TSX-Plus
Programmer’s Reference Manual

Sixth Edition—First Printing—January 1988

Copyright © 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988.
S&H Computer Systems, Inc.

1027 Seventeenth Avenue South

Nashville, Tennessee 37212-2299 USA

(615) 327-3670

The information in this document is subject to change without notice and should not be construed as a
commitment by S&H Computer Systems, Inc. S&H assumes no responsibility for any errors that may
appear in this document.

NOTE: TSX, TSX-Plus, PRO/TSX-Plus, COBOL-Plus, PRO/COBOL-Plus, RTSORT,
PRO/RTSORT and CLASS are proprietary products owned and developed by S&H Computer Systems,
Inc., Nashville, Tennessee, USA. The use of these products is governed by a licensing agreement that pro-
hibits the licensing or distribution of these products except by authorized dealers. Unless otherwise noted
in the licensing agreement, each copy of these products may be used only with a single computer at a single
site. S&H will seek legal redress for any unauthorized use of these products.

A license for RT-11 is required to use this product. S&H assumes no responsibility for the use or reliability
of this product on equipment which is not fully compatible with that of Digital Equipment Corporation.

Use, duplication, or disclosure by the Government, is subject to restrictions as set forth in subdivision
(b)(8)(ii) of the Rights in Technical Data and Computer Software clause at 52.227-7013.

Questions regarding the licensing arrangements for these products should be addressed to S&H Computer
Systems, Inc., 1027 Seventeenth Avenue South, Nashville, Tennessee 37212, (615) 827-3670, Telex 786577 S
AND H UD.

TSX®, TSX—Plus®, PRO/TSX-Plus™, COBOL—Plus®.PRO/COBOL—Plus"“,RTSORT®,PRO/RTSORT"‘, CLASS,
Process Windowing™, and Adaptive Scheduling Algorlthm® are trademarks of S&H Computer Systems, Inc.

CTS-300, DEC, DIBOL, F77, PDP-11, Professional 300 Series, Q-Bus, RT-11, UNIBUS, VAX, VMS, VT52 and VT100 are
trademarks of Digital Equipment Corporation.

DBL is a trademark of Digital Information Systems Corporation.

Contents

1 Introduction

1.1

1.2

2 TSX-Plus Job Environment

2.1
2.2
2.3
2.4
2.5
2.8
2.7
2.8
2.9

2.10 User command interface

Management of System Resources o e
1.1.1 Memory Management o v v v ittt e e e e e e e e e e e e
1.1.2 Execution Scheduling o 0 i i i i e e e e e e e
1.1.8 Subprocesses and Process Windowing

...........................

1.1.4 Directory and Data Caching

1.1.5 System Administrative Control

1.1.6 Time-sharing linesand CLunits
Summary of Chapter Contents i i i i it e e
1.2.1 TSX-Plus Job Environment
1.2.2 Program Controlled Terminal Options
1.28 TSX-Plus EMTs 0 i e e e s e e e e e e e e
1.2.4 Shared Files, Record Locking and Data Caching

1.2.5 Inter-program Message Communication

.................................

...........................

.....................

W L0 L9 63 Co 0 €0 3 B BN N W N

1.2.6 Programming for CL and Special Device Handlers

'

....................

1.2.7 Real-time Support

[N

......................................

1.2.8 Shared Run-time System Support

>

.............................

1.2.9 Program Debugging Facility e
1.2.10 Program Performance Monitor Facility
1.2.11 Differences from RT-11

1.2.12 Appendices

...........................

...................................

ot Ov R

..

Simulated RMON

Virtual and physical memory

..

....................................

00 =1 =31 =3

User virtual address mapping e e e e e e e e e e
Normal programs and virtual programs
Access to system 1/O page
Job priorities e e e e e e e 9
Extended memory (PLAS) regions 10
Shared run-time systems L e e e e e e e e 12

VM pseudo-device handler

ii CONTENTS

3 Program Controlled Terminal Options 15
3.1 Terminalinput/output handling 15
3.1.1 Activation CharBcters. ¢ v v v v ot b e e e e e 15
8.1.2 Single character activation.o 16
8$.1.83 Non-blocking TTINR 0.ttt it i e e e 16
3.1.4 Non-blocking TTOUTR o ittt i e 17

3.2 Program controlled terminal optionso e s 17
8.2.1 “A” function—Set rubout filler character o o0 19
229 “B” & “C” functions—Set VT52, VT100 and VT200 escape-letter activation 20
3.2.3 “D” function—Define new activation character 20
3.2.4 “E” and “F” functions—Control character echoing 20
3.2.5 “H” function—Disable subprocess use oo 20
326 “I” and “J” functions—Control lowercaseinput 00 20
827 YK” and “L” functions—Control character echoing 20
3$.2.8 “M” function—Set transparency modeof output 21
$.2.9 “N” and “O” Functions—Control command fileinput 21
$.2.10 “P” function—Reset activation character 21
3.2.11 “Q” function—Set activationon fieldwidth 21
3.2.12 “R” function—Turn on high-efficiency terminal mode 21
3.2.13 “S” function—Turn on single-character activationmode 22
$.2.14 “T” function—Turn off single-character activationmode 22
3.2.15 “U” function—Enable non-wait TT I/O testing, 22
$.2.16 “V” function—Set field widthlimit o oo 22
$.2.17 “W” and “X” functions—Controltapemode 22
3.2.18 “Y” and “Z” functions—Control line-feedecho, 23

4 TSX-Plus EMTs 25
4.1 Obtaining TSX-Plus system values (GVAL), 25
4.2 Determining number of free blocksinspoolfile 26
4.3 Determining if a job is running under TSX-Plus 27
4.4 Determining the TSX-Plus linenumber i 27
4.5 Determining subprocess jobnumber 0o oo n s i e, 28
4.6 Set/Reset ODT activationmodet ittt 29
4.7 Sending a block of characters to the terminal 30
4.8 Accepting a block of characters from the terminal 30
4.9 Checking for terminal input errors Lo i e e e e e 31
4.10 Determining input characters pendingforaline 32
4.11 Set terminal read time-out value L e e e e 82
4.12 Turning high-efficiency terminal modeonandoff 33
4.13 Checking for activation characters ittt e 34

4.14 Sending a message to another line

CONTENTS iii

4.15
4.18
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.28
4.27
4.28
4.29
4.30
4.31

.82
4.33
4.34
4.35
4.36
4.87
4.38
4.39
4.40
4.41

4.42

4.43

4.44
4.45

Starting A Detached Job e e e 36
Checking the status of a detached job, 37
Killingajob« o o e e e e e e 38
Establishing break sentinel control e 38
Mount a file structure L L e e e e e e e e e e 40
Dismount a file structure e e e e e e 41
Dismounting all file structures and logicaldisks 42
Dismounting Logical Disks e e e e 42
Determining Status of Logical Disks 43
Dismounting all logical disks L e 45
Determining the terminal type e e e e e e e e 46
Controlling the size of a job e e e e 46
Determining job status information L L e e 47
Determining file directory information e 50
Setting file creation time L L e e e e e e 51
Determining or changing the username 53
EMT to determine or change program name i 54
Setting job priority e e e e e e e e e e 55
Determining or changing job privileges 0o, 57
Specifing that a file be placed in HOLD or NOHOLD mode 58
Program controlled terminal options L e e e 60
Forcing [noninteractive job characteristics 60
Setting terminal baud rates L. e e e 61
Raising and lowering the DTR signalonaline 63
Assigning a CL unit to a time-sharing line 64
Allocating a device for exclusive use e e 66
Job momnitoring e e e e e e e e e e e 67
4.41.1 Establishing a monitoring connection 0., 68
4.41.2 Cancel a monitoring connection v . it i e e e e e 68
4.41.3 Broadcast status report to monitoring jobso 69
Acquiring another job’s filecontext L e 70
Manipulating process windows L L e 72
4.43.1 Creatingawindow e e e 72
4.43.2 Selecting a current window e e 75
4.43.3 Deleting windows L e e e e e e e e 75
4.43.4 Suspending window processing e e e e e 76
4.43.5 Resuming window processing i it e e e e 76
4.43.6 Printing a window L e e e e e 76
Switching Between Subprocesses L e e e e 76

Mounting Logical Disks

iv CONTENTS
5 Shared File Record Locking 81
5.1 Openingashared fileo 82
5.2 Saving the status of a shared file channel e 84
5.8 Waitingforalocked blocko e 86
54 Tryingtolockablock 88
5.5 Unlocking a specific blocko oo e 90
5.6 Unlocking alllocked blocksinafile v 90
5.7 Checking for writes toashared file i 91
5.8 DatacachiNg . ¢ v v v v vt v i vt e e e e e 91

6 Message Communications Facilities 93
6.1 Messagechannels 93
8.2 SendiNg B IMESSAZE . . .« .« v ¢ s oo s e e e e s e e e e 93
8.8 Checking for pending messages oo e 95
6.4 Waiting for a MeSSAZEo 96
6.5 Scheduling a message completionroutine. oo e 97

7 Programming for CL and Special Device Handlers 101
7.1 Communication line handler (CL) it 101
7.1.1 VTCOM/TRANSF support and CL handler 102

7.1.2 Terminal/Communication line cross connectiono 103

7.1.3 Redirecting CL and time-sharinglines 108

7.14 CLI/Ooperations oo ei it i e 104

7.1.5 CL control character processing ¢ o i oo i e i e 104

7.18 CL SPFUNOPErations v v v v v v o v oo v sttt n e o v o s oo s o oaas 105

7.2 RKO6/RKO7 handler (DM)ttt 118
7.3 DU(TMSCP) handler oot e e e 113
74 IEEEGPIBhandler (IB) i 113
7.5 Logical subest disk handler (LD) 118
76 MU (TMSCP) handler ottt e e 116
7.7 Virtual memory handler (VM) e e e e e e 116
7.8 Communicationshandler (XL) vttt i e 118
7.9 Spooled devices v i i e e e e e 118

8 Real-Time Program Support 121
8.1 Accessingthe I/Opaget e e s 122
8.1.1 EMT to map the I/O page into the program space 122

8.1.2 EMT to remap the program region to the simulated RMON 123

8.1.3 EMT topeekatthe I/Opage.ottty 124

8.1.4 EMT topokeintothe I/Opage. it 125

8.1.5 EMT to bit-set a valueintothe /O page 125

CONTENTS v

8.1.6 EMT to do a bit-clear intothe I/Opage 127

8.2 Mapping to a physical memory region L L L e e e e e e e e 127
8.3 Requesting exclusive system control L L o o e 129
8.4 Lockingajobinmemory e e e e e e e 130
8.5 Unlockingajobfrommemory 0 i e e e e e e e e e e 131
8.6 Suspending/Resuming program executiono v it vttt 131
8.7 Converting a virtual address to a physicaladdress 131
8.8 Specifying a program-abort devicereset list, 132
8.9 Setting processor priority level o L o 133
8.10 Setting Job Execution Priority e e e 133
8.11 Connecting interrupts toreal-timejobs 134
8.11.1 Interrupt service routines L. it e e e e e e e e 187
8.11.2 Interrupt completion routines L L e 140

8.12 Releasing an interrupt connection L. e e e e e e e 143
8.13 Scheduling a completion routine L. Lo o e 143
8.14 Adapting real-time programs to TSX-Plus 144
9 Shared Run-time System Support 145
9.1 Associating a run-time system withajob, 145
9.2 Mapping a run-time system into a job’sregion 147
9.8 Fast mapping to shared {run-time TEIONS L e e e e e e e 148
10 Program Debugger 151
10.1 Debugger requirements 1 151
10.2 Invoking the debugger ‘ 152
10.2.1 RUN/DEBUG svﬁ‘ritch 152
10.2.2 CTRL-D Break oo oo oottt et 152

10.3 BPT Instruction 0 0 it e e e e e 152
104 Commands e e e e e e e e e e e e 158
10.5 CTRL-D breakpoints i i i i et 154
10.6 Addressrelocation e e e e e e 155
10.7 Internal registers i i i e e e e e e e e e e 155
10.8 Data watchpoints . . . T 155
10.9 Symbolicinstruction decoding L L. L L . 156

10.10Special notes

vi

11 TSX-Plus Performance Monitor Feature

11.1 Starting a performance analysis oo
11.2 Displaying the results of the analysis
11.8 Performance monitor control EMTs
11.8.1 Initializing a performance analysis
11.3.2 Starting a performance analysis
11.3.3 Stopping a performance analysis

11.8.4 Terminating a performance analysis

12 TSX-Plus Restrictions
12.1 System service call (EMT) differences between RT-11 and TSX-Plus

12.2 Special program suggestionso e e e e e
12.2.1 DIBOL . . . o i e e e e e e e e e e
12.2.2 FILEX utility . . .« v v v o o o e e e e et it e e e e e
12.2.8 FORTRAN virtualarrays o v v vt v i v o o v v e e e e as
12.2.4 IND .ASKx timeouts« v v v v i e
12.2.5 MicroPower/Pascal
12.2.86 Overlaid programs« v vt i e e e e

A SETSIZ Program

A.1 Running the SETSIZ program« . 0 v v v v it v vt i oo e v
A.2 Setting total allocationforaSAVfile.
A.3 Setting amount of dynamic memory spaceo ool
A.4 Setting virtual-image flagin SAVfileo 00y

B RT-11 & TSX-Plus EMT Codes

B.1 TSX-Plus RT-11 Compatible EMTs
B.2 TSX-Plus Specific EMTs it it

C Subroutines Used in Example Programs

C.1 PRTOCT—Printanoctalvalue.
C.2 PRTDEC—Print adecimalvalue

C.3 PRTDE2—Print & two-digit decimal value
C.4 PRTR50—Print a RAD50 word at the terminal
C.5 R50ASC—Convert a RADS50 string into an ASCIZ string
C.6 DSPDAT—Print a date value at the terminal
C.7 DSPTIS—Display a 8-second format time value
C.8 ACRTIS—Convert a time value to special 3-second format
C.9 ACRDEC—Convert an ASCII decimal value to a numeric value
C.10 RADASC—Convert 8 RADIX-50 string to ASCII

....................

................

...........

..................

........

CONTENTS

169

CONTENTS vii

D DIBOL TSX-Plus Support Subroutines 191
D.1 Record locking subroutin;es 191
D.1.1 Openingthefile e e 191
D.1.2 Lockingandreadingarecord e 192
D.1.3 Writingarecord e e e e e e 193
D.1.4 Unlockingrecords @ i e e e e e e e 193
D.1.5 Closingashared file e e 193
D.1.6 Record Locking Example e e 194
D.1.7 Modifying programs for TSX-Plus, 194

D.2 Message communication subroutines L L L0 s e s 194
D.2.1 Message Channels e e e e 194
D.2.2 Sending a Message e e e e e e 195
D.2.8 Checking for Pending Messages 195
D.2.4 Waitingfor a Message vt v it i e e e e e e e e e e e e 195
D.2.5 Message Examples e 196

D.3 Using the subroutines e e e 196
D.4 Miscellaneous functions e e e 196

Chapter 1

Introduction

TSX-Plus is a high performance operating system for Digital Equipment Corporation PDP-11 and LSI-11
computers, supporting as many as forty concurrent time-sharing users. TSX-Plus provides a multi-user
programming environment that is similar to extended memory (XM) RT-11.

e TSX-Plus keyboard commands are compatible with those of RT-11.
e TSX-Plus supports most RT-11 system service calls (EMTs).

e Most programs that run under RT-11 will run without modification under TSX-Plus. This includes
RT-11 utility programs such as PIP, DUP, DIR, LINK, KED, BUP and MACRO.

TSX-Plus uses RT-11 XM version device handlers.

TSX-Plus provides PLAS extended memory services such as virtual overlays and virtual arrays, as
well as support for extended memory regions.

TSX-Plus can simultaneously support a wide variety of jobs and programming languages including COBOL-
Plus, FORTRAN, BASIC, DIBOL, DBL, Pascal, C, MACRO, IND, TECO and KED. TSX-Plus is used in
educational, business, scientific and industrial environments. It can concurrently support commercial users
doing transaction processing, engineering users performing scientific processing, system programmers doing
program development, and real-time process control. Numerous application software packages compatible
with TSX~Plus are available from other vendors. '

TSX-Plus supports RT-11 system service calls (EMTs) as its basic mode of operation. The result is low
system overhead and substantially improved performance over systems that emulate RT-11 services. TSX-
Plus overlaps terminal interaction time, I/O wait time, and CPU execution time for all jobs on the system.
The result is a tremendous increase in the productivity of the computer system.

In addition to the basic RT-11 functionality, TSX-Plus provides extended features such as: process windows;
shared file record locking; inter-job message communication; program performance monitoring; command file
parameters; logon and usage accounting; directory and data caching; multitasking; and system I/O buffering.

This manual describes all the features unique to TSX-Plus as well as any differences from RT-11. Many of
the special features of TSX-Plus are available as EMTs available to the MACRO programmer. Access to
these features from other languages requires the appropriate subroutine interface.

TSX-Plus will run on any PDP-11 or LSI-11 computer with memory management hardware and at least
256 Kb of memory, although additional memory may be needed for satisfactory multi-user performance. The
system must also have a disk suitable for program swapping (the swapping disk can be used for regular file
storage as well). Time-sharing lines and serial printers may be connected to the system through either single-
line or multiplexer type interfaces. See the TSX-Plus Installation Guide for a list of interfaces supported for

use with terminals and communications lines. Both hardwired and dial-up time-sharing lines are supported
by T3X-Plus.

2 CHAPTER 1. INTRODUCTION
1.1 Management of System Resources

1.1.1 Memory Management

TSX-Plus uses the memory management facilities of PDP-11 computers to keep several user jobs in memory
simultaneously and switch rapidly among them. TSX-Plus protects the system by preventing user jobs from
halting the machine or storing outside their program regions. TSX-Plus provides several ways to control the
amount of memory used by individual jobs. Programs may be allowed to use up to 84 Kb of memory and, if
additional space is needed, may also use extended memory regions, virtual overlays and virtual arrays. The
system manager may enable job swapping to accommodate more user jobs than can fit in existing memory.

1.1.2 Execution Scheduling

TSX-Plus provides fast response to interactive jobs but minimizes job swapping by use of the patented
Adaptive Scheduling Algorithm. TSX-Plus permits job scheduling on both an absolute priority basis and by
a method based on job states. For most applications, the method based on job states is preferred. The state
driven method provides the most transparent time-sharing scheduling, suitable for interactive environments.
The absolute priority method always runs the highest priority executable job, when not servicing interrupts,
regardless of that job’s state. This state free method is most suitable for an environment in which several
real-time jobs must be assigned absolute priorities. TSX-Plus permits both kinds of jobs to co-exist in the
same system, with interactive jobs being scheduled whenever higher priority state Jree jobs are not executing.

Job priorities may be assigned over a range of 0 to 127. The lowest priority jobs, typically 0 to 19, are
reserved for fixed priority jobs which can soak up system idle time without disturbing interactive or real-
time jobs. The medium priority range, typically 20 to 79, is assigned to interactive jobs which are scheduled
according to the Adaptive Scheduling Algorithm which makes time-sharing nearly transparent to several
users. The highest priority range, typically 80 to 127, is reserved for jobs which must execute according to
a rigid priority scheme such as might be found in a real-time environment. In addition, real-time jobs may
execute interrupt service routines at fork level processing or schedule interrupt completion routines to run
as fized high priority jobs.

Job scheduling is controlled by several system parameters relating job priorities, system timing and other
events. The TSX-Plus System Manager’s Guide includes a more complete description of job priority and
scheduling.

1.1.3 Subprocesses and Process Windowing

TSX-Plus allows the time-sharing user to interact with and control multiple executing processes. The
primary process for a user is invoked when the user logs on; subprocesses can easily be initiated by typing
a control character digit sequence. The Process Windowing (tm) facility causes the system to monitor all
characters sent to the terminal and maintain an in-memory image of what is currently presented on the
terminal screen. This allows the system to restore the terminal display when switching between processes.
Process Windowing also provides a print window function which, when invoked by typing a control character,
causes the current window contents to be printed on a specified hardcopy printer or saved to a disk file.

1.1.4 Directory and Data Caching

TSX-Plus provides a mechanism to speed up directory operations by caching device directories. This reduces
disk I/O necessary to open existing files. Two methods of caching file data are also possible to further improve
system throughput. When directory and generalized data caches are full, new data replaces least recently
used existing data. When the shared file data cache is full, new data replaces least frequently used existing
data. Directory and data caching are discussed in the TSX-Plus System Manager’s Guide.

1.2. SUMMARY OF CHAPTER CONTENTS 3

1.1.6 System Administrative Control

TSX-Plus allows the system manager to limit access to the system through a logon facility and to restrict
user access to peripheral devices. These features are described in the TSX-Plus System Manager’s Guide.

1.1.6 Time-sharing lines and CL units

TSX-Plus supports time-sharing terminal lines interfaced through several types of interface cards (see the
TSX-Plus Installation Guide for a list of supported interface protocols). Using the CL feature provided with
TSX-Plus, other serial devices such as printers, plotters and communications devices can also be attached
using the same types of interfaces. Up to 16 CL units may be attached to TSX-Plus. (Units O through
7 are referenced as CLO through CL7 respectively; units 8 through 15 are referenced as C10 through C17
respectively.) These devices may either be permanently assigned as CL units or may be used at some times
as time-sharing lines and other times as I/O devices by having a CL unit take over an inactive time-sharing
line. See the TSX-Plus User’s Reference Manual description of the SET CL and SHOW CL commands for
more information on using CL units. See the TSX-Plus Installation Guide for more information on including
dedicated and extra CL units during system generation.

1.2 Summary of Chapter Contents

1.2.1 TSX-Plus Job Environment

TSX-Plus supports the use of extended memory regions through EMT calls compatible with those provided
by the RT-11 XM monitor. This allows the use of virtual overlays and FORTRAN virtual arrays. Users can
also expand programs to use the full 16-bit virtual address space. That is, by giving up direct access to the
I/O page and direct access to fixed offsets in RMON, a program may directly address a full 64 Kb.

1.2.2 Program Controlled Terminal Options

TSX-Plus allows the programmer to modify terminal handling characteristics during program execution.
For example, a program may disable character echoing, use single character activation, use high efficiency
output mode, enable lower case input, activate on field width, or disable automatic echoing of line-feed after
carriage-return. These terminal options may be selected either by issuing the appropriate EMT request or
by writing a special sequence of two or three characters to the terminal.

1.2.3 TSX-Plus EMTs

TSX-Plus supports most of the system service calls (EMTs) provided by RT-11 and, in addition, provides
many more to utilize the special features of TSX-Plus. For example, EMTs are provided to determine
the TSX-Plus line number and the user name, to send messages to another time-sharing line, to check
for terminal input errors, and to check for activation characters. EMTs related to specific features, such as
detached jobs, inter-program messages or real-time programming, are described in the relevant chapters. The
TSX-Plus EMTs which are not closely related to features described elsewhere are discussed in Chapter 4.

1.2.4 Shared Files, Record Locking and Data Caching

TSX-Plus provides a file sharing mechanism whereby several cooperating programs may coordinate their
access to common data files. Programs may request different levels of shared file access, and control shared
access on a block by block basis. Two methods of data caching are also provided: 1) generalized data caching
which is enabled when devices are MOUNTed; and 2) record caching which is only available to shared

4 CHAPTER 1. INTRODUCTION

files. Directory caching is also enabled by the MOUNT request. This accelerates directory searching for file
LOOKUPs.

1.2.5 Inter-program Message Communication

TSX-Plus offers a message communication facility that allows running programs to exchange messages.
Messages are transmitted through named message channels. A program can queue messages On one or more
message channels. Receiving programs can test for the presence of messages on a named channel and can
suspend their execution until a message arrives. Receiving programs may also schedule a completion routine
to be entered when a message arrives and continue other processing in the meanwhile. A message can be
queued for a program that will run at a later time.

1.2.8 Programming for CL and Special Device Handlers

TSX-Plus provides a special serial communications line facility implemented as a device handler (CL), which
may be used as a general purpose replacement for LS and XL (XC on the PRO). An interface port may
be either defined as a time-sharing line or a communications port. Time-sharing lines may be later “taken
over” as communications lines if the CL facility is included during system generation, either by a keyboard
command or from within a program. Normal read/write functions may be used to CL units, but many
special control features are available as special functions (.SPFUN requests). Certain other devices have
special requirements or characteristics such as: DM, IB and VM.

1.2.7 Real-time Support

TSX-Plus provides real-time program support services that allow multiple real-time programs to run concur-
rently with normal time-sharing operations. Real-time programs may optionally lock themselves in memory,

directly access the I/O page, redefine their memory mapping, and connect device interrupts to subroutines
within the program.

1.2.8 Shared Run-time System Support

TSX-Plus allows one or more shared run-time systems to be mapped into the address space of multiple TSX-
Plus time-sharing jobs. This saves memory space when multiple users are running the same types of programs

(e.g., COBOL-Plus or DBL) and can also be used in situations where programs wish to communicate through
a shared data region.

1.2.9 Program Debugging Facility

TSX-Plus includes a symbolic (MACRO instructions) debugger with ODT styled commands. Debugger
support is optionally included depending on a system generation parameter. The debugger need not be
linked with the program being debugged and does not decrease the virtual memory space available to
programs. The debugger may be invoked as part of the RUN command, with a BPT instruction from within
the program or with a special keyboard control character.

1.2.10 Program Performance Monitor Facility

TSX-Plus includes a performance analysis facility that can be used to monitor the execution of a program and
determine what percentage of the run time is spent within certain program regions. When the performance
monitor is being used, TSX-Plus examines the program being monitored at each clock tick (50 or 60 times
per second) and notes the value of the program counter. On completion of the analysis, the TSX-Plus

performance reporting program can produce a histogram of the time spent in various parts of the monitored
program.

1.2. SUMMARY OF CHAPTER CONTENTS 5

1.2.11 Differences from RT-11

Some inevitable differences exist between RT-11 and TSX-Plus. The T'SX-Plus User’s Reference Manual
describes the additional keyboard commands provided by TSX-Plus, the minor differences in some com-
mands, and the RT-11 keyboard commands not supported by TSX-Plus. Some other differences between
RT-11 and TSX-Plus may not be obvious. The FORMAT utility is not supported. A few system ser-
vice calls (EMTs) behave slightly differently in the two systems and some RT-11 EMTs are not supported
by TSX-Plus (notably those supporting multi-terminal operations). A section is also included on special
use and programming characteristics of some utility programs which may cause confusion because of some
non-obvious interaction of their features with TSX-Plus.

1.2.12 Appendices

Appendix A describes the SETSIZ utility program which may be used to control the amount of memory
available to programs.

Appendix B provides & table of EMT function and subfunction codes, and brief descriptions of both RT-11
and TSX-Plus EMTs; these are useful in conjunction with the SET EMT TRACE command.

Appendix C contains listings of common subroutines called by the example programs throughout this
manual.

Appendix D describes a library of subroutines which are available to the DIBOL user to take advantage
of some of the special features of TSX-Plus.

CHAPTER 1. INTRODUCTION

Chapter 2

TSX—-Plus Job Environment

2.1 Simulated RMON

While TSX-Plus implements the system monitor differently than RT-11, it does simulate relevant RMON
fixed-offset locations. (See the section below on user virtual address mapping.) TSX-Plus defines certain
special negative offset values for use with .GVAL (they cannot be obtained by reading relative to the simulated
base of RMON). These special negative offsets are described in Chapter 4. Some notable features of the
simulation of offsets defined by RT-11 are described in the following table:

Offset | Interpretation

276 | This word is copied from RT-11 during TSX-Plus initialization and indicates the
version and release level of RT-11.
366 | If the program is being run from a command file, then bits 8, 12, and 15 will be set
in this word (mask 110400).

If the program is not being run from a command file, then this word will be clear
(0).

872 | Bit 15 (mask 100000) is always set in this word by TSX-Plus; it is always clear
under RT-11

2.2 Virtual and physical memory

The memory space that is accessible by a job is known as the virtual address space for the job. Because of
the architectural design of the PDP-11 computer which uses 16 bits to represent a virtual memory address,
the maximum amount of virtual address space that can be accessed at one time by a job is limited to 65,536
(64 Kb) bytes. Thus, the virtual addresses for a job range from 000000 to 177777 (octal).

The actual amount of virtual address space available to a job may be as large as 64 Kb but it may be restricted
to less than this amount. The following factors control the size of the virtual address space available to a
job:

¢ The maximum amount of memory allowed for each job as determined by the HIMEM system generation
parameter.

e The amount of memory specified with the MEMORY keyboard command (initialized by the DFLMEM

system generation pa.rameter).

e The memory limit reserved in the disk file image by the SETSIZ program (see Appendix A).

7

8 CHAPTER 2. TSX-PLUS JOB ENVIRONMENT

e The amount of memory acquired by use of the TSX-Plus EMT that expands or contracts the job
space.

The physical address space for a PDP-11 computer is not limited to 64 Kb. The maximum physical address
space depends on the model of PDP-11 and the amount of memory installed on the computer. LSI-11/23

and 11/34 computers can access up to 256 Kb of physical memory. The 11/28-Plus, 11/78, 11/24 and 11/44
computers can access up to 4 Mb of memory.

The process by which an address in the job’s virtual address space is transformed into an address in the
physical address space is known as mapping. The mapping of the virtual address space for a job into the
physical memory space assigned to the job is performed by the memory management hardware facility of
the PDP-11 computer. This facility divides the virtual address space into eight sections, called pages, each
of which can address up to 8 Kb of memory. The mapping of a page of virtual address space to a page of
physical address space is accomplished by setting up information in a page address register (PAR). There
is one page address register for each of the eight virtual address pages. These registers are not directly
accessible by a user job but are loaded by the TSX-Plus system when it starts a program, changes the size
of a program, or switches execution between different jobs. The relationship between the eight pages of
memory and the corresponding sections of virtual address is shown in the following table:

Page | Virtual address range
000000-017777
020000037777
040000057777
060000077777
100000-117777
120000-137777
140000-157777
1860000-177777

O = N N S -]

Because of the design of the memory management system in the PDP-11, it is not possible to divide the
virtual address space more finely than eight pages of 8 Kb each. However, it is possible to map each page of
virtual address space into any section of physical memory. (This facility allows TSX~Plus to keep multiple
user jobs in physical memory and to switch rapidly among them by reloading the page address registers.)

2.3 User virtual address mapping

The virtual address space accessed by a job can be divided into five categories:

¢ Normal program space—which is used by instructions and data for programs.

¢ Simulated RMON—This is the virtual address region from 160000 to 177777 that is mapped to a
simulated RMON (RT-11 resident monitor).

o Extended memory regions—Programs can create regions in physical memory and then cause one or
more pages of virtual address space to be mapped to the regions.

o Shared run-time systems—Several TSX-Plus jobs can cause a portion of their virtual address space
to be mapped to the same area of physical memory. This allows several users to execute the same

program or share common data without having to allocate a separate area of physical memory for each
user.

System I/O page—TSX-Plus real-time programs may map the system I/O page into their virtual
address space.

These categories of virtual address space are discussed in the sections below.

2.4. NORMAL PROGRAMS AND VIRTUAL PROGRAMS 9
2.4 Normal programs and virtual programs

Programs run under TSX-Plus may be divided into two categories: normal programs and vsrtual programs.
The only difference between the two types of programs is the manner in which TSX-Plus handles page 7
{addresses 1860000-177777) of the virtual address space. In the case of normal programs, page 7 is mapped to
a simulated RMON. RMON is the name of the resident RT-11 monitor. When running under RT-11 this is
the actual system control program. When running under TSX-Plus, the simulated RMON does not contain
any of the instructions that are part of RT-11 but contains only a table that provides information about the
system and the job. This information includes such items as the system version number, and information
about the hardware configuration. The cells in this table are known as RMON fized offsets. Their position
within the table and their contents are documented in the RT-11 Software Support Manual, although not
all cells are relevant to or maintained by TSX-Plus.

The address of the base of the simulated RMON table is stored in location 54 of the job’s virtual address
space. Modern RT-11 and TSX-Plus programs should not directly access the RMON table but rather should
use the .GYAL EMT to obtain values from the table. However, since some older programs and some RT-11
utility programs directly access the RMON tables, it is mapped through page 7 for normal programs. As a
result, normal programs are restricted to using pages 0 to 8 (56 Kb) for their own instructions and data.

Note that when simulated RMON is mapped into the job’s virtual address space, it is mapped with read/write
access. This makes it possible to corrupt data in the simulated RMON which should only be managed by
the system. If a job does corrupt data in the simulated RMON cells, then it is possible for the job to receive
erroneous error messages or to hang until the system is restarted.

Virtual programs are programs that do not require direct access to the simulated RMON table. These
programs may still access the RMON values with the .GVAL and .PVAL EMTs. Since direct access to the
simulated RMON is not needed, page 7 is available for the program to use for its own instructions and data,

thus providing a total of 84 Kb of virtual address space. A program may indicate that it is a virtual program
by any of the following techniques:

e Set bit 10 (VIRT$—mask 2000) in the Job Status Word (location 44) of the SAV file. See Appendix A
for information about how this bit can be set by use of the SETSIZ program.

e Use the /V LINK switch (/XM switch for the LINK keyboard command) which stores the RAD50
value for VIR in location 0 of the SAV file.

e Use the TSX-Plus SETSIZ program (see Appendix A) and indicate that more than 56 Kb of memory
is to be used for the program.

2.6 Access to system I/O page

The system I/O page is an 8 Kb section of addresses which is not connected with ordinary memory but
rather is used to control peripheral devices and hardware operation. Access to the I/O page is risky in that
a program can interfere with peripheral devices and cause system crashes. For this reason, programs do not
ordinarily have access to the I/O page. However, a program that is running with MEMMAP privilege may
issue a system service call to cause page 7 (160000~177777) of the job’s virtual address space to be mapped
to the system I/O page. See Chapter 8 for more information on real-time programs.

2.6 Job priorities

TSX-Plus jobs may be assigned execution priorities to control their scheduling relative to other jobs. The
priority values range from O to 127. The priority values are arranged in three groups:

10 CHAPTER 2. TSX-PLUS JOB ENVIRONMENT

e The fixed-low-priority group consists of priority values from 0 up to the value specified by the PRILOW
sysgen parameter.

e The fixed-high-priority group ranges from the value specified for the PRIHI sysgen parameter up to
127.

o The middle priority group ranges from (PRILOW+1) to (PRIHI-1).

Job scheduling is performed differently for jobs in each category. Jobs in the fixed-high-priority range
are scheduled strictly according to their priority and execute before any other job with lower priorities,
including all interactive and fixed-low-priority jobs. Jobs in the interactive range are scheduled according
to a patented algorithm which gives precedence to terminal operations. Jobs in the fixed-low-priority range
are also scheduled strictly according to priority, but execute only when no other jobs of higher priority are
executable, including all fixed-high-priority and interactive jobs.

Job priorities may be influenced by the SET PRIORITY and SET PROCESS/PRIORITY commands (see
the TSX-Plus User’s Reference Manual). Limits may be set on job priorities by the TSAUTH program and
the SET MAXPRIORITY command (see the TSX-Plus System Manager’s Guide). An executing program
may also influence its own priority (see EMT 375, function 0,150 in Chapter 4). The current priority for
a job and the maximum authorized priority can be displayed by use of the SHOW PRIORITY keyboard
command, and may be obtained from within programs with the .GVAL request.

See the description of EMT 875 function 0,150 in Chapter 4 and the TSX-Plus System Manager’s Guide for
more detailed discussions of job priorities and their effect on job execution.

2.7 Extended memory (PLAS) regions

Programs running under TSX-Plus have available the Programmed Logical Address Space (PLAS) facility
that is compatible with the RT-11XM monitor. This facility allows a program to allocate regions of physical

memory and then create virtual windows that can be used to access the regions. There are 7 system service
calls (EMTs) provided for PLAS support:

EMT Meaning

.CRRG Create a region

.ELRG Eliminate a region

.CRAW Create a virtual address window

.ELAW Eliminate a virtual address window

.MAP Map a virtual window to a region

.UNMAP | Unmap a virtual window

.GMCX Get information about the status of a window

A region is an area of physical memory set aside for use by a job in addition to its normal job space. The
.CRRG EMT is used by a program to request that a region be created. The size of a region is not restricted
to 64 Kb and may be as large as the physical memory installed on the system (less the space used by the
TSX-Plus system, device handlers, tables, and the remainder of the program). Up to eight unnamed regions
may be created by each job.

PLAS memory regions can be grouped into two main categories: named regions and unnamed regions.
Unnamed PLAS regions can only be accessed by the job that created them and only remain in existence as
long at the job that created them is running. They are always deleted when the job exits or chains. Named
PLAS regions may be shared between multiple jobs. Use of named PLAS regions requires SYSGBL privilege.
Unlike unnamed PLAS regions, named regions are not necessarily deallocated when the program which
created the region terminates execution. Named regions may be used to communicate between programs,
to hold common code executed by multiple users (e.g., shared run-times), and to pass information from one
program to another program—possibly run at a later time.

2.7. EXTENDED MEMORY (PLAS) REGIONS 11

In addition to supporting named global PLAS regions in a fashion compatible with RT-11, TSX-Plus also
provides an additional facility known as local named regions. Local named regions are regions which can
only be accessed by the job that created them. Their names are private to the creating job and more than
one job may create (different) local regions with the same name. Local named regions are deallocated when
the creating job specifies that they are to be eliminated or when the creating job logs off.

Local named regions are allocated memory space associated with the creating job and are swapped in and
out of memory with the job (like unnamed regions). Global named regions are allocated memory space at
the top of the area of memory used for jobs. They are never swapped out of memory and are only deallocated
when a job eliminates the region. Thus global named regions may continue to occupy memory after the job
that created the region logs off. Caution should be exercised when creating global regions since it is possible
to lock jobs out of memory by creating large global regions.

Local named regions are distinguished from global named regions at creation time by setting bit 0 (mask
000001) in the status word (the third word—R.GSTS) of the region definition block used with the .CRRG
EMT.

Summary of Characteristics for Extended Memory (PLAS) Region Types

Region Type | Max lifetime of region | Accessible by | Swapped out of
other jobs? | memory with job?

Unnamed Until program exits No Yes
Named local | Until job logs off No Yes
Named global | Indefinite Selectable No

A SHOW REGIONS keyboard command may be used to display information about local and global named
regions accessible by the job.

The REMOVE keyboard command may be used to eliminate a local or global named region. The form of
this command is:

RENOVE region

In order to access a region, a program must use the .CRAW and .MAP EMTSs to create a virtual window and
map the virtual window to a selected portion of the region. A virtual window is a section of virtual address
space mapped to a region rather than to the normal job physical address space. Up to eight virtual address
windows can be created by each job. The same virtual window (i.e., the same range of virtual addresses)
may be mapped to different regions or different sections of the same region at different times by use of
the MAP EMT. This allows a program to selectively access different sections of code or data in extended
memory regions during the course of its execution.

Note that RT-11 allows a .CRAW and .MAP with a region ID equal to zero. TSX-Plus requires that
the window definition block specified by the . MAP EMT contain a non-zero region ID returned from the
successful creation of a region by use of the .CRRG EMT. TSX-Plus will return an error code 2 on the
.MAP EMT when a zero region ID is specified.

When an unnamed or named local PLAS memory region is created by use of the .CRRG EMT, space is
allocated in physical memory and in a TSX-Plus region swap file. Whenever a job is swapped out of memory,
its extended memory regions are swapped to the region swap file. Space in the region swap file is allocated
and deallocated dynamically as regions are created and eliminated. In order to create a region, space must
be available in physical memory and in the region swap file.

The PLAS facility is most often used implicitly through the virtual overlay and virtual array features. Using
the PLAS facilities, it is possible for a single job to use all of the physical memory space available on a
system (exclusive of the space used by the TSX~Plus system, handlers, tables, etc.). Proper use of the
PLAS facilities such as with reasonable size virtual overlays or arrays can lead to substantial performance
improvements for programs. Excessive use of memory space with the PLAS facility can lead to excessive Jjob
swapping and degraded system performance.

12 CHAPTER 2. TSX-PLUS JOB ENVIRONMENT

2.8 Shared run-time systems

A shared run-time system is a program or data area in physical memory that can be accessed by multiple
TSX-Plus jobs. Shared run-time systems are somewhat similar to extended memory regions in that they are
both allocated in extended memory areas and must be accessed by mapping a portion of the job’s virtual
address space to the physical memory area. The difference is that extended memory regions are private
to the job that creates them and may not be accessed by any other job. Shared run-time systems can be
simultaneously accessed (hence “shared”) by any number of TSX-Plus jobs. Another difference between
regions and shared run-time systems is that regions can be created dynamically and can be swapped out of
memory; shared run-time systems are specified when the system is generated and reside in memory as long
as the system is running. See Chapter 9 for more information on shared run-time systems.

2.9 VM pseudo-device handler

While the VM handler is not actually mapped into a job’s memory space, its use can dramatically increase
job performance. The VM handler enables the use of a portion of physical memory as a pseudo-disk device.
This permits very rapid access to programs and data which are placed on the VM unit. For programs such
as compilers which heavily utilize overlay segments, a considerable speedup can be achieved by loading them
onto the VM device. A similar improvement for overlaid programs can be obtained with the general data
cache facility. However, when the data cache is full the least recently used blocks are lost. The presence
of particular programs and their overlay segments in memory can be guaranteed by copying them to the
VM pseudo-device. Another example of the usefulness of the VM device is with compilers which heavily
use temporary work files. Depending on the number of write operations, which are not helped by general
data caching, significant improvements in speed can be obtained by directing the work files to the VM
pseudo-device.

In order to use the VM device, it must be included in the device definitions during TSX-Plus system
generation. An upper limit must also be placed on the amount of memory available to TSX-Plus. The
physical memory above that available to TSX-Plus can then be used as a memory based pseudo-disk. If
for some reason, it is desirable to use less than all of the memory above the top of TSX-Plus, the SET VM
BASE command can be used to restrict the memory available to VM. Each time TSX-Plus is restarted, VM
must be initialized just as you would for a new physical disk or a fresh logical subset disk. For example:

INITIALIZE VN:

Only one unit {VMO:) is available. However, logical subset disks may be created within the VM pseudo-
device to partition it if necessary. On initialization, the VM handler automatically determines the amount
of memory available to it.

See the TSX-Plus System Manager’s Guide for more information on the use of data caching (general and
shared files) and the VM pseudo-disk. See Chapter 7 for descriptions of the special function requests
supported by VM.

2.10 User command interface

TSX-Plus provides a method of intercepting and preprocessing user typed commands. This is called the
“User Command Interface (UCI)”. This may be implemented by writing a program to handle user input and
enabling the facility with the SET KMON UCI command. After UCI is enabled, the TSX-Plus keyboard
monitor will run the user-written UCI program each time it needs a new command. The program must
prompt the user for a new command, accept the command, process it as desired and may optionally pass
the command to the TSX-Plus keyboard monitor by doing a special chain ezit. A special chain exit is
performed by issuing the .EXIT request with bit 5 (mask 40) set in the job status word and with RO cleared.
Any commands to be executed by the keyboard monitor are passed through the chain data area. See the

2.10. USER COMMAND INTERFACE 13

RT-11 Programmer’s Reference Manual for more information on special chain ezits. Commands passed to
the TSX-Plus keyboard monitor in this fashion behave as though the keyboard monitor obtained them from
a command file. A command file name may also be passed to the keyboard monitor by passing a command
of the form “@name”. If a command file name is passed to the keyboard monitor, then it must be the last
or only command passed in the chain data area. When a command file name is passed in this manner, then
all of the commands included in the command file are executed by the keyboard monitor before returning
to the user-written UCI program for another command.

The following program provides a simple example of the techniques for writing a User Command Interface
program. This program accepts a command from the keyboard and passes it through to the TSX-Plus
keyboard monitor if it is a legal command.

Example

.TITLE MYENON

.ENABL LC
; Simple example of User Command Interface
; Refuses to pass SET KNON SYSIEN, but othervise does nothing but
i pasn commands thru to ENDN.

.NMCALL .PRINT,.BXIT,.GILIN,.SCCA

JSY = 44 ;Job status word address
SPXIT$ = 40 ;8pecial exit flag to pass command to XNON
NONPIR = b4 ;Pointer to base of RMON
SYSGEN = 372 ;0ffeet into RNON of BYSGEN options word
BEL =7 ;ASCII bell
BS = 10 sASCII backspace
LF = 12 +ASCII 1line feed
FF = 14 +ASCII form feed
cr = 16 +ASCII carriage return
BSC = 33 +ASCII escape
.DSABL GBL ;Disable undefined globals
START: .SCCA #AREA ,#TISTAT ;Inhibit control-C abort
MOV @#MONPTIR ,RO ;Get pointer to base of RNON
18T SYSGEN(RO) ;Are ve running under ISX?
BPL QUIT ;Normal exdit if not
NOV #TIYPE,RO ;Point to ENT arg block to
EMT 376 ;Get TSX-Plus terminal type
ASL RO ;Convert to word offset
CMP 10,#%4 ;Legal types are unknown, VI562 and VI100
BLO8 1$
CLR RO +If not VI62 or VI100, make unknown
1$: NOV RO,RL ;Save terminal type
.PRINT CLRSCR(R1) ;Clear the screen
.PRINT #NENU ;Display simple menu
NOV #SETRUB,RO ;Point to ENT arg block to
ENT 376 ;8et rubout filler character
2s: .PRINT CENTER(R1) ;Nove to screen center and clear the line
.GTLIN #BUFFER,#PRONPT ;Accept input line
CALL NATCH ;5ee 12 it 1is legal
BC8 2% ;lepeat 1f illegal command
NOV #1000,8P ;Ensure stack pointer safe
CALL NOVCND ;Nove command from buffer to chain data area
BIS #SPXITS,e4J5Y ;Set special chain exit bit in JSY
CLR | 1) ;Required for special chain exit
QUIT: .EXIT ;And pass command to XMON
iSimple matching. Easy to defeat by
H inserting extra spaces!!!
MATCH: MOV #BUFFER,R2 ;Point to beginning of input buffer
NOV #ILLCND,R3 ;Point to beginning of illegal command
18: T8TB (R2) ;At end of input string?
BEQ 1] iYes, matched so far, probably illegal
CNPB (R2)+, (R3)+ ;No, test through end of illegal string
BNE [1] ;No match, not illegal command
CNP R3,#ILLEND ;Past end of illegal command?
BLO 14 ;No, keep checking

2¢: 8SEC ;8trings match, signal illegal command

14 CHAPTER 2. TSX-PLUS JOB ENVIRONMENT

BR 10¢
94: CLC ;Strings do not match, signal legal command
RETURN

10%:
;Nove command from input buffer to chain data area.

NOVCND: MOV

#BUFFER,12 ;Point to beginning of input string

NOV #512,R3 ;Point to chain data area
14: NOYB (R2)+,20 ;Get next char

BNE 2% ;Continue if not nul

CLRB (R3)+ ;If end of input command

B 1] ; then done
24 CNPB R0,#'\ ;Command separator?

BNE £ ;No, move it

CLRB 10 ;Yes, replace with nul
3s: MOVB 20, (R3)+ ;Nove command into chain data area

CNP 12, #BUFEND ;Do not want to overflow

BLO 14 ;Keep moving if characters left

CLRB -1(R3) ;Nark end of command (ensure it is ABCIZ)
‘18 SUB #612,R3 ;Hov many bytes did we move?

NOV R3,0%510 ;Nark the number for .CHAIN

RETURN
AREA: .BLKY 10 ;GP ENT argument area
TISIAT: .¥WORD 0 ;Terminal status word for .8CCA
TTYPE: .BYIE 0,187 ;ENT arg block to get terminal type
SETIRUB: .BYIE 0,152 ;ENT arg block to control terminal funtions

.¥ORD 'A ;Punction code - set rubout filler

.YORD ' ;Rubout filler = underline
CLRSCR: .¥ORD CLRUNK,CLRE2,CLR100 ;Terminal specific screen clears
CENTER: .WORD CNTUNK,CNT62,CNT100 ;Terminal specific move and clear

.NLIST BEX
CLRUNK: .BYTE FF,FF,FF,CR,200 ;Emulate clear screen with 3»(8LFs)
CLR62: .BYIE ESC,'H,ESC,'J,200 ;VI62 clear screen sequence
CLR10O: .ASCII <ESC>/[H/<ESC>/[3/<200> ;VI100 clear screen sequence
CNTOUNK: .ASCII <CR><LF><LF>XLF>/ /<200>
CNT62: .ASCII <ESC>/Y% / ;Line 6, column 1

.ASCI1 <ESC>/X/ ;Erase to end of line

.AsCI11 / /<200> ;Move to column 6
CNT100: .ASCII <ESC>/[6;62/ ;Line 6, column 6

.ASCII <ESC>/[2K/<200> ;Erase entire line
MENU: .ASCII <LF><LE><LF>/ LI L4l Simple Nenu sana2/<200>
PROMPT: .ASCII <BEL>/Command:

.NLIST

.REPT 32.

.BYTE BS ;Backspace to beginning of field

.ENDR

.LIST

.BYIE <200> ;End of string
ILLCND: .ASCII /SET EMON BYSTEM/ ;Do not permit UCI disable
ILLEND:
BUFFER: .BLKB 81. ;Command line input buffer
BUFEND :

.END START

Chapter 3

Program Controlled Terminal
Options

3.1 Terminal input/output handling

The terminal keyboard and screen provide the principal interface between a time-sharing user and the TSX-
Plus operating system. TSX-Plus accepts characters from the keyboard, echoes them to the screen, and
stores them in a separate buffer for each time-sharing user. When a program (either a user written program,
a utility, or the operating system keyboard monitor) requests input from the terminal, characters are removed
from the internal buffer and passed to the program.

3.1.1 Activation characters

The low-level requests for input from a program can call for a single character ((TTYIN), for an entire line
(.GTLIN, .CSIGEN, .CSISPC), or for a whole block of characters ((READ). Since the requests for a whole
line of input are most common, TSX-Plus improves overall efficiency for many users by retaining characters
typed at the keyboard in an internal buffer until a special character is typed which indicates that the line of
input is complete. This special character, which indicates that keyboard input is ready, is called an activation
character. The standard activation characters are carriage return and line feed. Several control keys will
also cause immediate system response. For example, CTRL-C is used to abort the execution of a running
program. If the program is waiting for input, one CTRL-C will cause an immediate abort. If the program is
not waiting for input, it is necessary to type two CTRL-Cs to get the system’s attention to abort a program.

When a program requests terminal input, TSX-Plus puts the program in a suspended state until an activation
character is typed. This state, in which a program is waiting for input but no activation character has been
typed, is identified as the TI state by the SYSTAT command. When characters are typed at the terminal,
TSX-Plus responds quickly and stores them in the terminal input buffer for that line, then returns to
process other jobs which need its attention. Thus, the amount of time the CPU spends processing input
characters is kept to a minimum, and the amount of CPU time used by a program in the TI state is also
very small. Some programs request single characters with the .TTYIN request. Normally, these programs
are treated by TSX-Plus in the same way as those requesting lines of input (e.g., .GTLIN requests). That
is, the job is suspended, input characters are stored in the terminal input buffer, and characters are only
passed to the program after an activation character is typed. If a program requests a character with a single
‘TTYIN, the user can type as many characters as the terminal input buffer will hold (allocated during system
generation), but the program will remain suspended and no characters are passed to the program. Then,
when an activation is typed, the program is restored to an active state, the first character in the input buffer
is passed to the program and processing continues. If the program requested no more characters, then on
program exit the remainder of the input buffer, including the activation character, would be passed to the

next program (usually the keyboard monitor) which would try to interpret them. This may result in an
invalid command error message.

15

16 CHAPTER 8. PROGRAM CONTROLLED TERMINAL OPTIONS

3.1.2 Single character activation

TSX-Plus gives the programmer a wide variety of ways to influence the normal input scheme outlined
above. One of the most common methods is the use of single character activation. With this technique, all
characters are regarded as activation characters. If a program requests a single character with a .TTYIN,
then as soon as a character is typed and becomes available in the input buffer, it is passed to the program
and the program resumes execution.

The standard way to request single character activation under RT-11 is by setting bit 12 in the user’s Job
Status Word (JSW). Under TSX-Plus, this is not by itself sufficient to cause single character activation.
The reason is that quite a few programs designed for a single user environment use this method in a way
that causes constant looping back and consequently burns up a large amount of processor time. In a single
user environment this is of minor importance since no other jobs are trying to use the processor at the same
time. In a multi-user system, this is wasteful and should be avoided. Therefore, under TSX-Plus, setting
bit 12 in the JSW is not by itself sufficient to initiate single character activation. It is necessary BOTH to
set bit 12 and to issue a special command to TSX-Plus indicating that single character activation is actually
desired. This may be done in any of the following ways:

¢ Specify the /SINGLECHAR switch with the RUN or R command that starts the program.
o Issue a SET TERMINAL SINGLE command.

e Use the INSTALL command to install the program with the SINGLECHAR attribute (the description
of the INSTALL command is in the TSX-Plus System Manager’s Guide.

o Use the “S” program controlled terminal option described in this chapter.

Note that when a program is in single character activation mode, the system does not echo terminal input,
it is the program’s responsibility to do so.

3.1.3 Non-blocking .TTINR

The situation in which a program requests single characters but none are available in the input buffer also
receives special treatment. The single character input request is eventually coded as EMT 840. The .TTYIN
request repeats this request until a character is finally obtained, whereas the .TTINR request supposedly
permits processing to continue if no character is available. In fact, the EMT 340 call will suspend the job
until a character is available from the input buffer. This is referred to as stalling on a .TTYIN. The purpose
is to avoid the unnecessary looping back to get a character. Under RT-11, if the programmer decides not
to wait for a character to become available, but rather proceed with execution, it is only necessary to set
bit 8 (100 octal) in the Job Status Word. Some programs abuse this technique and would waste the system
resources in a time-sharing environment. TSX-Plus requires confirmation that the user is aware of the extra
system load that could be caused by the constant looping back to check for a character. If you wish to have
TSX-Plus return from the EMT 340 with the carry flag set if a character is not available, you must set bit
6 in the Job Status Word and also do one of the following things:

e Specify the /[SINGLECHAR switch with the RUN or R command that starts the program.
e Issue a SET TERMINAL NOWAIT command.

o Use the INSTALL command to install the program with the NOWAIT attribute (the description of
the INSTALL command is in the TSX-Plus System Manager’s Guide.

e Use the “U” program controlled terminal option described in this chapter.

3.2. PROGRAM CONTROLLED TERMINAL OPTIONS 17

3.1.4 Non-blocking .TTOUTR

Normally when a program sends output to the terminal using a .WRITE, .PRINT, .TTYOUT, or TTOUTR
EMT, if the terminal output buffer is full, TSX-Plus suspends the program until space becomes available in
the output buffer. If you wish to use the TTOUTR EMT to send output to the terminal and have TSX-Plus
return from the EMT with the carry flag set if the output buffer is full, you must do the following things:

o Use the . TTOUTR EMT rather than .TTYOUT.

e Set bit 8 in the Job Status Word.

e The instruction following the TTOUTR EMT must not be [BCS .-2].

o The program must be run with no-wait mode by performing one of the following actions:

Specify the /SINGLECHAR qualifier with the RUN or R command that starts the program.
Issue & SET TERMINAL NOWAIT command.

Use the INSTALL command to install the program with the NOWAIT attribute.

— Use the “U” program controlled terminal option described in this chapter.

TSX-Plus allows many other ways of modifying terminal input and output for special circumstances. These
are provided to allow maximum versatility in the system while still maintaining the high efficiency needed
in a multi-user environment. The programmer communicates the need for special terminal handling to the
systern through the use of special program controlled terminal options. These are described individually in
the next section.

3.2 Program controlled terminal options

The following table lists the functions which may be used during program execution.

Function Character | Meaning

Set rubout filler character

Enable VT52 & VT100 escape-letter activation
Disable VT52 & VT100 escape-letter activation
Define new activation character

Turn on character echoing

Turn off character echoing

Disable subprocesses

Enable lower case input

Disable lower case input

Enable deferred character echo mode
Disable deferred character echo mode

Set transparency mode for output

Suspend command file input

Restart command file input

Reset activation character

Set activation on field width

Turn on high-efficiency TTY mode

Turn on single-character activation mode
Turn off single-character activation mode
Enable no-wait TT input test

Set field width limit

Turn tape mode on

Turn tape mode off

Disable echo of line-feed after carriage-return
Enable echo of line-feed after carriage-return

NRHYELCOHBOYOZErRu~OaE0QW>

18 CHAPTER 8. PROGRAM CONTROLLED TERMINAL OPTIONS

These functions have a temporary effect and are automatically reset to their normal values when a program
exits to the keyboard monitor. They are not reset if the program chains to another program until control is
finally returned to the monitor. Some terminal options (notably high-efficiency and single-character modes)
are incompatible with, and override, some other terminal options.

TSX-Plus provides two methods for a running program to dynamically alter some of the parameter settings
relating to the user’s timesharing line. The preferred method of selecting these functions is to use the TSX-
Plus EMT for that purpose. This is readily available from MACRO programs and an appropriate MACRO
subroutine should be linked into jobs written in other languages. The form of the EMT to select program
controlled terminal options is:

ENT 3786
with RO pointing to the following argument block:

.BYTE 0,152
.WORD function-code
.WORD argument-value

where function-code is the character from the table above which selects the terminal option, and argument-
value may be a third value used only with some of the functions. An advantage of the EMT method
of selecting program controlled terminal options is that they may be used even when the terminal is in
high-efficiency mode.

