C-800

dlilgliltlall
SMALL |

HAND

L)
A<
U
C

1

r

DIGITAL EQUIPMENT CORPORATION

THE

SMALL COMPUTER HANDBOOK
1967 EDITION

Copyright 1967 by
Digital Equipment Corporation

PDP is a registered trademark
of Digital Equipment Corporation.

PART I: SMALL COMPUTER PRIMER

PART Il: APPLICATION PROGRAM EXAMPLES

PART I1il: FAMILY-OF-EIGHT USERS HANDBOOKS
PDP-8 USERS HANDBOOK

PDP-8/S USERS HANDBOOK

LINC-8 USERS HANDBOOK

PART IV: PRODUCT CATALOG

FOREWORD

The co'mputer revolution is here in the sciences and engineering. No discipline
will remain the same. Computers open up too many new ways of knowing
and doing. Computers offer too much power for control and analysis.

Small general purpose computers have become an important part of this revo-
lution. They give the scientist and engineer a way to have computer power
under their direct control; they are personal approachable tools.

Research scientists use small computers to automatically controi experiments
and to collect and condense data. The small computer allows the researcher
to use emerging data to creatively vary experiment sequences and parameters,
and of course, to perform mathematical operations. Where massive compu-
tation is required, small computers are easily connected to the facilities of
large scale computer systems.

Small computers are also used by the engineer as the control element in
large data handling or process control systems and instruments. In these
applications, small computers not only have cost advantages as compared
with specially designed, fixed-purpose, sub-systems, they have almost un-
limited flexibility and they can be readily expanded if the system has to grow.

There is an investment to be made by the scientist and engineer. If they are to
get the most out of their machine, they have to learn how to use it. The study
of the computer fundamentals outlined on the following pages is a good start.
The payoff for this learning investment is high. Dividends come in terms of an
entire career; the computer discipline is added to the discipline of science or
engineering.

The computers described in this handbook are members of a family of ma-
chines with the same word-length, instructions and programs. The family of
PDP-8 computers are in use at over 500 applications. The family includes the
PDP-8, the most popular computer ever made for the scientific community;
the new PDP-8/S, the first full scale, general purpose computer selling for
.under $10,000; the DISPLAY-8, the only programmed buffered Cathode Ray
Tube display with a built-in computer; and the LINC-8, combining the features
of the MIT inspired LINC and the PDP-8 into one completely integrated labora-
tory data handling system.

Digital Equipment Corporation is a leading manufacturer of small to medium
scale computers and associated peripheral equipment. FLIP-CHIP digital logic
modules, also manufactured by the company, are available for interfacing
specialized equipment to DEC's computers These products are described in
Part 1V of this handbook.

Digital's PDP-8 computer, shiown here undergoing final production
testing, is one of the most popular on-line computers for physics
and biomedical analysis and process control.

FLIP CHIP assembly line combines automated manufacturing steps
with computer controlled checkout for lower cost, more reliable
circuits.

Vi

PART |

"PART 1l

PART II

TABLE OF CONTENTS

FORWARD N
SMALL COMPUTER PRIMER 1
INTRODUCTION [2
PATTERNS IN SWITCHES 3
FLOW DIAGRAMS 4
BINARY COUNTING 6
BINARY ADDITION 8
WHY BINARY? . 10
OCTAL REPRESENTATION 10
STORAGE AND RETRIEVAL OF BINARY PATTERNS 11
ORGANIZATION OF THE COMPUTER 13
PROGRAMMING THE PDP-8 18
SYMBOLIC MACHINE LANGUAGE 21
PROGRAMMING EXAMPLES 22
ADDRESS MODIFICATION 24
SETTING UP INITIAL VALUES 26
SUBTRACTION 27
INDIRECT ADDRESSING 30
DEALING WITH THE PRINTED CHARACTERS 33
APPLICATION PROGRAM EXAMPLES v 37
INTRODUCTION P 38
REAL TIME TECHNIQUES FOR OCEANOGRAPHIC APPLICATIONS 39
A BASIC PROGRAM FOR PULSE HEIGHT ANALYSIS 51
A PROGRAM TO GENERATE AND DISPLAY A TIME-INTERVAL
HISTOGRAM 58
COMPUTER-DIRECTED PROCESS CONTROL TECHNIQUES ... 72
FAMILY-OF-EIGHT USERS HANDBOOKS
PDP-8 USERS HANDBOOK 81
Chapter 1: System Introduction 83
Chapter 2: Memory and Processor Basic Programming 92
Chapter 3: Memory and Processor Instruction 100
Chapter 4: Data Break . , 110
Chapter 5: Optional Memory and Processor EqUIpment
and Instructions 114
Chapter 6: Input/Output Equipment and Instructions . 128
Chapter 7: Standard PDP-8 Operation . .oooo.. 203 - -
Chapter 8: Interface and Installation 211

Vil

PDP-8/S USERS HANDBOOK 241

Chapter 1: System Introduction 243
Chapter 2: Memory and Processor Basxc Programmmg 251
Chapter 3: Memory and Processor Instructions 260
Chapter 4: Optional Memory and Processor Equipment
and Instructions
Chapter 5: Input/Output Equipment and Instructions . 273
Chapter 6: Standard PDP-8/S Operation 284
Chapter 7: Interface and Installation 292
'LINC-8 USERS HANDBOOK 299
Chapter 1: Introduction and Description 301
Chapter 2: Memory and Processor Basic Programming 310
Chapter 3: LINC Processor Instructions 315
Chapter 4: LINC Tape System 327
Chapter 5: Display System 334
Chapter 6: Analog-to-Digital System S 337
Chapter 7: LINC-8/PDP-8 Intercommunication 338
Chapter 8: LINC-8 Operation 352
Chapter 9: Interface and Installation 358
APPENDICES 364
Appendix 1 Program Abstracts 365
Family-of-Eight Programs 365
LINC (LINC-8) Programs I 387
Appendix 2 Tables of Instructions 396
PDP-8 Memory Reference Instructions 396
PDP-8 Group 1 Operate Microinstructions 398
PDP-8 Group 2 Operate Microinstructions 399
PDP-8 Extended Arithmetic Element Microinstruc-
tions 400
PDP-8/S Basic Execution Time and Indicators 402
Basic 10T Microinstructions 403
Appendix 3 Tables of Codes 414
Model 33 ASR/KSR Teletype Code (ASCII) in Bmary
Form°.. 415
Card Reader Code 416
Automatic Line Printer Code 417
LINC ASCIl Teletype Code 418
LINC Order Code Summary 419
PDP-8 I0OT Order Code Summary (To control LINC
Section) 421
Appendix 4 {{amily—of-S Input/Output Interface Descrip-
on
Appendix 5 Perforated-Tape Loader Sequences 451
Appendix 6 Logic Symbols 455
Appendix 7 Scales of Notation 457
Appendix 8 Powers of Two 458
Appendix 9 Octal-Decimal Conversion P 459
PART IV PRODUCT CATALOG 467

L

PART I: SMALL COMPUTER PRIMER .

INTRODUCTION

Robert Benchley once wrote that although he realized that a modern bridge
was indeed a very large and complex structure; he nevertheless felt quite sure
he could build one himself, if only he could think of the very first thing that had
to be done. Once over this initial hurdle, he thought, the remaining steps
would fall readily into place one after the other until the bridge was complete.
It was just his inability to discover that first step that prevented him from be-
coming a master bridge builder! :

You, perhaps, have been trying to discover the first step to be taken in building
a knowledge of just what a high-speed digital computer system is, how it oper-
ates, and in what ways it might be useful to you in your work. You have heard
that the computer can be an extraordinarily powerful tool, that it can somehow
remember an enormous number of facts, make decisions automatically, and
solve arithmetic problems at incredible speeds, doing in a matter of seconds
an amount of work it would take you days or weeks to accomplish by hand.
Perhaps you have a large, difficulf, or complex experimental problem that is
already beyond your scope without the aid of a computer. Or, you are trying to
find a way to capture and analyze an elusive signal, the slight variation of the
salinity of the ocean, the response of the human brain to a flash of light, or a
faint and fuzzy image on a photographic plate. It has become important to
you to know how to make use of the power and versatility that have charac-
terized the computer’s astonishingly rapid development in recent years.

That the modern computer is vastly more complex than Benchley's bridge
should not discourage you, for it is by no means necessary to learn all there is
to know about the computer before it can be put to work. Indeed, its basic
operating principies are really very simple, few in number, and can be iearned
easily. Of course, the greater the extent and depth of your knowledge of the
computer and its application, the greater will be the computer’s usefulness to
you as a tool. Starting with basic principles as they are applied in simple
situations, you will be able to extend your knowledge gradually to include more
and more complex ones. If only you could discover that first step. . .

It turns out that the first step is surprisingly simple. It involves no more than
a consideration of the kinds of on-off or up-down patterns you might find rep-
resented by a row of simple switches. For the digital computer, with all its
power and versatility, is basically little more than an automatic device for
manipulating just such patterns at high speed according to simple fixed rules.
The computer converts signals from its environment into switch patterns; it
changes one set of patterns into another in arithmetically useful ways; it stores
patterns away for further use, interprets them, combines them, translates
them into characters on a printed page, or into pictures, or sounds, or me-
chanical movements. Master the motion of switch patterns, and you have
made an important start in understanding how the digit computer works.
Not that you must understand how the computer works in detail to use it to
solve your problem. Not at all! Your main concern is going to be rather the
careful formulation of your problem in symbolic terms using pencil and paper.
Oh, occasionally you may want to flip a switch or two to modify or control the
behavior of the computer, and there may be times when interpreting switch
patterns as they are displayed in rows of indicator lights on a console will be
helpful. But by and large you will be content simply to “feed” the computer
your problem and its data in symbolic or electrical form, and have the results
returned to you with as little fuss as possible on some kind of printing, plot-
ting, or display device. You won't care how much pattern manipulation the

2

computer carries out in the process. The fact remains, however, that switch
patterns and their manipulation underlie and define everything that the com-
puter is capable of doing, and it is therefore a good idea to know something
about them.

PATTERNS IN SWITCHES

Consider a row of three switches as shown in figure 1. Think of each switch
as being in either an UP or DOWN position. For the present, suspend your in-
terest in which position corresponds to on and which to off and describe the
pattern of switch settings by means of the letters U and D strung together in
the right way. Thus, you can write down the pattern represented in figure 1
asUDU.

& @ . & ROW OF SWITCHES
U D U

PATTERN

Figure 1 A Pattern of Three Switches

Now, you might ask some simple questions about these patterns. For ex-
ample, how many different patterns can be represented with three such
‘switches? With four switches? With no switches?

It is clear that with three switches you can represent twice as many as you can
with two switches, and with two switches, twice as many as with one switch,
One switch provides for the two patterns U and D; two switches, therefore, pro-
vide for 2 X 2 = 4 patterns; and three switches, for 2 X 2 X 2 = 8 patterns.
Adding a fourth switch doubles the number of possible patterns again, giving
2 X 2 X 2 X 2 =16 patterns, and so on. Clearly, the rule is simply that the
number of patterns which can be represented by n switches is 2"

Is there a systematic way of writing down all of the 2" patterns possible with
n switches? Yes, there are many systematic methods, the most important of
which can be summarized by means of the following step-by-step procedure
stated in the all too familiar style of an income tax return:

LINE STEP

1 PUT ALL n SWITCHES DOWN
RECORD THE PATTERN
IF ALL n SWITCHES ARE UP, THEN STOP, IF NOT, GO ON
TO LINE 4
NOTE THE SETTING OF THE RIGHTMOST SWITCH
IF THIS SWITCH IS DOWN, PUT IT UP AND GO BACK TO
] LINE 2. IF THIS SWITCH IS UP, PUT IT DOWN AND GO
ON TO LINE 6
NOTE THE SETTING OF THE NEXT SWITCH TO THE LEFT
AND GO BACK TO LINE 5

& N

Figure 2 A Procedure for Systematically Producing
All 2" Patterns Represented by n Switches

Try this step-by-step procedure. Imagine a row of three switches and mentally
carry out the specified actions. You will find that the sequence of settlngs and
the corresponding patterns will turn out to be:

e & & @ 9 @ D
e &© D D & & D9 9
e D D e 6 D

Note that if step 3 is modified slightly to read, “If all n switches are UP, go
back to line 1, if not, go on to line 4,” the set of patterns will be repeated
endlessly. Each pattern then specifies its successor, with pattern DDD being
the successor to pattern UUU. You might, in fact, think of the whole pro-
cedure as one for finding successors according to a simple fixed rule. Start at
line 3 with any pattern whatever, and the procedure will give you the successor
to that pattern.

FLOW DIAGRAMS

No doubt you have had at one time or another, some difficulty in following the
line-by-line tabular instructions on your income tax form. You will be pleased
to know, therefore, that there is another way to represent systematic pro-
cedures, a way which emphasizes the flow from step to step. Such a repre-
sentation is called a flow chart or flow diagram. You are going to find this flow
diagram technique extremely useful when you are ready to formulate your
problem in symbolic terms for the computer, and you will be making frequent
use of it. Let's recast the table of figure 2 in flow diagram form so that you
can see just what a flow diagram looks like:

4

PUT ALL n SWITCHES
DOWN

RECORD THE
PATTERN

ARE ALL
n SWITCHES
T

STOP)

NOTE THE SETTING

OF THE
RIGHTMOST SWITCH

PUT THIS SWITCH
upP

[}

1S
THIS SWITCH
vpP org? DOWN

DOWN

PUT THIS SWITCH
DOWN

'

NOTE THE SETTING
OF THE NEXT SWITCH
TO THE LEFT

Figure 3 Flow Diagram of the Procedure for Systematically
Producing Ali 2" Patterns Represented by n Switches

The dotted line indicates the modification of the procedure which, if the STOP
is omitted, provides for continuous pattern sequencing.

Although not as compact as the tabular form of figure 2, the flow diagram is
considerably more graphic and is therefore easier to comprehend, especiaily
in the case of procedures involving many alternative steps. The shapes of the
boxes are not of primary importance, of course; the ones shown however are
convenient and more or less standard. —

BINARY COUNTING

Counting is one of the most basic operations of arithmetic. The procedure of
figure 2 or figure 3 is one which generates patterns by a process of counting
in a two-valued system. If you substitute the digit “O” for “D” and “1” for
"U,” the resulting patterns take the form of binary numbers. Unlike a decimal
number, which uses the ten digits O through 9, a binary number uses only the
two bits 0 and 1. Figure 4 shows the first four binary numbers and their deci-
mal equivalents generated by our counting procedure:

Count in Count in
Decimal Binary
0 00
1 01
2 10
3 11

Figure 4 The First Four Binary Numbers and
Their Decimal Equivalents

To keep the notation straight, it will be a good idea to use the subscripts 2
and 10 in any statements of equivalence that you might want to write: 00, =
Om; 0l.= 1; 10, = 2:0; 11\2‘: 3.

The generating procedure we, have chosen is one in which binary patterns are
“counted out” in a way similar to the purely symbolic one you learned in grade
school for decimal numbers. You learned to say “ZERO plus ONE equals ONE;
ONE plus ONE equals TWO; etc.; NINE plus ONE equals ZERO with ONE to
carry.” In binary terms you would say “ZERO plus ONE equals ONE; ONE plus
ONE equals ZERO with ONE to carry.” Much simpler. The above sequence of
four binary numbers was generated in just that way by our procedure. The
counting went like this:

0—> 00
00
+ 1

1=-> 01

Ix carry

2=> 10

3> 11

You can see that if there were more than two switches, the next number gen-
erated would be

11 carries

4> 100

and so on, the sequence continuing with 101, 110, 111, 1000, etc.

Symbolic procedures of the sort we have been using are known as algorithms
(after the ninth century Arabian arithmetician al-Kuwarizmi, to whom the
credit is due for this method of calculating by means of symbol manipulation,
a vast improvement over the method of counting pebbles). Thus you would
speak of the procedure of figure 3 as the binary counting algorithm, or of the
familiar grade school decimal counting algorithm, and so forth. All of the fixed
rules followed by a digital computer as it goes about solving a problem are, in
fact, algorithms of one kind or another.

What is the meaning of a binary number, anyway? What is the quantity of
pebbles represented by a given binary number? The answer is that each bit
within the string of bits stands for a different portion of the whole quantity,
depending upon its position in the string, just as in decimal notation.

Recall that in the decimal system, a number such as 349, for example, has
the meaning “nine ones + four tens + three hundreds.” The values one, ten,
hundred, and so forth are the consecutive powers of ten; that is, 10°, 10,
107, etc. :

349

l I—Sxi - 9
4x10 = 40
3 x 100 = 300

SUM = 349

In the binary system, a number such as 10110 has the meaning (again read-
ing from the right) “zero ones + one two + one four + zero eights -+ one six-
teen,” or twenty-two. The values one, two, four, eight, sixteen, and so forth are
the consecutive powers of two; that is, 29, 2!, 2%, 23, 24, etc. The binary digits
0 and 1 are called bits (for binary digits), and just as we say that 349 is a
3-digit decimal number, we say that 10110 is a 5-bit binary number. Repre-
senting 349 pebbles requires a 9-bit binary number:

1010111012234910

10101t 1101

||—1x1 = 1
l Ox2 = 0O
i1 x4 = 4
1x8 = 8
1x16 = 16
0x32 = 0
1x64 = 64
Ox 128 = o

1 x 256 = 256
SUM = 349

BINARY ADDITION

You may be wondering how addition of two binary numbers is accomplished
directly in binary. Very simple, really. The addition algorithm is just an exten-
sion of the counting algorithm. The bit strings of the two numbers, the
ADDEND and the AUGEND, are lined up one over the other, and for each col-
umn, the rule “ZERO plus ONE equals ONE; ONE plus ONE equals ZERO with
ONE to carry” is applied, starting from the rightmost, or least-significant bit
column. You might try the following example for 12-bit numbers yourseif.

Carries

1 11 11

A Xy kh
ADDEND : 000 010 101 101 A 17340)
AUGEND 011 010 001 011 (+ 1675,)
SUM 011 100 111 000 (= 1848,,)

In the fourth column from the right, you will notice that three ONEs had to
be added together. Of course, you simply add two of them together first, get-
ting “ZERO with ONE to carry,” and then add the third ONE to this, getting
finally “ONE with ONE to carry.” If the sum is also supposed to be a 12-bit
number, any carry produced in the leftmost column, the end-carry, can simply
be discarded.

But discarding the end-carry means, doesn't it, that the sum is incorrect?
Yes, it does in a way, but it also makes possible a simple representation of
negative numbers within certain limits. For if the sum turns out to be zZero,
i.e., 000 000 000 000, either the ADDEND and AUGEND are both zero, or,
more to the point, the ADDEND and AUGEND can be thought of as having
values which are equal in magnitude but opposite in sign since these are the
only kinds of values which add up to zero. For example, in the addition

end carry

111 111 111 11 carry

SRR RRX KRR (R
111 111 111 111 ADDEND

000 000 000 001 AUGEND
000 000 000 000 SUM (rightmost 12 bits)

you recognize the ADDEND as having the value “1" and it must be, therefore,
that the AUGEND has the value “—1.”

We say that the numbers 111 111 111 111 and 000 000 000 001 are 2’s
complements of one another; addition in which the end carry is discarded is
called 2’s complement addition.

We can arrange the set of 12-bit numbers in a way which shows all of the 2's
complement pairs, and assign corresponding decimal values and their signs as
in figure 5.

PAIRING (TWO'S R OMPLEMENT) bEC AL
—— o111 111 11y 111 +2047

[] .

. .

| 000 000 000 100 +4

—— | 000 000 000 011 +3

000 000 000 010 +2

000 000,000 001 1

[: 000 000 000 000)

. 111 111 111 111 -1

111 111 111 110 -2

L 111 111 t11 1014 -3

L o [111 111 111 100 —a

L4 .

L] *

] . . L]
L » [100 000 000 001 | -2047

Figure 5 Two's Complement 12-Bit Binary Numbers and Their
Signed Decimal Number Equivalents

The leftmost bit, you will notice, is ZERO for all the positive numbers and
ONE for all the negative numbers. It is called, therefore, the sign bit of the
number. Actually there is one more “negative” number not shown in the
table. It is 100 000 000 000, = 2048,, — a bonus or a nuisance depending
on your point of view.

You may have perceived that the way to negate either a positive or negative
number is to change all its bits from ONE to ZERO and vice versa (a process
called complementing) and then add 1 to the result.

The whole business is getting to be a bit tedious, isn’t it? Bear in mind,
though, that the computer is going to take care of practically all of these
binary details for you automatically, and that you can work with the decimal
number system directly if that is what you wish to do. Conversion between the
two systems can be achieved by means of suitable algorithms, and at this
point perhaps, that’s all you want to know about that. .

9

’ WHY BINARY?

You can see that binary numbers are much less compact than decimal num-
bers. They are, however, quite the right sort of numbers to represent in two-
state devices as two-position switches. The reason that the binary rather than
the more compact decimal system is used in electronic digital computers is
primarily that two-state devices have been found to be technically and eco-
nomicaily sounder than ten-state devices in computer construction.

Two-state devices of various kinds are used extensively. The electronic version
of the two-position switch is picturesquely known as a flip-flop. The computer
is able to put a flip-flop into either of its two states by means of electricai
signals, just as you are able to put a switch into either of its two states by
hand. Computer memory units are composed of a large number of tiny, mag-
netizable doughnuts misnamed cores, wired together in geometrical arrays
and arranged so that each core can be magnetized in one of two ways. Binary
numbers can also be stored in the form of two-state magnetized spots on
tapes, discs, or drums coated with magnetic material, or in the form of holes
punched in paper tape or cards (the two states being “hole” and “no hole”).
A set of n two-state, i.e., binary, devices used in the representation of an n-bit
number is called an n-bit register. Thus, a row of twelve two-position switches
is called a 12-bit switch register, and a set of twelve flip-flops, a 12-bit flip-
flop register. A 12-bit register can represent or “hold” 22, or 4096, different
binary numbers.

OCTAL REPRESENTATION

Even though you may be talking about or writing down a 12-bit binary number
very rarely, it is still quite a nuisance to have to deal with binary digit strings
like 101101110010 or 001100101101. You will be relieved to learn that there
is a simple shorthand that can be used instead. It involves yet another
system, the octal number system, in which numbers are based on powers of
eight, and the digits O through 7 are used. But do not despair, for it is the
notational rather than the arithmetic aspects of the octal system that will con-
cern you. To use it as a shorthand notation for a 12-bit binary number, for
example, you simply divide the twelve bits into four groups of three bits and
assign in place of each group its octal equivalent taken from the 3-bit table of
figure 6, which you can surely memorize:

OCTAL BINARY
o 000.
1 001
2 010
3 01
4 100
5 101
6 110
7 111

Figure 6 Octal-Binary Equivalents

10

For example, if you find it necessary to deal with the number 101101110010,
you can subdue it-as indicated below:

101101110010

¥ YN
101 101 110 010
v ¥ g

5 5 6 Octal digit equivalents

101101110010, = 55625

It's easy to see that the process can be reversed. Given an octal number such
as 1347, you use figure 5 to find the 3-bit binary equivalents of each octal
digit and string these together.

1347
¥ ¥ N\
001 011 100 111

13473 = 0010111001112

Handy. Almost as compact as decimal, furthermore.

'STORAGE AND RETRIEVAL OF BINARY PATTERNS

By now you have the idea that a register can be thought of as “holding” a
number. A given 12-bit register can hold only one 12-bit binary number at a
time, but any of the 4096 possible 12-bit numbers can be accommodated. A
number can be copied or transferred electronically into any flip-flop register
large enough to accommodate it, and a computer, in fact, makes many such
transfers in the course of a calculation. To accomplish a number transfer, the
state of each flip-flop or switch within the source register is represented as an
electrical signal which is then transmitted to the destination register where it
sets a corresponding flip-flop into a matching state. If all n bits are copied
simultaneously, the transfer is said to be a parallel one; if the bits are copied
one at a time, a serial one.

One of the most important functions of a computer is the storage and retrieval
of information—facts, dates, measurements, names, messages, instructions,
data—all representable as binary patterns of one kind or another. Before the
computer can solve your problem, you must supply it with all the information
relevant to the problem, the procedures for solution as well as data. To do its
job the computer must have rapid access to many, many numbers, far too
many to hold entirely in flip-flop registers, which are relatively large and elabo-
rate devices. Instead, a special storage unit, the core memory, is used. In a
core memory, the two-state elements are the magnetic cores mentioned
earlier, rather than flip-flops. These cores are arranged to function as sets of
identical n-bit registers, into and out of which parallel n-bit transfers can be
made one register at a time.

The registers within a core memory have identifying numbers associated with
them, much the way houses on a street have addresses. These numbers, in
—~~fact, are catted addresses, and youcan speak of “storing a number-at acer--

11

tain address” in the memory. Addresses are also referred to as “patterns” or
“words."” :

This process is so fundamental that you will want to see a specific example,
perhaps one in which the address and pattern are copied from switch registers
even though in a typical computer situation other kinds of number-input de-
vices will be used. A simple 64-word 12-bit memory system and a 6-bit ad-
dress register are shown in figure 7.

12 INDICATOR LIGHTS
\‘J \I.F \.'! ~.'.‘ \.':sl:
00 OO0 000 OL0:

MOR STORE
ADDRESS conelsuz: Y PUSHBUTTON
e
12 - BIT CORE
REGISYERS!
RETRIEVE
PATTERN

008 8bg| O9pY 99 ¢gbp 9

6-BIT ADDRESS REGISTER 12817 PATTERN REGISTER

Figure 7 A Simple 64-Word 12-Bit Memory System

You will notice that because there are 64 addresses, the binary address regis-
ter must have 6 switches: 2 = 64,. To store patterns or “words” in this
simple memory, you set the switches of the address register to represent the
binary form of the address designating the core register you want to use, set
the switches of the pattern register to hold the pattern you want to store, and
push the STORE push button. You can repeat. this process with other ad-
dresses and patterns, if you wish, until all 64 registers are “full.” The registers
may be used in any order whatever, sequentially, if you wish, or completely at
random. The core memory system is said to provide random access to its
registers.

To retrieve a pattern you have stored, you again set the address switches to the
address of the register holding the pattern and then push the RETRIEVE push
button. The pattern held in the designated core register is copied into a spe-
cial 12-bit flip-flop register, which is connected to a set of twelve lights for
you to look at. Lights which are on correspond to ONEs in the binary pattern.
Simple? Logically yes, but electronically, no. The process of tuning electrical
signals into magnetic states and vice versa is one requiring many electronic
devices and circuits.

So, in a memory system like the one above you can store a set of quite arbi-
trarily chosen patterns. In figure 7, the switches are set to store the number
5123; in the register whose address is 76s;. You can summarize the state of
affairs at any point by listing the patterns and their address locations in octal

12

notation (using the table of figure 6 which you have, of course, memorized).
You might have something like this: ' ‘

- LOCATION | CONTENT
{OCTAL) {OCTAL)
00 4321
01 0000
02 7777
03 5123
04 0510
05 7401
06 2111
07 3043
10 6571
11 1234
[] []
. .
76 5123
T7 1234

Figure 8 The Contents of a 64-Word Memory
Register 07,, for example, holds the number 3043; and the “next” register,
10;, holds the number 6571:. Of course, if you are actually setting switches or
looking at lights, you can readily convert these octal numbers back to binary
if you wish:

07, = 000 111, 3043, = 011 000 100 O11,
10, = 001 000, 6571, = 110 101 111 00l

By the way, notice the disconcerting skip from the number 7 to the number 10
in an octal counting sequence. This will probably always bother you, but
nothing can be done about it. The same thing happens at 17, which is fol-
lowed by 20, and 27, 37, 47, 57, and 67. The number following 77 is 100,
and so it goes. Just skip any numbers which have an 8 or 9 in them, and you
can count in octal if you really want to. '

ORGANIZATION OF THE COMPUTER

| “'!'his is all very well,” you can be heard to say, “but what does it have to do

ywth ‘capturing and analyzing an elusive signal,’ for example?” A fair question,
it must be admitted. The step from storing and retrieving binary numbers
using switches set by hand to solving a complex problem is seemingly great,
but be assured that you are on the right track! For it turns out that a com-
plete digital computer can be built around just such a simple storage and
retr_ieval scheme as the one outlined above. There will have to be more core
registers and correspondingly larger addresses; some kind of unit capable of
carrying out various arithmetic algorithms will have to be provided; for con-
venience, it will probably include at least a keyboard/printing device such as a
teletypewriter.

The structure and operating principles of such a computer might be repre-
sented in terms of a simple diagram:

13

CONTROL.
UNIT

!

INPUT | Eammm—— MEMORY - OUTPUT

T

ARITHMETIC
UNIT

Figure 9 A Simple Modei of the Computer

The input, memory, and output elements are similar in principle to the pattern
switches, memory, and indicator lights of figure 7. Input and output, of
course, can be and frequently are handled by a wide variety of devices much
more sophisticated than switches and lights, such as display scopes, magnetic
or paper tape units, analog/digital converters, and teletypewriters. No matter
how complex such a device might be, however, it always transmits information
into or out of a digital computer in binary patterns which could be set in
switches or readin lights. (How slow that would be!)

Storing and retrieving binary patterns in a core memory certainly has little
appeal unless you can also manipulate the patterns in some useful way, per-
haps to do arithmetic calculations with binary data which is in the memory.
The arithmetic unit not only accepts numbers previously stored in the mem-
ory, but is capable of performing various algorithmic -operations on these
numbers (i.e., adding two numbers together), and returning them eventually
to the memory or to an output device. Since it must be able to manipulate
numbers, as well as “hold” them, the arithmetic unit usually consists of spe-
cially designed flip-flop registers which are more powerful (and more expen-
sive) than core registers.

If any part of a computer can be thought of as its “brain,” it is the control
unit. This unit coordinates ail the paris of the computer so that events hap-
pen in a logical sequence and at the right time. To show all the pathways
control signals might take to the other parts of even the simple computer
model shown in figure 9 would quite obscure the drawing! This is the unit
which “makes things happen.” '

This is neither as powerful nor as mysterious as it may sound, for the control
unit only does exactly what you tell it to do. Numerically encoded instruc-
tions, which you store in the memory, can be sent to the control unit to direct
it to carry out certain basic algorithmic steps. The control unit is designed to
“decode” each number sent to it and to initiate a chain of events designated
by that number. For example, the instruction code number 7001, might ini-
tiate a'counting algorithm step in an arithmetic unit register. When one chain
of events has been completed, the control unit is ready to receive another
number from the memory and to initiate the chain of events designated by
that number, and so on.

Relatively few algorithms or instructions which the control unit can interpret
are actually built into the computer, but they include ones which make it pos-

14

sible, when combined in the proper sequence, to synthesize any algorithm
whatever that could have been built in! This remarkable circumstance gives
the computer enormous versatility. We speak of this kind of computer, one
that stores its own instructions and provides for the generai synthesis of aigo-
rithms, as a general purpose computer.

The set of instructions which the computer is directed to carry out in a speci-
fied sequence is called a program. It is the program that states the pro-
cedure the computer is to follow in solving the problem at hand. The program
is thus a large problem soluation algorithm composed of many simpler algo-
rithms, namely, the basic ones provided in the repertory of the computer.
Your task in using the computer to solve a given problem is primarily one of
writing an effective program based ultimately on the simple operations the
computer “knows” how to do.

In principle, then, the steps you must take to use the computer to solve your
problem are the following:

1) Program: The problem must be analyzed and an algorithm for its solu-
tion constructed in the form of a program of instructions which
are in the repertory of the computer.

2) Input: These instructions must be encoded in binary form and stored
in the memory together with any data and parameters required
by the program.

3) Operation: The computer must be started at the first instruction; all the
steps of the program are then automatically carried out, the
computer alternately “fetching” instructions from its memory
and “executing” them. '

4) Output: The binary results must be retrieved from the memory.

You would find these four steps quite tedious if you had to carry them out in
detail. Fortunately, in practice, there are many simplifying variations of these
four steps, designed to make your task easier. It will be possible, for example,
to express your problem not in the relatively simple basic instruction “lan-
guage” of the computer, but rather in a more powerful language better suited
to your needs, which will be translated into the basic language and encoded
in the necessary binary form automatically. You will be able to incorporate
into your work some of the many programs already written by others, taking
advantage of an ever-increasing base of useful procedures. Devices will be
available to capture that elusive signal in binary numerical form and store it
away for you. Printers, plotters, and recorders of various kinds will simplify
the retrieval and display of results in decimal or graphic form.

A SPECIFIC EXAMPLE

Scmeone once suggested that the ideal digital computer would be powerful
enough to solve any problem in one second or less, would cost no more than
ten dollars, and would be so compact that you could simply paint it onto any
handy surface. Such a machine is not yet available. Instead, focus your atten-
tion briefly on the organization of a specific available digital computer as a
preface to learning just what kinds of instructions can be used in writing
programs.

Figure 10 shows a diagram of the PDP-8, a simple, high-speed, general pur-
pose digital computer which operates on 12-bit binary numbers in parallel
fashion. : '

15 -

SWITCH
REGISTER
12
> LINK
1
PROGRAM MEMORY
ADDRESS
COUNTER AECISTER
L]
ACCUMULATOR ‘
TELETYPE fa—p] _
8
’ e ic
MEMORY .
12 BUFFER
REGISTER
INSTRUCTION
2 REGISTER |
4036-WORD
CORE
MEMORY
MAJOR
STATE
GEMERATOR 4

Figure 10 A Block Diagram of the PDP-8

The diagram clearly introduces several new terms with which you will become
familiar, but each component can be directly associated with the simple.
model of figure 9. The switch register and the teletypewriter for example are
typical input output devices.

The PDP-8 memory contains 4096 12-bit core registers and therefore requires
12-bit addresses. A 12-bit flip-flop register, the memory address register, is
provided to hold an address during a memory reference period, or memory
cycle as it is called. Another 12-bit flip-flop register, the memory buffer regis-
ter, holds all words which move into and out of the memory. These two spe-
cial registers and the memory make up the memory unit.

The arithmetic unit has two elements in the PDP-8. The accumulator is a 12-
bit flip-flop register whose main use is in arithmetic and other operations on
numbers held in the memory; it is surrounded by electronic circuits which
implement the binary algorithms for these operations. lts name comes from
the fact that it accumulates partial resuits during the execution of the pro-
gram. Notice that the accumulator also communicates with a Teletype ma-
chine—about which more later—and has attached to it a 1-bit flip-flop regis-
ter, the link, which is used primarily in calculations in which twelve bits are not
enough to represent the numbers involved. The accumulator can also be set
from the switch register.

The instruction register and major state generator, together with the program .
counter, can be identified as part of the control unit. The 3-bit instruction

16

register holds a code number specifying the main characteristics of the in-
struction being executed (other details are specified by other bits of the in-
struction being executed (other details are specified by other bits of the
instruction as they appear in the memory buffer register), and the major state
generator keeps track of the fetch and execution phases of operation.

The program counter is used by the control unit to keep track within the pro-
gram of the addresses, i.e., the locations in memory, of the instructions to be
executed. Ordinarily these instructions are stored at numerically consecutive
locations, and the process of keeping track involves no more “counting along”
the number in the program counter; that is, replacing it with its binary succes-
sor using built-in electronic circuits which implement the by now very familiar
binary counting algorithm of figure 3. The program counter can be set initially
to the address held in the 12-bit switch register so that operation can start
properly with the first instructidn in the program. This setting procedure can
also be used in the simple kind of storing and retrieval scheme discussed
earlier.

Not shown on either of the computer diagrams is a very important component
called the operator console which makes it possible for you to communicate
with the computer directly, should you wish to do so. A simplified picture is
shown in figure 11:

PROGRAM COUNTER

IOO0O0I000I0OO0I0O00O

MEMORY ADDRESS

IOOOIOOO0IOOOI0OO

MEMORY BUFFER

IOOO0I0O0OI000OI00OO

LINK : ‘ ACCUMULATOR

O 1000I000I0OOI0OO

SWITCH REGISTER

900|008 |008|9p0¢

C9) sTART

C®) L0AD ADDRESS
C®) oeposIT

®) Eexamine

%) CcoNTINUE

9 stop

Figure 11 A Simplified Picture of the PDP-8 Operator Console

On the console are manual keys which act as push buttons for storing, retriev-
ing, starting, etc. There are indicator lights for each flip-flop to provide a
binary form of visual output, and which you can read when the computer is
stopped. The single switch register, in conjunction with the keys, has many
applications.

Why not start by seeing how you might use this console to store binary pat-
terns in memory? The switch register supplies both the address and the

17

pattern itself, unlike the earlier example of figure 7 in which two switch regis-
ters were shown. In the PDP-8, the address is first set into the switch register
and the key labeled LOAD ADDRESS is momentarily lifted. This action causes
the address set in the switch register to be copied into the program counter.

Next, the pattern is set into the switch register and the key labeled DEPOSIT
is lifted momentarily. This causes the pattern to be copied into the core regis-
ter whose address has been put in the program counter. The number in the
program counter is increased by 1 in preparation for another DEPOSIT action
intended to copy the next pattern set in the switch register into the core regis-
ter “following” the first one used, and the computer stops. *

Direct retrieval is accomplished by setting the address in a similar fashion.
The EXAMINE key corresponds to the RETRIEVAL push button -of figure 7. The
pattern found at the address set in the switch register will be displayed in the
accumulator lights. Again, the address held in the program counter is in-
creased by one to facilitate consecutive addressing.

PROGRAMMING THE PDP-8

Now that you have an idea of the structure of the computer, how it represents
and handles binary information, and how you can communicate with it, it is
time to look more specifically at some of the instructions which are in the
repertory of the PDP-8 and to see how they can be arranged into useful
programs.

Let us begin with some simple sets of instructions. Suppose, for example,
that you have put the following humbers into the memory:

LOCATION | CONTENT
(OCTAL) (OCTAL)

L] L]
L L
[2 []

0040 7200
0041 7001
0042 7001
0043 7001
0044 7402

Suppose, further, that you then set the number 0040, in the switch register
and press the START key. Nothing seems to happen, although the indicator
lights may appear to blink. The computer is clearly not running, and the ac-
cumulator indicator lights show the pattern.

000 000 000 011
that is, the number 0003. The program counter lights show the pattern

000 000 100 101

18

that is, the number 0045,. Other lights are lit in other patterns. What does it
all mean?

You have just “run” a small program on the computer. The steps of the pro-
gram were automatically carried out, the computer alternately “fetching” in-
structions from its memory and “executing” them. The numbers you have
stored in registers 4 through 44 are the code numbers of instructions for gen-
erating the number 3 in the accumulator. Pressing the START key with 40
in the switch register set the program counter to 40 and started the computer
in its calculating mode. The computer “looked up” the contents of register
40, found the number 7200, and sent it off to its control unit for interpretation
as the first instruction in the program. The computer then executed sequen-
tially the five instructions in registers 40, 41, 42, 43, and 44.

To understand just which instructions in the repertory might generate the
number 3 in the accumulator, let us rewrite the program using mnemonically
useful abbreviations. The mnemonic abbreviations used throughout the text
have been generated for explanation only. There are no standard mnemonics
used by the computer industry.

Location | Contents | Mnemonic _
(octal) Comment
]
Start . . .
—> 0040 7200 CLA Clear AC.

0041 7001 IAC

0042 7001 IAC Increment AC three times.
0043 7001 IAC

0044 7402 HLT Halt the computer.

Program Example 1 Generating the Number 3 in the Accumulator

in the PDP-8, 7200 is the code number of the instruction “clear the accu-
mulator,” i.e., the instruction to set the twelve accumulator, or AC, flip-flops
to the O state. These clearing actions were carried out, the number in the
program counter was increased by ONE to the value 41, and the computer
was then ready to look up, i.e., fetch, its next instruction which it proceeded
to do. In register 41 it found the number 7001, the PDP-8 code number of
the instruction to “increment accumulator,” i.e., to increase the number in
the accumulator by ONE. This instruction was then executed, and the step of
incrementing the program counter contents was also carried out as before.
And so it went. Two more increment accumulator instructions were fetched
and executed, leaving the number 3 in the accumuiator. The instruction which
was then found in register 44, with the PDP-8 code 7402, simply directed the
computer to halt, with the number in the program counter set to 0045 in an-
ticipation of another step.

The program might have been stored or relocated in a completely different
set of consecutive core registers without in the least changing its effect on the
accumulator. You have only to start it at the location of the first instruction,
wherever that might be. ‘ '

19

The instructions CLA, IAC, and HLT are examples of a whole group of simple
built-in instructions called operate instructions, so called because almost all
of them “operate on,” or refer to the contents of the accumulator. Members
of this group are recognized by the control unit because they always have a
“7" as the leftmost (most significant) octal digit. By the way, it is always the
most significant octal digit that is sent to the 3-bit instruction register for de-
coding and interpretation. : '

What about instructions of other kinds, that is, ones with code values other
than 7? A very interesting and powerful instruction is the one having the code
value 5. It is called the “jump” instruction, and has the effect of changing
the program counter. In other words, the computer does not have to execute
instructions as they appear sequentially in consecutive memory registers. The
jump instruction can be used to direct the computer to another memory regis-
ter, out of sequence, for the next instruction.

The rightmost three octal digits, i.e., nine bits, of the jump instruction tell the
computer the address of the next instruction. For example, if the code num-
ber encountered in, say, register 123, during the instruction fetching phase is
5034, the “5” will direct the computer to replace the contents of the program
counter with the number 0034. The next instruction will, therefore, come not
from register 124 but rather from register 34, and the program will go on
from that point. In effect, the program “jumps” from register 123 to register
34. We write this instruction mnemonically as JMP 34, and can describe it
generally as “JMP Y.”* Look at the following example:

Location Contents { Mnemonic Comment
(octal) (octal)
Start . . .
—3 0040 7200 CLA Clear AC.
0041 7001 1AC Increment AC.
0042 5041 l JMP 41 Go back to location 41.

Program Exarr;ple 2 Endless Binary Counting in the Accumulator

The program endlessly repeats the entire counting sequence of 4096 num-
bers, replacing the number in the accumulator with its successor each time
“around the loop.” The contents of the program counter pass through the
values 40, 41, 42, 41, 42, 41 . . . endlessly, or rather, until the STOP key
is pressed or someone trips over the power cable.

You will agree that simply counting out the binary numbers isn't very interest-
ing, but the four instructions which these examples introduce should give you
some notion of what it means to “program a computer.” Perhaps the instruc-
tions don’t look quite the way you expected!

The repertory of any general purpose computer, of course, reflects the organi-
zation of the particular computer for which it was designed, and although the
instructions may seem odd at first, they generally perform very simple opera-
tions which are quickly mastered by the programmer.

*For the present let Y stand for any number less than 200, i.e., ahy number
less than 128,. These are smaller numbers than you need to address the en-
tire memory, the restriction to small numbers will be explained later.

20

Perhaps the most important single thing to be aware of, as you put instruc-
tions together to form a program, is that the computer is really very simple-
minded. Remember the CLA instruction in the first example? If the computer
had not first been directed to clear the accumulator, the LAC instructions in
locations 41, 42, and 43, which “increase the number in the accumulator by
ONE,” would have done just that; i.e., they would effectively have added 3 to
whatever number was in the accumulator at the time. The computer has no
way of knowing that that wasn't quite your intention, and, of course, at another
time that might have been exactly your intention. This necessary attention to
detail may seem picky at first, but you will quickly learn the combinations of
instructions which insure the smooth operation of your program.

The instruction repertory is then the “language” of the computer. The pro-
gramming examples which follow will introduce you to some of the PDP-8 in-
structions. The repertory includes instructions, such as JMP and HLT, which
simply direct the flow of events for the control unit. There are instructions
which send information between the accumulator and input or output devices
such as the Teletype, (KSF, KCC, KRS, KRB), and ones which send information
between the accumulator and the memory (called “memory reference instruc-
tions”).

Since all the “work” is done in the arithmetic unit, there are a number of in-
structions in the operate group which make it easy to use efficiently. These
include instructions which complement the accumulator contents, rotate it
right or left, set it to the number held in the switch register, or cause the com-
puter to skip one instruction when the accumulator is in a certain state.

SYMBOLIC MACHINE LANGUAGE

Before proceeding with more specific programming examples, it will be helpful
to introduce a few more mnemonic aids which you will be able to substitute
for much of the octal notation.

Program example 2, for instance, can be relocated in another set of core
registers, but notice, please, that in this case the program must be changed
slightly before it will run correctly: the JMP Y must be recoded to match the
new location. Examples:

———> 65 CLA — 123 CLA

66 IAC 124 IAC

67 JMP 66 125 JMP 124
This can become quite a nuisance, especially with large programs in which
there will be many such references to memory addresses. If, however, you as-
sign a name, say, “CAT,” to the memory register to which the JMP instruction

must return, you can write

> CLA

CAT, 1AC
_ JMP_CAT

21

without, for now, concerning yourself with the actual memory location of the
IAC instruction. Note, in the above example, that CAT is followed by a comma
when it is used as an identifier for an instruction. When CAT is used to sym-
bolize the address portion of an instruction, no comma is required.

These symbolic references to instruction locations are made possible because
of a special program, called an assembler. When you are ready to run your
program, the assembler will first translate this symbolic language you have
used* into the binary numbers which the computer will use. Clearly a very
useful program! :

The PDP-8 assembler is one of many such symbolic translators and we will
use its notation in the examples which follow. Another translator, of which
you have perhaps heard, is called FORTRAN. It can transiate more complex
combinations of symbols than an assembler, and may be the appropriate lan-
guage for writing some of your programs.

