
DECchip 21064
Evaluation Board
User’s Guide
Order Number: EC–N0351–72

Revision/Update Information: This is a revised document.

Digital Equipment Corporation
Maynard, Massachusetts

First edition, May 1993
Second edition, June 1993
Third edition, September 1993

While Digital believes the information included in this publication is correct as of the date of
publication, it is subject to change without notice.

Digital Equipment Corporation makes no representations that the use of its products in the
manner described in this publication will not infringe on existing or future patent rights, nor do
the descriptions contained in this publication imply the granting of licenses to make, use, or sell
equipment or software in accordance with the description.

© Digital Equipment Corporation 1993.
Printed in U.S.A.

Alpha AXP, AXP, DEC, DECchip, Digital, ThinWire, the AXP logo, and the DIGITAL logo are
trademarks of Digital Equipment Corporation.

ABEL is a trademark of Data I/O Corporation.
Viewlogic EDA is a trademark of Viewlogic Systems, Inc.
SC486 is a trademark of VLSI Technology, Inc.
AMD Am79C960 PCnet-ISA is a trademark of Advanced Micro Devices.

Contents

Preface . vii

Document Conventions . ix

1 Introduction to the EB64

1.1 Components . 1–1
1.2 Uses . 1–3
1.3 Features . 1–4
1.3.1 Memory Subsystem . 1–4
1.3.2 Bcache Subsystem . 1–4
1.3.3 ISA Interface . 1–4
1.3.4 Slow-Speed Peripheral Device Interface 1–5
1.3.5 Ethernet Port . 1–5
1.3.6 Debug ROM . 1–5
1.3.7 Serial ROM . 1–5
1.3.8 Expansion Interface . 1–5

2 System Configuration and Connections

3 Functional Description

3.1 Address Space . 3–1
3.1.1 Address Bit Description . 3–1
3.1.2 Main Memory Address Space . 3–2
3.1.2.1 Main Memory, Bcacheable . 3–2
3.1.2.2 Main Memory, Not Bcacheable . 3–3
3.1.2.3 Main Memory, Not Bcacheable or Data cacheable 3–4

iii

3.1.3 I/O Address Space . 3–5
3.1.3.1 I/O Address Space Mapping . 3–5
3.1.3.2 I/O Byte Enable and Transfer Length 3–6
3.1.3.3 I/O Space, Debug ROM, and System Register 3–6
3.1.3.4 I/O Space, SC486 and Interrupt Acknowledge 3–7
3.1.3.5 I/O Space, Expansion Connector 3–7
3.2 Memory Subsystem . 3–8
3.2.1 Main Memory Subsystem . 3–8
3.2.1.1 Row and Column Addressing . 3–11
3.2.1.2 Column 0 . 3–11
3.2.1.3 Address Bits 18 and 17 . 3–12
3.2.1.4 DRAM Address Multiplexing . 3–12
3.2.2 Bcache Subsystem . 3–14
3.2.2.1 Tag Address Bits <33:32> . 3–16
3.2.3 Memory/Bcache Cycles . 3–17
3.2.3.1 Hexaword DRAM Read (READ_BLOCK External

Access) . 3–17
3.2.3.2 Hexaword DRAM Write (WRITE_BLOCK External

Access) . 3–18
3.2.3.3 Victim Write . 3–18
3.2.3.4 Load Locked (LDxL External Access) 3–18
3.2.3.5 Store Conditional (STxC External Access) 3–19
3.2.3.6 Direct Memory Access . 3–19
3.2.3.7 Refresh . 3–20
3.3 I/O Subsystem . 3–20
3.3.1 I/O Devices . 3–20
3.3.1.1 System Register . 3–20
3.3.1.2 Debug ROM . 3–25
3.3.1.3 ISA Interface and Associated Peripheral Devices 3–26
3.3.1.4 Slow Speed Peripheral Devices . 3–26
3.3.1.5 Ethernet Link . 3–27
3.3.1.6 Interrupts . 3–27
3.4 Power, Reset, and Initialization . 3–28
3.4.1 Reset . 3–28
3.4.2 Initialization and SROM . 3–28
3.5 System Clocks . 3–30

iv

4 Expansion Interface

4.1 Expansion Connector Signal Description 4–1
4.2 21064 Expansion Interface . 4–15
4.2.1 Data Path Width . 4–16
4.2.2 Cache Coherency . 4–16
4.2.3 Expansion Connector Clocks . 4–18
4.2.4 Programmed I/O Through the Expansion Connector 4–19
4.2.5 DMA Through Expansion Connector 4–24
4.2.6 DRAM Address 0 . 4–25
4.3 System Bus Acquisition and Release Sequence 4–27
4.4 Expansion Connector Pin Lists . 4–28

5 Power Requirements

A Technical Support, Ordering, and Associated Literature

A.1 Information and Technical Support . A–2
A.2 Ordering DECchip Products . A–2
A.3 Associated DECchip Literature . A–2
A.4 Associated Digital Literature . A–4
A.5 Associated Third-Party Literature . A–5

Index

Examples

3–1 BIU_CTL Initialization Code Segment 3–16

Figures

1–1 Block Diagram . 1–2
2–1 EB64 Board Jumpers and Connectors 2–2
3–1 Address Bit Definitions . 3–1
3–2 Address Path . 3–9
3–3 Data Path . 3–10
3–4 DRAM Address Multiplexer Definitions 3–13
3–5 Bcache Tag and Index . 3–14
3–6 System Register . 3–21
3–7 I/O Address Formation . 3–22

v

3–8 SROM Serial Port Diagram . 3–30
3–9 System Clock Timing . 3–31
3–10 Clock Distribution . 3–32
4–1 Signal Name Changes . 4–14
4–2 Expansion Interface Signals . 4–16
4–3 Expansion Connector Control Setup . 4–18
4–4 Programmed I/O Through the Expansion Connector 4–20
4–5 System Bus Acquisition and Release 4–27

Tables

2–1 EB64 Board Jumpers and Connectors 2–3
3–1 Address Space Partitioning . 3–2
3–2 Cached and Noncached Memory Quadrants 3–2
3–3 Transfer Length and Byte Enable Decode 3–6
3–4 SC486 Zone Decode . 3–7
3–5 Memory Size Selection . 3–8
3–6 DRAM SIMM Row/Column Definition 3–11
3–7 Victim Write Demultiplexed Address Bits 18 and 17

Sources . 3–12
3–8 RAS Decode for 2- and 8-MB DRAM SIMMs 3–13
3–9 Bcache Size Selection . 3–15
3–10 EB64 System Register Bit Description 3–21
3–11 ISA IRQ Input Definitions . 3–27
4–1 Expansion Connector Signals . 4–2
4–2 Expansion Connector Pin List . 4–28
4–3 Expansion Connector Pin List — buf_data<127:0> 4–33
4–4 Expansion Connector Pin List — io_addr<31:2> 4–34
4–5 Expansion Connector Pin List — Vdd and gnd 4–34
5–1 Voltage/Amp . 5–1

vi

Preface

This guide describes the DECchip 21064 Evaluation Board (also called the
EB64), an evaluation and development module for computing systems based on
the DECchip 21064 microprocessor.

Audience
This guide is written for system designers and others who use the EB64
to design or evaluate computer systems based on the DECchip 21064
microprocessor.

Scope
This guide describes the features, configuration, functional operation, and
expansion interface of the EB64. Designing hardware to interface to the
expansion connector requires most of the same knowledge as a 21064 design
and is not included in this guide. Additional information is available in
the EB64 schematics and programmable-logic source files, and also in the
literature listed in Appendix A. Additional technical support is available from
the DECchip Information Line, also included in Appendix A.

Content
This guide contains the following chapters and appendices:

• Chapter 1 is an overview of the EB64.

• Chapter 2 provides EB64 configuration information.

• Chapter 3 is a functional description of the EB64.

• Chapter 4 describes the EB64 expansion interface.

• Chapter 5 describes the EB64 power requirements.

• Appendix A lists technical support services and associated documentation.

vii

Document Conventions

Bit and Field Abbreviations

RO — Read Only

Bits and fields specified as RO can be read but not written.

RW — Read/Write

Bits and fields specified as RW can be read and written.

WO — Write Only

Bits and fields specified as WO can be written but not read.

Bit Notation
Multiple bit fields are shown as extents (see Ranges and Extents, below).

Caution
Cautions indicate potential damage to equipment or data.

Data Units
The following data unit terminology, common within Digital, is used throughout
this guide.

ix

Term Words Bytes Bits Other

Word 1 2 16

Longword 2 4 32

Quadword 4 8 64

Octaword 8 16 128 Single read fill; that is, the cache space that
can be filled in a single read access. It takes
two read accesses to fill a backup cache line
(see Hexaword).

Hexaword 16 32 256 Cache block, cache line. The space allocated to
a single backup cache block.

Note
Notes indicate general information.

Numbering
All numbers are decimal or hexadecimal unless otherwise indicated. In cases
of ambiguity, a subscript indicates the radix of nondecimal numbers. For
example, 19 is decimal, but 1916 and 19A are hexadecimal.

Ranges and Extents
Ranges are specified by a pair of numbers separated by two periods (..) and
are inclusive. For example, a range of integers 0..4 includes the integers 0, 1,
2, 3, and 4.

Extents are specified by a pair of numbers in angle brackets (<>) separated
by a colon (:) and are inclusive. For example, bits <7:3> specifies an extent
including bits 7, 6, 5, 4, and 3.

Schematic References
Logic schematics are included in the EB64 design package. In this guide,
references to schematic pages are printed in italics. For example:

‘‘ . . . multiplexers (schematic page addr_mux.1).’’

x

Signal Names
Signal names in text are printed in boldface lowercase. Mixed-case and
uppercase conventions sometimes used for signal names are not used in this
document. For example:

Used in this Guide Not Used in this Guide

cwmask7 cWMask7 CWMASK7

xi

1
Introduction to the EB64

The DECchip 21064 Evaluation Board (also called EB64) is an evaluation
and development module for computing systems based on the DECchip 21064
microprocessor (also called 21064). It gives the user a single-board platform
for the design, integration, and analysis of supporting logic, subsystems,
and software. The EB64 is the first reference design offered for a Digital
microprocessor that implements the Alpha AXP architecture. This chapter
is an overview of the EB64, its uses, and its features. Figure 1–1 is a block
diagram of the system.

Note: Design Concepts

System design concepts are discussed in the application note Designing
a System with the DECchip 21064 Microprocessor. Memory and backup
cache design concepts are discussed in the application note Designing
a Memory/Cache Subsystem for the DECchip 21064 Microprocessor. If
you are not familiar with the 21064, you are encouraged to read both
application notes. Appendix A gives ordering information and lists
other associated documentation.

1.1 Components
The DECchip 21064 Evaluation Board includes:

• DECchip 21064 running at 150 MHz

• Dynamic RAM (DRAM) main memory subsystem of 4 to 64 Mbytes

• External backup cache (Bcache) subsystem comprising 512 Kbytes of 12 ns
static RAMs (SRAMs). The Bcache is read- and write-allocate, write-back,
with 32-byte blocks.

Introduction to the EB64 1–1

Figure 1–1 Block Diagram

WMO_EB64_001

ISA

SC486

FDC37C651

DMA Control

Serial Ports
Am79C960

Ethernet Control

INT Timer
RTC

CONTROL

MDlatch

Debug

DRAM

ROM

System

DECchip

Control
Logic

SYSREG

System
Control
Signals

adr

data

buf_data

buf_addr mem_addr

io_dataadr

buf_data

buf_data

Bcache
tag

tagadr

Parity
Generator

ISA Control
Keyboard
Mouse

Floppy Control

ndx

io_addr

EXPANSION
CONNECTOR

21064

• Serial boot ROM (SROM)

• Two programmable ROMs (PROMs) for debug. One, called the ‘‘debug
ROM,’’ is preprogrammed by Digital’s applications support group; the other
is user-programmable.

• ISA (IEEE P996) interface and two ISA connectors

• Embedded serial ports, timers, and Ethernet interface

• Latches, buffers, glue logic, power regulators, oscillators, decoupling
capacitors, and so on, as needed to form a complete system

• 21064 cooling-fan sensor in reset/dcok circuitry

• Connector and logic to supply the 21064 signals for user hardware design
and debug

• Database and user documentation

1–2 Introduction to the EB64

The full database, including schematics and source files, are supplied with the
EB64. User documentation is also included. The database allows designers
with no previous Alpha AXP experience to successfully create a working Alpha
AXP system with minimal help.

1.2 Uses
The EB64 has a wide range of uses. The following are a few examples.

System Development
In its released configuration, the EB64 can be used as the basis of a full
computing system for which the user must design and integrate the necessary
supporting logic. The EB64 works under worst-case voltage, temperature, and
process conditions, and can serve as the core of a high-volume product without
significant changes.

Software Development
The EB64 has remote debug capability and a software debug monitor for
loading code into the system and performing other software debug functions
such as memory read, memory write, and instruction breakpoint. When
combined with a hardware interface, the debug monitor can be used to write
and debug software (for example, device drivers) for workstation and PC-type
products, as well as for embedded control products such as laser printers,
communication engines (such as bridges and routers), and video products.

Memory and Bcache Subsystem Evaluation
The EB64 is a high-speed design and includes a full 128-bit data path for
the DRAM main memory and the Bcache. The 21064 runs at full speed (150
MHz), with power regulation and cooling handled on the board. The EB64
high-performance Bcache SRAM subsystem takes into account signal integrity
issues.

The user can select Bcache size and DRAM access time. Such flexibility
allows users to change these characteristics and run performance benchmarks
to determine the effect on actual programs. The available hardware
configurations can also be combined and tested with different coding techniques
to determine optimum system performance.

I/O Device Development
The EB64 is a hardware and software platform for developing I/O devices to
interface with the 21064. An expansion connector is provided to allow access
to a buffered version of the 21064 external interface.1 The buffered interface

1 The expansion connector comprises two 80-pin connectors (J10 and J11) and two
100-pin connectors (J26 and J27).

Introduction to the EB64 1–3

provides sufficient similarity to allow interfaces designed for the EB64 to be
easily adapted for direct connection to the 21064.

The expansion interface has a 39.6 ns cycle time, the same speed (25 MHz)
as the on-board memory and I/O subsystems. Designers can easily implement
appropriate expansion interfaces using commodity programmable devices as
needed.

1.3 Features
Sections 1.3.1 through 1.3.8 give a brief overview of the major features of the
EB64 system.

1.3.1 Memory Subsystem
The main memory subsystem accommodates 4 to 64 megabytes of DRAM,
using four commodity single in-line memory module (SIMM) cards. Each
SIMM card is 36 bits wide: 32 data bits, one parity bit, and three unused bits.
The possible memory sizes are:

4 MB
8 MB

16 MB
32 MB
64 MB

The default memory subsystem is a high-speed, 128-bit (plus parity)
configuration. It can also be configured to emulate a slower (or narrower,
64-bit) memory subsystem. For more information, see Section 3.2.1.

1.3.2 Bcache Subsystem
The 512-Kbyte Bcache uses a combination of commodity 32K�8, 32K�9,
and 16K�4 12-ns SRAMs for data, parity, tag address, and tag control. The
largest Bcache size is 512 kilobytes, but extra tag address bits are included
to configure other Bcache sizes of 256 or 128 kilobytes. The 21064 can be
programmed to test SRAMs having lower speeds. Section 3.2.2 gives a detailed
description of the Bcache.

1.3.3 ISA Interface
The VLSI Technology SC486 chip (VL82C486 chip with its companion
VL82C113A combination I/O chip) provides the following functions:

• ISA bus controller, including bus master

• Direct memory access (DMA) controller

• Interrupt controller

1–4 Introduction to the EB64

• Programmable and refresh timers

• Real-time clock

• Mouse

• Keyboard

The SC486 also drives the two ISA slots on the EB64 board.

1.3.4 Slow-Speed Peripheral Device Interface
The combo I/O chip is a Standard Microsystems Corporation FDC37C651 Super
I/O Floppy Disk Controller. It connects directly to the ISA bus on the EB64
board. It supplies two serial ports and a floppy-disk controller.

1.3.5 Ethernet Port
The AMD Am79C960 PCnet-ISA chip provides an Ethernet link. The chip and
its associated glue logic (transformers, level shifters, capacitors, and so on)
are connected to the ISA bus on the EB64 board. Both 10BaseT and 10Base2
interfaces are provided. See Section 3.3.1.5 for more information.

1.3.6 Debug ROM
The debug ROM is an industry-standard, 512-kilobyte or 1-megabyte jumper
selectable) PROM that contains the debug monitor code. The debug monitor
allows the design engineer to develop code on a host system and load the
software into the EB64 through the Ethernet port or SROM serial line.

A second PROM socket (jumper selectable) is provided on the board for a
user-programmable device. For more information see Section 3.3.1.2.

1.3.7 Serial ROM
The 21064 uses an SROM for its initialization code. When reset is deasserted,
the contents of the SROM are read into the 21064’s instruction cache. The
code is then executed from the instruction cache. See Section 3.4.2 for more
information.

1.3.8 Expansion Interface
The EB64 board includes a high-speed, 21064 pin-bus expansion interface.
This interface gives access to a buffered version of the microprocessor pin
bus. It includes the handshake signals needed to perform reads and writes
to memory and I/O. This on-board interface ignores the memory zone defined
to give system control to an external interface plugged into the connectors.
Chapter 4 provides a complete description of the expansion interface.

Introduction to the EB64 1–5

2
System Configuration and Connections

The EB64 must be configured for the user’s environment. The configuration
jumpers and connectors (or headers) for user-supplied power and peripheral
devices are shown in Figure 2–1 and described in Table 2–1.

After the evaluation board is configured, power can be applied, and the debug
monitor can be run. The debug monitor and its commands are described
in the DECchip 21064 Evaluation Board Debug Monitor User’s Guide. For
information about other software design tools, see the literature listed in
Appendix A.

System Configuration and Connections 2–1

Figure 2–1 EB64 Board Jumpers and Connectors

W
M

O
_E

B
64

_0
20

J1
3

LE
D

s

1

J5

J6

J2
2

1

J3
0

J8

J1
0

1

J2
6

J1
1

1

J2
7

J41

1

1

J2
J3

J2
8

J1
7

1 J2
9

J7

1

1

J1
2

J2
3

J1

S
ID

E
 1

21
06

4

J1
6

1

1
J1

4

J1
5

1

J1
8

J1
9

J2
0

J2
1

J2
5 1

1

J2
4

J9

1

1

P
R

O
M

0

P
R

O
M

1

2–2 System Configuration and Connections

Table 2–1 EB64 Board Jumpers and Connectors

Connector Pins Description

J1
J9

8
4

Ethernet connector, twisted-pair (10BASE-T)
Ethernet connector, ThinWire (10BASE-2)

Note: Ethernet LEDs

The four LEDs in Figure 2–1 are driven by the PCnet-ISA chip
(Am79C960) and indicate the following:

LED0: LINK OK
LED1: RCV
LED2: RX POL OK
LED3: XMIT

J2
J3

6
6

Board power connector (gndpin1, gnd, –5 V, Vdd, Vdd, Vdd)
Board power connector (p_dcokpin1, Vdd, +12 V, –12 V, gnd, gnd)

Note: Power Supply

Power for the EB64 is provided by a user-supplied, standard, PC
power supply. Digital does not provide this power supply. See
Section 3.4 for more information.

