RSX-11M/M-PLUS

Utilities Manual
Order No. AA-FD13A-TC
Includes Update Pages

RSX-11M Version 4.2
RSX-11M-PLUS Version 3.0

digital equipment corporation - maynard, massachusetts

First Printing, December 1979
Revised, November 1981
Updated, April 1983

Revised, July 1985

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be wused or copied only in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by Digital Equipment Corporation or its
affiliated companies.

Copyright @ 1979, 1981, 1983, 1985 by Digital Equipment Corporation
All Rights Reserved.

Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL PDT
DEC/CMS EduSystem RSTS
DEC/MMS IAS RSX
DECnet MASSBUS UNIBUS
DECsystem-10 MicroPDP-11 VAX
DECSYSTEM-~20 Micro/RSTS VMS

DECUS Micro/RSX

VT
DECwriter PDP Eﬂ@ﬂﬂﬂn ZK2945

HOW TO ORDER ADDITIONAL DOCUMENTATION

In Continental USA and Puerto Rico call 800-258-1710 DIRECT MAIL ORDERS (CANADA)
In New Hampshire, Alaska, and Hawaii call 603-884-6660 Digital Equipment of Canada Ltd.
100 Herzberg Road
In Canada call 613-234-7726 (Ottawa-Huli) Kanata, Ontario K2K 2A6
800-267-6215 (all other Canadian) Attn: Direct Order Desk

DIRECT MAIL ORDERS (USA & PUERTO RICO)* DIRECT MAIL ORDERS (INTERNATIONAL)

Digital Equipment Corporation Digital Equipment Corporation

P.O. Box CS2008 PSG Business Manager

Nashua, New Hampshire 03061 c/o Digital's local subsidiary or

approved distributor

*Any prepaid order from Puerto Rico must be placed
with the local Digital subsidiary (809-754-7575)

Internal orders should be placed through the Software Distribution Center (SDC), Digitai Equipment
Corporation, Northboro, Massachusetts 01532

PREFACE

CONTENTS

SUMMARY OF TECHNICAL CHANGES

CHAPTER

CHAPTER

1

HHEHEFERHODONAU S WND -

R e e e el ol ol oy S o Sy S WPy S PRSP PR
. . . L] . [[L[] L] L] L]) L] []
BWN O

—
.

L]
—
.
[\N] [l

BB D D W N b b b b e e b e e e

[
L]

N

SN CESCE NN VNN CE N SR NN O CE XY CH XN N
. L] . . L] L) L] L] L] L] . . . L] L] .
b b s b et b e S e e e e
L[] . L] . L] L] * L] . L] L] L] . . .

VOO BB DdWWWWN R -

INTRODUCTION

RSX-11M/M-PLUS UTILITY PROGRAMS .
Line Text Editor (EDI) . « « . &

.

Peripheral Interchange Program (PIP)
File Transfer Utility Program (FLX)
Disk Volume Formatter Utility (FMT)

Bad Block Locator Utility (BAD)
Backup and Restore Utility (BRU)

Disk Save and Compress Utility Program
File Structure Verification uUtility (VF

Librarian Utility Program (LBR)
File Dump Utility (DMP)
File Compare Utility (CMP) . . .

Source Language Input Program (SLP)

Object Module Patch Utility (PAT

Task/File Patch Program (ZAP) .
COMMAND LINES . . &« ¢ ¢ o o o &
FILE SPECIFICATIONS
INVOKING THE UTILITIES

Invoking Installed Utilities .

)

Invoking a Utility and Returning

MCR

.

Invoking a Ut111ty and Returnlng

DCL & ¢ ¢ o ¢ o ¢ ¢ o o o o @

Invoking and Passing Control to a Utllity

Invoking Uninstalled Utilities .
USING INDIRECT COMMAND FILES . . .

LINE TEXT EDITOR (EDI)
USING EDI L]

Invoking EDI ¢« ¢ ¢ « & .
Entering File Specifications .

Defaults in File Specifications

Control Modes: Edit and Input .
Text Access Modes
Line~-by-Line Mode . . .
Block Mode . . . « . . .
Processing Text in Pages
Text Files . . . « « . . &

Input and Secondary Files
Output Files « « « « « « &
Terminal Conventions
Character Erase (DELETE or
Line Erase (CTRL/U) . . .
The RETURN Key . «

)

B

e o Tle o o o o o o o

iii

o

3

U

T

e ¢ ¢ o o o

)

S e o o ¢ o o s o o

t

.

~ O

e o ¢ o o o o o o o Koo ¢ o o o o o

o

o Fdo o o o o o o o o o

Ne ¢ o © o o o

(9]

(T e © o o o © ¢ 6 o o ¢ ~~¢ o o ¢ o o o

o

Control

e & 9 ©® 5 ¢ ¢ O 2 s o o o

.

@ o ® o & o ® 4 o o ¢ o 0 o * o

® o & ¢ & o ° ¢ o o * o © o ¢ o

© o ® o o o & o 6 o & 4 8 4 o o

Page

Xv

xXix

@ ® e ©® ¢ ©® ¢ ® o @ ¢ © ¢ 0 o © o © o

e ® o 0 o & 4 & ¢ & & O ¢ 0 e s ¢ o o

= e 2 e e B e B e b e s R
I

(2 2K)
o
.
.
(=
) I

|
O O o ~ NALLBDBWWWWWWWWHANNNDNND-

* o o o
=
1

| | I T T I I |
NNAAAARAATONHBWWNDN -

® o ® 5 8 ¢ ® o ¢ ¢ o 5 o ¢ o

® o ® o * o ® o o o * 2 e o o o
® o ® ¢ & 9 * 2 * ¢ ¢ o * o * o

NNONDNMNDDNNDNNODNNODNDNDDND D NN
|

April 1983

CONTENTS

Page

Terminating the Previous Text Line (ESCape or

2.1.5.4

OV ANANNM NI IINNOORONANNRNOOANNNNMONEENOOOANNCOOAHAHFAHNNNNMMMOPT TN OOYNS
Lt A At A A A A AA A A A A ANANNANNANANANNNANNNNANNOOMOO OO OOOOOOOMMOMNOMO®OMN
L B N B o I o T N O S O O O O O T O s o T T T T T T T T T T T T T T T T O T O T T T I I O I e e e e e e
NAANANANANANANANNANANNAANANNANANNANNANNNNNNNANNNNNANNNNNNANNNNNNNNaNNNNNE
¢ o o o ¢ 4 o
. L] L L] * o ¢ o o ¢ o e« o L L] .] L] [] . L[] o . . .] * @ L) . L) . ') * o . . L] . L] . o L] L] . e o o . . L] . e o . e o * o o o
® o & o * g O 4 o ¢ * 4 ¢ e * 3 ° g * ¢ * g O g * 4 ° g o ® 6 % 2 s s & 9 ° 9 & g & 4 0 ¢ & o * 4 & e * o O o * o ° o s 4 o o
12}
* e o o ® ¢ s o s * s 0 o 0 s 8 o 0 o ¢ o S o & o & o OTTI 6 & S & & ¢ O s O ¢ & o % ¢ & g & o o & S e 6 & O o * o & o o 4 ¢ o
0] c
® o o s N e * e 2 e * o e 4 0+ s e 2 * o & ¢ v o & o o o f0 © o ® o o o ©® o o o ¢ o o 4 o o ¢ o & o * o & o 5 o & ¢ * o o s 0 o
c ~E
¢ o o e e & o o 4 o s s e e s+ e s s s et s e e o i * e ® oD e * o * 2 * e * o s o 0 ¢ . 4 % o 6 o O o 6 o o & o 4 o o
S~ 00 21
¢ e 0 e d) e * 4 s 4 0 4 o 4 e 4 & s s o o o o s ¢ o 0 g8l e e o el o * s o o ¢ 4 © o s o & 4 4 6t o & o ® o & o * a4 o o ® o
w + =,
e o o o @ % e 0 s 0 o s s b+ o e s 0 4 e 4 o e * 4 e oI e e & eF e % o 6 o S o o o & e % o ¢ o % & 0 4 % & 0 e ° s o 4 o o
K=l o 0 o=
¢ e o 2D e s 4 e 0 s s s s s s s e o s 0 o ¢ o v o0 a0t e e cUY e * o S e * o s o o 2 s & e & * e e & & o e 4 v e ® 4 e o
~ +
*® & % e ([e * & & 4 O s & 4 & 4 * s 0 s O o O o * o & o MM * e o e[1] 9 © e * e O o + o © o4 ¢ o+ 6 8 & & 6 & © o ® o O 4 © ¢ e o
Q [) (8]
ao.oSoooo..oo.o..onoooo.ooY-tUocooNo..ooo.-.)ooo-.-o-oo.-...ooo.
24 (=7 3] Q
S~ % oL e s s e e % 4 o 4 s s s s s s 0 s % o & o, ertod SUY) O oY, o ¢ o o o o o o o) o * o ¢ o 0 o % 4 % 8 S 6 O e~ o o o
N e = of T m ~ o
* NG . ® e e 8 e e e e e s s s s e T M e LT o foe o ¢ o o o ¢ o~ o ® ® 4 & o & o o s S s 6 s % e, e * o
(=] —~ U0 jom] | = [} 0 [9))] m ~
[« A o -nooccooooo.ougoocoouos e Q@ .deRoo.-on-E efX] o ©® o ¢ o o o 2 e & s e+ e o e o o
B O~ 0O [=le] €T C n e —~@
L O R A T I I R I R e I I T I B I A I ~ A B o B < | I = T S S S S S o QO o o ® o ® o 0 o 0 e 0 s) e o o
e (o] 1 @ C&ME o~ —~ w1 -
. o G © o © o & o ¢ o ¢ o o o ¢ o o o 0 0 © opd o~ . =] =l e ¢ e 0 e o DA o e o e e~ e 0 e e 4 E~> o o
O M0 : B+ c P EOH ~0 < a [a)] =
T D> Wt DUI o ¢ o ¢ o ¢ o o o s s o s 0 0 0 0 s s ceMO *TOVK o~ ¢ o s s o D e o5~ o 0 s 1] ¢ * e & e~ Q0 e o
-l N N Z T 00 B oM > O ~ U —~
. orprm e 8 o o o S Dy e s e e e 0 ey e e e DODUULCY NW B4l o o o o o o Xm ¢ S Et e o Dv e ¢ s 2 1 Z 0 e D
o0 0~ .Q z o] O CoT 3LHA ~ LB Z zZ @ €3]] ~HAQ =
*E MHQOE o e s e sHM o ¢ s o1 s oM e s e LEUDCOITIN o e e s cQABIO o o o oM oF o o[o 55 %
SO NALE & [+ z e @ Eoerd ON Qufd oo B I Z 1 4 (5] ~ o X m
~P oaCm O oZ ¢ ¢ ¢ ¢+, QO ¢ ¢ o o4 o o2 o ¢ sNEOHELD N o2 ¢O o ¢ s OMEB o o0 ¢ ¢ @ ¢ o o ¢ VR W o ¢,
¥ @ © "0 H Q. 24 [+4 NELV~E33ITA -\ onNn< Q m [a] 2 B 1
T COCEWHWO e e ¢ s o B MM et el e eD e+ e 2O T OO LCZE ¢ ¢Z o o o[Zot e W e e e e o[] ¢ oL e o
O~ £ OO0 m®mMH (-7 O B CON00C © < o, o 0N @ m Q = 22 O
1] ES EQ ¢« FONKBNY +HBD oW KK ¢ +oF O HOU X . =M BENBER ¢« 0 @ ¢ o «c0OO0OO0Mm
3 OQOOVOEM SOUNEHBEHR ol) T Mo = [o] L EE WZXOUMDRMCNEEH MK 24 OO
-1 nuuno HZ 3 mm FERCEHEZD > O3 NmMae~~NnoO HOBHZ0NWVNWNOLIAMM 2} FERAQAZMA AR BB X
CEHDDLLAAQABRCE IIOHNODXXHZOERAODLOUXLUAD>DOUAAQAUOERLCO0O0ZEINACIHHAZEZN I ZNVOOLO
a HOQOITHMEOXZOHNBNALMLAHNOO 000R~-dd AAMHOEAIIOFMMZE LXK HHOZHHHHOC
2] MAABCCDDTEILNNPRTRTTMSLTMFDCMA.ABBBCCCCCCDDEETEEFFFIKLLLLMM
m = =]
[Ta} —~ N ™
. * o o O NMNMNITUNOM~ON O ANMLNOFNOANAOANMIPONON
oY Yww FANNTNDOSORNA A A A A SN0 ANV OCONA A A A A~ ANANNNNNNNNN
L e o . e« o o s 0 . L] . LI . . . L] . . L] L] . . . * o L] L . . L] . L . . L . L] L] e o L] . L L] e o . . * o o 2 o

@ & & 6 o 6 s 0 s s e e e s 0 s 0 & P N e e 0 P+ o 9 & B O & O o 8 O @ O O B O 0 4 O & O & O & 6 6 6 6 & 5 6 & & o 6 © o s o @

ANNANNNNNNNNNANN

iv

CONTENTS

MACRO EXECUTE .
MACRO IMMEDIATE
NEXT . « « « &
NEXT & PRINT .
OPEN SECONDARY
OUTPUT ON/OFF
OVERLAY . .
PAGE . . .
PAGE FIND .
PAGE LOCATE
PASTE ., .
PRINT . .
READ . . .
RENEW . .
The RETURN
RETYPE . .
SAVE . L] L] L] L]
SEARCH & CHANGE
SELECT PRIMARY .
SELECT SECONDARY
SIZE ¢ ¢ « o « &
TAB ON/OFF . . .
TOP . L] - L] L] L]
TOP OF FILE (TOF)
TYPE . « ¢ « « « &
UNSAVE . . « « o« &
UPPER CASE ON/OFF
VERIFY ON/OFF . .
WRITE . . « ¢« & &
EDI USAGE NOTE « o e e
SAMPLE EDITING OPERATIONS
.1 File Editing Sample . .
.2 SAVE and UNSAVE Sample .
.3 Use of MACRO IMMEDIATE Co
.4 Use of Macro Commands .
EDI ERROR MESSAGES
.1 Command Level Information Messages
.2 File Access Error Messages
.3 Error Messages Requiring EDI Restar
.4 Fatal Error MessagesS . o« « « o« o« &

.
.
.
.
.
.
.
.
.

.

¢ o
. e
.
.
.
.

.
® e ® ¢ ¢ 5 ¢ o & o o o

e N e o o o o s 4

e« e o o o
1]

GUUnUuOUUOLEELBDLLEBRBBEBBWWWWWWWWWW
ONAOANDWNNHFOWOVWOINOATMBWNFOWOVOJIAUTD® WN O
. . . L] . . L] L] L] . * ° L]) .
L] [] . . . L] . [] . (] L] L) L] . .) . @ . . L] .

® e & s ¢ o o o ° o ° e O o ° o O ¢ ® o ° o o s o o o o

& & 8 @ o e & s 0 4 ¢ T e 8 O 0 + e s e O 0o s o o

® o ® o o & o o o ¢ * o * ¢ s o
® & o 8 o 0 ¢ ° 9 8 ¢ 6 ¢ 6 o ° o O ¢ ° o s o o o o s ° @

man

® e ® o & 5 0 o * o 0 o 5 o 6 ¢ & o 06 s 6 o o 4 * 9 * o * o * o ¢ .

e Q) ® o ¢ o ¢ & * ¢ & o O o o s & & 0 s ° & ° o 0 ¢ 0 ¢ o o ® o o o
e 0,0 o & o 6 o * & ¢ o © & @ ¢ % ¢ O o ® @ ® 4 8 o ® ¢ © o & e ® o
® & o & o 6 4 6 o ° o @ o © o © ¢ © o 0 o ® & & 4 © ¢ 6 ¢ 6 o 6 e o s

o o H e o 6 o ¢ & 0 4 ¢ o o s 6 4 e o e o o o

DRDRODNONNNDNDNNDDNODNDNNDNNNNNDNDNDNODNDNDODNDNDONNDNDNDNDNDNDNDNN DD NN
® o & & & e o e ® e 0 e P e O B 9 4 0 o 6 & & e ° v O * 2 ° & o 6 e & 8 o o
NSNNSNNO AN U b B b b b B D D D B B 8 D B B B B D DB
® ® o 0 o & ¢ o o & o 4 o O s & ¢ 6 o o ¢ & o * o O ¢ 0 o ° ¢ 0 o * o 6 o o o

® 0 o 0 o o o2 ¢ e * o ° o % 4 e o & o 6 ¢ © o & o 6 o 6 o ® o © ¢ 0 & 6 o ¢ o

@ & o & o ¢ o * o O o * o O 9 e o O o 0 o ® 3 & ¢ °® o & & ° o ° 4 0 4 © 4 o o

@ 0 o 0 o & o ® 4 0 o O o 0 4 ° o % o 0 o ® 4 © o & o ® o © o 0 4 ¢ 4 ° & e o

.
.
3
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
3
.
.
.
.
3
.
.
-
3
.
.
.
0
.

t
.

CHAPTER 3 PERIPHERAL INTERCHANGE PROGRAM (PIP)
3.1 PIP COMMAND LINE . ¢ o ¢ ¢ s o o o o o o o o @
3.1.1 PIP Defaults for File Specification Elements
3.1.2 PIP Switches and Subswitches
3.1.2.1 Switches . . ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o ¢ o o o o o
3.1.2.2 Subswitches . ¢ ¢ ¢« ¢ ¢ ¢ ¢ ¢ ¢ o o o o o
3.1.3 Wildcards . ¢ ¢ ¢ ¢ o o ¢ o o ¢ o o o o o »
3.1.3.1 Wildcards in Output File Specifications .
3.1.3.2 Wildcards in Input Specifications
3.2 PIP COMMAND FUNCTIONS ¢ o o o o o o o o o s o
3.201 Copying Files_ll FileS . . Y
3.2.2 Performing File Control Functions
3.2.2.1 /AP —- Append Switch . . . 4+ ¢« ¢ ¢ & ¢« o &
3.2.2.2 /BS:n -- Block Size Switch . « ¢« ¢« ¢ « o &
3.2.2.3 /CD -- Creation Date Switch
3.2.2.4 /DD ~- Default Date Switch . « « ¢« ¢ « « &
3.2.2.5 /DE - Delete Swj.tch
3;2-2.6 /DF - Default Switch . e o o) . . e o .
3-20207 /EN - Enter SWitCh e o e o e o
3.2.2.8 /EOF -~ End-of-File Switch . o ¢« ¢ o o o &
3.2.2.9 EX -- File Exclusion Switch
3.2.2.10 /FI -- File Identification Switch

® & o & o & 5 & o & o 0 o 0 s 8 o * s 0 ¢ 8 4 0 o O o ° o O o 0 g o ¢ ° o s o

| L I L |
00N NTW - -

WWwWwWwwwwwwww

® o 0 o & o ¢ o o

@ & o 0 o O o & o & o & 4 o+ b s 0 ¢ o

CONTENTS

Page
3.2.2.11 /FR -— Free Switch . . . « « « ¢« ¢ o ¢« « « o 3-23
3.2-2.12 /ID _—— Identify SWitCh e o e ® o e e ¢ e o o 3_23
3.2.2.13 /LI -- List Switch ¢« ¢« ¢ ¢ ¢« &« « « « 3-24
3.2.2.14 /ME -- Merge Switch ¢« ¢ ¢« « « ¢« « « 3-28
3.2.2.15 /NM -- No Message Switch , 3-28
3.2.2.16 /PR -- Protect Switch ¢« . . 3-29
3.2.2.17 /PU -- Purge Switch + ¢« « « + « 3=31
3.2.2.18 /RE —— Rename Switch ¢« ¢« ¢« « « « 3-33
3.2.2.19 /RM -—- Remove Switch +. . « + ¢« « « 3-35
3.2.2.20 /RW -— Rewind Switch +. ¢« « « « « « 3-36
3.2.2.21 /SB -- Span Blocks Switch 3-37
3.2.2.22 /SD -~ Selective Delete Switch 3-37
3.2.2.23 /SP -— Spool Switch « ¢ ¢« ¢« ¢« « « « 3-38
3.2.2.24 /SR -- Shared Reading Switch 3-39
3.2.2.25 /TD -- Today Default Switech 3-40
3.2.2.26 /TR -- Truncate Switch « ¢« « « +. « 3-40
3.2.2.27 /UF -- User File Directory Switch 3-41
3.2.2.28 /JUN =- Unlock Switch . . . « ¢« ¢« ¢ o ¢ « « o« 3-42
3.2.2.29 /UP -- Update Switch 3-42
3.3 PIP ERROR MESSAGES &+« « «¢ ¢ o o « « o o o o o o« » 3-43
3.4 PIP ERROR CODES . &« & ¢« o ¢ s o o o o o o o o o« 3-53
CHAPTER 4 FILE TRANSFER PROGRAM (FLX)
4.1 FLX COMMAND FORMAT . o ¢ o o o o o o o o o o o o« o« 4=2
4.2 FLX SWITCHES ¢« ¢« & ¢ o ¢ o o o o o o o o o o . 4-3
4.2.1 Volume Format Switches ¢« &« ¢« &« ¢« ¢« « o 4-4
4.2.2 Transfer Mode Switches . . . « ¢ ¢« ¢« ¢« ¢« &« « « o+ 4-4
4.2.3 Control Switches . . . & ¢ ¢« v & ¢ ¢ ¢« ¢« o « « o 4-6
4.3 DOS-11 VOLUME DIRECTORY MANIPULATION 4-8
4.3.1 Displaying DOS-11 Directory Listings 4-8
4.3.2 Deleting DOS-11 Files . ¢« « o & o « o o« « « » 4-10
4.3.3 Initializing DOS-11 Volumes . . . « « « « « « 4-10
4.4 RT-11 VOLUME DIRECTORY MANIPULATION 4-10
4.4.1 Displaying RT-~11] Directory Listings 4-10
4.4.2 Deleting RT-11 Files . ¢« ¢ ¢ &« &« o« o« o o o &« o 4-12
4.4.3 Initializing RT-11 Volumes . . . ¢« ¢ &« o o« « o 4-12
4.5 FLX TAll/TU60 CASSETTE SUPPORT . . « « o« « o« « « 4-13
4.5.1 Multivolume Cassette Support + « . . 4-14
4.5.2 FLX Cassette Output Files ¢« « « « « . 4-14
4.5-3 FLX Cassette Input Files 3 3 . . 4-15
4.6 FLX PAPER TAPE SUPPORT . « ¢ ¢ o o o « o o« o« « » 4-15
4.7 FORTRAN DIRECT ACCESS FILES . ¢« ¢« + ¢ o « « « « 4-16
4.8 FLX ERROR MESSAGES &+« ¢« ¢ « s s o o o o o o o o « 4-17
CHAPTER 5 DISK VOLUME FORMATTER (FMT)
5.1 INITIATING AND TERMINATING FMT . . ¢ ¢ + « o o o o« 5-1
5.2 MODES OF FMT OPERATION . . ¢ ¢« ¢ « « s o o o o & o« 5=2
5.2.1 Normal Operating Mode . . +. « +« ¢ « o« o o o o« « 5-3
5.2.2 Manual Operating Mode ¢« ¢« ¢« ¢« &+ o & « o 5-3
5.3 FMT SUPPORTED DISK VOLUMES . + ¢« ¢ « « ¢« ¢ o o &« o 5=5
5.3.1 DB:-type Devices (RP04/RP05/RP06 Disk Packs) . . 5-5
5.3.2 DK:~-type Devices (RK05 Disk Cartridge or RKOSF
Fixed Media DisksS) . o 4 ¢ ¢ o 2o o o o« s o o « « 5-6
5.3.3 DL:~-type Devices (RLO1/RL02 Disk Cartridges) . . 5-6
5.3.4 DM:-type Devices (RK06/RK07 Disk Cartridges) . . 5-6
5.3.5 DP:-type Devices (RPR02/RP02/RP03 Disk Packs) . 5-6
5.3.6 DR:-type Devices (RM02/RM03/RMO5/RM80 Disk
PaCkS) 3 3 . . . 3 3 3 3 3 5_7
5.3.7 DY:~-type Devices (RX02 Floppy Disks) 5-7
5.4 FMT SWITCH DESCRIPTIONS . . ¢ ¢ ¢ « o o o o o« o« o 5=7
5.5 FMT MESSAGES . ¢ ¢« o © ¢ o o o o o s o o o« o o« « 5-10

vi

CHAPTER

CHAPTER

(=)< ¢} [=)] [« =)W«) We W) We We W) We) We W W) We W) e) [}

* o o

® e 8 & ° o & e & o o o o o o

e & & o e 0 * o e o o & o s o

HWOMOOPONNNIIJAAAARNUVUIBW WRN NN N e e

@0 3N [=)) AN UTUTU D DD DD DWN -

.
=

.
w N

¢« o 5 2 o o e o

B WNDNNDNDN -

CONTENTS

BAD BLOCK LOCATOR UTILITY (BAD)

BAD COMMAND FORMAT . .« . . o
BAD SWITCHES . . .
BAD AND INDIRECT COMMAND FILES
PROCESSING BAD BLOCK DATA . .
Verifying Devices
BAD and Non-Last-Track Devi
BAD and Last-Track Devices
Format of Bad Block Descripto
The INI Command and BAD . .
USING BAD . & ¢ o ¢ o o o &
Programming Considerations
Use of Block Zero . . .
Device Controller Errors
BAD SWITCH DESCRIPTIONS . .
Switches for Both Task and
of BAD
The /MANUAL, /ALLOCATE and /UPDATE Sw1tches.
Exampl es L] - . L] . L] L] . . L] L] L] L] L] . L]
Switches for Stand Alone System Version Only
DEVICES SUPPORTED BY BAD v ¢ « o o o o o o o &
BAD MESSAGES &+« &« ¢ o o o o o o o o o o o o o »

* o o o o

e

n

e o * o o [TJe [N * e o o o
e o o o o t e
"
e o . L [. i . * @ * o L]
1]
e ¢ o & o o ¢ ¢ o o ¢ o o o
® o & 4 0 o * o o o o 4

=
Qe
1
>
[
o]
3

QD e ¢ o o o o e N * o ¢ o o

M e o o ¢ o o (N ¢ o & o o o o

Ne ¢ o o
(o
<
®
3]
n

¢ Heeo o o 0 4 0 o & o o o v 4 o

BACKUP AND RESTORE UTILITY (BRU)

ON-LINE BRU DISK AND TAPE DEVICE INFORMATION
Backup Sets e e e e o e o o
Tape Sets and Disk Sets e e e o s o

Tape and Disk Backup Operations . .
Full and Selective Backup Operation
Conventional Backup Operation . .
Image Backup to Disk Operation . .

