IAS/RSX-11
170 Operations
Reference Manual

Order No. AA-2515C-TC

dlilgliltlall

IAS/RSX-11
170 Operations
Reference Manual

Order No. AA-2515C-TC

1AS Version 2.0
RSX-11M Version 3.1
RSX-11D Version 6.2

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard. Massachusetts 01754

digital equipment corporation - maynard, massachusetts

First Printing, December 1975
Revised: December 1976
December 1977

The information in this document is éubject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use

or reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright C) 1975, 1976, 1977 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0s/8

DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-10

DECCOMM DECSYSTEM-20 TYPESET-11

12/77-14

CONTENTS

Page
PREFACE xi
CHAPTER 1 FILE CONTROL SERVICES 1-1
1.1 FILE ACCESS METHODS 1-2
1.2 FILE STORAGE REGION (FSR) 1-3
1.3 DATA FORMATS FOR FILE-STRUCTURED DEVICES 1-5
1.3.1 Data Formats for ANSI Magtape 1-5
1.4 BLOCK I/O OPERATIONS 1-6
1.5 RECORD I/0 OPERATIONS 1-6
1.6 DATA-TRANSFER MODES 1-7
l.6.1 Move Mode 1-7
1.6.2 Locate Mode 1-7
1.7 MULTIPLE BUFFERING FOR RECORD I/O
(IAS AND RSX-11D ONLY) 1-8
1.8 SHARED ACCESS TO FILES 1-8
1.9 FILE DESCRIPTOR BLOCK (FDB) 1-9
1.10 DATASET DESCRIPTOR AND DEFAULT FILENAME BLOCK 1-10
1.11 KEY TERMS USED THROUGHOUT THIS MANUAL 1-10
1.12 SYSTEM CHARACTERISTICS 1-11
CHAPTER 2 PREPARING FOR I/0 2-1
2.1 «MCALL DIRECTIVE - LISTING NAMES OF REQUIRED
MACRO DEFINITIONS 2=-2
2.2 FILE DESCRIPTOR BLOCK (FDB) 2-3
2.2,1 Assembly-Time FDB Initialization Macros 2-3
2,2.1.1 FDBDF$ - Allocate File Descriptor Block
(FDB) 2-4
2.2.1.2 FDATS$A - Initialize File Attribute Section
of FDB : 2-5
2,2.1.3 FDRCSA - Initialize Record-Access Section
of FDB , ~ 2-8
2.2.1.4 FDBKSA - Initialize Block-Access Section
: of FDB 2-10
2.2.1.5 FDOP$A - Initialize File-Open Section
of FDB ' ' 2-12
2.2.1.6 FDBF$A - Initialize Block-Buffer Section
of FDB 2-16
2.2.2 Run-Time FDB Initialization Macros 2-19
2.2.2.1 Run-Time FDB Macro-Call Exceptions ' 2-20
2.2.2.2 Specifying the FDB Address in Run-Time
Macro Calls : 2-22
2.3 GLOBAL VERSUS LOCAL DEFINITIONS FOR FDB
- OFFSETS 2-23
2.3.1 Specifying Global Symbols in the Source
Coding 2-24
2.3.2 Defining FDB Offsets and Bit Values Locally 2-24
2.4 CREATING FILE SPECIFICATIONS WITHIN THE USER
PROGRAM 2-25
2.4.1 Dataset Descriptor 2-26

iii

CONTENTS (Cont.)

2.4.2 Default Filename Block -~ NMBLKS$ Macro Call
2.4.3 Dynamic Processing of File Specifications
2.5 OPTIMIZING FILE ACCESS
2.5.1 Initializing the Filename Block As a
Function of OPENS$x
.2 Manually Initializing the Filename Block
INITIALIZING THE FILE STORAGE REGION
1 FSRSZ$ - Initialize FSR at Assembly-Time
2 FINIT$ - Initialize FSR at Run-Time
INCREASING THE SIZE OF THE FILE STORAGE REGION
.1 FSR-Extension Procedures for MACRO-1l1
Programs
7.2 FSR-Extension Procedures for FORTRAN
Programs
COORDINATING I/0 OPERATIONS
.1 Event Flags
.2 I/0 Status Block
.3 AST Service Routine

CHAPTER 3 FILE-PROCESSING MACRO CALLS

OPEN$Xx - GENERALIZED OPEN MACRO CALL
1 Format of Generalized OPEN$x Macro Call
2 FDB Requirements for Generalized OPEN$x
Macro Call .
OPNSS$x - OPEN FILE FOR SHARED ACCESS
OPNT$W - CREATE AND OPEN TEMPORARY FILE
OPNT$D - CREATE AND OPEN TEMPORARY FILE
AND MARK FOR DELETION
OFID$x - OPEN FILE BY FILE ID
OFNB$x OPEN FILE BY FILENAME BLOCK
Dataset Descriptor and/or Default Filename
Block .)
Default Filename Block Only
OPEN$ -~ GENERALIZED OPEN FOR SPECIFYING FILE
ACCESS
CLOSE$ - CLOSE SPECIFIED FILE
Format of CLOSES$ Macro Call
GET$ - READ LOGICAL RECORD
Format of GET$ Macro Call
FDB Mechanics Relevant to GET$ Operations
.1 GETS$ Operations in Move Mode
.2 GET$ Operations in Locate Mode
GET$R - READ LOGICAL RECORD IN RANDOM MODE -
GETS$S - READ LOGICAL RECORD . IN SEQUENTIAL MODE
PUT$ - WRITE LOGICAL RECORD
1 Format of PUT$ Macro Call :
2 FDB Mechanics Relevant to PUT$ Operations
2.1 PUT$ Operations in Move Mode
2.2 PUT$ Operations in Locate Mode
PUTSR - WRITE LOGICAL RECORD IN RANDOM MODE
PUTS$S - WRITE LOGICAL RECORD IN SEQUENTIAL
MODE
READS - READ VIRTUAL BLOCK
Format of READ$ Macro Call
FDB Requirements for READ$ Macro Call
WRITES - WRITE VIRTUAL BLOCK

~N O AN oY n B W

o 0
» .
N (el

I NN

e e & 8 0 e s e e & 0 s s 0 o+

Pl PR O 0000 oo
BWNNNNNDEOs ¢ o » i

L] .
N

Sy nn

iv

CONTENTS (Cont.)

Page
3.16.1 Format of WRITE$ Macro Call 3~32
3.16.2 FDB Requirements for WRITE$ Macro Call 3-32
3.17 WAITS - WAIT FOR BLOCK I/O COMPLETION 3«33
3.17.1 Format of WAITS$ Macro Call 3-33
3.18 DELET$ - DELETE SPECIFIED FILE i 3~35
3.18.1 Format of DELET$ Macro Call 3=35
CHAPTER 4 FILE CONTROL ROUTINES 4-1
4.1 CALLING FILE CONTROL ROUTINES 4~1
4.2 DEFAULT DIRECTORY-STRING ROUTINES 4-2
4.2.1 .RDFDR - Read $$FSR2 Default Directory
String Descriptor 4-2
4.2.2 .WDFDR - Write New $$FSR2 Default Directory-
String Descriptor 4-3
4.3 DEFAULT UIC ROUTINES 4-3
4.3.1 .RDFUI - Read Default UIC 4-4
4.3.2 WDFUI - Write Default UIC 4-4
4.4 DEFAULT FILE-PROTECTION WORD ROUTINES 4-4
4.4.1 .RDFFP - Read $$FSR2 Default File Protection
Word ' 4~5
4.4.2 .WDFFP - Write New $$FSR2 Default File~
Protection Word 4-5
4.5 FILE OWNER WORD ROUTINES 4-5
4.5.1 .RFOWN -~ Read $$FSR2 File-~Owner Word 4-6
4.5.2 WFOWN - Write New $$FSR2 File~Owner Word 4-6
4.6 ASCII/BINARY UIC CONVERSION ROUTINES 4-6
4.6.1 .ASCPP - Convert ASCII Directory String to
‘ Equivalent Binary UIC 4-6
4.6.2 .PPASC - Convert UIC to ASCII Directory
String 4-6
4.7 FILENAME BLOCK ROUTINES 4-7
4,7.1 .PARSE =~ Fill in All Filename Information 4<-7
4.7.1.1 Device and Unit Information 4-8
4.7.1.2 Directory-Identification Information 4-9
4.7.1.3 Filename, File-Type or Extension, and File
Version Information 4-10
4.7.1.4 Other Filename Block Information 4~11
4,.7.2 © JPRSDV =~ Fill in Device and Unit Information
Only 4-11
4,7.3 .ASLUN - Assign Logical Unit Number 4-11
4.8 DIRECTORY ENTRY ROUTINES 4-12
4.8.1 .FIND - Locate Directory Entry 4-12
4.8.2 .ENTER - Insert Directory Entry 4<14
4.8.3 -«REMOV - -Delete Directory Entry 4-14
4.9 FILENAME BLOCK ROUTINES 4-14
4,9.1 .GTDIR - Insert Directory Information in
Filename Block : 4-15
4,9,2 .GTDID - Insert Default Directory Information
in Filename Block 415
4.10 FILE POINTER ROUTINES 4~16
4.10.1 .POINT «~ Position File to Specified Byte 416
4.10.2 .POSRC -~ Position File to Specified Record 4-17
4,10.3 .MARK - Save Positional Context of File 4-17
4,10.4 .POSIT = Return Positional Information for
Specified Record 4-18
4,11 QUEUE I/0 FUNCTION ROUTINE (.XQIO) 4-18

CONTENTS (Cont.)

Page
4,12 RENAME FILE ROUTINE (.RENAM) 4-19
4.13 FILE EXTENSION ROUTINE (,EXTND) 4-19
4.14 ‘FILE TRUNCATION ROUTINE (. TRNCL) 4-20
4.15 FILE DELETION ROUTINES 4-20
4.15.1 .MRKDL - Mark Temporary File for Deletion 4-20
4.15.2 .DLFNB - Delete File by Filename Block 4-21
4.16 DEVICE CONTROL ROUTINE (.CTRL) 4-22
CHAPTER 5 FILE STRUCTURES 5~1
5.1 DISK AND DECTAPE FILE STRUCTURE (FILES-11) 5-1
5.1.1 User File Structure 5-1
5.1.2 Directory Files 5-2
5.1.3 Index File 5-2
5.1.4 File-Header Block 5-3
5.2 MAGNETIC TAPE FILE PROCESSING 5-4
5.2.1 Access to Magnetic Tape Volumes 5-4
5.2.2 Rewinding Volume Sets 5-5
5.2.3 Positioning to the Next File Position 5-5
5.2.4 Single-File Operations 5-5
5.2.5 Multiple-File Operations 5-6
5.2.6 Using .CTRL 5-6
5.2.7 Examples of Magnetic Tape Processing 5=7
5.2.7.1 Examples of OPENSW to Create a New File 5-17
5.2.7.2 + Examples of OPEN$ to Read a File 5-8
5.2.7.3 Examples of CLOSES 5-8
5.2.7.4 Combined Examples of OPEN$ and CLOSES for
Magnetic Tape 5-9
CHAPTER 6 COMMAND-LINE PROCESSING 6-1
6.1 GET COMMAND LINE (GCML) 6-2
6.1.1 GCMLBS$ - Allocate and Initialize GCML
Control Block 6-3
6.1.2 GCMLD$ - Define GCML Control Block Offsets
and Bit Values 6~5
6.1.3 GCML Run-Time Macro Calls 6-9
6.1.3.1 GCMLS$ - Get Command Line 6-9
6.1.3.2 RCML$ - Reset Indirect Command File Scan 6-11
6.1.3.3 CCML$ -~ Close Current Command File 6-12
6.1.4 GCML Usage Considerations 6-12
6.2 COMMAND STRING INTERPRETER (CSI) 6-13
6.2.1 CSI$ - Define CSI Control-Block Offsets
and Bit Values 6-14
6.2.2 CSI Control-Block Offset and Bit-Value
Definitions ' 6-14
6.2.3 CSI Run-Time Macro Calls 6~-17
6.2.3.1 CSI$1l - Command Syntax Analyzer 6~-17
6.2.3.2 CSI$2 - Command Semantic Parser 6-19
6.2.4 CSI Switch Definition Macro Calls 6~21
6.2.4.1 CSIS$SW - Create Switch Descriptor Table
, Entry , 6-21
6.2.4.2 CSIS$SV - Create Switch-Value Descriptor
Table Entry ' 6-~26
6.2.4.3 CSISND - Define End of Descriptor Table 6-28

vi

CONTENTS (Cont.)

Page
CHAPTER 7 THE TABLE-DRIVEN PARSER (TPARS) 7-1
7.1 CODING TPARS SOURCE PROGRAMS 7-1
7.1.1 TPARS Macros: ISTATS, STATES, and TRANS 7-2
7.1.1.1 Initializing the State Table: the ISTATS$
Macro 7-2
7.1.1.2 Defining a Syntax Element: the STATES
Macro 7-2
7.1.1.3 Defining a Transition: the $TRAN Macro 7-3
7.1.2 Types of Command Line Syntax Elements 7-4
7.1.3 Action Routines and Built-in Variables 7-5
7.1.3.1 TPARS Built-in Variables 7-5
7.1.3.2 Calling Action Routines 7-5
7.1.3.3 Using Action Routines to Reject a Transition 7-5
7.1.4 TPARS Subexpressions 7-6
7.2 GENERAL CODING CONSIDERATIONS 7-6
7.2.1 Suggested Arrangement of Syntax Types in a
State Table 7-6
7.2.2 Entering Special Characters 7-7
7.2.3 Ignoring Blanks and Tabs in a Command Line 7-7
7.3 PSECTs GENERATED BY TPARS MACROS 7-8
7.4 INVOKING TPARS 7-9
7.4.1 Register Usage and Calling Conventions 7-9
7.4.2 Using the Options Word 7-9
7.4.3 Storage Requirements 7-10
7.5 HOW TO GENERATE A PARSER PROGRAM USING TPARS 7-10
7.6 PROGRAMMING EXAMPLES 7-12
7.6.1 Parsing a UFD Command Line 7-12
7.6.2 How to Use Subexpressions and Reject
Transitions 7-16
7.6.3 Using Subexpressions to Parse Complex
Grammars 7-17
CHAPTER 8 SPOOLING 8-1
8.1 PRINTS$ MACRO CALL 8-1
8.2 .PRINT SUBROUTINE 8~2
8.3 ERROR HANDLING 8-2
APPENDIX A FILE DESCRIPTOR BLOCK A-1
APPENDIX B FILENAME BLOCK ; B-1
APPENDIX C SUMMARY OF I/O-RELATED SYSTEM DIRECTIVES c-1
APPENDIX D SAMPLE PROGRAMS D-1
APPENDIX E INDEX FILE FORMAT ' E-1
E.1l BOOTSTRAP BLOCK - E-1
E.2 HOME BLOCK E-2
E.3 INDEX-FILE BIT MAP) E-2
E.4 PREDEFINED FILE-HEADER BLOCKS) E-2
APPENDIX F FILE-HEADER BLOCK FORMAT F-1
F.l HEADER AREA F-3

vii

CONTENTS (Cont.)

Page
F.2 IDENTIFICATION AREA ' F-4
F.3 MAP AREA F=5
APPENDIX G SUPPORT OF ANSI MAGNETIC TAPE STANDARD G-1
G.1 VOLUME AND FILE LABELS G-1
G.1l.1 Volume Label Format G-1
G.1l.1.1 Contents of Owner Identification Field G-2
G.1.2 User Volume Labels G-3
G.1.3 File-Header Labels ' G-3
G.1.3.1 File Identifier Processing by Files-11 G-5
G.1.4 End-of-Volume Labels G-6
G.1l.5 File-Trailer Labels G-7
G.l.6 User File Labels G-7
G.2 FILE STRUCTURES G-7
G.2.1 Single File Single Volume ' G-17
G.2.2 Single File Multivolume G-7
G.2.3 Multifile Single Volume G-8
G.2.4 Multifile Multivolume G-8
G.3 END-OF-TAPE HANDLING G-8
G.4 ANSI MAGNETIC TAPE FILE HEADER BLOCK (FCS
COMPATIBLE) G-8
APPENDIX H STATISTICS BLOCK H-1
APPENDIX I ERROR CODES I-1
APPENDIX J FIELD SIZE SYMBOLS J-1
INDEX Index-1
FIGURES
FIGURE 1-1 File-Access Operations 1-2
1-2 Record I/O0 Operations 1-4
1-3 Single Buffering Versus Multiple Buffering 1-8
5-1 Directory Structure for Single-User Volumes 5-2
5-2 Directory Structure for Multiuser Volumes 5-3
6-1 Data Flow During Command Line Processing 6-2
6-2 Format of Switch Descriptor Table Entry 6-25
6-3 - Format of Switch-Value Descriptor Table Entry 6-28
7-1 Processing Steps Required to Generate a Parser
Program Using TPARS 7-11
7-2 Flow of Control When TPARS Is Called from an
Executing User Program 7-12
B-1 Filename-Block Format B-2
G-1 ANSI Magnetic Tape File-Header Block (FCS
Compatible) G-9
H-1 Statistics Block Format H-1

viii

CONTENTS (Cont.)

Page
TABLES
TABLE 2-1 Macro Calls Generating FDB Information 2-2
3-1 File Access Privileges Resulting from OPENS$x

Macro Call 3-3

4-1 R2 Control Bits for .EXTND Routine 4-20
A-1 FDB Offset Definitions A-2
B-1 Filename-Block Offset Definitions B-1
B-2 Filename-Block Status Word (N.STAT) B-2
c-1 Summary of I/O-Related System Directives c-1
E-1 Home-Block Format E-3
F-1 File Header Block F-1
G-1 Volume Label Format G-1
G-2 File-Header Label (HDR1) G-4
G-3 File Header Format (HDR2) G-5

ix

PREFACE

0.1 MANUAL OBJECTIVES AND READER ASSUMPTIONS

The purpose of this manual is to familiarize the users of an RSX-11D,
RSX-11M, or IAS operating system with the file control services. (FCS)
facility provided with the system. Since the file control services
described herein pertain to both MACRO-11 and FORTRAN programs, the
reader is assumed to be familiar with the manuals describing these
program-development tools. Also, since the development of programs in
an RSX-11 or IAS environment necessarily involves the use of the Task
Builder, the reader . is 1likewise assumed to be familiar with this
system program. Unless otherwise noted, the term RSX-11 refers to
both RSX-11D and RSX-11M.

0.2 STRUCTURE OF THE DOCUMENT

Chapter 1 briefly describes the FCS features available for IAS/RSX-11
users and defines some of the terminology that is pertinent to
discussions throughout the manual. This chapter is vital to
understanding the balance of the manual.

Chapter 2, perhaps the -most important in the manual, describes the .
actions the user must take at assembly-time to prepare adequately for
all intended file I/O processing through FCS. This chapter describes
the data structures and working storage areas that the user must
define within a particular program in order to use any of the file
control services provided by the system. Unless the user Iis
thoroughly familiar with the content of this chapter, he is advised to
defer a reading of subsequent chapters, since all that follows is
dependent upon a complete working understanding of the material in
Chapter 2.

Chapter 3 describes the run-time macro calls that allow the wuser to
manipulate files and to perform I/O operations.

Chapter 4 describes a set of run-time routines used to perform
functions related to controlling files, such as reading and writing
directory entries, renaming or extending files, etc.

Chapter 5 describes the structure of files supported by the IAS and

RSX-11 systems. In this context, the structure of files for disks,
DECtapes, and magnetic tapes are covered.

xi

Chapter 6 describes two collections of object library routines called
the Get Command Line (GCML) routine and the Command String Interpreter
(CSI). These routines may be linked with the user task to perform
operations associated with the dynamic input of command lines. Such
input consists of file specifications that identify and control the
files to be processed by the user program.

Chapter 7 describes the queuing of files for printing. This facility
is available at both the MACRO level and subroutine level.

Finaily, a number of appendixes are provided that supply detailed
information of further interest. Appendix A and Appendix B outline in
detail the file descriptor block (FDB) and the filename block,
respectively, two structures forming a significant part of the
descriptive material in Chapter 2. Appendix C summarizes a number of
I/O-related system directives that form a part of the total
resource-management capabilities of the RSX-1ll or the IAS Executive.
Through simplified sample pregrams, Appendix D illustrates the use of
the macro calls that create and initialize the file descriptor block.
These sample programs also include some of the macro calls that are
used for processing files.

Appendix E illustrates the structure of the index file of a . Files-11
volume, while Appendix F describes in detail the format and content of
a file-header block. The format and content of magnetic tape labels
are similarly described in Appendix G. The format and content of the
statistics block are described in Appendix H.

The error codes returned by the system are listed in Appendix I, and
field-size symbols are listed in Appendix J.

