned a value of 0 and placed 1into the
user—-defined symbol table as undefined default
global references. If the .DSABL GBL directive is
in effect, however, (see Section 6.2), the
automatic global reference default function of
MACRO-11 is inhibited, causing the statement
containing the undefined symbol to be flagged with
an error code (U) in the assembly 1listing (see
Appendix D).

Global symbols provide linkages between independently-assembled object
modules within the task image. A global symbol defined as a label,
for example, may serve as an entry-point address to another section of
code within the task image. Such symbols are referenced from other
source modules in order to transfer control throughout the task's
execution. These global symbols are resolved by the Task Builder at
link time, ensuring that the resulting task image is a logically
coherent and complete body of code.

3.3 DIRECT ASSIGNMENT STATEMENTS
A direct assignment statement allows you to equate a symbol to a
specific wvalue. When a direct assignment statement is first used to
define a symbol, that symbol is entered into the User-Defined Symbol
Table. A symbol defined in this manner may be redefined in a
subsequent direct assignment statement by assigning a new value to the
previously-defined symbol. '
The general format for a direct assignment statement is:
symbol=expression

or
symbol==expression

where: expression - can have only one level of forward reference
(see 5. Dbelow).

- cannot contain an undefined global reference.

A direct assignment statement embodying the double equal (==) sign, as
shown above, defines the symbol as global (see Section 6.9).

SYMBOLS AND EXPRESSIONS

The following examples illustrate the coding of direct assignment
statements:

a=1 ; THE SYMBOL A IS EQUATED TO THE
sVALUE 1.
B=A-1&MASKLOW ; THE SYMBOL B IS EQUATED TO THE

;VALUE OF THE ENTIRE EXPRESSION
sWHICH FOLLOWS.

C:
D=, ;THE SYMBOL D IS EQUATED TO ., AND
E: MOV #1,ABLE ;THE LABELS C AND E ARE ASSIGNED A

;VALUE THAT IS EQUAL TO THE LOCATION
;OF THE MOV INSTRUCTION.

The last of the three examples above is provided only to illustrate
the performance of MACRO-11 in such situations. See Section 3.6 for a
description of the period (.) as the current location counter symbol.

The following conventions apply to the coding of direct assignment
statements:

1. An equal sign (=) or double equal sign (==) must separate the
symbol from the expression defining the symbol's value.
Spaces preceding and/or following the direct assignment
operators, although permissible, have no significance in the
resulting value.

2. The symbol being assigned in a direct assignment statement is
placed in the label field.

3. Only one symbol can be defined in a single direct assignment
statement.

4, A direct assignment statement may be followed only by a
comment field.

5. Only one level of forward referencing is allowed, as shown in
the following example:

X=Y (Illegal forward reference)
y=2 (Legal forward reference)
z=1

The above example would result in the generation of an error code (U)
in the assembly 1listing on the line containing the illegal forward
reference.

Although one 1level of forward referencing 1is allowed for local
symbols, a global symbol defined in a direct assignment statement must
not contain a forward reference, 1i.e., the global assignment
expression must not itself contain an undefined reference to another
symbol. Such a forward reference is illegal, causing an error code
(A) to be generated in the assembly listing.

SYMBOLS AND EXPRESSIONS

3.4 REGISTER SYMBOLS

The eight general.registers of the PDP-11 processor are numbered 0
through 7 and can be expressed in the source program in the following
manner :

%0
%1

%7

where % indicates a reference to a register rather than a location.
The digit specifying the register can be replaced by any legal,
absolute term that can be evaluated during the first assembly pass.
Use standard symbolic names for all register references.

The register definitions listed below are automatically assigned by
MACRO-11, i.e., these definitions are the normal default values and
remain valid for all register references within the source program.

R0=%0 sREGISTER 0 DEFINITION.
R1=%1 sREGISTER 1 DEFINITION.
R2=%2 ;REGISTER 2 DEFINITION.
R3=%3 ;REGISTER 3 DEFINITION.
R4=%4 sREGISTER 4 DEFINITION.
R5=%5 ;REGISTER 5 DEFINITION.
SP=%6 s STACK POINTER DEFINITION.
PC=%7 ; PROGRAM COUNTER DEFINITION.

Note that registers 6 and 7 are given special names because of their
unique system functions.

A register symbol may be defined in a direct assignment statement
appearing 1in the program. The defining expression of a register
symbol must be a legal, absolute value. Although you can reassign the
standard register symbols through the use of the .DSABL REG directive
(see Section 6.2), this practice is not recommended. An attempt to
redefine a default register symbol without first specifying the .DSABL
REG directive to override the normal register definitions causes that
assignment statement to be flagged with an error code (R) in the
assembly listing. The symbolic default names assigned to . the
registers, as 1listed above, are the conventional names used in all
DIGITAL-supplied PDP-11 system programs. For this reason, you are
well advised to follow these conventions.

All non-standard register symbols must be defined before they are
referenced in the source program. A register expression less than 0
or greater than 7 is flagged with an error code (R) in the assembly
listing.

The % character may be used with any 1legal term or expression to
specify a register. For example, the statement

CLR $3+1
is equivalent in function to the statement
CLR %4

and clears the contents of register 4.

SYMBOLS AND EXPRESSIONS

In contrast, the statement
CLR 4

clears the contents of virtual memory location 4.

3.5 LOCAL SYMBOLS

Local symbols are specially formatted symbols used as labels within a
block of «coding that has been delimited as a local symbol block.
Local symbols are of the form n$, where n is a decimal integer from 1
to 65535, inclusive. Examples of local symbols are:

13
27%
598

104

A local symbol block is delimited in one of three ways:

1. The range of a local symbol block usually consists of those
statements between two normally-constructed symbolic labels
(see Figure 3-1). Note that a statement of the form:

ALPHA=expression

is a direct assignment statement (see Section 3.3), but does
not create a label and thus does not delimit the range of a
local symbol block.

2. The range of a local symbol block is normally terminated upon
encountering a .PSECT, .CSECT, or .ASECT directive in the
source program (see Figure 3-1).

3. The range of a 1local symbol block is delimited through
MACRO-11 directives, as follows:

Starting delimiter: .ENABL LSB (see Section 6.2)
Ending delimiter: .ENABL LSB
or
.DSABL LSB (see Section 6.2)
followed by one of: Symbolic label

.PSECT (see Section 6.8.1)
.CSECT (see Section 6.8.2)
.ASECT (see Section 6.8.2)

Local symbols provide a convenient means of generating labels for
branch instructions and other such references within a local symbol
block. Using local symbols reduces the possibility of symbols with
multiple definitions appearing within a user program. In addition,
the use of local symbols differentiates entry-point labels from 1local
labels, since 1local symbols cannot be referenced from outside their
respective local symbol block. Thus, local symbols of the same name
can appear in other 1local symbol blocks without conflict. Local
symbols do not appear in cross-reference listings.

SYMBOLS AND EXPRESSIONS

Local symbols require less symbol table
symbols.
the range fro irst, then the range from 128§ to 655358.
Local symbo1g—lﬁgiﬁ?ﬁ3$:f:Ié?éﬁ3E'E1$'thTUugh—&€#$7‘THETE§TVE7-eaa—ben
generated automatically as a feature of MACRO-11. Such local symbols
the expansion of
described in detail in this context in Section 7.3.5.

are useful

Their use is recommended.

in

space

macros dur

than other types of

When defining local symbols, use

ing assembly and are

Be sure to avoid multiple definitions of local symbols within the same
if the local symbol 10$ is defined

local

symbol

block.

For example,

two or more times within the same
a different address

represents

causes an error code

local
value.

symbol

block, each symbol

Such a multi-defined symbol

(P) to be generated in the assembly listing.

For examples of local symbols and local symbol blocks as they appear
in a source program, see Figure 3-1.

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
142
141
142

000000
ep0d00 @12700
woredda 0@5m20
Qrenes V22700
o0e212 101374
200000
Quveee @127a0
200004 @A5720
ARGAA6 022740
emea12 101374
P02000
¢e00an 012700
onAee4 ©a5n20
200206 022700
PR0012 141374
Figure 3-1

eeeoau!

oeoaoRn!

arpnGR!

apnpea!

raaeen’

eaeean!

] PROGRAM INITIALIZATION CODE

)

XCTPRGY}
182

XCTPAS Y
181

XCTLINSS
18

«PSECT
MOV
CLR
CMP
8ml

JPSECY
MOV
CLR
cMP
BH1

PSECT
MOV
CLR
CMP
BHI

XCTPRG,GBL,
HIMPURE,RQ
(RD)+
NIMPURT,R®
1%

XCTPAS,GBL
¥IMPPAS,RQ
(RO)+
#IMPPAT,RQ
1%

XCTLIN,GBL
HIMPLIN,RQ
(RB)+
¥IMPLIT, RO
18

JIMPURE DATA INITIALIZATION

JPASS INITIALIZATION

JLINE INITIALIZATION

Assembly Listing Showing Local Symbol Block

3.6 CURRENT LOCATION COUNTER

The period
used in the operand field of an instruction, it

of the first word of the instruction,
When

below.

A:

(.) is the symbol for the current location counter. When

MOV

used

#.,RO

in

represents the address

as shown in the first example

the operand field of a MACRO-11 directive, it
represents the address of the current byte or word, as shown in the
second example below.

; THE PERIOD (.)
;OF THE MOV INSTRUCTION.

REFERS TO THE ADDRESS

(The function of the # symbol is explained in Section 5.9.)

SAL=0

.WORD

177535,.+4,SAL

; THE OPERAND

.+4 IN THE .WORD

;DIRECTIVE REPRESENTS A VALUE
;THAT IS STORED AS THE SECOND
;OF THREE WORDS DURING

;ASSEMBLY.

Assume that the current value of the location counter is 500. During
assembly, MACRO-11l reserves storage in response to the .WORD directive

(see Section
accompanying

the

6.3.2),

beginning with

location

500. The operands

.WORD directive determine the values so stored. The

3-11

SYMBOLS AND EXPRESSIONS

value 177535 is thus stored in location 500. The value represented by
.+4 1is stored in location 502; this value is derived as the current
value of the location counter (which is now 502), plus the absolute
value 4, thereby depositing the value 506 in location 502. Finally,
the value of SAL, previously equated to 0, is deposited 1in -location
504.

Figure 3-2 illustrates the result of the example.

LOCATION CONTENTS
500 177535
502 506
504 0

Figure 3-2 Sample Assembly Results

At the beginning of each assembly pass, MACRO-11 resets the location
counter. Normally, consecutive memory locations are assigned to each
byte of object data generated. However, the value of the 1location
counter can be changed through a direct assignment statement of the
following form:

.=expression

Similar to other MACRO-11l symbols, the current location counter symbol
(.) has an attribute of relocatability associated with it: it is
either absolute or relocatable, depending on the specific such
attribute of the current program section. (A program section and its
attributes are defined through the wuse of the .PSECT directive
described 1in Section 6.8.1.) The existing attribute (or mode) of the
current location counter cannot be changed by specifying a defining
expression having a different attribute.

Furthermore, such a defining expression must not force the 1location
counter into another program section (.PSECT area), even though the
program sections so involved may both be absolute or relocatable. The
expression defining the 1location counter value must not contain a
forward reference, i.e., the expression must not contain a reference
to a symbol that 1is not previously defined. Such violations
constitute a general assembly error, resulting in an error code (A) in
the assembly listing.

Thus, the attribute (or mode) of the current location counter takes on
the attribute of the current program section. Therefore, its
attribute from program section to program section can be changed only
through the program sectioning directives (.PSECT, .ASECT, and
.CSECT), as described in Section 6.8.

The following coding illustrates the use of the current location
counter:

SYMBOLS AND EXPRESSIONS

.ASECT
.=500 ;SET LOCATION COUNTER TO
- ;ABSOLUTE 500 (OCTAL) .
FIRST: MOV .+10,COUNT ;THE LABEL "FIRST" HAS THE VALUE

500 (OCTAL) .

:.+10 EQUALS 510 (OCTAL). THE
; CONTENTS OF THE LOCATION
:510 (OCTAL) WILL BE DEPOSITED
:IN THE LOCATION "COUNT."

.=520 : THE ASSEMBLY LOCATION COUNTER
:NOW HAS A VALUE OF
;ABSOLUTE 520 (OCTAL) .

SECOND: MOV . , INDEX ;THE LABEL SECOND HAS THE
;VALUE 520 (OCTAL) .
: THE CONTENTS OF LOCATION
:520 (OCTAL) , THAT IS, THE BINARY
;CODE FOR THE INSTRUCTION
: ITSELF, WILL BE DEPOSITED IN THE
; LOCATION "INDEX."

.PSECT

.=, 420 ;SET LOCATION COUNTER TO
;RELOCATABLE 20 OF THE
; UNNAMED PROGRAM SECTION.

THIRD: .WORD 0 :THE LABEL THIRD HAS THE
;VALUE OF RELOCATABLE 20.

Storage areas may be reserved in the program by advancing the location
counter. For example, if the current value of the location counter is
1000, each of the following statements:

.=.+40
or
+BLKB 40
or
.BLKW 20

reserves 40(8) bytes of storage space 1in the source program. The
.BLKB and .BLKW directives, however, are recommended as the preferred
ways to reserve storage space (see Section 6.5.3).

3.7 NUMBERS

MACRO-11 assumes that all numbers in the source program are to be
interpreted in octal radix, unless otherwise specified. An exception
to this is that operands associated with Floating Point Processor
instructions and Floating Point Data directives are treated as decimal
(see Section 6.4.2). This default radix can be altered with the
.RADIX directive (see Section 6.4.1.1). Also, individual numbers can
be designated as decimal, binary, or octal numbers through temporary
radix control operators (see Section 6.4.1.2).

For every statement in the source program that contains a digit that
is not in the «current radix, an error code (N) is generated in the
assembly listing. However, MACRO-11 continues with the scan of the
statement and evaluates each such number encountered as a decimal
value.

3-13

SYMBOLS AND EXPRESSIONS

Negative numbers must be preceded by a minus sign; MACRO-11
translates such numbers into two's complement form. Positive numbers
may (but need not) be preceded by a plus sign.

A number containing more than 16 significant bits, i.e., greater than
177777(8), 1is truncated from the left and flagged with an error code
(T) in the assembly listing.

Numbers are always considered to be absolute values, i.e., they are
not relocatable.

Single-word floating-point numbers may be generated with the °F
operator (see Section 6.4.2.2) and are stored in the following format:

15 14 7 6 0
Sign 8-bit 7-bit
Bit Exponent Mantissa

Refer to the appropriate PDP-1l1l Processor Handbook for details of the
floating-point number format.

3.8 TERMS

A term is a component - of an expression and may be one of the
following:

1. A number, as defined in Section 3.7, whose 16-bit value 1is
used.

2. A symbol, as defined in Section 3.2. Symbols are evaluated
as follows:

a. A period (.) specified in an expression causes the value
of the current location counter to be used.

b. A defined symbol is located in the User-Defined Symbol
Table (UST) and its value is used.