J4 4 Speaker connector. The speaker should be connected to pins 1
and 4.

J5 3 PROM0 or PROM1 jumper. See Section 3.3.1.2 for more
information.

To Select Set Jumper Pins

PROM0 1 to 2
PROM1 2 to 3

J6 4 Combo chip (FDC37C651) precompensation and drive-type
jumpers

Signal Jumper In Out

Precompensation 1 to 2 low high
Drive type 3 to 4 low high

(continued on next page)

System Configuration and Connections 2–3

Table 2–1 (Cont.) EB64 Board Jumpers and Connectors

Connector Pins Description

J7
J13

98
98

ISA Slot 1 connector
ISA Slot 0 connector

J8 6 SROM serial port connector
See Section 1.3.7 for more information.

J9 See J1

J10
J11
J26
J27

80
80

100
100

Expansion interface connector. See Chapter 4 for more
information.

J12
J14

10
10

Combo chip (FDC37C651) serial port 1
Combo chip (FDC37C651) serial port 2

J13 See J7

J14 See J12

J15 4 Battery backup connector for time-of-year (TOY) clock

J16�

J23�
2
2

System reset switch connector
dcok reset switch connector
See Section 3.4.1 for more information.

J17 3 21064 fan power and sensor connector.

Caution: Fan Sensor Required

The 21064 cooling fan must have a built-in sensor that drives
a signal if the air flow stops. The sensor is connected to J17.
The fan supplied with the EB64 includes an air-flow sensor. See
Section 3.4 for more information.

J18
J19
J20
J21

70
70
70
70

DRAM0 SIMM connector
DRAM1 SIMM connector
DRAM2 SIMM connector
DRAM3 SIMM connector

All four SIMM connectors must be populated. See Section 3.2.1
for more information.

�The reset switch is connected to J16 or J23.

(continued on next page)

2–4 System Configuration and Connections

Table 2–1 (Cont.) EB64 Board Jumpers and Connectors

Connector Pins Description

J22 3 PROM size jumper. See Section 3.3.1.2 for more information.

To Select Set Jumper Pins

512-KB PROM 1 to 2
1-MB PROM 2 to 3

J23 See J16

J24 12 Keyboard (bottom)/mouse (top) connector

J25 8 System configuration jumpers
See Section 3.3.1.1 for more information.

Signal Jumper: In Out Description

sys_config0 1 to 5 low high Boot SROM Mini-
Debugger

sys_config1 2 to 6 low high 1-MB or 16-MB DRAM
SIMMs

sys_config2 3 to 7 low high Boot an alternate image
sys_config3 4 to 8 low high Reserved

J26
J27

See J10
See J10

J28 34 Combo chip (FDC37C651) floppy-disk drive 0 and 1 connector

J29 2 Reserved for Digital use

(continued on next page)

System Configuration and Connections 2–5

Table 2–1 (Cont.) EB64 Board Jumpers and Connectors

Connector Pins Description

J30 8 Logic analyzer header
See Section 3.3.1.1 for more information.

Signal Pin Signal Pin

sys_output0 1 gnd 5
sys_output1 2 gnd 6
sys_output2 3 gnd 7
sys_output3 4 gnd 8

2–6 System Configuration and Connections

3
Functional Description

This chapter describes the functional operation of the EB64, except for the
expansion interface, which is described in Chapter 4.

3.1 Address Space
Sections 3.1.1 through 3.1.3.2 describe EB64 address space partitioning.

3.1.1 Address Bit Description
The 34-bit EB64 address space is partitioned into memory space and I/O space.
As shown in Figure 3–1 and Table 3–1, address bit adr33 determines which
space is being addressed. When adr33 = 0, memory space is addressed, and
when adr33 = 1, I/O space is addressed. Address bits adr<32:30> further
divide memory and I/O space as shown in Table 3–1.

Figure 3–1 Address Bit Definitions

WMO_EB64_002

Byte Enable

Transfer Length

Zone Selection

1 = IO
0 = Memory

9 8 7 6 5 4 0293033 32

0 0 0 0 0

Functional Description 3–1

Table 3–1 Address Space Partitioning

Address Bit
33 32 31 30 Description

0 0 0 0 Main DRAM memory, Bcacheable
0 1 0 0 Main DRAM memory, not Bcacheable, parity not checked�

0 1 1 0 Main DRAM memory, not Bcacheable or data cacheable, parity not
checked�

1 0 0 0 I/O space, debug ROM/system register
1 0 0 1 I/O space, interrupt ACK
1 0 1 0 I/O space, SC486 memory
1 0 1 1 I/O space, SC486 I/O
1 1 – – I/O Space, expansion connector

�Shadows Bcacheable space.

The address areas are described in Sections 3.1.2 and 3.1.3.5.

3.1.2 Main Memory Address Space
All addresses with adr33 = 0 address main memory (DRAM) space. Address
bits adr<32:30> further divide main memory space into the zones described in
Sections 3.1.2.1 through 3.1.2.3.

3.1.2.1 Main Memory, Bcacheable
This is the normal local memory area (adr<33:30> = 0000), and this address
range should be used for most programs. CPU adr<32:30> determine whether
main memory read or write accesses should go to the Bcache (see Table 3–2).
The 21064 probes the Bcache for valid data and starts an external cycle only if
there is a cache miss.

Table 3–2 Cached and Noncached Memory Quadrants

Quadrant adr<33:32> Cached/Noncached

1 00 Always cached
2 01 Always noncached
3 10 Always noncached
4 11 Cached or noncached

3–2 Functional Description

Note: Cached Quadrants Set In BIU_CTL

The BC_PA_DIS field (<35:32>) in the 21064 bus interface unit control
(BIU_CTL) internal processor register (IPR) is usually programmed
such that only the first memory quadrant (adr<33:32> = 00) is
Bcached.

Reads
On reads:

1. System logic places return data in the Bcache.

2. Data Bus Read Acknowledge (drack_h<2:0>) signals the 21064 to:

• Store the data in its data cache or instruction cache, according to the
type of read.

• Check the cache fill data for good 32-bit parity.

If the Bcache fill block is valid and dirty, a victim write cycle is performed
before the new data is returned. (The victim write cycle is described in
Section 3.2.3.3.)

Writes
On writes, data is written into the Bcache under control of the system logic. If
the current Bcache block is valid and dirty:

1. It is written back to memory.

2. The DRAM memory is read to fill the background data over which the new
data is to be written.

3. After the fill is complete, the new data is written into the Bcache.

4. The Bcache line is updated to be valid and dirty.

3.1.2.2 Main Memory, Not Bcacheable
This memory space (adr<33:30> = 0100) shadows the Bcacheable memory
space (Section 3.1.2.1) and differs as follows:

• The data cannot be in the Bcache.

• Read data parity is not checked.

In this space, the 21064 does not probe the Bcache on reads and writes (the
SROM-resident reset code must set the proper quadrant for this to happen),
but goes directly to the expansion interface. Victim writes are never done.
Data bus read acknowledge (drack_h<2:0>) signals the 21064 to store the
data in its data cache or instruction cache, according to the type of read, and

Functional Description 3–3

fill data is returned to the 21064 without touching the Bcache. Writes bypass
the Bcache and go directly to DRAM.

Caution: Do Not Write and Read to Different Memory Space

Do not write data to an address in Bcacheable memory space and read
that same local DRAM location from space that is not Bcacheable. The
Bcached write places the data into the write-back Bcache, where it
stays until flushed out for some reason. When you try to read that
same location from memory space that is not Bcacheable (adr32 = 1),
the processor bypasses the Bcache and fetches data that may be stale.
Because the read appears to be normal, the external control logic does
not probe the Bcache for the information.

Caution: Do Not Read and Write to Different Memory Space

Do not read data from Bcacheable memory space and write that data to
memory space that is not Bcacheable. The read and write will work the
first time, but the Bcache will contain stale data. A subsequent read
of that data from Bcacheable memory space will hit in the Bcache, and
the wrong data will be returned to the CPU.

3.1.2.3 Main Memory, Not Bcacheable or Data cacheable
This address space (adr<33:30> = 0110) shadows the Bcacheable address space
(Section 3.1.2.1). The 21064 and the system logic bypass the Bcache. Reads
and writes are the same as they are for memory space that is not Bcacheable
(Section 3.1.2.2), except that on reads, drack_h<2:0> signals the 21064 not to
load the data into its internal data cache. The system logic can return a single
read fill in this address space. A single read fill (128 bytes) usually occurs
when the requested data is a byte or longword.

Caution: Not for Instruction Fetch

Instruction stream (Istream) reads to this address range do not work,
because the 21064 does not load the data into its instruction cache.
The processor will malfunction if this address range is used to fetch
instructions.

3–4 Functional Description

3.1.3 I/O Address Space
All addresses with adr33 = 1 address I/O space. Address bits adr<32:30>
further divide I/O space into the zones described in Sections 3.1.3.3 through
3.1.3.5.

3.1.3.1 I/O Address Space Mapping
Address mapping between the 21064 address bus (adr<33:5>) and the I/O
address (io_addr<31:2>2) changes, depending on whether the 21064 or a DMA
device is bus master. DMA devices on the EB64 are the SC486 and, potentially,
circuitry connected to the expansion connector.

Bus Master is 21064
When the 21064 is bus master, the address lines are mapped as follows:

sys_ioadr<31:23>
adr<29:9>

) io_addr<31:23>
) io_addr<22:2>

In addition to this mapping, byte enables io_be<3:0> are decoded from
adr<8:5> as described in Section 3.1.3.2 to facilitate byte addressing on the I/O
bus. The technique of using address lines to decode byte information is known
as ‘‘sparse address mapping.’’

A consequence of sparse address mapping is that memory attached to the
expansion connector cannot be addressed as a contiguous block (because 21064
adr<8:5> signals are not available). To compensate for this, byte enable ext_
be<1:0> and transfer length ext_tl<1:0> signals are available on the expansion
connector. They correspond to buf_adr<8:7> and buf_adr<6:5> as follows:

buf_adr8
buf_adr7
buf_adr6
buf_adr5

) ext_be1
) ext_be0
) ext_tl1
) ext_tl0

Bus Master is DMA Device
When a DMA device takes control of the io_addr bus and drives an address
into the Bcache and DRAM array, the address is not shifted, and the address
lines are mapped as follows:

io_addr<25:5>) adr<25:5>

2 From the system register. See Section 3.3.1.1

Functional Description 3–5

Lower address resolution than this is provided by sel_col2 and sel_col_a0,
which allow individual 16-byte octawords to be addressed (behaving as adr4).
Longword resolution is provided on writes by the appropriate Bcache write
enable (we) and DRAM CAS signals.

3.1.3.2 I/O Byte Enable and Transfer Length
Table 3–3 shows how address bits adr<8:5> are encoded. The transfer length
for commands directed at I/O space is selected according to adr<6:5>. The byte
enables asserted for such transfers are determined according to adr<8:7>.

Table 3–3 Transfer Length and Byte Enable Decode

Byte
Enable
adr<8:7>

Transfer
Length
adr<6:5> Transfer Length BE# �

Address
Adder†

00 00 Byte access 1110 00016

01 00 Byte access 1101 08016

10 00 Byte access 1011 10016

11 00 Byte access 0111 18016

00 01 Word access 1100 02016

01 01 Word access 1001 0A0
10 01 Word access 0011 12016

11 01 Reserved – –

00 10 Tribyte access 1000 04016

01 10 Tribyte access 0001 0C0
1x 10 Reserved – –

10 11 Longword access 0000 06016

01 11 Reserved – –
1x 11 Reserved – –

�Byte enable is asserted low (0).
†Adding this hexadecimal value to the base address asserts the corresponding BE# code.

3.1.3.3 I/O Space, Debug ROM, and System Register
The debug ROM and system register share this address zone (adr<33:30> =
1000).

3–6 Functional Description

Reads
On read accesses, data bits <7:0> return the contents of the debug ROM
location addressed by io_addr<21:2>. This address is translated from
adr<28:9>. The upper data bits come from the system register. The system
register returns the same data for any ROM address that is accessed.

Writes
On write accesses to this address zone, the system register is written with
the data contained in the upper data bits defined for the system register (see
Section 3.3.1.1). The read and write locations of control bits <25:8> remain the
same; therefore, a routine can read the current value, change the required bits,
and write it back without shifting the data around.

3.1.3.4 I/O Space, SC486 and Interrupt Acknowledge
Address zones adr<33:30> = 1001, 1010, and 1011 all access the SC486 device,
using the standard host handshake and control signals: ads#, rdy#, m/io#,
d/c#, and w/r#. The interrupt acknowledge cycle is a read cycle. The SC486
memory and I/O cycles can be read or write cycles. Table 3–4 shows the results
of each zone access on the SC486 host bus interface.

Table 3–4 SC486 Zone Decode

adr<33:30>
Command
Type m/io# d/c# w/r# SC486 Transfer Type

1001 Read 0 0 0 interrupt acknowledge
1010 Read 1 1 0 SC486 memory read
1010 Write 1 1 1 SC486 memory write
1011 Read 0 1 0 SC486 I/O read
1011 Read 0 1 1 SC486 I/O read

3.1.3.5 I/O Space, Expansion Connector
This address zone (adr<33:30> = 11xx) is dedicated to the expansion interface
connector. The on-board decode logic does not recognize or act on addresses
in this zone except for barrier instructions, which it will terminate with a
cycle acknowledge (cack<2:0>). User-supplied logic is expected to return the
appropriate handshake signals. The expansion connector signals are described
in Chapter 4.

Caution: No External Logic

The system will hang if there is no external logic and an address in
this zone is accessed. There is no timeout.

Functional Description 3–7

3.2 Memory Subsystem
Sections 3.2.1 through 3.2.3.7 describe the DRAM main memory subsystem,
Bcache subsystem, and memory cycles. Figure 3–2 shows the memory/Bcache
interface address path and Figure 3–3 shows the data path.

3.2.1 Main Memory Subsystem
The main memory subsystem is a high-speed, 128-bit (plus parity)
configuration with optional read-data wrapping (see the system register Wrap
Read bit in Section 3.3.1.1). The memory subsystem can also be configured
to emulate a slower (or narrower, 64-bit) memory subsystem by programming
read slip cycles in system register bits <20:19>.

The EB64 supports DRAM main memory sizes from 4 through 64 megabytes.
Buffered CPU address bits adr<25:5> are delivered directly to the memory
subsystem. The data bus width is 128 bits. Each DRAM SIMM is 36 bits
wide (32 data bits, one parity bit, and three unused bits), and provides parity
protection on each longword (four bytes). The memory is longword writable, so
that read/modify/write cycles are not required for hexaword (32-byte) transfers
that are not fully masked.

The EB64 accommodates several DRAM SIMM sizes in four industry-standard
DRAM SIMM sockets (J18, J19, J20, and J21, Figure 2–1 and Table 2–1).
To fill the 128-bit (plus parity) DRAM data path width, all four sockets must
be populated. Memory size is specified in the system register as shown in
Table 3–5.

Table 3–5 Memory Size Selection

System
Register
<24:22>

DRAM
Size

SIMM
Type Main Memory

000 1-MB 256K�36 4 MB

001 2-MB 512K�36 8 MB

010 4-MB 1MB�36 16 MB

011 8-MB 2MB�36 32 MB

100 16-MB 4MB�36 64 MB

3–8 Functional Description

Figure 3–2 Address Path

W
M

O
_E

B
64

_0
03

ta
g<

>

D
0

D
1

A
0

W
E

D
0

D
1

A
0

W
E

dw
se

l
ta

gc
tl

m
at

ch

ra
s

ca
s

w
e

ta
ga

dr
_h

ta
ga

dr

ta
gc

tl

ta
gc

tl_
h

cp
u_

ta
gc

tl_
w

e

cp
u_

ta
g_

oe

sy
s_

ta
g_

oe

w
rt

_t
ag

ct
l_

oe

21
06

4

H
O

LD
A

C
K

ad
r<

>

A = B
sy

s_
da

ta
_a

4

se
l_

co
l

ro
w

 a
dd

r

co
l a

dd
r

m
em

_a
dd

r<
>m

ux
_a

dr

ta
ga

dr
 h

it
A = B

w
rt

_t
ag

ad
r_

oe

<2
5:

19
>

<2
9:

26
>

ho
ld

a

ho
ld

io
_a

dd
r

m
em

_i
oa

dr
_o

e
ho

ld
_a

ck

bu
f_

ad
r

in
de

x<
>

ho
ld

_a
ck

in
de

x<
>

<1
8:

5>

m
em

_i
oa

dr
_o

e
ho

ld
_a

ck

se
l_

ta
ga

dr
ho

ld
_a

ck
di

s
(

)

to
 C

P
U

to
 C

P
U

cr
eq

sy
sc

lk
ou

t

dw
se

l

sy
s_

ta
gc

tl_
w

e

sy
s_

da
ta

_a
4

sy
s_

ta
ga

dr
_w

e

cr
eq

sy
sc

lk
ou

t

E
xp

an
si

on
C

on
ne

ct
or

S
ys

te
m

C
on

tro
l

Lo
gi

c

B
ca

ch
e

Ta
g

C
on

tro
l

D
R

A
M

S
C

48
6

R
O

M

P
ar

ity
G

en

S
ys

te
m

R
eg

is
te

r

ex
pe

ct
ed

 ta
gc

tl

Functional Description 3–9

Figure 3–3 Data Path

W
M

O
_E

B
64

_0
04

12
8

12
8

M
D

la
tc

h

m
em

_w
r_

pa
r_

oe

m
em

_w
r_

cl
ke

n
m

em
_w

r_
oe

<3
:0

>

m
em

_r
d_

cl
ke

n
m

em
_r

d_
oe

4
4

M
D

la
tc

h

io
_p

ar
_o

e

12
8

4

ra
s

ca
s

w
e

sy
s_

da
ta

_w
e<

3:
0>

sy
s_

da
ta

_o
e

sy
s_

da
ta

_a
4

do
e_

l

da
ta

 +
 p

ar
ity

sy
sc

lk
ou

t

cr
eq

21
06

4

D
R

A
M

E
xp

an
si

on
C

on
ne

ct
or

P
ar

ity
G

en
er

at
or

S
ys

te
m

C
on

tro
l

Lo
gi

c

sy
sc

lk
ou

t

cr
eq

do
e_

l

cp
u_

da
ta

_w
e<

3:
0>

cp
u_

da
ta

_o
e<

3:
0>

cp
u_

da
ta

_a
4

dr
ac

k

bu
f_

pa
r

bu
f_

da
ta

4 12
8

8 32
io

_d
at

a
<3

1:
0>

io
_d

at
a

<7
:0

>

S
C

48
6

R
O

M

0
 D

re
g_

w
rt

_c
lk

ro
m

_o
e

S
ys

te
m

R
eg

is
te

r

ro
m

_o
e

D
0

D
1

A
0

W
E

B
ca

ch
e

D
at

a

3–10 Functional Description

3.2.1.1 Row and Column Addressing
The system logic multiplexes the DRAM SIMM addresses to present the row
and column addresses at the proper time. The address multiplex definitions
do not change with SIMM size; SIMMs that do not have a particular input
address bit ignore the upper address lines. Table 3–6 shows the row and
column definitions.

