
PDP-lO

System Reference Manual

ORDER NO. DEC-IO-HGAA-D FROM PROGRAM LIBRARY, MAYNARD, MASSACHUSETTS PRICE $5.00

DIRECT COhlMENTS CONCERNING THIS MANUAL TO SOFTWARE QUALITY CONTROL, MAYNARD, MASSACHUSETTS

DIGITAL EQUIPMENT CORPORATION • MAYNARD, MASSACHUSETTS

April 1968
Second printing, May 1968

Changes are indicated by a
triangle (&) in the outside margin.

Copyright 1968 by

Digital Equipment Corporation

Written and designed for Digital Equipment Corporation by William English, Wayland, Massachusetts

Manufactured in the United States of America

1

Introduction

The PDP-lOis a general purpose, stored program computer that includes a
central processor, a memory, and a variety of peripheral equipment such as
paper tape reader and punch, teletype, card reader, line printer, DECtape,
magnetic tape, disk file and display. The central processor is the control unit
for the entire system: it governs all peripheral in-out equipment, sequences
the program, and performs all arithmetic, logical and data handling opera­
tions. The processor is connected to one or more memory units by a mem­
ory bus and to the peripheral equipment by an in-out bus. The fastest
devices, such as the disc file, although controlled by the processor over the
in-ou t bus, have direct access to memory over a second memory bus.

The processor handles words of thirty-six bits, which are stored in a mem­
ory with a maximum capacity of 262,144 words. Storage in memory is
usually in the form of 37-bit words, the extra bit producing odd parity for
the word. The bits of a word are numbered 0-35, left to right, as are the
bits in the registers that handle the words. The processor can also handle
half words, wherein the left half comprises bits 0-17, the right half, bits
18-35. Optional hardware is available for byte manipulation - a byte is any
contiguous set of bits within a word. Registers that hold addresses have
eighteen bits, numbered 18-35 according to the position of the address in a
word. Words are used either as computer instructions in the program, as
addresses, or as operands (data for the program).

Of the internal registers shown in the illustration on the next page, only
PC, the 18 bit program counter, is directly relevant to the programmer. The
processor performs a program by executing instructions retrieved from the
locations addressed by PC. At the beginning of each instruction PC is incre­
mented by one so that it normally contains an address one greater than the
location of the current instruction. Sequential program flow is altered by
changing the contents of PC, either by incrementing it an extra time in a
skip instruction or by replacing its contents with the value specified by a
jump instruction. Also of importance to the programmer is the 36-bit data
switch register DS on the processor console: through this register the pro­
gram can read data supplied by the operator. The processor also contains
flags that detect various types of errors, including several types of overflow
in arithmetic and pushdown operations, and provide other information of
interest to the programmer.

The processor has other registers but the programmer is not usually con­
cerned with them except when manually stepping through a program to
debug it. By means of the address switch register AS, the operator can

1-1

1-2 INTRODUCTION

CORE MEMORY
CORE MEMORY CO RE MEMORY

8192 OR 16384
37-BIT WORDS

I_ •
. ,Ir , ---

MEMORY BUS CENTRAL
~ -

PROCESSOR

FAST
~ MEMORY ~

16 X 36

,. • 10

I MA ..- IR~

18 18
4. 4. ARITH METIC

LOGI C - MI
36

,~ (AR I BR I MO)

AS PC - - DS.. -18 18 36

IN - OUT BUS t

-

II'

• , ,

I PRIO RITY IPAPER TAPE IPAPER TAPE r TELETYPE 11NTERRU PT READER PUNCH

PDP-10 SIMPLIFIED

examine the contents of, or deposit information into, any memory location;
stop or interrupt the program whenever a particular location is referenced;
and through AS the operator can supply a starting address for the program.
Through the memory indicators MI the program can display data for the
operator. The instruction register IR contains the left half of the current
instruction word, ie all but the address part. The memory address register
MA supplies the address for every memory access. The heart of the proc­
essor is the arithmetic logic, principally the 36-bit arithmetic register AR.

This register takes part in all arithmetic, logical and data handling operations;
all data transfers to and from memory, peripheral equipment and console are
made via AR. Associated with AR are an extremely fast full adder, a buffer
register BR that holds a second operand in many arithmetic and logical
instructions, a multiplier-quotient register MQ that serves primarily as an
extension of AR for handling double length operands, and smaller registers
that handle floating point exponents and control shift operations and byte
manipulation.

From the point of view of the programmer however the arithmetic logic
can be regarded as a black box. It performs almost all of the operations
necessary for the execution of a program, but it never retains any informa­
tion from one instruction to the next. Computations performed in the black
box either affect control elements such as PC and the flags, or produce
results that are always sent to memory and must be retrieved by the proc­
essor if they are to be used as operands in other instructions.

An instruction word has only one I8-bit address field for addressing any
location throughout all of memory. But most instructions have two 4-bit
fields for addressing the first sixteen memory locations. Any instruction
that requires a second operand has an accumulator address field, which can
address one of these sixteen locations as an accumulator; in other words as
though it were a result held over in the processor from some previous
instruction (the programmer usually has a choice of whether the result of the
instruction will go to the location addressed as an accumulator or to that
addressed by the I8-bit address field, or to both). Every instruction has a
4-bit index register address field, which can address fifteen of these locations
for use as index registers in modifying the 18-bit memory address (a zero
index register address specifies no indexing). Although all computations on
both operands and addresses are performed in the single arithmetic register
AR, the computer actually has sixteen accumulators, fifteen of which can
double as index registers. The factor that determines whether one of the
first sixteen locations in memory is an accumulator or an index register is
not the information it contains nor how its contents are used, but rather
how the location is addressed. There need be no difference physically be­
tween these locations and other memory locations, but an optional, fast flip­
flop memory contained in the processor can be substituted for the bottom
sixteen locations in core. This allows much quicker access to these locations
whether they are addressed as accumulators, index registers or ordinary
memory locations. They can even be addressed from the program counter,
gaining faster execution for a short but oft-repeated subroutine.

Besides the registers that enter into the regular execution of the program
and its instructions, the processor has a priority interrupt system and can
contain optional equipment to facilitate time sharing. The interrupt system
facilitates processor control of the peripheral equipment by means of a num­
ber of priority-ordered channels over which external signals may interrupt
the normal program flow. The processor acknowledges an interrupt request
by executing the instruction contained in a particular location assigned to
the channel. Assignment of channels to devices is entirely under program
control. One of the devices to which the program can assign a channel is the
processor itself, allowing internal conditions such as overflow or a parity

1-3

1-4 INTRODUCTION § 1.1

error to signal the program.
The time share hardware provides memory protection and relocation.

Without time sharing, all instructions and all memory are available to the
program. Otherwise a number of programs share processor time, with each
program relocated and restricted to a specific area in core, and certain in­
structions are usually illegal. An attempt by any user to execute an illegal
instruction or address a memory location outside of his area results in a
transfer of control back to the time-sharing monitor.

1.1 NUMBER SYSTEM

The program can interpret a data word as a 36-digit, unsigned binary num­
ber, or the left and right halves of a word can be taken as separate 18-bit
numbers. The PDP-1 a repertoire includes instructions that effectively add
or subtract one from both halves of a word, so the right half can be used for
address modification when the word is addressed as an index register, while
the left half is used to keep a control count.

The standard arithmetic instructions in the PDP-lOuse twos comple­
ment, fixed point conventions to do binary arithmetic. In a word used as a
number, bit a (the leftmost bit) represents the sign, a for positive, 1 for
negative. In a positive number the remaining 35 bits are the magnitude in
ordinary binary notation. The negative of a number is obtained by taking its
twos complement. If x is an n-digit binary number, its twos complement is
2n - x, and its ones complement is (2 n - 1) - x, or equivalently (2 n - x) - 1.
Subtracting a number from 2n - 1 (ie, from all Is) is equivalent to perform­
ing the logical complement, ie changing all as to 1s and all 1s to as. There­
fore, to form the twos complement one takes the logical complement
(usually referred to merely as the complement) of the entire word including
the sign, and adds 1 to the result. In a negative number the sign bit is 1, and
the remaining bits are the twos complement of the magnitude.

+153 10 = +231 8 = 1000 000 000 000 000 000 000 000 000 010 all 0011
o 35

-153 10 = - 231 8 = 1111 111 III 111 111 111 111 111 111 101 100 1111
o 35

Zero is represented by a word containing all as. Complementing this num­
ber produces all 1s, and adding 1 to that produces all as again. Hence there
is only one zero representation and its sign is positive. Since the numbers are
symmetrical in magnitude about a single zero representation, all even num­
bers both positive and negative end in 0, all odd numbers in 1 (a number all
Is represents -1). But since there are the same number of positive and nega­
tive numbers and zero is positive, there is one more negative number than
there are nonzero positive numbers. This is the most negative number and it
cannot be produced by negating any positive number (its octal representa-

§ 1.1 NUMBER SYSTEM 1-5

tion is 400000 0000008 and its magnitude is one greater than the largest
positive number).

If ones complements were used for negatives one could read a negative
number by attaching significance to the as instead of the 1s. In twos com­
plement notation each negative number is one greater than the complement
of the positive number of the same magnitude, so one can read a negative
number by attaching significance to the rightmost 1 and attaching signifi­
cance to the as at the left of it (the negative number of largest magnitude has
a 1 in only the sign position). In a negative integer, 1s may be discarded at
the left, just as leading as may be dropped in a positive integer. In a negative
fraction, as may be discarded at the right. So long as only as are discarded,
the number remains in twos complement form because it still has a 1 that
possesses significance; but if a portion including the rightmost 1 is discarded,
the remaining part of the fraction is now a ones complement.

The computer does not keep track of a binary point - the programmer
must adopt a point convention and shift the magnitude of the result to con­
form to the convention used. Two common conventions are to regard a
number as an integer (binary point at the right) or as a proper fraction
(binary point at the left); in these two cases the range of numbers repre­
sented by a single word is -235 to 235 - 1 or -1 to 1 - 2-35 . Since multiplica­
tion and division make use of double length numbers, there are special
instructions for performing these operations with integral operands.

Floating Point Arithmetic. Optional PDP-l a hardware is available for
processing floating point numbers. A floating point instruction interprets
bit 0 of a word as the sign, but interprets the rest of the word as an 8-bit
exponent and a 27-bit fraction. For a positive number the sign is 0, as
before. But the contents of bits 9-35 are now interpreted only as a binary
fraction, and the contents of bits 1-8 are interpreted as an integral exponent
in excess 128 (2008) code. Exponents from -128 to +127 are therefore
represented by the binary equivalents of a to 255 (0-3778). Floating point
zero and negatives are represented in exactly the same way as in fixed point:
zero by a word containing all as, a negative by the twos complement. A
negative number has a 1 for its sign and the twos complement of the frac­
tion, but since every fraction must ordinarily contain a 1 unless the entire
number is zero (see below), it has the ones complement of the exponent
code in bits 1-8. Since the exponent is in excess 128 code, an actual
exponent x is represented in a positive number by x + 128, in a negative
number by 127 -x. The programmer, however, need not be concerned with
these representations as the hardware compensates automatically. Eg, for

Multiplication produces a
double length product, and
the programmer must remem­
ber that discarding the low
order part of a double length
negative leaves the high order
part in correct twos comple­
ment form only if the low
order part is null.

+153 10 = +231 8

@l10 001 0001100 110 010 000 000 000 000 000 0001
o 1 8 9 35

-231 8

1]01 110 1111011 001 110 000 000 000 000 000 0001
o 1 8 9 35

1-6 INTRODUCTION § 1.2

the instruction that scales the exponent, the hardware interprets the integral
scale factor in standard twos complement form but produces the correct
ones complement result for the exponent.

Except in special cases the floating point instructions assume that all non­
zero operands are normalized, and they normalize a nonzero result. A
floating point number is considered normalized if the magnitude of the frac­
tion is greater than or equal to Y2 and less than 1. These numbers thus have a
fractional range in magnitude of Y2 to 1 - 2-27 and an exponent range of
-128 to +127. The hardware may not give the correct result if the program
supplies an operand that is not normalized or that has a zero fraction with a
nonzero exponent.

The precaution about truncation given for fixed point multiplication
applies to all floating point operations as they all produce extra length
results; but here the programmer may request rounding, which automatically
restores the high order part to twos complement form if it is negative. In
division the two words of the result are quotient and remainder, but in the
other operations they form a double length number which is stored in two
accumulators if the instruction is executed in "long" mode. This number
contains a 54-bit fraction, half of which is in bits 9-35 of each word. The
sign and exponent are in bits 0 and 1-8 respectively of the word containing
the more significant half, and the standard twos complement is used to form
the negative of the entire 63-bit string. In the remaining part of the less
significant word, bit 0 is 0, and bits 1-8 contain a number 27 less than the
exponent, but this is expressed in positive form even though bits 9-35 may
be part of a negative fraction. Eg the number 218 + 2-18 has this two-word
representation:

[2]100100111100000000000000000 000 000 0001
o 1 89 35

@I0l III 0001000000000 100 000 000 000 000 0001
o 1 8 9 35

whereas its negative is

[Dalla1 1001011 111 111 111 111 111 111 111 111\
o 1 8 9 35

@lo 1 111 0001111 111 111 100 000 000 000 000 000 I
o 1 8 9 35

1.2 INSTRUCTION FORMAT

In all but the input-output instructions, the nine high order bits (0-8) speci­
fy the operation, and bits 9-12 usually address an accumulator but are
sometimes used for special control purposes, such as addressing flags. The

§ 1.2 INSTRUCTION FORMAT 1-7

rest of the instruction word usually supplies information for calculating the
effective address, which is the actual address used to fetch the operand or
alter program flow. Bit 13 specifies the type of addressing, bits 14-17 spec­
ify an index register for use in address modification, and the remaining
eighteen bits (18-35) address a memory location. The instruction codes

INSTRUCTION CODE

3S

MEMORY ADDRESS

1718121314

ADDRESS TYPE

INDEX REGISTER
ADDRESS

89o

BASIC INSTRUCTION FORMAT

that are not assigned as specific instructions are executed by the processor
as so-called "unimplemented operations", as are the codes for floating.point
and byte manipulation in any PDP-l 0 that does not have the optional hard­
ware for these instructions. When the processor encounters one of these
unimplemented codes in a program, it stores bits 0-12 of the instruction
word and the calculated effective address in a particular memory location
and then executes the instruction contained in a second location.

An input-output instruction is designated by three 1s in bits 0-2. Bits
3-9 address the in-out device to be used in executing the instruction, and
bits 10-12 specify the operation. The rest of the word is the same as in
other instructions.

3S

MEMORY ADDRESS

17 18

ADDRESS TYPE

INDEX REGISTER
ADDRESS

9 10 12 13 14

DEVICE CODE

INSTRUCTION
CODE

23o

IN-OUT INSTRUCTION FORMAT

Effective Address Calculation. Bits 13-35 have the same format in every
instruction whether it addresses a memory location or not. Bit 13 is the

o X Y
1314 1718 3S

indirect bit, bits 14-17 are the index register address, and if the instruction
must reference memory, bits 18-35 are the memory address Y. The effec­
tive address E of the instruction depends on the values of I, X and Y. If X is
nonzero, the contents of index register X are added to Y to produce a modi­
fied address. If I is 0, addressing is direct, and the modified address is the
effective address used in the execution of the instruction; if I is 1, addressing
is indirect, and the processor retrieves another address word from the loca­
tion specified by the modified address already determined. This new word is
processed in exactly the same manner: X and Y determine the effective ad­
dress if I is 0, otherwise they are used for yet another level of address

1-8 INTRODUCTION § 1.3

retrieval. This process continues until some referenced location is found
with a a in bit 13; the 18-bit number calculated from the X and Y parts of
this location is the effective address E.

The calculation outlined above is carried out for every instruction even
if it need not address a memory location. If the indirect bit in the instruc­
tion word is a and no memory reference is necessary, then Y is not an ad­
dress. It may be a mask in some kind of test instruction, conditions to be
sent to an in-out device, or part of it may be the number of places to shift in
a shift or rotate instruction or the scale factor in a floating scale instruction.
Even when modified by an index register, bits 18-35 do not contain an ad­
dress when I is O. But when I is 1, the number determined from bits 14-35
is an indirect address no matter what type of information the instruction
requires, and the word retrieved in any step of the calculation contains an
indirect address so long as I remains 1. When a location is found in which I
is 0, bits 18-35 (perhaps modified by an index register) contain the desired
effective mask, effective conditions, effective shift number, or effective scale
factor. Many of the instructions that usually reference memory for an oper­
and even have an "immediate" mode in which the result of the effective
address calculation is itself used as a half word operand in~'~ead of a word
taken from the memory location it addresses.

The important thing for the programmer to remember is that the same
calculation is carried out for every instruction regardless of the type of infor­
mation that must be specified for its execution, or even if the result is
ignored. In the discussion of any instruction, E refers to the actual quantity
derived from I, X and Y and used in the execution of the instruction, be it
the entire half word as in the case of an address, immediate operand, mask or
conditions, or only part of it as in a shift number or scale factor.

1.3 MEMORY

All timing in the PDP-lOis asynchronous. The internal timing for each in­
out device and each memory is entirely independent of the central processor.
Because core memory readout is destructive, every word read must be writ­
ten back in unless new information is to take its place. The basic read-write
cycle time of the standard core memory is either 1.00 or 1.65 microseconds,
but the processor need never wait the entire cycle time. To read, it waits
only until the information is available and then continues its operations
while the memory performs the write portion of the cycle; to write, it waits
only until the data is accepted, and the memory then performs an entire
cycle to clear and write. To save time in an instruction that fetches an oper­
and and then writes new data into the same location, the memory executes a
read-pause-write cycle in which it performs only the read part initially and
then completes the cycle when the processor supplies the new data.

Access times for the accumulator-index register locations are decreased
considerably by substitution of a fast memory (contained in the processor)
for the first sixteen core locations. Readout is nondestructive, so the fast
memory has no basic cycle: the processor reads a word directly, but to write

§ 1.3 MEMORY 1-9

it must first clear the location and then load it. Access times in nanoseconds
(including 20 feet of cable delay) for the three memories are as follows.

MAIO or MAIOA Core Memory (1.00 I1s)

MB 10 Core Memory (1.65 I1S)

KM 10 Fast Memory (I8-bit address)

Read

550

600 (700)*

210

Write

200

200 (300)

210

*Numbers in parentheses are
the longer times reqUired in
a multiprocessor system.

NOTE: When a fast memory location is addressed as an accumulator or index
register, the access time is usually considerably shorter than that listed here.

From the simple addressing point of view, the entire memory is a set of
contiguous locations whose addresses range from zero to a maximum
dependent upon the capacity of the particular installation. In a system with
the greatest possible capacity, the largest address is octal 777777, decimal
262,143. (Addresses are always in octal notation unless otherwise specified.)
But the whole memory would usually be made up of a number of core mem­
ories each having a capacity of 8192 or 16,384 words. Hence a single 18-bit
address actually selects a particular memory and a specific location within it.
For an 8K memory the high order five address bits select the memory, the
remaining thirteen bits address a single location in it; selecting a 16K
memory takes four bits, leaving fourteen for the location. The times given
above assume the addressed memory is idle when access is requested. To
avoid waiting for a previously requested memory cycle to end, the program
can make consecutive requests to different memories by taking instructions
from one memory and data from another. The hardware also allows pairs
of memories to be interleaved in such a way that consecutive addresses
actually alternate between the two memories in the pair (thus increasing the
probability that consecutive references are to different memories). Appro­
priate switch settings at the memories interchange the least significant
address bits in the memory and location parts, so that in any two memories
numbered nand n + 1 where n is even, all even addresses are locations in the
first memory, all odd addresses are locations in the second. Hence memories
oand 1 can be interleaved as can 6 and 7, but not 3 and 4 or 5 and 7.

Memory Allocation. The use of certain memory locations is defined by
the hardware.

o
0-17

1-17

40-41

42-57

60-61

140-161

Holds a pointer word during a bootstrap readin

Can be addressed as accumulators

Can be addressed as index registers

Trap for unimplemented user operations (UUOs)

Priority interrupt locations

Trap for remaining unimplemented operations: these include
the unassigned instruction codes that are reserved for future
use, and also the byte manipulation and floating point instruc­
tions when the hardware for them is not installed

Allocated to second processor if connected (same use as 40-61
for first processor)

All information given in this
manual about memory loca­
tions 40-61 applies instead
to locations 140-161 for pro­
gramming a second central
processor connected to the
same memory.

The initial control word
address for the DF10 Data
Channel must be less than
1000.

1-10 INTRODUCTION

1.4 PROGRAMMING CONVENTIONS

§ 1.4

The assembler translates
every statement into a 36-bit
word, placing Os in all bits
whose values are unspecified.

The computer has five instruction classes: data transmission, logical, arith­
metic, program control and in-out. The instructions in the in-out class con­
trol the peripheral equipment, and also control the priority interrupt and
time sharing, control and read the processor flags, and communicate with the
console. The next chapter describes all instructions mentioned above,
presents a general description of input-output, and describes the effects of
the in-out instructions on the processor, priority interrupt and time share
hardware. Effects of in-out instructions on particular peripheral devices are
discussed with the devices.

The MACRO-l 0 assembly program recognizes a number of mnemonics and
other initial symbols that facilitate constructing complete instruction words
and organizing them into a program. In particular there are mnemonics for
the instruction codes (Appendix A), which are six bits in in-out instructions,
otherwise nine or thirteen bits. Eg the mnemonic

MOVNS

assembles as 213000 000000, and

MOVNS 2570

assembles as 213000 002570. This latter word, when executed as an instruc­
tion, produces the twos complement negative of the word in memory loca­
tion 2570.

NOTE

Throughout this manual. all numbers representing instruction words,
register contents, codes and addresses are always octal, and any num­
bers appearing in program examples are octal unless otherwise indi­
cated. On the other hand, the ordinary use of numbers in the text to
count steps in an operation or to specify word or byte lengths, bit
positions, exponents, etc employs standard decimal notation.

The initial symbol @ preceding a memory address places a 1 in bit 13 to
produce indirect addressing. The example given above uses direct addressing,
but

MOVNS @2570

assembles as 213020 002570, and produces indirect addressing. Placing the
number of an index register (1-17) in parentheses following the memory
address causes modification of the address by the contents of the specified
register. Hence

MOVNS @2570(12)

which assembles as 213032 002570, produces indexing using index register
12, and the processor then uses the modified address to continue the effec­
tive address calculation.

An accumulator address (0-17) precedes the memory address part (if any)

§ 1.4

and is terminated by a comma. Thus

MOVNS 4,@2570(l2)

PROGRAMMING CONVENTIONS 1-11

assembles as 213232 002570, which negates the word in location E and
stores the result in both E and in accumulator 4. The same procedure may
be used to place 1s in bits 9-12 when these are used for something other
than addressing an accumulator, but mnemonics are available for this pur­
pose.

The device code in an in-out instruction is given in the same manner as an
accumulator address (terminated by a comma and preceding the address
part), but the number given must correspond to the octal digits in the word
(000-774). Mnemonics are however available for all standard device codes.
To control the priority interrupt system whose code is 004, one may give

CONO 4,1302

which assembles as 700600 0001302, or equivalently

CONO PI,1302

The programming examples in this manual use the following addressing
conventions:
• A colon following a symbol indicates that it is a symbolic location name.

A: ADD 6,5704

indicates that the location that contains ADD 6,5704 may be addressed sym­
bolically as A.
• The period represents the current address, eg

ADD 5,.+2

is equivalent to

A: ADD 5,A+2

• Square brackets specify the contents of a location, leaving the address of
the location implicit but unspecified. Eg

ADD 12,[7256004]

and

ADD 12,A

A: 7256004

are equivalent.
Anything written at the right of a semicolon is commentary that explains

the program but is not part of it.

2

Central Processor

This chapter describes all PDP-IO instructions but does not discuss the
effects of those in-out instructions that address specific peripheral devices.
In the description of each instruction, the mnemonic and name are at the
top, the format is in a box below them. The mnemonic assembles to the
word in the box, where bits in those parts of the word represented by letters
assemble as Os. The letters indicate portions that must be added to the mne­
monic to produce a complete instruction word.

For many of the non-IO instructions, a description applies not to a unique
instruction with a single code in bits 0-8, but rather to an instruction set
defined as a basic instruction that can be executed in a number of modes.
These modes define properties subsidiary to the basic operation; eg in data
transmission the mode specifies which of the locations addressed by the in­
struction is the source and which the destination of the data, in test instruc­
tions it specifies the condition that must be satisfied for a jump or skip to
take place. The mnemonic given at the top is for the basic mode; mnemonics
for the other forms of the instruction are produced by appending letters
directly to the basic mnemonic. Following the description is a table giving
the mnemonics and octal codes (bits 0-8) for the various modes.

The processor execution time for each instruction is also given at the top
unless the time differs from one mode to another. The time listed is that
required for direct addressing without indexing (ie with no effective address
calculation), assuming the instruction and location E are both in the same
1.00 microsecond core memory, and that an accumulator is addressed only
if necessary and is in fast memory. The time that can be saved (if any) by
interleaving or keeping instructions and operands in different memories is
indicated either with the description or with the discussion of the modes
preceding a group of instructions. To determine the exact time required for
an instruction under any circumstances, refer to the timing chart in
Appendix C.

In a description E refers to the effective address, half word operand, mask,
conditions, shift number or scale fa.ctor calculated from the I, X and Y parts
of the instruction word. In an instruction that ordinarily references mem­
ory, a reference to E as the source of information means that the instruction
retrieves the word contained in location E; as a destination it means the in­
struction stores a word in location E. In the immediate mode of these
instructions, the effective half word operand is usually treated as a full word
that contains E in one half and zero in the other, and is represented either as
O,E or E,O depending upon whether E is in the right or left half.

2-1

Letters representing modes
are suffixes, which produce
new mnemonics that are rec­
ognized as distinct symbols
by the assembler.

2-2 CENTRAL PROCESSOR §2.l

Most of the non-IO instructions can address an accumulator, and in the
box showing the format this address is represented by A; in the description,
"AC" refers to the accumulator addressed by A. "AC left" and "AC right"
refer to the two halves of AC. If an instruction uses two accumulators, these
have addresses A and A +1, where the second address is 0 if A is 17. In some
cases an instruction uses an accumulator only if A is nonzero: a zero address
in bits 9-12 specifies no accumulator.

It is assumed throughout that time sharing is not in effect, and the pro­
gram is unrestricted. For completeness, however, the effects of restrictions
on particular instructions are noted; and execution times are given both for
unrestricted operation and including relocation in a user program (the latter
time is given in parentheses). § 2.15 lists all restrictions on user programs
and explains the special effects produced by certain instructions when exe­
cuted under control of the monitor while the processor is in user mode.

Some simple examples are included with the instruction descriptions, but
more complex examples using a variety of instructions are given in § 2.11.

2.1 HALF WORD DATA TRANSMISSION

These instructions move a half word and may modify the contents of the
other half of the destination location. There are sixteen instructions deter­
mined by which half of the source word is moved to which half of the des­
tination, and by which of four possible operations is performed on the other
half of the destination. The basic mnemonics are three letters that indicate
the transfer

HLL Left half of source to left half of destination
HRL Right half of source to left half of destination
HRR Right half of source to right half of destination
HLR Left half of source to right half of destination

plus a fourth, if necessary, to indicate the operation.

Operation

Do nothing
Zeros
Ones
Extend

Suffix

z
o
E

Effect on Other Half ofDestination

None
Places as in all bits of the other half
Places 1s in all bits of the other half
Places the sign (the leftmost bit) of
the half word moved in all bits of the
other half. This action extends a right
half word number into a full word
number but is valid arithmetically
only for positive left half word num­
bers - the right extension of a number
requires Os regardless of sign (hence
the Zeros operation should be used to
extend a left half word number).

§2.1 HALF WORD DATA TRANSMISSION 2-3

An additional letter may be appended to indicate the mode, which deter­
mines the source and destination of the half word moved.

Mode Suffix Source Des tination

Basic E AC
Immediate I The word O,E 'AC

Memory M AC E

Self S E E, but also AC
if A is nonzero

Note that selecting the left half of the source in immediate mode merely
clears the selected half of the destination.

HLL Half Word Left to Left

__5_0_0---J~ A 0l.-_X_-L- y _

Keeping instructions and op­
erands in different memories
saves .20 (.09) ps in self
mode; in memory mode the
same saving results if no ac­
tion, is taken on the other
half, otherwise .47 (.36) IlS
is saved.

When E addresses a fast
memory locatio~, a half word
transfer takes .34 IlS less in
basic mode, eithefl.46 (.35)
or .54 (.43) IlS less in memory
mode depending respectively
on whether or not any action
is taken on the other half,
and .54 (.43) ps less in self
mode.

o 67 89 12 13 14 1718 3S

Move the left half of the source word specified by M to the left half of the
specified destination. The source and the destination right half are un­
affected; the original contents of the destination are lost.

HLL
HLLI
HLLM

HLLS

Half Left to Left
Half Left to Left Immediate
Half Left to Left Memory
Half Left to Left Self

500
501
502
503

2.35 (2.57) IlS

1.50 (1.61) IlS

2.90 (3.01) IlS

2.76 (2.87) IlS

HLLI merely clears AC left.
If A is zero, HLLS is a no-op,
otherwise it is equivalent to
HLL.

HLLZ Half Word Left to Left, Zeros

__5_1_0_~ A 0L--X_-'--- y ---J

o 67 89 121314 1718 3S

Move the left half of the source word specified by M to the left half of the
specified destination, and clear the destination right half. The source is un­
affected, the original contents of the destination are lost.

HLLZ

HLLZI

HLLZM

HLLZS

Half Left to Left, Zeros

Half Left to Left, Zeros, Immediate

Half Left to Left, Zeros, Memory

Half Left to Left, Zeros, Self

510
2.21 (2.43) IlS

511
1.36 (1.47) IlS

512
2.47 (2.58) IlS

513
2.76 (2.87) IlS

HLLZI merely clears AC. IfA
is zero, HLLZS merely clears
the right half of location E.

2-4 CENTRAL PROCESSOR

HLLO Half Word Left to Left, Ones

§2.1

__5_2_0_QD A 0__X_-'----- Y _
o 67 89 121314 1718 35

Move the left half of the source word .specified by M to the left half of the
specified destination, and set the destination right half to all I s. The source
is unaffected, the original contents of the destination are lost.

HLLOI sets AC to all Os in
the left half, all 1s in the
right.

HLLO

HLLOI

HLLOM

HLLOS

Half Left to Left, Ones

Half Left to Left, Ones, Immediate

Half Left to Left, Ones, Memory

Half Left to Left, Ones, Self

520
2.21 (2.43) IlS

521
1.36 (1.47) J1S

522
2.47 (2.58) J1S

523
2.76 (2.87) J1S

HlLE Half Word left to Left, Extend

'---_5_3_0_QD A 0,---X_~ Y _
o 67 89 121314 1718 35

Move the left half of the source word specified by M to the left half of the
- specified destination, and make all bits in the destination right half equal to .

bit 0 of the source. The source is unaffected, the original contents of the
destination are lost.

HLLEI is equivalent to
HLLZI (it merely clears AC).

HLLE

HLLEI

HLLEM

HLLES

Half Left to Left, Extend

Half Left to Left, Extend, Immediate

Half Left to Left, Extend, Memory

Half Left to Left, Extend, Self

530
2.21 (2.43) IlS

531
1.36 (1.47) IlS

532
2.47 (2.58) IlS

533
2.76 (2.87) IlS

HRL Half Word Right to Left

L...-..-.-_
5_O_4 ----:~I A 0C-.-_X_-'-- Y ---'

o 67 89 12 13 14 1718 35

Move the right half of the source word specified by M to the left half of the
specified destination. The source and the destination right half are unaf­
fected; the original contents of the destination left half are lost.

HRL
HRLI

Half Right to Left

Half Right to Left Immediate

504

505

2.70 (2.92) IlS

1.85 (1.96) J1S

§2.1 HALF WORD DATA TRANSMISSION 2-5

HRLM
HRLS

Half Right to Left Memory
Half Right to Left Self

506
507

2.90 (3.01) fJS

2.76 (2.87) fJS

HR LZ Half Word Right to Left, Zeros

__5_1_4_~ A 12J'--_x_-'--- y ----J

o 67 89 12 13 14 1718 3S

Move the right half of the source word specified by M to the left half of the
specified destination, and clear the destination right half. The source is un­
affected, the original contents of the destination are lost.

HRLZ

HRLZI

HRLZM

HRLZS

Half Right to Left, Zeros

Half Right to Left, Zeros, Immediate

Half Right to Left, Zeros, Memory

Half Right to Left, Zeros, Self

514
2.21 (2.43) fJS

515
1.36 (1.47) fJS

516
2.47 (2.58) fJS

517
2.76 (2.87) fJS

HRLZI loads the word E,O
into AC.

HRLO Half Word Right to Left, Ones

,--_5_2_4_I~ A 0'-----x-----'L..-- y
----J

o 67 89 121314 1718 3S

Move the right half of the source word specified by M to the left half of the
specified destination, and set the destination right half to all 1s. The source
is unaffected, the original contents of the destination are lost.

HRLO

HRLOI

HRLOM

HRLOS

Half Right to Left, Ones

Half Right to Left, Ones, Immediate

Half Right to Left, Ones, Memory

Half Right to Left, Ones, Self

524
2.21 (2.43) fJS

525
1.36 (1.47) fJS

526
2.47 (2.58) fJS

527
2.76 (2.87) fJS

HRLE Half Word Right to Left, Extend

,--_5_34_----J1~ A 0_X_-'--- y ----J

o 67 89 121314 1718 3S

Move the right half of the source word specified by M to the left half of the

2-6 CENTRAL PROCESSOR §2.1

specified destination, and make all bits in the destination right half equal to
bit 18 of the source. The source is unaffected, the original contents of the
destination are lost.

HRLE

HRLEI

HRLEM

HRLES

Half Right to Left, Extend

Half Right to Left, Extend, Immediate

Half Right to Left, Extend, Memory

Half Right to Left, Extend, Self

534
2.21 (2.43) fJS

535
1.36 (1.47) fJS

536
2.47 (2.58) fJS

537
2.76 (2.87) fJS

HRR Half Word Right to Right

__5 4_0-------J~ A III X
o 67 89 121314 1718

y

35

Move the right half of the source word specified by M to the right half of the
specified destination. The source and the destination left half are unaffected;
the original contents of the destination right half are lost.

