Validated Retrieval
in Case-Based Reasoning

Evangelos Simoudis James Miller
Digital Equipment Corporation

Cambridge Research Lab

CRL 90/2 December 12, 1990

Abstract

We combine simple retrieval with domain-specific validation of retrieved
cases to produce a useful practical tool for case-based reasoning. Based on
200 real-world cases, we retrieve between three and six cases over a wide range
of new problems. This represents a selectivity ranging from 1.5% to 3%, com-
pared to an average selectivity of only 11% from simple retrieval alone.

(©Digital Equipment Corporation 1990. All rights reserved.

1 Introduction

We have combined simple retrieval (based on the similarity of surface features)
with domain-specific validation of retrieved cases to produce a useful practical
tool for case-based reasoning. Starting with a case base of 200 real-world cases,
we have narrowed our consideration to between three and six cases over a wide
range of new problems. This represents a selectivity ranging from 1.5% to 3%,
compared to an average selectivity of only 11% from this same case base using
retrieval without validation. We are applying the same technology to a larger
case base in a different domain, and have deployed a related tool with a much
larger case base for actual use in the field.

Our work begins with a real-world problem: a computer manufacturer’s
diagnosis of system software failures. In this domain, diagnostic knowledge
exists in several forms: manuals, courses, production rule systems, and knowl-
edge bases. But the predominant starting point in current use is a set of data
bases created by recording successfully diagnosed error conditions. In order to
diagnose a new failure, non-expert specialists retrieve from a data base previ-
ously solved cases that appear superficially similar to the new problem. They
then attempt to verify the similarity by performing tests on the new prob-
lem and comparing the results with those of each retrieved case. When they
become convinced that a previous case is substantially the same as the new
problem, they examine the resolution of the old case and report it (possibly
amended or edited to more closely fit the new problem) to the customer. Only
in rare cases are experts requested to examine problems — most are resolved
from the existing data base — and the solutions are then added to the data
base.

This existing human system is a conscious use of case-based reasoning
(CBR) techniques; we have improved the system by adding to it an automated
tool using results from AI case-based reasoning systems. In order to produce
a tool of practical value we were forced to examine more closely the task of
retrieval in case-based reasoning. Based on our experience we propose an ex-
tension to current systems, validated retrieval, that dramatically reduces the
number of cases presented to the reasoning component (human or automated)
of a case-based system. Validated retrieval relies on domain-specific knowl-
edge about tests used to compare cases retrieved from the case base with
newly presented problem cases. Knowledge about the relationships among the
various tests is captured in a validation model which we implement as a se-

2 2 RETRIEVAL IN CBR

mantic network[8]. In order to build our validation model we are faced with
a classic knowledge acquisition task. By perusing existing data bases used by
specialists we are able to acquire this knowledge with a reasonable amount of
effort — and with only a small investment of specialists’ time.

2 Retrieval in CBR

CBR systems first retrieve a set of cases from a case base and then reason
from them to find a solution to a newly posed problem. Existing systems ([1],
(2], [3], [4], [9] and [10]) make two assumptions about the initial retrieval of
cases from the case base:

1. Very few cases will be retrieved from the case library.

2. The retrieved cases are relevant to the problem being solved.

In many practical applications, retrieval alone is sufficient to solve the dif-
ficult part of a task. For example, in our domain of diagnosis of computer
software failures, specialists can easily respond to customer problems if they
can quickly locate a few similar cases from their collective past experience. For
this reason, we have concentrated on the retrieval aspect of case-based reason-
ing. In MBRTALK[10], also, the essential task is retrieval; the “reasoning”
component consists of merely passing the retrieved information directly to an
output unit.