Table 3–6 DRAM SIMM Row/Column Definition

DRAM
Address

Demultiplexed
System
Address Used For DRAM SIMM Size

col<8:1>� adr<12:5> All

row<8:0> adr<21:13>† All

col9 adr22 4-, 8-, and 16-MB

row9 adr23 4-, 8-, and 16-MB

col10 adr24 16-MB only

row10 adr25 16-MB only

�See Section 3.2.1.2, below.
†See Section 3.2.1.3, below.

3.2.1.2 Column 0
Because the read and write data width between the 21064 and main memory
is 128 bits, two complete access cycles are required to transfer a full hexaword
(32 bytes) of data. This transfer is performed using DRAM page-mode access,
changing the least significant column address bit between the first and second
128-bit transfer. The column 0 address is formed differently on reads and
writes.

• On writes, the column 0 address is always low (0) for the lower octaword
(128-bit) transfer, and is then incremented to 1 to write the upper octaword.

• On reads, the column 0 address depends upon the system data wrapping
mode. If read data wrapping is:

Functional Description 3–11

– Disabled, the column 0 address behaves as it does for a write (low, then
high).

– Enabled (system register bit 21 = 1), the column 0 address is set to
the value in cwmask1 for the first octaword (cwmask1 represents the
internal value of adr4). The column 0 address is then complemented
for the second octaword.

Caution: Setting Data Wrapping Mode

The same wrapping behavior must be set in the 21064 BIU_CTL IPR
(SYS_WRAP bit) and in the EB64 system register (Wrap Read bit,
Section 3.3.1.1).

3.2.1.3 Address Bits 18 and 17
During victim write cycles, the source of demultiplexed address bits 18 and 17,
which become dram_addr<5:4>, depends on Bcache size. As Table 3–7 shows,
the source is either the 21064 (adr_h<18:17>) or the Bcache tag address
SRAMs (tagadr<18:17>).

Table 3–7 Victim Write Demultiplexed Address Bits 18 and 17 Sources

Bcache Size Demultiplexed 18 Demultiplexed 17

128 KB tagadr18 tagadr17

256 KB tagadr18 adr_h17

512 KB adr_h18 adr_h17

3.2.1.4 DRAM Address Multiplexing
The EB64 address-decode logic generates two row-address strobe (RAS) signals.
With the 1-, 4-, or 16-MB SIMMs, a single RAS signal controls the entire
SIMM. With 2-MB or 8-MB SIMMs, a second RAS signal is used to further
decode the accessed DRAMs. Figure 3–4 shows DRAM address multiplexing
and Table 3–8 shows the decode definitions for each RAS.

3–12 Functional Description

Figure 3–4 DRAM Address Multiplexer Definitions

WMO_EB64_022

025 5 424 23 22 21 13 12

Row Address <8:0> Column Address <8:1>

Column Address 9
Row Address 9

Column Address 10
Row Address 10

18 17

RAS select for 8−Mbyte DRAM SIMM

RAS select for 2−Mbyte DRAM SIMM

Used for 16−Mbyte DRAM SIMMs

Used for 16−, 8−, 4−Mbyte DRAM SIMMs

source depends on Bcache size
* Victim write demultiplexed address 18:17

Used for all DRAM SIMM sizes

*

Table 3–8 RAS Decode for 2- and 8-MB DRAM SIMMs

RAS Memory Type adr24 adr22

0 2-MB x 0
8-MB 0 x

1 2-MB x 1
8-MB 1 x

Functional Description 3–13

3.2.2 Bcache Subsystem
The 21064 supports Bcache sizes from 128 kilobytes through 16 megabytes,
and the EB64 supports Bcache sizes of 128, 256, and 512 kilobytes. The EB64
Bcache uses a combination of commodity 32K�8 and 32K�9 12-ns SRAMs for
data. The 32K�9 SRAMs accommodate longword parity (one parity bit per
longword). Tag address and tag control SRAMs are commodity 12-ns 16K�4
devices.

The largest Bcache size is 512 kilobytes, and other sizes can be configured
through program control (see Figure 3–5 and Table 3–9). The tag address
accommodates enough address bits for a 64-megabyte main memory and a 256-
or 128-kilobyte Bcache; 128 kilobytes is the smallest Bcache supported by the
21064. The Bcache data path is 128 bits wide.

Figure 3–5 Bcache Tag and Index

WMO_EB64_016

025 1819 1617 5 4 3

Tag
512−Kbyte Bcache

Tag
256−Kbyte Bcache

Tag
128−Kbyte Bcache

Upper/LowerIndex
(Hexaword) Octaword

3–14 Functional Description

Table 3–9 Bcache Size Selection

System
Register
<18:17> Bcache Size Tag Address Bits

00 128 KB <25:17>
01 256 KB <25:18>
10 512 KB <25:19>
11 Undefined

The physical EB64 Bcache is always 512 kilobytes. No physical changes
are required to test a smaller Bcache. When a 128-kilobyte or 256-kilobyte
Bcache size is specified, part of the 512-kilobyte Bcache is ignored. On read-fill
operations, the entire tag field is written (as if the 128-kilobyte Bcache size is
specified), but the tag address parity includes only the address bits appropriate
for the Bcache size selected. For example, when the 512-kilobyte Bcache is
selected, tag address bits <18:17> are ignored.

Note: Setting Bcache Size

To configure the EB64 for a smaller Bcache size, the EB64 system
register and the 21064 must be programmed for the smaller value. The
DECchip 21064 Microprocessor Hardware Reference Manual explains
how to program the CPU for Bcache size. The EB64 system register
(Section 3.3.1.1) specifies a smaller Bcache size in the EB64 as shown
in Table 3–9.

The EB64 uses 12 ns data and tag SRAMs, allowing the 21064 BIU_CTL IPR
(BC_RD_SPD and BC_WR_SPD fields) to be programmed for 5/5 read/write
cycle times. That is, each 128-bit access, including the tag probe, can be
programmed for five CPU internal cycles (6.6 ns). It takes ten cycles to read
an entire Bcache line — two 16-byte reads with the tag probe hidden under
the first octaword (16 bytes) read. A write to the Bcache consists of a five-cycle
tag probe and one or two Bcache write accesses, depending on which longwords
need to be modified. The write pulse should be centered in each five-cycle write
access. The 21064 can be programmed to test SRAMs having slower speeds for
performance comparisons.

Example 3–1 is a code segment that can be used as a starting point when
programming the 21064 BIU_CTL IPR.

Functional Description 3–15

Example 3–1 BIU_CTL Initialization Code Segment

biuCtl = 0x0E20006335
what bits value
------- ------ -----
bc_en 0 1 Enable Bcache
ecc 1 0 Disable ECC
oe 2 1 output_enable, enabled
bc_fhit 3 0 disable Bcache force hits
bcRdSpd 7..4 4 5 cycle read
bcWrSpd 11..8 4 5 cycle write
unused 12 0
bcWeCtl 27..13 7 3 cycle write pulse; 2nd, 3rd, and 4th
cycles (000000000000111)
bc_size 30..28 010 Bcache size 512KB
bad_tp 31 0 Disable, force write bad tag cntl parity
bcPaDis 35..32 1110 Cache only 1st quad of physical address
bad_dp 36 0 Disable, force write bad ECC/parity
unused 63..37 0

lda r20, 0xE(r31) # biu_ctl[47:32] = 0xE
sll r20, 32, r20 # Shift into position
ldah r20, 0x2000+1(r20) # biu_ctl[31:16]=0x2001
lda r20, 0xE445(r20) # biu_ctl[15:0]=0xE445
mtpr r20, biuCtl # Write to biuCtl

Caution: Set BIU_CTL OE to Avoid Component Damage

The 21064 BIU_CTL IPR output enable bit (OE, bit 2) must be set on
the EB64 platform. If this bit is inadvertently cleared, the tag and data
SRAMs will be enabled during writes, resulting in damage.

3.2.2.1 Tag Address Bits <33:32>
Tag address bit 33 is stored in the Bcache tag address SRAMs and is driven to
the 21064 tagadr_h<33:32> inputs for the tag compare. This allows a custom
device plugged into the expansion connector to have some of its data in the
Bcache (see Chapter 4) . This can be useful for a device such as a video frame
buffer, which manipulates data at high speed before writing it out to frame
memory on the expansion connector.

Tag address bits 33 and 32 are either both zero or both one, and require only
a single bit (tagadr33) in the tag address SRAMs. For normal memory traffic,
tagadr33 is zero, and memory operation is not affected. To address a device
connected to the expansion connector, adr<33:32> = 11, and that value is
driven into the Bcache tag address SRAMs when the Bcache is loaded. (The

3–16 Functional Description

shared [S] bit must be set.) Because parity is the same for tagadr<33:32> =
00 or 11, parity generation does not change to support this feature.

The shared bit allows software for devices on the expansion connector to read
and manipulate data at high speed, but prevents the data from being written
to (and deferred). If the shared bit is not set, the write-back Bcache saves the
data (until it is flushed out for some reason), which is not useful for a video
frame buffer. Tag address bit 33 also goes to the system-level tag compare
logic, so that expansion connector data is not aliased with normal memory
data.

Note: Set Cacheable Quadrants In BIU_CTL

When the system is used in this mode, the BC_PA_DIS field in the
21064 BIU_CTL IPR should be programmed to set the lowest and
highest memory quadrants (adr<33:32> = 00 and 11) as cacheable.

3.2.3 Memory/Bcache Cycles
The EB64 memory control interface contains the state machine and glue logic
needed for turning 21064 bus signals into DRAM/Bcache cycles. The supported
cycles are described in Sections 3.2.3.1 through 3.2.3.6.

3.2.3.1 Hexaword DRAM Read (READ_BLOCK External Access)
Cached and noncached hexaword DRAM reads are supported. The system
logic returns the data to the 21064, and, if the data is in the cached area,
simultaneously loads it into the Bcache.

The memory interface supports wrapped reads, where the requested octaword
(16 bytes) is returned first. Nonwrapped reads always return the low octaword
first, regardless of the address.

Caution: Setting Data Wrapping Mode

The same wrapping behavior must be set in the 21064 BIU_CTL IPR
(SYS_WRAP bit) and in the EB64 system register (Wrap Read bit,
Section 3.3.1.1).

Functional Description 3–17

3.2.3.2 Hexaword DRAM Write (WRITE_BLOCK External Access)
Cached and noncached hexaword DRAM writes are supported. The 21064
write data is accepted and loaded into memory on writes to a noncached area
or loaded into the Bcache on writes to the cached area. When the Bcache is
the final destination, a victim write is performed, if necessary, and the memory
block is loaded into the Bcache, overwriting the modified longwords. (The
victim write cycle is described in Section 3.2.3.3.)

3.2.3.3 Victim Write
A victim write cycle is generated by the system logic before a read or write
command overwrites a Bcache block that is valid and dirty. The contents of
the Bcache block are written to memory before the new data is loaded from
memory.

A victim write begins with a probe of the tag control bits, checking the valid
(V) and dirty (D) bits on the Bcache block. If both are true, the Bcache block is
written back to memory. If either is false, a victim write cycle does not begin
and the read or write access proceeds normally.

3.2.3.4 Load Locked (LDxL External Access)
The load locked cycle is similar to a READ_BLOCK access (Section 3.2.3.1).
System logic first probes the Bcache for the requested data, because the 21064
does not probe the Bcache on a LDxL command.

• If the data is in the Bcache, it is returned from there; otherwise, the data
is returned from memory.

• If the data is returned from cacheable memory space, it is also loaded into
the Bcache.

In either case, the lock flag is unconditionally set. If a victim write is
necessary, it is performed before the read access.

Because the EB64 is expected to be used as a single-processor evaluation
and development vehicle, lock contention is unlikely and the lock flag has no
associated address information. The lock is set on the load_locked instruction
(LDxL command), and cleared by a store_conditional instruction (STxC
command) or a DMA write (unconditional clear, not based on hit).

3–18 Functional Description

3.2.3.5 Store Conditional (STxC External Access)
An STxC command on the 21064 external command bus generates this cycle.
First, the lock flag is checked. If it is clear, the store_conditional instruction
fails and a write is not performed. Command acknowledge (cack_h<2:0>)
identifies the failed transaction.

If the lock flag is set, then a write command is performed. The Bcache is
checked to see if it contains the data, and one of the following occurs:

• If the data is in the Bcache, then the new data overwrites the data in the
Bcache and the block is marked dirty.

• If the data is not in the Bcache and the new data is noncacheable, then the
new data is written to a noncached memory area.

• If the data is not in the Bcache and the new data is cacheable, then the
Bcache is loaded from memory and is then overwritten with the new data.
If required, a victim write (Section 3.2.3.3) is performed first.

The lock flag is cleared whether the transaction succeeds or fails.

3.2.3.6 Direct Memory Access
Direct memory access (DMA) cycles transfer data between an external bus and
local DRAM or Bcache memory. The EB64 provides the ISA bus as the external
bus. Both DMA and master mode ISA transfers are possible. Because the ISA
bus is only 16 data bits wide, each data transfer is limited to no more than two
bytes (one word) per access. EB64 control logic provides the necessary Bcache
probe and write data merge functions.

A DMA access is initiated when the SC486 senses an enabled request from an
ISA bus device. When it is idle, the EB64 control logic recognizes the DMA
request (hold) and responds with an acknowledge (hold_a). The acknowledge
is returned to the ISA device, and it then takes control of the bus and starts
the transfer. When the EB64 senses the transfer start, it probes the Bcache. If
the requested data word is currently valid in the Bcache and the transaction is
a:

• Write, the EB64 modifies the data in the Bcache and sets the block dirty.
It also invalidates the internal data cache.

• Read, the EB64 reads the data from the Bcache.

If the data is not valid in the Bcache, the transfer accesses main memory.

On write cycles, the current Bcache or DRAM data is read and saved, then
merged with the new data from the SC486 according to the byte enable signals.
The lock flag is cleared for DMA writes to either the Bcache or main memory.

Functional Description 3–19

The EB64 can read, write, and merge data from any longword (four bytes) in
the address space. It correctly updates the new longword parity on the merged
write data in the Bcache and main memory.

3.2.3.7 Refresh
The memory state machine performs memory refresh cycles according to a
timer. A CAS-before-RAS refresh is performed on the entire DRAM array.

3.3 I/O Subsystem
The I/O subsystem includes the I/O state machine, glue logic, and the
components described in Section 3.3.1.

3.3.1 I/O Devices
There are several input/output devices embedded in the EB64. The SC486,
debug ROM, and system register share the same state machine. When the
debug ROM or system register are accessed, signal lba is asserted low to
inhibit the SC486 from responding.3 This decision is based upon the address
zone, as defined in Section 3.1.

3.3.1.1 System Register
The EB64 has one system register. Its bits are defined in Figure 3–6 and
described in Table 3–10. The register is addressed as described in Table 3–1.
The system register is a combination of a control register and the debug ROM.

Write
When the system register is written, register bits <25:8> are written with
data<25:8> (data mapping is 1:1), and the register low byte, <7:0>, is ignored.
Register bits <29:26> are written to system output registers, where they can
be accessed with a logic analyzer connected to J30 (Figure 2–1 and Table 2–1).
Bits <29:26> are not readable.

Read
When the system register is read, the bits return the following:

• <7:0> — The low byte returns the data from the debug ROM location
selected by the lower address bits, adr<28:9> (Figure 3–1). These address
bits translate to I/O address bits io_addr<21:2>.

• <25:8> — These bits return the control fields, irrespective of lower address
bits adr<28:9>. The control fields are written into the same data bit
positions from which they are read.

3 For more information about signal lba, see SC486 documentation.

3–20 Functional Description

• <31:26> — These bits return system configuration information and are not
writeable.

Figure 3–6 System Register

WMO_EB64_005

8 7 019 18 17 1622 21 202425

ROM Byte

System Configuration

DRAM PD

26272831

Ignored

CAS Slip

Memory Type

Wrap Read

Bcache Size

Bcache Off

System Output Registers

2631 2930

3 2 1 0 2 1

3 2 1 000

Read
Write

Legend:

Read/Write

(sysreg_ioadr<31:23>)

(sys_config<3:0>)

I/O Address <31:23>

(cas_slip<1:0>)

(mem_type<2:0>)

(wrap_read)

(bc_size<1:0>)

(bcache_off)

(sys_output<3:0>)

(dram_pd<2:1>)

Field (signal)

Table 3–10 describes the register fields.

Table 3–10 EB64 System Register Bit Description

Bits Access Description

7:0 RO ROM Byte — On read cycles, this field returns the data byte residing
at the debug ROM location selected by address bits adr<28:9>.
Address bits adr29 and adr<8:0> should be zero for this access.
This field is not used on write cycles.

(continued on next page)

Functional Description 3–21

Table 3–10 (Cont.) EB64 System Register Bit Description

Bits Access Description

16:8 RW I/O Address <31:23> — This field defines address bits <31:23> in I/O
space. It is concatenated with io_addr<22:2> to form the entire I/O
address. I/O address bits io_addr<22:2> are controlled by address
bits adr<29:9> from the processor. See Figure 3–7.

Figure 3–7 I/O Address Formation

WMO_EB64_025

8

8

7 0

0

17 16

ROM Byte

2
1

31

0 2 Byte Decode

29 9 4

00000

5

adr<8:5>

2231 23 2

ioadr<31:2>

adr<29:9>

sysreg_ioadr<31:23>

(continued on next page)

3–22 Functional Description

Table 3–10 (Cont.) EB64 System Register Bit Description

Bits Access Description

18:17 RW Bcache Size — This field determines the EB64 Bcache size selection,
as follows:

18 17 Bcache Size

0 0 128 KB
0 1 256 KB
1 0 512 KB
1 1 Undefined

Note: Setting Bcache Size

The Bcache size selected by this field must match the Bcache size
selected in the BC_SIZE field in 21064 BIU_CTL IPR.

See Section 3.2.2 for more information on the Bcache subsystem.

20:19 RW CAS Slip — The memory subsystem is designed to run as fast as
possible using 70 ns commodity DRAM SIMMs and a 39.6 ns state
machine granularity. To emulate slower devices or narrower data
paths (translating to longer latency), slip cycles can be programmed
into the read cycles. There are two CAS accesses per read fill, and
each CAS is governed by the number of extra cycles in this field.
This field programs the number of 39.6 ns slip cycles for each CAS
read access, as follows:

20 19 CAS Slip Cycles

0 0 0
0 1 1
1 0 2
1 1 3

(continued on next page)

Functional Description 3–23

Table 3–10 (Cont.) EB64 System Register Bit Description

Bits Access Description

21 RW Wrap Read — On read fill operations, the EB64 does two 16-byte
DRAM reads to return a 32-byte hexaword. When this bit is clear,
read data wrapping is disabled; that is, the low 16 bytes are always
returned first, regardless of the request address. When this bit is
set, read data wrapping is enabled and the requested 16 bytes are
returned first, according to address bit adr4 (translated to cwmask1
during read). Write operations are not affected.