Cc. A permanent symbol's basic value is used, with zero
substituted for the addressing modes. (Appendix C lists
all op codes and their values.)

d. An undefined symbol is assigned a value of =zero and
inserted in the User-Defined Symbol Table as an undefined
default global reference. If the .DSABL GBL directive
(see Section 6.2) 1is in effect, the automatic global
reference default function of MACRO-11 is inhibited, in
which case, the statement containing the undefined symbol
is flagged with an error code (U) in the assembly
listing.

3. An ASCII conversion operation is performed, using either a
single quote followed by a single ASCII character, or a
double quote followed by two ASCII characters. This type of
expression construction 1is explained in detail in Section
6.3.3.

SYMBOLS AND EXPRESSIONS

4. A term may also be an expression enclosed in angle brackets
(<>). Any expression so enclosed is evaluated and reduced to
a single term before the remainder of the expression in which
it appears is evaluated. BAngle brackets, for example, may be
used to alter the left-to-right evaluation of expressions (as
in A*B+C versus A*<B+C>), or to apply a unary operator to an
entire expression (as in -<A+B>).

3.9 EXPRESSIONS

Expressions are combinations of terms joined together by binary
operators (see Table 3-5) and which reduce to a 16-bit expression
value. The evaluation of an expression includes the determination of
its attributes. A resultant expression value may be any one of four
types (as described later in this section): absolute, relocatable,
external, or complex relocatable.

Expressions are evaluated from left to right with no operator
hierarchy rules, except that unary operators take precedence over
binary operators. A term preceded by a unary operator is considered
to <contain that operator. (Terms are evaluated, where necessary,
before their use in expressions.) Multiple unary operators are valid
and are treated as follows:

—+-A
is equivalent to:
=<+<=A>>

A missing term, expression, or external symbol is interpreted as a
zero. A missing or illegal operator terminates the expression
analysis, causing an error code (A) or (Q), or both, to be generated
in the assembly 1listing, depending on the context of the expression
itself. For example, the expression:

TAG ! LA 177777
is evaluated as
TAG ! LA

because the first non-blank character following the symbol LA is not a
legal binary operator, an expression separator (i.e., a comma), or an
operand field terminator (i.e., a semicolon or the end of the source
line). It should be noted that spaces within expressions are ignored.

The value of an external expression is equal to the wvalue of the
absolute part of that expression. For example, the expression
EXTERN+A, where "EXTERN" 1is an external symbol, has a value at
assembly-time that is equal to the value of the internal symbol A.
This expression, however, when evaluated by the Task Builder at 1link
time takes on the resolved value of the symbol EXTERN, plus the value
of symbol A.

Expressions, when evaluated by MACRO-11, are determined to be one of
four types: absolute, relocatable, external (or global), or complex
relocatable. The following distinctions are important:

1. An expression 1is absolute if its wvalue 1is fixed. An

expression whose terms are numbers and ASCII conversion
characters will reduce to an absolute value. A relocatable

3-15

SYMBOLS AND EXPRESSIONS

expression or term minus a relocatable term, where both
elements being evaluated belong to the same program section,
are also absolute, since such an expression is reduced to a
single term by MACRO-11 upon completion of the expression
scan. For example, the expression TAG2-TAGl, where both TAGl
and TAG2 are defined in the same program section, 1is an
absolute expression.

2. An expression is relocatable if its value is fixed relative
to the base address of the program section in which it
appears, but it will have an offset value added at task-build
time. Expressions whose terms contain labels defined in
relocatable program sections will have a relocatable value;
similarly, a period (.) 1in a relocatable program section,
representing the value of the current location counter, will
also have a relocatable value.

3. An expression is external (or global) if it contains a single
global reference (plus or minus an absolute expression value)
that is not defined within the current program. Thus, an
external expression 1is only partially defined following
assembly and must be resolved by the Task Builder at 1link
time.

4. An expression is complex relocatable if any of the following
conditions applies:

- It contains a global reference and a relocatable symbol.
~ It contains more than one global reference.

- It contains relocatable terms belonging to different
program sections.

~ The value resulting from the expression has more than one
level of relocation. For example, if the relocatable
symbols TAGl and TAG2 associated with the same program
section are specified in an expression construction in the
form TAGl+TAG2, two levels of relocation would be
introduced, since each symbol is evaluated in terms of the
relocation bias in effect for the program section.

- An operation other than addition 1is specified on an
undefined global symbol.

- An operation other than addition, subtraction, negation, or
complementation is specified for a relocatable value.

The evaluation of relocatable, external, and complex relocatable
expressions is completed at link time.

CHAPTER 4

RELOCATION AND LINKING

The output of MACRO-11 is an object module which must be processed by
the Task Builder before it can be loaded and executed. Essentially,
the Task Builder fixes (i.e., makes absolute) the values of external
or relocatable symbols in the object module, thus transforming the
object module, or several such object modules, into an executable task
image. This process is called linking.

To enable the Task Builder to fix the value of an expression, MACRO-11
issues certain directives +to the Task Builder, together with other
required parameters. In the case of relocatable expressions in the
object module, the Task Builder adds the base of the associated
relocatable program section to the value of the relocatable expression
provided by MACRO-11. In the case of external expression values, the
Task Builder determines the wvalue of the external term in the
expression (since the external symbol must be defined in one of the
other object modules being linked together) and then adds it to the
absolute portion of the external expression, as provided by MACRO-11.

All instructions -that require modification by the Task Builder are
flagged in the assembly listing, as illustrated in the example below.
The apostrophe (') following the octal expansion of the instruction
indicates that simple relocation is required; the letter G indicates
that the value of an external symbol must be added to the absolute
portion of an expression; and the letter C indicates that complex
relocation analysis by the Task Builder is required in order to fix
the value of the expression.

EXAMPLE:
005065 CLR EXTERN (R5) ;THE VALUE OF THE "EXTERN" SYMBOL IS
000000G ;ASSEMBLED AS ZERO AND IS TO BE
;RESOLVED BY THE TASK BUILDER.
005065 CLR EXTERN+6 (R5) ; THE VALUE OF THE SYMBOL "EXTERN"
000006G ;IS TO BE RESOLVED BY
; THE TASK BUILDER AND ADDED TO
; THE ABSOLUTE PORTION (+6) OF
; THE EXPRESSION.
005065 CLR RELOC (R5) ;ASSUMING THAT THE VALUE OF THE
000040 ;SYMBOL "RELOC" IS RELOCATABLE
;40, THE TASK BUILDER WILL ADD A
;RELOCATION BIAS TO THIS VALUE.
005065 CLR ~<EXTERN+RELOC> (R5) ;THIS EXPRESSION IS COMPLEX
000000C ;RELOCATABLE BECAUSE IT REQUIRES

;THE NEGATION OF AN EXPRESSION
; THAT CONTAINS A GLOBAL (EXTERN)
sREFERENCE AND A RELOCATABLE TERM.

4-1

RELOCATION AND LINKING

For a complete description of object records output by MACRO-11, refer
to the applicable Task Builder Reference Manual (see Section 0.3 in
the Preface).

CHAPTER 5

ADDRESSING MODES

The program counter (PC) always contains the address of the next word
to be fetched, i.e., the address of the next instruction to be
executed, or the second or third word of the current instruction.

In order to understand how the address modes operate and how they
assemble, the action of the program counter must be understood. The
key rule to remember is:

"whenever the processor implicitly uses the program counter
(PC) to fetch a word from memory, the program counter is
automatically incremented by 2 after the fetch operation is
completed."”

In the case of 2- or 3-word instructions, the processor uses the PC to
fetch the following words as well.

The following symbols are wused 1in describing addressing modes
throughout this chapter:

1. E is any expression, as defined in Chapter 3.
2. R is a register expression, i.e., any expression containing a

term preceded by a percent sign (%) or a symbol previously
equated to such a term, as shown in the examples below:

RO=%0 ;GENERAL REGISTER O.
R1=R0O+1 ;GENERAL REGISTER 1.
R2=1+%1 ; GENERAL REGISTER 2.

The symbol R may also represent any of the normal default
register definitions (see Section 3.4).

3. ER is a register expression or an absolute expression in the
range 0 to 7, inclusive.

4, A is a general addressing specification which produces a
6-bit mode address field, as described 1in the PDP-11
Processor Handbooks. The addressing specification, A, is
described 1in terms of E, R, and ER, as defined above. Each
addressing specification within this section is illustrated
using either the single operand instruction CLR or the double
operand instruction MOV.

5.1 REGISTER MODE

The register itself (R) contains the operand to be manipulated by the
instruction.

ADDRESSING MODES

Format for A: R
Example:

CLR R3 ;CLEARS REGISTER 3.

5.2 REGISTER DEFERRED MODE

The register (R) contains the address of the operand to be manipulated
by the instruction.

Format for A: @R or (ER)

Examples:

CLR @R1 sALL THESE INSTRUCTIONS CLEAR
CLR (R1) sTHE WORD AT THE ADDRESS
CLR (1) ;CONTAINED IN REGISTER 1.

5.3 AUTOINCREMENT MODE

The contents of the register (ER) are incremented immediately after
being used as the address of the operand (see Note below) .

Format for A: (ER) + {
Examples:
CLR (RO) + ;EACH INSTRUCTION CLEARS
CLR (R4) + s THE WORD AT THE ADDRESS
CLR (R2) + ;CONTAINED IN THE SPECIFIED
;REGISTER AND INCREMENTS
; THAT REGISTER'S CONTENTS
:BY TWO.
NOTE
Certain special instruction/address mode

combinations, which are rarely or never used, do
not operate exactly the same on all PDP-11
processors, as described below.

In the autoincrement mode, both the JMP and JSR
instructions autoincrement the register before its
use on the PDP-11/40, but not on the PDP-11/45 or
11/10.

In double operand instructions having the
addressing form Rn,(Rn)+ or Rn,-(Rn), where the
source and destination registers are the same, the
source operand is evaluated as the autoincremented
or autodecremented value, but the destination
register, at the time it is used, still contains
the originally-intended effective address. 1In the
following example, as executed on the PDP-11/40,
Register 0 originally contains 100(8):

ADDRESSING MODES
MOV RO, (RO) + ;THE QUANTITY 102 IS MOVED
;TO LOCATION 100.

MOV RO,-(RO) ;THE QUANTITY 76 IS MOVED
;TO LOCATION 100.

The use of these forms should be avoided, since
they are not compatible with the entire family of
PDP-11 processors.

An error code (Z) 1is printed in the assembly

listing with each instruction which 1is not
compatible among all members of the PDP-11 family.

5.4 AUTOINCREMEN?,DEFERRED MODE

The register (ER) contains a pointer to the address of the operand.
The contents of the register are incremented after being used as a
pointer.

Format for A: @ (ER) +
Example:
CLR @(R3)+ ; THE CONTENTS OF REGISTER 3 POINT
;TO THE ADDRESS OF A WORD TO BE

; CLEARED BEFORE THE CONTENTS OF THE
;REGISTER ARE INCREMENTED BY TWO.

5.5 AUTODECREMENT MODE

The contents of the register (ER) are decremented before being used as
the address of the operand (see Note above in Section 5.3).

Format for A: - (ER)

Examples:

CLR - (RO) ;DECREMENT THE CONTENTS OF THE SPECI-
;FIED REGISTER (0, 3, OR 2) BY TWO
CLR -(R3) ;BEFORE USING ITS CONTENTS
CLR -(R2) ;AS THE ADDRESS OF THE WORD TO BE
; CLEARED.

5.6 AUTODECREMENT DEFERRED MODE

The contents of the register (ER) are decremented before being used as
a pointer to the address of the operand.

Format for A: @-(ER)

Example:

CLR @-(R2) ;DECREMENT THE CONTENTS OF
;REGISTER 2 BY TWO BEFORE
;USING ITS CONTENTS AS A POINTER
;TO THE ADDRESS OF THE WORD TO BE
;CLEARED.

5-3

ADDRESSING MODES

5.7 INDEX MODE

The value of an expression (E) is stored as the second or third word
of the instruction. The effective address of the operand is
calculated as the value of E, plus the contents of register ER. The
value E is the offset of the instruction, and the contents of register
ER form the base.

Format for A: E (ER)
Examples:

CLR X+2(R1) :THE EFFECTIVE ADDRESS OF THE WORD
sTO BE CLEARED IS X+2, PLUS THE
;CONTENTS OF REGISTER 1.

MOV RO,-2(R3) ;THE EFFECTIVE ADDRESS OF THE
;DESTINATION LOCATION IS -2, PLUS
;THE CONTENTS OF REGISTER 3.

5.8 INDEX DEFERRED MODE

An expression (E), plus the contents of a register (ER), vyields a
pointer to the address of the operand. As in index mode above, the
value E is the offset of the instruction, and the contents of register
ER form the base.

Format for A: QE (ER)
Example:

CLR @114 (R4) ;IF REGISTER 4 CONTAINS 100, THIS

- ;VALUE, PLUS THE OFFSET 114, YIELDS
;THE POINTER 214. TIF LOCATION 214
;CONTAINS THE ADDRESS 2000, LOCATION
;2000 WOULD BE CLEARED.

L,

5.9 IMMEDIATE MODE

Immediate mode allows the operand itself (E) to be stored as the
second or third word of the instruction. This mode is assembled as an
autoincrement of the PC.

Format for A: $+E

Examples:
MOV #100,R0 sMOVE THE VALUE 100 INTO REGISTER 0.
MOV #X,R0 sMOVE THE VALUE OF SYMBOL X INTO

;REGISTER 0.

The number sign (#) in the MACRO-11 character set has special
significance as an addressing mode indicator. When this character
appears in the operand field, as shown above, it specifies the
immediate addressing mode, indicating to MACRO-11l that the operand
itself immediately follows the instruction word.

ADDRESSING MODES

The operation of this mode can be shown through the first example,
MOV #100,R0, which assembles as two words:

Location 20: 01 2 7 00
Location 22: 0 00100
Location 24: Next instruction

Note that the source operand (the value 100) is assembled immediately
following the instruction word, i.e., as the second word in the
instruction. Upon execution of the instruction, the processor fetches
the first word (MOV) and increments the PC by 2 so that it points to
location 22 (which contains the source operand).

After the next fetch and increment cycle, the source operand (100) is
moved into register 0, leaving the PC pointing to location 24 (the
next instruction).

5.10 ABSOLUTE MODE

Absolute mode is the equivalent of immediate mode deferred. The
address expression @#E specifies an absolute address which is stored
as the second or third word of the instruction. In other words, the
value immediately following the instruction word 1is taken as the
absolute address of the operand. Absolute mode 1is assembled as an
autoincrement deferred of the PC.

Format for A: Q#E

Examples:
MOV @#100,R0 sMOVE THE CONTENTS OF LOCATION 100
; INTO REGISTER RO.
CLR Q#X ;CLEAR THE CONTENTS OF THE LOCATION

;WHOSE ADDRESS IS SPECIFIED BY
;THE SYMBOL X.