2.1 Related Work

Closest to our own work is the work of Koton on CASEY[5], a CBR system
which has been applied in the domain of medical diagnosis. CASEY has a
justification component whose goal is to determine whether the causal expla-
nation of a retrieved case applies to a new problem. This frequently allows
CASEY to avoid invoking its causal model when creating an explanation for
a new case. CASEY’s justification phase is similar to our validation phase.
But there is an important difference between these two systems arising from
different assumptions about tests. CASEY relies on precisely two tests (EKG
and X-rays), both of which are inexpensive and non-invasive. Both of these
tests are performed prior to the retrieval phase and the results are used to
provide surface features for the retrieval algorithm. By contrast, there are

2.2 Two Phases: Retrieval and Validation 3

literally hundreds of tests to be performed in our domains and it is far too
expensive to perform all of them in advance of initial case retrieval. As a
result, our systems devote attention to minimizing the number of tests that
are performed. We not only perform tests incrementally and cache the results,
but also employ knowledge about the tests themselves to reduce the number
of tests performed.

The CBR system CHEF[2], whose domain is Chinese cooking, also has a
justification component. In order to justify each retrieved case, CHEF uses
backward chaining rules. While our validation model is not appropriate to
this domain, we have examined and rejected the use of rules for our valida-
tion models. This decision is based on the difficulty of acquiring the expert
knowledge needed to create large rule sets, especially in comparison to the
simplicity of constructing our validation models. These models are captured
by a semantic network that represents groups of tests and information about
the relationships between the groups. Furthermore, as with CASEY, CHEF does
not use the results of comparisons with earlier cases to prune its search for
relevant cases.

The SWALE[6] system concentrates primarily on modifying the explanation
(contained in an explanation packet or XP) of a retrieved case to match a new
problem. Nonetheless, it has a subcomponent, XP ACCEPTER, that justifies
the application of a retrieved XP to a current situation. The ACCEPTER
verifies an XP by determining if it can believe the applicability checks that
are packaged with each XP. Each such test is similar to the tests associated
with our validation model. Because of the small number of cases (eight, by
our count) XP ACCEPTER never addressed the issues of scale which are our
major concern. Thus, SWALE never developed a justification model to relate
the various applicability checks to one another.

2.2 Two Phases: Retrieval and Validation

Our goal is to take a sizable pre-existing case base along with a new problem
and produce a small number of relevant cases. Like our human specialists, our
systems perform diagnosis in two phases:

Retrieval: it poses a query to the case base using a subset of the features
that describe the new problem.

4 3 THE VALIDATION MODEL

Validation: it follows the validation procedure from each retrieved case to
determine if it applies to the problem at hand.

The goal of the retrieval phase is to extract from the case base those cases
that appear to be relevant to the new case. Since the case base is large, and we
have been interested primarily in sequential implementations, it is important
that the case base be organized in a way that permits efficient search based on
surface similarities. For this reason, we organize the cases into a generalization
hierarchy (using UNIMEM[7]). The retrieval phase consists of traversing the
generalization hierarchy to find a close match to the new problem. The result
of this traversal is either an individual case (a leaf node) or a set of cases
(an internal node in the hierarchy, returned as all of the cases indexed under
that node). Unlike those systems that rely exclusively on UNIMEM for case
retrieval, we don’t fine tune UNIMEM to reduce the number of cases retrieved.

The validation phase then considers each of the retrieved cases and at-
tempts to show that the case is relevant to the problem at hand. Associated
with each case in the case base is a set of tests and their result values that must
be met for the stored case to be valid. We call the set of tests and values a
validation procedure, and each element of this set (i.e. a single test/value pair)
is called a validation step. The tests are applied to the actual problem and the
results are compared with the results in the case. Based on this comparison
both the current case and other retrieved cases can be removed from further
consideration. Only when all of the tests for a given case are successfully
matched against the current problem is the case reported as a candidate for
a reasoning component’s consideration. (In other domains, it may be possible
to assign weights to individual test results and use a threshold or averaging
scheme for deciding whether or not to reject the case.)

3 The Validation Model

The validation phase of our method is straightforward if the individual valida-
tion tests are simple and self-contained. Unfortunately, in our domains, and
probably in most real-world domains, this is not the case. In each domain we
have studied, we have found that the tests are interrelated in a way that is not
evident in advance, and we have been forced to face the knowledge acquisi-
tion task head-on. In Section 3.2 we describe a methodology for acquiring this
knowledge about tests. We have successfully used this methodology to develop

3.1 What is a validation model? 5

validation models: structures that capture much of an expert’s knowledge in a
way that makes it easy for the validation phase to process the tests it requires.