If A is zero, HRRS is a no-op;
otherwise it is equivalent to
HRR.

HRR
HRRI
HRRM
HRRS

Half Right to Right
Half Right to Right Immediate
Half Right to Right Memory
Half Right to Right Self

540
541
542
543

2.35 (2.57) fJS

1.50 (1.61) fJS

2.90 (3.01) fJS

2.76 (2.87) fJS

HRRZ Half Word Right to Right, Zeros

__5_5_0_~ A 0'---X_'---- Y ----'
o 67 89 121314 1718 35

Move the right half of the source word specified by M to the right half of the
specified destination, and clear the destination left half. The source is unaf­
fected, the original contents of the destination are lost.

HRRZI loads the word 0, E
into AC. If A is zero, HRRZS

. merely clears the left half of
location E.

HRRZ

HRRZI

HRRZM

HRRZS

Half Right to Right, Zeros

Half Right to Right, Zeros, Immediate

Half Right to Right, Zeros, Memory

Half Right to Right, Zeros, Self

550
2.21 (2.43) fJS

551
1.36 (1.47) fJS

552
2.47 (2.58) fJS

553
2.76 (2.87) fJS

§2.1 HALF WORD DATA TRANSMISSION 2-7

HRRO Half Word Right to Right, Ones

'----_5_6_0------J~ A [£] X
o 67 89 12 13 14 1718

y
35

Move the right half of the source word specified by M to the right half of the
specified destination, and set the destination left half to all 1s. The source is
unaffected, the original contents of the destination are lost.

HRRD

HRRDI

HRRDM

HRRDS

Half Right to Right, Ones

Half Right to Right, Ones, Immediate

Half Right to Right, Ones, Memory

Half Right to Right, Ones, Self

560
2.21 (2.43) MS

561
1.36 (1.47) MS

562
2.47 (2.58) MS

563
2.76 (2.87) MS

HRRE Half Word Right to Right, Extend

__5_70_----'[liJ A [£] X
o 67 89 121314 1718

y

35

Move the right half of the source word specified by M to the right half of the
specified destination, and make all bits in the destination left half equal to
bit 18 of the source. The source is unaffected, the original contents of the
destination are lost.

HRRE

HRREI

HRREM

HRRES

Half Right to Right, Extend

Half Right to Right, Extend, Immediate

Half Right to Right, Extend, Memory

Half Right to Right, Extend, Self

570
2.21 (2.43) MS

571
1.36 (1.47) MS

572
2.47 (2.58) MS

573
2.76 (2.87) MS

HLR Half Word Left to Right

'-----_5_4_4------J[liJ A [i] X y

o 67 89 12 13 14 17 18 35

Move the left half of the source word specified by M to the right half of the
specified destination. The source and the destination left half are unaffected;
the original contents of the destination right half are lost.

HLR
HLRI

Half Left to Right
Half Left to Right Immediate

544
545

2.70 (2.92) MS

1.85 (1.96) MS HLRI merely clears AC right.

2-8

HLRM
HLRS

CENTRAL PROCESSOR

Half Left to Right Memory

Half Left to Right Self

546

547

§2.1

2.90 (3.01) J.1s

2.76 (2.87) J.1s

HLRZ Half Word Left to Right, Zeros

__5_54_----'~1 A [Z1_x_L-- Y _
o 67 89 121314 1718 3S

Move the left half of the source word specified by M to the right half of the
specified destination, and clear the destination left half. The source is un­
affected, the original contents of the destination are lost.

HLRZI merely clears AC and
is thus equivalent to HLLZI.

HLRZ

HLRZI

HLRZM

HLRZS

Half Left to Right, Zeros

Half Left to Right, Zeros, Immediate

Half Left to Right, Zeros, Memory

Half Left to Right, Zeros, Self

554
2.21 (2.43) J.1s

555
1.36 (1.47) J.1S

556
2.47 (2.58) J.1S

557
2.76 (2.87) J.1s

HLRO Half Word Left to Right, Ones

__5_64_----J[RI A 0L--_X
_...L..-

Y ----'
o 67 89 12 1314 1718 3S

Move the left half of the source word specified byM to the right half of the
specified destination, and set the destination left half to all 1s. The source is
unaffected, the original contents of the destination are lost.

HLROI sets AC to all 1s in
the left half, all Os in the
right.

HLRO

HLROI

HLROM

HLROS

Half Left to Right, Ones

Half Left to Right, Ones, Immediate

Half Left to Right, Ones, Memory

Half Left to Right, Ones, Self

564
2.21 (2.43) J.1S

565
1.36 (1.47) J.1S

566
2.47 (2.58) J.1S

567
2.76 (2.87) J.1S

HLRE Half Word Left to Right, Extend

__57_4_CRl A II] X
o 67 89 121314 1718

Y
3S

Move the left half of the source word specified by M to the right half of the
specified destination, and make all bits in the destination left half equal to

§2.2 FULL WORD DATA TRANSMISSION 2-9

bit 0 of the source. The source is unaffected, the original contents of the
destination are lost.

HLRE

HLREI

HLREM

HLRES

Half Left to Right, Extend

Half Left to Right, Extend, Immediate

Half Left to Right, Extend, Memory

Half Left to Right, Extend, Self

574
2.21 (2.43) J..Ls

575
1.36 (1.47) J..LS

576
2.47 (2.58) J..LS

577
2.76 (2.87) J..LS

HLREI is equivalent to
HLRZI (it merely clears AC).

EXAMPLES. The half word transmission instructions are very useful for
handling addresses, and they provide a convenient means of setting up an
accumulator whose right half is to be used for indexing while a control count
is kept in the left half. Eg this pair of instructions loads the l8-bit numbers
M and N into the left and right halves respectively of an accumulator that is
addressed symbolically as XR.

Of course the source program must somewhere define the value of the
symbol XR as an octal number between 1 and 17.

Suppose that at some point we wish to use the two halves of XR inde­
pendently as operands (taken as I8-bit positive numbers) for computations.
We can begin by moving XR left to the right half of another accumulator
AC and leaving the contents of XR right alone in XR.

HLRZM XR,AC
HLLI XR,

HRLZI
HRRI

XR,M
XR,N

;Clear XR left

It is not necessary to clear the
other half of XR when load­
ing the first half word. But
any instruction that modifies
the other half is faster than
the corresponding instruction
that does not, as the latter
must fetch the destination
word in order to save half of
it. (The difference does not
apply to self mode, for here
the source and destination are
the same.)

2.2 FULL WORD DATA TRANSMISSION

These are the instructions whose basic purpose is to move one or more full
words of data from one place to another, usually from an accumulator to a
memory location or vice versa. In a few cases instructions may perform
minor arithmetic operations, such as forming the negative or the magnitude
of the word being processed.

EXCH Exchange 2.90 (3.01) J..Ls Keeping instructions and op-
erands in different memories

250 A [2] X y saves .20 (.09) flS.

0 89 121314 17 18 35

Move the contents of location E to AC and move AC to location E.

Beginning at the location addressed by AC left, move words to another area
of memory beginning at the location addressed by AC right. Continue until
a word is moved to location E. The total number of words in the block is
thusE - ACR + 1.

BLT Block Transfer

2-10

The time depends on the
number and type of trans­
fers. Assuming at least one
word is moved a BLT takes
.97 (1.08) /lS plus 2.26 (2.48)
/lS per transfer from fast
memory to core and 2.61
(2.83) /lS per transfer from
core to fast memory or from
one core location to another.

o
251

CENTRAL PROCESSOR

A 0 X
89 121314 1718

y

§2.2

35

CAUTION

Priority interrupts are allowed during the execution of this instruction,
following the processing of each word. If an interrupt occurs, the BLT
stores the source and destination addresses for the next word in AC, so
when the processor restarts upon the return to the interrupted program,
it actually resumes at the correct point within the BLT. Therefore,
unless the interrupt system is inactive, A and X must not address the
same register as this would produce a different effective address calcula­
tion upon resumption should an interrupt occur; and the program must
not attempt to load an accumulator addressed either by A or X unless it
is the final location being loaded. Furthermore, the program cannot
assume that AC is the same after the BLT as it was before.

EXAMPLES. This pair of instructions loads the accumulators from memory
locations 2000-2017.

HRLZI
BLT

17,2000
17,17

;Put 2000 000000 in AC 17

But to transfer the block in the opposite direction requires that one accumu­
lator first be made available to the BLT:

MOVEM 17,2017
MOVEI 17,2000
BLT 17,2016

;Move AC 17 to 2017 in memory
;Move the number 2000 to AC 17

If at the time the accumulators were loaded the program had placed in loca­
tion 2017 the control word necessary for storing them back in the same
block (2000), the three instructions above could be replaced by

EXCH
BLT

17,2017
17,2016

Move Instructions

Each of these instructions moves a single word, which may be changed in the
process (eg its two halves may be swapped). There are four instructions,

§2.2 FULL WORD DATA TRANSMISSION 2-11

each with four modes that determine the source and destination of the word
moved.

Mode Suffix Source Destination

Basic E AC

Immediate I The word O,E AC

Memory M AC E

Self S E E, but also AC
if A is nonzero

MOVE Move

Keeping instructions and op­
erands in different memories
saves .47 (.36) f.1S in memory
mode, .20 (.09) f.1S in self
mode.

When E addresses a fast
memory location, a move in­
struction takes .34 f.1S less in
basic mode, .46 (.35) f.1S less
in memory mode, .54 (.43) f.1S

less in self mode.

__2_0O_---l~ A 0 X
o 67 89 12 13 14 1718

y
3S

Move one word from the source to the destination specified by M. The
source is unaffected, the original contents of the destination are lost.

MOVE Move 200 2.21 (2.43)Jls", MOVEI loads the word O,E

MOVEI Move Immediate 201 1.36 (1.47) JlS into AC and is thus equiva-
lent to HRRZI. If A is zero,

MOVEM Move to Memory 202 2.47 (2.58) JlS ... MOVES is a no-op; otherwise

MOVES Move to Self 203 2.76 (2.87) Jls it is equivalent to MOVE.

__2_0_4-------J~ A lZl X

MOVS

o

Move Swapped

67 89 1213 14 1718

y

35

Interchange the left and right halves of the word from the source specified
by M and move it to the specified destination. The source is unaffected, the
original contents of the destination are lost.

MOVS

MOVSI
MOVSM

MOVSS

MOVN

Move Swapped
Move Swapped Immediate
Move Swapped to Memory
Move Swapped to Self

Move Negative

204
205
206
207

2.21 (2.43) JlS ...

1.36 (1.47) JlS
2.47 (2.58) JlS ...
2.76 (2.87) JlS

Swapping halves in immediate
mode loads the word E,O into
AC. MOVSI is thus equivalent
to HRLZI.

__2_1O_---lCKI A 0_X_....l..--
y

----J

o 67 89 12 13 14 1718 3S

Negate the word from the source specified by M and move it to the specified
destination. If the source word is fixed point -235 (400000 000000) set the

MAY 1968

2-12 CENTRAL PROCESSOR §2.2

Overflow and Carry 1 flags. (Negating the equivalent floating point -1 X 2127

sets the flags, but this is not a normalized number.) If the source word is
zero, set Carry 0 and Carry 1. The source is unaffected, the original contents
of the destination are lost.

MOVNI loads AC with the
negative of the word 0, E and
can set no flags.

A MOVN
MOVNI

A MOVNM
MOVNS

MOVM

Move Negative

Move Negative Immediate
Move Negative to Memory
Move Negative to Self

Move Magnitude

210
211
212
213

2.39 (2.61) J.1S

1.54 (1.65) J.1S

2.65 (2.76) J.1S

2.94 (3.05) J.1S

__2_1_4-----J~1 A 0'--_X_-'---- Y ----'
o 67 89 121314 1718 35

Take the magnitude of the word contained in the source specified by M and
move it to the specified destination. If the source word is fixed point -235

(400000 000000) set the Overflow and Carry 1 flags. (Negating the equiva­
lent floating point -1 X 2127 sets the flags, but this is not a normalized num­
ber.) The source is unaffected, the original contents of the destination are
lost.

The word O,E is equivalent
to its magnitude, so MOVMI
is equivalent to MOVEI.

A MOVM
MOVMI

A MOVMM
MOVMS

Move Magnitude

Move Magnitude Immediate

Move Magnitude to Memory

Move Magnitude to Self

214

215

216

217

2.39 (2.61) J.1S

1.54 (1.65) J.1S

2.65 (2.76) J.1S

2.94 (3.05) J.1S

MAY 1968

An example at the end of the preceding section demonstrates the use of a
pair of immediate-mode half word transfers to load an address and a control
count into an accumulator. The same result can be attained by a single move
instruction. This saves time but still requires two locations. Eg if the num­
ber 200 001400 is stored in location M, the instruction

MOVE AC,M

loads 200 into AC left and 1400 into AC right. If the same word, or its nega­
tive, or with its halves swapped, must be loaded on several occasions, then
both time and space can be saved as each transfer requires only a single move
instruction that references M.

Pushdown List

These two instructions insert and remove full words in a pushdown list. The
address of the top item in the list is kept in the right half of a pointer in AC,
and the program can keep a control count in the left half. There are also

§2.2 FULL WORD DATA TRANSMISSION 2-13

two subroutine-calling instructions that utilize a pushdown list of jump ad­
dresses [§ 2.9] .

Add 1 00000 18 to AC to increment both halves by one, then move the con­
tents of location E to the location now addressed by AC right. If the addi­
tion causes the count in AC left to reach zero, set the Pushdown Overflow
flag. The contents of E are unaffected, the original contents of the location
added to the list are lost.

Keeping instructions and the
pushdown list in different
memories saves .47 (.36) IlS.

When the word added to
the list is from fast memory,
PUSH takes .34 IlS less than
the time given.

3S

3.85 (4.07) J.1S

y

Push Down

o
'---__2_6_1__-'---_A_----'0 X

89 121314 1718

PUSH

POP

o

Pop Up

262 A [2] X
89 121314 1718

y

3.93 (4.15) J.1s

3S

When the word taken from
the list is placed in fast mem­
ory, POP takes .46 (.35) IlS
less than the time given.

Move the contents of the location addressed by AC right to location E, then
subtract 1 00000 18 from AC to decrement both halves by one. If the sub­
traction causes the count in AC left to reach -1, set the Pushdown Overflow
flag. The original contents of E are lost.

Because of the order in which the operands are stored, the instruction
POP AC,AC would load the contents of the location addressed by AC right
into AC on top of the pushdown count, destroying it.

The incrementing and decrementing of both halves of AC simultaneously
is effected by adding and subtracting 1 00000 18 , Hence a count of -2 in AC
left is increased to zero if 218

- 1 is incremented in AC right, and conversely,
1 in AC left is decreased to -1 if zero is decremented in AC right.

A pushdown list is simply a set of consecutive memory locations from
which words are read in the order opposite that in which they are written.
In more general terms, it is any list in which the only item that can be re­
moved at any given time is the last item in the list. This is usually referred
to as "first in, last out" or "last in, first out". Suppose locations a, b, C, ...

are set aside for a pushdown list. We can deposit data in a, b, C, d, then read
d, then write in d and e, then read e, d, c, etc.

Note that by using the Pushdown Overflow flag and a control count in AC
left, the programmer can set a limit to the size of the list by starting the
count negative, or he can prevent the program from extracting more words
than there are in the list by starting the count at zero, but he cannot do both
at once.

2-14 CENTRAL PROCESSOR §2.2

Pushdown storage is very convenient for a program that can use data
stored in this manner as the pointer is initialized only once and only one
accumulator is required for the most complex pushdown operations. To ini­
tialize a pointer P for a list to be kept in a block of memory beginning at
BLIST and to contain at most N items, the following suffices.

MOVSI
HRRI

P,-N
P,BLIST-l

Of course the programmer must define BLIST elsewhere and set aside loca­
tions BLIST to BLIST + N - 1. Using MACRO to full advantage one could
instead give

MOVE P,[IOWD N,BLIST]

where the pseudoinstruction

IOWD J,K

is replaced by a word containing -J in the left half and K - I in the right.
Elsewhere there would appear

BLIST: BLOCK N

which defines BLIST as the current contents of the location counter and sets
aside the N locations beginning at that point.

In the PDP-lathe pushdown list is kept in a random access core mem­
ory, so the restrictions on order of entry and removal of items actually apply
only to the standard addressing by the pointer in pushdown instructions ­
other addressing methods can reference any item at any time. The most
convenient way to do this is to use the right half of the pointer as an index
register. To move the last entry to accumulator AC we need simply give

MOVE AC,(P)

Of course this does not shorten the list - the word moved remains the last
item in it.

One usually regards an index register as supplying an additive factor for a
basic address contained in an instruction word, but the index register can
supply the basic address and the instruction the additive factor. Thus we can
retrieve the next to last item by giving

MOVE AC,-I(P)

and so forth. Similarly

PUSH P,-3(P)

adds the third to last item to the end of the list;

POP P,-2(P)

removes the last item and inserts it in place of the next to last item in the
shortened list.

§2.3 BYTE MANIPULAnON

2.3 BYTE MANIPULATION

2-15

This set of five instructions allows the programmer to pack or unpack bytes
of any length anywhere within a word. Movement of a byte is always
between AC and a memory location: a deposit instruction takes a byte from
the right end of AC and inserts it at any desired position in the memory
location; a load instruction takes a byte from any position in the memory
location and places it right-justified in AC.

The byte manipulation instructions have the standard memory reference
format, but the effective address E is used to retrieve a pointer, which is used
in turn to locate the byte or the place that will receive it. The pointer has
the format

o
__P_Cs

56

D2J X
11121314 1718

y

35

where S is the size of the byte as a number of bits, and P is its position as the
number of bits remaining at the right of the byte in the word (eg if Pis 3 the
rightmost bit of the byte is bit 32 of the word). The rest of the pointer is
interpreted in the same way as in an instruction: I, X and Yare used to cal­
culate the address of the location that is the source or destination of the
byte. Thus the pointer aims at a word whose format is

L..--- ~im.'______p _BIT_S__

o 35-P-S+l 35-P 35-P+l 35

where the shaded area is the byte.
To facilitate processing a series of bytes, several of the byte instructions

increment the pointer, ie modify it so that it points to the next byte position
in a set of memory locations. Bytes are processed from left to right in a
word, so incrementing merely replaces the current value of P by P - S, unless
there is insufficient space in the present location for another byte of the
specified size (P - S< 0). In this case Y is increased by one to point to the
next consecutive location, and P is set to 36 - S to point to the first byte at
the left in the new location.

CAUTION

Do not allow Y to reach maximum value. The whole pointer is incre­
mented, so if Y is 218

- 1 it becomes zero and X is also incremented.
The address calculation for the pointer uses the original X, but if a pri­
ority interrupt should occur before the calculation is complete, the in­
cremented X is used when the instruction is repeated.

Among these five instructions one simply increments the pointer, the
others load or deposit a byte with or without incrementing. Brackets
enclose the additional time required when incrementing overflows the word
boundary.

2-16 CENTRAL PROCESSOR §2.3

Keeping the pointer in fast
memory saves .34 J.lS. Taking
bytes from a fast memory
location saves another .34 J.lS.

LOB load Byte 4.02 (4.35) + .15(P + S) [+.26] IlS

135 A 0 X Y
o 89 121314 1718 35

Retrieve a byte of S bits from the location and position specified by the
pointer contained in location E, load it into the right end of AC, and clear
the remaining AC bits. The location containing the byte is unaffected, the
original contents of AC are lost.

35

4.87 (5.20) + .15(P + S) [+.26] IlSDeposit Byte

___1_3_7__--'-_A__IZJL.-_X_--'--- y _
89 121314 1718o

Deposit the right S bits of AC into the location and position specified by the
pointer contained in location E. The original contents of the bits that receive
the byte are lost, AC and the remaining bits of the deposit location are
unaffected.

DPBKeeping the pointer in fast
memory saves .34 J.lS. Keeping
instructions and the packing
area in different memories
saves .20 (.09) J.lS. Packing
bytes in fast memory saves
.54 (.43) J.lS.

Increment the byte pointer in location E as explained above.

35

2.87 (2.98) [+.26] IlSIncrement Byte Pointer

133 A IZI__x_..J......- y _
89 121314 1718

IBP

o

Keeping the pointer in fast
memory saves .54 (.43) J.ls;
keeping it in a different mem­
ory from the instruction saves
.20 (.09) J.lS

The A portion of this instruc­
tion is ignored.

Increment Pointer and Load Byte
4.24 (4.57) + .15(P + S) [+.26] IlS

35

y
171889

'--__1_3_4__--L.._A_---l[1 X
121314o

ILDBKeeping the pointer in fast
memory saves .34 J.lS. Taking
bytes from a fast memory
location saves another .34 J.lS.

Increment the byte pointer in location E as explained above. Then retrieve a
byte of S bits from the location and position specified by the newly incre­
mented pointer, load it into the right end of AC, and clear the remaining AC
bits. The location containing the byte is unaffected, the original contents of
AC are lost.

35

y

Increment Pointer and Deposit Byte
5.29 (5.5 1) + .15(P + S) [+.26] IlS

IDPB

o
'--__1_3_6__--L.._A__0 X

89 121314 1718

Keeping the pointer in fast
memory saves .34 J.lS. Keeping
instructions and the packing
area in different memories
saves .20 (.09) J.lS. Packing
bytes in fast memory saves
.54 (.43) J.lS.

Increment the byte pointer in location E as explained above. Then deposit

§2.4 LOGIC 2-17

the right S bits of AC into the location and position specified by the newly
incremented pointer. The original contents of the bits that receive the byte
are lost, AC and the remaining bits of the deposit location are unaffected.

Note that in the pair of instructions that both increment the pointer and
process a byte, it is the modified pointer that determines the byte location
and position. Hence to unpack bytes from a block of memory, the program
should set up the pointer to point to a byte just before the first desired, and
then load them with a loop containing an ILDB. If the first byte is at the
left end of a word, this is most easily done by initializing the pointer with a
P of 36 (448), Incrementing then replaces the 36 with 36 - S to point to the
first byte. At any time that the program might inspect the pointer during
execution of a series of ILDBs or IDPBs, it points to the last byte processed
(this may not be true when the pointer is tested from an interrupt routine
[§2.l3]).

Special Considerations. If S is greater than P and also greater than 36,
incrementing produces a new P equal to 100 - S rather than 36 - S. For
S> 36 the byte is at most the entire word; for P ~ 36 no byte is processed
(loading merely clears AC). If both P and S are less than 36 but P +S > 36,
a byte of size 36 - P is loaded from position P, or the right 36 - P bits of the
byte are deposited in position P.

2.4 LOGIC

For logical operations the PDP-l 0 has instructions for shifting and rotating
as well as for performing the complete set of sixteen Boolean functions of
two variables (including those in which the result depends on only one or
neither variable). The Boolean functions operate bitwise on full words, so
each instruction actually performs thirty-six logical operations simultane­
ously. Thus in the AND function of two words, each bit of the result is the
AND of the corresponding bits of the operands. The table on page 2-23 lists
the bit configurations that result from the various operand configurations for
all instructions.

Each Boolean instruction has four modes that determine the source of the
non-AC operand, if any, and the destination of the result.

Source of non- Destination
Mode Suffix AC operand of result

Basic E AC
Immediate I The word O,E AC
Memory M E E

Both B E AC and E

Keeping instructions and op­
erands in different memories
saves .47 (.36) ps in memory
and both modes in the first
four of these instructions
(those that have no operand
or only an AC operand), .20
(.09) fJ.S in memory and both
modes in the remaining
twelve (those that have a
memory or immediate op­
erand).

2-18 CENTRAL PROCESSOR §2.4

A Boolean instruction in
which E addresses a fast
memory location takes .46
(.35) J1S less in memory or
both mode if it has no oper­
and or only an AC operand.
If it has a memory operand,
it takes .34 J1S less in basic
mode, .54 (.43) J1S less in
memory or both mode.

For an instruction without an operand (one that merely clears a location or
sets it to all 1s) the modes differ only in. the destination of the result, so
basic and immediate modes are equivalent. The same is true also of an
instruction that uses only anAC operand. When specified by the mode, the
result goes to the accumulator addressed by A, even when there is no AC
operand.

SETZ Set to Zeros

,-_4_0O_----'~ A 0 X
o 67 89 12 13 14 1718

y

3S

Change the contents of the destination specified by M to all Os.

SETZ and SETZI are equiva­
lent (both merely clear AC).
MACRO also recognizes
CLEAR, CLEARI, CLEARM
and CLEARB as equivalent to
the set-to-zeros mnemonics.

SETZ
SETZI
SETZM
SETZB

Set to Zeros
Set to Zeros Immediate
Set to Zeros Memory

Set to Zeros Both

400
401
402
403

1.36 (1.47) f.1S

1.36 (1.47) f.1S

2.33 (2.44) f.1S

2.33 (2.44) f.1S

SETO Set to 0nes

_4_7_4_~ A [2] X
o 67 89 12 13 14 1718

y

3S

Change the contents of the destination specified by M to all 1s.

SETO and SETOI are equiva­
lent.

SETO
SETOI
SETOM
SETOB

Set to Ones
Set to Ones Immediate
Set to Ones Memory
Set to Ones Both

474
475
476
477

1.36 (1.47) f.1S

1.36 (1.47) f.1S

2.33 (2.44) f.1S

2.33 (2.44) f.1S

SETA Set to AC

__4_24__[K1 A 0L-_X_..l..--
y _

o 67 89 12 13 14 1718 3S

Make the contents of the destination specified by M equal to AC.

SETA and SETAl are no-ops.
SETAM and SETAB are both
equivalent to MOVEM (all
move AC to location E).

SETA
SETAl
SETAM
SETAB

Set to AC
Set to AC Immediate
Set to AC Memory
Set to AC Both

424
425
426

427

1.50 (1.61) f.1S

1.50 (1.61) f.1S

2.47 (2.58) f.1S

2.47 (2.58) f.1S

§2.4

SETCA Set to Complement of AC

LOGIC 2-19

__4_5_0_~ A I!J_X------J'---- y _
o 67 89 121314 1718 3S

Change the contents of the destination specified by M to the complement of
AC.

SETCA

SETCAI

SETCAM

SETCAB

Set to Complement of AC

Set to Complement of AC Immediate

Set to Complement of AC Memory

Set to Complement of AC Both

450
1.50 (1.61) flS

451
1.50 (1.61) flS

452
2.47 (2.58) flS

453
2.47 (2.58) flS

SETCA and SETCAI are
equivalent (both complement
AC).

SETM Set to Memory

__4_l_4__~ A 0L-_X_--'- y -----'
o 67 89 121314 1718 3S

Make the contents of the destination specified by M equal to the specified
operand.

SETM
SETMI
SETMM
SETMB

SETCM

Set to Memory

Set to Memory Immediate

Set to Memory Memory
Set to Memory Both

Set to Complement of Memory

414

415

416
417

2.21 (2.43) flS

1.36 (1.47) flS

2.76 (2.87) flS

2.76 (2.87) flS

SETM and SETMB are equiv­
alent to MOVE. SETMI
moves the word 0, E to AC
and is thus equivalent to
MOVEI. SETMM is a no-op
that references memory.

__4_6_0_~ A IZI_X_-'- Y ----J

o 67 89 121314 1718 3S

Change the contents of the destination specified by M to the complement of
the specified operand.

SETCM

SETCMI

SETCMM

SETCMB

Set to Complement of Memory

Set to Complement of Memory Immediate

Set to Complement of Memory Memory

Set to Complement of Memory Both

460
2.21 (2.43) flS

461
1.36 (1.47) flS

462
2.76 (2.87) flS

463
2.76 (2.87) flS

SETCMI moves the comple­
ment of the word O,E to AC.
SETCMM complements loca­
tion E.

2-20 CENTRAL PROCESSOR §2.4

AND And with AC

o 67 89 121314 17 18

y

3S

Change the contents of the destination specified by M to the AND function of
the specified operand and AC.

AND
ANDI
ANDM
ANDB

And
And Immediate
And to Memory
And to Both

404
405
406
407

2.35 (2.57) IlS

1.50 (1.61) IlS

2.90 (3.01) IlS

2.90 (3.01) IlS

ANDCA And with Complement of AC

__4_1_0_I~ A 01--_X_...I...--
y _

o 67 89 121314 1718 3S

Change the contents of the destination specified by M to the AND function of
the specified operand and the complement of AC.

ANDCA

ANDCAI

ANDCAM

ANDCAB

And with Complement of AC

And with Complement of AC Immediate

And with Complement of AC to Memory

And with Complement of AC to Both

410
2.70 (2.92) IlS

411
1.85 (1.96) IlS

412
3.52 (3.63) IlS

413
3.52 (3.63) IlS

ANDCM And Complement of Memory with AC

L---_4_2 _0----J~ A 0l...-_X_.L..--
y _____

o 67 89 121314 1718 3S

420
2.35 (2.57) IlS

421
1.50 (1.6 1) IlS

422
2.90 (3.01) IlS

423
2.90 (3.01) IlS

And Complement of Memory to Memory

And Complement of Memory Immediate

And Complement of Memory to Both

ANDCMM

ANDCMI

ANDCMB

Change the contents of the destination specified by M to the AND function of
the complement of the specified operand and AC.

ANDCM And Complement of Memory

§2.4

ANDCB And Complements of Both

LOGIC 2-21

__4_40_----'IEJ A 0_X-----''--- Y ----'
o 6 7 8 9 12 13 14 1718 35

Change the contents of the destination specified by M to the AND function of
the complements of both the specified operand and AC. The result is the
NOR function of the operands.

ANDCB

ANDCBI

ANDCBM

ANDCBB

And Complements of Both

And Complements of Both Immediate

And Complements of Both to Memory

And Complements of Both to Both

440
2.70 (2.92) IlS

441
1.85 (1.96) IlS

442
3.52 (3.63) IlS

443
3.52 (3.63) IlS

10 R Inclusive Or with AC

__43_4-----J[E] A I] X
o 67 89 1~ 13 14 1718

Y
35

Change the contents of the destination specified by M to the inclusive OR

function of the specified operand and AC.

lOR Inclusive Or 434 2.35 (2.57) Ils MACRO also recognizes OR,

IORI Inclusive Or Immediate 435 1.50 (1.61) IlS ORI, ORM and ORB as equiv-
alent to the inclusive OR mne-

IORM Inclusive Or to Memory 436 2.90 (3.01) IlS monies.
IORB Inclusive Or to Both 437 2.90 (3.01) IlS

ORCA Inclusive Or with Complement of AC

__4_5_4-----J[E] A 0 X
o 67 89 121314 1718

Y
35

Change the contents of the destination specified by M to the inclusive OR

function of the specified operand and the complement of AC.

ORCA

ORCAI

ORCAM

ORCAB

Or with Complement of AC

Or with Complement of AC Immediate

Or with Complement of AC to Memory

Or with Complement of AC to Both

454
2.70 (2.92) IlS

455
1.85 (1.96) IlS

456
3.52 (3.63) IlS

457
3.52 (3.63) IlS

2-22 CENTRAL PROCESSOR §2.4

ORCM Inclusive Or Complement of Memory with AC

__4_64_----J[~] A 0_X_"'----- y ----J

o 67 89 121314 1718 35

464
2.35 (2.57) J1S

465
1.50 (1.61) J1S

466
2.90 (3.01) J1S

467
2.90 (3.01) J1S

Or Complement of Memory to Both

Or Complement of Memory to Memory

Or Complement of Memory Immediate

ORCMB

ORCMM

ORCMI

Change the contents of the destination specified by M to the inclusive OR

function of the complement of the specified operand and AC.

ORCM Or Complement of Memory

ORCB Inclusive Or Complements of Both

'----_4_7O_----J~ A 0 X
o 67 89 121314 1718

y

35

Change the contents of the destination specified by M to the inclusive OR

function of the complements of both the specified operand and AC. The
result is the NAND function of the operands.

ORCB

ORCBI

ORCBM

ORCBB

Or Complements of Both

Or Complements of Both Immediate

Or Complements of Both to Memory

Or Complements of Both to Both

470
2.70 (2.92) J1S

471
1.85 (1.96) J1S

472
3.52 (3.63) J1S

473
3.52 (3.63) J1S

XOR Exclusive Or with AC

__4_3_0__~ A 0'--_X_---'-- yJ

o 67 89 121314 17 18 35

2.35 (2.57) /lS

1.50 (1.61) /lS

2.90 (3.01) /lS

2.90 (3.01) /lS

430
431
432
433

Change the contents of the destination specified by M to the exclusive OR

function of the specified operand and AC.

XO R Exclusive Or
XO RI Exclusive Or Immediate
XO RM Exclusive Or to Memory

XO RB Exclusive Or to Both

The original contents of the destination can be recovered except in XORB,
where both operands are replaced by the result. In the other three modes
the replaced operand is restored by repeating the instruction in the same
mode, ie by taking the exclusive OR of the remaining operand and the result.

§2.4

EOV Equivalence with AC

LOGIC 2-23

__4_4_4----,lliJ A 121 X
o 67 89 121314 1718

y

35

Change the contents of the destination specified by M to the complement of
the exclusive OR function of the specified operand and AC (the result has Is
wherever the corresponding bits of the operands are the same).

EQV

EQVI

EQVM

EQVB

Equivalence
Equivalence Immediate
Equivalence to Memory
Equivalence to Both

444
445
446
447

2.35 (2.57) fJ.s

1.50 (1.6 1) fJ.S

2.90 (3.0 1) fJ.S

2.90 (3.01) fJ.S

The original contents of the destination can be recovered except in EQVB,
where both operands are replaced by the result. In the other three modes
the replaced operand is restored by repeating the instruction in the same
mode, ie by taking the equivalence function of the remaining operand and
the result.

For the four possible bit configurations of the two operands, the above
sixteen instructions produce the following results. In each case the result as
listed is equal to bits 3-6 of the instruction word.

