
IAS/RSX-11
I/O Operations

Reference Manual
Order No. AA-2515C-TC

IAS/RSX-11
I/O Operations

Reference Manual
Order No. AA-2515C-TC

lAS Version 2.0
RSX-11 M Version 3. 1
RSX-11 D Version 6.2

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment'Corporation, Maynard, Massachusetts 01754

digital equipment corporation · maynard, massachusetts

First Printing, December 1975
Revised: December 1976

December 1977

The information in this document is ~ubject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use
or reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright © 1975, 1976, 1977 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in p~e­
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DECUS
UNIBUS
COMPUTER LABS
COMTEX
DDT
DECCOMM

DECsystem-lO
DEC tape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL
INDAC
LAB-8
DECSYSTEM-20

12/77-14

MASSBUS
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-IO
TYPESET-II

PREFACE

CHAPTER 1

1.1
1.2
1.3
1.3.1
1.4
1.5
1.6
1.6.1
1.6.2
1.7

1.8
1.9
1.10
1.11
1.12

CHAPTER 2

2.1

2.2
2.2.1
2.2.1.1

2.2.1.2

2.2.1.3

2.2.1.4

2.2.1.5

2.2.1.6

2.2.2
2.2.2.1
2.2.2.2

2.3

2.3.1

2.3.2
2.4

2.4.1

CONTENTS

FILE CONTROL SERVICES

FILE ACCESS METHODS
FILE STORAGE REGION (FSR)
DATA FORMATS FOR FILE-STRUCTURED DEVICES

Data Formats for ANSI Magtape
BLOCK I/O OPERATIONS
RECORD I/O OPERATIONS
DATA-TRANSFER MODES

Move Mode
Locate Mode

MULTIPLE BUFFERING FOR RECORD I/O
(lAS AND RSX-11D ONLY)
SHARED ACCESS TO FILES
FILE DESCRIPTOR BLOCK (FDB)
DATASET DESCRIPTOR AND DEFAULT FILENAME BLOCK
KEY TERMS USED THROUGHOUT THIS MANUAL
SYSTEM CHARACTERISTICS

PREPARING FOR I/O

.MCALL DIRECTIVE - LISTING NAMES OF REQUIRED
MACRO DEFINITIONS
FILE DESCRIPTOR BLOCK (FDB)

Assembly-Time FDB Initialization Macros
FDBDF$ - Allocate File Descriptor Block
(FDB)
FDAT$A - Initialize File Attribute Section
of FDB
FDRC$A - Initialize Record-Access Section
of FDB
FDBK$A - Initialize Block-Access Section
of FDB
FDOP$A - Initialize File-Open Section
of FDB
FDBF$A - Ini tia1ize B1ock-Bt~ffer Section
of FDB
Run-l'ime FDB Initialization Macros
Run-Time FDB Macro-Call Exceptions
Specifying the FDB Address in Run-Time
Macro Calls

GLOBAL VERSUS LOCAL DEFINITIONS FOR FDB
OFFSETS

Specifying Global Symbols in the Source
Coding
Defining FDB Offsets and Bit Values Locally

CREATING FILE SPECIFICATIONS WITHIN THE USER
PROGRAM

Data~et Descriptor

iii

Page

xi

1-1

1-2
1-3
1-5
1-5
1-6
1-6
1-7
1-7
1-7

1-8
1-8
1-9
1-10
1-10
1-11

2-1

2-2
2-3
2-3

2-4

2-5

2-8

2-10

2-12

2-16
2-19
2-20

2-22

2-23

2-24
2-24

2-25
2-26

2.4.2
2.4.3
2.5 ., ~ ,
~ • ."", • ..&.

2.5.2
2.6
2.6.1
2.6.2
2.7
2.7.1

2.7.2

2.8
2.8.1
2.8.2
2.8.3

CHAPTER 3

3.1
3.1.1
3.1.2

3.2
3.3
3.4

3.5
3.6
3.6.1

3.6.2
3.7

3.8
3.8.1
3.9
3.9.1
3.9.2
3.9.2.1
3.9.2.2
3.10
3.11
3.12
3.12.1
3.12.2
3.12.2.1
3.12.2.2
3.13
3.14

3.15
3.15.1
3.15.2
3.16

CONTENTS (Cont.)

Default Filename Block - NMBLK$ Macro Call
Dynamic Processing of File Specifications

OPTIMIZING FILE ACCESS
Initializing the Filename Block As a
Function of OPEN$x
Manually Initializing the Filename Block

INITIALIZING THE FILE STORAGE REGION
FSRSZ$ - Initialize FSR at Assembly-Time
FINIT$ - Initialize FSR at Run-Time

INCREASING THE SIZE OF THE FILE STORAGE REGION
FSR-Extension Procedures for MACRO-II
Programs
FSR-Extension Procedures for FORTRAN
Programs

COORDINATING I/O OPERATIONS
Event Flags
I/O Status Block
AST Service Routine

FILE-PROCESSING MACRO CALLS

OPEN$x - GENERALIZED OPEN MACRO CALL
Format of Generalized OPEN$x Macro Call
FDB Requirements for Generalized OPEN$x
Macro Call

OPNS$x - OPEN FILE FOR SHARED ACCESS
OPNT$W - CREATE AND OPEN TEMPORARY FILE
OPNT$D - CREATE AND OPEN TEMPORARY FILE
AND MARK FOR DELETION
OFID$x - OPEN FILE BY FILE ID
OFNB$x OPEN FILE BY FILENAME BLOCK

Dataset Descriptor and/or Default Filename
Block
Default Filename Block Only

OPEN$ - GENERALIZED OPEN FOR SPECIFYING FILE
ACCESS
CLOSE$ - CLOSE SPECIFIED FILE

Format of CLOSE$ Macro Call
GET$ - READ LOGICAL RECORD

Format of GET$ Macro Call
FDB Mechanics Relevant to GET$ Operations
GET$ Operations in Move Mode
GET$ Operations in Locate Mode

GET$R - READ LOGICAL RECO~D IN RANDOM MODE
GET$S - READ LOGICAL RECORD IN SEQUENTI~ MODE
PQT$ - WRITE LOGICAL RECORD

Format of PUT$ Macro Call
FDB Mechanics Relevant to PUT$ Operations
PUT$ Operations in Move Mode
PUT$ Operations in Locate Mode

PUT$R - WRITE LOGICAL RECORD IN RANDOM MODE
PUT$S - WRITE LOGICAL RECORD IN SEQUENTIAL
MODE
READ$... READ VIRTUAL BLOCK

Format of READ$ Macro Call
FDB Requirements for READ$ Macro Call

WRITE$ - WRITE VIRTUAL BLOCK

iv

Page

2-28
2-31
2-31

2-32
2-33
2-34
2-35
2 ... 37
2-38

2-38

2-39
2-39
2-40
2-41
2-42

3-1

3-2
3-5

3-8
3-11
3-12

3-13
3-13
3-14

3-15
3-15

3-16
3-17
3-17
3-18
3-18
3-20
3-20
3-20
3-21
3-22
3-23
3-23
3.,..24
3-25
3-25
3-26

3-28
3-28
3-29
3-31
3-31

3.16.1
3.16.2
3.17
3.17.1
3.18
3.18.1

CHAPTER 4

4.1
4.2
4.2.1

4.2.2

4.3
4.3.1
4.3.2
4.4
4.4.1

4.4.2

4.5
4.5.1
4.5.2
4.6
4.6.1

4.6.2

4.7
4.7.1
4.7.1.1
4.7 .. 1.2
4.7 .. 1 .. 3

4.7.1.4
4.7.2

4.7.3
4.8
4.8.1
4.8.2
4.8.3
4.9
4.9.1

4.9.2

4.10
4.10 •• 1
4.10.:2
4.10.3
4.10.4

4.11

CONTENTS (Cont.)

Format of WRITE$ Macro Call
FDB Requirements for WRITE$ Macro Call

WAIT$ - WAIT FOR BLOCK I/O COMPLETION
Format of WAIT$ Macro Call

DELET$ - DELETE SPECIFIED FILE
Format of DELET$ Macro Call

FILE CONTROL ROUTINES

CALLING FILE CONTROL ROUTINES
DEFAULT DIRECTORY-STRING ROUTINES

.RDFDR - Read $$FSR2 Default Directory
String Descriptor
.WDFDR - Write New $$FSR2 Default Directory­
String Descriptor

DEFAULT UIC ROUTINES
.RDFUI - Read Default UIC
.WDFUI - Write Default UIC

DEFAULT FILE-PROTECTION WORD ROUTINES
.RDFFP - Read $$FSR2 Default File Protedtion
Word
.WDFFP - Write New $$FSR2 Default File­
Protection Word

FILE OWNER WORD ROUTINES
.RFOWN - Read $$FSR2 File-Owner Word
.WFOWN - Write New $$FSR2 File-Owner Word

ASCII/BINARY UIC CONVERSION ROUTINES
.ASCPP - Convert ASCII Directory String to
Equivalent Binary UIC
.PPASC - Convert UIC to ASCII Directory
String

FILENAME BLOCK ROUTINES
.PARSE - Fill in All Filename Information
Device and Unit Information
Directory-Identification Information
Filename, File-Type or Extension, and File
Version Information
Other Filename Block Information
.PRSDV - Fill in Device and Unit Information
Only
.ASLUN - Assign Logical Unit Number

DIRECTORY ENTRY ROUTINES
.FIND - Locate Directory Entry
.ENTER - Insert qirectory Entry
.REMOV - Delete Directory Entry

FILENAME BLOCK ROUTINES
.GTDIR - Insert Directory Information in
Filename Block
.GTDID - Insert Default Directory Information
in Filename Block

FILE POINTER ROUTINES
.POINT - Position File to Specified Byte
.POSRC - Position File to Specified Record
.MARK - Save Positional Context of File
.POSIT - Return positional Information for
Specified Record

QUEUE I/O FUNCTION ROUTINE (.XQIO)

v

Page

3 32
3-32
3-33
3-33
3-35
3-35

4-1

4-1
4-2

4-2

4-3
4-3
4-4
4 4
4 ... 4

4-5

4-5
4-5
4-6
4-6
4-6

4-6

4-6
4-7
4 7
4 8
4-9

4 10
4-11

4-11
4-11
4-12
4-12
4 14
4-14
4-14

4"",15

4 15
4 16
4 16
4 17
4-17

4-18
4-18

4.12
4.13
4.14
4.15
4.15.1
4.15.2
4.16

CHAPTER 5

5.1
5.1.1
5.1.2
5.1.3
5.1.4
5.2
5.2.1
5.2.2
5.2.3
5.2.4
5.2.5
5.2.6
5.2.7
5.2.7.1
5.2.7.2 ·
5.2.7.3
5.2.7.4

CHAPTER 6

6.1
6.1.1

6.1.2

6.1.3
6.1.3.1
6.1.3.2
6.1.3.3
6.1.4
6.2
6.2.1

6.2.2

6.2.3
6.2.3.1
6.2.3.2
6.2.4
6.2.4.1

6.2.4.2

6.2.4.3

CONTENT S (Con t.)

RENAME FILE ROUTINE (.RENAM)
FILE EXTENSION ROUTINE (.EXTND)
FILE TRUNCATION ROUTINE (.TRNCL)
FILE DELETION ROUTINES

.MRKDL - Mark Temporary File for Deletion

.DLFNB - Delete File by Filename Block
DEVICE CONTROL ROUTINE (.CTRL)

FILE STRUCTURES

DISK AND DECTAPE FILE STRUCTURE (FILES-II)
User File Structure
Directory Files
Index File
File-Header Block

MAGNETIC TAPE FILE PROCESSING
Access to Magnetic Tape Volumes
Rewinding Volume Sets
Positioning to the Next File Position
Single-File Operations
Multiple-File Operations
Using .CTRL
Examples of Magnetic Tape Processing
Examples of OPEN$W to Create a New File
Examples of OPENS to Read a File
Examples of CLOSES
Combined Examples of OPENS and CLOSES for
Magnetic Tape

COMMAND-LINE PROCESSING

GET COMMAND LINE (GCML)
GCMLB$ - Allocate and Initialize GCML
Control Block
GCMLD$ - Define GCML Control Block Offsets
and Bit Values
GCML Run-Time Macro Calls
GCML$ - Get Command Line
RCML$ - Reset Indirect Command File Scan
CCML$ - Close Current Command File
GCML Usage Considerations

COMMAND STRING INTERPRETER (CSI)
CSI$ - Define CSI Control-Block Offsets
and Bit Values
CSI Control-Block Offset and Bit-Value
Definitions
CSI Run-Time Macro Calls
CSI$l - Command Syntax Analyzer
CSI$2 - Command Semantic Parser
CSI Switch Definition Macro Calls
CSI$SW - Create Switch Descriptor Table
Entry
CSI$SV - Create Switch-Value Descriptor
Table Entry
CSI$ND - Define End of Descriptor Table

vi

Page

4-19
4-19
4-20
4-20
4-20
4-21
4-22

5-1

5-1
5-1
5-2
5-2
5-3
5-4
5-4
5-5
5-5
5-5
5-6
5-6
5-7
5-7
5-8
5-8

5-9

6-1

6-2

6-3

6-5
6-9
6-9
6-11
6-12
6-12
6-13

6-14

6-14
6-17
6-17
6-19
6-21

6-21

6-26
6-28

CHAPTER 7

7.1
7.1.1
7.1.1.1

7.1.1.2

7.1.1.3
7.1.2
7.1.3
7.1.3.1
7.1.3.2
7.1.3.3
7.1.4
7.2
7.2.1

7.2.2
7.2.3
7.3
7.4
7.4.1
7.4.2
7.4.3
7.5
7.6
7.6.1
7.6.2

7.6.3

CHAPTER 8

8.1
8.2
8.3

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

E.1
E.2
E.3
E.4

APPENDIX F

F.1

CONTENTS (Cont.)

THE TABLE-DRIVEN PARSER (TPARS)

CODING TPARS SOURCE PROGRAMS
TPARS Macros: ISTAT$, STATE $, and TRAN$
Initializing the State Table: the ISTAT$
Macro
Defining a Syntax Element: the STATE$
Macro
Defining a Transition: the $TRAN Macro
Types of Command Line Syntax Elements
Action Routines and Built-in Variables
TPARS Built-in Variables
Calling Action Routines
Using Action Routines to Reject a Transition
TPARS SUbexpressions

GENERAL CODING CONSIDERATIONS
Suggested Arrangement of Syntax Types in a
State Table
Entering Special Charact'ers
Ignoring Blanks and Tabs in a Command Line

PSECTs GENERATED BY TPARS MACROS
INVOKING TPARS

Register Usage and Calling Conventions
Using the Options Word
Storage Requirements

HOW TO GENERATE A PARSER PROGRAM USING TPARS
PROGRAMMING EXAMPLES

Parsing a UFD Command Line
How to Use Subexpressions and Reject
Transitions
Using Subexpressions to Parse Complex
Grammars

SPOOLING

PRINT$ MACRO CALL
.PRINT SUBROUTINE
ERROR HANDLING

FILE DESCRIPTOR BLOCK

FILENAME BLOCK

SUMMARY OF I/O-RELATED SYSTEM DIRECTIVES

SAMPLE PROGRAMS

INDEX FILE FORMAT

BOOTSTRAP BLOCK
HOME BLOCK
INDEX-FILE BIT MAP
PREDEFINED FILE-HEADER BLOCKS

FILE-HEADER BLOCK FORMAT

HEADER AREA

vii

Page

7-1

7-1
7-2

7-2

7-2
7-3
7-4
7-5
7-5
7-5
7-5
7-6
7-6

7-6
7-7
7-7
7-8
7-9
7-9
7-9
7-10
7-10
7-12
7-12

7-16

7-17

8-1

8-1
8-2
8-2

A-1

B-1

C-1

D-1

E-1

E-1
E-2
E-2
E-2

F-1

F-3

APPENDIX

APPENDIX

APPENDIX

APPENDIX

INDEX

FIGURE

F.2
F.3

G

G.l
G.l.l
G.l.l.l
G.l.2
G.l.3
G.l.3.l
G.l.4
G.l.5
G.l.6
G.2
G.2.l
G.2.2
G.2.3
G.2.4
G.3
G.4

H

I

J

1-1
1-2
1-3
5-1
5-2
6-1
6-2
6-3
7-1

7-2

B-1
G-l

H-l

CONTENTS (Cent.)

Page

IDENTIFICATION AREA F-4
MAP AREA F 5

SUPPORT OF ANSI MAGNETIC TAPE STANDARD G-l

VOLUME AND FILE LABELS G-l
Volume Label Format G-l
Contents of Owner Identification Field G 2
User Volume Labels G-3
File-Header Labels G-3
File Identifier Processing by Files-II G-5
End-of-Volume Labels G-6
File-Trailer Labels G-7
User File Labels G-7

FILE STRUCTURES G-7
Single File Single Volume G-7
Single File Multivolume G-7
Multifile Single Volume G-8
Multifile Multivolume G-8

END-OF-TAPE HANDLING G-8
ANSI MAGNETIC TAPE FILE HEADER BLOCK (FCS
COMPATIBLE) G-8

STATISTICS BLOCK H-l

ERROR CODES I-I

FIELD SIZE SYMBOLS J-l

Index-l

FIGURES

File-Access Operations
Record I/O Operations
Single Buffering Versus Multiple Buffering
Directory Structure for Single-User Volumes
Directory Structure for Multiuser Volumes
Data Flow During Command Line Processing
Format of Switch Descriptor Table Entry
Format of switch-Value Descriptor Table Entry
Processing Steps Required to Generate a Parser
Program Using TPARS
Flow of Centro 1 When TPARS Is Called from an
Executing User Program
Filename-Block Format
ANSI Magnetic Tape File-Header Block (FCS
Compatible)
Statistics Block Format

viii

1--2
1-4
1-8
5-2
5-3
6-2
6-25
6-28

7-11

7-12
B-2

G-9
H-l

TABLE 2-1
3-1

4-1
A-l
B-1
B-2
C-l
E-l
F-l
G-l
G-2
G-3

CONTENTS (Cont.)

TABLES

Macro Calls Generating FDB Information
File Access Privileges Resulting from OPEN$x
Macro Call
R2 Control Bits for .EXTND Routine
FDB Offset Definitions
Filename-Block Offset Definitions
Filename-Block Status Word (N.STAT)
Summary of I/O-Related System Directives
Home-Block Format
File Header Block
Volume Label Format
File-Header Label (HDR1)
File Header Format (HDR2)

ix

Page

2-2

3-3
4-20
A-2
B-1
B-2
C-l
E-3
F-l
G-l
G-4
G-5

PREFACE

0.1 MANUAL OBJECTIVES AND READER ASSUMPTIONS

The purpose of this manual is to familiarize the users of an RSX-llD,
RSX-llM, or lAS operating system with the file control services (FCS)
facility provided with the system. Since the file control services
described herein pertain to both MACRO-II and FORTRAN programs, the
reader is assumed to be familiar with the manuals describing these
program-development tools. Also, since the development of programs in
an RSX-ll or lAS environment necessarily involves the use of the Task
Builder, the reader is likewise assumed to be familiar with this
system program. Unless otherwise noted, the term RSX-ll refers to
both RSX-llD and RSX-llM.

0.2 STRUCTURE OF THE DOCUMENT

Chapter 1 briefly describes the FCS features available for IAS/RSX-ll
users and defines some of the terminology that is pertinent to
discussions throughout the manual. This chapter is vital to
understanding the balance of the manual.

Chapter 2, perhaps the most important in the manual, describes the
actions the user must take at assembly-time to prepare adequately for
all intended file I/O processing through FCS. This chapter describes
the data structures and working storage areas that the user must
define within a particular program in order to use any of the file
control services provided by the system. Unless the user is
thoroughly familiar with the content of this chapter, he is advised to
defer a reading of subsequent chapters, since all that follows is
dependent upon a complete working understanding of the material in
Chapter 2.

Chapter 3 describes the run-time macro calls that allow the user to
manipulate files and to perform I/O operations.

Chapter 4 describes a set of run-time routines used to perform
functions related to controlling files, such as reading and writing
directory entries, renaming or extending files, etc.

Chapter 5 describes the structure of files supported by the lAS and
RSX-ll systems. In this context, the structure of files for disks,
DECtapes, and magnetic tapes are covered.

xi

Chapter 6 describes two collections of object library routines called
the Get Command Line (GCML) routine and the Command String Interpreter
(CSI). These routines may be linked with the user task to perform
operations associated with the dynamic input of command lines. Such
input consists of file specifications that identify and control the
files to be processed by the user program.

Chapter 7 describes the queuing of files for printing. This facility
is available at both the MACRO level and subroutine level.

Finally, a number of appendixes are provided that supply detailed
information of further interest. Appendix A and Appendix B outline in
detail the file descriptor block (FDB) and the filename block,
respectively, two structures forming a significant part of the
descriptive material in Chapter 2. Appendix C summarizes a number of
I/O-related system directives that form a part of the total
resource-management capabilities of the RSX-II or the lAs Executive.
Through simplified sample pr~grams, Appendix D illustrates the use of
the macro calls that create and initialize the file descriptor block.
These sample programs also include some of the macro calls that are
used for processing files.

Appendix E illustrates the structure of the index file of a Files-II
volume, while Appendix F describes in detail the format and content of
a file-header block. The format and content of magnetic tape labels
are similarly described in Appendix G. The format and content of the
statistics block are described in Appendix H.

The error codes returned by the system are listed in Appendix I, and
field-size symbols are listed in Appendix J.

0.3 ASSOCIATED DOCUMENTS

Other manuals closely allied to the purposes of this document are
described briefly in the lAS, RSX-IID, and RSX-IIM/RSX-IIS
Documentation Directories. The Documentation Directories define the
intended readership of each manual in the appropriate set and provide
a brief synopsis of each manual's contents.

xii

CHAPTER 1

FILE CONTROL SERVICES

lAS and RSX-ll file control services (FCS) enable the user to perform
record-oriented and block-oriented I/O operations and to perform
additional functions required for file control, such as open, close,
wait, and delete operations. To invoke FCS functions, the user issues
macro calls to specify desired file-control operations. The FCS
macros are called at assembly-time to generate code for specified
functions and operations. The macro calls provide the system-level
file-control primitives with the necessary parameters to perform the
file-access operations requested by the user (see Figure 1-1).

FCS is basically a set of routines that are linked with the user
program at task-build time from a system global area (lAS and RSX-IID)
or resident system library (RSX-IIM); or a system object module
library. These routines, consisting of pure, position-independent
code, provide a user interface to the file system, enabling the user
to read and write files on file-structured devices and to process
files in terms of logical records.

Logical records are regarded by the user program as data units that
are structured in accordance with application requirements, rather
than as physical blocks of data on a particular storage medium.

FCS provides the capability to write a collection of data (consisting
of distinct logical records) to a file in a way that enables the data
to be retrieved at will. Data can be retrieved from the file without
the user's having to know the exact format in which it was written to
the file.

FCS thus is virtually transparent to the user so that records can be
read or written in logical units that are consistent with particular
application requirements.

1-1

FILE CONTROL SERVICES

USER-ISSUED MACRO CALL

FILE CONTROL SERVICES

FILE CONTROL PRIMITIVES

PERIPHERAL DEVICE HARDWARE
(e.g., disk, VT05)

Figure 1-1 File-Access Operation

FCS provides an extensive set of macros to simplify the user's
interface to the system's I/O facilities. These macros create and
maintain certain data structures that are required in performing all
file-I/O operations. The required structures include the following:

1. A file descriptor block (FOB) that contains execution-time
information necessary for the processing of a file.

2. A dataset descriptor that is accessed by FCS to obtain ASCII
file information required in opening a specified file.

3. A default filename block that is accessed by FCS to obtain
default file information required in opening a specified
file. This structure is accessed when complete file
information is not specified in the dataset descriptor.

The FOB is described in detail in Appendix A and Appendix B. The
dataset descriptor and the default filename block are treated in
detail in Section 2.4.

1.1 FILE ACCESS METHODS

lAS and RSX-ll support both sequential and random access to data in
files. The sequential-access method is device-independent, i.e.,
sequential acc~ss can be used for both record-oriented and
block-addressable devices (e.g., card reader and disk, respectively).
The random-access method can be used only for block-addressable
devices.

1-2

FILE CONTROL SERVICES

1.2 FILE STORAGE REGION (FSR)

The file storage region (FSR) is an area allocated in the user program
as working storage for performing record I/O operations (see Section
1.5). The FSR consists of two program sections that are always
contiguous to each other. These program sections exist for the
following purposes:

$$FSRI - This area of the FSR contains the block buffers and the
block buffer headers for record I/O processing. The
user determines the size of this area at assembly-time
by issuing the FSRSZ$ macro call (see Section 2.6.1).
The number of block buffers and associated headers is
based on the number of files that the user intends to
open simultaneously for record I/O operations.

$$FSR2 - This area of the FSR contains impure data that is used
and maintained by Fes in performing record I/O
operations. Portions of this area are initialized at
task-build time, and other portions are maintained by
Fes.

The size of the FSR can be changed, if desired, at task-build time.
Section 2.7 presents the procedures that provide this flexibility to
the programmer.

The data flow during record I/O operations is depicted in Figure 1-2.
Note that blocks of data are transferred directly between the FSR
block buffer and the device containing the desired file. The
deblocking of records during input is accomplished in the FSR block
buffer, and the blocking of records is likewise accomplished in the
FSR block buffer during output. Note also that Fes serves as the user
interface to the FSR-block-buffer pool. All record I/O operations,
which are initiated through GET$ and PUT$ macro calls, are totally
synchronized by Fes.

Record I/O operations are described in detail in Section 1.5.

1-3

.......
I

,j:::.

DEVICE

BLOCK
BUFFER

POOL

,- ,

$$FSR2
IMPURE DATA

FCS

Figure 1-2 Record I/O Operations

USER
BECORD
BUFFER

~
H
t"i
tz:I

(')
o z
~
~ o
t"i

til
tz:I

:g
H
(')
tz:I
til

FILE CONTROL SERVICES

1.3 DATA FORMATS FOR FILE-STRUCTURED DEVICES

Data are transferred between peripheral devices and memory in blocks.
~ data file consists of virtual blocks, each of which may contain one
or more logical records created by a user program. In FCS terms, a
virtual block in a file consists of 512(10) bytes. The size of the
logical records in the virtual blocks is under the control of the user
program that originally writes the records.

When creating a new file, a user program can specify that the records
in the file need not all be the same size. Such records are known as
variable-length records. Conversely, if the user program indicates
that all records in the new file will be equal in size, the records
are known as fixed-length.

There are two types of variable-length records: sequenced and
nonsequenced. Both must be word-aligned. Sequenced variable-length
records are preceded by a two-word record header. The first word
contains the length of the record and the second word contains the
value of the sequence number:

16 16

Byte Count Sequence Number

Nonsequenced variable-length records are preceded by a single-word
record header containing the length of the record:

Both fixed- and
boundary. Any
simply ignored.

16

Byte Count

variable-length records are aligned on a word
extra byte that results from an odd-length record is
(The extra byte is not necessarily a 0 byte.)

Virtual blocks and logical records within a file are numbered
sequentially, each starting at 1. A virtual-block number is a file
relative value, while a logical block number is a volume relative
value. Ordinarily, records may cross block boundaries. This means
that the beginning of a record can fill out the end of a block while
the rest of the record occupies the beginning of the next block.

1.3.1 Data Formats for ANSI Magtape

Both fixed- and variable-length records may be used on magtape; their
format conforms to the ANSI standard.

On magtape, a virtual block corresponds to a physical record. The
default length of a block is 512 bytes. Its length can be changed to
any value greater than 8 bytes (14 bytes for a write function) and up
to 2048 bytes with the use of the FDBF$ macro (see Section 2.2.1.6).
Records are not allowed to cross block boundaries.

Fixed-length records are packed into a block with no control
information and no padding for alignment. The block is truncated so
that it ends at the end of the last record that will fit in the block
buffer.

1-5

FILE CONTROL SERVICES

Variable-length records are preceded by a 4-byte count field,
expressed in decimal in ASCII characters. The count includes the
length of the record and the 4-byte count field. After the last
record in a block (if there is any space left in the block), a caret
character ("ft", ASCII code 136), which appears where the next byte
count should be, signals the end of data in that block.

1.4 BLOCK I/O OPERATIONS

The READ$ and WRITE$ macro calls (see Sections 3.15 and 3.16,
respectively) allow the user to read and write virtual blocks of data
from and to a file without regard to logical records within the file.
Block I/O operations provide an efficient means of processing file
data, since such operations do not involve the blocking and deblocking
of records within the file. Also, in block I/O operations, the user
may read or write files in an asynchronous manner, i.e., control may
be returned to the user program before the requested I/O operation is
completed.

When block I/O is used, the number of the virtual block to be
processed is specified as a parameter in the appropriate READ$/WRITE$
macro call; the virtual blocks so specified are processed directly in
a reserved buffer in user memory space. READ$ and WRITE$ can be used
only on block-structured devices.

As implied above, the user is responsible for synchronizing all block
I/O operations. Such asynchronous operations may be coordinated
through an event ~lag (see Section 2.8.1) specified in the
READ$/WRITE$ macro call. The event flag is used by the system to
signal the completion of a specified block I/O transfer, enabling the
user to coordinate those block I/O operations that are dependent on
each other.

1.5 RECORD I/O OPERATIONS

The GET$ and PUT$ macro calls (see Sections 3.9 and 3.12,
respectively) are provided for processing individual user records in
files. Using the FSR block buffers (see Section 1.2), the GET$ and
PUT$ routines perform the necessary blocking and deblocking of records
within the virtual blocks of the file, allowing the user program to
access logical records.

Sequential-access mode I/O operations can be performed for both fixed­
and variable-length records. Random-access mode I/O operations can be
performed only for fixed-length records. The user program accesses
records randomly by specifying a record number. This number
represents the position of the desired record within the
file -- viewing the file as an array of fixed-sized records with the
number 1 representing the first record physically present in the file
and n the last. Successive GET$ or PUT$ operations in random-access
mode can access records anywhere within the file. To do so, the user
program need only modify the record number specified as part of the
random record operation. After each such random operation, FCS
increments the record number used in the operation. If the user
program does not again modify this number prior to issuing another
record operation, the record actually accessed is the next sequential
record in the file.

1-6

FILE CONTROL SERVICES

In contrast to block I/O operations, all record I/O operations are
synchronous, i.e., control is returned to the user program only after
the requested I/O operation is completed.

Because GET~/PUT$ operations process logical records within a virtual
block, only a limited number of GET$ or PUTS operations result in an
actual I/O transfer (e.g., when the end of a data block is
encountered). Therefore, all GET$/PUT$ I/O requests do not
necessarily involve an actual physical transfer of data.

1.6 DATA-TRANSFER MODES

When record I/O is used, a program can gain access to a record in
either of two ways after the virtual block has been transferred into
the FSR from a file:

1. In move mode. By specifying that individual records are to
be moved from the FSR block buffer to a user-defined record
buffer (see Figure 1-2).

2. In locate mode. By referencing a location in the file
descriptor block (see Section 1.9) that contains a pointer to
the desired record within the FSR block buffer.

1.6.1 Move Mode

Move mode requires that data be moved between the FSR block buffer and
a user-defined record buffer. For input, data are first read into the
FSR block buffer from a peripheral device and then moved to the user
record buffer for processing. For output, the user program first
builds a record in the user record buffer; FCS then moves the record
to the FSR block buffer, whence it is written to a peripheral device
when the entire block is filled.

Move mode simulates the reading of a record directly into a user
record buffer, thereby making the blocking and deblocking of records
transparent to the user.

1.6.2 Locate Mode

Locate mode enables the user to access records directly in the FSR
block buffer. Consequently, there is normally no need to transfer
data from the FSR block buffer to the user record buffer. To access
records directly in the FSR block buffer, the user refers to locations
in the file descriptor block (see Section 1.9) that contain values
defining the length and the address of the desired record within the
FSR block buffer. These values are present in the file descriptor
block as a result of FCS macro calls issued by the user.

Program overhead is reduced in locate mode, since records can be
processed directly within the FSR block buffer. Moving data to the
user record buffer in locate mode is required only when the last
record of a virtual block crosses block boundaries.

1-7

FILE CONTROL SERVICES

1.7 MULTIPLE BUFFERING FOR RECORD I/O (lAS AND RSX-IID ONLY)

By supporting multiple buffers for record I/O, FCS provides the
capability for lAS and RSX-IID users to read data into buffers in
anticipation of user program requirements and to write the contents of
buffers while the user program is building records for output. The
user can thus overlap the internal processing of data with file I/O
operations, as illustrated in Figure 1-3.

When read-ahead multiple buffering is used, the file must be
sequentially accessed to derive full benefit from multiple buffering.
For write-behind multiple buffering, any file-access method can be
used with full benefit.

When multiple buffering is used, sufficient space in the FSR must be
allocated for the total number of block buffers in use at any given
time. The FSRSZ$ macro call (see Section 2.6.1) is used to accomplish
the allocation of space for FSR block buffers.

Time

Single
Buffer

Multiple
Buffer

process record write record process record write record

I
i

process record write record process record write record
process record write record process record

Figure 1-3 Single Buffering Versus Multiple Buffering

1.S SHARED ACCESS TO FILES

FCS permits shared access to files according to established
conventions. Two macro calls, among several available in FCS for
opening files, may be issued to invoke these conventions. The OPNS$x
macro call (see Section 3.2) is used specifically to open a file for
shared access. The OPEN$x macro call (see Section 3.1), on the other
hand, invokes generalized open functions that have shared-access
implications only in relation to other I/O requests then issued. Both
macro calls take an alphabetic suffix that specifies the type of
operation being requested for the file, as follows:

R - Read existing file.

w - write (create) a new file.

M - Modify existing file without extending its length.

U - Update existing file and extend its length, if necessary.

A - Append data to end of existing file.

The suffix R applies to the reading of a file, whereas the suffixes W,
M, U, and A all apply to the writing of a file. These macro calls and
the shared-access conditions that they invoke are summarized below.

l-S

FILE CONTROL SERVICES

The OPNS$x and OPEN$x macro calls may be used as follows for shared
access to files:

1. When the OPNS$R macro call is issued, read access to the file
is granted unconditionally, regardless of the presence of one
or more concurrent write-access requests to the file. (The
OPNS$R macro call permits concurrent write accesses to the
file while it is being read.) Subsequent write-access
requests for this same file are honored. Thus, several
active read-access requests and one or more write-access
requests may be present for the same file. However, multiple
tasks simultaneously accessing the file for write operations
are subject to certain restrictions as detailed in point 2.

2. While FCS allows concurrent write-access requests through the
use of the OPNS$W, OPNS$M, OPNS$U, and OPNS$A macro, the
synchronization of access to the file is the responsibility
of the user tasks themselves. To avoid the retrieval or
storage of inconsistent data, each such task must implement
and use some user-defined mechanism that assures that the
file is accessed in a serial fashion.

3. When the OPEN$R macro call is issued, read access to the file
is granted, provided that no write-access requests for that
file are active. (The OPEN$R macro call does not permit
concurrent write access to the file while it is being read.)

Note from the above that readers of a shared file should be aware that
the file may yield inconsistent data from request to request if that
file is also being written.

Shared access during reading does not necessarily imply the presence
of read requests from several separate tasks. The same task, for
example, may open the same file using different logical unit numbers.

1.9 FILE DESCRIPTOR BLOCK (FOB)

The file descriptor block (FDB) contains information used by FCS in
opening and processing files. One FDB is required for each file that
is to be opened simultaneously by the user program. The user
initializes some portions of the FDB with assembly-time or run-time
macro calls, and FCS maintains other portions. Each FDB has five
sections that contain user or system-initialized information:

• File-Attribute Section;

• Record- or Block-Access Section;

• File-Open Section;

• Block-Buffer Section; and the

• Filename Block Portion of the FDB.

The information stored in the FDB depends upon the characteristics of
the file to be processed. The FDB and the macro calls that cause
values to be stored in this structure are described in detail in
Section 2.2. Appendix A describes in detail the format and the
content of the FDB.

1-9

FILE CONTROL SERVICES

1.10 DATASET DESCRIPTOR AND DEFAULT FILENAME BLOCK

Normally, either a dataset descriptor or a default filename block is
specified for each file the user intends to open. These data
structures provide pes wIth the file specifications required for
opening a file. Although either one or the other is usually defined,
both can be specified for the same file. The dataset descriptor and
the default filename block are summarized below and described in
detail in Sections 2.4.1 and 2.4.2, respectively.

When a file is being opened using information already present in the
filename block, neither the dataset descriptor nor the default
filename block is accessed by FCS for required file information. This
method of file access, which is termed "opening a file by file 10," is
an efficient means of opening files. Section 2.5 describes this
process in detail.

1.11 KEY TERMS USED THROUGHOUT THIS MANUAL

Listed below are terms used throughout this manual that have specific
meanings in the context of FCS operations.

FILE DESCRIPTOR BLOCK (FOB) The tabular data structure that
provides FCS with information needed to perform I/O operations on
a file. The space for this data structure is allocated in the
user program by issuing the FDBDF$ macro call (see Section
2.2.1.1). Each file to be opened simultaneously by the user
program must have an associated FOB. Portions of the FOB are
user-defined and others are maintained by FCS. Assembly-time or
run-time macro calls are provided for user initialization o~ the
FOB. The format and content of the FOB are detailed in Appendix
A.

FILENAME BLOCK -- The portion of the FOB that contains the various
elements of a file specification (i.e., directory, filename, file
type, file version number, device, and unit) for use by the FCS
file-processing routines. Initially, as a file is opened, FCS
fills in the filename block with user-specified information taken
from the dataset descriptor and/or the default filename block
(see below). The methods of creating file specifications for
initializing the filename block are described in detail in
Section 2.4; the format and content of the filename block itself
are described in Appendix B.

DEFAULT FILENAME BLOCK The default filename block, an area
allocated within the user program by issuing the NMBLK$ macro
call (see Section 2.4.2), contains the various elements of a file
specification. The default filename block is a user-created
structure, whereas the filename block within the FOB is
maintained by FCS. The user creates the default filename block
to supply file specifications to FCS that are not otherwise
available through the dataset descriptor (see below). In other
words, from information defined in the default filename block,
FCS creates a parallel structure in the FOB that serves as the
execution-time repository for information that FCS requires in
opening and operating on files.

Thus, the terms "default filename block" and "filename
refer to separate and distinct data structures.
distinctions should be kept clearly in mind whenever these
appear in the manual. Though created and used differently,
areas are structurally identical.

1-10

block"
These
terms
these

FILE CONTROL SERVICES

DATASET DESCRIPTOR -- The dataset descriptor is a 6-word block in the
user program containing the sizes and the addresses of ASCII data
strings that together constitute a file specification (see
below). This data structure, which is also created by the user,
is described in detail in Section 2.4.1. Unless the filename
block in the FDB has been saved, dataset-descriptor and/or
default-filename-block information must be provided to FCS before
the specified file can be opened.

DATASET-DESCRIPTOR POINTER -- An address value that points to the
6-word dataset descriptor within the user program. This address
value is stored in the FDB, allowing FCS to access a user-created
file specification in the dataset descriptor.

FILE SPECIFICATION -- Any system or user program having a requirement
to refer to files does so through a file specification. Such
information names a file and allows it to be explicitly
referenced by any task. A file specification, whether for input
or output, contains specific information that must be made
available to FCS before that file can be opened. The term "file
specifier" is sometimes used as a synonym for "file
specification."

FILE STORAGE REGION (FSR) -- The file storage region (see Section 1.2)
is an area of memory reserved by the user for use in record I/O
operations. This area is allocated by issuing the FSRSZ$ macro
call in the user program (see Section 2.6.1).

1.12 SYSTEM CHARACTERISTICS

Listed below are the important characteristics of FCS that should be
borne in mind in using its I/O facilities:

1. READ$/WRITE$ operations are asynchronous; the user is
responsible for coordinating all block I/O activity. In
contrast, GET$/PUT$ operations are synchronized entirely by
FCS; control is not returned to the user program until the
requested GET$/PUT$ operation is completed.

2. FCS macro calls save and restore all registers, with the
following exceptions:

a. The file-processing macro calls (see Chapter 3) place the
FDB address in RD.

b. Many of the file-control routines (see Chapter 4) return
requested information in the general registers.

1-11

FILE CONTROL SERVICES

3. The FDBDF$ macro call (see Section 2.2.1.1) is issued to
allocate space for an FOB. Once the FOB is allocated,
necessary information can be placed in this data construct
through any logical combination of assembly-time and/or
run-time macro calls (see Sections 2.2.1 and 2.2.2,
respectively) . Certain information must be present in the
FOB before FCS can open and operate on a specified file.

4. For each assembly-time FDB initalization macro call, a
corresponding run-time macro call is provided that supplies
identical information. Although both sets of macro calls
(see Table 2-1) place the same information in the FOB, each
set does so in a different way. The assembly-time calls
generate .BYTE or .WORD directives that create specific data,
while the run-time calls generate MOV or MOVB instructions
that place desired information in the FOB during program
execution.

5. If an error condition is detected during any of the
file-processing operations described in Chapter 3, or during
the execution of several of the file-control routines (see
Section 4.1), the C-bit (carry condition code) in the
Processor Status Word is set, and an error indicator is
returned to FOB offset location F.ERR.

If the address of a user-coded error-handling routine is
specified as a parameter in any of the file-processing macro
calls, a JSR PC instruction to the error-handling routine is
generated. The routine is then executed if the C-bit in the
Processor Status Word is set.

1-12

CHAPTER 2

PREPARING FOR I/O

The MACRO-II programmer must establish the proper data base and
working storage areas within the particular program in order to
perform input/output operations. The following actions must be
performed:

• Define a file descriptor block (FDB) for each file that is to
be opened simultaneously by the user program (see Section 2.2).

• Define a dataset descriptor and/or a default filename block
(see Section 2.4.1 or 2.4.2, respectively) if the user intends
to access these structures to provide required file
specifications to FCS.

• Establish a file storage region (FSR) within the program if the
user intends to employ record I/O in processing files (see
Section 2.6). (The initialization procedures for FORTRAN
programs are described in detail in the FORTRAN-IV User's
Guide.)

This chapter describes the macro calls that must be invoked to provide
the necessary file-processing information for the FDB. Such
information is placed in the FDB in one of three ways:

1. By the assembly-time FDB initialization macro calls (see
Section 2.2.1).

2. By the run-time FDB initialization macro calls (see Section
2.2.2) .

3. By the file-processing macro calls (see Chapter 3).

Data supplied during the assembly of the source program establish the
initial values in the FDB. Data supplied at run-time can either
initialize additional portions of the FDB or change values established
at assembly-time. Likewise, the data supplied through the
file-processing macro calls can either initialize portions of the FDB
or change previously initialized values.

Table 2-1 lists the macro calls that generate FDB information.

2-1

PREPARING FOR I/O

Table 2-1
Macro Calls Generating FDB Information

Assembly-Time FDB Run-Time FDB File-Processing
Macro Calls Macro Calls Macro Calls

FDBDF$ (Required) FDAT$R OPENS (All Variations)
FDAT$A FDRC$R CLOSES
FDRC$A FDBK$R GET$ (All Variations)
FDBK$A FDOP$R PUT$ (All Variations)
FDOP$A FDBF$R READ$
FDBF$A WRITE$

DELET$
WAIT$

2.1 .MCALL DIRECTIVE - LISTING NAMES OF REQUIRED MACRO DEFINITIONS

All the assembly-time, run-time, and file-processing macro calls (see
Table 2-1 above) that the user intends to issue in a program must
first be listed as arguments in an .MCALL directive. So doing allows
the required macro definitions to be read in from the system macro
library during assembly.

The .MCALL directive and associated arguments must appear in the
program prior to the issuance of any macro call in the execution code
of the program. If the list of macro names is lengthy, several .MCALL
directives, each appearing on a separate source line, must be
specified to accommodate the entire list of macro names. The number
of such names that may appear in any given .MCALL statement is limited
only by the availability of space within that 80-byte source line.

The .MCALL directive takes the following general form:

.MCALL argl,arg2, ... ,argn

where: argl,
etc.

represents a list of symbolic names identifying
the macro definitions required in the assembly of
the user program. If more than one source line is
required to list the names of all desired macros,
each additional line so required must begin with
an .MCALL directive.

For clarity of functional use, the assembly-time,
run-time, and file-processing macro names may be
listed in each of three separate . MCALL
statements. The macro names may also be listed
alphabetically for readability, or they may be
intermixed, irrespective of functional use. All
these options are matters of preference and have
no effect whatever on the retrieval of macro
definitions from the system macro library.

For those users planning to invoke the command
line processing capabilities of the Get Command
Line (GCML) routine and the Command String
Interpreter (CSI), all the names of the associated
macros must also be listed as arguments in an
.MCALL directive. GCML and CSI, ordinarily
employed in system or application programs for
convenience in dynamically processing file
specifications, are described in detail in Chapter
6.

2-2

PREPARING FOR I/O

The .MCALL directive is described in detail in the IAS/RSX-ll MACRO-II
Reference Manual. The sample programs in Appendix D also illustrate
the use of the .MCALL directive. Note that these directives appear as
the first statements in the preparatory coding of these programs.

The object routines described in Chapter 4 should not be confused with
the macro definitions available from the system macro library. The
file-control routines, constituting a body of object modules, are
linked into the user program at task-build time from the system object
library ([l,l]SYSLIB.OLB). The reader should consult Section 4.1 for
a description of these routines.

The following statements are representative of the use of the .MCALL
directive:

.MCALL FDBDF$,FDAT$A,FDRC$A,FDOP$A,NMBLK$,FSRSZ$,FINIT$

.MCALL OPEN$R,OPEN$W,GET$,PUT$,CLOSE$

2.2 FILE DESCRIPTOR BLOCK (FOB)

THE FILE DESCRIPTOR BLOCK (FDB) is the data structure that provides
the information needed by FCS for all file I/O operations. Two sets
of macro calls are available for FDB initialization: one set is used
for assembly-time initialization (see next section), and the other set
is used for run-time initialization (see Section 2.2.2). Run-time
macros are used to supplement and/or override information specified
during assembly. Appendixes A and B illustrate all the sections of
the FDB in detail.

2.2.1 Assembly-Time FOB Initialization Macros

Assembly-time initialization requires that the FDBDF$ macro call be
issued (see Section 2.2.1.1) to allocate space for and to define the
beginning address of the FOB. Additional macro calls can then be
issued to establish other required information in this structure. The
assembly-time macros that accomplish these functions are described in
the following sections. These macro calls take the general form shown
below:

mcnam$A pl,p2, ... ,pn

where: mcnam$A

pl,p2,
•.. ,pn

represents the symbolic name of the macro.

represents the string of initialization parameters
associated with the specified macro. A parameter
may be omitted from the string by leaving its
field between delimiting commas null. Assume, for
example, that a macro call may take the following
parameters:

FDOP$A 2,DSPT,DFNB

Assume further that the second parameter field is
to be coded as a null specification. In this
case, the statement is coded as follows:

FDOP$A 2"DFNB

2-3

PREPARING FOR I/O

Also, a trailing comma need not be inserted to
reflect the omission of a parameter beyond the
last explicit specification. For example, the
macro call

FDOP$A 2,DSPT,DFNB

need not be specified as

FDOP$A 2,DSPT,

if the last parameter (DFNB) is omitted. Rather,
such a macro call is specified as follows:

FDOP$A 2,DSPT

If any parameter is not specified, i.e., if any field in the macro
call contains a null specification, the corresponding cell in the FDB
is not initialized and thus remains O.

Multiple values may be specified in a parameter field of certain macro
calls. Such values are indicated by placing an exclamation point (1)
between the values, indicating a logical OR operation to the MACRO-II
assembler. The use of multiple values in this manner is pointed out
in this manual where such specifications apply.

Throughout the descriptions of the assembly-time macros in the
following sections and elsewhere in this manual, symbols of the form
F.xxx or F.xxxx are referenced (e.g., F.RTYP). These symbols are
defined as offsets from the beginning address of the FDB, allowing
specific locations within the FDB to be referenced. Thus, the
programmer can reference or modify information within the FDB without
having to calculate word or byte offsets to specific locations.

Using such symbols in system/user software has the additional
advantage of permitting the relative position of cells within the FDB
to be changed (in a subsequent release, for example) without affecting
the user's current programs or the coding style employed in developing
new programs.

2.2.1.1 FDBDF$ - Allocate File Descriptor Block (FOB) - The FDBDF$
macro call is specified in a MACRO-II program to allocate space within
the program for a file descriptor block (FDB). This macro call must
be specified in the source program once for each input or output file
to be opened simultaneously by the user program in the course of
execution. Any associated assembly-time macro calls (see Sections
2.2.1.2 through 2.2.1.6) must then be specified immediately following
the FDBDF$ macro if the user desires to accomplish the initialization
of certain portions of this FDB during assembly.

The FDB allocation macro takes the following form:

label: FDBDF$

where: label represents a user-specified symbol that names this
particular FDB and defines its beginning address.
This label has particular significance in all I/O
operations that require access to the data
structure allocated through this macro call. FCS
accesses the fields within the FDB relative to the
address represented by this symbol.

2-4

PREPARING FOR I/O

The following examples are representative of FDBDF$ macro calls as
they might appear in a source program:

FDBOUT: FDBDF$

FDBIN: FDBDF$

iALLOCATES SPACE FOR AN FDB NAMED
i"FDBOUT II AND ESTABLISHES THE
iBEGINNING ADDRESS OF THE FDB.

iALLOCATES SPACE FOR AN FDB NAMED
i"FDBIN" AND ESTABLISHES THE
iBEGINNING ADDRESS OF THE FDB.

As noted earlier, the source program
logically similar to those above
simultaneously by the user program.
different files, as long as the file
before the next file is opened. The
must be defined for every file to be

must embody one FDBDF$ macro call
for each file to be accessed

FDB's can be reused for many
currently using the FDB is closed
only requirement is that an FDB
opened simultaneously.

2.2.1.2 FDAT$A - Initialize File Attribute Section of FDB - The
FDAT$A macro call is used to initialize the file attribute section of
the FDB when a new output file is to be created. If the file to be
processed already exists, the FDAT$A initialization macro is not
required, since FCS obtains the necessary information from the first
14 bytes of the user file attribute section of the specified file's
header block (see Appendix F). This macro call has the following
format:

where:

FDAT$A rtyp,ratt,rsiz,cntg,aloc

rtyp

ratt

represents a symbolic value that defines the type
of records to be built as the new file is created.
One of three values must be specified, as follows:

R.FIX - Indicates that fixed-length records are to
be written in creating the file.

R.VAR - Indicates that variable-length records are
to be written in creating the file.

R.SEQ - Indicates sequenced records are to be
written in creating the file.

This parameter initializes FDB offset location
F.RTYP. Since the symbols R.FIX, R.VAR, and R.SEQ
initialize the same location in the FDB, these
values are mutually exclusive.

represents symbolic values that may be specified
to define the attributes of the records as the new
file is created. The following symbolic values
may be specified, as appropriate, to define the
desired record attributes:

FD.FTN - Indicates that the first byte in each
record will contain a FORTRAN carriage-control
character.

FD.CR - Indicates that the record is to be
preceded by a <LF> character and followed by a
<CR> character when the record is written to a
carriage-control device, e.g., a line printer or a
terminal.

2-5

rsiz

cntg

PREPARING FOR I/O

FO.BLK - Indicates that records are not allowed to
cross block boundaries.

These parameters initialize the record-attribute
byte (offset location F.RATT) in the FOB. The
values FO.FTN and FO.CR are mutually exclusive and
must not be specified together. Apart from this
restriction, the combination (logical OR) of
multiple parameters specified in this field must
be separated by an exclamation point (e.g.,
FO.CR!FO.BLK) .

represents a numeric value that defines the size
(in bytes) of fixed-length records to be written
to the file. This value, which initializes FOB
offset location F.RSIZ, need not be specified if
R.VAR has been specified as the record type
parameter above (for variable-length records). If
R.VAR or R.SEQ is specified, FCS maintains a value
in FOB offset location F.RSIZ that defines the
size (in bytes) of the largest record currently
written to the file. Thus, whenever an existing
file containing variable-length records is opened,
the value in F.RSIZ defines the size of the
largest record within that file. By examining the
value in this cell, a program can dynamically
allocate record buffers for its open files.

represents a signed numeric value that defines the
number of blocks that are allocated for the file
as it is created. The signed values have the
following significance:

positive Value - Indicates that the specified
number of blocks is to be allocated contiguously
at file-create time, and further that the file is
to be contiguous.

Negative Value - Indicates that the two's
complement of the specified number of blocks is to
be allocated at file-create time, not necessarily
contiguously, and, further, that the file is to be
noncontiguous.

This parameter, which has 15 bits of magnitude
(plus a sign bit), initializes FOB offset location
F.CNTG.

If the user has a firm idea as to the desired
length of the file, it is more efficient to
allocate the required number of blocks at
file-create time through this parameter, rather
than requiring FCS to extend the file, if
necessary, during the writing of the file (see
aloc parameter below).

If this parameter is not specified, then the file
is created as an empty file, i.e., no space is
allocated within the file as it is created.

2-6

aloc

PREPARING FOR I/O

Issuing the CLOSE$ macro call at the completion of
file processing resets the value in F.CNTG to O.
Thus, the usual procedure is to initialize this
location at run-time just before opening the file.
This action is especially necessary if the FOB is
to be re-used.

represents a signed numeric value that defines the
number of blocks by which the file is extended if
FCS determines that file extension is necessary
during the writing of the file. When the end of
allocated space in the file is reached during
writing, the signed value provided through this
parameter causes file extension to occur, as
follows:

Positive Value - Indicates that the specified
number of blocks is to be allocated contiguously
as additional space within the file, and further
that the file is to be contiguous.

Negative Value - Indicates that the two's
complement of the specified number of blocks is to
be allocated noncontiguously as additional space
within the file, and further that the file is to
be noncontiguous.

This parameter, which also has 15 bits of
magnitude (plus a sign bit), initializes FOB
offset location F.ALOC. If this optional
parameter is not specified, file extension occurs
as follows:

1. If the number of virtual blocks yet to be
written is greater than 1, the file is
extended by the exact number of blocks
required to complete the writing of the file.

2. If only 1 additional block is required to
complete the writing of the file, the file is
extended in accordance with the volume's
default extend value.

In lAS, RSX-llD, and RSX-llM, the volume default extend size is
established through the INITIALIZE, INITVOLUME, or MOUNT command
respectively. The volume default extend size cannot be established at
the FCS level; this value must be established when the volume is
initially mounted.

The following statement is representative of an FDAT$A macro call.
This statement initializes the FOB in preparation for the creation of
a new file containing fixed-length, 80-byte records that will be
allowed to cross block boundaries.

FDAT$A R.FIX,,80.

In the above example, the record attribute (ratt) parameter has been
omitted, as indicated by the second comma (,) in the param€~ter string.
Also, the cntg and aloc parameters have been omitted. Their omission,
however, occurs following the last explicit specification, and their
absence need not be indicated by trailing commas in the parameter
string. Since the aloc parameter has been omitted, file extension (if
it becomes necessary) is accomplished in accordance with the current
default extend size in effect for the associated volume.

2-7

PREPARING FOR I/O

If more than one record attribute is specified in the ratt parameter
field, such specifications must be separated by an exclamation point
(1), as shown below:

FDAT$A R.VAR,FD.FTN1FD.BLK

The above macro call enables a file of variable-length records to be
created. The records will contain FORTRAN vertical~formatting
information for carriage-control devices; the records will not be
allowed to cross block boundaries.

2.2.1.3 FDRC$A - Initialize Record-Access Section of FDB - The FDRC$A
macro call is used to initialize the record access section of the FDB
and to indicate whether record or block I/O operations are to be used
in processing the associated file.

If record I/O operations (GET$ and PUTS macro calls) are LO be used,
the FDRC$A or the FDRC$R macro call (see Section 2.2.2) establishes
the FDB information necessary for record-oriented I/O. If block I/O
operations (READ$ and WRITE$ macro calls) are to be used, however, the
FDBK$A macro call (see Section 2.2.1.4) or the FDBK$R macro call (see
Section 2.2.2) must also be specified in order to establish other
values in the FDB required for block I/O. In this case, portions of
the record-access section of the FDB are physically overlaid with
parameters from the FDBK$A/FDBK$R macro call.

Prior to issuing the OPEN$x macro call to initiate file operations,
the FDB must be appropriately initialized to indicate whether record
or block I/O operations are to be used in processing the associated
file.

The FDRC$A macro call takes the following format:

FDRC$A racc,urba,urbs

where: racc specifies which variation of block
is to be used to process the file.
initializes the record-access
location F.RACC) in the FDB.
below applies only for block I/O
operations; all remaining values
record I/O (GET$/PUT$) operations:

or record I/O
This parameter
byte (offset

The first value
(READ$/WRITE$)

are specific to

FD.RWM - Indicates that READ$/WRITE$ (block I/O)
operations are to be used in processing the file.
If this value is not specified, GET$/PUT$ (record
I/O) operations are used by default.

Specifying FD.RWM necessitates issuing an FDBK$A
or an FDBK$R macro call in the program to
initialize other offsets in the block-access
section of the FDB. Note also that the READ$ or
WRITE$ macro call allows the complete
specification of all the parameters required for
block I/O operations.

FD.RAN - Indicates that random-access mode is to
be used in processing the file. If this value is
not specified, sequential-access mode is used by
default. Refer to Section 1.5 for a description
of random-access mode.

2-8

urba

urbs

PREPARING FOR I/O

FD.PLC - Indicates that locate mode is to be used
in processing the file. If this value is not
specified, move mode is used by default.

FD.INS - This value, which applies only for
sequential files (and therefore cannot be
specified jointly with the FD.RAN parameter
above), indicates that a PUT$ operation performed
within the body of the file shall not truncate the
file.

Should the user wish to perform a PUT$ operation
within the body of a file, the .POINT routine
described in Section 4.10.1 may be called. This
routine, which permits a limited degree of random
access to a file, positions the file to a
user-specified byte within a virtual block in
preparation for the PUT$ operation.

If FD.INS is not specified, a PUT$ operation
within the file truncates the file at the point of
insertion, i.e., the PUT$ operation moves the
logical end-of-file (EOF) to a point just beyond
the inserted record. However, no deallocation of
blocks within the file occurs.

Regardless of the setting of the FD.INS bit, a
PUT$ operation that is in fact beyond the current
logical end of the file resets the logical end of
the file to a point just beyond the inserted
record.

represents the symbolic address of a user record
buffer to be used for GET$ operations in move and
locate modes, and for PUT$ operations in locate
mode. This parameter initializes FDB offset
location F.URBD+2. This parameter is specified
only for record I/O operations.

represents a numeric value that defines the size
(in bytes) of the user record buffer to be
employed for GET$ operations in move and locate
modes, and for PUT$ operations in locate mode.
This parameter initializes FDB offset location
F.URBD. This parameter is specified only for
record I/O operations.

The user allocates and labels a record buffer
a .BLKB or .BLKW directive. The address and
then passed to FCS as the urba and the urbs
example, a user record buffer may be defined
is logically equivalent to that shown below:

in a program by issuing
the size of this area is
parameters above. For
through a statement that

RECBUF: .BLKB 82.

where RECBUF is the address of the buffer and 82(10) is its size (in
bytes) •

Under certain conditions, the user need not allocate a record buffer
or specify the buffer descriptors (urba and urbs) for GET$ or PUT$
operations. These conditions are described in detail in Sections
3.9.2 and 3.12.2, respectively.

2-9

PREPARING FOR I/O

The following statement is representative of an FDRC$A macro call that
is issued for a file that may be accessed in random mode:

FDRC$A FD.RAN,BUFl,160.

The address of the user record buffer is specified through the symbol
BUFl, and the size of the user record buffer (in bytes) is defined by
the numeric value 160(10).

If more than one value is specified in the record-access (racc) field,
multiple values must be separated by an exclamation point (1), as
shown below:

FDRC$A FD.RAN!FD.PLC,BUFl,160.