Multivolume Tape and Disk Operations

Supported Devices & .+ o« o &

COMMAND LINES . . ¢ o o o o o o o &
Command Line Syntax . . .

Command Line Parameters
Wildcards in Input Specifications
Continuation Lines« .

SUMMARY OF COMMAND QUALIFIERS, OPTIONS,

DEFAULTS o o ¢ o o o o o o o o o o o o
Command Qualifier Functions

DESCRIPTIONS OF COMMAND QUALIFIERS . . .

STAND-ALONE BRU . . ¢ ¢ ¢ ¢ ¢ ¢ o o o &
Locating and Booting Stand-Alone BRU .

ON~-LINE BRU BAD BLOCK PROCESSING
Using the AUTOMATIC Option . . « .« . .
Using the OVERRIDE Option

E

>
@ & o o o o o o ¢ Ze o 4 o o o o o 4 s 4
o

Using the MANUAL Option
USING BRU TO COPY DISKS CONTAINING SYST
Copying an Unsaved (Virgin) System . .
Copying a Saved System « « o
Copying to a Smaller Disk
Copying to a Different Controller Typ
BRU FILE TREATMENT . ¢ ¢ & ¢ ¢ o o o o &
Creation and Revision Dates of Files .
File Headers
File Synonyms .
Lost Files . . .
EXAMPLES L] * L . .
MESSAGES

M IMA

e o o o o o o (Do * o
e ¢ o o o o o ¢ 2 0 o Do o o o ¢ o o e o

e o o o
e o o o
o« o o o
o« o ¢ o o

. .
. . . .
. . . .
. . . .
. o e 3

e o o o
e o o o

e}

e T e & o o o o o ¢

. 0] L

® O ¢ & e & o ¢ ¢ * s o ¢

o ® o & o o o ¢ o ¢ o WNe ¢ o o o © o o o

0

e ® o @ o4 & 4 o 4 ¢ o ¢ o ¢

Page

[| LU AL U
NN UE BB WWWWN

1
O W oo wn

I Ao N O\O\G\O\Ol\O\G\O\G\O\O\O\G\O\

N
—

! TN T I
NH®O OJAAAVTUL D WWWWKH

\l\l\]\l\.lﬂ?l\l\l\l\l\l\)\l

vii April 1983

CONTENTS

Page
CHAPTER 8 DISK SAVE AND COMPRESS (DSC)
8.1 DSC-SUPPORTED VOLUMES . ¢« « o o 2 o s s « o « o« o 8-4
8.2 INITIATING AND TERMINATING ON-LINE DSC 8=-5
8.3 INITIATING AND TERMINATING STAND-ALONE DSC 8-5
8.4 DSC COMMAND FORMAT . «. &« ¢ o o o o o e« o« ¢« « o o 8-5
8.5 DSC FILE LABELS, SWITCHES, AND OPTIONS e o+ ¢« o o« o 8-6
8.5.1 File Label . . . & ¢ ¢ ¢ ¢ ¢ o o s « o« « « « « - 8-8
8.5.2 /Append Switch . & ¢ ¢ ¢ ¢ ¢ o o ¢ o o « o« « « . 8-9
805.3 /Bad BlOCk SWitCh e o e o o o e e s & e o o o 8_9
8.5.3.1 Obtaining Bad Block Information 8-12
8.5.3.2 Conversion to Logical Block Numbers 8-12
8.5.4 /Block Factor Switch « « « ¢« ¢ &+ ¢ &« o ¢« o o« « 8-12
8.5.4.1 Using the /BL Switch e ¢« o &« 8-12
8.5.4.2 System-Dependent Requirements for /BL Switch 8-13
80505 /Compa[e SWitCh . . 3 3 . . . 3 8—14
8.5.6 /Density Switch ¢« ¢ ¢ ¢ ¢ ¢ ¢ & o o . 8-14
8.5.6.1 1600 bpi Option . . ¢« ¢« ¢ ¢« ¢« &« ¢ o &« +« « « 8-15
8.5.6.2 Split Density Option . . « ¢ ¢ ¢ ¢« &« « « « « 8-15
805.7 /ReWind Switch e e o e s e e o e+ o o e o o e o 8—15
8.5.8 /Verify Switch . . . + ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢« « « « » 8-18
8.6 DSC OPERATION OVERVIEW . o o o o . . o o . . e o 8—19
8.7 STAND-ALONE DSC -~ DSCSYS.SYS « « &« ¢ « o« « o« » « 8-19
8.7.1 /Control Status Register Switch 8-21
8.7.2 /JTMO2 SwitCh . ¢« ¢ & ¢« o o o o o o o o o o« o« o« B8=22
8.7.3 /Unit Switch « & & & v ¢ ¢ ¢ o o o o o o o o o 8=22
8.7.4 /Vector Address Switch ¢« ¢ ¢« ¢« « . « . 8-23
8.8 STAND-ALONE DSC - DSC64K.SYS « « « ¢ o o « « o o 8-23
8.9 DSC DATA TRANSFERS . « «. o« « « o s o o« o s o« « » 8-24
8.9.1 Data Transfer from Disk . . « . « « « « « « « 8-25
8.9.2 Data Transfer to Tape . « « s o « o« o« « « « o+ B8=25
8.9.3 Data Transfer from TapPe . « « « « o s « o« « « 8-26
8.9.4 Data Transfer to Disk . &« &« &4 o« ¢ « o « « « o 8-27
8.10 DSC MESSAGES « « + o o o o« o o o o o o o o o « o 8-28
8.10.1 DSC General MeSSAgesS . « 4+ + « + « o o « o « « 8-29
8.10.2 DSC I/0 MeSSAgeS . 4 o o o o o o « o o o o o o 8-42
8.10.3 Stand-Alone DSC MeSSages . « o+ « « « « « « « o 8-44
CHAPTER 9 FILE STRUCTURE VERIFICATION UTILITY (VFY)

9.1 VFY COMMAND FORMAT . &« ¢ ¢ « o o o o o o o o o o o 9-2
9.2 VFY MODE OF OPERATION . &« « &« 2 o o s o o o o« o o 9-3
9.3 VFY VALIDITY CHECK &+ +o + ¢ o o o o o o o o o o « « 9-3
9.4 VFY SWITCHES e e o s o s s e s e o o o « 9-3
9.4.1 Delete SWltCh (/DE) e ® o e e e e e s+ o o o s o 9_4
9.4.2 Directory Validation Switch (/DV) « . 9-5
9.4.3 Free Switch (/FR) e o o s o o o o o s o o o o & 9-5
9.4.4 Header Delete Switch (/HD) . . . +« ¢ ¢« « ¢« « « o 9-5
9.4.5 List SWitCh (/LI) ® o e e e & e o e e o s o o o 9—6
9.4.6 Lost Switch (/LO) &+ &« o ¢ &« o o o o o o « o o o 9-6
9.4.7 Read Check Switch (/RC) & & o & o o« o o« « o o o 9-7
9.4.8 Rebuild Switch (/RE) « &« &« o« o o o o o o o o o o« 9=7
9.4.9 Update Switch (/UP) =+« ¢ ¢ ¢« o o o o o o o« « « o 9-8
9.5 FILE ERROR REPORTING . + o« o « o o o « o o o o o o« 9-8
9.5.1 Files Marked-for-Delete . . e e o o o s o 9-9
9.5.1.1 Restoring a File Marked-for Delete e o o« o« « 9-10
9.5.1.2 Deleting a File Marked-for~-Delete . . 9-10
9.5.2 Deletion of Bad File Headers . . . e e o s « 9-10
9.5.3 Deletion of Multiply-Allocated Blocks e o <« o 9-10
9.5.4 Elimination of Free Blocks . « « &+ o « « ¢ « « 9-11
9.5.5 Recovering Lost BlockS « « ¢« & ¢ o ¢ ¢ o o o o 9-11
9.6 VFY ERROR MESSAGES &« « ¢ ¢ o o « o o o « o« o o o 9-11

viii

CONTENTS

Page
CHAPTER 10 LIBRARIAN UTILITY PROGRAM (LBR)
10.1 FORMAT OF LIBRARY FILES . . ¢ o ¢ « « o o « « o 10-2
10.1.1 Library Header . . « ¢ « ¢ o o o ¢ o s o o & o 10-2
10.1.2 Entry Point Table . . . « ¢« ¢ ¢ ¢ ¢ o ¢ o o o 10-2
10.1.3 Module Name Table . . . ¢ ¢« ¢ ¢ ¢ o o o o« o« « 10-2
10.104 MOdUle Header ° 10-2
10.2 LBR RESTRICTIONS &+ &« « o ¢ o « o s o s o o o o o 10-8
10'3 LBR COMMAND LINE - 10_8
10.4 DEFAULTS FOR LBR FILE SPECIFIERS e o o o o o« o o 10-8
10.5 LBR SWITCHES o 10-9
10.5.1 Compress Switch (/CO) e o o o s e s e s o & o 10-10
10.5.2 Create SWitCh (/CR) e e o e e o o e o o o o . 10-12
10.5.3 Delete SWitCh (/DE) e e ¢ o o o s o e s o s o 10-13
10.5.4 Default Switch (/DF) ¢ « ¢ o o o o o o o « o« o 10-14
10'505 Delete G].Obal SWitCh (/DG) e o o e o o e ° e o 10"'15
10.5.6 Entry Point Switch (/EP) « + ¢« o ¢ ¢« « o o o« o 10-16
10.5.7 Extract Switch (/BEX) . ¢ ¢ ¢ ¢ ¢« ¢ o o « ¢« « « 10-18
10.5.8 Insert Switch (/IN) for Object and Macro
lerarles 10-19
10.5.9 Insert Switch (/IN) for Un1versa1 Libraries . 10-20
10.5.10 List Switches (/LI, /LE, /FU) . +« ¢« ¢ « o« o« o 10-21
10.5.11 Modify Header Switch (/MH) . . « . « . « « « o 10-22
10.5.12 Replace Switch (/RP) For Macro and Object
Libraries ° 10_23
10.5.13 Replace Switch (/RP) for Universal Libraries . 10-27
1005014 Spool SWItCh (/SP) e o o e o o o o o o o 10—29
10.5.15 Selective Search Switch (/SS) e e o o o o o o 10-29
10.5.16 Squeeze Switch (/SZ) « « ¢ ¢ ¢ o ¢ o o« « » « o 10-30
10.6 COMBINING LIBRARY FUNCTIONS . ¢« ¢ ¢ « o o o o o« 10-32
10.7 LBR ERROR MESSAGES . « « + o . . e o o o 10-33
10.7.1 Effect of Fatal Errors on letary Flles e o o 10-33
10.7.2 LBR Error MessagesS . « « o« o « o o o« o o » o » 10-34
CHAPTER 11 FILE DUMP UTILITY (DMP)
11.1 FILE MODE - . . - Y Y . . o ll_l
11.2 DEVICE MODE - . o Y o 11_2
11.3 DMP COMMAND FORMAT . « ¢ ¢ « o o o o o o o o o o 11=-2
11-4 DMP szTCHES 3 11_3
ll L] S DMP EXAMPLES . L] L] . . . L] L] . L] . L] L] . . £ L] . 11-8
110501 A Multiple FOL’mat Dump - 11_8
11.5.2 A Record DUMP o« o « o o o s o o o o o o o » 11-10
1105-3 A Header Dump . . . - . . . ° . . * 11-10
ll .6 DMP ERROR MESSAGES . . . 3 . . . » 3 11_12
CHAPTER 12 THE FILE COMPARE UTILITY (CMP)
12.1 CMP SWITCHES . . . e o o o o o o o o o 12=-2
12.2 FORMATS OF CMP OUTPUT FILES e o o o o o s o o o 1l2-4
120201 leferences FOrmat Y 12-5
12,2.2 Change Bar Format . « ¢ ¢ o« ¢ ¢ ¢ ¢ o o« o o » 12-5
12.2.3 SLP Command Input Format . . « « « « o« o o « « 12-6
1203 CMP MESSAGES ° 12-6
CHAPTER 13 SOURCE LANGUAGE INPUT PROGRAM (SLP)
13.1 SLP INPUT AND OUTPUT FILES « ¢« ¢ ¢ ¢ o o o ¢ o o 13-2
l3olal The Input File Y . . 13"'2
13.1.2 Command Input ® e o & s e o o s+ e e s o o e o 13‘-2
13.1.3 The SLP Listing File « ¢« « & &« ¢« ¢ ¢ ¢ ¢« o « o 13-3
13.1.4 The SLP Output File . . ¢ ¢ ¢ ¢ ¢ ¢« ¢ o « « o 13-3

ix

CHAPTER

CHAPTER

CONTENTS

Page
13.2 HOW SLP PROCESSES FILES . « ¢ ¢ o o o o « o« o o 13-4
13.3 USING SLP e e o s o s s o s 13-5
13.3.1 Specifying SLP Edlt Commands e o o o o o o o o 13-5
13.3.2 Entering SLP Edit Commands . « « « « « « « « o 13-7
13.3.2.1 Entering SLP Commands Interactively . . 13-7
13.3.2.2 Entering SLP Commands Using Indirect
Command Files « « ¢ ¢ ¢« ¢« ¢« « « o 13-8
13.3.2.3 Using SLP Operators . . . e o o o o o o o 13-9
13.3.3 Updating Source Files With SLP e o o o o o o & 13-9
13.3.3.1 Generating a Numbered Listing 13-9
13.3.3.2 Adding Lines to a File « « ¢« « « +» o 13-10
13.3.3.3 Deleting Lines from a File « . . . 13-12
13.3.3.4 Replacing Lines in a File , 13-13
13.3.4 Creating Source Files Using SLP « . . 13-14
13.4 CONTROLLING SLP . & ¢ ¢ o o o o o o o o o o« o« o« 13-14
13.4.1 SLP Switches . . . e e o o e o o o & o 13-14
13.4.2 Controlling the Audlt Tra11 e o o o o o s o o 13-16
13.4.3 Setting the Position and Length of the Audit
Trail . . e o o o o 13-17
13.4.4 Changing the Value of the Audlt Tra11 e o o o 13-17
13.4.5 Temporarily Suppressing the Audit Trail . . . 13-18
13.4.6 Deleting the Audit Trail « « « + o« « . 13-19
13.5 SLP MESSAGES . « ¢ ¢ ¢ &« o« o o o o o o o o« o« o« o 13-20
13.5.1 SLP Information Message« 13-20
13.5.2 SLP Error MessSageS . « o« « « o o o o o o« o o o 13-20
14 OBJECT MODULE PATCH UTILITY (PAT)
14.1 SPECIFYING THE PAT COMMAND LINE 1l4-1
14.2 HOW PAT APPLIES UPDATES . &+ ¢ ¢ ¢ « o« » o o « o« 14-3
14.2.1 The Input File . . ¢ ¢ ¢ ¢ ¢ & ¢ o o o o« o« « o 14-3
14.2.2 The Correction File . . . e e o s o e = o 14-3
14.2.3 How PAT and the Task Bu11der Update Object
Modules ¢ o s o & 4 s e e s 14-4
14,2.3.1 Overlaying Lines in a Module 14-4
14.2.3.2 Adding a Subroutine to a Module 14-5
14.2.4 Determining and Validating the Contents of a
File ¢ & & 4 ¢ ¢ 4 ¢ @ ¢ ¢ o o o o« o o« o « o« « 1l4-6
14.3 PAT MESSAGES . & &« « o o s o o o s o o o « o o o 14-7
14.3.1 Information Messages . 4 +« o ¢ « « « o« « o« « o« 14-8
14.3.2 Command Line Errors . . « « « o o o o o« o « o 14-8
14.3.3 File Specification Errors . . . « ¢« « ¢ « « o 14-9
14.3.4 Input/Output Errors . . « « o o « s o o o« « o« 14-10
14.3.5 Errors in File Contents or Format 14-11
14.3.6 Internal Software Error e o o o o o 14-13
14.3.7 Storage Allocation Error . « « « « o o o« « o » 14-13
15 TASK/FILE PATCH PROGRAM (ZAP)
15.1 ZAP OPERATING MODES AND SWITCHES . . . « ¢« « « o« 15-2
15.1.1 The LiSt SWitCh (/LI) e e o o e e 6 e e e o o 15-2
15.1.1.1 The /LI Switch and Regular Task Image
Files e o ¢ o o o o s o s o o o s e o o & 15-3
15.1.1.2 The /LI Switch and Multiuser Task
Image Files . . ¢« & ¢ ¢ o o o o« o o o« & « 15-3
15.1.1.3 The /LI Switch and Resident Libraries . . 15-3
15.1.1.4 The /LI Switch and I- and D-Space Tasks . . 15-3
15.2 ADDRESSING LOCATIONS IN FILES . . .« « « « « « » 15-4
15.2.1 Relocation Biases . . . ¢ ¢« &« &+ ¢« ¢ o &« o« « o 15-4
15.2.2 ZAP Address1ng Modes . . . « o o« o o« 15-4
15.2.2.1 Using the Task Image Addressing Mode e o« o o 15-5
15.2.2.2 Using the Absolute Addressing Mode 15-5
15.3 INVOKING AND TERMINATING ZAP . . « « « o o o« o o 15-5

April 1983

15.3.1
15.4

15.5.3.1
15.5.3.2
15.5.3.3
15.5.3.4
15.5.3.5

15.6
15.6.1
15.6.2
15.6.3
15.6.4
15.6.5
15.6.6
15.7
15.8

APPENDIX A

[] . L] L] [] []) .
H s = OO QAU WN
VLU W O

¢ o o
wN -

?3’?3’>:>>'??’>=’>='VU’PD’P

APPENDIX B

CONTENTS

Using Indirect Command Files with Zap . .
THE ZAP COMMAND LINE AND COMMAND LINE ELEMENTS

ZAP Commands '+ . « « o+ o
Open/Close Location Commands .
General Purpose Commands
RETURN K€Y « ¢ ¢ ¢ o o o o o &

ZAP Internal Registers

ZAP Arithmetic Operators

ZAP Command Line Element Separators

ZAP Command Line Location-Specifier
The Current Location Symbol . .
Byte Offset Format
Block Number:Byte Offset Format

. . . o o

Relocation Register,Byte Offset Format

USING ZAP OPEN AND CLOSE COMMANDS .
Opening Locations in a File . . .
Changing the Contents of a Location
Closing Locations in a File . . .

Closing a Location
Preceding Location e s s e a e

Closing a Location and Opening an Offset
Location e o o o o 8 o s o o s o 8 s o &
Closing a Location and Opening an Absolute

Location e o ¢ o o s o o o e @
Closing a Location and Opening
Target Location
Closing a Location and Opening

Location . . . o o e
USING ZAP GENERAL PURPOSE COMMANDS
The X Command .
The K Command .
The O Command .
The Equal Sign (
The V Command .
The R Command .
S

=) Command .
EXAMPLES
ZAP ERROR MESSAGE . .

® o o o 6 o o o ¢ o Do

. . ¢ o
¢ o 3 .
. . . .

COMMANDS AND SWITCHES

INTRODUCTION

EDI
PIP
FLX
FMT
BAD
BRU
DSC
VFY
LBR
DMP
CMP
SLP
PAT
ZAP

COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND
COMMAND

SUMMARY
SUMMARY
SUMMARY
SUMMARY
SUMMARY
SUMMARY
SUMMARY
SUMMARY
SUMMARY
SUMMARY
SUMMARY
SUMMARY
SUMMARY

AND SWITCH

e o e o o o o o o o s o o
e o o e o o o o o o o o o
@ & o 6 o & ¢ o e * o o o
¢ o o o e o o 0 & o o o o

® o o o © o © o 0 o ¢ o o o

3

SUMMARY

ZAP Open/Close Commands . .
ZAP General-Purpose Commands
ZAP Switches . .

THE CROSS-REFERENCE PROCESSOR (CRF)

HOW CRF PROCESSES DATA

MACRO-11 or Task Builder Processing

xi

® e 0 o © ¢ & o & o & 4 & o2 e , o o

® e & o 6 o 0 o * o & o 0 ¢ * 4 o o

.

® o ¢ ¢ % o & o 4 o & ¢ o o o+ ¢ o o

3

e o o

e o ¢ o o o
Te o ¢ o o o

ats

For

and Openlng the

. . o o

a Branch

revious

® o o o o o ¢ o e o e

® s & o o o ¢ o o
® o o o o o o o
® o o o o o o 4 o

® o ® o ® 4 0 o % o o o & o e ¢ o o
® o 0 ¢ & o © o * o 0 ¢ ° e & g o o
® o ¢ o O o ® o ® 4 e o o o o g o o
. e o o . o * o . . * o [e ® e * o

® o o o o o

e ® o o o o o o

® o & o & o & ¢ ¢ o ¢ o * ¢ o ¢ & o

o o Y . e o 9 [] .

15-14
15-14

15-15
15-15
15-16
15-16
15-17
15-17
15-17
15-18
15-18
15-23

. A-1

. A-9
A-11
A-12
A-13
A-16
A-17
A-18
A-20
A-22
A-23
A-24
A-25
A-25
A-26
A-27

April 1983

CONTENTS

.2 CRF Processing . . + « ¢ o o o o o o o o o o o &
THE CRF SYMBOL TABLE FILE . . ¢ & o ¢ o o o o o &
THE CRF SEND PACKET . . .
CRF ERROR MESSAGES . « « ¢ o o o s o o s o o o o o

.
.
.
.
.
.
.
.
.
.
.
.

W www
B w N -

EXAMPLES

EXAMPLE 2-1 Line Printer Position for the TYPE Command and
the PRINT Command . . . e o & s e o o o 2-18
11-1 Dumping Virtual Blocks 1n Hexadec1ma1, Radlx—SO,
and Decimal Format . + « & ¢ « o o « o o o o o o 11-9
11~2 Dumping Virtual Records in ASCII and Decimal
Word Format« . . e s o o o o s e o o o 11-10
11-3 Dumping the File Header of a File« . 11-11

FIGURES

FIGURE

W
I
[

Results of Copy Command With and Without /NV

Specified 0 - . . . 3 3—13
3-2 Sample Directories Before and After Execution . 3-20
3-3 Directory Listing Examples . . « + « ¢ « « & « o« 3=27
3-4 Format of Protection Word o« « « « « o 3-31
3-5 Use of the Purge Switch . . . 3-32
3-6 Results of Rename Switch With and W1thout /Nv

Speclfled Y . . 3_35
4-1 DOS-11 Directory Listings . . ¢« ¢ ¢« ¢ ¢ ¢ o &« o« « 4-9
4-2 RT-11 RKO5 Cartridge Disk Directory Listing . . 4-11
8-1 Data Transfer for DSC Copy Operation 8-2
8~2 Data Transfer for DSC Compare Operation 8-3
10-1 General Format for Object and Macro Library Files 10-3
10-2 Universal Library File Format . . . « « « « « « 10-4
10-3 Contents of Library Header . . . e« o o o o o« o 10-5
10-4 Format of Entry Point Table Element « o o« o « o 10-6
10-5 Format of Module Name Table Element 10-6
10-6 Module Header Format for Object and Macro

Libraries . . e e o o o o o e s o e o o o o o 10-6
10-7 Module Header Format for Universal Libraries . . 10-7
10-8 Sample Files Used in LBR Examples 1-4 10-25
10-9 Qutput Library File After Execution of Example 1 10-26
10-10 Output Library File After Execution of Example 2 10-26
10-11 Output Library File After Execution of Example 3 10-27

10-12 Sample Files for Universal Library Replace

Example . ¢ ¢ ¢ o o o s o o o o o o o o o o o o 10-28
10-13 Qutput Library File After Execution of Universal

Library Replace Example . . . e + s+ o o o o o+ 10-28
10-14 MACRO Listing Before and After Runn1ng LBR with

/SZ SWltCh . e o * o L] . . . o o . . 10—32

13-1 Input Files and Output Files Used During SLP

PYOCGSS 13-4
14-1 Processing Steps Required to Update a Module

Using PAT e s o o o 14-2
B~1 How MACRO-11, the Task Builder, and CRF Generate

Cross—-Reference Listings . . . e o o o o o o B-2
B-2 Format of the CRF Symbol Table F11e e« « o« o « « o B-4
B-3 Format of the CRF SEND Packet « « + .« B-5

xii

TABLE

PYTTY -??»c?:wc;awwwwwwwwwwwww
[} I I | I I I |
WNHHFOOOUE WNDHFFHFOOSNIAWU B WN -
o

| N T I |

I
I POV WNHEWND DN

HOOOEOMOEO®OJdJAUn
|
U
N

QO |

CONTENTS

TABLES-

EDI Default File Specifications . . .
Line-by-Line and Block Mode Differences
Basic EDI Commands . « « « s o o o o «
EDI Setup Commands . « « « ¢ o o o o &
EDI Locator Commands . . « « o o o o &
EDI Text Modification and Manipulation
EDI Macro CommandsS . « « « o o o o o &«
EDI Input/Qutput Commands . . « «
EDI Device Output Commands
EDI Close Operation Commands
PIP Default File Specifications . .
PIP Switches and Subswitches
PIP Copy Command and Merge Subswitche
List Subswitches« . .
Response Choices for the Selective
PIP Error Codes . . . o o o o
FLX Transfer Mode Sw1tches o o o o o
FLX Control Switches . .

