APLSF
Language Manual

AA-H200A-TK

August 1979

This manual describes the language elements of APL-Basic
and APLSF on both the TOPS-10 and TOPS-20 operating
systems.

This manual supersedes the following: DECSYSTEM-20
APLSF Programmer’s Reference Manual DEC-20-LASFA.-
A-D, and DECsystem-10 APLSF Programmer’s Reference
Manual DEC-10-LLPLSA-A-D.

OPERATING SYSTEM: TOPS-10 Version 6.03A
TOPS-20 Version 3A

SOFTWARE: APLSF Version 2
APL-Basic Version 2

Software and manuals should be ordered by title and order number. In the United States, send orders to the nearest
distribution center. Outside the United States, orders should be directed to the nearest DIGITAL Field Sales Office
or representative.

NORTHEAST/MID-ATLANTIC REGION CENTRAL REGION WESTERN REGION

Technical Documentation Center Technical Documentation Center Technical Documentation Center
Cotton Road 1050 East Remington Road 2525 Augustine Drive

Nashua, NH 03060 . Schaumburg, lllinois 60195 Santa Clara, California 95051
Telephone: (800) 258-1710 Telephone: (312) 640-5612 Telephone: (408) 984-0200

New Hampshire residents: (603) 884-6660

digital equipment corporation ® marlboro, massachusetts

First Printing, August 1979

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright (D 1979 by Digital Equipment Corporation

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0s/8

DECUS EDUSYSTEM PHA

UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-11
DECCOMM DECSYSTEM-20 TMS-11

ASSIST-11 RTS-8 ITPS-10

1/82/14

CONTENTS

Page
PREFACE X1
CONVENTIONS USED IN THIS MANUAL xii
ACKNOWLEDGMENT xiii
CHAPTER 1 THE APL OPERATING ENVIRONMENT 1-1
1. INTRODUCTION 1-1
1 1-1
1.2 HARDWARE 1-2
1.2.1 APL-Keyboard Terminals 1-3
1.2.2 Terminals Without the APL Keyboard 1-5
1.3 THE APIL.- CHARACTER SET 1-5
1.4 INTERACTING WITH APL : 1-8
1.4.1 Entering APL Command Level (Starting the
Session 1-8
1.4.2 Ending the Session 1-9
1.4.3 Returning to System Command Level 1-9
1.4.4 Interrupting Execution 1-10
1.5 KEYBOARD EDITING 1-10
1.5.1 Correcting a Line Before Entering 1-10
1.5.2 Correcting a Line After Entering 1-11
CHAPTER 2 LANGUAGE SYNTAX 2-1
2.1 INTRODUCTION 2-1
2,1.1 Statement Execution Modes 2-1
2.1.2 Expression Components 2-2
2,1.2,1 Identifiers 2-2
2.1.2.2 Constants 2-3
2.1.3 Spaces and Comments 2-5
2.1.4 File Specifications 2-6
2.1.5 Statement Types 2=7
2.1.6 Evaluation of APL Statements and
Expressions 2-8
2.2 NUMBER PRECISION 2-9
2.3 ERROR HANDLING 2-10
2.4 ARRAY INDEXING AND COMPARISONS 2-11
2.4.1 Indexing Arrays 2-11
2.4.2 The Index Origin 2-15
2.4.3 Comparison Tolerance or Fuzz 2-15
2.5 TERMINAL I/O OPERATIONS 2-16
2.5.1 Evaluated Input Mode-Quad Input (0O or
.BX) ‘ 2-17
2.5.2 Character Input Mode-Quote-Quad ([or
-QQ) 2-17
2.5.3 Unedited Input Mode-Quad-Del (M or .QD) 2-18
2.5.4 Escaping From Input Mode 2-19
2.5.5 Normal and Quad Output Modes 2-19
2.5.6 Mixed Output Mode 2-21
2.5.7 Bare Output Mode (Quote-Quad [or
Quad-Del RB) 2-22

iii

CONTENTS (CONT.)

Page
CHAPTER 3 APL FUNCTIONS AND OPERATORS 3-1
3.1 INTRODUCTION 3-1
3.2 PRIMITIVE SCALAR FUNCTIONS 3-2
3.2.1 Relational Functions 3-5
3.2.2 Logical Functions 3-6
3.2.3 | or .AB - The Residue Function 3-7
3.2.4 ? - The Roll Function 3-9
3.3 PRIMITIVE MIXED FUNCTIONS 3-10
3.3.1 , — The Catenate Function 3-12
3.3.2 / and # - The Compression Function 3-15
3.3.3 ? - The Deal Function 3-17
3.3.4 L or .DE - The Decode Function 3-18
3.3.5 ¢ or .DA - The Drop Function 3-20
3.3.6 T or .EN - The Encode Function 3-22
3.3.7 \ and %X - The Expansion Function 3-25
3.3.8 ¥ or .GD - The Grade Down Function 3-27
3.3.9 A or .GU - The Grade Up Function 3-28
3.3.10 1 or .IO - The Index Generator Function 3-30
3.3.11 1 or .I0 - The Index Of Function 3-31
3.3.12 , = The Laminate Function 3-33
3.3.13 e or .EP - The Membership Function 3-35
3.3.14 , — The Ravel Function 3-36
3.3.15 p or .RO - The Reshape Function 3-37
3.3.16 ¢ or .RV and © or .CR - The Reverse
Function 3-38
3.3.17 ¢ or .RV - The Rotate Function 3-41
3.3.18 p or .RO - The Shape Function 3-43
3.3.19 + or © - The Take Function 3-45
3.3.20 ®§ or .TR - The Monadic Transpose
Function 3-46
3.3.21 & or .TR - The Dyadic Transpose Function 3-48

OPERATORS 3-70

3.5
3.5.1 £ . g - The Inner Product Operator 3-70
3.5.2 o ., £f or .80 . £ - The Outer Product
Operator 3-73
3.5.3 f/ - The Reduction Operator 3-75
3.5.4 f\ - The Scan Operator 3=-77
CHAPTER 4 APL SYSTEM COMMUNICATION 4-1
4,1 INTRODUCTION 4-1
4.2 SYSTEM VARIABLES 4-1
4,2.1 0AI - Storing Account Information 4-2
4,2.2 OALPHA - Alphabetic Characters 4-3
4.2.3 OALPHAU - Underlined Alphabetics 4-3

iv

CHAPTER

CONTENTS (CONT.)

Page

4.2.4 0ASCII - ASCII Character Set 4-3
4.2.5 JAus -~ saving a Workspace Automatically 4-7
4.2.6 JAV - Atomic Vector 4-8
4.2.7 0¢T - Comparison Tolerance 4-14
4,2.8 OCTRL - Control Characters 4-15
4.2.9 OERROR - Storing Error Messages 4-16
4.2.10 0GAG - Preventing Interruptions 4-18
4,2,11 [0Io0 - Index Origin
4 2 arce i
4 OvuM - Digits
4 PP = Output Precision 4-22
4 0PW - Determining the Width of the

Output Line 4-22
4 ORL - Setting a Random Link 4-23
4. [0sF - Setting the Evaluated Input Prompt 4-23
4

OTIMELIMIT - Setting a Time Limit
™ ’ . o

4,2,22 (7S - Reporting Current Time and Date

4,2.23 OTT - Reporting Terminal Type 4-27
4.2.24 OUL - Reporting the Job Number 4-28
4,2.25 (WA - Reporting the Available Work Area 4-28
4.3 SYSTEM FUNCTIONS 4-28
4.3.1 OBREAK - Suspending Execution 4-29

epre
4,3.3 0ODL - Delaying the Execution of a
Function
0EX - Erasing a Named Object

4,3.7 ONC - Returning a Name Classification
4.3.8 ONL - Constructing a List of ILabels,

Variables, or Functions 4-35
4,3.9 0Qrp, 0Ogco, 0OQPC - Loading and Copying

a Workspace 4-36

4.3.11 OvI - va

5 SYSTEM COMMANDS 5-1
5.1 INTRODUCTION 5-1
5.1.1 System Command Format 5-2
5.1.2 Action and Inquiry Commands 5=-2
5.1.3 Workspace Characteristics 5-3
5.1.3.1 Workspace Names 5-4
5.1.3.2 The CONTINUE Workspace 5-5
5.1.3.3 Workspace Passwords 5-6
5.1.3.4 Groups 5-6
5.1.3.5 The State Indicator 5-6
5.1.4 APL Libraries 5-7
5.2 BASIC WORKSPACE-CONTROL COMMANDS 5-7
5.2.1 JCLEAR - Clearing the Active Workspace 5-8
5.2.2)JDROP - Deleting Stored Workspaces or

Files 5-9
5.2.3 JLIB - Listing Workspace Names 5=10
5.2.4 JLOAD - Retrieving a Workspace 5-12

CONTENTS (CONT.)

Page

5.2.5 YPASSWORD - Determining the Workspace

Password 5-13
5.2.6)SAVE - Saving a Copy of the Active

Workspace 5-13
5.2.7 YWSID - Identifying the Active Workspace 5-15
5.3 EXTENDED WORKSPACE-CONTROL COMMANDS 5-15
5.3.1 YMAXCORE - Determining the Maximum

Workspace Size 5-16
5.3.2 YJMINCORE - Determining the Minimum

Workspace Size 5-17
5.3.3 JOWNER - Identifying the Owner of a

Workspace 5-18
5.3.4 JSEAL - Turning the Workspace Seal On or

Off 5-18
5.3.5)SIZE - Reporting the Workspace Size 5-19
5.3.6 JTIME - Reporting the Time Used 5-19
5.3.7 JVERSION - Displaying the APL Version

Number 5-20
5.4 WORKSPACE-CONTENT COMMANDS 5-20
5.4.1)COPY -~ Copying Objects from a Workspace 5-21
5.4.2 JERASE - Erasing Global Names 5-22
5.4.3 YFNS - Displaying a List of Functions 5-23
5.4.4 YGROUP - Defining or Dispersing a Group 5-23
5.4.5)GRP - Displaying the Members of a Group 5-24
5.4.6)GRPS - Displaying a List of Groups 5-24
5.4.7 YPCOPY - Copying from a Workspace with

Protection 5-25
5.4.8)SI - Displaying the State Indicator 5-25
5.4.9)SIV - Displaying the State Indicator and

Local Variables 5-26
5.4.10 YVARS - Displaying a List of Variables 5-27
5.5 WORKSPACE-ENVIRONMENT COMMANDS 5-27
5.5.1)DIGITS - Determining the Output Precision 5-27
5.5.2 JECHO - Determining Error Line Echoing 5-28
5.5.3 YJMODE - Determining the Terminal Output

Mode 5-29
5.5.4 JORIGIN - Determining the Index Origin 5-30
5.5.5)TABS - Determining Tab Stops on the

Terminal 5-30
5.5.6 YJWIDTH - Determining the Width of the

Output Line 5-31
5.6 APL TERMINATION COMMANDS 5=-32
5.6.1)C and)CALL - Running a Program and

Returning to APL 5-32
5.6.2 JCONTINUE - Saving the Workspace and

Ending the Session 5-33
5.6.3 YMON - Returning to Operating System

Command Level 5-34
5.6.4 JOFF - Terminating the APL Session 5-34
5.6.5)R and)RUN - Ending the Session and

Running a Program 5-35
5.7 MISCELLANEOUS COMMANDS 5-36
5.7.1 JBLOT - Generating a Mask 5-36
5.7.2 JCHARGE - Displaying APL Session

n

Inf rmat

vi

CONTENTS (CONT.)

Page

CHAPTER 6 DEFINING AND EXECUTING FUNCTIONS

T
'—I

INTRODUCTION

DEFINING THE FUNCTION
The Function Header
Symbol Classification
Local Symbols
Global Symbols
Dynamic Localization
Function Input and Output
Comment Lines
Examples of Defined Functions
Niladic Function
Monadic Function
Dyadic Function

EDITING THE FUNCTION

.
.
wN =

.
bbb bdbbdbWOWWWLWWWLWWWWDNDNDNDNDNDDMDNDNDNDDNDND
.

]
HHOOVOoOoNNOOOOUTE_BWNHE

.
oot WD

.
.

.
w N

O\G\O\O\G\O\O\O\O’\G\TO\O\O\O\G\O\O\O\O\O\

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6.
6
6
6
6
6
6
6
6
6
6
6
6
6
6

1 Adding Function Lines -

.2 Replacing Function Lines -
.3.3 Inserting Function Lines -
.3.4 Deleting Function Lines -
.3.5 Displaying Function Lines -10
.3.6 Editing the Function Header -11
.3.7 Character-Editing Procedures -11
.3.8 Performing Immediate-Mode Editing 6-14
. EXECUTING THE FUNCTION 6-14
4.1 Branching Within a Function 6-14
4.2 Statement Labels 6-16
.4.3 Suspending Function Execution 6-17
4.4 Examining the State Indicator 6-18
4D The Trace Vector 6-20
.4.6 The Stop Vector 6-22
4.7 Locking a Function 6-22

CONTENTS (CONT.)

Page

APPENDIX A ERROR MESSAGES A-1
APPENDIX B SUMMARY B-1
APPENDIX C I-BEAMS c-1
APPENDIX D SPECIFYING TOPS-20 DIRECTORIES D-1
D.1 USING LOGICAL NAMES D-1
D.1.1 Giving the DEFINE Command D-1
D.1.2 Using the Logical Name D-2
D.2 USING PROJECT-PROGRAMMER NUMBERS D=2
D.2.1 Using the TRANSL Command D-2
D.2.2 Using the Project-Programmer Number D-3
APPENDIX E TERMINAL SESSION E-1
INDEX Index-1
FIGURES
FIGURE 1-1 The APL Keyboard (LA37 Terminal) N 1-4

TABLES

TABLE 1-1 APL Terminals and Designators 1-3
1-2 APL Character Set 1-6
1-3 Editing Characters 1-11
2-1 Input/Output Functions 2-16
3-1 Results of Scalar Dyadic Functions 3-2

viii

CONTENTS (CONT.)

Page
TABLE 3-2 Primitive Scalar Functions 3-3
3-3 The Dyadic Circle Function 3-4
3-4 Truth Table 3-6

3-5 Primitive Mixed Functions 3-10

3-6 Transpose Definitions 3-48

9 Inner Product Description 3-71

1 Outer Product Description 3-74

1 Identity Elements 3-75

1 The ASCII Character Set 4-4

2 The Atomic Vector
-3 OcTRL

4

5

1

2

3

1

o

4

4
07T Terminal Types 4
Nc Classes 4
Workspace Name Defaults 5~
JLIB Switches 5
System Commands and Execute 5
Function Headers 6

B-6 Operators B-7
B=-7 System Variables B-9
B-8 System Functions B-1

Keyboard I/0 Functions

SyStem Commands

PREFACE

This manual describes version 2 of APL on both the TOPS-10 and TOPS-20
operating systems. There are two implementations of APL on each sys-
tem, APL-Basic and APLSF (System Functions). APLSF is a superset of
APL-Basic. To distinguish APLSF from APL-Basic, we have shaded the
text describing features available only in APLSF.

This document is not an APL tutorial manual. Therefore, if you are
unfamiliar with the APL language, you should read an APL primer before
reading this manual. Also, because you will be using APL in conjunc-
tion with either TOPS-10 or TOPS-20, you should have the latest edi-
tions of the following documents on hand:

1. TOPS-20 User's Guide

2. TOPS-20 Monitor Calls Reference Manual

or

3. TOPS-10 Operating System Commands Manual

4, TOPS-10 Monitor Calls Reference Manual

xi

Conventions Used In This Manual

ﬂ H Special square brackets indicating operational
information that can be omitted from a command
string.
{ } Braces indicating a choice. Choose one from

the enclosed.

Lowercase letters Lowercase characters in a command string indi-
cating variable information you supply.

UPPERCASE LETTERS Uppercase characters in a command string indi-
cating fixed (literal) information that you
must enter as shown.

Examples All examples were produced on an LA37 using
either TOPS-10 or TOPS-20.

Contrasting Colors Red - Where examples contain both user input
and computer output, the characters you type
are in red; the characters APL prints are in
black.

APL Refers to both APIL-Basic and APLSF.

xii

ACKNOWLEDGMENT

The DECsystem-10 implementation of APL was developed by Richard
Fennell, Frederick Pollack, and William Price under the guidance of
Dr. Alan J. Perlis of the Department of Computer Science at
Carnegie-Mellon University. The APLSF enhancements were made by

Frederick Pollack. The conversion to the DECSYSTEM-20 was done at
Digital Equipment Corporation.

xiii

CHAPTER 1

THE APL OPERATING ENVIRONMENT

1.1 INTRODUCTION

APL (A Programming Language) is a language interpreter that runs under
the control of either of two operating systems, TOPS-10 or TOPS-20.
The TOPS-10 and TOPS-20 operating systems provide the APL user with
standard timesharing features, such as resource allocation, job con-
trol, device handling, and usage accounting.

