
Non�Blocking Garbage Collection for

Multiprocessors

Maurice Herlihy J� Eliot B� Moss �

Digital Equipment Corporation
Cambridge Research Lab

CRL ���� September ��� ����

Abstract

Garbage collection algorithms for shared�memory multiprocessors typically
rely on some form of global synchronization to preserve consistency	 Neverthe�
less� such global synchronization is poorly suited for asynchronous architectures

if one process is halted or delayed� other� non�faulty processes will be unable
to progress	 By contrast� a storage management algorithm is non�blocking if
�in the absence of resource exhaustion� a process that is allocating or collect�
ing memory can undergo a substantial delay without forcing other processes to
block	 This paper presents the 
rst algorithm for non�blocking garbage collec�
tion in a realistic model	 The algorithm assumes that processes synchronize by
applying read� write� and compare�swap operations to shared memory	 This
algorithm uses no locks or busy�waiting� it does not assume that processes can
observe or modify one another�s local variables or registers� and it does not use
inter�process interrupts	

Keywords
 garbage collection� multiprocessors� shared memory� non�blocking
algorithms
c�Digital Equipment Corporation and J	E	B	 Moss ����	 All rights reserved	

�Dept� of Comp� and Info� Sci�� University of Massachusetts�Amherst� MA ������

Eliot Moss is supported by National Science Foundation Grant CCR������	
� by Dig�

ital Equipment Corporation� and by GTE Laboratories�



� Introduction

Garbage collection algorithms for shared�memory multiprocessors typically rely
on some form of global synchronization to preserve consistency	 Shared memory
architectures� however� are inherently asynchronous
 processors� relative speeds
are unpredictable� at least in the short term� because of timing uncertainties in�
troduced by variations in instruction complexity� page faults� cache misses� and
operating system activities such as preemption or swapping	 Garbage collection
algorithms that rely on global synchronization are poorly suited to asynchronous
architectures because if one process is halted or delayed� other� non�faulty pro�
cesses may also be unable to progress	 By contrast� a storage management
algorithm is non�blocking if any process can be delayed at any point without
forcing all the other processes to block	 This paper presents a non�blocking
incremental copying garbage collection algorithm	

We note from the outset� however� that our garbage collection algorithm�
like any resource management algorithm� blocks when resources are exhausted	
In our algorithm� for example� a delayed process may force other processes
to postpone storage reclamation� although it will not prevent them from al�
locating new storage	 If that process has actually failed� then the non�faulty
processes will eventually be forced to block when their remaining free storage is
exhausted	 If halting failures are a concern� then our algorithm should be com�
bined with higher�level �and much slower� mechanisms to detect and restart
failed processes� an interesting extension we do not address here	 Nevertheless�
our algorithm tolerates substantial delays and variations in process speeds� and
may therefore be of value for real�time or �soft� real�time continuously running
systems	

� Model

There are three aspects to our model of memory
 the underlying shared mem�
ory hardware and its primitive operations� the application level heap memory
semantics that we will support� and the structuring of the contents of shared
memory in order to support the application level semantics	

��� Underlying Architecture

We focus on a multiple instruction�multiple data �MIMD� architecture in which
n processes� executing asynchronously� share a common memory	 Each process
also has some private memory �e	g	� registers and stack� inaccessible to the other
processes	 The processes are numbered from � to n� and each process knows its
own number� denoted by me	 The primitive memory operations are read� which
copies a value from shared memory to private memory� write� which copies a
value in the other direction� and compare�swap� shown in Figure �	 We chose

�



the compare�swap primitive for two reasons	 First� it has been successfully
implemented� having 
rst appeared in the IBM System���� architecture ����	
Second� it can be shown that some form of read�modify�write primitive is re�
quired for non�blocking solutions to many basic synchronization problems� and
that compare�swap is as powerful in this respect as any other read�modify�write
operation ��� ��	 We do not assume that processes can interrupt one another	

compare�swap�w
 word� old� new
 value� returns�boolean�

if w � old

then w 
� new

return true

else return false

end if

end compare�swap

Figure �
 The Compare�Swap Operation

��� The Application�s View

An application program has a set of private local variables� denoted by x� y� z�
etc	� and it shares a set of objects� denoted by A� B� C� etc	� with other processes	
To an application� an object appears simply as a 
xed�size array of values� where
a value is either immediate data� such as a boolean or integer� or a pointer to
another object	 The storage management system permits applications to create
new objects� to fetch component values from objects� and to replace component
values in objects	 The create operation creates a new object of size s�� initializes
each component value to the distinguished value nil� and stores a pointer to the
object in a local variable	