Differences Between Files—ll and DOS
Files Format . . « ¢ « ¢ ¢ o o o o &
Ranges for Manual FMT Operations . .
FMT-Supported Disk Volumes
BAD Switches . . . « o o
Devices Supported by Stand-alone BAD
Mounting and Initializing Volumes .
Devices Supported by On-Line BRU . .

|w 2
]
¢ o o
8
e o © o * o o o o * o o o

-ooo.ooo.ol—lo.op—lomo.

(1]
[92)

.o.o.....o.o...ﬂ.o.o.o'o.'go.ogo.o.o.o.mooooo
.o.'.o.o.o.'oo...c"o...oo:-.;-O'Drr.ooﬁoootoa..otytt
r

o

¢ o o (P e o o o o o s o (Ne o o

-
0

L]
@ ® o & o o s 0 ¢ * o 0 o o 4 0 & * 4 * o 0 o o o * (D e * e o s s % o o o

[
Q

o o (T e ¢ o o o o o o o o e o o

Summary of BRU Command Qualifiers
DSC-Supported Devices .,
DSC Switches and Options
Operating System Limits for DSC Block Fac
The /Rewind Switch and DSC Operations .
Stand-Alone DSCSYS.SYS Switches
System-Generated CSR and Vector Addresses
General Error and I/0 Error Message Codes
VFY Switches and Functions
LBR File Specifiers Defaults
LBR Switches . . . ¢ &« o ¢ ¢ o &« o o &
DMP Switches . . . o«

Summary of CMP Default Sw1tch Settings
SLP Operators . . o« « o o o o o o o
SLP Switches « « ¢« &« ¢ ¢ &4 o o o o &
ZAP Arithmetic Operators
ZAP Command Line Element Separators
ZAP Open and Close Commands
ZAP General Purpose Commands

® o ©® o ¢ ¢ o 4 o

o

e ® o ¢ o ¢ o o o o
s ® o ® o o ¢ & ¢ o

xiii

Page

2-21
2-22
2-23
2-25
2-25
2-26
2-217

3-11
3-25
3-38
3-54

L

-3
[
UL B

@ o 0

I toouNgohoanun
N =g]
ONJWIdOUNWOUN UL W [¥]

PREFACE

MANUAL OBJECTIVES

The RSX-11M/M-PLUS Utilities Manual is a reference manual describing
the use of 15 wutilities supported on the RSX-11M and RSX-11M-PLUS
operating systems.

INTENDED AUDIENCE

This manual is for all users of the RSX-11M and RSX-11M-PLUS operating
systems.

STRUCTURE OF THIS DOCUMENT

Chapter 1 describes briefly each of the utilities, and explains how to
enter command lines and how to invoke and use the utilities.

Chapter 2 describes the Line Text Editor (EDI).

Chapter 3 describes the Peripheral Interchange Program (PIP).
Chapter 4 describes the File Transfer Utility Program (FLX).
Chapter 5 describes the Disk Volume Formatter Utility (FMT).
Chapter 6 describes the Bad Block Locator Utility (BAD).

Chapter 7 describes the Backup and Restore Utility (BRU).

Chapter 8 describes the Disk Save and Compress Utility Program (DSC).
Chapter 9 describes the File Structure Verification Utility (VFY).
Chapter 10 describes the Librarian Utility Program (LBR).

Chapter 11 describes the File Dump Utility (DMP).

Chapter 12 describes the File Compare Utility (CMP).

Chapter 13 describes the Source Language Input Program (SLP).
Chapter 14 describes the Object Module Patch Utility (PAT).

Chapter 15 describes the Task/File Patch Program (ZAP).

Xv

PREFACE
Appendix A is a summary of the commands and switches for the
utilities.

Appendix B describes the Cross-Reference Processor (CRF).

ASSOCIATED DOCUMENTS

The RSX-11M/M-PLUS MCR Operations Manual describes the Monitor Console
Routine (MCR) and 1ts commands. The utilities can be invoked from
MCR. This manual provides background information about MCR.

The RSX-11M-PLUS Command Language Manual describes the DIGITAL Command
Language (DCL) and its commands. Most of the utilities can be invoked
from DCL. This manual provides background information about DCL.

CONVENTIONS USED IN THIS DOCUMENT

Use of Red Ink

User input appears in red. Lines and prompting characters output by
the system appear in black.

Use of UPPERCASE Characters

Uppercase characters in a command line indicate characters that must
be entered as they are shown. For example, utility switches must
always be entered as they are shown 1in format specifications. An
exception is the @D symbol, which denotes the RETURN key.

Use of Lowercase Characters

Lowercase characters in a command line indicate variables for which
the user must substitute a word or value. For example:

filename.filetype;version
This command indicates the values that comprise a file specification;
values are substituted for each of these variables as appropriate.
Command Abbreviations
Where short forms of commands are allowed, the shortest form
acceptable 1is represented by uppercase characters. The following
example shows the minimum abbreviation allowed for the EDI WRITE
command:

Write

This notation means that W, WR, WRI, WRIT, and WRITE are all wvalid
specifications for the WRITE command.

xvi

PREFACE

Use of Square Brackets ([])

Square brackets indicate optional entries in a command line or a file
specification. Note that when an option is entered, the brackets are
not included in the command line.

Square brackets also are a part of the User File Directory (UFD) and
User Identification Code (UIC) syntax ([group,member]}). When you use
a UIC or UFD (in a file specification, for example), brackets are
required syntax elements; that 1is, they do not indicate optional
entries.

Use of Braces ({})

Braces indicate a choice of required entries for a command line. You
can use any of the entries enclosed 1in the braces, but you must
specify one of them.

Use of Commas (,)

Commas are used as separators for command 1line parameters and to
indicate positional entries on a command line. Positional entries are
those elements that must be in a certain place in the command 1line.
Although you might omit elements that come before the desired element,
the commas that separate them must still be included.

Use of At Sign (@)

The at sign (@) invokes an 1indirect command file. The at sign
immediately precedes the file specification for the indirect command

file:

@filename[.filetype;version]

Use of Periods (.)

Periods in the file specification separate the file name and file
type. When the file type is not specified, the period may be omitted
from the file specification.

Use of Semicolons (;)

Semicolons in the file specification separate the file type from the
file version. If the version is not specified, the semicolon may be
omitted from the file specification.

Use of Slashes (/)

Slashes precede switches and subswitches in the command 1line. When
shown in the command line format, they should be specified as shown.

A horizontal ellipsis indicates that the preceding item(s) can be
repeated one or more times.

xvii

PREFACE

CTALX)

The symbol CTRLX) indicates that you must press the key labeled CTRL
while you simultaneously press another key, for example, cme
€D , CRLD .

RET

Command lines are terminated by pressing the RETURN key unless
otherwise indicated 1in the text. The form used to denote the RETURN
key is .

Use of Shading

Shaded portions of text describe only one operating system. Pink
shading 1indicates that the text describes only RSX-11M operating
systems. Gray shading 1indicates that the text describes only
RSX~-11M-PLUS operating systems. The smallest shaded portion of text
is a paragraph. The text that is not shaded describes both operating
systems.

xviii

SUMMARY OF TECHNICAL CHANGES

The following is a 1list of the technical changes (such as new
functionality, and new and revised switches) by utility, in the order
in which the utility appears in this manual.

Peripheral Interchange Program (PIP)
ANSI magnetic tapes are now supported.

& - Ampersand (new) - Separates each command when several
commands are specified in the same command line.

$ - Wildcard (new) - Denotes exactly one character in the file
name and/or file type of an input file specification.

/CD - Creation Date switch (revised) - Can be set as the default
(instead of /-CD).

/DD - Default Date switch (new) - Restricts file searches to
files created during a specified period of time.

/DF - Default switch (revised) - Specified with no arguments, it
returns the default device to SYO: and the UFD to the UIC from
which PIP was invoked.

/EX - File Exclusion switch (new) - Excludes ohe file
specification's worth of files during a file search.

/FR - Free Blocks switch (revised) - Displays the amount of
available space on a specified volume, the largest contiguous
space on that volume, and the number of available file headers.

/ID - Identity switch (revised) - Identifies the version of PIP
being used and if PIP is linked to ANSI FCS.

/TD - Today switch (new) - Restricts file searches to files
created on the current day.

File Transfer Utility Program (FLX)
The TU78 magnetic tape is now supported.

/DNS:6250 - Density switch (revised) - Specifies a density of
6250 bpi to support the TU78 magnetic tape.

SUMMARY OF TECHNICAL CHANGES

Disk Volume Formatter Utility (FMT)

The RM05 disk is fully supported. FMT treats the RM0O5 as a
larger RM03.

DL:~-type devices are supported, and some corrupted DL:-type disk
cartridges can be made usable again.

/VE - Verify switch (revised) - is now the default operation.

/-VE, /NOVE, /-VERIFY, /NOVERIFY - No Verify switch (new) -
Inhibits the default verification operation.

/DENSITY, /MANUAL, /VERIFY (new) - Switch synonyms for /DENS,
/MAN, and /VE respectively.

Bad Block Locator Utility (BAD)

A multiheader BADBLK.SYS file 1is now supported. The maximum
allowable retrieval pointers 1in the bad block descriptor file
have been expanded from 102 to 126 for non-last-track devices.

The updated stand-alone version of BAD supports the following
devices: the RM05, RM80, and RP07 disk packs, and the RA80 fixed
media disk.

/ALO:volume label - Allocate switch (new) - Prompts for blocks to
be allocated to BADBLK.SYS and to be entered in the bad block
descriptor file.

/PAT=m:n - Pattern switch (new) - Specifies the double~word data
pattern used to locate bad blocks.

Backup and Restore Utility (BRU)

BRU now supports multivolume backup and restore operations wusing
the /IMAGE switch.

BRU now supports the following devices: RA60/RA81/RC25/RD51/RX50
disks, RL11/RL02 cartridge disks, RH70/RM05/RM80/RP07 disk packs,
UDAS0/RP07 disk packs, TM78/TU78 magnetic tapes, ML1ll electronic
memory, and TS11/TSV05/TU80 magnetic tapes.

Disk volumes with multiheader index files (structure 1level 402)
are supported.

There are now two stand-alone BRU systems, BRU64K 1is the
stand-alone version for the RSX-11M and BRUSYS is the stand-alone
version for RSX-11M-PLUS.

/DENSITY - Density switch (revised) - For TU78 magnetic tapes,
you can specify a density of 1600 or 6250 bpi (6250 is the
default bpi).

/IMAGE:option ~ Image switch (new) - Specifies that you want to
do a multiple disk-to-disk backup or restore operation.

/UFD - User File Directory switch (new) - Directs BRU to create a
UFD (if it does not already exist) on a mounted output volume,
and then to copy into it the files from the same UFD on the input
volume.

XX April 1983

Disk

File

File

SUMMARY OF TECHNICAL CHANGES

Save and Compress Utility Program (DSC)

There are two new stand-alone versions of DSC: DSCSYS and
DSC64K.

DSCSYS is a combination of DSCS8 and DSCS16. This version
requires 28K words to run and a maximum blocking factor of 4.
DSCSYS supports the following new devices: the RP07 disk, the
RAO8 fixed media disk, and the TU78 magnhetic tape.

DSC64K is essentially an RSX-11M system with BAD, FMT, DSC, and
CNF fixed in memory. The maximum blocking factor is 4 and DT,
DX, DY, DD, DF, and DS devices are not supported.

DSC now supports up to 64K files on a volume.

/BAD=0OVR - Override option (new) - Ignores the bad block
descriptor area and accesses the last good block on the next to
last track of the disk to obtain the data to create BADBLK.SYS.

/BAD=MAN:0VR - Manual Override option (new) - Allows manual entry
of bad block data to the bad block file BADBLK.SYS.

/DENS=6250 -~ Density switch (revised) - Creates magnetic tapes at

6250 bpi. The /DENS:6250 option 1is valid with TU78 magnetic
tapes only.

Structure Verification Utility Program (VFY)

/DV - Directory Validation switch (new) - Validates directories
against the files they list,

/HD - Header Delete switch (new) - Recognizes and deletes bad

file headers on a volume. The /AL subswitch allows bad headers
to be automatically deleted with no user intervention.

Dump Utility Program (DMP)

Multiple-format dumps are supported. Any or all of the format
switches can be specified in a command line.

ANSI magnetic tapes are supported.

/LC - Lower Case switch (new) - Specifies that the data should be
dumped in lowercase characters.

/OCT - Octal switch (new) - Specifies that the data should be
dumped in octal format in addition to other formats.

SB:n or /SB:-n - Specifies the number of blocks DMP space Blocks
switch (new) - Spaces forward or backward on a tape.

/SF:n or /SF:-n - Space Files switch (new) - Specifies the number

of end-of-file (EOF) marks DMP spaces forward or backward on a
tape.

xxi

SUMMARY OF TECHNICAL CHANGES

File Compare Utility (CMP)
CMP's default output device/file is now TI:.

Any unspecified portions of the second input file specification
default to the specifications for the first input file.

Source Language Input Program (SLP)
/S8Q - Sequence switch (new) - Sequences the lines in the output
file so that they reflect the line numbers of the original input
file.

/RS - Resequence switch (new) - Resequences the 1lines 1in the
output file.

/NS - No Sequence switch (new) - Does not sequence lines 1in the
output file., New lines are indicated by the audit trail.

Task/File Patch Program (ZAP)
Four types of task image files are supported:

e Regular task image files (including those mapped to resident
and supervisor mode libraries)

e Multiuser task image files (RSX-11M-PLUS only)

e I- and D-space (instruction and data space) tasks
(RSX-11M-PLUS only)

® Resident libraries

Resident libraries can be changed in task image mode. ZAP finds
the segments and allows you to make changes in both absolute mode
and task image mode.

/LI - List switch (revised) - Includes read-only segments of a
task in 1its segment table. ZAP finds the starting address and
allows you to make changes in both absolute mode and task image
mode. For I- and D-space tasks, the /LI switch lists the
starting block number and the address boundaries of each segment.

xxii April 1983

CHAPTER 1

INTRODUCTION

The RSX-11M and RSX-11M-PLUS operating systems provide several kinds
of utilities for your use. Utilities are programs that allow you to
work with different kinds of files and the contents of those files,
and also with different kinds of media (such as disks, magnetic tapes,
and cassettes). The RSX-11M/M-PLUS utility programs are listed and
described briefly in Section 1.1; reference information for each
utility is presented in a separate chapter of this manual. Two
appendixes are also included to provide you with a summary of commands
and switches for the utilities and to describe the Cross-Reference
Processor (CRF), which 1is wused with the MACRO-11 assembler and the
Task Builder.

In addition to summarizing the RSX-11M/M-PLUS utilities, this
introduction:

o Describes how to enter RSX-11M/M-PLUS command lines and file
specifications (Sections 1.2 and 1. 3)

e Describes how to invoke utilities and enter command 1lines to
them (Section 1l.4)

e Describes how to use indirect command files (Section 1.5)

1.1 RSX-11M/M-PLUS UTILITY PROGRAMS

This manual provides reference information for the following
RSX-11M/M-PLUS utilities:

Line Text Editor (EDI)

Peripheral Interchange Program (PIP)

File Transfer Utility Program (FLX)

Disk Volume Formatter Utility (FMT)

Bad Block Locator Utility (BAD)

Backup and Restore Utility (BRU)

Disk Save and Compress Utility Program (DSC)
File Structure Verification Utility (VFY)
Librarian Utility Program (LBR)

File Dump Utility (DMP)

INTRODUCTION

File Compare Utility (CMP)
Source Language Input Program (SLP)
Object Module Patch Utility (PAT)
Task/File Patch Program (ZAP)
The following sections briefly describe each utility.

Note that the utilities described in this manual are not the only
programs on RSX-11M and RSX-11M-PLUS that are used as or considered to
be utilities. TKB, CDA, and MAC are examples of other utility-like
programs. Some programs, such as the editor EDT, are common across
different operating systems. These other programs are documented
elsewhere in the RSX-11M/M-PLUS documentation set. Refer to the
RSX-11M/RSX-11S or RSX-11M-PLUS Information Directory and Index for
information on what programs are available and where they are
described.

l1.1.1 Line Text Editor (EDI)

EDI is a line-oriented, interactive editor used to create and maintain
text and source files. (The RSX-11M/M-PLUS Guide to Program
Development gives specific information about using EDI to create and
maintain program source files.)

1.1.2 Peripheral Interchange Program (PIP)

PIP copies files and performs several file control functions, such as
concatenating, renaming, spooling, listing, deleting, and unlocking.

1.1.3 File Transfer Utility Program (FLX)

FLX is a file transfer and format conversion program that transfers
files between DOS-11, RT-11, and Files-11 volumes, with some
restrictions.

1.1.4 Disk Volume Formatter Utility (FMT)

FMT formats and verifies several types of Files-11 disks. FMT writes
and verifies sector headers, sets the density for flexible disks, and
allows spawning of the Bad Block Locator Utility (if your system
allows spawned tasks).

1.1.5 Bad Block Locator Utility (BAD)

BAD determines the number and location of bad blocks on a volume. The
information gathered from running BAD on a volume can be used in
different ways when that volume is initialized.

INTRODUCTION

1.1.6 Backup and Restore Utility (BRU)

BRU transfers files from a Files-11 volume to one or more backup
volumes (including non-Files-11 volumes) and retrieves files from the
backup volume (or volumes). BRU 1is faster than DSC (see Section

1.1.7) 1in most areas. Also, BRU compresses data, the volumes do not
have to be initialized, and incremental backups are possible.

1.1.7 Disk Save and Compress Utility Program (DSC)
DSC copies Files-11 disk files to disk or tape and from DSC-created
tape back to disk. While copying the files, DSC also consolidates the

data storage area and writes files in contiquous blocks wunless it
encounters a bad block. DSC can be run either on-line or stand-alone.

1.1.8 File Structure Verification Utility (VFY)

VFY is a disk verification program that verifies the consistency and
validity of the file structure on a Files-11 volume.

1.1.9 Librarian Utility Program (LBR)
LBR is a library maintenance program that creates, displays, and

modifies 1library files. LBR can process macro, object, and universal
libraries.

1.1.10 File Dump Utility (DMP)
DMP is a file listing program that allows you to examine the contents

of a file or volume of files. DMP also provides options that control
the format of the contents.

1.1.11 File Compare Utility (CMP)

CMP compares two text files, record by record, and 1lists the
differences between the two files.

1.1.12 Source Language Input Program (SLP)

SLP is a noninteractive editing program that is used to maintain and
audit source files.

1.1.13 Object Module Patch Utility (PAT)

PAT updates, or patches, relocatable binary object modules.

INTRODUCTION

1.1.14 Task/File Patch Program (ZAP)

ZAP is a patch utility that examines and directly modifies 1locations
in a task image file or data file.

1.2 COMMAND LINES

The general format for command lines in most of the RSX-11M/M-PLUS
utilities is: o

outfile[...,outfile]=infilel...,infile] @D

The variables outfile and infile are file specifications for the
output and input files to be operated on by the utility. (File
specifications are described in Section 1.3.)

This general format varies from utility to utility. Some use the
entire command 1line and others use abbreviated forms of the command
line. For some other utilities (such as BRU), the format is
different. The syntax for each utility is described in the chapter
that describes that utility. Most of the utilities also accept
indirect command files containing command lines to the utility, as
described in Section 1.5.

1.3 FILE SPECIFICATIONS

In the command line format described 1in Section 1.2, outfile and
infile represent file specifications. The number of file
specifications you can enter depends on the wutility. The maximum
terminal line length depends on the size of the output buffer for your
terminal (the default length is 80 characters).

The format for entering file specifications is:
ddnn: [g,m]filename.type;version/switch.../subswitch...
ddnn:

The physical or 1logical device unit containing the desired
volume. The name consists of two or three ASCII characters
followed by an optional 1-, 2-, or 3-digit octal number and a
colon, for example, DMO:, or TT1llé6:.

The default is the user's system device, SY:.

[g,m]

The User File Directory (UFD) listing the desired file or files.
The wvariables g and m are octal numbers from 0 to 377 that
represent the group and member numbers, respectively, of the
file's owner. The brackets are a mandatory part of the UFD
syntax.

The default is the current UIC (User Identification Code) to
which your terminal is set.

See the RSX-11M/M-PLUS MCR Operations Manual or the
RSX-11M/M-PLUS Command Language Manual for more information on
UICs and UFDs.

INTRODUCTION

filename

The name of the file. File names can be from one to nine
characters in length.

If you want to include special characters in the file name (for
example, semicolons or exclamation marks), place double quotation
marks around the name. If you use only one double quotation
mark, MCR or DCL assumes an American National Standard X.327-1978
file name. (See the RSX-11M/M-PLUS I/0 Operations Manual for
more information on double quote support.) Note that not all
utilities or other tasks allow special characters.

There is no default.

type
The file type of the file. The file type provides a convenient
means for distinguishing different forms of the same file. For
example, a FORTRAN source program file might be named COMP.FTN
and the object file for the same program might be named COMP.OBJ.
In this way, the file type identifies the nature of the contents
of the file. :
File type and file name are separated by a period. The file type
may not be specified or can be up to three alphanumeric
characters in length. The default for a file type depends on the
utility or task you are working with and if the file is an input
or output file.
See the RSX-11M/M-PLUS MCR Operations Manual or the
RSX-11M/M-PLUS Command Language Manual for a list of standard
file types.

version

An octal number that specifies different versions of the same
file. For example, when a file is created, it is assigned a
version number of 1 by default. Thereafter, each time the file
is opened and unless you specify otherwise, the file system
creates a new file with the same file name and file type, but
with a version number incremented by 1. Version numbers range
from 1 through 77777(8). However, you can also use 0 to specify
the highest numbered version and -1 to specify the lowest
numbered version (0 is the default). If a file has a version
number of 77777, no more versions of it can be created.

Version number and file type are separated by a semicolon. The
default is the latest version.

/switch (also /qualifier)

An ASCII name specifying a switch (or qualifier in BRU)
associated with a function to be executed by the utility. Most
utility functions are implemented by means of switches and
subswitches. Switches can take one of three forms:

/sw invokes the switch function

/—Sw negates the switch function

/NOsw negates the switch function

Switches can also take values in the form of ASCII strings and
numeric strings. The values modify the function of the switch.

INTRODUCTION

Most numeric values are octal by default. To specify a decimal
number, terminate the number with a decimal point. Values
preceded by a pound sign (#) are octal; this optional notation
provides explicit specification of octal values. Any number can
be preceded by either a plus (+) or minus (-) sign; plus is the
default. Where explicit octal notation (#) is used, the sign, if
specified, must precede the pound sign.

The following are examples of valid switch specifications:
/SW:27.:MAP: 29,
/—~SW
/NOSW: -#50: SWITCH
/subswitch
An ASCII name specifying a subswitch associated with a switch.
Subswitches provide a subset of functions related to the main
switch function. The following is an example of a subswitch
specification:
PIP>[200, 200] *.*; */PR/FO GED
In this example, /FO is a subswitch applied to the /PR switch.

Syntactically, subswitches are identical to switches. The rules
for entering switches also apply for entering subswitches.

1.4 INVOKING THE UTILITIES

You 1invoke a utility from the command 1line interpreter (CLI)
environment. The CLI can be the Monitor Console Routine (MCR), the
DIGITAL Command Language (DCL), or an alternate user-written CLI. For
more information on MCR, see the RSX-11M/M-PLUS MCR Operations Manual.
For more information on DCL, see the RSX-11M/M-PLUS Command Language
Manual.

To determine whether you are using MCR or DCL or another CLI, type
CTRL/C, which returns the explicit monitor prompt: MCR> or DCL> or
CLI>.

You can work with a utility directly (interactively) or by means of
indirect command files. For systems 1in which all utilities are
installed, you can use any of three methods to 1invoke a utility.
Sections 1.4.1 describes these methods. For systems in which not all
utilities are installed, you can use the method described 1in Section
1.4.2,

Section 1.5 describes how to invoke a utility that can then accept
commands from an indirect command file.

You can invoke a utility when MCR or DCL prompts you. The MCR prompts
are:

> or (if you type CTRL/C first) MCR>
The DCL prompts are:

> or (if you type CTRL/C first) DCL>

INTRODUCTION

In MCR, the utilities are always invoked by their 3-character names.
DCL, however, has commands that access utilities transparently to the
user. You do not have to explicitly specify the utility to wuse Iit.
For example, the DCL command DIFFERENCES invokes the File Compare
Utility (CMP); and the DCL commands COPY, DELETE, and PURGE invoke
the Peripheral Interchange Program (PIP). This transparent access to
utilities covers most common utility needs for DCL users. If you use
these DCL commands, the general format for specifying files is:

>command [/qualifiers] infile outfile

DCL users can also use any MCR command forms by using the DCL command
MCR (or MC).

1.4.1 Invoking Installed Utilities

RSX-11M/M-PLUS systems provided in distribution kits do not have any
utilities installed. Once the system has been generated, the system
manager usually installs any commonly used utilities. Use the MCR TAS
or DCL SHOW TASKS /INSTALL commands to see which utilities are
currently installed in the system. If the utility you want to use is
not installed, any privileged user can install it with the MCR or DCL
INSTALL command. Once the utility is installed, you can invoke it.

The following sections describe the three primary methods you can use
to invoke installed utilities.

1.4.1.1 Invoking a Utility and Returning Control to MCR - Use one of
the following forms of command lines to invoke a utility to execute a
function and then return control directly to MCR:

>utilityname command-line

or

MCR>utilityname command-line
Using this method to invoke the utility allows you to enter a single
command for execution. The utility 1is installed, the command is
executed, and control returns to MCR., (The method described in the
following section allows you to enter more than one command line
because control returns to the utility rather than to MCR.)
Two exceptions to this command format are the SLP and ZAP utilities.
You must first invoke these utilities and then enter the command lines
as described in Section 1.,4.1.3. (However, you can specify

>SLP @indirectcommandfile

or

>ZAP Qindirectcommandfile

See Section 1.5 for more information.)