PROGRAMMING EXAMPLES

Let us turn our attention first to the extremely important skip instructions,
ones that give the computer its ability to make decisions automatically, to
change the course of its calculations, to discriminate between one kind of
result and another. In the PDP-8 each of these instructions takes the form
of a conditional “skipping over” of the instruction stored in the immediately
following register in memory. This skipping action depends on the detection
of certain situations or states; for example, upon the detection of the number
0000 in the accumulator. (The control unit handles skipping by simply incre-
menting the contents of the program counter one extra time if the designated
situation is found to exist.)

For example, if we include the instruction SZA, “skip if accumulator is zero,”
in program example 2, we can make the computer break out of its otherwise
endless loop after it has generated one complete sequence of the 2'* binary
numbers. SZA has the effect of skipping the instruction following it if the num-
ber in the accumulator is 0000. The program would look like example 3 if
written in the symbolic language of the assembler. “*110" is called an origin;
it “tells” the assembler that you want the program to occupy consecutive
memory locations starting at register 110. “C(AC)” is an abbreviation of “con-
tents” of the accumulator”.

*110
START, CLA Clear AC.
— CAT, IAC increment AC.

SZA Does C(AC) = 0? If not, go to next
______ 71 instruction; otherwise, skip
| next instruction.

JMP CAT I Jump back to increment again.

HLT <1 Stop the computer; sequence is complete.

Program Example 3 Halting after Generation of One
Complete Binary Counting Sequence

*Note the arrows and lines, though. They are just your notes to yourself.

22

The program stops itself after counting out 22 numbers. As you can readily
see, it might instead have been made to go on to vet another calculation by
replacing the HLT with a JMP to the start of a new calculation. To complete
the picture, you might construct the flow diagram for this simple program. It

would look like this:

L START)

y
CLEAR ACANDL -

-
y

INCREMENT CONTENT
OF AC

DOES
CONTENT OF AC
EQUAL ZERO

C sTOP)

Figure 12 Flow Diagram of Example 3

The PDP-8 includes a wvery useful and powerful instruction which combines the
operation of incrementing and skipping. It is called a “memory reference in-
struction”, and operates on a number held in the memory, using counting and
detection circuits on the memory buffer register instead of the accumulator. It
is the “increment and skip if zero” instruction, abbreviated 1SZ Y. Using this
instruction, the equivalent of the last program might be written:

ISZ COUNT Increment contents of COUNT. If
------- the result is 0, skip the next instruction.
JMP -1 | Return to increment AC again.
HLT <« S Result is 0, so halt.
COUNT, (0) The count itself.

Program Example 4 Counting in a Memory .Registér

23

The notation “.-1” in the JMP instruction is used to go back one location from
the location of the JMP instruction, wherever that may be. (In other words,

mulator is not used at all; it will remain unchanged throughout the operation
of the program.

ADDRESS MODIFICATION

Suppose that you want to have the computer clear a set of consecutive core
registers, or what is referred to as a table of registers in memory. You will
make use of the instruction, “deposit and clear accumulator,” or DCA Y (with
the same restriction on Y as before), which has the effect of copying the num-
ber in the accumulator into register Y and then clearing the accumulator.
Each number in the table of registers, say, 100; through 177,, is to be set to
the value 0 in preparation for some further calculation or to be ready to accept
data from an input device. The sequence of instructions you are trying to
achieve is:

Staﬂ_) CLA Clear AC.
DCA 100 Deposit C(AC) in register 100.
DCA 101 Deposit C(AC) in register 101.
DCA 102 Deposit C(AC) in register 102.
DCA 176 Deposit C(AC) in register 176,
DCA 177 Deposit C(AC) in register 177.
HLT Stop the computer.

There is, however, a much more compact way of programming this example,
which is based on the fact that the code number of an instruction can be
modified arithmetically. The code number for the instruction DCA 100, 3100,
can be modified in place to become the code number for the instruction DCA
101, 3101, and that in turn, to 3102, etc. A jump back to the register holding
this successively incremented DCA instruction can be included so that the DCA
instruction will be repeatedly executed, each time depositing 0000 in one
more register of the table. The process can be stopped by including an ISZ in-
struction which increments the contents of yet another register holding a num-
ber designed to become 0000 just as, or rather, just after, the last register of
the table has been cleared by execution of the instruction DCA 177. The
process might be diagrammed:

24

C ST?RT)
Y

SET UP TO CLEAR
THE FIRST REGISTER
OF THE TABLE

:

CLEAR THIS REGISTER
OF THE TABLE

'

SET UP TO CLEAR
THE NEXT REGISTER
OF THE TABLE

NO

ALL REGISTERS
BEEN CLEARED
?

(. s)

Figure 13 Flow Chart of the Procedure for Clearing a Table of Registers

The program itself might be the following:

CLEAR, CLA Clear accumulator.
—> DCA 100 Deposit in next table register.
ISZ -1 Increment code number of DCA'Y
instruction itself.
ISZ- _ CNTIR Increment CNTR contents. Have
_i all registers been cleared?
JMP -3 I No; go back to clear next register.
HLT <« Yes; stop the computer.
CNTR, -100;

Program Example 5 Clearing a Table-of-Registers -

25

The initial value in CNTR. -100;, is, of course, directly related to the number of
registers to be cleared. The first pass through the program will clear register
100, advance the DCA 100 code number to 3101, the code for DCA 101, and
“Thcrement the count in CNTR to -77. You can see that the ISZ instruction will
never find a result of O after incrementing. It will therefore always direct the
computer to go on to the next instruction. But the ISZ CNTR will be changing
the count in CNTR in such a way that each pass brings it one step closer to 0,

so we'll have: '

Before the DCA instruction is CNTR holds Register cleared
, will be

1st pass DCA 100 -100 100

2nd pass DCA 101 -77 101

3rd pass DCA 102 -76 _ 102

Final pass DCA 177 -1 177

On the final pass, register 177 is cleared, and then the DCA 177 is advanced
to DCA 200 and the -1 i CNTR is incremented to O, the value being “watched
for” by the 1SZ CNTR instruction, which then causes a skip to the HLT in-
struction to stop the computer.

This trick of continuing toward O by counting with an I1SZ instruction is enor-
mously useful. To go through a part of any program exactly n times, you
supply an initial count value of -n. Notice, however, that once you have exe-
cuted the program in example 5, you cannot get it to work again until the
initial value, -100, has been restored and the DCA instruction reset to the code
number for the instruction DCA 100, namely 3100.

SETTING UP INITIAL VALUES

The way to handle this problem of setting up initial values is to store the num-
bers -100 and 3100 in two extra registers, ones that won't be altered by opera-
tion of the program, and to copy each of them in turn into the accumulator
and from there into registers CNTR and CLEAR + 1 respectively by means of a
programmed “preface” to the table-clearing process. We'll use the instruction
TAD Y, “2’s complement add,” execution of which adds a copy of the contents
of Y to the contents of the accumulator, leaving the result in the accumulator.
(Of course we'll be careful to clear the accumulator first so that the effect of
executing the TAD instruction will be only that of copying.) The preface to
program example 5 might then look like this

.

26

BEGIN, CLA A Copy initial count value into AC.
TAD MCNT * Deposit in CNTR.
DCA CNTR <
I Copy code number for DCA 100 into
TAD K
\
DCA CLEAR +1 AC and then into CLEAR + 1.
JMP CLEAR Initialization complete; go to CLEAR program.
MCNT, -100
K, 3100
\ 4

Program Example 5a Initialization Prefaces to Program Example 5

The complete program now starts at BEGIN rather than at CLEAR, and may be
repeated as often as you like. Notice that execution of the DCA CNTR instruc-
tion clears the accumulator so that execution of the TAD K will, like the TAD
MCNT instruction, merely copy. The general process of prefacing a program
by setting to their proper initial values any numbers which are to be modified
during execution of the program is extremely important and helpful. Best to
carry out these set ups before rather than after execution of the modifying pro-
gram because the intended execution, for some reason, may not go to com-
pletion (somebody really ought to put a cover over that power cable!).

SUBTRACTION

Now, of course, the TAD instruction can be used for more interesting purposes
than merely copying. After all, it is an arithmetic instruction, and in fact all
arithmetic procedures can make use of it: subtraction, by adding negated
numbers: multiplication, by repeated additions; division, by repeated subtrac-
tions; and the generation of square roots, sines, polynomials, etc., by combin-
ing addition, subtraction, multiplication, and division steps.

Look at the subtraction, for example. To find the difference A-B, you can first
copy B into the accumulator, then negate it (using the instruction CIA, “com-
plement and increment accumulator”) to get -B, then add A. Or, if A is already
in the accumulator from a previous calculation, you can negate to get -A,
then add B to get B-A, and then negate the result to get: -(B-A) = -A-B.

Here is an example of an interesting and very useful application of subtraction
combined with a test of the sign of the result using the instruction SMA, “skip
on minus accumulator.” It is a program which finds the larger of two num-
bers, and leaves the answer in the accumulator. T

27

Start’ . Ellré A IRADY l COD_V B into AC

LA NUNID J

CIA Form -B.

TAD NUMA Form A-B.

SMA Is A-B negative? If so, B is
-TTT T a greater than A so skip the

: next instruction. If not so,,
| A is greater than or equal to
: " B so go on to the next instruction.

JMP +4 Jump to copy A.
CLA=-=——-4
TAD NUMA Copy B into AC and halt.
HLT
CLA :
TAD NUMA Copy A into AC and halt.
HLT
NUMA, A
NUMB, B '[wo numbers to be compared.

Program Example 6 Finding the Larger of Two Numbers

Number comparison is basic to many processes. In example 6 only the ques-
tion of which of two numbers is larger is answered, but you can see that it is
just as easy to find the smaller of two numbers instead. If the instruction
SZA, “skip if AC = 0,” is used, the question answered would be whether or
not A-B = 0, that is, A = B, enabling you to have the computer look for spe-
cific numerical values.

By using two comparisons you can have the computer find out whether a num-
ber x is in a specified range, being smaller than some numerical upper bound
M, and greater than some numerical lower bound N, perhaps having the com-
puter discard any x that is not in this range.

By combining the process of number comparison with the process of scanning
numbers stored in a table of registers, you can have the computer find either
the largest or the smallest of a whole list of numbers. There are many ways
to do this. One way to find the smallest number is to start by picking a candi-
date for the smallest number which is at least as large as the largest number
in the list. Each number in the list is then compared with this candidate, and
whenever a number in the list is found to be smaller, it becomes the candi-
date and displaces the old one. This “survival of the smallest” process clearly
leads to the identification of the correct member of the list.

The following program example will help to clarify things for you. It finds the
smallest number in the list of 40,(32,) randomly ordered numbers stored in
registers 100-137. All of the numbers are positive, and the largest any can be
is therefore 3777,, i.e. +2047...

28

START, CLA
TAD MAXCAN Set up first trial candidate.
DCA CAND)
TAD MINUSN .
DCA NCNTR } Set up for 40; entries.
TAD KTAD Set up to compare candidate
DCA T with first table entry.
AGAIN, ——»TAD CAND
CIA Subtract candidate from table entry.
T, TAD 100
SMA Is difference negative?
________ |
|
JMP 13 | No; candidate survived the test.
TAD CAND J Yes; entry is smaller, so deposit
DCA CAND it in CAND as new candidate.
> |SZ T Advance to compare next entry.
ISZ NCNTR Have all entries been compared?
________]
|
JMP RET |
| _
HLT «—— ves; Halt.
RET CLA No
JMP AGAIN Go back to compare next entry.
MAXCAN, 3777 First trial candidate.
MINUS N, -40 Minus number of table entries.
KTAD, TAD 100 Code number for “TAD 100.”
CAND, —_ Candidate for “smallest number.”
NCNTR, — Entry counter.
*100
TABLE, 1 b
% Table of 40, different
> randomly ordered
) positive numbers.
N

o

Program Example 7 Finding the Smallest of a Set of Numbers

29

After setting up proper initial values, the process begins with a comparison of
the trial candidate 3777 with the first table entry by forming their numerical
difference and checking its sign. A negative difference indicates that the table
“entry is smaller than the candidate; a positive difference, that the table entry
is not smaller than the candidate.

If a negative difference is found, a copy of the table entry replaces the candi-
date. Notice that execution of the TAD CAND following the SMA simply re-
covers the table entry by adding the candidate back into the difference.

If a positive difference is found, the candidate has evidently survived the com-
parison test, that is, is still at least as small as the smallest number found so
far, and no replacement is made.

In either case, the table entry address is advanced, and the entry counter is in-
cremented. If there are more entries to compare, the comparison process is
repeated. If all entries have been compared, the process is complete and the
program halts leaving a copy of the smallest number in CAND. '

Yes, this all seems to be a rather elaborate way of doing what you could do
simply yourself by scanning a list of numbers (such as you might find, for ex-
ample, on a supermarket shopping receipt) to pick out the smallest one. But
the computer’s repertory of basic operations is very limited. On the other
hand, the computer is tireless, extremely fast, and quite accurate, rewarding
your patient attention to the initial bother of writing the program by performing
your task on demand at any time thereafter. Furthermore, you will be able to
build on your efforts and on those of others, incorporating the programs which
carry out simple tasks into larger and more powerful programs for more diffi-

cult tasks. _
INDIRECT ADDRESSING

By now of course, you are familiar with some of the memory reference instruc-
tions such as TAD Y, JMP Y, DCA Y, and ISZ Y and with the fact that they refer
directly to some register Y during their execution. If, for example, you write
ISZ 46, you know that the contents of the register whose address is 46 will be
incremented. This is called direct addressing, and while it seems a natural
way to refer to a memory register, you will recall that the 9 bits of an instruc-
tion word available for an address cannot address the entire 4096 registers of
the PDP-8 memory. Not directly, anyway. You can, however, address any
register indirectly by putting the full 12-bit address you want an instruction to
use into a register of its own.

For example, if you want to store the contents of the accumulator at location
3765, you can write

1703765
170 3765

->» DCA 1 170

3765 - Accumlator contents stored here. The new symbol, 1, for
indirect address, directs the computer to look in register 170 for the actual

address to be used. The accumulator contents will then be stored in register

30

3765. The contents of register 170 will not be changed.
Of course, you can write this with symbolic names, as

STORE, LATER

—>DCA 1 STORE

LATER, —

Not only does this ability to address indirectly make it possible to refer to all
memory registers, but also it simplifies the process of initialization and ad-
dress modification as the following example illustrates. Example 8 shows the
use of indirect addressing in a program to add a constant to each entry in a
table of N entries:

BEGIN, CLA .
TAD MINUSN Set up for N entries.
DCA NCNTR
TAD TABLOC — ;
DCA ENTLOG } Set up initial entry Iocatnon.A
A,

TAD 1 ENTLOC Add constant K to table entry and
TAD CONST replace in table.

B, DCA 1 ENTLOC

ISZ ENTLOC Advance to next entry.

ISZ NCNTR__ Have all entries been handled?

1 No; go back for next entry.

HLT <——— Yes; stop.
MINUSN, -N Minus the number of entries.
TABLOC, TABLE Location of first entry in table.
CONST, K Constant to be added to each entry.
ENTLOC, — The location of the entry.
NCNTR, — - Entry counter.
TABLE, Xi

Xz

' L Table of N entries.

Xn

J

Program Example 8 Adding a Constant to a-Set-of Numbers
Using Indirect Addressing

31

Notice that the two instructions at A and B vboth make indirect reference to
the same entry through ENTLOC, yet only the single number, ENTLOC, has to
be set up initially and incremented as the program proceeds.

SUBROUTINES

It has been mentioned that you will frequently be able to make use of pro-
grams already written to help perform the task which you want the computer
to do. This is often accomplished by incorporating other programs as sub-
programs, or subroutines, in your own program. Or, if there is a particular
sequence of instructions which your program must execute fmq”entlv you
might want to treat those instructions as a subroutine for convenience and
economy of memory registers. Think of subordinates as program building
blocks.

A subroutine is a self-contained sequence of instructions which carry out a
single task. A good example might be the subtraction of a number in the ac-
cumulator from a constant, a task which may be of importance in some Iarger
program and execution of WhICh may be required at many different points in
that program. The sequence is of course:

CIA
TAD CONST
CIA

CONST, K

Instead of incorporating the required three instructions at every point in the
program requiring this subtraction, the sequence is put into the form of a
PDP-8 subroutine called, let us say, SUBCON:

SUBCON,
0
CIA
TAD CONST
CIA ‘
JMP_ 1 SUBCON
CONST, K

At each point in the program requiring the subtraction, the instruction JMS
SUBCON is written. JMSY, “jump to subroutine Y,” puts the location number
following the location number of itself into register Y, and then jumps to regis-
ter Y + 1. In the above case, if IMS SUBCON were executed at location P, the
number P + 1 would be put into register SUBCON and the program would
jump to SUBCON + 1, executing the required sequence. After the sequence
has been completed, the JMP 1 SUBCON jumps indirectly to SUBCON, finding
the number P + 1 therein, and returning control to the program at location
P+ 1.

Many subroutines have been written for the PDP-8 and may be incorporated in
your program saving you a great deal of work. They constitute a library of use-
ful procedures and calculations from which appropriate routines may be bor-

32

rowed, including routines for square roots, multiplication, division, trigonomet-
ric function evaluation, and various high precision calculations; decimal/binary
conversion; memory content printout; Teletype readin; and so forth. _
These program building biocks greatly enhance the usefuiness of the computer
and simplify your programming task. In the next section we will see some
subroutines which can be used for the Teletype.

DEALING WITH THE PRINTED CHARACTERS

The Teletype is a device for both input and output of information. On your
side of the device, the information appears as ordinary type-print like that
found on a typewriter. On the computer’s side, the information appears as
8-bit binary numbers. Within the Teletype are mechanisms for translating one
form into the other.

For example, if you type the character “A” on the Teletype keyboard, it is
translated into the code number 301,. This code number can then be copied
into the accumulator by the instruction designed KRB, “read keyboard.” Simi-
larly, if the code number 253; is held in the accumulator and the instruction
designated TLS, “load teleprinter” is executed, the character “+" will be
printed. Each character has a unique 8-bit code number, and 8-bit code num-
bers for such things as carriage-return, space, rub-out, and so forth are also
provided. Teletypes, though well matched to a typist in speed, are very, very
slow tortoises to the computer’s hare. The computer must wait or do some-
thing else while the Teletype is catching up at the rate of ten characters per
second. When the Teletype is ready, it simply raises a “flag” which is being
watched for by the computer, and the computer then proceeds to transfer the
code number and lower the flag (so that there will be no confusion with re-
spect to the next character).

A sequence of instructions to read a character from the keyboard would then
look like this:

kCC Lower flag to prevent initial confusion.
EK.S_E.___;___ Is flag up? .

JMP -1 —I No; look again. Wait.

KRB <l Yes; read character into accumulator and lower flag.

étc.

and a sequence to print a character whose code number is in the accumulator
might look like this:

Ti_S Lower flag, transfer character, and print.
ISF_ Is flag up? .
I JMP -1 B No; look again. } Wait.
<! Yes; continue with program.
etc.

33

KSF and TSF are flag-watching instructions of the skip variety.

Now you can see how numerical forms might be handled. A simple example
_ follows in which a binary number in the switch register is read into the accu-
mulator by the instruction designated LAS; “load accumulator with switch reg-
ister,” and then a digit representing its decimal value is printed (we'll restrict
the binary number to decimal values less than ten for simplicity):

> A, LAS Copy contents of switch register
into accumulator.

TAB B Add the number 260.
TLS Print digit.
TSF a——

r— Wait.

{ JMP. -1

|

L» JMP. NEXT Go on to whatever comes next.
B, 260,

Program Example 9 Printing the Decimal Digit Equivalent of the
Binary Number in the Switch Register

The Teletype code numbers for the digit characters 0, 1, ...9, happen to be
The Teletype code numbers for the digit characters O, 1, ... 9, happen to be
260, 261, ... 271 (octal) so that simply adding the number 260 to the binary
number in the switch register generates the proper code number. For ex-
ample, if the switches are set to 000 000 000 011, the addition of the number
260 produces the number 263, the code number for the character “3.” The
waiting loop doesn’t make much sense in this example unless the continuation
designated NEXT somehow returns to execute the program again (you would
have trouble setting switches at the rate of ten numbers per second to keep
up, though!). However, it would certainly be necessary in a general character
print subroutine such as the following:

R
PRINT, [0]

TLS

Print the character
TSF ~—— > whose code number is
————— held in the accumulator.
JMP -1
Ly JMP 1 PRINT

You might use such a subroutine in a program to print the full four octal digits
of the number in the switch register. In such a program, you would also want
another subroutine to aid in isolating each octal digit. The AND Y instruction
will be useful. Execution of AND Y sets to O each bit of the number in the
accumulator for which the corresponding bit of the number in register Y is 0.

34

The number in register Y can be thbught of as a mask or template through
which certain bits of the number in the accumulator can be “erased.”

The 12-bit number can be decomposed into the four groups of three bits by
shifting it three places to the left each time it is-used. In the PDP-8, shifting
is carried out in the accumulator and link. The ingtruction RAL, “rotate accu-
mulator and link left one place,” causes each bit to be copied one position to
the left, the leftmost bit being copied into the link just as the bit in the link is
being copied into the rightmost position of the accumulator, in the mannér of
a digital Mad Tea Party; for example:

LINK ACCUMULATOR
110 t01t 11

(;/f/;/f//0//0////0/:’4 w

After an initial shift of one place to take account of the inclusion of the link in
the “ring” formed by the shift-left pathways, the following subroutine can be
used repeatedly to isolate each octal digit in turn, form the digit code number,
and_print the corresponding digit character using PRINT as a sub-subroutine.

NXTDIG, 0 W
CLA
TAD TEMP Shift number in TEMP three places
RAL L left around the ring, leaving
A result in TEMP and in the
RAL Accumulator.
RAL
DCA TEMP
TAD TEMP ,
AND MASK)
Form code number

TAD DCODE and go off to the
J PRINT subroutine.

JMS PRINT

il
b

—>» JMP 1 NXTDIG f Return.

TEMP.
MASK. 0007
DCODE, 260

Program Example 10 Octal Digit Iso*aﬁon-and Print-Subroutine
35

Now that the subroutin_es PRINT and NXTDIG have been provided, they can be
used as components of the program to translate a 12-bit binary number in
the switch register (or, by an obvious extension, any other 12-bit number that

~oas

can be copied into the accumulator) into its printed octal equivalent:

OCPRINT, LAS 1 Read switch register,
RAL » make corrective shift,
DCA TEMP J and deposit in TEMP.
JMS NXTDIG)

MS - NXTDIG » Print the four octal digits.
JMS NXTDIG

JMS NXTDIG J

CLA)

TAD CARRTN * Return the carriage.

JMS PRINT)

CLA)

TAD LN .FEED
> Feed paper up one line and halt.

JMS PRINT

HLT J
CARRTN, 215 Carriage return code nufnber.
LNFEED, 212 Line feed code number.

Program Example 11 Printing the Octal Equivalent of the 12-Bit Number
in the Switch Register

After printing the four octal digits, the program uses the PRINT subroutine
directly to return the carriage and to feed the paper up one line. :
You can readily see that similar programs can be written to read in and com-
bine octal digits as they are typed on the keyboard. Or, in translating from
symbolic language to binary number, to read in the characters “C,” “L,” “A,”
and by a process of matching their code numbers to ones stored in a table,
decide that this string of 3 characters, CLA, should be assigned the value
7200, the code for “clear accumulator.” Or, after reading in the string of
characters “2," 4" “3" uc » g program might respond by printing out the
digit “5.” You can think of many other examples based on these simple no-
tions yourself. The possibilities are quite limitless.

36

PART II: APPLICATION PROGRAM EXAMPLES .

37

! INTRODUCTION

Now that ydu are acquainted with the fundamentals of computer logic and pro-
gramming, you are probably anxious to see the machine in action. After all, for
most of you, the main question is “How will the computer assist me in solving

problems?”

To answer your question, we have selected several representative scientific and
engineering computer program examples, specifically in the fields of oceanog-
raphy, physics, biomedicine, and process control. In the first example, we
describe a simple program language, similar to algebra, and its vaiue to
oceanographers. In the second example, we analyze pulses generated by a
gamma-ray detector. The third example is a program for generating and dis-
playing a time-interval histogram designed for the biomedical scientist. Com-
puter-directed process control techniques are discussed in the fourth example.

38

REAL TIME TECHNIQUES FOR OCEANOGRAPHIC
APPLICATIONS

INTERFACING MARINE SENSORS

Marine sensing instruments are often considered unique devices that cannot be
connected directly to a computer. However, most instruments can be con-
nected directly to the computer with little additional equipment, figure 1. Let
-us examine the basic types of interfaces that would be necessary to connect the
computer to oceanographic sensors.

R
f‘»&_&"mmn SERIAL TO ___ PARALLEL
PARALLEL DIGITAL
CONVERTER —— INPUTS
SWITCH
REGISTER
UP TO 64- A-TO-D
ANALOG INPUTS |MULTIPLEXER| coNyERTER | 9 PDP-8 ASR -33

¢
g—
«————»
CLOCK _.
_’ PARALLEL

I STATIC OUTPUTS

HIGH SPEED DECTAPE
TAPE PUNCH CONTROL PLOTTER
754 552
DUAL DECTAPE
TRANSPORT
555

Figure 1. Typical Data Acquisition System

INTERFACING TRANSDUCERS

Three basic types of interfaces are used with the PDP-8 computer to receive
data from environment sensors. These interfaces atlow data to enter the com-
puter under control of a simple real-time symbolic compiler that gives you the
following flexibility when you sample the environment:

1. A variety of preprogrammed interface devices that easily connect the com-
puter to instrumentation. ,

2. Simple symbolic assignment of identifying names to physical input vari-
ables such as pressure, temperature, etc.

3. Absolute control in sampling the experimental environment with respect
to time.

4. Computer compatibility with respect to rapid response sensors using up to
176 separate sensing devices.

5. Capability to make logical decisions concerning the acquisition of data
while sampling the environment. ‘

6. Storage of data for future computations as well as immediate output for
checking quality while ebtaining data. : B

39

Transducers are sometimes considered unique devices that do not lend them-
selves to being connected directly to a computer; however, by the use of basic
standard interface types, most instruments can be connected directly to a
computer with littie additional equipment. Let us examine the basic types of
interfaces that would be necessary to interconnect a computer to various
transducers.

INTERFACE TYPES
Digital-Parallel Input Signal Buffer

This buffer permits the direct parallel insertion of a digital number into the
computer, using a method by which the number immediately becomes a com-
puter word. Examples of devices feeding data in by this method are shaft-posi-
tion encoders, switch registers, and other allied devices. Figure 2 shows the
general method for digital-parallel input.

d N P N o b
— O —t 0 pb——
0 —t> 0 p—
— © —t> o p——ro
—_— —— P —
— 0 —> 0 p—

TRANSDUCER < ?— COMPUTER
— o —t> 0 p—
———d | e 3 | p———
—_— 1 —> | —_—
— 0 . o pP—
—_—— —— | p—

_ 0 —t> o p—— J
DEiBB‘;_PE _ GATING

Figure 2. Digital-Parallel Signal Buffer

This method can accommodate signals or pulses from a minimum range of
0 to —10mv up to a maximum of.20 to —15v. The system can include one
buffer for each of several dozen variables.

Serial-Parallel Input Signal Buffer

This method would be used, for example, in telemetry applications where the

40

transmitter is remotely located and able to transmit a number of input words
one bit at a time along a single conductor cable or by radio (see figure 3).

N ry (T L o] e
I 1

L]
IR

GATING

LI I T T T][]
TT T T T T T T TTITT

COMPUTER

Figure 3. Serial-Parallel Signal Buffer

This buffer can convert a serial pulse train to a 12-bit word in 6 usec, or one
bit every 500 nsec. It accommodates ranges of input levels from a minimum of
0 to —10mv, up to a maximum of 20 to —15v. The flexibility provided in this
buffer allows you to format the data before it is finally assembled as computer
words; that is, you can insert octal constants in the specific serial word of your
choice. It provides the programmer with the following additional instructions

in the computer:

1. Skip if data flag = O.

2. Skip if start flag = O.

3. Clear data flag and start flag.

4. Read data into the accumulator.

Multiplexed Analog-to-Digital Conversion Input

This method is particularly advantageous in data acquisition when many de-
vices such as thermistors, pressure sensors, and strain gages are working to-
gether. One example of where this method would prove advantageous is a
thermistor chain in which each thermistor, pressure sensor, or conductivity
sensor could be individually sampled by the computer. Figure 4 indicates this

relationship.

Q
ANALOG TO
SENSORS < THRU "'égj?‘;,%{m L »| piciTAL ——» COMPUTER
CONVERTER
n

Figure 4. Multiplexed Analog-to-Digital Conversion

Switching from one input to the next in the muitiplexer is accomplished in
2 usec, and up to 64 separate inputs can be sampled directly by the computer.
The analog-to-digital converter uses the range of 0 to —10v.

PROGRAMMING

The task of writing a special-purpose program for each installation could be a
formidable problem involving a great deal of time and money. In order to allevi-
ate this problem, Digital has written DATAK, an algebraic compiler that allows
you to format your data acquisition problem in a simple language similar to
algebra. By using the DATAK language, you are given a great deal of flexibility

41

concerning the interface hardware available. This program offers you flexibility
in choosing the frequency and conditions under which you sample the experi-
mentai environment, as weil as makes possibie the addition or change of sen-
sors without the major task of reprogramming in machine coding. This
program is available for the PDP-8, a compact 12-bit computer with a 1.5 gsec
cycle time.

This program allows you to analyze a sample usihg the following inputs.

Up to 96 independent data variables using digital-parallel input.
Up to 64 independent data variables using a multiplexed A-to-D converter.
Up to 25 independent data variables via serial buffer input.

Each independent variable can be sampled at a rate of up to 100 times per
second.

System Inputs

Data can come to the computer from the digital-parallel input buffer, the serial
input buffer, and the multiplexed analog-digital converter. Each of these de-
vices is assigned a symbolic name that tells the computer which device is
transmitting information.

The symbols are:
DGIN: Digital-parallel signal buffer; input can be converted from Gray
code to binary.
BUFR: Serial buffer input.

ADCV: Multiplexed analog-digital converter.

System Outputs

Data output can be distributed to a number of specifically named devices to
allow immediate presentation as well as permaneént storage. The following out-
put symbols and their associated devices are available:

TYPE On-line teleprinter. Variables can bé typed in decimal or octal.
Decimal is specified by 1 immediately following the variable name.

PNCH High-speed paper tape punch. Variables can be punched in deci-
mai or octal. Decimal is specified by 4 immediately foliowing the
variable name.

DCTP Digital’s compact DECtape. Variables are recorded magnetlcally
on DECtape in binary with identifying words.

PLOT XY plotter The plotter pen is moved to a new posmon each time
.an output is specified.

DIG1 Up to four digital outputs are-available through paralle} buffers to

other devices such as relays, buffers, sense lines, and range
DIG 4 switching devices.

42

Variables

Input variables to the computer are assigned alphanumeric symbols by the
investigator. They can be one to four characters long, and must begin with a
letter. Some examples of these would be:

T123, SURF, DEEP, AIR, X, Y, TEMP, H20, H202

In addition, variables that are inputted through the multiplexer have specified

channels; that is, T123(1) would be input through channel 1 of the multiplexer.
Time

" Four types of time can be used by the computer: basic, program, variable; and

reference.

BASIC TIME

Basic time represents the basic interval of 0.01 sec in which a clock interrupts
the program. ' :

PROGRAM TIME

This time represents the basic rate at which the investigator desires to inter-
rogate the sensors. It is some multiple of the basic time and is under program
control. Its symbology is simply expressed as follows:

QUNT:50 The investigator has specified that the program time will be
50 X .01 = 0.5 sec; that is, each sensor will be sampled
every 0.5 sec. If he desires the fastest rate possible, he may
express the following: ‘

QUNT:1 . In which case each variable will be sampled every 0.01 sec.

VARIABLE TIME

In order to allow more flexibility in timing, digital i‘nputs can be sarﬁpled at a
slower rate than the program time specifies. For example, the expression:

DGIN:L1 (4, L2 (4

specifies that the digital input variables L1 and L2 should be sampled once in
four cycles of the program time or every 4 X 0.5 =2 sec.

REFERENCE TIME

It is often desirable tc know the reference time in order to associate data with
time. Within the program is a 3-word variable, CLOK, which counts the number
of seconds, minutes, and hours that have elapsed since start-up time; it can be
used as an output variable to reference data with time.

Arithmetic Operation

ADDITION AND SUBTRACTION
Variables can have constants added to or subtracted from them as they are
sampled, or the variables can be added to or subtracted from each other.

All arithmetic operations are done in 2’s complement arithmetic, with the oper-
ands being considered signied, fixed-point numbers. The following examples

- 43

mean that the variable T2 will have constants or variables added or subtracted
before output:

T2 + 137 Add a constant to the variable.
T2 —3 Subtract a constant.
T2 4+ T3 Add a second variable.

ARITHMETIC COMPARISON

Variables can be compared against constants, compared against other vari-
ables, or compared against themselves with respect to sample time. The basic
comparison instructions are:

IFEQ X, Y ifXisequaltoY
IFLS X, Y ifXislessthanyY
IFGR X, Y if X is greater than Y

An example of the comparison of a variable against a constant would be:
IFEQ X, 1000;

meaning that if X is equal to 1000, execute the operation foliowing the semi-
colon; otherwise, go to the next line.

Every time a variable is recorded and outputted, its value is preserved and is
given the name of the original variable. Thus, X and @ X represent the current
value of the variable X, and its value when last used as output, respectively.

The following example of the comparison of a variable and its predecessor:
IFLS X, @ X;

means that if X is less than it was when last recorded and output, execute the
operation following the semicolon; otherwise, go to the next line.

Gray Binary Conversion

Gray binary code can be converted to simple binary under program control if
the input method is digita! {DGIN). This provides you with a rapid means of
conversion in order to intercompare the usual shaft-encoded Gray binary num-
bers, if the shaft encoder does not convert from Gray Code to simple binary
prior to buffering. :

The conversion is accomplished by inserting ¢ immediately before the time
muitiple.

DGIN L174

This means that the Gray binary variable L1 is sampled every fourth time
through the program and is converted to a simple binary number before com-
parison or storing.

Format Statements

Format statements are numbered from 1-15 (decimal). They contain the names
of variables and their output forms (octal or decimal for the Teletype or
punch). Format numbers appear along with a device name in every output

44

statement. Thus, fhe statement:
FORM: 1,X,Y1,Z

indicates that the variables X, Y, and Z are to be outputted to the Teletype,
with X typed in octal, Y typed in decimal, and Z typed in decimal.

GOTO Statement

Program control can be unconditionally transferred through the use of the
GOTO statement.

PROGRAM EXAMPLES

A Simple Programming Problem

An in situ pressure, temperature, and salinity sensing instrument is lowered
into the ocean. Data is transmitted along a single conductor cable and is
brought into the computer using a serial buffer input. :

We want to sample the ocean in the following manner:

1. From the surface to 100 meters, record at each meter the pressure,
temperature, and salinity."

2. From 100 meters to 1000 meters, record the pressure, temperature,
and salinity whenever the absolute change of temperature is greater
than 0.05°C or the absolute change of salinity is greater than 0.02%.
Also record the pressure, temperature, and salinity every 100 meters
from 100 meters to 1000 meters.

Let us assume that the oceanographic sensors have the following precision;
that is, unity is equal to the following:

1 unit of pressure = 1 meter
1 unit of temperature = 0.01°C
1 unit of salinity = 0.01%,

A program to accomplish this sampling is written as follows: ,

BUFR : PRES, TEMP, COND
FORM : 1, PRES, TEMP, COND
[OUTP (1, DCTP) |
1 IFGR PRES, 144; GOTO 2
: IFGR (PRES -@PRES), 1; OUTP (1, DCTP)
: GOTO 1
2 IFLS (PRES ~@PRES), 144; IFLS (TEMP —@TEMP), 5,

IFLS (COND -@COND), 1; GOTO 2
: OUTP (1, DCTP); GOTO 2
: END
This program says in effect:
BUFR: PRES, TEMP, COND

Three variables named PRES, TEMP, and COND are to be sampled using the
serial buffer.

FORM: 1, PRES, TEMP COND— s oo

45

Three variables named, PRES, TEMP, and COND are to be outputted together.
:OUTP (1, DCTP)
This says output is to be recorded on magnetic tape.
1:IFGR PRES, 144; GOTO 2

This states that if the absolute change of pressure is greater than 100(144,),
the control of the sampling will be transferred to statement number 2; other-
wise, it will go to the next line.

:IFGR(PRES -@PRES), 1; OUTP (1, DCTP)

This line states that if the absolute change of the pressure between two suc-
cessive readings is greater than 1, output onto magnetic tape according to
format 1; that is, QUTP (1, DCTP) which means store data on DECtape using
format 1; otherwise, go to the next line.

GOTO 1
This says to go to statement number 1 and test the environment again.

2. |FLS (PRES -@PRES), 144; IFLS (TEMP —@TEMP), 5;
IFLS (COND -@COND), 1; GOTO 2

This states that if the absolute change of pressure is less than 100 meters or
the absolute change of temperature is less than .05°C, or if the absolute
change in salinity is less than .02%, then go to statement number 2 witich
begins the tests over again. Otherwise go to the next line.

:OUTP (1, DCTP); GOTO 2

This says to output data onto magnetic tape and transfer control to sfatement
number 2. The sampling and testing procedure begins again.

END

This last instruction is self explanatory.

As shown in the above description, the computer has been programmed to
make logical decisions specified by the investigator in sampling the marine
environment. It also has been used as a means of storing data. In the above
instance, data has been stored on magnetic tape and can be used in other
programs to determine variables such as Sigma T, anomaly of specific volume,
and sound velocity. Table 1 shows a portion of the calculated output from
stored data on magnetic tape transport number 1 that can be run immediately
after the sample program.

46

TABLE 1 REDUCED DATA

Input Source? T
Observed Values

Depth Temp. Salin. Sigma-T Delta-A Sound-Vel
© 0000 8.35 34.17 +26.590 +145.53 -+1483.4
0001 828 . 34.19 +26.616 +143.08 +1483.2
0002 8.20 34.21 +36.644 +140.45 +1482.9
0003 8.13 34.24 +26.678 +137.20 +1482.7
0004 8.05 34.26 +26.706 +134.59 +1482.4
0005 7.98 34.28 +26.732 +132.19 +1482.2
0006 791 34.31 +-26.766 +128.98 +1482.0 -
0007 7.83 34.33 +26.793 +126.38 +1481.7
0008 7.76 34.35 +26.819 +123.94 +1481.4
0009 - 7.69 34.37 +26.845 +121.45 =~ +1481.2
0010 "7.61 34.39 +26.873 +118.89 +1480.9

A More Sophisticated Program

For a better demonstration of the flexibility of this programming technique,
consider the following program.

An investigator desires to use a thermistor, pressure, and conductivity chain
towed from an oceanographic vessel. He will sample at the same time a
telemetering buoy that transmits data from these current meters. In addition,
he desires to obtain Loran lines of position and sample the ship’s speed and
ship’s heading. These can be summarized as follows:

1.

Log the time on magnetic tape every 50 meters of distance traveled.
Ship's speed is 10 knots; it will cover 50 meters in approximately 9.70 sec.

Sample each thermistor, conductivity, and pressure sensor in the chain
every half second. This defines the program time as QUNT: 62.

Sample the Loran, ship’s speed, and shnps heading every 2 sec, thus
L1(4, L2(4, SP(4, HEAD(4

Conditional Output — Since the near-surface values of temperature and
conductivity will fluctuate the most, it might be most desirable to set
thresholds so that relatively large changes of temperature and salinity
will be stored. However, deeper values will not change as significantly,
so small incremental changes have more meaning and thus should be
outputted and stored. Arbitrary va!ues have been chosen and are shown
in tabte 2.

47

Determination of Octal Constants to be Used in Testing — In order to
test the variable it must be determined to what its unit value corresponds.
This is found by dividing the range of the thermistor, pressure transducer,
or other device by the precision of measurement; thus if the range of the
thermistor is 20°C and the precision of measurement is 1 part in 2000,
then each unit equals 0.01°C.

5. General Output Requirement

Every variable should be recorded on magnetic tape if the specified con-
ditions are met.

Plot TO versus SO if it is recorded.
Type current meter data in decimal if it is recorded.
Punch TO, PO, and SO if they are recorded.

By outlining the probiem, the investigator will have thresholds established for
recording changes in the variables listed in tables 3, 4, and.5. Figure 5 shows
the equipment needed to do the work.

TABLE 2 SUMMARY

Variable Range Precision UNITY Corresponds to
Thermistor 20°C 1:2000 = .01°C
Pressure 100 meters 1:2000 = .05 meters
Conductivity 20%o 1:2000 =.01%,
Vane 360° 1:120 =~ 3°
Compass 360° 1:120 = 3°
Rotor | =~ 1 centimeter per second

TABLE 3 MULTIPLEXER A-D CONVERTER ASSIGNMENT
(Data Originating in Thermistor Chain)

Record Record Record
Multi- if Multi- if Conduc- Multi- if
Depth Thermistor plexer Absolute Pressure plexer Absolute tivity plexer Absolute
in Variable Channel Cha?ge Variable Channel Change Variabie Channel Change
0

Meters Name Name # of Name #® of
0 TO (0) .1°C PO (6) .5 meter SO (14) .05%0
10 T1 (1) .07°C P1 (7) S meter Sl (15) 05%
20 - T2 (2) .05°C P2 (10) S5 meter S2 (16) 04%
30 T3 3 .03°C P3 (11) .3 meter S3 1an .03%0
40 T4 . 4) .02°C P4 (12) .2meter 5S4 (20) 02%.
50 T5 5 01°C P5 (13) .l meter S5 (21) .01%,

48

TABLE 4 SERIAL DATA INPUT BUFFER ASSIGNMENT
(Data Originating in Moored Current Meter String)

Vane Compass Rotor
Variable Variable Record if Variable Record if

Name Name Name
Current Meter 1 Vi Cl V14+Cl=9° RI1 R1 > 10
Current Meter 2 V2 C2 VvV2+4+C2=6¢6° R2 R2 > 10
Current Meter 3 V3 C3 V34C3=3° R3 R3 > 10

TABLE 5 DIGITAL INPUT BUFFER
ASSIGNMENT
(Data Originating in Ship’s Instrumentation)

Variable Time Gray
Name Multiple Code?
Loran Line L1 (4
Loran Line sz (4
Ship’s Speed SP (4
Ship’s Head HEAD 14 yes

The program listing to sample these variables and record those which exceed
the established thresholds is given below.

ADCV :

BUFR :
DGIN :
QUNT :
FORM:

FORM :
FORM:

FORM:
FORM:

[
3

TO(0), T1(1), T2(2), T3(3), T4(4), T5(5), PO(6),’

P1(7), P2(10), P3(11), P4(12), P5(13), SO(14), S1(15),

S2(16), S3(17), S4(20), S5(21)

V1, Cl, R1, V2, C2, R2, V3, C3,R3

L1(4, L2(4, SP(4, HEAD 14

62

1,70, T1, T2, T3, T4, T5, PO, P1, P2, P3/
P4, P5, SO, S1, S2, S3, S4, S5

2, TO, SO

3, V1, C1, R1, V2, C2, R2, V3,

C3, R3

4, T0, PO, SO

5,11, L2, SP, HEAD, CLOK
<5, DCTP, 22>

OQUTP(1, DCTP); OUTP(2, PLDT); OUTP(3, TYPE); OUTP(4, PNCH)

IFEQ (V1 + C2), 3; GOTO 1
IFEQ (V2 + C2), 2; GOTO 1
IFEQ (V3 + C3), 1; GOTO 1
IFLS R1, 12; IFLS R2, 12; IFLS R3, 12; GOTO 2

49

1 : OUTP (3, TYPE)

2 : IFLS (TO-@TO0), 12; IFLS (PO-@PO0), 12; IFLS (SO-@S0), 5;
IFLS (T1-@T1), 7; IFLS (P1-@P1), 12; IFLS (S1-@S1), 5/
IFLS (T2-@T2), 5; IFLS (P2-@P2), 2; IFLS (S2-@S2), 4;
IFLS (T3-@T3), 3; IFLS (P3-@P3), 6; IFLS(S3-@S3), 3}
IFLS (T4~@T4), 2; IFLS (P4-@P4), 4; IFLS (S4-@34), 2y
IFLS (T5-@T5), 2; IFLS (P5-@P5), 2; IFLS (S5-@S9), 17
GOTO 2 :
OUTP(1, DCTP); OUTP(2, PLDT); OUTP(4, PNCH); GOTO 3

END
MOORED CURRENT SHIP'S INSTRUMENTATION
METER STRING — A \
l | ¢ & & | |
' TELETYPE
SERIAL / PARALLEL 33 ASR
BUFFER PARALLEL BUFFERS
(BUFR) {DGIN)
PAPER TAPE
PUNCH
> POP-8 COMPUTER 758
(388 PARALLEL
ADCY >
100 CPS
c
cLock 555/552
(ADCV) {cLoK) DECTAPE

139 MULTIPLEXER
CONTROL

e & o X-Y
PLOTTER
\ -

~—
THERMISTOR CHAIN

PARALLEL BUFFERS

(& _—
Y

OUTPUT CONTROL SIGNALS

Figure 5. Equipment Configuration for Problem 2

50

A BASIC PROGRAM FOR PULSE HEIGHT ANALYSIS

The problem of pulse height analysis is basic to the physicist. With this
example, we will demonstrate the computer's ability to rapidly sense and
analyze large numbers of events in real time. In this example, the pulses to
be analyzed are generated by a charged-particle or gamma-ray detector that
produces a stream of pulses proportional to the energies of the particles in-
tercepted by the detector. If we write a computer program to sort and count
- the resulting pulses according to height, and then display the result, we will
obtain the radioactive spectrum of the source, as shown in figure 6.

