TOPS-20
Monitor Calls
Reference Manual

AA-4166E-TM, AD—4166E-T1

December, 1982

This manual describes all the monitor calls that exist in the
TOPS-20 operating system. For easy reference, the monitor
call descriptions are arranged alphabetically and presented
concisely.

information in these pages updates the manual of the same
name and order no. AA—4166E-TM.

OPERATING SYSTEM: TOPS-20 V5 (KS/KL Model A)
TOPS-20 V5.1 (KL Model B)

Software and manuals should be ordered by litle and order number. In the United States, send orders
to the nearest distribution center. Outside the United States, orders should be directed to the nearest
DIGITAL Field Sales Office or representative.

Northeast/Mid—Atlantic Region Central Region Western Region

Digital Equipment Corporation Digital Equipment Corporation Digital Equipment Corporation

PO Box CS2008 Accessories and Supplies Center Accessories and Supplies Center

Nashua, New Hampshire 03061 1050 East Remington Road 632 Caribbean Drive

Telephone:(603)884-6660 Schaumburg, Illinois 60195 Sunnyvale. California 94086
Telephone:(312)640-5612 Telephone:(408)734-4915

digital equipment corporation e marlboro. massachusetts

© Digital Equipment Corporation 1982. All Rights Reserved.

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license and may
only be used or copied in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by DIGITAL or its affiliated companies.

The following are trademarks of Digital Equipment Corporation:

o ifgliltlalI

DEC MASSBUS UNIBUS
DECmate PDP VAX
DECsystem—-10 P/OS VMS
DECSYSTEM-20 Professional VT

DECUS Rainbow Work Processor
DECwriter RSTS

DIBOL RSX

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in preparing future
documentation.

UPDATE NOTICE

TOPS-20
Monitor Calis
Reference Manual

AD-4166E-T1

December, 1982
Insert this Update Notice in the TOPS-20 Monitor Calls

Reference Manual to maintain an up-to-date record of changes
to the manual.

Changed Information

The changed pages contained in this update package reflect
changes to the monitor calls for TOPS-20, Version 5.1.

The instructions for inserting this update start on the next page.

© Digital Equipment Corporation 1982. All Rights Reserved.

softvare

INSTRUCTIONS
AD-4166E-T1

The following list of page numbers specifies which pages are to be placed in the TOPS-20 Monitor
Calls Reference Manual as replacements for, or additions to, current pages.

[Title page
Copyright page

Vi

xiii
[xiv

3-285 Index—1
3-294 Index—2
3-415 [Index~1 1
3-416 Index—12
3-469 Index—15
3-470 Index—16

KEEP THIS UPDATE NOTICE IN YOUR MANUAL TO MAINTAIN AN UP-TO-DATE
RECORD OF CHANGES.

TYPE AND IDENTIFICATION OF DOCUMENTATION CHANGES.

Five types of changes are used to update documents contained in the TOPS-20 software manuals.
Change symbols and notations are used to specify where, when, and why alterations were made to
each update page. The five types of update changes and the manner in which each is identified are
described in the following table.

The Following Symbols and/or Notations

1.

Change bar in outside margin; version num-
ber and change date printed at bottom of

page.

Change bar in outside margin; change date
printed at bottom of paqge.

Change date printed at bottom of page.

Bullet (®) in outside margin; version number
and change date printed at bottom of page.

Bullet (®) in outside margin; change date
printed at bottom of page.

Identify the Following Types of Update Changes

1.

Changes were required by a new version of
the software being described.

Changes were required to either clarify or
correct the existing material.

Changes were made for editorial purposes
but use of the software is not affected.

Data was deleted to comply with a new ver-
sion of the software being described.

Data was deleted to either clarify or correct
the existing material.

December, 1982

CONTENTS

Page

PREFACE

CHAPTER 1 INTRODUCTION
1.1 CALLING CONVENTIONS 1-
1.2 MONITOR CALL ARGUMENTS 1-
1.2.1 Addresses 1-
1.2.2 Page Numbers 1-
1.2.3 Section Numbers 1-
1.2.4 Byte Pointers 1-
1.2.5 File Handles and File Designators 1-
1.2.6 Source/Destination Designators 1-
1.2.6.1 File Designator 1-
1.2.6.2 Byte Pointers and ASCII Strings 1-
1.2.6.3 Special Designators 1-
1.2.6.4 Numeric Designators 1-
1.2.7 Device Designator 1-
1.2.8 Process Handles 1-
1.2.8.1 Process/File Handle 1-
1.3 SYSTEM DATE AND TIME 1-
1.4 PROCESSING ERRORS 1-1
1.5 CONVENTIONS USED IN THIS MANUAL 1-1
1.5.1 Number Bases 1-11
1.5.2 Abbreviations 1-12
1.5.3 Symbols 1-12
1.5.4 Unimplemented Features 1-12