INTRODUCTION

1.4.1.2 1Invoking a Utility and Returning Control to DCL - Use one of
the following forms of command lines to invoke a utility to execute a
function and return control directly to DCL:

>commandname command-line

or

>MCR utilityname command-line
Using these methods to invoke the utility allow you to enter a single
command for execution. The wutility 1is installed, the command is
executed, and control returns to DCL. With the first method, the DCL
command transparently accesses the utility (see Section 1l.4).
Two exceptions to this command format are the SLP and ZAP utilities.
You must first invoke these utilities and then enter the command lines
as described in Section 1.4.1.3. (However, you can specify

>SLP @indirectcommandfile

or

>ZAP @indirectcommandfile

See Section 1.5 for more information.)

1.4.1.3 Invoking and Passing Control to a Utility - Use one of the
following forms of command lines to invoke an installed utility and
pass control to it:
For MCR:
>utilityname
For DCL:
>MCR utilityname
These commands do not execute a function; rather, they make a utility
available for execution of more than one function without returning

control to MCR or DCL. When invoked using one of these forms, the
utility responds with the prompt:

utilityname>
You can then enter the command line that specifies the function you
want executed. For example, if you are executing a PIP function, PIP
displays the prompt:

PIP>

To terminate the utility and return to MCR or DCL, type CTRL/Z.

INTRODUCTION

1.4.2 Invoking Uninstalled Utilities

You can use the following method to invoke an wuninstalled wutility.
This method 1is useful for smaller systems in which not all utilities
are installed. This method uses either the MCR RUN command or the DCL
RUN command to invoke the utility.

The method invokes the utility by means of the following command:
>RUN Sutilityname

The dollar sign ($) directs MCR or DCL to search the system directory
for the utility and to bring it into storage. On RSX-11M-PLUS, if the
utility is not in the system directory, MCR or DCL then searches in
the library directory and invokes the utility from there.

When the utility gains control, it displays the prompt:
utilityname>

Then it waits for you to enter a command line. The utility continues
to prompt you after each command line is executed. To terminate the
utility, enter CTRL/Z. Control is then returned to MCR or DCL.

A variation of this method allows the utility to run under a UIC other
than the current UIC:

For MCR:

>RUN $utilityname/UIC=[g,m]
For DCL:

>RUN/UIC: {g,m] $utilityname

When the utility gains control, it prompts for functions to execute
until you enter CTRL/Z.

1.5 USING INDIRECT COMMAND FILES

An indirect command file normally contains a sequence of command lines
that are interpreted by a task (usually a system-supplied task such as
a utility, the MACRO-11 assembler, or the Task Builder). These
command lines appear in the indirect command file exactly as you would
enter them from your terminal.

The command lines contained in the indirect command file are executed
when the indirect command file is invoked. If you invoke the file
from MCR or DCL, each command line must begin with the name of the
utility or command you want to use. If you invoke the file from the
utility itself, the command lines do not begin with the name of the
utility, but they must all be legal for that utility.

For example, an indirect command file might contain the following
series of PIP command lines:

=DB 2: [303, 24] TESTPREP.CMD
TESTPREP. *; */LI
TESTPREP. * /PU: 2

* ,CMD/SP

INTRODUCTION

To invoke the indirect command file (PIPCMDS.CMD), enter one of the
following sets of commands:

For MCR:

>PIP @PIPCMDS.CMD

or

>PIPGED
PIP>@PI PCMDS @D

or

>RUN $PIP G
PIP>@PI PCMDS

For DCL:

>RUN S$PIP
PI P>@PIPCMDS

or

>MCR PIP @PIPCMDS (ED

or

>MCR PIP
PIP>@PIPCMDS

In this example, PIP is invoked and accesses the file PIPCMDS.CMD,
which contains the sequence of PIP command lines. Because PIP is
invoked first, the command lines in the file do not have to begin with
PIP. PIP executes the command lines and returns control to MCR, DCL,
or PIP, depending on which command set you use.
RSX-11M and RSX-11M-PLUS also allow you to use indirect command files
that contain MCR or DCL commands. The command lines do not begin with
MCR or DCL; they must only be legal for the CLI. You invoke the
indirect command file by entering only the file specification preceded
by the at sign (@) in response to the prompt (in this case, the MCR
prompt) :

>@indirectcommandfile
The default values for indirect command file specifications are:

e device - SY:

e [g,m] - the current UIC

e file name - no default; must be specified

e file type - .CMD

e version - the latest version of the file

For complete information on how to use indirect command files, see the
RSX-11M/M-PLUS MCR Operations Manual.

CHAPTER 2

LINE TEXT EDITOR (EDI)

EDI is a line-oriented editor that allows you to create and modify
text files. EDI operates on most ASCII text files. It is frequently
used to create and maintain FORTRAN or MACRO-11 source files.

EDI accepts over 50 commands that determine its mode of operation and
control its actions on input files, output files, and working text
buffers. The commands fall into the following seven categories:

e Setup commands select operating conditions, close and open
files, and select data modes.

e Locator commands control the position of the current 1line
pointer and thus determine which text line is acted upon.

o Text modification commands change text lines.

e Macro commands define, store, recall, and use sequences of EDI
commands.

e PFile input and output commands transfer text to and from
input, output, and saved files.

e Device dutput commands send output to a terminal or a printer.
e Close and exit commands terminate editing operations.
Commands are categorized 1in this chapter as Basic EDI Commands
(Section 2.2), EDI Commands: Function Summary (Section 2.3), and EDI
Commands: Detailed Reference Summary (Section 2.4). Restrictions,

system device considerations, and error messages for these commands
are discussed in Sections 2.5 and 2.6.

2.1 USING EDI

This section gives background information about EDI that is important
for you to know before you read the command descriptions.

2.1.1 Invoking EDI

You can invoke EDI using any of the methods for invoking a utility
described in Chapter 1. If any format except ">EDI filespec" is used,
EDI issues the following prompt:

EDI>

LINE TEXT EDITOR (EDI)

At this point, you must enter the file specification for the file to
be edited.

2.1.1.1 Entering File Specifications - Enter a file specification in
the following format:

ddnn: [ufd] filename.filetype;version

The abbreviation "filespec" is used throughout this chapter to denote
a file specification that you supply.

If the file specification is a new file (that is, the file specified
cannot be found on the specified device), EDI assumes that you wish to
create a new file with the given file name. EDI then prints the
following comment lines:

[CREATING NEW FILE)
INPUT

and enters input mode. (EDI control modes are described 1in Section
2.1.2,)

If the message FILE DOES NOT EXIST is printed, it means that the User
File Directory corresponding to the specified UIC is nonexistent.

EDI does not accept indirect command file specifications.
If you specify an existing file name, EDI prints:

[000nn LINES READ IN]
PAGE 0]
*

and waits in edit mode for you to issue the first command.

If the ">EDI filespec" format is used, the prompt (EDI>) is not issued
and EDI starts up in either input or edit mode, depending on the file
name specified -- input mode if the file name is new, edit mode if the
file name already exists.

After EDI has identified the input file and created the output file,
it 1is ready for commands. In edit mode, the first line available for
editing is one line above the first l1ine of the input file or the
block buffer. Therefore, you can insert text at the beginning of the
input file or the block buffer by issuing an INSERT command. To
manipulate the first line of text, on the other hand, you must issue a
NEXT command to make that line available.

2.1.1.2 Defaults in PFile Specifications - EDI uses a default if any
of the elements of the file specification, except the input file name,
is omitted. 1In general, EDI processing creates an output file. When
you are modifying an existing file, EDI uses that file and your
modifications to create an output file. When the editing session is
complete, the output file usually has the same file specification as
the input file, except the file system renumbers the version to one
greater than the previous version. The default values for input and
output files are listed in Table 2-1.

LINE TEXT EDITOR (EDI)

Table 2-1
EDI Default File Specifications

Default Value - Default Value
Element for Input File for Output File
ddnn: SYO: Same as input device
[ufd] UFD under which EDI Same as input [ufd]

is currently running

filename No default -- must Same as input file name
be specified

filetype Unspecified Same as input file type

;version Latest version Latest version + 1

2.1.2 Control Modes: Edit and Input
EDI runs in two control modes:
e Edit mode (command mode)
e Input mode (text mode)
Edit mode is invoked automatically when you specify an existing file.

In edit mode, EDI issues an asterisk (*) as a prompt. EDI acts upon
commands and data to open and close files; to bring lines of text
from an open file; to change, delete, or replace information in an
open file; or to insert single or multiple lines anywhere in a file.

Input mode is invoked automatically at program startup if you specify
a nonexistent file.

When in input mode, EDI does not issue an explicit prompt. Lines that
you enter at the terminal are treated as text and are inserted into
the output file. When you complete each input line by pressing the
RETURN key, EDI sends a line feed to the terminal.

To switch from edit mode to input mode, enter the INSERT command ' and
press the RETURN key. To return to edit mode, press the RETURN key as
the only character on an input line. EDI will 1issue the asterisk
prompt, signifying edit mode.

2.1.3 Text Access Modes

EDI provides two modes you can use to access and manipulate 1lines of
text in the input file. (A line is defined as a string of characters
terminated by pressing the RETURN key.) The two modes are:

e Line-by-Line Mode allows access to one line of text at a time.
Backing up is not allowed.

e Block Mode allows free access within a block of 1lines, on a
line-by-line basis. Backing up within a block is allowed.
Backing up to the previous block is not allowed.

Block mode is the default text access mode.

2-3

LINE TEXT EDITOR (EDI)

In addition to these two text access modes, EDI provides a way to
process text "pages." This feature is described in Section 2.1.3.3.

2.1.3.1 Line-by-Line Mode - In this mode, a single line is the unit
of the 1input file available for modification. Line-by-line mode is
entered by issuing a BLOCK OFF command and is terminated by issuing a
BLOCK ON command.

The single available 1line--the current line--is specified by a
pointer, which you can move sequentially through the file, starting
just before the first line in the file. You can manipulate the 1line
pointer using the 1locator commands and the text modification and
manipulation commands discussed later in this chapter. However, you
cannot easily direct the pointer backward within the file.

When you open a file at the beginning of an editing session, you can
specify that the first line be brought into memory and made available
for modification. This line remains in memory until you request that
a new line be brought in. The pointer then moves down the file until
the line you requested is encountered. That 1line 1is brought into
memory and, as the current line, can be modified. When a new line is
brought in, the previous line is written into the output file, as are
all lines that may be passed over in reaching the new current line.

Once the pointer moves past a line, that line is no longer accessible
unless you enter a TOF or TOP command (described in Section 2.4). TOF
causes the input and output files to be closed, and the output file to
become the new input file. TOF also ends line-by-line mode.

2.1.3.2 Block Mode - In’this mode, a portion of the input file |is
held in a buffer for editing until you request that the contents of
the buffer be added to the output file.

In block mode, you can access 1lines of text backward as well as
forward within the buffer. Thus, you can back up to a previously
edited line without having to reprocess the entire block or file and
without having to issue a TOF command.

When you finish editing a block, you can write it out and read in the
next block with the RENEW command. However, you cannot access a
previously edited block except by using TOF.

EDI buffer space is computed dynamically at run time. The number of
lines initially read into the buffer is computed by using the formula:

buffersize/132

A block is the number of lines read into the buffer by a RENEW or READ
command. This number is either:

1. Specified with the SIZE command (default is 38 lines 1if the
SIZE command is not issued),

or

2. Determined by the presence of a form feed at a point in the
text where the number of lines is less than that specified in
the SIZE command (or its default value, if SIZE was not
issued).

LINE TEXT EDITOR (EDI)

When the current 1line pointer reaches End-0f-Block, the message
[*EOB*] 1is displayed and the current line pointer points to the last
line in the block. To move the current line pointer to the top of the
block, use TOP.

Table 2-2 briefly summarizes the differences between line-by-line and
block mode. Regardless of the editing mode, the line pointer always
points to the first character in the line.

Table 2-2
Line-by-Line and Block Mode Differences

Line-by-Line Mode Block Mode
One line is available for A block of lines is available
modification at a time. for modification at a time, on

a line-by-line basis.

Lines can only be Lines can be accessed forward
accessed forward through and backward within a block.
the file.

Search commands can Search commands can search only
search the entire file. the block in memory. To search

more data, you must read in
another block.

2.1.3.3 Processing Text in Pages - EDI provides features that allow
you to access portions of a text file by page. A page is a segment of
text delimited by form feed characters (the last page in a file |is
terminated by the end-of-file marker).

Two commands are provided to handle paged text: FF, which defines a
page boundary by inserting a form feed, and PAGE, which accesses a
page of text. (The commands PAGE FIND and PAGE LOCATE do not refer to
form feed-delimited pages--they are actually global searches.)

EDI handles paged text in block mode. If block mode is not already in
effect, it is entered when you issue a PAGE command.

If a form feed 1is encountered in text during a READ or RENEW
operation, the page thus delimited, for purposes of the READ or RENEW
command, is interpreted as a block.

The message [PAGE n], issued after a READ or RENEW operation, gives
the value of EDI's page counter. If your text contains no form-feed
characters, the count is zero until the last block in the file is read
into the buffer. Upon encountering the end-of-file (EOF), EDI
increments the page count to 1.

2.1.4 Text Files

The following sections describe how data may be added to files and the
operations performed on output files.

LINE TEXT EDITOR (EDI)
2.1.4.1 Input and Secondary Files - EDI accepts input from the
following:
e The input terminal (that is, commands and text entries)
e Files-11 volumes that contain any of the following:

- The file to be edited

A secondary file
~ A save file
- A macro file

The input file is always preserved.l Any system failure, EDI failure,
or lack of space on the output volume does not cause the loss of the
input file. Only the output file is affected. 1In cases of failure,
the output file 1is not completely destroyed. Instead, it becomes a
truncated version of the input file containing all of the edits to the
point of failure.

In general, the current block buffer is not written to disk when an
error of this type occurs.

2.1.4.2 Output Files - The output file defaults to the input file
device, directory file name, and file type specifications. The
version number is incremented by one.

If you wish to change any of these parameters (except device and

directory), specify a new file specification when closing a file or
exiting at the end of an EDI session.

2.1.5 Terminal Conventions

RSX-11M/M-PLUS and EDI provide terminal keyboard functions that allow
you to:

e Delete characters on an input line

e Delete an entire input line

e Move the current line pointer forward in a file
e Move the current line pointer backward in a file

e Terminate an editing session and return control to vyour CLI
(for example, MCR or DCL)

2.1.5.1 Character Erase (DELETE or RUBOUT; CTRL/R) - Pressing the
DELETE key (marked RUBOUT on some terminals) deletes individual
characters if used before the RETURN key is pressed. During editing
operations, DELETE does not affect previously prepared text.

1. To delete the input file, use the CLOSE-AND-DELETE command or the
EXIT-AND-DELETE command, or use PIP (see Chapter 3).

2-6

LINE TEXT EDITOR (EDI)

When the DELETE key is pressed, it is echoed first as a backslash (\)
and 1is followed by the previously typed character. Each successive
DELETE results in the echo of an earlier typed character. When the
first non-DELETE character 1is - typed, it 1is echoed as a backslash
(closing the DELETE sequence) followed by the typed character. For
example:

First DELETE typed MISTKAE\E
Second DELETE MISTKAE\EA
Third DELETE MISTKAE\EAK
First non-DELETE MISTKAE\EAK\AKE

For some CRT terminals, DELETE (or RUBOUT) works in a more obvious
way. Each DELETE causes the cursor to backspace, erasing the previous
character. Your CRT terminal may work this way if a certain option
was selected when your system was generated.

Another useful system generation option is CTRL/R. If this option was
selected, your system responds to CTRL/R by printing the incomplete
input line. It is typed by holding down the CTRL key and pressing R.
CTRL/R echoes "R and is followed by a return and line feed. For
example, at a hardcopy terminal you enter:

MISTKAE
The echoed result is:

MISTKAE\EAK "R
MIST

2.1.5.2 Line Erase (CTRL/U) - CTRL/U deletes the line being input, if
typed before the line is terminated with the RETURN key. It is typed
by holding down the CTRL key and pressing U. CTRL/U echoes as "U and
is followed by a return and line feed.

2.1.5.3 The RETURN Key - The RETURN key has the following effects,
depending on how it is used:

e When issued in place of an input file specification, the
RETURN key causes EDI to terminate.

e When issued in edit mode, the RETURN key causes the next 1line
to be printed. That line becomes the current line.

e When issued in input mode as the only character in an input
line, the RETURN key causes a return to edit mode.

e When issued alone after an INSERT command, the RETURN key
invokes input mode.

2.1.5.4 Terminating the Previous Text Line (ESCape or ALTmode) - When
EDI is in edit mode, pressing the ESCape (or ALTmode) key causes the
previous text line to be printed. That line becomes the current line.
ESC can be used this way only in block mode, not in line-by-line mode.

When EDI is in input mode, ESC acts as a return and terminates the
line. If ESC is the first character of an input line, EDI exits from
input mode.

LINE TEXT EDITOR (EDI)

2.1.5.5 Terminating EDI (CTRL/Z) - CTRL/Z causes EDI to terminate.
EDI writes the remainder of the input file into the output file and
then closes both files before terminating. Use CTRL/Z to terminate
EDI in edit mode and input mode. CTRL/Z erases your last input line
if you enter the command as a line terminator.

2.1.6 EDI Command Conventions

EDI uses asterisks (*) and ellipses (...) 1in special ways. The
following sections describe these and also the notation convention
used to define EDI command abbreviations.

2.1.6.1 Use of Asterisk (*) - The asterisk (*) can be used 1in place
of any numeric argument. It evaluates to 32767(10).

Example

The following command results in the printing of the remainder of
the block buffer or file.

PRINT *

2.1.6.2 Use of Ellipsis (...) in Search Strings ~ In a number of the
EDI commands, you must identify a string of characters to be located
and/or changed. To reduce the necessary terminal entries, you can use
the following special string constructs. In these special cases, the
ellipsis (...) represents any number of intervening characters.

Case 1. stringl...string2 Any string that starts with stringl
continues with any number of intervening
characters and ends with the first
occurrence of string2.

Case 2. ...string Any string that starts at the beginning
of the current 1line and ends with the
first occurrence of string.

Case 3. string... The first string that starts with string
and ends at the end of the current line.

Case 4. ... The entire current line.

Examples

In the following examples, the CHANGE command is used with the
four cases of special string constructs. In each case the
current line reads:
THIS IS A SAMPLE OF SPECIAL STRING CONSTRUCTS.

Case 1. CcC /S A...E O/S AN EXAMPLE O

results in

THIS IS AN EXAMPLE OF SPECIAL STRING CONSTRUCTS.

LINE TEXT EDITOR (EDI)

Case 2. C/...SPEC/HERE IS AN EXAMPLE OF SPEC
results in
HERE IS AN EXAMPLE OF SPECIAL STRING CONSTRUCTS.
Case 3. C /STRING.../EDI STRING CONSTRUCTS.
results in
HERE IS A SAMPLE OF SPECIAL EDI STRING CONSTRUCTS.
Case 4. C/.../EXAMPLES OF SPECIAL EDI CONSTRUCTS.
results in

EXAMPLES OF SPECIAL EDI CONSTRUCTS.

2.1.6.3 Command Abbreviations - EDI permits the wuse of truncated
commands. Where these shorter forms are allowed, the command format
specifications represent the shortest acceptable form in uppercase
letters. The 1lowercase 1letters may be entered optionally. The
following example shows the abbreviations allowed for the VERIFY
command. The command format specification is:

Verify
The following truncations are valid for the VERIFY command:

A"

Ve

Ver
Veri
Verif
Verify

2.2 BASIC EDI COMMANDS

The basic EDI commands listed in Table 2-3 allow you to create a file,
to modify a file by adding, deleting, or changing its contents, and to
exit after the desired operations have been completed. A more
detailed description of each command follows the table. These
commands are the most important EDI commands. As you become familiar
with EDI operations, the additional commands listed in Section 2.3 and
described in Section 2.4 will allow you to wuse all of EDI's
capabilities.

2-9

LINE TEXT EDITOR (EDI)

Table 2-3

Basic EDI Commands

Command Command Format Description

ADD Add string Append string to current line.

ADD & PRINT AP string Append string to current line
and print resulting line.

BOTTOM BOttom Move the current 1line pointer
to the bottom of the current
block (in block mode) or to the
bottom of the file (in
line-by-line mode).

CHANGE [n1Change /stringl/ Replace stringl with string2

string2([/] n times in the current 1line.
€D Type a Control Z Close files and terminate
editing session.

DELETE Delete [n] Delete current 1line and n-1

or lines if n is positive; delete
Delete [-n] n lines preceding current 1line
if n is negative. [-n]

operates in block mode only.

DELETE & DP [n] or DP [-n] Same as DELETE, except new

PRINT current line is printed.

€0 Type the ESC (or ALT) | Print previous line, make it

key new current line and exit from
input mode (block mode only).
Same as NP-1.

EXIT EXit [filespec] Close files, rename output
file, and terminate editing
session.

INSERT INsert {[string] Enter the string immediately
following the current line. If
no string is specified, EDI
enters input mode.

LOCATE [n]Locate string Locate nth occurrence of
string. In block mode, search
stops at end of current block.

NEXT Next [n] or Establish new current line n

Next [-n] lines away from current line.

NEXT & PRINT

PRINT

NP [n] or NP ([-n]

Print({n]

Establish and print new current
line.

Print current line and the next
n-1 1lines. The last printed
line is the new current line.

(continued on next page)

LINE TEXT EDITOR (EDI)

Table 2-3 (Cont.)
Basic EDI Commands

Command

Command Format

Description

RENEW

RETYPE

TOP

TOP OF FILE

RENew[n]

Press the RETURN key

Retype string

Top

TOF

Write current block to output
file and read new block n from
input file (block mode only).

Print the next 1line, make it
new current 1line, exit from
input mode. Same as NP+1l.

Replace current line with
string or delete current line
if string is not given.

Move the current 1line pointer
to the top of the current block
(in block mode) or top of file
(in line-by-line mode). TOP
creates a new version of the
file each time it is invoked in
line~-by-line mode.

Return to top of input file and
save all pages previously
edited. TOF creates a new
version of the file each time
it is invoked. TOF reads in a
new block after writing the
previous block to the output
file.

2.2.1 ADD

This command causes the specified string to be appended to the current

line.

Format

Add string

Example

The following command completes the line HAPPY DAYS ARE HERE

*A AGAIN.

Note that the space after the A is the command terminator. EDI

will not
precede AGAIN.,

A @

insert the space into

AGAIN.

the 1line. If a space is to

the command should be:

LINE TEXT EDITOR (EDI)

2.2.2 ADD & PRINT

This command performs the same function as the ADD command except that
the new line is printed.

Format
AP string
Example

Using the same line used for the ADD command, the following
command causes the new line to be printed as follows:

*AP AGAIN.
HAPPY DAYS ARE HERE AGAIN.

2.2.3 BOTTOM

This command moves the current line pointer to the beginning of the
last 1line of the current block (in block mode) or to the beginning of
the last line of the file (in line-by-line mode). In block mode, the
only processing EDI performs 1is 1line pointer positioning. In
line-by-line mode, all the lines are copied from the input file to the
output file until EOF is reached. If VERIFY ON is specified, the last
line of the file block is displayed. Note, however, that if you
deleted the 1last 1line before you issued BOTTOM, the pointer will be
located past the text, and thus the last line will not be printed.
BOTTOM performs the same function as END (see Section 2.4.14).

Format
BOttom
Example

*V ON
*BO
THIS IS THE LAST LINE

In this example, the current line pointer is moved to the bottom
of the block buffer and the last line is printed.

2.2.4 CHANGE

This command searches for stringl in the current line and, if found,
replaces it with string2. If stringl is given, but cannot be located
in the current line, EDI prints [NO MATCH] and returns an asterisk
prompt. If stringl is not given, string2 is inserted at the beginning
of the line. If string2 is not given, stringl is deleted from the
current line.

The search for stringl begins at the beginning of the current line and
proceeds across the line until a match is found.

LINE TEXT EDITOR (EDI)

The characters that delimit stringl and string2 are normally slashes
(/). However, any matching characters not contained in the specified
string may be used. The first character following the command is the
beginning delimiter, the next matching character ends the string.
Thus, characters used as delimiters must not appear in the string
itself. The closing delimiter is optional.

If you precede the command with a number n, the first n occurrences of
stringl are changed to string2. After each replacement of stringl
with string2, scanning restarts at the first character in the 1line.
This allows you to generate a string of characters as shown in the
following example.

If no match occurs, a [NO MATCH] message is displayed.
Format

[n]Change /stringl/string2{/]
Example

TO SEPERATE THE THOUGHTS, USE SEPERATE SENTENCES,

2C/SEPE/SEPA/

TO SEPARATE THE THOUGHTS, USE SEPARATE SENTENCES.

2.2.5 CTRL/Z

Typing CTRL/Z (holding the CTRL key down while typing the 1letter 2)
terminates the editing session. If an output file is open when CTRL/Z
is typed, all remaining lines in the block buffer and the input file
are transferred (in that order) into the output file, all files are
closed, and EDI exits. These actions occur whether EDI is in edit or
input mode. If EDI is prompting for another file specification when
CTRL/Z is entered, all files are closed (including any open secondary
input file), and EDI exits. If you enter CTRL/Z as an input line
terminator, that line is erased.

2.2.6 DELETE

This command causes lines of text to be deleted in the following
manner :

e If n is given and is a positive number, the current 1line and
n-1 following lines are deleted. The new current line is the
line following the last deleted line.

e If n is given and is a negative number, the current 1line Iis
not deleted, but the specified number of lines that precede it
are deleted. The line pointer remains unchanged. A negative
value for n can be used only in block mode.

e If n is not given, the current line is deleted, and the next
line becomes the new current line.

LINE TEXT EDITOR (EDI)

Format
Delete [n]
or
Delete [-n]
Example

To delete the previous five lines in the block buffer, type the
following command:

*D -5

2.2.7 DELETE & PRINT

This command performs the same function as the DELETE command except
that the new current line is printed when all lines have been deleted.