Figure 6. An Oscilloscope Photograph that Shows the Number of Nuclear
Particles as a Function of Energy. "

The first step in setting up the experiment is to construct a basic algorithm
for the required computer program (figure 7). The computer continuously
monitors the detector, waiting for output pulses. When a particle is detected,
the program notes the amplitude of the resulting output pulse. The particle is
then counted by incrementing a location in memory used to record the number
of detected particles within that particular energy level. When a statistically
significant number of particles are counted, the results are displayed on the
oscilloscope.) ' :

51

—

WAIT FOR NEXT
DETECTOR PULSE

'

NOTE HEIGHT OF

DETECTOR PULSE

(LE., ENERGY OF
INCIDENT PARTICLE)

v

COUNT PARTICLE
BY !NCREMENTING
LOCATION IN MEMORY
CORRESPONDING TO
ENERGY OF
INCIDENT PARTICLE

DISPLAY OR PRINT
RESULTS

Figure 7. Basic Algorithm for Pulse Height Analysis Experiment.

The algorithm shown in figure 7 becomes .somewhat unsatisfactory when we
consider that we are requiring computers capable of some 30,000 to 300,000
instructions a minute to wait for a detector that outputs pulses at irregular
intervals. Could not this wasted time be put to better use? Say, to produce a
continuous, dynamic display of the energy spectrum. The answer is yes —
we need only connect the analog-to-digital converter to the computer interrupt
line. Then, whenever a particle is detected, the computer program will be
interrupted. The interruption is a signal to the program that the analog-to-digital
converter should be read and the appropriate memory register incremented.
At all other times, the program generates a continuous display of the radio-
active source’s energy spectrum.

The computer responds to the interrupting signal as follows:
1. the computer concludes the instruction being executed;

2. the location of the instruction that would normally be executed
next by the main program (that is, the contents of the program
counter) is stored in memory location O;

3. the computer takes its next instruction from memory location 1.

52

Thus, the first instruction of any program responding to an interrupt signal
must be placed in location 1. The interrupt-servicing program should also save
the contents of the accumulator and any other active register that is to be
used by the interrupt program before issuing any instructions that alter the
contents of these registers. When the interrupt-servicing program is complete,
the original contents of the accumulator must be restored, and an indirect
jump through location 0 (JMP | 0) must be made to return control to the
main routine at the point where the interruption occurred.

Figure 8 illustrates the equipment needed for the experiment. The particle
detector generates a voltage proportional to the energy of the incident
particle; this is converted to a binary number by the analog-to-digital con-
verters. Conversely, two digital-to-analog converters are used to drive the X
and Y deflection amplifiers of the display oscilloscope.

FLAG
o
PDP-8
OSCILLOSCOPE
COMPUTER ALLOSCC
RESET DATA AND
DUAL | controL
INE
PHOTOMULTIPLIER ANALOG HNES]
DETECTORS DlorAL
CONVERTER [—— o
4096 WORDS
OF MEMORY
12 DATA LINES
DATA AND
CONTROL
LINES
ASR-33
" TAPE ! KeY-

PUNCH | BoARD /
READER : PRINTER

| Figure 8. Block Diagram of Pulse Height Analysis Experiment.

CONSTRUCTING THE DETAILED ALGORITHM

The pulse height analysis program, then, will consist of two separate and
distinct routines: the display routine to provide the dynamic display, and the
interrupt routine, which periodically interrupts the display routine to store
new data. The flow charts for these routines are shown in figures 9 and 10,
respectively,

53

START j)

1. TURN OFF INTERRUPT:
CLEAR ACCUMULATOR

2 GET ADDRESS OF FIRST
COUNTER AND DEPOSIT
IN "POINTER" LOCATION
(YLOC)

CLEAR ‘

USING POINTER, CLEAR
NEXT REGISTER/COUNTER
IN TABLE OF COUNTERS ;INITlALIZATION

PHASE
INCY ‘

INCREMENT POINTER
"YLOC" TO POINT TO
NEXT REGISTER /COUNTER

YLOC COMPARE

JUST CLEARED

WITH LAST TABLE
ADDRESS :
(MM?AX)

{CLEAR NEXT
TABLE LOCATION)

(BEGIN

TLOC = MMAX -
(ALL TABLES CLEARED) DISPLAY NEXT
ENERGY RANGE IN

TABLE ON X- AXIS

'

DISPLAY

CORRESPONDING
Y-VALUE USING
YLOC PQINTER

DISPLAY
PHASE INCX ‘

INCREMENT X TO
OBTAIN NEXT
ENERGY LEVEL

LEVEL (X) WITH MAX
ENERGY LEVEL
{ MEMAX)

X = MEMAX

SET X TO ZERO

~

Figure 9. Display Routine.

54

INTERRUPT

START

000t

. SAVE CONTENTS OF
ACCUMULATOR

2. GET LOCATION OF
FIRST COUNTER (INI)
FROM MEMORY; ADD
PULSE AMPLITUDE TO
OBTAIN "POINTER" TO
DESIRED COUNTER

3. USING POINTER,
RETRIEVE AND
INCREMENT DESIRED
PARTICLE COUNTER

DID
COUNTER

OVERFLOW
?

HALT EXPERIMENT
COMPLETE

RESET

1. CLEAR ACCUMULATOR

2.RESTORE SAVED CON-
TENTS OF ACCUMULATOR

3. TURN INTERRUPT ON

4.RETURN TO DISPLAY
PROGRAM

Figure 10. Interrupt Routine.

Note that the display program consists of two phases: the value initiation
phase, and the display phase. In the initial phase, the table of memory
locations used by the program to count the incident particles is cleared. In
the display phase, the number of particles are displayed on the scope as a
function of energy.

As a first step in clearing the table of particle-counting registers, we load the
accumulator with the address of the first counter within the table and store
this address in symbolic location YLOC, YLOC can then be used as 3 “pointer”
to enable clearing of the first counter, as follows:

CLA /CLEAR AC

TAD INI /GET ADDRESS OF FIRST COUNTER
DCA YLOC /STORE FOR USE AS POINTER
CLA /CLEAR AC

DCA | YLOC /CLEAR COUNTER

Similarly, by incrementing YLOC, we ®an clear the next counter in the table,
and so on until all the counters are cleared.

55

The routine for displaying counter contents is equally simple: for each discrete
energy level (X-axis position) the contents of the corresponding counter are
displayed on the Y-axis, proceeding from the lowest selected energy level to
the highest in a continuous, interruptible loop.

The task of the interrupt routine (figure 10) is to count each particle by in-
crementing the appropriate memory register. The simplest way to accomplish
this is to let the pulse amplitude itself specify the address of the appropriate
memory register. Thus, the address of the first counter (symbolic location
INI) is added to the binary value of the pulse amplitude, and the sum is used
as a pointer to locate and increment the desired register. The interrupt routine
compares the resultant counter contents with an arbitrary maximum (full-

scale) value — in this case, 1023.

The coding of the complete program — interrupt routine and main routine —
is shown in table 6. Labels appended to boxes on the flow charts correspond
to symbolic location names. within the program to simplify the task of keying
the fiow charts to the program.

TABLE 6. COMPLETE PULSE HEIGHT ANALYSIS PROGRAM

PULSE HEIGHT ANALYSIS PROGRAM

/RECORDING NUMBER OF PARTICLES (P) ASAFU

/PLOTTING NUMBER OF PARTICLES (Y AXIS) VS. ENERGY (X AXIS).

/DATA INPUT WRITING.
0000

/RESERVED FOR INTERRU PT.

0001 NCA STORE / SAVE ACCUMULATOR.

ADRR /READ ENERGY FROM ADC iNTG AC.

TAD INI /OBTAIN P LOCATION BY ADDING.
/ADDRESS OF FIRST COUNTER.

DCA TEMP /STORE P LOCATION FOR INDIRECT
ADDRESSING.

iISZ 1 TEMP

JMP RESET

HLT

/RESET AND RETURN
RESET CLA
TAD STORE

/CLEAR AND
/ RESTORE AC.

ION /TURN ON INTERRUPT.
JMP 10 /RETURN TO DISPLAY.
/CLEAR ROUTINE
START, IOF /TURN OFF INTERRUPT.
CLA / CLEAR AC.
TAD INI /GET ADDRESS OF FIRST COUNTER.
DCA YLOC /DEPOSIT FOR INDIRECT ADDRESSING.
/CLEAR REGISTERS
CLEAR CLA /CLEAR AC.
DCA | YLOC /CLEAR COUNTER
| ADVANCE ADDRESS
INCY TAD YLOC /READ ADDRESS.
IAC / INCREMENT ADDRESS.
DCA YLOC /DEPOSIT ADDRESS FOR NEXT LOOP.

/CHECK FOR COMPLETION AND LOOP OR ADVANCE

ENDAD TAD YLOC

/READ ADDRESS.

56

NCTION OF ENERGY (E).

TAD MMAX /SUBTRACT MAXIMUM VALUE OF Y

LOCATION.
SZA /1S IT ZERO?
JMP CLEAR /1F NO, CLEAR NEXT COUNTER.
ION /IF YES, TURN ON INTERRUPT.
/ DISPLAY ROUTINE
BEGIN, CLA /CLEAR AC.
TAD X /LOAD AC WITH ENERGY RANGE.
DXL / DISPLAY ON X AXIS-
TAD INI /COMPUTE Y LOCATION FOR INDIRECT
ADDRESSING.
DCA YLOC /STORE FOR INDIRECT ADDRESSING.
TAD | YLOC /READ NUMBER OF PARTICLES.
DYS / DISPLAY ON Y AXIS AND INTENSIFY.
{ADVANCE ADDRESS
INCX CLA /CLEAR AC.
TAD X /READ ENERGY.
[AC /INCREMENT ENERGY.
DCA X / DEPOSIT NEXT ENERGY.
/CHECK FOR FULL SCALE
COMPE TAD X /READ NEW ENERGY.
TAD MEMAX /SUBTRACT E MAXIMUM.
SZA /1S 1T ZERO?
JMP BEGIN /1F NO DISPLAY NEXT POINT.
- DCA X /IF YES, SET ENERGY =0

JMP BEGIN /JUMP TO DISPLAY FIRST POINT
/LIST OF CONSTANTS

STORE, 0 /STORAGE REGISTER FOR AC DURING
/INPUT ROUTINE.

INI 1000 /LOCATION OF INITIAL DATA REGISTER.

TEMP, 0 / TEMP. STORAGE FOR ADDRESS OF P.

MFS, —1023 /{MINUS FULL SCALE.

YLOC, 0 /TEMP. STORAGE FOR ADDRESS OF Y.

MMAX, —2024 /MINUS (MAXIMUM Y LOCATION 1)

X, 0 - IX

MEMAY, —1024 /MINUS (E MAXIMUM -+1)

57

A PROGRAM TO GENERATE AND DISPLAY A
TIME-INTERVAL HISTOGRAM

The time-interval histogram generated and displayed by a computer has b_e-

i e vl

come an important biomedical tooi in the analysis of neuroelectric and cardio-
vascular data. The post-stimulus time histogram, for example, is an effective
means of revealing the response patterns elicited by controlled experimental
stimuli. In brief, it provides an estimate of the relative firing rates of a single
unit in successive intervals of time following the presentation of a stimulus.

Another example of the value of the time-interval histogram -is in the study of
heart action. From the standpoint of the computer, cardiovascular research has
much in common with neurophysiological research. The basic data is often a
time-voltage function produced by the system under study. Perturbations in the
rhythmic activity of the heart may be detectable, and quantifiable, in distribu-
tions of interbeat intervals derived from the EKG.

Digital has pioneered in the development of computer applications for biomedi-
cal research. The most popular Digital computer for these applications is the
LINC-8, specifically designed for the research laboratory. The LINC-8 combines,
in a single, self-contained system, all the features of the standard PDP-8 com-
puter, plus the unusual man-machine communication capability of the LINC
(Laboratory Instrument Computer). The LINC section includes an oscilloscope
display, analog-to-digital converter, mass storage through LINC-tape, relay
register, and an instruction repertoire that greatly enhances man-machine
communication. The basic LINC computer was developed by the Massachusetts
institute of Technology, supported by grants from the National Institute of
Health and the National Aeronautics and Space Administration.*

The LINC-8 operates in one of two modes. In one mode, it operates as a stan-
dard PDP-8 computer. In the other mode, it operates as a LINC, having certain
special input-output and speed characteristics, but otherwise functionally iden-
tical to the original LINC. In the following discussion, you will be introduced to
some of the basic concepts of programming for the LINC..

LINC MODE PROGRAMMING

As you learned from the previous example of pulse height analysis, the sam-
pling and display of on-line data requires a substantial number of instructions
when a conventional computer such as the PDP-8 is used. The LINC-8 greatly
simplifies such programming tasks. For example, the single instruction

SAM n

will cause analog channel n to be sampled, the voltage to be converted to a
binary number, and deposited in the accumulator. Again, the single instruction

DISn
will cause a spot to be displayed and intensified on the scope. The horizontal

*See the LINC-8 Users Handbook for detailed information about this computer.

58

coordinate of the spot will be obtained from the nine rightmost bits of the word
at location n, and the vertical coordinate of the spot will be obtained from the
nine rightmost bits of the word in the accumulator. If an “i” bit is included in__
the instruction thusly, ‘

DISin

the contents of location n will be incremented by one (“indexed”) before the
spot is brightened. Of course, the indexing will also increase the horizontal co-
ordinate by one. Which suggests a convement way to get a horizontal trace
across the scope.

+ The following brief program will display a continuous horizontal line through
the middle of the scope (display coordinate = 0) via dlsplay channel 0. Memory
addresses and instruction codes are shown .both in symbolic code and as
absolute octal values.

Mémory Memory Contents
Address [Symbolic Octal Comments
5 0 0000 | Horizontal Coordinate location
START — 20 | CLR 0011 | Clear accumulator (Set Vert. Coord. = 0)
21 [DISi5 0165 | Increment horizontal coordinate, and dis-
' play spot
22 | JMP 20 6020 | Repeat indefinitely to obtain trace.

Now let's try something a trifle more ambitious and practical — say, a dy-

namic display of a voltage waveform hooked up to one of the LINC input chan-

nels. The following program continuously displays the input from channel 12
until the operator strikes a key.

59

Memory Memory Content

Comments
Address Symbolic Octal

1]0 0000 | Horizontal Coordinate iocation

START — 20 | SAM 12 0112 | Sample line 12 (i.e., Vert. Coord. to ac-

cumulator)
21 | DISil 0161 | Increment Horiz. Coord. and display spot
22 | KST 0415 Skip next instruction if key has been struck
23| JMP 20 6020 | Key not struck; continue sampling and
displaying
24 | HLT 0000 | Key struck; halt

‘“Thus, the HINC-R is in very clnse touch with the “outside world” through its
very communicative instructions, which sample input channels, display data,
and respond readily to operator commands, through console switches and
other controls. LINC programming is somewhat more complex than other
12-bit computers since LINC addressing and control schemes are so much
more flexible and extensive. However, the versatility and power of the LINC

language shouid prove to be an ample reward for the additional investment of
learning time. :

Before describing the time-interval histogram program, it will be necessary to
discuss in detail certain LINC instructions. In particular, we will define the
formation of the “effective address,” and the function of the SET instruction.

The “effective address” of a memory reference instruction is defined as the
actual address referred to by the instruction after all address modification
and indirect addressing operations have been completed. (Recall that these
operations were discussed earlier in the primer.) The LINC uses the i bit in
conjunction with location 1-17, of memory to specify effective addresses for
so-called “index class” memory reference instructions. A typical index class
memory reference instruction, “load the accumulator” (LDA) has the general
form

LDAi B

where i = 1 or 0, and B equals value between O and 17. If either i or B is to be
set to zero, it is simply omitted from the symbolic code. If B is to be non-zero,
the value must be speciified. According to the values assumed by i and B, LINC

60

assigns the effective address of an index class memory reference instruction
as follows:

B

kBi’ic 7) (Bits 8-11) Location of Effective Address

0 0 The contents of bits 1-11 of the register immedi-
ately following the instruction. :

1 0 ' The address of the register immediately following
the instruction. (The operand itself appears in this
register.)

0 1-17, The contents of bits 1-11 of register B

1 1-17, - The contents, incremented by 1, of bits 1-11 of
register B

The SET instruction as the form
SETia
C

and always occupies two consecutive memory locations. As LINC fetches se-
quential memory instructions, it always skips the second location. If the j bit of
the SET instruction equals zero, LINC replaces the contents of the register at
memory location “a” with the contents of the register at memory location C.
If the i bit of the SET instruction equals one, LINC replaces the contents of the
register at memory location “a” with the value C.

We will build our time interval histogram program out of a series of sub-
routines, each of these subroutines does a specific function (accept data, dis-
play a point in a histogram, clear storage areas to start a new histogram, etc.).
It is important therefore to understand how these subroutines can be called
into play and how they can return control to the correct place in the main pro-
gram. This is accomplished through the JMP instruction. Whenever JMP in-
struction is executed, a JMP P 41 (where P is contents of the program count-
er) is inserted into location 0. Thus, when we execute JMP 2C, a JMP (P + 1)
or JMP 3H is inserted into location ¢, to exit from the initialization subroutine,
then a JMP ¢ is executed and control reverts to location 0. Since location O con-
tains a JMP 3H instruction, the program then goes to symbolic location 3H in
the main program. Note that when the initialization subroutine is entered from
the display subroutine (after resuits of all bins have been displayed), the JMP
0 in this case reverts to location 4H + 1 since the last JMP executed was from
4H. In a similar manner, all JMP O instructions in this sample program pro-
vide a return to the main program.

61.

THE TIME-INTERVAL HISTOGRAM PROGRAM

This program shows you how to use the LINC to accumulate a frequency dis-
tribution of time between events (the occurrence of a pulse) and to continuously
display the distribution as an interval histogram. When an acceptable sample
is detected, LINC records the event by incrementing a location in memory,
called a “bin”, that records the number of samples within the corresponding
“class interval” or frequency range. Five hundred and twelve bins are used to
accumulate the occurrence of up to 512 separate time intervals. Suppose
that we have a histogram with four horizontal graduates or bins of 1-milli-
second intervals as shown in figure 11.

————— Ims —————— ims —_—————— 1 m§ — P img —————>

BIN 1 BIN 2 BIN 3 BING

Figure 11. Four 1-Millisecond Interval Bins

When recording the time interval of pulses (events), for all pulse intervals that
occur between 0 and 1 milliseconds, a one will be added to bin 1; for intervals
of 1 to 2 milliseconds, a one will be added to bin 2, etc. If a pulse train
(figure 12) were monitored over a period of time, a histogram of the pulse
train would be as shown in figure 13.

4L¢¢ I E—

e

Figure 12. Pulse Train

i/

BIN 1 BIN 2 - BIN 3 BIN 4

Figure 13. Pulse Train Histogram

62

Since there are two 0.9-millisecond pulse intervals that fall within the 0 to 1
ms interval, a vertical bar length of two is recorded for bin 1. Similarly, vertical
bar lengths of 1, 2, and 1 are recorded for bins 2 through 4, respectively.
The foregoing histogram provides a foundation for further perusal of the
histogram generating program developed for the LINC-8 programming example.
We will retain the bin widths of 1 ms for this example.

We will also use external clock circuitry (external to the LINC-8 equipment, but
connected to the LINC-8 as an input/output device) to detect the event and
record the time interval. The clock is a digital counter with input detection cir-
cuits. An input event stops the digital counter and sets a flip-flop to “flag” the
occurrence of an event. The program tests for the occurrence of the event by
using a “Skip on External Level” instruction to sense the flag. The program
reads the digital counter into the accumulator and resets the flip-flop and the
digital counter to 0. The digital counter then starts counting for the next event. -

Now let us examine the data collection subroutine which will classify the
events into bins of 1 ms intervals. Our histogram will contain 512 bins,
hence a classification range of 0-511 ms. (Overflows stop the counter so that
all intervals greater than 511 ms would increment bin 512 by 1 to indicate
the overflow condition.) We will refer to both the flow diagram (figure 14)
and subroutine listing for the explanation of the data collection subroutine.

~ __ENTRY POINT FOR
DATA COLLECTION ROUTINE

HAS NO
EVENT
OCCURRED

YES

READ AND
RESET CLOCK

SET UP LOCATION
TO BE INCREMENTED
BY ADDING CLOCK
READING (R) TO
400

INCREMENT
LOCATION
400 +R

Figure 14. Data Collection Subroutine

63

DATA COLLECTION SUBROUTINE

#1A SXL O /1S THERE AN EVENT
JMP 0O / NO; EXIT
OPR O /YES; READ AND RESET CLOCK

ADD 1C / SET UP ADDRESS FOR INCREMENTING
STC 1B / TEMPORARILY STORE ADDRESS OF BIN TO BE

INCREMENTED
LDA i {ONE TO ACCUMULATOR
1
ADM /INCREMENT APPROPRIATE BIN
#1B O - /ADDRESS OF BIN TO BE INCREMENTED STORED HERE
JMP O {EXIT

The external clock is connected to the LINC-8 computer via the 1/0 bus and
the clock flip-flop is connected to LINC external line ¢. Thus, the first in-
struction in the data collection subroutine, (SXL ¢) senses line ¢ and skips
the next instruction if an event occurred; if the event did not occur, the
next instruction JMP ¢ is executed causing control to exit from this sub-
routine. Assuming an event occurred, we go to the OPR ¢* instruction which:
reads the external clock and resets the clock so that it starts recording time
for the next interval. After the execution of OPR ¢ the clock reading is held in
the LINC accumutator. The next instruction, ADD 1C, adds 400 to the ac-
cumulator which has the clock reading and then stores the results into
symbolic location 1B. Let us digress a moment to see the significance of this.

BIN10R BIN 2 OR BIN 3 OR BiN 512 OR
LOCATION 400 LOCATION 401 LOCATION 402 LOCATION 1377g

* The OPR instruction is executed by the PDP-8 section of the LINC-8 com-
puter; when the LINC detects the OPR instruction, it alerts the PDP-8 com-
puter via computer interrupt. The PDP-8 executes the instruction through a
PDP-8 subroutine that reads the clock, resets the clock and flag, and transfers
the clock reading to the LINC accumulator. To the LINC programmer, it
appears that the LINC executed the instruction.

64

If we let location 400 be the address of bin 1, and 401 bin 2, etc., then by
adding 400 to the clock reading and storing the results into symbolic location
#1B, location # 1B contains the address of the appropriate bin.

Going back to the subroutine, the next instructions add one to the addressed bin
and control exists. Hence, if the time-interval read from the clock was 2.1
ms, then location # 1B would address 402 or bin 3, and bin 3 is incremented
by one. Note that each entry into the data collection subroutine processes
only one event (if it occurs). If we connect the subroutines so that we con-
tinually loop through the data collection subroutine, we will accumulate data
counts for those bins corresponding to the number of pulse interval detections.
For example, over a period of time, 5 events of 3.5 ms were detected, then
bin 4 (location 405), which holds the 3-4 ms intervals, contains a 5.

Suppose we let the data collection subroutine collect data over a period of
time and then in some manner terminate the subroutine. We, in effect, have
our histogram stored in locations 400-1377,. Now, we want to display our histo-
gram. The display subroutine will accomplish this.

Let us first examine the display initialization subroutine (Figure 15) which
sets up the display subroutine. The SET i 1 and 400 instruction combination
sets index register 1 to a value of 400. Similarly, index register 2 is set to 0
so that the histogram display starts at the left side of the CRT at a horizontal
coordinate of 000. The LDA 1 instruction loads the accumulator with the con-
tent of memory location 400 which contains the count of bin 1 (the height
of the bar to be displayed). To this height we add —377, so that the vertical
display will start at the bottom of the CRT. The height is then stored in
symbolic location 2B.

65

_ENTER
DISPLAY SUBROUTINE

DISPLAY POINT
IN HISTOGRAM

\

FROM

SUBTRACT 4
COORDINATE

VERT

FOR PR
LOwW

IS VERT
COORDINATE

POINT BELOW
OF DisPLAY

ESENT DISPLAY

SUBROUTINE
END

YES

INCRE

NEXT

BIN POINTER
TO DISPLAY

MENT

BIN

I

HAVE

DISPL
L

BINS BEEN

ALL

AYED

(2c)—

ENTER

J

INITIALIZATION ROUTINE

BIN PO

INITIALIZE

(SET INDEX
1:377)

\
INTER

SET BIN
COUNTER = -1000
(512 DECIMAL)

DISPLAY
INITIALIZATION
SUBROUTINE

SET UP

FIRST

DISPLAY COORDINATE
TO START AT

HORIZ

BIN

_Figure 15. Display

and Display Initialization Subroutines

66

POINT DISPLAY OF HISTOGRAM SUBROUTINE

2A LDA /VERTICAL COUNT TO ACCUMULATOR
2B '
DIS3 /GENERATE DISPLAY
ADA i /SUBTRACT 4 FROM ACCUMULATOR
—4
STA / STORE VERTICAL COORDINATE FOR NEXT DISPLAY
2B
ADA i /ACCUMULATOR WILL BE NEGATIVE IF NEXT DIS-
377 PLAY IS BELOW BOTTOM EDGE OF SCOPE
APO i /SKIP IF ACCUMULATOR NEGATIVE POINT IS BE-
LOW BOTTOM EDGE OF SCOPE
JMPO /NO; EXIT
LDAi 1l ~ /LOAD COUNT OF VERTICAL COORDINATE FOR
NEXT BIN
STA JAND STORE IN 2B
2B 0000 .
CLR /CLEAR ACCUMULATOR
XSKi3 /MOVE HORIZONTAL COORDINATE
XSKi2 /HAVE ALL BINS BEEN DISPLAYED?
JMPO /NO; EXIT
Display Initjalization Subroutine
2C SETi1l /SET INITIAL TABLE ADDRESS
1C 400 /DATA BEGINS IN 400
SETi2 /SET COUNTER FOR 512 BINS
—1000
LDA 1 /LOAD COUNT FOR FIRST BIN
ADA i / BIN COUNTS DISPLAYED FROM BOTTOM OF SCOPE
—377
STC 2B /LOAD VERTICAL COORDINATE
SETi3 /SET HORIZONTAL COORDINATE
0
JMP O JEXIT

The display subroutine has been set up by the display initialization subroutine
so that it starts with bin 1 or location 400. Upon entry into the display sub-
routine at symbolic location #2A, we load the accumulator with the vertical
coordinate of the first bin. The DIS 3 instruction is issued to generate a display;
the DIS 3 instruction takes the vertical coordinate from the accumulator and
horizontal coordinate from index register 3 which was initially set to equal O,
thus an intensified spot appears at a CRT horizontal coordinate of 000 with the
vertical coordinate as specified by the content of bin 1.

Next, we subtract 4 from the vertical coordinate. This causes the display sub-
routine to skip 4 vertical CRT coordinate positions between points in the verti-
cal bar for each entry into the subroutine. This reduces the overall display pro-
gram time required to display a complete histogram. This is not detrimental to
the display since the bar appears to be continuous.

It should be noted that since the maximum vertical coordinate is +377 and the
vertical coordinates of the histogram are obtained by incrementing a memory
location, if the data collection subroutine obtains a count in excess of 777, for
any bin, the display will show a full length line independent of how much in
excess the count in that bin was.

67

We next test to see if the complete bar of the histogram has been displayed.
This is accomplished by adding 377 to the vertical coordinates. If the vertical
coordinate is in the interval —377 to 377, a negative number results from the
~ addition (i.e., if the vertical coordinate is below the bottom line, the result of
the addition is negative). Therefore the APO i senses for a positive accumulator;
it positive, we exit from the subroutine and re-enter iater to complete the
present vertical bar. If negative, we have completed the vertical bar and must
go to the next bin to obtain the vertical coordinate of that bin. This is accom-
plished by the LDA i 1 which indexes (since i= 1) location 1 to a value of 401
(the second bin) and then loads the accumulator with the content of 401, the
vertical coordinate of the second bin. This coordinate is stored in location #2B
which is used by display subroutine to obtain the vertical coordinate. We must
now increment the horizontal display coordinate; this is accomplished by the
XSK i 3 which increments location 3 (the horizontal coordinate). To test for the
end of the histogram, the routine executes an XSK i 2 which adds 1 to location 2,
skips the next instruction if bits 2 thru 11 of location 2 equal 1777,. If all bins
have not been displayed, we will not skip; therefore, we exit. If all bins have
been displayed location 2 (bits 2 thru 11) contains 1777, and we skip the next
instruction and enter the display initialization routine to initialize the display
routine so that we can redisplay the histogram.

We have not discussed the core initialization subroutine (Figure 16); This sub-
routine serves to clear all bins in corememory so that a new histogram may be
accumulated and stored. This is accomplished by setting index register 1
(memory location 1) to 377 and index register 2 to —1000 (the octal number
of bins in the histogram), the accumulator is cleared. The STA i 1 instruction
increments the content of index register 1 (the first increment is to 400, the
start of our histogram), and then stores a zero into the addressed location.
We loop through this routine until index register 2 contains 1777; we then
rétuin 1o ine main prograrr.

We next test to see if the complete bar of the histogram has been displayed.
This is accomplished by adding 377 to the vertical coordinates. If the vertical
coordinate is in the interval —377 to 377, a negative number results from the
addition (i.e., if the vertical coordinate is below the bottom line, the result of
the addition is negative). Therefore the APO i senses for a positive accumulator;
if positive, we exit from the subroutine and re-enter later to complete the
present vertical bar. If negative, we have completed the vertical bar and must
g0, to the next bin to obtain the vertical coordinate of that bin. This is accom-
plished by the LDA i 1 which indexes (since i = 1) location 1 to a value of 401
(the second bin) and then loads the accumulator with the content of 401, the
vertical coordinate of the second bin. This coordinate is stored in location #2B
which is used by display subroutine to obtain the vertical coordinate. We must
now increment the horizontal display coordinate; this is accomplished by the
XSK i 3 which increments location 3 (the horizontal coordinate). To test for
the end of the histogram the routine executes an XSK i 2 which adds 1 to loca-
tion 2 skips the next instruction if bits 2 thru 11 of location 2 equal 1777,. If
all bins have not been displayed, we will not skip; therefore, we exit. If all bins
have been displayed, location 2 (bits 2 thru 11) contains 17775 and we skip the
next instruction and enter the display initialization routine to initialize the dis-
play routine so that we can redisplay the histogram.

We have not discussed the core initialization subroutine (Figure 16); This sub-
routine serves to clear all bins in core memory so that a new histogram may be
accumulated and stored. This is accomplished by setting index register 1

68

(memory location 1) to 377 and index register 2 to —1000. (The octal number
of bins in the histogram). The accumulator is cleared. The STA i 1 instruction
increments the content of index register 1 (the first increment is to 400, the
start of our histogram and then stores a zero into the addressed location. We
loop through this routine until index register 2 contains 1777; we then return
to the main program.

We have now seen how to accumulate data for the histogram, display the his-
togram, ahd initialize core storage for the data collection and histogram display.
Now we will combine all these subroutines with a main program which calls for
these routines under manual control of the sense switches. (The sense
switches are front panel controls which the program can sense via the SNS
instruction to change the programming sequence). From Figure 17, we see
that after starting, we enter subroutines that initialize the data collection and
display subroutines. Assuming sense switch 1 is in down position, we loop
through the “accumulate data” and “display” subroutines. This loop permits us
to accumulate data for this histogram, with an apparently concurrent display
of the generated histogram. When enough data has been collected, we can
terminate the data collection by setting sense switch ¢ to the up position. We
can continue displaying the histogram by leaving sense switch 1 in the down
position. When we want to generate a new histogram, we set both sense
switches 0 and 1 to the up position so that we enter 1H to clear out the old his-
togram from core memory and to initialize the display subroutine. We then set
sense switch 1 down and ¢ down so that we loop through the “accumulate
data” subroutine.

CORE INITIALIZATION

_ SUBROUTINE X
1z SETi1l /INITIALIZE POINTER TO FIRST LOCATION OF

377 HISTOGRAM :

SETi2 . /SET NUMBER OF BINS

—1000 /10005 = 512,,

CLR /{CLEAR ACCUMULATOR

STAi1l /CLEAR NEXT BIN

XSKi2 /ADD 1 TO LOCATION 2; SKIP WHEN CONTENTS OF
LOCATION 2 > =1777, (BITS 2 THROUGH 11)

JMP p-2 /JUMP BACKWARD TWO LOCATIONS (CONTINUE
CLEARING)

JMP 2H. /RETURN TO MAIN PROGRAM TO SETUP DISPLAY

COUNTERS AND POINTERS

69

ENTRY FOR
CORE RETRACT

IAIITIAI 198
LAL AR RIS} N <

BIN POINTER
(SET INDEX
REG 1=377)

INITIALIZE
BIN COUNTER
(SET INDEX
REG2=-777

e

CLEAR
NEXT BIN

HAVE ALL
BINS BEEN NO |
CLEARED
TEST YR2

YES

oXIT

“To
&Y

Figure 16. Core Initialization Subroutine

70.

1H
2H

201
(ol

4H

MAIN PROGRAM — TIME INTERVAL HISTOGRAM

JMP
JMP

IRAD
JIVID

JMP
SNS
JMP
SNS

- JMP

JMP

1Z
2C
1A
2A
0

3H
1

4H
1H

(D

/CLEAR TABLES

/SET UP COUNTERS AND POINTERS
/GET DATA

/DISPLAY ONE DATA POINT

/SKIP IF SENSE SWITCH O IS UP
/GET NEXT POINT

/SKIP IF. SENSE SWITCH 1 IS UP
/STATIC DISPLAY SELECTED

/O AND 1 UP; RESTART

START

CLEAR
HISTOGRAM
DATA TABLE

@_;_.

DISPLAY
INITIALIZE
SUBROUTINE.
3H

DISPLAY
DATA

COLLECT
DATA?
(SENSE SWITCH
& DOWN)

CLEAR
DATA TABLE?
(SENSE SWITCH
1 DOWN)

Figure 17. Main Program

71

COMPUTER-DIRECTED PROCESS
CONTROL TECHNIQUES

Among the most rapidly developing applications of digital computers are those
requiring automatic control of machines and processes. In industrial process
“control, for example, digital computers are displacing conventional analog
controllers and other components of conventional control loops with ever-
increasing frequency.

Before we explore the techniques of computer-directed process control, let's
examine the characteristics of the conventional process control loop. Figure 18
shows such a system for controlling a single process-variable. The measured
process-variable signal (pressure, temperature, flow, etc.) is compared to the
value entered by the operator to determine the magnitude and direction of
the error. The error signal then serves as input to a small, special-purpose
analog device or controller. The controller calculates the valve p051t|on that
will reduce the steady-state error to zero.

The equations solved by the controller will usually be one of the followin
forms:

Valve position == Kg + Kie {proportiona! control P)

t
Valve position = Ko 4+ Kie + Kzf edt [proportional integral conirol Pl)
0 .

t
Valve position = Ko + Kie + Kzf edt -+ K3 (de/d! (proportional derivative control PID)
0

Where K, = initial valve position
K; = proportional-term adjustment
K, = integral term adjustment
Ks; = derivative term adjustment

e = error (i.e., measured variable — set point)

72

CONTROL
VALVE

T
Y

TRANSDUCER

GENERATE
CONTROL
SIGNAL Q —» FLOW
' COMPUTE '
VALVE MEASURE
POSITION
OPERATOR SET CALCULATE LIMIT
neot—™ pont ™| "ErrROR [® | CcHECK

Figure 18. Single Process-Variable System

The adjustment terms (Ko, Ki, K,, and K;) permit adaptation of the control
loop to a broad range of processes having different control characteristics.
By varying the adjustment terms, the controller can be “tuned” to the process
characteristics. Since each controller solves only a single loop equation, large
conventional process control systems require a correspondingly large number
of controllers. The control engineer must choose the equation, and thus the
controller, which best fits the process. Once an analog controller has been
installed, an equipment change is required if process characteristics change
significantly.

Now let us examine a process control system directed by a digital computer
such as the PDP-8 (figure 19). In this system, the control loop variables are
applied to a single multiplexer, permitting the computer to monitor all variables
within the system on a time-shared basis. The control loop algorithms are
solved by computer subroutines instead of analog controllers. The subroutines
compute the required error signals, which are converted to analog voltage.
swings and multiplexed to the appropriate valve-positioning device.

You can readily see some of the advantages of digital computer control over
the conventiona! analog controller: to change the control algorithm, you have
only to change parameters within the computer program; a costly and time-
consuming redesign of the equipment is not required. To increase the num-
ber of control loops, you need add only a transducer and actuator or control
valve for each additional loop. Addition of such features as limit checking of
valve positioning to prevent damage can easily be effected, since the program
can be written to clamp the error signal to specified limits before sending it
the valve positioning device. Changes of tuning adjustments, alarm limits,
and set points can easily be accomplished with conventional computer input
devices such as typewriters. In most cases, however, these inputs will be
channeled through a specially designed operator console.

73

NORMAL A/D POINTS
PDP-8 - MULITIPLEXER BEING
170 CONVERTER | ¢—| MONITORED

OUTPUT s VALVE
DRIVER MULTIPLEXERI— o65iTi0NING

D/A —»

PDP-8
COMPUTER

OPERATOR
CONSOLE

QUTPUT
TYPEWRITER

Figure 19. Computer-Directed System

Although digital computérs have been in use in process control for over a
decade, their inclusion as the computational element in the control loop (direct
digital control) is a comparatively recent phenomenon. The early computers in
process applications operated at a speed of about one thousand operations
per second. Computers of this speed are presently guiding the operations of
chemical plants and refineries, starting up power plants, and replacing con-
ventional controls in case of failures. These machines made no atiempt 1o
compete with standard controls; the amount of computer time required would
have produced too severe a drain on the computational capacity of the system.
These systems justified their existence in process control by performing func-
tions of which standard analog controls were incapable.

Today, computers such as the PDP-8 operate at speeds which are more than
sufficient to provide direct digital control for every loop in a typical process
control system. Moreover, as the speed has increased the price of com-
puters has decreased, so that today a redundant two-computer PDP-8 system
costs about the same as an earlier single-computer system.

A PROCESS CONTROL SYSTEM USING
DIRECT DIGITAL CONTROL

To achieve direct digital control of all loops within a process system such as
the one shown in figure 19, we require an “executive” program which will
sequentially scan or monitor the field points (measured variables). Let's
examine, to begin with, the over-simplified executive control program of figure
20. Here, a program called the level executor supervises the allocation of
processing time to the various programs and subroutines that scan the mea-
sured variables, effect the required control loop computations, service operator
requests, and output timely messages to assist\him in his control decisions.
Transfer of control between major system programs is accomplished as
follows. A program sets a request for entry-into another program, then trans-
fers controi to the level executor. The level executor either grants the transfer

74

request ir;'nmediately, or places it in a “‘queue” for later servicing, depending
upon the relative priorities of the program in progress and the requested
program.

Typically, a real-time clock is used to initiate the scanning of the measured
variables, or “field points.” The interrupt handler program services the real-
time clock interrupt by requesting entry into the scan initiation and multi-
plexing (SCAN) level program. SCAN directs the hardware multiplexer to start
multiplexing the field points. '

When the multiplexer has obtained the field point reading, it generates an
interrupt to reenter SCAN. When reentered, SCAN linearizes the field point
reading. If the point is outside specified limits, SCAN requests entry into the
message compiler and output program to output the alarm message to the
control process operator. SCAN then requests entry into the algorithm processor
(ALGO), and initiates multiplexing of the next field point. Using the previously
acquired point reading, ALGO computes the error signal and requests entry
into the Output Driver program to provide the output to the processing system.

The operator console handler enables the operator to change parameters for
control computations and field points, such as set points and alarm limits.

SCAN INITIATION
AND MULTIPLEXING

ALARM PROCESSOR
AND ALGORITHM
SEQUENCER

INTERRUPT
HANDLER

MESSAGE COMPILER
AND OUTPUT

OPERATOR CONSOLE
PROCESSOR

OUTPUT DRIVER

L TIME LOOP

HOO 0 OO

Figure 20. Process gontrol Software System

It is useful to divide the several system programs into four priority levels, as
follows. To the first (highest) priority level, we assign the programs that
perform the principal functions of the conventional analog controller; i.e.,
field point scanning and error signal output. To the second priority level, we
assign such functions as error signal computation. The lower two priority
levels perform such functions as message output and servicing operator re-
quests. Processing time for lower level programs is normally allocated during
“wait” periods, as, for example, when the program is waiting for the multi-
plexer to return the measured variable. '

75

TIMING THE POINT-SCANNING PROCESS

One of the principal differences between direct digital control and analog
control is that the analog controller continuously monitors the process-variable,
while in direct digital control systems, the process-variable is monitored peri-
odically. Thus, the control engineer is required to determine how frequently
the control loop should be monitored. When this parameter has been es-
tablished, it is used to set the real-time clock, which periodically interrupts
the computer and initiates a timing program.

The timing program initiates the scanning of all field points through a
sequencing program (SEQ). The timing program also schedules execution of
the other time-based level programs, as shown in figure 21. Note that since
the timing program is initiated periodically, it is a simple matter to implement
a time-of-day clock. The time-of-day clock may be used for logging and data
collecting operations. For example, if an alarm condition occurs, the alarm
message generated on the output typewriter can log the time of occurrence
by referencing the time-of-day clock.

T™MR
(ENTER TIMER)

} YES [NITIALIZE SEQ AND
ere FOR SEQ)——D REQUEST ENTRY

(TIME FOR YES REQUEST ENTRY
CONSOLE Funcnou)'_’ CONSOLE DRIVER

:

TIME FOR YES REQUST ENTRY
FUNCTION (X)* INTO FUNCTION (X)*

e
Y YES | INCREMENT MINUTE
COUNTER 55 COUNTER AND RESET
(10) SECOND COUNTER
e
i
MINUTE YES INCREMENT HOUR
COUNTER = 59 COUNTER AND RESET
{i0) MINUTE COUNTER
e

3% FUNCTION (X) CAN BE
ANY TIME-BASED
LEVEL PROGRAM

. Figure 21. The Timing Program

76

Sequencing and Multiblexing the Point-Scanning Process

The point-scanning process (figure 22) is initiated by a sequencing program
(SEQ). SEQ maintains a list or table of all points to be scanned. The table
describes such parameters as its point number or multiplexer address. To
sequentially select field points for multiplexing, a pointer cell is used to
indicate the present field point being processed. The pointer is initialized to
" point to the first word in the list of field points. The table is completely
scanned each period of the real-time clock. SEQ obtains the multiplexer ad-
dress of the point being processed, inserts the address into a location or “siot”
within the Multiplexer program (MPXR), then increments the pointer so that
on the next entry into SEQ, the next pointer will be processed. SEQ then re-
quests entry into MPXR to obtain the measurement.

SEQ

C ENTER SEQ)
‘ DEPOSIT MPLXR POINT

ADDRESS INTO MPXR
é&?&‘ c%’a'p’lﬁg% N MPXR SLOT YES SLOT AND REQUEST
FLAG SET) AVAILABLE ENTRY INTO MPXR

WITH A RETURN

YES NO REQUEST TO ALGO
INCREMENT _SCAN CAN POINTER
POINT TO POINT POINTS TO LAST SET SCAN
TO NEXT POINT _POINT "IN COMPLETED FLAG
IN SCAN LIST SCAN LIST

Figure 22. Point-Scanning Process

The multiplexer program sets up the hardware multiplexer to obtain the
measurement, then transfers control to the level executor. When the muiti-
plexer hardware has obtained the measurement,an interrupt is generated, and
the measurement is set into MPXR. MPXR then recalls the program that re-
quested the measurement. However, when SEQ is the requesting program,
control is transferred to the Algorithm Processor.

77

PROCESSING THE ALGORITHM

The algorithm processor (figure 23) solves the basic proportidnal, rate, and
reset control equations shown earlier in this discussion.

(enter)
. T

4
REQUEST ENTRY INTO
15 MEASUREMENTY NO |RESSAGE GENERATOR
WITHIN LIMITS TO GENERATE
MESSAGE
-
ves [CALCULATE_ERROR
DOES POINT 1.8. E=z2 SP-M
CONTROL A LOOP (SET POQINT-
MEASUREMENT
NO *
CALCULATE P TERM
K| Ae

IS THIS PI
OR PID
CONTROL
?

CALCULATE K24t ¢

IS
THIS PID CALCULATE
CONTROL X3 acaw
? At

STORE aP
AND REQUEST ENTRY
INTO QUTPUT DRIVER

e
L

REQUEST ENTRY
INTO SEQ TO
INITIATE SCAN

OF NEXT POINT

Figure 23. Algorithm Processor

78

Moreover, feed-forward and combination systems can be used more widely,
since the only elements which must be added to the system are transducers
and mathematical expressions. In brief, computer control of processes enables
you to engineer the control system, rather than requiring you to select an
alternative solution from among the available analog devices.

However, we cannot solve the equations for the proportional, proportional in-
tegral, and proportional derivative (P, PI, and PID) algorithms in as straight-
forward a manner as the analog controller, since the computer can only add
or subtract. Since the terms of the P and Pl equations also appear in the PID
algorithm, we will show the implementation of the PID algorithm for direct
digital control. The PID algorithm is defined as:

e
d
P=K1e+K2f dt + Ks — m

where P represents the steady state value position and e the steady state error,
which is the difference between set point and measurement.