In addition to the functions described for the first example, this
example specifies that locate mode is to be used in processing the
associated file. Note that the multiple parameters specified in the
first field are separated by an exclamation point (!).

2.2.1.4 FDBK$A - Initialize Block-Access Section of FOB - The FDBK$A
macro call is used to initialize the block-access section of the FDB
when block I/O operations (READ$ and WRITE$ macro calls) are to be
used for file processing. Initializing the FDB with this macro call
allows the user to read or write virtual blocks of data within a file.

As noted in the preceding section, issuing the FDBK$A macro call
implies that the FDRC$A macro call has also been specified, since it
is through the FD.RWM parameter of the FDRC$A macro call that the
initial declaration of block I/O operations is accomplished. Thus,
for block I/O operations, the FDRC$A macro call must be specified, as
well as anyone of the following macro calls, to appropriately
initialize the block-access section of the FDB: FDBK$A, FDBK$R,
READ$, or WRITE$.

Issuing the FDBK$A macro call causes certain portions of the
record-access section of the FDB to be overlaid with parameters
necessary for block I/O operations. Thus, the terms "record-access
section" and "block-access section" refer to a shared physical area of
the FDB that is functional for either record or block I/O operations.

When block I/O operations are desired, the FDB must be properly
initialized through the FDBK$A or the FDBK$R macro call prior to
issuing a generalized OPEN$x macro call that references the FDB. If
record I/O operations are to be employed, the FDBK$A or the FDBK$R
macro call must not be issued.

The FDBK$A macro call is specified in the following format:

FDBK$A bkda,bkds,bkvb,bkef,bkst,bkdn

where: bkda

bkds

represents the symbolic address of an area in user
memory space to be employed as a buffer for block
I/O operations. This parameter initializes FDB
offset location F.BKDS+2.

represents a numeric value that specifies the size
(in bytes) of the block to be read or written when
a block I/O request (READ$ or WRITE$ macro call)
is issued. This parameter initializes FDB offset
location F.BKDS. The maximum block size that can
be specified through this parameter is equal to 64
virtual blocks, i.e., 32767(10) bytes.

2-10

bkvb

bkef

bkst

PREPARING FOR I/O

represents a dummy parameter for compatibility
with the FDBK$R macro call. The bkvb parameter is
not specified in the FDBK$A macro call for the
reasons stated in Item 4 of Section 2.2.2.1. In
short, assembly-time initialization of FDB offset
locations F.BKVB+2 and F.BKVB with the virtual
block number is meaningless, since any version of
the generalized OPEN$x macro call resets the
virtual-block number in these cells to 1 as the
file is opened. Therefore, these cells can be
initialized only at run-time through either the
FDBK$R macro call (see Section 2.2.2) or the
I/O-initiating READ$ and WRITE$ macro calls (see
Sections 3.15 and 3.16, respectively).

This dummy parameter need be reflected as a null
specification (with a comma) in the parameter
string only in the event that an explicit
parameter follows. This null specification is
required in order to maintain the proper
pO$itionality of any remaining field(s) in the
parameter string.

represents a numeric value that specifies an event
flag to be used during READ$/WRITE$ operations to
indicate the completion of a block I/O transfer.
This parameter initializes FDB offset location
F.BKEF; if not specified, event flag 32(10) is
used by default.

The function of an event flag is described in
further detail in Section 2.8.1.

represents the symbolic address of a 2-word I/O
status block in the user program. If specified,
this optional parameter initializes FDB offset
location F.BKST.

The I/O status block, if it is to be used, must be
defined and appropriately labeled at
assembly-time. Then, if the bkst parameter is
specified, information is returned by the system
to the I/O status block at the completion of the
block I/O transfer. This information reflects the
status of the requested operation. If this
parameter is not specified, no information is
returned to the I/O status block.

If an error occurs during a READ$ or WRITE$
operation that would normally be reported as a
negative value in the first byte of the I/O status
block, the error is not reported unless an I/O
status block address is specified. Thus, the user
is advised to specify this parameter to allow the
return of block I/O status information and to
facilitate normal error reporting.

The creation and function of the I/O status block
are described in detail in Section 2.8.2.

2-11

bkdn

PREPARING FOR I/O

represents the symbolic address of an optional
user-coded AST service routine. If present, this
parameter causes the AST service routine to be
initiated at the specified address upon completion
of block I/O; if not specified, no AST trap
occurs. This parameter initializes FOB offset
location F.BKON.

Considerations relevqnt to the use of an AST
service routine are presented in Section 2.8.3.

The following example shows an FOBK$A macro call that utilizes all
available parameter fields for initializing the block-access section
of the FOB:

FOBK$A BKBUF,240.,,20.,ISTAT,ASTAOR

In this macro call, the symbol BKBUF identifies a block I/O buffer
reserved in the user program that will accommodate a 240(10)-byte
block. The virtual-block number is null (for the reasons stated above
in the description of this parameter), and the event flag to be set
upon block I/O completion is 20(10). Finally, the symbol ISTAT
specifies the address of the I/O status block, and the symbol ASTAOR
specifies the entry-point address of the AST service routine.

2.2.1.5 FOOP$A - Initialize File-Open Section of FOB - The FOOP$A
macro call is used to initialize the file-open section of the FOB. In
addition to a logical unit number, either a dataset-descriptor pointer
and/or a default filename block address is normally specified for each
file that is to be opened. The latter two parameters provide FCS with
the linkage necessary to retrieve file specifications from these
user-created data structures in the program.

Although both a dataset-descriptor pointer (dspt) and the address of a
default filename block (dfnb) may be specified for a given file, one
or the other must be present in the FOB before that file can be
opened. If, however, certain information is already present in the
filename block as the result of prior program action, neither the
dataset descriptor nor the default filename block is accessed by FCS,
and the file is opened through a process called "opening a file by
file 10." This process, which is an efficient method of opening a
file, is described in detail in Section 2.5.

The dspt and dfnb parameters represent address values which point to
user-defined data structures in the program. These data structures,
which are described in detail in Section 2.4, provide file
specifications to the FCS file-processing routines.

The FOOP$A macro call takes the following form:

FOOP$A lun,dspt,dfnb,facc,actl

where: lun represents a numeric value that specifies a
logical unit number. This parameter initializes
FOB offset location F.LUN. All I/O operations
performed in conjunction with this FOB are done
through the specified logical unit number (LUN).
Every active FOB must have a unique LUN.

2-12

dspt

dfnb

facc

PREPARING FOR I/O

The logical unit number specified through this
parameter may be any value from 1 through the
largest value specified to the Task Builder
through the UNITS option. This option specifies
the number of logical units to be used by the task
(see the Task Builder Reference Manual of the host
operating system).

represents the symbolic address of a 6-word block
in the user program containing the dataset
descriptor. This user-defined data structure
consists of a 2-word device descriptor, a 2-word
directory descriptor, and a 2-word filename
descriptor, as outlined in Section 2.4.1.

The dspt parameter initializes FDB offset location
F.DSPT. This address value, called the
dataset-descriptor pointer, is the linkage address
through which FCS accesses the fields in the
dataset descriptor.

When the Command String Interpreter (CSI) is used
to process command-string input, a file
specification is returned to the calling program
in a format identical to that of the manually
created dataset descriptor. The use of CSI as a
dynamic command-line processor is described in
detail in Section 6.2.

represents the symbolic address of the default
filename block. This structure is allocated
within the user program through the NMBLK$ macro
call (see Section 2.4.2). When specified, the
dfnb parameter initializes FDB offset location
F.DFNB, allowing FCS to access the fields of the
default filename block in building the filename
block in the FDB.

Specifying the dfnb parameter in the FDOP$A (or
the FDOP$R) macro call assumes that the NMBLK$
macro call has been issued in the program.
Furthermore, the symbol specified as the dfnb
parameter in the FDOP$A (or the FDOP$R) macro call
must correspond exactly to the symbol specified in
the label field of the NMBLK$ macro call.

one, or any appropriate represents any
combination, of
indicating how
accessed:

the following symbolic values
the specified file is to be

FO.RD - Indicates that an existing file is to be
opened for reading only.

FO.WRT - Indicates that a new file is to be
created and opened for writing.

FO.APD - Indicates that an existing file is to be
opened for append.

FO.MFY - Indicates that an existing file is to be
opened for modification.

2-13

actl

PREPARING FOR I/O

FO.UPD - Indicates that an existing file is to be
opened for update and, if necessary, extertded.

FA.NSP - Indicates, in combination with FO.WRT
above, that an old file having the same file
specification is not be to superseded by the new
file. Rather, an error code is to be returned.

FA.TMP - Indicates, in combination with FO.WRT
above, that the created file is to be a temporary
~~,­
L~i~.

FA.SHR - Indicates that the file is to be opened
for shared access.

The facc parameter initializes FDB offset location
F.FACC. The symbolic values FO.xxx, described
above, represent the logical OR of bits in FDB
location F.FACC.

The information specified by this parameter can be
overridden by an OPENS macro call, as described in
Section 3.7. It is overridden by an OPEN$x macro
call.

represents a symbolic value that is used to
specify the following control information in FDB
location F.ACTL:

1. Magnetic tape position.

2. Whether a disk file that is opened for write
is to be locked if it is not properly closed,
e.g., the task terminates abnormally.

3. Number of retrieval pointers to allocate for a
disk file window.

Normallly, FCS supplies default values for F.ACTL.
However, if FA.ENB is specified in combination
with any of the symbolic values described below,
FCS uses the information in F.ACTL. FA.ENB must
be specified with the desired values to override
the defaults. The following are the defaults for
location F.ACTL.

For file creation, magnetic tapes are
positioned to the end of the volume set.

At file open and close, tapes are not rewound.

A disk file that is opened for write is locked
if it is not properly closed.

The volume default is used for the file
window.

The values listed below can be used in conjunction
with FA.ENB.

FA. pas - Is meaningful only for output files and
is specified to cause a magnetic tape to be
positioned just after the most recently closed
file for the creation of a new file. Any files

2-14

PREPARING FOR I/O

that exist after that point are lost. If rewind
is specified, it takes precedence over FA.POS,
thus causing the tape to be positioned just after
the VOLI label for file creation. See Section
5.2.3.

FA.RWD - Is specified to cause a magnetic tape to
be rewound when the file is opened or closed.

Examples of the use of FA.ENB with FA.POS and
FA.RWD are provided in Section 5.2.8.

FA.DLK - Is specified to cause a disk file not to
be locked if it is not properly closed.

The number of retrieval pointers for a file window
can be specified in the low-order byte of F.ACTL.
The system normally provides 7 retrieval pointers
automatically. Retrieval pointers are used to
point to contiguous blocks of the file on disk.
Access to fragmented files may be optimized by
increasing the number of retrieval pointers, i.e.,
by increasing the size of the window. Likewise,
additional memory can be freed by reducing the
number of pointers for files with little or no
fragmentation, e.g., contiguous files.

As noted, if neither the dspt nor the dfnb parameter is specified,
corresponding offset locations F.DSPT and F.DFNB contain O. In this
case, no file is currently associated with this FDB. Any attempt to
open a file with this FDB results in an open failure. Either offset
location F.DSPT or F.DFNB must be initialized with an appropriate
address value before a file can be opened using this FDB. Normally,
these cells are initialized at assembly-time through the FDOP$A macro
call; they may also be initialized at run-time through the FDOP$R or
the generalized OPEN$x macro call (see Section 3.1).

The following examples represent the FDOP$A macro call as it might
appear in a source program:

FDOP$A 1"DFNB

FDOP$A 2,OFDSPT

FDOP$A 2,OFDSPT,DFNB

FDOP$A 1,CSIBLK+C.DSDS

FDOP$A 1"DFNB"FA.ENB!16.

Note in the first example that the dataset-descriptor pointer (dspt)
is null, requiring that FCS rely on the run-time specification of the
dataset-descriptor pointer for the FDB or the use of the default
filename block for required file information.

In the second example, a dataset-descriptor pointer (OFDSPT) has been
specified, allowing FCS to access the fields in the dataset descriptor
for required file information.

The third example specifies both a dataset-descriptor pointer and a
default filename block address, causing FDB offset locations F.DSPT
and F.DFNB, respectively, to be initialized with the appropriate
values. In this case, FCS can access the dataset descriptor and/or
the default filename block for required file information. By

2-15

PREPARING FOR I/O

convention, FCS first seeks such information in the dataset
descriptor; if all the required information is not present in this
data structure, FCS attempts to obtain the missing information from
the default filename block.

The fourth example shows a macro call that takes as its second
parameter a symbolic value that causes FOB offset location F.DSPT to
be initialized with the address of the CSI dataset descriptor. This
structure is created in the CSI control block through the invocation
of the CSI$ macro call. All considerations relevant to the use of CSI
as a dynamic command line processor are presented in Section 6.2.

The last example illustrates the use of the parameter actl to increase
the number of retrieval pointers in the file window to 16. FA.ENB is
specified to cause the contents of F.ACTL, rather than the defaults,
to be used.

In all the examples above, the value specified as the first parameter
supplies the logical unit number to be used for all I/O operations
involving the associated file.

2.2.1.6 FDBF$A - Initialize Block-Buffer Section of FOB - The FDBF$A
macro call is used to initialize the block buffer section of the FOB
when record I/O operations (GET$ and PUTS macro calls) are to be used
for file processing. Initializing the FOB with this macro call allows
FCS to control the necessary blocking and deblocking of individual
records within a virtual block as an integral function of processing
the file.

The FDBF$A macro call takes the following format:

FDBF$A efn,ovbs,mbct,mbfg

where: efn

ovbs

represents a numeric value that specifies the
event flag to be used by FCS in synchronizing
record I/O operations. This numeric value
initializes FOB offset location F.EFN. This event
flag is used internally by FCS; it must not be
set, cleared, or tested by the user.

If this parameter is not specified, event flag
32(10) is used by default. A null specification
in this field is indicated by inserting a leading
comma in the parameter string.

represents a numeric value that specifies an FSR
block-buffer size (in bytes) which overrides the
standard block size for the particular device
associated with the file. This parameter is
specified only when a nonstandard block size is
desired. The numeric value so specified
initializes FOB offset location F.OVBS.

An override block size is allowed only for
record-oriented devices (such as line printers)
and sequential devices (such as magnetic tape
units) • For block-oriented devices, the override
block size is ignored. In lAS and RSX-IID, for
spooled output to a record-oriented device, a
buffer less than 512(10) bytes in length must not
be allocated.

2-16

mbct

PREPARING FOR I/O

Issuing the CLOSES macro call (see section 3.8)
resets offset location F.OVBS in the associated
FOB to O. Therefore, this location should
typically be initialized at run-time just before
opening the file, particularly if an OPEN$x/CLOSE$
sequence for the file is performed more than once.

The standard block size in effect for a particular
device may be obtained through an I/O-related
system directive called Get Lun Information
(GLUN$). This directive is described in detail in
the Executive Reference Manual of the host
operating system. The standard block size for a
device is established at system-generation time.

NOTE

For RSX-IIM, FCS uses single buffering and
simply ignores the multiple-buffering
parameters (mbct and mbfg) in the
FOBK$A/FOBK$R macro call. For lAS and
RSX-IIO, resident and nonresident
libraries support the multibuffered
version of FCS.

represents a numeric value that specifies the
multiple buffer count, i.e., the number of buffers
to be used by FCS in processing the associated
file. This parameter initializes FOB offset
location F.MBCT. If this value is greater than 1,
mUltiple buffering is effectively declared for
file processing. In this case, FCS employs either
read-ahead or write-behind operations, depending
on which of two symbolic values is specified as
the mbfg parameter (see below) .

If the mbct parameter is specified as null or 0,
FCS uses the default buffer count contained in
symbolic location .MBFCT in $$FSR2 (the program
section in the FSR containing impure data). This
cell normally contains a default buffer count of
1. If desired, this value can be modified, as
noted in the discussion following the mbfg
parameter below.

If, in specifying the FSRSZ$ macro call (see
Section 2.6.1), sufficient memory space has not
been allocated to accommodate the number of
buffers established by the mbct parameter, FCS
allocates as many buffers as can fit in the
available space. Insufficient space for at least
one buffer causes FCS to return an error code to
FOB offset location F.ERR.

The user can initialize the buffer count in F.MBCT
through either the FOBF$A or the FOBF$R macro
call. The buffer count so established is not
altered by FCS and, once set, need not be of
further concern to the user.

2-17

mbfg

PREPARING FOR I/O

represents a symbolic value that specifies the
type of multiple buffering to be employed in
processing the file. Either of two values may be
specified to initialize FDB offset location
F.MBFG:

FD.RAH - Indicates that read-ahead operations are
to be used in processing the file.

FD.WBH - Indicates that write-behind operations
are to be used in processing the file.

These parameters are mutually exclusive, i.e., one
or the other, but not both, may be specified.

Specifying this parameter assumes that the buffer
count established in the mbct parameter above is
greater than 1. If multiple buffering has thus
been declared, the omission of the mbfg parameter
causes FCS to use read-ahead operations by default
for all files opened using the OPEN$R macro call;
similarly, write-behind operations are used by
default for all files opened using other forms of
the OPEN$x macro call.

If these default buffering conventions are not
desired, the user can alter the value in the
F.MBFG dynamically at run-time. This is done by
issuing the FDBF$R macro call, which takes as the
mbfg parameter the appropriate control flag
(FD.RAH or FD.WBH). This action must be taken,
however, before opening the file.

Offset location F.MBFG in the FDB is reset to 0
each time the associated file is closed.

For lAS and RSX-IlD, the default buffer count can be changed, if
desired, by modifying a location in $$FSR2, the second of two program
sections comprising the FSR. A location defined as .MBFeT in $$FSR2
normally contains a default buffer count of 1. This default value may
be changed, as follows:

1. Apply a global patch to .MBFCT at task-build time to specify
the desired number of buffers.

2. For MACRO-II programs, use the EXTSCT Task Builder directive
(see Section 2.7.1) to allocate more space for the FSR block
buffers; for FORTRAN programs, use the ACTFIL Task Builder
directive (see Section 2.7.2) to allocate more space for the
FSR block buffers.

Because the above procedure alters the default buffer count for all
files to be processed by the user program, it may be desirable to
force single buffering for any specific file(s) that would not benefit
from multiple buffering. In such a case, the buffer count in F.MBCT
for a specific file may be set to 1 by issuing the following macro
call for the applicable FDB:

FDBF$A ,,1

2-18

PREPARING FOR I/O

The value 1 specifies the buffer count (mbct) for the desired file and
is entered into offset location F.MBCT in the applicable FOB. Note in
the example above that the event flag (efn) and the override block
buffer size (ovbs) parameters are null; these null values are used
for illustrative purposes only and should not be interpreted as
conditional specifications for establishing single-buffered
operations.

The following examples are representative of the FDBF$A macro call as
it might appear in a program:

FDBF$A 25.,,1

FDBF$A 25.,,2,FD.RAH

FDBF$A ,,2,FD.WBH

The first example specifies that event flag 25(10) is to be used in
synchronizing record I/O operations and that single buffering is to be
used in processing the file.

The second example also specifies event flag 25(10) for synchronizing
record I/O operations, and in addition establishes 2 as the multiple
buffer count. The buffers so specified are to be used for read-ahead
operations, as indicated by the final parameter.

The last example allows event flag 32(10) to be used by default for
synchronizing record I/O operations, and the two buffers specified in
this case are to be used for write-behind operations.

Note in all three examples that the second parameter, i.e., the
override block size parameter (ovbs), is null; thus, the standard
block size in effect for the device in question will be used for all
file I/O operations.

2.2.2 Run-Time FDB Initialization Macros

Although the FOB is allocated and can be initialized during program
assembly, the contents of specific sections of the FOB can also be
initialized or changed at run time by issuing any of the following
macro calls:

FDAT$R

FDRC$R

FDBK$R

FDOP$R

FDBF$R

- Initializes or alters the file-attribute section of
the FOB.

- Initializes or alters the record-access section of
the FOB.

- Initializes or alters the block-access section of the
FOB (see Item 4 below).

- Initializes or alters the file-open section of the
FOB.

- Initializes or alters the block-buffer section of the
FOB.

There are no default values for run-time FOB macros (except for the
FOB address). At run-time, the values currently in the FOB are used
unless they are explicitly overridden. For example, values stored in
the FOB at assembly time are used at run-time unless they are
overridden.

2-19

PREPARING FOR I/O

2.2.2.1 Run-Time FDB Macro-Call Exceptions - The format and the
parameters of the run-time FDB initialization macros are identical to
the assembly-time macros described earlier, except as noted below:

1. An R rather than an A must appear as the last character in
the run-time symbolic macro name.

2. The first parameter in all run-time macro calls must be the
address of the FDB associated with the file to be processed.
All other parameters in the run-time macro calls are
identical to tnose described in Sections 2.2.1.2 through
2.2.1.6 for the assembly-time macro calls, except as noted in
Items 3 and 4 below.

3. The parameters in the run-time macro calls must be valid
MACRO-II source-operand expressions. These parameters may be
address values or literal values; they may also represent
the contents of registers or memory locations. In short, any
value that is a valid source operand in a MOV or MOVB
instruction may be specified in a run-time macro call. In
this regard, the following conventions apply:

a. If the parameter is an address value or a literal value
that is to be placed in tqe FDB, i.e., if the parameter
itself is to be taken as an argument, it must be preceded
by the number sign (#). This symbol is the immediate
expression indicator for MACRO-II programs, causing the
associated argument to be taken literally in initializing
the appropriate cell in the FDB. Such literal values may
be specified as follows:

FDOP$R #FDBADR,#l,#DSPT,#DFNB

b. If the parameter is the address of a location containing
an argument that is to be placed in the FDB, the
parameter must not be preceded by the number sign (#).
Such a parameter may be specified as follows:

ONE: . WORD 1

FDOP$R #FDBADR,ONE,#DSPT,#DFNB

where ONE represents the symbolic address of a location
containing the desired initializing value.

c. Also, if the parameter is a register specifier (e.g.,
RO), the parameter must not be preceded by the number
sign (#). Register specifiers are defined MACRO-II
symbols and are valid expressions in any context.

Thus, in contrast, parameters specified in assembly-time
macro calls are used as arguments in generating data in .WORD
or .BYTE directives f while parameters specified in run-time
macro calls are used as arguments in MOV and MOVB machine
instructions.

4. As noted in the description of the FDBK$A macro call in
Section 2.2.1.4, assembly-time initialization of the FDB with
the virtual-block number is meaningless, since issuing the
OPEN$x macro call to prepare a file for processing
automatically resets the virtual-block number in the FDB to
1. For this reason, the virtual-block number can be
specified only at run-time after the file has been opened.

2-20

PREPARING FOR I/O

This may be accomplished by issuing either the FDBK$R macro
call or the I/O-initiating READ$/WRITE$ macro call. In all
three cases, the relevant field for defining the virtual
block number is the bkvb parameter. The READ$ and WRITE$
macro calls are described in detail in Sections 3.15 and
3.16, respectively.

At assembly-time, the user must reserve and label a 2-word
block in the program which is to be used for temporarily
storing the virtual-block number appropriate for intended
block I/O operations. Since the user is free to manipulate
the contents of these two locations at will, any
virtual-block number consistent with intended block I/O
operations may be defined. By specifying the symbolic
address (i.e., the label) of this field as the bkvb parameter
in the selected run-time macro call, the virtual-block number
is made available to FCS.

In preparing for block I/O operations, the following general
procedures must be performed:

a. At assembly-time, reserve a 2-word block in the user
program through a statement that is logically equivalent
to the following:

VBNADR: .BLKW 2

The label VBNADR names this 2-word block and defines its
address. This symbol is used subsequently as the bkvb
parameter in the selected run-time macro call for
initializing the FDB.

b. At run-time, load this field with the desired
virtual-block number. This operation may be accomplished
through statements logically equivalent to those shown
below:

CLR VBNADR
MOV #10400,VBNADR+2

Note that the first word of the block is cleared. The
MOV instruction then loads the second (low-order) word of
the block with a numeric value. This value constitutes
the 16 least significant bits of the virtual block
number.

If the desired virtual-block number cannot be completely
expressed within 16 bits, the remaining portion of the
virtual-block number must be stored in the first
(high-orde~) word of the block. This may be accomplished
through statements logically equivalent to the following:

MOV #l,VBNADR
MOV #10400,VBNADR+2

As a result of these two instructions, 31 bits of value
are defined in this 2-word block. The first word
contains the 15 most significant bits of the
virtual-block number, and the second word contains the 16
least significant bits. Thus, the virtual-block number
is an unsigned value having 31 bits of magnitude. The
user must ensure that the sign bit in the high-order word
is not set.

2-21

PREPARING FOR I/O

c. Open the desired file for processing by issuing the
appropriate version of the generalized OPEN$x macro call
(see Section 3.1).

d. Issue either the FDBK$R macro call or the READ$/WRITE$
macro call, as appropriate, to initialize the relevant
FDB with the desired virtual-block number.

If the FDBK$R macro call is elected, the following is a
representative example:

FDBK$R #FDBIN",#VBNADR

Regardless of the particular macro call used to supply
the virtual-block number, the two words at VBNADR are
loaded into F.BKVB and F.BKVB+2. The first of these
words (F.BKVB) is 0 if 16 bits are sufficient to express
the desired virtual-block number. The I/O-initiating
READ$/WRITE$ macro call may then be issued.

Should the user, however, choose to initialize the FDB
directly through either the READ$ or WRITE$ macro call,
the virtual-block number may be made available to FCS
through a statement such as that shown below:

READ$ #FDBIN,#INBUF,#BUFSIZ,#VBNADR

The symbol VBNADR represents the address of the 2-word
block in the user program containing the virtual-block
number.

2.2.2.2 Specifying the FOB Address in Run-Time Macro Calls - In
relation to Item 2 of the exceptions noted above, the address of the
FDB associated with the file to be processed corresponds to the
address value of the user-defined symbol appearing in the label field
of the FDBDF$ macro call (see Section 2.2.1.1). For example, the
statement

FDBOUT: FDBDF$

in addition to allocating space for an FDB at assembly time, binds the
label FDBOUT to the beginning address of the FDB associated with this
file. The address value so established can then be specified as the
initial parameter in a run-time macro call in anyone of three ways,
as follows:

1. The address of the appropriate FDB may be specified as an
explicit parameter in a run-time macro call, as indicated in
the following statement:

FDAT$R #FDBOUT,#R.VAR,#FD.CR

The argument FDBOUT is taken literally by FCS as the address
of an FOB; furthermore, this address value, by convention,
is stored in general register zero (RO). Whenever this
method of specifying the FOB address is employed, the
previous contents of RO are overwritten (and thus destroyed).
Therefor$, the user must exercise care in issuing subsequent
run-time macro calls to ensure that the present value of RO
is suitable to current purposes.

2-22

PREPARING FOR I/O

2. A general register specifier may be used as the initial
parameter in a run-time macro call. When a register other
than RO is used, the contents of the specified register are
moved to RO. The previous contents of RO are overwritten
(and thus destroyed).

The following statement reflects the use of a general
register to specify the FOB address:

FDAT$R RO,#R.VAR,#FD.CR

In this case, the current contents of RO are taken by FCS as
the address of the appropriate FOB. This method assumes that
the address of the FOB has been previously loaded into RO
through some overt action. Note, when using this method to
specify the FOB address, that the immediate expression
indicator (#) must not precede the register specifier (RO).

3. A null specification may also be used as the initial
parameter in a run-time macro call, as shown below:

FDAT$R ,#R.VAR,#FD.CR

In this instance, the current contents of RO are taken by
default as the address of the associated FOB. As in method 2
above, RO is assumed to contain the address of the desired
FOB. Although the comma in this instance constitutes a valid
specification, the user is advised to employ methods I and 2
for consistency and clarity of purpose.

In relation to the foregoing, it should be understood that these three
methods of specifying the FOB address also apply to all the FCS
file-processing macro calls described in Chapter 3.

2.3 GLOBAL VERSUS LOCAL DEFINITIONS FOR FOB OFFSETS

Although the FOB offsets can be defined either locally or globally,
the design of FCS does not require that the user be concerned with the
definition of FOB offsets locally. To some extent, this design
consideration is based on the manner in which MACRO-II handles
symbols.

Whenever a symbol appears in the source program, MACRO-II
automatically assumes that it is a global symbol unless it is
presently defined within the current assembly. Such a symbol must be
defined further on in the program; otherwise, it will be treated by
MACRO-II as a default global reference, requiring that it be resolved
by the Task Builder.

Thus, the question of global versus local symbols may simply be a
matter of the programmer's not defining the FOB offsets and bit values
locally in coding the program. Such undefined symbols thus become
global references, which are reduced to absolute definitions at
task-build time.

It should be noted that global symbols may be used as operands and/or
macro-call parameters anywhere in the source program coding, as
described in the following section.

2-23

PREPARING FOR I/O

2.3.1 Specifying Global Symbols in the Source Coding

Throughout the descriptions of the assembly-time macros (see Sections
2.2.1.2 through 2.2.1.6), global symbols are specified as parameters
in the macro calls. As noted earlier, such symbols ~re treated by
MACRO-II as default global references.

For example, the global symbol FD.RAN may be specified as the initial
parameter in the FDRC$A macro call (see Section 2.2.1.3). At
task-build time, this parameter is reduced to an absolute symbol
definition, causing a prescribed bit to be set in the record=access
byte (offset location F.RACC) of the FDB.

Global symbols may also be used as operands in user program
instructions to accomplish operations associated with FDB offset
locations. For example, global offsets such as F.RACC, F.RSIZ, and
F.RTYP may be specified as operands in the source coding. Assume, for
example, that an FDBDF$ macro call (see section 2.2.1.1) has been
issued in the source program to allocate space for an FDB, as follows:

FDBIN: FDBDF$

The coding sequence shown below may then appear in the source program,
illustrating the use of the global offset F.RACC:

MOV
MOVB

#FDBIN,RO
#FD.RAN,F.RACC(RO)

Note that the beginning address of the FDB is first moved into general
register zero (RO). However, if the desired value already exists in
RO as the result of previous action in the program, the user need
issue only the second MOV instruction (which appropriately references
RO). As a consequence of this instruction, the value FD.RAN
initializes FDB offset location F.RACC.

An equivalent instruction is the following:

MOVB #FD.RAN,FDBIN+F.RACC

which likewise initializes offset location F.RACC in the FDB with the
value of FD.RAN. Global symbols may be used anywhere in the program
in this manner to effect the dynamic storage of values within the FDB.

2.3.2 Defining FDB Offsets and Bit Values Locally

The user who wishes to declare explicitly that all FDB offsets and bit
values are to be defined locally may do so by invoking two macro calls
in the source program. The first of these, FDOF$L, causes the offsets
for FDBls to be defined within the user program. Similarly, bit
values for all FDB parameters may be defined locally by invoking the
FCSBT$ macro call. These macro calls may be invoked anywhere in the
user program.

When issued, the FDOF$L and FCSBT$ macro calls define symbols in a
manner roughly equivalent to:

F.RTYP = xxxx
F.RACC = xxxx
F.RSIZ xxxx

where xxxx represents the value assigned to the corresponding symbol.

2-24

PREPARING FOR I/O

In other words, the macros for defining FOB offsets and bit values
locally do not generate any code. Their function is simply to create
absolute symbol definitions within the program at assembly-time. The
symbols so defined, however, appear in the MACRO-II symbol table,
~ather than in the source-program listing. Such local symbol
definitions are thereby made available to MACRO-II during assembly,
rather than forcing them to be resolved by the Task Builder.

Whether or not the FDOF$L and FCSBT$ macro calls are invoked should
not in any way affect the coding style or the manner in which the FOB
offsets and bit values are used.

Note, however, if the FDOF$L macro call is issued, the NBOF$L macro
call for the local definition of the filename block need not be issued
(see Section 2.4.2). The FDOF$L macro call automatically defines all
FOB offsets locally, including those for the filename block.

If any of the above named macro calls is to be issued in the user
program, it must first be listed as an argument in an .MCALL directive
(see Section 2.1).

2.4 CREATING FILE SPECIFICATIONS WITHIN THE USER PROGRAM

Certain information describing the file must be present in the FOB
before the file can be opened. The file is located using a file
specification that contains ~he following:

1. A device name and unit number;

2. A directory string consisting of a group number and a member
number that specify the user file directory (UFO) to be used
for the file. The term "UFO" is synonymous with the term
"file directory string" appearing throughout this manual.

3. A filename;

4. A file type (RSX-l1) or file extension (lAS);

5. A file version number.

The term "file specifier" is sometimes used as a synonym for "file
specification."

A file specification describing the file to be processed is
communicated to Fes through two user-created data structures:

1. The dataset descriptor. This tabular structure may be
created and initialized manually through the use of .WORD
directives. 'Section 2.4.1 describes this data structure in
detail.

2. The default filename block. In contrast to the
manually-created dataset descriptor; the default filename
block is created by issuing the NMBLK$ macro call. This
macro call allocates a block of storage in the user program
at assembly-time and initializes this structure with
parameters supplied in the call. This structure is described
in detail in Section 2.4.2.

2-25

PREPARING FOR I/O

As noted in Section 2.2.1.5, the FDOP$A or the FDOP$R macro call is
issued to initialize the FDB with the addresses of these data
structures. These address values are supplied to FCS through the dspt
and dfnb parameters of the selected macro call~ FCS uses these
addresses to access the fields of the dataset descriptor and/or the
default filename block for the file specification required in opening
a specified file.

By convention, a required file specification is first sought by FCS in
the dataset descriptor. Any non-null data contained therein is
translated from ASCII to Radix-50 form and stored in the appropriate
offsets of the filename block. This area of the FDB then serves as
the execution-time repository for the information describing the file
to be opened and processed. If the dataset descriptor does not
contain the required information, FCS attempts to obtain the missing
information from the default filename block. If neither of these
structures contains the required information, an open failure occurs.

Note, however, that the device name and the unit number need not be
specified in either the dataset descriptor or the default filename
block, since these values are defaulted to SYO: if not explicitly
specified.

The FCS file-processing macro calls used in opening files are
described in Chapter 3, beginning with the generalized OPEN$x macro
call in Section 3.1.

For a detailed description of the format and content of the filename
block, the reader should refer to Appendix B.

2.4.1 Dataset Descriptor

The dataset descriptor is often oriented toward the use of a fixed
(built-in) filename in the user program. A given application program,
for example, may require access only to a limited and nonvariable
number of files throughout its execution. By defining the names of
these files at assembly-time through the dataset-descriptor mechanism,
such a program, once initiated, executes to completion without
requiring additional file specifications.

This structure, a 6-word block of storage that may be created manually
within the user program through the use of .WORD directives, contains
information describing a file that the user intends to open during the
course of program execution. In creating this structure, anyone or
all of three possible string descriptors may be defined for a
particular file, as follows:

1. A 2-word descriptor for an ASCII device name string;

2. A 2-word descriptor for an ASCII file directory string~
apd/or

3. A 2-word descriptor for an ASCII filename string.

This data structure is allocated in the user program in the following
format:

DEVICE-NAME STRING DESCRIPTOR

2-26

PREPARING FOR I/O

Word 1 - Contains the length (in bytes) of the ASCII device
name string.

This string consists of a 2-character alphabetic
device name, followed by an optional 1- or 2-digit
octal unit number. These strings may be created
by issuing statements such as those below:

DEVNM: .ASCII /DKO:/

DEVNM: .ASCII /TTlO:/

Word 2 - Contains the address of the ASCII device name
string.

DIRECTORY STRING DESCRIPTOR

Word 3 - Contains the length (in bytes) of the ASCII
file-directory string.

This string consists of a group number and a
member number, separated by a comma (,). The
entire string is enclosed in brackets. For
example, [200,200] is a directory str ing. A
directory string can be created by issuing
statements such as those that follow:

DIRNM: .ASCII /[200,200]/

DIRNM: .ASCII /[40,100]/

If the user wishes to specify an explicit file
directory different from the UIC under which he is
currently running, the dataset-descriptor
mechanism permits that flexibility.

Word 4 - Contains the address of the ASCII file-directory
string.

FILENAME STRING DESCRIPTOR

Word 5 - Contains the length (in bytes) of the ASCII
filename string.

This string consists of a filename up to 9
characters in length, an optional 3-character file
type designator, and an optional file version
number. The filename and file type must be
separated by a dot (.), and the file version
number must be preceded by a semicolon. A
filename string may be created as shown below:

FILNM: .ASCII /PROGl.OBJ;7/

Only the characters A through Z and 0 through 9
may be used in composing an ASCII filename string.

Word 6 - Contains the address of the ASCII filename string.

A length specification of 0 in Word 1, 3, or 5 of
descriptor indicates that the corresponding device-name,
filename string is not present in the user program. For
coding below creates a dataset descriptor containing
ASCII filename string descriptor:

2-27

the dataset
directory, or
example, the
only a 2-word

FDBOOT: FDBDF$
FDAT$A
FDRC$A
FDOP$A

OFDSPT: .WORD
• WORD
. WORD

ONAM: .ASCII
ONAMSZ=.-ONAM

PREPARING FOR I/O

R.VAR,FD.CR
,RECBUF,80.
OUTLUN,OFDSPT

0,0
0,0
ONAMSZ,ONAM

/OUTPUT.DAT/

;CREATES FOB.
;INITIALIZES FILE-ATTRIBUTE SECTION.
;INITIALIZES RECORD-ACCESS SECTION.
;INITIALIZES FILE-OPEN SECTION.

;NULL DEVICE-NAME DESCRIPTOR.
;NULL DIRECTORY DESCRIPTOR .
;FILENAME DESCRIPTOR •

;DEFINES FILENAME STRING.
;DEFINES LENGTH OF FILENAME STRING.

Note first that an FOB labelled FDBOUT is created. Observe further
that the FDOP$A macro call takes as its second parameter the symbol
OFDSPT. This symbol represents the address value stored in FOB offset
location F.DSPT. This value enables the .PARSE routine (see Section
4.7.1) to access the fields of the dataset descriptor in building the
filename block.

The symbol OFDSPT also appears in the label field of the first . WORD
directive, defining the address of the dataset descriptor for the
.PARSE routine. The .WORD directives each allocate 2 words of storage
for the device-name descriptor, the file-directory descriptor, and the
filename descriptor, respectively.

In the example above, however, note that the first two descriptor
fields are filled with zeros, indicating null specifications. The
last .WORD directive allocates 2 words that contain the size and the
address of the filename string, respectively. The filename string
itself is explicitly defined in the .ASCII directive that follows.

Note that the statements defining the filename string need not be
physically contiguous with the dataset descriptor. For each such
ASCII string referenced in the dataset descriptor, however,
corresponding statements must appear elsewhere in the source program
to define the appropriate ASCII data string(s).

A dataset descriptor for each of several files to be accessed by the
user program may be defined in this manner.

2.4.2 Default Filename Bloak - NMBLK$ Macro Call

As noted earlier, the user may also define a default filename block in
the program as a means of providing required file information to FCS.
For this purpose, the NMSLK$ macro call may be issued in connection
with each FOB for which a default filename block is to be defined.
When this macro call is issued, space is allocated within the user
program for the default filename block, and the appropriate locations
within this data structure are initialized according to the parameters
supplied in the call.

2-28

PREPARING FOR I/O

Note in the parameter descriptions below that symbols of the form
N.xxxx are used to represent the offset locations within the filename
block. These symbols are differentiated from those that apply to the
other sections of the FOB by the beginning character N. All versions
of the generalized OPEN$x macro call (see Section 3.1) use these
symbols to identify offsets in storing file information in the
filename block.

The NMBLK$ macro call is specified in the following format:

label: NMBLK$ fnam,ftyp,fver,dvnm,unit

where: label represents a user-defined symbol that names the
default filename block and defines its address.
This label is the symbolic value normally
specified as the dfnb parameter when the FDOP$A or
the FDOP$R macro call is issued. This causes FOB
offset location F.DFNB to be initialized with the
address of the default filename block.

fnam

ftyp

fver

dvnm

unit

represents the default filename. This parameter
may consist of up to 9 ASCII characters. The
character string is stored as 6 bytes in Radix-50
format, starting at offset location N.FNAM of the
default filename block.

represents the default file type. This parameter
may consist of up to 3 ASCII characters. The
character string is stored as 2 bytes in Radix-50
format in offset location N.FTYP of the default
filename block.

represents the default file-version
(binary) . When specified, this binary
identifies a particular version of a file.
value is stored in offset location N.FVER
default filename block.

number
value
This

of the

represents the default name of the device upon
which the volume containing the desired file is
mounted. This parameter consists of 2 ASCII
characters that are stored in offset location
N.DVNM of the default filename block.

represents a binary value identifying which unit
(among several like units) is to be used in
processing the file. If specified, this numeric
value is stored in offset location N.UNIT of the
default filena~e block.

Only the characters A through Z and a through 9 may be used in
composing the filename and file type strings discussed above.

Although the file version number and the unit number discussed above
are binary values, these numbers are normally represented in octal
form when printed, when input via a command string, or when supplied
through a dataset-descriptor string.

As evident from the foregoing, all the default information supplied in
the NMBLK$ macro call is stored in the default filename block at
offset locations that correspond to identical fields in the filename
block within the FOB. This default information is moved into the
corresponding offsets of the filename block when any version of the
generalized OPEN$x macro call is issued under any of the following
conditions:

2-29

PREPARING FOR I/O

1. All the file information required by FCS to open the file is
not present in the dataset descriptor. Missing information
is then sought in the default filename block by the . PARSE
routine (see Section 4.7.1), which is automatically invoked
as a result of issuing any version of the generalized OPEN$x
macro call.

2. A dataset descriptor has not been created in the user
program.

3. A dataset descriptor is present in the user program, but the
address of this structure has not been made available to FCS
through any of the assembly-time or run-time macro calls that
initialize FOB offset location F.DSPT.

The following coding illustrates the general method of specifying the
NMBLK$ macro call:

FDBOUT: FDBDF$
FDAT$A
FDRC$A
FDOP$A

FDBIN:

OFNAM:
IFNAM:

FDBDF$
FDRC$A
FDOP$A

NMBLK$
NMBLK$

R.VAR,FD.CR
,RECBUF,80.
OUTLUN"OFNAM

,RECBUF,80.
INLUN"IFNAM

iALLOCATES SPACE FOR AN FOB.
iINITIALIZES FILE-ATTRIBUTE SECTION.
iINITIALIZES RECORD-ACCESS SECTION.
iINITIALIZES FILE-OPEN SECTION.

iALLOCATES SPACE FOR AN FOB.
iINITIALIZES RECORD-ATTRIBUTE SECTION.
iINITIALIZES FILE-OPEN SECTION.

OUTPUT ,OAT iESTABLISHES FILENAME AND FILE TYPE.
INPUT,DAT"DT,l iESTABLISHES FILENAME, FILE TYPE,

iDEVICE NAME, AND UNIT NUMBER.

The first NMBLK$ macro call in the coding sequence above creates a
default filename block to establish default information for the FOB
named FDBOUT. The label OFNAM in this macro defines the beginning
address of the default filename block allocated within the user
program. Note that this symbol is specified as the dfnb parameter in
the FDOP$A macro call associated with this default filename block to
initialize the file-open section of the corresponding FOB. The
accompanying parameters in the first NMBLK$ macro call define the
filename and the file type, respectively, of the file to be openedi
all remaining parameter fields in this call are null.

The second NMBLK$ macro call accomplishes essentially the same
operations in connection with the FOB named FDBIN. Note in this macro
call that the third parameter (the file version number) is null, as
reflected by the extra comma. This null specification indicates that
the latest version of the file is desired. All other parameter fields
contain explicit declarations defining default information for the
applicable FOB.

The offsets for a filename block can be defined locally in the user
program, if desired, by issuing the following macro call:

NBOF$L

This macro call does not generate any code. Its function is merely to
define the filename-block offsets locally, presumably to conserve
symbol-table space at task-build time. The NBOF$L macro call need not
be issued if the FDOF$L macro call has been invoked, since the
filename block offsets are defined locally as an automatic result of
issuing the FDOF$L macro call.

2-30

PREPARING FOR I/O

If desired, the user may initialize fields in the default filename
block directly with appropriate values. This may be accomplished with
in-line statements in the program. For example, a specific offset in
the default filename block may be initialized through coding that is
logically equivalent to the following:

DFNB: NMBLK$ RSXLIB,OBJ

NUTYP: .RADSO /DAT/

MOV NUTYP,DFNB+N.FTYP

where the symbol NUTYP in the MOV instruction represents the address
of the newly defined Radix-50 file type DAT, which is to be moved into
destination offset N.FTYP of the default filename block labeled DFNB.
Any of the offsets within the default filename block may be manually
initialized in this manner to establish desired values or to override
previously initialized values.

2.4.3 Dynamic Processing of File Specifications

Users who wish to make use of routines available from the system
object library ([l,l]SYSLIB.OLB) for processing command-line input
dynamically should consult Chapter 6. Chapter 6 describes the Get
Command Line (GCML) routine and the Command String Interpreter (CSI),
both of which may be linked with the user program to provide all the
logical capabilities required in processing dynamic terminal input or
indirect-command-file input.

2.5 OPTIMIZING FILE ACCESS

When certain information is present in the filename block of an FDB, a
file can be opened in a manner referred to throughout this manual as
"opening a file by file ID". This type of open requires a minimum of
system overhead, resulting in a significant increase in the speed of
preparing a file for access by the user program. If files are
frequently opened and closed during program execution, opening files
by file ID accomplishes substantial savings in overall execution time.

To open a file by file ID, the mlnlmum information that must· be
present in the filename block of the associated FDB consists of ' the
following:

1. File-Identification Field. This 3-word field, beginning at
filename block offset location N.FID, contains a file number
in the first word and a file sequence number in the second
word; the third word is reserved. The file-identification
field is maintained by the system and ordinarily need not be
of concern to the user.

2. Device-Name Field. This I-word field at filename block
offset location N.DVNM contains the 2-character ASCII name of
the device on which the volume containing the desired file is
mounted.

2-31

PREPARING FOR I/O

3. Unit-Number Field. This I-word field at filename block
offset location N.UNIT contains a binary value identifying
the particular unit (among several like units) on which the
volume containing the desired file is mounted.

These three fields are written into the filename block in either of
two ways:

1. As a function of issuing
OPEN$x macro call for
question; or

any version of the generalized
a file associated with the FDB in

2. As a result of initializing the filename block manually by
using the . PARSE routine (see Section 4.7.1) and the .FIND
routine (see Section 4.8.1).

These two methods of setting up the filename block in anticipation of
opening a file by file ID are described in detail in the following
sections.

2.5.1 Initializing the Filename Block As a Function of OPEN$x

To understand how to effect the process of opening a file by file ID,
note that the initial issuance of the generalized OPEN$x macro call
(see Section 3.1) for a given file first invokes the . PARSE routine
(see Section 4.7.1). The .PARSE routine is automatically linked into
the user program, along with the code for OPEN$x. This routine first
zeros the filename block and then fills it in with information taken
from the dataset descriptor and/or the default filename block.

Thus, issuing the generalized OPEN$x macro call results in the
invocation of the • PARSE routine each time a file is opened. The
.PARSE function, however, can be bypassed altogether in subsequent
OPEN$x calls by saving and restoring the filename block before
attempting to reopen that same file.

This is made possible because of the logic of the OPEN$x macro call.
Specifically, after the initial OPEN$x for a file has been completed,
the necessary context for reopening that file exists within the
filename block. Therefore, before closing that file, the entire
filename block can be copied into user memory space and later restored
to the FDB at the desired point in program flow for use in reopening
that same file.

The option to reopen files in this manner stems from the fact that FCS
is sensitive to the presence of any nonzero value in the first word of
the file identification field of the filename block. When the OPEN$x
function is invoked, FCS first examines offset location N.FID of the
filename block. If the first word of this field contains a value
other than 0, FCS logically assumes that the remaining context
necessary for opening that file is present in the filename block, and
therefore unconditionally opens that file by file ID.

To ensure that an undesired value does not remain in the first word of
the N.FID field from a previous OPEN$x/CLOSE$ sequence, the first word
of this field is zeroed as the file is closed.

In opening files by file ID, the user need only ensure that manual
saving and restoring of the filename block are accomplished with
in-line MOV instructions that are consistent with the desired sequence
of processing files. This proces~ should, in general, proceed as
outlined below:

2-32

PREPARING FOR I/O

1. Open the file in the usual manner by issuing the OPEN$x macro
call.

2. Save the filename block by copying it into user memory space
with appropriate MOV instructions. The filename block begins
at offset location F.FNB.

The value of the symbol S.FNB is the size of the filename
block in bytes, and the value of the symbol S.FNBW is the
size of the filename block in words. If desired, the NBOF$L
macro call (see Section 2.4.2) may be invoked in the user
program to define these symbols locally. These symbolic
values may be used in appropriate MOV instructions to
accomplish the saving and restoring of the filename block.
It is the user's responsibility to reserve sufficient space
in the program for saving the filename block.

3. At the end of current file operations, close the file in the
usual manner by issuing the CLOSES macro call.

4. When, in the normal flow of program logic, that same file is
about to be reopened, restore the filename block to the FDB
by doing the reverse of Step 2.

5. Reopen the file by issuing anyone of the macro calls
available in FCS for opening an existing file. Since the
first word of offset location N.FID of the filename block now
contains a nonzero value, FCS unconditionally opens the file
by file ID, regardless of the specific type of open macro
call issued.

Although it is necessary to save only the file-identification,
device-name, and unit-number fields of the filename block in
anticipation of reopening a file by file ID, the user is advised to
save the entire filename block. The filename, file-type,
file-version, and directory-ID fields, etc., may also be relevant.
For example, an OPEN$x, save, CLOSES, restore, OPEN$x, and DELET$
sequence would require saving and restoring the entire filename block.
Though the user may be logically finished with file processing and may
want to delete the file, the delete operation will not work properly
unless the entire filename block has been saved and restored.

2.5.2 Manually Initializing the Filename Block

In addition to saving and restoring the filename block in anticipation
of reopening a file by file ID, the filenam~ block can also be
initialized manually. If the user chooses to do so, the • PARSE and
.FIND routines (see Sections 4.7.1 and 4.8.1, respectively) may be
invoked at appropriate points to build the required fields of the
filename block. After the .PARSE and .FIND logic is completed, all
the information required for opening the file exists within the
filename block. When anyone of the available FCS macro calls that
open existing files is then issued, FCS unconditionally opens that
file by file ID.

Occasionally, instances arise that make such manual operations
desirable, especially if the user program is operating in an overlaid
environment. In this case, it is highly desirable that the code for
opening a file be broken into small segments in the interest of

2-33

PREPARING FOR I/O

conserving memory space. Since the body of code for the OPEN$x and
. PARSE functions is sizable, two other types of macro calls for
opening files are provided for use with overlaid programs. The OFID$
and OFNB$ macro calls (see Sections 3.5 and 3.6, respectively) are
specifically designed for this purpose.

The structure recommended for an overlaid environment is to have
either the OFID$ or the OFNB$ code on one branch of the overlay and
the .PARSE and .FIND code on another branch. Then, if the user wishes
to open a file by file ID, the .PARSE and .FIND routines can be
invoked at will to insert required information in the filename block
before opening the file.

The OFID$ macro call can be issued only in connection with an existing
file. The OFNB$ macro call, on the other hand, may be used for
opening either an existing file or for creating and opening a new
file. In addition, the OFNB$ macro call requires only the manual
invocation of the .PARSE routine to build the filename block before
opening the file.

If conservation of memory is an objective, and if the user program
will be opening both new and existing files, it is recommended that
only the OFNB$ routine be included in one branch of the overlay;
including the OFID$ routine would needlessly consume memory space.

In all cases, however, it is important to note that all the macro
calls for opening existing files are sensitive to the presence of any
nonzero value in the first word (N.FID) of the filename block. If
this field contains any value other than 0, the file is
unconditionally opened by file ID. This does not imply, however, that
only the file-identification field (N.FID) is required to open the
file in this manner. The device-name field (N.DVNM) and the
unit-number field (N.UNIT) must also be appropriately initialized.
The logic of the FCS macro calls for opening existing files assumes
that these other required fields are present in the filename block if
the file-identification field contains a nonzero value.

Because many programs continually reuse FDBs, the CLOSE$ function (see
Section 3.8) zeros the file-identification field (N.FID) of the
filename block. This action prevents the field (which pertains to a
previous operation) from being used mistakenly to open a file for a
current operation. Thus, if a user later intends to open a file by
file ID using information presently in the filename block, the entire
filename block (not just N.FID) must be saved before closing the file.
Then, at the appropriate point in program flow, the filename block may
be restored to open the desired file by file ID.

2.6 INITIALIZING THE FILE STORAGE REGION

The file storage region (FSR) is an area allocated in the user program
as a buffer pool to accommodate the program's block-buffer
requirements in performing record I/O (GET$ and PUT$) operations.
Although the FSR is not applicable to block I/O (READ$ and WRITE$)
operations, the FSRSZ$ macro must be issued once in every program that
uses FCS, regardless of the type of I/O to be performed.

The macro calls associated with the initialization of the FSR are
described below.

2-34

PREPARING FOR I/O

2.6.1 FSRSZ$ - Initialize FSR at Assembly-Time

The MACRO-II programmer establishes the size of the FSR at
assembly-time by lssulng an FSRSZ$ macro call. This macro call does
not generate any executable code. It merely allocates space for a
block-buffer pool in a program section named $$FSRI. The amount of
space allocated depends on information provided by the user, or
defaulted, during the macro call.

NOTE

The FSRSZ$ macro allocates the FCS
impure area that is pointed to by a
fixed location in user virtual memory.
This pointer is not altered when
overlays are loaded: therefore, the
FSRSZ$ macro must be invoked in the root
segment of a task. Unpredictable
results may occur if the FSRSZ$ macro is
invoked in more than one parallel
overlay.

The format of the FSRSZ$ macro is:

FSRSZ$ fbufs,bufsiz,psect

where: fbufs represents a numeric value that is established by
the user as follows:

1. If no record I/O processing is to be done,
fbufs equals O. A value of 0 indicates that
an unspecified number of files may be open
simultaneously for block I/O process{ng. For
example, if the user intends to access three
files for block I/O operations and no files
for record I/O operations, the FSRSZ$ macro
call takes 0 as an argument, as shown below:

FSRSZ$ 0

No other parameters need be specified unless
the function of the psect parameter (described
below) is required.

2. If record I/O, using a single buffer for each
file, is to be done, fbufs represents the
maximum number of files that can be open
simultaneously for record I/O processing. For
example, an RSX-llM user might want to access
simultaneously three files for block I/O and
two files for record I/O. Since RSX-llM
provides single buffering only for record I/O,
and since block I/O does not require pool
space in the FSR, this user would specify the
following FSRSZ$ macro call:

FSRSZ$

Additional
(described
required.

2

parameters, bufsiz and psect
below), could also be specified as

2-35

bufsiz

PREPARING FOR I/O

3. If record I/O with multiple buffering is to be
done, fbufs represents the maximum number of
buffers ever in use simultaneously among all
files open concurrently for record I/O.
Assume, for example, that an RSX-IID or lAS
user's program will simultaneously access four
disk files for record I/O operations. Assume
further that the user wants double-buffering
for three of the disk files and has,
therefore, specified a multiple buffer count
of 2 in the FDBF$A macro calls (refer to
Section 2.2.1.6) for the associated files.
This user would then issue the following
FSRSZ$ macro call:

FSRSZ$ 7

This macro call indicates that a maximum of
seven buffers will be in use simultaneously.
This total is calculated as follows: one
buffer for the single-buffered file and two
buffers for each of the three double-buffered
files. Additional parameters, bufsiz and
psect (described below), could also be
specified as required.

represents a numeric value defining the total
block-buffer-pool space (in bytes) needed to
support the maximum number of files that can be
open simultaneously for record I/O. If this
parameter is omitted, Fes obtains a total
block-buffer-pool requirement by multiplying the
value specified in the fbufs parameter with a
default buffer size of 512 bytes. If, for
example, a maximum of 2 single-buffered disk files
will be open simultaneously for record I/O, either
of the following FSRSZ$ macro calls could be
issued:

FSRSZ$ 2

FSRSZ$ 2,1024.

If the user wishes to explicitly
block-buffer-pool requirements, the
formula must be applied:

specify
following

bufsiz=(bsizel*mbcl) [+(bsize2*mbc2) •.• +(bsizen*mbcn)]

where: bsizel,
bsize2,
etc.

mbcl,
rnbc2,
etc.

are the sizes, in bytes, of the buffers to support
each file. The size of a buffer for a particular
file depends on the device supporting the file.
Standard block sizes for devices are established
at system-generation time.

are the multiple buffer counts (refer to Section
2.2.1.6) specified for the respective files. For
the purposes of this formula, RSX-IIM users must
use multiple buffer counts equal to 1.

2-36

psect

PREPARING FOR I/O

The total value expressed by the bufsiz parameters
must always represent the worst case buffer pool
requirements among all combinations of
simultaneously open record I/O files. The number
of files (or buffers) representing the worst case
is expressed as the first parameter of the macro
call.

NOTE

An lAS or RSX-llD user must not allocate
an FSR block buffer less than 512(10)
bytes in length for spooled output to a
record-oriented device (such as a line
pr inter) .

specifies the name of the program section (PSECT)
to which control returns after FSRSZ$ completes
processing. If no name is specified, control
returns to the blank PSECT.

2.6.2 FINIT$ - Initialize FSR at Run-Time

In addition to the FSRSZ$ macro call described in the preceding
section, the FINIT$ macro call must also be issued in a MACRO-II
program to call initialization coding to set up the FSR. This macro
call takes the following format:

label: FINIT$

where: label represents an optional user-specified symbol that
allows control to be transferred to this location
during program execution. Other instructions in
the program may reference this label, as in the
case of a program that has been written so that it
can be restarted. Considerations relative to the
FINIT$ macro call in such a restartable program
are presented below.

The FINIT$ macro call should be issued in the program's initialization
code. The first FCS call issued for opening a file performs the FSR
initialization implicitly (if it has not already been accomplished
through an explicit invocation of the FINIT$ macro call). However, it
is necessary; in the case of a program that is written so that it can
be restarted, to issue the FINIT$ macro call in the program's
initialization code, as shown in the second example below. This
requirement derives from the fact that such a program performs all its
initialization at run-time, rather than at assembly-time.

For example, a program that is not written so that it can be restarted
might accomplish the initialization of the FSR implicitly through the
following macro call:

START: OPEN$R #FDBIN ;IMPLICITLY INITIALIZES THE FSR
iAND OPENS THE FILE.

In this case, although transparent to the user, the OPEN$R macro call
automatically invokes the FINIT$ operation. The label START is the
transfer address of the program.

2-37

PREPARING FOR I/O

In contrast, a program that embodies the capability to be restarted
must issue the FINIT$ macro call explicitly at program initialization
in the manner shown below:

START: FINIT$
OPEN$R #FDBIN

iEXPLICITLY INITIALIZES THE FSR AND
iOPENS THE FILE.

In this case, the FINIT$ macro call cannot be invoked arbitrarily
elsewhere in the programi it must be issued at program
initialization. Doing so forces the appropriate reinitialization of
the FSR, whether or not it has been done in a previous execution of
the program through an OPEN$x macro call.

Also important in the above context is the fact that calling any of
the file-control routines described in Chapter 4, such as • PARSE ,
first requires the initialization of the FSR. However, the FINIT$
operation must be performed only once per program execution. Note
also that FORTRAN programs issue a FINIT$ macro call at the beginning
of the program execution; therefore, MACRO-II routines used with the
FORTRAN object time system must not issue a FINIT$ macro call.

2.7 INCREASING THE SIZE OF THE FILE STORAGE REGION

Procedures for increasing the size of the FSR for either MACRO-II or
FORTRAN programs are presented in the following sections.

2.7.1 FSR-Extension Procedures for MACRO-II Programs

To increase the size of the FSR for a MACRO-II program, the user has
two options:

1. Modify the parameters in the FSRSZ$ macro call to redefine
the buffer-pool requirement of files open simultaneously for
record I/O processing. Reassemble the program.

