
software

PROjVENIXTM
for the Professional

User Guide

Developed by:

VenturCom, Inc.
215 First Street

Cambridge, MA 02142

Digital Equipment Corporation
Maynard, MA 01754

First Printing

The software described in this manual is distributed as part of Digital
Equipment Corporation's Digital Classified Software (DCS) Program.
This program enables software developers to submit their software prod­
ucts to Digital for testing according to Digital quality standards for third
party software. This software product has met the DCS standard speci­
fied in the software product description (SPD) for this product. You
should refer to the SPD for information about these standards, the hard­
ware and software required to run this product, and warranties (if any
warranty is available).

The software described in this manual is furnished under a license and
may only be used or copied in accordance with the terms of that license.
This manual is reproduced with the permission ofVenturCom, Inc.

Copyright © 1983, by Western Electric. All Rights Reserved.

Portions Copyright © 1984 VenturCom, Inc. All Rights Reserved.

Except as may be stated in the SPD for this product, no responsibility is
assumed by Digital or its affiliated companies for use or reliability of this
software, or for errors in this manual or in the software. Additional sup­
port and/ or warranty services may be available from the developer of
this software product. Digital has no connection with, and assumes no
responsibility or liabilities in connection with these services.

This manual is subject to change without notice and does not constitute a
commitment by Digital.

VENIX is a trademark of VenturCom, Inc.
UNIX is a trademark of AT&T Technology, Inc.

The following are trademarks of Digital Equipment Corporation:

DEC DECwriter Professional VAX
DECmate DIBOL Rainbow VMS
DECnet MASS BUS RSTS VT
DECsystem-lO PDP RSX Work Processor
DECSYSTEM-20 PIOS UNIBUS ~D~DDmD
DECUS

The PRO/VENIXt Documentation Set

The PRO/VENIX documentation set consists of the following manuals:

PRO/VENIX Installation and System Manager's Guide

The set up and maintenance of PRO/VENIX are described in the
installation sections. Other articles explain the UNIX-to-UNIXt
communications systems. The "System Maintenance Reference
Manual" contains reference pages for devices and system maintenance
procedures (sections (7) and (8».

PRO/VENIX User Guide

The User Guide contains tutorials for newcomers to PRO/VENIX,
covering basic use of the system, the editor vi and use of the
command language interpreters.

PRO/VENIX Document Processing Guide

The line and screen editors and nroff-related text formatting utilities
are described in the Document Processing Guide. Topics include: line
editor ed, and stream editor sed; the text formatter nroff; the nroff­
preprocessors tbl and neqn.

PRO/VENIX Programming Guide

The chapters in the Programming Guide explicate the different
programming languages for VENIX.

t VENIX is a trademark of VenturCom, Inc.

:I: UNIX is a trademark of Bell Laboratories.

PRO/VENIX Support Tools Guide

This guide includes tools for programming, such as the compiler­
writing languages Yacc and Lex, the M4 Macro processor, the
program development utility Make, and the desk calculator programs
DC and BC.

PRO/VENIX User Reference Manual

This is a complete and concise reference for the PRO/VENIX system.
This volume contains write-ups on all PRO/VENIX commands.

PRO/VENIX Progammer Reference Manual

The reference pages in this volume include system calls, library
functions, file formats, miscellaneous functions and games.

Contents

INTRODUCTION

Chapter 1. VENIX FOR BEGINNERS

Chapter 2. DISPLAY EDITING WITH VI

Chapter 3. AN INTRODUCTION TO THE SHELL

Chapter 4. AN INTRODUCTION TO THE C SHELL

INTRODUCTION

The PRO/VENIX User Guide covers the following topics:

The first chapter, VENIX FOR BEGINNERS, is an introduction to VENIX and
instructions on how to use the operating system.

AN INTRODUCTION TO DISPLAY EDITING WITH VI is a guide to the
interactive screen editor, vi.

Chapter three, AN INTRODUCTION TO THE SHELL, is an overview of the
capabilities of the shell command interpreter.

The chapter AN INTRODUCTION TO THE C SHELL describes the features
of the C shell command command interpreter, including a glossary of com­
mands.

Not all of the capabilities of the operating system are described or illustrated
here, but enough are described so that a new user can become familiar with the
use of the VENIX operating system.

Throughout this volume, references are made to pages in the User Reference
Manual, Programmer Reference Manual and Installation and System Manager's
Guide. These are often in the form of a name followed by a section number,
e.g fsck(1). Entries with "name" (1) are contained in the User Reference Man­
ual. References for sections (2) -(6) are included in the Programmer Reference
Manual. Sections (7) and (8) are found in the Installation and System
Manager's Guide.

Contents

1.1 INTRODUCTION .. 1-1

1.2 GETTING STARTED ... 1-3

1.3 DAY-TO-DAY USE .. 1-10

1.4 DOCUMENT PREPARATION 1-39

1.5 PROGRAMMING .. 1-42

1.6 VENIX READING LIST ... 1-47

Chapter 1

VENIXt For Beginners

This paper is meant to help new users get started on the VENIX operating sys­
tem. It includes:

• basics needed for day-to-day use of the system - typing commands, cor­
recting typing mistakes, logging in and out, mail, inter-terminal communi­
cation, the file system, printing files, redirecting 110, pipes, and the shell.

• document preparation - a brief discussion of the major formatting pro­
grams and macro packages, hints on preparing documents, and capsule
descriptions of some supporting software.

• VENIX programming - using the editor, programming the shell, program­
ming in C, other languages and tools.

• An annotated VENIX bibliography.

1.1 INTRODUCTION

The VENIX Operating System is derived from Bell Labs' UNIXi System III. In
many ways, VENIX is the state of the art in computer operating systems. From
the user's point of view, it is easy to learn and use, and presents few of the
usual impediments to getting the job done. It is hard, however, for the begin­
ner to know where to start, and how to make the best use of the facilities avail­
able. This paper will familiarize new users with the main ideas of the VENIX

t VENIX is a trademark of VenturCom, Inc.

~ UNIX is a trademark of Bell Laboratories.

1-1

VENIX FOR BEGINNERS

system so that they can start using it quickly and effectively. If you already
have experience with UNIX, you will find that VENIX is quite similar.

In this article, you will find references to the User Reference Manual. In the
manual you will find a more detailed explanation of the commands. In fact,
the manual provides the best discussion of many topics so at several points in
the text, we will refer you to it for a specific topic.

The five sections of this chapter are:

1. Getting Started: Instructions for logging in, typing, correcting typing mis­
takes, and logging out.

2. Day-to-day Use: Discussion of the file and directory systems, and com­
mands to manipulate them effectively.

3. Document Preparation: Advice, but not extensive instructions, on using
formatting tools to prepare manuscripts - one of the most common uses
for VENIX.

4. Writing Programs: Discussion of some of the excellent tools for developing
programs on VENIX; this is not a tutorial in any of the programming lan­
guages provided by the system.

5. A VENIX Reading List: An annotated bibliography of documents that
should be helpful to new users.

In the following sections, the notation CTRL-X is generated by pressing down
the CONTROL key while typing the letter X (either lower or upper case may be
used). This is used to perform several special functions, as described in the fol­
lowing pages. (See also Appendix A.)

1-2

VENIX FOR BEGINNERS

1.2 GETTING STARTED

1.2.1 Logging In

The system administrator will have to give you a valid user name before you
can "login" on VENIX. Using a password is optional on this system; however,
some administrators require all users to have one. If you are going to use a
password, make sure it is easy to type and remember.

On your terminal you should see the word "login:". If not, it may mean that
the previous user did not "log out" before leaving. To "log out" the previous
user, type CTRL-D by holding down the CONTROL key while typing the letter
D. Press the CR key. If you still cannot get the "login" message to appear,
refer to "SETTING UP VENIX" in the Installation and System Manager's
Manual.

If you are accessing the system, via a modem, on a line which may operate at
different speeds (for example, a 300/1200 baud dial-in line), you may have to
get VENIX to the correct speed before you receive the "login:". This can be
done by pressing the BREAK key, which signals VENIX to try a different baud
rate, and attempting to type. (If your terminal is at the wrong baud rate, keys
you type will either not be shown or will appear as random letters.)

When the terminal displays "login:" type your user name in lower case letters
and press CR. If you type upper case letters, VENIX will assume that your ter­
minal cannot generate lower case letters and will display all subsequent output
in upper case. VENIX is strongly oriented towards devices with lower case.

If you were assigned or chose a password, the system will ask for it after you
have typed your user name. When the terminal displays "password:" type your
password and CR. For security, the word will not appear as you type it. Get­
ting a "login incorrect" message can mean you mistyped your user name or
password. Press CR and start the "login" process again. Users who do not
have a password should not get a "password:" request. If you are prompted
for a password but you never chose nor were assigned one, then you probably
mistyped your user name. Type a CR and start again from "login:".

1-3

VENIX FOR BEGINNERS

Assuming that your login efforts are successful you will get a "Welcome to
VENIX" message with the date, followed by a prompt (a word or character that
means the system is waiting for you to type a command). Before the prompt
appears, you may get some daily messages or a notice you have mail (see the
following section on "mail" to learn how to send or read mail). In VENIX, the
prompt will be a dollar sign "$" unless you take steps to personalize it.

1.2.2 Typing Commands

Once you've seen the prompt character, you can type commands, which are
requests that the system do something. Try typing

date

followed by CR. You should get back something like

Tue Jan 12 14:17:10 EST 1983

Don't forget to press the CR key after the command, or nothing will happen.
If you think you're being ignored, type CR; something should happen. 'CR'
won't be mentioned again, but don't forget it. In VENIX, it has to be typed at
the end of each line before the system gets the input.

Another command you might try is pwd ("print working directory") which
gives your current directory location.

pwd

gives something like

lusr I yourname

(The name listed should be your own.)

If you make a mistake typing the command name, and refer to a non-existent
command, you will be told. For example, if you type

pqd

1-4

VENIX FOR BEGINNERS

you will be told

pqd: not found

Of course, if you inadvertently type the name of some other command, it will
run, with more or less mysterious results.

All commands must be given in lower-case, so for example typing

PWD

will give you only

PWD: not found

A description of the kinds of error messages you may receive while attempting
to run commands may be found in a later section of this document.

1.2.3 Mistakes in Typing

If you make a typing mistake, and see it before CR has been typed, there are
two ways to recover. The DELETE key erases the last character typed. Succes­
sive uses of DELETE erase characters back to the beginning of the line (but not
beyond). So if you type badly, you can correct as you go.

A CTRL-U (typed by pressing the CONTROL key and typing 'u') erases all of the
characters typed so far on the current input line, so if the line is irretrievably
fouled up, type a CTRL-U and start it over.

The BACKSPACE key will not cause characters to be deleted. Since typing a
back-space will cause a CRT terminal to overwrite a character, it may appear
that VENIX is deleting a letter; however, this does not in fact cause the letter to
be deleted from VENIX's input stream, and VENIX will act as if you made any
other typing error. Newcomers should be careful to avoid this, as imbedding
back-spaces in commands will cause confusing errors. If you try to use back­
spaces (or any other control character) in a file name, VENIX will replace each
occurrence in the name with a '#'.

1-5

VENIX FOR BEGINNERS

1.2.4 Read-ahead

VENIX has full read-ahead, which means that you can type as fast as you want,
whenever you want, even when some command is typing at you. If you type
during output, your input characters will appear intermixed with the output
characters, but they will be stored away and interpreted in the correct order. So
you can type several commands one after another without waiting for the first
to finish or even begin.

If what you are typing gets garbled on the screen by other output, hitting
CTRL-R will re-echo everything you have typed that has not yet been read by a
program. To erase all of this, type CTRL-E; it is like CTRL-U, except that all
previous unread lines, not just the current one, are erased.

1.2.5 Stopping a Program

You can stop most programs by typing a CTRL-C. There are some exceptions:
in a few programs, like in the line-oriented text editor ed, CTRL-C stops what­
ever the program is doing but leaves you in that program. The BREAK or
INTERRUPT key has the same effect. Screen editors act completely differently,
and generally have their own unique control codes to abort or exit.

If your program is sending out information to your terminal screen faster than
you can read it, typing CTRL-S will stop the output. The program itself isn't
terminated; it just waits there until you tell it to continue typing to your termi­
nal. This is accomplished by typing CTRL-Q, which starts things up again.
Typing any other character will also start output, but that character will be
entered and read.

You can also tell VENIX to automatically stop after every 20 lines of uninter­
rupted output, just as if you had typed CTRL-S. Output is continued by typing
CTRL-Q. This mode of output is called "scroll" mode, and is enabled by typ­
ing

stty scroll

Once you do this, don't forget that all programs (except for screen editors) will
stop every 20 lines unless you type the CTRL-Q.

1-6

VENIX FOR BEGINNERS

If you want "scroll" mode to be in effect every time you log in, the above stty
command can be placed in the file called .profile. The .profile file is read by
the system every time you log in, and the commands within it automatically exe­
cuted, just as if you typed them at the keyboard.

If you decide you don't like the "scroll" mode, you can turn it off by typing at
any time

stty -scroll

1.2.6 Logging Out

The easiest way to log out is to type CTRL-D (EOT - End Of Transmission).
VENIX will display a new "login:" message. You can also use the login com­
mand to log out by simply typing

login

or to log in to a new user by typing

login new-user-name

See Appendix A for a list of the terminal control codes that were discussed in
the above paragraphs.

1.2.7 Strange Terminal Behavior

Sometimes you can get into a situation where your terminal acts strangely. For
example, characters may not be echoed back to you as you type, or CR may
cause the cursor to move down a line (i.e., do a line feed) but not return to the
left margin. You can often fix this by logging out and logging back in. Or you
can read the description of the command stty in the User Reference Manual and
use it to reset the correct terminal mode. This can often be done by typing

stty -nl -raw echo

and ending the line with a line feed instead of a carriage return.

1-7

VENIX FOR BEGINNERS

If your terminal echoes' #' signs when you delete characters, instead of erasing
the characters from the screen, then you can type

stty ert

to fix it. If your terminal is typing everything in upper-case, you can bring it
back to the normal upper- and lower-case state by typing

stty -lease

VENIX will put you in upper-case only mode if you accidentally typed your
login name in upper-case letters.

1.2.8 Mail

When you log in, you may sometimes get the message

Y 00 have mail.

VENIX provides a postal system so you can communicate with other users of the
system. To read your mail, type the command

mail

Your mail will be printed, one message at a time, most recent message first.
After each message, mail prompts you with a '?' and waits for you to say what
to do with it. The two basic responses are d, which deletes the message, and
CR, which does not (so it will still be there the next time you read your mail­
box). Responding with a '?' yourself will get you a list of all the choices, which
are of course also listed in the User Reference Manual.

How do you send mail to someone else? Suppose it is to go to "sam" (assum­
ing "sam" is someone's login name). The easiest way is this:

1-8

mail sam
now type in the text of the letter
on as many lines as you like ...
After the last line of the letter
type CTRL-D.

VENIX FOR BEGINNERS

And that's it. The CTRL-D sequence is used throughout VENIX to mark the
end of input from a terminal, so you might as well get used to it. The CTRL-D
must immediately follow the last newline. Be careful though: if you type a
CTRL-D when there is no command to read it, your shell will find it and log
you out.

For practice, send mail to yourself. (This isn't as strange as it might sound -
mail to oneself is a handy reminder mechanism.)

There are other ways to send mail - you can send a previously prepared letter,
and you can mail to a number of people all at once. For more details see
mail(1). (The notation mail(l) means the command mail in section 1 of the
User Reference Manual.

1.2.9 Writing to other users

At some point, out of the blue will come a message like

Message from joe tty07 ...

accompanied by a startling beep. It means that Joe wants to talk to you, but
unless you take explicit action you won't be able to talk back. To respond,
type the command

write joe

This establishes a two-way communication path. Now whatever Joe types on
his terminal will appear on yours and vice versa. The path is slow, rather like
talking to the moon. (If you are in the middle of something, you have to get to
a state where you can type a command. Normally, whatever program you are
running has to terminate or be terminated.)

1-9

VENIX FOR BEGINNERS

A protocol is needed to keep what you type from getting garbled up with what
Joe types. Typically it's like this:

Joe types write smith and waits.

Smith types write joe and waits.

Joe now types his message (as many lines as he likes).
When he's ready for a reply, he signals it by typing
(0), which stands for "over".

Now Smith types a reply, also terminated by
(0).

This cycle repeats until someone gets tired; he then
signals his intent to quit with (00),
for "over and out".

To terminate the conversation, each side must
type a CTRL-D character alone on a line.
(CTRL-C also works.) When the other person types
his CTRL-D, you will get the message EOF on your terminal.

If you write to someone who isn't logged in, or who doesn't want to be dis­
turbed, you'll be told. If the target is logged in but doesn't answer after a
decent interval, simply type CTRL-D.

1.3 DAY-TO-DAY USE

1.3.1 Creating Files - The Editor

If you have to type a paper or a letter or a program, how do you get the infor­
mation stored in the machine? Most of these tasks are done with one of the
VENIX text editors. You will probably find that one of the screen editors, like
vi or the FinalWord, is most convenient for practically all the editing work you
have. The FinalWord, an optional editor with VENIX, is described in a separate
manual. However, a basic knowledge of ed can be handy, and at times

1-10

VENIX FOR BEGINNERS

indispensable (its global substitution facilities do not exist in the screen editors);
and since ed is the most widely known of the text editors, we'll assume its use
throughout the rest of this paper. ed is thoroughly documented in ed(l).

All we want it for right now is to make some files. (A file is just a collection
of information stored in the machine, a simplistic but adequate definition.) To
create a file called "junk" with some text in it, do the following:

ed junk (invokes the text editor)
a (command to "ed", to add text)
now type in
whatever text you want ...

(signals the end of adding text)

The " " that signals the end of adding text must be at the beginning of a line
by itself. Don't forget it, for until it is typed, no other ed commands will be
recognized - everything you type will be treated as text to be added.

At this point you can do various editing operations on the text you typed in,
such as correcting spelling mistakes, rearranging paragraphs and the like.
Finally, you must write the information you have typed into a file with the edi­
tor command w:

w

ed will respond with the number of characters it wrote into the file junk.

Until the w command, nothing is stored permanently, so if you quit and go
home the information is lost. But after w the information is there permanently;
you can re-access it any time by typing

ed junk

Type a q command to quit the editor. (If you try to quit without writing, cd
will print a? to remind you. Typing a second q gets you out regardless.)

Now create a second file called temp in the same manner. You should now
have two files, junk and temp.

1-11

VENIX FOR BEGINNERS

1.3.2 What Files Are Out There?

The Is (for "list") command lists the names (not contents) of any of the files
that VENIX knows about. If you type

Is

the response will be

junk temp

which are indeed the two files just created. The names are sorted into alphabet­
ical order automatically, but other variations are possible. For example, the
command (note the space before the argument -t):

Is -t

causes the files to be listed in the order in which they were last changed, most
recent first. The -I option gives a "long" listing:

Is -I

will produce something like

-rw-rw-r-- 1 fred 41 Jul 22 2:56 junk
-rw-rw-r-- 1 fred 78 Jul 22 2:57 temp

(Since long listings are so frequently useful, a version of the Is command called
simply I will give one to you automatically.) The date and time are of the last
change to the file. The 41 and 78 are the number of characters (which should
agree with the numbers you got from ed). fred is the owner of the file, that is,
the person who created it. The - rw - rw - r - - tells who has permission to
read and write the file; see the section on "Protection Modes" later for a full
description.

Options can be combined: Is - It gives the same thing as Is -I, but sorted into
time order. You can also name the files you're interested in, and Is will list the
information about them only. More details can be found in Is(1).

The use of optional arguments that begin with a minus sign, like - t and - It, is
a common convention for VENIX programs. In general, if a program accepts
such optional arguments, they precede any filename arguments. It is also vital

1-12

VENIX FOR BEGINNERS

that you separate the various arguments with spaces: Is -I is not the same as
Is -I.

1.3.3 Printing Files

Now that you've got a file of text, how do you print it so people can look at it?
There are a host of programs to do that, probably more than are needed.

One simple thing is to use the editor, since printing is often done just before
making changes anyway. You can say

ed junk
1,$p

ed will reply with the count of the characters in junk and then print all the lines
in the file. After you learn how to use the editor, you can be selective about
the parts you print.

There are times when it's not feasible to use the editor for printing. For exam­
ple, there is a limit on how big a file ed can handle (several thousand lines).
Secondly, it will only print one file at a time, and sometimes you want to print
several, one after another. So here are a couple of alternatives.

First is cat, the simplest of all the printing programs. cat simply prints on the
terminal the contents of all the files named in a list. Thus

cat junk

prints one file, and

cat junk temp

prints two. The files are simply concatenated (hence the name cat) onto the ter­
minal.

pr produces formatted printouts of files. As with cat, pr prints all the files
named in a list. The difference is that it produces headings with date, time,
page number and file name at the top of each page, and extra lines to skip over
the fold in the paper. Thus,

1-13

VENIX FOR BEGINNERS

pr junk temp

will print junk neatly, then skip to the top of a new page and print temp neatly.

pr can also produce multi-column output:

pr -3 junk

prints junk in 3-column format. You can use any reasonable number in place
of "3" and pr will do its best. pr has other capabilities as well; see pr(1).

It should be noted that pr is not a formatting program in the sense of shuffling
lines around and justifying margins. The true formatter is nroff, which we will
get to in the section on document preparation.

There is also a program called Ipr that queues files and prints them (with page
headers and numbers) on a printer. The command

Ipr junk

will print out file junk.

If the information you want printed isn't in a file (for example, a directory list­
ing obtained through the Is command), you can send it to the Ipr (or most other
commands) through a "pipe," described in a later section.

1.3.4 Shuffling Files About

Now that you have some files in the file system and some experience in printing
them, you can try bigger things. For example, you can move a file from one
place to another (which amounts to giving it a new name), like this:

mv junk precious

This means that what used to be "junk" is now "precious". If you do an Is
command now, you will get

precious
temp

1-14

VENIX FOR BEGINNERS

Beware that if you move a file to another one that already exists, the already
existing file's contents are lost forever.

If you want to make a copy of a file (that is, to have two versions of some­
thing), you can use the cp command:

cp precious tempI

makes a duplicate copy of precious in tempI.

Finally, when you get tired of creating and moving files, there is a command to
remove files from the file system, called rm.

rm temp tempI

will remove both of the files named.

You will get a warning message if one of the named files wasn't there, but
otherwise rm, like most VENIX commands, does its work silently. There is no
prompting or chatter, and error messages are occasionally curt. This terseness is
sometimes disconcerting to newcomers, but experienced users find it desirable.

1.3.5 What's in a Filename

So far we have used filenames without ever saying what's a legal name, so it's
time for a couple of rules. First, filenames are limited to 14 characters, which
is enough to be descriptive. Second, although you can use almost any character
in a filename, common sense says you should avoid characters that might be
used with other meanings. We have already seen, for example, that in the Is
command, Is - t means to list in time order. So if you had a file whose name
was - t, you would have a tough time listing it by name.

Besides the minus sign, there are other characters which have special meaning.
In addition, all control characters (back-spaces, form-feeds, etc.) are absolutely
forbidden. (VENIX enforces this rule by substituting any of those characters
with pound signs (' # ') each time they occur in file names.} To avoid pitfalls,
you would do well to use only letters, numbers and the period until you're
familiar with the situation.

1-15

VENIX FOR BEGINNERS

On to some more positive suggestions. Suppose you're typing a large document
like a book. Logically this divides into many small pieces, like chapters and
perhaps sections. Physically it must be divided too, for ed will not handle really
big files. Thus you should type the document as a number of files. You might
have a separate file for each chapter, called

chap1
chap2
etc ...

Or, if each chapter were broken into several files, you might have

chap1.1
chap1.2
chap1.3

chap2.1
chap2.2

You can now tell at a glance where a particular file fits into the whole.

There are advantages to a systematic naming convention which are not obvious
to the novice VENIX user. What if you wanted to print the whole book? You
could say

pr chap1.1 chap1.2 chap1.3

but you would get tired pretty fast, and would probably even make mistakes.
Fortunately, there is a shortcut. You can say

pr chap*

The * means "anything at all," so this translates into "print all files whose
names begin with chap, listed in alphabetical order.

This shorthand notation is not a property of the pr command, by the way. It is
system-wide, a service of the program that interprets commands (the "shell,"
see sh(1». Using that fact, you can see how to list the names of the files in the
book:

1-16

Is chap*

produces

chap1.1
chap1.2
chap1.3

VENIX FOR BEGINNERS

The * is not limited to the last position in a filename - it can be anywhere and
can occur several times. Thus

rm *junk* *temp*

removes all files that contain junk or temp as any part of their name. As a spe­
cial case, * by itself matches every filename, so

pr *

prints all your files (alphabetical order), and

rm *

removes all files. (You had better be very sure that's what you wanted to say!)

The * is not the only pattern-matching feature available. Suppose you want to
print only chapters 1 through 4 and 9. Then you can say

pr chap [12349] *

The [..•] means to match any of the characters inside the brackets. A range of
consecutive letters or digits can be abbreviated, so you can also do this with

pr chap[1-49]*

Letters can also be used within brackets: [a - z] matches any character in the
range a through z.

The? pattern matches any single character, so

1-17

VENIX FOR BEGINNERS

Is ?

lists all files which have single-character names, and

Is -I chap?1

lists information about the first file of each chapter (chapl.l, chap2.1, etc.).

Of these niceties, * is certainly the most useful, and you should get used to it.
The others are frills, but worth knowing.

If you should ever have to turn off the special meaning of *, ?, etc., enclose the
entire argument in single quotes, as in

Is '?'

We'll see some more examples of this shortly.

1.3.6 What's in a Filename, continued

When you first made that file called junk, how did the system know that there
wasn't another junk somewhere else, especially since the person in the next
office is also reading this tutorial? The answer is that generally each user has a
private directory, which contains only the files that belong to him. When you
log in, you are "in" your directory. Unless you take special action, when you
create a new file, it is made in the directory that you are currently in; this is
most often your own directory, and thus the file is unrelated to any other file of
the same name that might exist in someone else's directory.

The set of all files is organized into a large tree (or "hierarchy") with your files
located several branches into the tree. It is possible for you to "walk" around
this tree, and to find any file in the system, by starting at the root of the tree
and walking along the proper set of branches. Conversely, you can start where
you are and walk toward the root.

Let's try the latter first. The basic tool is the command pwd ("print working
directory"), which prints the name of the directory you are currently in.

1-18

VENIX FOR BEGINNERS

Although the details will vary according to the system you are on, if you give
the command pwd, it will print something like

fusr fyour-name

This says that you are currently in the directory your-name, which is in turn in
the directory fusr, which is in turn in the root directory called by convention
just f. (Even if it's not called fusr on your system, you will get something
analogous. Make the corresponding changes and read on.)

If you now type (note the space after the command "Is"):

Is fusrfyour-name

you should get exactly the same list of file names as you get from a plain Is:
with no arguments, Is lists the contents of the current directory; given the name
of a directory, it lists the contents of that directory.

Next, try

Is fusr

This should print a series of names, among which is your own login name
your-name.

The next step is to try

Is f

You should get a response something like this (although again the details may be
different):

.profile bin
lib tmp

dev
usr

etc
venix

This is a collection of the basic directories that the system knows about (plus a
few plain files); we are at the root of the tree.

1-19

VENIX FOR BEGINNERS

Now try

cat /usr/yonr-name/junk

(if junk is still around in your directory). The name

/usr/your-name/junk

is called the pathname of the file that you normally think of as "junk". "Path­
name" has an obvious meaning: it represents the full name of the path you
have to follow from the root through the tree of directories to get to a particu­
lar file. It is a universal rule in the VENIX system that anywhere you can use
an ordinary filename, you can use a pathname.

Here is a picture which may make this clearer:

etc
11\

(root)
11\
/ I \

/ I \
/ I \

bin usr tmp
/ I \ I I \ 11\

/ I \
/ I \

adam eve mary
/ / \ \

/ \ junk
junk temp

dev
I I \

Notice that Mary's junk is unrelated to Eve's. For a look through an entire
typical VENIX system, see "VENIX MAINTENANCE" in the Installation and
System Manager's Guide.