CHAPTER 2 FUNCTIONAL ORGANIZATION OF JSYS'S
2.1 ACCOUNTING FUNCTIONS 2~
2.2 REFERENCING FILES 2-
2.2.1 File Specifications 2-
2.2.2 Logical Names 2-
2.2.3 File Handles 2-
2.2.4 File References 2-
2.2.4.1 Files and Devices 2-
2.2.5 Sample Program 2-
2.2.6 File Access 2-
2.2.7 Directory Access 2-
2.2.8 File Descriptor Block 2-1
2.2.9 Primary Input and Output Files 2-2

111

HFOWwWOWOIOIJOUTH_wWwNNH

COWVWOUTULUTWN = =

o

=

w N

..
e s
b

w
.
ot

P S
“ e
N

.
.

. e e e
e e o e o

¢ . .
—

.
.

. .

U W=

.
.
.

.
.
.

WCWOWOWOWWOWOWOWONNNNINJI0U e W -

.

YU WN -

o o 0
« o s

.
.
N s W N

.
—

wwwN -

.
.

.
N~

o
.

o« o .
o .
B w N

WOWOWOWODXOOOINNIIII~Toaoaooaoaoaoa s b EA_RLAELS SR DBELRERERWWWNNONDNNODN

RDRONNDNDNNDNODNPODNONNONNODNNNNDNODNNNODNDNDNDNDNDNDNONDNODNDNDNDNNNODNOONRNNNODNDNONOONNNDNODNDNDONDNDNNDNDNDNDND

.
.

b
.

N

CONTENTS (Cont.)

Methods of Data Transfer
File Byte Count
EOF Limit
Input/Output Errors
Testing for End-of-File
OBTAINING INFORMATION
Error Mnemonics and Message Strings
System Tables
COMMUNICATING WITH DEVICES
Physical Card Reader (PCDR:)
Spooled Card Reader (CDR:)
Physical Card Punch (PCDP:)
Spooled Card Punch (CDP:)
Physical Line Printer (PLPT:)
PLPT: Status Bits
Spooled Line Printer (LPT:)
Physical Magnetic Tape (MTA:)
Buffered 1I/0
Unbuffered I/0
Magnetic Tape Status
Reading a Tape in the Reverse Direction
Hardware Data Modes
Logical Magnetic Tape (MT:)
Terminal (TTY:)
JFN Mode Word
Control Character Output Control
Character Set
Terminal Characteristics Control
Terminal Linking
Terminal Advising
SOFTWARE DATA MODES
SOFTWARE INTERRUPT SYSTEM
Software Interrupt Channels
Software Interrupt Priority Levels
Software Interrupt Tables
Terminating Conditions
Panic Channels
Terminal Interrupts
Terminal Interrupt Modes
Dismissing an Interrupt
PROCESS CAPABILITIES
Assigned Capabilities
Access Control
Processes and Scheduling
Process Freezing

Execute-Only Files and Execute-Only Processes

SAVE FILES
Format for Nonsharable Save Files
Format of Sharable Save Files
Entry Vector
Program Data Vector

INPUT/OUTPUT CONVERSION
Floating Output Format Control
Free Format
General Format Control

iv

Page

2-20
2-20
2-21
2-21
2-22
2-24
2-24
2-24
2-32
2-33
2-34
2-35
2-35
2-36
2-38
2-38
2-39
2-40
2-41
2-41
2-41
2-42
2-45
2-45
2-45
2-48
2-48
2-51
2-53
2-53
2-54
2-57
2-57
2-58
2-59
2-59
2-60
2-60
2-62
2-62
2-63
2-64
2-65
2-67
2-67
2-68
2-70
2-70
2~-71
2-74
2-75
2-75
2-76
2-76
2-76

CHAPTER

ACCES
ADBRK
AIC

ALLOC
ARCF
ASND
ASNSQ
ATACH
ATI

ATNVT

BIN
BKJFN

BOOT

BOUT
CACCT
CFIBF
CFOBF
CFORK
CHFDB
CHKAC
CIS
CLOSF
CLZFF
COMND
CRDIR

CRJOB
CRLNM
CVHST

CVSKT
DEBRK
DELDF
DELF

DELNF

DEQ
DEVST

DFIN

CONTENTS (Cont.)