Example

JTITLE BNINTH
.ENABL LC
; Demonstrate TSX--Plus program controlled terminal options using
; the ENT method.
.MCALL .GVAL,.PRINT,.EXIT,.TIYIN
.GLOBL PRIDEC
; Determine and display current lead-in char
; Default = 35, but don’'t count on it

START: .GVAL #AREAL , #-4. ;Determine current leadin character
NOV 10,11 ;Save it
.PRINT #LEADIS ;"Current lead-in is"
NOV R1,R0 ;Retrieve lead-in char value
CALL PRIDEC ;Display it

.PRINT #LEADND
; BSet rubout filler charactar
NOY #SEIRUB,RO ;Point to ENT arg block to
ENT 376 ;8et rubout filler character
; Nov demonstrate the current rubout filler character
; Back space is the default, which we changed to underline

PRINT #TIRYIT ;"Enter some and delete them"
NOV #BUFFER, 11 ;Point to input buffer
14: LITYIN ;Get next char into input buffer
CNPB RO,#12 ;End of input (CR/LF pair)?
BEQ 2% ;Yes, terminate input
CNP R1,#BUFEND ;Buffer overflow?
BLO 14 ;Get more if not
24: .PRINT #THANKS
EXIT
AREA: .BLK¥ 10 ;General ENT arg block
SETRUB: .BYTE 0,162 ;ENT arg block to
.YORD 'A ;8et rubout filler character
.¥YORD ' ; to underline

TRYIT: .ASCII /Enter some characters at the prompt and then /

.ASCII /erase them with/<15><12>/DELETE or CIRL-U./

.ASCII / They should be replaced with underlines./<15><12>/%/<200>
LEADIS: .ASCII /¥e don't care that the current lead-in char is /<200>
LEADND: .ASCIZ /./
THANKS: .ASCIZ <15><12>/STO0P -- Thank you./
BUFFER: .BLIB 81.
BUFEND:

.END STARY

3.2 PROGRAM CONTROLLED TERMINAL OPTIONS 19

When it is not practical to incorporate the EMT method of selecting program controlled terminal options
into a program, an alternate method using a lead-in character may be used. This is conveniently done by
sending a sequence of characters to the terminal using the normal terminal output operations of the lan-
guage. Examples are the FORTRAN TYPE, COBOL-Plus DISPLAY, BASIC PRINT, and Pascal WRITE
statements. Program controlled terminal options are selected by having the running program send the
lead-in character immediately followed by the function character and, for some functions, a third character
defining the argument value for the function. TSX-Plus intercepts the lead-in character and the one or two
following characters and sets the appropriate terminal option. It does not pass these intercepted characters
through to the terminal. The default value for the lead-in character is the ASCII GS character (octal value
35; decimal value 29). However, the lead-in character may be redefined during system generation when the
value conflicts with other uses of the system. For example, some graphics terminals use the GS character
as either a command or parameter value. The lead-in character function may be disabled during program
execution with the M and R functions described below. Programmers should not rely on the default value
of the lead-in character, but may obtain the current value of the lead-in character from the .GVAL request
with an offset of —4.

Note that when in high-efficiency mode (set with either the RUN/HIGH switch or the “R” program controlled
terminal option) output character checking is disabled and the lead-in character method of selecting program
controlled terminal options is disabled; in this case, the lead-in character, function-code character, and
argumnent value character are passed through to the terminal. When in high-efficiency mode, the EMT
method of selecting program controlled terminal options is still functional. See Chapter 4 for information
on turning high-efficiency terminal mode off by means of an EMT.

Example
PROGRAN LEADIN

Denonstrate ISX--Plus program controlled terminal options using
the "leed-in" character method.

aoaa

BYTE LEADIN(2)
INTEGER ILEAD
EQUIVALENCE (ILEAD,LEADIN(1))
Determine and display current lead-in char
Default = 20, but don’'t count on it
ILEAD = ISPY(-4) 1.GVAL with offset = -4.
IYPE 820,LEADIN(1) IDisplay the current lead-in char value
C 8el rubout filler character
TYPE 800,LEADIN(1),°'A’,’'_"
C Now demonstrate the current rubout filler character
C Back space is the default, vhich we changed to underline
IYPE 810 tAsk for something to be erased
ACCEPT 830 !¥ait for input before exiting
STOP 'Thank you.®
800 FORNAT (1H+,A1,4)
810 FORNAT(1HO, 'Enter some characters at the prompt and then °,
1 ‘'erase them with'/’ DELETE or CIRL-U.’,
1 ' They should be replaced with underlines.’'/’ =*'.§)

aon

820 FORNAT(' The current valus of the lead-in character is *,I3,°'.°)
830 FORNAT (40H)
END

The following paragraphs explain the uses of each of the program controlled terminal option function-codes.
Any of these options may be selected by either the EMT method or by the lead-in character method.

3.2.1 “A” function—Set rubout filler character

When a scope type terminal is being used, the normal response of TSX-Plus to a DELETE character is to
echo backspace space backspace which replaces the last character typed with a space. TSX-Plus responds to
a CTRL-U character in a similar fashion, echoing a series of backspaces and spaces. Some programs that
display forms use underscores or periods to indicate the fields where the user may enter values. In this case it
is desirable for TSX-Plus to echo backspace character backspace for DELETE and CTRL-U where character
may be period or underscore as used in the form. The character to use as a rubout filler is specified by the
argument-value with the EMT method or by the third character with the lead-in character method.

20 CHAPTER 8. PROGRAM CONTROLLED TERMINAL OPTIONS

3.2.2 “B” & “C” functions—Set VT52, VT100 and VT200 escape-letter ac-
tivation

VT52, VT100 and VT200 terminals are equipped with a set of special function keys marked with arrows
and other symbols. When pressed, they transmit two or three character escape sequences. The “B” function
tells TSX-Plus to consider these as activation sequences. The escape character and the letter are not echoed
to the terminal, but are passed to the user program. The “C” function disables this processing and causes
escape to be treated as a normal character (initial setting).

3.2.3 “D” function—Define new activation character

Under normal circumstances TSX-Plus only schedules a job for execution and passes it a line of input when
an activation character such as carriage return is received. The “D” function provides the user with the
ability to define a set of activation characters in addition to carriage return.

The new activation character is specified by the argument-value with the EMT method or by the third
character with the lead-in character method. The maximum number of activation characters that a program
may define is specified when the TSX-Plus system is generated.

Using this technique, any character may be defined as an activation character, including such characters as
letters, DELETE, CTRL-U, and CTRL-C. When a user-defined activation character is received, it is not
echoed but is placed in the user’s input buffer which is then passed to the running program.

By specifying CTRL-C as an activation character, a program may lock itself to a terminal in such a fashion
that the user may not break out of the program in an uncontrolled manner.

If carriage return is specified as a user activation character, neither it nor a following line feed will be echoed
to the terminal. TSX-Plus will also not add a line feed to the input passed to the program.

3.2.4 “E” and “F” functions—Control character echoing
The “E” and “F” functions are used to turn on and off character echoing. The “E” function turns it on, and

the “F” function turns it off. An example of a possible use is to turn off echoing while a password is being
entered.

3.2.5 “H” function—Disable subprocess use

The “H” function disables the subprocess window facility for the time-sharing line.

3.2.6 “I” and “J” functions—Control lower case input

The “I” function allows lower case characters to be passed to the running program. The “J” function causes

TSX-Plus to translate lower case letters to upper case letters. The SET TT [NOJLC keyboard command
also performs these functions.

3.2.7 ¢“K” and “L” functions—Control character echoing

The “K” function causes TSX-Plus to enter deferred character echo mode. The “L” function causes TSX-
Plus to enter immediate character echo mode. Any characters in the input buffer which have not been

echoed when the “L” function is selected will be immediately echoed. See the description of the SET TT
[NO|DEFER command for an explanation of deferred echo mode.

3.2. PROGRAM CONTROLLED TERMINAL OFPTIONS 21

3.2.8 “M?” function—Set transparency mode of output

If transparency mode is set, TSX-Plus will pass each transmitted character through to the program without
performing any special checking or processing. Transparency mode allows the user’s program to send any
character to the terminal. Note that once transparency mode is set on, TSX-Plus will no longer recognize
the lead-in character (octal 35, which means a program control function follows). The only way to turn off
transparency mode is to exit to KMON. '

3.2.9 “N” and “O” Functions—Control command file input

When a command file is being used to run programs (see the T'SX-Plus User’s Reference Manual), input
which would normally come from the user’s terminal is instead drawn from the command file. Occasionally,
it is desirable to allow a program running from a command file to accept input from the user’s terminal
rather than the command file. The “N” function suspends input from the command file so that subsequent
input operations will be diverted to the terminal. The “O” function redirects input to the command file.
These functions are ignored by TSX-Plus if the program is not being run from a command file.

3.2.10 “P” function—Reset activation character

The “P” function performs the complement operation to the “D” function. The “P” function is used to
remove an activation character that was previously defined by the “D” function. The character to be
removed from the activation character list is specified by the argument-value with the EMT method or by
the third character with the lead-in character method.

Only activation characters that were previously defined by the “D” function may be removed by the “P”
function.

3.2.11 “Q” function—Set activation on field width

The “Q” function allows the user to define the width of an input field so that activation will occur if the user
types in as many characters as the field width, even if no activation character is entered. The field width
is specified by the ASCII code value of the argument-value with the EMT method or of the third character
with the lead-in character method. If an activation character is entered before the field is filled, the program
will be activated as usual. Each time activation occurs the field width is reset and must be set again for the
next field by reissuing the “Q” function. For example, the following sequence of characters could be sent to
TSX-Plus to establish a field width of 43 characters: “<lead-in>Q+”. Note that the character “+” has the
ASCII code of 053 (octal) which is 48 decimal.

3.2.12 “R” function—Turn on high-efficiency terminal mode

The “R” function causes TSX-Plus to place the line in high efficiency terminal mode. The effect is to
disable most of the character testing overhead that is done by TSX-Plus as characters are transmitted
and received by the line. Before entering high-efficiency mode the program must declare a user-defined
activation character that will signal the end of an input record. Once a program has entered high-efficiency
mode, characters sent to the terminal are processed with minimum system overhead. For example, tab
characters are not expanded to spaces. Also, TSX-Plus does not check to see if the character being sent
is the TSX-Plus terminal control leadin character. This means that the lead-in character method may not
be used to control terminal options until the program exits or the EMT to turn off high efficiency mode
is used (see Chapter 4). Characters received from the terminal are passed to the program with minimum
processing: they are not echoed; and control characters such as DELETE, CTRL-U, CTRL-C, CTRL-W
and carriage-return are all treated as ordinary characters and passed directly to the program. High-efficiency
mode terminal I/O is designed to facilitate machine-to-machine communication; it is also useful for dealing
with buffered terminals that transmit a page of information at a time.

22 CHAPTER 8. PROGRAM CONTROLLED TERMINAL OPTIONS

3.2.13 %S” function—Turn on single-character activation mode

The “S™ function causes TSX-Plus to allow a program to do single-character activation by setting bit 12 in
the Job Status Word. Normally TSX-Plus stores characters received from the terminal and only activates
the program and passes the characters to it when an activation character, such as carriage-return, is received.
It does this even if bit 12 is set in the Job Status Word, which under RT-11 causes the program to be passed
characters one-by-one as they are received from the terminal. The “S” function can be used to cause TSX-
Plus to honor bit 12 in the Job Status Word. If JSW bit 12 is set and the program is in single-character
activation mode, TSX-Plus passes characters one-by-one to the program as they are received and does not
echo the characters to the terminal. The /SINGLECHAR switch for the R[UN| command and the SET TT
SINGLE command can also be used to cause TSX—-Plus to honor JSW bit 12. Since the high-efficiency mode
implies certain terminal characteristics (such as buffered input and no echo), it is not possible to override
these inherent modes by using other function codes.

3.2.14 “T” function—Turn off single-character activation mode

The “T” function is the complement of the “S” function. It turns off single-character activation mode.

3.2.15 “U” function—Enable non-wait TT I/0 testing

The “U” function causes TSX-Plus to allow a program to do a .TTINR EMT that will return with the carry
bit set if no terminal input is pending or a .TTOUTR EMT that will return with the carry bit set if the
terminal output buffer is full. Normally TSX-Plus suspends the execution of a program if it attempts to
obtain a terminal character by doing a .TTINR EMT and no input characters are available. Or if it does a
TTYOUT or .TTOUTR EMT and there is no free space in the terminal output buffer. It does this even
if bit 6 of the Job Status Word is set, which under RT-11 would enable non-blocking .TTINRs. This is
done to prevent programs from burning up CPU time by constantly looping back to see if terminal input is
available. The “U” function causes TSX-Plus to honor bit 8 in the Job Status Word and allows a program
to do a .TTINR to check for pending TT input or a .TTOUTR EMT to check for space in the output buffer
without blocking if none is available. The SET TT NOWAIT command and the /SINGLECHAR switch for
the R{UN] command also perform this function. Becsuse the single character terminal option determines
several terminal operating modes (such as no echo and transparent input), it is incompatible with other
terminal functions which would conflict with the implied single-character operation. See the description of
special terminal mode in the RT-11 Programmer’s Reference Manual.

3.2.16 “V” function—Set field width limit

The “V” function is used to set a limit on the number of characters that can be entered in the next terminal
input field. Once the “V” function is used to set a field limit, if the user types in more characters to the
field than the specified limit, the excess characters are discarded and the bell is rung rather than echoing the
characters. An activation character still must be entered to complete the input. The field width is specified
by the ASCII code value of the argument-value with the EMT method or of the third character with the
lead-in character method. The field size limit is automatically reset after each field is accepted and must be
re-specified for each field to which a limit is to be applied. Note the difference between the “Q” and “V”
functions. The “Q” function sets a field size which causes automatic activation when the field is filled; the
“V* function sets a field size which causes characters to be discarded if they exceed the field size. Note that
any field width limit is ignored for command file input.

3.2.17 “W?” and “X” functions—Control tape mode

The “W” function turns on tape mode and the “X” function turns it off. Turning on tape mode causes the

system to ignore line-feed characters received from the terminal or external device. The SET TT [NO|TAPE
keyboard command may also be used to control tape mode.

3.2. PROGRAM CONTROLLED TERMINAL OPTIONS 23

3.2.18 “Y” and “Z” functions—Control line-feed echo

The “Y” function is used to disable the echoing of a line-feed character when a carriage-return is received.
Normally, when TSX-Plus receives a carriage-return character, it echoes carriage-return and line-feed char-
acters to the terminal and passes carriage-return and line-feed characters to the program. The “Y” function
alters this behavior so that it only echoes carriage-return but still passes both carriage-return and line-feed
to the program. This function can be used to advantage with programs that do cursor positioning and which
do not want line-feed echoed because it might cause the screen display to scroll up a line. The “Z” function
restores the line-feed echoing to its normal mode.

24

CHAPTER 3. PROGRAM CONTROLLED TERMINAL OPTIONS

Chapter 4

TSX—-Plus EMTs

TSX-Plus provides several system service calls (EMTs) in addition to those compatible with RT-11. In
order to take advantage of the special features of TSX-Plus, programs written to run under both TSX-Plus
and RT-11 should check to see if they are under TSX-Plus. This chapter describes the preferred method of
checking and goes on to describe several of the special EMTs provided by TSX-Plus. EMTs which relate
specifically to features described elsewhere in this manual are included in the appropriate chapters.

4.1 Obtaining TSX-Plus system values (.GVAL)

The .GVAL EMT that is normally used to obtain RT-11 system values can also be used to obtain TSX-Plus
system values. Although a simulated RMON is normally mapped into each job so that it may directly access
fixed offsets into RMON, the .GVAL function is the preferred method for obtaining system values. Under
TSX-Plus, the simulated RMON need not be mapped into a job’s virtual address space (see Chapter 2).
The .GVAL EMT will still function correctly even if RMON is not mapped into the job. In addition to the
positive offset values which are documented for use with RT-11, the following negative offset values may be
used to obtain TSX-Plus system values:

Offset | Value
-2. | Job number
~4. | Lead-in character used for terminal control options

-8. | 1if job has SYSPRYV privilege; 0 if job does not have SYSPRV
-8. | 1if PAR 7 mapped to I/O page; 0 otherwise

-10. | Project number job is logged on under

-12. | Programmer number job is logged on under

—-14. | TSX-Plus incremental license number
-16. | Current job priority

~18. | Maximum allowed job priority
~20. | Number of blocks per job in SY:TSXUCL.TSX
—22. | Job number of primary process (0 if primary process, always 0 for detached jobs)

~24. | Name of system device (RAD50) (device on which RT-11 was booted when TSX—
Plus was started; may not correspond to current SY assignment)

-26. | Maximum fixed-low-priority value
-28. | Minimum fixed-high-priority value

—30. | Job number of parent process (0 if primary process, same as offset —22. if subpro-
cess)

-32. | System version number—Decimal value times 100.
-34. | Relative subprocess number (0 if primary process or detached job)

25

26 CHAPTER 4. TSX-PLUS EMTS

As with the standard .GVAL function, the system values are returned in RO.

Example

.TITLE TISGVAL

.ENABL LC
:Demonstrate usage of .GVAL with both positive (RT-11)
; and negative (TSX-Plus) offsets

.NCALL .GVAL,.PRINT,.EXII
.GLOBL PRTIDEC ;Bubroutine to print a word in decimal
.GLOBL PRTRbO ;Bubroutine to print a RADGEO word
S8YSGEN = 372 ;RNON offset to sysgen options werd
START: .GVAL #AREA ,#SYSGEN ;Examine system options word
IS8T | {1} ;See if we are running I8X-Plus
BPL o4 ;Exit if not
.PRINT #LICENS ;"License # is"
.GVAL #AREA ,#-14. ;Obtain last 4 digits of license #
CALL PRTDEC ;And display it
.PLINT #SYSTEN ;"Started from"
.GYAL #AREA,#-24. ;Get system device
CALL PRIRE0 ;And display it
.PRINT #JOBNUN ;"Job # 1is”
L.GVAL #AREA,.#-2 ;Get TSX-Plus job number
CALL PRTDEC ;Display the jocb number
.GVAL #AREA,#-22. ;5ee¢ 11 this is the primary line
181 RO ;0 1f primary
BEQ 11} ;Done 1if so
PRINT #VIRT ;Else say subprocess
98 .BXIT
AREA: .BLX¥ 2 :2 word ENT arg area
.NLIST BEX
LICENS: .ASCII /TIS8X-Plus license number /<200>
SYSTEN: .ASCII <15><12>/ISX-Plus started from /<200>
JOBNUM: .ASCII /:/<16><12>/78X-Plus line number /<200>
VIRT: .ASCII / (This is a subprocess)/<200>
.END START

4.2 Determining number of free blocks in spool file

The following EMT will return in RO the number of free blocks in the spool file. The form of the EMT is:
ENT 376

with RO pointing to the following argument area:

.BYTE 0,107
Example
.TITLE SPLFRE
.ENABL LC
;Damonstrate ENT to determine number of free spool blocks
.NCALL .PRINT,.EXIT
.GLOBL PRTDEC
START: .PRINT #NUNFRE ;Preface number message
Nov #5PLFRE, L0 ;Point to ENT arg block to
ENT 376 ;Determine number of free spool blocks
;Number is returned in RO
CALL PRIDEC ;Display the number
.PRINT #BLOKLS ;End of message
CEXIT
.KL1ST BEX
SPLFRE: .BYTE 0,107 ;ENT arg to get # free spocl blocks
NUNFRE: .ASCII /The spool file has /<200>
BLOKS: .ASCIZ / free blocks./
.BVEN
.END START

4.3. DETERMINING IF A JOB IS RUNNING UNDER TSX-PLUS 27

4.3 Determining if a job is running under TSX-Plus

In cooperation with Digital Equipment Corporation, a bit has been allocated in the RT-11 sysgen options
word at fixed offset 372 into the RMON. The high order bit (bit 15; mask 100000) of this word will be set (1)
if the current monitor is TSX-Plus version 5.0 or later. This bit will be clear if the monitor is any version
of RT-11. Testing this bit is the preferred method of determining if a job is running under TSX-Plus.
However, if a program is expected to also be used under older versions of TSX-Plus, then an alternative
method is necessary. For older versions of TSX-Plus, first issue the .SERR request to trap invalid EMT
requests and then issue the TSX-Plus EMT to determine the time-sharing line number. If the job is running
under RT-11, this EMT will be invalid and the carry bit (indicating an error) will be set on return. If the
job is running under TSX-Plus, then the EMT will return without error and the line number will be in RO.

Example

.TITLE TSXENV

.ENABL LC
; Demonstrate preferred method of determining whether job is
; running under TSX-Plus or RT-11

.MCALL .PRINT,.EXIT,.SERR, .HERR

Jsy = 44 ;Job Status ¥Word address

INON = b4 ;Pointer to base of RNON

SYSGEN = 372 ;Index into RNON for asysgen features
START: .PRINT #UNDER ;"Running under™

i This is the preferred method, but will not work prior to
; T8X-Plus version 6.0

NOV RMON,R1 ;Point to base of RNON
I8T SYSGEN(R1) ;See if running under ISX-Plus
BPL RT11 ;Branch if running under RI-11

i This 1s the old method, but will wvork correctly with
; all versions of T8X-Plus

H .SERR ;Trap invalid ENT error
H NOV #ISXLN,R0 ;Point to ENT arg block to
H ENT 376 ;Determine ISX-Plus line number
H BCS RT11 ;Branch if running under 1I-11
.PRINT #TSXPLS ;"I8X-Plus”™
.EXIT
ITi1: .HERR ;Reset SERR trap
.PRINT #NOIPLS ;"RT-11"
.EXIT
ISXLN: .BYIE 0,110 ;ENT arg block to get line number
.NLIST BEX

UNDER: .ASCII /Monitor 1s /<200>
TISXPL8: .ASCIZ /T8X-Plus./
NOTPLS: .ASCIZ /RT-11./

.END START

4.4 Determining the TSX—-Plus line number

The following EMT will return in RO the number of the line to which the job is attached. Physical lines are
numbered consecutively starting at 1 in the same order as specified when TSX-Plus is generated. Detached
Jjob lines occur next and subprocesses are numbered last.

The form of the EMT is:
ENT 376
with RO pointing to the following argument area:

.BYTE 0,110

28 CHAPTER 4. TSX-PLUS EMTS

Example

.JITLE LNIT
.ENABL LC
; Yhat TSX line number is this terminal attached to?
; And vhat type terminal does TSX-Plus think it 1s?
.MCALL .PRINT,.EXIT,.TITYOUT,.SERR, .HERR

.GLOBL PRTDEC ;Subroutine to print a word in decimal
;Are we under ISX-Plus?
START: .BERR ;Stop error aborts
NOV #TSXLN,RO ;5et up ENT request to
ENT 376 ;Get TSX-Plus line number
BCS ROTTSX ;If error, not under T8X-Plus
NOV RO,LINE ;Bave it
.HERR ;Enable error aborts
.PRINT #LINNSG ;Display line number message
NOV LINE,RO ;Recall line number
CALL PRIDEC ;Display line number
.PRINT #TRMNSG ;Display term type message
NOV #ITYPE,RO ;Bet up ENT request to
ENT 376 ;Get terminal type from TSX-Plus
;Returns into RO
ASL R0 ;Convert to word offset
.PRINT TYPE(RO) ;Print type from index into table
.BXIT ;A11 done
NOITSX: .PRINT #ISXERR ;Say we are not under TSX-Plus
.EXIT
LINE: .MORD O ;8torage for TSX line number
TERN: .¥oRD O ;Storage for ISX term type code
TSXLN: .BYIE 0,110 ;I8X line number ENI parameters
TIYPE: .BYIE 0,137 ;ISX term type ENT parameters
; Table of pointers to ISX term type names
EVEN

TYPE: .¥ORD UNK,VIE2,VT100 ,HAZEL ,ADNSA,LASS,LAL120
.WORF DIABLO,QUME,¥T200
.NLIST BEX
LINNSG: .ASCII /TSX-Plus line number: /<200>
TRMNSG: .ASCII <15><12>/Terminal type: /<200>
TSXERR: .ASCIZ /TLNIT-F-Not running under ISX-Plus/
UONK: .ASCIZ /Unknown/
VI52: .ASCIZ /VI62/
VIi00: .ABCIZ /VT100/
HAZEL: .ASCIZ /Hazeltine/
ADN3A: .ABCIZ /ADNSA/
LA36: .ASCIZ /LASS/
LA120: .ASCIZ /LA120/

DIABLO: .ASCIZ /Diable/ ;Diable and Qume are equivalent
QUNE: ASCIZ /Qume/ ;Diablo and Qume are equivalent
VI200: .ASCIZ /VT200/

.EVEN

.END START

4.5 Determining subprocess job number
The following EMT may be used to determine the line number on which subprocesses are executing. This
is useful in conjunction with the EMT to initiate a subprocess.

The form of the EMT used to determine a subprocess job number is:

ENT 376

with RO pointing to an argument block of the following form:

4.6. SET/RESET ODT ACTIVATION MODE 29

.BYTE 1,110
.WORD relative-subprocess-number

The relative subprocess number is in the range 1 - MAXSEC, and is the same as the number used when
switching to a subprocess from the keyboard with the <*W><n> sequence. In absence of an error, this EMT
returns in RO the line number on which the subprocess is running. This EMT can return the following error
codes:

4.6 Set/Reset ODT activation mode

The following EMT can be used to set TSX-Plus to activate on characters that are appropriate to ODT.
In this mode TSX-Plus considers all characters to be activation characters except digits, %, “$”, and “;".
The form of the EMT is:

ENT 376
with RO pointing to the following argument area:

.BYTE code, 11t

where code=1 to turn on ODT activation mode, and code=0 to reset to normal mode.

Example

TITLE ACTODT
.ENABL LC

;Demonstrate ENT which sets ODT activation mode
.NCALL .PRINT,.EXIT

START: .PRINT #ODTIYP ;Say we are entering ODT activation mode
NOV #ACIODI,RO ;Point to ENT arg block to
ENT 376 ;8et ODT activation mode
i$: CALL GEILIN ;Get some terminal input
CNPB BUFFER,#'(Q ;Back to regular mode?
BNE 14 iNo, get more lines
.PRINT #REGIYP ;Say we are going back to regular activation
CLRB ACTODT ;Make arg block into RESET mode request
NOV #ACIODT,R0 ;Point to ENT arg block to
ENT 376 ;Reset ODT activation mode
2s: CALL GETLIN ;Get more input
CNPB BUFFER,#'Q ;¥ant to quit?
BNE 2¢ ;No, repeat
.EXIT
GETLIN: .PRINT #PRONPT ;Request some input
NOV #ITIBLK,RO iPoint to ENT arg block to
ENT 376 iAccept a block of characters
CLRB BUFFER(RO) iMake input string ASCIZ
.PRINT #BUFFER ;And echo same string back
RETURN
ACTODT: .BYTIE 1,111 {ENT arg block to SET/RESET ODT act’'n mode
TTIBLK: .BYTIE 0,116 ;ENT arg block to get block input from term
.WORD BUFFER ;Pointer to input buffer
.WORD 79, iNumber of input chare requested
.NLIST BEX

ODITYP: .ASCIZ /Starting ODT activation mode./
REGTYP: .ASCIZ /Restoring regular activation mode./
PRONPT: .ASCII /1/<200>

.EVEN
BUFFER: .BLXB 79. ;ITIBLE input buffer
.BYIE 0 iCLRB could go here on full buffer

.END START

30 CHAPTER 4. TSX-PLUS EMTS

4.7 Sending a block of characters to the terminal

The following EMT can be used to efficiently send a block of characters to the terminal. The form of the
EMT is: :

ENT 376
with RO pointing to the following argument block:

.BYTE 0,114
.WORD buffer
.WORD count

where buffer is the address of the buffer containing the characters to be sent and count is a count of the
number of characters to be sent. This EMT is much more efficient to use than a series of TTYOUT EMTs—
it has the same efficiency as a .PRINT EMT but it uses a count of the number of characters to send rather
than having the character string in ASCIZ form.

Example

.TITLE TTOBLK

.ENABL LC
;Demonstration of the use of the TSX-Plus ENT to send a block of
;characters to the terminal.

.NCALL .EXIT

START: NOV #TTOBLX RO ;Point to ENT arg block to
ENT 376 ;Send a block of chars to the terminal
JEXIT

TTOBLX: .BYTE 0,114 ;ENT arg block to send & block of chars
.WORD BUFFER ;Pointer to character buffer
.YORD <BUFEND-BUFFER> ;Count of characters to be ocutput
.NLIST BEX

BUFFER: .ASCII /This ENT is used to send a block of characters /
.AS8CI1 /to the terminal./<16><12>
_ABCII /It is similar to .PRINT, except that it uses /
.ASCII /a count of characters/<16><12>
.ASCII /rather than a special terminating character /
ASCII /(<0> or <200>)./<1B><12>

BUFEND :
.END START

4.8 Accepting a block of characters from the terminal

The following EMT can be used to accept all characters from the terminal input buffer up to and including
the last activation character entered. The form of the EMT is:

ENT 376

with RO pointing to the following argument block:

.BYTE 0,116
.WORD buffer
.WORD size

where buffer is the address of the buffer where the characters are to be stored and ssze is the size of the
buffer (number of bytes). This EMT causes a program to wait until an activation character is entered and
then returns all characters received up to and including the last activation character. On return RO contains
a count of the number of characters received. If the specified buffer overflows, the carry flag is set on return.

This EMT is substantially more efficient than doing a series of .TTYIN EMTs3; it is particularly well suited
for accepting input from page buffered terminals.

Example

4.9. CHECKING FOR TERMINAL INPUT ERRORS 31

.IITLE TTIBLK

.ENABL LC
;Demonstrates the use of TSX-Plus ENT to accept a block of characters
:from & terminal.

.NCALL .EXIT,.PRINT,.TTYIN

START: .PRINT #PRONPY ;Request input
NOV #ITIBLK RO ;Point to ENT arg block to
ENT 376 ;Accept a block of chars from the terminal
NOV 20,R1 ;Save input character count
;Char count includes activation char (and LF after CR)
BCC 18 ;Buffer overflow on input?
.PRINT #OVFLOY ;Yes, warn user
is: ADD #BUFFER ,R1 ;Point past last char in buffer
CLRB (R1) ;Nake the input ASCIZ
.PRINT #BUFFER ;Reproduce the input
LBXIT
TTIBLK: .BYIE 0,116 ;ENT arg block to accept block from terminal
.¥WORD BUFFER ;Btart of input buffer

.WORD <BUFEND-BUFFER> ;Length of buffer in chars (Nay not exceed

;input buffer size declared in TSGEN.)
.NLIST BEX

PROMPT: .ASCIZ /70 character input buffer ready./

OVFLOY: .ASCIZ /TITIBLK-F-Buffer overflow/

BUFFER: .ASCII /XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX/ +36 chars
LASCIT /XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX/ +36 chars

BUFEND: .ASCII /tt/ ;TTIBLK will never write over these
.END S8TART

4.9 Checking for terminal input errors

The following EMT can be used to determine if any terminal input errors have occurred. The form of the
EMT is:

ENT 376
with RO pointing to the following argument block:

.BYTE 0,116

On return from the EMT, the carry flag is set if an input error has occurred since the line logged on or since
the last time a check was made for input errors. The two types of errors that are monitored by this EMT

are hardware reported errors (parity, silo overflow, etc.) and characters lost due to TSX—Plus input buffer
overflow.

Example

.TITLE CKTTIE
.ENABL LC

;Check for terminal input errors
.NCALL .PRINT,.TTYIN, .EXIT

START: .PRINT #PRONPT iAsk to overflow buffer
NOV #100. ,k1 iSet up counter for input loop
NOV #8ETTIO,RO0 ;Point to ENT arg block to
ENT 376 ;Bet terminal time out for 0.6 secs

;Note that this is reset efter every activation character!!!

iBtart requesting characters. Input characters are stacked in the user
iinput buffer until an activation character is scen (\eg carriage return).
i80, all we have to do to overflov is enter more than the input buffer
isize (defined in TSGEN either by DINSPC or with the BUFSIZ macra)

iand type in too many before activating.

iUse a time out so we do not have to hit return.

32

14: ITYIN ;Get a character from the terminal
CNPB 10,837 ;¥as it time-out activation char?
BEQ TINODT ;Yes, exit loop
80B Ri,1¢ ;Repeat for 100. characters

;For a system with input buffer esize=100. in TSGEN, we should be
;able to overflow the buffer before we see an activation char

TINOUT: NOV #CKTIIE, RO ;Point to ENT arg block to
ENT 378 ;Check for terminal input errors
BCS KADEERR ;8ay we had errors
.PRINT #NOERR ;8ay ve had no errors
JEXIT
HADERR: .PRINT #YESERR ;Error message
CNP Ri,#3 ;Did we £ill the buffer?

;Note that last two chars of input buffer are reserved
;for activation chars. Any oxcess input is discarded.

BLE TOONNY ;Yes, buffer overflovw
.PRINT #HDYERR iNo, hardvare error message
BXIT
TOOMNY: .PRINT #OVFERR ;Buffer overflov message
JEXIT
SEITTO: .BYTE 0,117 ;ENT arg block to set terminal time out
.¥O0RD 20. ;to 10 seconds (20 half sec units)
.¥ORD 37 ;Passed as activation char on time-out
CXITIE: .BYIE 0,116 ;ENT arg block to check for input errors
.NLIST BEX

YRSERR: .ASCIZ <16><12>/There were errors during terminal input./<7>
OVFERR: .ASCIZ /(Probably input buffer overflov.)/

HDWERR: .ASCIZ /(Probably hardvare error ... parity, stop bits, data bits)/

NOERER: .ASCIZ <16><12>/Theze were no terminal input errors./

PROMPY: .ASCIZ /Please enter more than 100 input characters and wait. . ./
.END START

CHAPTER 4. TSX-PLUS EMTS

4.10 Determining input characters pending for a line

This EMT can be used to determine the number of input characters pending for the current line. The

number of input characters pending is returned in RO.
The form of the EMT is:

ENT 376
with RO pointint to the following EMT argument block:

.BYTE 1,116

4.11 Set terminal read time-out value

This EMT can be used to specify a time-out value that is to be applied to the next terminal input operation.

This EMT allows you to specify the maximum time that will be allowed
issue a command to get input from the terminal and the time that an

to pass between the time that you
activation character is received to

terminate the input field. You also specify with this EMT a special activation character that is returned

as the terminating character for the field if the input operation times o
character from the terminal. The form of the EMT is:

ENT 376

with RO pointing to the following argument block:

ut without receiving an activation

4.12. TURNING HIGH-EFFICIENCY TERMINAL MODE ON AND OFF 33

.BYTE 0,117
.WORD time-value
.WORD activation-character

where time-value is the time-out value specified in 0.5 second units and activation-character is a single
character value that is to be returned as the last character of the field if a time-out occurs. The time value
specified with this EMT only applies to the next terminal input field. The time value is reset when the next
field is received from the terminal or the time-out occurs. A new time-out value must be specified for each
input field that is to be time controlled.

Example

.TITLE DUNJUN

; Demonstrate use of terminal input time-out testing
.NCALL .TTYOUT,.TIYIN,.EXIT,.PRINT

START: .TTYOUT #'?

18: NOV #SEITTO RO ;Point to ENT arg block to
ENT 376 ;Set terminal input time-out
ITYIN ;Get a character from the terminal
CNP RO, #<16> 18kip over carriage returns
BEQ 14
CNP RO, #<12> ;and line feeds
BERQ STARY ;prompt for next char
CMNP 10,#'Q ;Should we quit?
BNE 1¢ ;No, get next char
.PRINT #DONE ;Quit or time-out
.EXIT iBye
S8RITIO0: .BYTE 0,117 1ENT arg block
.WORD 6%60.%2 ;6.min * 60.sec/min * 2.half-sec-units/sec
.¥ORD 'q ;Activation character on time-out
.NLIST BEX
DONE: .ASCIZ /STOP - /
.END START

See also the example program CKTTIE in the section on checking for terminal input errors.

4.12 Turning high-efficiency terminal mode on and off

TSX-Plus offers a high-efficiency mode of terminal operation that eliminates a substantial amount of system
overhead for terminal character processing by reducing the amount of processing that is done on each
character. When in high-efficiency mode, characters are sent directly to the terminal with minimum handling
by TSX-Plus; operations such as expanding tabs to spaces and form-feeds to line-feeds are omitted as well
as input processing such as echoing characters and recognizing control characters such as DELETE, CTRL-
U and CTRL-C. The only characters treated specially on input are user-defined activation characters and
the user-specified break character. At least one user specified activation character must be declared if
high-efficiency mode is to be used. This form of terminal I/O is designed to facilitate high-speed machine-
to-machine communication. It can also be used effectively to communicate with buffered mode terminals.
The form of the EMT used to control high-efficiency mode is:

ENT 376
with RO pointing to the following argument block:
.BYTE code,120

where code is 1 to turn high-efficiency mode on and 0 to turn it off.

Example

34 CHAPTER 4. TSX-PLUS EMTS

.TITLE HIEFF
.ENABL LC

;Demonstrate the use of I8X-Plus Hi-efficiency terminal mode
.NCALL .EXIT,.PRINT

STARYI: .PRINT #DCLCC ;Make “C an activation char
.PRINT #PRONPT ;Ask for input
NOV #HIEFF,R0 ;Point to ENT arg block to
ENT 876 ;Turn on hi-efficiency mode
MOV #TTIBLI,RO ;Point to ENT arg block te
ENT 376 ;Accept a block of characters

;Actual character count returned in 10
e e e Do something useful with the input?
NOVB #16,<BUFFER-1>(R0) ;Replace the activation char with
NOVB #12,BUFFER(RO) ;Carriage return, line feed

INC RO ;Count LF for output
NOV R0,<TTOBLK+4> ;8et up count for output
MOV #IT0BLI,RO ;Point to ENT arg block to
ENT 376 ;Display a block of characters
CLRB HIEFF ;Get ready to turn hi-eff off
MOV #HIEFF,20 ;Point to ENT arg block to
ENT 376 ;Turn off hi-efficiency mode
.EXIT
HIEFF: .BYIE 1,120 ;ENT arg block to turn hi-eff mode on (off)
ITIBLK: .BYTE 0,11B ;ENT arg block to accept a block of chars
.WORD BUFFER ;Pointer to input buffer
.YORD BUFSI2 ;Number of chars to input
TTIOBLX: .BYIE 0,114 ;ENT arg block to display a block of chars
.¥ORD BUFFER ;Pointer to buffer for output
.WORD BUFSIZ ;8ize of buffer to output
BUFFER: .BLKB 82. ;1/0 buffer---Cannot exceed line’s 1/0
BUFSIZ = . - BUFFER H butfer sizes declared in TSGEN
.MORD O ;Spacer in case of buffer overfill
.NLIST BEX

DCLCC: .ASCII <365><'D><3><200> ;Declare “C as special activation char
PRONPT: .ASCII /Please enter 1 line of characters (“C ends)./<16><12>
.ASCIZ /No special processing or echoing will be done./
.END START

4.13 Checking for activation characters

The following EMT can be used to determine if any activation characters have been received by the line but
not yet accepted by the program. The form of the EMT is:

ENT 376
with RO pointing to the following argument block:

.BYTE 0,123

If there are pending activation characters, the carry flag is cleared on return from the EMT; if there are no
pending activation characters, the carry flag is set on return from the EMT.

Example
.TITLE CKACT
ENABL LC
;Demonstrate use of check for activation characters
LEADIN = 36 ;I8X-Plus program contreclled terminal

;eption lead-in character
.MCALL .PRINT, .EXIT,.GTLIN,.TVWAIT,.ITYOOT
START: .PRINT #PRONPT iRequest some characters

4.14. SENDING A MESSAGE TO ANOTHER LINE

;Do some processing.

;And disallow deferred echoing

Simulated here by .IVWAIT

NOV #80.,11 ;Line length counter
18: .ITYOUT #°. ;Tick, tock
DEC) §9 ;End of line?
BNE 2¢ ;No, go on
.TTIYOUT #<16> ;New line
LITYOUT #<12>
NOV #80.,R1 ;Reset line length counter
24: JIWAIT #AREA,#TINE ;¥ait 1 second here
N Processing ..
NOV #CKACT RO ;Point to ENT arg block to
ENT 376 ;Check for pending activation characters
BCS 14 ;Continue 1f input not complete
.GTLIN #BUFFER ;Collect the pending input
H . Do something with it
CNP BUFFER,RX ;Exit command?
BNE 14 ;No, continue proceesing
.PRINT #BYE
.EXIT
AREA: .BLEKY 10. ;ENT arg block
TINE: .WORD 0,1.260. i1.sec * 60.tics/sec
CKACT: .BYTE 0,123 ;ENT arg block for activation char check
BUFFER: .BLKB 81. ;Local input buffer
.NLIST BEX
.EVEN
EX: .ASCII /EX/
PRONPT: .ABCII <LEADIN>/L/ ;Disallov deferred ochoing
.ABCIZ /Please enter up to 80 characters, then RETURN:/
BYE: .ASCIZ /Thank you./
.END START
. -
4.14 Sending a message to another line

35

The following EMT can be used to cause a message to display on another line’s terminal. (This feature is

not related to message communication channels, but is the same as the keyboard SEND command.) The
form of the EMT is:

ENT 376
with RO pointing to the following argument block:

.BYTE sub-function,127
.WORD line-number
.WORD message-address

where line-number is the number of the line to which the message is to be sent and message-address is the
address of the start of the message text that must be in ASCIZ form. The message length must be less
than 88 bytes. Note that if the target screen is only 80 characters wide, characters past column 80 will be
overwritten. If sub-function bit O is set and the job issuing this EMT has OPER privilege, then the GAG
setting of the destination terminal can be overridden. If sub-function bit 1 is clear, this EMT waits for a
free message buffer if none is available. If bit 1 is set and no free message buffer is available, then the EMT
returns immediately with error code 2. Use of this EMT requires SEND privilege. Note that information
sent to a line with this EMT is not processed by the window manager for the target line. Thus, if the window

is refreshed the message sent will disappear.

Error
Code | Meaning

0 | Job does not have SEND privilege.
1 | Line has SET TT GAG and is executing a program.
2 | No free message buffers are available.

36 CHAPTER 4. TSX-PLUS EMTS

Example

See the example program CKSTAT in the section on determining job status information.

4.15 Starting A Detached Job

This EMT can be used to start the execution of a detached job. Use of this EMT requires DETACH privilege.
The process which issues this EMT is known as the parent of the detached job it starts. The form of the
EMT is:

ENT 3756
with RO pointing to the following argument block:

.BYTE 0,132
.WORD npame-address

where name-address is the address of an area containing the name of the command file to be started as a
detached job. The command file name must be stored in ASCIZ form and may contain an extension. If a free
detached job line is available, the specified command file is initiated as a detached job and the number of the
detached job line is returned in RO. A detached job started by use of this EMT inherits the characteristics
of the (sub)process that is executing the EMT. If there are no free detached job lines, the carry bit will be
set on return.

Example
.TITLE SIRTDJ
.ENABL LC
;Start a job on a ISX--Plus detached line
cR = 16
LF = 12
ERRBYT = 62
.MCALL .ENTER, .WRIT¥,.CLOSE, .PRINT, .EXIT
START: CLR) 8§ ;Channel number

;Ne .FEBICH is necessary under TSXI--Plus, handlers are alwvays resident.
1$: .ENTER #AREA,R1,#FILRGO,#1 ;Open a one block file on first free channel.

BCC 2% ;Branch on successful .ENTER
ISTB G#ERRBYT ;¥hy didn't .ENTER work?
BNE NOROON ;Brror = 1 :not enough room for file
INC §1 ;Iry next higher channel
CNP Ry, 17 ;Last channel? .CDFN not supported by
;I8X--Plus, so legal channels are 0-1B.
BLE 1s ;0k, retry on next channel
.PRINT #NCA ;Ran out of channels
BR DONE
2¢: .WRITY #AREA,R1,#CONNDS,#<<CNDEND-CONNDS8+1>/2>,#0
BCS VRTIERR ;Bad write?
.CLOSE 11 ;Close the file
NOY #8TRIDJ RO ;Point to ENT arguments to
ENT 376 ;8tart the detached job
BCS DICHER ;Bad start of detached job?
BR DONE
NOROON: .PRINT #NER ;Not enough room error
13 DONE
VATERR: .PRINT #BADWAT ; .WRITY error
.CLOSE 11
BR DONE
DICHER: .PRINT #BADDETY ;BIRTID] error
DONE: .EXIT

AREL : .BLKY [;ENT Argument area

4.16. CHECKING THE STATUS OF A DETACHED JOB 37

8IRIDJ: .BYTE 0,132 ;ENT arguments to start a detached job
.WORD FILNAMN ;Pointer to name of command file
.NLIST BERX

FILRGO: .RAD6O /SY CKSTATCON/ ;RADE0 name of command file to be detached

FILNAN: .ASCIZ /SY:CKSTAT.CON/ ;ASCII name of command file to be detached
CONNDS: .ASCIZ /R CKSTAT/<16><12> ;Btart a monitoring program

CNDEND :
NER: .ASCIZ /1STRIDJ-F-Not enough room for command file./<7>
NCA: .ASCIZ /1STIRIDJ-F-No channels available for command file./<7>

BADWRYT: .ASCIZ /YSIRIDJ-F-Error writing command file./<7>
BADDET: .ASCIZ /1STRTDJ-F-Error starting detached job./<7>
.END START

4.16 Checking the status of a detached job

This EMT may be used to check the status of a detached job. The form of the EMT is:

ENT 376
with RO pointing to the following argument block:

.BYTE 1,132
.WORD job-number

where job-number is the number of the detached job to be checked. If the detached job is still active the

EMT returns with the carry-flag cleared. If the detached job has terminated and the detached job line is
free, the EMT returns with the carry-flag set.

Example

.TITLE CKABDJ
.ENABL LC

; Check status of a detached job and abort it if running
.NCALL .EXIT,.PRINT

START: NOV #8TATDJ R0 ;Point to ENT arg block to
ENT 376 ;Check status of a detached job
BCC 18 ;If otill on, kill it
PRINT #NOTON ;Else, say it isn't active
.EXIT
1$: NOV #ABRIDJ,R0 ;Point to ENT arg block to
ENT 376 ;Abort detached job
BCS ABERR ;8ince we checked, should never err
.PRINT #KILLED i8ay we killed it
.EXIT
ABERR: .PRINT #ABERNS
.BXIT
S8TATDJ: .BYIE 1,132 ;ENT arg value to check detached job status
JYORD 9. iLine number of detached job to be checked
ABRIDJ: .BYTE 2,132 ;ENT arg value to abort a detached job
.WORD 9

. iLine number of detached job to be killed
.NLIST BEX

ABERNS: .ASCIZ /TCKABDJ-F-Invalid detached job number/<7>
ROTON: .ASCIZ /TCKABDJ-I-No detached job on line #9/<7>
KILLED: .ASCIZ /Detached job on line #9 killed./

.END START

38 CHAPTER 4. TSX-PLUS EMTS
4.17 Killing a job

This EMT may be used to kill any job if the appropriate privileges are present. If it is used to kill a detached
job, then DETACH privilege is required; to kill primary and secondary lines, DETACH privilege is not
required. The expected checking is always done for SAME, GROUP, and WORLD privileges. That is: a
process may always kill its parent or child, may only kill a different line with the same PPN if it has SAME
privilege, may only kill a process with the same project but different programmer number if it has GROUP
privilege, and may only kill another job with a different project number if it has WORLD privilege.

This EMT is equivalent to the keyboard KILL command and checks for DETACH privilege when appropriate.
The form of this EMT is:

ENT 376
with RO pointing to an argument block like:

.BYTE 2,132
.WORD job_number

This EMT may return the following error codes:

Error
Code | Meaning

0 | Invalid subfunction code
1 | Invalid job number

2 | You do not have privilege to kill that job

4.18 Establishing break sentinel control

The following EMT can be used to declare a completion routine that will be triggered when the BREAK
key is pressed. (Note that receipt of the break sentinel character while the terminal is already in terminal
input state does not activate entry to the completion routine.) The form of the EMT is:

ENT 376
with RO pointing to the following argument block:

.BYTE 0,133
.WORD brkchr
.WORD cplrtn

where brkchr is a user defined character that is to be declared the BREAK character and cplrin is the address
of the completion routine that is to be called when the break character is received from the terminal.

The specified completion routine will be called if the user presses either the key labeled “BREAK” (which
transmits a long space) or types the character that is declared as the user-specified break character (brkchr).
If no user-specified break character is wanted, specify the value sero (0) for brkchr in the argument block
and only the real BREAK key will be activated. Note that on some systems the console terminal BREAK
key causes entry to the hardware ODT module and for this reason cannot be used with this TSX-Plus
function. Only one break routine may be specified at a time for each user. If a break routine was previously
specified, it is cancelled when a new routine is declared. If an address of zero (0) is specified as the address
of the completion routine (cplrin), any previously specified break routine is cancelled and the break key

4.18. ESTABLISHING BREAK SENTINEL CONTROL 39

connection is cancelled. On return from the EMT, RO contains the address of any completion routine
previously connected to the break sentinel character. If none was previously connected, then RO will contain
zero.

The specified break completion routine request only remains in effect for one break character. If you wish to
be notified about additional break characters, you must reestablish the break connection each time a break
character is received. This can be done from within the break completion routine.

A break routine can be used to signal an asynchronous request for service to a running program. A good
example of this use would be to trigger entry to an interactive debugging program.

Example

.TITLE BRESNT
:Demo nse of break sentinel control
.NCALL .PRINT,.TYAIT,.EXIT

.ENABL LC
START: NOV #BRESNT RO ;Point to argument area to
ENT 376 ;Establish break sentinel control
.PRINT #NMESSAG ;Prompt for key
.TUAIT #AREA,#TINE ;Glve the user 2 seconds to hit the break key
8T YES ;Ever see a break?
BNE DONE ;Yes, all done
.PRINT #NOBRK ;No, never sav it
DONE: JEXIT
CNPRIN: .PRINT #GOTBRK ;8ay we caught the break
NOV #1,YES ;demember it
RETURN ;And continue
;Completion routines are ALVAYS exited with
;1T8 PC under ISX-Plus, NEVER via RTI
BRISNI: .BYIE 0,138 ;ENT arg value block to break sentinel control
.NORD O ;Declare only °‘BREAK’ key as break char
.WORD CMPRIN ;Address of completion routine to be called
;when system notices break
YES: .¥YORD 1] ;Flag for break seen
AREA: .BLKY 2 ;2 word arg area for .TVWAIT
TINE: .WORD 0 ;high word of time
.WORD 2.260. ;2 sec » 60.tics/sec
.NLIST BEX

NESSAG: .ASCIZ /You have 2 seconds to hit the break key./
GOTBRK: .ASCIZ <15><12>/Break key pressed./
NOBRK: .ASCIZ /Never saw the break key./

.END 8TART

\index{Terminal;Input completion routine}
\index{Completion routine;Terminal input}
\secticn{Terninal input completion routine}

The following ENT can be used to specify a completion routine which
will be triggered when tha next character is entered st the terminal.
The form of the ENI is:
\begin{verbatim}

ENT 376

with RO pointing to the following argument block:

.BYTE 1,133
.WORD completion-routine

wherg completion-routine is the address of the completion routine to be entered when the next character is
typed.

On entry to the completion routine, the received character is in RO. The EMT to connect the completion
routine must be rescheduled before returning if it is desired to continue accepting characters via the com-

ptlett,'ion rou({ine. The program should be running with single character activation and bit 12 set in the Job
status word.

Example

40 CHAPTER 4. TSX-PLUS EMTS

.TITLE TIICPL
; Demonstrate terminal character input completion routine.
.ENABL LC
.DSABL GBL
.GLOBL PRTIDEC
.NCALL .TTIYDUT,.SPND,.PRINT

Jsy = 44 ;Job Btatus ¥ord address
TISPC$ = 10000 ;IT special mode (single char input)
IT$LC = 40000 ;Enable lowver case bit
SPACE = 40 1ASCII Space
START: BIS STTSLCITISPCS, @8I58V ;8et single character mode
NOV #TTICPL,RO ;Point to ENT arg block to
ENT 376 ;8chedule IT input char compl routine
.SPND ;Suspend main-line (forever in example)
CPLRIN: NOV 20,-(SP) ;Save input char carried in RO
.ITYOUT ;Echo the char
.ITYOUT #SPACE
NOV (8P)+,R0 ;Retrieve char
CALL PRTDEC ;Display its ASCII value
.PRINT #CRLF
NOV #TTICPL,RO ;Point to EMT arg block to
ENT 376 ;Bchedule IT input char compl routine
RETURN
TTICPL: .BYIE 1,133 ;ENT arg block for IT input compl routine
.YORD CPLRIN ;Completion routine to run
CRLF: .ASCIZ //
.END START

4.19 Mount a file structure

This EMT is used to tell TSX-Plus that a file structure is being mounted and that TSX-Plus should begin
caching the file directory for the device. The effect of this EMT is the same as doing a system MOUNT

keyboard command to enable caching. It cannot be used to mount a logical subset disk. The form of the
EMT is:

ENT 376

with RO pointing to the following argument block:

.BYTE 0,134
.WORD device-spec-address
.WORD ©

where device-spec-address is the address of a word containing the RAD50 form of the name of the device on
which the file structure is being mounted. If there is no room left in the table of mounted devices, the carry
bit is set on return and the error code returned is 1.

Example
.TITLE NOUNT
.ENABL LC

; Demonstrate ISX--Plus ENT to NOUNT (do directory caching on) a device
.GLOBL IRADEO ;BYSLIB RADGO conversion subroutine

BS = 10 ;ASCII Backspace

.MCALL .PRINT,.GILIN, .BXIT
S8TART: .GTLIN #BUFFER,#PRONPT ;Ask for name of device

NOV #060BLK ,Rb ;Point to arg block for next call

CALL IRADGO ;Convert ASCII device name to RADGO

MOV #MOUNT RO ;Point to ENT arg block to

ENT 376 ;Mount a file structure (directory caching)

BCC START ;Ask for more if 0K

4.20. DISMOUNT A FILE STRUCTURE 41

.PRINT #NOGOOD ;Say it was not good
.BXIT
.NLIST BEX
MOUNT: .BYTE 0,134 ;ENT arg block to mount a file structure
.WORD DEVNAN ;Pointer to RADEO name of device
.yorD 0 ;Required O argument
R60BLK: .YORD 3 ;Number of args for IRADEO call
.¥ORD THREE ;Pointer to number of chars to convert
.WORD BUFFER ;Pointer to chars to convert
.YORD DEVNAN ;Pointer to RADHO neme of device
THREE: .¥WORD 3 ;Number of chars to convert
DEVNAN: .¥WORD O ;RADEO representation of device name
BUFFER: .BLEB 80. ;GILIN input buffer
PROMPT: .ASCII /Name of device to be mounted: :/<B8><BS><BS><B8><200>
MOGOOD: .ASCIZ /Attempt %o NOUNT too many devices./<7>
.END START

4.20 Dismount a file structure

This EMT can be used to tell TSX-Plus to stop doing directory caching on a particular drive. The effect of
this EMT is the same as a DISMOUNT keyboard command to disable caching. The form of the EMT is:

ENT 376
with RO pointing to an argument block of the following form:
.BYTE 0,136

.MORD device-spec-address
.WORD O

where device-spec-address is the address of a word containing the RAD50 name of the device to be dis-
mounted.

Example
.TITLE DISNNT
.ENABL LC
; Demonstrate TSX--Plus ENT to DISNOUNT (stop caching on) a device
.GLOBL IRADGO ;SYSLIB RADGEO conversion subroutine
B8 = 10 +ASCII Backspace

.MCALL .GILIN
START: .GILIN #BUFFER,#PRONPT ;Ask for name of device

NOV #R60BLK ,Rb ;Point to arg block for next call
CALL IRADEO ;Convert ASCII device name to RADEO
NOV #DISNNT RO ;Point to ENT arg block to
ENT 376 ;dismount a file structure (stop caching)
BR START ;Repeat (no errors returned)
.NLIST BEX
DISMNYT: .BYTIE 0,136 ;ENT arg block to dismount a file structure
JMORD DEVNAN ;Pointer to RADE0 name of device
JHORD O ;lequired O argument
R60BLK: .WORD 3 ;Number of args for IRAD6O call
.¥ORD THREE ;Pointer to number of chars to convert
.WORD BUFFER ;Pointer to chars to convert
.YORD DEVNAN ;Pointer to RADEO name of device
THREE: .YORD 3 ;Number of chars to convert
DEVNAN: .¥ORD 0 ;RADG0 representation of device name
BUFFEL: .BLKB 80. iGILIN input buffer
PRONPY: .ASCII /Name of device to be dismounted: :/<B8><B8><BB><B8><200>

.END START

42 CHAPTER 4. TSX-PLUS EMTS
4.21 Dismounting all file structures and logical disks

This EMT can be used to dismount all file structures for the job from directory and generalized data cache.
This dismounts all logical disks from cache as well as cached physical disks. Note that this simply removes
all logical disks from the cache tables; the logical disks are still accessible. Also note that issuing the SHOW
SUBSETS (also SHOW LD} command will cause the logical disks to be cached again. The form of the EMT
is:

ENT 376

with RO pointing to an argument block of the following form:

.BYTE 2,135
.MORD ©
Example

.TITLE DNIFLS
.ENABL LC
; Demonstrate ENT to dismount (stop caching on) all files structures.

.NCALL .PRINT,.EXIT

.DSABL GBL
ERRBYT = 52 ;ENT error byte address
START: NOV #DNIFLS RO ;Point to ENT arg block to
ENT 376 ;Dismount all file structures
BCC [;Branch it 0K
.PRINT $ENTERR ;"Unable to dismount all files structures”
08: JBXIT
DNIFLS: .BYTE 2,136 ;ENT arg block to dismount file structures
.MoRD 0
.NLIST BEX
ENTERR: .ASCIZ /TDNTFLS-F-Unable to dismount all files structures/
.RVEN
.END START

4.22 Dismounting Logical Disks

The following EMT can be used to dismount a logical disk. The form of the EMT is:
ENT 376
with RO pointing to the following argument block:

.BYTE 3,1356
.BYTE 1d-unit,O

where ld-unit is the logical disk unit number which must be in the range 0 to 7.

The following error codes can be returned by this EMT:

4.23. DETERMINING STATUS OF LOGICAL DISKS 43

Error
Code | Meaning

0 | Specified LD unit is not associated with a file

1 | Invalid LD unit number (must be in the range 0 to 7)
3 | Some channel is opened to a file on the logical disk

Example

.TITLE

»
;:Demonstration

DNNTLD

of the use of the TSX-Plus ENT to dismount a logical disk.

MCALL .PRINT,.EXIT,.CLOSE
.GLOBL PRIDEC
.DSABL GBL
ERRBYT = b2 ;ENT error byte address
START: NOV #DNTLD6 , R0 iPoint to ENT arg. block to
ENT 376 ;Dismount LD5:
BCS 14 ;Branch if not 0K
MOV #DNTLDG ,RO ;Point to ENT arg. block to
ENT 376 ;Dismount LD6:
BCC 2¢ ;Branch it 0K
1$: NOVB @¥ERRBYT,-(SP) ;Fetch ENT error code
.PRINT #ERRIS i"ENT error is:"
NOV (Sp)+,R0 ;Retrieve error code
CALL PRTIDEC ;Display it
24: .BXIT
.NLIST BEX
DNILDG: .BYTE 3,186 ;ENT arg. block to dismount
.BYTE 6,0 ;LDB;
DNILDEé: .BYTE 3,136 ;ENT arg. block to dismount
.BYTE 6,0 ;LD6:
ERRIS: .ASCII /YDNNTLD-F-ENT error is: /<200>
.EVEN
.END START

4.23 Determining Status of Logical Disks

The following EMT can be used to provide the status of a LD unit. The form of this EMT is:

ENT

376

with RO pointing to the following argument block:

.BYTE 4,135
.BYTE ld-unit, 0
.WORD buffer-address

where ld-unit is the LD unit number in the range 0 to 7, and buffer-address is the address of a five-word
buffer which will receive information about the logical disk.