The operation of this mode can be shown through the first example,
MOV @#100,R0, which assembles as two words:

Location 20: 01 3 7 00
Location 22: 0 0 01 00
Location 24: Next instruction

Note that the absolute address 100 is assembled immediately following
the instruction word, i.e., as the second word in the instruction.
Upon execution of the instruction, the processor fetches the first
word (MOV) and increments the PC by 2 so that it points to location 22
(which contains the absolute address of the .source operand). After
the next fetch and increment cycle, the contents of absolute address
100 (the source operand) are moved into register 0, leaving the PC
pointing to location 24 (the next instruction).

5.11 RELATIVE MODE

Relative mode is the normal mode for memory references within vyour
program. It 1is assembled as index mode, using the PC as the index
register.

5-5

ADDRESSING MODES

Format for A: E

Examples:

CLR 100 ;CLEAR LOCATION 100, RELATIVE TO
;THE CONTENTS OF THE PC.
MOV RO,Y ;MOVE THE CONTENTS OF REGISTER O

:TO LOCATION Y, RELATIVE TO THE
;CONTENTS OF THE PC.

In relative mode, the offset for the address calculation is assembled
as the second or third word of the instruction. This value is added
to the contents of the PC (the base register) to yield the address of
the source operand.

The operation of relative mode can be shown with the statement
MOV 100,R3, which assembles as two words:

Location 20: 0 1 6 7 0 3
Location 22: 0 0 0 0 5 4
Location 24: ©Next instruction

Note that the constant 54 is assembled immediately following the
instruction word, 1i.e., as the second word in the instruction. Upon
execution of the instruction, the processor fetches the first word
(MOV) and increments the PC by 2 so that it points to location 22
(containing the value 54). After the next fetch and increment cycle,
the processor calculates the effective address of the source operand
by taking the contents of location 22 (the offset) and adding it to
the current value of the PC, which now points to location 24 (the next
instruction). Thus, the source operand address is the result of the
calculation OFFSET+PC = 54+24 = 100(8), causing the <contents of
location 100 to be moved into register 3.

Since MACRO-1l1l considers the contents of the current location counter
(.) as the address of the first word of the instruction, an equivalent
index mode statement is shown below:

MOV 100-.-4(PC) ,R3

This instruction has a relative addressing mode because the operand
address 1is <calculated relative to the current value of the location
counter. The offset is the distance (in bytes) between the operand
and the current value of the location counter.

5.12 RELATIVE DEFERRED MODE

The relative deferred mode is similar in operation to the relative
mode above, except that the expression E is used as a pointer to the
address of the operand. 1In other words, the operand following the
instruction word is added to the contents of the PC to yield a pointer
to the address of the operand.

Format for A: QE
Example:
MOV @X,R0 sRELATIVE TO THE CURRENT VALUE OF
s THE PC, MOVE THE CONTENTS OF THE
;s LOCATION WHOSE ADDRESS IS POINTED
;TO BY LOCATION X INTO REGISTER O.

5-6

ADDRESSING MODES

5.13 SUMMARY OF ADDRESSING FORMS

Each PDP-11 instruction takes at least one word. Operands of the form
listed below do not increase the length of an instruction.

Form Meaning

R Register mode

@R or (ER) Register deferred mode (see Note below)
(ER) + Autoincrement mode

@ (ER) + Autoincrement deferred mode

- (ER) Autodecrement mode

@-(ER) Autodecrement deferred mode

Operands of the following forms add one word to the instruction length

for each occurrence of an operand of that form:

Form Meaning

E (ER) Index mode

QE (ER) Index deferred mode

#E Immediate mode

Q#E Absolute mode (see Note below)
E Relative mode

@E Relative deferred mode

The syntax of the addressing modes is summarized

Additional discussion of addressing modes 1is
applicable PDP-11 Processor Handbook.

NOTE

in Appendix
provided 1in

An alternate form for @R is (ER). However, the
form @(ER) 1is only logically, but not physically

equivalent to the expression @O0 (ER) .

The

addressing form @#E differs from form E in that
the second or third word of the instruction
contains the absolute address of the operand,
rather than the relative distance between the
operand and the PC. Thus, the instruction CLR

@#100 clears absolute location 100, even

if the

instruction is moved from the point at which it

was assembled. See the description of the

.ENABL

AMA function 1in Section 6.2, which causes all
relative mode addresses to be assembled as

absolute mode addresses.

the

ADDRESSING MODES

5.14 BRANCH INSTRUCTION ADDRESSING

The branch instructions are l-word instructions. The high-order byte
contains the operator, and the low-order byte contains an 8-bit signed
offset (seven bits, plus sign), which specifies the branch address
relative to the current value of the PC. The hardware calculates the
branch address as follows:

1. Extends the sign of the offset through bits 8-15.

2. Multiplies the result by 2, creating a byte offset rather
than a word offset.

3. Adds the result to the current value of the PC to form the
effective branch address.

MACRO-11 performs the reverse operation to form the word offset from
the specified address. Remember that when the offset is added to the
current value of the PC, the PC is pointing to the word following the
branch instruction; hence, the factor -2 in the following
calculation:

Word offset = (E-PC)/2 truncated to eight bits.
Since the value of the PC = .+2, we have:
Word offset = (E-.-2)/2 truncated to eight bits.

In using branch instructions, you must exercise care to avoid the
following error conditions:

1. Branching from one program section to another;

2. Branching to a 1location that 1is defined as an external
(global) symbol; or

3. Specifying a branch address that is out of range, i.e., the
branch offset 1is a value that does not lie within the range
-128(10) to +127(10).

The above conditions cause an error code (A) to be generated in the
assembly listing for the statement in error.

5.15 USING TRAP INSTRUCTIONS

The EMT and TRAP instructions do not use the low-order byte of the
instruction word, allowing information to be transferred to the trap
handlers in the low-order byte. If the EMT or TRAP instruction is
followed by an expression, the value of the expression is stored in
the low-order byte of the word. However, if the expression is greater
than 377(8), it is truncated to eight bits and an error code (T) is
generated in the assembly listing.

PART III

MACRO-11 DIRECTIVES

Chapters 6 and 7 describe all the directives wused with MACRO-11.
Directives are statements that cause MACRO-11 to perform certain
operations during assembly. Chapter 6 describes several types of
directives, including those which control symbol interpretation,
listing header material, program sections, data storage formats, and
assembly listings. Chapter 7 describes those directives concerning
macros, macro arguments, and repetitive coding sequences.

MACRO-11 directives can be preceded by a label (subject to any
restrictions associated with specific directives) and followed by a
comment. A MACRO-11 directive occupies the operator field of a source
statement. Only one directive can be included in any given source
line. The operand field may be occupied by one or more operands or
left blank; legal operands differ with each directive specified.

CHAPTER 6

GENERAL ASSEMBLER DIRECTIVES

This category of directives includes:
1. Listing control
2. Function control
3. Data storage
4. Radix and numeric control
5. Location counter control
6. Terminators
7. Program boundaries
8. Program sectioning
9. Symbol control
10. Conditional assembly
11. PAL-11R conditional assembly.

Each is described in its own section of this chapter.

6.1 LISTING CONTROL DIRECTIVES

Listing control directives control the content, format, and pagination
of all 1line printer and teleprinter listing output generated during
assembly. Facilities also exist for creating object module names and
other identification information in the listing output.

6.1.1 .LIST and .NLIST Directives

Listing control options can be specified in the text of a MACRO-11
program through the .LIST and .NLIST directives. These directives are
of the form:

LLIST
LLIST arg
.NLIST
.NLIST arg

GENERAL ASSEMBLER DIRECTIVES

where: arg represents one or more of the optional symbolic
arguments defined in Table 6-1.

As indicated above, the listing control directives may be used without
arguments, in which case the 1listing directives alter the listing
level count. The'listing level count is initialized to zero. At each
occurrence of a .LIST directive, the 1listing 1level count is
incremented; at each occurrence of an .NLIST directive, the 1listing

level count is decremented. hen the listing 1 is_negative,
Wﬁ_ﬂm@g Yunless e 1ne contains an ror).

Conversely, when the isting level count is greater than zero, the
listing is always generated. Finally, when the count 1is zero, the
line is either listed or suppressed, contingent upon the other listing
controls currently in effect for the program. For example, the
following macro definition employs the .LIST and .NLIST directives to
selectively list portions of the macro body when the macro is
expanded:

+MACRO LTEST ;LIST TEST
; A-THIS LINE SHOULD LIST ;LISTING LEVEL COUNT IS 0.
+NLIST fLISTING LEVEL COUNT IS -1.
¢ B-THIS LINE SHOULD NOT LIST
«NLIST ;LISTING LEVEL COUNT IS -2.
; C-THIS LINE SHOULD NOT LIST
.LIST sLISTING LEVEL COUNT IS -1.
t D-THIS LINE SHOULD NOT LIST
+LIST ;LISTING LEVEL COUNT IS 0.
;7 E-THIS LINE SHOULD LIST ;LISTING LEVEL COUNT IS BACK TO 0.
. ENDM
.LIST ME ;LIST MACRO EXPANSION.
LTEST ;CALL THE MACRO
; A-THIS LINE SHOULD LIST ;LISTING LEVEL COUNT IS 0.
;+ E-THIS LINE SHOULD LIST ;LISTING LEVEL COUNT IS BACK TO 0.

An important purpose of the level count is to allow macro expansions
to be 1listed selectively and yet exit with the listing level count
restored to the value existing prior to the macro call.

When used with arquments, the listing directives do not alter the
listing 1level count; however, the .LIST and .NLIST directives can be
used to override current listing control, as shown in the example
below:

.MACRO XX
.LIST ;LIST NEXT LINE.
X=.
+NLIST ;DO NOT LIST REMAINDER OF MACRO
. ;EXPANSION,
. ENDM
.NLIST ME ;DO NOT LIST MACRO EXPANSIONS.
XX
X=.

The symbolic arguments allowed for use with the listing directives are

described 1in Table 6-1. These arguments can be used singly or in

combination with each other. If multiple arguments are specified in a

listing directive, each argument must be separated by a comma, tab, or
6-2

space. For any

GENERAL ASSEMBLER DIRECTIVES

argument

not

specifically included in a 1listing

control statement, the associated default assumption (List or No list)
is applicable throughout the source program. The default assumptions
for the listing control directives also appear in Table 6-1.

Symbolic Arguments

Table 6-1
of Listing Control Directives

Argument

Default

Function

SEQ*

LOC*

BIN*

BEX

SRC*

List

List

List

List

List

Controls the 1listing of source line
sequence numbers. MACRO-11 assigns
sequence number 1 to the first source
line in a file, and increments the
sequence humber for each additional line
in the file. If this field is
suppressed through an .NLIST SEQ
directive, MACRO-11 generates a tab,
effectively allocating space for the
field, but fills the field with blanks.
Thus, the inter-positional relationships
of subsequent fields 1in the 1listing
remain undisturbed. During the assembly
process, MACRO-11 examines each source
line for possible error conditions. For
any line in error, an appropriate error
flag 1is printed preceding the line
sequence number field (see Appendix D).
MACRO=-11 does not assign sequence
numbers for files that have had sequence
numbers assigned by other programs, such
as an editor.

Controls the 1listing of the current
location counter field. ©Normally, this
field is not suppressed. However, if it
is suppressed through the .NLIST LOC
directive, MACRO-11 does not generate a
tab, nor does it allocate space for the
field, as is the case with the source
line sequence number field (SEQ)
described above. Thus, the suppression
of the current location counter (LOC)
field effectively 1left-justifies all
subsequent fields (while ©preserving
inter-positional relationships) to that
position otherwise normally occupied by
this field.

Controls the listing of generated binary
code. If this field 1is suppressed
through an JNLIST BIN directive,
left-justification of the source code
field occurs in the same manner
described above for the current location
counter (LOC) field.

Controls the listing of binary
extensions, i.e., the 1locations and
binary contents beyond those that will
fit on the source statement line. This
is a subset of the BIN argument.

Controls the listing of source lines.

6-3

Symbolic

GENERAL ASSEMBLER DIRECTIVES

Table 6-1 (Cont.)
Arguments of Listing Control Directives

Argument

Default

Function

COoM

MD

MC

ME

MEB

CND

LD

TOC

SYM

TTM

List

List

List

No list

No list

List

No list

List

List

List

Controls the listing of comments. This
is a subset of the SRC argument. The
.NLIST COM directive reduces listing
time and space when comments are not
desired.

Controls the listing of macro
definitions and repeat range expansions.

Controls the listing of macro calls and
repeat range expansions.

Controls the listing of macro
expansions.

Controls the listing of macro expansion
binary code. A (LIST MEB directive
causes only those macro expansion
statements that generate binary code to
be listed. This is a subset of the ME
argument.

Controls the 1listing of unsatisfied
conditional c¢oding and associated .IF
and .ENDC directives 1in the source
program. This argument permits
conditional assemblies to be listed
without including unsatisfied
conditional coding.

Controls the 1listing of all 1listing
directives having no arguments, i.e.,
those listing directives that alter the
listing level count.

Controls the listing of the table of
contents during assembly pass 1 (see
Section 6.1.4 describing the .SBTTL
directive). This argument does not
affect the printing of the full assembly
listing during assembly pass 2.

Controls the listing of the symbol table
resulting from the assembly of the
source program.

Controls the listing output format. The
default can be set by the system
manager. If the system manager does not
set a default, it is set to line printer
format. Figure 6-1 illustrates the line
printer output format. Figure 6-2
illustrates the teleprinter output
format.

* If the .NLIST arguments SEQ, LOC, BIN, and SRC are in effect at the
same time, i.e., if all four significant fields in the listing are to
be suppressed, the printing of the resulting blank line is inhibited.

6-4

GENERAL ASSEMBLER DIRECTIVES

An example of an assembly listing, as sent to a 132-column 1line
printer, is shown in Figure 6-1. ©Note that binary extensions for
statements generating more than one word are formatted horizontally on
the source line.

An example of an assembly listing, as sent to a teleprinter (in the
same format as for an 80-column line printer), is shown in Figure 6-2.
Notice that binary extensions for statements generating more than one
word are printed on subsequent lines. There is no explicit truncation
of output to 80 characters by the assembler.

Any argument specified in a .LIST/.NLIST directive other than those
listed in Table 6-1 causes the directive to be flagged with an error
code (A) in the assembly listing.

The listing control options can also be specified at assembly time
through switches included in the command string to MACRO-11 (see
Chapter 8). The use of these switches overrides all corresponding
listing c¢ontrol (.LIST or .NLIST) directives specified in the source
program.