0.3 ASSOCIATED DOCUMENTS

Other manuals closely allied to the purposes of this document are
described briefly in the IAS, RSX-~11D, and RSX-11M/RSX-11S
Documentation Directories. The Documentation Directories define the
intended readership of each manual in the appropriate set and provide
a brief synopsis of each manual's contents.

xii

CHAPTER 1

FILE CONTROL SERVICES

IAS and RSX-1l1 file control services (FCS) enable the user to perform
record-oriented and block-oriented I/O operations and to perform
additional functions required for file control, such as open, close,
wait, and delete operations. To invoke FCS functions, the user issues
macro calls to specify desired file-control operations. The FCS
macros are called at assembly-time to generate code for specified
functions and operations. The macro calls provide the system-level
file-control primitives with the necessary parameters to perform the
file-access operations requested by the user (see Figure 1-1).

FCS is basically a set of routines that are linked with the |user
program at task-build time from a system global area (IAS and RSX-11D)
or resident system library (RSX-11M); or a system object module
library. These routines, consisting of pure, position-independent
code, provide a user interface to the file system, enabling the user
to read and write files on file-structured devices and to process
files in terms of logical records.

Logical records are regarded by the user program as data units that
are structured in accordance with application requirements, rather
than as physical blocks of data on a particular storage medium.

FCS provides the capability to write a collection of data (consisting
of distinct logical records) to a file in a way that enables the data
to be retrieved at will. Data can be retrieved from the file without
the wuser's having to know the exact format in which it was written to
the file.

FCS thus is virtually transparent to the user so that records can be
read or written in logical units that are consistent with particular
application requirements.

FILE CONTROL SERVICES

L USER-ISSUED MACRO CALL J
] FILE CONTROL SERVICES |
[FILE CONTROL PRIMITIVES |

'

PERIPHERAL DEVICE HARDWARE
(e.g., disk, VTO65)

Figure 1-1 File-Access Operation

FCS provides an extensive set of macros to simplify the user's
interface to the system's 1I/0 facilities. These macros create and
maintain certain data structures that are required in performing all
file-I/0 operations. The required structures include the following:

1. A file descriptor block (FDB) that contains execution-time
information necessary for the processing of a file.

2. A dataset descriptor that is accessed by FCS to obtain ASCII
file information required in opening a specified file.

3. A default filename block that is accessed by FCS to obtain
default file information required 1in opening a specified
file. This structure 1is accessed when complete file
information is not specified in the dataset descriptor.

The FDB is described in detail in Appendix A and Appendix B. The
dataset descriptor and the default filename block are treated in
detail in Section 2.4.

1.1 FILE ACCESS METHODS

IAS and RSX-11l support both sequential and random access to data 1in
files. The sequential-access method is device-independent, i.e.,
sequential access can be used for both record-oriented and
block-addressable devices (e.g., card reader and disk, respectively).
The random-access method can be used only for block-addressable
devices.

FILE CONTROL SERVICES

1.2 FILE STORAGE REGION (FSR)

The file storage region (FSR) is an area allocated in the user program
as working storage for performing record I/0 operations (see Section
1.5). The FSR consists of two program sections that are always
contiguous to each other. These program sections exist for the
following purposes:

SSFSR1 - This area of the FSR contains the block buffers and the
block buffer headers for record I/0 processing. The
user determines the size of this area at assembly-time
by 1issuing the FSRSZ$ macro call (see Section 2.6.1).
The number of block buffers and associated headers 1is
based on the number of files that the user intends to
open simultaneously for record I/0 operations.

SSFSR2 - This area of the FSR contains impure data that 1is used
and maintained by FCS in performing record 1I/O
operations. Portions of this area are initialized at
task-build time, and other portions are maintained by
FCS.

The size of the FSR can be changed, if desired, at task-build time.
Section 2.7 presents the procedures that provide this flexibility to
the programmer.

The data flow during record I/O operations is depicted in Figure 1-2.
Note that blocks of data are transferred directly between the FSR
block buffer and the device containing the desired file. The
deblocking of records during input is accomplished in the FSR block
buffer, and the blocking of records is likewise accomplished in the
FSR block buffer during output. Note also that FCS serves as the user
interface to the FSR-block-buffer pool. All record I/0 operations,
which are initiated through GET$ and PUT$ macro calls, are totally
synchronized by FCS.

Record I/0 operations are described in detail in Section 1.5.

DEVICE

BLOCK
BUFFER
POOL

I,

—

N

BLOCK
BUFFE

/ $$FSR1
BLOCK
BUFFER

$$FSR1

)

%

$$FSR2
IMPURE DATA

Figure 1-2

FCS

USER
RECORD
BUFFER

Record I/O Operations

SADIAYAS TOYILNOD HTIA

FILE CONTROL SERVICES

1.3 DATA FORMATS FOR FILE-STRUCTURED DEVICES

Data are transferred between peripheral devices and memory in blocks.
A data file consists of virtual blocks, each of which may contain one
or more logical records created by a user program. In FCS terms, a
virtual block in a file consists of 512(10) bytes. The size of the
logical records in the virtual blocks is under the control of the user
program that originally writes the records.

When creating a new file, a user program can specify that the records
in the file need not all be the same size. Such records are known as
variable-length records. Conversely, if the user program indicates
that all records in the new file will be equal in size, the records
are known as fixed-length.

There are two types of variable-length records: sequenced and
nonsequenced. Both must be word-aligned. Sequenced variable-length
records are preceded by a two-word record header. The first word

contains the 1length o0of the record and the second word contains the
value of the sequence number:

16 16)
ISR

Byte Count Sequence Number n — 2 bytes of data
(O

Nonsequenced variable-length records are preceded by a single-word
record header containing the length of the record:

16

(
Byte Count n bytes of data

))
(

))
< (

Both fixed- and variable-length records are aligned on a word
boundary. Any extra byte that results from an odd-length record is
simply ignored. (The extra byte is not necessarily a 0 byte.)

Virtual blocks and logical records within a file are numbered
sequentially, each starting at 1. A virtual-block number is a file
relative value, while a logical block number 1is a volume relative
value. Ordinarily, records may cross block boundaries. This means
that the beginning of a record can fill out the end of a block while
the rest of the record occupies the beginning of the next block.

1.3.1 Data Formats for ANSI Magtape

Both fixed- and variable-length records may be used on magtape; their
format conforms to the ANSI standard.

On magtape, a virtual block corresponds to a physical record. The
default 1length of a block is 512 bytes. Its length can be changed to
any value greater than 8 bytes (14 bytes for a write function) and up
to 2048 bytes with the use of the FDBF$ macro (see Section 2.2.1.6).
Records are not allowed to cross block boundaries.

Fixed-length records are packed into a block with no control
information and no padding for alignment. The block is truncated so
that it ends at the end of the last record that will fit in the block
buffer.

FILE CONTROL SERVICES

Variable-length records are preceded by a 4-byte count field,
expressed in decimal in ASCII characters. The count includes the
length of the record and the 4-byte count field. After the 1last
record 1in a block (if there is any space left in the block), a caret
character (""", ASCII code 136), which appears where the next byte
count should be, signals the end of data in that block.

1.4 BLOCK I/O OPERATIONS

The READS and WRITES macro calls (see Sections 3.15 and 3.16,
respectively) allow the user to read and write virtual blocks of data
from and to a file without regard to logical records within the file.
Block 1I/0 operations provide an efficient means of processing file
data, since such operations do not involve the blocking and deblocking
of records within the file. Also, in block I/O operations, the user
may read or write files in an asynchronous manner, i.e., control may
be returned to the user program before the requested I/0 operation is
completed.

When block I/O is used, the number of the virtual block to be
processed 1is specified as a parameter in the appropriate READS/WRITES
macro call; the virtual blocks so specified are processed directly in
a reserved buffer in user memory space. READS$ and WRITES can be used
only on block-structured devices.

As implied above, the user is responsible for synchronizing all block

I/0 operations. Such asynchronous operations may ' be coordinated
through an event flag (see Section 2.8.1) specified in the
READS/WRITES macro call. The event flag is used by the system to

signal the completion of a specified block I/0 transfer, enabling the
user to coordinate those block I/O operations that are dependent on
each other.

1.5 RECORD I/O OPERATIONS

The GETS and PUTS macro calls (see Sections 3.9 and 3.12,
respectively) are provided for processing individual user records in
files. Using the FSR block buffers (see Section 1.2), the GETS and
PUTS$ routines perform the necessary blocking and deblocking of records
within the virtual blocks of the file, allowing the wuser program to
access logical records.

Sequential-access mode I/O operations can be performed for both fixed-
and variable~length records. Random-access mode I/O operations can be
performed only for fixed-length records. The user program accesses

records randomly by specifying a record number. This number
represents the position of the desired record within the
file -- viewing the file as an array of fixed-sized records with the

number 1 representing the first record physically present in the file
and n the last. Successive GET$ or PUT$ operations in random-access
mode can access records anywhere within the file. To do so, the user
program need only modify the record number specified as part of the
random record operation. After each such random operation, FCS
increments the record number used in the operation. If the user
program does not again modify this number prior to issuing another
record operation, the record actually accessed is the next sequential
record in the file.

FILE CONTROL SERVICES

In contrast to block I/O operations, all record I/0 operations are
synchronous, 1i.e., control is returned to the user program only after
the requested I/0 operation is completed.

Because GETS$/PUTS operations process logical records within a virtual
block, only a limited number of GETS$ or PUTS operations result in an
actual 1I/0 transfer (e.g., when the end of a data block is
encountered) . Therefore, all GETS$/PUTS I/0 requests do not
necessarily involve an actual physical transfer of data.

1.6 DATA-TRANSFER MODES

When record I/0 is used, a program can gain access to a record in
either of two ways after the virtual block has been transferred into
the FSR from a file:

1. In move mode. By specifying that individual records are to
be moved from the FSR block buffer to a user-defined record
buffer (see Figure 1-2).

2. In locate mode. By referencing a location in the file
descriptor block (see Section 1.9) that contains a pointer to
the desired record within the FSR block buffer.

1.6.1 Move Mode

Move mode requires that data be moved between the FSR block buffer and
a user-defined record buffer. For input, data are first read into the
FSR block buffer from a peripheral device and then moved to the user
record buffer for processing. For output, the user program first
builds a record in the user record buffer; FCS then moves the record
to the FSR block buffer, whence it is written to a peripheral device
when the entire block is filled.

Move mode simulates the reading of a record directly into a user
record buffer, thereby making the blocking and deblocking of records
transparent to the user.

1.6.2 Locate Mode

Locate mode enables the user to access records directly in the FSR
block buffer. Consequently, there is normally no need to transfer
data from the FSR block buffer to the user record buffer. To access
records directly in the FSR block buffer, the user refers to locations
in the file descriptor block (see Section 1.9) that contain values
defining the 1length and the address of the desired record within the
FSR block buffer. These values are present in the file descriptor
block as a result of FCS macro calls issued by the user.

Program overhead is reduced in locate mode, since records can be
processed directly within the FSR block buffer. Moving data to the
user record buffer in locate mode 1is required only when the last
record of a virtual block crosses block boundaries.

FILE CONTROL SERVICES

1.7 MULTIPLE BUFFERING FOR RECORD I/O (IAS AND RSX-11D ONLY)

By supporting multiple buffers for record I/O, FCS provides the
capability for IAS and RSX-11D wusers to read data into buffers in
anticipation of user program requirements and to write the contents of
buffers while the user program is building records for output. The
user can thus overlap the internal processing of data with file 1I/O
operations, as illustrated in Figure 1-3.

When read-ahead multiple buffering igs wused, the file must be
sequentially accessed to derive full benefit from multiple buffering.
For write-behind multiple buffering, any file-access method can be
used with full benefit.

When multiple buffering is used, sufficient space in the FSR must be
allocated for the total number of block buffers in use at any given
time. The FSRSZ$ macro call (see Section 2.6.1) is used to accomplish
the allocation of space for FSR block buffers.

Time -

Single process record write record process record write record ces
Buffer

Multiple process record write record process record write record

Buffer process record write record process record °t

Figure 1-3 Single Buffering Versus Multiple Buffering

1.8 SHARED ACCESS TO FILES

FCS permits shared access to files according to established
conventions. Two macro calls, among several available in FCS for
opening files, may be issued to invoke these conventions. The OPNSS$x
macro call (see Section 3.2) is used specifically to open a file for
shared access. The OPENS$x macro call (see Section 3.1), on the other
hand, invokes generalized open functions that have shared-access
implications only in relation to other I/0 requests then issued. Both
macro calls take an alphabetic suffix that specifies the type of
operation being requested for the file, as follows:

- Read existing file.

Write (create) a new file.

2 = ™
!

~ Modify existing file without extending its length.
U - Update existing file and extend its length, if necessary.
A - Append data to end of existing file.
The suffix R applies to the reading of a file, whereas the suffixes W,

M, U, and A all apply to the writing of a file. These macro calls and
the shared-access conditions that they invoke are summarized below.

1-8

FILE CONTROL SERVICES

The OPNSS$x and OPENS$x macro calls may be used as follows for shared
access to files:

1. When the OPNSS$SR macro call is issued, read access to the file
is granted unconditionally, regardless of the presence of one
Oor more concurrent write—access requests to the file. (The
OPNS$R macro call permits concurrent write accesses to the
file while it is being read.) Subsequent write-access
requests for this same file are honored. Thus, several
active read—-access requests and one or more write-access
requests may be present for the same file. However, multiple
tasks simultaneously accessing the file for write operations
are subject to certain restrictions as detailed in point 2.

2. While FCS allows concurrent write—access reguests through the
use of the OPNSSW, OPNSSM, OPNSSU, and OPNSSA macro, the
synchronization of access to the file is the responsibility
of the wuser tasks themselves. To avoid the retrieval or
storage of inconsistent data, each such task must implement
and use some user-defined mechanism that assures that the
file is accessed in a serial fashion.

3. When the OPENSR macro call is issued, read access to the file
is granted, provided that no write-access requests for that
file are active. (The CPENSR macro call does not permit
concurrent write access to the file while it is being read.)

Note from the above that readers of a shared file should be aware that
the file may yield inconsistent data from request to reguest if that
file is also being written.

Shared access during reading does not necessarily imply the presence
of read requests from several separate tasks. The same task, for
example, may open the same file using different logical unit numbers.

1.9 FILE DESCRIPTOR BLOCK (FDB)

The file descriptor block (FDB) contains information used by FCS in
opening and processing files. One FDB is required for each file that
is to be opened simultaneously by the user program. The user
initializes some ©portions of the FDB with assembly-time or run-time
macro calls, and FCS maintains other portions. Each FDB has five
sections that contain user or system-initialized information:

e File-Attribute Section;

® Record- or Block-Access Section;

® File-Open Section;

® Block-Buffer Section; and the

e Filename Block Portion of the FDB.
The information stored in the FDB depends upon the characteristics of
the file to be ©processed. The FDB and the macro calls that cause
values to be stored in this structure are described in detail in

Section 2.2, Appendix A describes in detail the format and the
content of the FDB.

FILE CONTROL SERVICES

1.10 DATASET DESCRIPTOR AND DEFAULT FILENAME BLOCK

Normally, either a dataset descriptor or a default filename block is
specified for each file the wuser intends to open. These data
structures provide FCS with the tile specifications required for
opening a file. Although either one or the other is usually defined,
both can be specified for the same file. The dataset descriptor and
the default filename block are summarized below and described in
detail in Sections 2.4.1 and 2.4.2, respectively.

When a file is being opened using information already present in the
filename block, neither the dataset descriptor nor the default
filename block is accessed by PCS for required file information. This
method of file access, which is termed "opening a file by file ID," is
an efficient means of opening files. Section 2.5 describes this
process in detail.

1.11 KEY TERMS USED THROUGHOUT THIS MANUAL

Listed below are terms used throughout this manual that have specific
meanings in the context of FCS operations.

FILE DESCRIPTOR BLOCK (FDB) -- The tabular data structure that
provides FCS with information needed to perform I/O operations on
a file. The space for this data structure is allocated in the
user program by issuing the FDBDF$S macro call (see Section
2.2.1.1). Each file to be opened simultaneously by the user
program must have an associated FDB. Portions of the FDB are
user-defined and others are maintained by FCS. Assembly-time or
run-time macro calls are provided for user initialization of. the
FDB. The format and content of the FDB are detailed in Appendix
A,

FILENAME BLOCK -- The portion of the FDB that contains the various
elements of a file specification (i.e., directory, filename, file
type, file version number, device, and unit) for use by the FCS
file-processing routines. Initially, as a file is opened, FCS
fills in the filename block with user-specified information taken
from the dataset descriptor and/or the default filename block
(see below). The methods of <creating file specifications for
initializing the filename block are described in detail in
Section 2.4; the format and content of the filename block itself
are described in Appendix B.

DEFAULT FILENAME BLOCK =-- The default filename block, an area
allocated within the wuser program by issuing the NMBLKS macro
call (see Section 2.4.2), contains the various elements of a file
specification. The default filename block is a user-created
structure, whereas the filename block within the FDB is
maintained by FCS. The user creates the default filename block
to supply file specifications to FCS that are not otherwise
available through the dataset descriptor (see below). In other
words, from information defined in the default filename block,
FCS «creates a parallel structure in the FDB that serves as the
execution-time repository for information that FCS requires in
opening and operating on files.

Thus, the terms "default filename block" and "filename block"
refer to separate and distinct data structures. These
distinctions should be kept clearly in mind whenever these terms
appear in the manual. Though created and used differently, these
areas are structurally identical.

FILE CONTROL SERVICES

DATASET DESCRIPTOR —-- The dataset descriptor is a 6-word block in the

user program containing the sizes and the addresses of ASCII data
strings that together constitute a file specification (see
below). This data structure, which is also created by the user,
is described in detail in Section 2.4.1. Unless the filename
block in the FDB has been saved, dataset-descriptor and/or
default-filename-block information must be provided to FCS before
the specified file can be opened.

DATASET-DESCRIPTOR POINTER -- An address value that points to the

FILE

FILE

1.12

6-word dataset descriptor within the user program. This address
value is stored in the FDB, allowing FCS to access a user-—created
file specification in the dataset descriptor.

SPECIFICATION -- Any system or user program having a requirement
to refer to files does so through a file specification. Such
information names a file and allows it to be explicitly
referenced by any task. A file specification, whether for input
or output, contains specific information that must be made
available to FCS before that file can be opened. The term "file

specifier" is sometimes used as a synonym for "file
specification.”
STORAGE REGION (FSR) -- The file storage region (see Section 1.2)

is an area of memory reserved by the user for use in record I/O
operations. This area is allocated by issuing the FSRSZ$ macro
call in the user program (see Section 2.6.1).

SYSTEM CHARACTERISTICS

Listed below are the important characteristics of FCS that should be
borne in mind in using its I/0 facilities:

1. READS/WRITES operations are asynchronous; the user is
responsible for coordinating all block I/0 activity. In
contrast, GETS$/PUTS operations are synchrcanized entirely by
FCS; control is not returned to the user program until the
requested GETS$/PUTS operation is completed.

2. FCS macro calls save and restore all registers, with the
following exceptions:

a. The file-processing macro calls (see Chapter 3) place the
FDB address in RO.

b. Many of the file-control routines (see Chapter 4) return
requested information in the general registers.

FILE CONTROL SERVICES

The FDBDFS$ macro call (see Section 2.2.1.1) is issued to
allocate space for "an FDB. Once the FDB is allocated,
necessary information can be placed in this data construct
through any 1logical combination of assembly~-time and/or
run-time macro calls (see Sections 2.2.1 and 2.2.2,
respectively). Certain information must be present in the
FDB before FCS can open and operate on a specified file.

For each assembly-time FDB initalization macro call, a
corresponding run-time macro call is provided that supplies

identical information. Although both sets <¢f macro <calls
(see Table 2-1) place the same information in the FDB, each
set does so in a different way. The assembly-time calls

generate .BYTE or .WORD directives that create specific data,
while the run-time calls generate MOV or MOVB instructions
that place desired information in the FDB during program
execution.

If an error condition 1is detected during any of the
file-processing operations described in Chapter 3, or during
the execution of several of the file-control routines (see
Section 4.1), the C-bit (carry condition code) in the
Processor Status Word is set, and an error 1indicator 1is
returned to FDB offset location F.ERR.

If the address of a user-coded error-handling routine 1is
specified as a parameter in any of the file-processing macro
calls, a JSR PC instruction to the error-handling routine is
generated. The routine is then executed if the C-bit in the
Processor Status Word is set.

