March 1979

This manual describes the use of RMS-11 facilities in MACRO-11 programs.

RMS-11 MACRO-11
Reference Manual
Order No. AA-H683A-TC

SOFTWARE VERSION: RMS-11 V1.8
RMS-11K V1.8

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maynard, massachusetts

First Printing, March 1979

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment Cor-
poration. Digital Equipment Corporation assumes no responsibility for
any errors that may appear in this document.

The software described in this document is furnished under a 1license
and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright (:) 1979 by Digital Equipment Corporation

The postage—-paid READER'S COMMENTS form on the last page of this docu-
ment requests the user's critical evaluation to assist us in preparing
future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC FOCAL
DECnet IAS
DECsystem-10 MASSBUS
DECSYSTEM-20 PDP
DECtape RSX
DECUS RSTS
DIBOL UNIBUS
DIGITAL VAX
VMS

4/8016

TABLE OF CONTENTS

PREFACE

SECTION

TITLE

DOCUMENTATION CONVENTIONS

CHAPTER

-
5
1.

-
L

=
L] .
S W

L) L)

N N

=
.

']

CHAPTER

L

[\
.

o
.

1

L] L]
(S Sy

H N e
L]

=
L]
HFREEREOFEFENDRFFND

[
.

-
.

o e

2

. . L] .
e

DN DNDNDNDNDRFE
L] .
NN

N
.

[\
.

)

[NCHLO IS T Ol S\ V)

* o o e o o .
wN =

* o o o o
AU WN

e o o o e o .
WRNNNNDODN

HwWwhd NP

N

NDNOBFFDNDMNDNDWNDNDNONDDNDE

e o e o o * .

L]
NN

.

=

NN

D NNDWWW
. o

NN

—

[

.

.
N

wWwwN - N =

N =

N

[

N

w N

ww

N =

USING RMS-11 IN A MACRO-11 PROGRAM
DECLARING RMS-11 FACILITIES

Listing Names of Required Macro Definitions
Declaring the Processing Environment
Declaring Buffer Pool Requirements
USER CONTROL BLOCKS

File Access Block (FAB)

Allocation

Initialization

Record Access Block (RAB)

Allocation

Initialization

Extended Attribute Block (XAB)
Allocation

Initialization

Linking and Ordering XABs

Ordering by Type of XAB

Ordering Within XAB Type

Name Block

Allocation

Initialization

CONTROL BLOCK FIELD ACCESS AT RUN TIME
FILE .AND RECORD OPERATIONS

Completion Routines

Calling Sequence

Your Program Supplies the Argument List
RMS-11 Generates the Argument List
File Operation Macros

Record Operation Macros

CREATING THE TASK

PROVIDING BUFFER SPACE

CENTRAL BUFFER POOL

P$BDB

PSFAB

P$SRAB

PSRABX

PS$SIDX

P$BUF

GET SPACE ROUTINE

Specifying a Routine

Specifying a Get Space Address at
Assembly Time

Specifying a Get Space Address at Run Time
Interfaces to Routines

RMS-11 Request For Space

RMS-11 Release Of Space

RMS-11 Pool Block Header Formats
Comments

PAGE
XV

xvii

1
=Yoo UNTWN

e e e
|

|
OoO~JoOUTd WM

mr?hayroh)m
H OO o
PO OO

iii

CHAPTER 3

iv

W
.

=

w W

. .
. e o o
N
N ¢ o o o
= BDWN =

w w w w

. . . .
« o o o e e o o e o o . e o o o
e« o o o e o o o « o o . e o o @
S wWN - H W w N [d S wWN -

w
.

w w w
. . .
HFLOWWHFFWWWLWWOWWWOWWWLWWIWWwWwwaWwWwwWwWwunWwdhwWWwWwWwwwwNhnhnwwwwk
e o Oe o ¢ o ¢« o o

| ol WWOOwY o W

ol o] e o o o e e o

L W N wWN =

N

3.11.1
3.11.2
3.11.3
3.11.4
3.11.5
3.12
3.12.1
3.12.2
3.12.3
3.13
3.13.1
3.13.2
3.13.3
3.13.4
3.14

FILE ACCESS BLOCK

ALQ

Use

Input Values
Initialization
Comments

BID

Use

BKS

Use

Input Values
Initialization
Comments

BLN

Use

BLS

Use

Input Values
Initialization
BPA

Use

Input Values
Initialization
Comments

BPS

Use

Input Values
Initialization
Examples

CTX

Use

Input Values
Initialization
DEQ

Use

Input Values
Initialization
Comments

DEV

Use

Output Values
DNA

Use

Input Values
Initialization
Examples
Comments

DNS

Use

Input Values
Initialization
FAC

Use

Input Values
Initialization
Comments

FNA

and

and

and

and

and

and

and

and

and

and

Default

Default

Default

Default

Default

Default

Default

Default

Default

Default

|
HRPRPOOUWOWOOIJOaOOUTUTS_DdWWW

|
=
NHHHO

WWWWWWWRWWWwWWwwWwwwwwwww
|

3.14.1
3.14.2
3.14.3
3.14.4
3.15
3.15.1
3.15.2
3.15.3
3.16
3.16.1
3.16.2
3.16.3
3.16.4
3.17
3.17.1
3.17.2
3.17.3
3.17.4
3.18
3.18.1
3.19
3.19.1
3.19.2
3.19.3
3.19.4
3.20
3.20.1
3.20.2
3.20.3
3.21
3.21.1
3.21.2
3.21.3
3.21.4
3.22
3.22.1
3.22.2
3.22.3
3.23
3.23.1
3.23.2
3.23.3
3.24
3.24.1
3.24.2
3.24.3
3.24.4
3.25
3.25.1
3.25.2
3.25.3
3.26
3.26.1
3.26.2

3.26.3
3.27

3.27.1

Use

Input Values
Initialization
Comments

FNS

Use

Input Values
Initialization
FOP

Use

Input Values
Initialization
Comments

FSZ

Use

Input Values
Initialization
Comments

IFI

Use

LCH

Use

Input Values
Initialization
Comments

MRN

Use

Input Values
Initialization
MRS

Use

Input Values
Initialization
Comments

NAM

Use

Input Values
Initialization
ORG

Use

Input Values
Initialization
RAT

Use

Input Values
Initialization
Comments

RFM

Use

Input Values
Initialization
RTV

Use

Input Values
Initialization
RTV

Use

and

and

and

and

and

and

and

and

and

and

and

and

Default

Default

Default

Default

Default

Default

Default

Default

Default

Default

Default

Default

3-25
3-25
3-26
3-26
3-27
3-27
3-27
3-27
3-28
3-28
3-28
3-30
3-30
3-31
3-31
3-31
3-31
3-32
3-33
3-33
3-34
3-34
3-34
3-34
3-35
3-36
3-36
3-36
3-37
3-38
3-38
3-38
3-39
3-39
3-40
3-40
3-41
3-41
3-42
3-42
3-42
3-42
3-43
3-43
3-43
3-44
3-44
3-45
3-45
3-45
3-46
3-47
3-47
3-47
3-48
3-49
3-49

3.27.2
3.27.3
3.28
3.28.1
3.28.2
3.28.3
3.29
3.29.1
3.29.,2
3.30
3.30.1
3.30.2
3.31
3.31.1
3.31.2
3.31.3
3.31.4

CHAPTER 4

vi

o SN B
L] L] L[] L1] L
N D
. L] . . L] L] . .
N N R VR O XN e
L] L] L] L] L) L) .]
WRNH H W

v

o i~
.
. e s o
(@)
. e o o o
[l B wWwN -

HSBSDDLELELDLDDODLDDDDODDDJRNUTD D D 0D DS D WD DS

il L] . . O e o .

1=
.
o o o
o 00 N
o« o o
w N =

o o
w N -

1N
.
e s o

12
[]
R RNV}
. L] L]
I S W N
oS W N

[.
cooo

1.
)

Input Values
Initialization and Default
SHR

Use

Input Values
Initialization and Default
STS

Use

Input Values

STV

Use

Input Values

XAB

Use

Input Values
Initialization and Default
Comments

RECORD ACCESS BLOCK

BID

Use

BKT

Use

Input Values
Initialization and Default
BLN

Use

CTX

Use

Input Values
Initialization and Default
FAB

Use

Input Values
Initialization and Default
Comments

ISI

Use

KBF

Use

Input Values
Initialization and Default
KRF

Use

Input Values
Initialization and Default
KSZ

Use

Input Values
Initialization and Default
Comments

MBC

Use

Input Values
Initialization and Default
Comments

MBF

3-49
3-50
3-51
3-51
3-51
3-52
3-53
3-53
3-53
3-54
3-54
3-54
3-55
3-55
3-55
3-55
3-56

L L I I I I A |
w

| Y T Y T O I T N B |
=
NROOO

B R R e A i = S T T - S O S SO N N
|
HHEOOUOIIIJoaaaOUTUTE BB D W

1N
|

4-12
4-12
4-12
4-13
4-13
4-13
4-14
4-14
4-15
4-15
4-15
4-15
4-15
4-17

4.11.1
4.11.2
4.11.3
4.11.4
y 4.12
- 4.12.1
4.12.2
4.12.3
4.13
4.13.1
4.13.2
4.13.3
4.13.4
4.14
4.14.1
4.14.2
4.14.3
4.15
4.15.1
4.15.2
o 4.15.3
A d 4.15.4
4.16
4.16.1
4.16.2
4.16.3
4.16.4
4.17
4.17.1
4.17.2
-’ 4.17.3
4.18
4.18.1
4.18.2
4.19
4.19.1
4.19.2
4.20
4.20.1
4.20.2
et 4.20.3
4.21
4.21.1
4.21.2
4.21.3

CHAPTER 5
5.1
5.