Caution: Setting Data Wrapping Mode

The 21064 BIU_CTL IPR (SYS_WRAP bit) must also be programmed
for this mode to work correctly.

24:22 RW Memory Type — The EB64 accommodates several DRAM SIMM
sizes, allowing main memory size to be between 4 and 64 megabytes.
This field selects the memory size as follows:

24 23 22 DRAM Size SIMM Type Main Memory

0 0 0 1-MB 256K�36 4 MB
0 0 1 2-MB 512K�36 8 MB
0 1 0 4-MB 1MB�36 16 MB
0 1 1 8-MB 2MB�36 32 MB
1 0 0 16-MB 4MB�36 64 MB

See Section 3.2.1 for more information on memory size selection and
control.

25 RW Bcache Off — When this bit is set, the system logic ignores the
Bcache. External system logic does not probe the Bcache, and all
DMA transactions assume data is in DRAM memory.

Caution: Setting Bcache Off/On

The setting of this bit should correspond to the setting of the Bcache
enable bit (BC_EN, bit 0) in the 21064 BIU_CTL IPR.

27:26 RO DRAM PD<2:1> — During system register read accesses, these
bits reflect the DRAM SIMM configuration information PD<2:1>,
which provides information about the size of the DRAMs. Because
the 1-megabyte SIMM information aliases with the 16-megabyte
information, a system configuration bit should be used with this field
(sys_config1 — see bit 28, below).

(continued on next page)

3–24 Functional Description

Table 3–10 (Cont.) EB64 System Register Bit Description

Bits Access Description

31:28 RO System Configuration Jumpers <3:0> — During system register
read accesses, these bits reflect the state of the four EB64 board
configuration jumpers sys_config<3:0> (J25, Figure 2–1 and
Table 2–1). The default configuration bit state is high: Each
configuration bit is pulled up on the EB64 board, and inserting a
jumper pulls them down. The bits are defined as follows:

Signal J25 pins Description

sys_config0 1 to 5 Reserved.
sys_config1 2 to 6 DRAM SIMM Size — This bit

completes the DRAM SIMM size
information. Because the 1-MB and
16-MB SIMMs are aliases, this bit
indicates which of the two is installed.
If the bit reads high (default), it
indicates that 1-, 2-, 4-, or 8-MB
DRAM SIMMs are installed. The
PD bits (<27:26>, above) identify the
specific size. If the jumper is installed
(bit reads low), it indicates that 16-MB
DRAM SIMMs are installed.

sys_config2 3 to 7 Reserved.
sys_config3 4 to 8 Reserved.

29:26 WO System Output Registers — During system register writes, these
signals (sys_output<3:0>) are latched into registers that drive a set
of headers (J30, Figure 2–1 and Table 2–1). The headers are directly
usable by a logic analyzer probe (one row of active signals, one row
of grounds). They can be written to during testing in order to track
progress. They are not readable.

3.3.1.2 Debug ROM
Each of the two debug ROM sockets, PROM0 and PROM1, accommodates
a standard 512-kilobyte or 1-megabyte PROM. Jumper J22 (Figure 2–1 and
Table 2–1) selects the size, as follows:

• 512-KB — The jumper pulls up the most significant address bit.

• 1-MB — The jumper drives the most significant address bit with
io_addr21.

Functional Description 3–25

Both sockets are addressed as described in Section 3.3.1.1. I/O address bits
io_addr<21:2> (translated from adr<28:9>) go to both sockets, and both
sockets drive back the same data byte on io_data<7:0>. To avoid output drive
contention, only one PROM should be enabled. Jumper header J5 (Figure 2–1
and Table 2–1) selects the active socket. PROM0 is the default.

The debug ROM code is copied into memory and executed as part of the SROM
functions described in Section 3.4.2.

The debug monitor supported functions include:

• File load

• Read and write memory and registers

• Memory image dump

• Transfer control to program

• Breakpoints

(For information about software design tools, see the literature listed in
Appendix A.)

3.3.1.3 ISA Interface and Associated Peripheral Devices
The VLSI Technology VL82C486 chip (also called SC486) and its companion
VL82C113A combination I/O chip are used for the following functions:

• ISA bus controller, including bus master

• Direct memory access (DMA) controller

• Interrupt controller

• Timer

3.3.1.4 Slow Speed Peripheral Devices
The Standard Microsystems Corporation FDC37C651 Super I/O Floppy Disk
Controller is used as the combo I/O chip. It connects directly to the ISA bus on
the EB64 board. It supplies:

• Two serial ports

• Floppy-disk controller

3–26 Functional Description

3.3.1.5 Ethernet Link
The AMD Am79C960 PCnet-ISA chip provides an Ethernet link. This link
provides the capability to load program data into main memory at high speed.
The chip and its associated glue logic (transformers, level shifters, capacitors,
and so on) are connected to the ISA bus on the EB64 board. Both 10BaseT
(twisted-pair) and 10Base2 (ThinWire) interfaces are provided (see J1 and J9,
Figure 2–1 and Table 2–1). The base address for this Ethernet Controller is
selectable and has been set to 36016.

3.3.1.6 Interrupts
The following interrupt sources are accommodated:

• IRQ0 — ISA INTR interrupt from SC486.

This interrupt supports all devices on the ISA, including:

– Ethernet chip

– Serial ports

– Floppy-disk controller

– Any device in either of the ISA extension slots.

Within the ISA interrupt chain, the devices are connected to the ISA IRQ
lines as shown in Table 3–11.

Table 3–11 ISA IRQ Input Definitions

ISA
IRQ Source

ISA
IRQ Source

0 Interval timer 9 Ethernet
3 Serial port 2 10 Keyboard
4 Serial port 1 11 Mouse
6 Floppy Disk – –

• IRQ1 — ISA NMI interrupt from SC486.

• IRQ2 — Real-time clock interrupt from VL82C113A.

• IRQ<5:3> — These interrupts are available for use by the expansion
connector. The interrupt sources are asserted low and are pulled up by on-
board resistors. Signals ext_irq<2:0>_l are the source of these interrupts.
(see Table 4–1).

Functional Description 3–27

3.4 Power, Reset, and Initialization
The EB64 derives its main system power from a user-supplied, industry-
standard, PC power supply. Power is delivered to most of the board’s logic on
dedicated power planes.

The 21064 requires 3.3 V, and it is provided by a pair of linear regulators
driven by the 5 V supply. A power monitor senses the 3.3 V level to ensure
that it is stable before the 21064 inputs are driven. Any device that drives the
CPU has a tristate output, controlled by power monitor output.

Caution: Fan Sensor Required

The 21064 cooling fan must have a built-in sensor that drives a signal
if the air flow stops. The sensor is connected to the EB64 board (J17
Figure 2–1 and Table 2–1). When the signal is generated, it places the
system into dcok mode. This action protects the CPU under fan-failure
conditions, because the 21064 dissipates less heat in dcok mode. The
fan supplied with the EB64 includes an air-flow sensor.

3.4.1 Reset
The system has header pins (J16 and J23, Figure 2–1 and Table 2–1) that
allow an external switch to control the reset or dcok signals. Both are
individually selectable by attaching the switch to the appropriate header. The
reset header (J16) initializes the 21064 and the system control logic, but does
not send an initialization pulse to the ISA devices. The dcok header (J23)
provides a full system initialization, equivalent to a power off/on cycle.

3.4.2 Initialization and SROM
The 21064 uses an SROM for its initialization code. When reset is deasserted,
the contents of the SROM are read into the 21064’s instruction cache. The code
is then executed from the instruction cache.

The SROM provides the following functions:

• Initializes the EB64 system register.

• Initializes the 21064 internal processor registers (IPRs).

• Sets up memory refresh and starts the refresh timer.

• Configures the 21064’s BIU_CTL IPR for external Bcache accesses.

• Initializes the Bcache.

• Writes good parity by copying the contents of memory to itself.

3–28 Functional Description

• Copies the contents of the debug ROM to memory, starting at memory
address zero.

• Flushes the instruction cache and jumps to address zero to begin execution.

After the SROM code has been read into the instruction cache, the 21064’s
SROM port can be used as a software-controlled serial port. This serial port
can be used for such things as diagnosing system problems when the only
working devices are the 21064 and SROM and the circuits needed for their
direct support. Connector J8 (Figure 2–1 and Table 2–1) supports an RS232
terminal connection to this port (additional external logic is not required).

Figure 3–8 is a simplified diagram of the SROM serial port logic. The IRQPAL
provides a multiplex function for the SROM (real_srom_d) and serial port
(test_srom_d) data inputs to the 21064. Signal srom_oe provides the
multiplexer input select function.

Functional Description 3–29

Figure 3–8 SROM Serial Port Diagram

WMO_EB64_021

srom_oe_l

J8

gnd

real_srom_d

Legend:

5

test_srom_d_l

eval.1

21064

srom_oe_l

2

srom_clk_l

srom_d

eval.27

srom_clk

4

U59

eval.18

IRQPAL

test_srom_d

U127

Physical component:
Schematic page:

Logical component:

U52

U139

eval.23

SROM

U139

eval.23

SROM

oe

clk
d

3.5 System Clocks
The 21064 is driven by a 300 megahertz oscillator, which provides a 6.6 ns (150
megahertz) processor clock speed. The internal 6.6 ns period is divided by six
and sent off chip to form the 39.6 ns (approximately 25 megahertz) external
system clock. Two sets of external system clocks are provided: sysclkout1_h
and sysclkout2_h (and their complements sysclkout1_l and sysclkout2_l)
See schematic page eval.1. Figure 3–9 shows the external timing relationships
between the sysclkout1_h and sysclkout2_h signals.

Note: General Timing Relationships

The phase relationship between the external oscillator input clock
(clkin_h) and the internal CPU clock (cpuclk) shown in Figure 3–9

3–30 Functional Description

may not hold true. The figure should only be used to understand the
general timing relationships between the various clock signals.

Figure 3–9 System Clock Timing

WMO_EB64_012

6.6 ns

19.8 ns

39.6 ns

19.8 ns

13.2 ns

clkin 6¸

Delayed 1 cpuclk

cpuclk

Input

clkin_h
Oscillator

sysclkout2_h

sysclkout1_h

Internal

Figure 3–10 shows the clock distribution network for the EB64. The major
EB64 module clock is sysclkout1. It is initially sent to a phased locked loop
(PLL) clock driver. The PLL creates four nearly identical copies of the signal
with low latency and skew from the original clock. The copies are distributed
as follows:

• Two are sent to buffered clock drivers. Each clock driver generates nine
copies of the master system clock, which are sent throughout the EB64 to
drive most of the control logic.

• One is sent to the memory control logic to drive one of the Bcache control
programmable logic devices (PLDs).

• One is sent to the expansion connector for customer use. See Section 4.2.3
for more information about expansion connector clocks.

• A 2x (twice as fast) version of the system clock is sent to the SC486 to
control the ISA bus.

Functional Description 3–31

Figure 3–10 Clock Distribution

WMO_EB64_006

clock_in

SC486 ISA Controller

Memory Control Logic

Expansion Connector

MC88915

PLL

sysclk_pll_2x

sysclk_pll_4

sysclk_pll_3

Legend:

sysclkout1

Physical component:

Schematic page:

Logical component:

U146

eval.1

PLL

eval.1

21064
eval.26

U146

sysclk_pll_2

sysclk_pll_1

eval.25

eval.25

buf_clk1_b<8:0>

buf_clk1_a<8:0>

clock_in

clock_in

10H645

10H645

BUFFER

BUFFER

U132

U134

buf_clk1_b2
Expansion Connector

Note: Design Concepts

System design concepts are discussed in the application note Designing
a System with the DECchip 21064 Microprocessor. Memory and backup
cache design concepts are discussed in the application note Designing
a Memory/Cache Subsystem for the DECchip 21064 Microprocessor. If
you are not familiar with the 21064, you are encouraged to read both
application notes. Appendix A gives ordering information and lists
other associated documentation.

3–32 Functional Description

4
Expansion Interface

This chapter describes the EB64 implementation of the 21064 external
interface. It includes a description of the expansion connector signals and
design considerations.

4.1 Expansion Connector Signal Description
Table 4–1 describes the signals available at the expansion connector. The
DECchip 21064 Microprocessor Hardware Reference Manual contains
additional information about expansion connector signals that are buffered
versions of the 21064 pinbus signals.

Table 4–1 Conventions

• Signal Name column — The ext_ prefix is ignored, and signals are listed
alphabetically.

• I/O column — Signal direction, as follows:

I = input from expansion connector to EB64 logic (including 21064).
O = output to expansion connector from EB64 logic (including 21064).
B = bidirectional.

Expansion Interface 4–1

Table 4–1 Expansion Connector Signals

Signal Name Pin I/O Description

ext_adr33_in J26-B50 I External address bit 33. This signal is buffered
adr33 from the 21064. It is permanently
enabled. Unlike the other signals on this
connector, this is active high and has an
associated pull-down resistor. This signal
is needed during DMA from the expansion
connector when the DMA engine wants to
allocate a Bcache block for data, and the
block resides in the upper quadrant of the
physical address space. This bit allows the
appropriate Bcache tag signal to be asserted. See
Section 4.2.5.

ext_be1
ext_be0

J27-B1
J27-A1

O External unencoded transfer length. These
signals are used as adr<8:7> for logic attached
to the expansion connector that requires a
contiguous linear address space. See ext_tl<1:0>
and Section 3.1.3.1.

buf_clk1_b2 J26-B6 O Buffered system clock (see schematic pages
eval.25 and eval.26). This clock is used when the
external device uses four or less clock inputs (see
Section 4.2.3).

Clock sysclkout1 is a 25 MHz (39.6 ns) system
clock that synchronizes all clocked outputs.

buf_clk1_l J26-B7 O Buffered system clock. This signal is sysclk-
out1_l buffered in the expansion connector
buffers.

Clock sysclkout1 is a 25 MHz (39.6 ns) system
clock that synchronizes all clocked outputs.

buf_clk2 J26-B9 O Buffered delayed system clock. This signal is
sysclkout2 buffered in the expansion connector
buffers.

buf_clk2_l J26-B10 O Buffered delayed system clock. This signal is
sysclkout2_l buffered in the expansion connector
buffers.

buf_data<127:0> – B Buffered data. These signals are buffered
data<127:0> (see schematic page eval.3). See
Table 4–3 for connector pin numbers.

(continued on next page)

4–2 Expansion Interface

Table 4–1 (Cont.) Expansion Connector Signals

Signal Name Pin I/O Description

buf_par3
buf_par2
buf_par1
buf_par0

J11-A8
J11-A10
J11-B6
J11-B8

B Buffered data parity. These signals are combined
and buffered to form check21, check14, check7,
check0 to/from DRAM<3:0> and the 21064. See
Figure 4–1

Note: The signal names change.

See Figure 4–1. At the input to U83 io.6, lw0_
par<3:0> becomes gen_par<3:0>. The par<3:0>
output of U133 mdlatch.5 becomes check21,
check14, check7, and check0.

buf_tagctl_d
buf_tagctl_s
buf_tagctl_v
buf_tagctl_p

J26-A47
J26-A45
J26-A44
J26-A48

O Buffered tag dirty, shared, and valid bits and
their parity bit. These signals are tagctl_
<d,s,v,p> buffered in the expansion connector
buffers. These signals are always enabled. They
allow logic on the expansion connector to perform
a Bcache probe (see also ext_hit and ext_tagctl_
<d,s,v,p>_l>).

ext_cack2_l
ext_cack1_l
ext_cack0_l

J26-A39
J26-A41
J26-A42

I External cycle acknowledge. These signals are
ORed with io_cack<2:0> and memory state
machine signals in the memory state machine
to generate cack<2:0> to the CPU. Cycle
acknowledge is used to terminate all transaction
types.

ext_cas3_l
ext_cas2_l
ext_cas1_l
ext_cas0_l

J11-B20
J11-A25
J11-B21
J11-A26

I External column address strobe. These signals
are combined with io_cas<3:0> in the memory
state machine to generate early_cas<3:0>. In
turn, early_cas<3:0> is buffered and clocked
with sysclkout1 as buf1_dram_cas<8:0> to
provide the DRAMs with multiple versions of the
signals without excess skew.

When asserted, buf1_dram_cas<8:0> asserts
CAS to the appropriate longword banks of the
system DRAM array.�

�For more information, see the Designing a Memory/Cache Subsystem for the DECchip 21064 Microprocessor
application note listed in Appendix A.

(continued on next page)

Expansion Interface 4–3

Table 4–1 (Cont.) Expansion Connector Signals

Signal Name Pin I/O Description

ext_clr_flag_l J11-A22 I External clear lock flag. This signal is ORed
with I/O signals in the I/O state machine to
generate io_clr_flag. One clock later, io_clr_flag
is combined with memory state machine signals
in the RAS PAL to clear lock_flag. Signal
lock_flag clears two clocks after ext_clr_flag is
asserted. See also Sections 3.2.3.4 and 3.2.3.5.

ext_col_a0_l J11-B23 I External column address 0. This signal controls
the value of the least-significant address line to
the system DRAM. The interactions of this signal
are described in Section 4.2.6.

ext_cwmask7
ext_cwmask6
ext_cwmask5
ext_cwmask4
ext_cwmask3
ext_cwmask2
ext_cwmask1
ext_cwmask0

J26-B33
J26-B34
J26-B36
J26-B37
J26-B39
J26-B40
J26-B42
J26-B43

O External cycle write mask. These signals
are cwmask<7:0> buffered in the expansion
connector buffers.

During CPU writes, write masks indicate which
of the eight 32-bit blocks are to be written.
During CPU reads, the CPU provides information
on the miss that is being fulfilled. See the
DECchip 21064 Microprocessor Hardware
Reference Manual for more information.

ext_data_a4_l J11-A15 I External data address 4. This signal is combined
with other signals in the I/O state machine to
generate io_data_a4. Signal io_data_a4 is then
combined and registered in the memory state
machine to generate sys_data_a4.

This signal is asserted during accesses to the
Bcache. Signal sys_data_a4 is ORed with cpu_
data_a4 from the 21064. As the least significant
address line to the Bcache SRAMs, it selects
the octaword of the cache block that is currently
addressed. It is used for victim writes and
Bcache block fills.

(continued on next page)

4–4 Expansion Interface

Table 4–1 (Cont.) Expansion Connector Signals

Signal Name Pin I/O Description

ext_data_oe_l J11-A39 I External data output enable. This signal is
combined with io_data_oe in the memory state
machine to generate sys_data_oe. Signal sys_
data_oe is ORed with cpu_data_oe<3:0> from
the 21064.

