gdecsyUscenio2e

CONVERSATIONAL
PROGRAMMING LANGUAGE

USER'S MANUAL

DEC-10-LCPLA-B-D

digital equipment corporation - maynard, massachusetts

First Printing, March 1976

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use or

reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright (:) 1976 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0s/8

DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX

COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-10

DECCOMM DECsystem-20 TYPESET-11

CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER

CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER

CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER

CHAPTER

CHAPTER
CHAPTER
CHAPTER

CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER

~N O Wy

10
11
12
13
14
15

16
17
18
19
20
21
22
23

24

25
26
27

28
29
30
31
32

SUMMARY OF TABLE OF CONTENTS

INTRODUCTION TO CPL (A)

BASIC CPL LANGUAGE ELEMENTS (B)
PROGRAMMING ELEMENTS (B)

PROGRAM MANIPULATION STATEMENTS (B)

THE DECLARE AND DEFAULT STATEMENTS (B-D)
DATA TYPES (B-D)

THE ASSIGNMENT STATEMENT AND CPL
EXPRESSIONS (B-C)

LABELS AND "GO TO" AND "IF" STATEMENTS (B)

THE DO AND END STATEMENTS (B-D)

ARRAYS (DIMENSIONED VARIABLES) (B)

GET LIST AND PUT LIST TO TERMINAL (B-C)
GET AND PUT WITH STRING OPTION (C)

THE PUT EDIT STATEMENT (C-D)

FILE I/O TO ARBITRARY FILES (C-D)

BLOCK STRUCTURE AND DECLARATION SCOPE
RULES (C-D)

STORAGE CLASSES (D)

SUBROUTINE AND FUNCTION PROCEDURES (C-D)
ON-CONDITIONS AND ERROR HANDLING (C-D)
BASED STORAGE AND POINTERS (D)

A LIST PROCESSING EXAMPLE (D)

OTHER STATEMENTS (B)

STRUCTURED AND GOTO-LESS PROGRAMMING (C)

BUILT-IN FUNCTIONS AND PSEUDO-VARIABLES
(B_D ’ R)

CONVERSIONS AMONG COMPUTATIONAL DATA
TYPES (D)

CPL ERROR MESSAGES (R)
QUESTIONS AND ANSWERS ABOUT CPL (R)

COMPARISON OF CPL WITH ANSI PL/I
STANDARD (R)

RUNNING CPL UNDER TOPS-10 (R)
RUNNING CPL UNDER TOPS-20 (R)
CPL PROGRAMMING EXAMPLES (B-D)
LIST OF CPL ABBREVIATIONS (R)
CPL SUMMARY (R)

iii

5-1
6-1

7-1
8-1
9-1
10-1
11-1
12-1
13-1
14-1

15-1
16-1
17-1
18-1
19-1
20-1
21-1
22-1

23-1

24-1
25-1
26-1

27-1
28-1
29-1
30-1
31-1
32-1

TO THE READER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

N N N ol ol ok SRR T St SR
. e e

s e

[SIR SIS I S0 S 3 (O 2 (S) (G I8 (V]

3 e 2 e & o o+ e 2

=

[S S S

« e e e s e

NoU s W

N~

VOO W

Lcodonbwwiw LS ol

Ny

CONTENTS

INTRODUCTION TO CPL (A)

DESK CALCULATOR MODE (A)
SCIENTIFIC NOTATION AND E-TYPE CONSTANTS

(a)

BUILT-IN FUNCTIONS (A)

THE
USE

ASSIGNMENT STATEMENT (A)
OF "COLLECT" STATEMENTS (A)

MODIFYING YOUR PROGRAM (A)

STATEMENTS LABELS AND THE GOTO STATEMENT (A)

THE
THE

IF STATEMENT (A)
DO STATEMENT (A)

BASIC CPL LANGUAGE ELEMENTS (B)

THE

CPL CHARACTER SET (B)

ALPHABETIC, NUMERIC AND ALPHAMERIC
CHARACTERS (B)

SPECIAL CHARACTERS AND OPERATORS (B)
Special Characters (B)
Two-character Operators (B)

CHARACTER-STRING-ONLY CHARACTERS (B)

IDENTIFIERS (B)

VARIABLE NAMES (B)

KEYWORDS (B)

COMMENTS (B)

ABBREVIATIONS AND ALTERNATE KEYWORDS (B)

PROGRAMMING ELEMENTS (B)

DIRECT AND COLLECT STATEMENTS (B)

TERMINATING SEMICOLON (B)

LINE NUMBERS (B)

MULTIPLE STATEMENTS PER LINE (B)

CONTINUING STATEMENTS ON ADDITIONAL LINES
(B)

STATEMENT NUMBERS (B)

PLACEMENT OF COLLECT STATEMENTS (B)

REPLACING COLLECT STATEMENTS (B)

PROGRAM MANIPULATION STATEMENTS (B)

THE
THE
THE
THE
THE
THE
THE

LIST STATEMENT (DIRECT ONLY) (B)

ERASE STATEMENT (DIRECT ONLY) (B)
NUMBER STATEMENT (DIRECT STATEMENT) (B)
SAVE STATEMENT (DIRECT STATEMENT) (B)

LOAD STATEMENT (DIRECT ONLY) (B)

WEAVE STATEMENT (DIRECT ONLY) (B)

EXECUTE STATEMENT (DIRECT ONLY)

(B)

Page

Xv

b
1 |
=

el el e e
O N R
AV WWNN

N
|
=

N
1
)

LI I | U UL
WWWRDNDNDNOH

PMDNNMNNMNNDNDMDNDNDNDN
|

w
1
[

wWwww
| [|

[
(ST

> wwww
U 1 { I T I |
dwwwh N [wwhn

BB DD D
'

CONTENTS (Cont.)

4.8 THE CONTINUE STATEMENT (DIRECT ONLY) (B)
4.9 THE BREAK STATEMENT (DIRECT ONLY) (B)
4,10 THE NOBREAK STATEMENT (DIRECT ONLY) (B)
4.11 THE MONITOR STATEMENT (DIRECT ONLY) (B)
CHAPTER 5 THE DECLARE AND DEFAULT STATEMENTS (B-D)
5.1 THE DECLARE STATEMENT (COLLECT ONLY) (B-D)
5.1.1 Data Type Attributes (B)
5.1.2 Arrays (B)
5.1.3 Alternate Method For Specifying Arrays (C)
5.1.4 Storage Class Attributes (D)
5.1.5 Other Attributes (D)
5.1.6 Default Attributes (B)
5.1.7 Multiple Declarations And Attribute
Factoring (C)
5.2 THE DEFAULT STATEMENT (COLLECT ONLY) (D)
5.2.1 The Range=-spec (D)
5.2.2 The Default-spec (D)
5.2.3 Conflicting DEFAULT Statements (D)
5.2.4 Default Rules In Absence of DEFAULT
Statement (D)
5.2.5 Examples (D)
5.2.6 Overriding Defaults With DECLARE State-
ment (D)
CHAPTER 6 DATA TYPES (B-D)
6.1 "FIXED" DATA TYPE (B)
6.2 "FLOAT" DATA TYPE (B)
6.3 "CHARACTER" DATA TYPE (C)
6.4 "BIT" DATA TYPE (C)
6.5 "POINTER" DATA TYPE (D)
CHAPTER 7 THE ASSIGNMENT STATEMENT AND CPL
EXPRESSIONS (B-C)
7.1 THE ASSIGNMENT STATEMENT (DIRECT OR
COLLECT) (B)
7.2 CPL EXPRESSIONS (B)
7.3 DATA CONVERSIONS (C)
7.4 CPL EXPRESSION OPERATORS (B-C)
7.4.1 +, - And * (Addition, Subtraction And
Multiplication) (B)
7.4.2 / (Division) (B)
7.4.3 ** (Exponentiation) (B)
7.4.4 Comparison Operators (B)
7.4.4.1 Conversions For Comparisons (C)
7.4.4.2 Character String Comparisons (C)
7.4.4.3 BIT String Comparisons (C)
7.4.4.4 POINTER Comparisons (D)
7.4.5 + And - (Prefix Plus and Minus) (B)
7.4.6 & And ! (Logical And and Or) (B)
7.4.7 (Logical Not Operator) (B)
7.4.8 !l (String Concatenation Operator) (C)
7.5 PRECEDENCE OF OPERATORS (B)

vi

ooty un

[R B | 1
WWNNN

vrut ot onn
U s W

;i in

(S0, }
11

g
N

| I N N N O O N AN N
GUOTE &L BRDWWWNN

NN NN NN NN NN

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

8

00 ©0 00 00 00 OO O O

¢« e o s e
U W N

O

O WY O
« v e
[o2 W oW e

10.1
10.2
10.3
10.4
10.5

11

11.1
11.2
11.3
11.3.1
11.3.2
11.4

12

12.1
12.2

CONTENTS (Cont.)

LABELS AND "GO TO" AND "IF" STATEMENTS
(B)

STATEMENT LABELS (COLLECT ONLY) (B)
THE GO TO STATEMENT (COLLECT ONLY) (B)
THE IF STATEMENT (COLLECT ONLY) (B)
Omitting The ELSE Clause (B)
Separating The Else Clause (B)
Nested IF Statements (B)
DO/END Groups As THEN/ELSE Clauses (B)
BIT Values In The IF Expression (D)

THE DO AND END STATEMENTS (B-D)

THE NON~ITERATIVE DO-GROUP (COLLECT ONLY)
(B)
THE WHILE-ONLY DO GROUP (COLLECT ONLY) (B)
THE DO-GROUP WITH DO VARIABLE (COLLECT
ONLY) (B=C)
The Format Of The "spec" (B)
Completely Unsatisfied Specifications
(B)
The Effect Of The WHILE Clause (B)
Multiple Specifications (B)
DO-variable With Non-arithmetic Data

Type (C)
EXPRESSION EVALUATION IN DO-STATEMENT
CLAUSES (D)

NORMAL AND ABNORMAL TERMINATION OF DO
GROUPS (C)
THE END STATEMENT (COLLECT ONLY) (B)
Multiple Closure Of DO Groups (C)
GOTO To Multiple Closure END Statement
(D)

ARRAYS (DIMENSIONED VARIABLES) (B)

ONE-DIMENSIONAL ARRAYS (VECTORS) (B)
LOWER BOUNDS OTHER THAN 1 (B)

OTHER DATA TYPES FOR ARRAYS (B)
TWO-DIMENSIONAI, ARRAYS (MATRICES) (B)
ARRAYS OF MORE THAN TWO DIMENSIONS (R)

GET LIST AND PUT LIST TO TERMINAL (B~C)

THE PUT STATEMENT (COLLECT OR DIRECT) (B)
THE ? STATEMENT (COLLECT OR DIRECT) (B)
THE GET STATEMENT (COLLECT OR DIRECT) (B)
Data Type Conversions (C)
Omitted Data Values (C)
VARIABLE FORMAT FOR PUT LIST (C)

GET AND PUT WITH STRING OPTION (C)

PUT WITH "STRING: OPTION (C)
GET WITH "STRING" OPTION (C)

vii

Page

«©
i 1

WWNONND - Ll

00 00 0000 00
U

CHAPTER

CHAPTER

13

13.1
13.1.1
13.1.2
13.2
13.3
13.4
13.5
13.6

13.7
13.7.1
13.7.2
13.7.3
13.7.4
13.7.5
13.7.6
13.7.7
13.7.8
13.8
13.8.1
13.8.2
13.8.3
13.8.4
13.9
13.10
13.11
13.11.1
13.11.2
13.12
13.12.1
13.12.2
13.12.2.1
13.12.2.2

14
14.1
14.1.1
14.1.2
14.2

14.2.1

CONTENTS (Cont.)

THE PUT EDIT STATEMENT (C-D)

INTRODUCTION (C)
Basic Format (C)
Example (C)

THE MOST COMMON FORMAT ITEMS (C)

FURTHER PUT EDIT EXAMPLES (C)

ITERATION FACTORS (C)

HOW PUT EDIT IS EXECUTED (C)

DETAILED SPECIFICATION OF THE FORMAT LIST
(c)

DATA FORMAT ITEMS (C)

The F Format Item (C)
The E Format Item (C)
The A Format Item (C)
The B Format Item (C)
The Bl Format Item (C)
The B3 Format Item (C)
The B4 Format Item (C)
The B2 Format Item (C)

CONTROL FORMAT ITEMS (C)
The X Format Item (C)
The COLUMN Format Item (C)
The SKIP Format Item (C)
The PAGE Format Item (C)

THE REMOTE FORMAT ITEM (C)

THE FORMAT STATEMENT (COLLECT ONLY) (C)

OTHER OPTIONS OF THE PUT EDIT STATEMENT (C)
Multiple Lists (C)

Other Options (C)

THE FORMAT OF PUT LIST OUTPUT (D)
Format Without The VFORM Attribute (D)
Format With VFORM Attribute (D)

FIXED With VFORM Attribute (D)
FLOAT With VFORM Attribute (D)

FILE I/0O TO ARBITRARY FILES (C-D)

SIMPLE USAGE OF GET AND PUT TO ARBITRARY
FILES (C)
PUT To Arbitrary Files (C)
GET To Arbitrary Files (C)
DEFAULT FILE OPTIONS FOR GET AND PUT STATE=-
MENTS
Special Properties Of SYSIN And SYSPRINT
Identifiers (C)
FILE ATTRIBUTES (D)
STREAM Versus RECORD Attribute (D)
INPUT Versus OUTPUT Attributes (D)
The PRINT Attribute (D)
The ENVIRONMENT Attributes (D)
The VFORM Attribute (D)
The APPEND Attribute (D)
The NOPAGE Attribute (D)
THE FILE DECLARATION (D)
THE OPEN STATEMENT (DIRECT OR COLLECT) (D)
"OPEN" ATTRIBUTE MERGING (D)
IMPLICIT FILE OPEN (D)

viii

Page
13-1

13-1
13-1
13-1
13-2
13-2
13-3
13-3

13-4
13-4
13-4
13-5
13-¢6
13-6
13-6
13-7
13-7
13-7
13-8
13-8
13-8
13-9
13-9
13-9
13-9
13-9
13-10
13-10
13-10
13-10
13-10
13-10
13-11

14-1

14-1
14-1
14-1

14-2

14-2
14-2
14-2
14-3
14-3
14-3
14-4
14-4
14-4
14-5
14-5
l4-6
14-7

CONTENTS (Cont.)

Page
14.8 ‘THE GET STATEMENT (COLLECT OR DIRECT) (D) 14-7
14.9 THE PUT STATEMENT (COLLECT OR DIRECT) (D) 14-8
14.10 THE READ STATEMENT (COLLECT OR DIRECT) (D) 14-9
14.11 THE WRITE STATEMENT (COLLECT OR DIRECT) (D) 14-9
14.12 THE CLOSE STATEMENT (COLLECT OR DIRECT) (D) 14-10
14.13 THE CLOSE FILES STATEMENT (COLLECT OR
DIRECT) (D) 14-10
CHAPTER 15 BLOCK STRUCTURE AND DECLARATION SCOPE
RULES (C-D) 15-1
15.1 THE BEGIN STATEMENT (COLLECT ONLY) (C) 15-1
15.2 PROGRAM BLOCKS WITH PROCEDURE STATEMENT (D) 15-1
15.3 SCOPE RULES FOR DECLARATIONS IN BLOCKS (D) 15-2
15.3.1 Default Vs. Explicit Declarations (D) 15-2
15.3.2 Scope Of Default And Explicit Declara-
tions (D) 15-3
15.3.3 Labels On PROC And BEGIN Statements (D) 15-3
15.4 BLOCK INVOCATION OR TERMINATION (D) 15-4
15.4.1 How A Block Is Invoked (D) 15-4
15.4.2 Normal Termination Of A Block (D) 15-4
15.4.3 Abnormal Termination Of A Block (D) 15-4
15.5 THE BLOCK PROILOGUE AND EPILOGUE (D) 15-5
15,.5.1 The Block Prologue (D) 15-5
15.5.2 The Block Epilogue (D) 15-5
15.6 RECURSIVE BLOCKS (D) 15-%
15.7 THE SNAP STATEMENT (DIRECT OR COLLECT) (C) 15-5
CHAPTER 16 STORAGE CLASSES (D) 16-1
l6.1 DEFAULT STORAGE CLASS RULES (D) 16-1
16.2 DIFFERENCES AMONG THE STORAGE CLASSES (D) 16-1
l6.3 LIST OF STORAGE CLASSES (D) 16-1
16.3.1 AUTOMATIC Storage Class (D) 16-2
l16.3.2 STATIC Storage Class (D) 16-3
16.3,3 CONTROLLED Storage Class (D) 16-3
16,3.4 BASED Storage Class (D) 16-3
16.3.5 PARAMETER Storage Class (D) 16-3
16.3.6 NAMED CONSTANT Storage Class (D) l16-4
16.4 THE ALLOCATE STATEMENT (DIRECT OR COLLECT)
(D) 16-4
16.5 THE FREE STATEMENT (DIRECT OR COLLECT) (D) 16-4
16.6 EXAMPLES OF CONTROLLED STORAGE (D) 16-4
CHAPTER 17 SUBROUTINE AND FUNCTION PROCEDURES (C=-D) 17-1
17.1 WHY DO YOU NEED PROCEDURES? (C) 17-1
17.2 PROCEDURE ARGUMENTS AND PARAMETERS (C) 17-2
17.2.1 Difference Between Argument And
Parameter (C) 17~3
17.2.2 Real Versus "dummy" Arguments (C) 17-3
17.2,3 Data Types Of Arguments And Parameters (C) 17-3
17.3 FUNCTION PROCEDURES (C) 17-4
17.3.1 Further Examples of Function Procedures
(c) 17-5
17.4 THE PROCEDURE STATEMENT (COLLECT ONLY) (C) 17-5
17.5 THE CALL STATEMENT (DIRECT OR COLLECT) (C) 17-6
17.6 INVOCATION OF A PROCEDURE AS A FUNCTION (C) 17-6

ix

CHAPTER

CHAPTER

18.1
18.2
18.2.1
18.2.2
18.3
18.4
18.4.1
18.4.2
16.4.3
18.5
18.5.1
18.5.2
18.5.3
18.5.4
18.5.5
18.5.6
18.5.7
18.5.8
18.5.9
18.6
18.7
18.8

19

19.1
19.2
19.3
19.4
19.5
19.6
19.6.1
19.6.2
19.6.3
19.6.4
19.7
19.8
19.8.1
19.8.2
19.9

CONTENTS (Cont.)

THE RETURN STATEMENT (DIRECT OR COLLECT) (C)

Executing The End Statement Of A
Procedure (C)
MATCHING ARGUMENTS TO PARAMETERS (D)

Data Attributes Of The Parameters (D)

Rules For The Separate Declaration
For The Parameter (D)

Rules For Matching Arguments And
Parameters (D)

Case 1 -- No Dummy Is Created (D)
Case 2 -- A Dummy Argument is Created (D)
Case 3 -- Match Cannot Be Made (D)

Some Examples Of Argument Matching (D)

RECURSIVE PFROCEDURES (D)
USE OF THE SNAP STATEMENT (C)

ON-CONDITIONS AND ERROR HANDLING (C-D)

WHY DO YOU NEED ON-CONDITIONS? (C)

SOME INTRODUCTORY EXAMPLES (C)
Example Of An ERROR ON-unit (C)
Example Of An ENDFILE ON=-unit (C)

THE ON STATEMENT (COLLECT ONLY) (C)

GOCD PROGRAMMING PRACTICES WITH ON-UNITS (C)

Normal Termination Of An On-unit (C)
Avoiding ON-unit Recursion Loops (C)

The ONMSG Built-in Function (C)
LIST OF CONDITION NAMES (C=-D)

The SUBSCRIPTRANGE Condition (C)

The STRINGRANGE Condition (C)

The ZERODIVIDE Condition (C)

The ENDFILE Condition (C)

The UNDEFINEDFILE Condition (C)

The RECORD Condition (D)

The ERROR Condition (C)

The CONDITION Condition (C)

The ATTENTION Condition (D)

THE SIGNAL STATEMENT (COLLECT ONLY) (C)

SCCPE OF AN ON-UNIT (D)

THE REVERT STATEMENT (DIRECT OR COLLECT) (D)

BASED STORAGE AND POINTERS (D)

INTRODUCTION TO BASED STORAGE (D)
DECLARATION OF BASED STORAGE (D)
POINTER DATA TYPE (D)

THE ADDR BUILT-IN FUNCTION (D)

USE OF POINTERS AND BASED STORAGE (D)
ADDITIONAL EXAMPLES (D)

Two POINTERs With Same BASED Variable (D)

BASED CHARACTER Strings (D)

BASED BIT Arrays (D)

Mixing Data Types (D)
COMPARISON OF POINTERS (D)
BASED ARRAYS (D)

Example Of BASED Array (D)

Example of BASED CHARACTER Array (D)

THE ADDR AND NULL BUILT-IN FUNCTIONS

(D)

CHAPTER

CHAPTER

CHAPTER

CHAPTER

19.9.1
19.9.2
19.9.3
19.10
19.10.1

19.10.2
19.10.2.1
19.10.2.2
19.11
19.11.1

19.11.2
19.11.3

19.12
19.13

19.14
19.15

19.15.1
19.15.2
19.16
19.16.1
19.16.2
19.17

20

20.1
20.2
20.3
20.4

20.5
20.6

21

21.1
21.2
21.3

22

22.1
22.2
22.3
22.4
22.5
22.6

23

23.1

CONTENTS (Cont.)

The NULL Built-in Function (D)
Use Of ADDR As POINTER Qualifier (D)
Use Of ADDR To "Increment" A POINTER (D)
POINTERS WITH DO STATEMENTS (D)
POINTER-qualified BASED DO-loop Variable
(D)
DO Variable With POINTER Data Type (D)
Simple Example (D)
Example With REPEAT Clause (D)
POINTERS WITH PROCEDURES (D)
PROCEDURE Invocations With BASED Argu~-
ments (D)
PROCEDURE Invocations With POINTER Argu-
ments (D)
Function PROCEDURE Invocations With
RETURNS (POINTER) (D)
BASED AND DIMENSIONED POINTERS (D)
OTHER PLACES WHERE BASED VARIABLES ARE
USED (D)
VARIABLES IN BASED DECLARATIONS (D)
THE ALLOCATE STATEMENT (DIRECT OR COLLECT)
(D)
ALLOCATE For CONTROLLED Storage (D)
ALLOCATE For BASED Storage (D)
THE FREE STATEMENT (DIRECT OR COLLECT) (D)
FREE For CONTROLLED Storage (D)
FREE For BASED Storage (D)
RESTRICTIONS ON BASED STORAGE (D)

A LIST PROCESSING EXAMPLE (D)

DESCRIPTION OF APPLICATION (D)

THE BASIC DECLARATIONS (D)

INITIALIZING THE RECORD CHAIN (D)

PROCEDURE TO ADD A "RECORD" TO THE CHAIN
(D)

LISTING THE CHAIN (D)

A FINAL EXERCISE (D)

OTHER STATEMENTS (B)

THE NULL STATEMENT (DIRECT OR COLLECT) (B)
THE STOP STATEMENT (DIRECT OR COLLECT) (B)
THE DELAY STATEMENT (DIRECT OR COLLECT) (B)

STRUCTURED AND GOTO-LESS PROGRAMMING (C)

TRADITIONAL PROGRAMMING WITH GOTOs (C)
STRUCTURED LOOPS (C)

TESTING CASES (C)

RESTRICTIONS ON GOTO STATEMENTS

USE OF GOTO WITH ON-UNITS (C)
MODULARITY (C)

BUILT-IN FUNCTIONS AND PSEUDO-VARIABLES
(B-D' R)

WHAT ARE BUILT-IN FUNCTIONS? (B)

xi

Page

19-7
19-7
19-7
19-8

19-8
19-9
19-9
19-9
19-10

19-10
19-10

19-11
19-12

19-12
19-12

19-13
19-13
19-13
19-13
19-14
19~-14
19-14

20-1

20-1
20-1
20-2

20-3
20-4
20-4

21-1

21-1
21-1
21-1

22-1

22-1
22-1
22-1
22-2
22-3
22-3

23-1

23-1

23.2
23.3
23.4
23.5
23.6

23.6.
23.6.
23.6.
23.6.
23.6.
23.6.
23.6.
23.6.
23.6.