CSITST
READ AN

209
21e
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
228
227
228
229
230
231
232
233
234
235
236
237
238
239
240
244
242
243
244
24%
246
247
248
249

== TESTY
D PARSE

221230
221244
201246
21254
21300
pe1324
201326
281332
201336
221360
#e1404
201412
931416
RaL424
221459
Po1474

201476
201502
01504
231512
201520
821522
201526
221552
021576
201682
201620
201622
801626
201634
201636
201662
201666
201704
221706
291712
281729
@01722

OF €SIy AND CSI2 MACRO M@7@7

COMMAND LINES

123003

1030264
216946
166016

266260
162660
1660682

PBB655

@@a5760
001652
112767
132760
pajde2
105267

123441

132760
021360

103497
132760

221362
o0R4ay12

Figure

epen2e
P000B4

PPRR16
00002
ARED16

200002

222060
AGoR40

176416

geap2o

PeAR20

dp@e2q

300202

176432
2e0ae!

202001

200001

GETLN:

182

2%t

1885;

OPARSE}

IPARSE

«SBTTL

GCMLS
BCC
EXITSS
TYPE
CSISt
BCC
MOV
Sus
TYPE
TYPE
ADD
SuB
sus
TYPE
TYPEM
BR

TST
BEG
MOVB
BITB
BEQ
INCB
TYPEM
TYPEM
CaLll
cs1s2
BCS
CALL
8178
BNE
TYPEM
CALL
€sIs2
8Cs
caLt
3178
BNE
8R

B9=JUL=74 15147 PAGE 5

READ AND PARSE COMMAND LINES

#GCLBLK JGET LINE VIA GCHML
1% JSKIP IF NO ERROR
JELSE, EXIT
G,CMLD$2(RB),6,CMLD(RR),*'@ JSEND DUT THE INPUT LINE
#CSIBLK,GCLBLK+G,CMLD+2,GCLBLK$G,CMLD
2% JBRANCH IF NO ERROR DETECTYED

C.FILD¥2(RO),=(SP) JPUT STRING ERROR ADDR IN STK
C.CMLD+2(RD), (SP) JCALCULATE LENGTH OF FIRST PART
C,CMLD+2(RA), (SP),n!'S 3SEND OUT FIRST PART OF STRING
C,FILD+2(RB),C,FILD(RO),*'$ JSEND OUT SECOND PART
C,FILD(RO),C,FILD+2(RB) JCALC ADDR COF LAST PART OF STRING

(SP)+,C,CMLD(RA) JDEDUCT LENGTH OF FIRST PART
C.FILD(R®),C,CMLD(RB) JCALC LENGTH OF LAST PART
C,FILD+2(RA),C,CMLD(RD),»40 }SEND OUT LAST PART
STX,40 3JSEND SYNTAX ERROR MESSAGE

GETLN JTRY FOR MORE

c,CMLD(RE) JCHECK LENGTH OF LINE

GETLN 3I1F NULL, SKIP BACK FOR NEXT LINE
#10,EQUBIT JASSUME EQUAL SIGN NOT FOUND
#CS,EQU,C,STAT(RR) JCHECK STATUS

10$ }SKIP IF EQUAL SIGN NOT SEEN

EQUBIT SELSE, INDICATE EQUAL SIGN FOUND
EQU, 40 JSEND EQUAL SIGN STATUS MESSAGE
0PT,40 JSEND OUTPUT SCAN MESSAGE

INIT2 JINIT LOCNS FOR CSI2 CALL/TEST
JOUTPUT,#SWTBL 3PARSE OUTPUT SPEC

CS2ERR JSKIP ON ERROR

EVALUS JEVALUATE RESULTS OF SEMANTIC PARSE
¥CS,MOR,C,STAT(RB) JADDITIONAL OUTPUT SPECS?
OPARSE JYES, CONTINUE WITH OUTPUT SCAN
1PT, 42 3SEND INPUT SCAN MESSAGE

INIT2 JINIT LOCNS FOR CSI2 CALL/TEST

» INPUT, #SWTBL $}PARSE INPUT SPEC

CS2ERR 3SKIP ON ERROR

EVALUS JEVALUATE RESULTS OF SEMANTIC PARSE
#CS,MOR,C,STAT(RB) JADDITIONAL INPUT SPECS?

1PARSE $JYES, CONTINUE WITH INPYT SCAN
JMPGET JGET ANOTHER COMMAND LINE

6-1 Example of Line Printer Assembly Listing

SHAILOUYIA YIATAWISSY TVIINID

CSITSY
READ AN

209
210
211
212
213
214
218
216
217

218

219
220
221

222

223

224
225
226
227
228

229
230

231

232
233

234
235
236
237
238
239

249

244
242
243
244
245
246
247

248

GENERAL ASSEMBLER DIRECTIVES

= TESY OF CSIi AND CSI12 MACRO M@707 ©@9-JUL=74 15159 PAGE 5

D PARSE COMMAND LINES
«SBTTL
?01230 GETLNE GCMLS
201244 183003 BeC
201246 EXITSS
201254 181 TYPE
701300 cslsy
eA1324 103064 BCC
aalseﬁw 016046 MOV
¥ ooen20
@P1332 . 166016 suB
200004
201336 TYPE
2as360 TYPE
@01404 066060 ADD
200016
200020
2@1412 {62660 sus
000002
201416 166060 suB
220016
000002
001424 TYPE
001450 TYPEM
221474 0AOE5S BR
201476 0A5760 2$1 187
200002
201502 001652 BEQ
201504 112767 MOVB
220060
176432
#01512 132760 BITH
200040
200001
201520 001402 BEQ
01522 1045267 INCB
176416
271526 1081 TYPEM
271552 TYPEM
281576 OPARSEt CALL
221602 €s1s2
001620 103444 8Cs
201622 CALL
201626 132760 8178
20020
200081
201634 Q01360 BNE
An1636 TYPEM
271662 IPARSEY CALL
201666 csls2
221794 103497 BCS
201706 cALL
ea1712 132760 8178
200020
200001
201720 001369 BNE
Figure 6-2

READ AND PARSE COMMAND LINES

#GCLBLK JGET LINE VIA GCML
18 JSKIP IF NO ERROR

JELSE, EXIT
G,CMLD+2(RO),G,CMLD(RR),n'0 JSEND OUY THE INPUT LINE
¥CSIBLK,GCLBLK4G,CM.D42,GCLBLK#G,CMLD
28 JBRANCH IF NO ERROR DETECTED
C.FILD+2(RR),=(SP) JPUT STRING ERROR ADDR IN STK

CoCMLD*2(RD)Y, (8P) JCALCULATE LENGTH OF FIRST PART
C,CMLD#2(RB),(8P),x'§ JSEND OUT FIRSY PART OF STRING

C.FILD*2(RD),C,FILD(RA),¥!'S$ $SEND OUT SECOND PART
CyFILD(R®),C,FILDe2(RA) JCALC ADDR OF LAST PART OF STRING

(SP)Y+,C,CMLD(RD) IDEDUCT LENGTH OF FIRST PART
C,FILO(R@),C,CMLD(RO) JCALC LENGTH OF LAST PART

C,FILD#2(R®),C,CMLD(RD), W40 JSEND OUT LAST PARTY
STX,42 JSEND SYNTAX ERROR MESSAGE

GETLN JTRY FOR MORE

C.CMLD(RQ) JCHECK LENGTH OF LINE

GETLN $1F NULL, SKIP BACK FOR NEXT LINE
#'0,EQUBILT 1ASSUME EQUAL SIGN NOT FOUND

#C$,EQU,C,STAT(RB) JCHECK STATUS

108 JSKIP IF EQUAL SIGN NOT SEEN

EQURIT JELSE, INDICATE EQUAL SIGN FOUND
EQU, 40)SEND EQUAL SIGN STATUS MESSAGE
0PT,42 JSEND OUTPUT SCAN MESSAGE

INIT2 $INIT LOCNS FOR CsI2 CALL/TEST
+QUTPUT,#SWTBL JPARSE QUTPUT 8PEC

CS2ERR 18K1P ON ERROR

EvaLus JEVALUATE RESULTS OF SEMANTIC PARSE

#CS,MOR,C,STAT(RD))HADDITIONAL OUTPUY SPECS?

OPARSE JYES, CONTINUE WITH QUTPUY SCAN
1PT,4¢ 3SEND INPUT SCAN MESSAGE

INITR JINIT LOCNS FOR CSI2 CALL/TEST

» INPUT , #SWTBL 1PARSE INPUT SPEC

CS2ERR JSKIP ON ERROR

EvaLus JEVALUATE RESULTS OF SEMANTIC PARSE

¥CS,MOR,C,STAT(RB) JADDITIONAL INPUT SPECS?

IPARSE IYES, CONTINUE WITH INPUT SCAN

Example of Terminal Assembly Listing

GENERAL ASSEMBLER DIRECTIVES

Figure 6-3 shows a 1listing, produced in 1line printer format,
reflecting the use of the .LIST and .NLIST directives in the source
program and the effects such directives have on the assembly 1listing
output.

6.1.2 Page Headings

MACRO-11 prints each assembly page in the format shown in either
Figure 6-1 or Figure 6-2, depending on the listing mode (see TTM,
Table 6-1). On the first line of each page, MACRO-11 prints the
following (from left to right):

l. Title of the object module, as established through the .TITLE
directive (see next section).

2. Assembler version identification.
3. Date.
4, Time-of-day.
5. Page number.
The second line of each assembly listing page contains the subtitle

text specified in the last-encountered .SBTTL directive (see Section
6.1.4).

27
28
29

39
34
32

JMAIN,

33
34
38
36
37
38

39
40
41

42

44

eopp62

ee0a62
@aeara

220074

P00Q74

MACRO Mp7@7

gae126

200106
022110
200112
000114
030116

2nR120

eee12e

[2-1:1:1. 3}
202004

@apea0l

000001
220002
200003
2004
200005

od0001

eoe001!

e0en2
200025

200202

A9=JUL w74 16329

LSTMAC
«NLIST

290083 +WORD
JLIST
LSTMAC
«NLIST

200003 +WORD
oLIST

PAGE fei

LIST TT™

LSTMAC SEQ

+NLIST SEQ

«WORD 1,2,3,4,5

oLIST SEQ

LSTMAC BEX

+NLIST BEX

+WORD 1,2,3,4,5

SLIST BEX

+END

CoM JCOMMENT LINES TEST

com

1,2,3,4,5

CoM

<COM,BEX> JCOMMENT LINES AND EXTENDED BINARY TEST
COM,BEX

1,2:3,4,5
CoM,BEX

JNARROW LISTING MODE IS8 IN EFFECT
JSEQUENCE NUMBERS TEST

JTHIS IS A COMMENT

JEXTENDED BINARY TEST

STHIS IS A COMMENT

Figure 6-3 Listing Produced With Listing Control Directives

SIAILOIYIA YITIWISSY TVIIANID

01-9

JMAIN,

O NP D WA

18
19
20

21
22
23

24
25
26

MACRO M@7B7

220012

p0003)
200204

page24

paee24

200236

@eea3s

030059

paeese
200056

od2eee2
@ogees

popaay

200001
220004

200003

WNLIST
«WORD

e0eR002

eeeen2
200095

89=JUL=74 16129 PAGE |

J

3 LISTING CONTROL TEST MACRO

«NL1IST
«WORD
BIN
112i314;5
egeanl
eoeeeel

«NLIST
JLIST

+MACRO LSTMAC ARG
+NLIST ARG

JWORD 1,2,3,4,5
LLIST ARG

+ENDM

LSTMAC LOC

Loc

1,2,3,4,5

WL18T Loc

LSTMAC BIN

JTHIS IS 4 COMMENT
oLIST BIN

LSTMAC BEX

«NLIST BEX

+WORD 1,2,3,4,5
JLIST BEX

LSTMAC SRC

«LI8T SRC

TI™
ME

JWIDE LISTING MODE IS IN EFFECT
JLIST MACRO EXPANSIONS

JTHIS IS A COMMENT

JLOCATION COUNTER TEST

BTHIS IS & COMMENT

JGENERATED BINARY TEST

JEXTENDED BINARY TEST

JTHIS IS A COMMENT

3}SOURCE LINES TEST

Figure 6-3 (cont.) Listing Produced With Listing Control Directives

SIAILOIYIA YIATAWIASSVY TVIIANID

GENERAL ASSEMBLER DIRECTIVES

6.1.3 JTITLE Directive

The .TITLE directive is used to assign a name to the object module as
the first entry in the header of each page in the assembly listing.
The name so assigned is the first six non-blank characters following
the L.TITLE directive. This name should be six Radix-50 characters or
less in length; any characters beyond the first six are checked for
ASCII legality, but they are not used as part of the object module
name. For example, the directive:

.TITLE PROGRAM TO PERFORM DAILY ACCOUNTING

causes the assembled object module to be named. PROGRA. Note that this
6-character name bears no relationship to the filename of the object
module, as specified in the command string to MACRO-11. The name of
an object module (specified in the .TITLE directive) appears in the
Task Builder load map. This is also the module name which the
Librarian will recognize.

If the .TITLE directive is not specified, MACRO-11 assigns the default
name .MAIN. to the object module. If more than one .TITLE directive
is specified in the source program, the 1last .TITLE directive
encountered establishes the name for the entire object module.

All spaces and/or tabs up to the first non-space/non-tab character
following the .TITLE directive are ignored by MACRO-11 when evaluating
the text string.

If the .TITLE directive is specified without an object module name, or
if the first non-space/non-tab character in the object module name is
not a Radix-50 character, the directive is flagged with an error code
(A) in the assembly listing.

Section A.2 of Appendix A contains a table of Radix-50 characters.

6.1.4 .SBTTL Directive

The .SBTTL directive 1is wused to produce a table of contents
immediately preceding the assembly 1listing and to further identify
each page in the listing. 1In the latter case, the text following the
.SBTTL directive 1is printed as the second line of the header of each
page in the listing, continuing until altered by a subsequent .SBTTL
directive in the program. For example, the directive:

.SBTTL CONDITIONAL ASSEMBLIES
causes the text
CONDITIONAL ASSEMBLIES

to be printed as the second 1line in the header of the assembly
listing.

During assembly pass 1, a table of contents 1is printed for the
assembly 1listing, containing the 1line sequence number, the page
number, and the text accompanying each .SBTTL directive. The 1listing
of the table of contents 1is suppressed whenever an .NLIST TOC
directive is encountered in the source program (see Table 6-1). An
example of a table of contents listing is shown in Figure 6-4.

GENERAL ASSEMBLER DIRECTIVES

CSITST == TEST OF €814 AND CS12 MACRO M@727 @9»JULe74 15347
TABLE OF CONTENTS

2= 65 MACRO DEFINITIONS

3= 74 MESSAGE STRINGS

4=153 MISCELLANEOUS DATA

5229 READ AND PARSE COMMAND LINES
62565 EVALUATE THE SEMANTIC ANALYSIS
7=345 SUBROUTINES

Figure 6-4 Assembly Listing Table of Contents

6.1.5 LJIDENT Directive

The .IDENT directive provides an additional means of 1labeling the
object module produced by MACRO-11. In addition to the name assigned
to the object module with the .TITLE directive (see Section 6.1.3), a
character string up to six Radix-50 characters can be specified
between paired printing delimiters to label the object module with the
program version number. This directive takes the following form:

.IDENT /string/

where: string represents six legal Radix-50 characters or less
which establish the program identification or
version number. This number is included in the
global symbol directory of the object module.