3.1 What is a validation model?

Rather than require a complete and accurate description of each test used by
the specialist, we capture the overall structure of the test space itself. The
resulting structure, our validation model, consists of related groups of tests and
information about the relationship between the groups. For example, if we
want to know why a house is hot (the problem), we may first want to see if the
air conditioner is working; but this requires us to find out if the house has an air
conditioner. In this example, the desired test (is the air conditioner working?)
is related to another test (is there an air conditioner?). This knowledge, as
well as knowledge about the important outcomes and implications of a test, is
captured by the validation model. We have chosen to represent this knowledge
in the form of a semantic network whose nodes correspond to sets of tests and
whose arcs indicate relationships between these sets.

3.2 Creating a Validation Model

We build our validation models by first examining ezisting data bases that are
used by human specialists. These data bases may be either formalized (as in
the case of our WPS-PLUS! system) or merely informal notes prepared by the
specialists for their own perusal (as in the case of our VAX/VMS system). In
our two case-based systems, the existing data contains a textual description
of the steps that the specialists used to verify a hypothetical explanation of
the problem. In constructing the validation model, it is our goal to capture
the interrelationships between the validation tests. As a result, we have built
validation models that correspond to a particular case base by:

1. Reading the validation procedures of each case and building a list of
all the validation steps used in the entire data base. In the process of
reading the data base and preparing this list, the implementor develops
a sense of the underlying (but unstated) relationships between tests that
are mentioned in the data base.

!DEC, VAX, VMS and WPS-PLUS are registered trademarks of Digital Equipment
Corporation.

4

4 AN EXTENDED EXAMPLE

Examining the resulting list, looking for groups of tests that appear to
form related sets. Organizing the list provides a basis for discussion with
domain experts, who help “debug” the proposed organization.

Refining the structure of the list through knowledge acquisition sessions
with domain experts. During these sessions, significant ranges of test
results are identified, as are inferences from these results that eliminate
the need to perform other tests. That is, a dependency graph based on
test results is developed.

Iterating the above two steps after consulting additional information
such as manuals and code documentation. The structure of the domain
becomes clearer at each iteration. (We have found that three iterations
are sufficient to produce a useful structuring.) The final validation model
consists primarily of entries corresponding directly to information that
appears in the original data base.

Integrating the test sets into the structure derived in the previous step.
This integration makes explicit the prerequisites of each test, as well as
providing alternative ways of obtaining information ordinarily provided
by a particular critical test in cases where that test cannot be performed.

An Extended Example

In order to understand the validated retrieval process, consider the following

example. Our domain is automobile diagnosis and repair, and we assume
an existing case base with its associated validation model. We are given the

following case:

NEW CASE
make: MAZDA model: 626 model year: 1985
engine type: 2.0L EFI miles: 50,000
problem: engine does not start.

The retrieval phase uses the make, model, problem, and approximate year

of manufacture to search through a case base of previous automobile problems.
Based on these surface features, we retrieve three cases to be validated before

presentation to a reasoning component:

CASE 1
make: MAZDA model: 626 model year: 1988
engine type: 2.0L EFI miles: 10,000

problem: engine does not start.

validation: The fuel injector was clogged. Fuel was not delivered to
the combustion chamber for the engine to ignite. For this
reason the engine could not start.

solution: cleaned the fuel injector.

CASE 2

make: MAZDA model: 626 model year: 1984

engine type: 2.0L miles: 60,000

problem: engine does not start.

validation: The car had a faulty gas pump. Fuel could not be de-
livered to the combustion chamber. For this reason the
engine could not start.

solution: Replaced the gas pump.

CASE 3

make: MAZDA model: 626 model year: 1987

engine type: 1.8L miles: 20,000

problem: engine does not start.

validation: A leak existed in the gas line. Fuel could not be delivered
through the fuel line. For this reason the engine could
not start.

solution: Fixed the leak.