x 
� create �s�

The fetch operation takes a pointer to an object and an index within the object�
and returns the value of that component	

v 
� fetch �x� i�

The store operation takes a pointer to an object� an index� and a new value�
and replaces that component with the new value	

store �x� i� v�

�We assume that objects do not vary in size over time� though our techniques could be

extended to support such a model�

�



We assume that applications use these operations in a type�safe manner� and
that index values always lie within range	

In the presence of concurrent access to the same object� the fetch and store

operations are required to be linearizable ����
 although executions of concurrent
operations may overlap� each operation appears to take e�ect instantaneously
at some point between its invocation and its response	 Applications are free to
introduce higher�level synchronization constructs� such as semaphores or spin
locks� but these are independent of our storage management algorithm	

��� Basic Organization

Memory is partitioned into n contiguous regions� one for each process	 A process
may access any memory location� but it allocates and garbage collects exclu�
sively within its own region	 Locations in process p�s region are local to p�
otherwise they are remote	 Each process can determine the process in whose
region an address x lies� denoted by owner �x�	 This division of labor enhances
concurrency
 each process can make independent decisions on when to start
collecting its own region and can use its own techniques for allocation	 The
region structure is also well�suited for non�uniform memory access �NUMA�
architectures �e	g	� ��� ��� ����� in which any process can reference any memory
location� but the cost of accessing a particular location varies with the distance
between the processor and the memory module	

An object is represented as a linked list of versions� where each version
is a contiguous block of words contained entirely within one process�s region	
Versions are denoted by lower case letters a� b� c� etc	 A version includes a
snapshot of the vector of values of its object� and a header containing size
information and a pointer to the next version	 Version a�s pointer to the next
version is denoted a�next	 A version that has a next version is called obsolete� a
version that does not have a next version is called current	

An object can be referred to by pointing to any of its versions	 The �nd�

current procedure �Figure � locates an object�s current version by chaining down
the list of next pointers until it reaches a version whose next pointer is nil	 The
fetch and store procedures appear in Figures � and �	 Fetch simply reads the
desired 
eld from the current version	 Store modi
es the object by creating
and linking in a new current version�	 �Later� we will discuss when store can
avoid creating new versions	� The store procedure is non�blocking
 an individual
process may starve if it is overtaken in
nitely often� but the system as a whole
cannot starve because one compare�swap can fail only if another succeeds	 Any
allocation technique can be used to implement new � the details are not inter�
esting because each process allocates and garbage�collects its own region� so no
inter�process synchronization is required	

�This method can implement arbitrary atomic updates to a single object� including read�

modify�write operations�modi�cations encompassingmultiple �elds� and growing or shrinking

the object size�

�



Multiple versions serve two purposes
 
rst� they allow us to perform concur�
rent updates without mutual exclusion ���� and second� they allow our copying
collector to �move� an object without locking it	 In Section � we discuss two ex�
tensions that permit an object to be modi
ed in place
 a non�blocking technique
using compare�swap� and a blocking technique that locks individual objects	


nd�current�x
 object� returns�object�

while x	next �� nil do

x 
� x	next

end while

return x

end 
nd�current

Figure �
 Find�current
 locate current version of x

fetch�x
 object� i
 integer� returns�value�

x 
� 
nd�current �x�

return x�i�

end fetch

Figure �
 Fetch
 obtains current contents of a slot

store�x
 object� i
 integer� v
 value�

temp 
� allocate local space for new version

loop �� retry from here� if necessary ��

x 
� 
nd�current �x�

for j in � to x	size do temp�j� 
� x�j� end for

temp�i� 
� v

if compare�swap �x	next� nil� temp�

then return

end if

end loop

end store

Figure �
 Store
 Update Contents of a Slot

�



� The Algorithm

Our algorithm is an incremental copying garbage collector in the style of Baker
��� as extended to multiprocessing by Halstead ����	 Each region is divided into
multiple contiguous spaces
 a single to space� zero or more from spaces� and
zero or more free spaces	 Initially� a process�s objects reside in from spaces�
and new objects are allocated in the to space	 As computation proceeds� the
processes cooperate to move objects from from spaces to to spaces� and to
redirect reachable pointers to the to spaces	 Once it can be guaranteed that
there is no path from any local variable to a version in a particular from space�
that space becomes free	 When the storage allocated in a to space exceeds a
threshold� it becomes a from space� and a free space is allocated to serve as the
new to space	 This structure is standard for copying collectors� our contribution
is to show how such a collector can be implemented without forcing processes
to block	