Since we monitor the field points at discrete intervals of time (A:), we can
represent the PIP equation as follows:
Ae
A\ At

Ay

S

Ap (2

Ae
A Klz;--l- Koe + K3

Where At is tHe sampling interval and A. is the difference between e signals
from present sampling and the previous sampling period.

Equation (2) can be reduced to:

Ap = K]Ae—I—KQAte-{-g:—:A(Ae) (3

where A (ae) is the second order change in error signal, i.e.

Alde) = {Aely — lAeln—1

Equation (3) represents PID equation in a form that can be computed by
K

the program. Note that the K, At, andri terms can be considered constants

since we know the sampling interval At. From equation (3) the P and PI

equations are as follows:

P algorithm = AP = K Ae ((4)

Pl algorithm = AP = Kj Ae 4+ K2 Ate (5)

Now we have the P, PI, and PID equations in forms that are readily resolved
by the computer. Furthermore, since the terms are common for all three, we
can use one routine (figure 27) to calculate the algorithms for all control
loops in the system. The constants for the control loops are stored in each

79

control loops respective table entries.

As shown in figure 27, the P algorithm is calculated first since its term ap-
pears in all three algorithms; hence, if the loop requires Pl control, the K,ae
term is computed an added to the Kaate term; if the control ioop requires P

K .
control, the KoAte and—A—:t’— A% calculations are by passed.

80

PART HlI: FAMI_LY-OF;EIGHT USERS HANDBOOKS .
PDP-8 USERS HANDBOOK

81

Figure 1 Typical PDP-8 in Table Top Configuration

82

CHAPTER 1
SYSTEM INTRODUCTION

The Digital Equipment Corporation Programmed Data Processor-8 (PDP-8) is a
small-scale general-purpose computer. The PDP-8 is a one-address, fixed word
length, parallel computer using 12 bit, two's complement arithmetic. Cycle
time of the 4096-word random-address magnetic-core memory is 1.5 micro-
seconds. Standard features of the system include indirect addressing and
facilities for instruction skipping and program interruption as functions of
input-output device conditions. '

The 1.5-microsecond cycle time of the machine .provides a computation rate
of 333,333 additions per second. Addition is performed in 3.0 microseconds
(with one number in the accumulator) and subtraction is performed in 6.0
microseconds (with the subtrahend in the accumulator). Multiplication is per-
formed in-approximately 315 microseconds by a subroutine that operates on
two signed 12-bit numbers to produce a 24-bit product, leaving the 12 most
significant bits in the accumulator. Division of two signed 12-bit numbers is
performed in approximately 444 microseconds by a subroutine that produces
a 12-bit quotient in the accumulator and a 12-bit remainder in core memory.
Similar multiplication and division operations are performed by means of the
optional extended arithmetic element in approximately 15 and 30 microsec-
onds, respectively.

Flexible, high-capacity, input-output capabilities of the computer allow it to
operate a variety of peripheral equipment. In addition to standard Teletype
and perforated tape equipment, the system is capable of operating in conjunc-
tion with a number of optional devices such as high-speed perforated tape
readers and punches, card equipment, a line printer, analog-to-digital con-
verters, cathode-ray-tube displays, magnetic drum systems, and magnetic-tape
equipment. Equipment of special design is easily adapted for connection into
the PDP-8 system. The computer is not modified with the addition of pe-
ripheral devices. _ :

PDP-8 is completely self-contained, requiring no special power sources or en-
vironmental conditions. A single source of 115-volt, 60-cycle, single-phase
power is required to operate the machine. Internal power supplies produce all
of the operating voltages required. FLIP CHIP modules utilizing hybrid silicon
circuits and built-in provisions for marginal checking insure reliable operation
in ambient temperatures between 32 and 130 degrees Fahrenheit.

COMPUTER ORGANIZATION

The PDP-8 system is organized into a processor, core memory, and input/ out-
put equipment and facilities. All arithmetic, logic, and system control opera-
tions of the standard PDP-8 are performed by thé processor. Permanent
(longer than one instruction time) local information storage and retrieval
operations are performed by the core memory. The memory is continuously
cycling, automatically performing a read and write operation during each com-
puter cycle. Input and output address and data buffering for the core memory
is performed by registers of the processor, and operation of the memory is
under control of timing signals produced by the processor. Due to the close
relationship of operations performed by the processor and the core memory,
these two elements are described together in this chapter of this handbook.

83

Interface circuits for the processor allow bussed connections to a variety of
peripheral equipment. Each input/output device is responsible for detecting
its own select code and for providing any necessary input or output gating.
individuaily programmed data transfers between the processor and peripheral
equipment take place through the processor accumulator. Data transfers can
be initiated by peripheral equipment, rather than by the program, by means
of the data break facilities. Standard features of the PDP-8 aiso aliow
peripheral equipment to perform certain control functions such as instruction
skipping, and a transfer of program control initiated by a program interrupt.

Standard peripheral equipment provided with each PDP-8 system consists of a
Teletype Model 33 Automatic Send Receive set and a Teletype control. The
Teletype unit is a standard machine operating from serial 11-unit-code charac-
ters at a rate of ten characters per second. The Teletype provides a means of
supplying data to the computer from perforated tape or by means of a key-
board, and supplies data as an output from the computer in the form of
perforated tape or typed copy. The Teletype control serves as a serial-to-
parallel converter for Teletype inputs to the computer and serves as a paraliel-
to-serial converter for computer output signals to the Teletype unit.

The Teletype and all optional input/output equipment is discussed in Chapter
6 of this handbook.

SYMBOLS

The following special symbols are used throughout this handbook to explain
the function of equipment and instructions: '

Symbol Explanation
A=>8B The content of register A is transferred into
: register B
0=>A Register A is cleared to contain all binary
Zeros
Aj Any given bit in A
A5 The content of bit 5 of register A
A5(1) Bit 5 of register A contains a 1 .
A6 — 11 The content of bits 6 through 11 of register A

A6 — 11 =>B0—5 The content of bits 6 through 11 of register A
is transferred into bits O through 5 of
register B

The content of any core memory location
Inclusive OR

Exclusive OR

AND

Ones complement of the content of A

MEMORY AND PROCESSOR FUNCTIONS
Major Registers

Pl>4<<

To store, retrieve, control, and modify information and to perform the required
logical, arithmetic, and data processing operations, the core memory and the
processor employ the logic complement shown in Figure 2 and described in
the following paragraphs.

84

‘ MAJOR
INSTRUCTION :
—®| recisTER [__STATE

GENERATOR

SWITCH REGISTER

] <]
. ACCUMULATOR TELETYPE
.
MEMORY
papiial SWITCH REGISTER
REGISTER
- PROGRAM COUNTER

_ﬁ MEMORY ADDRESS REGISTER

'

CORE MEMORY

Figure 2 Simplified Block Diagram

ACCUMULATOR (AC)

Arithmetic and logic operations are performed in this 12-bit register. Under
program control the AC can be cleared or complemented, its content can be
rotated right or left with the link. The content of the memory buffer register
can be added to the content of the AC and the result left in the AC. The con-
tent of both of these registers may be combined by the logical operation AND,
the result remaining in the AC. The memory buffer register and the AC also
have gates which allow them to be used together as the shift register and
buffer register of a successive approximation analog-to-digital converter. The
inclusive OR may be performed between the AC and the switch register on the
operator console and the result left in the AC.

The accumulator also serves as an ihput-output register. All programmed in-
formation transfers between core memory and an external device pass through
the accumulator.

LINK (L)

This one-bit register is used to extend the arithmetic facilities of the accumu-
lator. It is used as the carry register for two's complement arithmetic. Over-
flow into the L from the AC can be checked by the program to greatly simplify
and speed up single and multiple precision arithmetic routines. Under pro-
gram control the link can be cleared and complemented, and it can be rotated
as part of the accumulator.

PROGRAM COUNTER (PC)
The program sequence, that is the order in which instructions are performed,

is determined by the PC. This 12-bit register contains the address of the core

85

memory location from which the next instruction will be taken. Information
enters the PC from the core memory, via the memory buffer register, and
from the switch register on the operator console. Information in the PC is
transferred into the memory address register to determine the core memory
address from which each instruction is taken. Incrementation of the content
of the PC establishes the successive core memory locations of the program
and provides skipping of an instruction based upon a programmed test of in-
formation or conditions.

MEMORY ADDRESS REGISTER (MA)

The address in core memory which is currently selected for reading or writing
is contained in this 12-bit register. Therefore, all 4096 words of core memory
can be addressed directly by this register. Data can be set into it from the
memory buffer register, from the program counter, or from an 1/0O device
using the data break facilities.

SWITCH REGISTER (SR)

Information can be manually set into the switch register for transfer into the
PC as an address by means of the LOAD ADDRESS key, or into the AC as data
to be stored in core memory by means of the DEPOSIT key.

CORE MEMORY

The core memory provides storage for instructions to be performed and infor-
mation to be processed or distributed. This random address magnetic core
memory holds 4096 12-bit words in the standard PDP-8. Optional equipment
extends the storage capacity in fields of 4096 words or expands the word
length to 13 bits to provide parity checking. Memory location Qs is used to
store the content of the PC following a program interrupt, and location 1. is
used tn store the first instruction to be executed following a program interrupt.
(When a program interrupt occurs, the content of the PC is stored in location
0s, and program control is transferred to location 1 automatically.) Locations
10, through 17, are used for auto-indexing. All other locations can be used to
store instructions or data.

The core memory contains numerous circuits such as read-write switches, ad-
dress decoders, inhibit drivers, and sense amplifiers. These circuits perform-
the electrical conversions necessary to transfer information into or out of the
core array and perform no arithmetic or logic operations upon the data. Since
their operation is not discernible by the programmer or operator of the PDP-8,
these circuits are not described here in detail. '

MEMORY BUFFER REGISTER (MB)

All information transfers between the processor registers and the core memory
are temporarily held in the MB. Information can be transferred into the MB
from the accumulator or memory address register. The MB can be cleared,
incremented by one or two, or shifted right. Information can be set into the
MB from an external device during a data break or form core memory, via the
sense amplifiers. Information is read from a memory location in 0.8 micro-
second and rewrittenin the same location in another 0.8 microsecond of one
1.6-microsecond memory cycle.

INSTRUCTION REGISTER (IR)

This 3-bit register contains the operation code of the instruction currently be-
ing performed by the machine. The three most significant bits of the current

86

instruction are loaded into the IR from the memory buffer register during a
Fetch cycle. The content of the IR is decoded to produce the eight basic in-
structions, and affect the cycles and states entered at each step in the
program. _

MAJOR STATE GENERATOR

One or more major states are entered serially to execute programmed instruc-
tions or to effect a data break. The major state generator establishes one
state for each computer timing cycle. The Fetch, Defer, and Execute states
are entered to determine and execute instructions. Entry into these states is
produced as a function of the current instruction and the current state. The
Word Count, Current Address, and Break states are entered during a data
break. The Break state or all three of these states are entered based upon
request signals received from peripheral |/ O equipment.

Fetch

During this state an instruction is read into the MB from core memory at the
address specified by the content of the PC. The instruction is restored in core
memory and retained in the MB. The operation code of the instruction is
transferred into the IR to cause enactment, and the content of the PC is in-
cremented by one.

If a multiple-cycle instruction is fetched, the following major state will be
either Defer or Execute. If a one-cycle instruction is fetched, the operations
specified are performed during the last part of the Fetch cycle and the next
state will be another Fetch.

Defer

When a 1 is present in bit 3 of a memory reference instruction, the Defer
state is entered to obtain the full 12-bit address of the operand from the ad-
dress in the current page or page O specified by bits 4 through 11 of the
instruction. The process of address deferring is called indirect addressing
because access to the operand is addressed indirectly, or deferred, to another
memory location.

Execute -

This state is entered for all memory reference instructions except jump. Dur-
ing an AND, two's complement add, or increment and skip if zero instruction,
the content of the core memory location specified by the address portion of
the instruction is read into the MB and the operation specified by bits O
through 2 of the instruction is performed. During a deposit and clear accu-
mulator instruction the content of the AC is transferred into the MB and is
stored in core memory at the address specified in the instruction. During a
jump to subroutine instruction this state occurs to write the content of the
PC into the core memory address designated by the instruction and to transfer
this address into the PC to change program control. o
Word Count

This state is entered when an external device supplies signals requesting a
data break and specifying that the break should be a 3-cycle break. When this
state occurs, a transfer word count in a core memory location designated by
the device is read into the MB, is incremented by 1, and is rewritten in the
same location. If the word count overflows, indicating that the desired number
of data break transfers will be enacted at completion of the current break, the
computer transmits a signal to the device. The Current Address state imme-
diately follows the Word Count state.

87

Current Address

As the second cycle of a 3-cycle data break, this cycle establishes the address
for the transfer that takes place in the following cycle (Break state). Normally
the location following the word count is read from core memory into the MB,-is
incremented by 1 to establish sequential addresses for the transfers, and is
transferred into the MA to determine the address selected for the next cycle.
When the word count operatlon is not used, the device supplles an inhibit
signal to the computer so that the word read during this cycie is not incre-
mented. Transfers occur at sequential addresses due to incrementing during
the Word Count state. During this sequence the word in the MB is rewritten at
the same locatiori and the MB is cleared at the end of the cycle. The Break
state immediately follows the Current Address state.

Break

This state is entered to enact a data transfer between computer core memory
and an external device, either as the only state of a 1-cycle data break or as
the final state of a 3-cycie data break. When a break request signal arrives
and the cycle select signal specifies a 1-cycle break, the computer enters the
Break state at the completion of the current instruction. information transfers
occur between the external device and a device-specified core memory loca-
tion, through the MB. When this transfer is complete, the program sequence
resumes from the point of the break. The data break does not affect the con-
tent of the AC, L, and PC.

OUTPUT BUS DRIVERS

Output signals from the computer processor are power amplified by output
bus driver modules of the standard PDP-8; allowing these signals to drlve a
heavy circuit load.

rUNCTIGNAL SUMMARY

Operation of the computer is accomplished on a limited scale by keys on the
operator console. Operation in this manner is limited to address and data
storage by means of the switch register, core memory data examination, the
normal start/stop/continue control, and the single step or single instruction
operation that allows a program to be monitored visually as a maintenance
operation. Most of these manually initiated operations are performed by exe-
cuting an instruction in the same manner as by automatic programming, ex-
cept that the gating is performed by special pulses rather than by the normal
clock pulses. In automatic operation, instructions stored in core memory are
loaded into the memory buffer register and executed during one or more com-
puter cycles. Each instruction determines the major control states that must
be entered for its execution. Each control state lasts for one 1.5-microsecond
computer cycle and is divided into distinct time states which can be used to
perform sequential logical operations. Performance of any function of the
computer is controlled by gating of a specific instruction during a specific
major control state and a specific time state.

Timing and Control Elements

The circuit elements that determine the timing and control of the operation
of the major registers of the PDP-8 are added to Figure 2 to form Figure 3.

Figure 3 shows the timing and control elements described in the succeeding
paragraphs and indicates their relationship to the major registers. These ele-
ments can be grouped categorically into timing generators register controls,
and program controls.

88

ALL OPTIONAL guin PROGRAM
PERIPHERAL —{3 CounTER
EQUIPMENT CONTROL
SWITCH ADDRESS
REGISTER
12
OPTIONAL ac DATA
PERPHERAL _ DATA
EQUIPMENT
USING
PROGRAMMED HSELECT 2302'32’;
TRANSFERS CODE ouTPUT LINK UNT
(MB) BUS
TELETYPE DRIVERS 1
MODEL 33 o
ASR 4096 - WORD
DATA CORE
MEMORY
T TYPE.
C%l;fmgf ACCUMULATOR
DATA ;
I . - 2
DATA ,
ALL OPTIONAL — 2
PERIPHERAL
EQUIPMENT CLEAR ac ac HEMORY
CONTROL AErrER
ER
DATA QUTPUT
o BUS So——
DRIVERS
pata INSTRUCTION
—< 12 REGISTER
INCREMENT M8 : 3
+1—e CA INHIBIT me MEMORY
OPTIONAL TRANSFER DIRECTION * CONTROL REDRESS
PERIPHERAL —&
EQUIPMENT 4 WORD COUNT OVERFLOW
USING THE +—
DATA BREAK
BREAK REQUEST
FACILITIES o
CYCLE SELECT #% MAJOR
—<f STaTE
BREAK STATE GENERATOR
>
ADDRESS
—_ 12
ADDRESS ACCEPTED ma
- CONTROL
0P 1,2, AND 4 PULSES 0P PULSE
< GENERATOR
RUN RUN AND PAUSE
- CONTROL
ﬁé,‘;,,?:g,’&‘_“J @ OMER CLEAR PuLsEs POWER CLEAR PULSE SPECIAL PULSE
EQUIPMENT GENERATOR GENERATOR
ln AND T2A CLOCK PULSES TIMING SIGNAL
GENERATOR
PROGRAM INTERRUPT REQUEST PROGRAM INTERRUPT
SYNCHROMIZATION

~

* TRANSFER DIRECTION iS INTO POP -8

WHEN
WHEN
* % DATA

-3 VOLTS, OUT OF PDP -8
GROUND

BREAK REQUEST IS FOR THREE -

CYCLE BREAK WHEN GROUND OR ONE -
CYCLE BREAK WHEN -3 vOLTS

—_—
—»
—_—
—e

FLOW DIRECTION
DEC STANDARD POSITIVE PULSE (-3 v TO GROUND)
DEC STANDARD NEGATIVE PULSE (GROUND TQ -3v)
DEC STANDARD GROUND LEVEL SIGNAL
DEC STANDARD -3 VOLT LEVEL SIGNAL

Figure 3. PDP-8 Timing and Control Element Block Diagram

89

TIMING GENERATORS

Timing pulses used to determine the computer cycle time and used to initiate
sequential time-synchronized gating operations are produced by the timing
signal generator. Timing pulses used during operations resulting from the
use of the keys and switches on the operator console are produced by the spe-
cial puise generator. Pulses that reset registers and control circuits during
power turn on and turn off operations are produced by the power clear pulse
generator. Several of these pulses are available to peripheral devices using
programmed or data break information transfers.

REGISTER CONTROLS

Operation of the AC, MA, MB, and PC is controlled by an associated logic cir-
cuit. These circuits, in turn, transmit and receive control signals to and from
I/ O equipment. Programmed data transfer equipment can supply’ a pulse to
the AC control to clear the AC prior to a data input and can supply a puise to
cause the content of the PC to be incremented, thus initiating an instruction
skip. Equipment using the data break facility passes signals with the MA con-
trol and MB control to determine the direction and timing of data transfers in
this mode.

PROGRAM CONTROLS

Circuits are also included in the PDP-8 that produce the IOP pulses which
initiate oparations involved in input/output transfers, determine the advance
of the computer program, and allow peripheral equipment to cause a program
interrupt of the main computer program to transfer program control to a sub-
routine which performs some service for the 1/0 device.

Interface

x,
~

The _input_/ output portion of the PDP-8 is extremely flexible and interfaces
readily with special equipment, especially in real time data processing and
control environments. '

The PDP-8 utilizes a “bus” 1/O system rather than the more conventional
“radial” 'system. The “bus” system allows a single set of data and control lines
to communicate with all 1/O devices. The bus simply goes from one device
to the next. No additional connections to the computer are ‘required. A
“radial” system requires that a different set of signals be transmitted to each
device; and thus the computer must be modied when new devices are added.
The PDP-8 need not be modified when adding new peripheral devices.

External devices receive two types of information from the computer: data
and control signals. Computer output data is present as static levels on 12
lines. These levels represent a 12-bit word to be transmitted in parallel to a
device. Data signals are received at all devices but are sampled only by the
appropriate one in response to a control signal. Control signals are of two
types: levels and timing pulses. Six static levels and their complement are
supplied by the MB on 12 lines. These lines contain a code representing the
device from which action is required. Each device recognizes its own code
and performs -its function. only when this code is present. There are three
timing pulses which may be programmed to occur. These 0P pulses are sepa-
rated in time by one microsecond and are brought to all devices on 3 lines.
These pulses are used by a device only when'it is selected by the appropriate
code on the level lines. They may be used to perform sequential functions in
an external register, such as clear and read, or any other function requiring
one, two, or three sequential pulses.

90

Peripheral devices transmit information to the computer on four types of
“busses.” These are the information bus, the clear AC bus, the skip bus, and
the program interrupt bus. The information bus consists of 12 lines normally
held at —3 volts by load resistors within the computer. Whenever one of these
lines is brought to ground, a binary 1 will be placed in the corresponding accu-
mulator bit. Each device may use the input bus only when it is selected; and
thus, these input lines are time shared among all of the connected devices.
The skip bus is electrically identical to the information bus. However, when it
is driven to ground the next sequential instruction will be skipped. It too can
be used only by the device currently selected and is effectively time shared.

the interrupt bus they. should also be connected to the skip bus so the program
can identify the device requesting program interruption.

The transmission of device selection levels and timing pulses is completely
under program control. A single instruction can select any one of 64 devices
and transmit up to three IOP timing pulses. Since the timing pulses are indi-
vidually programmable, one might be used to strobe data into an external
device buffer, another to transmit data to the computer, and the third to test a
status flip-flop and drive the skip bus to ground if it is in the enabling state.

Data transfers may also be made directly with core memory at a high speed
using the data break facility. This is a completely separate 1/0 system from
the one described previously. It is standard equipment in every PDP-8 and is
ordinarily used with fast 1/0 devices such as magnetic drums or tapes. Trans-
fers through the data break facility are interlaced with the program in prog-
ress. They are initiated by a request from the peripheral device and not by
programmed instruction. Thus, the device may transfer a word with memory
whenever it is ready and does not have to wait for the program to issue an
instruction. Computation may proceed on an interlaced basis with these
transfers. '

Interface signal characteristics are indicated in Chapter 8.

91

CHAPTER 2

MEMORY AND PROCESSOR
BASIC PROGRAMMING*

The following terms are used in memory address programming:

Term

Page

Current Page

Page Address

Absolute Address

Effective Address

Definition

A block of 128 core memory locations (200s
addresses).

The page containing the instruction being exe-
cuted; as determined by bits O through 4 of the
program counter.

The page containing the instruction being executed;
as determined by bits 0 through 4 of the program
counter.

An 8-bit number contained in bits 4 through 11 of an
instruction which designates one of 256 core mem-
ory locations. Bit 4 of a page address indicates that
the location is in the current page when a 1, or
indicates it is in page O when a 0. Bits 5 through 11
designate one of the 128 locations in the page
deterrmined by bit 4.

A 12-bit number used to address any location in
core memory.

The address of the operand. When the address of
the operand is in the current page or in page 0, the
effective address is a page address. Otherwise, the
effective address is an absolute address stored in
the current page or page 0 and obtained by indirect
addressing.

Organization of the standard core memory or any 4096-word field of extended
memory is summarized as follows:

Total locations (decimal) 4096
Total addresses (octal) 7777
Number of pages (decimal) 32
Page designations (octal) ‘ 0-37
Number of locations per page (decimal) 128
Addresses within a page (octal) 0-177

*See Appendix | for Program Abstracts.

92

*

Four methods of obtaining the effective address are used as specified by com-
binations of bits 3 and 4.

Bit 3 Bit 4 Effective Address
0 0 The operand is in page 0 at the address specified by

bits 5 through 11.

0 1 The operand is in the current page at the address
specified by bits 5 through 11.

1 0 The absolute address of the operand is taken from
the content of the location in page O designated by
bits 5 through 11.

1 1 The absolute address of the operand is taken from
the content of the location in the current page
designated by bits 5 through 11.

The following example indicates the use of bits 3 and 4 to address any loca-
tion in core memory. Suppose it is desired to add the content of locations A,
B, C, and D to the content of the accumulator by means of a routine stored in
page 2. The instructions in this example indicate the operation code, the con-
tent of bit 4, the content of bit 3, and a 7-bit address. This routine would take
the following form:

Page O Page 1 Page 2
Location Content Location Content Location Content Remarks

R TAD 00 A DIRECT TO DATA IN
PAGE O

S TAD 01 B DIRECT TO DATA IN
SAME PAGE

T TAD 10-M INDIRECT TO ADDRESS
SPECIFIED IN PAGE 0

U TAD 11 N INDIRECT TO ADDRESS
SPECIFIED IN SAME PAGE

A XXXX C XXXX B x>2xx
M C D XXXX N D

Routines using 128 instructions, or less, can be written in one page using di-
rect addresses for looping and using indirect addresses for data stored in other
pages. When planning the location of instructions and data in core memory,
remember that the following locations are reserved for special purposes:

93

Address Purpose

0: Stores the contents of the program counter
: following a program interrupt.

1,) Stores the first instruction to be executed
following a prograim interrupt.
10, through 17, Auto-indexing.
Indirect Addressing

When indirect addressing is specified, the address part (bits 5-11) of a mem-
ory reference instruction is interpreted as the address of a location containing -
not the operand, but containing the address of the operand. Consider the
instruction TAD A. Normally, A is interpreted as the address of the location
containing the quantity to be added to the content of the AC. Thus, if location
100 contains the number 5432, the instruction TAD 100 causes the quantity
5432 to be added to the content of the AC. Now suppose that location 5432
contains the number 6543. The instruction TAD | 100 (where | signifies in-
direct addressing) causes the computer to take the number 5432, which is
in location 100, as the effective address of the instruction and the number in
location 5432 as the operand. Hence, this instruction results in the quantity
6543 being added to the content of the AC.

- Auto-Indexing

When a location between 10, and 17: in page O of any core memory field is
addressed indirectly (by an instruction in which bit 3 is a 1) the content of
that location is read, incremented by one, rewritten in the same focation, and
then taken as the effective address of the instruction. This feature is called
auto-indexing. If location 12; contains the number 5432 and the instruction
DCA | Z 12 is given, the number 5433 is stored in location 12, and the content
of the accumulator is deposited in core memory location 5433.

STORING AND LOADING

Data is stored in any core memory location by use of the DCA Y instruction.
This instruction clears the AC to simplify loading of the next datum. If the
data deposited is required in the AC for the next program operation, the DCA
must be followed by a TAD Y for the same address.

All loading of core memory information into the AC is accomplished by-means
of the TAD Y instruction, preceded by an instruction that clears the AC such
as CLA or DCA.

* Storing and loading of information in sequential core memory locations can
make excellent use of an auto-index register to specify the core memory
address.

PROGRAM CONTROL

Transfer of program control to any core memory location uses the JMP or
JMS instructions. The JMP | (indirect address, 1 in bit 3) is used to transfer
program control to any location in core memory which is not in the current
page or page O.

The JMS Y is used to enter a subroutine which starts at location Y + 1 in the
current page or page 0. The content of the PC + 1 is stored in the specified

94

address Y, and address Y + 1 is transferred into the PC. To exit a subroutine
the last instruction is a JMP | Y, which returns program control to the loca-
tion stored in Y.

INDEXING OPERATIONS

External events can be counted by the program and the number can be stored
in core memory. The core memory location used to store the event count can
be injtialized (cleared) by a CLA command followed by a DCA instruction.
Each time the event occurs, the event count can be advanced by a sequence
of commands such as CLA, TAD, IAC, and DCA.

The ISZ instruction is used to count repetitive program operations or external
events without disturbing the content of the accumulator. Counting a speci-
fied number of operations is performed by storing a two's complement nega-
tive number equal to the number of iterations to be counted. Each time the
operation is performed, the ISZ instruction is used to increment the content
of this stored number and check the result. When the stored number becomes
zero, the specified number of operations have occurred and the program skips

out of the loop and back to the main sequence.

This instruction is also used for other routines in which the content of a mem-
ory location is incremented without disturbing the content of the accumulator,
such as storing information from an 1/ 0 device in sequential memory locations
or using core memory locations to count I/ Q device events.

LOGIC OPERATIONS

The PDP-8 instruction list includes the logic instruction, AND Y. From this
instruction short routines can be written to perform the inclusive OR and ex-
clusive OR operations. v

Logical AND

The logic AND operation between the content of the accumulator and the con-
tent of a core memory location Y is performed directly by means of the
AND Y instruction. The result remains in the AC, the original content of the
AC is lost, and the content of Y is unaffected. "

Inclusive OR

Assuming value A is in the AC and value B is stored in a known core memory
address, the following sequence performs the inclusive OR. The sequence is
stated as a utility subroutine called I0R.

/CALLING SEQUENCE ‘ JMS I0R
/ ' (ADDRESS OF B)
[(RETURN)
/ENTER WITH ARGUMENT IN AC; EXIT WITH LOGICAL RESULT IN AC
IOR, 0

DCA TEM1

TAD | IOR

DCA TEM2

TAD TEM1

CMA

AND | TEM2

95

TAD TEM1

ISZ 10R
JMP | IOR
TEM1, 0
TEM2, 0

Exclusive OR

The exclusive OR operation for two numbers, A and B, can be performed by a
subroutine called by the mnemonic code XOR. In the following general pur-
pose XOR subroutine, the value A is assumed to be in the AC, and the address
of the value B is assumed to be stored in a known core memory location.
/CALLING SEQUENCE JMS XOR
/ A (ADDRESS OF B).
/ o (RETURN)
JENTER WITH ARGUMENT IN AC; EXIT WITH LOGICAL RESULT IN AC
XOR, C
DCA TEM1
TAD | XOR
DCA TEM2
TAD TEM1
AND | TEM2
CMA IAC
CLL RAL
TAD TEM1
TAD | TEM2
" ISZ XOR
JMP | XOR
TEM1, 0
TEMZ, 0

An XOR subroutine can be written using fewer core memory locations by mak-
ing use of the IOR subroutine; however, such a subroutine takes more time to
execute. A faster XOR subroutine can be written by storing the value B in the
second instruction of the calling sequence instead of the address of B; how-
ever, the resulting subroutine is not as utilitarian as the routine given here.

ARITHMETIC OPERATIONS

One arithmetic instruction is included in the PDP-8 order code, the two’s
complement add: TAD Y. Using this instruction, routines can easily be written
to perform addition, subtraction, multiplication, and division in two's comple-
ment arithmetic.

qu's Complement Arithmetic

In two's complement arithmetic addition, subtraction, multiplication, and divi-
sion of binary numbers is performed in accordance with the common rules of
binary arithmetic. In PDP-8, as in other machines utilizing complementation
techniques, negative numbers are represented as the complement of positive
numbers, and subtraction is achieved by complement addition. Representa-
tion of negative values in one’s complement arithmetic is slightly different
from that in two’s complement arithmetic.

96

The one’s complement of a number is the complement of the absolute positive
value; that is, all ones are replaced by zeros and all zeros are replaced by
ones. The two’s complement of a number is equal to the one's complement
of the positive value plus one.

In one’s complement arithmetic a carry from the sign bit (most significant bit)
is added to the least significant bit in an end-around carry. In two's comple-
ment arithmetic a carry from the sign bit complements the link (a carry would
set the link to 1 if it were properly cleared before the operation), and there is
no end-around carry.

PROGRAMMING SYSTEM

The programming system for the PDP-8 includes: the MACRO-8 Symbolic As-
sembler, FORTRAN System compiler, Symbolic On-Line Debugging Program,
Symbolic Tape Editor, Floating Point Package, mathematical function sub-
routines, and utility and maintenance programs. All operate with the basic
computer. -The programming system was designed to simplify and accelerate
the process of learning to program. At the same time, experienced program-
mers will find that it incorporates many advanced features. The system is
intended to make immediately available to each user the full, general-purpose
data processing capability of the computer and to serve as the operating
nucleus for a growing library of programs and routines to be made available to
all installations. New techniques, routines, and programs are constantly being
developed, field-tested, and documented in the Digital Program Library for
incorporation in users’ systems.

MACRO-8 Symbolic Assembler

The use of an assembly program has become standard practice in program-
ming digital computers. This process allows the programmer to code his
instructions in a symbolic language, one he can work with more conveniently
than the 12-bit binary numbers which actually operate the computer. The
assembly program then translates the symbolic language program into its
machine code equivalent. The advantages are significant: the symbolic lan-
guage is more meaningful and convenient to a programmer than a numeric
code; instructions or data can be referred to by symbolic names without con-
cern for, or even knowledge of, their actual addresses in core memory; deci-
mal and alphabetical data can be expressed in a form more convenient than
binary numbers; programs can be altered without extensive changes; and de-
bugging is considerably simplified.

The MACRO-8 Symbolic Assembler accepts source programs written in the
symbolic language and converts core memory locations, computer instruc-
tions, and operand addresses from the symbolic to the binary form. It pro-
duces on. object program tape, a -symbol-table-defining -memory alocations:
and useful diagnostic messages.

FORTRAN System Compiler

The FORTRAN (for FORmula TRANSslation) System compiler lets the user ex-
press the problem he is trying to solve in a mixture of English words and
mathematical statements that is close to the language of mathematics and is
also intelligible to the computer. In addition to reducing the time needed for
program preparation, the compiler enables users with little or no knowledge of
the computer’s organization and operating language to write effective pro-

97

grams for it. The FORTRAN Compiler contains the instructions the computer
requires to perform the clerical work of translating the FORTRAN version of
the problem statement into an object program in machine language. It also
produces diagnostic messages. After compilation, the object program, the
operating system and the data it wili work with, are-ioaded into the computer
for solution of the problem.

The FORTRAN language consists of four general types of statements: arith-
metic, logic, control, and input/output. FORTRAN functions include addition,
subtraction, multiplication, division, sine, cosine, arctangent, square root,
natural logarithm, and exponential.

Symbolic On-Line Debugging Program

On-line debugging with DDT-8 gives the user dynamic printed program status
information. It gives him close control over program execution, preventing
errors (“bugs”) from destroying other portions of his program. He can moni-
tor the execution of single instructions or subsections, change instructions or
data in any format, and output a corrected program at the end of the de-
bugging session.

Using the standard Teletype keyboard/reader and teleprinter/punch, the user
can communicate conveniently with the PDP-8 in the symbols of his source
language. He can control the execution of any portion of his object program
by inserting breaks, or traps, in it. When the computer reaches a break, it
transfers control of the object program to DDT. The user can then examine
and modify the content of individual core memory registers to correct and
improve his object program.

Symbolic Tape Editor

The Symbolic Tape Editor program is used to edit, correct, and update sym-
bolic program tapes using the PDP-8 and the Teletype unit. With the editor
in core memory, the user reads in portions of his symbolic tape, removes,
changes, or adds instructions or operands, and gets back a complete new
symbolic tape with errors removed. He can work through the program instruc-
tion by instruction, spot-check it, or concentrate on new sections.

Floating Point Package

The Floating Point Package permits the PDP-8 to perform-arithmetic opera-
tions that many other computers can perform only after the addition of costly
optional hardware. Floating point operations automatically align the binary
points of operands, retaining the maximum precision available by discarding
leading zeros. In addition to increasing accuracy, floating point operations
~ relieve the programmer of scaling problems common in fixed point opera-
tions. This is of particular advantage to the inexperienced programmer.

Mathematical Function Routines

The programming system also includes a set of mathematical function routines
to perform the following operations in both single and double precision: addi-
tion, subtraction, multiplication, division, square root, sine, cosine, arctangent,
natural logarithm, and exponential.

98

Utility and Maintenance Programs

PDP-8 utility programs provide printouts or punchouts of core memory content
in octal, decimal, or binary form, as specified by the user. Subroutines are
provided for octal or decimal data transfer and binary-to-decimal, decimal-to-
binary, and Teletype tape conversion.

A complete set of standard diagnostic programs is provided to simplify and
expedite system maintenance. Program descriptions and manuals permit the
user to effectively test the operation of the computer for proper core memory
functioning and proper execution of instructions. In addition, diagnostic pro-
grams to check the performance of standard and optional peripheral devices
are provided with the devices. :

99

CHAPTER 3
MEMORY AND PROCESSOR INSTRUCTIONS

Instruction words are of two types: memory reference and augmented. Mem-
ory reference instructions store or retrieve data from core memory, while
augmented instructions do not. All instructions utilize bits O through 2 to
specify the operation code. Operation codes of Os through 5. specify memory
reference instructions, and codes of 6 and 7s specify augmented instructions.
Memory reference instruction execution times are multiples of the 1.5-micro-
second memory cycle. Indirect addressing increases the execution time of a
memory reference instruction by 1.5 microseconds. The augmented instruc-
tions, input-output transfer and operate, are performed in 3.75 and 1.5 micro-
seconds, respectively.

MEMORY REFERENCE INSTRUCTIONS

Since the PDP-8 system contains a 4096-word core memory, 12 bits are re-
quired to address all locations. To simplify addressing, the core memory is
divided into blocks, or pages, of 128 words (200. addresses). Pages are num-
bered O through 37s; each field of 4096-words of core memory uses 32
pages. The seven address bits (bits 5 through 11) of a memory reference
instruction can address any location in the page on which the current in-
struction is located by placing a 1 in bit 4 of the instruction. By placing a 0 in
bit 4 of the instruction, any location in page O can be addressed directly from
any page of core memory. All other core memory locations can be addressed
indirectly by piacing a 1 in bit 3 and placing a 7-bit effective address in bits 5
through 11 of the instruction to specify the location in the current page or
page O which contains the full 12-bit absolute address of the operand.

OPERATION MEMORY
CODES 0-5 PAGE
~ A ™ r""*’_\
o] 1 2 3 4 - [7 8 9 10 1
— \ 4
INDIRECT ADDRESS

ADORESSING

Figure 4. Memory Reference Instruction Bit Assignments

Word format of memory reference instructions is shown in Figure 4 and the
instructions perform as follows:

Logical AND (AND Y) o

Octal Code: O

Indicators: AND, FETCH, EXECUTE

Execution Time: 3.0 microseconds with direct addressing, 4.5 microseconds
with indirect addressing.

Operation: The AND operation is performed between the content of memory
location Y and the content of the AC. The result is left in the AC, the original
content of the AC is lost, and the content of Y is restored. Corresponding bits
of the AC and Y are operated upon independently. This instruction, often
called extract or mask, can be considered as a bit-by-bit multiplication. EXx-
ample:

100

Original Final

ACj i ACj
0 0)
0 1 0
1 0 0
1 1 1

Symbol: ACj A Yj = > ACj

Two’s Compliement Add (TAD Y)

Octal Code: 1
Indicators: TAD, FETCH, EXECUTE
Execution Time: 3.0 microseconds with direct addressing, 4.5 microseconds
with indirect addressing. '
Operation: The content of memory location Y is added to the content of the AC
_ in two's complement arithmetic. The result of this addition is held in the AC,
the original content of the AC is lost, and the content of Y is restored: If there
is a carry from ACO, the link is complemented. This feature is useful in mul-
tiple precision arithmetic.
Symboi: ACO — 11 + YO — 11 = > ACO — 11

Increment and Skip If Zero (ISZ Y)

Octal Code: 2
Indicators: ISZ, FETCH, EXECUTE
Execution Time: 3.0 microseconds with direct addressing, 4.5 microseconds
with indirect addressing.
Operation: The content of memory location Y is incremented by one in two’s
complement arithmetic. If the resultant content of Y equals zero, the content
of the PC is incremented by one and the next instruction is skipped. If the re-
sultant content of Y does not equal zero, the program proceeds to the next
instruction. The incremented content of Y is restored to memory. The con-
tent of the AC is not affected by this instruction. o
Symbol: Y+ 1=>Y

if resultant YO — 11 = 0,thenPC+ 1 = > PC

Deposit and Clear AC (DCA Y)

Octal Code: 3

Indicators: DCA, FETCH, EXECUTE

Execution Time: 3.0 microseconds with direct addressing, 4.5 microseconds
with indirect addressing.

Operation: The content of the AC is deposited in core memory at address Y
and the AC is cleared. The previous content of memory location Y is lost.
Symbol: AC = >Y

then 0 = > AC
Jump to Subroutine JMS Y)
Octal Code: 4 '

Indicators: JMS, FETCH, EXECUTE

Execution Time: 3.0 microseconds with direct addressing, 4.5 microseconds
with indirect addressing.

Operation: The content of the PC is deposited in core memory location Y and
the next instruction is taken from core memory location Y + 1. The content of
the AC is not affected by this instruction.

Symbol: PC+1=>Y

Y +1=>PC

101

Jump to Y UMPY)

Octal Code: 5 ,

Indicators: JMP, FETCH

Execution Time: 1.5 microseconds with direct addressing, 3.0 microseconds
with indirect addressing.

Operation: Address Y is set into the PC so that the next instruction is taken
from core memory address Y. The original content of the PC is lost. The con-
tent of the AC is not affected by this instruction.

Symbol: Y = > PC ‘

AUGMENTED INSTRUCTIONS

There are two augmented instructions which do not reference core memory.
They are the input-output transfer, which has an operation code of 6, and the
operate which has an operation code of 7. Bits 3 through 11 within these in-
structions function as an extension of the operation code and can be micro-
programmed to perform several operations within one instruction. Augmented
instructions are one-cycle (Fetch) instructions that initiate various operations
as a function of bit microprogramming. The operations initiated by each bit
occur at a specified time with respect to the computer cycle time and are
designated as event times 1, 2, and 3. Three event times, separated by 1
microsecond, occur during the input-output transfer instruction. Two event
times occur during the 1.5-microsecond cycle time of an operate instruction.

Input/Output Transfer Instruction

Microinstructions of the input-output transfer (I0T) instruction initiate opera-
tion of peripheral equipment and effect information transfers between the
processor and an 1/O device. Specifically, when an operation code of 6 is
detected, the PAUSE flip-flop is set and the I0P generator is enabled to pro-
duce I0P 1, IOP 2, and IOP 4 pulses as a function of the content of instruction
bits 9 through 11. These pulses occur at 1-microsecond intervals designated
as event times 3, 2, and 1 as follows:

Instruction 10P 10T Event
Bit Pulse Pulse Time
11 IOP 1 10T 1 1
10 IOP 2 10T 2 2
9 0P 4 . 10T 4 3

The 10P pulses are gated in the device selector of the program-selected equip-
ment to produce IOT pulses that enact a data transfer or initiate a control
operation. Selection of an equipment is accomplished by bits 3 through 8 of
the 10T instruction. These bits form a 6-bit code that enables the device
selector in a given device.

The format of the 10T instruction is shown in Figure 5. Operations performed
by 10T microinstructions are explained in Chapter 6.

102

GENERATES GENERATES
AN 0P 4 AN 0P ¢
PULSE AT PULSE AT
OPERATION EVENT TIME 3 EVENT TIME1
CODE 6 IF a4 IF A

‘ A \ — —*

o] f 2 3 4 5 6 7 8 9 10 1

Y T kﬂ——l
DEVICE GENERATES
SELECTION AN IOP 2 .

PULSE AT
EVENT TIME 2
FAi

Figure 5. 10T Instruction Bit Assignments

Operate Instruction

The operate instruction consists of two groups of microinstructions. Group 1
(OPR 1) is principally for clear, complement, rotate, and increment opera-
tions and is designated by the presence of a 0 in bit 3. Group 2 (OPR 2) is
used principally in checking the content of the accumulator and link and
continuing to, or skipping, the next instruction based on the check. A 1 in bit
3 designates an OPR 2 microinstruction.

Group 1 operate microinstruction format is shown in Figure 6 and the micro-
instructions are explained in the succeeding paragraphs. Any logical combi-
nation of bits within this group can be combined into one microinstruction.
For example, it is possible to assign ones to bits 5, 6, and 11; but it is not logi-
cal to assign ones to bits 8 and 9 simultaneously since they specify conflicting
operations. The only restriction on combining OPR 1 operations within one
instruction, other than logical conflicts, is that a rotate operation (bits 8, 9, or
10) may not be combined with the increment AC operation (bit 11) since they
are executed at the same event time.

ROTATE 4

ROTATE POSITION IF A O,
OPERATION AC AND L 2 POSITIONS
CODE 7 CLA CMA RIGHT IF A4
0 | 2 3 4 5 6 7 8 9 10 1

- ——— —) —
CONTAINS cLL ML ROTATE 1AC

A O TO AC AND L

SPECIFY LEFT

GROUP 1

Figure 6. Group 1 Operate Instruction Bit Assignments
No Operation (NOP)

Octal Code: 7000

Event Time: None

Indicators: OPR, FETCH

Execution Time: 1.5 microseconds

Operation: This command causes a 1-cycle delay in the program and then the
next sequential instruction is initiated. This command is used to add execu-
tion time to a program, such as to synchronize subroutine or loop timing with
peripheral equipment timing.

Symbol: None

103

increment Accumulator (IAC)

Octal Code: 7001

Event Time: 2

Indicators: OPR, FETCH

Execution Time: 1.5 microsecond

Operation: The content of the AC is incremented by one in two’s complement
arithmetic.