CHAPTER 2

PREPARING FOR I/O

The MACRO-11 programmer must establish the proper data base and
working storage areas within the particular program in order to
perform input/output operations. The following actions must be
performed:

e Define a file descriptor block (FDB) for each file that 1is to
be opened simultaneously by the user program (see Section 2.2).

e Define a dataset descriptor and/or a default filename block
(see Section 2.4.1 or 2.4.2, respectively) if the user intends
to access these structures to provide reguired file
specifications to FCS.

e Establish a file storage region (FSR) within the program if the
user intends to employ record I/0 in processing files (see
Section 2.6). (The initialization procedures for FORTRAN
programs are described in detail in the FORTRAN-IV User's
Guide.)

This chapter describes the macro calls that must be invoked to provide
the necessary file-processing information for the FDB. Such
information is placed in the FDB in one of three ways:

1. By the assembly-time FDB initialization macro calls (see
Section 2.2.1).

2. By the run-time FDB initialization macro calls (see Section
2.2.2).

3. By the file-processing macro calls (see Chapter 3).

Data supplied during the assembly of the source program establish the
initial wvalues in the FDB. Data supplied at run-time can either
initialize additional portions of the FDB or change values established
at assembly-time. Likewise, the data supplied through the
file~-processing macro calls can either initialize portions of the FDB
or change previously initialized values.

Table 2-1 lists the macro calls that generate FDB information.

PREPARING FOR I/O

Table 2-1
Macro Calls Generating FDB Information

Assembly-Time FDB Run-Time FDB File-Processing
Macro Calls Macro Calls Macro Calls
FDBDFS$ (Required) FDATSR OPENS$ (All Variations)
FDATSA FDRCSR CLOSES
FDRCSA FDBKSR GETS$ (All Variations)
FDBKSA FDOPS$R PUTS (All Variations)
FDOPSA FDBFSR READS
FDBFSA WRITES

DELETS

WAITS

2.1 .MCALL DIRECTIVE - LISTING NAMES OF REQUIRED MACRO DEFINITIONS

All the assembly-time, run-time, and file-processing macro calls (see
Table 2-1 above) that the wuser intends to issue in a program must
first be listed as arguments in an .MCALL directive. So doing allows
the required macro definitions to be read in from the system macro
library during assembly.

The .MCALL directive and associated arguments must appear in the
program prior to the issuance of any macro call in the execution code
of the program. If the list of macro names is lengthy, several .MCALL
directives, each appearing on a separate source 1line, must be
specified to accommodate the entire list of macro names. The number
of such names that may appear in any given .MCALL statement is limited
only by the availability of space within that 80~byte source line.

The .MCALL directive takes the following general form:
.MCALL argl,arg2,...,argn

where: argl, represents a list of symbolic names identifying
etc. the macro definitions required in the assembly of
the user program. If more than one source line is
required to list the names of all desired macros,
each additional 1line so required must begin with
an .MCALL directive.

For clarity of functional use, the assembly-time,
run-time, and file-processing macro names may be
listed in each of three separate .MCALL
statements. The macro names may also be listed
alphabetically for readability, or they may be
intermixed, irrespective of functional use. All
these options are matters of preference and have
no effect whatever on the retrieval of macro
definitions from the system macro library.

For those users planning to invoke the command
line processing capabilities of the Get Command
Line (GCML) routine and the Command String
Interpreter (CSI), all the names of the associated
macros must also be 1listed as arguments in an
.MCALL directive. GCML and CSI, ordinarily
employed in system or application programs for
convenience in dynamically processing file
specifications, are described in detail in Chapter
6.

PREPARING FOR I/O

The .MCALL directive is described in detail in the IAS/RSX-11 MACRO-11
Reference Manual. The sample programs in Appendix D also illustrate
the use of the .MCALL directive. Note that these directives appear as
the first statements in the preparatory coding of these programs.

The object routines described in Chapter 4 should not be confused with
the macro definitions available from the system macro library. The
file-control routines, constituting a body of object modules, are
linked into the user program at task-build time from the system object
library ([1,1]SYSLIB.OLB). The reader should consult Section 4.1 for
a description of these routines.

The following statements are representative of the use of the .MCALL
directive:

.MCALL FDBDFS$,FDATSA,FDRCSA,FDOPSA,NMBLKS,FSRSZS,FINITS
.MCALL OPENSR,OPENSW,GETS$,PUTS,CLOSES

2.2 FILE DESCRIPTOR BLOCK (FDB)

THE FILE DESCRIPTOR BLOCK (FDB) is the data structure that provides
the information needed by FCS for all file I/0 operations. Two sets
of macro calls are available for FDB initialization: one set is used
for assembly-time initialization (see next section), and the other set
is used for run-time initialization (see Section 2.2.2). Run-time
macros are used to supplement and/or override information specified
during assembly. Appendixes A and B illustrate all the sections of
the FDB in detail.

2.2.1 Assembly-Time FDB Initialization Macros

Assembly-time initialization requires that the FDBDF$ macro call be
issued (see Section 2.2.1.1) to allocate space for and to define the
beginning address of the FDB. Additional macro calls can then be
issued to establish other required information in this structure. The
assembly-time macros that accomplish these functions are described in
the following sections. These macro calls take the general form shown
below:

mcnam$A pl,p2,...,pn

where: mcnam$A represents the symbolic name of the macro.
pl,p2, represents the string of initialization parameters
«..,pn associated with the specified macro. A parameter

may be omitted from the string by leaving its
field between delimiting commas null. Assume, for
example, that a macro call may take the following
parameters:

FDOPSA 2,DSPT,DFNB
Assume further that the second parameter field is
to be coded as a null specification. In this
case, the statement is coded as follows:

FDOPSA 2, ,DFNB

PREPARING FOR 1/0

Also, a trailing comma need not be inserted to
reflect the omission of a parameter beyond the
last explicit specification. For example, the
macro call

FDOPSA 2,DSPT,DFNB
need not be specified as
FDOPSA 2,DSPT,

if the last parameter (DFNB) is omitted. Rather,
such a macro call is specified as follows:

FDOPSA 2,DSPT

If any parameter is not specified, i.e., if any field 1in the macro
call contains a null specification, the corresponding cell in the FDB
is not initialized and thus remains 0.

Multiple values may be specified in a parameter field of certain macro
calls. Such values are indicated by placing an exclamation point (!)
between the values, indicating a logical OR operation to the MACRO-11
assembler. The use of multiple values in this manner is pointed out
in this manual where such specifications apply.

Throughout the descriptions of the assembly-time macros in the
following sections and elsewhere in this manual, symbols of the form
F.xxx or F.xxxx are referenced (e.g., F.RTYP). These symbols are
defined as offsets from the beginning address of the FDB, allowing
specific locations within the FDB to be referenced. Thus, the
programmer can reference or modify information within the FDB without
having to calculate word or byte offsets to specific locations.

Using such symbols in system/user software has the additional
advantage of permitting the relative position of cells within the FDB
to be changed (in a subsequent release, for example) without affecting
the user's current programs or the coding style employed in developing
new programs.

2.2.1.1 FDBDF$ - Allocate File Descriptor Block (FDB) - The FDBDFS$
macro call is specified in a MACRO-11l program to allocate space within
the program for a file descriptor block (FDB). This macro call must
be specified in the source program once for each input or output file
to be opened simultaneously by the user program in the course of
execution. Any associated assembly-time macro calls (see Sections
2.2.1.2 through 2.2.1.6) must then be specified immediately following
the FDBDF$ macro if the user desires to accomplish the initialization
of certain portions of this FDB during assembly.

The FDB allocation macro takes the following form:
label: FDBDFS$

where: label represents a user-specified symbol that names this
particular FDB and defines its beginning address.
This label has particular significance in all 1I/0
operations that require access to the data
structure allocated through this macro call. FCS
accesses the fields within the FDB relative to the
address represented by this symbol.

PREPARING FOR I/O

The following examples are representative of FDBDF$ macro calls as
they might appear in a source program:

FDBOUT: FDBDFS$;ALLOCATES SPACE FOR AN FDB NAMED
; "FDBOUT" AND ESTABLISHES THE
;BEGINNING ADDRESS OF THE FDB.

FDBIN: FDBDFS$;ALLOCATES SPACE FOR AN FDB NAMED
;"FDBIN" AND ESTABLISHES THE
;BEGINNING ADDRESS OF THE FDB.

As noted earlier, the source program must embody one FDBDF$ macro call
logically similar to those above for each file to be accessed
simultaneously by the user program. FDB's can be reused for many
different files, as long as the file currently using the FDB is closed
before the next file is opened. The only requirement is that an FDB
must be defined for every file to be opened simultaneously.

2,2.1.2 FDATS$A - Initialize File Attribute Section of FDB - The
FDATSA macro call is used to initialize the file attribute section of
the FDB when a new output file is to be created. If the file to be
processed already exists, the FDATSA initialization macro is not
required, since FCS obtains the necessary information from the first
14 bytes of the user file attribute section of the specified file's
header block (see Appendix F). This macro <call has the following
format:

FDATSA rtyp,ratt,rsiz,cntg,aloc

where: rtyp represents a symbolic value that defines the type
of records to be built as the new file is created.
One of three values must be specified, as follows:

R.FIX - Indicates that fixed-length records are to
be written in creating the file.

R.VAR - Indicates that variable-length records are
to be written in creating the file.

R.SEQ ~ Indicates sequenced records are to be
written in creating the file.

This parameter initializes FDB offset location
F.RTYP. Since the symbols R.FIX, R.VAR, and R.SEQ
initialize the same location in the FDB, these
values are mutually exclusive.

ratt represents symbolic values that may be specified
to define the attributes of the records as the new
file is created. The following symbolic values
may be specified, as appropriate, to define the
desired record attributes:

FD.FTN - Indicates that the first byte in each
record will <contain a FORTRAN carriage-control
character.

FD.CR - Indicates that the record is to be
preceded by a <LF> character and followed by a
<CR> character when the record 1is written to a
carriage-control device, e.g., a line printer or a
terminal.

rsiz

cntg

PREPARING FOR I/0

FD.BLK - Indicates that records are not allowed to
cross block boundaries.

These parameters initialize the record-attribute
byte (offset 1location F.RATT) in the FDB. The
values FD.FTN and FD.CR are mutually exclusive and
must not be specified together. Apart from this

restriction, the combination (logical OR) of
multiple parameters specified in this field must
be separated by an exclamation point (e.qg.:

FD.CR!FD.BLK).

represents a numeric value that defines the size
(in bytes) of fixed-length records to be written
to the file. This value, which initializes FDB
offset 1location F.RSIZ, need not be specified if
R.VAR has been specified as the record type
parameter above (for variable-length records). If
R.VAR or R.SEQ is specified, FCS maintains a value
in FDB offset 1location F.RSIZ that defines the
size (in bytes) of the largest record currently
written to the file. Thus, whenever an existing
file containing variable-length records is opened,
the value in F.RSIZ defines the size of the
largest record within that file. By examining the
value in this cell, a program can dynamically
allocate record buffers for its open files.

represents a signed numeric value that defines the
number of blocks that are allocated for the file
as it is created. The signed values have the
following significance:

Positive Value - Indicates that the specified
number of blocks is to be allocated contiguously
at file-create time, and further that the file is
to be contiguous.

Negative Value - Indicates that the two's
complement of the specified number of blocks is to
be allocated at file-create time, not necessarily
contiguously, and, further, that the file is to be
noncontiguous.

This parameter, which has 15 bits of magnitude
(plus a sign bit), initializes FDB offset location
F.CNTG.

If the user has a firm idea as to the desired
length of the file, it 1is more efficient to
allocate the required number of blocks at
file-create time through this parameter, rather
than requiring FCS to extend the file, if
necessary, during the writing of the file (see
aloc parameter below).

If this parameter is not specified, then the file
is created as an empty file, i.e., no space is
allocated within the file as it is created.

PREPARING FOR I/O

Issuing the CLOSES macro call at the completion of
file processing resets the value in F.CNTG to 0.
Thus, the usual procedure is to initialize this
location at run-time just before opening the file.
This action is especially necessary if the FDB is
to be re-used.

aloc represents a signed numeric value that defines the
number of blocks by which the file is extended if
FCS determines that file extension 1is necessary
during the writing of the file. When the end of
allocated space in the file 1is reached during
writing, the signed value provided through this
parameter causes file extension to occur, as
follows:

Positive Value - Indicates that the specified
number of blocks is to be allocated contiguously
as additional space within the file, and further
that the file is to be contiguous.

Negative Value - Indicates that the two's
complement of the specified number of blocks is to
be allocated noncontiguously as additional space
within the file, and further that the file is to
be noncontiguous.

This parameter, which also has 15 bits of
magnitude (plus a sign bit), initializes FDB
offset location F.ALOC. If this optional
parameter 1is not specified, file extension occurs
as follows:

1. If the number of wvirtual blocks yet to be
written is greater than 1, the file is
extended by the exact number of blocks
required to complete the writing of the file.

2. If only 1 additional block 1is required to
complete the writing of the file, the file is
extended in accordance with the volume's
default extend value.

In IAS, RSX-11D, and RSX-11M, the volume default extend size is
established through the INITIALIZE, INITVOLUME, or MOUNT command
respectively. The volume default extend size cannot be established at
the FCS level; this wvalue must be established when the volume is
initially mounted.

The following statement is representative of an FDAT$SA macro call.
This statement initializes the FDB in preparation for the creation of
a new file containing fixed-length, 80-byte records that will be
allowed to cross block boundaries.

FDAT$A R.FIX,,80.

In the above example, the record attribute (ratt) parameter has been
omitted, as indicated by the second comma (,) in the parameter string.
Also, the cntg and aloc parameters have been omitted. Their omission,
however, occurs following the last explicit specification, and their
absence need not be indicated by trailing commas in the parameter
string. Since the aloc parameter has been omitted, file extension (if
it becomes necessary) is accomplished in accordance with the current
default extend size in effect for the associated volume.

PREPARING FOR I/0

If more than one record attribute is specified in the ratt parameter
field, such specifications must be separated by an exclamation point
('), as shown below:

FDATSA R.VAR,FD.FTN!FD.BLK

The above macro call enables a file of variable-length records to be
created. The records will <contain FORTRAN vertical-formatting
information for carriage-control devices; the records will not be
allowed to cross block boundaries.

2.2.1.3 FDRCSA -~ Initialize Record-Access Section of FDB - The FDRCSA
macro call is used to initialize the record access section of the FDB
and to indicate whether record or block I/O operations are to be used
in processing the associated file.

If record I/0 operations (GET$ and PUTS$ macro calls) are vo be used,
the FDRCSA or the FDRCSR macro call (see Section 2.2.2) establishes
the FDB information necessary for record-oriented I/0. If block I/O
operations (READS and WRITES macro calls) are to be used, however, the
FDBKSA macro call (see Section 2.2.1.4) or the FDBKSR macro call (see
Section 2.2.2) must also be specified in order to establish other
values in the FDB required for block I/O. In this case, portions of
the record-access section of the FDB are physically overlaid with
parameters from the FDBKS$A/FDBKSR macro call.

Prior to issuing the OPEN$x macro call to initiate file operations,
the FDB must be appropriately initialized to indicate whether record
or block I/0 operations are to be used in processing the associated
file.

The FDRCSA macro call takes the following format:
FDRCSA racc,urba,urbs

where: racc specifies which variation of block or record 1I/O
is to be used to process the file. This parameter
initializes the record-access byte (offset
location F.RACC) in the FDB. The first value
below applies only for block I/O (READS/WRITES)
operations; all remaining values are specific to
record I/0 (GETS$/PUTS) operations:

FD.RWM - Indicates that READS/WRITES (block I/0)
operations are to be used in processing the file.
If this value is not specified, GET$/PUTS$ (record
I1/0) operations are used by default.

Specifying FD.RWM necessitates issuing an FDBKSA
or an FDBK$SR macro call in the program to
initialize other offsets in the block—-access
section of the FDB. Note also that the READS or
WRITES macro call allows the complete
specification of all the parameters required for
block I/0 operations.

FD.RAN - Indicates that random-access mode 1is to
be used in processing the file. 1If this value is
not specified, sequential-access mode is used by
default. Refer to Section 1.5 for a description
of random-access mode.

PREPARING FOR I/0

FD.PLC - Indicates that locate mode is to be used
in processing the file. If this value is not
specified, move mode is used by default.

FD.INS - This value, which applies only for
sequential files (and therefore cannot be
specified Jjointly with the FD.RAN parameter
above), indicates that a PUTS$ operation performed
within the body of the file shall not truncate the
file.

Should the user wish to perform a PUT$ operation
within the body of a file, the .POINT routine
described in Section 4.10.1 may be called. This
routine, which permits a limited degree of random
access to a file, positions the file to a
user-specified byte within a wvirtual block in
preparation for the PUT$ operation.

If FD.INS 1is not specified, a PUT§ operation
within the file truncates the file at the point of
insertion, i.e., the PUT$ operation moves the
logical end-of-file (EOF) to a point just beyond
the inserted record. However, no deallocation of
blocks within the file occurs.

Regardless of the setting of the FD.INS bit, a
PUT$ operation that is in fact beyond the current
logical end of the file resets the logical end of
the file to a point just beyond the inserted
record.

urba represents the symbolic address of a user record
buffer to be used for GET$ operations in move and
locate modes, and for PUT$S operations in 1locate
mode. This parameter initializes FDB offset
location F.URBD+2. This parameter 1is specified
only for record I/O operations.

urbs represents a numeric value that defines the size
(in bytes) of the user record buffer to be
employed for GET$ operations in move and 1locate
modes, and for PUT$ operations in locate mode.
This parameter initializes FDB offset 1location
F.URBD. This parameter is specified only for
record I/0 operations.

The user allocates and labels a record buffer in a program by issuing
a .BLKB or .BLKW directive. The address and the size of this area is
then passed to FCS as the urba and the urbs parameters above. For
example, a user record buffer may be defined through a statement that
is logically equivalent to that shown below:

RECBUF: .BLKB 82,

where RECBUF is the address of the buffer and 82(10) is its size (in
bytes).

Under certain conditions, the user need not allocate a record buffer
or specify the buffer descriptors (urba and urbs) for GET$ or PUTS
operations. These conditions are described in detail 1in Sections
3.9.2 and 3.12,2, respectively.

PREPARING FOR I/0

The following statement is representative of an FDRC$SA macro call that
is issued for a file that may be accessed in random mode:

FDRCSA FD.RAN,BUF1,160.

The address of the user record buffer is specified through the symbol
BUFl, and the size of the user record buffer (in bytes) is defined by
the numeric value 160(10).

If more than one value is specified in the record-access (racc) field,
multiple values must be separated by an exclamation point (i), as
shown below:

FDRCSA FD.RAN!FD.PLC,BUF1,160.

In addition to the functions described for the first example, this
example specifies that 1locate mode is to be used in processing the
associated file. Note that the multiple parameters specified in the
first field are separated by an exclamation point (!).

2.2.1.4 FDBK$A - Initialize Block-Access Section of FDB - The FDBKSA
macro call 1is used to initialize the block-access section of the FDB
when block I/O operations (READS and WRITES macro calls) are to be
used for file processing. 1Initializing the FDB with this macro call
allows the user to read or write virtual blocks of data within a file.

As noted in the preceding section, 1issuing the FDBKSA macro call
implies that the FDRCSA macro call has also been specified, since it
is through the FD.RWM parameter of the FDRCSA macro call that the
initial declaration of block I/0 operations is accomplished. Thus,
for block I/O operations, the FDRC$A macro call must be specified, as
well as any one of the following macro calls, to appropriately
initialize the block-access section of the FDB: FDBKSA, FDBKSR,
READS, or WRITES.

Issuing the FDBK$A macro call causes certain portions of the
record-access section of the FDB to be overlaid with parameters
necessary for block I/0 operations. Thus, the terms "record-access
section" and "block-access section" refer to a shared physical area of
the FDB that is functional for either record or block I/0 operations.

When block I/O operations are desired, the FDB must be properly
initialized through the FDBKSA or the FDBKSR macro call prior to
issuing a generalized OPENS$x macro call that references the FDB. If
record I/0O operations are to be employed, the FDBKSA or the FDBKSR
macro call must not be issued.

The FDBKSA macro call is specified in the following format:
FDBKSA bkda,bkds,bkvb,bkef,bkst,bkdn

where: bkda represents the symbolic address of an area in user
memory space to be employed as a buffer for block
I/0 operations. This parameter initializes FDB
offset location F.BKDS+2.

bkds represents a numeric value that specifies the size
(in bytes) of the block to be read or written when
a block I/0 request (READ$ or WRITES macro call)
is 1issued. This parameter initializes FDB offset
location F.BKDS. The maximum block size that can
be specified through this parameter is equal to 64
virtual blocks, i.e., 32767(10) bytes.