Because APL is a very compact programming language, it is suited for
handling numeric and character array-structured data. In addition to
its mathematically concise format, APL is also an efficient general
data-processing language.

APL is a 2-segment system. The code segment or shared segment, is
the APL interpreter consisting of code shared among all APL users.
The data segment is the APL user's workspace. Each user has a data
segment, but there is only one copy of the interpreter.

1.1.1 Workspaces

A workspace is a block of storage where all interaction with APL takes
place. Each time you access APL, you are issued a clear workspace in
which to define variables and functions as well as to execute APL
statements. The size of an APL workspace is dynamic and can vary from
2K to 176K 36-bit words on TOPS-10. On TOPS-20, the figure is express-
ed in pages of 36-bit words, 4P to 352P. The default workspace size
is 20K on TOPS-10 and 40P on TOPS-20. If you need to change the size,
refer to the)MAXCORE command, Section 5.3.1.

There are three states your workspace can assume as you proceed
through an APL session:

1. Clear workspace
2. Active workspace
3. Inactive workspace

At the beginning of an APL session, you are given a fresh workspace:
the clear workspace. It has no open files, no defined variables or
functions; it has a clear (empty) symbol table, and a clear (empty)
state indicator. System variables are set to their default values.
Once you start typing information into your workspace, it is no longer
clear. The workspace you are currently using is your active workspace.

THE APL OPERATING ENVIRONMENT

All functions and variables you define during the current APL session
are stored temporarily in this workspace. You can save an active
workspace as a file, in binary format, on a secondary-storage device,
such as a disk or magnetic tape. An active workspace becomes an in-
active workspace when you save it. You can save several workspaces
in your disk area; however, only one can be active at any one time.
As a group, inactive workspaces are known as a private library.

When you save a workspace, you are not only saving functions and vari-
ables, but also the APL symbol table, state indicator and some system
variable settings. When you retrieve an inactive workspace from your
library, it again becomes your active workspace.

A workspace can be named, copied, saved, retrieved, deleted, renamed,
protected, and cleared. These workspace operations are described in
Chapter 5.

1.2 HARDWARE

The APL language consists of a special character set in which Greek

letters and a variety of other special characters represent APL lan-
guage functions and operators. Examples of such special characters

include 1, O, Vv, and «¢.

TOPS-20 and TOPS~-10 support a variety of terminals for use with the
APL system. Some terminals provide keyboards with the full APL char-
acter set (such as the LA37 in Figure 1-1). However, terminals with-
out the APL keyboard can also be used to access APL. On non-APL
terminals, you can use a special set of keyword mnemonics to represent
APL symbols. See Table 1-2 for both character sets.

You select the APL character set or the mnemonic character set when
you begin an APL session. APL prompts you with:

terminal ..

You respond with one of the terminal designators listed in Table 1-1.

THE APL OPERATING ENVIRONMENT

Table 1-1
APL Terminals and Designators
Terminal Designator
IBM Selectric! -type 2741

terminal with APL
typing element, or equivalent

Bit-paired ASCII/APL terminal BIT

Key-paired ASCII/APL terminal KEY

DECwriter II model LA36 with LA36

APL option (LA37)

Tektronix? 4013 4013

Tektronix? 4015 4015

Any terminal without TTY H/terminalﬂ

APL character set

lgelectric is a registered trademark of IBM.
Tektronix is a registered trademark of Tektronix, Inc.

The /terminal switch with the TTY designator can be any one of the
other terminal designators in Table 1-1, for example TTY/BIT. This
switch is optional. It takes effect when you use the)OUTPUT command
(Section 7.9).

When you specify LA36, 4013, or 4015, that designator causes character
font-switching sequences to be sent to the terminal when you enter and
leave APL. This means that you do not have to manually switch charac-
ter sets by pushing a button on the terminal. Specification of KEY
does not have this effect.

1.2.1 APL-Keyboard Terminals

The keyboard illustrated in Figure 1-1 is a typical APL-keyboard ter-
minal; you can use it in either ASCII or APL mode. When you access
APL, the characters are received and interpreted by the APL system.
Note that letters, numbers, and some of the special characters appear
in the conventional keyboard positions. In APL mode, the letters print
only in uppercase and are produced only when the keyboard is not shift-
ed. The full APL character set is described in Table 1-2.

AT RPN
= RPEPT R LI
' EERFPPERLELLLL |

. Figure 1-1 The APL Keyboard (LA37 Terminal)

THE APL OPERATING ENVIRONMENT

1.2.2 Terminals Without the APL Keyboard

If you do not have a terminal with an APL keyboard, you can use a com-
bination of keyword mnemonics, or escape characters, and ASCII charac-
ters to interact with the APL interpreter. First, you respond with

TTY when APL prompts for a terminal designator (Section 1.2). Then you
can input any of the keyword or escape-mode equivalents listed in

Table 1-2.

For example, to represent the APL rho symbol (p), either type the
mnemonic .RO or the escape character @R. To type a character in es-
cape mode, first type the at sign (@) and then enter the desired upper-
case character. No delimiting blanks are necessary, and you can mix
the two input modes freely.

APL output can also be displayed in either keyword or escape modes,
but you must select one or the other; they cannot be mixed. The)MODE
command allows you to select the output mode. This is where the TTY
/terminal is relevant. See Section 5.5.3.

1.3 THE APL CHARACTER SET

Table 1-2 lists all APL characters available on TOPS-10 and TOPS-20.
The first column lists the APL character set. The second column, TTY
set, lists the keyword mnemonic equivalents. The third column supplies
names commonly associated with APL characters, and the fourth column
lists the escape characters. The uppercase letters indicate the ori-
gin of the mnemonic representation.

The second section of the table lists APL overstruck characters. These
are characters constructed by typing one character, one backspace, then
a second character on top of the first. For example, to construct the
logarithm symbol (), type the circle symbol (o), then backspace, then
type the exponentiation symbol (x). You can also type the exponenti-
ation symbol (%) before the circle symbol (0); the order is not signi-
ficant. On non-APL keyboard terminals, overstruck characters are re-
presented by single-strike characters or by keyword mnemonics. Notice
that dollar appears as both a single-strike and an overstruck charac-
ter. On some terminals you can enter dollar as a single-strike char-
acter ($), and on other terminals you must enter dollar as an over-
struck character (51).

THE APL OPERATING ENVIRONMENT

Table 1-2
APL Character Set

Single-Strike Characters

APL Set TTY Set Name Escape Mode

A-Z A-7Z alphabet

0-9 0-9 numbers
+ + add
A & and

< assignment

- (back-arrow or underline)

s ’ concatenate
: : colon
* % divide

$ S dollar format
= = equal to
\ \ expand (scan)
* * exponentiate @p
> > greater than
[C left bracket
((left parenthesis
< < less than
X # multiply
' ! quote string @K
? ? question (roll and deal) @QQ
/ / reduce
]] right bracket
)) right parenthesis
5 H semicolon
- - subtract
4 ” take Qy
| .AB residue (ABsolute value) @M
o AL ALpha @A
W .BX quad (BoX) QL
[.CE CEiling (maximum) @s
v .DA drop (Down Arrow) QU
N .DD Dieresis
L .DE DEcode @B
v .DL DeL cle]
o .DM DiaMond
n .DU Down Under @c
T .EN ENcode @N
€ .EP EPsilon @E
L .FL FLoor @D
> .GE Greater than or Equal to

> .GO GO to (branch)
1 . IO IOta (Cha
{ .LB Left curly Brace
A .LD delta (Lower Del) Q@H
< .LE Less than or Equal to
= . LK Left tackK
o .LO circle (Large O) Qo
> .LU Left Union @x
z .NE Not Equal to

THE APL OPERATING ENVIRONMENT

Table 1-2 (Cont.)
APL Character Set

Single-Strike Characters

APL Set TTY Set Name Escape Mode
- .NG NeGation
~ .NT Not @T
w .OM OMega Qw
v .OR OR
} .RB Right curly Brace
P . RO RhO @R
= .RK Right tack
c .RU Right Union @z
° .SO jot (Small O) QJ
— .Us UnderScore QF
U .UU Up Union Qv

Overstruck Characters
(None in Escape Mode)

Characters to

APL Set Strike Over TTY Set Name
$ 3 | S dollar (format)
! ! ! factorial (shriek)
' v | .GD Grade Down
A A | .GU Grade Up
I L T .IB I-Beam (histogram)
® o * .LG LoGarithm
» A ~ . NN NaNd
» \ ~ .NR NoR
X \ - .CB back expansion
e 0 - .CR (Circle) Rotate
7 / - .CS back scan
5] g + .DQ Divide Quad
13| O < .I0 Input Quad
B il > .00 Output Quad
) o U T .0OU out
X v ~ .PD Protected Del
M a v .QD Quad Del
M O ! .QQ Quote Quad
) o} | .RV ReVersal
X o \ . TR TRanspose
® 1 ° - XQ eXecute
7 T ° .FM ForMat
) n ° " Comment (lamp)
4+-Z A-72 _ +ZA- .77 underscored alphabetics
A A — .Z@ underscored lower del

THE APL OPERATING ENVIRONMENT

1.4 INTERACTING WITH APL

APL provides easy-to-use commands to allow you to interact with the
operating system. Sections 1.4.1 through 1.4.4 describe some of the
commands available. Chapter 5 discusses APL system commands.

1.4.1 Entering APL Command Level (Starting the Session)

To access APL, first log in to either TOPS-20 or TOPS-10. After a
successful log in, type the following on TOPS-20:

@AFLSF
On TOPS-10, type:
+ROAPLSE

In both cases, APLSF begins the session by asking for your terminal
designator:

terminal..
If you are unsure of what to respond, type H (for Help). For example:
terminal. oh

give bhe arerorriaste resronse for wour terminsl
resronse wour terminal

2741 it 2741 or similar with arl ball
bit seeii arxl RRE:

ke P oawl

1a36é] i " Ler set ortion
4013 teltyromix 4013

4015 telktronix 4015

tlw ary terminal mnolt heving ael Fondt

TERMINAL . .

After receiving a valid terminal designator, APL responds with a
greeting and identification message. It then supplies a clear work-
space for use during the current APL session, or automatically loads
the special (CONTINUE workspace saved from the last APL session, if
such a workspace exists in your disk area. (See Section 5.6.2 for a
description of the CONTINUE workspace.) If a clear workspace is sup-
plied, APL displays the message:

CLEOR WS

If the CONTINUE workspace is loaded, APL outputs a standard load
workspace message. For example:

Barlef

terminal..la

OFL-20 DECSTSTEM-20 AFLSF 2(407)

TTY20) 15322857 TUESHAT D& JUHe79 MASGEL LA
SAVED 1522139 26-IUN-T7Q HF

!The 2741 is supported only on TOPS-10.

THE APL OPERATING ENVIRONMENT

APL indents six spaces to signify that it is ready to accept input.
APL outputs at the left margin but automatically indents six spaces
before echoing your input. The first character you type will print in
the seventh column from the left margin. APL thus clearly differen-
tiates between what it prints out and what you type in.

1.4.2 Ending the Session

To log off the system while in APL mode, use one of the following
commands :

Y OFF ends the session and logs you off the system.

Y COMT L HUE ends the session, logs you off the system, and
stores the active workspace under the name
DSK:CONTIN.APL. This workspace, instead of a
clear workspace, will be loaded the next time
you run APL.

Note that APL commands begin with a right parenthesis. These com-
mands,)OFF and)CONTINUE, are described in Sections 5.6.4 and 5.6.2,
along with a description of options available for automatically re-
turning to system command level after ending a session rather than
logging off.

CAUTION
Do not end a work session by disconnecting

the terminal's telephone connection or
the current workspace will be lost.

1.4.3 Returning to System Command Level

To return to system command level during an APL session, type the)MON
command. APL indicates that control has been returned to the oper-
ating system by printing:

MOMITOR
When you receive the system prompt, you can then perform a variety of
system operations, including sending and receiving messages to or from
other users and the operator, assigning devices to your job, inquiring
about CPU usage, and performing other standard functions.

CAUTION

If you run any other program, the
workspace in memory will be destroyed.

To return to APL with the workspace intact, type CONTINUE. APL re-
sponds with APLSF: to indicate that it has again received control.

THE APL OPERATING ENVIRONMENT

1.4.4 Interrupting Execution

To interrupt APL during an operation, use the attention signal, CTRL/C.
Two CTRL/Cs interrupt function or program execution and return you to
APL mode. The response may be delayed for a few seconds because of
system buffering.

Typing five CTRL/Cs will return you to system command level. To return
to APL mode and resume APL operations, type one of the following oper-
ating system commands:

CREENTER

or

ECONTINUE

1.5 KEYBOARD EDITING

The following sections describe the procedures for entering and cor-
recting APL text on a terminal with an APL keyboard.

1.5.1 Correcting a Line Before Entering

You can type characters in an APL input line in any order. Regardless
of how you enter the line, APL evaluates it exactly as it appears on
the terminal; the order in which you type characters is not significant.
By using the appropriate space and backspace characters, you can even
type the line backwards. APL interprets the line only when you press
the RETURN key. (This "random order" feature is not available on TTY
terminals.)

An APL line can contain up to 390 characters. This total includes
spaces and backspaces. If you type more characters than the limit and
press RETURN, APL ignores the line and sends the error message:

48 IHFUT LIME TOO LOMG

For a complete list of APL messages, refer to Appendix A.

NOTE

Backspacing is a method for positioning
the carriage, it does not cause char-
acters to be erased or ignored by APL.

On an APL-keyboard terminal, if you discover an error in a line before
you press the RETURN key, you can backspace to the error and press the
LINEFEED key. Everything from the LINEFEED to the right is ignored by
APL. You can then complete the line directly below the part in error
by retyping it. For example:

Co ' REELVE backspace 4 then line feed
CELIVE?®
o

KECELVE

THE APL OPERATING ENVIRONMENT

There are several special characters available with which to make cor-
rections. Table 1-3 lists these characters and their meaning.

Table 1-3
Editing Characters

Character Meaning

CTRL/C Two CTRL/Cs interrupt APL function execution
and expression evaluation. Five CTRL/Cs re-
turn you to system command level.

CTRL/U Deletes the current input line and positions
you in column one of the next line. It does
not delete past the first LINEFEED it en-
counters. Echoes as XXX on TTYs and as >>>

on LAs.

CTRL/O Suppresses output to the terminal.

CTRL/R Performs a LINEFEED and displays the cor-
rected line starting at column one.

LINEFEED In conjunction with backspace, it deletes
input.

DELETE (RUBOUT) Deletes one character at a time. On an LA,

echoes one +~ character on TOPS-10 for entire
operation. Echoes one + character for every
character deleted. The + prints as a \ on
a TTY.

1.5.2 Correcting a Line After Entering

An APIL statement entered and processed in immediate mode can be edited
according to the same line-editing rules established for user-defined
functions. These rules are described in Sections 6.3.7 and 6.3.8.

CHAPTER 2

LANGUAGE SYNTAX

2.1 INTRODUCTION

This chapter describes the syntax that governs the construction of APL
statements and expressions, including statement components, data types,
and expression evaluation.

2.1.1 Statement Execution Modes

Two execution modes are available in APL:

1. Immediate mode, in which APL executes statements and express-—
ions as soon as you enter them and press the RETURN key.

2. Function-execution mode, in which APL executes the statements
contained in a user-defined function (Chapter 6). APL enters
function-execution mode whenever it discovers a user-defined
function in the statement it is currently executing, and
exits from function-execution mode when the last statement in
the function is executed, you suspend the function, or an
error occurs.

The statement syntax is identical in both modes; however, there are a
few special characters that are not generally relevant in immediate
mode, but useful in function-definition mode. These characters are
described in Chapter 6. Most of the examples in this chapter illus-
trate immediate-mode execution. Chapter 6 describes function-
definition mode, in which you prepare and edit functions, and function-
execution mode, in which you actually execute the function.

In immediate mode, APL clearly differentiates between what you type
and what it prints. APL always indents six spaces before accepting
input. After you enter text, press the RETURN key to indicate that
entry is complete. APL processes your input and, if necessary, prints
results beginning at the left margin. After printing output, APL then
performs a carriage return/line feed and indents six spaces. For
example:

34 &
[}

&
e Q
X

[ARES &

LANGUAGE SYNTAX

You can have up to 390 characters in a single line. This count
includes spaces and backspaces.