Date and Time Conversion Monitor Calls
ARCHIVE/VIRTUAL DISK SYSTEM
PRIVILEGED MONITOR CALLS

TOPS~20 MONITOR CALLS

(552)
(570)
(131)

(520)
(247)

(70)
(752)
(116)
(137)

(274)

(50)
(42)

(562)

(51)
(4)
(100)
(101)
(152)
(64)
(521)
(141)
(22)
(34)
(544)
(240)

(2)
(502)
(276)

(275)
(136)
(67)
(26)
(317)

(514)
(121)

(234)

Specifies access to a directory
Controls address breaks
Activates software interrupt
channels

Allocates a device
Archive/virtual disk operations
Assigns a device

Assigns ARPANET special message gueue

Attaches a terminal to a job
Assigns a terminal code to a
software interrupt channel
Creates ARPANET Network Virtual
Terminal Connection

Performs byte input

Backs up the source designator's
pointer by one byte

Performs functions required for
loading front-end software
Performs byte output

Changes account designator

Clears the input buffer

Clears the output buffer

Creates an inferior process
Changes a File Descriptor Block
Checks access to a file

Clears the interrupt system
Closes a file

Closes the process' files

Parses a command

Creates, changes, or deletes a
directory

Creates a job

Defines or deletes a logical name
Converts ARPANET host number to
primary name

Converts ARPANET local socket to
absolute form

Dismisses current software interrupt
Expunges deleted files

Deletes files

Retains specified number of
generations of a file

Removes request from resource gqueue
Translates a device designator to
a string

Inputs double-precision floating
point number

Page
2-79

2-81
2-82

3-40

3-43
3-45

3-48

DFOUT
DIAG
DIBE
DIC

DIR
DIRST

DISMS
DOBE

DSKAS
DSKOP

DTACH
DTI
DUMPI
DUMPO
DVCHR
EIR
ENQ
ENQC
EPCAP
ERSTR
ESOUT
FFFFP
FFORK
FFUFP
FLHST
FLIN
FLOUT
GACCT
GACTF
GCVEC

GDSKC
GDSTS
GDVEC
GET

GETAB
GETER
GETJI
GETNM

GETOK$%
GEVEC
GFRKH
GFRKS
GFUST

GIVOK®%

(235)
(530)
(212)
(133)

(130)
(41)

(167)
(104)

(244)
(242)

(115)
(140)

(65)

(66)
(117)
(126)
(513)
(515)
(151)

(11)
(313)

(31)
(154)
(211)
(277)
(232)
(233)
(546)

(37)
(300)

(214)
(145)
(542)
(200)

(10)

(12)
(507)
(177)

(574)
(205)
(164)
(166)
(550)

(576)

CONTENTS (Cont.)

Outputs double-precision floating
point number

Reserves or releases hardware
channels

Dismisses until input buffer is
empty

Deactivates software interrupt
channels

Disables software interrupt system
Translates a directory number to a
string

Dismisses the process

Dismisses until output buffer is
empty

Assigns or deassigns disk addresses
Specifies disk transfers in hardware
terms

Detaches a terminal from a job
Deassigns a terminal code

Reads data in unbuffered data mode
Writes data in unbuffered data mode
Retrieves device characteristics
Enables software interrupt system
Places request in resource queue
Obtains status of resource queue
Enables process capabilities
Converts error number to string
Outputs an error string

Finds first free page in file
Freezes processes

Finds first used page in file
Flushes an ARPANET host

Inputs floating-point number
Outputs floating-point number

Gets current account designator
Gets account designator of file
Gets entry vector of compatibility
package

Gets disk count

Gets device's status

Gets entry vector of RMS

Gets a save file

Gets a word from a monitor table
Returns the last error 1in a process
Gets specified job information
Returns the program name currently
being used

Requests access to a protected
resource

Gets entry vector

Gets process handle

Gets process structure

Returns author and last writer
name strings

Grants access to a protected
resource

vi

Page

3-101
3-102
3-106

3-107
3-108

3-109
3-110

3-111
3-112

3-113
3-115
3-116
3-117
3-119
3-121
3-123
3-124
3-130
3-134
3-135
3-136
3-137
3-138
3-139
3-140
3-141
3-142
3-143
3-144