If the logical disk is not associated with a file then all zeros will be stored into the buffer. If the LD is
associated with a file, the first four words of the buffer will receive the RAD50 device name, file name (2
words), and extension. The fifth word is a flag word. If the LD is mounted for read-only access, bit 0 of the
flag word is set. If the LD is not currently accessible, bit 1 is set.

The following error code can be returned by this EMT:

44 CHAPTER 4. TSX-PLUS EMTS

Error
Code | Meaning

1 | Invalid LD unit number (must be in the range 0 to 7)

Example:

.TITLE LDSTAI

.NCALL .PRINT,.EXIT,.LOOKUP,.SPFUN,.CLOSE, .BERR, .HERR
.GLOBL PRTOCT,PRTRB0,PRIDEC

.DSABL GBL
START: CLR LDUNIT ;Start with LDO
1%: CNP LDUNIT, #7 ;Have we print info on all LD's
BGY [1] ;Branch if not
.PRINT #LDPRT ;Bpecify LD number
MOV LDUNIT,RO

CALL PRIDEC
.PRINT #COLEQU

NOV #LDSTAT,RO ;8et up to...
ENT 376 ;Get status for this LD
BCC 28 ;Branch if D.X.
.PRINT #00PS ;Else "LD Btatus ENT Error"
Bk 94 ;And give up
2: CLL 8IZE ;Assume not mounted
NOV #BUFF ,R1 ;Get buffer address
NOV (R1)+,R0 ;Get Device name
BEQ 914 ;BR 1f not mounted
INC SIZE ;Remember to get size
21%: CALL PRIRGO ;Print device name
.PLINT #COLON Hat i
NOV (R1)+,R0 ;Get first half of file name
CALL PRIRBO ;Print it
NOV (k1)+,R0 ;Get last half of file name
CALL PRIRBO ;Print it
.PRINT #DOT HaPhd
NOV (R1)+,20 ;Get extension
CALL PRTREO ;Print it
.SERL ;Trap Errors
NOVB LDUNIT,RO ;Get Device and unit number

ADD #°1LDO,R0
NOV RO,DEV
.LOOKUP #AREA,#0,#DEVSPC ;0pen a channel to it

BCS 8 ;Branch on error
.SPFUN #AREA,#0,#373,#51ZE,#1,#1 ;Get the size of LD
BC8 3¢ ;Branch on error
.PRINT #L8QBR Rl
MOV 8IZE,R0 ;Get the size
CALL PRIDEC ;and print it
.PRINT #RSQBR Hal b
3%: .HERR ;Report errors
.CLOSE #0 ;Close the channel
4s: PRINT #STAY ;" SBTATUS= *
NOY (R1)+,20 ;Got the status
CALL PRTOCT ;and print it
.PRINT #CRLF ;Finish the line
) 3 924
914: .PRINY #NOINNT ;"Not mounted*
92¢: INCB LDUNIT ;Increment LD unit number
BR 19 ;Print info. on next LD
[1H .BXIT
LDSTIAT: .BYIE 4,136 sArgument block for ENT get LD status
LDUNIT: .BYIE 0.0 ;LD unit number

.WORD BUFF

4.24. DISMOUNTING ALL LOGICAL DISKS 45

BUFF: .BLXY b ;Area vhere status info. is put
AREA: .BLK¥ 10 ;Area .LOCKUP ENT block
DEV:
DEVSPC: .RAD6O /LDO/
.¥ORD 0,0,0

SIZE: .WORD O

COLON: .ASCII /:/<200>

DOT: .ASCII /./<200>

STAT: .ASCII / STATUS= /<200>
LDPRT: .ASCII /LD/<200>

COLEQU: .ASCII /: = /<200>

CRLF: .ASCIZ //

LSQBR: .ASCII /[/<200>

RSQBR: .ASCII /.]1/<200>

00PS: .ASCIZ /LD Status ENT Error/
NOIMNT: .ASCIZ /Not mounted/

.EVEN

.END START

4.24 Dismounting all logical disks

The following EMT allows dismounting of all logical disks with one EMT. The form of the EMT is:
ENT 376

with RO pointing to the following argument block:

.BYTE 65,1356
.WORD ©

The following error code can be returned by this EMT:

Error
Code | Meaning

3 | Some channel is opened to a file on the logical disk.

This EMT is similar to the SET LD EMPTY command. All LD’s are completely dismounted, and become
inaccessible until remounted. This is unlike the EMT to dismount all files structures which simply removes
file structures from the caching tables.

Example

.TITLE DNTALD
.ENABL LC
i Demonstrate ENT to dismount all logical dieks.
.NMCALL .PRINT,.EXIT
.GLOBL PRIDEC

.DSABL GBL
ERRBYT = B2 ;ENT error byte address
START: NOV #DNTALD,RO iPoint to ENT arg block to
ENT 376 ;Dismount all logicel disks

BCC ['1] ;Branch if 0K

46 CHAPTER 4. TSX-PLUS EMTS

NOV @#EBRBYT,-(SP) ;Fetch ENT error code
.PRINT #ENTERR :"Unable to dismount all logical disks. Error"
MOV (8P)+,R0 ;Retreive error code
CALL PRTDEC ;And print it

9%: .BXIT

DNTALD: .BYIR 5,136 ;ENT arg block to dismount all logical disks
.¥WORD 0
.NLIST BEX

ENTERR: .ASCII /YDNTALD-F-Unable to dismount all logical disks. Error: /<200>
.BVEN
.END START

4.25 Determining the terminal type

The following EMT will return in RO a value that indicates what type of time-sharing terminal is being used
with the line. The form of the EMT is:

ENT 376
with RO pointing to the following argument block:
.BYTE 0,137
The terminal type is specified either when the TSX-Plus system is generated or by use of the SET TT

command {e.g., SET TT VT100). The terminal type codes which are currently defined are listed below.
The types Diablo and Qume are functionally equivalent.

Terminal-type Code
Unknown

VT52

VT100
Hazeltine
ADM3A

LA386

LA120

Diablo & Qume
VT200

O =1 D UL O

A type code of zero (0) is returned if the terminal type is unknown.

Example

See the example program LNTT in section 4.4 on determining the TSX-Plus line number.

4.26 Controlling the size of a job

Under RT-11, the .SETTOP EMT is used to set the top address of a job. The TSX-Plus .SETTOP EMT
does not actually alter the memory space allocated to a job but simply checks to see if the requested top of
memory is within the region actually allocated to the job and if not returns the address of the top of the
allocated job region. The TSX-Plus .SETTOP EMT was implemented this way because many programs

4.27. DETERMINING JOB STATUS INFORMATION 47

written for RT-11 routinely request all of memory when they start regardless of how much space they
actually need.

The memory space actually allocated for a job can be controlled by use of the MEMORY keyboard command
or by use of the EMT described below. The memory size specified by the most recently executed MEMORY
keyboard command is considered to be the normal size of the job. The EMT described here can be used to
alter the memory space allocated to a job but the job size reverts to the normal size when the job exits or
chains to another program.

The form of the EMT used to change a job’s size is:

ENT 376
with RO pointing to the following argument area:

.BYTE 0,141
.WORD top-address

where top-address is the requested top address for the job. If this address is larger than the allowed size of a
job, the job will be expanded to the largest possible size. On return from the EMT, RO contains the address
of the highest available word in the program space.

A program is not allowed to change its size if it was started by use of the RUN/DEBUG command or the
system was generated without allowing program swapping. In either of these cases the EMT operates exactly
like a .SETTOP request (i.e., the requested program top address will not be allowed to exceed the normal
program size).

See also the description of the SETSIZ program in Appendix A for information about how the default
memory allocation for a program can be built into the SAYV file for the program.

Example

See the example program CKSTAT in section 4.27 on determining job status information.

4.27 Determining job status information

The information about various jobs on the system which is displayed by the SYSTAT command may also be
obtained by application programs. An EMT is provided with several subfunctions to obtain the desired job

status information. This EMT may obtain information about any job on the system, not only itself. The
form of the EMT is:

ENT 376
with RO pointing to the following argument block:

.BYTE 0,144
.BYTE line-#,sub-function
.WORD buf-address

where line-# is the number of the time-sharing line about which information is to be returned. Line numbers
are in the range 1 up to the highest valid line number for the system. Sub-function is a function code which
indicates the type of information to be returned by the EMT (see below). Buf-address is the address of the
first word of a 2-word buffer area into which the returned value is stored. Note: some of the functions only
return a single word value in which case the value is returned into the first word of the buffer area.

If an error occurs during the execution of the EMT, the carry-flag is set on return and the following error
codes indicate the type of error:

48 CHAPTER 4. TSX-PLUS EMTS

Error
Code | Meaning

0 | Indicated line number is not currently logged on.

1 | Invalid sub-function code.
2 | Invalid line number (0, or higher than largest valid line number).

Each of the sub-functions is described below:

Subfunction # 0 Check status of line. The value returned contains bit flags that indicate the status of
the job. The following bit flags are defined:

Bit Flags | Meaning

000001 This is a subprocess.

000002 This is a detached job line.
000100 Job has locked itself in memory.
000200 Job has SYSPRYV privilege.

Subfunction # 1 Get job’s execution state. This subfunction returns a code that indicates a job’s current
execution state. The following code values are defined:

Code | Meaning

Non-interactive high priority run state.
Normal priority run state.

Fixed-low-priority run state.

Waeaiting on input from the terminal.

Waiting for output to be written to terminal.
Doing a timed wait.

Suspended because .SPND EMT done.
Waiting for access to a shared file.

Waiting for a inter-job message.

10 | Waiting for access to USR (file management) module.
11 | Waiting for non-terminal I/O to finish.

12 Waiting for access to spool file.

13 Interactive high priority run state.

14 | Fixed-high-priority run state.

15 Waiting for memory expansion.

WO 00 =1 D WU i O

Subfunction # 2 Determine amount of memory used by job. This function returns the number of 256-
word blocks of memory that are currently being used by the job, including PLAS regions.

Subfunction # 3 Determine connect time for job. This function returns the number of minutes that a job
has been logged onto the system.

Subfunction # 4 Determine position of job in memory. This function returns the 256-word block number
of the start of the memory area allocated to the job.

Subfunction # 5 Get name of program being run by job. This function returns & 2-word value. The two
words contain the RADS50 value for the name of the program currently being run by the job.

Subfunction # 6 Get project and programmer number for job. This function returns a two-word value.
The first word contains the project number that the job is logged on under; the second word contains
the programmer number.

Subfunction # 7 Get CPU time used by job. This function returns a two-word value that contains the
number of clock ticks of CPU time used by the job. The first word contains the high-order 16-bits of
the value, the second word contains the low-order 16-bits.

4.27. DETERMINING JOB STATUS INFORMATION 49

Subfunction # 8 Get current job execution priority This function returns one word that contains the
current job execution priority level (0-127).

Subfunction # 9 Get job name for the specified line number. The return buffer must be at least 12 bytes
long.

Example

.TITLE CKSTAT

.ENABL LC
; Demonstration of NENTOP, JSTAT and SNDNSG ENTs of YSX--Plus
ERRBYTI = b2 ;ENT error code location
PRGNAN = b +JSTAT subfunction code to get prog. name
LMCALL .TWAIT,.EXIT
START: NOV #MENTOP ,RO ;Point to ENT arg block to
ENT 376 ;8et job size
;0nly vorks in swapping environment, othervise behaves like .SEITOP
CNP RO, #HILIN ;See if we got what we wanted
BHIS AGAIN :Go on if so
.BIIT ;else quit (cannot disp err msg from det line)
AGAIN: NOVB #1,LINE ;Check all lines starting with #1
CHECK: NOV #JSTAT RO ;Point to ENT arg block
ENT 376 ;Get name of job being run
BCS ERRTYP ;Go find out what kind of error
CNP BUFADD,DUNJUN ;Is this line goofing off?
BNE NEXT :No, proceed
CNP BUFADD+2,DUNJUN+2 ;Nay be, check for sure
BNE NEXT ;No, proceed

;8end & message to the offending line
; (Bach message must be < 88. bytes)

NOVB LINE,YOOHOO ;¥Yho is the guilty party?
NOV #NESAG1,NSGADD ;Prepare part one of message
NOV #8END , R0 ;Point to ENT arg block to
ENT 376 ;8end a message to that line
NOV #NESAG2,NSGADD ;Prepare for part two of the message
NOY #8END ,20 ;Point to ENT arg block to
ENT 376 ;8end part 2 of message
NOV #MESAG3,NSGADD ;Prepare for part three of the message
NOV #8END,R0 ;Point to ENT arg block to
ENT 376 ;8end part 3 of message
NOV #NESAG4 ,NSGADD ;Prepare for part four of the message
NOV #SEND , R0 ;Point to ENT arg block to
ENT 376 ;8end part 4 of message
NEXT: INCB LINE ;Try next line
CNPB LINE,NAXLIN ;Have we checked them all?
BGT SLEEP ;Yes, wait avhile
BL CHECK ;Go check the rest of the lines
SLEEP: .TYAIT #AREA,#TINE ;Come back in b minutes
BR AGAIN ;And try again
ERRIYP: CNPB Q#ERRBYT, #1 ;¥Yhich error is it
BLT NEXT ;0 ==> line not logged on, try next line
BEQ 2¢ ;1 ==> invalid sub-function code, give up
MOVB LINE,NAXLIN ;2 --> 1line > last walid line
DECB MAXLIN ;Largest valid line number
Bk SLEEP ;should only happen first time
2¢: JBXIT ;Invalid code should never happen
iNight as well kill job
NENTOP: .BYTE 0,141 ;Argument block for NENTOP ENT
JMORD HILIN ;Upper address limit
JSTAT: .BYTE 0,144 ;Argument for JSTAT ENT
LINE: .BYIE 0 ;T8X-Plus line number to be checked
SUBFUN: .BYTE PRGNAN ;ENT subfunction
.YORD BUFADD iAddress of 2-word buffer for returned value
BUFADD: .BLKY 2 ;2 word buffer to hold stat result
MAXLIN: .BYTIE 30. ;Naximum number of lines under ISX--Plus

.EVEN ;¥ill be altered to max valid line #

50

SEND:

YOOHDO:
NSGADD:

ALEA:
TINE:

DUNJUN:

MNESAG1:

NESAG2:

NESAGS:

NESAG4:

HILIN:

.BYIE
.YORD
.YORD
.BLKV
.WORD
.WORD
.NLIST
.RADEO
.ABCII
.ASCII
.ABCIZ
.ABCII
.A8CIZ
.ASCII
.ASCIZ
.ASCIZ

CHAPTER 4. TSX-PLUS EMTS

0,127 ;ENT arg block to send a message
0 ;Destination line number

NESAG1 ;Nessage to be sent

2 3 .TYAIT arg area

0 ;time high word

5460.%60. ;min * 60.sec/min * 60.ticks/sec
BEX

/DUNJUN/ ;Name of illicit program
<T><16><12>
/ntnanttnnman.u-ttn:-nn-3an-utt~ttt/<15><12>

I #/<16><12>

/* Continued use of this system #/<16><i2>
/* for game playing vill result #/<i6><i2>
/* 4n loss of user privilegest! */<16><12>
/* */<16><12>
[asssansasnsusnassunssnsnnninnsnnn/CAE><CID<T>

START

4.28 Determining file directory information

This EMT returns directory information about a file. The form of the EMT is:

ENT

376

with RO pointing to the following argument block:

.BYTE
.WORD
.WORD

chan, 146
dblk
rblk

where chan is a channel number in the range 0-16 (octal) that is currently not in use, dblk is the address of
a 4-word block containing the RADS5O0 file specification (device, file name, extension), and rblk is the address
of a 7-word block that will receive the information about the file. The information returned in rbik is:

Example

Word Number | Meaning

1 Size of the file (number of blocks).

0=File not protected; 1=File is protected.

File creation date (standard RT-11 date format).
File creation time (number of 3-second units).
Starting block number of file.

Unused (reserved)

O L)

Unused (reserved)

Error
Code | Meaning

0 | Channel is currently in use.
1 | Unable to locate specified file.
2 | Specified device is not file structured.

4.29. SETTING FILE CREATION TIME 51

.TITLE FILINP
.ENABL LC
; Demonstrate TSX--Plus ENT to return information about a file
.NCALL .PRINT,.EXIT,.CSISPC,.ITYOUT
.GLOBL DSPDAT,DSPTIS,PRTDEC

ERRBYT = b2 ;ENT error code location
STARY: .CSISPC #OUTSPC,#DEFLT,#0,#BUFFER ;Get f£1ils name

NOV #FILINF,RO ;Point to ENT arg block to

ENT 3786 ;Get information about a file

BCC [1] ;No error?

NOVB @#ERRBYT,R1 ;¥Yhat error

ASL 11 ;Convert to word index

.PRINT FIERR(R1) ;Explain it

.EXIT
5%: NOV #BUFFER RO ;Find the end of the file spec.
108: TSTB (RO)+ ;Bnd?

BNE 10$;No, keep looking

NOVB #200,-(RO) ;No CR,LF at end

.PRINT #BUFFER ;File name

LTIYOUT #'[

MOV FILSIZ,RO iFile size

CALL PRTDEC

18T PRICID ;¥Yas file protected?

BEQ 168

.ITYOUT #'P
16%: .TTYOUT #']

.PRINT #SPACE2

NOV FILDAT RO ;File creation date

CALL DSPDAT ;Display date

.PRINT #SPACE2

NOV FILTIN,RO ;File creation time (3 sec resclution)

CALL DSPTI3 ;Display special 3-sec time

.PRINT #SPACE2

NOV FILLOC,RO ;File starting block #

CALL PRIDEC

.EXIT

.NLIST BEX
FILINF: .BYTE 0,145 ;ENT arg block to get file info.

.WORD INSPC ;Pointer to RADS60 file¢ name

.WORD FILSIZ ;Pointer to 7 word result buffer
FILSIZ: .WORD [} ;File size
PRICTID: .¥WORD 0 ;Protected=1, unprotected=0
FILDAT: .WORD O ;File date (standard format)
FILTIN: .¥ORD O ;File time (special 3-sec format)
FILLOC: .¥WORD 0 ;File starting block number

.¥WORD 0,0 ;Pad for 2 reserved words
0UTSPC: .BLKW 15. ;Output file specifications
INSPC: .BLKY 24. ;Input file specifications
DEFLY: .¥ORD 0,0,0,0 ;No default extensions
FIERR: .¥ORD CINUSE ;ENT error message table

.WORD NOFILE

.WORD BADDEY
BUFFER: .BLKB 81. ;Input string buffer

SPACE2: .ASCII / /<200>

CINUSE: .ASCIZ /TFILINF-F-Channel in use./

NOFILE: .ASCIZ /TFILINF-F-Can't find file./

BADDEV: .ASCIZ /TFILINF-F-Non-directory device./
.END START

4.29 Setting file creation time

The time that a file is created is stored along with other directory information under TSX-Plus. In order
to pack the time into a single word, TSX~Plus represents the file creation time in three second units. For
example, if a file was created at 11:13:22, then the special time representation would be 13467 (decimal).

52 CHAPTER 4. TSX-PLUS EMTS

Ithr x 60min/hr x 60sec/min = 39600 sec
18 min X 60sec/min = 780 sec
22 sec = 22 sec

T40402sec + 3 = 13467 3-sec units

A utility program is provided with TSX-Plus to display the creation time and other directory information
about a file. See the TSX-Plus User’s Reference Manual for more information on the FILTIM utility.

The creation date and time for a file are automatically stored by TSX-Plus in the directory entry for the
file at the time that the file is closed after being created. An EMT is provided for those unusual situations
where a different creation time is to be specified for a file after the file is created. The form of this EMT is:

ENT 376
with RO pointing to the following argument block:
.BYTE chan, 146
.WORD dblk
.WORD time
where chan is the number of an unused channel, dblk is the address of a 4-word block containing the RAD50

file specification, and time is the time value (in 3-second units since midnight) that is to be set as the creation
time for the file.

Error
Code | Meaning

0 | Channel is currently in use.
1 | Unable to locate specified file.
2 | Specified device is not file structured.

Example

.TITLE SFTIN
.ENABL LC

; Demonstrate ISX--Plus ENT to set file creation time
.NCALL .PRINT,.CSISPC,.EXIT,.GILIN

.GLOBL ACRTI3 ;Subroutine to convert hh:mm:ss to special
;3-sec internal time format in RO
ERRBYT = b2 ;ENT error code location
START: .PRINT #GETNAN ;Prompt for file name

.CSISPC #0UISPC,#DEFLT ;Get file name in RADBO
.GILIN #BUFFER,#GETTIN ;Prompt for and get a time

NOV #BUFFER,RO ;Point to time input bufifer
CALL ACRTIS ;Get special time in RO
BCC 14 ;Time error?
.PRINT #BADIIN ;Yes, incorrect format
BXIT

1$: MOV 10, ,NEVTIN ;Bave special time
NOV #8FTIN,RO ;Point to ENT arg block to
ENT 376 ;8et creation time in file
BCC 2 ;Error?
MOVB @#ERRBYT RO ;Yes, get error code
ASL R0 ;Convert to word offset
.PRINT SFIERR(RO) iBxplain

2¢: EXIT
.NRLIST BEX

SFTIN: .BYIE 0,148 ;ENT arg block to set file creation time
.¥ORD INSPC ;Pointer to RADBO file name

NEVTIN: .¥ORD 0 ;¥111l contain nev creation time

4.30. DETERMINING OR CHANGING THE USER NAME 53

OUTSPC: .BLKY 15. ; .CSISPC output files

INSPC: .BLKY 24. ; .CSISPC input files (first is the one)
DEFLT: .¥ORD 0,0,0,0 ;Default file extensions

SFTERR: .WORD INUSE ;SFTIN error message teble

.WORD NOFILE
.WORD BADDEV
BUFFER: .BLIB 81. 3 GILIN input buffer - holds time hh:mm:as
GEINAM: .ASCII /Set creation time in file: /<200>
GETTIN: .ASCII /New creation time: /<200>
BADTIN: .ASCIZ /YSFTIN-F-Invalid time./
INUSE: .ASCIZ /YSFTIN-F-Channel in use./
NOFILE: .ASCIZ /TtSFTIN-F-Can't find file./
BADDEV: .ASCIZ /1SFTIN-F-Non-directory device./
.END START

4.30 Determining or changing the user name

When using the LOGON system access program, each user is assigned both a user name and a project-
programmer number. TSX-Plus provides an EMT which allows an application program to obtain the user
name or (with SETNAME privilege) to change it. User names may be up to twelve characters in length. If
the LOGON program is not used, the user name will initially be blank, although it may be changed to a
non-blank name. The form of the EMT is:

ENT 376

with RO pointing to the following argument block to determine the user name:

.BYTE 0,147
.WORD buff-addr

where buff-addr is a pointer to a 12-byte area to contain the user name which is returned.

To change the current user name, RO should instead point to the following argument block:

.BYTE 1,147
.WORD buff-addr

where buff-addr is a pointer to a 12-byte area containing the new user name. SETNAME privilege is required

to change the user name. If changing the user name is attempted without SETNAME privilege, the name
will not be changed and the carry bit will be set on return.

Example

.TITLE GSUNAN

.ENABL LC

i Demonstrate ISX--Plus ENT to get/set user name

ERRBYT = b2 ;ENT error code location
.NCALL .PRINT, .EXIT

START: .PRINT #NANEIS iPreface user name
NOV #GSUNAN, RO ;Point to ENT arg block to
ENT 376 ;Get user name
.PRINT #NANBUF ;And display it
NOV #NEWNAN,NANADD ;Point to new user name
INCB GSUNAN ;8et lovw bit to set name
NOV #GSUNAN,RO ;Point to ENT arg block to
ENT 376 ;8et new user name
BCC 1 ;Error?
.PRINT #NOPRIV iNust have SETNANE privilege

1$: .EXIT

54 CHAPTER 4. TSX-PLUS EMTS

.NLIST BEX
GSUNAN: .BYIE 0,147 ;ENT arg block to get user name
NANADD: .¥WORD NANBUF ;Pointer to receive area
NANBUF: .BLXY 6 :8ix word name area (12 bytes)
.¥ORD [;Nake it ASCIZ
NEVNAN: .ASCII /CHAUNCY / ;The nevw name (12 bytes)

NAMEIS: .ASCII /Your current user name is: /<200>
NOPRIV: .ASCIZ /SETNAME privilege necessary to set user nane./
.END BTART

4.31 EMT to determine or change program name

The following EMT allow you to determine or change the name of the current program. This changes the
name in the SYSTAT (WHO, SHOW JOBS) display, not the directory name of the executable program
image. The form of the EMT is:

ENT 376
with RO pointing to the following argument block:

.BYTE sub-function, 147
.WORD buff-addr

If sub-function is 2 the EMT returns the current program name in RADIX~-50 format in the two word buffer
pointed to by buff-addr. If sub-function is 3 the EMT changes the program name to the RADIX-50 format
name pointed to by buff-addr.

The following error code can be returned by this EMT:

Error
Code | Meaning

9 | The name was not specified in RADIX-50 format.

Example

.TITLE SEINAN
.MCALL .PRINT, .EXIT
.GLOBL PRIDEC,RADASC

.DSABL GBL
ERRBYT = B2 ;ENT error byte address
BTARI: NOV #GSPNAN,RO ;Point to ENT arg. to
ENT 376 ;Get program name
BC8 18 ;Branch if not OK
NOV 18,-(SP) ;Bave start addr. of name
NOV #NANBUY ,R6 ;Get addr of string to convert
MOY #2,04 ;8ay convert 2 wvords
CALL RADASC
NOV (8P)+,k3 ;Get start addr. of name
.PRINT 13 ;Display program name
NOV RADNAN,NAMBUF ;Point to nev program name
NOY RADNAN+2,NANBUF+2
INCB GSPNAN ;Bet low byte to set name
NOV #GSPNAN RO ;Point to ENT arg. block to
ENT 376 ;8et program name

BCC 2% ;Branch it 0K

4.832. SETTING JOB PRIORITY 55

14: NOVB Q#ERRBYT,-(SP) ;Fetch ENT error code
.PRINT #ERRIS +"ENT error is:"
NOY (SP)+,R0 ;Retrieve error code
CALL PRTDEC ;Ddeplay it

2% DECB GSPNAN ;Set low byte to get name
NOV #GSPNAN,RO ;Point to ENT arg. to
ENT 376 ;Get program name
BCS 14 ;Branch if not 0K
NOV 13,-(SP) ;Push 13
NOV #NAMBUF 15 ;Get addr of string to convert
NOV #2,24 iSay convert 2 words
CALL RADASC
NOV (8P)+,R3 ;Pop B3
.PRINT RS ;Display program name
.EXIT
.NLIST BEX

GSPNAM: .BYIE 2,147 ;ENT arg. block to get or
.YORD NANBUF ;Set program name

NAMBUF: .BLKY 6 ;Two word name area

RADNAM: .RADBO /NEWNAN/

ERRIS: .ASCII /TSEINAN-F-ENT error is: /<200>
.EVEN
.END START

4.32 Setting job priority

Jobs may be assigned priority values in the range 0 to 127 to control their execution scheduling relative to
other jobs. The priority values are arranged in three groups: the fixed-low-priority group consists of priority
values from 0 up to the value specified by the PRILOW sysgen parameter; the fixed-high-priority group
ranges from the value specified for the PRIHI sysgen parameter up to 127; the middle priority group ranges
from (PRILOW+1) to (PRIHI-1). The following diagram illustrates the priority groups:

127 —
Fixed High Priorities
PRIHI —

PRIDEF — | Normal Job Priorities

PRILOW —

Fixed Low Priorities
0 —

Job scheduling is performed differently for jobs in the fixed-high-priority and fixed-low-priority groups than
for jobs with normal interactive priorities. Jobs with priorities in the fixed-low-priority group (0 to PRILOW)
and the fixed-high-priority group (PRIHI to 127) execute at fixed priority values. That is, the priority
absolutely controls the scheduling of the job for execution relative to other jobs. A Jjob with a fixed priority
is allowed to execute as long as it wishes until a higher priority job becomes active.

The fixed-high-priority group is intended for use by real-time programs. The fixed-low-priority group is

intended for use by very low priority background tasks. Normal time-sharing jobs should not be assigned
priorities in either of the fixed priority groups.

The middle group of priorities from (PRILOW+1) to (PRIHI-1) are intended to be used by normal, inter-
active, time-sharing jobs. Jobs with these assigned priorities are scheduled in a more sophisticated manner
than the fixed-priority jobs. In addition to the assigned priority, external events such as terminal input com-

pletion, I/O completion, and timer quantum expiration play a role in determining the effective scheduling
priority.

When a job with a normal priority switches to a subprocess, the priority of the disconnected job is reduced
by the amount specified by the PRIVIR sysgen parameter. This causes jobs that are not connected to

56 CHAPTER 4. TSX-PLUS EMTS

terminals to execute at a lower priority than jobs that are. This priority reduction does not apply to jobs
with priorities in the fixed-high-priority group or the fixed-low-priority group. The priority reduction is also
constrained so that the priority of jobs in the normal job priority range will never be reduced below the
value of (PRILOW+1).

The following EMT can be used to set the job priority from within a program. The job priority can also be set
from the keyboard with the SET PRIORITY command. The current job priority, maximum allowed priority,
and fixed-high-priority and fixed-low-priority boundaries may be determined with the .GVAL request. See
the TSX-Plus System Manager’s Guide for more information on the significance of priority in job scheduling.
The form of this EMT is:

ENT 376

with RO pointing to the following EMT argument block:

.BYTE
.WORD

0,150
value

where value is the priority value for the job. The valid range of priorities is 0 to 127 (decimal). The maximum
job priority may be restricted by the system manager. If a job attempts to set its priority to zero or less,
its priority will be set to the default value. If a job attempts to set its priority above its maximum allowed
priority, its priority will be set to the maximum allowed. This EMT does not return any errors.

Example
.IITLE GSPRI
JENABL LC
; Demonastrate ENTI to set job priority
.MCALL .GVAL,.CTLIN,.PRINT, .EXIT
.GLOBL PRTDEC
CURPRI = -16. ;GVAL offset to get current priority
MAXPRI = -18. ;GVAL offset to get maximum priority
START: .PRINT #CURIS ;Meurrent priority is®
.GVAL #AREA,#CURPRI ;0btain current job priority in RO
Nov R0,R1 ;Save it
CALL PRIDEC ; and display it
.PRLINT #NAXIS i"maximum priority is”
.GVAL #AREA,#NAXPRI ;0btain maximum allovable job priority
NDV 20,22 ;Bave 1t
CALL PRIDEC ; and display it
ADD #10.,R1 ;Iry to boost priority by 10
CNP 11,22 ;Unless exceeds maximum
BLE 18 ;Use 10 larger if <= maxpri
NOV R2,R1 ;Else use maxpri
14: {1} R1,NEVPRI ;8et new priority in ENT arg block
NOV #SETPRI RO ;Point to ENT arg block to
ENT 376 ;Bset new job priority
.PRINT #NE¥IS8 ;"nev priority is"
.GVAL #AREA , $CURPRI ;0btain nev priority
CALL PRTDEC ; and display it
LEXIT
AREA: .BLEY 10 ;General ENT arg block
SBETPRI: .BYTE 0,150 ;ENT arg block to set job priority
NEYPRI: .¥ORD 50. ;New job priority goes here
.NLIST BEX
CURIS: .ASCII /Currsnt job priority = /<200>
NAXIS: .ASCII <16><12>/Muximum job priority = /<200>
NEYIS: .ASCII <16><12>/- Hew - job priority = /<200>

-END START

4.35. DETERMINING OR CHANGING JOB PRIVILEGES 57
4.33 Determining or changing job privileges

A TSX-Plus EMT is available to allow running programs to determine the privileges for the job and to
change privileges. This is particularly useful to check user-defined privileges. See the T'SX-Plus System
Manager’s Guide for complete information on job privileges. The form of the EMT argument block is:

ENT 376
with RO pointing to an argument block of the following form:

.BYTE 1,150

.BYTE function,privtype
.WORD buffer

.WORD ©

where buffer is the address of a four word buffer which contains the privilege flags to be set or cleared or
which will receive the privilege flags. Note, not all of the privilege words may be in current use, but four
words should be reserved to allow for future expansion. Function indicates the type of operation being done
and must be 0, 1, or 2 according to the following table:

Function | Meaning
0 Read job’s privilege flags into buffer
1 Clear bits set in buffer in job’s privilege flag bits
2 Set bits set in buffer in job’s privilege flag bits

Functions 1 and 2 are bit-clear and bit-set operations so that individual privileges may be selectively changed
without affecting other privileges.

Privtype indicates which of the three sets of privilege flags are to be accessed, and must be 0, 1, or 2 according
to the following table:

Privtype | Privilege table
0 Current privileges
1 Set privileges
2 Authorized privileges

The current privileges for the job are reset to the set privileges when the currently executing program exits.
If set privileges are changed, then current privileges are changed as well. If authorized privileges are changed,

then set and current privileges are changed as well. SETPRV privilege is required to set any new privileges
in the authorized privilege set.

Error
Code | Meaning

1 | Attempt to enable privileges for which the job is not authorized.
Only those privileges for which the job is authorized are set.

Example

.IITLE SEIPRY
.ENABL LC
.DSABL GBL
i Demonstrate ENT to determine or set privileges.
.MCALL .PRINT, .EXIT,.TTYOUT

58

.GLOBL
SPACE = 40
ERRBYT = 62
START: CALL
.PRINT
NOVE
NOVB
NOV

MOV

BCC
NOVB
ADD
.PRINT
.ITYOUT
.PRINY
1%: CALL
.EXIT
SHOPRV: .PRINT
NOVB
CALL
.PRINT
NOVB
CALL
PRINT

CALL

RETURN
DSPPRV: CLRB

KOV

NOV
CALL
LITYOUT
NOV
CALL
.PRINT

GSPRIV: .BYIE
1CS: .BYIE
C8A: .BYTE
.¥ORD
.WORD
.WORD
.NLIST
AUTPRV: .ABCII
SETPRV: .ABSCII
CURPRV: .ASCII

PRIVS:

CRLF: .A8CI1Z

ERR: .ASCII
.LIST
.END

PRTOCT

SHOPRY
#CRLF
#2,RC8
#1,C8A
#700,PRIVS
PRIVS+2
#GSPRIV,RO
376

14
@#ERRBYT, - (5P)
#'0,(8P)
#ERR

(8P)+
#CRLF
SHOPRY

#AUTPRV
#2,C8h
DSPPRV
#SETPRV
#1,CSA
DSPPRV
#CURPRV
(+:1)
DSPPRV

ACS8
#GSPRIV,R0
76
PRIVS,20
PRIOCT
#SPACE
PRIVS+2,R0
PRTOCT
#CRLF

1,150
0

0
PRIVS
0
0,0,0,0
BEX

;ASCII SPACE
;ENT ERROR BYTE
;DISPLAY PRIVILEGES BEFORE

;WANT TO SET PRIV FLAGS

;BELECT "SET" PRIVILRGES

;8ET 3 PRIV FLAGS IN PRIV WORD 1
;D0 NOT CHANGE ANY IN PRIV WORD 2
;POINT TO ENT ARG BLOCK TO

;SET SOME PRIVILEGE FLAGS

;BRANCH ON ERROR

;ELSE GET ERROR BYIE

;CONVERT T0 DIGIT

;DISPLAY PRIVILEGES AFTER

;"AUTHORIZED"

;LOOK AT AUTHORIZED PRIVILEGES

;READ AND DISPLAY FIRST 2 PRIV WORDS
; "SEI"

;LOOK AT SET PRIVILEGES

; "CURRENT"
{LOOK AT CURRENT PRIVILEGES
;DISPLAY PRIVILEGE BITS

;READ PRIVILEGES

+POINT TO ENT ARG BLOCK TO
;READ SELECTED PRIVILEGES
;GET PRIV WORD 1

;DISPLAY IT8 BIIS

;GET PRIV YORD 2

;GET/SET PRIVILEGE ENT
;0=READ,1=CLEAR ,2=SET
;0=CURRENT , 1=8ET , 2=AUTHORIZED
;PUT PRIV FLAGS HERE
;REQUIRED O

;PRIVILEGE FLAGS 2 OF 4 USED

/Authorized privileges: /<200>

/Set privileges:
/Current privileges:

1

/<200>
/<200>

/8et privilege error # /<200>

BEX
START

CHAPTER 4. TSX-PLUS EMTS

4.34 Specifing that a file be placed in HOLD or NOHOLD mode

The following EM
held until the file is closed or begin printing as data is

T is used to dynamically request that a file being printed through the spooler be either
made available from the program. This could be used

in a situation where NOHOLD is the normal condition, but a program which uses the printer generates data
slowly. If data were passed to the printer as soon as available, then printer output from all other jobs would
be delayed until the slow job closes the output. This can be avoided by the having the slow program select
hold mode for its output. Then, other jobs can proceed to use the printer without being delayed by the slow
job. The form of the EMT to select HOLD or NOHOLD mode on an individual file basis is:

ENT

376

4.34. SPECIFING THAT A FILE BE PLACED IN HOLD OR NOHOLD MODE 59

with RO pointing to the following argument block:

.BYTE chan, 161
.MORD O
.WORD flag

where chan is the channel number which has been used to open the print file and flag indicates whether
the file is to be printed as it is generated or held until the file is closed. If flag=0, the output is printed as
generated (equivalent to NOHOLD); if flag=1, then the output is not printed until the file is closed. This
EMT must be issued after a channel has been opened to the printer (through the spooler), but before any
data has been written to it. If the channel is open to any non-spooled device, then the EMT is ignored.

Example

.TITLE SPHOLD
.ENABL LC

; Demonstrate the ENT to hold spooler output until the file is closed
.NCALL .CSISPC, .LOOKUP, .READY, .YRITY, .CLOSE, .EXIT

ERRBYT = b2 ;ENT error code byte location
START: .CSISPC #0UTSPC,#DEFEXT,#0 iGet name of file to copy
BCS START ;Proceed unless error
NGV #INSPC,R1 iPoint to first input filepe
OPNFIL: .LOOKUP #AREA,#0,R1 ;Try to open input file
BCS START ;Get a nev command on error
MOV #0UTSPC,R2 ;Point to output filspe
NOV #°RLP ,(R2)+ ;Put LP: in output filspe
ADD #2,R1 iPoint to input filspc filename
NOV (R1)+, (R2)+ iNove file name into LP filspe
NOV (R1)+,(R2)+ ;i (not necessary, but convenient)
18T (R1)+ ;Skip over file extension
.LOOKUP #AREA,#1,#0UTSPC i0pen channel to printer (spooled)
BCC NOHOLD ;Proceed unless error
GIVEUP: .CLOSE #0 ;Close input tile
JBXIT ;And give up

; Tell spooler to hold file until it is closed
; (muet be 1ssued before any writes to file)

NOHOLD: MOV #SPHOLD ,RO ;Point to ENT arg block to
ENT 376 ;Hold output until close
cLk 12 ;Initialize block pointer
6s: -READY #AREA,#0,#BUFFER,#266.,R2 ;Copy a block from the file
BCS NXTFIL ;Try next file on error
-WRITY #AREA,#1,#BUFFER,#266.,R2 ;Copy the file block to LP
BCC 8¢ ;Errort
.CLOSE #1 ;Close print file
BR GIVEUP ;Forget it
88: INC 2 ;Point to next block
BR (1} ;And get next block
NXTFIL: .CLOSE #0 iClose input file
.CLOSE #1 ;and print file
18T 2(R1) iAny input file?
BNE OPNFIL iRepeat 1if so
BR START +Else ask for more files
AREA: .BLKY 10 iGeneral ENY arg block area
SPHOLD: .BYTE 1,151 iENT arg block to hold spool output
.¥YORD [} ion channel 1 until file is closed
HNH: JWORD 1 ;HNH=0 immed; HNH=1 hold til close
OUTISPC: .BLKY 16. ;0utput file specs
INSPC: .BLXY 24. iInput file specs
DEFEXT: .WORD 0,0,0,0 iNo default file types
BUFFER: .BLXY 256. ;1/0 buffer area

.END START

80 CHAPTER 4. TSX-PLUS EMTS

4.35 Program controlled terminal options

Programs may dynamically change various parameters related to terminal control. The following EMT may
be used to set various program controlled terminal options:

ENT 376
with RO pointing to the following argument block:

.BYTE 0,152
.WORD function-code
.WORD argument-value

where function-code is a character which specifies which option is to be set or changed, and argument-value
specifies a value used only by some options. See Chapter 3 on program controlled terminal options earlier in
this manual for more information on the specific options which may be selected and details on their effects.

Example
See the example program EMTMTH in Chapter 3.

4.36 Forcing [non]interactive job characteristics

The following EMT can be used to cause a job to be scheduled either as an interactive job or as a non-
interactive job. Programs which do a large amount of terminal input, but which are not truly interactive jobs
in the usual sense, such as file transfer programs, should use this EMT to avoid excessive interference with nor-
mal interactive time-sharing jobs. This feature may also be selected with the R[UN]/NONINTERACTIVE
command. See the TSX-Plus System Manager’s Guide for more information on job scheduling and the
significance of interactive vs. non-interactive jobs. The form of this EMT is:

ENT 376

with RO pointing to the following argument block:

.BYTE 0,153
.WORD mode
.MORD O

If the value of mode is O, then the job will never be scheduled as an interactive job. If mode is 1, then the
job will be scheduled as other interactive jobs are, dependent on terminal input.

Example

.TITLE NONINT
.ENABL LC

; Demonstrate ENT to scheduls job as interactive or non-interactive
.NCALL .ITYIN,.TTYOUT,.PRINT, .BXII

Jsy = 44 ;Job Status VWord address
ITSPC = 10000 ;TT special mode bit (single-char)
CIRLZ = 32 ;ASCII CIRL-Z (move on command)
START: NOV #8INGLE,RO ;Point to ENT arg block to
ENT 376 ;Turn on single character activation
BIS #TISPC,e#J8Y ;Finish turning on single char mode

ROV #NONINT,RO ;Point to ENT arg block to

4.87. SETTING TERMINAL BAUD RATES 61

ENT 3756 ;8chedule this as non-interactive job
.PRINT #SLO¥Y ;"Nay be slov nov if system busy”
1$: LTTYIN ;Get a char
CNPB RO, #CTRLZ ;If CIRL-Z
BEQ 24 ;Then move on
.ITYODT ;Else echo 1t back (we have to echo
; wvhen in single char mode)
BR 18 ;And repeat
24 MOV #1,SELECTY ;¥ant to be interactive now
NOV #NONINT,RO ;Point to ENT arg block to
ENT 376 ;8chedule this as an interactive job
.PRINT #FAST ;"See hov much faster now"
38: .TTYIN ;Get a char
CNPB RO,#CTRLZ ;If CTRL-2Z
BEQ 44 :Then move on
.TTYOUT ;Else echo it back
BR 3 ;And repeat
48: JEXIT
SBINGLE: .BYIE 0,162 ;ENT arg block to set term option
.¥ORD '8 ;8ingle char activation
.WORD O
NONINT: .BYIE 0,153 ;ENT arg block to sched as [non]linteractive
SELECT: .¥WORD 0 ;Initielly make non-interactive
.MORD O
.NLIST BEX
8LOY: .ASCII /Iype some characters in nov. If the system has several /

.ASCII /interactive jobs/<1B5><12>
.ASCIT /response will be slow. (Control-Z to get out /
.ASCIZ /of this mode.)/

FAST: .ASCIZ <15><12>/Try again. Response should be much better./
.END START

4.37 Setting terminal baud rates

The transmit /receive speed for time-sharing lines or CL lines may be set either with the keyboard command
SET TT SPEED or from within a program. Use of this EMT requires TERMINAL privilege. Line speeds may
only be set for terminal interfaces which support programmable baud rates, such as: DLV11-E, DZ(V)11,
DH(V)11 type interfaces and the PRO-350 printer, communication and QSL ports. The EMT to set line
speeds from within a program is:

ENT 376

with RO pointing to an argument block of the form:

.BYTE 0,154
.WORD line-number
.WORD line-parameters (OPLx8888)

where line-number indicates the TSX-Plus line number for which the speed is to be set. If line-number is 0,
then the speed is set on the line from which the EMT is issued. Line-parameters is a combined word which

is used to specify the speed, number of data bits, and parity control. Bits 0-8 “SSSS” select the baud rate
according to the following table:

82 CHAPTER 4. TSX-PLUS EMTS

Speed | Octal Code
75 1
110 2
134.5 3
150 4
300 5
600 6
1200 7
1800 10
2000 11
2400 12
3600 13
4800 14
7200 15
9600 16
19200 17

Split speeds (different transmit and receive baud rates) are not supported. Bit 4 (z) is not used. Bit 5 (L)
specifies the character length. If this bit is 0, the character length is 8 bits; if this bit is 1, the character
length is 7 bits. Bit 6 (P) specifies if parity control is wanted. If this bit is 0, no parity is selected and bit
7 is ignored; if this bit is 1, parity generation and checking is enabled. Bit 7 (O) selects even or odd parity
and is only meaningful if bit 6 is 1. If bit 7 is 0, even parity is selected; if bit 7 is 1, odd parity is selected.

Note that if only the speed value is specified, with all other bits zero, 8 bit characters with no parity are
selected.

A baud rate of 19200 is not supported by DEC DZ(V)11 controllers. DHV11 interfaces do not support 3600
or 7200 baud. DHI11 interfaces do not support 2000, 3600 or 7200 baud. The PRO QSL interface does not
support 3600 or 7200 baud.

Error
Code | Meaning

1 | Job does not have TERMINAL privilege
2 | Invalid line number specified

Example

.TITLE SETISPD
.ENABL LC
. Demonstrate ENT to set a line's transmit/receive baud rate
.NCALL .PRINT,.EXIT
.GLOBL PRTDEC

.DSABL GBL
EREBYT = b2 ;ENT error byte address
START: NOV #8SEISPD,R0O ;Point to ENT arg block to
ENT 376 ;8et line speed
BCC o8 ;Branch 12 OX
NOVB O#ERRBYT,-(8P) ;Fetch ENT error code
.PRINT #ERRIB +"ENT error is:"
NOV (8P)+,R0 ;letrieve error code
CALL PRIDEC ;Display it
9¢: BXIT
SETSPD: .BYIE 0,154 ;ENT arg block to set line speed
.¥WORD [] ;Line number
.¥ORD 14. ;8Bpeed code for 9600 baud
.NLIST BEX
ERRIS: .ASCII /YSETSPD-F-ENT error code = /<200>
.EVEN

.END START

4.38. RAISING AND LOWERING THE DTR SIGNAL ON A LINE 63

4.38 Raising and lowering the DTR signal on a line

The following EMT can be used to raise or lower the DTR (data terminal ready — pin 20 on and EIA/RS232-
C connector) signal on a line. This is only effective if the interface supports modem control signals (e.g.,
this has no effect on a DLV11J port). This can be useful in situations where a modem or data PBX requires
the DTR signal. .

The DTR signal is also manipulated by the system when connecting and disconnecting “phone” lines.
The form of the EMT is:

ENT 376
with RO pointing to the following EMT argument block:
.BYTE sub-function, 154
.BYTE 1line-number,0
.WORD speed

where line-number indicates which physical line is to be affected, speed is only used with subfunction 0 (zero),
and sub-function controls the subfunction to be performed, as follows:

Error
Code | Meaning

0 | Set line speed (see previous description for 0,154)
Reset line XOFF status

1
2 | Raise line DTR
8 | Lower line DTR

TERMINAL privilege is required to issue this EMT unless the line to be affected is the job issuing the EMT.

Example

.IITLE SEIDTR

«NCALL .PRINT,.EXIT,.GTLIN
.DSABL GBL

.GLOBL ACRDEC,PRTDEC

START: NOV #BUFFER,R1

.PRINT #INSTRC ;Print instructions
LGTLIN R1,#VWHICH ;Ask for line number
CALL ACRDEC ;Convert it from ascii number
18T R0 ;8et or clear?
BGT 18 ;Branch 1if set
NEG 20 ;Positive
NOV RO,CLRLIN ;Bave line number
NOV #CLRDIR,RO iPoint to ENT arg block to clear DTR
BR 2% ;Branch to ENT
1¢: NOV R0,8ETLIN iSave line number
NOV #SETDIR,RO ;Point to ENT arg block to raise DIR
2¢: ENT 376 ;Do ENT
BCC 1} ;Branch 1f no error
MOVB a#62,-(8P) ;Else get error code
-PRINT #ENTERR ;"SET DIR error number:"
NOV (8P)+,R0 iRetrieve error code
CALL PRIDEC ;And display it
9%: JBXIT

.NLIST BEX

64 CHAPTER 4. TSX-PLUS EMTS

CLRDTR: .BYIE 3,164 ;ENT arg. block to lover DIR
CLRLIN: .WORD 0,0
SETDTR: .BYIE 2,154 ;ENT arg. block to raise DIR
SETLIN: .¥0RD 0,0

BUFFER: .BLKB 81.

INSTAC: .ASCIZ /To raise DIR enter the line nunber;/

WHICK: .ASCII /to lover entor the negative line number: /<200>
ENTERR: .ASCII /SET DTIR error # /<200>

.END START

4.39 Assigning a CL unit to a time-sharing line

Time-sharing terminal lines which are not in use may be reassigned as general purpose serial I/O lines by
directing the TSX-Plus CL facility to assign a CL unit to the line. This can be done either with a keyboard
command (see the SET CL LINE=n command in the TSX-Plus User’s Reference Manual) or from within
a program. A special system service call (EMT) is available to assign a CL line from within a program. Use
of this EMT requires TERMINAL privilege. The form of the EMT is:

ENT 376
with RO pointing to an argument block of the form:

.BYTE 0,155
.MORD cl-unit
.WORD line-number

where cl-unit specifies the CL unit number to be assigned to the line, and line-number identifies the TSX~
Plus line number to be disabled as a time-sharing line and reassigned as a CL unit. The valid range of CL
unit numbers is determined by the number of CL units defined during TSX-Plus system generation. For
example, if $ CL units are defined, then the valid CL units are CLO, CL1 and CL2. If line-number is zero,
then the CL unit is disassociated from the line and the line is restored to its previous function. The line
number may also refer to lines generated as dedicated CL lines. In this case, when a CL unit is disassociated

from the line, it is simply returned to a pool of lines available for CL use. It does not become redefined as
a time-sharing line.

See Chapter 7 and the T'SX-Plus System Manager’s Guide for more information on CL units.

Error
Code | Meaning

Job issuing request does not have TERMINAL privilege
Invalid CL unit number specified

Invalid line number specified

Specified line number already assigned to a CL unit
Specified line number in use for time-sharing

Specified CL unit is currently busy

D T N

Example

.IITLE GEICL
.ENABL LC

4.39. ASSIGNING A CL UNIT TO A TIME-SHARING LINE

; Demonstrate ENT to switch time-sharing line to CL line
; Demonstrate ENT to allocate a device
; Demonstrate .SPFUN request to CL
i This example attempts to attach a CL unit to
H ® line which is linked to another machine,
H allocate it for exclusive use,
H modify the default CL settings,
H and then start up the RI--11 VICON utility.
i Bince it is difficult to make logical assignments from within
H 0 program, use a special .EXIT to pass the ASSIGN command to
H KMON and then run VICON.
.NCALL .PRINT, .EX1T,.LOOKUP,.SPFUN, .PURGE

.DSABL GBL
ERRBYT = B2 ;ENT error byte address
Jsy = 44 ;Job Status ¥Word address
CHNIF$ = 4000 ;Chain information bit in JSYW
START:
i Imnue ENT to attach the line
NOV #ATICL,RO ;Point to ENT arg bleck to
ENT 376 ;Attach CL unit to I/8 line
BCC 14 ;Branch 1f 0K, else
i ENT error, explain it before exiting
NOVB @#ERBBYT,R1 iGet ENT error code
ASL) §1 iConvert error byte to word index
.PRINT ATTERR(R1) :Print appropriate error message
BR 10¢ ;And force simple exit
i Allocate device so nobody else infringes it
1$: NOV #ALOCAT,RO ;Point to ENT arg block to
ENT 376 iAllocate CL for exclusive use
BCC 24 ;Branch if 0K, else
i ENY error, explein it before exiting
NOVB @#ERRBYT ,R1 ;Get ENT error code
ASL | 58 ;Convert to word index
PRINT ALLERR(R1) iPrint appropriate orror message
BR 108 ;And exdit

Issue SET CL command (not the essiest way to do this).
If a channel were already open to CL, then this would
make more sense. But, as an example, why not?

$: -LOOXUP #AREA,#0,#CLUNAN ;Open a channel to CL
.SPFUN #AREA,#0,#251 ,#CLFLAG,#0,#0 ;Turn off flagged options
.PURGE #0 ;Done with channel
i B8et up for special exit passing commands to KNON
NOV #CONAND ,R1 ;Point to command line text
NOV #510,22 ;Point to chain info area
NOV #CONLEN, (R2) + i# of bytes in chain data area
3: MOVB (R1)+,(R2)+ iNove command lines into chain area
CNP 11, #CONEND ;Reached end yet?
BLO 3¢ ;Repeat if not
BIS #CHNIF$, e3J)8Y ;8et pass command bit in JSY
i (aborts any pending command file)
CLR 20 ;Required for special exit
NOV #1000,8P iReset stack pointer
108: EXIT ;Done (Note: unit remains allocated
H after program exit!)
i ENT arg blocks and word buffers
AREA: .BLXY¥ 10 iGeneral purpose ENT arg block
CLFLAG: .WORD 10 ;NOLFOUT flag for CL .SPFUN
ATICL: .BYTE 0,156 iENT arg block to take over TS line by CL
.¥ORD 0 ;8elected CL unit number
.NORD ¢ iBelected IS line number
ALOCAT: .BYTE 0,156 ;ENT arg block to allocate a device
.WORD CLUNAN ;Address of 4-word device specification
CLUNAN: .RADG6O /CLO/ ;Start with first CL unit
.¥ORD 0,0,0 iDummy file specification
i General messages and byte buffers
.NLIST BEX
COMAND: .ASCIZ /ASSIGN CLO XL/ ;Nake logical assignment of XL for VICON
.ASCIZ /R VICON/ iRun VICON (part of RT11 V6.01 kit)

CONEND :

66 CHAPTER 4. TSX-PLUS EMTS

.LIST BEX
.BVEN
CONLEN = COMEND-CONAND ;# bytes in commands passed to KNON
JIr GT <CONLEN-<1000-512>>
.ERROR 1 ; Chain data area overflow
.ENDC
ATIERR: .WORD O :Attach CL ENI error message table
.WORD NOPRIV i 1
.W0RD BADCLU ; 2
.WORD BADISL HE
.¥ORD ALRDCL)
.MORD INUSE H
.WORD CLBUSY ;6
.NLIST BEX

NOPRIV: .ASCIZ /Not privileged to use this progran./

BADCLU: .ASCIZ /Attempt to use invalid CL unit./

BADTSL: .ASCIZ /Attempt to use invalid time-sharing line./
ALRDCL: .ASCIZ /Time-sharing line already in use as CL unit./
INUSE: .ASCIZ /Somebody is already using time-sharing 1ine./
CLBUSY: .ASCIZ /CL unit already active./

.LIST BEX
.EVEX
ALLERR: .¥ORD [;Allocate ENT error table

.¥ORD ALRDAL ;s 1

.YORD BADDEV ;2

.MORD ALLFUL R

.WORD DEVUSE H

.NLIST BEX

ALRDAL: .ABCIZ /CL unit already allocated by someone else./
BADDEV: .ASCIZ /Cannot allocate that device./

ALLFUL: .ASCIZ /Too many devices already allocated./
DEVUSE: .ASCIZ /Device in use by someone else./

.LIST BEX
.EVEN
-END START

4.40 Allocating a device for exclusive use

Devices may be allocated for exclusive use by a single user. This prevents mixing input and output on
common, but non-spooled, devices like a communications line (XL or CL devices) or a magnetic tape.
Access restriction by device allocation remains in effect until deallocated by the job or until the job logs
off. See the description of the ALLOCATE command in the TSX-Plus User’s Reference Manual for more
information on device allocation.

There are three system service calls relating to device allocation: allocate a device; deallocate a device; check
to see if a device is allocated by another user. Use of these EMTs requires ALLOCATE privilege. The form
of the EMT is the same for all three:

ENT 376
with RO pointing to an argument block of the form:

.BYTE n,166
.WORD device-pointer

where device-pointer is the address of a four-word block in which the first word contains the RADS50 name
of the device to be allocated and the next three words contain gseros. The specific function is defined by the
first byte of the argument block, as follows:

n | Function

0 | Allocate a device

1 | Deallocate a device

9 | Check to see if a device is allocated by another user

4.41. JOB MONITORING 87

You can only allocate a device if no other user has already allocated the device or has a channel open to it.
If the device is allocated to another job or another job has a channel open to the device, then the number
of the job which is accessing the device is returned in R0O. If a job which has already allocated the device
or has a channel open to the device is not associated with the same primary line as the job attempting to
allocate the device, then the carry bit will be set on return from the EMT and the number of the job which
is accessing the device will be returned in RO. If the device is currently allocated by a job which was started
from the same primary line as the job which is now attempting to allocate it, then the carry flag will be
clear on return, but the other job number will be returned in RO. If both the job with the current allocation
and the job attempting to allocate the device are subprocesses, the first one to allocate the device gets the
allocation. If either is the primary line, then the primary line will get the allocation.

Error
Code | Meaning

1 | Device is already allocated by another job

Invalid device specified
Device allocation table is full (TSGEN parameter MAXALC)
Device is currently in use by another job

Job does not have ALLOCATE privilege (subfunction to check de-
vice allocation does not require privilege)

G N

Example
See the example program GETCL in section 4.39 on assigning a CL unit to a time-sharing line.

4.41 Job monitoring

A monitoring watch may be established to allow a job to monitor the status of other time-sharing jobs. For
example, if a detached job were being used as a common file server for several other jobs, it would be useful
to know if a served program with a pending request aborts. The outstanding request could then be purged.
The monitoring facility may also be used in lieu of message channels (see Chapter 8) when only a small
amount of information needs to be communicated (e.g., one word).