2.1.2 Expression Components

An APL expression can consist of the following components:

1. TIdentifiers
Variables, Section 2.1.2.1
Labels, Section 6.4.2
User-defined Functions, Chapter 6
Groups, Section 5.1.3.4

2. Constants
Numeric, Section 2.1.2.2
Character, Section 2.1.2.2
3. Characters
I/0 Functions, Section 2.5
Primitive Scalar Functions, Section 3.2
Primitive Mixed Functions, Section 3.3
Extended Functions, Section 3.4
File Functions, Chapter 7
Operators, Section 3.5

4. System Variables, Section 4.2
System Functions, Section 4.3

2.1.2.1 TIdentifiers - An identifier can be a variable name, a label
name, or a user-defined function name. It can consist of any number
of letters and digits; however, the first character must be a letter.
APL defines a letter, in this case, as any character 4 through Z, 4
through Z, A and A. Only the first 31 characters of the identifier
are significant, and embedded spaces are not allowed. APL truncates
all identifiers to 31 characters; therefore, you cannot create an
identifier longer than 31 characters. For example:

Legal Identifiers Illegal Identifiers
ARCLIEG 1AC7% (does not begin with a letter)
a74 204 X4 (contains an embedded space)
AGDH4HA FO740E (contains invalid character V)

Note that you cannot start an identifier with the characters SA or TA
because of a conflict with the trace and stop vectors. Refer to
Sections 6.4.5 and 6.4.6.

A variable must contain a value before you can reference it. Other-
wise, you will receive the message 11 VALUE ERROR from APL. Section
2.1.5 describes how to assign values to variables.

Variable names and their positions have special meaning in function-
definition mode. Refer to Chapter 6 for this information.

LANGUAGE SYNTAX

2.1.2.2 Constants - Constants can be either numeric or character data.
A numeric constant is one or more decimal digits with an optional
decimal point. A numeric constant can also be in exponential format;

an integer or decimal quantity followed by £ and the power of ten by
which the quantity is to be multiplied. All of the following constants,
for example, are valid representations of the same value.

712 712.0 7120E71 7,12EQ

Wherever possible, APL prints numbers without decimal points and
exponents.,

A2 7L2.0 PLR0ETL VL L2ED

PAR N2 LR MR

In APL, you represent a negative number by a numeric constant preceded
by a negative sign (7). This sign is a distinctive symbol (uppercase
2). It is not the same character as the minus sign (-) which is used
to indicate subtraction. On non-APL terminals, the negative sign is
.NG.

A character constant is one or more alphanumeric and/or special char-

acters (including carriage returns and line feeds) enclosed in single
quotation marks. For example:

VAR B G
VGEQRGE
VTHES LS A QOMSTAMNT?

When APL prints a character constant, it omits the enclosing quotation
marks. If you want APL to output quotation marks, type one extra
single quotation mark next to the one you want to print. For example:

Ee 'TOMTY Y V86 TEMRMIS FRACQRUET!
¥
TOMY VS TEMMEIS FRACQRUET

Numeric and character data can be structured in a variety of ways.
APL supports the following types of data:

1. scalars

2. wvectors

3. matrices

4, arrays of three or more dimensions

LANGUAGE SYNTAX

A scalar is a single numeric or character value with no dimensions.
For example:

32
32

1y

A vector is a l-dimensional array or character string consisting of
any number of values. Enter a numeric vector as a list of values
separated by at least one space. For example:

In this example, H is defined as a vector whose elements are 1, 2, 3,
4, and 5. APL stores the values in the order in which you enter them.

A character vector or literal vector is entered as a string of char-
acter constants enclosed in single quotation marks. Unless you want
the space character as part of the character vector, do not insert

spaces between characters in the vector. Note the following example:

Ne ' ABRCHEFG HIJKLMHOF?
A
ABCLEFG HIJKLMHOF

Because any characters, including carriage returns and line feeds, can
be elements of a character constant, you can also enter several lines
of character data as a l-character vector. For example:

AL THIS IS A
MULTIFLE LIHE
LETERAL,

0o
THIS IS
MULTIFLE L EME
LI TERAL,

Although there are several lines of text, 4 is still a vector.

Note that a common error occurs when you type a character constant
with an unbalanced number of quotation marks. APL thinks that you are
still defining the constant when you press RETURN to enter the line.
Consequently, APL includes the carriage return/line feed as part of

the constant. You can spot this error by noticing that APIL does not
indent six spaces when you press the RETURN. Typing a single quotation
mark will usually get you out of this situation.

LANGUAGE SYNTAX

A matrix is a 2-dimensional array consisting of rows and columns. APL
supports the use of matrices as well as arrays of higher dimensions.

The rho character is used to create and reshape arrays (Sections 3.3.18
and 3.3.15). You enter values corresponding to each element of an
array and also the shape or size of the array. The following examples
show array output. (To input arrays, refer to Section 3.3.15.)

The following is a numeric matrix with 2 rows and 3 columns.

—
ol

D
4 2 L8]
o

APL also supports arrays of three dimensions or more. For all practi-
cal purposes, there is no intrinsic limit on the number of dimensions
in an APL array. The only restriction is that the size of the array
cannot exceed your workspace size. If you have unlimited memory avail-
able, the maximum number of dimensions allowed is 2*18.

The following is an example of a 3-dimensional character array. Note
that APL inserts a blank line between each plane greater than two.

A ' ABCDEFGH I JKLMMHOFQRFSTUVWITR
23 4rH

ARCD

EF G

T JKL.

MM OF

QREST

UV

2.1.3 Spaces and Comments

Spaces are usually not significant in APL. Therefore, you need not
separate functions from constants or variables. This is also true on
non-APL~keyboard terminals. The mnemonics for operators need not be
preceded or followed by a space. The following expressions are equi-
valent:

b33 I3 35

Celbh

AR] -0

[A) ' ¥ 4 1 s

LANGUAGE SYNTAX

Spaces are also not required between a succession of functions or oper-
ators. For example:

AEL AR 4 AR

However, spaces must be included to separate names of adjacent user-
defined functions, constants, and variables. For example, they are
required when you are entering a series of numeric constants as a

vector. The spaces included in the following example are necessary:

2 TRIG 3 (user-defined function)
Bed 4 05 (numeric vector)

You can also use comments in APL. Their use is particularly relevant
in function-definition mode. Comments must appear on separate lines;
they may not be included on lines containing APL statements. The first
character in a comment line is the lamp character (a), formed by over-
striking the down union character (n) with the jot character (o).
Section 6.2.4 describes comment lines in greater detail and illustrates
their use in a variety of user-defined functions. On non-APL-keyboard
terminals, use a double quotation mark for the comment character.

2.1.4 File Specifications

File specifications indicate to the operating system when to locate
and identify a file. Certain operations in APL i t ply

The complete form of a file specification is:

dev:filename.extl[directoryl<prot>

where

dev: is a device name, or a logical name you have
defined. See Appendix D for defining logical
names.

filename is one to six alphanumeric characters specifying
a particular file in the directory.

.ext or .typ is one to three alphanumeric characters identify-
ing the contents of the file.

[directory] is the project-programmer number of the owner of
the directory. You can translate a directory
name on TOPS-20 to its corresponding project-
programmer number by using the TRANSLATE command.
See Appendix D for this information.

<prot> is a 3-digit octal protection code specifying
who can read and write the file.

LANGUAGE SYNTAX

You need not give the entire file specification in every case. The
defaults are:

Argument Default

dev: DSK:

filename No default; it must be specified
.ext or .typ Depends on the type of file
[directory] Your currently connected directory
<prot> Installation-dependent

2.1.5 Statement Types

There are two general types of APL statements:

1. Branches constructed with -~

2. Assignments constructed with <«
Branch statements restart a function and transfer control from one part
of a function to another. These statements are most relevant in the

context of user-defined functions and are described in Section 6.4.1.

Assignment statements store one or more values into an identifier. The
general form of an assignment statement is illustrated by the following:

AeQ R

where 2+B is an APL expression
<+ is the assignment function
4 is a variable name

You can have more than one statement on a line by separating each with
a semicolon. Each statement separated must contain a value. For
example:

CEALESACHAFECPD

Assignment statements are, themselves, expressions and can be used in
the construction of other statements. The following example illustrates
a method of assigning values to more than one variable with a single
statement:

) ¢ 3 K6 4 40 7

LANGUAGE SYNTAX

Here the value 7 is assigned to ¢, 11 to B, and 14 to A. The express-
ion is evaluated from right to left according to the rule described in
Section 2.1.5.

In any mode, if you do not include an assignment or branch function in

an expression, APL prints the results on the terminal when the express-
ion is executed. For example:

243

i

This type of expression has the effect of an implied print statement
in APL.

2.1.6 Evaluation of APL Statements and Expressions

APL evaluates unparenthesized statements and expressions in strict
right-to-left order, regardless of the particular functions in the
statement. Unlike some languages, which perform multiplication and
division before addition and subtraction, APL has no explicit function
precedence. For example, APL evaluates the expression

Ix4+5

as 27, using right-to-left evaluation, rather than 17. Thus, the
expression is interpreted as

3x(4+5)
27

You can control the order in which individual functions are evaluated
by enclosing part of the expression within parentheses. To cause the
expression above to evaluate to 17, enter the following:

(3x4)+5
17 Y

APL evaluates this expression as 17 because 5 is added to the quantity
3x4, not simply to 4.

LANGUAGE SYNTAX

2.2 Number Precision

APL is a double-precision system with internal precision of about 18
decimal digits. Numbers are represented internally in two ways.

1. Integers less than 2 to the 35th power (2*35) are stored with
full precision.

2. Non-integers and integers largér than 2 to the 35th power are
carried out in floating-point format.

APL handles conversion between the two formats automatically.

Although you cannot control the internal precision of numeric repre-
sentation, you do have some control over the output representation.
The 0OPP variable, Section 4.2.15 llows you t i

precision of non-integers. | APL £

Notice how APL outputs the numbers in these arrays:

2 2rLN0
1.701411835838
1.701411835238

Ae2 2r1
a

ALVl /00

5
1.+.000000000E0 1.000000000E0
1L+ 000000000EQ 1.701411835E38

fep 2p1
ALL51T610%6
A
1000000 1
1 1

AeR 2r1
ALR320610%76
2]

1 1

1 0.000001

Al1711¢10x6

Y
1.000000000E4 1.000000000E0
100000000080 1.000000000E™4

LANGUAGE SYNTAX

The range of numbers you can input without receiving an error (15
DOMAIN ERROR) are:

For integers _2*%35 to (2*35)-1
For non-integers .14693679E-38 to 1.7014118E38

Note that Boolean is represented as 36 bits per word: (136)=136 is
equal to 36pl.

2.3 ERROR HANDLING

When APL encounters an error, it prints three things:
1. an error message
2. the line in which the error occurred

3. a caret (") approximately underneath the particular point at
which the error was discovered

The following are examples of common error conditions:

Ee3
X Ee
11 VALUE ERFROR
£ x ¥
A

1+1E4243
7 OSTHTAN ERFRQR
141 EBe243
A

1 2+¢1 2 3 4
10 LEHGTH ERROFR
L2+ 123 4

A

In the first example, APL printed a value error because the variable
named 4 had not been assigned a value. The syntax error occurred
because an identifier cannot begin with a number (1B). The length
error was a result of an unequal number of constants on either side of
the plus sign.

Because APL is a highly interactive system, you can almost always
respond to an error condition simply by correcting the statement in
which the error occurred. This characteristic of the language also
aids the trial-and-error approach to program development. In function-
execution mode, APL prints an error message, the function name, and

the line number of the statement at which it occurred. APL also sus-
pends execution of the function. You then have the options of termin-
ating the suspended function, restarting it possibly at another state-
ment, or debugging it before resuming execution. Chapter 6 describes
techniques for developing and executing functions.

LANGUAGE SYNTAX

2.4 ARRAY INDEXING AND COMPARISONS .-

This section introduces the use of array indexing in APL and also the
use of "fuzz" in performing comparisons. Both of these concepts are
helpful in understanding the examples included in subsequent sections
of this chapter.

2,4.,1 Indexing Arrays

The concept of using and entering values for arrays has already been
introduced in Section 2.1.2.2, To be able to access, individually,
the values of the elements stored in an array, you must know the posi-
tions of the elements within the array. These positions are known as
the indices. The procedure for accessing elements is called indexing.
The first position in an array (index origin) can be either 0 or 1.
You can set the index origin with system variable 070, Section 4.2.11.

To index an array, specify the array followed by the indices enclosed
in square brackets, and separated with a semicolon. Each index must

be an integer scalar, or an expression that evaluates to an integer.
The number of indices needed to pinpoint an element depends on the
array type. In general, you must specify as many indices as the number
of dimensions of the array. For a vector, a single index is sufficient
to identify the position of the desired element. A matrix, a 2-
dimensional array, requires two indices separated by semicolons; a
3-dimensional array requires three indices separated by semicolons;

and so forth.

For example, specifying:

ALL1

accesses the first element stored in vector A. If 4 consists of the
vector shown below, then A[3] is 25.

Ae72 91 25 46 87
A3

25

If the array is a matrix, specify two indices: the first one for the
row and the second one for the column:

Eel 4P 8

L2531

LANGUAGE SYNTAX

Specifying the indices in the form of an array enables you to access
more than one element at a time. For example:

Ae32 44,6 71 .80 65 97.2

n
32 44.6 71 0.8 635 97.2

AL3 5 61
71 65 97,2
Me2 4P18
M
1 2 3 4
5 & 7 8
ML251]
5
MLL 252 31
2 3
6 7

The index can also be an expression which is evaluated to generate the
element positions.
Ie2 4 5
Vel0 22 31 49 56 68 72
viI+1]
31 G646 68

Here V and I are both vectors. The expression V[I] accesses the ele-
ments of V referenced by I: that is, the third, fifth, and sixth
members of vector V.

Character arrays can also be indexed. For example:

A4 ABRCDEFGHI JKLMHOFRRESTUVWITE
EAETEAD10 S 14 14 9 6 5 18 27 12 235 14 27 13 281
EAEY

SEMRMIFER LTH M,

Note that an element can be duplicated by specifying its position more
than once. The array being indexed need not be a variable. It can be
a constant set of values or an expression enclosed in parentheses.

For example:
PS5 4 03 2 182 41

(24 8 1622001 21
4 16

LANGUAGE SYNTAX

You can omit a subscript from an index specification, but the semi-
colon must be included if only one array dimension is specified. 1If
you omit the right subscript, all columns are selected from the matrix;
if you omit the left subscript, all rows are selected. For example:

Note that a semicolon is required to indicate which subscript has been
omitted. In general, the size of the result when a variable is indexed
is equal to the catenation of the sizes of all the indices. For ex-
ample, if Z<«X[I1;I2;I3;...IN] then (pZ2)=(pI1),(pI2),(pI3),...(pIN).

Ve ' AECDEFR !

VLY 51
CE
AVECTOR IMHDEXED WITH A& VECTOR
ARESULTS LM A VECTOR
VIL6 5 4 3 2 1]
FELC KO
AVECTOR IMDEXED WITH 6 MATRIX
AFRESULTS TMH A MOTRIN
Me2 Jp2 5 4 6 05 4
VLM
BEL
FED
AMATRIN IHDENED WITH TWO 2-DIMEMSIOMHMOL
ATMDICES BRESULTS IM A 4-DIMEMSTOMHAL ARRAT
Me2 271 2 2 1
AEMEMS MY
A
1 2
2 1
2 1
12
2 1
1 2
2
5q

LANGUAGE SYNTAX

FA
2222
MeD 4PV 6
M
1 2 3 4
5 6 1 2
ABCALAR RESULT
AeMI1511
2]
1
aHuLL AaRRAT
P .
(APL outputs a blank line)
AL-ELEMENT VECTORS
Eey,M[1511
BReMy1511
E
1
1
FE
1
PED
1
AP -ELEMENT VECTOR
CeMIIy2]
o
26
po
2
an DoET..] MATRIX
LeM[15 921
b
2
&
FL
21

You can also use indexing to change values of elements already stored
in an array. For example:

e IPé

2
r 2 3
4 F 6

A1 3167 8
Ar2il 2169

o
17 8
9 6

LANGUAGE SYNTAX

AL 10612
£

12 7 8

£4 K4 &

AL1F1 17e2 3

2.4.2 The Index Origin

In APL, the first position of a value stored in an array is called the
index origin. You have the option of beginning the indices of an array
at either 1 or 0. For example, if the index origin is 1, then members
of a vector named 4 would be numbered A[1], Af2], A[3], and so forth.
If the index origin is 0, elements begin at 4[0], A[11, A[2]1, and so
forth.