/ / represent delimiting characters. These delimiters
may be any paired printing characters, other than
the equal sign (=), the left angle bracket (), or
the semicolon (;), as long as the delimiting
character is not contained within the text string
itself. If the delimiting characters do not
match, or if an illegal delimiting character is
used, the .IDENT directive 1is flagged with an
error code (A) in the assembly listing.

An example of the .IDENT directive is shown below:
.IDENT /V0537/

The character string VO5A is converted to Radix-50 representation and
included in the global symbol directory of the object module. This
character string also appears in the Task Builder 1load map and the
Librarian directory listings.

When more than one .IDENT directive is encountered in a given program,
the 1last such directive encountered establishes the character string
which forms part of the object module identification.

GENERAL ASSEMBLER DIRECTIVES

6.1.6 .PAGE Directive/Page Ejection
Page ejection is accomplished in one of four ways:

1. After reaching a count of 58 lines in the 1listing, MACRO-11
automatically performs a page eject to skip over page
perforations on 1line printer paper and to formulate
teleprinter output into pages.

2. In addition, the .PAGE directive is used within the source
program to perform a page eject at desired points in the
listing. The format of this directive is:

. PAGE

This directive takes no arguments and causes a skip to the
top of the next page when encountered. It also causes the
page number to be incremented. The .PAGE directive does not
appear in the listing.

When used within a macro definition, the .PAGE directive 1is
ignored during the assembly of the macro definition. Rather,
the page eject operation is performed as the macro itself is
expanded. In this case, the page number is also incremented.

3. A page eject is performed when a form-feed character is
encountered. _ If the form-feed <character appears within a
macro definition, a page eject occurs during the assembly of
the macro definition, but not during the expansion of the
macro itself. A page eject resulting from the wuse of the
form-feed character 1likewise causes the page number to be
incremented.

4. Encountering a new source file causes the page number to be
incremented and the line sequence count to be reset.

6.2 FUNCTION DIRECTIVES: .ENABL AND .DSABL

Several function control options are provided by MACRO-11 through the
.ENABL and .DSABL directives. These directives are included in a
source program to invoke or inhibit certain MACRO-11 functions and
operations incidental to the assembly process itself. These
directives take the following form:

.ENABL arg
.DSABL arg
where: arg represents one or more of the optional symbolic

arguments defined in Table 6-2.

GENERAL ASSEMBLER DIRECTIVES

Table 6-2

Symbolic Arguments of Function Control Directives

Argument

Default

Function

ABS

AMA

CDR

CRF

FPT

LC

LSB

Disable

Disable

Disable

Enable

Disable

Disable

Disable

Enabling this function produces absolute
binary output in FILES-11 format. To
convert this output to Formatted Binary
format (as required by the Absolute
Loader), use the FLX utility.

Enabling this function causes all
relative addresses (address mode 67) to
be assembled as absolute addresses
(address mode 37). This function is
useful during the debugging phase of

program development.

Enabling this function causes source
columns 73 and greater, i.e., to the end
of the line, to be treated as a comment.
The most common use of this feature is
to permit sequence numbers in card
columns 73-80.

Disabling this <function inhibits the
generation of cross-reference output.
This function only has meaning if
cross-reference output generation 1is
specified in the command string.

Enabling this function causes floating-
point truncation; disabling this
function causes floating-point rounding.

Enabling this function causes MACRO-11
to accept lower-case ASCII input instead
of converting it to upper-case. If this
function is not enabled, all text is
converted to upper-case.

This argument permits the enabling or
disabling of a 1local symbol block.
Although a local symbol block is
normally established by encountering a
new symbolic label or a .PSECT directive
in the source program, an .ENABL LSB
directive establishes a new local symbol
block which is not terminated until (1)
another .ENABL LSB 1is encountered, or
(2) another symbolic 1label or .PSECT
directive 1is encountered following a
paired .DSABL LSB directive.

Although the .ENABL LSB directive
permits a 1local symbol block to cross
.PSECT boundaries, local symbols cannot
be defined 1in a program section other
than the one that was in effect when the
block was entered. The basic function
of this directive with regard to
.PSECT's 1is 1limited to those instances

6-14

Symbolic

GENERAL ASSEMBLER DIRECTIVES

Table 6-2 (Cont.)
Arguments of Function Control Directives

Argument

Default

Function

LSB
(Cont.)

PNC

REG

GBL

Disable

Enable

Enable

Enable

where it is desirable to leave a program
section temporarily to store data,
followed by a return to the original
program section. Attempts to define
local symbols in an alternate program
section are flagged with an error code
(P) in the assembly listing.

An example of the .ENABL LSB and .DSABL
LSB directives, as typically used in a
source program, is shown in Figure 6-5.

Disabling this function inhibits binary
output wuntil an .ENABL PNC statement is
encountered within the same module.

When specified, the .DSABL REG directive
inhibits the normal MACRO-11 default
register definitions; if not disabled,
the default definitions 1listed below
remain in effect.

R0=%0
R1=%1
R2=%2
R3=%3
R4=%4
R5=%5
SP=%6
PC=%7

The .ENABL REG statement may be used as
the logical complement of the .DSABL REG
directive. The use of these directives,
however, is not recommended. For
logical <consistency, use the normal
default register definitions 1listed
above.

When the .ENABL GBL directive is
specified, MACRO-11 treats all symbol
references that are undefined at the end
of assembly pass 1 as default global
references; when the .DSABL GBL
directive 1is specified, MACRO-11 treats
all such references as undefined
symbols. In assembly pass 2, if the
.DSABL GBL function is still in effect,
these undefined symbols are flagged with
an error code (U) in the assembly
listing; otherwise, they continue to be
regarded by MACRO-11 as global
references.

Specifying any argument in an .ENABL/.DSABL directive other than those
listed in Table 6-2 causes that directive to be flagged with an error
code (A) in the assembly listing.

SQUEEZE MACRO M37@7

272
273
74
275
276
277
278
279
289
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
3ea
3oy
g2

9T-9

223142
203144
nali4a6
2n3152
203152

003156,

2233160
213162

203164
2@3166
293172
ee3172
003176
2a32pe0
pa32@4d
283206
P23218
903212
283214
833216
223220

ei1p103
060223
020301
Bo1422
124327
001373
0103082
20e0412

g6e1e2
220201
8e1412
124227
001773
121227
031770
295202
16102
800241
200401
220261

29-JuUL=74 15313

geeazl

200011

opeedp

PAGE 4

FNDSMI

181

SKPBLK?
103

2081

3os:
40%:

<ENABL

MOV
ADD
cHp
BEO
cMPB
BNE
MOV
BR

ADD
cmp
BEQ
CMPB
BEQ
CMPB
BEO
INC
SuB
cLC

BR

SEC
RETURN
«DSABL

Lse

R1,R3

R2,R3

R3,R1

jos
«(R3),#SEMIC
18

R3,R2

208

R1,R2
R2,RY

3es
~(R2),#TAB
105
(R2),#BLANK
185

R2

R{,R2

405

LS8

JPUT ADDR OF LINE IN R3

JPOINT R3 PAST LAST CHAR IN LINE
JOOES R3 POINT TO START OF LINE?
3IF S0, LEAVE INDICATING FAILURE
318 THE LAST CHARACTER SEMICOLON?
INO, CONTINUE LOOKING

JYES, POINT R2 PAST NEW END=QF=LINE
JLEAVE VIA COMMON SUCCESS CODE

JPOINT R2 PAST END=OF=LINE

JOOES R2 POINT 7O START OF LINE?
$JIF SO, LEAVE WITH FAILURE

318 THE LAST CHARACTER A TAB?
JIF SO, IGNORE IT

JIS IT A BLANK?

JIF SO, IGNORE IT

INON=BLANK CHARACTER==POINT PAST. IT
JIRE~COMPUTE LINE LENGTHW
3INDICATE SUCCESS

JBRANCH TO LEAVE

JINDICATE FAILURE

?

Figure 6-5 Example of .ENABL and .DSABL Directives

SHAILOINIA ¥ITIWISSVY TVIINID

GENERAL ASSEMBLER DIRECTIVES

6.3 DATA STORAGE DIRECTIVES

A wide range of data and data types can be generated with the
following directives, ASCII conversion characters, and radix-control
operators:

.BYTE
.WORD

.ASCII
.ASCIZ
.FLT2
.FLT4
-RAD50

These MACRO-11 facilities are described in the following sections.

6.3.1 .BYTE Directive

The .BYTE directive is used to generate successive bytes of binary
data in the object module. The directive is of the form:

.BYTE exp ; STORES THE BINARY VALUE OF THE
;EXPRESSION "EXP" IN THE NEXT BYTE.

.BYTE expl,exp2,expn ;STORES THE BINARY VALUES OF THE LIST
;OF EXPRESSIONS IN SUCCESSIVE BYTES.

A legal expression must reduce to eight bits of data or less. The
operands of a .BYTE directive are evaluated as word expressions before
being truncated to the low-order eight bits. The 16-bit value of the
specified expression must have a high-order byte (which is truncated)
that is either all zeros (0) or all ones (l). Each expression valye
is stored in the next byte of the object module. Multiple
expressions, which must be separated by commas, are stored in
successive bytes, as described below:

SAM=5
.=410
.BYTE "D48,SAM ;THE VALUE 060 (OCTAL EQUIVALENT OF 48
;DECIMAL) IS STORED IN LOCATION 410.
; THE VALUE 005 IS STORED IN LOCATION
;411.

If the high-order byte of the expression reduces to a value other than
0 or =1, the wvalue 1is truncated to the low-order eight bits and
flagged with an error code (T) in the assembly listing.

The construction "D in the first operand of the .BYTE directive above
illustrates the wuse of a temporary radix-control operator. The
function of such special wunary operators 1is described in Section
6.4.1.2.

At link time, it is likely that a relocatable expression will result
in a value having more than eight bits, in which case the Task Builder

6-17

GENERAL ASSEMBLER DIRECTIVES

issues a truncation diagnostic for the objeét module in question. For
example, the following statements create such a possibility:

.BYTE 23 ;s STORES OCTAL 23 IN NEXT BYTE.
A:
.BYTE A sRELOCATABLE VALUE A WILL PROBABLY
sCAUSE TASK BUILDER TRUNCATION
s DIAGNOSTIC.

If an expression following the .BYTE directive is null, it is
interpreted as a zero, as described below:

.=420
.BYTE rre ;ZEROS ARE STORED IN BYTES 420, 421,
7422, AND 423,

Note that in the above example, four bytes of storage result from the\
.BYTE directive. The three commas in the operand field represent an
implicit declaration of four null values, each separated from the
other by a comma. Hence, four bytes, each containing a value of zero
(0), are reserved in the object module.

6.3.2 .WORD Directive

The .WORD directive is used to generate successive words of data in
the object module. The directive is of the form:

+WORD exp ;STORES THE BINARY EQUIVALENT OF THE
;EXPRESSION EXP IN THE NEXT WORD.

.WORD expl,exp2,expn ;STORES THE BINARY EQUIVALENTS OF THE
;LIST OF EXPRESSIONS IN SUCCESSIVE
;WORDS.

A legal expression must result in 16 bits of data or less. Each
expression is stored in the next word of the object program. Multiple
expressions must be separated by commas and stored in successive
words, as shown in the following example:

SAL=0
.=500
.WORD 177535,.+4,SAL ;STORES THE VALUES 177535, 506, AND
;0 IN WORDS 500, 502, AND 504,
;RESPECTIVELY.

If an expression following the .WORD directive contains a null value,
it is interpreted as a zero, as shown in the following example:

.=500
«.WORD 15y ;STORES THE VALUES 0, 5, AND 0 IN
; LOCATION 500, 502, AND 504,
;RESPECTIVELY.

A statement containing a blank operator field, i.e., a symbol that is
not recognized by MACRO-11 as a macro call, an instruction nmemonic, a
MACRO-11 directive, or a semicolon is interpreted during assembly as
an implicit .WORD directive, as shown in the example below:

.=440
LABEL: 100,LABEL s STORES THE VALUE 100 IN LOCATION 440
;AND THE VALUE 440 IN LOCATION 442.

GENERAL ASSEMBLER DIRECTIVES

CAUTION

You should not use this technique to
generate .WORD directives because it may
not be included in future PDP-11
assemblers.

6.3.3 ASCII Conversion Characters

The single quote (') and the double quote (") characters are unary
operators that can appear in any MACRO-11 expression. When so used,
these characters cause a 16-bit expression value to be generated.

When the single quote is used, MACRO-11 takes the next character in
the expression and converts it from its 7-bit ASCII value to a 16-bit
expression value. The 16-bit value is then used as an absolute term
within the expression. For example, the statement:

MOV #'A,R0O

results in the following 16-bit expression value being moved into
register 0:

00000000}01000001

T-——Binary Value of ASCII A

Thus, in the example above, the expression 'A results in a value of
101(8). Note that the high-order byte 1is always zero (0) in the
resulting expression value when the single quote unary operator is
used.

The ' character must not be followed by a carriage-return, null,
RUBOUT, 1line-feed, or form-feed character; 1if it is, an error code
(A) is generated in the assembly listing.

When the double quote is used, MACRO-11 takes the next two characters
in the expression and converts them to a 16-bit binary expression
value from their 7-bit ASCII values. This 16-bit value is then used
as an absolute term within the expression. For example, the
statement:

MOV #"AB,RO

results in the following 16-bit expression value being moved into
register 0:

01000010j01000001

1——Binary Value of ASCII A
Binary Value of ASCII B

Thus, in the example above, the expression "AB results in a value of
041101 ¢(8).

6-19

GENERAL ASSEMBLER DIRECTIVES

The " character also must not be followed by a carriage-return, null,
RUBOUT, 1line-feed, or form-feed character; if it is, an error code
(A) is likewise generated in the assembly listing.

The ASCII character set is listed in Section A.1l, Appendix A.

6.3.4 (ASCII Directive

The .ASCII directive translates character strings into their 7-bit
SCII equivalents and stores them in the object module. The format of
the .ASCII directive is as follows:

.ASCII /string 1/.../string n/

where: string is a string of printable ASCII characters. All
printable ASCII characters are legal. The
vertical-tab, null, 1line-feed, RUBOUT, and all
other non-printable ASCII characters, except
carriage-return and form-feed, are illegal

characters. Such an illegal non-printing
character is flagged with an error code (I) in the
assembly listing. The carriage-return and

form-feed characters terminate the scan of the
source line. This premature termination of the
+ASCII statement results in the generation of an
error code (A) in the assembly 1listing, because
MACRO-11 is wunable to complete the scan of the
matching delimiter at the end of the character
string.