2. Use the EXTSCT (extend program section) command at task-build
time to define the new size of the FSR. To invoke this
option, the command is specified in the following form:

EXTSCT = $$FSRl:length

where $$FSRI is the symbolic name of the program section
within the FSR that is reserved for use as the block-buffer
pool, and "length" represents a numeric value defining the
total required size of the buffer pool in bytes.

The size of the FSR cannot be reduced at task-build time.

In calculating the total length of the FSR, either of the formulas
below may be used:

1. length (S.BFHD*fbufs)+bufsiz

2. length fbufs*(S.BFHD+SI2.)

where: S.BFHD is a symbol that defines the number of bytes
required for each block-buffer header. If
desired, this symbol may be defined locally in the
user program by issuing the following macro call:

BDOFF$ DEF$L

2-38

fbufs

bufsiz

PREPARING FOR I/O

is a numeric value representing either the maximum
number of files open simultaneously for record I/O
(when single buffering only is used) or the
maximum number of buffers ever in use
simultaneously among all files open concurrently
for record I/O (when multiple-buffering is used).
Refer also to the description of this parameter in
the FSRSZ$ macro call in Section 2.6.1.

represents a numeric value defining the total
block-buffer-pool space (in bytes) needed to
support the maximum number of files that can be
open simultaneously for record I/O. Refer to the
description of this parameter in the FSRSZ$ macro
call in Section 2.6.1.

512. is the standard default buffer size.

The EXTSCT command is described in detail in the Task Builder
Reference Manual of the host operating system.

2.7.2 FSR-Extension Procedures for FORTRAN Programs

For a FORTRAN program, if an explicit ACTFIL statement is not issued
in the optional keyword input to the Task Builder, an ACTFIL statement
with a default value of 4 is generated automatically during
task-build. To extend the size of the FSR at task-build time, the
user may issue the following command:

ACTFIL = files

where: files represents a decimal value defining the maximum
number of files that may be open simultaneously
for record I/O processing.

This command, similar to the EXTSCT command above, causes program
section $$FSRI to be extended by an amount sufficient to accommodate
the number of active files anticipated for simultaneous use by the
program.

The size of the FSR for a FORTRAN program can also be decreased at
task-build time. As noted above, for either lAS or RSX-ll, the
default value for the ACTFIL command is 4. Thus, if 0, 1, 2, or 3 is
specified as the "files" parameter, the size of $$FSRI (the
FSR-block-buffer pool) is reduced accordingly.

The ACTFIL command is described in detail in the Task Builder
Reference Manual of the host operating system.

2.8 COORDINATING I/O OPERATIONS

In the IAS/RSX-ll environment, user programs perform all I/O
operations by issuing GET$/PUT$ and READ$/WRITE$ macro calls (see
Chapter 3). These calls do not access the physical devices in the
system directly. Rather, when anyone of these calls is issued, an
I/O-related system directive called QUEUE I/O is invoked as the
interface between the FCS file-processing routines at the user level
and the system I/O drivers at the device level. Device drivers are
included for all the standard I/O devices supported by lAS and RSX-ll
systems. Although transparent to the user, the QUEUE I/O directive is
used for all FCSfile-access operations.

2-39

PREPARING FOR I/O

When invoked, the QUEUE I/O directive instructs the system to place an
I/O request for the associated physical device-unit into a queue of
priority-ordered requests for that unit. This request is placed
according to the priority of the issuing task. As required system
resources become available, the requested I/O transfer takes place.

As implied above, two separate and distinct processes are involved in
accomplishing a specified I/O transfer:

1. The successful queuing of the GET$/PUT$ or READ$/WRITE$ I/O
request; and

2. The successful completion of the requested data-transfer
operation.

These processes, both of which yield success/failure indications that
may be tested by the user program, must be performed successfully in
order for the specified I/O operation to have been completed. It is
important to note that Fes totally synchronizes record I/O operations
for the user, even in the case of multiple-buffered operations. In
the case of block I/O operations, the flexibility of Fes allows the
user to synchronize all block I/O activities, thus enabling the user
to satisfy logical processing dependencies within the program.

2.8.1 Event Flags

I/O operations proceed concurrently with other system activity. After
an I/O request has been queued, the system does not force an implied
wait for the issuing task until the requested operation is completed.
Rather, the operation proceeds in parallel with the execution of the
issuing task, and it is the task's responsibility to synchronize the
execution of I/O requests. Tasks use event flags in synchronizing
these activities. with respect to event flags, the system merely
executes primitive operations that manipulate, test, and/or wait for
these indicators of internal task activity.

The completion of an I/O transfer, for example, is recognized by the
system as a significant event. If the user has specified a particular
event flag to be used by the task in coordinating I/O-completion
processing, that event flag is set, causing the system to evaluate the
eligibility of other tasks to run. Any event flag from 1 through
32(10) may be defined for local use by the task. If the user has not
specified an event flag; Fes uses event flag 32(10) by default to
signal the completion of I/O transfers.

Specific FOB-initialization and I/O-initiating macro calls in Fes
enable the user to specify event flags, if desired, that are unique to
a particular task and that are set and reset only as a result of that
task's operation.

For record I/O operations, such an event flag may be defined through
the efn parameter of the FDBF$A or the FDBF$R macro call (see Section
2.2.1.6 or 2.2.2, respectively).

For block I/O operations, an event flag may be declared through the
bkef parameter of the FDBK$A or the FDBK$R macro call (see Section
2.2.1.4 or 2.2.2, respectively): alternatively, a block event flag
may be declared through the corresponding parameter of the
I/O-initiating READ$ or WRITE$ macro call (see Section 3.15 or 3.16,
respectively) •

2-40

PREPARING FOR I/O

In both record and block I/O operations, the event flag is cleared
when the I/O request is queued and set when the I/O operation is
completed. In the case of record I/O operations, only FCS manipulates
the event flag. Additionally, the user is unaware of the event flag's
state and has no need to know. Furthermore, the user must not issue a
WAITFOR system directive predicated on the event flag used for
coordinating record I/O operations. A record I/O operation, for
example, may not even involve an I/O transfer; rather, it may only
involve the blocking or deblocking of a record within the FSR block
buffer. On the other hand, the event flag defined for synchronizing
block I/O operations is totally under the user's control.

Through event-associated system directives, the user can clear event
flags, set event flags, test whether a specified event flag is set, or
cause a task to be suspended until a specified event flag is set.
These event-associated directives are described in detail in the
Executive Reference Manual of the host operating system. The setting
and checking of event flags allow tasks in a real-time system to
communicate with each other and thereby synchronize their execution.
Event flags and related device~dependencies are described in detail in
the IAS/RSX-llD Device Handlers Reference Manual and the RSX-llM I/O.
Drivers Reference Manual.

Also, a code indicating the success or failure of the QUEUE I/O
request resulting from the READ$/WRITE$ macro call is returned to the
Directive Status Word ($DSW). If desired, symbolic location $DSW may
be tested to determine the status of the I/O request. The
success/failure codes for the QUEUE I/O directive are listed in the
manuals referenced above. .

2.8.2 I/O Status Block

Because of the comparative complexity of block I/O operations, an
optional parameter is provided in the FDBK$A and the FDBK$R macro
calls, as well as in the READ$ and WRITE$ macro calls, that enables
the system to return status information to the user task for block I/O
operations. The I/O status block is not applicable to record I/O
(GET$ or PUT$) operations.

This optional parameter, called the I/O status block address, is made
available to FCS through any of the macro calls identified above.
When this parameter is supplied, the system returns status information
to a 2-word block reserved in the user program. Although the I/O
status block is used principally as a QUEUE I/O housekeeping mechanism
for containing certain device-dependent information, this area also
contains information of particular interest to the user.

Specifically, the second ~ord of the I/O status block is filled in
with the number of bytes transferred during a READ$ or WRITE$
operation. When performing READ$ operations, it is good practice
always to use the value returned to the second word of the I/O status
block as the number of bytes actu~lly read, rather than to assume that
the requested number of bytes was transferred. Employing this
technique allows the program to properly read virtual blocks of
varying length from a device such as a magnetic tape unit, provided
that the requested byte count is at least as large as the largest
virtual block. (For magnetic tape units, almost all virtual blocks
are 512(10) bytes or less in length.) For WRITE$ operations, the
specified number of bytes are always transferred; otherwise an error
condition exists.

2-41

PREPARING FOR I/O

Also, the low-order byte of the first word of the I/O status block
contains a code that reflects the final status of the READ$/WRITE$
operation. The codes returned to this byte may be tested to d~termine
the status of any given block I/O transfer. The binary values of
these status codes always have the following significance:

Code Value Meaning

+ I/O transfer completed.

o I/O transfer still pending.

I/O error condition exists.

The format of the I/O status block and the error codes returned to the
low-order byte of its first word are described in detail in the
IAS/RSX-IID Device Handlers Reference Manual or the RSX-IIM I/O
Drivers Reference Manual.

If the address of the I/O status block is not made available to FCS
(and hence to the QUEUE I/O directive) through any of the macro calls
noted above, no status information is returned to the I/O status
block. In this case, the fact that an error condition may have
occurred during a READ$ or WRITE$ operation is simply lost. Thus,
supplying the address of the I/O status block to the associated FDB is
highly desirable in order to facilitate normal error reporting.

An I/O status block
assembly-time through
the following:

IOSTAT: .BLKW 2

may
any

be defined in the user program at
storage directive logically equivalent to

where the label IOSTAT is a user-defined symbol naming the I/O status
block and defining its address. This symbolic value is specified as
the bkst parameter in the FDBK$A or the FDBK$R macro call to
initialize FDB offset location F.BKST; it may also be specified as
the corresponding parameter in the READ$ or the WRITE$ macro call,
initializing this cell in the FDB as an integral function of issuing
the desired I/O request.

2.8.3 AST Service Routine

An asynchronous system trap (AST) is a software-generated interrupt
that causes the sequence of instructions currently being executed to
be interrupted and control to be transferred to another instruction
sequence elsewhere in the program. If desired, the user may specify
the address of an AST service routine that is to be entered upon
completion of a block I/O transfer. Since an AST is a trap action, it
constitutes an automatic indication of block I/O completion.

The address of an AST service routine may be specified as an optional
parameter (bkdn) in the FDBK$A or the FDBK$R macro call (see Section
2.2.1.4 or 2.2.2, respectively); this parameter may also be specified
in the READ$ or the WRITE$ macro call, initializing the FDB at the
time the I/O request is issued (see Section 3.15 or 3.16,
respectively) .

Usually, an AST address is
interrupted In order to
block I/O request. If the
specified, the transfer
execution continues.

specified to enable a running task to be
execute special code upon completion of a

address of an AST service routine is not
of control does not occur, and normal task

2-42

PREPARING FOR I/O

The main purpose of an AST service routine is to inform the user
program that a block I/O operation has been completed, thus enabling
the program to continue immediately with some other desired (and
perhaps logically dependent) operation (e.g., another I/O transfer).

If an AST service routine is not provided by the user, some other
mechanism, such as event flags or the I/O status block, must be used
as a means of determining block I/O completion. In the absence of
such a routine, for example, the user may test the low-order byte of
the first word in the I/O status block to determine if the block I/O
transfer has been completed. A WAIT$ macro call (see Section 3.17)
may also be issued in connection with a READ$ or WRITE$ operation to
suspend task execution until a specified event flag is set to indicate
the completion of block I/O.

The implementation of an AST service routine in the user program is
application-dependent and must be coded specifically to meet
particular user I/O-processing requirements. A detailed discussion of
asynchronous system traps is beyond the scope of this document. The
reader is therefore referred to the Executive Reference Manual of the
host operating system for discussions of various trap-associated
system directives.

2-43

CHAPTER 3

FILE-PROCESSING MACRO CALLS

The user manipulates files through a set of file-processing macro
calls. These macro calls are invoked and expanded at assembly-time.
The resulting code is then executed at run-time to perform the
operations listed below:

OPENS

OPNS$

OPNT$

OFID$

OFNB$

- To open and prepare a file for processing;

- To open and prepare a file for processing and to allow
shared access to that file (depending on the mode of
access) ;

- To create and open a temporary file for processing;

- To open an existing file using file-identification
information in the filename block;

- To open a file using filename information in the
filename block;

CLOSES - To terminate file processing in an orderly manner;

GET$ - To read logical data records from a file;

GET$R - To read fixed-length records from a file in random
mode;

GET$S - To read records from a file in sequential mode;

PUTS - To write logical data records to a file;

PUT$R - To write fixed-length records to a file in random mode;

PUT$S - To write records to a file in sequential mode;

READ$ - To read virtual data blocks from a file;

WRITE$ - To write virtual data blocks to a file;

DELET$ - To remove a named file from the associated volume
directory and to deallocate the space occupied by the
file; and

WAIT$ - To suspend program execution until a requested block
I/O operation is completed.

Most of the parameters associated with the file-processing macro calls
supply information to the FOB. Such parameters cause MOV or MOVB
instructions to be generated in the object code, resulting in the
initialization of specific locations within the FOB.

3-1

FILE-PROCESSING MACRO CALLS

The final parameter in all file-processing macro calls is the symbolic
address of a user-coded error-handling routine. This routine is
entered upon detection of an error condition during the
file-processing operation. When this optional parameter is specified,
the following code is generated:

nn$:

Code for macro

BCC
JSR

nn$
PC,ERRLOC

~TESTS C-BIT IN PROCESSOR STATUS WORD.
;INITIATES ERROR-HANDLING ROUTINE
;.AT "ERRLOC" ADDRESS.
;CONTINUES NORMAL PROGRAM EXECUTION.

where nn$ represents an automatically generated local symbol. If the
operation is completed successfully, the C-bit (carry condition code)
in the Processor Status Word is not set, and FDB offset location F.ERR
contains a positive value. The BCC instruction then results in a
branch to the local symbol nn$ and the continuation of normal program
execution.

However, if an error condition is detected during the execution of the
file-processing routine, the C-bit in the Processor Status Word is
set, FDB offset location F.ERR contains a negative value (indicating
an error condition), and the branch to the local symbol nn$ does not
occur. Instead, the JSR instruction is executed, loading the PC with
the symbolic address (ERRLOC) of the error-handling routine and
initiating its execution.

If this optional parameter is not specified, the error processing
routine is not called, and the user must explicitly test the C-bit in
the Processor Status Word to ascertain the status of the requested
operation.

Note that the execution of the FCS file-processing routines causes all
user-program general registers to be saved except RO, which, by
convention, is used by FCS to contain the address of the FDB
associated with the file being processed.

3.1 OPEN$x - GENERALIZED OPEN MACRO CALL

Before any file can be processed by the user (or system) program, it
must first be opened. The type of action that the user intends to
perform on a file is indicated to FCS by an alphabetic suffix
accompanying the macro name. For example, in issuing the generalized
macro call,

OPEN$x

x represents anyone of the following alphabetic suffixes, each of
which denotes a specific type of processing anticipated for the file:

R - Read an existing file;

W - Write (create) a new file;

M - Modify an existing file without changing its length;

U - Update an existing file and extend its length, if necessary;

or

A - Append (add) data to the end of an existing file.

3-2

FILE-PROCESSING MACRO CALLS

NOTE

The generalized OPEN$x macro call can be
issued without an alphabetic suffix. In
this case, the type of action to be
performed on the file is indicated to
FCS through an additional parameter in
the macro call. This value, called the
file-access (facc) parameter, causes
offset location F.FACC in the associated
FDB to be initialized. Section 3.7
describes this macro call in detail.

Depending on the alphabetic suffix supplied in the OPEN$x macro call,
certain other types of operations mayor may not be allowed, as noted
below:

1. If R is specified (for reading an existing file), that file
cannot also be written, i.e., a PUT$ or WRITE$ operation
cannot be performed on that file.

2. If M or U is specified (for modifying or updating an existing
file), that file can be both read and written, i.e.,
concurrent GET$/PUT$ or READ$/WRITE$ operations may be
performed on that file.

3. If M is specified (for modifying an existing file), that file
cannot be extended.

4. If W or A is specified (for creating a new file or appending
data to an existing file), that file may be read, written,
and/or extended.

The program that is issuing the OPEN$x macro call must have
appropriate access privileges for the specified action. Table 3-1
summarizes the access privileges for the various forms of the OPEN$x
macro call. This table also shows where the next record or block will
be read or written in the file after it is opened.

Table 3-1
File Access Privileges Resulting from OPEN$x Macro Call

MACRO ACCESS PRIVILEGES POSITION OF FILE AFTER OPEN$x

OPEN$R Read First record of existing file.

OPEN$W Read, write, extend First record of new file.

OPEN$M Read, write First record of existing file.

OPEN$U Read, write, extend First record of existing file.

OPEN$A Read, write, extend End of existing file. (For
special PUT$R considerations,
see Section 3.13.)

3-3

FILE-PROCESSING MACRO CALLS

When any form of the OPEN$x macro call is issued, FCS first fills in
the filename block with filename information retrieved from the
dataset descriptor (see Section 2.4.1). FCS gains access to this data
structure through the address value stored in FOB offset location
F.OSPT.

If any required data has been omitted from the dataset descriptor, FCS
attempts to obtain the missing information from the default filename
block. This data structure, which may also contain user-specified
filename information, is created in the program by issuing the NMBLK$
macro call (see Section 2.4.2). FCS gains access to this structure
through the address value stored in FOB offset location F.OFNB.

The address values in offset locations F.OSPT and F.OFNB may be
supplied to FCS through the FOOP$A macro call, the FOOP$R macro call,
or the OPEN$x macro call. FCS requires access to the dataset
descriptor and/or the default filename block in retrieving filename
information used in opening files.

If a new file is to be created, the OPEN$W macro call is issued. FCS
then performs the following operations:

1. Creates a new file and obtains file-identification
information for the file. File-identification information is
maintained by FCS in offset location N.FIO of the filename
block. The filename block in the FOB begins at offset
location F.FNB.

2. Initializes the file attribute section of the file-header
block. The file-header block is a file system structure
maintained on the volume containing the file. Each file on a
volume has an associated file-header block that describes the
attributes of that file. FCS obtains attribute information
for a new file from the FOB associated with the file. The
format and content of a file-header block are presented in
detail in Appendix F.

3. Places an entry for the file in the user file directory
(UFO). If, however, an entry for a file having the same
name, type, and version number already exists in the UFO, the
old file is deleted. If a particular type of macro call is
issued explicitly specifying that the file not be superseded,
the old file is not deleted. This type of OPEN$ operation is
described in Section 3.7.

4. Associates the assigned logical unit number (LUN) with the
file to be created.

5. Allocates a buffer for the file from the FSR-block-buffer
pool if record I/O (GET$/PUT$) operations are to be used in
processing the file.

If an existing file is to be opened, anyone of the following macro
calls may be issued: OPEN$R, OPEN$M, OPEN$U, or OPEN$A. FCS then
performs the following operations:

1. If file-identification information is not present in the
filename block, FCS constructs the filename block from
information taken from the dataset descriptor and/or the
default filename block. FCS then searches the user file
directory (UFO) by filename to obtain the required
file-identification information. When found, this
information is stored in the filename block, beginning at
offset location N.FIO.

3-4

FILE-PROCESSING MACRO CALLS

2. Associates the assigned logical unit number (LUN) with the
file.

3. Reads the file-header
file-attribute section of
being opened.

block and initializes the
the FOB associated with the file

4. Allocates a buffer for the file from the FSR-block-buffer
pool if record I/O (GET$/PUT$) operations are to be used in
processing the file.

NOTE

As described in Section 2.6, the user
allocates buffers through the FSRSZ$
macro call. The number of buffers
allocated is dependent upon the number
of files that the user intends to open
simultaneously for record I/O
operations.

If block I/O operations are to be used,
FOB offset location F.RACC must be
initialized with the FO.RWM parameter
via the FDRC$A, the FDRC$R, or the
generalized OPEN$x macro call. This
parameter inhibits the allocation of a
buffer when the file is opened.

3.1.1 Format of Generalized OPEN$x Macro Call

The generalized macro call for opening files takes the following form:

where:

OPEN$x fdb,lun,dspt,racc,urba,urbs,err

x represents the alphabetic suffix specified as part
of the macro name, indicating the desired type of
operation to be performed on the file. The
possible values for this parameter are: R, W, M,
U, or A (see Section 3.1).

fdb represents a symbolic value of the address of the
associated FDB.

lun

dspt

represents the logical unit number (LUN)
associated with the desired file. This parameter
identifies the device on which the volume
containing the desired file is mounted. Normally,
the logical unit number associated with the file
is specified through the corresponding parameter
of the FDOP$A or the FDOP$R macro call. If so
specified, the lun parameter need not be present
in the OPEN$x macro call. Each FDB must have a
unique LUN.

represents the symbolic address of the dataset
descriptor. Normally, this address value is
specified through the corresponding parameter of
the FDOP$A or the FDOP$R macro call. If so
specified, this parameter need not be present in
the OPEN$x macro call.

3-5

racc

urba

FILE-PROCESSING MACRO CALLS

This parameter specifies the address of the
manually created dataset descriptor (see Section
2.4.1). If the Command String Interpreter (CSI)
is being used to interpret command lines
dynamically, this parameter is used to specify the
address of the dataset descriptor within the CSI
control block (see offset location C.DSDS in
Section 6.2.2).

represents the record-access byte. One or more
symbolic values may be specified in this field to
initialize the record-access byte (F.RACC) in the
associated FDB. Any combination of the following
parameters may be specified:

FD.RWM - Indicates that block I/O (READ$/WRITE$)
operations are to be used in processing the file.
If this parameter is not specified, FCS assumes by
default that record I/O (GET$/PUT$) operations are
to be used in processing the file.

FD.RAN - Indicates that random access to the file
is to be used for record I/O (GET$/PUT$)
operations. If this parameter is not specified,
FCS uses sequential access by default. Refer to
Section 1.5 for a description of random-access
mode.

FD.PLC - Indicates that locate mode (see Section
1.6.2) is to -~e used for record I/O (GET$/PUT$)
operations. If this parameter is not specified,
FCS uses move mode (see Section 1.6.1) by default.

FD.INS - Indicates that a PUTS operation in
sequential mode in the body of a file shall not
truncate the file. Effectively, this parameter
prevents the logical end of the file from being
reset to a point just beyond the inserted record.
If this parameter is not specified, a PUTS
operation in sequential mode truncates the file to
a point just beyond the inserted record, but no
deallocation of file blocks occurs.

The specification of this parameter allows a data
record in the body of the file to be overwritten.
Care must be exercised, however, to ensure that
the record being written is the same length as the
record being replaced.

If the FD.RAN parameter above is specified, the
file is accessed in random mode. In this case, a
PUTS operation in the file, without exception,
does not truncate the file.

If the record-access byte in the FDB has already
been initialized through the corresponding
parameters of the FDRC$A or the FDRC$R macro call,
the racc parameters need not be present in the
OPEN$x macro call.

represents the symbolic address of the user record
buffer. This parameter initializes FDB offset
location F.URBD+2.

3-6

urbs

err

FILE-PROCESSING MACRO CALLS

If the user-record-buffer address has already been
supplied to the FDB through the corresponding
parameter of the FDRC$A or the FDRC$R macro call,
this parameter need not be present in the OPEN$x
macro call.

represents a numeric value defining the size of
the user record buffer (in bytes). This parameter
initializes FDB offset location F.URBD.

If the size of the user record buffer has already
been supplied to the FDB through the corresponding
parameter of the FDRC$A or the FDRC$R macro call,
this parameter need not be present in the OPEN$x
macro call.

represents the symbolic address of an optional
user-coded error-handling routine.

Specific FDB requirements for record I/O operations (GET$ and PUT$
macro calls) are detailed in Sections 3.9.2 and 3.12.2.

The following examples depict representative uses of the OPEN$x macro
call.

A macro call to open and modify an existing file, for example, might
take the following form:

OPEN$M RO,#INLUN,,#FD.RAN!FD.PLC

Note in this macro call that the FDB address is assumed to be present
in RO. The third parameter, i.e., the dataset-descriptor pointer, is
not specified; this null specification (indicated by the extra comma)
assumes that FbB offset location F.DSPT (if required) has already been
initialized. The last parameter, consisting of two values separated
by an exclamation point, establishes random access and locate modes
for GET$/PUT$ operations.

The following macro call might be issued to update an existing file:

OPEN$U RO,#INLUN",#RECBUF,#80.

This macro call also assumes that the FDB address is in RO. Note also
that the dspt and racc parameter fields are null, based on the premise
that the dataset-descriptor pointer (F.DSPT) has been provided
previously to the FDB and that the record-access byte (F.RACC) has
also been previously initialized. Finally, the last two parameters
establish the address and the size of the user record buffer,
respectively.

This last example shows a macro call that might be issued to allow
data to be appended to the end of a file:

OPEN$A #OUTFDB

This macro call specifies the address of an FDB as the only parameter.
In this case, it is assumed that all other parameters required by FCS
in opening and operating on the file have been previously supplied to
the FDB through the appropriate assembly-time or run-time macro calls.

Note in all three examples above that the error parameter is not
specified, requir~ng that the user explicitly test the C-bit in the
Processor Status Word to ascertain the success of the specified
operation.

3-7

FILE-PROCESSING MACRO CALLS

3.1.2 FDB Requirements for Generalized OPEN$x Macro Call

The information required for opening a file may be supplied to the FOB
through the following macro calls:

1. The assembly-time macro calls described in Section 2.2.1.

2. The NMBLK$ macro call described in Section 2.4.2.

3. The run-time macro calls described in Section 2.2.2.

4. The various macro calls described in this chapter for opening
files.

The particular combination of macro calls used to define and
initialize the FOB is a matter of choice, as indicated above. Of far
greater significance is the fact that certain information must be
present in the FOB before the associated file can be opened. In this
regard, the following rules apply for creating and opening new files,
for opening existing files, and for specifying desired file options:

1. To Create a New File. If a new file is to be created through
the OPEN$W macro call, the following information must first
be supplied to the FOB. This information may be specified
through the FOAT$A macro call (see Section 2.2.1.2) or the
FOAT$R macro call (see Section 2.2.2):

a. The record type must be established for record I/O
operations. To accomplish this, byte offset location
F.RTYP must be initialized with the following symbolic
values:

R.FIX - Indicates that fixed-length records are to be
written into the file.

R.VAR - Indicates that variable-length records are to be
written into the file.

R.SEQ - Indicates that sequenced records are to be
written into the file.

b. The desired record attributes must be specified for
record I/O operations. The record attributes are defined
by initializing byte offset location F.RATT with the
appropriate value(s), as follows:

FO.FTN - Indicates that the first byte of each record is
to contain a FORTRAN carriage-control character.

FO.CR - Indicates that a line-feed «LF» character is to
precede each record and that a carriage-return «CR»
character is to follow the record when that record is
output to a device requiring carriage-control information
(e.g., to a terminal). The <LF> and <CR> characters are
not actually embedded within the record. Their presence
is merely implied through the file attribute FO.CR.

FO.BLK - Indicates that records are not allowed to cross
block boundaries.

c. If fixed-length records are to be written to the file,
the record size (in bytes) must be specified for record
I/O operations to appropriately initialize FOB offset
location F.RSIZ.

3-8

FILE-PROCESSING MACRO CALLS

Items a. through c. above cannot be supplied to the FDB
through any of the various macros used to create and/or open
files (e.g., OPEN$W, OPEN$R, etc.). Furthermore, none of the
above information is required when opening an existing file,
since FCS obtains such information from the first 14 bytes of
the user-file-attribute section of the file-header block (see
Appendix F).

2. To Open Either a New File or an Existing File. Regardless of
whether the file being opened is yet to be created or already
exists, the following information must be present in the FDB
before that file can be opened:

a. The record-access byte must be initialized for
record/block I/O operations. The symbolic values below
may be specified in the FDRC$A macro call (see Section
2.2.1.3), the FDRC$R macro call (see Section 2.2.2), or
the generalized OPEN$x macro call to initialize FDB
offset location F.RACC:

FD.RWM - Indicates that READ$/WRITE$ (block I/O)
operations are to be used in processing the file. If
this parameter is not specified, GET$/PUT$ (record I/O)
operations result by default.

FD.RAN - Indicates that random-access mode (GET$/PUT$
record I/O) is to be used in processing the file. If
this parameter is not specified, sequential-access mode
results by default. Refer to Section 1.5 for a
description of random-access mode.

FD.PLC - Indicates that locate mode (GET$/PUT$ record
I/O) is to be used in processing the file. If this
parameter is not specified, move mode results by default.

FD.INS - Indicates that a PUT$ operation in sequential
mode in the body of a file shall not truncate the file.
If this parameter is not specified, such an operation
truncates the file. In this case, the logical end of the
file is reset to a point just beyond the inserted record,
but no deal location of file blocks occurs.

b. The user-record-buffer descriptors, i.e., the urba and
urbs parameters, must be specified for record I/O
operations. To accomplish this, the FDRC$A, the FDRC$R,
or the generalized OPEN$x macro call may be used. The
selected macro call defines the address and the size of
the area reserved in the program for use as a buffer
during record I/O operations. The urba and urbs
parameters j~itialize FDB offset locations F.URBD+2 and
F.URBD, respectively.

FDB requirements specific to GET$ and PUT$ operations in
move and locate mode are presented in detail in Sections
3.9.2 and 3.12.2, respectively.

c. The logical unit number must be specified to initialize
FDB offset location F.LUN. The initialization of this
cell can be accomplished through the lun parameter of the
FDOP$A, the FDOP$R, or the generalized OPEN$x macro call.
Each FDB must have a unique logical unit number.

3-9

FILE-PROCESSING MACRO CALLS

d. If file identification information is not already present
in the FDB, either the dataset-descriptor pointer
(F.DSPT) or the default filename-block address (F.DFNB)
must be specified to enable FCS to obtain required
filename information for use in opening the file. These
address values may be specified in either the FDOP$A
macro call (see Section 2.1.1.5) or the FDOP$R macro call
(see Section 2.2.2). The generalized OPEN$x macro call
(see Section 3.1) may also be used to specify the
dataset-descriptor pointer.

e. If desired, an event flag number for synchronizing record
I/O operations must be specified to initialize FDB offset
location F.EFN. This optional parameter may be specified
in either the FDBF$A macro call (see Section 2.2.1.6) or
the FDBF$R macro call (see Section 2.2.2). If not
specified, FCS uses event flag number 32(10) by default
in synchronizing all record I/O activity.

3. Specifying Desired File Options. If certain options are
desired for a given file, they must be specified before that
file is opened. Since this information is needed only in
opening the file, it is zeroed when the file is closed, thus
ensuring that the FDB is properly reinitialized for
subsequent use. The options that may be specified for a
given file are described below:

a. The override block size (ovbs parameter) must be
specified in either the FDBF$A or the FDBF$R macro call
to initialize FDB offset location F.OVBS. This parameter
need be specified only if the standard default block size
in effect for the associated device is to be overridden.
The override block size is specified only in connection
with record-oriented devices (such as line printers) and
sequential devices (such as magnetic tape units).

b. The multiple-buffer count (mbct parameter) must be
specified in either the FDBF$A or the FDBF$R macro call
to initialize FDB offset location F.MBCT. (The mbct
parameter is not applicable to RSX-IIM.) If
multiple-buffered record I/O operations are to be used,
this parameter must be greater than 1, and it must agree
with the desired number of buffers to be used. This
parameter is not overlaid, nor is it zeroed when the file
is closed.

If the multiple-buffer count is not established as
described above, multiple-buffered operations can still
be invoked by changing the default buffer count in the
FSR. A default buffer count of 1 is stored in symbolic
location .MBFCT of $$FSR2. This default value can be
altered to reflect the number of buffers intended for use
during record I/O operations. The procedure for
modifying this cell in $$FSR2 is described at the end of
Section 2.2.1.6.

In addition, if multiple buffering is to be employed, the
appropriate control flag must be specified as the mbfg
parameter in either the FDBF$A or the FDBF$R macro call
to appropriately initialize FDB offset location F.MBFG.
Either of two symbolic values may be specified for this
purpose, as follows:

FD.RAH - Indicates that read-ahead operations are to be
used in processing the file.

3-10

FILE-PROCESSING MACRO CALLS

FD.WBH - Indicates that write-behind operations are to be
used in processing the file.

Offset location F.MBFG need be initialized only if the
standard default buffering assumptions are inappropriate.
When a file is opened for reading (OPEN$R), read-ahead
operations are assumed by default; for all other forms
of OPEN$x, write-behind operations are assumed. It may
be useful, for example, to override the write-behind
default assumption for a file opened through the OPEN$M
or the OPEN$U macro call when that file is being used
basically for sequential read operations, but scattered
updating is also being performed.

c. To allocate required file space at the time a file is
created, the cntg parameter must be specified in either
the FDAT$A or the FDAT$R macro call. This parameter
initializes FOB offset location F.CNTG. A positive value
so specified results in the allocation of a contiguous
file having the specified number of blocks; a negative
value, on the other hand, results in the allocation of a
noncontiguous file having the specified number of blocks.

d. The address of the 5-word statistics block in the user
program must be moved manually into FOB offset location
F.STBK. This address value specifies an area in the user
program to which FCS returns certain statistical
information about a file when it is opened. If this
parameter is not specified, no return of such information
occurs.

The format and content of the statistics block are
presented in Appendix H. The user who elects to define
such an area in a program may do so with coding logically
equivalent to that shown below:

STBLK: .BLKW 5

Offset location F.STBK may then be manually initialized,
as follows:

MOV #STBLK,FDBADR+F.STBK

where STBLK is the user-defined symbolic address of the
statistics block, and the destination operand of this
instruction defines the appropriate offset location
within the desired FOB.

3.2 OPNS$x - OPEN FILE FOR SHARED ACCESS

The OPNS$x macro call is issued to open a file for shared access.
This macro call has the same format, i.e., takes the same alphabetic
suffixes and run-time parameters, as the generalized OPEN$x macro
call. The shared access conditions that result from the use of this
macro call are summarized in section 1.8.

3-11

FILE-PROCESSING MACRO CALLS

3.3 OPNT$W - CREATE AND OPEN TEMPORARY FILE

The OPNT$W macro call is issued to create and open a temporary file
for some special purpose of limited duration. If a temporary file is
to be used only once, it is best created through the OPNT$D macro call
described in the following section.

The OPNT$W macro call creates a file but does not enter a filename for
that file into any associated user directory file. This macro call

. simply enters appropriate file-identification information into the
volume's index file and, in addition, maintains the
file-identification field (offset location N.FID) in the associated
filename block. The index file consists of file-header blocks for
user files (see Appendix E).

In using the OPNT$W macro call, the user bears the responsibility for
marking the temporary file for deletion, as described in the procedure
below. Then, after all operations associated with that file are
completed, closing the file results in its deallocation. All space
formerly occupied by the file is then returned for reallocation to the
pool of available storage on the volume.

Although the OPNT$W macro call takes the same parameters as the
generalized OPEN$x macro call, the former executes faster because no
directory entries are made for a temporary file.

Creating a temporary file is usually done when a program requires a
file only for the duration of its execution (e.g., for use as a work
file). The general sequence of operations in such instances proceeds
as follows:

1. Open a temporary file by issuing the OPNT$W macro call.
Perform any desired operations on that file. If the file is
to be used only for a s~AngE(OPNT$W/CLOSE$ sequence, go to Step
6; otherwise, continue with Step 2.

2. Before closing the file for processing, save the filename
block in the associated FDB. The general procedure for
saving (and restoring) the filename block is discussed in
Section 2.5.1.

3. Close the file by issuing the CLOSES macro call (see Section
3.8). Continue other processing in the program, as desired.

4. In anticipation of reopening the temporary file, restore the
filename block to the FDB by accomplishing the reverse of
Step 2 above.

5. Reopen the file by issuing any of the FCS macro calls that
open existing files. Resume operations on the file: repeat
the save, CLOSE$, restore, open sequence any desired number
of times.

6. Before closing the file the last time, call the .MRKDL
routine, as shown below, to mark the file for deletion:

CALL .MRKDL

The .MRKDL routine is described in Section 4.13.1.

7. Close the file by issuing the CLOSES macro call.

3-12

FILE-PROCESSING MACRO CALLS

If the filename block is not saved, the file identification field
therein is destroyed since this field is reset to 0 when the file is
closed.

Thus, not saving the filename block before closing a temporary file
results in a "lost" file, since no directory entry is made for a
temporary file. The usual procedure of listing the volume's directory
is therefore inapplicable. The only way such a file can be recovered
is to use the file-structure verification utility program (VFY) to
search the volume's index file. The VFY program has the capability to
compare the files listed in all the directories on the volume with
those listed in the index file. If a file appears in the index file,
but not in a directory, VFY identifies that file for the user. This
program is described in detail in the lAS System Management Guide,
RSX-llD Utility Programs Procedures Manual, and RSX-ll Utilities
Procedures Manual.

3.4 OPNT$D - CREATE AND OPEN TEMPORARY FILE AND MARK FOR DELETION

The OPNT$D macro call is issued to create and open a temporary file
and in addition to mark the file for deletion. File identification
information for such a file is entered into the volume's index file
and the filename block in the associated FDB (but not in any
associated volume directory). A file marked for deletion cannot be
opened by another program. Furthermore, when the file is closed, it
is automatically deleted from the volume, returning its space to the
pool of available storage on the volume for reallocation.

thus created is to be used only once. This is a particularly
desirable way to open a temporary file, since the file will be deleted
even if the program terminates abnormally without closing the file.

The OPNT$D macro call takes the same format and parameters as the
generalized OPEN$x macro call.

3.5 OFID$x - OPEN FILE BY FILE ID

The OFID$x macro call is issued to open an existing file using
information stored in the file-identification field (offset location
N.FID) of the filename block. Thus, issuing this macro call invokes
an Fes routine that opens a file only by file ID (see Section 2.5).
The OFID$x call, which has the same format and takes the same
parameters as the generalized OPEN$x macro call (see Section 3.1), is
designed for use with overlaid programs.

In describing the functions of the OFID$x macro call, either one of
two assumptions may apply, as follows:

1. That the necessary context for opening the file has been
saved from a previous OPEN$x operation and restored to the
filename block in anticipation of opening that file by file
ID. The saving and restoring of the filename block are
discussed in detail in Section 2.5.1.

2. That the desired file is to be opened for the first time. In
that case, the necessary context for opening the file must
first be stored in the filename block before the OFID$ macro
call can be issued.

3-13

FILE-PROCESSING MACRO CALLS

In most cases, the latter assumption applies, requiring that the
following procedures be performed:

1. Call the .PARSE routine (see Section 4.7.1). This routine
takes information from a specified dataset descriptor and/or
default filename block and initializes and fills in the
specified filename block.

2. Call the .FIND routine (see Section 4.8.1). This routine
locates an appropriate directory entry for the file (by
filename) and stores the file-identification information
therefrom in the 6-byte file-identification field of the
filename block, starting at offset location N.FID. As a
result of Steps 1 and 2, the necessary context then exists in
the associated filename block for opening the file by file
ID.

3. Issue the OFID$x macro call.

The advantage in using the .PARSE and .FIND routines in conjunction
with the OFID$x macro call is that the user can overlay the program,
placing .PARSE and .FIND on one branch, and the code for OFID$x on
another branch. This overlay structure reduces the program's overall
memory requirements.

Unlike the other FCS macro calls for opening files, the OFID$x macro
call requires a nonzero value in the first word of the file
identification field (N.FID) in order to work properly. When this
field contains a nonzero value, FCS assumes that the remaining context
necessary for opening that file is present and, accordingly, opens the
file by file ID.

3.6 OFNB$x OPEN FILE BY FILENAME BLOCK

The OFNB$x macro call is issued to open either an existing file or to
create and open a new file using filename information in the filename
block. Similar to the OFID$x macro call above, the OFNB$x call is
designed for use with overlaid programs. However, the OFNB$x macro
call differs in two important respects: it can be issued to create a
new file, and it can be issued to open a file by filename block.

The OFNB$x call has the same format and takes the same parameters as
the generalized OPEN$x macro call as described in Section 3.1.1;
i.e.,

OFNB$x fdb,lun,dspt,racc,urba,urbs,err

The OFNB$x macro also uses the same suffixes that are available to the
OPEN$x macro; i.e., OFNB$R, OFNB$W, OFNB$M, OFNB$U, OFNB$A. The
suffixes have the same meaning as they do for OPEN$x (see Table 3-1).

In describing the functions of the OFNB$x macro call, the same
assumptions outlined above for OFID$x apply, viz., that the filename
block has been saved and restored in anticipation of issuing the
OFNB$x macro call, or that the file is being opened for the first
time. Since the procedures for saving and restoring the filename
block are detailed in Section 2.5.1, the following discussion assumes
that the desired file is being opened for the first time. In this
case, the filename block in the FDB must be initialized, as described
below.

3-14

FILE-PROCESSING MACRO CALLS

To open a file by filename block, the following information must be
present in the filename block of the associated FOB:

1. The filename (offset location N.FNAM);

2'. The file type or extension (offset location N.FTYP) ;

3. The file version number (offset location N. FVER) ;

4. The directory 10 (offset location N.OIO);

5. The device name (offset location N. DVNM) ; and

6. The unit number (offset location N.UNIT) .

In providing the information above to the filename block, either of
two general procedures may be used, as described in the following
sections.

3.6.1 Dataset Descriptor and/or Oefault Filename Block

If the dataset descriptor contains all the required information listed
above, perform the following procedures:

1. Call the .PARSE routine (see Section 4.7.1). This routine
takes information from a speci£ied dataset descriptor and/or
default filename block and fills in the appropriate offsets
of a specified filename block.

2. Issue the OFNB$x macro call.

3.6.2 Default Filename Block Only

If a default filename block is to be used in providing the required
information to FCS, perform the following procedures:

1. Issue the NMBLK$ macro call (see Section 2.4.2) to create and
initialize a default filename block. With the exception of
the directory 10, this structure provides all the requisite
information to FCS.

2. To provide the directory 10, call either of the following
routines:

a. Call the .GTOIR routine (see Section 4.9.1) to retrieve
the directory ID from the specified dataset descriptor
and to store the directory 10 in the default filename
block; or

b. Call the .GTOIO routine (see Section 4.9.2) to retrieve
the default UIC from $$FSR2 and to store the directory ID
in the default filename block.

3. Move the entire default filename block manually into the
filename block associated with the file being opened.

4. Issue the OFNB$x macro call.

Note that the coding for OFNB$x operations normally resides in an
overlay apart from that containing the other FCS routines identified
above.

FILE-PROCESSING MACRO CALLS

The issuance of the OFNB$x macro call is usually done under the
premise that the filename block contains the requisite information, as
described above. However, if the file-identification field (offset
location N.FIO) in the filename block contains a nonzero value when
the call to OFNB$x is issued, the file is unconditionally opened by
file 10.

If the user expects to open both new and existing files, and memory
conservation is an objective, the OFNB$x macro call is most suitable
for opening such files. The OFIO$x coding should not be included in
the same overlay with OFNB$x, since OFIO$x overlaps the function of
OFNB$x and, therefore, needlessly consumes memory space.

3.7 OPENS - GENERALIZED OPEN FOR SPECIFYING FILE ACCESS

Usually, when the user wishes to create a file, the filename and the
file type are specified, and FCS is allowed to assign the next higher
file version number. However, if the OPEN$W macro call is issued for
a file having an explicit filename, file type, and file version
number, and a file of that description already exists in the specified
user file directory (UFO), the old file is superseded.

By issuing the OPEN$ macro call without an alphabetic suffix, and by
specifying two additional parameters, the user can inhibit the
automatic superseding of a file when a duplicate file specification is
encountered in the UFO. Rather than deleting the old version of the
file, an error indication (IE.OUP) is returned to offset location
F.ERR of the applicable FOB.

All parameters of this macro call are identical to those specified for
the generalized OPEN$x macro call (see Section 3.1), with the
exception of the facc parameter and the dfnb parameter. These
additional parameters are described below.

To open a
identical
used:

file
file

OPENS

where: facc

without superseding an existing file having an
specification, a macro call ~f the following form is

fdb,facc,lun,dspt,dfnb,racc,urba,urbs,err

represents anyone or an appropriate combination
of the following symbolic values indicating how
the specified file is to be accessed:

FO.RO - Indicates that an existing file is to be
opened for reading only.

FO.WRT - Indicates that a new file is to be
created and opened for writing.

FO.APD - Indicates that an existing file is to be
opened and appended.

FO.MFY - Indicates that an existing file is to be
opened and modif~ed.

FO.UPD - Indicates that an existing file is to be
opened, updated, and, if necessary, extended.

FA.NSP - Indicates, in combination with FO.WRT
above, that the old file having the same file
specification is not to be superseded by the new
file.

3-16

dfnb

FILE-PROCESSING MACRO CALLS

FA.TMP - Indicates, in combination with FO.WRT
above, that the file is to be a temporary file.

FA.SHR - Indicates that the file is to be opened
for shared access.

represents the symbolic address of the default
filename block. This parameter is the same as
that described in connection with the
FDOP$A/FDOP$R macro call.

The above parameters initialize FDB offset locations F.FACC and F.DFNB
with appropriate values.

Any logically consistent combination of the above file-access symbols
is permissible. The particular combination required to create and
write a new file without superseding an existing file is shown below:

OPEN$ #OUTFDB,#FO.WRT!FA.NSP

The following macro call creates a temporary file for shared access:

OPEN$ #OUTFDB,#FO.WRT!FA.TMP!FA.SHR

3.8 CLOSES - CLOSE SPECIFIED FILE

When the processing of a file is completed, it must be closed by
issuing the CLOSE$ macro call. The CLOSE$ operation performs the
following housekeeping functions:

1. Waits for all I/O operations in progress for the file to be
completed (multiple-buffered record I/O only).

2. Ensures that the FSR block buffer, which contains data for an
output file, is completely written if it is partially filled
(record I/O only) .

3. Deaccesses the file.

4. Releases the FSR block buffer{s) allocated for the file
(record I/O only) .

5. Prepares the FDB for subsequent use by clearing appropriate
FDB offset locations.

6. Calls an optional user-coded error-handling routine if an
error condition is detected during the CLOSE$ operation.

3.8.1 Format of CLOSES Macro Call

The CLOSE$ macro call takes the following format:

where:

CLOSE$ fdb,err

fdb represents a symbolic value of the address of the
associated FDB.

err represents the symbolic address of an optional
user-coded error-handling routine.

3-17

FILE-PROCESSING MACRO CALLS

The following examples illustrate the use of the CLOSE$ macro call:

CLOSE$ #FDBIN,CLSERR

CLOSE$,CLSERR

CLOSE$ RO

The first example shows an explicit declaration for the relevant FDB
and the symbolic address of an error-handling routine to be entered if
the CLOSE$ operation is not completed successfully. The last two
examples assume that RO currently contains the address of the
appropriate FDB.

3.9 GET$ - READ LOGICAL RECORD

The GET$ macro call is used to read logical records from a file.
After a GET$ operation, the next record-buffer descriptors in the FDB
always identify the record just read, i.e., offset location F.NRBD+2
contains the address of the record just read, and offset location
F.NRBD contains the size of that record (in bytes). This is true of
GET$ operations in both move and locate mode.

In move mode, a GET$ operation moves a record to the user record
buffer (as defined by the current contents of F.URBD+2 and F.URBD),
and the address and size of that record are then returned to the next
record-buffer descriptors in the FDB (F.NRBD+2 and F.NRBD).

In locate mode, if the entire record resides within the FSR block
buffer, then the address and the size of the record just read are
returned to the next record-buffer descriptors (F.NRBD+2 and F.NRBD).
If, on the other hand, the entire record does not reside within the
FSR block buffer, then that record is moved piecemeal into the user
record buffer, and the address of the user record buffer and the size
of the record are returned to offset locations F.NRBD+2 and F.NRBD,
respectively.

After returning from a GET$ operation in locate mode, whether or not
moving the record was necessary, F.NRBD+2 always contains the address
of the record just read, and F.NRBD always contains the size of that
record.

If the record read was a sequenced record, the sequence number is
stored in F.SEQN regardless of whether the GET$ was in move mode or
locate mode.

GET$ operations are fully synchronous, i.e., record I/O operations are
completed before control is returned to the user program.

Specific FDB requirements for GET$ operations are presented in Section
3.9.2 below.

3.9.1 Format of GET$ Macro Call

To read a logical record, the GET$ macro call is specified in the
following format:

GET$ fdb,urba,urbs,err

3-18

where: fdb

urba

urbs

err

FILE-PROCESSING MACRO CALLS

represents a symbolic value of the address of the
associated FDB.

represents the symbolic address of a user record
buffer to be used for record I/O operations in
move or locate mode. When specified, this
parameter initializes FDB offset location
F.URBD+2.

represents a numeric value defining the size (in
bytes) of the user record buffer. This parameter
determines the largest record that can be placed
in the user record buffer in move or locate mode.
When specified, this parameter initializes offset
location F.URBD in the associated FDB.

represents the symbolic address of an optional
user-coded error-handling routine.

If neither the urba nor the urbs parameter is specified in the GET$
macro call, FCS assumes that these requisite values have been supplied
previously through the FDRC$A, the FDRC$R, or the generalized OPEN$x
macro call. Any nonzero values in offset locations F.URBD+2 and
F.URBD resulting therefrom are used as the address and the length,
respectively, of the user record buffer.

If either of the following conditions occurs during record I/O
operations, FCS returns an error indication (IE.RBG) to offset
location F.ERR of the FDB, indicating an illegal record size:

1. In move mode, the record size exceeds the limit specified in
offset location F.URBDi or

2. In locate mode, the record size exceeds the limit specified
in offset location F.URBD, and the record must be moved
because it crosses block boundaries.

In both move and locate mode, only data up to the amount specified in
F.URBD is placed in the user's buffer. The next GET$ begins reading
at the beginning of the next record.

The following statements are representative of the GET$ macro call:

GET$

GET$

GET$

RO",ERROR

,#RECBUF,#25.,ERROR

#INFDB

In the first example, the address of the desired FDB is assumed to be
present in, RO. Note that the next two parameters, i.e., the user
record-buffer address (urba) and the user-record-buffer size (urbs),
are null. In this case, FCS assumes that the appropriate values for
FDB offset locations F.URBD+2 and F.URBD, respectively, have been
specified previously in the FDRC$A, the FDRC$R, or the generalized
OPEN$x macro call. The final parameter in the string is the symbolic
address of a user-coded error-handling routipe.

The second exampl~ also assumes that RO contains the address of the
desired FDB. Explicit parameters then define the address and the
size, respectively, of the user record buffer.

The last example shows a GET$ macro call in which only the address of
the FDB is specified.

3-19

FILE-PROCESSING MACRO CALLS

3.9.2 FOB Mechanics Relevant to GET$ Operations

The following sections summarize the essential aspects of GET$
operations in move and locate mode with respect to the associated FOB.

The discussions below focus mainly on whether or not a user record
buffer is required under certain conditions. In this regard, the
reader should recall that the user-record-buffer descriptors, l.e.,
the urba and the urbs parameters, may be specified in the FDRC$A, the
FDRC$R, or the generalized OPEN$x macro call, as well as the I/O
initiating GET$ macro call. These parameters need be present in the
GET$ macro call (to appropriately initialize the FOB) only if not
previously supplied through some other available means.

If operating in random-access mode, the number of the record to be
read is maintained by FCS in offset locations F.RCNM and F.RCNM+2 of
the associated FOB. FCS increments this value after each GET$ or
GET$R operation to point to the next record in the FSR block buffer.
Thus, unless the user program alters the values in locations F.RCNM
and F.RCNM+2 before each issuance of the GET$ or GET$R macro call, the
next record in sequence is read. The specified user-record-buffer
size (i.e., the urbs parameter) always determines the largest record
that can be read during a GET$ operation.

3.9.2.1 GET$ Operations in Move Mode - With respect to GET$
operations in move mode, the following generalization applies. If
records are always moved to the same user record buffer, the urba and
urbs parameters need be specified only in the initial GET$ macro call.
Alternatively, these values may be specified beforehand through any
available means identified above for initializing the
user-record-buffer descriptor cells in the FOB. In any case, offset
locations F.URBD+2 and F.URBD remain appropriately initialized for all
subsequent GET$ operations in move mode that involve the same user
record buffer.

3.9.2.2 GET$
Operations in
following:

Operations in
locate mode,

Locate
the user

Mode - In performing GET$
should take into account the

1. If fixed-length records are to be processed, and if they fit
evenly within the FSR block buffer, the user record buffer
descriptors need not be present in the associated FOB.

2. If fixed-length records that do not fit evenly within the FSR
block buffer are to be processed, or if variable-length
records are to be processed, the user-record-buffer
descriptors need not be present in the FOB, provided that the
file being processed exhibits the attribute of records not
being allowed to cross block boundaries (FD.BLK).

The property of records not crossing block boundaries is
established as the file is created. Specifically, if offset
location F.RATT in the FOB is initialized with FD.BLK prior
to file create-time, then the records in the reSUlting file
are not allowed to cross block boundaries.

3-20

FILE-PROCESSING MACRO CALLS

For an existing file, the user-file-attribute section of the
file-header block is read when the file is opened; thus, all
attributes of that file are made known to FCS, including
whether or not records within that file are allowed to cross
block boundaries.

The design of FCS requires the utilization of a user record
buffer only in the event that records (either fixed or
variable in length) cross block boundaries.

3. If a GET$ operation is performed in locate mode, and the
record is contained entirely within the FSR block buffer, the
address of the record within the FSR block buffer and the
size of that record are returned to offset locations F.NRBD+2
and F.NRBD, respectively, in the associated FDB. However, if
that record crosses block boundaries, it is moved to the user
record buffer. In this case, the address of the user record
buffer and the size of the record are returned to offset
locations F.NRBD+2 and F.NRBD, respectively.

In summary, if the potential exists for crossing block boundaries
during GET$ operations In locate mode, then the user-record-buffer
descriptors must be supplied through any available means to
appropriately initialize offset locations F.URBD+2 and F.URBD in the
associated FDB.

3.10 GET$R - READ LOGICAL RECORD IN RANDOM MODE

The GET$R macro call is used to read fixed-length records from a file
in random mode. Thus, by definition, issuing this macro call requires
that the user be intimately familiar with the structure of the file to
be read and, furthermore, that the user be able to specify precisely
the number of the record to be read.

The GET$ and GET$R macro calls are identical, except that the
parameter list of GET$R includes the specification of the desired
record number. If the desired record number is already present in the
FDB (at offset locations F.RCNM and F.RCNM+2), then GET$ may be used.
If, however, the record-access byte in the FDB (offset location
F.RACC) has not been initialized for random-access operations with
FD.RAN in the FDRC$A, the FDRC$R, or the generalized OPEN$x macro
call, then neither GET$ nor GET$R will read the desired record.

The GET$R macro call takes two more parameters in addition to those
specified in the GET$ macro call, as shown below:

GET$R

where: lrcnm

fdb,urba,urbs,lrcnm,hrcnm,err

represents a numeric value specifying the
low-order 16 bits of the number of the record to
be read. This value, which must be specified, is
stored in offset location F.RCNM+2 in the FDB.
The GET$R macro call seldom requires more than 16
bits to express the record number. A logical
record number up to 65,536(10} may be specified
through this parameter. If this parameter is not
sufficient to completely express the magnitude of
the record number, the following parameter must
also be specified.

3-21

hrcnm

FILE-PROCESSING MACRO CALLS

represents a numeric value specifying the
high-order 15 bits of the number of the record to
be read. This value is stored in FDB offset
location F.RCNM. If specified, the combination of
this parameter and the lrcnm parameter above
determines the number of the desired record.
Thus, an unsigned value having a total of 31 bits
of magnitude may be used in defining the record
number.

If this
location
zero (0).

parameter is not specified, offset
F.RCNM retains its initialized value of

If F.RCNM is used to express a desired record
number for any given GET$R operation, this cell
must be cleared before issuing a subsequent GET$R
macro call that requires 16 bits or less to
express the desired record number; otherwise, any
residual value in F.RCNM yields an incorrect
record number.

If the lrcnm and hrcnm parameters are not specified in a subsequent
GET$R macro call, the next sequential record is read since the record
number in offset locations F.RCNM+2 and F.RCNM is automatically
incremented with each GET$ operation. In the case of the first GET$R
after opening the file, record number 1 is read, because the record
number has been initialized to 0 by the OPEN. If other than the next
sequential record is to be read, the user must explicitly specify the
number of the desired record.

The following statements are representative of the use of the GET$R
macro call:

GET$R

GET$R

#INFDB,#RECBUF,#160.,#1040."ERROR

#FDBADR,#RECBUF,#160.,R3

Note in the first example that the number of the desired record to be
read, i.e., 1040(10), is expressed through the first of two available
fields for this purpose; the second field is not required and is
therefore reflected as a null specification.

The second example reflects the use of general register 3 in
specifying the logical record number. This register, or any other
location so used, must be preset with the desired record number before
issuing the GET$R macro call.

3.11 GET$S - READ LOGICAL RECORD IN SEQUENTIAL MODE

The GET$S macro call is used to read logical records from a file in
sequential mode. Although the routine invoked by the GET$S macro call
requires less memory than that invoked by GET$ (see Section 3.9),
GET$S has the same format and takes the same parameters. The GET$S
macro call is de~igned specifically for use in an overlaid environment
in which the amount of memory available to the program is limited and
files are to be read in strictly sequential mode.

If both GET$S and PUT$S are to be used by the program, note that the
savings in memory utilization over GET$ and PUTS can be realized only
if GET$S and PUT$S are placed on different branches of the overlay
structure.

3-22

FILE-PROCESSING MACRO CALLS

3.12 PUTS - WRITE LOGICAL RECORD

The PUTS macro call is used to write logical records to a file. If
operating in random-access mode, the number of the record to be
written is maintained by FCS in offset locations F.RCNM and F.RCNM+2
of the associated FOB. FCS increments this value after each PUTS or
PUT$R operation to point to the next sequential record position.
Thus, unless the user program alters this value before issuing another
PUTS or PUT$R operation, the next record in sequence is written.

For PUTS operations, offset locations F.NRBD+2 and F.NRBD in the
associated FOB must contain the address and the size, respectively, of
the record to be written. The distinction between move mode and
locate mode for PUTS operations relates to the building or the
assembling of the data into a record. Specifically, in move mode the
record is built in a buffer of the user's choice. This buffer is not
necessarily the user record buffer previously described in the context
of record I/O operations. In other words, the user may build records
in an area of a program apart from that normally defined by the user
record-buffer descriptors in the FOB (F.URBD+2 and F.URBD). In this
case, the address of the record buffer so used and the size of the
record are specified in the PUTS macro call, and the record thus built
is then moved into the FSR block buffer.

In locate mode, however, the record is built at the address specified
by the contents of offset location F.NRBD+2, and only the record size
need be specified in the PUTS macro call. Then, if the record so
built is not already in the FSR block buffer, it is moved there as the
PUTS operation is performed.

If the records in the file are sequenced records, the field F.SEQN in
the FOB contains the sequence value, which can be modified by the
user.

PUTS operations are fully synchronous, i.e., record I/O operations are
completed before control is returned to the user program.

A random PUTS operation in locate mode requires the use of the .POSRC
routine. This operation is described in detail in Section 4.9.2.
Specific FOB requirements for PUTS operations are presented in Section
3.l2~2 below.

3.12.1 Format of PUTS Macro Call

The PUTS macro call takes the following format:

PUTS

where: fdb

nrba

nrbs

err

fdb,nrba,nrbs,err

represents a symbolic value of the address of the
associated FOB.

represents the symbolic address of the next record
buffer, i.e., the address of the record to be
PUTS. This parameter initializes FOB offset
location F.NRBD+2.

represents a numeric value specifying the size of
the next record buffer, i.e., the length of the
record to be PUTS. This parameter initializes FOB
offset location F.NRBD.

represents the symbolic address of an optional
user-coded error-handling routine.

3-23

FILE-PROCESSING MACRO CALLS

The following examples represent the uses of the PUTS macro call:

PUTS

PUTS

PUTS

#FDBADR",ERRRT

,,#160.,ERRRT

RO

In the first example, note that the next record-buffer address (nrba
parameter) and the next record-buffer size (nrbs parameter) are nUll.
These null specifications imply that the current values in offset
locations F.NRBD+2 and F.NRBO of the associated FDB are suitable to
the current operation. Note also that fixed-length records could also
be written in locate mode by issuing this macro call.