Format

DP [n]
or
DP [-n]

If n is not specified, +1 is assumed. A negative value for n can
be used only in block mode.

Example
If the following lines are contained in a file:

THIS IS LINE
THIS IS LINE
THIS IS LINE
THIS IS LINE

o wWwN -

and the line pointer is at the first line, the following command
obtains the results shown below it:

*DP 2
THIS IS LINE 3

2.2.8 The ESCape Key

This command prints the previous line in the block (block mode only).
That 1line becomes the current line. Thus, you can back up through a
block, one line at a time, by pressing a series of ESCapes. Pressing
ESCape is equivalent to typing NP-1 (NEXT & PRINT command) .

2.2.9 EXIT

This command transfers all remaining lines in the block buffer and
input file (in that order) into the output file, closes the files, and
terminates the editing session. If a file specification is used, the
output file is renamed to the specified file name.

LINE TEXT EDITOR (EDI)

Format
EXit [filespec]
Example
The command
*EX

terminates the editing session without renaming the output file.
It causes EDI to display:

[EXIT]
The output filename.filetype 1is the same as the input

filename.filetype. The version number is one greater than that
of the input file.

2.2.10 INSERT

This command inserts a string immediately following the current 1line.
The string becomes the new current 1line. If a string 1is not
specified, EDI enters input mode.

Format

Insert [string]

Example

*#I TEXT INSERT IN EDIT MODE Insert a line of text
immediately after the current
line.

*T An I followed by a RETURN

TEXT INSERT 1 IN INPUT MODE causes EDI to switch to input

TEXT INSERT 2 IN INPUT MODE mode. A series of new lines

ETC. may be input following the
current line.

* A RETURN or ESC as the only

character in an input 1line
causes EDI to return to edit
mode and to prompt for a new
command.

2.2.11 LOCATE

This command causes a search for a string, beginning at the 1line
following the current line. The string may occur anywhere in the line
sought. The line pointer is positioned to the 1line containing the
match. When the 1line 1is located, it is printed if VERIFY ON is in
effect.

If a string is not specified, the line following the current 1line Iis
considered a match, and the line pointer is positioned there. 1If n is
specified, the nth occurrence of string is located.

LINE TEXT EDITOR (EDI)
LOCATE applies to the block buffer if EDI is in block mode and to the
input file if in line-by-line mode.
Format
[n]Locate [string]
Example

The following command can be used to locate the line HAPPY DAYS
ARE HERE AGAIN.

*[, PPY

EDI searches the file or block buffer and if VERIFY ON is
specified prints the line when it is located. The current line
pointer is set to the located line.

2.2.12 NEXT
This command moves the current line pointer backward and forward in
the file. A positive number moves the current line pointer n lines
beyond the current line. A negative number moves the current 1line
pointer backward n lines.
Format

Next [n]

or
Next [-n]

If n is not specified, a value of +1 is assumed. A negative for
n can be used only in the block mode.

Example

In block mode, the following command moves the current 1line
pointer back five lines:

*N -5

2.2.13 NEXT & PRINT

This command has the same effect as the NEXT command except that the
new current line is printed.

Format
NP [n]
or

NP [-n]

The following conventions can be used in place of issuing an NP
command :

e Pressing the RETURN key is the same as an NP+l command.

e Pressing the ESCape (or ALTmode) key while in the block mode
is the same as an NP-1 command.

e If n is not specified, then a value of +1 is assumed.

2-16

LINE TEXT EDITOR (EDI)

Example

Assume the following four lines are contained in the file and the
line pointer is at the first line.

LINE 1 OF THE FILE
LINE 2 OF THE FILE
LINE 3 OF THE FILE
LINE 4 OF THE FILE

If the following command is issued, EDI returns the following
printout: .

*NP 2
LINE 3 OF THE FILE
* @ED
LINE 4 OF THE FILE
* S0
LINE 3 OF THE FILE
* E0
LINE 2 OF THE FILE

2.2.14 PRINT

This command prints the current line and the next n-1 1lines on the
terminal. The last line printed becomes the new current line. If it
is not specified, a value of 1 is assumed.

Format

Print [n]

LINE TEXT EDITOR (EDI)

Example

Example 2-1 illustrates both the PRINT and the TYPE commands:

Example 2-1 Line Pointer Position for the
TYPE Command and the PRINT Command

Before
File A ' File B
[:> Line 1 [i> Line 1
Line 2 Line 2
Line 3 Line 3
Line 4 Line 4
Line 5 Line 5
*TYPE 5 *PRINT 5
Line 1 Line 1
Line 2 Line 2
Line 3 Line 3
Line 4 Line 4
Line 5 Line 5
* *
After
File A File B
E:> Line 1 Line 1
Line 2 Line 2
Line 3 Line 3
Line 4 Line 4
Line 5 [:> Line 5

[:>istme1ineEbhn£r

ZK-173-81

LINE TEXT EDITOR (EDI)

2.2.15 RENEW

This command writes the current block buffer into the output file and
reads a new block from the input file. The optional value n is a
repetition count: if you specify n, the process is repeated n times.
The intermediate blocks are written into the output file and the last
block is left in the block buffer. If n is not specified, a single
RENEW process 1is performed. This command may be used only in block
mode. Refer to Section 2.1.3 for information on how EDI block buffers
are processed.

Format
RENew [n]
Example
*RENEW 10
Ten blocks are transferred consecutively from the input file to
the block buffer. The initial contents of the block buffer and
the next nine blocks are transferred consecutively to the output

file. The current line pointer points to the first line in the
tenth block, which is currently in the block buffer.

2.2.16 The RETURN Key

In edit mode, this command prints the next line in the file or block
buffer. That 1line becomes the current 1line. Thus, you can scan
through a file or block, one line at a time, by pressing a series of
RETURNs. This command is equivalent to NP+l (NEXT & PRINT command).

In input mode, a RETURN causes EDI to return from input mode to edit
mode.

2.2.17 RETYPE

This command replaces the current line with a string. If a string is
not specified, the line is deleted.

Format
Retype [string]
Example
*R THIS IS A NEW LINE

The string THIS IS A NEW LINE replaces the current line.

2.2.18 TOF

This command creates a new version of the file and returns the current
line pointer to the first line of the file. TOF processing copies the
input file into the output file, closes both, then opens the 1latest
version of the file as the input file. If you issue this command when
in line-by-line mode, EDI switches to block mode after saving the
edited data. The first block is read into the block buffer.

LINE TEXT EDITOR (EDI)

Format
TOF
Example
*TOF
This command writes the previously edited pages into the output

file, resets the current 1line pointer to the top of the input
file, and reads the first block into the block buffer.

2.2.19 TOP
This command sets the current line pointer to the top of the current
block (in block mode) or to the top of the file (in line-by-line
mode) . When the current line pointer is positioned with TOP, you can
enter lines preceding the first line in the block or file.
TOP differs from TOF in the following ways:
e In line-by-line mode, TOP creates a new file and moves the
current line pointer to the top of the file. Unlike TOF, it
does not cause EDI to return to block mode.

e In block mode, TOP moves the current line pointer to the top
of the current block and does not create a new output file.
TOF moves the current line pointer to the top of the file and
creates a new output file.
Format
Top
Example
*TOP

This command directs the current line pointer to the top of the
current block in block mode.

2.3 EDI COMMANDS: FUNCTION SUMMARY

EDI commands can be arranged by functional similarity. For example,
all the commands you use to locate a string can be grouped under the
function hegding "Locator Commands." This section contains summaries
of the following command categories:

e Setup commands select operating conditions, close and open
files, and select data modes.

e Locator commands control the position of the current 1line
pointer and thus determine which text line is acted upon.

e Text modification commands change text lines.

e Macro commands define, store, recall, and use sequences of EDI
commands.

LINE TEXT EDITOR (EDI)

e File input/output commands transfer text to and from
input/output, and save files.
e Device output commands send output to a terminal or line
printer.
e Close and exit commands terminate editing operations.
2.3.1 Setup Commands
The setup commands allow you to enable or disable certain special
features of EDI. Among these features are the block and line-by-line
text access modes, and the automatic verification of LOCATE commands.

Setup co

mmands are listed in Table 2-4.

Table 2-4
EDI Setup Commands

Command

Format

Description

BLOCK ON/OFF

CONCATENATION
CHARACTER

OPEN SECONDARY

OUTPUT ON/OFF

SELECT PRIMARY

SELECT SECONDARY

SIZE

TAB

UPPER CASE
ON/OFF

VERIFY ON/OFF

BLock [ON] or
BLock OFF

CC [letter]

OPens filespec

OUtput ON or
OUtput OFF
SP

sSs

SIZE n

TAb [ON] or

TAb OFF

UC [ON] or
UC OFF

Verify [ON] or
Verify OFF

Switch text access modes.

Change concatenation character
to specified character (default
is &).

Open specified secondary file.
Continue or discontinue
transfer to output file
(line-by-line mode).

Reestablish primary file as
input file.

Select opened secondary file as
input file.

Specify maximum number of lines
to be read into block buffer.

Turn automatic tabbing on or
off.

Enable or disable conversion of
lowercase characters entered
from terminal to uppercase
characters.

Select whether locator and

change commands are verified.

LINE TEXT EDITOR (EDI)

2.3.2 Locator Commands (Line-Pointer Control)

During editing operations, EDI maintains a pointer that identifies the
current 1line (that 1is, the 1line to which any subsequent editing
operations refer). Commands that modify the line pointer's location
are called locator commands. These commands are listed in Table 2-5.

The locator commands allow you to:

e Set the line pointer to either the top or bottom of the input
file or block buffer.

® Move the line pointer a specified number of 1lines away from
its current position.

e Move the line pointer to a 1line containing a given text
string.

In edit mode, the RETURN and ESCape (or ALTmode) keys act to relocate
the 1line pointer. A RETURN moves the pointer to the next line. An
ESCape moves the line pointer back one line (in block mode only). In
each case, the line is printed.

If VERIFY ON is in effect, the located line is printed after a BOTTOM,
END, FIND, PAGE FIND, PAGE LOCATE, or SEARCH & CHANGE command.

Table 2-5
EDI Locator Commands

Command Format Description
BEGIN or Begin Set current 1line to the line
TOP Top preceding top 1line in

buffer (block mode) .

in line-by-line mode.
commands are equivalent.

BOTTOM or BOttom Set current 1line to last line
END End in file or block buffer.
commands are equivalent.
ESQ Press ESC (or ALT) Print previous 1line, make it
(or ALTmode) key new current line, or exit
input mode (Block mode only.)
FIND [n]Find [string] Search current block or input
file, beginning at

following current line for

String must begin in column

line.
LOCATE [n]Locate string Locate nth occurrence
string. In block mode, search

stops at end of block.

(line-by-line mode) or block
Both
commands create copies of the
file each time they are invoked

nth * occurrence of string.

Set 1line pointer to 1located

(continued on next page)

LINE TEXT EDITOR (EDI)

Table 2-5 (Cont.)
EDI Locator Commands

NEXT & PRINT

PAGE
(Block
Mode only)

PAGE FIND
(Block
Mode only)

PAGE LOCATE
(Block
Mode only)

®ED

SEARCH &
CHANGE

NP [n] or NP [-n]

PAGe n

[n]PFind string

[n] PLocate string

Press RETURN Key

SC /stringl/string2(/}

Command Format Description
NEXT Next [n] Establish new current 1line n
Next [-n] lines away from current line.

Establish and print new current
line.

Enter block mode. Read page n
into block buffer. If n is less
than current page number, do
TOF first. Pages are delimited
by form feed characters.

Search successive blocks for
the nth occurrence of string.
String must start in column 1.

Search successive blocks for
the nth occurrence of string.
String may occur anywhere in
line.

line, make it
line, exit from

Print the next
the current
input mode.
Locate stringl and replace it
with string2.

2.3.3 Text Modification and Manipulation Commands

The text modification and manipulation commands enable you to modify

text. Table 2-6 lists these commands.
Table 2-6
EDI Text Modification and Manipulation Commands
Command Format Description

ADD Add string Append string to current
line.

ADD & PRINT AP string Append string to the
current 1line and print
resulting line.

CHANGE [n]Change/stringl/ Replace stringl with

string2(/] string2 in the current

line n times.

2-23

(continued on next page)

LINE TEXT EDITOR (EDI)

Table 2-6 (Cont.)

EDI Text Modification and Manipulation Commands

Command

Format

Description

DELETE

DELETE & PRINT

ERASE

FORM FEED

INSERT

LINE CHANGE

OVERLAY

PASTE

RETYPE

TOP OF FILE

UNSAVE

Delete [n] or
Delete [-n]

DP [n] or DP [-n]

ERASE [n]

FF

Insert string

(nlLC/stringl/
string2[/]

Overlay (n]

PAste/string 1/
string2(/]

Retype[string]

TOF

UNSave [filespec]

Delete current line and
n-1 lines if n is
positive; delete n lines
preceding current line if
n is negative. [-n]
operates in block mode
only.

Same as DELETE except new
current line is printed.

Erase the current line if
in line-by-line mode.

Erase the current block
buffer and the next n-1
blocks if in block mode.

Insert form feed into
block buffer (used to
delimit a page).

Enter string following
current line or enter
input mode if string is
not specified.

Change all occurrences of
stringl in current 1line
(and n-1 lines) to
string2.

Delete n 1lines, enter
input mode, and insert
new line(s) as typed in

place of original
line(s).
Search all remaining

lines 1in file or block
buffer for stringl and
replace with string2.

Replace the current 1line
with string or delete the
current line if string is
not given.

Return to the top of the
input file and save all
pages previously edited.

Insert all lines from
specified file following
current line. If filespec
is not given, SAVE.TMP is
used.

2-24

LINE TEXT EDITOR (EDI)

2.3.4 Macro Commands

These commands allow you to define, store, recall, and use macros. A

is a series of EDI commands that, once defined, can be executed

macro
repeatedly. Table 2-7 lists the macro commands.
Table 2-7
EDI Macro Commands
Command Format Description
MACRO MACRO x definition Define macro number x. The
value x may be 1, 2, or 3.
MACRO CALL MCall Retrieve macro definitions
stored in file MCALL;n.
MACRO EXECUTE [n]Mx [a] Execute macro x [n] times,
while passing numeric

argument [a].

MACRO [n] <definition> Define and execute a macro n
IMMEDIATE times. Store it as macro
number 1.
2.3.5 File Input/Output Commands
Input/output commands control the movement of text to and from
input/output files, and save files. Table 2-8 lists these commands.
Table 2-8
EDI Input/Output Commands

Command Format Description

FILE FILe filespec Transfer lines from input file
to both the output file and the
specified file until a form
feed or end-of-file is
encountered. (Line-by-line
mode only.)

READ REAd [n} Read next n blocks of text into
block buffer. If buffer
contains text, new text is
appended to it.

RENEW RENew [n] Write the current block to the
output file and read new block
from the input file.

(continued on next page)

LINE TEXT EDITOR (EDI)

Table 2-8 (Cont.)
EDI Input/Output Commands

Command Format Description

SAVE SAve [n] [filespec] Save current line and the next
n-1 lines in the specified
file. If filespec is not
given, 1lines are saved in file
SAVE. TMP. SAVE puts the
temporary file in the UFD on
the device for the file you are
editing. You can override the
default by specifying a
different device and UFD.

WRITE Write Write contents of block buffer
to output file and erase block
buffer.

2.3.6 Device Output Commands
These commands direct output to your terminal or to a pseudo device
(CL:). They are listed in Table 2-9.

Table 2-9
EDI Device Output Commands

Command Format Description
LIST ON TERMINAL LIst Print on the terminal all 1lines
remaining in block buffer (block
mode) or input file

(line-by-line mode), beginning
at current line.

LIST ON PSEUDO- LP Same as LI, except that printing

DEVICE is performed on the pseudo
device CL:.

PRINT Print [n] Print the current line and the
next n-1 lines. The 1last
printed line is the new current
line.

TYPE TYpe [n] Print next n lines. In

line-by-line mode, identical to
PRINT command. In block mode,
line pointer remains at current
line wunless end-of-block was
reached.

LINE TEXT EDITOR (EDI)

2.3.7 CLOSE and EXIT Commands

The CLOSE and EXIT commands terminate EDI

remainder

of the input file into output file.

operations and write the
Table 2-10 lists these

commands.
Table 2-10
EDI Close Operation Commands
Command Format Description
CLOSE CLose [filespec] Transfer remaining 1lines in

CLOSE SECONDARY

CLOSE & DELETE

€TR2)

EXIT

EXIT & DELETE

KILL

CLOSES

CDl [filespec]

Type a control 2

EXit [filespec]

EDx [filespec]

KILL

block buffer and input file to
output file and close files.
If file specification is used,
output file is renamed. EDI>
prompt is issued.

Close secondary file.

Same as CLOSE except that input
file 1is deleted. EDI> prompt
is issued.

Close files and terminate EDI.

Close files, rename
file, and terminate EDI.

output

Transfer remaining 1lines in
block buffer and input file to
output file and close file.
Rename file if file
specification is given. Delete
input file and terminate EDI,

output files,
file. EDI>

Close input and
delete output
prompt is issued.

2.4 EDI COMMANDS: DETAILED REFERENCE SUMMARY

This section lists each EDI
command description
Most descriptions

command format.

information. The
described in detail in the preceding section.

comprises the

exceptions are

command in alphabetical
function

include

order. Each
of the command and the
examples and usage

commands, which are
In this section, only

basic

the function and format of basic commands are described.

2.4.1 ADD

ADD causes the specified string to be appended to the current line.

Format

Add string

For examples and information describing how to wuse ADD,

Section 2.2.1.

refer to

LINE TEXT EDITOR (EDI)

2.4.2 ADD & PRINT (AP)

ADD & PRINT performs the same function as ADD except that the new line
is printed.

Format
AP string

For examples and information describing how to use ADD & PRINT, refer
to Section 2.2.2.

2.4.3 BEGIN

BEGIN sets the current line pointer to the beginning of the file in
line-by-line mode, or to the beginning of the block buffer in block
mode. The current line is one line preceding the top line in the file
or block buffer. Thus, you can insert text at the beginning of a file
or block.

If EDI is in line-by-line mode, BEGIN copies the input file into the

output file, closes both, then opens the latest version of the file.
BEGIN performs the same function as TOP.

Format
Begin
Example
*B

In this example, the current line pointer is moved to the top of
the block buffer (block mode is assumed).

2.4.4 BLOCK ON/OFF

This command allows you to switch between block mode and 1line-by-line
mode. When you enter BLOCK ON, block mode becomes active and the next
block of text is brought into the block buffer. When you enter BLOCK
OFF, the current block being processed is written to the output file
and line-by-line mode becomes active. The first line from the next
sequential block in the input file becomes the current line.

If you enter an unnecessary BLOCK command (for example, BLOCK ON when
EDI is already in block mode), the command is ignored.

BLOCK ON is the default text access mode. It is assumed when neither
ON nor OFF is specified.

Format
BLock [ON]

or
BLock OFF

LINE TEXT EDITOR (EDI)

Example

*BLOCK ON

This command causes EDI to switch to block mode. The next block
of text is read into the block buffer.

2.4.5 BOTTOM

BOTTOM sets the current line pointer to the beginning of the last line
of the block (in block mode) or of the input file (in line-by-line
mode) .

Format

BOttom

For examples and information on how to use BOTTOM, refer to Section
2.2,3.

2.4.6 CHANGE

CHANGE searches for stringl in the current 1line and, if found,
replaces it with string2.

Format
[n] Change /stringl/string2({/]

For examples and information on how to use CHANGE, refer to Section
2.2.4.

2.4.7 CLOSE

This command transfers all remaining lines in the block buffer and
input file (in that order) into the output file and closes both files.
If a file specification is included, the output file is renamed to the
file spec. EDI then returns to its initial command sequence, prompts
with EDI>, and waits for you to type another file specification.

If a secondary file was opened during the editing session and was not
closed, it remains open.

Format
CLose [filespec]
Example

*CL
EDI>

This command closes both input and output files, and EDI returns
to the initial command sequence.

LINE TEXT EDITOR (EDI)

2.4.8 CLOSE SECONDARY (CLOSES)

Use this command when you have finished extracting text from a
secondary input file. You must enter CLOSES before you can use
another secondary file as input.

Format

CLOSES

2.4.9 CLOSE & DELETE (CD)

This command transfers all remaining lines in the block buffer and the
input file (in that order) into the output file, and closes both
files. The input file is then deleted. If a file specification 1is
included, the output file is renamed to the file spec. This command
acts like CLOSE except that the input file is deleted.

If a secondary file was opened during the editing session and was not
closed, it remains open.

Format

CD1l [filespec]

2.4.10 CONCATENATION CHARACTER (CC)

The concatenation character allows you to give commands on one input
line. By default, the concatenation character is the ampersand (&).
To reference text containing an ampersand (for example, in LOCATE or
CHANGE commands), you must change the concatenation character to some
other character.

If the CC command is used without an argument, the concatenation
character is changed to the ampersand.

Format
CC [letter]
Example

*CC :

*L AsB:C /A&B/ABC/

CONCATENATION TEST CONTAINING AgB.
CONCATENATION TEST CONTAINING ABC.
*CC

In this example, the string to be located contains an ampersand.
Therefore, the concatenation character must be changed to a
different character before EDI can locate the line.

The first command 1line changes the default concatenation
character from the ampersand to the colon.

LINE TEXT EDITOR (EDI)

The second command line instructs EDI to locate the string As&B
and change that string AgB to ABC. (Note: this line contains
two commands that are concatenated by the new concatenation
character, the colon.)

The third command line changes the concatenation character back
to the normal default value, &.

2.4.11 CTRL/Z

CTRL/Z is a Command Line Interpreter (CLI) function that terminates
EDI. For usage information on CTRL/Z, refer to Section 2.2.5.

2.4.12 DELETE
DELETE deletes a specified number of lines from a file.
Format

Delete n

For examples and information on how to use DELETE, refer to Section
2.2.6.

2.4.13 DELETE & PRINT (DP)

DELETE & PRINT performs the same function as DELETE, except that it
displays the new current line after the specified lines are deleted.

Format
DP n

For examples and information on how to use DELETE & PRINT, refer to
Section 2.2.7.

2.4.14 END

END sets the current line pointer to the beginning of the last line of
the block or input file. If EDI is in block mode, only line pointer
positioning occurs. 1In line-by-line mode, all lines are copied from
the input file to the output file until EOF is reached. The last line
in the block or file is displayed if VERIFY ON is in effect. Note,
however, that if the last line was deleted before you issued END, the
pointer will be located past the text, and thus the last line will not
be printed. END performs the same function as BOTTOM.

Format

End

LINE TEXT EDITOR (EDI)

Example
*V ON
*END
THIS IS THE LAST LINE

This command moves the current line pointer to the bottom of the
block buffer (block mode is assumed).

2.4.15 ERASE
In line-by-line mode, this command erases the current line. In this
mode, n can only be 1. In block mode, this command erases the current
block buffer and the next n-1 blocks. If n is not specified, +1 |is
assumed.
Format

ERASE ([n]
Example

*ERASE 5
This command causes the contents of the current block buffer and

the next 4 blocks to be erased. These blocks are not written
into the output file.

2.4.16 The ESCape Key

This command prints the previous line in the block (block mode only).
That 1line becomes the current line. Thus, you can back up through a
block, one line at a time, by pressing a series of ESCapes. Pressing
ESCape is equivalent to typing NP-1 (NEXT & PRINT command).

If EDI is in input mode, ESC acts like RETURN and terminates a line of
input. ESC also exits from input mode if it is the first character of
the line.

2.4.17 EXIT

EXIT writes all remaining records to the output file, closes the
files, and terminates EDI.

Format
EXIT [filespec]

For examples and information on how to use EXIT, refer to Section
2.2.9.

2.4.18 EXIT & DELETE (ED)

This command functions in the same way as the CLOSE & DELETE command
except that EDI also terminates.

LINE TEXT EDITOR (EDI)

Format
EDx [filespec]
Example

*EDX NEWFILE.DOC
{EXIT]
>

2.4.19 FILE

This command--legal in line-by-line mode only--transfers 1lines from
the input file to both the output file and a specified file, beginning
with the current line, until a form feed character is encountered as
the first character in a line or until end-of-file is reached. At
that time, the specified file is closed. The form feed character is
not included in the specified file. During the transfer, the original
file remains intact (that is, all lines written to the specified file
are also written to the normal output file, including the form feed).
When the command is complete, the current line in the 1input file is
one line beyond the form feed.

BLOCK OFF must be in effect for FILE to work properly.
If the specified file does not already exist, a new file 1is created.
If the specified file does exist, the latest version of the file
contains the new data.
Format

FILe filespec
Example

*FIL SEC.DAT

EDI writes the contents of the input file, from the current 1line
to the end, into both the output file and the file SEC.DAT.

2.4.20 FIND

This command searches the block buffer or input file for a string,
beginning at the 1line following the current line. The string must
begin in column 1 of the line matched. The line pointer is positioned
at the line containing the match. When the line containing the string
is found, it is printed if VERIFY ON is in effect.

FIND applies to the block buffer if EDI is in block mode and to the
input file if EDI is in line-by-line mode.

If a string is not specified, the line following the current 1line Iis
considered a match. If n 1is specified, the nth occurrence of the
string is found.

Format

[n]Find [string]

LINE TEXT EDITOR (EDI)

Example

*V ON
*F LOOK

LOOK AT THE FIRST CHARACTER IN THE LINE.

In this example, EDI searches the block buffer (or file) for a
line that begins with LOOK and prints the line when it is found.

2.4.21 FORM FEED (FF)
This command allows you to insert form feeds into the text to delimit
pages. The form feed is inserted after the current line. The line
containing the form feed then becomes the new current line.
Format
FF

Example

*p

THIS IS THE LAST LINE ON THE PAGE

*FF

In this example, a form feed is inserted into the text following
the current line.

2.4.22 INSERT

INSERT inserts a string immediately following the current 1line. The
string becomes the current line.

Format
Insert [string]

For examples and information on how to use INSERT, refer to Section
2.2.10.

