DEC OSF/1

ﬂ ﬂﬂﬂﬂﬂ Writing Device Drivers

for the SCSI/CAM Architecture Interfaces

Part Number: AA-PS3GB-TE

DEC OSF/1

Writing Device Drivers for the
SCSI/CAM Architecture Interfaces

Order Number: AA-PS3GB-TE

February 1994
Product Version: DEC OSF/1 Version 2.0 or higher

This manual contains information on how to write device drivers for the
SCSI/CAM Architecture interfaces.

digital equipment corporation
Maynard, Massachusetts

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c) (1) (ii).

Digital Equipment Corporation makes no representations that the use of its products in the
manner described in this publication will not infringe on existing or future patent rights, nor
do the descriptions contained in this publication imply the granting of licenses to make, use,
or sell equipment or software in accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only
pursuant to a valid written license from Digital or an authorized sublicensor.

© Digital Equipment Corporation 1994
All rights reserved.

The following are trademarks of Digital Equipment Corporation:

ALL-IN-1, Alpha AXP, AXP, Bookreader, CDA, DDIS, DEC, DEC FUSE, DECnet,
DECstation, DECsystem, DECUS, DECwindows, DTIF, LinkWorks, MASSBUS, MicroVAX,
Q-bus, ULTRIX, ULTRIX Mail Connection, ULTRIX Worksystem Software, UNIBUS,
VAX, VAXstation, VMS, XUI, the AXP logo, the AXP signature, and the DIGITAL logo.

Open Software Foundation, OSF, OSF/1, OSF/Motif, and Motif are trademarks of the Open
Software Foundation, Inc. UNIX is a registered trademark licensed exclusively by X/Open
Company Limited.

All other trademarks and registered trademarks are the property of their respective holders.

Contents

About This Manual

AUIENCE oottt e e e et e e e e XXiii
(01181715 103 1 RPN XXiii
Related DOCUMENTAION ...c.uuiiiiiiiitiieri et et e e et e e et e et e era s XXV
Reader’s COMMENTS .oouuiiiiiii ittt ettt ettt eeeaees XXVi
CONVENTIONS 1euiieiii ettt et et ettt e e e et e e et e ee et eeeaaas XXVii
1 SCSI/CAM Software Architecture
L1 OVEIVIEW oottt et 1-2
1.2 CAM User Agent Device Driver —occoiiiiiiiiiiiiiiiiiiiiiiiiiecees 1-4
1.3 SCSI/CAM Peripheral Device Driverscccceoeeniiiiiiiiiiiinineinnns 1-5
1.3.1 S/CA Common Device Driver Modules —cccoeceuieueennneen 1-6
1.3.2 S/CA Generic Device Driver Modules cocvveiinivinnennnene. 1-6
1.3.3 CAM SCSI Disk Device Driver Modules cccccceeeenn. 1-6
1.3.4 CAM SCSI Tape Device Driver Modulesc.....cccceeeeennii. 1-6
1.3.5 CAM SCSI CD-ROM/AUDIO Device Driver Modules 1-6
1.4 SCSI/CAM Special I/O Interface cccevueieeiieiiiiieiiiieeiiiiecennee 1-6
1.5 The SCSI/CAM Configuration Driverccccccuvvriimiiiienneriineeeenens 1-7
1.6 CAM Transport Layer (XPT) ..coovuiiiiiiieiiiiiiiiiiiiiiiiieee e 17
1.7 SCSI Interface Module Layers (SIM) ..cooeeiiimiiiiiiiieiiiieciiiecennes 1-7

2 CAM User Agent Modules

2.1 User Agent INtroduction ceeviviiiiriiinieiieiiieriie e ee e 2-1
2.2 User Agent Error Handling ooieeiiiiiiiiii it 2-2
2.3 User Agent Data StruCtUIES ..ovveviiveeiiiieiiiieiieeiiee e e ereeeieeeeeeaens 2-2
2.3.1 The UAGT_CAM_CCB Data Structure c.coeeeevvuuneererennne. 2-2
2.3.1.1 The uagt_ccb Membercccooviiiiiiiiiiiiiiiiiiiiie, 2-3
2.3.12 The uagt_ccblen Memberccccoeevvveniiiinnenieiiinnnn, 2-3
2.3.1.3 The uagt_buffer Memberccoeevvmiiriiiiieeeiennnnn. 2-4
2.3.1.4 The uagt_buflen Membercoooevviiieiiiineennniennne. 24
2.3.1.5 The uagt_snsbuf Membercc.coooevveriiriiiiiiiiinieennn. 2-4
2.3.1.6 The uagt_snslen Memberccceevviiimiinienneennnnn. 24
2.3.1.7 The uagt_cdb Memberccoeeiiiiiiiiiiiiiiiiniiin 24
2.3.1.8 The uagt_cdblen Membercoeeeeeirimiiinennennnnn. 2-4
23.1.9 The uagt_flags Memberccooeoviiiiiiiiiiiiiennennnnn. 2-4
2.3.2 The UAGT_CAM_SCAN Data Structure ccceevevrernnnnn.. 24
24 User Agent ROULNES ...ccouiviiiniriiiiieiiiiieriiiieeeeiinreriineeniesnrenesaenenae 2-5
24.1 The uagt open ROUINE ...cooovvviiriiiimiiiiiiiiiiieneciiicie e 2-5
2.4.2 The uagt_close ROULINE oevvvuiiiiniieiiiiiiiiiietiie e eveeee 2-5
2.4.3 The uagt_ioctl ROULINE ..co.iviiiiiiiiiieiiiiiieiiie e eeeieee 2-5
2.5 Sample User Agent DIivers —.......c.coeeiiiiiiiiireiiiieein et eeeereaeee. 2-6
2.5.1 Sample User Agent Driver Inquiry Program 2-6
2.5.1.1 The include Files and Definitions Section 2-6
2.5.1.2 The Main Program Sectioncccoeveevnverinrernnnnenne 2-7
2.5.1.3 The User Agent Open Section cccceveveeeeinrreeeennnn. 2-8

2.5.14 Filling in XPT_SCSI_IO Request CCB_HEADER
FleldSs coeeeieiieee e 2-8

2.5.1.5 Filling in INQUIRY Command CCB_HEADER

Fields ooeeeireiiiie e 2-9
2.5.1.6 Filling in the UAGT_CAM_CCB Fields 2-10
2.5.1.7 Sending the CCB to the CAM Subsystem 2-11
2.5.1.8 Print INQUIRY Data Routinec..coeevvuiiininnnennns 2-12
2.5.1.9 Print CAM Status Routinecccoeeeiiiiiiiiianineee. 2-14
2.5.1.10 Sample Output for a Valid Nexusccccceeveereenene 2-16
2.5.1.11 Sample Output for an Invalid Nexusccccceeee 2-16

iv Contents

3.1

3.2 Common SCSI Device Driver Macros

33

2.5.1.12 Sample Shell SCript ...oovviieiiiiieeiiiiiieeeeiiiieiieees

2.5.2 Sample User Agent Scanner Driver Program
2.5.2.1 Scanner Program Header Filec.....ccccvevnnn
2.5.2.2 The include Files Section c.cceeevvviiiiiiiereennnnnnn.
2.5.2.3 The CDB Setup Sectioncccoeeeeereereeievreieeennnnnn.
2.5.24 The Definitions Sectionccccoeeeeiiiiiireeeieiennnnnnens
2.5.2.5 The Main Program Sectioncccoieeieeieieninnnneee
2.5.2.6 The Nexus Conversion Section ccecevrerunnnnene
2.5.2.7 The Parameter Assignment Sectionccccccoeeeee
2.5.2.8 The Data Structure Setup Sectioncccccevevrvnnnnen.
2.5.2.9 The Window Parameters Setup Section
2.5.2.10 CCB Setup for the DEFINE WINDOW Command
2.5.2.11 The Error Checking Section cc..oceeevvmuennnanen.
2.5.2.12 CCB Setup for the READ Command
2.5.2.13 The Read and Write Loop Section cceeon...e.
2.5.2.14 The Local Function Definition Section

S/CA Common Modules

Common SCSI Device Driver Data Structures —coeeeeveeerennnees
3.1.1 Peripheral Device Unit Tablec.ccocceiiiiiinieiiiineiniinnnnen.
3.1.2 Peripheral Device SITUCIUIE ...coovvvvviiiiiiiiiianeiiiiiinrceeeanae.
3.1.2.1 The pd_dev Memberccceeeeeeiriiiiimiiimneneninnnnnn.
3.1.2.2 The pd_spec_size Memberc......cccceeireeeereeennnnne.
3.1.3 Device DescCriptor SIUCIUIE uveveirmmenerieraiieaereieniieeeenen
3.1.4 Mode Select Table Structure cceeeeeeeeeriemiriimeneeeennnne.
3.1.5 Density Table Structurecceceeviereeeiiiniiereeinniiiineeenann.
3.1.5.1 The den_blocking Memberccccceeereiiiririnnnees

3.1.6 SCSI/CAM Peripheral Device Driver Working Set Structure

3.1.6.1 The pws_flink Memberccoooevviviiiiiniiiniinnnnn.
3.1.6.2 The pws_blink Memberccoceeevvireriineennnnnnnnen.
3.1.6.3 The pws_ccb Memberccceeeeeeeeriiiirinniriniiiinnnne.

Common SCSI Device Driver ROUtINES ovivvinieieiiiiiieeieenennn.

e 2-17
.o 2-17

.o 2-17
. 2-18
. 2-19
. 220
. 2-20
. 2222
. 2-23
w2224
. 2226

2-28

. 2-30
. 2-33
. 2-34
. 2236

Contents v

3.3.1

332

3.33

3.35

3.3.7

3.3.8

vi Contents

Common I/O Routinescocevvvveenenene.
3.3.1.1 The ccmn_init Routine
3.3.1.2 The ccmn_open_unit Routine ...
3.3.1.3 The ccmn_close_unit Routine ..

Common Queue Manipulation Routines
3.3.2.1 The ccmn_send_ccb Routine ...
3.3.2.2 The ccmn_send_ccb_wait Routine
3.3.2.3 The ccmn_rem_ccb Routine
3.3.24 The ccmn_abort_que Routine ...
3325 The ccmn_term_que Routine ...

Common CCB Management Routines .
3.3.3.1 The ccmn_get_ccb Routine
3.3.3.2 The ccmn_rel_ccb Routine
3.3.3.3 The ccmn_io_ccb_bld Routine .
3.3.34 The ccmn_gdev_ccb_bld Routine
3.3.3.5 The ccmn_sdev_ccb_bld Routine
3.3.3.6 The ccmn_sasy_ccb_bld Routine
3.3.3.7 The ccmn_rsq_ccb_bld Routine
3.3.3.8 The ccmn_ping_ccb_bld Routine
3.3.3.9 The ccmn_abort_ccb_bld Routine

3.3.3.10 The ccmn_term_ccb_bld Routine

3.3.3.11

The ccmn_bdr_ccb_bld Routine

3.3.3.12 The ccmn_br_ccb_bld Routine
3.34 Common SCSI I/O Command Building Routines

3.3.4.1
3342
3343

The ccmn_tur Routine
The ccmn_start_unit Routine ...
The ccmn_mode_select Routine

Common CCB Status Routine —............
3.3.6 Common Buf Structure Pool Management Routines

3.3.6.1
33.6.2

The ccmn_get_bp Routine
The ccmn_rel_bp Routine

.............................

..............................

..............................

..............................

............................

............................

.............................

..............................

..............................

Common Data Buffer Pool Management Routines

3.3.7.1
3372

The ccmn_get_dbuf Routine ...
The ccmn_rel_dbuf Routine

Common Routines for Loadable Drivers

3.3.8.1

The ccmn_check_idle Routine ..

..............................

3-10
3-10
3-10

3-11

3-11
3-12
3-12
3-12
3-12

3-13

3-13
3-14
3-14
3-14
3-14
3-14
3-15
3-15
3-15
3-15
3-16
3-16

3-16

3-17
3-17
3-17

3-17
3-18

3-18
3-18

3-19

3-19
3-19

3-19
3-19

3.3.8.2 The ccmn_find_ctlr Routine cccoviiiiviiiiiiniiiinne. 3-20
3.3.8.3 The ccmn_attach_device Routine coocvvvininninnns 3-20
3.3.9 Miscellaneous Common Routines cccoeevivvinivrennnnnnnn. 3-20
3.3.9.1 The ccmn_DoSpecialCmd Routine cccevunennnne. 3-20
3.3.9.2 The ccmn_SysSpecialCmd Routinecccccceeeeeenn. 3-21
3.3.9.3 The ccmn_errlog Routine —ooevvviviiiiinieiiiinniiinn, 3-21

4 S/CA Generic Modules

4.1 Prerequisites for Using the CAM Generic Routines 4-1
4.1.1 Toctl Commands ...oouiviriiniitii e 4-1
4.1.2 Error Handling ...o..oooiiiiiiiiiiiiiiii e 4-2
4.1.3 Kernel INterface ..oo.vnininiiiiiiie e, 4-2

4.2 Data Structures Used by Generic Routinescccoevevviveeriineneinnnens 4-2
4.2.1 The Generic-Specific StrUCtUre c.cvevveiineriiieeiieieeeneennnnn. 4-2

4.2.1.1 The gen_flags Memberc....ccooiiiiiii, 4-3
4.2.1.2 The gen_state_flags Member P 4-3
42.1.3 The gen_resid Member ccccerviiimiiiiiiiicnineeeeen. 4-4
4.2.2 The Generic ACtion StrUCIUIE ...ovvvvinieieiiniieiiiieieinieeenens 44
4221 The act_ccb Member —ooovvininiiiiiiiiiiiieeena 4-4
4.2.2.2 The act_ret_error Membercoooevviviniiiiiiiniininnen, 4-4
4.2.2.3 The act_fatal Memberccooovevininiiiiiiiiiiiiennn, 4-5
4.2.2.4 The act_ccb_status Membercocoeviviiiiniiinininnnnn. 4-5
4.2.2.5 The act_scsi_status Memberccccovevevvinviinieninennnn. 4-5
4.2.2.6 The act_chkcond_error Memberccoceevvvvninnnnnnen.. 4-5

4.3 Generic /O ROULINES covivviviiiiiiiiiii et eee e eie e eneanenes 4-5
4.3.1 The cgen_open Routine cccoeieiiiiiiiiinieiiiiiiieiniecciiie 4-6
4.3.2 The cgen_close Routineccooeeiiiiiiiiiiiiiiiiiiciieneinne. 4-7
4.3.3 The cgen_read Routinecccceoiiiiiiiiiiiiiiiiiiiiicrie i 4-7
4.3.4 The cgen_write Routine coeeviiiiinieiiiiiiinieiiiiiiineeeen, 4-7
4.3.5 The cgen_strategy Routine cccooiiiiiiiiiiiiiiiiiieiieeineanns 4-7
4.3.6 The cgen_ioctl ROULNE ooevvviiinrriiiiiiieriiitiiiie et 4-7

4.4 Generic Internal ROULINES .ovivniniiiniiii e 4-8

Contents vii

4.5

5.1

5.2

5.3

54

4.4.1 The cgen_ccb_chkcond Routine

442 The cgen_done Routineccovevvenenriieennenen.
443 The cgen_iodone Routine ccceevreieennnnens
444 The cgen_async Routinec.cooiiiieiiinnnn.n.
445 The cgen_minphys Routineeeeverrinnnnns
4.4.6 The cgen_slave Routinecccoceeeiviiennneennnn..
4.4.77 The cgen_attach Routinec....cocoeiviiiiinnninnnss
Generic Command Support Routines —ccccoeeeeeennnn..
4.5.1 The cgen_ready Routineccc.oeceiiieniiiiins
4.5.2 The cgen_open_sel Routineccoeevvvnnrinnnnns
4.5.3 The cgen_mode_sns Routine cccccoeeeenniniin.

CAM Data Structures

CAM Control BIOCKS w.vviniiiiiiieeii e
5.1.1 The CCB_HEADER Structureccocoveuvunenn.n
5.1.1.1 The my_addr and cam_ccb_len Members
5.1.1.2 The cam_func_code Member
5.1.1.3 The cam_status Memberccceevvee..
I/O Data Structure oeveviniiiiiiiiieeieeeeeeee e
5.2.1 The CCB_SCSIIO Structureceeeeevvenvuvennnnes
5.2.2 The CDB_UN Structureccoovevvineeevnnieneennnnes
Control CCB StIUCIUIES ..ovvvvvveiiieiiiieiiereeeeeinenens
5.3.1 The CCB_RELSIM Structurecceevveeveeennen.s
5.3.2 The CCB_SETASYNC Structureccceevvnenenn.
5.3.3 The CCB_ABORT Structurecccocvevvvvuvinenes
5.34 The CCB_RESETBUS Structure ocouvvnenen..
5.3.5 The CCB_RESETDEYV Structurec.ccecevvenen..
5.3.6 The CCB_TERMIO Structureccovevvenvnnen.s
Configuration CCB Structurescoeeeeeeiverieneeennnaenn.
5.4.1 The CCB_GETDEYV Structurecoovvunennen..
5.4.2 The CCB_SETDEYV Structureccovvvevenvnnnnn.n
54.3 The CCB_PATHINQ Structurecccconeenn..

viii Contents

..................

..................

..................

..................

..................

..................

..................

..................

5-1
5-2

5-2
5-2
5-3

5-5

5-5
5-6

6 SCSI/CAM Configuration Driver Modules

6.1 Configuration Driver Introductioncccoeveviiieiiiireeriiinereinneenes. 6-1
6.2 Configuration Driver XPT Interfacecccoeeveeriniineiiiinnineennennn. 6-1
6.3 Configuration Driver Data SIructures coceeeeiverrrneereneninereineeennn. 6-2
6.3.1 The Configuration Driver Control Structureccceoeeeee. 6-2
6.3.1.1 The ccfg_flags Memberccccccevimiviniiiiiiinicncnnnin. 6-2

6.3.1.2 The ing_buf Memberccooviiiiiiiiiiiiiiiiiieniinne, 6-2

6.3.2 The CAM Equipment Device Table ..., 6-2
6.3.2.1 The edt Memberccceimiieiiiiiiiiiiiiiiecicecins 6-3

6.3.2.2 The edt_scan_count Memberccccooeerveeeeiniinnnnn. 6-3

6.3.2.3 The edt_flags Membercccoociiiiiiiiiiiiiiiiinenes 6-3

6.3.3 The SCSI/CAM Peripheral Driver Configuration Structure ... 6-3
6.3.3.1 The cpd_name Membercccccoceuiiiiiiniiiiiiininiennnees 6-3

6.3.3.2 The cpd_slave Memberc.cccoviiiiieiiiiiinnninnninnes 64

6.3.3.3 The cpd_attach Memberccceevirririncieininnnen. 64

6.3.3.4 The cpd_unload Membercccciieeeeiiinciininnnennnn. 64

6.4 The cam_config.c File ...cccooiiiiiiiiiiiiiiiiiiie e 64
6.5 Configuration Driver Entry Point Routines —ccceeeveieinnninneen. 6-5
6.5.1 The ccfg_slave Routine coovvviiiiiiiiirniiiieeieeieeeeeeneeee 6-5
6.5.2 The ccfg_attach Routine ccceeeiviiiiiriiiiiiineeniiiieeeeeeenn, 6-6

6.5.3 The ccfg_action Routing covviieiieiiiinieiiieecciicin e, 6-6
6.54 The ccfg_edtscan Routine ccooevveveeiiiiiiinireiineeneiiieeeienes 6-6

7 CAM XPT I/O Support Routines

7.1 The xpt_action ROULNE coviiiiiniiiiiiiiiiiiicc e, 7-1
7.2 The xpt_ccb_alloc RoUtine cceeuiiiiiiiiiiiiiiii e, 7-1
7.3 The xpt_cch_free ROUtingoeeeuiiiiiiiiiiiniiiiiiiiiii e, 7-2
7.4 The xpt_init ROULNE ..cooviiiiiiiiireiieiie et eei e e e 7-2

Contents ix

8.1
8.2

8.3

9.1
9.2

9.3

9.4 The cam_logger Routine

CAM SIM Modules

SIM Asynchronous Callback Handling

.....................................

SIM Routines Used by Device Driver Writers —cccceeveeeeeevnnnnn.s,

8.2.1 The sim_action Routine
8.2.2 The sim_init Routine
Digital-Specific Features of the SIM Layers

8.3.1 SCSI I/O CCB Priorities
8.3.2 SCSI I/O CCB Reordering

S/CA Error Handling

CAM Error Handling Macro
CAM Error Logging Structures
9.2.1 The Error Entry Structure

9.2.1.1 The ent_type Member
9.2.1.2 The ent_size Member
9.2.1.3 The ent_total_size Member
9.2.1.4 The ent_vers Member
9.2.1.5 The ent_data Member
9.2.1.6 The ent_pri Member
9.2.2 The Error Header Structure
9.2.2.1 The hdr_type Member
9.2.2.2 The hdr_size Member
9.2.2.3 The hdr_class Member
9.2.24 The hdr_subsystem Member
9.2.2.5 The hdr_entries Member ..
9.2.2.6 The hdr_list Member
9.2.2.7 The hdr_pri Member

Event Reporting

x Contents

..................

.............

..................
..............

9.3.1 The uerf Utility

.......................

.....................................

.....................................

.....................................

.....................................

.....................................

.....................................

....................................

.....................................

.....................................

.....................................

..................................

.....................................

.....................................

.....................................

.....................................

8-1
82
82
82
8-3

8-3
34

10 S/CA Debugging Facilities

10.1 CAM Debugging Variablesc.ccccvieieiiiiiiinieeiiiiinneeeneiiienees 10-1
10.1.1 The camdbg_flag Variablecccocevvriiiiiineiiriinrineecnnnn, 10-1
10.1.2 The camdbg_id Variableccooviiiiiiiiiiiiiiiiiieiiiineennn. 10-3

10.2 CAM Debugging MacCroscveeeeimimmiiiieiiiiineeieiiineeeeeennaieneeees 10-3

10.3 CAM Debugging ROULINES ...ovevuniiiiiiiiiiiiiiiiiiie et e e 104
10.3.1 CAM Debugging Status Routinesc...cccooveeviieeiiianneennnn. 10-5

10.3.1.1 The cdbg_CamFunction Routinecveueeenennnn. 10-5
10.3.1.2 The cdbg_CamStatus Routinec.cccovevennrennnnnn. 10-5
10.3.1.3 The cdbg_ScsiStatus Routine oeeevuieeernneennn, 10-6
10.3.1.4 The cdbg_SystemStatus Routinec....ccceeneennee. 10-6
10.3.2 CAM Dump ROULINES cevvneiiieniiiiiieiieeeiceecic e 10-6
10.3.2.1 The cdbg_DumpCCBHeader Routine 10-7
10.3.2.2 The cdbg_DumpCCBHeaderFlags Routine 107
10.3.2.3 The cdbg_DumpSCSIIO Routinecoevvvvvunnnnn. 10-7
10.3.24 The cdbg_DumpPDRVws Routinecccoeeeennnees 10-7
10.3.2.5 The cdbg_DumpABORT Routineccevvvnnrneeenn 10-7
10.3.2.6 The cdbg_DumpTERMIO Routinecccccennnnnenn. 10-7
10.3.2.7 The cdbg_DumpBuffer Routinec....cccceeeeeniee. 10-7
10.3.2.8 The cdbg_GetDeviceName Routingccccc......... 10-8
10.3.2.9 The cdbg_DumplnquiryData Routine 10-8

11 Programmer-Defined SCSI/CAM Device Drivers

11.1 Programmer-Defined SCSI/CAM Data Structuresccceeeveeeen. 11-1
11.1.1 Programmer-Defined Peripheral Device Unit Table 11-1
11.1.1.1 The pu_device Memberccoeevivieiiiiieiiennnennnnn. 112

11.1.1.2 The pu_opens Memberccccoviiiiiiiniiinnniinn 112

11.1.1.3 The pu_config Memberccoooevviiriiinriienrennennnn. 112

11.1.1.4 The pu_type Memberccc...oceeerviviviiimmininninnnna, 11-2

11.1.2 Programmer-Defined Peripheral Device Structure —.............. 11-2
11.1.3 Programmer-Defined Device Descriptor Structure —.............. 11-5
11.1.3.1 The dd_dev_name Membercc...cccceeirriinnninnnen. 11-6

Contents x/

11.1.3.2 The dd_device_type Membercc..oceeuiiirieiaennnnes
11.1.3.3 The dd_def_partition Membercccceveeunirienneee.
11.1.3.4 The dd_block_size Membercccceevrnvenrennennennns
11.1.3.5 The dd_max_record Membercccoovvvvveevnnveninnnns
11.1.3.6 The dd_density_tbl Memberccc.oceeeuieeennneee.
11.1.3.7 The dd_modesel_tbl Memberccccovvvvivnvinirneennn.
11.1.3.8 The dd_flags Membercccooviiriiniririeiirenneennss
11.1.3.9 The dd_scsi_optcmds Member cccceeevuneeennnese
11.1.3.10 The dd_ready_time Membercc.cccceeerervunenrnn.
11.1.3.11 The dd_que_depth Membercc...cccoevieciniieennneen
11.1.3.12 The dd_valid Memberccoovevvenieneniiiinenenennnn.
11.1.3.13 The dd_ing_len Membercccovevirnereiriinennnnnns
11.1.3.14 The dd_req_sense_len Membercc...ccoeeeeeeneees
11.1.4 Programmer-Defined Density Table Structure
11.1.4.1 The den_flags Memberccccoveviviiiinieiiienninnnens
11.1.4.2 The den_density_code Membercccoceeevurernnnnnns
11.1.43 The den_compress_code Memberccceeeennnene.
11.1.44 The den_speed_setting Membercc.ceuvenennes
11.1.4.5 The den_buffered_setting Membercccoeervnnnens
11.1.4.6 The den_blocking Member cccoeeeeiieriunaeeaenne.
11.1.4.7 Sample Density Table Structure Entry
11.1.5 Programmer-Defined Mode Select Table Structure
11.1.5.1 The ms_page Memberccccooeeeeeviirmiieeniininnnecenne
11.1.5.2 The ms_data Memberccoevvvvveeiierinreeeinnrnniennns
11.1.5.3 The ms_data_len Membercccceeviviiinninnnnn,
11.1.54 The ms_ent_sp_pf Memberceeevvverieriieriinnnnns
11.1.5.5 Sample Mode Select Table Structure Entry —

11.2 Sample SCSI/CAM Device-Specific Data Structures —
11.2.1 Programmer-Defined Tape-Specific Structure
11.2.1.1 The ts_flags Memberc.cevvervvireeeennoreeennnernnnaens
11.2.1.2 The ts_state_flags Membercccc.ccceeeiiiiiiiiniies
11.2.1.3 The ts_resid Membercccoeveniiieiiieiniiiininernennnns
11.2.1.4 The ts_block_size Memberccccvvvvnvvenienviniennns
11.2.1.5 The ts_density Membercccoooiveeireinniernieinneennns
11.2.1.6 The ts_records Membercoccovvvevueeireeenierenennnns
11.2.1.7 The ts_num_filemarks Memberc..cccceeerrnrnnee.