This isn't too exciting if all the files of interest are in your own directory, but if
you work with someone else or on several projects concurrently, it becomes
handy indeed. For example, your friends can print your book by saying

1-20

VENIX FOR BEGINNERS

pr lusr/your-name/chap*

Similarly, you can find out what files your neighbor has by saying

Is lusr/neighbor-name

or make your own copy of one of her files by

cp lusr Iyour-neighbor Iher-file yourfile

If your neighbor doesn't want you poking around in her files, or vice versa, pri­
vacy can be arranged. Each file and directory has read-write-execute permis­
sions for the owner, a group, and everyone else, which can be set to control
access. (See the section on "Protection Modes" later in this chapter for
details.) As a matter of observed fact, for most users, openness is usually more
beneficial than privacy.

As a final experiment with pathnames, try

Is Ibin lusr/bin

Do some of the names look familiar? When you run a program, by typing its
name after the prompt character, the system simply looks for a file of that
name. It normally looks first in your directory (where it typically doesn't find
it), then in Ibin and finally in lusr/bin. There is nothing magic about com­
mands like cat or Is, except that they have been collected into a couple of places
to be easy to find and administer.

What if you work regularly with someone else on common information in her
directory? You could just log in as your friend each time you want to, but you
can also say "I want to work on her files instead of my own". This is done by
changing the directory that you are currently in (note the space after "cd"):

cd lusr/your-friend

Now when you use a filename in something like cat or pr, it refers to the file in
your friend's directory. Changing directories doesn't affect any permissions
associated with a file - if you couldn't access a file from your own directory,
changing to another directory won't alter that fact. Of course, if you forget

1-21

VENIX FOR BEGINNERS

what directory you're in, type

pwd

to find out.

It is usually convenient to arrange your own files so that all the files related to
one thing are in a directory separate from other projects. For example, when
you write your book, you might want to keep all the text in a directory called
book. So make one with

mkdir book

then go to it with

cd book

then start typing chapters. The book is now found in (presumably)

/usr /your-name/book

To get back to your original (often called "home") directory, just type

cd

From here, you can list the contents of directory book by typing

Is book

If a file appendix exists under book, you can look at it with the commands

cd book
cat appendix
cd

or you could (more concisely) type

cat book/appendix

The name "book/appendix" is simply the pathname to appendix, starting from
your home directory. Remember: any place you can use a filename, you can
use a pathname. We could have referred to appendix by its full pathname from

1-22

VENIX FOR BEGINNERS

the root, as in

cat lusr/your-uame/book/appendix

but since we are already in directory lusr/your-name, there is no point in using
this longer name.

VENIX understands that pathnames beginning with a "I" are being specified
from the root of the tree downwards, while those not beginning with "I" are
from the current directory.

You aren't limited to one level of directories. If you care to, you can make fur­
ther directories under book. For example, if you are in directory book and
type:

mkdir part1 part2 part3

you will have three directories in book. From here, typing

cd part1

moves you into directory partl. Now typing

pwd

should bring the response

lusr Iyour-name/book/partl

as you might have guessed. Your branch of the directory tree now looks like
this

1-23

VENIX FOR BEGINNERS

your-name

book
/ I \

/ I \
part! part2 part3

How do you move up a level in the tree, back up to directory book? There are
several choices. The command

cd

by itself will move you back to your home directory; from there, the command

cd book

will bring you down to book. Alternatively, since you know the full pathname
of book, you could type in the single command

cd /usr/your-name/book

These are both a bit awkward, however, and fortunately VENIX allows some
convenient shorthand: the name" .. " always refers to the directory above you.
Thus the task of moving up to book could have been done more easily with the
command

cd ..

This ieads to further conveniences. Suppose, for example, that you are back in
directory part!, and wish to move to directory part2. Using the" .. " name, we
could do this with

cd ..
cd part2

But there is no reason why you have to change directories one level at a time.
Instead, these two commands can be condensed to the single

1-24

VENIX FOR BEGINNERS

cd . ./part2

The "I" is the standard directory name separator: " .. " refers to the directory
above you, and "part2" refers to the directory below that one, so ". '/part2"
gets you right there.

The use of " .. " is not limited to the cd command. For example, suppose your
current directory was partl, and you wished to cat a file chap in directory
part2. You could type

cd ..
cat part2/ chap
cd partl

But why bother to change directories? These three commands can be condensed
to

cat . ./part2/chap

Remember: any place you use a file name, you can use a pathname.
" . ./part2lchap" is simply the pathname to file chap from your current direc­
tory. " .. " is just a directory name, and can be used in pathnames just like any
other directory name.

To remove the directories part1, part2, part3, type

rm partl/* part2/* part3l*
rmdir partl part2 part3

The first command removes all files from these directories; the second removes
the empty directories. (You can't remove a directory unless it has been emptied
first.) These commands could also be given, using the "[]" notation, as

rm part[1-3]!*
rmdir part[1-3]

The other special directory name, in addition to " " is simply ".". This
always refers to the directory you're in. This can be very useful with the cp

1-25

VENIX FOR BEGINNERS

(copy file) and mv (move file) commands. As shown before, the commands

cp file1 file2

or

mv file1 file2

can be used to copy or move, respectively, file1 to file2. Using pathnames, you
could also say

cp /usr/neighbor-name/his-file yourfile

Frequently, it is useful to copy or move files from one directory to another,
without changing their name. If you have some directory "yourdir", the com­
mand

cp /usr/neighbor-name/his-file yourdir

will copy the file his-file to directory yourdir, leaving you with a file yourdir /
his-file. The command

mv book/partl/chap book

moves the file chap from directory book/partl to directory book, leaving you
with a file book/chap. Now, since " " refers to your current directory, you
can say

cp /usr/neighbor-name/his-file .

or

mv /usr/neighbor-name/his-file .

and copy or move a file to your current directory, without changing its name.

If you use cp or mv to copy or move a directory, you can also specify more
than one file at a 'time. For example,

cp /usr/neighbor-name/his-file /usr/neighbor-name/his-other-file yourdir

which copies two files to yourdir, or

1-26

VENIX FOR BEGINNERS

mv lusr/neighbor-name/* .

which moves all files in lusr/neighbor-name to your current directory.

1.3.7 Using Files Instead of the Terminal

Most of the commands we have seen so far produce output on the terminal;
some, like the editor, also take their input from the terminal. It is universal in
VENIX systems that the terminal can be replaced by a file for either or both
input and output. As one example,

Is

makes a list of files on your terminal. But if you say

Is > filelist

a list of your files will be placed in the file filelist (which will be created if it
doesn't already exist, or overwritten if it does). The symbol> means "put the
output on the following file, rather than on the terminal." Nothing is produced
on the terminal. As another example, you could combine several files into one
by capturing the output of cat in a file:

. cat fl f2 f3 > temp

The symbol > > operates very much like > does, except that it means "add to
the end of." That is,

cat fl f2 f3 > > temp

means to concatenate fl, f2 and f3 to the end of whatever is already in temp,
instead of overwriting the existing contents. As with>, if temp doesn't exist, it
will be created for you.

In a similar way, the symbol < means to take the input for a program from the
following file, instead of from the terminal. Thus, you could make up a script
of commonly used editing commands and put them into a file called script.
Then you can run the script on a file by saying

1-27

VENIX FOR BEGINNERS

ed file < script

As another example, you can use ed to prepare a letter in file let, then send it
to several people with

mail adam eve mary joe < let

1.3.8 Pipes

One of the novd contributions of the VENIX system is the idea of a pipe. A
pipe is simply a way to connect the output of one program to the input of
another program, so the two run as a sequence of processes - a pipeline.

For example,

pr f g h

will print the files f, g, and h, beginning each on a new page. Suppose you
want them run together instead. You could say

cat f g h >temp
pr <temp
rm temp

but this is more work than necessary. Clearly what we want is to take the out­
put of cat and connect it to the input of pr. So let us use a pipe:

cat f g h I pr

The vertical bar I is the pipe symbol; it means take the output from cat, which
would normally have gone to the terminal, and put it into prto be neatly for­
matted.

There are many other examples of pipes. For example,

Is -m I sort -r

prints a single-column list of your files, sorted in reverse alphabetical order.

1-28

VENIX FOR BEGINNERS

Is -m I sort -r I Ipr

sends that list to the printer via the Ipr command.

The program we counts the number of lines, words and characters in its input,
and as we saw earlier, who prints a list of currently-logged-on people, one per
line. Thus

who I we

tells how many people are logged on (the first number shown is the line count).
And of course

Is I we

counts your files.

Any program that reads from the terminal can read from a pipe instead; any
program that writes on the terminal can drive a pipe. You can have as many
elements in a pipeline as you wish.

Many VENIX programs are written so that they will take their input from one
or more files if file arguments are given; if no arguments are given they will
read from the terminal, and thus can be used in pipelines. pr is one example:

pr -3 abe

prints files a, band e in order in three columns. But in

eat abe I pr -3

pr prints the information coming down the pipeline, still in three columns.

1.3.9 The Shell

We have already mentioned once or twice the mysterious "shell" (see shell(1»
sh(1). The shell is the program that interprets what you type as commands and
arguments. It also looks after translating *, etc., into lists of filenames, and <,
>, and I into changes of input and output streams.

1-29

VENIX FOR BEGINNERS

The shell has other capabilities too. For example, you can run two programs
with one command line by separating the commands with a semicolon; the shell
recognizes the semicolon and breaks the line into two commands. Thus

date; who

does both commands before returning with a prompt character.

You can also have more than one program running simultaneously if you wish.
For example, if you are doing something time-consuming, like the editor script
of an earlier section, and you don't want to wait around for the results before
starting something else, you can say

ed file < script &

The ampersand at the end of a command line says "start this command run­
ning, then take further commands from the terminal immediately," that is,
don't wait· for it to complete. Thus the script will begin, but you can do some­
thing else at the same time. Of course, to keep the output from interfering with
what you're doing on the terminal, it would be better to say

ed file < script > script.out &

which saves the output lines in a file called script.out.

When you initiate a command with &, the system replies with a number called
the process number, which identifies the command in case you later want to
stop it. If you do, you can say

kill process-number

If you forget the process number, the command ps will tell you about all pro­
cesses running. (If you are desperate, kill 0 will kill all your processes. The
last process number you ran with an '&' is also known as "$!", so kill $! will
stop just that one.)

You can say

(command-1; command-2; command-3) &

1-30

VENIX FOR BEGINNERS

to start three commands in the background, or you can start a background
pipeline with

command-1 I command-2 &

Just as you can tell the editor or some similar program to take its input from a
file instead of from the terminal, you can tell the shell to read a file to get com­
mands. (Why not? The shell, after all, is just a program, albeit a clever one.)
For instance, suppose you want to set tabs on your terminal, and find out the
date and who's on the system every time you log in. Then you can put the
three necessary commands (tabs, date, who) into a file, let's call it startup, and
then run it with

sh startup

This says to run the shell with the file startup as input. The effect is as if you
had typed the contents of startup on the terminal.

If this is to be a regular thing, you can eliminate the need to type sh: simply
type, once only, the command

chmod + x startup

and thereafter you need only say

startup

to run the sequence of commands. The chmod(1) command marks the file exe­
cutable; the shell recognizes this and runs it as a sequence of commands.

If you want startup to run automatically every time you log in, create a file in
your login directory called .profile, and place in it the line

startup

When the shell first gains control when you log in, it looks for the .profile file
and does whatever commands it finds in it. We'll get back to the shell in the

1-31

VENIX FOR BEGINNERS

section on programming. See "An Introduction to the Shell" in this manual
for more details on the shell.

1.3.10 Error Messages

There are many kinds of errors which can arise in day-to-day use of VENIX, but
they can be divided into three classes: errors given by commands you run; errors
given by the shell itself; and errors given by VENIX.

Command error messages vary widely. They are intended to be self­
explanatory, but you may have to check. the command write-up in the first sec­
tion of the User Reference Manual, in particular the sub-heading "DIAGNOS­
TICS." A common error message, "Usage: ... ", is given if a command is called
with the wrong number of file names, flags, or other arguments; the "usage"
message tries to give you an idea of how the command is supposed to be used.
Errors are most frequently due to attempts to reference files which do not exist
or which you have no permission to tamper with. The access(1) command can
be used to check your permission regarding a file or directory. See the section
in this chapter on "Permission Modes" for a description of its use.

The shell itself has a number of error messages which it will give you if you try
to run a command that can not be found, redirect 1/0 in illegal ways, or com­
mit one of several other felonies. Some of them refer to "signals", numbered 1
through 16. Signals are sent to programs which attempt, for example, to access
non-existent memory, execute illegal machine instructions. Some signals result
in a "core dump", which is the creation of a file called core containing an
image of the running program. These core files may be used for debugging by
sophisticated users; beginners can safely remove them.

Here is a list of the more common shell error messages, along with possible
causes. A complete list can be found in sh(1). Some of them are given only
when executing shell programs; others can be found in normal interactive use.

arg list too long
Too many arguments were passed to a command, usually due to use

of "*,, or other wildcards matching many file names. May be solved

1-32

VENIX FOR BEGINNERS

by not using long pathnames in wildcards. For example, instead of
typing

type

pr /usr/fred/src/*

cd /usr/fred/src
pr *

Maximum number of characters passed as arguments is roughly 1500.

cannot create
File can not be created - you may not have write permission in

directory, or file may already exist and not have write permission for
you.

cannot execute
File can not be executed - no execute permission for you.

cannot make pipe
See system administrator - pipe device may be incorrectly setup.

cannot open
File can not be opened - does not exist, or no permission for you.

core dumped
Memory image of program dumped in file called "core". Occurs if

program dies under certain conditions - commonly due to illegal
memory access caused by a pointer bug.

Floating exception
Floating point error: due either to use or floating point instruction

without hardware or simulator, or floating point error condition (e.g.
divide by zero). If no floating point hardware exists, C programs must
be compiled with - f flag.

not found
Given program can not be found. The shell looks in all directories

given in the PATH variable, generally the current directory, /bin and
/usr/bin.

1-33

VENIX FOR BEGINNERS

you have mail
Good news, we hope. Run the "mail" command to read your mail.

Finally, there are low-level error messages given by VENIX itself. These result
from problems in dealing with devices, or overflow conditions inside the operat­
ing system. These messages appear on the console terminal only. A list of
these messages may be found in "VENIX MAINTENANCE" in the Installation
and System Manager's Manual. Often these messages will be combined with
error messages from running programs; for example, if you try to copy a file to
a write-protected floppy diskette, the cp program will complain of errors in
writing, while the device driver responsible for handling that disk unit will
report problems with messages like "bn XXX .. , err "

The most serious kind of system error message is that beginning with the word
"PANIC ... ". This indicates a situation from which VENIX can not recover,
and precedes a total system halt.

1.3.11 File Protection Modes

When you do a long directory listing above, as in Is -lor just I, you get some­
thing like

-rw-rw-r-- 1 joe 41 Sep 7
-rw-rw-r-- 1 joe 78 Sep 9
-rwxrwxr-x 1 joe 3050 Sep 9

8:49
9:23

13:23

test
temp
a.out

The mysterious - rw - rw - r - - is the file's protection setting. All files under
VENIX can be given three kinds of permission: read, write, and execute.
"Read" permission allows one to read the contents of the file; "write" permis­
sion allows one to write on the file (either append to the file or overwrite it,
even clear it to zero); and "execute" permission allows one to execute the file
(which should be either a compiled program or a shell script). For each of
these things, the file is protected for three classes of people: the owner, the
group owner of the file, and everybody else in all other groups.

When a user tries to access a file, VENIX compares the user's ID and group ID
with that of the file: if the user ID matches (that is, the user is the owner of the
file), then the "owner" protection setting is used; otherwise, if the group ID
matches (the file belongs to someone in your group) then the "group" protec­
tion setting is used; finally, if neither user or group ID matches, then the

1-34

VENIX FOR BEGINNERS

"other" setting is used. The -rw-rw-r- - shown above by the I command
indicates read, write and execute permission for each of these three classes
respectively: an Or' indicates read permission, a Ow' write permission, and 'x'
execute permission. A' -' instead of a letter indicates that that permission has
been denied.

If you can't access a file you think you should be able to, try the access(1) com­
mand, which is of the form

access file-name

Access tries to find the file, and checks its permission setting. It reports your
permission for the file. If it can't find the file, it checks the pathname (if any)
to it, and reports on how far it could get, or if the file exists at all.

When files are created, they are given a default permission setting. Normally
this allows for reading and writing by the user and group, and reading only by
others. Execute permission is only given if the file is really executable (such as
a compiled program).

For file temp above, the owner can read and write to it, other people in the
owner's group can read and write to it, and everyone else can read it, but not
write to it. Nobody at all has execute permission (probably because this is not a
compiled program). The file a.out, on the other hand, does have execute per­
mission by everyone.

To change the file's mode, use chmod(l) (change mode). chmod allows you to
specify the file permission symbolically or numerically. Symbolically, you can
assign permission by saying

chmod g = r file1

which sets "group" permission for file1 to "read" only. To specify the mode
numerically, the permission must be put into an octal number. This is done by
assigning each possible permission a bit value according to the following table:

421
read write execute

OWNER

421
read write execute

GROUP

1-35

421
read write execute

OTHER

VENIX FOR BEGINNERS

The value of each possible setting is found by taking the numbers above each
permission, and adding them up for the owner, group, and other categories.
Full permission is 777; no permission at all is 000. The default permission
(read/write for owner and group, read for others) is 664.

To set the file permission to "read/write" for the owner only, and no permission
for anyone else, the command

chmod 600

can be used. For obvious reasons, you can only change the protection mode of
files which you yourself own.

These same permissions are also used with directories, although they have
slightly different meanings. For directories, read permission means "permission
to see what files are in the directory." Write permission means, "permission to
write or delete an entry in the directory," i.e. create or remove a file within that
directory. Execute permission really has nothing to do with execution (how can
you execute a directory?), but instead indicates "permission to access a particu­
lar file within the directory."

Modes can be assigned to directories just as they are to files. To protect all
files within a directory, it is usually easier simply to remove read/write/execute
permission from the directory itself. If a user has no permission at all to access
a directory, he can't touch the files in it.

You might be wondering what point there is to denying yourself permission to
read, write or execute a file. In general, protecting a file from yourself is not
very useful. However, there are cases when it comes in handy: for instance, if
you have important information in a particular file, and want to avoid acciden­
tally overwriting it, you might deny yourself write permission to it. Of course,
since you remain the file's owner, you can always re-enable your own write per­
mission later and write to it when you really want to.

The default permission setting is read/write for owner and group, and read only
for others. If you want to change this default, you can set the "umask" value
in the" .profile" file in your home directory. "Umask" indicates the value of
those permissions which are to be turned off whenever a file is created.

1-36

VENIX FOR BEGINNERS

Normally, this consists of write permission for others; as seen in the table
above, this has value 2. The line

umask N

in your .profile sets the mode to N. For example,

umask 44

means that read/write permISSIOn for group and other will always be denied
whenever a file is created. Of course, after a file is created, the owner can
always change its permission with chmod.

1.3.12 Identifying Files

If an unknown file appears in your directory (dropped there by someone else, or
created accidentally), you can use the file command to try to identify it, as in

file grog

file makes a good guess at what its contents are (executable program, library, C
source ...), although it isn't always accurate.

Conventions exist under VENIX for filename "extensions" of the form" .X" at
the end of file names, to give some clue as to the contents of the file. These
conventions are enforced by various programs: for example, the C compiler
aSsumes that all files with ".c" names are C source files, while files with ".0"
are object files. The following is a list of common extensions and their mean­
ing:

.a Library archive (created by ar(1»

.c C source file

.h C '# include' file

1-37

VENIX FOR BEGINNERS

.I Lex source file

.0 Object file

.s Assembler source file

.y Yacc source file

Some programs, like the text processor oroff, don't care at all about extensions.
When using these programs, the user is free to choose whatever extension is
convenient and helpful (or not to use any extensions at all).

Finally, there are a few files which appear commonly, created or used automati­
cally by various programs:

.profile

a.out

dead. letter

core

mbox

User profile, executed whenever a user logs in, found
in the home directory. Commonly contains com­
mands to set the prompt string and do other start-up
activities.

Executable program, as produced by one of the com­
pilers and the linker/loader.

Where mail is placed if the addressee is unknown.

Core dump - usually created when a program does an
illegal memory reference or contains an illegal
instruction. The adb debugger may be used to ana­
lyze this by experienced users; beginners should sim­
ply delete core files when they appear, and seek help
elsewhere.

Mail box, used to hold letters you receive and want
saved.

1-38

VENIX FOR BEGINNERS

1.4 DOCUMENT PREPARATION

VENIX systems are used extensively for document preparation. nroff (pro­
nounced "en-roff") is a program that produces a text with justified right mar­
gins, automatic page numbering and titling, automatic hyphenation, and the
like.

1.4.1 Formatting Packages

The basic idea of nroff is that the text to be formatted contains within it "for­
matting commands" that indicate in detail how the formatted text is to look.

nroff is very flexible, but it can be complicated and difficult to use from
scratch. For this reason, a "package" of canned formatting requests (known as
"macros") is available to let you specify paragraphs, running titles, footnotes,
multi-column output, and so on, with little effort and without having to learn
too much about nroff. The macro package called -ms, for "manuscript,"
takes a modest effort to learn, but the rewards for using it are so great that it is
time well spent. In this section we will provide a hasty look at its main func­
tions.

Formatting requests typically consist of a period and two upper-case letters,
such as . TL, which is used to introduce a title, or .PP to begin a new para­
graph. A document is typed so it looks something like this:

1-39

VENIX FOR BEGINNERS

.TL
title of document
.AU
author name
.SH
section heading
.PP
paragraph ...
. PP
another paragraph ...
. SH
another section heading
.PP
etc.

The lines that begin with a period are the formatting requests. For example,
.PP calls for starting a new paragraph. The precise meaning of .PP depends on
what publication you may have specified (with a previous formatting request)
the document will appear in. The rules can be changed if you like, but they are
changed by changing the interpretation of .PP, not by re-typing the document.

To actually produce a document in standard format using - ms, use the com­
mand

nroff -ms files ...

The - ms argument tells nroff to use the manuscript package of formatting
requests. For more information, see the Document Processing Guide and
nroff(l) in the User Reference Manual.

1.4.2 Supporting Tools

In addition to the basic formatters, there are a lot of supporting programs that
help with document preparation. The list in the next few paragraphs is far
from complete, so browse through the manual.

1-40

VENIX FOR BEGINNERS

neqn lets you integrate mathematics into the text of a document. The program
tbl provides an analogous service for preparing tabular material; it does all the
computations necessary to align complicated columns with elements of varying
widths. See the User Reference Manual for descriptions of these programs.

spell detects possible spelling mistakes in a document. It works by comparing
the words in your document to a dictionary, and printing those that are not in
the dictionary. It knows enough about English spelling to detect plurals and the
like, so it does a very good job.

grep looks through a set of files for lines that contain a particular text pattern
(rather like the editor's context search does, but on a bunch of files). For
example,

grep 'ing$' chap*

will find all lines that end with the letters ing in the files chap*. (It is almost
always a good practice to put single quotes around the pattern you're searching
for, in case it contains characters like * or $ that have a special meaning to the
shell.) grep is often useful for finding out in which of a set of files the mis­
spelled words detected by spell are actually located.

diff prints a list of the differences between two files, so you can compare two
versions of something automatically (which certainly beats proofreading.)

wc counts the words, lines and characters in a set of files. tr translates charac­
ters into other characters; for example it will convert upper to lower case and
vice versa. This translates upper into lower:

tr A-Z a-z < input > output

sort sorts files in a variety of ways; ptx makes a permuted index (keyword-in­
context listing). sed provides many of the editing facilities of ed, but can apply
them to arbitrarily long inputs. awk provides the ability to do both pattern
matching and numeric computations, and to conveniently process fields within
lines. These programs are for more advanced users, and they are not limited to
document preparation. Put them on your list of things to learn about.

1-41

VENIX FOR BEGINNERS

Most of these programs are either independently documented in the Support
Tools Guide, or the Document Processing Guide (such as neqn and tbl), or are
sufficiently simple that the description in the User Reference Manual is ade­
quate explanation.

1.4.3 Hints for Preparing Documents

Most documents go through several versions (always more than you expected)
before they are finally finished. Accordingly, you should do whatever possible
to make the job of changing them easy.

First, when you do the purely mechanical operations of typing, type so that sub­
sequent editing will be easy. Start each sentence on a new line. Make lines
short, and break lines at natural places, such as after commas and semicolons,
rather than randomly. Since most people change documents by rewriting
phrases and adding, deleting and rearranging sentences, these precautions sim­
plify any editing you have to do later.

Keep the individual files of a document down to modest size, perhaps ten to fif­
teen thousand characters. Larger files edit more slowly, and of course if you
make a dumb mistake it's better to have lost a small file than a big one. Split
into files at natural boundaries in the document, for the same reasons that you
start each sentence on a new line.

As a rule of thumb, for all but the most trivial jobs, you should type a docu­
ment in terms of a set of requests like .PP, and then define them appropriately,
either by using one of the canned packages (the better way) or by defining your
own nroff commands. As long as you have entered the text in some systematic
way, it can always be cleaned up and re-formatted by a judicious combination
of editing commands and request definitions.

1.5 PROGRAMMING

The VENIX system is a productive programming environment. There is already
available a rich set of tools and facilities like pipes, 110 redirection and the
capabilities of the shell that often make it possible to do a job by pasting
together existing programs instead of writing from scratch.

1-42

VENIX FOR BEGINNERS

In conjunction with reading this section you should consult the Programming
Guide.

1.5.1 The Shell

The pipe mechanism lets you fabricate quite complicated operations out of spare
parts that already exist. For example, the first draft of the spell program was
(roughly)

cat .. . collect the files
I tr .. .
I tr .. .

put each word on a new line
delete punctuation, etc.

I sort into dictionary order
I uniq discard duplicates
I comm print words in text

but not in dictionary

More pieces have been added subsequently, but this goes a long way for such a
small effort.

The editor can be made to do things that would normally require special pro­
grams on other systems. For example, to list the first and last lines of each of
a set of files, such as a book, you could laboriously type

ed
e chap1.1
1p
$p
e chap1.2
1p
$p
etc.

But you can do the job much more easily. One way is to type

Is chap* >temp

to get the list of filenames into a file. Then edit this file to make the necessary
series of editing commands (using the global commands of ed), and write it into
script. Now the command

1-43

VENIX FOR BEGINNERS

ed <script

will produce the same output as the laborious hand typing. Alternately (and
more easily), you can use the fact that the shell will perform loops, repeating a
set of commands over and over again for a set of arguments:

for i in chap*
do

ed $i < script
done

This sets the shell variable i to each file name in turn, then does the command.
You can type this command at the terminal, or put it in a file for later execu­
tion.

Shell variables can be extremely useful, especially for repeatedly referencing long
pathnames. For instance, if you want to access the file /u2lfred/books/
autobiog/chap2, you could say

or

cat /u2lfred/books/autobiog/chap2

cd /u2lfred/books/autobiog
cat chap2

But if you have to reference several files in different directories, this approach is
rough on the fingers. With shell variables, you can say

x = "/u2lfred/books/autobiog/ chap2"
Y = "/usr/robin/progs/ crunch.c"

and thereafter use $X and $Y to access the files, as in

cat $X
cc -c $Y

1-44

VENIX FOR BEGINNERS

1.5.2 Programming the Shell

An option often overlooked by newcomers is that the shell is itself a program­
ming language, with variables, control flow (if-else, while, for, case), subrou­
tines, and interrupt handling. Since there are many building-block programs,
you can sometimes avoid writing a new program merely by piecing together
some of the building blocks with shell command files.

We will not go into any details here; examples and rules can be found in "AN
INTRODUCTION TO THE SHELL" in this volume.