First� some terminology	 A process �ips when it turns a to space into a
from space	 A version residing in from space is old� otherwise it is new	 Note
that an old version may be either current or obsolete� and similarly for new
versions	 Further� it is possible for a new version to have an old version as its
next version	 Our procedures use the function old to test whether a version
is old	 This function could be implemented by associating an old bit with the
space as a whole� or with individual objects� or by having each process maintain
a table of the pages in each of its spaces	

Each process alternates between executing its application and executing a
scanning task that checks local variables and to space for pointers to old versions	
When such a pointer is found� the scanner locates the object�s current version	
If that version is old� the object is evacuated
 a new current version is created
in the scanner�s own to space	 A scan is clean with respect to process p if it
completes without 
nding any pointers to versions in any of p�s from spaces�
otherwise it is dirty	 A scan is done as follows


�	 Examine the contents of the local variables	 This stage can be interleaved
with assignments as long as the variables� original values are scanned be�
fore being overwritten	

�	 Examine each memory location in the allocated portion of to space	 This
stage can be interleaved with allocations� as long as each newly allocated
version is eventually scanned	

Scanning does not require interprocess synchronization	
How can we determine when a from space can be reclaimed� De
ne a round

to be an interval during which each process starts and completes a scan	 A clean

round is one in which every scan is clean and no process �ips	 Our algorithm
is based on the following claim
 once a process �ips� the from space can be
reclaimed after a clean round starts and 
nishes	

�



How does one process detect that another has started and completed a scan�
Call the detecting process the owner� and the scanning process the scanner	
The two processes communicate through two atomic bits� called handshake bits�
each written by one process and read by the other	 Initially� both bits agree	
To start a �ip� the owner creates a new to space� marks all versions in the
old to space as being old� and complements its own handshake bit	 On each
scan� the scanner reads the owner�s handshake bit� performs the scan� and sets
its own handshake bit to the previously read value for the owner�s bit	 This
protocol guarantees that the handshake bits will agree again once the scanner
has started and completed a scan in the interval since the owner�s bit was
complemented	 �Similar techniques appear in a number of asynchronous shared�
memory algorithms ��� ��� ���	�

How does the owner detect that all processes have started and completed
a scan� The processes share an n�element boolean array owner� where process
q uses owner�q� as its �owner� handshake bit	 The processes also share an n�
by�n�element boolean array scanner� where process q uses scanner�p��q� as its
�scanner� handshake bit when communicating with owner process p	 Initially�
all bits agree	 An owner q starts a round by complementing owner�q�	 A scanner
p starts a scan by copying the owner array into a local array	 When the scan
is 
nished� p sets each scanner�p��q� to the previously saved value of owner�q�	
The owner process q detects that the round is complete as soon as owner�q�
agrees with scanner�p��q� for all p	 An owner may not start a new round until
the current round is complete	

How does a process detect whether a completed round was clean� The
processes share an n�element boolean array� dirty	 When a process �ips� it sets
dirty�p� to true for all p other than itself� and when a process 
nds a pointer
into p�s from space� it sets dirty�p� to true	 If a process�s dirty bit is false at the
end of a round� then the round was clean� and it reclaims its from spaces	 The
process clears its own dirty bit before starting each round	

We are now ready to discuss the algorithm in more detail	 To �ip �Figure ���
a process allocates a new to space� marks the versions in the old to space as old�
sets everyone else�s dirty bit� and complements its owner bit	 �A process may
not �ip in the middle of a scan	� To start a scan �Figure ��� the process simply
copies the current value of the owner array into a local array	 The scanner
checks each memory location for pointers to old versions �Figure ��	 When such
a pointer is found� it sets the owner�s dirty bit� and redirects the pointer to a
new current version� evacuating the object to its own to space if the current
version is old	 When the scan completes �Figure ��� the scanner informs the
other processes by updating its scanner bits to the previously�saved values of
the owner array	 The scanner then checks whether a round has completed	 If
the round is completed and its dirty bit is false� the process reclaims its from
spaces	 If the round is completed but the dirty bit is true� then the process
simply resets its dirty bit	 Either way� it then starts a new scan	