11.2.2 Programmer-Defined Disk- and CDROM-Specific Structure .

Xii Contents

SCSI/CAM CDROM/AUDIO I/0O Control Commands

Structures Used by SCSI/CAM CDROM/AUDIO I/O
Control Commands o.evevnviiinriireiiereierniiierinenns

11.2.3.1

11.2.3.1.1 Structure Used by All SCSI/CAM

CDROM/AUDIO I/O Control Commands

11.2.3.1.2 Structure Used by the
CDROM_PLAY_AUDIO and

CDROM_PLAY_VAUDIO Commands

11.2.3.1.3 Structure Used by the
CDROM_PLAY_AUDIO_MSF and

CDROM_PLAY_MSF Commands

11.2.3.14 Structure Used by the

CDROM_PLAY_AUDIO_TI Command

11.2.3.1.5 Structure Used by the

CDROM_PLAY_AUDIO_TR Command

11.2.3.1.6 Structure Used by the

CDROM_TOC_HEADER Command

11.2.3.1.7 Structures Used by the

CDROM_TOC_ENTRYS Command

11.2.3.1.8 Structures Used by the
CDROM_READ_SUBCHANNEL Command
11.2.3.1.9 Structures Used by the

CDROM_READ_HEADER Command

11.2.3.1.10 Structure Used by the

CDROM_PLAY_TRACK Command

11.2.3.1.11 Structure Used by the
CDROM_PLAYBACK_CONTROL and
CDROM_PLAYBACK_STATUS Commands

11.2.3.1.12 Structure Used by the
CDROM_PLAYBACK_CONTROL Command

11.2.3.1.13 Structure Used by the
CDROM_PLAYBACK_STATUS Command

ess

11-24

.. 11-29

.. 11-30

11-30

11-31

11-32

113 Adding a Programmer-Defined SCSI/CAM Device

12 SCSI/CAM Special I/O Interface

12.1 Application Program ACCESS ...cevverivrreriinrreeiiereinnnenns

12,2 Device DIIVET ACCESS veuveninieninieiieieiiieeneeneieeiaeenenns

Contents xiii

12.3 SCSI/CAM Special Command Tablesccccooiiiiiiiiiiiiniiinnie, 12-5

12.3.1 The sph_flink and sph_blink Memberscccccoceveerrnnnn..n. 12-5
12.3.2 The sph_cmd_table Memberccccevvviimiiiiiiinienneeiennns 12-5
12.3.3 The sph_device_type Memberccccoeeveeiiiiinrineerrienaenenns 12-5
12.3.4 The sph_table_flags Memberc.cccoevervviiriiiniinnninnnnnn. 12-6
12.3.5 The sph_table_name Memberccccoevevierimiiiieierennnnn.. 12-6
124 SCSI/CAM Special Command Table Entriesc.cccoevevveieeennnnnns 12-6
12.4.1 The spc_ioctl_cmd and spc_sub_command Members 12-6
1242 The spc_cmd_flags Memberccoeevviiiiiiiiiiiiniiennnnnnn.. 12-6
12.4.3 The spc_command_code Memberccocevveviveerinnennnenn. 12-7
12.4.4 The spc_device_type Membercccoeveveviiriinnriiinienennnnns 12-7
12.4.5 The spc_cmd_parameter Member —........ccoceeeeeiiiiiiniiiennnnn... 12-7
12.4.6 The spc_cam_flags Membercccocceerivnriinrinnniinennnnnn. 12-8
12.4.7 The spc_file_flags Membercccocoeereiiiiiieiniiiiiiniinenneen. 12-8
12.4.8 The spc_data_length Memberccoevviieriiiiiiiiniiiinennnn.. 12-8
12.4.9 The spc_timeout Memberccoevevvnieiiiinieiinneeeiienniinnns 12-8
12.4.10 The spc_docmd Membercccccoveveriiiiriiiiiiiiiiiiicineneee 12-8
12.4.11 The spc_mkcdb Memberccccoeiiiiiiiiiiiiiiiiiiiiiieniies 12-8
12.4.12 The spc_setup Member —........ccccooviviiiiiiiiiiiiiiiiiineceeien, 12-8
12.4.13 The spc_cdbp Memberccooeviiiiiiiiiiiiniiiiiiiiin e, 12-9
12.4.14 The spc_cmdp Member cooiiiiiiiiiiiiiiiiii e 12-9
12.4.15 Sample SCSI/CAM Special Command Table 12-9
12.5 SCSI/CAM Special I/O Argument Structure ceeeeveeeennenennnnnn. 12-10
12.5.1 The sa_flags Memberccoccoiiiiiiiiiiiiiiiiiiniceeeieeeee 12-13
12.5.2 The sa_dev Memberccoceemiiiiiiiiiiiiieiiiiin e, 12-13
12.5.3 The sa_unit, sa_bus, sa_target, and sa_lun Members 12-13
12.5.4 The sa_ioctl_cmd Memberccoeevuireeriiiiiineneiiiinnnees 12-13
12.5.5 The sa_ioctl_scmd Membercccccevvvennennnn.e. e 12-13
12.5.6 The sa_ioctl_data Memberc.....cccoviiriiiiiiiiiiiiiiiiennnen, 12-14
12.5.7 The sa_device_name Membercc..coceuiiiiiniiiiinieiinnee. 12-14
12.5.8 The sa_device_type Member —ccccvvevimiiiiinienieenenienins 12-14
12.5.9 The sa_iop_length and sa_iop_buffer Members 12-14
12.5.10 The sa_file_flags Memberc.cccoeeeiiiieniiinneeiiineeinnnnns 12-14
12.5.11 The sa_sense_length and sa_sense_buffer Members 12-14
12.5.12 The sa_user_length and sa_user_buffer Members 12-14
12.5.13 The sa_bp Membercoceviviieeiiiieiiiiiiiiineniieeeiienenens 12-15
12.5.14 The sa_ccb Membercocuveivvreriiiiiieeiiiiiieeeeeeiieeeeennns 12-15

Xiv Contents

12.6

12.7

12.5.15 The special_cmd Membercoccceveriviiiriinireiinineineeinnn, 12-15

12.5.16 The special_header Memberccccoeiieeeerreinnieeeennns, 12-15
12.5.17 The sa_cmd_parameter Membercccceveeeemiieiennnens 12-15
12.5.18 The sa_error Memberccooviviiiviiiiiiiiiieeeeieieeena, 12-15
12.5.19 The sa_start Memberocceevviiiiiiiiiiniiniiiiiiieeena, 12-16
12.5.20 The sa_data_length and sa_data_buffer Members 12-16
12.5.21 The sa_cdb_pointer MEMDbETcocevvveeiiinireiiiinrerennneennnn. 12-16
12.5.22 The sa_cdb_length Memberc.cceeiiiiiiiiiiiiiiinneenann. 12-16
12.5.23 The sa_cmd_flags Memberc.coeveiiiiiiiiiiiiiiniineeennn. 12--17
12.5.24 The sa_retry_count Membercccovvevvrriiiiiinininnennnnn. 12-17
12.5.25 The sa_retry_limit Memberc..c.ceceevieiieriiiriiceneenann. 12-17
12.5.26 The sa_timeout MEMDEr ovvinininiiiiiiiieiieeeeeneans 12—-17
12.5.27 The sa_xfer_resid Membercccoeeeveeeiiiiiiniiiniierennnnnn. 12-17
12.5.28 The sa_specific Membercccccoovviiiiiiiiieiriimminieneeniann. 12-17
12.5.29 Sample Function to Create a CDB ccccoeiviieiiniinniininns. 12-18
12.5.30 Sample Function to Set Up Parameterscccvvnnnneee 12-19
SCSI/CAM Special I/O Control Command —cccceeveeeeeneennnnnenen. 12-20
12.6.1 The sp_flags Memberccccovvviiiiiiiiiiiiiiiiiiiiicieeneees 12-21
12.6.2 The sp_dev, sp_unit, sp_bus, sp_target, and sp_lun Members. 12-22
12.6.3 The sp_sub_command Memberccciiiiiiiiieiinnnna, 1222
12.6.4 The sp_cmd_parameter Membereeevueiereviciiieeenenens 12-22
12.6.5 The sp_iop_length and sp_iop_buffer Members 12-22
12.6.6 The sp_sense_length, sp_sense_resid, and sp_sense_buffer
MEMMDEIS .oeeieiiiiiiie ettt ettt e een e 12-22
12.6.7 The sp_user_length and sp_user_buffer Members 12-23
12.6.8 The sp_timeout MEMDEr ccvvveereiiiiiiieeeeiiiieeeeeeeenniennns 12-23
12.6.9 The sp_retry_count Membercccceevvvvvimminniiiiiennneeen. 12-23
12.6.10 The sp_retry_limit Memberccooeevviieiiiinieiiiiineeinnnns 12-23
12.6.11 The sp_xfer_resid Membercccccovvmmmmmmiiniiriiinenenienee 12-23
12.6.12 Sample Function to Create an I/O Control Command 12-23
Other Sample Code iiviiiiiiiinieiir e 12-25
12.7.1 Sample Code to Open a Deviceccoevvmiuieevieniiineeenienns 12-25
1272 Sample Code to Create a Driver Entry Point cc......... 12-27

Contents xv

A Header Files Used by Device Drivers

B SCSI/CAM Utility Program

Bl INtrodUCtion ...c..oviviiniiiiiiiiiieeie et eeee e reeteeneeaseraeeneanens B-1
B.1.1 SCU Utility CONVENtionS cccevuureeremueereeiinniereeeennneneens B-1
B.2 General SCU CommandSoooevuniiuniiinniriiiinirieiieenernneereneernens B-3
B.2.1 The evaluate Commandccccoovveiiviivrieriieieiieeeerenanen. B-3
B.2.2 The exit Commandccccoeveniiiiiiiiniiiiieiee e B4
B.2.3 The help Commandc.cooerimiimiiiiiiiiiiiiiiiieieee e, B4
B.24 The scan Commandcociiinviiiiiiiiiiiieiieee e eeeeane, B-5
B.25 Theset Commandccoovveeniiiiiiiiiiiiiiieiieerierieeeerneranns B-6
B.2.6 The show Commandcccoeeuiviieiniiiieiiriiirerieernerierennen, B-11
B.2.7 The source Commandcoceienviniiiiiiiiiniiiiiiieie e eennens B-11
B.2.8 The switch Commandccoeoviiiieiiiiiinieicieeieeeeeene, - B-12
B.3 Device and Bus Management Commands —ccceeeereereenuneeeeneenn. B-12
B.3.1 The allow Commandccocviiiiiiiiiiiiiiiiececiieeneeneennens B-13
B.3.2 The eject Commandccoeeeeiiiiiiereiiiiiieeeeiiiie e B-13
B.3.3 The mt CommandScoieevinviiniiieeniiiiieerieeieiieeenereneennnns B-13
B.3.4 The pause Commandcccoveiiiiireiinnriiinieninreteeernineeens B-15
B.3.5 The play Commandcoeeveiiiiiieeieriiiieeeiiieeeeeeiiie e B-15
B.3.6 The prevent Commandccceeeeeiiiiiiimiiiiiiniiennieciiceniinnnn. B-16
B.3.7 The release Command c.cooviviiiiiiiiiiniinininiieeeeeenan B-16
B.3.8 The reserve Commandccccceiveiiiiiiiiiiiiiieeeere e, B-16
B.3.9 The reset Commandcceeveeiiiiieiieiiiiiieieieieierieeenen B-17
B.3.10 The resume Commandcc..covveieevinniiieiirerrieeeiieenneennnn. B-17
B.3.11 The start Command cooovieniiniiiiiniiineeeee e, B-17
B.3.12 The stop Commandccoeerririneerirniiiereeriiiieeererieaieeeens B-17
B.3.13 The tur Commandccoeevvinviiiniriniiieiieeireeeeeeei e B-18
B.3.14 The verify Commandccoeiiiiiiiiieriniiniiin e, B-18
B.4 Device and Bus Maintenance Commandscoeevvieniiniiniiininnnnn. B-19
B.4.1 The change pages Command ccoceeviiiminineeiiinnnnneennnnn. B-19
B.4.2 The download Commandccocovvvneiniiiirniiiniieereeieienenns B-21
B.4.3 The format Commandccoeeviieiiiviiiieinieiriieeirirnereanns B-21
B.44 Theread Commandcooevveiiiiiiiiiiiiiieeieieieererieeannen, B-21

xvi Contents

C

C.1
C2
C3
C4
CS5
Co6
C.7
C.8
C9
C.10
C.11
C.12
C.13
C.14
C.15
C.16
C.17
C.18
C.19
C.20
C.21
C22
C.23

B.4.5 The reassign Commandccceevviiiiiiiniiiniiieneniiriinneeens B-22
B.4.6 The test Commandccooiiiiiiiiiiiiiiiii e B-22
B.4.7 The write Commandcccoeeevieiiiiieiiiiieeiineciieeneerinees B-23
SCSI/CAM Routines
CAM_IOZEET ceiniiiniiinie et ettt ettt et e et e e e et e eneeaanaes C-2
cefg attaCh oooveii e C-3
CCfZ @AISCAN toviiiiiiie et C4
COFZ_SIAVE ceeeeieiii e e C-5
cemn_DoSpecialCmd ..ooovviiiiiiiiii e C-6
cemn_SysSpecialCmd ..o C-8
cemn_abort_cch_bld ... C-10
COMN_ADOTE_QUE coeenniiiie i C-13
CemN_attaCh_dEVICE ooniniriiiii e C-14
cemn_bdr_ccb_bId ..o C-15
cemn_br_ccb DId oo C-18
CCMN_CCD_STAUS eeeeiiiiiiiiiiie ettt e eeaee C-21
cemn_check 1dle oo C-23
COMN_CIOSE_UMIT ..oeiitiiiinieii ittt e e C-25
CCMN_EITIOZ ciiiniiiiii it e C-26
comn_find_Ctit .ooooiii e C-28
cemn_gdev_ccb_bld ..o C-29
COMN_ZEE_DP coenieiiie et C-32
CCMN__ZEL_CCD ceiiniiiiiie ittt ecran e ee e eeanen C-33
cemn_get_dbuf e C-36
COMI_INIE Lottt et et e e e e e e eenanee Cc-37
CCmN_I0_CCD_DId oo C-38
CeMN_MOAE_SEIECT ovieiiiiiiei it C41

Contents xvii

C24
C.25
C.26
C27
C.28
C.29
C.30
C.31
C.32
C.33
C.34
C35
C.36
C.37
C.38
C.39
C.40
C.41
C42
C.43
C44
CA45
C.46
c47
C48
Cc49
C.50
C.s1

CCIMN_OPEN_UNIL .eeeuneeinieinreiierieeiieeenernerenasesnesensernsernnsemnnrennses C-44
cemn_ping_ccb_bld ... C-46
CCIMN_TEL DD e e ettt C-49
cemn_rel_CCh Lo e C-50
cemn_rel_dbuf ... C-51
CCMN_TEIM_CCD oiiiiiiiiiiiiiiiiie e v et e e e een s enaienenaie s C-52
comn_18q_ccb_bld ... C-53
cemn_sasy_ccb_bld ..o C-56
cemn_sdev_ccb_bld ..o C-59
CCmN_SENA_CCD ..iiiiiiiiiiii e C-62
cemn_send_CCh_wait ... C-64
fo7300) o] #: 1)L AUTT C-66
cemn_term_ccb_bld ..o C-69
CCMIN_ETIN_(UE .eieuiinninniinneineeiereneenaeaeeeenaeraeeaaeteraetnseneenssnneens C-72
COIMMIL_TUT iivttiiiniiinirnie ittt eri et eeisea e et eetneetasesannearesensane C-73
cdbg_CamFunction coeoeiieriiiiiiiiiiieriiie e C-76
CADZ_CamSIAtUS ceeeineeeiiiiiiee ettt ere e errt e e e s Cc-77
cdbg DumpABORT coooiiiiiiiiiiiiiiiin e C-78
cdbg_DumpBuffercociiiiiiiiiiii e C-79
cdbg_DumpCCBHeadercoovviiiieriiiiiieieiiiiiee et C-80
cdbg_DumpCCBHeaderFlagscccceevvieeveiieiieeeeeriiiieeeeeveneenen, C-81
cdbg_DumplInquiryDatacceeiiiiiiiiiiiiiini e C-83
cdbg_DumpPDRVWS ... C-84
cdbg_DumpSCSIIO ...ooooiiiiiiiiiiiiicee e eeeeeees C-85
cdbg DumpTERMIO, C-86
cdbg_GetDeviceNaMe coevviiiiiiiiiiiii i C-87
CADZ_SCSISIALUS .eeiiiiiiiiiiiiiiiee et C-88
Cdbg_SYSIEMSIALIS ..eeeiriiiiiieeeiiiii e e e ee e e C-89

xviii Contents

C.52
C.53
C.54
C.55
C.56
C.57
C.58
C.59
C.60
c.61
c.62
C.63
C.64
C.65
C.66
C.67
C.68
C.69
C.70
C.71
C.72
C.73
C.74
C.75
C.76

CEETI_ASYIIC wevviiinniiiiineeiinerntineeetneeeeiieeniestneestaneearassbeentseeanas C-90

CEEN_AACK L.iviiiiiiiiieeiie et ee e et e e e e et e e e reee e aaas C-91
cgen_ccb_chkeond ..o C-92
CEEN_ClOSE 1iueiiiiiiiii ettt e e e e C-94
CEEN_AONE eiuiiiiiriiiieeii et e r e e et et et e e e e eeas C-95
CEEN_IOCL iiiiiiiiieiiiii e e C-96
CEEN_IOONE ..iiniiiiiinieiir ettt et ee e e e C-98
CEEN_MINPIYS .ouviiiiiiiiiiiiiii ettt e eeaaes C-100
CEEN_MOAE_SNS ceeniiitieieiieeiiiireeiae et e et eeei e eeni e eriireeeannenns C-101
(205 1M 1) 1 PO PPPN S C-103
CZEN_OPEN_SEL .iiieiiiiiiiiiii et it ettt erie e e ebe e e e e e reneeeieens C-105
CEEM_TCAU 1etivieiiineriniiie et e ittt eereeeaeneaaeeeneaiseneaennseeranneneaans C-107
CEEN_TEAAY .eivniienniii ettt e et e e C-108
CEEN_SIAVE ittt et ea e aa e C-109
CZEN_SIIAEZY .oivvniiinii i C-110
CEEN_WIIEE .urerniirnrereneiinerinereieetreeeenerenseraeeenerarneensaennetsennesnennes C-111
SIM_ACHON 1einiiniiin ettt et e e e e et e s e saenens C-112
SHTI_IMIE coeeiini et ettt e e C-114
UAZE_ClOSE ittt e e e e e e e e e e C-115
UAZE_TOCEL oo et e C-116
UAZE OPCIL eeuereneerneeineninetueetatinereieaennetaeeraseeanetineranaeensaseneeennes C-118
b o] A [o21 o)« R U PP PP TR PPRPRPPI C-119
XPL_CCD_allOC oeniiiniiii e ee e C-120
XPE_CCD_fTee oo C-121
b 01 0 1111 A USSP U OO PP P RO PPTURPRI C-122

Contents xix

D Sample Generic CAM Peripheral Driver
Index

Examples

D-1: cam_generic.h ..oo.oiiiiiiiii e

D-2: cam_generic.c Source File ccooeieiiiiiiiiiiiiiniiii

Figures

1-1: CAM Environment Modelooiiiiiiiiiiiiiiiiiiiiecie e,
1-2: SCSI/CAM Architecture Implementation Modelccccevniieninn.
1-3: Major/Minor Device-Number Pair —ccooeviiiiiiiiniiiiiiie
12-1: Application Program Flow Through SCSI/CAM Special 1/0 Interface.
12-2: Device Driver Flow Through SCSI/CAM Special I/O Interface

Tables

2-1: User Agent ROULINES oeviniiiiiiiiiiiciie et
3-1: Members of the PDRV_DEVICE Structurecccoocvveiveineinennenenen.
3-2: Common Identification Macros ccoccvveiivirenieineeeinieierieennneens
3-3: Common Lock MacCroscc.coiieeniiiieiiiiiiiiiin e
3-4: Common I/O ROULINES ...oeeiuiiiiiiiiiiiiieiieie e
3-5: Common Queue Manipulation Routines ccceeviieiiiienniinneennnne.
3-6: Common CCB Management Routinesccceeeeiimiiniinieiieneennas.
3-7: Common SCSI I/O Command Building Routines cc....ccceeeeeee.
3-8: Common Routines for Loadable Driversc.ccocoeveeniiiiiiienieennne.
3-9: Miscellaneous Common ROULINES ccceeueriiieiiiiiieiiiiiiiireiiiiiecnee

4-1: GeneriC /O ROULINES w.vvniiiniiinieieiie ettt e et e e eneenennenes

xx Contents

D-1
D-6

1-3
1-4
1-5

122

124

2-5
3-2
3-6
3-7
3-10
3-11
3-13
3-16
3-19
3-20

4-2: Generic Internal Routines —cc.oooeeveiiiiiiiiiiniiiiiiniiienis
4-3: Generic Command Support Routinescccccovviviiiiiiiiiiiinnn.
5-1: CAM Control BIOCKS ...coviiiiiiiiiiiiiiiiii
5-2: CAM Function Codes cceevrieiiieiiiiriiiiieieiieeeeii e
5-3: CAM Status Codes .o...oeieniiiiiniieiiineiiie et
6-1: Configuration Driver Entry Point Routinescc..cccceeeeeennn.
7-1: XPT I/O Support ROULINES ...eovvniiiiiiiiiiiiiiniiieciieinciieeinees
10-1: CAM Debugging Status ROUHNES cvvevvnrviiinerieiiieeineerennan.
10-2: CAM Dump ROULNES cevvvveeinriiiiieiiiieeiiieeeeieeeeei e e
11-1: SCSI/CAM CDROM/AUDIO I/O Control Commands

11-2: Structures Used by SCSI/CAM CDROM/AUDIO I/O Control

Commands ...coeeeiiii e
12-1: SCSI/CAM Special /O Argument Structure ceceevneeeenne.
A-1: Header Files Used by Device Drivers —ccoccociviiiiiiiiiiinnn.
A-2: Header Files Used by SCSI/CAM Peripheral Drivers

Contents xxi

About This Manual

This manual contains information needed by systems programmers who write
device drivers for the SCSI/CAM Architecture interfaces.

Audience

This manual is intended for systems programmers who:

* Develop programs in the C language using standard library routines

¢ Know one or more UNIX shells, other than csh

* Understand basic DEC OSF/1 components such as the kernel, shells,
processes, configuration, autoconfiguration, and so forth

* Understand how to use the DEC OSF/1 programming tools, compilers,
and debuggers

* Develop programs in an environment that includes dynamic memory
allocation, linked list data structures, multitasking and symmetric
multiprocessing (SMP)

* Understand the hardware device for which the driver is being written

Organization

This manual is organized as follows:

Chapter 1

Chapter 2

Chapter 3

Chapter 4

SCSI/CAM Software Architecture
Presents an overview of the DEC OSF/1 SCSI/CAM
Architecture (S/CA).

CAM User Agent Modules
Describes the User Agent routines provided by Digital for
SCSI/CAM peripheral device driver writers.

S/CA Common Modules

Describes the common data structures, routines, and macros
provided by Digital for SCSI/CAM peripheral device driver
writers.

S/CA Generic Modules
Describes the generic routines provided by Digital for
SCSI/CAM peripheral device driver writers.

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Chapter 12

Appendix A

Appendix B

Appendix C

Appendix D

xxiv About This Manual

CAM Data Structures
Describes members of the CAM data structures used by SCSI
device drivers.

SCSI/CAM Configuration Driver Modules

Describes the CAM Configuration driver data structures and
routines that call the initialization routines in all the CAM
subsystem modules.

CAM XPT I/O Support Routines
Discusses the Transport (XPT) layer routines used with SCSI
device drivers.

CAM SIM Modules

Discusses the data structures and routines used with the SCSI
Interface Module (SIM) layers that interface with the CAM
subsystem.

S/CA Error Handling
Discusses the macro, data structures, and routines supplied by
Digital for error handling in SCSI/CAM device drivers.

S/CA Debugging Facilities
Describes the debugging routines supplied by Digital for
SCSI/CAM peripheral device driver writers.

Programmer-Defined SCSI/CAM Device Drivers
Describes and provides examples of how programmers can
define SCSI/CAM device drivers.

SCSI/CAM Special /O Interface

Describes and provides examples of the SCSI/CAM special
I/O interface supplied by Digital to process special SCSI I/O
commands.

Header Files Used by SCSI/CAM Device Drivers
Summarizes the header files used by SCSI/CAM device
drivers.

The SCSI/CAM Utility (SCU)

Describes the SCSI/CAM Utility (SCU) used for maintenance
and diagnostics of SCSI peripheral devices and the CAM
subsystem.

SCSI/CAM Routines in Reference Page Format
Provides more detailed descriptions of the S/CA routines in
reference page format.

Sample Generic CAM Peripheral Driver
Contains the header file and source file for a sample generic
CAM peripheral driver.

Related Documentation

The printed version of the DEC OSF/1 documentation set is color coded to
help specific audiences quickly find the books that meet their needs. (You
can order the printed documentation from Digital.) This color coding is
reinforced with the use of an icon on the spines of books. The following list
describes this convention:

Audience lcon Color Code
General Users G Teal

System Administrators S Red
Network Administrators N Yellow
Programmers P Blue
Reference Page Users R Black

Some books in the documentation set help meet the needs of several
audiences. For example, the information in some system books is also used
by programmers. Keep this in mind when searching for information on
specific topics.

The Documentation Overview provides information on all of the books in the
DEC OSF/1 documentation set.

Readers of this guide are assumed to be familiar with the following
documents:

* American National Standard for Information Systems, SCSI-2 Common
Access Method: Transport and SCSI Interface Module, working draft,
X3T9.2/90-186

Terms used throughout this guide, such as CAM Control Block (CCB),
are defined in the American National Standard document. Copies can be
purchased from Global Engineering, 2805 McGaw St, Irvine, CA 92714.
(Telephone: 800-854-7179)

¢ American National Standard for Information Systems, Small Computer
Systems Interface - 2 (SCSI - 2), X3.131-199X

The following documents contain information that pertains to writing device

drivers:

» Writing Device Drivers, Volume 1: Tutorial

This manual provides information for systems engineers who write device
drivers for hardware that runs the DEC OSF/1 operating system. Systems
engineers can find information on driver concepts, device driver

interfaces, kernel interfaces used by device drivers, kernel data structures,

About This Manual xxv

configuration of device drivers, and header files related to device drivers.
» Writing Device Drivers, Volume 2: Reference

This manual contains descriptions of the header files, kernel support
interfaces, ioct1 commands, global variables, data structures, device
driver interfaces, and bus configuration interfaces associated with device
drivers. The descriptions are formatted similar to the DEC OSF/1
reference pages.

o System Administration

This manual describes how to configure, use, and maintain the DEC
OSF/1 operating system. It includes information on general day-to-day
activities and tasks, changing your system configuration, and locating and
eliminating sources of trouble.

This manual is for the system administrators responsible for managing the
operating system. It assumes a knowledge of operating system concepts,
commands, and configurations.

* Kernel Debugging

This manual provides information on debugging a kernel and analyzing a
crash dump of a DEC OSF/1 operating system. The manual provides an
overview of kernel debugging and crash dump analysis and describes the
tools used to perform these tasks. The manual includes examples with
commentary that show how to analyze a running kernel or crash dump.
The manual also describes how to write a kdbx utility extension and
how to use the various utilities for exercising disk, tape, memory, and
communications devices.