1.5.3 Programming in C

If you are undertaking anything substantial, C is the only reasonable choice of
programming language; everything in the VENIX system is attuned to it. The
system itself is written in C, as are most of the programs that run on it. It is
also an easy language to use once you get started. C is introduced and fully
described in The C Programming Language by B. W. Kernighan and D. M.
Ritchie (Prentice-Hall, 1978). Several sections of the book describe the system
interfaces, that is, how to do I/O and similar functions. The document
"VENIX PROGRAMMING" in the Programming Guide is mandatory reading
for all but the most trivial C programming under VENIX.

Here is a simple program, hello.c, taken from page 6 of the Kernighan and
Ritchie book:

mainO
(

printf("hello, world\n ");

If you compile the program with the C compiler cc, as in

cc nello.c

you will get a file called a.out created in your directory. Run the program by
typing

a.out

and you will get

1-45

VENIX FOR BEGINNERS

hello, world

on your terminal. You can try some of the things you learned above. Typing

a.out >temp

will create a file called temp, containing the words "hello, world."

a.out I we

will get you a count of the lines, words and characters, i.e.

1 2 13

or one line, two words, and thirteen characters (the newline character at the end
is counted).

Most input and output in C is best handled with the standard 110 library,
which provides a set of 110 functions that exist in compatible form on most
machines with C compilers. It is automatically called with every ee, and
described in pages marked 3S in the User's Guide. In general, it's wisest to
confine the system interactions in a program to the facilities provided by this
library.

Most C programs can be moved to other UNIX or UNIX-derived operating sys­
tems, which exist on a wide variety of processors, including at least: the PDP-
11, VAX-ll, all Intel 16 and 32 bit processors, Zilog Z8000, Motorola
68000,IBM 370 and Series 1, and National 16000. C compilers exist for other
machines in addition, and will support most C programs unless they require spe­
cial features of UNIX (such as pipes). Calls to the standard 110 library will
work on all of these machines.

There are a number of supporting programs that go with C. lint checks C pro­
grams for potential portability problems, and detects errors such as mismatched
argument types and uninitialized variables.

For larger programs (anything whose source is on more than one file) make
allows you to specify the dependencies among the source files and the processing
steps needed to make a new version; it then checks the times that the pieces

1-46

VENIX FOR BEGINNERS

were last changed and does the minimal amount of recompiling to create a con­
sistent updated version.

The debugger adb is useful for digging through the dead bodies of C programs,
but is rather hard to learn to use effectively. The most effective debugging tool
is still careful thought, coupled with judiciously placed print statements.

The C compiler provides a limited instrumentation service, so you can find out
where programs spend their time and what parts are worth optimizing. Compile
the routines with the - p option; after the test run, use prof to print an execu­
tion profile. The command time will give you the gross run-time statistics of a
program, but they are not super accurate or reproducible.

1.5.4 Other Languages

If your application requires you to translate a language into a set of actions or
another language, you are in effect building a compiler, though probably a
small one. In that case, you should be using the yacc compiler-compiler, which
helps you develop a compiler quickly. The lex lexical analyzer generator does
the same job for the simpler languages that can be expressed as regular expres­
sions. It can be used by itself, or as a front end to recognize inputs for a yacc­
based program. Both yacc and lex require some sophistication to use, but the
initial effort of learning them can be repaid many times over in programs that
are easy to change later on.

1.6 VENIX READING LIST

Many of the documents listed below can be found either in this volume, the
Programming Guide, Support Tools Guide, or the Document Processing Guide.

General:

User Reference Manual Lists VENIX commands.

Programmer Reference Manual Lists system routines and interfaces, file for­
mats, and some of the maintenance procedures.

1-47

VENIX FOR BEGINNERS

Special The Bell System Technical Journa/(BSTJ) Issue on UNIX, July/August,
1978, contains many papers describing UNIX, and some retrospective material.

The 2nd International Conference on Software Engineering (October, 1976) con­
tains several papers describing the use of the Programmer's Workbench (PWB)
version of UNIX.

H. McGilton and R. Morgan. Introducing the UNIX System. McGraw-Hill,
1983. A primer for the UNIX novice and an easy-to-use reference guide for
experienced users.

Document Preparation:

The FinalWord for VENIX gives a simple but complete explanation of how to
use The FinalWord, a full screen editor and formatter.

"NROFF USER'S MANUAL" nroff is the basic formatter used with - ms,
neqn and tbl. The reference manual is indispensable if you are going to write
your own macro sets, but start with these papers which are in the Document
Processing Guide.

"AN NROFF TUTORIAL" It is an attempt to unravel the intricacies of nroff.

"USING THE -MS MACROS" Describes the -ms macro package, which iso­
lates the novice from the vagaries of nroff and takes care of most formatting
situations. (See the Document Processing Guide.)

"MATHEMATICS TYPESETTING PROGRAM" (See the Document Process­
ing Guide.)

"TABLE FORMATTING PROGRAM" (See the Document Processing Guide.)

Programming:

B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice­
Hall, 1978. Contains a tutorial introduction, complete discussions of all lan­
guage features, and the reference manual.

1-48

VENIX FOR BEGINNERS

"VENIX PROGRAMMING" Describes how to interface with the system from
C programs: I/O calls, signals, processes. (See the Programming Guide.)

"AN INTRODUCTION TO THE SHELL" An introduction and reference man­
ual for the shell. Mandatory reading if you intend to make effective use of the
programming power of this shell. (See this volume.)

"YET ANOTHER COMPILER-COMPILER (yacc)" (See the Support Tools
Guide .)

"A LEXICAL ANALYZER GENERATOR (lex)" (See the Support Tools
Guide .)

"A C PROGRAM CHECKER - lint" (See the Programming Guide.)

"A PROGRAM FOR MAINTAINING COMPUTER PROGRAMS (make)"
(See the Support Tools Guide.)

"A TUTORIAL INTRODUCTION TO ADB" An introduction to a powerful
but complex debugging tool. (See the Programming Guide.)

"FORTRAN 77" A full Fortran 77 for the VENIX system. (See the Program­
ming Guide.)

1-49

VENIX FOR BEGINNERS

CTRL-C

CTRL-D

CTRL-E

CTRL-Q

CTRL-R

CTRL-S

CTRL-U

CTRL-Z

APPENDIX A

TERMINAL CONTROL CODES

Stops a program.

Indicates end of terminal input to a program and a "log
out" to the shell.

Erases all previous unread lines, not just the current input
line.

Restarts output to terminal.

Re-echoes everything typed that has not yet been read by
a program.

Stops output to terminal.

Erases all characters typed to that point on the current
input line.

Stops a program and causes a "core dump" for debug­
ging.

NOTE: These characters do not have the same· meaning in a screen editor.

1-50

Contents

2.1 GETTING STARTED ... 2-1

2.2 MOVING AROUND IN THE FILE 2-4

2.3 MAKING SIMPLE CHANGES 2-9

2.4 MOVING ABOUT;

REARRANGING AND DUPLICATING TEXT 2-13

2.5 HIGH LEVEL COMMANDS 2-17

2.6 SPECIAL TOPICS ... 2-19

2.7 NITTY -GRITTY DETAILS .. 2-27

Chapter 2

AN INTRODUCTION TO DISPLAY EDITING WITH VI

2.1 GETTING STARTED
This document provides an introduction to the screen editor vi (pronounced
vee-eye). Sections 2.1 through 2.5 of this document describe the basics of using
vi. Some topics of special interest are presented in section 2.6, and the nitty­
gritty details about how the editor functions are saved for section 2.8.

2.1.1 Specifying Terminal Type

Before you can start vi you must tell the system what kind of terminal you are
using. A list of the more common terminal types and their codes are given in
Appendix A. If your terminal does not appear in this listing, ask your system
administrator for your terminal code. If your terminal does not have a code,
one can be assigned and a description for the terminal can be created.

To specify your terminal type use the following command:

0,10 setenv TERM terminal

where terminal is the terminal code. So, for example, to set the terminal type
for a DEC Professional you would enter:

0,10 setenv TERM pro

The setenv command works with the C shell csh. If you are using the Bourne
shell then you should give the commands:

2-1

INTRODUCTION TO DISPLAY EDITING WITH VI

$ TERM = pro
$ export TERM

If you want to have your terminal type set up automatically when you log in,
these statements can be placed in your .login file (for csh) or .profile (for
Bourne shell). Terminal types can also be set inside vi with the set term com­
mand.

2.1.2 Editing a File

After telling the system which kind of terminal you have, make a scratch copy
of a file you are familiar with, and run vi on this file. Give the command

0/0 vi scratchfile

The screen should clear and the text of your file should appear on the screen.

If you gave the system an incorrect terminal type code then you may have a
mess on your screen now. This happens when the editor sends control codes for
one kind of terminal to another kind of terminal. In this case hit the keys :q
(colon and the q key) and then hit the CR key. This should get you back to the
command level interpreter. Figure out what you did wrong and try again.

Another thing which can go wrong is that you typed the wrong file name and
the editor just printed an error diagnostic. In this case you should follow the
above procedure for getting out of the editor, and try again this time spelling
the file name correctly.

If the editor doesn't seem to respond to the commands which you type here, try
sending an interrupt to it by typing CTRL-C, and then hitting the :q command
again followed by the CR key.

2.1.3 The Editor's Copy: The Buffer

The editor does not directly modify the file you are editing. Rather, the editor
makes a copy of this file, in a place called the buffer, and remembers the file's
name. You do not affect the contents of the file unless and until you write into
the original file the changes you have made.

2-2

INTRODUCTION TO DISPLAY EDITING WITH VI

2.1.4 Arrow Keys

The arrow keys, located to the right of the keyboard, are used to move the cur­
sor up, down, left, and right. In addition to the arrow keys, you may also use:
h to move the cursor to the left, j to move the cursor down, k to move the cur­
sor up, and I to move the cursor to the right.

2.1.5 Special Keys: ESC, CR and DEL

These special keys are very important, so be sure to find them right now. Look
on your keyboard for the key labeled ESC or ALT.

Try hitting this key a few times. The editor will ring the bell or flash the screen
to indicate that it is in a quiescent state. Partially formed commands are can­
celed by ESC, and when you insert text in the file you end the text insertion
with ESC. This key is a fairly harmless one to hit if you don't know what is
happening.

The CR key is important because it is used to terminate certain commands. It is
on the right side of the keyboard, and is the same command used at the end of
each shell command.

Another very useful command is CTRL-C (which is typed by holding down the
CTRL key down and pressing C at the same time).

CTRL-C generates an interrupt, telling the editor to stop what it is doing. It is a
forceful way of making the editor listen to you, or to return it to the quiescent
state if you don't know or don't like what is going on. Try hitting the '/' key
on your terminal. (This key is used when you want to specify a search string,
and is discussed more in section 2.2.) The cursor should now be positioned on
the bottom line of the terminal after a 'I' printed as a prompt. You can get the
cursor back to its previous position in the text by typing CTRL-C; try this now. *
From now on we will simply refer to CTRL-C as "sending an interrupt."

* Backspacing over the' /' will also cancel the search.

2-3

INTRODUCTION TO DISPLAY EDITING WITH VI

The editor often echoes, on the last line of the terminal, your commands. If
the cursor is resting on the first position of this last line, then the editor is per­
forming a computation, such as computing a new position in the file after a
search or running a command to reformat part of the buffer. When this is hap­
pening you can stop the editor by sending an interrupt.

2.1.6 Getting Out of the Editor

After you have worked with this introduction for a while, and you wish to do
something else, you can give the command :wq to the editor. This will write
the contents of the editor's buffer back into the file you are editing, if you
made any changes, and then end the editing session. You can also end an edit
session by giving the command :q!CR; This is a dangerous, but occasionally
essential, command that ends the edit session and discards all your changes. **
Be very careful not to give this command when you really want to incorporate
the changes you have made!

2.2 MOVING AROUND IN THE FILE

2.2.1 Scrolling and Paging

The editor has a number of commands for moving around in the file. The
most useful of these is generated by hitting the CTRL and D keys at the same
time, CTRL-D. This two-character notation will be used throughout this docu­
ment for referring to a control character.

As you know if you tried hitting CTRL-D, this command scrolls down in the
file. The D stands for down. Many editor commands are mnemonic making
them fairly easy to remember. For instance, the command to scroll up is
CTRL-U. For dumb terminals that can't scroll up, hitting CTRL-U clears the
screen and refreshes it with a line which is farther back in the file .

•• All commands which read from the last display line can also be

terminated with an ESC as well as a CR.

2-4

INTRODUCTION TO DISPLAY EDITING WITH VI

There are other ways to move around in the file: the keys CTRL-F and CTRL-B
move forward and backward a page, keeping a couple of lines of continuity
between screens so that it is possible to read through a file using these rather
than CTRL-D and CTRL-U if you wish.

Notice the difference between scrolling and paging. If you are trying to read
the text in a file, hitting CTRL-F to move forward a page will leave you only a
little of the previous text to look at. Scrolling, on the other hand, leaves more
context and happens more smoothly. You can continue to read the text as it
scrolls.

2.2.2 Searching, Goto, and Previous Context

By giving the editor a string of characters or words to search for, you can
locate a specific position in the file. Type the character I, then a string of char­
acters, and finally a CR. The editor will position the cursor at the next occur­
rence of this string. Try hitting n to go on to the next occurrence of this string.
The character? will search in reverse from where you give the command, but
otherwise it is like I. *

If the search string you give the editor is not present in the file, the editor will
print a message on the last line of the screen, and the cursor will return to its
initial position.

If you wish the search to match only at the beginning of a line, begin the search
string with the caret symbol C). To match only at the end of a line, end the

* These searches will normally wrap around the end of the file, and thus

find the string even if it is not on a line in the direction of your search. You

can disable this wraparound in scans by giving the command :se nowrapscan

CR, or more briefly :se nows CR.

2-5

INTRODUCTION TO DISPLAY EDITING WITH VI

search string with a $. Thus Fsearch CR will search for the word 'search' at the
beginning of a line, and Ilast$ CR searches for the word 'last' at the end of a
line.**

The command G, when preceded by a number will position the cursor at that
line in the file. Thus IG will move the cursor to the first line of the file. If
you do not give G a count, then it moves to the end of the file.

If you are near the end of the file, and the last line of text is not at the bottom
of the screen, the editor will place only the character '"" on each remaining line.
This indicates that the last line in the file is on the screen, that is, the ,-, lines
are past the end of the file.

You can find out the state of the file you are editing by typing a CTRL-G. The
editor will show you: the file name, the. number of the current line, the number
of lines in the buffer, and the percentage of how far through the buffer you
are. Try doing this now, and remember the number of the line you are on.
Give a G command to get to the end and then another G command to get back
where you were.

You can also get back to a previous position by using the command" (two back
quotes). This is often more convenient than G because it requires no advance
preparation. Try giving a G or a search with 1 or? and then a " to get back
to where you were. If you accidentally hit n or any command which moves you
far away from a context of interest, you can quickly get back by hitting".

* * Actually, the search string you give here can be a regular expression in

the sense of the editors ex(l) and ed(l). If you don't wish to learn about this

yet, you can disable this more general facility with :se nomagic CR. By

putting this command in EXINIT in your environment, it will always be in

effect (more about EXINIT later).

2-6

INTRODUCTION TO DISPLAY EDITING WITH VI

2.2.3 Moving Around on the Screen

Experiment with moving the cursor around on the screen. First try the arrow
keys and then use the optional commands h, j, k, and I as described in section
1.4. Experienced users of vi prefer these keys to arrow keys because they are
usually right underneath their fingers.

Hit the + key. Each time you do, notice that the cursor advances to the next
line in the file, at the first non-white position on the line. The - key is like +
but goes the other way.

These are very common keys for moving up and down lines in the file. If you
move beyond the text on the screen while using these keys, then the screen will
scroll down (or up if possible) to bring a line at a time into view. The CR key
has the same effect as the + key.

vi also has commands to take you to the top, middle, and bottom of the screen.
H will take you to the top (home) line on the screen. Preceding it with a num­
ber will take you to that line on the screen. For example, 3H will position the
cursor on the third line on the screen. The command M will take you to the
middle line on the screen, and L will take you to the last line on the screen. L
also takes counts, thus SL will take you to the fifth line from the bottom.

2.2.4 Moving Within a Line

Pick a word on the screen, but not the first word on a line. Move the cursor
using CR and - to the line where the word is. Now use the w key to advance
the cursor word by word on the line or hit the b key to back up by words. You
may also want to use the e key which advances the cursor to the end of the cur­
rent word rather than the beginning of the next. Also try SPACE (the space
bar) which moves right one character and the BACKSPACE key (or CTRL-H)
which moves left one character. The key h works as CTRL-H does and is useful
if you don't have a BACKSPACE key. (Also, as noted just above, I will move to
the right.)

The wand b keys stop at each group of punctuation. To go backward and for­
ward by word without stopping at punctuation use Wand B rather than the
lower case equivalents. Try these on a few lines with punctuation to see how
they differ from the lower case wand b.

2-7

INTRODUCTION TO DISPLAY EDITING WITH VI

The word keys wrap around the end of a line. Try moving to a word on the
next line by repeatedly hitting w.

2.2.5 Summary

The following table summarizes the commands that have been introduced in this
section:

SPACE

CTRL-B

CTRL-D

CTRL-G

CTRL-H

CTRL-N

CTRL-P

CTRL-U

+

/
?
B
G
H
M
L
W
b
e
n
w

2.2.6 View

advance the cursor one position
backwards to previous page
scrolls down in the file
tell what is going on
backspace the cursor
next line, same column
previous line, same column
scrolls up in the file
next line, at the beginning
previous line, at the beginning
scan for a following string forwards
scan backwards
back a word, ignoring punctuation
go to specified line, last default
home screen line
middle screen line
last screen line
forward a word, ignoring punctuation
back a word
end of current word
scan for next instance of / or? pattern
word after this word

To use the editor to look at a file, rather than to make changes, invoke view
instead of vi. This will set the readonly option and will prevent you from
accidently overwriting the file.

2-8

INTRODUCTION TO DISPLAY EDITING WITH VI

2.3 MAKING SIMPLE CHANGES

2.3.1 Inserting

One of the most useful commands is the i (insert) command. After you type i,
everything you type is inserted into the file until you hit ESC Try this now; posi­
tion your cursor to some word in the file and insert text before this word. On a
dumb terminal it will seem, for a minute, that some of the characters on your
line have been overwritten, but they will reappear when you hit ESC .P Now try
finding a word which can, but does not now, end in an's'. Move your cursor
to this word and type e (move to end of word), then a for append and then's
ESC' to terminate the textual insert. This easy sequence of commands can be
used to pluralize a word.

Try inserting and appending a few times to make sure you understand how this
works. Remember with i you place text to the left of the cursor, with a to the
right.

Often when you are editing, you will need to add new lines of text before or
after some specific line in the file. Find a line where this makes sense and give
the command 0 to create a new line after the line you are on, or the command
o to create a new line before the line you are on. After you create a new line
in this way, the text you type is inserted on the new line until you type an ESC.

Many related editor commands are invoked by the same letter key and differ
only in that one is a lower case key and the other is an upper case key. In
these cases, the upper case key often differs from the lower case key in its sense
of direction, with the upper case key working backward and/or up, while the
lower case key moves forward and/or down.

When typing in more than one line of text, hit a CR at the middle of your
input. A new line will be created for text, and you can continue to type. On a
slow or dumb terminal, the editor may choose to let you type over the existing
screen lines. This avoids the lengthy delay that would occur if the editor
attempted to keep the screen always up to date. The screen will be fixed up
and the missing lines will reappear when you hit ESC.

2-9

INTRODUCTION TO DISPLAY EDITING WITH VI

While you are inserting new text, you can use some of the characters you nor­
mally use at the system command level. To backspace over the last character
that you typed you can use CTRL-H or the BACKSPACE key. To erase the input
you have typed on the current line you can use CTRL-U for killing input lines.
The character CTRL-W will erase a whole word and leave your cursor at the
space after the previous word; it is useful for quickly backing up in an insert.

Notice that when you backspace during an insertion the characters you back­
space over are not erased; the cursor moves backwards, and the characters
remain on the display. This is often useful if you are planning to type in some­
thing similar. In any case the characters disappear when when you hit ESC; if
you want to get rid of them immediately, hit ESC and then a again.

Notice also that you can only erase characters that you have just inserted, and
that you can't backspace around the end of a line. If you need to back up to
the previous line to make a correction, just hit ESC and move the cursor back
to the previous line. After making the correction you can return to where you
were and use the insert or append command again.

2.3.2 Making Small Corrections

Small corrections in existing text are quite easy to make. If there is a single
character that you'd like to get rid of just position the cursor on the wrong
character and hit the x key; this deletes the character from the file.

If there is a character that is incorrect, you can replace it with the correct char­
acter by the command re, where e is the correct character. Finally, if the incor­
rect character should be replaced by a string of characters, give the s command
followed by the replacement string and end with ESC. If there are a small num­
ber of characters that are wrong you can precede s with a count of the number
of characters to be replaced. Counts with x are also useful to specify the num­
ber of characters to be deleted.

2.3.3 More Corrections: Operators

To make changes at a higher level, you should use the d key as a delete opera­
tor. Try the command dw to delete a word. Now type. a few times. Notice
that. this repeats the effect of dw. The command. repeats the last command

2-10

INTRODUCTION TO DISPLAY EDITING WITH VI

which made a change. The command db deletes a word backwards, namely the
preceding word. For deleting single characters use dSPACE. This is equivalent
to the x command.

Another very useful operator is c for change. To change the text of a single
word, use cw followed by the replacement text and ESC. Find a word which
you can change to another, and try this now. You'll see that the end of the text
to be changed was marked with the character '$'.

2.3.4 Operating on Lines

Variations of the operators discussed above can be used on entire lines of text.
For example, to delete a line of text type the d operator twice, dd. If you are
on a dumb terminal, the editor may erase the line on the screen, replacing it
with only an @. This line does not correspond to any line in your file, but
only acts as a place holder. By repeating the c operator twice cc, you can
change a whole line, erasing its previous content and replacing it with text you
type up to an ESC. t

You can delete or change more than one line by preceding the dd or cc with a
count, i.e. Sdd deletes 5 lines. You can also give a command like dL to delete
all the lines up to and including the last line on the screen, or d3L to delete
through the third from the bottom line. Try some commands like this now. *
Notice that the editor lets you know when you change a large number of lines
so that you can see the extent of the change. The editor will also always tell
you when a change affects text which you cannot see.

t The command S is a synonym for cc. S is a substitute on lines, while s

is a substitute on characters.

* One subtle point is that using the / search after a d will normally delete

characters from the current position to the point of the match. To delete

whole lines including the two points, give the pattern as /pat/ + 0, a line

address.

2-11

INTRODUCTION TO DISPLAY EDITING WITH VI

2.3.5 Undoing

Now suppose that the last change which you made was incorrect; you could use
the insert, delete and append commands to put the correct material back. How­
ever, since we often regret a change or make a change incorrectly, the editor
provides a u (undo) command to reverse the last change. Try this a few times,
and give it twice in a row to notice that a u also undoes a u.

The undo command lets you reverse only a single change. After you make a
number of changes to a line, you may decide that you would rather have your
original line back. The U command restores the current line to the state before
you started changing it. You can recover text which you delete, even if u undo
will not bring it back. (See the section below on recovering lost text.)

2.3.6 Summary

SPACE

CTRL-H

CTRL-W

DEL

CTRL-U

o
U
a
c
d

o
u

advance the cursor one position
backspace the cursor
erase a word during an insert
erase a character during an insert
kill the insert on this line
repeat the changing command
open and inputs new lines, above the current
undo the changes you made to the current line
append text after the cursor
change the object you specify to the following text
delete the object you specify
insert text before the cursor
open and inputs new lines, below the current
undo the last change

2-12

INTRODUCTION TO DISPLAY EDITING WITH VI

2.4 MOVING ABOUT; REARRANGING
AND DUPLICATING TEXT

2.4.1 Low Level Character Motions

Move the cursor to a line where there is a punctuation or a bracketing character
such as a parenthesis, comma or period. Try the command fx where x is this
character. This command finds the next x character to the right of the cursor
in the current line. Then hit a ; which finds the next instance of the same char­
acter. By using the f command and then a sequence of ;'s you can often get to
a particular place in a line much faster than with a sequence of word motions
or SPACEs. There is also a F command, which is like f, but searches backward.
The ; command repeats F also.

When you are operating on the text in a line it is often desirable to deal with
the characters up to, but not including, the first instance of a character. Try
fordfx x now and notice that the x character is deleted. Undo this with u and
then try thedtx; t here stands for "to", i.e. delete up "to" the next x, but not
the x. The command T is the reverse of andt, x.

When working with the text of a single line, an ~ moves the cursor to the first
non-white position on the line, and a $ moves it to the end of the line. Thus $a
will append new text at the end of the current line.

Your file may have tab CI) characters in it. These characters are represented as
a number of spaces expanding to a tab stop, where tab stops are every 8 col­
umns. * When the cursor is at a tab, it sits on the last of the several spaces
which represent the width of that tab. Experiment with moving the cursor back
and forth over tabs so you understand how this works.

* This is set by a command of the form :set tabstop =X CR, to set

tabstops every x columns. This has an effect only on the screen

representation within the editor.

2-13

INTRODUCTION TO DISPLAY EDITING WITH VI

On rare occasions, your file may have nonprinting characters in it. These char­
acters are displayed with a two character code, the first character of which is a
caret O. On the screen, non-printing characters resemble a ,~, character adja­
cent to another, but spacing or backspacing over the character will reveal that
the two characters are, like the spaces representing a tab character, a single
character.

The editor sometimes discards control characters that you are attempting to
insert in your file. This depends on the character and the setting of the beautify
option. You can get a control character in the file by beginning an insert and
then typing a CTRL-V before the control character. The CTRL-V quotes the fol­
lowing character, causing it to be inserted directly into the file.

2.4.2 Higher Level Text Objects

In working with a document it is often advantageous to work in terms of sen­
tences, paragraphs, and sections. The operations (and) move to the beginning
of the previous and next sentences respectively. Thus the command d) will
delete the rest of the current sentence; likewise d(will delete the previous sen­
tence if you are at the beginning of the current sentence, or the current sentence
up to where you are if you are not at the beginning.

A sentence is defined to end with a'.', 'I' or '?' which is followed by either the
end of a line, or by two spaces. Any number of closing ')" 'J', "" and '" char­
acters may appear after the '.', 'I' or '?' before the spaces or end of line.

The operations { and } move over paragraphs and the operations [[and]] move
over sections. t

t The [(and]] operations require the operation character to be doubled

because they can move the cursor far from where it currently is. While it is

easy to get back with the command ", these commands would still be

frustrating if they were easy to hit accidentally. The sentence and paragraph

commands can be given counts to operate over groups of sentences and

paragraphs.

2-14

INTRODUCTION TO DISPLAY EDITING WITH VI

A paragraph begins after each empty line, and also at each of a set of para­
graph macros, specified by the pairs of characters in the definition of the string
valued option paragraphs. The default setting for this option defines the para­
graph macros of the - ms and - mm macro packages, used with the nroff text
formatter i.e., the '.BP', '.LP', '.PP' and '.QP', '.P' and '.LI' macros.t Each
paragraph boundary is also a sentence boundary.

Sections in the editor begin after each macro in the sections option, normally
, .NH', '.SH', '.H' and '.HU', and each line with a formfeed ~L in the first col­
umn. Section boundaries are always line and paragraph boundaries also.

Experiment with the sentence and paragraph commands until you are sure how
they work. If you have a large document, look through it using the section
commands. The section commands interpret a preceding count as a different
window size in which to redraw the screen at the new location, and this window
size is the base size for newly drawn windows until another size is specified.
This is very useful if you are on a slow terminal and are looking for a particu­
lar section. You can give the first section command a small count to then see
each successive section heading in a small window.

2.4.3 Rearranging and Duplicating Text

The editor has a single unnamed buffer where the last deleted or changed text is
saved. It also has a set of named buffers a - z that you can use for saving cop­
ies of text and for moving text around in a file or between files.