Symbol: AC+1=> AC

Rotate Accumulator Left (RAL)

Octal Code: 7004
Event Time: 2
indicators: OPR, FETCH
Execution Time: 1.5 microseconds
Operation: The content of the AC is rotated one binary position to the left with
the content of the link. The content of bits AC1 — 11 are shifted to the next
greater significant bit, the content of ACO is shifted into the L, and the con-
tent of the L is shifted into AC11.
Symbol: ACj = > ACj — 1

ACO=>1L

L= > AC11

Rotate Two Left (RTL)

Octal Code: 7006

Event Time: 2

Indicators: OPR, FETCH

Execution Time: 1.5 microseconds

Operation: The content of the AC is rotated two binary positions to the left
with the content of the link. This instruction is logically equal to two succes-
sive RAL operations. :

Symbol: ACj = > ACj —2

ACl =>L
ACO = > ACl11
L = > AC10

Rotate Accumulator Right (RAR)

Octal Code: 7010
Event Time: 2
Indicators: OPR, FETCH
Execution Time: 1.5 microseconds :
Operation: The content of the AC is rotated one binary position to the right
with the content of the link. The content of bits ACO — 10 are shifted to the
next less significant bit, the content of AC11 is shifted into the L, and the
content of the L is shifted into ACO. : ‘
Symbol: ACj = > ACj +1

ACll=>1L

L= > AC0

Rotate Two Right (RTR)

Octal Code: 7012

Event Time: 2

Indicators: OPR, FETCH

Execution Time: 1.5 microseconds :
Operation: The content of the AC is rotated two binary positions to the right -
with the content of the link. This instruction is logically equal to two succes-

104

sive RAR operations.
Symbol: ACj = > Acj +2

AC10 =1L
AC1l1 = ACO
L= > AC1

Complement Link {CML)

Octal Code: 7020

Event Time: 1 '

Indicators: OPR, FETCH

Execution Time: 1.5 microseconds

Operation: The content of the L is complemented.
Symbol: L= >1L

Complement Accumulatbr (CMA)

Octal Code: 7040

Event Time: 1

Indicators: OPR, FETCH

Execution Time: 1.5 microseconds

Operation: The content of the AC is set to the one’s complement of the cur-
rent content of the AC. The content of each bit of the AC is complemented
individuaily.

Symbol: ACj = > ACj

Complement and Increment Accumulator (C1A)

Octal Code: 7041
Event Time: 1,2
Indicators: OPR, FETCH
Execution Time: 1.5 microseconds
Operation: The content of the AC is converted from a binary value to its
equivalent two’s complement number. This conversion is accomplished by
combining the CMA and IAC commands, thus the content of the AC is com-
plemented during event time 1 and is incremented by one during event time 2.
Symbol: ACj = > Acj,

then AC+ 1= > AC

Clear Link (CLL) v

Octal Code: 7100

Event Time: 1

Indicators: OPR, FETCH

Execution Time: 1.5 microseconds

Operation: The content of the L is cleared to contain a O.
Symbol: 0= > 1L

Set Link (STL)

Octal Code: 7120

Event Time: 1

Indicators: OPR, FETCH

Execution Time: 1.5 microseconds

Operation: The L is set to contain a binary 1. This instruction is logically
equal to combining the CLL and CML commands.

Symbol: 1 = > L.

105

Clear Accumulator (CLA)

Octal Code: 7200

Event Time: 1

Indicators: OPR, FETCH

Execution Time: 1.5 microseconds

Operation: The content of each bit of the AC is cledred to contain a binary O.
Symbol: 0 = > AC ' '

Set Accumulator (STA)

Octal Code: 7240

Event Time: 1

Indicators: OPR, FETCH

Execution Time: 1.5 microseconds

Operation: Each bit of the AC is set to contain a binary 1. This operation is
logically equal to combining the CLA and CMA commands.

Symbol: 1 = > ACj

Group 2 operate microinstruction format is shown in Figure 7 and the pri-
mary microinstructions are explained in the following paragraphs. Any logical
combination of bits within this group can be composed into one microinstruc-
tion. (The instructions constructed by most logical command combinations
are listed in Appendix 1.)

If skips are combined in a single instruction the inclusive OR of the conditions
determines the skip when bit 8 is a 0; and the AND of the inverse of the con-
ditions determines the skip when bit 8 is a 1. For example, if ones are desig-
nated in bits 6 and 7 (SZA and SNL), the next instruction is skipped if either
the content of the AC = 0, or the content of L = 1. If ones are contained in
bits 5, 7, and 8, the next instruction is skipped if the AC contains a positive
number and the L contains a 0.

OPERATION SENSING OF
CODE 7 CLA SZA BITS 5.,6.7 HT
I A) P —A—— Pt A,
[0} 1 2 3 4 5 6 7 8 -9 10 1}

—— - — —

CONTAINS A 1 SMA SNL OSR CONTAINS A O
TO SPECIFY . TO SPECIFY
GROUP 2 GROUP 2

Figure 7. Group 2 Operate Instruction Bit Assignments

Halt (HLT)

Octal Code: 7402

Event Time: 1

indicators: OPR, not RUN

Execution Time: 1.5 microseconds

Operation: Clears the RUN flip-flop at event time 1, so that the program stops
at the conclusion of the current machine cycle. This command can be com-
bined with others in the OPR 2 group that are executed during either event
time 1, or 2, and so are performed before the program stops.

Symbol: O = > RUN

106

OR with Switch Register (OSR)

Octal Code: 7404

Event Time: 2

Indicators: OPR, FETCH

Execution Time: 1.5 microseconds -

Operation: The inclusive OR operation is performed between the content of
the AC and the content of the SR. The result is left in the AC, the original con-
tent of the AC is lost, and the content of the SR is unaffected by this com-
mand. When combined with the CLA command, the OSR performs a transfer
of the content of the SR into the AC.

Symbol: ACj V Srj = > ACj

Skip, Unconditional (SKP)

Octal Code: 7410

Event Time: 1 :

Indicators: OPR, FETCH

Execution Time: 1.5 microseconds

Operation: The content of the PC is incremented by one so that the next se-
quential instruction is skipped.

Symbol: PC+ 1= >PC

Skip on Non-Zero Link (SNL)

Octal Code: 7420

Event Time: 1

Indicators: OPR, FETCH

Execution Time: 1.5 microseconds u
Operation: The content of the L is sampled, and if it contains a 1 the content
of the PC is incremented by one so that the next sequential instruction is
skipped. If the L contains a O, no operation occurs and the next sequential
instruction is initiated.

Symbol: IfL=1,thenPC+ 1 = >PC

Skip on Zero Link (SZL)

Octal Code: 7430

Event Time: 1

Indicators: OPR, FETCH

Execution Time: 1.5 microseconds

Operation: The content of the L is sampled, and if it contains a O the content
of the PC is incremented by one so that the next sequential instruction is
skipped. If the L contains a 1, no operation occurs and the next sequential
instruction is initiated. '

Symbol: IfL =0,thenPC+ 1= >PC

Skip on Zero Accumulator (SZA)

Event Time: 1

Indicators: OPR, FETCH

Execution Time: 1.5 microseconds

Operation: The content of each bit of the AC is sampled, and if each bit con-
tains a O the content of the PC is incremented by one so that the next sequen-
tial instruction is skipped. If any bit of the AC contains a 1, no operation
occurs and the next sequential instruction is initiated.

Symbol: If ACO — 11 =0, thenPC+ 1 = > PC

107

Skip on Non-Zero Accumulator (SNA)

. Octal Code: 7450

Event Time: 1

Indicators: OPR, FETCH

Execution Time: 1.5 microseconds :

Operation: The content of each bit of the AC is sampled, and if any bit con-
tains a 1 the content of the PC is incremented by one so that the next sequen-
tial instruction is skipped. If all bits of the AC contain a 0, no operation occurs
and the next sequential instruction is initiated.

Symbol: If ACO — 11£0,thenPC + 1 = > PC

Skip on Minus Accumulator (SMA)

Octal Code: 7500

Event Time: 1

Indicators: OPR, FETCH

Execution Time: 1.5 microseconds

Operation: The content of the most significant bit of the AC is sampled, and
if it contains a 1, indicating the AC contains a negative two's complement
number, the content of the PC is incremented by one so that the next sequen-
tial instruction is skipped. If the AC contains a positive number no operation
occurs and program control advances to the next sequential instruction.
Symbol: f ACO =1,thenPC + 1= > PC

Skip on Positive Accumulator (SPA)

Octal Code: 7510

Event Time: 1

Indicators: OPR, FETCH

Execution Time: 1.5 microseconds

Operation: The content of the most significant bit of the AC is sampled, and
if it contains a 0, indicating a positive (or zero) two’s complement number,
the content of the PC is incremented by one so that the next sequential in-
struction is skipped. If the AC contains a negative number, no operation
occurs and program control advances to the next sequential instruction.
Symbol: If ACO = 0,then PC + 1 = > PC

Clear Accumulator (CLA)

Octal Code: 7600

Event Time: 1

Indicators: OPR, FETCH

Execution Time: 1.5 microseconds

Operation: Each bit of the AC is cleared to contain a binary O.
Symbol: 0 = > AC

PROGRAM INTERRUPT

The program interrupt feature allows certain external conditions to interrupt
the computer program. !t is used to speed the information processing of in-
put-output devices or to allow certain alarms to halt the program in progress
and initiate another routine. When a program interrupt request is made the
computer completes execution of the instruction in progress before acknowi-
edging the request and entering the interrupt mode. A program interrupt is
similar to a JMS to location 0; that is, the content of the program counter is
stored in location 0, and the program resumes operation in location 1. The
interrupt program commencing in location 1 is responsible for identifying the
signal causing the interruption, for removing the interrupt condition, and for

108

returning to the original program. Exit from the interrupt program, back to
the original program, can be accomplished by a JMP | Z O instruction.

Instructions

The two instructions associated with the program interrupt synchronization ele-
ment are |OT microinstructions that do not use the IOP g nerator. These
instructions are:

Interrupt Turn On (ION)

Octal Code: 6001

Event Time: Not applicable

Indicators: 10T, FETCH, ION

Execution Time: 1.5 mlcroseconds

Operation: This command enables the computer to respond to a program in-
terrupt request. If the interrupt is disabled when this instruction is given, the
computer executes the next instruction, then enables the interrupt. The addi-
tional instruction allows exit from the interrupt subroutine before allowing
another interrupt to occur. This instruction has no effect upon the condition
of the interrupt circuits if it is given when the interrupt is enabled.

Symbol: 1 = > INT. ENABLE

Interrupt Turn Off (10F)

Octal Code: 6002
Event Time: Not applicable
. Indicators: 10T, FETCH
Execution Time: 1.5 microseconds
Operation: This command disables the program interrupt synchronization ele-
ment to prevent interruption of the current program.
Symbol: O = > INT. ENABLE, INT. DELAY

Programming

When an interrupt request is acknowledged, the interrupt is automatically dis-
abled by the program interrupt synchronization circuits (not by instructions).
The next instruction is taken from core memory location 1. Usually, the in-
struction stored in location 1 is a JMP, which transfers program control o a
subroutine which services the interrupt. At some time during this subroutine,
an ION instruction must be given. The ION can be given at the end of the
subroutine to allow other interrupts to be serviced after program control is
transferred back to the original program. In this application, the ION instruc-
tion immediately precedes the last instruction in the routine. A delay of one
instruction (regardless of the execution time of the following instruction) is
inherent in the ION instruction to allow transfer of program control back to the
original program before enabling the interrupt. Usually exit from the sub-
routme |s accomphshed by a JMP I Z 0 mstructlon

The ION command can be given during the subroutme as soon as it has de-
termined the 1/ O device causing the interrupt. This latter method allows the
subroutine which is handling a low priority interrupt to be interrupted, possibly
by a high priority device. Programming of an interrupt subroutine which
checks for priority and allows itself to be interrupted, must make provisions to
relocate the content of the program counter stored in location O; so that if
interrupted, the content of the PC during the subroutine is stored in location O,
and the content of the PC during the original program is not lost.

109

CHAPTER 4
DATA BREAK

Peripheral equipment connected to the data break facility can cause a tempo-
rary suspension in the program in progress to transfer information with the
computer core memory, via the MB. One |/0 device can-be connected di-
rectly to the data break facility or up to seven devices can be connected to it
through the Type DMO1 Data Multiplexer. This cycle stealing mode of opera-
tion provides a high-speed transfer of individual words or blocks of information
at core memory addresses specified by the 1/0O-device. Since program execu-
tion is not involved in these transfers, the program counter, accumulator, and
instruction register are not disfurbed or involved in these transfers. The pro-
gram is merely suspended at the conclusion of an instruction execution, and
the data break is entered to perform the transfer, then the Fetch state is en-
tered to continue the main program.

Data breaks are of two basic types: single-cycle and three-cycle. In a single-
cycle data break, registers in the device (or device interface) specify the core
memory address of each transfer and count the number of transfers to deter-
mine the end of data blocks. (See discussion of Data Break Transfers in Ap-
pendix 4.) In the three-cycle data break two computer core memory locations
perform these functions, simplifying the device interface by omitting two
hardware registers.

The computer receives the following signals from the device during a data
break:

Signal —3 Volts 0 Volts
Break Request No break request Break request
Cycle Select One-cycle break Three-cycle break
Transfer Direction Data into PDP-8 Data out of PDP-8
Increment CA Inhibit CA incremented CA not incremented
Increment MB (pulse) MB not incremented MB incremented
Address (12 bits) Binary O Binary 1
Data (12 bits) Binary O Binary 1

The computer sends the following signals to the device during a data break:

Signal Characteristics
Data (12 bits) - —3 volts = binary 0, 0 volts = binary 1
Address Accepted 400-nanosecond negative pulse begin-
ning at memory done time.
WC Overflow 400-nanosecond negative pulse occur-
ring at T1 time
Buffered Bteak —3 volts when in Break state

To initiate a data break an 1/C device must supply four signals simultaneously
to the data break facility. These signals are the Break Request signal, which
sets the BRK SYNC flip-flop in the major state generator to control entry into
the data break states (Word Count for a three-cycle data break or Break for a
single-cycle data break); a Transfer Direction signal, supplied to the MB con-
trol element to allow data to be strobed into the MB from the peripherai

110

equipment and to inhibit reading from core memory; a Cycle Select signal
which controls gating in the major state generator to determine if the one-
cycle or three-cycle data break is to be selected; and a core memory address
of the transfer which is supplied to the input of the MA. When the break re-
quest is made, the data break replaces entry into the Fetch state of an instruc-
tion. Therefore the data break is entered at the conciusion of the Execute
state of most memory reference instructions and at the conclusion of a Fetch
state of augmented instructions. - Having established the data break, each
machine cycle is a Word Count, Current Address, or Break cycle until all data
transfers have taken place, as indicated by removal of the Break Request
signal by the peripheral equipment.

More exactly, the Break Request signal enables a diode-capacitor-diode gate at
the binary 1 input of the BRK SYNC flip-flop. Midway through each computer
cycle (T1) this gate is pulsed to set the flip-flop if the Break Request signal
has been received.

At the beginning (T2) of each machine cycle the major state generator is set
to establish the state for the cycle. At this time the status of the BRK SYNC
flip-flop is sampled and the flip-flop is cleared. If the BRK SYNC flip-flop is
in the 1 state at this time, the Word Count or Break state is set into the major
state generator and a data break commences.

Therefore, to initiate a data break, the Break Request must be at ground po-
tential for at least 400 nanoseconds preceding T1 of the cycle preceding the
data break cycle. A Break Request signal should be supplied to the computer
when the address, data, Transfer Direction and Cycle Select signals are sup-.
plied to the computer, and-not before.

When a data break occurs, the address designated by the device is loaded
into the MA during time T2 of the last cycle of the current instruction, and the
major state generator is set to the Word Count state if the Cycle Select signal
is at ground, or is set to the Break state if this signal is at —3 volts. The pro-
gram is delayed for the duration of the data break, commencing in the follow-
ing cycle. A break request is granted only after completion of the current
instruction as specified by the following conditions:

1. At the end of the Fetch cycle of an OPR or 10T instruction, or a di-
rectly addressed JMP instruction.

2 At the end of the Defer cycle of an indirectly addressed JMP in-
struction.

3. At the end of the Execute cycle of a JMS, DCA, ISZ, TAD, or AND
instruction.

At the beginning of the Word Count cycle of a three-cycle data break or the
Break cycle of a one-cycle data break the address supplied to the input of the
MA is strobed into the MA and the computer suppiies an Address Accepted
pulse to the device. Entry into the Break cycle is indicated to the peripheral
equipment by a Buffered Break signal and by an Address Accepted pulse that
can be used to enable gates in the device to perform tasks associated with
the transfers. The Address Accepted pulse is the most convenient control to
be used by I/ O equipment to disable the Break Request signal, since this sig-
nal must be removed at the end of T2 time to prevent continuance at the
data break into the next cycle. Also at the beginning of the Break cycle, the
MB is cleared in preparation for receipt of data from either the core memory
or the external device. If the Transfer Direction signal establishes the direc-

111

tion as out of the computer, the content of the core memory register at the
address specified is transferred into the MB and is immediately available for
strobing by the peripheral equipment. If the Transfer Direction signal specifies
a data direction into the PDP-8, reading from core memory is inhibited and
data is transferred into the MB from peripheral equipment. The status of the
BRK SYNC flip-flop is sensed at the beginning of a Break cycle to determine
if an additional Break cycle is required. If a Break Request signal has been
received since T2, the Break state is maintained in the major state generator;
if the Break Request signal has not been received by this time; the Fetch state
is set into the major state generator to continue the program. The Break
Request signal should be removed by the end of the Address Accepted signal
if additional Break cycles are not required.

SINGLE-CYCLE DATA BREAK

One-cycle breaks transfer a data word into the computer core memory from
the device, transfer a data word into a device from the core memory, or in-
crement the content of a device-specified core memory location. In each of
these types of data break one computer cycle is stolen from the program by
each transfer; Break cycles occur singly (interleaved with the program steps)
or continuously (as in a block transfer), depending upon the timing of the
Break Request signal at rates of up to 660 kh.

During the memory strobe portion of the Break cycle, the content of the ad-
dressed cell is read into the MB if the transfer direction is out of the computer
(into the 1/ O device). If the transfer direction is into the computer, generation
of the Memory Strobe pulse is inhibited so that the MB (cleared during the
previous cycle) remains cleared. Information is transferred from the output
data register of the 1/0 device into the MB and is written into core memory
during time T1 of the Break cycle. In an outward transfer, the write operation
restores the original content of the address cell to memory.

The MB is cleared during time T2 of the Break cycle. If there is a further
break request, another Break cycle is initiated. If there is no break request,
the content of the PC is transferred into the MA, the IR is cleared, and the
major state generator is set to Fetch. The program then executes the next
instruction.

The increment MB facility is useful for counting iterations or events by means
of a data break, so that the PC and AC are not disturbed. Within one Break
cycle of 1.5 microseconds, a word is fetched from a device-specified core
memory location, is incremented by one, and is restored to the same memory
location. The Increment MB signal input must be supplied to the computer
only during a Break cycle in which the direction of transfer is out of the PDP-8.
These restrictions can be met by a simple AND gate in the device; an Incre-
ment MB signal is generated only when an event occurs, the Buffered Break
signal from the computer is present, and the Transfer Direction signal supplied
to the computer is at ground potential.

THREE-CYCLE DATA BREAK

The three-cycle data break provides an economical method of controlling the
transfer of data between the computer core memory and fast peripheral de-
vices. Transfer rates in excess of 220 kh are possible using this feature of
the PDP-8.

112

The three-cycle data break differs from the one-cycle break in that a ground-
level Cycle Select signal is supplied so that when the data break conditions
are fulfilled the program is suspended and the Word Count state is entered.
The Word Count state is entered to increment the fixed core memory location
containing the word count. The device requesting the break supplies this ad-
dress as in the one-cycle break, except that this is a fixed address supplied by
wired ground and —3v signals rather than from a register. The only restriction
on this address is that it must be an even number (bit 11 = 0).

Following the Word Count state a Current Address state occurs in which the
location following the Word Count address (bit 11 = 1 after + 1 = >'MA) is
read, incremented by one, restored to memory, and loaded into the MA to be
used as the transfer address. Then the normal Break state is entered to effect
the transfer between the device and the computer memory cell specified by
the MA. :

Word Count State

When this state is entered the content of the core memory address specified
by the external device is read into the MB during time state T1. The word

count, established previously by instructions, is the 2's complement negative
number equal to the required number of transfers. The word in the MB is
incremented by 1 to advance the word count, and if the word becomes 0 when
incremented, the computer generates a WC Overflow pulse and supplies it to
the device. During time T2 the incremental word count is rewritten in mem-
ory, the MB is cleared, the content of the MA is incremented by 1 to establish
the next location as the address for the following memory cycle, and the major
state generator is set to the Current Address state.

Current Address State

Operations during the second cycle of the three-cycle data break depend upon
the condition of the Increment CA Inhibit (+ 1 = CA Inhibit) signal supplied
to the computer from the 1/O device. During T1 the address following the
word count is read into the MB. If the Increment CA Inhibit signals is at
ground potential, no further operations occur during T1. If this signal is at
—3v, the content of the MB is incremented by 1 during T1 to advance the
address of the transfer to the next sequential location. During T2, the content
of the MB is rewritten into core memory, the address word in the MB is trans-
ferred into the MA to designate the address to be used in the succeeding
memory cycle, the MB is cleared, and the major state generator is set to the
Break state.

Break State

The actual transfer of data between the externai device and the core memory,
through the MB, occurs during the Break state as during a single-cycle data
break, except that the address is determined by the current content of the MA
rather than directly by the device.

113

CHAPTER 5

OPTIONAL MEMORY AND PROCESSOR EQUIPMENT
AND INSTRUCTIONS

MEMORY EXTENSION CONTROL (TYPE 183)
AND MEMORY MODULE (TYPE 184)

Extension of the storage capacity of the standard 4096-word core memory is
accomplished by adding fields of 4096-word core memories, each field being a
Type 184 Memory Module. Field select control and address extension control
for Type 184 Memory Modules are provided by the Type 183 Memory Exten-
sion Control. Up to seven fields can be added to the standard 4096-word
memory, providing a maximum storage of 32,768 words. Direct addressing
of 32,768 words require 15 bits (25 = 32,768). However, since programs and
data need not be directly addressed for execution of each instruction, a field
can be program-selected, and all 12-bit addresses are then assumed to be
within the current memory field. Program interrupt of a program in any field
automatically specifies field O, address O for storage of the program count.
The memory extension control consists of several 3-bit flip-flop registers that
extend addresses to 15 bits to establish or select a field.

- Addition of a memory extension control to a standard PDP-8 requires a simple
modification of the operator console to activate indicators and switches asso-
ciated with the instruction field register and the data field register of the
control. These switches function in the same manner as the switch register,
to load information into associated registers when the LOAD ADDRESS key is
pressed.

The seven functional circuit elements which comprise the memory extension
control perform as follows:

Instruction Field Register (IF): The IF is a 3-bit register that serves as an ex-
tension of the PC. The content of the IF determines the field from which all
instructions are taken and the field from which operands are taken in directly-
addressed AND, TAD, ISZ, or DCA instructions. Operating the LOAD ADDRESS
key clears the IF, then sets it by a transfer of ones from the INSTRUCTION
FIELD switch register on the operator console. During a JMP or JMS instruc-
tion the IF is set by a transfer of information contained in the instruction
buffer register. When a program interrupt occurs, the content of the IF is
automatically stored in bits 0 through 2 of the save field register for restora-
tion to the IF from the instruction buffer register at the conclusion of the
program interrupt subroutine.

Data Field Register (DF): This 3-bit register determines the memory field from
which operands are taken in indirectly-addressed AND, TAD, 1SZ, or DCA in-
structions. The DF is cleared and set by a ones transfer of information con-
tained in the DATA FIELD switch register by operation of the LOAD ADDRESS
key. The DF is set by a transfer of information from bits 6 through 8 of the
MB during a CDF microinstruction to establish a microprogrammed data field.
When a program interrupt ocurs, the content of the DF is automatically stored
in the save field register. The DF is set by a transfer of information from bits
3 through 5 of the save field register by the RMF microinstruction to restore
the data field at the conclusion of the program interrupt subroutine.

114

Instruction Buffer Register (IB): The IB serves as a 3-bit input buffer for the
instruction field register. All field number transfers into the instruction field
register are made through the instruction buffer, except transfers from the
operator console switches. The IB is cleared and set by operation of the
LOAD ADDRESS key in the same manner as the instruction field register. A
CIF microinstruction loads the IB with the programmed field number contained
in MB 6-8. An RMF microinstruction transfers the content of bits O through 2
of the save field register into the IB to restore the instruction field to the con-

ditions that existed prior to a program interrupt.

Save Field Register (SF): When a program interrupt occurs, this 6-bit register
is cleared, then loaded from the instruction field and data field registers. The
RMF microinstruction can be given immediately prior to the exit from the
program interrupt subroutine to restore the instruction field and data field by
transferring the content of the SF into the instruction buffer and the data field
register. The SF is cleared during the cycle in which the program count is
stored at address 0000 of the JMS instruction forced by a program interrupt
request, then the instruction field and data field are strobed into the SF.

Start Field Signal Generator: When the PDP-8 core memory capacity is ex-
tended, the standard memory is designated as field 0. This circuit produces
the Enable Field O signal when data field O is selected, instruction field O is
selected, or when break field O is selected. Similar circuits are provided for
each of the other (up to seven) fields. : :

Accumulator Transfer Gating: This gating allows the content of the save field
Pegister, instruction field register, or the data field register to be strobed into
the accumulator. Transfer of information in this manner is accomplished by
circuits which sample the content of registers and supply positive pulses to
the AC upon receipt of 10T command pulses. During an RIB microinstruction,
bits 6 through 11 of the AC are set by the content of the save field register.
During an RIF microinstruction, bits 6 through 8 of the AC are set by the
content of the instruction field register. During an RDF microinstruction, bits
6 through 8 of the AC are set by the content of the data field register.

Device Selector: Bits 3 through 5 of the 10T instruction are decoded to pro-
duce the 10T command pulses for the memory extension control. Bits 6
through 8 of the instruction are not used for device selection since they
specify a field number in some commands. Therefore, the select code for
this device selector is designated as 2X.

Each Type 184 Memory Module consists of a core array, address selection cir-
cuits, inhibit selection circuits, sense amplifiers, and memory drivers which
are identical with these in the standard PDP-8.

Instructions

The instructions for the Type 183 option do not use the 10P genera{or and
extend the 10T instruction list to include the following:

Change to Data Field N (CDF)

Octal Code: 62N1

Event Time: Not applicable

Indicators: 10T, FETCH

Execution Time: 1.5 microseconds

Operation: The data field register is loaded with the program-selected field
number (N =0 to 7). All subsequent memory requests for operands are

115

automatically switched to that data field until the data field number is changed
by a new CDF command, or during a program interrupt.
Symbol: MB6 — 8 = > DF

Change Instruction Field (CIF)

Octal Code: 62N2

Event Time: Not applicable

Indicators: 0T, FETCH

Execution Time: 1.5 microseconds

Operation: The instruction buffer register is loaded with the program-selected
field number (N = 0 to 7). The next JMP or JMS instruction causes the new
field to be entered.

Symbol: MB6 — 8 = > IB

Read Data Field (RDF)

Octal Code: 6214

Event Time: Not applicable

Indicators: 10T, FETCH

Execution Time: 1.5 microseconds

Operation: The content of the data field register is transferred into bits 6, 7, 8
of the AC. All other bits of the AC are unaffected.

Symbol: DF = > AC6 — 8

Read Instruction Field (RIF)

Octal Code: 6224

Event Time: Not applicable

Indicators: 10T, FETCH

Execution Time: 1.5 microseconds

Operation: The content of the instruction field register is transferred into bits
6, 7, 8 of the AC. All other bits of the AC are unaffected.

Symbol: IF = > AC6 — 8

Read Interrupt Buffer (RIB)

Octal Code: 6234
Event Time: Not applicable
Indicators: 0T, FETCH
Execution Time: 1.5 microseconds
Operation: The instruction field and data field held in the save field register
during a program interrupt are transferred into bits 6 through 8, and 9
through 11 of the AC respectively.
Symbol: SFO— 2= > AC6 — 8
SF3—-5=>AC9 - 11

Restore Memory Field (RMF)

Octal Code: 6244
Event Time: Not applicable
Indicators: 10T, FETCH
Execution Time: 1.5 microseconds ,
Operation: This command is used upon exit from the program interrupt sub-
routine in another field. The data and instruction fieldsthat were interrupted by
the subroutine are restored by transferring the content of the save field regis-
ter into the instruction buffer and data field registers. :
Symbol: '

SFO—-2=>1B

SF3-5=>0DF

[
)
N

Programming |

Instructions and data are accessed from the currently assigned instruction and
data fields, where instructions and data may be stored in the same or different
‘memory fields. When indirect memory references are executed, the operand
address refers first to the instruction fieid to obtain an effective address, which
in turn, refers to a location in the currently assigned data field. All instruc-
tions and operands are obtained from the field designated by the content of
the instruction field register, except for indirectly-addressed operands which
are specified by the content of the data field register. In other words, the DF
is effective only in the Execute cycle that is directly preceded by the Defer
cycle of a memory reference instructions, as follows:

Indirect Page or Z Bit Field Field Effective
(Bit 3) (Bit 0) InIF InDF : Address
0 0 m n The operand is in page O of field m

at the page address specified by bits
5 through 11.

0 1 m n The operand is in the current page of
field m at the page address specified
by bits 5 through 11.

1 0 . m n The absolute address of the operand
in field n is taken from the content
of the location in page O of field m

] designated by bits 5 through 11.

1 1 m n The absolute address of the operand
in field n is taken from the content
of the location in the current page of
field m designated by bits 5 through
11.

Each field of extended memory contains eight autoindex registers in addresses
10 through 17. For example, assume that a program in field 2 is running
(IF = 2) and using operands in field 1 (DF = 1) when the instruction TAD | 10
is fetched. The Defer cycle is entered (bit 3 = 1) and the content of location
10 in field 2 is read, incremented, and rewritten. If address 10 in field 2
originally contained 4321, it now contains 4322. In the Execute cycle the
operand is fetched from location 4322 of field 1. :

Program control is transferred between memory fields by the CIF commands.
The instruction does not change the instruction field directly, since this would
make it impossible to execute the next sequential instruction. The CIF instruc-
tion sets the new instruction field into the IB for automatic transfer into the IF
when either a JMP or JMS instruction is executed. The DF is unaffected by
the JMP and JMS instructions. The 12-bit program counter is set in the nor-
mal manner and, since tne iF is an exfension on the most significant énd of
the PC, program sequence resumes in the new memory field following a JMP
or JMS. Entry into a program interrupt is inhibited after the CIF instruction
until a JMP or JMS is executed.

To call a subroutine that is out of the current field, the data field register is set
to indicate the field of the calling JMS, which establishes the location of the
operands as well as the identity of the return field. The instruction field is
set to the field of the starting address of the subroutine. The following se-
quence returns program control to the main program from a subroutine that
is out of the current field.

117

/PROGRAM OPERATIONS IN MEMORY FIELD 2

/INSTRUCTION FIELD = 2; DATA FIELD = 2

/CALL A SUBROUTINE IN MEMORY FIELD 1

/INDICATE CALLING FIELD LOCATION BY THE CONTENT OF THE DATA FIELD

CIF 10 /CHANGE TO INSTRUCTION
/FIELD 1 = 6212
JMS 1 SUBRP /[SUBRP = ENTRY ADDRESS
CDF 20 /RESTORE DATA FIELD
SUBRP, SUBR / POINTER
{CALLED SUBROUTINE
0 /SUBR = PC + 1 AT CALLING POINT
RDF ' /READ DATA FIELD INTO AC
TAD RETURN /CONTENT OF THE AC = 6202 + DATA
[FIELD BITS
DCA EXIT /STORE INSTRUCTION SUBROUTINE
EXIT, 0 /A CIF INSTRUCTION
JMP | SUBR {RETURN

. RETURN, CIF

When a program interrupt occurs, the current instruction and data field num-
bers are automatically stored in the 6-bit save field register, then the IF and
DF are cleared. The 12-bit program count is stored in location 0000 of field
0 and program control advances to location 0001 of field 0. At the end of the
program interrupt subroutine the RMF instruction restores the IF and DF from
the content of the SF. The following instruction sequence at the end of the
program interrupt subroutine continues the interrupted program after the
interrupt has been processed:

. . /RESTORE MQ IF REQUIRED

/RESTORE L IF REQUIRED

CLA

TAD AC /RESTORE. AC

RMF /{LOAD IB FROM SF

ION /TURN ON INTERRUPT SYSTEM
JMP | O /RESTORE PC WITH CONTENT OF

/LOCATION O AND LOAD IF FROM IB

A device using the computer data break facility supplies a 12-bit address to
the MA and a 3-bit address extension to the Memory Extension Control Type
183. The address extension is received by a break field decoder which selects
the memory field used for the data break.

118

MEMORY PARITY (TYPE 188)

Data transmission checking of each word written in and read from core mem-
ory is provided by this option. The option replaces the 12-bit core memory
with a 13-bit system (driving, inhibiting, sensing circuits as well as a core
array constructed of 13 planes) and includes a parity generator and a parity
checking circuit. The parity generator produces the 13th bit for each 12-bit
data word written in core memory so that the entire word contains an odd
number of binary ones. The parity checking circuit monitors each word read
+from core memory to assure that the odd parity is maintained. If a word read
contains an even number of ones a transmission error is indicated by setting a
parity error flag. This flag is connected to the program interrupt synchroniza-
tion element of the computer to initiate a program interrupt subroutine. This
routine sequentially checks all equipment error flags to determine the option
causing the interrupt and initiates an appropriate service and returns to the
main program, or provides a suitable error printout and halts programmed
operations. Upon determining that a memory parity error has occurred the
program interrupt subroutine can repeat the main program step that caused
the error to check the reliability of the error condition, can perform a simple
write/ read/ check routine at the error address, or can determine the status of
the machine when the error was detected and re-establish or print out these
conditions and halt.

Instructions

Two instructions are associated with the Type 188 option. They are:

Skip on No Memory Parity Error (SMP)

Octal Code: 6101

Event Time: 1 -

Indicator: 10T, FETCH, PAUSE

Execution Time: 3.75 microseconds

Operation: The memory parity error flag is sensed and if it contains a O (sig-
nifying no error has been detected) the PC is incremented so that the next
successive instruction is skipped.

Symbol: If Memory Parity Error Flag = O, then PC+1=>PC

Clear Memory Parity Error Flag (CMP)

Octal Code: 6104

Event Time: 3

Indicator: 10T, FETCH, PAUSE

Execution Time: 3.75 microseconds

Operation: The memory parity error flag is cleared.
Symbol: 0 = > Memory Parity Error Fiag

Programming

Both instructions for this option are used in the program interrupt subroutine
and in diagnostic maintenance programs. The SMP command is used as a
programmed check for memory parity error. In the program interrupt sub-
routine this command can be followed by a jump to a portion of the routine
that services the memory parity option as described previously. The CMP

command is used to initialize the memory parity option in preparation for nor-
mal programmed operation of the computer.

119

EXTENDED ARITHMETIC ELEMENT (TYPE 182)

This option consists of circuits that perform parallel arithmetic operations on
positive binary numbers. A 12-bit multiplier quotient register (MQ), a 5-stage
step counter (SC), and various shifting and control logic constitute the option.
The AC and MB are used in conjunction with these logic elements to perform
arithmetic operations. With the addition of this option to a PDP-8 system, indi-
cators on the operator console for the content of each bit of the MQ are acti-
vated and a class of instructions is added to the Group 2 Operate instruction
list.

Instructions

The extended arithmetic element (EAE) microinstructions are specified by an
operate instruction (operation code 7) in which bits 3 and 11 contain binary
ones. Being augmented instructions, the EAE commands are micropro-
grammed and can be combined with each other to perform non-conflicting
logical operations. Format and bit assignments of the EAE commands are
indicated in Figure 8.

2xMUY 3:=DVI
OPERATION 4:NMT 5=SHL
CODE 7 CLA SCA €6=ASR 7*LSR
e A - —A— —r— P A \
0 i 2 3 4 -} 6 7 8 -] 10 11
ey — [[—
CONTAINS MGA MQL CONTAINS
A1 TO A{TO
SPECIFY SPECIFY
EAE GROUP) EAE GROUP

Figure 8. EAE Microinstruction Bit Assignments

Multiply (MUY)

Octal Code: 7405
Event Time: 2
Indicators: OPR, FETCH, PAUSE
Execution Time: 9.0 to 21.0 microseconds
Operation: The number held in the MQ is multiplied by the number held in
core memory location PC + 1 (or the next successive core memory location
after the MUY command). At the conclusion of this command the link con-
tains a O, the most significant 12 bits of the product are contained in the AC
and the least significant 12 bits of the product are contained in the MQ.
Symbol:

Y X MQ = > AC, MQ ,;

0=>1L

Divide (DVI)

Octal Code: 7407

Event Time: 2

Indicators: OPR, FETCH, PAUSE ,

Execution Time: 36.5 microseconds or less -

Operation: The 24-bit dividend held in the AC (most significant 12 bits) and

120

the MQ (least significant 12 bits) is divided by the divisor held in core memory
location PC + 1 (or the next successive core memory location following the
DVI command). At the conclusion of this command the quotient is held in
the MQ, the remainder is in the AC, and the L contains a 0. If the L contains
a 1, divide overflow occurred so the operation was concluded after the first
cycle of the division.

Symbol: AC,MQ =Y = > MQ

Normalize (NMI)

Octal Code: 7411

Event Time: 2

Indicators: OPR, FETCH, PAUSE

Execution Time: 1.5 microseconds + 0.5 microsecond for €ach shift
Operation: This instruction is used as part of the conversion of a binary num-
ber to a fraction and an exponent for use in floating-point arithmetic. The °
combined content of the AC and the MQ is shifted left by this one command
until the content of ACO is not equal to the content of AC1, or until 6000 0000
- is contained in the combined AC and MQ, to form the fraction. Zeros are
shifted into vacated MQ11 positions for each shift. At the conclusion of this
operation, the step counter contains a number equal to the number of shifts
performed, which can be loaded into the AC by an SCA command to form the
exponent. The content of L is lost. Both positive and negative two’s comple-
ment numbers can be normalized.

Symbol:
ACj=>ACj -1
ACO=>1L
MQO = > AC11

MQj = > MQj —1
0 = > MQ11 until ACO 5~ AC1 or until AC MQ = 6000 0000

Shift Arithmetic Left (SHL)

Octal Code: 7413

Event Time: 2

Indicators: OPR, FETCH, PAUSE -

Execution Time: 3.0 microseconds + 0.5 microsecond for each shift
Operation: This instruction is used for scaling by shifting the combined con-
tent of the AC and MQ to the left one position more than the number of posi-
tions indicated by the content of core memory at address PC + 1 (or the next
successive core memory location following the SHL command). During the
shifting, zeros are shifted into vacated MQ11 positions. The L, AC, and MQ
are treated as one long register during this operation. Bits shifted out of ACO
enter the L, and bits shifted out of the L are lost.

Symbol:
Shift Y + 1 positions as follows:
Acj=>ACj— 1
ACO= > L
MQ0 = > AC11
MQj=>MQj—1
0=>MQll

Arithmetic Shift Right (ASR)

Octal Code: 7415

Event Time: 2

Indicators: OPR, FETCH, PAUSE

Execution Time: 3.0 microseconds + 0.5 microsecond for each shift.

121

Operation: This instruction is used for scaling and treats the. AC and MQ as
one long register. The combined content of the AC and the MQ is shifted right
one position more than the number contained in memory location PC +'1 (or
the next successive core memory location following the ASR command). The
sign bit, contained in ACO, enters vacated positions, the sign bit is preserved
in the link, information shifted out of MQ11 is lost, and the L is set to cor-
respond to the sign bit during this operation.

Symbol:
Shift Y + 1 positions as follows:
ACO=>1L
ACO = > ACO
ACj=>ACj+1
AC11 = > MQO

MQj = >MQ + 1
Logical Shift Right (LSR)

Octal Code: 7417
Event Time: 2
Indicators: OPR, FETCH, PAUSE
Execution Time: 3.0 microseconds + 0.5 microsecond for each shift.
Operation: This instruction is used for scaling and treats the AC and MQ as
one long register. The combined content of the AC and MQ is shifted right
one position more than the number contained in memory location PC + 1 (or
the next successive core memory location following the LSR command). This
command is similar to the ASR command except that zeros enter vacated posi-
tions instead of the sign bit entering these locations. Information shifted out
of MQ11 is lost and the L is cleared during this operation.
Symbol:

Shift Y + 1 positions as follows:

0=>L

0= >AC0

ACj = >ACj+ 1

ACll = > MQO

MQj = > MQj + 1

Load Multipligr Quotient (MQL)

Octal Code: 7421

Event Time: 2 :

Indicators: OPR, FETC

Execution Time: 1.5 microseconds

Operation: This command clears the MQ, loads the content of the AC into the
MQ, then clears the AC. This operation is essential to initializing any multiply
or divide routine and can be combined with a MUY or DVI command to per-
form the operation just prior to executing a multiplication or a division using
a 12-bit dividend.

Symbol:
0=>MQ
AC = > MQ
0=>AC

Step Counter Load into Accumulator (SCA)

Octal Code: 7441

Event Time: 2

Indicators: OPR, FETCH

Execution Time: 1.5 microseconds

122

Operation: The content of the step counter is transferred into the AC. This
command is used following an NMI command to establish the exponent of a
normalized number to be used in floating point arithmetic. The AC should be
cleared prior to issuing this command or the CLA command can be combined
with the SCA to clear the AC then effect the transfer.

Symbol: SCV AC = > AC

Multiplier Quotient Load into Accumulator (MQA)

Octal Code: 7501

Event Time: 2 .

Indicators: OPR, FETCH

Execution Time: 1.5 microseconds

Operation: The content of the MQ is transferred into the AC.. This command
is given to load the 12 least significant bits of the product into the AC following
a multiplication or to load the quotient into the AC following a division. The
+ AC should be cleared prior to issuing this command or the CLA command can
be combined with the MQA to clear the AC then effect the transfer.

Symbol: MQV AC = > AC

Clear Accumulator (CLA)

Octal Code: 7601

Event Time: 1 .

Indicators: OPR, FETCH

Execution Time: 1.5 microseconds

Operation: The AC is cleared during event time 1, allowing this command to
be combined with the other EAE commands that load the AC durmg event
time 2 (such as SCA and MQA).

Symbol: 0 = > AC

Programming

MULTIPLICATION
+ Multiplication is performed as follows:

1. Load the AC with the multiplier using the TAD instruction.
2. Transfer the content of the AC into the MQ using the MQL command.
3. Give the MUL command.

Note that steps 2 and 3 can be combined into one instruction.

The content of the MQ is then multiplied by the content of the next successive
core memory address (PC + 1). At the conclusion of the multiplication the
most significant 12 bits of the product are held in the AC and the least signifi-
cant 12 bits are held in the MQ. This operation takes a maximum of 21.0
microseconds, at the end of this time the next instruction is executed.

The foiiowing muitipiication program examples indicate the operation of the
Type 182 option in closed subroutines (routines which are incorporated into
larger routines and are not written in a form which allows them to be caHed as
a normal mathematical subroutine).

Multiplication of 12-Bit Unsigned Numbers

Enter with a 12-bit multiplicand in AC and a 12-bit multiplier in core memory.
Exit with high order half of product in a core memory location labeled HIGH,
and with low order half of product in the AC. Program time is from 13.5 to
25.5 microseconds.

123

MQL MUY /LOAD MQ WITH MULTIPLICAND, lNlTlATE
/ MULTIPLICATION

MLTPLR /MULTIPLIER
DCA HIGH /STORE HIGH ORDER PRODUCT
MQA /LOAD AC WITH LOW ORDER PRODUCT

Multiplication of 12-Bit Signed Numbers, 24-Bit Signed Product -

Enter with a 12-bit multiplicand in AC and a 12-bit multiplier in core memory.
Exit with signed 24-bit product in core memory locations designated HIGH and
LOW. Program time is from 40.5 to 66.0 microseconds.

CLL
SPA /MULTIPLICAND POSITIVE?
CMA CML IAC /NO. FORM TWO'S COMPLEMENT
MaL /LOAD MULTIPLICAND INTO MQ
TAD MLTPLR
SPA. | /MULTIPLIER POSITIVE?
CMA CML IAC /NO. FORM TWO'S COMPLEMENT
DCA ‘MLTPLR |
RAL |
DCA SIGN /SAVE LINK AS SIGN INDICATOR
MUY /MULTIPLY
MLTPLR, 0 /MULTIPLIER
DCA HIGH
TAD SIGN
RAR /LOAD LINK WITH SIGN INDICATOR
MQA
SNL /IS PRODUCT NEGATIVE?
IMP LAST /NO
CLL CMA 1AC /YES
DCA LOW
TAD HIGH
CMA ‘
SZL
IAC
DCA HIGH
SKP
LAST, DCA LOW
DIVISION

. Division is performed as follows:

1. Load the 12 least significant bits of the dividend into the AC using the
TAD instruction, then transfer the content of the AC into the MQ
using the MQL command.

2. Load the 12 most significant bit of the dividend into the AC.

3. Give the DVI command. /

The 24-bit dividend contained in the AC and MQ is then divided by the 12-bit
divisor contained in the next successive core memory address (PC + 1). This
operation takes a maximum of 36.5 microseconds and is concluded with a
12-bit quotient held in the MQ, the 12-bit remainder in the AC, and the link
holding a O if divide overflow did not occur. To prevent divide overfiow, the
divisor in the core memory must be greater than the 12-bits of the dwndend
held in the AC. When divide overflow occurs, the link is set and the division

124

is concluded after only one cycle. Therefore the instruction following the
divisor in core memory should be an SZL microinstruction to test for over-
flow. The instruction following the SZL can be a jump to a subroutine that
services the overflow. This subroutine can cause the program to type out an
error indication, rescale the divisor or the dividend, or perform other mathe-
matical corrections and repeat the divide routine.