This manual is for system administrators responsible for managing the
operating system and for systems programmers writing applications and
device drivers for the operating system.

Reader’s Comments

Digital welcomes your comments on this or any other DEC OSF/1 manual.
You can send your comments in the following ways:

¢ Internet electronic mail:
readers_comment@ravine.zk3.dec.com

¢ Fax: 603-881-0120 Attn: USG Documentation, ZK03-3/Y32

* A completed Reader’s Comments form (postage paid, if mailed in the
United States). Two Reader’s Comments forms are located at the back of
each printed DEC OSF/1 manual.

If you have suggestions for improving particular sections or find any errors,
please indicate the title, order number, and section numbers. Digital also

xxvi About This Manual

welcomes general comments.

Conventions

This document uses the following conventions:

% A percent sign represents the C shell system prompt. A dollar sign
$ represents the system prompt for the Bourne and Korn shells.

% cat Boldface type in interactive examples indicates typed user input.
file Italic (slanted) type indicates variable values, placeholders, and

function argument names.

In syntax definitions, brackets indicate items that are optional and
braces indicate items that are required. Vertical bars separating items
inside brackets or braces indicate that you choose one item from
among those listed.

- —
o

About This Manual xxvii

SCSI/CAM Software Architecture 1

This chapter provides an overview of the DEC OSF/1 Small Computer
System Interface (SCSI) Common Access Method (CAM) Architecture
(S/CA), which is a reliable, maintainable, and high performance SCSI
subsystem based on the industry-standard CAM architecture. Readers of this
guide should be familiar with the following documents:

* American National Standard for Information Systems, SCSI-2 Common
Access Method: Transport and SCSI Interface Module, working draft,
X3T9.2/90-186

Terms used in this guide, such as CAM Control Block (CCB), are defined in
that document. Copies can be purchased from Global Engineering, 2805
McGaw St, Irvine, CA 92714. (Telephone: 800-854-7179)

* American National Standard for Information Systems, Small Computer
Systems Interface - 2 (SCSI - 2), X3.131-199X

Readers should also be familiar with the following two manuals that are part

of the DEC OSF/1 documentation:

» Writing Device Drivers, Volume 1: Tutorial

» Writing Device Drivers, Volume 2: Reference

This chapter describes the following:
* CAM and DEC OSF/1 S/CA environment models
» User Agent driver
* SCSI/CAM peripheral device driver routines:
— CAM common routines supplied by Digital
— Generic routines supplied by Digital
— SCSI disk device routines
— SCSI tape device routines
— SCSI CD-ROM/AUDIO device commands
— SCSI/CAM Special I/O interface
* CAM Configuration driver

* CAM Transport layer
e SCSI Interface Module (SIM)

1.1 Overview

The CAM architecture defines a software model that is layered, providing
hardware independence for SCSI device drivers and SCSI system software.
In the CAM model, which is illustrated in Figure 1-1, a single SCSI/CAM
peripheral driver controls SCSI devices of the same type, for example, direct
access devices. This driver communicates with a device on the bus through a
defined interface. Using this interface makes a SCSI/CAM peripheral device
driver independent of the underlying SCSI Host Bus Adapter (HBA).

This hardware independence is achieved by using the Transport (XPT) and
SCSI Interface Module (SIM) components of CAM. Because the XPT/SIM
interface is defined and standardized, users and third parties can write
SCSI/CAM peripheral device drivers for a variety of devices and use existing
operating system support for SCSI. The drivers do not contain SCSI HBA
dependencies; therefore, they can run on any hardware platform that has an
XPT/SIM interface present.

1-2 SCSI/CAM Software Architecture

Figure 1-1: CAM Environment Model

User Application

User Application

User Application

Disk
Driver

Tape Other
Driver S.C Sl
Drivers

User
Level
Pass-Thru
Driver

Transport Layer — XPT

SCSI Interface Simple SIM)
Module-SIM Intelligent
SIM
Host Bus Intelligent
Adaptor-HBA HBA Simple HBA
ZK-0359U-R

Figure 1-2 illustrates the DEC OSF/1 SCSI/CAM implementation of that

model.

SCSI/CAM Software Architecture 1-3

Figure 1-2: SCSI/CAM Architecture Implementation Model

Peripheral
Drivers

User
Agent
Driver

Configuration
Driver

|

Transport Layer — XPT

SiM

XPT

SIM Scheduler

SIM HBA

|

HBA DME

HBA DME

HBA

HBA

SIM HBA

HBA DME

HBA

1.2 CAM User Agent Device Driver

The User Agent driver routes user-process CAM Control Block (CCB)
requests to the XPT for processing. The CCB contains all information
required to fulfill the request. The user process calls the User Agent
indirectly, using the ioct1(2) system call. A new User Agent CCB is
allocated by a call to the XPT layer, and the user-process CCB information is
copied into kernel space. The new CCB is filled in with the CCB values from
the user process. If necessary, the user data areas are locked in memory. The
CCB is then sent to the CAM subsystem for processing.

1-4 SCSI/CAM Software Architecture

ZK-0252U-R

When the request has completed, the User Agent driver’s completion routine
is called. That routine performs all necessary cleanup operations and notifies
the user process that the request is complete.

The User Agent allows multiple processes to issue CCBs, so there may be
multiple processes sleeping on the User Agent. All CCBs are queued at the
SIM layer.

1.3 SCSI/CAM Peripheral Device Drivers

SCSI/CAM peripheral device drivers convert operating system requests, such
as user-process reads or writes, into CAM requests that the SCSI/CAM
subsystem can process. Each type of SCSI/CAM peripheral driver is
responsible for a specific class of SCSI device, such as SCSI tape devices.
The SCSI/CAM peripheral driver handles error codes and conditions for its
SCSI device class.

SCSI/CAM peripheral drivers convert input/output (I/O) requests into CAM
Control Blocks (CCBs) that contain SCSI Command Descriptor Blocks
(CDBs). CCBs are presented to the underlying transport layer, XPT, to
initiate I/O requests. SCSI/CAM peripheral drivers implement SCSI device
error recovery, for example, dynamic bad block replacement (DBBR). The
SCSI device driver has no access to SCSI device control and status registers
(CSRs) and receives no SCSI device interrupts.

The major/minor device-number pair, which is 32 bits wide, is used as an
argument when creating the device special file associated with a specific
SCSI device and is contained in the buf structure when accessing the device
in raw or blocked mode. Figure 1-3 shows how the 32 bits are allocated.

Figure 1-3: Major/Minor Device-Number Pair

31 2019 1413 10 9 65 0
Major Index Bus # Target ID LUN Device Specific
ZK-0403U-R

This section provides overviews of the following:
e Common SCSI device driver modules

¢ Generic SCSI device driver modules

* SCSI disk device driver modules

* SCSI tape device driver modules

SCSI/CAM Software Architecture 1-5

¢ SCSI CD-ROM/AUDIO device driver modules

Chapters 3, 4, and 11 describe the data structures and the routines associated
with each module.

1.3.1 S/CA Common Device Driver Modules

The common SCSI device driver structures and routines can be shared among
all the SCSI/CAM peripheral drivers written by device driver writers for
DEC OSF/1. Using these common routines can speed the process of writing
a SCSI device driver because they are routines that any SCSI device driver
can use to perform operations.

1.3.2 S/CA Generic Device Driver Modules

Digital supplies predefined data structures and formats that SCSI device
driver writers can use to write generic SCSI/CAM peripheral device drivers.
These data structures and formats can be used in conjunction with the
common routines.

1.3.3 CAM SCSI Disk Device Driver Modules

The SCSI/CAM peripheral disk driver supports removable (floppy) and
nonremovable direct access SCSI disk devices and CD-ROM devices. The
user interface consists of the major/minor device number pair and the ioctl
commands supported by the SCSI disk device driver. The SCSI disk device
driver also uses the common routines.

1.3.4 CAM SCSI Tape Device Driver Modules

The SCSI tape device structures and routines are exclusive to the SCSI/CAM
peripheral tape driver. The user interface consists of the major/minor device
number pair and the ioctl commands supported by the SCSI tape device
driver. The SCSI tape device driver also uses the common routines.

1.3.5 CAM SCSI CD-ROM/AUDIO Device Driver Modules

The SCSI CD-ROM/AUDIO device commands, which are described in
Chapter 11, use the SCSI CD-ROM/AUDIO device structures. The SCSI
CD-ROM/AUDIO device driver also uses the common routines.

1.4 SCSI/CAM Special I/O Interface

The S/CA software includes an interface developed to process special SCSI
I/O control commands used by the existing Digital SCSI subsystem and to
aid in porting new or existing SCSI device drivers from other vendors to the

1-6 SCSI/CAM Software Architecture

S/CA. With the SCSI/CAM special I/0 interface, SCSI/CAM peripheral
driver writers do not need detailed knowledge of either the system-specific or
the CAM-specific structures and routines used to issue a SCSI command to
the CAM 1/O subsystem.

1.5 The SCSI/CAM Configuration Driver

The Configuration driver is responsible for configuring and initializing the
CAM subsystem. This driver is also responsible for maintaining the
cam_edt[] information structure.

When the system powers up, the Configuration driver initializes the local and
global CAM subsystem data structures. The Configuration driver also calls
the XPT and SIM initialization routines. When the subsystems are initialized,
the Configuration driver performs a SCSI-bus scan by sending the SCSI
Device Inquiry command. The edt_dir[] structure contains pointers to
the EDT (Equipment Device Table) structure for each bus. The EDT
contains the returned SCSI inquiry data for the SCSI/CAM peripheral drivers
to access. The drivers, using the XPT_GDEV_TYPE and XPT_SDEV_TYPE
get and set device information CCBs and can access the data contained in
cam edt[].

1.6 CAM Transport Layer (XPT)

The CAM Transport layer, XPT, handles the CAM requests from the
SCSI/CAM peripheral drivers and routes them to the appropriate SIM
module. The XPT provides routines which are called by the SCSI/CAM
peripheral driver to allocate and deallocate CAM control blocks (CCBs). In
addition, the XPT provides routines that are used to initiate requests to the
SIM and to issue asynchronous callbacks.

1.7 SCSI Interface Module Layers (SIM)

The SCSI Interface Module, SIM, has the most interaction with the SCSI bus
protocol, timings, and other hardware-specific operations. Although this is a
single component in the CAM model, it is divided into four logical sublayers
in DEC OSF/1:

¢ SIM XPT - The SIM layer that interfaces to the XPT to initiate I/0 on
behalf of the SCSI/CAM peripheral drivers

* SIM SCHEDULER - The SIM layer that schedules requests to the SIM
HBAs

e SIM HBA - The SIM layer that contains the HBA device-specific
information

SCSI/CAM Software Architecture 1-7

* SIM DME - A low level layer that contains the architecture-specific
data-movement code

1-8 SCSI/CAM Software Architecture

CAM User Agent Modules 2

This chapter describes the functions of the DEC OSF/1 User Agent SCSI
device driver. It also describes the User Agent data structures and routines
used by the User Agent SCSI device driver.

2.1 User Agent Introduction

The DEC OSF/1 User Agent SCSI device driver lets device driver writers
write an application program to build a CAM Control Block (CCB) request.
The User Agent driver lets the user-process request pass through to the XPT
layer for processing. This gives user processes access to the SCSI/CAM
subsystem and to all types of SCSI/CAM peripheral devices attached to the
system.

This is a simple method for passing the CCB’s SCSI request to the devices
using the SIMs. The kernel does not have to be rebuilt if the device driver
writer wants to change values within the CCBs.

The CCB contains all the information required to perform the request. The
user process must first open the user agent driver using /dev/cam to obtain
a file descriptor. The user process calls the User Agent SCSI device driver
using the ioctl system call. See 1oct1(2) for more information. The
User Agent ioctl routine, uagt_ioctl, is called through the device switch
table, which is indexed by the major device number of the User Agent driver
specified in the file descriptor obtained from the open system call passed in
the ioctl call. The ioctl commands supported by the User Agent SCSI
device driver are: DEVIOCGET, which returns the SCSI device driver
status; UAGT_CAM_IO, which sends the specified CCB to the XPT layer
for processing; UAGT_CAM_SINGLE_SCAN, which causes the scan of a
bus, target, and LUN; and UAGT_CAM_FULL_SCAN, which causes the
scan of a bus.

A CCB is allocated in the kernel and the user process’s CCB is copied to the
kernel CCB. The User Agent SCSI device driver sleeps waiting for the
request to complete; then, all necessary cleanup is performed, and the user
process is notified of the completion of the request. If a signal is caught, an
ABORT CCB is issued to try to terminate the outstanding CCB for the user
process.

The User Agent SCSI device driver allows multiple processes access to the
XPT layer; therefore, there may be multiple processes sleeping on the User

Agent. All CCBs passed through by the User Agent are queued at the SIM
layer.

2.2 User Agent Error Handling

The User Agent SCSI device driver performs limited error checking on the
CCB pointed to in the UAGT_CAM_CCB structure passed from the user
process. The User Agent driver verifies that the uagt_ccblen is not
greater than the maximum length for a CCB, checks that the XPT function
code is valid, and checks that the Target ID and LUN specified are within the
range allowed. The User Agent does not issue a REQUEST SENSE
command in response to a CHECK CONDITION status. Autosensing is
assumed to be enabled in the cam_ch.cam flags field of the SCSI /O
CCB. The application program is responsible for issuing a RELEASE SIM
QUEUE CCB.

The following error codes are returned by the User Agent ioctl function:
* EFAULT - An error occurred in copying to or from user space.
* EBUSY - Out of resources (the User Agent request table is full).

* EINVAL - An invalid target or LUN was passed to the User Agent
driver, the CCB copied from the user process contained an invalid
parameter, or an invalid ioctl command.

2.3 User Agent Data Structures

This section describes the data structures the User Agent uses.

2.3.1 The UAGT_CAM CCB Data Structure

The User Agent SCSI device driver uses the UAGT_CAM_CCB data
structure with the UAGT_CAM_IO ioctl command to communicate with the
user processes requesting access to the SCSI/CAM subsystem.

The user process fills in the pointers in the UAGT_CAM_CCB data
structure. The structure is copied into kernel space. The user process’s CCB
is copied into kernel space by the User Agent.

If necessary, the user data area and the sense data area are locked in memory.
If any pointers in the UAGT_CAM_CCB structure are not needed with the
requested CCB, the pointers must be set to NULL.

The CCB contains all the information necessary to execute the requested
XPT function. The addresses in the CCB are used by the SIM and must be
valid. The User Agent will not modify the corresponding pointers in the
user’s CCB.

2-2 CAM User Agent Modules

The CCB definition is different for each of the following XPT functions
supported by the User Agent SCSI device driver:

* XPT_NOOP - Execute nothing

¢« XPT_SCSI_IO - Execute the requested SCSI IO

* XPT_GDEV_TYPE - Get the device type information
 XPT_PATH_INQ - Path inquiry

« XPT_REL_SIMQ - Release the SIM queue that was frozen intentionally
or by a previous error.

 XPT_SDEV_TYPE - Set the device type information

* XPT_ABORT - Abort the selected CCB

 XPT_RESET_BUS - Reset the SCSI bus

* XPT_RESET_DEV - Reset the SCSI device, BDR

* XPT _TERM_IO - Terminate the selected CCB

If a signal is generated by the user process, the User Agent creates an
XPT_ABORT CCB to abort the outstanding I/O and then waits for the

completion of the I/O and notifies the user process when the aborted CCB is
returned to the User Agent.

The UAGT_CAM_CCSB structure is defined as follows:

typedef struct uagt_cam ccb
{

CCB_HEADER *uagt ccb; /* pointer to the users CCB */
u_long uagt_ccblen; /* length of the users CCB */
u_char *uagt_buffer; /* pointer for the data buffer */
u_long uagt_buflen; /* length of user request */

u_char *uagt_snsbuf; /* pointer for the sense buffer */
u_long uagt_snslen; /* length of user’s sense buffer */
CDB_UN *uagt_cdb; /* ptr for a CDB if not in CCB */
u_long uagt_cdblen; /* CDB length if appropriate */
u_long uagt_flags; /* See below */

} UAGT CAM CCB;

2.3.1.1 The uagt_ccb Member

The uagt_ccb member contains a pointer to the user process’s CCB that
will be copied into kernel space.

2.3.1.2 The uagt_ccblen Member
The uagt_ccblen member contains the length of the user process’s CCB.

CAM User Agent Modules 2-3

2.3.1.3 The uagt_buffer Member

The uagt_buffer member contains a pointer to the user process’s data
buffer. This member is used only by the User Agent.

2.3.1.4 The uagt_buflen Member

The uagt_buflen member contains the length of the user process’s data
buffer. This member is used only by the User Agent.

2.3.1.5 The uagt_snsbuf Member

The uagt_snsbuf member contains a pointer to the user process’s
autosense data buffer. This member is used only by the User Agent.

2.3.1.6 The uagt_snslen Member

The uagt_snslen member contains the length of the user process’s
autosense data buffer. This member is used only by the User Agent.

2.3.1.7 The uagt_cdb Member

If the user process’s CCB contains a pointer to a CDB, then the uagt_cdb
also contains a pointer to a Command Descriptor Block (CDB) that is to be
locked in memory. This member and the uagt_cdblen member are used
only by the User Agent driver. The CCB must also contain valid pointers
and counts.

2.3.1.8 The uagt_cdblen Member

The uagt_cdblen contains the length of the Command Descriptor Block,
if appropriate.

2.3.1.9 The uagt_flags Member

The uagt_flags contains the UAGT_NO_INT_SLEEP bit, which, if set,
indicates that the User Agent should not sleep at an interruptible priority.

2.3.2 The UAGT_CAM_SCAN Data Structure

The User Agent SCSI device driver uses the UAGT_CAM_SCAN data
structure to communicate with user level programs that need to have access
to the CAM subsystem. The structure is copied into kernel space as part of
the ioctl system call from user space for the
UAGT_CAM_SINGLE_SCAN and UAGT_CAM_FULL_SCAN commands.
The user program fills in the pointers in this structure and the User Agent
SCSI device driver correctly fills in the corresponding pointers in the CCB.

2—-4 CAM User Agent Modules

The UAGT_CAM_SCAN structure is defined as follows:

typedef struct uagt cam scan {

u_char wucs_bus; /* Bus id for scan */
u_char wucs_target; /* Target id for scan */
u char wucs lun; /* LUN for scan */

} UAGT_CAM SCAN;

2.4 User Agent Routines

This section describes the User Agent routines supplied by Digital. Table
2-1 lists the name of each routine and gives a summary description of its
function. The sections that follow contain a more detailed description of
each User Agent routine. Descriptions of the routines with syntax
information, in DEC OSF/1 reference page format, are included in
alphabetical order in Appendix C.

Table 2-1: User Agent Routines

Routine Summary Description

uagt_open Handles the open of the User Agent driver

uagt close Handles the close of the User Agent driver

uagt ioctl Handles the ioct1l system call for the User Agent
driver

2.4.1 The uagt_open Routine
The uagt_open routine handles the open of the User Agent driver.

The character device special file name used for the open is /dev/cam.

2.4.2 The uagt_close Routine

The uagt_close routine handles the close of the User Agent driver. For
the last close operation for the driver, if any queues are frozen, a RELEASE
SIM QUEUE CCB is sent to the XPT layer for each frozen queue detected
by the User Agent.

2.4.3 The uagt_ioctl Routine

The uagt_ioctl routine handles the ioctl system call for the User
Agent driver. The ioctl commands supported are: DEVIOCGET, to obtain
the User Agent driver’s SCSI device status; UAGT_CAM_IO, the ioctl
define for sending CCBs to the User Agent driver;

CAM User Agent Modules 2-5

UAGT_CAM_SINGLE_SCAN, to scan a bus, target, and LUN; and
UAGT_CAM_FULL_SCAN, to scan a bus.

For SCSI I/O CCB requests, the user data area is locked before passing the
CCB to the XPT. The User Agent sleeps waiting for the I/O to complete and
issues an ABORT CCB if a signal is caught while sleeping.

2.5 Sample User Agent Drivers

2.5.1

2511

Two sample User Agent driver programs follow. The first sample program
uses the User Agent driver to perform a SCSI INQUIRY command to a
device on a selected nexus.

The second sample program is a scanner control program that sets up a
scanner, reads scan line data from the device, and writes the data to a file,
using the User Agent driver.

Both programs are included with the S/CA software and reside in the
/usr/examples directory.

Sample User Agent Driver Inquiry Program

This section contains the User Agent sample inquiry application program,
caming.c, with annotations to the code. The user enters the string ing
followed by the numbers identifying the bus, target, and LUN nexus to be
checked for a valid device. If the device is valid, the INQUIRY data is
displayed at the console. If the device is invalid, an error message appears.

The include Files and Definitions Section

This section describes the portion of the User Agent sample inquiry
application program that lists the include files, local definitions, and data
initialization for the program.

[¥ e e e e */
/* Include files needed for this program. */

#include <stdio.h>

#include <sys/file.h>

#include <sys/types.h>
#include <sys/ioctl.h>
#include <strings.h>

#include <ctype.h>

#include <io/common/iotypes.h>

#include <io/cam/cam.h> /* CAM defines from the CAM document */
#include <io/cam/dec_cam.h>/* CAM defines for Digital CAM source files */
#$include <io/cam/uagt.h> /* CAM defines for the UAgt driver */

#include <io/cam/scsi_all.h> /* CAM defines for ALL SCSI devices */

2-6 CAM User Agent Modules

/*

/* Local defines */
#define INQUIRY LEN 36 /* general inquiry length */ {i

/*

/* Initialized and uninitialized data. */
u_char buf{ INQUIRY LEN]; @

2

This line defines a constant of 36 bytes for the length of the inquiry
expected by the user from the SCSI device.

This line declares a global character array, buf, with a size of 36 bytes
as defined by the INQUIRY_LEN constant.

2.5.1.2 The Main Program Section

This section describes the main program portion of the User Agent sample
inquiry application program.

/*

______ —_— s GOV s

/* The main code path. The CCB/CDB and UAGT CAM CCB are set up for

an INQUIRY command to the Bus/Target/Lun selected by the command
line arguments. The returned INQUIRY data is displayed to the
user if the status is valid. If the returned status indicates
an error, the error is reported instead of the INQUIRY data. */

main(argc, argv)
int argc;
char *argv[];

{

extern void print_inqg data(); [l
extern void print_ccb_status();

u_char id, targid, lun; /* from the command line */

int £d; /* unit number from the open */ [2
UAGT_CAM_CCB ua_ccb; /* local uagt structure */ [3
CCB_SCSIIO ccb; /* local cCB */ 4

ALL INQ CDB *ing; /* pointer for the CDB */ [§

/* Make sure that all the arguments are there. */ [gl
if (argc != 4) {

printf("SCSI INQ bus target lun\n");

exit();
}
/* Convert the nexus information from the command line. */ [7l
id
targid
lun

atoi(argv[l]);
atoi(argv([2}):
atoi(argv(3]);

nnon

These two forward references define routines that are used later in the
program to print out the INQUIRY data or to print out the CAM status if
there was an error.

The file descriptor for the User Agent driver returned by the open
system call, which executes in Section 2.5.1.3.

CAM User Agent Modules 2—7

[8] This line declares an uninitialized local data structure, ua_ccb, of the
type UAGT_CAM_CCB, which is defined in the file
/usr/sys/include/io/cam/uagt.h. This structure is copied
from user space into kernel space as part of the ioctl system call.
Section 2.5.1.7 describes this procedure.

[4] This line declares an uninitialized local data structure, ccb, of the type
CCB_SCSIIO , which is defined in the file
/usr/sys/include/io/cam/cam.h. The members of this
structure needed for the XPT_SCSI_IO request are filled in Section
2.5.1.4. The members of this structure needed for the INQUIRY
command are filled in Section 2.5.1.5.

[5] This line declares a pointer, ing, to a data structure, ALL_INQ_CDB,
which is defined in the file
/usr/sys/include/io/cam/scsi_all.h. This structure is
filled in Section 2.5.1.5.

[6] This section of code makes sure the user entered the correct number of
arguments. The user should have entered the string ing, followed by
three numeric characters representing the bus, target, and LUN to be
checked for a valid status.

This section of code converts the numeric characters entered and assigns
them, in order, to bus, target, and LUN.

2.,5.1.3 The User Agent Open Section

This section describes the portion of the User Agent sample inquiry
application program where the User Agent is opened.

/* Open the User Agent driver and report any errors. */

if ((fd = open("/dev/cam", O_RDWR, 0)) < 0)
{

perror("Error on CAM UAgt Open:");

exit(1l);
}

The program attempts to open the User Agent device special file,
/dev/cam, with the O_RDWR flag, which allows reading and writing.
If the file descriptor returned by the open system call indicates that the
open failed by returning a negative value, < 0, the program reports an
error and exits. Otherwise, the program opens the device.

2.5.1.4 Filling in XPT_SCSI_IO Request CCB_HEADER Fields

This section describes the portion of the User Agent sample inquiry
application program where the members of the CCB_HEADER needed for an

2-8 CAM User Agent Modules

XPT_SCSI_IO request are filled in.

bzero((caddr_t)&ccb,sizeof(CCB_SCSIIO))

/* Clear the CCB structure */
/* Set up the CCB for an XPT SCSI_IO request. The INQUIRY command
will be sent to the device, instead of sending an XPT _GDEV_TYPE. */

/* Set up the CAM header for the XPT SCSI_IO function. */

ccb.cam _ch.my_addr = (struct ccb_header *)&ccb; /* "Its" address */ [l
ccb.cam_ch.cam_ccb_len = sizeof(CCB_SCSIIO); /* a SCSI I/O CCB */
ccb.cam_ch.cam_func_code = XPT_SCSI_IO; /* the opcode */
ccb.cam_ch.cam_path id = id; /* selected bus */ {2
ccb.cam_ch.cam_target id = targid; /* selected target */
ccb.cam_ch.cam_target_lun = lun; /* selected lun */

/* The needed CAM flags are : CAM DIR IN - The data will come from
the target, CAM DIS AUTOSENSE - Do not issue a REQUEST SENSE packet
if there is an error. */

ccb.cam _ch.cam _flags = CAM DIR_IN | CAM DIS AUTOSENSE; Bl

[l This section of code fills in some of the CCB_HEADER fields of the
SCSI I/0 CCB structure defined as ccb, for processing by the XPT layer.
The structure was declared in Section 2.5.2.5.

[2] These three lines assign the bus, target, and LUN to the corresponding
fields in the CCB_HEADER structure.

[3] This line sets the necessary CAM flags for the INQUIRY:
CAM_DIR_IN, which specifies that the direction of the data is incoming;
and CAM_DIS_AUTOSENSE, which disables the autosense feature.
These flags are defined in /usr/sys/include/io/cam/cam.h.

2.5.1.,5 Filling in INQUIRY Command CCB_HEADER Fields

This section describes the portion of the User Agent sample inquiry
application program where the members of the CCB_HEADER needed for
the INQUIRY command are filled in. This is the structure that is passed to
the XPT layer by the User Agent driver.