/ / represent delimiting characters. These delimiters
may be any paired printing characters, other than
the equal sign (=), the left angle bracket (<), or
the semicolon (;), as long as the delimiting
character is not contained within the text string
itself. If the delimiting characters do not
match, or if an illegal delimiting character is
used, the .ASCII directive 1is flagged with an
error code (A) in the assembly listing.

A non-printing character can be expressed in an .ASCII statement only
by enclosing its equivalent octal value within angle brackets. Each
set of angle brackets so used represents a single character. For
example, in the following statement:

.ASCII <15>/ABC/<A+2>/DEF/<5><4>

the expressions <15>, <A+2>, <5>, and <4> represent the values of
non-printing characters. Furthermore, the expressions must reduce to
eight bits of absolute data or less, subject to the same rules for
generating data as with the .BYTE directive (see Section 6.3.1).

Angle brackets can be embedded between delimiting characters in the
character string, but angle brackets so used do not take on their
usual significance as delimiters for non-printing characters. For
example, the statement:

.ASCII /ABC<Kexpression>DEF/
contains a single ASCII character string, and performs no evaluation

of the embedded, bracketed expression. This use of the angle brackets
is shown in the third example of the .ASCII directive below:

6-20

GENERAL ASSEMBLER DIRECTIVES

.ASCII /HELLO/

.ASCII

.ASCII /A<15>B/

The semicolon and

characters

(1) equal

because of their significance as a comment

/ABC/<15><12>/DEF/

sign
in an ASCII string, but care must be exercised in so doing

;STORES THE BINARY REPRESENTATION
;OF THE LETTERS HELLO IN FIVE
;CONSECUTIVE BYTES.

; STORES THE BINARY REPRESENTATION
;OF THE CHARACTERS A,B,C,CARRIAGE
;RETURN,LINE FEED,D,E,F IN EIGHT
;CONSECUTIVE BYTES.

;STORES THE BINARY REPRESENTATION
;OF THE CHARACTERS A, <, 1, 5, >,
;AND B IN SIX CONSECUTIVE BYTES.

(=) can be wused as delimiting

indicator and assignment

operator, respectively, as illustrated in the examples below:

.ASCII ;ABC;/DEF/
.ASCII /ABC/;DEF;
.ASCII /ABC/=DEF=

An equal sign is treated as an
the first character 1in the
following example:

.ASCII =DEF=

6.3.5 JASCIZ Directive

The
above,
character of the string.
created with an

reflected by the coding below:

CR=15
LF=12
HELLO: .ASCIZ
.EVEN
MOV #HELLO,R1
MOV #LINBUF ,R2
108 MOVB (R1)+, (R2)+
BNE 108

.ASCIZ directive is equivalent to the
except that a zero byte is automatically inserted as the final
Thus,
.ASCIZ directive,
the last byte can effectively determine the

<CR><LF>/MACRO-11 VQ1A/<CR><LF>

; STORES THE BINARY REPRESENTATION OF
;THE CHARACTERS A, B, C, D, E, AND F
;IN SIX CONSECUTIVE BYTES; NOT

; RECOMMENDED PRACTICE.

;STORES THE BINARY REPRESENTATIONS OF
;s THE CHARACTERS A, B, AND C IN THREE

;CONSECUTIVE BYTES; THE CHARACTERS D,
;E, F, AND ; ARE TREATED AS A COMMENT.

:STORES THE BINARY REPRESENTATION

;OF THE CHARACTERS A, B, C, D, E, AND
;F IN SIX CONSECUTIVE BYTES; NOT
;s RECOMMENDED PRACTICE.

assignment operator when it appears as

ASCII string, as illustrated by the

;THE DIRECT ASSIGNMENT OPERATION
; .ASCII=DEF IS PERFORMED, AND A Q
; (SYNTAX) ERROR IS GENERATED UPON
;ENCOUNTERING THE SECOND = SIGN.

.ASCII directive described
when a list or text string has been
a search for the null character in

end of the string, as

; INTRODUCTORY MESSAGE

;GET ADDRESS OF MESSAGE.

;GET ADDRESS OF OUTPUT BUFFER.
sMOVE A BYTE TO OUTPUT BUFFER.
;IF NOT NULL, MOVE ANOTHER BYTE.

GENERAL ASSEMBLER DIRECTIVES

The .ASCIZ directive is subject to the same checks for character
legality and proper character .string construction as described above
for the .ASCII directive.

6.3.6 .RAD5S0 Directive

The .RAD50 directive allows the user to generate data in Radix-50
packed format. Radix-50 form allows three characters to be packed
into sixteen bits (one word); therefore, any 6-character symbol can
be stored in two consecutive words. The form of the directive is:

«RAD50 /string 1/.../string n/

where: string represents a series of characters to be packed
(three characters per word). The string must
consist of the characters A through Z, 0 through
9, dollar sign ($), period (.) and space (). An
illegal printing character causes an error flag
(Q) to be printed in the assembly listing.

If fewer than three characters are to be packed,
the string 1is packed 1left-justified within the
word, and trailing spaces are assumed.

As with the .ASCII directive described in Section
6.3.4, the vertical-tab, null, line-feed, RUBOUT,
and all other non-printing characters, except
carriage-return and form-feed, are illegal
characters, resulting in an error code (I) in the
assembly 1listing. Similarly, the carriage-return
and form-feed characters result in an error code
(A) because these characters end the scan of the
line, preventing MACRO-11 from detecting the
terminating matching delimiter.

/ / represent delimiting characters. These delimiters
may be any paired printing characters, other than
the equal sign (=), the left angle bracket (<), or
the semicolon (;), provided that the delimiting
character is not contained within the text string
itself. If the delimiting characters do not
match, or if an illegal delimiting character is
used, the .RAD50 directive 1is flagged with an
error code (A) in the assembly listing.

Examples of .RAD50 directives are shown below:

.RAD50 /ABC/ ; PACKS ABC INTO ONE WORD.
.RAD50 /AB/ ;PACKS AB (SPACE) INTO ONE WORD.
.RAD50 /ABCD/ ; PACKS ABC INTO FIRST WORD AND

;D (SPACE) (SPACE) INTO SECOND WORD.
.RAD50 /ABCDEF/ s PACKS ABC INTO FIRST WORD, DEF INTO

; SECOND WORD.

GENERAL ASSEMBLER DIRECTIVES

Each character 1is translated

indicated in the following table:
Character Radix-50

(space)

A-7

$

Eundefined)
0-9

The Radix-50 equivalents for characters 1

combined as follows:

Radix-50 Value ((C1l*5

For example:

Radix-50 Value of ABC

Refer to Section A.2 in

equivalents.

Angle brackets
special codes
example below:

(<>) must be used

.RAD50 /AB/<35>

CHR1=1
CHR2=2
CHR3=3

~»RAD50

6.3.7 Temporary Radix-50 Control
The "R operator specifies that an
Radix-50 format.
one word.

“Rcce

where ccc represents a maximum of
a 16-bit Radix~-50 value. If more
any following the third character
specified, it is assumed that the

3-character file type specifier (MAC)

MOV #"RMAC,FILEXT

be assembled directly

Appendix

<CHR1><CHR2><CHR3>

This allows up to three
The "R operator is coded as follows:

its

into Radix-50 equivalent, as
Octal Equivalent
0
1-32
33
34
35
36-47
through 3 (C1,C2,C3) are
0)+C2)*50+C3
((1*50)+2)*50+3 = 3223
A for a table of Radix~-50
in the .RAD50 directive whenever

are to be inserted in the text string, as shown in the

:STORES 3255 IN ONE WORD.

sEQUIVALENT TO .RADS50 /ABC/.
Operator: “R

is to be converted to
characters to be stored in

argument

three characters to be converted to
than three characters are specified,

are ignored. If fewer than 3 are
trailing characters are blanks. The
following example shows how the "R operator might be used to pack a
into a single l6-bit word.
;STORE RAD50 MAC AS FILE EXTENSION
The number sign (#) is used to indicate immediate data, i.e., data to
into object code. "R specifies that the
This wvalue is then

characters MAC are to be converted to Radix-50.

stored in location FILEXT.

GENERAL ASSEMBLER DIRECTIVES

6.4 RADIX AND NUMERIC CONTROL FACILITIES

6.4.1 Radix Control and Unary Control Operators

The normal default assumption for numeric values or expression values
appearing in a MACRO-11 source program is octal. However, numerous
instances may occur where an alternate radix is useful for portions of
a program or for variables within a given statement. It may be
useful, for example, to declare a given radix for applicability
throughout a program or to specify a numeric value or expression value
in a manner that causes it to be interpreted as a binary, octal, or
decimal value during assembly. In other such instances, it may be
useful to complement numeric values or expression values. These
MACRO-11 facilities are described in the following sections.

NOTE

When two or more unary operators appear together,
modifying the same term, the operators are
applied, from right to left, to the term.

6.4.1.1 .RADIX Directive - Numbers used in a MACRO-11 source program
are initially considered to be octal values; however, you can declare
any one of the following radices for applicability throughout the
source program or within specific portions of the program:

2, 8, 10
This is accomplished via a .RADIX directive of the form:
.RADIX n

where: n represents one of the three acceptable radices
listed above. 1If the argument n is not specified,
the octal default radix is assumed.

The argument in the .RADIX directive 1is always interpreted as a
decimal value. Any alternate radix declared in the source program
through the .RADIX directive remains in effect until altered by the
occurrence of another such directive, i.e., a given radix declaration
is valid throughout a program until changed. For example, the
statement:

.RADIX 10 ;BEGINS A SECTION OF CODE HAVING A
;DECIMAL RADIX.

+RADIX ;REVERTS TO OCTAL RADIX.

Any value other than null, 2, 8, or 10 specified as an argument in the
.RADIX directive causes an error code (A) to be generated in the
assembly listing.

In general, macro definitions should not contain or rely on radix
settings established with the .RADIX directive. Rather, temporary
radix control operators should be used within a macro definition.
Where a possible radix conflict exists within a macro definition or in
possible future uses of that code, it is recommended that the user

6-24

GENERAL ASSEMBLER DIRECTIVES

specify numeric or expression values using the temporary radix control
operators described below.

6.4.1.2 Temporary Radix Control Operators: "D, "0, and "B - Once the
user has specified a given radix for a section of code or has decided
to use the default octal radix, he may discover a number of cases
where an alternate radix is more convenient or desirable (particularly
within macro definitions). The creation of a mask word, for example,
might best be accomplished through the use of a binary radix.

MACRO-11 has three unary operators that allow the user to establish an
alternate radix, as shown below:

"D"number" ("number" is evaluated as a decimal number)
“0"number" ("number" is evaluated as an octal number)
“"B"number" ("number" is evaluated as a binary number)

Thus, an alternate radix can be declared temporarily to meet a
localized requirement in the source program. Such a declaration can
be made at any time, regardless of the existence of the default octal
radix or another specific radix declaration elsewhere in the program.
In other words, the effect of a temporary radix control operator is
limited to the term or expression immediately following the operator.
Any value specified in connection with a temporary radix control
operator is evaluated during assembly as a 16-bit entity. Temporary
radix control declarations can be 1included in the source program
anywhere a numeric value is legal.

The expressions below are representative of the methods of specifying
temporary radix control operators:

"D123 Decimal radix Py
"0 47 Octal Radix
"B 00001101 Binary Radix
“O<A+13> Octal Radix

Note that the up-arrow and the radix control operator may not be
separated, but the radix control operator and the following term or
expression can be physically separated by spaces or tabs for
legibility or formatting purposes. A multi-element term or expression
that is to be interpreted in an alternate radix should be enclosed
within angle brackets, as shown in the last of the four temporary
radix control expressions above.

The following example also illustrates the use of angle brackets to
delimit an expression that is to be interpreted in an alternate radix:
\‘;
.RADIX 10
A=10
.WORD "O<A+10>*10

When the temporary radix expression in the .WORD directive above is
evaluated, it effectively yields the following equivalent statement:

.WORD 180.

MACRO-11 also allows a temporary radix change to decimal by specifying
a number, immediately followed by a decimal point (.), as shown below:

100. Equivalent to 144(8)
1376. Equivalent to 2540(8)
128. Equivalent to 200(8)

6-25

GENERAL ASSEMBLER DIRECTIVES

The above expression forms are equivalent in function to those listed
below:

"D100
"D1376
D128

6.4.2 Numeric Directives and Unary Control Operators

Two storage directives and two numeric control operators are available
to simplify the use of the floating-point hardware on the PDP-11.
These facilities allow floating-point data to be «c¢reated 1in the
program, and numeric values to be complemented or treated as
floating-point numbers.

A floating-point number is represented by a string of decimal digits.
The string (which can be a single digit in length) may optionally
contain a decimal point, and may be followed by an optional exponent
indicator in the form of the letter E and a signed decimal integer
exponent. The number may not contain embedded blanks, tabs or angle
brackets and may not be an expression. Such a string will result in
one or more errors (A or Q) in the assembly listing.

The list of numeric representations below contains seven distinct,
valid representations of the same floating-point number:

3

3.

3.0
3.0E0
3EO
.3E1
300E-2

As can be inferred, the list could be extended indefinitely (e.g.,
3000E-3, .03E2, etc.). A leading plus sign is optional (e.g., 3.0 is
considered to be +3.0). A leading minus sign complements the sign
bit. ©No other operators are allowed (e.g., 3.0+N is illegal).

All floating-point numbers are evaluated as 64 bits in the following
format:

64 63 56 55 0

S EEEEEEEE MMM..... MMM
Mantissa (55 bits)
Exponent (8 bits)
Sign (1 bit)

MACRO-11 returns a value of the appropriate size and precision via one
of the floating=-point directives. The values returned may be
truncated or rounded (see Section 6.2).

Floating-point numbers are normally rounded. That 1is, when a
floating-point number exceeds the limits of the field in which it is
to be stored, the high-order bit of the unretained word is added to
the 1low-order bit of the retained word, as shown below. For example,
if the number is to be stored in a 2-word field, but more than 32 bits
are needed to express 1its exact value, the highest bit (32) of the

6-26

GENERAL ASSEMBLER DIRECTIVES

unretained field is added to the least significant bit (0) of the
retained field (see illustration below). The .ENABL FPT directive is
used to enable floating-point truncation; .DSABL FPT is wused to
return to floating-point rounding (see Table 6-2).

Bit Bit Bit Bit
32 0 32 31 0

Unretained
field

Retained
field

Note that all numeric opeéerands associated with Floating Point
Processor instructions are automatically evaluated as single-word,
decimal, floating-point wvalues unless a temporary radix control
operator is specified. For example, to add (floating) the octal
constant 41040 to the contents of floating accumulator zero, the
following instruction must be used:

ADDF $7041040,F0
where: FO0 is assumed to represent floating accumulator zero.

Floating-point numbers are described in greater detail in the
applicable PDP-11 Processor Handbook.

6.4.2.1 ,FLT2 and .FLT4 - Floating-Point Storage Directives - MACRO-11
supports two directives that evaluate successive floating-point
numbers and store the results in the object module. These
directives are similar to the .WORD directive and are of the
form:

LFLT2 argl,arg2,...
.FLT4 argl,arg2,...

where: argl,arg2,... represent one or more floating point numbers
as described in Section 6.4.2. Multiple
arguments must be separated by commas.