3-145
3-146
3-147
3-148
3-149
3-152
3-153
3-154

3-156
3-157
3-162
3-163
3-164
3-166

3-167

GJINF
GNJFN
GPJFN
GTAD

GTDAL
GTDIR
GTFDB
GTHST
GTJFN

GTRPI
GTNCP%
GTRPW
GTSTS
GTTYP
HALTF
HFORK
HPTIM

HSYS
IDCNV
IDTIM
IDTNC
IIC

INLNM
JFNS
KFORK
LGOUT
LNMST
LOGIN
LPINI
MDDT$
METER$%
MRECV
MSEND
MSFRK
MSTR

MTALN

MTOPR
MTU%

MUTIL
NIN
NODE
NOUT
NTMANS
ODCNV
ODTIM
ODTNC
OPENF
PBIN
PBOUT

(13)
(17)
(206)
(227)
(305)
(241)
(63)
(273)
(20)

(172)

(272)

(171)
(24

CONTENTS (Cont.)

Gets current job information
Gets the next JFN
Gets the primary JFNs
Gets current date and time
Gets disk allocation of a directory
Gets information of directory entry
Gets a File Descriptor Block
Obtains ARPANET host information
Gets a JFN

Short Form

Long Form
Gets trap information
Obtains information about the NCP
Gets trap words
Gets a file's status
Gets the terminal type number
Halts the current process
Halts a process
Returns values of high precision
clocks
Halts the system
Inputs date and time conversion
Inputs date and time
Inputs date/time without converting
Initiates software interrupts on
specified channels
Lists job's logical names
Translates a JFN to a string
Kills a process
Kills a job
Converts a logical name to a string
Logs 1n a job
Loads VFU or translation RAM
Enters MDDT
Returns EBOX/MBOX clock values
Receives an IPCF message
Sends an IPCF message
Starts a process in monitor mode
Performs structure-dependent
functions
Associates magnetic tape drive
with logical unit number
Performs device-dependent functions
Performs various functions for
MT: devices
Performs IPCF control functions
Inputs an integer number
Performs network utility functions
Outputs an integer number
Performs network management functions
Outputs date and time conversion
Outputs date and time
Outputs date/time without converting
Opens a file
Inputs the next byte
Outputs the next byte

vii

Page

3-168
3-169
3-170
3-171
3-172
3-173
3-175
3-176

3-179
3-187
3-194
3-195
3-197
3-198
3-199
3-200
3-201

3-202
3-203
3-204
3-205
3-207

3-209
3-210
3-211
3-214
3-215
3-216
3-217
3-218
3-219
3-220
3-222
3-224
3-229

3-230

3-247
3-248

3-277
3-279
3-285
3-286
3-292.1
3-292.2
3-294
3-295
3-297
3-298
3-303
3-304

PDVOP%
PEEK
PLOCK
PMAP
PMCTL
PPNST

PRARG
PSOUT
RCDIR
RCM

RCUSR
RCVIM

RCVOK$%
RDTTY

RELD
RELSQ

RESET

RFACS
RFBSZ
RFCOC
RFMOD
RFORK
RFPOS
RFPTR
RFRKH
RFSTS
RFTAD
RIN

RIR

RIRCM
RLJFN
RMAP

RNAMF
ROUT

RPACS
RPCAP
RSCAN

RSMAP%
RTFRK

RTIW
RUNTM
RWM

RWSET
SACTF

(603)
(311)
(561)

(56)
(560)
(557)

(545)

(76)
(553)
(134)
(554)
(751)

(575)

(523)

(71)
(753)

(147)

(161)

(45)
(112)
(107)
(155)
(111)

(43)
(165)
(156)
(533)

(54)
(144)

(143)
(23)
(61)
(35)
(55)
(57)

(150)

(500)

(610)
(322)

(173)
(15)
(135)

(176)
(62)

CONTENTS (Cont.)