AC a 1 a 1

Mode Specified Operand a a 1 1

SETZ a a a a
AND a a a 1

ANDCA a a 1 a
SETM a a 1 1

ANDCM a 1 a a
SETA a 1 a 1

XOR a 1 1 a
lOR a 1 1 1

ANDCB 1 a a a
EQV 1 a a 1

SETCA 1 a 1 a
ORCA 1 a 1 1

SETCM 1 1 a a
ORCM 1 1 a 1

ORCB 1 1 1 a
SETO 1 1 1 1

2-24 CENTRAL PROCESSOR

Shift and Rotate

§2.4

LSH

LSHC

ROT

ROTC

ASH

The remaining logical instructions shift or rotate right or left the contents of
AC or the contents of two accumulators, A and A +1 (mod 20s), concat­
enated into a 72-bit register with A on the left. The illustration below
shows the movement of information these instructions produce in the accu-

~,---__A__----Jr___EJ
o 35

~L.....- A __--JRL.....-__A_+_,__r___EJ
o 35 0 35

~'---__A__----Jr___EJ
o 35

ASHC o

A

o

35
A +'

35

ACCUMULATOR BIT FLOW IN SHIFT AND ROTATE INSTRUCTIONS

§2.4 LOGIC 2-25

mulators. In a (logical) shift the contents of a register are moved bit-to-bit
with Os brought in at the end being vacated; information shifted out at the
other end is lost. [For a discussion of arithmetic shifting see § 2.5.] In
rotation the contents are moved cyclically such that information rotated out
at one end is put in at the other.

The number of places moved is specified by the result of the effective
address calculation taken as a signed number (in twos complement notation)
modulo 28 in magnitude. In other words the effective shift E is the number
composed of bit 18 (which is the sign) and bits 28-35 of the calculation
result. Hence the programmer may specify the shift directly in the instruc­
tion (perhaps indexed) or give an indirect address to be used in calculating
the shift. A positive E produces motion to the left, a negative E to the right;
maximum movement is 255 places.

lSH logical Shift Left: 1.62 (1.73) + .151EI IlS
Right: 1.46 (1.57) + .151EI IlS

35

___2_4_2__-L-_A_--,I],--_X_~ YJ

89 121314 1718o

Shift AC the number of places specified by E. If E is positive, shift left
bringing Os into bit 35; data shifted out of bit 0 is lost. If E is negative, shift
right bringing Os into bit 0; data shifted out of bit 35 is lost.

lSHC logical Shift Combined Left: 2.00 (2.11) + .151EI IlS
Right: 1.84 (1.95) + .15/EI IlS

3So
246 A 0L....-_X_L..-..- Y _

89 121314 1718

Concatenate accumulators A and A +1 with A on the left, and shift the
72-bit combination the number of places specified by E. If E is positive,
shift left bringing Os into bit 71 (bit 35 of AC A + 1); bit 36 is shifted into bit
35; data shifted out of bit 0 is lost. If E is negative, shift right bringing Os
into bit 0; bit 35 is shifted into bit 36; data shifted out of bit 71 is lost.

ROT Rotate Left: 1.62 (1.73) + .151EI IlS
Right: 1.46 (1.57) + .151EI IlS

35o
241 A 0'-_X_'------ Y __

89 121314 1718

Rotate AC the number of places specified by E. IfE is positive, rotate left;
bit 0 is rotated into bit 35. If E is negative, rotate right; bit 35 is rotated
into bit O.

2-26

ROTC

CENTRAL PROCESSOR

Rotate Combined

§2.5

Left: 2.00 (2.ll) + .151EI /lS
Right: 1.84 (1.95) + .151EI /lS

o
'---_2_4_5_-----'-_A_0 X

89 121314 1718

y

35

Overflow is determined di­
rectly from the carries, not
from the carry flags, as their
states may reflect events in
previous instructions.

Concatenate accumulators A and A +1 with A on the left, and rotate the
72-bit combination the number of places specified by E. If E is positive,
rotate left; bit 0 is rotated into bit 71 (bit 35 of AC A +1) and bit 36 into bit
35. If E is negative, rotate right; bit 35 is rotated into bit 36 and bit 71 into
bit O.

2.S FIXED POINT ARITHMETIC

For fixed point arithmetic the PDP-l 0 has instructions for arithmetic shift­
ing (which is essentially multiplication by a power of 2) as well as for per­
forming addition, subtraction, multiplication and division of numbers in
fixed point format [§ 1.1]. In such numbers the position of the binary point
is arbitrary (the programmer may adopt any point convention). The add and
subtract instructions involve only single length numbers, whereas multiply
supplies a double length product, and divide uses a double length dividend.
The high and low order words respectively of a double length fixed point
number are in accumulators A and A +1 (mod 208), where the magnitude is
the 70-bit string in bits 1-35 of the two words and the signs of the two are
identical. There are also integer multiply and divide instructions that involve
only single length numbers and are especially suited for handling smaller
integers, particularly those of eighteen bits or less such as addresses (of
course they can be used for small fractions as well provided the programmer
keeps track of the binary point). For convenience in the following, all oper­
ands are assumed to be integers (binary point at the right).

The processor has four flags, Overflow, Carry 0, Carry 1 and No Divide,
that indicate when the magnitude of a number is or would be larger than can
be accommodated. Carry 0 and Carry 1 actually detect carries out of bits 0
and 1 in certain instructions that employ fixed point arithmetic operations:
the add and subtract instructions treated here, the move instructions that
produce the negative or magnitude of the word moved [§ 2.2], and the
arithmetic test instructions that increment or decrement the test word
[§ 2.7]. In these instructions an incorrect result is indicated - and the Over­
flow flag set - if the carries are different, ie if there is a carry into the sign
but not out of it, or vice versa. The Overflow flag is also set by No Divide
being set, which means the processor has failed to perform a division because
the magnitude of the dividend is greater than or equal to that of the divisor,
or in integer divide, simply that the divisor is zero. In other overflow cases
only Overflow itself is set: these include too large a product in multiplica­
tion, and loss of significant bits in left arithmetic shifting.

These flags can be read and controlled by certain program control instruc­
tions [§ 2.9] , and Overflow is available as a processor condition (via in-out

§2.5 FIXED POINT ARITHMETIC 2-27

instructions [§ 2.14]) that can request a priority interrupt if enabled. The
conditions detected can only set the flags and the hardware does not clear
them, so the program must clear them before an instruction if they are to
give meaningful information about the instruction afterward. However, the
program can check the flags following a series of instructions to determine
whether the entire series was free of the types of error detected.

All but the shift instructions have four modes that determine the source
of the non-AC operand and the destination of the result.

Source ofnon- Destination
Mode Suffix AC operand ofresult

Basic E AC
Immediate I The wordO,E AC
Memory M E E

Both B E AC andE

ADD Add

270 ~ A III X Y
0 67 89 121314 1718 35

Add the operand specified by M to AC and place the result in the specified
destination. If the sum is ~ 235 set Overflow and Carry 1; the result stored
has a minus sign but a magnitude in positive form equal to the sum less 235•

If the sum is < -235 set Overflow and Carry 0; the result stored has a plus ...
sign but a magnitude in negative form equal to the sum plus 235 • Set both ...
carry flags if both summands are negative, or their signs differ and their mag­
nitudes are equal or the positive one is the greater in magnitude.

Besides indicating error types,
the carry flags facilitate per­
forming multiple precision
arithmetic.

ADD
ADDI
ADDM
ADDB

SUB

Add
Add Immediate
Add to Memory
Add to Both

Subtract

270
271
272
273

2.53 (2.75) JlS

1.68 (1.79) JlS

3.08 (3.19) JlS

3.08 (3.19) JlS

Keeping instructions and op­
erands in different memories
saves .20 (.09) J.lS in ADDM
and ADDB.

When E addresses a fast
memory location, ADD takes
.34 J.ls less than the time
given, ADDM and ADDB take
.54 (.43) J.lS less.

o 67 89 121314 1718

y

35

Subtract the operand specified by M from AC and place the result in the
specified destination. If the difference is ~ 235 set Overflow and Carry 1;
the result stored has a minus sign but a magnitude in positive form equal to
the difference less 235

• If the difference is < -235 set Overflow and Carry 0;
the result stored has a plus sign but a magnitude in negative form equal to
the difference plus 235

• Set both carry flags if the signs of the operands are
the same and AC is the greater or the two are equal, or the signs of the
operands differ and AC is negative.

MAY 1968

2-28 CENTRAL PROCESSOR §2.5

Keeping instructions and op- SUB Subtract 274 2.53 (2.75) /lS
erands in different memories SUBI Subtract Immediate 275 1.68 (1.79) /lSsaves .20 (.09) fJ.S in SUBM
and SUBB. SUBM Subtract to Memory 276 3.08 (3.19) /lS

When E addresses a fast SUBB Subtract to Both 277 3.08 (3.19) /lS
memory location, SUB takes
.34 f.1S less than the time
given, SUBM and SUBB take
.54 (.43) JlS less.

MUL Multiply

224 [ill A 0 X Y
0 67 89 121314 1718 35

Multiply AC by the operand specified by M, and place the high order word
of the double length result in the specified destination. If M specifies AC as
a destination, place the low order word in accumulator A + I. If both oper­
ands are -235 set Overflow; the double length result stored is -270

.

Timing. The times given above are average. The algorithm modifies the
running sum of partial products at each 1-0 or 0-1 transition scanning from
one bit to the next in the multiplier, which is the operand specified by the
mode; in other words the number of operations equals the number of pairs
of adjacent bits that differ in the multiplier including the sign bit and taking
the bit at the right of the LSB as 0 (an LSB of I is regarded as a transition).
Minimum times with a zero multiplier are

Keeping instructions and op­
erands in different memories
saves .47 (.36) f.1S in MULM,
.31 (.20) JlS in MULB.

When E addresses a fast
memory location, MUL takes
.34 f.1S less than the time
given, MULM takes .80 (.69)
f.1S less, and MULB takes .64
(.53) JlS less.

MUL

MUll

MULM
MULB

Multiply
Multiply Immediate
Multiply to Memory
Multiply to Both

MUL
MULl

MULM

MULB

224

225
226
227

8.26 (8.48) /lS

7.41 (7.52) /lS

9.07 (9.29) /lS

9.07 (9.29) /lS

10.60 (10.82) /lS

8.58 (8.69) /lS

11.41 (11.63) /lS

11.41 (11.63) /lS

These must be increased by .13 /lS for each transition. The programmer can
minimize the time by using as the multiplier the operand with fewer transi­
tions.

IMUL Integer Multiply

__2_2_0_QD A 0_X_'-- y ---J

o 67 89 121314 1718 35

Multiply AC by the operand specified by M, and place the sign and the 35
low order magnitude bits of the product in the specified destination. Set
Overflow if the product is ~ 2 35 or < -235 (ie if the high order word of the
double length product is not null); the high order word is lost.

§2.5 FIXED. POINT ARITHMETIC 2-29

Timing. The times given above are average. Refer to the description of
MUL for the timing effects of the multiplication algorithm. Minimum times
with a zero multiplier are

IMUL
IMULI
IMULM
IMULB

Integer Multiply
Integer Multiply Immediate
Integer Multiply to Memory
Integer Multiply to Both

IMUL

IMULI

IMULM
IMULB

220
221
222
223

8.42 (8.64) l1S

7.57 (7.68) l1S

9.39 (9.61) l1S

9.39 (9.61) l1S

9.59 (9.81) l1S

8.09 (8.20) l1S

10.56 (10.78) l1S

10.56 (10.78) l1S

Keeping instructions and op­
erands in different memories
saves .47 (.36) ps in IMULM
and IMULB.

When E addresses a fast
memory location, IMUL
takes .34 ps less than the time
given, IMULM and IMULB
take .80 (.69) ps less.

These must be increased by .13 l1S for each transition. The programmer can
minimize the time by using as the multiplier the operand with fewer transi­
tions.

DIV Divide

__23_4_~ A 0 X
o 67 89 12 13 14 1718

y

3S

If the magnitude of the number in AC is greater than or equal to that of the
operand specified by M, set Overflow and No Divide, and go immediately to
the next instruction without affecting the original AC or memory operand in
any way. Otherwise divide the double length number contained in accumula­
tors A and A +1 by the specified operand, calculating a quotient of 35
magnitude bits including leading zeros. Place the unrounded quotient in the
specified destination. If M specifies AC as a destination, place the remainder,
with the same sign as the dividend, in accumulator A +1.

__2_3_0_~ A [Z1_x y _
Integer Divide

Divide
Divide Immediate

Divide to Memory

Divide to Both

DIV
DIVI
DIVM
DIVB

IDIV

o 67 89 12 13 14 1718

234

235

236

237

16.2 (16.4) l1S

15.4 (15.5) l1S

17.1 (17.3) l1S

17.1 (17.3) l1S

3S

Keeping instructions and op­
erands in different memories
saves .5 (.4) ps in DIVM, .3
(.2) ps in DIVB.

When E addresses a fast
memory location, DIV takes
.3 ps less than the time given,
DIVM takes .8 (.7) ps less,
and DIVB takes .6 (.5) ps
less.

If the division is not per­
formed, only 2.5-3 ps are
required.

If the operand specified by M is zero, set Overflow and No Divide, and go
immediately to the next instruction without affecting the original AC or
memory operand in any way. Otherwise divide AC by the specified operand,
calculating a quotient of 35 magnitude bits including leading zeros. Place

2-30 CENTRAL PROCESSOR §2.5

the unrounded quotient in the specified destination. If M specifies AC as the
destination, place the remainder, with the same sign as the dividend, in
accumulator A +1.

EXAMPLE. The integer multiply and divide instructions are very useful for
computations on addresses or character codes, or performing any integral
operations in which the result is small enough to be accommodated in a
single register.

As an example suppose we wish to determine the parity of the 8-bit char­
acter abedefgh, where the letters represent the bits of the character. Assum­
ing the character is right-justified in AC, we first duplicate it twice to the left
producing

KeeJ>ing instructions and op­
erands in different memories
saves .5 (.4) IlS in IDIVM, .3
(.2) IlS in IDIVB.

When E addresses a fast
memory location, IDIV takes
.3 IlS less than the time given,
IDIVM takes .8 (.7) IlS less,
and IDIVB takes .6 (.5) IlS
less.

If the division is not per­
formed, only 3-3.5 IlS are
required.

IDIV
IDIVI
IDIVM
IDIVB

Integer Divide
Integer Divide Immediate
Integer Divide to Memory
Integer Divide to Both

230
231
232
233

16.5 (16.7) JlS

15.7 (15.8) JlS

17.4 (17.6) JlS

17.4 (1 7.6) JlS

abc def gha bed efg hab ede fgh

where the bits (in positions 12-35) are grouped corresponding to the octal
digits in the word. Anding this with

001 001 001 001 001 001 001 001

retains only the least significant bit in each 3-bit set, so we can represent the
result by

efadgbeh

where each letter represents an octal digit having the same value (0 or 1) as
the bit originally represented by the same letter. Multiplying this by
11111111 8 generates the following partial products:

efadgbeh
efadgbeh

efadgbeh
efadgbeh

efadgbeh
efadgbeh

efadgbeh
efadgbeh

Since any digit is at most I, there can be no carry out of any column with
fewer than eight digits. Hence the octal digit produced by summing the
center column (the one containing all the bits of the character) is even or
odd as the sum of the bits is even or odd. Thus its least significant bit (bit
14 of the low order word in theiproduct) is the parity of the character, a if
even, I if odd.

The above may seem a very complicated procedure to do something
trivial, but it is effected by this quite simple sequence (with the character

§2.5

right-justified in AC):

IMULI
AND
IMUL

AC,200401
AC,ONES
AC,ONES

FIXED POINT ARITHMETIC 2-31

ONES: 11111111

where the parity is indicated by AC bit 14. Of course, following the IMUL
would be a test instruction to check the value of the bit.

Arithmetic Shifting

These two instructions produce an arithmetic shift right or left of the num­
ber in AC or the double length number in accumulators A and A + 1. Shifting
is the movement of the contents of a register bit-to-bit. The operation dis­
cussed here is similar to logical shifting [see § 2.4 and the illustration on
page 2-24], but in an arithmetic shift only the magnitude part is shifted ­
the sign is unaffected. In a double length number the 70-bit string made up
of the magnitude parts of the two words is shifted, but the sign of the low
order word is made equal to the sign of the high order word.

Null bits are brought in at the end being vacated: a left shift brings in Os at
the right, whereas a right shift brings in the equivalent of the sign bit at the
left. In either case, information shifted out at the other end is lost. A single
shift left is equivalent to multiplying the number by 2 (provided no bit of
significance is shifted out); a shift right divides the number by 2.

The number of places shifted is specified by the result of the effective
address calculation taken as a signed number (in twos· complement notation)
modulo 28 in magnitude. In other words the effective shift E is the number
composed of bit 18 (which is the sign) and bits 28-35 of the calculation
result. Hence the programmer may specify the shift directly in the instruc­
tion (perhaps indexed) or give an indirect address to be used in calculating
the shift. A positive E produces motion to the left, a negative E to the right;
E is thus the power of 2 by which the number is multiplied. Maximum
movement is 255 places.

ASH Arithmetic Shift Left: 1.62 (1.73) + .151EI J.ls
Right: 1.46 (1.57) + .151EI J.ls

35o
240 A 0L.-_X_...1....- yJ

89 121314 1718

Shift AC arithmetically the number of places specified by E. Do not shift
bit O. If E is positive, shift left bringing Os into bit 35; data shifted out of bit
1 is lost; set Overflow if any bit of significance is lost (a 1 in a positive num­
ber, a 0 in a negative one). If E is negative, shift right bringing as into bit 1
if AC is positive, Is if negative; data shifted out of bit 35 is lost.

2-32 CENTRAL PROCESSOR §2.6

ASHe Arithmetic Shift Combined Left: 2.00 (2.11) + .151EI IlS
Right: 1.84 (1.95) + .151EI IlS

35

___2_4_4__--'-_A_---'0....._x_......L...-
y ---'

89 121314 1718o

Concatenate the magnitude portions of accumulators A and A +1 with A on
the left, and shift the 70-bit combination in bits 1-35 and 37-71 the num­
ber of places specified by E. Do not shift AC bit 0, but make bit 0 of AC
A +1 equal to it if at least one shift occurs (ie if E is nonzero). If E is posi­
tive, shift left bringing Os into bit 71 (bit 35 of AC A +1); bit 37 (bit 1 of AC
A +1) is shifted into bit 35; data shifted out of bit 1 is lost; set Overflow if
any bit of significance is lost (a 1 in a positive number, a 0 in a negative one).
If E is negative, shift right bringing Os into bit 1 if AC is positive, 1s if nega­
tive; bit 35 is shifted into bit 37; data shifted out of bit 71 is lost.

2.6 FLOATING POINT ARITHMETIC

A subtraction involving two
like-signed numbers whose
exponents are equal and
whose fractions differ only in
the LSB gives a result con­
taining only one bit of signi­
ficance.

For floating point arithmetic the PDP-IO has instructions for scaling the
exponent (which is multiplication of the entire number by a power of 2)
and negating double length numbers as well as for performing addition, sub­
traction, multiplication and division of numbers in floating point format.
All instructions treated here interpret all operands as floating point numbers
in the format given in § 1.1, and generate results in that format. The reader
is strongly advised to reread § 1.1 if he does not remember the format in
detail.

For the four standard arithmetic operations the program can select wheth­
er or not the result shall be rounded. Rounding produces the greatest con­
sistent precision using only single length operands. Instructions without
rounding have a "long" mode, which supplies a two-word result for greater
precision; the other modes save time In one-word operations where rounding
is of no significance.

Actually the result is formed in a double length register in addition, sub­
traction and multiplication, wherein any bits of significance in the low order
part supply information for normalization, and then for rounding if re­
quested. Consider addition as an example. Before adding, the processor
right shifts the fractional part of the operand with the smaller exponent until
its bits correctly match the bits of the other operand in order of magnitude.
Thus the smaller operand could disappear entirely, having no effect on the
result ("result" shall always be taken to mean the information (one word or
two) stored by the instruction, regardless of the number of significant bits it
contains or even whether it is the correct answer). Long mode is likely to
retain information that would otherwise be lost, but in any given mode the
significance of the result depends on the relative values of the operands.
Even when both operands contain twenty-seven significant bits, a long addi­
tion may store two words that together contain only one significant bit. In
division the processor always calculates a one-word quotient that requires no

§2.6 FLOATING POINT ARITHMETIC 2-33

normalization if the original operands are normalized. An extra quotient bit
is calculated for rounding when requested; long mode retains the remainder.

The processor has four flags, Overflow, Floating Overflow, Floating
Underflow and No Divide, that indicate when the exponent is too large or
too small to be accommodated or a division cannot be performed because of
the relative values of dividend and divisor. Any of these circumstances sets
Overflow and Floating Overflow. If only these two are set, the exponent of
the answer is too large; if Floating Underflow is also set, the exponent is too
small. No Divide being set means the processor failed to perform a division,
an event that can be produced only by a zero divisor if all nonzero operands
are normalized. These flags can be read and controlled by certain program
control instructions [§ 2.9] , and Overflow and Floating Overflow are avail­
able as processor conditions (via in-out instructions [§ 2.14]) that can
request a priority interrupt if enabled. The conditions detected can only set
the flags and the hardware does not clear them, so the program must clear
them before a floating point instruction if they are to give meaningful infor­
mation about the instruction afterward. However, the program can check
the flags following a series of instructions to determine whether the entire
series was free of the types of error detected.

The floating point hardware functions at its best if given operands that
are either normalized or zero, and except in special situations the hardware
normalizes a nonzero result. An operand with a zero fraction and a nonzero
exponent can give wild answers in additive operations because of extreme
loss of significance; eg adding Yz X 22 and a X 269 gives a zero result, as the
first operand (having a smaller exponent) looks smaller to the processor and
is shifted to oblivion. A number with a 1 in bit a and as in bits 9-35 is not
simply an incorrect representation of zero, but rather an unnormalized
"fraction" with value -1. This unnormalized number can produce an incor­
rect answer in any operation. Use of other unnormalized operands simply
causes loss of significant bits, except in division where they can prevent its
execution because they can satisfy a no-divide condition that is impossible
for normalized numbers.

Scaling

One floating point instruction is in a category by itself: it changes the
exponent of a number without changing the significance of the fraction. In
other words it multiplies the number by a power of 2, and is thus analogous
to arithmetic shifting of fixed point numbers except that no information is
lost, although the exponent can overflow or underflow. The amount added
to the exponent is specified by the result of the effective address calculation
taken as a signed number (in twos complement notation) modulo 28 in mag­
nitude. In other words the effective scale factor E is the number composed
of bit 18 (which is the sign) and bits 28-35 of the calculation result. Hence
the programmer may specify the factor directly in the instruction (perhaps
indexed) or give an indirect address to be used in calculating it. A positive E
increases the exponent, a negative E decreases it; E is thus the power of 2 by
which the number is multiplied. The scale factor lies in the range -256 to
+255.

The processor normalizes the
result by shifting the fraction
and adjusting the exponent to
compensate for the change in
value. Each shift and accom­
panying exponent adjustment
thus multiply the number
both by 2 and by 72 simulta­
neously, leaving its value un­
changed.

2-34 CENTRAL PROCESSOR §2.6

132 A 0L.....-_X_..I.- y _

N is the number of left shifts
needed to normalize the
result.

FSC

o

Floating Scale

89 12 13 14 1718

2.75 (2.86) + .25N JJ.s

35

This instruction can be used
to float a fixed number with
27 or fewer significant bits.
To float an integer contained
within AC bits 9-35,

FSC AC,233

inserts the correct exponent
to move the binary point
from the right end to the left
of bit 9 and then normalizes
(233 8 = 155 10 = 128 + 27).

In the hardware the rounding
operation is actually some­
what more complex than
stated here. If the result is
negative, the hardware com­
bines rounding with placing
the high order word in twos
complement form by decreas­
ing its magnitude if the low
order part is < ~LSB. More­
over an extra single-step re­
normalization occurs if the
rounded word is no longer
normalized.

Keeping instructions and op­
erands in different memories
saves .47 (.36) IJ.s in memory
and both modes.

When E addresses a fast
memory location, a floating
point instruction with round­
ing takes .34 IJ.s less than the
time listed in basic mode, .80
(.69) IJ.s less in memory or
both mode.

MAY 1968

If the fractional part of AC is zero, clear AC. Otherwise add the scale factor
given by E to the exponent part of AC (thus multiplying AC by 2E), normal­
ize the resulting word bringing Os into bit positions vacated at the right, and
place the result back in AC.

NOTE

A negative E is represented in standard twos com­
plement notation, but the hardware compensates
for this when scaling the exponent.

If the exponent after normalization is > 127, set Overflow and Floating
Overflow; the result stored has an exponent 256 less than the correct one.
If < -128, set Overflow, Floating Overflow and Floating Underflow; the
result stored has an exponent 256 greater than the correct one.

Operations with Rounding

There are four instructions that use only one-word operands and store a
single-length rounded result. Rounding is away from zero: if the part of the
normalized answer being dropped (the low order part of the fraction) is
greater than or equal in magnitude to one half the LSB of the part being
retained, the magnitude of the latter part is increased by one LSB.

The rounding instructions have four modes that determine the source of
the non-AC operand and the destination of the result. These modes are like
those of logic and fixed point arithmetic, including an immediate mode that
allows the instruction to carry an operand with it.

Source ofnon- Destination
Mode Suffix ACoperand ofresult

Basic E AC
A Immediate I The wordE,O AC

Memory M E E

Both B E AC andE

Note however that floating point immediate uses E,O as an operand, not
0, E. In other words the half word E is interpreted as a sign, an 8-bit expo­
nent, and a 9-bit fraction.

The time required is a function of the number N of left shifts needed for
normalization. Brackets enclose the additional time required when rounding
actually changes the high order word.

In each of these instructions, the exponent that results from normaliza-

§2.6 FLOATING POINT ARITHMETIC 2-35

tion and rounding is tested for overflow or underflow. If the exponent is
> 127, set Overflow and Floating Overflow; the result stored has an expo­
nent 256 less than the correct one. If < -128, set Overflow, Floating Over­
flow and Floating Underflow; the result stored has an exponent 256 greater
than the correct one.

FADR Floating Add and Round

__1_4_4-JI~I A 121L....-_x-Jl...--
y

----l

o 67 89 12 13 14 1718 35

Floating add the operand specified by M to AC. If the double length fraction
in the sum is zero, clear the specified destination. Otherwise normalize the
double length sum bringing Os into bit positions vacated at the right, round
the high order part, test for exponent overflow or underflow as described
above, and place the result in the specified destination.

FADR

FADRI

FADRM

FADRB

Floating Add and Round 144
4.46 (4.68) + .15D + .25N [+.96] JlS

Floating Add and Round Immediate 145
3.70 (3.81) + .15D + .25N [+.96] JlS

Floating Add and Round to Memory 146
5.43 (5.65) + .15D + .25N [+.96] JlS

Floating Add and Round to Both 147
5.43 (5.65) + .15D + .25N [+.96] JlS

D is the difference between
the operand exponents pro­
vided that difference is ~ 63.
Otherwise D = O.

FSBR Floating Subtract and Round

o 67 89 121314 1718

y
35

Floating subtract the operand specified by M from AC. If the double length
fraction in the difference is zero, clear the specified destination. Otherwise
normalize the double length difference bringing Os into bit positions vacated
at the right, round the high order part, test for exponent overflow or under­
flow as described above, and place the result in the specified destination.

FSBR

FSBRI

FSBRM

FSBRB

Floating Subtract and Round 154
4.64 (4.86) + .15D + .15N [+.96] JlS

Floating Subtract and Round Immediate 155
3.88 (3.99) + .15D + .15N [+.96] JlS

Floating Subtract and Round to Memory 156
5.61 (5.83) + .15D + .15N [+.96] JlS

Floating Subtract and Round to Both 157
5.61 (5.83) + .15D + .15N [+.96]Jls

D is the difference between
the operand exponents pro­
vided that difference is ~ 63.
Otherwise D = O.

2-36 CENTRAL PROCESSOR

FMPR Floating Multiply and Round

§2.6

'---_1_6_4_~I A 0L......-..X_..l.........-
y _

o 67 89 12 13 14 1718 3S

Floating Multiply AC by the operand specified by M. If the double length
fraction in the product is zero, clear the specified destination. Otherwise
normalize the double length product bringing Os into bit positions vacated at
the right, round the high order part, test for exponent overflow or underflow
as described above, and place the result in the specified destination.

Use of normalized operands
requires at most one normali­
zation step for the result. If
unnormalized operands are
used, all times must be in­
creased by .25N.

FMPR

FMPRI

FMPRM

FMPRB

Floating Multiply and Round 164
10.29(10.51) [+.96] J.lS

Floating Multiply and Round Immediate 165
8.36 (8.47) [+.96] J.lS

Floating Multiply and Round to Memory 166
11.26 (11.48) [+.96] J.lS

Floating Multiply and Round to Both 167
11.26 (11.48) [+.96] J.lS

Timing. The times given above are average for normalized operands.
Refer to the description of MUL [§ 2.5] for the timing effects of the multi­
plication algorithm. Minimum times with azero multiplier are

FMPR
FMPRI
FMPRM
FMPRB

8.47 (8.69) [+.96] J.lS

7.71 (7.82) [+.96] J.lS

9.44 (9.66) [+.96] J.lS

9.44 (9.66) [+.96] J.lS

These must be increased by .13 J.lS for each transition. The programmer can
minimize the time by using as the multiplier the operand with fewer transi­
tions.

FDVR Floating Divide and Round

__17_4_~1 A 0 X
o 67 89 121314 1718

y

3S

Division fails if the divisor is
zero, but the no-divide condi­
tion can otherwise be satisfied
only if at least one operand is
unnormalized.

If the magnitude of the fraction in AC is greater than or equal to twice that
of the fraction in the operand specified by M, set Overflow, Floating Over­
flow and No Divide, and go immediately to the next instruction without
affecting the original AC or memory operand in any way.

If the division can be performed, floating divide AC by the operand spec­
ified by M, calculating a quotient fraction of 28 bits (this includes an extra
bit for rounding). If the fraction is zero, clear the specified destination.
Otherwise the single-length quotient will already be normalized if the orig­
inal operands were normalized; in this case, round it using the extra bit cal­
culated. If the quotient is not normalized, do so bringing first. the extra
calculated bit and then Os into bit positions vacated at the right. Test for

§2.6 FLOATING POINT ARITHMETIC 2-37

exponent overflow or underflow as described above, and place the result in
the specified destination.

FDVR

FDVRI

FDVRM

FDVRB

Floating Divide and Round

Floating Divide and.Round Immediate

Floating Divide and Round to Memory

Floating Divide and Round to Both

174
14.1 (14.3) /lS

175
13.3 (13.4) /lS

176
15.1 (15.3) /lS

177
15.1 (15.3) /lS

If unnormalized operands are
used, all times must be in­
creased by .25N. If the divi­
sion is not performed, only
3.5-4 ps are required.

Operations without Rounding

Instructions that do not round are faster for processing floating point num­
bers with fractions containing fewer than 27 significant bits. On the other
hand the long mode provides double precision or allows the programmer to
use his own method of rounding. Besides the four usual arithmetic opera­
tions with. normalization, there are two nonnormalizing instructions that
facilitate double precision arithmetic [§ 2.11 gives examples of double preci­
sion floating point routines]. These two instructions have no modes.

Usually the double length
number is in two adjacent
accumula~ors, and E equals
A+1. In this case DFN takes ...
only 2.89 (3.11) ps.35

3.43 (3.54) /lSDFN Double Floating Negate

13 1 A [Z1__x_...L- y -----J

o 89 121314 1718

Negate the double length floating point number composed of the contents of
AC and location E with AC on the left. Do this by taking the twos comple­
ment of the number whose sign is AC bit 0, whose exponent is in AC bits
1-8, and whose fraction is the 54-bit string in bits 9-35 of AC and location
E. Place the high order word of the result in AC; place the low order part of
the fraction in bits 9-35 of location E without altering the original contents
of bits 0-8 of that location.

Floating add the contents of location E to AC. If the double length fraction
in the sum is zero, clear accumulator A +1. Otherwise normalize the sum
only if the magnitude of its fractional part is ~ 1, and place the high order
part of the result in AC A +1. The original contents of AC and E are
unaffected.

D is the difference between
the operand exponents pro­
vided that difference is ~ 63.
Otherwise D = O.

When E addresses a fast
memory location, UFA takes
.34 ps less than the time
given.

y

35

4.62 (4.84) + .15D /lSUnnormalized Floating Add

130

UFA

o
A 11] X--------'---------'

89 121314 1718

MAY 1968

2-38

The exponent of the sum is
equal to that of the larger
summand unless addition of
the fractions overflows, in
which case it is greater by 1.
Exponent overflow can occur
only in the latter case.

CENTRAL PROCESSOR

NOTE

The result is placed in accumulator A+1. This is
the only arithmetic instruction that stores the
result in a second accumulator, leaving the original
operands intact.

§2.6

If the exponent of the sum following the one-step normalization is> 127,
set Overflow and Floating Overflow; the result stored has an exponent 256
less than the correct one.

The remaining floating point instructions perform the four standard arith­
metic operations with normalization but without rounding. All use AC and
the contents of location E as operands and have four modes.

Keeping instructions and op­
erands in different memories
saves .47 (.36) JlS in memory
and both modes.

When E addresses a fast
memory location, a floating
point instruction without
rounding takes .34 JlS less
than the time listed in basic
or long mode, .80 (.69) JlS
less in memory or both mode.

Mode

Basic
Long

Memory
Both

Suffix

L

M

B

Effect

High order word of result .;tored in AC.
In addition, subtraction and multiplica­
tion, the two-word result (in the double
length format described in § 1.1) • is
stored in accumulators A and A + I. In
division the dividend is the double length
word in A and A + I; the single length
quotient is stored in AC, the remainder
inACA+l.
High order word of result stored in E.

High order word of result stored in AC
and E.

In each of these instructions, the exponent that results from normaliza­
tion is tested for overflow or underflow. If the exponent is > 127, set Over-·
flow and Floating Overflow; the result stored has an exponent 256 less than
the correct one. If < -128, set 'Overflow, Floating Overflow and Floating
Underflow; the result stored has an exponent 256 greater than the correct
one.

The time required is a function of the number N of left shifts needed for
normalization.