The operator y "yanks" a copy of the object which follows into the unnamed
buffer. If preceded by a buffer name, "xy, where x here is replaced by a letter
a - z, it places the text in the named buffer. The text can then be put back in
the file with the commands p or P; p puts the text after or below the cursor,
while P puts the text before or above the cursor.

t You can easily change or extend this set of macros by assigning a

different string to the paragraphs option in your EXINIT. The '.bp'

directive is also considered to start a paragraph.

2-15

INTRODUCTION TO DISPLAY EDITING WITH VI

If the text that you yank forms part of a line, or is a sentence which partially
spans more than one line, then the text will be placed after the cursor (or before
if you use P) when you put it back. If the yanked text forms whole lines they
will be put back as whole lines, without changing the current line. In this case,
the put command acts much like an 0 or 0 command.

The command YP makes a copy of the current line and leaves the cursor on
this copy, which is placed before the current line. The command Y is a conven­
ient abbreviation for yy. The command Yp will also make a copy of the cur­
rent line, and place it after the current line. You can give Y a count of lines to
yank (such as 3YP), and thus duplicate several lines.

To move text within the buffer, delete it from one place and put it back in
another. The delete operation can be preceded by the name of a buffer where
the text is to be stored. For example, "a5dd deletes 5 lines into the named
buffer a. You can move the cursor to the eventual resting place of the these
lines and do a flap or flaP to put them back. In fact, you can switch and edit
another file before you put the lines back, by giving the command :e name CR
where name is the name of the other file you want to edit. You will have to
write back or discard the contents of the current editor buffer, if you have
made changes, before the editor will let you switch to the other file. An ordi­
nary delete command saves the text in the unnamed buffer, so that an ordinary
put can move it elsewhere. However, the unnamed buffer is lost when you
change files, so to move text from one file to another you should use an
unnamed buffer.

2.4.4 Summary

$
)

J
]]
(
{
[[
fx
p

first non-white on line
end of line
forward sentence
forward paragraph
forward section
backward sentence
backward paragraph
backward section
find x forward in line
put text back, after cursor or below current line

2-16

INTRODUCTION TO DISPLAY EDITING WITH VI

y yank operator, for copies and moves
tx up to x forward, for operators
Fx f backward in line
P put text back, before cursor or above current line
Tx t backward in line

2.5 HIGH LEVEL COMMANDS

2.5.1 Writing, Quitting, Editing New Files

So far we have seen how to enter vi and write out a file using either :wq or
.:wCR The first writes changes and exits from the editor; the second writes and
stays in the editor.

If you have changed the editor's copy of the file but do not wish to save your
changes, then you can give the command :q!CR to quit the editor without writ­
ing the changes. You can also reedit the same file (start over) by giving the
command .:e!CR Note that these commands should be used only rarely, and
with caution, as it is not possible to recover the changes you have made after
you discard them in this manner.

You can edit a different file without leaving the editor by giving the command
:e name CR. The editor will tell you if you have not written out your current
file before you try to do this, and it will delay editing the other file. You can
then give the command :wCR to save your work before giving the :e name CR
command again. Or you can carefully give the command :e! name CR, which
edits the other file and discards the changes you have made to the current file.
To have the editor automatically save changes, include set autowrite in your
EXINIT, and use :n instead of :e.

2.5.2 Escaping to a Shell

You can get to a shell to execute a single command by giving the vi command
.:!cmdcR The system will run the single command cmd and when the command
finishes, the editor will ask you to hit a CR to continue. When you have fin­
ished looking at the output on the screen, hit CR to get back to editing. You
can also give another : command when it asks you for a CR. If you wish to
execute more than one command in the shell, then give the command ;:ShCR this

2-17

INTRODUCTION TO DISPLAY EDITING WITH VI

will give you a new shell. When you finish with the shell type a CTRL-D and the
editor will clear the screen and continue editing.

2.5.3 Marking and Returning

The command " returns the cursor to the place it was before being moved by a
command such as /,? or G. You can also mark lines in the file with single
letter name tags and return to these marks later by invoking the names. Try
marking the current line with the command IDX, where you pick some letter for
x, say 'a'. Then move the cursor to a different line (anywhere you like) and hit
'a. The cursor will return to the place you marked. Marks last only until you
edit another file.

When using operators such as d and referring to marked lines, it is often desir­
able to delete whole lines rather than to the exact position in the line marked by
m. In this case you can use the form 'x rather than 'x. Used without an opera­
tor, 'x will move to the first non-white character of the marked line; similarly"
moves to the first non-white character of the line containing the previous con­
text mark".

2.5.4 Adjusting the Screen

If the screen image is messed up because of a transmission error to your termi­
nal, or because some program other than the editor wrote output to your termi­
nal, you can hit a CTRL-L, the ASCII form-feed character, to refresh the
screen.

On a dumb terminal, if there are lines of @ symbols on the screen as a result of
line deletions, you may delete these lines by typing CTRL-R.

Finally, if you wish to place a certain line of text at the top. middle or bottom
of the screen, you can position the cursor to that text line, and then give a z
command. You should follow the z command with a CR if you want the line to
appear at the top of the window, a. if you want it at the center, or a - if
you want it at the bottom.

2-18

INTRODUCTION TO DISPLAY EDITING WITH VI

2.6 SPECIAL TOPICS

2.6.1 Editing on Slow Terminals

When you are on a slow terminal, it is important to limit the amount of output
which is generated to your screen so that you will not suffer long delays, wait­
ing for the screen to be refreshed. We have already pointed out how the editor
optimizes the updating of the screen during insertions on dumb terminals to
limit the delays, and how the editor replaces a deleted line with an @ on dumb
terminals.

The use of the slow terminal insertion mode is controlled by the slowopen
option. You can force the editor to use this mode even on faster terminals by
giving the command . :se SIOwCR If your system is sluggish this helps lessen the
amount of output coming to your terminal. You can disable this option by .:se
noslOWCR

The editor can simulate an intelligent terminal on a dumb one. Try giving the
command . :se redrawcR This simulation generates a great deal of output and is
generally tolerable only on lightly loaded systems and fast terminals. You can
disable this by giving the command .:se noredrawcR

Editing at low speed can be made more pleasant by starting to edit in a small
window, and letting the window expand as you edit. This works particularly
well on intelligent terminals. The editor can expand the window easily when
you insert in the middle of the screen on these terminals. If possible, try the
editor on an intelligent terminal to see how this works.

You can control the size of the window which is redrawn after the screen is
cleared by giving window sizes as argument to the commands which cause large
screen motions:

:I?[[]]

If you are searching in ~ file for a particular instance of a common string, you
can precede the first search command by a small number, say 3, and the editor
will draw three line windows around each instance of the string.

2-19

INTRODUCTION TO DISPLAY EDITING WITH VI

You can easily expand or contract the window, placing the current line as you
choose, by giving a number on a z command, after the z and before the follow­
ing CR,. or -. Thus the command zS. redraws the screen with the current
line in the center of a five line window. t

If the editor is redrawing or otherwise updating large portions of the display,
you can interrupt this updating by hitting CTRL-C. If you do this you may par­
tially confuse the editor about what is displayed on the screen. You can still
edit the text on the screen if you wish; clear up the confusion by hitting a
CTRL-L; or move or search again, ignoring the current state of the display.

2.6.2 Options, Set, and Editor Startup Files

The editor has a set of options, some of which have been mentioned above.
The most useful options are given in the following table.

Name

autoindent
autowrite
ignorecase
list
magic
number
paragraphs
redraw
sections
shiftwidth
showmatch
slowopen
term

Default

noai
noaw
noic
no list
nomagic
nonu
para = IPLPPPQPbpP LI
nore
sect = NHSHH HU
sw=8
nosm
slow
dumb

Description

Supply indentation automatically
Automatic write before :n, :ta, ~,
Ignore case in searching
Tabs print as~I; end of lines as $
Characters . [and * are special in scans
Lines are displayed with line numbers
Macro names which start paragraphs
Simulate a smart terminal on a dumb one
Macro names which start new sections
Shift distance for <, > and input ~D and.
Show matching (or (as) or } is typed
Postpone display updates during inserts
The kind of terminal you are using.

t Note that the command Sz. has an entirely different effect, placing line

5 in the center of a new window.

2-20

INTRODUCTION TO DISPLAY EDITING WITH VI

There are three kinds of options: numeric, string and toggle. You can set
numeric and string options with the statement:

set opt = va/

and toggle options can be set or unset respectively by these statements:

set opt
set noopt

Option statements can be . placed in EXINIT in your environment, or given while
you are running vi by preceding them with a : and following them with a CR.

You can get a list of all options which you have changed by the command
,:setcR or the value of a single option by the command :set ?CR opt. A list of
all possible options and their values is generated by .:set allCR Set can be abbre­
viated se. Multiple options can be placed on one line, for example:

:se ai aw nuCR.

Options set by the set command only last while you stay in the editor. To have
certain options set whenever you use the editor, create a list of ex commandst
which are to be run every time you start up ex, or vi. A typical list includes a
set command. Since it is advisable to get these commands on one line, they can
be separated with the I character, for example:

set I ai I aw I terse

which sets the options autoindent, autowrite, and terse. This string should be
placed in the variable EXINIT in your environment. If you use csh, put this
line in the file .login in your home directory:

setenv EXINIT 'set ai aw terse'

t All commands that start with: are ex commands.

2-21

INTRODUCTION TO DISPLAY EDITING WITH VI

If you use the Bourne shell, put these lines in the file .profile in your home
directory:

EXINIT = 'set ai aw terse'
export EXINIT

Of course, the particulars of the line depend on which options you want to set.

2.6.3 Recovering Lost Lines

If you delete a number of lines and then regret that they were deleted, despair
not! The editor saves the last 9 deleted blocks of text in a set of numbered reg­
isters 1-9. You can get the n'th previously deleted text back in your file by the
command "np. The" here says that a buffer name is to follow, n is the num­
ber of the buffer you wish to try (use the number 1 for now), and p is the put
command, which puts text in the buffer after the cursor. If this doesn't bring
back the text you wanted, hit u to undo this and then. (period) to repeat the
put command. In general the. command will repeat the last change you made.
As a special case, when the last command refers to a numbered text buffer, the
. command increments the number of the buffer before repeating the com­
mand. So a sequence of the form

"lpu.u.u.

will, if repeated long enough, show you all the deleted text which has been
saved for you. You can omit the u commands here to gather all this text in the
buffer, or stop after any. command to keep just the then recovered text. The
command P can also be used rather than p to put the recovered text before
rather than after the cursor.

2.6.4 Recovering Lost Files

If the system crashes, you can recover to within a few changes the work you
were doing. When you login, you will normally receive mail with the name of
the file which has been saved for you. Change to the directory where you were
when the system crashed and give the command:

0/0 vi - r name

2-22

INTRODUCTION TO DISPLAY EDITING WITH VI

replacing name with the name of the file you were editing. This will recover
most of the work you did before the crash.t

You can get a listing of the files which are saved for you by giving the com­
mand:

vi -r

If more than one version of a particular file is saved, the editor gives you the
newest one each time you run the recover. You can get an old saved copy back
by first recovering the new copies. The invocation "vi -r" will not always list
all saved files, but they can be recovered even if they are not listed.

2.6.5 Continuous Text Input

When you are typing in large amounts of text, it is convenient to have lines bro­
ken automatically near the right margin. You can cause this to happen by giv­
ing the command .:se wrapmargin = IOCR This causes all lines to be broken at a
space at least 10 columns from the right hand edge of the screen.

If the editor breaks an input line where you do not want a break, you can
rejoin the lines with J. J can also take a count of the number of lines to be
joined, as in 3J to join 3 lines. The editor supplies white space, if appropriate,
at the juncture of the joined lines, and leaves the cursor at this white space.
You can kill the white space with x if you don't want it.

2.6.6 Features for Editing Programs

The editor has a number of commands for editing programs. The thing that
most distinguishes editing of programs from editing of text is the desirability of
maintaining an indented structure in the body of the program. The editor has
an auto indent facility for helping you generate correctly indented programs.

t In rare cases, some lines of the file may be lost. The editor will give

you the numbers of these lines and their text will be replaced by the string

'LOST'. These lines will almost always be among the last ones you changed.

2-23

INTRODUCTION TO DISPLAY EDITING WITH VI

To use this facility give the command :se aicR. Now try opening a new line
with 0 and type some characters on the line after a few tabs. If you start
another line, notice that the editor supplies space at the beginning of the line to
line it up with the previous line. You cannot backspace over this indentation,
but you can use CTRL-D to backtab over the supplied indentation.

Each time you type CTRL-D you back up one position, normally to an 8 column
boundary. This amount is settable; the editor has an option called shiftwidth
which you can use to change this value. Try giving the command :se sw = 4CR
and then experimenting with auto indent again.

For shifting lines left or right in the program, there are operators < and >.
These shift the lines right or left by one shiftwidth. Try < < and > > which
shift one line left or right, and < Land > L which shift the rest of the display
left or right.

In a complicated expression where you wish to see how the parentheses match,
put the cursor at a left or right parenthesis and hit 0,10. This will show you the
matching parenthesis. This works also for braces { and }, and brackets [and].

If you are editing C programs, you can use the [[and]] keys to advance or
retreat to a line starting with a {, i.e. a function declaration at a time. When]]
is used with an operator it stops after a line which starts with }; this is some­
times useful with yJ].

2.6.7 Filtering Portions of the Buffer

System commands can run over portions of the buffer by using the operator !.
You can use this to sort lines in the buffer, or to reformat portions of the
buffer with a pretty-printer. As an exercise, type a list of random words, one
per line, ending with a blank line. Back up to the beginning of the list, and
give the command . !jsortcR This says to sort the next paragraph of material,
and the blank line ends a paragraph.

2-24

INTRODUCTION TO DISPLAY EDITING WITH VI

2.6.8 Macros

vi has a parameteriess macro facility, which lets you set it up so that when you
hit a single keystroke, the editor will act as though you had hit some longer
sequence of keys. You can set this up if you find yourself typing the same
sequence of commands repeatedly.

Briefly, there are two flavors of macros:

a. Ones where you put the macro body in a buffer register, say x. You can
then type @x to invoke the macro. The @ may be followed by another @
to repeat the last macro.

b. You can use the map command from vi (typically in your EXINIT) with a
command of the form:

:map lhs rhs CR

mapping lhs into rhs. There are restrictions: lhs should be one keystroke
(either 1 character or one function key) since it must be entered within one
second (unless notimeout is set, in which case you can type it as slowly as
you wish, and vi will wait for you to finish it before it echoes anything).
The lhs can be no longer than 10 characters, the rhs no longer than 100.
To get a space, tab or newline into lhs or rhs you should escape them with
a CTRL-V. (It may be necessary to double the CTRL-V if the map com­
mand is given inside vi, rather than in ex.) Spaces and tabs inside the rhs
need not be escaped.

Thus to make the q key write and exit the editor, you can give the command

:map q :wqCTRL-V CTRL-V CR CR

which means that whenever you type q, it will be as though you had typed the
four characters :wqCR. A CTRL-V is needed because without it the CR would
end the : command, rather than becoming part of the map definition. There
are two CTRL-V's because from within vi, two CTRL-V's must be typed to get
one. The first CR is part of the rhs, the second terminates the : command.

2-25

INTRODUCTION TO DISPLAY EDITING WITH VI

Macros can be deleted with

:unmap Ihs

If the Ihs of a macro is "# 0" through "# 9", this maps the particular function
key instead of the 2 character "#" sequence. So that terminals without func­
tion keys can access such definitions, the form "# x" will mean function key x
on all terminals (and need not be typed within one second.) The character" #"
can be changed by using a macro in the usual way:

:map CTRL-V CTRL-V CTRL-I #

to use tab, for example. (This won't affect the map command, which still uses
#, but just the invocation from visual mode.)

The undo command reverses an entire macro call as a unit, if it made any
changes.

Placing a '!' after the word map causes the mapping to apply to input mode,
rather than command mode. Thus, to arrange for"T to be the same as 4 spaces
in input mode, you can type:

:map CTRL-T CTRL-V /' /' /' /'

where /' is a blank. The CTRL-V is necessary to prevent the blanks from being
taken as white space between the Ihs and rhs.

2.6.9 WORD ABBREVIATIONS

A feature similar to macros in input mode is word abbreviation. This allows
you to type a short word and have it expanded into a longer word or words.
The commands are :abbreviate and :unabbreviate (:ab and :una) and have the
same syntax as :map. For example:

:ab eecs Electrical Engineering and Computer Sciences

causes the word 'eecs' to always be changed into the phrase 'Electrical Engineer­
ing and Computer Sciences'. Word abbreviation is different from macros in
that only whole words are affected. If 'eecs' were typed as part of a larger

2-26

INTRODUCTION TO DISPLAY EDITING WITH VI

word, it would be left alone. Also, the partial word is echoed as it is typed.
There is no need for an abbreviation to be a single keystroke, as it should be
with a macro.

2.6.10 Abbreviations

The editor has a number of short commands which abbreviate longer commands
which we have introduced here. They often save a bit of typing and you can
learn them as convenient. See vi(1) in the User Reference Manual for abbrevia­
tions.

2.7 NITTY -GRITTY DETAILS

2.7.1 Line Representation in the Display

The editor folds long logical lines onto many physical lines in the display.
Commands which advance lines advance logical lines and will skip over all the
segments of a line in one motion. The command \ moves the cursor to a spe­
cific column, and may be useful for getting near the middle of a long line to
split it in half. Try 80\ on a line which is more than 80 columns long. t

The editor only puts full lines on the display; if there is not enough room on
the display to fit a logical line, the editor leaves the physical line empty, placing
only an @ on the line as a place holder. When you delete lines on a dumb ter­
minal, the editor will often just clear the lines to @ to save time (rather than
rewriting the rest of the screen.) You can always maximize the information on
the screen by giving the CTRL-R command.

If you wish, the editor will place line numbers before each line on the display.
Give the command :se nllCR to enable this, and the command :se nonllCR to
turn it off. You can have tabs represented as AI and the ends of lines indicated
with '$' by giving the command ;:se listCR :se nolistcR turns this off.

t Uses J to join together short lines.

2-27

INTRODUCTION TO DISPLAY EDITING WITH VI

Finally, lines consisting of only the character '"" are displayed when the last line
in the file is in the middle of the screen. These represent physical lines which
are past the logical end of a file.

2.7.2 Counts

Most vi commands will use a preceding count to affect their behavior in some
way. The following table gives the common ways in which the counts are used:

new window size
scroll amount
line/column number
repeat effect

:/?[[]]"
~D ~U

z G I
most of the rest

The editor maintains a notion of the current default window size. On micro­
computer console terminals and terminals which run at speeds greater than 1200
baud the editor uses the full terminal screen. On terminals which are slower
than 1200 baud (most dialup lines are in this group) the editor uses 8 lines as
the default window size. At 1200 baud the default is 16 lines.

This size is used when the editor clears and refills the screen after a motion
which moves far from the edge of the current window. Commands which take
a new window size as count often cause the screen to be redrawn. If you antici­
pate this, but do not need as large a window as you are currently using, you
may wish to change the screen size by specifying the new size before these com­
mands. In any case, the number of lines used on the screen will expand if you
move off the top with an R or similar command or off the bottom with a com­
mand such as CR or CTRL-D. The window will revert to the last specified size
the next time it is cleared and refilled. t

The scroll commands CTRL-D and CTRL-U likewise remember the amount of
scroll last specified, using half the basic window size initially. The simple insert
commands use a count to specify a repetition of the inserted text. Thus

t But not by a CTRL-L which just redraws the screen as it is.

2-28

INTRODUCTION TO DISPLAY EDITING WITH VI

lOa + - - - - ESC will insert a grid-like string of text. A few commands also
use a preceding count as a line or column number.

Except for a few commands which ignore any counts (such as CTRL-R), the
rest of the editor commands use a count to indicate a simple repetition of their
effect. Thus 5w advances five words on the current line, while 5CR advances
five lines. A very useful instance of a count as a repetition is a count given to
the. command, which repeats the last changing command. If you do dw and
then 3., you will delete first one and then three words. You can then delete two
more words with 2 ..

2.7.3 More File Manipnlation Commands

The following table lists the file manipulation commands which you can use
when you are in vi.

:w
:wq
:x
:e name
:e!
:e + name
:e +n
:e #
:w name
:w! name
:x,yw name
:r name
:r !cmd
:n
:n!
:n args

write back changes
write and quit
write (if necessary) and quit (same as ZZ).
edit file name
reedit, discarding changes
edit, starting at end
edit, starting at line n
edit alternate file
write file name
overwrite file name
write lines x through y to name
read file name into buffer
read output of cmd into buffer
edit next file in argument list
edit next file, discarding changes to current
specify new argument list

All of these commands are followed by a CR or ESC. The most basic com­
mands are :w and :e. A normal editing session on a single file will end with a
ZZ command. If you are editing for a long period of time you can give :w
commands occasionally after major amounts of editing, and then finish with a
ZZ. When you edit more than one file, you can finish with a :w and start edit­
ing a new file by giving a :e command, or set autowrite and use :n < file > .

2-29

INTRODUCTION TO DISPLAY EDITING WITH VI

If you make changes to the editor's copy of a file, but do not wish to write
them back, then you must give an! after the command you would otherwise
use; this forces the editor to discard any changes you have made. Use this care­
fully.

The :e command can be given a + argument to start at the end of the file, or a
+ n argument to start at line n. In actuality, n may be any editor command not
containing a space, usually a scan like + I pat or +? pat. In adding new names
to the e command, you can use the character 0,10 which is replaced by the cur­
rent file name, or the character # which is replaced by the alternate file name.
The alternate file name is generally the last name you typed other than the cur­
rent file. Thus if you try to do a :e and get a message that you haven't written
the file, you can give a :w command and then a :e # command to redo the pre­
vious :e.

You can write part of the buffer to a file by giving the starting and ending line
numbers (of the text to be written) after the: and before the w, separated by
,'so To find out the line numbers that delimit your text use CTRL-G. You can
also mark these lines with m and then use an address of the form 'x, y on the w
command here.

You can read another file into the buffer after the current line by using the :r
command. You can similarly read in the output from a command, just use
!cmd instead of a file name.

If you wish to edit a set of files in succession, you can give all the names on the
command line, and then edit each one in turn using the command :0. It is also
possible to restate the files to be edited by giving the :0 command a list of file
names, or a pattern to be expanded.

The :ta command is very useful for editing large programs. It utilizes a data
base of function names and their locations, which can be created by programs
such as ctags, to quickly find a function whose name you give. If the :ta com­
mand will require the editor to switch files, then you must :w or abandon any
changes before switching. You can repeat the :ta command without any argu­
ments to look for the same tag again.

2-30

INTRODUCTION TO DISPLAY EDITING WITH VI

2.7.4 More About Searching for Strings

When you are searching for strings in the file with / and ?, the editor normally
places you at the next or previous occurrence of the string. If you are using an
operator such as d, c or y, you may wish to stop the action a line before the
one containing the search pattern. You can give a search of the form /pat/-n
to refer to the n'th line before the next line containing pat, or you can use +
instead of - to refer to the lines after the one containing pat. If you don't
give a line offset, then the editor will act on characters up to the match place,
rather than whole lines; thus use "+ 0" to affect to the line which matches.

You can have the editor ignore the case of words in searches by giving the com­
mand .:se iCCR The command :se noiCCR turns this off.

Search strings may actually be regular expressions. If you do not want this
facility, you should

:set no magic

In this case, only the characters ~ and $ are special in patterns. The character \
is also then special (as it is almost everywhere in the system), and may be used
to get at an extended pattern matching facility. It is also necessary to use a \
before a / in a forward scan or a? in a backward scan, in any case. The fol­
lowing table gives the extended forms when magic is set.

$

\<
\>
[str]
[str]
[x-y]

*

at beginning of pattern, matches beginning of line
at end of pattern, matches end of line
matches any character
matches the beginning of a word
matches the end of a word
matches any single character in str
matches any single character not in str
matches any character between x and y
matches any number of the preceding pattern

If you use nomagic mode, then the. [and * primitives are given with a preced­
ing \.

2-31

INTRODUCTION TO DISPLAY EDITING WITH VI

2.7.5 More About Input Mode

There are a number of characters that you can use to make corrections during
input mode. These are summarized in the following table.

CTRL-H

CTRL-W

DEL

CTRL-U

\
ESC

CTRL-C

RETURN

CTRL-D

OCTRL-D

CTRL CTRL-D

CTRL-V

deletes the last input character
deletes the last input word, defined as by b
erases a character
deletes the input on this line
escapes a following ~H and your DEL and CTRL-U
ends an insertion
interrupts an insertion, terminating it abnormally
starts a new line
backtabs over autoindent
kills all the autoindent
same as OCTRL-D, but restores indent next line
quotes the next non-printing character into the file

The usual way to correct input is to type CTRL-H for a single character, and to
type one or more CTRL-W's to back over incorrect words. Your system kill
character, CTRL-U, will erase all input on the current line. In general, you can
not erase a line which was entered previously, but you can erase characters
which were just entered using the insertion command. To make corrections on
the previous line after a new line has been started, you can hit ESC to end the
insertion, move over and make the correction, and then return to where you
were to continue. The command A which appends at the end of the current
line is often useful for continuing.

If you wish to type the erase or kill character (DEL or CTRL-U) then you must
precede it with a \. A more general way of entering non-printing characters is
to precede them with a CTRL-V. The CTRL-V echoes as a ~ character on which
the cursor rests. This indicates that the editor expects you to type a control

2-32

INTRODUCTION TO DISPLAY EDITING WITH VI

character. In fact you may type almost any character and it will be inserted
into the file at that point. *

If you are using auto indent you can backtab over the indent which it supplies
by typing a CTRL-D. This backs up to a shiftwidth boundary. This only works
immediately after the supplied autoindent.

When you are using auto indent you may place a label at the left margin of a
line by typing t and then CTRL-D. The editor will move the cursor to the left
margin for one line, and restore the previous indent on the next. If you wish to
kill the indent completely and not have it resume on the next line, type a 0
(zero) followed immediately by a CTRL-D.

2.7.6 Vi and Ex

vi is an editing mode within the editor ex. When you are running vi you can
switch to the line oriented editor ex by typing Q. All of the: commands in vi
are available in ex. Likewise, most ex commands can be invoked from vi using
.. Just give them without the: and follow them with a CR.

In those rare instances when an internal error occurs in vi, you will automati­
cally be switched to the command mode of ex. You can either save your work
and quit the editor by giving the command x after the ex prompt :, or you can
reenter vi by giving ex a vi command.

* Some exceptions are that the editor does not allow the NULL C@)

character to appear in files. Also the LF (linefeed or "J) character is used by

the editor to separate lines in the file, so it cannot appear in the middle of a

line. You can insert any other character, however, if you wait for the editor

to echo the" before you type the character. In fact, the editor will treat a

following letter as a request for the corresponding control character. This is

the only way to type in a CTRL·S or CTRL-Q, since the system normally uses

them to suspend and resume output and never gives them to the editor to

process.

2-33

INTRODUCTION TO DISPLAY EDITING WITH VI

There are several things that are easier to do with ex than vi, such as systematic
changes in line oriented material. The advanced editing documents for the edi­
tor ed contain a lot more information about this style of editing. Experienced
users often selectively use both ex command mode and vi command mode to
speed the work they are doing.

2-34

INTRODUCTION TO DISPLAY EDITING WITH VI

Appendix A

TERMINAL TYPE CODES

The following is a listing of some terminal types and their codes. If your termi­
nal does not appear in this listing, ask your system adminstrator for your termi­
nal code.