2-10

bkvb

bkef

bkst

PREPARING FOR I/0

represents a dummy parameter for compatibility
with the FDBKSR macro call. The bkvb parameter is
not specified in the FDBK$SA macro call for the
reasons stated 1in Item 4 of Section 2.2.2.1. 1In
short, assembly-time initialization of FDB offset
locations F.BKVB+2 and F.BKVB with the virtual
block number is meaningless, since any version of
the generalized OPEN$SxXx macro call resets the
virtual-block number in these cells to 1 as the
file 1is opened. Therefore, these cells can be
initialized only at run-time through either the
FDBKSR macro call (see Section 2.2.2) or the
I/0-initiating READS$ and WRITES$ macro calls (see
Sections 3.15 and 3.16, respectively).

This dummy parameter need be reflected as a null
specification (with a comma) in the parameter
string only in the event that an explicit
parameter follows. This null specification is
required in order to maintain the proper
positionality of any remaining field(s) in the
parameter string.

represents a numeric value that specifies an event
flag to be used during READS$/WRITES operations to
indicate the completion of a block I/O transfer.
This parameter initializes FDB offset location
F.BKEF; if not specified, event flag 32(10) is
used by default.

The function of an event flag is described in
further detail in Section 2.8.1.

represents the symbolic address of a 2-word I/0
status block in the user program. If specified,
this optional parameter initializes FDB offset
location F.BKST.

The I/0 status block, if it is to be used, must be
defined and appropriately labeled at
assembly-time. Then, if the bkst parameter is
specified, information is returned by the system
to the I/0 status block at the completion of the
block I/0 transfer. This information reflects the
status of the requested operation. If this
parameter is not specified, no information is
returned to the I/0 status block.

If an error occurs during a READ$ or WRITES
operation that would normally be reported as a
negative value in the first byte of the I/O status
block, the error is not reported unless an I/0
status block address is specified. Thus, the user
is advised to specify this parameter to allow the
return of block I/0 status information and to
facilitate normal error reporting. '

The creation and function of the I/O status block
are described in detail in Section 2.8.2.

PREPARING FOR I/0

bkdn represents the symbolic address of an optional
user-~coded AST service routine. If present, this
parameter causes the AST service routine to be
initiated at the specified address upon completion
of block 1/0; if not specified, no AST trap
occurs. This parameter initializes FDB offset
location F.BKDN.

Considerations relevant to the wuse of an AST
service routine are presented in Section 2.8.3.

The following example shows an FDBKSA macro <call that wutilizes all
available parameter fields for initializing the block-access section
of the FDB:

FDBKSA BKBUF,240.,,20.,ISTAT,ASTADR

In this macro call, the symbol BKBUF identifies a block 1I/0 buffer
reserved in the wuser program that will accommodate a 240(10)-byte
block. The virtual-block number is null (for the reasons stated above
in the description of this parameter), and the event flag to be set
upon block I/0O completion is 20(10). Finally, the symbol ISTAT
specifies the address of the I/O status block, and the symbol ASTADR
specifies the entry-point address of the AST service routine.

2.2.1.5 FDOPSA - Initialize File-Open Section of FDB - The FDOPSA
macro call is used to initialize the file-open section of the FDB. 1In
addition to a logical unit number, either a dataset-descriptor pointer
and/or a default filename block address is normally specified for each
file that is to be opened. The latter two parameters provide FCS with
the 1linkage necessary to retrieve file specifications from these
user-created data structures in the program.

Although both a dataset—descriptor pointer (dspt) and the address of a
default filename block (dfnb) may be specified for a given file, one
or the other must be present in the FDB before that file can be
opened. If, however, certain information is already present in the
filename block as the result of prior program action, neither the
dataset descriptor nor the default filename block is accessed by FCS,
and the file is opened through a process called "opening a file by
file ID." This process, which 1is an efficient method of opening a
file, is described in detail in Section 2.5.

The dspt and dfnb parameters represent address values which point to
user-defined data structures in the program. These data structures,
which are described in detail 1in Section 2.4, provide file
specifications to the FCS file-processing routines.

The FDOP$A macro call takes the following form:
FDOPSA 1lun,dspt,dfnb,facc,actl

where: lun represents a numeric value that specifies a
logical wunit number. This parameter initializes
FDB offset location F.LUN. All I/0 operations
performed in conjunction with this FDB are done
through the specified logical unit number (LUN).
Every active FDB must have a unique LUN.

dspt

dfnb

facc

PREPARING FOR I/0

The logical unit number specified through this
parameter may be any value from 1 through the
largest value specified to the Task Builder
through the UNITS option. This option specifies
the number of logical units to be used by the task
(see the Task Builder Reference Manual of the host
operating system).

represents the symbolic address of a 6-word block
in the user program containing the dataset

descriptor. This user-defined data structure
consists of a 2-word device descriptor, a 2-word
directory descriptor, and a 2-word filename

descriptor, as outlined in Section 2.4.1.

The dspt parameter initializes FDB offset location
F.DSPT. This address value, called the
dataset-descriptor pointer, is the linkage address
through which FCS accesses the fields 1in the
dataset descriptor.

When the Command String Interpreter (CSI) is used
to process command-string input, a file
specification is returned to the calling program
in a format identical to that of the manually
created dataset descriptor. The use of CSI as a
dynamic command-line processor is described in
detail in Section 6.2.

represents the symbolic address of the default
filename block. This structure 1is allocated
within the user program through the NMBLK$S macro
call (see Section 2.4.2). When specified, the
dfnb parameter initializes FDB offset 1location
F.DFNB, allowing FCS to access the fields of the
default filename block in building the filename
block in the FDB.

Specifying the dfnb parameter in the FDOP$A (or
the FDOP$R) macro call assumes that the NMBLKS$
macro call has been issued in the program.
Furthermore, the symbol specified as the dfnb
parameter in the FDOPS$SA (or the FDOPSR) macro call
must correspond exactly to the symbol specified in
the label field of the NMBLKS macro call.

represents any one, or any appropriate
combination, of the following symbolic values
indicating how the specified file 1is to be
accessed:

FO.RD - Indicates that an existing file is to be
opened for reading only.

FO.WRT - Indicates that a new file 1is to be
created and opened for writing.

FO.APD - Indicates that an existing file is to be
opened for append.

FO.MFY - Indicates that an existing file is to be
opened for modification.

actl

PREPARING FOR I/0

FO.UPD - Indicates that an existing file is to be
opened for update and, if necessary, exterded.

FA.NSP - Indicates, 1in combination with FO.WRT
above, that an o0ld file having the same file
specification is not be to superseded by the new
file. Rather, an error code is to be returned.

FA.TMP -~ Indicates, in combination with FO.WRT
above, that the created file is to be a temporary
file.

FA.SHR - Indicates that the file is to be opened
for shared access.

The facc parameter initializes FDB offset location
F.FACC. The symbolic wvalues FO.xxx, described
above, represent the logical OR of bits in FDB
location F.FACC.

The information specified by this parameter can be
overridden by an OPENS$ macro call, as described in
Section 3.7. It is overridden by an OPENSx macro
call.

represents a symbolic wvalue that 1is wused to
specify the following control information in FDB
location F.ACTL:

1. Magnetic tape position.

2. Whether a disk file that is opened for write
is to be locked if it is not properly closed,
e.g., the task terminates abnormally.

3. Number of retrieval pointers to allocate for a
disk file window.

Normallly, FCS supplies default values for F.ACTL.
However, 1if FA.ENB 1is specified in combination
with any of the symbolic values described below,
FCS uses the information in F.ACTL. FA.ENB must
be specified with the desired values to override
the defaults. The following are the defaults for
location F.ACTL.

For file creation, magnetic tapes are
positioned to the end of the volume set.

At file open and close, tapes are not rewound.

A disk file that is opened for write is locked
if it is not properly closed.

The volume default 1is wused for the file
window.

The values listed below can be used in conjunction
with FA.ENB.

FA.POS - Is meaningful only for output files and
is specified to <cause a magnetic tape to be
positioned just after the most recently closed
file for the <creation of a new file. Any files

PREPARING FOR I/O

that exist after that point are lost. If rewind
is specified, it takes precedence over FA.POS,
thus causing the tape to be positioned just after
the VOL1 1label for file creation. See Section
5.2.3.

FA.RWD - Is specified to cause a magnetic tape to
be rewound when the file is opened or closed.

Examples of the use of FA.ENB with FA.POS and
FA.RWD are provided in Section 5.2.8.

FA.DLK - Is specified to cause a disk file not to
be locked if it is not properly closed.

The number of retrieval pointers for a file window
can be specified in the low-order byte of F.ACTL.
The system normally provides 7 retrieval pointers
automatically. Retrieval pointers are used to
point to contiguous blocks of the file on disk.
Access to fragmented files may be optimized by
increasing the number of retrieval pointers, i.e.,
by increasing the size of the window. Likewise,
additional memory can be freed by reducing the
number of pointers for files with little or no
fragmentation, e.g., contiguous files.

As noted, if neither the dspt nor the dfnb parameter is specified,
corresponding offset locations F.DSPT and F.DFNB contain 0. 1In this
case, no file is currently associated with this FDB. Any attempt to
open a file with this FDB results in an open failure. Either offset
location F.DSPT or F.DFNB must be initialized with an appropriate
address value before a file can be opened using this FDB. Normally,
these cells are initialized at assembly-time through the FDOP$A macro
call; they may also be initialized at run-time through the FDOPS$R or
the generalized OPEN$x macro call (see Section 3.1).

The following examples represent the FDOPSA macro call as it might
appear in a source program:

FDOPSA 1,,DFNB

FDOPSA 2,0FDSPT

FDOPSA 2,0FDSPT,DFNB
FDOPSA 1,CSIBLK+C.DSDS
FDOPSA 1,,DFNB, ,FA.ENB!16.

Note in the first example that the dataset-descriptor pointer (dspt)
is null, requiring that FCS rely on the run-time specification of the
dataset-descriptor pointer for the FDB or the use of the default
filename block for required file information.

In the second example, a dataset-descriptor pointer (OFDSPT) has been
specified, allowing FCS to access the fields in the dataset descriptor
for required file information.

The third example specifies both a dataset-descriptor pointer and a
default filename block address, causing FDB offset locations F.DSPT
and F.DFNB, respectively, to be initialized with the appropriate
values. In this case, FCS can access the dataset descriptor and/or
the default filename block for required file information. By

PREPARING FOR I/O

convention, FCS first seeks such information in the dataset
descriptor; 1if all the required information is not present in this
data structure, FCS attempts to obtain the missing information from
the default filename block.

The fourth example shows a macro call that takes as its second
parameter a symbolic value that causes FDB offset location F.DSPT to
be initialized with the address of the CSI dataset descriptor. This
structure 1is created in the CSI control block through the invocation
of the CSI$ macro call. All considerations relevant to the use of CSI
as a dvnamic command line processor are presented in Section 6.2,

The last example illustrates the use of the parameter actl to increase
the number of retrieval pointers in the file window to 16. FA.ENB is
specified to cause the contents of F.ACTL, rather than the defaults,
to be used.

In all the examples above, the value specified as the first parameter
supplies the 1logical unit number to be used for all I/O operations
involving the associated file.

2.2.1.6 FDBFSA - Initialize Block-Buffer Section of FDB - The FDBFS$A
macro call 1is used to initialize the block buffer section of the FDB
when record I/0 operations (GET$ and PUT$ macro calls) are to be used
for file processing. Initializing the FDB with this macro call allows
FCS to control the necessary blocking and deblocking of individual
records within a virtual block as an integral function of processing
the file.

The FDBFSA macro call takes the following format:

FDBF$SA efn,ovbs,mbct,mbfg

where: efn represents a numeric value that specifies the
event flag to be wused by FCS in synchronizing
record I/O operations. This numeric value

initializes FDB offset location F.EFN. This event
flag is used internally by FCS; it must not be
set, cleared, or tested by the user.

If this parameter is not specified, event flag
32(10) 1is wused by default. A null specification
in this field is indicated by inserting a leading
comma in the parameter string.

ovbs represents a numeric value that specifies an FSR
block-buffer size (in bytes) which overrides the
standard block size for the particular device
associated with the file. This parameter is
specified only when a nonstandard block size is
desired. The numeric value so specified
initializes FDB offset location F.OVBS.

An override block size 1is allowed only for
record-oriented devices (such as line printers)
and sequential devices (such as magnetic tape
units). For block-oriented devices, the override
block size is ignored. 1In IAS and RSX-11D, for
spooled output to a record-oriented device, a
buffer less than 512(10) bytes in length must not
be allocated.

2

16

mbct

PREPARING FOR I/O

Issuing the CLOSES$ macro call (see Section 3.8)
resets offset 1location F.OVBS in the associated
FDB to 0. Therefore, this location should
typically be 1initialized at run-time just before
opening the file, particularly if an OPENS$x/CLOSES$
sequence for the file is performed more than once.

The standard block size in effect for a particular
device may be obtained through an I/O-related
system directive called Get Lun Information
(GLUNS). This directive is described in detail in
the Executive Reference Manual of the host
operating system. The standard block size for a
device is established at system—-generation time.

NOTE

For RSX-11M, FCS uses single buffering and
simply ignores the multiple-buffering

parameters (mbct and mbfg) in the
FDBKSA/FDBKSR macro call. For 1IAS and
RSX-11D, resident and nonresident
libraries support the multibuffered

version of FCS.

represents a numeric value that specifies the
multiple buffer count, i.e., the number of buffers
to be used by FCS 1in processing the associated
file. This parameter initializes FDB offset
location F.MBCT. 1If this value is greater than 1,
multiple buffering 1is effectively declared for
file processing. 1In this case, FCS employs either
read-ahead or write-behind operations, depending
on which of two symbolic values is specified as
the mbfg parameter (see below).

If the mbct parameter is specified as null or O,
FCS uses the default buffer count contained in
symbolic location .MBFCT in $$FSR2 (the program
section in the FSR containing impure data). This
cell normally contains a default buffer count of
1. If desired, this value can be modified, as
noted in the discussion following the mbfg
parameter below.

If, in specifying the FSRSZ$ macro call (see
Section 2.6.1), sufficient memory space has not
been allocated to accommodate the number of
buffers established by the mbct parameter, FCS
allocates as many buffers as can fit in the
available space. Insufficient space for at least
one buffer causes FCS to return an error code to
FDB offset location F.ERR.

The user can initialize the buffer count in F.MBCT
through either the FDBF$SA or the FDBFS$SR macro
call. The buffer count so established is not
altered by FCS and, once set, need not be of
further concern to the user.

PREPARING FOR I/0

mbfg represents a symbolic value that specifies the
type of multiple buffering to be employed in
processing the file. Either of two values may be
specified to initialize FDB offset 1location
F.MBFG:

FD.RAH - Indicates that read-ahead operations are
to be used in processing the file.

FD.WBH - Indicates that write-behind operations
are to be used in processing the file.

These parameters are mutually exclusive, i.e., one
or the other, but not both, may be specified.

Specifying this parameter assumes that the buffer
count established in the mbct parameter above is
greater than 1. If multiple buffering has thus
been declared, the omission of the mbfg parameter
causes FCS to use read-ahead operations by default
for all files opened using the OPENSR macro call;
similarly, write-behind operations are used by
default for all files opened using other forms of
the OPENS$X macro call.

If these default buffering conventions are not
desired, the wuser <can alter the wvalue in the
F.MBFG dynamically at run-time. This is done by
issuing the FDBFS$R macro call, which takes as the
mbfg parameter the appropriate control flag
(FD.RAH or FD.WBH). This action must be taken,
however, before opening the file.

Offset location F.MBFG in the FDB is reset to O
each time the associated file is closed.

For IAS and RSX-11D, the default buffer count can be changed, if
desired, by modifying a location in $$FSR2, the second of two program
sections comprising the FSR. A location defined as .MBFCT in $$FSR2
normally contains a default buffer count of 1. This default value may
be changed, as follows:

1. Apply a global patch to .MBFCT at task-build time to specify
the desired number of buffers.

2. For MACRO-11 programs, use the EXTSCT Task Builder directive
(see Section 2.7.1) to allocate more space for the FSR block
buffers; for FORTRAN programs, use the ACTFIL Task Builder
directive (see Section 2.7.2) to allocate more space for the
FSR block buffers.

Because the above procedure alters the default buffer count for all
files to be processed by the user program, it may be desirable to
force single buffering for any specific file(s) that would not benefit
from multiple buffering. 1In such a case, the buffer count in F.MBCT
for a specific file may be set to 1 by issuing the following macro
call for the applicable FDB:

FDBF$A ,,1

2-18

PREPARING FOR I1/0

The value 1 specifies the buffer count (mbct) for the desired file and
is entered into offset location F.MBCT in the applicable FDB. Note in
the example above that the event flag (efn) and the override block
buffer size (ovbs) parameters are null; these null values are used
for illustrative purposes only and should not be interpreted as
conditional specifications for establishing single-buffered
operations.

The following examples are representative of the FDBF$A macro call as
it might appear in a program:

FDBF$A 25.,,1
FDBF$A 25.,,2,FD.RAH
FDBFSA ,,2,FD.WBH

The first example specifies that event flag 25(10) is to be wused in
synchronizing record I/0 operations and that single buffering is to be
used in processing the file.

The second example also specifies event flag 25(10) for synchronizing
record I/O operations, and in addition establishes 2 as the multiple
buffer count. The buffers so specified are to be used for read-ahead
operations, as indicated by the final parameter.

The last example allows event flag 32(10) to be used by default for
synchronizing record I/0 operations, and the two buffers specified in
this case are to be used for write-behind operations.

Note in all three examples that the second parameter, i.e., the
override block size parameter (ovbs), is null; thus, the standard
block size in effect for the device in question will be used for all
file I/0 operations.

2.2.2 Run-Time FDB Initialization Macros

Although the FDB is allocated and can be initialized during program
assembly, the contents of specific sections of the FDB can also be
initialized or changed at run time by issuing any of the following
macro calls:

FDATSR - Initializes or alters the file-attribute section of
the FDB.

FDRCSR - Initializes or alters the record-access section of
the FDB.

FDBKSR - Initializes or alters the block-access section of the
FDB (see Item 4 below).

FDOPSR - Initializes or alters the file-open section of the
FDB.

FDBFS$SR - Initializes or alters the block-buffer section of the
FDB. :

There are no default values for run-time FDB macros (except for the
FDB address). At run-time, the values currently in the FDB are used
unless they are explicitly overridden. For example, values stored in
the FDB at assembly time are wused at run-time unless they are
overridden.

PREPARING FOR I/O

2.2.2.1 Run-Time FDB Macro-Call Exceptions - The format and the
parameters of the run-time FDB initialization macros are identical to
the assembly-time macros described earlier, except as noted below:

1.

2.

An R rather than an A must appear as the 1last character in
the run-time symbolic macro name.

The first parameter in all run-time macro calls must be the
address of the FDB associated with the file to be processed.
All other parameters in the run-time macro calls are
identical to those described in Sections 2.2.1.2 through
2.2.1.6 for the assembly-time macro calls, except as noted in
Items 3 and 4 below.

The parameters in the run-time macro calls must be valid
MACRO-11 source-operand expressions. These parameters may be
address values or literal values; they may also represent
the contents of registers or memory locations. In short, any
value that is a valid source operand in a MOV or MOVB
instruction may be specified in a run-time macro call. 1In
this regard, the following conventions apply:

a. If the parameter is an address value or a 1literal value
that is to be placed in the FDB, i.e., if the parameter
itself is to be taken as an argument, it must be preceded
by the number sign (#). This symbol is the immediate
expression indicator for MACRO-11 programs, causing the
associated argument to be taken literally in initializing
the appropriate cell in the FDB. Such literal values may
be specified as follows:

FDOP$SR #FDBADR, #1, #DSPT, #DFNB

b. If the parameter is the address of a location containing
an argument that is to be placed 1in the FDB, the
parameter must not be preceded by the number sign (#).
Such a parameter may be specified as follows:

ONE: .WORD 1

FDOPSR #FDBADR,ONE, #DSPT, #DFNB

where ONE represents the symbolic address of a location
containing the desired initializing value.

c. Also, if the parameter is a register specifier (e.qg.,
R0O), the parameter must not be preceded by the number
sign (#). Register specifiers are defined MACRO-11
symbols and are valid expressions in any context.

Thus, in contrast, parameters specified in assembly-time
macro calls are used as arguments in generating data in .WORD
or .BYTE directives, while parameters specified in run-time
macro calls are used as arguments in MOV and MOVB machine
instructions.

As noted in the description of the FDBK$A macro call in
Section 2.2.1.4, assembly~time initialization of the FDB with
the virtual-block number is meaningless, since issuing the
OPENSx macro call to prepare a file for processing
automatically resets the virtual-block number in the FDB to
1. For this reason, the virtual-block number can be
specified only at run-time after the file has been opened.