The following division program examples indicate the operation of the Type "
182 option in closed subroutines. :

Division of 12-Bit Unsigned Numbers

Enter with a 12-bit unsigned dividend in the AC and a 12-bit unsigned divisor
in core memory. Exit with remainder in core memory location labeled RE-
MAIN and with the quotient in the AC. Program time is a maximum of 44.0
microseconds.

CLL :

MQL Dvi /LOAD MQ, INITIATE DIVISION

DIVSOR / DIVISOR :
SZL / OVERFLOW?
JMP /YES, EXIT :
DCA REMAIN

MQL /LOAD AC WITH QUOTIENT

Division of a 12-Bit Signed Numbers

Enter with a 12-bit signed dividend in the AC and a 12-bit signed divisor in

core memory. Exit with unsigned remainder in core memory location REMAIN
and a 12-bit signed quotient in the AC. Program time is a maximum of 65.0

microseconds. :

CLL

SPA , ‘ / DIVIDEND POSITIVE?

CMA CML IAC /NO

MQL

TAD .+11

SPA /DIVISOR POSITIVE?

CMA CML IAC /NO

DCA .+6

SNL /QUOTIENT NEGATIVE?

CMA / NO

CLL

DCA SIGN /SET SIGN INDICATOR

Dvi

DIVSOR / DIVISOR

SZL / OVERFLOW
MR- FEXIT-ON: OVERFLOW ~

MQL

ISZ SIGN

CMA IAC

AUTOMATIC RESTART (TYPE KRO1)

This prewired option protects an operating program in the event of failure of
the source of computer primary power. If a power failure occurs, this option
causes a program interrupt and enables continued operation for 1 millisecond,
allowing the interrupt routine to detect the power low condition as initiator of

125

the interrupt, and to store the content of active regisers (AC, L, MQ,etc.) and
the program count in known core memory locations. When power is restored,
the power low flag clears and a routine beginning in address 0000 starts auto-
matically. This routine restores the content of the active registers and pro-
gram counter to the conditions that existed when the interrupt occurred, then
continues the interrupted program. .

The KRO1 option consists of three logic circuits:

A power interrupt circuit monitors the status signal of the computer power
supply, and sets a power low flag when power is interrupted (due to a power
failure or due to the operation of the POWER lock on the operator console).
This flag causes a program interrupt when an interruption in computer power
is detected.

A restart circuit assures that when a power interrupt occurs the logic circuits
of the computer continue operation for 1 millisecond to allow a program sub-
routine to store the content of the active registers; maintains the inoperative
condition of the computer during periods of power fluctuation; and clears the
power low flag and restarts the program when power conditions are suitable
for computer operation. A manual RESTART switch on the processor marginal-
check frame enables or disables the automatic restart operation. With this
switch in the ON (down) position, the option clears the program counter im-
mediately and produces a signal to simulate operation of the START key on
the operator console 200 milliseconds after power conditions are satisfactory.
The PC is cleared so that operation restarts by executing the instruction in
address 0000. This instruction is a JMP to the starting address of the sub-
routine which restores the content of the active registers and the program
counter to the conditions that existed prior to the power low interrupt. The
200-millisecond delay assures that slow mechanical devices, such as Teletype
equipment, have come to a complete stop before the program is resumed.
Simulation of the manual START function causes the processor to generate a
Power Clear pulse to clear internal controls and 1/ 0 device registers. With the
RESTART switch in the OFF (up) position, the power low flag is cleared but the
program must be started manually, possibly after resetting peripheral equip-
ment or by starting the interrupted program from the beginning.

A skip circuit provides programmed sensing of the condition of the power low
flag by adding the following instruction to the computer repertoire:

Skip on Power Low (SPL)

Octal Code: 6102

Event Time: 2

Indicators: 10T, FETCH, PAUSE
Execution Time: 3.75 microseconds

Operation: The content of the power low flag is sampled, and if it contains a 1
(indicating a power failure has been detected) the content of the PC is incre-
mented by one so the next sequential instruction is skipped.

Symbol: If Power Low flag = 1, then PC +1 = > PC
Since the time that operation of the computer ca;n be extended after a power
failure is limited to 1 millisecond, the condition of the power low flag should

be the first status check made by the program interrupt subroutine. The be-
ginning of the program interrupt subroutine, containing the SPL microinstruc-

126

tion and the power fail program sequence can be executed in 25.5 microsec-
onds on a basic PDP-8 with an extended arithmetic element. The power
fail program sequence stores the content of the active register and program
count in designated core memory locations, then relocates the calling instruc-
tion of the power restore subroutine to address 0000, as follows:

Address Instruction Remarks

0000 D — / STORAGE FOR PC AFTER PROGRAM INTERRUPT

0001 JMP FLAGS /INSTRUCTION EXECUTED AFTER PROGRAM
[INTERRUPT

FLAGS, SPL . / SKIP IF POWER LOW FLAG = 1
_ JMP OTHER /INTERRUPT NOT CAUSED BY POWER LOW,
/CHECK OTHER FLAGS

DCA AC /INTERRUPT WAS CAUSED BY POWER LOW,
/ SAVE AC ‘
RAR /GET LINK
DCA LINK / SAVE LINK
MQA /GET MQ
DCA MQ / SAVE MQ
TAD 0000 /GET PC :
* DCA PC /SAVE PC '

TAD RESTRT /GET RESTART LOCATION
DCA 0000 /DEPOSIT RESTART LOCATION IN 0000
HLT ‘

RESTRT JMP ABCD /ABCD IS LOCATION OF RESTART ROUTINE

Automatic program restart begins by executing the instruction stored in ad-
dress 0000 by the power fail routine. The power restore subroutine restores
the content of the active registers, enables the program interrupt facility, and

continues the interrupted program from the point at which it was interrupted,
as follows:

L3

Address Instruction Remarks
0000 JMP ABCD
ABCD, TAD MQ /GET MQ
MQL /RESTORE MQ
TAD LINK /GET LINK
CLL RAL /RESTORE LINK
TAD AC /RESTORE AC
ION /TURN ON INTERRUPT
JMP | PO /RETURN TO INTERRUPTED PROGRAM

127

CHAPTER 6
INPUT/OUTPUT EQUIPMENT INSTRUCTIONS

TELETYPE AND CONTROL
Teletype Model 33 ASR

The standard Teletype Model 33 ASR (automatic send-receive) can be used to
type in or print out information at a rate of up to ten characters per second, or
to read in or punch out perforated paper tape at a ten characters per second
rate. Signals transferred between the 33 ASR and the control logic are stand-
ard serial, 11 unit code Teletype signals. The signals consist of marks and
spaces which correspond to idle and bias current in the Teletype, and to zeros
and ones in the control and computer. The start mark and subsequent eight
character bits are one unit of time duration and are followed by the stop mark
which is two units.

The 8bit code used by the Model 33 ASR Teletype unit is the American
Standard Code for Information Interchange (ASCIl) modified. To convert the
ASCIl code to Teletype code add 200 octal (ASCII + 200, = Teletype). This
code is read in the reverse of the normal octal form used in the PDP-8 since
bits are numbered from right to left, from 1 thrcugh 8, with bit 1 having the
least significance. Therefore perforated tape is read:

8 7 6 5 4 § 3 2 1

S —————

Most Significant Least Significant
Octal Bit Octal Bit

The Model 33 ASR set can generate all assigned codes except 340 through 374
and 376. Generally codes 207, 212, 215, 240 through 337, and 377 are suf-
ficient for Teletype operation. The Model 33 ASR set can detect all characters,
but does not interpret all of the codes that it can generate as commands.
The standard number of characters printed per line is 72. The sequence for
proceeding to the next line is a carriage return followed by a line feed (as op-
posed to a line feed followed by a carriage return). Appendix 3 lists the
character code for the Teletype. Punched tape format is as follows:

. Tape Channel
87 654 S - 321

Binary Code

Octal Code 2 6 4
Teletype Control

Serial information read or written by the Teletype unit is assembled or dis-
assembled by the control for parallel transfer to the accumulator of the proces-
sor. The control also provides the program flags which cause a program inter-
rupt or an instruction skip based upon the availability of the Teletype and the
processor as a function of the program. _ :

In all programmed operation, the Teletype unit and control are considered as
a Teletype in (TTI) as a source of input intelligence from the keyboard or the

128

perforated-tape reader and is considered a Teletype out (TTO) for computer
output information to be printed and/or punched on tape. Therefore, two de-
vice selectors are used; the select code of 03 initiates operations associated
with the keyboard/reader, and the device selector, assigned the select code
of 04, performs operations associated with the teleprinter/punch. Parallel
input -and output functions are performed by corresponding 10T pulses pro-
duced by the two device selectors. Pulses produced by 10P1 pulse trigger skip
gates; pulses produced by the I0P2 pulse clear the control flags and/or the
accumulator; and pulses produced by the IOP4 pulse initiate data transfers to
or from the control.

Keyboard/Reader

The keyboard and tape reader control contains an 8-bit buffer (TTIl) which as-
sembles and holds the code for the last character struck on the keyboard or
read from the tape. Teletype characters from the keyboard/reader are re-
ceived serially by the 8-bit shift register TTl. The character code of a Teletype
character is loaded into the TTI so that spaces correspond with binary zeros
‘and marks correspond to binary ones. Upon program command the content
of the TTI is transferred in parallel to the accumulator. When a Teletype
character starts to enter the TTI the control de-energizes a relay in the Tele-
type unit to release the tape feed latch. When released, the latch mechanism
stops tape motion only when a complete character has been sensed, and be-
fore sensing of the next character is started. A keyboard flag is set to one, and
causes a program interrupt when an 8-bit computer character has, been as-
sembled in the TTI from a Teletype character. The program senses the
condition of this flag with a KSF microinstruction and issues a KRB micro-
instruction which clears the AC, clears the keyboard flag, transfers the content
of the TTI into the AC, and enables advance of the tape feed mechanism. In-
structions for use in supplying data to the computer from the Teletype are:

Skip on Keyboard Flag (KSF)

Octal Code: 6031

Event Time: 1 Pl

Indicators: 10T, FETCH, PAUSE

Execution Time: 3.75 microseconds ‘
Operation: The keyboard flag is sensed, and if it contains a binary 1 the con-
tent of the PC is incremented by one so that the next sequential instruction is.
skipped. .

Symbol: If Keyboard Flag = 1, then PC + 1 = > PC

Clear Keyboard Flag (KCC)

Octal Code: 6032
Event Time: 2
Indicators: |OT, FETCH, PAUSE
Execution Time: 3.75 microseconds
Operation: Both the AC and the keyboard flag are cleared in preparation for
transferring a Teletype character into the AC.
Symbol:
0=>AC
0 = > Keyboard Flag

129

Read Keyboard Buffer Static (KRS)

Octal Code: 6034

Event Time: 3

Indicators: 10T, FETCH, PAUSE

Execution Time: 3.75 microseconds |

Operation: The content of the TTI is transferred into bits 4 through 11 of the
AC. This is a static command in that neither the AC nor the keyboard flag is
cleared. '

Symbol: TTIV AC 4-11 = > AC 4-11

Read Keyboard Buffer Dynamic (KRB)

Octal Code: 6036
Event Time: 2, 3
Indicators: 10T, FETCH, PAUSE
Execution Time: 3.75 microseconds
Operation: The AC and the keyboard flags are both cleared, then the content
of the TTl is transferred into bits 4 through 11 of the AC.
Symbol:
0 = > AC, Keyboard Flag
TTIVAC 4-11 = > AC 4-11

A program sequence loop to read input information into the computer from

the Teletype keyboard or tape reader can be written as follows: v
LOOK, KSF / SKIP WHEN TTI IS FULL
JMP LOOK
KRB /READ TTI INTO AC
Teleprinter/Punch

Eight-bit computer characters from the accumulator are loaded in parallel into
the 8-bit flip-flop shift register TTO for transmission to the Teletype unit. The
control generates the start space, then shifts the eight character bits into the
printer selector magnets of the Teletype unit, and then produces the stop
mark. This transfer of information from the TTO into the Teletype unit is ac-
complished in a serial manner %t the normal Teletype rate. A teleprinter flag
in the teleprinter control is set when the last bit of the Teletype code has been
sent to the teleprinter/punch, indicating that the TTO is ready to receive a
new character from the AC. The flag is connected to both the program inter-
rupt synchronization element and the PC control (instruction skip) element.
Upon detecting the set (binary one) condition of the flag by means of the
TSF microinstruction the program issues a TLS microinstruction which clears
the flag and loads a new computer character into the TTO.

The instruction list for printing or punching is:

Skip on Teleprinter Flag (TSF) '

Octal Code: 6041

Event Time: 1

Indicators: 10T, FETCH, PAUSE

Execution Time: 3.75 microseconds

Operation: The teleprinter flag is sensed, and if it contains a binary 1 the con-
tent of the PC is incremented by one so that the next sequential instruction is
skipped.

Symbol: If Teleprinter Flag = 1, then PC + 1 = > PC

130

Clear Teleprinter Flag (TCF)

Octal Code: 6042

Event Time: 2

Indicators: 10T, FETCH, PAUSE

Execution Time: 3.75 microseconds
Operation: The teleprinter flag is cleared to O.
Symbol: 0 = > Teleprinter Flag

Load Teleprinter and Print (TPC)

Octal Code: 6044

Event Time: 3

Indicators: 10T, FETCH, PAUSE

Execution Time: 3.75 microseconds

-Operation: The TTO is loaded from the content of bits 4 through 11 of the
AC; then the Teletype character just loaded is selected, and punched and/or
printed.

Symbol: AC 4-11 = > TTO

Load Teleprinter Sequence (TLS)

Octal Code: 6046 _

Event Time: 2, 3 :

Indicators: 10T, FETCH, PAUSE

Execution Time: 3.75 microseconds ‘

Operation: The teleprinter flag is cleared; then a Teletype character code is

transferred from the content of AC 4-11 into the TTO, the character is selected

and punched and/or printed.

Symbol: :
- O = > Teleprinter Flag

AC4-11 = >TT0

A program sequence loop to print and/or punch a character when the TTO is
free can be written as follows:

FREE, TSF / SKIP WHEN FREE
JMP FREE :
TLS /LOAD TTO, PRINT OR PUNCH

Teletype System Type LT08

The Teletype facility of the basic computer can be expanded to accommodate
several Model 33 or Model 35 Automatic Send Receive or Keyboard Send Re-
ceive units by addition of the Type LTO8 option. Each Teletype line added to
the PDP-8 system contains logic elements that are functionally identical to
those of the basic Teletype control. Therefore, instructions and programming
forezch time ofan-tTO8equipment are simitar to-those-described- previousty-
for the basic Teletype unit. The following device select codes have been as-
signed for five lines of LTO8 equipment: :

Line Select

Unit Codes

40 and 41
42 and 43
44 and 45
46 and 47
11 and 12

O1TRWN -

131

Instruction mnemonics for Teletype equipment in the LTO8 system are not
recognized by the program assembler (PAL Ill) and must be defined by the
programmer. Mnemonic codes can be defined by the mnemonic' code of the
comparable basic Teletype microinstruction, suffixed with “LT” and the line
number. For example, the following instructions can be defined for line 3:

Mnemonic_ Octal Operation
TSFLT3 6441 Skip if teleprinter 3 flagis a 1.
TCPLT3 6442 Clear teleprinter 3 flag.
TPCLT3 6444 Load teleprinter 3 buffer (TTO3) from the content
: of AC4-11 and print and/or punch the character.
TLSLT3 6446 Load TTO3 from the content of AC4-11, clear tele-
printer 3 flag, and print and/or punch the charac-
ter
KSFLT3 6451 Skip if keyboard 3 flagisa 1. -
KCCLT3 6452 Clear AC and clear keyboard 3 flag.
KRSLT3 6454 Read keyboard 3 buffer (TT13) static. The content
of TT13 is loaded into AC4-11 by an OR transfer.
KRBLT3 6456 Clear the AC, clear keyboard 3 flag, and read the
content of TT13 into AC4-11. '

HIGH-SPEED PERFORATED TAPE READER
AND CONTROL (TYPE PCO02)

This device senses 8-hole perforated paper or Mylar tape photoelectrically at
300 characters per second. The reader control requests reader movement,
transfers data from the reader into the reader buffer (RB), and signals the
computer when incoming data is present. Reader tape movement is started
by a reader control request to simultaneously release the brake and engage
the clutch. The 8-bit reader buffer sets the reader flag to 1 when it has been
filled from the reader and transfers data into bits 4 through 11 of the accumu-
lator under prrgram control. The reader flag is connected to the computer
program inwrrupt and instruction skip facilities, and is cleared by 10T pulses.
Tape format is as described for the Teletype unit. Computer instructions for
the reader are:

Skip on Reader Flag (RSF)

Octal Code: 6011

Event Time: 1 _

Indicators: 10T, FETCH, PAUSE

Execution Time: 3.75 microseconds

Operation: The reader flag is sensed, and if it contains a binary 1 the content
of the PC is incremented by one so that the next sequential instruction is
skipped.

~Symbol: If Reader Flag = 1, then PC + 1 = > PC

Read Reader Buffer (RRB)

Octal Code: 6012
Event Time: 2
Indicators: 10T, FETCH, PAUSE
Execution Time: 3.75 microseconds
Operation: The content of the reader buffer is transferred into bits 4 through
11 of the AC and the reader flag is cleared. This command does not clear
the AC.
Symbol:
RBVAC4-11 = > AC4-11
0 = > Reader Flag

132

Reader Fetch Character (RFC)

Octal Code: 6014
Event Time: 3
Indicators: 10T, FETCH, PAUSE
Execution Time: 3.75 microseconds ‘
Operatlon The reader flag and the reader buffer are both cleared, one charac-
ter is loaded into the reader buffer from tape, and the reader flag is set when
this operation is completed.
Symbol:
0 = > Reader Flag, RB
Tape Data = > RB
1 = > Reader Flag when done

A program sequence loop to read a character from perforated tape can be
written as follows:

RFC /FETCH CHARACTER FROM TAPE

LOOK, RSF / SKIP WHEN RB FULL
- JMP LOOK
CLA :
RRB /LOAD AC FROM RB

HIGH-SPEED TAPE PUNCH CONTROL (TYPE PCO3)

This option consists of a Royal McBee paper tape punch that perforates 8-hole
tape at a rate of 50 characters per second. Information to be punched on a
line of tape is loaded in an 8-bit punch buffer (PB) from AC bits 4 through 11.
The punch flag becomes a 1 at the completion of punching action, signaling
that new information may be transferred into the punch buffer, and punching
initiated. The punch flag is as described for the Teletype unit. The punch -
instructions are:

Skip on Punch Flag (PSF)

Octal Code: 6021

Event Time: 1

Indicators: 10T, FETCH, PAUSE
Execution Time: 3.75 m|croseconds
Operation: The punch flag is sensed, and if it contams a binary 1 the content -
of the PC is incremented by one so that the next sequential instruction is
skipped.

Symbol: If Punch Flag = 1,thenPC + 1= > PC

Clear Punch Flag (PGF)

Octal Code: 6022

Event Time: 2

Indicators: 10T, F ETCH 'PAUSE

Execution Time: 3.75 mlcroseconds

Operation: Both the punch flag and the punch buffer are cleared in prepara-
tion for receiving a new character from the computer.

Symbol: 0-= > Punch Flag, PB

Load Punch Buffer and Punch Character (PPC)

QOctal Code: 6024
Event Time: 3
Indicators: 10T, FETCH, PAUSE

133

Execution Time: 3.75 microseconds

Operation: An 8-bit character is transferred from bits 4 through 11 of the AC
into the punch buffer and then this character is punched. This command does
not clear the punch flag or the punch buffer.

Symbol: AC4-11 VPB = > PB

Load Punch Buffer Sequence (PLS)

Octal Code: 6026
Event Time: 2, 3 -
Indicators: 0T, FETCH, PAUSE
Execution Time: 3.75 microseconds
Operation: The punch flag and punch buffer are both cleared, the content of
bits 4 through 11 of the AC is transferred into the punch buffer, the character
in the PB is punched in tape, and the punch flag is set when the operation is
completed. ‘
Symbol:

0 = > Punch Fiag, PB

AC4-11 = > PB

1 = > Punch Flag when done

A program sequence loop to punch a character when the punch buffer is
“free"” can be written as follows:

L]

FREE, PSF / SKIP WHEN FREE
JMP FREE
PLS /LOAD PB fROM AC AND PUNCH
/CHARACTER

ANALOG-TO-DIGITAL CONVERTER (TYPE 189)

This converter operates in the conventional successive approximation manner,
using the memory buffer register as a distributor shift register and using the
accumulator as the digital buffer register. Converter operation is initiated by
an 10T command that produces.a Pause pulse (as most 0T commands do)
and starts the conversion process. With the AC cleared, this process starts by
assuming that the value of the analog input signal is at mid scale by setting a
binary 1 into the most significant bit of the accumulator and producing a
voltage equal to the center of the input range of the converter (ground to —10
volts). This voltage is produced by a digital-to-analog converter which operates
as a function of a number contained in the accumulator. This voltage is then
compared with the analog input signal and the result of the comparison is
used to clear the most significant bit of the accumulator if the approximated
voltage generated is of greater amplitude than the analog input signal. This
process is then repeated by setting the next least significant bit of the accu-
mulator to the 1 state, generating the analog signal according to the content
of the accumulator, and comparing this signal with the analog input signal to
clear the bit of the AC which was just set previously if the generated signal is
greater than the input signal being measured. This process is repeated a
number of times depending upon the prewired accuracy of the conversion.
Each approximation reduces the error of the resultant binary number in the
AC by approximately one half. The bit of the accumulator which is first set
and then evaluated, is controlled by the memory buffer register. During the
first approximation, a binary 1 is set into most significant bit of the MB and is
shifted right one place at the conclusion of each approximation. The bit of
the accumulator which is processed is determined by the location of this

134

binary 1 in the MB. Sensing of the location of this binary 1 in the MB is also
used to control the number of approximations performed, and hence deter-
mines the accuracy of the conversion. Since the conversion is started at the
time the binary 1 is shifted in the MB, one conversion takes place after the
sensing of the 1 in the MB which discontinues the conversion process. At the
conclusion of the conversion a Restart pulse is produced by the converter
which clears the MB and continues the normal computer program. At this
time the digital equivalent of the analog input signal is contained in the ac-
cumulator as a 12-bit unsigned binary number. Insignificant magnitude bits
can be rotated out of the AC by an instruction such as 7110 (RAR and CLL).

To save program running time, the converter should be adjusted to provide
only the accuracy required by the program application. Maximum error of the
converter is equal to the switching point error plus the quantization error.
Maximum quantization error is equal to the binary value of the least signifi-
cant bit. Switching point error and total conversion time are functions of the
adjusted accuracy of the converter as indicated in Table 1.

Table 1. Analog-to-Digital Converter Type 189 Characteristics

Adjusted Switching Conversion Total Instruction
Bit Point Time per Conversion Execution
Accuracy Error Bit (in micro- Time (in Time (in
(in per cent) seconds) microseconds) microseconds)
6 *1.6 1.0 6 7.6
7 *0.8 1.85 13 14.6
8 - *0.4 2.5 20 21.6
9 *0.2 2.7 24 25.6
10 =0.1 2.7 27 28.6
11 *0.05 4.1 45 46.6
12 *0.025 4.6 55 56.6

The ADC is the only instruction associated with the Type 189 converter.

Convert Analog to Digital (ADC)

Octal Code: 6004

Event Time: Not applicable

Indicators: I0T, FETCH, PAUSE .

Execution Time: This time is related to the adjusted converter accuracy as
listed in Table 1.

Operation: The analog input signal is converted to an unsigned digital value
which-is held in-the AC at the end of the conversion. e :
Symbol: None

ANALOG-TO-DIGITAL CONVERTER (TYPE 138E)
AND MULTIPLEXER CONTROL (TYPE 139E)

The Type 138E/139E General-Purpose Analog-to-Digital Converter and Multi-
plexer Control combines a versatile, multipurpose converter with a multiplexer
to provide a fast, automatic, multichannel scanning and conversion capability.
It is intended for use in systems in which computers sample and process

135

analog data from sensors or other external signal sources at high rates. For
example, analog data on each of 64 channels can be accepted and converted
into 12-bit digital numbers 415 times per second.* Switching point accuracy
- in this instance is 99.975 per cent, with an additional quantization error of
half the least significant bit (LSB). If less resolution and accuracy is required,
all 64 channels can be scanned and the analog signdls on them converted into
6-bit digital numbers 1,360 times each second.** Switching point accuracy in
this case is 99.2 per cent, again with the additional quantization error of half
the digital value of the LSB. ' :

The Type 139 Multiplexer Control can include from 1 to 32 series A100 Multi-
plexer modules determined by the user. Each module addresses one of two
channels for a maximum of 64 channels per Type 139E control. In the Indi-
vidual Address mode, the Type 139 routes the data from any selected channel
to the Type 138E converter input. In the Sequential Address mode, the multi-
plexer advances its channel address by one each time it receives an increment
command, returning to channel zero after scanning the last channel. Se-
quenced operations can be short-cycled when the number of channels in use
is less thah the maximum available.

*Conversion rate = [(35 + 2.5) (10%) (64)]"' = 415 cycles/sec
**Conversion rate = [(9 + 2.5) (10*) (64)]"' = 1360 cycles/séc

Table 2. Analog-to-Digital Converter Type 139E Characteristics

Total
Switching Conversion Conversion
Word Length Point Error*** Time {in Rate

(in bits) (in percent). microseconds) (in ke)
6 *1.6 9.0 110.0

7 *0.8 10.5 95.0

8 *0.4 12.0 83.0

9 *0.2 13.5 74.0

10 - %0.1 17.0 58.5

11 *0.05 25.0 40.0

12 *0.025 35.0 28.5

***x15 LSB for quantizing error.

The Type 138E is a successive approximation converter that measures a O to
10 volt analog input signal and provides a binary output indication of the
amplitude of the input signal, Output indication accuracy is a function of the
conversion time, and is determined by a switch on the front panel. Each of the
seven positions of the rotary switch establishes an output word length, conver-
sion accuracy, and conversion time for operation of the converter. Overall
conversion error equals switching point error plus a quantization of =% the
digital value of the LSB. Converter characteristics selected for each switch
position are specified in Table 2.

Converter Specifications
Monotonicity: Guaranteed for all settings

Aperture Time: Same as conversion time
Converter Recovery Time: None

136

Analog Input: 0 to —10 volts is standard. Bipolar or specific amplitude range
input can be accommodated on special request. If a different voltage range is
desired, it is recommended that an amplifier be used at the source, since this
will also provide a low driving impedance and reduce the possibilities of noise

pickup between the source and the converter.

Input Loading: *1 microampere and 125 picofarads for the standard O to
—10 volt input.

Digital Output: A signed 6- to 12-bit binary number in 2's complement nota-
tion. A O volt input yields a digital output number of 4000, a —5 volt input
produces 0000s; and a — 10 volt input gives an output of 3777..

Controls: Binary readout indicators and a seven-position rotary switch for se-
lecting converter characteristics are provided on the front panel.

The Type 139E Multiplexer Control is intended for use with the Type 138E or
Type 189 analog-to-digital conversion systems in applications where the PDP-8
must process sampled analog data from multiple sources at high speeds.
Under program control the multiplexer can select from 2 to 64 analog input
signal channels for connection to the input of an analog-to-digital converter.
Channel selection is provided by Type A100, A101, A102, or A103 Multiplex
Switch FLIP CHIP modules. These module types each have slightly different
timing, impedance, and power characteristics so that multiplexers can be
built for wide differences in application by selecting the appropriate module
type. Each module contains two independent, floating, transistor switches let-
ting the user select any multiple of two channels to a maximum of 64. In the
individual address mode, the Type 139E routes the analog data from any pro-
gram-selected channel to the converter input. In the sequential address mode,
the muitiplexer advances the channel address by one each time it receives an
incrementing command, returning to channel zero after scanning the last
channel. Sequenced operations can be short-cycled when the number of chan-
nels in use is less than the maximum available.

A 6-bit channel address register (CAR) specifies a channel number from 0-77-.
A channel address may be chosen in one of two ways. It can be specified by
the content of bits 6-11 of the AC or by incrementing the content of the CAR.

Multiplexer Specifications

Indicators: Six binary indicators on the front panel give visual indication of
the selected channel. '

Multiplexer Switching Time: The time required to switch from one channel to
any program-specified channel, or to select the next adjacent channe! when
the.content of the -CAR -is-incremented -is- 2.5 microseconds: - This time 1s-
-measured from when either a select or increment command is received.

Both the converter and multiplexer circuits are constructed entirely of FLIP
CHIP modules. Both the Type 138E converter and the Type 139E Multiplex
Control (implemented to 24 input channels) circuits can be contained in one
standard 64-connector module mounting panel.

The following 10T commands have been assigned to the Type 138E/139E con-
verter system: o

137

Skip on A-D Flag (ADSF)

Octal Code: 6531

Event Time: 1

Indicators: 10T, FETCH, PAUSE

Execution Time: 3.75 microseconds :

Operation: The A-D coriverter flag is sensed, and if it contains a binary 1 (in-
dicating that the conversion is complete). the content of the PC is incremented
by one so that the next instruction is skipped.

Symbol: I1f A-D Flag = 1,then PC + 1= >PC

Convert Analog Voltage to Digital Value (ADCV)

Octal Code: 6532
Event Time: 2
Indicators: 10T, FETCH, PAUSE
Execution Time: This time is a function of the accuracy and word length
switch setting as listed in Table 2.
Operation: The A-D converter flag is cleared, the analog input voltage is con-
verted to a digital value, and then the A-D converter flag is set to 1. The
number of binary bits in the digital-value word and the accuracy of the word
is determined by the preset switch position.
Symbol: ‘

0 = > A-D Flag at start of conversion, then

1 = > A-D Flag when conversion is done.

Read A-D Converter Buffer (ADRB)

Octal Code: 6534
Event Time: 3
Indicators: 10T, FETCH, PAUSE
Execution Time: 3.75 microseconds
Operation: The converted number contained in the converter buffer (ADCB)
is transferred into the AC left justified; unused bits of the AC are left in a clear
state, and the A-D converter flag is cleared. This command must be preceded
by a CLA instruction. :
Symbol: -

ADCB = > AC

0 = > A-D Converter Flag

Clear Multiplexer Channel (ADCC)

Octal Code: 6541

Event Time: 1

Indicators: |0T, FETCH, PAUSE

Execution Time: 3.75 microseconds :

Operation: The channel address register (CAR) of the multiplexer is cleared in
preparation for setting of a new channel. ‘
Symbol: 0 = > CAR

Set Multiplexer Channel (ADSC)

Octal Code: 6542

Event Time: 2

Indicators: 10T, FETCH, PAUSE

Execution Time: 3.75 microseconds

Operation: The channel address register of the multiplexer is set to the chan-
nel specified by bits 6 through 11 of the AC. A maximum of 64 single-ended
or 32 differential input channels can be used.)

Symbol: AC 6-11 = > CAR

138

Increment Multiplexer Channel (ADIC)

Octal Code: 6544

Event Time: 3

Indicators: 0T, FETCH, PAUSE

Execution Time: 3.75 microseconds

Operation: The content of the channel address reglster of the multlplex is in-
cremeted by one. If the maximum address is contained in the register when
this command is glven the minimum address (00) is selected.

Symbol: CAR.+ 1 = > CAR

Converter Program

A program to cycle through all channels of the converter a given number of
times, staring the conversion values at successive core memory locations can
be written as follows:

LOOP, ADIC /INCREMENT CAR
ADCV /INITIATE CONVERSION
ADSF /WAIT FOR FLAG
JMP -1
ADRB /READ A-D CONVERTER BUFFER

DCA | Z 10 /STORE RESULT IN ADDRESS SPECIFIED
/BY AUTO-INDEX REGISTER 10

ISZ CNTR /INCREMENT CYCLE COUNTER

JMP LOOP / REPEAT CYCLE
/END OF LOOP

Executive of this program loop takes 25.5 microseconds plus the conversion
time, which is 35 microseconds maximum. Therefore, the worst case con-
ditions for this routine require a 60.5-microsecond executlon time and a
- minimum conversion rate of 16.5 kh.

DIGITAL-TO-ANALOG CONVERTER (TYPE AAOQ1A)

The general-purpose Digital-to-Analog Converter Type AAO1A converts 12-bit
binary computer output numbers to analog voltages. The basic option consists
of three channels, each containing a 12-bit digital buffer register and a
digital-to-analog converter (DAC). Digital input to all three registers is pro-
vided, in common, by one 12-bit input channel which receives bussed output
connections from the accumulator. Appropriate precision voltage reference
supplies are provided for the converters.

One 10T microinstruction simultaneously selects a channel and transfers a
digital number into the selected register. Each converter operates continu-
ously_on the content of the associated register to provide an analog output
voltage.

Type AAO1A options can be specified in a wide range of basic configurations;
e.g., with from one to three channels, with or without output operational ampli-
fiers, and with internally or externally supplied reference voltages. Configura-
tions with double buffer registers in each channel are also available.

Each single-buffered channel of the equipment is operated by a single 10T
command. Select codes of 55, 56, and 57 are assigned to the AAO1A, making
it possible to operate nine single-buffered channels or various configurations of
double-buffered channels. A typical instruction for the. AAO1A is:

139

Load Digital-to-Analog Converter 1 (DAL1)

Octal Code: 6551

Event Time: 1

Indicators: 10T, FETCH, PAUSE

Execution Time: 3.75 microseconds '

Operation: The content of the accumulator is loaded into the digital buffer
register of channel 1.

Symbol: AC = > DAC1

The analog output voltage of a standard converter is from ground to —9.9976
volts (other voltages are available in equipment containing output operational
amplifiers). All binary input numbers are assumed to be 12 bits in length with
negative numbers represented in 2's complement notation. An input of 4000,
yields an output of ground potential; an input of 0000; yields an, output of —5
volts; and an input of 1777; yields an output of —10 volts minus the analog
value of the'least significant digital bit. Output accuracy is £0.0125% of full
scale and resolution is 0.025% of full scale value. Response time, measured
directly at the converter output, is 3 microseconds for a full-scale step change
“to 1 least significant bit accuracy. Maximum buffer register loading rate is 2
megahertz.

DISPLAY EQUIPMENT

Cathode-ray tube display equipment available for use with the PDP-8 includes
the Oscilloscope Display Type 34D and the Precision Display Type 30N. The
Light Pen Type 370 operates with either of these devices.

~ Oscilloscope Display Type 34D

Type 34D is a two axis digital-to-analog converter and an intensifying circuit,
which provides the Deflection and Intensify signals needed to plot data on an
oscilloscope. Coordinate data is loaded into an X buffer (XB) or a Y buffer
(YB) from bits 2 through 11 of the- accumulator. The binary data in these
buffers is converted to a —10 to O volt Analog Deflection signal. The 30-volt
Intensify signal is connected to the grid of the oscilloscope CRT. The duration
of this signal, and hence the intensity of the point displayed, is determined
by a 2-bit brightness register (BR). The content of the BR controls timing
circuits that establish nominal durations of 1-, 2-, or 4-microsecond for the
Intensify signal. The BR is loaded from a number contained in the appropriate
IOT instruction. Application of power to the computer or pressing of the
START key resets the BR to the maximum brightness. Points can be plotted
at approximately a 30-kilohertz rate. The instructions for this display are:

Clear X Coordinate Buffer (DCX)

Octal Code: 6051

Event Time: 1 ' ‘

Indicators: 0T, FETCH, PAUSE

Execution Time: 3.75 microseconds

Operation: The X coordinate buffer is cleared in preparation for receiving new
X-axis display data.

Symbol: 0 = > XB

Clear and Load X Coordinate Buffer (DXL)

Octal Code: 6053
Event Time: 1, 2
Indicators: 10T, FETCH, PAUSE

140

Execution Time: 3.75 microseconds :
Operation: The X coordinate buffer is cleared, then loaded with new X-axis
data from bits 2 through 11 of the AC.
Symbol: :
0=>XB
AC2-11 = > XB

Clear Y Coordinate Buffer (DCY)

Octal Code: 6061 v
Event Time: 1

Indicators: 10T, FETCH, PAUSE -
Execution Time: 3.75 microseconds :
Operation: The Y coordinate buffer is cleared in preparation for receiving new
Y-axis display data. ' :
Symbol: 0 = > YB

Clear and Load Y Coordinate Buffer (DYL)

Octal Code: 6063

Event Time: 1, 2

Indicators: 10T, FETCH, PAUSE

Execution Time: 3.75 microseconds

Operation: The Y coordinate buffer is cleared then loaded with new Y-axis
data from bits 2 through 11 of the AC. :

Symbol:
0=>YB
AC2-11=>YB
Intensify (DIX)

Octal Code: 6054

Event Time: 3

Indicators: 10T, FETCH, PAUSE

Execution Time: 3.75 microseconds : '
Operation: Intensify the point defined by the content of the X and Y coordinate
buffers. This command can be combined with the DXL command.

Symbol: None :

Intensify (DIY)

Octal Code: 6064

Event Time: 3

Indicators: 10T, FETCH, PAUSE

Execution Time: 3.75 microseconds

Operation: Intesify the point defined by the content of the X and Y coordinate
buffers. This command is identical to the DIX command except that it can be
combined with the DYL command.

Symbol: None =~

X Coordinate Sequence (DXS)

Octal Code: 6057

Event Time: 1,2, 3

Indicators: 10T, FETCH, PAUSE

Execution Time: 3.75 microseconds

Operation: This command executes the combined functions performed by the
DXL and DIX commands. The X coordinate buffer is cleared then loaded from
the content of AC2 through AC11, then the point defined by the content of the
X and Y buffers is intensified.

141

Symbol:
0=>XB
AC 2-11 = > XB
then intensify -

Y Coordinate Sequence (DYS)

Octal Code: 6067
Event Time: 1, 2,3
Indicators: 10T, FETCH, PAUSE
Execution Time: 3.75 microseconds
Operation: This command executes the combined functions performed by the
DYL and DIY commands. The Y coordinate buffer is cleared, then loaded
from the content of bits AC2 through 11, then the point defined by the content
of the X and Y coordinate buffers is intensified.
Symbol:

0=>YB

AC2-11 = >YB

then intensify

Set Brightness Control (DSB)

Octal Code: 607X

Event Time: 3

Indicators: 0T, FETCH, PAUSE

Execution Time: 3.75 microseconds

Operation: The brightness register (BR) is loaded from the content of bits 10
and 11 of the instruction. When the instruction is 6075 the minimum bright-
ness (0.4 microsecond) is set, when 6076 the medium brightness (0.8 micro-
second) is set, and when 6077 the maximum brightness (3.0 microseconds)
is set.

Symbol: MB10-11 = > BR

The following program sequence to display a point assumes that the coordinate
data is stored in known addresses X and Y.

X,
Y,
BEG, CLA
TAD X /LOAD AC WITH X
DXL /CLEAR AND LOAD XB
CLA
TAD Y /LOAD AC WITH Y _
- DYS / CLEAR AND LOAD YB, DISPLAY POINT

Precision CRT Display Type 30N

Type 30N functions are similar to those of the Type 34D Oscilloscope Display
in plotting points on a self-contained 16-inch cathode ray tube. A 3-bit bright-
ness register is contained in Type 30N to control the duration of the Intensify
signal supplied to the CRT. The content of this register specifies the bright-
ness of the point being displayed according to the following scale:

142

BR Content Intensity

3 brightest
2

1

0 average
7

6

5

4 dimmest

The BR register is loaded by jam transfer (transfer ones and zeros so that
clearing is not required) from the AC by the instruction:

Load Brightness Register (DLB)

Octal Code: 6074

Event Time: 3

Indicators: 10T, FETCH, PAUSE

Execution Time: 3.75 microseconds

Operation: The bnghtness register (BR) is loaded by a Jam transfer of infor-
mation contained in bits 9 through 11 of the AC.

Symbol: AC 9-11 = > BR

All other instructions and the instruction sethenCe are similar to thoge used
in the Type 34D.

Light Pen Type 370

The light pen is a photosensitive device which detects the presence of infor-
mation displayed on a CRT. If the light pen is held against the face of the
CRT at a pomt displayed, the display flag will be set to a 1. The light pen dis-
play flag is connected into the computer instruction skip facility. The com-
mands are:

Skip on Display Flag (DSF)

Octal Code: 6071

Event Time: 1

Indicators: 10T, FETCH, PAUSE

Execution Time: 3.75 microseconds

Operation: The content of the display flag is sensed, and if it contains a 1 the
content of the PC is incremented by one so that the next sequential instruction
is skipped.

Symbol: If Display Flag = 1, then PC +1 = > PC

Clear the Display Flag (DCF)

Octal Code: 6072

Event Time: 2

Indicators: 10T, FETCH, PAUSE

Execution Time: 3.75 mlcroseconds

Operation: The display flag is cleared in preparation for sensing another pomt
on the CRT.

Symbol: 0 = > Display Flag

INCREMENTAL PLOTTER AND CONTROL (TYPE 350B)

Four models of California Computer Products Digital Incremental Recorder can
be operated from a Digital Type 350 Increment Plotter Control. Characteristics

143

of the four recorders are:

Step Paper
CCP Size Speed Width
Mode! {inches) (steps/ minute) (inches)
563 0.01 or 0.005 12,000 31
565 0.01 or 0.005 18,000 12

The principles of operation are the same for each of the four models of Digital
Incremental Recorders. Bidirectional rotary step motors are employed for
both the X and Y axes. Recording is produced by movement of a pen relative
to the surface of the graph paper, with each instruction causing an incremen-
tal step. X-axis deflection is produced by motion of the drum; Y-axis deflec-
tion, by motion of the pen carriage. Instructions are used to raise and lower
the pen from the surface of the paper. _Each incremental step can be in any
one of eight directions through appropriate combinations of the X and Y axis
instructions. All recording (discrete points, continuous curves, or symbols) is
accomplished by the incremental stepping action of the paper drum and pen
carriage. Front panel controls permit single-step or continuous-step manual
operation of the drum and carriage, and manual controt of the pen solenoid.
The recorder and control are connected to the computer program interrupt
and instruction skip facility.

Instructions for the recorder and control are:
Skip on Plotter Flag (PLSF)

Octal Code: 6501

Event Time: 1 .

Indicators: 10T, FETCH, PAUSE .
Execution Time: 3.75 microseconds

Operation: The plotter flag is sensed, and if it contains a 1 the content of the
PC is incremented by one so the next sequential instruction is skipped.
Symbol: If Plotter Flag = 1, then PC+1=>PC

Clear Plotter Flag (PLCF)

Octal Code: 6502

Event Time: 2

Indicators: |OT, FETCH, PAUSE

Execution Time: 3.75 microseconds

Operation: The plotter flag is cleared in preparation for issuing a plotter op-
eration command.

Symbol: 0 = > Plotter Flag

Pen Up (PLPU)

Octal Code: 6504

Event Time: 3

Indicators: 10T, FETCH, PAUSE

Execution Time: 3.75 microseconds

Operation: The plotter pen is raised from the surface of the paper.
Symbol: None

Pen Right (PLPR)

Octal Code: 6511 e

Event Time: 1 '

Indicators: 10T, FETCH, PAUSE

Execution Time: 3.75 microseconds

Operation: The plotter pen is moved to the right in either the raised or lowered

Ld

144

position.
Symbol: None

Drum Up (PLDU)

Octal Code: 6512

Event Time: 2

Indicators: 10T, FETCH, PAUSE

Execution Time: 3.75 microseconds

Operation: The plotter paper drum is moved upward. This command can be
combined with the PLPR and PLDD commands.

Symbol: None

Drum Down (PLDD)

Octal Code: 6514

Event Time: 3

Indicators: 10T, FETCH, PAUSE

" Execution Time: 3.75 microseconds

Operation: The plotter paper drum is moved downward.
Symbol: None

Pen Left (PLPL)

Octal Code: 6521

Event Time: 1

Indicators: 10T, FETCH, PAUSE

Execution Time: 3.75 mleroseconds

Operation: The plotter pen is moved to the left in either the ransed or lowered
position.

Symbol: None

Drum Up (PLUD)

Octal Code: 6522

Event Time: 2

Indicators: 10T, FETCH, PAUSE

Execution Time: 3.75 mlcroseconds

Operation: The plotter paper drum is moved upward This command is simi-
lar to command 6512 except that it can be combined with the PLPL or PLPD
commands.

Symbol: None

Pen Down (PLPD)

Octal Code: 6524

Event Time: 3 —

Indicators: 10T, FETCH, PAUSE

Execution Time: 3.75 microseconds

Operation: The plotter pen is lowered to the surface of the paper. .

Symbol: None

Program sequence must assume that the pen location is known at the start
of a routine since there is no means of specifying an absolute pen location in
an incremental plotter. Pen location can be preset by the manual controls on
the recorder. During a subroutine, the PDP-8 can track the location of the
pen on the paper by counting the instructions that increment position of the
pen and the drum.

145

CARD READER AND CONTROL (TYPE CRO1C)

The Card Reader and Control Type CRO1C reads standard 12-row, 80-column
punched cards at a maximum rate of 100 cards per minute. Cards are read
by column, beginning with coiumn 1. One select instruction starts the card
moving past the read station. Once a card is in motion, all 80 columns are
read. Data in a card column is sensed by mechanical star wheels which close
an electrical contact when a hole (binary 1) is detected. Column information
is read in one of two program selected modes: alphanumeric and binary. In
the alphanumeric mode the 12 information bits in one column are automati-
cally decoded and transferred into the least significant half of the accumulator
as a 6-bit Hollerith code. Appendix 3 lists the Hollerith card codes. In the
binary mode the 12 bits of a column are transferred directly into the accumu-
lator so that the top row (12) is transferred into ACO and the bottom row (9) is
transferred into AC11. A punched hole is interpreted as a binary 1 and no
hole is interpreted as a binary O.