The validation model contains (at least) the three tests that are referenced
by these cases: “check if a fuel injector is clogged”, “check if the gas pump is
working”, and “check if there is a leak in the fuel line”. The first of these is
actually composed of two simpler tests: a test for fuel present in the reservoir
of the injector and a test for fuel exiting the injector’s nozzle. If there is no fuel
in the injector then we can deduce that the injector is mot at fault. Rather,
the problem lies earlier in the fuel system — either in the pump or the fuel
line.

The system first attempts to validate Case 1 by repeating the validation
steps from that case. That is, we wish to test if the fuel injector is clogged.
In the process of performing this two-step test we actually acquire knowledge
that is relevant to Cases 2 and 3: if the fuel reservoir is not empty we can
eliminate both cases; if it 4s empty, we can eliminate Case 1. This relationship

8 5 RECENT RESULTS

is encoded in the semantic network that represents our validation model and
is used in the validation phase.

In the best case, this validation model allows us to reduce the work required
to validate cases from four tests to two tests and simultaneously reduces the
number of cases to be considered by the reasoner from three to one (selectivity
of 33.3%). The first test is for an empty fuel reservoir; if the reservoir is full
then Cases 2 and 3 are eliminated. We then test the nozzle for fuel exiting. If
no fuel leaves the nozzle, then Case 1 is presented to the reasoner; but if fuel
1s leaving the nozzle we, unfortunately, eliminate Case 1 as well and leave the
reasoning component to its own resources. The worst case requires all four
tests and provides either zero or one case to the reasoner.

5 Recent Results

5.1 An Operating System: VMS

The first system we developed is used for the diagnosis of device driver induced
crashes of Digital’s VMS operating system. The knowledge about surface fea-
tures was obtained primarily from DEC internal publications and was com-
plemented by an expert from the VMS support team during three knowledge
acquisition sessions. It took a total of 84 hours to acquire the domain spe-
cific knowledge about surface features. Based on this information, the domain
knowledge used by UNIMEM in order to organize the cases into a generalization
hierarchy was implemented in five days.

It took an additional four days of reading validation procedures in the data
base to develop a validation model for device drivers. In addition, four more
knowledge acquisition sessions, lasting 40 hours, were needed to refine and
improve the validation model. Encoding the actual validation model took
about 80 additional days. The total number of days spent on knowledge
acquisition and development is shown below:

Activity Person Days
Knowledge acquisition 20
Development 85

Since this was our first attempt to build a case base and validation model,
these numbers are much larger than we expect for subsequent systems. Our

5.2 A Word Processing System: WPS-PLUS 9

work to date on the system described in Section 5.2 appears to confirm this
expectation.

The system was evaluated using a case base of 200 cases that were obtained
from notes written by specialists. The surface feature retrieval phase of the
system was evaluated by presenting each of the 200 cases to the retriever (as
new problems) and preparing a histogram of the number of cases retrieved.
UNIMEM provides a mechanism, known as retrieval weights, for tuning its re-
trieval capabilities. After some experimentation, we discovered that the use of
larger retrieval weights (i.e. more stringent matching criteria) caused the re-
triever to miss many relevant cases and, in many occasions, to fail to retrieve
any cases at all. With less stringent criteria this problem was rectified. How-
ever, many of the retrieved cases were not relevant to the problem. With the
optimal weighting, we were able to retrieve on average 22 cases per retrieval
(11%). The validation phase, however, was able to reduce this number of cases
to an average of 4.5 cases out of 200 (2.25%).

In addition, we presented three new cases to the system. Based on surface
features alone, we retrieved 20, 25, and 16 cases (10, 12.5, and 8% selectivity).
The validation phase reduced this to 3, 5 and 3 cases, respectively (1.5, 2.5,
and 1.5% selectivity). Our experts confirm that these validated cases are the
only ones relevant to the problems presented.

5.2 A Word Processing System: WPS-PLUS

The second system performs diagnosis of customer problems with the word
processing component of an office automation product. During 15 hours of
knowledge acquisition sessions, the knowledge about surface features was ob-
tained from a support engineer for the product. It then took an additional
five days to encode the domain knowledge for use by UNIMEM.

The validation model was obtained from the validation procedures of the
cases in the data base, an internal publication, and 10 hours of knowledge
acquisition with the same engineer. While the work is not yet complete (only
50 out of 340 cases have been encoded), it has taken only 10 days to implement
the validation model.