2-20

PREPARING FOR I/0

This may be accomplished by issuing either the FDBK$R macro
call or the I/0-initiating READS/WRITES macro call. In all
three cases, the relevant field for defining the wvirtual
block number is the bkvb parameter. The READS$ and WRITES
macro calls are described in detail in Sections 3.15 and
3.16, respectively.

At assembly-time, the user must reserve and label a 2-word
block in the program which 1is to be used for temporarily
storing the virtual-block number appropriate for intended
block I/O operations. Since the user is free to manipulate

the contents of these two locations at will, any
virtual-block number consistent with intended block 1I/0O
operations may be defined. By specifying the symbolic

address (i.e., the label) of this field as the bkvb parameter
in the selected run-time macro call, the virtual-block number
is made available to FCS.

In preparing for block I/0 operations, the following general
procedures must be performed:

a. At assembly-time, reserve a 2-word block in the user
program through a statement that is logically equivalent
to the following:

VBNADR: .BLKW 2

The label VBNADR names this 2-word block and defines its
address. This symbol is used subsequently as the bkvb
parameter in the selected run-time macro call for
initializing the FDB.

b. At run-time, 1load this field with the desired
virtual-block number. This operation may be accomplished
through statements logically egquivalent to those shown

below:
CLR VBNADR
MOV #10400,VBNADR+2

Note that the first word of the block is cleared. The
MOV instruction then loads the second (low-order) word of
the block with a numeric value. This value constitutes
the 16 1least significant bits of the virtual block
number.

If the desired virtual-block number cannot be completely
expressed within 16 bits, the remaining portion of the
virtual-block number must be stored in the first
(high-order) word of the block. This may be accomplished
through statements logically equivalent to the following:

MOV #1,VBNADR \
MOV $10400, VBNADR+2

As a result of these two instructions, 31 bits of wvalue
are defined in this 2-word block. The first word
contains the 15 most significant bits of the
virtual-block number, and the second word contains the 16
least significant bits. Thus, the virtual-block number
is an unsigned value having 31 bits of magnitude. The
user must ensure that the sign bit in the high-order word
is not set.

PREPARING FOR I/0

c. Open the desired file for processing by 1issuing the
appropriate version of the generalized OPENSx macro call
(see Section 3.1).

d. Issue either the FDBKSR macro call or the READS/WRITES
macro call, as appropriate, to initialize the relevant
FDB with the desired virtual-block number.

If the FDBKSR macro call is elected, the following is a
representative example:

FDBKSR #FDBIN, ,, #VBNADR

Regardless of the particular macro call wused to supply
the virtual-block number, the two words at VBNADR are
loaded into F.BKVB and F.BKVB+2. The first of these
words (F.BKVB) is 0 if 16 bits are sufficient to express
the desired virtual-block number. The 1I/0-initiating
READS$/WRITES macro call may then be issued.

Should the user, however, choose to initialize the FDB
directly through either the READS$ or WRITES macro call,
the virtual-block number may be made available to FCS
through a statement such as that shown below:

READS #FDBIN, #INBUF, #BUFSIZ, #VBNADR

The symbol VBNADR represents the address of the 2-word
block in the wuser program containing the virtual-block
number.

2.2.2.2 Specifying the FDB Address in Run~Time Macro Calls - 1In
relation to Item 2 of the exceptions noted above, the address of the
FDB associated with the file to be processed corresponds to the
address value of the user-defined symbol appearing in the label field
of the FDBDF$ macro call (see Section 2.2.1.1). For example, the
statement

FDBOUT: FDBDFS$

in addition to allocating space for an FDB at assembly time, binds the
label FDBOUT to the beginning address of the FDB associated with this
file. The address value so established can then be specified as the
initial parameter in a run~time macro call in any one of three ways,
as follows:

1. The address of the appropriate FDB may be specified as an
explicit parameter in a run-time macro call, as indicated in
the following statement:

FDAT$SR #FDBOUT, #R.VAR, #FD.CR

The argument FDBOUT is taken literally by FCS as the address
of an FDB; furthermore, this address value, by convention,
is stored in general register 2zero (RO). Whenever this
method of specifying the FDB address 1is employed, the
previous contents of RO are overwritten (and thus destroyed).
Therefore, the user must exercise care in issuing subsequent
run-time macro calls to ensure that the present value of RO
is suitable to current purposes.

2-22

PREPARING FOR I/O

2. A general register specifier may be used as the initial
parameter in a run-time macro call. When a register other
than RO is used, the contents of the specified register are
moved to RO. The previous contents of RO are overwritten
(and thus destroyed).

The following statement reflects the use of a general
register to specify the FDB address:

FDATSR RO, #R.VAR,#FD.CR

In this case, the current contents of RO are taken by FCS as
the address of the appropriate FDB. This method assumes that
the address of the FDB has been previously 1loaded into RO
through some overt action. Note, when using this method to
specify the FDB address, that the immediate expression
indicator (#) must not precede the register specifier (RO).

3. A null specification may also be wused as the initial
parameter in a run-time macro call, as shown below:

FDATSR , #R.VAR,#FD.CR

In this instance, the current contents of RO are taken by
default as the address of the associated FDB. As in method 2
above, RO is assumed to contain the address of the desired
FDB. Although the comma in this instance constitutes a valid
specification, the user is advised to employ methods 1 and 2
for consistency and clarity of purpose.

In relation to the foregoing, it should be understood that these three
methods of specifying the FDB address also apply to all the FCS
file-processing macro calls described in Chapter 3.

2.3 GLOBAL VERSUS LOCAL DEFINITIONS FOR FDB OFFSETS

Although the FDB offsets can be defined either 1locally or globally,
the design of FCS does not require that the user be concerned with the
definition of FDB offsets 1locally. To some extent, this design
consideration is based on the manner in which MACRO-~11 handles
symbols.

Whenever a symbol appears in the source program, MACRO-11
automatically assumes that it 1is a global symbol unless it is
presently defined within the current assembly. Such a symbol must be
defined further on in the program; otherwise, it will be treated by
MACRO-11 as a default global reference, requiring that it be resolved
by the Task Builder.

Thus, the question of global versus local symbols may simply be a
matter of the programmer's not defining the FDB offsets and bit values
locally in coding the program. Such undefined symbols thus become
global references, which are reduced to absolute definitions at
task-build time.

It should be noted that global symbols may be used as operands and/or
macro-call parameters anywhere in the source program coding, as
described in the following section.

PREPARING FOR I/O

2.3.1 Specifying Global Symbols in the Source Coding

Throughout the descriptions of the assembly-time macros (see Sections
2.2.1.2 through 2.2.1.6), global symbols are specified as parameters
in the macro calls. As noted earlier, such symbols are treated by
MACRO-11 as default global references.

For example, the global symbol FD.RAN may be specified as the initial
parameter 1in the FDRC$SA macro call (see Section 2.2.1.3). At
task-build time, this parameter is reduced to an absolute symbol
definition, «causing a prescribed bit to be set in the record=access
byte (offset location F.RACC) of the FDB.

Global symbols may also be used as operands in user program
instructions to accomplish operations associated with FDB offset
locations. For example, global offsets such as F.RACC, F.RSIZ, and
F.RTYP may be specified as operands in the source coding. Assume, for
example, that an FDBDF$ macro call (see Section 2.2.1.1) has been
issued in the source program to allocate space for an FDB, as follows:

FDBIN: FDBDFS$

The coding sequence shown below may then appear in the source program,
illustrating the use of the global offset F.RACC:

MOV #FDBIN,RO
MOVB #FD.RAN, F.RACC (RO)

Note that the beginning address of the FDB is first moved into general
register 2zero (RO). However, if the desired value already exists in
RO as the result of previous action in the program, the user need
issue only the second MOV instruction (which appropriately references
RO). As a consequence of this instruction, the value FD.RAN
initializes FDB offset location F.RACC.

An equivalent instruction is the following:
MOVB #FD.RAN,FDBIN+F.RACC

which likewise initializes offset location F.RACC in the FDB with the
value of FD.RAN. Global symbols may be used anywhere in the program
in this manner to effect the dynamic storage of values within the FDB.

2.3.2 Defining FDB Offsets and Bit Values Locally

The user who wishes to declare explicitly that all FDB offsets and bit
values are to be defined locally may do so by invoking two macro calls
in the source program. The first of these, FDOFSL, causes the offsets
for FDB's to be defined within the user program. Similarly, bit
values for all FDB parameters may be defined locally by invoking the
FCSBT$ macro call. These macro calls may be invoked anywhere in the
user program.

When issued, the FDOF$SL and FCSBT$ macro calls define symbols in a
manner roughly equivalent to:

F.RTYP = xxXxx
F.RACC = XxxxX
F.RSIZ = XxxXx

where xxxx represents the value assigned to the corresponding symbol.

PREPARING FOR I1/0

In other words, the macros for defining FDB offsets and bit values
locally do not generate any code. Their function is simply to create
absolute symbol definitions within the program at assembly-time. The
symbols so defined, however, appear in the MACRO-11 symbol table,
rather than in the source-program listing. Such 1local symbol
definitions are thereby made available to MACRO-1l1l during assembly,
rather than forcing them to be resolved by the Task Builder.

Whether or not the FDOFS$SL and FCSBTS$ macro calls are invoked should
not in any way affect the coding style or the manner in which the FDB
offsets and bit values are used.

Note, however, if the FDOFSL macro call is issued, the NBOFSL macro
call for the local definition of the filename block need not be issued
(see Section 2.4.,2). The FDOFSL macro call automatically defines all
FDB offsets locally, including those for the filename block.

If any of the above named macro calls is to be 1issued in the user
program, it must first be listed as an argument in an .MCALL directive
(see Section 2.1).

2.4 CREATING FILE SPECIFICATIONS WITHIN THE USER PROGRAM

Certain information describing the file must be present in the FDB
before the file can be opened. The file is located using a file
specification that contains the following:

1. A device name and unit number;

2., A directory string consisting of a group number and a member
number that specify the user file directory (UFD) to be used
for the file. The term "UFD" is synonymous with the term
"file directory string" appearing throughout this manual.

3. A filename;
4, A file type (RSX-1l) or file extension (IAS):
5. A file version number.

The term "file specifier" is sometimes used as a synonym for "file
specification."

A file specification describing the file to be processed is
communicated to FCS through two user-created data structures:

1. The dataset descriptor. This tabular structure may be
created and initialized manually through the use of .WORD
directives. 'Section 2.4.1 describes this data structure in
detail.

2. The default filename block. In contrast to the
manually-created dataset descriptor, the default filename
block is created by issuing the NMBLK$S macro call. This
macro call allocates & block of storage in the user program
at assembly-time and initializes this structure with
parameters supplied in the call. This structure is described
in detail in Section 2.4.2.

2-25

PREPARING FOR I/O

As noted in Section 2.2.1.5, the FDOP$SA or the FDOPSR macro call is
issued to initialize the FDB with the addresses of these data
structures. These address values are supplied to FCS through the dspt
and dfnb parameters of the selected macro call. FCS uses these
addresses to access the fields of the dataset descriptor and/or the
default filename block for the file specification required in opening
a specified file.

By convention, a required file specification is first sought by FCS in
the dataset descriptor. Any non-null data contained therein is
translated from ASCII to Radix-50 form and stored in the appropriate
offsets of the filename block. This area of the FDB then serves as
the execution-time repository for the information describing the file
to be opened and processed. If the dataset descriptor does not
contain the required information, FCS attempts to obtain the missing
information from the default filename block. 1If neither of these
structures contains the required information, an open failure occurs.

Note, however, that the device name and the unit number need not be
specified in either the dataset descriptor or the default filename
block, since these values are defaulted to SYO: if not explicitly
specified.

The FCS file-processing macro calls used in opening files are
described in Chapter 3, beginning with the generalized OPENS$Xx macro
call in Section 3.1.

For a detailed description of the format and content of the filename
block, the reader should refer to Appendix B.

2.4.1 Dataset Descriptor

The dataset descriptor is often oriented toward the use of a fixed
(built-in) filename in the user program. A given application program,
for example, may require access only to a 1limited and nonvariable
number of files throughout its execution. By defining the names of
these files at assembly-time through the dataset-descriptor mechanism,
such a program, once initiated, executes to completion without
requiring additional file specifications.

This structure, a 6-word block of storage that may be created manually
within the user program through the use of .WORD directives, contains
information describing a file that the user intends to open during the
course of program execution. In creating this structure, any one or
all of three possible string descriptors may be defined for a
particular file, as follows:

1. A 2-word descriptor for an ASCII device name string;

2, A 2-word descriptor for an ASCII file directory string;
and/or

3. A 2-word descriptor for an ASCII filename string.

This data structure is allocated in the user program in the following
format:

DEVICE-NAME STRING DESCRIPTOR

word 1 -

Word 2 -

PREPARING FOR I/O

Contains the length (in bytes) of the ASCII device
name string.
This string consists of a 2-character alphabetic
device name, followed by an optional 1- or 2-digit
octal unit number. These strings may be created
by issuing statements such as those below:

DEVNM: .ASCII /DKO:/

DEVNM: .ASCII /TT10:/

Contains the address of the ASCII device name
string.

DIRECTORY STRING DESCRIPTOR

word 3 -

Word 4 -

Contains the 1length (in bytes) of the ASCII
file-directory string.

This string consists of a group number and a
member number, separated by a comma (,). The
entire string 1is enclosed in brackets. For
example, [200,200] 1is a directory string. A
directory string can be <created by issuing
statements such as those that follow:

DIRNM: .ASCII /[200,200]/
DIRNM: .ASCII /[40,100]1/

If the user wishes to specify an explicit file
directory different from the UIC under which he is
currently running, the dataset-descriptor
mechanism permits that flexibility.

Contains the address of the ASCII file-directory
string.

FILENAME STRING DESCRIPTOR

Word 5 -

Word 6 -

Contains the 1length (in bytes) of the ASCII
filename string.

This string consists of a filename up to 9
characters in length, an optional 3-character file
type designator, and an optional file version
number. The filename and file type must be
separated by a dot (.), and the file version
number must be preceded by a semicolon. A
filename string may be created as shown below:

FILNM: .ASCII /PROG1.0BJ;7/

Only the characters A through Z and 0 through 9
may be used in composing an ASCII filename string.

Contains the address of the ASCII filename string.

A length specification of 0 in Word 1, 3, or 5 of the dataset
descriptor indicates that the corresponding device-name, directory, or
filename string is not present in the user program. For example, the
coding below <creates a dataset descriptor containing only a 2-word
ASCII filename string descriptor:

PREPARING FOR I/0

FDBOUT: FDBDFS$;CREATES FDB.
FDAT$SA R.VAR,FD.CR ;INITIALIZES FILE-ATTRIBUTE SECTION.
FDRCSA ,RECBUF,80. ;INITIALIZES RECORD-ACCESS SECTION.

FDOP$A OUTLUN,OFDSPT ;INITIALIZES FILE-OPEN SECTION.

.

OFDSPT: .WORD 0,0 ;NULL DEVICE-NAME DESCRIPTOR.
.WORD 0,0 ;NULL DIRECTORY DESCRIPTOR.
+WORD ONAMSZ ,0ONAM ;FILENAME DESCRIPTOR.

ONAM: .ASCII /OUTPUT.DAT/ ;DEFINES FILENAME STRING.
ONAMSZ=.-ONAM ;DEFINES LENGTH OF FILENAME STRING.

Note first that an FDB labelled FDBOUT is created. Observe further
that the FDOP$SA macro call takes as its second parameter the symbol
OFDSPT. This symbol represents the address value stored in FDB offset
location F.DSPT. This value enables the .PARSE routine (see Section
4.7.1) to access the fields of the dataset descriptor in building the
filename block.

The symbol OFDSPT also appears in the label field of the first .WORD
directive, defining the address of the dataset descriptor for the
.PARSE routine. The .WORD directives each allocate 2 words of storage
for the device-name descriptor, the file-directory descriptor, and the
filename descriptor, respectively.

In the example above, however, note that the first two descriptor
fields are filled with zeros, indicating null specifications. The
last .WORD directive allocates 2 words that contain the size and the
address of the filename string, respectively. The filename string
itself is explicitly defined in the .ASCII directive that follows.

Note that the statements defining the filename string need not be
physically contiguous with the dataset descriptor. For each such
ASCII string referenced in the dataset descriptor, however,
corresponding statements must appear elsewhere in the source program
to define the appropriate ASCII data string(s).

A dataset descriptor for each of several files to be accessed by the
user program may be defined in this manner.

2.4.2 Default Filename Block - NMBLKS Macro Call

As noted earlier, the user may also define a default filename block in
the program as a means of providing required file information to FCS.
For this purpose, the NMBLKS$ macro call may be issued in connection
with each FDB for which a default filename block is to be defined.
When this macro call is issued, space is allocated within the wuser
program for the default filename block, and the appropriate locations
within this data structure are iniltialized according to the parameters
supplied in the call.

2-28

PREPARING FOR I/0

Note in the parameter descriptions below that symbols of the form
N.xxxx are used to represent the offset locations within the filename
block. These symbols are differentiated from those that apply to the
other sections of the FDB by the beginning character N. All versions
of the generalized OPENS$x macro call (see Section 3.1) use these
symbols to identify offsets 1in storing file information in the
filename block.

The NMBLKS macro call is specified in the following format:
label: NMBLKS$ fnam,ftyp,£fver,dvnm,unit

where: label represents a user-defined symbol that names the
default filename block and defines its address.
This label 1is the symbolic value normally
specified as the dfnb parameter when the FDOPS$SA or
the FDOPS$R macro call is issued. This causes FDB
offset location F.DFNB to be initialized with the
address of the default filename block.

fnam represents the default filename. This parameter
may consist of up to 9 ASCII characters. The
character string is stored as 6 bytes in Radix-50
format, starting at offset location N.FNAM of the
default filename block.

ftyp represents the default file type. This parameter
may consist of wup to 3 ASCII characters. The
character string is stored as 2 bytes in Radix-50
format in offset location N.FTYP of the default
filename block.

fver represents the default file-version number
(binary). When specified, this binary value
identifies a particular version of a file. This
value 1is stored in offset location N.FVER of the
default filename block.

dvnm represents the default name of the device upon
which the volume containing the desired file is
mounted. This parameter consists of 2 ASCII
characters that are stored in offset location
N.DVNM of the default filename block.

unit represents a binary value identifying which unit
(among several 1like wunits) is to be used in
processing the file. 1If specified, this numeric
value 1is stored in offset location N.UNIT of the
default filename block.

Only the characters A through Z and 0 through 9 may be wused in
composing the filename and file type strings discussed above.

Although the file version number and the unit number discussed above
are binary values, these numbers are normally represented in octal
form when printed, when input via a command string, or when supplied
through a dataset-descriptor string.

As evident from the foregoing, all the default information supplied in
the NMBLK$ macro call is stored in the default filename block at
offset locations that correspond to identical fields in the filename
block within the FDB. This default information is moved into the
corresponding offsets of the filename block when any version of the
generalized OPENSx macro call 1is issued under any of the following
conditions:

2-29

PREPARING FOR I/O

1. All the file information required by FCS to open the file is
not present in the dataset descriptor. Missing information
is then sought in the default filename block by the .PARSE
routine (see Section 4.7.1), which is automatically invoked
as a result of issuing any version of the generalized OPENS$x
macro call.

2. A dataset descriptor has not been created in the user
program.

3. A dataset descriptor is present in the user program, but the
address of this structure has not been made available to FCS
through any of the assembly-time or run-time macro calls that
initialize FDB offset location F.DSPT.

The following coding illustrates the general method of specifying the
NMBLKS$ macro call:

FDBOUT: FDBDFS$;ALLOCATES SPACE FOR AN FDB.
FDAT$SA R.VAR,FD.CR ; INITIALIZES FILE-ATTRIBUTE SECTION.
FDRCSA ,RECBUF,80. ; INITIALIZES RECORD-ACCESS SECTION.
FDOPSA OUTLUN,,OFNAM ;INITIALIZES FILE-OPEN SECTION.

FDBIN: FDBDFS$;ALLOCATES SPACE FOR AN FDB.
FDRCSA ,RECBUF,80. ;INITIALIZES RECORD-ATTRIBUTE SECTION.
FDOPSA INLUN, ,IFNAM s INITIALIZES FILE-OPEN SECTION.

OFNAM: NMBLK$ OUTPUT,DAT ;ESTABLISHES FILENAME AND FILE TYPE.

IFNAM: NMBLKS$ INPUT,DAT,,DT,l ;ESTABLISHES FILENAME, FILE TYPE,
;DEVICE NAME, AND UNIT NUMBER.