.FLT2 causes two words of storage to be generated for each argument,
while .FLT4 generates four words of storage for each argument.

6.4.2.2 Temporary Numeric Control Operators: "C and "F - The "C
unary operator allows you to specify an argument that is to be
complemented as it 1is evaluated during assembly. The “F unary
operator allows you to specify an argument consisting of a l-word
floating-point number.

As with the radix control operators described above, the numeric
control operator (~C) can be used anywhere in the source program that
an expression value is legal. Such a construction is evaluated by
MACRO-11 as a 16-bit binary value before being complemented. For
example, the following statement:

TAG4: +WORD ~C1l51
causes the 1l's complement of the value 151 (octal) to be stored as a

16-bit wvalue in the program. The resulting value expressed in octal
form is 177626(8).

GENERAL ASSEMBLER DIRECTIVES

Because the “C construction is a unary operator, the operator and its
argument are regarded as a term. Thus, more than one unary operator
may be applied to a single term. For example, the following
construction:

“C"D25

causes the decimal value 25 to be complemented during assembly. The
resulting binary value, when expressed 1in octal form, reduces to
177746 (octal).

The term created through the use of the temporary numeric control
operator thus becomes an entity that can be wused alone or in
combination with other expression elements. For example, the
following construction: :

"C2+6
is equivalent in function to:
<"C2>+6

This expression is evaluated during assembly as the 1's complement of
2, plus the absolute value of 6. When these terms are combined, the
resulting expression value generates a carry beyond the most
significant bit, leaving 000003(8) as the reduced value.

As shown above, when the temporary numeric control operator and its
argument are coded as a term within an expression, angle brackets
should be used as delimiters to ensure precise evaluation and
readability.

MACRO-11 also supports a unary operator for numeric control which
allows you to specify an argument consisting of a 1l-word
floating-point number. For example, the following statement:

A: MoV #"F3.7,R0

creates a l-word floating-point number at location A+2 containing the
value 3.7 formatted as shown below.

BIT 15 14 7 6 0

S EEEEEEEE MMMMMMM

Sign (bit 15) Exponent (bits 14-7) Mantissa (bits 6-0)

The importance of ordering with respect to unary operators is shown
below.

"F1.0 = 020400
"F-1.0 = 120400
-"F1.0 = 157400
-"F-1.0 = 057400

The value created by the "F unary operator and its argument is then a
term that can be used by itself or in an expression. For example:

"C"F6.2
is equivalent to:

"C<"F6.2>

GENERAL ASSEMBLER DIRECTIVES

For this reason, the use of angle brackets 1is advised. Expressions
used as terms or arguments of a unary operator must be explicitly
grouped.

6.5 LOCATION COUNTER CONTROL DIRECTIVES

The directives used in controlling the value of the current location
counter and in reserving storage space in the object program are
described in the following sections.

In this connection, it should be noted that several MACRO-11
statements may cause an odd number of bytes to be allocated, as listed
below:

1. .BYTE directive
2. JBLKB directive
3. .ASCII or .ASCIZ directive
4. .0ODD directive

5. A direct assignment statement of the form .=.+expression,
which results in the assignment of an odd address value.

In cases that yield an odd address value, the next word-boundaried
instruction automatically forces the location counter to an even
value, but that instruction is flagged with an error code (B) 1in the
assembly listing.

6.5.1 .EVEN Directive

The .EVEN directive ensures that the current location counter contains
an even value by adding 1 if the current value is odd. 1If the current
location counter is already even, no action is taken. Any operands
following an .EVEN directive are flagged with an error code (Q) in the
assembly listing.

The .EVEN directive is used as follows:

.ASCIZz /THIS IS A TEST/

.EVEN sENSURES THAT THE NEXT STATEMENT WILL
;BEGIN ON A WORD BOUNDARY.

+WORD XY2

6.5.2 .0DD Directive

The .ODD directive ensures that the current location counter contains
an odd value by adding 1 if the current value is even. 1If the current
location counter is already odd, no action 1is taken. Any operands
following an .ODD directive are also flagged with an error code (Q) in
the assembly listing.

GENERAL ASSEMBLER DIRECTIVES

6.5.3 .BLKB and .BLKW Directives

Blocks of storage can be reserved in the object program by means of
the .BLKB and .BLKW directives. The .BLKB directive is used to
reserve byte blocks; similarly, the .BLKW directive reserves word
blocks. The two directives are of the form:

.BLKB exp
.BLKW exp

where: exp represents the specified number of bytes or words
to be reserved in the object program. If no
argument is present, a default value of 1 |is
assumed. These ~directives should not be used
without arguments. Any expression that is
completely defined at assembly-time and that
reduces to an absolute value 1is 1legal. If the
expression specified in either of these directives
is not an absolute value, the statement is flagged
with an error code (A) in the assembly listing.

Figure 6-6 illustrates the use of the .BLKB and .BLKW directives.

166 oooene +PSECT IMPURE,D

167 0oaoeen PASSI1 ,BLKW) JPASS FLAG

168 INEXT GROUP MUST STAY TOGETHER
169 000009 +PSECT IMPPAS,D,GBL

170 ee0000 SYMBOL ¢ BLKW 2 18YMBOL ACCUMULATOR

171 0c0004 MODE 1Y JMODE/FLAGS BYTE

172 00do04 FLAGSts ,BLKB {) .

173 0c000s SECTORt1,BLxB 1 }SYMBOL/EXPRESSION TYPE

174 000006 VALUESt ,BLKW 1 FEXPRESSION VALUE

175 ooo0i0 RELLVLES ,BLKW 1 JRELOCATION LEVEL

176 200203 «REPT MAXXMTwc<,mSYMBOL>/2>

177 BLKW 1

178 +ENDR

179

180 000020 CLCNAMyz BLKW 2 JCURRENT LOCATION COUNTER NAME
{81 200024 CLCFGS1t,BLKB 1)

182 0@0025 CLCSECt11,BLKB i)

183 000026 CLCLOC1,BLKW i ’

184 @00030 CLCMAX 3t BLKW 1 JEND OF GROUPED DATA

185 ao0032 CHRPNT St ,BLKW 1 JCHARACTER POINTER

186 000034 SYMBEG# 1t ,BLKMW i JPOINTER TO START OF SYMBOL
187 280036 ENDFLGE 1 ,BLKW {)

188 90Q000 oPSECT

Figure 6-6 Example of .BLKB and .BLKW Directives

The .BLKB directive in a source program has the same effect as the
following statement:

.=.+expression

which causes the value of the expression to be added to the current
value of the location counter. The .BLKB directive, however, is
easier to interpret in the context of the source code in which it
appears and is therefore recommended.

GENERAL ASSEMBLER DIRECTIVES

6.6 TERMINATING DIRECTIVES

6.6.1 L.END Directive

The .END directive indicates the logical end of the source input, and
takes the following form:

. END exp

where: exp represents an optional expression value which, if
present, indicates the program-entry point, i.e.,
the transfer address at which program execution is
to begin.

When MACRO-11 encounters a valid occurrence of the .END directive, it
terminates the current assembly pass. Any additional text beyond this
point in the current source file, as well as 1in additional source
files identified in the command line, will be ignored.

When creating a task image consisting of several object modules, only
one object module may be terminated with an .END exp statement
specifying the starting address. All other object modules must be
terminated with an J.END statement without an address argument;
otherwise, the Task Builder will issue a diagnostic message. If no
starting address is specified in any of the object modules, task
execution will begin at location 1 of the task and immediately fault
because of an odd addressing error.

The .END statement must not be used within a macro expansion or a
conditional assembly block; if it is so used, it is flagged with an
error code (O) in the assembly listing. The .END statement may be
used, however, in an immediate conditional statement (see Section
6.10.2).

If the source program input is not terminated with an .END directive,
an error code (E) results in the assembly listing.

6.6.2 JEOT Directive

Under RSX-11 and IAS operating systems, the MACRO-11 .EOT directive is
ignored and simply treated as a directive without effect, i.e., as a
no-op.

6.7 PROGRAM BOUNDARIES DIRECTIVE: .LIMIT

It is often desirable to know the upper and lower address boundaries
of the task image. When the .LIMIT directive is specified in the
source program, MACRO-11 effectively generates the following
instruction:

.BLKW 2

causing two storage words to be reserved in the object module. Later,
at 1link time, the address of the bottom of the task's stack is
inserted into the first reserved word, and the address of the first
free word following the task image 1is inserted into the second
reserved word.

GENERAL ASSEMBLER DIRECTIVES

During linking, the size of the task image is rounded upward to the
nearest 2-word boundary.

For a discussion of task memory allocation and mapping, refer to the
applicable Task Builder reference manual (see Section 0.3 in the
Preface).

6.8 PROGRAM SECTIONING DIRECTIVES

The MACRO-11 program sectioning directives are used to declare names
for program sections and to establish certain program section
attributes essential to Task Builder processing.

6.8.1 L.PSECT Directive

The .PSECT directive allows absolute control over the memory
allocation of a program at link time, because any program attributes
established through this directive are passed to the Task Builder.

For example, if you are writing programs for a multi-user environment,
a program section <containing pure code (instructions only) or a
program section containing impure code (data only) may be explicitly
declared through the .PSECT directive. Furthermore, these program
sections may be explicitly declared as read-only code, qualifying them
for use as protected, reentrant programs.

In addition, program sections exhibiting the global (GBL) attribute
can be explicitly allocated in a task's overlay structure at link
time.

The advantages gained through sectioning programs in this manner
therefore relate primarily to control of memory allocation, program
modularity, and more effective partitioning of memory. Refer to the
applicable Task Builder reference manual for a discussion of memory
allocation (see Section 0.3 in the Preface).

The .PSECT directive is formatted as follows:

.PSECT name,argl,arg2,...argn

where: name represents the symbolic name of the program
section, as described in Table 6-3.
' represents any legal separator (comma, tab and/or
space) .
argl, represent one or more of the 1legal symbolic
arg2,... arguments defined for use with the .PSECT
argn directive, as described in Table 6-3. The slash

separating each pair of symbolic arguments listed
in the table indicates that these optional
arguments are mutually exclusive, i.e., one or the
other, but not both, may be specified. Multiple
arguments must be separated by a legal separating
character. Any symbolic argument specified in the
.PSECT directive other than those listed in Table
6-3 will cause that statement to be flagged with
an error code (A) in the assembly listing.

GENERAL ASSEMBLER DIRECTIVES

Table 6-3

Symbolic Arguments of .PSECT Directive

Argument

Default

Meaning

NAME

RO/RW

1/D

GBL/LCL

Blank

RW

LCL

Establishes the program section name,
which is specified as one to six
Radix-50 characters. If this argument
is omitted, a comma must appear in place
of the name parameter. The Radix-50
character set 1is listed in Section A.2
of Appendix A.

Defines which type of access is
permitted to the program section:

RO=Read-Only Access
RW=Read/Write Access

NOTE

IAS and RSX-11D set hardware
protection for RO program
sections. RSX~11M does not
provide such protection.

Defines the program section as
containing either instructions (I) or
data (D). These attributes allow the
Task Builder to differentiate global
symbols that are program entry-point
instructions (I) from those that are
data values (D).

Defines the scope of the program
section, as subsequently interpreted by
the Task Builder.

In building single-segment programs, the
GBL/LCL arguments have no meaning,
because the total memory allocation for
the program will go into the root
segment of the task. The GBL/LCL
arguments apply only in the case of
overlays.

If an object module contains a local
program section, then the storage
allocation for that module will occur
within the segment in which the module
resides. Many modules can reference
this same program section, and the
memory allocation for each module is
either concatenated or overlaid within
the segment, depending on the argument
of the program section (.PSECT) defining

GENERAL ASSEMBLER DIRECTIVES

Table 6-3 (Cont.)
Symbolic Arguments of .PSECT Directive

Argument

Default

Meaning

GBL/LCL
(cont'd)

ABS/REL

LCL

REL

its allocation requirements (see CON/OVR
below). If an object module contains a
global program section, the
contributions to this program section
are collected across segment boundaries,
and the allocation of memory for that
section will go into the segment nearest
the root in which the first contribution
to this program section appeared. (The
term contribution implies an allocation
of memory to the program section.)

Defines the relocatability attribute of
the program section:

ABS=Absolute (non-relocatable). When
the ABS argument is specified, the
program section is regarded by the
Task Builder as an absolute module,
thus requiring no relocation. The
program section 1is assembled and
loaded, starting at absolute virtual
address 0. :

The location of data in absolute
program sections must fall within
the virtual memory 1limits of the
segment containing the program
section; otherwise, an error
results at link time. For example,
the following code, although wvalid

during assembly, may generate a
Task Builder error message if
virtual 1location 100000 is outside
the segment's virtual address space:

.PSECT ALPHA,ABS
.=.+100000
.WORD X

The above coding assembles properly,
but the resulting load address may
be outside the respective segment's
boundaries. 1In such cases, the Task
Builder recognizes this as an
attempt to load data outside the
task image and responds with an
error message. '

REL=Relocatable. When the REL
argument is specified, the Task
Builder calculates a relocation bias
and adds it to all references to

locations within the program
section, i.e., all references to the
program section must have a

relocation bias added to them to
make them absolute.

6-34

GENERAL ASSEMBLER DIRECTIVES

Table 6-3 (Cont.)
Symbolic Arguments of .PSECT Directive

Argument Default Meaning

CON/OVR CON Defines the allocation requirements of
the program section:

CON=Concatenated. All program section
contributions are to be concatenated
with other references to this same
program section in order to
determine the total memory
allocation requirement for this
program section.

OVR=0Overlaid. All program section
contributions are to be overlaid.
Thus, the total allocation

requirement for the program section
is equal to the 1largest allocation
request made by any individual
contribution to this program
section.

The only argument in the .PSECT directive that 1is position-dependent
is NAME. If it is omitted, a comma must be used in its place. For
example, the directive:
.PSECT ,GBL

shows a .PSECT directive with a blank name argument and the GBL
argument. Default values (see Table 6-3) are assumed for all other
unspecified arguments.
Once the attributes of a program section are declared through a .PSECT
directive, MACRO-11 assumes that these attributes remain in effect for
all subsequent .PSECT directives of the same name that are encountered
within the module.
MACRO-11 provides for 256(10) program sections, as listed below:

1. One default absolute program section (. ABS.)

2. One default unnamed relocatable program section

3. Two-hundred-fifty-four named program sections.
The .PSECT directive enables the user to:

1. Create program sections (see Section 6.8.1.1)

2. Share code and data among program sections (see Section
6.8.1.2).

—-P\ b

|

GENERAL ASSEMBLER DIRECTIVES

For 2ach program section specified or implied, MACRO-11 maintains the
following information:

1. Program section name
2. Contents of the current location counter
3. Maximum location counter value encountered

4. Program section attributes, i.e., the .PSECT arguments
described in Table 6-3 above.

6.8.1.1 Creating Program Sections - MACRO-11 automatically begins
assembling source statements at relocatable zero of the unnamed
program section, i.e., the first statement of a source program 1is
always an implied .PSECT directive.