The default index origin in a clear workspace is 1, but you can change
this setting to 0 or reset it to 1 with the [0I0 variable (Section
4.2.11). The index origin setting is saved when you save your work-
space. Refer to the)SAVE command, Section 5.2.4.

The value of the index origin is often used in conjunction with several

monadic and dyadic functions. Chapter 3 discusses the index origin in
that context.

2.4.3 Comparison Tolerance or Fuzz

APL handles the problem of performing decimal arithmetic on a binary
machine with a concept known as fuzz. When two non-integer numbers
are compared, for example, 7.913 and 8.019, they are considered equal
if the difference between them is within a certain range. This range
is referred to as the comparison tolerance or the fuzz quantity.

There are two types of fuzz:

1. Absolute fuzz - which is the tolerance used to determine
whether or not a decimal number is close enough to an integer
in value to be considered an integer.

2. Relative fuzz - which is the tolerance used when comparing
two numbers to determine whether or not they are close enough
to be considered equal.

The absolute fuzz in this version of APL is approximately 1E 7. This
setting cannot be changed. The default relative fuzz is 1E 13 in a
clear workspace. You can change the relative fuzz in your active work-
space by assigning a new value to the [CT variable, Section 4.2.7.

The relative fuzz setting is saved when you save your active workspace.

The following functions use [CT when making comparisons: <, <, =, >,

>, #, A1B, AeB, LA, AlLB, A, AlB.

LANGUAGE SYNTAX

2.5 TERMINAL I/O OPERATIONS

APL provides you with utilities to ease input and output operations on
a variety of t devi Thi ti d ibes terminal input
and output £ . ¥

There are several methods of input and output as illustrated by Table
2-1.

Table 2-1
Input/Output Functions

Expression Meaning Section
A<[] Quad (evaluated) input 2.5.1
A< Quote-Quad (character) input 2.5.2
A< Quad-Del (unedited) input 2.5.3

A Normal output 2.5.5
A3B;C Mixed output 2.5.6
0«4 Quad output 2.5.5
<A Bare output (Quote-Quad) 2.5.7
M<4 Bare output (Quad-Del) 2.5.7

All terminal I/0O, except normal and mixed output, use the [0 symbol.
All forms of I/O can be used in either immediate mode or function-
cuti mode e]
The following sections describe the basic
forms of the quad function.

LANGUAGE SYNTAX

2.5.1 Evaluated Input Mode-Quad Input (O or .BX)

The most basic form of quad input is called evaluated input. In this
mode, the statement you enter at the terminal, in response to the [J
input request, is evaluated and its value is returned as the result of
the 0 input function. By placing a [0 to the right of a back arrow in
an expression, you signal APL to expect data input from the terminal.
Normally, APL prompts you by printing O: in the left margin. You can
change the prompt with the [0SF system variable (Section 4.2.18). Any
character data input must be enclosed in single quotation marks. Other-
wise, it will be considered an APL expression. For example:

K&}

5

BeRxl

t
I
10

ME G e[

THO OFEROTOR
MEG
MO OFEFROATOF

While the system is awaiting your input, you can enter and execute a
system command, evaluate an expression, or define a function. The
input request remains pending. If an error is encountered in the
input, APL prints the appropriate message and allows you to reenter
the input. If you enter a carriage return or spaces and a carriage
return, APL again prints the [J: prompt and waits for input.

The prompt signal ([0:) is the default. You can change it with the [SF
variable, Section 4.2.18.

2.5.2 Character Input Mode-Quote-Quad (M or .QQ)

APL has another version of the quad function especially for input of
character data, the quote-quad function ([1). An example of quote-
quad mode is shown below:

e[
THAT LS AMARTHG

¥
THAT VS AMAZ LG

LANGUAGE SYNTAX

Unlike evaluated input, quote-quad input allows you to enter character
strings without enclosing them in single quotation marks. Note that
APIL, does not print the [: prompt in quote-quad mode.

When APL encounters a [M symbol, it positions the carriage at the left
margin and accepts the data up to the next carriage return as a char-
acter variable. If you enter a single character, APL treats it as a
character scalar; it stores a string of characters as a character vec-
tor. If you enter only a carriage return, APL treats this input as a
vector of length zero; this treatment is significantly different from
the handling of empty input in quad-input mode, in which APL rejects
the input and waits for you to reenter it correctly. If you enter a
tab, APL converts it into the equivalent number of spaces accomplished
by the tab.

Note that you cannot enter and execute system commands or define func-
tion during [input.

2.5.3 Unedited Input Mode-Quad-Del (@ or .QD)

APL has a third version of the quad function, the quad-del function
(). The quad-del function allows you to enter special characters,
including backspace, without having APL evaluate them. The backspace
is treated as a separate character, and an overstrike symbol is not
created.

APL counts each character you input in quad-del mode. The length of
the expression includes any spaces and backspaces. (A tab is treated
as one character.) The following example illustrates the difference
between quad-del and quote-quad modes in entering overstruck APL char-
acters. The example uses the transpose function (&) which takes an
array and transposes its values (Section 3.3.20). To input this func-
tion, type ©, press BACKSPACE, and type \. The result of the shape
function (p), (Section 3.3.18), prints the number of characters in the
array.

b24 5&
T2
ATHE BRACKSFACE 19 COUMNTED a% N CHARMOTER,
£
4
e
neH
Al ROUTE.QUAD, THE KACKSEFACE T4 HOT COUNTED,
£
2
gl SEMGLE QUOTES, TT ES MHOT COUMTED ELTHEFR,
Fraa

LANGUAGE SYNTAX

The following example shows the particular use of quad-del mode in
accepting input from non-APL-keyboard terminals. The mnemonics are
not decoded.

AL QR

ROR
L ROA
4
AL QR
SOR
+ROA
2
+RORORBS

e
an

As in quote-quad input mode, if you enter only a carriage return or
spaces followed by a carriage return, APL treats this input as a null
vector of length zero.

2.5.4 Escaping From Input Mode

To escape from an input request, you have certain escape options de-
pending on the input mode:

In quad-input mode, type a right arrow (-)

In quote-quad (M) or quad-del (M) input mode, type 0UT as
follows:

0 backspace U backspace T
or
On non-APL-keyboard terminals, type .OU
Each of these methods causes function execution to be interrupted but

does not cause an exit from the function. Refer to Chapter 6 for
information on function-execution mode.

2.5.5 Normal and Quad Output Modes

In normal output mode, to display output on the terminal, type an
expression or an identifier without an assignment function (<) or
branch function (=) as the leftmost character. The result of the
expression prints on the terminal. For example:

a
25
H4x3
262144
1746
42

LANGUAGE SYNTAX

If the quad symbol appears immediately to the left of an assignment
function (<), the result of the expression to the right of the <«
prints on the terminal. This is called quad output. For example:

{](.‘ﬁ

Note that using quad output has the same effect as in the previous
example of merely typing the variable name 4. Quad output is espe-
cially helpful when an APL statement contains multiple assignments.
For example:

Ee3+[e5X4

This statement performs the computation and displays the desired out-
put - the result of the computation 5x4. This method is more efficient
than the following:

Ee5x 4
X

Ee34A

If the last operation (the leftmost expression) in an expression is an
assignment or branch, then no final output is produced. The following
will not cause output to be printed:

ARG

The following will:

arnes

When APL outputs an array, and a row cannot fit on a single line, the
remainder of the line prints on the following line, indented six
spaces. For example:

VO

L2345 &7 89 10 11 12 13 14 1% 146 17 18 19
20 20 22 23 24 28 246 27 28 29 X0 31 32 33
34 3@ & 37 38 X9 40 41 42 43 44 48 A6 47
48 49 GO

To provide more room on a line you can alter the page width with the
UPW system variable. Refer to Section 4.2.16 for this information.

LANGUAGE SYNTAX

2.5.6 Mixed Output Mode

Mixed output mode allows you to print character data and numeric data
on the same line. You request mixed output by entering a series of
values or expressions, separated by semicolons, in the order in which
they are to appear. The output displayed contains no carriage returns
or spaces, except where required by the data.

Although APL evaluates from right to left, it prints items from left
to right. If you display two expressions separated by a semicolon,

APL will not put a space between them. You must specify a space if

you want one. For example:

1413242
24

1418 e

In the first part of the next example, APL reports a value error
because no value is assigned to B. In the second part, B is assigned
the value first.

1 -3 Xit ; ' ; X
11 VALUE : B) e
LAEG g
FaS

14.1{(§ ¥ 3 ;)}j«g..l

APL will not print a value if the leftmost expression on a line is an
assignment or branch operation. You can get around this by enclosing
the assignment within parentheses. Note the following examples:

YME VALWE OF & LE e
THE VALUE QF A L6 05

e VHOTHERG WILL FREINT BECOUSBE OF THE MAFREOW!

L FEERT O EECAUNGE
OF TR P AFRERCT

(Ae " THIS 1y 5 WL
THIG WELL FRIMT RECHUS

TR FOFERT

Another way of printing the leftmost expression containing an assign-
ment or branch, is to precede the statement with a semicolon:

pRes

LANGUAGE SYNTAX

Although the semicolon is considered a statement separator, each ex-
pression in the list must return a value. For example, if F is a user-
defined function that does not return an explicit result (regardless

of the number of arguments F requires), the construct ';F;' returns

an 11 VALUE ERROR.

wE
e LT
31

2.5.7 Bare Output Mode (Quote-Quad [1 or Quad-Del M)

Bare output is a special mode that allows you to request input on the
same line as an output string.

Like quad output mode, if yqQu place a quote-quad or a quad-del to the
left of an assignment function, the expression to the right of the
function prints on the terminal. However, unlike quad output, APL
does not perform a carriage return/line feed at the end of the output.
Note the difference in the following example:

e e e VERYEFR YOUIE HAME !
Y OQUE HOME

[21

KRR

Notice that the value input is preceded by a number of spaces equal to
the length of the B output.

If the last character of a character constant to be output is a
comment (lamp) character a, APL suppresses the printing of the na as
well as the usual delimiting carriage return/line feed, thus, leaving
the carriage in mid-line. This feature is useful for entering input
on the same line as the previous output. For example:

Bl e CENTER YOURE MOME g
ERYER TOURE MOAME ROSE
I

Fr Y5 EE

In immediate mode, bare output is the same as normal output. A bare
output statement such as [«4 must be followed by an input entry at

the terminal. Thus, in this instance, output is concluded by the
conventional carriage return/line feed. Bare output is more appro-
priate in function-execution mode. Refer to Chapter 6 for more infor-
mation on functions.

CHAPTER 3

APL FUNCTIONS AND OPERATORS

3.1 INTRODUCTION

APL provides several characters, known as functions and operators,
that allow you to perform various operations with numeric data and
character data. These functions and operators are grouped as follows
within this chapter:

1. Primitive Scalar functions - arithmetic, relational, and
logical, Section 3.2

2, Primitive Mixed functions - for extensive array manipulation,
Section 3.3

4, Operators - more than one function in the syntax, Section 3.5

Functions are either monadic or dyadic. A monadic function requires
only one argument placed immediately to the right of it. A dyadic
operator requires two arguments, with the function placed between
them. Depending on the function, arguments can be variables, numbers,
character strings, or expressions.

Functions are also classified as either scalar or mixed. A scalar
function generally takes a single-value argument and returns a single-
value result. However, scalar functions can also be used with vectors
and arrays where they operate on an element-by-element basis. A mixed
function can take a scalar argument and return a result in the form of
a vector or an array, or take a vector or array argument and return a
scalar result. Therefore, the result of a mixed function is not as
apparent as a scalar function.

Both scalar and mixed functions can be either monadic or dyadic. With
a scalar monadic function, the shape of the argument determines the
shape of the result. For example, a scalar argument returns a scalar
result; a vector argument returns a vector result, and so forth. When
using scalar dyadic functions, you must specify arguments that have
the same number of elements and, if arrays, the same dimensions.

Table 3-1 shows the results achieved by specifying certain arguments
to scalar dyadic functions.

An operator is a function that takes another function as its argument.
APL operators are described in Section 3.5.

APL FUNCTIONS AND OPERATORS

Table 3-1
Results of Scalar Dyadic Functions
Argument Function Argument Result
scalar £ scalar scalar
scalar £ vector vector
vector £ scalar vector
vector f vector vector
scalar f matrix matrix
matrix f scalar matrix
matrix f matrix matrix

3.2 PRIMITIVE SCALAR FUNCTIONS

The primitive scalar functions are the arithmetic, relational, and
logical functions. They are used primarily for basic arithmetic and
logical operations, such as addition, exponentiation, maximum value,
and logical OR. With a few exceptions, primitive scalar functions
take numeric scalar arguments. The relational functions (=<,2,<,>,=,%)
can take either character or numeric arguments but only the equal (=)
and the not equal (%) primitives can take both character and numeric
arguments in the same expression. The logical functions (A,v,~,%,¥)
must have arguments that are equal to 0 or 1 within a tolerance of
1E~7, the absolute comparison tolerance that APL uses (Section 2.4.3)

Table 3-2 summarizes the primitive scalar functions available in this
version of APL. Most of the functions are straightforward and familiar
arithmetic or logical operations.

APL FUNCTIONS AND OPERATORS

Table 3-2
Primitive Scalar Functions

Monadic Dyadic
Function Meaning Function Meaning

+Y Y X+Y Add X to Y

Y Negative of Y X-Y Subtract Y from X

xY Sign of y! xxY Multiply X and Y

Yy Reciprocal of Y XY Divide X by Y

*Y E to the Yth power X*Y X to the Yth power

|y Magnitude of Y Xy X residue of Y (see
primitive mixed
operators)

ry Ceiling of Y Xry Maximum of X and Y

LY Floor of Y XLy Minimum of X and Y

ey Natural logarithm of Y Xey Log of Y to the
base X

'Y Factorial of Y X'y Binomial coeffici-

ent (number of
combinations of Y
things taken X at
a time)

?Y A random integer of 1Y X?y X number of random
integers in the
range 1 through Y

oy Pi times Y Xoy Trigonometric
functions (Y is in
radians. See Table
3-3)

!pefinition: xY is -1 if ¥<o0
xY is 0 if Y=0
xY is 1 if Y>0

APL FUNCTIONS AND OPERATORS

Table 3-3 lists the values 0 through 7 and 0 through -7 that are
needed as the left argument to the circle function (0) in order to
perform trigonometric functions. The right argument, a scalar or
vector, is expressed in radians.

Table 3-3
The Dyadic Circle Function

Expression Result Expression Result
0oXx (1-X%2)*.5
10X sine X -10X arcsin X
20X cosine X -20X arccos X
30X tangent X -30X arctan X
LoX (1+4X%x2)*.5 -40X (-1+X*2)*.,5
50X sinh X -50X% arcsinh X
60X cosh X -60X arccosh X
70X tanh X -70X arctanh X

The following examples illustrate ways in which primitive scalar
functions can be extended to arrays:

2("3 35 6 8B 3 21 6 42

H 6 8
3 2 1
b 4 2
AELEMEMT By - ELEMERYT MULTLIFLIOOANTION
£ X 1Y
29 36 44
P 4 1
X6 1é 4
2xn
10 12 146
& 4 2
12 f 4

2x0 1 23 4 5 6 78
1248 16 32 64 128 288

4 9 16 25 36%x0.0
23 40 6

APL FUNCTIONS AND OPERATORS

3.2.1 Relational Functions

In APL, the relational functions (<,z,<,>,=,#) return results; they
are not simply comparison functions. An expression of the form A<B
yields the result of 1 if true (4 is less than or equal to B), and 0
if false. For example:

Pré

426

ey e

These functions can take either numeric or character arguments, but
only the equal and not equal functions can have mismatched arguments,
that is, one numeric and one character argument simultaneously. For
example:

YOt

When you use relational functions with Boolean arguments (0 and 1),
the relational functions can perform logical operations. For example,
the not equal (#) function performs an exclusive OR operation if its
arguments are 0s and 1ls:

O#0F 04151405 1#1

0110
0011#0101

1

APL FUNCTIONS AND OPERATORS

3.2.2 Logical Functions

The following table is a truth table that describes the results of
logical operations:

Table 3-4
Truth Table

Arguments Functions
AND OR NAND NOR
X Y XANY Xvy XnY &Y
0 0 0 0 1 1
0 1 0 1 1 0
1 0 0 1 1 0
1 1 1 1 0 0
NOT
X ~X
0 1

APL FUNCTIONS AND OPERATORS

| or .AB ~ The Residue Function

Format

dyadic

Argument Types

Both arguments can be either scalars or vectors and either
integer or noninteger.