When a job is being monitored, the operating system will report certain job status changes, such as logging
on, starting or exiting a program, or logging off. In addition, the monitored job itself may issue status
reports to any job which may be monitoring it. After a job has established a monitor watch for a given
line, a completion routine is entered in the monitoring job whenever a monitor status report is issued for the
monitored line, whether the report was issued by the monitored job itself or by the system because of a status
change. Job monitoring may be used effectively in conjunction with inter-job message communications and
with detached jobs.

There are three system service calls related to job monitoring. All have the form:
ENT 376
with RO pointing to an argument block of the form:

.BYTE n,167
.WORD job-number
.WORD completion-routine

where n designates which job monitoring function is to be performed, job-number designates the line number
which is to be monitored, and completion-routine is the address of a completion routine in the monitoring
Job which is to be entered whenever a monitor status report is generated for the line being monitored
(job-number). The job-number may designate any primary time-sharing line, detached job or subprocess
job number. It may not refer to a dedicated CL line. Job-numbers (lines) are assigned in the following
order: time-sharing lines in the order they were declared during system generation, starting with number
1; detached job lines; subprocess lines. Detached jobs and subprocesses are assigned to line numbers in the
order they were activated. Unused detached lines are reserved and are never assigned to subprocesses.

68 CHAPTER 4. TSX-PLUS EMTS

4.41.1 Establishing a monitoring connection

The form of the argument block to establish a monitoring connection with a line is:
.BYTE 0,157
.WORD job-number

.WORD completion-routine

If job-number is zero, then all jobs are monitored, including those not currently logged on.

Error
Code | Meaning

1 | Invalid job number specified

2 | No free job monitoring control blocks (increase TSGEN parameter
MAXMON)

The specified completion routine will be entered whenever a monitor status report is issued for the specified
job-number. On entry to the completion routine, the low order byte of RO contains the line number of the
job originating the monitor status report. Note that the same completion routine may be specified when
monitoring more than one job. The high order bit (mask 100000) of RO will be clear (0) if the monitor status
was originated by the system and will be set if the monitored job itself issued the status. R1 will contain a
16-bit status value. Status values generated by the system for monitored lines are:

Status Code | Meaning
1 Job has been initialized
2 Job has logged on using the LOGON program
3 Job has started running a program
4 Job has returned control to the keyboard monitor
5 Job has logged off

Status code 1 is generated when a logged off line is started, usually by typing a carriage-return at that
terminal. Status code $ is generated whenever a program is either run or chained to. Status code 4 is
generated whenever a program exits or is aborted, but not when it chains to another program.

4.41.2 Cancel a monitoring connection
The form of the argument block to cancel a monitoring connection with a line is:

.BYTE 1,157
.WORD job-number

If job-number is zero (0), then all job monitoring connections established by the monitoring job (the job
issuing this EMT) are cancelled. All job monitoring requests are also cancelled if the job exits, aborts, chains
or issues a .SRESET or .HRESET.

Error
Code | Meaning

1 | Invalid job number specified

4.41. JOB MONITORING 69

4.41.3 Broadcast status report to monitoring jobs
The form of the argument block to broadcast a monitor status report is:

.BYTE 2,1B7
.WORD status-value

where status-value is a 16-bit value to be broadcast to all jobs which are monitoring the job which broadcasts
the status-value (the job issuing this EMT). On entry to the completion routine in the monitoring job(s), the
status-value is in R1, the low byte of RO contains the job-number of the job broadcasting the status-value,
and the high-order bit of RO (mask 100000) is set (1).

Error

Code | Meaning
0 | No jobs are monitoring this line

Example

.TITLE NONCPL
.ENABL LC

i Denonstrate job monitoring completion routines.

i ¥Yatch a dial-in line and announce when it is activated.
.MCALL .PRINT,.EXIT,.SPND, .RSON

.DSABL GBL
.GLOBL 1RB0ASC
ERRBYT = 62 ;ENT error byte address
MONLIN = 8. ;Line number to be monitored
NFYLIN = 1. ;Line number to be notified
START: NOV #NONJOB,RO ;Point to ENT arg block to
ENT 376 i8chedule job monitor compl rtn
BCC 14 ;Branch 1t OX
i Job monitoring scheduling error
NOVB G#ERRBYT ,R1 ;Get ENI error code
ADD #'0,R1 ;Convert to ASCII
NOVB L1 ,ERRCOD iStuff into error message
44: .PRINT #CPLERR ;Report error
BXIT ;And abort
; Yait for event on monitored line
18: .8PND ;¥ait for event
BR 44 ;0nly get here on error
; Completion routine which is entered when event occurs on monitored line
MNONCPL: NOV R0, SENDER ;Remember whose monitor report
NOV #NONJOB,RO ;Point to ENT arg block to
ENT 376 ;Reschedule myself
BCC 14 ;Branch if 0K
MOVB C#ERRBYT ,RO ;Get error code
ADD #'0,R0 ;Convert to ASCII
NOVB R0 ,ERRCOD ;8ave error code
.RSUN iRestart mainline and report error
BR 3¢ ;Abort completion routine
18: I81 SENDER i¥as this a system generated message?
BNI 3¢ ;Ignore 1f not
CNP R1,#3 ;Running program?
BNE 24 ;Branch if not
NOY #GPRGNN, RO ;Point to ENT arg block to
ENT 376 iGet program name
i Note that a short program may already have returned to KNON by now!
NOV #R60BLK RO ;Point to program name
CALL RBOASC ;Convert into ASCII in message

2¢: DEC 11 ;0 index status code

70 CHAPTER 4. TSX-PLUS EMTS

NUL #CODLEN,R1 ;Convert status code to message offset
ADD #CODBEG,R1 ;Convert toc message address
NOV R1,NSADR ;Point to correct status message
NOV #NOTIFY,R0 ;Point to ENI arg block to
ENI 376 ;8end notification to operstor
L H RETURN
; ENT argument blocks and word buffers
NONJOB: .BYTE 0,1B7 ;ENT arg block to monitor a line
.YORD MONLIN ;Line (job) number to be monitored
.¥ORD NONCPL ;Address of completion routine
NOTIFY: .BYIE 0,127 ;ENT arg block to send text
.YORD NFYLIN ;Line number to be notified
NSADR: .¥WORD O ;Address of message to be sent
GPRGNM: .BYIE 0,144 ;ENT arg block to get program name
.BYTE NONLIN,B ;Line number, subfunction
.WORD RBONAN ;Address to put RADGO name
L50BLE: .WORD REONAN ;Address of input buffer (RADEO)
.WORD PRGNAN ;Address of output buffer (ASCII)
.YORD [} ;Number of chars to convert
RGONAM: .WORD 0,0 ;RADEO value of program name
SENDER: .WORD O ;Copy of sending infor
; Text and byte buffers
.NLIST BEX
AC =,
CODBEG: .ASCIZ <16><12><7>/Job has been initialized /
CODLEN = . - AC
LASCIZ <15><12><7>/Job has completed LOGON /
LASCIT <1B6><12><7>/Job executing program /
PRGNAN: .ASCIZ /PRGNAN /
ASCIZ <1B53><12><7>/Job returned to KNON /
LASCIZ <15><12><7>/Job logged off /

CPLERR: .ASCII /Job monitoring completion routine error /
ERRCOD: .ASCIZ /0O/
.END START

4.42 Acquiring another job’s file context

One job may acquire the file context of another job. This is principally intended for detached jobs (such as
RTSORT) which operate as file servers, so that they may access files for the job they are servicing even if
those files are on logical subset disks or are access restricted.

The following EMT may be used to acquire another job’s file context:
ENT 376

with RO pointing to an argument block of the following form:

.BYTE 0,160
.WORD job-number
.MORD O

where job-number is the number of the job whose file context is to be acquired.

The job which issues this EMT must have GETCXT privilege except in the case where job-number specifies
the parent of the job issuing the EMT.

On successful return from the EMT, the following actions have been taken:

1. All channels for the issuing job which are opened to files on logical disks are purged.

2. All devices mounted by the issuing job are dismounted.

4.42. ACQUIRING ANOTHER JOB’S FILE CONTEXT 71

8. The following items are copied from the target job, replacing the previous information for the issuing
Jjob:
e ASSIGN commands
e ACCESS command restrictions
e Logical disk information

¢ Mounted device information

See the TSX-Plus User’s Reference Manual for more information on detached jobs. See the T9X-Plus
System Manager’s Guide for more information on GETCXT privilege.

Error

Code | Meaning
0 | Issuing job is not privileged to use this EMT
1 | Target job number is invalid or is not logged on

Example

.IITLE GETCXT
JENABL LC
; Demonstrate ENT to get context of another job.
.NCALL .GTLIN,.EXIT,.PRINT,.ENTER,.CSTAT,.PURGE,.TTYOUT

.DSABL GBL
.GLOBL ACRDEC,PRTIRE0
ERRBYT = b2 iENT error byte address
B8 = 10 ;ASCII backspace BS
START: .GTLIN #BUFFER,#PRNPTi ;Prompt for line # to check
Nov #BUFFER,R1 ;Get pointer to line ¥ string
CALL ACRDEC ;Convert to number
NOV RO, JOBNUN ;Put line number in ENT arg block
NOV #GEICXT,RO iPoint to ENT arg bloek to
ENT 376 ;Get context of another job
BCC 14 ;Branch 1f no error
ISTB @#ERRBYT iPrivilege or no job?
BGT as “;Branch if requested line not logged on
.PRINT #NOPRIV ;No privilege for this ENT
BR 1] ;Quit
24 .PRINT #NOION ;That job not logged on
Bk o8 ;Quit
1%: NOV #°RSY,DEVNAN ;Locate SY first
CALL SHODEV ;Determine and display its device
NOV #°RDK ,DEVNAN ;Same for DK
CALL SHODEV
9: .EXIT
AREA: .BLEKY 10 ;General purpose ENI arg block
GEICXT: .BYTE 0,160 ;ENT arg block to get job context
JOBNUN: .WORD © ;Line number of job in question
.WORD O ;Required
STATUS: .WORD 0,0,0,0,0,0 ; .CSTAT channel status result
DEVNAN: .RADGO /DK TENP FIL/ ;Name of temporary file
.NLIST BEX

BUFFERr: .BLEB 81.
PRNPT1: .ASCII /Get context of line number - /<200>
NOPRIV: .ASCIZ /Sorry, you are not privileged to run this program./
NOTON: .ASCIZ /Sorry, that job is not currently logged on./
ARROY: ASCII / --/<76><40><200>
COLRIN: .ASCIZ /:/
CRLF: .ASCIZ //
.LIST BEX

72 CHAPTER 4. TSX-PLUS EMTS

.EVEN
; Let system translate device assignments by opening
; a temporary file and use the .CSTAT ENT.
SHODEV: .ENTER #AREA,#0 #DEVNAN,#1 ;TIry to open temporary file

BCS 94 ;Give up on error
.CSTAT #AREA,#0,#5TATUS ;Iry to get channel info on file
BCS 11 ;Give up on error
NOV DEVNAN,RO ;Recover logical device name
CALL PRTREO ;Display it
.PRINT #ARROY LT I
NOV S8TIATUS+12,R0 ;Recover physical device name
CALL PRIRGO ;Display it
.TTYOUT #BS ;Back up over empty unit number
NOV STATUS+10,R0 ;Recover physical unit number
ADD #'0,R0 ;Convert to ASCII
.ITYOUT ;Display 1t
.PRINT #COLRIN ;Format

of: .PURGE #0 ;Throw avay temp file
RETURN
.END START

4.43 Manipulating process windows

The TSX-Plus process windowing facility allows the system to remember the contents and status of the
terminal screen display and to redisplay windows as you switch between processes or on demand by programs.

The process windowing facility also provides a print window function which allows you to print the contents
of a window on a printer by typing a control character or by use of an EMT. Windows are only allowed on
VT200, VT100, and VT52 series terminals. The contents and status of each window is stored in a named
global region and you must have SYSGBL privilege in order to use process windows. See the TSX-Plus
User’s Reference Manual for more information on the use of windows and window related commands (SET
WINDOW, SET PRINTWINDOW).

Each job may have up to 26 windows active at one time. A window is identified by an ID number in the
range 1 to 26, Two jobs may have windows with the same ID number without conflict.

When windowing is turned on, the system monitors all characters sent to the terminal and maintains an
updated screen image in memory. Terminal attributes such as line width, reverse/normal video, application
keypad mode, etc. are saved along with line attributes (double wide, double high), and character attributes.
The attributes retained for each character consist of blinking, bold, underlined, reverse video, and character
set information (ascii, U.K. national, DEC supplemental, or graphics—line drawing).

The most common use of windows is to completely refresh the display when switching among subprocesses
to avoid the confusion of mixed displays. In addition, a keyboard command can be used to send a copy of
the current window to a printer.

For some special program applications, it may be useful to utilize multiple windows from the same job.
System service calls (EMTs) are provided to create, select the current, delete, and print process windows.

4.43.1 Creating a window

The system service call (EMT) used to create a window has the form:

ENT 376

with RO pointing to an argument block of the following form:

.BYTE 0,161

.BYTE windov-id,perm-flag
.BYTE wvindov-width,max-scroll
.BYTE copy-id,copy-job

.WORD ©

4.43. MANIPULATING PROCESS WINDOWS 73

where window-id is a window identification number in the range 1 to 26 which identifies the particular job
window. The global memory regions created for windows have names of the form WINjji where j5 is the
job number and ¢ is a letter which corresponds to the window ID (A=1,...,Z=28). Different jobs may have
windows with the same ID without conflict.

Perm-flag should be either 0 or 1. If it is zero (0), the window is temporary and will be automatically
deleted when the program exits to the keyboard monitor (other than doing a chain). If perm-flag is 1, the
window is permanent and is only deleted when explicitly requested (by the delete-window EMT, or by SET
WINDOW OFF) or when the job logs off.

Window-width is the width of the window in columns and should not exceed 132. (VT52 may use only 80.)

Magz-scroll is the maximum number of lines which are allowed to scroll off the window during a time when
the window is disconnected from the terminal because a different subprocess has been selected. A value of
zero (0) may be specified to disable any scrolling. If a value of 255 is specified, an unlimited amount of
scrolling is allowed.

The copy-id and copy-job parameters can be used to cause the system to copy certain window information
from another window as it is initializing the new window. If copy-id and copy-job are both zero, no informa-
tion is copied from another window and the supplied values (or default values) are used for the new window.
If copy-id is non-zero, is is used as the id of the window from which the information is to be copied. If
copy-job is non-zero it is the number of the job that owns the window from which the information is copied.
If copy-job is zero, the current job is assumed. The following information is copied:

1. The number of columns per line.
2. The maximum allowed number of lines to be scrolled while switched to a different process.
3. 80 or 132 column mode.

4. Light or Dark (normal or reverse video) mode.

Error
Code | Meaning

0 | Window management not included in system generation or invalid
EMT argument block.

1 | Maximum allowed number of windows are already in use. Increase
value of MAXWIN sysgen parameter.

2 | Unable to create global memory region for window. Job may not
have SYSGBL privilege or you may need to increase the value of
the NGR sysgen parameter, or there may be insufficient memory
space available.

Creating a window allocates a window control block and a global memory region for the window. The
window contents are set to all blank.

Example

.TITLE VINDOW
i Demonstrate use of multiple process windows.

.DSABL GBL

.ENABL LC

.NCALL .PRINT,.RXIT,.TVWAIT
ERRBYY = 52 ;ENT error code address
i Creante and initialize contents of 10 windows
START: NOV #10.,R1 ;Init window number

18: MNOVB R1,YINID1 ;Point to next window

74
NOV #NAXYIN RO ;Point to ENT arg block to
ENT 376 iCreate a windov
BCS MNAKERR ;Branch on error
NOVB R1,¥INID2 :Point to next window
MOV #SELVYIN,RO ;Point to ENT arg block to
ENT 376 ;8elect a window
BCS SELERR ;Branch on error
MOV 21,22 ;Copy windovw number
DEC 12 ;0 index
ASL 2 ;Convert to word index
.PRINT VINTXT(R2) ;¥rite something to each screen
808 21,14 ;Repeat through ten windovs
; Cyle through the vindows for pseudo-animation.
NOV #6,12 ;Loop 5 times with all vindovs
2¢: MOV #10.,R1 ;Init vindov number
22%: NOVB R1,VINID2 ;Point to next window
NOV #SELYIN,RO ;Point to ENT arg block to
ENT 376 ;Belect next window
BCS SELERR ;sBranch on error
.IWAIT #AREA,#TINE ;Delay a little bit
SUB N¥INS,R1 ;8tep to next window
BGT 224 ;And Tepeat
CNP NVINS,#2 ;Already doing half?
BEQ 2¢ ;Branch if so
§0B 22,28 ;Repeat all windows B times
; Nov delete half the windows
MOV #2,NYINS ;0nly do half of them
NOV #9.,R1 ;Delete odd numbered windovs
34: NOVB 11,¥YINID3 ;Point to next window
NOV #DELYIN,RO ;Point to ENT arg block to
ENT 876 ;Delete a windovw
BCS DELERR ;Branch on error
8UB NYINS,R1 ;Point to next window
BGT 3¢ ;Repeat through 6 windovs
BR 24 ;Repeat rest forever
NAKERR: NOV #NEIXT,RO ;Point to error message
BR DSPERR ;Go display error
SELERR: NOV #SETXT RO :Point to error message
BR DSPERR ;Go display error
DELERR: NOV #DETXT,RO ;Point to error message
DSPERR: MOVB @#ERRBYT,R1 ;Get error code
ADD #'0,B1 ;Convert to digit
MOVB R1,EC1 ;8tore in all
NOVB R1,EC2 ; output
NOVB R1,EC3 ; strings
.PRINT ;Display error message
.EXIT
NAXYIN: .BYTE 0,161 ;ENT arg block to make window
VINIDL: .BYTE 0 ;¥indow id number
.BYIE 0 ;Temporary windovw
BYTE 80. ;Narrow window
.BYIE © ;No scrolling restrictions
.NORD O
.NoRD O
SELYIN: .BYIE 1,161 ;ENT arg block to select windov
¥WINID2: .BYJE 0,0 ;¥indow id number,0
.WORD O
DELYIN: .BYIE 2,161 ;ENT arg block to delete windov
¥INIDS: .BYIE 0,0 ;¥indov id number,0
TINE: .W0RD 0,18. ;Time delay in ticks (arbitrary)
NYINS: .¥ORD 1 ;¥indow id increment
AREA: .BLKY 10 ;General ENT arg block
YINTXT: .yoRD LiL,L2L,LSL,L4L,LSL,L6R,L4R,L3R,L2R,LiR
.NLIST BEX
LiL: ASCII <A / */<200>
L3L: ASCII <12><12> / #/<200>
L3L: LASCII <12><12><12><12> [/ %/<200>
LAL: JABCIT <12><12><12><12><12><12> /] =/<200>
L6L: LABCII <12><12><12><12><125<12><12>/ */<200>

CHAPTER 4. TSX-PLUS EMTS

4.48. MANIPULATING PROCESS WINDOWS 75

L6R: LASCIT <12><12><125<12><12>¢12>¢<12>/ #»/<200>
LAR: ASCIT <12><125<12><12><i12><12> / */<200>
L3R: JASCIT <12><12><12><12> / */<200>
L2k: JASCITI <12><12> / */<200>
Lik: JASCITI <12> / */<200>
NETXT: .ASCII /¥indov creation error #/
EC1: .ASCIZ /o/
SETXT: .ASCII /¥indow selection error #/
EC2: .ASC1z /o/
DETXT: .ASCII /VWindow deletion error #/
BCS: .ASCIZ /0/

.LIST BEX

.END START

4.43.2 Selecting a current window

When this EMT is executed, the terminal screen is cleared and the selected window is drawn on the screen.

The EMT argument block used to select the current window has the form:

.BYTE 1,161
.BYTE window-id,0
.WORD O

where window-id is the window identification number as specified when the window was created. A window-
id value of zero (0) has a special meaning: it causes windowing to be disabled for the job but the contents
of all existing windows are retained and may be reselected later.

Error
Code | Meaning

0 | Window management not included in system generation or invalid
EMT argument block.

3 | Unable to locate window with specified window-1id.

4.43.3 Deleting windows
The EMT argument block used to delete a window has the following form:

.BYTE 2,161
.BYTE window-id,0

where window-id is the identification number of the window to be deleted. There are two special values for
window-id which may be used with this EMT: a value of zero (0) causes all temporary windows for the job

to be deleted; a value of 255 (decimal) causes all windows for the job, both temporary and permanent, to
be deleted.

The global memory region used by a window is freed when the window is deleted.

Error
Code | Meaning

0 | Window management not included in system generation or invalid
EMT argument block.

38 | Unable to locate window with specified window-id.

76 CHAPTER 4. TSX-PLUS EMTS

4.43.4 Suspending window processing
Window processing may be suspended to allow characters to be sent to the terminal which are not processed
by the window manager. If the job does not have a currently active window, the suspend and resume

functions have no effect. The EMT 875 argument block to suspend window processing is:

.BYTE 3,161

4.43.5 Resuming window processing

Window processing which has been suspended may be resumed by EMT 875 with the following argument
block:

.BYTE 4,161

4.43.6 Printing a window
The contents of a window may be printed by issuing EMT 375 with the following argument block:

.BYTE 5,161
.BYTE wvindow-id,0

where window-id is the id number used when the window was created. The WINPRT program must be
executing in order for the window to be printed.

Error
Code | Meaning
0 | Window management not included in system generation
3 | Unable to locate window with specified window-id
4 | WINPRT program not running

4.44 Switching Between Subprocesses

The following EMT allows & running program to switch terminal control between subprocesses as if a CTRL-
W-digst sequence had been typed. The EMT has two functions: it initiates new subprocesses, and switches
terminal control between processes.

The form of the EMT is:
ENT 376
with RO pointing to the following argument block:

.BYTE sub-function, 162

.BYTE subprocess-number,0

.BYTE return-process,initiate-only
.WORD command-file-pointer

.WORD © ‘

4.44. SWITCHING BETWEEN SUBPROCESSES 77

If sub-function is 1 the EMT initiates a new subprocess and optionally switches terminal control to the
subprocesses. Error code 5 is returned if the specified subprocess is already active. If sub-function is 2
the EMT switches terminal control between already-active subprocesses. Error code 6 is returned if the
specified subprocess is not already active. If sub-function is O (zero), the EMT initiates a new subprocess if
the specified subprocess is not already active (and switches to it if the snitiate-only flag is O (zero)), or Jusc
switches control to the subprocess if it is already active.

Subprocess-number indicates the subprocess number and is analogous to the digit typed after CTRL-W
when manually switching between subprocesses. The value must be in the range 0 to MAXSEC (a TSGEN
parameter). If the number is too large, then the EMT returns with error code 2 and MAXSEC in RO.
Specifying O (zero) for subprocess-number switches back to the primary process (just as typing CTRL-W-0).
If a -1 (minus one) is specified for subprocess-number, the system locates the first unused subprocess number
and uses it. The number of the selected subprocess is returned in RO on completion of the EMT.

Return-process indicates which process is to be returned to when the process initiated by the EMT logs off.
Specify 0 (zero) to cause return to the primary process; specify 1 to return control to the process which is
executing the EMT to initiate the subprocess.

Initiate-only controls whether the terminal connection is switched to the subprocess. If instiate-only is 0
(zero), the subprocess is initiated (if it has not already been initiated) and terminal control is switched to
the subprocess. If initiate-only is 1 the subprocess is initiated but terminal control remains with the current
process.

Command-file-pointer is the address of an ASCIZ string containing the file specification of a command file to
be executed when the subprocess is initiated. This command file executes without start-up privilege following
any other start-up command file specified with the SET SUBPROCESS/FILE command. If command-file-
pointer is O (zero) no command file is executed.

The return-process, snitiate-only, and command-file-pointer parameters are only used when initiating a new
subprocess. They are ignored if this EMT is used to switch between subprocesses that have already been
initiated.

The following error codes can be returned by this EMT:

Error
Code | Meaning

You are not authorized to use subprocesses

Specified subprocess number is too large

All of your subprocesses are already active
Insufficient memory space available for process
Specified subprocess has already been initiated
Specified subprocess has not been initiated

D T N

Example

.TITLE SUBPRC

;Demonstration of the use of the YSX-Plus ENT to initiate subprocesses
.NCALL .PRINT, .EXIY,.TYWAIT
.GLOBL PRTDEC

.DSABL GBL
ERRBYT = B2 ;ENT error byte address
START: MOV #SUBPRC,RO ;Point to ENT arg. block to

2¢: ENT 376 ;Intiate subprocess

78 CHAPTER 4. TSX-PLUS EMTS

BCC 1] ;Branch 1f 0K
NOVB @AERRBYT,-(SP) ;Fetch ENT error code
.PRINT #ERRIS ;"ENT error is:"
NOV (sP)+,R0 ;Retrieve error coda
CALL PRTDEC ;Display it
98: BXIT ;And exdit
LNLIST BEX
SUBPRC: .BYTE 1,162 ;ENT arg. block to initiate subprocess
BYIE 1,0 ;number 1
BYIE 1,1 ;:Return to starting process and init. only
.¥oRD STRIFL ;Startup command file
.NORD O

ERRIS: .ASCII /TSUBPRC-F-ENY error is: /<200>

SIRTFL: .ASCIZ /SY:SUBPRC.COM/ ;File spec. for startup com file for subproc.
.EVEX
.END START

4.45 Mounting Logical Disks

The following EMT allows logical disks (LD’s) to be mounted from within running programs just as if
MOUNT command was used. The form of the EMT used to mount a logical disk is: ’

ENT 376
with RO pointing to the following argument block:

.BYTE chan, 163
.BYTE 1d-unit,read-only-flag
.MORD file-name-pointer

where chan is the number of an I/O channel which must be closed at the time that the EMT is executed.
This channel is used during EMT processing to access the file to which the LD unit is being associated. The
channel will be closed on return from the EMT. Ld-unit is the binary value of the LD unit number that is
being mounted; it must be in the range 0 (zero) to 7. Read-only-flag is O (zero) to allow both reads and writes
to take place to the LD unit. Set read-only-flag to 1 to disallow writes to the LD unit. File-name-posinter
is the address of a four-word block of data containing the RAD50 device name, file name, and extension, of
the file with which the LD unit is to be associated. The specified LD unit must not be in use (associated
with a file) at the time that this EMT is executed.

The following error codes can be returned by the EMT:

Code | Meaning

0 | Channel provided is already open

1 | Invalid logical disk unit number (must be 0-7)

2 | Logical disk support not generated into system
8 | Logical disk unit is already associated with a file
4 | Invalid file specification (null device or file)

5 | Invalid logical unit number nesting

8 | Unable to open specified file

Example

4.45. MOUNTING LOGICAL DISKS

.TITLE NNTLD

;Demonatration of the use of the TSX-Plus ENT to mount a logical disk.
JNCALL .PRINT,.EXIT,.TYAIT,.CLOSE
.GLOBL PRIDEC

.DSABL GBL

ERRBYT = B2 ;ENT error byte address

START: .CLOSE #0 ;Insure channel is ¢losed
.CLOSE #1 ;Insure channel is ¢losed
NOV #NNTLDG ,RO ;Point to ENT arg. block to
ENT 376 ;Nount LD6:
BCS 14 ;Branch if not 0K
NOV #MNTLDG,RO ;Point to ENT arg. bleck to
ENT 376 ;Mount LD6:
BCC 2% ;Branch if 0K

1%: NOVB @#ERRBYT,-(8P) ;Fetch ENT error code
.PRINT #ERRIS ;"ENT error is:"
NOV (8P)+,10 ;Retrieve error code
CALL PRIDEC ;Display it

28: .CLOSE #0 ;Close channel

' .CLOSE #1 ;Close channel

BXIT
.NLIST BEX

MNTLDE: .BYIE 0,163 ;ENT arg. block to
.BYIE 5,0 ;Mount LD5:
.MORD LDENAN

MNTLD6: .BYTER 1,168 ;ENT arg. block to
.BYTE 6,0 ;Nount LD6:

.WORD LD6NAN
LDENAM: .RAD6O /DUBJNOVWREDSK/ ;.RADEO of file to mount as LDG:
LD6NAN: .RAD6O /DUBSYSNONDSK/ ;.RAD6O of file to mount as LD6:
ERRIS: ,ASCII /INNTLD-F-ENT error is: /<200>

.EVEN

.END START

80

CHAPTER 4. TSX-PLUS EMTS

Chapter 5

Shared File Record Locking

TSX-Plus allows several programs to have the same file open simultaneously. In order to control access to
such files, TSX-Plus provides system calls to lock shared files and records within shared files. Through the
record locking facility a program may gain exclusive access to one or more blocks in a file by locking those
blocks. Other users attempting to lock the same blocks will be denied access until the first user releases the

locked blocks. The TSX~Plus shared file facility also provides data caching on blocks being read from shared
files.

Note that shared file access protection is only meaningful for cooperating jobs requesting shared access. This
scheme does not prevent other jobs from opening or writing to files if those jobs do not adhere to the file
sharing protocol.

The usual protocol for updating a shared file being accessed by several users is as follows.

—

Open file.

Tell TSX-Plus that file is shared.

Lock all blocks in file which contain desired record.
. Read locked blocks into memory.

. Make update to record.

. Write updated blocks to file.

. Unlock blocks.

. Repeat steps 3-7 as needed.

. Close file.

Use of shared files and record locking requires RLOCK privilege.

DIBOL record locking procedures

Subroutines to control record locking from within DIBOL programs are provided with TSX-Plus. These are
discussed in Appendix D.

Record locking from other languages

Record locking may be interfaced to other languages with appropriate subroutine calls. Record locking under
COBOL-Plus is built into the run-time library provided with COBOL-Plus. The remainder of this chapter
describes the techniques used to control shared file access and record locking.

81

82 CHAPTER 5. SHARED FILE RECORD LOCKING

5.1 Opening a shared file

Before a file can be used with shared access it must be opened by using a standard .LOOKUP EMT. After
the file has been successfully opened, the following EMT may be used to declare the file to be opened for
shared access. The form of this EMT is:

ENT 376
with RO pointing to the following argument area:

.BYTE chan, 126
.WORD access-code

where chan is the number of the I/O channel open to the desired file and access-code is a value indicating
the type of access protection desired for the file. The following access codes are recognized:

Code | Protection | Access
0 Exclusive | Input
Exclusive | Update

Protected | Input
Protected | Update
Shared Input
Shared Update

U 8RN =

The access code specifies two things:

e the type of access that you intend to make to the file (input only or update) and

o the type of access that you are willing to grant to other users of the file.
There are three protection classes:

EXCLUSIVE access means that you demand exclusive access to the file and will allow no other users to
access the file in any fashion (input or update).

PROTECTED access means that you will allow other users to open the file for input but wish to prohibit
any other users from opening the file for update.

SHARED access means that you are willing to allow other users to open the file for both input and update
access.

When this EMT is executed, TSX-Plus checks your specified protection mode and access type with that
previously declared for the file by other users. If an access conflict arises because of your specified access
characteristics an error code of 4 is returned for the EMT. If no access conflict is detected, your specified
access code is saved with the file and will be used to check for conflicts with future shared access requests
issued by other users.

Normally all files that are declared to TSX-Plus using this EMT are enabled for use of the data caching
facility (see description below). However, in some cases it may be desirable to suppress data caching for
certain files. For example, sequential access files usually benefit little from data caching and enabling data
caching for these files causes the data cache buffers to be used non-productively when they could be providing
a better service for other types of files. To disable data caching for a file set bit 8 (octal 400) in the access-
code word. When shared access is declared with bit 8 set, new data is not brought into the data cache when
the file is read. However, if the data being read is already stored in the cache because of a read by another
user, it is used. When data being written to a file is currently stored in the cache, the data in the cache is
updated even if the file is declared to be non-cached.

5.1. OPENING A SHARED FILE 83

It is possible to have several channels simultaneously open to different shared files. The exact number of
channels that can be open to shared files and the total number of shared files that may be opened are
specified when the TSX-Plus system 1s generated.

Once all access to a shared file is completed, the I/O channel should be closed using the standard .CLOSE
or .PURGE EMTs. See the next section for information about saving the status of a channel that has been
opened to a shared file.

The error codes that can be returned by this EMT are listed below:

Error
Code | Meaning

0 | Job does not have RLOCK privilege or system does not include
shared-file support

1 | Channel has not been opened to a file.
2 | Too many channels opened to shared files.
3 | Too many shared files open.
4 | File protection-access conflict
Example
.TITLE SHARED
.ENABL LC

i This program cooperates with the example program (SHAREZ) in the
i following section to demonstrate shared file access protection.
«MCALL .PRINT,.GILIN,.TVAIT,.EXIT, .READY
«MCALL .LOOKUP,.CLOSE,.SAVESTATUS, .RROPEN, .PURGE

ERRBYT = b2 ;ENT error byte
EXUP = 1. iShared file access code: Exclusive, Update
PRIN = 2. ;Shared file access code: Protected, Input
BUFSIZ = 256. iNumber of words in a disk block
START: .LOOKUP #AREA,#0,#SHR1 ;Open SHR1.DAT
BCC 1¢ ;Branch 1if 0K
.PRINT #LKPERR iLookup error message
JBXIT
1s: NOV #EXUP,<S8HRFIL+2> ;8et Exclusive, Update access
NOV #SHRFIL,RO ;Point to ENT arg block te
ENT 376 iDeclare SHR1.DAT as a shared file
;wvith Exclusive and Update access
BCC 2% iBranch if sharing 0K
JNP ENTERR iExplain the error and quit
2¢: .READY #AREA,#0,#BUFFER,#BUFSIZ,#0 ;Read block 0 of SHR1.DAT
BCC 3¢ iBranch 1f read 0K
.PRINT #RDVERR i8ay there was a read error
JEXIT
3%: .PRINT #BUFFER iPrint out the file (must have 0 or 200 byte)
.SAVESTATUS #AREA,#0,#BLOK1 ;Save channel O status for reuse
BCC 44 ;Branch if savestatus 0K
.PRINT #SVSERR ;Savestatus error message
.EXIT
4% NOV #SAVSHR R0 ;Point to ENT arg block to
ENT 376 ;Save shared file status
.PURGE #0 ;Purge the channel for reuse
.LOOKUP #AREA,#0,#SHR2 ;Open SHR2.DAT
BCC 1] ;Branch 1t 0K
.PRINT #LKPER2 ;8ay bad lookup on HHR2
EXIT
b$: NOV #PRIN,<SHRFIL+2> ;Bet Shared, Input access
NOV #SHRFIL,R0 ;Point to ENT arg block to

ENT 376 ;Declare SHR2.DAT as a shared file

84

CHAPTER 5. SHARED FILE RECORD LOCKING

BCC (1] ;Branch on no error
JNP EMTER2 ;Say error on SHR2 sharing
64: _READY #AREA,#0,#BUFFER,#BUFS1Z,#0 ;Read block 0 of SHR2.DAT
BCC 74 ;Branch 1f read 0K
.PRINT #RDYER2 ;Bay read srror on SHR2
JEXIT
7%: .PLINT #BUFFER :Print out the contents (1 line, null filled)
.PRINT #PRONPT ;Say it's time to try companior program
.TYAIT #AREA, #TINE ;¥ait 30 seconds to run other program
.PURGE #0 ;Now, release B5HR2
.CTLIN #BUFFER,#PRNPT2 ;VWait for return from subprocess
;This job will be suspended for output vhile gone to subprocess
.REOPEN #ALEA,#0,#BLOK1 ;And get BHR1i back
.READY #AREA,$0,#BUFFER,#BUFSIZ,#1 ;Read in second block of SHR1
.PRLINT #BUFFER ;And print it to prove status vas saved
.CLOSE #0 ;lelease BHR1
.EXIT
ENTER2: MOV #SHR2NM,FILNUN ;Point to alternate file error
ENTERR: MOVB Q#ERRBYT,RO ;Get the error type
DEC 10 ;Zero offset
ASL 10 ;Convert to word offset
.PRINT SHRERR(RO) ;Print the appropriate error message
.PRINT FILNUN ;And the file name
EXIT
AREA: .BLKY 10 ;ENT arg block area
BLOXK1: .BLKY [;Savestatus area for SHR1.DAT
FILNUN: .¥WORD SHRINN ;File nume for error message
TINE: .WORD 0,830.#60. ;30.s0c * 60.tics/sec
SHRERR: .WORD NOTOPN ;Pointer to ENT error messages
.WORD XBBCHN
.YORD XSSFIL
.YORD AXSCON
.NLIST BEX
8HR1: .RADGO /DK S8HR1i DAI/ ;File descriptor for SHR1.DAT
B5HR2: .RADEO /DX S8HR2 DAI/ ;File descriptor for S8HR2.DAT
SHRFIL: .BYIR 0,126 ;ENT arg block to declare shared file
.NORD 1 ;Exclusive Update access (GETS CHANGED)
SAVSHR: .BYIE 0,122 ;ENT arg block to save shared file status
NOTOPN: .ASCII /Attempt to share unopened channel/<7><200>
XSSCHN: .ASCII /Too many channels opensd to shared files/<7><200>
XSSFIL: .ASCII /Too many shared files open/<7><200>
AXSCON: .ASCII /Attempt to protect alrsady protected shared 211e/<7><200>
SHRINM: .ASCIZ /: S8HR1.DAT/
SHR2NN: .ASCIZ /: SHR2.DAT/
LIPERR: .ASCIZ /Lookup error for SHR1.DAT/<T>
LEPER2: .ASCIZ /Lookup error for SHR2.DAT/<7>
SVSEER: .ABCIZ /Error occurred attempting to save SHR1.DAT file status/<7>
ADYERR: .ABCIZ /Error occurred vhile reading SHR1.DAT/<7>
RDVER2: .ASCIZ /Error occurred vhile reading SHR2.DAT/<T>
PRONPT: .ASCII /Go to a subprocess and RUN SHARE2 which attempts /<16><12>
.ASCII /to share the same files (BHR1.DAT, SHR2.DAT)./<16><12>
.ASCIZ /¥aiting 30 seconds/<T>
PRNPT2: .ASCII /When you have returned, hit RETURN to continue/<200>
BUFFER: .BLKY BUFSIZ
.END BTART

See also the example program SHARE2 in the section on saving the status of a shared file channel.

5.2 Saving the status of a shared file channel

A standard .SAVESTATUS EMT may be used to save the status of a shared file channel. If this is done, all

blocks that are being held locked in the file remain locked until the channel is reopened and the blocks are
unlocked (see below).

When using a single channel number to access several shared files it is convenient to initially do a .LOOKUP
on each file, then declare the file to be shared (EMT above), and then do a .SAVESTATUS. The channel

5.2. SAVING THE STATUS OF A SHARED FILE CHANNEL 85

being used to access the set of files can then be switched from one file to another by doing a .PURGE
followed by a .REOPEN. However, before doing the . PURGE, TSX-Plus must be told that you wish to save
the shared-file status of the file, otherwise all locked blocks will be unlocked and the file will be removed
from the shared-file list. The form of the EMT used to perform this function is:

ENT 376
with RO pointing to the following argument block:

.BYTE chan, 122

where chan is the I/O channel number. The effect of this EMT is to suspend the connection between the
shared file information table and the I/O channel. Any blocks that are currently locked in the file remain
locked until the channel is reopened to the file (by using a standard .REOPEN EMT). After saving a shared
file status, the channel may be freed by using a .PURGE EMT.

If the same file is opened more than once concurrently using different channels in the same program, and the
channels are suspended by using the preceeding EMT, the system reassociates the correct shared-file context
with the channel when it is reopened by matching the channel number used with the . REOPEN EMT with
that used with the suspend EMT. Thus if the same file is opened more than once using different channels
in the same program and is used with record locking, it is important to use the same channel number when
suspending the file and reopening it. It is all right to switch the channel number between suspending file
access and reopening it if the file is only open on one channel at a time within the program.

Example

.TITLE SHARE2

.ENABL LC
; This program cooperates with the example program (SHARED) in the
; previous section to demonstrate saving of shared file status with
; the .SAVESTATUS ENT.

.NMCALL .LOOKUP,.PRINT,.EXIT,.READY

.MCALL .CLOSE,.TYAIT

ERRBYT = b2 ;ENT error byte
BUFSIZ = 266. :8ize of disk file block
BTART: .LOOKUP #AREA,#0,#SHR1 ;Try to open a file which is access locked
BCC 1 ;Branch 1f 0K
.PRINT #LKPERR ;Say couldn’t get the file
BR 3t ;Go on to try second file
1$: NOV #SHRFIL,RO ;Point to ENT arg block to
ENT 376 ;Declare file for shared access
BCC 24 iI2 got the file, branch to read it
CALL EXPLER ;Else explain why
PRINT #INSHR1 ;8ay we can't share SHB1
.CLOSE #0 ;Release channel 0
BR 3 ;Go on to next file
a8: .READY #AREA,#0,#BUFFER,#BUFSIZ,#0 ;Try to read block 0 of SHRi
.PRINT #BUFFER ;Display it for kicks
.CLOSE #0 ;Done with SHRi for the moment
3s: .LOOKUP #AREA,#0,#5HR2 ;Try to open SHR2
BCC 44 ;Branch 12 0K
.PRINT #LKPER2 ;8ay we couldn’t even open it
BR 1] ;Go on to try SHR1 again
as: NOV #SHRFIL,RO ;Point to ENT arg block to
EMY 376 ;Declare file for shared access

;Access Input, Update to shov lockout
i though we don’t write in this example

BCC 1] iBranch 1f we can share it
CALL EXPLER ;Explain why not

.PRINT #AGAIN iBay ve will try again later
IWAIT #AREA,#TINE ;Wait b seconds and

BR 44 ;Try again

86 CHAPTER 5. SHARED FILE RECORD LOCKING

B : .READY #AREA,#0,#BUFFER,#BUFSIZ,#0 ;Read block 0 of SHR2
.PRLINT #BUFFER ;Prove that we got it
.CLOSE #0 ;Done with 8HR2

64: _LOOKUP #AREA,#0,#SHRL ;Try SHR1 again
BCC 7% ;Branch 1f it wvorked
.PRINY #LEKPERR ;8ay we couldn't do it
.EXIT

7%: NOV #SHRFIL,RO ;Point to ENT arg block to
ENT 376 ;Declare shared file
BCC 104 ;Branch 1f 0K
CALL EXPLER ;And explain the error
.PRINT #STLLOK ;8ay it was still locked
Bk 114 ;And quit

10%: .READY #AREA,#0,#BUFFER,#BUFSIZ,#1 ;Read in block 1
.PRINT #BUFFER ;And display it

11§: .CLDSE #0 ;Done with BHR1
.BXIT

EXPLER: NOVB G#ERRBYT,RO ;Find out why can’t share it
DEC 10 ;Convert to zero index
ASL) 1] ;Nake into vord offset
.PRINT SHRERR(R0) ;8ay why we couldn't get it
RETURN
.NLIST BEX

AREA: BLKY 10 :ENT arg block

SHRFIL: .BYIE 0,126 ;ENT arg block to declare file shared
.YWORD b ;Access Shared, Update

SHRERR: .¥YORD NOTOPN ;8hared file error message pointers
.MORD XSSFCH
.WORD XSSFOP
.WORD AXSCON

TINE: .WORD 0,5.%60. ;6.88c * 60.tics/sec

BHR1: L.LADEO /DK SBHE1 DAT/ ;Input file #1 name

8HR2: .RAD60 /DK BHE2 DAT/ ;Input file #2 name
NOTOPN: .ASCIZ /Cannot share unopened file/

XSSFCH: .ASCIZ /Too many channels opensd to shared files/
XSSFOP: .ASCIZ /Too many shared files open/

AXSCON: .ASCIZ /Shared file protected by another job/
INSHRL: .ASCIZ /On first try at SHR1.DAT/

LEPERR: .ASCIZ /Unable to lookup SHR1.DAT/

LEPER2: .ASCIZ /Unable to lookup BHR2.DAI/

AGAIN: .ABCIZ /Can't access SHR2.DAT, will try again in 6 seconds/
STLLOK: .ASCIZ /On second try at SHR1.DAT/

.EVEN
BUFFER: .BLKY BUFSIZ ;Input read buffer
.END START

See also the example program SHARED in the section on opening a shared file.

5.3 Waiting for a locked block

The following EMT can be used to lock a specific block in a file. If the requested block is locked by another

job, the requesting job will be suspended until the desired block becomes available. The form of the EMT
is:

ENT 376
with RO pointing to the following area:

.BYTE chan, 102
.WORD block

where chan is the number of an I/O channel that has previously been declared to be open to a shared file
and block is the number of the block in the file to be locked. Other blocks in the file which were previously

5.3. WAITING FOR A LOCKED BLOCK

locked remain locked. The maximum number of blocks which may be simultaneously held locked is specified
when TSX-Plus is generated. A block number of -1 (octal 177777) can be used to request that all blocks
in the file be locked. If several users request the same block, access will be granted sequentially in the order

that the requests are received.

Example

IITLE
.ENABL

Error

Code | Meaning

0 | Job does not have RLOCK privilege or system does not include
shared-file support

1 | Channel is not open to a shared file

2 | Request to lock too many blocks in file

Locxy
LC

; This program cooperates with the example program (LOCK) in the next
; section to demonstrate shared file record locking.

.NCALL

.PRINT, .EXIT, .TWAIT, .LOOKUP, .READY, .CLOSE

ERRBYY = 52
BUFSIZ = 266.

START:

1$:

38:

4%:

6$:

.LOOKUP

BCC
PRINT
.EXIT
NOV
ENT
BCC
NOVB
DEC
ASL
.PRINT
.CLOSE
LEXIT
NOV
ENT

BCC
CNPB
BHI
.PRINT
BR
.PRINT

BR
.PRINT
LTVAIT
MOV
ENT
BCC
.PRINT
BR
JTWAIT
NOV
ENT
BCC
.PRINT
.READY
.PRINT
.READY
.PRINT

#AREA, #0,#5HR1

1ENT error code byte
;Words per disk block
;0pen SHR1.DAT

14 ;Branch 1if 0K

#LKPERR ;Say bad lookup

#SHRFIL,RO ;Point to ENT arg block to

3786 ;Declare shared file

3 ;Branch it 0K

C#ERRBYT,RO ;Get the error code

RO ;Make zero index

RO ;Convert to word offset

SHRERR (RO) ;Print the error message

#0 ;Give back the channel

#LOCKY,RO ;Point to ENT arg block to

376 ;Lock block O of SHR1.DAT
;(Job is suspended until block available
;to be locked)

1] ;Branch when block is ready

O#ERRBYT,#1 ;Yhich error?t

11 ;Too many blocks locked?

#5FCNOP ;Yasn't open to shared file!

2¢ ;Give up

#XSLKBL ;Too many locked blocks in file
;(Defined by NXLBLK parameter in TSGEN)

24 iGive up

#PRONPT iSwitch lines to attempt access

#AREA ,#8EC20 ;¥ait 20 seconds before unlocking

#UNLOCK, R0 iPoint to ENT arg block to

376 ;Unlock a single block

6$;Branch it 0X

#SFCNOP ;¥Yasn't shared file!

28 ;Give up

#AREA, #5EC10 ;¥ait 10 seconds for companion

#CK¥SHR ,R0 ;Point to ENT arg block to

376 ;Check for writes to shared file

8 ;1 none, wrap up

#CHANGD ;5ay ve have newv data

#AREA, #0, #BUFFER , #BUFSIZ,#0

#BUFFER

#AREA,#0 , #BUFFER , #BUFSIZ, #1

#BUFFER

;Get block 0

;Show current contents block 0
;Get block 1

;Shov contents block 1

88 CHAPTER 5. SHARED FILE RECORD LOCKING

BL DONE

84: .PRLINT #NOCHNG ;8ay nothing has changed

DONE: .CLOSE #0 ;Free up channel
.BXIT
.NLIST BEX

AREA: .BLKY 10 ;ENT arg block area

SHRFIL: .BYIE 0,126 ;ENT arg block to declare shared file
.¥ORD 4 ;Access Shared, Input

LOCKY: .BYIE 0,102 ;ENT arg block to lock shared file block
.WORD 0 ;Block number to be locked

UNLOCK: .BYIE 0,113 ;ENT arg block to unlock shared file block
.¥ORD 0 ;Block number to be unlocked

CKWSHR: .BYIE 0,121 ;ENT arg block to check writes to shared file

SHRERR: .WORD NOTOPN ;Shared 2ile error message table

.WORD XSSFCH
.WORD XSSFOP
.MORD AXSCON

8HR1: L,RADBO /DK SHRi DAT/ ;File name to be shared
SEC20: .¥ORD 0,20,%60. ;20.s8c = 60.tics/sec
SEC10: .YORD 0,10.260. :10.sec » 60.tics/sec

NOTOPN: .ASCIZ /Channel not opened to shared file/<7>

XSSECH: .ASCIZ /Too many channels opened to sharesd files/<7>

XSSFOP: .ASCIZ /Too many shared files open/<7>

AXSCON: .ASCIZ /File protection access conflict/<7>

LIPERR: .ASCIZ /Unable to open SHR1.DAT/

SFCNOP: .ASCIZ /Can't lock or unlock block not open to shared file/

XSLEBL: .ASCIZ /Can't lock so many blocks in one file/

CHANGD: .ASCIZ /Data has been vritten to file. Contents follow:/

NOCHNG: .ASCIZ /Data in file is unchanged/

PRONPT: .ASCII /Block O in SHR1.DAT will remain locked for 20 sec/<1B><12>
.ASCIZ /Go to another line and RUN TLOCK to test 1t/<7>

.EVEN
BUFFER: .BLKY BUFSIZ
.END START

5.4 Trying to lock a block

This EMT is similar in operation to the previous EMT—it is also used to request that file blocks be locked.
The difference is that if the requested block is already locked by another user the previous EMT suspends
the requesting program whereas this EMT does not suspend the program but rather returns an error code.
As above, a request to lock block #-1 is treated as a request to lock the entire file. If the block is available
it is locked for the requesting user and no error is reported. The form of this EMT is:

ENT 376
with RO pointing to the following argument area:

.BYTE chan, 103
.WORD block

where chan is the number of the I/O channel associated with the file and block is the number of the block
which is to be locked.

Error
Code | Meaning

0 | Job does not have RLOCK privilege or system does not include
shared-file support

Channel is not open to a shared file.

Request to lock too many blocks in file.

Requested block is locked by another user.

Entire file is locked by another user.

[S I U

5.4. TRYING TO LOCK A BLOCK

Example

.TITLE LOCK
.ENABL LC
; This program cooperates with the example program (LOCKY) in the
; previous section to demcnstrate shared file record locking.
.NCALL .PRINT,.EXIT,.WRITV,.T¥AIT,.LOOKUP, .CLOSE

ERRBYT = B2 ;Brror byte address
START: .LOOKUP #AREA,#0,#58HR1 ;Try to open SHR1.DAT
BCC 1 ;Branch if 0K
.PRINT #LKPERR ;5ay we couldn’'t open
EXIT
1s: NOV #SHRFIL,RO ;Point to ENT arg block to
ENT 376 ;Declare shared file
BCC s ;Branch if 0K
NOVB @#ERRBYT 10 ;Get error type
DEC RO ;Convert to zero index
ASL 10 ;Nake into word offset
.PRINT SHRERR(RO) ;Display the error type
2¢: .CLOSE #0 ;Release the channel
.EXIT sAnd give up
ss: NOV #10CK,R0 ;Point to ENT arg block to
ENT 376 ;Iry to unlock block 0
BCC 1] ;Branch 12 0K
CNPB O#ERRBYT, #2 ;Yhich error was it
BLO 4 ;¥asn't open to share file?
BEQ 1] ;Request to open too many blocks in file?
PRINT #VYAITING ;Block locked by another user
.TWAIT #AREA,#TIME ;¥ait 3 seconds
BR 3 ;And try again
a8 .PRINT #NOPNSF ;Not open to shared file
BL 28 ;Give up
b$: .PRINT #XSLEBL ;Too many blocks locked in file
BR 24 ;Give up
8 .WRITY #AREA,#0,#BUFFER,#BUFSIZ,#0 ;Rewrite block 0
NOV #UNLALL,RO ;Point to ENT arg block to
ENT 376 ;Release all blocks locked by this program
.PRINT #GOBACK iMessage: done, go back to original line
BR 2% ;Done
.NLIST BEX
AREA: .BLXY 10 ;ENT arg block
BHR1: .RADE0 /DK SHRL DAY/ ;Name of shared file
BHRFIL: .BYIE 0,126 ;ENT arg block to share file on chan 0
.¥ORD 3 ;Access Protected, Update
LOCK: .BYIE 0,103 ;ENT arg block to lock block on chan 0
.YORD 0 ;number of block to be locked
UNLALL: .BYTE 0,101 ;ENT arg block to unlock all blocks on chan 0
;(Only applies to blocks locked by this job)
TINE: .WORD 0,3.460. ;S.sec *» 60.tics/sec
SHRERR: .WORD SFCNOP ;File sharing ENT error table
.WORD XSSFCN
.WORD XSSFOP
.WORD AXSCON

SFCNOP: .ASCIZ /Channel not open to file/<7>

XSSFCN: .ASCIZ /Too many channels open to shared files/<7>

X8SFOP: .ASCIZ /Too many shared files open/<7>

AXSCON: .ASCIZ /Shared file access conflict/<7>

LEPERR: .ASCIZ /Couldn't open SHR1.DAT/<7>

WAITNG: .ASCII /Requested block not available for locking/<16><12>
.ASCIZ /¥1ll try agein in 8 seconds/

GOBACK: .ASCIZ /Done, log off and go back to original line/

NOPNSF: .ASCIZ /Channel not open to shared file/<7>

XSLKBL: .ASCIZ /Attempt to lock too many blocks in file/<7>

.EVEN

BUFFER: .ASCII /(SHR1)This line was written by the program LOCK./
.ASCIZ / /<16><12>

BUFSIZ = <.-BUFFER+1>/2 ;Number of words to write
.BYIE 0,0 ;8afety bumper

.END START

90 CHAPTER 5. SHARED FILE RECORD LOCKING

5.5 Unlocking a specific block

The following EMT is used to unlock a specific block in a file. The form of the EMT is:
ENT 376
with RO pointing to the following argument block:

.BYTE chan, 113
.¥ORD block-number

where chan is the number of the I/O channel opened to the shared file and block-number is the number of
the block to be unlocked.

Error
Code | Meaning

0 | Job does not have RLOCK privilege or system does not include
shared-file support

1 | Specified channel not opened to a shared file

Example

See the example program LOCKW in the section on waiting for a locked block.

5.6 Unlocking all locked blocks in a file

The following EMT is used to unlock all blocks held locked in a file. The form of the EMT is:
ENT 376
with RO pointing to the following argument area:
.BYTE chan,101
where chan is the 1/O channel number open to the shared file. When this EMT is executed all blocks

previously locked by the user on the shared file are unlocked. Blocks locked by the user on other files are
not released nor are blocks of the same file that are locked by other users.

Error
Code | Meaning

0 | Job does not have RLOCK privilege or system does not include
shared-file support

1 | Channel is not open to a shared file.

Example

See the example program LOCK in the section on trying to lock a block.

5.7. CHECKING FOR WRITES TO A SHARED FILE 91

5.7 Checking for writes to a shared file

The following EMT can be used to determine if any other user has written to a shared file. The form of the
EMT is:

ENT 376
with RO pointing to the following argument block:
.BYTE chan, 121

where chan is the I/O channel number opened to the shared file. If no other user has written to the file
since the file was opened by the user issuing this EMT or since that last time this EMT was issued for the
file, the carry-flag is clear on return from the EMT.

Eyrror
Code | Meaning

0 | Job does not have RLOCK privilege or system does not include
shared-file support or channel not opened to shared file

2 | Some other job has written to file since last check

This EMT is useful when data from a shared file is being held in a program buffer. If no other user has
written to the file, then the data is still valid. However, if the data in the file has been rewritten then it must
be reread. The usual sequence of operations in this situation is to first lock the block whose data is in the
program’s buffer, then do the EMT to see if the file has been written to. If the file has not been modified
the data in memory is valid and can be used, otherwise the block must be reread from the file.

Example
See the example program LOCKW in section 5.8 on waiting for a locked block.

5.8 Data caching

Data caching is a technique provided by TSX-Plus to speed access to files. When TSX-Plus is generated
a certain number of 512-byte buffer areas may be set aside for data caching. These buffer areas are part of
the resident system data area and are not associated with any particular job. There are two kinds of data
caching: generalized data caching; and shared-file data caching. Both kinds may used automatically with
minimal intervention on the part of the programmer or operator. Generalized data caching applies to all
files on MOUNTed devices, while shared-file data caching applies only to files which have been declared as
shared files. Generally, only one of these types is selected during generation of a TSX~-Plus system. The

following discussion applies to shared-file data caching. See the TSX-Plus System Manager’s Guide for more
information on data caching.

Each time a request is issued to read a shared file, a check is made to see if the blocks being read are currently
stored in the data cache. If so, the data is moved from the cache buffer to the program buffer and no disk
I/O operations are performed. When data in the cache buffers is accessed, a use count is incremented.
Periodically, the use counts for all buffers are divided by two. If the data blocks being read are not currently
in the cache, the data is read from the disk into the program buffer and then it is moved into the cache
buffers with the lowest use count.

When a write operation is done to a file that is being cached, a check is made to see if the data being written
is currently stored in the cache. If so, the cache buffers are updated. In any case the data is written to
the disk. In other words, this is a write-through cache; the disk file is always updated and caching does not
improve the performance of writes.

All data files that are declared to TSX-Plus for shared access (using EMT 875 with function code 125) are
eligible for data block caching regardless of their access protection type. Data caching on a shared file may
be disabled by setting bit 8 (octal 400) in the access-code word of the EMT argument block when the file is
declared for shared access. Data caching is particularly effective for COBOL-Plus ISAM files.

92

CHAPTER 5. SHARED FILE RECORD LOCKING

Chapter 6
Message Communications Facilities

TSX-Plus provides an optional facility that allows running programs to send messages to each other. This
message communication facility allows programs to send messages through named channels, check to see
if messages are pending, and suspend execution until a message is received. TSX-Plus provides EMTs for
each of these operations which are described below. Use of named message channels requires MESSAGE
privilege.

6.1 Message channels

Messages are transferred to and from programs by using TSX-Plus Message Channels. A message channel
accepts a message from a sending program, stores the message in a queue associated with the channel and

delivers the message to a receiving program when requested. Message channels are totally separate from
I/O channels.