FAD Floating Add

__1_4_0-II~ A 0_X_~ Y -----J

o 67 89 121314 1718 35

Floating add the contents of location E to AC. If the double length fraction
in the sum is zero, clear the destination specified by iti, clearing both accu-

§2.6 FLOATING POINT ARITHMETIC 2-39

mulators in long mode. Otherwise normalize the double length sum bringing
Os into bit positions vacated at the right, _test for exponent overflow or
underflow as described above, and place the high order word of the result in
the specified destination.

In long mode if the exponent of the sum is > 154 (127 + 27) or < -101
(-128 + 27) or the low order half of the fraction is zero, clear AC A + 1.
Otherwise place a low order word for a double length result in A + 1 by
putting a 0 in bit 0, an exponent in positive form 27 less than the exponent
of the sum in bits 1-8, and the low order part of the fraction in bits 9-35.

FAD

FADL

FADM

FADB

Floating Add

Floating Add Long

Floating Add to Memory

Floating Add to Both

140
4.46 (4.68) + .15D + .25N J.lS

141
5.31 (5.53).+ .15D + .25N J.lS

142
5.43 (5.65) + .15D + .25N J.lS

143
5.43 (5.65) + .15D + .25N J.lS

D is the difference between
the operand exponents pro­
vided that difference is ~ 63.
Otherwise D = O.

FSB Floating Subtract

o 67 89 12 13 14 1718

y

35

Floating subtract the contents of location E from AC. If the double length
fraction in the difference is zero, clear the destination specified by M, clear­
ing both accumulators in long mode. Otherwise normalize the double length
difference bringing Os into bit positions vacated at the right, test for expo­
nent overflow or underflow as described above, and place the high order
word of the result in the specified destination.

In long mode if the exponent of the difference is > 154 (127 + 27) or
< -101 (-128 + 27) or the low order half of the fraction is zero, clear AC
A + 1. Otherwise place a low order word for a double length result in A + 1 by
putting a 0 in bit 0, an exponent in positive form 27 less than the exponent
of the difference in bits 1-8, and the low order part of the fraction in bits
9-35.

FSB

FSBL

FSBM

FSBB

Floating Subtract

Floating Subtract Long

Floating Subtract to Memory

Floating Subtract to Both

150
4.64 (4.86) + .15D + .25N JlS

151
5.49 (5.71) + .15D + .25N J.lS

152
5.61 (5.83) + .15D + .25N J.lS

153
5.61 (5.83) + .15D + .25N J.lS

D is the difference between
the operand exponents pro­
vided that difference is ~ 63.
Otherwise D = O.

2-40 CENTRAL PROCESSOR

FMP Floating Multiply

§2.6

'-----_1_6_0_[K] A II] X
o 67 89 121314 1718

y
3S

Floating multiply AC by the contents of location E. If the double length
fraction in the product is zero, clear the destination specified by M, clearing
both accumulators in long mode. Otherwise normalize the double length
product bringing Os into bit positions vacated at the right, test for exponent
overflow or underflow as described above, and place the high order word of
the result in the specified destination.

In long mode if the exponent of the product is > 154 (127 + 27) or
< -101 (-128 + 27) or the low order half of the fraction is zero, clear AC
A +1. Otherwise place a low order word for a double length result in A +1
by putting a 0 in bit 0, an exponent in positive form 27 less than the
exponent of the product in bits 1-8, and the low order part of the fraction
in bits 9-35.

Timing. The times given above are average for normalized operands.
Refer to the description of MUL [§ 2.5] for the timing effects of the multi­
plication algorithm. Minimum times with a zero multiplier are

Use of normalized operands
requires at most one normali­
zation step for the result. If
unnormalized operands are
used, all times must be in­
creased by .25N.

FMP

FMPL

FMPM
FMPB

Floating Multiply

Floating Multiply Long
Floating Multiply to Memory
Floating Multiply to Both

FMP
FMPL
FMPM
FMPB

160
161
162
163

8.47 (8.69) IlS

9.32 (9.54) IlS

9.44 (9.66) IlS

9.44 (9.66) IlS

10.29 (10.51) IlS

11.14 (11.36) IlS

11.26 (11.48) IlS

11.26 (11.48) IlS

These must be increased by .13 IlS for each transition. The programmer can
minimize the time by using as the multiplier the operand with fewer transi­
tions.

FDV Floating Divide

o 67 89 121314 1718

y

3S

Division fails if the divisor is
zero, but the no-divide condi­
tion can otherwise be satisfied
only if at least one operand is
unnormalized.

If the magnitude of the fraction in AC is greater than or equal to twice that
of the fraction in location E, set Overflow, Floating Overflow and No Divide,
and go immediately to the next instruction without affecting the original AC
or memory operand in any way.

If division can be performed, floating divide the AC operand by the
contents of location E. In long mode the AC operand (the dividend) is the
double length number in accumulators A and A +1; in other modes it is the
single word in AC. Calculate a quotient fraction of 27 bits. If the fraction

§2.7 ARITHMETIC TESTING 2-41

is zero, clear the destination specified by M, clearing both accumulators in
long mode if the double length dividend was zero. A quotient with a non­
zero fraction will already be normalized if the original operands were nor­
malized; if it is not, normalize it bringing as into bit positions vacated at the
right. Test for exponent overflow or underflow as described above, and
place the single length quotient part of the result in the specified destination.

In long mode calculate the exponent for the fractional remainder from the
division according to the relative magnitudes of the fractions in dividend and
divisor: if the dividend was greater than or equal to the divisor, the exponent
of the remainder is 26 less than that of the dividend, otherwise it is 27 less.
I[the remainder exponent is > 127 or < -128 or the fraction is zero, clear
AC A +1. Otherwise place the floating point remainder (exponent and frac­
tion) with the sign of the dividend in AC A +1.

In long mode a nonzero un­
normalized dividend whose
entire high order fraction is
zero produces a zero quo­
tient. In this case the second
AC receives rubbish.

FDV

FDVL

FDVM

FDVB

Floating Divide
Floating Divide Long
Floating Divide to Memory
Floating Divide to Both

170
171
172
173

14.1 (14.3) IlS

15.6 (15.8) IlS

15.1 (15.3) IlS

15.1 (15.3) IlS

If unnormalized operands are
used, all times must be in­
creased by .25N. If the divi­
sion is not performed, only
4-4.5 JlS are required.

2.7 ARITHMETIC TESTING

These instructions may jump or skip depending on the result of an arithmetic
test and may first perform an arithmetic operation on the test word. Two of
the instructions have no modes.

AOBJP Add One to Both Halves of AC and Jump if Positive 1.68 (1.79) IlS

o
__2_5_2_-----'_A_IZl X

89 121314 1718

y
35

Add 10000018 to AC and place the result back in AC. If the result is greater
than or equal to zero (ie if bit a is 0, and hence a negative count in the left
half has reached zero or a positive count has not yet reached 217

), take the
next instruction from location E and continue sequential operation from
there.

AOBJN Add One to Both Halves of AC and Jump if Negative 1.68 (1.79) IlS

o
'---__2_5_3__-L...-_A__rI! X

89 12 13 14 17 18

y

35

Add 100000 18 to AC and place the result back in AC. If the result is less
than zero (ie if bit a is 1, and hence a negative count in the left half has not
yet reached zero or a positive count has reached 217

), take the next instruc­
tion from location E and continue sequential operation from there.

2-42 CENTRAL PROCESSOR §2.7

The incrementing of both halves of AC simultaneously is effected by adding
10000018• A count of -2 in AC left is therefore increased to zero if 218 - 1
is incremented in AC right.

These two instructions allow the program to keep .a control count in the
left half of an index register and require only one data transfer to initialize.
Problem: Add 3 to each location in a table of N entries starting at TAB.
Only four instructions are required.

MOVSI
MOVEI
ADDM
AOBJN

XR,-N
AC,3
AC,TAB(XR)
XR,.-l

;Put -N in XR left (clear XR right)
;Put 3 in AC
;Add 3 to entry
;Update XR and go back unless all
;entries accounted for

The eight remaining instructions jump or skip if the operand or operands
satisfy a test condition specified by the mode.

Mode

Never
Less
Equal
Less or Equal
Always
Greater or Equal
Not Equal
Greater

Suffix

L
E
LE
A

GE
N
G

Instructions with one operand compare AC or the contents of location E
with zero, those with two compare AC with E or the contents of location E.
The processor always makes the comparison even though the result is used in
only six of the modes. If the mnemonic has no suffix there is never any
program control function, and the instruction may be a no-op; an A suffix
produces an unconditional jump or skip - the action is always taken regard­
less of how the two quantities compare.

CAl Compare AC Immediate and Skip if Condition
Satisfied

1.68 (1.79) JlS

L.....--_3_0_1~ A 0L-_X_...L---
y _

o S6 89 12 13 14 1718 3S

Compare AC with E (ie with the word 0, E) and skip the next instruction in
sequence if the condition specified by M is satisfied.

§2.7

CAl
CAlL
CAIE
CAlLE

CAIA

CAIGE

CAIN

CAIG

ARITHMETIC TESTING

Compare AC Immediate but Do Not Skip 300
Compare AC Immediate and Skip if AC Less than E 301
Compare AC Immediate and Skip if Equal 302
Compare AC Immediate and Skip if AC Less than 303
or Equal to E

Compare AC Immediate but Always Skip 304

Compare AC Immediate and Skip if AC Greater than 305
or Equal to E

Compare AC Immediate and Skip if Not Equal 306

Compare AC Immediate and Skip if AC Greater than E 307

2-43

CAl is a no-op.

CAM Compare AC with Memory and Skip if Condition 2.53 (2.75) f..Ls When E addresses a fast mem-
Satisfied ory location, this instruction

takes .34 /lS less than the time

3 1 ~I A 0 X Y given.

0 S6 89 121314 1718 3S

Compare AC with the contents of location E and skip the next instruction in
sequence if the condition specified by M is satisfied. The pair of numbers
compared may be either both fixed or both normalized floating point.

CAM
CAML
CAME
CAMLE

CAMA

CAMGE

CAMN

CAMG

Compare AC with Memory but Do Not Skip
Compare AC with Memory and Skip if AC Less
Compare AC with Memory and Skip if Equal

Compare AC with Memory and Skip if AC Less
or Equal
Compare AC with Memory but Always Skip

Compare AC with Memory and Skip if AC Greater
or Equal

Compare AC with Memory and Skip if Not Equal
Compare AC with Memory and Skip if AC Greater

310
311
312
313

314

315

316
317

CAM is a no-op that refer­
ences memory.

JUMP Jump if AC Condition Satisfied 1.68 (1.79) f..LS

o S6 89 12 13 14 1718

y
3S

Compare AC (fixed or floating) with zero, and if the condition specified by
M is satisfied, take the next instruction from location E and continue
sequential operation from there.

JUMP
JUMPL

JUMPE

Do Not Jump
Jump if AC Less than Zero
Jump if AC Equal to Zero

320
321

322

JUMP is a no-op (instruction
code 320 has this mnemonic
for symmetry).

2-44

JUMPLE

JUMPA
JUMPGE
JUMPN
JUMPG

CENTRAL PROCESSOR

Jump if AC Less than or Equal to Zero
Jump Always
Jump if AC Greater than or Equal to Zero
Jump if AC Not Equal to Zero
Jump if AC Greater than Zero

§2.7

323
324
325
326
327

_3_3_0 A0 X

Skip if Memory Condition SatisfiedWhen E addresses a fast mem­
ory location, this instruction
takes .34 /lS less than the time
given.

SKIP

o S6 89 12 13 14 17 18

y

2.39 (2.61) JlS

3S

Compare the contents (fixed or floating) of location E with zero, and skip
the next instruction in sequence if the condition specified by M is satisfied.
IfA is nonzero also place the contents of location E in AC.

If A is zero, SKIP is a no-op;
otherwise it is equivalent to
MOVE. (Instruction code 330
has mnemonic SKIP for sym­
metry.)

SKIPA is a convenient way to
load an accumulator and skip
over an instruction upon en­
tering a loop.

SKIP

SKIPL

SKIPE

SKIPLE
SKIPA

SKIPGE

SKIPN
SKIPG

AOJ

Do Not Skip
Skip if Memory Less than Zero
Skip if Memory Equal to Zero
Skip if Memory Less than or Equal to Zero
Skip Always

Skip if Memory Greater than or Equal to Zero
Skip if Memory Not Equal to Zero
Skip if Memory Greater than Zero

Add One to AC and Jump if Condition Satisfied

330
331
332
333
334
335
336
337

1.68 (1.79) fJS

,---3_4--.-J1~ A I] X
o S6 89 121314 1718

y
3S

Increment AC by one and place the result back in AC. Compare the result
with zero, and if the condition specified by M is satisfied, take the next in­
struction from location E and continue sequential operation from there. If
AC originally contained 23S - 1, set the Overflow and Carry 1 flags; if -1,
set Carry 0 and Carry 1.

AOJ

AOJL

AOJE
AOJLE

AOJA

AOJGE

AOJN

AOJG

Add One to AC but Do Not Jump
Add One to AC and Jump if Less than Zero
Add One to AC and Jump if Equal to Zero
Add One to AC and Jump if Less than or Equal to Zero
Add One to AC and Jump Always

Add One to AC and Jump if Greater than or Equal
to Zero
Add One to ACand Jump if Not Equal to Zero
Add One to AC and Jump if Greater than Zero

340
341
342
343
344
345

346
347

§2.7 ARITHMETIC TESTING 2-45

Keeping the count in fast
memory saves .54 (.43) /lS;
keeping it in a different mem­
ory from the instruction saves
.20 (.09) /lS.

35

2.94 (3.05) JlS

A IZlL-_X_l--- y _
121314 1718

Add One to Memory and Skip if Condition Satisfied

_3_5------J0
56 89o

AOS

Increment the contents of location E by one and place the result back in E.
Compare the result with zero, and skip the next instruction in sequence if
the condition specified by M is satisfied. If location E originally contained
235 - 1, set the Overflow and Carry 1 flags; if -1, set Carry 0 and Carry 1.
If A is nonzero also place the result in AC.

AOS
AOSL
AOSE
AOSLE

AOSA
AOSGE

AOSN
AOSG

Add One to Memory but Do Not Skip

Add One to Memory and Skip if Less than Zero

Add One to Memory and Skip if Equal to Zero

Add One to Memory and Skip if Less than or Equal
to Zero

Add One to Memory and Skip Always

Add One to Memory and Skip if Greater than or
Equal to Zero

Add One to Memory and Skip if Not Equal to Zero

Add One to Memory and Skip if Greater than Zero

350
351
352
353

354
355

356
357

SOJ Subtract One from AC and Jump if Condition
Satisfied

1.68 (1. 79) JlS

o 56 89 121314 1718

y
35

Decrement AC by one and place the result back in AC. Compare the result
with zero, and if the condition specified by M is satisfied, take the next in­
struction from location E and continue sequential operation from there. If
AC originally contained -235 , set the Overflow and Carry 0 flags; if any other
nonzero number, set Carry 0 and Carry 1.

SOJ
SOJL
SOJE
SOJLE

SOJA
SOJGE

SOJN
SOJG

Subtract One from AC but Do Not Jump

Subtract One from AC and Jump if Less than Zero

Subtract One from AC and Jump if Equal to Zero

Subtract One from AC and Jump if Less than or
Equal to Zero

Subtract One from AC and Jump Always

Subtract One from AC and Jump if Greater than or
Equal to Zero

Subtract One from AC and Jump if Not Equal to Zero

Subtract One from AC and Jump if Greater than Zero

360
361
362
363

364
365

366
367

2-46 CENTRAL PROCESSOR §2.7

Subtract One from Memory and Skip if Condition
Satisfied

Keeping the count in fast
memory saves .54 (.43) f.lS;
keeping it in a different mem­
ory from the instruction saves
.20 (.09) JlS.

SOS

o 56 89 12 13 14 1718

2.94 (3.05) JlS

35

Decrement the contents of location E by one and place the result back in E.
Compare the result with zero, and skip the next instruction in sequence if
the condition specified by M is satisfied. If location E originally contained
-235 , set the Overflow and Carry 0 flags; if any other nonzero number, set
Carry 0 and Carry 1. If A is nonzero also place the result in AC.

sas
saSL
SaSE
saSLE

saSA
SaSGE

saSN

saSG

Subtract One from Memory but Do Not Skip

Subtract One from Memory and Skip if Less than Zero

Subtract One from Memory and Skip if Equal to Zero

Subtract One from Memory and Skip if Less than or
Equal to Zero

Subtract One from Memory and Skip Always

Subtract One from Memory and Skip if Greater
than or Equal to Zero

Subtract One from Memory and Skip if Not Equal
to Zero

Subtract One from Memory and Skip if Greater
than Zero

370

371
372
373

374
375

376

377

Some of these instructions are useful for determining the relative values of
fixed and floating point numbers; others are convenient for controlling
iterative processes by counting. AOSE is especially useful in an interlock
procedure in a multiprocessor system. Suppose memory contains a routine
that must be available to two processors but cannot be used by both at once.
When one processor finishes the routine it sets location LOCK to -1. Either
processor can then test the interlock and make it busy with no possibility of
letting the other one in, as AOSE cannot be interrupted once it starts to
modify the addressed location.

This procedure is invalid if
the programmer is making use
of the drum split feature
(which is not used by any
DEC equipment).

AOSE
JRST

LOCK
.-1

;Skip to interlocked code only if
;LOCK is zero after addition
;Interlocked code starts here

SETOM LOCK ;Unlock

Since it takes several days to count to 236, it is alright to keep testing the
lock.

§2.8 LOGICAL TESTING AND MODIFICATION

2.8 LOGICAL TESTING AND MODIFICATION

2-47

These eight instructions use a mask to modify and/or test selected bits in
AC. The bits are those that correspond to Is in the mask and they are
referred to as the "masked bits". The programmer chooses the mask, the
way in which the masked bits are to be modified, and the condition the
masked bits must satisfy to produce a skip.

The basic mnemonics are three letters beginning with T. The second letter
selects the mask and the manner in which it is used.

Mask

Right

Left

Direct

Swapped

Letter

R

L

D

S

Effect

AC tight is masked by E (AC is masked
by the word 0, E)

AC left is masked by E (Ae is masked by
the word E, 0)

AC is masked by the contents of loca­
tion E

AC is masked by the contents of loca­
tion E with left and right halves inter­
changed

If a direct or swapped mask is
taken from a fast memory
location, a test instruction
takes .34 JlS less than the
time listed.

The third letter determines the way in which those bits selected by the mask
are modified.

Modification

No

Zeros

Complement

Ones

Letter

N

Z

C

o

Effect on AC

None

Places Os in all masked bit positions

Complements all masked bits

Places Is in all masked bit positions

An additional letter may be appended to indicate the mode, which spec­
ifies the condition the masked bits must satisfy to produce a skip.

If the mnemonic has no suffix there is never any skip, and the instruction is
a no-op if there is also no modification; an A suffix produces an uncondi­
tional skip - the skip always occurs regardless of the state of the masked
bits. Note that the skip condition must be satisfied by the state of the
masked bits prior to any modification called for by the instruction.

Mode

Never

Equal

Always

Not Equal

Suffix

E

A

N

Effect

Never skip

Skip if all masked bits equal 0

Always skip

Skip if not all masked bits equal 0
(at least one bit is I)

These mode names are con­
sistent with those forarith­
metic testing and derive from
the test method, which ands
AC with the mask and tests
whether the result is equal to
zero or is not equal to zero.
The programmer may find it
convenient to think of the
modes as Every and Not
Every: every masked bit is 0
or not every masked bit is O.

2-48 CENTRAL PROCESSOR §2.8

TRN Test Right, No Modification, and Skip if Condition
Satisfied

1.85 (1.96) p.s

o
'---_6_0------JI~ A I~ X

56 789 121314 1718

y
35

If the bits in AC right corresponding to 1sin E satisfy the condition specified
by M, skip the next instruction in sequence. AC is unaffected.

TRN is a no-op. TRN
TRNE

TRNA
TRNN

Test Right, No Modification, but Do Not Skip
Test Right, No Modification, and Skip if All
Masked Bits Equal 0
Test Right, No Modification, but Always Skip

Test Right, No Modification, and Skip if Not
All Masked Bits Equal 0

600
602

604
606

TRZ Test Right, Zeros, and Skip if Condition Satisfied 1.85 (1.96) p.s

35

__6_2-----J~ A I~_x_..l- Y ----l

56 789 121314 1718o

624
626

620
622

TRZA
TRZN

If the bits in AC right corresponding to 1s in E satisfy the condition specified
by M, skip the next instruction in sequence. Change the masked AC bits to
Os; the rest of AC is unaffected.

TRZ Test Right, Zeros, but Do Not Skip
TRZE Test Right, Zeros, and Skip if All Masked Bits

Equaled 0
Test Right, Zeros, but Always Skip
Test Right, Zeros, and Skip if Not All Masked
Bits Equaled 0

TRC Test Right, Complement, and Skip if Condition
Satisfied

1.85 (1.96) p.s

35o
6 4 ~ A IZI_x_.L.-- Y ----'

56 789 121314 1718

If the bits in AC right corresponding to 1s in E satisfy the condition specified
by M, skip the next instruction in sequence. Complement the masked AC
bits; the rest of AC is unaffected.

TRC
TRCE

TRCA
TRCN

Test Right, Complement, but Do Not Skip
Test Right, Complement, and Skip if All Masked
Bits Equaled 0
Test Right, Complement, but Always Skip
Test Right, Complement, and Skip if Not All
Masked Bits Equaled 0

640
642

644
646

§2.8 LOGICAL TESTING AND MODIFICATION 2-49

TRO Test Right, Ones, and Skip if Condition Satisfied 1.85 (1.96) IlS

35

'---_6_6------'~ A 0L.--X_.L- y _
56 7 8 9 121314 1718o

If the bits in AC right corresponding to Is in E satisfy the condition specified
by M, skip the next instruction in sequence. Change the masked AC bits to
Is; the rest of AC is unaffected.

TRO
TROE

TROA
TRON

Test Right, Ones, but Do Not Skip
Test Right, Ones, and Skip if All Masked Bits
Equaled 0
Test Right, Ones, but Always Skip
Test Right, Ones, and Skip if Not All Masked
Bits Equaled 0

660
662

664
666

TLN Test Left, No Modification, and Skip if Condition
Satisfied

1.85 (1.96) IlS

35o
6 0 ~ A IZlL--_x_.L- y _

56 7 8 9 12 13 14 17 18

If the bits in AC left corresponding to 1s in E satisfy the condition specified
by M, skip the next instruction in sequence. AC is unaffected.

TLN
TLNE

TLNA
TLNN

Test Left, No Modification, but Do Not Skip
Test Left, No Modification, and Skip if All
Masked Bits Equal 0
Test Left, No Modification, but Always Skip

Test Left, No Modification, and Skip if Not
All Masked Bits Equal 0

601
603

605
607

TLN is a no-op.

TLZ Test Left, Zeros, and Skip if Condition Satisfied 1.85 (1.96) IlS

35

'----_6_2_QDTI A IZJL--_X_.L- y _
56 789 121314 1718o

If the bits in AC left corresponding to 1s in E satisfy the condition specified
by M, skip the next instruction in sequence. Change the masked AC bits to
Os; the rest of AC is unaffected.

TLZ
TLZE

TLZA
TLZN

Test Left, Zeros, but Do Not Skip
Test Left, Zeros, and Skip if All Masked Bits
Equaled 0
Test Left, Zeros, but Always Skip
Test Left, Zeros, and Skip if Not All Masked
Bits Equaled 0

621
623

625
627

2-50

TLC

CENTRAL PROCESSOR

Test Left~ Complement, and Skip if Condition
Satisfied

§2.8

1.85 (1.96) IlS

35o
64 QD] A 0L.-_X_...l.....-- y _

56 7 8 9 12 13 14 17 18

If the bits in AC left corresponding to 1s in E satisfy the condition specified
by M, skip the next instruction in sequence. Complement the masked AC
bits; the rest of AC is unaffected.

TLC Test Left, Complement, but Do Not Skip 641

TLCE Test Left, Complement, and Skip if All Masked 643
Bits Equaled 0

TLCA Test Left, Complement, but Always Skip 645

TLCN Test Left, Complement, and Skip if Not All 647
Masked Bits Equaled 0

TLO Test Left, Ones, and Skip if Condition Satisfied 1.85 (1.96) IlS

~_6_6_~I A 0L.-._X_--l-
y _

o 56 7 8 9 121314 1718 35

If the bits in AC left corresponding to 1s in E satisfy the condition specified
by M, skip the next instruction in sequence. Change the masked AC bits to
1s; the rest of AC is unaffected.

TLO

TLOE

TLOA

TLON

TON

Test Left, Ones, but Do Not Skip
Test Left, Ones, and Skip if All Masked Bits
Equaled 0
Test Left, Ones, but Always Skip
Test Left, Ones, and Skip if Not All Masked
Bits Equaled 0

Test Direct, No Modification, and Skip if Condition
Satisfied

661

663

665

667

2.70 (2.92) IlS

o
"----6_l_[~]1 A 0 X

56789 121314 1718

y

35

If the bits in AC corresponding to 1s in the contents of location E satisfy the
condition specified by M, skip the next instruction in sequence. AC is un­
affected.

TDN is a no-op that refer­
ences memory.

TON

TONE

TONA
TONN

Test Direct, No Modification, but Do Not Skip
Test Direct, No Modification, and Skip if All
Masked Bits Equal 0
Test Direct, No Modification, but Always Skip
Test Direct, No Modification, and Skip if Not
All 1\1asked Bits Equal 0

610

612

614

616

§2.8 LOGICAL TESTING AND MODIFICATION 2-51

TDZ Test Direct, Zeros, and Skip if Condition Satisfied 2.70 (2.92) /lS

o
_6_3--J[K@]AIIIX

56 7 8 9 121314 1718

y

35

634
636

630
632

TOZA
TOZN

If the bits in AC corresponding to 1s in the contents of location E satisfy the
condition specified by M, skip the next instruction in sequence. Change the
masked AC bits to as; the rest of AC is unaffected.

TOZ Test Direct, Zeros, but Do Not Skip
TOZE Test Direct, Zeros, and Skip if All Masked Bits

Equaled a
Test Direct, Zeros, but Always Skip
Test Direct, Zeros, and Skip if Not All Masked
Bits Equaled a

TDC Test Direct, Complement, and Skip if Condition
Satisfied

2.70 (2.92) /lS

o
_6_5_[~EI A IT] X

56 789 121314 1718

y
35

If the bits in AC corresponding to Is in the contents of location E satisfy the
condition specified by M, skip the next instruction in sequence. Complement
the masked AC bits; the rest of AC is unaffected.

TOC Test Direct, Complement, but Do Not Skip 650
TOCE Test Direct, Complement, and Skip if All Masked 652

Bits Equaled a
TO CA Test Direct, Complement, but Always Skip 654
TO CN Test Direct, Complement, and Skip if Not All 656

Masked Bits Equaled a

TOO Test Direct, Ones, and Skip if Condition Satisfied 2.70 (2.92) /lS

o
,---6_7_[~]] A 0 X

56 7 8 9 121314 1718

y

35

670
672

674
676

ToaA
ToaN

If the bits in AC corresponding to Is in the contents of location E satisfy the
condition specified by M, skip the next instruction in sequence. Change the
masked AC bits to Is; the rest of AC is unaffected.

TO a Test Direct, Ones, but Do Not Skip
TO aE Test Direct, Ones, and Skip if All Masked Bits

Equaled a
Test Direct, Ones, but Always Skip
Test Direct, Ones, and Skip if Not All Masked
Bits Equaled a

2-52 CENTRAL PROCESSOR §2.8

TSN Test Swapped, No Modification, and Skip if
Condition Satisfied

2.70 (2.92) IlS

35

__6_1_[Kill A 0_X-----J'----- y _
56 7 8 9 121314 1718o

If the bits in AC corresponding to 1s in the contents of location E with its
left and right halves swapped satisfy the condition specified by M, skip the
next instruction in sequence. AC is unaffected.

TSN is a no-op that refer­
ences memory.

TSN
TSNE

TSNA
TSNN

Test Swapped, No Modification, but Do Not Skip
Test Swapped, No Modification, and Skip if All
Masked Bits Equal 0
Test Swapped, No Modification, but Always Skip
Test Swapped, No Modification, and Skip if Not
All Masked Bits Equal Q.

611
613

615
617

TSZ Test Swapped, Zeros, and Skip if Condition Satisfied 2.70 (2.92) IlS

_6_3---.J~ A [£] X
o 56 7 8 9 12 13 14 1718

y
35

If the bits in AC .corresponding to 1s in the contents of location E with its
left and right halves swapped satisfy the condition specified by M, skip the
next instruction in sequence. Change the masked AC bits to Os; the rest of
AC is unaffected.

TSZ Test Swapped, Zeros, but Do Not Skip 631
TSZE Test Swapped, Zeros, and Skip if All Masked Bits 633

Equaled 0
TSZA Test Swapped, Zeros, but Always Skip 635
TSZN Test Swapped, Zeros, and Skip if Not All Masked 637

Bits Equaled 0

TSC Test Swapped, Complement, and Skip if Condition 2.70 (2.92) JlS
Satisfied

o 35
_6_5-----J1~

56 7 8 9

A 0e....-_X-----''--- y _
121314 1718

If the bits in AC corresponding to 1s in the contents of location E with its
left and right halves swapped satisfy the condition specified by M, skip the
next instruction in sequence. Complement the masked AC bits; the rest of
AC is unaffected.

TSC
TSCE

Test Swapped, Complement, but Do Not Skip
Test Swapped, Complement, and Skip if All
Masked Bits Equaled 0

651
653

§ 2.8 LOGICAL TESTING AND MODIFICATION 2-53

TSCA Test Swapped, Complement, but Always Skip 655
TSCN Test Swapped, Complement, and Skip if Not 657

All Masked Bits Equaled 0

TSO Test Swapped, Ones, and Skip if Condition Satisfied 2.70 (2.92) JlS

o
'---_6_7_[E]I] A III X

56 7 8 9 121314 1718

y

35

If the bits in AC corresponding to 1s in the contents of location E with its
left and right halves swapped satisfy the condition specified by M, skip the
next instruction in sequence. Change the masked AC bits to 1s; the rest of
AC is unaffected.

TSO
TSOE

TSOA

TSON

Test Swapped, Ones, but Do Not Skip
Test Swapped, Ones, and Skip if All Masked Bits
Equaled a
Test Swapped, Ones, but Always Skip
Test Swapped, Ones, and Skip if Not All Masked
Bits Equaled a

671
673

675
677

With these instructions any bit throughout all of memory can be used as a
program flag, although an ordinary memory location containing flags must
be moved to an accumulator for testing or modification. The usual pro­
cedure, since locations 1-17 are addressable as index registers, is to use AC a
as a register of flags (often addressed symbolically as F).

Unless one frequently tests flags in both halves of F simultaneously, it is
generally most convenient to select bits by 1s right in the address part of the
instruction word. A given bit selected by a half word mask M is then set by
one of these:

TRO F,M

and tested and cleared by one of these:

\

TLO F,M

TRZE F,M TRZN F,M TLZE F,M TLZN F,M

Suppose we wish to skip if both bits 34 and 35 are 1 in location L. The
following suffices.

SETCM F,L
TRNE F,3

We can refer to a flag in a given bit position within a word as nag X, where X
is a binary number containing a single 1 in the same bit position as the flag.
This sequence determines whether flags X and Y in the right half of accumu­
lator F are both on:

2-54 CENTRAL PROCESSOR §2.9

TRC
TRCE

F,X+Y
F,X+Y

;Complement flags X and Y
;Test both and restore original states
;Do this if not both on
;Skip to here if both on

As no-ops, code 247 takes
1.50 (1.61) IlS, 257 takes
1.36 (1.47) IlS.

Note that nothing is stored in
bits 13-17, so when the PC
word is addressed indirectly it
can produce neither indexing
nor further indirect address­
ing.

2.9 PROGRAM CONTROL

The program control class of instructions includes the unimplemented user
operations [discussed in the next section] and the arithmetic and logical test
instructions. Some instructions in this class are no-ops, as are a few of the
instructions for performing logical operations. The most commonly used
no-op is JFCL, which is discussed below. No-ops among the instructions
previously discussed are SETA, SETAl, SETMM, CAl, CAM, JUMP, TRN,
TLN, TDN, TSN. Of these" SETA, SETAl, CAl, JUMP, TRN and TLN do
not use the calculated effective address to reference memory. Hence in these
instructions one can store any information in bits 18-35 without fear of
attempting to address a location outside a user block or in a memory that
does not exist. The unassigned instruction codes 247 and 257 are used for
instructions installed specially for a particular system. They execute as
no-ops when run on a computer that contains no special hardware for them,
but for program compatibility it is advised that they not be used regularly as
no-ops.

The present section treats all program control instructions other than
those mentioned above and in-out instructions that test input conditions
[§ 2.12]. All but one of these are jumps, although the exception causes the
processor to execute an instruction at an arbitrary location and may there­
fore be regarded as a jump with an immediate and automatic return. Also,
all but two of the jumps are unconditional; one exception tests various flags,
the other tests an accumulator.

Several of the jump instructions save the current contents of the program
counter PC in the right half of an accumulator or memory location and save
the states of various flags in the left half. The left bit positions that receive
information are listed below; all other left bit positions are cleared. An X in
a mnemonic indicates any letter (or none) that may appear in the given
position to specify the mode, eg ADDX comprises ADD, ADDI, ADDM,
ADDB.

Bit Meaning ofa 1 in the Bit

o Overflow - any of the following has occurred:

A single instruction has set one of the carry flags (bits 1 and 2)
without setting the other.

An ASH or ASHC has left shifted a lout of bit 1 in a positive
number or a 0 out in a negative number.

An MULX has multiplied -235 by itself (product 270).

An IMULX has multiplied two numbers with product ~ 235 or
< - 235•

§2.9 PROGRAM CONTROL 2-55

Floating Overflow has been set (bit 3).

No Divide has been set (bit 12).

Carry 0 - if set without Carry 1 (bit 2) being set, causes Overflow to
be set and indicates that one of the following has occurred:

An ADDX has added two negative numbers with sum < -235•

An SUBX has subtracted a positive number from a negative num­
ber with difference < -235.