L] e L

e = = S R e
L
L] L] L]
w N -

e © e e
L] L] L]

($)]
.
[SRC ENE N OO NS
: e
e o o o
NN NN
* o o o
W N

Use

Input Values
Initialization
Comments

RAC

Use

Input Values
Initialization
RBF

Use

Input Values
Initialization
Comments

RFA

Use

Input Values
Initialization
RHB

Use

Input Values
Initialization
Comments

ROP

Use

Input, Values
Initialization
Comments

RSZ

Use

Input Values
Initialization
STS

Use

Input Values
STV

Use

Input Values
UBF

Use

Input Values
Initialization
UsZz

Use

Input Values

and

and

and

and

and

and

and

and

Default

Default

Default

Default

Default

Default

Default

Default

Initialization and Default

EXTENDED ATTRIBUTE BLOCKS

Allocation Extended Attribute Block

AID
Use
Input Values

Initialization and Default

ALN
Use
Input Values

Initialization and Default

Comments

4-17
4-17
4-17
4-18
4-19
4-19
4-19
4-19
4-20
4-20
4-20
4-21
4-21
4-22
4-22
4-22
4-22
4-23
4-23
4-23
4-24
4-24
4-25
4-25
4-25
4-27
4-27
4-28
4-28
4-28
4-29
4-30
4-30
4-30
4-31
4-31
4-31
4-32
4-32
4-33
4-33
4-34
4-34
4-34
4-34

U'IU"Lll'IU'l(J'IU'lU'IU'lu'IU'I
(]
A UNTUTD DN

vii

5.1.3
5.1.3.1
5.1.3.2
5.1.3.3
5.1.3.4

5.1.4
5.1.4.1
5.1.4.2
5.1.4.3

5.1.5
5.1.5.1
5.1.5.2
5.1.5.3
5.1.5.4

5.1.6
5.1.6.1

5.1.7
5.1.7.1

5.1.8
5.1.8.1
5.1.8.2
5.1.8.3
5.1.8.4

5.1.9
5.1.9.1
5.1.9.2
5.1.9.3

5.1.10
5.1.10.1
5.1.10.2
5.1.10.3

5.1.11
5.1.11.1
5.1.11.2
5.1.11.3
5.1.11.4
5.1.11.5

5.2

5.2.1
5.2.1.1

5.2.2
5.2.2.1
5.2.2.2

5.2.3
5.2.3.1

5.2.4
5.2.4.1
5.2.4.2
5.2.4.3

5.2.5
5.2.5.1
5.2.5.2

5.2.6
5.2.6.1
5.2.6.2

5.3

5.3.1

viii

ALQ

Use

Input Values
Initialization
Comments

AQOP

Use

Input Values
Initialization
BKZ

Use

Input Values
Initialization
Comments

BLN

Use

coD

Use

DEQ

Use

Input Values
Initialization
Comments

LocC

Use

Input Values
Initialization
NXT

Use

Input Values
Initialization
VOL

Use

Input Values
Initialization
Examples
Comments

Date Extended Attribute Block

BLN
Use
CDT
Use
Output Values
COD
Use
NXT
Use
Input Values

and

and

and

and

and

and

and

Default

Default

Default

Default

Default

Default

Default

Initialization and Default

RDT
Use
Output Values
RVN
Use
Input Values

Key Extended Attribute Block

BLN

o

|
HHEOWOWWOWWOWOO NI

GRGNC N RC NGNS RG RS, N R NE NE T
[|
o
coco

|
[
[

5-12
5-12
5-13
5-13
5-14
5-14
5-14
5-15
5-15
5-16
5-16
5-16
5-17
5-18
5-18
5-18
5-18
5-19
5-19
5-19
5-19
5-19
5-19
5-20
5-21
5-21
5-22
5-22
5-22
5-23
5-23
5-24
5-24
5-24
5-24
5-25
5-25
5-25
5-26
5-26
5-26
5-27
5-29

)

()]

*
L]
[
L]
[

w
L]
. . L]
L]
N
.
=

e« o o
* o o
www
o o o
w N

(9]
.
e o o
.
[~ =Y
¢« o
N

U
.

;U
« o o
w N

w
.

e e e e o o o o o

A OY OY

w (O}

. .
o e o
o o e e o
N
e o e e o
N = wN -

[, w
. .
¢ o o
O e o o e e o o
== O WO © 0o 0 0 0
[N e] s o o « o s o
w N = B W N
N -

(&)
L]

LI) = e o

wu [S,] [,] [52] w

.

* o e o o o

e o e (Ul o JIne o o o We o o pNDe
I N S R e e el e e e = =
[e))} (G200, [0, | DD wwww NN DN - =
¢« o o o e * & o o e e 0 « o o
w N - N - B W wN - W N -

wLULowuuuwouuwLuvuuLnuiIrwuuutulwuvuuowuovlwuonutUtwLtltuuowuvUwuiuntLlwLLTLUtLwLIWwULTUTULW 0w,
* o
N

e o e o o & o o o & o e o o

wn
.
~Je o

Use

COD

Use

DAN

Use

Input Values
Initialization
DBS

Use

Output Values
DFL

Use

Input Values
Initialization
DTP

Use

Input Values
Initialization
DVB

Use

Output Values
FLG

Use

Input Values
Initialization
Comments

IAN

Use

Input Values
Initialization
IBS

Use

Output Values
IFL

Use

Input Values
Initialization
KNM

Use

Input Values
Initialization
LAN

Use

Input Values
Initialization
Comments

LVL

Use

Input Values
MRL

Use

Output Values
Comments

NSG

Use

Input Values
NUL

and

and

and

and

and

and

and

and

Default

Default

Default

Default

Default

Default

Default

Default

ix

(S5}

wn
.

u

.

w
Oowuuuuuwunuwuutnnuwunuouoowuoouwonooum

wn

wn

wn

wn

*

Ul

LU UTLG ULD OTD

wu

U

wn

w

w

(S 0]

(%4}

(8]

[SLE G NS, LN

WWNWWWWWNHhDWWNhDhWWWhhWWwWwwRFRFwwwHFEWWwWwWw

e e & o o v o o o e o o & o o . o . * e e o o o

e o e o o o

B DO DD U D DD DS D 0D N D

Lwunp o=

e o We o ¢ o o Ne o —e o o O « o o O o ¢ 0O e e o

L
SIS PN N

o
o 0 ™

T Y
.« o o

O WYY WY

N NN
[eNe Nl

NN
e o o

NN
NN
L] . L] *

NN

-

[o) o)) (SIS, 8, [S www N

N

w

e

L] e e o e o o e e @ e o o . w W

s o o
W+

* o o
W

[y
[N

[l wN = wWN - wWN = wN = [l

-

—

wn =

N = w N+

b wWwN =

Use

Input Values
Initialization and Default
Examples

NXT

Use

Input Values
Initialization and Default
POS

Use

Input Values
Initialization and Default
Comments

REF

Use

Input Values
Initialization and Default
RVB

Use

Output Values

S1Z

Use

Input Values
Initialization and Default
Examples

Comments

TKS

Use

Input Values

Protection Extended Attribute Block
BLN

Use

COD

Use

NXT

Use

Input Values
Initialization and Default
PRG

Use

Input Values
Initialization and Default
PRJ

Use

Input Values
Initialization and Default
PRO

Use

Input Values
Initialization and Default
Summary Extended Attribute Block
BLN

Use

CcoD

Use

NOA

Use

5-53
5-53
5-53
5-54
5-55
5-55
5-55
5-55
5-56
5-56
5-56
5-57
5-57
5-58
5-58
5-58
5-58
5-59
5-59
5-59
5-60
5-60
5-60
5-61
5-61
5-61
5-62
5-62
5-62
5-64
5-65
5-65
5-66
5-66
5-67
5-67
5-67
5-67
5-68
5-68
5-68
5-68
5-69
5-69
5-69
5-69
5-70
5-70
5-70
5-71
5-72
5-73
5-73
5-74
5-74
5-75
5-75

wm
.

(6]
.
L] L]

* e o

wn
L]
ooy otuiugrn

U oo O,

CHAPTER 6
6.

[o)]

.
e
DN Ll o
o o o e o
w N = N =

6.

o~
v
L]

B
e o .
W+

o
.
AN ABRNAWA NN
*
va w
. L] L]
N -

CHAPTER 7
7.

1] L[] L]
e
L] L] L]
W N -

~
.