Definition

Obtains the remainder or residue of a number. The residue is a
unique number whose value is in the range between the value of
the left argument and zero. It is obtained by adding or sub-
tracting multiples of the left argument from the right argument.
For example, for positive arguments, the remainder is obtained
by dividing right arguments from left arguments. The result of
a residue operation has the same sign as the sign of the left
argument.

The formal definition of the residue function is as follows:

A|B IS B-Ax|B+ A+A=0

If the left and right arguments are equal, the residue is 0. If
the left argument is 0, then the residue is equal to the value of
the right argument.

If the left argument is not 0, then the residue is in the range
of the left argument through 0; it may equal 0 but not equal the
value of the left argument.

APL FUNCTIONS AND OPERATORS

Examples

S8
R V4
717
710
o7
215.8

uoEIg 8

[-
5% 512
P]
222
L B R
oo
A s

Related Functions

None

APL FUNCTIONS AND OPERATORS

3.2.4 ? — The Roll Function

Format
monadic
Argument Types

The argument is an array of positive integers.

Definition

Generates an array of independent random integers. Each element
is in the range 0 or 1 (depending on (I0) to the wvalue of the
corresponding element in the argument. There may be duplicate
values. Roll also changes [RL. See Section 4.2.17.

The term "roll" relates to the analogy between the operation
performed by this function and the rolling of several dice.

Examples
PEOLO 1E 20 2%
206 2 1408
TEH OO 1S 20 25
B 13 2 21
feR 3ps
2]
L2 3
4 8 &
Py
| 203
2008 4
'.i) ﬂ)
12 2
4 24
Py
1 L
3 4

Related Functions
Deal, Section 3.3.3

Deal differs from roll in that deal generates a set of random
numbers in which no number is selected twice.

APL FUNCTIONS AND OPERATORS

3.3 PRIMITIVE MIXED FUNCTIONS

Unlike the primitive scalar functions discussed in the previous
sections, the functions presented in the following sections are
considered primitive mixed functions. Scalar functions usually take
scalar arguments, return scalar results, and are extended to arrays

on an element-by-element basis. Primitive mixed functions, however,

can take vector arguments and return scalar or vector results, or can
take scalar arguments and return vector results. In expressing primi-
tive mixed functions for arrays of higher rank, you may need to speci-
fy the particular coordinate of the array to which the function applies.

The primitive mixed functions provide the capability of extensive
array manipulation.

Table 3-5 lists the primitive mixed functions available in this
version of APL. The operators are also listed.

Table 3=5
Primitive Mixed Functions
Function Section Meaning
X.,Y 3.3.1 Catenate X to Y along the last dimension of
X
X/Y 3.3.2 X (logical) compression along the last

dimension of Y

X/LN1Y 3.3.2 X (logical) compression along the Nth
dimension of Y

X+Y 3.3.2 X (logical) compression along the first
dimension of Y

X?Y 3.3.3 Deal X integers selected randomly in range
1 through Y without duplication

XLy 3.3.4 Decode the representation of Y in number
system X

XyY 3.3.5 For X>0, drop first X elements of Y - for
X<0, drop last |X elements of Y

XTY 3.3.6 Encode Y in number system X

X\Y 3.3.7 X (logical) expansion along the last

dimension Y

X\N[N1Y 3.3.7 X (logical) expansion along the Nth
dimension of Y

x\Y 3.3.7 X (logical) expansion along the first
dimension of Y

vy 3.3.8 Generate an index vector such that X[VY]
is in descending order

APL FUNCTIONS AND OPERATORS

Table 3-5 (Cont.)

Primitive Mixed Functions

Function Section Meaning
XAY 3.3.9 Generate an index vector such that X[4Y]
is in ascending order
1Y 3.3.10 Generate the first Y consecutive integers
from current origin
Xy 3.3.11 Find the first occurrence of Y in vector X
X,[N1Y 3.3.12 ;aminate X to Y along the Nth dimension of
XeY 3.3.13 Determine the membership of X in array Y
,Y 3.3.14 Return the ravel of Y (make Y a vector)
¢y 3.3.16 Reverse along the last dimension of Y
oLN1Y 3.3.16 Reverse along the N¥th dimension of Y
ey 3.3.16 Reverse along the first dimension of Y
pX 3.3.18 Return the shape of X
XpY 3.3.15 Reshape Y to make dimension X
XoY 3.3.16 Rotate by X along the last dimension of X
XoLN1Y 3.3.16 Rotate by X along the Nth dimension of Y
XeY 3.3.16 Rotate by X along the first dimension of Y
X+Y 3.3.19 For X>04 take first X elements of Y - for
X<0, take last]X elements of Y
RY 3.3.20 Transpose the dimensions of Y (for a
matrix, exchange the rows and columns)
xyy 3.3.21

Transpose array Y according to X

APL FUNCTIONS AND OPERATORS

3.3.1 , — The Catenate Function

Format
dyadic
Argument Types

scalars, vectors, or arrays
Both arguments can be either numeric or character data.

Definition

Chains two scalar or vectors to form a new vector. Catenation
joins constants or variables along an existing dimension. Any
number of items can be catenated. The order in which values are
catenated is the order in which you specify them in the APL
statement. Actually, the value(s) of the argument to the right
of the catenate function is appended to the value(s) of the
argument to the left of the function.

The result of a catenation can be formally expressed as follows:
if o4 is 5 and oB is 3, then pR<A.B is 8, R[15] is A and R[5+13]
is B.

You can also catenate literals. APL does not allow you to
catenate numbers to characters and vice versa. If you attempt
this, you will receive a 15 DOMAIN FRROR.

The catenate function also allows you to join multidimensional
arrays along an existing coordinate as long as they have the same
length over the other dimensions. You include the coordinate
within square brackets along with the right argument of the
catenate specification. For example, 4,[1]B. The coordinate is
1 for first dimension (row), 2 for second dimension (column), and
so forth.

You can also catenate constants to an array or matrix. If you do
not specify the coordinate, APL assumes the highest rank of the
array being catenated, that is, the last dimension. See examples.

When catenating arrays, you must follow two general rules:

1. Using the expression A,[X]B, if the arrays have equal rank
((ppd)=ppB), then X must be in 1ppd and p4d must equal pB
except in the XKth dimension. This is illustrated in the
following:

P
3435
Pk
368
Frg-3 y [T20 7] %
i
31009

Here A is equal to R[;14;]1 and B to R[;u4+16;1].

Examples

APL FUNCTIONS AND OPERATORS

If the arrays have different rank ((pp4d)#ppB) then one of the
arguments must be a scalar (1=]|(ppd)-ppB), and pB must equal
pA without its Kth coordinate. This is shown below:

Fa2]
3 44
¥

Fiefy [1%
Fol &

Here, A is equal to R[13;;] and B to R[4;;].

The following example catenates two vectors to each other and to
several scalar values:

Al
Rey g
Ayl

98978

39
}

LOsrAy By 122
105 89 72 8 12

CELMED S M
HEOME Y

Bep BpL R O3 A4 E 6
el Zp7 8 9 10 11 12

4]
o2 3
4 5 6
X
7 8 K4

10 11 12

Ay LR

TR
4 H 8
78 9

10 41 12

fry [0
1 2 3 V4 8 P
4 W & 10 11 12
My D117

a2 3
4 G &

7 7
Ay

APL FUNCTIONS AND OPERATORS

MeR Be8 7 3 9 4
TeR PO L 2 X 4

He 1Y
g 7 3
? 4 8
o 1 2
o4 0

Wy
g 7 3 o6 1 2
4 8 3 4 0

Related Functions

Laminate, Section 3.3.12
Ravel, Section 3.3.14

APL FUNCTIONS AND OPERATORS

/ and # - The Compression Function

Format

dyadic

Argument Types

The right argument can be a scalar or any array. The left
argument must be the scalar argument 0 or 1, or a Boolean vector
(a vector containing only 0s and ls).

Definition

Builds a new vector or array from an old one by specifying the
elements to be deleted and the elements to be preserved. For
example:

fes 7 % 11 13
¥el 10 10
606k /0

AV ARE

Elements in A whose positions correspond to the positions of
nonzero elements of B are preserved; elements corresponding to
zeros in B are dropped. If B contains only 1ls, all elements of
A are preserved; if B contains only 0s, the result is an empty
vector.

The lengths of both arguments, for example 4 and B, must generally
be the same. However, if A is of length 1, it will automatically
be extended to the length of B; if B is of length 1, it will be
extended to the length of 4. Thus:

ael 79 11 13
Bel 1 0 1 0
/%

1/6
5709 11 13

0/
(APL outputs a blank line)

The expression 0/4 produces an empty vector because all elements
of 4 are dropped.

You can also compress arrays by specifying, within square brackets,
the coordinate to be compressed. (The coordinate is dependent
upon the index origin, Section 4.2.11.) For a matrix, compres-—
sion along the first coordinate can cause certain rows to be
omitted; compression along the second coordinate can cause columns
to be dropped. The result in all cases is a matrix.

APL FUNCTIONS AND OPERATORS

If you omit the coordinate in square brackets, APL compresses the
highest-ranking coordinate of the array. By specifying the
special compression symbol # (.CS) without including a coordinate,
APL compresses the first coordinate.

Examples

faeX 4pl?
“
1 2 3 4
% & 7 8
g 10 1112

B O T N W S

1 2 X 4

¢ 10 11 12
L0 1 os020A

13
57
9 11
FOO/B)
30

4 B 4

O 1 1/
2 3
5 &

1L 0F
2 X

Related Functions

Expansion, Section 3.3.7

APL FUNCTIONS AND OPERATORS

3.3.3 ? — The Deal Function

Format

dyadic

Argument Types

Both arguments must be positive scalars or single-element vectors.

Definition

Generates a vector of integers randomly selected from the right
argument vector without selecting any number more than once.

The length of the vector produced by the operation is specified
by the left argument. You can set the seed of the pseudo-
random-number generator with the ORI system variable, Section
4.2,17. Everytime you use the deal function, ?, you change 0ORL.

Examples

[T
L]

L3 % 2 4

GTL.0RY
GEPHOHI 6G1LA970 GRQ4LTH 43BPIBL THA0PTS

1. 087
2010076 9444312 G9PEIPY 3427744 IHAGHE2

ST, OEY
UQAIEAT AREVPTIO SI2IBLA HIAH0I00 2709928

Related Functions
Roll, Section 3.2.3

Unlike the roll function, deal is like dealing a number of cards
from a deck with no two cards alike. Roll is like rolling
several dice independently. Roll may generate duplicates but
deal will not.

APL FUNCTIONS AND OPERATORS

L or .DE — The Decode Function

Format

dyadic

Argument Types

scalars, vectors, or arrays

Definition

Reduces a representation in a number system to a value. It is
the converse of the encode function (T); equivalent examples of
the two functions as they operate on a quantity expressed in
yards, feet, and inches, are shown below:

1760 3 12v63
1203

1760 3 1201 23
63

The expressions ATB and A1B differ only in the value included in
B; A expresses the number base in both cases.

The number of elements in both arguments, for example 4 and B,
must generally be the same; the first element in 4 expresses the
base in which the first element in B is decoded, and so on.
However, if A is a scalar or a single-element array, it is
extended so that its length is the same as that of B. For
example, the following expression has the effect of producing the
base 10 value of the base 8 number 3777 (octal to decimal
conversion).

You can also specify the decode function with multidimensional
arrays. The expression 41B is equal to W+.XB where W is the
weighting vector given by the expression W[p4dl 1 and WL(-N)+pA]
is equal to AL(-N)+1pAIxW[(-N)+1+pA]l. The value of 4[1] is
irrelevant.

The arrays you specify as arguments must conform to the following
rules using 4 and B as arguments:

1. 4 or B is a scalar.
2. The results of -14p4 and 14pB are equal.

3. Either 17p4 or 17pB equals 1.

APL FUNCTIONS AND OPERATORS

Examples

ACOMYERTYTS X 7TDH, O FT 4 DTHCHES TO LRCHES
) 1312 . 32 4
136

ATSE 2.5

P ey e g
2450) 7 2 [4)

TERO O OF THE FOLTHOMEIAL §Ma0- 700
0

ABAGE] O ERUEIVALERY OF ROSE..% MUMERER

a4 X 4
119

Related Functions

Encode, Section 3.3.6
Inner Product, Section 3.4.1

The decode function can be viewed as a form of the inner product
operator. The following example illustrates two equivalent
operations:

BELTHO B 1R
Yol 203

%
&3

X6 L2 Ly xE
63

APL FUNCTIONS AND OPERATORS

3.3.5 ¥ or .DA — The Drop Function

Format

dyadic

Argument Types
The right argument must be an array. In most cases, the left

argument must be a scalar; it can be a vector if the right
argument is a multidimensional array.

Definition

Builds a new vector or array by dropping a specified number of
elements from an existing array. For example:

[eve 5

The expression drops the first two elements of V and forms a new
vector with the remaining elements. If the value of the scalar
is greater than the number of elements in V, then the result is
the null vector.

The drop function handles negative scalar values by dropping the
elements from the end of the array instead of from the beginning.
For example:

ARG

You can also specify multidimensional arrays with the drop func-
tion. In this case, the left argument must be a vector contain-
ing one element for each dimension of the array. In the
expression, S+V, the value of S[1] indicates the number of
elements to be dropped along the first coordinate of V, and so
on.

APL FUNCTIONS AND

Examples

[leAed Grulh
1 2 3 4 ¥
é 7 8 ® 10
10 12 13 14 135

"1 3o
4 5
9 10

¢ 10
14 1%

Related Functions

Take, Section 3.3.19

OPERATORS

APL FUNCTIONS AND OPERATORS

3.3.6 71 or .EN — The Encode Function

Format

dyadic

Argument Types

The right argument identifies the scalar or array to be trans-
lated. The left argument is a vector that represents the number
base in which the value is to be expressed. The vector contains
one element for each column representation.

Definition

Represents a scalar or an array in any number system. For
example, to encode the decimal value 7 in four columns of binary
representation, the following expression can be specified:

You can also specify mixed bases for the number to be represented.
The encode function can express some number of inches in miles,
yards, feet, and inches; or some number of milliseconds in days,
hours, minutes, seconds, and milliseconds. The following examples
illustrate these two situations:

ORI , MILLISEQOMDS

In the expression ATB, 4 can be considered as the representation
rule to be applied by B. Each element of the vector 4 is defined
in terms of the element immediately to its left. Thus, in
encoding a number as miles, yards, feet, and inches, the follow-
ing elements are specified from right to left:

1. 12 inches in 1 foot
2. 3 feet in 1 yard
3. 1760 yards in 1 mile

In the previous example, a miles specification is not defined in
terms of another quantity, so 0 is printed in the miles column.

APL FUNCTIONS AND OPERATORS

The following examples of base 3 conversions demonstrate the
specification of different numbers of columns in the rule vector
and illustrate the way in which negative numbers are encoded:

X3 el

Another useful application of encode is to return the integer and
fractional portions of a number:

O 1
823 0. 7013

You can also specify the encode function with multidimensional
arrays. The shape of the result of the expression R<ATB is
always (p4d),pB.

Examples
enend 202 3
22 2
. S
|7f & o g €y X
i 0
. 0
10
2002
202
202
I3 e
2
e
23
PR
2 32
o

845 429
103 &9%

APL FUNCTIONS AND OPERATORS

10 10 10+

(%)

wr

1 \()
&2
o 9
59
3 2

01 1 01
oy

Lo 011

Related Functions

Decode, Section 3.3.4

APL FUNCTIONS AND OPERATORS

3.3.7 \ and X - The Expansion Function

Format

dyadic

Argument Types

The right argument can be any array. The left argument must be a
scalar value 0 or 1 or a Boolean vector, a vector containing only
0s and 1ls. If the right argument is a character vector, spaces
are used instead of 0s. The number of 1ls in the Boolean vector
must generally be the same as the number of values in the array
included as the right argument.

Definition

Builds a new vector or array by expanding the elements of another
vector into a new format specified by the function. For example:

Ael 27
VL? o] f 0 1l
AN

1 0 2 03
VN ALY

(2

The function expands the elements of 4 into the format specified
by V. The values of 4 are inserted in positions corresponding to
the occurrences of 1ls in V. For numeric values, zeros are
inserted in positions corresponding to 0s in the Boolean vector.
If the right argument is a character string, as in the second
example above, spaces are used instead of zeros.

A scalar Boolean value as the right argument is extended as in
the following example:

L0 ING
008

You can also expand multidimensional arrays along a particular
coordinate. (The coordinate is dependent upon the index origin,
Section 4.2.11.) You include the coordinate within square
brackets. The syntax is the same as the compression function,
Section 3.3.2. If you omit the coordinate, APL expands along the
last coordinate of the array. To specify expansion along the
first coordinate, use the special symbol \, or type .CB.