The first occurrence of a .PSECT directive with a given name assumes
that the current location counter is set at relocatable zero. The
scope of this directive then extends until a directive declaring a
different program = section is specified. Further occurrences of a
program section name in subsequent .PSECT statements cause the
resumption of assembly where that section previously ended. For
example:

.PSECT ;DECLARES UNNAMED RELOCATABLE PROGRAM
A .WORD 0 ;SECTION ASSEMBLED AT RELOCATABLE
B: .WORD 0 ;ADDRESSES 0, 2, AND 4.
C: .WORD 0

/.PSECT ALPHA ;DECLARES RELOCATABLE PROGRAM SECTION
Xt \ \WORD 0 : ;NAMED ALPHA ASSEMBLED AT RELOCATABLE
Y “.WORD 0 ./ ;ADDRESSES 0 AND 2.

. PSECT ;RETURNS TO UNNAMED RELOCATABLE

D: .WORD 0 ; PROGRAM SECTION AND CONTINUES ASSEM-

;BLY AT RELOCATABLE ADDRESS 6.

A given program section may be defined completely upon encountering
its first .PSECT directive. Thereafter, the section can be referenced
by specifying its name only, or by completely respecifying its
attributes. For example, a program section can be declared through
the directive:

.PSECT ALPHA,ABS,OVR
and later referenced through the equivalent directive:
.PSECT ALPHA
which requires no arguments.
By maintaining separate location counters for each program section,
MACRO-11 allows the user to write statements that are not physically

contiguous within the program, but that can be loaded contiquously
following assembly, as shown in the following example.

GENERAL ASSEMBLER DIRECTIVES

3 .PSECT SEC1,REL,RO ; START A RELOCATABLE PROGRAM SECTION
° A: .WORD 0 ;NAMED SEC1 ASSEMBLED AT RELOCATABLE
Z B: .WOED 0 ;ADDRESSES 0, 2, AND 4.

Iy C: .WORD 0
g ST: CLR A ;ASSEMBLE CODE AT RELOCATABLE
R4 CLR B ;ADDRESSES 6 THROUGH 12.
¥ CLR C
.PSECT SECA,ABS ; START AN ABSOLUTE PROGRAM SECTION
;NAMED SECA. ASSEMBLE CODE AT
S .WORD .+2,A ;ABSOLUTE ADDRESSES 0 AND 2.
.PSECT SEC1 ; RESUME RELOCATABLE PROGRAM SECTION
ty INC A ;SEC1. ASSEMBLE CODE AT RELOCATABLE
P BR ST ;ADDRESSES 14 AND 16.

All labels in an absolute program section are absolute; 1likewise, all
labels in a relocatable section are relocatable. The current location
counter symbol (.) is also relocatable or absolute when referenced in
a relocatable or absolute program section, respectively.

Any labels appearing on a line containing a .PSECT (or .ASECT or
.CSECT) directive are assigned the value of the current location
counter before the .PSECT (or other) directive takes effect. Thus, if
the first statement of a program is:

A: .PSECT ALT,REL

the label A is assigned to relocatable address zero of the unnamed (or
blank) program section.

It is not known during assembly where relocatable program sections
will be loaded, therefore all references between relocatable sections
in a single assembly are translated by MACRO-11 to references relative
to the base of the referenced section. Thus, MACRO-11 provides the
Task Builder with the necessary information to resolve the 1linkages
between various program sections. Such information is not necessary,
however, when referencing an absolute program section, because all
instructions in an absolute program section are associated with an
absolute virtual address.

In the following example, references to the symbols X and Y are
translated into references relative to the base of the relocatable
program section named SEN.

.PSECT ENT,ABS

.=.+1000
A: ~) CLR X ;ASSEMBLED AS CLR BASE OF
;RELOCATABLE SECTION + 10.
-, JMP Y ;ASSEMBLED AS JMP BASE OF

; RELOCATABLE SECTION + 6.
.PSECT SEN,REL

“1 MOV RO,R1

<~ JMP A ;ASSEMBLED AS JMP 1000.
Y: . HALT
X . . «WORD 0

NOTE

In the preceding example, using a constant in conjunction
with the current 1location counter symbol (.) in the form
.=1000 would result in an error, because constants are
always absolute and are always associated with the program's
.ASECT (. ABS.). If the form .=1000 were wused, a program
section incompatibility would be detected. See Section 3.6
for a discussion of the current location counter.

6-37

GENERAL ASSEMBLER DIRECTIVES

6.8.1.2 Code or Data Sharing - Named relocatable program sections
with the arguments GBL and OVR operate in the same manner as FORTRAN
COMMON, i.e., program sections of the same name with the arguments GBL
and OVR from different assemblies are all loaded at the same location
by the Task Builder. All other program sections, i.e., those with the
argument CON, are concatenated.

Note that no conflict exists between internal symbolic names and
program section names, i.e., it is legal to use the same symbolic name
for both purposes. Considering FORTRAN again, using the same symbolic
name is necessary to accommodate the following statement:

coMMON /X/ A,B,C,X

where the symbol X represents the base of the program section and also
the fourth element of that section.

6.8.1.3 Memory Allocation Considerations - The assembler does not
generate an error when a module ends at an odd location. This allows
you to place odd length data at the end of a module. However, when
several modules contain object code contributions to the same program
section having the concatenate attribute (see Table 6-3), o0dd 1length
modules (except the 1last) may cause the Task Builder to 1link
succeeding modules starting at odd 1locations, thereby making the
linked program unexecutable. To avoid this problem, code and data
should be separated from each other and be placed in separately named
program sections. This permits the Task Builder to automatically
begin each program section on an even address. Refer to the
applicable Task Builder reference manual for further information on
memory allocation of tasks (see Section 0.3 in the Preface).

6.8.2 LASECT and .CSECT Directives

IAS and RSX-11l assembly-language programs use the .PSECT and .ASECT
directives exclusively, since the .PSECT directive provides all the
capabilities of the .CSECT directive defined for other PDP-11
assemblers. MACRO-11 will accept both .ASECT and .CSECT directives,
but assembles them as though they were (PSECT directives with the
default attributes 1listed 1in Table 6-4. Also, compatibility exists
between other MACRO-11 programs and the IAS/RSX-11 Task Builders,
since the respective Task Builders recognize the .ASECT and .CSECT
directives that appear in such programs and likewise assign the
default values listed in Table 6-4.

GENERAL ASSEMBLER DIRECTIVES

Table 6-4
Non-IAS/RSX-11 Program Section Default Values
Default Value
Attribute
.ASECT .CSECT (named) .CSECT (unnamed)
Name . ABS. name Blank
Access RW RW RW
Type I I I
Scope GBL GBL LCL
Relocation ABS REL REL
Allocation OVR OVR CON

The allowable syntactical forms of the .ASECT and .CSECT directives
are:

»ASECT

+CSECT
»CSECT symbol

Note that the statement:
»CSECT JIM

is identical to the statement:
.PSECT JIM,GBL,OVR

because the .CSECT default values GBL and OVR are assumed for the
named program section.

6.9 SYMBOL CONTROL DIRECTIVE: .GLOBL

MACRO-11 produces a relocatable object module and a 1listing file
containing the assembly listing and symbol table. The Task Builder
joins separately-assembled object modules into a single executable
task image. During 1linking, object modules are relocated as a
function of the specified base of the module. The object modules are
then 1linked wvia global symbols, such that a global symbol in one

module, defined either by a global assignment operator (==), a global
label operator (::), or the .GLOBL directive can be referenced from
another module. which will be referenced by ot
program modules IHM
MO TG

The .GLOBL directive is provided to define (and thus provide 1linkage
to) symbols not otherwise defined as global symbols within a module.
For example, if the .DSABL GBL directive is in effect (see Section
6.2), .GLOBL directives might be included 1in a source program to
effect linkage to library routines. For a global symbol definition,
the directive .GLOBL A,B,C is equivalent to:

A==expression (or A::)
B==expression (or B::)
C==expression (or C::)

6-39

GENERAL ASSEMBLER DIRECTIVES

Thus, the general form of the .GLOBL directive is:

.GLOBL syml,sym2,...symn

where: syml, represent legal symbolic names. When multiple
sym2,... symbols are specified, they are separated by any
symn legal separator (comma, space, and/or tab).

A .GLOBL directive may also embody a label field and/or a comment
field.

At the end of assembly pass 1, MACRO-11 determines whether a given
global symbol is defined within the current program module or whether
it is to be treated as an external symbol. All internal symbols
appearing within a given program must be defined at the end of
assembly pass 1 or they will be assumed to be default global
references. Refer to Section 6.2 for a description of
enabling/disabling of global references.

In the example below, A and B are entry-point symbols. The symbol A
has been explicitly defined as a global symbol by means of the .GLOBL
directive, and the symbol B has been explicitly defined as a global
label by means of the double colon (::). Since the symbol C is not
defined as a label within the current assembly, it is an external
(global) reference.

7
; DEFINE A SUBROUTINE WITH 2 ENTRY POINTS WHICH CALLS AN
; EXTERNAL SUBROUTINE

+.PSECT ;DECLARE THE UNNAMED PROGRAM SECTION.
.GLOBL A ;DEFINE A AS A GLOBAL SYMBOL.
A: MOV @ (R5)+,R0O ;DEFINE ENTRY POINT A.
MOV #X,R1
X JSR pC,C ;CALL EXTERNAL SUBROUTINE C.
RTS R5 s EXIT.
B:: MOV (R5)+,R1 ;DEFINE ENTRY POINT B.
CLR R2
BR X

External symbols can appear in the operand field of an instruction or
MACRO-11 directive as a direct reference, as shown in the examples
below:

CLR EXT
.WORD EXT
CLR QEXT

External symbols may also appear as a term within an expression, as
shown below:

CLR EXT+A
.WORD EXT-2
CLR @EXT+A (R1)

It should be noted that an undefined external symbol cannot be used in
the evaluation of a direct assignment statement or as an argument in a
conditional assembly directive (see Sections 6.10.1 and 6.10.3).

GENERAL ASSEMBLER DIRECTIVES

6.10 CONDITIONAL ASSEMBLY DIRECTIVES

Conditional assembly directives allow you to include or exclude blocks
of source code during the assembly process, based on the evaluation of
stated condition tests within the body of the program. This
capability allows several variations of a program to be generated from
the same source code.

6.10.1 Conditional Assembly Block Directives: .IF, .ENDC

The general form of a conditional assembly block is as follows:

.IF cond,argument (s) ;START CONDITIONAL ASSEMBLY BLOCK.

range ; RANGE OF CONDITIONAL ASSEMBLY BLOCK.

.ENDC ;END OF CONDITIONAL ASSEMBLY BLOCK.
where: cond represents a specified condition that must be met

if the block 1is to be included in the assembly.
The conditions that may be tested by the
conditional assembly directives are defined in
Table 6-5.

’ represents any legal separator (comma, space,
and/or tab).

argument (s) represent (s) the symbolic argument (s) or
expression(s) of the specified conditional test.
These arguments are thus a function of the
specified condition to be tested (see Table 6-5).

range represents the body of code that is either
included in the assembly or excluded, depending
upon whether the specified condition is met.

.ENDC terminates the conditional assembly block. This
directive must be present to end the conditional
assembly block.

A condition test other than those listed in Table 6-5, an illegal
argument, or a null argument specified in an .IF directive causes that
line to be flagged with an error code (A) in the assembly listing.

Table 6-5
Legal Condition Tests for Conditional Assembly Directives
Conditions
Arguments Assemble Block If:
Positive | Complement
EQ NE Expression Expression is equal to 0

(or not equal to 0).

GT LE Expression Expression is greater
than 0 (or less than or
equal to 0).

GENERAL ASSEMBLER DIRECTIVES

Table 6-5 (Cont.)

Legal Condition Tests for Conditional Assembly Directives

Conditions
Arguments Assemble Block If:
Positive | Complement
LT GE Expression Expression is less than 0
(or greater than or equal
to 0).
DF NDF Symbolic Symbol is defined (or not
argument defined).
B NB Macro-type Argument is blank (or
argument non-blank) .
IDN DIF Two macro-type Arguments are 1identical
arguments (or different).
Z NZ Expression Same as EQ/NE.
G L Expression Same as GT/LT.
NOTE
A macro-type argument (which is a form of symbolic
argument), as shown below, 1is enclosed within
angle brackets or denoted with an up-arrow
construction (as described in Section 7.3.1). '
<A,B,C>
~/124/
An example of a conditional assembly directive follows:
.IF EQ ALPHA+1 ;ASSEMBLE BLOCK IF ALPHA+1=0.
.ENDC
The two operators & and ! have special meaning within DF and NDF

conditions, in that they are allowed in grouping symbolic arguments.
& Logical AND operator
! Logical inclusive OR operator

For example, the conditional assembly statement:

.IF DF

SYM]1 & SYM2
.ENDC

results in the assembly of the conditional block if the SYM1

and SYM2 are both defined.

symbols

GENERAL ASSEMBLER DIRECTIVES

Nested conditional directives take the form:

Conditional Assembly Directive
Conditional Assembly Directive

.ENDC
.ENDC

For example, the following conditional directives:

~IF DF SyM1
.IF DF SYM2

.

«.ENDC
.ENDC

can govern whether assembly is to occur. In the example above, if the
outermost condition is unsatisfied, no deeper level of evaluation of
nested conditional statements within the program occurs.

Each conditional assembly block must be terminated with an .ENDC
directive. An .ENDC directive encountered outside a conditional
assembly block is flagged with an error code (0) in the assembly
listing.

MACRO-11 permits a nesting depth of 16(10) conditional assembly
levels. Any statement that attempts to exceed this nesting level
depth is flagged with an error code (O) in the assembly listing.

6.10.2 Subconditional Assembly Block Directives: .IFF, .IFT, .IFTF

Subconditional directives may be placed within conditional assembly
blocks to indicate:

1. The assembly of an alternate body of code when the condition
of the block tests false.

2. The assembly of a non-contiguous body of code within the
conditional assembly block, depending upon the result of the
conditional test in entering the block.

3. The unconditional assembly of a body of code within a
conditional assembly block.

The subconditional directives are described in detail in Table 6-6.
If a subconditional directive appears outside a conditional assembly
block, an error code (0O) is generated in the assembly listing.

GENERAL ASSEMBLER DIRECTIVES

Table 6-6
Subconditional Assembly Block Directives

Subconditional
Directive Function

.IFF If the condition tested upon entering the
conditional assembly block is false, the code
following this directive, and continuing up to the
next - occurrence of a subconditional directive or
to the end of the conditional assembly block, is
to be included in the program.

LIFT If the condition tested upon entering the
conditional assembly block is true, the code
following this directive, and co