/* Set up the rest of the CCB for the INQUIRY command. */

ccb.cam _data ptr = &buf[0]; /* where the data goes */ [l
ccb.cam_dxfer len = INQUIRY LEN; /* how much data */
ccb.cam_timeout = CAM TIME DEFAULT; /* use the default timeout */ [

ccb.cam _cdb_len = sizeof(ALL_INQ CDB);
/* how many bytes for inquiry /Bl

/* Use a local pointer to access the particular fields in the INQUIRY

CDB. */

ing = (ALL_INQ CDB *)&ccb.cam cdb_io.cam cdb_bytes[0]; [
ing->opcode = ALL_INQ OP; /* inquiry command */ [§
ing->evpd = 0; /* no product data */
ing->lun = 0; /* not used in SCSI-2 */
ing->page = 0; /* no product pages */
ing->alloc_len = INQUIRY_LEN; /* for the buffer space */
ing->control = 0; /* no control flags */

CAM User Agent Modules 2-9

[1] This line sets the cam_data_ptr member of the SCSI I/O CCB
structure to the address of the first element in the buf array, which is
defined as 36 bytes in Section 2.5.1.1.

[2l This line specifies using the default timeout, which is the value assigned
to the CAM_TIME_DEFAULT constant. This constant is set in the
/usr/sys/include/io/cam/cam.h file to indicate that the SIM
layer’s default timeout is to be used. The current value of the SIM
layer’s default timeout is five seconds.

[8] This line sets the length of the Command Descriptor Block in the CCB to
the length of an inquiry CDB.. The inquiry CDB, ALL_INQ_CDB,
which is defined in the /usr/sys/include/io/cam/scsi_all.h
file, is six bytes.

[l This line assigns the ing pointer, which is type ALL_INQ_CDB, to the
address of the cam_cdb_bytes member of the CDB_UN union. This
union is defined in /usr/sys/include/io/cam/cam.h as the
cam_cdb_io member of the SCSI I/O CCB structure.

[5] These lines use the ing pointer to access the fields of the
cam_cdb bytes array within the ccb structure as though it is an
ALL_INQ_CDB structure. The ALL_INQ_CDB structure is defined in
the /usr/sys/include/io/cam/scsi_all.hfile.

2.5.1.6 Filling in the UAGT_CAM_CCB Fields

This section describes the portion of the User Agent sample inquiry
application program where the members of the UAGT_CAM_CCB structure
are filled in for the ioct1l call. This is the structure that is passed to the
User Agent driver.
bzero((caddr_t)&ua_ccb,sizeof (UAGI_CAM_CCB))

/* Clear the ua_ccb structure */
/* Set up the fields for the User Agent Ioctl call. */

ua_ccb.uagt_ccb = (CCB_HEADER *)&ccb; /* where the CCB is */ [
ua_ccb.uagt_ccblen = sizeof (CCB_SCSIIO);
/* how many bytes to pull in */ [2

ua_ccb.uagt_buffer = sbuf[0]; /* where the data goes */ [3
ua_ccb.uagt_buflen = INQUIRY_ LEN; /* how much data */ (4
ua_ccb.uagt_snsbuf = (u_char *)NULL; /* no Autosense data */ [§
ua_ccb.uagt_snslen = 0; /* no Autosense data */
ua_ccb.uagt_cdb = (CDB_UN *)NULL; /* CDB is in the CCB */ [g
ua_ccb.uagt_cdblen = 0; /* CDB is in the CCB */

This line initializes the uagt_ccb member of the ua_ccb structure
with the address of the local CCB_HEADER structure, ccb.

[2] This line sets the length of the uagt_ccblen member to the length of
the SCSI I/O CCB structure that will be used for this call.

2—-10 CAM User Agent Modules

[3] This line initializes the uagt buffer member with the user space
address of the array buf, which was allocated 36 bytes in Section
2.5.1.1.

[l This line initializes the uagt buflen member with the value of the
constant INQUIRY_LEN, which is the number of bytes of inquiry data
that will be returned.

6] These two lines reflect that the autosense features are turned off in the
CAM flags.

[6] These two lines reflect that the Command Descriptor Block information is
in the SCSI I/O CCB structure filled in Section 2.5.1.4.

2.5.1.7 Sending the CCB to the CAM Subsystem

This section describes the portion of the User Agent sample inquiry
application program where the ccb is sent to the CAM subsystem.

/* Send the CCB to the CAM subsystem using the User Agent driver,

and report any errors. */

if(ioctl(fd, UAGT_CAM IO, (caddr t)sua_ccb) < 0) [

{

perror("Error on CAM UAGT Ioctl:");

close(fd); /* close the CAM file */ [l
exit(1l);

}

/* If the CCB completed successfully, then print out the INQUIRY
information; if not, report the error. */

if (ccb.cam ch.cam status != CAM REQ CMP)

{
print_ccb_status(&(ccb.cam ch));
/* report the error values */ [

print_ing data(&buf[0]); /* report the INQUIRY info */ [

This line passes the local UAGT_CAM_CCB structure, ua_ccb, to the
User Agent driver, using the ioctl system call. The arguments passed
are the file descriptor returned by the open system call; the User Agent
ioctl command, UAGT_CAM_IO, which is defined in the
/usr/sys/include/io/cam/uagt.h file; and the contents of the
ua_ccb structure. The User Agent driver copies in the SCSI IO CCB
and sends it to the XPT layer. When the I/O completes, the User Agent
returns to the application program, returning status within the ua_ccb
structure.

[2] If the ioctl call fails, this code displays an error message, closes the
device special file, /dev/cam, and exits.

CAM User Agent Modules 2-11

[38] If the CAM status is anything other than CAM_REQ_CMP, indicating
the request completed with an error, then an error message is printed
indicating the CAM status returned.

[4] If the request completes, the print ing_data routine is called to
display the INQUIRY data.

2.5.1.8 Print INQUIRY Data Routine

This section of the User Agent sample inquiry application program converts
the rest of the fields of inquiry data to a human-readable form and sends it to
the user’s screen.

/* Define the type and qualifier string arrays as globals to allow for
compile-time initialization of the information. */

caddr_t periph_type[] = { /* Peripheral Device Type */
"Direct-access", /* 00h */
"Sequential-access", /* 0lh */
"Printer", /* 02h */
"Processor", /* 03h */
"Write-once", /% 04h */
"CD-ROM", /* 05h */
"Scanner", /* 06h */
"Optical memory", /* 07h */
"Medium changer", /* 08h */
"Communications", /* 09h */
"Graphics Arts" /* 0Ah */
Y: /* Same as 0A */ /* 0Bh */
/* Reserved */ /* 0Ch - 1lEh */
/* Unknown */ /* 1Fh */
caddr_t periph qual[] = { /* Peripheral Qualifier */
"Device supported, is (may be) connected", /* 000b */
"Device supported, is not connected", /* 001b */
"<Reserved qualifier>", /* 010b */
"No device supported for this Lun" /* 011lb */
}i /* Vendor specific */ /* 1xxb */
¥ e e ————— */
/* Local routine to print out the INQUIRY data to the user. */

void
print_ing data(ip) [l
ALL_INQ DATA *ip;
{
char vendor id[9]; @
char prod_id[17];
char prod_rev_1lvl[5];
caddr_t periph_ type_ptr, periph_qual_ptr;
int ptype;
/* Make local copies of the ASCII text, so that it can be NULL
terminated for the printf() routine. */

strnepy(vendor_id, (caddr_t)ip->vid, 8); [3
vendor_id[8] = ’\0’;
strncpy(prod_id, (caddr_t)ip->pid, 16);

prod_id[16] = '\0’;
strncpy(prod_rev_lvl, (caddr_ t)ip->revlievel, 4);
prod_rev_1vl[4] = '\0’;

2-12 CAM User Agent Modules

/* Convert sparse device type and qualifier values into strings */

ptype = ip->dtype; @
periph type ptr = "Reserved";

if (ptype == 0x1F) periph type ptr = "Unknown";

if (ptype == 0x0B) ptype = O0x0A;

if (ptype <= 0x0A) periph_type ptr = periph type[ptype];

periph qual ptr = "<Vendor Specific qualifier>";

if (ip->pqual <= 3) periph qual ptr = periph qual[ip->pqual];

printf("Periph Device Type = 0x%X = %s Device\n", [§
ip->dtype, periph type ptr);

printf("Periph Qualifier = 0x%X = %s\n", ip->pqual,
periph qual ptr);

printf("Device Type Modifier = Ox%X\tRMB = 0x%X = Medium %s\n",

ip->dmodify, ip->rmb, (ip->rmb?"is removable":
"is not removable"));
printf ("ANSI Version = 0x%X\t\tECMA Version = 0x%X\n",
ip->ansi, ip->ecma);
printf("ISO Version = O0x%X\t\tAENC = 0x%X\tTrmIOP = 0x%X\n",
ip->iso, ip->aenc, ip->trmiop);
printf("Response Data Format = 0x%X\tAddit Length = 0x%d\n",
ip->rdf, ip->addlen);

printf("SftRe = 0x%XCmdQue = 0x%X\tLinked = 0x%X\tSync = 0x%X\n",

ip->sftre, ip->cmdque, ip->linked, ip->sync);
printf("Wbuslé = 0x%X\tWbus32 = 0x%X\tRelAdr = 0x%X\n",
ip->wbuslé, ip->wbus32, ip->reladdr);

printf("Vendor Identification = %s\nProduct Identification = %s\n",

vendor_id, prod_id);
printf("Product Revision Level = %s\n\n",
prod_rev_1lvl);
fflush(stdout); el

This line declares the print _inqg_ data function that prints out the
INQUIRY data for a valid nexus. The function’s argument, ip, is a
pointer to the ALL_INQ_DATA structure defined in the
/usr/sys/include/io/cam/scsi_all.hfile.

These three lines declare three character arrays to contain the Vendor ID,
the Product ID, and the Product revision level to be displayed. Each
array is declared with one extra byte to hold the NULL string terminator.

This section copies the ALL_INQ_DATA member, vid, into the local
array vendor id; the ALL_INQ_DATA member, pid, into the local
array prod_id; and the ALL_INQ_DATA member, revlevel, into
the local array, prod_rev_1v1. The arrays are passed to the standard
C library function, strncpy, which copies the data and then terminates
each string copy with a NULL, so that it can be output to the printf
function in the format desired.

This section converts the device type and qualifier values into human-
readable words. The conversions are performed on defined and undefined
numeric combinations.

This section decodes and displays the inquiry data as hexadecimal
numbers and strings.

CAM User Agent Modules 2-13

[6] This line calls the standard C /O function, ££1lush, to write out the data
from the internal buffers.

2.5.1.9 Print CAM Status Routine
This section describes the portion of the User Agent sample inquiry

application program that defines the routine to print out the CAM status for

an invalid nexus.
/ *

/* Local routines and data structure to report in text and Hex

form the returned CAM status.

struct cam_statustable { I
u_char cam_status;
caddr_t status_msg;

} cam_statustable[] = {1]

{ CAM REQ INPROG,

}i
int cam_statusentrys =

*/

"CCB request is in progress"

sizeof (cam_statustable) / \

sizeof (cam_statustable[0]); [

char *
camstatus(cam_status) [

register u_char cam_status;

{

register struct cam statustable *cst =

register entrys;

for(entrys = 0; entrys < cam_statusentrys; cst++) { el

2-14 CAM User Agent Modules

cam_statustable; [3

{ CAM REQ CMP , "CCB request completed w/out error" },
{ CAM_REQ ABORTED, "CCB request aborted by the host" },
{ CAM UA ABORT, "Unable to Abort CCB request" Y
{ CAM . | REQ CMP_ERR, "CCB request completed with an err" },
{ CAM BUSY, "CAM subsystem is busy" e
{ CAM _REQ_ INVALID, "CCB request is invalid” 3},
{ CAM PATH_INVALID, "Bus ID supplied is invalid" Y,
{ CAM DEV_NOT_THERE, "Device not installed/there” },
{ CAM_UA_TERMIO, "Unable to Terminate I/O CCB req" },
{ CAM_SEL TIMEOUT, "Target selection timeout” }r
{ CAM CMD_TIMEOUT, "Command timeout" },

{ CAM MSG_REJECT_REC, "Reject received" }r

{ CAM SCSI BUS RESET, "Bus reset sent/received" },
{ CAM_UNCOR_PARITY, "Parity error occurred" }r
{ CAM_AUTOSENSE_FAIL, "Request sense cmd fail" }r

{ CAM NO_HBA, "No HBA detected Error" 3},
{ CAM DATA RUN_ERR, "Overrun/underrun error" Y}

{ CAM UNEXP BUSFREE, "BUS free" e

{ CAM | SEQUENCE_FAIL, "Bus phase sequence failure" Y}
{ CAM_ |_CCB_LEN_ERR, "CCB length supplied is inadequate" 1},
{ CAM PROVIDE _FAIL, "To provide requ. capability" Y}
{ CAM_BDR_SENT, "A SCSI BDR msg was sent to target" 1},
{ CAM REQ TERMIO, "CCB request terminated by the host" },
{ CAM LUN_INVALID, "LUN supplied is invalid” }e

{ CAM TID_INVALID, "Target ID supplied is invalid"},

{ CAM_FUNC_NOTAVAIL, "Requested function is not available" },
{ CAM NO_NEXUS, "Nexus is not established" ¥
{ CAM IID INVALID, "The initiator ID is invalid" s

{ CAM CDB_RECVD, "The SCSI CDB has been received” }s
{ CAM_sCSI_BUSY, "SCSI bus busy" }

}

if(cst->cam_status == cam_status) {
return(cst->status_msg);
}

}
return("Unknown CAM Status");

void
print_ccb_status(cp) [@
CCB_HEADER *cpj;

{

printf("cam status = 0x%X\t (%s%s%s)\n", cp->cam status,
((cp->cam_status & CAM AUTOSNS VALID) ? "AutoSns Valid-" : ""),
((cp->cam_status & CAM_SIM QFRZN) ? "SIM Q Frozen-" : ""),
camstatus(cp->cam_status & CAM_STATUS_MASK));

fflush(stdout); @

This line defines an array of structures. It is declared as a global array to
allow compile-time initialization. Each structure element of the array
contains two members, cam_status, the CAM status code, and
status_msg, a brief description of the meaning of the status code. The
CAM status codes and messages are defined in the
/usr/sys/include/io/cam/cam.h file.

These lines initialize the CAM status array with the status values and
their text equivalents.

This line declares an integer variable whose contents equal the size of the
total CAM status array divided by the size of an individual array element.
This integer is the number of the element in the array.

The next two lines define a function that returns a pointer to a text string
with the cam_status field of the CCB_HEADER as an argument. The
cam_status member is declared as a register variable so that its values
are stored in a machine register for efficiency.

This line declares a register structure pointer to point to each element of
the CAM status array and initializes it to point to the beginning of the
CAM status array. A local register variable, entrys, will be used to
traverse the CAM status array.

This section of code examines each element in the array, incrementing
cst until 2 match between the status from the CCB and a status value in
the array is found, in which case the address of the CAM status
description string, status_msg, is returned. If all the elements are
examined without a match, the "Unknown CAM Status" message address
is returned.

The next two lines define a routine that uses a pointer to the
CCB_HEADER structure of the INQUIRY CCB and calls the C library
routine, print#£, to print out the hexadecimal value and the appropriate
description of the CAM status returned.

CAM User Agent Modules 2-15

This line calls the standard C I/O function, £f1lush, to write out the data
from the internal buffers.

2.5.1.10 Sample Output for a Valid Nexus

This section contains an example of the output of the User Agent sample
inquiry application program when the user enters a valid nexus.

#inq 0 0 O

Periph Device Type = 0x0 Periph Qualifier = 0x0 [
Device Type Modifier = 0x0 RMB = 0x0

ANSI Version = 0x1 ECMA Version = 0x0

ISO Version = 0x0 AENC = 0x0 TrmIOP = 0x0
Response Data Format = 0x1 Addit Length = 0x31

SsftRe = 0x0 CmdQue 0x0 Linked = 0x0 Sync = 0x1

Wbuslé = 0x0 Wbus32 = 0x0 RelAdr = 0x0
Vendor ID = DEC [2

Product ID = RZ56 (C) DEC [3

Product Rev Level = 0300 {4

[1] See the American National Standard for Information Systems, Small
Computer Systems Interface - 2 (SCSI - 2), X3.131-199X for a
description of each of the fields of the inquiry data returned.

[2] This line shows the value of the vendor_id variable declared in the
print_inqg_ data routine in Section 2.5.1.8 as a local copy of the text
string.

[3] This line shows the value of the prod_id variable declared in the
print_ing data routine in Section 2.5.1.8 as a local copy of the text
string.

[4] This line shows the value of the prod_rev_1vl variable declared in
the print_ing_ data routine in Section 2.5.1.8 as a local copy of the
text string.

2.5.1.11 Sample Output for an Invalid Nexus
This section contains an example of the output of the User Agent sample
inquiry application program when the user enters an invalid nexus.
#inq 0 2 O
cam_status = 0x4A (SIM Q Frozen-Target selection timeout) [

[1] This line shows that the contents of the cam_status member of the
CCB_HEADER structure returned was CAM_SIM_QFRZN, which
indicates a lack of response from the specified nexus. See the
cam_statustable in Section 2.5.1.9.

2-16 CAM User Agent Modules

2.5.1.12 Sample Shell Script

This section contains a sample C-shell script, caming.csh, that compiles
and executes the User Agent sample inquiry application program.

#cc -o caming caming.c

ing 0 6 0

ing 0 2 0

ing 0 5 0

ing 0 3 0

2.5.2 Sample User Agent Scanner Driver Program

This section contains the User Agent sample scanner program, cscan.c,
with annotations to the code. It also contains the cscan.h file, which
defines the WINDOW_PARAM_BLOCK structure used in the program.

The cscan.c program assumes that the environment variable SCAN-
NEXUS has been set. The sample C-shell script that follows, cscan.csh,
compiles the program and sets SCAN-NEXUS to bus 1, target 3, and LUN O:

#cc -o cscan cscan.c
#setenv SCAN-NEXUS "1 3 O"

2.5.2.1 Scanner Program Header File

This section describes the header file, cscan.h, that contains definitions of
structures for the program to use.

/* cscan.h Header file for cscan.c (CAM Scanner driver) 28-0Oct-1991 */

/* Scanner Window Parameter Block definition; all multi-byte quantities
are defined as unsigned bytes due to the need to store the values in
swapped order. */

typedef struct {
u_char rsvdl[6]; /* Reserved bytes in Header: Must Be Zero */
u_char WDBLen[2]; /* Number of Window Parameter bytes
following */ [

u_char WID; /* Window ID: Must Be Zero */

u_char rsvd2; /* Reserved bytes in Header: Must Be Zero */
u_char XRes[2]; /* X-axis resolution: MUST be same as YRes */
u_char YRes[2]; /* Y-axis resolution: MUST be same as XRes */

u_char UpLeftX[4]; /* Upper left X positon of scan window */
u_char UpLeftY¥[4]; /* Upper left Y positon of scan window */
u_char width([4]; /* Scan width (Y-axis length) */
u_char Length[4]; /* Scan length (X-axis length) */

u_char Bright; /* Brightness: Must Be Zero */

u_char Thresh; /* Threshold: Must Be Zero */

u_char Contrast; /* Contrast: Must Be Zero */

u_char ImgTyp; /* Image type: 0 = bi-level mono; 2 = multi-level

mono; 3 = bi-level full color; 5 = multi-
level full color; others reserved */

u_char PixBits; /* Bits per pixel: 1 = bi-level; 4 = 16 shades;
8 = 256 shades; others reserved */

u_char HalfTone[2];/* Halftone Pattern: Must Be Zero */

u_char PadTyp:3; /* Padding type for non-byte pixels: MUST BE 1 */

CAM User Agent Modules 2-17

u_char
u_char
u_char
u_char
u_char
u_char
u_char

u_char

u_char

u_char
u_char
u_char
u_char

u_char
u_char

rsvd3:4;
RevImg:1l;

/*
/*

BitOrder([2];/*

CompTyp;
CompArg;
rsvd4([6];
HdrsSel;

ColorSel;

ImgCorr;

ThreshR;
ThreshG;
ThreshB;
ShtTyp:1;

rsvd5:3;
ShtDen:4;

}WINDOW_PARAM BLOCK;

/*
/*
/*
/*

/*

/*
/*
/*
/*

/*
/*

Reserved bits: Must Be Zero */

0 = normal image; 1 = reverse image */

Bit ordering: Must Be Zero */

Compression type: Must Be Zero */
Compression argument: Must Be Zero */

Reserved: Must Be Zero */

Header select (return with data):

0 = no header;
1 = return header with data;
others reserved */

Color select (selects color to use when doing a
mono-color scan): 0 = default to Green; 1 =
scan using Red; 2 = scan using Green; 3 =
scan using Blue; others reserved */

Image data correction method: 0 = default to
normal; 1 = soft image; 2 = enhance (low);
3 = enhance (high); others reserved */
Threshold level, Red: 0 = default level */

Threshold level, Green: 0 = default level */

Threshold level, Blue: 0 = default level */
Sheet type: 0 = reflection;

1 = transparency */

Reserved bits: Must Be Zero */

Sheet density (transparency): 0 = normal; 1 =
light; 2 = dark; others reserved */

[1] The length in bytes of a single scan window descriptor. The first 48
bytes are defined in the American National Standard for Information
Systems, Small Computer Systems Interface - 2 (SCSI - 2), X3.131-199X
and the remaining bytes are vendor-specific. The specific structure
members used may depend on the scanner device.

2.5.2.2 The include Files Section

This section, which is the beginning of the cscan program, describes the
portion of the User Agent sample scanner program that lists the include
files for the program.

/% e

/* Include files needed for this program. */

#include <stdio.h>
#include <unistd.h>
#include <sys/file.h>

#include <sys/types.h>
#include <sys/ioctl.h>

#include <sys/uio.h>
#include <strings.h>
#include <ctype.h>
#include <math.h>
#include <io/common/iotypes>

#include <io/cam/cam.h>
#include <io/cam/dec_cam.h>
#include <io/cam/uagt.h>

/* CAM defines from the CAM document */
/* CAM defines for Digital CAM source files */
/* CAM defines for the UAgt driver #*/

#include <io/cam/scsi_all.h> /* CAM defines for ALL SCSI devices */
#include "cscan.h"

2-18 CAM User Agent Modules

/* Scanner structure definitions */

2.52.3 The CDB Setup Section

This section describes the portion of the User Agent sample scanner program
that defines the CDBs for the program.

/* The Define Window Parameters CDB (10 bytes).

typedef struct
u_char
u_char

u_char
u_char
u_char
u_char
u_char
u_char
u_char
u_char

{

opcode;
: 5
lun HECH

. .

~

~

.

~

o ee o
~

.

~

param_len2;
param_lenl;
param_len0;
control;

}SCAN_DEF_WIN_CDB;

/* The Define Window Parameters op code */
#define SCAN_DEF_WIN_OP
/* The Read (data or gamma table) CDB (10 bytes). */

typedef struct
u_char
u_char

u_char

u_char
u_char

u_char

u_char
u_char
u_char
u_char
}SCAN_READ_CDB;

{

opcode;

lun H
tran type;

: 8;
tran_idl;
tran_id2;

param_len2;
param_lenl;
param_len0;
control;

/* 24 hex */

/* 5 bits reserved */

/* logical unit number */

/* Reserved byte */

/* Reserved byte */

/* Reserved byte */

/* Reserved byte */

/* MSB parameter list length */ [i]

/* parameter list length */

/* LSB parameter list length */

/* The control byte */
0x24

/* 28 hex */

/* 5 bits reserved */

/* logical unit number */

/* transfer data type: */

/* 0=data, 3=gamma */ 2

/* Reserved byte */

/* MSB transfer identification */ [3

/* LSB trans id: */

/* 0 =data, 1/2/3= gamma */

/* MSB parameter list length */

/* parameter list length */

/* LSB parameter list length */

/* The control byte */

/* The Read (data or gamma table) op code */
#define SCAN_READ OP

0x28

[1] The parameter list length members specify the number of bytes sent
during the DATAOUT phase. The parameters are usually mode
parameters, diagnostic parameters, and log parameters that are sent to a
target. If set to O (zero), no data is to be transferred.

[2] The types of data that are to be read. The choices are: image data scan
lines or gamma correction table data.

[3] These two bytes are used with the transfer type byte to indicate that the
data to be read is image scan lines, O (zero), or one of the following types
of gamma correction table data: red, 1; green, 2; or blue, 3.

CAM User Agent Modules 2-19

2.5.2.4 The Definitions Section

This section describes the portion of the User Agent sample scanner program
that specifies the local definitions and initializes data.

/* e e */
/* Local defines */
#define SENSE_LEN18 /* max sense length from scanner */ [

/e e ——————_—————,— */
/* Initialized and uninitialized data. */

u_char sense[SENSE_LEN]; {2

This line defines a constant of 18 bytes for the length of the sense data
from the scanner.

[2 This line declares a character array, sense, with a size of 18 bytes as
defined by the SENSE_LEN constant.

2.5.25 The Main Program Section

This section describes the main program portion of the User Agent sample
scanner program.
/* e ———— g S */

/* The main code path. The CCB/CDB and UAGT_CAM CCB are set up for the
DEFINE WINDOW PARAMETERS and READ commands to the Bus/Target/LUN. */

UAGT_CAM CCB ua_ccb_sim rel; /* uagt structure */ [
/* for the RELEASE SIMQUE CCB */
CCB_RELSIM ccb_sim rel; /* RELEASE SIMQUE CCB */ [

UAGT_CAM CCB ua_ccb _reset_dev; /* uagt structure */ &)
/* for the RESET DEVICE CCB */

CCB_RESETDEV ccb_reset dev; /* RESET DEVICE CCB */ [4]
UAGT CAM CCB ua_ccb; /* uagt structure */ [l

/* for the SCSI I/0 CCB */
CCB_SCSIIO cchb; /* SCSI I/0 CCB */ [gl

main(argc, argv,envp)
int argc;

char *argv[]
char *envp]]

7
’

/* Local variables and structures */

extern void clear_mem(); @
extern void swap_short_store();
extern void swap_long store();

u_char id, targid, lun; /* from envir variable SCAN-NEXUS */ [g
char *cp;

int nexus;

int £d; /* unit number for the CAM open */ [9]
int od; /* unit number for the file open */ [0
char FileHead[200]; /* buffer for file header info */

int i, n;

u_char *bp; /* general usage byte pointer */

int retry_cnt; /* error retry counter */

2-20 CAM User Agent Modules

=]

c]

int reset_flag; /* flag to indicate reset tried */

double Xwid, Ylen; /* scan area in inches */ [11]
u_short WXYRes; /* variables for window calculations */

u_long WWwidth, WLength, WinPix, LineBytes, TotalBytes; [12
u_char WHdrSel; 13

SCAN_DEF_WIN_CDB *win; /* pointer for window def CDB */
SCAN_READ_CDB *read; /* pointer for read CDB */ [15
WINDOW_PARAM BLOCK Window; /* parameter block, window def */
u_char ReadData[400%12*3]; /* Max bytes/line */

u_char *RDRp, *RDGp, *RDBp; /* Red, Green, Blue pointers */
u_char WriteData[400%12%3]; /* Max bytes/line */

u_char *WDp; /* WriteData pointer */

This line declares a global data structure, ua_ccb_sim_rel, to be used
with the RELEASE SIM QUEUE CCB for the UAGT_CAM_IO ioctl
command.

This line declares a global data structure, ccb_sim rel, of the type
CCB_RELSIM, which is defined in the file
/usr/sys/include/io/cam/cam.h.

This line declares a global data structure, ua_ccb_reset_dev, to be
used for the BUS DEVICE RESET CCB for the UAGT_CAM_IO ioctl
command.