This signal is asserted to drive data and parity
from the Bcache SRAMs onto the system data
and check lines. The data can be passed directly
to the CPU or can be clocked through the memory
data transceivers to the expansion connector or
the DRAM data bus.

ext_data_we3_l
ext_data_we2_l
ext_data_we1_l
ext_data_we0_l

J11-A40
J11-B36
J11-B37
J11-B38

O External data write enable. These are longword
write strobes to the Bcache data SRAMs.�

These signals are combined with io_data_
we<3:0> and registered in the memory state
machine to generate early_data_we<3:0>.
Signals early_data_we<3:0> become sys_data_
we<3:0> through delayed latches clocked by
sysclkout1_l. Signals sys_data_we<3:0> are
ORed with cpu_data_we<3:0> from the 21064.

dcok J26-B12 O This signal is buffered p_dcok from power
connector J3.

ext_del_creq2
ext_del_creq1
ext_del_creq0

J26-A30
J26-A32
J26-A33

O External delayed cycle request. These signals are
buffered del_creq<3:0> generated by creq<3:0>
from the 21064 via clocked latches. Cycle request
is delayed by one CPU clock so that it can be
sampled using sysclkout1.

ext_dinvreq_l J11-A17 I External data cache invalidate request. This
signal is ORed with io_dinvreq and memory
state machine signals in the memory state
machine to generate dinvreq to the 21064.

This signal is used to invalidate a data cache
entry when a Bcache block is evicted due to a
victim write.

�For more information, see the Designing a Memory/Cache Subsystem for the DECchip 21064 Microprocessor
application note listed in Appendix A.

(continued on next page)

Expansion Interface 4–5

Table 4–1 (Cont.) Expansion Connector Signals

Signal Name Pin I/O Description

ext_dmapwe J11-B15 O External data cache backmap write enable. This
signal is dmapwe from the 21064 buffered in the
expansion connector buffers.

It controls the write enable to an optional,
external, backmap RAM during external cache
reads controlled by the 21064.

ext_doe_l J26-B30 I External data output enable. This signal is
combined with other signals in the memory state
machine to generate sm_doe_dis, which in turn
generates doe_dis.

This signal is asserted by external logic to allow
the 21064 to drive the data bus during external
write transactions. It is deasserted to allow a
victim write sequence to proceed during a CPU
write (the Bcache data SRAMs can then drive
data on the CPU data bus through the memory
data transceivers to the DRAM data bus). See
also ext_data_oe_l.

Note: The signal names change.

See Figure 4–1. The doe_dis output of the
memory state machine becomes the doe_l input
to the 21064.

ext_drack2_l
ext_drack1_l
ext_drack0_l

J26-A35
J26-A36
J26-A38

I External data bus read data acknowledge. These
signals are combined with io_drack<2:0> and
memory state machine signals in the memory
state machine to generate drack<2:0> to the
21064.

These signals inform the 21064 whether data on
the data bus:

� Is valid.
� Is cacheable.
� Includes good parity.

(continued on next page)

4–6 Expansion Interface

Table 4–1 (Cont.) Expansion Connector Signals

Signal Name Pin I/O Description

ext_dwsel1_l J26-B31 I External data bus write select. This signal is
combined and registered in the memory state
machine to generate dwsel to the 21064.

During CPU write transactions, external logic
uses this signal to tell the 21064 which part of
the 32-byte write-data block to drive on the data
bus; it switches the CPU data bus from first
cache line data to second cache line data.

Note: The signal names change.

See Figure 4–1. Output dwsel of U117 mem.10
becomes dwsel1.

gnd – – Ground. See Table 4–5 for pin list.

ext_hit J26-B45 O External cache hit. This signal is buffered hit
from the memory state machine.

This signal is asserted on successful Bcache
tag probe; that is, adr<33,25:19> from 21064
matches tagadr<33,25:19>.

ext_hold_ack J26-B48 O External hold acknowledge. This signal is
buffered hold_ack from the 21064.

This signal is the handshake response to ext_
hold_req. See Section 4.3 and Figure 4–5 for
bus acquisition and release sequence.

ext_hold_l J26-B46 I External hold. This signal is used to get control
of the system bus from the memory state
machine.

Signal ext_hold and hold from the SC486 are
combined in the I/O state machine to generate
io_hold which becomes hold in the memory
state machine. When the memory state machine
next reaches its idle state, it relinquishes bus
control and asserts ext_start or dma_start.
(Expansion bus always has priority over DMA,
which represents the SC486). See Section 4.3
and Figure 4–5 for bus acquisition and release
sequence.

Note: The signal names change.

See Figure 4–1. Signal io_hold changes to hold
in the memory state machine.

(continued on next page)

Expansion Interface 4–7

Table 4–1 (Cont.) Expansion Connector Signals

Signal Name Pin I/O Description

ext_hold_req_l J26-A50 I External hold request. This signal is used in
the I/O state machine to generate hold_req to
the 21064. After ext_hold has been asserted
to generate ext_start, hold_req is asserted to
get control of the Bcache/external bus from the
21064. See Section 4.3 and Figure 4–5 for bus
acquisition and release sequence.

ext_inhibit_tag_oe_l J11-A13 I External inhibit tag output enable.

In the memory state machine, this signal is
combined and registered to generate inhibit_
tag_oe which is combined with io_inhibit_tag_
oe to generate sys_tag_oe.

When deasserted, inhibit_tag_oe enables the
tag and tag control values. This allows a hit/miss
to be determined, along with the current state
of the addressed Bcache block (S, V, D, P bits).
Signal inhibit_tag_oe must be asserted during
a Bcache fill sequence, when new values are
written into the tag and tag control SRAMs.

ext_ioadr_dis_l J26-B2 I External I/O address disable. This signal is
combined in the I/O state machine to generate
mem_ioadr_dis which enables/disables the I/O
address bus through the CPU/IO address buffers.

When asserted, this signal disables the address
buffers that drive I/O addresses (io_addr<31:2>)
from the EB64 to the expansion connector. This
signal is asserted during the bus acquisition
sequence by an external DMA device. It must be
asserted before hold_ack can assert, because the
assertion of hold_ack enables the buffers that
drive in the opposite direction. See Section 4.3
for the bus acquisition and release sequence.

(continued on next page)

4–8 Expansion Interface

Table 4–1 (Cont.) Expansion Connector Signals

Signal Name Pin I/O Description

io_addr<31:2> – B I/O address bus. These signals provide the
address bus for DMA devices on the expansion
connector and for I/O accesses to devices on the
expansion connector. Note that the mapping
between I/O address and CPU address signals
is different for a bus master (DMA device)
and a bus slave (I/O device), as described in
Section 3.1.3.1.

See Table 4–4 for connector pin numbers.

io_be3
io_be2
io_be1
io_be0

J11-B9
J11-B11
J11-B12
J11-B14

O I/O byte enables. These signals are combinational
decodes of 21064 adr<8:5>, as described in
Section 3.1.3.2. They can be used by external
logic to control byte masks for I/O write cycles.

ext_io_over_l J11-B18 I This signal is asserted by a DMA device on the
expansion connector to indicate that external use
of the bus has completed.

It is combined in the I/O state machine to
generate io_over to the memory state machine.
When io_over is detected, the memory state
machine resumes control of the system bus. See
Section 4.3 and Figure 4–5 for bus acquisition
and release sequence.

ext_irq2_l
ext_irq1_l
ext_irq0_l

J11-A19
J11-B17
J11-A20

I External interrupt request lines. These signals
drive cpu_irq<5:3> respectively to 21064
through IRQ PAL delay.

Interrupt priority is a function of PALcode. All
interrupts to the 21064 may be asynchronous and
are level-sensitive.

ext_md_rd_clken_l J11-B26 I External memory data read clock enable. This
signal is ORed with io_md_rd_clken and
memory state machine signals in the memory
state machine to generate md_rd_clken, which
enables the read data to be latched.�

�For more information, see the Designing a Memory/Cache Subsystem for the DECchip 21064 Microprocessor
application note listed in Appendix A.

(continued on next page)

Expansion Interface 4–9

Table 4–1 (Cont.) Expansion Connector Signals

Signal Name Pin I/O Description

ext_md_rd_oe_l J11-A34 I External memory data read output enable.
This signal is ORed with io_md_rd_oe and
memory state machine signals in the memory
state machine to generate md_rd_oe, which
enables the MDlatch to drive the Bcache/CPU
data bus.�

ext_md_wr_clken_l J11-A29 I External memory data write clock enable. This
signal is ORed with io_md_wr_clken and
memory state machine signals in the memory
state machine to generate md_wr_clken, which
latches data in the write direction.�

ext_md_wr_oe3_l
ext_md_wr_oe2_l
ext_md_wr_oe1_l
ext_md_wr_oe0_l

J11-A31
J11-B27
J11-A32
J11-B29

I External memory data write output enable.
These signals are ORed with io_md_wr_oe<3:0>
and memory state machine signals in the memory
state machine to generate md_wr_oe<3:0>,
which drives the buf_data<127:0> bus.�

ext_md_wr_par_oe_l J11-B30 I External memory data write parity output
enable. This signal is registered in the memory
state machine to generate md_wr_par_oe, which
drives the buf_par<3:0> latch with parity.�

ext_ras_l J11-A23 I External row address strobe. This signal is
ORed with I/O, memory, and refresh signals in
RAS PAL to generate dram_ras<1:0>. RAS
is asserted as a function of mux_adr<24,22>
and the selected DRAM type, and is buffered to
various chunks of the DRAM as buf<4:1>_dram_
ras<1:0>.

remote_reset_l J26-B1 I When asserted, this signal resets the EB64 in the
same way as pressing a reset switch on the dcok
header (see Section 3.4.1). This allows circuitry
attached to the expansion connector to reset the
system (and itself) as a result of, for example,
some form of fatal error or time out.

ext_reset_l J36-B13 O Buffered rst_l from reset/dcok circuit. (rst is
the EB64 master reset.) This signal is asserted
as a result of any EB64 reset and should be
used to reset circuitry attached to the expansion
connector.

�For more information, see the Designing a Memory/Cache Subsystem for the DECchip 21064 Microprocessor
application note listed in Appendix A.

(continued on next page)

4–10 Expansion Interface

Table 4–1 (Cont.) Expansion Connector Signals

Signal Name Pin I/O Description

ext_sel_col_l J11-A28 I External select column. This signal is ORed with
io_sel_col and memory state machine signals in
the memory state machine to generate sel_col
which controls the DRAM address multiplexers
for all DRAM address lines.

When this signal is asserted, the system DRAM
address multiplexers drive the column address,
rather than the row address, into the DRAM
array.

ext_sel_col2_l J11-A16 I External select column 2. This signal is combined
with I/O and memory state machine signals
in the memory state machine to generate
dram_addr0. To avoid an additional external
multiplexer delay, the memory state machine
logic implements all required dram_addr0
multiplexing.

This signal is asserted during the transfer of
the second cache line of a block into the system
DRAM. It is used to toggle the least significant
CAS address bit during the page-mode second
CAS pulse of the DRAM cycle. The interactions
of this signal are described in Section 4.2.6.

ext_sel_tagadr_l J11-A14 I External select tag address. This signal is
combined and registered in the memory state
machine to generate sel_tagadr, used in the
DRAM address multiplexers. When asserted,
sel_tagadr causes data from the tag SRAMs
(that is, the tag address) to be driven into the
system DRAM row/column address multiplexer,
rather than allowing the system address bus
to drive this multiplexer. This is necessary so
that a victim write sequence performed by logic
attached to the expansion connector can generate
the correct address to retire a cache block from
the Bcache to the system DRAM.

ext_start J26-A1 O This signal is the handshake response to ext_
hold. Generated by the memory state machine,
ext_start is a combinational signal and asserts
in the same clock tick as io_hold. See Section 4.3
and Figure 4–5 for bus acquisition and release
sequence.

(continued on next page)

Expansion Interface 4–11

Table 4–1 (Cont.) Expansion Connector Signals

Signal Name Pin I/O Description

sysclk_pll_3 J26-B4 O This signal is generated by sysclkout1 in the
PLL (schematic page eval.26) for use with user-
provided devices.

ext_tagadr_we_l J11-A11 I External tag address write enable. This signal
is combined and registered in the memory state
machine to generate sys_tagadr_we. This signal
is used to control the write strobe of the tag
SRAMs during a Bcache block load. See also
ext_wrt_tagadr_oe_l.

ext_tagctl_d_l
ext_tagctl_s_l
ext_tagctl_v_l
ext_tagctl_p_l

J11-B33
J11-A38
J11-A37
J11-B35

I External tag dirty, shared, and valid bits and
their parity bit. These signals are combined
and registered with io_tagctl_<d,s,v,p> in the
memory state machine to generate mem_tagctl_
<d,s,v,p>.

These are Bcache tag control bits driven by logic
attached to the expansion connector when that
logic is writing data into the Bcache; for example,
a read-fill or write-allocate sequence. Compare
with buf_tagctl_<d,s,v,p>.

ext_tagctl_we_l J11-B32 I External tag control write enable. This signal
is combined and registered with io_tagctl_we
in the memory state machine to generate sys_
tagctl_we. Signal sys_tagctl_we is ORed with
cpu_tagctl_we to control the write strobe of the
tag control SRAMs during a Bcache block load.

Circuitry attached to the expansion connector
asserts this signal to update the tag control-bit
values for the currently-addressed Bcache block
to the values driven on ext_tagctl_<d,s,v,p>_l
when ext_wrt_tagctl_oe_l is asserted.

ext_tl1
ext_tl0

J27-B50
J27-A50

O External unencoded transfer length. These
signals are used as adr<6:5> for logic attached
to the expansion connector that requires a
contiguous linear address space. See ext_
be<1:0> and Section 3.1.3.1.

Vdd – – See Table 4–5 for pin list.

(continued on next page)

4–12 Expansion Interface

Table 4–1 (Cont.) Expansion Connector Signals

Signal Name Pin I/O Description

ext_we_l J11-B24 I External write enable. This signal is ORed with
io_we and memory state machine signals in the
memory state machine to generate dram_we.
Signal dram_we is buffered as buf<4:1>_dram_
we to write enable all banks of the DRAM.

wrap_read J27-B2 System register bit 21 (see Table 3–10). This
signal is asserted to enable data wrapping on the
21064. When wrapping is enabled, 21064 data
read accesses must use the cwmask1 signal to
determine which of the data portions to access
first (cwmask1 acts as adr4).

ext_wrt_tagadr_oe_l J11-B39 I External write tag address output enable. This
signal is combined and registered in the memory
state machine to generate wrt_tagadr_oe. It
enables the system address onto the data bus
of the tag SRAMs. It is used to update the tag
information during a Bcache block fill. See also
ext_tagadr_we_l.

ext_wrt_tagctl_oe_l J11-A35 I External write tag control output enable. This
signal is combined and registered with io_
wrt_tagctl_oe in the memory state machine
to generate wrt_tagctl_oe.

When asserted, this signal enables the values of
ext_tagctl_<d,s,v,p> onto the data bus of the
tag control SRAMs. It is used to update the tag
control information during a Bcache block fill.
See also ext_tagctl_we_l.

ext_zone J26-B15 O External zone. This signal is asserted during
CPU accesses to the upper quadrant of physical
memory (adr<33:32> = 11). For such cycles,
the EB64 memory state machine waits, forever,
if necessary, for signal io_over or the cycle
acknowledge (cack<2:0>) signals to indicate the
end of the cycle.

The I/O state machine generates ext_zone when
adr33 and adr32 are both asserted. When
asserted, ext_zone indicates that this cycle is a
slave cycle to a device in the expansion connector
address space.

Expansion Interface 4–13

Figure 4–1 Signal Name Changes

WMO_EB64_019

PAR
GEN

BUF

U130,U129

U23U91,U90

U157,U156

U159,U158

U34

lw3_par<3:0>

lw2_par<3:0>

lw1_par<3:0>

lw0_par<3:0>

DRAM<3:0>

io_par3

io_par2

io_par1

IO

io_par0

buf_par<3:0>

par_gen.1:4 par_gen.1 eval.3

eval.5,6

mdlatch.5

U133

eval.3

buf_par3

buf_par2

buf_par1

buf_par0

MDLATCH

par3

par2

par1

par0

check21

check14

check7

check0

gen_par3

U83

io.6

gen_par2

gen_par1

gen_par0

eval.18

MEM

U117

mem.10

ext_dwsel1_l

U126

mem.9

dwsel

doe_dis

dwsel1

doe_l

MEMDEC

MEM9

ext_dwsel1

io_hold

mem.1:6

hold
U38,U56,
U61,U68,
U69,U82,

U135,U143,
U144

U85

io.1

IO8

eval.19

hold

ext_hold_l ext_hold
U128

eval.11

SC486

J26−B46

eval.9

Physical component:

Schematic page:

Functional block:

Logical component:

Legend:

U117

mem.10

MEM9

MEM

4–14 Expansion Interface

4.2 21064 Expansion Interface
The EB64 supplies a 21064-like protocol to a set of connectors on the board. As
shown in Figure 1–1, the signals are buffered versions of the system signals.
Because these buffered signals are mostly isolated from the CPU signals, they
should not affect operation in normal circumstances. The expansion connector
allows users to design their logic following a protocol similar to the 21064
pinbus protocol and test it on real hardware.

The expansion interface includes signals that allow external logic to interact
with the CPU, the Bcache, and the DRAM. This allows options to be designed
as either simple I/O devices (memory-mapped bus slaves that respond to bus
cycles from the 21064) or DMA devices (capable of acquiring control of the bus
from the 21064 and performing reads and writes directly to the Bcache and
the DRAM). The expansion interface control signals (Figure 4–2) are special
versions of existing memory control signals with an ext_ prefix.

Note: Expansion Control Signals Are Active Low

All control inputs from the expansion interface are asserted low and
pulled up by on-board resistors. They are deasserted unless an external
module is plugged in and drives them. They also carry an _l suffix; for
example, ext_cack2_l.

Designing hardware to connect to the expansion connector requires most of
the same knowledge as a 21064 design and is beyond the scope of this guide.
Additional information is available in the EB64 schematics and programmable-
logic source files, and also in the literature listed in Appendix A. Additional
technical support is available from the DECchip Information Line, also
described in Appendix A.

The primary system considerations for external logic concern data path width
and cache coherency.

Expansion Interface 4–15

Figure 4–2 Expansion Interface Signals

WMO_EB64_007

Q

D
Q

Internal
Feedback

Local
Inputs

ext_xxx_l

buf_sysclkout1 PLD

xxx

4.2.1 Data Path Width
The EB64 uses the full, 128-bit width of the 21064 data path. Designing
interfaces to peripherals with narrower data path widths is not a problem, but
the system implications must be considered: It takes as many clock cycles to
transfer 128-bits of data as it does to transfer any smaller number of bits. In
addition, for DMA engines, an overhead is associated with bus acquisition and
relinquishment; every wasted clock cycle can equate to as many as 12 CPU
instructions (six clock cycles, two instructions/cycle).

4.2.2 Cache Coherency
External hardware must maintain cache coherency with the 21064 internal
caches (data cache and instruction cache) and the Bcache. The following are
some of a variety of hardware and software techniques that can be used to
maintain cache coherency.

4–16 Expansion Interface

1. I/O Devices

The simplest, and usually most desirable approach is to make I/O devices
nonBacheable by returning the appropriate values on ext_cack<2:0>_l.