Code Full name

PC IBM PC Console
pro DEC Professional Console
hp2621a Hewlett-Packard 2621A/P
hp2645 Hewlett-Packard 264x
adm31 Lear Siegler ADM-31
c100 Human Design Concept 100
bantam Perkin-Elmer
h1500 Hazeltine 1500
h19 Heathkit h19
i100 Infoton 100
mime Imitating a smart act4
t1061 Teleray 1061
vt52 Dec VT-52
vt100 Dec VT-100
aaadb Annarbor Ambassador
vi50 Visual 50
vi200 Visual 200
tvi950 Televideo

2-35

Contents

3.1 INTRODUCTION .. 3-1

3.2 SIMPLE COMMANDS ... 3-2

3.3 SHELL PROCEDURES .. 3-8

3.4 KEYWORD PARAMETERS .. 3-23

Chapter 3

AN INTRODUCTION TO THE SHELL

3.1 INTRODUCTION

The shell is a command programming language that provides an interface to the
VENIX operating system. Its features include control-flow primitives, parameter
passing, variables, and string substitution. Constructs such as while, if then
else, case, and for are available. Two-way communication is possible between
the shell and commands. String-valued parameters, typically file names or flags,
may be passed to a command. A return code is set by commands that may be
used to determine control-flow, and the standard output from a command may
be used as shell input.

The shell can modify the environment in which commands run. Input and out­
put can be redirected to files, and processes that communicate through pipes can
be invoked. Commands are found by searching directories in the file system in
a sequence that can be defined by the user. Commands can be read either from
the terminal or from a file which allows command procedures to be stored for
later use.

The shell is both a command language and a programming language that pro­
vides an interface to the VENIX operating system. This chapter describes, with
examples, the VENIX operating system shell. The "Simple Commands" part of
this section covers most of the everyday requirements of terminal users. Some
familiarity with the VENIX operating system is an advantage when reading this
section; refer to the chapter "VENIX For Beginners". The "Shell Procedures"
part of this section describes those features of the shell primarily intended for
use within shell commands or procedures. These include the control-flow primi­
tives and string-valued variables provided by the shell. A knowledge of a

3-1

INTRODUCTION TO THE SHELL

programming language would be helpful when reading this section. The last
part, "Keyword Parameters", describes the more advanced features of the shell.
See Table 3.A for a defined listing of grammar words used in this section.

Throughout this section, each reference of the form name(1M), name(7), or
name(8) refers to entries in the User Reference Manual for (1M) and the Instal­
lation and System Manager's Guide, for (7) and (8). Other references to entries
of the form name(N), where "N" is the number (1), possibly followed by a let­
ter, refer to entry name in section N of the User Reference Manual. Entries
where "N" is a number (2 through 6) possibly followed by a letter, refer to
entry name in section N of the Programmer Reference Manual.

3.2 SIMPLE COMMANDS

Simple commands consist of one or more words separated by blanks. The first
word is the name of the command to be executed; any remaining words are
passed as arguments to the command. For example,

who

is a command that prints the names of users logged in. The command

Is -I

prints a list of files in the current directory. The argument -I tells Is(1) to
print status information, size, and the creation date for each file.

3.2.1 Background Commands

To execute a command, the shell normally creates a new process and waits for it
to finish. A command may be run without waiting for it to finish. For exam­
ple,

cc pgm.c &

calls the C compiler to compile the file pgm.c. The trailing "&" is an operator
that instructs the shell not to wait for the command to finish. To help keep
track of such a process, the shell reports its process number following its cre­
ation. A list of currently active processes may be obtained using the ps(1) com­
mand.

3-2

INTRODUCTION TO THE SHELL

3.2.2 Input/Output Redirection

Most commands produce output to the standard output that is initially con­
nected to the terminal. This output may be directed to a file by the notation
" >" thus:

Is -I > file

The notation > file is interpreted by the shell and is not passed as an argument
to Is(1). If file does not exist, the shell creates it; otherwise, the original con­
tents of file are replaced with the output from Is(1). Output may be appended
to a file using the notation" > >" as follows:

Is -I > > file

In this case, file is also created if it does not already exist.

The standard input of a command may be taken from a file instead of the ter­
minal by the notation" <" thus:

we <file

The command wc(1) reads its standard input (in this case redirected from file)
and prints the number of characters, words, and lines found. If only the num­
ber of lines is required, then

we -I <file

can be used.

3.2.3 Pipelines and Filters

The standard output of one command may be connected to the standard input
of another by writing the "pipe" operator, indicated by I, between commands
as in

Is -I I we

Two or more commands connected in this way constitute a pipeline, and the
overall effect is the same as:

3-3

INTRODUCTION TO THE SHELL

Is -I > file; wc <file

except that no file is used. Instead the two processes are connected by a pipe
[see pipe(2)] and are run in parallel. Pipes are unidirectional, and synchroniza­
tion is achieved by halting wc(l) when there is nothing to read and halting Is(l)
when the pipe is full.

A filter is a command that reads its standard input, transforms it in some way,
and prints the result as output. One such filter, grep(l) selects from its input
those lines that contain some specified string. For example,

Is I grep old

prints those lines, if any, of the output from Is that contain the string "old".
Another useful filter is sort(l). For example,

who I sort

will print an alphabetically sorted list of logged in users.

A pipeline may consist of more than two commands, for example,

Is I grep old I we -I

prints only the number of file names in the current directory containing the
string "old".

3.2.4 File Name Generation

Many commands accept arguments which are file names. For example,

Is -I main.c

prints only information relating to the file main.c. The "Is -I" command
alone prints the same information about all files in the current directory.

The shell provides a mechanism for generating a list of file names that match a
pattern. For example,

Is -I *.c

3-4

INTRODUCTION TO THE SHELL

generates as arguments to Is(1) all file names in the current directory that end in
.c. The character "*,, is a pattern that will match any string including the null
string. In general, patterns are specified as follows:

*

?

[...]

For example,

[a-z]*

Matches any string of characters including the null string.

Matches any single character.

Matches anyone of the characters enclosed. A pair of
characters separated by a minus will match any character
lexically between the pair.

matches all names in the current directory beginning with one of the letters a
through z.

The input

I usr I fredl testl?

matches all names in the directory lusr Ifred/test that consist of a single charac­
ter. If no file name is found that matches the pattern then the pattern is
passed, unchanged, as an argument.

This mechanism is useful both to save typing and to select names according to
some pattern. It may also be used to find files. For example,

echo lusr/fred/*/core

finds and prints the names of all core files in subdirectories of lusr/fred. [The
echo(l) command is a standard VENIX operating system command that prints its
arguments, separated by blanks.] This last feature can be expensive, requiring a
scan of all subdirectories of lusr/fred.

3-5

INTRODUCTION TO THE SHELL

There is one exception to the general rules given for patterns. The character
"." at the start of a file name must be explicitly matched. The input

echo *

will therefore echo all file names in the current directory not beginning with
" ." . The input

echo .*

will echo all those file names that begin with ".". This avoids inadvertent
matching of the names "." and " .. " which mean "the current directory" and
"the parent directory", respectively. [Notice that Is(1) suppresses information
for the files"." and " .. ".J

3.2.5 Quoting

Characters that have a special meaning to the shell, such as

<>*?I&

are called metacharacters. A complete list of metacharacters is given in Table
3.B. Any character preceded by a \ is quoted and loses its special meaning, if
any. The \ is elided so that

echo \?

will echo a single ?, and

echo \ \

will echo a single \. To allow long strings to be continued over more than one
line, the sequence \new line (or CR) is ignored. The \ is convenient for quot­
ing single characters. When more than one character needs quoting, the above
mechanism is clumsy and error prone. A string of characters may be quoted by
enclosing the string between single quotes. For example,

echo xx'****'xx

will echo

3-6

INTRODUCTION TO THE SHELL

xx****xx

The quoted string may not contain a single quote but may contain new lines
which are preserved. This quoting mechanism is the simplest and is recom­
mended for casual use. A third quoting mechanism using double quotes is also
available and prevents interpretation of some but not all metacharacters.
Details of quoting are described under "Evaluation and Quoting" in section
"Keyword Parameters".

3.2.6 Prompting by the Shell

When the shell is used from a terminal, it will issue a prompt to the terminal
user indicating it is ready to read a command from the terminal. By default,
this prompt is "$ ". The prompt may be changed by entering

PSI = newprompt

This sets the prompt to be the string newprompt. If a new line is typed and
further input is needed, the shell will issue the prompt "> ". Sometimes this
can be caused by mistyping a quote mark. If it is unexpected, then an interrupt
(DEL) will return the shell to read another command. The other prompt (" >")
may be changed by entering:

PS2 = more

3.2.7 The Shell and Login

Following the user's login(1), the shell is called to read and execute commands
typed at the terminal. If the user's login directory contains the file .profile,
then it is assumed to contain commands and is read immediately by the shell
before reading any commands from the terminal.

3.2.8 Summary

Is

Is >file

Prints the names of files in the current directory.

Puts the output from Is into file.

3-7

INTRODUCTION TO THE SHELL

Is wc-I

Is grep old

Prints the number of files in the current directory.

Prints those file names containing the string old.

Is grep old I wc -I

cc pgm.c &

Prints the number of files whose name contains the string
old.

Runs cc in the background.

3.3 SHELL PROCEDURES
The shell may be used to read and execute commands contained in a file. For
example, the following call

sh file [args ... J

calls the shell to read commands from file. Such a file call is called a "com­
mand procedure" or "shell procedure". Arguments may be supplied with the
call and are referred to in file using the positional parameters $1, $2, For
example, if the file wg contains

who I grep $1

then the call

sh wg fred

is equivalent to

who I grep fred

All VENIX operating system files have three independent attributes (often called
"permissions"), read, write, and execute (rwx). The VENIX operating system
command chmod(1} may be used to make a file executable. For example,

chmod +x wg

will ensure that the file wg has execute status (permission). Following this, the
command

wg fred

3-8

INTRODUCTION TO THE SHELL

is equivalent to the call

sh wg fred

This allows shell procedures and programs to be used interchangeably. In either
case, a new process is created to execute the command.

As well as providing names for the positional parameters, the number of posi­
tional parameters in the call is available as $ #. The name of the file being exe­
cuted is available as $0.

A special shell parameter $* is used to substitute for all positional parameters
except $0. A typical use of this is to provide some default arguments, as in,

nroff -T4S0 -em $*

which simply prepends some arguments to those already given.

3.3.1 Control Flow-for

A frequent use of shell procedures is to loop through the arguments ($1, $2, ...)
executing commands once for each argument. An example of such a procedure
is tel that searches the file lusr/lib/telnos that contains lines of the form

fred mh0123
bert mh0789

The text of tel is

for i
do

grep $i lusr/Jib/telnos
done

3-9

INTRODUCTION TO THE SHELL

The command

tel fred

prints those lines in lusr/lib/telnos that contain the string "fred".

The command

tel fred bert

prints those lines containing "fred" followed by those for "bert".

The for loop notation is recognized by the shell and has the general form

for name in wI w2
do

command-list
done

A command-list is a sequence of one or more simple commands separated or
terminated by a new line or a semicolon. Furthermore, reserved words like do
and done are only recognized following a new line or semicolon. A name is a
shell variable that is set to the words wI w2 ... in turn each time the command-
list following do is executed. If in wI w2 ... " is omitted, then the loop is exe-
cuted once for each positional parameter; that is, in $* is assumed.

Another example of the use of the for loop is the create command whose text is

for i do > $i; done

The command

create alpha beta

ensures that two empty files alpha and beta exist and are empty. The notation
> file may be used on its own to create or clear the contents of a file. Notice
also that a semicolon (or new line) is required before done.

3-10

INTRODUCTION TO THE SHELL

3.3.2 Control Flow-case

A multiple way (choice) branch is provided for by the case notation. For exam­
ple,

case $ # in
1) cat> >$1 ;;
2) cat> >$2 <$1 ;;
*) echo 'usage: append [from] to' ;;

esac

is an append command. (Note the use of semicolons to delimit the cases.)
When called with one argument as in

append file

$ # is the string "1", and the standard input is appended (copied) onto the end
of file using the cat(1) command.

append filel file2

appends the contents of filel onto file2. If the number of arguments supplied
to append is other than 1 or 2, then a message is printed indicating proper
usage.

The general form of the case command is

case word in
pattern) command-list;;

esac

The shell attempts to match word with each pattern in the order in which the
patterns appear. If a match is found, the associated command-list is executed
and execution of the case is complete. Since * is the pattern that matches any
string, it can be used for the default case.

Caution: No check is made to ensure that only one pattern matches the case
argument.

3-11

INTRODUCTION TO THE SHELL

The first match found defines the set of commands to be executed. In the
example below, the commands following the second "*,, will never be executed
since the first "*,, executes everything it receives.

case $# in
*) ... ;;
*) ... ;;

esac

Another example of the use of the case construction is to distinguish between
different forms of an argument. The following example is a fragment of a cc(1)
command.

for i
do

case $i in
-[ocs]) ... ;;
- *) echo 'unknown flag $i' ;;
* .c) /lib/cO $i ••. ;;
*) echo 'unexpected argument $i' ;;

esac
done

To allow the same commands to be associated with more than one pattern, the
case command provides for alternative patterns separated by a I. For example,

case $i in
-xl-y)···

esac

is equivalent to

case $i in
-[xy]) ...

esac

3-12

The usual quoting conventions apply so that

case $i in
\?) ...

will match the character ?

3.3.3 Here Documents

INTRODUCTION TO THE SHELL

The shell procedure tel described under "Control Flow-for" in this chapter
uses the file /usr/Jib/telnos to supply the data for grep(1). An alternative is to
include this data within the shell procedure as a here document,· as in,

for i
do

done

grep $i < <!

fred mh0123
bert mh0789

In this example, the shell takes the lines between < <! and! as the standard
input for grep(l). The string "!" is arbitrary. The document is being termi­
nated by a line that consists of the string following < < .

Parameters are substituted in the document before it is made available to
grep(l) as illustrated by the following procedure called edg.

ed $3 < < 070
g/$lIs//$2/g
w
0J0

The call

edg string] string2 file

3-13

INTRODUCTION TO THE SHELL

is then equivalent to the command

ed file < < 070
g/stringl/s/ /string2/g
w
070

and changes all occurrences of string1 in file to string2. Substitution can be
prevented using \ to quote the special character $ as in

ed $3 < < +
1, \$s/$1/$2I g
w
+

[This version of edg is equivalent to the first except that ed(l) will print a ? if
there are no occurrences of the string $1.]

Substitution within a here document may be prevented entirely by _~oting the
terminating string, for example,

[,
grep $i < <,'#)

, -,"

The document is presented without modification to grep. If parameter substitu­
tion is not required in a here document, this latter form is more efficient.

3.3.4 Shell Variables

The shell provides string-valued variables. Variable names begin with a letter
and consist of letters, digits, and underscores. Variables may be given values by
writing

user = fred box = mOOO acct = mhOOOO

which assigns values to the variables user, box, and acct. A variable may be set
to the null string by entering

nuH=

3-14

INTRODUCTION TO THE SHELL

The value of a variable is substituted by preceding its name with $; for example,

echo $user

will echo fred.

Variables may be used interactively to provide abbreviations for frequently used
strings.

For example,

b = /usr/fred/bin
mv file $b

will move the file from the current directory to the directory /usr/fred/bin. A
more general notation is available for parameter (or variable) substitution, as in,

echo ${user}

which is equivalent to

echo $user

and is used when the parameter name is followed by a letter or digit. For
example,

tmp = /tmp/ps
ps a >$(tmp}a

will direct the output of ps(1) to the file /tmp/psa, whereas,

ps a >$tmpa

would cause the value of the variable tmpa to be substituted.

Except for $?, the following are set initially by the shell.

$? The exit status (return code) of the last command exe­
cuted as a decimal string. Most commands return a zero
exit status if they complete successfully; otherwise, a non-

3-15

INTRODUCTION TO THE SHELL

$#

$$

$!

$-

zero exit status is returned. Testing the value of return
codes is dealt with later under if and while commands.

The number of positional parameters in decimal. Used,
for example, in the append command to check the num­
ber of parameters.

The process number of this shell in decimal. Since proc­
ess numbers are unique among all existing processes, this
string is frequently used to generate unique temporary file
names. For example,

ps a > Itmp/ps$$

rm Itmp/ps$$

The process number of the last process run in the back­
ground (in decimal).

The current shell flags, such as -x and -v.

Some variables have a special meaning to the shell and should be avoided for
general use.

$MAIL When used interactively, the shell looks at the file speci­
fied by this variable before it issues a prompt. If the
specified file has been modified since it was last looked
at, the shell prints the message "you have mail" before
prompting for the next command. This variable is typi­
cally set in the file .profile in the user's login directory.
For example:

MAIL = lusr Imaillfred

3-16

$HOME

$PATH

INTRODUCTION TO THE SHELL

The default argument for the cd(1) command. The cur­
rent directory is used to resolve file name references that
do not begin with a I and is changed using the cd com­
mand.

For example,

cd lusr/fred/bin

makes the current directory lusr/fred/bin. Then

cat wn

will print on the terminal the file wn in this directory.
The command cd(1) with no argument is equivalent to

cd $HOME

This variable is also typically set in the user's login pro­
file.

A list of directories containing commands (the search
path). Each time a command is executed by the shell, a
list of directories is searched for an executable file. If
$PATH is not set, the current directory, Ibin, and lusrl
bin are searched by default. Otherwise, $PATH consists
of directory names separated by:. For example,

PATH = :/usr/fred/bin:/bin:/usr/bin

specifies that the current directory (the null string before
the first :), lusr/fred/bin, Ibin, and lusr/bin are to be
searched in that order. In this way, individual users can
have their own 'private' commands that are accessible
independently of the current directory. If the command
name contains ai, this directory search is not used; a sin­
gle attempt is made to execute the command.

3-17

INTRODUCTION TO THE SHELL

$PSI

$PS2

$IFS

3.3.5 Test Command

The primary shell prompt string, by default, "$ ".

The shell prompt when further input is needed, by
default, "> ".

The set of characters used by blank interpretation. (See
"3.4.4 Evaluation and Quoting" in section "Keyword
Parameters" .)

The test command is intended for use by shell programs. For example,

test -f file

returns zero exit status if file exists and nonzero exit status otherwise. In gen­
eral, test evaluates a predicate and returns the result as its exit status. Some of
the more frequently used test arguments are given below [see test(l) for a com­
plete specification].

test s true if the argument s is not the null string

test - f file true if file exists

test - r file true if file is readable

test - w file true if file is writable

test - d file true if file is a directory

3.3.6 Control Flow-while

The actions of the for loop and the case branch are determined by data avail­
able to the shell. A while or until loop and an if then else branch are also pro­
vided, whose actions are determined by the exit status returned by commands.

A while loop has the general form

3-18

while command-list 1
do

command-list2
done

INTRODUCTION TO THE SHELL

The value tested by the while command is the exit status of the last simple com­
mand following while. Each time round the loop command-listl is executed; if
a zero exit status is returned, then command-list2 is executed; otherwise, the
loop terminates. For example,

while test $1
do

shift
done

is equivalent to

for i
do

done

The shift command is a shell command that renames the positional parameters
$2, $3, ... as $1, $2, ... and loses $1.

Another kind of use for the while/until loop is to wait until some external event
occurs and then run some commands. In an until loop, the termination condi­
tion is reversed. For example,

until test - f file
do

sleep 300
done
commands

will loop until file exists. Each time round the loop, it waits for 5 minutes (300
seconds) before trying again. (Presumably, another process will eventually cre­
ate the file.)

3-19

INTRODUCTION TO THE SHELL

3.3.7 Control Flow-if

Also available is a general conditional branch of the form,

if command-list
then

command-list
else

command-list
fi

that tests the value returned by the last simple command following if.

The if command may be used in conjunction with the test command to test for
the existence of a file as in

if test - f file
then

process file
else

do something else
fi

A multiple test if command of the form

if ...
then

else

fi

if ...
then

else

fi

if ...

fi

may be written using an extension of the if notation as,

3-20

if ,,'
then

elif .. ,
then

elif .. ,

fi

INTRODUCTION TO THE SHELL

The touch command changes the "last modified" time for a list of files. The
command may be used in conjunction with make(1) to force recompilation of a
list of files.

The following example is the touch command:

flag =
for i
do

case $i in
-c)
*)

esac
done

flag=N ;;
if test -f $i
then

In $i junk$$
rm junk$$

elif test $flag
then

echo file \'$i\' does not exist
else

>$i
fi ;;

The - c flag is used in this command to force subsequent files to be created if
they do not already exist. Otherwise, if the file does not exist, an error message
is printed. The shell variable flag is set to some non-null string if the - c argu­
ment is encountered. The commands

3-21

INTRODUCTION TO THE SHELL

In ... ; rm •..

make a link to the file and then remove it.

The sequence

if command1
then

command2
fi

may be written

command1 && command2

Conversely,

command1 II command2

executes command2 only if command1 fails. In each case, the value returned is
that of the last simple command executed.

3.3.8 Command Grouping

Commands may be grouped in two ways,

{ command-list ; 1

and

(command-list)

The first form, command-list, is simply executed. The second form executes
command-list as a separate process. For example,

(cd x; rm junk)

executes rm junk in the directory x without changing the current directory of
the invoking shell.

The commands

3-22

INTRODUCTION TO THE SHELL

cd x; rm junk

have the same effect but leave the invoking shell in the directory x.

3.3.9 Debugging Shell Procedures

The shell provides two tracing mechanisms to help when debugging shell proce­
dures. The first is invoked within the procedure as

set -v

(v for verbose) and causes lines of the procedure to be printed as they are read.
It is useful to help isolate syntax errors. It may be invoked without modifying
the procedure by entering

sh -v proc ...

where proc is the name of the shell procedure. This flag may be used in con­
junction with the - n flag which prevents execution of subsequent commands.
(Note that typing "set -n" at a terminal will render the terminal useless until
an end-of-file is typed.)

The command

set -x

will produce an execution trace with flag -x. Following parameter substitution,
each command is printed as it is executed. (Try the above at the terminal to see
the effect it has.) Both flags may be turned off by typing

set -

and the current setting of the shell flags is available as $ - .

3.4 KEYWORD PARAMETERS
Shell variables may be given values by assignment or when a shell procedure is
invoked. An argument to a shell procedure of the form name = value that pre­
cedes the command name causes value to be assigned to name before execution
of the procedure begins. The value of name in the invoking shell is not
affected. For example,

3-23

INTRODUCTION TO THE SHELL

user = fred command

will execute command with user set to fred. The - k flag causes arguments of
the form name = value to be interpreted in this way anywhere in the argument
list. Such names are sometimes called keyword parameters. If any arguments
remain, they are available as positional parameters $1, $2, ..•.

The set command may also be used to set positional parameters from within a
procedure.

For example,

set - *

will set $1 to the first file name in the current directory, $2 to the next, etc.
Note that the first argument, -, ensures correct treatment when the first file
name begins with a -.

3.4.1 Parameter Transmission

When a shell procedure is invoked, both positional and keyword parameters
may be supplied with the call. Keyword parameters are also made available
implicitly to a shell procedure by specifying in advance that such parameters are
to be exported. For example,

export user box

marks the variables user and box for export. When a shell procedure is
invoked, copies are made of all exportable variables for use within the invoked
procedure. Modification of such variables within the procedure does not affect
the values in the invoking shell. It is generally true of a shell procedure that it
may not modify the state of its caller without an explicit request on the part of
the caller. (Shared file descriptors are an exception to this rule.)

Names whose value is intended to remain constant may be declared readonly.
The form of this command is the same as that of the export command,

read only name '"

3-24

INTRODUCTION TO THE SHELL

Subsequent attempts to set readonly variables are illegal.

3.4.2 Parameter Substitution

If a shell parameter is not set, then the null string is substituted for it. For
example, if the variable d is not set,

echo $d

or

echo ${d}

will echo nothing. A default string may be given as in

echo ${d-.}

which will echo the value of the variable d if it is set and"." otherwise. The
default string is evaluated using the usual quoting conventions so that

echo ${d - '*'}

will echo * if the variable d is not set. Similarly,

echo ${d-$l}

will echo the value of d if it is set and the value (if any) of $1 otherwise. A
variable may be assigned a default value using the notation

echo ${d=.}

which substitutes the same string as

echo ${d-.}

and if d were not previously set, it will be set to the string ".". (The notation
${ ... = ... } is not available for positional parameters.)

If there is no sensible default, the notation

echo ${d?message}

will echo the value of the variable d if it has one; otherwise, message is printed

3-25

INTRODUCTION TO THE SHELL

by the shell and execution of the shell procedure is abandoned. If message is
absent, a standard message is printed. A shell procedure that requires some
parameters to be set might start as follows:

: $[user?} $[acct?} $[bin?}

Colon (:) is a command built into the shell and does nothing once its arguments
have been evaluated. If any of the variables user, acct, or bin are not set, the
shell will abandon execution of the procedure.

3.4.3 Command Substitution

The standard output from a command can be substituted in a similar way to
parameters. The command pwd(1) prints on its standard output the name of
the current directory. For example, if the current directory is lusr/fred/bin, the
command

d='pwd'

is equivalent to

d = I usr I fred/bin

The entire string between single left quotes (' ... ') is taken as the command to be
executed and is replaced with the output from the command. The command is
written using the usual quoting conventions except that a ' must be escaped
using a \.

For example,

Is 'echo "$1 If,

is equivalent to

Is $1

Command substitution occurs in all contexts where parameter substitution
occurs (including here documents), and the treatment of the resulting text is the
same in both cases. This mechanism allows string processing commands to be
used within shell procedures. An example of such a command is basename,

3-26

INTRODUCTION TO THE SHELL

which removes a specified suffix from a string. For example,

basename main.c .c

will print the string "main". Its use is illustrated by the following fragment
from a cc(1) command.

case $A in

* .c) B = 'basename $A .c'

esac

that sets B to the part of $A with the suffix .c stripped.

Here are some composite examples .

• for i in 'Is -t'; do ...

The variable i is set to the names of files in time order,
most recent first .

• set 'date'; echo $6 $2 $3, $4

will print, e.g., 1977 Nov 1, 23:59:59

3.4.4 Evaluation and Quoting

The shell is a macro processor that provides parameter substitution, command
substitution, and file name generation for the arguments to commands. This
section discusses the order in which these evaluations occur and the effects of
the various quoting mechanisms.

Commands are parsed initially according to the grammar given m Table 5.A.
Before a command is executed, the following substitutions occur:

3-27

INTRODUCTION TO THE SHELL

1. Parameter substitution, e.g., $user

2. Command substitution, e.g., 'pwd'

Only one evaluation occurs so that if, for example, the value of the vari­
able X is the string "$y" then

echo $X

will echo "$y".

3. Blank interpretation

Following the above substitutions, the resulting characters are broken into
nonblank words (blank interpretation). For this purpose, blanks are the
characters of the string "$/FS". By default, this string consists of blank,
tab, and newline. The null string is not regarded as a word unless it is
quoted. For example,

echo"

will pass on the null string as the first argument to echo, whereas

echo $null

will call echo with no arguments if the variable null is not set or set to the
null string.

4. File name generation

Each word is then scanned for the file pattern characters *, ?, and [... j;
and an alphabetical list of file names is generated to replace the word.
Each such file name is a separate argument.

The evaluations just described also occur in the list of words associated with a
for loop. Only substitution occurs in the word used for a case branch.

As well as the quoting mechanisms described earlier using \ and ' ... ', a third
quoting mechanism is provided using double quotes. Within double quotes,

3-28

INTRODUCTION TO THE SHELL

parameter and command substitution occurs; but file name generation and the
interpretation of blanks does not.

The following characters have a special meaning within double quotes and may
be quoted using \.

$ parameter substitution
command substitution
ends the quoted string

\ quotes the special characters $, " \

For example,

echo "$x"

will pass the value of the variable x as a single argument to echo. Similarly,

echo "$*"

will pass the positional parameters as a single argument and is equivalent to

echo "$1 $2 ..• "

The notation $@ is the same as $* except when it is quoted. Inputting

echo "$@"

will pass the positional parameters, unevaluated, to echo and is equivalent to

echo "$1" "$2" ••.

The following illustration gives, for each quoting mechanism, the shell
metacharacters that are evaluated.

3-29

INTRODUCTION TO THE SHELL

metacharacter

Quoting \ $ *
,

"
mechanism

n n n n n t ,
Y Y Y t Y Y

" Y Y n Y t n

In cases where more than one evaluation of a string is required, the built-in
command eval may be used. For example, if the variable X has the value "$y"
and if y has the value "pqr", then

eval echo $X

will echo the string "pqr".