This line declares a global data structure, ccb_reset_dev, of the type
CCB_RESETDEV, which is defined in the file
/usr/sys/include/io/cam/cam.h.

This line declares a global data structure, ua_ccb, of the type
UAGT_CAM_CCB, which is defined in the file
/usr/sys/include/io/cam/uagt.h. This structure is copied
from user space into kernel space as part of the ioctl system call for
the UAGT_CAM_IO ioctl command.

This line declares a global data structure, ccb, of the type CCB_SCSIIO,
which is defined in the file /usr/sys/include/io/cam/cam.h.

These forward references declare routines that are used later in the
program. The routines are defined in Section 2.5.2.14.

The bus, target, and LUN are specified in octal digits in the SCAN-
NEXUS environment variable. The value for the LUN should be O
(zero).

The file descriptor for the User Agent driver returned by the open

system call, which executes in Section 2.5.2.7.

The file descriptor for the output file returned by the open system call,

which executes in Section 2.5.2.7.

[11] Real values to contain the X and Y dimensions of the scan window.

CAM User Agent Modules 2-21

Variables to hold calculated information about the scan window.

[13] Variable to hold the flag bytes indicating whether window header is to be
returned with the data. The value of the variable is stored in the HdrSel
member of the WINDOW_PARAM_BLOCK structure is set to 1. The
WINDOW_PARAM_BLOCK is defined in Section 2.5.2.1.

This line declares a pointer to the data structure SCAN_DEF_WIN_CDB,
which is defined in Section 2.5.2.3.

[15] This line declares a pointer to the data structure SCAN_READ_CDB,
which is defined in Section 2.5.2.3.

This line declares an uninitialized local data structure, Window, of the
type WINDOW_PARAM_BLOCK, which is defined in Section 2.5.2.1.

This line declares an array to contain a scan line of the maximum size
that can be read, which is 14,400 bytes. This array is used to read a scan
line from the scanner.

This line declares an array large enough to contain the maximum-size
scan line, which is 14,400 bytes. This array is used to write the scan line,
converted to 3-byte pixels, to the output file.

2.5.2.6 The Nexus Conversion Section

This section describes the portion of the User Agent sample scanner program
where the nexus information contained in the SCAN-NEXUS environment
variable is converted to the values for bus, target, and LUN.

/* Find the environment variable SCAN-NEXUS. If not found, return
error message. If found, convert the nexus information from the
variable to bus, target ID and LUN values. Return an error
message i1f any of the values are not octal digits. */

nexus = 0; /* Reset valid data flag */
for (i=0; envp[i] != NULL; i++)
{
cp = envp[il; [
if (strncmp(cp, "SCAN-NEXUS=",11) == 0)
/* Find environment variable */

{

nexus = -1; /* Set tentative flag */
cp += 11; /* Advance to data */
if (*cp < ‘0’ || *cp > '7') break; 2
id = (u_char)(*cp++) - (u_char)(’0');
if (*cp++ != ' ') break;
if (*cp < "0’ || *cp > '7') break;
targid = (u_char)(*cp++) - (u_char)('0’);
if (*cp++ != ' ') break;
if (*cp < ‘0’ || *cp > *7’) break;
lun = (u_char)(*cp) - (u_char)(’0");
nexus = 1; /* Set good data flag */
}
}
if (nexus == -1) [3

2-22 CAM User Agent Modules

{
printf("Invalid SCAN-NEXUS; set to octal digits ‘bus target lun’\n");

exit(1l);
}
if (nexus == 0) [

printf("Set environment variable SCAN-NEXUS to ’'bus target lun’
(octal\ digits)\n\n");
exit(1);
}
printf("Scanner nexus set to: bus %d, target %d, LUN %d\n\n",id, \

targid, lun); [

This section scans through all of the environment variables passed to the
program by the system, looking for the variable SCAN-NEXUS.

This section checks to make sure SCAN-NEXUS contains octal digits for
bus, target, and LUN.

This error message appears if the digits are not octal.
This error message appears if SCAN-NEXUS is not set.

BB B =

This message displays the values for bus, target, and LUN.

2.5.2.7 The Parameter Assignment Section

This section describes the portion of the User Agent sample scanner program
that assigns the parameters entered by the user on the command line to the
appropriate variables and opens the necessary files.

/* Make sure that the correct number of arguments are present.
If not, return an error message with usage information. */
if (arge !'=5) { [
printf("Usage is: cscan XYres Xwid Ylen out file\n");
printf(" XYres is integer pix/inch; Xwid & Ylen are real \
inches\n\n");
exit();
}

/* Convert the parameter information from the command line. */

WXYRes = atoi(argv([l]); /* X & Y resolution */
Xwid = atof(argv[2]); /* X width in inches */
Ylen = atof(argv[3]); /* Y length in inches */

/* Verify that the X & Y resolution is one of the legal values */

switch (WXYRes) 2
{
case 25:
case 150:
case 200:
case 300:
case 400:
break;
default:
printf("Illegal X & Y resolution; must be 25, 150, 200, \
300, 400\n");
exit(1l);

CAM User Agent Modules 2-23

}
/* Verify that the X width is positive and less than 11.69 inches */ [3]
if (Xwid < 0 || xwid > 11.69)

printf ("X width must be positive and less than 11.69 inches\n");
exit(1l);
}
/* Verify that the Y length is positive and less than 17.00 inches */

if (Ylen < 0 || Ylen > 17.00)

printf("Y length must be positive and less than 17.00 inches\n");
exit(l);
}
/* Open the output file ("truncating” it if it exists) and report */
/* any errors. */
if ((od = open(argv[4], O_WRONLY|O_CREAT|O_TRUNC, 0666)) < 0)
{
perror("Error on Output File Open");
exit(1l);
}
/* Open the User Agent driver and report any errors. */
if ((fd = open("/dev/cam", O_RDWR, 0)) < 0)
{
perror("Error on CAM UAgt Open");
exit(1);
}

The user enters the X and Y scan resolutions in pixels per inch, the width
(X) and length (Y) of the scan area in inches, and the name of the
output file on the command line.

[2] This section checks for the legal scan resolutions the user can enter.
[8] These two sections check that the user entered legal values for X and Y.
[4] These two sections open the User Agent driver and the output file.

2.5.2.8 The Data Structure Setup Section

This section describes the portion of the User Agent sample scanner program
that sets up the data structures for the XPT_REL_SIMQ and
XPT_RESET_DEV commands.

/* - Begin static setups of SIMQ Release and Device Reset structures - */
/* Set up the CCB for an XPT REL_SIMQ request. */
/* Set up the CAM header for the XPT REL SIMQ function. */

ccb_sim rel.cam ch.my_addr = (struct ccb_header *)&ccb_sim rel;
/* "Its" address */ [i
ccb_sim rel.cam ch.cam _ccb_len = sizeof(CCB_RELSIM);
/* a SIMQ release */
XPT_REL_SIMQ; /* the opcode */
id; /* selected bus */
targid; /* selected target */

ccb_sim rel.cam ch.cam func_code
ccb_sim rel.cam ch.cam path id
ccb_sim rel.cam ch.cam _target_id

2-24 CAM User Agent Modules

ccb_sim rel.cam ch.cam target_lun = lun;
/* The needed CAM flags are: CAM DIR NONE - No data will be transferred. */

ccb_sim rel.cam ch.cam_ flags
/* Set up the fields for the User Agent Ioctl call. */
ua_ccb_sim rel.uagt_ccb = (CCB_HEADER *)&ccb_sim rel;

uva_ccb_sim rel.uagt_ccblen
ua_ccb_sim rel.uagt_buffer

ua_ccb_sim rel.uagt_buflen =

ua_ccb_sim rel.uagt_snsbuf
ua_ccb_sim rel.uagt_snslen
ua_ccb _sim rel.uagt_cdb

ua_ccb_sim rel.uagt_cdblen

= CAM_DIR_NONE;

/* where
sizeof (CCB_RELSIM); /%

(u_char *)NULL;

0;

(u_char *)NULL; /*

0;

/*

(CDB_UN *)NULL; /*

0;

/*

/* Set up the CCB for an XPT RESET DEV request. */
/* Set up the CAM header for the XPT RESET DEV function. */

ccb_reset_dev.cam ch.my addr

ccb_reset_dev.cam ch.cam func_code

= (struct ccb_header *)&ccb_reset_dev;

/* selected lun */

/* no data */
/* no data */
no Autosense data
no Autosense data
CDB is in the CCB
CDB is in the CCB

the CCB is */ [2
bytes in CCB */

*/
*/
*/
*/

/* "Its" address */ [
ccb_reset_dev.cam ch.cam _ccb_len = sizeof (CCB_RESETDEV);

/*

ccb_reset dev.cam ch.cam path id = id; /*

ccb_reset_dev.cam ch.cam target_id = targid;
lun; /*

ccb_reset dev.cam ch.cam_target lun =
/* The needed CAM flags are: CAM DIR NONE - No data will be transferred. */
ccb_reset_dev.cam ch.cam flags = CAM DIR NONE;
/* Set up the fields for the User Agent Ioctl call. */

ua_ccb_reset dev.uagt_ccb = (CCB_HEADER *)&ccb_reset dev;
/* where the CCB is */ [
= sizeof (CCB_RESETDEV);

ua_ccb_reset_dev.uagt_ccblen

ua_ccb_reset_dev.uagt buffer = (u_char
ua_ccb reset_dev.uagt_buflen = 0;
ua_ccb reset_dev.uagt_snsbuf = (u_char
ua_ccb_reset_dev.uagt_snslen = 0;
ua_ccb_reset_dev.uagt_cdb = (CDB_UN
ua_ccb_reset_dev.uagt_cdblen = 0;

/* -- End of static setups of SIMQ Release

/*
*)NULL;
/*
/*
*)NULL;
/*
/*
*)NULL;
/*
/*

a SCSI I/0 CCB */

= XPT RESET DEV; /* the opcode

selected bus */

/* selected target */

selected lun */

bytes in CCB */

no data */
no data */

no Autosense data
no Autosense data

CDB is in the CCB
CDB is in the CCB

and Device Reset structures

[1] This section of code fills in some of the CCB_HEADER fields of the
CCB_RELSIM structure defined as ccb_sim_rel, for the
XPT_REL_SIMQ command. The structure was declared in Section

2.5.1.2.

[2 This section of code fills in the UAGT_CAM_CCB structure defined as
ua_ccb_sim rel, for the UAGT_CAM_IO ioctl command. The
structure was declared in Section 2.5.1.2.

[8] This section of code fills in some of the CCB_HEADER fields of the
CCB_RESETDEYV structure defined as ccb_reset_dev, for the
XPT_RESET_DEV command. The structure was declared in Section

2.5.1.2.

*/

*/
*/

*/
*/
= %/

CAM User Agent Modules 2-25

This section of code fills in the UAGT_CAM_IO structure defined as
ua_ccb_reset_dev, for the UAGT_CAM_IO ioctl command. The
structure was declared in Section 2.5.1.2.

2.5.2.9 The Window Parameters Setup Section

This section describes the portion of the User Agent sample inquiry
application program that fills in the scan window parameters and sends a
SCSI SET WINDOW PARAMETERS command to the scanner.

/* Fill in window parameters for scanner and send DEFINE WINDOW */
/* PARAMETERS command to the scanner. Note that the X&Y resolution */
/* and the X width and Y length are specified on the command line. */

WWidth = Xwid* (double)WXYRes; /* X width inches to pixels */ [i]
WLength = Ylen*(double)WXYRes; /* Y length inches to lines */

WHdrSel = 0; /* Don’t return header */
#ifdef NO_HEADER_FOR_NOW

WHdrSel = 1; /* Return header w. data */
#endif

WinPix = WWidth*WLength; /* Pixels in window */ [

LineBytes = WWidth*3; /* Full color, 8-bit pixels */

TotalBytes = WHdrSel*256 + WinPix*3; /% Full color, 8-bit pixels */

printf("Window parameters:\n"); [l
printf(" Width = %6d pixels/line, Length = %6d lines;
Total = %10d pixels\n",
WWidth, WLength, WinPix);
printf(" Bytes/line = %6d; Total bytes/image = %$10d\n", LineBytes,
TotalBytes) ;

/* Fill in window parameters for scanner and
send DEFINE WINDOW PARAMETERS */
/* command to the scanner. */

clear mem(&Window, sizeof(Window)); /* Clear whole DWP block */ [4
swap_short_store(&Window.WDBLen[0], 0x2F); /* REQUIRED length */ 5
swap_short_ store(&Window.XRes[0], WXYRes);

/* X and Y MUST BE THE SAME */
swap_short store(&Window.YRes[0], WXYRes);

/* X and Y MUST BE THE SAME */
/* Upper Left X & Y left at zero */
swap_long store(&Window.Width[0], WWidth);
swap long_store(&Window.Length[0], WLength);

Window.ImgTyp = 5; /* Multi-level full color */ [g
Window.PixBits = 8; /* 8-bit pixels */ [l
Window.PadTyp = 1; /* REQUIRED value */ [B]
Window.RevImg = 1; /* Reverse == 0,0,0 = black */ [
Window.HdrSel = WHdrSel; /* Set return header control */

/* All other values left at zero */
/* Display current contents of bytes in window parameter block */ [11]

printf("Window Parameter block (in hex):\n");
for(i=0, bp=(u_char *)&Window; i < sizeof(Window); i++, bp++) {
printf("%.2x ", *bp);
if (i == 7) printf("\n");
if (i == 8+21) printf("\n");

printf("\n\n");

2-26 CAM User Agent Modules

e N B

]

This section converts the X and Y values entered from the command line
in inches into pixels. The value of WXYRes is an int; however, the
values of Xwid and Ylen are floating point values. To perform the
calculations to determine the values of WWwidth, the number of pixels per
line, and WLength, the number of scan lines, the value of WXYRes must
be converted to a real number. For example, if the value entered for X
were 4.5 and the resolution selected were 300, WWwidth would equal
1,350 pixels per line. If the value entered for ¥ were 3.5, the result
would be 1,050 scan lines.

This section of the program calculates the number of bytes in the scan
window based on the total number of pixels. For example, the
calculation using the previous figures would yield 1,417,500 pixels as the
value of WinPix. To calculate the number of bytes per line, Wwidth is
multiplied by 3, which is the number of bytes per pixel. The total
number of bytes in the scan window, using the figures in the example,
would be 4,252,500 bytes.

These lines display the results of the calculations.

This line calls the clear_mem function to set the local
WINDOW_PARAM_BLOCK structure, Window, to 0’s (zeroes) in
preparation for storing the byte values in swapped order. The
WINDOW_PARAM_BLOCK structure was defined in Section 2.5.2.1.
The clear mem function is defined in Section 2.5.2.14.

This section of code calls the functions that put the bytes of short and
long integer values into big-endian storage. The functions are defined in
Section 2.5.2.14.

This line sets the image type for the scanner. The setting of 5 means
multilevel, full color.

This line sets the number of bits per pixel. The setting of 8 means 256
shades.

This line sets the padding type for nonbyte pixels. The setting of 1
means pad with O (zero).

This line sets the reverse image. The setting of 1 means white pixels are
indicated by 1 (one) and black pixels are indicated by 0 (zero).

This line sets the selection for returning a header with the data. The

setting of WHdrSel was set to O (do not include the header).

[11] This section displays the contents of the bytes in the window parameter

block.

CAM User Agent Modules 2-27

2.5.2.10 CCB Setup for the DEFINE WINDOW Command

This section describes the portion of the User Agent sample scanner program
where the fields of the CCB_HEADER needed for an XPT_SCSI_IO request

are filled in.
/%

/%
ccb.cam ch.my_ addr

ccb.cam ch.cam ccb

ccb.cam _ch.cam_fun
ccb.cam _ch.cam pat
ccb.cam _ch.cam tar
ccb.cam ch.cam tar

/* The needed CAM flag

ccb.cam ch.cam fla

/*
*/

ccb.cam_data ptr

command.

ccb.cam dxfer len
ccbh.cam_timeout
ccb.cam _cdb_len

ccb.cam_sense ptr
ccb.cam_sense_len

/* Use a local pointer
PARAMETERS CDB. *

(SCAN_DEF_WI

win
clear_mem(win,size

lun;

win->opcode
win->lun
win->param len0
win->param lenl
win->param_len2
win->control

/* Set up the fields £

ua_ccb.uagt_ccb =

ua_ccb.uagt_ccblen
ua_ccb.uagt_buffer

ua_ccb.uagt_buflen

ua_ccb.uagt_snsbuf =

ua_ccb.uagt_snslen
ua_ccb.uagt_cdb

ua_ccb.uagt_cdblen

2-28 CAM User Agent Modules

Set up the CCB for an XPT _SCSI_IO request.
PARAMETERS command will be sent to the device.

Set up the CAM header for the XPT_SCSI_IO function. */

The DEFINE WINDOW
*/

(struct ccb_header *)&ccb;
/* "Its" address */ [i

len = sizeof (CCB_SCSIIO); /* a SCSI I/0 CCB */
c_code = XPT_SCSI_IO; /* the opcode */
h_id = id; /* selected bus */
get_id = targid; /* selected target */

get lun = lun; /* selected lun */

s are: CAM DIR OUT -
The data will go to the target.

CAM _DIR_OUT;

*/

gs

Set up the rest of the CCB for the DEFINE WINDOW PARAMETERS

(u_char *)&Window;
/* where the parameters are */ [
sizeof (Window); /* how much data */ [

CAM TIME DEFAULT; /* use the default timeout */ [@

sizeof (SCAN_DEF_WIN CDB);

/* how many bytes for cdb */ [l

= &sense[0]; /* Autosense data area */
= SENSE_LEN; /* Autosense data length */
to access the fields in the DEFINE WINDOW

/
N_CDB *)&ccb.cam_cdb_io.cam cdb_bytes[0]; [6]

of (SCAN_DEF_WIN_CDB));
/* clear all bits in CDB */ [

SCAN_DEF_WIN_OP; /* define window command */
/* lun on target */
= sizeof(Window); /* for the buffer space */
= 0;
= 0;
= 0; /* no control flags */

or the User Agent Ioctl call. */ [g]

(CCB_HEADER *)&ccb;

/* where the CCB is */
sizeof (CCB_SCSIIO);

/* how many bytes to gather */
(u_char *)&Window;

/* where the parameters are */
sizeof(Window);

/* how much data */ [i3
&sense[0]; /* Autosense data area */
= SENSE LEN; /* Autosense data length */

(CDB_UN *)NULL;
/*
/*

the CCB */ [15
the CCB */

CDB is in

0; CDB is in

This section of code fills in some of the CCB_HEADER fields of the
SCSI I/0O CCB structure defined as ccb, for processing by the XPT layer.
The structure was declared in Section 2.5.1.2.

This line assigns the cam_data_ptr member of the local
CCB_SCSIIO data structure, ccb, to the address of the Window
parameter block. The Window parameter block structure was filled in
Section 2.5.2.9.

This line sets the data transfer length to the length of the Window
structure.

This line specifies using the default timeout, which is the value assigned
to the CAM_TIME_DEFAULT constant. This constant is set in the
/usr/sys/include/io/cam/cam.h file to indicate that the SIM
layer’s default timeout is to be used. The current value of the SIM
layer’s default timeout is five seconds.

This line sets the length of the cam_cdblen member to the length of
the SCAN_DEF_WIN_CDB structure.

This line assigns the win pointer, which is type
SCAN_DEF_WIN_CDB, to the address of the cam_cdb_bytes
member of the CDB_UN union. This union is defined in
/usr/sys/include/io/cam/cam.h as the cam_cdb_io member
of the SCSI I/O CCB structure.

This line calls the clear mem function to clear the local
SCAN_DEF_WIN_CDB structure in preparation for storing the values
needed for the DEFINE WINDOW operation. The
SCAN_DEF_WIN_CDB structure is defined in Section 2.5.2.3. The
clear_mem function is defined in Section 2.5.2.14.

These lines use the win pointer to access the bytes of the
cam_cdb_bytes array as though it is a SCAN_DEF_WIN_CDB
structure. The SCAN_DEF_WIN_CDB structure is defined in Section
2.5.2.3.

This section of the code assigns the program address of the CCB into the
CCB pointer member and the program address of the Window parameter
block into the data pointer member of the ua_ccb structure of type
UAGT_CAM_CCSB, as defined in the
/usr/sys/include/io/cam/uagt.h file. This structure is copied
from user space into kernel space as part of the ioctl system call that is
executed in Section 2.5.2.11. This structure was declared in Section
2.5.23.

This line initializes the uagt ccb member of the ua ccb structure

with the address of the local CCB_SCSIIO structure, ccb.

CAM User Agent Modules 2-29

[11] This line sets the length of the uagt ccblen member to the length of
the SCSI I/O CCB structure that will be used for this call.

[12] This line initializes the uagt_ buffer member with the user space
address of the Window parameter block.

3| This line initializes the uagt_buflen member with the number of
bytes in the Window parameter block.

These two lines reflect that the autosense features are turned on in the
CAM flags.

These two lines reflect that the Command Descriptor Block information is
in the SCSI I/O CCB structure filled in Section 2.5.1.2.

2.5.2.11 The Error Checking Section

This section describes the portion of the User Agent sample scanner program
that attempts to set the window parameters and recover from possible scanner
errors.

/* Send the CCB to the CAM subsystem using the User Agent driver.
If an error occurs, report it and attempt corrective action. */

retry_cnt = 10; /* initialize retry counter */
reset_flag = 0; /* initialize reset flag */
retry SWP:

printf("Attempt to Set Window Parameters\n");
if(ioctl(fd, UAGT_CAM IO, (caddr_t)s&ua_ccb) < 0) [

{
perror("Error on CAM UAgt Ioctl to Define Window Parameters");
close(£fd); /* close the CAM file */
exit(1l);
}
/* If the CCB did not complete successfully then report the error. */
if ((ccb.cam ch.cam status & CAM STATUS_MASK) != CAM REQ CMP)
{
print_ccb_status("CAM UAgt Define Window Ioctl",
&(ccb.cam ch)); /* report the error values */

printf(" cam scsi_status = 0x%.2X\n", ccb.cam scsi status); [2
/* 1st check if the SIM Queue is frozen. If it is, release it. */

if (ccb.cam_ch.cam_status & CAM _SIM QFRZN) {
printf("Attempt to release SIM Queue\n");
if(ioctl(£fd, UAGT_CAM IO, (caddr_t)&ua_ccb_sim rel) < 0) { @l
perror ("Error on CAM UAgt Release Sim Queue Ioctl");
close(£fd); /* close the CAM file */
exit(1l);
}

/* If the Release Sim Q CCB did not complete successfully then
report the error and exit. */

print_ccb_status("CAM UAgt Release SIM Queue Ioctl",
&(ccb_sim rel.cam ch)); /* report the error values */

if (ccb_sim rel.cam ch.cam status != CAM REQ CMP) {
print_ccb status("CAM UAgt Release SIM Queue Ioctl",
&(ccb_sim rel.cam ch)); /* report the error values */ [

2—-30 CAM User Agent Modules

close(£fd); /* close the CAM file ¥/
exit(1l);

}
/* Next, if we haven’t done one yet, attempt a device reset to clear any
device error. */
if (reset flag++ == 0)
{
printf("Attempt to Reset the scanner\n");
if(ioctl(fd, UAGT_CAM_ IO, (caddr_t)&ua_ccb_reset dev) < 0) { [
perror("Error on CAM UAgt Device Reset Ioctl");
close(£fd); /* close the CAM file */
exit(1l);
}
/* If the Reset Device CCB did not complete successfully then
report the error and exit. */

print_ccb_status("CAM UAgt Device Reset Ioctl",
&(ccb_reset _dev.cam ch));
/* report the error values */

if (ccb_reset_dev.cam_ch.cam status != CAM REQ CMP) { [g]
print_ccb_status("CAM UAgt Device Reset Ioctl",
&(ccb_reset_dev.cam ch));

/* report the error values */
close(fd); /* close the CAM file */
exit(1l);

}
/* Wait the 28 seconds that the scanner takes to come back to life
after a reset; no use to do anything else. */
printf("Scanner was reset.
Wait 28 Seconds for it to recover...\n");

sleep(28);

}
/* Last, count if all retries are used up. If not, try the SWP again.

If so, give up and exit. */

printf("Retry counter value = 2%d\n",retry cnt);
if (retry_cnt-- > 0) goto retry SWP;
close(£fd); /* close the CAM file */
exit(1l);
}
else

{
/* Output status information on success for debugging. */

print_ccb_status("CAM UAgt SET WINDOW PARAMETERS Ioctl",
&(ccb.cam ch)); /* report the error values */
printf(" cam scsi_status = 0x%.2X\n", ccb.cam scsi_status);
printf("\nWindow parameter set up successfull\n");
}
/* Output header information (magic number, informational comment,
X and Y dimensions and maximum pixel values) to the data file
and display it for the user. */
sprintf(FileHead, "P6\n\# X&Y resolution = %d dpi, %d pixels/line, \
¢d lines", [@
WXYRes,WWidth,WLength);
.sprintf(strchr(FileHead,NULL),"\n%d %d 255\n",WWidth,WLength);
write(od,FileHead,strlen(FileHead));

CAM User Agent Modules 2-31

printf("File header data --\n%s\n",FileHead);

[1] This section of code attempts to set the window parameters. This line
passes the local UAGT_CAM_CCB structure, ua_ccb, to the User
Agent driver, using the 1octl system call. The arguments passed are
the file descriptor returned by the open system call; the User Agent
ioctl command, UAGT_CAM_IO, which is defined in the
/usr/sys/include/io/cam/uagt.h file; and the contents of the
ua_ccb structure. The User Agent driver copies in the SCSI /O CCB
and sends it to the XPT layer. When the I/O completes, the User Agent
returns to the application program, returning status within the ua_ccb
structure.

[2] If the CAM status is anything other than CAM_REQ_CMP, indicating
the request completed, an error message is printed indicating the CAM
status returned.

[8] This section of code attempts to clear the SIM queue if it is frozen. This
line passes the local UAGT_CAM_CCB structure, ua_ccb_sim rel,
to the User Agent driver, using the ioctl system call. The arguments
passed are the file descriptor returned by the open system call; the User
Agent ioctl command, UAGT_CAM_IO, which is defined in the
/usr/sys/include/io/cam/uagt.h file; and the contents of the
ua_ccb_sim_rel structure. The User Agent driver copies in the SCSI
I/0 CCB and sends it to the XPT layer. When the operation completes,
the User Agent returns to the application program, returning status within
the ua_ccb structure.

[4] If the CAM status is anything other than CAM_REQ_CMP, indicating
the request completed, an error message is printed indicating the CAM
status returned. An error message is displayed and the program exits.

[8] This section of code attempts a device reset. This line passes the local
UAGT_CAM_CCB structure, ua_ccb_reset_deuv, to the User Agent
driver, using the ioctl system call. The arguments passed are: the file
descriptor returned by the open system call; the User Agent ioctl
command, UAGT_CAM_IO, which is defined in the
/usr/sys/include/io/cam/uagt.h file; and the contents of the
ua_ccb_reset_dev structure. The User Agent driver copies in the
SCSI 1/0 CCB and sends it to the XPT layer. When the operation
completes, the User Agent returns to the application program, returning
status within the ua_ccb structure.

[6] If the CAM status is anything other than CAM_REQ_CMP, indicating
the request completed, an error message is printed indicating the CAM
status returned. An error message is displayed and the program exits.