2. Additional Memory

The expansion connector can be used to extend EB64 memory. The
additional memory can be conventional DRAM or special-purpose memory
such as dual-ported video RAM (VRAM). In these circumstances, a more
advanced Bcache scheme may be desirable.

Because the EB64 DRAM main memory uses the Bcache, the way in
which external slave devices can use the Bcache is limited. If circuitry
on the expansion interface allocates Bcache blocks for addresses where
adr<33:32> = 11, it must never set the D (dirty) bit for these blocks
(Section 3.2.2.1) because the EB64 memory controller would then need to
reallocate the Bcache block. If the external circuitry had the capability
to mark the block dirty, then the EB64 memory controller would have to
be able to perform victim write sequences to the memory on the external
board, which it cannot do.

3. DMA Devices

For DMA devices there are more options. The simplest is to constrain
the DMA engine to perform transfers directly to the DRAM and to ignore
the Bcache. The 21064 must then access this data solely through the
nonBcached aliases of the DRAM in the address space. This guarantees
that cache coherency is maintained.

A more advanced design would need to perform a Bcache probe on DMA
reads, and take data from the Bcache if there was a hit. Strictly, the
requirement to maintain Bcache coherency is to take data if there was a
hit and the Bcache is dirty. Otherwise, the data would be retrieved from
the DRAM.

For DMA writes the design would have to:

• Probe the Bcache and, if there was a hit, merge the new data back into
the Bcache block. (The dirty bit should always be observed clear during
such a probe.)

• Clear the interlock flag.

• Invalidate the data cache.

Otherwise, the data would be stored to the DRAM. (A DMA engine does
not usually write-allocate.)

Expansion Interface 4–17

4.2.3 Expansion Connector Clocks
The control signals coming from the expansion connector logic, that is, the
control signals generated by user hardware, are clocked by the master system
clock. This same clock drives the memory control logic on the EB64 board and
is provided to the expansion connector to drive user hardware.

The EB64 system clock setup holds true for signals, such as ext_cack<2:0>_l,
that eventually control other signals that are driven back to the 21064 with
the appropriate setup to the microprocessor system clock. The signals are
relatched by the board memory logic, making the setup time easy to achieve.

Figure 4–3 shows this relationship. The clocked device is a PLD, and the
AND/OR plane feeds the flip-flop D input. Devices used on the EB64 board
require 10 ns setup before the clock. This allows several levels of logic to be
placed between the user expansion interface clock and the clock that is used
to resynchronize the external signals. This figure also shows the asserted low
nature of the ext_xxx_l expansion connector control signals.

Figure 4–3 Expansion Connector Control Setup

WMO_EB64_023

Q

D
Q

Internal
Feedback

PLD

xxx

Q

buf_sysclkout1

D
Q PLD

PLD
ext_xxx_l

Buffered versions of all four 21064 system clocks are delivered to the expansion
connector (buf_clk1_h/l, buf_clk2_h/l). When using these signals, careful
attention must be given to their skew with respect to other clock signals.
Delayed and nondelayed versions of the master system clock (a version of
sysclkout1_h) are also sent to the expansion connector. These two signals
allow circuitry attached to the expansion connector to be clocked in a way that

4–18 Expansion Interface

is closely matched to the clocks on the EB64. To achieve this, signal loading
and board layout and characteristics requirements must be followed:

• The clock signals must have a characteristic impedance of 70 Ohms. This
can be achieved by using a controlled-impedance printed-circuit board and
specifying etch width and board layup (positioning of the internal power
and ground planes).

• Four or fewer nodes

The buf_clk1_b2 clock, if used, can be loaded by up to four nodes. If fewer
than four nodes load the net, dummy loads must be added in the form of 5
pF capacitance for each missing load. The net must be routed so that the
four destination nodes are closely grouped and that the etch length from
the expansion connector gold finger to each node is exactly 49 mm (2 in).

• More than four nodes

The sysclk_pll_3 clock, if used, must be routed through a clock buffer
using equivalent circuitry to that shown on schematic page eval.25. The
etch length from the expansion connector gold finger to the clock buffer
input pin must be exactly 49 mm (2 in). The series damping resistors
on the clocks generated by the buffer must be situated so that the etch
connecting them to the buffer is short. Each net must then have the same
loading and layout characteristics as described for buf_clk1_b2 above. The
etch length from the series damping resistor to the destination node must
be exactly 216.56 mm (8.526 in).

If these layout rules are adhered to, the total skew between any two buf_clk1_
xx clocks in the system (EB64 and expansion connector) should not exceed 2.0
ns (the specification of the H645 clock buffer devices). Furthermore, the total
clock fanout for the external board will be a maximum of 40 nodes.

4.2.4 Programmed I/O Through the Expansion Connector
This section gives an overview of the steps involved in performing reads and
writes to a device on the expansion connector. See Figure 4–4.

The external device for this example is a bank of video memory that is
Bcached on reads such that the S (shared) bit is always set by external logic
on read fills. Therefore, Bcache blocks that get allocated to the video memory
always behave as write-through. This means that they never become dirty.
Consequently, a Bcache block currently allocated to the video memory can
be reallocated to the DRAM simply by overwriting the block (a victim write
sequence is never needed). Conversely, when the external hardware allocates a

Expansion Interface 4–19

Figure 4–4 Programmed I/O Through the Expansion Connector

WMO_EB64_024

BCACHE
Probe

Read

N

Victim
Write

Write WriteVRAM and VRAM OnlyBcache

Read Fill

Hit?Valid &
Dirty?

External
Zone?

Idle

Y

Write

N

BCACHE
Probe

N

Cycle
Type?

YY

1.

2.

3.

4.

5.

5. 5.

4–20 Expansion Interface

Bcache block to the video memory, it must potentially perform a victim write to
retire that data to the system DRAM.

1. Idle Loop

Wait for a cycle addressed to video memory. The ext_zone signal will
be asserted for accesses to the upper quadrant of physical memory. If
necessary, some number of I/O address (io_addr) signals can also be
decoded. In addition to decoding ext_zone, decode del_creq<2:0> to
determine the cycle type. For read cycles, branch to step 2; for write cycles
branch to step 5. For other cycles, some type of fatal error should probably
be generated.

If branching to step 5 (write cycle), prepare to latch data from the 21064 by
asserting

ext_md_wr_oe_l
ext_md_wr_clken_l
ext_md_wr_par_oe_l

Prepare to write to the VRAM as appropriate. Assert ext_doe_l so that
the 21064 will continue to drive write data.

The EB64 memory controller remains in a wait loop during the whole of
the cycle. It automatically regains control of the system when it detects
ext_cack<2:0>_l as no longer idle.

2. Read Cycle

Perform a Bcache probe. The Bcache tag control and tag address (tagctl
and tagadr) lines will be enabled, so this probe simply requires checking
the appropriate tag control signals (buf_tagctl_v, buf_tagctl_d). If
the Bcache block is valid and dirty, a victim write sequence (step 3) is
necessary. Otherwise, proceed with the read fill (step 4).

If branching to step 3, assert ext_sel_tagadr_l so that the address into
the system DRAM is generated in part by the tag address lines; that is,
the system DRAM is being addressed at the correct location for the victim
write of the Bcache block.

3. Victim Write Sequence

Retire the valid, dirty Bcache block to the system DRAM so that this
Bcache block can be filled with data from VRAM. The following signals
need to be manipulated:

• ext_ras_l
ext_cas<3:0>_l
ext_we_l

to actually write to the system DRAM.

Expansion Interface 4–21

• ext_data_oe_l so that the Bcache data SRAMs will drive their data
into the DRAMs.

• ext_md_wr_oe<3:0>_l
ext_md_wr_par_oe_l
md_wr_clken_l

to transfer the data from the CPU data bus (where it is being driven
by the Bcache data SRAMs) through the memory data transceivers
(MDlatch) to the DRAM data bus.

• ext_data_a4_l to select the second location in Bcache to access the
second 128-bit octaword of data.

• ext_sel_col_l to select the DRAM column address.

• ext_sel_col2_l to select the second column address for the adjacent
location in DRAM, which is the destination of the second 128-bit
octaword of data (this data is written as a page-mode access to the
DRAM).

When the victim write sequence is complete, continue with step 4, the read
fill sequence.

4. Read Fill Sequence

Either fall through to this step after a victim write sequence (step 3) or
jump to this step as the result of a read where the associated Bcache block
is not valid or not dirty (step 2).

This sequence requires the manipulation of the appropriate user signals
to retrieve data from the VRAM on the external board. It requires
manipulating the following signals:

• ext_inhibit_tag_oe_l
ext_md_rd_oe_l
ext_md_rd_clken_l

so that the VRAMs on the external board can drive new data through
the memory data transceivers (MDlatch) and into the Bcache data
SRAMs.

• ext_wrt_tagctl_oe_l
ext_wrt_tagadr_oe_l
ext_tagctl_v_l
ext_tagctl_s_l

to assert the appropriate tag control bits and drive them into the
Bcache tag control SRAMs.

4–22 Expansion Interface

• ext_data_we<3:0>_l
ext_tagctl_we_l
ext_tagadr_we_l

to write new data into the Bcache data, tag address, and tag control
SRAMs. The tag address itself is still being driven by the 21064 on
its address bus. Signal ext_drack<2:0>_l needs to be manipulated to
simultaneously pass the data to the 21064.

• ext_data_a4_l to select the second location in the Bcache data SRAM.

• ext_dinvreq_l may have to be manipulated to invalidate a 21064
internal data cache block.

• ext_cack<2:0>_l to terminate the 21064 read cycle.

5. Write Block

Perform a Bcache probe. As for the read cycle, this simply requires
checking the appropriate signals. If a Bcache hit is detected (ext_hit
asserted) the data is written to VRAM (on the external connector logic) and
to the appropriate Bcache block. The Bcache behaves as write-through for
VRAM data because video memory is always required to be up-to-date. If
a Bcache miss is detected, data is written only to VRAM. A write-allocate
is never done, and there is no victim sequence for writes. In practice, the
same sequence can be used for the Bcache miss and the Bcache hit by
conditionally asserting ext_data_we<3:0>_l (the write strobes to Bcache).
The write sequence involves manipulating the following signals:

• ext_doe_l
ext_md_wr_oe<3:0>_l
ext_md_wr_clken_l
ext_md_wr_par_oe_l
ext_dwsel1_l

to transfer the two 128-bit octawords of data from the 21064 to the
Bcache and expansion connector data busses.

• Appropriate user signals on the external connector logic in order to
write the data to the VRAM.

• ext_data_a4_l to address the second location in the Bcache.

• ext_cack<2:0>_l to terminate the 21064 write cycle.

The EB64 memory controller remains in a wait loop during the whole of
the cycle. It automatically regains control of the system when it detects
ext_cack<2:0>_l as no longer idle.

Expansion Interface 4–23

4.2.5 DMA Through Expansion Connector
This section provides an overview of steps involved in performing read and
write DMA transfers from a device on the expansion connector.

The external device is assumed to be transferring data to and from the EB64
main memory in response to an input stimuli. The transfers go directly to
the DRAM main memory. The procedure for a system that requires Bcache
probes can be derived from the programmed I/O example in Section 4.2.4. In
addition to the Bcache control signals, the memory data transceiver (MDlatch)
controls must be manipulated in order to transfer data between the Bcache
data bus and the DRAM data bus, which is directly connected to the expansion
connector data bus.

The bus acquisition and release sequences are described in Section 4.3.

1. Bus Acquisition

a. Assert ext_hold_l and wait for the memory controller to complete its
current bus cycle, indicated by a pulse of one clock period duration on
ext_start.

b. After ext_start has pulsed, gain control of the 21064 bus by asserting
ext_hold_req and waiting for ext_hold_ack.

c. While waiting for ext_hold_ack to assert, ext_ioadr_dis must be
asserted in order to tristate the I/O address bus (io_addr) on the
expansion connector.

Note: Avoiding Bus Contention

This timing is important. The asserted level of ext_hold_ack will
drive io_addr in the opposite direction; therefore, ext_ioadr_dis must
have been asserted earlier in order to avoid bus contention.

2. Data Transfers

a. Data Read Transfer

During this sequence a number of data units are read from the DRAM
main memory and transferred to some data sink on the external
connector logic. When a number of 128-bit data chunks are to be
transferred, the transfer can be performed in DRAM page-mode.
(This imposes some constraints in that a page boundary must not be
crossed.) The sequence requires manipulating the ext_ras_l, ext_
cas<3:0>_l, and ext_sel_col_l signals, with the I/O address bus (io_
addr) supplying the row and then all subsequent column addresses.

4–24 Expansion Interface

The least significant column address line is controlled by either ext_
col_a0 or ext_sel_col2_l. The DRAM data lines are wired directly to
the expansion connector.

Note: DRAM Refresh Requirements

The DMA engine cannot retain control of the bus for extended periods;
doing so would compromise the CAS-before-RAS DRAM refresh cycles
that must be performed under control of the memory controller.

b. Data Write Transfer

During this sequence a number of data units are read from some data
source on the external connector logic and written into the DRAM main
memory. The procedure is the same as for data read transfers (step
2.a), with the addition that ext_data_we<3:0>_l must be appropriately
manipulated. Note that, on DMA writes to the DRAM main memory, a
parity bit must be generated for each longword (four bytes) written.

Because some external device has had control of the bus, it may be
necessary to clear the system lock flag. The lock flag is cleared by
pulsing ext_clr_flag_l for one clock period.

3. Bus Release

Deassert io_addr_dis. Deassert ext_hold_req and assert ext_io_over for
one clock cycle. This action signals the memory controller that it should
regain control of the bus.

4.2.6 DRAM Address 0
Sections 3.2.1.1 through 3.2.1.4 give a functional description of DRAM
addressing. This section gives an overview of the steps involved in generating
DRAM address 0 from the 21064 and from a DMA device attached to the
expansion connector.

Most of the DRAM address lines are switched between row and column
addresses using a bank of multiplexers (schematic page addr_mux.1). For
DRAM address 0, the column address must be switched from one value to
another in order to page-mode access each 128-bits of the hexaword. This
switching, along with the row and column multiplexing, is performed in the
memory controller according to the following equation:

Expansion Interface 4–25

DRAM_ADDR0 = (!IO_WAIT & ADR13 & !SEL_COL & !SEL_COL2) #
(!IO_WAIT & FIRST_COL_A0 & SEL_COL & !SEL_COL2) #
(!IO_WAIT & !FIRST_COL_A0 & SEL_COL2) #
(IO_WAIT & ADR13 & !SEL_COL) #
(IO_WAIT & IO_COL_A0 & SEL_COL) #
(IO_WAIT & EXT_COL_A0 & SEL_COL & !EXT_SEL_COL2) #
(IO_WAIT & !EXT_COL_A0 & SEL_COL & EXT_SEL_COL2);

The individual lines (product terms) of this equation behave as follows:

• 21064 Access to DRAM (not io_wait)

1. Select the row address, adr13.

2. Do one of the following:

– If a wrapped cycle is being performed (first_col_a0 asserted),
select the column address. The first column address strobed into
the DRAM will be 1 (odd address); the second, when sel_col2 is
asserted, will be 0 (even address).

– If a nonwrapped cycle is being performed (first_col_a0 deasserted),
select the column address. The first column address strobed into
the DRAM will be 0 (even address); the second, when sel_col2 is
asserted, will be 1 (odd address). Assertion of sel_col2 implies
assertion of sel_col; therefore, sel_col is not required.

• DMA Device Access to the DRAM (io_wait)

The following steps are used during DMA accesses to the DRAM or during
accesses to the upper quadrant of physical memory; that is, the expansion
connector address space.

1. Select the row address, adr13.

2. Do one of the following:

– Select the column address. Controlled by the EB64 I/O controller
during DMA transfers by the SC486.

– Select the column address. Controlled by signals from the
expansion connector interface. When sel_col is asserted (as a
result of ext_sel_col), ext_col_a0 directly controls the value of the
least significant DRAM column address. Signal ext_sel_col2 is
assumed to be deasserted.

– Select the column address. Controlled by signals from the
expansion connector interface. When sel_col is asserted (as a
result of ext_sel_col), ext_col_a0 is set to select the first DRAM
column address (either 0 or 1); then ext_sel_col2 toggles to select

4–26 Expansion Interface

the second (complementary) address. This mode of operation is
useful when performing wrapped reads.

4.3 System Bus Acquisition and Release Sequence
Figure 4–5 is a simplified block and timing diagram showing the bus
acquisition signals and timing.

Figure 4–5 System Bus Acquisition and Release

WMO_EB64_017

buf_sysclkout1

1 2 3 4 5 6 7 8 9 10

delay
before
sampling

ext_ioadr_dis

ext_io_over

ext_hold_ack

ext_hold_req

ext_start

ext_hold

io_hold

ext_hold

ext_ioadr_dis

ext_hold_req

21064

ext_clr_flag

hold

ext_io_over

ext_hold

hold_req

io_over

io_hold dma_start

ext_startsysclkout2

ext_hold_ack hold_ack

SC486

IO
MEM

External
Device

async

Expansion Interface 4–27

The acquisition sequence is:

1. Assert ext_hold.

2. Wait for ext_start.

3. Assert ext_hold_req.

4. Wait for ext_hold_ack.

5. Perform bus operations.

Note that ext_start is asserted for only one clock tick, and that ext_hold
should be deasserted as soon as ext_start is detected.