Manipulates program data vectors
Obtains monitor data

Locks physical pages

Maps pages

Controls physical memory

Translates project-programmer
number to string

Reads/sets process argument block
Outputs a string

Translates string to directory number
Reads the channel word mask
Translates string to user number
Retrieves message from ARPANET
special message queue

Retrieves access request from GETOK
queue

Reads data from primary input
designator

Releases a device

Deassigns ARPANET special message
gueue

Resets/initializes the current
process

Reads process' ACs

Reads file's byte size

Reads file's control character output
Reads a file's mode

Resumes a process

Reads terminal's position

Reads file's pointer position
Releases a process handle

Reads a process' status

Reads file's time and dates
Performs random input

Reads software interrupt table
addresses

Reads inferior reserved channel mask
Releases JFNs

Obtains a handle on a page

Renames a file

Performs random output

Reads a page's accessibility

Reads process capabilities

Accepts a new string or uses the
last string as input

Reads a section map

Returns the handle of a process
suspended because of a monitor call
intercept

Reads terminal interrupt word
Returns runtime of process or job
Reads waiting channel interrupt word
mask

Releases the working set

Sets account designator of file

vili

Page

3-305
3-308
3-309
3-310
3-315

3-318
3-319
3-321
3-322
3-326
3-327

3-329
3-330

3-332
3-335

3-336

3-337
3-338
3-339
3-340
3-341
3-342
3-343
3-344
3-345
3-346
3-349
3-351

3-352
3-353
3-354
3-355
3-356
3-358
3-359
3-360

3-361
3-363

3-364
3-365
3-366

3-367
3-368
3-369

SAVE
SCTTY
SCVEC

SDSTS
SDVEC
SETER
SETJB
SETNM
SETSN
SEVEC
SFACS
SFBSZ
SFCOC
SFMOD
SFORK
SFPOS
SFPTR
SFRKV
SFTAD
SFUST

SIBE
SIN
SINR
SIR

SIRCM
SIZEF
SJPRI
SKED%

SKPIR
SMAP%

SMON
SNDIM

SNOOP
SOBE
SOBF
SOouT
SOUTR
SPACS
SPJFN
SPLFK
SPOOL

SPRIW
SSAVE
STAD

STCMP

(202)
(324)
(301)

(146)
(543)
(336)
(541)
(210)
(506)
(204)
(160)

(46)
(113)
(110)
(157)
(526)

(27)
(201)
(534)
(551)

(102)

(52)
(531)
(125)

(142)

(36)
(245)
(577)

(127)
(767)

(6)
(750)

(516)
(103)
{175)

(53)
(532)

(60)
(207)
(314)
(517)

(243)
(203)
1226)
(540)

CONTENTS (Cont.)

Saves a file as nonsharable
Changes controlling terminal
Sets entry vector of compatibility
package

Sets device's status

Sets entry vector of RMS

Sets the last error in a process
Sets job parameters

Sets program name

Sets system name for a process
Sets entry vector

Sets process' ACs

Sets file's byte size

Sets file's control character output
Sets a file's mode

Starts a process

Sets terminal's position

Sets file's pointer position
Starts process using its entry vector
Sets file's time and dates

Sets author and last writer
name strings

Skips if input buffer is empty
Performs string input

Performs record input

Sets software interrupt table
addresses

Sets inferior reserved channel mask
Gets the size of a file

Sets job's priority

Performs services relating to
the class scheduler

Tests the state of the software
interrupt system

Maps one or more contiguous
sections of memory

Sets monitor flags

Sends a message to ARPANET
special message gueue

Performs system analysis

Skips if output buffer is empty
Skips if output buffer is full
Performs string output

Performs record output

Sets a page's accessibility
Sets the primary JFNs

Splices a process structure
Defines and initializes input
spooling

Sets the priority word

Saves a file as sharable

Sets system date and time
Compares two strings

ix

Page

3-370
3-371

3-373
3-375
3-376
3-377
3-378
3-381
3-382
3-383
3-384
3-385
3-386
3-387
3-388
3-389
3-390
3-391
3-392

3-394
3-395
3-396
3-398

3-400
3-401
3-402
3-403

3-404
3-409

3-410
3-415

3-417
3-418
3-422
3-423
3-424
3-426
3-428
3-429
3-430

3-431
3-433
3-434
3-436
3-437

STDEV

STI
STIW
STO
STPAR
STPPN

STSTS
STTYP
SWJIFN
SWTRP%

SYERR
SYSGT
TBADD
TBDEL
TBLUK
TEXTI

TFORK

THIBR
TIME

TIMER
TLINK
TMON

TTMSG
TWAKE
UFPGS
USAGE

USRIO
UTEST
UTFRK

VACCT
WAIT

WFORK
WILDS%
XGSEV%
XGTPWS
XGVEC%
XRIR%

(120)

(114)
(174)
(246)
(217)
(556)

(25)
(302)
(47)
(573)

(527)

(16)
(536)
(535)
(537)
(524)

(321)

(770)
(14)
(522)
(216)
(7)
(775)
(771)
(525)
(564)

(310)
(563)
(323)

(566)
(306)

(163)
(565)
(614)
(612)
(606)
(601)

CONTENTS (Cont.)