23.6.10
23.6.11
23.6.12
23.6.13
23.6.14
23.6.15
23.6.16
23.6.17
23.6.18
23.6.19
23.6.20
23.6.21
23.6.22
23.6.23
23.€.24
23.6.25
23.6.26
23.6.27
23.6.28
23.6.29
23.6.30
23.6.31
23.6.32
23.6.33
23.6.34
23.6.35
23.6.36
23.6.37
23.6.38
23.€.39
23.6.40
23.6.41
23.6.42
23.6.43
23.6.44
23.6.45
23.6.46
23.6.47
23.6.48
23.6.49
23.6.50
23.6.51
23.6.52

1
3
4
3
6
7

8
9

CONTENTS (Cont.)

HOW BUILT-IN FUNCTINNS ARE RECOGNIZED (B)
BUILT=-IN FUNCTIONS WITE NO ARGUMENTS (C)
WHAT IS A PSEUDO-VARIABLE? (C)
USE OF BASED ARGUMENTS (D)
ALPHABETICAL LIST OF BUILT-IN FUNCTIONS
AND PSEUDC-VBLES (R)
ABS Built-in Function
ACOS Built-in Function
ADDR Built-in Function
AFTER Built-in Function
ALLOCATION Built-in Function
ASIN Built-in Function
ATAN Built-in Functicn
ATAND Built-in Function
BEFORE Built-in Function
CEIL Built-in Function
COLLATE Built-in Function
COPY Built-in Function
C0S Built-in Function
COSD Built-=in Functicn
COSH Built-in Function
DATE Built-in Function
DIMENSION Built-in Function
DIVI Built-in Function
DIVF Built-in Function
EVERY Built-in Function
EXP Built-in Function
FLOOR Built=-in Function
FLTED Built-in Function
HBOUND Built-in Function
HIGH Built-in Function
INDEX Built-in Function
LBOUND Built-in Function
LENGTH Built-in Function
LCC Built-in Function
LOG1l0 Built-in Function
LOG2 Built-in Function
LOW Built-in Function
MAX Built-in Function
MIN Built-in Function
MOD Built-in Function
NULL Built-in Function
ONMSG Built-in Function
RANDOM Built-in Function
RANDOM Pseudo-Variahle
REVERSE Ruilt-in Function
SIGN Built-in Function
SIN Built-in Function
SIND Built-in Function
SINH Built-in Function
SOME Built=-in Function
SQORT Built-in Function
STRING Built-in Function
STRING Pseudo-Variable
SUBSTR Built=-in Function
SUBSTR Pseudo-Variable
TANH Built=-in Function
TIME Built-in Function

xii

Page

23-1
23-2
23=-2
23-2

23-3
23-3
23-3
23-3
23-3
23-4
23-4
23-4
23-5
23-5
23-5
23-5
23-6
23-¢6
23-6
23-6
23-6
23-7
23-7
23-7
23-7
23-8
23-8
23-8
23-9
23-9
23-9
23-9
23-10
23~-10
23-10
23-10
23-10
23-10
23-11
23-11
23-11
23-11
23-12
23-12
23-13
23-13
23-13
23-13
23-13
23-14
23-14
23-14
23-14
23-15
23-15
23-15
23-15

CHAPTER

CHAPTER

CHAPTER

CHAPTER

23.6.53
23.6.54
23.6.55
23.6.56
23.6.57

24

24.1

24.1.1
24.1.2
24.1.3
24.2

24.2.1
24.2.2
24.2.3
24.3

24.3.1
24.3.2
24.4

24.4.1
24.4.2
24.4.3

25
26

26.1
26.2
26.3
26.4
26.4.1
26.4.2
26.4.3
26.5
26.6
26.7

27.1

27.1.1
27.1.2
27.1.3
27.1.4
27.1.5
27.2

27.2.1
27.2.2

CONTENTS (Cont.)

TRANSLATE Built-in Function
TRUNC Built-in Function
UNSPEC Built-in Function
UNSPEC Pseudo-Variable
VERIFY Built-in Function

CONVERSIONS AMONG COMPUTATIONAL DATA
TYPES (D)

CONVERSIONS FROM FIXED (D)
FIXED To FLOAT (D)

FIXED To CHARACTER (D)
FIXED To BIT (D)

CONVERSIONS FROM FLOAT (D)
FLOAT To FIXED (D)

FLOAT To CHARACTER (D)
FLOAT To BIT (D)

CONVERSIONS FROM CHARACTER (D)
CHARACTER To FIXED Or FLOAT (D)
CHARACTER To BIT (D)

CONVERSIONS FROM BIT (D)

BIT To FIXED (D)
BIT To FLOAT (D)
BIT To CHARACTER (D)

CPL ERROR MESSAGES (R)
QUESTIONS AND ANSWERS ABOUT CPL (R)

IS CPL THE SAME AS PL/I?
WHAT IS AN INTERPRETER?
WHAT ARE THE ADVANTAGES OF AN INTERPRETER?
WHO CAN USE CPL?
Beginning Or Infrequent Programmers
PL/I Program Developers
Students Learning Programming
HOW WAS CPL WRITTEN?
HOW DOES CPL WORK INTERNALLY?
WHY IS THE LIST COMMAND IMPLEMENTED AS
IT IS?
WHY ISN'T INTEGER DIVISION PERMITTED?
WHY IS "OPEN" A NOP IF THE FILE IS ALREADY
OPEN?
WHY AREN'T PL/I STRUCTURES IMPLEMENTED?
WHEY ARE LINE CONTINUATIONS SO AWKWARD?

COMPARISON OF CPL WITH ANSI PL/I
STANDARD (R)

DESCRIPTION OF CPL SUBSET

Statements

Data Attributes

Formats

ON Conditions

Built-in Functions And Pseudo-variables
COMPATIBILITY WITH ANSI STANDARD

Compatibility Philosophy

List of Incompatibilities

xiii

Page

23-16
23-16
23-16
23-17
23-17

27~-1

27-1
27-1
27-2
27-3
27-3
27-4
27-4
27-4
27-5

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

28

28.1
28.1.1
28.1.2
28.1.3
28.2
28.2.1
28.2.2
28.3

29

29.1
29.1.1
29.1.2
29.1.3
29.2
29.2.1
29.2.2
29.3

30

30.1
30.2
30.3
30.4
30.5
30.6
30.7
31

32

32.1
32.2
32.3
32.4
32.5
32.6

32.7
32.8

CONTENTS (Cont.)

RUNNING CPL UNDER TOPS-10 (R)

HOW TO LOG ON AND RUN CPL
How To Log On
How To Use A Telephone Connection
Running CPL
HOW TO LOG OFF
How To Leave CPL
How To Log Off
FORMAT OF A TOPS-10 FILE-SPECIFICATION

RUNNING CPL UNDER TOPS-QO (R)

HOW TO LOG ON AND RUN CPL
How To Log On
How To Use A Telephone Connection
Running CPL
HOW TO LOG OFF
How To Leave CPL
How To Log Off
FORMAT OF A TOPS-20 FILE-SPECIFICATION

CPL PROGRAMMING EXAMPLES (B-D)

SIMPLE PROGRAM TO TYPE PRIME NUMBERS (B)

TABLE OF SINES AND COSINES (B)

MAKE A "CONCORDANCE OF LETTERS" (C)

HEXADECIMAL ADDING MACHINE (C)

PROCEDURE TO SIMULATE "VFORM" FILE
ATTRIBUTE (D)

FORMAT CPL PROGRAMS FOR OTHER PL/I
IMPLEMENTATIONS (C)

PROGRAM WHICH PRINTS ITS OWN SOURCE (D)

LIST OF CPL ABBREVIATIONS (R)
CPL SUMMARY (R)

PROGRAM ELEMENTS

DIRECT-ONLY STATEMENTS

DECLARATIVE AND STORAGE ALLOCATION
STATEMENTS

ASSIGNMENT AND FLOW OF CONTROL STATEMENTS

ON CONDITIONS AND ERROR HANDLING

INPUT/OUTPUT STATEMENTS

PUT EDIT FORMAT ITEMS

SUMMARY OF BUILT-IN FUNCTIONS

Xiv

32-1
32-2

32-2
32-3
32-3
32-4
32-5
32-6

TO THE READER

The experienced PL/I programmer may £find the 1last chapter, "CPL
SUMMARY" sufficient to learn the CPL system. He can also refer to the
chapter, "CPL PROGRAMMING EXAMPLES," which is near the end of the
manual.

This manual is intended to be both a tutorial and a reference manual.
Each chapter, and sometimes each section, will discuss features in a
general way which the beginner should be able to understand. Later in
the chapter or section there will follow more detailed and
comprehensive technical coverage of the subject. Therefore the reader
should approach this manual as follows: At the first reading, read
quickly, skimming over or skipping sections which you do not
understand. Later, when you need more technical details, you can go
back and read the more difficult sections.

To help you even further, each chapter and heading line 1is following
by a letter (A), (B), (C), (D) and (R), indication the type and level
of material. These codes have the following meanings:

(A) Beginning material (Chapter 1 only) which 1is suitable for
the person who has never programmed before or who has never
used CPL before.

(B) Material which covers the simple data types (FIXED and
FLOAT) , arrays, built-in functions, and the simple
programming statements (IF, DO, DECLARE, labels, GOTO,
direct statements, END, GET LIST, PUT LIST).

(C) More advanced programming statements, which permit more
powerful programs to be written, including subroutine and
function PROCEDUREs, error handling with ON, PUT and GET to
arbitrary disk files, CHARACTER and BIT data types, and data
conversions.

(D) The most advanced CPL programming functions, including some
esoteric - things. Sections at this level discuss storage
classes, BASED storage and POINTERs, RECORD input/output to
arbitrary files, full scope and invocation rules for blocks
including recursive blocks, and the DEFAULT statement.

(R) These chapters are not meant to be read. They are to be
used as reference chapters by users at all levels. This
level includes the list of error messages, the 1list of
built-in functions and pseudo-variables and the comparison
of CPL with the ANSI PL/I standard.

XV

CHAPTER 1

INTRODUCTION TO CPL (A)

This chapter is for beginners -- people who have never used a computer
before, as well as experienced programmers who have never used CPL
before. After you read this chapter, you will be better prepared to
use the rest of the manual. When you read the rest of the manual,
keep in mind that each chapter contains both easy and difficult
material. Furthermore, many chapters are sufficiently self-contained
so that vyou can understand it without wunderstanding preceding
chapters.

For this reason, you should always feel free to use refer to only
those parts of the manual that you need. You should never be afraid
to try to read a section, just because you have not understood the
preceding material.

If you do not know how to log on and start CPL running, please refer

to the chapter "Running CPL under TOPS-10" or to the chapter "Running
CPL under TOPS-20."

1.1 DESK CALCULATOR MODE (A)

CPL can be used as a "desk calculator." This means that you c¢an use
CPL to get the values of computations.

When you enter CPL, CPL types out an asterisk. This signifies that
CPL is ready for commands, which are called "statements."

The first statement you will use is the "?" statement. (? is an
abbreviation for PUT LIST. The PUT statement is described in a later
chapter.)
For example, if you type the statement

2243
then CPL will type back the sum, 5.
You may specify any expression using the operators +, -, /, * (for
multiplication) and ** (for exponentiation). You may also use

parentheses, just as you would in a mathematical formula to specify
the order in which operations are to take place.

INTRODUCTION TO CPL (A)

For example, if you type
?2(23.45-6)*(.0183+16.3487)
then CPL will type back the answer, 285.60414.

The "**" operator stands for exponentiation. M**N stands for M raised
to the power N. For example, if you type

?23.45%%6.2

then CPL will type back the answer, 2160.122.

1.2 SCIENTIFIC NOTATION AND E-TYPE CONSTANTS (A)

You can express very large or very small constants using E-type
notation, For example, the constant 23.4E7 stands for 23.4 times 10
to the power 7, or 234000000.
The number following the letter E is the power of 10 with which the
first part of the number must be multiplied. This number may also be
negative. For example, 23.4E-5 is the same as .000234.
For example if you type the statement

?25E10 * 16

then CPL will type back 4E1l2.

1.3 BUILT-IN FUNCTIONS (A)

Suppose you want to compute the hypotenuse of a right triangle. The
formula for that computation, given the sides A and B, is to take the
square root of A**2+B**2, CPL provides a built-in function, called
SQRT, which allows you to compute sguare roots.
For example, if you type

?SQRT (3**2 + 4**2)

then CPL will type back 5, the length of the hypotenuse of a 3-4-5
triangle.

If you type ?SQRT (7.5*%*2 + 8.3%*2)

then CPL types back 11.186599, the length of the hypotenuse of a right
triangle with legs 7.5 and 8.3.

CPL contains many built-in functions. They are all described in the
chapter entitled "BUILT-IN FUNCTIONS AND PSEUDO-VARIABLES."

Some of the most commonly used ones are:

1. SOQRT(x) computes the square root of x.

INTRODUCTION TO CPL (A)
2. ©SIN(x) and COS(x) compute the sine and cosine, respectively,
of x, where x is an angle measured in radians.

3. SIND(x) and COSD (x) compute the sine and cosine,
respectively, of x, where x is an angle measured in degrees.

4. ABS(x) computes the absolute value of x.
5. LOG(x) computes the natural logarithm of x.

6. LOG1O0(x) computes the common logarithm of x (the logarithm to
the base 10).

1.4 THE ASSIGNMENT STATEMENT (A)

You may wish to save the values of some intermediate computations, and
use those values later. You can do this by assigning the value of an
expression to a CPL variable.
For example, if you type the statement,

VALUE=23.4+15
then CPL computes the value of 23.4+15 and assigns that value to the
CPL variable VALUE. If you want to know the value of VALUE, you can
type

?VALUE
to which CPL will type out 38.4.

You can also use VALUE in another eXpression. For example, you can
type

?SQRT (VALUE+1)

and CPL will type out 6.2769419, the value of the square root of 39.4.

1.5 USE OF "COLLECT" STATEMENTS (A)

Up to this point, all statements which we have discussed have been in
"direct" or "desk calculator" mode.

There is another mode of typing in statements. A "collect" statement
is one which you type in preceded by a line number. Such statements
are not executed immediately; 1instead, they are saved as part of your
program, to be executed later with your whole program.

Suppose, for example, you wish to write a program which computes both
the area and hypotenuse of a right triangle with sides A and B and
types out these values. You can type in the 2 statements:

10 ?A*B/2
20 ?SQRT (A**2 + B**2)

INTRODUCTION TO CPL (A)

These two statements are typed in with line numbers (10 and 20). As a
result, they are not executed immediately; 1instead they are stored
with the program.

You can list your collected program by typing "LIST". If you type
"LIST", then CPL will type out the two statements which you have just
typed in with the line numbers 10 and 20.

Now, you can execute the program by doing something 1like the
following:

A=8.4

B=35.3

XEQ :
The first two lines assign the values 8.4 and 35.3 to A and B,
respectively. The third 1line, the "XEQ" statement, tells CPL to
execute the collected program. The two statements which are in the
collected are executed, and CPL types out the values

148.26 36.285672

The first of these figures, 148.26, is the area, computed by statement
10. The second, the hypotenuse, is computed by statement 20.

You can now type the following:
A=10.4
B=13.5
XEQ

and CPL will type out the wvalues
70.2 17.04142

Note that there is no longer any need to retype the the two formulas
in statements 10 and 20. All you have to do is change the values of A
and B and they type XEQ, and your program will be executed. This can
save you a lot of time if you wish to compute the same formulas over
and over with different values of the variables.

1.6 MODIFYING YOUR PROGRAM (A)

If you have followed the example given above, your collect program
contains two statements. Let us see how you can modify your program:

5 ?'THE VALUES OF A AND B ARE',A,B

6 PUT SKIP
10 ?'THE AREA AND HYPOTENUSE ARE', A*B/2
LIST

The first two statements have 1line number 5 and 6, so they are
inserted 1into vyour program before line 10. The third statement has
the line number 10, and so it will replace the statement in your
program with line number 10.

INTRODUCTION TO CPL (A)

The last line is the LIST statement. It will type out your program as
it stands currently:

5. ?'THE VALUE OF A AND B ARE',A,B;

6. PUT SKIP;

10. ?'THE AREA AND HYPOTENUSE ARE',A*B/2;
20. ?SQRT (A**24+B**2) ;

Now, if you type
A=5
B=12
XEQ
then CPL will type out the following:

THE VALUE OF A AND B ARE 5 12
THE AREA AND HYPOTENUSE ARE 30 13

You can entirely erase a statement by means of the ERASE statement.
For example, 1if vyou type "ERASE 20", then CPL will delete statement
20.

You can erase your entire program by typing "ERASE THRU ...".

1.7 STATEMENTS LABELS AND THE GOTO STATEMENT (A)

Suppose you want to type out a table of numbers and their square
roots. You could type in the following program:

10. I=0;

20. LOOP: I=I+1;
30. PUT SKIP;
40. ?2I,SQRT(I);
50. GO TO LOOP;

Here is what each of the statements in this program does:

Statement 10 is an assignment statement. It assigns the wvalue 0 to
the variable I.

Statement 20 is another assignment statement, which increases the
value of I by 1. It does this by computing the value of I+l and
assigning that value as the new value of I.

Statement 30 types out a carriage return.
Statement 40 types out the values of two quantities: I and SQRT(I).

Statement 50 is a GOTO statement. It indicates that <control 1is to
transfer to the statement which has the statement 1label LOOP.
Statement 20 is such a statement -- the assignment statement I=I+1 is
preceded by "LOOP:", The colon (:) tells CPL that the preceding
identifier is to be considered a statement label for that statement.
Therefore, after statement 50 is executed, CPL go back and re-execute
statement 20, and continue executing from there.

INTRODUCTION TO CPL (A)

If you type "XEQ", then you will be able to execute the above program.
However, you should be aware that it contains what is known as an
"infinite loop." An infinite loop is one which contains no «conditions
for stopping. The above program will go on and on forever,
incrementing I by 1 and typing out the square root of the new value of
I.

If you do execute the above program it will never stop by itself. If
you wish to stop it, then you must{ type Control-C.

1.8 THE IF STATEMENT (A)

The IF statement provides a means for conditional execution. You can
specify that if a certain thing is true, then CPL should do a certain
thing.

For example, let us replace statement 50 in the last example with the
statement

50. IF I<=10 THEN GOTO LOOP ;

This statement tells CPL to do the following: Check to see whether
the wvalue of I is less than or equal to 10. If it is, then GOTO the
statement with label LOOP. If it is not, then continue with the next
statement. (In this case there is no next statement, so execution
would stop.)

With this program modification, if you type XEQ, then the program will
compute the square roots of all the numbers between 1 and 10 and print
them out. Then the program will stop.

The program still contains a "loop," but it is not an "infinite loop."

1.9 THE DO STATEMENT (A)

Another way to write a program containing a loop 1is to wuse the DO
statement. For example, suppose you erase the above program and type
in the following program:

10. DO I=1 TC 20;

20. PUT SKIP »
30. ?I,SQRT(I)

40. END

The DO statement in statement 10 and the END statement in statement 40
enclose a group of statements known as a DO-group.

The DO statement in statement 10 says to do the following:

Execute all the statements in the DO-group. The first time you
execute them, let I = 1. The next time, let I=2., Continue executing
them until I=20, then transfer control to the statement following the
END statement. (In this case there is no such statement, so execution
will stop.)

INTRODUCTION TO CPL (A)

If you type XEQ, then the above program will print out a table of
square roots of all numbers between 1 and 20, and then stop.

The DO statement 1is a complex statement with many optional
specifications. A complete description, as well as further examples,
will be found in the chapter entitled '"THE DO AND END STATEMENTS."

CHAPTER 2

BASIC CPL LANGUAGE ELEMENTS (B)

2.1 THE CPL CHARACTER SET (B)

CPL recognizes all 128 ASCII characters. Not all of these, however,
may appear in CPL programs. The rules governing the use of characters
are explained below.

2.2 ALPHABETIC, NUMERIC AND ALPHAMERIC CHARACTERS (B)

CPL uses all the letters of the alphabet in upper and lower cases (A-Z
and a-z), and the digits (0-9). Thus there are 62 alphameric
(alphanumeric) characters,

2.3 SPECIAL CHARACTERS AND OPERATORS (B)

2.3.1 Special Characters (B)

The following are the special characters used by CpPL, with
descriptions:

CHAR MEANING

<blank> No meaning; separates elements of a statement
<tab> Treated like a blank except in character strings
"Equal to" or assignment operator

+ Plus operator

- Minus operator

* Asterisk or Multiplication operator
/ Slash or Division operator

(Left (or open) parenthesis

) Right (or close) parenthesis
’ Comma

. Decimal point or period

: Colon

: Semicolon

" "Not" operator

! "Or" operator

& "And" operator

> "Greater than" operator

< "Less than" operator

' Apostrophe or quotation mark
? Question mark

Break character

BASIC CPL LANGUAGE ELEMENTS (B)

2.3.2 Two-character Operators (B) N

The following operators require two characters:

OPERATOR MEANING

** Exponentiation operator

>= "Greater than or equal to" operator
<= "Less than or equal to" operator

= "Not equal" operator

~> "Not greater than" operator

“< "Not less than" operator

-> Pointer qualifier

1! Concatenation operator

/* Start of comment

*/ End of comment

2.4 CHARACTER-STRING-ONLY CHARACTERS (B)

All the characters not discussed in preceding paragraphs are 1illegal
in CPL programs, except inside character strings.

All ASCII characters may appear in character string constants in your
program with the following exceptions: The carriage return (octal 15)
and ilne feed (octal 12) may not appear in a character string
constant.

It was mentioned above that CPL will treat a "tab" character appearing
in your program as a blank. However, when you put a tab character
into a character string constant, CPL does not change it to a blank or
to a sequence of blanks; it remains as a single tab character.

2.5 IDENTIFIERS (B)

All variable names and keywords are identifiers.

An identifier contains between 1 and 31 characters, subject to the
following rules:

1. The first character must be a letter.

2. All other characters must be alphabetic, numeric, or the
break character ().

2.6 VARIABLE NAMES (B)

You may use any identifier as a variable name.

If you have an upper/lower case terminal, and if you use two variable
names which differ only 1in the case of the letters, then CPL will
treat them as different variable names. For example, CPL will treat
ABC, abc, AbC and aBc as four distinct variables.

BASIC CPL LANGUAGE ELEMENTS (B)

CPL has no reserved words. For example, you may use the identifier IF
in the IF statement, and, in the program (or even the same statement)
you may use it as a variable name. CPL will determine from the
context of the identifier whether you are referring to the keyword or
to the variable name.

There is one partial exception to this rule concerning reserved words.
The identifiers SYSIN and SYSPRINT are the default filenames used in
the GET and PUT statements. Although you could, if you wanted to, use
the DECLARE statement to give these identifiers attributes other than
FILE, the PUT and GET statements without any FILE option and the ?
statement would no longer work. For this reason, you are advised to
treat these identifiers as reserved.

2.7 KEYWORDS (B)

Keywords are also identifiers. 1In CPL, all keywords are less than 16
characters long, and contain only letters.

A keyword will be recognized regardless of whether the letters are

upper case, lower case, or mixed. Thus, DECLARE, DeClArE and dEcLaRe
are all the same keyword.

2.8 COMMENTS (B)

You may put comments into any CPL statement. The comment 1is 1legal
anywhere that a blank 1is 1legal. You begin the comment with the
characters "/*" and you end the comment with the characters "*/".

EXAMPLE: A=/*COMMENT*/A+1; 1is the same as A=A+l1;.

2.9 ABBREVIATIONS AND ALTERNATE KEYWORDS (B)

Some long keywords have abbreviations and alternate forms.
For example, EXECUTE may be typed XEQ, and DECLARE may be typed DCL.