An SOJX or SOSX has decremented -235 •

An MOVNX or MOVMX has negated -235
•

But if set with Carry 1, indicates that one of these nonoverflow
events has occurred:

In an ADDX both summands were negative, or their signs differed
and their magnitudes were equal or the positive one was the
greater in magnitude.

In an SUBX the signs of the operands were the same and AC was
the greater or the two were equal, or the signs of the operands
differed and AC was negative.

An AOJX or AOSX has incremented -1.

An SOJX or SOSX has decremented a nonzero number other than
-235•

An MOVNX has negated zero.

2 Carry 1 - if set without Carry 0 (bit 1) being set, causes Overflow to
be set and indicates that one of the following has occurred:

An ADDX has added two positive numbers with sum ~ 235
•

An SUBX has subtracted a negative number from a positive num­
ber with difference ~ 235•

An AOJX or AOSX has incremented 235 - 1.

But if set with Carry 0, indicates that one of the nonoverflow events
listed under Carry 0 has occurred.

3 Floating Overflow - any of the following has set Overflow:

In a floating point instruction other than DFN, the exponent of
the result was> 127.

Floating Underflow (bit 11) has been set.

No Divide (bit 12) has been set in an FDVX or FDVRX.

4 Byte Interrupt - the processor is in a priority interrupt that inter­
rupted a byte instruction after the processing of the pointer but
before the processing of the byte. Hence if an ILDB or IDPB was
interrupted, the pointer now points not to the last byte, but rather
to the byte that should be handled upon the return to the inter­
rupted program [§ 2.13] .

5 User - the processor is in user mode [§ 2.15] .

Remember [§2.5], overflow
is determined directly from
the carries, not from the
flags. The carry flags give
meaningful information only
if no more than one instruc­
tion that can set them occurs
between clearing and reading
them.

2-56 CENTRAL PROCESSOR §2.9

6 User In-out - even if the processor is in user mode, the restrictions
on user instructions do not apply [§ 2.15] .

11 Floating Underflow - in a floating point instruction other than
DFN, the exponent of the result was < -128 and Overflow and
Floating Overflow have been set.

If normalized operands are
used, only a zero divisor can
cause floating division to fail.

12 No Divide - any of the following has set Overflow:

In a DIVX the dividend was greater than or equal to the divisor.

In an IDIVX the divisor was zero.

In an FDVX or FDVRX the divisor was zero, or the dividend
fraction was greater than or equal to twice the divisor fraction in
magnitude; in either case Floating Overflow has been set.

17

FLOATING
UNDERFLOW

I-
111098765

BYTE
INTERRUPT

)
43

FLOATING
OVERFLOW

I
2

OVERFLOW

!-.---

CA~RYl IT
I a

CARRY USER NO 0 0 0 0USER IN-OUT DIVIDE1

2 3 4 15 6

FLAG FORMAT, LEFT HALF OF PC WORD

Execute the contents of location E as an instruction. Any instruction may
be executed, including another XCT. If an XCT executes a skip instruction,
the skip is relative to the location of the XCT (the first XCT if there are
several in a chain). If an XCT executes a jump, program flow is altered as
specified by the jump (no matter how many XCTs precede a jump instruc­
tion, when PC is saved it contains an address one greater than the location of
the first XCT in the chain).

3S

1.36 (1.47) J1.s

A IZJ__x_....l..-- y _
89 121314 1718

Execute

256

XCT

o

The A portion of this instruc­
tion is ignored.

The total time required is
that listed plus the time for
the instruction executed. IfE
addresses a fast memory loca­
tion, the instruction executed
takes .34 fJS less than the time
listed for it.

N is the number of leading Os. JFFO Jump if Find First One 2.19 (2.30) + .20 (N mod 18) J1.S

3S

___2_4_3__----L._A__01--_X_....L-
y _

89 121314 1718o

If AC contains zero, clear AC A +1 and go on to the next instruction in
sequence.

If AC is not zero, count the number of leading Os in it (Os to the left of
the leftmost 1), and place the count in AC A +1. Take the next instruction

§2.9 PROGRAM CONTROL 2-57

from location E and continue sequential operation from there.
In either case AC is unaffected, the original contents of AC A +1 are lost.

Note that when AC is nega­
tive, the second accumulator
is cleared, just as it would' be
if AC were zero.

JFCL Jump on Flag and Clear 1.36 (1.47) JlS

35

___2_5_5__---'--_F-J0__x_-'-- y -------'
89 121314 1718o

If any flag specified by F is set, clear it and take the next instruction from
location E, continuing sequential operation from there. Bits 9-12 are pro­
grammed as follows.

To select one ora combination of these flags (which are among those des­
cribed above) the programmer can specify the equivalent of an AC address
that places 1s in the appropriate bits, but MACRO recognizes mnemonics for
some of the 13-bit instruction codes (bits 0-12).

JFCL JFCL 0, No-op 25500
JOV JFCL 10, Jump on Overflow 25540
JCRYO JFCL 4, Jump on Carry a 25520
JCRY1 JFCL 2, Jump on Carry 1 25510
JCRY JFCL 6, Jump on Carry a or 1 25530
JFOV JFCL 1, Jump on Floating Overflow 25504

Bit

9

10
11
12

Flag Selected by a 1

Overflow
Carry a
Carry 1
Floating Overflow

This instruction can be used
simply to clear the selected
flags by having the jump ad­
dress point to the next con­
secutive location, as in

JFCL 17,.+1

which clears all four flags
without disrupting the nor­
mal program sequence. A
JFCL that selects no flag is
the fastest no-op as· it neither
fetches nor stores an operand,
and bits 18-35 of the instruc­
tion word can be used to
store information.

Interleaving memories saves
.47 (.36) J.Ls.

35

2.21 (2.43) JlS

A 0L.......-_X---ll- y --...J

89 12 13 14 17 18

Jump to Subroutine

264
o

JSR

Place the current contents of the flags (as described above) in the left half of
location E and the contents of PC in the right half (at this time PC contains
an address one greater than the location of the JSR instruction). Take the
next instruction from location E + 1 and continue sequential operation from
there. The flags are unaffected except Byte Interrupt, which is cleared.

If this instruction is executed as a result of a priority interrupt or in un­
relocated 41 or 61 while the processor is in user mode, bit 5 of the PC word
stored is 1 and the processor leaves user mode.

The A portion of this instruc­
tion is ignored.

2-58 CENTRAL PROCESSOR §2.9

JSP Jump and Save PC 1.36 (1.47) f.lS

3So
265 A 0'-_X-----JL....- y _____

89 121314 1718

Place the current contents of the flags (as described above) in AC left and
the contents of PC in AC right (at this time PC contains an address one
greater than the location of the JSP instruction). Take the next instruction
from location E and continue sequential operation from there. The flags
are unaffected except Byte Interrupt, which is cleared.

If this instruction is executed as a result of a priority interrupt or in un­
relocated 41 or 61 while the processor is in user mode, bit 5 of the PC word
stored is 1 and the processor leaves user mode.

JRST Jump and Restore 1.36 (1.47) f.lS

35

___2 _5_4__L..--_F----J[I_x_--'-- Y _____
89 121314 1718o

Perform the functions specified by F, then take the next instruction from
location E and continue sequential operation from there. Bits 9-12 are
programmed as follows.

This is identical to UUO trap­
ping [§2.10] .

MA actually displays the
address of the location that
would have been executed
next had the IRST been re­
placed by a no-op. So except
for a IRST in a priority
interrupt, MA points to the
location one beyond that
containing the instruction
that caused the halt. This
instruction is ordinarily the
IRST or perhaps an XCT, but
could even be a DUD.

Bit

9

10

11

Function Produced by a 1

Restore the channel on which the highest priority interrupt is cur­
rently being held [§ 2.13] .

Unless the User In-out flag is set, this function cannot be executed
in a user program. Instead of restoring the channel, it stores its own
instruction code, F and effective address E in bits 0-8, 9-12 and
18-35 respectively of unrelocated location 40 (clearing bits 13-17),
and then executes the instruction contained in location 41, which is
under control of the monitor [§ 2.15] .

Halt the processor. When it stops, the MA lights on the console dis­
play an address one greater than that of the location containing the
instruction that caused the halt, and PC displays the jump address
(the location from which the next instruction will be taken if the
operator causes the processor to resume operation without changing
PC).

Unless the User In-out flag is set, this function cannot be executed
in a user program. Instead of halting the processor, it stores its
own instruction code, F and effective address E in Bits 0-8, 9-12
and 18-35 respectively of unrelocated location 40 (clearing bits
13-17), and then executes the instruction contained in location 41,
which is under control of the monitor [§ 2.15] .

Restore the flags listed above from the left half of the word in the
last location referenced in the effective address calculation. Hence
to restore flags requires that the JRST instruction use indexing or

§ 2.9 PROGRAM CONTROL

indirect addressing.
Restoration of all but the user flags is directly according to the

contents of the corresponding bits as given above: a flag is set by a I
in the bit, cleared by a O. A I in bit 5 sets User but a 0 has no effect,
so the Monitor can restart a user program by restoring flags but the
user cannot leave user mode by this method. A 0 in bit 6 clears User
In-out, but a I sets it only if the JRST is being executed by the
Monitor, ie if User is clear.

12 Enter user mode. The user program starts at relocated location E.

To produce one or a combination of these functions the programmer can
specify the equivalent of an AC address that places Is in the appropriate bits,
but MACRO recognizes mnemonics for the most important 13-bit instruction
codes (bits 0-12).

2-59

By manipulating the contents
of the left half word used to
restore the flags, the program­
mer can set them up in any
desired way except that a
user program cannot clear
User or set User In-out. Set­
ting Byte Interrupt prevents
incrementing in the next
ILDB or IDPB provided there
is no intervening JSR, JSP or
PUSHJ.

In a JRSTF or JEN the flags are restored from bits 0-12 of the final word
retrieved in the effective address calculation; hence any JRST with a I in bit
II must use indirect addressing or indexing, which takes extra time. If the
PC word was stored in AC (as in a JSP), a common procedure is to use AC to
index a zero address (eg, JRSTF (AC)), so its right half becomes the effec­
tive Uump) address. If the PC word was stored in core (as in a JSR), one
must address it indirectly (remember, bits 13-17 of the PC word are clear,
so again its right half is the effective address). A JRSTF (AC) takes 1.64
(1.75) JlS, a JRSTF @PCWORD takes 2.34 (2.56) JlS.

JRST

HALT

JRSTF

JEN

JRST 0, Jump 25400

JRST 10, Jump and Restore 25440
Interrupt Channel

JRST 4, Halt 25420

JRST 2, Jump and Restore Flags 25410

JRST I, Jump to User Program 25404

JRST 12, Jump and Enable 25450 JEN completes an interrupt
by restoring the channel and
restoring the flags for the
interrupted program.

CAUTION

Giving a JRSTF or JEN without indexing or
indirect addressing restores the flags from the
instruction code itself.

If this instruction is executed as a result of a priority interrupt or in
unrelocated 41 or 61 while the processor is in user mode, bit 5 of the PC
word stored is I and the processor leaves user mode.

JFCL is the only jump that can test any of the flags directly. In fact it is
the only basic program control instruction that can do so - several of the
flags can be tested as processor conditions by in-out instructions, but these
are ordinarily illegal in user programs anyway. But JFCL can test only four

2-60 CENTRAL PROCESSOR §2.9

of the flags, and it saves no information for a subsequent return from a sub­
routine. Hence it serves as a branch point for entry into either one of two
main paths, which mayor may not have a later point in common. Eg, it may
test the carry flags simply to take appropriate action in a double precision
fixed point routine.

JSR and JSP are regularly used to call subroutines. They are uncondi­
tional, but the execution of such an instruction can be the result of a
decision made by any conditional skip or jump. In the case of the flags, a
basic overflow test and subroutine call can be made as follows.

The fastest skip is CAIA.

JOV
JRST
JSR

.+2

.+2
OVRFLO

;Faster than skipping
;Jump over this if Overflow clear

If we wish to go to the DIVERR routine when No Divide is set, we must first
read the flags into a test accumulator T and then use a test instruction.

JSP
TLNE
JSR

T,.+l
T,40
DIVERR

;Store flags but continue in sequence
;40 left selects bit 12
;Skip this if No Divide clear

A subroutine called by a JSR must have its entry point reserved for the PC
word. Hence it is nonreentrant: the JSR modifies memory so the subroutine
cannot be shared with other programs. The JSP requires an accumulator,
but it is faster and is convenient for argument passing. To return from a
JSR-called subroutine one usually addresses the PC word indirectly, return­
ing to the location following the JSR. But there are two ways to get back
from a JSP. We can address the PC word indirectly with a JRST @AC (or
JRSTF @AC if the flags must be restored), but we can also get it by
addressing AC as an index register: JRST (AC). By using the second return
method we can place N words of data for the subroutine immediately after
the call, and .return to the location following the data by giving a
JRST N(AC).

Suppose we wish to call a print subroutine and supply the words from
which the characters are to be taken. Our main program would contain the
following:

JSP T,PRINT ;Put PC word in accumulator T
;Text inserted here by ASCIZ pseudo­
;instruction, which automatically
;places a zero (null) character at the
;end
;Next instruction here

The subroutine can use T as a byte pointer which already addresses the first
word of data. For the print routine, characters are loaded into another
accumulator CH.

§2.9 PROGRAM CONTROL 2-61

PRINT: HRLI
ILDB
JUMPE

T,440700
CH,T
CH,I(T)

;Initialize left half of pointer
;Increment pointer and load byte
;Upon reaching zero character return
;to one beyond last data word
;Print routine

JRST PRINT+l ;Get next character

266 A 0L-_X_--'-- Y _

Jump and Save AC 2.82 (2.93) /lSJSA

o 89 121314 17 18 35

Interleaving memories saves
.47 (.36) IlS.

Place AC in location E, the effective address E in AC left, and the contents
of PC in AC right (at this time PC contains an address one greater than the
location of the JSA instruction). Take the next instruction from location
E + 1 and continue sequential operation from there. The original contents
of E are lost.

I[this instruction is executed as a result of a priority interrupt or in
unrelocated 41 or 61 while the processor is in user mode, bit 5 of the PC
word stored is 1 and the processor leaves user mode.

JRA Jump and Restore AC 2.92 (3.14) /lS

35o
'----__2_6_7__---'-_A_-'[ZI__x_--'-- Y _

89 121314 1718

Place the contents of the location addressed by AC left into AC. Take the
next instruction from location E and continue sequential operation from
there.

A JSA combines advantages of the JSR and JSP. JSA does modify
memory, but it saves PC in an accumulator without losing its previous
contents (at a cost of not saving the flags). It is thus convenient for multiple­
entry subroutines. In a subroutine called by a JSR, the returning JRST must
refer to the (single) entry point. Since a JRA can retrieve the original PC by
addressing AC as an index register, it is independent of any entry point
without tying up an accumulator to the extent a JSP would.

The accumulator contents saved by a JSA are restored by a JRA paired
with it despite intervening JSA-JRA pairs. Hence these instructions are
especially useful for nesting subroutines, as shown by this example.

In FORTRAN IV, a CALL
statement uses JSA with AC
16.

2-62 CENTRAL PROCESSOR §2.9

;Main program

Sl:

S2:

S3:

JSA

a

JSA

JRA

a

JSA

JRA

a

JRA

17,S 1

17,S2

17,(17)

.7,S3

17,(17)

17, (17)

;Call to first subroutine (A)

;First subroutine starts here

;Call to second subroutine (B)

;Return to A + 1 in main program

;Second subroutine starts here

;Call to third subroutine (C)

;Return to B + 1 in 'first subroutine

;Third subroutine starts here

;Return to C + 1 in second subroutine

3.00 (3.11) J1SKeeping instructions and the
pushdown list in different
memories saves .47 (.36) ps.

To call the next deeper subroutine at any level, a JSA places E and PC in the
left and right of AC 17, saves the previous contents of AC 17 in E (the first
subroutine location), and jumps to E + 1. To return to the next higher level,
a JRA restores the previous contents of AC 17 from the location addressed
by AC 17 left (the first subroutine location) and jumps to the location
addressed by AC 17 right (the location following the JSA in the higher sub­
routine). If N lines of data for the next subroutine follow a JSA, the return
to the location following the data is made by giving a JRA 17, N(17).

PUSHJ Push Down and Jump

260 A 12JL--_x_---'------ Y _
o 89 12 13 14 17 18 3S

Add 100000 18 to AC to increment both halves by one and place the result
back in AC. If the addition causes the count in AC left to reach zero, set the
Pushdown Overflow flag. Then place the current contents of the flags (as
described above) in the left half of the location now addressed by AC right
and the contents of PC in the right half of that location (at this time PC
contains an address one greater than the location of the PUSHJ instruction).
Take the next instruction from location E and continue sequential operation
from there.

The flags are unaffected except Byte Interrupt, which is cleared. The
original contents of the location added to the list are lost.

If this instruction is executed as a result of a priority interrupt or in
unrelocated 41 or 61 while the processor is in user mode, bit 5 of the PC
word stored is 1 and the processor leaves user mode.

§ 2.9 PROGRAM CONTROL 2-63

POPJ Pop Up and Jump 2.96 (3.18) I1S

3S
___2_6_3__--'------_A_---J0L-_x_--'--- y ---'

89 121314 1718o

Subtract 1000001 8 from AC to decrement both halves by one and place the
result back in AC. If the subtraction causes the count in AC left to reach -1,
set the Pushdown Overflow flag. Take the next instruction from the location
addressed by the right half of the location that was addressed by AC right
prior to the decrementing, and continue sequential operation from there.

The effective address E is
ignored.

The address of the top item in the pushdown list is kept in the right half
of the pointer in AC, and the program can keep a control count in the left
half. The incrementing and decrementing of both halves of AC simulta­
neously is effected by adding and subtracting 100000 18. Hence a count of
-2 in AC left is increased to zero if 218 - 1 is incremented in AC right, and
conversely, 1 in AC left is decreased to -1 if zero is decremented in AC
right.

Since the pushdown list is independent of the subroutine called, PUSHJ­
POPJ can be used like JSA-JRA for multiple entries. Moreover, ordering by
level is inherent in the structure of a pushdown list [§ 2.2], so paired
PUSHJ-POPJ instructions are excellent for nesting subroutines: there can be
any number of subroutines at any level, each with more subroutines nested
within it. Recursive subro~tines are also possible.

Unlike JSA-JRA, the pushdown instructions tie up an accumulator, but
the usual procedure is to keep both data and jump addresses in a single listso
only one AC is required for the most complex pushdown operations. The
programmer must keep track of whether a given entry in the list is data or
a PC word; in other wqrds, every item inserted by a PUSH should be
removed by a POP, and every PUSHJ should be matched by a POPJ. If flag
restoration is desired, the returning

POPJ P,

can be replaced by

POP P,AC
JRSTF (AC)

which requires another accumulator. If the flags are not important, data
may be stored in the left halves of the PC words in the stack, reducing the
required pushdown depth.

By using the Pushdown Overflow flag and a control count in AC left, the
programmer can set a limit to the size of the list by starting the'count
negative, or he can prevent the program from extracting more items than
there are in the list by starting the count at zero, but he cannot do both at
once. If only jump addresses are kept in the list, the first procedure limits
the depth of nesting. A technique to catch extra POPJs is to put a PC word
addressing an error routine at the bottom of the list.

2-64 CENTRAL PROCESSOR §2.10

2.10 UNIMPLEMENTED OPERATIONS

An unimplemented user oper­
ation is usually referred to as
a UUO, but this mnemonic
means nothing to the assem­
bler. UUOs are also some­
times called "programmed
operators" .

Many of the codes not assigned as specific instructions are executed as
unimplemented user operations, wherein the word given as an instruction is
trapped and must be interpreted by a routine included for this purpose by
the programmer. In time sharing, however, half of the codes are set aside for
user communication with the Monitor and are interpreted by it. Instructions
that are illegal in user mode also trap in this manner.

Unimplemented User Operation

35

2.33 (2.44) IlS

y

171889

__0_0_0_-_0_7_7_-L-_A~[Z1 X
121314o

The total time required is
that listed plus the time for
the instruction in location 41.
Interleaving memories 0 and
1 saves .47 (.36) IlS.

Store the instruction code, A and the effective address E in bits 0-8, 9-12
and 18-35 respectively of location 40; clear bits 13-17. Execute the
instruction contained in location 41. The original contents of location 40
are lost.

All of these codes are equivalent when they occur in the Monitor or when
time sharing is not in effect. But when a UUO appears in a user program, a
code in the range 001-037 uses relocated locations 40 and 41 (ie 40 and 41
in the user's block) and is thus entirely a part of and under control of the
user program. A code in the range 040-077 on the other hand uses
unrelocated 40 and 41, and the instruction in the latter location is under
control of the Monitor; these codes are thus specifically for user communica­
tion with the Monitor, which interprets them (refer to the Monitor manual
for the meanings of the various codes). The code 000 executes in the same
way as 040-077 but is not a standard communication code: it is included so
that control returns to the Monitor should a user program wipe itself out.

For a second processor connected to the same memory, the UUO trap is
locations 140-141 instead of 40-41.

The unimplemented operations also include the reserved (unassigned)
instruction codes 100-127, which execute like the Monitor-calling UUOs
but use unrelocated 60-61 (160-161 for a second processor); thus the
Monitor steps in when a user gives an incorrect code. The codes 130-177,
which are the floating point and byte manipulation instructions, are equiva­
lent to the unassigned codes if unimplemented, ie if the optional hardware
for them is not included. In this case all codes 100-177 trap to unrelocated
60-61. In general it is assumed that if software is available for floating point
and byte manipulation, the Monitor is responsible for calling the appropriate
routines.

§2.11 PROGRAMMING EXAMPLES 2-65

2.11 PROGRAMMING EXAMPLES

Before continuing to input-output and related subjects, let us consider som
simple programs that demonstrate the use of a variety of the instruction
described thus far.

Suppose we wish to count the number of 1s in a word. We could of
course check every bit in the word. But there is a quicker way if we remem­
ber that in any word and its twos complement the rightmost 1 is in the same
position, both words are all Os to the right of this 1, and no corresponding
bits are the same to the left (the parts of both words at the left of the right­
most 1 are complements). Hence using the negative of a word as a mask for
the word in a test instruction selects only the rightmost 1 for modification.
The example uses three accumulators: the word being tested (which is lost)
is in T, the count is kept in CNT, and the mask created in each step is stored
in TEMP.

CNT,O
TEMP,T
T,TEMP
CNT,.-2

MOVEI
MOVN
TDZE
AOJA

;Clear CNT
;Make mask to select rightmost 1
;Clear rightmost 1 in T
;Increase count and jump back
;Skip to here if no 1s left in T

CNT is increased by one every time a 1 is deleted from T. After all 1shave
been removed, the TDZE skips.

In the standard algorithm for converting a number N to its equivalent in
base b, one performs the series of divisions

ql + r1/b

q2 + r2/b

q3 + r3/b

The number in base b is then rn . .. r3r2rl. Eg the octal equivalent of 61
decimal is 75:

61/8 7 + 5/8

7/8 0 + 7/8

The following decimal print routine converts a 36-bit positive integer in
accumulator T to decimal and types it out. The contents of T and T + 1 are
destroyed. The routine is called by a PUSHJ P, DECPNT where P is the
pushdown pointer.

DECPNT: IDIVI
PUSH
SKIPE
PUSHJ

T,12
P,T+l
T
P,DECPNT

;128 =10 10

;Save remainder
;All digits formed?
;No, compute next one

2-66 CENTRAL PROCESSOR §2.11

DECPN1: POP
ADDI
JRST

P,T
T,60
TTYOUT

;Yes, take out in opposite order
;Convert to ASCII (60 is code for 0)
;Type out

MACRO interprets a number
following tD as decimal.

This routine repeats the division until it produces a zero quotient. Hence it
suppresses leading zeros, but since it is executed at least once it outputs one
"0" if the number is zero. The TTYOUT routine returns with a POPJ P, to
DECPN 1 until all digits are typed, then to the calling program.

Space can be saved in the pushdown stack by storing the computed digits
in the left halves of the locations that contain the jump addresses. This is
accomplished in the decimal print routine by making the following substi­
tutions.

PUSH P,T+1 ~ HRLM T+ 1,(P)

POP P,T ~ HLRZ T,(P)

The routine can handle a 36-bit unsigned integer if the IDIVI T,12 is
replaced by

LSHC T,-tD35 ;Shift right 35 bits into T+ 1
LSH T+1,-1 ;Vacate the T+ 1 sign bit
DIVI T,12 ;Divide double length integer by 10

Many data processing situations involve searching for information in tables
and lists of all kinds. Suppose we wish to find a particular item in a table
beginning at location TAB and containing N items. Accumulator T contains
the item. The right half of A is used to index through the table, while the
left half keeps a control count to signal when a search is unsuccessful.

MOVSI
CAMN
JRST
AOBJN

A,-N
T,TAB(A)
FOUND
A,.-2

;Put -N, 0 in A
;Skip if current item not the one
;Item found
;Try next item until left count = 0
;Item not in list

The location of the item (if found) is indicated by the number in the right
half of A (its address is that quantity plus TAB). A slightly different pro­
cedure would be

HRLZI A,-N
CAME T, TAB(A)
AOBJN A,.-l
JUMPL A, FOUND

;Skip if current item is the one

; Jump if left count < 0
; Itern not found

Locations used for a list can be scattered throughout memory if data is
kept in the left half of each location and the right half addresses the next
location in the list. The final location is indicated by a zero right half. 'The
following routine finds the last half word item in the list. It is entered at
FIND with the first location in the list addressed by the right half of
acculllulator T. At the end the final iteIn is in Tright.

§ 2.11

FIND:
MOVE
TRNE
JRST
HLRZS

T,(T)
T,777777
.-2
T

PROGRAMMING EXAMPLES

;Move next item to T
;Skip if AC right = 0

;Move final item to right

2-67

The following counts the length of the list in accumulator CNT.

MOVEI
JUMPE
HRRZ
AOJA

CNT,O
T,OUT
T,(T)
CNT,.-2

;Clear CNT
;Jump out if T contains 0
;Get next address
;Count and go back

Double Precision Floating Point. The following are straightforward rou­
tines for handling double precision floating point arithmetic [§ 2.6 describes
the [loating point instructions] .

DFAD:

DFSB:

DFMP:

UFA A+l,M+l ;Sum of low parts to A+2
FADL A,M ;Sum of high parts to A, A+ I
UFA A+l,A+2 ;Add low part of high sum to A+ 2
FADL A,A+2 ;Add low sum to high sum
POPJ P,

DFN A,A+l ;Negate double length operand
PUSHJ P,DFAD ;Call double floating add
DFN A,A+l ;-(M - AC) = AC - M
POPJ P,

MOVEM A,A+2 ;Copy high AC operand in A+2
FMPR A+2,M+I ;One cross product to A+2
FMPR A+I,M ;Other to A+ 1
UFA A+I,A+2 ;Add cross products into A+2
FMPL A,M ;High product to A, A+ I
UFA A+I,A+2 ;Add low part to cross sum in A+ 2
FADL A,A+2 ;Add low sum to high part of product
POPJ P,

A double precision division is of the form

A a + cX 2-27

B b + dX 2-27

Using the relationship

Alb q + rX 2-271b

where q and r are the quotient and remainder produced by FDVL, the
following routine computes a double length quotient by the algorithm

A

B

(r - qd) X 2-27
q + -'------------"----'---

b

which gives a result correct to the next-to-Iast bit in the low order half.

2-68 CENTRAL PROCESSOR §2.12

DFDV: FDVL
MOVN
FMPR
UFA
FDVR
FADL
POPJ

A,M
A+2,A
A+2,M+l
A+l,A+2
A+2,M
A,A+2
P,

;Get high part of quotient
;Copy negative of quotient in A+2
;Multiply by low part of divisor
;Add remainder
;Divide sum by high part of divisor
;Add result to original quotient

... Times are given for 10 in­
structions when they occur
alone. When two 10 instruc­
tions are given consecutively,
the second often takes longer
(refer to the timing chart in
App~n(Hx C for details).

This is identical to UUO trap­
ping [§2.10].

2.12 INPUT-OUTPUT

The input-output instructions govern all transfers of data to and from the
peripheral equipment, and also perform many operations within the proc­
essor. An instruction in the in-out class is designated by 111 in bits 0-2, ie
its left octal digit is 7. Bits 3-9 address the device that is to respond to the
instruction. The format thus allows for 128 codes, two of which, 000 and
004 respectively, address the processor and priority interrupt, and are used
for the console and time share hardware as well. A chart ·n Appendix A
lists all devices for which codes have been assigned, and gives their
mnemonics and DEC option numbers.

Bits 13-35 are the same as in all other instructions: they are the I, X, and
Y parts, which are used to calculate an effective address, set of conditions,
or mask to be used in the execution of the instruction. The remaining bits,
10-12, select one of the following eight 10 instructions.

NOTE

All instructions described in the remainder of this manual are in-out
instructions, which cannot be executed in user programs unless the
User In-out flag is set. If an in-out instruction appears in a user pro­
gram while User In-out is clear, it does not perform the functions given
for it in the instruction description. Instead it stores its own instruc­
tion and device codes in bits 0-12 and its effective address E in bits
18-35 of unrelocated location 40 (clearing bits 13-17), and then
executes the instruction contained in location 41. The latter location
is under control of the Monitor [§ 2.15] .

This user restriction will not be mentioned in the instruction descrip­
tions, as it applies to all instructions from this point on.

Set up device D with the effective initial conditions E. The number of con­
dition bits in E that are actually used depends on the device.

ITJL-_D__CillZI X
o 23 910 121314 1718

E will always be regarded as
being bits 18-35,even though
it is actually placed on both
halves of the bus and many
devices receive the informa­
tion from the left half.

MAY 1968

CONO Conditions Out

Y

3.90 (4.01) IlS

35

§2.l2 INPUT-OUTPUT 2-69

Keeping instructions and op­
erands in different memories
saves .47 (.36) J..lS. Bringing
conditions into fast memory
saves .46 (.35) J..lS.

35

4.87 (4.98) ps

17 18

D [JI]Z]'---_X_-"-- Y _
910 121314

Conditions InCONI

[2]
o 23

Read the input conditions from device D and store them in location E. The
number of condition bits stored depends on the device; the remaining bits
in location E are cleared.

[2] D_----JOITIJ X
o 23 910 121314 1718

DATAO Data Out

Y

4.75 (4.97) ps

35

Taking the output word from
fast memory saves .34 flS.

Send the contents of location E to the data buffer in device D, and perform
whatever control operations are appropriate to the device.

The amount of data actually accepted by the device depends on the size
of its buffer, its mode of operation, etc. The original contents of location E
are unaffected.

DATAl Data In 4.87 (4.98) ps Keeping instructions and op-
erands in different memories

~1 D Li£J2] X Y saves .47 (.36) flS. Placing the
input data in fast memory

0 23 910 121314 17 18 35 saves .46 (.35) flS.

Move the contents of the data buffer in device D to location E, and perform
whatever control operations are appropriate to the device.

The number of data bits stored depends on the size of the device buffer,
its mode of operation, etc. Bits in location E that do not receive data are
cleared.

CONSZ Conditions Inand Skip if Zero 4.11 (4.22) ps

35

~1__D_----J~J y ______'
o 23 910 121314 1718

Test the input conditions from device D against the effective mask E. If all
condition bits selected by Is in E are Os, skip the next instruction in
sequence.

If the device supplies more than 18 condition bits, only the right 18 are
tested.

2-70

CONSO

CENTRAL PROCESSOR

Conditions In and Skip if One

§2.12

4.11 (4.22) J.ls

35

OJl....-__D_~CillZJL.-..--X_.l...-- y _
o 23 910 121314 1718

Test the input conditions from device D against the effective mask E. If any
condition bit selected by a 1 in E is 1, skip the next instruction in sequence.

If the device supplies more than 18 condition bits, only the right 18 are
tested.

Keeping the pointer in fast .. BLKO Block Out 6.49 (6.71) J.ls
memory saves .43 (.34) /lS.

IT] D CIIJZ] X Y
0 23 910 12 13 14 1718 35

Keeping the pointer in fast .. BLKI Block In 6.49(6.71)J.ls
memory saves .34 /lS. Keeping
the instruction and the data [0 D ~ X Y
block in different memories
saves .47 (.36) /lS.

0 23 910 12 13 14 1718 35

A block 10 instruction is
effectively a whole in-out
data handling subroutine. It
keeps track of the block loca­
tion, transfers each data
word, and determines when
the block is finished.

Initially the left half of the
pointer contains the negative
of the number of words in
the block, the right half con­
tains an address one less than
that of the first word in the
block.

MAY 1968

Add 100000 18 to a pointer in location E to increment both halves by one,
and place the result back in E. Then perform a data 10 instruction in the
same direction as the block 10 instruction, using the right half of the incre­
mented pointer as the effective address. If the given instruction is a BLKO,
perform a DATAO; if a BLKI, perform a DATAl.

The remaining actions taken by this instruction depend on whether it is
executed as a priority interrupt instruction [§ 2.13] .
• Not as an Interrupt Instruction. If the addition has caused the count in
the left half of the pointer to reach zero, execute the next instruction in
sequence. Otherwise skip the next instruction.
• As an Interrupt Instruction. If the addition has caused the count in the
left half of the pointer to reach zero, execute the instruction in the second
interrupt location for the channel. Otherwise dismiss the interrupt and
return to the interrupted program.

The above eight instructions differ from one another in their total effect,
but they are not all different with respect to any given device. A BLKO acts
on a device in exactly the same way as a DATAO - the two differ only in
counting and other operations carried out within the processor and memory.
Similarly, no device can distinguish between a BLKI and a DATAl; and a
device always supplies the same input conditions during a CONI, CONSZ or
CONSO whether the program tests them or simply stores them.

Hence the eight instructions may be categorized as of four types, repre­
sented by the first four instructions described above. Moreover, a complete
treatment of the programming of any device can be given in terms of these
four instructions, two of which arc for input and two for output. The four

§2.12 INPUT-OUTPUT 2-71

exhaust the types of information transfer that occur in the 10 system, at
least three of which are applicable to any given device. Thus all instru'ction
descriptions in the rest of this manual will be of the CONO, CONI, DATAO
and DATAl instructions combined with the various device codes. The dis­
cussion of each device will present timing information pertinent to device
operation, but no instruction times will be included as they are identical to
those given above.