APL FUNCTIONS AND OPERATORS

Examples

[lefe Irprd
o2 3

4 5 6

1O INELIA

E el
RN
~ O L

10 1 INL2Ie
0o @ 3
0O % 6

O 0 0NO
o 00

lened 0 ON'!
(APL outputs a blank line)

xR THLS Y SaM

D SAYMF LG ED S %
J AR

Vel 1oL L oL 0011 01
VA M

RTHEIS TS oM

EXFAM SE Or

EMOMFE LE %X

10 1 %
wTHL G LGN

I B P ey 0
EOMFLE & &

Related Functions

Compression, Section 3.3.2

APL FUNCTIONS AND OPERATORS

3.3.8 V¥ or .GD - The Grade Down Function

Format

monadic

Argument Types

The argument can be a vector or a matrix.

Definition

Creates an index to sort a vector or matrix in descending order.
The V¥ function creates a permutation vector that APL can use to
sort the original vector. Duplicate values are ordered by their
relative positions in the original vector. You can also reorder
character arrays with VY. The grade down function does not use
fuzz in performing comparisons.

The symbol V¥ is formed by overstriking the del (V) with the
residue (]).

Examples

AeR ® 7 4 3 10 3
[eEeyn
623 45 7 1
ALE]
109 7 4332
AlLgoe ' MORUMAL YT
LML A6

Related Functions

Grade Up, Section 3.3.9

APL FUNCTIONS AND OPERATORS

3.3.9 4 or .GU -~ The Grade Up Function

Format

monadic

Argument Types

The argument can be a vector or a matrix.

Definition

Creates an index to sort a vector or matrix in ascending order.
If two or more elements of a vector or matrix have the same
value, the order of the elements is determined by their relative
positions in the original array. (Fuzz is not used in comparing
the elements.)

The A symbol is formed by overstriking the delta (A) with the
residue ().

Grade up does not actually sort the vector. It creates a per-
mutation vector of the index numbers of the elements. This vector
is then used to sort the original wvector.

If the array to be sorted is a matrix, the simplest operations
cause each row of the matrix to be treated as a string. The
result of the grade up operation is a vector whose length is
equal to the number of rows in the matrix.

You can cause a matrix to be sorted by rows; and by subscripting
the function, you can also sort on the basis of columns. For
matrices, the expression AM is equal to A[21M.

Examples
Ae2 9 7 4 3 10 3
[l¢EehA
157 4326
AKX

23347910

2]
GHTEVIE
HOM
ST AM

Py
35

AP
2 31

ALan;]
HBAM
ST A
G TEVE

APL FUNCTIONS AND OPERATORS

)
J 2 1 5 0
1L 9 7 0
102 0 8 0
£E
385
AE
231
Bl Akg]
I S T S ¢
I 2 0 8 0
I 2 1 % 0

Related Functions

Grade Down, Section 3.3.8

APL FUNCTIONS AND OPERATORS

3.3.10 1 or .I0O - The Index Generator Function

Format

monadic

Argument Types

The argument can be a nonnegative integer scalar or a l-element
array.

Definition

Generates a number of consecutive integers equal to the value
specified as the argument, starting from the value of the index
origin, Section 2.4.2,

The expression 1N generates a vector containing ¥ components. If
the index origin is set to 1, these components have values 1
through ¥. If the index origin is set to 0, then the resulting
vector has values 0 through N~1.

The index origin default is 1 in a clear workspace, but this
setting can be changed with the)ORIGIN command (Section 5.5.4)
or the [(I0 variable (Section 4.2.11).

Examples

[1e-Ae 14
123 4
[

AP OWE RS OF 2
drl2

24 8 16 32 64 128 2565 U122
AOETER WSED WELTH MO
F S0

1024 2048 40946

He@ L 3 4

EFATES 0 MULL VECTOR

(APL outputs a blank line)

Related Functions

Index of Section 3.3.11.
Reshape and Shape, Sections 3.3.15 and 3.3.18

APL FUNCTIONS AND OPERATORS

3.3.11 1 or .IO - The Index Of Function

Format

dyadic

Argument Types

The left argument must be a vector. The right argument can be
any scalar or array.

Definition

Returns the index in the left argument of the first occurrence of
the value in the right argument. The result of a dyadic iota
operation always has the same shape as the right argument. That
is, the result returns an index for each of the values in the
right argument.

If the value is not located in the vector specified as the left
argument, APL reports a value equal to the number of values in
the vector plus 1, ((p4d)+1).

The right argument need not be a single-element array; it may
have many elements and many dimensions. The right argument can
also contain literal characters.

The result of a dyadic iota expression, for example X<«Bi14, always
has the same shape as the right argument, formally pX is the same
as pA. If A is a matrix, the correspondence between 4 and X can
be expressed as X[I;J] is the smallest X such that A[I:J] is
equal to B[K].

Examples
b3
4 9 & 8
[2]

Ry

[

He¥ [/B
[eBe /%

B[]
BEAP/E]D

EBe(L 23 485 67 89
Ae3 276 5 X3 209
HeENH
)3

01 234867 8¢9

API, FUNCTIONS AND OPERATORS

7 &
3
1 10
‘QHCﬁEFGH'\'HHQﬁHﬂ'

g5 1 4% 4

B o4 23 7 8

A2 24

B

A A= I8 LEGAL SO IS | WITH CHAR AMND HUMERIC ARGS

Y- Y-S)

Related Functions
Index Generator, Section 3.3.10

APL FUNCTIONS AND OPERATORS

3.3.12 , - The Laminate Function

Format

dyadic

Argument Types

Both arguments can be scalars, vectors, or arrays.

Definition

Joins scalars, vectors, or arrays along a new dimension. The
syntax is the same as the catenate function, Section 3.3.1.
However, the coordinate specification ([]) is usually a fraction
to indicate a position between existing coordinates in which the
new coordinate is to be placed. (The coordinate is dependent
upon the index origin, Section 4.2.11.)

If two arguments in a laminate operation do not have the same
dimensions, then at least one of them must be a scalar value.

Examples
[ledte t ABE Ly 10, 5] WEF:
EYEQ
DRI
[‘\ ;-(
23
FHEW CCEMETH S LOM BEFQFRE
O ANDE A FROW
Cledte C AR o 1] B LB
an
bal:S
[N
[
3 2
LVEMEMSLOM OFTER
HED S ADG N COL LM
[leXeX Dp i uvwsr:
(WA
W
R
Aed D ABROQDER
Fre-fy |0, 2010
ol
2082
Fiefry 74,900
-~ F
322
Foefry 13, 300
fol
322

Fefy o500

APL FUNCTIONS AND OPERATORS

[‘l"
232
[leFe Xy 1] ., 51A

(v
My

Qo

fwEws
Bt

B
3 22

TA
TR

e
hp

A
o

Related Functions

Catenate Function, Section 3.3.1
Ravel Function, Section 3.3.14

APL FUNCTIONS AND OPERATORS

3.3.13 ¢ or .EP - The Membership Function

Format

dyadic

Argument Types

Both arguments can be arrays of any dimension; the left argument
contains the elements by which membership in the right argument
is determined. The arrays need not have the same rank.

Definition

Determines whether or not particular elements of one array occur
as elements of another array. The result is a Boolean array
whose shape is the same as that of the left argument.

The result consists of only 0s and ls; a 1 indicates that the
corresponding element in the left array is present in the right
array, 0 indicates that it is not present.

Examples

[1e e CORCOEFG ¢ CHEADED
Lo o1 100

A7 VO ECRIE G
OLE

The compression function /, is helpful here in identifying the
particular characters that are members of the vector.

feR Xr7 B2 4 609
Az 1h

0 01

110

3 4534
0 0
X 40
00
A ‘A= IS LEGAL, S0 I% ¢ WITH CHAK AHD HUMERIC ARGS
tannY g R
0O 00

Related Functions

Index of, Section 3.3.1l1

APL FUNCTIONS AND OPERATORS

3.3.14 , - The Ravel Function

Format

monadic

Argument Types

The argument can be any scalar or array.

Definition

Produces a vector from any
has the same length as the
array are preserved in the
argument is a scalar, then
containing one element.

Examples
o)
12 3
4 5 6
6
23
L4 X6y
123 485 6
PR
&
[efe2 3 4p190
1 2 3 4
G 6 7 8
® 10 11 12
13 14 185 16
1718 19 20
21 22 23 24
y
123456789 10 11 12
Fyf
24
[
23 4

scalar or array. The vector produced
original array. The elements of the
resulting vector in row order. If the
the ravel function produces a vector

13 44 1% 16 17 18 19 20 21 22 23 24

Note the difference in the shape of a scalar and the shape of a
scalar to which the ravel function has been applied

P4

Related Functions

Catenate, Section 3.3.1
Laminate, Section 3.3.12

(APL outputs a blank line)

APL FUNCTIONS AND OPERATORS

3.3.15 p or .RO - The Reshape Function

Format

dyadic

Argument Types

The left argument can be a scalar or a vector. The right argu-
ment can be a numeric constant, or a literal character, or the
name of an existing array. A literal array can be constructed

by including a character string as the right argument and enclos-
ing the string within single quotation marks.

Definition

Constructs an array or reshapes an existing one. The left argu-
ment specifies the shape of the array; the right argument speci-
fies the values to be assigned to each element of the array. The
shape of the array describes both the number of dimensions of the
array and the number of elements in each dimension. The values
are placed in the array in row order; that is, the first value is
placed in row 1 column 1; the second value is placed in row 1
column 2; the third value is placed in row 1 column 3, and so on.

If the left argument is a single value, a l-dimensional array is
created.

The array being reshaped need not have the same number of values
as the array from which the values are taken. If the right
argument has too many values, the excess values are ignored from
the right., If there are too few arguments, the values are du-
plicated from the right.

Any number of array elements can be specified in a reshape
operation as long as the number is not negative or fractional and
does not generate a vector or array too large for your workspace.

Examples
3G
58 8
G ARG
RO AR MR
Re3 @ 7 4
TeR ApH
v
8 @
7 4
el 23 4
D Hpe
i . X 4 1
> 3 4 1 2

3-37

APL FUNCTIONS AND OPERATORS

[lemed 2pr14
L2
3 4

The following expressions each generate a

AGBHAFE WITH A SCALA Fi:
Ae

£y

o

080

10

[lePex O G 4 50

faR 2]
305 4

Related Functions

Shape, Section 3.3.18

(APL
(APL
(APL

(APL

outputs
outputs
outputs

outputs

null vector:

a blank line)
a blank line)
a blank line)

a blank line)

APL FUNCTIONS AND OPERATORS

3.3.16 ¢ or .RV and e or .CR - The Reverse Function

Format

monadic

Argument Types

The argument can be a vector or array.

Definition

Reverses a vector or the elements of one coordinate (last
dimension) of an array. It changes the order of the elements,
not their dimension.

To specify the coordinate to be reversed, include it in square
brackets. (The coordinate is dependent upon the index origin,
Section 4.2.11.) The default is the highest coordinate (last
dimension) of the array. The special character e (.CR) reverses
the first coordinate of +he array.

The reverse is formed by overstriking the circle o with the
residue function |. The e character is formed by overstriking
the circle (o) with the minus (-).

Examples
[14M¢2 418
12 3% 4
5 06 7 8
[A 2
% & 708
12 3 4
OL2IH
4 3 2 1
8 7 6 %
(12
5 o0& 7 8
1 2 3 4

The following example reverses a matrix in both dimensions

simultaneously:
[ee 3 véh
12 3
4 G b
(720 N R
& B4

3 o2 1

APL FUNCTIONS AND OPERATORS

Reverse is not the same as transpose:

nH
1 4

200

3 &

Related Functions

Rotate, Section 3.3.17

APL FUNCTIONS AND OPERATORS

3.3.17 ¢ or .RV - The Rotate Function

Format

dyadic

Argument Types

The left argument can be a scalar or a vector. The right argu-
ment can be any array.

If a vector is being rotated, the left argument must be a scalar
or a l-element vector. If a multidimensional array is being
rotated, the left argument must be a scalar, a single-element
vector, or a vector whose elements correspond to dimensions of
the array being rotated, with the dimension being rotated omitted
from the vector.

The rotate function is formed by overstriking the circle o with
the residue function |.

Definition

Rotates an array by a specified number of places. A positive
rotation causes a left shift; a negative rotation causes a right
shift.

You rotate a multidimensional array by specifying the coordinate
along which rotation is to take place. (The coordinate is de-
pendent upon the index origin, Section 4.2.11.) The default is
the highest coordinate of the array.

To specify the first coordinate, use the special symbol e (.CR)
which is formed by overstriking the circle o with a minus -.

Examples
Ad
4 % 123
TEOE
34 %5 12
MR 4p ' ABCDEFGHIIKL
AECT
EF G
TS
0 1 20%
MECD
F G IHE
K. X
11 2 JFapilx
ELF K X
TG
(2R 3 T
[efed 5P ARCHDEFGHE JKLMHO
[P cIng ul:N
F TS
KL Mo

APL FUNCTIONS AND OPERATORS

1712 2 Qe
FLMMO
KECDE
AGHL

502 Tlee
ABRCLE
HIJFG
OKL.MM

Related Functions

Reverse, Section 3.3.16

APL FUNCTIONS AND OPERATORS

3.3.18 p or .RO - The Shape Function

Format

monadic

Argument Types

The argument can be scalar, vector, or array.

Definition

Returns the shape of the argument, that is, it returns the length
of a vector or the dimensions of an array. For example, if the
argument B is a character vector consisting of 'ABCDEF', then the
following expression returns the number of characters in the

array:

¥ege ' ARCIEF ¢
X

RO LIEF
[

é

If the argument is a matrix, rho returns the number of rows and
columns it has. For example:

AeS &P110
faxsl

o
fe

If the argument is a scalar and not a vector or array, then the
rho of that scalar is a null vector, a vector of length zero.
APL outputs a blank line in response to the shape operation with
a scalar. Two shape functions (pp) return the number of dimen-
sions (rank) of the arguments as follows:

Argument ppK
scalar 0
l1-dimensional array 1
2-dimensional array 2
3-dimensional array 3

and so on.

This effect is the result of the fact that pX is a vector con-
taining one element for each dimension of X, so its p (ppkK) is
a l-element vector consisting of the number of dimensions of X.

APL FUNCTIONS AND OPERATORS

Examples
n
] 2 3 4 v b
7 8 @ 10 1 2
3 4] & 7 &
® 10] 2 b 4

o] & 7 4} 9 10

fa)
506

FFA
2

K3

PK

Related Functions

Reshape, Section 3.3.15

(APL outputs a blank line)

APL FUNCTIONS AND OPERATORS

3.3.19 4 or © - The Take Function

Format

dyadic

Argument Types

The left argument can be a scalar. However, if the right argu-
ment is a multidimensional array, the left argument must be a
vector containing one element for each dimension of the array.
The right argument can be any array.

Definition

Builds a new vector or array by taking a specified number of
elements from an existing array. If the value of the scalar is
greater than the number of elements in the vector, the resulting
vector is extended so that its length is the value of the scalar.
Zeros extend numeric vectors, and spaces extend character vectors.

In the expression R<«S+V, if S is positive, then R consists of

the first S elements of V. If S is negative, then R contains the
last |5 elements of V. If |5 is greater than the number of
elements in V, then zeros or blanks are inserted in R before the
values of V.

Examples
203
12
At
1230
LG4 AFLEF ! § Oy
AF LG E 50 00 0 0 00
THALD 24 3G 48
0O 0 12 24 38 48
R AR
00

12300
0L TEST
TEST

Related Functions

Drop, Section 3.3.5

APL FUNCTIONS AND OPERATORS

3.3.20 & or .TR - The Monadic Transpose Function

Format

monadic

Argument Types

The argument can be a matrix or higher-dimensional array.

Definition

Transposes the dimensions of an array. For a matrix, it exchanges

rows and columns. If you use a vector as the argument, it will
have no effect. For example:

23 470

(=4
P

A g
: R
123 4

To form the & symbol, overstrike the circle o with the slash \.

Examples
[lene2 Zp1a
12 3
4 5 4
[14-C 41O
1 4
2
3 b
FRA
32

Neke2 3 4918
L2 3 4

5 06 7 8
12 3 4
5 06 7008
1R 3 4

5 o0& 78

APL FUNCTIONS AND OPERATORS

W
L%
L8
L)

b R
26
X 7
73
3 7
4 8
8 4
4 8
FRE
4 3 2

Related Functions

Dyadic Transpose, Section 3.3.21

APL FUNCTIONS AND OPERATORS

3.3.21 § or .TR - The Dyadic Transpose Function

Format

dyadic

Argument Types

The left argument must be a vector containing one element for
each of the dimensions of the array to be transposed. The right
argument can be an array. The shape of the vector expresses the
rank of the right argument. For example, in the expression V&4,
the rank of the right argument can be expressed as: pV which
must be equal to ppd. Thus, V must have two elements if 4 is a
matrix, three if A4 1is a 3-dimensional array, and so on.