Three program flags indicate card reader conditions to the computer. The
data ready flag rises and requests a program interrupt when a column of in-
formation is ready to be transferred into the AC. A read alphanumeric or read
binary command must be issued within 1.5 milliseconds after the data ready
flag rises to prevent data loss. The card done flag rises and requests a pro-
gram interrupt when the card leaves the read station. A new select command
must be issued within 25 milliseconds after the card done flag rises to keep
the reader operating at maximum speed. Sensing of this flag can eliminate
the need for counting columns, or combined with column counting can provide
a check for data loss. The reader-not-ready flag can be sensed by a skip com-
mand to provide indication of card reader power off, no card in the read ste-
tion, or that a reader failure has been detected. When this flag is raised the
reader cannot be selected and select commands are ignored. The reader-not-
ready flag is not connected to the program interrupt facility and cannot be
cleared under program control. Manual intervention is required to clear the
reader-not-ready flag. Instructions for the CRO1C are:

Skip on Data Ready (RCSF)

Octal Code: 6631

Event Time: 1

Indicators: 10T, FETCH, PAUSE

Execution Time: 3.75 microseconds

Operation: The content of the data ready flag is sensed, and if it contains a 1
(indicating that information for one card column is ready to be read) the con-
tent of the PC is incremented by one so the next sequential instruction is
skipped. ‘

Symbol: If Data Ready Flag = 1,then PC + 1 = > PC

Read Alphanumeric (RCRA)

Octal Code: 6632
Event Time: 2
Indicators: 10T, FETCH, PAUSE
Execution Time: 3.75 microseconds
Operation: The 6-bit Hollerith code for the 12 bits of a card column are trans-
ferred into bits 6 through 11 of the AC, and the data ready flag is cleared.
Symbol: AC6-11 V Hollerith Code = > AC6-11
0 = > Data Ready Flag

146

Read Binary (RCRB)

Octal Code: 6634
Event Time: 3
indicators: i0T, FETCH, PAUSE
Execution Time: 3.75 microseconds
Operation: The 12-bit binary code for a card column is transferred directly
into the AC, and the data ready flag is cleared. . Information from the card col-
umn is transferred into the AC so that card row 12 enters ACO, row 11 enters
AC1, row O enters AC2, . . . and row 9 enters AC 11.
Symbol: AC V Binary Code = > AC

0 = > Data Ready Flag

Skip on Card Done Flag (RCSP)

Octal Code: 6671

Event Time: 1 :

Inaicators: 10T, FETCH, PAUSE

Execution Time: 3.75 microseconds

Operation: The content of the card done flag is sensed, and if it contains a 1
(indicating that the card has passed the read station) the content of the PC is
incremented to skip the next sequential instruction.

Symbol: If Card Done Flag =1, then PC + 1 = > PC

Select Card Reader and Skip If Ready (RCSE)

Octal Code: 6672
Event Time: 2 _
Indicators: 10T, FETCH, PAUSE
Execution Time: 3.75 microseconds
Operation: The content of the reader-not-ready flag is sensed and if it con-
tains a 1 (indicating that the carqg reader is ready for programmed operation)
the PC is incremented to skip the next sequential instruction; a card is started
towards the read station from the feed hopper; and the card done flag is
cleared. If the reader-not-ready flag contains a O (indicating power is off or
no card is in the read station) card selection (motion) does not occur and the
skip does not occur.
Symbol: If Reader-Not-Ready Flag = 1, then PC + 1 = > PC

- 0 = > Card Done Elag

Clear Card Done Flag (RCRD)

Octal Code: 6674

Event Time: 3

Indicators: 0T, FETCH, PAUSE

Execution Time: 3.75 microseconds v

Operation: The card done Tlag is cleared. This command aiiows a program to
stop reading at any point in a card deck.

Symbol: 0 = > Card Done Flag

A logical instruction sequence to read cards is:

START, RCSE / START CARD MOTION AND SKIP IF READY
JMP NOT RDY /JUMP TO SUBROUTINE THAT TYPES OUT
/“CARD READER MANUAL INTERVENTION

/REQUIRED” OR HALTS

147

NEXT, RCSF
JMP -1
RCRA or RCRB

DCA I STR
RCSD

JMP NEXT
JMP OUT

/ DATA READY?

/NO, KEEP WAITING

/YES, READ ONE CHARACTER OR ONE
/COLUMN

/STORE DATA

/{END OF CARD?

/NO, READ NEXT COLUMN

/YES, JUMP TO SUBROUTINE THAT CHECKS
/CARD COUNT OR REPEATS AT START FOR
/NEXT CARD

No validity or registration checking is performed by the CRO1C.- A pro-
grammed validity check can be made by reading each card column in both
the alphanumeric and the binary mode (within the 1.5 millisecond time limi-
tation), then performing a comparison check.

Before commencing a card reading program energize the reader, load the
feed hopper with cards, and manually feed the first card to the read station.
The function of the manual controls and indicators are as follows (as they
appear from right to left on the card reader):

Control or Indicator
ON/ OFF switch

AUTO/MAN switch

3

REG switch

SKIP switch

CHECK READER indicator
READY indicator

CARD RELEASE pushbutton

Function
Controls the application of primary power to the
reader. When power is applied, the reader is
ready to respond to operation of the other keys
or programmed commands.

Controls card reading. In the manual position
this switch disables the card feed mechanism
so that cards must be manually placed on the
read table and registered by pressing the REG
key. In the ‘automatic position card motion
from the feed hopper through the read station
is under program control.

When the AUTO/MAN switch is in the AUTO
position the REG key is used to feed the first
card to the read station. When the AUTO/MAN
switch is in the MAN position the'REG key is
used to feed a card manually placed on the
read table.

This key is not connected on the CRO1C and
has no effect on equipment operation.

This lamp is not connected on the CRO1C.

Lights when the reader is energized and cards
are present in the feed hopper. The plastic
card cover should always be used on top of a
deck of cards to assure that the ready switch
and indicator are activated.

When pressed, this pushbutton (adjacent to the
read station) releases a card already in the read
station.

148

CARD READER AND CONTROL (TYPE 451)

The Card Reader and Control Type 451A operates at a rate of 200 cards per
minute, and the Type 451B operates at a rate of 800 cards per minute. Cards
- are read column by column. Column information is read in either aiphanu-
meric or binary mode. The alphanumeric mode converts the 12-bit Hollerith
code of one column into the 6-bit binary-coded decimal-code with code validity
checking. The binary mode reads a 12-bit column directly into the computer.
Approximately one percent of the computer program running time is required
to execute a routine that reads the 80 columns of information at the 200 cards
per minute rate. '

The control of the card reader differs from the control of other input devices,
in that the timing of the read-in sequence is dictated by the device. When the
command to fetch a card is given, the card reader reads all 80 columns of
information ifh sequence. To read a column, the program must respond to a
flag set as each new column is started. The instruction to read the column
‘must come within 2.2 milliseconds of the flag at 200 cards per minute, or
must come within 400 microseconds at 800 cards per minute. The com-
mands for either card reader are:

Skip on Card Reader Flag (CRSF)

Octal Code: 6632

Event Time: 2

Indicators: 0T, FETCH, PAUSE

Execution Time: 3.75 microseconds .

Operation: The content of the card reader flag is sensed, and if it contains a 1
(indicating that a card column is present for reading) the content of the PC is
incremented by one so that the next sequential instruction is skipped.

Symbol: If Card Reader Flag = 1, then PC + 1 = > PC

Read Card Equipment Status (CERS)

Octal Code: 6634

- Event Time: 3

Indicators: 10T, FETCH, PAUSE

Execution Time: 3.75 microseconds

Operation: The content of the card reader flag and status levels are trans-
ferred into the content of bits AC6 through AC9. The AC bit assignments are:

AC6 = Flag is set to 1 (the flag rises after reading each of the 80 rows).

AC7 = Card done.

AC6 = Not ready (covers not in place, power is off, START pushbutton
has not been pressed, hopper is empty, stacker is full, a card
is jammed, a validity check error has been detected, or the read

. Circuitisdefective). — _ . .

AC9 = End of the file (EOF) (hopper is empty and operator has pushed

EOF pushbutton).
Symbol: Status = > AC6-9

Read Card Reader Buffer (CRRB) .

Octal Code: 6671

Event Time: 1

Indicators: 10T, FETCH, PAUSE

Execution Time: 3.75 microseconds

Operation: The content of the card column buffer (CCB) is transferred into

149

the AC and the card reader flag is cleared. One CRRB command reads either
alphanumeric or binary information. ’
Symbol: CCB = > AC

Select Alphanumeric (CRSA)

Octal Code: 6672

Event Time: 2

Indicators: 0T, FETCH, PAUSE

Execution Time: 3.75 microseconds .
Operation: The card readér alphanumeric mode is selected and a card is
started moving past the read heads. Information read into the CCB is in &-bit
alphanumeric form (the Hollerith code representing the decoded 12 row
character in one column).

Symbol: None

Select Binary (CRSB) | '

Octal Code: 6674

Event Time: 3

Indicators: 10T, FETCH, PAUSE

Operation: The card reader alphanumeric mode is selected and a card is
started moving past the read heads. Information read into the CCB is in 12-bit
binary form.

Symbols: None

Upon instruction to read the card reader buffer, the content of the 12-bit CCB
is transferred into the AC. In the alphanumeric mode a 6-bit Hollerith code is
transferred into AC6 through AC11 and ACO through AC5 are cleared. In the
binary mode the binary content of the 12 bits (or rows) in a card column are
transferred into the AC so that row X is read into ACO, row Y into AC1, row O
into AC2 and row 9 into AC11. The mode is specified by either the
CRSA or CRSB command and can be changed while the card is being read.

'CARD PUNCH CONTROL (TYPE 450)

The Card Punch Control Type 450 permits operation of a standard IBM Type
523 Summary Punch with the PDP-8. Punching can occur at a rate of 100
cards per minute. Cards are punched one row at a time at 40-millisecond
intervals.

The card punch determines the timing of a read-out sequence, much as the
card reader controls the read-in timing. When a card leaves the hopper, all 12
rows are punched at intervals of 40 milliseconds. Punching time for each row
is 24 milliseconds, leaving 16 milliseconds to load the buffer for the next row.
A card punch flag indicates that the buffer is ready to be loaded. The com-
mands for the card punch control are:

Skip on Card Punch Flag (CPSF)

Octal Code: 6631

Event Time: 1

Indicators: 10T, FETCH, PAUSE

Execution Time: 3.75 microseconds

Operation: The card punch flag is sensed, and if it contains a binary 1 (indi-
cating that the punch buffer is available and can be loaded) the content of the
PC is incremented by one so the next sequential instruction is skipped.

Symbol: If Card Punch Flag = 1,then PC + 1 = > PC

150

Card Equipment Read Status (CERS)

Octal Code: 6634
Event Time: 3
Indicators: 10T, FETCH, PAUSE
Execution Time: 3.75 microseconds .
Operation: The content of the card punch flag and the status of the Card
Punch Error signal in the control are transferred into bits 10 and 11 of the
AC, respectively.
Symbol:

Card Punch Flag = > AC10

Card Punch Error = > AC11

Clear Punch Flag (CPCF)

Octal Code: 6641

Event Time: 1 . ¢

Indicators: 10T, FETCH, PAUSE

Execution Time: 3.75 microseconds : '
“Operation: The card punch flag is cleared in preparation for giving a selector
punch command.

Symbol: 0 = > Card Punch Flag

Select Card Punch (CPSE)

Octal Code: 6642

Event Time: 2

Indicators: I0T, FETCH, PAUSE

Execution Time: 3.75 microseconds ~

- Operation: The card punch is selected and a card is transported to the 80-
column punch die from the:-hopper. :

Symbol: None

Load Card Punch (CPLB)

Octal Code: 6644

Event Time: 3

Indicators: 10T, FETCH, PAUSE

Execution Time: 3.75 microseconds

Operation: The content of the AC is transferred into a portion of the 80-bit
card punch row buffer (CPB). Seven CPLB commands are required to fill
the CPB.

Symbol: AC = > CPB

Since ‘12 bits are transmitted with each 10T instruction, seven 10T instruc-
tions must be issued to load the 80-bit row buffer. The first six loading in-
structions fill the first 72 bits (or columns); the seventh loads the remaining
8 bits of the buffer from AC bits 4 through 11. After the last row of punching
is complete, 28 milliseconds are available to select the next card for con-

thasas puniching.”If the Tiext card is not requested in this interval, the card ~

punch will stop. The maximum rate of the punch is 100 cards per minute in
continuous operation. A delay of 1308 milliseconds follows the command to
select the first card; a delay of 108 milliseconds separates the punching of
cards in continuous operation.

The card punch flag is connected to the program interrupt and to bit 10 of the
CERS instruction. Faults occurring in the punch are detected by status bit 11
of the CERS and signify the punch is disabled, the stacker is full, or the
hopper is empty.

151

A program sequence to punch 12 rows of data on a card can be written as
follows, assuming the data to be punched in each row is stored in seven con-
secutive core memory locations beginning in location 100. The program be-
gins in register PNCH. '

PNCH, CLA
CERS /READ CARD STATUS
RAR JROTATE PUNCH ERROR BIT (AC11)
/INTO LINK
SzZL. /PUNCH ERROR?
" JMP CPERR JYES, JUMP TO PUNCH ERROR SEQUENCE
CPSE /NO, SELECT CARD PUNCH
CLA » | .
TAD LOC /INITIALIZE CARD IMAGE
DCA 10
TAD RCNT -
DCA TEM 1 /INITIALIZE 12 ROW COUNTS
LP1, CLA |
TAD GPCT /INITIALIZE 7 GROUPS PER ROW
DCA TEM2
CPSF /SENSE PUNCH LOAD AVAILABILITY
JMP -1
LP2, CLA
TAD | 10 /7 GROUPS OF 12 BITS PER ROW
CPLB / LOAD BUFFER
ISZ TEM2
JMP LP2
1SZ TEM1 JTEST FOR 12 ROWS
JMP LP1
HLT /END PUNCHING OF 1 CARD
Loc, 77 /LOCATION OF CARD IMAGE
RCNT, ~14 /12 ROWS PER CARD
GPCT, ~7 /7 GROUPS PER ROW
TEM1, 0 /ROW COUNTER
TEM2, 0 / GROUP COUNTER

AUTOMATIC LINE PRINTER AND CONTROL (TYPE 645)

The line printer can print 300 lines of 120 characters per minute. Each
character is selected from a set of 64 available, by a 6-bit binary code (Ap-
pendix 2 lists the ASCII character specified for each code). Each 6-bit code is
loaded separately into a core storage printing buffer (LPB) from bits 6 through
11 of the AC. The LPB is divided into two 120-character sections. To load one
section of the LPB requires 120 load instructions. A print command causes
the characters specified by the last-loaded section of the LPB to be printed
on one line. As printing of one section of the LPB is in progress, the other
section can be reloaded. After the last character in a line is printed, the sec-
tion of the LPB from which characters were just printed is cleared automati-
cally. The section of the LPB that is loaded and printed is alternated auto-
matically within the printer and is not program specified.

The line printer can load characters into the LPB at a 10-microsecond rate,
clears one section of the LPB in 3 to 6 milliseconds, and moves paper at the
rate of one line every 18 milliseconds. When transfer of one code into the
LPB is completed, the line printer done flag rises to indicate that tie printer

152

is ready to receive another code. When printing of the last character of a sec-
tion of the LPB is completed, the line printer done flag rises and causes a
program interrupt to request reloading of that section of the LPB. A line
printer error flag rises and causes a program interrupt if the line printer de-

tects an inoperative condition (printer power off, control circuits not reset,
paper supply low, etc.).

A 3-bit format register (FR) in the printer is loaded from bits 9 through 11 of
the AC during a print command. This register selects one of eight channels of
- a perforated tape in the printer to control spacing of the paper. The tape
moves in synchronism with the paper until a hole is sensed in the selected
‘channel to halt paper advance. A recommended tape has the following charac-
teristics: ‘

FR Code Paper _ Tape
(Octal) o Spacing Track
0 1 line 2
1 2 lines 3
2 3 lines : 4
3 6 lines (1/4 page) 5
4 11 lines (1/2 page) 6
5 22 lines (3/4 page) 7
6 33 lines (line feed) 8
7 top of form 1

The 10T instructions which command the line printer are:

Skip on Line Printer Error (LSE)

Octal Code: 6651

Event Time: 1

Indicators: 10T, FETCH, PAUSE

Execution Time: 3.75 microseconds

Operation: The content of line printer error flag is sensed, and if it contains a
binary 1, indicating that an error has been detected, the content of the PC
is incremented by one so that the next sequential instruction is skipped.
Symbol: If Line Printer Error Flag = 1, then PC + 1 = > PC

Clear Printer Buffer (LCB)

Octal Code: 6652

Event Time: 2

Indicators: 10T, FETCH, PAUSE

Execution Time: 3.75 microseconds

Operation: Both sections of the line printer buffer are cleared in preparation
for receiving new character information.

Symbol: 0= >1PB. . . .

Load Printer Buffer (LLB)

Octal Code: 6654

Event Time: 3

Indicators: 10T, FETCH, PAUSE

Execution Time: 3.75 microseconds

Operation: A section of the printer buffer is loaded from the content of bits 6
through 11 of the AC, then the AC is cleared.

Symbol: AC6 — 11 = > LPB, then 0 = > AC

153

Skip on Line Printer Done Flag (LSD)

Octal Code: 6661

Event Time: 1

Indicators; 10T, FETCH, PAUSE

Execution Time: 3.75 microseconds

Operation: The content of the line printer done flag is sensed ‘and if it con-
tains a binary 1 the content of the PC is incremented by one so that the next
sequential instruction is skipped.

Symbol: If Line Printer Done Flag = 1, then PC + 1 = > PC

Clear Line Printer Flags (LCF)

Octal Code: 6662
Event Time: 2
Indicators: 10T, FETCH, PAUSE
Execution Time: 3.75 microseconds
Operation: The line printer done and error flags are cleared
Symbol:
0 = > Line Printer Done Flag
0 = > Line Printer Error Flag

-

Clear Format Register (LPR)

Octal Code: 6654

Event Time: 3 -

indicators: 10T, FETCH, PAUSE

- Execution Time: 3.75 microseconds

Operation: The line printer format register (FR) is cleared then loaded from
the content of bits 9 through 11 of the AC, and the AC is cleared. The line
contained in the section of the printer buffer (LPB) loaded last is printed.
Paper is advanced in accordance with the selected channel of the format tape
if the content of AC8 isa 1. If AC8 is a O paper advance is inhibited.

Symbol:
0=>FR
AC9 — 11 =>FR
0=>AC

The content of half of the LPB is printed
If AC8 = 1, then advance paper according to format tape channel FR

The following routine demonstrates the use of these commands in a sequence
which prints an unspecified number of 120-character lines. This sequence
assumes that the printer is not in operation, that the paper is manually posi-
tioned for the first line of print, and that one-character words are stored in
sequential core memory locations beginning at 2000. The PRINT location
starts the routine.

PRINT, LCB /INITIALIZE PRINTER BUFFER
CLA
TAD LOC /LOAD INITIAL CHARACTER ADDRESS
DCA 10 /STORE IN AUTO-INDEX REGISTER
LRPT, TAD CNT /INITIALIZE CHARACTER COUNTER
DCA TEMP
LOOP, LSD /WAIT UNTIL PRINTING BUFFER READY
JMP LOOP
LCF /CLEAR LINE PRINTER FLAG
TAD | 10 /LOAD AC FROM CURRENT CHARACTER
/ ADDRESS

154

LLB {LOAD PRINTING BUFFER
ISZ TEMP / TEST FOR 120 CHARACTERS LOADED -

JMP LOOP

TAD FRM /LOAD SPACING CONTROL AND

LPR /PRINT A LINE

JMP LRPT /JUMP TO PRINT ANOTHER LINE
LOC, 1777 /INITIAL CHARACTER ADDRESS —1
CNT, - . —170 /CHARACTER COUNTER — 120 DECIMAL
TEMP, 0 /CURRENT CHARACTER ADDRESS
FRM, 10 /SPACING CONTROL AND FORMAT

SERIAL MAGNETIC DRUM SYSTEM (TYPE 251)

The Type 251 Serial Magnetic Drum System is a standard option that serves
as an auxiliary data storage device. Information in the PDP-8 can be stored
(written) in the drum system and retrieved (read) in sectors of 128 computer
words. After program initialization, sectors are transferred automatically be-
tween the computer core memory and the drum system, transfer of each word
being interleaved with the running computer program under control of the
computer data break facility. A word is transferred in parallel (12 bits at a
time) and is read or written around the surface of the drum serially (one bit
at a time). Within the drum system words consist of 12 information bits and
a parity bit. Parity bits are generated internally during writing, and are read
- and checked during reading. Each word is transferred in about 66 microsec-
onds; a sector transfer is completed in 8.2 milliseconds. Average access time
is 8.65 milliseconds (17.3 milliseconds maximum). Track and sector format on
the drum surface is such that all transfers require the same amount of time,
so track and sector are specified together as an 11-bit address for 128 words.

Drum systems are available with 8, 16, 32, 64, 128, 192, or 256 tracks; each
track holds 8 sectors of 128 13-bit words. The various drum system capaci-
ties are designated by a letter suffix to the system type number as follows:
Type 251A, 8K words; 251B, 16K words; 251C, 32K words; 251D, 65K words;
251E, 131K words; 251F, 196K words; and 251G, 262K words.

Indicator lamps on a front panel usually display the content of the four major
registers and the status of control flip-flops. The major registers are:

Drum Core Location Counter (DCL): A 15-bit register which addresses the next
core memory location to or from which a word is to be transferred. As a word
is transferred, DCL is incremented by one.

Drum Address Register (DAR): An 11-bit register which addresses the drum
track-and -sector-which--is-currently--transferring data. - The-eight-most- signifi-
cant bits of the DAR specify the track and the least significant three bits
specify a sector on that track. At the completion of a successful sector trans-
fer (error flag is 0) DAR is incremented by one.

Drum Final Buffer (DFB): A 12-bit register under control of the data break fa-
cility which is a buffer between the memory buffer register and the drum
serial buffer. During writing, the DFB holds the next word to be written.
During reading, the DFB stores the word just read from the drum until it is
transferred to the PDP-8.

155

Drum Senal Buffer (DSB): A 14-bit register which contains a data word and
two control bits. It is a serial-to-parallel converter during drum reading, and a
parallel-to-serial converter during drum writing. Information is read from the
drum into DSB serially and transferred to DFB in parallel. During drum writ-

ing, a word is, transferred in parailel from DFB into DSB and wntten seriaily
around the drum.

Instructions

The commands for the drum system are as follows:

Load Drum Core Location Counter and Read (DRCR)

Octal Code: 6603
Event Time: 1, 2 \
Indicators: 10T, FETCH, PAUSE
Execution Time: 3.75 mlcroseconds
Operation: The core memory location information in the AC is transferred into
the DCL and the drum is prepared to read one sector of information for trans-
fer to the specified core memory location. *
Symbol:

AC = > DCL

1 = >'Read Control

Load Drum Core Lacation Counter and Write (DRCW)

Octal Code: 6605
Event Time: 1,3
Indicators: 10T, FETCH, PAUSE
Execution Time: 3.75 microseconds
Operation: The core memory location information in the AC is transferred into
the DCL and the drum is prepared to write on one sector the information be-
ginning at the specified core memory address.*
Symbol:
AC = > DCL
1 = > Write Control

Clear Drum Flags (DRCF)

Octal Code: 6611
Event Time: 1
Indicators: 10T, FETCH, PAUSE on computer and COMPLETION FLAG and
ERROR FLAG on the drum system become dark.
Execution Time: 3.75 microseconds
Operation: Both completion flag and error flag are cleared
Symbol: A
0 = > Completion Flag
9 = > Error Flag

*The sector, track, and core memory address are suitably incremented and
allow transfer of the next sequent|al sector without respecifying addresses.
The DRCN instruction must be given within 50 microseconds after the comple-
tion flag is set to 1 during the previous sector.

156

Load Parity and Data Error (DREF)

Octal Code: 6612
Event Time: 2
Indicators: 10T, FETCH, PAUSE
Execution Time: 3.75 microseconds
Operation: The content of both the parity error and data timing error flip-flops
of the drum control is transferred into bits ACO and AC1, respectively. The
command allows the program to evaluate the cause of an error flag setting.
Symbol:
Parity Error = > ACO .
" Data Timing Error = > AC1

Load the Track and Sector (DRTS)

Octal Code: 6615
Event Time: 1,3
Indicators: 10T, FETCH, PAUSE
Execution Time: 3.75 microseconds
Operation: Track and sector information in bits 1-11 of the AC is transferred
into the DAR, the completion and error flags are cleared, and a transfer (read-
ing or writing) is begun.
Symbol:
AC1-11 = > DAR
0 = > Completion Flag
O = > Error Flag

Skip on Drum Error (DRSE)

Octal Code: 6621

Event Time: 1

Indicators: 10T, FETCH, PAUSE

Execution Time: 3.75 microseconds

Operation: The error flag is sampled: and if it contains a O (indicating no
error has been detected) the PC is incremented to skip the next instruction.
Symbol: If Error Flag = 0, then PC +1 = > PC

Skip on Drum Completion (DRSC)

Octal Code: 6622

Event Time: 2

Indicators: 10T, FETCH, PAUSE

Execution Time: 3.75 microseconds

Operation: The completion flag is sampled and if it contains a 1 (indicating a
sector transfer is complete) the PC is incremented to skip the next instruction.
Symbol: If completion Flag = 1,thenPC + 1 = > PC

Initiate-Next Transfer (DRCN)

Octal Code: 6624

Event Time: 3

Indicators: 10T, FETCH, PAUSE

Execution Time: 3.75 microseconds

Operation: Both the error and completion flags are cleared, then the transfer
of the next sector is initiated.

Symbol:

0= > ErrorFlag
0 = > Completion Flag
then start transfer

. 157

Programming

Two instructions cause the transfer of a 128-word sector. The first (DRCR or
DRCW) specifies the initial core memory location of the transfer and the direc-
tion of the transfer (drum-to-core or core-to-drum). The second instruction
(DRTS) specifies the track. and sector address and initiates the transfer.
Transfer of each word is under control of the computer data break facility and
completion of a sector transfer is indicated by a completion flag that causes a
program interrupt.

The eight most significant bits of a drum address select one of 256 tracks;
the three least significant bits select one of eight sectors on the track. A 300-
microsecond gap identifies the beginning of a track (sector 0). Even num-
bered sectors (0, 2, 4, and 6) are recorded consecutively following the 300-
microsecond gap. A 50-microsecond gap identifies the beginning of the odd
number sectors (sector 1). Odd numbered sectors (1, 3, 5, and .7) are re-
corded consecutively following the 50-microsecond gap. This format allows
the transfer of two consecutively numbered sectors in one drum revolution,
provided the continuation instruction (DRCN) is issued in the first 50 micro-
seconds after the drum flag rises to indicate completion of a sector transfer.
The program interrupt subroutine can easily determine that the drum system
caused an interrupt, check the number of sectors transferred, check for drum
errors by sampling the error flag, and issue the continuation instruction in
50 microseconds.

Because the selection of a track read-write head requires 200 microseconds
stabilization time, a new track must be specified during the first 200 micro-
seconds of the 300-microsecond gap for continuous transferring. If selected
tracks and sectors are consecutive, uninterrupted transferring may be pro-
grammed merely by specifying continuation, since the drum system address
and the core memory address are automatically incremented. However, if a
data timing or parity error occurs, the track and sector number is not ad-
vanced and operations stop at the conclusion of a sector transfer. This
feature allows the program to sense for error conditions and to locate the
track and sector at which transmission fails.

The drum completion flag is set to 1 upon completion of a sector transfer,
causing a program interrupt. The flag is cleared either by a clear flag instruc-
tion (DRCF) or automatically when one of two transfer instructions (DRTS,
DRCN) is given.

The error flag, which should be checked at the completion of each transfer,
indicates either of the following conditions:

(1) That a parity error has been detected after reading from drum to core.

(2) That the Break Request signal from thé drum system was not answered
within the required 66-microsecond period. This condition occurs either
because other devices with higher priority are being serviced by the data
break facility, or because an instruction requiring longer than 66 micro-
seconds for completion is in progress when the break request is made.

In reading from the drum, a data word is incorrect in core memory. In
writing on the drum, the next word has not been received from the com-
puter.

The following program examples indicate the operatton of the drum system
in single and multiple sector transfers.

p—t
(8}
oo

SUBROUTINE TO TRANSFER (READ) ONE SECTOR

CLA - /CALLING SEQUENCE
TAD ADDR /INITIAL CORE MEMORY ADDRESS
JMS READ : :
0 / TRACK AND SECTOR ADDRESS
0 /RETURN
READ, O
DRCR /DRCW TO WRITE
TAD | READ /LOAD AC WITH TRACK AND SECTOR ADDRESS
DRTS :
DRSC / DONE?
JMP .1 / NO
DRSE / ERRORS?
JMP ERR /JUMP TO ERROR CHECK ROUTINE
ISZ READ

JMP | READ /RETURN
SUBROUTINE TO TRANSFER SUCCESSIVE (TW0) SECTORS

CLA JCALLING SEQUENCE
TAD ADDR /INITIAL CORE MEMORY ADDRESS
JMS READ
0 /TRACK AND SECTOR ADDRESS
0 /RETURN
READ, 0
DRCR /DRCW TO WRITE
TAD | READ /LOAD AC WITH TRACK AND SECTOR ADDRESS
DRTS _
DRSC /DONE?
JMP .—1 /NO
DRSE /ERRORS?
JMP ERR JJUMP TO ERROR CHECK ROUTINE
DRCN ~ /CLEAR FLAGS, CONTINUE TRANSFER
/OF NEXT SECTOR
DRSC
JMP .—1
DRSE
‘JMP ERR
ISZ READ

JMP | READ' /RETURN

DECTAPE SYSTEMS

The DECtape system is a standard option for tne PDP-8 whicn serves as an
auxiliary magnetic tape data storage facility. The DECtape system stores infor-
mation at fixed positions on magnetic tape as in magnetic disk or drum
storage devices, rather than at unknown or variable posjtions as is the case in.
conventional magnetic tape systems. This feature allows replacement of
blocks of data on tape in a random fashion without disturbing other previously
recorded information. In particular, during the writing of information on tape,
the system reads format (mark) and timing information from the tape and
uses this information to determine the exact position at which to record the
information to be written. Similarly, in reading the same mark and timing
information is used to locate data to be played back from the tape.

159

This system has a number of features to improve its reliability and make it
exceptionally useful for program updating and program editing applications.
These features are: phase or polarity sensed recording on redundant tracks,
bidirectional reading and writing, and a simple mechanical mechanism utiliz-
ing hydrodynamicaliy iubricated tape guiding (the tape fioats on air and does
not touch any metal surfaces).

DECtape Format

DECtape utilizes a 10-track read/write head. Tracks are arranged in five non-
adjacent redundant channels: a timing channel, a mark channel, and three
information channels. Redundant recording of each character bit on non-
adjacent tracks materially reduces bit drop outs and minimizes the effect of
skew. Series connection of corresponding track heads within a channei and
the use of Manchester phase recording techniques, rather than amplitude
sensing techniques, virtually eliminate drop outs.

The timing and mark channels control the timing of operations within the con-
trol unit and establish the format of data contained on the information chan-
nels. The timing and mark channels are recorded prior to all normal data
reading and writing on the information channels. The timing of operations
performed by the tape drive and some control functions are determined by the
information on the timing channel. Therefore, wide variations in the speed of
tape motion do not affect system performance. Information read from the
mark channel is used during reading and writing data, to indicate the begin-
ning and end of data blocks and to determine the functions performed by the
system in each control mode.

During normal data reading, the control assembles 12-bit computer length
words from four successive lines read from the information channels of the
tape. During normal data writing, the control disassembles 12-bit words and
distributes the bits so they are recorded on four successive lines on the infor-
mation channels. A mark channel error check circuit assures that one of the
permissible marks is read in every six lines on the tape. This 6-line mark
channel sensing requires that data be recorded in 12-line segments (12 being
the lowest common multiple of 6-line marks and 4-line data words) which cor-
respond to three 12-bit words.

[
[2)]
(=)

191

“{Same os TT 1)

TIMING TRACK |

MARK TRACK |

INFORMATION TRACK |

INFORMATION TRACK 2

INFORMATION TRACK 3

INFORMATION TRACK A
(Same as IT |}

INFORMATION TRACK 2A
(Same as 1T 2)

INFORMATION TRACK 3A
(Same os IT 3)

MARK TRACK (A
(Same as MT |)

TIMING TRACK |A

Figure 9. DECtape Track Allocations |

REDUNDANT
- TRACKS

3/4

ONE COMPLETE REEL - 260 FT 4096 BLOCKS

CoPOL duom aNo
P oM NG

1 quom: 3NG.
\\\.\%a\\\\n.ﬂ
OHOM ANG

DATA
WORDS

END
. zoNE

qUOM: INO
GHOM IND
CgHOM 3N

QHOM 3NO

Quom: 3RO

-
CONTROL WORDS ~——

quom 3N
QO INO.
AHOM T 3NO

QHOM - BND
SRR
AHOM: ING

GHOM ENO
- gyom anNe
LOHOM aNo:
COHOM. SNG
b adom NG
: .,M £ HOM ING

i gEOM: aNe
S CaNOm 3ND
Toob dlom aNe
- - JUOM 3NO
A adom ang
11 ovow AN
aHOm. aND
T RN A
QYoM IND

ONE BLOCK, 86 18-BIT WORD LOCATIONS
129,, DATA WORD LOCATIONS

ST duom aNe

T QHOM. 3RO

|QHOM. NG,

L] adom NG

OHOM 3ND

CONTROL WORDS

QHom 3NG
| quom ano
| | owom avo

QHOM AN
ALL RO AL
OO -aND-

L GHom BN
LONOM AND

BLOCK' BLOCK BLOCK BLOCK BLOCK BLOCK BLOCK BLOCK BLOCK. BLOCK BLOCK' BLOCK 'SLOCK BLOCK BLOCK BLOCK BLOCK BLOCK

DATA
WORDS

- N

|

TIMING TRACK
MARK TRACK
INFORM-

ATION
TRACKS

162

DECtape Mark Channel AFormat

Figure 10.

€91

Forward direction of tape motion

————

JEXPAND BLOCK REVERSE

M E £

Eie

k

ONE BLOCK 86,5 18-BIT WORD LOCATIONS

1290 12-BIT DATA WORD LOCATIONS

|
|
|
|
I
|
|

REVERSE REVERSE REVERSE
CHECK REVERSE PRE- Y PRE- CHECK REVERSE BLOCK EXPAND
'3
iCODE MARK GUARD LOCK SUM FINAL FINAL DATA DATA DATA DATA DATA FINAL FINAL SUM LOCK GUARD MARK CODEI
SGoUeE R apip b pl b o R R e 6 M E B

PERMITS EXPANSION OF
BLOCK NUMBER

SIGNIFIES START OF BLOCK AND
ALLOWS COMPUTER PROGRAM TO
IDENTIFY BLOCKS

PROVIDES WRITE PROTECTION IN REVERSE
DIRECTION AND SYMMETRY

NOT USED IN PDP-B CONFIGURATIONS BUT
PROVIDED TO ALLOW COMPATIBILITY WITH
OTHER COMPUTERS

PROVIDES SYMMETRICAL ERROR PROTECTION
IN BOTH DIRECT!ONS

R SRS

D, D2 D3 Dy Ds Diz Dize Dizz Dias

? PERMITS EXPANSION OF BLOCK
NUMBER

BLOCK NUMBER AS REVERSE DIRECTION

SAME FUNCTION AS REVERSE LOCK

PROTECTS TAPE !N EVENT OF MARK CHANNEL

SAME AS FINAL IN REVERSE DIRECTION
{FIRST DATA WORD}

ERRORS

PROVIDES AUTOMATIC ERROR DETECTION
AND END OF BLOCK DETECTION WHEN READING

IDENTIFIES FINAL DATA WORD AND REQUESTS

SAME AS PRE-FINAL IN REVERSE DIRECTION
(SECOND DATA WORD)

CHECKSUM

NOT USED BUT PROVIDED TO ALLOW TAPE

SUCCESSIVE DATA WORDS

COMPATIBILITY WITH OTHER SYSTEMS

ADDITIONAL DATA WORDS

K

NOTE: END MARKS WHICH IDENTIFY THE PHYSICAL ENDS
OF THE TAPE, ARE THE ONLY MARKS NOT SHOWN.

Code functions listed apply only in the direction indicated.

Figure 11. DECtape Control Word and Data Word Assignments

122!

Line Line Line Line Line Line | Line Line Line Line Line Line]Line Line Line Line| Line Line Line Line | Line Line Line Line
| 2 3 4 5 6 | 2 3 4 5 6 | 2 3 4 t 2 3 4

TIMING TRACK

6 hes T

» e el
MARK TRACK ARK TRACK. CODE g g

INFORM-
ATION 2
TRACKS

| REDUNDANT

TRACKS
NOT
SHOWN

6 lines (I8 bits) 6 lines ({8 bits) 4 fines (12 bits) 4 lines (12 bits) 4 lines (12 bits)

Figure 12. DECtape Format Details

A tape contains a series of data blocks that can be of any length which is a
multiple of three 12-bit words. Block length is determined by information on
the mark channel. Usually a uniform block length is established over the en-
tire length of a reel of tape by a program which writes mark and timing infor- -
mation at specific locations. The ability to write variable-length blocks is-use-
ful for certain data formats. For example, smaii biocks containing index or tag
information can be alternated: with large blocks of data. (Software supplied
with DECtape allows writing for fixed block lengths only.)

Between the blocks of data are areas called interblock zones. The interblock
zones consist of 30 lines on tape before and after a block of data. Each of
these 30 lines is divided into five 6-line control words. These 6-line control
words allow compatibility between DECtape written on any of DEC's 12-, 18-,
or 36-bit computers. As used on the PDP-8, only the last four lines of each
control word are used.

Block numbers normally occur in sequence from 1 to N. There is one block
numbered O and one block N + 1. Programs are entered with a statement of
the first block number to be used and the total number of blocks to be read or
written. The total length of the tape is equivalent to 849,036 lines which can
be divided into any number of blocks up to 4096 by prerecording of the mark
track. The maximum number of blocks is determined by the following equa-
tion in which N; = number of blocks and Ns = number of words per block
(N. must be divisible by 3). : ‘

212112

Ne= N 715 ~

DECtape format is illustrated in Figures 9 through 12.

DECtape Dual Transport (Type 555) and -

DECtape Control (Type 552)

The Type 555 Dual DECtape Transport consists of two logically independent
tape drives, capable of handling 3.5-inch reels of 0.75-inch magnetic tape.
Bits are recorded at a density of 350 =55 bits per track inch at a speed of over
80 inches per second on the 260-foot length of a reel. Each line on the tape is
read or written in approximately 33 microseconds. Simultaneous writing
occurs in three channels (three pairs of redundant information tracks), while
reading occurs in the mark and timing channels (two pairs of redundant
tracks).

The Type 552 DECtape Control operates up to four 555 transports (8 drives)
to transfer binary information read from the tape into 12-bit computer words
approximately every 133%3 microseconds. In writing, the control disassembies
12:-bit computer ‘words so that they are written at four successive -tines on
tape. Transfers between the computer and the control always occur in parallel
for a 12-bit word. Data transfers use the data break facilities of the com-
puter. As the start and end of each block are detected by the mark track de-
tection circuits, the control raises a DECtape (DT) flag which causes a
computer program interrupt. The program interrupt is used by the computer
. program to determine the block number and when it determines that the

forthcoming block is the one selected for a data transfer, it selects the read
or write control mode. Each time a word is assembled or the DECtape is ready
to receive a word from the computer, the control raises a data flag. This flag

165

is connected to the computer data break facility to signify a break request.
Therefore, when the desired block is detected, the data flag causes a data
break and initiates a transfer. By using the mark track decoding circuits and
data break facility in this manner, computation in the main computer program
~ can continue during tape operations.

Data Buffer (DB): This 12-bit register serves as a storage buffer for data to be
transferred between DECtape and the computer memory buffer register. Dur-
ing a read operation information sensed from the tape is transferred into the
DB from the read/write buffer and is transferred to the computer during a
data break cycle. During a write operation the DB received information from
the computer and transfers it to the read/write buffer for disassembly and re-
cordmg on tape. In this manner the DB synchronizes data transfers by allow-
ing transfers between itself and the read/write buffer as a function of the
tape timing.

Read/Write Buffer (R/WB): This 12-bit register is composed of three 4-bit shift
registers. During reading, one bit from each information track is read into a
separate segment of the R/WB and shifted right or left as a function of the
direction of tape movement. When four tape positions have been read, the
content of the R/WB is set into the DB as an assembled 12-bit computer
word. Durings writing, the contents of each segment of the R/WB is shifted
serially to the write register (one bit from each of the three segments of the
R/WB is transferred into the write register at a time to provide the data to be
written at one line) for recording on tape.

Write Register: A 3-bit register which is alternately loaded from the R/WB
and complemented to write the phase-coded information on tape.

Select Register: This 4-bit register is loaded under program control to specify
the tape drive selected for operation from the control unit. A single Type 522
DECtape Control can select the drives of four Type 555 Dual DECtape Trans-
ports (eight tape drives).

Motion Register: This 2-bit register contains a go/ stop flip-flop and a forward/
reverse flip-flop which control the motion of the selected tape drive. The regis-
ter is set under program control.

Longitudinal Parity Buffer (LPB): This 6-bit register performs a parity check of
the information in the three information tracks. The check essentially reads
the number of binary zeros in each half of a 12-bit data word and forms a
parity bit to be recorded in the checksum control word at the end of the data
block. This is effected by setting the information read from two consecutive
tape positions into the LPB and then complementing a bit of the LPB if the
corresponding bit of the R/WB contains a 0. After reading a block of data
the LPB holds a number which indicates the parity of bits 0 and 6, 1 and 7,
etc. A1 in the LPB at this time indicates odd parity and a O indicates even
parity. When a block of data has been read correctly the LPB contains all
binary ones. If the LPB does not contain all ones when a block of data has
been read, the parity or mark track error flip-flop is set to 1.

Memory Address Counter (MAC): This 12-bit register specifies an address in
computer core memory to be used for each word transfer. During program
initialization, the starting address of a transfer is set into MAC from the com-
puter accumulator. During the transfer, the address contained in MAC is
transferred into the computer memory address register <for each data word.

166

The contents of MAC is incremented by 1 at the conclusion of each word
transfer so that the transfers occur between successive addresses of com-
puter core memory and tape, regardless of tape direction.

Window (W): This 9-bit register serves as a control signal generator for the
DECtape system. The mark track data is stored in the W and control signals
are generated as a function of the mode of operation in progress and the
contents of the W. For example, in the search mode when the W detects a
block mark, control signals are generated to raise the DECtape (DT) flag to
indicate the presence of a block number in the DB and signals the start of
data block to the computer. '

Device Selector (DS): The device selector is a gating circuit which produces
the 10T pulses necessary to initiate operation of the DECtape system and
strobe information into the computer. -

Dectape Flag (DT): This flip-flop serves as an indicator of DECtape system op-
eration to the computer and is connected to the computer program interrupt
facility. The function of the DT flag is determined by the control mode in
operation at the time, as follows:

a. In the search mode the DT flag rises each time a block mark (block
number) is read to indicate the beginning of a new block and to allow
programmed determination of the block number which just passed
the read/write head. ' '

b. In the read data or write data modes the DT flag rises at the end of
each block to indicate the end of a data block. Under these condi-
tions the computer program can sense for this flag to determine
when the transfer is complete.

c. In the read all bits or write all bits modes the DT flag rises to indi-
cate completion of each 12-bit word transfer. Since block marks are
not observed in these modes, this flag can be used by the computer
program to count the number of words transferred as a means of
determining tgpe location.

Ve

Error Flag: This flag is raised by four error conditions. When the flag rises it
initiates a program interrupt to allow the computer interrupt subroutine to de-
termine the condition of the 552 control by means of a read status command.
The four error conditions indicated are:)

a.. End: The tape of the selected transport is in the end zone and tape
motion is stopped automatically. Under these conditions end is an
error if it is not expected by the program in process or is a legitimate
signa! used to indicate the end of a nermat operation (such as re-
wind) if it is anticipated by the program. If the transport is not
selected when the tape enters the end zone this signal is not given,
tape motion is not stopped automatically, and the tape can run off
the end of the reel.

b. Timing Error: The program was not able to keep pace with the tape

transfer rate or a new motion or select command was issued before
the previous command was completely executed.

167

c. Parity or Mark Track Error: Indicates that during the course of the
previous block transfer a data parity error was detected, or one or
more bits have been picked up or dropped out from either the timing
track or the mark track.

Q

a Farma Franmarmard ol =~ ’\’\ a0
elect Error: Signifies that a tape transport unit select ervoi

] as
ccurred such that more than one transport in the system have b en
assigned the same select code or that no transport ha been assigned
the programmed select code.

_)'

Therefore, a select error indicates an error by the operator, a timing error is a
program error, and a parity or mark channel error indicates an equipment mal-
function. Under certain conditions the end may also be an indication of
equipment malfunction.

Data Flag: This flag is raised each time the DECtape system is ready to trans-
fer a 12-bit word with the computer. When raised, the flag produces a com-
puter data break.