If the scan window parameters were set up successfully, a portable
pixmap P6 file is created. This section displays the X and Y resolutions

2-32 CAM User Agent Modules

in dots per inch, pixels per line, and number of lines, taking the values
that were generated from the code in Section 2.5.2.9.

2.5.2.12 CCB Setup for the READ Command

This section describes the portion of the User Agent sample scanner
application program that sets up the CCBs for a READ command.

/* Set up the CCB for an XPT_SCSI_IO request. The READ (data) command
will be sent to the device. */

/* Set up the CAM header for the XPT_SCSI_IO function. */

ccb.cam ch.my_addr = (struct ccb_header *)&cch;
/* "Its" address */ [l
ccb.cam _ch.cam_ccb_len = sizeof(CCB_SCSIIO); /* a SCSI I/0 CCB */

ccb.cam_ch.cam_func_code = XPT_SCSI_IO; /* the opcode */
ccb.cam_ch.cam path_id = id; /* selected bus */
ccb.cam _ch.cam target id = targid; /* selected target */
ccb.cam_ch.cam_target lun = lun; /* selected lun */

/* The needed CAM flags are: CAM DIR _IN - The data will come from
the target. */

ccb.cam_ch.cam _flags = CAM DIR IN;
/* Set up the rest of the CCB for the READ command. */

ccb.cam data _ptr = (u_char *)ReadData; /* where the data goes */ [2
ccb.cam_dxfer len = LineBytes; /* how much data */
ccb.cam_timeout = 100; /* use timeout of 100Sec */

ccb.cam_cdb_len = sizeof(SCAN_READ CDB);

/* how many bytes for read */ [3|
ccb.cam_sense ptr = &sense[0]; /* Autosense data area */
ccb.cam _sense len = SENSE_LEN; /* Autosense data length */

/* Use a local pointer to access the fields in the DEFINE WINDOW
PARAMETERS CDB. */

read = (SCAN_READ CDB *)&ccb.cam cdb_io.cam cdb bytes[0]; [
clear_mem(read,sizeof(SCAN_READ_CDB)); /* clear all bits in CDB */ [§

read->opcode = SCAN_READ OP; /* define window command */
read->lun = lun; /* lun on target */
read->param_len0 = LineBytes&255; /* for the buffer space */

read->param lenl = (LineBytes>>8)&255;
read->param_len2 = (LineBytes>>16)&255;
read->control = 0; /* no control flags */

/* Set up the fields for the User Agent Ioctl call. */

ua_ccb.uagt_ccb = (CCB_HEADER *)&ccb; /* where the CCB is */ [g]
ua_ccb.uagt_ccblen = sizeof(CCB_SCSIIO);
/* how many bytes to pull in */ [

ua_ccb.uagt_buffer = ReadData; /* where the data goes */ [g
ua_ccb.uagt_buflen = LineBytes; /* how much data */ [9|
ua_ccb.uagt_snsbuf = &sense[0]; /* Autosense data area */ [0
ua_ccb.uagt_snslen = SENSE_LEN; /* Autosense data length */
ua_ccb.uagt_cdb = (CDB_UN *)NULL; /* CDB is in the CCB */
ua_ccb.uagt_cdblen = 0; /* CDB is in the CCB */

n = TotalBytes + strlen(FileHead);

printf("Total bytes in file = %$12d.\n", n);

printf("\nRead data from scanner and write to file\n");

CAM User Agent Modules 2-33

[l This section of code fills in some of the CCB_HEADER fields of the
SCSI I/O CCB structure defined as ccb, for processing by the XPT layer.
The structure was declared in Section 2.5.1.2.

[@ This line sets the cam_data_ptr to the address of the ReadData
array defined in Section 2.5.1.2.

[8] This line sets the data transfer length to the length of the
SCAN_READ_CDB structure.

[4] This line sets the read pointer, which is type SCAN_READ_CDB, to
the address of the cam_cdb_1en member of the CDB_UN union. This
union is defined in /usr/sys/include/io/cam/cam.h as the
cam_cdb_io member of the SCSI I/O CCB structure.

[5] This line calls the clear_mem function to clear the local
SCAN_READ_CDB structure, read, in preparation for storing the
values needed for the READ operation. The SCAN_READ_CDB
structure was defined in Section 2.5.2.3. The clear mem function is
defined in Section 2.5.2.14.

[6] These lines use the read pointer to access the bytes of the
cam_cdb_bytes array as though they are in a SCAN_DEF_WIN_CDB
structure. The SCAN_READ_CDB structure is defined in Section
2.5.2.3.

This line sets the length of the uagt _ccblen member to the length of
the SCSI I/O CCB structure that will be used for this call.

This line sets the uagt_buffer member of the ua_ccb structure.

© L N

This line sets the size of the data buffer to the number of bytes contained
in the buffer pointed to by the cam _data_ ptr member of the ccb
structure.

These two lines reflect that the autosense features are turned on in the
CAM flags.

[11] These two lines reflect that the Command Descriptor Block information is
in the SCSI I/O CCB structure filled in Section 2.5.1.2.

2.5.2.13 The Read and Write Loop Section

This section describes the portion of the program where the data is read,
reformatted, and placed in the output buffer.

2-34 CAM User Agent Modules

[* kxkkkkkkkkkkxkkxkx% Beginning of read/write 1loop **xkkkkkdkkkkkkkkkx %/
for (i=0; i<WLength; i++) {

printf (" Read scanner line number %8d\r",i);
fflush(stdout); [1]

/* Send the CCB to the CAM subsystem via the User Agent driver,
and report any errors. */

if(ioctl(fd, UAGT_CAM IO, (caddr_t)&ua_ccb) < 0) [2

{
perror ("\nError on CAM UAgt Ioctl to Read data line");
close(£fd); /* close the CAM file */
exit(1l);

}

/* If the CCB completed successfully then print out the data read,
if not report the error. */

if (ccb.cam ch.cam status != CAM REQ CMP)
{
printf("\n");
print_ccb_status("CAM UAgt Read data line Ioctl",

&(ccb.cam ch)); /* report the error values */
printf(" cam scsi_status = 0x%.2X\n", ccb.cam _scsi_status);
close(fd); /* close the CAM file */
exit(1l);

}
else

{
#ifdef CUT_FOR NOW
printf(" Data line read successfully\n");
#endif

/* Re-format the data from blocks of R, G and B data to tuples
of (R,G,B) data for the data file. Set up pointers to the
beginning of each of the blocks of the Red, the Green and the
Blue data bytes and another pointer to the output buffer.
Then loop, collecting one each of Red, Green and Blue,
putting each into the output data buffer. */ [3

RDRp = ReadData; /* Red bytes are first */
RDGp = RDRp + WWidth; /* Green bytes are next */
RDBp = RDGp + Wwidth; /* Blue bytes are last */
WDp = WriteData;
for (n = 0 ; n < WWidth; n++)
{
*WDp++ = *RDRp++;
*WDp++ = *RDGp++;
*WDp++ = *RDBp++;
}
/* Now write the re-formatted data to the output file. */

write(od,WriteData,LineBytes); /* write data to file */
}

} /% dxEkxxkkxxkkkxxkkx*x End of read/write loop **kkkkkkkkkkkxkkk x/
printf("\nSuccessful read and write to file\n");
close(fd); /* close the CAM file */
close(od); /* close the output file */

[1] This line calls the standard C I/O function, £f1lush, to force the scan
line number to the user’s display.

CAM User Agent Modules 2—-35

[2] This section of code attempts to read a scan line. This line passes the
local UAGT_CAM_CCB structure, ua_ccb, to the User Agent driver,
using the ioctl system call. The arguments passed are the file
descriptor returned by the open system call; the User Agent ioctl
command, UAGT_CAM_IO, which is defined in the
/usr/sys/include/io/cam/uagt.h file; and the contents of the
ua_ccb structure. The User Agent driver copies in the SCSI /O CCB
and sends it to the XPT layer. When the I/O completes, the User Agent
returns to the application program, returning status within the ua_ccb
structure.

[8] The scan line read in contains all the red bytes, then all the green bytes,
then all the blue bytes, in sequence. This section of code reformats the
bytes into pixels for the output file by placing a red byte, then a green
byte, then a blue byte together on the output file scan line.

2.5.2.14 The Local Function Definition Section

This section describes the portion of the User Agent sample scanner program
that defines functions used within the program.

/* Local routines and data structure to report in text and Hex form the

returned CAM status. */
struct cam_statustable { [l
u_char cam_status;
caddr_t status_msg;
} cam_statustable[] = {

2-36 CAM User Agent Modules

{ CAM_REQ_INPROG, "CCB request is in progress"” },
{ CAM REQ CMP , "CCB request completed w/out error" },
{ CAM_REQ ABORTED, "CCB request aborted by the host" },
{ CAM UA_ABORT, "Unable to Abort CCB request"” }r
{ CAM | REQ CMP_ERR, "CCB request completed with an err" },
{ CAM BUSY, "CAM subsystem is busy" Y
{ CAM_REQ INVALID, "CCB request is invalid" }r
{ CAM PATH_INVALID, "Bus ID supplied is invalid" }r
{ CAM DEV_NOT_THERE, "Device not installed/there" ¥,
{ CAM_UA_TERMIO, "Unable to Terminate I/O CCB req" Y
{ CAM_SEL_TIMEOUT, "Target selection timeout™” 3},
{ CAM CMD_TIMEOUT, "Command timeout” Y}

{ CAM MSG_REJECT REC, "Reject received” Y

{ CAM SCSI BUS_RESET, "Bus reset sent/received" },
{ CAM_UNCOR_PARITY, "Parity error occurred" },
{ CAM_AUTOSENSE_FAIL, "Request sense cmd fail" Y

{ CAM _NO _HBA, "No HBA detected Error" }r
{ CAM DATA RUN_ERR, "Overrun/underrun error" }

{ CAM~UNEXP_BUSFREE, "BUS free" }r

{ CAM_SEQUENCE_FAIL, "Bus phase sequence failure" }
{ CAM CCB_LEN_ERR, "CCB length supplied is inadequate" },
{ CAM PROVIDE _FAIL, "To provide requ. capability" Y
{ CAM_BDR_SENT, "A SCSI BDR msg was sent to target" },
{ CAM_REQ_TERMIO, "CCB request terminated by the host" },
{ CAM _LUN_INVALID, "LUN supplied is invalid" Y,

{ CAM_TID INVALID, "Target ID supplied is invalid"},

{ CAM _FUNC_NOTAVAIL, "Requested function is not available" },
{ CAM NO_NEXUS, "Nexus is not established"” }r

{ CAM IID INVALID, "The initiator ID is invalid" },
{ CAM_CDB_RECVD, "The SCSI CDB has been received" Y},
{ CAM_SCSI_BUSY, "SCSI bus busy" }

}i

int cam_statusentrys = sizeof(cam_statustable) /
sizeof (cam_statustable[0]);

char * camstatus(cam status)

register u_char cam status;

{
register struct cam statustable *cst = cam statustable;
register entrys;
for(entrys = 0; entrys < cam_statusentrys; cst++) {
if(cst->cam _status == cam status) {
return(cst->status_msg);
}
}
return("Unknown CAM Status");
}

void print _ccb_status(id_string,cp) @
char *id_string;
CCB_HEADER *cp;

{
register i;
printf(“"Status from %s0,id string);
printf(" cam status = 0x%.2X (%s%s%s)0, cp->cam_status,
((cp->cam_; status & CAM AUTOSNS_VALID) ? "AutoSns Valid-" : ""),
((cp->cam_status & CAM SIM QFRZN) ? "SIM Q Frozen-" : ""),
camstatus(Cp->can_| status & CAM STATUS MASK));
if (cp->cam_status & CAM AUTOSNS_VALID) {
prlntf("AutoSense Data (in hex):0);
for(i=0; i < SENSE_LEN; i++)
printf("%.2X ", sense[i]);
printf("0);
}
fflush(stdout);
}
void clear_mem(bp,n) /%* Clear n bytes of memory beginning at bp */ [
u_char *bp;
int n;
{
register 1i;
register u_char *ptr;
for(i=0, ptr=bp; i<n; i++, ptr++) *ptr = 0;
}

void swap_short_store(bp,val)

/* Store short into byte-reversed storage */ [4|
u_char *bp;
u_short val;

{
u_short temp;
register u_char *ptr;
ptr = bp; /* Copy pointer */
(bp++) = (u_char)(val>>8); / Store high byte first */
bp = (u_char)val; / Then store low byte */
}

void swap_long store(bp,val)
/* Store long into byte-reversed storage */ [
u_char *bp;

CAM User Agent Modules 2-37

u_long val;

{
*(bp++)
*(bp++)
* (bpt++)
*bp

(u_char)(val>>24); /* Store high byte first */
(u_char) (val>>16);

(u_char) (val>>8);

(u_char)val; /* Store low byte last */

This function is described in Section 2.5.1.9.
This function prints out the CCB status.

BN =

This function clears out all the bits in an area of memory, such as a
structure or an array, to be sure all are set to O (zero) and that there is no
extraneous data before executing a SCSI/CAM command.

B

This function puts the bytes of a short (16-bit) integer value into big-
endian storage to conform with SCSI byte ordering.

@

This function puts the bytes of a long (32-bit) integer value into byte-
reversed storage to conform with SCSI byte ordering.

2-38 CAM User Agent Modules

S/CA Common Modules 3

This chapter describes the common data structures, macros, and routines
provided by Digital for SCSI/CAM peripheral device driver writers. These
data structures, macros, and routines are used by the generic SCSI/CAM
peripheral device driver routines described in Chapter 4.

Using the common and generic routines helps ensure that your SCS/CAM
peripheral device drivers are consistent with the SCSI/CAM Architecture.
See Chapter 11 if you plan to define your own SCSI/CAM peripheral device
drivers. See Chapter 12 for information about the SCSI/CAM special VO
interface to process special SCSI I/O commands.

3.1 Common SCSI Device Driver Data Structures

3.1.1

This section describes the following SCSI/CAM peripheral common data
structures:

*» PDRV_UNIT_ELEM, the Peripheral Device Unit Table

* PDRV_DEVICE, the Peripheral Device Structure

* DEV_DESC, the Device Descriptor Structure

» MODESEL_TBL, the Mode Select Table Structure

» DENSITY_TBL, the Density Table Structure

* PDRV_WS, the SCSI/CAM Peripheral Device Driver Working Set
Structure

The descriptions provide information only for those members of a data
structure that a SCSI/CAM device driver writer needs to understand.

Peripheral Device Unit Table

The Peripheral Device Unit Table is an array of SCSI/CAM peripheral device
unit elements. The size of the array is the maximum number of possible
devices, which is determined by the maximum number of SCSI controllers
allowed for the system.

3.1.2

The structure is allocated statically and is defined as follows:

typedef struct pdrv_unit_elem {
PDRV_DEVICE *pu device;

/* Pointer to peripheral device structure
u_short pu_opens; /* Total number of opens against unit
u_short pu_config; /* Indicates whether the device type

/* configured at this address
u_char pu type; /* Device type - byte 0 from inquiry data
PDRV_UNIT ELEM;

The pu_device field is filled in with a pointer to a CAM-allocated

*/
*/
*/
*/
*/

peripher_al SCSI device (PDRV_DEVICE) structure when the first call to the

ccmn_open_unit routine is issued for a SCSI device that exists.

Peripheral Device Structure
A SCSI/CAM peripheral device structure, PDRV_DEVICE, is allocated for

each SCSI device that exists in the system. This structure contains the queue

header structure for the SCSI/CAM peripheral device driver CCB request
queue. It also contains the Inquiry data obtained from a GET DEVICE
TYPE CCB. Table 3-1 lists the members of the PDRV_DEVICE structure

that a SCSI/CAM peripheral device driver writer using the common routines

provided by Digital must use. Chapter 11 shows the complete structure for
those driver writers who are not using the common routines.

Table 3-1: Members of the PDRV_DEVICE Structure

Member Name Data Type Description

pd_dev dev_t The major/minor device number
pair that identifies the bus number,
target ID, and LUN associated
with this SCSI device. Passed to
the common open routine.

pd_bus u_char SCSI target’s bus controller
number.
pd_target u_char SCSI target’s ID number.
pd_lun u_char SCSI target’s logical unit number.
pd_flags u_long May be used to indicate the state
of a SCSI device driver.
pd_state u_char May be used for recovery.
pd_abort_cnt u_char May be used for recovery.
pd_dev_inq[INQLEN] u_char Inquiry data obtained from issuing
a GET DEVICE TYPE CCB.

3-2 S/CA Common Modules

3.1.2.1

Table 3-1: (continued)

Member Name Data Type Description

*pd_dev_desc DEV_DESC Pointer to the SCSI device
descriptor.

pd_specific caddr_t Pointer to device-specific
information.

pd_spec_size u_long Size of device-specific information
structure.

*(pd_recov_hand)() void Recovery handler.

pd_lk device lock t SMP lock for the device.

The pd_specific field is filled in with a pointer to an allocated structure
that contains device-specific information.

The pd_dev Member

The major/minor device number pair that identifies the bus number, target
ID, and LUN associated with this SCSI device.

3.1.2.2 The pd_spec_size Member

3.1.3

The size, in bytes, of the device-specific information structure passed from
the SCSI device driver to the common open routine.

Device Descriptor Structure

There is a read-only SCSI device descriptor structure, DEV_DESC,
defined for each device supported by Digital. A user may supply a new
DEV_DESC structure by adding it to /usr/sys/data/cam_data.c and
relinking the kernel. The DEV_DESC structure follows:

typedef struct dev_desc {
u_char dd_pv_name[IDSTRING SIZE];
/* Product ID and vendor string from */
/* Inquiry data */
u_char dd_length;
/* Length of dd_pv_name string */
u_char dd _dev_name[DEV_NAME SIZE];
/* Device name string - see defines */
/* in devio.h */
U32 dd_device_type;
/* Bits 0 - 23 contain the device */
/* class, bits 24-31 contain the */
/* SCSI device type */
struct pt_info *dd def partition;

S/CA Common Modules 3—-3

3.1.4

/* Default partition sizes - disks */
U32 dd_block_size; :
/* Block/sector size */
u32 dd_max_record;
/* Maximum transfer size in bytes */
/* allowed for the device */
DENSITY TBL *dd_density tbl;
/* Pointer to density table - tapes */
MODESEL TBL *dd_modesel_ tbl;
/* Mode select table pointer - used */
/* on open and recovery */
U3z dd_flags;
/* Option flags (bbr, etc) */

u32 dd_scsi_optcmds;
/* Optional commands supported */
U32 dd_ready_time;

/* Time in seconds for powerup dev ready */

u_short dd_que_ depth;

/* Device queue depth for devices */

/* which support command queueing */
u_char dd_valid;

/* Indicates which data length */

/* fields are valid */
u char dd ing len;

/* Inquiry data length for device */
u_char dd_req_sense len;

/* Request sense data length for */

/* this device */

}DEV_DESC;

Mode Select Table Structure

The Mode Select Table Structure is read and sent to the SCSI device when
the first call to the SCSI/CAM peripheral open routine is issued on a SCSI
device. There can be a maximum of eight entries in the Mode Select Table
Structure. Chapter 11 contains a description of each structure member. The
definition for the Mode Select Table Structure, MODESEL,_TBL, follows:

typedef struct modesel tbl {

struct ms_entry{
u _char ms_page; /* Page number */
u_char *ms_data; /* Pointer to Mode Select data */
u_char ms_data_len; /* Mode Select data length */
u_char ms_ent sp_pf;
/* Save Page and Page format bits */
/* BIT 0 1=Save Page, */
/* 0=Don’t Save Page */
/* BIT 1 1=SCSI-2, 0=SCSI-1 */

tms_entry[MAX OPEN_SELS];
}MODESEL_TBL;

3—-4 S/CA Common Modules

3.1.5 Density Table Structure

The Density Table Structure allows for the definition of eight densities for
each type of SCSI tape device unit. Chapter 11 contains a description of
each structure member. The definition for the Density Table Structure,
DENSITY_TBL, follows:

typedef struct density tbl {
struct density{

u_char den flags; /* VALID, ONE FM etc */
u_char den_density_code;
u_char den_compress_code;
/* Compression code if supported */

u_char den_speed_setting;

/* for this density */
u_char den buffered_setting;

/* Buffer control setting */
u_long den_blocking; /* 0 variable etc. */

}density[MAX TAPE DENSITY];
}DENSITY TBL;

3.1.5.1 The den_blocking Member

The den_blocking member contains the blocking factor for this SCSI
tape device. A NULL (0) setting specifies that the blocking factor is variable.
A positive value represents the number of bytes in a block, for example, 512
or 1024.

3.1.6 SCSI/CAM Peripheral Device Driver Working Set Structure

The SCSI I/0O CCB contains cam_pdrv_ptr, a pointer to the SCSI/CAM
peripheral device driver working set area for the CCB. This structure is also
allocated by the XPT when the xpt_ccb_alloc routine is called to
allocate a CCB. The PDRV_WS structure follows:

typedef struct pdrv_ws {
struct pdrv_ws *pws_flink;
/* Linkage of working set CCBs */
struct pdrv_ws *pws_blink;
/* that we have queued */

CCB_SCSIIO *pws_ccb;
/* Pointer to this CCB. */
u_long pws_flags;
/* Generic to driver */
u_long pws_retry_cnt;
/* Retry count for this request */
u_char *pws_pdrv;

/* Pointer to peripheral device */
/* structure */
u_char pws_sense_buf[DEC_AUTO_SENSE_SIZE];
} PDRV_WS;

S/CA Common Modules 3-5

3.1.6.1 The pws_flink Member

The pws_£1ink member of the pdrv_ws structure is a pointer to the
forward link of the working set CCBs that have been queued.

3.1.6.2 The pws_blink Member

The pws_blink member of the pdrv_ws structure is a pointer to the
backward link of the working set CCBs that have been queued.

3.1.6.3 The pws_ccbh Member

The pws_ccb member is a pointer to this CCB. The CCB header is filled in
by the common routines.

3.2 Commonr SCSI Device Driver Macros

The SCSI/CAM peripheral device driver common macros are supplied by
Digital for SCSI device driver writers to use. These macros are defined in
the /usr/sys/include/io/cam/pdrv.h file. There are two
categories of macros:

* Macros to obtain identification information about each SCSI device

* Locking macros

Table 3-2 lists each identification macro name, its call syntax, and a brief
description of its purpose.

Table 3-2: Common Identification Macros

Name Syntax Description

DEV_BUS_ID DEV_BUS_ID(dev)
Returns the bus ID of the device
that is identified in the
major/minor device number pair

DEV_TARGET DEV_TARGET(dev)
Returns the target ID of the
device that is identified in the
major/minor device number pair

DEV_LUN DEV_LUN(dev)
Returns the target LUN of the
device that is identified in the
major/minor device number pair

GET_PDRV_UNIT_ELEM GET_PDRV_UNIT_ELEM(dev)

3-6 S/CA Common Modules

Table 3-2: (continued)

Name Syntax Description

Returns the Peripheral Device
Unit Table entry for the device
that is identified in the
major/minor device number pair

GET_PDRV_PTR GET_PDRV_PTR(dev)
Returns the pointer to the
Peripheral Device Structure for
the device that is identified in the
major/minor device number pair

Table 3-3 lists each locking macro name, its call syntax, and a brief
description of its purpose.

Note
Symmetric Multiprocessing (SMP) is not enabled in this release.

Table 3-3: Common Lock Macros

Name Syntax Description

PDRV_INIT_LOCK PDRV_INIT_LOCK(pd)
Initializes the Peripheral Device
Structure lock

PDRV_IPLSMP_LOCK PDRV_IPLSMP_LOCK(pd, lk_type, saveipl)
Raises the IPL and locks the
Peripheral Device Structure

PDRV_IPLSMP_UNLOCK PDRV_IPLSMP_UNLOCK(pd, saveipl)
Unlocks the Peripheral Device
Structure and lowers the IPL

PDRV_SMP_LOCK PDRV_SMP_LOCK(pd)
Locks the Peripheral Device
Structure

PDRV_SMP_SLEEPUNLOCK PDRV_SMP_SLEEPUNLOCK(chan, pri, pd)
Unlocks the Peripheral Device
Structure

S/CA Common Modules 3—-7

3.3 Common SCSI Device Driver Routines

The SCSI/CAM peripheral common device driver routines can be allocated
into categories as follows:

Initialization, open, and close routines, which handle the initialization of
SCSI/CAM peripheral device drivers and the common open and close of
the drivers. The following routines are in this category:

— ccmn_init
— ccmn_open _unit
— ccmn_close_unit

CCB queue manipulation routines, which manage placing and removing
CCBs from the appropriate queues as well as aborting and terminating
I/O for SCSI I/O CCBs on the queue’s active list. The following routines
are in this category:

~ ccmn_send_ccb
- ccmn_rem ccb

- ccmn_abort_que
- ccmn_term que

CCB allocation, build, and deallocation routines, which allocate CCBs,
fill in the common portion of the CCB_HEADER, as well as create and
send specific types of CCB requests to the XPT. The following routines
are in this category:

- ccmn_get ccb

- ccmn_rel ccb

— ccmn_io_ccb bld

— ccmn_gdev_ccb bld
— ccmn_sdev_ccb _bld
— ccmn_sasy_ccb _bld
— ccmn_rsq_ccb _bld
— ccmn_ping_ccb _bld
— ccmn_abort_ccb _bld
-~ ccmn_term_ccb bld
— ccmn_bdr ccb _bld
— ccmn_br ccb _bld

Common routines to build and send SCSI I/O commands, which are
called during the open or recovery sequence of a device. The calling

3-8 S/ICA Common Modules

3.3.1

routine must sleep while the command completes, if necessary. The
following routines are in this category:

- ccmn_tur
- ccmn_start_unit
- ccmn_mode_select

* CCB status routine, which assigns CAM status values to a few general
classifications. The following routine is in this category:

— ccmn_ccb_status

* Buf structure pool allocation and deallocation routines, which allocate
and deallocate buf structures from the buffer pool. The following
routines are in this category:

- ccmn_get bp
- ccmn_rel bp

* Data buffer pool allocation and deallocation routines, which allocate and
deallocate data buffer areas from the pool. The following routines are in
this category:

- ccmn_get_dbuf
~ ccmn_rel dbuf

* Routines used specifically for loadable device drivers. The following
routines are in this category:

— ccmn_check _idle
- ccmn_find ctlr
— ccmn_attach_device

* Routines to perform miscellaneous operations. The following routines
are in this category:

— ccmn_ccbwait

- ccmn_SysSpecialCmd
— ccmn_DoSpecialCmd
— ccmn_errlog

Descriptions of the routines with syntax information, in DEC OSF/1
reference page format, are included in alphabetical order in Appendix D.

Common /O Routines

This section describes the common SCSI/CAM peripheral device driver
initialization and I/O routines. Table 3-4 lists the name of each routine and
gives a summary description of its function. The sections that follow contain

S/CA Common Modules 3—9

a more detailed description of each routine.

Table 3-4: Common /O Routines

Routine Summary Description

cemn_init Initializes the XPT and the unit table lock
structure

ccmn_open_unit Handles the common open for all SCSI/CAM
peripheral device drivers

ccmn_close_unit Handles the common close for all SCSI/CAM

peripheral device drivers

3.3.1.1 The ccmn_init Routine

The ccmn_init routine initializes the XPT and the unit table lock
structure. The first time the ccmn_init routine is called, it calls the
xpt_init routine to request the XPT to initialize the CAM subsystem.