Translates string to device
designator

Simulates terminal input

Sets terminal interrupt word
Simulates terminal output

Sets terminal parameters
Translates string to
project-programmer number

Sets a file's status

Sets the terminal type number
Swaps two JFNs

Traps for arithmetic underflow
or overflow conditions

Writes data to the system error file

Returns information for a system table

Adds entry to command table
Deletes entry from command table
Looks up entry in command table
Reads input from a terminal or a
file

Sets and removes monitor call
intercepts

Blocks the current process

Returns time system has been up
Sets time limit for a job

Controls terminal linking

Tests monitor flags

Sends a message to a terminal
Wakes a specified job

Updates file pages

Writes entries into the accounting
data file

Places program in user I/C mode
Tests monitor routines

Resumes a process suspended because
of a monitor call intercept
Validates an account

Dismisses process until interrupt
occurs

Waits for processes to terminate
Compares wild and non-wild strings
Gets an extended entry vector
Returns the page fail words
Returns an entry vector

Reads the addresses of the channel
and priority level tables

Page

3-438
3-439
3-440
3-442
3-443

3-444
3-445
3-446
3-447

3-448
3-450
3-451
3-452
3-453
3-454

3-457

3-461
3-464
3-465
3-466
3-468
3-470
3-472
3-473
3-474

3-475
3-478
3-479

3-481
3-482

3-483
3-484
3-485
3-487
3-488
3-489

3-490

XRMAP%
XSFRK%

XSIR%

XSSEVS

XSVEC%

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

TABLE

—
|
—

NN NNONDNDNDNODNDNODNDNDNDN -
| | B B |
HEHFOONOUIE_WNDHDN

CONTENTS (Cont.)

(611) Acguires a handle on a page

(605) Starts a process in a non-zero

section of memory

(602) Sets the addresses of the channel

and priority level tables

(613) Allows setting of extended entry

vector

(607) Sets or clears the entry vector

ASCII, SIXBIT, AND EBCDIC COLLATING SEQUENCES

AND CONVERSIONS
MONSYM
MACSYM

ACTSYM

TABLES

P-Field Values for One-word Global
Byte Pointers
Source/Destination Designators
File Descriptor Block (FDB)
System Tables

Device Types

PCDR: Status Bits

PCDP: Status Bits

PLPT: Control Characters

PLPT: Status Bits

MTA: Status Bits

JFN Mode Word

Wake-up Classes/CCOC Word Bits
Terminal Characteristics
Software Interrupt Channels
Terminal Interrupt Codes
Process/Job Capabilities
Floating-Point Format Control
Time Zones

ASCII and SIXBIT Collating Seguence
and Conversion to EBCDIC
EBCDIC Collating Sequence and
Conversion to ASCII

x1

Page

3-491
3-493
3-494

3-495
3-496

1-5

1-6
2-11
2-25
2-33
2-34
2-35
2-37
2-38
2-39
2-46
2-49
2-51
2-58
2-60
2-64
2-77
2-80

PREFACE

This manual is written for the assembly language programmer who 1is
already familiar with TOPS-20 monitor <calls. For an introductory
discussion of some basic monitor calls, refer to the TOPS-20 Monitor

Calls User's Guide. For a more complete description of the monitor
calls that can be used to perform ARPANET functions, refer also to the
TOPS-20AN Monitor Calls User's Guide.

Chapter 1 introduces the conventions to follow when using monitor
calls, and describes the types of arguments used with the monitor
calls. Chapter 2 presents the calls related to particular functions
and tasks, such as using the software interrupt system. Chapter 3
contains, in alphabetical order, descriptions of all the monitor
calls.

Appendix A contains the EBCDIC, ASCII, and SIXBIT collating sequences,
and conversions between these three character set representations.
Appendix B is a listing of the system file MONSYM.MAC, which defines
many of the symbols used in this manual. Appendix C is a listing of
the system file MACSYM.MAC, which contains symbols and macros useful
in assembly-language programming. Appendix D 1is a listing of the
system file ACTSYM.MAC, which defines the macros and symbols used with
the USAGE monitor call.