In general, the eval command evaluates its arguments (as do all commands) and
treats the result as input to the shell. The input is read and the resulting
command(s) executed. For example,

wg = 'eval wholgrep'
$wg fred

is equivalent to

wholgrep fred

In this example, eval is required since there is no interpretation of
metacharacters, such as I, following substitution.

3-30

INTRODUCTION TO THE SHELL

3.4.5 Error Handling

The treatment of errors detected by the shell depends on the type of error and
on whether the shell is being used interactively. An interactive shell is one
whose input and output are connected to a terminal [as determined by ioctl(2)].
A shell invoked with the -i flag is also interactive.

Execution of a command (see also "Command Execution") may fail for any of
the following reasons:

• Input/output redirection may fail. For example, if a file does not exist or
cannot be created.

• The command itself does not exist or cannot be executed.

• The command terminates abnormally, for example, with a "bus error" or
"memory fault" signal.

• The command terminates normally but returns a nonzero exit status.

In all of these cases, the shell will go on to execute the next command. Except
for the last case, an error message will be printed by the shell. All remaining
errors cause the shell to exit from a command procedure. An interactive shell
will return to read another command from the terminal. Such errors include
the following:

• Syntax errors, e.g., if ... then ... done

• A signal such as interrupt. The shell waits for the current command, if
any, to finish execution and then either exits or returns to the terminal.

• Failure of any of the built-in commands such as cd(1).

The shell flag -e causes the shell to terminate if any error is detected. The fol­
lowing is a list of the VENIX operating system signals:

3-31

INTRODUCTION TO THE SHELL

1 hangup

2 interrupt

3* quit

4* illegal instruction

5* trace trap

6* lOT instruction

7* EMT instruction

8* floating point exception

9 Kill (cannot be caught or ignored)

10* bus error

11* segmentation violation

12* bad argument to system call

13 write on a pipe with no one to read it

14 alarm clock

15 software termination [from kiIl(1)]

The VENIX operating system signals marked with an asterisk "*,, as shown in
the list produce a core dump if not caught. However, the shell itself ignores
quit which is the only external signal that can cause a dump. The signals in this
list of potential interest to shell programs are 1, 2, 3, 14, and 15.

3-32

INTRODUCTION TO THE SHELL

3.4.6 Fault Handling

Shell procedures normally terminate when an interrupt is received from the ter­
minal. The trap command is used if some cleaning up is required, such as
removing temporary files. For example,

trap 'rm /tmp/ps$$; exit' 2

sets a trap for signal 2 (terminal interrupt); and if this signal is received, it will
execute the following commands:

rm /tmp/ps$$; exit

The exit is another built-in command that terminates execution of a shell proce­
dure. The exit is required; otherwise, after the trap has been taken, the shell
will resume executing the procedure at the place where it was interrupted.

VENIX operating system signals can be handled in one of three ways.

1. They can be ignored, in which case the signal is never sent to the process.

2. They can be caught, in which case the process must decide what action to
take when the signal is received.

3. They can be left to cause termination of the process without it having to
take any further action.

If a signal is being ignored on entry to the shell procedure, for example, by
invoking it in the background (see "Command Execution"), trap commands
(and the signal) are ignored.

The use of trap is illustrated by this modified version of the touch command
illustrated below:

3-33

INTRODUCTION TO THE SHELL

flag =
trap 'rm - f junk$$; exit' 1 2 3 15
for i
do

case $i in
-c) flag=N;;
*) if test -f $i

then
In $i junk$$; rm junk$$

eUf test $flag
then

else

fi ;;
esac

done

echo file \'$i\, does not exist

>$i

The cleanup action is to remove the file junk$$. The trap command appears
before the creation of the temporary file; otherwise, it would be possible for the
process to die without removing the file.

Since there is no signal 0 in the VENIX operating system, it is used by the shell
to indicate the commands to be executed on exit from the shell procedure.

A procedure may, itself, elect to ignore signals by specifying the null string as
the argument to trap. The following:

trap" 1 2 3 15

is a fragment taken from the nohup(1) command which causes the VENIX oper­
ating system HANGUP, INTERRUPT, QUIT, and SOFTWARE
TERMINATION signals to be ignored both by the procedure and by invoked
commands.

3-34

INTRODUCTION TO THE SHELL

Traps may be reset by entering

trap 2 3

which resets the traps for signals 2 and 3 to their default values. A list of the
current values of traps may be obtained by writing

trap

The scan procedure is an example of the use of trap where there is no exit in
the trap command. The scan takes each directory in the current directory,
prompts with its name, and then executes commands typed at the terminal until
an end of file or an interrupt is received. Interrupts are ignored while executing
the requested commands but cause termination when scan is waiting for input.
The scan procedure follows:

d= 'pwd'
for i in *
do

if test - d $d/$i
then

fi
done

cd $d/$i
while echo "$i:" && trap exit 2 && read x
do

done

trap: 2
eval $x

The read x is a built-in command that reads one line from the standard input
and places the result in the variable x. It returns a nonzero exit status if either
an end-of-file is read or an interrupt is received.

3-35

INTRODUCTION TO THE SHELL

3.4.7 Command Execution

To run a command (other than a built-in), the shell first creates a new process
using the system call fork(2). The execution environment for the command
includes input, output, and the states of signals and is established in the child
process before the command is executed. The built-in command exec is used in
rare cases when no fork is required and simply replaces the shell with a new
command. For example, a simple version of the nohup command looks like

trap " 1 2 3 15
exec $*

The trap turns off the signals specified so that they are ignored by subsequently
created commands, and exec replaces the shell by the command specified.

Most forms of input/output redirection have already been described. In the fol­
lowing, word is only subject to parameter and command substitution. No file
name generation or blank interpretation takes place so that, for example,

echo ... > *.c

will write its output into a file whose name is *.c. Input/output specifications
are evaluated left to right as they appear in the command. Some input/output
specifications are as follows:

> word

> > word

< word

< < word

The standard output (file descriptor 1) is sent
to the file word which is created if it does not
already exist.

The standard output is sent to file word. If
the file exists, then output is appended (by
seeking to the end); otherwise, the file is cre­
ated.

The standard input (file parameter 0) is taken
from the file word.

The standard input is taken from the lines of
shell input that follow up to but not including
a line consisting only of word. If word is
quoted, no interpretation of the document
occurs. If word is not quoted, parameter and

3-36

>& digit

<& digit

<&­
>&-

INTRODUCTION TO THE SHELL

command substitution occur and \ is used to
quote the characters \, $, " and the first char­
acter of word. In the latter case, \newline is
ignored (e.g., quoted strings).

The file descriptor digit is duplicated using the
system call dup(2), and the result is used as
the standard output.

The standard input is duplicated from file
descriptor digit.

The standard input is closed.

The standard output is closed.

Any of the above may be preceded by a digit in which case the file descriptor
created is that specified by the digit instead of the default 0 or 1. For example,

... 2>fiIe

runs a command with message output (file descriptor 2) directed to file.
Another example,

... 2>&1

runs a command with its standard output and message output merged. (Strictly
speaking, file descriptor 2 is created by duplicating file descriptor 1; but the
effect is usually to merge the two streams.)

The environment for a command run in the background such as

list *.c I Ipr &

is modified in two ways. First, the default standard input for such a command
is the empty file Idev/null. This prevents two processes (the shell and the com­
mand), which are running in parallel, from trying to read the same input.
Chaos would ensue if this were not the case. For example,

ed file &

3-37

INTRODUCTION TO THE SHELL

would allow both the editor and the shell to read from the same input at the
same time.

The other modification to the environment of a background command is to turn
off the QUIT and INTERRUPT signals so that they are ignored by the com­
mand. This allows these signals to be used at the terminal without causing
background commands to terminate. For this reason, the VENIX operating sys­
tem convention for a signal is that if it is set to 1 (ignored) then it is never
changed even for a short time. Note that the shell command trap has no effect
for an ignored signal.

3.4.8 Invoking the Shell

The following flags are interpreted by the shell when it is invoked. If the first
character of argument zero is a minus, commands are read from the file .pro­
file.

-c string

-s

-i

If the -c flag is present, then commands are read from
string.

If the - s flag is present or if no arguments remain, com­
mands are read from the standard input. Shell output is
written to file descriptor 2.

If the - i flag is present or if the shell input and output
are attached to a terminal [as told by getty(8)], this shell
is interactive. In this case, TERMINATE is ignored (so
that kill 0 does not kill an interactive shell, and INTER­
RUPT is caught and ignored (so that wait is interrupt­
ible). In all cases, QUIT is ignored by the shell.

3-38

item

simple-command:

command:

pipeline:

andor:

command-list:

INTRODUCTION TO THE SHELL

TABLE 3.A

GRAMMAR

word
input-output
name = value

item
simple-command item

simple-command
(command-list)
{ command-list }
for name do command-list done
for name in word ... do command-list done
while command-list do command-list done
until command-list do command-list done
case word in case-part ... esac
if command-list then command-list else-part fi

command
pipeline I command

pipeline
andor && pipeline
andor II pipeline

andor
command-list ;
command-list &
command-list ; andor
command-list & andor

3-39

INTRODUCTION TO THE SHELL

input-output:

file

case-part:

pattern:

else-part:

empty:

word:

name

digit:

> word
< word
> > word
< < word

word
& digit
&-
pattern) command-list ;;

word
pattern I word

elif command-list then command-list else-part
else command-list

empty

sequence of nonblank characters

sequence of letters, digits, or underscores
starting with a letter

0123456789

3-40

INTRODUCTION TO THE SHELL

TABLE 3.B

METACHARACTERS AND RESERVED WORDS

(a) syntactic:

pipe symbol

&& 'andf' symbol

II 'orf' symbol

command separator

"
case delimiter

& background commands

() command grouping

< input redirection

« input from a here document

> output creation

» output append

(b) patterns:

* match any character(s) including none

? match any single character

[...] match any of the enclosed characters

3-41

INTRODUCTION TO THE SHELL

(c) substitution:

${ •••]

(d) quoting:

\

substitute shell variable

substitute command output

quote the next character

quote the enclosed characters except for the '

quote the enclosed characters except for the $, '
,\, and II

(e) reserved words:

if then else elif fi
case in esac
for while until do done
{ 1 [] test

3-42

Contents

4.1 INTRODUCTION .. 4-1

4.2 TERMINAL USAGE OF THE SHELL 4-1

4.3 DETAILS ON THE SHELL FOR TERMINAL USERS 4-12

4.4 SHELL CONTROL STRUCTURES

AND COMMAND SCRIPTS 4-26

4.5 MISCELLANEOUS SHELL MECHANISMS 4-38

Chapter 4

AN INTRODUCTION TO THE C SHELL

4.1 INTRODUCTION

A shell is a command language interpreter. csh is the name of one particular
command interpreter on VENIX. The primary purpose of csh is to translate
command lines typed at a terminal into system actions, such as invocation of
other programs. csh is a user program just like any you might write.

In addition to this document, you will want to refer to a copy of the csh User
Reference Manual. The csh documentation in the manual provides a full
description of all features of the shell and is a final reference for questions
about the shell.

There are important words; names of commands, and words which have special
meaning in discussing the shell and VENIX. Many of the words are defined in a
glossary at the end of this document. If you don't know what is meant by a
word, you should look for it in the glossary.

4.2 TERMINAL USAGE OF THE SHELL

4.2.1 The Basic Notion of Commands

A shell in VENIX acts mostly as a medium through which other commands are
invoked. While it has a set of builtin commands which it performs directly,
most useful commands are, in fact, external to the shell. The shell is distin­
guished from the command interpreters of other systems by the fact that it is a
user program, and it is used almost exclusively as a mechanism for invoking
other programs.

4-1

INTRODUCTION TO THE C SHELL

Commands in the VENIX system expect a list of strings or words as arguments.
The command

mail bill

consists of two words. The first word mail names the command to be executed,
in this case the mail program which sends messages to other users. The shell
uses the name of the command in attempting to run it for you. It will look in
a number of directories for a file with the name mail which is expected to con­
tain the mail program.

The rest of the words of the command are given to the command itself to exe­
cute. In this case we specified also the word bill which is interpreted by the mail
program to be the name of a user to whom mail is to be sent. In normal termi­
nal usage we might use the mail command as follows.

0/0 mail bill
I have a question about the csh documentation.
My document seems to be missing page 5.
Does a page five exist?

Bill
%

Here we typed a message to send to bill and ended this message with a control-d
which sent an end-of-file to the mail program. The mail program then trans­
mitted our message. The characters '%' were printed before and after the mail
command by the shell to indicate that input was needed.

After typing the '%' prompt the shell was reading command input from our ter­
minal. We typed a complete command 'mail bill'. The shell then executed the
mail program with argument bill and went dormant waiting for it to complete.
The mail program then read input from our terminal until we signalled an end­
of-file after which the shell noticed that mail had completed and signaled us
that it was ready to read from the terminal again by printing another '%'
prompt.

4-2

INTRODUCTION TO THE C SHELL

This is the essential pattern of all interaction with VENIX through the shell. A
complete command is typed at the terminal, the shell executes the command and
when this execution completes prompts for a new command. If you run the
editor for an hour, the shell will patiently wait for you to finish editing and
obediently prompt you again whenever you finish editing.

4.2.2 Flag Arguments

A useful notion in VENIX is that of a flag argument. While many arguments to
commands specify file names or user names some arguments rather specify an
optional capability of the command which you wish to invoke. By convention,
such arguments begin with the character '-'. Thus the command

Is

will produce a list of the files in the current directory. The option - s is the
size option, and

Is -s

causes Is to also give, for each file the size of the file in blocks of 512 charac­
ters. The manual page for each command in the User Reference Manual gives
the available options for each command. The Is command has a large number
of useful and interesting options. Most other commands have either no options
or only one or two options. It is hard to remember options of commands
which are not used very frequently, so most VENIX utilities perform only one or
two functions rather than having a large number of hard to remember options.

4.2.3 Output to Files

Many commands may read input or write output to files rather than simply tak­
ing input and output from the terminal. Each such command could take special
words as arguments indicating where the output is to go. It is simpler, and
usually sufficient, to connect these commands to files to which they wish to
write, within the shell itself, and just before they are executed.

Thus suppose we wish to save the current date in a file called 'now'. The com­
mand

date

4-3

INTRODUCTION TO THE C SHELL

will print the current date on our terminal. This is because our terminal is the
default standard output for the date command and the date command prints the
date on its standard output. The shell lets us redirect the standard output of a
command through a notation using the metacharacter '>' and the name of the
file where output is to be placed. Thus the command

date> now

runs the date command in an environment where its standard output is the file
'now' rather than our terminal. Thus this command places the current date and
time in the file 'now'. It is important to know that the date command was
unaware that its output was going to a file rather than to our terminal. The
shell performed this redirection before the command began executing.

The file 'now' need not have existed before the date command was executed;
the shell would have created the file if it did not exist. And if the file did exist?
If it had existed previously these previous contents would have been discarded!
A shell option noclobber exists to prevent this from happening accidentally; it is
discussed in section 2.2.

4.2.4 Metacharacters in the Shell

The shell has a large number of special characters (like '> ') which indicate spe­
cial functions. We say that these notations have syntactic and semantic meaning
to the shell. In general, most characters which are neither letters nor digits have
special meaning to the shell. We shall shortly learn a means of quotation which
allows us to create words which contain metacharacters and to thus work with­
out constantly worrying about whether certain characters are metacharacters.

Note that the shell is only reading input when it has prompted with '010 '
Thus metacharacters will normally have effect only then. We need not worry
about placing shell metacharacters in a letter we are sending via mail.

4.2.5 Input from Files; Pipelines

We learned above how to route the standard output of a command to a file. It
is also possible to route the standard input of a command from a file. This is
not often necessary since most commands will read from a file name given as
argument. We can give the command

sort < data

4-4

INTRODUCTION TO THE C SHELL

to run the sort command with standard input, where the command normally
reads, from the file 'data'. We would more likely say

sort data

letting the sort command open the file 'data' for input itself since this is less to
type.

We should note that if we just typed

sort

then the sort program would sort lines from its standard input. Since we did
not redirect the standard input, it would sort lines as we typed them on the ter­
minal until we typed a control-d to generate an end-of-file.

A most useful capability is the ability to combine the standard output of one
command with the standard input of the next, i.e. to run the commands in a
sequence known as a pipeline. For instance the command

Is -s

normally produces a list of the files in our directory with the size of each in
blocks of 512 characters. If we are interested in learning which of our files is
largest we may wish to have this sorted by size rather than by name, which is
the default way in which Is sorts. We could look at the many options of Is to
see if there was an option to do this but would eventually discover that there is
not. Instead we can use a couple of simple options of the sort command, com­
bining it with Is to get what we want.

The - n option of sort specifies a numeric sort rather than an alphabetic sort.
Thus

Is -s I sort -n

specifies that the output of the Is command run with the option - s is to be
piped to the command sort run with the numeric sort option. This would give
us a sorted list of our files by size, but with the smallest first. We could then

4-5

INTRODUCTION TO THE C SHELL

use the - r reverse sort option and the head command in combination with the
previous command doing

Is -s I sort -n -r I head -5

Here we have taken a list of our files sorted alphabetically, each with the size in
blocks. We have run this to the standard input of the sort command asking it
to sort numerically in reverse order (largest first). This output has then been
run into the command head which gives us the first few lines out. In this case
we have asked head for the first 5 lines. Thus this command gives us the names
and sizes of our 5 largest files.

The metanotation introduced above is called the pipe mechanism. Commands
separated by 'I' characters are connected together by the shell and the output of
each is run into the input of the next. The leftmost command in a pipeline will
normally take its standard input from the terminal and the rightmost will place
its standard output on the terminal. Other examples of pipelines will be given
later when we discuss the history mechanism; one important use of pipes which
is illustrated there is in the routing of information to the line printer.

4.2.6 Filenames

Many commands to be executed will need the names of files as arguments.
VENIX pathnames consist of a number of components separated by '/'. Each
component except the last names a directory in which the next component
resides. Thus the pathname

/ete/motd

specifies a file in the directory 'etc' which is a subdirectory of the root directory
'/' . Within this directory the file named is 'motd' which stands for 'message of
the day'. Filenames which do not begin with '/' are interpreted starting at the
current working directory. This directory is, by default, your home directory
and can be changed dynamically by the ehdir change directory command.

Most filenames consist of a number of alphanumeric characters and '.'s. In
fact, all printing characters except 'I' may appear in filenames. It is inconve­
nient to have most non-alphabetic characters in filenames because many of these
have special meaning to the shell. The character '.' is not a shell-metacharacter
and is often used as the prefix with an extension of a base name. Thus

4-6

INTRODUCTION TO THE C SHELL

prog.c prog.o prog.errs prog.output

are four related files. They share a root portion of a name (a root portion
being that part of the name that is left when a trailing '.' and following charac­
ters which are not '.' are stripped off). The file 'prog.c' might be the source
for a C program, the file 'prog.o' the corresponding object file, the file
'prog.errs' the errors resulting from a compilation of the program and the file
'prog.output' the output of a run of the program.

If we wished to refer to all four of these files in a command, we could use the
metanotation

prog.*

This word is expanded by the shell, before the command to which it is an argu­
ment is executed, into a list of names which begin with 'prog.'. The character
'*' here matches any sequence (including the empty sequence) of characters in a
file name. The names which match are sorted into the argument list to the
command alphabetically. Thus the command

echo prog.*

will echo the names

prog.c prog.errs prog.o prog.output

Note that the names are in lexicographic order here, and a different order than
we listed them above. The echo command receives four words as arguments,
even though we only typed one word as as argument directly. The four words
were generated by filename expansion of the metasyntax in theofle input word.

Other metanotations for filename expansion are also available. The character
'?' matches any single character in a filename. Thus

echo? ?? ???

will echo a line of filenames; first those with one character names, then those
with two character names, and finally those with three character names. The
names of each length will be independently lexicographically sorted.

4-7

INTRODUCTION TO THE C SHELL

Another mechanism consists of a sequence of characters between '[' and ']'.
This metasequence matches any single character from the enclosed set. Thus

prog.[co]

will match

prog.c prog.o

in the example above. We can also place two characters astride a' 'in this
notation to denote a range. Thus

chap.[1-S]

might match files

chap.1 chap.2 chap.3 chapA chap.S

if they existed. This is shorthand for

chap. [1234S]

and otherwise equivalent.

An important point to note is that if a list of argument words to a command
(an argument list) contains filename expansion syntax, and if this filename
expansion syntax fails to match any existing file names, then the shell considers
this to be an error and prints a diagnostic

No match.

Another very important point is that the character '.' at the beginning of a
filename is treated specially. Neither '*' or '?' or the '[' ']' mechanism will
match it. This prevents accidental matching of the filenames '.' and ' • .' in the
current directory which have special meaning to the system, as well as other files
such as .cshrc which are not normally visible. We will discuss the special role
of the file .cshrc later.

Another filename expansion mechanism gives access to the pathname of the
home directory of other users. This notation consists of the character ,.., fol­
lowed by another users login name. For instance the word ''bill' would map to
the pathname '/mntlbill' if the home directory for 'bill' was in the directory

4-8

INTRODUCTION TO THE C SHELL

'/mnt/bill' . Since, on large systems, users may have login directories scattered
over many different disk volumes with different prefix directory names, this
notation provides a reliable way of accessing the files of other users.

A special case of this notation consists of a ,..., alone, e.g. '-/mbox'. This nota­
tion is expanded by the shell into the file 'mbox' in your borne directory. This
can be very useful if you have used cbdir to change to another users directory
and have found a file you wish to copy using cpo You can do

cp tbatfile -

which will be expanded by the shell to

cp tbatfile Imnt/bill

e.g., which the copy command will interpret as a request to make a copy of
'thatfile' in the directory '/mntlbill'. The ,..., notation doesn't, by itself, force
named files to exist. This is useful, for example, when using the cp command,
e.g.

cp tbatfile -I saveit

There also exists a mechanism using the characters '(' and')' for abbreviating a
set of word which have common parts but cannot be abbreviated by the above
mechanisms because they are not files, are the names of files which do not yet
exist, are not thus conveniently described. This mechanism will be described
much later, in section 4.5.2, as it is used much less frequently.

4.2.7 Quotation

We have already seen a number of metacharacters used by the shell. These
metacharacter pose a problem in that we cannot use them directly as parts of
words. Thus the command

ecbo *

will not echo the character '*'. It will either echo an sorted list of filenames in
the current directory, or print the message 'No match' if there are no files in
the current directory.

4-9

INTRODUCTION TO THE C SHELL

The recommended mechanism for placing characters which are neither numbers,
digits, '/', '.' or '-' in an argument word to a command is to enclose it with
single quotation characters "', i.e.

echo '*'

There is one special character '!' which is used by the history mechanism of the
shell and which cannot be escaped in this way. It and the character '" itself can
be preceded by a single '\' to prevent their special meaning. These two mecha­
nisms suffice to place any printing character into a word which is an argument
to a shell command.

4.2.8 Terminating Commands

When you are running a command from the shell and the shell is dormant wait­
ing for it to complete there are a couple of ways in which you can force such a
command to complete. For instance if you type the command

cat /etc/passwd

the system will print a copy of a list of all users of the system on your terminal.
This is likely to continue for several minutes unless you stop it. You can send
an INTERRUPT signal to the cat command by hitting the CTRL-C key on your
terminal. Actually, hitting this key sends this INTERRUPT signal to all pro­
grams running on your terminal, including your shell. The shell normally
ignores such signals however, so that the only program affected by the INTER­
RUPT will be cat. Since cat does not take any precautions to catch this signal
the INTERRUPT will cause it to terminate. The shell notices that cat has died
and prompts you again with '0,10 '. If you hit INTERRUPT again, the shell will
just repeat its prompt since it catches INTERRUPT signals and chooses to con­
tinue to execute commands rather than going ... away like cat did, which would
have the effect of logging you out.

Another way in which many programs terminate is when they get an end-of-file
from their standard input. Thus the mail program in the first example above
was terminated when we hit a control-d which generates and end-of-file from
the standard input. The shell also terminates when it gets an end-of-file print­
ing 'logout'; VENIX then logs you off the system. Since this means that typing
too many control-d's can accidentally log us off, the shell has a mechanism for
preventing this. This ignoreeof option will be discussed in section 4.3.2.

4-10

INTRODUCTION TO THE C SHELL

If a command has its standard input redirected from a file, then it will normally
terminate when it reaches the end of this file. Thus if we execute

mail bill < prepared.text

the mail command will terminate without our typing a control-d. This is
because it read to the end-of-file of our file 'prepared.text' in which we placed a
message for 'bill' with an editor. We could also have done

cat prepared.text I mail bill

since the cat command would then have written the text through the pipe to the
standard input of the mail command. When the cat command completed it
would have terminated, closing down the pipeline and the mail command would
have received an end-of-file from it and terminated. Using a pipe here is more
complicated than redirecting input so we would more likely use the first form.
These commands could also have been stopped by sending an INTERRUPT.

If you write or run programs which are not fully debugged then it may be nec­
essary to stop them somewhat ungracefully. This can be done by sending them
a QUIT signal, generated by a control-\. This will usually provoke the shell to
produce a message like:

a.out: Quit - - Core dumped

indicating that a file 'core' has been created containing information about the
program 'a.out's state when it ran amuck. You can examine this file yourself,
or forward information to the maintainer of the program telling him/her where
the core file is.

If you run background commands (as explained in section 4.3.6) then these
commands will ignore INTERRUPT and QUIT signals at the terminal. To stop
them you must use the kill program. See section 4.3.6 for an example.

4-11

INTRODUCTION TO THE C SHELL

4.2.9 What Now?

We have so far seen a number of mechanisms of the shell and learned a lot
about the way in which it operates. The remaining sections will go yet further
into the internals of the shell, but you will surely want to try using the shell
before you go any further. To try it you can log in to VENIX and type the fol­
lowing command to the system:

chsh myname Ibinl csh

Here 'myname' should be replaced by the name you typed to the system prompt
of 'login:' to get onto the system. Thus I would use 'chsh bill Ibin/csh'. You
only have to do this once; it takes effect at next login. You are now ready to
try using csh.

Before you do the 'chsh' command, the shell you are using when you log into
the system is '/bin/sh'. In fact, much of the above discussion is applicable to
'/bin/sh'. The next section will introduce many features particular to csh so
you should change your shell to csh before you begin reading it.

4.3 DETAILS ON THE SHELL FOR TERMINAL USERS

4.3.1 Shell Startup and Termination

When you login, the shell is placed by the system in your home directory and
begins by reading commands from a file .cshrc in this directory. All shells
which you may create during your terminal session will read from this file. We
will later see what kinds of commands are usefully placed there. For now we
need not have this file and the shell does not complain about its absence.

A login shell, executed after you login to the system, will, after it reads com­
mands from .cshrc, read commands from a file .login also in your home direc­
tory. This file contains commands which you wish to do each time you login to
the VENIX system. An example .Iogin file is shown below:

4-12

tset - d adm3a - p adm3a
fixexrc
set history = 20
set time=3

INTRODUCTION TO THE C SHELL

This file contains four commands to be executed by VENIX each time you login.
The first is a tset command which informs the system that you are using a
Lear-Siegler ADM - 3A terminal and that if you are on a patchboard port you
are also on an ADM - 3A. The second command is a fixexrc which manipulates
your ex startup file in certain ways if you are on a dialup port. You need not
be concerned with exactly what this command does. In general you may have
certain commands in your .login which are particular to you.

The next two set commands are interpreted directly by the shell and affect the
values of certain shell variables to modify the future behavior of the shell. Set­
ting the variable time tells the shell to print time statistics on commands which
take more than a certain threshold of machine time (in this case 3 CPU sec­
onds). Setting the variable history tells the shell how much history of previous
command words it should save in case I wish to repeat or rerun modified ver­
sions of previous commands. Since there is a certain overhead in this mechan­
ism the shell does not set this variable by default, but rather lets users who wish
to use the mechanism set it themselves. The value of 20 is a reasonably large
value to assign to history. More casual users of the history mechanism would
probably set a value of 5 or 10. The use of the history mechanism will be
described subsequently.