The first NMBLK$ macro call in the coding sequence above creates a
default filename block to establish default information for the FDB
named FDBOUT. The label OFNAM in this macro defines the beginning
address of the default filename block allocated within the user
program. Note that this symbol is specified as the dfnb parameter in
the FDOP$A macro call associated with this default filename block to
initialize the file-open section of the corresponding FDB. The
accompanying parameters in the first NMBLK$ macro call define the
filename and the file type, respectively, of the file to be opened;
all remaining parameter fields in this call are null.

The second NMBLK$S macro call accomplishes essentially the same
operations in connection with the FDB named FDBIN. Note in this macro
call that the third parameter (the file version number) is null, as
reflected by the extra comma. This null specification indicates that
the latest version of the file is desired. All other parameter fields
contain explicit declarations defining default information for the
applicable FDB.

The offsets for a filename block can be defined locally in the user
program, if desired, by issuing the following macro call:

NBOFSL

This macro call does not generate any code. Its function is merely to
define the filename-block offsets 1locally, presumably to conserve
symbol-table space at task-build time. The NBOF$L macro call need not
be issued if the FDOFSL macro call has been invoked, since the
filename block offsets are defined locally as an automatic result of
issuing the FDOF$L macro call.

PREPARING FOR 1/0

If desired, the user may initialize fields in the default filename
block directly with appropriate values. This may be accomplished with
in-line statements in the program. For example, a specific offset in
the default filename block may be initialized through coding that is
logically equivalent to the following:

DFNB: NMBLKS RSXLIB,OBJ

NUTYP: .RAD50 /DAT/

MOV NUTYP,DFNB+N.FTYP

where the symbol NUTYP in the MOV instruction represents the address
of the newly defined Radix-50 file type DAT, which is to be moved into
destination offset N.FTYP of the default filename block labeled DFNB.
Any of the offsets within the default filename block may be manually
initialized in this manner to establish desired values or to override
previously initialized values.

2.4.3 Dynamic Processing of File Specifications

Users who wish to make use of routines available from the system
object 1library ([1,1]SYSLIB.OLB) for processing command-line input
dynamically should consult Chapter 6. Chapter 6 describes the Get
Command Line (GCML) routine and the Command String Interpreter (CSI),
both of which may be linked with the user program to provide all the
logical capabilities required in processing dynamic terminal input or
indirect-command-file input.

2.5 OPTIMIZING FILE ACCESS

When certain information is present in the filename block of an FDB, a
file can be opened in a manner referred to throughout this manual as

"opening a file by file ID". This type of open requires a minimum of
system overhead, resulting in a significant increase in the speed of
preparing a file for access by the user program. If files are

frequently opened and closed during program execution, opening files
by file ID accomplishes substantial savings in overall execution time.

To open a file by file 1ID, the minimum information that must be
present in the filename block of the associated FDB consists of the
following:

1. File-Identification Field. This 3-word field, beginning at
filename block offset location N.FID, contains a file number
in the first word and a file sequence number in the second
word; the third word is reserved. The file-identification
field is maintained by the system and ordinarily need not be
of concern to the user.

2. Device~-Name Field. This 1l-word field at filename block
offset location N.DVNM contains the 2-character ASCII name of
the device on which the volume containing the desired file is
mounted.

PREPARING FOR I/O

3. Unit-Number Field. This 1l-word field at filename block
offset location N.UNIT contains a binary value identifying
the particular unit (among several like units) on which the
volume containing the desired file is mounted.

These three fields are written into the filename block in either of
two ways:

1. As a function of issuing any version of the generalized
OPENSx macro call for a file associated with the FDB in
question; or

2. As a result of initializing the filename block manually by
using the .PARSE routine (see Section 4.7.1) and the .FIND
routine (see Section 4.8.1).

These two methods of setting up the filename block in anticipation of
opening a file by file ID are described in detail in the following
sections.,

2.5.1 1Initializing the Filename Block As a Function of OPENS$x

To understand how to effect the process of opening a file by file 1D,
note that the initial issuance of the generalized OPENSx macro call
(see Section 3.1) for a given file first invokes the .PARSE routine
(see Section 4.7.1). The .PARSE routine is automatically linked into
the user program, along with the code for OPENSx. This routine first
zeros the filename block and then fills it in with information taken
from the dataset descriptor and/or the default filename block.

Thus, issuing the generalized OPEN$Sx macro <call results in the
invocation of the .PARSE routine each time a file is opened. The
.PARSE function, however, can be bypassed altogether 1in subsequent
OPEN$xXx calls by saving and restoring the filename block before
attempting to reopen that same file.

This is made possible because of the logic of the OPEN$x macro call.
Specifically, after the initial OPENS$x for a file has been completed,
the necessary context for reopening that file exists within the
filename block. Therefore, before closing that file, the entire
filename block can be copied into user memory space and later restored
to the FDB at the desired point in program flow for use in reopening
that same file.

The option to reopen files in this manner stems from the fact that FCS
is sensitive to the presence of any nonzero value in the first word of
the file identification field of the filename block. When the OPENSx
function 1is invoked, FCS first examines offset location N.FID of the
filename block. 1If the first word of this field contains a value
other than 0, FCS 1logically assumes that the remaining context
necessary for opening that file is present in the filename block, and
therefore unconditionally copens that file by file ID.

To ensure that an undesired value does not remain in the first word of
the N.FID field from a previous OPEN$x/CLOSES sequence, the first word
of this field is zeroed as the file is closed.

In opening files by file ID, the user need only ensure that manual
saving and restoring of the filename block are accomplished with
in-line MOV instructions that are consistent with the desired sequence
of processing files. This process should, in general, proceed as
outlined below:

PREPARING FOR I/0

l. Open the file in the usual manner by issuing the OPEN$x macro
call. :

2, Save the filename block by copying it into user memory space
with appropriate MOV instructions. The filename block begins
at offset location F.FNB.

The value of the symbol S.FNB is the size of the filename
block in bytes, and the value of the symbol S.FNBW is the
size of the filename block in words. If desired, the NBOFSL
macro call (see Section 2.4.2) may be invoked in the user
program to define these symbols locally. These symbolic
values may be used in appropriate MOV instructions to
accomplish the saving and restoring of the filename block.
It 1is the user's responsibility to reserve sufficient space
in the program for saving the filename block.

3. At the end of current file operations, close the file in the
usual manner by issuing the CLOSES$ macro call.

4, When, in the normal flow of program logic, that same file is
about to be reopened, restore the filename block to the FDB
by doing the reverse of Step 2.

5. Reopen the file by 1issuing any one of the macro calls
available in FCS for opening an existing file. Since the
first word of offset location N.FID of the filename block now
contains a nonzero value, FCS unconditionally opens the file
by file ID, regardless of the specific type of open macro
call issued.

Although it is necessary to save only the file-identification,
device-name, and unit-number fields of the filename block in
anticipation of reopening a file by file ID, the user is advised to
save the entire filename block. The filename, file-type,
file-version, and directory-ID fields, etc., may also be relevant,
For example, an OPENS$x, save, CLOSES$, restore, OPENS$x, and DELETS
sequence would require saving and restoring the entire filename block.
Though the user may be logically finished with file processing and may
want to delete the file, the delete operation will not work properly
unless the entire filename block has been saved and restored.

2.5.2 Manually Initializing the Filename Block

In addition to saving and restoring the filename block in anticipation
of reopening a file by file 1ID, the filename block can also be
initialized manually. If the user chooses to do so, the .PARSE and
.FIND routines (see Sections 4.7.1 and 4.8.1, respectively) may be
invoked at appropriate podints to build the required £fields of the
filename block. After the .PARSE and .FIND logic is completed, all
the information required for opening the file exists within the
filename block. When any one of the available FCS macro calls that
open existing files is then issued, FCS unconditionally opens that
file by file ID.

Occasionally, instances arise that make such manual operations
desirable, especially if the user program is operating in an overlaid
environment. In this case, it is highly desirable that the code for
opening a file be broken into small segments in the interest of

2-33

PREPARING FOR I/0

conserving memory space. Since the body of code for the OPENSx and
.PARSE functions 1is sizable, two other types of macro calls for
opening files are provided for use with overlaid programs. The OFIDS
and OFNB$ macro calls (see Sections 3.5 and 3.6, respectively) are
specifically designed for this purpose. '

The structure recommended for an overlaid environment 1is to have
either the " OFID$ or the OFNB$ code on one branch of the overlay and
the .PARSE and .FIND code on another branch. Then, if the user wishes
to open a file by file 1ID, the .PARSE and .FIND routines can be
invoked at will to insert required information in the filename block
before opening the file.

The OFIDS$ macro call can be issued only in connection with an existing
file. The OFNB§$ macro call, on the other hand, may be used for
opening either an existing file or for creating and opening a new
file. In addition, the OFNB§ macro call requires only the manual
invocation of the .PARSE routine to build the filename block before
opening the file.

If conservation of memory is an objective, and if the wuser program
will be opening both new and existing files, it is recommended that
only the OFNB$ routine be included in one branch of the overlay;
including the OFID$ routine would needlessly consume memory space.

In all cases, however, it is important to note that all the macro
calls for opening existing files are sensitive to the presence of any
nonzero value in the first word (N.FID) of the filename block. If
this field contains any value other than 0, the file is
unconditionally opened by file ID. This does not imply, however, that
only the file-identification field (N.FID) is required to open the
file in this manner. The device-name field (N.DVNM) and the
unit-number field (N.UNIT) must also be appropriately initialized.
The logic of the FCS macro calls for opening existing files assumes
that these other required fields are present in the filename block if
the file-identification field contains a nonzero value.

Because many programs continually reuse FDBs, the CLOSE$ function (see
Section 3.8) zeros the file-identification field (N.FID) of the
filename block. This action prevents the field (which pertains to a
previous operation) from being used mistakenly to open a file for a
current operation. Thus, if a user later intends to open a file by
file 1ID using information presently in the filename block, the entire
filename block (not just N.FID) must be saved before closing the file.
Then, at the appropriate point in program flow, the filename block may
be restored to open the desired file by file ID.

2.6 INITIALIZING THE FILE STORAGE REGION

The file storage region (FSR) is an area allocated in the user program
as a buffer pool to accommodate the program's block-buffer
requirements in performing record I/O (GET$ and PUTS$) operations.
Although the FSR 1is not applicable to block I/O (READS and WRITES)
operations, the FSRSZ$ macro must be issued once in every program that
uses FCS, regardless of the type of I/O to be performed.

The macro calls associated with the initialization of the FSR are
described below.

2-34

PREPARING FOR 1/0

2.6.1 FSRSZ$ - Initialize FSR at Assembly-Time

The MACRO-11 programmer establishes the size of the FSR at
assembly~-time by 1issuing an FSRSZ$ macro call. This macro call does
not generate any executable code. It merely allocates space for a
block-buffer pool in a program section named $$FSR1. The amount of
space allocated depends on information provided by the wuser, or
defaulted, during the macro call.

NOTE

The FSRSZ$ macro allocates the FCS
impure area that 1is pointed to by a
fixed location in user virtual memory.
This pointer is not altered when

overlays are loaded; therefore, the
FSRSZ$ macro must be invoked in the root
segment of a task. Unpredictable

results may occur if the FSRSZ$ macro is
invoked in more than one parallel
overlay.

The format of the FSRSZ$ macro is:
FSRSZ$ fbufs,bufsiz,psect

where: fbufs represents a numeric value that is established by
the user as follows:

1. If no record I/0 processing is to be done,
fbufs equals 0. A value of 0 indicates that
an unspecified number of files may be open
simultaneously for block I/O processing. For
example, if the user intends to access three
files for block 1I/0 operations and no files
for record I/0 operations, the FSRSZ$ macro
call takes 0 as an argument, as shown below:

FSRSZ$ O

No other parameters need be specified unless
the function of the psect parameter (described
below) is required.

2. If record I/0, using a single buffer for each
file, is to be done, fbufs represents the
maximum number of files that can be open
simultaneously for record 1/0 processing. TFor
example, an RSX-11M user might want to access
simultaneously three files for block I/O and
two files for record 1I/0. Since RSX-11M
provides single buffering only for record I/0,
and since block I/0 does not require pool
space in the FSR, this user would specify the
following FSRSZ$ macro call:

FSRSZS$ 2
Additional parameters, bufsiz and psect

(described below), could also be specified as
required.

where:

bufsiz

PREPARING FOR I/0

3. If record I/0O with multiple buffering is to be
done, fbufs represents the maximum number of
buffers ever in use simultaneously among all
files open concurrently for record 1I/0.
Assume, for example, that an RSX-11D or IAS
user's program will simultaneously access four
disk files for record I/O operations. Assume
further that the user wants double-buffering
for three of the disk files and has,
therefore, specified a multiple buffer count
of 2 in the FDBFSA macro calls (refer to
Section 2.2.1.6) for the associated files.
This wuser would then issue the following
FSRSZ$ macro call:

FSRSZ$ 7

This macro call indicates that a maximum of
seven buffers will be in use simultaneously.
This total 1is calculated as follows: one
buffer for the single-buffered file and two
buffers for each of the three double-buffered
files. Additional parameters, bufsiz and
psect (described below), could also be
specified as required.

represents a numeric value defining the total
block-buffer-pool space (in bytes) needed to
support the maximum number of files that can be
open simultaneously for record 1I/0. If this
parameter is omitted, FCS obtains a total
block-buffer-pool requirement by multiplying the
value specified in the fbufs parameter with a
default buffer size of 512 bytes. If, for
example, a maximum of 2 single-buffered disk files
will be open simultaneously for record I/O, either
of the following FSRSZ$ macro calls could be
issued:

FSRSZ$ 2
FSRSZ$ 2,1024.
If the user wishes to explicitly specify

block=-buffer-pool requirements, the following
formula must be applied:

bufsiz=(bsizel*mbcl) [+(bsize2*mbc2)...+(bsizen*mbcn)]

bsizel,
bsize2,
etc.

mbcl,
mbc2,
etc.

are the sizes, in bytes, of the buffers to support
each file. The size of a buffer for a particular
file depends on the device supporting the file.
Standard block sizes for devices are established
at system~-generation time.

are the multiple buffer counts (refer to Section
2.2.1.6) specified for the respective files. For
the purposes of this formula, RSX-11lM users must
use multiple buffer counts equal to 1.

2-36

PREPARING FOR I/O

The total value expressed by the bufsiz parameters
must always represent the worst case buffer pool
reguirements among all combinations of
simultaneously open record 1/0 files. The number
of files (or buffers) representing the worst case
is expressed as the first parameter of the macro
call.

NOTE

An IAS or RSX~11lD user must not allocate
an FSR block buffer less than 512(10)
bytes in length for spooled output to a
record-oriented device (such as a line
printer).

psect specifies the name of the program section (PSECT)
to which control returns after FSRSZ$ completes
processing. If no name 1is specified, control
returns to the blank PSECT.

2.6.2 FINITS - Initialize FSR at Run-Time

In addition to the FSRSZ$ macro call described in the preceding
section, the FINIT$ macro call must also be issued in a MACRO-11
program to call initialization coding to set up the FSR. This macro
call takes the following format:

label: FINITS

where: label represents an optional user-specified symbol that
allows control to be transferred to this location
during program execution. Other instructions in
the program may reference this label, as in the
case of a program that has been written so that it
can be restarted. Considerations relative to the
FINIT$ macro call in such a restartable program
are presented below.

The FINITS macro call should be issued in the program's initialization
code. The first FCS call issued for opening a file performs the FSR
initialization implicitly (if it has not alteady been accomplished
through an explicit invocation of the FINITS$ macro call). However, it
is necessary, in the case of a program that is written so that it can
be restarted, to issue the FPFINIT$ macto call in the program's
initialization code, as gthown in the second example below. This
requirement derives from the fact that such a program performs all its
initialization at run-time, rather than at assembly-time.
For example, a prodgram that is not written so that it can be restarted
might accomplish the initialization of the FSR implicitly through the
following macro call:
START: OPENSR #FDBIN s IMPLICITLY INITIALIZES THE FSR
+AND OPENS THE FILE.
In this case, although transparent to the user, the OPENS$SR macro call

automatically invokes the FINITS$ operation. The label START is the
transfer address of the program.

2-37

PREPARING FOR I/O

In contrast, a program that embodies the capability to be restarted
must issue the FINITS$ macro call explicitly at program initialization
in the manner shown below:

START: FINITS ;EXPLICITLY INITIALIZES THE FSR AND
OPENSR #FDBIN ;OPENS THE FILE.

In this case, the FINITS macro call cannot be invoked arbitrarily
elsewhere in the program; it must be issued at program
initialization. Doing so forces the appropriate reinitialization of
the FSR, whether or not it has been done in a previous execution of
the program through an OPEN$x macro call.

Also important in the above context is the fact that calling any of
the file-control routines described in Chapter 4, such as .PARSE,
first requires the initialization of the FSR. However, the FINITS
operation must be performed only once per program execution. Note
also that FORTRAN programs issue a FINITS$ macro call at the beginning
of the program execution; therefore, MACRO-11 routines used with the
FORTRAN object time system must not issue a FINITS macro call.

2.7 INCREASING THE SIZE OF THE FILE STORAGE REGION

Procedures for increasing the size of the FSR for either MACRO-11 or
FORTRAN programs are presented in the following sections.

2.7.1 FSR-Extension Procedures for MACRO-11 Programs

To increase the size of the FSR for a MACRO-11 program, the user has
two options:

1. Modify the parameters in the FSRSZ$ macro call to redefine
the buffer-pool requirement of files open simultaneously for
record I/0 processing. Reassemble the program.

2. Use the EXTSCT (extend program section) command at task-build
time to define the new size of the FSR. To invoke this
option, the command is specified in the following form:

EXTSCT = $$FSRl:length
where $$FSR1 is the symbolic name of the program section
within the FSR that is reserved for use as the block-buffer
pool, and "length" represents a numeric value defining the
total required size of the buffer pool in bytes.
The size of the FSR cannot be reduced at task-build time.

In calculating the total length of the FSR, either of the formulas
below may be used:

1. length = (S.BFHD*fbufs)+bufsiz
2. length = fbufs*(S,BFHD+512.)
where: S.BFHD is a symbol that defines the number of bytes

required for each block-buffer header. If
desired, this symbol may be defined locally in the
user program by issuing the following macro call:

BDOFF$ DEFSL

2-38

PREPARING FOR I/0

fbufs is a numeric value representing either the maximum
number of files open simultaneously for record I/O
(when single buffering only is wused) or the
maximum number of buffers ever in use
simultaneously among all files open concurrently
for record I/0 (when multiple-buffering is used).
Refer also to the description of this parameter in
the FSRSZ$ macro call in Section 2.6.1.

bufsiz represents a numeric value defining the total
block-buffer-pool space (in bytes) needed to
support the maximum number of files that can be
open simultaneously for record I/0. Refer to the
description of this parameter in the FSRSZ$ macro
call in Section 2.6.1.

512. is the standard default buffer size.

The EXTSCT command is described in detail in the Task Builder
Reference Manual of the host operating system.

2.7.2 FSR-Extension Procedures for FORTRAN Programs

For a FORTRAN program, if an explicit ACTFIL statement is not issued
in the optional keyword input to the Task Builder, an ACTFIL statement
with a default value of 4 1is generated automatically during
task-build. To extend the size of the FSR at task-build time, the
user may issue the following command:

ACTFIL = files

where: files represents a decimal value defining the maximum
number of files that may be open simultaneously
for record I/O processing.

This command, similar to the EXTSCT command above, causes program
section $$FSR1 to be extended by an amount sufficient to accommodate
the number of active files anticipated for simultaneous use by the
program,

The size of the FSR for a FORTRAN program can also be decreased at
task-build time. As noted above, for either 1IAS or RSX-11, the
default value for the ACTFIL command is 4. Thus, if 0, 1, 2, or 3 is
specified as the "files" parameter, the size of $$FSR1 (the
FSR-block-buffer pool) is reduced accordingly.

The ACTFIL command 1is described in detail in the Task Builder
Reference Manual of the host operating system.

2.8 COORDINATING I/O OPERATIONS

In the IAS/RSX-11 environment, user programs perform all I/0
operations by issuing GET$/PUT$ and READS/WRITES$ macro calls (see
Chapter 3). These calls do not access the physical devices in the
system directly. Rather, when any one of these calls is issued, an
I/0-related system directive called QUEUE I/0 1is invoked as the
interface between the FCS file-processing routines at the user level
and the system I/0 drivers at the device level. Device drivers are
included for all the standard I/O devices supported by IAS and RSX-11
systems. Although transparent to the user, the QUEUE I/0 directive is
used for all FCS file—access operations.