The second example contains null specifications in the first two
parameter fields, assuming that RO currently contains the address of
the associated FOB and that variable-length records are to be written
to the file.

The last example specifies only the address of the FDB;
parameter fields are nUll.

3.12.2 FDB Mechanics Relevant to PUT$ Operations

all other

The discussions below highlight aspects of PUTS operations in move and
locate mode that have a bearing on the associated FDB.

The conditions under which a user record buffer is or is not used are
summarized. As is the case for GET$ operations, if a user record
buffer is required for PUTS operations, the buffer descriptors (i.e.,
the urba and urbs parameters) may be supplied to the associated FDB
through the FDRC$A, the FDRC$R, or the generalized OPEN$x macro call.
In any case, offset locations F.URBD+2 and F.URBD must be
appropriately initialized if PUTS operations require the utilization
of a user record buffer. Note, however, that PUTS operations in move
mode never require a user record buffer.

If the user record buffer is required, the specified size of that
buffer (i.e., the urbs parameter) always determines the size of the
largest record that can be written to the specified file.

Whether in move or locate mode, a PUTS operation uses the information
in offset locations F.NRBD+2 and F.NRBD, i.e., the next record-buffer
descriptors, to determine whether the record must be moved into -the
FSR block buffer. In the event that the record does have to be moved,
and the size of that record is such that it cannot fit in the space
remaining in the FSR block buffer, one of two possible operations is
performed:

1. If records are allowed to cross block boundaries, then the
first part of the record is moved into the FSR block buffer,
thereby completing a virtual block. That block buffer is
then written out to the volume, and the remaining portion of
the record is moved into the beginning of the next FSR block
buffer.

2. If records are not allowed to cross block boundaries (because
of the file attribute FD.BLK specified in the associated
FDB) , then the FSR block buffer is written out to the volume
as is, and the entire record is moved into the beginning of
the next FSR block buffer.

3-24

FILE-PROCESSING MACRO CALLS

3.12.2.1 PUT$ Operations in Move Mode - A
is basically driven by specifying in each
and the size of the record to be written.
is performed, FCS moves the record into
FSR block buffer.

PUT$ operation in move mode
PUT$ macro call the address
Then, as the PUT$ operation
the appropriate area of the

In summary, the following generalizations apply for PUT$ operations in
move mode:

1. The user-record-buffer descriptors need not be present in the
FDB because the programmer is dynamically specifying the
address and the length of the record to be written at each
issuance of a PUT$ macro call. The values so specified
dynamically update offset locations F.NRBD+2 and F.NRBD in
the associated FDB.

2. If the file consists of the fixed-length records, then the
generalized OPEN$x macro call (see Section 3.1) initializes
offset location F.NRBD with the appropriate record size, 'as
defined by the contents of offset location F.RSIZ. Thus, the
size of the record need not be specified as the urbs
parameter in any PUT$ macro call involving this file.

3. If variable-length records are being PUT$, the size of each
record must be specified as the urbs parameter in each PUT$
macro call involving this file, thus setting offset location
F.NRBD to the appropriate record size.

3.12.2.2 PUT$ Operations in Locate Mode - Basically, a user record
buffer is required for PUT$ operations in locate mode only when the
potential exists for records to cross block boundaries. In other
words, if there is insufficient space in the FSR block buffer to
accommodate the building of the next record, the user must provide a
buffer in user memory space in order to build that record.

When a file is initially opened for PUT$ operations in locate mode,
FCS sets up offset location F.NRBD+2 to point to the area in the FSR
block buffer where the next record is to be built. Then, each PUT$
operation thereafter in locate mode updates the address value in this
cell to point to the area in the FSR block buffer where the next
record is to be built. Thus, after each PUT$ operation in locate
mode, F.NRBD+2 points to the area where the next record is to be
built. This logic dictates whether the user record buffer is required
in locate mode.

In this regard, the following generalizations apply:

1. If fixed-length records are being PUT$ and they fit evenly
within the FSR block buffer, a user record buffer is not
required.

2. If a fixed-length record crosses block boundaries, the user
record buffer descriptors must be present in offset locations
F.URBD+2 and F.URBD of the associated FDB. In this case,
after determining that the record cannot fit in the FSR block
buffer, FCS sets offset location F.NRBD+2 to point to the
user record buffer. Then, when the record is PUT$, it is
moved from the user record buffer to the FSR block buffer.

3-25

FILE-PROCESSING MACRO CALLS

3. If a variable-length record is being PUT$, the potential
exists for crossing block boundaries. In this case, the user
record-buffer descriptors must be present in offset locations
F.URBD+2 and F.URBD of the associated FDB. Moreover, the
size of each variable-length record must be specified as the
nrbs parameter in each PUT$ macro call.

The determination as to whether FCS
F.NRBD+2 to the FSR block buffer for
the user record buffer is based
potentially enough room in the
accommodate the record.

points offset location
the PUT$ operation or to

on whether there is
FSR block buffer to

Because the records are variable in length, it must be
assumed that the largest possible record is PUT$, as defined
by the size of the user record buffer (F.URBD). Thus, if a
record of this defined size cannot fit in the space remaining
in the FSR block buffer, FCS sets offset location F.NRBD+2 to
point to the user record buffer.

Each PUT$ operation in locate mode sets up the FDB for the next PUT$.
In other words, the specified record size is used by FCS as the
worst-case condition in determining whether sufficient space exists in
the FSR to build the next record.

If variable-length records are being processed that are shorter than
the largest defined record size, FCS may move records unnecessarily
from the user record buffer to the FSR block buffer. For example,
assume that the user has allocated a 132-byte record buffer. Assume
further that the available remaining space in the FSR block buffer is
less than 132 bytes. In this case, FCS continues to point to the
userls record buffer for PUT$ operations, even if the user continues
to PUT$ short (10- or 20-byte) records. Thus, some unavoidable
movement of records takes place in locate mode.

If the largest record that the user intends to PUT$ is 80 bytes, for
example, then the largest defined record size should not be specified
as 132 bytes (or any length larger than that intended to be PUT$).
Aside from having to allocate a smaller user record buffer, PUT$
operations in locate mode are more efficient if this precaution is
observed. Exercising care in this regard reduces the tendency to move
records from the user record buffer to the FSR block buffer when they
might otherwise be built directly in the FSR block buffer.

3.13 PUT$R - WRITE LOGICAL RECORD IN RANDOM MODE

The PUT$R macro call is used to write fixed-length records to a file
in random mode. As noted in Section 3.10 in connection with the GET$R
macro call, operations in random-access mode require the user to be
intimately familiar with the contents of such files. The PUT$R macro
call likewise relies en~irely on the user for the specification of the
number of the record before a specified PUT$ operation can be
performed. Since the usual purpose of a PUT$R operation is to update
known records in a file, it is assumed that the user also knows the
number of such records within the file.

The PUT$ and PUT$R m~cro calls are identical, except that PUT$R allows
the specification of the desired record number. If the desired record
number is already present in the FDB (at offset locations F.RCNM and
F.RCNM+2), then PUT$ and PUT$R may be used interchangeably. However,
if the record-access byte in the FDB (offset location F.RACC) has not
been initialized for random-access operations with FD.RAN in the
FDRC$A, the FDRC$R, or the generalized OPEN$x macro call, then neither
PUT$ nor PUT$R will write the desired record.

3-26

FILE-PROCESSING MACRO CALLS

The PUT$R macro call takes two more parameters in addition to those
specified in the PUTS macro call, as shown below:

PUT$R

where: lrcnm

hrcnm

fdb,nrba,nrbs,lrcnm,hrcnm,err

represents a numeric value specifying the
low-order 16 bits of the number of the record to
be processed. This parameter serves the same
purpose as the corresponding parameter in the
GET$R macro call (see Section 3.10), except that
it identifies the record to be written.

represents a numeric value specifying the
high-order 15 bits of the number of the record to
be processed. This parameter serves the same
purpose as the corresponding parameter in the
GET$R macro call, except that it identifies the
record to be written.

If this
location
zero (0).

parameter is not specified, offset
F.RCNM retains its initialized value of

If F.RCNM is used in expressing a desired record
number for any given PUT$R operation, the user
must clear this cell before issuing a subsequent
PUT$R macro call that requires 16 bits or less in
expressing the desired record number; otherwise,
any residual value in F.RCNM results in an
incorrect record number.

The lrcnm and hrcnm parameters initialize offset locations F.RCNM+2
and F.RCNM, respectively, in the associated FDB. If these values are
not specified in a subsequent PUT$R macro call, the next sequential
record is written, since FCS automatically increments the record
number in these cells after each PUTS operation. In the case of the
first PUT$R after opening the file, record number 1 is written. Note
that this is true even if the file has been opened for an append
(OPEN$A) . If a record other than the next sequential record is to be
written, the user must explicitly specify the number of the desired
record.

NOTE

A random mode PUTS operation executed in
locate mode must be preceded by a call
to .POSRC. Since locate mode allows the
user to store data directly into the
block buffer, the file must be
positioned so that the desired record
position is in fact in the block buffer.
See Section 4.10.2 for further details.

Examples of the use of the PUT$R macro call follow:

PUT$R

PUT$R

PUT$R

#OUTFDB,#RECBUF"#12040.,,ERRLOC

#FDBADR,#RECBUF"R4

#FDBADR,#RECBUF"LRN

3-27

FILE-PROCESSING MACRO CALLS

In the first example, the presence of RECBUF as the next record buffer
address (nrba) parameter merely indicates that the user is specifying
the address of the record. Although specifying this address
repeatedly is unnecessary, it is not invalid. Normally, a buffer
address is specified dynamically, since other PUT$ macro calls may be
referencing different areas in memory; thus, the address of the
record must be explicitly specified in each PUT$ macro call. Note
also that the next record buffer size (nrbs) parameter is null, since
this parameter is required only in the case of writing variable-length
records. Also, the second of the two available parameters for
defining the record number is nUll.

Note in the second and third examples that R4 and a memory
(LRN) are used to specify the logical record number.
specification assumes that the user has preset the desired
number in the referenced location.

3.14 PUT$S - WRITE LOGICAL RECORD IN SEQUENTIAL MODE

location
Such a

record

The PUT$S macro call is used to write logical records to a file in
sequential mode. Although the routine invoked by the PUT$S macro call
requires less memory than that invoked by PUT$ (see Section 3.12),
PUT$S has the same format and takes the same parameters. The PUT$S
macro call is designed specifically for use in an overlaid environment
in which the amount of memory available to the program is limited and
files are to be written in strictly sequential mode.

If both GET$S and PUT$S are to be used by the program, the savings in
memory utilization over GET$ and PUT$ are realized only if GET$S and
PUT$S are placed on different branches of the overlay structure.

3.15 READ$ - READ VIRTUAL BLOCK

The READ$ macro call is issued to read a virtual block of data from a
block-oriented device (e.g., a disk or DECtape). In addition, if
certain optional parameters are specified in the READ$ macro call,
status information is returned to the I/O status block (see Section
2.8.2), and/or the program traps to a user-coded AST service routine
at the completion of block I/O operations (see Section 2.8.3).

In issuing the READ$ (or WRITE$) macro call, the user is responsible
for synchronizing all block I/O operations. For this reason, the
WAIT$ macro call is provided (see Section 3.17), allowing the user to
suspend program execution until a specified READ$/WRITE$ operation has
been completed. It is important, however, that the user test tor
error codes immediately after issuing the READ$/WRITE$ call as well as
on return from the WAIT$ call. The READ$/WRITE operations can return
error codes distinct from those that can be present on completion of a
WAIT$ operation.

When the WAIT$ macro call is issued in conjunction with a READ$ (or
WRITE$) macro call, the user must ensure that the event flag number
and the I/O status block address specified in both macro calls are the
same.

3-28

FILE-PROCESSING MACRO CALLS

3.15.1 Format of READ$ Macro Call

From the format below, note that the parameters of the READ$ macro
call are identical to those of the FDBK$A or the FDBK$R macro call,
with the exception of the fdb and err parameters. Certain FDB
parameters may be set at assembly-time (FDBK$A), initialized at
run-time (FDBK$R), or set dynamically by the READ$ macro call. In any
case, certain information must be present in the FDB before the
specified READ$ (or WRITE$) operation can be performed. These
requirements are noted in Section 3.15.2 below.

The READ$ macro call takes the following format:

READ$

where: fdb

bkda

bkds

bkvb

fdb,bkda,bkds,bkvb,bkef,bkst,bkdn,err

represents a symbolic value of the address of the
associated FDB.

represents the symbolic address of the block I/O
buffer in the user program. This parameter need
not be specified if offset location F.BKDS+2 has
been previously initialized through either the
FDBK$A or the FDBK$R macro call.

represents a numeric value specifying the size (in
bytes) of the virtual block to be read. This
parameter need not be specified if offset location
F.BKDS has been previously initialized through
either the FDBK$A or the FDBK$R macro call. In
any case, the maximum block size that may be
specified for file-structured devices is 32766(10)
bytes.

represents the symbolic address of a 2-word block
in the user program containing the number of the
virtual block to be read. This parameter causes
offset locations F.BKVB and F.BKVB+2 to be
initialized with the virtual-block number;
F.BKVB+2 contains the low-order 16 bits of the
virtual-block number, and F.BKVB contains the
high-order 15 bits.

As noted in connection with the FDBK$A macro call
described in Section 2.2.1.4, assembly-time
initialization of the virtual-block number in the
FDB is ineffective, since the generalized OPEN$x
macro call sets the virtual-block number in the
FDB to 1. The virtual-block number can be made
available to FCS only through the FDBK$R macro
call or the I/O-initiating READ$ (or WRITE$) macro
call after the file has been opened. The
virtual-block number is created as described in
Item 4 of Section 2.2.2.1.

The READ$ function checks the specified virtual
block number to ensure that it does not reference
a nonexistent block, i.e., a block beyond the end
of the file. If the virtual-block number
references nonexistent data, an end-of-file
(IE.EOF) error indication is returned to the I/O
status block (see bkst parameter below) and to
offset location F.ERR of the associated FDB;
otherwise, the READ$ operation proceeds normally.
If the total number of bytes goes beyond the end

3-29

bkef

bkst

bkdn

FILE-PROCESSING MACRO CALLS

of the file, then as many blocks as exist are read
and the byte count of the shortened transfer is
returned in I/O STATUS+2. No error condition
occurs, so the user must check the count on each
READ. An end-of-file indication is returned only
if no blocks can be read.

If the virtual-block number is not specified
through any of the available means identified
above, automatic sequential operation results by
default, beginning with virtual-block number 1.
The virtual-block number is incremented by 1
automatically after each READ$ operation is
performed.

represents a numeric value specifying the event
flag number to be used for synchronizing block I/O
operations. This event flag number is used by FCS
to signal the completion of the specified block
I/O operation. The event flag number, which may

also be specified in either the FDBK$A or the
FDBK$R macro call, initializes FDB offset location
F.BKEFi if so specified, this parameter need not
be included in the READ$ (or WRITE$) macro call.

If this optional parameter is not specified
through any available means, event flag 32(10) is
used by default. The function of an event flag is
discussed in further detail in Section 2.8.1.

represents the symbolic address of the I/O status
block in the user program (see Section 2.8.2).
This parameter, which initializes offset location
F.BKST, is optional. The I/O status block is
filled in by the system when the requested block
I/O transfer is completed, indicating the
success/failure of the requested operation.

The address of the I/O status block may also be
specified in either the FDBK$A or the FDBK$R macro
call. If the address of this 2-word structure is
not supplied to FCS through any of the available
means, status information is not returned to the
I/O status block. However, the event flag
specified through the bkef parameter above is set
to indicate block I/O completion, but the user
program must assume that the operation was
successful. An error indication cannot be
returned to the user program without an I/O status
block address.

represents the symbolic entry-point address of an
AST service routine (see Section 2.8.3). If this
parameter is specified, a trap occurs upon
completion of the specified READ$ (or WRITE$)
operation. This parameter, which is optional,
initializes offset location F.BKDN. This address
value may also be made available to FCS through
either the FDBK$A or the FDBK$R macro call, and,
if so specified, need not be present in the READ$
(or WRITE$) macro call.

If the address of an AST service routine is not
specified through any available means, no AST trap
occurs at the completion of block I/O operations.

3-30

FILE-PROCESSING MACRO CALLS

err represents the symbolic address of an optional
user-coded error-handling routine.

The foliowing examples represent READ$ macro calls that may be issued
to accomplish a variety of operations:

READ$ RO

READ$ #INFDB""",ERRLOC

READ$ RO,#INBUF,#BUFSIZ,,#22.,#IOSADR,#ASTADR,ERRLOC

READ$ #INFDB,#INBUF,#BUFSIZ,#VBNADR

The first example assumes that RO contains the address of the
associated FDB. Also, all other required FDB initialization has been
accomplished through either the FDBK$A or the FDBK$R macro call.

The second example shows an explicit declaration of the associated FDB
and includes the symbolic address of a user-coded error-handling
routine.

In the third example, RO again contains the address of the associated
FDB. The block-buffer address and the size of the block are specified
next in symbolic form. The address of the 2-word block in the user
program containing the virtual-block number is not specified, as
indicated by the additional comma in the parameter string. The event
flag number, the address of the I/O status block, and the address of
the AST service routine then follow in order. Finally, the symbolic
address of an optional error routine is specified.

The fourth example reflects, as the last parameter in the string, the
symbolic address of the 2-word block in the user program containing
the virtual block number.

3.15.2 FOB Requirements for READ$ Macro Call

The READ$ macro call requires that the associated FDB be initialized
with certain values before it can be issued. These values may be
specified through either the FDBK$A or the FDBK$R macro call, or they
may be made available to the FDB through the various parameters of the
READ$ macro call. In any case, the following values must be present
in the FDB to enable READ$ operations to be performed:

1. The block-buffer address (in offset location F.BKDS+2);

2. The block byte count (in offset location F.BKDS); and

3. The virtual-block number (in offset locations F.BKVB+2 and
F. B,KVB) .

3.16 WRITE$ - WRITE VIRTUAL BLOCK

The WRITE$ macro call is issued to write a virtual block of data to a
block-oriented device (e.g., a disk or DECtape). Like the READ$ macro
call, if certain optional parameters are specified in the WRITE$ macro
call, status information is returned to the I/O status block (see
Section 2.8.2), and, at the completion of the I/O transfer, the
program traps to an AST service routine that is supplied to coordinate
asynchronous block I/O operations (see Section 2.8.3).

3-31

FILE-PROCESSING MACRO CALLS

Whether or not the address of an AST service routine and/or an event
flag number is supplied, the user is responsible for synchronizing all
block I/O processing. The WAIT$ macro call can be issued in
conjunction with the WRITE$ macro call to suspend program execution
until a program-dependent I/O transfer has been completed. When the
WAIT$ macro call is used for this purpose, the event flag number and
the I/O status block address in both macro calls must be the same.
Again, as with READ$ operations, the user should check for an error
code immediately following the WRITE$ macro call as well as on return
from the WAIT$ macro call.

3.16.1 Format of WRITE$ Macro Call

The WRITE$ macro call takes the same parameters as the READ$ macro
call, as shown below. However,· the bkvb parameter in this case
represents the number of the virtual block to be written. The
virtual-block number is incremented automatically after each WRITE$
operation is performed.

The WRITE$ macro call has the following format:

WRITE$ fdb,bkda,bkds,bkvb,bkef,bkst,bkdn,err

When this macro call is issued, the virtual-block number (i.e., the
bkvb parameter) is checked to ensure that it references a block within
the file's allocated space; if it does, the block is written. If the
specified block is not within the file's allocated space, FCS attempts
to extend the file. If this attempt is successful, the block is
written; if not, an error code indicating the reason for the failure
of the extend operation is returned to the I/O status block and to
offset location F.ERR of the associated FDB.

If FCS determines that the file must be extended, the actual extend
operation is performed synchronously. After the extend operation has
been successfully completed, the WRITE$ operation is queued, and only
then is control returned to the instruction immediately following the
WRITE$ macro call.

The following examples illustrate WRITE$ macro calls:

WRITE$ RO

WRITE$ #OUTFDB,#OUTBUF,#BUFSIZ,#VBNADR,#22.

WRITE$ RO",,#22.,#IOSADR,#ASTADR,ERRLOC

The first example specifies only the FDB address and assumes that .all
other required values are present in the FDB. The second example
reflects explicit declarations for the FDB, the block-buffer address,
the block-buffer size, the virtual block number address, and the event
flag number for signalling block I/O completion. The third example
shows null specifications for three parameter fields, then continues
with the event flag number, the address of the I/O status block, and
the address of the AST service routine. Finally, the address of a
user-coded error-handling routine is specified.

3.16.2 FDB Requirements for WRITE$ Macro Call

WRITE$ operations require the presence of the same information in the
FDB as READ$ operations (see Section 3.15.2).

3-32

FILE-PROCESSING MACRO CALLS

3.17 WAIT$ - WAIT FOR BLOCK I/O COMPLETION

The WAIT$ macro call, which is issued only in connection with READ$
and WRITE$ operations, causes program execution to be suspended until
the requested block I/O transfer is completed. This macro call may be
used to synchronize a block I/O operation that depends on the
successful completion of a previous block I/O transfer.

As noted in Section 3.15 in connection with the READ$ macro call, the
user may specify an event flag number through the bkef parameter.
This event flag number is used during READ$ operations to indicate the
completion of the requested transfer. If desired, the user may issue
a WAIT$ macro call (specifying the same event flag number and I/O
status block address) following the READ$ (or WRITE$) macro call.

In this case, the READ$ operation is initiated in the usual manner,
but the Executive of the host operating system suspends program
execution until the specified event flag is set, indicating that the
I/O transfer has been completed. The system then returns information
to the I/O status block, indicating the success/failure of the
operation. FCS then moves the I/O status block success/failure
indicator into offset location F.ERR of the associated FDB, and
returns with the C-bit in the Processor Status Word cleared if the
operation is successful, or set if the operation is not successful.
Task execution then continues with the instruction immediately
following the WAIT$ macro call.

The system returns the final status of the I/O operation to the I/O
status block (see Section 2.8.2) upon completion of the requested
operation. A positive value (+) indicates successful completion, and
a negative value (-) indicates unsuccessful completion.

Event flags are discussed in further detail in Section 2.8.1.

3.17.1 Format of WAIT$ Macro Call

The WAIT$ macro call is specified in the following format:

where:

WAIT$

fdb

bkef

fdb,bkef,bkst,err

represents a symbolic value of the address of the
associated FDB.

represents a numeric value specifying the event
flag number to be used for synchronizing block I/O
operations. The WAIT$ macro causes task execution
to be suspended by invoking the WAITFOR system
directive. This parameter must agree with the
corresponding (bkef) parameter in the associated
READ$/WRITE$ macro call.

If this parameter is not specified, either in the
WAIT$ macro call or the associated READ$/WRITE
macro call, FDB offset location F.BKEF is assumed
to contain the desired event flag number, as
previously initialized through the bkef parameter
of the FDBK$A or the FDBK$R macro call.

3-33

bkst

FILE-PROCESSING MACRO CALLS

represents the symbolic address of the I/O status
block in the user program (see Section 2.8.2).
Although this parameter is optional, if it is
specified, it must agree with the corresponding
(bkst) parameter in the associated READ$/WRITE$
macro call.

If this parameter is not specified, either in the
WAIT$ macro call or the associated READ$/WRITE$
macro call, FDB offset location F.BKST is assumed
to contain the address of the I/O status block, as
previously initialized through the bkst parameter
of the FDBK$A or the FDBK$R macro call. If F.BKST
has not been initialized, no return of information
to the I/O status block occurs.

err represents the symbolic address of an optional
user-coded error-handling routine.

The following statements represent WAIT$ macro calls:

WAIT$

WAIT$

WAIT$

WAIT$

RO

#INFDB,#25.

RO,#25.,#IOSTAT

RO,,#IOSTAT,ERRLOC

The first example assumes that RO contains the address of the
associated FDBi furthermore, since the event flag number (bkef
parameter) is not specified, offset location F.BKEF is assumed to
contain the desired event flag number. If this cell in the FDB
contains 0, event flag number 32(10) is used by default.

The second example shows an explicit specification of the FDB address
and also specifies 25(10) as the event flag number. Again, in this
example, the FDB is assumed to contain the address of the I/O status
block. In contrast, the third example shows an explicit specification
for the address of the I/O status block.

The fourth example contains a null specification for
number, and, in addition, specifies the address
error-handling routine.

the event flag
of a user-coded

It should be noted that the WAIT$ macro call associated with a given
READ$ or WRITE$ operation need not be issued immediately following the
macro call to which it applies. For example, the following sequence
is typical:

1. Issue the desired READ$ or WRITE$ macro call.

2. Perform other processing that is not dependent on the
completion of the requested block I/O transfer.

3. Issue the WAIT$ macro call.

4. Perform the processing that is dependent on the completion of
the requested block I/O transfer.

3-34

FILE-PROCESSING MACRO CALLS

When performing several asynchronous transfers in the same general
sequence as above, a separate buffer, I/O status block, and event flag
must be maintained for each operation. If the user intends t6 wait
for the completion of a given transfer, the appropriate event flag
number and I/O status block address must be specified in the
associated WAIT$ macro call.

3.18 DELET$ - DELETE SPECIFIED FILE

The DELET$ macro call causes the directory information for the file
associated with the specified FDB to be deleted from the appropriate
user file directory (UFD). The space occupied by the file is then
deallocated and returned for reallocation to the pool of available
storage on the volume.

This macro call can be issued for a file that is either open
closed. If issued for an open file, that file is then closed
deleted; if issued for a closed file, that file is deleted only

or
and
if

the filename string specified in the associated dataset descriptor or
default filename block contains an explicit file version number.

Thus, if the file is not open, and the file version number is 0
(indicating the latest version), or if the file version number is -1
(indicating the oldest version), then the DELET$ operation fails.

3.18.1 Format of DELET$ Macro Call

The DELET$ macro call takes the following format:

where:

DELET$ fdb,err

fdb represents a symbolic value of the address of the
associated FDB.

err represents the symbolic address of an optional
user-coded error-handling routine.

The following statements illustrate DELET$ macro calls:

DELET$ RO

DELET$ #OUTFDB,ERRLOC

DELET$ RO,ERRLOC

3-35

CHAPTER 4

FILE CONTROL ROUTINES

File control routines can be invoked in MACRO-II programs to perform
the following functions:

• Read or write default directory-string descriptors in $$FSR2.

• Read or write the default UIC word in $$FSR2.

• Read or write the default file-protection word in $$FSR2.

• Read or write the file-owner word in $$FSR2.

• Convert a directory string from ASCII to binary, or vice versa.

• Find, insert, or delete a directory entry.

• Set a pointer to a byte within a virtual block or to a record
within a file.

• Mark a place in a file for a subsequent OPEN$x operation.

• Issue an I/O command and wait for its completion.

• Rename a file.

• Extend a file.

• Truncate a file.

• Mark a temporary file for deletion.

• Delete a file by filename block.

• Place directory information in a default filename block or a
filename block.

• Perform device-specific control functions.

4.1 CALLING FILE CONTROL ROUTINES

The CALL op-code/macro is used to invoke file control routines (JSR
PC, dst). These routines are included from the system object library
([l,l]SYSLIB.OLB) at task-build time and incorporated into the user
task. The file control routines are called as shown below:

CALL .RDFDR

CALL . EXTND

4-1

FILE CONTROL ROUTINES

Before CALL is issued, certain file control routines require that
specific registers be preset with requisite information. These
requirements are identified in the respective descriptions of the
routines. Upon return, all registers are preserved, except those
explicitly specified as changed.

As a general rule, if an error is detected by a file control routine,
the C-bit (carry condition code) in the Processor Status Word is set,
and an error indication is returned to FDB offset location F.ERR.
However, certain file control routines do not return error indications
because of the specific nature of their functions. The following file
control routines are listed according to whether or not they return
error indications.

Normal Error Return
(C-bit and F.ERR)

.ASCPP

. PARSE

.PRSDV

.ASLUN

.FIND

.ENTER

.REMOV

.GTDIR

.GTDID

.POINT

.POSRC

.POSIT

.XQIO

.RENAM
• EXTND
.TRNCL
.MRKDL
.DLFNB
.CTRL

No Error Return

.RDFDR

.WDFDR

.RDFUI

.WDFUI

.RDFFP

.WDFFP

.RFOWN

.WFOWN

.PPASC

. MARK

Appendix I lists the error indicators that are placed in FDB offset
location F.ERR by the routines identified above.

4.2 DEFAULT DIRECTORY-STRING ROUTINES

The .RDFDR and .WDFDR routines are used to
directory-string descriptors.

read and

4.2.1 .RDFDR - Read $$FSR2 Default Directory String Descriptor

write

The user calls the .RDFDR routine to read default directory-string
descriptdr words previously written by the .WDFDR routine into program
section $$FSR2 of the FSR. These descriptor words define the address
and the length of an ASCII string that contains the default directory
string. This directory string constitutes the default directory that
is to be used by FCS when one is not explicitly specified in a dataset
descriptor.

If the user has not established default directory string descriptor
words in $$FSR2 through the .WDFDR routine described below, the
descriptor words in $$FSR2 are null and FCS uses a default directory

4-2

FILE CONTROL ROUTINES

(when one is not specified in a dataset descriptor) corresponding to
the UIC under which the task is running.

When called, the .RDFDR routine returns values in the following
registers:

RI Contains the size (in bytes) of the default directory string
in $$FSR2.

R2 Contains the address of the default directory string in
$$FSR2. If no default directory string descriptor words have
been written by .WDFDR, R2 equals O.

4.2.2 .WDFDR - write New $$FSR2 Default Directory-String Descriptor

The .WDFDR routine is called to create default directory-string
descriptor words in $$FSR2. For example, if a user program is to
operate on files in the directory [220,220], regardless of the UIC the
program runs under, then the user can establish default
directory-string descriptor cells in $$FSR2 to point to the alternate
directory string [220,220] created elsewhere in the program. To do
this, the desired directory string is first created through an .ASCII
directive. Then, by calling the .WDFDR routine, the default
directory-string descriptor cells in $$FSR2 are initialized to point
to the new directory string.

Assume that the task is currently running under default UIC [200,200].
By issuing a MACRO-II directive similar to the following:

NEWDDS: .ASCII /[220,220]/

a new directory string is defined. Then, by calling the .WDFDR
routine, the user can initialize string descriptor cells in $$FSR2 to
point to the new directory string.

The following registers must be preset before calling the .WDFDR
routine:

RI Must contain the size (in bytes) of the new directory string.

R2 Must contain the address of the new directory string.

NOTE

Establishing default directory-string
descriptor words in $$FSR2 does not
change the default UIC in $$FSR2 or the
task's privileges.

4.3 DEFAULT UIC ROUTINES

The .RDFUI and .WDFUI routines are used to read and write the default
UIC maintained in program section $$FSR2 of the file storage region
(FSR). Unlike the default directory string descriptor which describes
an ASCII string, the default UIC is maintained as a binary value with
the following format:

Bit 15 8 7 a

GROUP MEMBER

4-3

FILE CONTROL ROUTINES

The default UIC in $$FSR2 provides directory identification
information for a file being accessed. FCS uses it only when all
other sources of such information have failed to specify a directory
(refer to Section 4.7.1.2). It is never used to establish file
ownership or file access privileges.

Unless the user explicitly changes the default UIC through the .WOFUI
routine described below, the default UIC in $$FSR2 always corresponds
to the UIC under which the task is running.

4.3.1 .RDFUI - Read Default UIC

When called, the .ROFUI routine returns the default UIC as follows:

Rl Contains the binary encoded default UIC as maintained in
program section $$FSR2.

4.3.2 .WDFUI - write Default UIC

The .WOFUI routine is called to create a new default UIC in $$FSR2.

The following register must be preset before calling the .WOFUI
routine:

Rl Must contain the binary representation (as shown above) of a
UIC.

4.4 DEFAULT FILE-PROTECTION WORD ROUTINES

The .RDFFP and .WOFFP routines described below are used to read and
write the default file protection word in a location in program
section $$FSR2 of the file storage region (FSR). This word is used
only at file-creation time (e.g., by the OPEN$W macro call) to
establish the default file protection values for the new file. Unless
altered, this value constitutes the default file-protection word for
that file. If the value is -1, it indicates that the volume default
file-protection value is to be used for the new file.

The default file-protection word has the following format:

Bit 15 12 11 8 7

WORLD GROUP OWNER

Each of the four categories above has four bits;
following meaning with respect to file access:

Bit 3 2

4

o

DELETE EXTEND WR ITE READ

3 o

SYSTEM

each bit has the

A bit value of 0 indicates that the respective type of access to the
file is to be allowed; a bit value of I indicates that the respective
type of access to the file is to be denied.

4-4

FILE CONTROL ROUTINES

4.4.1 .RDFFP - Read $$FSR2 Default File Protection Word

The user calls the .RDFFP routine to read the default file-protection
word in program section $$FSR2 of the FSR. No registers need be set
before calling this routine.

When called, the .RDFFP routine returns the following information:

Rl Contains the default file-protection word from $$FSR2.

4.4.2 .WDFFP - Write New $$FSR2 Default File-Protection Word

The .WDFFP routine is used to write a new default file-protection word
into $$FSR2.

The following register must be preset before calling this routine:

Rl Must contain the new default file-protection word to be
written into $$FSR2. If this register is set to -I, the
default file-protection values established through the
appropriate operating system command will be used in creating
all subsequent new files.

4.5 FILE OWNER WORD ROUTINES

The file owner word, like the default file-protection word above, is a
location in program section $$FSR2 of the FSR. Its contents are
specified by the current program through the .WFOWN routine. If not
so specified, the file owner word contains O.

Normally, the owner of a new file corresponds to the default UIC under
which the task creating the file is running. However, through the
.WFOWN routine (see section 4.5.2 below), a UIC value can be stored in
the file owner word so that any new files then created and closed by
the user program can have the desired UIC.

The format of the file-owner word is shown below:

Bit 15 8 7 o

GROUP MEMBER

The routines for reading and writing the file-owner word are described
below.

NOTE

The UIC and the file-protection word for
the file (see Section 4.4) must not be
set such that the Ule under which the
task is running does not have access to
the file. If this condition prevails, a
privilege violation results.

4-5

FILE CONTROL ROUTINES

4.5.1 .RFOWN - Read $$FSR2 File-Owner Word

The .RFOWN routine is used to read the contents of the file-owner word
in $$FSR2. No registers need be preset before calling this routine.

When called, the .RFOWN routine returns the following information:

Rl Contains the file-owner word (UIC). If the current program
has not previously established the contents of the
file-owner word through the .WFOWN routine, Rl contains o.

4.5.2 .WFOWN - Write New $$FSR2 File-Owner Word

The .WFOWN routine is used to initialize the file-owner word in
$$FSR2.

The following register must be preset before calling this routine:

Rl Must contain a file-owner word to be written into $$FSR2.

4.6 ASCII/BINARY UIC CONVERSION ROUTINES

The .ASCPP and .PPASC routines are called to convert a directory
string from ASCII to binary, or vice versa.

4.6.1 .ASCPP - Convert ASCII Directory String to Equivalent Binary
UIC

The .ASCPP routine is called to convert an ASCII directory string to
its corresponding binary UIC.

The following registers must be preset before calling this routine:

R2 Must contain the address of the directory-string descriptor
in the user program (see Section 2.4.1) for the string to be
converted.

R3 Must contain the address of a word location in the user
program to which the binary UIC is to be returned. The
member number is stored in the low-order byte of the word,
and the group number is stored in the high-order byte.

4.6.2 .PPASC - Convert UIC to ASCII Directory String

The .PPASC routine is called to convert a binary UIC to its
corresponding ASCII directory string.

The following registers must be preset before calling this routine:

R2 Must contain the address of a storage area within the user
program into which the ASCII string is to be placed. The
resultant string can be up to 9 bytes in length, e.g.,
[200,200] •

4-6

FILE CONTROL ROUTINES

R3 Must contain the binary UIC value to be converted. The
low-order byte of the register contains the member number,
and the high-order byte of the register contains the group
number.

R4 Must contain a control code. Bits 0 and 1 of this register
indicate the following:

Bit 0 is set to 0 to suppress leading zeros (e.g., 001 is
returned as 1). Bit 0 is set to 1 to indicate that
leading zeros are not to be suppressed.

Bit 1 is set to 0 to place separators in the directory string
(e.g., [10,20]. Bit 1 is set to 1 to suppress
separators (e.g., 1020).

The .PPASC routine increments the contents of R2 to point to the byte
immediately following the last byte in the converted directory string.

4.7 FILENAME BLOCK ROUTINES

The .PARSE, .PRSDV, and .ASLUN routines are available for performing
functions related to a specified filename block. These routines are
described in the following sections.

4.7.1 .PARSE - Fill in All Filename Information

When called, the .PARSE routine first zeros the filename block pointed
to by Rl and then stores the following information in the filename
block:

1. The ASCII device name (N. DVNM) ;

2. The binary unit number (N. UNIT) ;

3. The directory ID (N.DID) ;

4. The Radix-50 filename (N.FNAM) ;

5. The Radix-50 file type or extension (N.FTYP) ; and

6. The binary file version number (N.FVER) •

The format of a filename block is shown in detail in Appendix B.

Before the .PARSE routine can be called, the FINIT$ macro call (see
Section 2.6) must be invoked explicitly in the user program, or it
must be invoked implicitly through a prior OPEN$x macro call. Note,
however, that the FINIT$ call must be issued only once in the
initialization section of the program, i.e., the FINIT$ operation must
be performed only once per task execution. Furthermore, FORTRAN
programs issue a FINIT$ call at the beginning of task execution;
therefore, MACRO~ll routines used with the FORTRAN object time system
must not issue a FINIT$ macro call.

The following registers must be preset before calling the . PARSE
routine:

RO Must contain the address of the desired FDB.

4-7

FILE CONTROL ROUTINES

Rl Must contain the address of the filename block to be filled
in. This filename block is usually, but not necessarily, the
filename block within the FDB specified in RO ~(i.e., RO +
F. FNB) .

R2 Must contain the address of the desired dataset descriptor if
. PARSE is to access a dataset descriptor in building the
specified filename block. This structure is usually, but not
necessarily, the same as that associated with the FDB
specified in RO, i.e., the dataset descriptor pointed to by
the address value in F.DSPT.

If R2 contains 0, this value implies that a dataset
descriptor has not been defined; therefore, the dataset
descriptor logic of .PARSE is bypassed.

R3 Must contain the address of the desired default filename
block if . PARSE is to access a default filename block in
building the specified filename block. This structure is
usually, but not necessarily, the same as that associated
with the FOB specified in RO, i.e., the default filename
block pointed to by the address value in F.OFNB.

As above, if R3 contains zero (0), this value implies that a
default filename block has not been defined; therefore, the
default filename block logic of .PARSE is bypassed.

Thus, RO and Rl each must contain the address of the appropriate data
structure, while either R2 or R3 must contain the address of the
desired filename information. Both R2 and R3, however, may contain
address values if the referenced structures both contain information
required in building the specified filename bloc~.

The .PARSE routine fills in the specified filename block in the order
described in the following sections.

4.7.1.1 Device and Unit Information - The . PARSE routine first
attempts to fill in the filename block with device (N.DVNM) and unit
(N.UNIT) information. The following operations are performed in
sequence until the required information is obtained from the specified
data structures:

1. If the address of a dataset descriptor is specified in R2 and
this structure contains a device string, the device and unit
information therein is moved into the specified filename
block.

2. If Step 1 fails, and
block is specified
nonzero value in the
information therein
block.

if the address of a default filename
in R3, and this structure contains a

device-name field, the device and unit
is moved into the specified filename

3. If Step 2 fails, .PARSE uses the device and unit currently
assigned to the logical unit number in offset location F.LUN
of the specified FOB in building the filename block.

4-8

FILE CONTROL ROUTINES

This feature allows a program to use preassigned logical
units that are assigned through either the device assignment
(ASG) option of the Task Builder or one of the following
commands: the ASSIGN (under lAS) or the REASSIGN (under
RSX). In this case, the user simply avoids specifying the
device string in the dataset descriptor and the device name
in the default filename block.

4. If the logical unit number in F.LUN is currently unassigned,
.PARSE assigns this number to the system device (SYO:).

Once the device and unit are determined and the logical unit number is
assigned, .PARSt invokes the GLUN$ directive to obtain necessary
device information. Requisite information is returned to the
following offsets in the filename block pointed to by Rl:

N.DVNM - Device Name Field.
name.

N.UNIT - unit Number Field.
number.

Contains the redirected device

Contains the redirected unit

In addition, requisite information is returned to the following
offsets in the FDB pointed to by RO:

F.RCTL - Device Characteristics Byte. This cell contains
device-dependent information from the first byte of the
third word returned by the GLUN$ directive. The bit
definitions pertaining to the device characteristics
byte are described in detail in Table A-I. If desired,
the user can examine this cell in the FDB to determine
the characteristics of the deyice associated with the
assigned LUN.

F.VBSZ - Device Buffer-Size Word. This location contains the
information from the sixth word returned by the GLUN$
directive. The value in this cell defines the device
buffer size (in bytes) pertaining to the device
associated with the assigned LUN.

The GLUN$ directive is described in detail in the Executive Reference
Manual of the host operating system.

4.7.1.2 Directory-Identification Information - Following the oper­
ations described in the preceding section, .PARSE attempts to fill in
the filename block with directory-identification information (N.DID).
The precedence rules for establishing this information are as follows:

1. If the address of a dataset descriptor is specified in R2 and
this structure contains a directory string, that directory
string is used to find the associated UFD in the MFD, and the
resulting file ID is then moved into the directory-ID field
of the specified filename block.

2. If Step 1 fails, and if the address of a default filename
block is specified in R3, and this structure contains a
nonzero directory ID, it is moved into the specified filename
block.

Since none of the parameters of the NMBLK$ macro call (see
Section 2.4.2) initialize the 3 words starting at offset
location N.DID in the default filename block, these cells

4-9

FILE CONTROL ROUTINES

must be initialized manually, or they must be initialized by
issuing a call to either the .GTDIR routine (see Section
4.9.1) or the .GTDID routine (see Section 4.9.2). Note that
these routines can also be used to initialize a specified
filename block directly with required directory information.

3. If neither Step 1 nor Step 2 yields the required directory
string, .PARSE examines the default directory string words in
$$FSR2. If the user program has previously initialized these
words through use of the .WDFDR routine, FCS uses the string
described as the default directory.

4. If Steps 1 through 3 fail to produce directory information,
FCS uses the binary value stored in the default UIC word in
$$FSR2 as the directory identifier. Unless changed by the
user through the .WDFUI routine, this word contains the UIC
under which the task is running.

4.7.1.3 Filename, File-Type or Extension, and File Version
Information - Following the operations described in the preceding
section, .PARSE attempts to obtain filename information (N.FNAM,
N.FTYP, and N.FVER), as follows:

1. If the address of a dataset descriptor is specified in R2 and
this structure contains a filename string, the filename
information therein is moved into the specified filename
block.

2. If the address of a default filename block is specified in
R3, and one or more of the filename, file-type or extension,
and file version number fields of the dataset descriptor
specified in R2 are null, then the corresponding fields of
the default filename block are used to fill in the specified
filename block.

3. If neither Step 1 nor Step 2 yields the requisite filename
information, any specific field(s) not available from either
source remain(s) null.

NOTE

If a dot (.) appears in the filename
string without an accompanying file type
designation (e.g., TEST. or TEST.i3),
the file type is interpreted as being
explicitly null. In this case, the
default file type is not used.
Similarly, if a semicolon (i) appears in
the filename string without an
accompanying file version number (e.g.,
TEST.DATi), the file version number is
likewise interpreted as being explicitly
nulli again, the default file version
number is not used in this case.

4-10

FILE CONTROL ROUTINES

4.7.1.4 Other Filename Block Information - Finally, after performing
all the operations above, the . PARSE routine also fills in the
filename block status word (offset location N.STAT) of the filename
block specified in Rl. The bit definitions for this word are
presented in Table B-2. Note in this table that an "explicit"
directory, device, filename, file-type, or file version number
specification pertains to ASCII data supplied through the dataset
descriptor pointed to by R2.

In addition, .PARSE explicitly zeros offset location N.NEXT in the
filename block pointed to by Rl. This action has implications for
wildcard operations, as described in Section 4.8.1 below.

4.7.2 .PRSDV - Fill in Device and Unit Information Only

The .PRSDV routine is identical to the .PARSE routine above, except
that it performs only those operations associated with requisite
device and unit information (see Section 4.7.1.1). This routine zeros
the filename block pointed to by Rl, performs a .PARSE operation on
the device and unit fields in the specified dataset descriptor and/or
default filename block, and assigns the logical unit number contained
in offset location F.LUN of the specified FOB.

4.7.3 .ASLUN - Assign Logical Unit Number

The .ASLUN routine is called to assign a logical unit number to a
specified device and unit and to return the device information to a
specified FOB and filename block.

The following registers must be preset before calling this routine:

RO Must contain the address of the desired FOB.

Rl Must contain the address of the filename block containing the
desired device and unit. This filename block is usually, but
not necessarily, the filename block within the FOB specified
in RO.

If the device-name field (offset location N.DVNM) of the filename
block pointed to by Rl contains a nonzero value, the specified device
and unit are assigned to the logical unit number contained in offset
location F.LUN in the FOB pointed to by RO.

If N.DVNM in the filename block contains 0, then the device and unit
currently assigned to the specified logical unit number are returned
to the appropriate fields of the filename block.

Finally, if the specified logical unit number is not assigned to a
device, the .ASLUN routine assigns it to the system device (SYO:) by
default.

The information ~eturned to the specified filename block and to the
specified FOB 1S identical to that returned by the device and unit
logic of the .PARSE routine (see Section 4.7.1.1).

4-11

FILE CONTROL ROUTINES

4.8 DIRECTORY ENTRY ROUTINES

The .FIND, .ENTER, and .REMOV routines are used,to find, ,insert, and
delete directory entries. The term "directory entry" encompasses
entries in both the master file directory (MFD) and the user file
directory (UFD).

4.8.1 .FIND - Locate Directory Entry

The .FIND routine is called to locate a directory entry by filename
and to fill in the file-identification field (N.FID) of a specified
filename block.

The following registers must be preset before calling this routine:

RO Must contain the address of the desired FDB.

Rl Must contain the address of a filename block. This filename
block is usually, but not necessarily, the filename block
within the FDB specified in RO.

When invoked, the .FIND routine searches the directory file specified
by the directory-ID field of the filename block. This file is
searched for an entry that matches the specified filename, file type,
and file version number. In this regard, two special file versions
are defined:

Version 0 is matched by the latest (largest) version number
encountered in the directory file.

Version -1 is matched by the oldest (smallest) version number
encountered in the directory file.

If either of these special versions is specified in the filename
block, the matching version number is returned to the filename block.
In this way, the actual version number is made available to the
program.

To delete a file whose file-descriptor entry in the FOB contains
wildcards, the user must save the values in the fields N.STAT and
N.NEXT in the FDB, then zero those fields in the FOB. A DELETE call
then uses the information returned from the last .FIND to delete the
file. Once the file is deleted, the saved values of N.STAT and N.NEXT
must be restored in the FOB.

Certain wildcard operations require the use of the .FIND routine.
Three bits in the filename-block status word (see N.STAT in Table B-2)
indicate whether a wildcard (*) was specified for a filename, a file
type, or a file version number field. If the wildcard bit in N.STAT
is set for a given field, any directory entry matches in that
corresponding field. Thus, if the filename and file version number
fields contain wildcard specifications (*), and the file-type field is
specified as .OBJ (i.e., *.OBJj*), the first directory entry
encountered that contains .OBJ in the file-type field matches,
irrespective of the values present in the other two fields.

When a wildcard match is found, the complete filename, file type, and
file version number fields of the matching entry are returned to the
filename block, along with the file-ID field (N.DID). Thus, the
program can determine the actual name of the file just found. Offset
location N.NEXT in the filename block is also set to indicate where
that directory entry was found in the directory file. This
information is used in subsequent .FIND operations to locate the next
matching entry in the directory file.

4-12

FILE CONTROL ROUTINES

For example, the .FIND routine is often used to open a series of files
when wildcard specifications are used. The following operations are
typical:

1. Call the .PARSE routine. This routine zeros offset location
N.NEXT in the filename block in preparation for the iterative
.FIND operations described in Step 3 below.

2. Check for wildcard bits set by the . PARSE routine in the
filename block status word (see N.STAT in Table B-2). An
instruction sequence such as that shown below may be used to
test for the setting of wildcard bits in N.STAT:

BIT #NB.SVR!NB.STP!NB.SNM,N.STAT(Rl)

BEQ NOWILD iBRANCH IF NOT SET.

3. If wildcard specifications are present in the filename block
status word, repeat the following sequence until all the
desired wildcard files have been processed:

CALL

BCS

OPEN$

.FIND

DONE iERROR CODE IE.NSF INDICATES
iNORMAL TERMINATION.

Wildcard .FIND operations update offset location N.NEXT in
the filename block. In essence, the contents of this cell
provide the necessary information for continuing the search
of the directory file for a matching entry.

4. Perform the desired operations on the file.

NOTE

The above procedure applies only for the
following types of wildcard file
specifications:

TEST.DATi*
TEST.*i*
.DATi

The procedure does
following types
specifications:

*.DAT
TEST.*

not work for
of wildcard

the
file

In summary, if a wildcard file
specification is present in either the
filename field or the file-type field,
the file version number field must also
contain either an explicit wildcard
specification (*) or a specific file
version number (e.g., 2, 3, etc.). In
the latter case, however, the version
number cannot be 0, for the latest
version of the file, or -1, for the
oldest version of the file.

4-13

FILE CONTROL ROUTINES

4.8.2 .ENTER - Insert Directory Entry

The .ENTER routine is used to insert an entry by filename into a
directory.

The following registers must be preset before calling this routine:

RO Must contain the address of the desired FOB.

Rl Must contain the address of a filename block. This filename
block is usually, but not necessarily, the filename block
within the FOB specified in RO.

If the file version number field of the filename block contains 0,
indicating a default version number, the .ENTER routine scans the
entire directory file to determine the current highest version number
for the file. If a version number for the file is found, this entry
is incremented to the next higher version number; otherwise, it is
set to 1. The resulting version number is returned to the filename
block, making this number known to the program.

NOTE

Wildcard specifications cannot be used
in connection with .ENTER operations.

4.8.3 .REMOV - Delete Directory Entry

The .REMOV routine is called to delete an entry from a directory by
filename. This routine only deletes a specified directory entry; it
does not delete the associated file.

The following registers must be preset before calling this routine:

RO Must contain the address of the desired FOB.

Rl Must contain the address of a filename block. This filename
block is usually, but not necessarily, the filename block
within the FOB specified in RO.

Wildcard specifications operate in the same manner as for the .FIND
routine described in section 4.8.1 above, except that the special file
version numbers 0 and -1 are illegal. The file version number for
.REMOV operations must be explicit or wildcard. Each .REMOV operation
deletes the next directory entry having the specified filename, file
type, and file version number.

4.9 FILENAME BLOCK ROUTINES

The .GTDIR and .GTDID routines are used to
information in a specified filename block.

4-14

insert directory

FILE CONTROL ROUTINES

4.9.1 .GTDIR - Insert Directory Information in Filename Block

The .GTDIR routine is called to insert directory information taken
from a directory-string descriptor into a specified filename block.

Before calling this routine, the following registers must be preset:

RO Must contain the address of the desired FDB.

Rl Must contain the address of a filename block in which the
directory information is to be placed. This filename block
is usually, but not necessarily, the filename block within
the FDB specified in RO.

R2 Must contain the address of the
descriptor in the user program.
defines the size and the address of
string.

2-word
This
the

directory-string
string descriptor

desired directory

This routine performs a .FIND operation for the specified user file
directory (UFD) in the master file directory (MFD) and returns the
resulting directory ID to the 3 words of the specified filename block,
starting at offset location N.DID. The .GTDIR routine preserves the
information in offset locations N.FNAM, N.FYTP, N.FVER, N.DVNM, and
N.UNIT of the filename block, but zeros (clears) the rest of the
filename block.

The .GTDIR routine can also be used in conjunction with the NMBLK$
macro call (see Section 2.4.2) to insert directory information into a
specified default filename block.

4.9.2 .GTDID - Insert Default Directory Information in Filename Block

The .GTDID routine provides an alternative means for inserting
directory information into a specified filename block. Instead of
allowing the specification of the directory string, as does the .GTDIR
routine above, this routine uses the binary value found in the default
Ule word maintained in $$FSR2 as the desired user file directory
(UFD) .

Before calling this routine, the following registers must be preset:

RO Must contain the address of the desired FDB.

Rl Must contain the address of a filename block in which the
directory information is to be placed. This filename block
is usually, but not necessarily, the filename block within
the FDB specified in RO.

When called, the .GTDID routine takes the default Ule from its
one-word location in $$FSR2 and performs a .FIND operation for the
associated user file directory (UFD) in the master file directory
(MFD). The resulting directory ID is returned to the 3 words of the
specified filename block, starting at offset location N.DID. As does
the .GTDIR routine, .GTDID preserves offset locations N.FNAM, N.FTYP,
N.FVER, N.DVNM, and N.UNIT in the filename block, but zeros the rest
of the filename block.

The .GTDID routine embodies considerably less code than the .GTDIR
routine. Its input is the binary representation of a Ule rather than
an ASCII string descriptor. Therefore, it does not invoke the . PARSE
logic; furthermore, .GTDID is intended specifically for use in

4-15

FILE CONTROL ROUTINES

programs that open files via the OFNB$ macro call (see Section 3.6).
Such a program does not invoke the .PARSE logic because all required
filename information is provided to the program in filename block
format.

As is true of the .GTDIR routine described in Section 4.9.1 above,
.GTDID can be used in conjunction with the NMBLK$ macro call (see
Section 2.4.2) to insert directory information (N.DID) into a
specified default filename block. The user also has the option to
initialize offset location N.DID manually with required directory
information.

4.10 FILE POINTER ROUTINES

The .POINT, .POSRC, .MARK, and .POSIT routines are used to point to a
byte or a record within a specified file.

4.10.1 .POINT - position File to Specified Byte

The .POINT routine is called to position a file to a specified byte in
a specified virtual block. If locate mode is in effect for record I/O
operations, the .POINT routine also updates the value in offset
location F.NRBD+2 in the associated FDB in preparation for a PUTS
operation in locate mode.

The following registers must be preset before calling this routine:

RO Must contain the address of the desired FDB.

Rl Must contain the high-order bits of the virtual-block number.

R2 Must contain the low-order bits of the virtual-block number.

R3 Must contain the desired byte number within the specified
virtual block.

For a description of virtual-block numbers and how these 2-word values
are formed, refer to Item 4 in Section 2.2.2.1.

The .POINT routine is often used in conjunction with the .MARK routine
to achieve a limited degree of random access with variable-length
records. The .MARK routine saves the positional context of a file in
anticipation of temporarily closing that file and then reopening it
later at the same position. For such purposes, the following
procedure applies:

1. Call the .MARK routine (see Section 4.10.3 below) to save the
cqrrent positional context of the file.

2. Close the file.

3. When desired, reopen the file.

4. Load the information returned by the .MARK routine into Rl,
R2, and R3, as required above, before calling the .POINT
routine.

4-16

FILE CONTROL ROUTINES

5. Call the .POINT routine.

The .POINT routine may be called to rewind a file on ANSI
magtape to its start. For this case, RO and R3 must be 0,
and R2 must be 1.

6. Resume processing of the file.

4.10.2 .POSRC - Position File to Specified Record

The .POSRC routine is called to position a file to a specified
fixed-length record within a file. If locate mode is in effect for
record I/O operations, the .POSRC routine also updates the value in
offset location F.NRBD+2 in the associated FOB in preparation for a
PUT$ operation in locate mode.

Before calling this routine, the user must set offset locations
F.RCNM+2 and F.RCNM in the FOB to the desired record number and ensure
that the correct record size is reflected in offset location F.RSIZ of
the FOB.

Also, the register below must be preset before calling the .POSRC
routine:

RO Must contain the address of the associated FOB.

The .POSRC routine is used when performing random-access PUT$
operations in locate mode. Normally, PUT$ operations in locate mode
are sequential; however, when random-access mode is used, the
following procedure must be performed to ensure that the record is
built at the desired location:

1. Set offset locations F.RCNM+2 and F.RCNM in the associated
FOB to the desired record number.

2. Call the .POSRC routine.

3. Build the new record at the address returned (by the .POSRC
call) in offset location F.NRBD+2 of the associated FOB.

4. Perform the PUT$ operation.

4.10.3 .MARK - Save Positional Context of File

The .MARK routine allows the user to record the current positional
context of a file for later use. For example, the user may mark the
current position of the file, close that file, and later reopen the
file and return to the same position within the file. The .MARK
routine is also useful in altering records within a file. After
determining the record to be altered, the user may .MARK the file and
retrieve information elsewhere in the file for use in updating the
desired record. Then, by returning to the saved position of the file,
the desired record may be altered. This iterative sequence may be
repeated any number of times to update desired records in the file.

RO must contain the address of the associated FOB before calling this
routine.

4-17

FILE CONTROL ROUTINES

When called, the .MARK routine returns information to the following
registers:

Rl Contains the high-order bits of the virtual-block number.

R2 Contains the low-order bits of the virtual-block number.

R3 Contains the number of the next byte within the virtual
block.

R3 points to the next byte in the block. For example, if four GET$
operations are performed, followed by a call to the .MARK routine, R3
points to the first byte in the fifth record in the file.

4.10.4 .POSIT - Return Positional Information for Specified Record

The .POSIT routine calculates the virtual-block number and the byte
number pertaining to the beginning of a specified record.

The following register must be preset before calling this routine:

RO Must contain the address of the associated FOB.

In addition, offset locations F.RCNM and F.RCNM+2 in the associated
FOB must contain the desired record number.

Unlike the .POSRC routine above, which positions the file to the
specified record, .POSIT simply calculates the positional information
for a specified record so that a .POINT operation can be later
performed to position to the desired record.

The register values returned by the .POSIT routine are identical to
those described above for the .MARK routine.

4.11 QUEUE I/O FUNCTION ROUTINE (.XQIO)

The .XQIO routine is called to execute a specified QUEUE I/O function
and to wait for its completion.

The following registers must be preset before calling this routine:

RO Must contain the address of the desired FOB.

Rl Must contain the desired QUEUE I/O function code. Refer to
the IAS/RSX-llD Device Handlers Reference Manual or the
RSX-llM I/O Drivers Reference Manual for the desired QUEUE
I/O directive function codes.

R2 Must contain the number of optional parameters to be included
in the QUEUE I/O directive, if any.

R3 Must contain the beginning address of the list of optional
QUEUE I/O directive parameters, if R2 contains a nonzero
value.

4-18

FILE CONTROL ROUTINES

4.12 RENAME FILE ROUTINE (.RENAM)

The .RENAM routine is called to change the name of a file in its
associated directory. To rename a file, the user must specify the
address of an FOB containing filename information, a LUN, and an event
flag number to be used in connection with renaming the file.

If the file to be renamed is open when the call to .RENAM is issued,
that file is closed under its new name, provided that the renaming
operation is successful.

The following registers must be preset before calling this routine:

RO Must contain the address of the FOB associated with the
originally named file.

Rl Must contain the address of the FOB containing the desired
filename information, LUN assignment, and event flag to be
associated with renaming the file.

If the renaming operation is successful, a new directory entry is
created, and the original entry is deleted. If the operation is not
successful, the file is closed under its original name, and the
associated directory is not affected.

The .RENAM routine uses the absence of a value in location F.FNB+N.FID
.as an indication that . PARSE must be called to parse a file
specification. If neither a dataset descriptor nor a default filename
block is present, . PARSE returns a null filename. The rename
operation then results in a new filename of ".;1 11

•

NOTE

The renaming process is merely a
directory operation that replaces an old
entry with a new entry. The filename
stored in the file-header block is not
altered.