After executing commands from .login the shell reads commands from your ter­
minal, prompting for each with '070'. When it receives an end-of-file from the
terminal, the shell will print 'logout' and execute commands from the file
'.logout' in your home directory. After that the shell will die and VENIX will
log you off the system. If the system is not going down, you will receive a new
login message. In any case, after the 'logout' message the shell is doomed and
will take no further input from the terminal.

4-13

INTRODUCTION TO THE C SHELL

4.3.2 Shell Variables

The shell maintains a set of variables. We saw above the variables history and
time which had values '20' and '3'. In fact, each shell variable has as value an
array of zero or more strings. Shell variables may be assigned values by the set
command. It has several forms, the most useful of which was given above and
is

set name = value

Shell variables may be used to store values which are to be reintroduced into
commands later through a substitution mechanism. The shell variables most
commonly referenced are, however, those which the shell itself refers to. By
changing the values of these variables one can directly affect the behavior of the
shell.

One of the most important variables is the variable path. This variable contains
a sequence of directory names where the shell searches for commands. The set
command shows the value of all variables currently defined (we usually say set)
in the shell. The default value for path will be shown by set to be

070 set
argv
home
path
prompt
shell
status
%

Imnt/bill
(. Ibin lusr/bin)
%
Ibin/csh
o

This notation indicates that the variable path points to the current directory '.'
and then '/bin' and '/usr/bin'. Commands which you may write might be in
'.' (usually one of your directories). The most heavily used system commands
live in '/bin'. Less heavily used system commands live in '/usr/bin'.

A number of new programs on the system live in the directory '/usr Inew' . If
we wish, as well we might, all shells which we invoke to have access to these
new programs we can place the command

set path = (. lusr/new Ibin lusr/bin)

4-14

INTRODUCTION TO THE CSHELL

in our file .cshrc in our home directory. Try doing this and then logging out
and back in and do

set

again to see that the value assigned to path has changed.

Other useful built in variables are the variable home which shows your home
directory, the variable ignoreeof which can be set in your .login file to tell the
shell not to exit when it receives an end-of-file from a terminal. To logout from
VENIX with ignoreeof set you must type

logout

This is one of several variables which the shell does not care about the value of,
only whether they are set or unset. Thus to set this variable you simply do

set ignoreeof

and to unset it do

unset ignoreeof

Both set and unset are built-in commands of the shell.

Finally, some other built-in shell variables of use are the variables noclobber
and mail. The metasyntax

> filename

which redirects the output of a command will overwrite and destroy the previ­
ous contents of the named file. In this way you may accidentally overwrite a
file which is valuable. If you would prefer that the shell not overwrite files in
this way you can

set noclobber

in your .login file. Then trying to do

date> now

would cause a diagnostic if 'now' existed already. You could type

4-15

INTRODUCTION TO THE C SHELL

date >! now

if you really wanted to overwrite the contents of 'now'. The' >!' is a special
metasyntax indicating that clobbering the file is ok.

If you receive mail frequently while you are logged in and wish to be informed
of the arrival of this mail you can put a command

set mail = lusr/mail/yourname

in your .login file. Here you should change yourname to your login name. The
shell will look at this file every 10 minutes to see if new mail has arrived. If
you receive mail only infrequently you are better off not setting this variable.
In this case it will only serve to delay the shells response to you when it checks
for mail.

The use of shell variables to introduce text into commands, which is most useful
in shell command scripts, will be introduced in section 4.3.4.

4.3.3 The Shell's History List

The shell can maintain a history list into which it places the words of previous
commands. It is possible to use a metanotation to reintroduce commands or
words from commands in forming new commands. This mechanism can be
used to repeat previous commands or to correct minor typing mistakes in com­
mands.

Consider the following transcript:

010 where michael
michael is on UyO dialup
0J0 write !$
write michael
Long time no see michael.

300 baud

Why don't you call me at 524-4510.
EOF
0J0

642-7927

Here we asked the system where michael was logged in. It told us he was on
'ttyO' and we told the shell to invoke a 'write' command to '!$'. This is a

4-16

INTRODUCTION TO THE C SHELL

history notation which means the last word of the last command executed, in
this case 'michael'. The shell performed this substitution and then echoed the
command as it would execute it. Let us assume that we don't hear anything
from michael. We might do

0,10 ps to
PID TTY TIME COMMAND

4808 0 0:05-
0,10 !!
ps to

PID TTY TIME COMMAND
5104 0 0:00 - 7

0,10 !where
where michael
michael is not logged in
0,10

Here we ran a ps on the teletype michael was logged in on to see that he had a
shell. Repeating this command via the history substitution '!!' we saw that he
had logged out and that only a getty process was running on his terminal.
Repeating the where command showed that he was indeed gone, most likely
having hung up the phone in order to be able to call.

This illustrates several useful features of the history mechanism. The form '!!'
repeats the last command execution. The form '!string' repeats the last com­
mand which began with a word of which 'string' is a prefix. Another useful
command form is 'tlhs trhs' performing a substitute similar to that in ed or ex.
Thus after

4-17

INTRODUCTION TO THE C SHELL

1170 cat "hill/csh/sh .. c
Imnt/bill/csh/sh .. c: No such file or directory
% t •• (ua.
cat oill/csh/sh.c
include "sh.h"

1*
* C Shell
*
* Bill Joy, UC Berkeley
* October, 1978
*1

char
%

*pathlist[] [SRCHP

here we used the substitution to correct a typing mistake, and then rubbed the
command out after we saw that we had found the file that we wanted. The
substitution changed the two '.' characters to a single '.' character.

After this command we might do

% !! Ilpr
cat "hill/csh/sh.c Ilpr

to put a copy of this file on the line printer, or (immediately after the cat which
worked above)

% pr !$ Ilpr
pr oill/csh/sh.c Ilpr
%

to print a copy on the printer using pr.

More advanced forms of the history mechanism are also possible. A notion of
modification on substitutions allows one to say (after the first successful cat
above).

4-18

0,10 cd !$:h
cd oill/csh
%

INTRODUCTION TO THE C SHELL

The trailing ':h' on the history substitution here causes only the head portion of
the pathname reintroduced by the history mechanism to be substituted. This
mechanism and related mechanisms are used less often than the forms above.

A complete description of history mechanism features is given in the C shell
manual pages in this volume.

4.3.4 Aliases

The shell has an alias mechanism which can be used to make transformations
on input commands. This mechanism can be used to simplify the commands
you type, to supply default arguments to commands, or to perform transforma­
tions on commands and their arguments. The alias facility is similar to the
macro facility of many assemblers.

Some of the features obtained by aliasing can be obtained also using shell com­
mand files, but these take place in another instance of the shell and cannot
directly affect the current shells environment and commands such as chdir which
must be done in the current shell.

As an example, suppose that there is a new version of the mail program on the
system called 'Mail' you wish to use, rather than the standard mail program
which is called 'mail'. If you place the shell command

alias mail Mail

in your .Iogin file, the shell will transform an input line of the form

mail bill

into a call on 'Mail'. More generally, suppose we wish the command 'Is' to
always show sizes of files, that is to always do '- s' . We can do

alias Is Is - s

or even

4-19

INTRODUCTION TO THE C SHELL

alias dir Is - s

creating a new command syntax 'dir' which does an 'Is - s'. If we say

dir Dill

then the shell will translate this to

Is -s Imntlbill

Thus the alias mechanism can be used to provide short names for commands, to
provide default arguments, and to define new short commands in terms of other
commands. It is also possible to define aliases which contain multiple com­
mands or pipelines, showing where the arguments to the original command are
to be substituted using the facilities of the history mechanism. Thus the defini­
tion

alias cd 'cd \!* ; Is '

would do an Is command after each change directory cd command. We
enclosed the entire alias definition in '" characters to prevent most substitutions
from occurring and the character ';' from being recognized as a parser
metacharacter. The'!' here is escaped with a '\' to prevent it from being inter­
preted when the alias command is typed in. The '\!*' here substitutes the entire
argument list to the pre-aliasing cd command, without giving an error if there
were no arguments. The ';' separating commands is used here to indicate that
one command is to be done and then the next. Similarly the definition

alias whois 'grep \! t letc/passwd'

defines a command which looks up its first argument in the password file.

4.3.5 Detached Commands; > > and > & Redirection

There are a few more metanotations useful to the terminal user which have not
been introduced yet. The metacharacter '&' may be placed after a command,
or after a sequence of commands separated by ';' or 'I'. This causes the shell
to not wait for the commands to terminate before prompting again. We say
that they are detached or background processes. Thus

4-20

% pr oill/csh/sh.c Ilpr &
5120
5121
0,10

INTRODUCTION TO THE C SHELL

Here the shell printed two numbers and came back very quickly rather than
waiting for the pr and Ipr commands to finish. These numbers are the process
numbers assigned by the system to the pr and Ipr commands. t

Since havoc would result if a command run in the background were to read
from your terminal at the same time as the shell does, the default standard
input for a command run in the background is not your terminal, but an empty
file called '/dev/null'. Commands run in the background are also made
immune to INTERRUPT and QUIT signals which you may subsequently generate
at your terminal. *

If you intend to log off the system before the command completes you must run
the command immune to HANGUP signals. This is done by placing the word
'nohup' before each program in the command, i.e.:

nohup man csh I nohup Ipr &

In addition to the standard output, commands also have a diagnostic output
which is normally directed to the terminal even when the standard output is
directed to a file or a pipe. It is occasionally desirable to direct the diagnostic
output along with the standard output. For instance if you want to redirect the
output of a long running command into a file and wish to have a record of any
error diagnostic it produces you can do

command > & file

t Running commands in the background like this tends to slow down the

system and is not a good idea if the system is overloaded. When overloaded,

the system will just bog down more if you run a large number of processes at

once.

* If a background command stops suddenly when you hit INTERRUPT or

QUIT it is likely a bug in the background program.

4-21

INTRODUCTION TO THE C SHELL

The '> &' here tells the shell to route both the diagnostic output and the stan­
dard output into 'file'. of the standard output. Similarly you can give the
command

command 1& Ipr

to route both standard and diagnostic output through the pipe to the line
printer daemon Ipr. #

Finally, it is possible to use the form

command > > file

to place output at the end of an existing file. t

4.3.6 Useful Built-in Commands

We now give a few of the useful built-in commands of the shell describing how
they are used.

The alias command described above is used to assign new aliases and to show
the existing aliases. With no arguments it prints the current aliases. It may
also be given an argument such as

alias Is

to show the current alias for, e.g., 'Is'.

A command form

command >&! file

exists, and is used when noc\obber is set and file already exists.

t If noc\obber is set, then an error will result if file does not exist,

otherwise the shell will create file if it doesn't exist. A form

command > >! file

makes it not be an error for file to not exist when noc\obber is set.

4-22

INTRODUCTION TO THE C SHELL

The cd and chdir commands are equivalent, and change the working directory
of the shell. It is useful to make a directory for each project you wish to work
on and to place all files related to that project in that directory. Thus after you
login you can do

070 pwd
Imnt/bill
0J0 mkdir newpaper
0J0 chdir newpaper
0J0 pwd
Imnt/bill/newpaper
0J0

after which you will be in the directory newpaper. You can place a group of
related files there. You can return to your 'home' login directory by doing just

chdir

with no arguments. We used the pwd print working directory command to
show the name of the current directory here. The current directory will usually
be a subdirectory of your home directory, and have it (here '/mntlbill') at the
start of it.

The echo command prints its arguments. It is often used in shell scripts or as
an interactive command to see what filename expansions will yield.

The history command will show the contents of the history list. The numbers
given with the history events can be used to reference previous events which are
difficult to reference using the contextual mechanisms introduced above. There
is also a shell variable called prompt. By placing a '!' character in its value the
shell will there substitute the index of the current command in the history list.
You can use this number to refer to this command in a history substitution.
Thus you could

set prompt = '\! 0J0

Note that the 'I' character had to be escaped here even within ", characters.

4-23

INTRODUCTION TO THE C SHELL

The logout command can be used to terminate a login shell which has ignoreeof
set.

The repeat command can be used to repeat a command several times. Thus to
make 5 copies of the file one in the file five you could do

repeat 5 cat one > > five

The setenv command can be used to set variables in the environment. Thus

setenv TERM adm3a

will set the value of the environment variable TERM to 'adm3a'. A user pro­
gram printenv exists which will print out the environment. It might then show:

% printenv
HOME lusr/bill
SHELL Ibinl csh
TERM adm3a
0/0

The source command can be used to force the current shell to read commands
from a file. Thus

source .cshrc

can be used after editing in a change to the .cshrc file which you wish to take
effect before the next time you login.

The time command can be used to cause a command to be timed no matter how
much CPU time it takes. Thus

0/0 time cp five five. save
O.Ou 0.3s 0:01 26%
% time we five.save

1200 6300 37650 five.save
1.2u 0.5s 0:03 55%
%

4-24

INTRODUCTION TO THE C SHELL

indicates that the ep command used less that 1I1Oth of a second of user time
and only 3/10th of a second of system time in copying the file 'five' to
'five.save'. The command word count we on the other hand used 1.2 seconds
of user time and 0.5 seconds of system time in 3 seconds of elapsed time in
counting the number of words, character and lines in 'five.save'. The percent­
age '55070' indicates that over this period of 3 seconds, our command we used
an average of 55 percent of the available CPU cycles of the machine. This is a
very high percentage and indicates that the system is lightly loaded.

The unalias and unset commands can be used to remove aliases and variable
definitions from the shell.

The wait command can be used after starting processes with '&' to quickly see
if they have finished. If the shell responds immediately with another prompt,
they have. Otherwise you can wait for the shell to prompt at which point they
will have finished, or interrupt the shell by sending a RUB or DELETE character.
If the shell is interrupted, it will print the names and numbers of the processes
it knows to be unfinished. Thus:

070 nroff paper I Ipr &
2450
2451
070 wait

2451 Ipr
2450 nroff

wait: Interrupted.
070

You can check again later by doing another wait, or see which commands are
still running by doing a ps. As time will show you, ps is fairly expensive. It is
thus counterproductive to run many ps commands to see how a background
process is doing. t

t If you do you are usurping with these ps commands the processor time

the job needs to finish, thereby delaying its completion!

4-25

INTRODUCTION TO THE C SHELL

If you run a background process and decide you want to stop it for whatever
reason you must use the kill program. You must use the number of the pro­
cesses you wish to kill. Thus to stop the nroff in the above pipeline you would
do

lifo kill 2450
lifo wait
2450: nroff: Terminated.
lifo

Here the shell printed a diagnostic that we terminated 'moff' only after we did
a wait. If we want the shell to discover the termination of all processes it has
created we must, in general, use wait.

4.3.7 What Else?

This concludes the basic discussion of the shell for terminal users. There are
more features of the shell to be discussed here, and all features of the shell are
discussed in its manual pages. One useful feature which is discussed later is the
foreach built-in command which can be used to run the same command
sequence with a number of different arguments.

If you intend to use VENIX a lot you you should look through the rest of this
document and the shell manual pages to become familiar with the other facilities
which are available to you.

4.4 SHELL CONTROL STRUCTURES AND COMMAND SCRIPTS

4.4.1 Introduction

It is possible to place commands in files and to cause shells to be invoked to
read and execute commands from these files, which are called shell scripts. We
here detail those features of the shell useful to the writers of such scripts.

4-26

INTRODUCTION TO THE C SHELL

4.4.2 Make

It is important to first note what shell scripts are not useful for. There is a pro­
gram called make which is very useful for maintaining a group of related files
or performing sets of operations on related files. For instance a large program
consisting of one or more files can have its dependencies described in a make file
which contains definitions of the commands used to create these different files
when changes occur. Definitions of the means for printing listings, cleaning up
the directory in which the files reside, and installing the resultant programs are
easily, and most appropriately placed in this makefile. This format is superior
and preferable to maintaining a group of shell procedures to maintain these
files.

Similarly when working on a document a makefile may be created which defines
how different versions of the document are to be created and which options of
nroff or troff are appropriate.

4.4.3 Invocation and the argv Variable

A csh command script may be interpreted by saying

0,10 csh script ...

where script is the name of the file containing a group of csh commands and
, ... ' is replaced by a sequence of arguments. The shell places these arguments
in the variable argv and then begins to read commands from the script. These
parameters are then available through the same mechanisms which are used to
reference any other shell variables.

If you make the file 'script' executable by doing

chmod 755 script

and place a shell comment at the beginning of the shell script (i.e. begin the file
with a '#' character) then a '/bin/csh' will automatically be invoked to execute
'script' when you type

script

4-27

INTRODUCTION TO THE C SHELL

If the file does not begin with a '#' then the standard shell '/bin/sh' will be
used to execute it. This allows you to convert your older shell scripts to use csh
at your convenience.

4.4.4 A Variable Substitution

After each input line is broken into words and history substitutions are done on
it, the input line is parsed into distinct commands. Before each command is
executed a mechanism know as variable substitution is done on these words.
Keyed by the character '$' this substitution replaces the names of variables by
their values. Thus

echo $argv

when placed in a command script would cause the current value of the variable
argv to be echoed to the output of the shell script. It is an error for argv to be
unset at this point.

A number of notations are provided for accessing components and attributes of
variables. The notation

$?name

expands to '1' if name is set or to '0' if name is not set. It is the fundamental
mechanism used for checking whether particular variables have been assigned
values. All other forms of reference to undefined variables cause errors.

The notation

$#name

expands to the number of elements in the variable name. Thus

4-28

070 set argv = (a b c)
070 echo $?argv
1
070 echo $ # argv
3
070 unset argv
070 echo $?argv
o
070 echo $argv
Undefined variable: argv.
070

INTRODUCTION TO THE C SHELL

It is also possible to access the components of a variable which has several
values. Thus

$argv[1]

gives the first component of argv or in the example above 'a'. Similarly

$argv[$ # argv]

would give 'c', and

$argv[1-2]

would give 'a b'. Other notations useful in shell scripts are

$n

where n is an integer as a shorthand for

$argv[n]

the nth parameter and

$*

which is a shorthand for

$argv

4-29

INTRODUCTION TO THE C SHELL

The form

$$

expands to the process number of the current shell. Since this process number
is unique in the system it can be used in generation of unique temporary file
names.

One minor difference between '$n' and '$argv[n]' should be noted here. The
form '$argv[n]' will yield an error if n is not in the range '1 - $ # argv' while
'$n' will never yield an out of range subscript error. This is for compatibility
with the way older shells handled parameters.

Another important point is that it is never an error to give a sub range of the
form 'n - '; if there are less than n components of the given variable then no
words are substituted. A range of the form 'm-n' likewise returns an empty
vector without giving an error when m exceeds the number of elements of the
given variable, provided the subscript n is in range.

4.4.5 Expressions

In order for interesting shell scripts to be constructed it must be possible to
evaluate expressions in the shell based on the values of variables. In fact, all
the arithmetic operations of the language C are available in the shell with the
same precedence that they have in C. In particular, the operations' = =' and
'! =' compare strings and the operators '&&' and 'II' implement the boolean
and/or operations.

The shell also allows file enquiries of the form

-? filename

where '?' is replace by a number of single characters. For instance the expres­
sion primitive

-e filename

tell whether the file 'filename' exists. Other primitives test for read, write and
execute access to the file, whether it is a directory, or has non-zero length.

4-30

INTRODUCTION TO THE C SHELL

It is possible to test whether a command terminates normally, by a primitive of
the form '{ command l' which returns true, i.e. '1' if the command succeeds
exiting normally with exit status 0, or '0' if the command terminates abnormally
or with exit status non-zero. If more detailed information about the execution
status of a command is required, it can be executed and the variable '$status'
examined in the next command. Since '$status' is set by every command, it is
very transient. It can be saved if it is inconvenient to use it only in the single
immediately following command.

For a full list of expression components available see the manual section for the
shell.

4.4.6 Sample Shell Script

A sample shell script which makes use of the expression mechanism of the shell
and some of its control structure follows:

0,10 cat copyc

Copyc copies those C programs in the specified list
to the directory -/backup if they differ from the files
already in -/backup

set noglob
foreach i ($argv)

if ($i:r.c ! = $i) continue # not a .c file so do nothing

if (! - r -/backup/$i:t) then
echo $i:t not in backup ... not cp\'ed
continue

endif

cmp - s $i -/backup/$i:t # to set $status

4-31

INTRODUCTION TO THE C SHELL

end

if ($status ! = 0) then

endif

echo new backup of $i
cp $i -Ibackup/$i:t

This script makes use of the foreach command, which causes the shell to exe­
cute the commands between the foreach and the matching end for each of the
values given between '(' and ')' with the named variable, in this case 'i' set to
successive values in the list. Within this loop we may use the command break
to stop executing the loop and continue to prematurely terminate one iteration
and begin the next. After the foreach loop the iteration variable (i in this case)
has the value at the last iteration.

We set the variable noglob here to prevent filename expansion of the members
of argv. This is a good idea, in general, if the arguments to a shell script are
filenames which have already been expanded or if the arguments may contain
filename expansion metacharacters. It is also possible to quote each use of a '$'
variable expansion, but this is harder and less reliable.

The other control construct used here is a statement of the form

if (expression) then
command

endif

4-32

INTRODUCTION TO THE C SHELL

The placement of the keywords here is not flexible due to the current implemen­
tation of the shell. t

The shell does have another form of the if statement of the form

if (expression) command

which can be written

if (expression) \
command

Here we have escaped the newline for the sake of appearance, and the '\' must
immediately. The command must not involve 'I', '&' or ';' and must not be
another control command. The second form requires the final '\' to immedi­
ately precede the end-of-line.

The more general if statements above also admit a sequence of else - if pairs
followed by a single else and an endif, e.g.:

t The following two formats are not currently acceptable to the shell:

if (expression)

then

command

endif

and

Won't work!

if (expression) then command endif

4-33

Won't work

INTRODUCTION TO THE C SHELL

if (expression) then
commands

else if (expression) then
commands

else
commands

endif

Another important mechanism used in shell scripts is ':' modifiers. We can use
the modifier ':r' here to extract a root of a filename. Thus if the variable i has
the value 'foo.bar' then

% echo $i $i:r
foo.bar foo
070

shows how the ':r' modifier strips off the trailing '. bar' . Other modifiers will
take off the last component of a pathname leaving the head ':h' or all but the
last component of a pathname leaving the tail ':t'. These modifiers are fully
described in the csh manual pages in the programmers manual. It is also possi­
ble to use the command substitution mechanism described in the next major sec­
tion to perform modifications on strings to then reenter the shells environment.
Since each usage of this mechanism involves the creation of a new process, it is
much more expensive to use than the ':' modification mechanism. # Finally, we
note that the character '#' lexically introduces a shell comment in shell scripts
(but not from the terminal). All subsequent characters on the input line after a

It is also important to note that the current implementation of the shell

limits the number of ':' modifiers on a '$' substitution to 1. Thus

0/0 eeho $i $i:h:t la/h/e la/h:t %

does not do what one would expect.

4-34

INTRODUCTION TO THE C SHELL

, #' are discarded by the shell. This character can be quoted using '" or '\' to
place it in an argument word.

4.4.7 Other Control Structures

The shell also has control structures while and switch similar to those of C.
These take the forms

and

while (expression)
commands

end

switch (word)

case strt:
commands
breaksw

case strn:
commands
breaksw

default:

endsw

commands
breaksw

For details see the manual section for csh. C programmers should note that we
use breaksw to exit from a switch while break exits a while or foreach loop. A
common mistake to make in csh scripts is to use break rather than breaksw in
switches.

Finally, csh allows a goto statement, with labels looking like they do in C, i.e.:

4-35

INTRODUCTION TO THE C SHELL

loop:
commands
go to loop

4.4.8 Supplying Input to Commands

Commands run from shell scripts receive by default the standard input of the
shell which is running the script. This it is different from previous shells run­
ning under VENIX. It allowing shell scripts to fully participate in pipelines, but
mandates extra notation for commands which are to take inline data.

Thus we need a metanotation for supplying inline data to commands in shell
scripts. As an example, consider this script which runs the editor to delete lead­
ing blanks from the lines in each argument file

0,10 cat deblank
deb lank - - remove leading blanks
foreach i ($argv)
ed - $i < < 'EOF'
1,$s/t[]*//
w
q
'EOF'
end
%

The notation '< < 'EOF" means that the standard input for the ed command is
to come from the text in the shell script file up to the next line consisting of
exactly ''EOF''. The fact that the 'EOF' is enclosed in '" characters, i.e.
quoted, causes the shell to not perform variable substitution on the intervening
lines. In general, if any part of the word following the '< <' which the shell
uses to terminate the text to be given to the command is quoted then these sub­
stitutions will not be performed. In this case since we used the form '1,$' in
our editor script we needed to insure that this '$' was not variable substituted.
We could also have insured this by preceding the '$' here with a '\', i.e.:

1,\$s/t[]*//

4-36

INTRODUCTION TO THE C SH~LL

but quoting the 'EOF' terminator is a more reliable way of achieving the same
thing.

4.4.9 Catching Interrupts

If our shell script creates temporary files, we may wish to catch interruptions of
the shell script so that we can clean up these files. We can then do

onintr label

where label is a label in our program. If an interrupt is received the shell will
do a 'goto label' and we can remove the temporary files and then do a exit
command (which is built in to the shell) to exit from the shell script. If we wish
to exit with a non-zero status we can do

exit(1)

e.g. to exit with status '1'.

4.4.10 What Else?

There are other features of the shell useful to writers of shell procedures. The
verbose and echo options and the related - v and - x command line options
can be used to help trace the actions of the shell. The - n option causes the
shell only to read commands and not to execute them and may sometimes be of
use.

One other thing to note is that csh will not execute shell scripts which do not
begin with the character '#', that is shell scripts that do not begin with a com­
ment. Similarly, the '/bin/sh' on your system may well defer to 'csh' to inter­
pret shell scripts which begin with '#'. This allows shell scripts for both shells
to live in harmony.

There is also another quotation mechanism using '''' which allows only some of
the expansion mechanisms we have so far discussed to occur on the quoted
string and serves to make this string into a single word as ,-, does.

4-37

INTRODUCTION TO THE C SnELL

4.5 MISCELLANEOUS SHELL MECHANISMS

4.5.1 Loops at the Terminal; Variables as Vectors

It is occasionally useful to use the foreach control structure at the terminal to
aid in performing a number of similar commands. For example, if three shells
'/bin/sh', '/bin/nsh', and '/bin/csh' were in use and you wanted to count the
number of persons using each you would issue the commands:

0/0 grep ~c csh$ /etc/passwd
27
% grep -c nsh$ /etc/passwd
128
% grep -c -v sh$ /etc/passwd
430
%

Since these commands are very similar you can use foreach to do this more
easily.

% foreach i ('sh$' 'csh$' '-v sh$)
? grep -c $i /etc/passwd
? end
27
128
430
%

Note here that the shell prompts for input with '?' when reading the body of
the loop.

Very useful with loops are variables which contain lists of filenames or other
words. You can, for example, do

4-38

010 set a = ('Is')
% echo $a
csh.n csh.rm
% Is
csh.n
csh.rm
% echo $#a
2
%

INTRODUCTION TO THE C SHELL

The set command here gave the variable a a list of all the filenames in the cur­
rent directory as value. We can then iterate over these names to perform any
chosen function.

The output of a command within '" characters is converted by the shell to a list
of words. You can also place the '" quoted string within' If' characters to take
each (non-empty) line as a component of the variable; preventing the lines from
being split into words at blanks and tabs. A modifier ':x' exists which can be
used later to expand each component of the variable into another variable split­
ting it into separate words at embedded blanks and tabs.

4.5.2 Braces { ... } in Argument Expansion

Another form of filename expansion, alluded to before involves the characters
'{' and '}'. These characters specify that the contained strings, separated by ','
are to be consecutively substituted into the containing characters and the results
expanded left to right. Thus

A{strl,str2, ... strn}B

expands to

AstrtB Astr2B .•. AstroB

This expansion occurs before the other filename expansions, and may be applied
recursively (i.e. nested). The results of each expanded string are sorted sepa­
rately, left to right order being preserved. The resulting filenames are not
required to exist if no other expansion mechanisms are used. This means that
this mechanism can be used to generate arguments which are not filenames, but
which have common parts.