REFERENCES

The following publications are either referenced in this manual or are
recommended as supplements to this manual:

Referenced as Title and Order Number

Monitor Calls User's Guide TOPS-20 Monitor Calls User's Guide
ARPANET Manual TOPS-20AN Monitor Calls User's Guide
ARPANET Handbook ARPANET Protocol Handbook

Available from:
Network Information Center

SRI International
Menlo Park, California 94025

xiii

Referenced as

DECnet Manual

Assembler Manual
Link Manual

Hardware Reference Manual

Commands Reference Manual
SPEAR Manual
TOPS-20 User's Guide

Installation Guide

Network Management Spec

Title and Order Number

TOPS-20 DECnet-20 Programmer's Guide and

Operations Manual

for DECnet-20 Version 2,
DECnet-20 User's Guide
for DECnet-20 Version 3

and

MACRO Assembler Reference Manual

TOPS-20 LINK Reference Manual

DECsystem-10/DECSYSTEM-20 Processor

Reference Manual

TOPS-20 Commands Reference Manual

TOPS-10/TOPS-20 SPEAR Manual

TOPS-20 User's Guide

TOPS-20 Software Installation Guide (for

KS/KL Model A)

or KL Model B Software Installation

Guide

Network Management Architecture

Specification

Xiv

December 1982

CHAPTER 1

INTRODUCTION

The TOPS-20 Monitor Calls Reference Manual describes every monitor
call in the TOPS-20 system. Monitor calls for ARPANET systems and
DECnet systems are also described. The vse of these calls, however,
is more completely described in the ARPANET Manual and the DECnet
Manual.

TOPS-20 monitor calls invoke the TOPS-20 monitor by means of the JSYS
instruction (op code 104). The UUO-type monitor calls (op codes
40-77) invoke the TOPS-10 compatibility package, which simulates the
action of these ©UUO's in the TOPS-10 monitor. Programs written for
TOPS-20 should use TOPS-20 monitor calls, not UUO's.

For easy reference, monitor call descriptions in Chapter 3 are
arranged alphabetically and presented concisely. This concise format
begins with the monitor call name and numeric definition, followed by
a brief description of the monitor call function. The calling
sequence for the monitor call is next, indicated by statements in the
formet

ACCEPTS IN ACn: description

where n is an accumulator number. Following the list of accumulators
and descriptions of their contents are statements of the form

RETURNS +1: condition
+2: condition

These statements define where control returns, and under what
conditions, after execution of the monitor call. The statement
RETURNS+1: means that control returns to the memory location
immediately following the calling location. The statement RETURNS+2:
means that control returns to the second memory location after calling
location.

Next, there is an optional description of the action taken by the
monitor «call. Finally, a list of possible error mnemonics ends the
monitor call definition.

1.1 CALLING CONVENTIONS

Arguments for the monitor call are placed in accumulators (ACs), then
the monitor call 1s executed. The first argument is in ACl, the
second in AC2, and so forth, up to 2 maximum of four accumulators.

Many calls also reguire an argument Dblock. This 1is a group of

contiguous words of memory that contain additional arguments. TIf an
argument block is reguired, an AC must contain a pointer to the

1-1

INTRODUCTION

argument block. See the description of the GTJFN% monitor call for an
example of the use of argument blocks.

In addition, arguments 1in an argument block can point to other
argument blocks. These other argument blocks can, in turn, contain
other groups of arguments. For an example of this way of passing meny
arguments to a monitor call, see the description of the GTJFN call in
Chapter 3. (There are several exceptions to this convention; refer
to the individual descriptions in Chapter 3.)

Data returned by the execution of a monitor call is often returned 1n
the AC's. 1If a call returns more data than can be held in four AC's,
it returns the data to a data block. A pointer to the data block must
be passed as an argument to the monitor cell. Such a pointer can be
passed in either an AC, or an argument block.

When using a monitor cell in a program, end the name of the call with
a percent (%) character. This convention helps avoid conflicts
between monitor call names and symbols defined by your programs. In
addition, this convention 1S required by the newer monitor calls
(those defined in TOPS-20 Release 4 or later). Although older <cealls

(those defined before TOPS-20 Release 4) do not require a percent
character at the end of their names, they will accept one.

1.2 MONITOR CALL ARGUMENTS

A monitor call argument can be one of the following:
® a word of data
® the memory address word that contains deata
® & page number
® 4 sectlon number
e 2 byte pointer
e & file handle

® 2 source (or destination) designator that defines where to
obtain (or send) data

® @& process handle
e a file/process handle

The following sections describe these arguments.