This system is still under development. However, the time we spent on
knowledge acquisition and development is shown below:

10 6 SCOPE OF WORK

Activity Person Days
Knowledge acquisition 5
Development 10

This system was evaluated using a case base of 340 cases. Repeating the
same experiment performed with the VMS case base led to an average of 26
cases per retrieval, or 7.6% selectivity. The validation phase reduced this to
two cases, or 0.58% selectivity. Since the validation model for this case base
is not yet fully encoded, we have not presented new problems to the system.

6 Scope of Work

Our validated retrieval method can be applied in many types of tasks. The
basic requirements are: an existing data base of previous practical experi-
ence; a set of quick tests that serve to reduce the search space at low cost; a
set of more expensive tests that can further reduce the search space; and an
understanding of the relationships between the expensive tests.

We have identified four areas of potential interest, but we have limited our
implementation work to the first of these:

e Diagnostic tasks. As shown in the example, we use the symptoms of
a problem as the surface features for the retrieval phase. The validation
procedure describes which tests to perform in order to determine if the
case is relevant to the new problem.

e Design tasks. The surface features are specifications that a design must
satisfy. The validation procedures verify that a proposed design meets
the specification.

e Sales tasks. The technique can be used to help identify sales prospects
for a new product. The surface features are the characteristics of a
customer such as: size of business, type of business, location of business.
Each validation procedure describes the customer’s requirements that
were satisfied in a previous sale. The validation model includes tests
that determine whether or not a customer needs a particular type of
product.

11

e Management tasks. These tasks include accounting, credit analysis,
investment decisions, and insurance underwriting. In each of these ar-
eas, specialists can identify easily recognized features in their problem
domain (type of company, size, etc.) that allow rapid retrieval of similar
situations encountered in the past. They then have more detailed tests
that can be applied (debt/equity ratio, payment history, type of client,
balance sheets, etc.).

7 Conclusions

Our work has concentrated exclusively on the issue of case retrieval. A care-
ful study of two applications in which people consciously use case retrieval
has shown that retrieval based solely on surface features is not sufficiently
discriminating for use with large case bases. It results in large numbers of
cases returned to the reasoner, each of which must then be further examined
at great expense. Adding a validation phase that uses knowledge of domain-
specific tests to prune the retrieved cases dramatically reduces the number of
cases that must be examined by the reasoner.

We have found that acquiring knowledge about domain-specific tests is
aided by an initial perusal of the existing data base used by specialists. With
a reasonable amount of effort, and with only a small investment of special-
ists’ time, this information can be captured in a validation model represented
as a semantic network. We have used this methodology to produce two sys-
tems. One of these systems has been successful in practice, and the other
(incomplete) system is likely to be equally useful.

While the burden of knowledge acquisition in our methodology is small
compared with other methods, it is not negligible. Automating this work by
combining a natural language system to analyze existing data bases with Al-
assisted statistical comparison of surface features provides a fertile area for
further investigation. Furthermore, we suspect that a careful study of such
a system in practice will reveal validation tests that are sufficiently common
that it may be reasonable to promote them to surface features, leading to a
system with better retrieval capabilities. This analysis, which must first be
performed manually to validate our assumption, is itself an excellent area for
the application AT methods.

Acknowledgements

12 7 CONCLUSIONS

The authors wish to thank Prof. David Waltz for his help with this research. In
addition, we have received helpful comments from Mark Adler, Andrew Black,
Dave Hanssen, Rose Horner, and Candy Sidner. We are also indebted to the
engineers who have given their time and knowledge to help us understand
the two domains we have studied: the Digital Support Engineers at Colorado
Springs, Colorado and Spitbrook, New Hampshire.

REFERENCES 13

References

1]

[10]

Ray Bareiss, Karl Branting, and Bruce Porter. The role of explanation in
exemplar-based classification and learning. In Proceedings of Case-Based

Reasoning Workshop, 1988.

Kristian Hammond. Case-Based Planning: An Integrated Theory of Plan-
ning, Learning, and Memory. PhD thesis, Yale University, 1986.

Janet L. Kolodner. Reconstructive memory: A computer model. Cognitive

Science Journal, 7:281-328, 1983.

Janet L. Kolodner, Jr. Robert L. Simpson, and Katia Sycara-Cyranski. A
process model of case-based reasoning in problem solving. In Proceedings
of the International Joint Conference on Artificial Intelligence, 1985.

Phyllis Koton. Using ezperience in learning and problem solving. PhD
thesis, Massachussetts Institute of Technology, 1988.

David Leake. Evaluating explanations. In Proceedings of the Seventh
National Conference on Artificial Intelligence, 1988.

Michael Lebowitz. Experiments with incremental concept formation:

Unimem. Machine Learning, 2:103-138, 1987.

M.R. Quillian. Semantic memory. In Marvin Minsky, editor, Semantic
Information Processing, pages 227-270. MIT Press, 1968.

Edwina Rissland and Kenneth Ashley. Hypotheticals as heuristic device.
In Proceedings of the Fifth National Conference on Artificial Intelligence,
1986.

Craig Stanfill and David Waltz. Toward memory-based reasoning. CACM,
29:1213-1228, 1986.

14 A CREATING THE VMS VALIDATION MODEL

A Creating the VMS Validation Model

This appendix describes, in detail, the method used to construct the valida-
tion model for the VAX/VMS device driver diagnosis system. Each subsection
corresponds to one of the steps described in Section 3.2. For expository pur-
poses, of course, we have removed a number of intermediate steps and show
only selected results.

A.1 Reading the Initial Data Base

We begin with the data base in current use by Customer Support Specialists.
This data base (actually, an informal textual “notes file”) consists of about
150 entries. A typical entry is shown in Figure 1. At this stage we not only
read these entries, but we tidy them up a bit. For example, some of these
entries were incomplete and were manually expanded into multiple cases for
our case base, resulting in 200 entries to be studied.

The primary purpose of this initial reading is to create a list of all of the
tests that are explicitly mentioned by the specialists in their explanations of
the resolved cases. From the case presented in Figure 1 we extract three tests:

1. Retrieve Process PCB
2. Check JIB Address
3. Check Count

For this particular data base, we derived an initial set of about 100 tests.

A.2 Grouping the Tests

Reading through this data base led to a natural decomposition of the tests
by grouping them according to data structures mentioned in the cases. Thus,
we grouped tests related to the JIB (job information block) together, joining
the tests “Check JIB Address” and “Check Count” from the case shown in
Figure 1. In this particular data base, we grouped the tests into roughly seven
sets of tests.

By contrast, in our work with the WPS-PLUS data base, the natural group-
ing was along functional lines. While we have no firm evidence, it seems likely
that such “natural” groupings will occur in most sizable data bases.

A.2 Grouping the Tests

15

Version of system:
Reason for bugcheck exception:
Process currently executing:

VAX/VMS V4.2
ACCESS VIOLATION

SP=> 8018E7TAC 00000004

8018E7B0 7FFE7DE4

8018E7B4 FFFFFFFD

8018E7B8 0000026A

8018E7BC 00000000 !THIS SHOULD HAVE BEEN ON
PREVIOUS LINE
'AND VISA VERSA

8018E7CO 00000001

8018E7C4 00000005 !BEGINNING OF SIGNAL ARRAY

8018E7C8 0000000C 'ACCES VIOLATION

8018E7CC 00000004 !'WRITE ACCESS PROTECTION

8018E7DO 00000020 !'VA

8018E7D4 80004A4E TIOC$BUFPOST+017

8018E7D8 04040000

8018E7DC 80004A6D IOC$BUFPOST+036

8018E7E0 800CD108 DZDRIVER+118

the reason for this bugcheck is because the pid field of the IRP has been zeroed.
IN post processing the system tries to give the buffered byte count back to
the process that did the io. HE does this by using the PID field of the irp to
index into the pid table then gets the PCB(null process in this case) and gets
the JIB address. THE JIB address for the null process is 0. THE system then
goes to the JIBSL_BYTCNT offset (20) from the base of the JIB (0 in this
case) and tries to add back in the byte count. IN this case we get an access
violation.

have response from VMS developement that there is/was a bug fixed in 4.2
it has been mentioned to try and lower the baud rate on terminals as a
workaround.