2-39

PREPARING FOR I/O

When invoked, the QUEUE I/O directive instructs the system to place an
I/0 request for the associated physical device-unit into a queue of
priority-ordered requests for that unit. This request 1is placed
according to the priority of the issuing task. As required system
resources become available, the requested I/0O transfer takes place.

As implied above, two separate and distinct processes are involved in
accomplishing a specified I/O transfer:

1. The successful queuing of the GET$/PUT$ or READ$/WRITES I/0
request; and

2. The successful completion of the requested data-transfer
operation.

These processes, both of which yield success/failure indications that
may be tested by the user program, must be performed successfully in
order for the specified I/O operation to have been completed. It is
important to note that FCS totally synchronizes record I/0 operations
for the user, even in the case of multiple-buffered operations. In
the case of block I/0 operations, the flexibility of FCS allows the
user to synchronize all block I/O activities, thus enabling the user
to satisfy logical processing dependencies within the program.

2.8.1 Event Flags

I/0 operations proceed concurrently with other system activity. After
an I/0 request has been queued, the system does not force an implied
wait for the issuing task until the requested operation is completed.
Rather, the operation proceeds in parallel with the execution of the
issuing task, and it is the task's responsibility to synchronize the
execution of I/0 requests. Tasks use event flags in synchronizing
these activities. With respect to event flags, the system merely
executes primitive operations that manipulate, test, and/or wait for
these indicators of internal task activity.

The completion of an I/0 transfer, for example, is recognized by the
system as a significant event., 1If the user has specified a particular
event flag to be used by the task in c¢oordinating I/O-completion
processing, that event flag is set, causing the system to evaluate the
eligibility of other tasks to ruh. Any event flag from 1 through
32(10) may be defined for local use by the task. If the user has not
specified an event flag, FCS uses event flag 32(10) by default to
signal the completion of I/O transfers.

Specific FDB~initialization and 1I/0-initiating macro calls in FCS
enable the user to specify event flags, if desired, that are unhique to
a particular task and that are set and reset only as a result of that
task's operation.

For record I/O operations, such an event flag may be defined through
the efn parameter of the FDBF$A or the FDBFS$SR macro call (see Section
2.2.1.6 or 2.2.2, respectively).

For block I/0 operations, an event flag may be declared through the
bkef parameter of the FDBK$A or the FDBKS$SR macro call (see Section
2.2.1.4 or 2.2.2, respectively); alternatively, a block event flag
may be declared through the corresponding parameter of the
I/0-~initiating READS or WRITES macro call (see Section 3.15 or 3.16,
respectively).

2

40

PREPARING FOR I/0O

In both record and block I/0 operations, the event flag 1is cleared
when the I/0 request 1is gqueued and set when the I/0 operation is
completed. In the case of record I/O operations, only FCS manipulates
the event flag. Additionally, the user is unaware of the event flag's
state and has no need to know. Furthermore, the user must not issue a
WAITFOR system directive predicated on the event flag used for
coordinating record I/O operations. A record I/0O operation, for
example, may not even involve an I/O transfer; rather, it may only
involve the blocking or deblocking of a record within the FSR block
buffer. On the other hand, the event flag defined for synchronizing
block I/0O operations is totally under the user's control.

Through event-associated system directives, the user can clear event
flags, set event flags, test whether a specified event flag is set, or
cause a task to be suspended until a specified event flag is set.
These event—-associated directives are described in detail in the
Executive Reference Manual of the host operating system. The setting
and checking of event flags allow tasks in a real-time system to
communicate with each other and thereby synchronize their execution.
Event flags and related device-dependencies are described in detail in
the IAS/RSX-11D Device Handlers Reference Manual and the RSX-11M I/0.
Drivers Reference Manual.

Also, a code indicating the success or failure of the QUEUE 1I/0
request resulting from the READS/WRITES macro call is returned to the
Directive Status Word ($DSW). If desired, symbolic location $DSW may
be tested to determine the status of the 1I/0O request. The
success/failure codes for the QUEUE I/O directive are 1listed in the
manuals referenced above. '

2.8.2 1I/0 Status Block

Because of the comparative complexity of block I/O operations, an
optional parameter is provided in the FDBKSA and the FDBKSR macro
calls, as well as in the READS and WRITES macro calls, that enables
the system to return status information to the user task for block I/O
operations. The I/O status block is not applicable to record 1I/0
(GETS$ or PUTS$) operations.

This optional parameter, called the I/O status block address, is made
available to FCS through any of the macro calls identified above.
When this parameter is supplied, the system returns status information
to a 2-word block reserved in the user program. Although the I/O
status block is used principally as a QUEUE I/0 housekeeping mechanism
for containing certain device-dependent information, this area also
contains information of particular interest to the user.

Specifically, the second word of the I/O status block is filled 1in
with the number of bytes transferred during a READ$S or WRITES
operation. When performing READ$ operations, it 1is good practice
always to use the value returned to the second word of the I/0 status
block as the number of bytes actually read, rather than to assume that
the requested number of bytes was transferred. Employing this
technique allows the program to properly read virtual blocks of
varying length from a device such as a magnetic tape unit, provided
that the requested byte count is at least as large as the 1largest
virtual block. (For magnetic tape units, almost all virtual blocks
are 512(10) bytes or less in 1length.) For WRITES operations, the
specified number of bytes are always transferred; otherwise an error
condition exists.

PREPARING FOR I/O

Also, the low-order byte of the first word of the 1I/0 status block
contains a code that reflects the final status of the READ§/WRITE$
operation. The codes returned to this byte may be tested to determine
the status of any given block I/O transfer. The binary values of
these status codes always have the following significance:

Code Value Meaning
+ I/0 transfer completed.
0 I/0 transfer still pending.

- I/0 error condition exists.

The format of the I/O status block and the error codes returned to the
low~order byte of its first word are described in detail in the
IAS/RSX-11D Device Handlers Reference Manual or the RSX-11M 1I/0
Drivers Reference Manual.

If the address of the I/0 status block is not made available to FCS
(and hence to the QUEUE I/O directive) through any of the macro calls
noted above, no status information is returned to the 1I/0 status
block. In this case, the fact that an error condition may have
occurred during a READ$ or WRITES$ operation is simply lost. Thus,
supplying the address of the I/O status block to the associated FDB is
highly desirable in order to facilitate normal error reporting.

An I/0 status block may be defined in the user program at
assembly-time through any storage directive logically eguivalent to
the following:

IOSTAT: .BLKW 2

where the label IOSTAT is a user-defined symbol naming the I/0 status
block and defining its address. This symbolic value is specified as
the bkst parameter in the FDBKSA or the FDBKSR macro call to
initialize FDB offset 1location F.BKST; it may also be specified as
the corresponding parameter in the READS or the WRITES macro call,
initializing this «cell in the FDB as an integral function of issuing
the desired I1/0 request.

2.8.3 AST Service Routine

An asynchronous system trap (AST) is a software-generated interrupt
that causes the sequence of instructions currently being executed to
be interrupted and control to be transferred to another instruction
sequence elsewhere in the program. If desired, the user may specify
the address of an AST service routine that 1is to be entered upon
completion of a block I/O transfer. Since an AST is a trap action, it
constitutes an automatic indication of block I/O completion.

The address of an AST service routine may be specified as an optional
parameter (bkdn) in the FDBKSA or the FDBKSR macro call (see Section
2.2.1.4 or 2.2.2, respectively); this parameter may also be specified
in the READS$ or the WRITES$ macro call, initializing the FDB at the
time the I/0O request 1is 1issued (see Section 3.15 or 3.16,
respectively).

Usually, an AST address is specified to enable a running task to be
interrupted in order to execute special code upon completion of a
block I/0 request. If the address of an AST service routine 1is not
specified, the transfer of control does not occur, and normal task
execution continues.

PREPARING FOR I/0

The main purpose of an AST service routine 1is to inform the user
program that a block I/O operation has been completed, thus enabling
the program to continue immediately with some other desired (and
perhaps logically dependent) operation (e.g., another I/0O transfer).

If an AST service routine is not provided by the user, some other
mechanism, such as event flags or the I/0 status block, must be used
as a means of determining block I/O completion. In the absence of
such a routine, for example, the user may test the low-order byte of
the first word in the I/0 status block to determine if the block 1I/0
transfer has been completed. A WAITS macro call (see Section 3.17)
may also be issued in connection with a READS or WRITES operation to
suspend task execution until a specified event flag is set to indicate
the completion of block I/O.

The implementation of an AST service routine in the user program is
application-dependent and must be coded specifically to meet
particular user I/O-processing requirements. A detailed discussion of
asynchronous system traps is beyond the scope of this document. The
reader is therefore referred to the Executive Reference Manual of the
host operating system for discussions of various trap-associated
system directives,

CHAPTER 3

FILE-PROCESSING MACRO CALLS

The user manipulates files through a set of file-processing macro
calls. These macro calls are invoked and expanded at assembly-time.
The resulting code 1is then executed at run-time to perform the
operations listed below:

OPENS$ - To open and prepare a file for processing;

OPNSS$ - To open and prepare a file for processing and to allow
shared access to that file (depending on the mode of
access) ;

OPNTS - To create and open a temporary file for processing;

OFIDS$ - To open an existing file using file-identification

information in the filename block;

OFNB$ - To open a file wusing filename information in the
filename block;

CLOSE$ - To terminate file processing in an orderly manner;

GETS - To read logical data records from a file;

GETSR - To read fixed-length records from a file in random
mode;

GETSS - To read records from a file in sequential mode;

PUTS - To write logical data records to a file;

PUTSR - To write fixed-length records to a file in random mode;

PUTSS - To write records to a file in sequential mode;

READS - To read virtual data blocks from a file;

WRITES - To write virtual data blocks to a file;

DELET$ - To remove a named file from the associated volume
directory and to deallocate the space occupied by the
file; and

WAITS - To suspend program execution until a requested block

I/0 operation is completed.

Most of the parameters associated with the file-processing macro calls
supply information to the FDB. Such parameters cause MOV or MOVB
instructions to be generated in the object <code, resulting in the
initialization of specific locations within the FDB.

FILE-PROCESSING MACRO CALLS

The final parameter in all file-processing macro calls is the symbolic
address of a user-coded error-handling routine. This routine is
entered upon detection of an error condition during the
file-processing operation. When this optional parameter is specified,
the following code is generated:

Code for macro

.

BCC nn$;TESTS C-BIT IN PROCESSOR STATUS WORD.
JSR PC,ERRLOC ; INITIATES ERROR-HANDLING ROUTINE
+AT "ERRLOC" ADDRESS.
nn$: ;CONTINUES NORMAL PROGRAM EXECUTION.

where nn$ represents an automatically generated local symbol. If the
operation is completed successfully, the C~bit (carry condition code)
in the Processor Status Word is not set, and FDB offset location F.ERR
contains a positive value. The BCC instruction then results in a
branch to the local symbol nn$ and the continuation of normal program
execution.

However, if an error condition is detected during the execution of the
file-processing routine, the C-bit in the Processor Status Word is
set, FDB offset location F.ERR contains a negative value (indicating
an error condition), and the branch to the local symbol nn$ does not
occur. Instead, the JSR instruction is executed, loading the PC with
the symbolic address (ERRLOC) of the error-handling routine and
initiating its execution.

If this optional parameter is not specified, the -error processing
routine 1is not called, and the user must explicitly test the C-bit in
the Processor Status Word to ascertain the status of the reguested
operation.

Note that the execution of the FCS file-processing routines causes all
user-program general registers to be saved except RO, which, by

convention, is used by FCS to contain the address of the FDB
associated with the file being processed.

3.1 OPEN$x - GENERALIZED OPEN MACRO CALL
Before any file can be processed by the user (or system) program, it
must first be opened. The type of action that the user intends to
perform on a file 1is indicated to FCS by an alphabetic ‘suffix
accompanying the macro name. For example, in issuing the generalized
macro call,

OPENSX

X represents any one of the following alphabetic suffixes, each of
which denotes a specific type of processing anticipated for the file:

- Read an existing file;
Write (create) a new file;

- Modify an existing file without changing its length;

c = = @
!

- Update an existing file and extend its length, if necessary;
or
A - Append (add) data to the end of an existing file,

3-2

FILE-PROCESSING MACRO CALLS

NOTE
The generalized OPENS$x macro call can be
issued without an alphabetic suffix. 1In
this case, the type of action to be
performed on the file is indicated to
FCS through an additional parameter in
the macro call. This value, called the
file-access (facc) parameter, causes

offset location F.FACC in the associated
FDB to be initialized. Section 3.7
describes this macro call in detail.

Depending on the alphabetic suffix supplied in the OPEN$x macro
certain

call,
other types of operations may or may not be allowed, as noted

below:

1. If R is specified (for reading an existing file), that file
cannot also be written, 1i.e., a PUT$ or WRITES$ operation
cannot be performed on that file.

2. If Mor U is specified (for modifying or updating an existing
file), that file can be both read and written, i.e.,
concurrent GETS$/PUT$ or READS/WRITES operations may be
performed on that file.

3. If M is specified (for modifying an existing file), that file
cannot be extended.

4., If W or A is specified (for creating a new file or appending
data to an existing file), that file may be read, written,
and/or extended.

The program that is issuing the OPEN$xXx macro call must have
appropriate access privileges for the specified action. Table 3-1
summarizes the access privileges for the various forms of the OPENS$x

macro call. This table also shows where the next record or block will
be read or written in the file after it is opened.

Table 3-1

File Access Privileges Resulting from OPEN$x Macro Call

MACRO ACCESS PRIVILEGES POSITION OF FILE AFTER OPENSX

OPENSR Read First record of existing file.

OPENSW Read, write, extend First record of new file.

OPENSM Read, write First record of existing file.

OPENSU Read, write, extend First record of existing file.

OPENSA Read, write, extend End of existing file. (For
special PUTS$R considerations,
see Section 3.13.)

3-3

FILE-PROCESSING MACRO CALLS

when any form of the OPEN$x macro call is issued, FCS first fills in
the filename block with filename information retrieved from the
dataset descriptor (see Section 2.4.1). FCS gains access to this data
structure through the address value stored in FDB offset location
F.DSPT.

If any required data has been omitted from the dataset descriptor, FCS
attempts to obtain the missing information from the default filename
block. This data structure, which may also contain user-specified
filename information, is created in the program by issuing the NMBLKS
macro call (see Section 2.4.2). FCS gains access to this structure
through the address value stored in FDB offset location F.DFNB.

The address values in offset 1locations F.DSPT and F.DFNB may be
supplied to FCS through the FDOPSA macro call, the FDOPSR macro call,
or the OPENS$x macro call. FCS requires access to the dataset
descriptor and/or the default filename block in retrieving filename
information used in opening files.

If a new file is to be created, the OPENSW macro call is issued. FCS
then performs the following operations:

1. Creates a new file and obtains file~identification
information for the file. File-identification information is
maintained by FCS in offset location N.FID of the filename
block. The filename block in the FDB begins at offset
location F.FNB.

2. 1Initializes the file attribute section of the file-header
block. The file-header block is a file system structure
maintained on the volume containing the file. Each file on a
volume has an associated file-header block that describes the
attributes of that file. FCS obtains attribute information
for a new file from the FDB associated with the file. The
format and content of a file-header block are presented 1in
detail in Appendix F.

3. Places an entry for the file in the wuser file directory
(UFD) . If, however, an entry for a file having the same
name, type, and version number already exists in the UFD, the
old file 1is deleted. 1If a particular type of macro call is
issued explicitly specifying that the file not be superseded,
the 0ld file is not deleted. This type of OPENS$ operation is
described in Section 3.7.

4., Associates the assigned logical unit number (LUN) with the
file to be created.

5. Allocates a buffer for the file from the FSR-block-buffer
pool if record I/0 (GETS$/PUTS) operations are to be used in
processing the file.

If an existing file is to be opened, any one of the following macro
calls may be 1issued: OPENSR, OPENSM, OPENSU, or OPENSA. FCS then
performs the following operations:

1. If file-identification information is not present in the
filename block, FCS constructs the filename block from
information taken from the dataset descriptor and/or the

default filename block. FPCS then searches the user file
directory (UFD) by filename to obtain the required
file-identification information. When found, this

information is stored in the filename block, beginning at
offset location N.FID.

FILE-PROCESSING MACRO CALLS

2. Associates the assigned logical unit number (LUN) with the
file.

3. Reads the file~header block and initializes the
file-attribute section of the FDB associated with the file
being opened.

4. Allocates a buffer for the file from the FSR-block-buffer

pool if record I/0 (GETS$/PUTS) operations are to be used in
processing the file.

NOTE

As described in Section 2.6, the user
allocates buffers through the FSRSZS$
macro call. The number of buffers
allocated 1is dependent upon the number
of files that the user intends to open
simultaneously for record I1/0
operations.

If block I/O operations are to be used,
FDB offset location F.RACC must be
initialized with the FD.RWM parameter
via the FDRC$A, the FDRCS$SR, or the
generalized OPENS$x macro call. This
parameter inhibits the allocation of a
buffer when the file is opened.

3.1.1 Format of Generalized OPENS$x Macro Call
The generalized macro call for opening files takes the following form:
OPEN$x fdb,lun,dspt,racc,urba,urbs,err

where: X represents the alphabetic suffix specified as part
of the macro name, indicating the desired type of
operation to be performed on the file. The
possible values for this parameter are: R, W, M,
U, or A (see Section 3.1).

fdb represents a symbolic value of the address of the
associated FDB.

lun represents the logical unit number (LUN)
associated with the desired file. This parameter
identifies the device on which the volume
containing the desired file is mounted. Normally,
the logical unit number associated with the file
is specified through the corresponding parameter
of the FDOP$A or the FDOP$SR macro call,. If so
specified, the 1lun parameter need not be present
in the OPENS$x macro call. Each FDB must have a
unique LUN.

dspt represents the symbolic address of the dataset
descriptor. Normally, this address value 1is
specified through the corresponding parameter of
the FDOP$A or the FDOPSR macro call. If so
specified, this parameter need not be present 1in
the OPENS$x macro call.

racc

urba

FILE-PROCESSING MACRO CALLS

This parameter specifies the address of the
manually created dataset descriptor (see Section
2.4.1). 1If the Command String Interpreter (CSI)
is being used to interpret command lines
dynamically, this parameter is used to specify the
address of the dataset descriptor within the CSI
control block (see offset 1location C.DSDS in
Section 6.2.2).

represents the record-access byte. One or more
symbolic values may be specified in this field to
initialize the record-access byte (F.RACC) in the
associated FDB. Any combination of the following
parameters may be specified:

FD.RWM - Indicates that block I/0 (READS/WRITES)
operations are to be used in processing the file.
If this parameter is not specified, FCS assumes by
default that record I/0 (GETS/PUTS$) operations are
to be used in processing the file.

FD.RAN - Indicates that random access to the file
is to be used for record I/0O (GET$/PUTS)
operations. If this parameter is not specified,
FCS uses sequential access by default. Refer to
Section 1.5 for a description of random-access
mode.

FD.PLC - Indicates that locate mode (see Section
1.6.2) 1is to -be used for record I/0 (GET$/PUTS)
operations. If this parameter is not specified,
FCS uses move mode (see Section 1.6.1) by default.

FD.INS - Indicates that a PUTS operation in
sequential mode in the body of a file shall not
truncate the file. Effectively, - this parameter
prevents the 1logical end of the file from being
reset to a point just beyond the inserted record.
If this parameter is not specified, a PUTS
operation in sequential mode truncates the file to
a point just beyond the inserted record, but no
deallocation of file blocks occurs.

The specification of this parameter allows a data
record in the body of the file to be overwritten.
Care must be exercised, however, to ensure that
the record being written is the same length as the
record being replaced.

If the FD.RAN parameter above 1is specified, the
file 1is accessed in random mode. In this case, a
PUT$ operation in the file, without exception,
does not truncate the file.

If the record-access byte in the FDB has already
been initialized through the corresponding
parameters of the FDRCSA or the FDRCS$R macro call,
the racc parameters need not be present in the
OPENS$x macro call.

represents the symbolic address of the user record
buffer. This parameter initializes FDB offset
location F.URBD+2.

FILE-PROCESSING MACRO CALLS

If the user-record-buffer address has already been
supplied to the FDB through the corresponding
parameter of the FDRCS$SA or the FDRCSR macro call,
this parameter need not be present in the OPENS$x
macro call.

urbs represents a numeric value defining the size of
the user record buffer (in bytes). This parameter
initializes FDB offset location F.URBD.

If the size of the user record buffer has already
been supplied to the FDB through the corresponding
parameter of the FDRCS$A or the FDRCSR macro call,
this parameter need not be present in the OPENSx
macro call.

err represents the symbolic address of an optional
user-coded error-handling routine.

Specific FDB requirements for record I/O operations (GET$ and PUTS$
macro calls) are detailed in Sections 3.9.2 and 3.12.2.