4.13 FILE EXTENSION ROUTINE (.EXTND)

The .EXTND routine
noncontiguous files.
closed.

is called to extend either contiguous or
The file to be extended can be either open or

The following registers must be preset before calling this routine:

RO Must contain the address of the associated FOB.

Rl Must contain a numeric value specifying the number of blocks
to be added to the file.

R2 Must contain the extension control bits, as appropriate. The
possible bit configurations for controlling file extend
operations are detailed in Table 4-1. This table defines the
bits in the low-order byte of R2. The high-order 8 bits of
R2 (Bits 8 through 15) are used in conjunction with the 16
bits of Rl to define the number of blocks to be added to the
file (see Note below).

4-19

FILE CONTROL ROUTINES

NOTE

The contents of Rl and the high-order
byte of R2 (Bits 8 through 15) are used
by FCS in accomplishing the specified
.EXTND operation. Thus, 24 bits of
magnitude are available for specifying
the number of blocks by which the file
is to be extended.

4.14 FILE TRUNCATION ROUTINE (.TRNCL)

The .TRNCL routine truncates a file to its logical end-of-file point,
deal locates any space beyond this point, and closes the file.

The following register must be preset before calling this routine:

RO Must contain the address of the associated FDB.

The file must have been opened with both write and extend access
privileges. Otherwise, the truncation will fail.

The close operation will be attempted even if the truncation operation
fails. If errors occur in both operations, the error code from the
close operation will be returned.

4.15 FILE DELETION ROUTINES

The .MRKDL and .DLFNB routines are provided for deleting files.

4.15.1 .MRKDL - Mark Temporary File for Deletion

The .MRKDL routine is used in conjunction with a temporary file,
a file created through the OPNT$W macro call (see Section 3.3).
a file has no associated directory entry.

i . e • ,
Such

A call to the .MRKDL routine is issued prior to closing a temporary
file. The file so marked is then deleted automatically when the file
is closed.

Table 4-1
R2 Control Bits for .EXTND Routine

BIT SETTINGS -
Low-Order Byte of R2 BIT DEFINITIONS AND MEANING

7 6 5 4 3 2 1 0

EX.ENA - Bit 7 = 0

0 x x x x x x 0 EX.ACI - BIT 0 = 0; indicates that
extend is to be noncontiguous.

0 x x x x x x 1 EX.ACI - BIT 0 = 1 ; indicates that
extend is to be contiguous and that
file is to be contiguous.

(continued on next page)

4-20

FILE CONTROL ROUTINES

Table 4-1 (Cont.)
R2 Control Bits for .EXTND Routine

BIT SETTINGS -
Low-Order Byte of R2 BIT DEFINITIONS AND MEANING

EX.ENA - Bit 7 = 1

1 x x x x x x 0 EX.ACI - Bit 0 = 0; indicates that
noncontiguous area is to be added to
the file.

1 x x x x x x 1 EX.ACI - Bit 0 = 1; indicates that
contiguous area is to be added to the
file.

1 x x x x x 1 x EX.AC2 - Bit 1 = 1 ; indicates that
the largest available contiguous area
is to be added to the file if desired
extend space is not available. This
bit is set only if bit 0 in EX.ACI is
set to 1.

1 x x x x 0 x x EX.FCO - Bit 2 = 0; indicates that
the file is to be noncontiguous.

1 x x x x 1 x x EX.FCO - Bit 2 = 1 ; indicates that
the file is to be contiguous.

1 x x x 0 x x x EX.ADF - Bit 3 = 0; indicates that
the user intends to allocate the
number of blocks specified by Rl and
the high-order bits of R2 (see Note
above) . ,

1 x x x 1 x x x EX.ADF - Bit 3 = 1; indicates that
file extension is to occur according
to the volume default extend value, as
established by the INITIALIZE,
INITVOLUME, or MOUNT command.

Before calling the .MRKDL routine, the following register must be
preset:

RO Must contain the address of the associated FDB. This FDB is
assumed to contain the file identification, device name, and
unit information pertaining to the file to be deleted.

If the .MRKDL routine is invoked while the temporary file is open, as
is normally done, then the file is deleted unconditionally when it is
closed, even if the calling task terminates abnormally without closing
the file.

4.15.2 .DLFNB - Delete File by Filename Block

This routine is used to delete a file by filename block. The .DLFNB
routine assumes that the filename block is completely filled in; when
called, it closes the file, if necessary, and then deletes the file.

Before calling this routine, the following register must be preset:

RO Must contain the address of the associated FDB.

4-21

FILE CONTROL ROUTINES

The .OLFNB routine operates in the same manner as the routine invoked
by the DELET$ macro call (see Section 3.18), but .DLFNB does not
require any of the .PARSE logic and is thus considerably smaller (in
terms of memory requirements) than the normal DELET$ function. Like
the DELET$ operation, however, if the file to be deleted is not
currently open, and if an explicit file version number is not present
in offset location N.FVER of the associated filename block, then the
.DLFNB operation fails.

4.16 DEVICE CONTROL ROUTINE (.CTRL)

The .CTRL
functions.
functions:

routine is called
The following are

to perform device-specific control
examples of .CTRL device-specific

1. Rewind a magnetic tape volume set.

2. Position to the logical end of a magnetic tape volume set.

3. Close the current magnetic tape volume and continue file
operations on the next volume.

4. Space forward or backward n records.

5. Rewind a file.

The following registers must be preset before calling this routine for
items 1 to 3 above:

RO Must contain the address of the associated FOB.

Rl Must contain one of the following function codes:

FF.RWO to rewind a magnetic tape volume set;

FF.POE to position to the logical end of a magnetic tape
volume set;

FF.NV to close the
operations on
volume set.

current volume and
the next volume of

continue file
a magnetic tape

R2 and R3 must each contain o.

When using .CTRL to space forward or backward, registers RO, Rl, R2,
and R3 must contain the following values:

RO Must contain the address of the associated FDB.

Rl Must contain the value FF.SPC.

R2 Must contain the number of records to space
backward. A positive number means space forward;
number means space backward.

R3 Must contain o.

forward or
a negative

When using .CTRL to rewind a file, register Rl must contain the value
FF.RWF and registers R2 and R3 must contain o.

See Chapter 5 for an explanation of the use of .CTRL to accomplish
magnetic tape device-specific functions.

4-22

CHAPTER 5

FILE STRUCTURES

lAS, RSX-llD, and RSX-llM support an identical file structure on disk
and DECtape. They also support ANSI file structure on magnetic tape.

The disk and DECtape file structure is called FILES-II; the magnetic
tape file structure is ANSI standard.

5.1 DISK AND DECTAPE FILE STRUCTURE (FILES-II)

Volumes contain both user files and system files. Disks and DEC tapes
initialized through the INITIALIZE (lAS) or INITVOLUME (RSX) command
have the standard FILES-II structure built for them automatically.
The standard system files created through these commands include the
following:

1. Index file

2. Storage-allocation file

3. Bad-block file

4. Master file directory (MFD)

5 Checkpoint file

Each FILES-II volume has a file of each type. A volume may have more
than one directory file; such files, created by the CREATE/DIRECTORY
command in lAS, and the UFD command in RSX-ll systems, are used by the
system to locate user files on the volume.

5.1.1 User File Structure

User data files on disk and DECtape consist of ordered sets of virtual
blocks that constitute the virtual structure of the files as they
appear to the user. Virtual blocks can be read and written directly
by issuing READ$ and WRITE$ macro calls (see Sections 3.15 and 3.16,
respectively). Virtual blocks are numbered in ascending sequence
relative to the first block in the file (which is virtual block 1).

The virtual blocks of a file are stored on the volume as logical
blocks. The logical-block size of all volumes is 256 words; thus,
each virtual block is also 256 words. When access to a virtual block
is requested, the virtual-block number is mapped into a logical-block
number. The logical-block number is then mapped to the physical
address on the associated volume.

5-1

FILE STRUCTURES

5.1.2 Directory Files

A directory file contains directory entries. Each entry consists of a
filename and its associated file number and file-sequence number. The
number of required directory files depends on the number of users of
the volume. For single-user volumes, only a master file directory
(MFD) is needed; for multiuser volumes, a master file directory (MFD)
is required, and one user file directory (UFD) is required for each
user of the volume.

The MFD contains a list of all the UFDs on the volume, and each UFD
contains a list of all that user's files, UFDs are identified by user
identification codes (UICs). A user file directory is created by the
UFD command in RSX-ll systems, and by the CREATE/DIRECTORY command in
lAS. These commands are described in detail in the RSX-IID User's
Guide, the RSX-IIM Operator's Procedures Manual, and the lAS System
Management GUlde.

Figures 5-1 and 5-2 illustrate the directory structure for single-user
and multiuser volumes, respectively.

5.1.3 Index File

The index file contains volume information and user file-header
blocks, which are used by the file control primitives (FCP). Because
the file-header blocks (see below) are stored in the index file, they
can be located quickly. Furthermore, since a file-header block is 256
words in length, it can be read into memory with a single access.

The index file is created when a volume is initialized for
host operating system. During initialization, the
required by the system is placed in the index file.
contains a detailed description of the format and content
file.

MFD

I
I 1 1

FILE A FILE 8 FILE C

use by the
information
Appendix E
of an index

Figure 5-1 Directory Structure for Single-User Volumes

5-2

FILE STRUCTURES

MFO

I I

UFO UFO
100,100 200,200

J I
I I I I

FILEA FILE B FILE A FILE B FILE C

Figure 5-2 Directory Structure for Multiuser Volumes

5.1.4 File-Header Block

Associated with each file is a file-header block that contains
information describing the file. File-header blocks are stored in the
index file. Each file-header block is 256 words in length and
contains three areas: the header area, the identification area, and
the map area.

The header area identifies the block as a file-header block. Each
file is uniquely identified by a file ID consisting of 2 words. The
first word of the file ID, i.e., the file number, is used to calculate
the virtual-block number (VBN) of that file's header block in the
index file. (This calculation is done as follows: VBN = the file
number + 3 + the number of index-file bit-map blocks.) The second
word, i.e., the file sequence number, is used to verify that the
header block is in fact the header for the desired file.

When a request to access a file is issued, both the file number and
the file sequence number are specified. The access request is denied
if the file sequence number does not match the corresponding field in
the file-header block associated with the specified file number.

When a file is deleted, its file-header block is made available for
the subsequent creation of a new file, and when the new file is
created, a different file sequence number is stored in the file-header
block. If a user attmpts to access a file that has been deleted
(e.g., by referencing an obsolete directory entry), this updated file
sequence number ensures the failure of the access request, even if the
same file-header block is reused for a different file.

The identification area specifies the creation name of the file and
identifies the file owner's DIC. This area also specifies the
creation date and time, the revision number, the date and time of the
last revision (i.e., the time and date on which the last modification
to the file occurred), and the expiration date. However, lAS uses
magtapes with standard ANSI labels. There is no place for the
creation time or the length of the file in the ANSI file-header
labels. Consequently, the creation time is listed as O. If a

5-3

FILE STRUCTURES

contiguous file is copied to magtape then transferred back to disk,
the resulting disk file is not marked contiguous even if the /CO
switch is used because the system cannot know how much space to
allocate for the output file when it reads from magtape.

The map area provides the information needed by the system to map
virtual-block numbers to logical-block numbers.

A checksum value is computed each time the file-header block is read
from or written to the volume, thus ensuring that the file-header
block is transferred correctly. Appendix F contains a detailed
description of the format and content of the file-header block.

5.2 MAGNETIC TAPE FILE PROCESSING

lAS and RSX support the standard ANSI magnetic tape structure as
described in the June 19, 1974 proposed revision to "Magnetic Tape
Labels and File Structure for Information Interchange," ANSI
X3.27-1969. Any of the following file/volume combinations can be
used:

1. Single file on a single volume,

2. Single file on more than one volume,

3. Multiple files on a single volume,

4. Multiple files on more than one volume.

Items 2 and 4 above constitute a volume set.

The record format on magtape is different from that on disk. When a
file that contains variable-length records or fixed-length records
that cross block boundaries is copied to magtape, it occupies more
blocks on the magtape than it did on the disk. This is so because on
magtape the record counts are larger than on disk, and there is unused
space at the end of the blocks. In addition, the cannot-cross­
block-boundaries bit is set in the file's FOB.

The sequence in which volume and file labels are used and the format
of each label type is defined in Appendix G.

5.2.1 Access to Magnetic Tape Volumes

Magnetic tape is a sequential-access, single-directory storage medium.
Only one user can have access to a given volume set at a time. No
more than one file in a volume set can be open at a time. Access
protection is performed on a volume-set basis. On volumes produced by
DIGITAL systems, user access rights are determined by the contents of
the owner identification field as described in Section G.I.I.I.
Volumes produced by nonDIGITAL systems are restricted to read-only
access unless explicitly overridden at MOUNT time.

5-4

FILE STRUCTURES

5.2.2 Rewinding Volume Sets

A magnetic tape volume set can be rewound either by using the FOOP$R
macro call before an OPEN$ or CLOSE$ or by using the .CTRL file
control subroutine. Regardless of the method used to rewind the
volume set, the following procedures are performed by the file control
system.

1. All mounted volumes are rewound to BOT;

2. If the first volume in the set is not mounted, the unit to be
used is placed offline;

3. If the volume is not already mounted and if the rewind was
requested by an OPEN$ macro call or by a .CTRL call, a
request to mount the first volume is printed on the
operator's console;

4. If the rewind was requested on a CLOSE$ macro call, no mount
message is issued until the next volume is needed.

5.2.3 Positioning to the Next File Position

The normal procedure for writing a new file onto a magnetic tape is to
begin writing the file following the end of the last file currently in
the volume set. However, the FOOP$R macro call can be used to
indicate that the new file is to be written immediately after the
end-of-file labels of the most recently closed file. This next
file-position option causes the loss of any files physically following
this most recently closed file in the volume set.

If, in addition to the next file-position option, the rewind option
also is specified, the file is created after the VOLI label on the
first volume of the set. All files previously contained in the entire
volume set are lost.

To create a file in the next file position, FA.POS must be set in FOB
location F.ACTL. The default value for this FOB position is 0 (not
FA.POS). The default indicates that the file system is to position at
the logical end of the volume set to create the file.

When the default is used, no check is made for the existence of a file
with the same name in the volume set. Therefore, a program written to
use magnetic tape normally should specify FA.POS.

The next file-position option is ignored by directory-device file
processors. However, programs written mainly for directory devices
cannot specify the next file-position option in open commands for
output and, therefore, cause the position to end process to be used
automatically.

5.2.4 Single-File Operations

Single-file operations are performed by specifying the rewind option
before the open and before the close. Using this approach, scratch
tape operations can be performed as follows:

1. Open the first file with rewind specified.

2. Write the data records and close the file with rewind.

3. Open the first file again for input (rewind is optional).

5-5

FILE STRUCTURES

4. Read and process the data.

5. Close the file with rewind.

6. Open the second file with rewind specified.

7. Write the data records.

8. Close the file with rewind and perform any additional
processing.

5.2.5 Multiple-File Operations

A multiple-file volume is created by opening, writing, and then
closing a series of files without specifying a rewind. The sequential
processing of files on the volume can be accomplished by closing
without rewind and then opening the next file without rewind.

Opening a file for extend (OPEN$) is legal only for the last file on
the volume set.

The following tape operations are performed to create a multiple-file
tape volume:

1. Open a file for output with rewind.

2. write data records and close the file.

3. Open the next file with no rewind.

4. Write the data records and close the file.

5. Repeat for as many files as desired.

Files on tape can be opened in a nonsequential order,
processing and tape-positioning time is required.
access of files in a multivolume set is not recommended.

5.2.6 Using .CTRL

but increased
Nonsequential

The .CTRL file control routine can be called to override normal FCS
defaults for magnetic tape. Examples of its uses are:

1. Continue processing a file on the next volume of a volume set
before the end of the current volume is reached.

2. Position to the logical end-of-volume set.

3. Rewind a volume at other than file open or close.

4. Space forward or backward n records.

5. Rewind a file.

When .CTRL is used to continue processing a file on the next volume,
the first file section on the next volume is opened. File sections
occur when a file is written on more than one volume. The portion of
the file on each of the volumes constitutes a file section. For input
files, the following .CTRL processing occurs.

5-6

FILE STRUCTURES

1. If the current volume is the last volume in the set, i.e.,
there is no next volume, end-of-file is reported to the user.

2. If another file section exists, the current volume is rewound
and the next volume is mounted. A request to the operator is
printed if necessary.

3. The header label (HDRl) of the first file section is read and
checked.

4. If all required fields check, the operation continues.

5. If any check fails, the operator is requested to mount the
correct volume.

For output files, the following processing occurs.

1. The current file section is closed with EOVI and EOV2 labels
and the volume is rewound.

2. The next volume is mounted.

3. A file with the same name and the next higher section number
is opened for write. The file-set identifier is identical
with the volume identifier of the first volume in the volume
set.

NOTE

I/O buffers that are currently in memory are written
on the next file section.

When .CTRL is used to position to the logical end-of-volume set, the
file system positions between the two tape marks at the logical end of
the last volume in the set.

When .CTRL is used to space forward or backward across blocks on
magnetic tape, spacing crosses volumes for multivolume files.

5.2.7 Examples of Magnetic Tape Processing

The following pages contain examples of FCS statements used to process
magnetic tape. Macro parameters not related to magnetic tape handling
have been omitted from the statements so that the user need consider
only those matters directly related to magnetic tape.

5.2.7.1 Examples of OPEN$W to Create a New File - All routines expect
RO to contain the FDB address.

OPRWDO:

OPEN WITH REWIND

FDOP$R
BR

RO",,#FA.ENB!FA.RWD
OPNOUT

5-7

iSET REWIND AND ENABLE USE
iOF F.ACTL

FILE STRUCTURES

OPNXTO:

OPEN FOR NEXT FILE POSITION

FDOP$R RO",,#FA.ENB!FA.POS
BR OPNOUT

OPROYK:

iSET POSITION TO NEXT
iAND ENABLE USE OF F.ACTL

OPEN FILE AT END OF VOLUME KEEPING CURRENT USER
ACCESS CONTROL BITS

OPROVO:

BIC
BR

#FA.ENB,F.ACTL(RO)
OPNOUT

iDISABLE USE OF F.ACTL

OPEN FILE AT END OF VOLUME - SELECT SYSTEM DEFAULT FOR
USER ACCESS CONTROL BITS

FDOP$R RO",,#O
BR OPNOUT

iDISABLE USE OF AND RESET
iF.ACTL TO ZERO

OPEN FILE WITH CURRENT USER ACCESS CONTROL
,
OPOURO:

BIS #FA.ENB,F.ACTL(RO)
OPNOUT: OPEN$W RO

RETURN

iENABLE USE OF F.ACTL
iOPEN FILE

5.2.7.2 Examples of OPEN$ to Read a File - All routines expect RO to
contain the FDB address.

OPRWDI:

OPEN WITH REWIND

FDOP$R RO",,#FA.ENB!FA.RWD
BR OPNIN

OPCURI:

OPEN STARTING SEARCH AT CURRENT TAPE POSITION KEEPING USER
ACCESS CONTROL BITS

i

BIC
BR

#FA.ENB,F.ACTL(RO)
OPNIN

OPEN USING USER ACCESS CONTROL

OPDFLI: BIS #FA.ENB,F.ACTL(RO)
OPNIN: OPEN$R RO

RETURN

iDISABLE USE OF F.ACTL

iENABLE USE OF F.ACTL

5.2.7.3 Examples of CLOSE$ - All routines expect RO to contain the
FDB address.

CLSCUR:

CLOSE LEAVING TAPE AT CURRENT POSITION AND KEEPING
USER ACCESS CONTROL BITS

BIC
BR

#FA.ENB,F.ACTL(RO)
CLOSE

5-8

iDISABLE USE OF F.ACTL
iDEFAULT IS LEAVING AT CURRENT
iPOSITION

FILE STRUCTURES

CLSRWD:

CLOSE REWINDING THE VOLUME

FDOP$R RO",,#FA.ENB!FA.RWD
BR CLOSE

CLOSE WITH USER ACCESS CONTROL BITS

CLSDFL: BIS #FA.ENB,F.ACTL(RO)
CLOSE: CLOSE$ RO

RETURN

iSET REWIND AND ENABLE USE OF
iF.ACTL

iENABLE USE OF F.ACTL

5.2.7.4 Combined Examples of OPEN$ and CLOSE$ for Magnetic Tape - The
following examples call routines in previous examples. By combining
various magnetic tape operations, the user can process tape volumes in
the following ways.

i
i SCRATCH TAPE OPERATIONS--SINGLE FILE VOLUME--
i
SCROUT: MOV # FDBOU'I' ,RO

CALL OPRWDO
RETURN

SCRIN: MOV #FDBIN,RO
CALL OPRWDI
RETURN

CLSCRO: MOV #FDBOUT,RO
BR CLSVOL

CLSCRI: MOV FDBIN,RO
CLSVOL: CALL CLSRWD

RETURN

MULTI-FILE VOLUME OPERATIONS
i
OPNXTI:

iSELECT FDB AND OPEN
iOUTPUT FILE WITH REWIND

iSELECT FDB AND OPEN FOR
iINPUT WITH REWIND

iCLOSE SCRATCH FILE
iREWINDING VOLUME

OPEN FILE FOR READING WHEN FILE IS NEXT OR FURTHER UP THE VOLUME

OPENIN:

OPEN

MOV
CALL
RETURN

FILE FOR

MOV
CALL
RETURN

#FDBIN,RO
OPCURI

READING WHEN

#FDBIN,RO
OPRWDI

POSITIONED

MULTI-FILE OUTPUT OPERATIONS
i
OPNINT:

START NEW VOLUME DESTROYING ALL PAST

MOV #FDBOUT,RO
CALL OPRWDO
RETURN

5-9

iSELECT FDB
iOPEN FILE

PAST IT

iSELECT FDB

FILES ON IT

iSELECT OUTPUT FDB
iOPEN WITH REWIND

FILE STRUCTURES

OPNEXT:

OPEN OUTPUT FILE AT NEXT FILE POSITION DESTROYING ANY FILE
THAT MAY BE AT OR PAST THAT POSITION

MOV #FDBOUT,RO iSELECT OUTPUT FDB
CALL OPNXTO
RETURN

OPENDT:

OPEN OUTPUT FILE AT CURRENT END OF VOLUME SET KEEPING USER
ACCESS CONTROL BITS

MOV #FDBOUT,RO iSELECT OUTPUT FDB
CALL OPROVK
RETURN

OPNEOV:

OPEN OUTPUT FILE AT CURRENT END OF VOLUME AND MAKE THAT THE USER
ACCESS CONTROL

MOV #FDBOUT,RO iSELECT OUTPUT FDB
CALL OPROVO
RETURN

NOT LAST FILE IN FILE SET CLOSE ROUTINE
i
CLSFLO: MOV #FDBOUT,RO iSELECT OUTPUT FDB

BR CLSXX
CLSFLI: MOV #FDBIN,RO iSELECT INPUT FDB
CLSXX: CALL CLSCUR

RETURN

TO APPEND TO LAST FILE

OPEN$A #FDBOUT

5-10

CHAPTER 6

COMMAND-LINE PROCESSING

As noted in Section 2.4.3, a collection of routines available from the
system object library ([l,l]SYSLIB.OLB) may be linked with the user
program to provide all the logical capabilites required to process
command lines dynamically. These system facilities include the
following routines:

1. Get Command Line (GCML). This routine accomplishes all the
logical functions associated with the entry of command lines
from a terminal, an indirect command file, or an on-line
storage medium. Using GCML relieves the user of the burden
of manually coding command-line-input operations.

2. Command String Interpreter (CSI). Normally, this routine
takes command lines from the GCML command-line-input buffer
and parses them into the appropriate dataset descriptors
required by FCS for opening files.

This body of routines is linked with the'user program at task-build
time. GCML and CSI are often jointly incorporated in system or
application programs as a standardized interface for obtaining and
interpreting dynamic command-line input. The flow of data during
command-line processing is shown in Figure 6-1.

Although these routines are presented in the context of being used
together for processing command-line input, each may be used
independently of the other. Doing so, however, means that the user
must manually code the functions otherwise performed by the missing
component. The joint use of these routines is assumed throughout this
chapter to be the "normal" situation.

The invocation of GCML and CSI functions requires that certain
initialization operations be accomplished at assembly time. This
initialization sets up the GCML command-line-input buffer, defines and
initializes control blocks for both GCML and CSI, and establishes the
necessary working storage and communication areas for these routines.
Also, the appropriate macro calls that invoke GCML and CSI
execution-time functions must be included in the source coding at
desired logical points to effect the dynamic processing of command
lines.

GCML and CSI macro calls observe the same register conventions
applicable to FCS. All registers, except RO, are preserved exactly as
in all FCS macro calls. RO is used to contain the address of the GCML
control block or the CSI control block, as appropriate.

As with all FeS macro calls, the GCML and CSI macro calls must also be
listed as an argument in an .MCALL directive (see Section 2.1) before
being issued in the user program.

6-1

COMMAND-LINE PROCESSING

ASCII DATA

(~ PDS/MCR
ON-LINE

STORAGE

GCML

CSI

~

DEFAULT
DATASET FILENAME

DESCRIPTOR BLOCK

FCS
-'"

(.PARSE)

FILENAME
BLOCK

Figure 6-1 Data Flow During Command Line Processing

6.1 GET COMMAND LINE (GCML)

The Get Command Line (GCML) routine embodies all the logical
capabilities required to enter command lines dynamically during
program execution. GCML accepts input from a terminal or an indirect
command file that contains predefined command lines. If the user
program allocates sufficient buffer space, GCML accepts commands that
run to more than one line. This continuation mechanism takes effect
automatically when a hyphen appears as the last printing character of
a command line.

All GCML functions require the creation and initialization of a GCML
control block. The macro call that accomplishes this function is
described in detail in the following section. The GCML run-time macro
calls that may be issued dynamically are described in Section 6.1.3.

6-2

COMMAND-LINE PROCESSING

6.1.1 GCMLB$ - Allocate and Initialize GCML Control Block

Issuing the GCMLB$ macro call accomplishes the following assembly-time
functions:

1. Reserves storage for, and initializes a GCML control block
within, the user program.

2. Creates and initializes an FDB in the first part of the GCML
control block. This FDB is used to open a command file.
Such a file, which may employ a terminal or a file-structured
device such as a disk, is opened and read by the user program
in the same manner as any other file. The initialization and
maintenance of this FDB, however, is under GCML and FCS
control and need not be of concern to the user.

3. Creates and initializes a default filename block within the
GCML control block. This default filename block pertains to
an indirect command file. If an explicit filename string is
not specified by the user for an indirect command file, the
values CMI for the filename and .CMD for the file type are
assumed by default. There is no default designation for the
device name.

4. Defines the symbolic offset,s for the GCML control block and
initializes certain offsets to required values. These
offsets are described in detail in Section 6.1.2.

The GCMLB$ macro call is specified in the following format:

label: GCMLB$ maxd,prmpt,ubuf,lun,pdl,size

where: label represents a symbol that names the GCML control
block and defines its address. This label permits
the GCML control block to be referenced directly
by all the GCML run-time routines that require
access to this structure (see Section 6.1.3).

maxd

prmpt

represents a numeric value that specifies the
maximum nesting depth permitted for indirect
command files. This parameter determines the
number of nested indirect command files that GCML
will be allowed to access in obtaining
command-line input.

An indirect command file, which often resides on
disk, contains well-defined, nonvarying command
sequences, which may be read directly by GCML to
control operations that are highly repetitive
(such as Task Builder activities). Significant
advantages in terms of convenience and faster
execution result from the use of an indirect
command file.

If this parameter is not specified, a nesting
level depth of 0 is defined by default,
effectively eliminating an indirect command file
as a source of command-line input.

represents a user-specified, 3-character ASCII
prompting sequence. This parameter constitutes a
default prompt string that is typed out by GCML to
the user terminal to solicit command line input.

6-3

ubuf

lun

pdl

COMMAND-LINE PROCESSING

The ASCII prompting sequence is formulated into
the following 6-byte string:

1. A carriage return «CR» and a line-feed
«LF»;

2 • The 3 ASCII characters specified by the user;
and

3 • A right angle bracket (» .

The above string initializes GCML control block
offset location G.DPRM (see Section 6.1.2).

If this parameter is not specified, the right
angle bracket (», preceded by three blanks, is
defined by default for use by GCML as the default
prompting sequence.

represents the address of a buffer to be used by
GCML for temporary storage of command-line input.
If this parameter is not specified, a buffer,
whose length is determined by the size parameter,
is reserved in the GCML control block for
command-line input. If neither this parameter nor
the size parameter is specified, a 41-word buffer
is reserved by default in the GCML control block.

represents a logical unit number. The device
assigned to this logical unit number is used by
GCML as the command-input device. If this
parameter is not specified, a logical unit number
of 1 is used by default.

represents the address of an area reserved in
user program for use as a push-down list.
area is reserved as working storage for use
connection with indirect command files.

the
This

in

Normally, the pdl parameter is not specified; in
this case, sufficient storage for the push-down
list is added to the control block by default in
accordance with the algorithm described below.

The push-down list is created through statements
logically equivalent to the following:

.EVEN
label: . BLKB G.LPDL

The user-supplied label specifies the push-down
list and defines its address; G.LPDL, which is
defined by the GCMLB$ macro, is the length (in
bytes) of the push-down list.

The length of the push-down list is a function of
the maximum number of nested indirect command
files that may be accessed by GCML in obtaining
command-line input. The value of G.LPDL is
calculated according to the following algorithm:

1. Add 1 to the maximum nesting level depth
declared with the maxd parameter (see above).

6-4

COMMAND-LINE PROCESSING

2. Multiply the sum of Step 1 by 16(10), the
appropriate number of bytes that must be
reserved for the push-down list.

For example, if the maxd parameter is specified as
4, the length of the push-down list is determined
as follows:

(4+1)*16. = 80. bytes

From the above, note that 16(10) bytes of storage
are required for each indirect command file, plus
a total of 16(10) bytes for use as general
overhead.

size represents the size, in bytes, of the buffer
reserved for command-line input. The specified
size must always include 2 extra bytes that are
used internally by GCML. The default value for
size is 82 (that is, 80 bytes for command-line
input and 2 bytes GCML overhead).

If the user wants GCML to accept continuation
lines, the specified value for the size parameter
must be greater than 82. When size is greater
than 82, the bit value GE.CON is set in the status
and mode control byte (offset G.MODE) of the GCML
command block. This value indicates that the
continuation mechanism is in effect.

The following examples represent a GCMLB$ macro call as it might
appear in a user program:

GCLBLK: GCMLB$
GCLBLK: GCMLB$
GCLBLK: GCMLB$

4.,GCM,BUFADR,1.
"BUFADR
DEPTH,GCM,BUFADR,CMILUN,PDLIST,BUFSIZ

6.1.2 GCMLD$ - Define GCML Control Block Offsets and Bit Values

THE GCMLD$ macro, which is invoked automatically by the GCMLB$ macro
call, locally defines the GCML control block offsets and bit values
within the current module. These offsets and associated bit values
are listed and described below.

OFFSET
NAME

G.ERR

FUNCTIONAL SIGNIFICANCE

Error Return Code
contains O. If
recognized by GCML
a command line,
returned to offset
block. These error

Byte. This field initially
anyone of the error conditions
occurs during the processing of
an appropriate error code is
location G.ERR in the control
codes are described below:

GE.IOR* - Indicates that an I/O error occurred
during the input of a command line.

GE.OPR* - Indicates that GCML was unable to open
or reopen the specified command file.

* For GE.IOR and GE.OPR, additional information concerning the error
is available by examining the FCS error code at offset F.ERR from the
start of the GCML block.

6-5

G.MOOE

COMMAND-LINE PROCESSING

GE.BIF - Indicates that a syntax error was
detected in the name of the indirect command file.

GE.MOE - Indicates that an attempt was made to
exceed the maximum permissible nesting-level depth
for an indirect command file (see the maxd
parameter in the GCMLB$ macro call above).

input
This
been

The

GE.RBG - Indicates that the command-line
buffer was too small for the total command.
condition can occur when multiple lines have
entered using the continuation mechanism.
input buffer contains as much of the command
possible.

as

GE.EOF - Indicates that the end-of-file (EOF) on
the first (unnested) command file was detected.

This bit is set in connection with command-file
input. When the first call is issued for input,
GCML attempts to retrieve an MCR/POS command line.
The first line obtained, whether it is an MCR/POS
command or a terminal command, is accomplished at
command level O. If the name of an indirect
command file is then entered, the command-input
level is incremented to 1. Each indirect filename
entry thereafter increments the command-input
level. When the end-of-file (EOF) is encountered
on any given indirect file, the command input
level is decremented by 1, restoring the count to
the previous level and re-opening the associated
command file. The next command line from that
file is then read.

If an MCR/POS command has already been read at
level 0, entering another MCR/POS command when
level a is again reached causes the error code
GE.EOF to be returned to offset location F.ERR of
the GCML control block. Hence, only one MCR/POS
command line can be read at level O. If input
thus fails at MCR/PDS level 0, then GCML continues
to prompt for input until CTRL/Z is typed by the
user to indicate terminal end-of-file (EOF).

In summary, the first line of input is always read
at level O. This initial input may be an MCR/POS
command; if the MCR/POS command fails or is null,
the command-input file (normally a terminal) is
then opened at level O. Multiple inputs at level
o are permissible only in the latter case, i.e.,
from the command-input file.

Status and Mode Control Byte. This field is
initialized at assembly-time with bit definitions
to specify certain default actions for GCML during
the retrieval of a command line. At runtime, the
user can reset default status and mode control
bits, if desired, by issuing a Bit Clear Byte
(BICB) instruction that takes as the source
operand the symbolic name of the bit to be
cleared. In the case of the GE.LC value (see
below), the BISB instruction can be used to
override the default action.

6-6

G.PSDS

COMMAND-LINE PROCESSING

The symbolic names of the bits defined in the
status and mode control byte are as follows:

GE.IND - (Default) Indicates that a command line
containing a leading at sign (@) is to be treated
as an explicit indirect-command-file specifier.
If, for any reason, the user resets this bit to
zero (0), a command line containing a leading at
sign (@) is returned to the calling program.

GE.CLO - (Default) Indicates that the command file
currently being read is to be closed after each
issuance of the GCML$ macro call. If the user
resets this bit to 0 for any reason, GCML keeps
the current command file open between calls for
input. In this case, the FSR (see Section 2.6.1)
must include one additional 5l2(10)-byte buffer
for command-line input. This requirement adds to
the total FSR-block-buffer space normally reserved
for the maximum number of files that may be open
simultaneously for record I/O processing.

Clearing the GE.CLO bit in the status and mode
control byte effectively renders 512(10) bytes of
FSR-block-buffer space unavailable for other
purposes, since the command file remains open
between calls for command-line input.

GE.COM - (Default) Indicates that a command line
having a leading semicolon (i) is to be treated as
a comment. Such lines are not returned to the
calling program. If, for any reason, the user
resets this bit to 0, a command line containing a
leading semicolon (i) is returned to the calling
program.

GE.CON - Indicates that the continuation
mechanism is in effect. This is the default if
the value of the size parameter of the GCMLB$
macro is greater than 82. The user must not
attempt to set this value in the mode byte without
providing a buffer larger than 82 bytes.

GE.LC - Indicates that lower-case characters in
the command line are to be passed to the user
program without mapping. Unless the user
explicitly sets this value in the GCML control
block at runtime, the default action will be to
map lower-upper case characters to upper-case
before transmission to the user program.

Prompt-String Descriptor. This 2-word field is
initialized to 0 at assembly-time through the
GCMLB$ macro call (see Section 6.1.1).

When the GCML$ macro call is issued to request
command-line input (see Section 6.1.3.1), the
address and the length of a prompting sequence is
usually not specified. In this case, the
prompt-string descriptor words in the GCML control
block are cleared, causing GCML to type out the
default prompt string contained in offset location
G.DPRM (see below) to solicit command-line input.

6-7

G.CMLD

G.ISIZ

G.DPRM

COMMAND-LINE PROCESSING

The user who wishes to define an alternate prompt
string elsewhere in the program may do so through
the .ASCII directive. The address and length of
this alternate prompt string may then be specified
as the adpr and lnpr parameters in subsequent
GCML$ macro calls. These parameters cause offset
locations G.PSDS+2 and G.PSDS to be initialized
with the address and the length, respectively, of
the alternate prompt string. The alternate prompt
string is then typed out by GCML to solicit
command-line input, thereby overriding the default
prompt string previously established through the
GCMLB$ macro call (see G.DPRM below).

If the adpr and lnpr parameters are not specified
in a subsequent GCML$ macro call, offset location
G.PSDS in the control block is automatically reset
to 0, causing GCML to revert to the use of the
default prompt string contained in offset location
G.DPRM.

Command-Line Descriptor. This 2-word field is
initialized by GCML after retrieving a command
line. The address of the line just obtained is
returned to offset location G.CMLD+2, and the
length (in bytes) of the command line is returned
to offset location G.CMLD.

The contents of these word locations in the GCML
control block may be passed to CSI as the "buff"
and "len" parameters in the CSI$l macro call (see
Section 6.2.3.1). The combination of these
parameters constitutes the command-line
descriptors that enable CSI to retrieve file
specifiers from the GCML command-line input
buffer.

Impure Area Size Indicator. This symbol is
defined at assembly-time, indicating the size of
an impure area within the GCML control block to be
used as working storage for pointers, flags,
counters, etc., in connection with input from an
indirect command file. In usage terms, this
symbol need not be of concern to the user.

The space between the FDB and the default prompt
string (see G.DPRM below) constitutes the impure
area of the GCML control block. The size of the
FDB is defined by the value of the symbol S.FDB.
Thus, the size of the impure area is equal to
G.DPRM-S.FDB.

Default Prompt String. This 6-byte field is
initialized at assembly-time with the default
prompt string created through the prmpt parameter
of the GCMLB$ macro call (see Section 6.1.1). In
the absence of the adpr and lnpr parameters in the
GCML$ macro call (see Section 6.1.3.1), this
default prompt string is typed out by GCML to
solicit terminal input.

6-8

COMMAND-LINE PROCESSING

The user who wants to reference the GCML control-block offsets and bit
vaues in another module may establish the appropriate symbolic
definitions within that module through one of the following
statements, as desired:

GCMLD$ iDEFAULT LOCAL DEFINITION.

GCMLD$ DEF$L iLOCAL DEFINITION.

GCMLD$ DEF$G iGLOBAL DEFINITION.

6.1.3 GCML Run-Time Macro Calls

Three run-time macro calls are provided in GCML to perform specific
functions, as described below:

GCML$

RCML$

CCML$

- To retrieve a command line.

- To reset the indirect-command-file scan to the first
(unnested) level.

- To close the current command file.

These routines are described separately in the following sections.

6.1.3.1 GCML$ - Get Command Line - The GCML$ macro call serves as the
user program interface for retrieving command lines from a terminal or
an indirect command file. This macro call can be issued at any
logical point in the program to solicit command-line input.

This macro call takes the following format:

GCML$

where: gclblk

adpr

Inpr

gclblk,adpr,inpr

represents the address of the GCML control block.
This symbol must be the same as that specified at
assembly-time in the label field of the GCMLB$
macro call (see Section 6.1.1). If this parameter
is not specified, RO is assumed to contain the
address of the GCML control block.

represents the address of the user program
location containing an alternate prompt string.
When this optional parameter and the inpr
parameter below are present in the GCML$ macro
call, the alternate prompt string is typed out on
the user terminal to solicit command-line input.
The normal default prompt string, as contained in
offset location G.DPRM of the GCML control block
(see Section 6.1.2), is thereby overridden.

represents the length (in bytes) of the alternate
prompt string. This parameter is also optional;
if not specified, offset location G.PSDS in the
GCML control block (see Section 6.1.2) is cleared.

6-9

COMMAND-LINE PROCESSING

If this parameter is specified, but the adpr
parameter above is not, an .ERROR directive is
generated during assembly that causes the error
message PROMPT STRING MISSING to be printed in the
assembly listing. This message is a diagnostic
announcement of an incomplete prompt-string
descriptor in the GCML$ macro call.

If the adpr and Inpr parameters are not
GCML$ macro call, offset location G.PSDS
automatically reset to 0, causing GCML to
default prompt string contained in offset
6.1.2 above).

specified in a subsequent
in the GCML control block is
revert to the use of the
location G.DPRM (see Section

When the GCML$ macro call is issued, the following actions occur:

1. RO is loaded with the address of the GCML control block. If
the gclblk parameter is not specified, as described above, RO
is assumed to contain the address of the GCML control block.
If it does not, RO must first be initialized manually with
the address of the control block before the GCML$ macro call
is issued.

2. The address and the length of the alternate prompt string, if
specified, are stored in control-block offset locations
G.PSDS+2 and G.PSDS, respectively. These 2 words constitute
the alternate prompt string descriptor.

3. Code is generated that calls GCML ~o transfer a command line
to the command-line input buffer. If the last character of
an input line is a hyphen, and if the value GE.CON is present
in the status and mode control byte, GCML will automatically
transfer commands that run to more than one line. The
continuation lines obtained are concatenated in the input
buffer with the continuation hypen(s) removed.

At the initial issuance of the GCML$ macro call, an attempt is made to
retrieve an MCR/PDS command line. If this attempt fails, or if the
MCR/PDS command line is null, the FDB within the GCML control block is
used to open a file for command-line input. If the command-input
device is a terminal, a prompt string is typed out to solicit input.
Any desired command input may then be entered. If the continuation
mechanism is being used, the prompt string is similarly typed to
solicit subsequent portions of a continued command line.

If appropriate, the user may enter an at sign (@) as the first
character in the command line, followed by the name of an indirect
command file. This filename identifies an explicit indirect command
file from which input is to be read. GCML then opens this file and
retrieves the first command line therein. This file is read until one
of the following occurs:

1. The end-of-file (EOF) is detected on the current indirect
file. In this case, the current indirect file is closed, the
command-input-level count is decremented by 1, and the
previous command file is re-opened. If the command input
level count is already 0 when EOF is detected, the error code
GE.EOF is returned to offset location G.ERR of the GCML
control block (see Section 6.1.2).

2. An indirect~file specifier is encountered in a command line.
In this case, the current indirect command file is closed (if
not already closed), and the new indirect file is opened.
The first command line therein is then read.

6-10

COMMAND-LINE PROCESSING

3. An RCML$ macro call is issued in the program (see Section
6.1.3.2 below). In this case, the current indirect command
file is closed, and the command-input count reverts to level
0, i.e., the top level command file is again used for input.

The user may also enter a semicolon (i) as the first character in the
command line. Such a line is treated as a comment and is not returned
to the calling program.

Whether a command line is entered manually or retrieved from an
indirect command file, the address and the length of the command line
thus obtained are returned to GCML control-block offset locations
G.CMLD+2 andG.CMLD, respectively. Together, these 2 words constitute
the command-line descriptors. These descriptors may be specified as
the "buff" and "len" parameters in the CSI$l macro call (see Section
6.2.3.1) .

Successful retrieval of a command line causes the C-bit in the
Processor Status Word to be cleared. Any error condition that occurs
during the retrieval of a command line, however, causes the C-bit to
be set. In addition, a negative error code is returned to offset
location G.ERR of the GCML control block. These error codes are
described in detail in Section 6.1.2 above.

Examples of the GCML$ macro call follow:

GCML$

GCML$

GCML$

#GCLBLK

#GCLBLK,#ADPR,#LNPR

The first example specifies the symbolic address of the GCML control
block. The second example assumes that RO contains the address of the
GCML control block. Both these forms of the GCML$ macro call employ
the default prompt string contained in offset location G.DPRM of the
control block to solicit command-line input. The last example
specifies the address and the length of an alternate prompt string
that the user has defined within the program. This alternate prompt
string is used by GCML to prompt for terminal input, rather than the
default prompt string contained in the GCML control block.

6.1.3.2 RCML$ - Reset Indirect Command File Scan - If the user must
close the current indirect command file and return to the top-level
file, i.e., to the first (unnested) file, he or she may do so by
issuing the RCML$ macro call.

The RCML$ macro call is specified in the following format:

RCML$

where: gclblk

gclblk

represents the address of the GCML control block.
If this parameter is not specified, RO is assumed
to contain the address of the GCML control block.

When this macro call is issued, the current indirect command file is
closed, returning control to the top-level (unnested) file. A
subsequent GCML$ macro call then retrieves the next command line from
the O-level command file. Note, however, that a second MCR/PDS
command at level 0 cannot be read (see GE.EOF error code in offset
location G.ERR of GCML control block, Section 6.1.2).

6--11

COMMAND-LINE PROCESSING

Examples of the RCML$ macro call follow:

RCML$

RCML$

#GCLBLK

RO

This macro call requires only the address of the GCML control block.

6.1.3.3 CCML$ - Close Current Command File - It is often desirable to
close the current command file between calls for input in order to
free FSR-block-buffer space for some other use. The command file is
closed automatically after the retrieval of a command line, provided
that the GE.CLO bit in the status and mode control byte remains
appropriately initialized (see Section 6.1.2). This bit is set to 1
at assembly-time. If the user resets this bit to 0, the current
command file remains open between calls for input.

For a program that frequently reads command files, this may be a
desirable operational mode, since keeping the file open between calls
for input reduces total file-access time. However, should it be
desirable to close such a file to free FSR-block-buffer space, the
user may do so by issuing the CCML$ macro call.

The CCML$ macro call takes the following format:

CCML$

where: gclblk

gclblk

represents the address of the GCML control block.
If this parameter is not specified, RO is assumed
to contain the address of the GCML control block.

Issuing this statement closes the current command file, effectively
releasing 512(10) bytes of FSR-block-buffer space for some other ~se
between calls for input. If the command file is already closed when
the CCML$ macro call is issued, control is merely returned to the
calling program. A subsequent GCML$ macro call then causes the
command file to be reopened and the next command line in the file to
be returned to the calling program.

Examples of this macro call are shown below:

CCML$

CCML$

#GCLBLK

RO

As in the RCML$ macro call above, this macro call takes a single
parameter, viz., the address of the GCML control block.

6.1.4 GCML Usage Considerations

As noted in Section 6.1.1, the GCMLB$ macro call creates an FOB in the
first part of the GCML control block. Although this FOB ordinarily
need not be manipulated by the user (since it is under GCML and FCS
control), the following operations may be performed on this FOB:

1. In an irrecoverable error situation, the user may issue a
CLOSES macro call (see Section 3.8) in connection with this
FOB before issuing the system EXIT$ macro call.

6-12

COMMAND-LINE PROCESSING

2. The user may test the FD.TTY bit in the
device-characteristics byte (offset location F.RCTL) of the
FDB to determine if the command line just obtained was
retrieved from a terminal.

3. In the event that error code GE.IOR is returned to control­
block offset location G.ERR (indicating that an I/O error has
occurred during the retrieval of a command line), the user
may test offset location F.ERR of the associated FDB for more
complete error analysis. This cell in the FDB also contains
an error code that may be helpful in determining the nature
of the error condition.

At task-build time, the Task Builder device-assignment (ASG) directive
should be issued to assign the appropriate physical device-unit to the
desired logical unit number. For example, to assign the logical unit
number (lun parameter) in the GCMLB$ macro call (see Section 6.l.l) to
a terminal, the following Task Builder directive should be issued:

ASG = TI:l

The designation TI: is a pseudo-device name that is redirected to the
command-input device. Note that the numeric value following the colon
(:) must agree with the numeric value specified as the lun parameter
in the GCMLB$ macro call.

The ASG directive is described in further detail in the Task Builder
Reference Manual of the host operating system.

As discussed in Section 2.6.1 on FSRSZ$, at any given time there must
be an FSR block buffer available for each file currently open for
record I/O operations. The block-buffer requirements of the command
file must be considered when issuing the FSRSZ$ macro.

6.2 COMMAND STRING INTERPRETER (CSI)

The Command String Interpreter (CSI) analyzes command lines and parses
them into their component device name, directory, and filename
strings. The user should be aware that CSI processes command lines in
the following formats only:

1. dev: [g,m]outputfilename.type;version/switch

More than one such file specification can be specified by
separating them with commas.

2. dev: [g,m]outputfilename.type;version/switch, ... = dev: [g,m]
input filename.type;version/switch, ...

In addition, CSI maintains a dataset descriptor within the CSI control
block (see next section) which may be used by FCS in opening files.
The run-time routines that analyze and parse command lines for a
calling user program are described in Section 6.2.3.

The use of CSI requires that the CSI control-block offsets and bit
values be defined and that a control block be allocated within the
program. The macro described in the following section accomplishes
these requisite actions.

6-13

COMMAND-LINE PROCESSING

6.2.1 CSI$ - Define CSI Control-Block Offsets and Bit Values

The only initialization coding required for CSI at assembly-time is
that shown below:

CSI$

. EVEN
CSIBLK: .BLKB C.SIZE

iDEFINES CSI CONTROL BLOCK OFFSETS
iAND BIT VALUES LOCALLY.
iWORD ALIGNS CSI CONTROL BLOCK •
iNAMES CSI CONTROL BLOCK AND
iALLOCATES REQUIRED STORAGE.

The CSI$ macro is strictly definitional in nature and does not
generate any executable code. The CSI control block resulting from
the .BLKB directive serves as a means of communication between CSI and
the calling program. The length of the control block is specified by
the symbol C.SIZE, which is defined during the expansion of the CSI$
macro. The expansion of this macro also results in the local
definition of the symbolic offsets and bit values within the CSI
control block.

If desired, the user may cause the control-block offsets to be defined
globally within the current module. This is done by specifying DEF$G
as an argument in the CSI$ initialization macro call, as shown below:

CSI$ DEF$G

6.2.2 CSI Control-Block Offset and Bit-Value Definitions

The CSI$ macro call causes the following symbolic offsets and bit
values within the CSI control block to be defined locally:

OFFSET
NAME

C.TYPR

C.STAT

FUNCTIONAL SIGNIFICANCE

Command String Request Type. This byte field
indicates the type of file specifier being
requested. Depending on whether an input or
output file specifier is being requested (see the
io parameter in the CSI$2 macro call, Section
6.2.3.2), the corresponding bit in this byte is
set. The bit definitions for this byte are as
follows:

CS.INP - Indicates that an input file specifier is
being requested.

CS.OUT - Indicates that an output file specifier
is being requested.

Command-String Request
reflects the status
request. The bits in
in accordance with
below.

Status. This byte field
of the current command-line

this field are initialized
the bit definitions listed

CS.EQU - Indicates that an equal sign (=) has been
detected in the current command line, signifying
that the command line contains both output and
input file specifiers. Once set, the value of
CS.EQU is preserved during processing by both CSII
and CSI2.

6-14

C.CMLD

COMMAND-LINE PROCESSING

CS.NMF - Indicates that the current file specifier
contains a filename string. Accordingly,
control-block offset locations C.FILD+2 and C.FILD
(see below) are initialized with the address and
the length (in bytes), respectively, of the
command-line segment containing the filename
string. If no filename string is present, this
bit is not set, and the filename string
descriptors in the control block are cleared.

CS.DIF - Indicates that the current file specifier
contains a directory string. Thus, control-block
offset locations C.DIRD+2 and C.DIRD (see below)
are initialized with the address and the length
(in bytes), respectively, of the command-line
segment containing the directory string. If no
directory string is present, this bit is not set.
In this case, any residual nonzero values in the
directory- string descriptor cells that pertain to
a previous command-string request of like type
(see C.TYPR above) are used by default. Thus, the
last directory string encountered in a file
specifier is used.

CS.DVF - Indicates that the current file specifier
contains a device-name string. Similarly,
control-block offset locations C.DEVD+2 and C.DEVD
(see below) are initialized with the address and
the length (in bytes), respectively, of the
device-name string. If no device name string is
present, this bit is not set. Again, similar to
CS.DIF above, any residual nonzero values in the
device-name descriptor cells that pertain to a
previous command-string request of like type are
used by default. Thus, the last device-name
string encountered in a file specifier is used.

CS.WLD - Indicates that the current file specifier
contains an asterisk (*), signalling the presence
of a wildcard specification.

CS.MOR - Indicates that the current file specifier
is terminated by a comma (,). The comma indicates
that more file specifiers are to follow. If this
bit is not set, it signifies that the end of the
input or output file specifiers has been reached.

Command-Line Descriptor. This 2-word field is
initialized with the address and the length (in
bytes), respectively, of the compressed command
line. In other words, the values returned to
these cells constitute the output of CSI after
scanning a file specifier and removing all
nonsignificant characters from the string (i.e.,
nulls, blanks, tabs, and RUBOUT's).

The values contained in these cells are used by
CSI as the descriptors of the compressed command
line to be parsed (see CSI$2 macro call in Section
6.2.3.2).

6-15

C.DSDS

C.DEVD

C.DIRD

C.FILD

C.SWAD

C.MKWI

COMMAND-LINE PROCESSING

Dataset Descriptor Pointer.
the address of the 6-wo~d
the CSI control block.
functionally identical to
dataset descriptor detailed

This offset defines
dataset descriptor in
This structure is
the manually created

in Section 2.4.1.

This symbol may be used to initialize offset
location F.DSPT in the FDB associated with the
file to be processed. Thus, FCS is able to
retrieve requisite ASCII information from this
structure for use in opening files.

Assembly-time initialization of F.DSPT in the
associated FDB may be accomplished as follows:

FDOP$A 1,CSIBLK+C.DSDS

where CSIBLK is the address of the CSI control
block, and C.DSDS represents the beginning address
of the descriptor strings in the CSI control block
(see C.DEVD, C.DIRD, and C.FILD below) identifying
the requisite ASCII filename information.

Run-time initialization of F.DSPT in the
associated FDB may also be accomplished through
the dspt parameter of the FDOP$R macro call (see
Section 2.2.2) or the generalized OPEN$x macro
call (see Section 3.1).

Device-Name String Descriptor. This 2-word field
contains the address (C.DEVD+2) and the length in
bytes (C.DEVD) of the most recent device-name
string (of like request type) encountered in a
file specifier.

Directory String Descriptor. This 2-word field
contains the address (C.DIRD+2) and the length in
bytes (C.DIRD) of the most recent directory string
(of like request type) encountered in a file
specifier.

Filename String Descriptor. This 2-word field
contains the address (C.FILD+2) and the length in
bytes (C.FILD) of the filename string in the
current file specifier.

If an error condition is detected by the
command-syntax analyzer during the syntactical
analysis of a command line (see Section 6.2.3.1
below), a segment descriptor is returned to this
field, defining the address and the length of the
command-line segment in error.

Current Switch-Table Address. This word location
contains the address of the switch descriptor
table specified in the current CSI$2 macro call
(see Section 6.2.3.2).

CSI Mask Word 1. This word indicates the
particular switch(es) present in the current file
specifier after each invocation of the CSI$2 macro
call. The switch mask for each of the defined
switches encountered in a file specifier between
delimiting commas is ORled into this location.

6-16

C.MKW2

C.SIZE

COMMAND-LINE PROCESSING

The mask for a switch is specified in the CSI$SW
macro call (see Section 6.2.4.1). When a switch
is encountered in a file specifier for which a
defined mask exists, the corresponding bits in
C.MKWI are set. By testing C.MKWl, the user can
determine the particular combination of defined
switches present in the current file specifier.

CSI Mask Word 2. This word provides the user an
indication of switch polarity.

When a switch is present in a file specifer and
that switch is not negated, the defined mask for
that switch is ORled into C.MKW2 in the same
manner as described above for C.MKWI. Conversely,
when a switch is present in a file specifer and
that switch is negated, the corresponding bits in
C.MKW2 are cleared. Thus, for each switch
indicated as being present by C.MKWl, the user can
check the polarity of that switch by examining the
corresponding bits in C.MKW2.

Control-Block Size Indicator. This symbol, which
is defined during the expansion of the CSI$ macro,
represents the size in bytes of the CSI control
block.

6.2.3 CSI Run-Time Macro Calls

Two run-time macro calls are provided in CSI to invoke routines that
perform the following functions:

CSI$l - Initializes the CSI control block, analyzes the command
line (normally contained in the GCML command-line input
buffer), removes nonsignificant characters from the
line, and checks it for syntactic validity. This macro
call also results in the initialization of certain cells
in the CSI control block with the address and the
length, respectively, of the validated and compressed
command line.

CSI$2 - Parses a file specifier in the validated and compressed
command line into its component device name, directory,
and filename strings, and processes any associated
switches and accompanying switch values. Also, certain
cells in the CSI control block are initialized with the
appropriate string descriptors for subsequent use by FCS
in opening the specified file.

6.2.3.1 CSI$1 - Command Syntax Analyzer - The CSI$l macro call
results in the invocation of a routine called the command syntax
analyzer. This routine analyzes a command line (which is normally
read into the GCML command-line input buffer) and checks it for
syntactic validity. In addition, it compresses the file specifiers in
the command line by removing all nonsignificant characters (i.e.,
nulls, tabs, blanks, and RUBOUTs). Finally, the command syntax
analyzer initializes offset locations C.CMLD+2 and C.CMLD in the CSI
control block (see Section 6.2.2) with the address and the length (in
bytes), respectively, of the validated and compressed command line.
Each file specifier in the command line is then parsed into its
component device name, directory, and filename strings during
successive issuances of the CSI$2 macro call (see next section).

6-17

COMMAND-LINE PROCESSING

The CSI$1 macro call is issued in the following format:

where:

CSI$1

csiblk

buff

csiblk,buff,len

represents the address of the CSI control block.
If this parameter is not specified, RO is assumed
to contain the address of the CSI control block.

represents the address of a
buffer. This parameter
control-block offset location
CSI to retrieve the current
command-line input buffer.

command-line input
initializes CSI

C.CMLD+2, enabling
command line from a

If this parameter is not specified, the user must
manually initialize CSI control-block offset
location C.CMLD+2 with the address of a
command-line input buffer before issuing the CSI$1
macro call. This may be accomplished through a
statement similar to the following:

MOV GCLBLK+G.CMLD+2,CSIBLK+C.CMLD+2

len represents the length of the command-line input
buffer. Similarly, this parameter initializes CSI
control-block offset location C.CMLD, thus
completing the 2-word descriptor that enables CSI
to retrieve the current command line from the
input buffer.

As with the "buff" parameter above, if this
parameter is not specified, the user must manually
initialize CSI control-block offset location
C.CMLD with the length of the command-line input
buffer before issuing the CSI$1 macro call. This
may be accomplished as follows:

MOV GCLBLK+G.CMLD,CSIBLK+C.CMLD

The combination of the buff and len parameters above enables CSI to
analyze the current command line. Following the analysis of the
command line, CSI updates offset location C.CMLD with the length of
the validated and compressed command line.

If a syntactic error is detected during the validation of the command
line, the C-bit in the Processor Status Word is set, and offset
locations C.FILD+2 and C.FILD in the CSI control block (see Section
6.2.2) are set to values that define the address and the length,
respectively, of the command-line segment in error.

Examples of the CSI$1 macro call follow:

CSI$1

CSI$1

CSI$1

#CSIBLK,#BUFF,#LEN

RO,GCLBLK+G.CMLD+2,GCLBLK+G.CMLD

#CSIBLK

The first example shows symbols that represent the address and the
length of a command line to be analyzed (not necessarily the line
contained in the GCML command-line input buffer).

6-18

COMMAND-LINE PROCESSING

The second example assumes that RO has been preset with the address of
the CSI control block; the next two parameters are direct references
to the command-line descriptor words in the GCML control block.

The third example assumes that the required descriptor values are
already present in offset locations C.CMLD+2 and C.CMLD of the control
block (CSIBLK) as the result of prior action.

6.2.3.2 CSI$2 - Command Semantic Parser - The CSI$2 macro call
results in the invocation of the command semantic parser. This
routine uses the values in CSI control-block offset locations C.CMLD+2
and C.CMLD as the address and the length, respectively, of the command
line to be parsed. The referenced line is then parsed into its
component device name, directory, and filename strings. The equal
sign (=) in the command line indicates that the following string is an
input file specification. In addition, 2-word descriptors for these
strings are stored in a 6-word dataset descriptor in the CSI control
block, beginning at offset location C.DSDS (see Section 6.2.2). This
field is functionally equivalent to t~e dataset descriptor created
manually in the user program (see Section 2.4.1).