FEach message channel is identified to the sending and receiving programs by a one to six character name.
The total number of message channels is defined when TSX-Plus is generated. The names associated with
the channels are defined dynamically by the running programs. A message channel is said to be active if any
messages are being held in the queue associated with the channel or if any program is waiting for a message
from the channel. When message channels become inactive they are released and may be reused.

Once a message is queued on a channel, that message will remain in the queue until some program receives
it or the TSX-Plus system is halted. A program may exit after queuing a message without affecting the
queued message. This allows one program to leave a message for another program that will run later.

6.2 Sending a message

The following EMT is used to queue a message on a named channel. If other messages are already pending
on the channel, the new message is added to the end of the list of waiting messages. The sending program
continues execution after the EMT and does not wait for the message to be accepted by a receiving program.
During processing of the EMT the message is copied to an internal buffer, and the sending program is free
to destroy its message on return from the EMT. The form of the EMT is:

ENT 376
with RO pointing to the following argument area:

.BYTE 0,104

.WORD chnadr
.WORD msgadr
.WORD msgsiz

93

94

where chnadr is the address of a six byte field containing the name of the message channel (ASCII with
trailing blanks if the name is less than six characters), magadr is the address of the beginning of the message

CHAPTER 6. MESSAGE COMMUNICATIONS FACILITIES

text, and magsiz is the message length in bytes.

The system manager may alter parameters during TSX-Plus generation to alleviate these error conditions.

Example

.TITLE
.ENABL

Error
Code | Mcaning

0 | Job does not have MESSAGE privilege or system does not include

message channel support.
1 | All message channels are busy.

maximum allowed length.

5 | Maximum number of message requests pending.

SNDNSG
LC

; Demonstrates use of the ISX-Plus ENT to queue a message to the interprocess
; message communication facility.

.NCALL

ERRBYT = B2

START:

14:

NSGBLK:

NSGLEN:
ERRTBL:

NOPRIV:
BSYERR:
FULERR:

OHOK:

TRNERR:
NSGPRY:
CNLPRT:
DONEOX :

CNLBUT:
NSGBUF :

.GILIN
NOV
I8TB
BNE
8UB

NOV
.GILIN
NOV
ENT
BCC
NOVB
ASL
.PRINT
.EXIT
CLRB
JPRINT
.PRINT
.BXIT
.NLIST
.BYIE
.¥ORD
.¥ORD
.¥ORD
.¥ORD
.¥ORD
.YORD
.WORD
.¥ORD
.ASCIZ
.ASCIZ
.ASCIZ
.A8CI12
.ASCIZ
.ASCIZ
.ASCII
.ASCII

.BLKB
.BLIB

.RXIT, .PRINT,.CILIN
;ENT error byte
#NSGBUF ,#MSGPRT ;Get the message to be queued

#NSGBUF ,R1 ;Point to beginning of buffer
(R1)+ ;Find end of message
14

H
#<NSGBUF+1>,11 ;Determine message length
;accounting for post-increment

B1,NSGLEN ;Bet message length in ENT arg block
#CNLBUF ,#CNLPAT ;Get the six character channel name
#NSGBLK,20 ;Point to ENI arg block to

376 ;8end message on named channel

1] ;Branch if no errer

G#ERRBYT RO :Yhich error?

20 ;Convert to word index

ERRTBL(RO) ;Display the appropriate message
CNLBUF+6 ;:Make channel name ASCIZ

#DONEOK ;Inform user message queuasd

#CNLBUF ;on channel CNLBUF

BEX

0,104 ;ENT black: send message on named channel
CNLBUF ;Address of channel name

NSGBUF ;Address of message

0 ;Char length of message

NOPRIV ;Table ¢f send error messages
BSYERR

FULERR

OHOH ;Error code 3 not used

TRNERR

/1SNDNSG-F-No privilege or no message support./
/1SNDNSG-F-A11 message channels are busy./
/1SNDNSG-F-Naximum number of messages have been queued./
/1SNDNSG-F-This is a non-existent error./
/1SNDNSG-¥-Nessage was too long, truncated./

/Nessage to be queued: /

<15><12>/Channel Name (six characters max): /<200>
/Nessage queuned on channel /<200>

80. ;¥irst 6 chars to contain file name
80. ;Nessage buffer.
START

Maximum allowed number of messages already in message queues.
4 | The transmitted message is too long. The message is truncated to

6.3. CHECKING FOR PENDING MESSAGES 95

6.3 Checking for pending messages

The following EMT is used to receive a message from a named channel if a message is pending on the channel.
If no message is pending, an error code (8) is returned, and the program is allowed to continue execution.

The form of the EMT is:
ENT 376
with RO pointing to the following argument area:

.BYTE 0,105

.MORD chnadr
.WORD msgadr
.WORD msgsiz

where chnadr points to a field with a six character channel name, msgadr points to the buffer in which the
message is to be placed, and magsiz is the size of the message buffer (bytes).

If a message is received, its length (bytes) is placed in RO on return from the EMT. If the message is longer
than the message buffer (magsiz), only the first part of the message will be received.

Error
Code | Meaning

0 | Job does not have MESSAGE privilege or system does not include
message channel support.

All message channels are busy.
No message was queued on the named channel.
Message was longer than the receiving buffer.

S Co e

Maximum number of message requests pending.

Example

.TITLE GEINSG
; Demonetrates use of the TSX-Plus ENT to check for pending messages in the
; interprocess message communication facility.

.NCALL .EXIT,.PRINT,.GILIN

ERRBYT = b2 ;ENT error byte
START: .GILIN #CNLBUF,#CNLPRI ;Get the channel name
NOV #NSGBLK , RO ;Put ENT argument block address in RO
ENMT 376 ;ENT to check channel for message
BCC 3} ;Brrort
1STB G#ERRBYT ;No privilege?
BNE 14 ;Branch if different error
.PRINT #NOPRIV
BR of
1¢: CMPB G#ERRBYT, #4 ;0nly two errors possible
BEQ 28 ;Overflov mwssage buffer?
.PRINT #NONERR iNo message
BR 11
24: .PRINT #IRNERR ;Print truncation warning
6%: .PRINT #PNDNSG ;Print message preamble
.PRINT #NSGBUF ;Print actual message
o%: .EXIT
NSGBLK: .BYTE 0,106 ;GETNSG ENT block
.WORD CNLBUF ;Channel name buffer address
.WORD NSGBUF ;Buffer address to receive message
.YORD B81. ;Butfer length

.NLIST BEX

96 CHAPTER 6. MESSAGE COMMUNICATIONS FACILITIES

CNLBUOF: .BLKB 80. iFirst 6 chars are channel name
NSGBUF: .BLKB 80. ;Nessage buffer

.MORD O ;Insure ASCIZ

.NLIST BEX

CNLPAT: .ASCII /Channel Name (8 chars): /<200>
NOMERR: .ASCIZ /1GEINSG-F-No messages pending in named channel./
TANERL: .ASCIZ /TGEINSG-¥-Nespage truncated/<7>
PNDNSG: .ASCIZ /Nessage pending in named queue is:/
NOPRIV: .ASCIZ /1GETNSG-F-No privilege or no message support./
.LIST BEX
.END START

6.4 Waiting for a message

The following EMT is used to suspend execution of a program until a message becomes available on a named
channel. The form of the EMT is:

ENT 376
with RO pointing to the following argument area:

.BYTE 0,106

.WORD chnadr
.WORD msgadr
.WORD msgsiz

where chnadr points to a six byte field containing the channel name, msgadr points to the buffer where the
message is to be placed, and magsiz is the size of the message buffer (bytes).

The length of the received message (bytes) is placed in RO on return from the EMT.

Error
Code | Meaning

0 | Job does not have MESSAGE privilege or system does not include
message channel support.

1 | All message channels are busy.
Message was longer than the receiving buffer.

5 | Maximum number of message requests pending.

Example

.TITLE VAINSG

.ENABL LC
; Demonstrate ISX-Plus ENT to wait for a queued message from the
; interprocess message communication facility.

.NCALL .EXIT,.PRINT,.GTLIN

ERRBYT = B2 ;ENT error byte

STARY: .GTLIN #CNLBUF,#CNLPRY ;Get the channel name
.PRINT #¥WAITNG ;Explain waiting
NOV #NSGBLK R0 ;Put ENT argument block address in RO
ENT 376 ;ENT to check channel for message
BCC 54 ;Check for error
ISIB O#ERRBYT ;No privilege?
BNE 14 ;Branch if different error

PRINT #NOPRIV
BR 1]

6.5. SCHEDULING A MESSAGE COMPLETION ROUTINE 97

1$: CNPB Q#ERRBYT,#1 ;Error?
BHI 24 ;Message truncated
.PRINT #NONERR ;All channels busy
BR (1]
2¢: .PRINT #IRNERR ;Print truncation warning
b$: .PLINT #RCVNSG iPrint message preamble
.PRINT #NSGBUF ;Print actual message
0%: .BXIT
NSGBLK: .BYIE 0,108 ;YATNSG ENT block
.WORD CNLBUF ;Channel namo buffer address
.WORD NSGBUF ;Buffer addross to receive message
.WORD 81. ;Butfer length
CNLBUF: .BLXB 80. ;Channel nams first € chars
MSGBUF: .BLKB 80. ;Nessage bufler
.WORD O ;Insure ASCIL
.NLIST BEX
CNLPRY: .ASCII /Channel Name (6 chars): /<200>
¥YAITNG: .ASCII /¥Waiting for a message . . ./<16><12>

.ASCIZ /Go to another line and send me something./
NONERR: .ASCIZ /TWATNSG-F-All message channels are busy./
TRNERR: .ASCIZ /TYAINSG-¥-Nessage truncated./<7>
BCVNSG: .ASCIZ /Message received in named queus is:/
NOPRIV: .ASCIZ /TYAINSG-F-No privilege or no message support./
.LIST BEX
.END BTART

6.5 Scheduling a message completion routine

The following EMT is used to schedule a completion routine to be entered when a message is received on a
named channel. The form of the EMT is:

ENT 376

with RO pointing to an argument block of the form:

.BYTE 1,106

.WORD chnadr
.WORD msgadr
.WORD msgsiz
.WORD cplzrtn

where chnadr points to a six byte field containing the message channel name, mesgadr is the address of the
buffer where the message is to be placed, msgsiz is the size of the message buffer (bytes), and cplrtn is the
address of the completion routine to be entered when a message is received.

On entry to the completion routine, RO contains the number of bytes in the message that was received and
R1 contains the number of the job that sent the message. Another message completion routine may be
scheduled from within the completion routine if desired.

The .SPND and .RSUM system service calls may be used with this facility if the program reaches a point
where it must suspend its execution until a message arrives.

Error
Code | Meaning

0 | Job does not have MESSAGE privilege or system does not include
message channel support.

1 | All message channels are busy
Message was longer than the receiving buffer.
5 | Maximum number of message requests pending.

98

Example
.TITLE
.ENABL

CHAPTER 6. MESSAGE COMMUNICATIONS FACILITIES

NSGCPL
Lc

Demonstrate message completion routine
Do processing vhile waiting for & message,
then display the message and repeat.

.NCALL ,PRINT,.EXIT,.TTYOUT
.GLOBL PRIDEC
.DSABL GBL
ERRBYT = B2 ;ENT error byte address
SPACE = 40 ;ABCII space char
BELL =7 ;A8CII bell char
REPIS = BO ;Outer 1dls loop repeat counter
VIDIH = 32. ;Bcreen formatting width
; Schedule message completion routine
START: NOV #NSGCPL RO ;Point to ENT arg block to
ENT 376 ;8chedule completion routine
BCC 2¢ ;Branch 1f 0K
NOVB Q#ERRBYT,R1 ;Cet error code
18: ASL | 88 ;Convert to word index
.PRINT SCHERR(R1) ;Print appropriate error message
RXIT ;Quit
; Idle processing loop vhile waiting for completion routine
2%: MOV #REPIS, 12 ;Outer idle loop counter
3%: NOV #-1,R3 ;Inner idle loop counter
18T NESSAG ;Any message pending?
BEQ 54 ;Do other processing 12 not
BNI 44 ;Msg compl rtn error?
CALL DSPNSG ;No error, display message
BL 2¢ ;Continue waiting for next
44: NOV NESSAG,R1 ;Recover error code
BL 14 ;6o print error and die
5%: 80B B3 .54 ;Inner idle loop
80B 12,3% ;0uter idle loop
.ITYOUT #BELL ;Indicate activity
BR 2% ;And repsat forever
; Display the received message
DSPNSG: NOV 13,-(8P)
.PRINT #CRLF ;Format display
NOV NSGLEN,R2 ;Get length count
NOV 12,R0 ;Agein for display
CALL PRIDEC ;Show message size
PRINT @#NSGFRN ;"byte message rec'd from job #"
NOY JOBNUN, RO ;Get sending job number
CALL PRIDEC ;Display job number
NOV #NSGADR, 11 ;Get pointer to message
ADD 11,R2 ;8ave pointer to message end
14: ROV #YIDTH, R4 ;Display-vidth counter
.PRINT #LEFT :Format display
24: NOVB (R1)+,20 ;Get next character
CNPB RO,#SPACE ;Printable?
BCE st ;Branch if so
.ITYOUT #°° ;Nark control character
DEC 1) ;8ub 1 from width
MOVB -1(11) ,R0 ;Recover character
ADD #'0,R0 ;Convert to uppercase char
3s: JITYOUT ;Display char
CNP 11,2 ;End of display?
BHIS 44 ;Branch if so
80B R4,2¢ ;Continue unless need to wrap
.PRINT SRIGHT ;Format display
BR 14 ;Next line
as: L.PRINT #RIGHT ;Format display
CLR MESSAG ;Bay we are done with this one
NOY (8P)+,13

RETURN

6.5. SCHEDULING A MESSAGE COMPLETION ROUTINE

; Completion routine to be entered vhen message recoived

NESSAG ;Done with last message?

14 ;Branch (and lose this one) if not
R0,NSGLEN ;Save message length

Ri,JOBNUN ;8ave sending job number

#1 ,MESSAG ;Flag message received

#NSGCPL,RO ;Point to ENT arg block to

aze ;Reschedule myself

24 ;Branch if 0K

Q#ERRBYT ,NESSAG ;Else save eorror codoe
#100000 ,NESSAG ;And flag it as error

; ENT arg blocks and werd buffers

CPLRIN: TST
BNE
NoV
NOY
NOV
14: NOY
ENT
BCC
NOVB
BIS
2%: RETURN
NSGCPL: .BYTE
.WORD
.WORD
.WORD
.WORD
JOBNUM: .¥ORD
NSGLEN: .WORD
MNESSAG: .¥WORD
SCHERR: .WORD
.¥ORD
.¥WORD
.¥ORD
.¥ORD
.WORD
; Messages and
.NLIST
CHANAN: .ASCII
NOPRIV: .ASCIZ
NOFREE: .ASCIZ
UNUSED: .ASCIZ
TOOLNG: .ASCIZ
NOMRB: .ASCIZ
MNSGFRN: .ASCII
CRLF: .BYIE
LEFT: .A8CII
RIGHT: .ASCII
MSGADR: .BLKB
MSGEND :
.LIST
.EVEN
.END

1,106 ;ENT arg block - msg compl rtn
CHANAN iPointer to channel name

NSGADR ;Address of message buffer
NSGEND-NSGADR ;8ize of message buffer

CPLRTN ;Address of completion routine

0 ;Cell for # of message sender

0 ;Cell for received message length
0 ;Cell for meg rcvd signal

NOPRIV ;Nsg compl rtn sched error table
NOFREE + 1 No free message channels
UNUSED i 2 Nax messages already queued
UNUSED ; 3 No message queued on channel
TOOLNG ; 4 Nessage overfloved buffer
NOMRB ; 5 Max messages requests pending
byte buffers

BEX

/CHANEL/ ;Name of watched message channel

/No privilege or no message support./

/A1l message channels are busy./

/NSGCPL should never generate this error./
/Nessage was longer than message buffer./
/Kaximum number of message requests pending./
/ byte message received from job number /<200>
16,12,200

<16><12>/~-/<76><200>

<74>/--/<200>

200, ;Message buffer

BEX

START

99

100 CHAPTER 6. MESSAGE COMMUNICATIONS FACILITIES

Chapter 7

Programming for CL and Special
Device Handlers

Several device handlers are uniquely integrated into the TSX-Plus environment. The communication line
handler (CL), the logical subset disk handler (LD), the terminal line handler (TT), and the single line
editor (SL) are provided as integrated system features and do not require device declarations (DEVDEF).
The professional interface handler (PI) is provided with PRO/TSX-Plus and when used is defined as a
shared run-time system and not as a device handler. The TSX-Plus virtual memory handler (VM) utilizes
knowledge of the TSX-Plus environment to determine the usable memory space available. VM is the only
special TSX-Plus device handler which requires a device declaration (DEVDEF) in order to be used.

7.1 Communication line handler (CL)

The CL handler allows Input/Output operations to be performed to serial communication lines connected
to any type of interface controller which may be used for terminal lines. With the CL handler it is possible
to have some lines on a multiplexer used as TSX-Plus time-sharing lines, and other lines on the same
multxplexer used to drive I/0 devices such as printers, plotters, and modems. It is also possible to use a line
as & time-sharing line some of the time and as a communications line at other times. Some of the important
features of the CL handler are summarized below:

o Up so ii&’?communication lines may be controlled through the CL handler. The first 8 CL units are
' “named CLO through CL7, the second set of 8 units are named C10 through C17. The lines may be

connected to any type of communication controller that is supported by TSX-Plus and may share the
same multiplexer controllers as TSX-Plus time-sharing lines.

e Lines may be dedicated as communication lines or may be switched between time-sharing lines and
communication lines.

e Internal queueing is used within the handler to allow concurrent input/output operations to be per-
formed on all of the lines.

* The CL handler allows both input (read) and output (write) operations. Full duplex (simultaneous)
read and write operations may take place on each line.

e The communication lines may be used with the TSX-Plus spooling system to allow spooled output to
devices on communication lines.

o The CL handler resporids to XON/XOFF (CTRL-Q/ CTRL-S) control characters to stop and start its

transmission and will generate XON/XOFF characters to control the speed of a device transmitting
to a CL line.

101

102 CHAPTER 7. PROGRAMMING FOR CL AND SPECIAL DEVICE HANDLERS

A binary mode is available for CL lines to allow full 8-bit, transparent I/O to devices.

Modem control is supported. Ring and carrier detect signals may be monitored and data terminal
ready (DTR) can be controlled by a program or SET command.

The CL handler is implemented as a system virtual overlay, minimizing the amount of code and data
that is required in the unmapped portion of the system.

e The CL handler can be used as a replacement for the LS, XL, and XC handlers (the XL and XC
handlers are used with the RT-11 VT'COM program).

e A terminal can be cross connected to a CL line by use of the SET HOST command so that characters
typed at the terminal are sent directly out the CL line and characters received on the CL line are
displayed at the terminal.

Once a system has been generated with communication lines, the lines may be accessed as normal devices
using the names CLO, CL1, C10, C17, etc. If the CL handler is used to drive the system printer, it is
convenient to use an assign command to assign the logical name LP to the corresponding CL device.

The device name CL is functionally equivalent to CLO. C1 is equivalent to C10. Attempts to use a CL unit
which is not currently associated with a line will return an error status just as if the CL device was not
recognized by the system.

CL units specified using the CLDEF macro in TSGEN are initially connected to dedicated CL lines. Note
that although these lines are dedicated for use by CL, the CL units which are initially assigned to these lines
may be reassigned to other lines. The unallocated CL units declared by use of the CLXTRA parameter in
TSGEN are initially not associated with any line. The SET CLn LINE=n and SET HOST/PORT=CLn
keyboard command or the system service call (EMT) can be used to assign any CL unit to any free time-
sharing line or free dedicated CL line. Thus it is possible to use a line as a TSX-Plus time-sharing line
during certain portions of the day and then assign a CL unit to the line and use it to drive a modem or other
device at other times. Dedicated CL lines use less memory space than time-sharing lines but may only be
accessed as CL units. See the TSX-Plus Reference Manual for a full description of the SET CL and SET
HOST command. TERMINAL privilege is required to use these SET commands.

Subsequent sections in this manual discuss special programming techniques for CL units.

7.1.1 VTCOM/TRANSF support and CL handler

The RT-11 VTCOM/TRANSF file transfer programs may be used to communicate and transfer files between
RT-11 and/or TSX-Plus systems.

When VTCOM is used to communicate with another system, the system where the user is located and
running VTCOM is known as the local system whereas the remote system to which communication is taking

place is known as the host system. TSX-Plus may be used either as the local system, the host system, or
both.

The user at the local system runs the VTCOM program to initiate communication with the host system.
The VI'COM program uses the CL handler to connect to a communications line. The CL handler must be

associated with a serial port of any type which is valid for terminal lines that is connected either directly or
through a modem to the host system.

When TSX-Plus is used as the local system, the IOABT sysgen parameter must be set to 1 to enable handler
abort entry code.

If the CL handler is used with the VI'COM program, it is necessary to assign the logical name XL (or XC
if on the Professional) to the CL (or C1) unit controlling the communications line. It is also a good idea
to allocate the device so that conflicts with other users will not occur. The NOLFOUT option should be

specified for a CL line used with VITCOM. For example, the following commands would be appropriate to
direct VTCOM to use line CLO:

7.1. COMMUNICATION LINE HANDLER (cL) 108

SET CLO NOLFOUT
ASSIGN CLO XL (or XC)
ALLOCATE XL (or XC)

When TSX-Plus is used as the host system, the connection from the local system may be made through any
TSX-Plus time-sharing line on the host system. When used for file transfers between a TSX-Plus system
and a VMS system, VMS must be the host system (there is currently only a TRANSF program for VMS,
but no VTCOM).

7.1.2 Terminal/Communication line cross connection

It is possible to cross connect a time-sharing line with a CL (communication line) unit in such a fashion that
all characters received from the time-sharing line are transmitted directly to the CL unit and all characters
received from the CL unit are transmitted directly to the time-sharing line. This is useful to allow a time-
sharing line on one TSX~Plus system to be used as a terminal on another system connected through a CL
unit,

This function is similar to using VICOM to communicate through a CL line but has the advantage that
there is much less overhead. The cross connection is made at a low level within TSX-Plus and characters
do not have to be passed to a running application program. Of course the internal cross-connection feature
does not provide the file transfer capabilities of VTCOM. Other disadvantages are that a cross-connected
line cannot be switched to a sub-process and Process Windowing is temporarily disabled.

The keyboard command used to establish a cross connection has the form:
SET HOST/PORT=ddn

where ddn is the name of a CL or C1 device to which your terminal is to be cross connected. For example,
the following commands would connect CL unit 1 with terminal line 4 at 9600 baud and then cross connect
the current terminal with the CL unit:

S8ET CL1 LINE=4,SPEED=9600
S8ET HOST/PORT=CL1

TERMINAL privilege is required to use the SET HOST command. Once the cross connection is established,
characters typed at your terminal are transmitted to the CL line.

See the TSX-Plus User’s Reference Manual for more information on the SET HOST command and cross-
connections.

7.1.3 Redirecting CL and time-sharing lines

A system service call (EMT) is available to allow a program to assign a CL unit to a particular line. This
EMT is equivalent to the SET CLn LINE=n command. The form of the EMT is:

ENT 376
with RO pointing to an argument block of the following form:

.BYTE 0,155
.WORD cl-unit
.WORD line-number

where ¢l-unit is the CL unit number, and line-number is the number of a TSX-Plus time-sharing line or
dedicated CL line. If the specified line number is 0 (zero), the CL unit is disassociated from any line.
TERMINAL privilege is required to use this EMT.

If an error is detected, the C-flag is set on return and the following error codes are returned:

104 CHAPTER 7. PROGRAMMING FOR CL AND SPECIAL DEVICE HANDLERS

Code | Meaning

User issuing the EMT does not have TERMINAL privilege
An invalid CL unit number was specified

An invalid line number was specified

The specified line is already assigned to a CL unit

A time-sharing user is logged onto the specified line

The specified CL unit is currently busy

D Ut B N

The following example commands illustrate how CL unit 1 can be assigned to time-sharing line 2. The
logical name LP is then assigned to CL1 so that the PRINT command will direct output through CL1. CL1
can be declared to be a spooled device in TSGEN:

SBET CL1 LINE=2
ASSIGN CLi LP

The SHOW CL and SHOW TERMINALS keyboard commands can be used to display information about
which CL units are associated with which lines. The SHOW CL command also indicates if a CL unit is
spooled and lists the options which are set for the unit. See the TSX~-Plus Reference Manual for information
concerning the SHOW command.

7.1.4 CL I/O operations

The .READ/.READC/ READW and .WRITE/.WRITC/.WRITW EMTs may be used to perform standard
read/write operations to the CL lines. The CL handler allows full duplex input/output operation, which
means that read and write operations may be simultaneously active on a CL line.

When a .READ|(C/W) EMT is used to read from a CL line, the operation is complete when the requested
number of words have been accepted or a CTRL-Z character is received.

The input character silo is used to store characters received from the line. This buffer prevents characters
from being lost during the interval when one read EMT is completed and another is issued to the CL handler.

The CL handler responds to received XON (CTRL-Q) and XOFF (CTRL-S) characters, starting and
suspending transmission to synchronize its character flow with the device connected to the line.

7.1.5 CL control character processing

Processing of certain control characters through CL units depends on the individual character, the settings
of the CL unit, and the particular operation in progress.

The following table illustrates the handling of special input characters to a CL unit. Control characters not
listed are treated as normal characters on input.

Char Octal Value | Input Handling

NUL 0 Discarded unless in binary input mode (BININ).

LF 12 Discarded unless in LFIN mode (always input by .SPFUN 208).

CR 15 Always input. Also terminates read for .SPFUN 260.

XON 21 Re-enables transmission to CL unit, except in BININ mode when
it is input as a normal character.

XOFF 23 Halts transmission to CL unit, except in BININ mode when it is
input as a normal character.

i/ 32 Sets end of file flag and terminates read (except for .SPFUN 208
by which “Z is treated as a normal character).

7.1. COMMUNICATION LINE HANDLER (CL) 105

The following table illustrates the handling of special output characters to a CL unit. In NOCTRL mode
control characters not listed are not sent. In BINOUT mode, all special control character output processing
is bypassed. In addition, in BINOUT mode automatic XOFF transmission when the input silo becomes full
ia disabled.

Char | Octal Value | Output Handling
NUL 0 Never sent except in BINOUT mode.

TAB 11 Expanded to spaces in NOTAB mode. In TAB mode and width
not set to 0, TAB is discarded if it would exceed the set width, just
as normal characters are.

LF 12 Discarded in NOLFOUT mode if preceding character was a carriage
return.

FF 14 In NOFORM mode, FF is expanded to enough line feeds to advance
to the top of the next page.

CR 15 Discarded in NOCR mode.

7.1.6 CL .SPFUN operations

The following special function codes (.SPFUN EMTs) are recognized by the CL handler. The special
functions apply to the specific CL unit to which the channel was opened.

Code | Function
201 | Clear XOFF status
202 | Control break transmission
208 | Read with byte count
204 | Get handler status
205 | Terminate I/O
206 | Raise or drop DTR signal
250 | Set option flags
251 | Clear option flags
252 | Set page length
253 | Set skip lines
254 | Set page width
255 | Get modem status
256 | Set line speed
257 | Abort pending I/O
260 | Read a line of input
261 | Get number of input characters pending
262 | Get number of output characters pending
263 | Write with byte count
264 | Set ENDPAGE and ENDSTRING parameters
265 | Reset CL unit
266 | Get current characteristics of a CL unit

Function 201 Clear handler

This function clears the internal handler flag that says an XOFF (CTRL-S) character has been received
and transmits an XON (CTRL-Q) to the CL device.

Function 202 Control break transmission
This function starts or stops the transmission of a break signal. The word count specified with the
-SPFUN controls whether transmission of a break signal is started or stopped. If the word count is
non-zero, break transmission is started; break transmission continues until another .SPFUN is done
with function code 202 and a word count of zero.

106 CHAPTER 7. PROGRAMMING FOR CL AND SPECIAL DEVICE HANDLERS

Function 203 Read with byte count
This function performs a read operation but the word count value specifies a byte count instead. This
function does not complete until at least one byte is read. However, if a byte count greater than one
is specified, bytes are moved from the input silo buffer until either the specified byte count is satisfied
or the input silo buffer is emptied. If fewer than the requested number of bytes are available, the
remainder of the buffer is filled with nulls. The CTRL-Z character does not signal end of file for this
type of read—CTRL-Z is read as an ordinary character.

Function 204 Get handler status
A status code is stored into the first word of the buffer specified with this function. The meaning of
the flag bits is as specified below:

If Then

Bit 0=1 | XOFF has been sent to stop transmission

Bit 1=1 | XOFF has been received from the remote device
Bit 2=1 | Carrier has been detected (same as bit 3)

(This bit does not indicate CTS status)

Bit $=1 | Carrier has been detected (same as bit 2)

Bit 4=1 | Ring signal is present

Function 205 Terminate I/O to the line
This function turns off a communication line. The input silo buffer is emptied (its contents are
discarded) and a flag is set causing any other characters received from the line to be discarded. Data
Terminal Ready (DTR) status is dropped. The line will be turned on again whenever another I/O
operation is performed to it.

Function 206 Raise or drop DTR signal
This function can be used to raise or drop the Data Terminal Ready (DTR) signal for a line connected
to a CL unit. If the word count value specified with the .SPFUN EMT is non-zero, the DTR signal is
raised; if the word count value is O (zero) the DTR signal is dropped.

Functions 250 and 251 Control option flags
These special functions are used to set and clear handler option flags. Function 250 sets the specified
flag bits (via a BIS instruction), function 251 clears the specified flag bits (via a BIC instruction). The
flag bits which are set (1) correspond to handler SET options. If the option flag is cleared (0), this
corresponds to the NOoption setting. The bit positions of the options are shown in the following table.
The option flags are contained in a one word buffer for the .SPFUN. For a detailed description of the
SET commands, see the TSX-Plus Reference Manual.

Bit Mask | Option Function summary
0 | 000001 | FORM Send form feed characters
1 | 000002 | TAB Send tab characters
2 { 000004 | LC Send lower case characters
3 | 000010 | LFOUT Send line feed characters
4 | 000020 | LFIN Accept line feed characters
5 | 000040 | FORMO Send form feed on block O write
6 | 000100 | BINOUT Send binary output characters
7 | 000200 | BININ Accept binary input characters
8 | 000400 | CR Send carriage return characters
9 | 001000 | CTRL Send control characters
10 | 002000 | DTR Raise Data Terminal Ready (DTR)
11 | 004000 | EIGHTBIT | Accept and send 8 bit characters

Function 2562 Set page length

This function performs the operation of the SET CL LENGTH=n command. The .SPFUN must have
a one word buffer containing the number of lines per page.

7.1. COMMUNICATION LINE HANDLER (cL) 107

Function 253 Set skip lines
This function performs the operation of the SET CL SKIP=n command. The .SPFUN must have a
one word buffer containing the number of lines to skip at the bottom of the page.

Function 264 Set page width
This function performs the operation of the SET CL WIDTH=n command. The .SPFUN must have
a one word buffer containing the line width. .

Function 2566 Get modem status
This function is used to check on the status of a modem connected to a CL line. The modem status
is returned into the first word of the buffer specified with the .SPFUN. The flag bits returned are
described below:

Bit | Meaning when set

Ring indication

Carrier is detected

Data Terminal Ready is asserted

N = O

Function 256 Set line speed, character length and parity control
This function is used to set the transmit /receive speed for a CL line. This -SPFUN requires a one
word buffer containing a value which has the following form (in binary):

OPLx8SS8

The low-order 4 bits (88SS) specify the speed. The following baud rates are represented by the
indicated speed codes (speed code values are shown in decimal): 50=0, 75=1, 110=2, 134.5=38, 150=4,
300=5, 600=6, 1200=7, 1800=8, 2000=9, 2400=10, 3600=11, 4800=12, 7200=13, 9600=14, 19200=15.
Bit 5 (“L”) specifies the character length. If this bit is 0, the character length is 8 bits; if this bit is 1,
the character length is 7 bits. Bit 6 (“P”) specifies parity control selection. If this bit is 0, parity is
disabled and bit 7 is ignored; if this bit is 1, parity generation and checking is enabled. Bit 7 (“0”)

Function 257 Abort pending I/0
Abort all pending read and write operations issued by the job executing the .SPFUN on the CL unit.

Function 260 Read a line of input

® A carriage return character is received. The carriage return is stored in the buffer and the
remainder of the buffer is null filled.

e The buffer is filled before a carriage return is received.

¢ A CTRL-Z is received.

Function 261 Determine number of input characters pending
One word is returned into the user buffer, containing the number of characters available to be read
from the CL unit associated with the specified channel. This function can be used to test for pending
input prior to issuing a read (.READx or .SPFUN) on the channel. If no characters are pending,

108 CHAPTER 7. PROGRAMMING FOR CL AND SPECIAL DEVICE HANDLERS

Function 262 Determine the number of output characters pending
One word is returned into the user buffer, containing the number of characters in the output buffer
which have not yet been transmitted.

Function 263 Write with byte count
This special function is used to write a block of characters to a CL line with the number of characters
specified by a byte count rather than the word count used with the .WRITE EMT. This is useful in
situations where an odd number of bytes must be written and null characters cannot be used to pad
out the last word. The .SPFUN follows the standard form except a byte count is specified for the fifth
parameter (which is normally used to specify a word count).

Function 264 Set ENDPAGE and ENDSTRING parameters
This special function is used to specify the number of form-feed characters (ENDPAGE) and a seven
character string (ENDSTRING) which will be appended to the end of each output file. The buffer
address must point to a word aligned storage area of which the first word contains the number of
form-feed characters. The second and subsequent words contain the string in ASCIZ form to append
to the end; any characters beyond the first seven are ignored.

Function 265 Reset CL unit status
This special function resets the status of a CL unit by performing the following operations:
1. Empty the input silo of received characters.
Empty the output ring buffer of transmitted characters.
. Stop sending a break if one is currently being sent.
Clear XOFF (CTRL-S) received flag.
. Send an XON if we have previously sent an XOFF.
6. Clear end-of-file status and reset line and column numbers.
Function 266 Get CL characteristics

This special function returns current information about the CL unit. The buffer address must start
on an even boundary and must be at least 12 words long. The values returned are:

Offset | Contents

0 Handler status word (same as for .SPFUN code 204)

2 CL options flags (same as for .SPFUN codes 250 and251)
4 Internal status word (see bit description below)

6 Page length
10 Number of skip lines
12 Page width
14 | CL unit number (C1 units are 10-17 octal) (low byte)
15 | Line number in use as CL unit (high byte)

16 Number of end of file form feeds

20-27 | ASCIZ string to send at end of file (can be up to 7 bytes plus one
null)

The following bits are defined in the internal status word:

Mask | Meaning
10 | Carriage return was the last character transmitted
40 | Next read will receive end of file
200 | Break being transmitted
4000 | DTR has been asserted (explicitly by SET CLn DTR or setting
the option flag, or implicitly by a READ or WRITE request)

7.1. COMMUNICATION LINE HANDLER (CL) 109

Cther bits are undefined and may vary.

Example

The following example program demonstrates use of some CL programming techniques which might
be used to simulate a virtual terminal through a CL line.

.TITLE CLCOMN

; "Simple™ CL communications program

.DSABL GBL

.GLOBL PRTR60,PRIDEC

.NCALL .LOOKUP,.SPFUN,.CLOSE
.NCALL .TIYOUT, .PRINT

.NCALL .HERR,.SERR,.EXIT

TIVSE =1 ;Line number to attach CL unit to

CMDCHR = 20 ;ctrl-P ;Exit command character
JSsY = 44 ;Job Status Yord address
TISPC$ = 10000 ;Terminal special mode bit (BINGLE)
ITLCS = 40000 ;Enable lower case input bit
ERRBYT = 52 ;ENT error byte addrese
CLRBYT = 203 +BPFUN code to read CL with byte count
CLOFF = 206 ;8BPFUN code to turn CL unit off
CLCOP = 251 +SPFUN code to clear CL flags
CLIPND = 261 ;SPFUN code to get # chars pending CL input
CL¥BYT = 263 ;BPFUN code to write CL with byte count
CLRST = 2066 ;SPFUN code to reset CL unit
H
CLCHAN =0 ;10 channel to use to access CLn

; First tvo routines handle their own fatal errors
ETART: CALL TISET ;8et up terminal characteristics
CALL CLGET ;Get and initialize CL line
; From here on, errors are handled by main lins code
CALL ITINPC ;Queue terminal input completion routine

BCC 1s ;Continue it 0K
.PRINT #BADQUE ;Else say what's wrong
BR (1} ;And abort
; Btart maim loop -------------cc-eseccrcrerecmmroccme e ————
14: 18T DONE ;Did terminal give exit command char?
BNE (1) ;Exit on command
CALL CLIO ;Service any pending CL input or output
BCC 14 ;Continue if no error
» End main loop ---~--<-----=---- -—- -
0s: CALL CLFREE ;Clear out CL line and close unit
PRINT #OFF
.BXIT
.NLIST BEX
OFF: .ABCIZ /<Bxit>/
BADQUR: .ASCIZ /Error queueing terminal input routine/<7>
.EVEX
.LIST BEX

.BBTIL TISET -- Bet terminal single, lc

TISET: .SERR ;Inhibit monitor ENT error handling
NOY #8INGLE,R0 ;Point to ENT arg block to
ENT 376 ;8et single character activation

BC8 74 ;Abort on ENT error

110 CHAPTER 7. PROGRAMMING FOR CL AND SPECIAL DEVICE HANDLERS

.HERR ;Return error control to monitor
BIS #<TTILCHITTSPC$>,@4J8¢ ;Enable single/lc
RETURN

T¢: .HERR ;Return error control to moniter
PRINT #NOTISX ;ENT error, may be RT-11
EXIT
.NLIST BEX

SINGLE: .BYIE 0,162 +EMT arg block to enable
.¥ORD ‘'S i8ingle character input
.YORD 0 ;Unused

NOTISX: .ASCIZ /Invalild ENT error - cannot continue/<7>
.EVEN
.LIST BEX

.BBTIL CLGET -- find and initialize CL line

CLGET: CALL ALCCL ;Iry to allocate a CL unit

BCC 2% ;Continue if we own a CL unit
.PRINT #CNTALC ;Bay we cannot get a CL unit
EXIT ;And abort

2¢: CALL ATICL ;Try to attach CL unit to line
BCC 3 ;Continue if 0K

.PRINT 3#NOCLS ;Say can’t connect
CALL ABORT1 ;Release allocation
EXIT ;And abort

3: CALL CLINI ;Try to initialize the CL line
;Handles its own errors

.PRINT #CONECT ;Connecting

NOY CLDEV,10 ;Get CL unit

CALL PRIRE0 ;and display it
PRINT #TOLINE ;to line number
MOV LINNUM ,RO ;Get line number
CALL PRTDEC ;and display it
PRINT #CRLF

RETURN

.NLIST BEX
CNTALC: .ASCIZ /Unable to allocate any CL unit/<7>
CONECT: .ABCII /Connecting /<200>
TOLINE: .ASCII / to line number /<200>
CRLF: .A8CIZ //
NOCL8: .ABCIZ /Unable to attach CL unit to a line/<7>

.LIST BEX

-

.SBITL ALCCL -- allocate a CL unit

ALCCL: NOV #ALCENT,RO0 ;Point to ENT arg block to
ENT 376 iAllocate a CL unit
NOV 10,CLOYN ;Remember who owns the CL unit
BCC 1 ;Normal return if allocation 0K

NOVB Q#ERRBYT 20 ;See which error occurred
CNPR 10,#1 ;Already allocated to another job?

BEQ 1 ;Iry next 1f so

CNPB 20,84 ;In use by another job?

BNE 1) ;12 any other error, return with error
14: NOV CLDEV,R0 ;Get current CL unit name

CALL PRIR60 ;And display it
PRINT #XILDBY

7.1. COMMUNICATION LINE HANDLER (CL)

NOv
CALL
.PRINT
INC
INC
BR

B$: SEC
0 RETURN

ALCENT: .BYTE

CLOWN: .¥WORD
ATLDBY: .ASCIX

ATICL: NOV

GETICL: .BYIE
CLUNIT: .¥ORD
LINNUN: .¥ORD

CLINI: .LODKUP
BCC
PRINT
CALL
.BXIT

18: .8PFUN
BCS
.SPFUN
BCC

28: .PRINT
CALL
JEXIT

o%: RETURN
.NLIST
CLDEV: .RAD6O
CLNFLG: .WORD
BADLKP: .ASCIZ
CLIDER: .ASCII
.BVEN
.LIST

.SBITL

CLOWN,R0 ;Cet job number of line using CL
PRTDEC ;And display it

#CRLF

CLDEY ;Iry next unit number

CLUNIT ;and remember which one

ALCCL ;And try to allocate it

;8et return error 1lag

BEX

0,166 ;ENT arg block to
CLDEV ;Allocate a CL unit

0 ;0wner of the CL unit
/ in use by job /<200>

BEX

ATICL -- attach CL unit to a TT line

#GETCL,R0 ;Point to ENT arg block to
376 ;Attach a CL unit to a T8 line

BEX

0,166 iEMT arg block to connect CL to a line
0 ;CL unit number

TTUSE +IT line number

BEX

CLINI -- open CL unit and init it

#AREA, #CLCHAN, #CLDEV ;Try to open CL channel
1 ;Continue if 0K
#BADLKP
ABORT2 ;Dissociate and deallocate
;And abort

#AREA, #CLCHAN, #CLLST, #CLOBUF,#0,#0 ;Flush CL

24 ;Abort on error

#AREA, #CLCHAN, #CLCOP, #CLNFLG,#0,#0 ;Clear 1lags
[1] ;Continue 1if 0OX

#CLIDER

CLFREE ;Purge channel, dissociate and desllocate

BEX

/CLOFILNANDAT/ ;CL device and dummy file spec
10 sno (LFOUT)

/Error opening CL unit/<7>

"CL I/0 error"<7>

BEX

CLFREE -- close and deallocate CL unit

i Flush the channel and ignore further input from it

CLFYREE: ,SPFUN
.CLOSE

#AREA , #CLCHAN, #CLOF¥ , #CLOBUF, #1 , #1 ;Turn off CL
#CLCHAN ;Clear channel

i Release the terminal from the CL line

ABORT2: CLR
NOV
ENT

LINNUN ;Clear terminal assignment
#GETCL,R0 ;Point to ENT arg block to
376 iDissociate CL unit from line

111

112 CHAPTER 7. PROGRAMMING FOR CL AND SPECIAL DEVICE HANDLERS

; Deallocate the CL unit
ABORT1: MOVB #1 ,ALCENT ;Change allocate to DEallocate

NOV #ALCENT,RO ;Point to ENT arg block to
ENT 376 ;:Deallocate the device
RETURN

_SBTTL ITINP -- accept and handle terminal input

TTINP: CNP RO,#CNDCHR ;Is it the exit command char?

BNE 14 ;Continue 1f not

INC DONB ;Say we should quit

RETURN :And exit without requeueing
14: NOVB 20,0TTIPTR ;Save char to send to CL

INC TTIPIR ;And point to next position

CNP TIIPIR,#CLOBND ;Time to wrap?

BLO 24 ;Br if not

NOY #CLOBU?,TTIPTR ;¥rap to beginning of buffer
2¢: .TTYOUT ;Display on TT (we must echo)
TTINPC: NOV #QITINC,R0 ;Point to ENT arg block to

ENT 376 ;Requeue terminal inp comp routine

RETURN

.NLIST BEX
DONE: .WORD O ;Exit flag (not 0 --> exit)
QITINC: .BYIE 1,133 ;ENT arg block to queue TI

JMORD TTINP ; input completion routine

.LIST BEX

_SBITL CLID -- read and write pending CL I/0

’

; Transmit terminal input out through CL line

CLIO: CNP TTOPIR,ITIPTR ;Ie there any new char to send?
BEQ 14 sBr if not
_EPFUN #AREA,#CLCHAN,#CLVBYT,TTOPTR, #1,#1 ;Write 1 byte
BCS 11 {Return with error?
INC TTOPTL ;Point to next output char position
CNP TTOPIR,#CLOBND ;Time to wrap to beginning?
BLO 18 ;Br if not
NOV #CLOBUF,TTOPTR ;¥rap to beginning of buffer

; See 1f any characters are coming in from the CL line

14: _BPFUN #AREA,#CLCHAN,#CLIPND,#CLSBUF,#1,#1 ;Check for input
BCS 1) ;Error returnt
NOY CLSBUF,23 ;Get number of characters to read
CLC ;:Nake sure error flag is off
BEQ 1] ;Return if no CL input pending (CLSBUF=0)
.SPFUN #AREA,#CLCHAN,#CLRBYT ,#CLIBUF,R3,#1 ;Read what is pending
BCS ot ;Brror return?
NOV R3,TI0CNT ;Set number of characters to display
NOV #TT0BLK,R0 ;Point to ENT arg block to
ENT 376 ;Display 13 chars on the terminal

9%: RETURN
.NLIST BEX

AREAR: .BLEKY 10 ;General purposs ENT arg block

TTOBLK: .BYTE 0,114 ;ENT arg block to send # of chars to IT
.YORD CLIBUF ;:Point to chars received from CL

TIOCNT: .WORD O ;Count of chars to be displayed
CLSBUF: .WORD O ;1 word CL status buffer
CLIBUF: .BLKY 128. ;Can hold up to 2656 characters
CLOBUF: .BLEV 40. ;CL output ring buffer

CLOBND = . ;First location pest CLOBUF

TTIPTR: .¥ORD CLOBUF ;Index into buffer for next input char
TIOPTR: .WORD CLOBUF ;Index into buffer for next output char
.LIST BEX

.END START

7.2. RK06/RK07 HANDLER (DM) 113

7.2 RKO06/RKO07 handler (DM)

The DM device handler .SPFUN function codes 876 and 377 attempt to return a status code into the first
word of a user buffer which is one word longer than the actual transfer size. This is incompatible with
system I/O mapping. It appears that the only system utility program which issues these functions is DUP
(SQUEEZE and INITIALIZE commands). If it is necessary to use the MAPIO option with the DM device
handler, it is recommended that both INITIALIZE and SQUEEZE commands for DM units be issued only
under RT-11.

The DM handler supports 22-bit (as well as 18-bit) Q-Bus I/0 with the DILOG DQ215 and the Emulex
SCO02C controllers.

7.3 DU (TMSCP) handler

The BYPASS special function (371) is not supported with the DU (MSCP) device handler on extended
Unibus hardware.

7.4 IEEE GPIB handler (IB)

The normal IB supplied subroutines attempt to open the IB device on decimal channel numbers 16, 17, 18,
and 19. TSX-Plus normally allocates 20 (decimal) channels and allows these IB subroutines to execute with-
out changes. Non-standard configurations where multiple devices may be used and more than 20 (decimal)
channels are required are not supported.

A change is also necessary to the IB device handler to alter the mapping register used from PAR1 to PARS.
See the section concerning device handlers use of PARs discussed in the chapter on Device Handlers in the
TSX-Plus System Manager’s Guide. See the Patching and Building TSX-Plus Device Handlers chapter in

the TSX-Plus Installation Guide for information on how to build an IB handler which will function with
TSX-Plus.

The IB subroutine IBSRQ is implemented in the DEC IB handler as a subroutine call from the handler
directly to the user code region. Since TSX~-Plus does not load any user job in the same map region as the
operating system, the call will execute part of the operating system, usually resulting in a fatal system error
or halt. Therefore, the IBSRQ call is unsupported in TSX-Plus.

7.5 Logical subest disk handler (LD)

The LD device handler is implemented as an overlay in TSX-Plus and does not use the RT-11 LD handler.
However, its implementation is compatible with logical subset disks from RT-11s0 that LDs created, mounted
and used under either operating system may also be accessed under the other, using the same commands.

The TSX-Plus LD pseudo-handler accepts two special function codes: 872 to read the LD translation tables,
and 3738 to return the device size. A request to return the device size returns the size of the file which is
mounted as the LD unit to which the channel is open on which the .SPFUN was issued. Unlike RT-11, a
channel must be open to a valid LD unit in order to read the LD translation tables. That is, some unit must
be mounted and accessible and a channel opened to such an LD unit by a successful .LOOKUP (usually
non-file structured). The translation table for all current LD units is returned, regardless of the unit to which
the .SPFUN is issued. If the unit is not currently mounted, but was previously, some of the information may
be retained from the previous mount. The information is only valid if bit 15 is set in the LD unit’s status
word. The LD translation tables are read-only, regardless of the value of the special function word-count

parameter; both reads and writes to the LD translation tables are treated as reads and will return the
translation tables into the user buffer.

114 CHAPTER 7. PROGRAMMING FOR CL AND SPECIAL DEVICE HANDLERS

The contents of the LD translation tables returned by .SPFUN code 373 differs according to the version of
RT-11 from which TSX-Plus was started. If the RT-11 version is 5.4 or later, then the table is prefaced by
two additional words and one of the status bits is redefined. If the RT—11 version is 5.8 or earlier, then the
table begins immediately with the LD unit status words and one of the status bits is redefined, otherwise
the translation tables are the same. The format of the table is as follows:

Size Use

2 bytes | RAD50 value of “LD 7 if RT-11 V5.4 or later, absent if not

1 byte | Number of LD units available (8) V5.4 or later, absent if not

1 byte Unused V5.4 or later, absent if not
8*2 bytes | Status word for each LD unit
8*2 bytes | Starting block number of each LD
8*2 bytes | Number of blocks in each LD
8*8 bytes | Device:Filename.Extension in RAD50 of each LD (device name in-
cludes unit number)

The status word for each LD unit is defined as follows:

Bits Mask | Meaning
15 | 100000 | Flag bit if LD unit is currently mounted
14 40000 | Flag bit if LD unit is read-only (RT-11 V5.4 and later)
13 20000 | Flag bit if LD unit is read-only (RT-11 V5.3 and earlier)
10-8 8400 | Unit number of device holding LD file
5-1 76 | Index of device holding LD file

Example

LTITLE LDIBL
; Example program to display LD translation tables
_NCALL .PRINT,.EXIT,.LDOKUP,.CLOSE,.SPFUN, .SERR, .HERR
.DSABL GBL
.GLOBL PRTRE0,PRTOCT

BEL =7 ;ASCI1 BELL character

NLDS =8, ;Default number of LD units
; Start by trying to find & channel to any LD unit.

; Can only read translation tables after getting

; a channel (any channel) to the handler.

START: .SERR ;Trap LOOCKUP errors
.LOOKUP #AREA,#0,#DBLK ;Is this LD unit mounted?
BCC 14 ;Branch if so
INC DBLX ;If not, try the next one
CNP DBLK,#“RLDY ;Past last possible LD yet?
BLO8 START ;Keep looking if not
.PRINT #NOLDS ;0ops, no LDs on line
BR (1] ;G0 exit

; Nov try to read and display the LD translation tables

14: .HERR ;Reenable system error trapping
.SPFUN #AREA,#$0,#372,#BUFF,#1,20 ;Get translation tables
BCC 28 ;Br 1f SPFUN 0K
.PRINT #BADSPF ;Else report error

n s ;And quit

7.5. LOGICAL SUBEST DISK HANDLER (LD)

24: CALL SHOLDS ;Display LD translation tables
8): .CLOSE #0 ;Close channel to LD unit
9%: .BXIT

LD translation table format is:

’

s IF RT-VERSION >= 5.4 ;These 2 words are absent if <RT Vb6.4
: .RADGO /LD / ;1 word of device name

H .BYIE NLDS,0 ;i byte = # LD units, 1 byte O

; END I¥

; BIATUS: .BLKY NLDS ;1 word/unit LD status

H INUSE = 100000 ;Unit is allocated mask in STAT word

H RONLY = 040000 ;Unit is read-only RT V6.4 and later

H RONLY = 020000 ;Unit is read-only RT V6.3 and earlier

H DVUNIT = 003400 ;Mask for real device unit #

H DVINDX = 000076 ;Mask for real device index ¥

; Note: The folloving words may contain residue from previous mounts.
H They are only meaningful if the INUSE flag is set in STATUS.
’
4

BTART: .BLK¥ NLDS ;1 word/unit real disk start block #
8IZE: .BLX¥ NLDS ;1 word/unit device size (blocks)
NANE: .BLKY 4sNLDS ;4 words/unit name of file mounted
HOLDS: NOV #NLDS ,R3 ;Assume 8 LD units
NOV #BUFF 11 ;Point to returned LD table
CcNP (k1) ,#°1LD ;New table format?!
BNE 14 ;Br if not
IS8T 1)+ ;Step over RADGO LD
NOV (R1)+,R3 ;Get count of LD units (low byte)
BIC #°C377,13 ;¥ill be 8. under ISX-Plus
14: .PRINT #TBLHDR ;Explain display
NOV #2,R6 ;# bytes per unit for STATUS,START,SIZE
NUL R3,R6 ;# bytes per table for STATUS,START,SIZE
NOV R1,5TATS ;8et ptr to status word vector
ADD 16,R1 ;Step ptr over status vords
NOV R1,5TRI8 ;8et ptr to starting block vector
ADD 25,R1 ;Btep ptr over starts
NOV R1,S5I1Z2E8 ;8et ptr to size vector
ADD 11,R6 ;Use RE as ptr to names
NOV #°RLDO,R1 ;Current unit name
a8: CALL SHO1LD ;Display each unit
INC } 51 ;8tep each pointer to next unit
ADD #2,8TATS
ADD #2,5TRTI8
ADD #2,5IZES
808 13,24 ;Through the entire list
RETURN
SHO1LD: MOV 11,R0 ;Display unit name
CALL PRTIREO
.PRINT #SP2
NOV 4STAIS,RO ;Display unit status
CALL PRTOCT
PRINT #5P2
MOV @STRIS,RO ;Display unit starting block #s
CALL PRTOCT
.PRINT #8P2
MOV @8IZES,R0 ;Display .DSK file sizes
CALL PRIOCT
L.PRINT #8P2
NOV (R5)+,R0 ;Display DEV:FILNAN.EXT

CALL PRTREO
.PRLINT #COLON

NOY (R6)+,R0
CALL PRIRGO
NOV (RE)+,20

CALL PRIRG0

115

116 CHAPTER 7. PROGRAMMING FOR CL AND SPECIAL DEVICE HANDLERS

.PRINT #DOT

NOV (26)+,R0

CALL PRTRE0

.PRINT #CRLF

RETURN

.NLIST BEX
AREA: .BLKY 10 iGeneral ENT arg block
DBLK: .RAD6O /LDO/ ;LD device name

.¥ORD 0,0,0
BUFF: BLKY 256. At least 2»(2+(823)+(824))
STATS: .WORD O ;Pointer to Status words
STATS: .WORD] ;Pointer to Starting blocks
SIZES: .¥WORD] ;Pointer to Bizes

NOLDS: .ASCIZ /S8orry, no LD's currently mounted./<7>
BADSPF: .ASCIZ /Oops, .SPFUN error!/<BEL>
CRLF: .ASCIZ //

8P2: LASCII /[[/<200>
COLON: .ASCII /:/<200>
DOT: LASCII /./<200>
TBLHDR: .ASCII /Unit Btatus O0Offset Size DEV:FILNAN.EXT/<15><12>
ABCIZ /=== m;meme cmcmen emcmel decddcccecaes /
.LIST BEX
.EVEN
.END BTART

Some of the information available in the LD translation tables may be obtained without opening a channel
to an LD unit by using EMT 3875, function code 4,185. This EMT returns five words of information for each
LD unit: four words of RAD50 Device:Filename.Extension and one word of status. The status word has two
bits defined: bit O (mask 1) is set if the unit is read-only; bit 1 (mask 2) is set if the unit is not currently
accessible (for example if it is mounted within an outer LD and the outer LD has been dismounted).

Other EMT’s are also available to mount and dismount LD units from within programs. See the descriptions
of EMT 375 functions 3,135 4,135 5,135 and 168 in Chapter 4.

7.6 MU (TMSCP) handler

The MU handler is not supported on extended Unibus hardware. The BYPASS special function (371) is not
supported for use with the MU handler.

7.7 Virtual memory handler (VM)

The virtual memory handler (VM) allows memory which is not allocated for use by the operating system to
be used as a RAM based pseudo-disk device. VM may not be used to contain either the swap or spool system
files due to the nature of system completion routine nesting. When VM is used as a spool or swap device,
unpredictable operation may occur resulting in fatal system errors and system halts. VM is implemented
as a device handler (VM.TSX) and not as a system overlay (like LD and CL). VM.TSX is not derived from
the RT-11 VM handler (there is no VM.SLP). As a device handler, it requires an entry in the device tables
and must be included with a DEVDEF macro during system generation.

The VM handler uses the memory space above the top of memory used by TSX-Plus. TSX-Plus can be
limited to using less than all installed memory by specifying the TSGEN MEMSIZ parameter. See the T'SX-
Plus Installation Guide for details on the MEMSIZ setting. Since a memory access is quite a bit faster than
a disk access, VM can be use for greater speed in locating and reading files which are frequently accessed.

Since most machines will lose the contents of memory during a power outage, VM should be restricted to
read-only, scratch, or executable files. It may be used to speed the execution of heavily overlaid programs
or store temporary intermediate sort or work files.

7.7. VIRTUAL MEMORY HANDLER (VM) 117

After TSX-Plus is started, VM must be initialized before it can be used (except see using with RT-11
VM below). Since VM is implemented as a block structured device, and each block contains 512 bytes,
the number of blocks available to VM will be two times the number of kilobytes allocated. The directory
does require some storage and therefore the number of blocks reported after initialization will be slightly
smaller than this total. For instance, in a system which contains 512 Kb total physical memory and with
MEMSIZ=256., VM will have 256 Kb available. After initialization, a directory of VM will then show slightly
less than 512 blocks.

VM will normally calculate the correct base address to use to be just above the last address used by TSX-
Plus. You may increase this base address. The format of the SET command used to adjust the base address
used by VM is:

SET VN BASE=nnnnnn

where nnnnnn represents bits 6 through 22 of the base memory address (in octal) which VM is allowed to
use. However, if you specify a base address below the top address of TSX-Plus, VM will dynamically adjust
this base address back above the top of TSX-Plus. For example, if you wish to set the base address of M
to start after the first 512 Kb, then nnnnnn should be 20000 since the memory address is 2000000 (octal).
Any time a new base address is defined, VM should be initialized.