If the rank of the array is 3, then valid values for the left-
argument vector can be 1 11, 1 2 1, 132, 312, but not1 31
(2 is missing).

Definition
Permutes the coordinates of an array. The following table lists

transpositions for a variety of arrays:

Table 3-6
Transpose Definitions

Expression Shape of R Definition
R<1QV oV R«V

R<+1 28 M oM p<M

R<«2 1&M (pM)[2 11 RLI;JI«M[J5I]

R<«1 18M L/oM RLTI«M[II]

R<+1 2 3%4 pA R<4

R«1 3 284 (pd)[1 3 21 RLI;JKI«ALIK3J]
R<2 3 184 (pA)L3 1 2] RLI;J3;K1«AlJ3K:3I]
R«3 1 284 (pA)[2 3 11 RLI;J3;K1«ALK;T3J]
R«1 1 2%®A (L/(pA)L1 21),(pA)L3] RLIIJI1<ALT T3]
R<1 2 184 (L/(p4)T1 31),(pA)L21] RIIT;J1«ALT;;J3I]
R<«2 1 184 (L/(pA)L2 3]1),(p4d)[1] RLI;J1<«ALJ:I:5T]
R+«1 1 184 L/p4 RLI1«A[TT:1I]

APL FUNCTIONS AND OPERATORS

Examples

[leRe Zrg

T2 3

4 H &
ARTYADEC SOMETEMES SAME A% MOMADILIC
wA

A X
2]

el 3 Aré

2 3 4

S o046 1 2

A

3 o4 B 6

Lo
b6
W

Related Functions

Monadic Transpose, Section 3.3.20

APL FUNCTIONS AND OPERATORS

APL FUNCTIONS AND OPERATORS

Related Functions

Matrix Divide Section 3.4.2. The monadic expression EHX is equal
to the dyadic IEX, where I is an identity matrix whose order can
be described as 14pX. If the argument of the matrix inverse is
a scalar, the expression BHX is equal to X.

APL FUNCTIONS AND“OPERATORS

3.4.2 B or .DQ - The Matrix Divide Fﬁnction (Quad-~Divide)
]

Format

dyadic

Argument Types
Both arguments can be scalars, vectors, or matrices.

Definition

Performs more complicated matrix operations than the inversions
described in Section 3.4.1. In the expression XFY, X and Y must
conform to the following:

1l. Y must have a rank of 2 or less.
2. If the dimensions of Y are M by N, then M2V.
3. X must have a rank of 2 or less and (1+pY¥)=14pX

This implies that matrices X and Y have the same number of rows,
and the columns of Y are linearly independent. If Z<«XxHY, then
ppZ is the same as ppX and +\((Y+.xZ)-X)*2 is minimized (least
squares solution).

The matrix divide treats scalar arguments as matrices containing
one row and one column. The expression XHY is equal to scalar
division X+:Y, except that the operation 080 produces an error
condition. If the arguments are vectors, they are treated as
matrices with a single column. If I is an identity matrix of the
same dimension as X, then BX is equal to IBEX.

Examples

The following example illustrates the use of the matrix division
function in solving these linear equations:

3A+B=9
2A-B=1

In the expression XEY, Y is a matrix whose values are the coef-
ficients of the equations, and X is a vector containing the
values 9 and 1.

He9 o
TeR P31 o2
BT

S

The result is a vector in which the first element is the value of
4 in the linear equations, and the second is the value of B.

3

52

APL FUNCTIONS AND OPERATORS

The following examples illustrate the use of the matrix divide,
including a least squares solution:

Oede (2 1r2)l

2 1
I |

EelO 19
FHEBPA

Ay X
10 19
[lefre (5 1r1E)el
1 1
2 1
3 1
4 1
S5 01

Ee2,001 2.998 4.002 4.997 6.01
[16 e EEA
1.0017 0.996%
B4, XM
[eHenn
T2+000000000ET1L "1, 000000000E™] 2 PR2JATHHR2ET0
1.000000000E™] 2+000000000E™]
8,000000000E™], e 000000000E™] 2+0000000008E™]
T1.000000000%™1L T4, 00000000081
My XA
1.000000000E0 5, 4210108628720
"1.301042607E18 1,000000000E0

Related Functions

Matrix Inverse, Section 3.4.1

APL FUNCTIONS AND OPERATORS

3.4.3 € or L+ ,EP or .DE - The Execute Function or Unquote Function

Format

monadic

Argument Types

The argument can be a scalar or a vector. If the scalar is
numeric, the value of ¢4 is equal to 4. If the scalar or vector
is a literal, APL evaluates it exactly as quad input from the
terminal would be evaluated.

Definition

Executes a character string as an APL statement. The scalar or
vector included as the right argument of the function is evalu-
ated as the character string to be executed by APL. The ¢ and

L can be used interchangeably to indicate the execute function.

APL treats carriage return/line feeds in the argument as state-
ment separators, just as they would be if they were input from
the terminal, so multiple lines are allowed. The result of the
expression R«ed is the value of the last statement evaluated in
A. If the last statement has no value, R is a null vector.

Errors encountered in the character string processed by the
execute function are handled exactly as if they occurred in
statements entered from the terminal. If an error is encountered
while evaluating the execute string, an error message is output,
and the segment of the execute string currently being evaluated
is displayed. No further evaluation of the string is performed.
The €4 returns a null array whose shape is 0 EF, where F is a
number indicating the error that was encountered. Appendix A
contains a complete description of all APL error conditions.

The execute function is also known as the unquote function,
because it strips quotes from the value entered as its argument.
Other uses of this function include:

1. Function definition (character-editing commands are not
permitted)

2. Conversion of vectors of characters representing numeric
constants into numeric values

3. Passing an unevaluated APL name to a function. (The argument
can be evaluated with ¢ .inside the function.)

APL FUNCTIONS AND OPERATORS

Examples

The following examples illustrate the use of ¢ in function
definition, system command execution, and APL statement evalu-

ation:

[RE TRV N o

Xe g 4y
AaF LE HOT DEFE L HED
B
11 VLUE EFREOF:
¥
A

Cou i
Ja

A TH MOW DEELHED
'ZC'
49
Coog ' YFMS
o

Ereg ' H+4

11 YALUE EREOR

X2y
4
10
P e BTHTHOR
32y
A

P E

g YEROHE g5 YyVOARS

HOW ERAGED

APL FUNCTIONS AND OPERATORS

wH
rid CTHIS I8 HORD TO BELIEVE
el Heg ')BOVE THISWS
£ PWHEM LOADED, EMEQUTION RESUMES AFTER EMECUTE
AUTOMOT ECALLT
41 @

H

THIS L% HARD T EEL LEVE

WHEM LOADEX, EXECUTION FRESUMES OFTER EXECUTE

AUTOMATELOCALLY
YLOAX THIE

WHER LOGEX

AUTOMOTLCALLY

R

UTLROR FESUMES AFTER EMECUTE

ATHE REMT EXMPFRESSIOM DDESG MNOT FRIMT A VALUE
FACE!

ATHE MEMT OHE DOES
Oeg'aed:

Fege & LI
Jd b3

The last example illustrates that the execute function always
returns a value. Because, in this case, there is no value ex-
pressed in the character string, the value of the operation is
simply a null vector. Similarly, if the character string con-
tains a branch (»), the execute function does not transfer
control but returns the null vector.

Note that you can use)ECHO (OFF),Section 5.5.2, to suppress
the error message from «.

Related Functions

Extended Execute, Section 3.4.4

APL FUNCTIONS AND OPERATORS

3.4.4 2 or .XQ - The Extended Execute Function

Format

monadic

Argument Types

The argument can be a scalar or a vector.

Definition

Processes system commands and supports the entry of multiple
lines. The execute symbol & is formed by overstriking the
decode or ungquote character L with the. jot character o.

The ¢ function is very similar to the ¢ or 1 functions. However,
there are two major differences. If an error is encountered in
the character string being executed, ¢ does not return a null
vector indicating the type of error. Instead, & generates an
error message for the line on which the actual execute occurred.

The second major difference is that if the @ character string
contains a branch (+»), control passes to the specified function
line.

Examples

Lol S
i1y Fean
rey v
’:Z‘ 1) :‘5 ¥ L
7oog BYMTOM O OEFRROE
k¥
A
o EMECUTE ERFOR
B Eegn
k)
yH I
FLLD ok
¥
11 VALAME EFFOR
Y
Ia)
F:'] 1
11 VOALUE ERFQOR
FLLD Eegn
A

APL FUNCTIONS AND OPERATORS

In the last example, a value is required in the execute string,
but none is included. APL generates an error message and
suspends function execution.

Related Functions

Execute or Unquote, Section 3.4.3

APL FUNCTIONS AND OPERATORS

3.4.5 § - The Dollar Format Function

Format

dyadic

Argument Types

The right argument can be one or more scalars, vectors, or
multidimensional arrays containing numeric or character fields
to be formatted. The left argument is a character vector con-
taining one or more format fields describing the type of format-
ting to be performed on the specified fields. The left argument
is enclosed in single quotation marks.

Table 3-7 summarizes the syntax of the format fields.

Table 3-7
Format Fields

Format Meaning

'MAW' Character data - cannot be used for numeric values
'MEW.4' Floating-point numeric data with exponent

'MEFW.4' Fixed-point numeric data

"MRIW' Integer numeric data with automatic rounding

'MW Blanks inserted in edited line

'MtextM' Literal text inserted in edited line
where

M is an optional repetition factor (number of

values to which the format is to be applied).

W is the width of the field.
d is the number of decimal positions.
Q is any number of qualifiers (see Table 3-8).

The lamp character (n), formed by overstriking the down union
(n) with the jot (o), can be used instead of the quote-quad (M).
On non-APL-keyboard terminals, .QQ replaces [M and " replaces a.

APL FUNCTIONS AND OPERATORS

Table 3-8
Qualifiers
Qualifier Meaning
B Blank field if value is 0
C Insert commas
L Left justify
Z Fill with zeros
MMtextM Insert text left of
negative result
NMtextM Insert text right of
negative result
PMtext Insert text left of
nonnegative result
QMtext Insert text right of
nonnegative result
RMtext Insert text in background

If more than one format field is included in the left argument,
the fields must be separated by commas. Successive fields apply
to successive vectors or arrays represented by the right argument
of the function. If you include a repetition factor in one of
the format fields, this factor indicates the number of vectors to
which that format is to be applied.

Definition

The result of a format operation is one or more lines of edited
text, Each resulting line consists of one edited row of each
array in the right argument, where each vector (V) is treated as
an array of dimensions (pV) by 1. The total number of lines
produced by a format is equal to the longest column in the array
contained in the right argument. The columns of values with
shorter columns are extended with blanks.

As many as 18 significant digits can be specified in a format
statement. A format field that requests more than 18 significant
digits will cause digit positions to the right of the decimal
point to be filled with blanks, and digit positions to the left
of the decimal point to be filled with underscores. A minus sign
is output on non-APL-keyboard terminals.

A format field that does not specify sufficient room for all
significant digits plus any inserted characters causes the entire
field to be filled with stars on APL terminals and asterisks on
TTYs.

If a format expression produces a very large matrix that is not
assigned explicitly to a variable name, APL saves storage in the
workspace by displaying each line of the matrix as it is format-
ted and not saving the results.

As in other languages that support format specification similar
to this APL function, parentheses can be used to repeat groups of
fields. They can be nested to three levels.

APL FUNCTIONS AND OPERATORS

Examples

‘T4 4 (1551041 6)
11

12

13

14

15

16

'EF4,1'61 2 3

G LI

01.0
02,0
03.0
AC'FA, 2, 3(X24EG, 1)L
AIlS EQUAL TO.
AL B4 Dy TRy EG, Ly T2VEG, 1y T2yEG, 1yAL?
PEFEI TV 4.7 4.2

5 NG

CIG S (EETVIALTIA L)
3 v b 4
[eRe ' FE, 2 4(35657754.3)
Z.00 6.00 T7.00 4,30
[eme FE 24 (3546 7754.3)
3.00 4.00 4.30
700

2}
218
G DEDY
LA T
200000000000000000 e
'F3L 24500
L3 .3
AeR ZPr(LHPPP9)+100
LAy FéE 2eRBpELQ L2 60
H1 HL.19 8. 9EQ
701 29.36 P OB L
IQ:’. i $) ‘\E{!
2]

ARG ARC
A

Ted 75 ' FEMHS FEMC L L S AP ER TOTAL '
COBTe . 19 005’ 01
AMMT 20 0 20589
TCOSTAMMHTXCOHT

AL MM ThsFR, 2y F 12,2 G (THAMNTCOSTFTCOBTy 4 /TCOBT)
FEMS | 20 L9 3.80
FEHCILS | HO Q.05 20
FaFER) 2589 0.0l 2. 89
TOTAHL | 32419

APIL FUNCTIONS AND OPERATORS

KeT2IANE, T8 TRE 0.4 .8 0 100
PEE10, 1§

100.0

ORI ER

TR235 4057
i
W]

1
100

VEFGQ] M
TORIAGSE . 8
TO00025.0
T000000. 4
0000000.8
0000000,0
0000100,0

LYY g
POBTHTOM ERREOR
L9 g

A

VLG g
23457

g
o)

0

100.00

APL FUNCTIONS AND OPERATORS

CREHEIFEEATT L 6
DR AG T
F A 2R R T R N T Mt 4
IR TR TR TR T N WA 0
EI I I S R AR Y 1
B A R A A R 4
bttt 00

CMTIIF TG IR L] 2
T$234%6 .78
T$25.00
TH0 .40
$0.80

$100,00

VM MOER0 " $K
TRy AGY

0
10O

CEERIFTGEHCELL 2 b
#B2Fy 486, 78
KRAR RG2S, 00
KERARKRGD , A0
Kk xxbO, O
Kk xx$0, 00
ERRAELOO.O0

L) FOME [EFQ 00
TRIAEE. 78
TR 00
Q.40
0.80
HOME

100.00

CMICE MEDD QR N FLO. 2 e
(234%56.78)
(2%5.00)
(0.40)
0.80
0,00
L0000

VP OEE RE CEE M EELG, 2 X
2DIABE TG Ve

DE 00 IR

0,40 LE

0,80 CE

100.00 CF

Related Functions

None

APL FUNCTIONS AND OPERATORS

3.4.6 ¥ or .FM - The Monadic Format Function

Format

monadic

Argument Types

The argument can be a scalar or an array of any shape and either
numeric or character data.

Definition

Converts numeric arrays to character arrays. When applied to a
character scalar or array, the result of the format R<«%4 is an
array identical to A. If A4 is numeric, then the character array
represented by R will be identical to 4 as it appears when dis-
played by APL. However, the blank characters displayed along
with the values of 4 will actually be a part of the new array R.
The format of a scalar number is always a vector.

Examples
The following example illustrates the difference between the

shapes of a displayed numeric array and a formatted character
array:

AeR 4F18
Eeg 403
2

5 & 78

3]
£

2 12

EL§3x147]
1234
G678

Related Functions
Dyadic Format, Section 3.4.7

System variables [IPP Section 4.2.15
0PW Section 4.2.16

APL FUNCTIONS AND OPERATORS

3.4.7 ¥ or .FM - The Dyadic Format Function

Format

dyadic

Argument Types

The right argument must be a numeric array. The left argument
can be a scalar, a pair of numbers, or a vector whose length is
no more than twice the number of columns in the numerical array.
The left argument controls the format of the result. Two numbers
are usually supplied as the left argument. The first number
specifies the width of the numeric field, and the second sets the
precision of that field.

Definition

Provides output control exceeding that available with the monadic
format. It offers a number of formatting options but does not
provide the comprehensive formatting capability available with
the dollar format function (§).

Dyadic format provides a powerful tool for formatting tables,
headings, and labels. Precision is expressed differently for
decimal values and in scaled exponential forms of output. The
form is determined by the sign of the precision argument. For
decimal output, precision is a positive number, expressed as the
number of digits to the right of the decimal point. For scaled
output, precision is negative and is the number of digits in the
multiplier.

If the width of the specification is zero or omitted from the
expression, APL provides a default width such that at least one
space 1is inserted between pairs of numbers. If only one number
is provided as the left argument, the number is assumed to re-
present the precision of the result, not its width.

In general, the width must be large enough to accommodate the
number field. However, APL does not require that space be in-
serted between columns.