3.3.1.2 The ccmn_open_unit Routine

The ccmn_open_unit routine handles the common open for all
SCSI/CAM peripheral device drivers. It must be called for each open before
any SCSI device-specific open code is executed.

On the first call to the ccmn_open_unit routine for a device, the
ccmn_gdev_ccb_bld routine is called to issue a GET DEVICE TYPE
CCB to obtain the Inquiry data. The ccmn _open_unit routine allocates
the Peripheral Device Structure, PDRV_DEVICE, and a device-specific
structure, either TAPE_SPECIFIC or DISK_SPECIFIC, based on the device
size argument passed. The routine also searches the cam_devdesc_tab to
obtain a pointer to the Device Descriptor Structure for the SCSI device and
increments the open count. The statically allocated pdrv_unit_table
structure contains a pointer to the PDRV_DEVICE structure. The
PDRV_DEVICE structure contains pointers to the DEV_DESC structure and
to the device-specific structure.

3.3.1.3 The ccmn_close_unit Routine

The ccmn_close_unit routine handles the common close for all
SCSI/CAM peripheral device drivers. It sets the open count to zero.

3-10 S/CA Common Modules

3.3.2 Common Queue Manipulation Routines

This section describes the common SCSI/CAM peripheral device driver
queue manipulation routines. Table 3-5 lists the name of each routine and
gives a summary description of its function. The sections that follow contain
a more detailed description of each routine.

Table 3-5: Common Queue Manipulation Routines

Routine Summary Description

ccmn_send_ccb Sends CCBs to the XPT layer by calling the
Xpt_action routine

ccmn_send _ccb _wait Sends SCSII/O CCBs to the XPT layer by

calling the xpt_action routine and then

sleeps while waiting for the CCB to complete.
This function assumes that the callback
completion function for the SCSI I/O CCB will
issue the wakeup.

ccmn_rem ccb Removes a SCSI /O CCB request from the
SCSI/CAM peripheral driver active queue and
starts a tagged request if a tagged CCB is

pending.

ccmn_abort que Sends an ABORT CCB request for each SCSI
I/0 CCB on the active queue.

ccmn_term _que Sends a TERMINATE I/O CCB request for

each SCSI I/O CCB on the active queue.

3.3.2.1 The ccmn_send_ccb Routine

The cemn_send_ccb routine sends CCBs to the XPT layer by calling the
xpt action routine. This routine must be called with the Peripheral
Device Structure locked.

For SCSI I/O CCBs that are not retries, the request is placed on the active
queue. If the CCB is a tagged request and the tag queue size for the device
has been reached, the request is placed on the tagged pending queue so that
the request can be sent to the XPT at a later time. A high-water mark of
half the queue depth for the SCSI device is used for tagged requests so that
other initiators on the SCSI bus will not be blocked from using the device.
(The queue depth is defined in the device descriptor entry for the device.)

S/CA Common Modules 3—11

3.3.2.2 The ccmn_send_ccb_wait Routine

The ccmn_send_ccb_wait routine sends SCSI I/O CCBs to the XPT
layer by calling xpt_action. The routine then calls sleep to wait for
the CCB to complete. This routine must be called with the peripheral device
structure locked. The ccmn_send_ccb_wait routine requires the
callback completion function to issue a wakeup on the address of the CCB.

If the sleep priority is greater than PZERO, the ccmn_send _ccb_wait
routine sleeps at an interruptible priority in order to catch signals.

For SCSI I/0 CCBs that are not retries, the request is placed on the active
queue. If the CCB is a tagged request and the tag queue size for the device
has been reached, the request is placed on the tagged pending queue so that
the request can be sent to the XPT at a later time. A high-water mark of
half the queue depth for the SCSI device is used for tagged requests so that
other initiators on the SCSI bus will not be blocked from using the device.
(The queue depth is defined in the device descriptor entry for the device.)

3.3.2.3 The ccmn_rem_ccb Routine

The ccmn_rem_ccb routine removes a SCSI I/O CCB request from the
SCSI/CAM peripheral driver active queue and starts a tagged request if a
tagged CCB is pending. If a tagged CCB is pending, the ccmn_rem_ccb
routine places the request on the active queue and calls the xpt action
routine to start the tagged request.

3.3.24 The ccmn_abort_que Routine

The ccmn_abort_que routine sends an ABORT CCB request for each
SCSI /0O CCB on the active queue. This routine must be called with the
Peripheral Device Structure locked.

The ccmn_abort_que routine calls the ccmn_abort_ccb_bld routine
to create an ABORT CCB for the first active CCB on the active queue and
send it to the XPT. It calls the ccmn_send_ccb routine to send the
ABORT CCB for each of the other CCBs on the active queue that are
marked as active to the XPT. The ccmn_abort que routine then calls the
ccmn_rel ccb routine to return the ABORT CCB to the XPT.

3.3.25 The ccmn_term_que Routine

The ccmn_term_que routine sends a TERMINATE I/O CCB request for
each SCSI I/O CCB on the active queue. This routine must be called with
the Peripheral Device Structure locked.

The ccmn_term_que routine calls the ccmn_term_ccb_bld routine to
create a TERMINATE I/O CCB for the first active CCB on the active queue
and send it to the XPT. It calls the ccmn_send_ccb routine to send the

3-12 S/CA Common Modules

TERMINATE I/O CCB for each of the other CCBs on the active queue that
are marked as active to the XPT. The ccmn_term_que routine then calls
the ccmn_rel ccb routine to return the TERMINATE I/O CCB to the

XPT.

3.3.3 Common CCB Management Routines

This section describes the common SCSI/CAM peripheral device driver CCB
allocation, build, and deallocation routines. Table 3-6 lists the name of each
routine and gives a summary description of its function. The sections that
follow contain a more detailed description of each routine.

Table 3-6: Common CCB Management Routines

Routine

Summary Description

ccmn_get _ccb
ccmn_rel ccb

ccmn_io_ccb _bld
ccmn gdev ccb _bld

ccmn_sdev_ccb bld
ccmn_sasy ccb _bld
cemn_rsq ccb _bld
cemn_ping ccb bld
ccmn_abort_ccb bld
ccmn_term ccb bld
ccmn_bdr ccb_bld

cemn_br ccb_bld

Allocates a CCB and fills in the common
portion of the CCB header

Releases a CCB and returns the sense data
buffer for SCSI I/O CCBs, if allocated
Allocates a SCSI I/O CCB and fills it in
Creates a GET DEVICE TYPE CCB and sends
it to the XPT

Creates a SET DEVICE TYPE CCB and sends
it to the XPT

Creates a SET ASYNCHRONOUS
CALLBACK CCB and sends it to the XPT
Creates a RELEASE SIM QUEUE CCB and
sends it to the XPT

Creates a PATH INQUIRY CCB and sends it to
the XPT

Creates an ABORT CCB and sends it to the
XPT

Creates a TERMINATE I/O CCB and sends it
to the XPT

Creates a BUS DEVICE RESET CCB and
sends it to the XPT

Creates a BUS RESET CCB and sends it to the
XPT

3.3.3.1 The ccmn_get_ccb Routine

The ccmn_get_ccb routine allocates a CCB and fills in the common
portion of the CCB header. The routine calls the xpt_ccb_alloc routine
to allocate a CCB structure. The ccmn_get_ccb routine fills in the

S/CA Common Modules 3—13

common portion of the CCB header and returns a pointer to that
CCB_HEADER.

3.3.3.2 The ccmn_rel _ccb Routine

The ccmn_rel ccb routine releases a CCB and returns the sense data
buffer for SCSI I/O CCBs, if allocated. The routine calls the
xpt_ccb_free routine to release a CCB structure. For SCSI I/O CCBs, if
the sense data length is greater than the default sense data length, the
ccmn_rel ccb routine calls the ccmn_rel dbuf routine to return the
sense data buffer to the data buffer pool.

3.3.3.3 The ccmn_io_ccb_bld Routine

The ccmn_io ccb_bld routine allocates a SCSI I/O CCB and fills it in.
The routine calls the ccmn _get_ccb routine to obtain a CCB structure
with the header portion filled in. The ccmn_io_ccb_bld routine fills in
the SCSI I/O-specific fields from the parameters passed and checks the length
of the sense data to see if it exceeds the length of the reserved sense buffer.

If it does, a sense buffer is allocated using the ccmn_get_dbuf routine.

3.3.3.4 The ccmn_gdev_ccb_bld Routine

The ccmn_gdev_ccb_bld routine creates a GET DEVICE TYPE CCB
and sends it to the XPT. The routine calls the ccmn_get_ccb routine to
allocate a CCB structure and fill in the common portion of the CCB header.
The ccmn_gdev_ccb_bld routine calls the ccmn_send_ccb routine to
send the CCB structure to the XPT. The request is carried out immediately,
so it is not placed on the device driver’s active queue.

3.3.3.5 The ccmn_sdev_ccb_bld Routine

The ccmn_sdev_ccb_bld routine creates a SET DEVICE TYPE CCB
and sends it to the XPT. The routine calls the ccmn_get_ccb routine to
allocate a CCB structure and fill in the common portion of the CCB header.
The routine fills in the device type field of the CCB and calls the
ccmn_send_ccb routine to send the CCB structure to the XPT. The
request is carried out immediately, so it is not placed on the device driver’s
active queue.

3.3.3.6 The ccmn_sasy_ccb_bld Routine

The cemn_sasy_ccb_bld routine creates a SET ASYNCHRONOUS
CALLBACK CCB and sends it to the XPT. The routine calls the
ccmn_get_ccb routine to allocate a CCB structure and fill in the common
portion of the CCB header. The routine fills in the asynchronous fields of the

3-14 S/CA Common Modules

CCB and calls the ccmn_send_ccb routine to send the CCB structure to
the XPT. The request is carried out immediately, so it is not placed on the
device driver’s active queue.

3.3.3.7 The ccmn_rsq_ccb_bid Routine

The ccmn_rsq_ccb_bld routine creates a RELEASE SIM QUEUE CCB
and sends it to the XPT. The routine calls the ccmn_get_ccb routine to
allocate a CCB structure and fill in the common portion of the CCB header.
The routine calls the ccmn_send_ccb routine to send the CCB structure to
the XPT. The request is carried out immediately, so it is not placed on the
device driver’s active queue.

3.3.3.8 The ccmn_ping_ccb_bld Routine

The ccmn_ping_ccb_bld routine creates a PATH INQUIRY CCB and
sends it to the XPT. The routine calls the ccmn_get _ccb routine to
allocate a CCB structure and fill in the common portion of the CCB header.
The routine calls the ccmn_send_ccb routine to send the CCB structure to
the XPT. The request is carried out immediately, so it is not placed on the
device driver’s active queue.

3.3.3.9 The ccmn_abort_ccb_bld Routine

The ccmn_abort_ccb_bld routine creates an ABORT CCB and sends it
to the XPT. The routine calls the ccmn _get_ccb routine to allocate a
CCB structure and fill in the common portion of the CCB header. The
routine fills in the address of the CCB to be aborted and calls the
ccmn_send_ccb routine to send the CCB structure to the XPT. The
request is carried out immediately, so it is not placed on the device driver’s
active queue.

3.3.3.10 The ccmn_term_ccb_bld Routine

The ccmn_term_ccb_bld routine creates a TERMINATE I/O CCB and
sends it to the XPT. The routine calls the ccmn_get ccb routine to
allocate a CCB structure and fill in the common portion of the CCB header.
The routine fills in the CCB to be terminated and calls the
ccmn_send_ccb routine to send the CCB structure to the XPT. The
request is carried out immediately, so it is not placed on the device driver’s
active queue.

S/CA Common Modules 3-15

3.3.3.11 The ccmn_bdr_ccb_bid Routine

The ccmn_bdr_ccb_bld routine creates a BUS DEVICE RESET CCB
and sends it to the XPT. The routine calls the ccmn_get_ccb routine to
allocate a CCB structure and fill in the common portion of the CCB header.
The routine calls the ccmn_send_ccb routine to send the CCB structure to
the XPT. The request is carried out immediately, so it is not placed on the
device driver’s active queue.

3.3.3.12 The ccmn_br_ccb_bld Routine

The ccmn_br_ccb_bld routine creates a BUS RESET CCB and sends it
to the XPT. The routine calls the ccmn_get_ccb routine to allocate a
CCB structure and fill in the common portion of the CCB header. The
routine calls the ccmn_send_ccb routine to send the CCB structure to the
XPT. The request is carried out immediately, so it is not placed on the
device driver’s active queue.

3.3.4 Common SCSI I/O Command Building Routines

This section describes the common SCSI/CAM peripheral device driver SCSI
I/O command build and send routines. Table 3-7 lists the name of the
routine and gives a summary description of its function. The sections that
follow contain a more detailed description of each routine.

Table 3-7: Common SCSI /O Command Building Routines

Routine Summary Description

cemn_tur Creates a SCSI I/O CCB for the TEST UNIT
READY command and sends it to the XPT for
processing and sleeps waiting for its
completion.

ccmn_start unit Creates a SCSI I/O CCB for the START UNIT
command and sends it to the XPT for
processing and sleeps waiting for its
completion.

ccmn_mode_select Creates a SCSI /O CCB for the MODE
SELECT command and sends it to the XPT for
processing and sleeps waiting for its
completion,

3-16 S/CA Common Modules

3.3.4.1

The ccmn_tur Routine

The ccmn_tur routine creates a SCSI I/0O CCB for the TEST UNIT
READY command, sends it to the XPT for processing, and waits for it to
complete.

The ccmn_tur routine calls the ccmn_io_ccb_bld routine to obtain a
SCSI I/O CCB structure. The cecmn_tur routine calls the

cemn send ccb wait routine to send the SCSI I/O CCB to the XPT and
wait for it to complete.

3.3.4.2 The ccmn_start_unit Routine

The ccmn_start_unit routine creates a SCSI /O CCB for the START
UNIT command, sends it to the XPT for processing, and waits for it to
complete.

The ccmn_start_unit routine calls the ccmn_io_ccb_bld routine to
obtain a SCSI I/O CCB structure. The ccmn start unit routine calls
the ccmn_send _ccb wait routine to send the SCSI /O CCB to the XPT
and wait for it to complete.

3.3.4.3 The ccmn_mode_select Routine

3.3.5

The ccmn_mode_select routine creates a SCSI I/O CCB for the MODE
SELECT command, sends it to the XPT for processing and waits for it to
complete.

The routine calls the ccmn_io_ccb_bld routine to obtain a SCSI I/O
CCB structure. It uses the ms_index" parameter to index into the Mode
Select Table pointed to by the dd modesel tbl member of the Device
Descriptor Structure for the SCSI device. The - ccmn_mode _select
routine calls the ccmn_send ccb_wait routine to » send the SCSI I/O
CCB to the XPT and wait for it to complete.

Common CCB Status Routine

This section describes the common SCSI/CAM peripheral device driver CCB
status routine. The ccmn_ccb_status routine assigns individual CAM
status values to generic categories. The following table shows the returned
category for each CAM status value:

CAM Status Assigned Category
CAM _REQ INPROG CAT_INPROG
CAM_REQ_CMP CAT_CMP
CAM_REQ ABORTED CAT_ABORT

CAM UA ABORT CAT_ABORT

CAM REQ CMP_ERR CAT_CMP_ERR

S/CA Common Modules 3-17

CAM Status

Assigned Category

CAM BUSY

CAM REQ INVALID
CAM PATH INVALID
CAM _DEV_NOT THERE
CAM UA_TERMIO
CAM_SEL_TIMEOUT
CAM_CMD_TIMEOUT
CAMLMSG_REJECT_REC
CAM_SCSI_BUS_RESET
CAM UNCOR PARITY
CAM | AUTOSENSE FATL
CAM NO HBA

CAM DATA . RUN_ERR
CAM UNEXP BUSFREE
CAM SEQUENCE FAIL
CAM CCB_LEN_ERR
CAM PROVIDE FAIL
CAM BDR _ SENT

CAM . REQ ° " TERMIO
CAM LUN_INVALID
CAM_TID INVALID
CAM_FUNC_NOTAVAIL
CAM_NO_NEXUS

CAM IID_ INVALID
CAM SCSI_BUSY
Other

CAT_BUSY
CAT_CCB_ERR
CAT_NO_DEVICE
CAT_NO_DEVICE
CAT_ABORT
CAT_DEVICE_ERR
CAT_DEVICE_ERR
CAT_DEVICE_ERR
CAT_RESET
CAT_DEVICE_ERR
CAT_BAD_AUTO
CAT_NO_DEVICE
CAT_DEVICE_ERR
CAT_DEVICE_ERR
CAT_DEVICE_ERR
CAT_CCB_ERR
CAT_CCB_ERR
CAT_RESET
CAT_ABORT
CAT_NO_DEVICE
CAT_NO_DEVICE
CAT_CCB_ERR
CAT_NO_DEVICE
CAT_NO_DEVICE
CAT_SCSI_BUSY
CAT_UNKNOWN

3.3.6 Common Buf Structure Pool Management Routines

This section describes the common SCSI/CAM peripheral device driver buf
structure pool allocation and deallocation routines.

3.3.6.1 The ccmn_get_bp Routine

The ccmn_get bp routine allocates a buf structure. This function must
not be called at interrupt context. The function may sleep waiting for

resources.

3.3.6.2 The ccmn_rel_bp Routine

The ccmn_rel bp routine deallocates a buf structure.

3-18 S/CA Common Modules

3.3.7 Common Data Buffer Pool Management Routines

This section describes the common SCSI/CAM peripheral device driver data
buffer pool allocation and deallocation routines.

3.3.7.1 The ccmn_get_dbuf Routine

The ccmn_get dbuf routine allocates a data buffer area of the size
specified by calling the kernel memory allocation routines .

3.3.7.2 The ccmn_rel_dbuf Routine

The ccmn_rel dbuf routine deallocates a data buffer.

3.3.8 Common Routines for Loadable Drivers

This section describes the common SCSI/CAM peripheral device driver
routines specific to loadable device drivers. Table 3-8 provides a summary
description of the routines specific to loadable drivers.

Table 3-8: Common Routines for Loadable Drivers

Routine Summary Description
ccmn_check idle Checks that there are no opens against a device
cemn_find ctlr Finds the controller structure that corresponds to

the SCSI controller that the device must be
attached to

ccmn_attach_device Creates and attaches a device structure to the
controller structure that corresponds to the SCSI
controller

3.3.8.1 The ccmn_check_idle Routine

The ccmn_check_idle routine checks that there are no opens against a
device. This routine calls the ccmn_rel dbuf routine to deallocate all
structures pertaining to the device whose driver is being unloaded.

The ccmn_check_idle routine scans the Peripheral Device Unit Table
looking for devices that match the block device major number and the
character device major number in the PDRV_DEVICE structure members,
pd bmajor and pd cmajor. If no opens exist for the devices that are to
be unloaded, it rescans the Peripheral Device Unit Table and deallocates all
structures relating to the devices whose driver is being unloaded. The
ccmn_check idle routine must be called with the Peripheral Device Unit

S/CA Common Modules 3-19

Table locked.

3.3.8.2 The ccmn_find_ctir Routine

The ccmn_find_ctlr routine finds the controller structure that
corresponds to the SCSI controller that the device must be attached to. This
routine must be called with the Peripheral Device Unit Table locked.

3.3.8.3 The ccmn_attach_device Routine

The ccmn_attach_device routine creates and attaches a device structure
to the controller structure that corresponds to the SCSI controller. The
routine finds the controller structure for a device, fills in the device structure, -
and attaches the device structure to the controller structure.

3.3.9 Miscellaneous Common Routines

This section describes the common SCSI/CAM peripheral device driver
routines that perform miscellaneous operations. Table 3-9 lists the name of
each routine and gives a summary description of its function.

Table 3-9: Miscellaneous Common Routines

Routine Summary Description

ccmn_DoSpecialCmd Provides a simplified interface to the special
command routine.

ccmn_SysSpecialCmd Lets a system request issue SCSI I/O commands
to the SCSI/CAM special I/O interface.

ccmn_errlog Reports error conditions for the SCSI/CAM
peripheral device driver.

3.3.9.1 The ccmn_DoSpecialCmd Routine

The ccmn_DoSpecialCmd routine provides a simplified interface to the
special command routine. The routine prepares for and issues special
commands.

3-20 S/CA Common Modules

3.3.9.2 The ccmn_SysSpecialCmd Routine

The ccmn_SysSpecialCmd routine lets a system request issue SCSI VO
commands to the SCSI/CAM special I/O interface. This permits existing
SCSI commands to be issued from within kernel code.

3.3.9.3 The ccmn_errlog Routine

The ccmn_errlog routine reports error conditions for the SCSI/CAM
peripheral device driver. The routine is passed a pointer to the name of the
function in which the error was detected. The routine builds informational
strings based on the error condition.

S/CA Common Modules 3—-21

S/CA Generic Modules 4

This chapter describes the generic data structures and routines provided by
Digital for SCSI/CAM peripheral device driver writers. The generic data
structures and routines can be used as templates for SCSI/CAM peripheral
device drivers to interface with the CAM subsystem to perform standard I/O
operations. See Chapter 12 for a description of the SCSI/CAM special I/O
interface, which processes special I/O control commands that are not issued
to the device through the standard driver entry points.

The generic routines use the common SCSI/CAM peripheral device driver
routines described in Chapter 3. Using the common and generic routines
helps ensure that SCSI/CAM peripheral device drivers are consistent with the
SCSI/CAM Architecture. See Chapter 11 if you plan to define your own
SCSI/CAM peripheral device drivers. See Appendix D for the source to the
generic driver.

4.1 Prerequisites for Using the CAM Generic Routines

4.11

The generic device driver routines use the common routines and data
structures supplied by Digital. See Chapter 3 for information about how to
use the common data structures and routines.

The following routines must be called with the Peripheral Device Structure
locked:

* ccmn_send ccb
* ccmn_send ccb wait
* ccmn_abort que

* ccmn_term que

loctl Commands

The writer of a generic SCSI/CAM peripheral device driver has two options
for implementing ioctl commands within the driver:

¢ Use the ioctl commands that are already defined in
/usr/sys/include/sys/ioctl.h and implement those that are
appropriate for the type of device.

4.1.2

4.1.3

e Create new ioctl definitions by modifying the
/usr/sys/include/sys/ioctl.h file to reflect the new ioctl
definitions and to implement the new ioctl commands within the
driver. See the Writing Device Drivers, Volume 1: Tutorial and Writing
Device Drivers, Volume 2: Reference for more information.

It is possible that conflicts with future releases of the operating system may
result when new ioctl commands are implemented.

See Chapter 12 for information about the SCSI/CAM special 1/O interface to
handle SCSI special /O commands.

Error Handling

The writer of the device driver is responsible for all error handling within the
driver and for notifying the user process of the error.

Kernel Interface

The kernel entry points for any device driver are defined for both character
and block devices in the structures cdevsw and bdevsw defined in the
/usr/sys/include/sys/conf.h file. The kernel entry points are
implemented in the cdevsw and bdevsw switch tables in the
/usr/sys/io/common/conf.c file. If the device driver does not
implement a specific kernel entry point, then the corresponding entries in the
cdevsw and bdevsw switch tables must be null.

4.2 Data Structures Used by Generic Routines

4.2.1

This section describes the generic data structures programmers adapt when
they write their own SCSI/CAM peripheral device drivers. The following
data structures are described:

* CGEN_SPECIFIC, the Generic-Specific Structure
¢ CGEN_ACTION, the Generic Action Structure

The Generic-Specific Structure

A SCSI/CAM peripheral device structure, CGEN_SPECIFIC, is defined for
the device controlied by the driver. The CGEN_SPECIFIC structure is

4-2 S/CA Generic Modules

defined as follows:

typedef generic_specific struct {

u_long gen_flags; /* flags - EOM, write locked */
u_long gen_state flags;/* STATE - UNIT ATTEN, RESET etc. */
u_long gen_resid; /* Last operation residual count */

}CGEN_SPECIFIC;

4.21.1 The gen_flags Member

The gen_flags member is used to indicate certain conditions of the SCSI
unit. The possible flags are:

Flag Name

Description

CGEN_EOM
CGEN_OFFLINE
CGEN_WRT_PROT

CGEN_SOFTERR
CGEN_HARDERR

The unit is positioned at the end of media.

The device is returning DEVICE NOT READY
in response to a command. The media is either
not loaded or is being loaded.

The unit is either write protected or is opened
read only.

A soft error has been reported by the SCSI unit.

A hard error has been reported by the SCSI unit.
It can be reported either through an ioctl or
by marking the buf structure as EIO.

4.21.2 The gen_state_flags Member

The gen_state_flags member is used to indicate certain states of the
driver and of the SCSI unit. The possible flags are:

Flag Name

Description

CGEN_NOT READY STATE

The unit was opened with the FNDELAY flag
and the unit had a failure during the open, but
was seen.

CGEN_UNIT_ATTEN_STATE A check condition occurred and the sense key

CGEN_RESET STATE

was UNIT ATTENTION. This usually
indicates that a media change has occurred, but
it could indicate power up or reset. Either way,
current settings are lost.

Indicates notification of a reset condition on the
device or bus.

CGEN_RESET PENDING_STATE A reset is pending.

S/CA Generic Modules 4-3

Flag Name Description

CGEN_OPENED_STATE The unit is opened.

4.2.1.3 The gen_resid Member

The gen_resid member contains the residual byte count from the last
operation.

4.2.2 The Generic Action Structure

The SCSI/CAM peripheral device structure, CGEN_ACTION, is passed to
the generic driver’s action routines to be filled in according to the success or
failure of the command. The CGEN_ACTION structure definition is:

typedef struct generic_action {

CCB_SCSIIO *act_ccb;

/* The CCB that is returned to caller */
long act_ret_error;

/* Error code if any */
u_long act_fatal;

/* Is this considered fatal? */
u_long act_ccb_status;

/* The CCB status code */
u_long act_scsi_status;

/* The SCSI error code */
u_long act_chkcond_error;

/* The check condition error */
}CGEN_ACTION;

4.2.21 The act_ccb Member

The act_ccb member is a pointer to the SCSI I/O CCB returned to the
calling routine.

4.2.2.2 The act_ret_error Member

The act_ret _error contains the error code, if any, returned from the
operation.

4—4 S/CA Generic Modules

4.2.2.3 The act_fatal Member
The act_fatal indicates whether an error returned was fatal. The possible

flags are:

Flag Name Description

ACT_FAILED The action has failed.
ACT_RESOURCE Memory availability problem.
ACT_PARAMETER An invalid parameter was passed.

ACT_RETRY_ EXCEDED The maximum retry count for the operation has
been exceeded.

4.2.2.4 The act_ccb_status Member

The act ccb status member indicates the CAM generic category code
for the CCB that was returned from the ccmn_ccb_status routine.

4.2.2.5 The act_scsi_status Member

The act_scsi_ status member indicates the SCSI status code if the
CCB completed with an error status. The SCSI status codes are defined in
the /usr/sys/include/io/cam/scsi_status.hfile.

4.2.2.6 The act_chkcond_error Member

The act_chkcond_error member contains the check condition code
returned from the cgen_ccb_chkcond routine, if the

cam scsi status member of the SCSI /O CCB is equal to
SCSI_STAT_CHECK_CONDITION. The Check Condition codes are
defined in the generic.h file shown in Appendix D.