~ ~3 ~

. . .
« o o e s o & « o e o s o o
;o n IS S wWwww NN
e« o o o e o o o o e o
S W B WN - w N -

* o o
wN -

~
L]
NN OANN NN NNNSNSNNNWNNNNDNNN -
L N
A OY
* e

N

. ¢ o .
Lo~ w

. e o .
N = N

« o
(SR, NS, |
Y
wWN

Y OY OO
« o o
wN -

Output Values
NOK

Use

Output Values
NXT

Use

Input Values
Initialization and Default
PVN

Use

Output Values
Comments

NAME BLOCK

DVI

Use

Input Values

ESA

Use

Input Values
Initialization and Default
ESL

Use

ESS

Use

Input Values
Initialization and Default
FID

Use

Input Values

FIELD ACCESS MACROS
SCOMPARE
General Form
Effect
Examples
SFETCH
General Form
Effect
Examples
SOFF

General Form
Effect
Examples
Comments
$SET

General Form
Effect
Examples
Comments
$STORE
General Form
Effect
Examples
STESTBITS
General Form
Effect

5-75
5-76
5-76
5-76
5-77
5-77
5-77
5-77
5-78
5-78
5-78
5-78

e o) We W) Wole) Wo N We N le)W) le)We) Je) le)
|
AUV B WWWWNNDN

| L L I I L L L

NNN NN NNNOSNNNNONNNGgNNNag
|
HEROWOUONIINIJaaaaaaunud&NDNDNDDN

xi

7.6.3 Examples 7-11
CHAPTER 8 FILE AND RECORD OPERATION MACROS
8.1 FILE OPERATION MACROS 8-1
8.1.1 $SCLOSE 8-2 ~h,
8.1.1.1 Buffer Requirements 8-2
8.1.1.2 Input Fields 8-2
8.1.1.3 Output Fields 8-2
8.1.1.4 General Form 8-3
8.1.1.6 Comments 8-3
8.1.2 SCREATE 8-4
8.1.2.1 Buffer Requirements 8-4
8.1.2.2 Input Fields 8-5
8.1.2.3 Output Fields 8-5
8.1.2.4 General Form 8-5
8.1.3 $SDISPLAY 8-6
8.1.3.1 Buffer Requirements 8-6
8.1.3.2 Input Fields 8-6
8.1.3.3 Output Fields 8-7
8.1.3.4 General Form 8-7
8.1.3.5 Examples 8-7 A,
8.1.4 SERASE 8-8 h
8.1.4.1 Buffer Requirements 8-8
8.1.4.2 Input Fields 8-9
8.1.4.3 Output Fields 8-9
8.1.4.4 General Form 8-9
8.1.4.5 Comments 8-9
8.1.5 SEXTEND 8-10
8.1.5.1 Buffer Requirements 8-10
8.1.5.2 Input Fields 8-10 -
8.1.5.3 Output Fields 8-11 b
8.1.5.4 General Form 8-11
8.1.5.5 Comments 8-11
8.1.6 SOPEN 8-12
8.1.6.1 Buffer Requirements 8-12
8.1.6.2 Input Fields 8-13
8.1.6.3 Output Fields 8-13
8.1.6.4 General Form 8-14
8.1.6.5 Comments 8-14
8.2 RECORD OPERATION MACROS 8-15 -~
8.2.1 SCONNECT 8-16
8.2.1.1 Input RAB Fields 8-16
8.2.1.2 Output RAB Fields 8-16
8.2.1.3 General Form 8-16
8.2.2 SDELETE 8-17
8.2.2.1 Input RAB Fields 8-17
8.2.2.2 Output RAB Fields 8-17
8.2.2.3 General Form 8-17
8.2.3 SDISCONNECT 8-18
8.2.3.1 Input RAB Fields 8-18
8.2.3.2 Output RAB Fields 8-18
8.2.3.3 General Form 8-18
8.2.3.4 Comments 8-18
8.2.4 SFIND 8-19
8.2.4.1 Input RAB Fields 8-19
8.2.4.2 Output RAB Fields 8-19 -~
8.2.4.3 General Form 8-19 ‘

xii

[0 0]

.
®
(-8
)
oS

" o o
s ¢
v n
« @
wWN -

w
.

e o o o
s s e e
S WN -

o]
.

e o o o o o

®
L]

s o »
e o &
D WN

e
.

* o

o o ® NN [e) o) o) e,

L

s s
w N -

DNDNONNNEFEFNNNNNONNNENNNDNDNNEFEPNNNODNNDNDNENNNMNNNMONNDNNONNDNDNDNNDNDNDNNAOANDNDNDON

[0
.
e .
° .
O O YWY
oW -

e ® e o

co co
. .
e o e 2 o & o o o
= o o e (o o o
=
OSSO OO
¢« o o o
=W

=
L] L] L]
B WK

o)
L]
e
SESENE N
] L] * L]

[
B W N -

[0 o]
L]
Q0 00 CO N) 0O QO CO OO N) CO CO 00 00 N €O 0O CO OO N CO CO 0O CO Ny GO 00 CO N) 0O CO OO OO Ny 00 ©0 00 00 N C0 CO 00 Ny O

e o e (S BT} ° 2 DN e o

-
www

* e o
w N+

CHAPTER 9

O
.

Xe]
.
OV WOWOWOWOWNOOYWYOR

[

. e o o L N
w NN
oW N

[{e]
.
| e D WO

Comments

SFLUSH

Input RAB Fields
Output RAB Fields
General Form
SFREE

Input RAB Fields
Output RAB Fields
General Form
Comments

SGET

Input RAB Fields
Output RAB Fields
General Form
Comments

SNXTVOL

Input RAB Fields
Output RAB Fields
General Form

SPUT

Input RAB Fields
Output RAB Fields
General Form
Comments

SREWIND

Input RAB Fields
Output RAB Fields
General Form
Comments
STRUNCATE

Input RAB Fields
Output RAB Fields
General Form
Comments

SUPDATE

Input RAB Fields
Output RAB Fields
General Form
Comments

SWAIT

Input RAB Fields
Output RAB Fields
General Form

PERFORMING BLOCK I/O

SREAD

Input RAB Fields
Output RAB Fields
General Form
Comments

SWRITE

Input RAB Fields
Output RAB Fields
General Form
Comments

SSPACE

Input RAB Fields

8-20
8-21
8-21
8-21
8-21
8-22
8-22
8-22
8-22
8-22
8-23
8-23
8-23
8-23
8-24
8-25
8-26
8-26
8-26
8-27
8-27
8-27
8-27
8-28
8-29
8-29
8-29
8-29
8-29
8-30
8-30
8-30
8-30
8-30
8-31
8-31
8-31
8-31
8-32
8-33
8-33
8-33
8-33

|
SO UVUNULUNNWWWWW

W OO WWOYWIWYWOWYWYWLOLY
I

xiii

A.l

APPENDIX B
B.1

oW N

B
B.
B.

APPENDIX C

INDEX

TABLES

PP OOONAUTVNNUVIVTUIDWNHFRFREFERRE
11
NFFRNFFEFFRFODBWNHFERFRFHEEONIOAUID WND

xXiv

Output

RAB Fields

General Form
Comments

RMS-11 COMPLETION CODES
SUCCESSFUL COMPLETION CODES
ERROR COMPLETION CODES
FATAL ERROR CRASH ROUTINE
Fatal User Call Errors

RMS-11
Errors

Inconsistent Internal Conditions

SAMPLE RMS-11 PROGRAMS

COPYING SEQUENTIAL FILES

COUNTING WORDS IN A SEQUENTIAL FILE
TESTING RELATIVE FILE CAPABILITIES

DATE CONVERSION ROUTINE

Minimum Set of .MCALL Arguments
Space Pool Declaration Macros
File Access Block Fields

Record

Access Block Fields

NAM Block Fields

RMS-11
RMS-11
RMS-11
Buffer

Field Access Macros
File Operation Macros
Record Operation Macros
Pool Declaration Macros

File Access Block Fields

Record

Access Block Fields

Allocation Extended Attribute Block Fields
Date Extended Attribute Block Fields

Key Extended Attribute Block Fields
Protection Extended Attribute Block Fields
Summary Extended Attribute Block Fields
NAM Block Fields

RMS-11
RMS-11
RMS-11
RMS-11
RMS-11
RMS-11

Field Access Macros

File Operation Macros
Record Operation Macros
Block I/0 Macros

Successful Completion Codes
Error Completion Codes

Index-1

LU N Y N T R O R M |
oW oo 0N

L T Y N B O |
U N D 0O

DPPOOOIAUTUTUTUTUT D WN e e e
[
WNNFEFEHEFHEFJANMNMNMDWNONNNHENDNHFEEFERFEOJW

PREFACE

Record Management Services for the PDP-11 (RMS-11) provides powerful
data management capabilities. The RMS-11 User's Guide tells you about
those capabilities and how to use them. This manual is designed as a
reference for MACRO-11 programmers.

RMS-11 is a set of software routines that transfers data between a
running program, which uses data in a logical form called records, and
the file processor portion of an operating system, which maintains the
physical structure of the data on a storage device,

NOTE
You can use RMS-11l Indexed files only if you have purchased

the RMS-11K software product. Your system manager can tell
you if your system includes this capability.

PREREQUISITES

To read this manual, you should be a MACRO-11] programmer who has read
and understood the RMS-11 User's Guide.

STRUCTURE OF THE MANUAL

Chapter 1 tells you how to use RMS-11 routines in a MACRO-11 pro-
gram, including the minimum requirements and the order in
which you must use them.

Chapter 2 covers the means of providing buffer space for RMS-11 op-
erations.

Chapter 3 describes the fields of the File Access Block.

Chapter 4 describes the fields of the Record Access Block.

Chapter 5 describes the fields of the different types of Extended
Attribute Blocks.

Chapter 6 describes the fields of the Name Block.

Chapter 7 describes the field access macros.

Chapter 3 describes the file and record operation macros.

Chapter 9 describes the use of Block I/O.

Xv

Appendixes provide supplementary information, such as:

RMS-11 success and error completion codes

Sample RMS-11 programs -~
Routine to convert 64-bit date—-time 1information to 0
ASCII

ASSOCIATED DOCUMENTS
The RMS-11 documentation set contains the following manuals:
RMS-11 User's Guide

RMS-11 MACRO-11 Reference Manual
RMS-11 Installation Guide

You must also use operating system documentation. See the Documenta-
tion Directory for your operating system.

xXVi

DOCUMENTATION CONVENTIONS

RMS-11 operates similarly on the supporting operating systems (see Ap-
pendix A of the RMS-11 User's Guide). Therefore, it should be possi-
ble to produce a single manual describing that operation. However,
the differences among operating systems present a barrier to that un-
ification. The following conventions are designed to enable you to
hurdle that fence.

DIFFERENCES IN OPERATING SYSTEM FUNCTIONS

Details that are common to the operating systems are printed in black,
and the details that are specific to one operating system or another
are printed in color as follows:

e RSTS/E-specific information is printed in red.

e IAS-, RSX-11M-, and VAX-specific information is printed in blue.