Every device requires initial conditions; these are sent by a CONO, which
can supply up to eighteen bits of control information to the device control
register. The program can determine the status of the device from up to
thirty-six bits of input conditions that can be read by a CONI (but only the
right eighteen can be tested by a CONSZ or CONSO). Some input bits
simply reflect initial conditions sent by a previous CONO; others are set up
by output conditions but are subject to subsequent adjustment by the
device; and still others, such as status levels from a tape transport, have no
direct connection with output conditions.

Data is moved in and out in characters of various sizes or in full 36-bit
words. Each transfer between memory and a device data buffer requires a
single DATAl or DATAO; Every device has a CONO and CONI, but it may
have only one data instruction unless it is capable of both input and output.
Eg, the paper tape reader has only a DATAl, the tape punch has only a
DATAO, but the teletype has both. (A high speed device, such as a disc file,
can be connected to the DF 10 Data Channel, which in turn is connected
directly to memory by a separate memory bus and handles data auto­
matically. This eliminates the need for the program to give a DATAO or
DATAl for each transfer.)

A Typical 10 Device. Every device has a 7-bit device selection network, a
priority interrupt assignment, and at least two flags, Busy and Done, or some
equivalent. The selection network decodes bits 3-9 of the instruction so
that only the addressed device responds to signals sent by the processor over
the in-out bus. To use the device with the priority interrupt, the program
must assign a channel to it. Then whenever an appropriate event occurs in
the device, it requests an interrupt on the assigned channel.

The Busy and Done flags together denote the basic state of the device.
When both are clear the device is idle. To place the device in operation, a
CONO or DATAO sets Busy. If the device will be used for output, the pro­
gram must give a DATAO that sends the first unit of data - a word or char­
acter depending on how the device handles information. When the device has
processed a unit of data, it clears Busy and sets Done to indicate that it is
ready to receive new data for output, or that it has data ready for input.
In the former case the program would respond with a DATAO to send more
data; in the latter, with a DATAl to bring in the data that is ready. If an
interrupt channel has been assigned to the device, the setting of Done signals
the program by requesting an interrupt; otherwise the program must keep
testing Done to determine when the device is ready.

All devices function basically as described above even though the number
of initial conditions varies considerably. Besides Busy and Done flags, the
tape reader and punch have a Binary flag that determines the mode of
operation of the device with respect to the data it processes - alphanumeric

The word "input" used with­
out qualification always refers
to the transfer of data from
the peripheral equipment into
the processor; "output" refers
to the transfer in the opposite
direction.

A DATAl that addresses an
output-only device simply
clears location E. DATAl PI,
(code 70044) produces only
this effect as the priority in­
terrupt has no data for input.
On the other hand a DATAO
that addresses an input-only
device is a no-op.

When the device code is
undefined or the addressed
device is not in the system,
a DATAO, CONO or CaNSO
is a no-op, a CONSZ is an
absolute skip, a DATAl or
CONI clears location E.

Busy and Done both set is a
meaningless situation.

2-72 CENTRAL PROCESSOR §2.l2

Occasionally a device with a
second code may use a
DATAl or DATAO to trans­
mit additional control or
maintenance information.

or binary. The teletype has no binary flag, but it has two Busy flags and two
Done flags - one pair for input, another for output. A complicated device,
such as magnetic tape, may require two device codes to handle the large
number of conditions associated with it. Initial conditions for a tape system
include a transport address and an actual command the tape control is to
perform; input conditions include error flags and transport status levels.

Most 10 devices involve motion of some sort, usually mechanical (in a
display only the electron beam moves). With respect to mechanical motion
there are two types of devices, those that stay in motion and those that do
not. Magnetic tape is an example of the former type. Here the device
executes a command (such as read, write, space forward) and the done flag
indicates when the entire operation is finished. A separate data flag signals
each time the device is ready for the program to give a DATAl or DATAO,
but the tape keeps moving until an entire record or file has been processed.

Paper tape, on the other hand, stops after each transfer, but the program
need not give a new CONO every time. The reader logic is set up so that a
DATAl not only reads the data, but also clears Done and sets Busy. Hence
if the instruction is given within a critical time, the tape moves continuously
and only two CONOs are required for a whole series of transfers: one to start
the tape, and one to stop it after the final DATAL

Other devices operate in one or the other of these two ways bu t differ in
various respects. The tape punch and teletype output are like the reader.
Teletype input is initiated by the operator striking a key rather than by the
program. The card reader reads an entire card on a single CONO, with a
DATAl required for each column. The DECtape stays in motion, and the
program must give a CONO to stop it or it will go all the way to the end
zone.

Readin Mode

This mode of processor operation provides a means of placing information
in memory without relying on a program already in memory or loading one
word at a time manually. Its principal use is to read in a short loader
program which is then used for loading other information. A loader program
should ordinarily be used rather than readin mode, as a loader can check the
validity of the information read.

Pressing the readin key on the console activates readin mode by starting
the processor in a special hardware sequence that simulates a DATAl fol­
lowed by a series of BLKI instructions, all of which address the device whose
code is selected by the readin device switches on the small panel at the left
of the paper tape reader. Various devices can be used, and for each there
are special rules that must be followed. But the readin mode characteristics
of any particular device are treated in the discussion of the device. Here we
are concerned only with the general characteristics.

The information read is a block of data (such as a loader program) pre­
ceded by a pointer for the BLKI instructions. The left half of the pointer
contains the negative of the number of words in the block, the right half
contains an address one less than that of the location that is to receive the
first word.

§2.13 PRIORITY INTERRUPT 2-73

3S

To read in, the operator must set up the device he is using, set its code
into the readin device switches, and press the readin key. The processor
places the device in operation, brings the first word (the pointer) into
location 0, and then reads the data block, placing the words in the locations
specified by the pointer. Data can be placed anywhere in memory (including
fast memory) except in location O. The operation affects none of memory
except location 0 and the block area.

Upon completing the block, the processor-halts only if the single instruc­
tion switch is on. Otherwise it leaves readin mode, and begins normal
operation by executing the last word in the block as an instruction.

Console Data Transfers

Neither the processor nor the priority interrupt system require all four types
of 10 instructions, so the program can make use of their device codes for
communicating with the console.

DATAl APR, Data In, Console

70004 0L...-_X_--'-- y _
o 121314 1718

Read the contents of the console data switches into location E.

MACRO also recognizes the
mnemonic RSW (Read
Switches) as equivalent to
DATAl APR,.

DATAO PI, Data Out, Console

o
'----__7_0_0_5_4 0 X

121314 1718

y
35

Unless the console MI program disable switch is on, display the contents of
location E in the console memory indicators and turn on the triangular light
beside the words PROGRAM DATA just above the indicators (turn off the
light beside MEMORY DATA).

Once the indicators have been loaded by the program, no address condi­
tion selected from the console [§ 2.16] can load them until the operator
turns on the MI program disable switch, executes a key function that ref­
erences memory, or presses the reset key.

2.13 PRIORITY INTERRUPT

Most in-out devices must be serviced infrequently relative to the processor
speed and only a small amount of processor time is required to service them,
but they must be serviced within a short time after they request it. Failure
to service within the specified time (which varies among devices) can often

2-74 CENTRAL PROCESSOR §2.13

Interrupt locations for a sec­
ond processor are 140 + IN
and 141 + IN.

result in loss of information and certainly results in operating the device
below its maximum speed. The priority interrupt is designed with these
considerations in mind, ie the use of interruptions in the current program
sequence facilitates concurrent operation of the main program and a number
of peripheral devices. The hardware also allows conditions internal to the
processor to signal the program by requesting an interrupt.

Interrupt requests are handled through seven channels arranged in a
priority chain, with assignment of devices to channels entirely at the discre­
tion of the programmer. To assign a device to a channel, the program sends
the number of the channel to the device control register as part of the condi­
tions given by a CONO (usually bits 33-35). Channels are numbered 1-7,
with 1 having the highest priority; a zero assignment disconnects the device
from the interrupt channels altogether. Any number of devices can be
connected to a single channel, and some can be connected to two channels
(eg a device may signal that data is ready on one channel, that an error has
occurred on another).

Interrupt Requests. When a device requires service it sends an interrupt
request signal over the in-out bus to its assigned channel in the processor. If
the channel is on, the processor accepts the request at the next memory
access unless the processor is either starting an interrupt on any channel or
holding an interrupt on the same channel. The request signal is a level, so
it remains on the bus until turned off by the program (CONO, DATAO or
DATAl). Thus if a request is not accepted because of the conditions given
above, it will be accepted when those conditions no longer hold. A single
channel will shut out all others of lower priority if every time its service
routine dismisses the interrupt, a device assigned to it is already waiting with
another request. The program can usually trigger a request from a device but
delay its acceptance by turning on the channel later.

Starting an Interrupt. After a request is accepted the channel must wait
for the interrupt to start. No interrupts can be started unless the priority
interrupt system is active. Furthermore, the processor cannot start an
interrupt if it is alreadye holding an interrupt on a channel with priority
higher than those on which requests have been accepted (in other words if
the current program is a higher priority interrupt routine). If there is a
higher priority channel waiting, the processor stops the current program to
start an interrupt on the waiting channel that has highest priority. The inter­
rupt starts following the retrieval of an instruction, following the retrieval of
an address word in an effective address calculation (including the second cal­
culation using the pointer in a byte instruction), or following a transfer in a
BLT. When an interrupt starts, PC points to the interrupted instruction, so
that a correct return can later be made to the interrupted program.

Two memory locations are assigned to each channel: unrelocated locations
40 + 2N and 41 + 2N, where N is the channel number. Channell uses loca­
tions 42 and 43, channel 2 uses 44 and 45, and so on to channel 7 which
uses 56 and 57. The processor starts an interrupt on channel N by executing
the instruction in location 40 + 2N.

An instruction executed by the interrupt hardware in response to an
interrupt request is referred to elsewhere in this manual as being executed
"as an interrupt instruction". Some instructions, when so executed, perform

§2.13 PRIORITY INTERRUPT 2-75

different functions than they do when executed in other circumstances. And
the difference is not due merely to being executed in an interrupt location or
in response (by the program) to an interrupt. To be an interrupt instruction,
an instruction must be executed by the interrupt hardware, .in location
40 + 2N or 41 + 2N, because of a request on channel N. §2.12 describes
the two ways a BLKO is performed. If a BLKO is contained in an interrupt
routine called by a JSR, it is not executed "as an interrupt instruction" even
if the routine is stored within the interrupt locations. There are two
categories of interrupt instructions.
• Non-IO Instructions. After executing a non-IO interrupt instruction, the
processor holds an interrupt on the channel and returns control to PC. Hence
the instruction is usually a jump to a service routine. If the processor is in
user mode and the interrupt instruction is a JSR, JSP, PUSHJ, JSA or JRST,
the processor leaves user mode (the Monitor thus handles all interrupt rou­
tines [§2.15]).

If the interrupt instruction is not a jump, the processor continues the
interrupted program while holding an interrupt - in other words it now
treats the interrupted program as an interrupt routine. Eg the instruction
might just move a word to a particular location. Such procedures are
usually reserved for maintainence routines or very sophisticated programs.
• Block or Data 10 Instructions. One or the other of two actions can result
from executing one of these as an interrupt instruction.

If the instruction in 40 + 2N is a BLKI or BLKO and the block is not
finished (ie the count does not cause the left half of the pointer to reach
zero), the processor holds and immediately dismisses an interrupt on the
channel, and returns to the interrupted program. The same action results
if the instruction is a DATAl or DATAO.

If the instruction in 40 + 2N is a BLKI or BLKO and the count does reach
zero, the processor continues to start the interrupt by executing the
instruction in location 41 + 2N. This cannot be an 10 instruction and the
actions that result from its execution as an interrupt instruction are those
given above for non-IO instructions.

CAUTION

The execution, as an interrupt instruction, of a
CONO, CONI, CONSO or CONSZ in location
40 + 2N or any 10 instruction in location 41 + 2N
hangs up the processor.

Dismissing an Interrupt. Automatic dismissal of an interrupt occurs only
in a DATAl or DATAO, or in a BLKI or BLKO with an incomplete block.
Following any non-IO interrupt instruction, the processor holds an interrupt
until the program dismisses it, even if the interrupt routine is itself inter­
rupted by a higher priority channel. Thus interrupts can be held on a num­
ber of channels simultaneously, but from the time an interrupt is started
until it is dismissed, no interrupt can be started on that channel or any
channel of lower priority (requests, however, can be accepted on lower
priority channels).

2-76 CENTRAL PROCESSOR §2.l3

A routine dismisses the interrupt by using a JEN (JRST 12,) to return to
the interrupted program (the interrupt system must be active when the JEN
is given). This instruction restores the channel on which the interrupt is
being held, so it can again accept requests, and interrupts can be started on
it and lower priority channels. JEN also restores the flags, whose states were
saved in the left half of the PC word if the routine was called by a JSR,
JSP, or PUSHJ [§2.9]. If flag restoration is not desired, a JRST 10, can
be used instead.

CAUTION

An interrupt routine must dismiss the interrupt
when it returns to the interrupted program, or its
channel and all channels of lower priority will be
disabled, and the processor will treat the new
program as a continuation of the interrupt routine.

Priority Interrupt Conditions. The program can control the priority in­
terrupt system by means of condition 10 instructions. The device code is
004, mnemonic PI.

CONO PI, Conditions Out, Priority Interrupt

o
___70_0_6_0 11] X

121314 1718

y
35

Perform the functions specified by E as shown (a 1 in a bit produces the
indicated function, a °has no effect).

353433323130292827

DEACTIVATE ACTIVATE

\ 1-'
2625

INITIATE
INTERRUPT

r
24232221201918

01 SABLE IENABLE
-.------

CLEAR CLEAR CLEAR I TURN I TURN
POWER PARITY ON OFF SELECT CHANNELS FOR BITS 24, 25, 26

PARITY ERROR PIFAILURE ERROR
INTERRUPT SYSTEM SELECTED CHANNELS I I I I I IFLAG FLAG

I I I
1 2 3 4 5 6 7

I I I

Notes.

21

23

20

Bits 18-21 are actually for
processor conditions [§ 2.14] .

Prevent the setting of the Parity Error flag from requesting an
interrupt on the channel assigned to the processor.

Enable the setting of the Parity Error flag to request an interrupt
on the channel assigned to the processor.

Deactivate the priority interrupt system, turn off all channels,
eliminate all interrupt requests that have already been accepted but
are still waiting, and dismiss all interrupts that are currently being
held.

24 Request interrupts on channels selected by Is in bits 29-35, and
force the processor to accept them even on channels that are off.

§2.13 PRIORITY INTERRUPT 2-77

A request is lost if it is made by this means to a channel on which
an interrupt is already being held.

25 Turn on the channels selected by Is in bits 29-35 so interrupt
requests can be accepted on them.

26 Turn off the channels selected by Is in bits 29-35, so interrupt
requests cannot be accepted on them unless made by a CONO PI,
with a I in bit 24.

27 Deactivate the priority interrupt system. The processor can then still
accept requests, but it can neither start nor dismiss an interrupt.

28 Activate the priority interrupt system so the processor can accept
requests and can start, hold and dismiss interrupts.

CONI PI, Conditions In, Priority Interrupt

o
____7_0_0_6_4 0 X

121314 1718

y

3S

Read the status of the priority interrupt (and several bits of processor condi­
tions) into the right half of location E as shown.

353433323130292822623

PARITY ERROR
INTERRUPT
ENABLED

fPOWER PARITY INTERRUPT IN PROGRESS ON CHANNELS PI CHANNELS ON
FAILURE ERROR

I I I I I I
ACTI VE

I I I I I I1 2 3 4 5 6 7 1 2 3 4 5 6 7

18 19 20 21 22 I 24 25 I 7 I I

Notes.

18 Ac power has failed. The program should save PC, the flags and fast
memory in core, and halt the processor.

The setting of this flag requests an interrupt on the channel
assigned to the processor. If the flag remains set for 5 ms, the
processor is cleared.

19 A word with even parity has been read from core memory. If bit 20
is set, the setting of the Parity Error flag requests an interrupt on the
channel assigned to the processor.

28 The priority interrupt system is active.

Channels that are on are indicated by Is in bits 29-35; Isin bits 21-27
indicate channels on which interrupts are currently being held.

Note that bits 18-20 actually
read processor status condi­
tions [§2.14].

Timing. The time a device must wait for an interrupt to start depends on
the number of channels in use, and how long the service routines are for
devices on higher priority channels. If only one device is using interrupts,

2-78 CENTRAL PROCESSOR §2.14

it need never wait longer than the time required for the processor to finish
the instruction that is being performed when the request is made. The
maximum time can be considered to be about 15 IlS for FDVL, but a ridicu­
lously long shift could take over 35 IlS.

Special Considerations. On a return to an interrupted program, the proc­
essor always starts the interrupted instruction over from the beginning. This
causes special problems in a BLT and in byte manipulation.

An interrupt can start following any transfer in a BLT. When one does,
the BLT puts the pointer (which has counted off the number of transfers
already made) back in AC. Then when the instruction is restarted following
the interrupt, it actually starts with the next transfer. This means that if
interrupts are in use, the programmer cannot use the accumulator that holds
the pointer as an index register in the same BLT, he cannot have the BLT
load AC except by the final transfer, and he cannot expect AC to be the
same after the instruction as it was before.

An interrupt can also start in the second effective address calculation in a
two-part byte instruction. When this happens, Byte Interrupt is set. This
flag is saved as bit 4 of a PC word, and if it is restored by the interrupt
routine when the interrupt is dismissed, it prevents a restarted ILDB or
IDPB from incrementing the pointer a second time. This means that the
interrupt routine must check the flag before using the same pointer, as it
now points to the next byte. Giving an ILDB or IDPB would skip a byte.
And if the routine restores the flag, the interrupted ILDB or IDPB would
process the same byte the routine did.

Programming Suggestions. The Monitor handles all interrupts for user
programs. Even if the User In-out flag is set, a user program generally cannot
reference the interrupt locations to set them up. Procedures for informing
the Monitor of the interrupt requirements of a user program are discussed in
the Monitor manual.

For those who do program priority interrupt routines, there are several
rules to remember.
• No requests can be accepted, not even on higher priority channels, while
a break is starting. Therefore do not use lengthy effective address calcula­
tions in interrupt instructions.
• The interrupt instruction that calls the routine must save PC if there is to
be a return to the interrupted program. Generally a JSR is used as it saves
both PC and the flags, and it uses no accumulator.
• The principal function of an interrupt routine is to respond to the situa­
tion that caused the interrupt. Eg computations that can be performed
outside the routine should not be included within it.
• The routine must dismiss the interrupt (with a lEN) when returning to the
interrupted program. The flags should be restored.

2.14 PROCESSOR CONDITIONS

There are a number of internal conditions that can signal the program by
requesting an interrupt on a channel assigned to the processor. Flags for

§2.14 PROCESSOR CONDITIONS 2-79

power failure and parity error are handled by the condition 10 instructions
that address the priority interrupt system [§ 2.13]. The remaining flags are
handled by condition instructions that address the processor. Its device code
is 000, mnemonic APR or CPA.

CONO APR, Conditions Out, Arithmetic Processor

o
____7_0_0_2_0 -...J0 X

121314 1718

y

3S

Perform the functions specified by E as shown (a 1 in a bit produces the
indicated function, a °has no effect).

353433

CLEAR
OVERFLOW

I
CLEAR
FLOATING
OVERFLOW

I
CLEAR
NONEXISTENT
MEMORY FLAG

11
CLEAR
MEMORY
PROTECTION

FLAG \

21201918

CLEAR
PUSHDOWN
OVERFLOW

\
r---I ,--

DISABLEI ENABLE DISABLEI ENABLE DISABLEIENABLECLEAR CLEAR CLEAR PRIORITY
ALL ADDRESS FLOATING INTERRUPT

IN-OUT BREAK

I
CLOCK CLOCK OVERFLOW OVERFLOW

ASSIGNMENT
DEVICES FLAG INTERRU PT FLAG

INTE~RUPT
INTERRUPT

I I I I

22 23 I 24 25 26 27 28 29 30 31 32

Notes.

Enabling a particular flag to interrupt means that henceforth the setting
of the flag will request an interrupt on the channel assigned (by bits 33-35)
to the processor. Disabling prevents the flag from triggering a request.

A 1 in bit 19 produces the 10 reset signal, which clears the control logic in
all of the peripheral equipment (but affects neither the priority interrupt sys­
tem, nor the processor flags cleared by this instruction or CONO PI,).

CONI APR, Conditions In, Arithmetic Processor

o
___7_0_0_2_4 0 X

121314 1718

y
3S

Read the status of the processor into the right half of location E as shown
(all interrupt requests are made on the channel assigned to the processor).

OVERFLOW OVERFLOW

INTERRUPT~
FLOATING
OVERFLOW

FLOATING
OVERFLOW

CLOCK
INTERRUPT

NONEXISTENT
MEMORY

MEMORY
PROTECTION

PUSHDOWN
OVERFLOW

~
FLAG / ENABLED INTERRUPT / ENABLED

\ 1
ENABLED

!-~/ \ / PRIORITY
USER ADDRESS CLOCK TRAP INTERRUPT

IN-OUT BREAK FLAG OFFSET ASSIGN MENT
I I

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

MAY 1968

2-80 CENTRAL PROCESSOR §2.14

Notes.

19 Pushdown Overflow - in a PUSH or PUSHJ the count in AC left
reached zero; or in a POP or POPJ the count reached -1. The setting
of this flag requests an interrupt.

20 User In-out - even if the processor is in user mode, the restrictions
on user instructions do not apply [§ 2.15J.

21 Address Break -while the console address break switch was on, the
processor requested access to the memory location specified by the
address switches and the memory reference was for the purpose
selected by the address condition switches as follows:

The instruction switch was on and access was for retrieval of an
instruction (including an instruction executed by an XCT or con­
tained in an interrupt location or a trap for an unimplemented
operation) or an address word in an effective address calculation.

The data fetch switch was on and access was for retrieval of an
operand (other than in an XCT).

The write switch was on and access was for writing a word in
memory.

The setting of this flag requests an interrupt, at which time PC points
to the instruction that was being executed or to the one following it.

22 Memory Protection - a user program attempted to access a memory
location outside of its assigned area and the user instruction was ter­
minated at that time. The setting of this flag requests an interrupt,
at which time PC points either to the instruction that caused the
violation or the one following it.

23 Nonexistent Memory - the processor attempted to access a memory
that did not respond within 100 /lS. The setting of this_flag requests
an interrupt, at which time PC points either to the instruction con­
taining the unanswered reference or to the one following it.

26 Clock - this flag is set at the ac power line frequency and can thus
be used for low resolution timing (the clock has high long term
-accuracy). If bit 25 is set, the setting of the Clock flag requests an
interrupt.

29 Floating Overflow - this is one of the flags saved in a PC word, and
the conditions that set it are given at the beginning of § 2.9. If bit 28
is set, the setting of Floating Overflow requests an interrupt, at which
time PC points to the instruction following that in which the over­
flow occurred.

30 Trap Offset - the processor is using locations 140-161 for unimple­
mented operation traps and interrupt locations.

32 Overflow - this is one of the flags saved in a PC word, and the condi­
tions that set it are given at the beginning of § 2.9. If bit 31 is set,
the setting of Overflow requests an interrupt, at which time PC
points to the instruction following that in which the overflow
occurred.

3

Basic In-out Equipment

The PDP-10 contains three in-out devices as standard equipment: tape
reader, tape punch, and teletype. These devices are used principally for
communication between computer and operator using a paper medium, tape
or form paper.

The punch supplies output in the form of 8-channe1 perforated paper tape
in either of two modes. In alphanumeric mode, 8-bit characters are proc­
essed; in binary mode, 6-bit characters. The information punched in the
tape can be brought into memory by the tape reader, which handles charac­
ters in the same two modes.

The program can type out characters on the teletype and can read charac­
ters that have been typed in at the keyboard. This device has the slowest
transfer rate of any, but it provides a convenient means of man-machine
interaction.

3.1 PAPER TAPE READER

The reader processes 8-channe1 perforated paper tape photoelectrically at a
speed of 300 lines per second. The device can operate in alphanumeric or
binary mode, as specified by the 0 or 1 state respectively of the Binary flag.
In alphanumeric a single tape-moving command reads all eight channels from
the first line encountered. In binary the device reads six channels from the
first six lines in which hole 8 is punched and assembles the information into
a 36-bit word. The interface contains a 36-bit buffer from which all data is
retrieved by the processor. The reader device code is 104, mnemonic PTR.

CONO PTR, Conditions Out, Paper Tape Reader

o
____7 _1_0_6_0 [1 X

12 13 14 17 18

y

35

Set up the reader control register according to bits 30-35 of the effective
conditions E as shown (a 1 in a flag bit sets the flag, a 0 clears it).

27 28 29 30 31 32 33

3-1

34 35

3-2

CONI PTR,

BASIC IN-OUT EQUIPMENT

Conditions In, Paper Tape Reader

§3.1

o
L..-- 7 _1_0_6_4 12] X

121314 1718

y

35

Read the status of the reader into bits 27 and 30-35 of location E as shown.

27 28 29 30 31 32 33 34 35

Placing the tape in motion sets the Tape flag and it remains set as long as the
tape is in the read head. A 0 in bit 27 indicates that the last time an attempt
was made to read, the reader was out of tape.

DATAl PTR, Data In, Paper Tape Reader

o
L..-- 7_1_0_4_4 0 X

121314 1718

y

35

TAPE CHANNELS

FEED
HOLE

\­
®CD®®@)o®~CD

t
TAPE MOTION

Transfer the contents of the reader buffer into location E. Clear Done and
set Busy.

Setting Busy clears the reader buffer, sets the Tape flag (if it is not already
set) and places the reader in operation. If Binary is clear, all eight channels
from the first line on tape are read into bits 28-35 of the buffer with
channel I corresponding to bit 35 (the presence of a hole produces a I in the
buffer). If Binary is set, the device reads only channels 1-6, but it reads the
first six lines encountered in which channel 8 is punched (lines without a
hole in channel 8 are skipped) and assembles them into a full word in the
buffer. The first line is at the left in the word and channell corresponds to
the rightmost bit in each 6-bit byte.

After the specified number of lines has been read, the reader clears Busy
and sets Done, requesting an interrupt on the assigned channel. A DATAl
brings the data into memory and also causes the reader to continue in opera­
tion. The programmer must give a CONO to clear Busy if he does not want
the reader to move the tape after the final DATAl is given.

If the tape runs out or malfunctions while a read operation is in progress,
the Tape flag is cleared and the reader shuts down.

Timing. At 300 lines per second the reader takes 3.33 ms per alpha­
numeric character, 20 ms per binary word if the binary characters are con­
tiguous. After Done is set, the program has 1.6 ms to give a DATAl and
keep the tape in continuous motion. Waiting longer causes the reader to
shut down for 40 ms. Thus start-stop operation is limited to 25 lines per
second.

§3.1 PAPER TAPE READER 3-3

EXAMPLES. This program reads ten binary words (60 lines) from paper
tape and stores them in memory beginning at location 4000. The block
pointer is kept in accumulator PNT.

NEXT:

MOVE
CONO
CONSO
JRST
BLKI
JRST
JRST

PNT,[IOWD
PTR,60
PTR,10
.-1
PTR,PNT
.+2
NEXT

12,4000] ;Put pointer in PNT
;Set up reader
;Watch Done

;Word ready, get it
;Got all data
;Go gack for next word

If instead of just waiting we wish to continue our program while the data
is coming in, we can use the priority interrupt. The following uses channel 4
and signals the main program that the data is ready by setting bit 35 of
accumulator F.

;Set up reader on channel 4
;Clear PI, then activate it and turn on
;channel4
;Continue program

MOVE
MOVEM
MOVE
MOVEM
CONO
CONO

17, [BLKI PTR, [IOWD 12,4000]]
17,50 ;Set up 50 and 51 for channel 4
17, [JSR DONE]
17,51
PTR,64
PI,12210

DONE:

TRZN
JRST

o
CONO
TRO
JEN

F,1
.-1

PTR,O
F,l
@DONE

;Check if data ready when needed
;Wait if necessary

;Interrupt routine, block done
;Stop tape
;Set F bit 35
;Dismiss and restore flags

Operation. Tapes must be unoiled and opaque. The reader is located just
above the console operator panel. To load it, place the fanfold tape stack
vertically in the bin at the right, oriented so that the front end of the tape is
nearer the read head and the feed holes are away from you. Lift the gate,
take three or four folds of tape from the bin, and slip the tape into the rea­
der from the front. Carefully line up the feed holes with the sprocket teeth
to avoid damaging the tape, and close the gate. Make sure that the part of
the tape in the left bin is placed to correspond to the. folds, otherwise it will
not stack properly. If the program requires that the Tape flag be set and it is
not, briefly press the white feed button located on the face of the reader.
After the program has finished reading the tape, run out the remaining
trailer by pressing the feed button.

Indicators for the reader are on the panel at the top of bay 1 (the panel is

3-4 BASIC IN-OUT EQUIPMENT §3.1

pictured in Appendix C). The paper tape reader lights in the second row
from the bottom display the contents of the buffer. The PI assignment and
flags are displayed in the PTR lights in the middle of the third row (EOT is
the Tape flag). The remaining PTR lights are for maintenance.

Readin Mode

The only requirement (beyond those given in § 2.12) for readin mode with
paper tape is that the data must be in binary (hole 8 punched). To select
the reader in the readin device switches, turn on the third from the left and
the last on the right (l04).

The program below is the RIM I OB Loader, which is brought into the
accumulators in readin mode, and then continues to read any number of
blocks of binary data from the same tape. The tape is formatted as a series
of blocks separated by a half-dozen lines of blank tape (tape with only feed
holes punched). The first block is the loader in readin format. The rest of
the tape contains any number of data blocks and ends with a transfer block.
Each data block contains any number of words of program data, preceded
by a standard 10 block pointer for the data only, and followed by a check­
sum, which is the sum of all the data words and the pointer. It is recom­
mended that the number of data words per block be limited to twenty for
ease in repositioning the tape in case of error. The transfer block is a JRST
to the starting location of the program, followed by a throw-away word to
stop the reader.

JRST 4,ST
AOBJN ADR,RD

;1410 words starting at location 1
;Set up reader binary
;Put RD+ 1 in Y part of A
;Watch Done

STI

A,

-16,0
PTR,60
A,RD+l
PTR,IO
.-1
PTR,@TBL1- RD+ 1(A) ;First and last words in

;ADR, data in block
TBLI-RD+l(A) ;TBLl+2 first word, +1 data,

;+0 checksum
TBL2-RD+l(A) ;TBL2+2 JRST, +1 data, +0

;bad checksum
;RD+ 1 first word, RD data, RD-l
;last word

CKSM,ADR ;Compare computed checksum with
;one read

CKSM,I(ADR) ;Add word read to checksum
CKSM,ADR ;Put first word in CKSM, skip if

;pointer
;Halt if checksum bad
;If data done, go to A; otherwise wait
;for next word
;Read in executes this. First and last
;word of each block also put here

JRST

XCT

ADD
SKIPL

XCT

SOJA

XWD
CONO
HRRI
CONSO
JRST
DATAl

CAME

A:

ADR:

TBLl:

TBL2:

ST:
STI:
RD:

This loader is written for min­
imum size and is quite com­
plex. Do not approach it as a
simple programming example.

CKSM=ADR+l

§3.2 PAPER TAPE PUNCH 3-5

The processor halts if a computed checksum does not agree with the tape.
To reread a block, move the tape back to the preceding blank area and press
the continue key. A halt following the transfer block is not an error - many
programs begin by halting.

3.2 PAPER TAPE PUNCH

The punch perforates 8-channel tape at speeds up to 50 lines per second. It
can operate in alphanumeric or binary mode, as specified by the 0 or I state
respectively of the Binary flag; but in either mode a single tape-moving
command punches only one line. Alphanumeric mode punches an 8-bit
character supplied by the program; binary mode always punches channel 8,
never punches channel 7, and punches a 6-bit character in the remaining
channels. The interface contains an 8-bit buffer that receives data from the
processor. The punch device code is 100,.mnemonic PTP.

CONO PTP, Conditions Out, Paper Tape Punch

o
'-- 7_1_0_2_0 [Z1 X

121314 1718

y

35

Set up the punch control register according to bits 30-35 of the effective
conditions E as shown (a I in a flag bit sets the flag, a 0 clears it).

27 28 29 30 31 32 33 34 35

CONI PTP, Conditions In, Paper Tape Punch

o
___7_1_0_2_4__~0 X

121314 1718

y

35

Read the status of the punch into bits 29-35 of location E as shown.

PRIORITY INTERRUPT
ASSIGNMENT

27 28 29 30 31 32 33 34 35

A I in bit 29 indicates that the punch is out of tape.

3-6 BASIC IN-OUT EQUIPMENT §3.2

DATAO PTP, Data Out, Paper Tape Punch

o
___7_1_0_1_4__------J0 X

121314 1718

y
35

Load the contents of bits 28-35 of location E into the punch buffer. Clear
Done and s'et Busy.

A CONO need be given only to change Binary or the PI assignment;
DATAO sets Busy while loading the buffer. Setting Busy places the punch in
operation. If Binary is clear, one line is punched in tape from bits 28-35 of
the buffer with bit 35 corresponding to channell (a 1 in the buffer produces
a hole in the tape). If Binary is set, channel 8 is punched, channel 7 is not
punched, and the remaining channels are punched from bits 30-35 ofthe
buffer with bit 35 corresponding to channell. After punching is complete,
the device clears Busy and sets Done, requesting an interrupt on the assigned
channel.

Timing. If Busy is set when the punch motor is off, punching is auto­
matically delayed 1 second while the motor gets up to speed. While the
motor is on, punching is synchronized to a punch cycle of 20 ms. After
Done sets, the program has 10 ms within which to give a new DATAO to
keep punching at the maximum rate; after 10 ms punching is delayed until
the next cycle. If Busy remains clear for 5 seconds the motor turns off.