4.3 Generic I/0 Routines

The generic routines described in this section handle open, close, read, write,
and other I/O requests from user processes. Table 4-1 lists the name of each
routine and gives a short description of its function. The sections that follow
contain a more detailed description of each routine. Descriptions of the
routines with syntax information, in DEC OSF/1 reference page format, are
included in alphabetical order in Appendix C.

S/CA Generic Modules 4-5

4.3.1

Table 4-1: Generic I/0 Routines

Routine Summary Description

cgen_open Called by the kernel when a user process
requests an open of the device.

cgen_close Closes the device.

cgen_read Handles synchronous read requests for user
processes through the raw interface.

cgen_write Handles synchronous write requests for user
processes through the raw interface.

cgen_strategy Handles all I/O requests for user processes

through the block inerface and the raw interface
via a call to physio.

cgen_ioctl Handles user process requests for specific
actions other than read, write, open, or close for
generic devices.

The cgen_open Routine

The cgen_open routine is called by the kernel when a user process requests
an open of the device. The cgen_open routine calls the
ccmn_open_unit routine, which manages the SMP_LOCKS and, if
passed the exclusive use flag for SCSI devices, makes sure that no other
process has opened the device. If the ccmn_open _unit routine returns
success, the necessary data structures are allocated.

The cgen_open routine calls the ccmn_sasy_ccb_bld routine to
register for asynchronous event notification for the device. The cgen_open
routine then enters a for loop based on the power-up time specified in the
Device Descriptor Structure for the device. Within the loop, calls are made
to the cgen_ready routine, which calls the ccmn_tur routine to issue a
TEST UNIT READY command to the device.

The cgen_open routine calls the ccmn_rel ccb routine to release the
CCB. The « cgen_open routine checks certain state flags for the device to
decide whether to send the initial SCSI mode select pages to the device.
Depending on the setting of the state flags CGEN_UNIT_ATTEN_STATE
and CGEN_RESET_STATE, the cgen_open routine calls the
cgen_open_sel routine for each mode select page to be sent to the
device. The cgen_open_sel routine fills out the Generic Action Structure
based on the completion status of the CCB for each mode select page it
sends.

4-6 S/CA Generic Modules

4.3.2

433

43.4

4.3.5

4.3.6

The cgen_close Routine

The cgen_close routine closes the device. The routine checks any device
flags that are defined to see if action is required, such as rewind on close or
release the unit. The cgen_close closes the device by calling the
ccmn_close_unit routine.

The cgen_read Routine

The cgen_read routine handles synchronous read requests for user
processes. It passes the user process requests to the cgen_strategy
routine. The cgen_read routine calls the ccmn_get bp routine to
allocate a buf structure for the user process read request. When the I/O is
complete, the cgen_read routine calls the ccmn_rel bp routine to
deallocate the buf structure.

The cgen_write Routine

The cgen_write routine handles synchronous write requests for user
processes. The routine passes the user process requests to the
cgen_strategy routine. The cgen_write routine calls the
ccmn_get bp routine to allocate a buf structure for the user process write
request. When the /O is complete, the cgen_write routine calls the
ccmn_rel bp routine to deallocate the buf structure.

The cgen_strategy Routine

The cgen_strategy routine handles all I/O requests for user processes. It
performs specific checks, depending on whether the request is synchronous or
asynchronous and on the SCSI device type. The cgen_strategy routine
calls the ccmn_io_ccb_bld routine to obtain an initialized SCSI /O CCB
and build either a read or a write command based on the information
contained in the buf structure. The cgen_strategy routine then calls
the ccmn_send ccb to place the CCB on the active queue and send it to
the XPT layer.

The cgen_ioctl Routine

The cgen_ioctl routine handles user process requests for specific actions
other than read, write, open, or close for SCSI tape devices. The routine
currently issues a DEVIOCGET ioctl command for the device, which fills
out the devget structure passed in, and then calls the cgen_mode_sns
routine which issues a SCSI_MODE_SENSE to the device to determine the
device’s state. The routine then calls the ccmn_rel ccb routine to release
the CCB. When the call to cgen_mode_sns “completes, the cgen_ioctl
routine fills out the rest of the devget structure based on information

S/CA Generic Modules 4-7

contained in the mode sense data.

4.4 Generic Internal Routines

441

The generic routines described in this section are examples that show one
method of handling errors, events, and conditions. SCSI/CAM peripheral
device driver writers must implement routines for handling errors, events, and
conditions that are compatible with the design and the functionality of the
specific device. Table 4-2 lists the name of each routine and gives a short
description of its function. Descriptions of the routines with syntax
information, in DEC OSF/1 reference page format, are included in
alphabetical order in Appendix D.

Table 4-2: Generic Internal Routines

Routine Summary Description

cgen_ccb_chkcond Decodes the autosense data for a device driver

cgen_done The entry point for all nonread and nonwrite /O
callbacks

cgen_iodone The entry point for all read and write /O
callbacks

cgen_async Handles notification of asynchronous events

cgen_minphys Compares the b_bcount with the maximum
transfer limit for the device

cgen_slave Called at system boot to initialize the lower
levels

cgen_attach Called for each bus, target, and LUN after the

cgen_slave routine returns SUCCESS

The cgen_ccb_chkcond Routine

The cgen _ccb chkcond routine decodes the autosense data for a device
driver and returns the appropriate status to the calling routine. The routine is
called when a SCSI I/O CCB is returned with a CAM status of
CAM_REQ_CMP_ERR (request completed with error) and a SCSI status of
SCSI_STAT_CHECK_CONDITION. The routine also sets the appropriate
flags in the Generic-Specific Structure.

4-8 S/CA Generic Modules

44.2

443

44.4

The cgen_done Routine

The cgen_done routine is the entry point for all nonread and nonwrite I/O
callbacks. The generic device driver uses two callback entry points, one for
all nonuser /0 requests and one for all user I/O requests. The SCS/CAM
peripheral device driver writer can declare multiple callback routines for each
type of command and can fill the CCB with the address of the appropriate
callback routine.

This is a generic routine for all nonread and nonwrite SCSI I/O CCBs. The
SCSI I/0 CCB should not contain a pointer to a buf structure in the
cam_req_map member of the structure. If it does, then a wake-up call is
issued on the address of the CCB and the error is reported If the SCSI I/O
CCB does not contain a pointer to a buf structure in the cam_req_map
member, then a wake-up call is issued on the address of the CCB and the
CCB is removed from the active queues. No CCB completion status is
checked because that is the responsibility of the routine that created the CCB
and is waiting for completion status. When this routine is entered, context is
on the interrupt stack and the driver cannot sleep waiting for an event.

The cgen_iodone Routine

The cgen _iodone routine is the entry point for all read and write VO
callbacks. This is a generic routine for all read and write SCSI I/O CCBs.
The SCSI I/0 CCB should contain a pointer to a buf structure in the
cam_req_map member of the structure. If it does not, then a wake-up call .
is issued on the address of the CCB and the error is reported. If the SCSI
I/0 CCB does contain a pointer to a buf structure in the cam_req_map
member, as it should, then the completion status is decoded. Depending on
the CCB’s completion status, the correct fields within the buf structure are
filled out.

The device’s active queues may need to be aborted because of errors or
because the device is a sequential access device and the transaction was an
asynchronous request.

The CCB is removed from the active queues by a call to the

ccmn_rem ccb routine and is released back to the free CCB pool by a call
to the ¢ ccmn_rel ccb routine. When the cgen_iodone routine is
entered, context is on the interrupt stack and the driver cannot sleep waiting
for an event.

The cgen_async Routine

The cgen_async routine handles notification of asynchronous events. The
routine is called when an Asynchronous Event Notification(AEN), Bus
Device Reset (BDR), or Bus Reset (BR) occurs. The routine sets the
CGEN_RESET_STATE flag and clears the CGEN_RESET_PEND_STATE

S/CA Generic Modules 4-9

4.45

4.4.6

447

flag for BDRs and bus resets. The routine sets the
CGEN_UNIT_ATTEN_STATE flag for AENs.

The cgen_minphys Routine

The cgen_minphys routine compares the b_bcount with the maximum
transfer limit for the device. The routine compares the b bcount field in
the buf structure with the maximum transfer limit for the device in the
Device Descriptor Structure. The count is adjusted if it is greater than the
limit.

The cgen_slave Routine

The cgen_slave routine is called at system boot to initialize the lower
levels. The routine also checks the bounds for the unit number to ensure it is
within the allowed range and sets the device-configured bit for the device at
the specified bus, target, and LUN.

The cgen_attach Routine

The cgen_attach routine is called for each bus, target, and LUN after the
cgen_slave routine returns SUCCESS. The routine calls the
ccmn_open_unit routine, passing the bus, target, and LUN information.

The cgen_attach routine calls the ccmn_close_unit routine to close
the device. If a device of the specified type is found, the device identification
string is printed.

4.5 Generic Command Support Routines

The generic routines described in this section are SCSI/CAM command
support routines. Table 4-3 lists the name of each routine and gives a short
description of its function. The sections that follow contain a more detailed
description of each routine. Descriptions of the routines with syntax
information, in DEC OSF/1 reference page format, are included in
alphabetical order in Appendix D.

Table 4-3: Generic Command Support Routines

Routine Summary Description

cgen_ready Issues a TEST UNIT READY command to the
unit defined

cgen_open_sel Issues a SCSI_MODE_SELECT command to

the SCSI device

4-10 S/CA Generic Modules

4.5.1

4.5.2

4.5.3

Table 4-3: (continued)

Routine Summary Description
cgen_mode_sns Issues a SCSI_MODE_SENSE command to the
unit defined

The cgen_ready Routine

The cgen_ready routine issues a TEST UNIT READY command to the
unit defined. The routine calls the ccmn_tur routine to issue the TEST
UNIT READY command and sleeps waiting for command status.

The cgen_open_sel Routine

The cgen_open_sel routine issues a SCSI_MODE_SELECT command to
the SCSI device. The mode select data sent to the device is based on the
data contained in the Mode Select Table Structure for the device, if one is
defined. The CGEN_ACTION structure is filled in for the calling routine
based on the completion status of the CCB.

The cgen_open_sel routine calls the ccmn_mode _select routine to
create a SCSI I/O CCB and send it to the XPT for processing.

The cgen_mode_sns Routine

The cgen_mode_sns routine issues a SCSI_MODE_SENSE command to
the unit defined. The CGEN_ACTION structure is filled in for the calling
routine based on the completion status of the CCB.

S/CA Generic Modules 4-11

CAM Data Structures 5

Data structures are the mechanism used to pass information between
peripheral device drivers and the CAM subsystem. This chapter describes
the CAM data structures used by peripheral device drivers. They are defined
in the file /usr/sys/include/io/cam/cam.h. This chapter discusses
the following:

* CAM Control Block (CCB)

* Input/Output (I/O) data structures

* Control CCB structures

* Configuration data structures

Other chapters reference these structures. You can read this chapter now to

become familiar with the structures, or you can refer to it when you
encounter references to the structures in other chapters.

5.1 CAM Control Blocks

The CAM Control Block (CCB) data structures let the device driver writer
specify the action to be performed by the XPT and SIM. The CCBs are
allocated by calling the xpt _ccb_alloc routine. Table 5-1 contains the
name of each CCB data structure and a brief description.

Table 5-1: CAM Control Blocks

CCB Name Description
CCB_SCSIIO Requests SCSI I/0
CCB_GETDEV Gets device type
CCB_PATHINQ Sends a path inquiry
CCB_RELSIM Releases SIM queue
CCB_SETASYNC Sets asynchronous callback
CCB_SETDEV Sets device type
CCB_ABORT Aborts XPT request

CCB_RESETBUS Resets SCSI bus

Table 5-1: (continued)

CCB_RESETDEV Resets SCSI device
CCB_TERMIO Terminates I/O process request

All CCBs contain a CCB_HEADER structure. Peripheral device driver
writers need to understand the CCB_HEADER data structure, which is
discussed in the section that follows.

5.1.1 The CCB_HEADER Structure

SCSI/CAM peripheral device driver writers allocate a CCB structure by
calling the xpt_ccb_alloc routine. The CCB_HEADER structure is
common to all CCBs and is the first structure filled in. It contains the
following members:

typedef struct ccb_header

{
struct ccb_header *my_addr; /* The address of this CCB */

u_short cam_ccb_len; /* Length of the entire CCB */
u_char cam func_code; /* XPT function code */
u_char cam_status; /* Returned CAM subsystem */
/* status */

u_char cam path id; /* Path ID for the request */
u_char cam target id; /* Target device ID */

u_char cam target lun; /* Target LUN number */
u_long cam_flags; /* Flags for operation of */

/* the subsystem */
} CCB_HEADER;

5.1.1.1 The my_addr and cam_ccb_len Members

The my _addr member is set to a pointer to the virtual address of the
starting “address of the CAM Control Block (CCB). It is automatically filled
in by the xpt _ccb_alloc routine.

The cam_ccb_len member is set to the length in bytes of this specific
CCB type. This field is filled in by the ccmn _get_ccbroutine. The
length includes the my addr and cam ccb_len members.

5.1.1.2 The cam_func_code Member

The cam_func_code member lets device-driver writers specify the CCB
type XPT/SIM functions. Device-driver writers can set this member to one of
the function codes listed in Table 5-2. They are defined in the file
/usr/sys/include/io/cam/cam.h.

5-2 CAM Data Structures

Table 5-2: CAM Function Codes

Function Code

Meaning

XPT_NOOP
XPT_SCSI_IO

XPT_GDEV_TYPE

XPT_PATH INQ

XPT_REL SIMQ
XPT_ASYNC_CB

XPT_SDEV_TYPE

XPT ABORT

XPT_RESET_BUS
XPT_RESET_DEV
XPT_TERM_IO

Do not execute anything in the XPT/SIM.

Execute the requested SCSI I/0. Specify the
details of the SCSI IO by setting the
appropriate members of the CCB_SCSIIO
structure.

Get the device type information. Obtain this
information by referencing the CCB_GETDEV
structure.

Get the path inquiry information. Obtain this
information by referencing the CCB_PATHINQ
structure.

Release the SIM queue that is frozen.

Set the asynchronous callback parameters.
Obtain asynchronous callback information from
the CCB_SETASYNC structure.

Set the device type information. Obtain the
device type information from the
CCB_SETDEV structure.

Abort the specified CCB. Specify the abort to
the CCB by setting the appropriate member of
the CCB_ABORT structure.

Reset the SCSI bus.
Reset the SCSI device.

Terminate the I/O process. Specify the CCB
process to terminate by setting the appropriate
member of the CCB_TERMTO structure.

5.1.1.3 The cam_status Member

The cam_status member is the action or event that occurred during this
CAM Control Block (CCB) request. The cam_status member is set by
the XPT/SIM after the specified function completes. A CAM_REQ ' INPROG
status indicates that either the function is still executing or is still in the
queue. The XPT/SIM can set this member to one of the CAM status codes
listed in Table 5-3. They are defined in the file
/usr/sys/include/io/cam/cam.h.

CAM Data Structures 5-3

Table 5-3: CAM Status Codes

CAM Status Code

Meaning

CAM REQ INPROG
CAM REQ CMP
CAM_REQ ABORTED

CAM_REQ UA_ABORT
CAM REQ CMP_ERR
CAM BUSY

CAM REQ INVALTD
CAM PATH INVALID

CAM DEV_NOT THERE
CAM UA_TERMIO

CAM_SEL_TIMEOUT
CAM CMD_TIMEOUT
CAM MSG_REJECT REC
CAM_SCSI_BUS_RESET

CAM _UNCOR_PARITY
CAM AUTOSENSE_FAIL
CAM NO_HBA

CAM DATA RUN_ERR
CAM _UNEXP_BUSFREE
CAM SEQUENCE_FAIL
CAM CCB_LEN_ERR

CAM_PROVIDE_FAIL
CAM BDR_SENT
CAM_REQ TERMIO

5-4 CAM Data Structures

A CCB request is in progress.
A CCB request completed without errors.

A CCB request was aborted by the host
Pprocessor.

The SIM was not able to abort the specified
CCB.

The specified CCB request completed with an
error.

The CAM subsystem is busy. The CCB returns
to the caller; the request must be resubmitted.

The specified CCB request is not valid.

The path ID specified in the cam_path_id
member of the CCB_HEADER structure is not
valid.

The specified SCSI device is not installed at this
location.

The CAM subsystem was unable to terminate
the specified CCB 1/O request.

A target-selection timeout occurred.
A command timeout occurred.
A message rejection was received by the SIM.

The SCSI bus-reset was issued by the SIM or
was seen on the bus by the SIM.

An uncorrectable parity error occurred.

The autosense request-sense command failed.
No HBA was detected.

A data overflow or underflow error occurred.
An unexpected bus free was detected.

A target bus phase-sequence failure occurred.

The CCB length specified in the
cam_ccb_len member of the CCB_HEADER
structure is incorrect.

The requested capability could not be provided.
A SCSI BDR message was sent to the target.
The CCB request was terminated by the host.

Table 5-3: (continued)

CAM Status Code Meaning

CAM LUN_INVALID The LUN supplied is invalid.

CAM _TID_ INVALID The target ID suplied is invalid.

CAM FUNC_NOTAVAIL The requested function is not available.
CAM_NO_NEXUS A nexus has not been established.
CAM IID_ INVALID The initiator ID is invalid.

CAM CDB_RECVD The SCSI CDB has been received.
CAM_SCSI_BUSY The SCSI bus is busy.

CAM_SIM QFRZN The SIM queue is frozen.

CAM AUTOSNS_VALID Autosense data is valid for the target.
CAM_STATUS_MASK The mask bits are only for the status.

5.2 1/0 Data Structure

5.2.1

Peripheral device drivers make SCSI device action requests through the
following data structures:

e The CCB_SCSIIO structure
e The CDB_UN structure

The CCB_SCSIIO Structure

A peripheral driver indicates to the XPT/SIM that it wants to make a SCSI
device action request by setting the cam_func_code member of the
CCB_HEADER structure to the constant XPT SCSI I0. The peripheral-
driver writer then uses the CCB_SCSIIO structure to specify the requests.

The CCB_SCSIIO structure contains the following members:

typedef struct
{
CCB_HEADER cam ch; /* Header information fields */
u_char *cam pdrv_ptr; /* Ptr to the Peripheral driver */
/* working set */
CCB_HEADER *cam next ccb; /* Ptr to the next CCB for action */

u_char *cam req map; /* Ptr for mapping info on the Reqg. */
void (*cam cbfcnp)(); /* Callback on completion function */
u_char *cam data ptr; /* Pointer to the data buf/SG list */
u_long cam dxfer_ len; /* Data xfer length */

u_char *cam_sense_ptr; /* Pointer to the sense data buffer */
u_char cam_sense_len; /* Num of bytes in the Autosense buf */
u_char cam cdb len; /* Number of bytes for the CDB */

CAM Data Structures 5-5

5.2.2

‘u_short cam _sglist cnt; /* Num of scatter/gather list entries */

u_long cam_sort; /* Value used by #he SIM to sort on */
cam_scsi_status /* Returned SCSI device status */
cam_sense_resid /* Rutosense residual length: */

/* two’s complement */
cam osd_rsvdi{2] /* 0SD reserved field for alignment */
long cam resid; /* Transfer residual length: */

/* two's complement */
CDB_UN cam cdb_io; /* Union for CDB bytes/pointer */
u_long cam_timeout; /* Timeout value */
u_char *cam msg_ptr; /* Pointer to the message buffer */
u_short cam msgb_len; /* Num of bytes in the message buf */
u_short cam_vu_flags; /* Vendor unique flags */
u_char cam tag_action; /* What to do for tag queuing */
u_char cam iorsvd0[3]; /* Reserved field, for alignment */

u_char cam_sim priv|[SIM_ PRIV]; /* SIM private data area */
} CCB_SCSIIO;

The CDB_UN Structure
The CDB_UN structure contains:

typedef union

{ . .
u:char *cam _cdb_ptr; /* Pointer to the CDB bytes */
/* to send */
u_char cam cdb_bytes{ IOCDBLEN]; /* Area for the inline CDB #*?
/* to send */
} CDB_UN;

5.3 Control CCB Structures

5.3.1

The control CCB structures allow the driver writer to specify such tasks as
resetting the SCSI bus, terminating an I/O process request, and so forth. This
section discusses the following control structures:

« CCB_RELSIM
« CCB_SETASYNC
« CCB_ABORT

« CCB_RESETBUS
« CCB_RESETDEV
+ CCB_TERMIO

These structures are discussed in the sectigns that follow.

The CCB_RELSIM Structure

'_.‘:'_Dgévice;dr‘iver writers use the CCB__RELS IM structure to release the SIM’s

N

5-6 CAM Data Structures

5.3.2

5.3.3

5.3.4

internal CCB queue. The CCB_RELSIM structure contains:

typedef struct

{
CCB_HEADER cam_ch; /* Header information fields */

} CCB_RELSIM;

The CCB_SETASYNC Structure

SCSI/CAM peripheral device driver writers use the CCB_SETASYNC
structure to set the asynchronous callback for notification of the following
events when they occur:

* Unsolicited SCSI BUS DEVICE RESET (BDR)

¢ Unsolicited RESELECTION

¢ SCSI AEN (asynchronous event notification enabled)
* Sent BDR to target

¢ SIM module loaded

¢ SIM module unloaded

¢ New devices found

The CCB_SETASYNC structure is defined as follows:

typedef struct
{

CCB_HEADER cam_ch; /* Header information fields */
u_long cam _async_flags; /* Event enables for Callback response */
void (*cam _async_func)(); /* Async Callback function address */
u_char *pdrv_buf; /* Buffer set aside by the */

/* peripheral driver */
u_char pdrv_buf len; /* The size of the buffer */

} CCB_SETASYNC;

The CCB_ABORT Structure

Device-driver writers use the CCB_ABORT structure to abort a CCB that is
on the SIM queue. The CCB_ABORT structure contains:

typedef struct
CCB_HEADER cam_ch; /* Header information fields */

CCB_HEADER *cam_abort_ch; /* Pointer to the CCB to abort */
} CCB_ABORT;

The CCB_RESETBUS Structure
Device-driver writers use the CCB_RESETBUS structure to reset the SCSI

CAM Data Structures 5-7

bus. The CCB_RESETBUS structure is defined as follows:

typedef struct
{

CCB_HEADER cam_ch; /* Header information fields */
} CCB_RESETBUS;

5.3.5 The CCB_RESETDEYV Structure

Device-driver writers use the CCB_RESETDEV structure to reset a single
SCSI device. The CCB_RESETDEV structure is defined as follows:

typedef struct
{

CCB_HEADER cam ch; /* Header information fields */
} CCB_RESETDEV;

5.3.6 The CCB_TERMIO Structure

Device-driver writers use the CCB_ TERMIO structure to terminate an I/O
process request. The CCB_TERMIO structure is defined as follows:

typedef struct

{
CCB_HEADER cam_ch; /* Header information fields */
CCB_HEADER *cam_termio ch; /* Pointer to the CCB to terminate */

} CCB_TERMIO;

5.4 Configuration CCB Structures

The configuration CCB structures let the driver writer obtain information
such as the device type, version number for the SIM/HBA, and vendor IDS.
The following configuration CCBs are described in this section:

e The CCB_GETDEV structure
¢ The CDB_SETDEYV structure
¢ The CDB_PATHINQ structure

These structures are discussed in the following sections.

5.4.1 The CCB_GETDEV Structure

Device-driver writers use the CCB_GETDEV structure to obtain a device type

5-8 CAM Data Structures

and inquiry information. The CCB_GETDEV structure is defined as follows:
typedef struct

{
CCB_HEADER cam ch; /* Header information fields */
u_char cam_pd_type; /* Peripheral device type from the TLUN */
char *cam_ing data; /* Ptr to the inquiry data space */

} CCB_GETDEV;

5.4.2 The CCB_SETDEYV Structure

Device-driver writers use the CCB_SETDEV structure to set the device type.
The CCB_SETDEV structure is defined as follows:

typedef struct

{
CCB_HEADER cam_ch; /* Header information fields */

u_char cam_dev_type; /* Value for the dev type field in EDT */
} CCB_SETDEV;

5.4.3 The CCB_PATHINQ Structure

Device-driver writers use the CCB_PATHINQ structure to obtain SIM
information such as supported features and version numbers. The
CCB_PATHINQ structure is defined as follows:

typedef struct

{
CCB_HEADER cam_ch; /* Header information fields */
u_char cam version_num; /* Version number for the SIM/HBA */
u_char cam_hba inquiry; /* Mimic of INQ byte 7 for the HBA */
u_char cam_target_sprt; /* Flags for target mode support */
u_char cam_hba misc; /* Misc HBA feature flags */
u_char cam_vuhba_flags[VUHBA]; /* Vendor unique capabilities */
u_long cam_sim priv; /* Size of SIM private data area */
u_long cam_async_flags; /* Event cap. for Async Callback */
u_char cam_hpath_id; /* Highest path ID in subsystem */
u_char cam initiator_id; /* ID of the HBA on the SCSI bus */

char cam sim vid[SIM_ID] /* Vendor ID of the SIM */

char cam_hba vid[HBA ID] /* Vendor ID of the HBA */

u_char *cam_osd_usage; /* Ptr for the OSD specific area */
} CCB_PATHINQ;

~e S

CAM Data Structures 5-9

SCSI/CAM Configuration Driver
Modules 6

This chapter describes the data structures and routines used by the
Configuration driver to interface with the CAM subsystem. It also describes
the /usr/sys/include/io/cam/cam config.c file, which contains
SCSI/CAM peripheral device driver configuration information. SCSI/CAM
peripheral device driver writers add to this file external declarations and
entries to the SCSI/CAM peripheral driver configuration table for their
peripheral device drivers.

6.1 Configuration Driver Introduction

The Configuration driver dynamically initializes the XPT and SIM layers of
the CAM subsystem, at run time. This enables support for a generic kernel
that is configured for all processors and all CAM subsystem software, for
example, all HBA drivers. After initialization is complete, the Configuration
driver scans the SCSI bus and stores INQUIRY information about each SCSI
device detected.

Once the CAM subsystem is initialized and the scanning information stored,
the SCSI/CAM peripheral device drivers can use the subsystem. They can
determine what devices have been detected and allocate memory
appropriately. They can also request resources from the XPT layer using the
XPT_GDEV_TYPE and XPT_SDEV_TYPE get and set device information
CCBs.

The Configuration driver module logically exists in the SCSI/CAM
peripheral device driver layer above the XPT.

6.2 Configuration Driver XPT Interface

The Configuration driver is responsible for supporting the following XPT
commands:

» GET DEVICE TYPE CCB
» SET DEVICE TYPE CCB
« SET ASYNCHRONOUS CALLBACK CCB

The Configuration driver also supports the configuration and bus scanning for
loaded SIM modules.

6.3 Configuration Driver Data Structures

6.3.1

6.3.1.1

This section describes the following Configuration driver data structures:
¢ CCFG_CTRL - The Configuration driver control structure
e EDT -~ The CAM equipment device table

e CAM_PERIPHERAL_DRIVER - The SCSI/CAM peripheral driver
configuration structure

The Configuration Driver Control Structure

The Configuration driver control structure, CCFG_CTRL, contains flags used
by the Configuration driver for the scanning process. It also sets aside an
area to contain the data returned from the INQUIRY CCBs during the initial
scanning process. The structure is defined as follows:

typedef struct ccfg ctrl
{

u_long ccfg flags; /* controlling flags */
ALI,_INQ DATA ing_buf; /* scratch area for the INQUIRY data */