4-39

INTRODUCTION TO THE C SHELL

A typical use of this would be

mkdir -/{hdrs,retrofit,csh}

to make subdirectories 'hdrs', 'retrofit' and 'csh' in your home directory. This
mechanism is most useful when the common prefix is longer than in this exam­
ple, i.e.

chown bin lusr I{bin/{ ex,edit} ,lib/{exl.lstrings,how _ex}}

4.5.3 Command Substitution

A command enclosed in '" characters is replaced,just before filenames are
expanded, by the output from that command. Thus it is possible to do

set pwd = 'pwd'

to save the.current directory in the variable pwd or to do

ex 'grep -I TRACE * .c'

to run the editor ex suppling as arguments those files whose names end in '.c'
which have the string 'TRACE' in them. *

4.5.4 Other Details Not Covered Here

In particular circumstances it may be necessary to know the exact nature and
order of different substitutions performe~ by the shell. The exact meaning of
certain combinations of quotations IS also occasionally important. These are
detailed fully in the User Reference Manual.

The shell has a number of command line option flags mostly of use in writing
VENIX programs, and debugging shell scripts. See the sh(l) section in the User
Reference Manual for a list of these options.

• Command expansion also occurs in input redirected with • < <' and
within • n' quotations. Refer to the shell manual section for full details.

4-40

INTRODUCTION TO THE C SHELL

APPENDIX

Special Characters

The following table lists the special characters of csh and the VENIX system,
giving for each the section(s) in which it is discussed. A number of these char­
acters also have special meaning in expressions. See the csh manual section for
a complete list.

Syntactic metacharacters

,
I
()
&

4.3.4
4.2.5
4.3.2
4.3.5

separates commands to be execnted sequentially
separates commands in a pipeline
brackets expressions and variable values
follows commands to be executed

without waiting for completion

Filename metacharacters

/

?
*
[]

{ 1

4.2.6
4.2.6
4.2.6
4.2.6
4.2.6

4.2.6

4.5.2

separates components of a file's pathname
separates root parts of a file name from extensions
expansion character matching any single character
expansion character matching any sequence of characters
expansion sequence matching any single

character from a set
used at the beginning of a filename to indicate

home directories
used to specify groups of arguments with common parts

4-41

INTRODUCTION TO THE C SHELL

Quotation metacharacters

\

"

4.2.7
4.2.7
4.5.3

prevents meta-meaning of following single character
prevents meta-meaning of a group of characters
like " but allows variable and command expansion

Input/ output metacharacters

<
>

4.2.3
4.2.5

indicates redirected input
indicates redirected output

Expansion/ su bstitution metacharacters

$ 4.4.4
4.3.3
4.4.6
4.3.3
4.5.3

Other metacharacters

4.4.6
4.2.2

indicates variable substitution
indicates history substitution
precedes substitution modifiers
used in special forms of history substitution

indicates command substitution

begins a shell comment
prefixes option (flag) arguments to commands

4-42

INTRODUCTION TO THE C SHELL

GLOSSARY

This glossary lists the most important terms introduced in the introduction to
the shell and gives references to sections of the shell document for further infor­
mation about them. References of the form pr(1) indicate that the command pr
is in the User Reference Manual in section 1. References of the form (4.3.5)
indicate that more information can be found in section 4.3.5 of this chapter.

Your current directory has the name '.' as well as the name
printed by the command pwd. The current directory '.' is
usually the first component of the search path contained in
the variable patb, thus commands which are in '.' are found
first (4.3.2). The character'.' is also used in separating com­
ponents of filenames (4.2.6). The character '.' at the begin­
ning of a component of a pathname is treated specially and
not matched by the filename expansion metacharacters '?',
'*', and '[' ']' pairs (4.2.6).

Each directory has a file ' • .' in it which is a reference to its
parent directory. After changing into the directory with ehdir,
i.e.

ehdir paper

you can return to the parent directory by doing

ehdir ..

The current directory is printed by pwd (4.3.6).

4-43

INTRODUCTION TO THE C SHELL

alias

argument

argv

background

bin

break

builtin

An alias specifies a shorter or different name for a VENIX
command, or a transformation on a command to be per­
formed in the shell. The shell has a command alias which
establishes aliases and can print their current values. The
command unalias is used to remove aliases (4.3.6).

Commands in VENIX receive a list of argument words. Thus
the command

echo abc

consists of a command name 'echo' and three argument words
'a', 'b' and 'c' (4.2.1).

The list of arguments to a command written in the shell lan­
guage (a shell script or shell procedure) is stored in a variable
called argv within the shell. This .name is taken from the con­
ventional name in the C programming language (4.4.4).

Commands started without waiting for them to complete are
called background commands (4.2.5).

A directory containing binaries of programs and shell scripts
to be executed is typically called a 'bin' directory. The stan­
dard system 'bin' directories are '/bin' containing the most
heavily used commands and '/usr/bin' which contains most
other user programs. Other binaries are contained in directo­
ries such as '/usr/new' where new programs are placed. You
can place binaries in any directory. If you wish to execute
them often, the name of the directories should be a compo­
nent of the variable path.

Break is a built-in command used to exit from loops within
the control structure of the shell (4.4.6).

A command executed directly by the shell is called a builtin
command. Most commands in VENIX are not built into the
shell, but rather exist as files in 'bin' directories. These com­
mands are accessible because the directories in which they
reside are named in the path variable.

4-44

case

cat

cd

chdir

chsh

cmp

command

INTRODUCTION TO THE C SHELL

A case command is used as a label in a switch statement in
the shells control structure, similar to that of the language C.
Details are given in the shells documentation 'csh (NEW)'
(4.4.7).

The cat program catenates a list of specified files on the stan­
dard output. It is usually used to look at the contents of a
single file on the terminal, to 'cat a file' (4.2.8, 4.3.3).

The cd command is used to change the working directory.
With no arguments, cd changes your working directory to be
your home directory (4.3.3) (4.3.6).

The chdir command is a synonym for cd. Cd is usually used
because it is easier to type.

The chsh command is used to change the shell which you use
on VENIX. By default, you use an older 'standard' version of
the shell which resides in '/binl sh' . You can change your
shell to '/binl csh' by doing

chsh your-login-name Ibinl csh

Thus I would do

chsh bill Ibinl csh

It is only necessary to do this once. The next time you log in
to VENIX after doing this command, you will be using csh
rather than the shell in '/bin/sh' (4.2.9).

Cmp is a program which compares files. It is usually used on
binary files, or to see if two files are identical (4.4.6). For
comparing text files the program diff, described in 'diff (1)' is
used.

A function performed by the system, either by the shell (a
builtin command) or by a program residing in a file in a
directory within the VENIX system is called a command
(4.2,1).

4-45

INTRODUCTION TO THE C SliELL

command sUbstitution

component

continue

core dump

cp

.cshrc

CTRL-C

The replacement of a command enclosed in '" characters by
the text output by that command is called command substitu­
tion (4.4.6, 4.4.3).

A part of a pathname between '/' characters is called a com­
ponent of that pathname. A variable which has multiple
strings as value is said to have several components, each string
is a component of the variable.

A builtin command which causes execution of the enclosing
foreach or while loop to cycle prematurely. Similar to the
continue command in the programming language C (4.4.6).

When a program terminates abnormally, the system places an
image of its current state in a file named 'core'. This 'core
dump' can be examined with the system debuggers 'db (l)'
and 'cdb (1)' in order to determine what went wrong with the
program (4.2.8). If the shell produces a message of the form:

commandname: Illegal instruction - - Core dumped

(where 'Illegal instruction' is only one of several possible mes­
sages) you should report this to the author of the program
and save the 'core' file. If this was a system program you
should report this with the trouble command 'trouble (1)'.

Thecp (copy) program is used to copy the contents of one file
into another file. It is one of the most commonly used
VENIX commands (4.3.6).

The file .cshrc in your home directory is read by each shell as
it begins execution. It is usually used to change the setting of
the variable path and to set alias parameters which are to take
effect globally (4.3.l).

The CTRL-C or key on the terminal is used to generate an
INTERRUPT signal in VENIX which stops the execution of
most programs (4.3.6).

4-46

date

debugging

default

detached

diagnostic

directory

echo

else

EOF

INTRODUCTION TO THE C SHELL

The date command prints the current date and time (4.2.3).

Debugging is the process of correcting mistakes in programs
and shell scripts. The shell has several options and variables
which may be used to aid in shell debugging (4.5.4).

The label default: is used within shell switch statements, as it
is in the C language to label the code to be executed if none
of the case labels matches the value switched on (4.4.7).

A command run without waiting for it to complete is said to
be detached (4.3.5).

An error message produced by a program is often referred to
as a diagnostic .. Most error messages are not written to the
standard output, since that is often directed away from the
terminal (4.2.3, 4.2.5). Error messages are instead written to
the diagnostic output which may be directed away from the
terminal, but usually is not. Thus diagnostics will usually
appear on the terminal (4.3.5).

A structure which contains files. At any time you are in one
particular directory whose names can be printed by the com­
mand pwd. The chdir command will change you to another
directory, and make the files in that directory visible. The
directory in which you are when you first login is your home
directory (4.2.1, 4.2.6).

The echo command prints its arguments (4.2.6, 4.3.6, 4.4.6,
4.4.10).

The else command is part of the 'if-then-else-endif' control
command construct (4.4.6).

An end-of-file is generated by the terminal by a CTRL-D , and
whenever a command reads to the end of a file which it has
been given as input. Commands receiving input from a pipe
receive an end-of-file when the command sending them input
completes. Most commands terminate when they receive an
end-of-file. The shell has an option to ignore end-of-file from
a terminal input which may help you keep from logging out
accidentally by typing too many control-d's (4.2.1, 4.2.8,
4.4.8).

4-47

INTRODUCTION TO THE C SHELL

escape

/etc/passwd

exit

exit status

expansion

A character \ used to prevent the special meaning of a
metacharacter is said to escape the character from its special
meaning. Thus

echo *

will echo the character '*' while just

echo *

will echo the names of the file in the current directory. In
this example, \ escapes '*' (4.2.7). There is also a non­
printing character called escape, usually labeled ESC or
ALTMODE on terminal keyboards. Some VENIX systems use
this character to indicate that output is to be suspended.
Other systems use control-so

This file contains information about the accounts currently on
the system. If consists of a line for each account with fields
separated by':' characters (4.3.3). You can look at this file
by saying

cat /etc/passwd

The command grep is often used to search for information in
this file. See 'passwd (5)' and 'grep (1)' for more details.

The exit command is used to force termination of a shell
script, and is built into the shell (4.4.9).

A command which discovers a problem may reflect this back
to the command (such as a shell) which invoked (executed) it.
It does this by returning a non-zero number as its exit status,
a status of zero being considered 'normal termination'. The
exit command can be used to force a shell command script to
give a non-zero exit status (4.4.5).

The replacement of strings in the shell input which contain
metacharacters by other strings is referred to as the process of
expansion. Thus the replacement of the word '*' by a sorted
list of files in the current directory is a 'filename expansion'.
Similarly the replacement of the characters '!!' by the text of

4-48

expressions

extension

filename

INTRODUCTION TO THE C SHELL

the last command is a 'history expansion'. Expansions are
also referred to as substitutions (4.2.6, 4.4.4, 4.4.2).

Expressions are used in the shell to control the conditional
structures used in the writing of shell scripts and in calculating
values for these scripts. The operators available in shell
expressions are those of the language C (4.4.5).

Filenames often consist of a root name and an extension sepa­
rated by the character '.'. By convention, groups of related
files often share the same root name. Thus if 'prog.c' were a
C program, then the object file for this program would be
stored in 'prog.o'. Similarly a paper written with the' -me'
nroff macro package might be stored in 'paper .me' while a
formatted version of this paper might be kept in 'paper.out'
and a list of spelling errors in 'paper.errs' (4.2.6).

Each file in VENIX has a name consisting of up to 14 charac­
ters and not including the char.acter '/' which is used in path­
name building. Most file names do not begin with the charac­
ter '.', and contain only letters and digits with perhaps a '.'
separating the root portion of the filename from an extension
(4.2.6).

filename expansion

flag

Filename expansion uses the metacharacters '*', '?' and '['
and ']' to provide a convenient mechanism for naming files.
Using filename expansion it is easy to name all the files in the
current directory, or all files which have a common root
name. Other filename expansion mechanisms use the
metacharacter ,..., and allow files in other users directories to
be named easily (4.2.6, 4.4.2).

Many VENIX commands accept arguments which are not the
names of files or other users but are used to modify the
action of the commands. These are referred to as flag
options, and by convention consists of one or more letters
preceded by the character '-' (4.2.2). Thus the Is list file
commands has an option' -s' to list the sizes of files. This is
specified

4-49

INTRODUCTION TO THE C SHELL

foreach

getty

goto

grep

hangup

head

Is -s

The foreach command is used in shell scripts and at the termi­
nal to specify repetition of a sequence of commands while the
value of a certain shell variable ranges through a specified list
(4.4.6, 4.4.1).

The getty program is part of the system which determines the
speed at which your terminal is to run when you first log in.
It types the initial system banner and 'login:'. When no one
is logged in on a terminal a ps command shows a command
of the form '- 7' where '7' here is often some other single
letter or digit. This '7' is an option to the getty command,
indicating the type of port which it is running on. If you see
a getty command running on a terminal in the output of ps
you know that no one is logged in on that terminal (4.3.3).

The shell has a command go to used in shell scripts to transfer
control to a given label (4.4.7).

The grep command searches through a list of argument files
for a specified string. Thus

grep bill /etc/passwd

will print each line in the file '/etc/passwd' which contains the
string 'bill'. Actually, grep scans for regular expressions in
the sense of the editors ed(1) and ex(1) (4.3.3). Grep stands
for 'globally find regular expression and print.'

When you hangup a phone line, a HANGUP signal is sent to
all running processes on your terminal, causing them to termi­
nate execution prematurely. If you wish to start commands to
run after you log off a dialup you must use the command
nohup (4.3.6).

The head command prints the first few lines of one or more
files. If you have a bunch of files contl,lining text which you
are wondering about it is sometimes is useful to run head with
these files as arguments. This will usually show enough of
what is in these files to let you decide which you are interested
in (4.2.5, 4.3.3).

4-50

INTRODUCTION TO THE C SHELL

history The history mechanism of the shell allows previous commands
to be repeated, possibly after modification to correct typing
mistakes or to change the meaning of the command. The
shell has a history list where these commands are kept, and a
history variable which controls how large this list is (4.2.7,
4.3.6).

home directory Each user has a home directory, which is given in your entry
in the password file, /etc/passwd. This is the directory which
you are placed in when you first log in. The cd or chdir com­
mand with no arguments takes you back to this directory,
whose name is recorded in the shell variable home. You can
also access the home directories of other users in forming
filenames using a file expansion notation and the character , ...
(4.2.6).

if

ignoreeof

input

A conditional command within the shell, the if command is
used in shell command scripts to make decisions about what
course of action to take next (4.4.6).

Normally, your shell will exit, printing 'logout' if you type a
control-d at a prompt of '070 '. This is the way you usually
log off the system. You can set the ignoreeof variable if you
wish in your .Iogin file and then use the command logout to
logout. This is useful if you sometimes accidentally type too
many CTRL-D characters, logging yourself off. If the system
is slow, this can waste much time, as it may take a long time
to log in again (4.3.2, 4.3.6).

Many commands on VENIX take information from the termi­
nal or from files which they then act on. This information is
called input. Commands normally read for input from their
standard input which is, by default, the terminal. This stan­
dard input can be redirected from a file using a shell
metanotation with the character '<'. Many commands will
also read from a file specified as argument. Commands
placed in pipelines will read from the output of the previous
command in the pipeline. The leftmost command in a pipe­
line reads from the terminal if you neither redirect its input
nor give it a file name to use as standard input. Special

4-51

INTRODUCTION TO THE.C SHELL

interrupt

kill

.Iogin

logout

.logout

Ipr

Is

mechanisms exist for suppling input to commands in shell
scripts (4.2.2, 4.2.6, 4.4.8).

An interrupt is a signal to a program that is generated by hit­
ting the CTRL-C It causes most programs to stop execution.
Certain programs such as the shell and the editors handle an
interrupt in special ways, usually by stopping what they are
doing and prompting for another command. While the shell
is executing another command and waiting for it to finish, the
shell does not listen to interrupts. The shell often wakes up
when you hit interrupt because many commands die when
they receive an interrupt (4.2:8, 4.3.6, 4.4.9).

A program which terminates processes run without waiting for
them to complete. (4.3.6)

The file .login in your home directory is read by the shell each
time you log in to VENIX and the commands there are exe­
cuted. There are a number' of commands which are usefully
placed here especially tset commands and set commands to the
shell itself (4.3.1).

The logout command causes a login shell to exit. Normally, a
login shell will exit when you hit control-d generating an end­
of-file, but if you have set ignoreeof in you .Iogin file then
this will not work and you must use 'logout to log off the
VENIX system (4.3.2) .

When you log off of VENIX the shell will execute commands
from the file .Iogout in your home directory after it prints
'logout'.

The command Ipr is the line printer daemon. The standard
input of Ipr is spooled and printed on the VENIX line printer.
You can also give Ipr a list of filenames as arguments to be
printed. It is most common to use Ipr as the last component
of a pipeline (4.3.3).

The Is list files command is one of the most commonly used
VENIX commands. With no argument filenames it prints the
names of the files in the current directory. It has a number
of useful flag arguments, and can also be given the names of

mail

make

makefile

manual

metacharacter

mkdir

modifier

INTRODUCTION TO THE C SHELL

directories as arguments, in which case it lists the names of
the files in these directories (4.2.2).

The mail program is used to send and receive messages from
other VENIX users (4.2.1, 4.3.2).

The make command is used to maintain one or more related
files and to organize functions to be performed on these files.
In many ways make is easier to use, and more helpful than
shell command scripts (4.4.2).

The file containing command for make is called 'makefile'
(4.4.2).

is often referred to as the User Reference Manual and the
Programmer Reference Manual. It contains a number of sec­
tions and a description of each VENIX program.

Many characters which are neither letters nor digits have spe­
cial meaning either to the shell or to VENIX. These characters
are called metacharacters. If it is necessary to place these
characters in arguments to commands without them having
their special meaning then they must be quoted. An example
of a metacharacter is the character '>' which is used to indi­
cate placement of output into a file. For the purposes of the
history mechanism, most unquoted metacharacters form sepa­
rate words (4.2.4). The appendix to this user's manual lists
the metacharacters in groups by their function.

The mkdir command is used to create a new directory (4.3.6).

Substitutions with the history mechanism, keyed by the char­
acter '!' or of variables using the metacharacter '$' are often
SUbjected to modifications, indicated by placing the character
':' after the substitution and following this with the modifier
itself. The command substitution mechanism can also be used
to perform modification in a similar way, but this notation is
less clear (4.4.6).

4-53

INTRODUCTION TO THE C SHELL

noclobber

nohup

nroff

onintr

output

path

The shell has a variable noclobber which may be set in the file
.Iogin to prevent accidental destruction of files by the '>'
output redirection metasyntax of the shell (4.3.2, 4.3.5).

A shell command used to allow background commands to run
to completion even if you log off a dialup before they com­
plete (4.3.5).

The standard text formatter on VENIX is the program nroff.
Using nroff and one of the available macro packages for it, it
is possible to have documents automatically formatted and to
prepare them for phototypesetting using the typesetter pro­
gram trolf (4.4.2).

The onintr command is built into the shell and is used to con­
trol the action of a shell command script when an interrupt
signal is received (4.4.9).

Many commands in VENlX result in some lines of text which
are called their output. This output is usually placed on what
is known as the staDl:lard output which is normally connected
to the users terminal. The shell has a syntax using the
metacharacter '>' for redirecting the standard output of a
command to a file (4.2.3). Using the pipe mechanism and the
metacharacter 'I' it is also possible for the standard output of
one command to become the standard input of another com­
mand (4.2.5). Certain commands such as the line printer dae­
mon Ipr do not place their results on the standard output but
rather in more usefld places such as on the line printer (4.3.3).
Similarly the write command places its output on another
users terminal rather than its standard output (4.3.3). O;>m­
mands also have a diagnostic output where they write their
error meSSages. Normally these gO to the terminal even if the
standard output has been sent to a file or another comJIland,
but it is possible to direct error diagnostics along with stan"
dard output using a special metanotation (4.3.5).

The shell has a variable patJI which gives the names of the
directories in which it searches for the commands which it is
given. It always checks first to see if the command it is given
is built into the shell. If it is, then it need not search for the

pathname

pipeline

pr

INTRODUCTION TO THE C SHELL

command as it can do it internally. If the command is not
builtin, then the shell searches for a file with the name given
in each of the directories in the path variable, left to right.
Since the normal definition of the path variable is

path (. Ibin lusr/bin)

the shell normally looks in the current directory, and then in
the standard system directories 'Ibin' and 'Iusrlbin' for the
named command (4.3.2). If the command cannot be found
the shell will print an error diagnostic. Scripts of shell com­
mands will be executed using another shell to interpret them if
they have 'execute' bits set. This is normally true because a
command of the form

chmod 755 script

was executed to turn these execute bits on (4.4.3).

A list of names, separated by 'I' characters forms a path­
name. Each component, between successive 'I' characters,
names a directory in which the next component file resides.
Pathnames which begin with the character 'I' are interpreted
relative to the root directory in the filesystem. Other path­
names are interpreted relative to the current directory as
reported by pwd. The last component of a pathname may
name a directory, but usually names a file.

A group of commands which are connected together, the stan­
dard output of each connected to the standard input of the
next is called a pipeline. The pipe mechanism used to connect
these commands is indicated by the shell metacharacter ' I '
(4.2.5, 4.3.3).

The pr command is used to prepare listings of the contents of
files with headers giving the name of the file and the date and
time at which the file was last modified (4.3.3).

4-55

INTRODUCTION TO THE C SHELL

process

program

prompt

ps

pwd

quit

quotation

redirection

A instance of a running program is called a process (4.3.6).
The numbers used by kiD and printed by wait are unique
numbers generated for these processes by VENIX. They are
useful in kill comma.nds which can be used to stop back-

. ground processes (4.3.6).

Usually synonymous with command; a· binary file or shell
command script which performs a useful function is often
called a program.

Many programs will print a prompt on the terminal when they
expect input. Thus the editor 'ex (NEW)' will print a':.'
when it expects input. The shell· prompts for input with '010 '
and occasionally with '?' when reading commands from the
terminal (4.2.1). The shell has a variable prompt which may
be set to a different vahie to change the shells main prompt.
This is mostly used when debugging the shell (4.3.6).

The ps command is used to show the processes you are cur­
rently running. Each process is shown with its unique process
number, an indication of the terminal name it is attached to,
and the amount of CPU time it has used so far. The com­
mand is identified by printing some of the words used when it
was invoked (4.3.3, 4.3.6). Login shells, such as the csh you
get when you login are shown as '-'.

The pwd command prints the full p~thname of the current
(working) directory.

The quit signal, generated by a CTRL-\ is used to terminate
programs which are behaving unreasonably. It normally pro­
duces a core image file (4.2.8).

The process by which metacharacters are prevented their spe­
cia,l mean~ng, usually by using the character " in pairs, or by
using the character '\' is referred to as quotation (4.2.4).

The routing of· input or output from or to a file is known as
redirection of input or output (4.2.3).

repeat

script

set

setenv

shell

shell script

sort

source

INTRODUCTION TO THE C SHELL

The repeat command iterates another command a specified
number of times (4.3.6).

Sequences of shell commands placed in a file are called shell
command scripts. It is often possible to perform simple tasks
using these scripts without writing a program in a language
such as C, by using the shell to selectively run other programs
(4.4.2, 4.4.3, 4.4.10).

The builtin set command is used to assign new values to shell
variables and to show the values of the current variables.
Many shell variables have special meaning to the shell itself.
Thus by using the set command the behavior of the shell can
be affected (4.3.1).

Variables in the environment environ(5) can be changed by
using the setenv builtin command (4.3.6).

A shell is a command language interpreter. It is possible to
write and run your own shell, as shells are no different than
any other programs as far as the system is concerned. This
manual deals with the details of one particular shell, called
csh.

See script (4.4.2, 4.4.3, 4.4.10).

The sort program sorts a sequence of lines in ways that can be
controlled by argument flags (4.2.5).

The source command causes the shell to read commands from
a specified file. It is most useful for reading files such as
.cshrc after changing them (4.3.6).

special character See metacharacters and the appendix to this manual.

standard

status

We refer often to the standard input and standard output of
commands. See input and output (4.2.3, 4.4.8).

A command normally returns a status when it finishes. By
. convention a, status of zero indicates that the command suc­
ceeded. Commands may return non-zero status to indicate
that some abnormal event has occurred. The shell variable
status is set to the status returned by the last command. It is
most useful in shell command scripts (4.4.5, 4.4.6).

4-57

INTRODUCTION TO THE C SHELL

substitution

switch

termination

then

time

troff

tset

unalias

VENIX

The shell implements a number of substitutions where
sequences indicated by metacharacters are replaced by other
sequences. Notable examples of this are history substitution
keyed by the metacharacter '!' and variable substitution indi­
cated by '$'. We also refer to substitutions as expansions
(4.4.4).

The switch command of the shell allows the shell to select one
of a number of sequences of commands based on an argument
string. It is similar to the switch statement in the language C
(4.4.7).

When a command which is being executed finished we say it
undergoes termination or terminates. Commands normally
terminate when they read an end-of-file from their standard
input. It is also possible to terminate commands by sending
them an interrupt or quit signal (4.2.8). The kill program ter­
minates specified command whose numbers are given (4.3.6).

The then command is part of the shells 'if-then-else-endif'
control construct used in command scripts (4.4.6).

The time command can be used to measure the amount of
CPU and real time consumed by a specified command (4.3.1,
4.3.6).

The troff program is used to typeset documents. See also
nroff (4.4.2).

The tset program is used to set standard erase and kill charac­
ters and to tell the system what kind of terminal you are
using. It is often invoked in a .login file (4.3.1).

The unalias command removes aliases (4.3.6).

VENIX is an operating system on which csh runs.

VENIX provides facilities which allow csh to invoke other pro­
grams such as editors and text formatters which you may wish
to use.

4-58

unset

INTRODUCTION TO THE C SHELL

The unset command removes the definitions of shell variables
(4.3.2, 4.3.6).

variable expansion

variables

verbose

wait

where

while

word

See variables and expansion (4.3.2, 4.4.4).

Variables in esh hold one or more strings as value. The most
common use of variables is in controlling the behavior of the

. shell. See path, noelobber, and ignoreeof for examples.
Variables such as argv are also used in writing shell programs
(shell command scripts) (4.3.2).

The verbose shell variable can be set to cause commands to be
echoed after they are history expanded. This is often useful
in debugging shell scripts. The verbose variable is set by the
shells -v command line option (4.4.10).

The builtin command wait causes the shell to pause, and not
prompt, until all commands run in the background have ter­
minated (4.3.6).

The where command shows where the users named as argu­
ments are logged into the system (4.3.3).

The while builtin control construct is used in shell command
scripts (4.4.7).

A sequence of characters which forms an argument to a com­
mand is called a word. Many characters which are neither let­
ters, digits, '-', '.' or '/' form words all by themselves even
if they are not surrounded by blanks. Any sequence of char­
acter may be made into a word by surrounding it with '"
characters except for the characters ,., and 'I' which require
special treatment (4.2.1, 4.2.6). This process of placing spe­
cial characters in words without their special meaning is called
quoting.

working directory
At an given time you are in one particular directory, called
your working directory. This directories name is printed by
the pwd command and the files listed by Is are the ones in
this directory. You can change working directories using
ehdir.

4-59

INTRODUCTION TO THE C SHELL

write The write command is used to communicate with other users
who are logged in to VENIX (4.3.3).

4-60