The release sequence is:

1. Deassert ext_hold_req (ext_hold_ack deasserts).

2. Assert ext_io_over for one clock tick.

4.4 Expansion Connector Pin Lists

Table 4–2 Expansion Connector Pin List

Pin Signal Pin Signal

J10-A1 not connected J10-B1 buf_dat62
J10-A2 buf_dat63 J10-B2 buf_dat60
J10-A3 Vdd J10-B3 buf_dat58
J10-A4 buf_dat61 J10-B4 gnd
J10-A5 buf_dat59 J10-B5 buf_dat56
J10-A6 gnd J10-B6 buf_dat54
J10-A7 buf_dat57 J10-B7 Vdd
J10-A8 buf_dat55 J10-B8 buf_dat52
J10-A9 Vdd J10-B9 buf_dat50
J10-A10 buf_dat53 J10-B10 gnd
J10-A11 buf_dat51 J10-B11 buf_dat48
J10-A12 gnd J10-B12 buf_dat46
J10-A13 buf_dat49 J10-B13 Vdd
J10-A14 buf_dat47 J10-B14 buf_dat44
J10-A15 buf_dat45 J10-B15 buf_dat42
J10-A16 buf_dat43 J10-B16 gnd
J10-A17 buf_dat41 J10-B17 buf_dat40
J10-A18 gnd J10-B18 buf_dat38

(continued on next page)

4–28 Expansion Interface

Table 4–2 (Cont.) Expansion Connector Pin List

Pin Signal Pin Signal

J10-A19 buf_dat39 J10-B19 not connected
J10-A20 buf_dat37 J10-B20 buf_dat36
J10-A21 Vdd J10-B21 buf_dat34
J10-A22 buf_dat35 J10-B22 gnd
J10-A23 buf_dat33 J10-B23 buf_dat32
J10-A24 gnd J10-B24 buf_dat30
J10-A25 buf_dat31 J10-B25 Vdd
J10-A26 buf_dat29 J10-B26 buf_dat28
J10-A27 Vdd J10-B27 buf_dat26
J10-A28 buf_dat27 J10-B28 gnd
J10-A29 buf_dat25 J10-B29 buf_dat24
J10-A30 gnd J10-B30 buf_dat22
J10-A31 buf_dat23 J10-B31 Vdd
J10-A32 buf_dat21 J10-B32 buf_dat20
J10-A33 Vdd J10-B33 buf_dat18
J10-A34 buf_dat19 J10-B34 gnd
J10-A35 buf_dat17 J10-B35 buf_dat16
J10-A36 gnd J10-B36 buf_dat14
J10-A37 buf_dat15 J10-B37 buf_dat12
J10-A38 buf_dat13 J10-B38 buf_dat10
J10-A39 buf_dat11 J10-B39 buf_dat 8
J10-A40 buf_dat 9 J10-B40 not connected

J11-A1 not connected J11-B1 buf_dat 6
J11-A2 buf_dat 7 J11-B2 buf_dat 4
J11-A3 Vdd J11-B3 buf_dat 2
J11-A4 buf_dat 5 J11-B4 gnd
J11-A5 buf_dat 3 J11-B5 buf_dat 0
J11-A6 gnd J11-B6 buf_par1
J11-A7 buf_dat 1 J11-B7 Vdd
J11-A8 buf_par3 J11-B8 buf_par0
J11-A9 Vdd J11-B9 io_be3
J11-A10 buf_par2 J11-B10 gnd
J11-A11 ext_tagadr_we_l J11-B11 io_be2
J11-A12 gnd J11-B12 io_be1
J11-A13 ext_inhibit_tag_oe_l J11-B13 Vdd
J11-A14 ext_sel_tagadr_l J11-B14 io_be0
J11-A15 ext_data_a4_l J11-B15 ext_dmapwe
J11-A16 ext_sel_col2_l J11-B16 gnd

(continued on next page)

Expansion Interface 4–29

Table 4–2 (Cont.) Expansion Connector Pin List

Pin Signal Pin Signal

J11-A17 ext_dinvreq_l J11-B17 ext_irq1_l
J11-A18 gnd J11-B18 ext_io_over_l
J11-A19 ext_irq2_l J11-B19 not connected
J11-A20 ext_irq0_l J11-B20 ext_cas3_l
J11-A21 Vdd J11-B21 ext_cas1_l
J11-A22 ext_clr_flag_l J11-B22 gnd
J11-A23 ext_ras_l J11-B23 ext_col_a0_l
J11-A24 gnd J11-B24 ext_we_l
J11-A25 ext_cas2_l J11-B25 Vdd
J11-A26 ext_cas0_l J11-B26 ext_md_rd_clken_l
J11-A27 Vdd J11-B27 ext_md_wr_oe2_l
J11-A28 ext_sel_col_l J11-B28 gnd
J11-A29 ext_md_wr_clken_l J11-B29 ext_md_wr_oe0_l
J11-A30 gnd J11-B30 ext_md_wr_par_oe_l
J11-A31 ext_md_wr_oe3_l J11-B31 Vdd
J11-A32 ext_md_wr_oe1_l J11-B32 ext_tagctl_we_l
J11-A33 Vdd J11-B33 ext_tagctl_d_l
J11-A34 ext_md_rd_oe_l J11-B34 gnd
J11-A35 ext_wrt_tagctl_oe_l J11-B35 ext_tagctl_p_l
J11-A36 gnd J11-B36 ext_data_we2_l
J11-A37 ext_tagctl_v_l J11-B37 ext_data_we1_l
J11-A38 ext_tagctl_s_l J11-B38 ext_data_we0_l
J11-A39 ext_data_oe_l J11-B39 ext_wrt_tagadr_oe_l
J11-A40 ext_data_we3_l J11-B40 not connected

J26-A1 ext_start J26-B1 remote_reset_l
J26-A2 io_addr25 J26-B2 ext_ioadr_dis_l
J26-A3 io_addr24 J26-B3 io_addr2
J26-A4 Vdd J26-B4 sysclk_pll_3
J26-A5 io_addr23 J26-B5 gnd
J26-A6 io_addr22 J26-B6 buf_clk1_b2
J26-A7 gnd J26-B7 buf_clk1_l
J26-A8 io_addr21 J26-B8 Vdd
J26-A9 io_addr20 J26-B9 buf_clk2
J26-A10 Vdd J26-B10 buf_clk2_l
J26-A11 io_addr19 J26-B11 gnd
J26-A12 io_addr18 J26-B12 dcok
J26-A13 gnd J36-B13 ext_reset_l
J26-A14 io_addr17 J26-B14 Vdd

(continued on next page)

4–30 Expansion Interface

Table 4–2 (Cont.) Expansion Connector Pin List

Pin Signal Pin Signal

J26-A15 io_addr16 J26-B15 ext_zone
J26-A16 Vdd J26-B16 io_addr3
J26-A17 io_addr15 J26-B17 gnd
J26-A18 io_addr14 J26-B18 io_addr31
J26-A19 gnd J26-B19 io_addr30
J26-A20 io_addr13 J26-B20 Vdd
J26-A21 io_addr12 J26-B21 io_addr29
J26-A22 Vdd J26-B22 io_addr28
J26-A23 io_addr11 J26-B23 gnd
J26-A24 io_addr10 J26-B24 io_addr27
J26-A25 gnd J26-B25 io_addr26
J26-A26 io_addr 9 J26-B26 Vdd
J26-A27 io_addr 8 J26-B27 io_addr7
J26-A28 Vdd J26-B28 io_addr6
J26-A29 io_addr5 J26-B29 gnd
J26-A30 ext_del_creq2 J26-B30 ext_doe_l
J26-A31 gnd J26-B31 ext_dwsel1_l
J26-A32 ext_del_creq1 J26-B32 Vdd
J26-A33 ext_del_creq0 J26-B33 ext_cwmask7
J26-A34 Vdd J26-B34 ext_cwmask6
J26-A35 ext_drack2_l J26-B35 gnd
J26-A36 ext_drack1_l J26-B36 ext_cwmask5
J26-A37 gnd J26-B37 ext_cwmask4
J26-A38 ext_drack0_l J26-B38 Vdd
J26-A39 ext_cack2_l J26-B39 ext_cwmask3
J26-A40 Vdd J26-B40 ext_cwmask2
J26-A41 ext_cack1_l J26-B41 gnd
J26-A42 ext_cack0_l J26-B42 ext_cwmask1
J26-A43 gnd J26-B43 ext_cwmask0
J26-A44 buf_tagctl_v J26-B44 Vdd
J26-A45 buf_tagctl_s J26-B45 ext_hit
J26-A46 Vdd J26-B47 gnd
J26-A47 buf_tagctl_d J26-B46 ext_hold_l
J26-A48 buf_tagctl_p J26-B48 ext_hold_ack
J26-A49 gnd J26-B49 io_addr4
J26-A50 ext_hold_req_l J26-B50 ext_adr33_in

J27-A1 ext_be0 J27-B1 ext_be1
J27-A2 buf_dat127 J27-B2 wrap_read

(continued on next page)

Expansion Interface 4–31

Table 4–2 (Cont.) Expansion Connector Pin List

Pin Signal Pin Signal

J27-A3 buf_dat125 J27-B3 buf_dat126
J27-A4 Vdd J27-B4 buf_dat124
J27-A5 buf_dat123 J27-B5 gnd
J27-A6 buf_dat121 J27-B6 buf_dat122
J27-A7 gnd J27-B7 buf_dat120
J27-A8 buf_dat119 J27-B8 Vdd
J27-A9 buf_dat117 J27-B9 buf_dat118
J27-A10 Vdd J27-B10 buf_dat116
J27-A11 buf_dat115 J27-B11 gnd
J27-A12 buf_dat113 J27-B12 buf_dat114
J27-A13 gnd J27-B13 buf_dat112
J27-A14 buf_dat111 J27-B14 Vdd
J27-A15 buf_dat109 J27-B15 buf_dat110
J27-A16 Vdd J27-B16 buf_dat108
J27-A17 buf_dat107 J27-B17 gnd
J27-A18 buf_dat105 J27-B18 buf_dat106
J27-A19 gnd J27-B19 buf_dat104
J27-A20 buf_dat103 J27-B20 Vdd
J27-A21 buf_dat101 J27-B21 buf_dat102
J27-A22 Vdd J27-B22 buf_dat100
J27-A23 buf_dat 99 J27-B23 gnd
J27-A24 buf_dat 97 J27-B24 buf_dat 98
J27-A25 gnd J27-B25 buf_dat 96
J27-A26 buf_dat95 J27-B26 Vdd
J27-A27 buf_dat93 J27-B27 buf_dat94
J27-A28 Vdd J27-B28 buf_dat92
J27-A29 buf_dat91 J27-B29 gnd
J27-A30 buf_dat89 J27-B30 buf_dat90
J27-A31 gnd J27-B31 buf_dat88
J27-A32 buf_dat87 J27-B32 Vdd
J27-A33 buf_dat85 J27-B33 buf_dat86
J27-A34 Vdd J27-B34 buf_dat84
J27-A35 buf_dat83 J27-B35 gnd
J27-A36 buf_dat81 J27-B36 buf_dat82
J27-A37 gnd J27-B37 buf_dat80
J27-A38 buf_dat79 J27-B38 Vdd
J27-A39 buf_dat77 J27-B39 buf_dat78
J27-A40 Vdd J27-B40 buf_dat76
J27-A41 buf_dat75 J27-B41 gnd

(continued on next page)

4–32 Expansion Interface

Table 4–2 (Cont.) Expansion Connector Pin List

Pin Signal Pin Signal

J27-A42 buf_dat73 J27-B42 buf_dat74
J27-A43 gnd J27-B43 buf_dat72
J27-A44 buf_dat71 J27-B44 Vdd
J27-A45 buf_dat69 J27-B45 buf_dat70
J27-A46 Vdd J27-B46 buf_dat68
J27-A47 buf_dat67 J27-B47 gnd
J27-A48 buf_dat65 J27-B48 buf_dat66
J27-A49 gnd J27-B49 buf_dat64
J27-A50 ext_tl0 J27-B50 ext_tl1

Table 4–3 Expansion Connector Pin List — buf_data<127:0>

Bit Pin Bit Pin Bit Pin Bit Pin

127 J27-A2 95 J27-A26 63 J10-A2 31 J10-A25
126 J27-B3 94 J27-B27 62 J10-B1 30 J10-B24
125 J27-A3 93 J27-A27 61 J10-A4 29 J10-A26
124 J27-B4 92 J27-B28 60 J10-B2 28 J10-B26
123 J27-A5 91 J27-A29 59 J10-A5 27 J10-A28
122 J27-B6 90 J27-B30 58 J10-B3 26 J10-B27
121 J27-A6 89 J27-A30 57 J10-A7 25 J10-A29
120 J27-B7 88 J27-B31 56 J10-B5 24 J10-B29
119 J27-A8 87 J27-A32 55 J10-A8 23 J10-A31
118 J27-B9 86 J27-B33 54 J10-B6 22 J10-B30
117 J27-A9 85 J27-A33 53 J10-A10 21 J10-A32
116 J27-B10 84 J27-B34 52 J10-B8 20 J10-B32
115 J27-A11 83 J27-A35 51 J10-A11 19 J10-A34
114 J27-B12 82 J27-B36 50 J10-B9 18 J10-B33
113 J27-A12 81 J27-A36 49 J10-A13 17 J10-A35
112 J27-B13 80 J27-B37 48 J10-B11 16 J10-B35
111 J27-A14 79 J27-A38 47 J10-A14 15 J10-A37
110 J27-B15 78 J27-B39 46 J10-B12 14 J10-B36
109 J27-A15 77 J27-A39 45 J10-A15 13 J10-A38
108 J27-B16 76 J27-B40 44 J10-B14 12 J10-B37
107 J27-A17 75 J27-A41 43 J10-A16 11 J10-A39
106 J27-B18 74 J27-B42 42 J10-B15 10 J10-B38
105 J27-A18 73 J27-A42 41 J10-A17 9 J10-A40
104 J27-B19 72 J27-B43 40 J10-B17 8 J10-B39
103 J27-A20 71 J27-A44 39 J10-A19 7 J11-A2

(continued on next page)

Expansion Interface 4–33

Table 4–3 (Cont.) Expansion Connector Pin List — buf_data<127:0>

Bit Pin Bit Pin Bit Pin Bit Pin

102 J27-B21 70 J27-B45 38 J10-B18 6 J11-B1
101 J27-A21 69 J27-A45 37 J10-A20 5 J11-A4
100 J27-B22 68 J27-B46 36 J10-B20 4 J11-B2
99 J27-A23 67 J27-A47 35 J10-A22 3 J11-A5
98 J27-B24 66 J27-B48 34 J10-B21 2 J11-B3
97 J27-A24 65 J27-A48 33 J10-A23 1 J11-A7
96 J27-B25 64 J27-B49 32 J10-B23 0 J11-B5

Table 4–4 Expansion Connector Pin List — io_addr<31:2>

Bit Pin Bit Pin Bit Pin Bit Pin

31 J26-B18 23 J26-A5 15 J26-A17 7 J26-B27
30 J26-B19 22 J26-A6 14 J26-A18 6 J26-B28
29 J26-B21 21 J26-A8 13 J26-A20 5 J26-A29
28 J26-B22 20 J26-A9 12 J26-A21 4 J26-B49
27 J26-B24 19 J26-A11 11 J26-A23 3 J26-B16
26 J26-B25 18 J26-A12 10 J26-A24 2 J26-B3
25 J26-A2 17 J26-A14 9 J26-A26
24 J26-A3 16 J26-A15 8 J26-A27

Table 4–5 Expansion Connector Pin List — Vdd and gnd

Connector gnd Pins Vdd Pins

J26/J27 A7 B5 A4 B8
J26/J27 A13 B11 A10 B14
J26/J27 A19 B17 A16 B20
J26/J27 A25 B23 A22 B26
J26/J27 A31 B29 A28 B32
J26/J27 A37 B35 A34 B38
J26/J27 A43 B41 A40 B44
J26/J27 A49 B47 A46

J10/J11 A6 B4 A3 B7
J10/J11 A12 B10 A9 B13
J10/J11 A18 B16 A21 B25
J10/J11 A24 B22 A27 B31

(continued on next page)

4–34 Expansion Interface

Table 4–5 (Cont.) Expansion Connector Pin List — Vdd and gnd

Connector gnd Pins Vdd Pins

J10/J11 A30 B28 A33
J10/J11 A36 B34

Expansion Interface 4–35

5
Power Requirements

The EB64 derives its main system power from a user-supplied, industry-
standard, PC power supply. It consumes 18 A of power. To calculate power
supply needs for your system, add the current requirements (in amps) for each
voltage required by each device installed in the system to the value of the raw
EB64 board (18 A). Table 5–1 shows amps for each voltage.

Table 5–1 Voltage/Amp

Volts Amps

5 V 18 A

-5 V 0 A

-12 V .3 A

+12 V 1 A

See Section 3.4 and schematic pages eval.16, eval.24, and eval.29 for more
information.

Caution: Fan Sensor Required

The 21064 cooling fan must have a built-in sensor that will drive a
signal if the air flow stops. The sensor is connected to the EB64 board
(J17 Figure 2–1 and Table 2–1). When the signal is generated, it
places the system into dcok mode. This action protects the CPU under
fan-failure conditions, because the 21064 dissipates less heat in dcok
mode. The fan supplied with the EB64 includes an air-flow sensor.

Power Requirements 5–1

A
Technical Support, Ordering, and

Associated Literature

This appendix explains how to:

• Call for DECchip information and technical support.

• Order DECchip parts.

• Order associated literature for the DECchip 21064 evaluation board and
the DECchip 21064 microprocessor.

Technical Support, Ordering, and Associated Literature A–1

A.1 Information and Technical Support
Call the following phone numbers for information and technical support:

United States and Canada
TTY (United States only)
Outside North America

1–800–332–2717 (1–800–DEC–2717)
1–800–332–2515 (1–800–DEC–2515)
+1–508–568–6868

A.2 Ordering DECchip Products
To order the DECchip 21064 and related products, contact your local Digital
sales office. Working with your sales representative, you may be able to take
advantage of discounts and volume pricing.

You can order the following DECchip products from Digital.

Product Speed Order Number

DECchip 21064 Microprocessor 150 MHz 21064–AA

DECchip 21064 Microprocessor 200 MHz 21064–BA

DECchip 21064 Sample Kit 150 MHz 21064–SA

DECchip 21064 Sample Kit 200 MHz 21064–SB

Heat Sink Assembly – 2106H–AA

A.3 Associated DECchip Literature
The following table lists DECchip literature in the these categories:

• DECchip 21064 Literature

• DECchip 21064 Evaluation Board Literature

• DECchip Marketing Literature

A–2 Technical Support, Ordering, and Associated Literature

Title Order Number

DECchip 21064 Literature

DECchip 21064 Microprocessor Data Sheet EB–N0136–72

DECchip 21064 Microprocessor Hardware Reference
Manual

EC–N0079–72

DECchip 21064 PALcode System Design Guide EC–N0543–72

Designing a Memory/Cache Subsystem for the
DECchip 21064 Microprocessor: An Application Note

EC–N0301–72

Designing a System with the DECchip 21064
Microprocessor: An Application Note

EC–N0107–72

DECchip 21064 Evaluation Board Literature

Calculating a System I/O Address for the DECchip 21064
Evaluation Board: An Application Note

EC–N0567–72

DECchip 21064 Bus Transactor User’s Guide EC–N0448–72

DECchip 21064 Evaluation Board Debug Monitor
User’s Guide

EC–N0392–72

DECchip 21064 Evaluation Board Design Package
Read Me First

EC–N0352–72

DECchip 21064 Evaluation Board Product Brief EC–N0353–72

DECchip 21064 SROM Mini-Debugger User’s Guide EC–N0357–72

DECchip 21064 Evaluation Board User’s Guide EC–N0351–72

DECchip 21064 Software Design Tools User’s Guide EC–N0441–72

DECchip Marketing Literature

AMP PGA Burn-In and Product Sockets for DECchip
21064 with Alpha AXP Architecture AXP

EC–X3013–72

DECchip Information Line Brochure EB–N0109–72

DECchip Preprocessor for Hewlett-Packard Logic
Analyzer

EC–X2454–72

DECchip Sample Kit Brochure EB–N0108–72

Technical Support, Ordering, and Associated Literature A–3

Ordering Associated DECchip Literature
To order any of the previously listed DECchip literature, use FAX or mail.

FAX (available 24 hours)

1–508–351–4467

Mail

Digital Equipment Corporation
Order Administration NRO2–2/J6
444 Whitney Street
Northboro, MA 01532 USA

Send the following information by FAX or mail:

Name
Company name
Street address
City, state or county, and country
Document order number
Quantity

A.4 Associated Digital Literature
You can order and purchase the following literature from Digital.

Title Order Number

Alpha Architecture Reference Manual EY–L520E–DP–YCH

The following table explains how to order the previously listed Digital
literature.