The command semantic parser also decodes any switches and associated
switch values present in a file specifier. If the user expects to
encounter switches in the current file specifier, the command semantic
parser decodes them, provided that the address of the appropriate
switch descriptor table has been specified in the CSI$2 macro call
(see below). The CSI switch definition macro calls are described in
detail in Section 6.2.4.

The CSI$2 macro call is specified in the following format:

CSI$2

where: csiblk

io

csiblk,io,swtab

represents the address of the CSI control block.
If this parameter is not specified, RO is assumed
to contain the address of the CSI control block.

represents a symbol that explicitly identifies the
type of file specifier to be parsed. Either of
two symbolic arguments may be specified in this
parameter field, as follows:

INPUT - Indicates that the next input file
specifier in the command line is to be parsed.

OUTPUT - Indicates that the next output file
specifier in the command line is to be parsed.

Offset location C.TYPR in the CSI control block
(see Section 6.2.2) must be initialized, either
manually or through the CSI$2 macro call, with the
type of file specifier being requested. If other
than the symbolic arguments defined above are
specified in the CSI$2 macro call, an .ERROR
directive is generated during assembly that causes
the error message INCORRECT REQUEST TO .CSI2 to be
printed in the assembly listing. This diagnostic
message alerts the user to the presence of an
invalid io parameter in the CSI$2 macro call.

6-19

swtab

COMMAND-LINE PROCESSING

represents the address of the associated switch
descriptor table for this particular issuance of
the CSI$2 macro call. This optional parameter
need oe specified only when the user anticipates
the presence of a switch in the file specifier
that is to be decoded. Specifying this parameter
presumes that the user previously created a
corresponding switch descriptor table in the
program through the CSI$SW macro call (see Section
6.2.4.1). In addition, if the switch to be
decoded has any associated switch values, the user
must also have created an associated switch value
descriptor table in the program through the CSI$SV
macro call (see Section 6.2.4.2).

This parameter initializes offset location C.SWAD
in the CSI control block (see Section 6.2.2); if
not specified, any residual nonzero value in this
cell is used by default as the address of the
switch descriptor table.

Offset location C.SWAD may also be initialized
manually prior to issuing the CSI$2 macro call, as
shown in the following statement:

MOV #SWTAB,CSIBLK+C.SWAD

where SWTAB is the symbolic address of the
associated switch descriptor table.

If an error condition occurs during the parsing of the file specifier,
the C-bit in the Processor Status Word is set, and control is returned
to the calling program. The possible error conditions that may occur
during command-line parsing include the following:

1. The request type was invalid, i.e., offset location C.TYPR in
the CSI control block (see Section 6.2.2) was incorrectly
initialized.

2. A switch was present in a file specifier, but the address of
the switch descriptor table was not specified in the CSI$2
macro call, or the switch descriptor table did not contain a
corresponding entry for the switch.

3. An invalid switch value was present in the file specifier.

4. More values accompanied a given switch in the file specifier
than there were corresponding entries in the switch value
descriptor table for decoding those values.

5. A negative switch was present in the file specifier, but the
corresponding entry in the switch descriptor table did not
allow the switch to be negated (see the nflag parameter of
the CSI$SW macro call in the next section).

Examples of the CSI$2 macro call are shown below:

CSI$2

CSI$2

CSI$2

#CSIBLK,INPUT,#SWTBL

RO,OUTPUT,#SWTBL

#CSIBLK,INPUT

6-20

COMMAND-LINE PROCESSING

The first example shows a request to parse an input file specifier,
which may include an associated switch. The second example, which
assumes that RO presently contains the address of the CSI control
block, parses an output file specifier that likewise may include a
switch. The last example is a request to parse an input file
specifier and to disallow any accompanying switch(es).

6.2.4 CSI Switch Definition Macro Calls

The following macro calls must be issued at assembly-time to create
the requisite switch descriptor tables in the program for processing
switches that appear in a file specifier:

CSI$SW - Creates an entry in the switch descriptor table for a
particular switch that the user expects to encounter in
a file specifier.

CSI$SV - Creates a matching entry in the switch-value descriptor
table for the switch defined through the CSI$SW macro
call above.

CSI$ND - Terminates a switch descriptor table or
descriptor table created through the
CSI$SV macro call, respectively.

a switch-value
CSI$SW or the

These macro calls are described separately in the following sections.

6.2.4.1 CSI$SW - Create Switch Descriptor Table Entry - To process
each switch that the user expects to encounter in a file specifier, a
matching entry in the switch descriptor table must be defined. When
the address of a switch descriptor table is specified in any
particular issuance of the CSI$2 macro call (see Section 6.2.3.2), the
following processing occurs:

1. For each switch encountered in a file specifier, CSI searches
the switch descriptor table for a matching entry. If the
switch descriptor table address is not specified, or a
matching entry is not found in the table for the switch, that
switch is considered to be invalid. As a result, the C-bit
in the Processor Status Word is set, any remaining switches
in the file specifier are bypassed, and control is returned
to the calling program.

2. If a matching entry is found in the switch descriptor table,
mask word 1 in the CSI control block is set according to the
defined mask for that switch (see C.MKWl, Section 6.2.2).

3. The negation status of the switch is determined. If the
switch is not negated, the corresponding bits in mask word 2
(C.MKW2) in the CSI control block are set according to the
defined mask for that switch. If the switch is negated, and
negation is not allowed, then the switch is considered to be
invalid. In this case, the error sequence described in Step
1 above applies. However, if the switch is negated, and
negation is allowed, then the corresponding bits in C.MKW2
are cleared.

The negation flag for a switch is established through the
nflag parameter of the CSI$SW macro call (see below).

6-21

COMMAND-LINE PROCESSING

4. If the address of the optional user mask word is not present
in the corresponding switch descriptor table entry, i.e., if
the mkw parameter has not been specified in the associated
CSI$SW macro call (see below), switch processing continues
with Step 7. If, however, the address of the optional mask
word is specified, switch processing continues with Step 5.

5. If SET has been specified as the clear/set flag in the
corresponding switch descriptor table entry, and the switch
is not negated, then the corresponding bits in the optional
mask word are set according to the defined mask for that
switch. If, however, the switch is negated, the
corresponding bits in the optional mask word are cleared.

The clear/set flag is specified as the csflg parameter in the
CSI$SW macro call (see below).

6. If CLEAR has been specified as the clear/set flag in the
corresponding switch descriptor table entry, and the switch
is not negated, the corresponding bits in the optional mask
word are cleared. Conversely, if the switch is negated, the
corresponding bits in the optional mask word are set.

7. If a switch value accompanies a switch in a file specifier,
the associated switch-value descriptor table created through
the CSI$SV macro call (see next section) is used to decode
the value. There must be at least as many entries in the
switch-value descriptor table as there are such values
accompanying the switch in the file specifier. If the
switch-value descriptor table is incomplete, if an invalid
switch value is encountered, or if the address of the
switch-value descriptor table is not present in the
associated switch descriptor table, then the switch is
considered to be invalid, and the error sequence described in
Step I again applies.

The address of the switch-value descriptor table is specified
as the vtab parameter in the CSI$SW macro call (see below).

The CSI$SW macro call is specified in the following format:

label: CSI$SW sw,mk,mkw,csflg,nflg,vtab,compflg

where: label

sw

represents an optional symbol that names the
resulting switch descriptor table entry and
defines its address. In order to establish the
address of a switch descriptor table, the first
CSI$SW macro call issued in the program must
include a label. This label allows the table to
be referenced by other instructions in the
program.

represents the alphabetic switch name to be stored
in the switch descriptor table. This name may
comprise any number of characters. (For RSX-IID,
this name may comprise only two characters.) CSI
compares the name entered on the command line with
this switch name, as entered in the switch
descriptor table. The method CSI uses to compare
their names is described below. This parameter is
required. If omitted, an .ERROR directive is
generated during assembly that causes the error
message MISSING SWITCH NAME to be printed in the
assembly listing.

6-22

mk

COMMAND-LINE PROCESSING

represents
specified
enable CSI
switch in
switch must

ASMSK
NUMSK

1
2

a user-defined mask for the switch
through the sw parameter above. To
to indicate the presence of a given

a file specifier, a mask value for the
be defined, as shown below:

VWMSK
XYMSK

40000
100000

where the (octal) value assigned by the user to
each symbol defines a unique bit configuration
that is to be set in CSI mask word 1 (C.MKWl) of
the control block when a defined switch is
encountered in a file specifier.

By specifying the appropriate symbol as the mk
parameter in the CSI$SW macro call, the
corresponding mask value is stored in the
resulting switch descriptor table entry. Thus, a
mechanism is established through which the user
can determine the particular combination of
switches present in a file specifier. For every
matching entry found in the switch descriptor
table, the corresponding bits are set in C.MKWI.

mkw represents the address in user program storage of
a mask word that CSI changes each time it changes
C.MKWI. CSI stores the same value into this mask
word that it stores into C.MKWI. This mask word
can be manipulated (that is, changed or tested) by
the SET and CLEAR functions or by instructions in
the user's program. The SET and CLEAR functions
are set using the csflg parameter described below.

csflg

Such an optional word may be reserved
statement logically equivalent to
below:

MASKX: .WORD 0

through a
that shown

represents a symbolic argument that specifies the
clear/set flag for a given switch. This parameter
is optional; if not specified, SET is assumed
(see below). Either one of two symbolic arguments

may be specified for this parameter, as follows:

CLEAR - Indicates that the bits in the optional
user mask word corresponding to the switch mask,
are to be cleared provided that the switch is not
negated. (If the switch is negated, the bits are
set.)

SET - Indicates, conversely, that the bits in the
optional user mask word corresponding to the
switch mask are to be set provided that the switch
is not negated. (If the switch is negated, the
bits are cleared.)

6-23

nflg

vtab

compflg

COMMAND-LINE PROCESSING

If other than one of the above arguments is
specified, an .ERROR directive is generated during
assembly which causes the error message INVALID
SET/CLEAR SPEC to be printed in the assembly
listing.

represents a symbolic argument that specifies an
optional negation flag for the switch. If this
parameter is specified, it indicates that the
switch is allowed to be negated, e.g., /-LI or
/NOLI.

If this parameter is specified as other than NEG,
an .ERROR directive is generated during assembly
that causes the error message INVALID NEGATE SPEC
to be printed in the assembly listing. If this
parameter is not specified, the default assumption
is that switch negation is not allowed.

represents the address of the switch descriptor
table associated with this switch. This optional
parameter, if specified, allows CSI to decode any
switch values accompanying the switch, provided
that an associated switch descriptor table entry
has been defined for that switch. The
switch-value descriptor table is defined through
the CSI$SV macro call, as described in the next
section.

specifies the method CSI uses to compare
switch name entered on the command line with
value entered in the switch descriptor table
the sw parameter. (This parameter is
supported for RSX-IID.) Either LONG or EXACT
be specified. The default value is entered
value is not coded.

the
the
via
not
may

if a

Default - If the parameter is not coded, only the
first 2 characters of the switch name (specified
via sw) are entered into the switch descriptor
table and only these 2 characters are compared
when the command line is parsed. Additional
characters in the command-line switch name are
ignored.

LONG - All characters specified by the sw
parameter are entered in the switch descriptor
table. During compare processing, the first
characters of the switch name on the command line
must exactly match the value for the switch in the
switch descriptor table. Additional characters in
the command-line switch name are ignored.

EXACT - All characters specified by the sw
parameter are entered in the switch descriptor
table. During compare processing, all the
characters of the switch name on the command line
must exactly match the value in the switch
descriptor table. Extra characters are treated as
an error.

The format of the switch descriptor table entry that results
call to the CSI$SW macro is shown in Figure 6-2 below.
switch entry must be defined for each switch appearing in

from a
One such

the file

6-24

COMMAND-LINE PROCESSING

specifier that the user intends to recognize. Entries in the switch
descriptor table consist of control information and switch-name
characters stored 2 characters per word.

The switch-name characters precede the control information in the
table. The sign bit of each word indicates whether the following word
contains more switch-name characters. A sign bit set to 1 indicates
that the next word contains more switch name characters. A sign bit
set to 0 indicates the last word containing switch-name characters.

If the number of characters in the switch name is odd, the high-order
byte of the last word contains zeros and is ignored by CSI.

The sign bit of the first bite of the last word of the switch name is
the EXACT match bit. If this bit is set to 1, additional characters
in the switch name on the command line are treated as an error by CSI.
Otherwise, they are ignored.

The switch-name characters are followed by entry control information
consisting of the CSI mask word, the address in user program storage
of a mask word corresponding to the CSI mask word, and the address of
the switch value table.

A bit setting of 1 in
indicates the CLEAR
function.

the low-order bit of the user mask word
function: a bit setting of 0 indicates the SET

The last word of the switch descriptor table entry contains the
address of the switch value table. A bit setting of 1 in the
low-order bit of this word indicates that the switch may be negated.

15 0

char2 char1

char4 char3

lastchar EX nextlast

Mask Word for this Switch

Address of Optional User Mask Word

Address of Switch Descriptor Table

Figure 6-2 Format· of Switch Descriptor Table Entry

The following example shows a 2-entry switch descriptor table created
through successive CSI$SW macro calls:

ASSWT: CSI$SW AS,ASMSK,MASKX,SET"ASVTBL

CSI$SW NU,NUMSK,MASKX,CLEAR,NEG,NUVTBL

CSI$ND iEND OF SWITCH DESCRIPTOR TABLE.

The first statement results in the creation of an entry in the switch
descriptor table for the switch JAS. The second parameter is an
equated symbol that defines the switch mask, and the third parameter

6-25

COMMAND-LINE PROCESSING

(MASKX) is the ~ddress of an optional user mask word (see the mkw
parameter above). The fourth parameter indicates that the bits in
MASKX that correspond to the switch mask are to be set. The fifth
parameter (the negation flag) is null. The last parameter is the
address of the associated switch-value descriptor table.

The second statement results in the creation of a switch descriptor
table entry for the switch /NU. In contrast to the first statement,
the fourth parameter (CLEAR) indicates that the bits in the optional
user mask word (MASKX) that correspond to the switch mask are to be
cleared. The fifth parameter (NEG) allows the switch to be negated,
and the last parameter is the address of the value table associated
with this switch.

Note that the switch descriptor macros are terminated with the CSI$ND
macro call (see Section 6.2.4.3).

6.2.4.2 CSI$SV - Create Switch-Value Descriptor Table Entry - For
every switch value that the user expects to encounter in connection
with a given switch in a file specifier, a corresponding switch-value
descriptor table entry must be defined in the user program in order to
allow the switch value(s) to be decoded. The CSI$SV macro call is
provided for this purpose. When issued, this macro call results in
the creation of a 2-word entry in the switch-value descriptor table.
The format of this table is shown in Figure 6-3 below.

The CSI$SV macro call is specified in the following format:

where:

CSI$SV type,adr,len,vtab

type represents a symbolic argument that specifies the
conversion type for the switch value. Anyone of
four symbolic values may be specified in this
parameter field to indicate the conversion type
for the accompanying switch value. The possible
conversion-type arguments include the following:

ASCII - Indicates that the switch value is to be
treated as an ASCII string.

NUMERIC - Indicates that a numeric switch value is
to be converted to binary using octal as a default
conversion radix.

OCTAL - Indicates that a numeric switch value is
to be converted to binary using octal as a default
conversion radix.

DECIMAL - Indicates that a numeric switch value is
to be converted to binary using decimal as a
default conversion radix.

If any value other than those defined above is
specified, an .ERROR directive is generated during
assembly that causes the error message INVALID
CONVERSION TYPE to be printed in the assembly
listing. If none of the above parameters is
specified, ASCII is assumed by default.

6-26

adr

len

vtab

COMMAND-LINE PROCESSING

represents the address of the user program
location that is to receive the resultant switch
value at the conclusion of switch processing.
This parameter is required; if not specified, an
.ERROR directive is generated during assembly that
causes the error message VALUE ADDRESS MISSING to
be printed in the assembly listing.

represents a numeric value that defines the length
(in bytes) of the area that is to receive the
switch value resulting from switch processing.
This parameter is also required; if not
specified, an .ERROR directive is generated during
assembly that causes the error message LENGTH
MISSING to be printed in the assembly listing.

represents a symbol that names the switch-value
descriptor table and defines its address. This
parameter is optional. The vtab parameter may
also be specified in the CSI$SW macro call (see
Section 6.2.4.1) when the user anticipates the
presence of a switch value in a file specifier
that is to be decoded.

The format of a switch-value descriptor table entry that results from
the CSI$SV macro call is shown in Figure 6-3 below.

The low-order byte of the first word in the switch-value descriptor
table indicates whether the conversion type is ASCII or numeric. The
low-order byte of this word is set to 1 if ASCII is specified; it is
set to 2 if NUMERIC or OCTAL is specified; it is set to 3 if DECIMAL
is specified. The high-order byte of this word indicates the maximum
allowable length (in bytes) of the switch value.

If the conversion type is ASCII, the len parameter reflects the
maximum number of ASCII characters that can be deposited in the area
defined through the adr parameter. The high-order byte of the first
word in the switch-value table then reflects the maximum length of the
ASCII string. If the number of characters in the switch value exceeds
the specified length, the extra characters are simply ignored. If,
however, the actual number of ASCII characters present in the switch
value falls short of the specified length, the remaining portion of
the area receiving the resultant value is null-padded.

If the conversion type is NUMERIC, the resultant binary value is
assumed to be 2 bytes in length, and the area receiving the value is
assumed to be word-aligned. A numeric switch value is always
evaluated as a signed number; an overflow into the high-order bit
(Bit 16) results in an error condition.

On numeric conversions, the default conversion type specified for a
switch value can be overridden by means of a pound sign (#) or a dot
(.). A numeric value preceded by a pound sign (e.g., #10) forces the
conversion type to octal; a numeric value followed by a dot (e.g.,
10.) forces the conversion type to decimal. Note also that a numeric
switch value may be preceded by a plus sign (+) or a minus sign (-).
The plus sign is the default assumption. If an explicit octal switch
value is specified using the pound sign (#), as described above, the
arithmetic sign indicator (+ or -), if included, must precede the
pound sign (e.g., -#10).

6-27

COMMAND-LINE PROCESSING

16 o

Switch Value Length I Conversion Type

Address of Location Receiving Switch Result

Figure 6-3 Format of Switch-Value Descriptor Table Entry

Representative CSI$SV macro calls are shown below:

ASVTBL: CSI$SV ASCII,ASVAL,3

CSI$SV ASCII,ASVAL+4,3

CSI$ND ;END OF SWITCH VALUE TABLE.

NUVTBL: CSI$SV OCTAL,NUVAL,2

CSI$SV DECIMAL,NUVAL+2,2

CSI$ND iEND OF SWITCH VALUE TABLE.

In all cases above, the first parameter in the CSI$SV macro call
defines the conversion type. The next two parameters, in all cases,
define the address and the length of the user program location to
receive the resultant switch value.

The required storage for the first switch value table above may be
reserved as follows:

ASVAL .BLKW 4 iASCII VALUE STORAGE.

The required storage for the second switch-value table may be
similarly reserved through the following statement:

NUVAL: .BLKW 2 iNUMERIC VALUE STORAGE.

Note again that switch value tables are terminated with the CSI$ND
macro call.

6.2.4.3 CSI$ND - Define End of Descriptor Table - Switch descriptor
tables and switch-value descriptor tables must be terminated with a
I-word end-of-table entry. This word, which contains 0, may be
created through the CSI$ND macro call.

This macro call takes no arguments, as shown below:

CSI$ND

The examples near the end of the preceding section illustrate the use
of this macro call.

6-28

CHAPTER 7

THE TABLE-DRIVEN PARSER (TPARS)

TPARS is a table-driven parser designed to parse command lines. TPARS
provides the means to define a unique syntax and, using TPARS-supplied
macros, built-in variables, and the user's own code, recognize a
command line written in that syntax.

For TPARS, parsing is breaking down a command line into syntax
elements and resolving the form, function, and interrelationship of
these elements. TPARS parses command lines at two levels, a
syntactical level and a semantic level.

At the syntactical level, TPARS evaluates each syntax element on the
command line based on a predefined arrangement of command line
elements. This arrangement of command line elements is defined by
TPARS macros in a state table that consists of states and transitions.
Also at the syntactic level, TPARS provides for resolving complex
syntax types by means of subexpressions.

On the semantic level, TPARS resolves the meaning of each element
based on definitions supplied in action routines. Action routines
make use of TPARS built-in variables and user-supplied code to fit the
needs of user parsing routine.

TPARS parses command lines using a user-defined table consisting of
states and transitions. This table is referred to as a state table
and is built using the TPARS STATE$ and TRAN$ macros.

A state delimits and represents a single syntax element on a command
line. A transition is a statement that defines the processing
required for parsing a given syntax element and provides direction for
further parsing at another state.

The user-written parser routine is included in user programs that
parse command lines. TPARS is invoked from within an executing
program by means of a CALL instruction. The CALL invokes the
user-defined parser routine as well as the TPARS processor itself.
For further information on the interrelationships between the calling
program, the user-defined parser routine, and the TPARS processor,
refer to Section 7.5.

7.1 CODING TPARS SOURCE PROGRAMS

This section describes the three TPARS macros required to initialize
and define the state table. Also included in this section is
information describing action routines, TPARS built-in variables, and
TPARS subexpressions.

7-1

THE TABLE-DRIVEN PARSER (TPARS)

7.1.1 TPARS Macros: ISTAT$, STATE$, and TRAN$

TPARS provides macros that allow you to write a state table for
parsing a unique command line syntax. The ISTAT$ macro initializes a
state table, the STATE$ macro defines a state in the user's state
table, and the TRAN$ macro defines the conditions for transition to
another.

7.1.1.1 Initializing the State Table: the ISTAT$ Macro - The ISTAT$
macro initializes the state table. The state table is built using two
macros, STATE$ and TRAN$, which are described below. This state table
is built into a program section. User-defined keyword strings, for
use in parsing command lines, are also accumulated in a pro ram

s a so provl e or a keyword pointer
table to index into the list of keyword strings. The ISTAT$ macro
initializes these program sections. The format for coding the ISTAT$
macro is:

ISTAT$ statetable,keytable

where:

statetable is the label the user assigns to the state table.
equates this label to the start of the state table.

key table is the label the user assigns to the keyword table.
equates this label to the start of the keyword table.

TPARS

TPARS

The state table is built in a program section named $STATE; the
keyword strings are accumulated in a program section named $KSTR; the
keyword pointer table is built in a program section named $KTAB.

If the user defines the symbol $RONLY, each of these program sections
is generated as read-only. A read-only state table is generated by
specifying the symbol $RONLY preceding the ISTAT$ macro in the form:

$RONLY = 1
ISTAT$ statetable,keytable

7.1.1.2 Defining a Syntax Element: the STATE$ Macro - The STATE$
macro declares the beginning of a state. Syntactically, this macro
delimits one command line element from another. The STATE$ macro is
coded in the following form:

STATE$ [label]

where label is an alphameric symbol that is equated to the address of
the state.

Each state is comprised of any number of transitions, which define the
conditions under which control can be passed to another state.

7-2

THE TABLE-DRIVEN PARSER (TPARS)

7.1.1.3 Defining a Transition: the $TRAN Macro - The TRAN$ macro
provides:

• The means for matching a given type of syntax element.

• Direction to the next state to be processed.

• The address of the action routine to process the current
syntax element.

• A maskword and maskword address.

The TRAN$ macro is coded in the following form:

TRAN$ type[,label] [,action] [,mask] [,maskaddr]
[,$EXIT]

where:

type

[label]
[$EXIT]

action

mask

maskaddr

specifies the syntactical type of the command line
element being parsed. The type parameter is coded
using one of the types of command line elements
described in the section "Types of Command Line Syntax
Elements," below.

specifies the label associated with the state to which
control is directed after the code for this transition
is executed. If label is omitted, control drops
through to the next sequential STATE$ macro. A null
label parameter is allowed only for the last transition
in a state; the statement following a TRAN$ macro with
a null label field must be a STATE$ macro.

$EXIT specified in the label field terminates TPARS
execution and returns control to the calling program.
$EXIT is also used to terminate a TPARS subexpression.

specifies the label of an action routine the user
includes in the parser routine. This routine can
include TPARS built-in variables, described in Section
7.1.3, below.

specifies a maskword to be stored into a maskword
address whenever the transition is executed. If mask
is specified, maskaddr, below, must be specified. This
maskword is ORed into maskaddr (described below) when
the transition is taken (after the action routine is
called) .

specifies the label for an address into which TPARS
stores the value specified by the mask parameter. The
maskaddr parameter must be specified if mask is
specified.

The mask and maskaddr parameters provide
means for flagging the execution of
transition.

7-3

a convenient
a particular

THE TABLE-DRIVEN PARSER (TPARS)

7.1.2 Types of Command Line Syntax Elements

The type. parameter of the TRAN$ macro requires the entry of one of the
following types of syntax elements:

$ANY

$ALPHA

$DIGIT

$LAMDA

$NUMBR

$DNUMB

$STRNG

$RAD50

$BLANK

$EOS

char

keyword

!label

Matches any single character.

Matches any single alphabetic character (A-Z).

Matches any single digit (0-9).

Matches an empty string. This transition is always
successful. LAMDA transitions are useful for getting
action routines called without passing any of the input
string.

Matches a number. A number consists of a string of
digits, followed optionally by a period. If number is
not followed by a period, it is interpreted as octal.
Numbers followed by a period are interpreted as decimal
and the decimal point is included in the matching
string. A number is terminated by any nonnumeric
character. Values through 2**32-1 are converted to
32-bit unsigned integers.

Matches a decimal number. The string of digits is
interpreted as decimal. With the exception that the
matched string does not include the trailing decimal
point, TPARS treats $DNUMB the same way it treats
$NUMBR.

Matches any alphameric character string (0-9,A-Z). The
string will not be null.

Matches any legal RADIX-50 string, that is, any string
containing alphameric characters and/or the period (.)
and dollar sign ($) characters. Conversion to RADIX-50
format is the responsibility of the action routine.

Matches a string of blank and/or tab characters.

Matches the end of the input string. Once TPARS has
reached the end of the input string, $EOS matches as
many times as it is encountered in the state table.

Matches a single character whose ASCII code corresponds
to the value of the expression char. The value of the
expression must be a 7-bit ASCII code, that is, the
value must be in the range 0-177 (octal).
Constructions such as IX are valid and, in fact,
recommended.

Matches a specified keyword. Keywords may be any
length, may contain only alphameric characters, and are
terminated by the first nonalphameric character
encountered. The maximum number of keywords allowed in
a state table is 64.

Matches the string processed by executing the state
table section that starts with the state specified as
label. This syntax type is used to pass ~ontrol to a
subexpression. For information on TPARS
subexpressions, refer to Section 7.1.4.

7-4

THE TABLE-DRIVEN PARSER (TPARS)

7.1.3 Action Routines and Built-in Variables

Action routines provide the means for processing command line elements
at the semantic level. That is, a given syntax element can have more
than one meaning. Action routines provide a mechanism for determining
and validating the meaning of the syntax elements.

write action routines to perform functions related to the unique
requirements of the userls parsing program.

7.1.3.1 TPARS Built-in Variables - TPARS provides the
built-in variables for use in action routines:

following

.PSTCN

.PSTPT

.PNUMH

.PNUMB

.PCHAR

.PFLAG

R3

R4

returns the character count of the portion of the input
string matched by this transition. This character
count is valid for all syntax types recognized by
TPARS, including subexpressions.

returns the address of the portion of the input string
matched by this transition. This address is valid for
all syntactical types recognized by TPARS, including
subexpressions.

returns the high-order binary
returned by a $NUMBR or
specification.

returns the
returned by
specification.

low-order binary
a $NUMBR or

value of
$DNUMB

value of
$DNUMB

the number
syntax type

the number
syntax type

returns the character found by the $ANY, $ALPHA,
$DIGIT, or char syntax type specifications.

returns the value of the flag word passed to TPARS via
register 1 (Rl). Action routines can modify this word
to change options dynamically.

returns the byte count of the remainder of the input
string. When the action routine is called, the string
does not include the characters matched by the current
transition.

returns the address of the remainder of the input
string. When the action routine is called, the striQg
does not include the characters matched by the current
transition.

7.1.3.2 Calling Action Routines - Action routines are called via a
JSR PC instruction. Action routines may modify registers RO, Rl, and
R2; all other registers must be preserved.

7.1.3.3 Using Action Routines to Reject a Transition - Action
routines can reject a transition by returning to CALL+4 rather than to
CALL+2. That is, the action routine performs the same function as an
ADD #2, (SP) before returning to the caller. This technique allows
additional processing of syntax types and allows extension of the
syntax types beyond the set provided by TPARS.

7-5

THE TABLE-DRIVEN PARSER (TPARS)

When an action routine rejects a transition, that transition has no
effect. TPARS continues to attempt to match the remaining transitions
in the state.

7.1.4 TPARS Subexpressions

A TPARS subexpression is a series of states and transitions analogous
to a subroutine. In general, such a series of states and transitions
is used more than once during the parsing process.

Subexpressions begin with a STATE$ macro specifying the label of the
subexpression. This macro is followed by the states and transitions
that comprise the body of the subexpression. To terminate the
subexpression, specify a 'fRAN$ macro with the $EXIT keyword specified
in the label field. The general form of a sUbexpression is shown in
the example below.

In this example, control is directed to the subexpression via a TRAN$
macro that specifies a !label syntax element as the type parameter:

TRAN$!UIC,NEXT

TPARS then directs control to the STATE$ macro with the label UIC:

STATE$ DIC
TRAN$ '[

STATE$
TRAN$ $NUMBR"SETGN

STATE$
TRAN$ <' ,>

STATE$
TRAN$ $NUMBR"SETPN

STATE$
TRAN$ '] ,$EXIT

When the UIC subexpression completes processing, control passes to the
state labeled NEXT.

7.2 GENERAL CODING CONSIDERATIONS

This section contains information describing how to arrange syntax
types in a state table, rules for entering special characters (commas
and angle brackets), and how to direct TPARS to ignore blanks and tab
characters in a command line.

7.2.1 Suggested Arrangement of Syntax Types in a State Table

The transitions in a state may represent several syntax types; a
portion of a string being scanned often matches more than one syntax
type. Therefore, the order in which the types are entered in the
state table is critical. Transitions are always scanned in the order
in which they are entered and the first transition matching a string
being scanned is the transition taken. Therefore, the following order
is recommended for states containing more than one syntax type:

7-6

char
keyword
$EOS
$ALPHA
$DIGIT
$BLANK
$NUMBR
$DNUMB
$STRNG
$RAD50
$ANY
$LAMDA

THE TABLE-DRIVEN PARSER (TPARS)

Placement of !label transitions in a state depends on the types and
positions of other syntax types in the state as well as on the syntax
types in the starting state of the subexpression.

7.2.2 Entering Special Characters

In "char" syntax elements, MACRO-II interprets commas (,), semicolons
(;), and angle brackets « >) as special characters. The comma is
interpreted as an argument separator and angle brackets are used to
parenthesize special characters.

To include a comma or a semicolon in a "char" syntax element string,
use angle brackets:

TRAN$ <',>

Angle brackets cannot be passed as string elements in macro arguments.
If required in a "char" expression, they must be expressed
symbolically, for example:

LA = '<
TRAN$ LA

7.2.3 Ignoring Blanks and Tabs in a Command Line

Bit zero of the low byte of Register I (RI) controls processing of
blanks and tab characters. If this bit is one when TPARS is invoked,
blanks and tab characters are processed in the same way any other
ASCII character is processed; they are treated as syntax elements
that require validation by TPARS. If this bit is set to zero, blanks
and tab characters are interpreted as terminator characters; they are
ignored as syntax elements. In neither case does TPARS modify the
command line.

When blanks are being ignored, the $BLANK syntax type never matches an
element on the command line. Also when this option is in effect,
values returned to the !label syntax type by .PSTCN or .PSTPT may
contain blanks or tabs, even though none were requested. The examples
below show how TPARS parses the string

ABC DEF

with and without the blank-suppress option.

7-7

THE TABLE-DRIVEN PARSER (TPARS)

In the first example, an extra state is required to parse the blank:

STATE$
TRAN$ $STRNG

STATE$
TRAN$ $BLANK

STATE$
TRAN$ $STRNG

When TPARS is directed to ignore blanks and tab characters, the same
string can be parsed using only two states:

STATE$
'l'RAN$

STATE$
TRAN$

$STRNG

$STRNG

7.3 PSECTs GENERATED BY TPARS MACROS

TPARS macros generate three PSECT's. Data associated with the STATE$
macro is stored in the PSECT $STATE. Data associated with the TRAN$
macro is stored in PSECTs $KSTR and $KTAB. $KTAB contains addresses
for each of the entries of the keyword syntax type. $KSTR contains
the keyword entries separated by character code 377 (octal).

Each state consists of its transition entries concatenated in the
order in which they are specified. The state label, if specified, is
equated to the address of the first transition in the state. Each
transition consists of from one to six words, as follows:

Flags I Type

Type Extension

Action Return Address

Maskword

Maskword Address

Target State Label

The type byte of the first word may contain the following values:

$LAMDA
$NUMBR
$STRNG
$BLANK
$SUBXP
$EOS
$DNUMB
$RADSO
$ANY
$ALPHA
$DIGIT
char
keyword

300
302
304
306
310 Used in the !label type.
312
314
316
320
322
324
ASCII code for the specified character
200+n (see explanation below)

7-8

THE TABLE-DRIVEN PARSER (TPARS)

The value of keyword is 200+n, where n is an index into the keyword
table. The keyword table is an array of pointers to keyword strings.
The keyword strings are stored in the PSECT $KSTR. Keyword strings in
$KSTR are separated from each other by 377 (octal).

Bits in the flags byte indicate whether parameters for the TRAN$ macro
are specified:

Bit Meaning

o Type extension is specified.
1 Action routine label is specified.
2 Target state label is specified.
3 Maskword is specified.
4 Maskword address is specified.
7 Indicates last transition in the current state.

7.4 INVOKING TPARS

The user controls execution of TPARS using the calling conventions and
options described in this section. TPARS is invoked from within an
executing program by means of the instruction:

CALL .TPARS

7.4.1 Register Usage and Calling Conventions

When TPARS is invoked, registers in the calling program must contain
the following information:

Rl Options word
R2 Pointer to the keyword table
R3 Length of the string to be parsed
R4 Address of the string to be parsed
R5 Label of the starting state in the state table

On return from TPARS processing, registers contain the following
information:

R3 = Length of the unscanned portion of the string
R4 = Address of the un scanned portion of the string

The values of all other registers are preserved.

The carry bit in
successful parse;
error.

the Processor
the carry

Status Word returns zero for a
bit is set when TPARS finds a syntax

For an example of a calling sequence for TPARS, refer to Section
7.6.1.

7.4.2 Using the Options Word

The low byte of the options word contains flag bits. The only flag
bit defined is bit zero, which controls processing of blanks. If bit
zero is set to 1, blanks are interpreted as syntax elements. If bit
zero is set to 0, blanks are ignored as syntax elements.

7-9

THE TABLE-DRIVEN PARSER (TPARS)

The high byte of the options word controls abbreviation of keywords.
If the high byte is set to zero, keywords being parsed must exactly
match their corresponding entries in the state table. If the high
byte is set to a number, keywords being parsed may be abbreviated to
that number of characters. Keywords in the string that are longer
than the number specified must be spelled correctly up to the length
specified by the number.

TPARS clears the carry bit in the Processor Status Word when it
completes processing successfully. This occurs when a transition is
made to $EXIT that is not within a subexpression.

If a syntax error occurs, TPARS sets the carry bit in the Processor
Status Word and terminates.

A syntax error occurs when there ale no syntax elements in the current
state that match the portion of the string being scanned. Illegal
type codes and errors in the state table can also cause a syntax
error.

TPARS processing requires that the addresses in the state table and
the keyword tables be reliable; bad addresses may cause program
termination.

The only syntax types that can match the end of the string are $EOS
and $LAMDA.

7.4.3 Storage Requirements

The routine .TPARS is 253 words long. In addition, . TPARS calls
routines .OD2CT and .DD2CT, which use an additional 68 words of
storage.

7.5 HOW TO GENERATE A PARSER PROGRAM USING TPARS

There are three processes involved in generating a parser program
using TPARS, as shown in Figure 7-1.

As shown in Figure 7-1, the source program must contain MCALL
statements for three macros, ISTAT$, STATE$, and TRAN$. These three
MCALL statements must precede the statements that comprise the state
table and action routines.

Assembly of the source module produces an object module comprised of
three PSECT's, $STATE, $KTAB, and $KSTR. When the Task Builder
executes, the task image produced is placed on an appropriate volume
for future use.

The assembly listing produced by the state table macros is not
straightforward. The source language macros are designed for clarity
and convenience in writing state tables; the object code is designed
for compactness and processing convenience. As a result, the
mechanism used to translate the source code to object code is not a
simple one.

The binary output of the macros is delayed by one statement. Thus, if
the listing of macro-generated binary code is enabled, the binary code
appearing after a macro call is, in fact, the result of the preceding
macro call. Error messages generated by macro calls are similarly
delayed. This is the reason an additional STATE$ macro is required to
terminate the state table.

7-10

EOI

MACRO-11

PARSER.SRC

TKB

PARSER.OBJ

MYFILE.OBJ

UPOATE.OBJ

THE TABLE-DRIVEN PARSER (TPARS)

.. -----~ 1. Write a source program that
includes the required MCALL
statements.

2. Assemble the source program to
produce an object module.

3. Execute the Task Builder to
produce a task image including
the parser.

-:>

->

->

PARSER.SRC

MCALL ISTAT$
MCALL STATE$
MCALL TRAN$
STATE$.
STATE$

PARSER.OBJ

MYFILE.TSK

Figure 7-1 Processing Steps Required to Generate a Parser
Program Using TPARS

7-11

THE TABLE-DRIVEN PARSER (TPARS)

When the parser program is linked and is in task image form, it can be
invoked from within an executing user program, as shown in Figure 7-2.

Executing
User Program

CALL .TPARS

--

--

User-defined
Parser Program

STATE$
*
*
*

STATE$

Action
Routines

r--,
I
I
I
I
I
I

r-- .J

~

r---.
I
I
I
I
I
I
I
I
I

.J -

TPARS
Processor

Figure 7-2 Flow of Control When TPARS Is Called from an Executing
User Program

Figure 2 shows the CALL . TPARS statement that invokes the parser
program and the TPARS processor. As the parser executes the state
table, it calls action routines. These action routines access code in
the TPARS processor to perform such functions as returning the values
of the built-in variables. When the state table completes execution,
TPARS receives control and passes control back to the calling program.

7.6 PROGRAMMING EXAMPLES

This section includes three programmed examples of how to use TPARS.
The first example shows the code required to parse a UFD command line
for RSX-IIM. The second example shows the use of subexpressions and
how to reject transitions. The third example shows how to use
subexpressions to parse indeterminate grammars.

7.6.1 Parsing a UFD Command Line

This example shows the code required to parse a UFD command line. It
includes a state table and action routines. The general form of the
UFD command line is as follows:

UFD DKO:LABEL[201,202]/ALLOC=lOO./PRO=[RWED,RWED,RWE,R]

The action routines in this parser program return the following
values:

$UDEV
$UUNIT
$UVNML
$UVNAM
$UUIC
$UALL
$UPRO
$FLAGS
UF.ALL
UF.PRO

Device name (2 ASCII characters)
Unit number (binary)
Byte count of the volume label string
Address of the volume label string
Binary UIC for which to create a directory
Number of directory entries to preallocate
Binary protection word for UFD
Flags word containing the following bits:

Set if allocation was specified.
Set if protection was specified.

7-12

THE TABLE-DRIVEN PARSER (TPARS)

The label and the IALLOC and IPRO switches are optional. The calling
sequence for this routine is as follows:

CLR
MOV
MOV
MOV
MOV
CALL
BCS

Rl
#UFDUTB,R2
COUNT,R3
ADDR,R4
#START,R5
. TPARS
ERROR

The following is the user-written parser routine:

.TITLE STATE TABLE FOR UFD COMMAND LINE

. MCALL ISTAT$,STATE$,TRAN$

TO BE USED WITH BLANK SUPPRESS OPTION

ISTAT$ UFDSTB,UFDKTB

READ OVER COMMAND NAME

.GLOBL START

STATE$ START
TRAN$ "UFD"

READ DEVICE AND UNIT NUMBER

STATE$
TRAN$

STATE$
TRAN$

STATE$
TRAN$
TRAN$

STATE$
TRAN$

$ALPHA, , SETDVl

$ALPHA"SETDV2

$NUMBR,DEV1,SETUNT
$LAMDA

DEVl
, :

READ VOLUME LABEL

READ Ule

STATE$
TRAN$
TRAN$

$STRNG,RUIC,SETLAB
$LAMDA

STATE$ RUIC
TRAN$ IUIC

SCAN FOR OPTIONS AND END OF LINE

STATE$
TRAN$
TRAN$

STATE$
TRAN$
TRAN$

OPTS
$EOS,$EXIT
'I

"ALLOC II ,ALC"UF.ALL,$FLAGS
"PRO",PRO"UF.PRO,$FLAGS

7-13

SET ALLOCATION

PROTECTION

THE TABLE-DRIVEN PARSER (TPARS)

STATE$ ALC
TRAN$ '=

STATE$
TRAN$ $NUMBR,OPTS,SETALC

STATE$
TRAN$

STATE$
TRAN$

STATE$
TRAN$
TRAN$
TRAN$
TRAN$
TRAN$
TRAN$

PRO
'=

, [, ,IGROUP

SPRO
'] ,OPTS,ENDGRP
<' ,>,SPRO,NXGRP
'R,SPRO,SETRP
'W,SPRO,SETWP
'E,SPRO,SETEP
'D,SPRO,SETDP

SUBEXPRESSION TO READ AND STORE UIC

STATE$ UIC
TRAN$, [

STATE$
TRAN$ $NUMBR"SETGN

STATE$
TRAN$ < I , >

STATE$
TRAN$ $NUMBR"SETPN

STATE$
TRAN$ '],$EXIT

STATE$

STATE TABLE SIZE: 60 WORDS
KEYWORD TABLE SIZE: 8 WORDS
KEYWORD POINTER SPACE: 3 WORDS

.SBTTL ACTION ROUTINES FOR THE COMMAND LINE PARSER

; DEVICE NAME CHAR 1

SETDV1::MOVB .PCHAR,$UDEV
RETURN

; DEVICE NAME CHAR 2

SETDV2: : MOVB

; UNIT NUMBER

SETUNT: : MOV

.PCHAR,$UDEV+1
RETURN

.PNUMB,$UUNIT
RETURN

7 ... 14

THE TABLE-DRIVEN PARSER (TPARS)

; VOLUME LABEL

SETLAB: : MOV • PSTCN, $UVNML
MOV .PSTPT,$UVNAM
RETURN

; PPN - GROUP NUMBER

SETGN: : MOVB
BR

.PNUMB,$UUIC+1
TSTPPN

; PPN - PROGRAMMER NUMBER

SETPN: :
TSTPPN:

10$:
20$:

MOVB
TST
BNE
TSTB
BEQ
ADD
RETURN

.PNUMB,$UUIC

.PNUMH
10$
.PNUMB+1
20$
#2, (SP)

; NUMBER OF ENTRIES TO ALLOCATE

SETALC: : MOV

SET PERMISSIONS
INITIALIZE

IGROUP::MOV

.PNUMB,$UALL
RETURN

#4,GRCNT

; MOVE TO NEXT PERMISSIONS CATEGORY

NXGRP: :

CHECK FOR

CHECK FOR

BAD VALUE

FORCE ONES

ZERO HIGH ORDER

BYTE VALUE

- REJECT TRANSITION

SEC
ROR
ASR
ASR
ASR
DEC
BGE
ADD
RETURN

$UPRO
$UPRO
$UPRO
$UPRO
GRCNT
30$

SHIFT TO NEXT GROUP

BADGRP:
30$:

; SET READ PERMIT

SETRP: :

; SET WRITE PERMIT

SETWP: :

COUNT GROUPS
TOO MANY IS AN ERROR

#2, (SP) IF SO, REJECT TRANSITION

BIC #FP.RDV*10000,$UPRO
RETURN

BIC #FP.WRV*10000,$UPRO
RETURN

; SET EXTEND PERMIT

SETEP:: BIC #FP.EXT*10000,$UPRO
RETURN

; SET DELETE PERMIT

SETDP: : BIC #FP.DEL*10000,$UPRO
RETURN

7-15

THE TABLE-DRIVEN PARSER (TPARS)

; END OF PROTECTION SPEC

ENDGRP::TST GRCNT
BNE
RETURN

; CHECK THE GROUP COUNT
BADGRP ; MUST HAVE 4

.END UFD

7.6.2 Bow to Use Subexpressions and Reject Transitions

This example is an excerpt of a state table that parses a string
quoted by an arbitrary character. That is, the first character is
interpreted as a quote character. This typical construction occurs in
many editors and programmlng languages. The action routines
associated with the state table return the byte count and address of
the string in the locations QSTC and QSTP. The quoting character is
returned in location QCHAR.

MAIN LEVEL STATE TABLE

PICK UP THE QUOTE CHARACTER

STATE$
TRAN$

ACCEPT THE QUOTED STRING

STATE$

STRING
$ANY, , SETQ

TRAN$!QSTRG"SETST

GOBBLE UP THE TRAILING QUOTE CHARACTER

STATE$
TRAN$ $ANY,NEXT,RESET

SUBEXPRESSION TO SCAN THE QUOTED STRING
THE FIRST TRANSITION WILL MATCH UNTIL IT IS REJECTED
BY THE ACTION ROUTINE

ACTION ROUTINES

STATE$
TRAN$
TRAN$

QSTRG
$ANY,QSTRG,TESTQ
$LAMDA,$EXIT

STORE THE QUOTING CHARACTER

SETQ: MOVB .PCHAR,QCHAR
INCB .PFLAG
RETURN

; TEST FOR QUOTING CHARACTER IN THE STRING

TESTQ:

10$:

CMPB
BNE
ADD
RETURN

.PCHAR,QCHAR
10$
#2, (SP)

7-16

TURN OFF SPACE FLUSH

REJECT TRANSITION ON MATCH

THE TABLE-DRIVEN PARSER (TPARS)

; STORE THE STRING DESCRIPTOR

SETST: MOV
MOV
RETURN

.PSTPT,QSTP

.PSTCN,QSTC

; RESET THE SPACE FLUSH FLAG

RESET: DECB .PFLAG
RETURN

7.6.3 Using Subexpressions to Parse Complex Grammars

This example is an excerpt from a state table that shows how
subexpressions are used to parse complex grammars.

The state table accepts a number followed by a keyword qualifier.
Depending on the keyword, the number is interpreted as either octal or
decimal.

The binary value of the number is returned in the tagged NUMBER. The
following types of strings are accepted:

;

lO/OCTAL
359/DECIMAL
77777/0CTAL

MAIN STATE TABLE ENTRY - ACCEPT THE EXPRESSION AND
STORE ITS VALUE

STATE$
TRAN$
TRAN$

!ONUMB,NEXT,SETNUM
!DNUMB,NEXT,SETNUM

SUBEXPRESSION TO ACCEPT OCTAL NUMBER

STATE$
TRAN$

STATE$
TRAN$

STATE$
TRAN$

ONUMB
$NUMBR

1/

"OCTAL",$EXIT

SUBEXPRESSION TO ACCEPT DECIMAL NUMBER

STATE$ DNUMB
TRAN$ $DNUMB

STATE$
TRAN$ 1/

STATE$
TRAN$ "DECIMAL",$EXIT

ACTION ROUTINE TO STORE THE NUMBER

SETNUM: MOV .PNUMB,NUMBER
MOV .PNUMH,NUMBER+2
RETURN

7-17

TBETABLE-DRIVEN PARSER (TPARS)

The contents of .PNUMB and .PNUMH remain undisturbed by all state
transitions except the $NUMBR and $DNUMB types.

Because of the way in which subexpressions are processed, calls to
action routines from within subexpressions must be handled with care.

When a subexpression is encountered in a transition, TPARS saves its
current context and calls itself, using the label of the subexpression
as the starting state. If the subexpression parses successfully and
returns via $EXIT, the transition is taken and control passes to the
next state.

If the subexpression encounters a syntax error, TPARS restores the
saved context and tries to take the next transition in the state.

However, TPARS provides no means for resetting orlglnal values
by action routines called by subexpressions. Therefore,
routines called from subexpressions should store results
intermediate area. Data in this intermediate area can
accessed by an action routine called from the primary level
state table.

7-18

changed
action
in an

then be
of the

CHAPTER 8

SPOOLING

FCS provides facilities at both the macro and subroutine level to
queue files for subsequent printing.

8.1 PRINT$ MACRO CALL

A task issues the PRINT$ macro call to queue a file for printing on a
specified device. The specified device must be a unit-record,
carriage-controlled device such as a line printer or terminal. If the
device is not specified, LP: is used.

The file to be spooled must be open when the PRINT$ macro
PRINT$ closes the file. Error returns differ from
conventions and are described in Section 8.3.

is issued.
normal FeS

The PRINT$ macro call has the following format:

PRINT$ fdb,err"dev,unit,pri,forms,copies,presrv

fdb represents the address of the associated FDB.

err represents the address of an optional user-coded error
handling routine. See Section 8.3.

The following parameters are not applicable to RSX-I1M.

dev

unit

represents the 2-character device mnemonic of the
device on which the file is to be printed. If dey is
not specified, LP: is used by default.

represents the unit number of the device on which the
file is to be printed. If unit is not specified, unit
o is used by default.

The following parameters are used only by the lAS and RSX-llD multiple
device despoolers. See the discussion below.

pri

forms

represents a number in the range 1 through 250 to
indicate the priority of the request. The priority is
used to determine the order in which spooled files are
dequeued for printing. If pri is omitted, the task's
priority is used by default.

represents the specific form-type on which the file is
to be printed as indicated by a number in the range 0
through 6. This parameter must be specified as a
single integer without a preceding number sign (#).
The numbers 0 through 6 are associated with the various
forms for an installation by the system manager. If
forms is omitted, form-type 0 is used by default.

8-1

copies

presrv

SPOOLING

represents a number in the range 1 through 32 to
indicate the number of copies of the file to be
produced. The number of copies must be specified as a
1- or 2-digit integer without a preceding number sign
(#). If copies is omitted, one copy is printed.

should be specified if the file is not to be deleted
after it is printed. Any parameter value results in
the file's being preserved after printing.

The following points do not apply to RSX-IIM.

1. A blank parameter is present between err and dev, thus
requiring an additional comma. This parameter exists to
provide compatibility between RSX-IID Version 4 and RSX-IID
Versjon 6.

2. The number of parameters that are meaningful for RSX-IID is
determined by whether the single-device despooler or the
multiple-device despooler is available in the system. The
difference between the two despoolers is described in the
RSX-IID User's Guide and the RSX-IID System Manager's Guide.
In lAS, only the multiple-device despooler is supported.
This is described in the lAS System Management Guide. The
following parameters are used by the multiple-device
despooler and ignored by the single-device despooler.

pri

forms

copies

presrv

8.2 .PRINT SUBROUTINE

The .PRINT subroutine is called to queue a file for printing. The
file must be open when .PRINT is called. The .PRINT routine closes
the file. RO must contain the address of the associated FDB. The
file is printed on LP:.

Section 8.3 describes error handling for the .PRINT file control
routine.

8.3 ERROR HANDLING

The error returns provided in conjunction with PRINT$ and . PRINT
differ from the standard FCS error returns in that error codes are
placed in F.ERR or in the directive status word depending on when the
failure occurred.

If the failure is FCS related, e.g., the PRINT$ macro cannot close the
file, the C-bit 1S set and F.ERR contains the error code. If the
failure is related to the SEND/REQUEST directive that queues the file,
the C-bit is set and the directive status word contains an error code.
Directive status word error codes are provided in the Executive
Reference Manual of the host operating system.

Normally, user-coded error routines, upon determining that the C-bit
is set, should test F.ERR first and then test the directive status
word.

8-2

APPENDIX A

FILE DESCRIPTOR BLOCK

A file descriptor block (FDB) contains file information that is used
by FCS and the file control primitives. The layout of an FDB is
illustrated on the following page; Table A-I defines the offset
locations within the FDB.

The offset names in the file descriptor block may be defined either
locally or globally, as shown below:

FDOF$L

FDOFF$ DEF$L

FDOFF$ DEF$G

;DEFINE OFFSETS LOCALLY.

;DEFINE OFFSETS LOCALLY.

;DEFINE OFFSETS GLOBALLY.

NOTE

When referring to FDB locations, it is essential to
use the symbolic offset names, rather than the actual
address of such locations. The position of
information within the FDB may be subject to change
from release to release, whereas the offset names
remain constant.

File-Attribute Section

Record- or Block-Access
Section

A-I

F.RATT F.RTYP

F.RSIZ

F.HIBK

F.EFBR

F.FFBY

F.RCTL F.RACC

F.BRDS or F.URBD

F.NRBD or .

F.BRST and F.BRDN

F.OVBS or F.NREC

F.EOBB

F.RCNM or

F.CNTG and F.STBR

OFFSET

F.RTYP

F.RATT

FILE DESCRIPTOR BLOCK

File-Open Section F.ALOC

F.FACC F.LUN

F.DSPT

F.DFNB

Block-Buffer Section F.BKPI F.EFN or F.BKEF

FERR+I F.ERR

F.MBCI F.MBCT

F.BGBC F.MBFG

F.VBSZ

F.BBFS

F.BKVB or F.VBN

F.BDB

F.SPDV

F.CHR F.SPUN

F.ACTL

F.SEQN

F.FNB

Table A-I
FDB Offset Definitions

SIZE CONTENTS
(in bytes)

I Record-type byte. This byte is set, as
follows, to indicate the type of records for
the file:

1

F.RTYP = I to indicate fixed-length records
(R.FIX) •
F.RTYP = 2 to indicate variable-length
records (R.VAR).
F.RTYP = 3 to indicate sequenced records
(R.SEQ) •

Record-attribute byte. Bits 0 through 3 are
set to indicate record attributes, as
follows:

Bit 0 = I to indicate that the first byte of
a record is to contain a FORTRAN
carriage-control character (FD.FTN)i
otherwise, it is O.

(continued on next page)

A-2

OFFSET

F.RSIZ

F.HIBK

F.EFBK

F.FFBY

F.RACC

SIZE
(in bytes)

2

4

4

2

I

FILE DESCRIPTOR BLOCK

Table A-I (Cont.)
FDB Offset Definitions

CONTENTS

Bit I = I to indicate for a carriage-control
device that a line feed is to be performed
before the line is printed and a carriage
return is to be performed after the line is
printed (FD.CR); otherwise, it is O.

Bit 2 is not used.

Bit 3 = I to indicate that records cannot
cross block boundaries (FD.BLK); otherwise,
it is O.

Record-size word. This location contains
the size of fixed-length records or
indicates the size of the largest record
that currently exists in a file of
variable-length records.

Indicates the highest virtual-block number
allocated.

Contains the end-of-file block number.

Indicates the first
block, or the
magnetic tape.

free byte in the last
maximum block size for

Record access byte. Bits 0 through 3 of
this byte define the record-access modes, as
follows:

Bit 0 = I to indicate
(FD.RWM); otherwise,
GET$/PUT$ mode.

READ$/WRITE$ mode
it is 0 to indicate

Bit I = I to indicate random-access mode
(FD.RAN) for GET$/PUT$ record I/O:
otherwise, it is 0 to indicate sequential
access mode.

Bit 2 = I to indicate locate mode (FD.PLC)
for GET$/PUT$ record I/O; otherwise, it is
o to indicate move mode.

Bit 3 = I to indicate that PUT$ operation in
sequential mode does not truncate the file
(FD.INS); otherwise, it is 0 to indicate
that PUT$ operation in sequential mode
truncates the file.

(continued on next page)

A-3

OFFSET

F.RCTL

F.BKDS
or

F.URBD

F.NRBD
or

F.BKST
and

F.BKDN

F.OVBS
or

F.NREC

F.EOBB

FILE DESCRIPTOR BLOCK

Table A-I (Cont.)
FDB Offset Definitions

SIZE CONTENTS
(in bytes)

I Device-characteristics byte. Bits 0 through
5 define the characteristics of the device
associated with the file, as follows:

4

4

2

2

2

2

2

Bit 0 = I to indicate
device (FD.REC), e.g.,
printer; a value of
o~ocK-orlented device,
DECtape.

a record-oriented
a Teletype or line
o ; nd i ~;:d-AC:: ::.

e.g., a disk or

Bit I = I to indicate a carriage-control
device (FD.CCL); otherwise, it is O.

Bit 2 = I to indicate a teleprinter device
(FD.TTY); otherwise, it is o.

Bit 3 = I to indicate a directory device
(FD.DIR); otherwise, it is o.

Bit 4 = I to indicate a
device (FD.SDI). An MFD
UFD's are present.

single-directory
is used, but no

Bit 5 = I to indicate a block-oriented
device that is inherently sequential in
nature (FD.SQD). A record-oriented device
is assumed to be sequential in nature;
therefore, this bit is not set for such
devices.

Contains the block-I/O-buffer descriptor.

Contains the user-record-buffer descriptor.

Contains the next record-buffer descriptor.

Contains the address of the I/O status block
for block I/O.

Contains the address of the AST service
routine for block I/O.

Override block-buffer size. This field has
meaning only before the file is opened.

Contains the address of the next record in
the block.

Contains a value defining the end-af-block
buffer.

(continued on next page)

A-4

OFFSET

F.RCNM
or

F.CNTG

F.STBK

F.ALOC

F.LUN

F.FACC

FILE DESCRIPTOR BLOCK

Table A-I (Cont.)
FOB Offset Definitions

SIZE CONTENTS
(in bytes)

4 Contains the number of the record for random
access operations.

2 Contains a numeric value defining the number
of blocks to be allocated in creating a new
file. This cell has meaning only before the
file is opened. A value of 0 means leave
the file empty; a positive value means
allocate the specified number of blocks as a
contiguous area and make the file
contiguous; a negative value means allocate
the specified number of blocks as a
noncontiguous area and make the file
noncontiguous.

2 Contains the address of the statistics block
in the user program.

2 Contains the number of blocks to be
allocated when the file must be extended.
This cell has meaning only before the file
is opened. A positive (+) value indicates
contiguous extend, and a negative (-) value
indicates noncontiguous extend.

I

I

Contains the logical unit number associated
with the FOB.

File-access byte. This byte indicates the
access privileges for a file, as summarized
below:

Bit 0 = I if the file is accessed for read
only (FA.RD).

Bit I = I if the file is accessed for
writing (FA.WRT).

Bit 2 = I if the file is accessed for
extending (FA. EXT) .

Bit 3 = I if a new file is being created
(FA.CRE); otherwise, it is 0 to indicate an
existing file.

Bit 4 = I if the file is a temporary file
(FA.TMP) .

Bit 5 = I if the file is opened for shared
access (FA.SHR).

If Bit 3 above is 0:

(continued on next page)

A-5

OFFSET

F.DSPT

F.DFNB

F.BKEF
or

F.EFN

F.BKPI

F.ERR

F.ERR+I

F.MBCT

F.MBCI

F.MBFG

SIZE
(in bytes)

2

2

I

I

I

I

I

I

1

FILE DESCRIPTOR BLOCK

Table A-I (Cont.)
FOB Offset Definitions

CONTENTS

Bit 6 = I if an existing file is being
appended (FA.APD).

If Bit 3 ,above is one (I):

Bit 6 = I if not superseding an existing
file at file-create time (FA.NSP).

Contains the dataset-descriptor pointer.

Contains the default filename block pointer.

Contains the block I/O event flag.

Contains the record I/O event flag.

Contains bookkeeping bits for FCS internal
control.

Error return code byte. A negative value
indicates an error condition.

Used in conjunction with F.ERR above. If
F.ERR is negative, the following applies:

F.ERR+I = 0 to indicate that error code is
an I/O error code (see IOERR$ error codes in
Appendix I).