SYNTAX DESCRIPTIONS

In the descriptions of macro usage, this manual includes a general
form for each macro, using the following conventions:

REQUIRED You must include all uppercase char-
acters as shown.

user—-specific You substitute for lowercase characters
information specific to your usage.

[may be used] You can, but do not have to include
characters in brackets. The convention
...] means the series can continue until
it exhausts logical possibilities.

Punctuation You must use punctuation as shown.

The descriptions of user control block fields that contain numeric va-
Jues include minimum and maximum specifications. These are logical
values and normally, are not equal to the physical minimum and max imum
for the field.

Additionally, a portion of a field, whether byte or word, described as

"low order" or "least significant" is the portion with the lower ad-
dress.

xvii

CHAPTER 1

USING RMS-11 IN A MACRO-11 PROGRAM

Record Management Services for PDP-11 operating systems (RMS-11) is a
set of routines that enable programs to process files and records
within files. The RMS-11 User's Guide describes the features of
RMS-11. All capabilities supported by an operating system are avail-
able to a MACRO-11 program.

To obtain RMS-11l services at run time, your program must contain
RMS-11 processing macros and user control blocks. The processing ma-
cros are expanded at assembly time. The resulting code is executed at
run time to perform the specified operation. Each macro represents a
program request for a file- or record-related service.

With every request for a service, information is exchanged between
your program and the RMS-11 routines via user control blocks. These
blocks are:

Block Name Function

File Access Block (FAB) Describes a file and contains
file-related information.

Record Access Block (RAB) Describes a Record Access Stre-
am and the records being ac-
cessed by that stream.

Extended Attribute Block (XAB) Contains file attribute infor-
mation beyond that in the FAB.

Name Block (NAM) Describes a location in memory
containing system-related in-
formation about a file.

Prior to issuing a request for an RMS-11 service, your program must
place information detailing the request 1in the associated control
block.

Example A request to open a file must be accompanied by the name or
ID of the file, information on how the file will be ac-
cessed, and details on how the file is to be shared.

Example A program request to read a record from a file must spec?fy
an access mode and if appropriate, a key value identifying
the desired record.

After a request for service has been processed, RMS-1ll uses the same
control block to return information to your program. When a file has
been successfully opened, RMS-11 provides attribute information such
as the organization of the file and the format of the records in the
file. After successfully retrieving a record from a file, RMS-11l pro-
vides your program with the location in memory of the record and the
length of the record.

The amount of information exchanged between RMS-11 and your program
varies with the nature of the request and the attributes of the file
being processed.

To use RMS-1l1 routines in a MACRO-11 program, you must understand how
to:

1. Declare the RMS-11 facilities that your program requires.

2. Allocate and initialize user control blocks desighned to communi-
cate with RMS-11.

3. Access fields in user control blocks at run time.
4. Perform file and record operations.

5. Assemble your program modules and task build them with the RMS-11
routines.

1.1 DECLARING RMS-11 FACILITIES

Every program that processes RMS-11 files must contain directives and
special-purpose macros that declare the RMS-11 facilities required at
assembly and run time. To declare RMS-11 facilities that are used by
your program, you must do the following:

l. List RMS-11 macros in .MCALL directives.

2. Declare the processing environment.

3. Declare buffer pool requirements and techniques.

4, 1Issue a $INIT or $INITIF macro.

NOTE

Unless otherwise noted, RMS-11 macros use decimal radix for
numeric values.

1-2 Using RMS-11 in a MACRO-11 Program

1.1.1 Listing Names of Required Macro Definitions

All macros used in your program must be listed as arguments in a
.MCALL directive. Listing the macros in this way allows the actual
code of each macro to be read in from the RMS-11 source macro library
(RMSMAC.MLB) during assembly.

General form:
.MCALL argl,argl..]

where arg is a symbolic name of a macro required in the @ssembly of
your program. The macro names can be listed in any order.

The number of .MCALL directives can be minimized because some macro
definitions contain .MCALL directives. Table 1-1 contains the minimum
.MCALL arguments that provide .MCALL directives for all RMS-11 macros
that can be used in a program.

Table 1-1: Minimum Set of .MCALL Arguments

.MCALL Arguments Embedded .MCALL Arguments
ORGS$ None.
POOLSB Central buffer pool declaration macros.

SINIT or SINITIF| None.

SGNCAL Run-time field access macros (described in
Chapter 7) and completion routine macros (des-
cribed in this chapter).

FABSB File Access Block allocation and initialization
macros (described in this chapter), field offset
macros (described in Chapter 3), and error code
macros (described in Appendix A).

RAEBSB Record Access Block allocation and initialization
macros (described in this chapter), field offset
macros (described in Chapter 4), and error code
macros (described in Appendix A).

XABSB Extended Attribute Block allocation and initiali-
zation macros (described in this chapter), field
offset macros (described in Chapter 5), and error
code macros (described in Appendix A).

NAMSB Name Block allocation and initialization (des-
cribed in this chapter), field offset macros
(described in Chapter 6), and error code macros
(described in Appendix A).

SFBCAL File operation macros (described in Chapter 9).

SRBCAL Record operation macros (described in Chapter 9).

Using RMS-11 in a MACRO-11 Program 1-3

As shown in Table 1-1, you can ensure that all RMS-11 macros used in a
program appear as arguments in .MCALL directives by coding the follow-
ing sequence of .MCALL directives and macro execution in that program:

)

.MCALL ORG$,POOLSB,SINIT

.MCALL SGNCAL,FABS$B,RABSB,XABSB,NAMSB
.MCALL SFBCAL, SRBCAL

SGNCAL

SFBCAL

SRBCAL

By issuing the $GNCAL, S$FBCAL, and $RBCAL macros, you cause the embed-
ded .MCALL directives to take effect.

You can omit any macro names from .MCALL directives that do not apply
to a particular program.

Example If the program does not wuse Name or Extended Attribute
Blocks, do not include the NAMSB or XABSB macros.

You may also omit the S$RBCAL or $FBCAL macros and list separately each
file and record operation macros used by your program.

NOTE
If you are allocating control blocks 1in one module, but
using field offset and/or error code macros in other mo-
dules, in those modules you must:

l. include one or more of the following arguments in .MCALL
directives

2. execute the specified macros, in the form:
macnam RMSSL

except $RMSTAT, which requires no argument when executed

.MCALL Arguments Embedded Macro Definitions
FABOF S FAB field offsets
RABOF $ RAB field offsets
XABOF $ XAB field offsets
NAMOF $ NAM field offsets

$RMSTAT Error codes

1-4 Using RMS-11 in a MACRO-11 Program

1.1.2 Declaring the Processing Environment

You must include one or more ORGS$ macros within the set of modules
that you link together with the Task Builder to produce an executable
task. All ORGS macros must be in modules that are part of the root of
your task. An ORGS macro for a particular file organization must be
present even if no record operations are performed when such a file is
opened.

The use of ORGS macros in your source modules enables the Task Builder
to select for linking only those portions of RMS-11 required by your
program*,., Each ORG$ macro declares a unique combination of file or-
ganization and record operations.
General form:

ORGS org[,<recopl,recop...]1>]

where org is the type of file organization as one of the following
symbolic values:

IDX = Indexed file organization
REL = Relative file organization
SEQ = Sequential file organization

recop is a symbolic value identifying a type of record operation
that will be performed on a file of the specified organiza-
tion. If a single value is included, the angle brackets are
not needed. If multiple values are specified, you must en-
close them in angle brackets and use commas to separate each
value from the preceding value.

One or more of the following symbolic values may be speci-
fied in any order:

CRE = file of specified organization may be created
DEL = delete operation

FIN = find operation

GET = get operation

PUT = put operation

UPD = update operation

Example The following code declares that one or more Sequential
files will be created and put operation performed by the
program. Additionally, one or more Indexed files will Dbe
opened and find, get, and update operations will be per-
formed on those files. Finally, one or more Relative files
will be opened, but no record operations will be performed:
file operations may be performed.

ORGS$ SEQ,<CRE, PUT>
ORGS$ IDX,<GET,UPD,FIN>
ORGS REL

*When you task build RMS-11 nonoverlaid. If you use an RMS-11 overlay
structure, the ODL file specifies which RMS-11 modules are linked to
your program. However, the ORGS macro still determines which of
those routines your program can use.

Using RMS-11 in a MACRO-11 Program 1-5

1.1.3 Declaring Buffer Pool Requirements

RMS-11 requires a collection of 1I/0 buffers and internal control
structures to support file processing at run time. The area in your
program occupied by these buffers and control structures is known as
the buffer pool.

The major portion of the buffer pool is composed of I/0O buffers. To
your program, record processing under RMS-11 appears as the movement
of records directly between a file and the program itself. However,
RMS-11 actually uses I/O buffers as intermediate storage during data
transfers:

e When your program finds or gets a record, RMS-11 moves the block or
bucket containing the record from the file to an I/0 buffer. Then,
on a get, RMS-11 moves the record from the buffer to your program.

e When your program puts, updates, or deletes a record, RMS-11 moves
the specified data from your program to the I/0 buffer. Then, for
Relative and Indexed files, normally RMS-11 moves the bucket in the
buffer out to the file immediately. However, for Sequential files
and for Relative and Indexed files with Deferred Write specified,
RMS-11 doesn't write out the buffer until it has to be used for
another operation.

The size of I/0 buffers depends on the organizations of the files
being processed, the number of files open simultaneously, and the
number of simultaneously active Record Access Streams. In providing
the information needed to calculate the size requirements for the I/0
buffers portion of the buffer pool, you have three choices:

l. A centralized buffer pool controlled by RMS-11.

2. Private I/O buffers for one or more files plus a centralized pool
controlled by RMS-11 for other requirements.

3. A centralized buffer pool controlled by a routine you provide.

When RMS-11 controls a centralized buffer pool, RMS-11 allocates 1I/0
buffers as well as the internal control structures required for file
processing from a single area in your program. Normally, this space
is 1inaccessible to your program: RMS-11 totally manages the space
within the pool and allocates portions, as needed, for buffer space
and control structures for open files.

You can also allocate private I/0 buffers on a per-file basis by spec-
ifying the address and total size of each buffer in fields of the File
Access Block associated with a file. When the file is open, this
buffer space is completely managed by RMS-11 and your program must not
access it. However, when the file is closed, the private I/0 buffer
space is available for use by your program.

The major advantage of private I/O buffers is avoidance of fragmenta-
tion in a centralized buffer pool. Since particular files have vary-
ing I/0 buffer requirements based on their organization, a centralized
buffer pool can reach the point where there is sufficient total space
available for the opening of an additional file, but the space is not

1-6 Using RMS-11 in a MACRO-11 Program

contiguous. When such a situation arises, the specified file cannot
be opened.

Whether you let RMS-11 control a centralized buffer pool or specify
private I/0 buffers, RMS-11 always requires certain internal control
structures that must be allocated in the buffer pool to support file
processing. The number of internal control structures required by
RMS-11 in the buffer pool is based on the organizations of the files
being processed, the maximum number of files open simultaneously, and
the maximum number of simultaneously connected Record Access Streams.
Once again, your program must provide, at assembly time, the informa-
tion needed to determine the size requirements of the internal control
structures that must be allocated in the centralized buffer pool.

The presence in your source modules of the macros listed in Table 1-2
allows RMS-11 to determine the size requirements for your program's
buffer pool. The macros are described in Chapter 2. If you want pri-
vate I/0 buffers for one or more files, you can allocate these on a
file-by-file basis, either statically (at assembly time) or dynamical-
ly (at run time). Refer to the descriptions of the BPA (buffer pool
address) and BPS (buffer pool size) fields in Chapter 3.

Finally, you can assume total control over buffer space, allocating it
when RMS-11 requires 1it, taking it back when RMS-11 no longer needs
it. This facility, called Get Space Address (GSA), 1is complex and
should not be used by most programmers. Chapter 2 also describes the
requirements for the GSA routine.

Table 1-2: Space Pool Declaration Macros

Macro Description Required

POOLSB | Beginning of space pool declaration Yes

PS$BDB Number of Buffer Descriptor Blocks Yes

PSFAB Number of files open simultaneously Yes

PSRAB Nonindexed streams connected If Sequential or
simultaneously Relative files

PéRABX Indexed streams connected If Indexed files
simultaneously

PSIDX Number of defined keys If Indexed files

P$BUF Input/output buffer requirements If no BPA or GSA

POOLSE | End of space pool declaration Yes

Using RMS-11 in a MACRO-11 Program 1-7

1.1.4 Initializing the Processing Environment

Your program must initialize the RMS-11 processing environment at run
time before the program attempts an RMS-11 operation. You accomplish
this with the $INIT or S$INITIF macro.

General form:
SINIT or SINITIF

The code generated by the S$INIT macro unconditionally initializes
RMS-11 internal control structures at run time. The S$INITIF code,
however, initializes the internal structures only if they have not
been initialized during the current execution of the task. You use
the S$INITIF macro in program modules that can be the first to use
RMS-11, but are not always run first.

RMS-11 clears the Processor Status Word 0-Bit to indicate that ini-
tialization was successful. Therefore, normally after S$INIT, the
0-Bit is cleared; if the 0-Bit is set, an RMS-11 file was open when
the macro was initiated and no initialization occurred. Normally
after SINITIF, the 0-Bit is set; if the 0-Bit is cleared, the pro-
cessing environment was previously initialized.

If your program initiates any RMS-11 file or record operation before
the environment is initialized, RMS-11 returns ERS$INI error code.

1-7.1 Using RMS-1l1l in a MACRO-1ll Program

1.2 USER CONTROL BLOCKS

User control blocks are formatted buffers in your program's address
space. Each control block consists of data fields that are used to
exchange information between your program and the RMS-11 routines.

You must allocate space for control blocks in your program at assembly
time. You can also establish 1initial values for many of the data
fields in these blocks at assembly time; or you can defer setting the
contents of control block fields until run time. RMS-11 provides spe-
cial macros that perform the functions needed to support control block
allocation, assembly-time field initialization, and run-time field ac-
cess.

1.2.1 File Access Block (FAB)

A File Access Block, abbreviated FAB, represents a file during the ex-
ecution of file operation macros:

$CLOSE
SCREATE
SDISPLAY
SERASE
SEXTEND
SOPEN

FAB fields (listed in Table 1-3) must contain the proper values before
the macro is initiated, but they may be changed after the operation is
complete because RMS-11 has transferred the pertinent information
about the file to an internal (nonvisible) structure called an Inter-
nal File Access Block (IFAB).

Therefore, one FAB may be used to represent any number of files as
long as the FAB is changed appropriately before each file operation is
initiated. As a minimum you must ensure that the block is a valid FAB
(BID and BLN fields contain the proper values) and that the FAB IFI
field contains the value returned by RMS-11 when the file was created
or opened. This wvalue is the pointer to the IFAB. You should also
set the FAB's fields to the values appropriate to the file operation
you are preparing for: do not assume that the fields contain the va-
lues you set before the last use.

1.2.1.1 Allocation - Each FAB must be allocated at assembly time.
The minimum syntax is:

. EVEN
label: FABSB
FABSE

where label is the name of the FAB and not necessarily the name of the
file associated with the FAB.

The FABSB macro allocates space for the FAB, and the FABSE macro

1-8 Using RMS-11 in a MACRO-1l1l Program

stores

values in the individual FAB fields and terminates the defini-
tion of the block.

Table 1-3: File Access Block Fields
Field | Field Default Description
Name Size
ALQ 2W 0 Size of file
BID 1B N/A FAB identifier
*BKS 1B 1 record Bucket size
BLN 1B N/A RAB length
*BLS 1w 0 Block size
BPA 1w 0 Location of private I/0O buffer
BPS 1w 0 Size of private I/0 buffer
CTX 1w 0 Available to user
*DEQ 1w 0 Automatic extension quantity
DEV 1B N/A Device characteristics
DNA 1w 0 Location of filespec defaults
DNS 1B 0 Size of filespec defaults
FAC 1B FBSGET Types of record operations
FNA 1w 0 Location of filespec
FNS 1B 0 Size of filespec
FOP 1w 0 File processing options
*FSZ 1B 0 Size of fixed area for VFC
IFI 1w N/A Pointer to IFAB
LCH 1B 0 Logical channel
* MRN 2W 0 Maximum Record Number
* MRS 1w 0 Maximum Record Size
NAM 1w 0 Pointer to NAM Block
*ORG 1B FB$SSEQ File organization
*RAT 1B 0 Record attributes
*RFM 1B FBSVAR Record format
RTV 1B 0 Window size
*RTV 1B 0 Clustersize
SHR 1B 0 File sharing
STS 1w N/A Completion code
STV 1w N/A More error information
XAB 1w 0 Pointer to first XAB

*File attribute

1.2.1.2 1Initialization - The value stored in a FAB field by the FABSE
macro 1is determined by an initialization macro, or in its absence, an
RMS-11 default for the field (see "Initialization and Default" in the
individual sections on the fields in Chapter 3).

Using RMS-11] in a MACRO-11 Program 1-9

If you want a field to contain a value other than its default value,
you must specify its initialization macro between the FABSB and FABSE
macros*, Initialization macros have the general form:

F$fnm arg

where fnm is the three-letter field name, such as ALQ, MRN, and so on,
and

arg is one or more arguments specifying the value(s) to be en-
tered in the indicated field; arg can be a:

e symbolic value, such as FBSPUT (representing put opera-
tions), in the form FBSnam; symbolic values are joined
together with exclamation points (!).

e label, that is, the MACRO-11 term for the name of an ad-
dress in the program, such as the start of a buffer.

e numeric value, such as maximum record size, specifying
the number of bytes, characters, blocks, and so on.

Cautions:

e Because initialization macros operate at assembly time, you cannot
use global symbols or labels as arguments. All symbols and labels
must be defined locally, that is, in the same module with the ma-
cros.

e The default radix for numeric values in 1initialization macros is
decimal.

1.2.2 Record Access Block (RAB)

A Record Access Block, abbreviated RAB, represents a Record Access
Stream during the execution of record operation macros:

SCONNECT
$DELETE
SDISCONNECT
$FIND
$GET

SPUT
SUPDATE
SREWIND
STRUNCATE
$FLUSH
SNXTVOL

The RAB not only completely describes the format of the records in-
volved, but also all other aspects of record operations.

*The value of any field can also be set at run time by the field ac-
cess macros $SET and $STORE; see Chapter 7.

1-10 Using RMS-11 in a MACRO-11 Program

RAB fields (listed in Table 1-4) must contain the proper values before
the stream is set up (via the SCONNECT macro) and before record opera-
tions are initiated, but they can be changed after each operation Iis
complete because RMS-11 has transferred the pertinent information
about the stream to an internal (nonvisible) structure <called an
Internal Record Access Block (IRAB).

Therefore, one RAB may be used to represent any number of streams as
long as the RAB is changed appropriately before each record operation
is initiated. As a minimum you must ensure that the block is a wvalid
RAB (BID and BLN fields contain the proper values) and that the RAB
ISI field contains the value returned by RMS-11 when the stream was
connected to a file. This wvalue is the pointer to the IRAB. You
should also set the RAB's fields to the values appropriate to the re-
cord operation you are preparing for: do not assume that the fields
contain the values you set before the last use.