If you are from . . . Then use this method to order . . .

The United States or Canada Call 1–800–DIGITAL.

Outside the United States Contact your local Digital office, or
technical or reference bookstore where
Digital Press books are distributed by
Prentice Hall.

A–4 Technical Support, Ordering, and Associated Literature

A.5 Associated Third-Party Literature
You can order the following third-party literature directly from the vendor.

Title Vendor Order Number

Single-Chip Ethernet Controller
for ISA Data Sheet

Advanced Micro Devices
P.O Box 3453
Sunnyvale, CA 94088 USA
1–800–222–9323
1–408–749–5703

Am79C960

Super I/O Floppy Disk
Controllers Data Sheet

Standard Microsystems
Corporation
80 Arkay Drive
Hauppauge, NY 11788 USA
1–516–435–6000

FDC37C651

486 PC/AT-Compatible System
Controller Data Sheet

VLSI Technology, Inc.
8375 South River Parkway
Tempe, AZ 85284 USA
1–602–752–8574

VL82C486

SCAMP Combination I/O
Data Sheet

VLSI Technology, Inc.
8375 South River Parkway
Tempe, AZ 85284 USA
1–602–752–8574

VL82C113

Technical Support, Ordering, and Associated Literature A–5

Index

A
Abbreviations, bit and field, ix
Address

bit
definitions, 3–1
description, 3–1
33, external, 4–2

bits 18 and 17, 3–12
I/O, 4–9
multiplexing, DRAM, 3–12
row and column, 3–11
space, 3–1

I/O, 3–5
I/O, debug ROM and system register,

3–6
I/O, expansion connector, 3–7
I/O, SC486 and interrupt

acknowledge, 3–7
main memory, 3–2
main memory, Bcacheable, 3–2
main memory, not Bcacheable, 3–3
main memory, not Bcacheable or data

cacheable, 3–4
main memory, not for instruction

fetch, 3–4
mapping, I/O, 3–5
mapping, sparse, 3–5
partitioning, 3–2
reads and writes to different memory

space, 3–4
ads#, 3–7

Alpha AXP
documentation, A–2

Associated literature, A–2

B
10Base2 Ethernet connector, 2–3
10BaseT Ethernet connector, 2–3
Battery backup connector for TOY clock,

2–4
Bcache

cycles — see Memory/Bcache cycles
index, 3–14
size

field, 3–23
selection, 3–14, 3–23

subsystem, 1–4, 3–14
tag, 3–14

Bcacheable memory space, 3–2
Bit abbreviations, ix
Block diagram, EB64, 1–1
Board

connectors and headers, 2–1
power connector, 2–3

Buffered
data, 4–2

parity, 4–3
delayed system clock, 4–2
system clock, 4–2
tag control bits, 4–3

buf_clk1_b2 (system clock), 4–2
buf_clk1_l (system clock), 4–2
buf_clk2 (delayed system clock), 4–2

Index–1

buf_clk2_l (delayed system clock), 4–2
buf_data<127:0>, 4–2

expansion connector pin list, 4–33
buf_par<3:0> (data parity), 4–3
buf_tagctl_<d,s,v,p> (tag control bits), 4–3
Bus

acquisition, external DMA device, 4–24
interface unit control (BIU_CTL) IPR,

3–3
BC_EN bit, 3–24
BC_PA_DIS field, 3–3, 3–17
BC_RD_SPD field, 3–15
BC_SIZE field, 3–23
BC_WR_SPD field, 3–15
OE bit, 3–16
SYS_WRAP bit, 3–12, 3–17, 3–24

master
21064, 3–5
DMA device, 3–5

release, external DMA device, 4–25
Byte enable, 3–6

external, 4–2
I/O, 4–9

C
Cache

see also Bcache
block, x
coherency design considerations, 4–16

additional memory, 4–17
DMA devices, 4–17
I/O devices, 4–17

line, x
cack_h<2:0> (command acknowledge), 3–19
CAS slip field, 3–23
Caution

convention, ix
do not read and write to different memory

space, 3–4
do not write and read to different memory

space, 3–4
fan sensor required, 2–4, 3–28, 5–1
not for instruction fetch, 3–4
set BIU_CTL OE, 3–16

Caution (cont’d)
setting Bcache off/on, 3–24
setting data wrapping mode, 3–12, 3–17,

3–24
to avoid component damage, 3–16

check<21,14,7,0> generation, 4–13
Clear lock flag, external, 4–4
Clocks

expansion connector, 4–18
real-time, 1–5
system, 3–30

buffered, 4–2
delayed, buffered, 4–2
distribution, 3–31
timing, 3–31

Column
0, 3–11
address, 3–11

0, external, 4–4
strobe (CAS), external, 4–3

Command acknowledge, 3–19
Components, EB64, 1–1
Connectors and headers, 2–1
Controller

DMA, 1–4, 3–26
floppy-disk, 1–5, 3–26
interrupt, 1–4, 3–26
ISA bus, 1–4, 3–26

Conventions, ix
bit abbreviations, ix
bit notation, ix
caution, ix
extents, x
field abbreviations, ix
note, x
numbering, x
ranges, x
read only (RO), ix
read/write (RW), ix
schematic references, x
signal names, xi
write only (WO), ix

Cooling fan
power and sensor connector, 2–4
sensor, 2–4, 3–28, 5–1

Index–2

cwmask1 (cycle write mask1), 3–12
Cycle

acknowledge, external, 4–3
request, delayed, external, 4–5
write mask, 3–12

external, 4–4

D
Data

wrapping—see Wrap, wrap_read
a4, external, 4–4
buffered, 4–2
bus read acknowledge, 3–3
output enable, external

ext_data_oe_l, 4–5
ext_doe_l, 4–6

parity, buffered, 4–3
path width, design considerations, 4–16
read acknowledge, external, 4–6
transfers

external DMA device, 4–24
external DMA device, read, 4–24
external DMA device, write, 4–25

units, ix
write

enable, external, 4–5
select, external, 4–7

Data cache
backmap write enable, external, 4–6
invalidate request, external, 4–5

d/c#, 3–7
dcok, 4–5

reset, 3–28
switch connector, 2–4

Debug
monitor, 1–5
ROM, 1–2, 1–5, 3–25

address zone, 3–6
byte field, 3–21
selection, 3–25

DECchip
documentation, A–2

DECchip information, A–2
Design considerations

cache coherency, 4–16
additional memory, 4–17
DMA devices, 4–17
I/O devices, 4–17

data path width, 4–16
expansion connector hardware, 4–15

Direct memory access (DMA)
controller, 1–4, 3–26
cycle, 3–19
device is bus master, 3–5
devices, cache coherency, 4–17
through expansion connector, 4–24

bus acquisition, 4–24
bus release, 4–25
data transfers, 4–24
lock flag, 4–25

Documentation, A–2
doe_1 (data output enable) generation, 4–13
doe_dis signal name change, 4–13
drack_h<2:0> (data bus read acknowledge),

3–3
Drive-type jumper, 2–3
dwsel (data bus write select) signal name

change, 4–13
dwsel1 (data bus write select 1) generation,

4–13
Dynamic RAM (DRAM), 1–1

address multiplexing, 3–12
SIMM connectors, 2–4

E
EB64

block diagram, 1–1
components, 1–1
features, 1–4
uses, 1–3

Ethernet
connector

10Base2, 2–3
10BaseT, 2–3

interrupt, 3–27
LEDs, 2–3

Index–3

Ethernet (cont’d)
port, 1–5, 3–27

Expansion
connector

DMA through — see Direct memory
access

programmed I/O, see Programmed I/O
address zone, 3–7
clocks, 4–18
control setup, 4–18
design considerations for hardware,

4–15
pin lists, 4–28

buf_data<127:0>, 4–33
gnd, 4–34
io_addr
Vdd, 4–34

signal description, 4–1
signals, 4–1, 4–15

interface, 1–5, 4–1
21064, 4–15
connector, 2–4

21064 expansion interface, 4–15
Extents convention, x
External

address bit 33, 4–2
byte enable, 4–2
clear lock flag, 4–4
column address

0, 4–4
strobe (CAS), 4–3

cycle
acknowledge, 4–3
request, delayed, 4–5
write mask, 4–4

data
a4, 4–4
output enable, 4–5, 4–6
read acknowledge, 4–6
write enable, 4–5
write select, 4–7

data cache
backmap write enable, 4–6
invalidate request, 4–5

hit, 4–7

External (cont’d)
hold, 4–7

acknowledge, 4–7
request, 4–8

I/O
address disable, 4–8
over, 4–9

inhibit tag output enable, 4–8
interrupt request, 4–9
memory data

read clock enable, 4–9
read output enable, 4–10
write clock enable, 4–10
write output enable, 4–10
write parity output enable, 4–10

reset, 4–10
row address strobe (RAS), 4–10
select

column, 4–11
column 2, 4–11
tag address, 4–11

start, 4–11
tag

address write enable, 4–12
control bits, 4–12
control write enable, 4–12

transfer length, 4–12
write

enable, 4–13
tag address output enable, 4–13
tag control output enable, 4–13

zone, 4–13
ext_adr33_in (address bit 33), 4–2
ext_be<1:0> (external byte enable), 4–2
ext_cack<2:0>_l (cycle acknowledge), 4–3
ext_cas<3:0>_l (column address strobe), 4–3
ext_clr_flag_l (clear lock flag), 4–4
ext_col_a0_l (column address 0), 4–4
ext_cwmask<7:0> (cycle write mask), 4–4
ext_data_a4_l (data SRAM address 4), 4–4
ext_data_oe_l (data output enable), 4–5
ext_data_we<3:0>_l (data write enable), 4–5

Index–4

ext_del_creq<2:0> (delayed cycle request),
4–5

ext_dinvreq_l (data cache invalidate request),
4–5

ext_dmapwe (data cache backmap write
enable), 4–6

ext_doe_l (data output enable), 4–6
ext_drack<2:0>_l (data read acknowledge),

4–6
ext_dwsel1_l (data write select), 4–7
ext_hit, 4–7
ext_hold_ack (hold acknowledge), 4–7
ext_hold_l, 4–7
ext_hold_req_l (hold request), 4–8
ext_inhibit_tag_oe_l (inhibit tag output

enable), 4–8
ext_ioadr_dis_l (I/O address disable), 4–8
ext_io_over_l, 4–9
ext_irq<2:0>_l (interrupt request), 4–9
ext_md_rd_clken_l (memory read clock

enable), 4–9
ext_md_rd_oe_l (memory read output

enable), 4–10
ext_md_wr_clken_l (memory write clock

enable), 4–10
ext_md_wr_oe<3:0>_l (memory write output

enable), 4–10
ext_md_wr_par_oe_l (memory write parity

output enable), 4–10
ext_ras_l (row address strobe), 4–10
ext_reset_l, 4–10
ext_sel_col2_l (select column 2), 4–11
ext_sel_col_l (select column 1), 4–11
ext_sel_tagadr_l (select tag address), 4–11
ext_start, 4–11
ext_tagadr_we_l (tag address write enable),

4–12
ext_tagctl_<d,s,v,p>_l (tag control bits), 4–12
ext_tagctl_we_l (tag control write enable),

4–12
ext_tl<1:0> (external transfer length), 4–12
ext_we_l (write enable), 4–13

ext_wrt_tagadr_oe_l (write tag address
output enable), 4–13

ext_wrt_tagctl_oe_l (write tag control output
enable), 4–13

ext_zone, 4–13

F
Fan

power and sensor connector, 2–4
sensor, 2–4, 3–28, 5–1

Features, EB64, 1–4
Field abbreviations, ix
Floppy-disk

connector, 2–5
controller, 1–5, 3–26
interrupt, 3–27

G
gen_par<3:0> generation, 4–13
gnd, 4–7

expansion connector pin list, 4–34

H
Headers and connectors, 2–1
Hexaword DRAM

read cycle, 3–17
write cycle, 3–18

Hit, external, 4–7
Hold

acknowledge, external, 4–7
external, 4–7
generation, 4–13
request, external, 4–8

I
I/O

programmed through the expansion
connector, see Programmed I/O

address, 4–9
disable, external, 4–8
space mapping, 3–5

byte enable, 3–6, 4–9

Index–5

I/O (cont’d)
devices, 3–20

cache coherency considerations, 4–17
system register, 3–20

over, external, 4–9
space

debug ROM and system register, 3–6
expansion connector, 3–7
SC486 and interrupt acknowledge,

3–7
transfer length, 3–6

Idle loop, programmed I/O, 4–21
Initialization, 3–28
Instruction fetch, not Bcacheable or data

cacheable memory space, 3–4
Interface

expansion — see Expansion interface
ISA, 1–4, 3–26

Internal processor register (IPR), 3–3
Interrupts, 3–27

acknowledge address zone, 3–7
controller, 1–4, 3–26
Ethernet, 3–27
interrupt request, external, 4–9
IRQ0, 3–27
IRQ1, 3–27
IRQ2, 3–27
IRQ<5:3>, 3–27
ISA

INTR, 3–27
NMI, 3–27

real-time clock, 3–27
SC486, 3–27

io_addr
<31:2>, 4–9

expansion connector pin list, 4–34
field, 3–22

io_be<3:0> (I/O byte enable), 4–9
io_hold signal name change, 4–13
ISA

bus controller, 1–4, 3–26
interface, 1–4, 3–26
INTR interrupt, 3–27
NMI interrupt, 3–27
slot, 1–5

ISA (cont’d)
slot <1:0> connector, 2–4

K
Keyboard, 1–5

and mouse connector, 2–5

L
Light-emitting diode (LED), Ethernet, 2–3
Literature, A–2
Load locked cycle, 3–18
Lock flag, 3–18

external DMA device, clear, 4–25
Logic analyzer header, 2–6
lw0_par<3:0> signal name change, 4–13

M
Master Mode, 3–19
Memory

cache coherency design considerations for
additional memory, 4–17

data
read clock enable, external, 4–9
read output enable, external, 4–10
wrapping, 3–24
write clock enable, external, 4–10
write output enable, external, 4–10
write parity output enable, external,

4–10
main memory subsystem, 3–8
read slip cycles, 3–8
size, 1–4

selection, 3–8, 3–24
space

Bcacheable, 3–2
not Bcacheable, 3–3
not Bcacheable or data cacheable,

3–4
not for instruction fetch, 3–4
reads and writes to different memory

space, 3–4
subsystem, 1–4, 3–8
type field, 3–24

Index–6

Memory/Bcache
cycles, 3–17

DMA cycle, 3–19
hexaword DRAM read, 3–17
hexaword DRAM write, 3–18
load locked cycle, 3–18
refresh cycle, 3–20
store conditional cycle, 3–19
victim write cycle, 3–18

m/io#, 3–7
Mouse, 1–5

and keyboard connector, 2–5

N
Note convention, x
Numbering convention, x

O
Ordering information, A–2
Order numbers, A–2

P
par<3:0> signal name change, 4–13
Part numbers, A–2
Peripheral devices, 1–5, 3–26
Ports

Ethernet, 1–5, 3–27
serial, 1–5, 3–26

Power, 3–28
monitor, 3–28
requirements, 5–1

Precompensation jumper, 2–3
Programmable timer, 1–5
Programmed I/O through the expansion

connector, 4–19
idle loop, 4–21
read cycle, 4–21
read fill sequence, 4–22
victim write sequence, 4–21
write block, 4–23

PROM
see also Debug ROM
jumper

0 or 1, 2–3
size, 2–5

R
RAM, see

Dynamic RAM (DRAM), Memory
Serial RAM (SRAM), Bcache
Video RAM (VRAM)

Ranges convention, x
rdy#, 3–7
Read

data wrapping—see Wrap, wrap_read
cycle, programmed I/O, 4–21
fill

sequence, programmed I/O, 4–22
single, x, 3–4

only (RO) convention, ix
slip cycles, 3–8
write (RW) convention, ix

Reads and writes to different memory space,
3–4

Real-time clock, 1–5
interrupts, 3–27

Refresh
cycle, 3–20
timer, 1–5

Related documentation, A–2
remote_reset_l, 4–10
Reset, 3–28

dcok, 3–28
switch connector, 2–4

external, 4–10
remote, 4–10
(rst), 4–10
system, 3–28

switch connector, 2–4
ROM

see Debug ROM, PROM, Serial ROM

Index–7

Row address, 3–11
strobe (RAS), external, 4–10

rst (reset), 4–10

S
SC486

address zone, 3–7
definition, 3–26

Schematic references
convention, x

Select
column, external, 4–11
column 2, external, 4–11
tag address, external, 4–11

Serial
ports

1 and 2 connectors, 2–4
I/O, 1–5, 3–26
interrupt, 3–27
SROM, 3–29

RAM (SRAM) damage caution, 3–16
ROM (SROM), 1–5, 3–28

serial port connector, 2–4
serial port diagram, 3–29

Signal name
changes, 4–13

doe_dis, 4–6, 4–13
dwsel, 4–7, 4–13
io_hold, 4–7, 4–13
lw0_par<3:0>, 4–3, 4–13
par<3:0>, 4–3, 4–13

convention, xi
Single

in-line memory module (SIMM)
connectors, 2–4

read fill, x, 3–4
Slow-speed peripheral devices, 1–5, 3–26
Sparse address mapping, 3–5
Speaker connector, 2–3
Start, external, 4–11
Store conditional cycle, 3–19
sysclk_pll_3, 4–12

System
block diagram, 1–1
bus acquisition and release sequence,

4–27
clocks, 3–30

buffered, 4–2
delayed, buffered, 4–2
distribution, 3–31
PLL 3, 4–12
timing, 3–31

components, 1–1
configuration jumpers, 2–5
features, 1–4
power, 3–28
register, 3–20

address zone, 3–6
Bcache size field, 3–23
bit description, 3–21
CAS slip field, 3–23
io_addr field, 3–22
memory type field, 3–24
ROM byte field, 3–21
wrap read bit, 3–24

reset, 3–28
switch connector, 2–4

uses, 1–3

T
Tag

address
bits tagadr<33:32>, 3–16
select, external, 4–11
write enable, external, 4–12
write output enable, external, 4–13

control
write enable, external, 4–12
write output enable, external, 4–13

control bits
buffered, 4–3
external, 4–12

inhibit output enable, external, 4–8
tagctl_<d,s,v,p>

buffered, 4–3
external, 4–12

Index–8

Technical support, A–2
Time-of-year (TOY) clock battery backup

connector, 2–4
Timer

programmable, 1–5
refresh, 1–5

Transfer length, 3–6
external, 4–12

U
Uses, EB64, 1–3

V
Vdd, 4–12

expansion connector pin list, 4–34
Victim write

cycle, 3–18
sequence, programmed I/O, 4–21

Video RAM (VRAM), 4–17, 4–21

W
w/r#, 3–7
Wrap

data wrapping mode, 3–12, 3–17, 3–24
read, 3–17

bit, 3–24
data wrapping, 3–24

wrap_read, 4–13
Write

block, programmed I/O, 4–23
enable, external, 4–13
only (WO) convention, ix
tag address output enable, external, 4–13
tag control output enable, external, 4–13

Z
Zone, external, 4–13

Index–9