A later chapter, "List of All CPL Abbreviations" provides a reference
on CPL abbreviations.

CHAPTER 3

PROGRAMMING ELEMENTS (B)

3.1 DIRECT AND COLLECT STATEMENTS (B)

A "direct" statement is entered without a line number. CPL executes
the statement immediately.

For example, the statement:

PUT LIST(A+B)
would be executed immediately.
You enter a "collect" statement with a 1line number. CPL will not
execute such a statement immediately; instead, CPL will store such a
statement with your stored program, to be executed later at your
command. For example, the statement

10. PUT LIST(A+B)

would be stored as your line 10, and executed later with your stored
program.

3.2 TERMINATING SEMICOLON (B)

All CPL statements end with a semicolon. If you ¢type in a line
without ending it with a semicolon, then CPL will insert one for you.

3.3 LINE NUMBERS (B)

"Collect" statements, described above, are indicated by means of a
line number.

A line number lies in the range 1 to 9999.99. It may have up to 2
fractional digits.

3.4 MULTIPLE STATEMENTS PER LINE (B)

You may type in several statements per line,separating them with
semicolons. For example, the statements

lo. I=5; J=10; PUT LIST(I+J)

will all be stored as your line 10.

PROGRAMMING ELEMENTS (B)

3.5 CONTINUING STATEMENTS ON ADDITIONAL LINES (B)

If a statement is too long to fit on one line, then you may continue
it on an additional 1line by the following method: If the last
character on the line is an ampersand ("&"), then CPL will allow you
to continue the statment on the following line.

The ampersand character is not considered to be part of the statement
text.

The ampersand may appear in the following positions:
1. Anywhere where a blank character can be used as a separator

2. Anywhere in a CHARACTER or BIT string constant

The ampersand may not split an identifier or a numeric constant.
Statements may be continued on several lines in this manner.
NOTE: This method of continuing statements on additional lines is not

standard PL/I. Also, it is a very ugly feature which I put in under
duress. Most users should avoid using it.

3.6 STATEMENT NUMBERS (B)

Sometimes it is necessary to refer specifically to one of several
statements appearing on the same line. A statement number provides
this capability.

The first statement on line 10.33 will have the statement number 10.33
or 10.33+0. The next statement will have the statement number
10.33+1, and so forth.

Note, in addition, that the THBN‘clause of an IF statement and the
on-unit clause of an ON statement have separate statement numbers.

For example, consider the line
10.33 I=5; IF J>I THEN I=6; ELSE GO TO Y; K=I+J;

In this line, the following are the individual statements:

10.33+0 I=5

10.33+1 IF J>I
10.33+2 THEN I=6
10.33+3 ELSE GO TO Y
10.33+4 K=I+J

PROGRAMMING ELEMENTS (B)

3.7 PLACEMENT OF COLLECT STATEMENTS (B)

The user may enter collect statements in any order he wishes. When he
does, they will be inserted into his program in the order specified by
his line numbers.

3.8 REPLACING COLLECT STATEMENTS (B)

If a user types in a statement with the same line number as a line
which already exists 1in his program, then the new line replaces the
old.

CHAPTER 4

PROGRAM MANIPULATION STATEMENTS (B)

You will use the statements 1in this chapter to manipulate your

program, as well as to perform other general functions associated with
the CPL system.

You use the LIST statement to list your program, the ERASE statement
to erase parts of your program, the NUMBER statement to cause CPL to
generate line numbers automatically, the SAVE statement to save your
program on disk, the LOAD and WEAVE statements to recall stored
programs from disk, the EXECUTE (XEQ) and CONTINUE statements to
execute your program, the BREAK and NOBREAK statements to control
debugging breakpoints, and the MONITOR statement to leave CPL and
return to the monitor.

4,1 THE LIST STATEMENT (DIRECT ONLY) (B)

You use the LIST statement to list your stored program.
Format: LIST [specificafion [,specification ...1]

where the optional "specification" has the format:

1. line-number

2. line-number THRU line-number
3. THRU line-number

4. line-number THRU ...

5. THRU ...

You use the unmodified LIST command to list your entire program. By
means of specifications containing line numbers, you can specify which
statements that you want listed. You may use the phrase "THRU ..." to
indicate that you wish to list to the end of the program.
For example, the statement

LIST 2, 3 THRU 5, 2000.55 THRU ...

will list statement 2, all statements in the range 3 to 5, and all
statements from 2000.55 to the end of the program.

4-1

PROGRAM MANIPULATION STATEMENTS (B)

If you specify a line number which does not exist in the program, then
CPL will 1list the statements immediately preceding and immediately
following the specified line number. Thus, for example, to find out
the last statement of your program, type "LIST 9999.99."

4.2 THE ERASE STATEMENT (DIRECT ONLY) (B)

The ERASE statement is used to erase parts of your stored program.
Format: ERASE specification [,specification]

where the specification has the same format as for the LIST statement.
(But note that here the specification is required.)

This statement is used to erase statements in the stored program.
ERASE is similar to LIST except that it deletes statements rather than
listing them. One other difference is that if an invalid line number
is specified, then ERASE will take no action other than typing an
error message.

You may not erase individual statements in a line. You must erase an
entire line.

4.3 THE NUMBER STATEMENT (DIRECT ONLY) (B)

Format: NUMBER line-number [BY increment]

When you are typing in a long program, you may find it annoying to
have to enter a line number at the beginning of each line. By means
of the NUMBER statement, you can cause CPL to generate line numbers
for you.

The "line-number" argument to the statement specifies the first 1line
number which CPL will generate. CPL will generate subsequent line
numbers by adding 10.00 to the preceding line number, unless you have
specified a different increment 1in the "BY" clause of the NUMBER
Statement. :

After you have entered the NUMBER statement, CPL will prompt you with
line numbers. Every statement entered will be in collect mode.

In order to leave automatic line-numbering mode, do the following:
After CPL has prompted you with a line number, type a single "#"
character, followed by a carriage return. The terminal will then
return to normal mode.

EgAMPLE: The statement NUMBER 3 BY 1.5; will cause CPL to generate
line numbers starting with 3 and continuing with 4.5, 6.0, 7.5, etc.

PROGRAM MANIPULATION STATEMENTS (B)

4.4 THE SAVE STATEMENT (DIRECT STATEMENT) (B)

Format: SAVE 'file-id'

This statement is used to save a stored program on disk. It 1is
necessary to specify only the filename in the file-id; the device
will default to DSK, and the filename extension will default to CPL.

If you wish, however, you may specify a full file-id, 1including a
device name, filename and extension, and project-programmer number.

You may edit this file on disk using any of the standard DEC editors,
and then use the LOAD command to reload the edited file into CPL.

EXAMPLE: The statement "SAVE 'DSKC:TX.XXX[10,4433]';" causes the
current collected program to be saved on disk in the specified file.

4.5 THE LOAD STATEMENT (DIRECT ONLY) (B)

FORMAT: LOAD 'file-id' [NUMBER line# [BY incr]]

This statement is used to load the specified program from disk into
CPL. Default conventions for the file-id are the same as in the SAVE
statement.

The arguments to the NUMBER option, if specified, are the same as the
arguments to the NUMBER statement, described above. The NUMBER option
specifies how the statements in the file are to be numbered.

If the statements in the file already have 1line numbers, then the
NUMBER option need not be used; 1if it is used, then the generated
line numbers supersede the 1line numbers in the file. If the
statements in the file do not have line numbers, then the NUMBER
option must be used.

Before executing the LOAD statement, CPL erases all storage and
program variables in the old program, and types out the message "ALL
STORAGE RESET" to remind you that your old variables are no longer
defined.

4.6 THE WEAVE STATEMENT (DIRECT ONLY) (B)

Format: WEAVE 'file-id' [NUMBER line [BY incr]]

You use this statement when you wish to combine two separate files
into one program. The WEAVE statement is like the LOAD statement,
except that CPL does not erase your old program before loading the new
one.

Usually you will use the NUMBER option with the WEAVE statement, since
that 1is the only way you can control where, in the existing program,
CPL will place the new program.

For example, if your existing program runs through statement 2000,
then you may load the new program with "WEAVE 'name' NUMBER 2010" to
load the new program starting at line 2010.

PROGRAM MANIPULATION STATEMENTS (B)

4.7 THE EXECUTE STATEMENT (DIRECT ONLY) (B)

Abbrev: XEQ for EXECUTE
Format: XEQ [FROM statement-number]
This statement causes your collected program to be executed.

If only XEQ is typed, then execution begins with the first statement
of the program. If the FROM option is used, then execution begins
with the specified statement number. :

When the FROM option is used to specify a specific statement number,
and that statement happens to have a breakpoint set, then the
breakpoint will not be taken for the first execution of that
statement. Of course, 1if control returns to that statement, then a
breakpoint will occur.

Prior to beginning execution of your program, XEQ will perform some
initialization functions which are usually meaningful only if you are
restarting a program. These initialization functions are:

1. All BEGIN and PROCEDURE blocks are terminated.

2. All files are closed.

3. All storage allocated by ALLOCATE statement for CONTROLLED

and BASED identifiers 1is released. All POINTER variables
pointing to such storage are made invalid.

If you wish to keep CPL from performing these initialization
functions, then use the CONTINUE statement.

4.8 THE CONTINUE STATEMENT (DIRECT ONLY) (B)

Abbrev: CONT for CONTINUE
Format: CONTINUE [FROM statement-number]

If your program has stopped executing due to an error or to a
breakpoint, then you may make the changes you desire and continue
executing the program by using the "CONTINUE" statement.

If you specify no FROM clause with the CONTINUE statement, the CPL
will restart execution with the statement which contained the error or
on which the breakpoint occurred. If you wish to continue from a
different statement, you must specify it with the FROM clause.

If_you erase or replace the statement which contained the error or
which caused the breakpoint, then you must use a FROM clause with the
CONTINUE statement.

PROGRAM MANIPULATION STATEMENTS (B)

4.9 THE BREAK STATEMENT (DIRECT ONLY) (B)

Format: BREAK statement-number [,statement-number ...]

This statement specifies a list of one or more statements to be
flagged as having "breakpoints." If control passes to any such
statement, then CPL will not execute the statement; instead, CPL will
type a "breakpoint" message and pass control to you. You can then
examine values of variables, set values, and even modify your program.

You may continue execution of your program from the by typing
CONTINUE.

If you ERASE or replace a line in your program, then all breakpoints
for statements on that line are removed.

4.10 THE NOBREAK STATEMENT (DIRECT ONLY) (B)

Format: NOBREAK [statement-number [,statement-number ...]]
This statement removes breakpoints from specified statements.

If no statement numbers are specified, then all breakpoints in the
program are removed.

4.11 THE MONITOR STATEMENT (DIRECT ONLY) (B)

Abbrev: MON for MONITOR
Format: MONITOR

Execution of this statement causes CPL to relinquish control and
return you to the monitor level.

To continue from where you left off, you may type the monitor command
"CONTINUE". :

CHAPTER 5

THE DECLARE AND DEFAULT STATEMENTS (B-D)

This chapter summarizes the formats of these two statements. The
meanings of the various data types and attributes are given in later
chapters. Therefore, this chapter can be skipped or skimmed and
referred to later.

5.1 THE DECLARE STATEMENT (COLLECT ONLY) (B-D)

Abbrev: DCL for DECLARE

The following is the basic format of the DECLARE statement. For the
more sophisticated formats, see the 1later section, "Multiple
Declarations and Attribute Factoring."

Format: DECLARE identifier-name [attribute-list] ;
or DECLARE id-name (dimension-list) [attribute-list];

This statement is used to specify a list of attributes or properties
that are to be associated with the variable. The attributes specify
whether the variable is to be integer or floating point, a character
or bit string, an array or scalar, and how and when storage for the
variable is allocated.

5.1.1 Data Type Attributes (B)

The following attributes are used to specify data types:

1. FIXED -- to specify that the variable 1is an 1integer. (In
PL/I terminology, this specifies that the variable is
BINARY (35) FIXED.)

2. FLOAT -- to specify that the variable 1is a floating point
number . (In PL/I terminology, this is fully expressed as
BINARY (27) FLOAT.)

3. CHARACTER (length) [VARYING] =-- to specify that the wvariable
is a character string of the specified (maximum) length.

4, BIT (length) [VARYING] -~ to specify that the variable is a
bit string of the specified (maximum) length.

THE DECLARE AND DEFAULT STATEMENTS (B-D)

5. POINTER -- to specify that the variable is have as a value
the address of a data item. This is a "non-computational"
data type, in that arithmetic operations cannot be performed
on it.

Examples:

10. DECLARE A FIXED ;
20. DECLARE B FLOAT ;
30. DECLARE C CHARACTER(15);
40. DECLARE D BIT(5) VARYING;

5.1.2 ARRAYS (B)

Arrays are specified by enclosing the 1list of subscript ranges in
parentheses following the identifier name.

Examples:

10. DECLARE A (10) ;

20. DECLARE B(5,6);

30. DECLARE C(0:10) ;

40. DECLARE D(10) FIXED ;

50. DECLARE E(5,5) CHARACTER (10) VARYING ;

The use of arrays is discussed in a later chapter.

5.1.3 Alternate Method For Specifying Arrays (C)

Instead of placing the 1list of dimension bounds 1in parentheses
following the identifier name, it is possible to specify the dimension
list by means of the attribute DIMENSION (dimension-list).

For example, the following two statements are equivalent:

10. DECLARE A(5,0:6) BIT(10) ;
10. DECLARE A BIT(10) DIMENSION(5,0:6) ;

5.1.4 Storage Class Attributes (D)

The following attributes are used to specify the storage class:

1. AUTOMATIC -- this attribute indicates that storage is to be
allocated when the block in which the declaration appears is
invoked.

2. STATIC -- this attribute indicates that storage 1is to be

allocated immediately when the declaration is typed in on the
terminal.

3. CONTROLLED -- this attribute indicates that allocation 1is
under explicit control of the programmer.

4. BASED -- this attribute specifies that each reference to the
identifier will be accompanied by a POINTER qualifier to
specify the address of the storage area.

THE DECLARE AND DEFAULT STATEMENTS (B-D)

5. PARAMETER -- this attribute specifies that the declaration
lies 1inside a PROCEDURE block, and that the identifier also
appears in the parameter list of the PROCEDURE statement.
(It is not necessary to specify PARAMETER, unless you have
specified "*" for a string length or an array bound.)

5.1.5 Other Attributes (D)

1. BUILTIN -- this attribute indicates that CPL should consider
the identifier to be one of 1its built-in functions or
pseudo-variables. Such a declaration is legal only if the
identifier 1is a real CPL built-in function name. Normally
you would specifically declare an identifier to have the
BUILTIN attribute only if you wish to make this usage clear
to another person reading your program. See the chapter on
built-in functions for further details on recognition.

2. NONVARYING -- this attribute may be specified with either
CHARACTER or BIT. It 1is the opposite of VARYING, and its
specification has no effect since it is the default.

3. The file attributes are described 1in the chapter on
input/output to arbitrary files. These attributes are:
INPUT, OUTPUT, STREAM, RECORD, PRINT and and the ENVIRONMENT
attributes VFORM, APPEND and NOPAGE.

5.1.6 Default Attributes (B)

If a variable is referenced without appearing in a DECLARE statement,
then it will be given the default attributes FLOAT and AUTOMATIC.

(?he identifiers SYSIN and SYSPRINT, which are used in conjunction
with the GET and PUT statements, are exceptions to the above rule.)

If a variable aﬁpears in a DECLARE statement, but no data type is
specified, then it will be FLOAT. If it appears 1in a DECLARE
statement but no storage class is specified, then it will be STATIC.

These defaults can be changed by means of the DEFAULT statement.

5.1.7 Multiple Declarations And Attribute Factoring (C)

CPL permits many variables to be declared in the same DECLARE
statement. This 1is done by separating the declarations with commas,
as in the following statement:

10. DECLARE A(10), B CHAR(5) ;

THE DECLARE AND DEFAULT STATEMENTS (B-D)
It is also possible to "factor" out attributes to simplify the DECLARE
statement. For example,
10. DECLARE (A,B,C) (10) BIT(1l) ;
is the same as
10. DECLARE A(10) BIT(l), B(10) BIT(1l), C(10) BIT(1l) ;
Similarly, these two statements have the same effect:

10. DECLARE (A(10), B VAR) CHAR(5) ;
10. DECLARE A(10) CHAR(5), B VAR CHAR(5) ;

Finally, attributes can be factored to any level. For example,
10. DECLARE ((A FIXED, B) (10), (C CHAR(5),D BIT(3))VAR)STATIC ;
has the same effect as

10. DECLARE A(10) FIXED STATIC, B(10) STATIC,
C CHAR(5) VAR STATIC, D BIT(3) VAR STATIC;

5.2 THE DEFAULT STATEMENT (COLLECT ONLY) (D)

Abbrev: DFT for DEFAULT

Format: DEFAULT (range-spec) default-spec ;

where the "range-spec" specifies a group of letters of the alphabet,
and default-spec specifies the default attributes. They are described
in more detail in the following paragraphs.

This specifies that all 1identifiers beginning with one of the
specified letters have the default attributes.

5.2.1 The Range-spec (D)

The range-spec specifies a letter or group of letters to which the
defaults apply. The specification RANGE (letter) gives a single letter
for which the defaults will apply. The specification
RANGE (letter:letter) specifies a range of letters for which the
defaults will apply. The specification RANGE(*) indicates that the
default applies to all identifiers.

For example, RANGE(I) indicates that the defaults will apply to all
identifiers beginning with the 1letter I, while the specification
RANGE (A:D) indicates that the defaults apply to all identifiers
beginning with the letters A through D.

It is possible to combine such range specifications by separating them
with ! (the "or" symbol). For example, the specification

RANGE (A:D) ! RANGE (M) ! RANGE (2)

THE DECLARE AND DEFAULT STATEMENTS (B-D)

indicates that the defaults will apply to all identifiers beginning
with the letters A, B, C, D, M and Z.

5.2.2 The Default-spec (D)

This part of the DEFAULT statement specifies the default attributes
that will apply to the identifiers beginning with the specified
letters. :

The default-spec may contain a data type attribute or a storage class
attribute or both. The data type attribute must be either FIXED or
FLOAT, and the storage <c¢lass attribute must be either STATIC or
AUTOMATIC.

5.2.3 Conflicting DEFAULT Statements (D)

If two default statements in a program indicate conflicting attributes
for the same letter of the alphabet, then the one later in the program
takes precedence.

5.2.4 Default Rules In Absence Of DEFAULT Statement (D)

As stated above in the discussion of the DECLARE statement, each CPL
program begins with the following implicit DEFAULT statement:

DEFAULT (RANGE(A:Z)) FLOAT,AUTOMATIC ;

Any DEFAULT statement which you enter will take precedence over this
implicit statement.

5.2.5 Examples (D)

1. The I-N rule

Many programmers are familiar with the rule that all variables

beginning with the letters I-N are FIXED, while all others are FLOAT.

This rules holds in all FORTRAN implementations, as well as in some

IBM PL/I implementations.

You may effect this rule in CPL by inserting the DEFAULT statement
DEFAULT (RANGE(I:N)) FLOAT ;

at the beginning of your program.
2. All Variables STATIC

You may be able to save some execution time in your program by making
the default for all variables STATIC rather than AUTOMATIC. This is
done by means of the statement:

DEFAULT (RANGE(*)) STATIC ;

THE DECLARE AND DEFAULT STATEMENTS (B-D)

This may save some execution time in your program if your program
contains a number of declarations inside BEGIN or PROCEDURE blocks
which are frequently invoked. This is true because it 1is necessary
for CPL to allocate AUTOMATIC storage each time the block each time
the block is invoked, but STATIC storage is allocated only once.

5.2.6 Overriding Defaults With DECLARE Statement (D)

Of course, the rules specified by a DEFAULT statement are only
defaults. If a DECLARE statement specifies a data type or a storage
class, then it overrides the data type or storage class specified by a
DEFAULT statement.

CHAPTER 6

DATA TYPES (B-D)

Each CPL variable has a "data type." The data type simply specifies
what kinds of values the variable can take on. For example, a FIXED
variable can take on integer values. A FLOAT variable can take on
real numbers as values. A CHARACTER variable can take on strings of
characters as values. A BIT variable can take on strings of bits as
values. A POINTER variable can take on addresses as values.

Unless you specify otherwise, all CPL variables have the FLOAT data
type. You may use a DECLARE statement to specify a different data
type for a specific identifier, or you may use the DEFAULT to change
the default from FLOAT to FIXED in all or selected cases, These
statements are described in a preceding chapter.

6.1 "FIXED" DATA TYPE (B)

A variable having the attribute FIXED can have only integers as
values. 1Its range of values is from -34359738368 to 34359738367.

If a non-integer value is assigned to a FIXED variable, then the value
is first "truncated” to an integer value. This means that any
fractional part is removed.

For example, the value 3.7 would be truncated to the value 3 before

assignment to a FIXED variable. Similarly, the value -20.5 would be
truncated to ~-20. Note that no rounding takes place.

6.2 "FLOAT" DATA TYPE (B)

A variable having the FLOAT data type can assume fractional values.

You represent CPL floating point constants by a form of scientific
notation which specifies a mantissa and an "exponent" (power of 10).
For example, 23.87E5 stands for the value 2387000 (since the "5" is a
power of 10 to be multiplied by 23.87), and 142E-8 stands for the
value .00000142 (where here the power of 10 is -8).

FLOAT values may be, in absolute value, as high as 1.7014118E+38.

DATA TYPES (B-D)

6.3 "CHARACTER" DATA TYPE (C)

Abbrev: CHAR for CHARACTER, VAR for VARYING

A variable having this data type does not take numeric values.
Instead, the value of such a variable will be a character string -- a
string of ASCII characters.

In CPL, character string constants are enclosed in single quotes. An
example is 'CHARACTER-STRING-VALUE'. If a character string constant
is to contain the character "single-quote", it is represented by two
single quotes, as in the example 'DON''T GO'.

You may precede a character string constant by a parenthesized
integer. This 1integer is called a "repetition factor" and specifies
that the character string constant is to be repeated that number of
times. For example, the character string constant (5)'AB' is the same
as 'ABABABABAB'.

when a character string variable is declared in a DECLARE statement,
you must make two choices:

1. You must choose the length of the character string values the
string can assume.

2. You must decide whether the variable is to have VARYING or
NONVARYING length.

For example,
10. DECLARE A CHAR(20), V CHAR(30) VARYING ;

specifies that A and V are to be character string variables. The
variable A is NONVARYING (the default), and its length is 20, meaning
that the value of A will always be a string of exactly 20 characters.

The variable V in the above example is VARYING and has a length of 30.
In this case, the length should be interpreted as a maximum length --
V can equal a string of characters of length 30 or less. This 1length
can even be zero, 1in which case the wvalue 1is called the "null
character string.”

6.4 "BIT" DATA TYPE (C)

In many ways, the BIT data type is similar to the CHARACTER data type.
Variables with the BIT data type take as values strings of bits --
that is, each element of the string must be a 0 or 1.

In CPL, a BIT string constant is written by enclosing a string of (Q's
and 1l's 1in single quotes, followed by the letter "B". For example,
the BIT string constant '1101001'B represents a string of 7 bits.

Notice that that BIT strings are represented by numbers in the binary
number system. CPL permits you to specify the same bit strings by
means of numbers in the base 4, octal, and hexadecimal number systems.
To specify one of these systems, follow the guoted digit string in the
base 4, octal or hexadecimal number base with B2, B3 or B4,
respectively.

DATA TYPES (B-D)

For example, the string 112322'B2 is the same bit string as
'0110111010'B, '37402'B3 is the same as '011111100000010'B, and
'1ABF2C'B4 is the same as '000110101011111100101100°'B.

You may precede a bit string constant by a parenthesized integer.
This 1integer 1is called a "repetition factor" and specifies that the
bit string constant is to be repeated that number of times. For
example, the bit string constant (4)'l1011'B is the same as
'1011101110111011°'B.