1.2.2.1 Allocation - Each RAB must be allocated at assembly time.
The minimum syntax is:

. EVEN
label: RABSB [type]
RABSE

where label is the name of the RAB, and

type indicates if the program will attempt asynchronous I/0 op-
erations using the RAB (see Chapter 1), with one of the
following values:

SYN means synchronous record operations only

ASYN means both synchronous and asynchronous record
operations

The RABSB macro allocates space for the RAB, and the RABSE macro
stores wvalues in the individual RAB fields and terminates the defini-

tion of the block.

1.2.2.2 1Initialization - The value stored in a RAB field by the RABSE
macro is determined by an initialization macro, or in its absence, an
RMS-11 default for the field (see "Initialization and Default" in the
individual sections on the fields).

If you want a field to contain a value other than its default value,

you must specify its initialization macro between the RABSB and RABSE

macros*. Initialization macros have the general form:

*The value of any field can also be set at run time by the field ac-
cess macros $SET and $STORE; see Chapter 7.

Using RMS-11 in a MACRO-11 Program 1-11

R$Sfnm arg

where fnm is the three-letter field name, such as KBF, RAC, and so on

arg 1is one or more arguments specifying the value(s) to be en-
tered in the indicated field; arg can be a:

e symbolic value, such as RBSKEY, specifying a random re-
cord operation, in the form RB$nam; two or more symbol-
ic values are joined together with exclamation points

(Y.

e 1label, that is, the MACRO-1l1l term for the name of an ad-
dress in the program, such as the start of a buffer.

e numeric value, such as maximum record size, specifying
the number of bytes, characters, blocks, and so on.

Cautions:

e Because initialization macros operate at assembly-time, you cannot g;%
use global symbols or labels as arguments. All symbols and labels
must defined locally, that is, in the same module with the macros.
e The default radix for numeric values in 1initialization macros is
decimal.
Table 1-4: Record Access Block Fields
Field| Field Default Description
Name Size
BID 1B N/A RAB identifier
BKT 2W None Relative record number or VBN
BLN 1B N/A RAB length
CTX 1w 0 User area
FAB 1w 0 FAB address
ISI 1w N/A Pointer to IRAB -~
KBF 1w 0 Key buffer address :
KRF 1B 0 Key of reference
KSZ 1B 0 Key buffer size
MBC 1B 0 Multiblock count
MBF 1B 0 Multibuffer count
RAC 1B 0 Record Access Mode
RBF 1w 0 Address of output record
RFA 3w 0 Record's File Address
RHB 1w 0 Fixed control area buffer
ROP 1w 0 Record processing options
RSZ 1w 0 Size of output record
STS 1w N/A Completion status code
STV 1w N/A Status value
UBF 1w 0 Input record buffer
Usz 1w 0 Input record buffer size
-,

1-12 Using RMS-11 in a MACRO-11 Program

1.2.3 Extended Attribute Block (XAB)

An Extended Attribute Block, abbreviated XAB, is an extension of the
File Access Block for an RMS-11 file. An XAB represents one of the
following during file operations:

o
Area (Indexed only)
Key (Indexed only)
Date-time information
Protection information
Summary information (Indexed only)
XABs are generally required only when a file is created, particularly
if the file is Indexed, or when the $DISPLAY macro is used to retrieve
information about a file.
XAB fields (listed by XAB type in Chapter 5) must contain the proper
values before the operation is initiated, but they may be changed
after each operation is complete because RMS-11 has transferred the
pertinent information about the file to the appropriate IFAB.
1.2.3.1 Allocation - Each XAB must be allocated at assembly time.
The minimum syntax is:
. EVEN
label: XABSB type
XABSE
-’ where label is the name of the XAB, and
type indicates the type of information contained in the XAB and
therefore its structure and fields, with one of the fol-
lowing values:
UBSALL the XAB defines a file area
XBSDAT the XAB contains date-time information
hd XBSKEY the XAB defines a key for an Indexed file
XB$SPRO the XAB specifies file protection information
XBSSUM the XAB contains summary information about an
Indexed file
A type must be specified, or the MACRO assembler will gen-
erate an error.
The XABS$B macro allocates space for the XAB, and the XABSE macro
stores values in the individual XAB fields, including the type symbol-
ic value in the COD field, and terminates the definition of the block.
.

Using RMS-11 in a MACRO-11 Program 1-13

1.2.3.2 1Initialization - The value stored in an XAB field by the
XABSE macro is determined by an initialization macro, or in its ab-
sence, an RMS-11 default for the field (see "Initialization and De-
fault" in the individual sections on the fields).

If you want a field to contain a value other than its default value,
you must specify its initialization macro between the XABS$B and XABSE
macros*. 1Initialization macros have the general form:

X$fnm arg
where fnm is the three-letter field name, such as IAN, RDT, and so on

arg is one or more arguments specifying the value(s) to be en-
tered in the indicated field; arg can be a:

e symbolic value, such as XBSNUL, representing null key
specification, in the form XB$nam; two or more symbolic
values are joined together with exclamation points (!).

e label, that is, the MACRO-11 term for the name of an ad-
dress in the program, such as the start of a buffer.

e numeric value, such as fill number, specifying the
number of bytes, characters, blocks, and so on.

Cautions:

® Because initialization macros operate at assembly-time, you cannot
use global symbols or labels as arguments. All symbols and labels
must be defined locally, that is, in the same module with the ma-
cros.

e The default radix for numeric values in initialization macros is
decimal.

1.2.3.3 Linking and Ordering XABs - Whenever you want to include Ex-
tended Attribute Blocks in a file operation, you must link them with
the File Access Block and with each other. This linking is done with
pointers, addresses stored in the FAB XAB field and then in each of
the XAB NXT fields; the end of the chain is indicated by a =zero NXT
field.

1.2.3.3.1 Ordering by Type of XAB - Within a chain of XABs, RMS-11
does not require any ordering by type, that is, the contents of the
COD field.

*The value of any field can also be set at run time by the field ac-
cess macros $SET or $STORE; see Chapter 7.

1-14 Using RMS-11 in a MACRO-11 Program

Example

To determine the attributes of a single-key 1Indexed f
allocate, at assembly time, one each:

Type

Date XAB

Key XAB
Protection XAB
Summary XAB

Label

DATXAB
KEYXAB
PROXAB
SUMXAB

You can link these blocks together in several ways; two

them are:

1. At assembly time, with initialization macros:

. EVEN
DSPFAB: FABSB

X$SXAB

FABSE
DATXAB: XABSB

XSNXT

XABSE
KEYXAB: XABSB

XSNXT

XABSE
PROXAB: XABSB

XSNXT

XABSE
SUMXAB: XABSB

XABSE

DATXAB

XBSDAT

KEYXAB

XBSKEY

PROXAB

XB $PRO

SUMXAB

XB $SUM

POINT TO FIRST XAB

.

POINT TO NEXT XAB

-

POINT TO NEXT XAB

~e

POINT TO NEXT XAB

~e

2. At run time, with the $STORE macro:

MOV #DSPFAB, R4

SSTORE #SUMXAB, XAB,R4

MOV #SUMXAB, R4
$STORE #KEYXAB,NXT,R4
MOV #KEYXAB, R4
$SSTORE #DATXAB,NXT,R4
MOV #DATXAB, R4
$STORE #PROXAB,NXT, R4
MOV #PROXAB, R4

$STORE #0,NXT,R4

Finally, you issue a $DISPLAY

; PUT FAB ADDRESS IN R4
REQUIRED
; MAKE DIFF XAB 1ST IN
CHAIN

PUT XAB ADDRESS IN R4
LINK IN NEXT XAB
PUT XAB ADDRESS IN R4
LINK IN NEXT XAB
PUT XAB ADDRESS IN R4
LINK IN NEXT XAB
PUT XAB ADDRESS IN R4
LINK IN NEXT XAB

e WO e Wwe We W& wo w0

macro (see Chapter 8)

Using RMS-11 in a MACRO-1l1l Program

ile,

of

r AS

and

1-15

RMS-11 f£fills the XAB chain with attribute information, set-
ting fields in accordance with the COD field of each block.

1.2.3.3.2 Ordering Within XAB Type - Multiple instances of Key and
Allocation XABs must be linked:

e In ascending order by contents of a numbering field, that 1is, the
REF and AID fields respectively

e Logically contiguous, that is, there can be no XABs of other types
within a series of Key or Allocation XABs

® Densely for the SCREATE operation, that is, the XABs must be num-
bered 1, 2, 3, and so on; by contrast, the numbering for $DISPLAY,

SEXTEND, and S$OPEN does not have to be dense; that is, you can se-
lect only certain keys or areas whose attributes you want set

1.2.4 Name Block

A Name Control Block, abbreviated NAM, contains system-specific infor-
mation about a file, including:

Full File Specification
An ASCII string representing RMS-11's merger of:

e the primary file name string described by the FAB FNA and
FNS fields

e the default name string described by the FAB DNA and DNS
fields

e the system defaults

File ID
An index that the file processor can use to locate a file
without consulting directories; must be used with device
ID.

Device ID

An indicator for the device containing the file; must be
used with file ID.

RMS-11 provides this information in NAM Block fields (listed in Table
1-5) during create and open operations and uses this information as
input during erase and open operations.

You indicate the existence of a NAM Block for these services by set-
ting the FAB NAM field to the address of a properly allocated NAM
Block. NAM Block fields must contain the proper values before the op-

eration is initiated, but they may be changed after the operation is
complete.

1-16 Using RMS-11 in a MACRO-11 Program

1.2.4.1 Allocation - Each NAM Block must be allocated at assembly
time. The minimum syntax is:

. EVEN
label: NAMSB
NAMSE

where label is the name of the NAM Block.

The NAMSB macro allocates space for the NAM, and the NAMSE macro
stores values in the individual NAM fields and terminates the defini-
tion of the block.