INSTRUCTIONS

DECtape system commands are microinstructions of the PDP-8 input-output
transfer (I0T) instruction, as listed in the following paragraphs:

Load Select Register (MMLS)

Octal Code: 6751
Event Time: 1
indicators: 10T, FETCH, PAUSE
Execution Time: 3.75 microseconds
Operation: The unit select register (USR) is loaded from the content of bits 2
through 5 of the AC, the DECtape flag (DT) is cleared, and a delay is initiated.
Loading of the USR involves relay switching which takes approximately 70 mil-
liseconds. When the delay expires the DT flag is set as an indication that load-
ing of the USR is complete and the next DECtape instruction can be given.
Symbol:

AC2-5 = > USR

1 = > DT when done

Load Motion Register (MMLM)

Octal Code: 6752
‘Event Time: 2
“Indicators: 10T, FETCH, PAUSE
Execution Time: 3.75 microseconds
Operation: The motion register (MR) is loaded from the content of bits 7 and
8 of the AC, the DECtape ﬂag is cleared, and a 70 millisecond delay is ini-
tiated. When the delay expires the DT flag is set, |nd|cat|ng that loading of the
MR is completed and the next DECtape mstructlon can be given,.
Symbol:

AC7-8 = > MR

1 = > DT when done

Load Function Register (MMLF)

Octal Code: 6754

Event Time: 3 '

Indicators: 10T, FETCH, PAUSE

Execution Time: 3.75 microseconds

Operation: The function register (FR) is loaded from the content of bits 9
through 11 of the AC, then the AC is cleared. Octal decoding of these three

168

bits establish the following DECtape control modes:

0 = Move 4 = Write data
1 = Search 5 = Write all bits
2 = Read data 6 = Write mark and timing
3 = Read all bits
Symbol:
AC9-11 = > FR,
then0 = > AC

Skip on DEC tape Flag (MMSF)

Octal Code: 6761

Event Time: 1

Indicators: 10T, FETCH, PAUSE

"Execution Time: 3.75 microsetonds

Operation: The content of the DECtape flag is sensed, and if it contains a
binary 1, the content. of the PC is incremented by one so the next instruction
is skipped. _

Symbol: If DT =1, then PC + 1 = > PC

Clear Memory Address Counter (MMCC)

Octal Code: 6762

Event Time: 2 ~

Indicators: 0T, FETCH, PAUSE

Execution Time: 3.75 microseconds ,

Operation: The memory address counter (MAC) is cleared.
Symbol: 0 = > MAC

Load Memory Address Counter (MMLC)

Octal Code: 6764
Event Time: 3
Indicators: |0T, FETCH, PAUSE
Execution Time: 3.75 microseconds
Operation: A transfer of binary ones is performed from the content of the AC
into the memory address counter, then the AC is cleared.
Symbol:
AC VMAC = > MAC
then 0 = > AC

Skip on Error Flag (MMSC)

Octal Code: 6771

Event Time: 1

Indicators: |0T, FETCH, PAUSE

Execution Time: 3.75 microseconds

Operation: The content of the error flag is sensed, and if it contains a 1 (sig-
nifying that an error has been detected) the content of the PC is incremented
by one so0.the next sequential instruction is skipped.

Symbol: If Error Flag = 1, thenPC + 1 = > PC

Clear Flags (MMCF).

Octal Code: 6772

Event Time: 2

Indicators: 10T, FETCH, PAUSE

Execution Time: 3.75 microseconds

Operation: Both the DECtape and error flags are cleared.
Symbol: 0 = > DT, Error Flag

169

Read Status (MMRS)

Octal Code: 6774
Event Time: 3
Indicators: 10T, FETCH, PAUSE
Execution Time: 3.75 microseconds
Operation: The condition of the status ieveis is transferred into bits O through
7 of the AC. The AC bit assighments are:
ACO = DT flag
AC1 = Error flag ’
AC2 = End (selected tape at end point)
AC3 = Timing error :
AC4 = Reverse tape direction
AC5 = Go
AC6 = Parity or mark track error
AC7 = Select error
Symbol: Status Levels V ACO-7 = > ACO-7

CONTROL MODES

The seven modes of operation loaded into the function register during the
MMLF command are used as follows:

Move: Initiates movement of the selected transport tape in either direction.
Mark channel errors are inhibited in this mode.

Search: As the tape is moved in either direction, sensing a block mark causes
both the data flag and the DT flag to rise. The data flag causes a computer
data break to deposit the block number in core memory at the address held in
MAC. The DT flag initiates a program interrupt to cause the program to jump
to a subroutine which is responsible for checking the block numbers by using
either the block number stored during this operation or by counting the num-
ber of times the DT flag rises.

Read Data: A block of data is read in either direction, the data flag rises to
cause a data break each time a 12-bit word is to be transferred, and the DT
flag is raised to initiate a program interrupt at the end of the data block. The
program is responsible for controlling tape motion at the end of a block
transfer and must stop motion or change the content of the function register
when the DT flag rises. The transpert continues reading until taken out of the
read data mode.

Read All Bits: In this mode of operation the three information channels in
data blocks and interblock zones are continuously read and transferred to the
computer. This mode is similar to the read data mode except that the DT
flag rises each time the data flag rises. The read all bits mode is used to read
an unusual tape format which is not compatible with the read data mode.
The DT flag is inhibited from causing a program interrupt in this mode.

Write Data: A block of data is written on tape in either direction, the data flag
is raised to effect each transfer, and the DT flag is raised at the end of the
block as in the read data mode.

Write All Bits: This special mode of cperation is used to write information at
all positions, disregarding blocks (such as in writing block numbers). The
mode is similar to the read all bits mode for writing. The DT flag does not
cause a program interrupt in this mode. :

Write Mark and Timing: This mode is used to write on the .timing and mark
channels to establish or change block length.

170

PROGRAMMED OPERATION

Prerecording of a reel of DECtape, prior to its use for data storage, is ac-
complished in two passes. During the first pass, the timing and mark chan-
nels are placed on the tape. During the second pass, forward and reverse
block mark numbers, the standard data pattern, and the automatic parity
checks are written. Since part of the data word must be reserved to produce
the mark channel, it is impossible to write intelligent data in the information
channels at the same time. For this reason, the two passes are required.
Prerecording utilizes the write timing and mark channel control mode and a
manual switch in the control which permits writing on the timing and mark
channels, activates a clock which produces the timing channel recording pat-
tern, and enables flags for program control. Unless both this control mode
and switch are used simultaneously, it is physically impossible to write on the
mark or timing channels. A red indicator lights on all transports associated
with the control when the manual switch is in the “on” position. Under these
conditions only, the write register and write amplifier used to write on informa-
tion channel O (bits 0, 3, 6, and 9) is used to write on the mark channel.

Two PDP-8 10T microinstructions initiate operation of the DECtape system: the
first (MMMM) loads the select register, motion register, and function register
by means of instruction 6757 (combining MMLS, MMLM, and MMLF) and the
second command (MMML is 6766, combining MMCC and MMLC) loads the
MAC with the core memory address to be used to store the block number dur-
ing searching. After initiating operation of the DECtape system, the program
should always check for errors immediately by means of the MMSC instruc-
tion. This instruction should also be used at the conclusion of each transfer.
A program should always -start -the DECtape system ‘in-the search mode to-
locate the block number selected for a transfer, then when the block number
has been located the transfer is accomplished by loading the function register
with the read data or write data mode.

In searching, each block number is read by the transport and is transferred to
the control. The control raises the DT flag upon receipt of each block humber
and stores the number on the computer core memory at the address con-
- tained in MAC. The computer program, then samples the DT flag and either
- counts the number of blocks passed or reads the block number from core
memory and compares it with the number it is seeking. The results of the
data obtained in this way are used to further contro! the search operation.
Upon determining that the forthcoming block is the one selected for a data
transfer, the program loads the function register with either the read data or
write data mode. Entering another mode discontinues the search mode. The
starting address to be used for the first core memory address of the transfer
is then set into the MAC by the computer.

When the start of the data position of the block is detected the data flag is
raised to- initiate. a-data- break each time the DECtape system i¢ ready to
transfer a 12:pit word. Therefore, the main computer program continues run-
ning but is interrupted approximately every. 133%5 microseconds during a data
break for the transfer of a word. Transfers occur between DECtape and suc-
cessive core memory locations, commencing at the address previously set into
MAC. The number of words transferred is determined by the size of the se-
lected tape block. At the conclusion of the block transfer the DT flag is raised
and a program interrupt occurs. The interrupt subroutine checks the DECtape
error flag to determine the validity of the transfer and either initiates a search
for the next information to be transferred or returns to the main. program.

171

During all normal writing transfers, a checksum (the 6-bit exclusive OR of the

words in the data block) is computed automatically by the control and is auto-

matically recorded as one of the control words in the interblock zone imme-

diately following the end of the data block. This same checksum is used

during reading to determine that the data playback and recognition takes
place without error.

Any one of the eight tape drives may be selected for use by the program.
After using a particular drive, the program can stop the drive currently being
used and select a new drive, or can select another drive while permitting the
original selection to continue running. This is a particularly useful feature
when rapid searching is desired, since several transports may be used simul-
taneously. Caution must be exercised however, for although the earlier drive
continues to run, no tape end detection or other sensing takes place. Auto-
" matic end sensing that stops tape motion occurs in all modes, but only in the
selected tape drive. '

Whenever either the motion or select code is changed, the program must wait
until the DT flag is set to 1 before giving another motion or selection com-
mand. In other words, to prevent a timing error all operations of the currently
selected drive must be completed before issuing a new select code.

DECtape Trarsport (Type TU55) and
DECtape Control (Type TCO1)

. A DECtape system configuration contains up to eight TU55 transports operated
from one TCO1 control. All data transfers occur between the computer and
the control and are effected by the three-cycle data break facility. A 12-bit
data buffer in the control synchronizes transfers between the TCOl and the
PDP-8 data break facility. Data read from four consecutive lines on tape by
the transport are assembled into 12-bit words by a read/write buffer in the
control for transfer to the computer. Data loaded into the control from the
computer is disassembled by the read/write buffer and supplied to the trans-
port for writing on four lines of tape.

Transfer of command and control signals between the computer and the con-
trol is effected by normal 10T instructions. Small registers and control flip-
flops in the TCO1 are joined to serve as two status registers for the transfer of
command and control information with the PDP-8 accumulator. Bit assign-
ments of these registers is indicated in Figure 13 and Figure 14.

DECTAPE TRANSPORT (TYPE TU55)

The TU55 is a bidirectional magnetic-tape transport consisting of a read/write
head for recording and playback of information on five channels of the tape.
Connections from the read/write head are made directly to the external con-
trol which contains the read and write amplifiers.

The logic circuits of the TU55 control tape movement in either direction over
the read/ write head. Tape drive motor control is exercised completely through
the use of solid state switching circuits to provide fast reliable operation.
These switching circuits contain silicon coniroiied rectifiers whicin are Con-
trolled by normal DEC diode and transistor logic circuits. These circuits con-
trol the torque of the two motors which transport the tape across the head
according to the established function of the device, i.e., go, stop, forward, or
reverse. In normal tape movement, fuli torque is applied to the forward or
leading motor and a reduced torque is applied to the reverse or trailing motor

172

to keep proper tension on the tape. Since tape motion is bidirectional, each
motor serves as either the leading or trailing drive for the tape, depending
upon the forward or reverse control status of the TU55. A positive stop is
achieved by an electromagnetic brake mounted on each motor shaft. When a
stop command is given, the trailing motor brake latches to stop tape motion.
Enough torque is then applied to the leading motor to take up slack in the
tape.

Tape movement can be controlled by commands originating in the computer
and applied to the TU55 through the TCO1 DECtape Control, or can be con-
trolled by commands generated by manual operation of rocker switches on the
front panel of the transport. Manual control is used to mount new reels of tape
on the transport, or as a quick maintenance check for proper operation of the
control logic in moving the tape.

TU55 Dectape Transport Characteristics

-Times given are typical but are not accurately controlled. Since DECtape is
a fixed address system the programmer need not know accurately where the
tape has stopped. To locate a specific point on tape he must merely start tape
motion in search mode. The address of the block currently passing over the
head will be automatically transferred to core where it can be compared with
the desired block address and tape motion continued or reversed accordingly.

Start Time — 200 M Sec*
Stop Time — 200 M Sec*
Turn Around Time — 275 M Sec*

*Note Also see control spec. These times are frequently lengthened by
the particular control.

DECTAPE CONTROL TYPE TCO1

The TCO1 DECtape Control operates up to eight TUS5 DECtape Transports.
Binary information is transferred between the tape and the computer in 12-bit
computer words approximately every 13313 microseconds. In writing, the con-
trol disassembles 12-bit computer words so that they are written at four suc-
cessive lines on tape. Transfers between the computer and the control always
occur in parallel for a 12-bit word. Data transfers use the three-cycle data
break facility of the computer. As the start and end of each block of data are
detected by the mark track detection circuits, the control raises a DECtape
control flag (DTCF) which requests a computer program interrupt. The pro-
gram interrupt is used by the computer program to determine the block
number. When it determines that the forthcoming block is the one selected
for a data transfer it establishes the appropriate read or write function. Each
time a word is assembled or the DECtape system is ready to receive a word
from the computer, the control raises a data flag (DF). This flag is connected
to the computer data break facility to request a data break. Therefore, when
each 12-bit computer word is assembled, the data flag causes a transfer via
the three-cycle data break. By using the mark channel decoding circuits and
the data break in this manner, computation in the main computer program
can continue during DECtape operations. .

Four program flags in the control serve as condition indicators and request
originators.

DECtape Flag (DT): This flag indicates the active/done status of the current
function.

173

- Data Flag (DF): This flag requests a data break to transfer a block number
into the computer during a search function, or when a data word transfer is
required during read or write function.

DECtape Control Flag (DTCF): This flag, when enabled by a binary 1 in bit 9 of
* status register A, requests a program interrupt if either the DECtape. fiag or the
error flag is set and is connected to the instruction skip facility.

Error Flag (EF): Detection of any non-operative condition by the control sets
this flag in status register B and stops (except for parity érrors) the selected

transport. The error conditions indicated by this flag are:

a. Mark Track Error: This error occurs any time the information read
from the mark channel is erroneously decoded.

~b. End of Tape: The end zone on either end of the tape is over the read
head. ' ‘

c. Select Error: This error occurs five microseconds after loading status
register A to indicate any one of the following conditions:
1. Specifying a unit select code which does not correspond to any
transport select number, or which is set to muiltiple transports.
2. Specifying a write function with the WRITE ENABLED/WRITE
LOCK switch in the WRITE LOCK position on the selected trans-
port.
Specifying an unused function code (i.e. AC6-8 = 111).
Specifying any function except read all with the NORMAL/WRTM/
RDMK switch in the RDMK position.
Specifying any function except write timing and mark track with
the NORMAL/WRTM/RDMK switch in the WRTM position.
Specifying the write timing and mark track function with the
NORMAL/WRTM/RDMK switch in a position other than WRTM. -

o o AW

d. Parity Error: This error occurs during a read data function if the
longitudinal parity over the entire data word, the reverse checksum,
and the checksum is not equal to 1.

e. Timing Error: This error indicates a program fault caused by one of

the following conditions: ‘

1. A data break did not occur within 66 microseconds (+30%) of the
data break request.

2. The DT flag was not cleared by the program before the control
attempted to set it. '

3. The read data or write data function was specified while a data
block was passing the read head.

INSTRUCTIONS

Instructions for a TCO1/TU55 system are microprogrammed commands of the
PDP-8 10T instruction and are defined as follows:

Read Status Register A (DTRA)
Octal Code: 6761

Event Time: 1.

Indicators: 10T, FETCH, PAUSE
Execution Time: 3.75 microseconds

Operation: The content of status register A is loaded into the accumulator by -
an OR transfer. The AC bit assignments are:

174

ACO-2 = Transport unit select number
AC3(0) = Forward ‘
AC3(1) = Reverse

AC4(0) = Stop

AC4(1) =Go

AC5(0) = Normal mode

AC5(1) = Continuous mode

AC6-8 = 0 = Move function

AC6-8 = 1 = Search function

AC6-8 = 2 = Read data function

AC6-8 = 3 = Read all function

AC6-8 = 4 = Write data function

AC6-8 = 5 = Write all function

AC6-8 = 6 = Write timing and mark tracks function
AC6-8 = 7 = Unused (causes a select error if issued)

AC9(0) = DECtape Control Flag (DTCF) and error flag disabled from caus-
ing a program interrupt
AC9(1) = DECtape Control Flag (DTCF) and error flag enabled to cause a
program interrupt.
Symbol: ACO0-9 V Status Register A = > ACO-9

Clear Status Register A (DTCA)

Octal Code: 6762

Event Time: 2 :

Indicators: 10T, FETCH, PAUSE
Execution Time: 3.75 microseconds
Operation: Status register A is cleared. The DECtape flag and error flags are -
undisturbed.

Symbol: 0 = > Status Register A

Load Status Register A (DTXA)

Octal Code: 6764
Event Time: 3
Indicators: 10T, FETCH, PAUSE
Execution Time: 3.75 microseconds
Operation: The exclusive OR of the content of bits 0 through 9 of the accumu-
lator is loaded into status register A, and bits 10 and 11 of the accumulator
are sampled to control clearing of the error and DECtape flags, respectively.
Loading status register A from AC0-9 establishes the transport unit select
code, motion control, function, and enables or disables the DECtape control
flag to request a program interrupt as described in the DTRA instruction. The
sampling of AC10 and AC11 is as follows:

AC10(0) = Clear all error flags

AC10(1) = All error flags undisturbed

AC11(0) = Clear DECtape flag

AC11{1) = DEGtape-flag tndisturbed
The accumulator is cleared at the end of this instruction.
Symbol:

ACO-9 ¥+ Status Register A = > Status Register A

If AC10 = O, then O = > EF Flag

If AC11 = O, then 0 = > DT Flag

0= > AC

Skip on Flags (DTSF)

Octal Code: 6771
Event Time: 1

175

Indicators: 10T, FETCH, PAUSE

Execution Time: 3.75 microseconds

Operation: The content of both the error flag and the DECtape flag is sampled,
and if any flag contains a binary 1, the content of the program counter is in-
cremented by one to skip the next sequential instruction.

Symbol: If EF Flag = 1 V DT Flag = 1, then PC+1=>PC

Read Status Register B (DTRB)

Octal Code: 6772
. Event Time: 2
Indicators: 10T, FETCH, PAUSE
Execution Time: 3.75 microseconds
Operation: The content of status register B is loaded into the accumulator by
an OR transfer. The AC bit assignments are: _
ACO = Error flag (Error flag = mark track error V end of tape V select
error V parity error V timing error)
AC1 = Mark track error
AC2 = End of tape
AC3 = Select error
AC4 = Parity error
AC5 = Timing error
AC6-8 = Memory field
AC9-10 = Unused
AC11 = DECtape flag
Symbol: AC V Status Register B = > AC

Load Status Register B (DTLB)

Octal Ccde: 6774

Event Time: 3

Indicators: |OT, FETCH, PAUSE

Execution Time: 3.75 microseconds

Operation: The memory field register portion status register B is loaded from
the content of bits 6 through 8 of the accumulator. The accumulator is then
cleared.

Symbol: AC6-8 = > Memory Field, then 0 = > AC

CONTROL MODES

The DECtape system operates in either the normal or continuous mode, as de-
termined by bit 5 of status register A during a DTXA command. Operation in
each mode is as follows:

Normal (NM): Data transfers and flag settings are controlled by the format of
information on the tape.

Continuous (CM): Data transfers and flag settings are controlled by a word
count (WC) read from core memory during the first cycle of each three-cycle
data break; and by the tape format. °

FUNCTIONS .

The DECtape system performs one of seven functions, as determined by the
octal digit loaded into status register A du,ing a DTXA command. These func-
tions are:

Move: Initiates movement of the selected transport tape in either direction.

Mark channel décoding is inhibited in this mode except for end of tape.

176

Search: As the tape is moved in either direction, sensing a block mark causes
a data transfer of the block number. If the word count overflows (WCO) in
either NM or CM, the DT flag is set and causes a program interrupt. After
finding the first block number, the CM can be used to avoid all intermediate
interrupts between the current and the desired block number. This makes a
virtually automatic search possible.

Read Data: This function is used to transfer blocks of data into core memory
with the transfer controlled by the tape format. In NM the DT flag is set at
" the end of a block and causes a program interrupt. In CM transfers stop when
the word count overflows, the remainder of the block is read for parity check-
ing, and then the DT flag is set.

Read All: Read all is used to read tape in an unusual format, since it causes
all lines to be read. In NM the DT flag is set at each data transfer. In CM the
DT flag is set when WCO occurs. In either case the DT flag causes a program
mterrupt

Write Data: This function is used to write blocks of data with the transfer con-
trolled by the standard tape format. After WCO occurs, zeros are written in all
lines of the tape to the end of the current block. Then the parity checksum for
the block is written. The DT flag rises as the in the read data function .

Write All: The write all function is used to write an unusual tape format (e.g.,
block numbers). The DT flag raisings are similar to the read all function.

Write Timing and Mark Track: This function is used to write on the timing and
mark tracks. This permits blocks to be established or block lengths to be
changed. The DT flag raisings are also similar to the read all function. This
function is illegal unless a manual switch in the control is on.

PROGRAMMED OPERATION

Prerecording of a reel of DECtape, prior to its use for data storage, is ac-
complished in two passes. During the first pass, the timing and mark channels
are placed on the tape. During the second pass, forward and reverse block
mark numbers, the standard data pattern, and the automatic parity checks are
written. These functions are performed by the DECTOG program. Prerecord-
ing utilizes the write timing and mark channel function and a manual switch on
the control which permits writing on the timing and mark channels, activates
a clock which produces the timing channel recording pattern, and enables
flags for program control. Unless both this control function and switch are
used simultaneously, it is physically impossible to write on the mark or timing
channels. A red indicator Iamp on the control lights when the manual NOR-
MAL/WRTM/RDMK switch is in the WRTM position. Under these conditions
only, the wrlte register and write amphfler used to write on information chan-
nel 1 (bits 0, 3, 6, and 9) is used to write on the mark channei. This operation
of prerecordmg need only be performed once for each reel of DECtape.

There are two registers in the TCO1 DECtape Control that govern tape opera-
tion and provide status information to the operating program. Status register A
(see Figure 13) contains three unit selection bits, two motion bits, the con-
tinuous mode/normal mode bit, three function bits, and three bits that control
the flags. Status register B (see Figure 14) contains the three memory field
bits and the error status bits. PDP-8 |IOT microinstructions are used to clear,
read, and load these registers. In addition, there-is-an1OT skip instruction to
test control status.

177

ENABLE DECTAPE

CONTROL
NORMAL / ~ FLAG TO CAUSE CLEAR/CLEAR
TRANSPORT UNIT CONTINUOUS A PROGRAM DECTAPE
SELECT NUMBER MODE INTERRUPT FLAG
AL
’ - —~* — —
o | 2 3 4 s 6 7) 9 10 "
\ A - L v J \. ——)
FORWARD/ STOP/ FUNCTION CLEAR/CLEAR
REVERSE GO e ERROR
e R Y FLAGS
MOTON 0= MOVE 5: WRITE ALL
1 = SEARCH 6= WRITE TIMING
2 = READ DATA AND MARK TRACKS
3:=READ ALL 7:UNUSED (CAUSES
4:WRITE DATA SELECT ERROR)

Figure 13. DECtape Status Register A Bit Assignments

ERROR END OF PARITY MEMORY DECTAPE
’ FLAG TAPE ERROR FIELD FLAG
r—*——-\ K_H K—H p A -~ r_JH
0 1 2 3 4 5 [7 8. 9 10 1

. O

MARK SELECT TIMING UNUSED
TRACK ERROR ERROR
ERROR

Figure 14. DECtape Status Register B Bit Assignments

Since all data transfers between DECtape and PDP-8 memory are controlled by
the data break facility, the program must set the word count (WC) and
current address (CA) registers- {locations 7754 and 7755 respectively) before
a data break. After initiating a DECtape operation, the program should always
check for error conditions (a program interrupt would be initiated if the error
flag is enabled and if the program interrupt system is enabled). The DECtape
system should be started in the search function to locate the block number
selected for transfer and then, when the correct block is found, the transfer is
accomplished by programmed setting of the WC, CA, and status register A.

When searching, the DECtape control reads only block numbers. These are
used by the operating program to locate the correct block number. In NM, the
DECtape flag is raised at each block number. In CM, the DECtape‘flag is
raised only after the word count reaches zero. The current address is not in-
cremented during searching and the block number is placed in core memory
at the location specified by the content of the CA. Data is transferred to or
from the PDP-8 core memory from locations specified by the CA register;
which is incremented by one before each transfer.

When the start of the data position of the block is detected, the data flag is
raised to initiate a data break request to the data break facility each time the
DECtape system is.ready to transfer a 12-bit word. Therefore, the main .com-
puter program continues running but is interrupted approximately every 13313
microseconds for a data break to transfer a word. Transfers occur between
DECtape and successive core memory locations specified by the CA. The initial
transfer address -1 is stored in the CA by an initializing routine. The number
of words transferred is determined ony by tape format in NM, or by tape for-

178

mat and the word count in CM. At the conclusion of the data transfer the
DT flag is raised and a program interrupt occurs. The interrupt subroutine
checks the DECtape error bits to determine the validity of the transfer and
either initiates a search for the next information to be transferred or returns
to the main program.

During all normal writing transfers, a checksum (the 6-bit logical equivalence
of the words in the data block) is computed automatically by the control and
is automatically recorded as one of the control words immediately following the
data portion of the block. This same checksum is used during reading to de-
termine that the data playback and recognition take place without error.

Any one of the eight tape transports may be selected for use by the program.
After using a particular transport, the program can stop the transport currently
being used and select another transport, or can select another transport while
permitting the original selection to continue running. This is a particularly use-
ful feature when rapid searching is desired, since several transports may be
used simultaneously. Caution must be exercised however, for although the
original transport continues to run, no tape end detection or other sensing
takes place. Automatic end sensing that stops tape motion occurs in all func-
tions, but only in the selected.tape transport. . - N

The following is a list of timing considerations for programmed operations.
(Ns = the number of block numbers to be read in the search function and con-
tinuous mode, counting through the one causing the WCO. Only the block
number causing the WCO requests a program interrupt No = number of words
transferred — the number of words per block. If the remainder % O, use the
next larger whole number. Na = number of words transferred.) '

Operation Timin
Answer a data break Up to 66 microseconds, =30%

.

request

Word transfer rate One 12-bit word every 133 microseconds, =30%
Block transfer rate One 129-word block every 18.2 milliseconds, =30%
Start time 375* milliseconds, =20%

Stop time 375* milliseconds; +£20%

Turn around time 375* milliseconds, ¥20%

Change function from 400 microseconds, £30% .

search to read data for

the current block after

DT flag from block

number '

Change function from 400 microseconds, =30%
search to write data for _
current block after DT.

flag from block number

Change function from 1000 microseconds, =30%
read data to search for "
the next block after DT

flag from transfer com-

pletion

Change function from 1000 microseconds, =30%
write data to search for

*These times are typical but not accurately controlled.

179

Operation ‘ Timin

next block after DT flag

from transfer completion

DECtape flag rises

in continuous mode
Move function Never
Search function (Ns) x (18.2 milliseconds, +30%)
Read data function (Nb) x (18.2 milliseconds, =30%)
Read all function (Na) x (133 microseconds, =30%)
Write data function (No) x (18.2 milliseconds, =30%)
Write all function (N4) x (133 microseconds, =30%)
Write T &Mfunction (Na) x (133 microseconds, =30%)
In normal mode

Move function Never
Search function Every 18.2 milliseconds, =30%
Read data function Every 18.2 milliseconds, =30%
Read all function Every 133 microseconds, =30%
Write data function Every 18.2 milliseconds, =30%
Write all function Every 133 microseconds, =30%
Write T&Mfunction Every 133 microseconds, =30%

Software

Three types of programs have been developed as DECtape software for the
PDP-8: /

a. Subroutines which the programmer may easily incorporate into a pro-
. gram for data storage, logging, data acquisition, data buffering
(queing), etc.

b. A library calling system for storing named programs on DECtape and
a means of calling them with a minimal size loader.

C. Programs for preformatting tapes controlled by the content of the
switch register to write the timing and mark channels, towrite block
formats, to exercise the tape and check for errors, and to provide
ease of maintenance.

Program development has resulted in a series of subroutines which read or
write any number of DECtape blocks, read any number of 129-word blocks as
128 words (one memory page), or search for any block (used by read and
write, or to' position the tape). These programs are assembled with the user’s
program and are called by a JMS instruction. The program interrupt is used
to detect the setting of the DECtape flag, thus allowing the main program to
proceed while the DECtape operation is being completed. A program flag is
set when the operation has been completed. Thus, the program effectively
allows concurrent operation of several input/output devices along with opera-

tion of the DECtape system. These programs occupy two memory pages
(400, = 256, words),

The library system has the following features: First and perhaps foremost, the
system leaves the state of the computer unchanged when it exits. Second, it
calls programs by name from the keyboard and allows for expansion of the
program file stored on the tape. Finally, it conforms to existing system con-
ventions, namely, that all of memory, except for the last memory page (7600,-

180

7777:), is available to the programmer. This convention ensures that the
Binary Loader program (paper tape), and/or future versions of this loader, can
reside in memory at all times.

The PDP-8 DECtape library system is loaded by a 17.-instruction bootstrap
routine that starts at address 7600.. This loader calls a larger program into
the last memory page, whose function is to preserve on the tape, the content
of memory from 6000; through 7577,, and then load the INDEX program and
the directory into those same- locations. Since the information in this area of
memory has been preserved, it can be restored when operations have been
completed. The basic system tape contains the following programs:

a. INDEX: Typing this word causes the names of all programs currently
on file to be typed out.

b. UPDATE: .Allows the user to add a new. program to the files. Update
queries the operator about the program’s name, its starting address,
and its location in core memory.

c. GETSYS: Generates a skeleton library tape on a specnfled DECtape
unit.

d. DELETE: Causes a named file t6 be deleted from the tape.

Starting with the basic library tape, the user can build a complete file of his
active programs and continuously update it. One of the uses of the library
tape may be illustrated as follows: ' B

A program is written in PDP-8 FORTRAN that is to be used repeatedly. The
programmer may call the FORTRAN compiler from the library tape and with it,
~compile the program, obtaining the object program. The FORTRAN operating
system may then be called from the library tape and used to load the object
program. At this time the library program UPDATE is called, the operator de-
fines a new program file (consisting of the FORTRAN operating system and
the object program), and adds it to the library tape. As a result, the entire
operating program and the object program are now available on the DECtape -
library tape.

The last group of programs, called DECTOG, is a collection of short routines
controlled by the content of the switch register. It provides for the recording
of timing and mark channels and permits block formats to be recorded for any
block length. Patterns may be written in these blocks and then read and
checked. Writing and reading is done in both directions and checked. Speci-
fied areas of tape may be “rocked” for specified periods of time. A given reel
of tape may thus be thoroughly checked before it is used for data storage.
' These programs may also be used for maintenance and checkout purposes.

AUTOMATIC MAGNETIC CONTROL (TYPE 57A)

Functlonal Description

This control buffers, compiles, synchronizes, and controls data transfers be
tween up to eight magnet|c tape transports and the PDP-8, using program
interrupts and data breaks. Each transport requires a small interface circuit
for connection to the control. The interface required and the charactenstlcs of
the transports that can be connected to the 57Aare:— — -

181

Tape

Speed Densities
Transport (ips) (bpi) Interface
DEC Type 50 75 200/ 556 Type 520
DEC Type 545 45 200/556/800 Type 521
IBM Model 72911, IV 75 200/ 556 Type 552
IBM Model 7330* 36 200/ 556 Type 552
IBM Model 729V, VI 1125 200/556/ 800 Type 552

The following functions are controlled by various combinations of 10T instruc-
tions: - :
" Write Space Backward
© Write End of File Rewind
Write Blank Tape . Rewind/Unload
Read Write Continuous
Read Compare Read Continuous
Space Forward

Tape transport motion is governed by one of two ¢ontrol modes: normal, in
which tape motion starts upon command and stops automatically at the end
of the record; and continuous, in which tape motion starts on command and
continues until stopped by the program as a function of synchronizing flags if
status conditions appear. :

All data transfers are under control of the PDP-8 data break facility; and com-
mands issued during a transfer control, operate, and monitor Type 57A func-
tions by means of the PDP-8 program interrupt facility. Assembled 12-bit
PDP-8 data words pass between the computer MB and the control final data
buffer register. The core memory address of each word transferred is speci-
fied to the computer MA by the control current address register. Use of the
program interrupt facility allows the main computer program to continue dur-
ing long tape operations without running in a loop which waits for tape flags.
The program interrupt subroutine for Type 57A loads the AC with numbers,
then issues 10T instructions to the control. Specific tape control modes are
interpreted from the content of the AC during some IOT instructions. In addi-
tion, the current address (CA) register and the word count (WC) registers of
the control are loaded from the AC.

Tape functions can be monitored by the program either during or at the end of
an operation. They can be altered during operation to a limited degree. The
control senses for several types of possible error condition throughout an
operation. The results of this sensing can be interrogated by the subroutine at
any time.

Two crystal clocks are used to generate one of three character writing rates,
depending on the density (200, 556, 800) specified by the program. In writing
or reading, a composite 12-bit binary word passes between the computer and
the control; that is, bits O through 5 constitute one tape character, and bits 6
through 11 constitute a second tape character.

In normal operation, six 10T commands initiate reading or writing of one
record. When the word count exceeds the number stored in the WC, the
transport is stopped and the control is free for another command. In con-
tinuous operation, any number of records is written or read without the need
for further transport commands except stop.

*With restrictions

182

The following automatic safeguards are inherent in the design of Type 57A:

END POINT

If the end point is reached during reading or writing, the control ignores the
end point and finishes the operation (ample tape is allowed). Beyond the end
point tape commands specifying forward direction are illegal and the tape will
not respond to such commands. If the end point is passed during spacing, the
transport is shut down regardless of word count.

LOAD POINT

If the load point is reached during back spacing the transport is stopped re-
gardless of word count. At load point, a space back command.is legal, and
the tape may be unloaded. When the write command is given at load point,
the tape is erased 3 inches beyond the load point before writing the first
record. After giving a read command at the load point, the read logic is dis-
abled until the load point marker passes the read head, then the read logic is
enabled. : '

. WRITE LOCK RING

Without the write lock ring in the tape reel, writing is illegal and the transport
will not respond to a write command.

FORMAT CONTROL

If the PDP-8 halt command is given during normal reading or read comparing,
the tape proceeds to the end of record, and the control shuts down the trans-
port. If a halt is given in continuous reading or read comparing the transport
will proceed to the end of tape and shut down. If a halt command is given in
normal spacing, the transport will proceed to EOR and shut down. If halt is
given during continuous spacing, the transport will proceed until WC overflows
or until it senses a file marker, load point, or end point, then shut down.

If halt is given during writing in the normal mode, the last word to be trans-
ferred is written, the rest of the record is written as zeros, and the transport is
shut down. If halt is given during writing in the continuous mode, the record
is completed; then zeros are written to the end of the tape. If a WC overflow
occurs during a normal read or read compare, the transport proceeds to EOR
before shutting down. '

Instructions

The functions of Type 57A Automatic Magnetic Tape Control are controlled by
combinations of the following 10T instructions:

Skip on Tape Control Ready (MSCR)

Octal Code: 6701

Event Time: 1

Indicators: 10T, FETCH, PAUSE

Execution Time: 3.75 microseconds '
Operation: The Tape Control Ready signal level is sampled, and it is in the
binary 1 status, indicating the tape control is free to accept commands, the
content of the PC is incremented by one so that the next sequential instruction
is skipped.

Symbol: If Tape Control Ready = 1, then PC++ 1 =">PC

183

Clear and Disable (MCD)

Octal Code: 6702
Event Time: 2
Indicators: 0T, FETCH, PAUSE
Execution Time: 3.75 microseconds - :
Operation: The job done flag, command register, word count overflow (WCO)
flag, and end of record (EOR) flag are cleared. This instruction should be im-
mediately preceded by the two instructions CLA and TAD (4000) to obtain the
operation indicated. Both the WCO and EOR flags are connected to the pro-
gram interrupt facility.
Symbol:
Inhibit Job Done Flag
0 = > Command Register, WCO, EOR

Tape Select (MTS)

Octal Code: 6706

Event Time: 2, 3

Indicators: 10T, FETCH, PAUSE

Execution Time: 3.75 microseconds

Operation: The job done flag is inhibited from causing a program interrupt
and clear the WCO and EOR flags are cleared. Then select the transport unit,
the mode of parity, and the bit density from the content of the AC. The AC bit
assignments are:

€

AC1(0) = High sense level
AC1(1) = Low sense level
AC2(0) = 200 or 556 bpi density
AC2(1) = 800 or 550 bpi density
AC8(0) = 200 bpi density
AC8(1) = 556 bpi density

AC2 AC8 Density
0 0 200
0 1 556
1 0 800
1 1 556

AC7(0) = Even parity (BCD)

AC7(1) = Odd parity (binary)

AC9-11 = These three bits select one of eight
tape units, address O through 7.

Symbol:
Inhibit Job Done Flag
0 = > WCO, EOR
AC1-11 = > Select Status

Skip on Tape Unit Ready (MSUR)

Octal Code: 6711

Event Time: 1

indicators: 10T, FETCH, PAUSE-

Execution Time: 3.75 microseconds

Operation: The selected tape transport ready (TTR) status is sampled, and if
the transport is ready the content of the PC is incremented by one and the
next instruction is skipped. The selected unit must be free before the follow-
ing MTC command is given. .

Symbol: If TTR = 1, then PC + 1 = > YPC

184

Terminate Continuous Mode (MNC)

Octal Code: 6712

Event Time: 2

Indicators: 10T, FETCH, PAUSE

Execution Time: 3.75 microseconds

Operation: The CONTINUE flip-flop in the control is cleared to establish the
Normal mode of operation, then the AC is cleared. This command should be
immediately preceded by CLA and TAD commands to load the AC with the
number 4000 to obtain the operation indicated.

Symbol: 0 = > CONTINUE, AC

Load Tape Command (MTC)

Octal Code: 6716
Event Time: 2, 3
Indicators: 10T, FETCH,-PAUSE
Execution Time: 3.75 microseconds
Operation: The tape command register is loaded from the content of bits 3
through 6 of the AC. Bit 6 selects the motion mode and bits 3 through 5 are
decoded as follows:
AC6(0) = Normal
AC6(1) = Continuous
AC3-5 = 0 = No operation
1 = Rewind
2 = Write ,
3 = Write end of file (EOF)
4 = Read compare
5 = Read
6 = Space forward
7 = Space backward
Symbol: AC3-6 = > Tape Command Register

Skip on WCO Flag (MSWF)

Octal Code: 6721

Event Time: 1

Indicators: 10T, FETCH, PAUSE

Execution Time: 3.75 microseconds

Operation: The content of the word count overflow (WCO) flag is sensed, and
if it contains a 1 th content of the PC is incremented by one so that the next
instruction is skipped.

Symbol: If WCO =0,the PC+ 1 = > PC

Disable the WCO Flag (MDWF)

Octal Code: 6722

Event Time: 2

Indicators: 10T, FETCH, PAUSE

Execution Time: 3.75 microseconds

Operation: The WCO flag is inhibited from causing a program interrupt.
Symkbol: None

Clear WCO Flag (MCWF)

Octal Code: 6722

Event Time: 2

Indicators: 10T, FETCH, PAUSE

Execution Time: 3.75 microseconds

Operation: The WCO flag is cleared. This instruction-should be immediately

185

preceded by commands that load the number 2000 into the AC to obtain the
indicated operation. »
Symbol: 0 = > WCO

Enable WCO Flag (MEWF)

Octai Code: 6722

Event Time: 2 ‘

Indicators: I0T, FETCH, PAUSE

Execution Time: 3.75 microseconds

Operation: The WCO flag is enabled to cause a program interrupt upon word
count overflow. To obtain this operation the MEWF command must be imme-
diately preceded by a sequence that loads the number 4000 into the AC.
Symbol: None

Initialize WCO Flag (MIWF)

Octal Code: 6722

Event Time: 2

Indicators: I0T, FETCH, PAUSE

Execution Time: 3.75 microseconds

Operation: The WCO flag is initialized. To obtain the operation the MIWF com-
mand must be immediately preceded by commands that load the number 6000
into the AC. v

Symbol: None

Skip on EOR Flag (MSEF)

Octal Code: 6731

Event Time: 1

Indicators: 10T, FETCH, PAUSE

Execution Time: 3.75 microseconds

Operation: The content of the EOR flag is sensed, and if it contains a 1 the
content of the PC is incremented by one so the next instruction is skipped.
Symbol: fEOR =1,thenPC+ 1= >PC

Disable ERF Flag (MDEF)

Octal Code: 6732

Event Time: 2

Indicators: 10T, FETCH, PAUSE

Execution Time: 3.75 microseconds

Operation: Operation of the ERF flag is inhibited.
Symbol: None

Clear the ERF Flag (MCED)

Octal Code: 6732

Event Time: 2

Indicators: 10T, FETCH, PAUSE

Execution Time: 3.75 microseconds

Operation: The ERF flag is cleared to O in preparation for returning to the
main program from the program interrupt subroutine. This command must be
immediately preceded by commands that load the number 2000 into the AC to
obtain the indicated operation.

Symbol: 0 = > ERF

Enable ERF Flag (MEEF)

Octal Code: 6732
Event Time: 2
Indicators: 10T, FETCH, PAUSE

186

Execution Time: 3.75 microseconds :
Operation: The ERF flag is enabled. This command must be immediately pre-
ceded by commands that load the number 4000 into the AC to obtain the indi-
cated operation.

Symibol: None

Initialize ERF Flag (MIEF)

Octal Code: 6732

Event Time: 2

Indicators: 10T, FETCH, PAUSE

Execution Time: 3.75 rhicroseconds

Operation: The ERF flag is initialized by clearing and enabling. This command
must be immediately preceded by commands that load the number 6000 into
the AC to obtain the operation indicated.

Symbol: None '

Read Tape Status (MTRS)

Octal Code: 6734
Event Time: 3
Indicators: 10T, FETCH, PAUSE
Execution Time: 3.75 microseconds
Operation: The condition of tape status levels is loaded into the AC. This com-
mand must be immediately preceded by a command that clears the AC to
obtain a valid information transfer. The AC bit assignments are:
ACO = Data request late
AC1 = Tape parity error
AC2 = Read comipare error
AC3 = End of file flag set
AC4 = Write lock ring out
AC5 = Tape at load point
AC6 = Tape at end point
AC7 = Tape near end point (Type 520)
AC7 = Last operation write (Type 521 and 522 interfaces)
AC8 = Tape near load point (Type 520)
AC8 = Write echo (Type 522 interface)
AC8 = B control using transporting (Type 521 interface
with muitiplex transport)
AC9 = Transport rewinding
AC10 = Tape miss character
~ AC11 = Job done flag interrupt
Symbol: Status Levels = > ACO-11

Clear Current Count (MCC)

Octal Code: 6741

Event Time: 1

Indicators: 10T, FETCH, PAUSE

Execution Time: 3.75 microseconds

Operation: The current address register (CA) and word count register (WC) are
both cleared.

Symbol: 0 = > CA, WC

Read Word Count (MRWC)

Octal Code: 6742

Event Time: 2

Indicators: 10T, FETCH, PAUSE
Execution Time: 3.75 microseconds

187

Operation: The content of the AC is transferred into the word count register.
Symbol: AC =->WC
Read Current Address (MRCA)

Octal Code: 6744

Event Time: 3

Indicators: 10T, FETCH, PAUSE

Execution Time: 3.75 microseconds

Operation: The content of the current address register is transferred into the
AC. This command does not clear the AC and must be preceded by a com-
mand that clears the AC to obtain a valid information transfer.

Symbol: CAVAC = > AC :

Load Current Address (MCA)

Octal Code: 6745

Event Time: 1,3

Indicators: 10T, FETCH, PAUSE

Execution Time: 3.75 microseconds

Operation: The current address register and word count register are both
cleared, then the content of the AC is transferred into the current address

register.

Symbol: 0 = > CA, WC
AC = >CA

Programming

The following seven control modes are programmed in use of the Type 57A:

WRITE NORMAL

One of two characters, N words and one or two characters, or N words can be
written in BCD mode. When writing BCD, convert all characters (00s) to (12).
The WCO flag is set during the writing of the next to last word in a record. In
a one-word transfer only, the WCO flag is set before the data transfer begins.
The ERF flag is set when the EOR (check character) is written. Parity is read
and compared while writing.

The data request late bit will be set if the PDP-8 does not transfer a new word
to or from the control before another data request is given. When a 522 inter-
face is being used, a write echo.status appears if the character zero (00,) is
written BCD.

WRITE END OF FILE (EOF)

The end of the marker is written 17, BCD. It is automatically detected during
reading or spacing. One instruction, MTC, initiates this operation, carries it
out, and stops the transport WCO does not occur. The ERF flag is set when
the EOR (check character) is detected. CA and WC are not modified.

WRITE BLANK TAPE

To write three inches of blank tape, the progrém gives a write EOF command
and then a space backward command. In either case CA and WC are not
modified.

READ NORMAL

One or two characters, N words and one or two characters, or N words can be
read in either parity mode. The WCO flag is set during the record when the
specified word count is exceeded. The ERF flag is set wh