VM will normally calculate the correct top address to use to be at the absolute top of physical memory. You
may decrease this top address. The format of the SET command used to adjust the top address used by
VM is:

SET VN TOP=nnnnnn

where nnnnnn represents bits 8 through 22 of the top memory address (in octal) which VM is allowed to
use. For example, if you wish to set the top address of VM to end at 1280 Kb, then nnnnnn should be
50000 since the memory address is 5000000 (octal). Any time a new top address is defined, VM should be
initialized.

You may also use the same memory region which was defined as VM under RT-11. In order to do so, you
must make sure that the MEMSIZ parameter restricts TSX-Plus to use of memory below the existing RT-11
VM base or else it will be corrupted during the TSX-Plus initialization phase. You must also be careful
to SET VM BASE and TOP to match the settings used under RT-11. If you match the TSX-Plus VM to

overlay an existing RT-11 VM, then the contents will be intact and data stored there while running RT-11
will be available after starting TSX-Plus.

VM accepts two special functions: 372 to return two words of VM status information; and 378 to return the
device size in blocks. For function 872, the first word returned in the user buffer is the current base of VM

(the actual 64 byte block number, not the value set in the handler) and the second word is the current VM
top.

Example

.IITLE VNSHOY¥

; Demonutrate .SPFUN to return VN information
.NMCALL .SPFUN,.PRINT, .EXIT, .LOOKUP,.CLOSE
.DSABL GBL
.GLOBL PRTOCY,PRTDEC

VNSHOY = 3872 ;8PFUN code to return VN stats
H
START: .LOOKUP #AREA,#0,#DEVNAN ;0pen channel to VN

BCC i ;Br 42 0K

.PRINT #LXPERR iElse complain

BR 98 ;And abort

14: -BPFUN #AREA,#0,#372,#BUFFER,#0,#0 ;Iry to got VN stats

118 CHAPTER 7. PROGRAMMING FOR CL AND SPECIAL DEVICE HANDLERS

BCC 28 ;Br 12 0K
118: .PRINT #SPFERR ;Else complain
BR 1] ;And abort
28: .PRINT #BASE ;Display VN info
MOV BUFFER,R0 ;Get base value (in 64 byte blocks)
CALL PRIOCT
PRINT #TOP
NOV BUFFER+2,R0 :Get top value (in 64 byte blocks)
CALL PRTOCT
.SPFUN #AREA,#0,#37S,#BUFFER,#0,#0 ;Get VN size
BCS 114 ;Complain on error
.PRINT #5IZE
NOV BUFFER,RO ;Get size in blocks
CALL PRIDEC
9¢: .CLOSE #0 ;Close channel to VN
BXIT
.NLIST BEX
AREA: BLEY 10 ;General ENT arg block
DEVNAN: .RADSO /VNO/ ;Non-file structured lockup
BUFFER: .¥ORD 0,0,0 ;Return SPFUN data here

LKPERR: .ASCIZ /.LOOXUP error/
SPFERR: .ASCIZ /.SPFUN error/
BASE: .ASCII /VN Base=/<200>

TOP: .ASCIT / Top=/<200>
SIZE: LASCII / Sixze=/<200>
.LIST BEX
.END STARY

7.8 Communications handler (XL)

The RT-11 VTCOM utility communicates with host systems through a device named XL. You may either
install and use the XL device handler or you may make a logical assignment of XL to a current CL unit.
If you use XL.TSX, then the interface is dedicated solely to use with the XL device, whereas by defining
the line as a time-sharing line and then “taking it over” as a CL unit, you gain increased flexibility in
utilization of the port. In addition, XL is restricted to DL(V)11 type interfaces, while CL may be used on
any type of serial interface supported for terminals. This allows you to alter the port speed with a keyboard
command (on programmable rate interfaces) and monitor the line’s state with SYSMON. Because of this
increased flexibility, we strongly recommend the use of CL units rather than the XL device handler. For
more information on SET CLn commands see the TSX-Plus User’s Reference Manual. Also see the other
sections in this chapter for use of CL with VTCOM and for information on programming with CL.

7.9 Spooled devices

Output sent to spooled devices with .WRITx EMTs is intercepted by the TSX-Plus spooling system and
transferred to a system managed disk file. Data in this file is then supplied to the handler for the spooled

device by the system as needed. For a more general discussion of device spooling, see the TSX-Plus User’s
Reference Manual.

Data blocks in the spool file begin with two words of header information, followed by up to 508 bytes of
data. The first header word is a pointer to the next block in the spool file for this data stream. The second
word is the number of data words in the current block. Information such as spool file starting blocks, file
names and output device is stored and managed elsewhere by the system.

Requests to read input from spooled devices are not intercepted or otherwise affected by the spooling system
. Special function requests of all kinds to spooled devices are similarly ignored and unaffected by the spooler.
Thus, in order to have output to a spooled device actually spooled, the I/O request should ordinarily be done

7.9. SPOOLED DEVICES 119

via the 'WRITW EMT. The fact that . READx and .SPFUN requests bypass the spooler is not ordinarily
important to print devices such as LS and LP. However, when programming 1/O to special device handlers for
devices like plotters and modems, it is important to remember that only .WRITx requests utilize spooling.

An example of a potentially undesireable effect of spooling can be seen by running the VICOM program
with XL assigned to a spooled CL unit. Since VTCOM uses a .WRITC to transmit data, it is intercepted by
the spooler and buffered through the spool file. No information will actually be sent to the CL unit until the
block is full (508 bytes) or the channel is closed. Because of this unusual behavior, use of VI'COM through
a spooled CL unit is not recommended.

In some cases, it may be desirable to bypass the spooling system. For special device handlers and for CL
units which support special function write requests, .SPFUN requests can accomplish this. Since LS and LP
do not (currently) support special function requests, another approach must be used. The spooling system
identifies spooled devices both by device name and unit number. Thus, if LP (equivalent to LPO) is spooled,
then only writes to LPO will be spooled. Since the LP device handler ignores unit numbers, writes to LP1
will bypass the spooler, but will be handled normally by the LP handler. The same holds true for LS ~
writing to LS1 bypasses spooled LS. Note that CL does support device units and thus you cannot bypass
the spooler on spooled CL units by selecting a different unit number.

Since mixed output will result if two jobs write to a non-file-structured device like LS, LP or CL unless
managed by the spooling system, care must be taken to prevent this when bypassing the spooler. We

recommend that non-spooled serial devices or spooled devices which are being bypassed be allocated by the
Jjob before writing to them.

120 CHAPTER 7. PROGRAMMING FOR CL AND SPECIAL DEVICE HANDLERS

Chapter 8

Real-Time Program Support

TSX-Plus provides a real-time program support facility that allows multiple real-time programs to run con-
currently with normal time-sharing operations. The basic functions provided by this facility are summarized
below:

o The ability to map the I/O page into the user’s virtual memory region so that device status and control
registers may be directly accessed by the program.

e The ability to connect device interrupt vectors to program interrupt service routines running at fork
level or to program completion routines running at user-selectable priority levels with full job context.

e The ability for a program to lock itself in memory so that rapid interrupt response can be assured.
e The ability for a program to suspend its execution until an interrupt occurs.
e The ability to set execution priorities for tasks.

e The ability to convert a virtual address within the job’s region to a physical address for DMA 1/0
control.

o The ability to map a virtual address region to a physical address region.

e The ability for a program to declare a list of addresses of device control registers to be reset when the
program exits or aborts ((DEVICE EMT).

Most of the features associated with the real-time facility are a basic part of TSX-Plus, but the ability

to attach interrupt service routines or interrupt completion routines to interrupt vectors is optional during
system generation.

Special privilege is required to perform some of the requests described in this chapter. For example:

REALTIME privilege is required to use the .DEVICE request or to get exclusive system control;

MEMMAP privilege is required to map to the I/O page or other specific locations in physical memory;
PSWAPM privilege is required to lock a program in memory.
The real-time facilities are available to both normal jobs controlled by time-sharing lines and to detached

jobs. Note that detached jobs that are specified during system generation for automatic startup run with all

privileges, unless specifically changed; detached jobs started by time-sharing users have the same privilege
as the job starting them.

121

122 CHAPTER 8. REAL-TIME PROGRAM SUPPORT

8.1 Accessing the I/O page

A basic facility required by most real-time programs is the ability to access the PDP-11 I/O page (160000~
177777) which contains the device control and status registers. Under TSX-Plus, addresses in this range
are normally mapped to a simulated RMON or may be used as normal program space. This is done since
many old programs require direct access to certain system values at fixed offsets into RMON, although
recent programs should access these values with the .GVAL and .PVAL EMTs. TSX-Plus provides several
EMTs to deal with mapping of the I/O page and accessing locations within it. These are discussed below.
See Chapter 2 for a discussion of various mapping techniques which may be used under TSX-Plus. The
/IOPAGE switch to the R[UN] command may also be used to map a program’s PAR 7 to the 1/O page.

A TSX-Plus real-time program can access the I/O page in one of two ways: It can cause the program’s
virtual address region in the range 180000 to 177777 to be mapped directly to the I/O page so that it can
directly access device registers; or it can leave the virtual address range mapped to the simulated RMON
and use a set of EMTs to peek, poke, bit-set and bit-clear registers in the I/0 page. It is much more efficient
to directly access the device control registers by mapping the I/O page into the program’s virtual address
region than to use EMTs to perform each access. However, this technique will not work if the program must
also directly access offsets inside RMON. The correct way for a program to access RMON offsets is to use
the .GVAL EMT which will work even if the I/O page is mapped into the program region.

8.1.1 EMT to map the I/O page into the program space

The following EMT can be used to cause the program’s virtual address region in the range 160000 to 177777
to be mapped to the I/O page. Use of this EMT requires MEMMAP privilege. The /IOPAGE switch to the
R{UN] command may also be used to map a program’s PAR 7 to the I/O page. The form of the EMT is:

ENT 376
with RO pointing to the following argument area:
.BYTE 5,140

The 1/O page mapping set up by this EMT remains in effect until the program exits, chains, or the EMT
described in the next section is used to remap to RMON. Note that completion routines and interrupt service
routines run with the same memory mapping as the mainline code of the job.

The .GVAL EMT with offset value —8. may be used to determine if PAR 7 is currently mapped to the I/O
page or to the simulated RMON. See the description in Chapter 4 of the special use of .GVAL for further
information.

Example

.TITLE NAPIOP

.ENABL LC
iDemonstrate TSX--Plus ENTs to map to the I/0 page and back to ENON
RNONST = B4 ;8YSCON location holding base of ENON
CONFIG = 300 iFixed offset into RNON of CONFIG word
RCSR = 176540 ;8erial line RCSR address
RBUF = RCBR+2 ;Line input buffer address
CIRLC = 8 Hal 4

.NCALL .PRINT, .EXIT,.TTYOUT,.GVAL
.GLOBL PLRTOCT

START: CALL SHONAP iDisplay current PAR 7 mapping
CALL SHODAT :Demonstrate RNON mapping
.PRINT #IOPNSG iBay we are svitching to I/0 page mapping
MOV #NAPIOP,R0 iPoint to ENT arg block to
ENT 376 ;Nap to I/D page
BCC 14 ;Branch if 0K to map

.PRINT #NOPRIV ;You are not allowed to do that

8.1. ACCESSING THE 1/0 PAGE

.EXIT
14: CALL
.PRINT
NOY
CLk
2: I81B
BPL
NOVB
CNPB
BEQ

.ITYOUY

BR
3%: NOV
.PRINT
NOV
ENT
CALL
CALL
LBXIT
SHONAP: .PRINT
.GVAL
ASL
.PRINT
RETURN
SHODAT: .PRINT
NOV
NOV
CALL
.PRINT
RETURN
NAPIOP: .BYIE
NAPNOKN: .BYTE
AREA: .¥ORD
CSRSAV: .¥WORD
CURNAP: .¥ORD
.¥ORD
.NLIST
CRLF: .A8CIZ
TORNON: .ABCIZ
TOIOPG: .ASCIZ
NAPNSG: .ASCII
CNFGIS: .ASCII
TYPE: .ASCIZ
I0PNSG: .ASCIZ
GOBACK: .ASCIZ
NOPRIV: .ASCII
.ASCIZ
.END

8.1.2 EMT to remap the program region to the simulated RMON

SHOMAP

#IYPE
@#RCSR,CSRSAY
Q#RCSR
e#RCSR

24

@#RBUF R0

R0, #CTRLC

3

24
CSRSAV,Q#RCSR
#GOBACK
#NAPMON, RO
376

SHONAP

SHODAT

#MAPNSG
#AREA ,#-8.
R0

CURNAP (20)

#CNFGIS
@#RNONST R0
CONFIG(RO) ,R0
PRTOCT

#CRLF

6,140
6,140
10

0
TORNON
TOIOPG
BEX

/1

;Display current PAR 7 mapping
;Prompt for input from I/0 page
;8ave a copy of curremt CBR

;Disable interrupts on serial line
;Is anything available from the line
;No, keep checking

;Get the nevw charactor

;Bhould we quit?

;Quit on “C

iDisplay the charactor

;And repeat

;lestore original CSL

iBay we are returning to original mapping
iPoint to ENT arg block to

;Nap back to simulated RNON

;Display current PAR 7 mapping

;And prove we are back

iCurrent mapping preface

;What is our current PAR 7 mapping?
;Convert to word offset

;8hov which one it 1s

iPreface config value

;Pick up pointer to RNON base
iGet the current CONFIG value
;Display it

;ENT arg block to map to I/0 page
;ENT arg block to map to RMON
;ENT arg block

;8ave CSR for restoration on exit
;Current mapping message table

/simulated RNON./

"I/0 page.”

/PAR 7 is currently mapped to /<200>
/Current value of CONFIG word in simulated RNON is /<200>

/Characters entered on serial line will be displayed here:/

<12>"Now switching PAR 7 mapping to the I/0 page."
<16><12>/Returning PARL 7 mapping to simulated RNON./
/Real-time support not specified during TSGEN or /
/user not privileged./

START

123

The following EMT can be used to cause the virtual address mapping region of the Job in the range 160000

to 177777 to be returned to normal mapping if it had previousl

EMT requires MEMMAP privilege. The form of the EMT is:

ENT

376

with RO pointing to the following argument area:

.BYTE

Example

See the example program MAPIOP in section 8.1.1 on mapping the I/O page into the program space.

6,140

y been mapped to the I/O page. Use of this

124 CHAPTER 8. REAL-TIME PROGRAM SUPPORT

8.1.3 EMT to peek at the I/O page

The following EMT can be used to access a word in the I/O page without requiring the job’s virtual address
region to be mapped to the I/O page. (Note that the .PEEK and .POKE EMTS3 can also be used to access
parts of the I/O page. See Chapter 12 for more information on the effects of the .PEEK and .POKE EMTs
with TSX-Plus.) Use of this EMT requires MEMMAP privilege. The form of this EMT is:

ENT 376
with RO pointing to the following argument area:

BYTE 1,140
.WORD address

where address is the address of the word in the I/O page to be accessed. The contents of the specified word
in the I/O page are returned in RO. Note that with this and other EMTs that access the I/O page, if an

invalid address is specified, an error will result with the message:

7?NON-F-Kernel mods trap within TSX-Plus

Example
.TITLE PEEXID
.ENABL LC
:Demonstrate ISI--Plus ENTs to pesk and poke into the I/0 page
CIRLC = 3 i°C
RNONST = 54 ;Pointer in SYSCON area to start of AMON
CONFIG = 300 :Fixed offset into RNOK of config word
RCSR = 176640 ;8erial line RCSR address
RBUF = RCSR+2 ;Line input buffer address

.NCALL .PRINT,.EXIT,.TTYOUT,.GVAL
.GLOBL PRTOCT

START: CALL SHONAP ;Displey current PAR 7 mapping
CALL SHOCON ;Demonstrate RNON mapping
NOV #PEEKI0,R0 ;Point to ENT arg block to
ENT 876 ;Peek into the I/0 page
BCC 19 ;Branch if 0K
.PRINT SNOPRIV ;You are not allowed to do that
.EXIT
1%: NOV R0,CSREAV ;Bave a copy of current CER
CLR POKVAL ;¥ant to disable interrupts
NOV #POKEIO,RO ;Point to ENT arg block to
ENT 376 ;Poke a value into the I/0 page
;8hould not be error if peek wvorked
.PRINT #IYPE ;Prompt for input from I/0 page
2¢: NOV #PEEX10,R0 ;Point to ENT arg block to
ENT 376 ;Check the RCSR
ISIB RO ;Is anything available from the line
BPL 2¢ ;No, keep checking
ADD #2,PEKADD ;Point te the receiver buffer
NOV #PEEKXI0,R0 ;Point to EMT arg block to
ENT 376 ;Get the input character
CNPB R0, #CIRLC ;Bhould we quit?
BEQ 3¢ ;Quit on “C
.ITYOUT ;Display the character
8UB #2,PEIADD ;Point back to the RCSR
)] § 2¢ ;And repeat
3s: NOV CBRSAV,POKVAL ;¥ant to restore the original CSL status
NOV #POKEID,RO ;Point to ENT arg block to
ENT 376 ;Restore the CHR
.EXIT

SHOMAP: .PRLINT #MAPNSG ;Current mapping preface

8.1. ACCESSING THE I/O PAGE 125

-GVAL #AREA,#-8. i¥Yhat is our current PARL 7 mapping?

ASL 10 iConvert to word offset

PLINT CURNAP(R0) ;8how which one it is

RETURN
BHOCON: .PRINT #CNFGIS iPreface config value

NOV @#RNONST,R0 iPick up pointer to RNON base

NOV CONF1G(RO) ,R0 iGet the current CONFIC value

CALL PRIODCT ;Display it

.PRINT #CRLF

RETURN
PEEKIO: .BYTE 1,140 ;ENT arg block to peek into the 1/0 page
PEXKADD: .WORD 1CSR ;Address to be read
POXEIO: .BYTE 2,140 iENT arg block to poke into the I/0 page
POXADD: .WORD RCSR ;Address to be modifisd
POXVAL: .¥YORD O i¥ord to be moved to POKADD
AREA: .¥ORD 10 ;ENT arg block
CSRSAV: .YORD O iBave C5R for restoration on exit
CURNAP: .WORD TORNON iCurrent mapping message table

WORD TOIOPG

.NLIST BEX

CRLF: .A8C1z //
TORNON: .ASCIZ /simulated RNON./
TOIOPG: .ASCIZ *“1/0 page."
NAPNSG: .ASCII /PAR 7 is currently mapped to /<200>
CNFGI8: .ASCII /Current value of CONFIG word in simulated RNON 1s /<200>
TYPE: .ASCIZ /Characters entered on serial line will be displayed here:/
NOPRIV: .ASCII /Real-time support not specified during ISGEN or /
-ASCIZ /user not privileged./
.END START

8.1.4 EMT to poke into the 1/0 page
The following EMT can be used to store a value into a cell in the I/O page without requiring the job’s
virtual address region to be mapped to the I/O page. Use of this EMT requires MEMMAP privilege. The
form of the EMT is:

ENT 376

with RO pointing to the following argument area:

.BYTE 2,140
.WORD address
.WORD value

where address is the address of the cell in the 1/0 page and value is the value to be stored,

Example
See the example program PEEKIO in section 8.1.3 on peeking into the I/O page.
8.1.5. EMT to bit-set a value into the I/0 page
The following EMT can be used to perform a bit-set (BIS) operation into a cell in the I/O page without
requiring the job’s virtual address region to be mapped to the I/0 page. Use of this EMT requires MEMMAP
privilege. The form of the EMT is:

ENT 3756

with RO pointing to the following argument area:

126

where address is the address of the cell in the I/O

cell.

.BYTE
.WORD
.WORD

Example

;Demonstrate I5X--Plus ENTs %o bit-set

CIRLC
ENONST
INTNBL
CONFIG
RCSR
RBUF

START:

18:

2¢:

3s:

SHONAP:

SHOCON:

PREKIO0:
PEXADD:

BICIO:

BISIO:

AREA:

3,140
address
value

.TITLE BISIO

.ENABL

3

b4

100

300

176640

RCSR+2
NCALL
.GLOBL
CALL
CALL

Liid
ENT
BCC
.PRINT
JEXIT

.PRINT
NOY
ENT
I8TB
BPL
ADD
NOV
ENT

CNPB
BEQ
.TTYOUT

NOV

RXIT
.PRINT
LGVAL

.MINT

.PRINT
MOV
MOV
CALL
PRINT

.BYIE
.YORD
BYTE
.¥ORD
.WORD
.BYTE
.WORD
.¥ORD
.BLKY

LC

CHAPTER 8. REAL-TIME PROGRAM SUPPORT

and bit-clear into the 1/0 page
;°C

.

;Pointer in BYSCON ares to start of RNON
;1CSR interrupt enable bit

;Fixed offset into RNOX of config word
;8erial line RCSR address

:Line input buffer address

.PRINT, .EXIT, .TTYOUT, .GVAL

PRTOCY
SHONAP
SHOCON

#BICIO, RO
376

14
#NOPRIV

$TYPE
#PEEXI0,RO
376

RO

24
#2,PEXADD
#PREX10,R0
376

20,#CTRLC
3t

#2,PEKADD
1)

#BISIO,RO
376

S#NAPNSG
SAREL ,#-8.

RO
CURNAP (R0)

#CKFGIS
G#ANONST RO
CONFI1G(RO) ,BO
PRTOCT

$CRLY

1,140

;Display current PAR 7 mapping
;Demonstrate RNON mapping

;¥ant to clear input interrupts
;Point to ENT arg block to
;Clear a bit in the I/0 page
;Branch 12 0K

;You are not alloved te do that

10K, interrupts should be disabled
;Prompt for inmput from 1/0 page
;Point to ENT arg block to

;Check the RCSR

;Is anything available from the line
;No, keep checking

;Point to the receiver buffer
;Point to ENT arg bleck to

;Cet the input character

;Value from pesk is returned in RO
;8hould we quit?

;Quit on °C

;Display the character

;Point back to the RCSR

;And repest

;¥ant to set ipput interrupts
;Point to ENT arg block te

;Set a bit in the I/0 page

;Current mapping preface

;¥hat is our current PAR 7 mapping?
;Convert to word offset

;Show which one it is

;Preface config value

;Pick np pointer to RMOR base
;Get the current CONFIG value
;Display 1t

;ENT arg block to peek into the 1/0 page
;Address to be read

{ENT arg block to clear a bit in the I/0 page

;Input status register
;Interrupt enable mask

;ENT arg block to set a bit in the I/0 page

;Input status register
;Interrupt enable mask
;ENT arg block

page and value is the value that will be bit-set into the

8.2. MAPPING TO A PHYSICAL MEMORY REGION 127

CSRSAV: .WORD 0 ;Save CSR for restoration on exit
CHARS: .BLKB ¢ ;6 char output buffer
EOY: .WORD O ;Terminator for .PRINT
CURNAP: .¥ORD TORNON ;Current mapping message table
.WORD TOIOPG
.NLIST BEX

CRLF: .AsC1Z //
TORNON: .ASCIZ /simulated RNON./
TOIOPG: .ASCIZ *1/0 page.®
NAPMSG: .ASCII /PAR 7 is currently mapped to /<200>
CNFGIS: .ASCII /Current value of CONFIG word in simulated RNON is /<200>
TYPE: .ASCIZ /Charactere entered on serial line will be displayed here:/
NOPRIV: .ASCII /Real-time support not specified during TSGEN or /
.ASCIZ /user not privileged./
.END START

8.1.6 EMT to do a bit-clear into the I/O page
The following EMT can be used to perform a bit-clear (BIC) operation into a cell in the I/O page without
requiring the job’s virtual address region to be mapped to the I/O page. Use of this EMT requires MEMMAP
privilege. The form of the EMT is:

ENT 376

with RO pointing to the following argument area:

.BYTE 4,140
.WORD address
.WORD value

where address is the address of the cell in the I/O page and value is the value to be bit-cleared into the
specified cell.

Example
See the example program BISIO in section 8.1.5 on doing a bit-set into the I/O page.

8.2 Mapping to a physical memory region

In certain circumstances, it is desirable to map a portion of virtual memory to a specific area in physical
memory which is not in the I/O page. Possible examples would be ROM memory or an array processor. This
mapping is done by altering one or more of the Page Address Registers (PARs) for the job. Each PAR maps
8192 bytes of memory from the virtual job space into physical memory. There are 8 PARs (8#8192=64 Kb).
The region of memory mapped through each PAR is shown by the table below:

PAR | Virtual Region

0 000000-017777
1 020000-087777
2 040000057777
] 060000-077777
4 100000-117777
5 120000-137777
6 140000-157777
7 180000177777

128 CHAPTER 8. REAL-TIME PROGRAM SUPPORT

Use of this EMT requires MEMMAP privilege. The form of this EMT is:
ENT 376
with RO pointing to the following argument area:

.BYTE 17,140

.WORD par-number

.WORD phys-address

.WORD size

.BYTE access-type,cache-bypass

where par-number is the number of the Page Address Register (PAR) that corresponds to the beginning of
the program virtual address region that is to be mapped; phys-address is the physical address to which the
virtual address is to be mapped. The physical address is specified as an address divided by 64 (decimal).
That is, the physical address represents the 64-byte block number of the start of the physical region. Note

that the physical address of any 84-byte block within a 22-bit physical address space can be represented in
186 bits.

Size is the number of 64-byte blocks of memory to be mapped through the virtual region. Each PAR can
map up to 128 64-byte blocks of memory. If more than 128 blocks are mapped, successively higher PARs
are set up to map the remainder of the region.

Accese-type indicates if the mapped region is to be allowed read-only access or both read and write access:
O=read-only; 1=read/write.

Cache-bypass causes hardware cache to be bypassed if this byte is 1. If this byte is 0, the normal case,
then hardware caching is enabled. When cache-bypass is set to 1, the actual effect is to set bit 15 in the
Page Description Register (PDR) for each physical page mapped by this EMT. This can be important when
mapping to devices such as bit-mapped graphic displays and array processors that interface to the Q-bus by
dual-port memory.

This EMT may be used to map any of the PARs to any physical address regions desired; even to map PAR
7 to the 1/O page. The use of this EMT does not affect mapping set up previously for other PARs. If size
is sero (0), all PAR mapping is reset and the normal virtual address mapping for the job is restored.

Note that this EMT is not equivalent to the extended memory EMTs used with PLAS (Program’s Logical
Address Space) requests and virtual overlays and virtual arrays. See Chapter 2 for a discussion of Jjob
environment and the appropriate RT-11 manuals for a more complete discussion of PLAS features.

Note that disassociation of shared run-time regions (EMT 875, function 0,148 with a null name-pointer) has
the side effect that regions mapped with this EMT will revert to the normal job mapping in effect prior to
mapping the physical region.

Example
TITLE NAPPHY
.ENABL LC
i Demonstrate ISX--Plus ENI to map to any physical address
CTRLC = 38 i°C
ININBL = 100 ;Interrupt enable bit
RCSR = 176540 ;Berial line RCSR address
RBUF = RCBR+2 ;iLine input buffer address
.MCALL .PRINT, .EXIT,.TTYOUT,.GVAL
START: .PRINY #NAPNSG iBay ve are svitching to physical mapping
NOV #NAPPHY R0 ;Point to ENT arg block to
ENY 376 ;Map to physical memory
BCC 1% ;Branch if 0K to map
.PRINT #NOPRIV ;You are not alloved to do that
EXIT
14: .PRINT #TYPR ;Prompt for input from I/0 page

BIC SININBL,Q#RCS5R ;Disable interrupts on serial line

8.3. REQUESTING EXCLUSIVE SYSTEM CONTROL 129

2%: TSIB G#RCSR ;Is anything available from the line
BPL 24 ;No, keep checking
NOVB Q#RBUF RO ;0et the nev character
CNPB 10,#CIRLC ;8hould we quit?
BEQ 3t ;Quit on °C
.TTYOUT ;Display the character
BR 24 ;And repeat
34 CLR SIZE ;I2 .size is O, original mapping is restored
NOV #NAPPHY RO ;Point to ENT arg block to
ENT 376 ;Revoke mapping to physical address
.EXIT
NAPPHY: .BYIE 17,140 ;ENT arg block to map to physical memory
.WORD 7 ;remap PAR 7
.YORD 177600 :17760000/64. address to map into PAR 7
SIZE: .WORD 200 ;size of region to be mapped - full 8 Kb
.MORD 1 ;access O=zread-only, 1=read/vrite
.NLIST BEX
NAPNSG: .ASCIZ /PAR 7 mapping is now directed to top of physical memory./
TYPE: .ASCIZ /Characters entered on serial line will be displayed here:/
HOPRLIV: .ASCIZ /You are not privileged to run this program./
.END START

8.3 Requesting exclusive system control

The following EMT allows real-time jobs to gain exclusive access to the system while they perform time
critical tasks. Use of this EMT requires REALTIME privilege. The form of the EMT is:

ENT 376
with RO pointing to the following argument block:
.BYTE 14,140

The effect of this EMT is to cause the TSX-Plus job scheduler to ignore all other jobs, even higher priority
jobs—including fixed-high-priority jobs until the real-time job relinquishes exclusive access control. Note
that this is different (and more powerful) than giving the real-time job a higher execution priority because

all other jobs are completely prevented from executing even if the real-time job goes into a wait state causing
the CPU to become idle.

The form of the EMT used to relinquish exclusive system access is:
ENT 376
with RO pointing to the following argument block:
.BYTE 16,140
The following restrictions apply to a job that has issued an exclusive access EMT:
1. The job is automatically locked in memory during the time it has exclusive access to the system. If

you wish to use the TSX-Plus EMT that locks a job in the lowest portion of memory, that EMT must
be executed before calling this EMT to gain exclusive access to the system.

2. The size of the job may not be changed while it has exclusive access to the system.

Exclusive access is automatically relinquished if the job exits or traps but is retained if the job chains to
another job.

Example

130 CHAPTER 8. REAL-TIME PROGRAM SUPPORT

.TITLE SIEALB

.ENABL LC
; Demonstrate IS8X--Plus ENT to obtain exclusive system control
LEADIN = 36 ;I8X-Plus program controlled terminal
;option lead-in character.
Jsy = 44 ;Job stetus word address
TISPC = 10000 ;IT special mode bit in JSY
NOWAIT = 100 ;IT nowait bit in JSY

LMCALL .PRINT,.ITYOUT,.TIYIN,.EXIY
BTART: MOV #TTSPCINOVAIT,4#J8Y ;Bet IT special mode and novait
;bits in the JBY

.ITYOUT #LEADIN ;And make TBX--Plus understand both

.ITYOUT #'S

.TIYOUT #LEADIN

.ITYOUT #°U

PRLINT #NSG ;Prompt for input

NOY #STEALS ,RO ;Point to ENT arg block to

ENY 376 ;8teal exclusive system control
HET. ;Time critical processing goes here

ITYIN ;8imulated here with terminal input

NOV #LETGO,RO ;Point to ENT arg block to

ENT 376 ilelinquish exclusive system control

.BXIT

.NLIST BEX
STEALS: .BYTE 14,140 ;ENT arg block for exclusive system control
LEIGO: .BYIE 16,140 ;ENT arg block to relinquish exclusive control
NSG: .ABCII /Other users are locked out until you press a key:/<200>

.END STARY

8.4 Locking a job in memory

In time-critical real-time applications where a program must respond to an interrupt with minimum delay,
it may be necessary for the job to lock itself in memory to avoid program swapping. Use of the EMTs
to lock a program in memory or to lock into low memory (below 256 Kb) or to unlock a program from
memory (re-enable swapping) requires PSWAPM privilege. This facility should be used with caution since if
a number of large programs are locked in memory there may not be enough space left to run other programs.

TSX-Plus provides two program locking facilities. The first moves the program to the low end of memory
before locking it; this is done to avoid fragmenting available free memory. This type of lock should be done if
the program is going to remain locked in memory for a long period of time. However, this form of locking is
relatively slow since it may involve program swapping. The second locking facility simply locks the program
into the memory space it is occupying when the EMT is executed without doing any repositioning. This
EMT has the advantage that it is extremely fast but free memory space may be non-contiguous.

The form of the EMT used to lock a program in low memory (re-positioning if necessary) is:
ENT 3756
with RO pointing to the following argument area:
.BYTE 7,140
The form of the EMT used to lock a job in memory without repositioning it is:
ENT 376
with RO pointing to the following argument area:

.BYTE 13,140

8.5. UNLOCKING A JOB FROM MEMORY 1381

Error
Code | Meaning

0 | Job does not have PSWAPM privilege

Example

See the example program ATTVEC in section 8.11.2 on connecting a real-time interrupt to a completion
routine.

8.5 Unlocking a job from memory

When a job locks itself in memory, it remains locked until the Jjob exits or the following EMT is executed.
The form of the EMT used to unlock a job from memory is:

ENT 376
with RO pointing to the following argument area:

.BYTE 10,140

Example

See the example program ATTVEC in section 8.11.2 on connecting a real-time interrupt to a completion
routine.

8.6 Suspending/Resuming program execution

The RT-11 standard .SPND and .RSUM EMTs are used by TSX-Plus real-time jobs to suspend and resume
their execution. Frequently, a real-time job will begin its execution by connecting interrupts to completion

routines and doing other initialization and then will suspend its execution while waiting for a device interrupt
to occur.

The .SPND EMT causes the mainline code in the Jjob to be suspended. Completion routines are not affected
and execute when interrupts occur. If a completion routine executes a .RSUM EMT, the mainline code will
continue execution at the point following the .SPND when the completion routine exits. Refer to the RT-11
Programmer’s Reference Manual for further information about the use of .SPND and .RSUM.

Example

See the example program ATTVEC in section 8.11.2 on connecting a real-time interrupt to a completion
routine,

8.7 Converting a virtual address to a physical address

When controlling devices that do direct memory access (DMA), it is necessary to be able to obtain the
physical memory address (22-bit) that corresponds to a virtual address in the job. Note that a job should
lock itself in memory before performing this EMT. The form of the EMT is:

ENT 376

with RO pointing to the following argument area:

132

.BYTE
.WORD
.WORD

0,140
virtual-address

CHAPTER 8. REAL-TIME PROGRAM SUPPORT

result-buffer

where virtual-address is the virtual address that is to be converted to a physical address and result-buffer is
the address of a two word area that is to receive the physical address. The low order 16 bits of the physical
address are stored in the first word of the result buffer and the high order 6 bits of the physical address are
stored in bit positions 4-9 of the second word of the result buffer.

:; Demonstrate IBX--Plus ENT to convert a virtual to a physical sddress

;Point to ENT arg block to

;Lock job in memory

;Continue if OK

;Explain the problem

;and quit

;8ay vhere this program was loaded
;Get the virtual address

;and display it to the terminal

;Put the virtual address into the arg block
;Point to ENT arg block to

;Convert virtual to physical address
:Retrieve the lov address

;And the high address

;Use only bits 4-9

:Throw avay bits 0-3

;Point to end of character output buffer
;Need to convert 8 digits

;Get a copy of lov bits into RO

;Mask out all but low digit

;Convert to ASCII

;Put lov digit in output buffer

;8hift over 3 bits to next digit

;Low bit of high address

;into high bit of lov address

;Do all 8 digits
;Print out the result

;ENT arg block to lock job in memory

;ENT arg block to determine physical address
;Virtual address to be located

;Location of 2 word result buffer

;¥i1l hold low and high physical address
;Buffer to hold ASCII value of address

;End of ABCIL buffer

/User not privileged./
/This program 1s loaded at STARY = /<200>

Example
.TITLE PHYADD
JENABL LC
.MCALL .PRINT, .BXIT
START: NOV #LOXJOB,RO
ENT 876
BCC 1%
.PRINT #NOPRIV
Bk 2¢
18: LPRINT #STRADD
NOV #5TART,RO
CALL PRTADD
28: BXIT
PRTADD: MOV R0,VIRADD
NOY #PHYADD ,R0
ENT 376
NOY BUFFER,R1
NOY <BUFFER+2>,12
BIC #-C1760,02
NOV #4.13
14: ASR 22
80B 23,18
NOV #CHREND R4
NOV #3.,R3
2¢: MOV R1,R0
BIC #°C7,20
ADD #'0,R0
NOVB R0,-(R4)
NOY #3,25
s ASR 12
R0R 1 X1
808 26,38
i)] 33,2¢
JPRINT M
RETURN
LOKJOB: .BYTE 13,140
PHEYADD: .BYTE 0,140
YIRADD: .wORD O
.WORD BUFFER
BUPFER: .WORD 0,0
.BLEB 10.
CHREND: .¥WORD O
.NLIST BEX
HOPRIV: .ASCIZ
STRADD: .ASCII
.END START

8.8 Specifying a program-abort device reset list

The standard RT-11 .DEVICE EMT is used by TSX-Plus real-time jobs to specify a list of device control
registers to be loaded with specified values when the job terminates. This feature is useful in allowing real-
time devices to be turned off, if the real-time control program aborts. The TSX-Plus .DEVICE EMT has

8.9. SETTING PROCESSOR PRIORITY LEVEL 133

the same form and options as the standard RT-11 .DEVICE EMT. Use of this EMT requires REALTIME
privilege. See the RT-11 Programmer’s Reference Manual for further information.

The connection between interrupt vectors and interrupt service routines or interrupt completion routines
is automatically dropped when a job terminates. The interrupt vector is then connected to the system
unexpected interrupt routine. If an address specified in a .DEVICE list corresponds to an interrupt vector
connected to the job during job cleanup, then the vector is not connected to the unexpected interrupt routine.

8.9 Setting processor priority level

"The following EMT allows a program to set the processor priority level. Use of this EMT requires REALTIME
privilege. This EMT can be useful in a situation where it is necessary for a real-time job to block interrupts
for a short period of time while it is performing some critical operation. On return from this EMT, the Jjob
is executing in user mode with the specified processor priority level. The form of the EMT is:

ENT 376
with RO pointing to the following EMT argument block:

.BYTE 16,140
.WORD prio-level

where prio-level should be 7 to cause interrupts to be disabled or 0 to re-enable interrupts. Interrupts should
not be disabled for a long period of time or clock interrupts and terminal I/O interrupts will be lost.

Note that it is not possible to raise the processor priority level by storing directly into the processor status
word from a real-time program because the PDP-11 hardware disallows modification of the PSW by a user
mode program even if the program has access to the I/0 page.

Example

See the example program ATTVEC in section 8.11.2 on connecting a real-time interrupt to a completion
routine.

8.10 Setting Job Execution Priority

Jobs may be assigned priority values in the range 0 to 127 to control their execution scheduling relative to
other jobs. The priority values are arranged in three groups:

e the fixed-low-priority group consists of priority values from 0 up to the value specified by the PRILOW
sysgen parameter

o the fixed-high-priority group ranges from the value specified for the PRIHI sysgen parameter up to 127
e the middle priority group ranges from (PRILOW+1) to (PRIHI-1)

The current values for PRIHI and PRILOW may be determined with the SHOW PRIORITY command, or
from within a program with a .GVAL request. The following diagram illustrates the priority groups:

127 —
Fixed High Priorities
PRIHI —

PRIDEF —- | Normal Job Priorities

PRILOW —
Fixed Low Priorities

0 —

134 CHAPTER 8. REAL-TIME PROGRAM SUPPORT

Job scheduling is performed differently for jobs in the fixed-high-priority and fixed-low-priority groups than
for jobs with normal interactive priorities. Jobs with priorities in the fixed-low-priority group (0 to PRILOW)
and the fixed-high-priority group (PRIHI to 127) execute at fixed priority values. That is, the priority
absolutely controls the scheduling of the job for execution relative to other jobs. A job with a fixed priority
is allowed to execute as long as it wishes until a higher priority job becomes active.

The fixed-high-priority group is intended for use by real-time programs. The fixed-low-priority group is
intended for use by very low priority background tasks. Normal time-sharing jobs should not be assigned
priorities in either of the fixed priority groups.

The middle group of priorities from (PRILOW+1) to (PRIHI-1) are intended to be used by normal, inter-
active, time-sharing jobs. Jobs with these assigned priorities are scheduled in a more sophisticated manner
than the fixed-priority jobs. In addition to the assigned priority, external events such as terminal input com-

pletion, I/O completion, and timer quantum expiration play a role in determining the effective scheduling
priority.

When a job with a normal priority gwitches to a subprocess, the priority of the disconnected job is reduced
by the amount specified by the PRIVIR sysgen parameter. This causes jobs that are not connected to
terminals to execute at a lower priority than jobs that are. This priority reduction does not apply to jobs
with priorities in the fixed-high-priority group or the fixed-low-priority group. The priority reduction is also

constrained so that the priority of jobs in the normal job priority range will never be reduced below the
value of (PRILOW+1).

The following EMT can be used to set the job priority from within a program. The maximum priority which
may be used by a job is set by the system manager. The job priority can also be set from the keyboard with
the SET PRIORITY command. The current job priority, maximum allowed priority, and fixed-high-priority
and fixed-low-priority boundaries may be determined with the .GVAL request. See the TSX-Plus System

Manager’s Guide for more information on the significance of priority in job scheduling. The form of this
EMT is:

ENT 378

with RO pointing to the following EMT argument block:

.BYTE 0,150
.WORD value

where value is the priority value for the job. The valid range of priorities is 0 to 127 (decimal). The maximum
job priority may be restricted through the logon mechanism. If a job attempts to set its priority above its

maximum allowed priority, its priority will be set to the maximum allowed. This EMT does not return any
errors.

Example
See Chapter 4 for an example of the use of this EMT.

8.11 Connecting interrupts to real-time jobs

One of the most important uses for real-time jobs is to service interrupts for non-standard devices. TSX~-Plus
provides three mechanisms for connecting user-written real-time programs to interrupts: device handlers,
interrupt service routines, and interrupt completion routines. Interrupt service routines and interrupt com-
pletion routines permit jobs to process interrupts without the necessity of writing a special device handler.
However, there are restrictions on the use of these two methods which must be considered when deciding
the appropriate method for handling special device interrupts.

REALTIME privilege is required to connect either interrupt service routines or interrupt completion routines
to an interrupt vector or to release an interrupt connection.

8.11. CONNECTING INTERRUPTS TO REAL-TIME JOBS 135

The fastest method of handling interrupts is to write a device handler (driver). Device handlers execute
in kernel mode and provide the fastest possible response to interrupts. A device handler is the best choice
when interrupts occur at a rate which significantly loads the system. Device handlers written for use with
TSX-Plus should conform to the rules for writing device handlers for RT-11XM.

The second method for processing real-time interrupts is to connect the interrupt to a real-time interrupt
service routine. The interrupt service routine is written as a subroutine in a real-time job; it is not necessary
to write a separate device handler. Interrupt service routines are connected with minimal system overhead
and can service interrupts quite rapidly; approximately 2000 per second on an 11/44. Interrupt service
routines are called in user mode but can only execute a limited set of system service calls (EMTs). Interrupt
service routines can trigger the execution of interrupt completion routines to perform additional processing.

The third method for processing real-time interrupts is to connect the interrupt to an interrupt completion
routine. Real-time interrupt completion routines have access to the full job context and can use most
system service calls (EMTs), but have more overhead and should not be used for interrupts that occur more
frequently than 200 times per second.

136 CHAPTER 8. REAL-TIME PROGRAM SUPPORT
The following diagram illustrates the different levels of interrupt processing:

Interrupt Processing

Level 1 Level 2 Level 3
Hardware
Interrupt
.INTEN
.FORK
Interrupt

Service Routine

More Fork
Requests?

no

Any Pending Interrupt Completion

Completion Routines? Routine

no

Return from

interrupt

This diagram shows that there are three levels of interrupt processing. Level 1 is entered when a hardware
interrupt occurs. In this level the processor (hardware) priority is set to 7 which causes other interrupt
requests to be temporarily blocked. After some brief interrupt entry processing, the system performs a
_FORK operation which queues a request for processing at fork level and then drops the processor priority
t0 0. At this time another hardware interrupt can occur, in which case the cycle will be repeated and another
request for fork level processing will be placed on the queue. Note that if .FORK requests are issued at a

sustained high rate, such that numerous prior requests cannot be serviced, a system error may eventually
occur.

8.11. CONNECTING INTERRUPTS TO REAL-TIME JOBS 187

Level 2 processing is also known as fork level processing. This level of interrupt processing services requests
that were placed on a queue by the . FORK operation. Hardware interrupts are enabled during this processing
and if any other interrupts occur their .FORK requests are placed at the end of the queue. Interrupt service
requests are processed serially in the order that the interrupts occurred. Only two system service calls
may be used from service routines running at fork level: a request to queue a user completion routine
for subsequent processing; and the .RSUM EMT. Fork level processing also has associated priority levels.
Real-time processing has the highest priority. For more information on prioritised .FORK requests, see the
TSX-Plus System Manager’s Guide.

Level 8 processing occurs in job state. That is, the TSX-Plus job execution scheduler selects the highest
priority job or completion routine and passes execution to it. Completion routines run with full job context
and may issue system service calls (except USR calls) as needed. Completion routines are serialized for each
job. That is, all other completion routines (including higher priority interrupt completion routines) which
are scheduled for the same job are queued for execution and will not be entered until the current completion
routine exits. During level 3 processing, interrupts are enabled and job execution may be interrupted to
process fork level interrupt service routines or by higher priority completion routines for other jobs.

8.11.1 Interrupt service routines

Interrupt service routines execute in user mode but require a minimal amount of system overhead. When an
interrupt is received through a vector which has been connected to an interrupt service routine, TSX-Plus
executes a .INTEN and a .FORK, sets up memory management for the appropriate job, saves the status of
the floating point unit (FPU) if it is in use, and passes control to the interrupt service routine. Using this
approach, interrupts may be serviced at about 2000 per second on a PDP-11/44. Lower rates should be
expected on slower processors.

Several restrictions apply to this method of interrupt processing:

1. The job must be locked in memory before connecting to the interrupt vector and must remain locked
in memory as long as the interrupt connection is in effect.

2. The processing done by the interrupt service routine should be brief since other interrupts that do
.FORKs will be queued until the interrupt service routine exits.

8. Only two system service calls (EMTs) are valid within a interrupt service routine:

e A .RSUM EMT may be issued to cause the job’s mainline code to continue processing if it has
done a .SPND.

e The TSX-Plus EMT which schedules execution of a completion routine.

Access to the I/O page is possible if the mainline code sets up such mapping prior to the interrupt. Registers
are undefined on entry to an interrupt service routine, and do not have to be preserved by the interrupt
service routine.

An interrupt service routine must exit with a RETURN instruction (RTS PC), not an RTI. Since interrupt
gervice routines execute at fork level, job scheduling is not relevant for them. All fork level processing,
whether queued for system processing or for an interrupt service routine, is executed in the order in which the

interrupts were received and execute before any completion routines, fixed-priority jobs or normal interactive
time-sharing jobs.

Use of this EMT requires REALTIME privilege. The form of the request to connect an interrupt service
routine to a vector is:

ENT 376

with RO pointing to the following argument block:

138 CHAPTER 8. REAL-TIME PROGRAM SUPPORT

.BYTE 20,140
.WORD vector-address

.WORD service-routine
.MORD ©

where vector-address is the address of the interrupt vector to which the service routine is to be connected,
and service-routine is the address of the entry point of the interrupt service routine.

The total number of vectors that can be connected either to interrupt service routines or interrupt completion
routines is determined by the RTVECT parameter during TSX-Plus system generation.

Error
Code | Meaning

0 | Real time not included or job not privileged

1 | Maximum number of vectors already in use

2 | Some other job is already connected to that vector
3 | Job is not locked in memory

The association between an interrupt service routine and an interrupt vector may be released by the same
EMT as used to disconnect an interrupt completion routine. See the section on releasing an interrupt
connection later in this chapter.

Example

.TITLE INTSVC

ENABL LC
Demonstrate ENT to implemsnt an interrupt service routine
8imple file capture program. Steal a time-sharing line
and put everything that comes in on it into a file.

.MCALL .TIYIN,.TTYOUT,.EXIT, .PREX,.POXE,.GVAL,.8CCA

.NCALL .ENTER,.LOOXUP,.C8ISPC,.¥RITE, .PURGE, .CLOSE, .DEVICE

VECIOR = 330 ;Berial line vector
1Csk = 176530 ;8erial line RCSR address
RBUF = RCBR+2 ;8erial input buffer address
BUFSIZ = 2B56. ;8ize of buffer in words
INTNBL = 100 ;Interrupt enable bit in RCSR
CIRLC =3 ;ASCII “C
CTALD = 4 ;ASCII D
SIART: .CGVAL #AREA ,#-6. ;8ee¢ 1f job has BYSPRY
I8T 10 ;1 12 priv, 0 if not
BEQ QUIT ;Immediate exit if not priv
NOV #L0KJOB,RO iPoint to ENT arg block to
ENT 376 ;Lock job in memory
NOV #NAPIO, RO ;Point to ENT arg block to
ENT 376 ;Nap PART into the I/0 page
GETFIL: MOV 8P ,BPSAVE iBave SP prior to CSI call
14: .CSISPC #0UISPC,#DEFEXT,#0 ;Get file specification
BCS 14 ;lepeat until valid command line
NOV SPSAVE, SP ;Restore 8P, no wvalid switches
-ENTER #AREA,#0,#INSPC,#-1 ;0Open largest possible output file
BCS 14 ;0n error, ask for nev file
NOV #BUFF1 ,BUFPTR ;Initialize buffer pointer
CLR BLOCK ;Initialize output file block count

i Bet up to accept terminal commands
H “C, “C to abort; “D to end transmission
.8CCA #AREA,#TISTAY ;Disable “C abdort
NOV #ACICID, RO iPoint to ENT arg block to
ENI 376 iActivate input on “D
i Since ve are going to borrow a current time-sharing line, we need
i to save its vector pointers for later restoration
MOV @#RCSR,CBRSAV iBave 0ld status bits, esp. int. enable
.DEVICE #AREA,#DEVLSY iForce restoration of RCSLR on exlt

8.11. CONNECTING INTERRUPTS TO REAL-TIME JOBS

BIC #INTNBL,@#RC5R ;Disable interrupts until ready
.PEEX #AREA,#VECTOR iGet normal vector pointer
NOV RO,VECBAV ;And save it for later restoration
.PERX #AREA,#VECTOR+2 ;Cet normal priority
NOV R0,VECSV2 iAnd save 1t for later restoration
i Now attach interrupt service routine to input vector
NOV #INISVC,RO iPoint to ENT arg block to
ENT 376 i8chedule interrupt service routine
G0: BIS #ININBL,Q#RCSk ;Enable interrupts and vait for input
.ITYIN INBUF i¥ait for terminal command during transfer
; Resume here vhen transfer is complete, or want to abort
WHOA: BIC #INTNBL,@#RCSR ;Disable interrupts (data lost if mistake)
CNPB INBUF,#CIRLC i¥as it a *C?
BNE 1] ;Branch if not
.PURGE #0 ;If “C, throw avay input
18T TISTAT ;Did we get double “C’st?
BEQ GETFIL ;If not, get another file name
BL QUIT ;I double *“C, then abort
BS: CNPB INBUF,#CTRLD ;Is the transmission done?
BNE GO ;Branch if not
CALL FINISH i¥rite out remainder of current buffer
.CLOSE #0 ;If done, close out file
; Done or abort, restore time-sharing line conditions
QUIT: NOV #RELVEC,R0 iPoint to ENT arg block to
ENT 376 iRelease interrupt connection

.POKE #AREA , #VECTOR+2,VECSV2 ;Restore old priority
.POKE #AREA,#VECTOR,VECSAV iAnd 0ld vector pointer
JEXIT ;And done!

i Interrupt service routine, executes at .FORI level

I8k: NOVB G#RBUF,€BUFPTR ;Put char in buffer

INC BUFPIR ;And point to next location
CNP BUFPIR,#BUFF2 ;¥hich buffer in use?
BHI 18 iBranch 1f already in second
BLO 928 ;Return 1if first not full
MOV #BUFF1,YRTPTR ;Exact end of buffer 1, point to it
BR 2% ;8chedule write
1%: CNP BUFPTIR,#BUFEND ;Becond buffer full yet?
BLO (1} iNot yet, return
NOV #BUFF1,BUFPTR iBecond buffer full, reset pointer
MOV #BUFF2,YRTPTR iPoint to second buffer for write
2¢: NOV #SCHYRT, RO iPoint to ENT arg block to
ENT 376 iBchedule completion routine
ito write buffer to file
(18 181 TISTAY ;Does mainline want to quit? (“C~C)
BEQ 10$;Branch if not
BIC #ININBL,@#RC52 ;If so, disable interrupts
108: RETURN ;¥Yait for another char

iNote RIS PC, not ATI !
i Completion routine to save buffer to file
CNPRIN: .WRITE #AREA,#0,R1,#256.,BLOCK ;Write buffer to file

BCC 14 ;Br if no error
NOVB CIRLC, INBUF i0n error, set abort flags
NOV #-1,TTSTAT
JNP YROA iBkip .TTYIN, and abort
1%: INC BLOCK iPoint to next output block
RETURN
i Routine to complete write of last block
FINISH: MOV BUFPIR,R0 iGet current buffer pointer
NOV #BUFF2,R1 ;Point to end of first butfer
CMNP RO,R1 ;Bee which buffer in use
BLO 18 ;8kip if in first
ADD #2»BUFSIZ, 21 iIf in second, point to end
14: CLRB (20)+ ;Zero out buffer ’
CNP RO,R1 ;A11 the way to the end
BLO 14
8UB #2+BUFBIZ k1 iNow point back to buffer beginning
CALL CNPRIN iCall write routine (NOT AS CONPLETION)
RETURN

i ENT arg block areas

139

140 CHAPTER 8. REAL-TIME PROGRAM SUPPORT

AREA: .BLXY 10 ;General ENT arg dblock
LOKJOB: .BYTE 13,140 ;ENT arg block to lock job in mem
NAPIO: .BYIE 5,140 {ENT arg block to map 1/0 page to PAR 7
ACICTD: .BYTE 0,152 ;ENT arg block to
.YORD ‘D ;Set activation character
.yorb CIRLD 3D
INTSVC: .BYTE 320,140 ;ENT arg block to set up interrupt sve routine
.WORD VECTOR ;Vector to attach
.yoRD ISR :Address of Interrupt Bervice Routine
.y0RD O ;Required
SCHYRT: .BYTE 21,140 ;ENT arg block to sched compl routine
.¥YORD CNPRIN ;¥rite buffer contents to file
.NORD T ;Real-time priority (adds to PRIHI)
WRTPTR: .WORD O ;Passsd 1n Ri to compl routine (buffer addr)
.¥oRD 0 ;Required
RELVEC: .BYTE 12,140 {ENT arg block to release interrupt connection
.¥orD VECIOR ;Vector to be released
; Ceneral storage
OUTSPC: .BLKY 16. ;C8I output file specs
INSPC: .BLKY 34. ;CEI input file specs
DEFEXT: .woRD 0,0,0,0 ;:No default file specs
SPSAVE: .¥YORD 1] ;8ave stack pointer during CSI call
BLOCE: .WORD O ;Output file block counter
TTBTAT: .¥ORD 0 ;8CCA terminal status word
VECSAV: .¥ORD] ;Save original vector contents
VECSV2: .WORD O ; and priority
DEVLST: .¥ORD 14:1 8 ; .DEVICE restoration list
CSRSAV: .¥ORD (4] ;To hold original value of RCSR
¥oRD O ;End of list
BUFPIR: .WORD O ;Current input char pointer
INBUF: .BYIE 0,0,0,0 ;Terminal command buffer
BUFF1: .BLKW BUFSIZ ;1 block input buffer
BUFF2: .BLKY BUFSIZ ;8econd buffer
BUFEND:
.END START

8.11.2 Interrupt completion routines

The TSX-Plus real-time support facility allows a program to connect a real-time interrupt to a completion
routine. If this is done, TSX~-Plus schedules the completion routine to be executed each time the specified
interrupt occurs.

Interrupt completion routines have much greater flexibility than interrupt service routines, but require more
overhead and are only capable of servicing interrupts at a lower rate. Interrupt completion routines run

with full job context. This allows them to use all system service calls (except to the USR). Registers will be
preserved between calls to the completion routine.

Real-time completion routines can service interrupts at rates up to about 200 interrupts per second. Devices
which interrupt at a faster rate should be connected through an interrupt service routine or through a special
device handler.

The total number of interrupt vectors that can be connected either to interrupt completion routines or
interrupt service routines is determined by the RTVECT parameter during TSX-Plus system generation. It
is possible for several interrupts to be connected to the same completion routine in a job but it is illegal for
more than one job to try to connect to the same interrupt. When an interrupt completion routine is entered,
RO contains the address of the interrupt vector that caused the completion routine to be executed.

Real-time completion routines, whether directly connected to an interrupt or scheduled with the EMT for
that purpose, have an associated job priority. These are software priorities, not hardware priorities; all
completion routines are synchronized with the job and execute at hardware priority level 0. Completion
routine priorities 1 and larger are classified as real-time priorities and are added to the system parameter
PRIHI to yield the job execution priority, unless the resultant priority would exceed 127 in which case the

priority will be 127. These completion routines will then be scheduled for execution whenever there are no
executable jobs with a higher priority.

8.11. CONNECTING INTERRUPTS TO REAL-TIME JOBS 141

A real-time completion routine for one job will be suspended if an interrupt occurs which causes a higher
priority completion routine to be queued for another job. However, a real-time completion routine for one job
will never be interrupted by a completion routine for that same job regardless of the subsequent completion
routine’s priority. If additional requests are made to trigger the same or different completion routines while
a completion routine is executing, the requests are queued for the job and are serviced in order based on
their priority and the order in which they were queued.

A real-time completion routine is allowed to run continuously until one of the following events occurs:
1. the completion routine finishes execution and returns

2. a higher priority completion routine from another job interrupts its execution—it is re-entered when
the higher priority routine exits

3. the completion routine enters a system wait state such as waiting for an I/O operation to complete
or waiting for a timed interval. If a real-time completion routine enters a wait state, it returns to the
same real-time priority when the wait condition completes.

Real-time completion routines with a priority of O are treated slightly differently than those with priorities
greater than zero. The action taken depends on the priority of the mainline job when the completion
routine is scheduled. If the base priority is equal to or greater than PRIHI, then the completion routine is
treated just as those with real-time priorities greater than zero. That is, the completion routine is assigned
a priority of PRIHI (PRIHI+the real-time priority of 0). On the other hand, if the base job priority is less
than PRIHI, then the job is scheduled as a very high priority normal (non-interactive) job. The effect of
this is that completion routines with a real-time priority of 0 and a base job priority less than PRIHI will
interrupt normal time-sharing jobs, but are time-sliced in the normal fashion and lose their high priority if
they execute longer than the system parameter QUANI1A.