1.2.4.2 1Initialization - The value stored in a NAM field by the NAMSE
macro is determined by an initialization macro, or in its absence, an
RMS-11 default for the field (see "Initialization and Default" in the
individual sections on the fields).

If you want a field to contain a value other than its default wvalue,
you must specify its initialization macro between the NAMSB and NAMSE
macros*. Initialization macros have the general form:

N$fnm arg

where fnm is the three-letter field name, such as ESA, ESL, and so on,
and _

arg is one or more arguments specifying the value(s) to be en-
tered in the indicated field; arg can be a:

e label, that is, the MACRO-11 tetm for the name of an ad-
dress in the program, such as the start of a buffer.

e numeric value, such as expanded string size, specifying
the number of bytes.

Cautions:

e Because initialization macros operate at assembly time, you cannot
use global symbols or labels as arguments. All symbols and labels
must be defined locally, that is, in the same module with the ma-
cros.

@ The default radix for numeric values in initialization macros 1is
decimal.

*The value of any field can also be set at run time by the field ac-
cess macros $SET and $STORE; see Chapter 7.

Using RMS-11 in a MACRO-11 Program 1-17

Table 1-5: NAM Block Fields

Field | Field Default Description
Name Size

DVI 1w 0 Device ID

ESA 1w 0 Expanded string address
ESL 1B 0 Expanded string length
ESS 1B 0 Expanded string size
FID 1B 0 File ID

1.3 CONTROL BLOCK FIELD ACCESS AT RUN TIME

RMS-11 field access macro retrieve, modify, and test the contents of
fields in the RMS-11 control blocks, FABs, RABs, and XABs, at run
time. These macros enable you to treat the control block fields as
logical entities, without regard for the placement of the fields with-
in the control blocks and to a large degree, for the sizes of the
fields.

Table 1-6 contains a summary of the available macros. Each macro is
also described in a separate section of Chapter 7.

Table 1-6: RMS-11 Field Access Macros

Macro Name Field Size Function

$COMPARE 1 byte or 1 word Compares the contents of a field
with a value you specify.

SFETCH Any size Copies the contents of a field into
a location you specify.

SOFF 1 byte or 1 word Resets one or more bits within a
bit string field.

SSET 1 byte or 1 word Sets one or more bits within a bit
string field.

$STORE Any size Copies the contents of a 1location
you specify into a field.

$TESTBITS 1 byte or 1 word Tests one or more bits within a bit
string field.

NOTE

RMS-11 assumes octal radix for all numeric values used as
operands for the field access macros. You indicate decimal
radix with an explicit decimal point following a numeric
value.

1-18 Using RMS-11 in a MACRO-11 Program

1.4 FILE AND RECORD OPERATIONS

You use the RMS-11 file and record operation macros to access and man-
ipulate files and records within files. These macros combine with the
control blocks (Chapters 3 through 6) to form your program's run-time
interface with RMS-11.

Before executing one of these macros, your program sets values in a
control block's fields, then specifies the block as an argument to the
macro. The macro initiates all processing involved with the indicated
RMS-11 operation. During the operation, RMS-11 returns information
about the processing in fields of the associated control block.

If you do not initialize or set fields, relying on defaults, RMS-11
changes the fields to contain the default or minimum values as output
from the operation.

See the RMS-11 User's Guide for a description of the operations them-
selves.

While differing in function, the file and record operation macros use
the same general format and calling sequence. Within the calling se-
quence, you identify the control block associated with the operation
and optional completion routines.

Before your program initiates a file or record operation macro, it
must:

1. Ensure that the appropriate values are set in the fields used by
RMS-11 during the operation. You do this with either initializa-
tion macros (see Chapters 3, 4, and 5) or field access macros (see
Chapter 7).

2. Execute the correct calling sequence.

1.4.1 Completion Routines

You can write subroutines that RMS-11 executes as an extension of a
file or record operation macro. These completion routines can be used
after the successful completion or after error termination of an oper-
ation.

RMS-11 invokes a completion routine if you supply an address at the
appropriate point in the calling sequence for the operation. At the
end of the completion routine, RMS-11 restores the stack and other
parameters and returns control to your program at the point after the
macro was initiated.

The use of completion routines is always optional. However, if you do
not use completion routines, your program should check the value of
the associated block's STS field after the macro has been executed.
If the status code is negative, an error occurred during the opera-
tion. If the status code is positive, the operation was successful,
although an STS value greater than one indicates qualified success.

Using RMS-11 in a MACRO-11 Program 1-19

See Appendix A for a description of the completion codes. The STS
field should never contain zero after an RMS-11 operation.

When using completion routines, you must be aware of conventions in
the following areas:

Register Usage
General register R5 contains the address of the same argu-
ment list or a copy of the argument list, that was part of
the calling sequence to the RMS-11 operation (see Section
8.0.2). Therefore, you can use the control block address at
2(R5) to access fields in the control block.

RMS-11 Operations within Completion Routines
A completion routine can execute file and record operation
macros. Each operation is an extension of the original op-
eration that caused the completion routine to be used. See
Appendix A of the RMS-11 User's Guide for restrictions on
this capability in the RMS-11 Asynchronous Environment.}

To return control from a completion routine to RMS-11, vyour program
must do the following:

1. Restore the stack pointer (SP) to its value at the beginning of
the completion routine. Your program must not attempt to cause
control flow changes by modifying the stack.

2. Execute a SRETURN macro, in the form:

SRETURN

This macro requires no arguments and denotes the end of a comple-
tion routine.

l.4.2 Calling Sequence

Each file and record operation macro requires a word-aligned formatted
argument list. Your program can construct this list or allow RMS-11
to build it. Generally, your program generates less code and use less
stack to build the list than does RMS-11.

1.4.2.1 Your Program Supplies the Argument List - If vyour program

constructs the argument list, it executes RMS-11 file and record oper-
ations with the following sequence:

1-20 Using RMS-11 in a MACRO-11 Program

The program constructs the argument list in the following form,
with the arguments arranged in the order shown:

Argument Size RMS-11 Interpretation
Undefined 1 byte Not used.
Argument Count 1 byte Binary value from 1 through 3 repre-

senting the number of arguments to
be wused from the argument 1list.
This field equals 1 if you do not
supply completion routine addresses.

Block Address 1 word Address of a FAB for file operations
or a RAB for record operations.

Error Address 1 word Address of a completion routine you
want called if the operation fails.

Success Address 1 word Address of a completion routine you

want called 1if the operation com-
pletes successfully. Not wused by
file operation macros.

Store the address of the argument list in general register R5.

Execute the file or record operation macro without arguments, in
the form:

$macnam
If completion routines were specified, continue processing because

success and/or failure has been tested and handled. Otherwise,
check the STS field 6f the associated control block.

Example The following code constructs an argument list and uses it

to execute a get operation:

MoV $LIST,RS ;ADDRESS OF ARGUMENT LIST

SGET ;READ A RECORD FROM THE FILE
LIST: «WORD 3 ;NUMBER OF ARGUMENTS

.WORD INRAB sRECORD ACCESS BLOCK ADDRESS

-WORD ERR1 ; ERROR ROUTINE ADDRESS

«WORD sucCl ; SUCCESS ROUTINE ADDRESS

Example The following code constructs an argument list specifying a

success completion routine, but no error completion routine:

LIST: -WORD 3
.WORD INRAB
.WORD -1 ;NO ERROR ROUTINE
.WORD succl

Using RMS-11 in a MACRO-11 Program 1-21

Example The following code constructs an argument 1list specifying
error and success routines, but the program determines be-
fore the operation is initiated that neither routine

applies:
MOV #1,LIST ;SHRINK SIZE OF LIST
MOV #LIST,R5 ;ADDRESS OF ARGUMENT LIST
SGET ;READ A RECORD FROM THE FILE
SCOMPARE #0,STS, 2(R5) ;LOOK AT STATUS CODE
BGT NXTSTP i SUCCESS
GETERR: .
LIST: - WORD 3 ;NUMBER OF ARGUMENTS
.WORD INRAB ;RECORD ACCESS BLOCK ADDRESS
.WORD ERR1 ; ERROR ROUTINE ADDRESS

.WORD succl s SUCCESS ROUTINE ADDRESS

1.4.2.2 RMS-11 Generates the Argument List - Your program can execute
RMS-11 file and record operation macros with the form:

$macnam block[,error[,success]]

where block is the address of a FAB for file operations or a RAB for
record operations.

error is the address of a completion routine you want called if
the operation fails.

success is the address of a completion routine you want called if
the operation completes successfully. Not used by file
operation macros.

The macro builds an argument list on your program's stack from the in-
formation provided. Then it initiates the processing appropriate to
the indicated operation. After the macro is executed, your program
should check the STS field of the associated block unless completion
routines were specified.

1.4.3 File Operation Macros

A file operation macro causes RMS-11 to perform an action related to
an entire file. The macro name indicates the type of operation per-
formed. The fields of the FAB associated with the macro in the cal-
ling sequence identifies the file and qualifies the operation.

Table 1-7 summarizes the RMS-11 file operation macros.

1-22 Using RMS-11 in a MACRO-11 Program

Table 1-7: RMS-11 File Operation Macros

Macro Name Description

SCLOSE Closes an open RMS-11 file so that your program can no
longer access its contents.

SCREATE RMS-11 creates and opens an RMS-11 file as described by
the associated FAB and XABs, if any.

SDISPLAY Stores attributes of an existing RMS-11 file in FAB and
XAB fields.

SERASE Deletes an existing RMS-11 file and removes its entry(s)
from a directory.

SEXTEND Increases the number of blocks allocated to an RMS-11
file.

$OPEN Opens an existing RMS-11 file, making its contents ava-

ilable for processing.

1.4.4 Record Operation Macros

After it has created or opened an RMS-11 file, your program can per-
form record operations on it. These operations involve the following
concepts that are explained in the RMS-11 User's Guide and Chapter 1
of this manual.

Record Access Streams

File sharing

Context, Current Record, and Next Record
Ssynchronous and asynchronous record operations

Table 1-8 summarizes the RMS-11l record operation macros.

1.5 CREATING THE TASK

After you have written a MACRO-11 program as described in this
chapter, you must assemble each module with the following reference in
your command string:

LB: [1,1)RMSMAC.MLB/ML

After you have assembled all modules in your program successfully, you
must 1link the modules with the RMS-11 routines using the Task Builder
utility supplied with your operating system. You can link the RMS-11
routines in your task without overlays or with disk-resident or
memory-resident overlays. See the RMS-11 User's Guide for a discus-
sion of these options.

File Operation Macros 1-23

NOTE

Do not use the /SQ switch with the Task Builder. RMS-11 re-
quires PSECTS to be in alphabetical order.

Table 1-8: RMS-11 Record Operation Macros

Macro Name

Description

SCONNECT

SDELETE

SDISCONNECT
$FIND
SFLUSH
SFREE

SGET

SNXTVOL

SPUT

SREWIND

STRUNCATE

SUPDATE

SWAIT

Establishes a Record Access Stream.

Deletes a record from an RMS-11 Relative or 1Indexed
file.

Terminates a Record Access Stream.

Locates a record in an RMS-11 file.

Moves all data in unwritten I/O buffers to disk.
Unlocks a bucket locked by a Record Access Stream.

Moves a record from an RMS-11 file into your program's
user buffer.

Continues processing with the next volume of magnetic
tape multivolume set.

Moves a record from your program's user buffer to an
RMS-11 file.

Resets a Record Access Stream's context to the logical
beginning of an RMS-11 file.

Deletes record at the end of an RMS-11 Sequential
file.

Replaces a record in an RMS-11 file with a record from
your program's user buffer.

Suspends processing until an RMS-11 asynchronous re-
cord operation completes.

1-24 File Operation Macros

CHAPTER 2

PROVIDING BUFFER SPACE

2.1 CENTRAL BUFFER POOL

The central buffer pool must be allocated at assembly time with the
series of macros and arguments described in this section and Table
2-1. The macro series must start with the POOLSB macro and end with
the POOLSE macro.

You can use multiple buffer pool allocations among the program modules
that you link together with the Task Builder utility. The Task Build-
er sums the size requirements indicated by all buffer pool declara-
tions.

Table 2-1: Buffer Pool Declaration Macros

Macro Description Required

POOLSB | Beginning of buffer pool declaration Yes

PS$BDB Number of Buffer Descriptor Blocks Yes

PSFAB Number of files open simultaneously Yes

PSRAB Number of nonIndexed streams If Sequential or
connected simultaneously Relative files

PSRABX | Number of Indexed streams If Indexed files
connected simultaneously

PSIDX | Number of defined keys If Indexed files

PSBUF Input/output buffer requirements If no BPA or GSA

POOLSE | End of buffer pool declaration Yes

kkkkkkkkkkkkk

* *
REQUIRED * P$SBDB *
* *

khkkkkkkkhkkkkk

2.1.1 PSBDB

The P$SBDB macro ensures that the buffer pool contains sufficient space

for internal RMS-11 <control structures known as Buffer Descriptor
Blocks (BDBs).

General form:

PSBDB nbrbdbs

where nbrbdbs is a numeric value or symbol representing the number of
Buffer Descriptor Blocks required to support the file
processing performed by your program.

To determine this value, use the following equation:
nbrbdbs = maxbuf + maxrel + (2 * maxidx)

where maxbuf is the count of the I/0 buffers that can be used simul-
taneously, that 1is, the maximum number of I/O buffers
ever in use for simultaneously open files.

You calculate this wvalue by totaling the multibuffer
counts in the MBF fields of RABs for all combinations of
simultaneously connected Record Access Streams. The max-
imum wvalue among all such combinations is the desired
maxbuf value. RMS-11 must allocate one BDB for each 1I/0
buffer being used at one time.

maxrel is the maximum number of Record Access Streams ever con-
nected simultaneously for put operations to Relative
files (whether or not an actual put operation is per-
formed) . RMS-11 allocates one BDB for each stream con-
nected to a Relative file.

maxidx is the maximum number of Record Access Streams ever ac-
tive simultaneously for put operations to Indexed files
(whether or not an actual put operation 1s performed).
RMS-11 allocated one BDB for each stream connected to an
Indexed file.

2-2 The POOL Macros

kkkkkhkkhkkkkk

* *
REQUIRED * PSFAB *
* *

khkkkkhkhkkkkkk

2.1.2 PSFAB

The PSFAB macro ensures that the buffer pool contains sufficient space

for internal RMS-11 control structures related to File Access Blocks
(FABs) .

General form:
PSFAB number

where number is a numeric value or symbol representing the maximum
number of files that are open simultaneously at run time.

The POOL Macros 2-3

kkkkkkkhkkkkk

* *
* PSRAB *
* *
khkkkkkkkkhkkkkk

2.1.3 PSRAB

The PS$RAB macro ensures that the buffer pool contains sufficient space
for internal RMS-11 control structures related to Record Access Blocks
(RABs) for Sequential and Relative files. You can omit this pool
macro if your program does not perform record operations on Sequential
or Relative files.

General form:
RSRAB number
where number is a numeric value or symbol representing the maximum

number of RABs that your program connects simultaneously
to Sequential and Relative files.

2-4 The POOL Macros

khkkkkkkhkkkkk

* *
* PSRABX *
* *
khkkkkkkkkkhkkxk

2.1.4 PSRABX

The P$RABX macro ensures that the buffer pool contains sufficient
space for internal RMS-11 control structures related to Record Access
Blocks (RABs) for Indexed files. You can omit this pool macro if your
program does not perform record operations on Indexed files.

General form:
PSRABX rabs,keysiz,nbrkeys

where rabs is a numeric value or symbol representing the maximum
number of Record Access Streams that your program connects
to Indexed files simultaneously.

keysiz is a numeric value or symbol representing the size, 1in
bytes, of the largest key field that can be accessed by one
of the streams.

nbrkeys is a numeric value or symbol representing the number of
keys that can change values during an update operation on
an Indexed file. You must specify this value whenever your
program creates or opens an Indexed file with FBSUPD set in
the FAB FAC field.

Example The following code indicates that there will be at most one
stream connected to an Indexed file at any point during pro-
gram execution. The largest key field in any such file is
32 bytes and no keys can change during update operations.

POOLSB ;BEGIN POOL DECLARATION
PSRABX 1,32 ;ONE FILE AND BIGGEST KEY, NO CHANGES
POOLSE ;END POOL DECLARATION

The POOL Macros 2-5

hkkhkkkhkkkhkkkhkkk

* *
* PSIDX *
* *
kkhkhkkkkhkkkhkkkk

2.1.5 PSIDX

The PSIDX macro ensures that the buffer pool contains sufficient space
for internal RMS-11 control structures containing summary information
about an Indexed file's keys. You can omit this pool macro if your
program does not open Indexed files.

General form:
PSIDX number
where number is a numeric value or symbol representing the total
number of keys defined for all Indexed files open simul-

taneously. 1Include all keys even if they are never used
for find or get operations.

2-6 The POOL Macros

kkkhkkhhkkkhkk

* *
* PSBUF *
* *
kkkhkkhhrhhkk

2.1.6 PSBUF
The P$BUF macro ensures that the buffer pool contains sufficient space
for the I/0 buffers required by your program. You can omit this macro
only if you are providing private buffers for all files or a GSA rou-
tine.
General form:
PSBUF iosiz
where iosiz is a numeric value or symbol representing the total bytes
required for 1I/0 buffers by your program. To calculate this number,
use the following equation and round the result up to a multiple of
four.
iosiz = strmszl + strmsz2 + ... + strmszn
where iosiz is the total I/0 buffer requirement, and
strmszl are the I/0 buffer space requirements (in bytes) for the
Record Access Streams associated with the file that are
strmszn active simultaneously.
You calculate the requirements for each stream as follows:
e For Sequential files on disk: STRMSZ = 512*MBC
e For Sequential files on magnetic tape: STRMSZ = BLS
where BLS is the size, in characters, of each physical block of the

magtape file, that is, the value contained in the BLS field of the
FAB, and

MBC is the value contained in the MBC field of the RAB associated
with the stream.

@ For Relative files: STRMSZ = BKS*512

where BKS is the number of blocks in a bucket of the file (from the
FAB BKS fields).

@ For Indexed files: STRMSZ = BKS*MBF*512

where BKS is the number of blocks in the largest bucket of the file
(selected from the FAB BKS and the Allocation XAB BKZ fields), and

MBF is the value contained in the MBF field of the RAB associated
with the stream.

The POOL Macros 2-7

2.2 GET SPACE ROUTINE

A Get Space routine gives you complete control over the allocation of
buffer space in your task. A single GSA routine serves all files used
by the program.

RMS-11 uses the GSA routine when it requires or releases space. When
RMS-11 requests space, it expects one of two outputs from your
routine:

e the low-byte address of a contiguous block of bytes at least as big
as that requested.

e an error indication that space is not available. RMS-11 issues an
ERSDME message and returns control to the program.

When RMS-11 releases space, it expects no output from your routine;
it assumes that the release of space was successful if the routine
terminates successfully.

NOTES
® Your routine must start on a word boundary: precede the
label defining the routine's starting address with a
.EVEN directive,
e RMS-11 trusts your routine: it performs no parameter
checking when the routine finishes and therefore can be

lead into an error or even fatal situation if the routine
did not allocate space properly.

2.2.1 Specifying a Routine
You can specify the starting address