F.ERR+I = negative value to indicate that
error code is a Directive Status Word error
code (see DRERR$ error codes in Appendix I).

Indicates the number of buffers to be used
for multiple buffering.

Indicates the actual number of
currently in use.

buffers

Multiple-buffering flag word. Contains
either one of the multiple buffering flags,
as follows:

Bit 0 = I to indicate read-ahead (FD.RAH).

Bit I = I to indicate write-behind (FD.WBH).

(continued on next page)

A-6

OFFSET

F.BGBC

F.VBSZ

F.BBFS

F.BKVB
or

F.VBN

F.BDB

F.SPDV

F.SPUN

F.CHR

F.ACTL

FILE DESCRIPTOR BLOCK

Table A-I (Cont.)
FDB Offset Definitions

SIZE CONTENTS
(in bytes)

1 Big-buffer-block count in number of blocks
(not implemented).

2

2

4

2

2

1

1

2

Device-buffer-size word. Contains
virtual-block size (in bytes).

Indicates the block-buffer size.

Contains the address of the virtual-block
number in the user program for block I/O.

Contains the virtual-block number.

the

Contains the address of the block-buffer
descriptor block. This location always
contains a nonzero value if the file is open
and 0 if the file is closed.

Spooler output device designation (lAS and
RSX-IID only) .

Spooler output unit designation (lAS and
RSX-IID only) .

Reserved for system use.

The low-order byte of this word indicates
the number of retrieval pointers to be used
for the file.

The control bits are in the high-order byte
and are defined as follows.

Bit 15 = 1
information
(FA. ENB) .

to specify that control
is to be taken from F.ACTL

Bit 12 = 0 to cause positioning to the
end of a magnetic tape volume set upon
open or close.

Bit 12 = 1 to cause positioning of a
magnetic tape volume set to just past
the most recently closed file when the
next file is opened (FA.POS).

(continued on next page)

A-7

OFFSET SIZE
(in bytes)

F.SEQN 2

F.FNB -

FILE DESCRIPTOR BLOCK

Table A-I (Cont.)
FDB Offset Definitions

CONTENTS

Bit 11 = 1 to cause a magnetic tape volume
set to be rewound upon open or close
(FA.RWD) .

Bit 9 = 1 to cause a file not to be locked
if it is not properly closed when accessed
for write (FA. DLK) .

Contains the sequence number for sequenced
records.

Defines the beginning address of the
filename-block portion of the FDB.

A-8

APPENDIX B

FILENAME BLOCK

The format of a filename block is illustrated in Figure B-1. The
offsets within the filename block are described in Table B-1.

The offset names in a filename block may be defined either locally or
globally, as shown below:

OFFSET

N.FID

N.FNAM

N.FTYP

N.FVER

N.STAT

N.NEXT

N.DID

N.DVNM

N.UNIT

NBOF$L :DEFINE OFFSETS LOCALLY.

NBOFF$ DEF$L

NBOFF$ DEF$G

:DEFINE OFFSETS LOCALLY.

:DEFINE OFFSETS GLOBALLY.

NOTE

When referring to filename-block
locations, it is essential to use the
symbolic offset names, rather than the
actual addresses of such locations. The
position of information within the
filename block may be subject to change
from release to release, whereas the
offset names remain constant.

Table B-1
Filename-Block Offset Definitions

SIZE CONTENTS
(in bytes)

6 File-identification field.

6 Filename field: specified as 9 characters
that are stored in Radix-50 format.

2

2

2

2

6

2

2

File-type field: specified as 3 characters
that are stored in Radix-50 format.

File version number field (binary).

Filename-block status word
definitions in Table B-2).

Context for next .FIND operation.

Directory-identification field.

ASCII device-name field.

Unit-number field (binary).

B-1

(see bit

FILENAME BLOCK

The bit definitions of the filename-block status word (N.STAT) in the
FDB and their significance are described in Table B-2.

Symbols marked with an asterisk (*) in Table B-2 indicate bits that
are set if the associated information is supplied through an ASCII
dataset descriptor.

SYMBOL

NB.VER*

NB.TYP*

NB.NAM*

NB.SVR

0

N.FID 2

4

6

N.FNAM
10

12

N.FTYP
14

N.FVER CUMULATIVE
16 LENGTH IN

N.STAT BYTES (OCTAL)
20

N.NEXT
22

N.DID
24

26

30·
N.DVNM
N.UNIT 32

34

Figure B-1 Filename-Block Format

Table B-2
Filename-Block Status Word (N.STAT)

VALUE MEANING
(in octal)

1 Set if explicit file version number is
specified.

2 Set if explicit file type is specified.

4 Set if explicit filename is specified.

10 Set if wildcard file version number is
specified.

(continued on next page)

B-2

SYMBOL

NB.STP

NB.SNM

NB.DIR*

NB.DEV*

NB.SDl

NB.SD2

FILENAME BLOCK

Table B-2 (Cont.)
Filename-Block Status Word (N.STAT)

VALUE
(in octal)

20

40

100

200

400

1000

MEANING

Set if wildcard file type is specified.

Set if wildcard filename is specified.

Set if explicit directory string (UIC)
is specified.

Set if explicit device-name string is
specified.

Set if group portion of UIC contains
wildcard specification.

Set if owner portion of UIC contains
wildcard specification.

B-3

APPENDIX C

SUMMARY OF I/O-RELATED SYSTEM DIRECTIVES

Table C-l contains a summary of the I/O-related system directives in
alphabetical order for ready reference. The parameters that may be
specified with a directive are also described in the order of their
appearance in the directive. These directives are described in detail
in the Executive Reference Manual of the host operating system.

DIRECTIVE

ALUN$

GLUN$

GMCR$

QIO$

Table C-l
Summary of I/O-Related System Directives

FUNCTION AND PARAMETERS

Assigns a logical unit number to a physical device:

lun = Logical unit number.

dev = Physical device name (2 ASCII characters).

unt = Physical device-unit number.

Fills a 6-word buffer with information about a physical
unit:

lun = Logical unit number.

buf = Address of a 6-word buffer in which the LUN
information is to be stored.

Transfers an
issuing task.
directive.

aO-byte MCR/PDS
No parameters

command line
are required

to the
in this

Places an I/O request in the device queue associated
with the specified logical unit number:

fnc = I/O function code.

lun = Logical unit number.

efn = Event flag number.

pri = Priority of the request (lAS and RSX-llD only).

(continued on next page)

C-l

SUMMARY OF I/O-RELATED SYSTEM DIRECTIVES

Table C-l (Cont.)
Summary of I/O-Related System Directives

DIRECTIVE FUNCTION AND PARAMETERS

RCVD$

RCVS$

RCVX$

isb = Address of the I/O status block.

ast = Entry-point address of the AST service routine.

prl = Parameter list in the form <Pl, •.. ,P6>.

Receives a 13-word data block that has been aueupn
(PTP()' ~~7 a ::;c. •• d -dQ'-Cl d.ireCl:IVe -(see SDAT$ and SDRQ$
below) .

tsk = Name of the sending task. This field is ignored
by RSX-IIM. The tsk parameter is specified as a
null value (,) i~ RSX-IIM for compatibility with
lAS and RSX-llD (see the description of the RCVD$
directive in the RSX-IlM Executive Reference
Manual) .

buf = Address of the IS-word data buffer (2-word
sending task name and 13-word data block).

Receives a 13-word data block, if queued by a send-data
directive (see SDAT$ AND SDRQ$ below), or suspends task
if no data is queued:

tsk = Name of the sending task.

buf = Address of the IS-word data buffer (2-word
sending task name and 13-word data block).

This directive is not supported in RSX-IIM.

Receives a 13-word data block, if queued by a send data
directive (see SDAT$ and SDRQ$ below), or exits if data
is not queued for the task:

tsk = Name of the sending task. This field is ignored
by RSX-IIM. The tsk parameter is specified as a
null value (,) in RSX-IIM for compatibility with
lAS and RSX-IID (see the description of the RCVX$
directive in the RSX-IIM Executive Reference
Manual) .

buf = Address of the IS-word data buffer (2-word
sending task name and 13-word data block).
SDAT$ Queues (FIFO) a 13-word block of data for a
task to receive:

tsk = Name of the receiving task.

buf = Address of the 13-word data buffer.

efn = Event flag number.

(continued on next page)

C-2

DIRECTIVE

SDRQ$

SUMMARY OF I/O-RELATED SYSTEM DIRECTIVES

Table C-I (Cont.)
Summary of I/O-Related System Directives

FUNCTION AND PARAMETERS

Queues (FIFO) a 13-word block of data for a task to
receive; also requests or resumes the execution of the
receiving task:

tsk = Name of the receiving task.

par = Partition name of the receiving task.

pri = Priority of the request.

ugc = UIC group code.

upc = UIC owner code.

buf = Address of the 13-word data buffer.

efn = Event flag number.

This directive is not supported in RSX-IIM.

C-3

APPENDIX D

SAMPLE PROGRAMS

The sample programs that follow read records from an input device,
strip off any blanks to the right of the data portion of the record,
and write the data record on an output device. While the programs are
intended primarily for card reader input and printer output, device
independence is maintained.

The main program is CRCOPYi CRCOPA and CRCOPB are variations. CRCOPA
uses a dataset descriptor instead of the default filename block used
in CRCOPY. CRCOPB uses run-time initialization of the FDB.

.TITLE

.MCALL

. MCALL

CRCOPY iCARD READER COpy ROUTINE
FDBDF$,FDAT$A,FDRC$A,FDOP$A,NMBLK$,FSRSZ$
OPEN$R,OPEN$W,GET$,PUT$,CLOSE$,EXIT$S
FINIT$. MCALL

INLUN=3
OUTLUN=4
FSRSZ$ 2

iASSIGN CR OR FILE DEVICE
iASSIGN TO OUTPUT DEVICE

FDBOUT: FDBDF$ iALLOCATE SPACE FOR OUTPUT FDB
iINIT FILE ATTRIBUTES FDAT$A R.VAR,FD.CR

FDRC$A ,RECBUF,80.
FDOP$A OUTLUN"OFNAM

iINIT RECORD ATTRIBUTES

FDBIN: FDBDF$
iINIT FILE OPEN SECTION
iALLOCATE SPACE FOR INPUT FDB
iINIT RECORD ATTRIBUTES

RECBUF:
OFNAM:
IFNAM:
START:

FDRC$A
FDOP$A
. BLKB
NMBLK$
NMBLK$
FINIT$

,RECBUF,80.
INLUN, ,IFNAM
80 •
OUTPUT,DAT
INPUT,DAT

OPEN$R #FDBIN
BCS ERROR
OPEN$W #FDBOUT iOPEN
BCS ERROR

iINIT FILE OPEN SECTION
iRECORD BUFFER
iOUTPUT FILENAME
iINPUT FILENAME
iINIT FILE STORAGE REGION
iOPEN THE INPUT FILE
iBRANCH IF ERROR

THE OUTPUT FILE
iBRANCH IF ERROR

GTREC: GET$ #FDBIN iNOTE - URBD IS ALL SET UP
iERROR SHOULD BE EOF INDICATION
iRl=SIZE OF RECORD READ

BCS CKEOF
MOV F.NRBD{RO) ,Rl
MOV #RECBUF,R2
ADD Rl,R2

10$: CMPB #40,-{R2)
BNE PTREC
SOB Rl,lO$

iR2=ADDRESS OF LAST BYTE+l
iSTRIP TRAILING BLANKS

iAT THIS POINT, Rl CONTAINS THE STRIPPED SIZE OF THE
iRECORD TO BE WRITTEN. IF THE CARD IS BLANK,
iA ZERO-LENGTH RECORD IS WRITTEN.
PTREC: PUT$ #FDBOUT"Rl iRl IS NEEDED TO SPECIFY

BCC GTREC iTHE RECORD SIZE.
ERROR: NOP iERROR CODE GOES HERE
CKEOF: CMPB #IE.EOF,F.ERR{RO) iEND OF FILE?

BNE ERROR iBRANCH IF OTHER ERROR
CLOSE$ RO iCLOSE THE INPUT FILE

D-1

SAMPLE PROGRAMS

BCS
CLOSES
BCS
EXIT$S
.END

ERROR
#FDBOUT
ERROR

START

iCLOSE THE OUTPUT FILE

iISSUE EXIT DIRECTIVE

.TITLE
• MCALL
.MCALL

CRCOPA iCARD READER COpy ROUTINE
FDBDF$,FDAT$A,FDRC$A,FDOP$A,NMBLK$,FSRSZ$
OPEN$R,OPEN$W,GET$,PUT$,CLOSE$,EXIT$S
FINIT$ • MCALL

INLUN=3
OUTLUN=4
FSRSZ$ 2

iASSIGN CR OR FILE DEVICE
iASSIGN TO OUTPUT DEVICE

FDBOUT: FDBDF'$
FDAT$A R.VAR,FD.CR
FDRC$A ,RECBUF,80.
FDOP$A OUTLUN,OFDSPT

FDBIN: FDBDF$
FDRC$A ,RECBUF,80.
FDOP$A INLUN,IFDSPT

RECBUF: .BLKB 80.
CFDSPT: .WORD 0,0

. WORD 0,0

. WORD ONAM$Z,ONAM
IFDSPT: .WORD 0,0

ONAM:

INAM:

. WORD 0,0

. WORD INAMSZ,INAM

.ASCII /OUTPUT.DAT/
ONAMSZ=.-ONAM
.EVEN
.ASCII /INPUT.DAT/
INAMSZ=.-INAM
.EVEN

START: FINIT$
OPEN$R #FDBIN
BCS ERROR
OPEN$W #FDBOUT iOPEN
BCS ERROR

GTREC: GET$ #FDBIN
BCS CKEOF
MOV F.NRBD(RO} ,Rl
MOV #RECBUF,R2
ADD Rl,R2

10$: CMPB #40,-(R2}
BNE PTREC
SOB Rl,lO$

iDEVICE DESCRIPTOR
iDIRECTORY DESCRIPTOR
iFILENAME DESCRIPTOR
iDRVICE DESCRIPTOR
iDIRECTORY DESCRIPTOR
iFILENAME DESCRIPTOR

iINIT FILE STORAGE REGION
iOPEN THE INPUT FILE
;BRANCH IF ERROR

THE OUTPUT FILE
;BRANCH IF ERROR
iNOTE - URBD IS ALL SET UP
;ERROR SHOULD BE EOF INDICATIO~

iRl=SIZE OF RECORD READ

;R2=ADDRESS OF LAST BYTE+l
iSTRIP TRAILING BLANKS

iAT THIS POINT, Rl CONTAINS THE STRIPPED SIZE OF THE
iRECORD TO BE WRITTEN. IF THE CARD IS BLANK,
iA ZERO-LENGTH RECORD IS WRITTEN.
PTREC: PUTS #FDBOUT"Rl iRl IS NEEDED TO SPECIFY

BCC GTREC iTHE RECORD SIZE.
ERROR: NOP iERROR CODE GOES HERE
CKEOF: CMPB #IE.EOF,F.ERR(RO} iEND OF FILE?

BNE ERROR iBRANCH IF OTHER ERROR
CLOSES RO iCLOSE THE INPUT FILE
BCS ERROR
CLOSES #FDBOUT
BCS ERROR
EXIT$S
.END START

;CLOSE THE OUTPUT FILE

iISSUE EXIT DIRECTIVE

D-2

FDBOUT:
FDBIN:
RECBUF:
CFDSPT:

IFDSPT:

ONAM:

INAM:

START:

SAMPLE PROGRAMS

.TITLE
• MCALL
.MCALL

CRCOPB iCARD READER COPY ROUTINE
FDBDF$,FDAT$A,FDRC$A,FDOP$A,NMBLK$,FSRSZ$
OPEN$R,OPEN$W,GET$,PUT$,CLOSE$,EXIT$S
FINIT$,FDAT$R . MCALL

INLUN=3
OUTLUN=4
FSRSZ$ 2

iASSIGN CR OR FILE DEVICE
iASSIGN TO OUTPUT DEVICE

FDBDF$
FDBDF$
.BLKB 80.
• WORD 0,0
. WORD 0,0
. WORD ONAM$Z,ONAM
• WORD 0,0
. WORD 0,0
. WORD INAMSZ,INAM
.ASCII /OUTPUT.DAT/
ONAMSZ=.-ONAM
.EVEN
.ASCII /INPUT.DAT/
INAMSZ=.-INAM
. EVEN

iDEVICE DESCRIPTOR
iDIRECTORY DESCRIPTOR
iFILENAME DESCRIPTOR
iDEVICE DESCRIPTOR
iDIRECTORY DESCRIPTOR
iFILENAME DESCRIPTOR

FINIT$
OPEN$R

iINIT FILE STORAGE REGION
#FDBIN,#INLUN,#IFDSPT,,#RECBUF,#80.

iRUNTIME INITIALIZATION
BCS ERROR iBRANCH IF ERROR
FDAT$R #FDBOUT,#R.VAR,#FD.CR iRUNTIME INITIALIZATION
OPEN$W RO,#OUTLUN,#OFDSPT,,#RECBUF,#80.
BCS ERROR iBRANCH IF ERROR

GTREC: GET$ #FDBIN iNOTE - URBD IS ALL SET UP

10$:

BCS CKEOF iERROR SHOULD BE EOF INDICATION
MOV F.NRBD(RO) ,Rl iRl=SIZE OF RECORD READ
MOV #RECBUF,R2
ADD Rl,R2
CMPB #40,-(R2)
BNE PTREC
SOB Rl,lO$

iR2=ADDRESS OF LAST BYTE+l
iSTRIP TRAILING BLANKS

iAT THIS POINT, Rl CONTAINS THE STRIPPED SIZE OF THE
iRECORD TO BE WRITTEN. IF THE CARD IS BLANK,
iA ZERO-LENGTH RECORD IS WRITTEN.
PTREC: PUTS #FDBOUT"Rl iRl IS NEEDED TO SPECIFY

BCC GTREC iTHE RECORD SIZE.
ERROR: NOP iERROR CODE GOES HERE
CKEOF: CMPB #IE.EOF,F.ERR(RO) iEND OF FILE?

BNE ERROR iBRANCH IF OTHER ERROR
CLOSES RO iCLOSE THE INPUT FILE
BCS ERROR
CLOSES #FDBOUT
BCS ERROR
EXIT$S
.END START

iCLOSE THE OUTPUT FILE

iISSUE EXIT DIRECTIVE

D-3

APPENDIX E

INDEX FILE FORMAT

The index file ([O,O]INDEXF.SYS) of a FILES-II volume consists of
virtual blocks, starting with Virtual Block 1, the bootstrap block.
Virtual Block 2 is the home block. The structure of an index file is
shown below.

VIRTUAL BLOCK NUMBER

1

2

3

3+n

3+n+l

3+n+2

3+n+3

3+n+4

3+n+5

3+n+6

E.l BOOTSTRAP BLOCK

INDEX FILE ELEMENT

Bootstrap block.

Home Block.

Index-file bit map (n blocks);
the value of n is in the home
block.

Index-file header.

Storage-map header.

Bad-block file header.

Master file directory header.

Checkpoint file header (not used by
RSX-IIM).

User file header 1.

User file header 2.

User file header n.

A disk that is structured for FILES-II has a 256-word block, starting
at physical block 0. This block contains either a bootstrap routine
or a message to the operator stating that the volume does not contain
a bootstrappable system. The bootstrap routine brings a core image
into memory from a predefined location on the disk. In lAS and
RSX-IID, the core image is pointed to by a file header block in the
index file.

E-l

INDEX FILE FORMAT

E.2 HOME BLOCK

The home block contains volume identification information that is
formatted as shown in Table E-I. This block is located either in
Logical Block I or at any even multiple of 256 blocks.

The offset names in the home block may be defined either locally or
globally, as shown below:

HMBOF$ DEF$L ~DEFINES OFFSETS LOCALLY.

HMBOF$ DEF$G ~DEFINES OFFSETS GLOBALLY.

E.3 INDEX-FILE BIT MAP

The index-file bit map controls the use of file-header blocks in the
index file. The bit map contains a bit for each file-header block
contained in the index file. The bit for a file-header block is
located by means of the file number of the file with which it is
associated. The values of the bit map are as follows:

o - Indicates that the file-header block is available. The
file-control primitives can use this block to create a file.

I - Indicates that the file-header block is in use.
has already been used to create a file.

This block

E.4 PREDEFINED FILE-HEADER BLOCKS

The first five file-header blocks are described below.

FILE-HEADER BLOCK

Index-File Header

Storage-Map-File
Header

Bad-Block-File
Header

Master-File-Directory
Header

Checkpoint-File Header

SIGNIFICANCE

This is the standard
with the index file.

header associated

The storage map is a file that is used to
control the assignment of disk blocks to
files.

The bad-block file is a file that consists of
unusable blocks (bad sectors) on the disk.

This header block is associated with the
master file directory for the disk. This
directory contains entries for the index
file, the storage-map file, the bad-block
file, the master file directory (MFD), th~
checkpoint file, and all user file
directories (UFD's).

This block identifies the file that
for the checkpoint areas
checkpointable tasks. In RSX-IIM,
also have checkpoint space in the
itself.

E-2

is used
for all

a task can
task image

INDEX FILE FORMAT

The remainder of the index file consists of file-header blocks for
user files, as shown in the illustration at the beginning of this
section.

SIZE
(in bytes)

2

4

2

2

2

2

12.

4

2

2

2

2

6

1

1

1

11.

2

14.

100.

Table E-l
Home-Block Format

CONTENT OFFSET

Index-bit-map size. H.IBSZ

Location of index bit H.IBLB
map.

Maximum files allowed. H.FMAX

Storage-bit-map cluster H.SBCL
factor.

Disk-device type. H.DVTY

Structure level. H.VLEV

Volume name (12 ASCII H.VNAM
characters) .

Reserved.

Volume owner's UIC. H.VOWN

Volume-protection code. H.VPRO

Volume characteristics. H.VCHA

Default-file protection H.DFPR
word.

Reserved --

Default number of H.WISZ
retrieval pointers
in a window.

Default number of
blocks to extend files.

Number of entries in
directory LRU.

Available space.

Checksum of words 0-28.

Creation date and time.

Volume-header label (not
used) .

H.FIEX

H.LRUC

H.CHKl

H.VDAT

(continued on next page)

E-3

SIZE
(in bytes)

82.

254.

2

INDEX FILE FORMAT

Table E-I (Cont.)
Home-Block Format

CONTENT

System-specific infor-
mation (not used).

Relative volume table
(not used).

Checksum of home block
lworas u tnrough 255).

E-4

OFFSET

--

--

H.CHK2

APPENDIX F

FILE-HEADER BLOCK FORMAT

Table F-I shows the format of the file-header block. The various
areas within the file-header block are described in detail in the
following sections. The offset names in the file-header block may be
defined either locally or globally, as shown in the following
statements:

AREA

FHDOF$ DEF$L

FHDOF$ DEF$G

SIZE
(in bytes)

HEADER AREA I

1

2

2

2

1

I

2

I

iDEFINE OFFSETS LOCALLY.

iDEFINE OFFSETS GLOBALLY.

Table F-I
File Header Block

CONTENT

Identification-area offset
in words.

Map-area offset in words.

File number.

File sequence number.

Structure level and system
number.

Offset to file owner
information, consisting of
member number and group
number.

Member number.

Group number.

File-protection code.

User-controlled file
characteristics.

OFFSET

H.IDOF

H.MPOF

H.FNUM

H.FSEQ

H.FLEV

H.FOWN

H.PROG

H.PROJ

H.FPRO

H.UCHA

(continued on next page)

F-l

AREA

IDENTIFICATION
AREA

MAP AREA

FILE~HEADER BLOCK FORMAT

Table F-l (Cont.)
File Header Block

SIZE
(in bytes)

CONTENT

1

32.

6

2

2

2

7

6

7

6

7

1

1

1

2

2

1

1

System-controlled file
characteristics.

User file attributes.

Size in bytes of header
area of file-header block.

Filename (Radix-50).

File type (Radix-50).

File version number
(binary) .

Revision number.

Revision date.

Revision time.

Creation date.

Creation time.

Expiration date.

To round up to word
boundary.

Size (in bytes) of
identification area of
file-header block.

Extension segment number.

Extension relative volume
number (not implemented).

Extension file number.

Extension file sequence
number.

Size (in bytes) of the
block-count field of a
retrieval pointer (lor 2);
only 1 is used.

Size (in bytes) of the
logical-block-numper field
of a retr ieval pointer (2,
3, or 4); only 3 is used.

OFFSET

H.SCHA

H.UFAT

S.HDHD

I.FNAM

I.FTYP

I.FVER

I.RVNO

I.RVDT

I.RVTI

I.CRDT

I.CRTI

I.EXDT

S. IDHD

M.ESQN

M.ERVN

M.EFNU

M.EFSQ

M.CTSZ

M.LBSZ

(continued on next page)

F-2

AREA

CHECKSUM WORD

FILE-HEADER BLOCK FORMAT

SIZE

Table F-l (Cant.)
File Header Block

CONTENT
(in bytes)

1 Words of retrieval pointers
in use in the map area.

1 Maximum number of words
of retrieval pointers
available in the map area.

- Start of retrieval pointers.

- Size in bytes of map area
of file-header block.

2 Checksum of words 0 through
255.

NOTE

The checksum word is the last word of
the file-header block. Retrieval
pointers occupy the space from the end
of the map area to the checksum word.

OFFSET

M.USE

M.MAX

M.RTRV

S.MPHD

H.CKSM

F • 1 HEADER AREA

The information in the header area of the file-header block consists
of the following:

IDENTIFICATION AREA
OFFSET

MAP AREA OFFSET

FILE NUMBER

- Word 0, Bits 0-7. This byte locates the start
of the identification area relative to the
start of the file-header block. This offset
contains the number of words from the start of
the header to the identification area.

- Word 0, Bits 8-15. This byte locates the start
of the map area relative to the start of the
file-header block. This offset contains the
number of words from the start of the header
area to the map area.

- The file number defines the position this
file-header block occupies in the index file,
e.g., the index file is number 1, the storage
bit map is file number 2, etc.

FILE SEQUENCE NUMBER - The file number and the file sequence number
constitute the file identification number used
by the system. This number is different each
time a header is reused.

STRUCTURE LEVEL - This word identifies the system that created
the file and indicates the file structure. A
value of [1,1] is associated with all current
FILES-II volumes.

F-3

FILE OWNER
INFORMATION

FILE-HEADER BLOCK FORMAT

- This word contains the group number and owner
number constituting the user identification
code (UIC) for the file. Legal UIC's are
within the range [1,1] to [377,377]. UIC [1,1]
is reserved for the system.

FILE PROTECTION CODE - This word specifies the manner in which
file can be used and who can use it.
creating the file, the user specifies
extent of protection desired for the file.

the
When

the

FILE CHARACTERISTICS - This word, consisting of 2 bytes, defines the
status of the file.

USER FILE
ATTRIBUTES

Byte 0 defines the user-controlled characteris­
tics, as follows:

UC.CON = 200 - Logically contiguous file. When
the file is extended (for example, by a WRITE
or PUT), bit UC.CON is cleared whether or not
the extension requests contiguous blocks.

UC.DLK = 100 - File improperly closed.

Byte 1 defines system-controlled characteris­
tics, as follows:

SC.MDL 200 - File marked for delete.

SC.BAD = 100 - Bad data block in file.

- This area consists of 16 words. The first
7 words of this area are a direct image of the
first 7 words of the FOB when the file is
opened. The other 9 words of the record I/O
control area are not used.

F.2 IDENTIFICATION AREA

The information in the identification area of the file header block
consists of the following:

FILENAME

FILE TYPE

- The file's creator specifies a filename of up
to 9 Radix-50 characters in length. This name
is placed in the name field. The unused
portion of the field (if any) is O-filled.

This word contains the file type in Radix-50
format.

FILE VERSION NUMBER - This word contains the file version number, in
binary, as specified by the creator of the
file.

REVISION NUMBER This word is initialized to 0 when the file is
created; it is incremented each time a file is
closed after being updated or modified.

F-4

REVISION DATE

REVISION TIME

CREATION DATE

CREATION TIME

EXPIRATION DATE

F.3 MAP AREA

FILE-HEADER BLOCK FORMAT

- Seven bytes are used to maintain the date on
which the file was last revised. The revision
date is kept in ASCII form in the format day,
month, year (2 bytes, 3 bytes, and 2 bytes,
respectively). This date is meaningful only if
the revision number is a nonzero value.

- Six bytes are used to record the time at which
the file was last revised. This information is
recorded in ASCII form in the format hour,
minute, and second (2 bytes each).

- The date on which the file was created is kept
in a 7-byte field having the same format as the
revision date (see above).

The time of the file's creation is maintained
in a 6-byte field having the same format as the
revision time (see above).

- The date on which the file becomes eligible to
be deleted is kept in a 7-byte field having the
same format as the revision date (see above).
Use of expiration is not implemented.

The map area contains the information necessary to map virtual-block
numbers to logical-block numbers. This is done by means of pointers,
each of which points to an area of contiguous blocks. A pointer
consists of a count field and a number field. The count field defines
the number of blocks contained in the contiguous area pointed to, and
the logical block number (LBN) field defines the block number of the
first logical block in the area.

A value of n in the count field (see below) means that n+l blocks are
allocated, starting at the specified block number.

The retrieval pointer format used in the FILES-II file structure is
shown below:

15 o
COUNT-1 HIGH LBN

31 16

LOW LBN

NOTE

The remaining paragraphs in
appendix apply to lAS, RSX-IID,
RSX-IIM systems that support
multiheader version of FIIACP.

F-5

this
and
the

FILE-HEADER BLOCK FORMAT

The map area normally has space for 102 retrieval pointers. It can
map up to 102 discontiguous segments or up to 26112 blocks if the file
is contiguous. If more retrieval pointers are required because the
file is too large or consists of too many discontiguous segments,
extension headers are allocated to hold additional retrieval pointers.
Extension headers are allocated within the index file. They are
identified by a file number and a file sequence as are other file
headers; however, extension file headers do not appear in any
directory.

A nonzero value in the extension file number field of the map area
indicates that an extension header exists. The extension header is
identified by the extension file number and the extension file
sequence number. The extension segment number is used to number the
headers of the file sequentially, starting with a 0 for the first.

Extension headers of a file contain a header area and identification
area that are a copy of the first header as it appeared when the first
extension was created. Extension headers are not updated when the
first header of the file is modified.

Extension headers are created and handled by the file-control
primitives as needed; their use is transparent to the user.

F-6

APPENDIX G

SUPPORT OF ANSI MAGNETIC TAPE STANDARD

This appendix defines the ANSI magnetic tape labeling standard, which
is a level three implementation of the Jun~ 19, 1974 Proposed Revision
to the ANSI standard Magnetic Tape Labels and File Structure for
Information Interchange (X3.27-l969). The only exception is that ANSI
does not support spanned records.

G.l VOLUME AND FILE LABELS

Tables G-l, G-2, and G-3 present the format of volume labels and
file-header labels.

G.l.l Volume Label Format

CHARACTER
POSITION

1-3

4

5-10

11

12-37

Table G-l
Volume Label Format

LENGTH
FIELD NAME IN BYTES CONTENTS

Label identifier 3 VOL

Label number 1 1

Volume identifier 6 Volume label. Any
alphanumeric or special
character in the center four
columns of the ASCII code
table.

Accessibility 1 Any alphanumeric or special
character in the center four
columns of the ASCII code
table. A space indicates no
restriction. All volumes
produced by lAS or RSX-ll have
a space in this position.

Reserved 26 Spaces

(continued on next page)

G-l

CHARACTER
POSITION

SUPPORT OF ANSI MAGNETIC TAPE STANDARD

FIELD NAME

Table G-l (Cont.)
Volume Label Format

LENGTH
IN BYTES CONTENTS

38-51 Owner 14 The contents of this field are
identification system-dependent and are used

for volume protection
purposes. See Section G.l.l.l
below.

52-79 Reserved 28 Spaces.

80 Label standard 1 1
version

G.l.l.l Contents of Owner Identification Field - The owner
identification field is divided into the following three subfields and
a single pad character:

1. System identification (positions 38 through 40),

2. Volume protection code (positions 41 through 44),

3. UIC (positions 45 through 50),

4. Pad character of one space (position 51).

The system identification consists of the
sequence.

D%x

following

x is the machine code and can be one of the following.

8 - PDP-8
A - DECsystem-lO
B - PDP-II
F - PDP-IS

character

The D%x characters provide an identification method so that the
remaining data in the owner identification field can be interpreted.
In the case of tapes produced on PDP-II systems, the system
identification is D%B and the volume protection code and UIC are
interpreted as described below.

The volume protection code in positions 41 through 44 defines access
protection for the volume for four classes of users. Each class of
user has access privileges specified in one of the four columns, as
follows.

Position Class

41 System (UIC no greater than [7,255])
42 Owner (group and member numbers match)
43 Group (group number matches)
44 World (any user not in one of the above)

G-2

SUPPORT OF ANSI MAGNETIC TAPE STANDARD

One of the following access codes can be specified for each character
position.

Code

o
1
2
3
4

Privilege

No access
Read only
Extend (append) access
Read/extend access
Total access

The UIC is specified in character positions 45 through 50. The first
3 characters are the group code in decimal. The next 3 are the user
code in decimal.

The last character in the owner identification field is a space.

The following is an example of the owner identification field.

Owner identifier - D%B1410051102 indicates space)

1. The file was created on a PDP-II.

2. System and group have read access.
Owner has total access.
All others are denied access.

3. The UIC is [051,102].

G.l.2 User Volume Labels

User volume labels are never written or passed back to the user. If
present, they are skipped.

G.l.3 File-Header Labels

The following information should be kept in mind when creating
file-header labels.

• The Files-II naming convention uses a subset (Radix-50) of
the available ANSI character set for file identifiers.

• One character in the file identifier, the period (.), is
fixed by Files-II.

• A maximum of 13 of the 17 bytes in the file identifier are
processed by Files-II.

• It is strongly recommended that all file identifiers be
limited to the Radix-50 PDP-II character set and that no
character other than the period (.) be used in the file type
delimiter position for data interchange between PDP-II and
DECsystem-lO systems.

• For data interchange between DIGITAL and nonDIGITAL systems,
the conventions listed above should be followed. If they are
not, refer to Section G.l.3.1.

G-3

SUPPORT OF ANSI MAGNETIC TAPE STANDARD

Tables G-2 and G-3 describe the HDRI and HDR2 labels respectively.

Table G-2
File-Header Label (HDR1)

CHARACTER
POSITION FIELD NAME

1-3 Label identifier

4 Label number

5-21 File idpntifiAr

22-27 File set
identifier

28-31 File section
number

32-35 File sequence
number

36-39 Generation number

40-41 Generation version

42-47 Creation date

48-53 Expiration date

54 Accessibility

55-60 Block count

61-73 System code

74 Reserved

LENGTH
IN BYTES

3

1

1 i

6

4

4

4

2

6

6

1

6

13

7

G-4

CONTENT

HDR

1

7\ ., • 1
£'l.u.1 a.LJ: IR l~L IC or speCIa
character in the center four
columns of the ASCII code
table.

Volume identifier of the first
volume in the set of volumes.

Numeric characters. This
field starts at 0001 and is
increased by 1 for each
additional volume used by the
file.

File number within the volume
set for this file. This
number starts at 0001.

Numeric characters.

Numeric characters.

yyddd (indicates space)
or

00000 if no date.

Same format as creation date.

Space.

000000

The three letters DEC followed
by name of the system that
produced the volume. See
Section G.l.l.l.

Examples: DECFILEllA
DECSYSTEMIO

Pad name with spaces.

Spaces.

SUPPORT OF ANSI MAGNETIC TAPE STANDARD

Table G-3
File Header Format (HDR2)

CHARACTER
POSITION FIELD NAME

1-3 Label identifier

4 Label number

5 Record format

6-10 Block length

11-15 Record length

16~50 System-dependent
information

51-52 Buffer offset

53-80 Reserved

LENGTH
IN BYTES CONTENT

3 HDR

1 2

1 F - fixed length
D - variable length
S - spanned
U - undefined

5 Numeric characters.

5 Numeric characters.

35 positions 16 through 36 are
spaces.

2

28

Position 37 defines carriage
control and can contain one of
the following:

A - first byte of record
contains FORTRAN con­
trol characters,

space - line feed/carriage re­
turn is to be inserted
between records,

M - the record contains
all form-control in­
formation.

If DEC appears in positions 61
through 63 of HDRl, position
37 must be as specified above.

positions 38 through 50
contain spaces.

Numeric characters.
tapes produced by
Not supported on
Files-II.

Spaces.

00 on
Files-II.

input to

G.l.3.1 File Identifier Processing by Files-II - The following steps
describe the processing of a file identifier by Files-II.

1. The first 9 characters at a maximum are processed by an ASCII
to Radix-50 converter. The conversion continues until one of
the following occurs:

A conversion failure,
9 characters are converted,
A period (.) is encountered.

G-5

SUPPORT OF ANSI MAGNETIC TAPE STANDARD

2. If the period is encountered, the next 3 characters after the
period are converted and treated as the file type. If a
failure occurs or all 9 characters are converted, the next
character is examined for a period. If it is a period, it is
skipped and the next 3 characters are converted and treated
as the file type.

3. The version number is derived from the generation number and
the generation version number as follows.

(generation number - 1)*100 + generation version + 1

At file output, the file identifier is handled as follows.

1. The filename is placed in the first positions in the file
identifier field It can occupy up to 9 positions. It IS
followed by a period.

2. The file type of up to 3 characters is placed after the
period. The remaining spaces are padded with spaces.

3. The version number is
generation version
following formulas.

a. generation number

then placed in the generation
number fields as described in

version # - 1 + 1
100

b. generation version # = version # - 1
Modulo 100

NOTE

In both calculations, remainders are ignored.

The following are examples.

FILES-II VERSION #

1
50
100
101
1010

GENERATION #

1
1
1
2
11

G.l.4 End-ot-Volume Labels

GENERATION VER #

o
49
99
o
9

and
the

End-of-volume labels are identical to the file-header labels with the
following exceptions:

1. Character positions 1 through 4 contain EOVI and EOV2 instead
of HDRI and HDR2, respectively.

2. The block-count field contains the number of records in the
last file section on the volume.

G-6

SUPPORT OF ANSI MAGNETIC TAPE STANDARD

G.l.5 File-Trailer Labels

End-of-file labels (file-trailer labels) are
file-header labels, with the following exceptions:

identical with

1. Columns 1 through 4 contain EOFI and EOF2 instead of HDRI and
HDR2, respectively.

2. The block count contains the number of data blocks in the
file.

G.l.6 User File Labels

User file labels are never written or passed back to the user. If
present, they are skipped.

G.2 FILE STRUCTURES

The file structures illustrated below are the types of file and volume
combinations that the file processor produces. Additional sequences
can be read and processed by the file processor.

The minimum block size and fixed length record size is 18 bytes. The
maximum block size is 8192 bytes.

If HDR2 is not present, the data type is assumed to be fixed (F) and
the block size and record size are assumed to be the default value for
the file processor. 512 decimal bytes is the default for both block
and record size.

The meaning of graphics used in the file structure illustrations is as
follows.

1. * indicates a tape mark,

2. BOT indicates beginning of tape,

3. EOT indicates end of tape,

4. , indicates the physical record delimiter.

G.2.1 Single' File Single Volume

BOT,VOLl,HDRl,HDR2*---DATA---*EOFl,EOF2**

G.2.2 Single File Multivolume

BOT,VOLl,HDRl,HDR2*---DATA---*EOVl,EOV2**

BOT,VOLl,HDRl,HDR2*---DATA---*EOFl,EOF2**

G-7

SUPPORT OF ANSI MAGNETIC TAPE STANDARD

G.2.3 Multifile Single Volume

BOT,VOLl,HDRl,HDR2*---DATA---*EOFl,EOF2*HDRl,HDR2*---DATA--*EOFl,EOF2**

G.2.4 Multifile Multivolume

BOT,VOLl,HDRl,HDR2*--DATA--*EOFl,EOF2*HDRl,HDR2*--DATA--*EOVl,EOV2**

BOT,VOLl,HDRl,HDR2*--DATA--*EOFl,EOF2*HDRl,HDR2*--DATA--*EOFl,EOF2**

G.3 END-OF-TAPE HANDLING

End-of-tape is handled automatically by the magnetic tape file
processor. Files are continued on the next volume provided that the
volume is already mounted or mounted upon request. A request for the
next volume is printed on co (console output pseudo-device).

G.4 ANSI MAGNETIC TAPE FILE HEADER BLOCK (FCS COMPATIBLE)

Figure G-l illustrates the format of a file-header block that is
returned by the file header READ ATTRIBUTE command for ANSI magnetic
tape. The header block is constructed by the magnetic tape primitive
from data within the tape labels.

G-8

H.MPOF

HEADER AREA

IDENTI FICA·
CATION AREA

MAP AREA

Figure G-I

SUPPORT OF ANSI MAGNETIC TAPE STANDARD

MAP OFFSET I IDENT OFFSET H.IDOF
,..

FILE SEQUENCE NUMBER H.FNUM

FI LE SECTION NUMBER H.FSEQ

STRUCTURE LEVEL = 401(8) H.FLEV

UIC (FOR VOLUME) H.FOWN=H.PROG

PROTECTION CODE (FOR VOLUME) H.FPRO

RECORD ATTRIBUTES 1 RECORD TYPE CODE H.UFAT

RECORD SIZE IN BYTES

N WORDS OF ZERO'S
\",

X+I.FNAM
FILE NAME RAD50 (IDENT OFFSET *2)=X

FI LE TYPE RAD50 I.FTYP

FILE VERSION NUMBER X+I.FVER

ZERO'S (REVISION DATE & TIME) X+I.RVNO

CREATION DATE & TIME (000000) X+I.CRDT

EXPIRATION DATE X+I,EXDT

PAD BYTE OF 0 X+47.

COpy OF THE
HDR1 LABEL

X+50.

COpy OF THE HDR2 LABEL
(if byte 1 of label = 0, X+130.

(
label is not present)

NULL MAP, I.E., ZERO'S
(10 BYTES LONG)

X+210.=
(MAP OF OFFSET 2)

ANSI Magnetic Tape File-Header Block (FCS Compatible)

G-9

APPENDIX 8

STATISTICS BLOCK

The format of the statistics block is shown in Figure 8-1 below. The
statistics block is allocated manually in the user program as
described in Item 3.d of Section 3.1.2.

Word 0 HIGH LOGICAL BLOCK NUMBER
(0 if file is noncontiguous)

Word 1 LOW LOGICAL BLOCK NUMBER
(0 if file is noncontiguous)

Word 2
SIZE (high)

Word 3
SIZE (low)

Word 4
LOCK COUNT ACCESS COUNT

Figure 8-1 Statistics Block Format

H-l

APPENDIX I

ERROR CODES

This appendix lists the Directive Status Word error codes and the I/O
error codes returned by the system.

I-I

H
I

N

QIOMAC • QIOSYM MACRO DEFINITIO MACRO Mll1217 1212-NOV-77 1,.37 PAGE 1

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
2121
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

01210327

,

.TITL! QIOMAC - QIOSYM MACRO DEFINITION

DATE OF LAST MODIFICATION,

C ••• D'ELIA 1212-NOV-77

***** ALWAYS UPDATE THE FOLLOWING TWO LINES TO~ETH!R
.IDENT 11213211
QI.VERae321

, COPYRIGHT (C) 1'73,1'77
, DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS. , , , , , , , , , , , , , ,

THIS SOFTWARE IS FURNISHED UNDER • LICENSE FOR
SINGLE COMPUTER SYSTEM AND MAY BE COPIED ON
INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS
ANY OTHER COPIES THEREOF, MAY NOT BE PROVIDED
MADE AVAIlABLE TO ANV OTHER PERSON EXCEPT FOR
SYSTEM AND TO ONE WHO AGREES TO THESE LICENSE
TO AND OWNERSHIP 0' THE SOFTWARE SHALL AT ALL
IN DEC.

S! ONLY ON A
V WITH TH!
OFTWARE, OR
R OTHERWISE

USE ON SUCH
E~MS. TITLE
IM!S REMAIN

THE INFORMATION IN THIS DOCUMENT IS SUBJECT TO ~HANGE WITHOUT
NOTICE AND SHOULD NOT BE CONSTRUED 4S A COMMITM¢NT BY DIGITAL
EQUIP~ENT CORPOR~TION.

, DEC ASSUMES NO RESPONSIBILITY FOR THE USE OR RE4IABILITY OF
, ITS SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIEDIBY DEC. , ,
, PETER H. LIPMAN 1-0CT-13 ,
'+ , MACRO TO DEFINE STANDARD QUEUE 1/0 DIRECTIVE FUNCTION VALUES
, AND IOSB RETURN VALUES. TO INVOKE AT ASSEMBLY ~IME (WITH LOCAL
, DEFINITION) USE, , , , QIOSYS ,DEFINE SYMBOLS

, TO OBTAIN GLOBAL DEFINITION OF THESE SYMBOLS US~I , , , QIOSVS DEFSG ,SYMBOLS DEFINED GLOBALLY

t:zl
!:tI

~
!:tI
()
o
~
tzl
til

H
I

LV

4tl
47
A8
49
50
51
52
53
54
55
5tl
57

, THE MACRO CAN BE CALLED ONCE ONLY AND THEN
, REDEFINES ITSELF AS NULL. ,-

.MACRO QIOSYS SSSGBL,SSSMSG

.11' IDN,cSSSGBL.,cDEFSG., .GLOBL

.IF IDN,cSSSMSG.,cDE'SS.
SSSMAX.0
SSMSG-l
.IFF
SSMSG-e
.ENDC

QI.VER

QIOMAC - QIOSVM MACRO DEFINITIO MACRO M1107 02-NOV-11 19137 PAGE 1-1

58 .MCALL IOERRS
59 IOERRS SSIGBL ,1/0 ERROR CODES FROM HANDLERS, FCP, FCS
be .MCALL DRERRS
bl DRERRS SSSGeL ,DIRECTIVE STATUS WORD ERROR CODES
b2 • IF DIF,cSSSMSG>,cDEFSS •
b3 .MCALL FILIOI
b4 FILIOI SSSGeL ,DEFINE GENERAL 1/0 FUNCTION CODES
b5 .MCALL. SPCIOS
bb SPCIOS SSIGBL ,DEVICE DEPENDENT 1/0 FUNCTION CODES
b7 .MACRO QIOSVS .ARG, ARG1, ARG2 ,RECLAI~'MACRO STORAGE
be ,ENDM QIOSYS
&9 .ENDC
70 .ENDM QIOSVS

QIOMAC • QIOSYM MACRO DEFINITIO MACRO Mlle? 02-NOV.77 19.37 PAGE 2

72
73
74
'75
1&
17
78
79
80
81
82

DEFINE THE ERROR CODES RETURNED BY DEVICE HANDLER AND FIL.E PRIMITIVES
IN THE FIRST wORD OF THE 110 STATUS BLOCK
THESE CODES ARE ALSO RETURNED BY FIL.E CONTROL SERVICES (FCS) IN THE
BYTE F.ERR IN THE 'ILE DESCRIPTOR BLOCK (FOB)

THE BYTE F,ERR+1 IS 0 IF F,ERR CONTAINS A HANDLER OR FCP ERROR CODE.

.MACRO

.HCALL

.IF

IOERRS SSIGBL
.IOER.,DEFINS
IDN,cSSSGBL>,cDEFIG>

til

~ o
!:II:'
n o c
til
til

83 ••• GeLal
84 .IFF
85 ••• GBLa'"
86 .ENOC
87 .IIF NDF,SSMSG,SSMSGa0
ee
e9 SYSTEM STANDARD CODES, USED BY EXECUTIVE AND OR_V£RS
9'"
91 .IOER. IE.BAD,-01.,~BAO PARAMET~RS>
92 .IOE~. IE.IFC,-02.,<INVALIo FUNCTION CODE>
93 • I OER. IE.D~R,-03.,coEVICE NOT READY>
94 .IOER. IE.VE~,-04.,<PARITY ERROR ON D£VI~E>
95 .IOER. IE.ONP~-05.,cHARDWARE OPTlnN NOT RESENT>
96 .IOER • IE.SPC,-06.,<ILLEGAL USER BUFFER>
97 • IOER. IE.ONA,-07.,cOEVICE NOT ATTACHED>
9a .IOER. IE.DAA,-~a.,<OEVICE ALREADV ATTAC:ED>
99 .IOER. IE.oUN,-"9.,cDEVICE NorATTACHABL >

10et .IOER, IE,EOF,-10.,<ENO OF FILE DETECTED
101 .IOER. IE.EOV,-11.,cEND OF VOLUME DETECT 0>
102 .IDER. IE,wL~,-12"cWRITE ATTEMPTED TO L CKED UNIT>
103 .IDER. IE.OlO,-13.,cOATA OVERRUN> tzl

~ 104 .IOER. IE.SRE,-14.,cSEND/REtEIVE FAILURE l:t1
105 .IOER. IE.ABO,-15.,<REQUEST TERMI~ATEO> 0

H 106 .ICER. IE.P~I,-16.~<PRIVILEGE VIOLATION> l:t1
I 107 .ICER. IE.RSU,-17.,cSHARABLE RESOURCE IN USE> n
~ 0 108 .IOER. IE.OVR,-18.,<ILLEGAL OVERLAY REQU ST> 0

U!!9 .IOER. IE.6YT,-19.,<ODD 8YTE COUNT (OR V RTUAL ADDRESS» tzl

110 .IOER. IE.BLK,-20,,<LOGICAL 8LOC~ NU~BER TOO LARGE> til

111 .IOER. IE.MOD,-21.,<I~VALID UOC MODULE *
112 .IOER. IE.CON,-22.,cUDC CONNEC1 ERROR>
113 .IOER. IE.8BE,-56.,<8Ao BLOCt< ON OEVICE>
114 .IOER. IE,sn,-58"cNOT E~OUGH SUCK SPAJE (FCS OR FCPl'
115 .IOER. IE.FHE,-59.,cFATAL HARDWARE ERROR ON DEVICE>
116 .IOER. IE.EOT,-62.,<END ~F TAPE DETECTED>
117 .IOER. IE.OFL,-65.,cDEVICE OFF LINE>
118 .IOER. IE.BCC,-6~.,cBLOCI(CHECK, CRC, OR ~RAMING ERROR>
119
120
121
122 , FILE PRIMITIVE COOES
123
124
125 .IOER • IE.NOO,-23.,<CALLER'S NODES EXHAUS~ED>
126 • IOER. IE.DFU,-24"cDEVICE FULL>
127 .ICER. IE.IFU,-25"cINOEX FILE FULL>
128 .IOER. IE.NSF,-26"cNO SUCH FILE>

QIOMAC - QIOSYM MACRO DEFINITIO MACRO M1107 02-NOV-71 19137 PAGE 2-1

12q .IOER. IE.~CK,.27.,cLOCKED FROM READ/WRITE ACCESS~
130 .IOER. IE.~FU,-2e.,cFI~E ~EADER FULL~
111 .IOER. IE.WAC,-29.,CACCESSEO FOR WRITE-
132 .IOER. IE.CKS,-30.,cFILE HEADER CHECKSUM FAI~URE~
133 .IOER. IE.WAT,-31.,CATTRIBUTE CONT~OL LIST FORMAT ERROR~
13". .IOER. IE.RER,-32.,cFI~E PROCESSOR DEVICE READ ERROR~
135 .IOER. IE.WER,-33.,CFILE PROCESSOR DEVICE WqITE ERR~R~
13& .IOER. IE.A~N,·3~'JcFI~E ALR£ADY ACCESSED ON LUN~
137 .IOER. IE.SNC,-35.,cFILE 10, FILE NUMBER C"ECK~
138 .IOER. IE,SQC,-3&"cFILE 10, SEQUENCE NUMBER CHECK~
13q .IOER. IE.NLN,-]1.,cNO FILE ACCESSED ON LUN~
1".0 .IOER. IE.CLO,-3e.,cFILE WAS NOT PROPERLY CLOSED~
141 .IOER. IE.DUP,-S7.,cENlER - DUPLICATE ENTRY IN DIRECTORY~
14£2 .IOER. IE.BVR,-&3.,cBAD VERSION NUMBER~
14£3 .IOER, IE.BHD,-&"..,cBAD FILE HEADER-
1"'" .IOER. IE.EXP,-75.,cFILE EXPIRATION DATE NOT REACHED~
1"5 .IOER. IE.BTF,-7&"cB~D TAPE FORMAf~
1£&& .IOER. IE.ALC,-e"..,cALLOCATION FAILURE~ tzl

1".7 .IOER. IE,ULK,-e5.,cUNLOCK ERROR> ~
148 .IOER. IE.wCK,-S&.,cWRITE CHECK FAILURE- 0

H 1£&q ~

I 150 n
U1 0 151 FILE CONTROL SERVICES CODES ~

152 tzl

1153 til

15". .IOER, IE.N8F,-19"cO~EN • ~O BUFFER SPACE AVAILABLE FOR FILE>
155 .IOER. IE,RBG,-40"cILLEGAL RECORD SIZE~
15& .IOER. IE,NBK,-41"cFILE EXCEEDS SPACE ALLOCATED, NO BLOCKS>
157 .IOER, IE,ILL,-42.,clLLEGAL OPERATION ON FILE DESCRIPTOR B~OCK~
158 .IOER. IE.8TP,-43.,CSAO ~ECORD TYPE~
159 .IOER. lE.RAC,.44.,cI~LEGAL RECORD ACCESS 8ITS SET~
1~0 .IOER. lE.RAT,-4S.,cI~~EGAL RECORD ATTRIBUTES BITS SET~
1&1 .IOER. IE.RCN,-46.,cILLEGAL RECORD NUMBER • TOO LARGE~
1&2 .IOER. IE.20V,-48.,cRENAME - 2 DIFFERENT DEVICES~
1&3 .IOER. IE.FEX,-49"cRENAME - NEW FILE ~AME ALREADY IN USE-
164 .IOER. IE,8D~,-50"cBAD DIRECTORY FILE~
1&5 .IOER. IE.RNM,-51.,cCAN'T RENAME O~D FILE SYSTE~~
1&& .IOER. IE.BOI,-52.,c8AO DIRECTORY SYNTAX~
1&7 .IOER. IE.FOP,-51.,cFILE ALREADY OPEN~
1&8 .IOER. IE.8~M,-54"c8AO FI~E NAME~
l&q .IOER, IE,BDV,-55.,cBAO DEVICE NAME_
170 .IOER, IE,NFI,-&0.,cFILE 10 WAS NOT SPECIFIEO~
171 .IOER. IE.lSQ,-61.,cILLEGA~ SEQUENTIA~ OPERATION~
172 .IOER. If.NNC,-77.,CNOT ANSI '0' FORMAT BYTE COUNT~

H
I

0"1

113
114
175
176
177
178
179
180
181
182
183
184
185

NETWORK ACP CODES

.IOER.

.IOER.

.IOER.

.IOER.

.IOER,
,IOER,
,IOER,
.IOER,
.IOER.