EXAMPLE. Suppose we wish to punch out the same information we read
from tape in the examples of the previous section. We cannot use a BLKO
as an interrupt instruction unless we first spread the 6-bit characters over
sixty memory locations. The example uses channel 5 and assumes that other
channels are already in use.

MOVE A,[lSR
MOVEM A,52
CONO PTP,55
eONO PI,2004

PUNCH]
;Set up channel 5
;Request interrupt for first word
;Turn on channel 5
;Continue program

440600,4000 ;Generate pointer here
;Initialize count

PUNCH:

BYPPNT:
CNT:

o
ILDB
AOSL
CONO
DATAO
lEN

XWD
tD-60

A, BYPPNT
CNT
PTP,40
PTP,A
@PUNCH

;Interrupt routine
;Put byte in A
;Got all bytes?
;Yes,prevent interrupt after last word
;Punch byte

Operation. The punch is located behind the reader; both are in a drawer
that pulls out from the front of the console. Fanfold tape is fed from a box
at the rear of the drawer. After it is punched, the tape moves into a storage

§3.3 TELETYPE 3-7

bin from which the operator may remove it through a slot on the front.
Pushing the feed button beside the slot clears the punch buffer and punches
blank tape as long as it is held in. Busy being set prevents the button from
clearing the buffer, so pressing it cannot interfere with program punching.

To load tape, first empty the chad box behind the punch. Then tear off
the top of a box of fanfold tape (the top has a single flap; the bottom of the
box has a small flap in the center as well as the flap that extends the full
length of the box). Set the box in the frame at the back and thread the tape
through the punch mechanism. The arrows on the tape should be under­
neath and should point in the direction of tape motion. If they are on top,
turn the box around. If they point in the opposite direction, the box was
opened at the wrong end; remove the box, seal up the bottom, open the top,
and thread the tape correctly.

To facilitate loading, tear or cut the end of the tape diagonally. Thread
the tape under the out-of-tape plate, open the front guide plate (over the
sprocket wheel), push the tape beyond the sprocket wheel, and close the
front guide plate. Press the feed button long enough to punch about a foot
and a half of leader. Make sure the tape is feeding and folding properly in
the storage bin. Pushing the button labeled POWER sets No Tape, pushing
it again clears the flag. It can be used to hold the program at bay while a
tape is being loaded.

To remove a length of perforated tape from the bin, first press the feed
button long enough to provide an adequate trailer at the end of the tape
(and also leader at the beginning of the next length of tape). Remove the
tape from the bin and tear it off at a fold within the area in which only feed
holes are punched. Make sure that the tape left in the bin is stacked to
correspond to the folds; otherwise, it will not stack properly as it is being
punched. After removal, tum the tape stack over so the beginning of the
tape is on top, and label it with name, date, and other appropriate
information.

Indicators for the punch are the PTP lights in the top row of the panel
at the top of bay 1. The numbered lights display the last line punched.

3.3 TELETYPE

Two teletypewriter models are regularly available with the PDP-I 0 for use
at the console: the KSR 35, which is capable of speeds up to ten characters
per second, and the KSR 37, which can handle up to fifteen characters per
second. The program can type out characters and can read in the characters
produced when keys are struck at the keyboard.

The teletype separates its input and output functions and in effect acts
like two devices with a single device code: each has its own Busy and Done
flags, but the two share a common interrupt channel. Placing the code for a
character in the output buffer causes the teletype to print the character or
perform the designated control function. Striking a key places the code for
the associated character in the input buffer where it can be retrieved by the
program, but it does nothing at the teletype unless the program sends the
code back as output.

3-8 BASIC IN-OUT EQUIPMENT §3.3

Character codes received from the teletype have eight bits wherein the
most significant is an even parity bit. The Model 35 ignores the parity bit
in characters transmitted to it. The Model 37 ignores the parity bit in a
code for a printable character, but it performs no function when it receives
a control code with incorrect parity.

The Model 37 has the entire character set listed in the table in Appendix
B. Lower case characters are not available on the Model 35, but transmitting
a lower case code to the teletype causes it to print the corresponding upper
case character. To go to the beginning of a new line the program must send
both a carriage return, which moves the type box to the left margin, and
a line feed, which spaces the paper. The teletype device code is 120,
mnemonic TTY.

CONO TTY, Conditions Out, Teletype

o
____7_1_2_2_0 ---I1l] X

121314 1718

y
35

Set up the teletype control register according to bits 24-35 of the effective
conditions E as shown (a 1 in bit 24 sets Test, a 0 clears it; all other flag
functions are produced by 1s, Os have no effect).

CLEAR CLEAR CLEAR CLEAR SET SET SET SET PRIORITY INTERRUPT
TEST INPUT INPUT OUTPUT OUTPUT INPUT INPUT OUTPUT OUTPUT ASSIGNMENT

BUSY DONE BUSY DONE BUSY DONE BUSY DONE
I I

24 25 26 27 28 29 30 31 32 33 34 35

Setting Test connects the output buffer directly to the input buffer, allowing
the program to check out the interface logic without the line and the device.

CONI TTY, Conditions In, Teletype

o
'---__7 _12_2_4__---J0 X

121314 1718

y

35

Read the status of the teletype into bits 24 and 29-35 of location E as
shown.

24 2S 26 27 28 29 30 31 32 33 34 35

DATAO TTY, Data Out, Teletype

o
___7_1_2_1_4__---lIZI X

121314 1718

y
35

Load the contents of bits 28-35 of location E into the output buffer. Clear
Output Done, set Output Busy, and enable the transmitter.

§3.3

DATAl TTY, Data In, Teletype

TELETYPE 3-9

o
____7 _1_2_0_4__----'0 X

121314 1718

y
35

Transfer the contents of the input buffer into bits 28-35 of location E.
Clear Input Done.

Output. A CONO need be given only to change the PI assignment;
DATAO sets Output Busy and enables the transmitter while loading the
buffer. Enabling the transmitter causes it to send the contents of the output
buffer serially to the teletype. Completion of transmission clears Output
Busy and sets Output Done, requesting an interrupt on the assigned channel.

Input. Teletype reception requires no initiating action by the program
except to supply a PI assignment. Striking a key transmits the code for the
character serially to the input buffer. The beginning of reception sets Input
Busy; completion clears Input Busy and sets Input Done, requesting an
interrupt on the assigned channel. A DATAl brings the character into
memory and clears Input Done.

Timing. The Model 35 can type up to ten characters per second. After
Output Done is set, the program has 9.09 ms to give a DATAO to keep
typing at the maximum rate. After Input Done is set, the character is
available for retrieval by a DATAl for 22.73 ms before another key strike
can destroy it.

The 37 can handle fifteen characters per second, 66.7 ms per character.
After Output Done is set, the program has 6.67 ms to send a new character
to maintain the maximum typing rate. After Input Done is set, the character
is available for at least 10 ms.

The sequence carriage return-line feed, when given in that order, allows
sufficiept time for the type box to get to the beginning of a new line. After
tabbing, the program must wait for completion of the mechanical function
by sending one or two rubouts. If the time is critical, the programmer
should measure the time required for his tabs. Tabs are normally set every
eight spaces (columns 9, 17, ...) and require one rubout.

Operation. The illustrations on the following two pages show the two
teletype models. The teletype is actually two independent devices, keyboard
and printer, which can be operated simultaneously. Power must be turned
on by the operator. On the 35 the switch is beside the keyboard, and has an
unmarked third position (opposite ON) which turns on power but with the
machine off line so it can be used like a typewriter. A similar switch is
located beneath the stand on the 37.

The keyboard resembles that of a standard typewriter. Codes for printable
characters on the upper parts of the key tops on the 35 are transmitted by
using the shift key; most control codes require use of the control key. Those
familiar with the 35 who are using the 37 for the first time should take a
close look at the keyboard. On the 37 the shift is used for real upper case
characters. The control key is used for some control characters, but many

3-10 BASIC IN-OUT EQUIPMENT §3.3

Teletype KSR 35 have separate keys. Note also that both the keyboard arrangement and the
labels differ somewhat. On both, the line feed (labeled "new line" on the 37)
spaces the paper vertically at six lines to the inch, and must be combined
with a return to start a new line. The local advance (feed) and return keys
affect the printer directly and do not transmit codes. Appendix B lists the
complete teletype code, ASCII characters, key combinations, and differences
between the two models.

Indicators for the teletype are the TTY lights in the second row of the

§3.3 TELETYPE 3-11

panel at the top of bay 1. The numbered lights display the last character
typed in from the keyboard (bit 8 is parity). The ACT lights indicate
activity in the transmitter and receiver. The remaining lights display the PI
assignment and flags (the Input and Output Done flags are labeled TTl
FLAG and TTO FLAG).

Teletype manuals supplied with the equipment give complete, illustrated
descriptions of the procedures for loading paper, changing the ribbon, and
setting horizontal and vertical tabs. The first two procedures are fairly

Teletype KSR 37

3-12 BASIC IN-OUT EQUIPMENT §3.3

obvious: observe the paper or ribbon path and duplicate it. The other tasks
are usually left for maintenance personnel. In any event, the best and easiest
way to learn to do any of these things is to have someone who knows show
you how.

Appendices

APPENDIX A

INSTRUCTION AND DEVICE MNEMONICS

The illustration on the next page shows the derivation of the instruction
mnemonics. The two tables following it list all instruction mnemonics and
their octal codes both numerically and alphabetically. When two mnemonics
are given for the same octal code, the first is the preferred form, but the
assembler does recognize the second. For completeness, UUOs are listed for
user mode (an asterisk indicates a UUO mnemonic recognized by MACRO for
communication with the PDP-IO Time Sharing Monitor). All UUOs
000-077 are identical when the processor is not in user mode.

In-out deviee codes are included only in the alphabetic listing and are
indicated by a dagger (t). Following the tables is a chart that lists the
devices with their mnemonic and octal codes and DEC option numbers for
both PDP-IO and PDP-6. A device mnemonic ending in the numeral 2 is
the recommended form for the second of a given device, but such codes are
not recognized by MACRO - they must be defined by the user.

Al

A2 MNEMONICS

PUSH down} { ,....,
POP up and Jump

SKIP if memory}
JUMP if AC ----------,

Add One to \ Imemory and SkiPlor
Subtract One from AC and Jump I r-r-'

\
Immediate } 0 0

Compare Ac 0 h M and skip If AC-
WIt emory

Jump

Movj;NegatiVe)-------_---.
e Magnitude (to AC
e Swapped _ Immediate to AC

I
no effect I to Memory

{
Right} {Right} Ones to Self

Half word Left to Left Zeros .-

Extend sign

BLock Transfer

EXCHange AC and memory

use present pOinter}. d {LoaD Byte into AC

Increment pointer an DePosit Byte in memory

Increment Byte Pointer

Zeros
Ones

SET to Ac
Memory
Complement of Ac

Complement of Memory \ AC

I
,...., II-to AC Immediate

AND } with Complement of Ac Memory
inclusive OR with Complement of Memory .- Both

Complements of Both

Inclusive OR }
eXclusive OR ...J

EQuiValence

never
Less
Equal
Less or Equal
Always
Greater
Greater or Equal
Not equal

o \PoSitiVeAdd One to Both halves of AC and Jump If N 0

egatlVe

ADD
SUBtract
MULtiply

Integer MULtiply -.=Jl"""
rn~& ~~fu~

Integer DIVide to Memory

and Round to Both

Floating AdD 11 [,....,
Floating SuBtract Long
Floating MultiPly to Memory
Floating DiVide to Both

Floating SCale

Double Floating Negate

Unnormalized Floating Add

Arithmetic SHift II
Logical SHift ,....,c bO d
ROTate om me

".

to SubRoutine
and Save Pc
and Save Ac
and Restore Ac
if Find First One
on Flag and CLear it
on OVerflow (JFCL 10,)
on CaRrY 0 (JFCL 4,)
on CaRrY 1 (JFCL 2,)
on CaRrY (JFCL 6,)
on Floating OVerflow (JFCL 1,)
and ReSTore
and ReSTore Flags (JRST 2,)
and ENable PI channel (JRST 12,)

HALT (JRST 4,)

eXeCuTe

DATA}

BLocK :{IIn
Out

CONditions 0

o d Sk Of {all masked bIts Zero
m an Ip I some masked bit One

Iwith Direct mask IINo modification I [never
T with Swapped mask set masked bits to Zeros d kO if all masked bits Equal 0

est AC Right with E set masked bits to Ones an s Ip if Not all masked bits equal 0
Left with E Complement masked bits Always

NUMERIC LISTING

INSTRUCTION MNEMONICS

NUMERIC LISTING

A3

000 ILLEGAL 132 FSC 206 MOVSM

~01I 133 IBP 207 MOVSS
USER 134 ILDB 210 MOVN
uuo's 135 LDB 211 MOVNI

037 136 IDPB 212 MOVNM
040 *CALL 137 DPB 213 MOVNS
041 *INIT 140 FAD 214 MOVM

042j
141 FADL 215 MOVMI

043 RESERVED 142 FADM 216 MOVMM
044 FOR 143 FADB 217 MOVMSSPECIAL

045 MONITORS 144 FAD'R 220 IMUL
046 145 FADRI A- 221 IMULI
047 *CALLI 146 FADRM 222 IMULM
050 *OPEN 147 FADRB 223 IMULB

051I 150 FSB 224 MUL
052 RESERVED 151 FSBL 225 MULl
053 FOR DEC 152 FSBM 226 MULM
054 153 FSBB 227 MULB
055 *RENAME 154 FSBR 230 IDIV
056 *IN 155 FSBRI 231 IDIVI
057 *OUT 156 FSBRM 232 IDIVM
060 *SETSTS 157 FSBRB 233 IDIVB
061 *STATO 160 FMP 234 DIV
062 *STATUS 161 FMPL 235 DIVI
062 *GETSTS 162 FMPM 236 DIVM
063 *STATZ 163 FMPB 237 DIVB
064 *INBUF 164 FMPR 240 ASH
065 *OUTBUF 165 FMPRI 241 ROT
066 *INPUT 166 FMPRM 242 LSH
067 *OUTPUT 167 FMPRB 243 JFFO
070 *CLOSE 170 FDV 244 ASHC
071 *RELEAS 171 FDVL 245 ROTC
072 *MTAPE 172 FDVM 246 LSHC
073 *UGETF 173 FDVB 247
074 *USETI 174 FDVR 250 EXCH
075 *USETO 175 FDVRI A- 251 BLT
076 *LOOKUP 176 FDVRM 252 AOBJP
077 *ENTER 177 FDVRB 253 AOBJN

:100)
200 MOVE 254 JRST

UNASSIGNED 201 MOVEI 25410 JRSTF
CODES 202 MOVEM 25420 HALT

127 203 MOVES 25450 JEN
130 UFA 204 MOVS 255 JFCL
131 DFN 205 MOVSI 25504 JFOV

MAY 1968

A4 MNEMONICS

25510 JCRYI 333 SKIPLE 410 ANDCA
25520 JCRYO 334 SKIPA 411 ANDCAI
25530 JCRY 335 SKIPGE 412 ANDCAM
25540 JOV 336 SKIPN 413 ANDCAB
256 XCT 337 SKIPG 414 SETM
257 340 AOJ 415 SETMI
260 PUSHJ 341 AOJL 416 SETMM
261 PUSH 342 AOJE 417 SETMB
262 POP 343 AOJLE 420 ANDCM
263 POPJ 344 AOJA 421 ANDCMI
264 JSR 345 AOJGE 422 ANDCMM
265 JSP 346 AOJN 423 ANDCMB
266 JSA 347 AOJG 424 SETA
267 JRA 350 AOS 425 SETAl
270 ADD 351 AOSL 426 SETAM
271 ADDI 352 AOSE 427 SETAB
272 ADDM 353 AOSLE 430 XOR
273 ADDB 354 AOSA 431 XORI
274 SUB 355 AOSGE 432 XORM
275 SUBI 356 AOSN 433 XORB
276 SUBM 357 AOSG 434 lOR
277 SUBB 360 SOJ 434 OR
300 CAl 361 SOJL 435 IORI
301 CAlL 362 SOJE 435 ORI
302 CAIE 363 SOJLE 436 IORM
303 CAlLE 364 SOJA 436 ORM
304 CAIA 365 SOJGE 437 IORB
305 CAIGE 366 SOJN 437 ORB
306 CAIN 367 SOJG 440 ANDCB
307 CAIG 370 SOS 441 ANDCBI
310 CAM 371 SOSL 442 ANDCBM
311 CAML 372 SOSE 443 ANDCBB
312 CAME 373 SOSLE 444 EQV
313 CAMLE 374 SOSA 445 EQVI
314 CAMA 375 SOSGE 446 EQVM
315 CAMGE 376 SOSN 447 EQVB
316 CAMN 377 SOSG 450 SETCA
317 CAMG 400 SETZ 451 SETCAI
320 JUMP 400 CLEAR 452 SETCAM
321 JUMPL 401 SETZI 453 SETCAB
322 JUMPE 401 CLEARI 454 ORCA
323 JUMPLE 402 SETZM 455 ORCAI
324 JUMPA 402 CLEARM 456 ORCAM
325 JUMPGE 403 SETZB 457 ORCAB
326 JUMPN 403 CLEARB 460 SETCM
327 JUMPG 404 AND 461 SETCMI
330 SKIP 405 ANDI 462 SETCMM
331 SKIPL 406 ANDM 463 SETCMB
332 SKIPE 407 ANDB 464 ORCM

NUMERIC LISTING AS

465 ORCMI 546 HLRM 627 TLZN
466 ORCMM 547 HLRS 630 TDZ
467 ORCMB 550 HRRZ 631 TSZ
470 ORCB 551 HRRZI 632 TDZE
471 ORCBI 552 HRRZM 633 TSZE
472 ORCBM 553 HRRZS 634 TDZA
473 ORCBB 554 HLRZ 635 TSZA
474 SETO 555 HLRZI 636 TDZN
475 SETOI 556 HLRZM 637 TSZN
476 SETOM 557 HLRZS 640 TRC
477 SETOB 560 HRRO 641 TLC
500 HLL 561 HRROI 642 TRCE
501 HLLI 562 HRROM 643 TLCE
502 HLLM 563 HRROS 644 TRCA
503 HLLS 564 HLRO 645 TLCA
504 HRL 565 HLROI 646 TRCN
505 HRLI 566 HLROM 647 TLCN
506 HRLM 567 HLROS 650 TDC
507 HRLS 570 HRRE 651 TSC
510 HLLZ 571 HRREI 652 TDCE
511 HLLZI 572 HRREM 653 TSCE
512 HLLZM 573 HRRES 654 TDCA
513 HLLZS 574 HLRE 655 TSCA
514 HRLZ 575 HLREI 656 TDCN
515 HRLZI 576 HLREM 657 TSCN
516 HRLZM 577 HLRES 660 TRO
517 HRLZS 600 TRN 661 TLO
520 HLLO 601 TLN 662 TROE
521 HLLOI 602 TRNE 663 TLOE
522 HLLOM 603 TLNE 664 TROA
523 HLLOS 604 TRNA 665 TLOA
524 HRLO 605 TLNA 666 TRON
525 HRLOI 606 TRNN 667 TLON
526 HRLOM 607 TLNN 670 TDO
527 HRLOS 610 TDN 671 TSO
530 HLLE 611 TSN 672 TDOE
531 HLLEI 612 TDNE 673 TSOE
532 HLLEM 613 TSNE 674 TDOA
533 HLLES 614 TDNA 675 TSOA
534 HRLE 615 TSNA 676 TDON
535 HRLEI 616 TDNN 677 TSON
536 HRLEM 617 TSNN 70000 BLKI
537 HRLES 620 TRZ 70004 DATAl
540 HRR 621 TLZ 70004 RSW
541 HRRI 622 TRZE 70010 BLKO
542 HRRM 623 TLZE 70014 DATAO
543 HRRS 624 TRZA 70020 CONO
544 HLR 625 TLZA 70024 CONI
545 HLRI 626 TRZN 70030 CONSZ

70034 CONSO

A6 MNEMONICS

INSTRUCTION MNEMONICS

ALPHABETIC LISTING

tADC 024 BLT 251 DIVM 236
ADD 270 CAl 300 tDLS 240
ADDB 273 CAIA 304 DPB 137
ADDI 271 CAIE 302 tDSK 170
ADDM 272 CAIG 307 tDTC 320
AND 404 CAIGE 305 tDTS 324
ANDB 407 CAlL 301 *ENTER 077
ANDCA 410 CAlLE 303 EQV 444
ANDCAB 413 CAIN 306 EQVB 447
ANDCAI 411, *CALL 040 EQVI 445
ANDCAM 412 *CALLI 047 EQVM 446
ANDCB 440 CAM 310 EXCH 250
ANDCBB 443 CAMA 314 FAD 140
ANDCBI 441 CAME 312 FADB 143
ANDCBM 442 CAMG 317 FADL 141
ANDCM 420 CAMGE 315 FADM 142
ANDCMB 423 CAML 311 FADR 144
ANDCMI 421 CAMLE 313 FADRB 147
ANDCMM 422 CAMN 316 FADRI 145
ANDI 405 tCCI 014 FADRM 146
ANDM 406 tCDP 110 FDV 170
AOBJN 253 tCDR 114 FDVB 173
AOBJP 252 CLEAR 400 FDVL 171
AOJ 340 CLEARB 403 FDVM 172
AOJA 344 CLEARI 401 FDVR 174
AOJE 342 CLEARM 402 FDVRB 177
AOJG 347 *CLOSE 070 FDVRI 175
AOJGE 345 CONI 70024 FDVRM 176
AOJL 341 CONO 70020 FMP 160
AOJLE 343 CONSO 70034 FMPB 163
AOJN 346 CONSZ 70030 FMPL 161
AOS 350 tCPA 000 FMPM 162
AOSA 354 tCR 150 FMPR 164
AOSE 352 DATAl 70004 FMPRB 167
AOSG 357 DATAO 70014 FMPRI 165
AOSGE 355 tDC 200 FMPRM 166
AOSL 351 tDCSA 300 FSB 150
AOSLE 353 tDCSB 304 FSBB 153
AOSN 356 tDF 270 FSBL 151

tAPR 000 DFN 131 FSBM 152
ASH 240 tDIS 130 FSBR 154
ASHC 244 DIV 234 FSBRB 157
BLKI 70000 DIVB 237 FSBRI 155
BLKO 70010 DIVI 235 FSBRM 156

ALPHABETIC LISTING A7

FSC 132 HRLZM 516 JSP 265
*GETSTS 062 HRLZS 517 JSR 264
.HALT 25420 HRR 540 JUMP 320
HLL 500 HRRE 570 JUMPA 324
HLLE 530 HRREI 571 JUMPE 322
HLLEI 531 HRREM 572 JUMPG 327
HLLEM 532 HRRES 573 JUMPGE 325
HLLES 533 HRRI 541 JUMPL 321
HLLI 501 HRRM 542 JUMPLE 323
HLLM 502 HRRO 560 JUMPN 326
HLLO 520 HRROI 561 *LOOKUP 076
HLLOI 521 HRROM 562 tLPT 124
HLLOM 522 HRROS 563 LSH 242
HLLOS 523 HRRS 543 LSHC 246
HLLS 503 HRRZ 550 tMDF 260
HLLZ 510 HRRZI 551 MOVE 200
HLLZI 511 HRRZM 552 MOVEI 201
HLLZM 512 HRRZS 553 MOVEM 202
HLLZS 513 IBP 133 MOVES 203
HLR 544 IDIV 230 MOVM 214
HLRE 574 IDIVB 233 MOVMI 215
HLREI 575 IDIVI 231 MOVMM 216
HLREM 576 IDIVM 232 MOVMS 217
HLRES 577 IDPB 136 MOVN 210
HLRI 545 ILDB 134 MOVNI 211
HLRM 546 IMUL 220 MOVNM 212
HLRO 564 IMULB 223 MOVNS 213
HLROI 565 IMULI 221 MOVS 204
HLROM 566 IMULM 222 MOVSI 205
HLROS 567 *IN 056 MOVSM 206
HLRS 547 *INBUF 064 MOVSS 207
HLRZ 554 *INIT 041 *MTAPE 072
HLRZI 555 *INPUT 066 tMTC 220
HLRZM 556 lOR 434 tMTM 230
HLRZS 557 IORB 437 tMTS 224
HRL 504 IORI 435 MUL 224
HRLE 534 IORM 436 MULB 227
HRLEI 535 JCRY 25530 MULl 225
HRLEM 536 JCRYO 25520 MULM 226
HRLES 537 JCRYI 25510 *OPEN 050
HRLI 505 JEN 25460 OR 434
HRLM 506 JFCL 255 ORB 437
HRLO 524 JFFO 243 ORCA 454
HRLOI 525 JFOV 25504 ORCAB 457
HRLOM 526 JOV 25540 ORCAI 455
HRLOS 527 JRA 267 ORCAM 456
HRLS 507 JRST 254 ORCB 470
HRLZ 514 JRSTF 25410 ORCBB 473
HRLZI 515 JSA 266 ORCBI 471

A8 MNEMONICS

ORCBM 472 SKIPA 334 TLCN 647
ORCM 464 SKIPE 332 TLN 601
ORCMB 467 SKIPG 337 TLNA 605
ORCMI 465 SKIPGE 335 TLNE 603
ORCMM 466 SKIPL 331 TLNN 607
ORI 435 SKIPLE 333 TLO 661
ORM 436 SKIPN 336 TLOA 665

*OUT 057 SOJ 360 TLOE 663
*OUTBUF 065 SOJA 364 TLON 667
*OUTPUT 067 SOJE 362 TLZ 621
tPI 004 SOJG 367 TLZA 625
tPLT 140 SOJGE 365 TLZE 623

POP 262 SOJL 361 TLZN 627
POPJ 263 SOJLE 363 tTMC 340

tPTP 100 SOJN 366 tTMS 344
tPTR 104 SOS 370 TRC 640

PUSH 261 SOSA 374 TRCA 644
PUSHJ 260 SOSE 372 TRCE 642

*RELEAS 071 SOSG 377 TRCN 646
*RENAME 055 SOSGE 375 TRN 600

ROT 241 SOSL 371 TRNA 604
ROTC 245 SOSLE 373 TRNE 602
RSW 70004 SOSN 376 TRNN 606
SETA 424 *STATO 061 TRO 660
SETAB 427 *STATUS 062 TROA 664
SETAl 425 *STATZ 063 TROE 662
SETAM 426 SUB 274 TRON 666
SETCA 450 SUBB 277 TRZ 620
SETCAB 453 SUBI 275 TRZA 624
SETCAI 451 SUBM 276 TRZE 622
SETCAM 452 TOC 650 TRZN 626
SETCM 460 TOCA 654 TSC 651
SETCMB 463 TOCE 652 TSCA 655
SETCMI 461 TOCN 656 TSCE 653
SETCMM 462 TON 610 TSCN 657
SETM 414 TONA 614 TSN 611
SETMB 417 TONE 612 TSNA 615
SETMI 415 TONN 616 TSNE 613
SETMM 416 TOO 670 TSNN 617
SETO 474 TOOA 674 TSO 671
SETOB 477 TOOE 672 TSOA 675
SETOI 475 TOON 676 TSOE 673
SETOM 476 TOZ 630 TSON 677

*SETSTS 060 TOZA 634 TSZ 631
SETZ 400 TOZE 632 TSZA 635
SETZB 403 TOZN 636 TSZE 633
SETZI 401 TLC 641 TSZN 637
SETZM 402 TLCA 645 UFA 130
SKIP 330 TLCE 643 *UGETF 073

ALPHABETIC LISTING A9

*USETI
*USETO
tUTC

074
075

210

tUTS
XCT
XOR

214
256
430

XORB
XORI
XORM

433
431
432

en
w
u
:;
w
Cl

Cl
a:::
~
Cl
Z

~
<..>
W
Cl

en
w
u
:;
w
Cl

-'
c::::
u
w
a.
en
a:::
w
en
::::l

~ - - - - - - -
FIR:iT

6,10
APR

6,10 6 16710 DA10 10 DA10 10 AD10l0 AD10OCTAL
DIGIT PI CCI CCI2 ADC ADC20 CPA

CENTRAL PRIORITY DRUM PDP-B,9 PDP-B,9 ANALOG-DIGITAL ANALOG-DIGITAL
PROCESSOR INTERRUPT PROCESSOR INTERFACE INTERFACE CONVERTER CONVERTER

6 761 6 760 10 CP10 6 461 6 626 6 646 6.10 340 6,10 340 10 XY10 10 XY10 10 CR10 10 CR10 6 165 10 RC10 10 Rel0
10 10 10 10 LP10

1 PTP PTR CDP CDR TTY LPT DIS DIS2 PLT PLT2 CR CR2 DSK DSK2
PAPER PAPER CONSOLE PDP-7,B

TAPE PUNCH TAPE READER CARD PUNCH CARD READER TELETYPE LINE PRINTER DISPLAY DISPLAY PLOTTER PLOTTER CARD READER CARD READER INTERFACE SMALL DISK SMALL DISK

6 136 6 136 6 551 6 516 10 DC10 10 DC10 10 RA10 10 RA10 6 270

2 DC DC2 UTC UTS MTC MTS MTM DLS DLS2 MDF MDF2 DF
DATA· DATA DATA LI NE DATA LINE MASS MASS

CONTROL CONTROL DECTAPE MAGNETIC TAPE SCANNER SCANNER DISK FILE DISK FILE DISK FILE

6 630 10 I TDIO 10 TOl0 10 TM10 10 TM10

3 DCSA DCSB DTC DTS DTC2 DTS2 TMC TMS TMC2 TMS2
DATA COMMUNICATION DECTAPE DECTAPE MAGNETIC TAPE MAGNETIC TAPE

4

5

6

7

24

>
""'"""o

~
Z
t!j

~
oz....
(j
en

IN-OUT
INSTRUCTION

WORD

DEVICE CODE

DEVICE MNEMONICS

I
I

I I

Used with PDP-6 --~: 6 646-:--Option number for PDP-6
Used with PDP-IO~ll0 LPlO~1 Option number for PDP-IO

1 LPT~(~~r~uo~~~rn~~~:c~~~~edsesv~~i is

Pse:~~e whose COde-=-=-=--tLiNE PRINTER I Mnemonic for device code 124

I I
I I
I

APPENDIX B

INPUT-OUTPUT CODES

The table beginning on the next page lists the complete teletype code. The
lower case character set (codes 140-176) is not available on the Model 35,
but giving one of these codes causes the teletype to print the corresponding
upper case character. Other differences between the 35 and 37 are men­
tioned in the table. The definitions of the control codes are those given by
ASCII. Most control codes, however, have no effect on the console teletype,
and the definitions bear no necessary relation to the use of the codes in con­
junction with the PDP-l 0 software.

The line printer has the same codes and characters as the teletype. The
64-character printer has the figure and upper case sets, codes 040-137
(again, giving a lower case code prints the upper case character). The "96"­
character printer has these plus the lower case set, codes 040-176. The
latter printer actually has only ninety-five characters unless a special charac­
ter is "hidden" under the delete code, 177. A hidden character is printed by
sending its code prefixed by the delete code. Hence a character hidden under
DEL is printed by sending the printer two l77s in a row.

Besides printing characters, the line printer responds to ten control charac­
ters, HT, CR, LF, VT, FF, DLE and DCI-4. The 128-character printer uses
the entire set of 7-bit codes for· printable characters, with characters hidden
under the ten control characters that affect the printer and also under null
and delete. In all cases, prefixing DEL causes the hidden character to be
printed. The extra thirty-three characters that complete the set are ordered
special for each installation.

The first page of thetable of card codes [pages B6-8] lists the column
punch required to represent any character in the two DEC codes. The octal
codes listed are those used by the PDP-l 0 software. In other words, when
reading cards, the Monitor translates the column punch into the octal code
shown; when punching cards, it produces the listed column punch when
given the corresponding code. The remaining pages of the table show the
relationship between the DEC card codes and several IBM card punches.
Each of the column punches is produced by a single key on any punch for
which a character is listed, the character being that which is printed at the
top of the card.

Bl

B2

Even
Parity

Bit

o
1

1

o
1

o

o
1

1

o
o

1

o
1

1

o
1

o
o

1

o

1

1

o
o
1

1

o

1

o

7-Bit
Octal
Code Character

000 NUL

001 SOH

002 STX

003 ETX

004 EOT

005 ENQ

006 ACK

007 BEL

010 BS

011 HT

012 LF

013 VT

014 FF

015 CR

016 SO

017 SI

020 DLE

021 DCl

022 DC2

023 DC3

024 DC4

025 NAK

026 SYN

027 ETB

030 CAN

031 EM

032 SUB

033 ESC

034 FS

035 GS

INPUT-OUTPUT CODES

TELETYPE CODE

Remarks

Null, tape feed. Repeats on Model 37. Control shift P on Model 35.

Start of heading; also SOM, start of message. Control A.

Start of text; also EOA, end of address. Control B.

End of text; also EOM, end of message. Control C.

End of transmission (END); shuts off TWX machines. Control D.

Enquiry (ENQRY); also WRU, "Who are you?" Triggers identification
("Here is ... ") at remote station if so equipped. Control E.

Acknowledge; also RU, "Are you ... ?" Control F.

Rings the bell. Control G.

Backspace; also FEO, format effector. Backspaces some machines.
Repeats on Model 37. Control H on Model 35.

Horizontal tab. Control I on Model 35.

Line feed or line space (NEW LINE); advances paper to next line. Repeats
on Model 37. Duplicated by control J on Model 35.

Vertical tab (VTAB). Control K on Model 35.

Form feed to top of next page (PAGE). Control L.

Carriage return to beginning of line. Control M on Model 35.

Shift out; changes ribbon color to red. Control N.

Shift in; changes ribbon color to black. ControlO.

Data link escape. Control P (DCO).

Device control 1, turns transmitter (reader) on. Control Q (X ON).

Device control 2, turns punch or auxiliary on. Control R (TAPE,
AUX ON).

Device control 3, turns transmitter (reader) off. Control S (X OFF).

Device control 4, turns punch or auxiliary off. Control T (~,
AUX OFF).

Negative acknowledge; also ERR, error. Control U.

Synchronous idle (SYNC). Control V.

End of transmission block; also LEM, logical end of medium. Control W.

Cancel (CANCL). Control X.

End of medium. Control Y.