Jobs that have real-time, interrupt completion routines need not necessarily be locked in memory. If an
interrupt occurs while the job is swapped out of memory, it is scheduled for execution like any other job and
swapped in before the completion routine is executed. Note, however, that this condition is not optimal for
timely servicing of interrupts.

When a real-time interrupt occurs, a request is placed in a queue to execute the appropriate completion
routine. If the interrupt occurs again before the completion routine is entered, another request is placed
in the queue so the completion routine will be invoked twice. A TSX-Plus fatal system error occurs if an
interrupt occurs and there are no free completion routine request queue entries.

When a real-time completion routine completes its execution, it must exit by use of a RETURN instruction
(RTS PC), not an RTI.

Use of this EMT requires REALTIME privilege. The form of the EMT used to connect an interrupt to a
real-time completion routine is:
ENT 376

with RO pointing to the following argument area:

.BYTE 11,140

.WORD interrupt-vector
.WORD completion-routine
.WORD priority

where interrupt-vector is the address of the interrupt vector, completion-routine is the address of the com-
pletion routine, and priority is the execution priority for the completion routine.

Error
Code | Meaning

0 | Real-time support not included or job not privileged
1 | Maximum number of vectors already in use

2 | Some other job is already connected to that vector
3 | Job is not locked in memory

142 CHAPTER 8. REAL-TIME PROGRAM SUPPORT
Example
.TITLE ATIVEC
.ENABL LC
; Demonstrate TBX--Plus ENTs to attach a completion routins to an interrupt
CTRLC = 8 Y
ERRBYI = b2
RCSR = 176640 ;Serial line RCSR address
RBUF = RCSR+2 :Line input buffer address
INTNBL = 100 ;Interrupt enable bit in RCSR
.MCALL .PRINT,.BXIT,.TTYOUT,.SPKD, .R8UN
START: NOV #NAPIOP,RO ;Point to ENT arg block to
ENT 376 ;Nap to 1/0 page
BCC 14 ;Branch if 0K to map
.PRINT #NOPRIV ;You are not allowed to do that
LEXIT

Had

:If this job were to be resident for a long time, it would be better
;to lock into low memory to aveld memory fragmentation by job swapping.
;:However, since this job may have to be swapped nov to get into lov
;memory, locking into lov memory takes longer to execute.

Bt H nov #LOKLOY,RO ;Point to ENT arg block to lock into lov mem.
’
14: NOV #L0KJOB, R0 ;Point to ENT arg block to
ENT 376 ;Lock the job in memory
NOY #ATIVEC,RO ;Point to ENT arg block to
ENT 376 ;Attach to an interrupt vector
BCC 24 ;Continue 1f 0K
.PRINT #BADATT ;Notify cannot attach to interrupt
MOVD O#ERRBYT RO ;7ind out which error
ASL RO ;Convert to word offset
.PRINT ATTERR(20) ;And explain reason for error
.13 L1 ;Go on to unlock and exit
2¢: .PRINT #IYPE ;Prompt for input from interrupting device
BIS SINTNBL,@#RC5R ;Enable input interrupts
.8PHD ;Nov vait for an interrupt
o
;Resume here on exit from completion code
NOV #RELVEC,R0 ;Point to ENT arg block to
ENT 376 ;Release an interrupt vector

g

’
; NOTE: Any interrupts through
; wvill cause a I8X--Plus fatal system error - Unexpected Interrupt.

this vector after it has been released

-

ss: NOV #UNLOKJ RO ;Point to ENT arg block to
ENT 376 ;Unlock this job from memory
JBIIT

Had

: The following code will bu executed as a completion routine
; when the device attached %o the vector interrupts.

;:Enter here when nev character is available

CMPRTN: NOVB Q#RBUY R0 ;Get the new character
CMPB R0,#CIRLC ;8hould we quit?
BER 14 ;Quit on “C
.TTYOUT ;Display the character
NOV #SETPRI RO ;Peint to ENT arg block to
ENT 376 ;8et processor priority (block interrupts)
o . ;Time critical processing goes here
CLR PRILEV ;Bat priority back down
NOV #5ETPRI,RO ;Point to ENI arg block to
ENT 376 ;8et processor priority (re-enable interrupts)
.} 3 2¢
18: RESUN ;Return to mainline code
28: RETURN ;¥ailt for next interrupt (NOTE: Not RTI)
MAPIOP: .BYIE 5,140 ;ENT arg block to map to I/0 page

8.12. RELEASING AN INTERRUPT CONNECTION 143

LOKLOY: .BYTE 7,140 ;ENT arg block to lock job into lov mem.
LOKJOB: .BYTE 13,140 ;ENT arg block to lock job in place
UNLOKJ: .BYIE 10,140 ;ENT arg block to unlock job from memory
ATIVEC: .BYIE 11,140 ;ENT arg block to attach to interrupt

.YORD 340 ;Interrupt vector

.WORD CNPRIN ;Address of completion routine

.WORD 7 iReal-time priority (NOT processor priority!)
RELVEC: .BYIE 12,140 ;ENT arg block to release interrupt vector

.WORD 340 ;Interrupt vector
SETPRI: .BYTE 16,140 ;ENT arg block to set processor priority
PRILEV: .WORD 7 ;:Desired priority level (modifiable)
ATTERR: .¥WORD NOPRIV iAttach to interrupt error table

.WORD NAXINT

.WORD INUSE

.NLIST BEX
TYPE: .ASCIZ /Characters entered on serial line will be displayed here:/

BADATT: .ASCIZ /YATIVEC-F-Cannot attach to interrupt./<7>
NOPRIV: .ASCII /Real-time support not specified during ISGEN or /
.ASCIZ /user not privileged./
MAXINT: .ASCIZ /Naximum number of interrupts already in use./
INUSE: .ASCIZ /Another job already connected to interrupt./
.END START

8.12 Releasing an interrupt connection

A connection between an interrupt vector and an interrupt service routine or an interrupt completion routine
remains in effect until the job exits or the following EMT is executed to release the connection. Use of this
EMT requires REALTIME privilege.

Warning: An interrupt through a vector which has been released with this EMT or which was connected to
a job that has terminated will cause a fatal system error: “UEI-Interrupt occurred at unexpected location”.
This can be circumvented by including the vector in a .DEVICE list.

The form of the EMT is:
ENT 376
with RO pointing to the following argument area:

.BYTE 12,140
.WORD interrupt-vector

where snterrupt-vector is the address of the interrupt vector whose connection is to be released.

Example

See the example program ATTVEC in section 8.11.2 on connecting a real-time interrupt to a completion
routine.

8.13 Scheduling a completion routine

Real-time programs may schedule a completion routine for execution with a special EMT provided for that
purpose. This is particularly valuable from within interrupt service routines which do not have access to
system service calls other than this EMT and the .RSUM request. The primary intent of this request is
to provide a mechanism for access to system service calls from interrupt service routines. The form of this

EMT is:

ENT 376

144 CHAPTER 8. REAL-TIME PROGRAM SUPPORT

with RO pointing to the following argument block:

.BYTE 21,140

.WORD completion-routine
.MORD priority

.MORD Ri-value

.MORD ©

where completion-routine is the address of the entry point of the completion routine that is being started,
priority is the real-time priority level for the completion routine being started, and RI-value is a value to
be placed in R1 on entry to the completion routine.

Completion routines scheduled in this manner follow the same rules as for interrupt completion routines
described above, except that they are scheduled as a result of the EMT call rather than in response to an
interrupt.

Example

See the example program INTSVC in section 8.11.1 on connecting interrupts to real-time jobs with interrupt
service routines.

8.14 Adapting real-time programs to TSX-Plus

The following points should be kept in mind when converting an RT-11 real-time program for use under
TSX-Plus.

e The I/O page (160000-177777) is not directly accessible to the program unless the program executes
the TSX-Plus real-time EMT that maps the job’s virtual region to the I/O page or is started with the
/IOPAGE switch to the R[UN] command.

o If the program’s virtual region 1860000 to 177777 is mapped to the I/O page, the program must use
.GVAL to access offsets in the simulated RMON.

e Since FORTRAN uses PAR 7 to map to virtual arrays, if both direct I/O page access and FORTRAN

virtual arrays are required in the same program, then some PAR other than 7 must be used to map
to the I/O page.

o Real-time interrupts are connected to interrupt service routines and interrupt completion routines
by use of the TSX-Plus real-time EMT for that purpose. The program should not try to connect
interrupts by storing into the interrupt vector cells.

e The .PROTECT EMT is ignored under TSX-Plus and always returns with the carry flag cleared.

o Interrupt service routines and completion routines connected to real-time interrupts should exit by use
of a RTS PC instruction rather than RTL

e Programs that require very rapid response to interrupts should use the interrupt service routine method
and must lock themselves in memory.

¢ Real-time interrupts must not occur unless an interrupt service routine or completion routine is con-
nected to the interrupt. If a real-time interrupt occurs with no associated interrupt service or comple-

tion routine, a fatal TSX-Plus system error (UEI) occurs and the argument value displays the address
of the vector of the interrupt.

e A higher priority real-time completion routine for one job will interrupt a lower priority completion

routine being executed by another job but will not interrupt a lower priority completion routine being
executed by the same job.

e A real-time completion routine running at priority 1 or above is not time-sliced and will lock out all
lower priority jobs until it completes its processing or enters a wait state.

Chapter 9

Shared Run-time System Support

TSX-Plus provides a facility that allows one or more shared run-time systems or data areas to be mapped
into the address space of multiple TSX-Plus time-sharing jobs. There are two primary uses of this facility:

e Memory space can be saved by having multiple jobs that use the same run-time system access a
common copy rather than having to allocate space within each Jjob for a copy.

o Programs can communicate with each other through the use of a common shared memory region to
which all of the communicating jobs have direct access.

To use this facility, information about all of the shared run-time systems must be declared when the TSX-
Plus system is generated. During system initialization the shared run-time system files are opened and read
into memory. These shared run-time systems remain in memory as long as the system is running and are
never swapped out of memory even if there are no jobs actively using them.

The EMTs described below can be used to associate one or more shared run-time systems with a job. When
such an association is made, a portion of the Job’s virtual memory space is mapped to allow access to part
or all of one or more run-time systems.

9.1 Associating a run-time system with a job

The following EMT is used to associate a shared run-time system with a job. The form of the EMT is:

ENT 375
with RO pointing to the following argument area:

.BYTE 0,143
.WORD name-pointer

where name-posnter is the address of a two word cell containing the six character name of the shared run-time
system in RADS50 form. This name corresponds to the file name which was specified for the run-time system
when TSX-Plus was generated. If the name pointer value is zero, the effect of the EMT is to disassociate
all shared run-time systems from the Jjob and to re-establish normal memory mapping for the job. Note that
disassociating shared run-time systems in this manner also disassociates any existing real-time mapping.

If the run-time system whose name is specified with this EMT is not recognized, the carry flag is set on
return with an error code of 1.

The effect of this EMT is to associate a particular shared run-time system with the Jjob. However, this EMT
does not affect the memory mapping for the job or make the run-time system visible to the job; that is

145

146 CHAPTER 9. SHARED RUN-TIME SYSTEM SUPPORT

done by the EMT described below. If some other run-time system has been previously mapped into the
job's region, that mapping is unaflected by this EMT. Thus it is possible to have multiple run-time systems
mapped into the job’s region by associating and mapping them one at a time into different regions of the
job’s virtual memory space.

Example

.TITLE USERIS
ENABL LC

; Demonstration of TSX--Plus ENT to map to a shared run-time region
.NCALL .PRINT, .EXIT

Pil1 = 20000 ;Base address of PAL 1 window
START: NOV SUSERTS R0 ;Point to ENT arg block to
ENT 376 ;Associate a shared run-time region
BCC 14 ;Error?
.PRINT #NOSHRI :Can’t £ind named shared run-time
JEXIT
14: NOV #NAPRIS, R0 ;Point to ENT arg block to
ENT 376 ;Nap to shared run-time system
2¢: CALL Q#<PAR1+200> ;JEL to entry point in shared region
;which prints some data from there.
CLR <USERTS+2> ;Undeclare any shared run-times
NOV #USERTIS RO ;Point to ENT arg bloeck to
ENT 376 ;:Dissociate all shared regions
HISPR ;Go on with other processing
EXIT
USERTS: .BYIE 0,143 ;ENT arg block to associate
.WORD BHRNAN ;Pointer to file name
SHRNAM: .RADBO /RICON / ;Shared region file name
NAPRTS: .BYTE 1,143 :ENT arg block to map shared region
.WoRD 1 ;Map PAR 1
.MORD O ;0ffset into region
.WORD 1000/64. :8ize of region (64. byte blocks)
.NLIST BEX
NOSHRT: .ASCIZ /Can't find the shared run-time system./<T>
.END STARI

The example program RTCOM declared in the above program was defined during TSX-Plus system gener-
ation with the RTDEF macro as follows:

RTDEF <8Y RTCOM SAV>,RW,1

and the shared program itself was:

.TITLE 1TICON
.ENABL LC
; Demonstration shared run-time file
; (Position Independent Cods.)
.NCALL .PRINT
.NLIST BEX
.PSECT 1RICON,I ;RTDEF in TSGEN specifies
;skip 1 block so default start address of 1000 is 0K
START: .ASCII /This data vas produced by the /
.ASCIZ /RICON shared run-time region./

. = STARY + 200 ;Entry point for shared code
ENTRY:: NOV PC,R0 ;Find out vhere we are

8UB #<.-START> R0 ;Point back te data area

.PRINT R0 ;Display vhat is there

RETURN ;And go back to MAIN

.END ENIRY

9.2. MAPPING A RUN-TIME SYSTEM INTO A JOB’S REGION 147
9.2 Mapping a run-time system into a job’s region

Once a shared run-time system has been associated with a job by use of the previous EMT, the run-time
system (or a portion thereof) can be made visible to the Job by mapping it into the job’s virtual address
region. The form of the EMT to do this is:

ENT 376
with RO pointing to the following argument area:

.BYTE 1,143

.WORD par-region
.WORD run-time-offset
.WORD mapped-size

The par-region parameter is a number in the range 0 to 7 that indicates the Page Address Register (PAR)
that is to be used to access the run-time system. The PAR number selects the region of virtual memory
in the job that will be mapped to the run-time system. The following correspondence exists between PAR
numbers and virtual address regions within the job:

PAR | Address Range
0 000000-017777
1 020000-037777
2 040000057777
3 080000077777
4 100000-117777
5 120000187777
(] 140000-157777
7 160000-177777

The run-time-offset parameter specifies which portion of the run-time system is to be mapped into the PAR
region. The run-time-offset specifies the number of the 64-byte block within the run-time system where the
mapping is to begin. This makes it possible to access different sections of a run-time system at different
times or through different regions.

The mapped-size parameter specifies the number of 64-byte blocks to be mapped. If this value is larger than
can be contained within a single PAR region, multiple PAR regions are automatically mapped as necessary
to contain the entire specified section of the run-time.

If an error is detected during execution of the EMT, the carry-flag is set on return with an error code of 1
to indicate that there is no run-time system associated with the Jjob.

This EMT only affects the mapping of the PAR region specified in the argument block (2nd following PARs
if the size so requires). It does not affect the mapping of any other PAR regions that may previously have
been mapped to a run-time system. Thus a Job may have different PAR regions mapped to different sections
of the same run-time system or to different run-times. Real-time programs may map PAR 7 to the I/O page
and also map other PAR regions to shared run-time systems.

The memory size of a job is not affected by the use of the shared run-time control EMTs. That is, mapping
a portion of a job’s virtual address space to a shared run-time system neither increases nor decreases the
size of memory occupied by the job. If a Jjob’s size is such that a portion of its normal memory is under a
PAR region that is mapped to a run-time system, that section of its normal memory becomes inaccessible
to the job as long as the run-time system mapping is in effect, but the memory contents are not lost and
may be re-accessed by disassociating all run-time systems from the job.

Note that any of the PAR regions may be mapped to a run-time system including PAR 7 (160000—-177777).

Example

See the example program USERTS in section 9.1 on associating a run-time system with a job.

148 CHAPTER 9. SHARED RUN-TIME SYSTEM S UPPORT

0.3 Fast mapping to shared run-time regions

The following EMT allows a program to define a set of “regions” in one or more shared run-time systems.
The form of the EMT is:

ENT 376
with RO pointing to the following argument area:

.BYTE 2,143

.WORD par-number
.MORD offset

.MORD size

.WORD region-number

Up to 40 regions can be defined by each job. The TRAP instruction (rather than EMT) is then used to
cause a selected region to be mapped into the virtual address range of the job. The TRAP instruction is
used to avoid the overhead involved in general EMT processing. This method of mapping shared run-times
is approximately 10 times as fast as the method using EMT function 143, subfunction 1.

A region can be redefined to perform different mappings at different times, but most commonly a set of
regions is defined during program initialization and then the TRAP instruction is used to select the region
that is to be mapped as the program executes. The following information is required to define a region:

1. The region index. This is a number in the range 0 to 39 that identifies the region. This index number
is later used with the TRAP instruction to select the region being mapped.

9. The number of the Page Address Register (PAR) through which the region is to be mapped. PAR
numbers are in the range 0 to 7 and each PAR can map up to 8 Kb. One region is mapped through
one PAR (i.e., a region cannot span PAR'’s). Different regions can be mapped through different PAR’s.

3. The sige of the region. The size is specified in 64-byte units. Up to a full PAR (8 Kb) can be mapped
through a region.

4. The shared run-time system that is being accessed through the region.

5. The offset (in 84-byte blocks) from the beginning of the shared run-time system where the mapping is
to begin.

This EMT can return the following error codes:

Code | Meaning
1 | No shared run-time has been associated with job
2 | Region number is invalid
3 | Specified sise is greater than 128 units of 64-bytes (8 Kb)
5 | Specified offset is beyond the end of the run-time

The following sequence of operations must be performed to define and map regions:

1. Associate a shared run-time system with the job by use of the EMT with function code 148, subfunction
0 (see shared run-time chapter of the TSX-Plus Reference Manual). This does not cause any portion

of the run-time to be mapped into the job’s address space but simply specifies which run-time is being
referenced by subsequent EMT’s.

2. Use the new EMT with function code 148, subfunction 2, to define the regions of the run-time. This
simply defines the characteristics of the regions, it does not cause them to be mapped into the job’s
address space. You may define regions in different shared run-times by associating a different run-time
before you use the define-region EMT.

9.3. FAST MAPPING TO SHARED RUN-TIME REGIONS 149

3. When you are ready to map a region into the job’s address space, load R0 with the region number you
specified when you defined the region, and execute a “TRAP 1” instruction. The carry flag will be

cleared following TRAP if the mapping was successful. Carry flag being set indicates that an invalid
region number was specified in RO.

If any run-time regions have been defined by the job, the TRAP instruction is dedicated for use in region
mapping. If there are no defined run-time regions, the TRAP instruction can be used for other purposes as
before. All run-time region definitions are cleared when a program exits or chains. In addition, the following
EMT can be used to clear all run-time regions and return the TRAP instruction to its normal function:

ENT 376
with RO pointing to the following argument block:

.BYTE 3,143

150 CHAPTER 9. SHARED RUN-TIME SYSTEM SUPPORT

Chapter 10

Program Debugger

Programming errors can sometimes be very difficult to identify and correct without a detailed stepwise
examination of a program’s progress. Some higher level languages, like COBOL-Plus, include a debugging
tool that allows such examination. For programs written in MACRO assembly language or when it is
desirable to examine a program at the level of individual instructions, TSX-Plus provides a debugging
facility with the following features:

e The debugger is included as an optional system overlay and does not share memory space with the
program being debugged. This allows programs up to the full 64 Kb virtual address space to be run
with the debugger. It can also be used with programs which are mapped to the I/O page or which
use overlays, shared run-time systems, or extended memory regions (PLAS regions; virtual arrays or
overlays).

e The debugger does not have to be linked with the program being debugged. It can be invoked when
the program is executed by the RUN/DEBUG command.

® A keyboard command can be issued to permit debugging of any subsequent user program or utility
even if the program is not started with the RUN/DEBUG command.

e Execution of a program can be interrupted at any time by typing CTRL-D. This causes entry to the
debugger similar to hitting a breakpoint in the program.

e The debugger can decode instructions into symbolic assembly language.

¢ Program traps to 4 and 10 are caught by the debugger rather than causing a program abort with
return to the keyboard monitor, unless the program has issued a .TRPSET EMT.

¢ A data watchpoint facility is included which can cause an execution break to occur when the value of
a monitored data item is changed.

10.1 Debugger requirements

In order to make effective use of the debugger facility, it is necessary to have a link map of the program
being debugged. This minimizes the usefulness of the debugger for interpreted languages (e.g., BASIC)
and languages with a run-time system (e.g., DIBOL) unless one is interested in debugging the run-time
interpreter. For other high-level languages (e.g., FORTRAN and Pascal) the debugger is most useful for
small program sections for which the intermediate assembly code is available.

The debugger facility is an optional feature of TSX-Plus, included during system generation. Debugger
support must have been selected during system generation (DBGFLG=1) in order to use this feature.

151

152 CHAPTER 10. PROGRAM DEBUGGER

10.2 Invoking the debugger

The debugger need not be linked with the program being debugged. Programs may either be started under
debugger control with the RUN/DEBUG command, or can be interrupted while running by typing CTRL-D
if the SET CTRLD DEBUG command has been previously issued.

10.2.1 RUN/DEBUG switch

A program may be started under control of the debugger with the /DEBUG switch to the RUN command.
For example:

RUN/DEBUG PRGNAN

When a program is started under debugger control, the program is loaded and the debugger prompt appears.
For example:

RUN/DEBUG PRGNAN
T8X-Plus debugger
DBG:

Whenever the debugger is in control, the DBG: prompt will appear and the debugger will be ready to accept
a command.

On entry to the debugger, the program start address is loaded into RO and set so that program execution
may be initiated with the “;G” command without specifying a starting address. It is usually desirable to set
initial values for relocation registers and breakpoints before starting program execution.

10.2.2 CTRL-D Break

CTRL-D normally only interrupts program execution if the program has been started by the
RUN/DEBUG command. However, a keyboard command is available to enable CTRL-D to interrupt a
program and pass control to the debugger even if the program was not started under debugger control.
See the description of the SET CTRLD DEBUG command in the TSX-Plus User’s Reference Manual. If
CTRL-D interruption has been enabled, then any program may be interrupted and control transferred to
the debugger regardless of whether the program was started under debugger control. The effect is similar to
hitting a breakpoint at the current location. The same debugger commands and facilities are available when
the debugger is entered this way as when the program is started under debugger control. Note however,
that if the SET CTRLD DEBUG command has not been issued prior to starting a program’s execution
and that program is not started with the RUN/DEBUG command, then CTRL-D will have no special
effect on the program and debugger control cannot be obtained without restarting the program. The SET
CTRLD DEBUG command is local to each time-sharing line and must be invoked from that line to enable
CTRL-D breakpoints in programs which are not started with the RUN/DEBUG command. If a program is
started with the RUN/DEBUG command, then CTRL-D may be used to interrupt its execution regardless
of whether the SET CTRLD DEBUG command has been issued.

See the Special Notes section at the end of this appendix for information about interactions of CTRL-D
with special terminal mode and special activation characters.

10.3 BPT Instruction

A program which includes a BPT instruction can trigger execution of the system debugger. If a BPT
instruction is executed by a program which is not currently associated with the system debugger and location
14 (trap vector for BPT) in the program is sero (0), then the system debugger is entered with the instruction
that follows the BPT as the current instruction. If a program is already associated with the system debugger

(RUN/DEBUG or by a CTRL-D) when the BPT is executed, then the BPT does not cause entry to the
debugger.

10.4. COMMANDS 153
10.4 Commands

The commands and syntax of the debugging facility are similar to those of RT-11’s ODT. However, not all
ODT commands are implemented and some additional features are provided. In the following list of debugger
commands, angle brackets are used to indicate special terminal keys such as <RETURN>, <TAB> and
<LINE FEED>. The angle brackets are not part of debugger command syntax. Many commands accept a
numerical value or address, indicated here as value, address, repeat or n. The underlined portion should be
substituted with the appropriate number when issuing the command. The value is optional in some cases.
All numerical values are assumed to be octal unless terminated by a decimal point. The period character
() may be used to indicate the current value of the program counter; for example, see the address;nB
command to set an instruction breakpoint.

Debugger Commands

Command Meaning

address Display the contents of the addressed word.

address Display the contents of the addressed byte.

value<RETURN> Store value into the currently open cell. If value is omitted, close the current

location without changing its contents.

value<LINE FEED> | Store value into the currently open cell and then advance to the next word
or byte. If value is omitted, advance to the next location without changing
the value of the current location.

value® Store value into the currently open cell and then advance to the previous
word or byte. If value is omitted, back up to the previous location without
changing the contents of the current location.

<BACKSPACE> Equivalent to up-arrow (“°”).

a Open the cell whose address is specified by the contents of the currently
open cell.

- (underscore) Open the cell whose address is specified by the contents of the currently
open cell plus the current location plus 2.

address| . Open the cell whose address is specified and display its contents as a sym-

bolic instruction. If address is omitted, decode the contents of the currently
open cell into symbolic instruction form.

address| Open the cell whose address is specified and display its contents as a sym-
bolic instruction. If address is omitted and a cell is currently open as an
instruction, close the current cell and open the next cell and display its con-
tents in symbolic instruction format. The location of the next cell opened is
determined by the number of words used by the instruction in the currently
open cell.

value<TAB> Execute the next instruction in single step mode. It is not necessary to issue
the “1S” command to single step using the TAB key. If value is non-blank,
the value is used to calculate the address of the next instruction to be single
stepped (similar to “;15”, then value;P). If zero (0) is substituted for value
before <TAB> is typed and the next instruction is a JSR (CALL), then a
temporary breakpoint is set beyond the JSR to catch the return from the
called subroutine and the subroutine is executed without single stepping.

This can be used to avoid single stepping through subroutines called from
code that is being single stepped.

154 CHAPTER 10. PROGRAM DEBUGGER

Command Meaning

address;nR Set relocation base register n to address. There are 8 relocation registers,
numbered O through 7.

nR Convert the contents of the currently open cell into an offset relative to
relocation register n.

n! Convert the current address to an offset relative to relocation register n.

address;nB Set an instruction breakpoint at address. There are 8 instruction break-

points, numbered 0 through 7. To clear a breakpoint, substitute 0 for
address. The period character may be used to indicate the current value
of the program counter. For example, to set breakpoint 1 at the current

address:
.:1B
address;G Go to location address and start program execution there.
repeat;P Proceed from a breakpoint. If repeat is non-blank, do not break again until

repeat breakpoints have been hit. If repeat is omitted, proceed until the
next breakpoint is hit.

;nS Set or reset single stepping mode. If n is 1g(or any other non-zero value),
begin single step mode. When single stepping, execution will proceed one
instruction for each execution of the “;P” command. If n is 0 or is omitted,
single stepping mode is cancelled and the program will resume normal exe-
cution when the “;P” command is issued. (See also the <TAB> command.)

X Interpret the contents of the currently open word as a RAD50 value and
display it as a three character ASCII string. Up to three characters may
be entered after the current value is displayed. The new characters will
be converted to a RAD50 value and stored in the current location. Any
characters beyond the first three are ignored.

address;valueM | Set a data watchpoint. The word specified by address is monitored. If value
is specified, a data watchpoint occurs when the value of the word matches
value. It is possible to watch only selected bits of the monitored address by
setting the mask register (see $M and data watchpoint description below).
If value is omitted, a data watchpoint occurs any time the value of the word
changes.

10.5 CTRL-D breakpoints

When a program has been started by the RUN/DEBUG command, its execution can be interrupted at any
time by typing CTRL-D. (If the SET CTRLD DEBUG command has been issued, then the program need
not have been started under debugger control.) Typing CTRL-D causes the program to stop as though
a breakpoint had been encountered at the current location and passes control to the debugger. Any valid
debugger command may be issued at this point, and program execution may be resumed with the “P”
command. If a system service call (EMT) is being executed when CTRL-D is typed, the service call will

run to completion and control will be passed to the debugger at the point of return to the program from the
EMT.

See the Special Notes section at the end of this appendix for more information on interactions of CTRL-D
with special terminal mode and special activation characters.

10.6. ADDRESS RELOCATION 155

10.6 Address relocation

Address values in commands may be specified absolutely or in the form n, offset, where n is a relocation
register number and offset is the offset relative to that relocation register.

When an instruction is decoded into symbolic form, relative addresses are displayed in the form [n,offsct]
as an offset from the nearest relocation register whose value is lower than the address. The format register
($F) can be used to control the display format of addresses.

Only two bits are significant in the $F register, bits 0 and 1. Bit O controls the display of instruction address
operands, and bit 1 controls the display of location values. Setting either bit causes the corresponding
addresses to be displayed in absolute format. Clearing either bit causes the corresponding addresses to be
displayed in relative format. Both default to relative format ($F=0).

Address Display Format

$F | Locations | Operands
relative relative
relative absolute
absolute relative
absolute absolute

W= O

10.7 Internal registers

The following special address symbols are used to specify machine registers:

$0-35 | Registers RO through R5
$6 Register 8, the stack pointer (SP)
$7 Register 7, the program counter (PC)
$s Processor Status Word

The following special address symbols are used to specify internal debugger registers:

$M | Mask register, used with data watchpoints (see below)
$F | Print format control register (see above)

$B | Start of instruction breakpoint address registers

$R | Start of relocation registers

10.8 Data watchpoints

The data watchpoint facility is a powerful tool for determining where a particular data cell is being modified.
The form of the command used to initiate a watchpoint is:

address;valueM

where address is the address of the word that is to be monitored, and value is an optional parameter that
specifies a value to be watched for. If value is omitted, a data watchpoint occurs any time the value of the
word changes. If value is specified, a watchpoint only occurs when the value of the word matches the specified

value. When a watchpoint occurs, the program counter is pointing past the instruction which modified the
word.

A data mask may be specified to select a portion of the word being monitored with the watchpoint. The
mask value may be referenced using the register name “$M”. Initially the value of the mask is 177777 which

156 CHAPTER 10. PROGRAM DEBUGGER

causes the entire word contents to be monitored. If some other value is stored in $M, only the bits selected
by the mask are monitored.

Use of the data watchpoint facility causes the program to execute very slowly. When a watchpoint is in effect
the debugger causes a break to occur on each instruction executed and then checks to see if the monitored
data word has changed value. If a watchpoint is in effect but no instruction breakpoints are set, the execution
of the program is slowed down by a factor of about 55 (i.e., the program takes 55 times as long to execute).
If & watchpoint is in effect and instruction breakpoints are also set, the speed reduction factor is about 80.
There is no significant speed reduction when instruction breakpoints are set but no watchpoint is in effect.
The best strategy is to set an instruction breakpoint as close as possible to the code which is modifying
the data word and then, when that breakpoint is reached, remove the instruction breakpoint, set the data
watchpoint, and proceed with execution.

10.9 Symbolic instruction decoding

Symbolic instruction decoding is used to interpret values according to their numerical op codes and convert
them into symbolic assembly language format. The display format of address operands is controlled by the
$F register. When a breakpoint is reached, the instruction on which the breakpoint was set is displayed in
its symbolic form. Specific locations can also be symbolically decoded with the “[” and “]” operators.

The “[” command can be issued to symbolically decode a value which has just been displayed using the “/”
command or to symbolically decode the contents of a specific location. The following examples illustrate
how this might be done (the commands typed by the user are italicized):

DBG: 2030/ 010246 [MOV R2,-(8P) DBG:S$000/ BIT #2000, [3,100]

The “|” operator closes the currently open cell, opens the next cell and displays its contents in symbolic
instruction form. The number of words to skip from the currently open cell to the next cell is determined by
the number of words used by the instruction in the currently open cell. Thus, the “]” operator is convenient
for examining a consecutive set of instructions.

10.10 Special notes

Address location O is special to the debugger. For example, symbolic instruction decoding is not done for
address 0, and line-feed does not step to the next location after examining location 0.

Since CTRL-D is used by the debugger to dynamically interrupt a program, CTRL-D will not be passed
through to a running program even if the program is in special terminal input mode (TTSPC$ bit set in
the JSW). If the program is waiting for terminal input when CTRL~D is typed, then it is necessary to type

an activation character (usually <RETURN>>) before causing a break to occur and passing control to the
debugger.

If a program declares CTRL-D as a special activation character, then CTRL-D is always passed to the
program and cannot be used to cause a break in that program and pass control to the debugger.

When the debugger is operating in single step mode, normal breakpoints are temporarily removed and are
restored when leaving single step mode. A side effect of this is that if the program executes an instruction
(such as RTT) which clears the T (trace) bit in the processor status word, then single stepping is lost,
breakpoints are not restored and the program continues execution.

Breakpoints set in overlay regions are only valid while that overlay is resident. If another overlay becomes
resident, any breakpoints set in the previous overlay are lost and must be reset.

An attempt to set a break-point in a shared run-time region which is mapped as read-only will result in the
error:

7MON-F-Kernel mods trap within TS5X-Plus
Abort location = xxxxxx

10.10. SPECIAL NOTES 157

When examining the processor status word ($S register), keep in mind that only the low 4 bits (condition
codes) are significant to the program. The trace bit is used by the debugger. The priority bits are not
significant in user mode under TSX-Plus. And, the high 4 bits will always be set, indicating user as both
previous and current mode.

If the user program has issued a .TRPSET call, then traps to 4 and 10 are not intercepted by the debugger,
but are passed to the user program’s trap handling routine.

158 CHAPTER 10. PROGRAM DEBUGGER

Chapter 11

TSX—-Plus Performance Monitor
Feature

TSX-Plus includes a performance analysis facility that can be used to monitor the execution of a program
and determine what percentage of the run time is spent at various locations within the program. During
performance analysis, TSX-Plus examines the program being monitored when each clock tick occurs (50 or
60 times per second) and notes at what location in the program execution is taking place. Once the analysis
is completed the TSX-Plus performance reporting program (TSXPM) can be used to produce a histogram
showing the percentage of time spent at various locations during the monitored run.

There are three steps involved in performing a performance analysis on a program:

1. Use the MONITOR command to begin the analysis.
2. Run the program to be monitored.

3. Run the TSXPM program to print a histogram of the result.

11.1 Starting a performance analysis

The first step in doing a performance analysis is to use the MONITOR keyboard command to tell TSX-Plus
that a performance analysis is to be done on the program that will be run next. The form of the MONITOR
command is:

NONITOR base-address,top-address(,cell-size]/switches

where basc-address is the lowest address in the region to be monitored, top-address is the highest address
in the region to be monitored, and cell-size is an optional parameter that specifies the number of bytes of
address in the region being monitored to be grouped together into each histogram cell. If cell-size is not
specified, TSX-Plus calculates the cell size by dividing the number of bytes in the region being monitored
(base-address to top-address) by the total number of histogram cells available (specified when TSX~-Plus is
generated). This gives the finest resolution possible. The only available switch is /IO which causes I/O wait
time to be included in the analysis. If this switch is not specified, only CPU execution time is included in
the analysis. A link map of the program should be available to determine the addresses in the program that
are appropriate to monitor.

Examples

159

160 CHAPTER 11. TSX-PLUS PERFORMANCE MONITOR FEATURE

NONITOR 1000,13000/I10
NONITOR 20000,40000,10
MONITOR 2000,6000

The effect of the MONITOR command is to set up parameters within TSX-Plus which will be used to
monitor the next program run. It does not actually begin the analysis, so there is no rush in running the
program to be monitored. Once the MONITOR command has been issued, the program to be monitored is
run by using the standard RUN or R commands. If a program being monitored does a .CHAIN to another
program, the analysis continues and the times reported will be the composite of the programs run.

Only one user may be doing a performance analysis at a time. This is because the performance analysis
histogram buffer is a common memory area that may not be in use by more than one user at a time. An
analysis is in effect for a user between the time the MONITOR command is issued and the TSXPM program
is run to display the results of the analysis. Running the TSXPM program terminates the performance
analysis and allows other users to perform analyses. Note that space for the performance analysis data
buffer must be reserved when TSX-Plus is generated.

If the program to be monitored is overlayed and the region to be monitored is in the overlay area, the
analysis technique is more complex. In this situation, the EMTs described below must be used to control
the performance analysis as overlay segments are run in the segment being monitored.

11.2 Displaying the results of the analysis

After the program being monitored has exited and returned control to the keyboard monitor, the TSXPM
performance reporting program is used to generate a histogram of the time spent in the region being moni-
tored. The TSXPM program is started by typing R TSXPM; it responds by printing an asterisk (“+"). In
response to the asterisk, enter the file specification for the device/file where the histogram is to be written.
An optional switch of the form /M:nnn may be specified following the file specification. This switch is used
to specify the minimum percentage of the total run-time that a histogram cell must contain in order to be
included in the display. If this switch is not specified, the default cut-off percentage is 1%.

After receiving the file specification, TSXPM prompts for a title line. Enter a line of text which will be
printed as a page title in the histogram file. Press RETURN if you wish no title.

The next item of information requested by TSXPM is a set of base offset values. The base offset values are
optional. Base offsets are useful in the situation where you have several modules making up a program being
monitored and you want the addresses displayed on the performance analysis histogram to be relative to
the base of each module. You may specify up to 10 offset values. Each offset value is specified as an offset
module number (in the range 0 to 9) followed by a comma and the base address of the module (see example
below). If offset values are specified, TSXPM determines in which module each cell of the histogram falls
and displays the address as a module number and offset within the module. After you enter all desired
module offsets, enter RETURN without a value.

After the base offset values are entered, the histogram will be produced and written to the specified device
and file. After the histogram is generated, TSXPM prints the asterisk prompt again, at which point you

may enter the name of another device/file and produce the histogram again or you may type CTRL-C to
return to the keyboard monitor.

Example use of TSXPM

.R TSXPN

*LP:/N:B

Title:PERFORMANCE ANALYSIS OF EIGENVALUE CALCULATION
Base offsets:

>1,1000

>2,2134

>3,6212

>

(Histogram is produced at this point)
*<CTRL-C>

11.8. PERFORMANCE MONITOR CONTROL EMTS 161

The histogram produced by TSXPM consists of one line per histogram cell. Each line contains the following
information:

e the base module offset number (if offsets were specified)
e the address range covered by the histogram cell (relative to the module base if base offsets were used)
o the percentage of the total execution time spent at the address range covered by the histogram cell

o a line of stars presenting a graphic representation of the histogram

11.3 Performance monitor control EMTs

For most applications the method described above can be used to do a performance analysis. However,
in special cases (such as analyzing the performance of an overlayed program) it is necessary to have more
explicit control over the performance analysis feature as a program is running. The following set of EMTs
may be used to control a performance analysis.

11.3.1 Initializing a performance analysis

This EMT is used to set up parameters that will control a performance analysis. It does not actually begin
the analysis. The form of the EMT is:

ENT 376
with RO pointing to the following argument block:

.BYTE 0,136

.WORD base-address
.WORD top-address
.WORD cell-size
.WORD flags

where basc-address is the address of the base of the region to be monitored, top-address is the address of
the top of the region to be monitored, and cell-ssze is the number of bytes to group in each histogram cell.
If zero (0) is specified as the cell size, TSX-Plus calculates the cell size to use by dividing the number of
bytes in the region being monitored (top-address minus base-address) by the number of cells available in the
histogram data area (specified when TSX-Plus is generated). The flags parameter is used to control whether
or not I/O wait time is to be included in the analysis. If a value of 1 is specified as the flags parameter, I/O

wait time is included in the analysis; if a value of zero (0) is specified, I/O wait time is not included in the
analysis.

Error
Code | Meaning

0 | Performance analysis being done by some other user.
1 | Performance analysis feature not included in TSX-Plus generation.

Example

162 CHAPTER 11. TSX-PLUS PERFORMANCE MONITOR FEATURE

.TITLE DENOPA

.ENABL LC
; Demonstrate use of ISX--Plus ENTs to initialize, start, stop, and
; terminate & performance analysis

.NCALL .EXIT,.PRINT, .LOOKUP, .READY, .CLOSE,.ITYOUT

.GLOBL PRTOCT ;Display an octal word in RO
ERRBYT = B2 ;ENT error byte
SPACE = 40 ;ASCII ‘space’
STAR = b2 ;ABCII ‘asterisk’
START: NOV #INITPA,RO ;Point to ENT arg block to
ENT 376 ;Initialize the performance analysis
BCC 1) iNo error
NOVB Q¥ERRBYT,RO ;¥Yhich error?
ASL R0 ;Convert to word offset
.PRINT INIERR(R0) iPrint the error message
.EXIT iAnd depart this world of woe.
18 NOV #STRTIPA,RO ;Point to ENT arg block to
ENT 376 ;8tart the performance analysis
BCC 104 ;No error
PRINT #STRERR ;8tart error
JEXIT ;and depart.

104:
: Dummy section of code to do some 1/0 and computation for analysis
BEGIN: .LOOKUP #AREA,#0,#FILNAN
NOV #10,R1
: Disk I/0
18: .READY #AREA,#0,#BUFFEL, #256.,#0
80B Ri,14
.CLOSE #0
; Terminal I/0
.PRINT #BUFFER
; Compute bound
NOV #123466,13

2¢: NOV #12345,R0
CLL | 51
DIV #345,R0
80B 13,2¢
ENDB:
NCELLS = <<ENDB-BRGIN>/2> ;Number of cells in histogram
NOV #STOBLK R0 iPoint to ENT arg block to
ENT 376 i8top the performance analysis
BCC 15% ;Check for error return
.PRINT #STOERR ;0nly one error - PA not initialized
EXIT ;and leave.
166: NOV #HALBLK 0 ;Put HALTPA block address in R0
ENT 876 iTerminate the performance analysis
BCC 208 ;Check for errors
NOVB @#ERRBYT R0 ;Get error type
ABL R0 ;Convert to word offset
.PRLINT HLTERR(RO) iPrint out proper error message
.EXIT ;And depart.
208: 18T HALFLG iCheck HALIPA return flag
BPL 264 :No cell overflow?
.PRINT #OVRVYEN ;Issue overflov warning
26%: BIT #1 ,HALFLG ;I/0 time included?
BEqQ 30¢ iSkip message 1if not
.PRINT #I0VWNOT ;Print I/0 wait time included asg
i Print a histogram of the performance analysis
308: CLR) &.] i8et histogram cell counter
36§ CNP HSTIBL(RS),#64. iNormalize the table for 84. longest
BHI 408 ;Too many counts?
ADD #2,R3 ;Point to next cell
CNP R3,#<2+NCELLS> ;End of table?
BLE 364 iNo, repeat
BL [:{:]] +All cells less than 64. counts now
40%: cLr 13 ile-init. histogram cell counter
45%: CLC iDivide each cell count by 2

ROR HSTTBL(R3)

11.8. PERFORMANCE MONITOR CONTROL EMTS

ADD
CNP
BLE
BR
50§ : .PRINT
NOV
CLR
6568 NOV
CALL
.ITYOUT
MOV
BEQ
60%: LITYOUT
§0B
664 : .PRINT
CNP
:MP
BLE
JEXIT
INITPA: .BYIE
.WORD
.¥ORD
.YORD
.YORD
STRIPA: .BYIE

STOBLK: .BYIE
HALBLK: .BYIE
.¥ORD
.WORD
.WORD

PRNBUF: .BLEY

HALFLG: .¥ORD
HSTTBL: .BLKY
HSTEND:

AREA: .BLXY
BUFFER: .BLKY

.¥YORD
FILNAN: .RADBO
INIERR: .WORD
.WORD
HLTERR: .WORD
.YORD
.NLIST
INPRG: .ASCIZ
NOGEN: .ASCIZ
NOPA: .ASCIZ
TOSNAL: .ASCIZ
STRERR: .ASCIZ
BTOERR: .ASCIZ
OVRVRN: .ASCIZ
IOWNOT: .ASCIZ
OEDONE: .ASCIZ
HSTNSG: .ASCIZ
CRLF: .ASCIZ
.END

#2,13
13,#<2sNCELLS>
46¢

304

#HSTNSG
#BEGIN,12

13

22,20

PRTOCT

#SPACE
HSTTBL(R3) ,R1
6564

#STAL

11,608

#CRLF
(R2)+,(R3)+
13, #<2*NCELLS>
13}

0,136

BEGIN

ENDB-2

2

1

1,136

2,136

3,136

PRNBUF
HSTIBL
<HSTEND-HSTTBL>
3

0
<2sNCELLS>+2

10

266.

0

/DK DENOPANAC/
INPRG

NOGEN

NOPA

TOSMAL

BEX

;Point to next cell

;End of table?

;No, repeat

;Go check all cells again
;Caption histogram

;8et first analyzed address
;Init. cell counter

;Get ready to print it out
;Display analysed address
;For formatting

;Get address use counter
;No stars on 0 count

;Print a 's’ for each count

;Go to next line

;Point to next address and count

;End of histogram?

;No, display next cell

;Else done.

;ENT arg block for perform. analysis
;Start analysis address

;End analysis address

;Count 1 address in each cell
:Include IO wait time.

;Btart Performance Analysis ENT block
;ENT arg block to stop perf. analysis
;ENT arg block to release analysis
;PA parameter buffer address
;Histogram Table buffer address
;Histogram Table buffer length

;PA four word parameter buffer

;PA return flags

;Histogram table

;ENT arg block area

;Data input butfer

;Nake sure buffsr is ASCIZ
iRead this file
;Initialize PA error table

;sHALTPA Error message table

/1INITPA-F-Performance analysis being done by another user./
/tINITPA-F-Performance analysis feature not genned./
/THALTPA-F-This job is not doing a performance analysis./
/THALTPA-F-Area provided for histogram table too small./
/1INITPA-F-Performance analysis not initialized yet./
/1STOPPA-Z-Performance Analysis has not been initialized./
/THALTPA-¥-Some histogram cell(s) overflowed during analysis./
| HALTPA-I-I/0 wait time included in performance analysis.|

/ STOPPA-S8-Performance Analysis stopped./

/Address
<156><12><200>
BTART

Frequency/

11.3.2 Starting a performance analysis

163

This EMT is used to begin the actual collection of performance analysis data. The previous EMT must have
been executed to set up parameters about the performance analysis before this EMT is called. The form of

the EMT is:

ENT

376

with RO pointing to the following argument block:

164 CHAPTER 11. TSX-PLUS PERFORMANCE MONITOR FEATURE

.BYTE 1,136

The carry-flag will be set on return from this EMT if performance analysis has not been initialized yet.

Example

See the example program DEMOPA in section 11.8.1 on initializing a performance analysis.

11.3.3 Stopping a performance analysis

The following EMT can be used to suspend the data collection for a performance analysis. The data collection
can be restarted by using the start-analysis EMT described above. This EMT could, for example, be used
to suspend the analysis when an overlay module is loaded that is not to be monitored. The start-analysis
EMT would then be used to re-enable the data collection when the overlay of interest is re-loaded. The form
of this EMT is:

ENT 376
with RO pointing to the following argument block:
.BYTE 2,136
The carry flag will be set on return from this EMT if performance analysis has not been initialized yet.

Example

See the example program DEMOPA in section 11.3.1 on initializing a performance analysis,

11.3.4 Terminating a performance analysis

This EMT is used to conclude a performance analysis. It has the effect of returning into a user supplied

buffer the results of the analysis and releasing the performance analysis feature for other users. The form of
this EMT is:

ENT 376
with RO pointing to the following argument block:

.BYTE 3,136

.WORD parameter-buffer
.WORD histogram-buffer
.WORD buffer-size

where parameter-buffer is the address of a four-word buffer into which will be stored some parameter values
describing the analysis that was being performed, histogram-buffer is the address of the buffer that will
receive the histogram count values, and buffer-size is the size (in bytes) of the histogram buffer area.

The values returned in the parameter buffer consist of the following four words:
1. base address of the monitored region
2. top address of the monitored region
3. number of bytes per histogram cell

4. control and status flags

11.3. PERFORMANCE MONITOR CONTROL EMTS 165

The control and status flags are a set of bits that provide the following information:

Flag | Meaning
1 | I/O wait time was included in the analysis.
100000 | Some histogram cell overflowed during the analysis.

The data returned in the histogram buffer consists of a vector of 16-bit binary values, one value for each cell
in the histogram. The first value corresponds to the histogram cell that starts with the base address of the
region that was being monitored.

Error
Code | Meaning

0 | This job is not doing a performance analysis.

1 | Area provided for histogram count vector is too small.

Example

See the example program DEMOPA in section 11.3.1 on initializing a performance analysis.

166 CHAPTER 11. TSX-PLUS PERFORMANCE MONITOR FEATURE

Chapter 12

TSX—-Plus Restrictions

12.1 System service call (EMT) differences between RT—11 and
TSX-Plus

The following list describes the differences in the way TSX-Plus implements some RT-11 system service calls
(EMTs). If an EMT is not listed, it provides the same functions as described in the RT-11 Programmer’s
Reference Manual.

-.ABTIO Action depends on setting of IOABT system parameter. If IOABT is set to 1 then .ABTIO
operates the same as RT-11 and calls handler abort entry points. If IOABT is set to 0 then .ABTIO
does not call handler entry points, but instead does a WAIT on all channels. The default method of
handling I/O abort requests is chosen during TSX-Plus system generation with the IOABT parameter.
The 1/0 abort handling method may also be changed while TSX-Plus is running with the SET 10
[NOJABORT keyboard command. See the TSX-Plus System Manager’s Guide for more details on this
request.

-CDFN User jobs may not define more than 20 channels. If a .CDFN EMT is done, all channels are purged
if a .CHAIN is done. If .CDFN is not done, channels are not purged across & chain.

.CHCOPY Not implemented.

.CNTXSW Not implemented.

.CSIGEN/.CSISPC Differ from RT-11 with regard to activation by CTRL-C and CTRL-Z.
-DEVICE REALTIME privilege is required to use this EMT.

JDRxxx See the T'SX-Plus System Manager’s Guide for information on programming device handlers for
TSX-Plus.

-EXIT Error codes passed back from an exiting program (in byte 53) are interpreted by the keyboard
monitor according to the following values:

Code | Meaning
1 | Success

2 | Warning
4 | Error
10 | Severe
Fatal

20 | Unconditional

187

168 CHAPTER 12. TSX-PLUS RESTRICTIONS

FETCH Returns in RO the address specified for the handler load area. All TSX-Plus device handlers
are resident, hence the . FETCH EMT performs no operation. If the device handler specified was not
loaded during TSX-Plus initialization, then an error code of 0 is returned.

FORK May be used in device handlers but not in user jobs. See the TSX-Plus System Manager’s Guide
for information on programming device handlers for TSX-Plus.

.GTJIB The job number returned in word 1 of the result area is two times the TSX-Plus line number. That
is, the first line specified in the system generation will be number 2, the second 4, etc. Words 8 through
12 of the result area are not altered by this EMT.

.GTLIN Differs from RT-11 with regard to activation by CTRL-C and CTRL-Z. If the program controlled
terminal option N is used to suspend command file input and a .GTLIN request is issued, then command
file input cannot be restored. Do not use this method to force keyboard input from within command
procedures. Use the optional type argument to the .GTLIN request to force terminal input rather than
disabling command file input.

.GVAL Not all of the fixed offsets documented by RT-11 are supported by TSX-Plus. Additional negative
offsets are available to obtain TSX-Plus system values. See Chapter 4 for more information on .GVAL.

_HRESET Action depends on setting of IOABT system generation parameter. If IOABT is set to 1 then
_HRESET calls handler abort entry points. If IOABT is set to 0 then .HRESET does not call handler
entry points but instead does a WAIT on all channels. Messages queued on named message channels
are not canceled. Otherwise, this EMT operates the same as under RT-11.

JINTEN May be used in device handlers but not in user jobs. See the TSX-Plus System Manager’s Guide
for information on programming device handlers for TSX-Plus.

LOCK The TSX-Plus file management module (USR) is always resident and the .LOCK EMT is ignored.

MAP When issuing a .MAP EMT, the window definition block must specify a non-zero region ID returned
from the successful creation of a region by use of the .CRRG EMT. A gzero region ID will return the
error code 2.

.MRKT Expiration of repeated mark-time requests can cause delay of an outstanding .TWAIT request.
MTcx Multi-terminal control EMTs (.MTIN, .MTOUT, .MTPRNT, etc.) are not supported.

MTPS The processor priority level may not be changed from user mode, hence this macro performs no
operation. TSX-Plus provides a special real-time EMT to set the processor priority.

MWAIT Not supported. See Chapter 6 on inter-job message communication.

PEEK Non-privileged jobs may use .PEEK to access cells within the simulated RMON (addresses 160000
to 160626) although the .GVAL EMT is a recommended alternative. Jobs with MEMMAP privilege
may use .PEEK to access the I/O page or low memory cells in kernel space. References to addresses

in the virtual address range of the simulated RMON (160000 to 160626) are always directed to RMON
rather than the I/O page.

.POKE Non-privileged jobs may use .POKE to access cells within the simulated RMON (addresses 160000
to 160626) although the .PVAL EMT is a recommended alternative. Jobs with MEMMAP privilege
may use .POKE to access the I/O page or low memory cells in kernel space. References to addresses

in the virtual address range of the simulated RMON (160000 to 160628) are always directed to RMON
rather than the I/O page.

PROTECT Not supported. See Chapter 8 on real-time programming for information about how to connect
an interrupt to a TSX-Plus job.

.QSET TSX-Plus uses an internal pool of I1/0 queue elements for all jobs hence it is not necessary to define

additional I/O queue elements in order to perform overlapped 1/O. The .QSET EMT is ignored. On
return, RO contains the address specified for the start of the new elements.

12.2. SPECIAL PROGRAM SUGGESTIONS 169

RCVD Not supported. See Chapter 8 which describes inter-job message communication.
.RELEAS This EMT is ignored. Refer to .FETCH.
.SCCA All .SCCA requests are treated as local to the job which issues the request. Global SCCA is ignored.

-SETTOP Returns the job limit in RO but does not actually expand or contract the allocated job region.
The job region allocation can be changed by use of the MEMORY keyboard command or the TSX-Plus
specific EMT for this purpose.

.SDAT Not supported. See Chapter 6 which describes inter-job message communication.

.SFPA. This EMT functions the same as RT-11. It must be used if a job is going to use the floating-point
unit.

SDTTM OPER privilege is required to use this EMT.

-SPFUN SPFUN privilege is required to use this EMT. SPFUN function code 371 (BYPASS) is unsup-
ported with the DU handler on extended Unibus hardware and with the MU handler in all configura-
tions.

SRESET Messages queued on named message channels are not canceled. Otherwise, this EMT operates
the same as under RT-11.

.SYNCH May be used in device handlers but not in user jobs. When used in a handler, the number of the
T'SX-Plus job that is being synchronized with must be stored in word 2 of the SYNCH block. See the
TSX-Plus System Manager’s Guide for information on programming device handlers for TSX-Plus.

TLOCK This EMT is ignored.

-TTINR Only honors bit 6 in the Job Status Word (TCBITS$) if a SET TT NOWAIT command has been
issued, or the running program has send the “U” program controlled terminal option to the system,
or the program was R[UN] with the /SINGLECHAR switch.

-TTOUTR Returns with the carry bit set if the terminal output buffer is full. The following conditions
rmust be met:

1. The .TTOUTR EMT must be used rather than .TTYOUT.

2. The instruction following the . TTOUTR must not be [BCS .-2].

3. Bit 6 must be set in the job status word.

4. The program must be run in single character activation mode or with the NOWAIT attribute set.

TTYOUT If many characters are displayed by .TTYOUT requests from within a completion routine while
a log file is open, then the job may hang.

TWAIT Expiration of repeated mark-time requests can cause delay of an outstanding .TWAIT request.
JUNLOCK This EMT is ignored.

JUNPROT Not supported. See Chapter 8 on real-time programming for information about how to connect
an interrupt to a TSX~Plus job.

A full list of RT-11 compatible and TSX-Plus specific EMTs is included in Appendix B. The list indicates
the level of support TSX~Plus provides for each RT-11 compatible EMT.

12.2 Special program suggestions

Certain programs use system resources in ways which may not seem obvious or cause behavior which is not
expected. Some of those features are described in this section to facilitate their use with TSX—Plus.

170 CHAPTER 12. TSX-PLUS RESTRICTIONS

12.2.1 DIBOL

When DIBOL programs are run under TSX-Plus they must use SUD rather than TSD. Several components
of the DIBOL system also use I/O channel numbers above 15 (decimal). Reducing the TSGEN parameter
NUCHN from the default of 20. can result in the error ?INI-ES or 7INI-E4 when using DIBOL or its utilities.
This can be resolved either by patching SUD or the utility to use lower channel numbers or by regenerating
TSX-Plus to permit use of higher channel numbers. Set the TSGEN parameter NUCHN to 20., reassemble
TSGEN, and relink TSX-Plus.

Keep in mind that record locking does not automatically occur when DIBOL is used with TSX-Plus and
unless the appropriate TSX-Plus record locking calls are made there is a danger of file corruption. Ap-
pendix D describes subroutines which may be linked into DIBOL programs to provide access to TSX-Plus
record locking and inter-program messages. Do not use the DIBOL SEND statement, use an equivalent
XCALL MSEND instead.

12.2.2 FILEX utility

The FILEX utility is used to read and write “Interchange” format disks. Because of the way FILEX does 1/O
to single density disks in RX02 drives, FILEX must either be run with the MEMLOCK switch or installed
with the MEMLOCK attribute.

12.2.3 FORTRAN virtual arrays

When the object-time system for FORTRAN-1V is generated, three options are available relating to use of
virtual arrays: NOVIR, VIRP, or VIRNP. If virtual arrays are to be used at all, either VIRP or VIRNP must
be selected. Under RT118J, the VIRNP option is commonly selected. This causes FORTRAN virtual array
handling to directly manipulate the memory management registers in the I/O page. Clearly, in a multi-user
environment, like TSX-Plus, this is not advisable. The VIRP option is used with RT11XM and must also
be selected for use with TSX—-Plus. TSX-Plus must also be generated with PLAS support; see your system
manager. If the wrong type of virtual array support is selected, various types of FORTRAN errors may
occur, including virtual array initialization failures.