You can specify width and precision arguments for each column of
the array to be formatted or even for each element of the array.

A format operation can also be specified for a multidimensional
array and applied to the last two coordinates.

APL FUNCTIONS AND OPERATORS

Examples

3116 0
T1ELG78 8
it

o83

3
Devel? Fex ‘
31,160 0,000 1,070
15,578 8,000 TRA% 610
L3
36

P

AeY Dy
o .

31.168 0.00
T1G. 08 8,00
Oekes Qe
31 0 1
T1lé 8 236

il

+3

18

[leEeQ T2eH
KW RN O 1L 1ED
16K 8., 08D TR AR

Detey ~1ex
3E 0 "LEQ

"REL 8EQ TRED

ACOLUMMN FORMATTING
A1 0 0 72 8 0 ¥
310 1
146 8L0EO R34

23 mEn

PR |

AFORMATTLING 6 MULTLIOEMENSEOMHML. AREAY
[le-@e2 2 208

o2

3 4

5 &4

7 8
oodeA

1.00 2.00

3+00 4,00

5.00 6.00
7.00 8.00

Ee
3 1E] 0 TlelEQ
Tl 6E] 8. 0EQ TRAEDR

Ee3 Zp1 001 0 1 1 11

APL FUNCTIONS AND OPERATORS

ATEAELE FORMOTTING

FOWS e 7p b arL FORTRAMRCOEOL. BB I FL.1
" LS ER S FF QOGS HYEYTS

Fpa

G EHT S
AF L.
FOQRTEOM
OO

BelyG L C

Nod o=

n orm

U
RN N

”,~
woa

Related Functions

Monadic Format, Section 3.4.6

APL FUNCTIONS AND OPERATORS

3.4.8 T or .EN - The Quote Function

FPormat

monadic

Argument Types

The argument can be a scalar or an array with either numeric or
character data. If numeric, APL converts it to a character
string.

Definition

Converts numeric values to character strings and also provides
aid in preparing text to be processed by the execute function.

If the argument is already a character string, APL determines
whether or not the string represents an identifier (for example,
a variable name or function name). If the character string is
not an identifier, then APL returns a null vector. If the
argument if a variable, APL returns the value of the variable.
If the argument is a function, APL returns the lines of the
function definition, separated by pairs of carriage return/line
feed characters.

Examples

In the following example, array 4 is converted to a 20-character
vector (spaces output by APL are included in the size) in which
the character representations of 1 through 6 are members, but
the corresponding numeric values are not.

fe2 ZF1é
g v [}
Ee
1 2 3
4 5 6
FE

]

123454 ¢ B
131 11

(16) sk
000000

APL FUNCTIONS AND OPERATORS

APL FUNCTIONS AND OPERATORS

3.5 OPERATORS

An operator differs from a function in that an operator takes a
function as its argument. The following operators are available in
APL:

1. Inner Product Section 3.5.1
2. Outer Product Section 3.5.2
3. Reduction Section 3.5.3
4. Scan Section 3.5.4

3.5.1 £ . g - The Inner Product Operator

Format

dyadic

Argument Types

Both arguments can be vectors, matrices, arrays, or higher-
dimensional arrays. If either argument is a scalar or a
l-element vector, it is extended so that its dimensions match
the dimensions of the other argument.

Both f and g can be any dyadic scalar function as long as both
are of the same type, that is, both arithmetic, both logical,
and so on.

Definition

Obtains the common algebraic matrix product, and also extends
this capability to other arithmetic operations and other array
dimensions.

You can also specify an inner product in which an operation other
than multiplication is performed. It is possible to locate
values containing specific characters by this method or to search
for a row of one array in which all the elements are equal to
those in a column of another array.

The two arguments, say 4 and B, must conform to certain rules to
be used in an inner product operation. The two arguments con-
form if any of the following is true:

1. A or B is a scalar.

2. Results of -1+4p4 and -1+pB are equal.

3. Either -14p4 or -1+4pB equals 1.

If the third characteristic is the case, then the corresponding

argument is extended so that the arguments have equal lengths
along the specified coordinate. The basic test for conformability

API, FUNCTIONS AND OPERATORS

is whether or not the length of the last dimension of the left
argument matches the length of the first dimension of the right
argument. The dimensions of the result can then be considered
all dimensions of 4 except the last, catenated to all dimensions
of B except the first.

In Table 3-9, the letters have the following meaning:

£ is a primitive function.

g is a primitive function.

A is an argument.

B is an argument.

Z is the result.

C,D,E,F are the respective shapes of the
arguments.

I,J are indices.

Note that when one or both of the arguments are scalar the shape
of the arguments need not conform to any rules.

Table 3-9
Inner Product Description

Definition of Shape Result
Z<Af.gB pA pB 02
Z«£/AgB scalar scalar scalar
Z<«f£/AgB scalar E scalar
Z<«f/AgB D scalar scalar
Z[L11<«£f/AgBL[;I] scalar E F F
ZLIT1«£/ALI;1gB c D scalar c
ZLI1+«£/4AgBL:T] D D F F
ZL11«£/A0I;19B c D D c

ZLI3J1<«£/401 5 1gBL ;]

Q
9
S|
oy
Q
fx

APL FUNCTIONS AND OPERATORS

Examples

flefe Zr1d
o2 3

4 5 6

[le-Be 3
123
D4, XK
14 32
(1 3)+.x13
14
2 bt LR
o1 2
e, XRA
14 32
32 77
(134 A ' OHETWOS EHTER?
OME
TWO
SLX
TEM
£
4 3
Ve ' SEM
FVv
3
HA =V
0010

Related Operators

Outer Product, Section 3.5.2

APL FUNCTIONS AND OPERATORS

3.5.2 o ., £f or .80 . £ - The Outer Product Operator

Format

dyadic

Argument Types

Both arguments can be any array. The ¢ symbol is the jot char-
acter, not the circle.

The f is any dyadic scalar function. The period (.) is the
connector between the jot and the function.

Definition

Specifies an operation to be performed by every element of one
array on every element of another array. For example, in the
expression R<«A.fB, R is any array that results from applying f to
every pair of elements of 4 and B. The shape of R is the dimen-
sions of 4 catenated to the dimensions of B, or (p4),pB. Unlike
inner product, outer product performs only one operation.

Table 3-10 describes the results of using a variety of arrays.
The letters have the following meaning:

f is a primitive function.

g is a primitive function.

A is an argument.

B is an argument.

C,D,E,F are the respective shapes of the
arguments.

I,J,K,L are indices.

Z is the result.

APL FUNCTIONS AND OPERATORS

Table 3-10
Outer Product Description

Definition of Shape Result
7<Ao .gB Ly oB 07
Z+«AgB scalar scalar scalar
ZUI1«AgBLTI] scalar E E
ZLI1«A[I1gB D scalar D
Z[I;J]1<«ALI]1gBLJ] D E D E
ZLI;J1<AgBLI;J] scalar E F E F
Z[I;J]«ALI;J1gB c D scalar c D
ZLI;J3K1«ALI1gBl[J ;K] D E F DEF
ZLTsJ 3 K1<ALI3J1gBLK] c D E C DF
Z0I;J3KsL1«ALT;J1gBlKL] c¢ D E F cC DFEF
Examples
102 3e,x2 3 4 5
2 3 4 K]
4 é g 10
& 12 14
el 20X 2 21
(VE) e, =M
100 0 01
o1 01 10
001 000
EE QIR T2
231
gD ORES, XOTWOS, AMO] THEEE Tt A

Related Operators

Inner Product, Section 3.5.1

3-74

APL FUNCTIONS AND OPERATORS

3.5.3 £/ - The Reduction Operator

Format

monadic

Argument Types
The argument is a scalar, a vector or one coordinate of an array.

The £ can be any scalar dyadic function.

Definition

Specifies that an operation is to be used to combine the elements
of a vector or elements along a specified dimension of an array.
The result of reducing any vector is a scalar value.

The result of reducing an array has a rank that is one less than
the rank of the original array. Thus, the reduction of a matrix
yields a vector. To specify a coordinate, include it within
square brackets. (The coordinate is dependent upon the index
origin, Section 4.2.11.) The default is the highest coordinate.
The special symbol to specify the first coordinate is # (.CS).

If the argument is an empty vector, then the result of a reduc-
tion is the identity element of the operator, if one exists.
Table 3-11 lists the identity elements for scalar dyadic functions.

Table 3-11
Identity Elements
Dyadic Operator Symbol Identity Element

Plus + 0

Minus - 0

Times x 1

Divide + 1

Power * 1

Residue | 0

Max imum F “"1.701411835E38
Minimum L 1.701411835E38
Logarithm @ none
Combination ! 1

Circle (o} none

And & 1

or v 0

Nand *x none

Nor L4 none

Less < 0

Not Greater < 1

Equal to = 1

Not Less = 1

Greater > 0

Not Equal # 0

Examples

[1e2e b
345 6
e

¥ /3

[
&

[
1

L ,/ E'J ?
20

P S
14

/i 1. \‘)

2

A S AME

- sy
s

X0

Ile-Aed
12 3
Soo6 1

208

4
)

.

10 14
+/01 A

6 8 4 6

Related Operators

Scan,

APL FUNCTIONS AND

4F 16

Section 3.5.4

OPERATORS

APIL FUNCTIONS AND OPERATORS

3.5.4 £\ - The Scan Operator

Format

monadic

Argument Types

The argument can be a scalar, a vector, or one coordinate of an
array.

The f is any scalar dyadic function.

Definition

Returns partial results in calculating the reduction of an array.
The shape of the result of a scan is the same as the shape of the
original vector. The first element of the result is always iden-
tical to the first element of the original vector. The last
element is equal to a reduction of the entire original vector.
For example:

N3 4 0
3 712

If the argument is a null vector, then the result of the scan is
a null vector.

You can also specify a scan for one particular coordinate of a
multidimensional array. You specify the coordinate to be scanned
by including a bracketed number with the function. The syntax is
the same as that of the reduction function. If you omit the
coordinate within brackets, APL scans the last coordinate of the
array. You can specify a scan on the first coordinate by using
the symbol \ (.CB), which is formed by overstriking the scan
(backslash) with the minus sign.

If the dyadic function specified with scan is associative (for
example, + or x) APIL performs the scan in a way that is different
from the conventional scan, in order to increase efficiency by
reducing the number of operations. The definition of R<f\4 is
equal to R[I]=f/I+4 as follows:

R[11=4[11
RLIT=R[I-11fA[I1FOR Iel+pA

This definition requires fewer operations than the traditional
scan. The result of an associative operation of this kind may
differ slightly from the nonassociative approach and should be
used carefully if the results require a high degree of precision.

APL FUNCTIONS AND OPERATORS

Examples
Al ES THES 1ETLS
[2]
1000000 T1LO00000 1,.000000000E™1L4
AN

1000000 O 1.000000000E™14
46

0

O 1 0 0
L R A §

N

12 6 24 120 7220 5040

[lefe Zpvd

4 £y
L2 3
5o 9

Related Operators

Reduction, Section 3.5.3

CHAPTER 4

APL SYSTEM COMMUNICATION

4.1 INTRODUCTION

There are a variety of ways in which you can communicate with the APL
system to change parameters, determine hardware or operational char-
acteristics, and modify processing methods. The APL system commands
in Chapter 5 facilitate many of these system operations. The ele-
ments in Chapter 4 that aid system communication are:

system variables - They are similar to ordinary variables but are
distinguished by special names that begin with a quad character,
for example,

system functions - They allow you to interact with APL by speci-
fying distinguished names beginning with a quad character, for
example,

Section 4.2 describes system variables and Section 4.3 describes
system functions.

4.2 SYSTEM VARIABLES

APL system variables allow you to perform such operations as the
following:

1. Set the index origin and relative fuzz
2, Change the output precision and line width

3. Specify an operation to be performed when the workspace is
activated

4, Save the active workspace automatically after editing

The syntax of APL system variables is similar to ordinary variables in
that you can use both types of variables in any language expression or
function. APL system variables have distinguished names; they begin
with a quad character ([0). They differ from ordinary variables
because of their special significance to the system.

APL system variables cannot be used as names for user-defined func-
tions. Also, you cannot copy, erase, or collect them in a group.

APL SYSTEM COMMUNICATION

The 25 system variables described in this chapter serve as an inter-

face between APIL and the operating system you are using.

The work-

space and the APL processor can each use values specified by the other

as appropriate to the particular operation being performed.

The value

of a system variable being used in a workspace can sometimes be dif-
ferent from the value last specified by the user of the workspace.

System variables fall into two categories:

1. System variables to which you can assign a value.

These

variables retain the value until you override it with another

value or clear the workspace.

You can save the value with

the workspace, and you can also localize them in a function

definition.

These system variables do have default values.

The following system variables are in this category:

Q4aus Section 4.2.5

acr Section 4.2.7

OERROR Section 4.2.9

0GAG Section 4.2.10
gro Section 4.2.11
gpp Section 4.2.15
dpw Section 4.2.16
ORL Section 4.2.17
gsF Section 4.2.18
OTIMELIMIT Section 4.2.19

2. System variables that have values you cannot change.

If you

assign a value to this type of variable, you will not receive
an error; however, the assignment will have no effect. The
following system variables are in this category:

OAT Section 4.2.1
OALPHA Section 4.2.2
OALPHAU Section 4.2.3
JAascIir Section 4.2.4
JAV Section 4.2.6
OCTRL Section 4.2.8
grc Section 4.2.12
ONuM Section 4.2.14
OrIMEOUT Section 4.2.20
grs Section 4.2.22
grr Section 4.2.23
Jur Section 4.2.24
Ow4a Section 4.2.25

4.2.1 [0AI - Storing Account Information

The [JAI (account information)

system variable stores the following
account information during a work session:

1. User identification (for the project-programmer number

2.

[PROJ,PROG] this is PROG+PROJx2%18)

Computer time (CPU time) used during the current APL session

APL SYSTEM COMMUNICATION

3. Connect time used during the current APL session

4, Keying time (time during which the keyboard is unlocked) used
during the current APL session

All times are expressed in milliseconds.
For example:

e
1048708 1235 440947 382458

4.2.2 [OALPHA - Alphabetic Characters

The OALPHA system variable is a subset of the 04V system variable,
Section 4.2.6. The value contained in [JALPHA is a vector of the 27
alphabetic characters A and 4 through Z.

For example:

[IOLF A
OARCDEFGH L JKLMHOFQESTUVWITE

4.2.3 [OALPHAU - Underlined Alphabetics

The OALPHAU system variable is a subset of the AV system variable,
Section 4.2,.,6. The value contained in [OALPHAU is a vector of the 27
underlined characters A and 4 through Z.

For example:

|4 B LY

PE UMW

LAY L [ALFHAL
481 462 483 484 48% 484 487 488 489 490 491 492 493 494 49H
494 497 498 499 00 H01 HOZ HOJX Ho4 0% Hoé Hov

4.2.4 [UASCII - ASCII Character Set

The [JASCII system variable contains 128 ASCII characters. This dis-
tinguished variable is designed primarily for use with ASCII files,
as an easy way to output arbitrary ASCII codes to those files while
using the APL character set. The first 32 characters of UASCII are
the control characters in [OCTRL, Section 4.2.8. The rest are pure
ASCII, not translatable by APL.

0ASCII is a subset of [AV. The indices into AV that contain [4ASCIT
are [JAV[257] through [AV[288] and [0AVL3811 through 04V[iu761].

OASCII is intended for use with output functions, especially output to
the terminal. It accepts a list of numbers that it translates into
ASCII codes for transmission. It does not go through the usual trans-
lation from APL 9-bit to ASCII.

APL SYSTEM COMMUNICATION

When you write to an ASCII sequential file (Section 7.5.1) using
04ascrr, you can output the full range of ASCII characters. The
following example writes seven ASCII characters to an ASCII sequential
file while in APL mode. The APL equivalents of these characters print
during output. Once back at operating system command level, you can
access the ASCII characters.

For example:

[IAGESE P THIS /06!

e

[ASCIELRLE 3B 3Py 43060959 96TH1Z
Sun y Y

fens 19

y MO
MOMILTOFR
eplY THIS.AAS
LK™
@
@

Table 4-1 contains the decimal indices and octal values of [ASCII.

Table 4-1
The ASCII Character Set
OAscrr (OIo0<«1)

Index ASCITI Char Octal Value
1 NUL 000
2 SOH 001
3 STX 002
4 ETX 003
5 EOT 004
6 ENQ 005
7 ACK 006
8 BEL 007
9 BS 010

10 HT 0l1
11 LF 012
12 vT 013
13 FF 014
14 CR 015
15 SO 0l6
16 SI 017
17 DLE 020
18 DC1 021
19 DC2 022
20 DC3 02