2.4.23 KILL
This command returns EDI to the initial command sequence without
retaining the output file. When this command is executed, the input
file is closed and the output file is deleted.
Format

KILL

Example

*KILL
EDI>

2-34

LINE TEXT EDITOR (EDI)

In this example, the output file is deleted and EDI displays the
prompt:

EDI>

At this point, you can return control to your CLI by means of
CTRL/Z or enter a file specification for a file to be edited.

2.4.24 LINE CHANGE (LC)

This command is similar to CHANGE except that all occurrences of
stringl in the current line are changed to string2. A numeric value n
preceding the command changes the current line and the next n-1 lines.
If string2 is not given, all occurrences of stringl are deleted. New
lines are printed if the VERIFY ON command is in effect.

If stringl is given, but EDI cannot locate the string in the current
line, EDI prints [NO MATCH] and returns the asterisk prompt.

Format
[n]LC /stringl/string2{/}
Example
If the current line is:
THES ES THE LINE TO BE ESSUED.
The following commands would correct the errors:
*V ON

*LC /ES/IS
THIS IS THE LINE TO BE ISSUED

2.4.25 LIST ON TERMINAL (LI)

This command prints on your terminal all remaining lines in the block
buffer (block mode) or all remaining 1lines in the 1input file
(line-by-line mode), beginning at the current line. At the end of the
listing, the <current 1line pointer is repositioned to the top of the
input file or block buffer.

If terminal host synchronization is installed at system generation,
you can control printing functions using CTRL/O, CTRL/S, and CTRL/Q.
To suppress printing at any point, type CTRL/O. Printing can be
suspended temporarily with CTRL/S and resumed with CTRL/Q.

Format
List
Example
*LI
This command causes all remaining lines in the block buffer or

all remaining 1lines in the input file to be printed on the
terminal.

LINE TEXT EDITOR (EDI)

2.4.26 LIST ON PSEUDO DEVICE (LP)

This command functions in the same manner as the LIST ON TERMINAL
command except that the remaining lines in the block buffer (block
mode) or the remaining lines of the input file (line-by-line mode) are
listed on the pseudo device CL:. 1In most systems, CL: is set to the
system line printer.

Format
LP
Example
*LP
This command causes all remaining lines in the block buffer or

all remaining lines in the input file to be printed on the pseudo
device CL:. :

2.4.27 LOCATE

LOCATE searches for a string beginning at the 1line following the
current line. The string can occur anywhere in the lines searched.

Format
[n] Locate string

For examples and information on how to use LOCATE, refer to Section
2.2.11.

2.4.28 MACRO

This command is used to define macros. Space is available for three
macro definitions. The definition can be any legal EDI command or
string of legal EDI commands connected by the concatenation character.

If a numeric argument is to be passed to the macro at execution time,
a percent sign (%) must be inserted in the macro definition at the
point where the numeric argument is to be substituted. Then the value
passed with the MACRO EXECUTE command replaces the percent sign when
the macro is executed.

A MACRO definition may contain more than one percent sign. If it
does, the single numeric wvalue given in a MACRO EXECUTE command
replaces each percent sign. However, a macro may not have two or more
independent arguments.

Format

MACRO x definition

Specifies the macro number (1, 2, or 3).

LINE TEXT EDITOR (EDI)

Examples

To find the nth occurrence of the string ABC in the current block
and replace that occurrence and all remaining occurrences within
the block with the string DEF, the following macro could be used:

*MACRO 1 3L ABC&PA /ABC/DEF

The following command executes the macro and searches for the
tenth and succeeding occurrences of ABC.

*M 1 10

The following macro definition and subsequent invocation could be
used to change all occurrences of the strings ABC and GHI to DEF
and JKL, respectively. The substitution is made in the current
block and the next four blocks (five blocks in all).

*MACRO 1 PA /ABC/DEF/&PA /GHI/JKL/&RENEW (MACRO command)
*5M 1 (MACRO EXECUTE command)

2.4.29 MACRO CALL (MC)

This command allows you to retrieve up to three macro definitions
previously stored in a file. The macro definitions must contain only
the "definition"™ portion of the MACRO command. The macro definitions
are stored in successively numbered macros: the first definition
becomes macro 1, and so on.

The file used to store the macro definitions must be the 1latest
version of file MCALL -- that is, MCALL;n. The file type must be null
or blank. If the macro definitions to be loaded are in a file of
another name, you can use PIP with the /NV switch, to rename the file.
(Refer to Chapter 3 for descriptions of PIP commands.)

Format
MCall

Strings of concatenated EDI commands can be written as EDI macro
definitions, and up to three EDI macro definitions can be stored
in file MCALL;n. The MC command is used to <call the 1latest
version of file MCALL and move the three definitions into the
macro storage area. Then you can execute the desired macro
without having to type the complete command.

Macro calls may not be nested.

The concatenation character may precede, but not follow, a macro
call.

Example
*MC

This command retrieves the macro definitions stored in file
MCALL;n, where n represents the latest version of the file MCALL.

LINE TEXT EDITOR (EDI)

2.4.30 MACRO EXECUTE

This command executes a macro n times while passing it an optional
numeric argument a. If a macro numeric argument is defined with the
percent sign (%) in the macro definition, the numeric argument
contained in this command is passed for each execution of the macro.
Before a macro can be executed, it must either have been defined by
means of a MACRO command or called with a MACRO CALL command.

Use the MACRO EXECUTE command to execute any one of the three macro
definitions stored in the EDI macro storage area any number of times.

Format
[n]Mx [a]
n
Specifies the number of times the macro is to be
executed.
X
Specifies the macro number (1, 2, or 3).
a
Specifies the numeric argument to be passed when the
macro is executed (ignored if the argument % is not
present in macro definition).
Examples
*2M1

Execute macro number 1 twice.

*3M2 5

Execute macro number 2 three times, passing the numeric argument
5 each time the macro is executed.

The example in Section 2.6.4 illustrates how to use the EDI macro
commands in editing a file.

2.4.31 MACRO IMMEDIATE

This command defines and executes a macro in one step. The definition
is enclosed within angle brackets and is identical to that of the
MACRO command. The definition is copied into the macro 1 storage area
and immediately executed n times. The macro may also be subsequently
executed by entering an M1 command. The command is equivalent to the
two macro commands:

MACRO 1 definition
nMl

Format

n<definition>

LINE TEXT EDITOR (EDI)

Example

*<L. ABC&C /ABC/DEF>
This command causes EDI to search the current block buffer for
the string ABC and, when it locates ABC, to change the string to
DEF. This macro is stored as macro number 1.

The example in Section 2.6.3 illustrates the use of the MACRO
IMMEDIATE command.

2.4.32 NEXT

NEXT moves the current line pointer backward and forward in the file.
A positive number moves the current line pointer forward, a negative
current line number moves it backward.

Format
Next [n]
or
Next [-n]

For examples and information on how to use NEXT, refer to Section
2.2.12.

2.4.33 NEXT & PRINT

NEXT & PRINT performs the same function NEXT performs except that the
new current line is displayed.

Format
NP [n]
or

NP [-n]

For examples and information on how to use NEXT & PRINT, refer to
Section 2.2.13.

2.4.34 OPEN SECONDARY
This command opens the specified secondary input file. The primary
input file, 1if any, remains open. Subsequent text is read from the
primary input file until the secondary input file is selected by means
of the SELECT SECONDARY command (SS) for input.
Format
OPens filespec

Example

*QOPENS RICKS.MAC

*SS

*READ 1

The file RICKS.MAC is opened as a secondary input file, then the
first block is read in.

2-39

LINE TEXT EDITOR (EDI)

2.4.35 OUTPUT ON/OFF

This command, used only in the 1line-by-line mode, allows you to
continue or discontinue the transfer of text to the outpat file.
OUTPUT ON is the default condition. It is automatically reestablished
each time a CLOSE command is issued.

Format
OUtput ON
or
OUtput OFF
If neither ON or OFF is specified, ON is assumed.
Example
*BLOCK OFF
*OUTPUT OFF
*N 5
*QUTPUT ON

This example shows how to bypass five lines of text in the input
file so that these lines are not written into the output file.

The first command sets line-by-line mode.

The second command disables the transfer of text to the output
file.

The third command bypasses five consecutive lines of text from
the input file.

The fourth command reenables the transfer of text to the output
file.

2.4.36 OVERLAY

This command deletes n lines and replaces them with any number of
lines that you type. If n 1is not specified, the current line is
deleted and replaced with the lines typed. When you enter the OVERLAY
command, EDI enters input mode. All text that you type goes into the

file until you enter a carriage return as the only character in an
input 1line.

Format
Overlay ([n]
Example
*Q 2

This command deletes two lines and causes EDI to enter input
mode.

LINE TEXT EDITOR (EDI)

2.4.37 PAGE

This command causes EDI to enter block mode, if not already in it, and
read page n into the block buffer.. A page is delimited by form feeds.
If n is less than the current page number, a TOF command is performed
first. TOF processing writes the input file to the output file,
closes both files, then opens the latest version of the file.

If n is greater than the current page number, the necessary number of
RENEW commands is executed to read page n into the block buffer.

Format
PAGe n
Example

*PAG 1

[00050 LINES READ IN]
[00050 LINES READ IN]
{00050 LINES READ IN]
{00050 LINES READ IN]
[00017 LINES READ IN]
[PAGE 1]

*

This example shows a quick way to get to the last block in a file
that contains no form feed page delimiters. EDI's page count is
not incremented unless it encounters form feed characters or an
end-of-file mark. Thus, in a file without form feeds (that is,
most files), EDI renews the block buffer until it encounters an
end-of-file mark. Note that the final block contains 17 lines of
text.

2.4.38 PAGE FIND

This command performs the same function as the FIND command except
that successive blocks are searched until the nth occurrence of the
string has been found. The contents of the block buffer and the
blocks between the current block and the block in which the nth
occurrence of the string is located are copied into the output file.

The string must begin in column 1 of the matched line. The 1line is
printed if VERIFY ON is in effect. This command can be used only in
block mode.

Format

[n]PFind string

2.4.39 PAGE LOCATE

This command causes a search of the current block, starting at the
line following the current line, and of successive blocks until the
nth occurrence of the string has been located. Text from the current
block buffer is written into the output file. The string can occur
any place in the lines checked. The line is printed if the VERIFY ON
command is in effect. This command can be used only in block mode.

LINE TEXT EDITOR (EDI)

Format
[n]PLocate string
This command is used in the same manner as the LOCATE command
except that the specified string can be in a block other than the
current block.

PL leaves the current line pointer at end-of-file if it cannot
locate the string.

2.4.40 PASTE
This command is identical to the LINE CHANGE command except that all
lines remaining in the input file or block buffer are searched and all
occurrences of stringl are replaced with string2. Modified lines are
printed if the VERIFY ON command is in effect. 1If stringl is given,
but no match is found, EDI returns the asterisk (*) prompt. When the
command completes, the 1line pointer is at the top of the buffer or
input file.
Format

PAste /stringl/string2[/]
Example

If the lines remaining in the block buffer contain the following
text:

YIGER, YIGER, BURNING BRIGHY
IN YHE FORESYS OF YHE NIGHY

they can be corrected with the following command:
*PA/Y/T

If the VERIFY ON command is in effect, all corrected 1lines are
printed. To discontinue printing, type CTRL/O.

2.4.41 PRINT

PRINT displays the current 1line and the next n-1 1lines at the
terminal. The last line printed becomes the current line.

Format
Print [n]

For examples and information on how to use PRINT, refer to Section
2.2.14.

2.4.42 READ

This command reads the next n blocks of text into the block buffer.
If a block is already in the buffer, the new block(s) is (are)
appended to it.

EDI must be in block mode before this command can be executed.

LINE TEXT EDITOR (EDI)

A READ command cannot exceed the buffer capacity. If you issue a READ
that 1is too large, EDI fills its buffer and then issues the following
message:

[BUFFER CAPACITY EXCEEDED BY]

<offending line>

[LINE DELETED]
You may get this message after issuing a READ n command, where n is 2
or larger, unless you have used the SIZE command to reduce the number
of lines per block below its initial number.
Format

REA4 [n])

If n is not specified, a value of 1 is assumed. The value of n
must be positive.

Example

*SIZE 15
*READ 4

This example reads four 15-line blocks of the input file into the
block buffer.

2.4.43 RENEW

RENEW writes the current block buffer into the output file and reads a
new block from the input file. Renew is used only in block mode.

Format
RENew [n]

For examples and information on how to use RENEW, refer to Section
2,2.15,

2.4.44 The RETURN Key

In edit mode, the RETURN key represents the return that displays the
next 1line in the file or block buffer. 1In input mode, entering the
RETURN returns EDI to edit mode. For information on EDI command

modes, refer to Section 2.1.,2. For information on the RETURN key,
refer to Section 2, 2.16.

2.4.45 RETYPE
RETYPE replaces the current line with string.
Format

Retype [string]

For information on how to use RETYPE, refer to Section 2.2.17.

LINE TEXT EDITOR (EDI)

2.4.46 SAVE

This command causes the current line, and the next n-1 1lines, to be
saved in the specified file. If the file already exists, a new
version is created.

If no file 1is specified, the save file generated has the name
SAVE. TMP. SAVE puts the temporary file in the UFD on the device for
the file you are editing.

The input file or buffer information that is transferred to the SAVE
file remains intact. The new current line is the last line saved.
The SAVE command does not delete lines in the block buffer or input
file.

Format
SAve[n] [filespec]
Example

You can save and later insert small groups of 1lines 1in several
places in an output file by using the SAVE and UNSAVE commands.
For example, a file called EDIT.MAC contains six lines that you
want to insert at several points in another file called HELP.MAC.
The procedure is:

1. Start an editing session using EDIT.MAC as the input
file.

2. Locate the lines to be inserted into HELP.MAC,

3. Issue a SAVE 6 command. (This copies the six 1lines to
be saved into the file SAVE.TMP.)

4. 1Issue a KILL command to terminate the editing session.

5. Start a new editing session using HELP.MAC as the input
file.

6. Locate each place the six lines are to be 1inserted and
issue the UNSAVE command.

7. Make further edits to the input file, as desired, or
EXIT.

EDI does not delete the save file. It remains on the specified
volume until deleted.

2.4.47 SEARCH & CHANGE

This command causes a search for stringl in the block buffer (block
mode) or input file (line-by-line mode), beginning at the current
line. The string may occur anywhere in the 1line. When stringl |is
located, it 1is replaced by string2., The located line becomes the
current line.

If stringl is not specified, EDI prints the error message for illegal
string construction. The new current line is printed if the VERIFY ON
command is in effect. If stringl is given, but EDI cannot locate the
string, EDI returns the asterisk (*) prompt and the line pointer is
positioned at the end-of-file or the bottom of the block buffer.

Format

LINE TEXT EDITOR (EDI)

SC /stringl/string2[/]

Example

If the following incorrect 1line 1is contained in the current

block:

THES IS THE LINE TO BE ISSUED.

the following commands can correct the error:

*V ON

*SC /THES/THIS/
THIS IS THE LINE TO BE ISSUED.

The corrected line is printed since the VERIFY ON command is in

effect.

2.4.48 SELECT PRIMARY

This command selects the primary file for input. It allows you to
reestablish the primary input file as the file from which text is

read.
Format
SP

Example

*OPENS SECOND.MAC

*SS

*RENEW 10
*CLOSES

*SP

This example directs EDI to:

l.
2.

3.

Open the secondary file SECOND.MAC.

Select SECOND,.MAC as the secondary input file.

Read ten consecutive block buffers from the secondary
input file into the block buffer. The first nine blocks
are automatically transferred to the output file.

Close the secondary input file SECOND.MAC, The
secondary file need not be closed before the primary
file is reselected for input.

Reselect the primary input file for input.

2-45

LINE TEXT EDITOR (EDI)

2.4.49 SELECT SECONDARY
With this command, you select the secondary file as the input file.
Format
Ss
Example

To add text to the output file from a secondary input file, you
must first open the secondary input file and select it for input.
The use of the SS command is illustrated in the example presented
in Section 2.4.28.

2.4.50 SIZE

This command allows you to specify the maximum number of lines to be
read into the block buffer on a single READ or RENEW command. The
default value for SIZE depends on your exact system configuration.
Initially, EDI determines how much buffer space it has and divides
that by 132(10), the maximum line size, to set the number of 1lines
read in. In no case can it be 1less than 38 lines. (See the
discussion of block mode in Section 2.1.3.)

Format
SIZE n
Example
*SIZE 50

This command conditions EDI to read 50 lines 1into the block
buffer during a single READ or RENEW command.

2.4.51 TAB ON/OFF

This command turns automatic tabbing on or off. The automatic tab
feature is useful for MACRO-11l language input. TAB OFF is the default
at the start of an editing session. When TAB ON is in effect, a tab
(equivalent to eight spaces) is automatically inserted at the
beginning of each input line unless the 1line either begins with a
label followed by a colon or contains a semicolon in the first column.

Format
TAb [ON]
or
TAb OFF

If neither ON nor OFF is specified when a TAB command is 1issued,
ON is assumed.

LINE TEXT EDITOR (EDI)

Example
*TAB ON
*1
; THIS IS A SAMPLE OF TABBING.
THIS LINE GETS A TAB
1l: THIS ONE DOESN'T
END
*TAB OFF
*N -3
*P 4
; THIS IS A SAMPLE OF TABBING.
THIS LINE GETS A TAB
1: THIS ONE DOESN'T
END
2.4.52 ToOP

TOP sets the current line pointer to the top of the block buffer (in
block mode) or to the top of the file (in line-by-line mode). 1In
line-by~line mode, TOP creates a new version of the file. When the
current line pointer is positioned by means of TOP, you can insert
lines preceding the first line in the file.

Format
Top

For examples and information on how to wuse TOP, refer to Section
2.2.19.

2.4.53 TOP OF FILE (TOF)

TOF returns the current line pointer to the first line of the file and
leaves you in block mode. TOF copies the input file to the output
file, closes both, and opens the latest version of the file as the
input file.

Format
TOF

For examples and information on how to wuse TOF, refer to Section
2.2,18.

2.4.54 TYPE

This command is similar to the PRINT command (Section 2.2.14). In
line~-by~line mode, the two are identical. In block mode, TYPE does
not move the line pointer after displaying the requested text wunless
end-of~-block 1is encountered. 1In this case, the line pointer remains
at the last line before the end-of-block.

If n is not specified, a value of 1 is assumed.

LINE TEXT EDITOR (EDI)

Format
TYpe [n]
Example

See the example of the PRINT command (Section 2.2.14).

2.4.55 UNSAVE

This command retrieves all the lines in a specified file and copies
them after the current 1line. If no file is specified, the default
file is SAVE.TMP. The new current line pointer is positioned at the
last 1line retrieved from the file. The file used in this command can
be any text file. It is often the file created with a SAVE command.

Format
UNSave [filespec]
Example

File SEC.DAT;1 contains a group of lines to be inserted after the
current line. The following command performs the desired
operation.

*UNS SEC.DAT;1

Section 2.6.2 contains an example using the SAVE and UNSAVE
commands.

2.4.56 UPPER CASE ON/OFF

This command allows you to enter lowercase characters from a terminal
and have them converted to uppercase characters. If UPPER CASE OFF is
issued, all input characters are accepted as they are entered,
including the EDI commands.

Format

UC [ON]
or
UC OFF

If neither ON nor OFF is specified, then ON is assumed.

Example

*JC OFF

*I this line is entered in lowercase
*UC ON

*I this line is converted to uppercase

Assuming that the input terminal 1is capable of generating
lowercase input, the commands in the example would create the
following lines in the output file.

this line is entered in lower case
THIS LINE 1S CONVERTED TO UPPER CASE

LINE TEXT EDITOR (EDI)

However, in both instances, the characters are converted to
uppercase before the file is closed.

To create a file containing lowercase characters, use the MCR SET
/LOWER=TI: or the DCL SET TERM LOWER command and the EDI UC OFF
command .

2.4.57 VERIFY ON/OFF

This command controls the display of lines specified by the LOCATE and
CHANGE commands. Use VERIFY ON to display a line located by the
LOCATE command or to display a line changed by the CHANGE command.
Use VERIFY OFF to inhibit the display of these lines. VERIFY ON is
the default when EDI is started.

Format

Verify [ON]
or
Verify OFF

If neither ON nor OFF is specified, ON is assumed.
Example

*V OFF

*L, VERIFY

*p

LINE IS PRINTED AUTOMATICALLY IF VERIFY IS ON
*N -2

*V ON

*L VERIFY

LINE IS PRINTED AUTOMATICALLY IF VERIFY IS ON

In this example, the PRINT command is issued to demonstrate that
the desired 1line has been located when VERIFY is OFF, but when

the LOCATE command is reissued with VERIFY ON, EDI automatically
prints the line.

2.4.58 WRITE

This command causes the entire contents of the block buffer to be
written into the output file. The block buffer is then erased.

EDI must be in block mode before this command can be executed.
Format

Write
Example

*W
*REA 2

In this example, the block buffer is written into the output file
and the block buffer is erased. Then, the next two blocks are
read into the block buffer.

LINE TEXT EDITOR (EDI)

2.5 EDI USAGE NOTES

The

following points contain general information involving

restrictions on use of EDI, system device considerations, and general
usage rules.

EDI can operate only on Files-11 format files and rejects all
other file formats.

The output file generated by EDI always resides on the same
device as the input file. The output file cannot be directed
to another device. For example, to edit a file on DECtape and
store the resulting file on disk, do one of the following:

- Transfer the file to disk and perform the editing there.

- Edit the file on DECtape and then use PIP or FLX to transfer
the file to disk.

To use a device other than 8SY:, mount it with the MOUNT
command.

To edit a version of a file other than the 1latest one,
explicitly state the desired version number 1in the file
specification. This file is opened as the 1input file. The
version number of the output file is one greater than the
latest version of the file.

Some EDI commands (such as TOF and TOP, when it 1is wused in
line-by-line mode) implicitly generate multiple versions of a
file. In the execution of such commands, EDI copies the
remainder of the input file into the output file and closes
both of them. It then opens the latest version of the file
and wuses it as input. This ensures the editing of the latest
version of the file and provides periodic backup. To delete
any unwanted versions, use PIP with the /PURGE switch or the
DCL DELETE command.

EDI accepts variable-length input 1lines up to 132(10)
characters long.

The record type of output files edited by EDI is always
variable-length.

EDI preserves the record attributes of the input file. For
example, the FORTRAN carriage control attribute is preserved
in the output file.

Line feed characters may be entered in files, but are
interpreted by EDI as termination characters. You should
avoid using them since they cause unpredictable results when
the file is edited a second time.

EDI cannot process a file that contains embedded carriage
control characters, such as PIP directory listings and TKB map
files. To reformat such a file for EDI processing, copy the
file to a DOS-11 volume and then back to your original volume
using FLX. EDI can then process the file.

2-50

2.6 SAMPLE EDITING OPERATIONS

LINE TEXT EDITOR (EDI)

Sample editing operations are included in this section to illustrate
how the various EDI commands can be used:

e A file is edited using a few basic EDI commands.

e Two save files are generated, modified, and appended to the
Any closed file may be appended to or inserted
within an open file in the manner shown in the second example.

original file.

e An immediate macro command is defined and executed in a single

step.

e A file containing errors is edited using the macro commands.

2.6.1 File Editing Sample

>EDI PRTBLD.CMD
[PAGE 1]
*p &

COMMAND FILE TO BUILD

PRNT SYMBIONT

FOR RSX-11M MAXXED SYSTEM
1,54)PRT/MM/~CP,LP:=PRTBLD/MP

OPTIONS

s we W —y N e we we e we

’

STACK=40
PAR=PARK:0:10000
UNITS=4
TASK=PRT...
ASG=C0:2,LP:3
PRI=60

uc=[10,1)]

SPECIFY

SPECIFY FLAG WHICH CONTROLS

FILE DELETION AFTER PRINTING

TO ENABLE DELETION USE
GBLPAT=PRT; SDELET:1

TO INHIBIT DELETION USE

DEFAULT FROM ASSEMBLY IS
FILE DELETION ENARBLED

BLPAT=PRT:$DELET

.
;
.
i
o
i
o
;
o
i
o
i
.
H
o
i
i
.
i
.
i
.
i
.
r
.
i

EOB]

File PRTBLD.CMD is opened for editing. A PRINT * command
is issued to print the contents of the file. The following
errors are detected:

9
10

PRNT should be PRINT.
MAXXED should be MAPPED.
/-CP should be /CP.

INPUT should be appended to the line containing the
word OPTIONS.

PARK should be PAR4K.

UC should be UIC.

The line containing ; SPECIFY should be deleted.

The comment line containing the format used to inhibit
deletion is missing.
ENARBLED should be ENABLED.

A :1 should be appended to the line following the
word S$DELET.

The end of buffer is reached and EDI causes the EOB message
to be printed.

*TOP

[PAGE 1]
*PL PRNT

; PRNT SYMBIONT
*C/RN/RIN/

; PRINT SYMBIONT

*

; FOR RSX-11M MAXXED SYSTEM
*C/XX/PP/

; FOR RSX-11M MAPPED SYSTEM
*NP 3
[1,54)PRT/MM/-CP,LP:=PRTBLD/MP
*C,/—CP,/CP,
[1,54]PRT/MM/CP,LP:=PRTBLD/MP
*PL PAR=

PAR=PARK:0:10000

*C/RK/R4K/

PAR=PAR4K:0:10000

*NP -3

; OPTIONS

*AP INPUT

; OPTIONS INPUT

*PL UC

ucC=[10,1]

*C/uc/uic/

UIC={10,1]

*

*
; SPECIFY

*DP

; SPECIFY FLAG WHICH CONTROLS
*PL INH

; TO INHIBIT DELETION USE
*I

~. we

GBLPAT=PRT:$DELET:0

*PL RB

; FILE DELETION ENARBLED
*C/R//

FILE DELETION ENABLED

i
*
.
i

*
GBLPAT=PRT:$DELET

*AP :1
GBLPAT=PRT:$DELET:1
*TOF

[PAGE 1]

*p *

.

COMMAND FILE TO BUILD
PRINT SYMBIONT
FOR RSX-11M MAPPED SYSTEM

Ne e Se we we s

LINE TEXT EDITOR (EDI)

A TOP command is issued to move the line pointer to top of
file and editing is started.
1 - A PAGE LOCATE command is issued to locate the first

10

line in error and the line is printed automatically.

A CHANGE command is issued to correct the line

and the corrected line is displayed automatically.

A RETURN is entered following the prompt to

move the line pointer and print the next line in error.
A CHANGE command is issued to correct the line and the
corrected line is displayed automatically.

A NEXT PRINT 3 command is issued to locate the

next line in error and the line is printed. A CHANGE
command is issued to correct the line and the corrected
line is displayed automatically.

A PAGE LOCATE command is issued to locate the next

line in error and the line is printed automatically. A
CHANGE command is issued to correct the line and the
corrected line is displayed automatically.

A line in error was bypassed by mistake; therefore, a
NEXT PRINT -3 command is issued to back the line
pointer up. An ADD AND PRINT command is used to correct
the line

A PAGE LOCATE command is used to locate the next line
in error and the line is printed automatically.

A CHANGE command is issued to correct the line and

the corrected line is displayed automatically.

The line pointer is moved down two lines by means

of a RETURN option to locate the next

line in error. A DELETE AND PRINT command is issued to
delete the line contdining ; SPECIFY and print

the next line.

A PAGE LOCATE command is issued to locate the
point in the file where the new comment lines

are to be inserted. EDI is switched to the Input
mode, two lines are entered, and EDI is switched
back to Edit mode by entering a RETURN as

the first character in the line.

A PAGE LOCATE command is issued to locate the next
line in error. A CHANGE command is issued to
correct the spelling error. The line is displayed
automatically.

The line pointer is moved down two lines using two
RETURNS to locate the last line in error.

An ADD AND PRINT command is issued to append

:1 following the word $DELET.

The necessary corrections are complete, so the line pointer
is moved to the top of the file by means of a TOF command.
A PRINT * command is issued to print the complete file

with all corrections

[1,54]PRT/MM/CP, LP: =PRTBLD/MP
;
; OPTIONS INPUT
STACK=40
PAR=PAR4K: 0: 10000
UNITS=4
TASK=PRT. ..
ASG=CO:2,LP:3
PRI=60

UIC=[10,1]

SPECIFY FLAG WHICH CONTROLS
FILE DELETION AFTER PRINTING

TO ENABLE DELETION USE
GBLPAT=PRT:$DELET:1

TO INHIBIT DELETION USE
GBLPAT=PRT:$DELET: 0

DEFAULT FROM ASSEMBLY IS
FILE DELETION ENABLED

S e N Ne N Ne Ne Ne N We e Ne Se Ne we

GBLPAT=PRT:$DELET:1
[*EOB*]

*EX
[EXIT]

2.6.2 SAVE and UNSAVE Sample

*LI

THIS IS LINE 1 PAGE 1
THIS IS LINE 2 PAGE 1
THIS IS LINE 3 PAGE 1
THIS IS LINE 4 PAGE 1
THIS IS LINE 5 PAGE 1
[*EOB*]

*T

#SA 5 SAV1,DAT

*T

*SA 5 SAV2.DAT

*CL

EDI>SAV1.DAT

[PAGE 1]

*LI

THIS IS LINE 1 PAGE 1
THIS IS LINE 2 PAGE 1
THIS IS LINE 3 PAGE 1
THIS IS LINE 4 PAGE 1
THIS IS LINE S PAGE 1

[*EOB*]

LINE TEXT EDITOR (EDI)

An EXIT command is issued to close the file and
terminate the editing session.

The file to be used in this example is
printed using the LIST command.

The line pointer is returned to the top.
A SAVE command is used to save the
five lines in a separate file.

The line pointer is returned to the top.

A second SAVE command is used to generate

a second saved file., The primary input file is closed.
The first save file is opened and a

LIST command is used to display the file.

LINE TEXT EDITOR (EDI)

*PA/PAGE 1/PAGE 2/ A PASTE command is used to change
THIS IS LINE 1 PAGE 2 PAGE 1 to PAGE 2 in all lines.
THIS IS LINE 2 PAGE 2

THIS IS LINE 3 PAGE 2

THIS IS LINE 4 PAGE 2

THIS IS LINE 5 PAGE 2

*CL The first save file is closed.
EDI>SAVE2.DAT The second save file is opened.
[PAGE 1]

*LI The LIST command is used to display
THIS IS LINE 1 PAGE 1 the contents of the file.

THIS IS LINE 2 PAGE 1

THIS IS LINE 3 PAGE 1

THIS IS LINE 4 PAGE 1

THIS IS LINE 5 PAGE 1

[*EOB*]

*PA/PAGE 1/PAGE 3/ A PASTE command is used to change
THIS IS LINE 1 PAGE 3 PAGE 1 to PAGE 3 in all lines.
THIS IS LINE 2 PAGE 3

THIS IS LINE 3 PAGE 3

THIS IS LINE 4 PAGE 3

THIS IS LINE 5 PAGE 3

*CL The second save file is closed.
EDI>START.DAT The original input file is opened again.
(PAGE 1]

*BO

THIS IS LINE 5 PAGE 1 The last line in the file is located.
*UNS SAV1,DAT Two UNSAVE commands are used to
*UNS SAV2.DAT append the two save files to the
*T original input file.

*LI A LIST command is used to

THIS IS LINE 1 PAGE 1 display the contents of the

THIS IS LINE 2 PAGE 1 combined file.

THIS IS LINE 3 PAGE 1

THIS IS LINE 4 PAGE 1

THIS IS LINE 5 PAGE 1

THIS IS LINE 1 PAGE 2

THIS IS LINE 2 PAGE 2

THIS IS LINE 3 PAGE 2

THIS IS LINE 4 PAGE 2

THIS IS LINE 5 PAGE 2

THIS IS LINE 1 PAGE 3

THIS IS LINE 2 PAGE 3

THIS IS LINE 3 PAGE 3

THIS IS LINE 4 PAGE 3

THIS IS LINE 5 PAGE 3

[*EOB*]

*EX

[EXIT]

LINE TEXT EDITOR (EDI)

2.6.3 Use of MACRO IMMEDIATE Command

*LI

ABC IN LINE 1 - ABC
ABC IN LINE 2 - ABC
ABC IN LINE 3 - ABC
ABC IN LINE 4 - ABC
ABC IN LINE 5 - ABC

ABC IN LINE N - ABC
[*EOB*]

*4<F ABC&C/ABC/DEF/>
ABC IN LINE 1 - ABC

DEF IN LINE 1 - ABC
ABC IN LINE 2 - ABC
DEF IN LINE 2 - ABC
ABC IN LINE 3 - ABC
DEF IN LINE 3 - ABC
ABC IN LINE 4 - ABC
DEF IN LINE 4 - ABC

*

2.6.4 Use of Macro Commands

*LI
THIS LITTLE FILE HAS

MANY CONNON ETTORS SO

WE CAN SHOW YOU HOW

YHE MACRO CONNANDS CAN

BE USED.

FIRST, YHE DESIRED MACRO
MUST BE DEFINED; YHE LINE
POINTER IS MOVED TO A LINE
WITH AN ETTOR; AND YHEN, YHE
MACRO EXECUTE CONNAND

IS ISSUED TO COTTECT YHE
ETTOR

[*EOB*]

*MACRO 1 C/NN/MM/

*MACRO 2 SC/TT/RR/

*MACRO 3 PA/YHE/THE/

*M3

THE MACRO CONNANDS CAN
FIRST, THE DESIRED MACRO
MUST BE DEFINED; THE LINE
WITH AN ETTOR, AND THEN, THE
IS ISSUED TO COTTECT THE
*NP2

MANY CONNON ETTORS SO

*M1

MANY COMMON ETTORS SO

*M2

A LIST command is issued to print
the file used in this example.

The immediate macro is defined
and executed to find the first
four lines that start with ABC
and change the first occurrence
of the string ABC to DEF.

The FIND command causes the line
to be printed before the change.
The CHANGE command causes

the line to be printed after

the change.

The LIST command is used to print the
file and the file is checked for errors.
The following errors are located.

1, The string NN is used in place
of MM (see macro 1).

2. The string TT is used in place
of RR (see macro 2).

3. The string YHE is used in place
of THE (see macro 3).

The three macro definitions that will
correct the errors are typed.

Macro 3 is used to change all YHE
strings to THE.

NP2 is used to locate a line with errors.
M1l is used to change NN to MM,

M2 is used to change TT to RR.

LINE TEXT EDITOR (EDI)

MANY COMMON ERRORS SO
NP2

THE MACRO CONNANDS CAN
*M1

THE MACRO COMMANDS CAN

*M2
WITH AN ERROR; AND THEN, THE
*

MACRO EXECUTE CONNAND
*M1

MACRO EXECUTE COMMAND
*M2

IS ISSUED TO CORRECT THE
*M2

ERROR

*T

*LI

THIS LITTLE FILE HAS

MANY COMMON ERRORS SO

WE CAN SHOW YOU HOW

THE MACRO COMMANDS CAN

BE USED.

FIRST, THE DESIRED MACRO
MUST BE DEFINED; THE LINE
POINTER IS MOVED TO A LINE
WITH AN ERROR; AND THEN, THE
MACRO EXECUTE COMMAND

IS ISSUED TO CORRECT THE
ERROR,

[*EOB*]

2.7 EDI ERROR MESSAGES

NP2 is used to locate the next line in error.
M1l is used to change NN to MM.

M2 is used to locate the next TT string
and change it to RR.

A RETURN is used here to locate the next line
in error.

M1 is used to change NN to MM.

M2 is used to locate the next TT string and
change it to RR.

M2 is used to locate the last error in the
file and correct it.

After all lines have been corrected, the
file is printed using the LIST command.

The four classes of EDI error messages are:

e Command level information messages

e File access error messages

® Error messages requiring EDI to restart

e Fatal error messages

The following sections describe all the messages that can be displayed
in each class. If the recovery procedure is not evident, a suggested

user action is given.

LINE TEXT EDITOR (EDI)

2.7.1 Command Level Information Messages

Messages in this class indicate information that 1is designed to be
helpful to you or to identify errors that were encountered in the
previous command. All messages in this <class are enclosed within
square brackets and are followed by a prompt for a new command. For
example, the following output occurs if a DELETE command encounters an
end-of-buffer in block mode:

[*EOB*]
*

The messages in this class follow.

[BUFFER CAPACITY EXCEEDED BY]
offending line
[LINE DELETED]

Explanation: A READ, UNSAVE, INSERT, or OVERLAY command has
exceeded the capacity of the block buffer. The line that caused
the overflow is displayed and deleted.

User Action: If a new file is being created, empty the buffer
with a WRITE command and continue the editing session.

If an existing file is being edited, it may be possible to
continue by using a RENEW or WRITE command. Otherwise, use the
CLOSE command to close the output file and save all edits.
Reopen the output file as the input file and, using the SIZE
command, reduce the number of lines read into each buffer. Then,
using the PAGE LOCATE command, search to the position in the file
where editing is to continue.

Occasionally, this message results when you try to open a file
that was not created by EDI. You can overcome this difficulty by
using the SIZE command procedure that follows:

1. Type KILL.

2. When EDI prompts for a .new file specification, enter a
nonexistent file name. EDI creates a new file and enters
input mode.

3. Use the RETURN key to enter edit mode.

4. Using the SIZE command, reduce the number of lines read into
each buffer.

5. Use the KILL command to abandon the file.
6. When EDI prompts for a new file specification, enter the name

of the desired file.

[CREATING NEW FILE]
INPUT

Explanation: The input file specified with the command does not
exist and EDI has created a new file. EDI automatically enters
input mode and waits for the input of text lines.

[ILL

[ILL

{ILL

LINE TEXT EDITOR (EDI)

User Action: 1If you intend to create a new file, continue
entering new 1lines as required. Otherwise, enter edit mode by
pressing RETURN and use the KILL command to delete the undesired
new file. When EDI prompts for a new file specification, enter
the correct file specification.

CMD]

Explanation: Either EDI does not recognize the command or you
have entered a command that is not compatible with the current
mode (for example, a READ command in line-by-line mode).

NUM]

Explanation: Either you have supplied a nonnumeric character
when a numeric 1is required or you have given a negative number
when a positive number is required.

STRING CONST]

Explanation: A search string specified in a CHANGE, LC, PASTE,
or SC command does not contain a matching string termination
character (for example, PASTE /ALPHABETA, instead of PASTE
/ALPHA/BETA) .

[ILLEGAL IN BLOCK ON MODE]

Explanation: You have tried to execute a command that is illegal
in block mode, such as FILE or OUTPUT ON/OFF.

[ILLEGAL FILE NAME GIVEN IN CLOSE OR EXIT]

or

[FILE WAS NOT RENAMED]

Explanation: A syntactically incorrect file specification was
given in a CLOSE or EXIT command, the attempt to rename the
output file failed, or the attempt to EXit or Close to rename the
file to another device failed.

User Action: Use the PIP /RE switch or the DCL RENAME command to
rename the file, if desired.

[MACRO NOT DEFINED]

Explanation: You have tried to execute a macro with the M
command, but the specified macro has not been defined.

User Action: Use the MACRO command to define the desired macro
and then execute it with the M command.

LINE TEXT EDITOR (EDI)

[MACRO NUMERIC ARG UNDEFINED]

Explanation: You have tried to execute a macro without supplying
a numeric argument. The macro definition contains a percent (%)
character and thus demands a numeric argument.

User Action: Reenter the command line, specifying the
appropriate numeric argument.

[MCALL FILE DOES NOT EXIST]

Explanation: You have issued an MCALL command to retrieve a set
of macros, but the file MCALL cannot be found.

User Action: The desired set of macro definitions may exist
under another User File Directory. If this is the case, use PIP
or the appropriate DCL commands to copy or rename the MCALL file
into the current directory.

[NO INPUT FILE OPEN]

Explanation: You have issued a PAGE, READ, or RENEW command
while a new file 1is being created (that is, while there is no
input file). These commands can be executed only when an
existing file is being edited.

[NO MATCH]

Explanation: You have issued a CHANGE command with a string to
be changed that is not in the current line.

[OVERLAYING PREVIOUSLY DEFINED MACRO]

Explanation: You have issued a MACRO command that redefines a
previously defined macro. This message lets you know that the
previous definition is no longer in effect.

[SAVE FILE DOES NOT EXIST]

Explanation: The file specified in an UNSAVE command cannot be
located.

User Action: If you provided a file specification, make sure it
is correct. If vyou did not provide a file specification, this
message means that no previous SAVE command (without file
specification) was issued.

[SECONDARY FILE ALREADY OPEN]

Explanation: You may have tried to open a secondary input file
while another secondary file is still open. Or you may have a
secondary file open when you issue a CLOSE or KILL command, or
when EDI encounters an error and 1is forced to restart. The
former case represents an error. The latter informs you that you
still have a secondary file open.

User Action: Close the secondary input file using the CLOSES
command and then open the desired secondary file with the OPENS
command.

LINE TEXT EDITOR (EDI)

[SECONDARY FILE CURRENTLY SELECTED FOR INPUT]
Explanation: You have issued a CLOSE or KILL command or an error
has caused EDI to restart when a secondary input file is open and
selected for input.

User Action: 1Issue an SP command, then a CLOSES command.

[SYNTAX ERROR]
Explanation: You entered a command that is syntactically
incorrect.

[TOO MANY CHARS]
Explanation: A CHANGE, LC, PASTE, SC, or ADD command has
resulted in a line that contains too many characters. EDI limits
the length of a line to 132(10) characters.
User Action: Reenter the command line to ensure that the line is
valid.

[*BOB*]
Explanation: You have reached the beginning-of-buffer. The
current 1line pointer is positioned just before the first line in
the buffer. Thus, new text lines can be entered before the first
line.

[*EOB*]
Explanation: You have reached the end-of-buffer. The current
line pointer now points to the end of the buffer. Thus, if new
lines are inserted, they appear after the 1last text 1in the
buffer.

[*EOF#*]
Explanation: You have reached the end-of-file on the input file.
User Action: If the editing session is complete, use the CLOSE

or EXIT command to close the output file. Otherwise, use the TOF
command to return to the first block in the file.

2.7.2 File Access Error Messages

Messages in this class mean that you have tried to access directories,
files, or devices that are not present in the host system. Each
message is prefixed with:

EDI --

After the message is displayed, EDI returns to command level and
prints an asterisk to request input.

The messages in this class follow.

2-60

LINE TEXT EDITOR (EDI)

EDI -- BAD FILE NAME

Explanation: EDI did not accept the file name. The most common
error is a file name containing embedded blanks.

User Action: Make sure that the file name 1is correct, then
reenter it.

EDI -- DEVICE NOT IN SYSTEM
Explanation: You have given a FILE, OPENS, SAVE, or UNSAVE
command and specified a device that does not exist in the host
system.
User Action: Reenter the command line, specifying only devices
available in the system.
EDI -- FILE DOES NOT EXIST
Explanation: You have given a FILE or SAVE command and specified
a User File Directory that does not exist on the specified
volume.
NOTE
The remaining error messages 1in this
class should not occur and represent
failures in EDI. If such errors
persist, submit a Software Performance
Report (SPR).
EDI -- BAD DEVICE NAME
EDI -- DEVICE NOT READY
EDI -- FILE ALREADY OPEN
EDI -- RENAME NAME ALREADY IN USE
EDI -- RENAME ON TWO DIFFERENT DEVICES
EDI -- WRITE ATTEMPT TO LOCKED UNIT

2.7.3 Error Messages Requiring EDI Restart

The error messages described in this section are caused by conditions
that make it impossible for EDI to «continue the current editing
session. EDI closes all open files (with the exception of any open
secondary input file), reinitializes, and then prompts for the next
file to be edited.

LINE TEXT EDITOR (EDI)

EDI -- PRIMARY FILE NOT PROPERLY CLOSED

Explanation: When the primary input file was 1last written, a
close check was specified and the writing task did not properly
close the file (for example, the task was aborted). Thus, the
file attributes were not written and the file may contain
inconsistent data.

User Action: Exit from EDI by pressing RETURN or CTRL/Z. Use
the PIP /UN switch to unlock the file. Reinitiate EDI and try to
recover the data in the file.

EDI -- PRIVILEGE VIOLATION

Explanation: A privilege violation occurred during a file access
for one of the following reasons:

1. The specified volume is not mounted.

2. The UIC under which EDI is running does not possess the
necessary privileges to access the specified directory.

3. The UIC is not privileged to access the specified file.

User Action: If the volume is not mounted, then mount it using
the MOUNT command. Otherwise, reinitiate EDI under a UIC that
has appropriate access privileges to both the specified directory
and file.

EDI -- RECORD IS TOO LARGE FOR USER BUFFER

Explanation: The input file (primary input, secondary input,
UNSAVE, or MCALL) being accessed was not created by EDI (or SLP)
and contains records that are too large. The maximum record
length supported by EDI is 132(10) bytes.

EDI -- SECONDARY FILE NOT PROPERLY CLOSED - NOT USABLE

Explanation: When the secondary input file was last written, a
close check was specified and the writing task did not properly
close the file (for example, the task was aborted). Thus, the
file attributes were not written and the file may contain
inconsistent data.

User Action: Use the PIP /UN switch to unlock the file.
Reinitiate EDI and try to recover the data in the file.
EDI -- BAD DIRECTORY SYNTAX

Explanation: Directory field ([g,m]) is in improper format.

NOTE

The remaining error messages in this
class should not occur and represent
failures 1in EDI. If such errors
persist, submit a Software Performance
Report (SPR).

LINE TEXT EDITOR (EDI)

EDI -- DUPLICATE ENTRY IN DIRECTORY

EDI -- END OF FILE

EDI -- ILLEGAL RECORD ACCESS BITS - FILE NOT USABLE
EDI -- ILLEGAL RECORD NUMBER - FILE NOT USABLE

2.7.4 Fatal Error Messages
The fatal error messages represent system and/or hardware conditions
that make it impossible for EDI to continue execution. All files are
closed and EDI terminates its execution. The output file may be
truncated. Each error message is prefixed with:

EDI --
and followed by the exit message:

[EXIT]
on the next line.
You may work with the following procedures on the truncated version of
an output file to save the editing performed before the fatal error

occurred.

1. Use the PIP /RE switch or the DCL RENAME command to rename
the truncated version of the output file to avoid confusion.

2. Restart the editing session to the original input file.

3. Issue an OPENS command, specifying the renamed file as the
secondary file.

4, 1Issue an SS command to select the secondary file for input.

5. Issue an ERASE command to erase the first block of the input
file (unless the truncated output file did not contain the
entire first block).

6. Issue as many READ 1 and WRITE commands as necessary to reach
the EOF on the secondary file.

7. Issue an SP command to select the primary file for input.
8. Issue a CLOSES command to close the secondary file.

9. Issue a WRITE command to ensure that the 1last block was
written into the output file.

10. Issue as many READ 1 and ERASE commands as necessary to
bypass all input file blocks that are complete in the renamed
file.

11. Continue the normal editing session.

LINE TEXT EDITOR (EDI)

The messages in this class follow.

EDI -- CALLER'S NODES EXHAUSTED

Explanation: System dynamic storage has been depleted and
insufficient space 1is available to allocate the control blocks
necessary to open, close, read, or write a file.

User Action: This probably is a system failure, but it could
also represent a transient overload condition. Wait until system
load has diminished and reinitiate EDI.

EDI -- DEVICE FULL

Explanation: Insufficient space exists on the output volume to
extend an output file (text output, FILE, or SAVE).

User Action: Determine which volume is being written to. If it
is required that the specified file be written on this volume,
then space must be made available. Use PIP to purge (/PU) or
delete (/DE) unwanted files, or wuse the DCL PURGE and DELETE
commands.

EDI -- FILE HEADER CHECKSUM ERROR

Explanation: An input file (primary input, secondary input,
UNSAVE, or MCALL) has a header block that does not contain a
proper checksum.

User Action: The file structure on the specified volume Iis
damaged. Run the File Structure Verification Utility (VFY) to
determine the extent of the damage. VFY is described in Chapter
9.

EDI -- FILE HEADER FULL
Explanation: Insufficient retrieval pointer space exists in the
header block to extend an output file (text output, FILE, or
SAVE) .
User Action: Split the file into two or more files and process
them separately.

EDI -- FILE PROCESSOR DEVICE WRITE ERROR

Explanation: This error message may indicate that the device
specified for an output file is write-locked.

User Action: Unlock the device if it is write-locked.
Otherwise, a hardware problem may exist. Consult your DIGITAL
Field Service representative.

EDI

EDI

EDI

EDI

EDI

EDI

EDI

EDI

EDI

EDI

LINE TEXT EDITOR (EDI)

-- INDEX FILE FULL

Explanation: The file header block is not available to create an
output file (text output, FILE, or SAVE). When a volume is
initialized, the maximum number of files that may be created on
the volume 1is established. Your write request would have
exceeded this maximum.

User Action: Determine which volume is being referenced. If it
is required that the specified file be created on this volume,
then space must be made available. Use PIP to purge (/PU) or
delete (/DE) unwanted files, or use the DCL PURGE or DELETE
commands.

NOTE

The following error messages signify
hardware problems. If possible, remove
all important files from the volume,
then contact your local DIGITAL Field
Service representative.

~- BAD BLOCK ON DEVICE

-— FILE PROCESSOR DEVICE READ ERROR
-- HARDWARE ERROR ON DEVICE
-- PARITY ERROR ON DEVICE
NOTE
The remaining error messages in this
class should not occur and represent
failures in EDI. If such a failure

occurs, contact your local DIGITAL Field
Service representative.

-- BAD DIRECTORY FILE

-- BAD PARAMETERS ON A QIO

—— INVALID FUNCTION CODE ON A QIO

-— NO BLOCKS LEFT

-— REQUEST TERMINATED

LINE TEXT EDITOR (EDI)

EDI -- UNEXPECTED ERROR - EDITOR WILL ABORT

EDI -- WRITE ATTRIBUTE DATA FORMAT ERROR

TASK "...EDI" TERMINATED

CHAPTER 3

PERIPHERAL INTERCHANGE PROGRAM (PIP)

The Peripheral Interchange Program (PIP) is a file wutility program
that transfers data files from one standard Files-11 device to
another. PIP also performs file control functions. Some of the
functions PIP performs are:

e Copying files from one device to another

e Deleting files

e Renaming files

e Listing file directories

e Setting the default device and UIC for PIP operations
e Unlocking files

e Spooling files

You invoke the PIP utility using any of the methods for invoking a
utility described in Chapter 1. You invoke PIP file control functions
by means of switches and subswitches.

3.1 PIP COMMAND LINE

You request PIP functions by entering PIP command 1lines through the
initiating terminal or by means of an indirect command file. The
maximum nesting level for indirect command files 1is four. (Using
indirect command files is described in Chapter 1.) The format of PIP
command lines differs for each function. Therefore, the command 1line
formats are described in separate sections.

3.1.1 PIP Defaults for File Specification Elements

With the exception of the version number, PIP generally uses the 1last
value encountered in the command line as the default. That is, PIP
uses values you enter to set defaults and changes the default when you
change the value. Exceptions to this are noted in the descriptions of
each switch.

In the following example, T1.MAC;5 sets the defaults for the
subsequent file specifications in the command 1line. Then, T2 is
specified and overrides Tl as the default filename; however, .MAC
remains the default file type. Finally, .TSK is specified, which
overrides .MAC as the default, while T2 remains the default file name.

3-1

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Note, in this example, that the version number does not default.

PIP>T1.MAC;5,T2,.TSK/BR

T1.MAC;S5S
T2.MAC;1
T2.TSK; 3

Table 3-1 summarizes the rules PIP uses to set defaults.

Table 3-1
PIP Default File Specifications

Element

Default Value

dev:

fufd]

filename

.filetype

;version

For the first file specification, the unit on which
the wuser's system disk is mounted (SYO0:) or the
default that you specify with the /DF switch (see
Section 3.2.2.6). For subsequent file
specifications, either you explicitly specify a new
device or PIP assumes the device from the previous
specification.

For the first file specification, your current User
Identification .Code or UIC (that is, the UIC under
which you log on), the UIC you specify with the SET
command, or the default vyou specify with the /DF
switch (see Section 3.2.2.6). For subsequent file
specifications, either you explicitly specify a new
User File Directory or PIP assumes the UFD from the
previous specification. Only the asterisk
specification is valid as a wildcard (see Section
3.1.3).

No default for the first file specification. For
subsequent file specifications, the last file name
that you explicitly specified. Asterisk and/or
percent sign specifications are valid as wildcards
(see Section 3.1.3).

No default for the first file specification. For
subsequent file specifications, the last file type
that you explicitly specified. Asterisk and/or
percent sign specifications are valid as wildcards
(see Section 3.1.3).

The default for input files 1is the most recent
version number. The default for output files is the
next higher version number, or version 1 if the file
does not exist in the output directory. An
exception is the PIP file delete function, which
requires that a version number be specified.

An explicit version number is defined to be of the
form ;n where n is greater than 0. A version number
of ;-1 may be used to specify the oldest version of
a file. A version number of ;0 or ; may be
specified to signify the most recent version. In
certain cases, Jjust the asterisk (wildcard) may be
specified, as described in Section 3.1.3.

PERIPHERAL INTERCHANGE PROGRAM (PIP)

3.1.2 PIP Switches and Subswitches

PIP provides several file control switches and subswitches. A switch
specification consists of a slash (/) followed by a 2- or 3-character
switch name. The switch specification is optionally followed by a
subswitch name separated from the switch name by a slash. The switch
or subswitch can have arguments that are separated from the switch or
subswitch name by a colon (:).

To allow several commands to be performed consecutively, more than one
command can be specified in a line. To separate each command, the
ampersand character (&) is used.

Most of the PIP switches operate on lists of file specifications. The
exceptions are /DD, /DF, /ID, and /TD, which are used by themselves.

Table 3-2 lists PIP switches and subswitches and summarizes the
functions performed by them. The subswitches are listed with their
respective switches. The switches and subswitches are described in
detail in Section 3.2.2.

Table 3-2
PIP Switches and Subswitches

Switch Subswitch Function
/AP Appends file(s) to the end of an existing
file.
/FO Specifies the file owner for a file.
/BS:n[.] Defines the blocksize for magnetic tape.
/CD Allows the output file to take the creation

date of the input file rather than the date
of transfer.

/DE Deletes one or more files.
/LD Lists the deleted files.
/DD Restricts file searches to files created

during a specified period of time.

/DF Changes PIP's default device and/or UFD.
/EN Enters a synonym for a file in a directory
file.
/NV Forces the version number of a file to one

greater than the latest version.

/EOF [:block:byte] Specifies the end-of-file pointer for a
file.
/EX Excludes one file specification's worth of

files during file searches.

(continued on next page)

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Table 3-2 (Cont.)

PIP Switches and Subswitches

Switch

Subswitch

Function

/FI:filenum:segnum

/FR

/ID

/LI

/ME

/NM

/PR

/BR

/FU[:n[.]]

/TB

/BL:nl.]

/CO

/FO
/NV

/su

/FO

/GR [:RWED]

/OW[:RWED]

/SY[:RWED]

/WO [:RWED]

Accesses a file by its file identification
number (file-ID).
Displays the amount of available space on

the specified volume, the largest contiguous
free space on that volume, and the number of
available file headers.

Identifies the version of PIP being used.
Lists directory files.

Lists a directory file in brief format (an
alternate mode for the /LI switch).

lists a directory file in full format (an
alternate mode for the /LI switch).

Lists the total number of blocks used for a
directory, along with the total number
blocks allocated and the number of files in
that directory (an alternate mode for the
/LI switch).

into one

Concatenates two or files

file.

more

Allocates a number (n) of contiguous blocks.

Specifies that the file(s) be

contiguous.

output

Specifies the file ownership for a file.

Forces the version number of a file to one
greater than the latest version.

Supersedes (replaces) an existing file.
Suppresses certain PIP error messages.
Changes the protection status of a file.
Specifies the ownership for a file.

Sets the read/write/extend/delete protection
at the group level.

Sets the read/write/extend/delete protection
at the owner level.

Sets the read/write/extend/delete protection
at the system level.

Sets the read/write/extend/delete protection
at the world level.

(continued on next page)

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Table 3-2 (Cont.)
PIP Switches and Subswitches

Switch Subswitch Function
/PU[:n[.]] Deletes obsolete version(s) of a file.
/LD Lists the deleted files.

/RE Renames a file.

/RM Removes a file entry from a directory.

/RW Rewinds a magnetic tape.

/SB Specifies that records may span disk block
boundaries when copied from magnetic tape.

/SD Selectively deletes files by prompting for
your response before deleting.

/SP[:nl.]] Spools files to the 1line printer for
printing.

/SR Allows shared reading of a file that has

already been opened for writing by another
user or task.

/TD Restricts file searches to files created on
the current day.

/TR Truncates files to logical end-of-file.

/UF Creates a User File Directory entry on the
volume to which a file is being transferred.

/UN Unlocks a file.
/Up Updates (rewrites) an existing file.
/FO Specifies the owner for a file.

Switches and subswitches are described in the following sections.

3.1.2.1 Switches - PIP accepts some switches with no file
specification. However, when you use a switch in a command line, it
must follow the file or UFD specification. It cannot come before the
device name, the UFD, the file name, file type, or version of the file
on which it is to operate.

You may specify a switch once for a list of file specifications. For
example:

filespecl,filespec2,filespec3/DE

The /DE switch applies to all of the file specifications. PIP deletes
every specified file from its UFD.

PERIPHERAL INTERCHANGE PROGRAM (PIP)

You specify switch arguments as octal (default), decimal, or
alphabetic characters, depending on the switch. The sections that
explain the individual PIP switches discuss these values.

3.1.2.2 Subswitches - You can apply subswitches to one or more file
specifications, depending on the placement of the subswitch.
Subswitches can appear in either the output file specification or the
input file specification.

If you place the subswitch 1in the output file specification, the
subswitch applies to the entire list of input file specifications.
For example, the Contiguous Output switch (/CO) is applied to both
TEST.TSK and SAMP,DAT. (The /CO switch 1is wused with the Copy
function. See Section 3.2.1.)

PIP>/CO=TEST.TSK;1,SAMP.DAT;1

PIP copies TEST.TSK;l1l and SAMP.DAT;1l such that the copies, TEST.TSK;2
and SAMP.DAT;2, are contiguous.

If you place the subswitch in the input file specification, it usually
applies only to the file specification that immediately precedes it.
In the following example, the New Version subswitch (/NV) is applied
to the file ASDG.MAC. (The /NV subswitch is being used with the
Rename switch, /RE.)

PIP>*,SMP=PRT2. QRT,ASDG.MAC/NV, KG.MAC/RE

PIP renames the files PRT2.QRT and KG.MAC, but they maintain their
associated version numbers. File ASDG.MAC is also renamed, but the
version number is forced to a number one greater than the 1latest
version of file ASDG.SMP (assuming a version of ASDG.SMP already
exists).

When you explicitly apply a subswitch to a file specification, you
implicitly apply the switch with which the subswitch is associated.
On a command line with more than one file specification, the explicit
subswitch affects only the file to which it is applied. The implicit
switch affects all the files on the command line.
Example

PIP>FILE1.CMD/GR:R/WO,FILE2.MAC/GR:RW
This command is equivalent to:

PIP>FILE1.CMD/GR:R/WO,FILE2,MAC/GR:RW/PR

The command results in the following file protection:

a. FILE1l SYSTEM -- Unchanged
MEMBER -- Unchanged
GROUP -- Read access
WORLD -- No access
b. FILE2 SYSTEM -- Unchanged
MEMBER -- Unchanged
GROUP -~ Read/write access
WORLD -- Unchanged

(For more information on altering the protection level of a file, see
Section 3.2.2.16.)

PERIPHERAL INTERCHANGE PROGRAM (PIP)

3.1.3 Wildcards

PIP allows you to specify wildcards 1in file specifications. Th2
wildcard characters are the asterisk (*) and the percent sign (%)
characters. You can use both wildcards in place of explicit
specifications for file names, and types and Jjust the asterisc
wildcard in place of file directories and version numbers.

The asterisk can denote zero or more characters in the field vyo1
specify it in, while the percent sign character can denote exactly on:
character in the fields. (Correct syntax must be followed, however.
See Section 3.1.3.2.)

Wildcards are restricted in some cases. The following sections
describe and give examples of wildcards in input and output fil:
specifications.

3.1.3.1 Wildcards in Output File Specifications - Wildcards in th:
output: file specifications are restricted. For the following PIP
functions, the output file specification cannot have any wildcards:

o Concatenating files to a specified file
e Appending files to an existing file

e Updating (rewriting) an existing file

e Listing a directory

If you use wildcards in the output file specification for any of thes:
functions, the meaning of the command line would be ambiguous. For
example:

PIP>LIST.*=[200,200] /LI

You have incompletely specified the output file specification. PIP
returns an error message.

When you make copies of several files, the output specification mus:
be *.,*;% or defaulted from the input file specification(s).

For the Rename (/RE) and Enter (/EN) switches, the outpu:
specification may have wildcards (asterisk only) mixed with specifiel
fields. For either switch, the equivalent field of the input £filsa
specification is used.

For all cases in which wildcards are allowed in the output fil:=
specification, the wildcard UFD form [*,*] (but not [n,*] or [*,n]) is
used to indicate that the output UFD is to be the same as the inpu:
UFD.

NOTE

The percent sign (%) cannot be wused in
output file specifications.

3.1.3.2

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Wildcards in Input Specifications - PIP provides the

following wildcard features for input file specifications:

* *.* means all versions of all files.
* DAT;* means all versions of all files of file type .DAT.

.,D; * means all versions of all files with file types
beginning with D.

TEST.*; * means all versions of all types of files named TEST.

T*.*;* means all versions of all types of files with names
beginning with T.

TEST.DAT;* means all versions of file TEST.DAT.

TEST.D%T;* means all versions of files named TEST with
three-character file types beginning with D and ending with T.

TYN.*;* means all versions of all file types of all
three-character file names beginning with T and ending with N.

* ,* means the most recent version of all files.

* DAT means the most recent version of all files of file type
.DAT.

*%.DAT means the most recent version of all files that have at
least one character in their names and have the file type of
.DAT.

TEST.* means the most recent version of all file types for
files named TEST.

PIP also provides the following wildcard UFD features:

[*,*] means all group,member number combinations (1 to 377
octal).

[nl,*] means all member numbers under group nl.

[*,n2] means all group numbers for member n2.

NOTE

The percent sign (%) character cannot be
used in the UFD.

3.2 PIP COMMAND FUNCTIONS

PIP copies Files-11 files and performs file control €functions. The

copying

function and file control functions are described in the

following sections.

3.2.1 Copying Files-11 Files

To copy

Files-11 files, you can enter the PIP command 1line without

specifying any switches.

PERIPHERAL INTERCHANGE PROGRAM (PIP)

The simplest format for the PIP command line is:
outfile=infile
outfile

The output file specification. If the output file name, file
type, and version are either defaulted or *.*;*, the input file
name, file type, and version are used for the output file (see
/NV and /SU subswitches). If you explicitly specify any portion
of the output file specification (file name, file type, or
version), wildcards cannot be wused in this specification.
Similarly, for a copy command, if you enter any portion of the
output specification, you can enter only one file as the input
file.

infile

The input file specification. If the file name, file type, and
version fields are not specified, then *.,*;* is the default.

One switch that you can specify when copying Files-11 files 1is the

Merge switch. The Merge switch (/ME) creates a new file from two or

more existing files. PIP assumes /ME when you explicitly specify an

output file, two or more input files, and no switches. Because the

basic copy function and the Merge switch are 1logically related, the

Merge switch is described here rather than below with the other

switches.

The general format of the PIP command line is:
outfile=infilel[,infile2...,infilen] [[/ME][/subswitch]]

outfile

The output file specification.

infile

The input file specification.

/ME

The Merge switch.

/subswitch

Specifies any of the subswitches that you can enter as part of
the basic command 1line or with the Merge switch. (Table 3-3
describes these subswitches.) Subswitches can appear 1in either

the output or input file specification. If you place the
subswitch in an input file specification, it applies only to that
file. If you Place the subswitch in the output file

specification, it applies to the entire list of input
specifications.

Examples

1.

PERIPHERAL INTERCHANGE PROGRAM (PIP)

PIP>DK1:SAMP.DAT=DK2:TEST.DAT

Copies the latest version of file TEST.DAT (in the current
UFD) from DK2: to DKl:, naming it SAMP.DAT.

PIP>DK1: [*,*]=DKO0: [11,*]

Copies all files from all members in group number 11 of DKO:
to DKl:. The files are copied to the same UFD on DKl: that
they were in on DKO:. Note that the user must have write
access to all group number 11 UFDs on DKl:.

PIP>LP:=*_LST

Copies the latest version of all files with a type of .LST in
the current UFD to the line printer. If the Print Spooler is
installed on your system, use the /SP switch instead of this
command. The command line using /SP is in the format:

PIP>* .LST/SP

PIP>DK1:SAMP.DAT=DK2:TEST.DAT;1,NEW.DAT; 2/ME

Concatenates version 1 of file TEST.DAT and version 2 of file
NEW.DAT from DK2:, generating file SAMP.DAT on DKl:, using
the current UFD. Note the result would be the same if the
/ME switch was not specified.

PIP>DK1:=DB2: TESTPROG.MAC,.OBJ

Copies the latest versions of TESTPROG.MAC and TESTPROG.OBJ
from DB2: to DKl:, using the current UFD for both DB2: and
DK1:.

PIP>DK1:=DKO0:* ,DAT; *

Copies all versions of all of the files of file type .DAT in
the current UFD from DKO: to DKl:.

PIP>DTO0:=[200,10] *.*; *

Copies all files under [200,10} from the default device (SY:)
to DTO:, using the current UFD.

PIP>DP0: [200,10]=DTO:*.*
Copies the latest versions of all files from DTO: in the

current UFD to DP0:[200,10]. Note that the user must have
write access to [200,10].

3-10

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Table 3-3
PIP Copy Command and Merge Subswitches

Subswitch

Description

/BL:n[.]

/CO

/-CO

/FO

Blocks Allocated -- This subswitch specifies the
number of blocks (n) to allocate initially to the
output file. You can specify n as either an octal
or decimal value (decimal values must be followed by
a decimal point). You can use the /BL:n subswitch
when Yyou are copying a contiguous file and changing
its size.

Contiguous Output -- This subswitch specifies that
the output file be contiguous. When you are copying
contiguous files from magnetic tape (for example,
task 1images), specify both /CO and /BL:n. You must
specify /BL:n because PIP cannot determine the
length of the input file when copying from tape.
(PIP allocates file space before the copy operation
is executed. The 1length of magnetic tape input
files is on the trailing label for the file.)

Noncontiguous Output -- This subswitch specifies
that the output file does not have to be contiguous.

If you do not specify the /BL:n subswitch, the /CO
subswitch, or the /-CO subswitch, PIP defaults to
the size and attributes of the input file.

Set File Ownership -- This subswitch specifies that
the owner of the output file will be the same as the
output UFD. If you do not specify /FO, the UIC of
all new files is the UIC under which PIP is running,
regardless of which directory the files belong to.
You can use this subswitch with both copy and merge
commands.

Examples
1. 1If PIP is running under the UIC [1,1],
DKO: [200,200]1=DK1: {200, 220]TEST.DAT

creates a new file in the [200,200] directory on
DKO:, but the file is owned by UIC [1,1].

However,
DKO: {200, 200)=DK1: (200, 220] TEST.DAT/FO
creates a file owned by UIC [200,200]. When you

specify /FO, PIP must be running under a UIC
that has write access to all output directories.

(continued on next page)

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Table 3-3 (Cont.)
PIP Copy Command and Merge Subswitches

Subswitch

Description

/FO0 (Cont.)

/SU

/NV

2. DKl:[*,*]/FO=DPO:[13,10]},{32,10],134,10]

Copies all the files from the specified input
directories to the corresponding directories on
DK1:. The file owners are the output
directories.

3. DKI1:[*,*]=DKO:[*,10]*.MAC/FO

Copies all the .MAC files from all group numbers
with member 10 to DKl:, preserving the UFD and
setting the file owner for each file to that
UFD.

Supersede -- This subswitch allows you to <copy one
or more input files to a file whose file name, file
type, and version may already exist in a UFD, The
existing file is deleted and a new one is created
with the data from the input file(s). If the file
does not already exist, it is created.

The output file's name, type, and version number
remain the same, but its file identification number
(file-ID) may be different. Also, the attributes
for the output file are taken from the first input
file and the number of blocks allocated to the
output file can be different (less than or more
than) the number of blocks allocated to the existing
file.

New Version -- This subswitch forces the output
version number of the file being copied to become
one greater than the 1latest version of the file
already 1in the output directory. If the file does
not already exist in the output directory, a version
number of 1 1is assigned. Figure 3-1 shows the
results when you specify /NV. (Specifying /NV is
not necessary when both the input and output files
are under the same file directory.)

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Directories Before COPY

INPUT DIRECTORY OUTPUT DIRECTORY
[291,201] {199,199)
RICK.DAT;1 RICK.DAT; 2

RICK.DAT; 4

Directories After COPY Without /NV Switch Set
(version number preserved)

INPUT DIRECTORY OUTPUT DIRECTORY
(291,291) (1pp,1pp]
RICK.DAT;1 RICK.DAT;?2
RICK.DAT:; 4
RICK.DAT;1

The command used was:
DK1:(102,1pp] = DK2: (201,281 JRICK.DAT;1

Directories After COPY With /NV Switch Set

INPUT DIRECTORY OUTPUT DIRECTORY
(291,201] (1g9.,109]
RICK.DAT;1 RICK.DAT;2
RICK.DAT; 4
RICK.DAT;5

The command used was:
DK1:(1¢@,1@@) = DK1: (201,281 RICK.DAT;1/NV

NOTE

The version specified with the /NV sub-
switch must be explicit or default; no
wild cards allowed.

ZK-174-81

Figure 3-1 Results of Copy Command With and Without /NV Specified

PERIPHERAL INTERCHANGE PROGRAM (PIP)

3.2.2 Performing File Control Functions

PIP provides several switches and subswitches for file control
processing. These switches and subswitches perform such functions as
deleting files, displaying the contents of a User File Directory, and
specifying file protection values.

You can specify several PIP switches in a command line with no file
specifications (that 1is, they may be entered by themselves). These
switches include /DD, /DF, /ID, and /TD.

You can specify one or more commands in a line. When wusing multiple
commands, the ampersand character (&) separates each command. For
example:

PIP>TEST.DAT; 2=SAMP.DAT;2/SU, SAMP.DAT; 1&TEST.DAT; * /FU§SAMP.DAT/PU/LD

1. PIP merges SAMP.DAT;2 and SAMP.DAT;1 into TEST.DAT;2. The
/SU subswitch causes TEST.DAT's file name, file type, and
version number to remain the same, but TEST.DAT;2's contents
are replaced with the input file's contents.

2. The /FU switch causes PIP to do a full format listing of all
versions of the file TEST.DAT.

3. The /PU switch causes PIP to purge SAMP.DAT and the /LD
subswitch causes PIP to list the deleted files.

The values that you specify with the switches and subswitches default

to octal. You can specify decimal values by adding a decimal point
after the value.

3.2.2.1 /AP -- Append Switch - The Append switch (/AP) opens an
existing file and appends the input file(s) to the end of it. Specify
the /AP switch in the following format:
outfile=infilel[,infile2...,infilen] /AP[/FO]
outfile
The output file specification. Wildcard specifications are not
allowed in the output file specification. The file type and the
record attributes for the output file remain the same after the

input file(s) have been appended to it. The file name and file
type for the output file must be specified explicitly.

infile
The input file specification. If the file name, file type, and
version are not specified, then *.*;* is the default.

/AP

The Append switch.

PERIPHERAL INTERCHANGE PROGRAM (PIP)

/FO
The Set File Ownership subswitch;'which specifies that the owning
UIC of the output file is the same directory to which the input
file belongs. If you do not specify /FO, the owning UIC of the

output file is unchanged, regardless of which directory the input
files belong to. See Section 3.2,1 for examples of using /FO.

Example
PIP>DK1:FILE1.DAT;1=FILE2.DAT;l;FILE3.DAT;1,FILE4.DAT;l/AP

Opens FILE1l.DAT;l1 on DK1: and appends the contents of
FILE2.DAT;1, FILE3.DAT;1 and FILE4.DAT;1l to it.

Note that if the output file is contiguous before the appending,
it may not be contiguous afterwards.

3.2.2.2 /BS:n -- Block Size Switch - The Block Size switch (/BS:n)
defines the block size for magnetic tapes. This switch allows you to
read or write bigger blocks onto magnetic tape, thereby saving some of
the space taken by interrecord gaps. The default block size is
512(10) bytes per block. Specify the /BS switch using the following
format:

outfile/BS:n=infile

outfile

The output file specification.

/BS:n[.]}
The Block Size switch, where n is an octal or decimal number
specifying the number of bytes in a block.
infile
The input file specification.
The /BS switch specifies the block Size of the output file. If the
block size specified 1is smaller than the actual block size, an I/0
error occurs.
Example

PIP>MT:BA.DOC/BS: 2048.=AMBER. DOC

This command increases the block size of the output file, BA.DOC,
to 2048(10) bytes per block.

PERIPHERAL INTERCHANGE PROGRAM (PIP)

3.2.2.3 /CD -- Creation Date Switch - The Creation Date switch (/CD),
used in a file transfer command, allows the output file to take the
date on which the input file was created rather than the date of
transfer. You cannot use this switch with the explicit or implicit
Merge switch (/ME) and/or with an output magnetic tape device.
Specify the /CD switch in the following format:

outfile/CD=infilelf[,infile2...,infilen]

or

outfile=infilel/CD[,infile2...,infilen]
outfile

The output file specification.
infile

The input file specification.
/CD

The Creation Date switch.
Example

PIP>/LI

DIRECTORY DB1l: (200, 200)
21-NOV-80 14:02

FILE.DAT;7 12. 6-0CT-80 16:13
PIP>TEST.DAT/CD=FILE.DAT/LI
DIRECTORY DB1l:[200, 200}

21-NOV-80 14:05

FILE.DAT;7 12. 6-0CT-80 16:13
TEST.DAT;1 12. 6-0CT-80 16:13

The command creates a new file, TEST.DAT, from FILE.DAT and gives
it the creation date of FILE.DAT rather than the transfer date.

3.2.2.4 /DD -- Default Date Switch - The Default Date switch (/DD)
restricts file searches to files created during a specific period of
time. Specify the /DD switch in the following format:
/DD:startdate:enddate
/DD
The Default Date switch
startdate

The beginning date of the specified time period in the form
dd-mm~-yy. May be unlimited by using the wildcard character (*).

PERIPHERAL INTERCHANGE PROGRAM (PIP)

enddate

The ending date of the specified time period in the form
dd-mm-yy. May be unlimited by using the wildcard character (*).

Specifying the wildcard for both startdate and enddate negates the /DD
switch:

/DD:* %

The date restrictions for the file searches are now disabled.

Examples
1. PIP>/DD:01-JUN-80:01-JUL-80/LI
Lists all files created from 1 June 1980 through 1 July 1980.
2. PIP>/DD:*:1-JUN-80/LI
Lists all files created on or before 1 June 1980.
3. PIP>/DD:1-JUN-80:* /LI

Lists all files created on or after 1 June 1980.

3.2.2.%5 /DE -- Delete Switch - The Delete switch (/DE) deletes files
from a UFD. Optionally, you can specify that the deleted files be
listed on your terminal. Specify the /DE switch in the following
format:

infilel(,infile2...,infilen] /DE[/LD]
infile

The input file specification.
/DE

The Delete switch.
/LD

The List Deleted files subswitch.

You must specify a version number or a wildcard in its place when
using the Delete switch.

Use a version number of ;-1 to specify the oldest version of a file.
Use a version number of ;0 or ; to specify the most recent version.
Examples
1. PIP>TEST.DAT;-1/DE
Deletes the oldest version of file TEST.DAT.
2. PIP>TEST1.DAT;0,TEST2.DAT;/DE

Deletes the latest version of files TEST1.DAT and TEST2.DAT.

PERIPHERAL INTERCHANGE PROGRAM (PIP)
Wildcards in the file name or file type fields are 1illegal when a
version of ;-1, ;0, or ; 1is specified.

You must issue the file specification because an unspecified file
name, file type, and version does not default to *.*;*,

The input file specification can take all the usual forms, including
wildcards (even in [ufd]). The only special requirement is that the
version field must always be specified.

Examples

l. PIP>TEST.DAT;5/DE

Deletes version 5 of file TEST.DAT from the current default
directory on the default device.

2. PIP>TEST.DAT;1,;2/DE

Deletes versions 1 and 2 of file TEST.DAT from the current
default directory on the default device.

3. PIP>* ,0BJ;*,*,TMP; */DE/LD
Deletes all versions of all files of the file type .OBJ and
.TMP from the current default directory on the default
device. Lists all deleted files of both file types.

4. PIP>*,0BJ;*/LD,*.TMP; */DE
Deletes all versions of all files of the file type .OBJ and

+.TMP from the current default directory on the default
device. Lists all deleted files of both file types.

3.2.2.6 /DF -- Default Switch - The Default switch (/DF) changes the
default device and/or UFD for the current PIP task.

The usual default device of PIP is the user's system device (SYO0:).
The usual default UFD is the UIC under which PIP is currently running.
The /DF switch alters only the default UFD. It does not affect the
UIC wunder which PIP is running, nor <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>