�



�ip��

mark versions in current to space as old

create new to space

for i in � to n do

if i �� me

then dirty�i� 
� true

end if

end for

owner�me� 
� not owner�me�

end �ip

Figure �
 Starting a �ip

scan�start��

for i in � to n do

local�owner�i��me� 
� owner�i�

end for

end scan�start

Figure �
 Starting a scan

� Correctness

For our algorithm there are two correctness properties of interest
 safety� en�
suring that the algorithm implements the application�level model described in
Section �	�� and liveness� ensuring that as long as processes continue to take
steps� then garbage is eventually collected	 We now discuss each in turn	

��� Safety

There are two safety properties to be demonstrated
 that the implementations
of the model�s basic operations are linearizable� and that non�garbage objects
are never collected	

����� Linearizability of the Basic Operations

One way to show an operation implementation is linearizable is to identify a sin�
gle primitive step where the operation �takes e�ect� ����	 For fetch� this instant
occurs when it reads a null next pointer� and for store� when its compare�swap

succeeds in replacing a null next pointer with a pointer to its new version	 Note
that scan is essentially a store that does not a�ect the logical contents of the
object	

�



scan�value�x
 object� returns�object�

if old �x� then dirty�owner �x�� 
� true end if

loop �� evacuate object if necessary ��

x 
� 
nd�current �x�

if new �x� then return x end if

temp 
� allocate local space for new version

for j in � to x	size do temp�j� 
� x�j� end for

if compare�swap �x	next� nil� temp�

then return temp

else release local space for new version

end if

end loop

end scan�value

Figure �
 Scanning a pointer

����� Only Garbage is Collected

Claim � Every process starts and completes at least one scan during the inter�

val between the start and end of p�s clean round�

Proof� Since p reset owner�p� to disagree with each scanner�q��p� at the start
of the interval� and since these values agree again at the end� each process q

must have ��� read the new value of owner�p�� ��� performed a scan� and ��� set
scanner�q��p� to the value of owner�p�	

Claim � Every process starts and completes at least one scan clean with respect

to p during the interval between the start and end of p�s clean round�

Proof� Each process completed a scan �Claim �� but no process set p�s dirty
bit	

Claim � When a process reclaims a from space� no path exists into that space

from any other process�s local variables�

Proof� Suppose otherwise
 p completes a clean round even though some process
has a path from a local variable to a version x in p�s from space	 If such a path
exists at the end of the clean round� then some path must have existed at the
start of the round	 Call such a path an early path	

Suppose some early path passes through a new version	 Let y be the last
new version on the path from the variable to x	 Because the round is clean� no
process �ips� and y remains new for the duration of the round	 The scanning

�



scan�end��

�� Notify other from spaces ��

for i in � to n do

scanner�i��me� 
� local�owner�i�

end for

�� Did a round complete� ��

if ��i� scanner�i��me� � owner�me� then

if not dirty�me�

then reclaim from spaces

end if

dirty�me� 
� false

end if

�� start new scan ��

scan�start��

end scan�end

Figure �
 Completing a scan

process will eventually inspect y� and it will evacuate the old versions referenced
by y� the old versions they reference� and so on	 When the scanning process
reaches x� it sets dirty�p�� contradicting the hypothesis that the round was clean	

If no early path passes through a new version� then some process q has a
local variable holding a pointer that references x through a chain of old ver�
sions	 Any such local variable must be overwritten before q starts its clean
scan� since otherwise q would scan the variable� start evacuating old versions�
and set dirty�p� when it reaches x	 If all such local variables are overwritten
without being stored� then there would be no path to x at the end of the round	
Therefore� some local variable v must have been stored in a new version y after
the start of the clean round� but before v was overwritten� and before the start
of q�s clean scan	 By the argument given in the previous paragraph� q�s next
scan inspects y� evacuates x� and sets dirty�p�� again contradicting the hypothesis
that the round was clean	