As in the case of CHARACTER strings, you must make two <choices when
declaring BIT string variables:

1. The number of bits (length) of the BIT string variable, and
2. Whether the length will be VARYING or NONVARYING.
If the BIT string is NONVARYING (the default), then it will always
contain the number of bits specified by the length. 1If it is VARYING,

then it will contain at most the number of bits specified 1in the
length.

6.5 "POINTER" DATA TYPE (D)

This is a "non-computational" data type. It is described in the
chapter entitled "BASED storage and POINTERs."

CHAPTER 7

THE ASSIGNMENT STATEMENT AND CPL EXPRESSIONS (B-C)

7.1 THE ASSIGNMENT STATEMENT (DIRECT OR COLLECT) (B)

Format: variable = expression ;
or variable,variable [,variable ...] = expression ;

This statement causes the expression on the right-hand side of the

equal sign to be evaluated, and the result assigned to the variable or
list of variables appearing on the left-hand side of the equal sign.

7.2 CPL EXPRESSIONS (B)

Expressions are combinations of constants, variables and operators
which specify that CPL is to make certain computations. For example,
the assignment statement:

A=B+C-5 ;

causes CPL to subtract the constant 5 from the sum of the variables B
and C, and store the result into the variable A.

7.3 DATA CONVERSIONS (C)

When an expression is being evaluated, it may be that an operation
cannot be performed since the guantities being operated upon are the
wrong data type. For example, the expression A+B cannot be directly
computed if the variables A and B happen to be CHARACTER strings.

Whenever such an event occurs then CPL automatically converts the
operands to the correct data types. These conversions are additional
operations that take place automatically before the desired operation
can take place.

For example, if A+B is to be computed, where A and B are CHARACTER
string variables, then each of the CHARACTER strings must be converted
to FIXED before the addition can take place.

These conversions take place according to specific rules and with
specific restrictions, as described in a later chapter, entitled
"Conversions among Computational Data Types." '

THE ASSIGNMENT STATEMENT AND CPL EXPRESSIONS (B-C)

7.4 CPL EXPRESSION OPERATORS (ﬁ—C)

This sections lists all the CPL operators. It tells what each
operator does, what data types are required by each operator, and how
conversions are made, if necessary.

7.4.1 +, - And * (Addition, Subtraction And Multiplication) (B)

Each of these operators takes two operands -- two numbers to be added,
subtracted or multiplied. Either both operands must be FIXED, in
which case the result of the operation is FIXED, or both operands must
be FLOAT, in which case the result of the operation is FLOAT.

If you specify operands which are not both FIXED or both FLOAT, then
CPL must convert one or both operands. The rules are as follows: If
either one of the operands is FLOAT, then CPL will convert the other
to FLOAT; otherwise, CPL will convert both operands to FIXED, unless
they are already FIXED.

7.4.2 / (Division) (B)

This operation follows the same rules as addition, subtraction and
multiplication, with the following exception: At least one of the
operands must be FLOAT (so that the other operand will also be
converted to FLOAT).

It is illegal in CPL to divide one FIXED value by aonther. If you
wish to divide two FIXED values, then you can do one of the following:

1. You may force conversion of the numerator (or denominator) to
FLOAT, so that CPL will perform floating point division.
(For example, instead of specifying 1I/J, you specify
(OEO+I)/J.) You may then assign the floating point result to
a FIXED variable to provide truncation.

2. You may use the DIVI or DIVF built-in functions. DIVI(I,J)
will return a truncated FIXED quotient, while DIVF(I,J) will
return the FLOAT quotient.

WARNING: The functions DIVI and DIVF are not in the ANSI
PL/I standard, and so will not be available in other PL/I
implementations.

NOTE: Full PL/I, as specified by the ANSI PL/I standard, permits
FIXED division, but specifies it in such a way that it cannot be
implemented correctly in any system which does not support scaled
FIXED data types. Since CPL <could not support FIXED division
correctly, we decided not to permit it at all. The DIVI and DIVF
functions represent a kind of compromise. It is also worth noting
that FIXED division in full PL/I is very error-prone in use, and can
lead to unexpected errors. The most famous example is that the simple
statement, "A=25 + 1/3;" will, according to the standard, cause your
program to abort with a FIXEDOVERFLOW error interrupt.

THE ASSIGNMENT STATEMENT AND CPL EXPRESSIONS (B-C)

7.4.3 ** (Exponentiation) (B)

This operator takes two operands. The first operand is raised to the
power of the second operand. The result is always FLOAT.

For example, 2**3 returns the value 8§, while X**,1 returns the 10'th
root of X.

7.4.4 Comparison Operators (B)

There are eight comparison operators, as follows:
Operator Meaning

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

“< No less than (same as >=)

> Not greater than (same as <=)
= Equal to

= Not equal to

Each of these comparison operators takes two operands. The operands
may be of any computational data type, but they must both be of the
same data type. (Conversion rules are described below, in case data
types are different.)

The operands are compared according to the specified comparison
operator, and a BIT(l) value is returned. If the comparison yields
"true," then the value 'l'B is returned. If the comparison yields
"false," then the value '0'B is returned.

7.4.4.1 Conversions For Comparisons (C) - The comparison operators
require that both operands be of the same data type. If they are not
of the same data type, then the one of the "lower" data type is
converted to the "higher" data type. The computational data types, in
order from "highest" to "lowest," are as follows:

1. FLOAT

2. FIXED

3. CHARACTER
4. BIT

For example, if the two operands are FLOAT and CHARACTER, then CPL
converts the CHARACTER operand to FLOAT.

THE ASSIGNMENT STATEMENT AND CPL EXPRESSIONS (B-C)

7.4.4.2 Character String Comparisons (C) - When CPL compares two
character strings it compares them on a character-by-character basis
as follows: First, if the strings are of unequal 1length, then CPL
pads the shorter one with blanks on the end until it is as long as the
longer one. Then CPL takes characters from the first string and
compares them, one by one, with corresponding characters from the
second string, until two corresponding characters are found to be
unequal. CPL compares these two characters according to the standard
ASCII collating sequence. The string which contains the greater
character, according to this c¢ollating sequence, 1is the greater
character string. :

If CPL finds no unequal corresponding characters, then the two
character strings are equal.

EXAMPLES:

1. 'XYZ2' is equal to the character string 'XYZ .

2. 'ABCDZ222722Z2Z' is smaller than 'ABCEAAAA'.

7.4.4.3 BIT String Comparisons (C) - The method of comparison is
similar to that for CHARACTER strings. CPL pads the shorter string by
adding 0's to the end of it, until it is as long as the longer string.
Then CPL compares the strings on a bit-by-bit basis, until two unequal
corresponding bits are found. When these bits are found, then the BIT
string containing the 0-bit is considered smaller than the BIT string
containing the 1l-bit.

7.4.4.4 POINTER Comparisons (D) - These are described in detail in
the chapter on BASED storage and POINTERs. POINTERsS can be tested
only for equality or inequality (= or "=).

7.4.5 + And -~ (Prefix Plus And Minus) (B)

These two operators take a single operand. the prefix minus operator
negates a FIXED or FLOAT operand. The prefix plus operator has no
effect on a FIXED or FLOAT operand.

If the operand of the prefix plus or minus operator is CHARACTER or
BIT, then it is converted to FIXED.

7.4.6 & And ! (Logical And and Or) (B)

These two operators require BIT operands. The shorter of the two
operands is padded with zeros to the length of the other operand. The
resulting BIT string is the same length as the operands, and is formed
by taking the logical And or Or of corresponding bits.

EXAMPLE: '1101'B&'0110111'B yields the result '1000000'B, while
'1101'B!'0110111'B yields '1111111°'B.

THE ASSIGNMENT STATEMENT AND CPL EXPRESSIONS (B-C)

7.4.7 ~ (Logical Not Operator) (B)

This operator takes a single BIT string operand. The resulting BIT
string is the same length as the operand, with each 0-bit changed to a
l-bit and each l-bit changed to a 0-bit.

7.4.8 1! (String Concatenation Operator) (C)

This operator reguires two operands, both of which must be either
CHARACTER strings or BIT strings. The two strings are combined to
form one long string consisting of all characters or bits of both
strings. :

If both operands are BIT strings, then BIT string concatenation takes
place; otherwise, both operands are converted to CHARACTER, if
necessary, and CHARACTER string concatenation takes place.

EXAMPLE: 'ABC'!!'12345XYZ"' yields the result 'ABC12345XYZ’'.

7.5 PRECEDENCE OF OPERATORS (B)

You may use parentheses to specify any operator order that you desire.
For example, in the expression A*(B+C), CPL will perform the addition
before the multiplication.

However, whenever you do not use parentheses to specify an operator
priority, then CPL evaluates the operators according to a priority
algorithm. The operators are arranged 1in the following priority
groups, from highest to lowest:

1. °, **, prefix +, prefix -
2. *, /
3. Infix +, infix -

4. 11

-~ ~ -)

5. All comparison operators (<, >, >=, <=, ">, "¢, =, °=

Unless you override the priorities with parentheses, operators of
higher priority are performed before operators of a lower priority.
Within each group, operators have equal priority. Operations from the
same group are performed in the sequence in which they appear in a
PL/I statement -- that 1is, from left to right =-- except that
operations in Group 1 are performed from right to left.

EXAMPLE: The numbers show the order in which the operations are
performed in the following expression:

A< -B+(C/(D*E/F))**G ! H"=I & J>K
756 3 12 4 11 8 10 9

THE ASSIGNMENT STATEMENT AND CPL EXPRESSIONS (B-C)

In general, an operation can be performed only after its operands have
been evaluated.

When in doubt, parenthesize!

CHAPTER 8

LABELS AND "GO TO" AND "IF" STATEMENTS (B)

As a general rule, when CPL finishes executing one statement in a
program, it moves to the next statement. Some statements, however,
modify this normal flow. The GO TO and 1IF statements are such
statements, as is the DO statement discussed in the next chapter.

8.1 STATEMENT LABELS (COLLECT ONLY) (B)

Format: ident: statement;

The identifier "ident" is a statement label for the "statement". Any
statement except DECLARE and DEFAULT may be labeled. The PROCEDURE
statement must be labeled.

A statement may have more than one statement label. For example, in
the line: .

120. LABl: LAB2: STQP; XY¥Z: 1I=5;

the STOP statement has two statement labels, LAB1 and LAB2, and the
assignment statement has one label, XYZ.

A PROCEDURE statement may have only one label.

8.2 THE GO TO STATEMENT (COLLECT ONLY) (B)

Format: GO TO label;
or GOTO 1label;

Here "label" is a statement label which appears elsewhere in the same
program.

When the GO TO statement is executed, it causes control to pass to the
statement with the specified statement label.

8.3 THE IF STATEMENT (COLLECT ONLY) (B)

Basic format: IF expr THEN stmtl; ELSE stmt2;

LABELS AND "GO TO" AND "IF" STATEMENTS (B)

CPL evaluates the logical expression "expr." If the result 1is true,
then CPL executes '"stmtl"; if the result is false, then "stmt2" is
executed.

In the IF statement, you will probably be using the comparison and
logical operators. Typical logical expressions are "A>B" and
"A>2&B=3". These express relationships among variables whose values
have already been computed, and return what may be called a "truth
value.” (A truth value is really a BIT(1l) value. BIT(l) values will
be discussed below.) ’

For example, the statement

IF A>B THEN GO TO XYZ; ELSE GO TO UVW;
causes CPL to compare the values of A and B. If A 1is larger, then
control transfers to the statement labeled XYZ2; if A is less than or
equal to B, then control transfers to the statement labeled UVW.
Any statement may be used in the THEN or ELSE clauses. For example,
suppose you wish to add to I the maximum of J and K. You can do it
with the statement

I=I+MAX(J,K);
but you can also do it with the statement

IF J>K THEN I=I+J; ELSE I=I+K;
Note that no matter which of the alternatives is taken, execution will

continue with the statement following the ELSE clause in the program.
(This is usually the statement on the next line.)

8.3.1 Omitting The ELSE Clause (B)

If desired, you may omit the ELSE clause from your IF statement. For
example, suppose your program executes

IF A>B & C=2 THEN GO TO LABl;
If A is greater than B and C equals 2 then control will pass to

statement LABl; otherwise, control will pass to the statement
following the IF statement.

8.3.2 Separating The ELSE Clause (B)

The ELSE clause need not appear on the same line as the IF statement.

8.3.3 Nested IF Statements (B)

The THEN or ELSE clause of an IF statement may itself be another IF
statement. An example is the following group of statements:

LABELS AND "GO TO" AND "IF" STATEMENTS (B)

IF A>B THEN IF C=5 THEN GO TO XYZ;
ELSE GO TO ABC;
ELSE IF A=B THEN IF C=5 THEN GO TO UVW;
ELSE GO TO MNO;

When matching up ELSE clauses to IF statements, CPL will match up an
ELSE clause with the last unmatched IF statement.

8.3.4 DO/END Groups As THEN/ELSE Clauses (B)

If you wish the THEN or ELSE clause of an IF statement to consist of
several statements, you may use a DO/END group. DO statements will be
discussed in detail in a later chapter; here we will 1illustrate a
simple example of their usage.

The general format is:

IF expr THEN DO; ...; END;
ELSE DO; ...; END;

The two occurrences of "..." in the above format stand for any dgroup
of statements. The first group will be executed if the "expr" is
true, and the second group will be executed if the "expr" is false.

Of course, all of the above statements can be split up onto separate
lines.

8.3.5 BIT Values In The IF Expression (D)

Recall that the format of the IF statement is "IF expr THEN stmtl;
ELSE stmt2;". "Expr" 1is a logical expression which is, in all the
examples, an expression with a BIT(1l) value -- that is, an expression
with a value of '0'B (for "false") or 'l'B (for "true").

Any BIT expression can be used as the first argument to the IF
statement. If the BIT string contains any 1l-bit, then the THEN clause
will be taken. But if the BIT string is the null BIT string, or if it
contains only 0O-bits, then the ELSE clause, if any, will be taken.

CHAPTER 9

THE DO AND END STATEMENTS (B-D)

The DO and END statements enclose and identify a group of statements
which you wish to think of as a single unit. The DO and END
statements also provide a means for you to specify that this group of
statements is to be executed more than once (iteratively).

Terminology: The term "DO-group" will refer, throughout this manual,

to a DO statement and 1its corresponding END statement and to the
statements they enclose.

9.1 THE NON-ITERATIVE DO~GROUP (COLLECT ONLY) (B)

Format: DO; ... END;

This form of the DO statement is generally useful only to specify a
group of statements to be used as a THEN clause or ELSE clause of an
IF statement. This usage has been discussed in the description of the
IF statement.

This simple form of the DO statement specifies that the group of
statements is to be executed once.

9.2 THE WHILE-ONLY DO GROUP (COLLECT ONLY) (B)

Format: DO WHILE (exp); ...; END;

The expression is a "logical expression" with the same properties as
the expression which serves as the first argument to the IF statement.
The expression is evaluated. If its value is "false," then the group
of statements 1is not executed at all; 1instead, control transfers
immediately to the statement following the END statement.

If the value of the expression is "true," then the group of statements
is executed. After the group has executed, the expression in the DO
statement is re-computed. If it 1is now "false," then control
transfers to the statement following the END statement. But if it is
still "true," then the group of statements 1is executed again. The
group of statements is executed over and over until evaluation of the
expression in the WHILE clause yields a value of "false."

EXAMPLE: Suppose file DSK:F.DT contains input values, and we wish to
find the first input value which is greater than 100. We can use the
following statements:

THE DO AND END STATEMENTS (B-D)

10. DECLARE F FILE;

20. I=0;

30. DO WHILE (I<=100);
40. GET FILE(F) LIST(I);
50. END;

Here there is only a single GET statement in the DO-group. This
statement will be executed over and over until it yields a value of I
which exceeds 100. (The GET statement 1s described in another
chapter. To understand this example you need only know that statement
40 above will read a single value from file F and place its value into
the variable I.)

9.3 THE DO-GROUP WITH DO VARIABLE (COLLECT ONLY) (B-C)

Format: DO vble = spec [,spec ...]
- END;

The "vble" is a scalar variable, or a subscripted array element, which
is to take on specified values as the statements in the DO-group are
repetitively executed. The variable is called the "DO-group variable”
or "DO-loop variable.”

The "spec" is a specification which defines what values the DO-group
variable is to be assigned, and how many times the DO-group of
statements is to be executed.

Before proceeding to the general definition of this specification, let
us consider the following:

EXAMPLE: The following program will print out a table of the square
roots of all numbers from 1 to 50.

10. DECLARE A FLOAT;
20. DO I =1 TO 50;

30. A = SQRT(I);

40. PUT SKIP LIST(I,A);
50. END;

Statement 20. of the above program requests the following: Execute
all statements in the DO group 50 times. During the first iteration,
I will have the value 1. For each subseguent iteration, the value of
I will be incremented by one, so that the DO-group will be executed
with I having the wvalues 2, 3, 4, and so forth. On the last
iteration, I will equal 50. It will then be incremented once more --
to 51. As soon as the program finds this value greater than the TO
value (50), it will end execution of the DO group and will pass
control to the statement after END.

The portion "1 TO 50" of statement 20 is a "spec," which provides the
following information:

1. The values which the DO-group variable will assume: 1, 2, 3,
..., 50, and, by implication, the number of times that the
DO-group will be executed.

2. A condition for determining whether the DO-group should be
executed one more time. In this case, the test is whether
the value of I has exceeded 50.

THE DO AND END STATEMENTS (B-D)

Sometimes, the "spec" will specify the first of the above, but not the

second.

In that case, the DO-group will never terminate except by

"abnormal" means. (Abnormal DO-group terminations are discussed in a
later section, "Normal and Abnormal Termination of DO Groups.")

9.3.1

The Format Of The "spec" (B)

The format of a "spec" is the following:

initial-expression [iteration-part] [WHILE (exp)]

where the optional "iteration-part" has one of the following formats:

1'

BY expression

The DO-group variable assumes the "initial-expression" value
for the first iteration of the group. For each subsequent
iteration, the value of the variable is incremented by the
value of the "by-expression" (as the expression following the
BY keyword is called). If the value of the by-expression 1is
negative, then the DO-variable will be decremented rather
than incremented.

This form of the "spec" provides no means for normal
termination (unless a WHILE clause is present -- this will be
discussed later).

BY expression TO expression

For the first iteration of the DO~group, the variable will
assume the value of the "initial-expression." For subsequent
iterations, the value of the DO-group variable will be
incremented by the value of the by-expression (or
decremented, if the by-expression is negative).

This form of the "spec" provides a test for termination of
the DO-group. The DO-group will be executed only as long as
the DO-variable does not exceed the value of the
to~-expression.

Exception: If the value of the by-expression 1is negative,
then the statements in the DO-group will be executed only as
long as the DO-variable is larger than or equal to the value
of the to-expression. the to-expression.

TO expression BY expression

This case has the same effect as the preceding case.

TO expression

This case is equivalent to "BY 1 TO expression".

REPEAT (expression)

The REPEAT option allows you to vary the value of the
DO-variable according to a specific formula. This is very

useful when you wish the sequence of DO-variable values to be
other than an arithmetic series.

THE DO AND END STATEMENTS (B-D)

This form of the iteration specification is quite different
from that of the others. For the first iteration of the
DO-group, the DO-variable will assume the value of the
"initial expression." After each iteration of the DO-group,
CPL recomputes the value of the repeat-expression (as the
"expression" following the REPEAT keyword is called), and
assigns that value as the new value of the DO-variable. This
form of the "spec" provides no test for termination (unless a
WHILE clause is also specified, as described below).

EXAMPLES.
1. DO I = 2 BY 3; ...; END;

The DO-variable I will assume the values 2, 5, 8, 11,
The iterations will never terminate normally.

2. DOI =2 BY 3 T0 18; ...; END;
I will assume the values 2, 5, 8, 11, 14, and 17. Then I
will be set to 20, which exceeds the value, 18, of the
to-expression, so that control will pass to the statement
following the END statement.

3. DOI = 2 TO 5; ...; END;

The statement group will be executed 4 times, with I having
the values 2, 3, 4 and 5.

4., DO I =5TO 2 BY -1; ...; END;

The statement group will be executed 4 times, with I assuming
the values 5, 4, 3 and 2.

5. DECLARE A FLOAT;
DO A = 2.3 TO 6.3 BY 1.34; ...; END;

The FLOAT DO-variable will assume the values 2.3, 3.64, and
4.98.

6. DO I =1 REPEAT(2*I); ...; END;

The variable I will assume the values 1, 2, 4, 8, 16, 32,
.... The DO-group will not terminate normally.

9.3.2 Completely Unsatisfied Specifications (B)

Consider the following program segment:

J
DO TO J;

1
END;

Since the value of J is 0, the second statement is equivalent to "DO
I=1 to OQ". In this event, the initial value, 1, is assigned to the
DO-variable I, and then, since I exceeds the wvalue, 0, of the
to-expression, control passes immediately to the statement following

THE DO AND END STATEMENTS (B-D)

the END statement. The statements in the group are not executed even
once.

9.3.3 The Effect Of The WHILE Clause (B)

You use the WHILE clause with an iteration specification in much the
same way you used it in the WHILE-only DO statement described before.

As stated above, the "iteration specification" may or may not specify
a test for ending the iterations. The WHILE clause, if specified,
provides such a test.

If the iteration specification provides a test, then the 1iterations
will stop if either of the tests indicates stopping.

Here are some examples:

1. J=0;
DO I =1 TO 10 WHILE(J < 17);
J=J + I;
END;

The group will be executed with I equal to 1, 2, 3, 4, 5 and
6. Then I will be assigned the value 7, but J will have the
value 21 (=1+2+3+4+5+6), and so control will @pass to the
statement following the END statement. (The reader should
work through this short program and verify for himself that J
will end up with the wvalue 21.)

2. DO I =1 REPEAT(2*I) WHILE(I<=32); ...; END;
I will be assigned the values 1, 2, 4, 8, 16, and 32. When I
is assigned the value 64, the test in the WHILE clause will
fail, and the loop will be terminated.

3. DO I = 23 WHILE(A=B); ...; END;
I is assigned the value 23. If A=B, then the statement group
will be executed once and only once. If A and B are unequal,

then control will pass immediately to the statement following
the END statement.

9.3.4 Multiple Specifications (B)

The format for this type of DO statement allows more than one
specification to be given.

If you enter more than one specification, then CPL will complete each
specification in turn, and then move on to the next one. When the
last specification is completed, then <control will pass to the
statement following the END statement.

THE DO AND END STATEMENTS (B-D)

Here are some examples:
l1. npo1=2,3,15,25,-3,66; ...; END;

The DO-variable I will assume the values shown in the order
shown. This 1is a particularly convenient form of the DO
statement when there is no simple formula for the sequence of
values which you wish the DO-variable to assume.

END

2. DOI =1T0O 5, 3 T0O 8 BY 2, 32 REPEAT(.5*I) WHILE(I>=1);

The statement group will be executed 14 times, with I
assuming the wvalues 1, 2, 3, 4, 5, 3, 5, 7, 32, 16, 8, 4, 2
and 1.

9.3.5 DO-variable With Non-arithmetic Data Type (C)

It is legal for the DO~-variable to have any of the data types FIXED,
FLOAT, CHARACTER, BIT or POINTER.

However, there is a restriction if the data type 1is not FIXED or
FLOAT. In this case, the TO clause and the BY clause are illegal.
The REPEAT and WHILE clauses are legal.

EXAMPLE:

DECLARE C CHAR(30) VARYING;
DO C='123' REPEAT(C!!'ABC') WHILE (LENGTH(C)<10);
...; END;

Here the DO-variable is the CHARACTER variable C. C will assume the
values '123', '123ABC', and 'l123ABCABC'. Then C will be assigned the
value '123ABCABCABC', but since the WHILE clause will not be satisfied
(since the LENGTH(C) is 12), control will then pass to the statement
following the END statement.

9.4 EXPRESSION EVALUATION IN DO-STATEMENT CLAUSES (D)

It may be of interest to some programmers to understand how and when
the various expressions in the DO statement are evaluated. The
following rules apply:

1. Each "spec" is fully terminated before any expression in a
following "spec" 1is evaluated. The following rules discuss
order of expression evaluation within a single "spec".

2. First, the "initial expression" is evaluated, and the value
assigned to the DO-variable.

3. If the spec contains a to-expression or a by-expression, then
that (those) expression(s) is (are) evaluated, and the values
saved. They are not again evaluated for as long as that DO
group is active.

4. If the spec contains a REPEAT clause, then that expression is
evaluated each time the value of the DO-group variable is
reassigned.

THE DO AND END STATEMENTS (B-D)

5. If the spec contains a WHILE clause, then that expression is
evaluated each time that the DO-variable 1is assigned or
reassigned, whether by means of the initial expression, by
means of the by-expression, or by means of the REPEAT option.

Here is an example:

J = 10;
DO I =1 TO J;
eee 3 J =53 ...3 END;

When the DO statement is first executed, the value of J is 10. This
value 1is computed and saved, so the fact that the value of J changes
inside the DO group will have no effect on the number of iterations.

9.5 NORMAL AND ABNORMAL TERMINATION OF DO GROUPS (C)

An active DO group can terminate in two ways:
1. The specifications in the clauses of the DO statement can be
satisified. For example, in the DO statement "DO I=1] TO 10"
the DO group will terminate when the value of I reaches 11.
2. The execution of a GO TO statement can transfer control out
of the DO group.

The first of these terminations is called "normal," and the second
"abnormal."

9.6 THE END STATEMENT (COLLECT ONLY) (B)

Format: END [identifier];

This statement is used to terminate DO groups in the manner described
in this chapter. It is also used to terminate BEGIN blocks, PROCEDURE
blocks and ON-units, in a similar manner, as will be described 1in
later chapters.

9.6.1 Multiple Closure Of DO Groups (C)

The Format of the END statement given just above shows that an
identifier may follow the END keyword. This format may be used when
you wish to use one END to terminate several DO groups.

Consider the following program statements:

A: DO I =1 TO 10;
DO J =1 TO 10;

END A;

THE DO AND END STATEMENTS (B-D)

The END statement specifies an identifier A. CPL will search all
preceding unmatched DO statements for one with the label A. CPL will
terminate not only that DO group, but also all unmatched DO groups
following that one. CPL does this by inserting dummy END statements
in your program.

The same method can be used to close multiple BEGIN and PROCEDURE
statements, but it is not recommended that you do this.

9.6.2 GOTO To Multiple Closure END Statement (D)

If a multiple closure END statement has a statement label, then all
dummy END statements are inserted before the statement label. This
means that if a GOTO statement in one of the inner DO groups transfers
control to the multiple closure END statement, then CPL terminates the
inner DO groups abnormally, and transfers to the END statement for the
outer DO group.

EXAMPLE: Consider the program segment

A: DO I
DO J

1 TO 10;
1 TO 10;

GO TO DOEND;

DOEND: END A;

When CPL executes the GOTO statement, it terminates the inner DO group
abnormally, transfers to the END statement of the outer group.

CHAPTER 10

ARRAYS (DIMENSIONED VARIABLES) (B)

Normally a CPL identifier stands for only a single data value -- a
single FIXED or FLOAT number, or a single CHARACTER or BIT string.

However, you may also use an identifier to stand for more than one

data value. You would need this capability if, for example, you
wished to use a variable to represent a mathematical vector or matrix.

10.1 ONE-DIMENSIONAL ARRAYS (VECTORS) (B)

Suppose your program contains the following declaration:
DECLARE A(10) FLOAT;

This declaration specifies that the identifier array is to stand for
10 FLOAT data values, rather than the usual 1.

You refer to these 10 values individually by means of a "subscript." A
subscript 1is a number or expression enclosed in parentheses following
the dimensioned identifier. 1In the case of the the identifier A
described above, you can refer to the 10 elements of the array A with
A(l), A(2), A(3), «+., A(9), A(10). For example, the statement A(2)=5
sets the second array element to 5, and the statement PUT LIST(A(3))
types out the third element of the array.

Any expression may be used as a subscript. For example, if I has the
value 5, then the statement A(I+2)=-10 will set A(7) to the value -10.

EXAMPLE: The sequence 1, 1, 2, 3, 5, 8, 13, ... is called the
sequence of Fibonacci numbers. After the first two, each number is
the sum of the preceding two.

Here is a program, using arrays, which prints out the first 50
Fibonacci numbers:

10. DECLARE FIB(50) FIXED;

20. FIB(1)=1; FIB(2)=1;

30. PUT LIST(FIB(l),FIB(2));

40. DO I = 3 TO 50;

50. FIB(I) = FIB(I-1) + FIB(I-2);
60. PUT LIST(FIB(I));

70. END

10-1

ARRAYS (DIMENSIONED VARIABLES) (B)

At the completion of the above program, the array FIB will have been
assigned the values of the first 50 Fibonacci numbers.

10.2 LOWER BOUNDS OTHER THAN 1 (B)

In the declaration
DECLARE A (10) FIXED;

the subscript values extend from 1 to 10. That is, the lower bound of
the subscript values is 1, and the upper bound is 10.

The upper bound value 10 was specified in the declaration. There 1is
also a way to specify the lower bound,.-if you do not wish it to be 1.

For example, in the declaration,
DECLARE B(-3:12) FIXED;

the subscripts may range from -3 to +12; that is, the lower bound is
-3 and the upper bound is 12.

10.3 OTHER DATA TYPES FOR ARRAYS (B)

Any computational data type may be used for an array. For example,
the declaration

DECLARE ST(10) CHAR(23) VAR;

defines the identifier ST to stand for 10 strings of the type CHAR(23)
VARYING.

Any of the data types FIXED, FLOAT, CHAR [VARYING] and BIT [VARYING]
may be used.

10.4 TWO-DIMENSIONAL ARRAYS (MATRICES) (B)

Consider the declaration,
DECLARE CC(4,5) FIXED;

This declaration specifies that CC is a two-dimensional array. There
are 20 (=4x5) elements 1in the array. You refer to the individual
array elements by using two subscript values in parentheses: <CC(1,1),
cc¢1,2), c¢C(1,3), cC(l,4), cCC(1,5), CC(2,1), ... CC(2,5), CC(3,1),
... CC(5,5).

EXAMPLE: Suppose A is a 3x5 matrix, B is a 5x6 matrix, and C is a 3x6
matrix. Suppose you wish to set the matrix C to the matrix product of
A and B. Here is a program segment which will do that:

10-2

ARRAYS (DIMENSIONED VARIABLES) (B)

10. DECLARE A(3,5), B(5,6), C(3,6);

20. DO I =1 TO 3;

30. DO J =1 TO 6;

40, C(1,J)=C /* INITIALIZE C(I,J) */;

50. DO K =1 TO 5;

60. C(1,J)=C(1,J)+A(I,K)*B(K,J) /*ADD NEXT TERM*/;
70. END;

80. END;

90. END;

10.5 ARRAYS OF MORE THAN TWO DIMENSIONS (B)

The declaration

DECLARE D(3,4,8,3:5) FIXED;
specifies a four-dimensional array. The subscripts 1in the first
position run from 1 to 3, in the second position from 1 to 4, in the
third position from 1 to 8, and in the fourth position from 3 to 5.

Only in exceptional situations would you use more than 4 dimensions.
However, if needed, CPL allows up to 256 dimensions.

10-3

CHAPTER 11

GET LIST AND PUT LIST TO TERMINAL (B-C)

11.1 THE PUT STATEMENT (COLLECT OR DIRECT) (B)

FORMAT: PUT [SKIP] LIST(expl,exp2,...);

You may put one or more expressions in the list of expressions. CPL
computes each expression, and prints its value on the terminal.

If you specify the SKIP option, then CPL prints a carriage return and
line feed before printing the values of the expressions.

EXAMPLE: For PUT LIST('THE ANSWER 1IS',2+2); CPL will type "THE
ANSWER IS 4" on the terminal.

11.2 THE ? STATEMENT (COLLECT OR DIRECT) (B)
FORMAT: ?expl,exp2,...;

This statement is a short form of the PUT LIST statement.

11.3 THE GET STATEMENT (COLLECT OR DIRECT) (B)

FORMAT : GET LIST(vblel,vble2,...);

When CPL executes this statement, it stops computing and waitings for
you to type in values for the specified variables.

When you type in values, use the same format as that of a constant.
You may precede a FIXED or FLOAT numeric constant by an optional + or
- sign, with no intervening blanks.

You may terminate the constant by one or more blanks, a comma, a comma
with one or more blanks, or a carriage return - line feed.

11.3.1 Data Type Conversions (C)

The constant which is entered in response to a GET LIST statement
should have the same data type as that of the variable to which the
constant is to be assigned. If the constant has a different data type
then a conversion will be attempted. For example, a FIXED constant
will be converted to a FLOAT constant, and vice-versa.

11-1

GET LIST AND PUT LIST TO TERMINAL (B-C)

The full rules for data type conversions among strings in these
circumstances are described in a later section.

11.3.2 Omitted Data Values (C)

When CPL stops computing to wait for you to enter a value in response
to a GET LIST statement, you may just type in a comma or a carriage
return-line feed for any variable in the GET LIST statement. This
will 1indicate to CPL that you wish to leave the current value of that
variable unchanged.

11.4 VARIABLE FORMAT FOR PUT LIST (C)

In the default case, a CPL PUT LIST statement produces output for
FIXED and FLOAT expressions in a variable format. That is, the format
of the output depends upon the value of the quantity being typed out.
This variable format does not comply with the ANSI PL/I standard.

If you would like your program output to be fully ANSI standard, then
you should add the following statement to the beginning of your
program:

1. DECLARE SYSPRINT PRINT;

This statement will cause CPL to override the variable format option
and use the ANSI standard option.

11-2

CHAPTER 12

GET AND PUT WITH STRING OPTION (C)

12.1 PUT WITH "STRING" OPTION (C)

Format: PUT STRING(vble) LIST(exp-list);
or PUT STRING(vble) EDIT (exp-list) (format);

where "vble" is an unsubscripted identifier which is scalar (i.e., not
an array) and of CHARACTER or CHARACTER VARYING data type.

CPL computes and converts the expressions in the same manner as for

the PUT statement to the terminal. Then it places the output into the
specified CHARACTER string variabe instead of to the terminal.

12.2 GET WITH "STRING" OPTION (C)

Format: GET STRING (expr) LIST(vble-list);
The expression "expr" is computed and converted to CHARACTER if

necessary. Input is taken from the character string rather than from
the terminal.

A frequent error in GET LIST with the STRING option is to forget to

leave a blank or a comma in the source character string after the last

data item in the string. For example, if CPL executes the statement
GET STRING('2 23 32') LIST(I,J,K);

then CPL will stop execution with an error message indicating that the
terminating blank or comma for the data item "32" was not found.

12-1

CHAPTER 13

THE PUT EDIT STATEMENT (C-D)

13.1 INTRODUCTION (C)

The PUT LIST statement, already discussed, gives you very little
control over the format of output. The output format follows rules
set up by CPL.

PUT EDIT lets you control the format. You can control exactly where
on the line the output will appear. You can also control the position
of the decimal point and whether an "E" type exponent will appear.

If you do not need formatted output, then you may skip this chapter.

13.1.1 Basic Format (C)

The simplest format is:
Format: PUT EDIT(output-list) (format-list) ;

The "output-list" is a list of expressions. The format is the same as
the list of expressions in PUT LIST.

The "format-list" is a list of format items, separated by commas,
which specifies how the data is to be printed.

-

13.1.2 Example (C)

Consider the statement
PUT EDIT(23,45) (F(5),E(12,3)) ;

There are two expressions (23 and 45) and two format items (F(5) and
E(12,3)). 23 1is printed in the format F(5) and 45 is printed in the
format E(12,3).

F(5) format specifies that the number is to be printed as an integer
in a field 5 characters wide. Therefore, the characters bbb23 will be
printed, where "b" stands for a blank.

E(12,3) format specifies the E-type format. There will be 3 digits
following the decimal point. The total field width is 12 characters.
Thus, the output would be bbb4.500E+01.

THE PUT EDIT STATEMENT (C-D)

The total output from this statement will consist of the following 17

characters:
bbb23bbb4.500E+01

where "b" stands for a blank.

13.2 THE MOST COMMON FORMAT ITEMS (C)

Here are the data format items that you will use most often:

1. F(w). Print the data as an integer right-justified in a

field w characters wide.

2. F{(w,d). Print the data as a decimal number with d digits
following the decimal point, right-justified in a field w

characters wide.

3. E(w,d). Print the data as a floating point number

format

[-]19.99...9E899

in the

where each of the 9's stands for a digit. There are d digits

following the decimal point. "s" is a sign,

+ or ~r

depending upon the sign of the exponent. The exponent field

always contains two digits.

4. A or A(w). Print the data as a character string.

The width

of the field will be w, if w is specified. If w is not

specified, then the length of the data item will

be used.

The data is converted to character, and is left-justified in

the output field.

Another group of format items is called the collect of

"control"

format items. These items do not specify data formats. They specify

where in the record or on the page the data is to appear.
the most commonly used control format items:

l. X(w). Print w blanks.

Here are

2. SKIP[(n)]. 1If n is not specified, the 1 1is assumed. The

specfied number of carriage returns and line
printed.

3. PAGE. Skip to the top of a new page.

13.3 FURTHER PUT EDIT EXAMPLES (C)

Let us consider some variation of the preceding example.

feeds are

1. PUT EDIT(23,45) (F(5),X(4),E(12,3)); will produce the output

bbb23bbbbbbb4.5E+01

There are four extra blanks, due to the X(4) control format

item.

THE PUT EDIT STATEMENT (C-D)
2. PUT EDIT(23,45) (F(5),SKIP,E(12,3)); will produce the output

bbb23
bbb4.500E+01

13.4 ITERATION FACTORS (C)

If your format list specifies the same format item several times, you
may be able to save some effort by using iteration factors. Iteration
factors allow you to specify that a format item or group of format
items is to be used by CPL more than once.

The simplest format is:

Format: integer format-item
or integer (format-list)

The "integer" specifies the number of times the format item or
format-list is to be repeated.

EXAMPLE: PUT EDIT(1,2,3)(2 F(4),F(5,2)); will produce the output
bbblbbb2b3.00
where "b" stands for blank.

Note that in the above PUT EDIT statement, there is a blank after the
iteration factor "2". This blank is required.

13.5 HOW PUT EDIT IS EXECUTED (C)

If you plan to use PUT EDIT extensively, then you should read the
following, which describes exactly how it is executed.

1. Initialize the "format pointer" to point to the beginning of
the format list.

2. Compute the first (or next) data item and save its value.

3. Starting from the position of the current "format pointer,”
choose the next format item and update the format pointer.
Take account of iteration factors in making the choice of the
next format item. Also take remote formats (described later
in this chapter) into account.

4. If the format item is a control format (like X or SKIP), then
perform the specified control operation, then go back to the
preceding step.

5. If the format item is a data format item, then print the data
value in the specified format, and go back to step 2.

13

3

THE PUT EDIT STATEMENT (C-D)

13.6 DETAILED SPECIFICATION OF THE FORMAT LIST (C)

This section supplants the previous informal descriptions with a
formal description of the format list.

A format-list consists of one or more specifications, separated by
commas. Each of these specifications has one of the following
formats:

1. A format-item

2. iteration-factor format-item

3. iteration-factor (format-list)

The iteration factor is in one of the following two formats:

1. integer

2. (expression)
Note that the iteration factor may consist of a parenthesized
expression. This expression may contain any variables or function
calls. CPL will evaluate the expression and convert it to an integer,
if necessary. The value may be zero or positive.
The "format-item" is either a data format item, a control format item,

or a remote format item. These are described in the following
sections.

13.7 DATA FORMAT ITEMS (C)

Each data item from the data list of the PUT EDIT statement is printed
out in one of the formats specified by a data format item.

The data format item specifies both (1) the data type to which the

data item is to be converted, and (2) the form in which the data type
is to be printed.

13.7.1 The F Format Item (C)

Format: F(w [,d [,p] 1)

where w, d and p may be any CPL expressions. The values of the
expressions are computed and converted to integers. The value of w
must be positive, and the value of 4 may not be negative. If 4 is not
specified, then it defaults to 0. If p is not specified then it
defaults to 0.

The data item is converted to FLOAT.

The data item is printed right-justified in a field w characters wide.

13-4

THE PUT EDIT STATEMENT (C-D)

The printed data is the character representation of a decimal number,
possibly with a decimal point, rounded if necessary, and
right-adjusted in the specified field.

If d=0, then only the integer portion of the number 1is written; no
decimal point appears.

If d>0, then d fractional digits are printed, with a decimal point
inserted before the fractional digits. Trailing zeroes are supplied
if necessary to fill out d fractional digits. Suppression of 1leading
zeros is applied to all digit positions (except the first) to the left
of the decimal point.

If the value of the data item is less than zero, a minus sign is
prefixed to the external character representation; if it is greater
than or equal to zero, no sign appears. Therefore, for negative
values of the data value, the field width specifiecation (w) must
include a count of both the sign and decimal point.

The scaling factor, p, is usually useless. CPL multiplies the data
value by 10**p before printing out the value.

13.7.2 The E Format Item (C)

Format: E(w [,d [,s] 1)

where w, d and s may be any CPL expressions. The values of w, d and s
are computed and converted to integers. If d is not specified, it
defaults to 7. If s is not specified, it defaults to the value of
(d+1) .

The argument w stands for the field width, and specifies the total
number of <characters 1in the field. The argument d stands for the
number of fractional digits, and specifies the number of digits in the
mantissa that follow the decimal point. The argument s stands for the
number of significant digits and specifies the number of digits that
must appear in the mantissa.

The values of d and s must satisfy d>=0 and s>=d. The minimum wvalue
of w can be computed from a formula given later in this section.

The internal data 1s «converted to FLOAT and 1is printed 1in the
following general form:

[-]1 (s-d) digits . d digits E [+!-] exponent
The value is rounded if necessary.
The exponent is a two-digit decimal integer constant, which may be two
zZeros. The exponent 1is automatically adjusted so that the leading

digit of the mantissa is nonzero.

If the above form of the number does nct fill the specified field, the
number is right-adjusted and extended on the left with blanks.

13-5

THE PUT EDIT STATEMENT (C-D)

Here is how to compute the minimum value of w:
1. Start with the quantity (s+4).
2, If s=d, then add 1.
3. If d>0 then add 1.

4. If the data value is negative, then add 1.

13.7.3 The A Format Item (C)

Format: A [(w)]

The argument w, if specified, is any CPL expression. It will Dbe
computed and converted to an integer which must be non-negative.

The data value 1is <converted, 1f necessary, to CHARACTER and is
truncated or extended with blanks on the right to the specified field

width (w) before being printed. If w=0, then no characters are
printed. Enclosing quotation marks are never printed. If the field
width 1is not specified, it 1is assumed to be equal to the

character-string length of the converted data element.

13.7.4 The B Format Item (C)

Format: B [(w)]

The argument w, if specified, is any CPL expression. It will be
computed and converted to an integer which must be non-negative.

The data value is converted, if necessary, to BIT. The BIT string is
then converted to a CHARACTER string of the same 1length. The
CHARACTER string is truncated or extended with blanks on the left to
the specified field width (w) before being printed. If the field
width is not specified, it is assumed to be equal to the number of
bits in the BIT string.

The resulting CHARACTER string is printed. No quotation marks are
printed, nor is the identifying letter B.

13.7.5 The Bl Format Item (C)

Format: Bl [(w)]

This is identical to the B format item.

13-6

THE PUT EDIT STATEMENT (C-D)

13.7.6 The B3 Format Item (C)

Format: B3 [(w)]

The argument w, if specified, 1is any CPL expression, It will be
computed and converted to an integer, which must be non-negative.

The data value is converted, if necessary, to BIT. If the number of
bits in the string is not ©precisely divisible by 3, then the BIT
string is extended from the left with 1 or 2 0-bits, so that the
length is divisible by 3.

The BIT string is converted to a CHARACTER string containing one octal
digit for each 3 bits in the bit string. The characters in the
CHARACTER string will be digits in the range 0 through 7. The 1length
of the CHARACTER string will be 1/3 'the length of the BIT string.

The CHARACTER string is then truncated or extended with blanks on the
left to the specified field with (w) before being printed. If the
field width is not specified, then it is assumed to be equal to the
number of characters in the CHARACTER string.

The resulting CHARACTER string is printed. No gquotation marks are
printed, nor is the identifying radix B3.

13.7.7 The B4 Format Item (C)

Format: B4 [(w)]

The argument w, if specified, is any CPL expression. It will be
computed and converted to an integer, which must be non-negative.

The data value is converted, if necessary, to BIT. If the number of
bits in the BIT string is not precisely divisible by 4, then the BIT
string is extended from the left with 1, 2 or 3 0-bits, so that the
length is divisible by 4.

The BIT string is converted to a CHARACTER string containing one
hexadecimal (base 16) digit for each 4 bits in the BIT string. The
characters in the CHARACTER string will be digits in the range 0-9 or
letters 1in the range A-F. The length of the CHARACTER string will be
1/4 the length of the BIT string.

The character string is then truncated or extended with blanks on the
left to the specified field width (w) before being printed. If the
field width is not specified, then it is assumed to be equal to the
number of characters in the CHARACTER string.

The resulting CHARACTER string 1is print. No quotation marks are
printed, nor is the identifying radix B4.

13.7.8 The B2 Format Item (C)

Format: B2 [(w)]

13-7

THE PUT EDIT STATEMENT (C-D)

This is like the B3 and B4 format items, except that the bit string is
converted to the base 4 number system.

13.8 CONTROL FORMAT ITEMS (C)

There is no data output associated with a control format item. The
control format items specify the layout of the data.

A control format item has no effect unless it 1is encountered before
the data list is exhausted.

13.8.1 The X Format Item (C)

Format: X(w)

The argument w is any CPL expression. It will be computed and
converted to an integer, which must be non-negative.

CPL prints out w blank characters.

13.8.2 The COLUMN Format Item (C)

Abbrev: COL for COLUMN

Format: COLUMN (n)
The argument n is any CPL expression. It will be computed and
converted to an integer, which must be non-negative. If n=0, then n=1

will be assumed.

CPL prints sufficient spaces so that the following output will be
printed starting at the column number specified by n. (The column
number is the position of the <character on the line. The first
character on the line is in column 1.)

If printing has already passed that column on the current 1line, then
CPL will simulate an implied SKIP option, and then move to the
specified column.

The current column number is computed to be 1 plus the number of
characters which have been printed for this FILE identifier since the
last carriage-return character was printed. Note that CPL does not
take 1into account any other special characters (such as tab or other
control characters) which may physically affect the position of the
printing element, other than to count each such character as one
character.

13-8

THE PUT EDIT STATEMENT (C-D)

13.8.3 The SKIP Format Item (C)

Format: SKIP [(n)]

The argument n, if specified, is any CPL expression. It will be
computed and converted to an integer, which must be non~negative. If
n is not specified, then n=1 is assumed. If n is positive, then CPL
prints <carriage return-line feed pairs. The value n=0 is permitted
only for PRINT files; 1in this case, CPL prints a carriage return, so
that the output which follows will overprint the preceding line.

13.8.4 The PAGE Format Item (C)

Format: PAGE
You may use this format item only with PRINT files. CPL prints a form

feed and carriage return, so that subsequent output will be on a pew
page.

13.9 THE REMOTE FQRMAT ITEM (C)

Format: R(label)

The remote format item allows format items in a FORMAT statement
(described below) to replace the remote format item.

The "label" is the label of a FORMAT statement. The FORMAT statement
includes a format list that is taken to replace the format item.

The specified FORMAT statement must be internal to the same block as
the PUT EDIT statement.

13.10 THE FORMAT STATEMENT (COLLECT ONLY) (C)

Format: label: FORMAT (format-list) ;
A FORMAT statement must have a statement label.

The "format-list" is the same as 1is specified for the PUT EDIT
statement.

The format-list in the FORMAT statement can be referenced by means of
a remote format item appearing in a PUT EDIT statement format list.

The format-list in a FORMAT statement may contain a remote format item
referring to other FORMAT statements.

13~9

THE PUT EDIT STATEMENT (C-D)

13.11 OTHER OPTIONS OF THE PUT EDIT STATEMENT (C)

13.11.1 Multiple Lists (C)

There may be several data and format 1lists in a single FORMAT
statement. The format is:

Format: PUT EDIT(data-list) (format-list)

[(data-list) (format-list)...] ;

13.11.2 Other Options (C)

The STKING, SKIP, FILE and other options, which are legal with the PUT
LIST statement, are also legal with the PUT EDIT statement.

13.12 THE FORMAT OF PUT LIST OUTPUT (D)

This section presents a brief specification of the output produced by
the PUT LIST statement. Most users should skip this section.

13.12.]1 Format Without The VFORM Attribute (D)

This is the output as specified by the ANSI PL/I standard PUT LIST.
For FIXED data, the format is F(13).

For FLOAT data, the format is E(14,7,8).

13.12.2 Format With VFORM Attribute (D)

The VFORM option is a non-standard FILE option which causes CPL to use
a variable output format when printing FIXED or FLOAT items.

Implementors of other PL/I systems may find it wuseful to have a
precise definition of the variable format rules. This section gives
those rules.

In addition, in the chapter entitled "CPL Programming Examples," you
will find the variable format rules coded as a CPL PROCEDURE.

13.12.2.1 FIXED With VFORM Attribute (D) - If the value of the FIXED
quantity is 0, then print "O0O". Otherwise, define the following
guantities:

1. Let v = the value of the FIXED gquantity

2. Let e = the number of digits necessary to represent v. This
can be defined by e=FLOOR(LOG10(ABS(v))).

3. Let s=1 if v<0, 0 if v>=0.

13-10

THE PUT EDIT STATEMENT (C-D)

Then the VFORM output of v is given by F(e+s).

13.12.2.2 FLOAT With VFORM Attribute (D) - If the value of the FLOAT
quantity 1is 0, then print "O0". Otherwise, define the following
quantities:

1. Let v = the value of the FLOAT quantity.

2. Let e=FLOOR(LOGl0(ABS(v))). e represents the position of the
first significant digit 1in the representation of v in an F

format -- positive if the first significant digit is to the
left of the decimal point, and negative if it is to the
right.

3. Represent v as x*10**e, where 0.1<=x<1. Represent ABS(x) as
0.dd..ddd, where the last digit "d" is non-zero. Let n = the
number of digits "d" in this representation.

4, Let s=1 if v<0, s=0 if v>=0.

Given the above definitions, we can define the output format for a
variable format PUT LIST as follows:

Case 1. e>8 or e<-8. The format depends upon two subcases:
1. If n>1 then use E(s+6,n-1,n).
2. If n=1 then use E(s+5,0,1).

Case 2. e<=8 and e>=1. The format depends upon two subcases:
1. If n<=e then use F(e+s).

2. If n>e then use F(n+s+l,n-e).

Case §+ e>=-8 and e<=0. Use the format F(n-e+s+l,n-e), where this is
a speclial F format with no 0 preceding the decimal point.

13-11

CHAPTER 14

FILE I/0 TO ARBITRARY FILES (C-D)

14.1 SIMPLE USAGE OF GET AND PUT TO ARBITRARY FILES (C)

Before discussing the input and output of CPL files, this chapter
shows some simple examples.

14.1.1 PUT To Arbitrary Files (C)

liere is a sample program segment showing output to an arbitrary file:
10. DECLARE F FILE;

20. OPEN FILE(F) OUTPUT TITLE ('PROG.DT');
30. PUT FILE(F) LIST(X,Y,X+Y);
960. PUT FILE(F) SKIP(3) LIST(I,S,T**2);
970. PUT FILE(F) SKIP;
980. CLOSE FILE (F);

The TITLE option of the OPEN statement above specifies that output 1is
to be to the file PROG.DT on disk. Each PUT statement with the FILE
option causes the expressions to be computed and the values stored
into the specified file. The SKIP(3) option of the PUT statement
causes three carriage returns and line feeds to be inserted into the
file. The CLOSE statement causes the file to be closed.

14.1.2 GET To Arbitrary Files (C)

10. DECLARE G FILE;

20. OPEN FILE(G) INPUT TITLE('PP.DT');
30. GET FILE(G) LIST(X,Y,Z);

40. GET FILE(G) SKIP LIST(A,B);
960. CLOSE FILE(G);

This OPEN statement is similar to the one in the ©preceding example,
except that the file 1is being opened for INPUT rather than OUTPUT.
Each GET statement with the FILE option specifies that data values are
to be taken from the specified file rather than the terminal. The
SKIP option specifies that CPL should skip to the beginning of the
next line, which begins after the next line feed character.

14-1

FILE I/0 TO ARBITRARY FILES (C-D)

We now turn our attention to the general description of file
input/output in CPL.

14.2 DEFAULT FILE OPTIONS FOR GET AND PUT STATEMENTS (C)

Each GET and PUT statement must have either a FILE or a STRING option.
If you supply neither, then CPL supplies a default FILE option. For a
GET statement, the default FILE option is FILE(SYSIN), and for a PUT
statement (including a ? statement), the default FILE option is
FILE (SYSPRINT) .

14.2.1 Special Properties Of SYSIN And SYSPRINT Identifiers (C)

These two identifiers are, for all practical purposes, reserved words
in the CPL language. (This is not completely true since you could
actually declare them to be other than files, but then the default GET
and PUT statements would no longer work.)

Here are the special rules which apply to these two identifiers:

1. Instead of defaulting to FIXED or FLOAT arithmetic variables,
SYSIN and SYSPRINT have the default attributes of FILE. 1In
addition, SYSPRINT has the attributes PRINT and VFORM,

2. If a file is opened, whether by an explicit OPEN statement or

implicitly with a GET, ©PUT, READ or WRITE statement, the
default device name will be TTY rather than DSK.

14.3 FILE ATTRIBUTES (D)

If an identifier is declared to have the FILE attribute, then it will
have a number of additional attributes, either by explicit declaration
or by default. These attributes are discussed 1in the following
paragraphs.

14.3.1 STREAM Versus RECORD Attribute (D)

There are two sets of input/output instructions in CPL. The first
set, previously described, consists of GET and PUT, and the second
set, described below, consists of READ and WRITE.

The STREAM attribute specifies that the GET and PUT statements will be
used with the file. The RECORD attribute specifies that the READ and
WRITE statements will be used.

These two sets of statements provide completely different methods for
accessing files. The principal difference is that STREAM input/output
provides conversions of data between internal (binary) format and
external (ASCII) format 1in the file; RECORD input/output generally
provides no such conversion.

14-2

FILE I/O TO ARBITRARY FILES (C-D)

14.3.2 INPUT Versus OUTPUT Attributes (D)

The INPUT attribute specifies that the GET or the READ statement will
be used to access the file.

The OUTPUT attribute specifies that either the PUT or the WRITE
statement will be used to access the file.

If none of the above is specified, then the default attribute INPUT
will apply.

14.3.3 The PRINT Attribute (D)

This attribute implies, and is only legal with, the attributes OUTPUT
and STREAM.

It indicates that the file is intended to be printed on a printer or
typed on a terminal, and is not intended to be read by a program.

Recall that the default file option for the PUT and ? statements is
FILE (SYSPRINT) . Now CPL assigns to SYSPRINT the default attributes
FILE and PRINT. Thus, the default output for the PUT LIST and ?
statements follows the conventions of PRINT files.

The differences between STREAM OUTPUT files with and without the PRINT
attribute are as follows:

1. You may use the PAGE option of the PUT statement with PRINT
files, and you may not use it with non-PRINT files.

2. You may use SKIP(0) with PRINT files only, to force
overprinting of lines.

3. Suppose the expression in your PUT LIST statement has the
CHARACTER data type. If the output file does not have the
PRINT attribute, then CPL will enclose the character string
value 1in single quotes. If the output file is PRINT, then
the single quotes will be omitted.

14.3.4 The ENVIRONMENT Attributes (D)

Abbrev: ENV for ENVIRONMENT

The ANSI PL/I standard permits an implementation to provide
"implementation-defined"” file attributes which are not in the standard
itself. An implementation will use these attributes when it wishes to
take advantage of some special file features of the operating system.

CPL provides three such options:

1. VFORM
2. APPEND
3. NOPAGE

14-3

FILE I/0 TO ARBITRARY FILES (C-D)
If you wish to use any of these attributes in the DECLARE or OPEN
. statement, they you must use them with the ENVIRONMENT attribute.

For example, suppose you wish a file to have the PRINT, VFORM and
APPEND attributes. Then you may use the following file declaration:

DECLARE F FILE PRINT ENV(VFORM APPEND) ;

The use of each of these options is described in the following
sections.

14.3.5 The VFORM Attribute (D)

Format: ENV (VFORM)

The VFORM attribute is not permitted by the ANSI PL/I standard, and so
its use should be avoided for programs intended to be ANSI standard.

The VFORM attribute specifies that the format for FIXED and FLOAT

expressions in a PUT LIST statement is variable. The output format
will depend upon the value of the expression.

14.3.6 The APPEND Attribute (D)

Format: ENV (APPEND)

Since APPEND is an "implementation-defined" attribute, it must be
specified with the ENVIRONMENT attribute.

The APPEND attribute may be used only for OUTPUT files. It specifies
that 1if the output disk file already exists, then it is not to be
erased; 1instead, all further output is to be appended to the end of
the existing file.

14.3.7 The NOPAGE Attribute (D)

Format: ENV (NOPAGE)

Since NOPAGE is an "implementation-defined" attribute, it must be
specified with the ENVIRONMENT attribute.

The NOPAGE attribute may be used only for PRINT files.

The NOPAGE attribute is useful, for example, when your program 1is
producing a diagram which is going to run over a page. Usually, your
diagram will have a split in it, which results from an automatic page
eject taking place when the printer approaches the bottom of the page.

If the NOPAGE option is specified for your PRINT output file, however,
then those page ejects will be suppressed when you print out the file.
This means that your output will continue to be printed right over the
fold in the paper.

14-4

FILE I/0 TO ARBITRARY FILES (C-D)

NOTE: When the NOPAGE option is specified, CPL will output the DC3
character (octal 23) whenever it would normally output a line feed
character (octal 12). This means that your file will be suitable for
printing, but it will not be suitable for typing at a terminal, or for
being used as an input file to CPL or any other language.

14.4 THE FILE DECLARATION (D)

FORMAT: DECLARE filename FILE [file-attributes];

where the file attributes are those described 1in the preceding
section.

Of course, attribute factoring and other properties of the DECLARE
statement apply here. .

EXAMPLE: DECLARE (F INPUT, G OUTPUT) STREAM FILE; declares the two
files F and G.

If any of the attributes VFORM, APPEND or NOPAGE are to be used, then
they must be declared using the ENVIRONMENT keyword.

EXAMPLE: DECLARE F FILE OUTPUT ENV(VFORM APPEND) ;

14.5 THE OPEN STATEMENT (DIRECT OR COLLECT) (D)

FORMAT: OPEN open-spec [, open-spec ...] ;

where each "open-spec" consists of a list of options and attributes
separated by blanks. The following may appear in this list:

1. FILE(filename) -- this option must appear. The "filename"
must be DECLAREdJ to have the FILE attribute.

2. File attributes, as described above: STREAM, RECORD, INPUT,

OUTPUT, PRINT, and the ENVIRONMENT attributes VFORM, APPEND
and NOPAGE.

3. TITLE(expression). If specified, then the "expression" must
be (or will be converted to) a CHARACTER value. This
character string will be interpreted as an operating system
file-specification, and the file so specified will be opened.

The complete format of the file-specification depends upon
the operating system you are using. For more information,
please refer to the chapter entitled "“Running CPL under
TOPS-10" or to the <chapter entitled "Running CPL under
TOPS-20."

The most commonly used parts of the file-specification are
the same in both of these operating systems. Thus, in either
system, you may use the following format:

dev:name.typ

where the following rules hold:

14-5

FILE I/0 TO ARBITRARY FILES (C-D)

1. The "dev" is the device name. If it 1is not specified,
then it will default to DSK (the disk). EXCEPTION: If
the "filename" specified by the FILE option 1is either
SYSIN or SYSPRINT, then the device will default to TTY
(your terminal).

2. The "name" is the file-name. If you do not specify one,

then there 1is no default. If the operating system
requires a filename (as it does, for example, . for disk
devices,) then CPL will stop execution with an error

message. If the operating system does not require a
file-name (as is the case, for example, for TTY and LPT,)
then there will be no error.

3. The "typ" is the file-type. If none is specified, then
the default extension of DT will be used.

If no TITLE option is specified, then CPL will <create a
default TITLE option consisting of the file name appearing in
the FILE option. Thus for example, the statement OPEN
FILE(F); will cause the file "DSK:F.DT" to be opened.

If more than one "open-spec" is specified, then CPL will open more
than one file.

If the file identifier specified by the FILE option of the OPEN
statement 1is already open, then CPL will simply ignore the OPEN
statement and go on to the next statement. This can lead to some
confusion if, for example, a file identifier is open for INPUT, and an
OPEN statement attempts to open the same file identifier for OUTPUT.
In this case, the OPEN statement will perform no operation, and the
program will continue with no error indication. (This convention may
seem rather surprising, but it 1is precisely what the ANSI PL/I
standard specifies.)

l4.6 "OPEN" ATTRIBUTE MERGING (D)

The preceding discussion makes it clear that you may specify file
attributes both by means of the DECLARE statement for the file
identifier and by means of the OPEN statement.

When the OPEN statement is executed, all attributes specified by the
DECLARE statement are merged with those specified 1in the OPEN
statement to form a complete attribute set.

For example, if the declaration contains the attribute RECORD and the
OPEN statement statement contains the attribute SEQUENTIAL, then the

open file will have both of these attributes, and the default
attribute INPUT will be added.

If any attributes specified in or implied by the DECLARE statement
conflict with any attributes specified in or implied by the OPEN
statement, then the error will be detected during the attribute merge
and the open will fail. In this case execution will stop with an
error message.

14-6

FILE I/O TO ARBITRARY FILES (C-D)

14.7 IMPLICIT FILE OPEN (D)

If CPL must execute a GET, PUT, READ or WRITE statement that specifies
a file identifier that is not open, then CPL simulates an OPEN
statement with attributes that depend upon the statement causing the
implicit open.

If the statement is GET, for example, CPL simulates an OPEN with the
attributes STREAM and INPUT. If it is PUT, the attributes are STREAM
and OUTPUT. If it is READ, they are RECORD and INPUT; if it is
write, they are RECORD and OUTPUT.

If CPL opens a file implicitly in this way, you cannot specify a TITLE
option; thus, the default rules will apply. Under these rules, CPL
will open the file "name.DT", where "name" is the file identifier
name.

14.8 THE GET STATEMENT (COLLECT OR DIRECT) (D)

Format: GET option-list;

The "option-list" consists of one or more options separated by blanks.
The options may be specified in any order. They are as follows:

l. FILE(filename). Your program must contain a DECLARE
statement giving the "filename" the FILE attribute. The file
must be opened with the INPUT and STREAM attributes. If the
file is not open, then CPL will open it implicitly with these
attributes. If there is no FILE option or STRING option,
then CPL will assume FILE(SYSIN). (No declaration is needed
for SYSIN.)

2. STRING(expression). This option conflicts with the FILE
option. 1If you use the STRING option, then CPL will not take
its input from a file. Instead, it will evaluate the
character expression specified in parentheses by the STRING
option, and will use that character string to take the values
requested in the input list.

3. SKIP|[(expression)]. If you omit the "(expression)," then
SKIP(l) 1is assumed. CPL evaluates the expression to obtain
an integer value, n, which must be positive. CPL then reads
characters from the input file until n line feeds have been
read.

You may not use the SKIP option with the STRING option.
4. LIST(vblel [,vble2 ...]). You specify a list of one or more
variables whose values CPL is to read from the specified file

or string. The variables must be scalars, or must be
subscripted array elements.

You must specify either the LIST option or the SKIP option. You may
specify both.

14-7

FILE I/O TO ARBITRARY FILES (C-D)

14.9 THE PUT STATEMENT (COLLECT OR DIRECT) (D)

Format: PUT option-list;

where the "option-list" contains one or more options separated by
blanks. The options can appear in any order. They are as follows:

1. FILE(filename). Your program must contain a DECLARE
statement giving the "filename" the FILE attribute. The file
must be opened with the OUTPUT and STREAM attributes. If the
file is not open, then CPL will open it implicitly with these
attributes. If there is no FILE option or STRING option,
then CPL will assume FILE(SYSPRINT). (No declaration is
needed for SYSPRINT.)

2. STRING(identifier). The "identifier" must be a scalar with
the CHARACTER attribute (either VARYING or NONVARYING). If
yvou specify this option, then CPL will not transmit the
output to a file. 1Instead, it will store the output into the
character string variable specified by the identifier.

3. SKIP[(expression)]. 1If you omit the " (expression)", then CPL
will assume SKIP(1l). CPL evaluates the ‘"expression" to
obtain an integer value, n, which must be non-negative. If n
is positive, then CPL places n carriage return-line feed
pairs into the output file. The value n=0 is permitted only
for PRINT files; in this case, CPL places a carriage return
into the output file, so that the output which follows will
overprint the preceding line.

4. PAGE. You may use this option only with PRINT files. CPL
places the characters form feed and carriage return into the
output file. 1If the file is then printed on a line printer,
the printer will skip to a new page at this point.

5. LIST(expr [,expr ...]). CPL computes each expression
appearing in the list. CPL converts the value to character
format, and outputs the result to the specified string or
file.

6. EDIT edit-sSpec, where the edit-spec has the format
EDIT (output-spec) (format) [(output-spec) (format)]...
EDIT and LIST are conflicting keywords. The full description

of this option is given in the chapter entitled "THE PUT EDIT
STATEMENT."

You must specify at least one of the options SKIP, PAGE, EDIT, or
LIST. You may use SKIP or PAGE with LIST or EDIT. You may not use
both SKIP and PAGE in the same PUT statement. Nor may you use both
LIST and EDIT in the same PUT statement.

14-8

FILE I/0 TO ARBITRARY FILES (C-D)

14.10 THE READ STATEMENT (COLLECT OR DIRECT) (D)

Format: READ option-list;

where the "option-list" consists of two or more options separated by
blanks. The options may be in any order. They are as follows:

1. FILE(filename). Your program must contain a DECLARE
statement giving the "filename" the FILE attribute. The file
must be opened with the INPUT and RECORD attributes. If the
file is not open, then CPL will open it implicitly with these
attributes. .

2. INTO(identifier). The "identifier" must be a scalar with the
CHARACTER attribute, either VARYING or NONVARYING. CPL will
read one record from the file. (That is, CPL will read all
characters in the file up to an including the next line feed.
CPL will discard the carriage -return and 1line feed.) The
characters 1in the record are stored as the value of the
specified identifier.

3. IGNORE (expression). CPL evaluates the "expression" to obtain
an integer wvalue, n, which must be non-negative. If n is
positive, then CPL reads and ignores n records from the file.

You must specify either the INTO option or the IGNORE option.

For the purposes of the READ statement, a "record" consists of all
characters up to and including the next line feed. CPL ignores all
carriage return characters. CPL stores all characters, up to but not
including the 1line feed character, into the storage occupied by the
INTO variable.

14.11 THE WRITE STATEMENT (COLLECT OR DIRECT) (D)

Format: WRITE option-list;

where the "option-list" consists of options separated by blanks. The
options may be in any order. They are as follows:

1. FILE(filename). Your program must contain a DECLARE
statement giving the "filename" the FILE attribute. The file
must be opened with the INPUT and RECORD attributes. TIf the
file is not open, then CPL will open it implicitly with these
attributes.

2. FROM(identifier). The "identifier" must be a scalar with the
CHARACTER attribute (either VARYING or NONVARYING). CPL
transmits the current value of the CHARACTER variable to the
file as a single record.

CPL transmits the characters to the output file, and then terminates
the transmission with a carriage return and line feed.

14-9

FILE I/O TO ARBITRARY FILES (C-D)

14.12 THE CLOSE STATEMENT (COLLECT OR DIRECT) (D)

Format: CLOSE FILE(filename) [, FILE(filename) ...];

Your program must contain a DECLARE statement specifying the FILE
attribute for the "filename."

CPL closes the specified file or files. If the file is not open, then
CPL simply moves on to the next operation.

14.13 THE CLOSE FILES STATEMENT (COLLECT OR DIRECT) (D)

Format: CLOSE FILES ;

WARNING: This statement is not in the ANSI PL/I standard, and so will
not be available in other PL/I implementations.

CPL will close all open files.

14-10

CHAPTER 15

BLOCK STRUCTURE AND DECLARATION SCOPE RULES (C-D)

This and the following chapters contain a complete treatment of the
way in which CPL handles program blocks.

This chapter is an introductory chapter in the sense that it contains
a great deal of technical information that is common to all types of
blocks. Therefore, the technical portions of the later chapters will
depend upon the material given here.

Nonetheless, if you are a beginning CPL programmer, you are encouraged
to skip this chapter entirely, or to skim it for an overview.

If you want to know how to code a subroutine, then start with the
chapter entitled "Subroutine and Function PROCEDUREs." That chapter
contains enough introductory material to get you started. And when
you become an expert, you can always come back and learn the
complexities.

Similarly, if you want to handle some error conditions, such as end of
file, then start reading the chapter entitled "ON-conditions and error
handling," learn the subleties as you need them.

This chapter also describes the SNAP statement. You use the SNAP

statement when you wish CPL to type out a listing of all active
blocks.

15.1 THE BEGIN STATEMENT (COLLECT ONLY) (C)

Format: BEGIN; ... END;

The BEGIN and END statements enclose a group of statements. You may
put the BEGIN and END statements, and the statements they enclose, on
separate lines of your program.

The BEGIN and END statements, as well as the statements they enclose,
form what is called a program "block."

15.2 PROGRAM BLOCKS WITH PROCEDURE STATEMENT (D)

A PROCEDURE statement, 1its corresponding END statement, and the
statements they enclose, also form a program block. The usage of
PROCEDURE blocks is discussed in the chapter entitled "Subroutine _and
Function PROCEDUREs."

15-1

BLOCK STRUCTURE AND DECLARATION SCOPE RULES (C-D)

15.3 SCOPE RULES FOR DECLARATIONS IN BLOCKS (D)

Suppose a DECLARE statement appears within a BEGIN/END or PROC/END
block in your program. Then that declaration will apply within that
program block. Outside of that block, it will be as if that
declaration had never been made.

The "scope" of a declaration is the range of statements over which the
declaration applies. If a declaration is made inside a block, then
its scope will include, at most, only the remaining statements within
that block. 1If a declaration does not lie within any interior block,
then its scope may be the whole program.

Consider this program segment:

10. A=5;

20. BEGIN;

30. DECLARE A(10);
40. A(l)=5;

50. END;

60. A=10;

Statement 30 declares A to be an array. The scope of this declaration
is the BEGIN block which begins at statement 20 and ends at statement
50. Thus, the reference to A in statement 40 is tc the array A.

However, the declaration of A in statement 30 does not apply at all
outside the block. Thus, the references to A in statements 10 and 60
are to an entirely different variable A. In the absence of any
declaration for A in the program outside the BEGIN/END block, the
references to A in statements 10 and 60 are to a default scalar
variable having nothing in common (except the identifier name) with
the variable A declared in statement 30.

15.3.1 Default Vs. Explicit Declarations (D)

There are several kinds of explicit declarations in CPL:

1. The most common kind of explicit declaration is that of an
identifier appearing in a DECLARE statement.

2. If you use a statement label, then the 1identifier appearing
in the statement label is explicitly declared in this way.

3. In a PROCEDURE statement (to be described in a later chapter)
all identifiers appearing in the parameter 1list are
explicitly declared to be parameters.

All of these are explicit declarations. The discussions about scope
rules in preceding and following sections apply to all such explicit
declarations.

There is also a default declaration for each identifier. This default

declaration is that one which is given in the chapter on the DEFAULT
statement.

15-2

BLOCK STRUCTURE AND DECLARATION SCOPE RULES (C-D)

15.3.2 Scope Of Default And Explicit Declarations (D)

Consider the following program segment:

10. DECLARE A FIXED;

20. A,B=5;

30. BEGIN;

40. DECLARE (A,B) FLOAT;
50. A,B=5;

60. BEGIN;

70. DECLARE B FLOAT;

80. A,B=5;

90. END;
100. END;

Let us consider the scope of each of the declarations of A and B.

Since the first declaration of A is not enclosed in a block, the
default declaration of A has no scope at all. The declaration of A in
statement 10 applies only to the statements outside the block at
statement 30, since there 1is another declaration of A inside that
block. The declaration of A in statement 40 has a scope equal to the
entire block from statements 30 through 100. Thus the reference to A
in statement 20 is to the declaration in statement 10, while the

references to A in statements 50 and 80 are to the declaration in
statement 40.

The reference to B in statement 20 is to the default declaration of B.
The scope of the default declaration of B is all statements outside
the block beginning at statement 30. The scope of the declaration of
B in statement 40 1is all statements inside the block beginning at
statement 40, excluding all statements inside the block beginning at
statement 60. The scope of the declaration of B in statement 70 is
the block beginning at statement 60.

Thus the general rules are as follows:

The default declaration of an identifier has, as a scope, all parts of
the program, except those parts in the scope of an explicit
declaration of the same identifier.

An explicit declaration of an identifier applies to all statements
inside the block in which the declaration 1lies (or to the whole
program, if the declaration is not inside a block), with the exception
of the statements inside any block which, itself, contains an explicit
declaration of the same identifier.

15.3.3 Labels On PROC And BEGIN Statements (D)

A label appearing on a PROCEDURE or BEGIN statement 1is an explicit
declaration of the statement label identifier. This declaration is
not considered to be inside the BEGIN or PROC block; instead it is in
the block encompassing the BEGIN or PROC statement.

15-3

BLOCK STRUCTURE AND DECLARATION SCOPE RULES (C-D)

15.4 BLOCK INVOCATION OR TERMINATION (D)

This sections describes when CPL 1invokes or terminates a program
block.

15.4.1 How A Block Is Invoked (D)

The way in which a block is invoked depends upon the type of block.
The possibles ways are as follows:

1. A BEGIN/END block which is not an ON-unit is invoked when CPL
executes the BEGIN statement.

2. A PROCEDURE/END block is invoked by means of a CALL statement
to the specified statement, or by means of an appropriate
function reference. This subject is discussed in the chapter
on PROCEDURES.

3. A BEGIN/END block which is an ON-unit is invoked when the
specified condition is raised. This topic will be discussed
in detail 1in the chapter entitled "Error Handling and
ON-conditions."”

15.4.2 Normal Termination Of A Block (D)

The use of the terms "normal termination"” and "abnormal termination"
for blocks is similar to their use for DO/END groups.

How a block is terminated depends upon the type of block:

1. A BEGIN/END block which is not an ON-~unit is terminated when
the END statement 1is executed. Control passes to the
statement following the END statement.

2. A PROCEDURE/END block is terminated normally by execution of
a RETURN statement or of the END statement at the end of the
block. When this happens, control returns to the point where
the PROCEDURE was invoked (the CALL statement or the function
reference).

3. A BEGIN/END block which is an ON-unit is terminated normally
by execution of the END statement. 1In most cases, normal
termination of an ON-unit is illegal; when it is legal, then
control returns to the point at which the condition was
raised. Please refer to the chapter on error handling for
more information.

15.4.3 Abnormal Termination Of A Block (D)

CP; terminates a block abnormally when it executes a GOTO statement
which 'transfers control outside of the block. When this happens,
execution continues with the statement to which the GOTO was made.

15-4

BLOCK STRUCTURE AND DECLARATION SCOPE RULES (C-D)

15.5 THE BLOCK PROLOGUE AND EPILOGUE (D)

CPL performs special additional operations when a block is invoked or
terminated. These special operations are called the block prologue
and epilogue. This section describes these special operations.

15.5.1 The Block Prologue (D)

Whenever a new block is invoked, as described in the above rules, CPL
performs a prologue. The block prologue performs the following:

1. If the block is a PROCEDURE/END block, and the PROCEDURE
statement specifies parameters, then the parameters are
matched to the arguments, in the manner described in the
chapter on PROCEDURES.

2. CPL allocates storage for each variable explicitly declared

in the block with the AUTOMATIC attribute. (This is the
default, unless modified by a DEFAULT statement.)

15.5.2 The Block Epilogue (D)

An epilogue is performed for each block which is terminated, whether
normally or abnormally. All AUTOMATIC storage which was allocated by
the prologue is freed.

15.6 RECURSIVE BLOCKS (D)

PROCEDURE and ON-unit blocks may be recursive. This means that there
may be several invocations of the same block active at the same time.
(This happens, for example, when a PROCEDURE calls itself,. See the
chapter on PROCEDUREs for examples of this,)

When a block is invoked recursively, separate copies are made of all
the AUTOMATIC variables declared in that block. In this way, each
AUTOMATIC variable in a block 1invocation 1is unique to that block
invocation, and there are as many copies of it as there are additional
invocations of the same block.

15.7 THE SNAP STATEMENT (DIRECT OR COLLECT) (C)

Format: SNAP ;

The SNAP statement causes CPL to type out on your terminal a "snap
dump" of the current status of all active blocks in the execution of
your program. You will find this statement useful for debugging your
program when you are confused about which program blocks are active.

The blocks are listed in reverse order of invocation, with the most
recently activated listed first.

15-5

BLOCK STRUCTURE AND DECLARATION SCOPE RULES (C-D)

Here is a typical SNAP dump:

STMT # BLOCK TYPE

85.+3 70. PROC
50. 40.+1 ON
95. 90. BEGIN
90. 70. PROC
10.

Each line of this dump contains the following information about one
active block:

1. STMT# is the statement number of the "current" statement
active in that block.

2. BLOCK is the statement number of the first statement in the
BLOCK. (This is a BEGIN statement or a PROCEDURE statement.)

3. TYPE is the type of block -- PROC for PROCEDURE/END block,
BEGIN for BEGIN/END block which is not an ON-unit, and ON for
an ON unit.

The blocks are listed in reverse order of invocation.
Thus, the above example gives the following information:

The current statement in the current block has statement
number 85.+3. (This means that it is the fourth statement on
line 85 of your program.) This statement is in the PROCEDURE
block which begins at line 70.

That PROCEDURE was invoked at line 50, in the ON-unit which
begins in line 40.+1.

The ON-unit was invoked by an error in statement 95 in the
BEGIN block which begins at statement 90.

This BEGIN block was invoked at statement 90 (the BEGIN
statement), which is in the PROCEDURE which begins at
statement 70. This 1is a recursive invocation of that

PROCEDURE, since the first line also shows the same PROCEDURE
active.

Finally, this PROCEDURE was invoked by the statement at 1line
10.

15-6

CHAPTER 16

STORAGE CLASSES (D)

Most users will not need to understand this chapter to write programs.
For this reason, you may skip this chapter on first reading.

Each CPL variable has a storage class. Either you declare the storage

class explicitly (as in a DECLARE statement) or else CPL assigns a
default storage class.

16.1 DEFAULT STORAGE CLASS RULES (D)

A default storage class may only be STATIC or AUTOMATIC. It will
always be AUTOMATIC, unless your program contains a DEFAULT statement
specifying a default attribute of STATIC. For more information on

doing this, refer to the chapter entitled "The DECLARE and DEFAULT
Statements."

16.2 DIFFERENCES AMONG THE STORAGE CLASSES (D)

The different storage classes are listed below. For each storage
class, the description below will give the following information:

1. How the storage class is declared or otherwise specified.

2. Whether the storage class specifies that the identifier is a
constant or a variable.

3. If it is a variable, when storage for the variable is
allocated and freed.

16.3 LIST OF STORAGE CLASSES (D)

Here is a list of all the storage classes that CPL supports:

16-1

STORAGE CLASSES (D)

16.3.1 AUTOMATIC Storage Class (D)

Abbrev: AUTO for AUTOMATIC

Every CPL identifier which is declared in a DECLARE statement is given
a storage class of AUTOMATIC, unless:

1. Your program contains a DEFAULT statement specifying that the
default storage class should be STATIC.

2. The declaration specifies a different storage class (STATIC,
CONTROLLED, BASED, or PARAMETER).

3. The attribute BUILTIN is declared.

4. The FILE attribute is declared.

If a variable has the AUTOMATIC storage class attribute, then storage
for it is allocated when the program block in which it is declared is
entered. It is freed when the block is terminated.

EXAMPLE: Consider the program segment

BEGIN ;
DECLARE A(1000) FLOAT AUTOMATIC ;

END ;

The array A, when allocated, requires 1000 words. This storage is not
actually allocated until the BEGIN statement is executed.

EXAMPLE: You may use variables in the extent expressions. These
extent expressions are evaluated at the time the block is entered,
before the storage is allocated.

Consider the following program segment:

N=10 ;
BEGIN ;
DECLARE A(N,N+1) AUTO ;

END ;

When the BEGIN statement is executed, the values of N and N+1 are
computed using the current value (10) of N. The array bounds are set
to those values. Thus, the array is allocated with dimensions 10 and
11.

The above example uses the heretofore undefined term "extent
expression." This term refers to any expression, appearing in a
declaration, which specifies a bound or size. There are three places
where extent expressions occur:

1. A dimension bound expression, either an upper or lower bound,
is an extent expression. The preceding example shows
variable extent expressions for the upper bound of a
dimension expression. Another EXAMPLE: DECLARE A(I:J+K):;
contains variable extent expressions for both the lower bound
("I") and the upper bound ("J+K").

16-2

STORAGE CLASSES (D)

2. The parenthesized expression following the CHARACTER
attribute 1is an extent expression. EXAMPLE: CHAR(23) and
CHARACTER (N+M) VARYING contain the extent expressions "23"
and "N+M".

3. Same for the BIT attribute.

16.3.2 STATIC Storage Class (D)

An identifier will be given the STATIC storage class attribute if
either a DEFAULT statement specifies a STATIC default, or the
declaration of the identifier specifies STATIC.

STATIC storage 1is allocated at the ¢time you enter the DECLARE
statement. It is never freed (unless you erase the DECLARE
statement) .

Extent expressions in declarations for STATIC storage may not contain
any variables.

16.3.3 CONTROLLED Storage Class (D)

Abbrev: CTL for CONTROLLED

If you wish a variable to have the CONTROLLED attribute you must
specify it in the DECLARE statement.

CPL never automatically allocates or frees CONTROLLED storage.
Instead, you must explicitly allocate storage for a CONTROLLED
indentifier with an ALLOCATE statement, and free it with a FREE
statement.

The ALLOCATE and FREE statement are described later in this chapter.

16.3.4 BASED Storage Class (D)

The BASED storage class is significantly different from all the
others, and so it is described in a later chapter, "BASED Storage and
POINTERs."

Please refer to that chapter for more information.

16.3.5 PARAMETER Storage Class (D)

Abbrev: PARM for PARAMETER

An identifier 1is declared to be a PARAMETER by virtue of its
appearance in the parameter list of a PROCEDURE statement.

Your program may also contain a separate declaration of the same
identifier in the same block for the purpose of specifying the data
type of the parameter. In that case, the declaration may specify the
PARAMETER attribute.

16-3

STORAGE CLASSES (D)

Parameters are discussed fully in the chapter entitled "Subroutine and
Function PROCEDUREs."

16.3.6 NAMED CONSTANT Storage Class (D)

Any identifier with the NAMED CONSTANT is a constant, not a variable.
It may never appear on the left hand side of an assignment statement.

A NAMED CONSTANT is declared in the following ways:

1. Any identifier declared with the FILE attribute 1is a NAMED
CONSTANT.

2. A statement label is a NAMED CONSTANT.

16.4 THE ALLOCATE STATEMENT (DIRECT OR COLLECT) (D)

Abbrev: ALLOC for ALLOCATE
Format: ALLOCATE ident [,ident]...

The "ident" must be an identifier with the CONTROLLED storage class
attribute.

CPL allocates storage for the specified identifier. If storage has
already been allocated, then CPL allocates an additional copy.

16.5 THE FREE STATEMENT (DIRECT OR COLLECT) (D)

Format: FREE ident [,ident]...

The "ident" must be an identifier with the CONTROLLED storage class
attribute.

There must exist at least one allocation of the specified identifier.
CPL releases the storage occupied by the most recent allocation.

16.6 EXAMPLES OF CONTROLLED STORAGE (D)

Consider the following program segment:

DECLARE A CONTROLLED;

ALLOCATE A;

A= 2;

ALLOCATE A;

A= 12;

PUT LIST(A,ALLOCATION(A))/* RESULT 1S "12 2" */;
FREE A;

PUT LIST(A,ALLOCATION(A))/* RESULT IS "2 1"*/;

l6-4

STORAGE CLASSES (D)

The first ALLOCATE statement creates the first allocation of A. The
second ALLOCATE statement creates a second allocation. The FREE
statement frees the most recent allocation.

The ALLOCATION built-in function returns the current number of
allocations of the specified CONTROLLED identifier.

It is also legal for a CONTROLLED declaration to ccontain variable

extent expressions (array bounds and string 1lengths) as 1in the
following example:

DECLARE A(N,N+1) CONTROLLED;

N = 12;
ALLOCATE A;

When the ALLOCATE statement is executed, the wvalue of N is 12.
Therefore, the array will be allocated with the dimensions (12,13).

16-5

CHAPTER 17

SUBROUTINE AND FUNCTION PROCEDURES (C-D)

17.1 WHY DO YOU NEED PROCEDURES? (C)

There are two reasons why you will use PROCEDURES.

1. To save space. Suppose your program contains a section of
code performing a specific operation, and suppose that this
operation must be performed in several different places in
the program. Instead of repeating the same section of code
in several different sections of your program, you can save a
lot of space by writing the section of code once as a
subroutine PROCEDURE and then calling that procedure each
time you want to execute the section of code.

See the example below.

2. To provide program "modularity." A program is "modular" if it
is broken up into small PROCEDUREs each of which performs a
simple function.

This use for PROCEDUREs is different from the preceding one.
You may have a large complex section of code in your program.
You may remove a section of this code which performs a simple
function and place it into a subroutine. You would do this
even though that subroutine would be called only once. In
this way, you have simplified a large section of code, and
you have made it easier to understand, debug and maintain.

For more information on this concept, please refer to the
chapter entitled "Structured and GOTO-less Program."

EXAMPLE: Suppose there are several points in your program where you
wish to type out a table of values. You code a subroutine TABLEOUT
which types out the the table. Then, at each point in your program
where you wish to type out the table, you insert the statement "CALL
TABLEOUT;".

Your program may end up looking something like this:

CALL TABLEOUT

CALL TABLEOUT

~e

-

CALL TABLEOUT

~

17-1

SUBROUTINE AND FUNCTION PROCEDURES (C-D)

TABLEOUT: PROCEDURE ;
/* THIS PROC TYPES OUT THE TABLE */

RETURN ;
END TABLEOUT;

17.2 PROCEDURE ARGUMENTS AND PARAMETERS (C)

In the preceding example, we assumed that the subroutine PROCEDURE was
to do exactly the same thing each time it was called.

But suppose you wish a PROCEDURE to operate in the same general way
each time 1it's called, but with some minor differences, and you wish
to specify the difference when you call it.

For example, suppose you wish to write a subroutine which prints out
the n'th through m'th records of a file, with n and m to be specified
at the time that the subroutine 1is called. The following program
segment illustrates such a subroutine:

CALL TYPEREC (30,40);

CALL TYPEREC (50,70);

GET LIST(I,J);

CALL TYPEREC(I,J)
TYPEREC: PROC (N, M) ;

DECLARE F FILE, C CHAR(100) VAR;

OPEN FILE(F) RECORD;

READ FILE(F) IGNORE (N-1);

DO I=N TO M;

READ FILE(F) INTO(C);

PUT SKIP LIST(C);

END;

CLOSE FILE(F);

RETURN;

END TYPEREC;

The first call to TYPEREC will cause records 30 through 40 to be typed
out. The second call will cause records 50 through 70 to be typed.
And the third call specifies variable limits, determined by the values
of I and J which are typed in as a result of a GET LIST statement.

Each of the CALL statements in the above example specifies two
"arguments," 30 and 40 in the first CALL, 50 and 70 in the second

CALL, and I and J 1in the third. These arguments may be any
expressions. They are evaluated before control passes to the
subroutine.

Now look at the PROCEDURE statement in the above example. This

statement specifies two "parameters," n and m. When the PROCEDURE is
invoked, the two parameters will be given values equal to the two
arguments (30 and 40 or 40 and 50 or I and J in the above example).
Thus, in the first CALL, n will equal 30 inside the procedure, and m

17-2

SUBROUTINE AND FUNCTION PROCEDURES (C-D)

will equal 40. In the second CALL, n will be given the value 50 and m
the value 60. And in the third call, n and m will be given whatever
values I and J have.

17.2.1 Difference Between Argument And Parameter (C)

Be certain that you understand the difference between an "argument"”
and a ‘"parameter." An argument appears in a CALL statement and a
parameter appears in a PROCEDURE statement. The CALL statement must
contain exactly the same number of arguments as there are parameters
in the PROCEDURE statement. When the CALL statement is executed, each
of the arguments is evaluated, and the parameters take on these values
during execution of the statements in the PROCEDURE.

17.2.2 Real Versus "dummy" Arguments (C)

What happens if a PROCEDURE assigns a value to one of the parameters?
Does the wvalue of the argument get changed? The answer is "yes,"
unless a dummy argument is created.

For example, consider the following program:

10. A,B=5;
20. CALL CH(A,B+1);
30. ?A,B;
100. CH: PROCEDURE (X,Y) ;
110. ?X,Y
120. X,Y=10;
130. RETURN;
140. END CH;

Let us consider what happens in the above program. In statement 20,
the arguments A and B+l are evaluated and the values, 5 and 6
respectively, are given to the parameters X and Y. Therefore, when CH
is entered statement 110 will print out the values 5 and 6. Then
statement 120 assigns the value 10 to the parameters X and Y. The
assignment to X will cause the value of the argument A to be changed
to 10. But the assignment to Y will leave the value of B unchanged
for the following reason: When the argument B+l was evaluated, a
"dummy" argument is created, and the value 6 is assigned to it. When
an assignment is made to the parameter Y, the value of the dummy
argument is changed, but the value of B is not modified.

Therefore, when the RETURN statement in statement 130 1is executed,

control will return to statement 30, and this statement will print the
values 10 and 5.

17.2.3 Data Types Of Arguments And Parameters (C)

Arguments and parameters may have any computational data type.
Consider, for example, the following program:

17-3

SUBROUTINE AND FUNCTION PROCEDURES (C-D)

10. DECLARE C CHAR(5) ;
20. C='ABCDE';

30. CALL DE(C);

40. 2C;

100. DE: PROCEDURE (P) ;
110. DECLARE P CHAR(5) ;
120. P = '12345"';
130. RETURN;
140. END DE;

Notice that the PROCEDURE DE contains a separate declaration of P for
the attributes CHAR(5). 1In the CALL in statement 30, the argument C
also is CHAR(5), and so no dummy argument 1is created. When P is
assigned a value in statement 120, the value of C is changed, so that
statement 40 will print the value '12345°'.

If the data type of the argument does not precisely match the data
type of the parameter, then the argument will be converted to the data
type of the parameter and a dummy argument with that data type and
value will be created.

The complete rules on argument and parameter matching are given below
in this chapter.

17.3 FUNCTION PROCEDURES (C)

A procedure can be invoked either as subroutine, using a CALL

statement, or as a function, by referencing the PROCEDURE name in an
expression.

The PROCEDURE may simply compute a complicated expression. Consider,
for example, the following PROCEDURE:

HYP: PROCEDURE (A,B) ;
RETURN (SQRT (A**2+B**2)) ;
END HYP;

This PROCEDURE computes the length of the hypotenuse of a right
triangle with legs A and B.

For example, the statement "X=HYP(3,4);" will assign to X the value 5.
In executing this statement, the parameters A and B take on the values
of the arguments 3 and 4, respectively. The formula SQRT(A**24+B**2)

is computed and substituted into the expression which invoked the
procedure HYP.

Note that a different form of the RETURN statement was used. In this
case, the RETURN statement specified an expression which was to be
computed and returned to the caller.

The rules for arguments and parameters presented elsewhere in this

chapter apply to function PROCEDUREs just as they apply to subroutine
PROCEDUREs.

17-4

SUBROUTINE AND FUNCTION PROCEDURES (C-D)

17.3.1 Further Examples Of Function Procedures (C)

Here is a PROCEDURE which computes and returns the factorial of the
argument:

FAC: PROCEDURE (NUM) ;
PRCD = 1;
DO I = 1 TO NUM;
PROD = PROD*I;
END;
RETURN (PROD) ;
END FAC;

If you typed "?FAC(6)", the value 720 would be typed out.

A PROCEDURE can return any computational data type. You specify with
the RETURNS option of the PROCEDURE statement what the data type to be
returned should be.

Here, for example, is a PROCEDURE which has no parameters and which
returns a CHARACTER string containing the time of day in the format
hh:mm. It uses the TIME built-in function which returns the time of
day as a character string in the format hhmmssddd (hours, minutes,
seconds, thousandth's of a second -- see the description of the TIME
built-in function in the chapter on built-in functions).

T: PROCEDURE RETURNS (CHAR(5)) ;
DECLARE TEMP CHAR(9);
DECLARE TIME BUILTIN;
TEMP = TIME();
RETURN (SUBSTR(TEMP,1,2)!!': 'l 1SUBSTR(TEMP),3,2));
END T;

For example, if you invoke this PROCEDURE at 2:30 in the afternoon,

say, by means of the statement "?T()", then it will return the
character string '14:30°'.

17.4 THE PROCEDURE STATEMENT (COLLECT ONLY) (C)

Abbrev: PROC for PROCEDURE

Format: label: PROCEDURE [(parameter-list)] [returns-option];
. ; END;

where the optional "parameter-list" has the format

(identifier [,identifier ...1])
and the optional returns-option has the format:

RETURNS (data type)
The data type in this case is one of the following, where "integer"
stands for any positive integer: FIXED, FLOAT, CHAR(integer),
CHAR (integer) VARYING, BIT(integer), or BIT(integer) VARYING.
If you omit the returns-option, then CPL will assume one. CPL will

assume a returns-option of either FIXED or FLOAT, depending upon the
default attributes of the "label" of the procedure. If there 1is no

17-5

SUBROUTINE AND FUNCTION PROCEDURES (C-D)

DEFAULT statement in your program, then RETURNS(FLOAT) will be
assumed. If you have a DEFAULT statement, then the default data type
of the RETURNS will be exactly the same as it would be for the
identifier "label," if "label" were being used as an ordinary
variable.

When the PROCEDURE is invoked, either as a subroutine with a CALL
statement, or as a function, then the parameters are assigned the
values of the arguments, the point at which the PROCEDURE was invoked
is saved, and control passes to the statement following the PROCEDURE
statement. When a RETURN statement 1is encountered, then control
passes back to the point of invocation.

The exact rules for matching arguments and parameters are discussed
later in this chapter.

17.5 THE CALL STATEMENT (DIRECT OR COLLECT) (C)

Format: CALL name [(argument-list)];
The optional arqument-list has the format:
(expression [,expression]...)

The "name" must be the label of a PROCEDURE statement appearing in
your program. The number of arguments in the argument list must be
exactly equal to the number of parameters appearing in the PROCEDURE
statement.

CPL takes the following steps to execute a CALL statement:

1. Each of the expressions in the arqgument 1list 1is evaluated.
Each argument is matched with the corresponding parameter in
a manner described fully later in this chapter.

2. CPL saves and remembers the exact place from which the CALL
took place. This is called the "point of invocation" of the
PROCEDURE, since it is the place where the PROCEDURE was
invoked.

3. CPL transfers control to the statement following the
PROCEDURE statement.

17.6 INVOCATION OF A PROCEDURE AS A FUNCTION (C)

Exactly the same steps are taken if the PROCEDURE 1is invoked as a
function. The "point of invocation," however, is a reference to the
PROCEDURE appearing in an expression.

In this case, you must return from the PROCEDURE with a RETURN
statement specifying an expression. The value of this expression will
be substituted for the function reference in the expression at the
point of invocation.

17-6

SUBROUTINE AND FUNCTION PROCEDURES (C-D)

Although it is unusual, the same PROCEDURE can be wused as both a
function and a subroutine PROCEDURE. The only rule is that if a
PROCEDURE is invoked as a subroutine (with a CALL statement) then you
must return with a simple RETURN statement with no expression; but
for a function invocation, you must return with a RETURN statement in
the format RETURN (exp).

17.7 THE RETURN STATEMENT (DIRECT OR COLLECT) (C)

Format: RETURN [(expression)];

The form without the expression must be wused 1if the PROCEDURE was
invoked as a subroutine (with a CALL statement.)

The form with the expression must be used if the PROCEDURE was invoked
as a function. In this case, the expression 1is evaluated and
converted to the data type of the returns-option, if any, or of the
default returns-option if vyou didn't specify one in your PROCEDURE
statement.

In either case, control returns to the "point of invocation"; that
is, the point where the PROCEDURE was originally invoked.

The RETURN statement must appear inside a PROCEDURE. It may appear
inside a BEGIN/END block nested inside a PROCEDURE, as long as the
BEGIN/END block is not an ON-unit. 1In that case, the BEGIN/END block
is terminated normally before a RETURN is made from the PROCEDURE.

A RETURN statement may not be executed from an ON-unit.

17.7.1 Executing The End Statement Of A Procedure (C)

If you execute the END statement of a PROCEDURE, then a RETURN
statement with no expression is simulated. This is legal only in a
PROCEDURE invoked as a subroutine (with a CALL statement).

17.8 MATCHING ARGUMENTS TO PARAMETERS (D)

When a PROCEDURE is invoked, the CALL statement or function reference
must specify exactly the same number of arguments as there are
parameters in the PROCEDURE statement.

17.8.1 Data Attributes Of The Parameters (D)

Each parameter in your PROCEDURE has specific data attributes. You
may specify these data attributes in a separate DECLARE statement in
the PROCEDURE. The rules for such a declaration are given below.

If you do not have a separate declaration for the parameter, then CPL
assigns default attributes to the parameter in the same way that it
assigns them to an ordinary identifier. That 1is, 1if there 1is no
DEFAULT statement in your program, then the parameter will be a FLOAT
scalar. If you have a DEFAULT statement, then the parameter will be a

SUBROUTINE AND FUNCTION PROCEDURES (C-D)

FIXED or FLOAT scalar, depending upon the first 1letter of the
parameter name as specified in your DEFAULT statement.

17.8.2 Rules For The Separate Declaration For The Parameter (D)

Here are the rules for the attributes which may be specified for a
parameter:

1. Any variable data type may be specified -- FIXED, FLOAT, CHAR
[VAR], BIT |[VAR, POINTER]. If no data type is specified,
then the usual default rules apply.

2. The storage class PARAMETER may be specified. No other
storage class may be specified. If no storage class is
specified, then the storage class will default to PARAMETER.
(CPL knows that the 1identifier 1is a parameter since it
appeared in the parameter list of a PROCEDURE statement.)

3. You may specify that the parameter is an array. You do this
by specifying array bounds in the usual manner.

4. You may not use variables in the length specification of a
BIT or CHAR attribute, or in the dimension bounds for an
array specification. (That is, you may not use variable
extent expressions in your declaration.)

5. However, you may code an asterisk in place of a 1length
specification or an array bound. If you do this, then you
must specify PARAMETER. In that event, the corresponding
values will be taken from the arguments.

For example, the following declarations are legal:
DECLARE A CHAR(*) PARAMETER;

DECLARE B (*,*) PARAMETER;
DECLARE C(*) BIT(*) VAR PARAMETER;

17.8.3 Rules For Matching Arguments And Parameters (D)

For each argument/parameter pair in a PROCEDURE invocation, there are
three things that CPL can do:

1. CPL can match the argument directly to the parameter without
creating a dummy. In this case, any change to the parameter
will change the value of the argument.

2. CPL can create a dummy argument, and match that to the
parameter. In that <case, any change to the parameter will
change the value of the dummy, but will not change the value
of the original argument.

3. CPL can take an error stop. This will happen if the argument
and parameter are incompatible.

The following sections give the rules when each of these happens.

17-8

17.8.3.1

SUBROUTINE AND FUNCTION PROCEDURES (C-D)

Case 1 -- No Dummy Is Created (D) - This case applies if all

the following are true:

1.

The argument must be simple identifier or subscripted
identifier.

The data type of the argument must be identical to the data
type of the parameter. Note ‘that CHARACTER VARYING is a
different data type from CHARACTER NONVARYING.

If the argument is a scalar or a subscripted array element,
then the parameter must be a scalar., If the argument is an
array, then the parameter must be an array with the same
number of dimensions.

For each 1length value or array bound value among the
attributes of the argument, the corresponding extent
expression must be either (a) an asterisk or (b) a constant
expression equal to that value in the argument.

17.8.3.2 Case 2 -- A Dummy Argument Is Created (D) - A dummy argument
is created when all the following happen:

1.

2.

The argument and the parameter are both scalar.

One of the conditions of case 1 does not hold. This means
that the argument 1is an expression or constant or it has a
different data type or length value from the parameter.

17.8.3.3 Case 3 -- Match Cannot Be Made (D) - This is the error case.
This case holds whenever any of the following hold:

1.

The argument has a non-~computational data type.
The argument is a scalar and the parameter is an array.
The argument is an array and the parameter is a scalar.

The argument and parameter are both arrays, but they have a
different number of dimensions.

The argument and parameter are both arrays, but they have
different data types.

The argument and parameter are both arrays with the same data
type, but either the length expression or the array bounds
for the parameter are different from those for the argument.
This cannot happen for any extent expression in the parameter
declaration for which an asterisk is coded.

17-9

SUBROUTINE AND FUNCTION PROCEDURES (C-D)

17.8.4 Some Examples Of Argument Matching (D)

Consider the following program:

10. DECLARE D CHAR(100), E(10) FLOAT ;
20. CALL PR(A,B, (C),D,E(3)):

100. PR: PROCEDURE (V,W,X,Y,2) ;

110. DECLARE V FIXED ;

120. DECLARE Y CHAR(*) ;

200. END PR ;

Let us consider each of the four argument/parameter pairings.

1. The arqument A is FLOAT and the parameter V is FIXED. A will
be converted to FIXED and a dummy argument will be created.

2. The argument B and the parameter W are both FLOAT, so that no
dummy will be created.

3. Enclosing the argument C in parentheses is a signal to CPL to
create a dummy argument. This happens because (C) 1is
considered to be an expression.

4. The argument D is CHAR(100) and the parameter Y 1is declared
to be CHAR(*); No dummy argument is created. If you
reference LENGTH(Y) 1inside the FROCEDURE, then CPL will
return 100.

5. E(3) is a FLOAT scalar argument and since the parameter Z is
FLOAT, no dummy will be created. If you change the value of
Z inside the PROCEDURE, then the value of E(3) will be
changed.

17.9 RECURSIVE PROCEDURES (D)

It is possible for you to invoke a procedure which is already active.
If this happens, then the 1invocation is called a "recursive"
invocation.

If you invoke a PROCEDURE recursively, then CPL makes new copies of
the parameters and allocates new copies of all AUTOMATIC storage. All
STATIC variables are the same in all invocations of the PROCEDURE.

Storage allocation has been described in detail 1in a preceding
chapter, entitled "Block Structure and Declaration Scope Rules."

Generally if you have a choice between using a recursive procedure and
coding a DO-loop, you should choose the latter since it is more
efficient.

The FAC PROCEDURE shown near the beginning of this chapter 1is coded

with a 1loop. Here is another way to code the same function using a
recursive PROCEDURE.

17-10

SUBROUTINE AND FUNCTION PROCEDURES (C-D)

This PROCEDURE is based on the following "recursive" definition of
factorial:

FAC(0) = 0
FAC(N) = N*FAC(N-1)

If you have never seen this recursive definition of factorial, vyou
should try to use the formulas in the definition to compute FAC(3), to
see how it works.

Here is the translation of this definition into a recursive PROCEDURE:
FAC: PROCEDURE (NUM) ;
IF NUM<1 THEN RETURN(1) :

ELSE RETURN (NUM*FAC (NUM-1)) ;
END FAC ;

17.10 USE OF THE SNAP STATEMENT (C)

If your program stops in the middle of a PROCEDURE and you are
wondering how it got there, then type the "SNAP" statement.

The format of the snap dump produced by the SNAP statement has been
described in the chapter on block structures.

17-11

CHAPTER 18

ON-CONDITIONS AND ERROR HANDLING (C-D)

18.1 WHY DO YOU NEED ON-CONDITIONS? (C)

Suppose you are writing a program which is to be used by other people.
You would like this program to continue executing under all
circumstances, even in case of error. You may use ON-units to
guarantee this.

There are a number of reasons that such a program might stop
executing. Here are some possibilities:

1. The person running the program may type in illegal input.

2. The program may be unable to open an output file due to a
lack of file space.

3. The program may reach end-of-file on an input file.
4. The program may contain a hitherto unknown bug.
By means of ON-units, you may write your program so that it can

analyze all of the above conditions and decide whether and how
execution is to continue.

18.2 SOME INTRODUCTORY EXAMPLES (C)

18.2.1 Example Of An ERROR ON-unit (C)

Suppose you are writing a program for others to use, and the program
contains a GET LIST statement. You would like the program to continue
even if the person using the program types invalid input 1in response
to the GET LIST.

Consider the following program segment:

ON ERROR BEGIN;
PUT LIST('ILLEGAL INPUT TRY AGAIN'); PUT SKIP;
GO TO GET;
END;
PUT LIST('ENTER VALUE:');
GET: GET LIST(VALUE);
ON ERROR SYSTEM;

18-1

ON-CONDITIONS AND ERROR HANDLING (C-D)

Let us suppose that this program is executed. When control reaches
the first ON statement, here is what happens:

1. CPL remembers the fact that you have executed an ON statement
here, in case an error later occurs.

2. CPL skips over all statements between the BEGIN sub-statement
of the ON statement and its corresponding END statement (3
statements down).

3. CPL transfers control to the PUT LIST statement following the
END statement.

Now, when the GET LIST statement is executed, if there is no error in
the input, then execution will simply continue. But if there is an
error, then CPL will "raise" the "established ON-unit"; that is, CPL
will execute the statements between the BEGIN and END statements which
appear in conjunction with the ON statement.

Therefore, the function of the ON statement is: To specify a
statement, or group of statements, which is to be executed in the
event an error occurs.

The last statement in the segment above, ON ERROR SYSTEM, reverses the
effect of the preceding ON statement. When the SYSTEM option is used,
it tells CPL that, for any subsequent errors, the standard system
action 1is to be taken. The standard system action is usually to type
an error message and return to command level. It is a good
precautionary measure to include this statement in the program. If
you do not include it, then if any unexpected error occurs (say, due
to an error in the program), then the preceding ON ERROR statement
will still be in effect, and the results will be confusing.

18.2.2 Example Of An ENDFILE ON-unit (C)

Let us consider a different type of "error," reaching the end of an
input file. This, of course, is not really an error. But it has one
feature of an error in that it 1is unpredictable -- when you are

writing the program, you cannot usually predict when an end of file
will occur.

Here, for example, is a program segment which adds up all the numbers
in a file :

DECLARE F FILE ;
OPEN FILE(F) INPUT ;
ON ENDFILE(F) GO TO EOF;
SUM = 0;

LOOP: GET FILE(F) LIST(X)
SUM = SUM + X;
GO TO LOOP;

EQOF: CLOSE FILE(F);

In this program segment, the third statement specifies the following:
If an end of file occurs in file F, then GOTO the statement with
statement label EOF.

18-2

ON-CONDITIONS AND ERROR HANDLING (C-D)

In this example, the "ON-unit" consists of just a single statement --
GOTO EOF -- rather than a BEGIN/END block containing a group of
statements. In this case, CPL places a dummy BEGIN statement before
the GOTO statement, and a dummy END statement after; CPL does this
without any indication to you that it has done so.

18.3 THE ON STATEMENT (COLLECT ONLY) (C)

Format: ON condition-list [SNAP] on-unit;
or ON condition-list SYSTEM ;

The "condition-list" is either a single condition-name (these are
described below) or a list of condition-names, separated by commas.

The "ON-unit" is either a single statement, usually a GOTO statement,
or else a BEGIN/END block containing a group of statements. If it is
a single statement, it may not be an IF, DO, END, RETURN, FORMAT,
PROCEDURE, DECLARE or DEFAULT statement. An ON-unit, whether a single
statement or a BEGIN/END block, may not have a statement label. (This
restriction is as specified by the ANSI PL/I standard.)

In the first of the two formats specified above, the ON statement
specifies to CPL what action is to be taken when an error or other
exceptional condition occurs. CPL "remembers" the location of the
ON-unit to be executed when the exceptional condition occurs and
transfers control to the statement following the ON-unit. If the
exceptional condition subsequently occurs, then CPL "invokes" the
ON-unit, and executes the statement or statements specified therein.
The ON-unit statement or statements are not executed until the
exceptional condition occurs.

If you specify the SNAP option, then, before the ON-unit statements
are executed, CPL will type out the following:

1. The error message which would have been typed if no ON-unit
had been established.

2. A snap dump, identical in format to the snap dump produced by
the SNAP statement. Refer to the description of that
statement in the chapter on "Block Structure and Declaration
Scope Rules."

In the second of the formats, the format using the SYSTEM option, the
ON statement specifies that CPL is to take the "standard system
action" for the exceptional condition. For most errors, this means
that CPL will type an error message and terminate execution.

18-3

ON-CONDITIONS AND ERROR HANDLING (C-D)

18.4 GOOD PROGRAMMING PRACTICES WITH ON-UNITS (C)

18.4.1 Normal Termination Of An On-unit (C)

In the examples given above, all of the ON-units contained a GOTO
statement, and so when the ON-units were invoked, the invocations were
always terminated "abnormally", by means of a GOTO statement.

If your program executes the END statement of an ON-unit, then you are
attempting to terminate the ON-unit normally. This is usually an
error.

It is good programming practice to make certain that your ON-units

always terminate abnormally, with a GOTO statement which transfers
control out of the ON-unit.

18.4.2 Avoiding ON-unit Recursion Loops (C)

Suppose you executed an ON ERROR statement, specifying an ON-unit to
be invoked when any error occurs.

Now let us suppose that an error occurs and your ON-unit 1is invoked.
Let us suppose further that 1lightning strikes again and an error
occurs inside your ON-unit. Then the ERROR ON-unit will be invoked
again. And if the same error occurs again, you will get into an
infinite loop raising the ON-unit over and over, recursively. This
will continue until vyou have so many active invocations of your
ON-unit that you run out of core storage.

To guard against this possibility, you should use the SNAP option, so
that you will be able to see your program entering this loop. If you
do not wish to use the SNAP option, then you should put a statement in
the beginning of your ON-unit whose execution will permit the looping
process to stop. For example, you may use the following as the first
statement of your ON-unit:

1. ON ERROR SYSTEM; If an error occurs while the ON-unit 1is
active, then execution will stop and control will return to
the terminal. No 1loop will occur. (NOTE : As will be
explained below under "Scope of an ON-unit," .when the ON-unit
terminates without an error, say by a GOTO statement, then
the ON ERROR SYSTEM will be cancelled.)

2. PUT LIST something. If the first statement of your ON-unit
types something out, then you will be able to recognize when
the loop described above occurs, an you can interrupt it with
Control-C. A good choice for something to type out is the
current value of the ONMSG built-in function, described
below.

18.4.3 The ONMSG Built-in Function (C)

This built-in function returns a CHARACTER string containing the error
message which would have been typed out if no ON-unit had been
specified for the error.

18-4

The ONMSG built-in function takes no arguments.

out the value

ON-CONDITIONS AND ERROR HANDLING (C-D)

If you wish
use the statement

to type

returned by ONMSG,

20NMSG () ;

18.5 LIST OF

CONDITION NAMES (C-D)

These are the

condition names that may appear in the ON statement.

18.5.1 The SUBSCRIPTRANGE Condition (C)

Abbrev: SUBRG for SUBSCRIPTRANGE

Format: SUBSCRIPTRANGE

This condition is raised whenever a subscript is evaluated and found
to lie outside its specified bounds.

18.5.2 The STRINGRANGE Condition (C)

Abbrev: STRG for STRINGRANGE -

Format: STRINGRANGE

The STRINGRANGE condition is raised whenever the second and third

arguments to the SUBSTR built-in function or pseudo-variable are out
of range.
Let k = the length of the first argument, let i = the wvalue of the
second argument, and let j = the value of the third argument, if it is
specified, or else let j=k-i+l. Then the STRINGRANGE condition is
raised if any of these inequailities are not satisfied:

1. i <=1 <= k+1

2. 0 <=3 <= k=-1i+1
18.5.3 The ZERODIVIDE Condition (C)
Abbrev: ZDIV for ZERODIVIDE
Format: ZERODIVIDE
The ZERODIVIDE condition occurs when divide by

zero.

an attempt is made to

18-5

ON-CONDITIONS AND ERROR HANDLING (C-D)

18.5.4 The ENDFILE Condition (C)

Format: ENDFILE (ident)
where "ident" is an identifier which must be declared to be a FILE.

This condition is raised whenever a GET or READ statement fails for
the specified FILE identifier because an end of file is reached.

If the file is not closed after ENDFILE occurs, then any subsequent

GET or READ statement for that file immediately raises the ENDFILE
condition again.

18.5.5 The UNDEFINEDFILE Condition (C)

Abbrev: UNDF for UNDEFINEDFILE
Format: UNDEFINEDFILE (ident)
where "ident" is an identifier which must be declared to be a FILE.

The UNDEFINEDFILE condition is raised whenever an attempt to open a
file is unsuccessful for any reason.

Some of the reasons for which the UNDEFINEDFILE condition might be
raised are the following:

1. A conflict in file attributes exists.
2. An input file does not exist.

3. A syntax error occurs in the file-specification given by the
TITLE option of the OPEN statement.

4. An output file cannot be opened because there is no more disk
space.

The UNDEFINEDFILE condition can be raised as the result of either an
explicit open, with the OPEN statement, or an implicit open resulting
from a GET, PUT, READ or WRITE statement.

18.5.6 The RECORD Condition (D)

Format: RECORD (ident)
where "ident" is an identifier which must be declared to be a FILE.

The RECORD condition is raised as a result of a READ operation, in the
following two circumstances:

1. You have specified a READ statement and the next input record
in the file is longer than the INTO character string.

2. You have specified a READ statement with an INTO variable
which is a CHARACTER NONVARYING scalar or array, and the next

input record from the file is shorter than the length of the
CHARACTER string.

18-6

ON-CONDITIONS AND ERROR HANDLING (C-D)

Before CPL raises the RECORD condition, it reads the input record
anyway, and places characters from the record into the INTO variable
storage. In the first of the above two cases, CPL stops storing
characters when the CHARACTER string storage is filled up; however,
CPL still reads to the end of the record. In the second case, the
remaining characters - in the INTO variable are left unchanged from
their values before the READ statement was executed.

The statements of the preceding paragraph imply that after the RECORD
condition is raised, it is meaningful for your program to examine the
contents of the INTO variable to determine some information about the
input record.

18.5.7 The ERROR Condition (C)

Format: ERROR

All of the conditions listed above are raised only for specific types
of errors. The ERROR condition can be raised for any type of program
error, including those errors covered by the above named conditions.

Specifically, the ERROR condition can be raised under the following
circumstances:

1. An error occurs, and CPL does not have a specific
ON~-condition name for that type of error.

2. An error occurs, and CPL has a specific ON-condition name for

that type of error, but your program has not established an
ON-unit for that condition name with the ON statement.

18.5.8 The CONDITION Condition (C)

Abbrev: COND for CONDITION
Format: CONDITION (ident)

This 1is a programmer—-defined condition. "ident" is any CPL
identifier.

This condition can be raised only by means of the SIGNAL statement.

18.5.9 The ATTENTION Condition (D)

Abbrev: ATTN for ATTENTION

Format: ATTENTION

This condition is raised when you type a Control-C while your program
is executing.

ON-CONDITIONS AND ERROR HANDLING (C-D)

CAUTION: 1If your program establishes an ATTENTION ON-unit, then you
will have 1lost the ability to stop a 1looping program by typing
Control-C. This means that you will have to ask the system operator
to stop your program for you.

18.6 THE SIGNAL STATEMENT (COLLECT ONLY) (C)

Format: SIGNAL condition-name ;
The SIGNAL statement is used to raise an ON-condition artificially.

For example, 1f your program executes the statement "SIGNAL
ENDFILE(F);", then CPL will raise the ENDFILE(F) condition, just as if
an end of file had occurred on a GET or READ statement for file F.

If your program has not established an ON-unit for the specified
condition-name, then CPL will type a message of the form "CONDITION
condition-name SIGNALLED" and will continue executing your program
with the statement following the SIGNAL statement.

If your program has an established ON-unit for the specified
condition, then the ON-unit will be invoked. If the ON-unit
terminates normally (that is, the END statement is executed), then
execution continues with the statement following the SIGNAL statement.

18.7 SCOPE OF AN ON-UNIT (D)

The ON statement associates an ON-unit with a specific condition.
Once this association is established, it remains so until one of the
following occurs:

1. It is overridden by another ON statement specifying the same
condition. The overriding ON statement can specify a
different ON-unit, or it can specify the SYSTEM option.

2. The block 1in which the ON statement was executed is
terminated. When that happens, all ON-units which had been
established before the block was entered, but which had been
overridden inside the block, are automatically reestablished.

3. A REVERT statement, specifying the same condition, is
executed. The REVERT statement is described below.

An established interrupt action (either an ON-unit or a SYSTEM option
for a specified condition) passes from a block to any block that it
activates, and the action remains in force for all subsequently
activated blocks, wunless it is overidden by the execution of another
ON statement for the same condition. If it 1is overriden, the new
action remains in formce only until that block is terminated or until
a REVERT statement is executed cancelling the effect of the overriding
ON statement. When control returns to the activating block, all
established interrupt actions that existed at that point are
re-established. This makes if impossible for a subroutine to alter
the interrupt action established for the block that invoked the
subroutine.

18-8

ON-CONDITIONS AND ERROR HANDLING (C-D)

18.8 THE REVERT STATEMENT (DIRECT OR COLLECT) (D)

Format: REVERT condition-name [,condition-name]...

If you execute a REVERT statement for a specified condition-name, then
any ON statement executed inside the cuyrrent block invocation, whether
it specifies an ON-unit action or the SYSTEM option, 1is cancelled.
The action to be taken for the specified condition reverts to what it
was when the current block was first invoked.

18-9

CHAPTER 19

BASED STORAGE AND POINTERS (D)

This chapter deals with a very sophisticated programming concept, and
should be skipped or skimmed on the first reading of the CPL manual.

In a preceding chapter entitled "STORAGE CLASSES," the storage classes
AUTOMATIC, STATIC and CONTROLLED were discussed.

In this chapter, we contrast those three storage classes with the
BASED storage class.

We also introduce a new data type, the POINTER.
Finally, this chapter introduces the ALLOCATE and FREE statement for

BASED storage. (The chapter on "STORAGE CLASSES" gives the format of
these statements for CONTROLLED storage.)

19.1 INTRODUCTION TO BASED STORAGE (D)

Consider the following CPL statement:
A =B + 1.5;

When CPL executes this statement, it automatically knows the following
two things about the variables A and B:

1. The data type of A and B (presumably, in this examp