Figure 1: An Initial Data Base Entry

16 A CREATING THE VMS VALIDATION MODEL

A.3 Refining the Test-Group Structure

Armed with this group of tests, we returned to the specialists who had prepared
the data base. With their help, we learned the meaning of each of the tests we
had identified. The specialists pointed out that our natural groupings didn’t
correspond to groupings that they would have made — primarily because
they had a (non-articulated) set of abstractions that our groupings did not
make clear. By reviewing our groupings they were forced to verbalize the
abstractions that they took for granted, and we were able to sort our tests into
15 groupings that reflected the specialists’ notion of the correct abstractions
for their domain.

In the case of the VAX/VMS data base, the specialists typically subdivided
our groupings into three distinct categories: those that test for the existence of
the expected location in memory, those that tested the internal consistency of
the data structure, and those that probe the data structures for specific value.
In the case of the tests extracted from Figure 1, “Check JIB Address” is in the
first category, the specialists pointed out for the need for an additional test we
had not identified that performed the consistency test, and “Check Count” is
in the third category.

Thus, our initial model of seven structure-based test groups was refined,
through interaction with specialists, into 15 groups with a layered structure.
Testing always proceeds from one layer to another, starting with tests for exis-
tence of the data structure, proceeding to tests on the consistency of the data
structure, and finally on to probing specific values within the data structure.

A.4 Acquiring Additional Knowledge

This step is primarily an iteration of the earlier one, but two unusual items
arose during this phase for the VAX/VMS system. The first was the realiza-
tion that certain terms used in the descriptions were not reflected in any of
the tests our groupings we had already derived. In this particular case, there
was continual use of phrases like “during AST delivery,” and “during post-
processing.” Examination of additional material (material from an internal
DEC course suggested by the specialists as a good starting point) revealed
that these reflected the processing stages of the system we were diagnosing.
Our initial breakdown had been along data structure boundaries, but an or-
thogonal, equally important structuring is possible along temporal lines based
on these stages. It is these two alternative decompositions that we referred to

A.5 Integrating Tests into the Model 17

in Section 3.2 as the “structure of the domain.”

Further iteration with the course materials and the specialists reveals a
much richer structure, consisting of multiple levels of abstraction. With the
temporal decomposition taken as primary, Figures 2 and 3 show two different
levels of abstraction. Figure 2 is taken at a very abstract level, showing the four
major processing stages and the data structures used at each stage. Figure 3
is a “close-up” of the single processing stage known as “AST delivery.”

A.5 Integrating Tests into the Model

Armed with a much-improved model of the domain, we built a semantic net-
work capturing as much of this model as bears directly on the ability to select
and apply the tests and test groups. In the VAX/VMS system, our validation
model reflects both decompositions along data structures and along process-
ing stages. The semantic network has 15 nodes, for each test group, 77 nodes
that represent knowledge about the processing stages of device drivers, and 22
nodes that represent knowledge about data structures.

18

A CREATING THE VMS VALIDATION MODEL

'

preprocessing

LEGEND:

device [*
driver
A
postprocessing
AST Delivery
processing

data structure test

test groups

Figure 2: Device Driver Validation Model: Abstract View

K.IQAHQ(I LLSV ‘[PPOIN TIOF’.],’BPH'BA JOATI(] 921A9(] ¢ Q.IHBRE[

Break Interna
PID

retrieve
process PCB

PCB?

null processj

> AST Delivery
REMQAST
Enqueue ACB
in AST queue
get ASTQBL

Check ACB
type

\ \
(PCB$PID) PCB Vector
Table

\
(PCBSASTQBL)

AA

Get JB
address

JSB to AST

routing

/

Return
byte count

A

Check JIB Vadid
address JB?

Check
byte count

\
(firsacB) ((AcBsASTQBL) ((JB)|

/

(JB$BYTCNT)

[oPOJAT 2y} ojul s3sqT, Suryerdojuy ¢y

61