��� Liveness

We claim that if each process always eventually scans� then some process always
eventually reclaims its from spaces	 Suppose not	 Each process will eventually
exhaust its 
nite supply of free spaces� further �ips will cease� and dirty bits
will be set only by the scanner	 Since each process continues to scan� each
process observes an in
nite sequence of rounds� where each round includes a
dirty scan	 Each dirty scan� however� reduces the number of reachable objects

�



whose current versions are old� since each object reachable from a to space or
from local variables is evacuated	 Since the supply of objects is 
nite� all objects
will eventually have new current versions	 In the next round� all pointers are
redirected to current versions� and in the round after that� all scans are clean�
a contradiction	

Finally� any process that always eventually �ips will eventually have no ver�
sions of unreachable objects in to space	 When a process creates a new to space�
it evacuates only those objects reachable from its local variables at the time of
the �ip� or objects created after the �ip	 Therefore� once an object becomes
unreachable� it will have no versions in to space once each process does a �ip	

� Extensions

We now describe four interesting extensions to our algorithm	 The 
rst two
allow objects to be updated without creating new versions	 The third extension
allows some from spaces to be reclaimed sooner	 Finally� we consider making
our copy collection scheme generational	

��� Non�Blocking Update in Place

Creating new versions of an object may be expensive if objects are large or
modi
cations are frequent	 In this section� we show how to reduce this cost by
permitting a process to make in�place modi
cations to versions in its own to

space	 We add the following 
elds to the version header
 a�seq is a modulo two
sequence number for the next update� initially distinct from the value in the
next 
eld� a�index is the index of the slot being updated� and a�value is the new
value for that slot	 The type of the next 
eld is extended so that it may hold
either a pointer to the next version or a sequence number	 There need be only
two values for sequence numbers
 if a�seq � a�next� then the current update is
installed� and otherwise it is ignored	

To perform a store� a process chains down the list of versions until it 
nds
a version whose next 
eld is either nil or a sequence number	 If the version is
remote� the store proceeds as before	 If the version is local� however� the process
calls the local�store operation shown in Figure �	 The operation takes a pointer
to the version� the value observed in the next 
eld� the index of the slot to be
modi
ed� and the new value of the slot	 The process calls compare�swap to
reset a�next from its current value �either a sequence number or nil� to the new
sequence number	 If it succeeds� the process scans the old value and updates
the target slot	 �It is necessary to scan the overwritten value to preserve the
invariant that the scan inspects every value written to to space	� If it fails� the
process locates the newer version and starts over	 The restriction that update
in place be performed only by the owning process is well�suited to a NUMA
architecture� where it is more e�cient to update closer objects	

��



When a remote process attempts to update a version� it creates a local copy
just as before	 One extra step is needed
 after copying the version� it checks
whether x�next is equal to x�seq	 If so� the storing process must complete the
pending updates by scanning slot x�index and storing x�value in that slot	 The
evacuate procedure is similarly a�ected	 �These changes are not shown	� The
fetch operation need not be modi
ed� because observing the next 
eld linearizes
every fetch with respect to operations that create new versions� and observing
the updated 
eld linearizes the fetch with respect to updates in place	

store�local�x
 object� next
 value� i
 integer� v
 value�

seq 
� next � � �mod ��

x	seq 
� seq �� it is important to set this �rst ��

x	index 
� i

x	value 
� v

if compare�swap �x	next� next� seq�

then scan�x�i��

x�i� 
� v

else store �x� i� v�

end if

end store�local

Figure �
 Store� with update in place

��� Blocking Update in Place

Perhaps the most practical approach to performing updates in place is to relax
slightly our prohibition on mutual exclusion by allowing the current version�s
owner to lock out concurrent accesses	 The principal advantage of this approach
is that updates do less work� especially if the application is going to lock the
object anyway� or if the likelihood of con�ict is low	 The disadvantage� of
course� is that the storage management algorithm now permits one process to
force another to block	 Nevertheless� even if storage management is no longer
non�blocking� allocation and garbage collection are still accomplished without
global synchronization	

As before� only the owner of the current version may update an object in
place	 The owner locks an object as follows
 ��� it calls compare�swap to set
the current version�s next 
eld to a distinguished locked value� ��� it scans the
current values of the 
elds that will be updated� ��� it operates on the object�
��� it rescans the updated 
elds� and ��� it unlocks the object by setting the next

eld back to nil	 Fetch and Store are changed so that a process that encounters
a locked version waits until the next 
eld is reset to nil	