IE.AST,-80.,C~0 AST SPECIFIED IN CONNECT>
IE,NNN,-68"CNO SUCH NODE>
IE.NFW,-69.,CPATH ~OST TO PARTNER> ,THIS CODE
IE,8l8,-70.,c8AD LOGICA~ BUFFER>
IE.TMM,-71.,cTOO ~ANY OUTSTANDING MESSAGES>
IE,NDR,-12"CNO DVNA~IC SPACE AVAILABLE>
IE,CNR,·73"cCO~NECTION REJECTED>
IE,TMO,-74"cTIMEOUT ON REQUEST>
IE,NNl,-78"CNOT A NETWORK lUN>

MUST BE ODD

QIOMAC - QIOSY~ MACRO DEFINITIO MACRO M1107 02-NOV-77 19137 PAGE 2-2

186
187 ICS/ICR ERROR CODES
188
189 ,IOER, IE,NlK,-79.,cTASK NOT lINKED TO S ECIFIED ICS/ICR INTERRUPTS>
190 ,IOER, IE,NST,-80.,cSPECIFIED TASK NOT I STAt.~ED>
191 ,IOER. IE,FlN,-81"cDEVICE OFFLINE WHEN FFlI~E REQUEST WAS ISSUED>
192
193
194
195 TTY ERROR CODES
196
197
198 ,IOER, IE,IES,-82"CINVA~ID ESCAPE SEQUE~CE>
199 ,IOER, IE,PES,-83"cPARTIAl ESCAPE SEQUE CE>
200
201
202
203 , SUCCESSFUL RETURN CODES--·
204
205
206 DEFINS IS,PND,+00, ,OPERATION PENDIN
207 DEFINS IS,SUC,+01, ,OPERATION COMP~EiE' SUCCESS
208 OEFINS IS,ROO,+02, ,(RX11) FLOPPY 01 K SUCCESSFUL COMPLETION
209 ,OF A READ PHYSIC L, ANO OELETED
210 ,DATA MARK WAS SE N IN SECTOR ~EADER

211 , LAST SECTOR,
212 OEFINS IS,8V,+05. ,(AID READ) AT ~E~ST ONE BAD VA~UE
213 ,WAS READ (REMAIN ER MAV BE GOOO),
214 ,BAD CHANNE~ IS r OrCATED BY A
215 ,NEGATIVE VALUE I THE BUFFER,

tzl
~
~
0
~

n
0
~
tzl
til

H
I
-'

21&
217
218
21q
220
221
222
223
224
225
22&
227
228
22q
230
231
232
233
234
235
23&
231
238
23q
240
241
242

TTY SUCCESS CODES

.**.**

OEFINS
DEFINS
DEFINS
DEFINS
OEFINS
OEFINS
DEFINS
DEFINS

IS.CR,C15*400+1~ ,CARRIAGE AETURN WAS TER~INATOR
IS.ESC,c33*400+1~ ,ESCAPE (A~TMODE) WAS TERMINATOR
IS.CC,C3*40~+1~ ,CONTRO~-C WAS TERMINATOR
IS.ESQ,C233*400+1~ ,ESCAPE SEQUENCE WAS TERMINATOR
IS.PES,C200*400+1~ ,PARTIAL ESCAPE SEQUENCE TERMINATOR
I5.EOT,c4*400+1~ ,EOT WAS TERMINATOR (BLOCK MODE INPUT)
IS,TAB,Cl1*400+1~ ,TAB WAS TERMINATOR (FORMS MODE INPUT)
I5.TMO,+2, ,REQUEST TIMED OUT

TME NEXT AVAILABLE ERROR NUMBER lSI -87,
A~L (BUT TWO) ~OWER NUMBERS ARE IN USE"
NOTE. ERROR CODES -41. AND -&1, MAV! BEEN RETIRED AND CAN

BE ASSIGNED AT A LATER DATE,

.IF
.MACRO
.ENDM

EQ,SSMSG
IOERR! A
10ERRS

QIOMAC - QIOSYM MACRO OEFINITIO MACRO M110? a2-NOV-?7 lql3? PAGE 2-3

243
244

.ENDC

.ENDM IOERRS

QIOMAC • QIOSYM MACRO DEFINITIO MACRO M1le? 02-NOV-?7 lql37 PAGE 3

24&
241
248
24q
250
251
252
253

DEFINE THE DIRECTIVE ERROR CODES RETURNED IN THE DIRECTIVE STATUS WORD

FILE CONTROL SERVICES C'CS) RETURNS THESE CODES IN THE BYTE F,ERR
OF THE FILE DESCRIPTOR BLOCK (FOB), TO DISTINGUISH TMEM FROM TME
OVERLAPPING CODES FROM HANDLER AND FILE PRIMITIVES, THE BYTE
F,ERR+1 IN THE FOB WI~L BE NEGATIVE FOR A DIRECTIVE ERROR CODE.

tzl
~

~
~

n
o o
tzl
til

254 ,"4ACRO ORERRS SSSGBL
255 ,MCALL ,QIOE"OEFINS
256 .IF IDN,<SSSGBL>,<OEFSG>
257 ",GBL-l
258 ,IFF
259 , •• GBL-"
260 .ENDC
261 ,IIF NDF,SSMSG,SSMSG.0
262
263 STANDARD ERROR CODES RETURNED 8Y DIRECTIVES IN fHE DIRECTIVE STATUS WORD
264
265 ,QIOE, IE.UPN,-01.,<INSUFFICIENT DYNAMIC STORAGE>
266 .QIOE, IE.INS,-02.,cSPECIFIED TASK NOT I STALLED>
267 ,QIOE, IE,PTS,-03.,<PARTITION TOO SMALL OR TASK>
268 ,GlIOE, IE.UNS,-04.,cINSUFFICIENT DYNAMIC STORAGE FOR SEND>
269 ,GlIOE. IE,ULN,-05.,<UN.ASSIGNEO LUN>
270 ,GlIOE. IE.HwR,-06.,<OEVICE ~ANOLER NOT R
271 ,QIOE. IE.ACT,-01.,cTASK NOT ACTIVE>
272 ,GlIOE. IE.ITS,-08"cDIRECTIVE INCONSISTE T WITH TASK STATE>
273 .QIOE, IE.FIX,-"9.,<TASK ALREADY FIXED/U FIXED>

trl 274 ,GlIOE. IE.CKP,-10.,<ISSUING TASK NOT CHE KPOINTABLE> ~
275 .tHOE. IE.TCH,-11.,cTASK IS CHECKPOINTAS E> ~

276 .GlIOE. IE.RBS,-15"cRECEIVE BUFFER IS TO SMALL> 0
H 277 ,GlIOE, IE.PRI,-16"cPRIVILEGE VIOLATION> ~
I

(Xl 278 .QIOE. IE.RSU,-17.,cRESOURCE IN USE> (')
0 27q ,GlIOE, IE,NSW,-18"cNO SWAP SPACE AVAILA LE> c::;,

280 ,GlIOE, IE.ILV,-19"cILLEGAL VECTOR SPECI lEO> trl

281
rn

282
283
284 ,GlIDE, IE.AST.-S0 •• cDIRECTIVE ISSUEO/NOTiISSUED ~ROM AST.
285 ,GlIOE, IE,MAP,-el.,cILLEGAL MAPPING SPEC FlED>
286 ,GlIOE. IE.IOP,·83.,CWI~DOW HAS 1/0 IN PR GRESS>
287 .GlIOE. IE,ALG,-84.,CALIGNMENT ERROR>
288 ,GlIDE, IE.WOV,-85.,<AODRESS WINDOW ALLOC4TION OVERFLOW>
2e9 ,GlIDE. IE.NVR,-86"CINVALID REGION 10>
290 ,GlIDE, IE.NVW,-87.,<INVALID ADDRESS WIND
291 .GlIOE, IE.ITP,-88.,CINVALIO TI PARAMETER
292 .GlIOE, IE,I8S,-eq,,<INVALID SEND BUFFER ~IZE (,GT. 255,»
2q3 ,GlIDE, IE.LNL,-90"CLUN LOCKED IN USE>
294 .GlIOE, IE.IUI,-91.,CINVALID UIC>
295 ,QIOE. IE.IDU,-92.,<INVALID DEVICE OR UN
296 • GlIOE, IE.ITI.-93 •• cINVALID TIME PARAMETlR~ •
297 • GlIOE. IE.PNS.-94.,cPARTITION/REGION NOT IN SYSTEM •
2q8 ,GlIOE, IE,IPR,-95.,<INVALID PRIORITY (• T. 250.»
299 .GlIOE, IE.ILU,-Q6.,cINVALIO LUN>
300 .GlIOE. IE,I!F,-Q1.,cINVALIO EVENT FLAG (.GT. 64,»
301 .(IlIOE. IE,ADP,-9a,,<PART OF DPe OUT OF U ER-S SPACE>
302 ,GlIDE, IE,SOP,-QQ.,cDIC OR 01'8 SIZE !NVA 10>

H
I

\.D

QIOMAC • QIOSYM MACRO DEFINITIO M~CRO M1107 02-NOV-77 19137 PAGE 3-1

303
304 SUCCESS CODES FROM DIRECTIVES - PLACED IN THE DIRECTIVE STATUS WORD
305
306 DEFINS IS.CLR,e ,EVENT FLAG WAS CLEAR
307 ,FROM CLEAR EVENT FLAG DIRECTIVE
308 DEFINS IS.SET,2 ,EVENT FLAG WAS SfT
309 ,FRO~ SET EVENT FLAG DIRECTIVE
310 DEFINS IS.SPD,2 ,TASK WAS SUSPENDED
311
312
313 .IF EQ,SSMSG
314 • MACRO DRERRS A
315 ,ENOM DRERRS
31& ,ENDC
317 ,ENOM DRERRS

QIOMAC • QIOSYM MACRO OEFINITIO MACRO Mll01 02-NOV-11 19131 PAGE 4

319
320
321
322
323
324
325
32b
327
328
329
330
331
332
333
334
335
33b
337
338
339
340
341
342

DEFINE THE GENERAL 1/0 FUNCTION CODES • DEVICE INDEPENDENT

.MACRO FILIOS SSIGBL

.MCALL .WORD.,DEFINS

.IF IDN,CSSSGBL>,cDEFSG>
••• GBL-l
.IFF
.,.GBL-0
,ENDC

GENERAL 1/0 QUALIFIER ByTE DEFINITIONS

.WORD.
,WORD.
.wORD.
.WORD.

IQ.X,QHH,000
IQ.Q,002,000
IQ.S,004,000
IQ.UMD,004,000

EXPRESS QUEUE COMMANDS

.WORD.

.WORD.

.WORD.

IO.KIL,012,000
10.RDN,022,000
IO.UNL,042,000

,NO ERROR RECOVERy
,QUEUE REQUEST IN EXPRESS QUEUE
,SYNONYM FOR IQ.UMD
,USER MODE DIAGNOSTIC STATUS REQUIRED

,KILL CURRENT REQUEST
,1/0 RUNDOWN
,UNLOAD 110 HANDLER TASK

tEl

~
" n
9
tI:I en

H
I

......
0

31J3 .WORD. IO.LTI(,05e,000
344 .WORD. IO.RTI(,060,000
345 .WORD. IO.SET,030,000
31J~

347 GENERAL DEVICE HANDLER CODES
3IJS
3IJq .WORD. IO,WLB,000,001
350 .WORD. IO.RLB, QlI2II2I, 12102
351 ,wORD. IO.LOV,12I1121,002
352 ,IIIORD. IO.4TT,eI2l0,01213
353 ,WORD. IO.DET,000,001J
354
355 , DIRECTORy PRIMITIVE CODES
35~
357 .wORD. IO.FNA,000,011
358 .WORD. IO.RNA,000,013
35fi .~ORD. IO.ENA,000,12I14
3~0
361 r FILE PRlMITIVE CODES
362
3~3 .wORD. IO,CLN,000,12I07
3~4 .WORD, IO,ULK,12I0e,012
1~5 .wORD. IO.ACR,e00,eI5
lb6 .WORD, IO.ACW,000,eI6
367 .WORD. IO.ACE,0I21e,017
168 .wORD. IO.DAC,000,020
lbq .WORD, IO.RVB,000,021
37121 • WORD. IO.WVB,12I00,022
371 .wORD. IO,EXT,000,023
372 ,WORD, IO,CRE,000,12I24
373 .WORD. IO,DEL,00121,025
374 .wORD. IO.IUT,00121,02b
375 .WORD. IO,WAT,000,027

QIOMAC - QIOSYM MACRO DEFINITIO MACRO M111217 e2-NOV-77 lql37 PAGE 4-1

376
377
378
37fi
38121
381
382

.WORD.

.wORD.

.MACRO

.ENOM

.ENDM

IO.APV,010,030
IO.4PC,000,030

FILIOS A
FILIOS
FILIO!

,L040 A TASK IMA~E FILE
,RECORD A TASK I~AGE FILE
.SET CHARACTER IS ICS FU~CTION

,wRITE LOGICAL BtOCK
,READ LOGICAL BL CK
,LOAD OVERLAY (0 SK DRIVER)
,ATTACH A DEVICE TO A TASK
,DETACH A DEVICE FROM A TASK

,FIND FILE NAME ~N DIRECTORY
,REMOVE FILE NAM FROM DIRECTORY
rENTER FILE NAME IN DIRECTORY

,CLOSE OUT LUN
,UNLOCI(BLOCK
,ACCESS FOR READ
,ACCESS FOR WRITE
,ACCESS FOR EXTEND
,DE-ACCESS FILE
,READ VIRITUAL BL CK
,WRITE VIRITUAL 8 OCI(
,EXTEND FILE
,CREATE FILE
,DELETE FILE
,READ FILE ATTRIB~TES
,WRITE FILE ATTRI UTES

,PRIVILEGED ACP CQNTROL
,ACP CONTROL

til
~
~
0
~

n
0
~
til
til

QIOMAC • QIOSVM MACRO DEFINITIO MACRO Mlle7 02-NOV.11 1 •• 31 PAGE 5

38U
385 DEFINE TME 1/0 FUNCTION CODES TMAT ARE SPECIFIC TO INDIVIDUA~ DEVICES
38&
387 .MACRO SPCIOS SSSGB~
388 .MCA~~ .WORD.,DEFINS
3eq .IF IDN,cSSSGB~>,cDEFSG>
3q0 ••• GB~.l
lql .IFF
3q2 ••• GB~.0
3ql .ENDC
3q4
3q5 1/0 FUNCTION CODES FOR SPECIFIC DEVICE DEPENDENT FUNCTIONS
lq6
3q7 .WORD. IO.IfIII.V,100,001 ,(DECTAPE) wRITE 1.0GICAI. REVERSE
3q8 .WO~D. 10.WI.S,e10,e01 ,(COMM.) WRITE PRECEDED BY SYNC TRAIN
3qq .wORD. IO.W~S,02e,001 ,(COMM.) WRITE, NO SY~C TRAIN
400 .WORD. 10.WAI.,010,e01 ,(TTY) WRITE PASSING AI.~ CHARACTERS
401 .WORO. IO.WMS,02e,001 ,(TTY) WRITE SUPPRESSIB~E MESSAGE trl

~
402 • WORD. IO.CCO,0U0,0el ,(TTY) WRITE WITM CANCEl. CONTROI.-O ~

H 403 .WORD. Io.weT,HJe,001 ,(TTY) WRITE WITM BREAKTMROUGH 0
I U0U .WORO. IO.i11I.T,ele,001 ,(DISK) WRITE I.AST TRACK ON RK06

l:II:I
I-' 405 .WORD. IO,WI.C,e20,001 ,(DISK) WRITE ~OGICA~ WI wRITECMECK n
I-' 0 406 .WORD, IO.wPB,0U0,0el ,(RXll DISK) WRITE PHYSICA~ BLOCK ~

U07 .WORD. IO,wDo,eUU,eel ,(RX11 DISK) WRITE PHYSICA~ W/ DEI.ETED DATA til

408 .WORD. IO.RI.V,100,ee2 ,(MAGTAPE,DECTAPE) READ REVERSE
til

40q .WORD. IO.RST,001,002 ,(TTY) READ WITH SPECIA~ TERMINATOR
410 .WORO, IO.RA~,010,00l ,(TTY) READ PASSING .~L CMARACTERS
411 ,WORD. IO,RNE,02e,0e2 ,(TTY) READ WITHOUT ECHO
412 .WORD, IO,RNc,eU0,0e2 ,(TTY) READ - NO 1.0WER CASE CONVERT
413 .WORD • IO.RTM,200,0el ,(TTY) READ WITH TIM! OUT
"lU • WORD. IO,RDB,200,0e2 ,(CARD READER) READ BINARY MODE
415 .WORD. IO,RIoID,010,0e2 ,(COMM.) READ, STRIP SYNC
"1& .WORD. 10,RIIIS,e20,0e2 ,(COMM.) READ, DON'T STRIP SYNC
U17 .WORD, IO.CRC,e40,0e2 ,(CO~M,) READ, DON'T C~EAR CRC
U18 .wORD, IO,RPB,04e,0e2 ,(RXll DISK) READ PHYSICA~ BI.OCK
41q .WORD, IO.ATA,e10,ee3 ,(TTV) ATTACH WITH AST'S
4221 .WORD. IO,GTS,eee,e05 ,(TTV) GET TERMINAl. SUPPORT CHARACTERISTICS
421 .wORD, IO.Rlc,ee0,0e5 ,(AFC,AD01,UDC) READ SINGLE CHANNEl.
422 ,WORD, IO.INI.,e00,005 ,(COMM.) INITIA~IZATION FUNCTION
~i3 ,WORD, 10.TRM,010,0e5 ,(CO~~.) TERMINATION FUNCTION
~2U ,WORD, IO.RWD,000,005 ,(MAGTAPE,DECTAPE) REWIND
425 ,WORD. IO,SP8,e20,005 ,(MAGTAPE) SPACE "N" BLOCKS
42& .WORD. IO,SPF,040,e05 '(~AGTAPE) SPACE "N" EOF MARKS
427 • wORD, IO,STC,100,!lI05 ,(MAGTAPE) SET CHARACTERISTIC
428 .WORD, IO,SEC,120,005 ,(MAGTAPE) SENSE CHARACTERISTIC

H
I

I-'
N

U29
430
431
u32
433
U34
435
U36
U37
u38
u39
U40

,wORD,
,WORD,
,WORD,
,WORD,
,WORD,
.wORD,
,WORD,
,WORD,
.WORD,
,WORD,
, WORD,
.wORD,

IO,RWU,140,00S
IO.SMO,160,005
IO,HNG,000,006
10,ReC,000,006
IO,MOD,000,006
IO,HDX,0UI,006
IO,FDX,020,006
IO,5YN,040,006
IO,EOF,000,006
IO,RTC,000,007
IO,5AO,000,010
rO,ssO,""",011

QIOMAC • QIOSYM MACRO DEFINITIO MACRO M1107 02-NOY-77 19137 PAGE 5-1

4Ul
442
4u3
44U
UIl5
446
447
448
449
450
U5!
452
4S3
454
455
u56
457
458
459
460
U61
462
463
464
465
466
467
468
u69
470

,WORD,
, WORD,
,WORD,
,WORD,
, WORD,
,WORD,
,WORD,
.WORD,
,WORD,
,WORD,
,WORD,
,WORD,
,WORD.
,WORD,
.WORD,
,WORD.
,WORD.
,WORD.
.wORD.
,~ORD,
,WORD,
,WORD,
.WORD.
.WORD,
,WORD.

• WORD,
.WORD.
.WORD.
.WORD.

IO,RPR,000,011
10. MSO, rlH~0,012
IO,SlO,00e,01]
IO.MlO,000,014
lO.LED,000,el24
10,500,000,025
10.501,000,026
10.SCS,000,026
IO,REl,000,0Z7
10.~CS,000,027
IO.ADS,000,030
10. CCI, 00i., 030
IO.LOD,e00,030
10."101,000,031
IO,DCI,000,031
IO.XMT,000,031
IO,XNA,010,031
IO.INI,000,031
10. "HS, 000, 'HZ
IO.RCI,000,032
IO.RCV,000,032
IO,Cll<,000,032
IO.MOO,000,033
IO.CTI,000,033
IO.CON,000,033

IO,CPR,010,033
10.CAS,020,033
10.CRJ,040,033
IO,ceO,110,033

,(MAGTAPE,DECTAP
,(MAGTAPE) MOUNT
,(TTY) HANGUP 01
,READ MULTICMANN
.(COMM.) SETMODE
,(COMM,) SET UNI
,(COM~.) SET UNI
,CCO~M,) SPECIFY
,(MAGTAPE) WRITE
,READ CHANNEL -
,Cuec) SINGLE CH
,(UDC) SINGLE 8M

) REWIND AND UNLOAD
& SET CHARACTERISTICS
L-UP LINE
L5 (BUFFER DEFINES CHANNELS)
FUNCTION FAMILY

HALF DUPLEX
FULL DUPLEX

SYNC CHARACTER
EOF
IME BASED
NNEL ANALOG OUTPUT
T, SINGLE POINT

,(TTY) READ WITH ROMPT
,CUDC) SINGLE SHO , MULTI-POINT
,CUDC) LATCHING, INGLE POINT
,(UDC) LATCHING, ULTI-POINT
,CLPS11) WRITE LE DISPLAY LIGHTS
,CLPS11) WRITE 01 ITAL OUTPUT REGISTER
,ClPS11) READ DIG TAL INPUT REGISTER
,CUDC) CONTACT Sf SE, SINGLE POINT
,(LPS11) WRITE RE AY
,(UDC) CONTACT SE SE, MULTI-POINT
,(LPSll) SYNCHRON US AID SAMPLING
,(UDC) CONTACT IN - CONNECT
,(LPA11) LOAD MIC OCODE
,ClPS11) SYNCHRON US DIGITAL INPUT
,tUDe) CONTACT IN - DISCONNECT
,(COMMa) TRANSMIT SPECIFIED BLOCK WITH ACI<
,(COM~.) TRANSMIT WITHOUT ACK
,(LPAll) INITIALI E
,(lPSll) 5YNCHRON US HISTOGRAM SAMPLING
,(UDC) CONTACT IN - READ
,CCOMM') RECEIYE ATA IN BUFFER SPECIFIED
,(lPAll) START CL CK
,(LPS11) SVNCHRON US DIGITAL OUTPUT
,tUDC) TIMER - CO NECT
,(CO~M.) CONNECT FUNCTION
,CYTll) • CONNECT TASK TO DISPLAY PROCESSOR
,(COM.M,) CONNECT NO TIMEOUTS
,(COMMa) CONNECT WITH AST
,CCOMM.) CONNECT R JEeT
,(COM~.) BOOT CONN CT

tZJ

~
~
n g
tZJ
CIl

H
I

I-'
w

"'71 .wO~D, 10.CTR,21B,033
1J12 ,WORD. to, GNI, 0 Uh 035
1J73 .WORO. 10,GI.I,Q120,Q135
474 .WORO. IO,GI.C,030,035
l.I75 .IIIORD. IO.GRI,040,035
Ll76 , WORD, IO,G~C,050,035
l.I77 .WOAD, IO,GRN,060,035
Ll78 ,WORD, IO,C8M,07Q1,035
47q ,WORD, IO.CIN,1O'0,035
LlS0 , WORD, IO,SPW,11f1"035
4S1 • wORD. IO,CPW,12Q1,~35
482 ,WORD. IO.~I.B,130,035
4S3 .WORD. IO.DI.B,14'''035
484
Ll85 .wORD, 10.8TO,000,033
a86 .WORD, IO.OTl,000,034
1J87 .WOAD, IO,DIS,000,034
aS8
LlSq ,WORD, IO.MDA,000,034
",q0 , WORD, IO,RTI,000,035
l.Iql .WOAD, IO.CTI.,000,035
aq2 ,WORD. IO.STP,000,035
IJq3
IJq4 .WORD. IO.CNT,000,016
IJq5 .WORD, IO.ITI,000,03&

GIOMAC - QIOSYM MACRO DEFINITIO MACRO M1107 02-NOV-77 lql31 PAGE 6

4q1
l.aQ8
LI~q

500
501
502
503
504
505
506
507
508
5eq
510
511
512
513

ICSIICR 1/0 FUNCTIONS

.WORD.
,WORD.
,WORD.
,WOAD.
,wORD,
,WORD,
,WORD,
.WORD.
,WORD.
,WORD,
,WOAD,
.WORD.
,W'ORD.
, WORD,

IO.CTY,000,001
IO.DTY,00121,015
10.1.01,OOO,01&
IO.UDI,010,023
IO,I.TI,12I00,011
IO.UTI,02Q1,023
IO,I.TY,000,020
IO.UTY,030,Q123
IO.I.KE,000,024
IO,UER,040,023
IO.NI.K,0Q10,023
IO,ONI.,000,037
IO.FI.N,000,02S
IO,RAD,000,021

,(COMM.) TRANSPARENT CONNECT
,(COMM.) GET NODE INFORMATION
,(COMM.) GET I.INK IN'ORMATION
,(COMM.) GET I.INK INFO CI.EAR COUNTER8
,(COMM.) GET REMOTE NODE IN'ORMATION
,(COMM.) GET REMOTE NODE ERROR COUNTS
,(COMM.) GET REMOTE NODE NAME
,(COMM.) CHANGE 801.0 MODE
,(COMM.) CHANGE CONNECTION INHIBIT
,(COMM.) SPECIFY NETWORK PASSWORD
,(COMM.) CHECK NETWORK PASSWORD •
,(COMM.) N8P I.OOPBACK
,(COMM.) DOCMP I.OOPBACK

,(I.PA11) START DATA TRANSFER
,(UDC) TIMER • DISCONNECT
,(COMM.) DISCONNECT FUNCTION
,(VT11) • DISCONNECT TASK 'ROM DISPI.AY PROCESSOR
,(I.PSll) SYNCHRONOUS DIA OUTPUT
,(UDC) TIMER • READ
,(COMM,) NETWORK CONTROl. FUNCTION
,(I.PS11,I.PAll) STOP IN PROGRESS FUNCTION
,CVT11) • STOP DISPI.AY PROCESSOR
,(VTll) • CONTINUE DISPI.AY PROCESSOR
,(UDC) TIMER -INITIAI.IZE

,CONNECT TO TERMINAl. INTERRUPTS
,DISCONNECT FROM TERMINAl. INTERRUPTS
,I.INK TO DIGITAl. INTERRUPTS
,UNI.INK 'ROM DIGITAl. INTERRUPTS
,I.INK TO COUNTER MODUI.E INTERRUPTS
,UNLINK FROM COUNTER MODUI.E INTERRUPTS
,I.INK TO REMOTE TERMINAl. INTERRUPTS
,UNI.INK FROM REMOTE TERMINAl. INTERRUPTS
,I.INK TO ERROR INTERRUPTS
,UNI.INK FROM ERROR INTERRUPTS
,UNI.INK FROM AI.l. INTERRUPTS
,UNIT ONI.INE
,UNIT OFFI.INE
,~EAD ACTIVATING DATA

til
!XI
!XI
0
!XI

n
0
~
til
til

H
I

I-'
~

514
515
516
517
518
51q
520
521
522
523
524
525
526
527
528
52q
530
531

IPll 1/0 FUNCTIONS

,WORD,
,WORD,
,WORD,
, wORD,
,wORD,
,wORD,
.WORD,
,wORD,
.wORD,

.MACRO
,!NDM
.ENDM

10,"140,010,007
IO.lEI,e10,017
10,ROO,010,020
IO,R~T,02QJ,020

IO,lSI,000,022
IO,UEI,050,023
IO.USI,060,023
IO.CSI,000,026
IO.OSI,000,027

SPCIOS
SPCIOS
SPCIO!

•

,MULTIPLE ANALOG
,LINK EVENT FLAG
,READ DIGITAL DA
,READ MAPPING TA
,LINK TO OSI INT
,UNLINK EVENT Fl
,UNLINK FROM DSI
,CONNECT TO DSI
,DISCONNECT FROM

OUTPUTS
TO INTERRUPT

A
LE
RRUPTS
GS
INTERRUPTS
NTERRUPTS
DSI INTERRUPTS

QIOMAC • QIOSYM MACRO DEFINITIO MACRO Ml107 02-NOV-77 19.37 PAGE 7

533
534
535
536
537
538
53q
540
541
542
543
544
545
546
547
548
54q
550
551
552
553
554
555

DEFINE THE 1/0 CODES FOR USER-MODE OIAGNOSITCS,I All DIAGNOSTIC
FUNCTION ARE IMPLEMENTED AS A SUBFUNCTION OF 1/0 CODE 10 (OCTAL),

.. , GBL-1

,MACRO
.MCALL
,IF ION

.IFF
",GBL-"

.ENDC

UMDIOS SSSGBL
,WORO"DfFINS
CSSSGBl>,cDEFSG>

DEFINE THE GENERAL USER-MODE 1/0 QUALIFIER BIT.

.WORD. IQ,UMD,004,000 ,USER MODE DIAGNO$TIC REQUEST

DEFINE USER-MODE DIAGNOSTIC FUNCTIONS,

til
~
~
o
~

n o
~
til
en

H
I

I--'
U1

55&
557
558
559
5b0
5&1
5&2
5b3
5&"
5&5
5b&
5b7
5&8
5b9
570
571
572
573
574
575

.IlIORD. IO.HMS,000,010
• \II OR D. 10.81.5,010,010
,IlIORD. IO.OFF,020,010
.~ORD. IO.ROH,030"H0
.WORO. IO.wOH,040,01~
.WORD. IO.IIlCK,051l1,010
.wORD. IO.RNF,0&0,01e
• W OR D. IO.RNR,071l1,010
.1lI0RD. IO.I.PC,100,010
.wORD. IO,ERS,110,01e

, MACRO REDEFINITION TO NULL

.MACRO UMDIOS • .ENDM

.ENDM UMDIOS

,(DISK) HOME SEEK OR R!CALIBRATE
,(DISK) BI.OCK SEEK
,(DISK) OFFSET POSITION
,(DISK) REAO DISK HEADER
,(DISK) WRITE DISK HEADER
,(DISK) wRITECHECK C~ON.TRANSFER)
,(DECTAPE) READ BLOCK NUMBER FORWARD
,(DECTAPE) READ BLOCK NUMBER REVERSE
,(MAGTAPE) READ LO~GITUDIN.L PARITY CHAR
,(MAGTAPE) ERASE TAPE

QIOMAC - QIOSYM MACRO DEFINITIO MACRO M1107 02-NOV-77 19137 PAGE 8

577
578
579
580
58"1
582
583
584
585
58&
587
588
589
590
591
592
Sen
59"
59'5
59&
597

HANDLER ERROR CODES RETURNED IN 1/0 STATUS "BLOCK ~RE DEFINED THROUGH THIS
MACRO WHICH THEN CONDITIONALLY INVOKES THE MESSAGE GENERATING MACRO
FOR THE QIOSVM.MSG FII.E

.MACRO
DEFINS
.IF
• MCAI.I.
.IOMG,
.ENDC
.ENOM

.IOER. SYM,I.O,MSG
SYM,I.O
GT,SSMSG
.IOMG.
SVM,I.O,cMSG>

.IOER.

1/0 ERROR CODES ARE DEFINED THOUGH THIS MACRO WHICH THEN INVOKES THE
ERROR MESSAGE GENERATING MACRO, ERROR CODES -129 THROUGH -25&
ARE USED IN THE QIOSYM.MSG FILE

.MACRO
DEFINS
.IF
,MCAI.L

.QIOE. SYM,LO,MSG
SVM,I.O
GT,SSMSG
.IOMG.

tzl
~

~
~

n
o o
til
til

H
I

......
m

598
599
600
601
602
603
6~"
605
606
607
60e
609
610
611
612
b13
61"
blS

QIOSYM MACRO M1107

1
2
3

" 5
6
7
e
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

02-NOV-77 19137

.10MG. SYM,<LO·128.~,<MSG>

.ENDC

.ENDM .QIOE.

CONDITIONAllY GENERATE DATA 'OR WRITING A MESSA~E 'IL£

.MACRO
• WORD
.'SCIZ
.EVEN
.11'
.ENDM

.IOMG. SYM,LO,MSG
·-O<LO>
-MSG-

IT,·O<SSSMAX+<LO>>,SSSMAX.··O<LO>
.IOMG.

DEFINE THE SyMBOL SYM WHERE LO IS IS THE LOW ORQER ByTE, HI IS THE HIGH BYTE

PAGE 9

.MACRO
DEFINS
.ENDM

.WORD. SYM,LO,HI
SYM,<·oc~I*400+LO»
,WORD,

.TITLE QIOSYM

ALTERED FRIDAY 3-SEP.76 12110
ALTERED SUNDAY 12-SEP·76 17120 H. LEV

COPYRIGHT ec) 1976
DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS,

THIS SOFTWARE IS FURNISHED UNDER A LICENSE FOR U
SINGLE COMPUTER SYSTEM AND MAY BE COPIED ONL
INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS S
ANY OTHER COPIES THEREOF, MAY NOT BE PROVIDED 0
MADE AV~IL.eLE TO ANY OTHER PERSON EXCEPT FOR
SYSTEM AND TO ONE wHO AGREES TO THESE LICENSE T
TO AND OWNERSHIP OF THE SOFTWARE SHALL AT ALL T
IN DEC.

THE INFORMATION IN THIS DOCUMENT IS SUBJECT TO
NOTICE AND SHOULD NOT BE CONSTRUED AS
EQUIPMENT CORPORATION,

E ONLY ON A
it4ITH THE

FTJ/ARE, OR
OTHERWISE

USE ON SUCH
RfI4S. TITLE
MES REMAIN

,ANGE WITHOUT
T BY DIGITAL

DEC .SSU~ES NO RESPONSIBILITY FOR THE USE OR RELlABILITY OF
ITS SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED &V DEC.

t%J

~
~

()
o
~
til

25
2& , PETER H. LIP~AN t-OCT-13
27
28
2q .MCALL QIOSYS
30 00~000 GIOSY$ DEFSG ,DEFINE GIO SYMBOLS GLOBALLY
31
32 .MCALL UMDIOS
33 000000 U~DIO$ DEFSG ,DEFINE USER-MODE DIAGNOSTIC SYMBOLS
34
35 ,MCALL TTSY"'!
3f, 000000 TTSYM$ DEFtG ,DEFINE TERMINAL FUNCTION SYMBOLS
37
38 000001 .END

QIOSYM MACRO ~1101 02-NOV-11 19137 PAGE 9-1
SYMBOL TASLE

Fl.ACR. 000001 G IE.EOV. 171765 G IE.RCN. 171122 G 10.OET. 112iHIJI G 10.Roa. 881211 , txJ

Fl.BTW. 000002 G. IE.EXP. 171~65 G IE.RER. 177740 G IO.OIS. 11&111 r; 10.ROO. 011118 r; ~ Fl,BUF._~00004 G IE,FEX. 177717 G IE.RNM. 117115 G 10.0La. 11&541 G IO.ROM. 114131 G
H Fl,CCO. 000020 G IE.FHE. 177105 G IE.RSU. 171757 Ii 10.OSI. 113411 Ii 10.RON. 111122 G ~
I Fl,ESQ. 01'40040 G IE.FIX. 1777&7 G IE.SOP. 171&35 G 10.OTl. 81&1111 G IO.REL. 113411 G () I-'

....,J F 1.+4LO. 000100. G IE.FLN. 117&51 G IE.SNC. 171735 G IO.OTV. SS&4IS G 10.RHO. SSlS1S ; 0
0 F1,LwC. 00S200 G IE. FOP. 171711 G IE.SPC. 177772 G IO.ENA. IS&III G 10.RLB. 111SI1 G txJ

Fl.RNE- 0001.400 G IE.HFU. 17771.44 G IE.SGC. 177714 G IO.EO'. 113111 G 10. RLV. 1111·81 G til

Fl.RPR. 001000 G IE.HWR. 177772 G IE.SRE. 1177&2 G IO.ERS. 01411S G 10.RMT. 111121 G
F1.RST. 002000 G IE,Ies- 177&47 G IE.STl<a 17778& G IO,EXT. 111401 G IO.RNA. 115411 G
Fl,Rue- 004000 G IE.IOU. 177~44 G IE.TCH. 1717&5 G IO.FDX. IIlS2e G IO.RNe. 181041 G
Ft.SYN. 010010 G IE.IEF. 171&17 G IE,TMM. 111&71 G 10.FLN. 112411 G IO.RNE. 111021 G
Ft.TRW. 020080 G IE.IES. 171&5& G IE.TMO. 171&&& G IO.fI'NA. 014411 G 10.RNF. 184111&8 G
F1.UIA. 000010 G IE,IFC. 11771& G l!.ULI(. 177&51 G IO.GLC. 11&431 G IO,RNR. IS411171 G
Fl,UTB. 040000 G IE,IFUa 177147 G IE.ULNa 177713 G 10.GLl. 11&42111 G 10.RNSa 111121 G
Fl.VBFa 100000 G IE.ILLa 11772& G IE.UNS. 177174 G 10.GNI. 01&41QJ G IO,RPea IS1111"0 Ii
F2.ALTa 000020 G IE.ILUa 177&40 G IE.UPN. 171171 Ii IO.GRC. 01&450 Ii 10.RPRa 104410 G
F2.0CH- 000004 G IE.ILV. 171155 G IE.VERa 111774 G IO.GRI. 01&440 G IO.RSTa 0010S1 G
F2.01(La 000010 G IE.INS. 177776 G IE.WAt. 177743 G IO.GRHa 11&4&0 G 10.RTCa 001400 G
F2.GCH. 000002 G IE.IOPa 177&55 G IE.WATa 171741 G 10.GT8. 002410 G 10.RTI. 01&400 G
F2,SCHa 000001 G IE.IPRa 177&41 G IE.WCl(a 117&52 G IO.MOX. IS301e Ii IO.RTK. 0000&S G
F2.SFF. 000040 G IE.ISQa 177703 G IE.WER. 177137 G 10.HIS. rU5101 Ii 10,RTMa SS12S0 Ii
IE._BO. 177761 G IE,ITIa 117643 G IE.WLI(. 1717&4 G IO.HHSa 0134081 G IO.Rve. IU)Q00 G
IE.ACTa 177771 G IE.ITP. 177&50 G IE.WOVa 177&51 G IO.HNG. 003SSS G IO.RWOa 002400 G
IE.AOPa 17763& G IE.ITSa 177170 G IE.20Va 177720 G 10.INI. 014400 Ii IO.RWU. 002540 G
IE.ALC- 177&54 G IE.IUIa 177645 G IO.ACEa 001410 G IO.INL. 102400 Ii 10.R1C. 802400 G
IE.ALG. 177&54 G IE,LCl(a 177745 G IO.ACRa 00&4130 G IO.ITI. 011000 G 10.SAOa 104000 G
IE,ALNa 117736 G IE.LNLa 117646 G IO.ACW. 001000 G IO.KIL. 000012 G lo.ses. 013000 G

IE.AST. 177660 G IE.MAP. 177657 G IO.AOS. 014000 G IO.LOI. 007000 G IO.SOI. 013000 G
IE,BAO. 177777 G IE.MOO. 177753 G IO.APC. 014000 G 10.LEO. 012000 G IO.SOO. 012400 G
IE.BBE. 177710 G IE,NBF. 177731 G IO.APV. 014010 G IO,LEI. 007410 G IO,8EC. 002520 G
IE,BCC. 177676 G IE.N8K. 177727 G IO.ATA. 001410 G IO.LKEa 01200" G IO.SET. 000030 G
lE.B01. 177714 G IE.NOR. 177670 G IO.ATT. 001400 G IO,LOO. 014000 G IO,SLO. 005400 G
IE,BOR. 177716 G IE.NFI. 177704 G IO,BLS. 004010 G IO.LOV. 001010 G IO,SMO. 002560 G
IE,BOV. 177711 G IE,NFWa 177673 G IO.C4'. 015420 G IO.LPCa 004100 G IO.SPB. 002420 G
IE,BHO. 17770" G IE,NLK. 177661 G IO,CeO. 015510 G IO,LSI. 011000 G IO.SP~a 002440 G
IE.BL8. 177672 G IE.NLN. 177733 G IO.CCI. 01400" G IO.LTIa 00740" G IO.8Pw. 016510 G
IE.BLK. 177754 G IE.NNC. 177663 G IO.CCO. 000440 G IO.LTKa 000"5" G IO.S80. 0044"0 G
IE.BNM. 177712 G IE.NNL. 177662 G IO.CIN. 016500 G IO.LTV. 010000 G IO.STC. 002500 G
IE.8TF. 177664 G IE.NNN. 177674 G IO.CLK. 01500" G IO.MAOa 0"3410 G IO.STO. 015400 G
IE.8TP. 177725 G IE.NOO. 177751 G IO.CLN. "03400 G 10. MCSa fIl134"" G IO.STPa 016400 G
IE.BVR. 177701 G IE.NS~a 177746 G IO.CNT. 017000 G IO.MOAa 016000 G IO.SVN. 0~304" G
IE,8VT. 177755 G IE.NST. 177660 G IO.CONa rU5400 G IO.MOla IU440" G IO.TRM. 002410 G
IE.CKP. 177766 G IE.NSW. 177756 G IO.CPR. 015410 G 10.1'400. 015400 G IO.UOI. 011410 G
IE.CKS. 177742 G IE.NVR. 177652 G IO.CPW. 016520 G IO.MLO. 006000 G IO.UEI. 011450 G
IE.CLO. 177732 G IE,NVw. 177651 G IO.CRC. 001040 G 10.1'400. 003000 G IO,UER. 011440 G
IE,CNR. 177667 G IE,OFL. 177677 G IO,CR!. 012000 G IO,MSO. 005000 G IO,ULK. 0050"0 G
IE,CON. 177152 G IE,ONP. 177773 G IO.CRJ. 015440 G 10, NLB. IU6530 G IO,UNL. 000042 G

t:EJ IE.04A. 177770 G IE.OVR. 177756 G IO.CSI. 013000 G IO.NLKa 011400 G IO.USI. 011460 G
~ IE.OAO. 177763 G IE.PES. 177655 G IO.CSM. 01647i' G IO.O~"a 004020 G IO.UTI. 011420 Ii

H IE,OFU. 177750 G IE.PNS. 177642 G IO.CTI. 015400 G IO.ONLa 017400 Ii IO.UTV. 011430 G 0

I IE.ONA. 177771 G IE.PRla 177760 G IO,CTLa IU640" G IO,RAOa 0U'400 G IO.wAL. 000410 G
::0

I-' IE.ONR. 177775 G IE.PTS. 177775 G IO.CTR. 015610 G IO.RAL. 001010 G IO.WAT. 0134"0 G ()
(Xl 0

IE.OUN. 177767 G IE,RAC. 177724 G IO.CTY. 0034"0 G IO,RATa 0130"0 Ii IO,WBT. 0"05"0 G 0
IE.OUP. 177707 G IE. RAT. 177723 G IO,OAC. 010000 G IO,RBC. 0"3""" G IO,wCK. 0"405" Ii t:EJ

IE,EOF. 177766 G IE,RBG. 17773" G IO.OCI. 01440" Ii IO.RCI. 01500" G IO.WOO. """4"4 G
en

IE.EOT. 177702 G If.R8S. 177761 G IO,OEL. 01240" G IO.RCV. fU5000 G IO.WOH. ""4040 G

QIOSYM MACRO 1'41107 02-NOV-7' lC1.37 PAGE CI-2
SYMBOL TABL.E

IO.WLe. 00~40" Ii SE.FIX- ""0002 G S.24"". 0""016 Ii TC.NPR. """034 G TF.ES;. "00020 Ii
IO.WL.C. "0,,420 Ii SE.ltN. 00"001 G S.300 • "00011 G TC.NST. 0"""22 G T~.RAL. """01" G
IO.WLS. 000"'10 G Sf. LPR. 000011 G S.36"". 000017 G TC,PAA. "0"037 G t~.RNC. 00"040 G
IO.WLT. 000410 G SE,NlM. """014 G S,48"0. 00,,0Z0 G Tt.PRI. 000"51 G TF.RN!. 00""20 G
IO.WL,V. 000500 Ii SE.NSC_ 000012 G 8.50 • """""2 G TC.RAT. "0""07 G TF,RST. """001 G
IO.WMS. 000420 G 8E.PAR- 000010 G S.600 • 0"0012 G TC.RSP_ """""3 G TF.SYN. """2"0 5
lO.WNSa 000420 G SE.SPO. 000006 G S,72"". 00""21 G TC.SCP. 0"""12 G TF.TMO. 0""20" G
IO.WP8. 00"440 Ii SE.SPL. 000007 G S,75 • 00""03 G TC. SCA. "00" 11 G T~,WAL. "00010 G
IO.wvea 011000 G S!,TER. 0000"5 G S.96"". 00"022 G TC,SFF. 000016 Ii TF,WBT. 000100 G
IO,XMT. 0144021 G Sf,UPN. "00013 G TC,ACA. 0,,"024 G TC,SLV. ""0"50 G TF.WMS. 0"002" G
IO.XNA. 014410 G SE,VAL. 000"04 G TC.ALT. 00"031 G TC,SMO. "00"27 G TF,XO'. 00011UI G
IQ,Q • 00212102 G SF,OEF. 0210010 G TC.BLK. 210,,"42 G TC.SMP. "00026 G T,AS33. 0"0001 G
IQ,S a 000004 G SF,GAC. 0026"0 G TC.8SP. "00023 G TC,SMR. "0"025 G T,AS35. 000003 Ii

IQ,UMD. 000004 G SF,GMC. 0025&0 G TC,CCfr. 00e030 G TC,STS. 000005 G T,KS33. 000002 G
IQ,X • 000001 G SF,GSC. 002540 G TC,CEQ. 00004& G TC,TAP. 000045 G T,LA3&. 00000& G
IS,BV • 000005 G SF,RD'. 0024&0 G T Co. DloU. 000041 G TC,TTP8 000010 G T.L180. 000014 G
IS.CC - 001401 G S,..SAC. 002&20 G TC.EPA8 000040 G TC,UC08 000052 G T.lo3I!JP. 000005 G
IS.CLR. 000000 G SF.SMC. 002440 G TC,ESQ8 000035 G TC.UCt8 000053 G T.L30S8 000004 G
IS,CR • 00&401 G SF,SSC. 002420 G TC,FR"'. 000043 G TC,UCZ8 000054 G T,SCR08 000015 G
IS.EOT. 002001 G SF,STS. 002520 G TC, ... FF. 000017 G TC,UC3. 000055 G T.UNI<08 000000 G
IS,ESC. 015401 G SF,STT. 002500 G TC.MFLa 000013 G TC.UC48 00005& G T.USR08 00001& G
IS.ESQa 115"01 Ii S,EXTAa 000023 Ii TC,HHT. 000021 Ii TC.UCS8 000057 G T.USRt a 000017 G
IS,PESa UJ000t Ii S,EXTS8 000024 Ii TC.HLD8 000044 G TC.UC&8 0000&0 G T.USR28 0000Z0 G
IS,PNO. 000000 G S.0 8 000001 Ii TC.IMGa 100032 Ii TC.UC7- rUle061 G T.USR). 000021 G
IS,ROOa 000002 G S,100 • 000004 G TC.ISL8 000006 G TC,uca8 000062 G T .USR4. 001UJ22 G
IS,SET. 000002 G 5.110 • 000005 G TC.L.CP. 0000)& G TC.UC •• 0000&3 G T.VTes. 000007 G
IS,SPOa 0021002 G 5,1210. 10001) G TC.loPP. 000002 G TC.VFL.. 000014 G T.VT508 e00e10 G
IS,SUCa 000001 G S,134 • 00000. G TC.L.VFa 000020 G TC,WID8 0000el G T.VTS2. 000011 G
IS,T.e. 004401 G 5.150 • 21210007 G TC,MAX. 0000.4 G TC,XSP8 000004 Ii T.VTS5- 000012 Ii
IS,TMO. 000002 G 5,1800- 000014 G TC.NEC. 000047 G TF.AST8 000010 G T,VT&l- 000013 Ii
QI,VER. 000327 Ii S,200 - 000010 G TC.NI<S. 000033 Ii TF.BIN. 000002 Ii SSMSG • 000000
SE,SIN. 000003 G 5.2000. 000015 G TC.Nl. • 000015 Ii TF.CCO. 000040 Ii • II Gel.. 000001

t%J

H ~
I ~

r' (l
\0 0

0
t%J
til

APPENDIX J

FIELD SIZE SYMBOLS

Definitions for these symbols are contained in the System Library.

S.BFHD - size of FSR block-buffer header in bytes.

S.FATT - size of FDB file-attribute area in bytes.

S.FDB - size of FDB in bytes (including name block) •

S.FNAM - size of filename in bytes (stored in RAD-50) •

S.FNB - size of filename block in bytes.

S.FNBW - size of filename block in words.

S.FNTY - size of filename and file type in words (stored in
RAD-50) .

S.FSR2 - size of FSR2 (basic impure area).

S.FTYP - size of file type in bytes (in RAD-50).

S.NFEN - size of a complete filename in bytes -- file ID, name,
type, and version.

J-l

Access methods, file, 1-2
ACTFIL command, task builder,

2-39
Allocation, file, 2-6, 2-7,

3-11
ANSI magtape data formats,

1-5, 1-6, G-l
Append access, 2-13, 3-3, 3-16
ASCII/binary UIC conversion

routines,
.ASCPP, 4-6
.PPASC, 4-6

.ASCPP routine, 4-6

.ASLUN routine, 4-11
Assembly-time FDB initializa-

tion macros, 1-12, 2-3 to
2-19

AST service routine, 2-12,
2-42 to 2-43, 3-30

Asynchronous block I/O, 1-6,
1-11, 2-40, 3-30

Attribute section of FDB, file,
2-5 to 2-8

Block access section of FDB,
2-10 to 2-12

Block buffer pool, 1-3, 2-36
Block buffer section ofFDB,

2-16 to 2-19
Block buffer size, override,

2-16, 2-17
Block I/O operations, 1-6, 2-8,

2-21, 2-22, 3-6, 3-9, 3-28
to 3-35

Block number,
logical, 1-5, 5-1
virtual, 1-5, 1-6, 2-21, 2-39,

3-32,4-18,5-1
Block size, non-standard,

2-16, 2-17
Bootstrap block, E-l
Buffer count, 2-17, 2-18
Buffer for block I/O, 2-10,

3-29

CALL macro, 4-1, 4-2
Calling file control routines,

4-1 to 4-2
Caret character, 1-6
CCML$ macro call, 6-12
Characteristics byte, device,

4-9

INDEX

CLOSES macro call, 3-17 to
3-18

Closing a file, 3-17 to 3-18
Coding TPARS source programs,

7-1
Command line processing, 6-1
Command string interpreter

(CSI), 2-2, 6-1, 6-13 to
6-28

Contiguous file allocation,
2-6, 2-7

Continuation mechanism, 6-2,
6-7

Conversion routines, ASCII/
binary UIC,

• ASCPP, 4-6
.PPASC, 4-6

Count field, 1-6
Creating a new file, 3-4, 3-8

to 3-9
CSI, 2-2, 6-1, 6-13 to 6-28
CSI control block,

allocating, 6-14
bit values, 6-14
offsets, 6-14

CSI$ macro call, 6-14 to 6-17
CSI$l macro call, 6-17 to 6-19
CSI$2 macro call, 6-19 to 6-21
CSI$ND macro call, 6-28
CSI$SV macro call, 6-26 to

6-28
CSI$SW macro call, 6-21 to

6-26
.CTRL routine, 4-22, 5-6 to

5-7

Data formats, 1-5, 1-6
Data transfer modes, 1-7
Dataset descriptor, 1-10, 1-11,

2-13, 2-25 to 2-28, 3-4,
3-5, 3-15, 4-8 to 4-11

DECtape file structure, 5-1
Default buffer count, 2-17,

2-18
Default directory string rou­

tines,
.RDFDR, 4-2
.WDFDR, 4-3

Default file protection word
format, 4-4

Default file protection word
routines,

.RDFFP, 4-5

.WDFFP, 4-5

Index-l

INDEX (CONT •)

Default filename block, 1-10,
2-13, 2-25, 2-28 to 2-31,
3-4, 3-15, 4-8 to 4-11

DefaultUlC routines,
.RDFUI routine, 4-4
.WDFUI routine, 4-4

DELET$ macro call, 3-35
Deletion routines, file,

.DLFNB, 4-21 to 4-22

.MRKDL, 4-20, 4-21
Device buffer size word, 4-9

yte,
4-9

Device control routine, 4-22
Device name field, 2-31, 4-8
Directive status word, 2-41,

I-I
Directory entries, 5-2
Directory entry routines,

.ENTER, 4-14

.FIND, 4-12 to 4-13

.REMOV, 4-14
Directory files, 5-2
Directory identification

information, 4-9, 4-15
Directory string routines,

default,
.RDFDR, 4-2
.WDFDR, 4-3

Disk file structure, 5-1
$DSW, 2-41, I-I

.ENTER routine, 4-14
Error codes, I-I
Error conditions, 1-12
Error handling routines, 1-12,

3-2, 3-19, 3-23, 3-31
Event flags, 2-11, 2-16, 2-40

to 2-41, 3-30
Extension, file, 2-7, 3-32,

4-19
.EXTND routine, 4-19
EXTSCT command, task builder,

2-38

FCS, 1-1
FCSBT$ macro call, 2-24, 2-25
FDAT$A macro call, 2-5 to 2-8
FDB, 1-2, 1-9, 1-10, 2-3 to

2-28, A-I
FDB bit values, 2-24, 2-25
FDB offsets, 2-24, 2-25, A-2
FDBDF$ macro call, 1-12, 2-4,

2-5, 2-16 to 2-19, 2-24
FDBK$A macro call, 2-10 to 2-12
FDOF$L macro call, 2-24, 2-25

FDOP$A macro call, 2-12 to 2-16
FDRC$A macro call, 2-8 to 2-10
Field size symbols, J-l
File access methods, 1-2
File allocation, 2-6, 2-7, 3-11
File attribute section of FDB,

2-5 to 2-8
File control routines, 4-1
File deletion routines,

.DLFNB, ·4-21 to 4-22

.MRKD
File descriptor block, 1-2,

1-9, 1-10, 2-3 to 2-28,
A-I

File extension, 2-7, 3-32, 4-19
File header block, 3-4, 5-3

to 5-4, F-l
File identification field, 2-31,

3-4, 4-9, 4-12
File number, 5-2, 5-3
File open section of FDB,

2-12 to 2-16
File owner word format, 4-5
File owner word routines,

.RFOWN, 4-6

.WFOWN, 4-6
File pointer routines,

.MARK, 4-16, 4-17 to 4-18

.POINT, 2-9, 4-16 to 4-17

.POSIT, 4-18

.POSRC, 3-27, 4-17
File protection word format,

default, 4-4
File sequence number, 5-2, 5-3
File specification, 1-11
rile specification in user

program; 2-25 to 2-31
File storage region, 1-3, 1-11,

2-16, 2-34 to 2-40
File structures, 5-1, G-6
File truncation, 2-9, 3-6, 3-9,

4-19
File truncation routine, 4-20
File type information, 4-10
File version number, 3-35, 4-10,

4-12, 4-14
File window, 2-14, 2-15
Filename block, 1-10, 2-31 to

2-34, 3-4, 3-14 to 3-15,
4-7 to 4-11, 4-14 to 4-16,
B-1

Filename block offset defini­
tions, B-1

Filename block routines,
.ASLUN, 4-11

Index-2

.GTDID, 4-15

.GTDIR, 4-15

.PARSE, 2-30, 2-32, 2-33, 3-15,
4-7 to 4-11, 4~19

.PRSDV, 4-11

INDEX (CONT.)

Filename block size, 2-33, J-l
Filename block status word,

4-11, 4-13, B-2
Filename information, 4-10
FILES-ll, 5-1
.FIND routine, 2-33, 4-12 to

4-13, 4-15
FINIT$ macro call, 2-37 to

2-38, 4-7
Fixed length records, 1-5, 1-6,

2-5, 3-8, 3-26, 4-17
FSR, 1-3, 1-11, 2-16, 2-34 to

2-40
FSRSZ$ macro call, 2-35 to

2-37, 3-5

GCML, 2-2, 6-1, 6-2 to 6-13
GCML control block,

allocating, 6-3
bit values, 6-5
offsets, 6-5

GCML$ macro call, 6-9 to 6-11
GCMLB$ macro call, 6-3 to 6-5
GCMLD$ macro call, 6-5 to 6-9
Get command line routine,

2-2, 6-1, 6-2 to 6-13
GET$ macro call, 3-18 to 3-22
GET$R macro call, 3-21 to 3-22
GET$S macro call, 3-22
Global definitions for FOB

offsets, 2-23 to 2-24
GLUN$ directive, 2-17, 4-9,

C-l
.GTDID routine, 4-15
.GTDIR routine, 4-15

Home block, E-2, E-3
Hyphen, 6-2

Index file, 5-2, E-l
Index file bit map, E-2
I/O-related system directives,

C-l
I/O status block, 2-11, 2-41

to 2-42, 3-30, 3-34

Local definitions for FOB
offsets, 2-23 to 2-24

Locate mode,
defined, 1-7
GET$ operations in, 3-18,

3 19, 3-20

Locate mode (Cont.),
.POINT routine and, 4-16
PUT$operations in, 3-24,

3-25 to 3-26,4-17
specifying, 2-9, 3-6

Locked file, 2-14, 2-15
Logical block number, 1-5, 5-1
Logical record number, 1-6,

3-21, 3-27
Logical records, 1-1, 1-5,

3-18 to 3-28
Logical unit number, 2-12, 3-4,

3-5, 3-9
LU~, 2-12, 3-4, 3-5, 3-9

Magnetic tapes,
accessing, 5-4
ANSI standard, G-l
examples of processing, 5-7

to 5-10
multiple file operations, 5-6
positioning, 2-14, 4-22, 5-5
processing, 5-4
rewinding, 4-22, 5-5
single-file operations, 5-5

Marking a file for deletion,
3-13

Master File Directory, 5-2
.MCALL directive, 2-2
MFD, 5-2
Modify access, 2-13, 3-3, 3-15
Move mode,

defined, 1-7
GET$ operations in, 3-18

to 3-20
PUTS operations in, 3-24,

3-25
specifying, 2-9, 3-6

.MRKDL routine, 3-12
Multiple buffer count, 2-17,

2-36, 3-10
Multiple buffering, 1-8, 2-17,

2-36, 3-10

New file, creating a, 3-4, 3-8
to 3-9

NMBLK$ macro call, 2-28 to
2-31, 3-15, 4-9, 4-16

Noncontiguous file allocation,
2-6, 2-7

Non-sequenced variable length
records, 1-5

Nonstandard block size, 2-16,
2-17

Index-3

INDEX (CONT •)

Offsets, symbolic, 2-4
OFID$x macro call, 2-34, 3-13
OFNB$ macro call, 2-34, 3-14

to 3-15, 4-16
OPENS macro call, 3-16
OPEN$A macro call, 3-4
OPEN$Mmacro call, 3-4
OPEN$R macro call, 3-4
OPEN$U macro call, 3-4
OPEN$W macro call, 3-4
OPEN$x macro call, 1-8, 1-9,

, ,
Opening a file, 3-9 to 3-11
Opening a file by file ID,

2-12, 2-31 to 2-33, 3-13
to 3-14

Opening a file by filename
block, 3-14 to 3-15

OPNS$x macro call, 1-9, 3-11
OPNT$D macro call, 3-13
OPNT$W macro call, 3-12, 4-20
Optimizing file access, 2-31

to 2-33
Override block size, 2-16, 2-17,

3-10
Owner word format, file, 4-5

.PARSE routine, 2-30, 2-32, 2-33,
3-15, 4-7 to 4-11, 4-19

Physical record, 1-5
.POINT routine, 2-9, 4-16 to

4-17
.POSIT routine, 4-18
.POSRC routine, 3-27, 4-17
.PPASC routine, 4-6
.PRINT subroutine, 8-2
PRINT$ macro call, 8-1
Programs, sample, D-l
.PRSDV routine, 4-11
PSECTs generated by TPARS, 7-8
PUTS macro call, 2-9, 3-6, 3-9,

3-23 to 3-26
PUT$R macro call, 3-26 to 3-28
PUT$S macro call, 3-28

QIO, 2-39 to 2-40, 4-18
Queue I/O, 2-39 to 2-40, 4-18
Queue I/O function routine

(. XQIO), 4-18

Random access mode, 1-2, 1-6,
2-8, 3-6, 3-9, 3-21 to
3-22, 3-26 to 3-28, 4-16

RCML$ macro call, 6-11

.RDFDR routine, 4-2

.RDFFP routine, 4-5.

.RDFUI routine, 4-4
Read access, 2-13, 3-3, 3-16
READ$ macro call, 1-6, 3~28

to 3-31
Read-ahead multiple buffering,

1-8, 2-18, 3-10
Reading a logical record, 3-18

to 3-22
Reading a virtual block

to 3-31
Record access section of FDB,

2-8 to 2-10
Record attributes, defining,

2-5, 2-6, 3-8
Record I/O operations, 1-6,

1-7, 2-8 to 2-10
Record number, logical, 1-6,

3-21, 3-27
Record size, defining, 2-6
Record types, defining, 2-5
Register usage, 1-11, 2-23
.REMOV routine, 4-14
.RENAM routine, 4-19
Rename file routine, 4-19
Retrieval pointers, 2-14, 2-15
Rewinding magnetic tape, 2-14
.RFOWN routine, 4-6
Run-time FDB initialization

macros, 2-19 to 2-23
Run-time macro calls, 1-12

Sample programs, D-l
Sequence number, file, 5-2,

5-3
Sequenced variable length

records, 1-5, 2-5, 3-8
Sequential access mode, 1-2,

1-6, 2-8, 3-6, 3-9, 3-22,
3-28

Shared file access, 1-8, 2-14,
3-11, 3-17

Spooling, 8-1
Spooling error handling, 8-2
Standard block size, 2-16,

2-17
State table initialization,

7-2
Statistics block, 3-11
Status word, directive, 2-41,

I-I
Status word, filename block,

4-11, 4-13
Subexpressions for TPARS,

7-6 .
Symbols, field size, J-l

Index-4

INDEX (CONT •)

Synchronous record operations,
1-7, 1-11, 2-40

Syntax element definition,
7-2

Table driven parser (TPARS),
7-1

Temporary file, 2-14, 3-12,
3-13, 3-17, 4-20

TPARS, 7-1
built-in variables, 7-5
coding, 7-1
command line syntax, 7-4
examples, 7-12
generating a parser using,

7-10
invocation of, 7-9
subexpressions, 7-6

TRAN$ macro call, 7-3
Transition definition, 7-3
.TRNCL routine, 4-20
Truncation, file, 2-9, 3-6,

4-19

UFD, 3-4, 5-2
UIC conversion routines,

ASCII/binary,
.ASCPP, 4-6
.PPASC, 4-6

unit number field, 2-32, 4-8
UNITS option, task builder,

2-12
Update access, 2-14, 3-3,

3-16
User File Directory, 3-4, 5-2

User file structure, 5-1
User record buffer, 2-9, 3-6

to 3-7, 3-9, 3-19, 3-24

Variable length records, 1-5,
1-6, 2-5, 3-8, 3-26, 4-16

Variables, built-in for TPARS,
7-5

Version number, file, 3-35,
4-10, 4-12, 4-14

Virtual block number, 1-5,
1-6, 2-2l, 3-29, 3-32,
4-18, 5-1

Virtual blocks, 1-5, 3-28 to
3-35, 5-1

WAIT$ macro call, 3-28, 3-33
to 3-35

WAITFOR system directive, 3-33
.WDFDR routine, 4-3
.WDFFP routine, 4-5
.WDFUI routine, 4-4
.WFOWN routine, 4-6
Wildcards, 4-12, 4-13, 4-14
Window, file, 2-14, 2-15
write access, 2-13, 3-3, 3-16
WRITE$ macro call, 1-6, 3-31

to 3-32
Write-behind multiple buffer­

ing, 1-8, 2-18, 3-11
Writing a logical record, 3-23

to 3-28
writing a virtual block, 3-31

to 3-32

.XQIO routine, 4-18

Index-5

READER'S COMMENTS

.... .&'1..""'" ,...,.£~ ~_

I/O Operations
Reference Manual
AA-25l5C-TC

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. Problems with software should be reported
on a Software Performance Report (SPR) form. If you
require a written reply and are eligible to receive
one under SPR service, submit your comments on an SPR
form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

o Assembly language programmer

[J Higher-level language programmer

o Occasional programmer (experienced)

[J User with little programming experience

[J Student programmer

o Non-programmer interested in computer concepts and capabilities

Name Date ________________________ __

Organization __ ___

Street __ _

City ____________________________ State _____________ Zip Code ______________ _

or
Country

---Fold lIere--

-- Do Not Tear - Fold lIere and Staple ---

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Software Documentation
146 Main Street ML5-5/E39
Maynard, Massachusetts 01754

FIRST CLASS

PERMIT NO. 33

MA YNARD, MASS.

mDmDomo
digital equipment corporation

Printed in U.S.A.