F17 and FORTRAN-IV use PAR 7 to map to virtual arrays. (Page Address Register 7 maps virtual addresses
160000 to 177777.) TSX-Plus normally maps a job’s PAR 7 to a simulated RMON so that older programs
which require direct access to fixed offsets in RMON may operate without modification. When a program
requires direct access to the I/O page to manipulate device registers, that is commonly done by mapping
PAR 7 to the I/O page. This can either be done with the /IOPAGE switch to the R[UN] command or with
a TSX-Plus EMT. Mapping PAR 7 to the 1/O page only conflicts slightly with direct RMON access since

the parameters available there may also (and should be) obtained with the .GVAL request (SYSLIB ISPY
function).

Because use of virtual arrays also affects PAR 7 mapping, mapping PAR 7 to the I/O page causes more
severe problems when programs must have both virtual arrays and direct I/O page access. The solution to
this is to map some other part of the job’s virtual address space to the I/O page. TSX-Plus provides an EMT
to map any part of a job’s address space to any physical region, including the I/O page. See Chapter 8 for
information on mapping to a physical region to resolve the virtual array vs. I/O page conflict. The simplest
way to do this is to allow PAR 7 to be used for virtual arrays and map PAR 6 to the I/O page. To avoid
conflict with other parts of the program image, the program must be able to run in less than 48 Kb. Use the
SETSIZ facility to restrict the program to a total memory space of 48 Kb. Call a MACRO interface routine
from the FORTRAN program to map PAR 6 to the I/O page. Be sure to normalize I/O page addresses to

virtual PAR 6 addresses. Note that mapping to the I/O page or to physical memory requires MEMMAP
privilege.

12.2.4 IND .ASKx timeouts

When using the IND control file processor, the .ASKx directives provide an optional timeout parameter.
This parameter causes IND to proceed when no terminal response is obtained before the designated timeout

period. When using .ASKx timeouts under TSX-Plus, it is necessary to SET TT NOWAIT to permit IND
to proceed when the timeout period expires.

12.2. SPECIAL PROGRAM SUGGESTIONS 171

12.2.5 MicroPower/Pascal

Various program components of MicroPower/Pascal (TM of Digital Equipment Corporation) should be run
as virtual programs. That is, they should run without direct RMON access. Under TSX-Plus, this permits
them to obtain a virtual job address space of a full 84 Kb. TSX-Plus must also be generated to allow 64 Kb
jobs. To define the Pascal compiler and the PASDBG and MIB programs as virtual jobs, use the SETSIZ
program (see Appendix A) to allow a 64 Kb memory partition for them. For example:

.R SETSIZ
*SY:PASDBG/T:64.
*~C

12.2.6 Overlaid programs

TSX-Plus permits programs to open I/O channels O through 23 (octal). However, the overlay handler uses
channel 17 (octal). Therefore, overlaid programs should not use I/O channel 17 (octal).

172 CHAPTER 12. TSX-PLUS RESTRICTIONS

Appendix A

SETSIZ Program

The SETSIZ program can be used to store into a SAV file information about how much memory space should
be allocated for the program when it is executed. SETSIZ can also be used to set the virtual Jjob flag in the
job status word (JSW) for a program.

There are three ways that the amount of memory allocated to a Job can be controlled:

o The TSX-Plus EMT with function code 141 (described in Chapter 4 may be used by a running program
to dynamically set the job’s size.

o If a size is specified in a SAV file (by use of the SETSIZ program) the specified amount of memory is
allocated for the program when it is started.

e If no size is specified in the SAV file, the sive specified by the last MEMORY keyboard command is
used.

Note that the .SETTOP EMT does not alter the amount of memory space allocated to a job but can be
used by a running program to determine the amount of memory allocated.

The effect of the SETSIZ program is to store into location 56 of block 0 of the SAV file the number of
kilowords of memory to allocate for the program when it is run (the LINK /K:n switch can also be used to
do this). This value has no effect when the SAV file is run under RT-11 but causes TSX-Plus to allocate
the specified amount of memory when starting the program.

If a size value is specified in a SAV file, it takes precedence over the size specified by the last MEMORY
keyboard command. The TSX-Plus EMT with function code 141 may still be used to dynamically alter the
memory allocation while the program is running.

Most programs allocate memory in two ways:

e a static region that includes the program code and data areas of fixed size

e a dynamic region that is allocated above the static region—usually the .SETTOP EMT is used to
determine how much dynamic space is available to the program.

The size of the static region for a program is fixed at link time. If the program is overlaid the static region
includes space for the largest overlay segment as well as the program root. Location 50 in block 0 of the
SAV file is set by the linker to contain the address of the highest word in the static region of the program.

The amount of memory space to be allocated for a SAV file can be specified to the SETSIZ program in either
of two ways:

* as the total amount of memory for the program which includes space for the static plus dynamic regions

e as the amount of memory for the dynamic region only, in which case SETSIZ automatically adds the
size of the static region.

173

174 APPENDIX A. SETSIZ PROGRAM

A.1 Running the SETSIZ program

The SETSIZ program is started by use of the command:
R SETSIZ

it responds by displaying an asterisk to prompt for a command line. The form of the command line is:
*filespec/switch:value

where filespec is a file specification of the standard form dev:name.ext with the default device being DK and
the default extension being .SAV. ‘

If a file specification is entered without a switch, SETSIZ displays information about the size of the SAYV file
and the SAV file is not altered.

SETSIZ also displays the following status message if the SAYV file is flagged as being a virtual image.
Virtual-image flag is set
The virtual message is displayed if either of the following two conditions exist for the SAYV file:

e Bit 10 (mask 2000) is set in the job status word (location 44) of the SAYV file.
e Location 0 of the SAV file contains the RAD50 value for VIR.

These are the same two conditions that cause TSX-Plus to recognize the SAV file as being a virtual image
when it is started.

Examples

.R SETSIZ

*TSTPRG

Base size of program is 22 Kb
S8ize of allocation space is 28 Kb
*8Y:PIP

Base size of program is 10 Kb
8ize of allocation space is 22 Kb
*PROG1

Base size of program is 31 Kb

No allocation size specified in SAV file
Virtual-image flag is set

A.2 Setting total allocation for a SAYV file

The /T switch is used to specify the total amount of memory space to be allocated for a program when it is
run. The form of the /T switch is /T:value. where value is the number of kilobytes of memory to allocate.
Note that a decimal point must be specified with the value if it is entered as a decimal value.

If the /T switch is used without a value, the effect is to clear the TSX-Plus size allocation information in
the SAYV file.

Examples

.R BETSIZ
*SY:PIP/T:18.
*TSTPRG/T:32.
*PROGL/T

A.8. SETTING AMOUNT OF DYNAMIC MEMORY SPACE 175

A.3 Setting amount of dynamic memory space

The /D switch is used to specify the amount of dynamic memory space to be reserved for a program. The
SETSIZ program calculates the total amount of space to allocate for the program by adding the static size
(stored in location 50 of the SAV file by LINK) to the specified dynamic size. The form of the /D switch is
/D:value. where value is the number of kilobytes of dynamic memory space to reserve. If a program does
not use any dynamic memory space, the /D switch may be used without an argument value to cause the
total memory space allocation to be set equal to the static size of the program. FORTRAN programs use
dynamic space for I/O buffers and the exact amount required depends on the number of I/O channels used.
However, 4 Kb of dynamic memory space seems to be adequate for most FORTRAN programs.

Examples

.R SETSIZ
»SY:PIP/D:11.
*TSTPRG/D:4.
«PROG1/D

A.4 Setting virtual-image flag in SAYV file

The /V switch is used to cause SETSIZ to set the virtual-image flag in the SAV file. This flag is bit 10
(mask 2000) in the job status word (location 44) of the SAV file.

Setting this flag indicates that the program will not directly access RMON, although it may do so indirectly
by use of the .GVAL and .PVAL EMTs. The significance with regard to TSX-Plus is that it allows the
program to use more than 56 Kb (if that much memory is also allowed by use of a MEMORY command).

The virtual-image flag should not be set unless you are sure the job does not need direct access to the RMON
area.

176 APPENDIX A. SETSIZ PROGRAM

Appendix B

RT-11 & TSX-Plus EMT Codes

B.1 TSX-Plus RT-11 Compatible EMTs

In the following table, the level of compatibility with the RT-11 functionality of these EMTs is indicated by
a special character in the Code column. The codes are:

* Not supported, will cause error
0 Treated as a nul operation (NOP)
— Minor differences, see Chapter 12

EMT Code Chan Name Description

340 - TTINR Get character from terminal
341 TTYOUT Send character to terminal
342 .DSTATUS Get device information

343 - .FETCH/.RELEAS Load/Unload device handlers
344 .CSIGEN Call command string interpreter
345 .CSISPC/.GTLIN Get command line

346 0 .LOCK Lock USR in memory

347 0 .UNLOCK Allow USR to swap

350 EXIT Return to monitor

351 .PRINT Display string at terminal
352 - .SRESET Software reset

353 0 .QSET Increase 1/0 queue size

354 - .SETTOP Set program upper limit

355 .RCTRLO Reset CTRL-O

357 - HRESET Stop I/O then .SRESET

177

178

EMT

374
374
374
374
374
374
374
374
374
374
374
374
375
375
375
375
875
375
375
375
375
375
375
375
375
375
375
375
375
375
375
375
375
375
375
375
375
375
375

Code

Name

WAIT
.SPND
RSUM
PURGE
SERR
HERR
.CLOSE
.TLOCK
.CHAIN
MWAIT
DATE
.ABTIO
DELETE
.LOOKUP
ENTER
.TRPSET
RENAME
SAVESTATUS
REOPEN
.CLOSE
READ|C|[W]
.WRIT|C|[E][W]
WAIT
.CHCOPY
DEVICE
.CDFN
.GTJB
GTIM
MRKT
.CMKT
TWAIT
SDAT|C|[W]
RCVD[C|[W]
.CSTAT
SFPA
.PROTECT
.UNPROTECT
.SPFUN
.CNTXSW

APPENDIX B. RT-11 & TSX-PLUS EMT CODES

Description

Wait for I/O completion
Suspend mainline program
Resume mainline program
Free a channel

Inhibit abort on error

Enable abort on error

Close channel

Try to lock USR

Pass control to another program
Wait for message

Get current date

Abort I/O in progress

Delete a file

Open existing file

Create file

Intercept traps to 4 and 10
Rename a file

Save channel information
Restore channel information
Close channel

Read from channel to memory
Write from memory to channel
Wait for I/O completion
Open channel to file in use
Load device registers on exit
Define extra I/O channels
Get job information

Get time of day

Schedule completion routine
Cancel mark time

Timed wait

Send data to another job
Receive data from another job
Return channel information
Trap floating point errors
Control interrupt vector
Release interrupt vector
Special device functions
Context switch

B.1.

EMT Code
375 34
375 - 34
375 34
375 - 34
375 35
375 36
375 36
375 36
375 36
375 36
375 36
375 36
375 * 37
375 * 37
375 * 37
375 * 37
375 * 37
375 * 37
375 * 37
375 * 37
375 * 37
375 40
375 41
375 42
375 43

LW = O

= e o ot O = OO®Utd O =0

o

Name

.GVAL
.PEEK
.PVAL
.POKE
.SCCA
.CRRG
.ELRG
.CRAW
.ELAW
.MAP
.UNMAP
.GMCX
.MTSET
MTGET
MTIN
MTOUT
MTRCTO
MTATCH
.MTDTCH
MTPRNT
MTSTAT
SDTTM
.SPCPS
.SFDAT
.FPROT

TSX-PLUS RT-11 COMPATIBLE EMTS 179

Description

set monitor offset value

Get low memory value

Change monitor offset value
Change low memory value

Inhibit CTRL-C abort

Create an extended memory region
Eliminate an extended memory region
Create a virtual address window
Eliminate a virtual address window
Map virtual window to XM region
Get window mapping status
Obtain window status
Set. terminal status

Get terminal status

Get character from terminal
Send character to terminal
Reset CTRL-O
Lock terminal to job
Release terminal from job
Display string at terminal

Get system status

Set date and time

Change mainline control flow
Change file date

Change file protection

180

APPENDIX B. RT-11 & TSX-PLUS EMT CODES

B.2 TSX-Plus Specific EMTs

EMT

375
375
375
375
375
375
375
375
375
375
375
375
375
375
375
375
375
376
375
375
375
375
375
375
375
375
375
375
375
375
375
375
375
375
375
375
375
375

Code

101
102
103
104
105
106
106
107
110
110
111
113
114
115
116
116
117
120
121
122
123
125
127
132
132
132
183
133
134
135
185
135
135
135
136
136
136
1368

Chan

OO~ O OO0 OO OO OCQ
\ >
-

(=]

(2]

W&HOU\'&@NOOHONHO?

Name

UNLALL
LOCKW
TLOCK
SNDMSG
GETMSG
WATMSG
MSGCPL
SPLFRE
TSXLN
SUBPLN
ACTODT
UNLOCK
TTOBLK
TTIBLK
CKTTIE
GTINCH
SETTTO
HIEFF
CKWSHR
SAVSHR
CKACT
SHRFIL
SEND
STRTDJ
STATDJ
ABRTDJ
DCLBRK
TTICPL
MOUNT
DISMNT
DMTFLS
DMTLD
LDSTAT
DMTALD
INITPA
STRTPA
STOPPA
HALTPA

Description

Unlock all blocks

Wait for locked block

Try to lock a block

Send message on named channel
Get message from named channel
Wait for message on named channel
Queue message receipt completion routine
Get number of free spool blocks

Get line number

Get subprocess line number
Reset/set ODT activation mode
Unlock a block

Send block of text to terminal

Get block of text from terminal
Check for terminal input errors

Get number of pending input characters
Set terminal read time-out
Reset/set high-efficiency mode
Check for writes to shared file

Save shared file information

Check for activation characters
Declare file for shared access

Send message to another line

Start a detached job

Check detached job status

Abort a job

Establish break sentinel control

Set terminal input completion routine
Mount a directory structure
Dismount a directory structure
Dismount all mounted file structures
Dismount a logical disk

Get the status of a logical disk
Dismount all logical disks

Initiate performance analysis

Start monitoring performance

Stop monitoring performance
Terminate performance analysis

B.2.

EMT

375
375
375
375
375
375
375
375
375
375
375
375
375
375
375
375
375
375
375
375
375
375
375
375
375
375
375
375
375
375
875
375
375
375
875
375
375
375
375
375

Code

137
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
141
143
143
143
143
144
145
146
147
147
147
147
150
150
151
152
158
154
154
154
154

Chan

DU BN~ OO

O N = O

LN ~=OO0O0o

TSX-PLUS SPECIFIC EMTS

Name

TTYPE
PHYADD
PEEKIO
POKEIO
BISIO
BICIO
MAPIOP
MAPMON
LOKLOW
UNLOKJ
ATTVEC
RELVEC
LOKJOB
STEALS
RTURNS
SETPRI
MAPPHY
ATTSVC
SCHCMP
MEMTOP
USERTS
MAPRTS
REGRTS
CLRRTS
JSTAT
FILINF
SFTIM
GTUNAM
STUNAM
GTPNAM
STPNAM
SJBPRI
GSJPRV
SPHOLD
SELOPT
NONINT
STTSPD
STTXON
RTTDTR
LTTDTR

181

Description

Get terminal type

Convert virtual to physical address
Peek into the I/O page

Poke into the I/O page

Bit-set into the I/O page
Bit-clear into the I/O page
Map PART to the I/O page
Map PAR7 to simulated RMON
Lock job into lowest memory
Unlock job from memory
Attach to interrupt vector
Release interrupt vector

Lock job without re-positioning
Get exclusive system access
Relinquish exclusive system access
Set user mode priority level
Map to physical memory
Attach interrupt service routine
Schedule completion routine
Control size of job

Associate with run-time system
Map run-time system into job
Define a region for fast map
Clear region definitions for fast map
Get job status information

Get file directory information
Set file creation time

Get user name

Set user name

Get program name

Set program name

Set job execution priority

Get or set job privileges

Set spooler HOLD/NOHOLD
Select terminal option

Set [non]interactive job status
Set line baud rate

Reset line XOFF status

Raise line DTR

Lower line DTR

182

EMT

375
375
375
375
375
875
375
375
375
375
375
375
375
375
375
375
375
375

Code

155
156
156
156
157
157
157
160
161
161
161
161
161
161
162
162
162
163

Chan

NHOO\#“NHOO!@HCNHOO

Name

GETCL
ALCDEV
DEALOC
TSTALC
MONJOB
NOMONJ
STAMON
GETCXT
MAKWIN
SELWIN
DELWIN
SPNWIN
RSMWIN
PRTWIN
GISUBP
INISBP
GOSUBP
MNTLD

APPENDIX B. RT-11 & TSX-PLUS EMT CODES

Description

Assign CL unit to a line

Allocate a device for exclusive use
Deallocate a device from exclusive use
Test device exclusive use allocation
Start monitoring job status

Stop monitoring job status

Broadcast status to monitoring jobs
Acquire another job’s file context
Create a refreshable process window
Select current process window

Delete a process window

Suspend window processing

Resume window processing

Print window contents (via WINPRT)
Initiate or switch to a subprocess
Initiate a subprocess

Switch to a subprocess

Mount a logical disk

Appendix C

Subroutines Used in Example
Programs

C.1 PRTOCT—Print an octal value

The following subroutine accepts a value in RO and prints the six-digit octal representation of that value at
the terminal.

.TITLE PRTOCT
.ENABLE LC
; Print octal value of the word in RO
.NMCALL .PRINT
.GLOBL PRTOCT
PRTIOCI: MOV R1,-(SP) ;Bave R1-R3 on the stack
MOV R2,-(SP)
NOV 13,-(8P)

NOV #EOVY, 22 ;Point to end of 6 char output buffer
NOV #6,R3 i8et up counter for ¢ chars
1¢: NOV RO,R1 ;Set up mask for low 8 bits (1s daigit)
BIC #177770,21 ;Get low 3 bits
ADD #'0,01 ;Convert to ASCII
MOVB R1,-(R2) ;Fill octal digits in from end
CLC
ROR R0
ASH #-2,R0 ;8hift out bits Just converted
S0B R3,1$;lepeat for 6 chars
.PRINT #CHARS iDisplay result at console
NOV (SP)+,13 ;Restore registers R1-13
MOV (8P)+,22
NOV (8P)+,01
RETURN
CHARS: .BLXB ¢ ;6 char output buffer
EO¥: ASCII <200> iNo CRL terminator for .PRINT
.EVEN
.END

C.2 PRTDEC—Print a decimal value

The following subroutine accepts a value in RO and prints the decimal representation of that value at the
terminal with no leading geroes.

188

184 APPENDIX C. SUBROUTINES USED IN EXAMPLE PROGRAMS

.TITLE PRTDEC
.ENABL LC
; Print the decimel value of the word in RO
.NCALL .PRINT
.GLOBL PRTDEC

PRIDEC: NOV 21,-(SP) ;8ave 11 and 12
NOV 22,-(SP)
NOV #BUFEND ,R2 ;Point to end of output buffer
NOV R0,R1 ;8et uwp for DIV

14: CcLR RO ;Clear high word for DIV
DIV #10.,RO ;Get least significant digit
ADD #'0,R1 ;:Nake remainder into ASCII
NOVB B1,-(R2) ;Save @digit in output buffer
NOV R0,R1 ;Bet up for next DIV
BNE 14 ;0ntil nothing left
.PRINT 12 ;Display number at the terminal
NOV (SP)+,R2 ;Restore ki and 12
NOV (sP)+,R1
RETURN
.BLKB b ;6 char output buffer

BUFEND: .BYIE 200 ;No CL terminator for .PRINT
.EVEN
.END

C.3 PRTDE2—Print a two-digit decimal value

The following subroutine accepts a value in RO and prints the decimal representation of it at the terminal.
The value must be in the range of 0 to 99.

.TITLE PRIDE2
.ENABLE LC
; Print a 2-digit decimal value from RO
.NCALL .PRINT
.GLOBL PRIDE2
PRTDE2: MOV R1,-(SP)
NOV 22,-(SP)
NOV 13,-(5P)

NOV 20,R1 ;Get copy of char in R1
NOV #<BUFFER+2>,02 ;Point to buffer
NOVB #200, (R2) ;8et end for .PRINT
NOV #2,R3

28 CLR 10 ;Clear high word for DIV
DIV #10.,R0 ;Get low digit
ADD #'0,R1 ;Convert low digit to ASCII
NOVB R1,-(R2) ;Put digit in char buffer
MOV RO,R1 ;Roll quotient for next DIV
80B 13,24 ;Two digits only
.PRINT #BUFFER ;Display the result
NOV (SP)+,k3
NOV (sP)+,R2
NOY (sP)+,k1
RETURN

BUFFER: .BLIB €
.EVEN
END

C.4 PRTR50—Print a RAD50 word at the terminal

The following subroutine accepts a one word RAD50 value in RO and prints its ASCII representation at the
terminal.

C.5. R50ASC—CONVERT A RAD50 STRING INTO AN ASCIZ STRING 185

.TITLE PRIRGO
.ENABL LC
i Display the RADGO value of a word passed in R0
.NCALL .ITYOUT
.GLOBL PRTR50

PRTREO: NOV 11,-(SP) iNeed place to store last char
MoV R4,-(8P) ;Need R4 and 15 for DIV
MOV R6,-(SP)
NOV 10,R6 ;Get copy of r0 into dividend
CLR R4 ;Zero high word for DIV
DIV #50,R4 ;Extract last char
NOV RE,R1 ;8ave last char (remainder)
NOV R4,R6 ;Nove quotient for next DIV
CLR) 8 ;Zero high word for second DIV
DIV #5650 ,24 ;Get first and second chars
.TIYOUT RGOTBL(R4) ;Display first char (quotient)
.ITYOUT RG0TBL(RE) ; and second char (remainder)
.TTYOUT RBOTBL(R1) i and last char
NOY (8P)+,k6 ;Restore registers
Nov (sP)+,R4
NOV (SP)+,21
RETURN
.NLIST BEX

RBOTBL: .ASCII / ABCDEFGHIJELMNOPQRSTUVYXYZ$. 0123456789/
.EVEN
.END

C.5 R50ASC—Convert a RADS50 string into an ASCIZ string

The following subroutine accepts a pointer in RO to an argument block containing pointers to a RAD50
input string and an output buffer to hold the ASCII equivalent of the RAD50 string, and a word containing
the number of characters to be converted.

.IITLE RBOASC

i Convart RAD6O value into ASCII

i Output buffer must be at least 3 characters extra long
.GLOBL RBOASC

.DSABL GBL
RBOASC: NOV R1,-(SP) ;Pointer to input buffer
MOV R2,-(8P) ;Pointer to output buffer
NOV 13,-(SP) iNumber of chars to convert
NOV 4,-(8SP) iDividend low word and quotient
NOV R6,-(8P) ;Dividend hi word and remainder
MOV (RO)+,R1 iFetch input buffer address
NOV (R0)+,22 ;Output buffer address
NOV (RO) ,13 ;Nusber of chars to convert
IST 13 ;Any chars to convert?
BLE 24 ;Branch 1if not
1%: ADD #3,22 ;Point to end of 3 char set
NOV (R1)+,R6 ;Fetch RADEO value
CLR R4 ;8et up for divide
DIV #560,24 ;Get first char
MOVB RG6OTBL(RE) ,-1(R2) ;Put 3/3 into output buffer
NOV R4,RE ;8et up for divide
CLR R4
DIV #50,R4 ;Convert next char

NOVB RE0TBL(RE) ,-2(R2) ;Put 2/3 into output buffer
NOVB R50TBL(R4) ,-3(R2) ;Put 1/3 into output buffer

SUB #3,13 ;Converted 8 chars this round
BGT 1 iBranch 1f more chars left to convert
28: ADD R3,R2 ;Locate last real char

CLRB (R2) ;Nake output string ABCIZ

186 APPENDIX C. SUBROUTINES USED IN EXAMPLE PROGRAMS

NOV (§P)+,R6
NOV (sP)+,R4
NOV (6P)+,R3
NOV (sp)+,R2
NOV (8P)+,R1
RETURN
.NLIST BEX
R50TBL: .ASCII / ABCDEFGHIJKLMNOPQRSTUVWXYZS. 0123456789/
.BVEN
.END

C.6 DSPDAT—Print a date value at the terminal

The following subroutine accepts a date value in RO and prints the date representation at the terminal.

.IITLE DSPDAT
.ENABL LC
; Print a date value from RO
.NCALL .PRINT
.GLOBL DSPDAT,PRIDEC
NONNSKE = 036000
DAYNSE = 001740
YRNSK = 000037
DSPDAT: MOV 11,-(SP)

MOV BO,R1 ;Get copy of date in R1

BIC #"CDAYNSK,R0 ;Nask in only day bits (6-9)
ASH #-6,R0 ;8hift down

CALL PRIDEC ;Print 1t out

NOV Ri,RO ;Get fresh copy of date

BIC #°CNONNSK R0 ;Use only month bits (10-13)
ASH #-7,0 ;8hift down to index into month table
ADD #NONIBL,RO ;Point into table

.PRINT RO ;Display the month

NOY 11,R0 ;Fresh copy again

BIC #~CYRNSK,R0 ;Use only year bits

ADD #72.,R0 ;Year since 1972

CALL PRIDEC ;Display the year

NOV (sP)+,R1

RETURN

.NLIST BEX

MONTBL: .ASCII /-NON-/<200><0><0>
LASCII /-Jan-/<200><0><0>
ASCII /-Feb-/<200>£0><0>
ASCII /-Nar-/<200><0><0>
.ASCII /-Apr-/<200>¢0><0>
.ASCII /-Nay-/<200><0><0>
.ABCII /-Jun-/<200><0><0>
LASCII /-Jul-/<200><0><0>
LASCII /-Aug-/<200><0><0>
.ASCII /-8Sep-/<200><0><0>
JABCII /-0ct-/<200><0><0>
LABCII /-Nov-/<200><0><0>
ASCII /-Dec-/<200><0><0>

.END

C.7 DSPTI3—Display a 3-second format time value

The following subroutine accepts a special three-second time value in RO and prints the time value at the
terminal.

C.8. ACRTIS—CONVERT A TIME VALUE TO SPECIAL 8-SECOND FORMAT 187

.TITLE DSPTIS

i Display special 3-sec format time value from RO

C.8 ACRTI3—Convert a time value to special 3-

The following subroutine accepts a time value from the te

.ENABL LC
.NCALL .TTYDUT
.GLOBL DSPTIS,PRTDE2
DSPTIS: NOV R1,-(8P)
NOV RO,R1
CLR RO
DIV #20.,R0
NOV R1,-(SP)
ASL R1
ADD R1, (SP)
NOV RO,R1
CLR R0
DIV #60.,R0
MOV R1,-(SP)
CALL PRIDE2
LTIYOUT #':
NOV (8P)+,R0
CALL PRIDE2
LITYOUT #°:
NOV (SP)+,20
CALL PRIDE2
MOV (5P)+,11
RETURN
.END

;Bet up for divide

;Get # of 3-8EC'S since midnight
;Put on stack

;2X 3-SEC'S

iPlus 1X gives 3X = geconds

;Get rest of time

;8et up for next divide

;Get number of minutes

;And save on stack

;¥hat’s left is hours, display

;Recover minutes
;Display minutes

;Recover seconds

internal format. The value is returned in RO.

TITLE
.ENABL

ACRTIS
LC

i Accept a time from the keyboard and return it in
i & special 3-second format in RO

.GLOBL
ACRTI3: NOV
MoV
NOV
CLR
CLR
CLR
CALL
BCS
MUL
MoV
18T
BNE
CALL
BCS
MUL
MOV
18T
BNE
CGALL
BCS
CLR
DIV
18: ADD
ADD
NOV

ACRTIS
R1i,-(SP)
12,-(8P)
13,-(SP)
HOURS

NINITS

22

GEINUN

2¢
#<60.220.> k3
R3,HOURS
NUMERR

18

GETNUN

2¢

#20.,13
R3,NINITS

#3,22
NINITS,R2
HOURS,R2
R2,R0

;Make sure it's reentrant

idccrue decimal hours

;Return with error

;Convert hours to 3-sec periods
;Bave hours in 3-sec units

;Did we hit end of input?

;Yes, return value

iAccrue decimal minutes

iReturn with error

iConvert minutes to S-nec periods
i8ave minutes in 3-gsec unite

;End of input?

;Yes, return value

iAccrue decimal seconds

;Return with error

;Convert seconds into 3-sec periods
iQuotient stays in 22

;Add in 3-secs from minutes

;Add in 3-secs from hours

;Return it in RO

second format

rminal and converts it to a special three-second

188

2¢:
3s:

GETNUN:

14:

24:

3:

HOURS:
NINITS:
NUNERR :

CLC

8SEC
NOV
NOV
NOV
RETURN
cLR
[+48 3
NOVB
CNPB
BLT
CNPB
BGT
NUL

ADD

CMPB
BEQ
IRC
I8TB
BEQ

RETURN
CLC
RETURN
.¥ORD
.¥ORD
.¥ORD

APPENDIX C. SUBROUTINES USED IN EXAMPLE PROGRAMS

;8ay no error

3¢ ;Xeturn
;8ay there vas an error
(SP)+,k3
(sP)+,R2
(sP)+,R1
NUNERR ;8ay no error yet
13 ;Initialize number
(R0)+,11 ;Get next daigit into R1
11.,#'0 ;Less than ‘0t
24 ;Hot a digit
11.,8'9 ;Greater than ‘07
2% ;Not a digit
#10.,R3 ;Shift previous digits
#'0,R1 ;Convert current digit to binary
11,R3 ;And include in number
1 ;Get digits til mext separator
R1,#": ;Is it a legal separator?
3¢ ;Yes, return
NUMERR :Bay it may be end
11 ;¥as it a nul (end of input string)?
L) ;Yes, return
;No, say invalid input
:Error return
iNo error
0
0
0

C.9 ACRDEC-—Convert an ASCII decimal value to a numeric
value

The following subroutine converts the ascii decimal value in R1 to a numeric value and places it in RO.

ee ws ws we s we ws we we =me me

ACRDEC:

18:

.TITLE

Inputs:

11

Outputs:

10
| 3

ACRDEC

Accrue an ASCII decimal number from an input string into s word in RO
Accepts values over range 0 to 32767.

Points to buffer containing ASCIZ string containing number

Contains internal representation of number
Points past end of input string

.PRINT

ACRDEC

22,-(5P) ;Save Registers

13,-(8P)

13 ;Clear number

NEGFLG ;Init. NEGative FLaG

(R1)+,R0 ;Fetch next digit

DONE ;Branch if no more to convert
#°C177,20 ;Nask out anything non-ascii
R0,%'- ;Negative number?

F1] ;BR if not
NEGFLG ;Remember negative

C.10. RADASC—CONVERT A RADIX-50 STRING TO ASCII

24:

DONE:

18:
INVNUN:

ALLDON:

NBGFLG:
BADNUN:

C.10 RADASC—Convert a RADIX-50 string to ASCII

BR
CNPB
BEQ
CMPB
BEQ
CNPB
BEQ
SUB
BNI
CNP
BGT
NUL
BCS
ADD
BCS
BR
NOV
18T
BEQ
NEG
CLC
BR
.PRINT
SEC
NOV
NOV
RETURN
.NLIST
.¥ORD
.A8CIZ
.LIST
.EVEN
.END

1$
20,#'.
DONE
10,#40
DONE
R0, %54
DONE
#'0,10
INVNUN
20,89,

ALLDON
#BADNUN

(8P)+,13
(8P)+,22

BEX
0

/111egal number./<T>

BEX

;Get next char

;:Decimal point?

iBranch if so, integers only
;Space?

;Branch if separator
;Comma?t

iBranch 1f separator
;Convert ascii to number
;Branch if invalid number
;Greater than 07

;BR 411 invalid number
iCycle previous digits
;Branch on overflow

;Add in nev digit

;Branch on overflow
iRepeat until all digits included
;Return result in R0
iNegate?

sBR if not

iNegate!

;81gnal 0K return

i8kip error stuft

iBad number meesage

iRestore registers

189

The folllowing subroutine converts a RADIX-50 string whose address is in R5 to ASCIL. R4 contains the

number of words to convert and R3 points to the end of the converted string.

RADASC:

18:

.TITLE
.ENABL

.GLOBL

NOV
MoV
nov
CLR
DIV
HOVB
CLR
DIV
MOVE
NOVB
80B
Nov
NOV

RADASC
LC

RADASC

R1,-(SP)
12,-(8P)
(R6)+,11

20

#50+50,R0
RADYAB(RO), (R3)+
20

#50,R0
RADTAB(RO), (RS)+
RADTAB(R1), (R3)+
24,18

(SP)+,22

(8P)+, 01

Convert a RADGO string whose address is in rb to ancii. R4 contains
the number of words to convert and r3 contains the storage result

; Save ri1

Save r2

Obtain a word to convert

Clear high order

Isolate the high letter

Btore converted character
Clear high order

Isolate the middle letter
Store converted character
Btore last converted character
Loop until all words converted
Restore r2

Restore ri

®i me ws w3 we mi e we we we ws ws @

190 APPENDIX C. SUBROUTINES USED IN EXAMPLE PROGRAMS

RETURN

.NLIST BEX
RADTAB: .ASCII / ABCDEFGHIJKLNNOPQRSTUVYXYZS. 0123456789/
.LIST BEX

.EVEN
.END

Appendix D

DIBOL TSX-Plus Support
Subroutines

A set of subroutines is provided with TSX~Plus to perform DIBOL record locking and message transmission
functions. DIBOL ISAM files are not supported by TSX-Plus. These subroutines may not be used with
DBL, which provides most of their functionality separately. Note that if these TSX—Plus features are to be
used, they must be enabled when the TSX-Plus system is generated.

D.1 Record locking subroutines

The record locking subroutines coordinate access to a common file being shared and updated by several
TSX-Plus users. The five subroutines parallel the operation of the DIBOL statements: OPEN, CLOSE,
READ, WRITE and UNLOCK. The normal DIBOL I/O statements cannot be used to perform record
locking under TSX-Plus.

D.1.1 Opening the file
The first subroutine is used to open a shared file in update mode. The form of the call is:
XCALL FOPEN(chan,devlbl,errflg)

where chan is a decimal expression that evaluates to a number in the range 1-15. This is the channel number
used in associated calls to FREAD, FWRIT, FUNLK and FCLOS subroutines. Deulbl is the name of an
alphanumeric literal, field or record that contains the file specification in the general form dev:filnam.ext.
The file size must not be specified with the file name. An optional /W switch may be appended to the file
name to cause the “WAITING FOR dev:file” message to be printed. Errflg is a numeric variable capable of
holding at least two digits, into which is stored an indication of the result of the FOPEN call. The following
values are returned:

Error
Code | Meaning

0 | No error. File is open and ready for access.

17 | File name specification is invalid.

18 | File does not exist or channel is already open.

72 | Too many channels are open to shared files. Re-gen TSX-Plus and
increase the value of MAXSFC parameter.

78 | Too many shared files are open. Re-gen TSX-Plus and increase
the value of MAXSF parameter.

191

192 APPENDIX D. DIBOL TSX-PLUS SUPPORT SUBROUTINES

The FOPEN subroutine should only be used to open files that will be updated by several users. The normal
DIBOL OPEN READ/WRITE sequence should be used for other files. Several files may be opened for
update by calling FOPEN with different channel numbers. The ONERROR DIBOL statement does not
apply to these record locking subroutines. Instead the errflg argument is used to indicate the outcome of
the operation.

D.1.2 Locking and reading a record
The FREAD subroutine is used to lock and read a record. The form of the call is:
XCALL FREAD(chan,record,rec-#,'T’ or '¥’', errflg)

where chan is a decimal expression in the range 1-15 that identifies a channel previously opened by FOPEN.
Record is the name of the record or alphanumeric field in which the record read is to be placed. Rec-#is a
decimal expression that specifies the sequence number of the record to be read. This value must be between
1 and the total number of records in the file. It may be larger than 65535.

“T* If “T’ is specified as the fourth parameter, FREAD will return a value of 40 in errflg if the requested
record is locked by some other user.

‘W? If ‘W’ is specified, FREAD will wait until the record is unlocked by all other users and will never return
the record-locked error code.

Errflg is a decimal variable into which is stored one of the following values:

Error
Code | Meaning

0 | No error. Record has been locked and read.
1 | End-of-file record has been read.
22 | I/O error occurred on read.
28 | Invalid record number (possibly beyond end of file).

40 | Record locked by another user. (Only returned if ‘T’ is specified
as fourth argument.)
71 | Channel was not opened by calling FOPEN, or channel not open.

72 | Request to lock too many blocks in file. Re-gen TSX-Plus and
increase value of MXLBLK parameter.

The FREAD subroutine functions like the DIBOL READ statement. However, whereas the DIBOL READ
statement always returns an error code (40) if the requested record is locked, FREAD offers the user a choice:
If “T” is specified as the fourth argument to FREAD, a code of 40 will be returned in errflg if the record is
already locked. If ‘W’ is specified as the fourth argument and the record is locked, FREAD does not return
an error code, but rather waits until the requested record is unlocked. It is much more efficient to wait for
a locked record by using the ‘W’ option rather than re-executing the FREAD with the ‘I’ option. It may
be desirable to perform the first FREAD using the ‘T’ option| If the record is locked a “WAITING FOR
RECORD ...” message can be displayed on the user’s console and another FREAD can be issued with the
‘W’ option to wait for the record. On return from this FREAD the WAITING message can be erased.

Note that although record locking is requested on a record by record basis, the actual locking is done on a
block within file basis. A block contains 512 characters. The result of this is that a record is locked if any
record contained in the same block(s) as the desired record is locked.

Once a record is locked and read using FREAD, the record remains locked until the program performs one
of the following operations:

D.1. RECORD LOCKING SUBROUTINES 193

e Issues an FWRIT to the channel from which the record was read.
o Issues another FREAD to the channel.

e Issues an FUNLK to the channel.

o Issues an FCLOS to the channel.

e Terminates execution by use of the STOP statement or because of an error.

The same set of rules that apply to the DIBOL READ statement apply to FREAD.

D.1.3 Writing a record
The FWRIT subroutine is called to write a record to a shared file. The form of the call is:
XCALL FWRIT(chan,record,rec-#,errflg)
where chan is the channel number associated with the file, record is the name of the record or alphanumeric
field that contains the record to be written, rec-# is a decimal expression that specifies the sequence number

of the record to be written (it may be larger than 65535), and errflg is a decimal variable into which is stored
one of the following values:

Error
Code | Meaning

0 | No error.
22 | 1/O error occurred during write or channel is not open.

28 | Bad record number specified.

The FWRIT subroutine writes the indicated record to the file then unlocks any blocks that were locked by
the program. FWRIT appends a <CR><LF> to the end of the written record as does the DIBOL WRITE
statement. The rules for the DIBOL WRITE statement also apply to FWRIT.

D.1.4 TUnlocking records

The FUNLK subroutine is used to unlock records that were locked by calling FREAD. The form of the call
is:

XCALL FUNLK(chan)

where chan is the channel number.

D.1.5 Closing a shared file

The FCLOS subroutine is called to close a channel that was previously opened to a shared file by calling
FOPEN. The form of the call is:

XCALL FCLOS(chan)

where chan is the channel number.

FCLOS unlocks any locked records and closes the file. Other users accessing the file are unaffected. After
calling FCLOS, the channel may be reopened to some other file.

194 APPENDIX D. DIBOL TSX-PLUS SUPPORT SUBROUTINES

D.1.6 Record Locking Example
In the following example a program performs the following functions:

1. Opens a shared file named INV.DAT on channel 2.

2. Reads a record whose record number is stored in RECN into the field named ITEM and waits if the
record is locked by another user.

3. Updates the information in the record.
4. Rewrites the record to the same position in the file.

5. Closes the shared file.

XCALL FOPEN(2, *INV.DAT’,ERRFL)
XCALL FREAD(2,ITEN,RECN, ‘W', ERRFL)
i <update record>
XCALL FWRIT(2,ITEN,RECN,ERRFL)
XCALL FCLOS(2)

x

D.1.7 Modifying programs for TSX-Plus

It is a straightforward process to modify DIBOL programs to use the TSX~Plus record locking subroutines.
OPEN, CLOSE, READ, WRITE, and UNLOCK statements that apply to shared files must be replaced by
the appropriate subroutine calls. Error conditions must be tested by IF statements following the subroutine
calls rather than by using the ONERROR statement.

D.2 Message communication subroutines

Three subroutines are included in the DIBOL support package to allow programs to transfer messages to

each other. When running under TSX-Plus these subroutines must be used instead of the DIBOL SEND
and RECYV statements.

D.2.1 Message Channels

Messages are transferred to and from programs by using TSX-Plus Message Channels. A message channel
accepts a message from a sending program, stores the message in a queue associated with the channel and
delivers the message to a receiving program that requests a message from the channel. Message channels

are totally separate from I/O channels. The total number of message channels is defined when TSX-Plus is
generated.

Each active message channel has associated with it a one to six character name that is used by the sending and
receiving programs to identify thegmnnel. The names associated with the channels are defined dynamically
by the running programs. A mess&ge channel is said to be active if any messages are being held in the queue
associated with the channel or if any program is waiting for a message from the channel. When message
channels become inactive they are returned to a free pool and may be reused by another program.

The DIBOL SEND command directs a message to a program by using the name of the receiving program.
Under TSX-Plus, a sending program transmits a message using an arbitrary channel name. Any program
may receive the message by using the same channel name when it requests a message.

D.2. MESSAGE COMMUNICATION SUBROUTINES 195

D.2.2 Sending a Message

The MSEND subroutine is called to queue a message on a named channel. If other messages are already
pending on the channel the new message is added to the end of the list of waiting messages. The form of
the call is:

XCALL NSEND(chan,message,errflg)
where chan is an alphanumeric literal or variable that contains the channel name (1 to 6 characters), message

is an alphanumeric or decimal literal, field or record that contains the message to be sent, errflg is a decimal
variable into which will be stored one of the following values:

Error
Code | Meaning

0 | No error. Message has been sent.

1 | All message channels are busy. (Re-gen TSX~-Plus and increase the
value of MAXMC parameter).

2 { Maximum allowed number of messages are being held in message
queues. (Re-gen TSX-Plus and increase the value of MAXMSG
parameter).

Note that the maximum message length that may be transferred is defined during system generation by
the MSCHRS parameter. If a message longer than this is sent, only the first part of the message will be
delivered.

D.2.3 Checking for Pending Messages

The MSGCK subroutine may be called to determine if any messages are pending on a named channel. The
form of the call is:

XCALL NSGCK(chan,message,errflg)
where chan is an alphanumeric literal or variable that contains the name of the channel (1 to 8 characters),

message is an alphanumeric or decimal field or record where the received message is to be placed, errfly is
a decimal variable into which will be stored one of the following values:

Error
Code | Meaning

0 | No error. A message has been received.

3 | No message was queued on the named channel.

If a received message is shorter than the receiving message field the remainder of the field is filled with
blanks. If the message is longer than the field, only the first part of the message is received.

D.2.4 Waiting for a Message
The MSGWT subroutine is used by a receiving program to suspend its execution until a message is available
on a named channel. It is much more efficient for a program to wait for a message by calling MSGWT rather

than repeatedly calling MSGCK. The form of the call is:

XCALL NSGUT(chan,message,errflg)

196 APPENDIX D. DIBOL TSX-PLUS SUPPORT SUBROUTINES

where the arguments have the same meaning as for MSGCK, and the following values may be returned in
errflg:

Error

Code | Meaning

0 | No error. A message has been received.

1 | All message channels are busy.

D.2.5 Message Examples

In the following example a program sends a message to another program by using a message channel named
SORT and then waits for a reply to come back through a message channel named REPLY.

XCALL MSEND('SORT®, ‘DK:PAYROL.DAT’,ERRFL)
IF (ERRFL.NE.0)GO TO ERROR

XCALL NSGWT(‘REPLY’,NSGBF,ERRFL)

IF (ERRFL.NE.0)GO TO ERROR

D.3 Using the subroutines

The subroutines described above are part of the MACRO program called DTSUB.MAC. Once assembled,
the object file for DTSUB (DTSUB.OBJ) may be linked with DIBOL programs that use the record locking
or message facilities. An example of a LINK command is shown below.

R LINK
*PROG=PROG, DTSUB, DIBOL

D.4 Miscellaneous functions

D.4.1 Determining the TSX-Plus line number

The TSLIN subroutine can be called to determine the number of the TSX-Plus time-sharing line from which
the program is being run. Real lines are numbered consecutively starting at 1 in the same order they are
specified when TSX-Plus is generated. Detached job lines occur next and subprocesses are numbered last.

The form of the call of TSLIN is:
XCALL TSLIN(1lnum)

where Inum is a numeric variable capable of holding at least two digits into which is stored the TSX-Plus
line number value.

Index

.ABTIO, 1687
ACRDEC, example program, 188
ACRTI3, example program, 187
Activation characters, 15

Checking for, 34

CTRL-D, 158

Defining, 20

Field width, 21

ODT activation mode, 29

Resetting, 21

Time-out activation, 82
Adapting RT-11 Real-time programs, 144
Address 0

Debugger, 156
Administrative control, 2
Allocating devices, 66
ATTVEC, example program, 142

Baud rate
Setting, 61
Block locking
See Shared files.
BPT Instruction
Debugger, 152
Break sentinel control, 38
BYPASS, 1183, 116

C1 handler
see CL handler.
Caching
Data, 91
See TSX-Plus System Manager’s Guide.
Shared file, 82
Carriage-return
Automatic line-feed, 22
.CDFN, 167
.CHAIN, 167
Channel numbers, 169, 171
Chapter summaries, 3
Character echoing, 20
.CHCOPY, 167
CL handler, 101
As a spooled device, 104
control character processing, 104
Cross connection, 103
Flow control, 104

197

I/O operations, 104
Installing, 101
Modem control, 101, 107
Special functions, 105
VTCOM/TRANSF support, 102
CL units, 8
Assigning, 64
.CNTXSW, 167
Command files
Controlling input, 21
Common data areas, 145
Communication
TSX-Plus to other machines, 108
Communication line handler
See CL handler, 104
Completion routine
Connecting to an interrupt, 140
Scheduling, 148
Scheduling message, 97
Configuration requirements, 1
Control characters
CTRL-C, 20
CTRL-D, 151, 152, 156
CTRL-], 19
Cooperative file access
See Shared files.
Creating a window, 72
.CSIGEN, 167
.CSISPC, 167

Data caching, 91
See TSX-Plus System Manager’s Guide.
Shared file, 82
Suppression of, 91

Data watchpoint
Debugger, 151

Debugger, 151
Address 0, 156
Address relocation, 154
Breakpoints, 154
CTRL-D, 156
Data watchpoints, 154, 155
Features, 151
Format register, 155
Internal registers, 155

198

Mask register, 155
Overlays, 156
RADS50 values, 154
Relocation base, 154
Shared run-time, 156
Single stepping, 153, 154, 156
Special activation characters, 156
Special terminal mode, 156
Speed, 156
Symbolic decoding, 153, 156
System generation, 151
Traps to 4 & 10, 157
DELETE
Rubout filler character, 19
Deleting windows, 75
DEMOPA, example program, 161
Detached jobs, 70
Checking status of, 37
Starting, 36
.DEVICE, 132, 187
Device allocation, 66
Device handlers
C1, 101
CL, 101
DM, 112
DU, 113
IB, 113
LD, 113
MU, 116
VM, 116
XL, 118
DIBOL, 169
Record locking, 170
Record locking procedures, 81
SEND statement, 170
Support subroutines, 191
DILOG DQ215, 118
Directory caching
Dismounting a file structure, 41
Dismounting all file structures, 42
Mounting a file structure, 40
Directory information
EMT to obtain, 50
Dismounting a file structure
EMT to dismount all, 42
EMT to dismount one, 41
DL-11, 1
DM handler, 112
.DRxxx, 167
DSPDAT, example program, 186
DSPTIS, example program, 186
DTR
EMT to raise or lower, 62
DU handler, 113
DZ-11, 1

CTRL-D breakpoints, 154

Echo control, 20
EMT
Differences, 167
Table, 177
TSX-Plus specific, 25
Emulex SC02C, 113
Error codes, 167
Escape sequence
Processing, 19
Exclusive access to a file, 81
Exclusive system control, 129
Releasing, 129
Execution priority, 9
.EXIT, 167
Extended memory regions, 10

.FETCH, 168
Field width activation, 21
Field width limit for TT input, 22
File
Block locking, 81
Context, 70
Creation time, 51
Data caching, 91
Directory information, 50
Exclusive access, 81
Opening for shared access, 81
Protection modes, 81
Shared access, 81
FILEX, 170
Fixed offsets, 7
Fixed-high-priority
Determining, 25
Fixed-low-priority
Determining, 25
Floating point, 169
Foreground programs
See Real-time support.
.FORK, 168
FORTRAN
I/O page mapping, 170
Virtual arrays, 144, 170

Global data areas, 145

Global PLAS regions, 10

Graphics
CTRL-], 19

.GTIB, 168

.GTLIN, 168

.GVAL, 168
Checking I/O page mapping, 122
Special TSX-Plus use, 25

Hardware requirements, 1

INDEX

INDEX

High-efficiency terminal mode, 18, 19, 21, 33

HOLD mode
EMT to specify for a file, 58
.HRESET, 168

I/O channels, 169, 171
I/O page
Accessing, 9, 121
FORTRAN, 170
IB handler, 113
IBSRQ unsupported, 113
IEEE handler
see IB handler.
IND
.ASK directive, 170
INI-ES, 169
INTEN, 168
Interactive jobs
Selecting dynamically, 60
Interprogram communication, 93
Checking for messages, 94
Common memory areas, 145
Completion routine, 97
Message channels, 93
Sending a message, 93
Waiting for a message, 96
Interrupt completion routine, 140
Interrupt processing
(Diagram), 136
Interrupts

Connecting to real-time jobs, 134

Introduction, 1
INTSVC, example program, 138
IOABT parameter

Needed for VITCOM, 102

Job context
Acquiring, 70

Job monitoring, 67

Job number
Determining, 25

Job priority
Determining, 25
Setting, 55, 138

Job scheduling, 2

Job status information, 47

Job status word
Non-wait TT I/0, 22

Setting virtual flag with SETSIZ, 175

Virtual-image flag, 9
JSW
See Job status word., 22

KILL command, 38
KILL EMT, 37

LD
Special functions, 113
LD handler, 113
Lead-in character, 17, 19
Determining, 25
License number
Determining TSX-Plus, 25
Line number
Determining, 27
Determining primary, 25
Line-feed
Echoing of, 22
Ignored with tape mode, 22
Lines
Assigning to CL, 64
LINK command
/XM switch, 9
Link map, 151
Local named regions, 10
.LOCK, 168
Locking a job in memory, 130
Logical disks
determining status, 43
Logical Disks
Dismounting, 42
" EMT to dismount all LD’s, 45
Mounting, 78
Logical subset disks
EMT to dismount all, 42
Lower-case character input, 20

.MAP, 168
Mapping to physical memory
EMT for, 127
Maximum priority
Determining, 25
Memory
Using as pseudo-disk, 12
Memory allocation
EMT to control, 46
Setting size in SAV file, 178
MEMORY command, 47, 173
Memory mapping, 7
MEMSIZ parameter
and VM handler, 116
Message channels

See Interprogram communication.

Message communication
See Interprogram communicati
Messages
Sending to another line, 35
MicroPower/Pascal, 170
Modification of shared files
Checking for, 90
MONITOR command, 159

199

200

Monitoring another job, 67
MOUNT command, 40, 78
Mounting a file structure, 40
.MRKT, 168

.MTPS, 168

MU handler, 116
Maulti-terminal EMTs, 168
.MWAIT, 168

Named PLAS regions, 10
NOHOLD mode

EMT to specify for a file, 58
Non-blocking .TTOUTR, 18
Non-blocking .TTYIN, 16
Non-interactive jobs

Selecting dynamically, 60
Non-wait TT I/0, 22
Normal programs, 8

Obtaining TSX-Plus system values, 25

ODT

See Debugger.
ODT activation mode, 29
Opening shared files, 81
Overlaid programs, 171

Paint character
See Rubout filler character.
PAR 7 mapping
Determining, 25
FORTRAN, 170
PEEK, 124, 168
Performance monitor, 159
Control EMTs, 161
Displaying results, 160
MONITOR command, 159
Starting, 159, 161
PHYADD, example program, 132
Physical address calculation, 131
Physical address space, 8
Physical memory
EMT to map to, 127
PLAS support, 10
.POKE, 124, 168
Poke EMT, 125
Primary line
Determining, 25
Printing windows
EMT, 76
Priorities, 9
Priority level
Setting, 55, 133
Privilege

EMT to determine or change, 57

Resi-time, 121

PRIVIR parameter, 55, 134
Process windows
EMTs, 72
Processor priority level
Setting, 183
Processor status word
Debugger, 157
Program controlled terminal options
See Terminal ¢
Program debugger, 151
Program name
EMT to get or change, 54
Programmed Logical Address Space
See PLAS support.
Programmer number
Determining, 25
Project number
Determining, 25
.PROTECT, 144, 168
Protected access to a file, 81
PRTDE2, example program, 184
PRTDEC, example program, 183
PRTOCT, example program, 183
PRTRS50, example program, 184
Pseudo-disk in memory, 12
PURGE
Shared files and, 84

.QSET, 168

R command
/DEBUG switch, 47
/NONINTERACTIVE switch, 60
/SINGLECHAR switch, 21
R50ASC, example program, 185
RADASC, example program, 189
.RCVD, 168

Read time-out value for TT inputs, 32

Real-time, 121

INDEX

Accessing the I/O page, 121, 128, 127

Adapting RT-11 programs, 144
Completion routine, 140
Device reset on exit, 132
Interrupt connections, 134
Locking a job in memory, 130

Mapping to physical addresses, 127

Physical address calculation, 131
Poke EMT, 125

Priority, 141

Privilege, 121

Suspending/resuming execution, 131

Record locking, 81

DIBOL, 170

See Shared files.
Redefining time-sharing lines, 8

INDEX

Reentrant run-times

See Shared run-time systems.
Regions in extended memory, 10
.RELEAS, 169
Releasing exclusive system control, 129
Requesting exclusive system control, 129
Resident run-times

See Shared run-time systems.
Restrictions

DM handler, 112

IB handler, 113

VM handler, 116
Restrictions on .MAP EMT, 11
Resuming windows, 76
RKO06/RKO7 handler, 112
RMON

Real-time support consideration, 122

Simulated, 7

Simulated, 8

SYSGEN options word, 27
.RSUM, 131
RTSORT, 70
Rubout filler character, 19
Run-time systems

See Shared run-time systems.

.SAVESTATUS
Shared files and, 84
.SCCA, 169
Scheduling a completion routine, 143
Scheduling of jobs, 2
.SDAT, 169
.SDTTM, 169
Selecting window, 75
SEND
DIBOL statement, 170
Sending messages
EMT for, 35
Serial devices
CL units, 8
SET command
TT TAPE, 22
TT terminal-type, 46
SETSIZ program, 47, 173
Setting processor priority level, 133
.SETTOP, 46, 169, 173
.SFPA, 169
Shared access to a file, 81
Shared files, 81
Checking for modification of, 90
DIBOL, 170
Opening, 81
Protection modes, 82
Saving channel status, 84
Testing for locked blocks, 88

Unlocking a block, 89
Unlocking all locked blocks, 90
Waiting for locked block, 86
Shared run-time systems, 145
Associating with job, 145
Debugger, 156
Mapping into job region, 11, 148
Shared run-times
Fast mapping, 147
Simulated RMON, 7
Access through page 7, 8
Real-time support consideration, 122
Single character activation, 15, 21, 156
Special Chain Exit, 12
Speed
See terminal speed.
SPFUN, 105
.SPFUN, 169
BYPASS, 118, 116
.SPND, 131
Spooled devices, 118
Spooler
Bypassing, 119
Spooling
CL device, 104
Number of free spool blocks, 26
.SRESET, 169
Subprocess, 76
determining job number, 28
Disabling use of, 20
Summaries of chapters, 8
Suspending windows, 75
Symbolic instruction decoding, 151
.SYNCH, 169
SYSGEN options word, 27
SYSPRY privilege
Determining, 25
System device
Determining, 25
System generation parameter
CLDEF, 102
CLXTRA, 102
MEMSIZ, 116
System resource management, 2
System values
Obtaining, 25

Tape mode, 22
Terminal
Determining type, 46
Handler, 15
Setting options, 59
Setting speed, 61
Terminal control, 15
Break sentinel, 38

202

Character echoing, 20
Checking for activation, 34
Checking for input errors, 31
Command file input, 21

Defining activation characters, 20
Determining input chars. pending, 32

Disabling subprocess use, 20
Echo control, 20

Field width activation, 21
Field width limit, 22
High-efficiency mode, 21, 33
Line-feed echoing, 22
Lower-case character input, 20
Non-wait TT I/0, 22

ODT activation mode, 29
Read time-out value, 32

Resetting activation characters, 21

Rubout filler character, 19
Single character activation, 21
Tape mode, 22

Transparency mode output, 20

VT52 & VT100 escape sequences, 19

Time-out value for TT reads, 82
Time-sharing lines

Assigning to CL, 8, 64
TLOCK, 169
TRANSF program, 102
Transparency mode output, 20
Trap to 10

Debugger, 157
Trap to 4

Debugger, 157
TSX-Plus

Determining if under, 26
TSX-Plus license number

Determining, 25
TSX-Plus version number

Determining, 25
TSXPM program, 159, 160
TSXUCL

File Size, 25
TT/CL cross connection, 103
.TTINR, 18, 169
.TTOUTR, 16, 169

Non-wait output, 22
TTYIN

Non-wait input, 22

Time-out value, 32
.TTYOUT, 169
.TWAIT, 169

UCI, 12

.UNLOCK, 169

Unlocking a job from memory, 131
Unnamed PLAS regions, 10

.UNPROTECT, 169
User command interface, 12
User name
Changing, 53
Determining, 53
USERTS, example program, 146

Version number

Determining, 25
Virtual arrays

FORTRAN, 170

I/O page, 170

PAR 7 mapping, 144
Virtual memory, 7
Virtual programs, 8

Setting flag with SETSIZ, 175
Virtual region mapping, 127
Virtual to physical address, 8, 131
Virtual windows, 11
VM

Handler, 12

Initializing, 12

SET BASE command, 12
VM handler, 116
VMS file transfer, 108
VT100 support, 19
VT200 support, 19
VT52 support, 19
VICOM

Spooled CL unit, 119
VTCOM program, 102

Watchpoint
Debugger, 151

Window
Creating, 72
Deleting, 75
EMTs, 72
Printing, 76
Resuming, 76
Selecting, 75
Suspending, 75

XL handler, 118

INDEX

	00001
	00002
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202