��



Since the owner is the only process that updates the object in place� there
is no need to synchronize with the scanner� except perhaps to avoid super�uous
scans	 Step ��� insures that values possibly seen by other processes will be
scanned� similar to the scan in store�local	 Step ��� insures that if the object has
already been scanned� the new values will not be mistakenly omitted	 Depending
on the details of the incremental scanning process� it is correct to omit step ���
or step ��� on some occasions	

��� Reclaiming From Spaces Earlier

Rather than reclaiming each process�s from spaces all at once� we can reclaim
them individually� by keeping more detailed information about pointers encoun�
tered while scanning	 Rather than associating dirty bits with each process� we
associate them with each from space	 When a scanning process encounters a
pointer into from space s� it sets the dirty bit for space s	 At the end of a scan�
each from space whose dirty bit is false can be reclaimed	 If a space�s dirty bit is
true� then the dirty bit is cleared and a new scan is started	 When a �ip occurs�
the dirty bits of all other processes� from spaces must be set	

��� Generational collection

Extending our algorithm to generational incremental collection is straightfor�
ward	 We divide each process�s region into some number of generations� ordered
by age	 Pointers from older to younger generations are kept in remembered sets�
reducing the work necessary to scan older generations	 It seems sensible also
to remember pointers to remote objects� to further reduce the need to scan
objects	 Additionally� some means must be provided for a process to discover
old versions in old generations without scanning the old generations	 One way
to do that is to have a bit table� with one bit per some 
xed number of words
�Wilson calls this card marking �����	 When a new version is installed� the pro�
cess that created the new version sets the bit corresponding to the address of
the previously current version	 The owner of that version can then locate the
old version by scanning the bit table and the associated memory words rather
than scanning all memory in the old generations	 The partitioning of regions
into generations is an internal concern of the processes� although care must be
taken that the region is scanned correctly	

� Related Work

Our algorithm is an intellectual descendant of Baker�s single�processor algorithm
���� and can be viewed as a non�blocking re
nement of Halstead�s multiprocessor
algorithm ����	 Our algorithm di�ers from Halstead�s because it does not require

��



processes to synchronize when �ipping from and to spaces� and we do not require
locks on individual objects	

A number of researchers ��� �� ��� have proposed two�process mark�sweep
schemes� in which one process� the mutator� executes an arbitrary computation�
while a second process� the collector� concurrently detects and reclaims inacces�
sible storage	 The models underlying these algorithms di�er from ours in an
important respect
 they require that the collector process observe the mutator�s
local variables� which are treated as roots	 Many current multiprocessor archi�
tectures� however� cannot meet this requirement� since the only way to copy
a pointer is to load it into a private register� and then store it back to mem�
ory� leaving a �window� during which the collector cannot tell which objects
are referenced by the mutator	 These algorithms synchronize largely through
read and write operations� although some kind of mutual exclusion appears to
be necessary for the free list and other auxiliary data structures	 Pixley ����
gives a generalization of Ben�Ari�s algorithm in which a single collector process
cleans up after multiple concurrent mutators	 This algorithm� as Pixley notes�
behaves incorrectly in the presence of certain race conditions� which Pixley ex�
plicitly assumes do not occur	 Our algorithm introduces multiple versions to
avoid precisely these kinds of problems	

The Ellis� Li� and Appel ��� describe the design and implementation of a
multi�mutator� single�collector copying garbage collector	 This algorithm is
blocking� since processes synchronize via locks� and �ipping the from and to

spaces requires halting the mutators and inspecting and altering their registers	

� Conclusions

The garbage collection algorithm presented here is �to our knowledge� the 
rst
shared�memory multiprocessor algorithm that does not require some form of
global synchronization	 The algorithm�s key innovation is the use of asyn�
chronous �handshake bits� to detect when it is safe to reclaim a space	 There
are several directions in which this research could be pursued	 First� as noted
above� although our algorithm tolerates delays� it does not tolerate halting fail�
ures� since from space reclamation requires a clean sweep from each process	
It would be of great interest to know whether halting failures can be tolerated
in this model� and how expensive it would be	 Second� our algorithm make
frequent copies of objects	 Some copying� such as moving an object from from

space to to space� is inherent to any copying collector	 Other copying� such as
moving an object from one process�s to space to another�s� is primarily intended
to avoid blocking synchronization� although it might also improve memory ac�
cess time in a NUMA architecture	 The �pure� algorithm also copies objects
within the same to space� although this copying can be eliminated either by
adding extra 
elds �non�blocking� or by locking individual objects �blocking�	
It would be useful to have a more systematic understanding of the trade�o�s