Substitute. Control Z.

Escape, prefix. This code is generated by control shift K on Model 35,
but the Monitor translates it to 175.

File separator. Control shift L on Model 35.

Group separator. Control shift M on Model 35.

TELETYPE CODE B3

Even 7-Bit
Parity Octal

Bit Code Character Remarks

a 036 RS Record separator. Control shift N on Model 35.
1 037 US Unit separator. Control shift 0 on Model 35.
1 040 SP Space.

a 041

a 042

1 043 #
a 044 $

1 045 %
1 046 &

a 047 Accent acute or apostrophe.

a 050 (

1 051)

1 052 * Repeats on Model 37.

a 053 +
1 054

a 055 Repeats on Model 37.

a 056 Repeats on Model 37.

1 057 /
a 060 f/J
1 061 1

1 062 2

a 063 3

1 064 4

a 065 5

a 066 6

1 067 7

1 070 8

a 071 9

a 072

1 073

a 074 <

I 075 = Repeats on Model 37.

1 076 >

a 077 ?

1 100 @

a 101 A

a 102 B

B4 INPUT-OUTPUT CODES

Even 7-Bit
Parity Octal

Bit Code Character Remarks

1 103 C

0 104 D

1 105 E

1 106 F

0 107 G

0 110 H

1 III I

1 112 J

0 113 K

1 114 L

0 115 M

0 116 N

1 117 0

0 120 P

1 121 Q

1 122 R

0 123 S

1 124 T

0 125 U

0 126 V

1 127 W

1 130 X Repeats on Model 37.

0 131 Y
0 132 Z

1 133 [Shift K on Model 35.

0 134 \ Shift L on Model 35.

1 135] Shift M on Model 35.

1 136 t
0 137 +- Repeats on Model 37.

0 140 Accent grave.

1 141 a

1 142 b

0 143 c

1 144 d

0 145 e

0 146 f

1 147 g

TELETYPE CODE B5

Even 7-Bit
Parity Octal

Bit Code Character Remarks

1 150 h

0 151 i

0 152 j

1 153 k

0 154 1

1 155 m

1 156 n

0 157 ·0

1 160 p

0 161 q

0 162 r

1 163 s

0 164 t

1 165 u

1 166 v

0 167 w

0 170 x Repeats on Model 37.

1 171 y

1 172 z

0 173 {
1 174 I
0 175 } This code generated by ALT MODE on Mode135. ...
0 176 This code generated by ESC key (if present) on Model 35, but the

Monitor translates it to 175.

177 DEL Delete, rub out. Repeats on Model 37.

Keys That Generate No Codes

REPT Model 35 only: causes any other key that is struck to repeat continuously
until REPT is released.

PAPER ADVANCE Model 37 local line feed.

LOCAL RETURN Model 37 local carriage return.

LOCLF Model 35 local line feed.

LOCCR Model 35 local carriage return.

INTERRUPT, BREAK Opens the line (machine sends a continuous string of null characters).

PROCEED, BRK RLS Break release (not applicable).

HERE IS Transmits predetermined 21-character message.

MAY 1968

B6 INPUT-OUTPUT CODES

CARD CODES

PDP-tO PDP-tO
... Character ASCII DEC 029 DEC 026 Character ASCII DEC 029 DEC 026

Space 040 None None @ 100 84 8 4
! 041 11 8 2 1287 A 101 12 1 12 1

042 8 7 085 B 102 12 2 12 2
043 8 3 086 C 103 12 3 12 3
$ 044 11 8 3 11 8 3 D 104 12 4 12 4
% 045 084 087 E 105 12 5 12 5
& 046 12 1187 F 106 12 6 12 6

047 8 5 8 6 G 107 12 7 12 7
(050 12 8 5 084 ... H 110 12 8 12 8
) 051 11 8 5 1284 ... I 111 12 9 12 9
* 052 1184 1184 J 112 11 1 11 1
+ 053 1286 12 K 113 11 2 11 2

054 083 083 L 114 11 3 11 3
055 11 11 M 115 11 4 11 4
056 1283 1283 N 116 11 5 11 5

/ 057 o 1 o 1 0 117 11 6 11 6
0 060 0 0 P 120 11 7 11 7
1 061 1 1 Q 121 11 8 11 8
2 062 2 2 R 122 11 9 11 9
3 063 3 3 S 123 02 02
4 064 4 4 T 124 03 o 3
5 065 5 5 U 125 04 04
6 066 6 6 V 126 o 5 o 5
7 067 7 7 W 127 06 06
8 070 8 8 X 130 07 o 7
9 071 9 9 Y 131 08 08

072 8 2 11 8 2 or 11 0 Z 132 09 09
073 11 8 6 082 [133 1282 11 8 5

< 074 1284 1286 \ 134 1187 8 7
= 075 8 6 8 3] 135 082 12 8 5
> 076 086 1186 t 136 1287 8 5
? 077 087 12 8 2 or 12 0 +- 137 085 8 2

Binary 7 9
Mode Switch 1202468
End ofFile 12 11 0 1

The octal codes given above are those generated by the Monitor from the column punches. The card
reader interface actually supplies a direct binary equivalent of the column punch, as listed in the following
two pages.

MAY 1968

CARD CODES B7

Column Column
Punch Character Octal Punch Character Octal

None Space 0000 12 9 I 4001

0 0 1000 11 1 J 2400

1 1 0400 11 2 K 2200

2 2 0200 11 3 L 2100

3 3 0100 11 4 M 2040

4 4 0040 11 5 N 2020

5 5 0020 11 6 0 2010

6 6 0010 11 7 P 2004

7 7 0004 11 8 Q 2002

8 8 0002 11 9 R 2001

9 9 0001 o 1 / 1400

12 1 A 4400 o 2 S 1200

12 2 B 4200 03 T 1100

12 3 C 4100 04 U 1040

12 4 D 4040 o 5 V 1020

12 5 E 4020 o 6 W 1010

12 6 F 4010 o 7 X 1004

12 7 G 4004 o 8 y 1002

12 8 H 4002 o 9 Z 1001

Column 026 Data 026
Punch Processing Fortran 029 DEC 026 DEC 029 Octal

12 & + & + & 4000

11 2000

12 0 ? 5000

11 0 3000

8 2 +- 0202

8 3 # = # = # 0102

84 @ @ @ @ 0042

8 5 t 0022

8 6 = 0012

8 7 " \ 0006

1282 ¢ ? 4202

12 8 3 4102

1284 J:I) <) < 4042

12 8 5 (] (4022

1286 + < + 4012

B8 INPUT·OUTPUT CODES

Column 026 Data 026
Punch Processing Fortran 029 DEC 026 DEC 029 Octal

1287 t 4006

II 8 2 2202

11 8 3 $ $ $ $ $ 2102

11 8 4 * * * * * 2042

11 8 5) [) 2022

11 8 6 > 2012

11 8 7 -, & \ 2006
082 See note] 1202

083 1102

084 % (% (% 1042

085 +- " +- 1022
086 > # > 1012

087 ? % ? 1006

12 11 0 1 End of File End of File 7400
12 0 2 4 6 8 Mode Switch Mode Switch 5252

7 9 Binary Binary xx05

NOTE: There is a single key for the 0 8 2 punch on the 029 but printing is suppressed.
The Monitor translates the octal code for the 12 0 punch in DEC 026 to 4202 (which corresponds to a

12 8 2 punch), and the code for 11 0 to 2202 (11 8 2).

APPENDIX C

MISCELLANY

Instruction Flow Simplified C2

Word Formats C3

Instruction Timing Flow Chart C4

In-out Device Bit Assignments C6

Indicator Panels C8

Powers of Two CIO

Cl

C2 MISCELLANY

INDIRECT
BYTE INSTR.

BlKl, BlKO

POINTER DONE IN

BYTE, BlK 1, BlK 0

ADDRESS

CAlCUlAT ION

INSTRUCTION
EXECUTION

YES

BlT

NO

YES

INSTRUCTION FLOW SIMPLIFIED

WORD FORMATS

BASIC INSTRUCTIONS

C3

o

INSTRUCTION CODE
(INCLUDING MODEl

IN-OUT INSTRUCTIONS

Y
35

1111,11 DEVICE CODE IIN~~ON~L__X__~I y ~1
o 2'-3-------9 10 12 13 14 17 18 35

PC WORD

L- F_LA_G_S -!I_°-lIL°--L1°---l...I_°.J..I_°...LI p_C ~1
12: 13 17 18 351 _

BLT POI NTER [X WD1
IL S_O_U_R_C_E_A_DD_R_E_SS --.~I...,..,,-------D-ES-T-I N_A_Tl_ON_A_DD_R_ES_S -::-:1
o 17 18 35

BLK 1/ BLKO POINTER, PUSHDOWN POINTER, DATA CHANNEL CONTROL WORD [IOWD]

I -_W_O_R_D_C_O_UN_T ~I_:__--------A-DD-R_ES_S_-_1 ---:-:1
o 17 18 35

I POSITION P I SIZE S rn
0------""='"51.:-6 --------:-:-'1112 1314

BYTE PO INTER

X I---Y---I
17 18 35

BYTE STORAGE
f----s BITS I P 81TS ----~I

1---------------------I----=--By=-T-E---I__N_EX_T_B_y_T_E_--L I
o 35-P-S-l 35-P 35-P+l 35

FIXED POI NT OPERANDS
SIGN
0+
1 -
o 1

S6~N EXCESS 128 EXPONENT
1- (ONES COMPLEMENT)

o 1 8 9

BINARY NUMBER (TWOS COMPLEMENT)

FLOATING POI NT OPERANDS

FRACTION (TWOS COMPLEMENT)

35

35

LOW ORDER WORD IN DOUBLE LENGTH FLOATING POINT OPERAND.S

°o 1

EXCESS 128 EXPONENT-27
IN POSITIVE FORM

8 9

LOW ORDER HALF OF FRACTION (TWOS COMPLEMENT I

WORD FORMATS

35

C4 MISCELLANY

DATA FETCH

INSTRUCTION TIMING
FLOW CHART

INSTRUCTION
FETCH

ADDRESS
CALCULATION

*Ul)
* IF IN USER MODE

INSTRUCTION TIMING C5

INSTRUCTION EXECUTION DATA STORE
.-- .--JA'- --.,

" INCLUDING 20 FT OF CABLE DELAY
• FAST REGISTERS
ALL TIMES ARE:!: 5%

+ .15 per shift

.27

.62

.45

.80

.80

.69

Same as FAD + .18

+.96

+.69

12.00

13.28

12.32 (+ .11 if User) + memory read access + .89

.12 Then wait until 4.50 has passed since last here
+2.69
+2.90

.60 Then turn into DATAO, DATAl and go to C2

First time

First time

Second time

Second time

MEMORY MAt0 MB10 MBI0 KMI0 •

PROCESSORS SINGLE SINGLE MULTI SINGLE
OR MULTI (BUILT IN)

CYCLE 1.00 1.65 1.65 -
READ ACCESS" .55 .60 .70 .21

WRITE ACCESS" .20 .20 .30 .21

ILDB,IDPB

MUL
Average except MUll

IMUL
Average except IMULI

FMP

+ .19 times number of leading Os mod 18

(+ .11 if User) + memory write access + .52
If not done + .09 and go to C3

.38 + .26 if overflow word boundary

.61 +.15 per size count GotoCl

74 {+ .15 per size count} Go to Cl
. + .26 if overflow

.45 + .15 per position count

.95 + .15 per position count

{
.39 Left }
.23 Right

6.02 +.13 per transition
8.36 (18 transitions for 2.34)

6.34 + .13 per transition
7.51 (9 transitions for 1.17)

6.39 + .13 per transition
Average except FMPRI 8.21 (14 transitions for 1.82)

Note: Immediate mode multiplication has only half the average number of transitions

DIV,IDIV 13.78

FSC 1.52 + .25 per shift to normalize

{
+ .15 per shift to unnormalize

~:~~ + .25 per shift to normalize

ILDB, LOB

IOPB,DPB

FAD, UFA
Average

IBP

LDB,DPB

CHART 1

FSB

Rounding (except divide) only when actually done

Long mode (except divide)

FDVR, FDV (except FDVL)

FDVL with fast ACs

FDVL without fast ACs

CONO, CONI, CDNSO, CDNSZ, DATAD, DATAl
CONO, CONI, DATAO, DATAl
CONSO, CONSZ

BLKO, BLKI

Boolean (except ANDCA, ANDCB, ORCA, DRCB).
Half Words (except HLR, HLRI, HRL, HRLI). MOVE,
MOVS, EXCH, JFCL, JRST, JSP, XCT, UUO

ANDCA, ANDCB, ORCA, ORCB, HLR, HLRI,
HRL, HRLI,JSR, JSA, JRA, Test class

MOVN, MOVM, ADD, SUB, AOBJP, AOBJN,
CAM, CAl, SKIP, JUMP, AOJ, AOS, SOJ, SOS

PUSH, PUSHJ, POP, POPJ, DFN

JFFO

BLT

Shift group

IN-OUT DEVICE BIT ASSIGNMENTS

DEVICE. CODE ~UNCT1CYI rJ/18 1/19 2/21- 3/21 4122 5/23 6/24 7/25 8/26 9/27 1¢/28 11/29 12/.3¢ 13/.31 14/32 15/3.3/16/34 /17/35

CONO
CLIe I/O CLR CLI< CLI2 CLR SET CLIe CLIe SET CLIe CL.Ji!. SET CLR
POL

~~
MEM CLOCI<. CLOCI<. CLOCK i=OV .c"OV i=OV ::<OV "'ROV I1ROV PII1

OV I<ESET 'lJK. PiCOT NXM ENIIBLE. ENI1BLE .c"LI1G ENIIBLE ENIQBLE. .c"L~ NI1BLE ENI1BLE. ~/.JIG

POL lOT "'lOR MEM
NxM CL.OCK CLOCK .c"OV .c"OV TR/9P ,qROV I1Ji!.OVCONI OV USER BREI1K PROT PII1

~PR ¢¢tiJ .c"LI1G .c"L.9G ~L.4G .c"LI1G .c"LAG ENI1BLE .c"LI'IG EM'lBLE .c"LI1G OI=FS£.T ENI1BLE .c"L,qG

OI1T,qO PIeOTECT.lON REG.lSTE.1e (VI al-")
RELOCIQT.lON J;?EGISTER. (RI-{ 18-25)

~TIU 36 O,qT,q SWITCI-IES -
CL.EIQR CLE"'e CL.EIJR SET

r~1I1R'=c~:lE ~
TUIeN SELECT CI-MNNELS 1- 7

CONO POWEIZ PIQ;:Z.lTY 1=lIJ/2JTY PlQRITY
lPr~v~~L.!=l.jJG ","L.4G eNIJBL.E ENIQBLE SYSTEM CIRJNE ouw. 'NEL PII¥:TNE .c"OR BITS 24, 2S, 26

PI r;J¢4
POWE.e p,q/2JTY m.erTY TNTEIeRUPT .IN PROGeESS ON PI

CONt ""~UIeE ~ ENIJBLE C'HftlNNEL$ ·1-7 /1CTIVE CI-{~NEL "'ICrIVE 1-7
.c"LI!Xi

Dt'IT1'IO .. 36 elTS TO 1M: MEMORY .lAID.lCl'lTORS -
110C
~-D

CONV~TER ¢24
(I1DI¢)

CONO BINIQJ:<Y BUSY
DONE

PI'"PLIQG

PTP t¢¢ CONI
OUT DONEOP BINIII2Y BUSY PI'"
rnPE 1=LI'IG

OI1T"'O
"'OL.E 8 HOLE. ., HOLE I-IOLE ;.KJLE HOLE IHOLE IH'OL.E
I~.t~';:1~~;~1;~ 6 5 <I 3 2 t

COIVO BIN"';:ZY BUSY DONE
PI'"FLIQG

PrI< 1¢4 CON./ TI'IPE BINIII<Y BUSY DONE PIll
.c"Lf:lG FLflG

OOTRI • 36 sIr WOIi?D If: BINI'IRY. 8 BITS (28 -..35) If: NOT BINI¥!Y ..
CONO TEST TTl TTl TTO TTO TTl TTl rro TTO

.c"LAG BUSY 1=LRG
1~'1=.s;;..

,cLAG BU.sy ~U:IG BUSY !="L"'G- PI'"
ICLEf:Ie ICLE,q12 ICLEI'I~ SET eT seT SET

CONI TEST TTl TTl TTO TTO
PIA

TTY /2¢
f:LAG BUSY .c"L"IG ellSY ~L"'G

DAmo 8 BET CH,qf;?"'CTER TO TELETYPE

c;,qTRI 8 SIT CHI1R"'ICTER ~J;?OM KEYBo,qRD

CONO

=~
BUSY

DONE ERROR DONE

LPT
~L"'IG PII"I PI,q

(LP1~) 124 CONI 12.8 9~
ERROR BUSY

DONE ERROR DONE
CHl'l1i!. CHI11i!. .c"L~G PI"A PI,q

~mo
~lRSr CHtClRI'ICTER SECOND CHI"lIi?,..CTER I THIRD

CHI"IRI"ICTER I ,cOUR"TH CHI'IRIICrER I ~rFrH CHIQRACrER I

CONO ausy DONE 1='1"1"1FL,qG

PLT /4V; CO""./
POWER

BUSY DONE 1"'11"1
(Xy ftJ) ON .c"U9G

oomo PEN PEN
-l(+ l(I(+ Y I-y

DRUM DRUM GIRRJ,
RfirSE LOWEll! UP DOWN LEFT IR1~

CONO ~~
OFFSET REJ9D TROuBLE CLEAe

RE~DY
CLE,q;:z CLEl'l1i! CLI!IIte

OI1T,q
E~'f/{ ~~~~ ~J:.

PII"I
C!'IRD CI'IRD EM4SLE MISSED ENI1BLE

15¢ REflDER REIlOERI PI-IOTO,rCIlICD 'f~ER
CRRD HOPPER READIAG RE=E~ ~TI1

REI'IOY END END OI9TRCR CONI 77?SLE. R~ClY PICK CELL MOTION t:"DER TO
F'f[~ cC;:;"

PII"I
(CRI¢) E.NIIB Ji-Ni:J;i EI<'ROR ERROR ERROR fsmCKE.... CIQIZD T1?OUBLE MISSED

I2E~D
.c"LIQG

D4rAI ROW ROW ROW ROIY ICOW ROIY ROW ROW ROW 1i?0W I ROW I ROW
12 11 ~ 1 2 3 <1 .s 6 7 B 9

()
0\

E:
en
(1
t!j
t"'
t"'
~
Z
-<

DEVICE. CODE RJNCT1t1l rJ/18 1/19 2/2Z 3/21 4"22 5/23 6/24 7/25 I 8126 9/27 1¢/28 IJ/29 12/3¢ 13/31 14/32 15/33 16/34 17/35

SELECT ~LE,q.e CLIi? Ti:RC CLEI'IR CLEI/Ii!. CLR C£.e~rLRS1 CLEII!<! CLE4e CLE"Ie WeJTE STOP CU~
COIVO

SECTOR CTR -;~~ 'W"i~ Q/:-/l~:1~,wA?siJp DES/(D41R OONT1eOi. NXM ILLEGI'IL OVEe- CH"'IN CLEM DaN~
PfR

'III UIi!E. t=/9PFPJ;; RqP A'II! ~ wii>iTF I;W~ ('NT. WD -SUSY
N!'UNT PRO,kCT BOUNOIQRY SWETOIES ('BCD)

CONJ ~~~1 I J~'S {~-.~TRIICK.LW LOWER DJSk J's
x'l;;IIIN SEI'lRCH DISK ra:<CK. Dr.3K Pw.e DJSI<; CHIINNC;~ICM'W~ LLEGI'IL OVEI2- f:-:t-D BLISYDsk' J7¢ CONI OESIG SELECT NOT ~'::LY Rt1.eIn' D"ITR CONTIiiOi. NXM DONE Pf"l

(RC~) RI>I PROG ERROR EI<!IeOlZ Ee~ RE,QDY ER'~ ~eEce AgeEe W!CI!1: RUN WJen'TEN

OI'IT"IO
DISI(.. ~K (seD) . - SECTOR (BCD) ..

LI>I SELECT
J(/x/)'S I I~'S I i'S .iaJ'S I J's

EN.TT.l"lL Q/~~I~,l
WRITE

D"I7'190 R9IZ ERR~~ee WRITE INIT.TRL CHI'7NNEL COII/TIZOl.. WORD I9DDIi?E$.3 EVEN
RN AQ.lZITY SlOP STOP RIIeITY

P"IRITY I SECTOR CTR - SECTOR COUIII7'ER (BCD) .
O,t:iT1fN REGISTER SELECTED J 's I 1'0$

COIIIO STOP ~waea
GO DELIIY 1c.:u="Ic

T""I9I11.s~eT ~UNCT.TON NUN/BEe. D"ITI9 PJI9 ~LRGS P.TII$£LEcr SEJ.GC/~
a-Y~ JiliN/err lMdT AI~

NUMBER ¢"NOnlNG 4·1+<!/7ENKI,.,

STOP~ GO SELECT CESELECl T"..,qN,SPOeT t·li?EIIDIJL/. 5·~"..;u

CONI 2 'eE~&CCA:"'" 'WVTE &.c:o:" D"ITR PIR ,coL.I9GS Pfl9

32¢
~.esE NUMBER 3~~4::JCJtI!IT.Q 7- 141eE~ D9rl'1

OTC
(TDJ~) D~TI90 -36 erT WCleD

D"IilU . 36 BrT weeD .
~RJ1Y Dl9T~ ~

~,.;.
END BLOCK

SlOPRl..L A/ItlCTlOIVCONO ERR Mf.!UED DONE 'i!ONE Mr.s.sED
ENIISLE EN,qBLE EM9BLE ENt:JBL& ENt:lBLE ENIIBLE ~RlEl: STOP

PIQ/ZlTY Dl9r11 JOB
~~

END BLoCK.
DELAY :1 ,corN4L

BLoC#::

~:wCONE EIZIZ M.TSSEO DONE i!CWE MrSSED rN fiCTIVe UP 10 BLOCK REI/E-eS'E DIQT"I 'JI£CKSUM IDLE IVUNBE.e
LN ENl9BLE ENIIBLE EN"IBL.E EN~BLE EM'lBLE EA/~I5LE~ SPEED NUMBBC CHECK OArll e£QD

~ (),!I7'1/ JOB
~

END BLOCK
I w.errE. WRr", ~P££ MI'IRK

SEL.ECT
A.,qG> DQm

CON.T LOCk. S~C¥ BLOC< ~~ e.eece
,or

Or.s ~24
~H EIi!Ji!OR MISSED DONE ~ONE MESSED ON ~T I2/iQt/EST

liP 10 M~I<
D19mo SPEED T7i?19CK

11&1 TEST ~Tl:I

DAT~I Aq.eI7'Y
LN

/1,01 NOT NOT ,I NOT Nor /I,OT NOr
(;)qT7'l.T REGrSTE.e I2ERD/WI2ITE k?EG.TSrEJZ MKdN NK ON l>IKD4r,q MKIZEV MK MK~WD ""K 8¥

Il'" SR9CE END SYNC D'm'IEND ;:;.qr,q Dq1l9EHD SYNC

CLE~
SET RESEr

COMO
DLS f:..1:J?DY ~/iNNER

PII9

DLS
(DCI¢) CONI DTR n<¥1NS k'::'VR

PIIQ'Dl~BLEC. t=LfiG ,coLIQG
24¢

L" I/~:Na LINE NUMBER
QtrT1K>

rRI/II!QLli'llIIl!1JT8 arT 7 BlT~ BTS BfT4 BlT3 BIT~ BITt
DCl¢a/ RH Cl<' DP~ NBB N84 NB2 NB

DC/(/jE L LIIVE NI/MBER
Dm"III

/i:'CVI('D9111 BlTB BlT7 BIT,., 81TS BlT4 BIT3 aT2 BlTIRI>I !=HAJrT7n, " PND J'lCR

PlRITY CORe 0'NO-OP
I; : ~~P"jf:"OVTUI ::I;' ~,:S"l:'r'~ 1"

CONO UNIT 'ZJ= EVEN DUMP J'~WIND ~LIQG PM O"1TR PIli
1,.<YYJ 2 ,READ .12 • REIID "ICRS «a:lEI? ENIQI!! J. S~(i, 3=(84¢)

UNIT
CORE 3, RoCO~ I!J • ~J¥C'HP4C23 Rt!t:D NEXT

CONJ
RII

RIIRlTY DUMP 4· W"'ErE J4. WI<' JoVLO'oG El:),("
~

DEMSJ7'Y ,coLI)G PIJ't Dl9TIQ PIJ't
5· WRlrc; E~ JG' SPlQCE nLE
Eo' SA«:E ~wo J 7 • SPfIC~ I=ELE /Z&V

CONILf.! NEXT UlVrT

34¢
QI:lmO

~d:
. 36 BIT WORD ..

(7 CHN: .sIX Eo eJ7' OIIf'MCTERS ~ IN D.lmQI L!ELoW)

TMC ~mo 1 ST CJ.lIQRIQCTER I .. 2ND CJ,IRRIQCTER .
(TM1¢)

9-CJ.#./ - 3RD CHIiR;:;CTER --- . C;Z TJ.I C'l-MIi?I9CT£R, . I&NOR£:::

Dl9mr . t ST CNfiRRCTER 2ND CM4RJ:1CT~ _ 3 RD CHARIQCTER JF

7-CHN .. 4711 CHARACTER • I 5TJ.1 CI-ll9RI9CTER --I . ~TJI CHRR19CTER

~TlQI
1 ST CJ.lIIRRCTER I 2ND CJ.lARf'lCTER I

9-CHN 3RD CHRRIiCTSR .. . 4rn CJ.lf'lRACTER ~~~ft:l~3~:::~RIBITS~
rM.I~~ oqTIII - 1 ST CHfiRI9CTER • I 2ND C#t9RI9CT£R .. I
ONLY ~N 3RO CHARI9CTER . . 4 T7-I CHIiRIiC TCR ~- 5 nI CIM.<.I;CTER-t:WP

~ BITS ~R nEil!<!"" CUI'IR>iI' ~ff 0;. X'=ER" "TOPTMl~B CONO
~"'cRJ?

WTCW
ONLY DONE ..voRD CRe -

344 CONI
CW .. NON_EX"" CRm .. lw-,"cW"" CHIQRAO-ER

LH A9R ERR MEM i:I9R EIifP DONE COUNTER
TMS

XPORT Ii?EWJNO Lo,qO ILLEG P4R £ND END READ ;5, mPE = DQT"1 fCONI O~ 01= ~L~ DAm BIJO JOB
~~~J

WRlTE ?-CIIIlN NEXT
RW HUNG ING POINT oP ERROR PUE rnPE ERfi!OR LRTii TRPE DOIVE Loce TliPE UNIT E'EQ

DlQ7J:10 INITIAL CJ.IRNNEL CCNT'Ra. WORD I9DDR£S3
WIUTE

RW 11:Wry

COIVO
CL./C SET C~ ISIi1' CUi? seT CLR SET CL.R SET

-W~ l~~ 'ZIt I=;:jf I~f A-1/(/j r:g/1 TOl¢ TO LaJ TO/(/j PIR
TY EMPTY t=ULL EMPTY EMPTY

C"I
SELI= I~NJrI t=M/~

~/~
TO 1(1

(DA1¢) CONI Tfl/ ~'f EM{'j7'Y '1L. ~Y PII9
¢14 (j

~mI JST PDP B BYTE (t9) 2ND PDP B BYTE (8) 31iD PDP 8 BYTE (c)
D41RO
RItP~ . .3<0 BITS
D4Tt9r . 3G SITS .
~~ JST PDP 9 BYTE (t9) 2ND POP 9 BYTE (8)

Z
6
c
,..;j

o
~

<:
n
~

t:C
~
:>
til
til

Q
z
~
~

Z
,..;j
Ul

n
-....J



Indicator Panel, KAla Arithmetic Processor, Bay I

Indicator Panel, KA Ia Arithmetic Processor, Bay 2

n
00

~

Cil
(l
~
t""
t""
>
Z
-<



Indicator Panel, MA 10 Core Memory (1.00 J.1s)

Indicator Panel, MB 10 Core Memory (1.65 J.1s)

52
I::'
n
>
>-l
o
::tl

~
Z
~
t""
tIJ

n
\.Q



CIO MISCELLANY

POWERS OF TWO

1
2
4
8

16
32
64

128
256
512

1 024
2 048
4 096
8 192

16 384
32 768
65 536

131 072
262 144
524 288

1 048 576
2 097 152
4 194 304
8 388 608

16 777 216
33 554 432
67 108 864

134 217 728
268 435 456
536 870 912

1 073 741 824
2 147 483 648
4 294 967 296
8 589 934 592

17 179 869 184
34 359 738 368
68 719 476 736

137 438 953 472
274 877 906 944
549 755 813 888

1 099 511 627 776
2 199 023 255 552
4 398 046 511 104
8 796 093 022 208

17 592 186 044 416
35 184 372 088 832
70 368 744 177 664

140 737 488 355 328
281 474 976 710 656
562 949 953 421 312
125 899 906 842 624

2 251 799 813 685 248
4 503 599 627 370 496
9 007 199 254 740 992

18 014 398 509 481 984
36 028 797 018 963 968
72 057 594 037 927 936

144 115 188 075 855 872
288 230 376 151 711 744
576 460 752 303 423 488

1 152 921 504 606 846 976
2 305 843 009 213 693 952
4 611 686 018 427 387 904
9 223 372 036 854 775 808

18 446 744 073 709 551 616
36 893 488 147 419 103 232
73 786 976 294 838 206 464

147 573 952 589 676 412 928
295 147 905 179 352 825 856
590 295 810 358 705 651 712

1 180 591 620 717 411 303 424
2 361 183 241 434 822 606 848
4 722 366 482 869 645 213 696

o 1.0
1 0.5
2 0.25
3 0.125
4 0.062 5
5 0.031 25
6 0.015 625
7 0.007 812 5
8 0.003 906 25
9 0.001 953 125

10 0.000 976 562 5
11 0.000 488 281 25
12 0.000 244 140 625
13 0.000 122 070 312 5
14 0.000 061 035 156 25
15 0.000 030 517 578 125
16 0.000 015 258 789 062 5
17 0.000 007 629 394 531 25
18 0.000 003 814 697 265 625
19 0.000 001 907 348 632 812 5
20 0.000 000 953 674 316 406 25
21 0.000 000 476 837 158 203 125
22 0.000 000 238 418 579 101 562 5
23 0.000 000 119 209 289 550 781 25
24 0.000 000 059 604 644 775 390 625
25 0.000 000 029 802 322 387 695 312 5
26 0.000 000 014 901 161 193 847 656 25
27 0.000 000 007 450 580 596 923828 125
28 0.000 000 003 725 290 298 461 914 062 5
29 0.000 000 001 862 645 149 230 957 031 25
30 0.000 000 000 931 322 574 615 478 515 625
31 0.000 000 000 465 661 287 307 739 257 812 5
32 0.000 000 000 232 830 643 653 869 628 906 25
33 0.000 000 000 116 415 321 826 934 814'453 125
34 0.000 000 000 058 207 660 913 467 407 226 562 5
35 0.000 000 000 029 103 830 456 733 703 613 281 25
36 0.000 000 QOO 014 551 915 228 366 851 806 640 625
37 0.000 000 000 007 275 957 614 183 425 903 320 312 5
38 . 0.000 000 000 003 637 978 807 091 712 951 660 156 25
39 0.000 000 000 001 818 989 403 545 856 475 830 078 125
40 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5
41 0.000 000 000 000 454 747 350 886 464 118 957 519 531 25
42 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625
43 0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5
44 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25
45 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125
46 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5
47 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25
48 0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625
49 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5
50 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25
51 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125
52 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5
53 0.000 000 000 000 000.111 022 302 462 515 654 042 363 166 809 082 031 25
54 0.000 000 000 000 000 055 511 151 231 257 827 021 181 583 404 541 015 625
55 0.000 000 000 000 000 027 755 575 615 628 913 510 590 791 702 270 507 812 5
56 0.000 000 000 000 000 013 877 787 807 814 456 755 295 395 851 135 253 906 25
57 0.000 000 000 000 000 006 938 893 903 907 228 377 647 697 925 567 626 953 125
58 0.000 000 000 000 000 003 469 446 951 953 614 188 823 848 962 783 813 476 562 5
59 0.000 000 000 000 000 001 734 723 475 976 807 094 411 924 481 391 906 738 281 25
60 0.000 000 000 000 000 000 867 361 737 988 403 547 205 962 240 695 953 369 140 625
61 0.000 000 000 000 000 000 433 680 868 994 201 773 602 981 120 347 976 684 570 312 5
62 0.000 000 000 000 000 000 216 840 434 497 100 886 801 490 560 173 988 342 285 156 25
63 0.000 000 000 000 000 000 108 420 217 248 550 443 400 745 280 086 994 171 142 578 125
64 0.000 000 000 000 000 000 054 210 108 624 275 221 700 372 640 043 497 085 571 289 062 5
65 0.000 000 000 000 000 000 027 105 054 312 137 610 850 186 320 021 748 542 785 644 531 25
66 0.000 000 000 000 000 000 D13 552 527 156 068 805 425 093 160 010 874 271 392 822 265 625
67 0.000 000 000 000 000 000 006 776 263 578 034 402 712 546 580 005 437 135 696 411 132 812 5
68 0.000 000 000 000 000 000 003 388 131 789 017 201 356 273 290 002 718 567 848 205 566 406 25
69 0.000 000 000 000 000 000 001 694 065 894 508 600 678 136 645 001 359 283 924 102 783 203 125
70 0.000 000 000 000 000 000 000 847 032 947 254 300 339 068 322 500 679 641 962 051 391 601 562 5
71 0.000 000 000 000 000 000 000 423 516 473 627 150 169 534 161 250 339 820 981 025 695 800 781 25
72 0.000 000 000 000 000 000 000 211 758 236 813 575 084 767 080 625 169 910 490 512 847 900 390 625


	1 Introduction
	2 Central Processor
	3 Basic In-out Equipment
	Appendices
	Appendix A Instruction and Device Mnemonics
	Appendix B Input-Output Codes
	Appendix C Miscellany