The following examples depict representative uses of the OPEN$x macro
call.

A macro call to open and modify an existing file, for example, might
take the following form:

OPENSM RO, #INLUN, ,#FD.RAN!FD.PLC

Note in this macro call that the FDB address is assumed to be present
in RO. The third parameter, i.e., the dataset-descriptor pointer, is
not specified; this null specification (indicated by the extra comma)
assumes that FDB offset location F.DSPT (if required) has already been
initialized. The last parameter, consisting of two values separated
by an exclamation point, establishes random access and locate modes
for GETS$/PUTS operations.

The following macro call might be issued to update an existing file:
OPENSU RO, #INLUN,,, #RECBUF,#80.

This macro call also assumes that the FDB address is in R0O. Note also
that the dspt and racc parameter fields are null, based on the premise
that the dataset-descriptor pointer (F.DSPT) has been provided
previously to the FDB and that the record-access byte (F.RACC) has
also been previously initialized. Finally, the last two parameters
establish the address and the size of the wuser record buffer,
respectively.

This last example shows a macro call that might be issued to allow
data to be appended to the end of a file:

OPENSA #OUTFDB

This macro call specifies the address of an FDB as the only parameter.
In this case, it is assumed that all other parameters required by FCS
in opening and operating on the file have been previously supplied to
the FDB through the appropriate assembly-time or run-time macro calls.

Note in all three examples above that the error parameter 1is not
specified, requiring that the user explicitly test the C-bit in the
Processor Status Word to ascertain the success of the specified
operation.

FILE-PROCESSING MACRO CALLS

3.1.2 FDB Requirements for Generalized OPEN$x Macro Call

The information required for opening a file may be supplied to the FDB
through the following macro calls:

1. The assembly-time macro calls described in Section 2.2.1.
2. The NMBLKS$ macro call described in Section 2.4.2.
3. The run-time macro calls described in Section 2.2.2.

4. The various macro calls described in this chapter for opening
files.

The particular combination of macro calls used to define and
initialize the FDB is a matter of choice, as indicated above. Of far
greater significance is the fact that <certain information must be
present in the FDB before the associated file can be opened. In this
regard, the following rules apply for creating and opening new files,
for opening existing files, and for specifying desired file options:

1. To Create a New File. If a new file is to be created through
the OPENSW macro call, the following information must first
be supplied to the FDB. This information may be specified
through the FDATSA macro call (see Section 2.2.1.2) or the
FDATSR macro call (see Section 2.2.2):

a. The record type must be established for record 1I/O

operations. To accomplish this, byte offset location
F.RTYP must be initialized with the following symbolic
values:

R.FIX - Indicates that fixed-length records are to be
written into the file.

R.VAR - Indicates that variable-length records are to be
written into the file.

R.SEQ -~ Indicates that sequenced records are to be
written into the file.

b. The desired record attributes must be specified for
record I/0 operations. The record attributes are defined
by initializing byte offset 1location F.RATT with the
appropriate value(s), as follows:

FD.FTN ~ Indicates that the first byte of each record is
to contain a FORTRAN carriage-control character.

FD.CR - Indicates that a line~feed (KLF>) character is to
precede each record and that a carriage-return (<CR>)
character is to follow the record when that record is
output to a device requiring carriage-control information
(e.g., to a terminal). The <LF> and <CR> characters are
not actually embedded within the record. Their presence
is merely implied through the file attribute FD.CR.

FD.BLK - Indicates that records are not allowed to «cross
block boundaries.

c. If fixed-length records are to be written to the file,
the record size (in bytes) must be specified for record
I/0 operations to appropriately initialize FDB offset
location F.RSIZ.

3-8

FILE-PROCESSING MACRO CALLS

Items a. through c. above cannot be supplied to the FDB
through any of the various macros used to create and/or open
files (e.g., OPENSW, OPENSR, etc.). Furthermore, none of the
above information is required when opening an existing file,
since FCS obtains such information from the first 14 bytes of
the user-file-attribute section of the file-header block (see
Appendix F).

To Open Either a New File or an Existing File. Regardless of
whether the file being opened is yet to be created or already
exists, the following information must be present in the FDB
before that file can be opened:

a. The record-access byte must be initialized for
record/block I/0 operations. The symbolic values below
may be specified in the FDRC$A macro call (see Section
2.2.1.3), the FDRCSR macro call (see Section 2.2.2), or
the generalized OPEN$SX macro call to initialize FDB
offset location F.RACC:

FD.RWM - Indicates that READS /WRITES (block I1/0)
operations are to be wused in processing the file. 1If
this parameter is not specified, GET$/PUTS (record 1I/0)
operations result by default.

FD.RAN - Indicates that random-access mode (GETS/PUTS
record I/O0) 1is to be used in processing the file. If
this parameter is not specified, segquential-access mode
results by default. Refer to Section 1.5 for a
description of random-access mode.

FD.PLC -~ Indicates that 1locate mode (GETS$/PUTS record
I1/0) is to be wused in ©processing the file. If this
parameter is not specified, move mode results by default.

FD.INS - Indicates that a PUT$ operation in sequential
mode in the body of a file shall not truncate the file.
If this parameter is not specified, such an operation
truncates the file. 1In this case, the logical end of the
file is reset to a point just beyond the inserted record,
but no deallocation of file blocks occurs.

b. The user-record-buffer descriptors, i.e., the urba and
urbs parameters, must be specified for record 1I/0
operations. To accomplish this, the FDRCS$SA, the FDRCSR,
or the generalized OPEN$x macro call may be used. The
selected macro call defines the address and the size of
the area reserved in the program for use as a buffer
during record I/0 operations. The urba and urbs
parameters initialize FDB offset locations F.URBD+2 and
F.URBD, respectively.

FDB requirements specific to GET$ and PUTS$ operations in
move and locate mode are presented in detail in Sections
3.9.2 and 3.12.2, respectively.

c. The logical unit number must be specified to initialize
FDB offset location F.LUN. The initialization of this
cell can be accomplished through the lun parameter of the
FDOP$SA, the FDOPS$SR, or the generalized OPENS$x macro call.
Each FDB must have a unique logical unit number.

FILE-PROCESSING MACRO CALLS

d. 1If file identification information is not already present
in the FDB, either the dataset-descriptor pointer
(F.DSPT) or the default filename-block address (F.DFNB)
must be specified to enable FCS to obtain required
filename information for use in opening the file. These
address values may be specified in either the FDOPS$A
macro call (see Section 2.1.1.5) or the FDOPS$SR macro call
(see Section 2.2.2). The generalized OPENS$X macro call
(see Section 3.1) may also be used to specify the
dataset~descriptor pointer.

e. If desired, an event flag number for synchronizing record
I/0 operations must be specified to initialize FDB offset
location F.EFN. This optional parameter may be specified
in either the FDBFSA macro call (see Section 2.2.1.6) or
the FDBF$SR macro call (see Section 2.2.2). If not
specified, FCS uses event flag number 32(10) by default
in synchronizing all record I/0 activity.

Specifying Desired File Options. If certain options are
desired for a given file, they must be specified before that
file is opened. Since this information is needed only in
opening the file, it is zeroed when the file is closed, thus
ensuring that the FDB is properly reinitialized for
subsequent use. The options that may be specified for a
given file are described below:

a. The override block size (ovbs parameter) must be
specified in either the FDBF$A or the FDBFS$SR macro call
to initialize FDB offset location F.OVBS. This parameter
need be specified only if the standard default block size
in effect for the associated device is to be overridden.
The override block size is specified only in connection
with record-oriented devices (such as line printers) and
sequential devices (such as magnetic tape units).

b. The multiple-buffer count (mbct parameter) must be
specified in either the FDBFS$A or the FDBFS$R macro call
to initialize FDB offset location F.MBCT. (The mbct
parameter is not applicable to RSX-11M.) If
multiple~buffered record I/0 operations are to be wused,
this parameter must be greater than 1, and it must agree
with the desired number of buffers to be used. This
parameter is not overlaid, nor is it zeroed when the file
is closed.

If the multiple-buffer count is not established as
described above, multiple-~buffered operations can still
be invoked by changing the default buffer count in the
FSR. A default buffer count of 1 is stored in symbolic
location .MBFCT of $$FSR2. This default value can be
altered to reflect the number of buffers intended for use
during record I/0O operations. The procedure for
modifying this cell in $$FSR2 is described at the end of
Section 2.2.1.6.

In addition, if multiple buffering is to be employed, the
appropriate control flag must be specified as the mbfg
parameter in either the FDBF$SA or the FDBFSR macro call
to appropriately initialize FDB offset location F.MBFG.
Either of two symbolic values may be specified for this
purpose, as follows:

FD.RAH - Indicates that read-ahead operations are to be
used in processing the file.

3-10

FILE-PROCESSING MACRO CALLS

FD.WBH - Indicates that write-behind operations are to be
used in processing the file.

Offset location F.MBFG need be initialized only 1if the
standard default buffering assumptions are inappropriate.
When a file is opened for reading (OPENSR), read-ahead
operations are assumed by default; for all other forms
of OPENSx, write-behind operations are assumed. It may
be useful, for example, to override the write-behind
default assumption for a file opened through the OPENS$M
or the OPENSU macro call when that file is being used
basically for sequential read operations, but scattered
updating is also being performed.

c. To allocate required file space at the time a file is
created, the c¢ntg parameter must be specified in either
the FDATSA or the FDAT$SR macro call. This parameter
initializes FDB offset location F.CNTG. A positive value
so specified results in the allocation of a contiguous
file having the specified number of blocks; a negative
value, on the other hand, results in the allocation of a
noncontiguous file having the specified number of blocks.

d. The address of the 5-word statistics block in the user
program must be moved manually into FDB offset location
F.STBK. This address value specifies an area in the user
program to which FCS returns certain statistical

information about a file when it is opened. If this
parameter is not specified, no return of such information
occurs.

The format and content of the statistics block are
presented 1in Appendix H. The user who elects to define
such an area in a program may do so with coding logically
equivalent to that shown below:

STBLK: .BLKW 5

Offset location F.STBK may then be manually initialized,
as follows:

MOV #STBLK, FDBADR+F.STBK

where STBLK is the user-defined symbolic address of the
statistics block, and the destination operand of this
instruction defines the appropriate offset location
within the desired FDB.

3.2 OPNS$x - OPEN FILE FOR SHARED ACCESS

The OPNS$x macro call is issued to open a file for shared access.
This macro call has the same format, i.e., takes the same alphabetic
suffixes and run-time parameters, as the generalized OPEN$x macro
call. The shared access conditions that result from the use of this
‘macro call are summarized in Section 1.8.

FILE-PROCESSING MACRO CALLS

3.3 OPNT$W — CREATE AND OPEN TEMPORARY FILE

The OPNTS$W macro call is issued to create and open a temporary file
for some special purpose of limited duration. If a temporary file is
to be used only once, it is best created through the OPNT$D macro call
described in the following section.

The OPNTS$SW macro call creates a file but does not enter a filename for
that file 1into any associated user directory file. This macro call
-simply enters appropriate file-identification information into the
volume's index file and, in addition, maintains the
file-identification field (offset location N.FID) 1in the associated
filename block. The index file consists of file-header blocks for
user files (see Appendix E).

In using the OPNTS$W macro call, the user bears the responsibility for
marking the temporary file for deletion, as described in the procedure
below. Then, after all operations associated with that file are
completed, closing the file results in its deallocation. All space
formerly occupied by the file is then returned for reallocation to the
pool of available storage on the volume.

Although the OPNTS$W macro call takes the same parameters as the
generalized OPENS$x macro call, the former executes faster because no
directory entries are made for a temporary file.

Creating a temporary file is usually done when a program requires a
file only for the duration of its execution (e.g., for use as a work
file). The general sequence of operations in such instances proceeds
as follows:

1. Open a temporary file by issuing the OPNTSW macro call.
Perform any desired operations on that file. If the file is
to be used only for a s"AngE (OPNT$SW/CLOSE$ sequence, go to Step
6; otherwise, continue with Step 2.

2. Before closing the file for processing, save the filename
block in the associated FDB. The general procedure for
saving (and restoring) the filename block is discussed in
Section 2.5.1.

3. Close the file by issuing the CLOSES$ macro call (see Section
3.8). Continue other processing in the program, as desired.

4, 1In anticipation of reopening the temporary file, restore the
filename block to the FDB by accomplishing the reverse of
Step 2 above.

5. Reopen the file by issuing any of the FCS macro calls that
open existing files. Resume operations on the file; repeat
the save, CLOSES$, restore, open seguence any desired number
of times.

6. Before closing the file the last time, call the .MRKDL
routine, as shown below, to mark the file for deletion:

CALL .MRKDL
The .MRKDL routine is described in Section 4.13.1.

7. Close the file by issuing the CLOSES$ macro call.

FILE~PROCESSING MACRO CALLS

If the filename block is not saved, the file identification field
therein 1is destroyed since this field is reset to 0 when the file is
closed.

Thus, not saving the filename block before closing a temporary file
results in a "lost" file, since no directory entry is made for a
temporary file. The usual procedure of listing the volume's directory
is therefore inapplicable. The only way such a file can be recovered
is to use the file-structure verification utility program (VFY) to
search the volume's index file. The VFY program has the capability to
compare the files listed in all the directories on the volume with
those 1listed in the index file. 1If a file appears in the index file,
but not in a directory, VFY identifies that file for the user. This
program 1is described in detail in the IAS System Management Guide,
RSX-11D Utility Programs Procedures Manual, and RSX-11l Utilities
Procedures Manual.

3.4 OPNTS$D - CREATE AND OPEN TEMPORARY FILE AND MARK FOR DELETION

The OPNTS$D macro call is issued to create and open a temporary file
and in addition to mark the file for deletion. File identification
information for such a file is entered into the volume's index file
and the filename block in the associated FDB (but not 1in any
associated volume directory). A file marked for deletion cannot be
opened by another program. Furthermore, when the file is closed, it
is automatically deleted from the volume, returning its space to the
pool of available storage on the volume for reallocation.

thus created is to be used only once. This 1is a particularly
desirable way to open a temporary file, since the file will be deleted
even if the program terminates abnormally without closing the file.

The OPNTS$D macro call takes the same format and parameters as the
dgeneralized OPENS$xXx macro call.

3.5 OFID$x - OPEN FILE BY FILE ID

The OFIDS$x macro call is issued to open an existing file using
information stored 1in the file-identification field (offset location
N.FID) of the filename block. Thus, issuing this macro call invokes
an FCS routine that opens a file only by file ID (see Section 2.5).
The OFIDSx call, which has the same format and takes the same
parameters as the generalized OPEN$x macro call (see Section 3.1), is
designed for use with overlaid programs.

In describing the functions of the OFIDS$x macro call, either one of
two assumptions may apply, as follows:

1. That the necessary context for opening the file has been
saved from a previous OPENSx operation and restored to the
filename block in anticipation of opening that file by file
ID. The saving and restoring of the filename block are
discussed in detail in Section 2.5.1.

2. That the desired file is to be opened for the first time. 1In
that case, the necessary context for opening the file must
first be stored in the filename block before the OFIDS macro
call can be issued.

3-13

FILE-PROCESSING MACRO CALLS

In most cases, the latter assumption applies, requiring that the
following procedures be performed: ’

1. Call the .PARSE routine (see Section 4.7.1). This routine
takes information from a specified dataset descriptor and/or
default filename block and initializes and f£fills in the
specified filename block.

2. Call the .FIND routine (see Section 4.8.1). This routine
locates an appropriate directory entry for the file (by
filename) and stores the file-identification information
therefrom in the 6-byte file~identification field of the
filename block, starting at offset 1location N.FID. As a
result of Steps 1 and 2, the necessary context then exists in
the associated filename block for opening the file by file
ID.

3. 1Issue the OFIDS$x macro call.

The advantage in using the .PARSE and .FIND routines in conjunction
with the OFID$x macro call is that the user can overlay the program,
placing .PARSE and .FIND on one branch, and the code for OFIDS$x on
another branch. This overlay structure reduces the program's overall
memory requirements.

Unlike the other FCS macro calls for opening files, the OFID$x macro
call requires a nonzero value in the first word of the file
identification field (N.FID) in order to work properly. When this
field contains a nonzero value, FCS assumes that the remaining context
necessary for opening that file is present and, accordingly, opens the
file by file ID.

3.6 OFNB$x OPEN FILE BY FILENAME BLOCK

The OFNB$x macro call is issued to open either an existing file or to
create and open a new file using filename information in the filename
block. Similar to the OFIDS$x macro call above, the OFNB$x call .is
designed for wuse with overlaid programs. However, the OFNBS$Sx macro
call differs in two important respects: it can be issued to create a
new file, and it can be issued to open a file by filename block.

The OFNBS$x call has the same format and takes the same parameters as
the generalized OPEN$x macro call as described in Section 3.1.1;
i.e.,

OFNBS$x fdb,lun,dspt,racc,urba,urbs,err

The OFNB$x macro also uses the same suffixes that are available to the
OPENS$X macro; i.e., OFNBSR, OFNBSW, OFNBS$M, OFNB$SU, OFNBSA. The
suffixes have the same meaning as they do for OPENS$x (see Table 3-1).

In describing the functions of the OFNB$x macro call, the same
assumptions outlined above for OFIDS$x apply, viz., that the filename
block has been saved and restored in anticipation of issuing the
OFNB$x macro call, or that the file is being opened for the first
time. Since the procedures for saving and restoring the filename
block are detailed in Section 2.5.1, the following discussion assumes
that the desired file is being opened for the first time. In this
case, the filename block in the FDB must be initialized, as described
below.

FILE-PROCESSING MACRO CALLS

To open a file by filename block, the following information must be
present in the filename block of the associated FDB:

1. The filename (offset location N.FNAM):;

2. The file type or extension (offset location N.FTYP);

3. The file version numbker (offset location N.FVER);

4. The directory ID (offset location N.DID);

5. The device name (offset location N.DVNM); and

6. The unit number (offset location N.UNIT).
In providing the information above to the filename block, either of

two general procedures may be used, as described in the following
sections.

3.6.1 Dataset Descriptor and/or Default Filename Block

If the dataset descriptor contains all the required information listed
above, perform the following procedures:

1. Call the .PARSE routine (see Section 4.7.1). This routine
takes information from a specified dataset descriptor and/or
default filename block and fills in the appropriate offsets
of a specified filename block.

2. Issue the OFNBSXx macro call.

3.6.2 Default Filename Block Only

If a default filename block is to be used in providing the required
information to FCS, perform the following procedures:

1. Issue the NMBLKS$ macro call (see Section 2.4.2) to create and
initialize a default filename block. With the exception of
the directory ID, this structure provides all the reguisite
information to FCS.

2. To provide the directory ID, call either of the following
routines:

a. Call the .GTDIR routine (see Section 4.9.1) to retrieve
the directory 1ID from the specified dataset descriptor
and to store the directory ID in the default filename
block; or

b. Call the .GTDID routine (see Section 4.9.2) to retrieve
the default UIC from $SFSR2 and to store the directory ID
in the default filename block.

3. Move the entire default filename block manually into the
filename block associated with the file being opened.

4. Issue the OFNBS$x macro call.
Note that the coding for OFNB$Sx operations normally resides in an

overlay apart from that containing the other FCS routines identified
above.

FILE-PROCESSING MACRO CALLS

The issuance of the OFNB$x macro call is wusually done under the
premise that the filename block contains the requisite information, as
described above. However, if the file-identification field (offset
location N.FID) in the filename block contains a nonzero value when
the call to OFNB$x is issued, the file is wunconditionally opened by
file ID.

If the user expects to open both new and existing files, and memory
conservation 1is an objective, the OFNB$x macro call is most suitable
for opening such files. The OFID$x coding should not be included 1in
the same overlay with OFNB$x, since OFID$x overlaps the function of
OFNB$x and, therefore, needlessly consumes memory space.

3.7 OPEN$ - GENERALIZED OPEN FOR SPECIFYING FILE ACCESS

Usually, when the user wishes to create a file, the filename and the
file type are specified, and FCS is allowed to assign the next higher
file version number. However, if the OPENS$SW macro call is issued for
a file having an explicit filename, file type, and file version
number, and a file of that description already exists in the specified
user file directory (UFD), the old file is superseded.

By issuing the OPENS$ macro call without an alphabetic suffix, and by
specifying two additional parameters, the wuser can inhibit the
automatic superseding of a file when a duplicate file specification is
encountered in the UFD. Rather than deleting the old version of the
file, an error indication (IE.DUP) 1is returned to offset location
F.ERR of the applicable FDB.

All parameters of this macro call are identical to those specified for
the generalized OPEN$x macro call (see Section 3.1), with the
exception of the facc parameter and the dfnb parameter. These
additional p