��



between copying and blocking synchronization	 Finally� it would be instructive
to gain some practical experience with this �or similar� non�blocking algorithms	

References

��� Y	 Afek� H	 Attiya� D	 Dolev� E	 Gafni� M	 Merritt� and N	 Shavit	 Atomic
snapshots	 In Ninth ACM Symposium on Principles of Distributed Com�

puting� ����	

��� Henry G	 Baker	 List processing in real time on a serial computer	 Com�

munications of the ACM� �����
��� ���� April ����	

��� BBN	 The uniform system approach to programming the Butter�y par�
allel processor	 Technical Report ����� Bolt� Beranek� and Newman Adv	
Computers� Inc	� Cambridge� MA� October ����	

��� M	 Ben�Ari	 Algorithms for on�the��y garbage collection	 ACM Transac�

tions on Programming Languages and Systems� ����
��� ���� July ����	

��� E	 W	 Dijkstra� L	 Lamport� A	 J	 Martin� C	 S	 Scholten� and E	 F	 M	
Ste�ns	 On�the��y garbage collection
 An excercise in cooperation	 Com�

munications of the ACM� ������
��� ���� November ����	

��� John R	 Ellis� Kai Li� and Andrew W	 Appel	 Real�time concurrent col�
lection on stock multiprocessors	 Technical Report ��� Digital Systems
Research Center� ��� Lytton Avenue� Palo Alto� CA ������ February ����	

��� Maurice P	 Herlihy	 Wait�free synchronization	 To appear� ACM TOPLAS	

��� Maurice P	 Herlihy	 Impossibility and universality results for wait�free syn�
chronization	 In Seventh ACM SIGACT�SIGOPS Symposium on Principles

of Distributed Computing� pages ��� ���� August ����	

��� Maurice P	 Herlihy	 A methodology for implementing highly concurrent
data structures	 In Second ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming� pages ��� ���� March ����	

���� Maurice P	 Herlihy and Jeannette M	 Wing	 Linearizabilty
 a correctness
condition for concurrent objects	 ACM Transactions on Programming Lan�

guages and Systems� �����
��� ���� July ����	

���� IBM	 System���� Principles of Operation	 Order Number GA�������	

���� R	H	 Halstead Jr	 Multilisp
 A language for concurrent symbolic com�
putation	 ACM Transactions on Programming Languages and Systems�
����
��� ���� October ����	

��



���� H	 T	 Kung and S	 W	 Song	 An e�cient parallel garbage collection system
and its correctness proof	 In ��th Symposium on Foundations of Computer

Science� pages ��� ���� October ����	

���� Leslie Lamport	 Specifying concurrent program modules	 ACM Transac�

tions on Programming Languages and Systems� ����
��� ���� April ����	

���� Leslie Lamport	 On interprocess communication� parts I and II	 Distributed
Computing� �
�� ���� ����	

���� Kai Li	 Shared Virtual Memory on Loosely Coupled Multiprocessors	 PhD
thesis� Yale University� New Haven CT� September ����	

���� G	 L	 Peterson	 Concurrent reading while writing	 ACM Transactions on

Programming Languages and Systems� ����
�� ��� January ����	

���� Greg H	 P
ster et al	 The IBM Research Parallel Processor Prototype
�RP��
 Introduction and architecture	 In International Conference on Par�

allel Processing� ����	

���� C	 Pixley	 An incremental garbage collection algorithm for multi�mutator
systems	 Distributed Computing� ����
�� ��� December ����	

���� Paul R	 Wilson and Thomas G	 Moher	 Design of the Opportunistic
Garbage Collector	 In OOPSLA ��	 Conference Proceedings� volume ������
of ACM SIGPLAN Notices� pages �� ��� New Orleans� LA� October ����	
ACM	

��


