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ABSTRACT

A study was undertaken to evaluate the capabilities of two microprogrammable
-processors: the MLP-900, a vertically-encoded 36-bit machine at the Information
Sciences Institute and available over the ARPA Network; and the FPDP-11/40E, a
horizontally-encoded 16-bit microprocessor at Carnegie-Mellon University. The paper
presents a description of the two machines, and compares their performance on a
number of benchmark programs (including an emulator for the NOVA computer). In
addition, the machines are compared along dimensions of two-way conditional branch
costs, basic architecture, and difficulty of programming. The PDP-11/40Z performed
between 107 and 257 faster on ali the benchmarks except the multi-word integer
multiply, where the MLP-900 was four times faster (because of its wider data path).
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I. Introduction.

.The. ongoing project at Carnegie-Mellon University investigating the symbolic
manipulation of computer descriptions (SMCD) has the following primary goals: to
design a |anguage. able to describe.precisély an arbitrary target machine in a
conveniént fashion [1]; to create a compiler for this language which will transform a
source machine desc‘ription into a more usable representation; and to utilize this
compiled machine description in a range of applications, from computer-aided machine
desigh to efficient compiler-compilers [2). A muiti-level simulator for the target
machine, capable of operating on the gaﬁe Iével, regiser-transfer level, or functionall
level, is also being designed, and will be important in many of the applications. This
simulator will be implemented on a microprogrammable processor for efficiency
r‘easonis. Eventually, an optimizing micro-compiler will be developed whch will
aﬁtomatically pro.duce an efficient simulator directly from a cdmpiled target machine
descriptioﬁ. | |

TQo possib’le machines for the simulator are currently being considered. The
first is the MLP-900, a vertically-encoded microprogrammable pfocessor which exists
at the Infarmation Sciénces InsAtitut:e at USC and is available over the ARPA Network.
The second is a PDP411/40, a horizontally-encoded rﬁicroprogrammable processor,
which has been modified atl CMU to include a read/write control memory and other
hardware extensions to make it a general purposé' microprogrammable machine. The
extended machine is known as the PDP-11/40E. |

The MLP—QOO was originally designed by the Standard Computer Corporation,
"and has been described in [3]. The machine never reached production, though a single

prototype was constructed which now exists at ISL Various hardware modifications .
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have been incorporated in the MLP-900 at IS], and the machine is described in [4].
The MLP-QOO is linked to one of ISI’s PDP-10s (which runs TENEX énd is on the ARPA
Netwiork)l, Software suppqrt exists to enable easy access to the MLP-900 from the
PDP-EIO, including a high-level assembler, debugging facilities, and 'i/O routines. To
»lfacilit‘ate multiple users qf the MLP-900, a hrotected "microvisor" program resides in -
the MLP’s microstore to handle swapping of user mic_roprograms. 'This mini-suﬁervisor
| also Handles i/O requests from the MLP to the PDP-10. Since the MLP uses the main
memory of the PDP-10, the TENEX memory management features of virtual memory and
paging are inéorporated in the microvisor. Page table maintenénce and PDP-10
communication are transparent to the MLP user.

The - PDP-11/40E constitutes an ongoing research project in itself [5), and
documéntation and support are not necessarily complete; At the time Aof Writing, there
is a micro-assembler and a simulator available on the PDP-10, witﬁ a link available to
Vtransmit the assembler output to the PDP-11/40E. ‘Also, a prototype micro-debpgging
péékage exists to aid hand;-on debugging. Work is currently in pfogress to
incorporate the PDP-11/40E into C.mmp, CMU’s multi-min;\iprocess'or system [6) |

| Table 1 enumerates the. major parametérs of the PDP-11/40E and MLP-900

microprocessors,

I I Machine .Doscription of .tho MLP-900.

The MLP-800 is a synchronous, vertically-encoded microprogrammable machine,
with a fixed clock cycle of 250 nsec. In. appearance, vits instruction set is similar in-
s_tructure. tb the 'ins.tr'ucti;)n'set of a regulér general-purpose machine; hence,

programming it is, at least superficially, reasonably straightforward.
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. The 'MLP is separate'd into two distinct parts. Each part has its own processor,
_instruction set, and data storage (fegisters). The two parts are designated the
"Operating Engine" (OE) and the "Control Engine” (CE).. The basic idea behind this
- approach is to factor out independent functions (i_e, aritﬁmétic and control) into distinct
'piecés of hardware -- and consequently achieve a low-level parallelism by being able
to execute two microinstructions simuitaneously. - |
The MLP-900 has 4K of 32-bit memory for microinstructions in which both OE .
.and CE instructions réside. A conventional program-counter is used to address the
next microinstruction to be executed. The op-code field of each word contains a bit
which indicates to the fetching unit whether the instruction should be routed to the OE
or the CE f'or decoding and execution. However, whenever the program-counter points
to an OE instruction followed immediately by a CE in#truction, the effect is to fetch
both and route them to their respective engines simultaneously. Parallel execution of.
the two instructions is thus ac.hieved (except in certain cases of interaction where an
extra cycle is required). There is no restriction on how the OE and CE instructions are
arranged in the micro-instruction memory, but if the entire microprogram is arranged
in OE-CE pairs, the effective s.peed of the program will be doubled over a

'(hypothetical) single-engine machine. See Fig. 1 for a schematic diagram of the MLP

~ components.

The Operating Engine contains the following memory components:

32 x 36-bit general purpose registers (with octal designation RO -
R.37).

32 x 36-bit mask registers (M0 - M.37).

1K x 36-bit 200 nsec. auxilliary memory (A.0 - A.1777).

32 x 36-bit miscellaneous registers with dedicated functions (MISC.0
- MISC.37).

The OE also contains hardware to perform the following functions:
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Arithmetic/logiéal operations on a 36 bit data path, including
shifting-masking operations (GEAR, SHIN instructions).
Communication with -main memory (CEDE instructions).
Intra-OE data transfers (GENT instructions).
All of the OE memory is available to the microprogram user,'with the exception of most
of the MISC registers and 16 of the mask registers (which are only accessible in
microvisor mode).

The Control Engine contains the following memory components:

256 individually ‘addressable flip/flops (F.0 - F.377)..

16 x 8-bit pointer/counter registers (P.0 - P.17).

16 x 16-bit subroutine-stack registers (S.0 - S.17).

-8 x 16-bit. miscellaneous registers with dedicated functlons (CE.60 -
- CE.77).

The CE also contains hardware to pérform the following functions:

Conditional and unconditional branches (BRAT, BEAD instructions). |

Conditional and unconditional subroutine calls and returns (BENT,
BORE, BEAD instructions).

Flag manipulation (MAST instructions).

Loop control operations (BRAD, BLOT instructions).

Intra-CE data transfers (MOVE instructions).

For consistency in referencmg, all the CE memory is addressable as 96 8-bit
reglsters {named CE.O - CE. 137), or 16-bit double- -registers. A consuderable porhon of
‘the CE memory has dedicated functions, representing various internal states of,the
MLP and is, frequently, writable only in microvisor mode. However, the rest of the CE
memory is for general use by the microprogram user.

For the most part, the OE and CE have little interaction (whlch was clearly a
-design decision). There are a couple of exceptions, however: OE ALU instructions
(GEAR ana SHIN) have side effects on status flip/flops in the CE, and can use a pointer
register (P,b - P.17) in their‘operation. Also, an Exchange Bus (XBUS) is addressable

by both engines, and is used to explicitly transfer data between the two engines. One

cycle and an OE/CE instruction pair (GENT/MOVE) are necessary to do this.
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Two CEDE instructions are required to perform a memory reference on the MLP-
900: a fetch-operand/wait-for-operand (FOP/WOP) pair for input; and a set-
address/store-operand (SAD/SOP) pair for output. Intervening instructions can occur
between each pair to effect overlap with memory access time. Memory access time is
approximafely 700 nsec. with the current configuration oﬁ the MLP-300, including page
table translation time. In addition, 600 nsec. total is required for‘t_he execution of the
CEDE pair, for a total of 1300 nsec/memory reference. Three 250 nsec. cycles can
, usgfully be overlapped during the reference.

Appendix A gives some examples of MLP-900 microinstructions.

I11. Machine Description of the PDP-11/40E.

The PDP-11/40 is a horizontally-encoded microprogrammable machine with basic
cycle times of 140 to 300 nsec. and a data path width of 16 bits. The unmodified
machine has a 256-word x 56-bit ROM which contains microcode to implement the
standard PDP-11 instruction set.

Though not designed expltcutly for modification for generai purpose operation, a
model 40 at CMU has been modified to include the following:

1K x 80-bit read/write mlcrostore (mstructlons dnd data)

16-word x 16-bit hardware stack.

General field extraction (i.e., shift/mask),

Expanded carry propagation logic.
The enlarged microword (80 bits instead of 56) is for control of the additional
hardware. See Fig. 2'for the internal data paths of the PDP-11/40E.

Each microinstruction contains the following information:

- (a) For each multiplexbr (i.e., DMUX, BMUX, BAMUX, SMUX, etc'.) a
field which selects one of the possible sources for that

multiplexor. (Thus, these fields control what is on the various
buses.) :
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(b) For each register (i.e., B, STK, D, any one general register, etc.)
a field which indicates whether that register is selected (for
loading) from the specific source bus it is connected to.

(c) A next-address field giving the address of the next
microinstruction to be executed (e, an embedded ‘GOTO’
field). :

(d) Miscellaneous fields controlling such things as:

ALU function (add, subtract, AND, OR, etc.)
Stack function (push, pop, reset pointer, etc.)
Shift/mask specification ’

RAM read/write

Unibus read/write

Carry propagation

Conditional branching

Clock pulse generation

; There are three basic clock pulses possiblé during each microinstruction:
P1, at t=140 nsec., enables possible loading of B, PS, R[i] (i.e., a

single general register) frOm the DMUX bus, and BA from the
RD bus.

P2, at t=200 nsec., enables posslble loading of D and BA reglsters
from the ALU output.
P3, at t=300 nsec., enables possible loading of the B, PS, R[i]
registers from the DMUX bus. This pulse is similar to Pi,
without the BA enabling. :
Each microinstruction contains a field designating the pulse sequence to be used in its
execution. There are only three possible sequences:

CLK=1 generates a Pl pulse (at t=140 nsec).

CLK=2 generates a P2 pulse (at t=200 nsec).

CLK=3 generates a P2-P3 pulse (at t=200 and t=300 nsec).
The stack and Unibus are "loaded" (i.e., written if selected) at the end of the
microinstruction execution, regardless of pulse sequence. Note that it is impossible to
specify a P1 pulse and a P2 pulse in the same instruction.

The n;icro-assembler for the 40E nbrmally computes what pulse sequence. is

required for each instruction. However, Kﬁowledge of the clock mechanism is

necessary to understand what functions can be combined in a microinstruction. For

example, it is not possible, in a singl‘e instruction, to load a general register R[i] from D,
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aﬁd M perform an ALU operation into D. (The non-existent Pl-P2 sequence would
be .r{eéessary for this. While this séquence rhight be useful to have, it was not included
in the original design of the PDP-11/40 microprocessor - by Digital Equipment
Cofporation. Presumably cost effec}ive or te&hnical reasons precluded its inc.lusiOn).
| The_‘control memory RAM can be read and written as data, via an address on the

top of the stack. However, this can not be done simultaneously with fetching ‘a new
micr.oinstrgction from the RAM, so some special juggling of where the next
microinstruction is coming from (w_hile the RAM is being read/written) mu;t be done.
"i'his tends to limit the usefulness of the RAM for storing data. |

A memory referénce on the PDP-11/40E requires two microinstructions, tho‘ugh :
other functions can be performed in the same instructions. Since the Unibug of a PDP-
11 is asynchronous, explicit synchronizing must take place in the processor during a '
memory reference. The method used is tov supply a "clock-off" bit in the
microinstruction which stopé the processing of subsequent microinstructions when set.
‘When the Unibus completes its activity, it supplies a signal whi’ch restarts the
processor clock. Overlap of microinsruction processing with memory references is
done simpl)'/ by waiting to tuv;n the clock off until two or three instrpctions after the
start of the memory'reference. However, since the Unibus restart signal is not latched,
the clock-off operation M be done before the restart signal is received, or elsé the
processor will hang up.

Memory read access time on the PDP-llMO machines is, on the average, 700
nsec. this value can flqctuate from about 500 to 900 nsec., however, depending on the
time :since the last memory reference. (The longer the interval sif\ce the previous

-access, the less time required for the current reference.) Since two instructions are
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required for a memory reference (both reads and writes), the minumum overall time for
a r_eferencé is the access time plus two Pl-cycle instructions, or 780-1180 nsec.

A conditional branch is performed on the PDP-11/40E in the following manner.
Assume the current microihstruction is at address A in the microstore, A’s su;céssor is
at address B, and B’s successor is at address C. The desired condition is tested in the
current microinstructi.on at A, with a result of 1 or 0, if the condition is true or false.
This }bit is temporarily ORed into the next-address field of the. following
microinstruction, located at B (the condition result is generated too late in the cycle to
do the OR with A’s next-address field). Assur’ning that G is an even address, the effect
then is to branch to either address C or C+l, if the condition is false or true,.
respectively. Note that the mlcromstructton at Bis requured even |f it is only a NOOP

The "condition bit" can actually be selected from a data word on the top of the
stack via the shift/mask unit. In fact, n Sits can be selected, and temporarily ORed into
the subcessor’s next-addréss field to .effect a Zm-way branch. In this case, the lower
n bits of addresé« C in the above example must be 0 for the case branch to perform
correctly Such bookkeepmg is convemently left for the micro- -assembler.

See Appendax B for some’ examples of PDP-11/40E microinstructions.

IV. Performance Comparis&vi.
. Four prirhary benchmark programs were written for each machine to compare
their performance on specific tasks:
(1) MMPY: 64-bit unsigned integer multiply (128-bit result).
(2) TRANS: Translate routine for a string of 8-bit characters.
(3) ALLOC: Memory allocation routme using Knuth’s boundary-tag
method [7]

(4) NOVA: Emulator for the NOVA mmlcomputer (without interrupts
or 1/0).
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The four benchmarks were chosen for various reasons: MMPY compared muiti-word
arithmétic on the two machines; TRANS exercised their byte-handling capabilities;
ALLOC compared their performance on a Iis.t-processing application; and NOVA .
comp.ared their performancé on a real-life emulation task.

Each benchmafk went through a writing, debugging, improving sequence several
times. Substantial improvements were made in the programs over the codrse of
several weeks, as various tricks or better ways of performing thé samé function were
recognized. (This was especially true for the PDP-11/40E microinstruétions;) Hence,
there is some hope that the benchmarks represent an example of fairly good
microcode for both machines.

l;'or the MMPY, TRANS, and ALLOC benchmarks, an attempt was made to keep the
nu.mbe'r of microinﬁtructions to a minimum on both machines, consistént with at most
only a small time increase. This is obviously of great importance on the PDP-11/40E
with its smaller amount of microstore. For the NOVA benchmark, however, the
emphasis was solely on speed, except where space could be saved a't no cost in speed.
The NOVA benchmark constituted a cqmplete task so that the whole microstore was
assumed available. The first tlhree benchmar.ks, however, might well be considered
smalrl parts of a much larger program, hence attempts were made to conserve a
possibly scarce resource.

The MLP-éOO programs were assembled, and run on the actual machine at ISI via
the ARPA Nefwork. The MLP does not have a timer available to the program, so timing
data was computed by hand, incluvding estimatés for the memory reference time.

All four of the PDP-11/40E programs were assembled and run on the simulator

available on a PDP-10 at CMU, and two (TRANS and NOVA) were also run on the actual
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machine. ,Tﬁe simulator was more convenient for debugging and timing than fhe actual
PDP-11/40E, so this-methéd was préferred. The. execution time included fairly good
estimates on the memory re’feren;e tir.ne. |

Tables 2 fo 5. sﬁow the resul-t.s of the benchmarks on the two machines. The.
MMPY program, shown in ;I'able 2, leaves the PDP-11/40E at a severe disadvantage -
bécause of the PDP-11’s sméll data path width. The program was a double-wordA
multiply on the MLP-900 and a quadruple-word'operation on the 40E. There was
éufficient fast registe}s in both microprocessors to hold all the intermediate results,
.though this resource was being stretched on the PDP-11/40E. The MLP-900
performed far better on the multiple-word task: slightly more than one third as many
instructions and over four timeé faster than the PDP-11/40E. |

bn the TRANS benchmark, shown in Table 3, the PDP-11/40E was about 257
faster than the MLP-900. This was not unexpecfed, since the PDP-11 machine is
oriented towards 8-bit bytes; and hence the PDP-11/40E microprocessor has some
f‘e;tures which facilitate byte-handling: Byte swapping and byte-writes with registers,
a write—byte operation to memory, etc. The MLP-900 has no special byte-handling
operétiOns oufside of its genera|' mask/shift capabilities. These capabilities have
‘cérta‘ir‘\ restrictions, however: shifts of only a few specific values are allowed (thus
possibly requiring more than one inst-ructiOn for a single shift); also, while a field can
possibly be isolated from a register in one instruction, storing a value into an a’rbitrary
field always takes at least two microinstructions. Indeed, a four eharacter/word
version of TRANS for the MLP-900 was longer and ran slower than its two .
character /word counterpart in Table 3, even though fewer membry references were
required. The extra time came from the slightly awk;:iard field extraction/storing

methods required.

10
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Table 4 shows that tﬁe PDP-11/40E was slightly faster than the MLP-900 on the
ALLOC benchmark. No particular architectural shortcomings of either machine were
exercised by this benchmark since mostly.full‘-word operations were used, with 16 bits.
being an adequate width. However, a fair number of distinct memory reference
séquences were necessary in the program.. These turn out.to be generally less costly
on the PDP-11/40E, both in instructions and in time, than on the MLP-900. Also, it is
w.orth pointing out that the MLP-900 did not perform as well whén the information was
packed int;a fewer words. Fdr example, an attempt to pack the forward and backward
Iislt links into the.'two'h'alves of a single word increased the number of instructions and
memory references over having them in separate words (the ver#ion in Table 4). This
suggests that the Wider data péth of the MLP-900 may be most useful when the data
in a 'word‘ is homogeneous (as in MMPY). Pa;:king several fields into a wide word to
save space may cause significant additional execution time costs.

" The results of the NOVA benchmark are given in Table 5. In a sense, this
program is the true test of the tw6 machines, since it represents the type of program
which certainly the MLP-900, and to .a lesser extent the PDP-1 1/40E, were designed to

“run. For Srevity, input/output 'instructions and interrupts were omitted from the NOVA
benchmarks; in all other respects, the programs qualify as bonified emulator#.

The NOVA is a lé-bit minicomputer, similar in flavor to the PDP-8 but with four
ge.néral registers, more varied addressing modes, and a wider data bath. As in the
_PDP-8, the ALU instructionsAonly reference reéisters, and several low-’-level operation§
can be performed in a single ALU instruction (e.g., carry-bit setting, ALU operation,
'shifting‘, and skip—on-c0ndi.tioh). The memory reference instructidns are fairly tybical.
Finally, autoindexing of certain memory locations can occur within an indirect address

chain. For more information on the NOVA computers, see [8].

11
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| The PDP-11/40E version of the NOVA emulator was adapted from an emulator
written at CMU by Paul Drongowski. Several modifications and corrections were
added. The pfbgrams for both machines were written quiterpainstakingly, with strong
emphasis on speed. As Table 5 shows, the PDP-11/40E did consistently better than
thg MLP-900 on all the instructions. In the sample NOVA.programs, the 40E was about
307 fa;ster. Several reasons suggest themselves for this result. First, the PDP-11/40E
might be expected to do well, since it’s a 16-bit minicomputer emula.ting another 16-bit
Iminicomputer. If the NOVA operated on only 12-bit words, for example, the ALU
inﬁ'tructions on the 40E would probably experience a greater increase in overhead
than on the MLP-900. Second, a reasanable amount of field extraction was necessary
in the NOVA emlator, which raised the instruction-decoding overhead on the'MLPfSOO.
It is not clear, however, that this situation would be greatly different in emulating.
other machines. Third, the longer memory reference time on the MLP-900 contributed
up to an extra microsecoﬁd over the PDP-11/40E version for sén%e of the NOVA
instrﬁctions (those requiring several accesses to memory).

It should be noted that the MLP-900 has the capébility for greatly increasing its-
ir)structidn-decoding sbeed of ‘targe't instructions. This is done by using a changable
"language board", which is essentially ‘combinatorial circuiti’y tailored for a particular
application (e.g., instruction decoding for a specifk_: t;rget mac‘hin.e). The MLP éllows up
to four 'such boards‘ to be connected at one time, with programmed switching between
them. Both the QE and CE have parts of their address space which serve as inputs to
and outputs  from the language board. Hence, tailor-made combinatorial circuitry could
isolate all the important fields of ‘a target instruction very quickly. Presymab!y, a
Iénguage bbard would only be designed where the expense would be justified by doing

a great deal of emulation of that specific machine.

12
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Several conclusions can be reached from these benchmarks. While the MLP
‘microinstructions seerﬁ to be higher level (capéble of.more complexity, in some sense)
than the- PDP-11/40E instructions, the Iatter are capable Qf significant data-path
'parallel.is'm,. which seems to substantially offset their primitiveness. The MLP
instruc_tiom;, also are relatively. expensive in time compared to the 40E instructions.
The MLP’s strong points are its large microstore and its data path width, though there
is some reason to doubt that effective use of the wider word can always be made

without incurring significant extra execution time costs.

V. Neutral Bcnchmark Comparison.

' In addition to the straight performahce benchmarks, an attempt. was made to see
“how the two machines performed doing the same basic operation sequence, without
, appeél to their specific strengths or weaknesses. This is essentially a comparison of
the basic architectures of the two machines. ‘The most reasonable method of dbing this
séeméd to be ._to compare "neutral” benchr.narks (i.e., ones favoring neither machine),
though it requires a decision on what constitutes a "neutral" program. In this case,
programs were selected which- (a) used primarily full-word ope.rations, without field
extraction, and (b)ldid not require a word wider than 16 bits. The basic unit of
comparison was .the number of instructions required to implement the desired
operation sequence. Compériﬁg execution times only has meaning if the final résults of
‘thg two versions is fhe same. A double-word multiply, for example, is the same basic
operation sequence, but the results are quite different on the two machines, due to the
difference in data path widths.

_Several programs were selected: ALLOC, the memory allocation benchmark

13
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already introduced, and . RLIS;I', a r,outine. to r'e\./erse a circular list, were Bo.th
co,néidereci fairly neutral. Also, the MMPY benchmark was modified to produce Nvo- '
~ word, ihree-wor&, a.nd four-word vinte}ger muitiply routines (MMPY2, IMMPYS, and
MMPY4) on each méchine. The comparison of program sizes is shown in Table 6. The
execution time ratio for ALLOC and.RLIST (thé only programs where an exec.ution time
comparisoﬁ was meaningful)'was-0.88 and 0.86 respectively, aséuming long list length
-=- that is, the PDP-11/40E was somewhat more than 107 faster on both programs.
| 'The..space comparison illustrates a cbup|e of points. When the PDP-11/40E
performed a task which did not l.'equire a large number of internal registeré (e.g.
ALLOC, i'\’LIST, and MMPY2), then the m;lmber of instructions required was perhaps 10-
207 more than on the MLP-900 (for “neutral” programs). However, when the regi_st.ersv |
were stretched thin (as in MMPY3 and MMPY4), then the PDP-11/40E version became
significanﬂy Ion.ger. The MLP-900, having many .more registers than the PDP-11/40E,
suff;ared ‘cons_iderably.less on programs that made large temporary storage demands.
The main conclusion of this particular comparison is the following. For "neutral®
progams Which only require a small amount of intermediate stor_age, one can e)fpect
that each MLP-QbO instructién’will'be worth about 1.1-1.2 PDP-11/40E instructions.
The small amount of timing data on the neutral programs suggests fhat the 40E will
execute fhese 1.2 instructions slightly faster than the MLP-900 will execute its one
instruction, Obviously, this number of 1.2:1 will not be valid outside of the'
neutral/small-memory class of programs; however, it is still interesting as a base value
in compéring the two machines, and perhaps Qseful in some cases as a point to‘

extra’polate from.
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VI. Comparison of Branch Costs.

Superficially, at least, a two-way conditional branch on the PDP-11/40E can be
ven;y cosfly i.n space and time. Consider the following example, which decrements R[O]
by oﬁé and tests if it is zero:

DeR[0]-1; R/0]«D; Decrement R[0] by 1, restore into R[0O]

SKIPZERO; Test the condition "D equals zero".
NOOP;
SET '
GOTO LOOP; - Go to label LOOP if D#0
GOTO NEXT; Go to label NEXT if D=0
TES '

Note that each line is a new instfuction, and the semicolqns simply delimit the functions
of a single ,micréinstruction. SET and TES are not instructions but rather delimiters’
that teII. the - micro-assembler to place the enclosed instructions in cqnsecutiv'e
locations, starting on an even bounda‘ry. .When no,explic‘it‘GOTO .field occurs in an
instruction, the assembler defaults the nexf—a'ddress field to the address of the next
instruction in the source file:. SKIPZERO is a mnemonic for a test-condition field which
senses whether register D is equal to zero (fn general, this cannot be done in the same
instruction fhat loads the value to be tested into D).

The instructions "SKIPZERO";, “NOOP", ;‘GOTO LOOP", and "GOTO NEXT" are all
capable of'v performing .several other functions in the same ins_truction. Thus in this
example, they afe all essentially "place-holding" insfructions, whose execution. time Is
wastgd. Wifh care in programming, useful computation can .usdally be performed in all
or most of the "place-hﬁlders". .For example, .the two GOTO instructions can be
'considered the first instructions of tﬁeir respective control paths, instead of just.the
‘branches to the first ‘nstructions. fﬁrthermore, the first one or two instructions of

one of the diverging paths can frequently be pushed up into the NOOP and SKIPZERO
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instructions, as long as this has no conflicting effect on the other possible path. In
short, two-way conditional branches are usually not knearly as costly as one might
iﬁitial;ly think.

To ‘support this claim, a count was made of all the unused inst‘ructions in two-
way conditional branches for five of the PbP—ll/AOE benchmark programs. An unused
instrucﬁon was defined as either a NOOP, or one that contained only a GOTO field or a
SKIPZERO field (or similar condition-sensing specificétion). Out of a total of 19 two-
way cdnditiona_l branches, 9 unused instructions were found, or an average of about
0.5 unused instructions/branch. Since a place-holding instruction requires only a Pl
clock pulse (140 nsec.), the expected wasted time/branch was 70 nsec.

These measurements were also done on early vérsions of the same programs.
Inf;restingly, 20 unused instructions were found out of 18 conditional branches, with
the expected cost thus being about one instruction and 140 nsec. This suggests that
the cost of conditional braﬁches may be considerably higher for certain situations, such
as an early stage of program design or a non-proficient programmer.

The expected cost of a MLP-900 conditional branch instruction can also be
calculated, though in a completely ;iiff;ar‘ent Way. On the MLP-900, a simple boolean
functi'on. of two variables (i.e, flip/flops) can be evaluated in a single branch

instruétion. If the resuit is true, the juhp address replaces the current instruction

1a

counter; if falsé, the next sequential instruction is executed. Since all branch
instruction are executed by the control engine, the conditional branch can be
overlapped if immediately preceeded by an OE instruction. Thus the cost of a
conditional branch, if overlapped, is one instruction and O nsec. or if not overlapped,

one instruction and 250 nsec.
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Thglconditional branches out of five benchmark programs were examined. Out
of a ltotal of 16 conditional branches, 11 were overlapped with a preceeding OE
' 'instruction, or 70%. Hence, the expec'ted cost of a conditional branch on the MLP-900
is one instruction and 0.3*250 nsec., or 75 nsec. | |

* Thus, the PDP-11/40'E conditional branches are, in practice, not as expensive as
they appear. The expected costs of conditional branches on the two machines seem to |

be. approximately equal, at least as far as the limited statistics collected indicate.

VII. Other Considerations: Ease of Programming.

One’s initial impression about writing microcode for the PDP-11/40E is that it is
fairly diffic;.:lt to write good code. This impression is coﬁfirmed in praqtice. To achieve
the pe‘rformance thét the 40E is capable of, one has to "think parailel" in programming
it. This is complicated, however, by the inevitable hardware quirks which tend to
break a unified scheme into a number of special cases.. On the 40E, for example,
selecting a general reéister for loading from the DMUX bus also causes the register’s
contents to be ORed onto.the RD bus. Thus, the following instruction, an apparently
perfectly valid example of a .parallel data path operation, will perform incorrectly
(unless R[1] is initially zero):

| Rf1]«D; BAe<S; Load R[1] from D, and BA from Stack

There are more examples of such low-level hardware restrictions on the 40E,
but the real difficulty in writing good microcode is the breadth of the solution space:
many alternaté ways of programming the same task exist (the intra-instruction
parallelism essentially contributes another degree of freedom). Some of the
a|t§rnatives are clearly inferior, but deciding which is the best or near-bést ‘frequently

requires some sort of search technique.
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One such fechnique-ié to see if the functions of an instruction can be moved up
into preceeding instructions, thus allowing that instruction to be elimated. For

example, consider the following microcode segment:

. SeD;
L SeR[0J; GOTO COM;
L2 DeR[1)1; R[1]eD; GOTO COM;

COM:  BeR/0J;
- BA€R[1}];

Note that "Se. . " means push a value onto the stack, while ". . .«5" means pop the top
value off the staék. The object will be to eliminate one of the instructions starting at
COM, if possible. Assume COM has only the two predecessors shown (L1 and L2). Bﬁth
of these paths mustv.incorporate the function(s) that are gliminated in the COM
segment. - Consider the function "B«R[0]", the first instruction invthe COM portion. This
can be added to the instruction at L1 without confiict, making "S,B¢R[0]". However,
"B(—R[O]" ?:an not be added to L2 because R[1] is. aready specified.' Hence, "B«R[0]"
cannot be eliminated. So, consider the second instruction in the COM séction,
"BA«R[1]". We can move it over ihe "B«-R[O]'; instruction, _sinﬁe they ére Iogic.ally
.independ_ent. This function cannot be overlapped with L1, but it can be Qverlapﬁed
with L1’s predecessor, making "SeD; BA«R[1]". -Since there are not data
depgndencies o'r conflicts, the same effect is acl';iev'ed. In addition, "BA«R[1]" can be
overlapped with L2, thus we can eliminate the "BA«R[1]" instruction entirely. The
‘resulting code segment looks like: |

. 8eD; BAR[1];
LI _-S_(—R[O]; GOTO_COM; _

L2: BAD<R[1]+l; R[1]<D; GOTO COM -

COM:  Be<R[0);

18
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This has saved one instruction and 140 nsec. on boih control paths. In fact, we can
save ;n additional 140 nsec. on only the L1 path by incorporating’ the "BeR[0]"
function in the instruction at L1 and then branching to the successor of COM. This
does not affect the time on the L2 path, however.

6ne’s initial impression abbut the MLP-900 is that it is considerably easier to
pr¢.3gram than the PDP-11/40E. This is undoubtedly true if one is nof concerned with
achieving maximum ‘performance. If very high performance is a goal, however, then
the issue is not so clear. Maximum parallelism on the MLP-900 occurs with an even
mix of OE and CE instructions. The objective is thus to maximi}ze the OE/CE pairing
while minimizing thg overall number of instructions (or‘pairs). This requires not only
selec.ting_‘ the appropiate microinstructions to carry out the desired operation, but also
determining the best distribution of data within the two engines to facilitate selection
of the appropiate microinstructions.

To illustrate the problem of data distribution, consider the storage of a target
machine instruction in the MLP-900. Parts of a target-machine instruction take place
. in arithmetic operations (which is an OE_fu;\ction), and other parts are used in bit.
testing a.nd.'case. statement i'r-\dexing (which are both CE functions). Storing the
instruction in only 'one engine would hinder access by the other engine to its
necessary data, so a solu'non is to keep ‘a copy of the target instruction in both
engmes. Sometimes, however, data required by the CE must first be operated on by
the OE, so other complications arise.

The point ‘is .that programming the MLP-300 for opti.mum speed can be
surprisingly time-cqnsuming, sinc‘e other factors can hav‘e a pronounced effect on the

. speed besides simply the algorithm selected.
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VIII. Conclusions. . ;

| For the two tif;ned "ﬁeutfal" benchmarKs (ALLOC and RLIST), the PDP-11/40E
A.appeared,to be 10-157 faster than the MLP-900. For the benchmarks which included
more byte-handling and fiel_d extraction (TRANS and NOVA), the 40E was 25-307
faster. The MLP-QQd, on the other hand, was over four times faster than the 40E for
the data-path benchmark (MMPY). This last result reflects the fact that the 40E had to
perform roughly four times as many operations for the same result as the MLP-900.

| The choice of which méchine to use may come down to deciding whether the
MLP-900’s two strong points, a 36-bit data path and 4K microstore, are necessary to
the application. The two machines seem fairly equivalent in speéd (except on wide
data-path appl'ications). Thus, if one is primarily interested in emulation of machines
‘with .1'6-bit words or less, then the PDP-11/40E irs probably preferred. (The 40E also
' ‘ has the advantage that the console switches can be programmed to emuléte the target
machine’s consdle for hands-on debugging and operation.)

On the other hand, if particularly largé machines are to be emﬁlatéd, especially if
they have a wide word-length, then the MLP-900 is probably preferred. The
alternative for the 40E might be to ;vrogram frequently-needed primitives in microcode
(such as m'ulti-word-bperations to simulate 5 wider data p.ath), while using regular PDP-
11 machine code for the more mundane parts of the simulation. This would be quite
»slo‘w compared to the MLP=800, of course.

There are a couple of other externalk factors which might influence a chﬁice
bet‘Ween the“two machines. Fifst, if the application will involve automatic compilation
pf microcode (as eventually intended in the SMCD project), then ease of producing a

compiler  to generate highly-optimized microcode would certainly be a factor. For
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either‘machine the task wou|d be an.extremely difficult one; a 'subjective impressicin,
howevér, is that the PDP-1 1./40E would be slightly easier than the MLP-900 because
of the more regi.ilar ‘mbanner in which data is handled, and the more straightforward
optimization goals. On the MLP-900, both these aspects seem muc;h more ill-defined..
The - second external fa.cior' is accessibility, a more pragmatic tdpic. The
extensions to the PDP-'11/4OE, while conceived and executed as a research project at
CMU, hold the possibility of eventuélly being offered as an option by Digital Equipment
Corporatib.n on future PDP-11/40s. The MLP-900, though originally a brototype
machine that never reached produétion, is a usable system at ISI and has'fairly wide
availability via the ARPA Network. A Thus, each machine has its own type of

“accessibility which will be appropiate to different types of users.
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PDP-11/40E Data Path Diagram.
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Table 1.

' ~ Major Parameters of the PDP-11/40E and MLP-900 MicrOprdcessors. _

Parameter ‘ " PDP-11/40E MLP-900
Year De;signed S 1970 (40E: 1973) . 1968
Data,Path Width - 16 bits - 36 bits
Basic Cycle Times ' 140, 200, 300 nsec. 250 nsec.
Microstore Size. | 1K x 80-.bits : 4K x 32-bits
Bits)lnstruction : ' 80 32
Total Time for Memory Reference 780-1180 nsec. 1300 nsec.

(including microinstruction times)

Table 2.

MMPY: 64-Bit Integer Multiply Benchmark

Measure - PDP-11/40E  MLP-900  Ratio: 40E/MLP
# Instructions (7 avail ustore) 85 (8.3%) 32 (0.87) 2.7
Exectition time (usec) 421.2+52N - 108.4+75N

Averége exec. time (usec) - . 587.6 132.4 4.4
Maxirﬁum exec..time (USec). 754.0 156.4 4.8

N-= number of one-bits in multiplier.
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Table 3.

. TRANS: Character Translation Benchmark
(Two characters/word)

Measure . PDP—ll['QOE MLP-900 - Ratio: 40E/MLP
# Instructiohs (7 avail ustore) 26 (2.57) 25 (0.67) 1.04

Execution time (usec) .88+3.2Nx .75+4.23N% - 0.76 (large N)

N = # characters in string.-
* N assumed even

Table 4.

~ ALLOC: Memory Allocation Benchmark
(Boundary-tag method)

Measure - ' POP-11/40E -  MLP-900 Ratio: 40E/MLP

$ Instructi.ons (7 avail ustore) 52 (5.17) 51 (1.27) 1.02

Avg. execution time (usec) 11.24+3.4N 13.0+3.85N 0.88 (large N)

N = # of blocks in list checked unsuccessfuily.
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Table 5.

NOVA: Minicomputer Emulator Benchmark

Measure ' PDP-11/40E MLP-900  Ratio: 40E/MLP
# Instructions (% avail ustore) 169 (16.57) 259 (6.37) 0.65

- Execution times - Memory reference instructions (usec)

LDA: 3.96 4.85 0.82
STA: 3.84 4.85 0.79
1SZ, DSZ: 5.08% . 5.90 - 0.86
JMP: 2.86 3.80 0.75
JSR: 3.34 405 0.82
If PC-relative, add: 0.30 0.50
If AC-relative, add: 0 0.50
If Indirect Address, add: 2.30 1.80

- If Autoindexing, add: - 0.90 155
* If skip occurs, add: 0.16 0

Execution times - ALU instructions (usec)

COM, MOV, INC, ADD, AND: 432 6.50 - 0.66
NEG, SUB: 462 6.50 0.71
ADC: : 4,62 9.00 051
If NOLOAD, subtract: 0.32 0.25
If L shift, add: 0.46 0.25
If R shift, add: 1.00 0.75
If Swap-bytes, add: 0.10 0.50
If Skip-field specified, add: - 0.28¢% Ox=
*x.If skip occurs, add: 0.30 0.25

Execution times - Sample NOVA programs (usec)*s#

Sum-of-integers (1-20): '_ 249.8 356.2 0.70
16-bit integer multiply: 310.9 424.2 0.73

Note: Variation in the memory reference time of the PDP-11/40E may
cause the execution times for the individual instructions to vary a few
hundred nanoseconds. depending on the instruction mix being
executed. The timings of the sample NOVA programs, however, take
this into account. : ‘ ’ :

*xx The slowest NOVA computer perfofms Sum and Multiply in 293.4 a'nd

334.3 usec., respectively. The fastest NOVA (800 Series) performs
them in 50.6 and 57.8 usec. -
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.Table 6.

Neutral Benchmark Comparison,
- {Comparison of # Instructions)

'Prqgram |

ALLOC: Memory allocation
RLIST: List reverser
MMPY2: Two-word multiply

MMPYS: Three-word multiply

MMPY4: Four-word multiply

PDP-11/40E

52
16
38
71
85

27

Ratio: 40E/MLP

MLP-900
51 1.02
14 1.14
32 1.19
39 1.82

- 44 1.93
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.APPENDIX A

MLP-900 Microinstruction Examples.

The 'following examples should give an idea of the types of functions that MLP-

900 microinstructions can perform. R.i are 36-bit general arithmetic registers in the

OE, Ml are 36-bit mask registers in the OE, P.i are 8-bit pointer registers in the CE,

and Fl are fhp/flops in the CE.

(1)

(2) -

(3)

(4)

(5)

R.1<R.1+R2 (M.0); (GEAR instr)

- Add the c'ont.ents'of R2 to R.1 using only the mésked-in bits -

specified in mask register M0. The round parentheses around "M.0"
indicate that the masked-out bits in R.1 are left unchanged after the
store -- i.e,, only the masked-in bits of R.1 are replaced.

RO<R.0 AND 377 \10 [M.1]; - (GEAR instr)

AND R.O with the octal literal 377 (using mask register M.1), and
then shift the result left 10 (octal) bits. The square brackets
around "M.1" indicate that the entire result is to be stored back into
R.1.

R.37<R.37 OR @P.); (GEAR instr)

P.1 should have a value between 0 and 37, pointing to a general
register. The effect is to OR R37 with the general register
indicated by P.1, and replace the result into R37. The default mask
register of M.0 is used.

IF F.100 OR NOT F.101 GOTO L1;  (BRAT instr)
Test the two flip/flops F.100 and F.101. Under the Ioglcal operation
shown, branch to label L1 if the result is true. L1 must be within
=177 to +200 (octal) instructions away from the current instruction.

There is also a hranch instruction (BEAD) that allows a full absolute
address-into control memory. :

P.4<P.4-1, IF NOT F.47 GOTO L2; (BRAD instr)

This is a single instruction that increments/decrements a pointer
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register by a small literal, and simultaneously performs a test on a
flip/flop. There are a number of flip/flops whose function is to
monitor an assigned pointer register and be set true only when the
pointer register contains a specific value (e.g., 0, -1, etc.). Hence
this instruction can readily be used for loop control.

(6) FOP Ro+l;  WOP RJ; - (CEDE instrs)

These are two CEDE instructions. The FOP does an implicit
"RO<R.0+1" (where "1" can be replaced by any small number or a
general register name), and then starts a memory fetch from the
virtual address in RO, One or more instructions later, a WOP is
done, which waits for the data word, and loads it into R.7 when it is
available.

(7) The following is a 'simple program to calculate the sum of intégers
from 1 to 100 (decimal).

R.0<145; . Initialize counter to 101
. © R.e0; Initialize sum to O
LOOP: R.O<R.0-1; Decrement counter by 1

R.1<R.1+R.0; (OE/

IF NOT ZRF.1' GOTO LOOP; CE pair)

RETURN;

~ ZRF.1 is the name of one of the status flip/flops implicitly set by a
GEAR or SHIN instruction. It has the value true if the last GEAR
operation (though not the one in the current cycle) produced a zero

" result. In the program above, there is an QE/CE pair which is

". executed in one cycle, hence the ZRF.1 usage refers to the count-
decrement operation at LOOP.

An improved version of this program is shown below. This version
uses a pointer register to hold the count, so only counts up to 255
can be used. Note that pointer registers can take part in a GEAR
operation, even though they are part of the CE.

R. l<—0 (OE/
P.O<144; ' CE pair)
LOOP: R.1<R.1+P.0; (OE/
PO<P.0-1, IF NOT ZSL0 coTO LOOP; CE pair)
RETURN; - :

ZS1.0 is a flip/flop that is true when P.0 contains zero. Note that
.- the pre-modification value of P.0 is used for the addition to R.1 and
the ZSLO flip/flop. Hence one additional pass through the loop -
occurs, adding zero to R.1. This version executes about twice as
fast as the previous version, since the loop is only one cycle long
instead of two. : '
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APPENDIX B.

PDP-11/40E Microinstruction Examples.

- To clarify the text description, here are some simple examples of some PDP-
11/40E microinstructions. (Note: the semicolons delimit functions within a single

microinstruction, not microinstructions themselves.)
(1) BAD<R[0]+1;

Shorthand for: Select R[0] as source for RD bus.
: Select Constants as source for BMUX.
Select the constant 1 from constants.
Initiate ALU operation of addition.
Clock ALU output into D and BA registers on a
P2 pulse. . '

A P2 pulse is required, since D can be loaded only by a P2 pulse.
BA is loaded at the same time. If B (for example) were also
selected for loading, a P3 pulse would also be necessary, thus
implying CLK=3 and an execution time of 300 nsec (instead of 200
in this example).

(2) S8,B<R[2);

Shorthand for: . Select R{2] as source for RD bus.
‘ Select RD bus as source for DMUX.
Clock DMUX into B reg on a Pl pulse.
Push value on DMUX bus onto stack (S) at end of
instruction execution.

Since only the B register is selected, a P1 pulse is required. A P3
pulse would also work, but since D is not selected, there is no point
in requiring 300 nsec instead of 140 nsec, hence CLK=1 in this
instruction. ' '

(3) DeR[1)-B; R[1]<D;

Shorthand for: Select R[1] as source for RD bus.
' ‘ Select B reg as source for BMUX.
Select D reg as source for DMUX bus.
Initiate ALU operation-of subtraction.
Clock ALU output into D register on P2 pulse. .
Clock DMUX bus into R[1] on P3 pulse.
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Only one general register can be selected in any microinstruction.
Since R[1] is selected as input to the ALU, only R[1] can be selected
to be loaded also. Note that R[1] can be clocked on either a Pl or
a P3 pulse. However, P2 is already required in this microinstruction
(to load D), and there is no P1-P2 pulse sequence, so P2-P3 (i.e.,
CLK=3) is required.. The net effect is to decrement R[1] by the
contents of B.

(4) Here is a simple program to calculate the sum of mtegers from 1 to

LOOP:

LOOP:

INIT:

100 (decimal):

Del44; BeD; _Initialize B to 100 (decimal)

De0; R[1jeD; : Initialize sum
DeR[1])+B; R[1]«D; Increment sum by count
~ DeB-1; BeD; Decrement count by 1

SKIPZERO; ' Testif Dis O
NOOP; : (Place-holder)
SET

GOTO LOOP; Continue if D#0

EXIT; Done if D=0
TES -

The SET and TES are not microinstructions, but rather delimiters
which tell the micro-assembler to place the enclosed instructions on
an even (in this example) boundary. The SKIPZERO function tests if
register D equals zero. If true, then the EXIT instruction is
executed. :

By a realization of two facts, the cize and execution time of this
program can be reduced. First, “GOTO LOCP" can be the first
instruction of the new control path, rather than just a place-holder.
Thus, we can combine the first instruction of the loop with "GOTO
LOOP" in the SET/TES pair, anl simph branch to this instruction
after initialization. Second, by realizing that an extra add to the
sum is harmless after the count is decremented to zero, the loop -
can be rolled up another instruction, with the following equivalent
program (which is 257 cheaper in both space and time).

Del44; E«D;

De0; R/1})«D;

SKIPZERO;

DeR{[1]+B; R/l}e—D

SET
DeB-1; BeD; GOTO LOOP;
EXIT;

TES

This example illustrates the sort of low-level optimization that goes .

on when programming a horizontally-encoded microprocessor.
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