1.2.1 Addresses

Cn a DECsystem-20 addresses can be one of two types: an 18-bit
address, or a 30-bit address. TOPS-20 supports 30-bit addressing, but
provides an address space of 32 (decimal) gsections, each of which
contains 256K words. Thus although 30 bits are used to contain a
global address, the section number in such an address can be no longer
than 6 bits, making the largest possible address & total of 23 bits
long.

TOPS-20 Version 5 1-2 April 1982

INTRODUCTION

An 18-bit address is called a section-relative address. With such an
address you can specify any word in a 256K-word section of memory, bhut
you cannot also specify a section number. With a 30-bit, or global,
address you can reference any word of any section of memory. (Refer
to the Hardware Reference Manual for a description of global
addresses.)

TOPS-20 allows you to use 18-bit or 30-bit addresses. Some monitor
calls reguire one kind, some the other; some calls accept either
kind.

Some monitor calls use only 18 bit to holéd an address. These calls
interpret 18-bit addresses as locations in the current section, the
same section as that of the code being executed (the same section as
the wuser PC.) T¢ form an unambiguous global address, these calls add
the section number of the PC to the section-relative address.

Monitor calls that use an entire word for an address can accept either
18-bit or 30-bit addresses. If the address is 30 bits (the section
number 1s not zero), it is a global address.

If the address is 18 bits (the section number is =zero), the monitor
call acts in one of two ways. TIf the call existed in Release 4 or
earlier, i1t interprets the address as a section-relative address, as
stated above. RBut if the call is one of the extended-addressing calls
(i1f the call starts with an X), the call interprets the zero 1in the
section-number field as indicating section zero.

1.2.2 Page Numbers

A TOPS-20 page number can be 9 bits or 18 bits long. A page number
can refer to either a page of memory, or a pade of a disk file.

The 9-bit number 1s called a section-relative page number. Such a
page number can specify any page within a 256K-word section of memory,
or any page within a 256K section of a file. (A file section 1s a

unit of 512 pages within a file. The first page of each such section
has a page number that is an integer multiple of 512.)

The left half of a section-relative (18-bit) address can be considered
to be a section-relative page number. If a monitor call uses only 9
bits of a word to hold a page number, the monitor considers that page
to be within the current section.

Most monitor calls that require page numbers as arguments use at least
half of a word to contain the page number. Such calls allow you to
specify an 18-bit, or global, wpage number. A global page number
refers to both a section of memory and a page within that section.
Page 23200, for example, is page 200 in section 23.

1.2.3 Section Numbers

A section number is 6 bits long. In a glohal address, =2 section
number occupies bits 6 through 17. Because TOPS-20 supports 40
(octal) sections of memory, wusing section numbers larger than 37
causes an error.

TOPS-20 Version 5 1-3 April 1982

INTRODUCTION

1.2.4 Byte Pointers

Monitor calls accept two kinds of byte pointers as arguments:
one-word local bhyte pointers, and one-word global byte pointers,
One-word local byte pointers work in all sections, but one-word global
byte pointers cannot be used in section O.

The Hardware Reference Manual describes one-word local byte pointers
in detail. The paragraphs below discuss one-word global byte
polnters.

Any monitor calls that accept source/destination designators (See
Section 1.2.6.) also accept byte pointers, and the bytes can be from 1
to 36 bits long. SIN and SOUT are examples of such monitor calls.

If a call cannot accept a source/destination designator, however, that
call only accepts byte pointers that point to 7-bit bytes. Examples
of such calls are CACCT and PSOUT. Note, however, that for historical
reasons some monitor calls accept one-word global byte pointers that
point to bytes of other lengths.

TOPS-20 monitor calls do not accept the two-word local byte ©poilnters
or the two-word global byte pointecs described in the Hardware
Reference Manual.

Local byte pointers can only point to a byte in the current section.
This is because they use 18 bits to hold the address of the byte. You
can use 1indexing with local byte pointers, however, to point to a byte
1n another section of memory.

I1£, for -example, AC5 contains a 30-bit address, the following
instruction denerates an indexed 1local byte pointer in AC2. The
pointer points to a byte 1in another section, the section of the
address 1in ACS.

MOVE 2, [POINT 7,0(5)]
Use of indirect addressing with local byte pointers is discouraged.
Global byte pointers use 30 bits to hold the address of the byte, thus

they can point to a byte in any section of memory. One-word global
byte pointers have the following format:

Table 1-1 shows how the KL-10 processor interprets the P field.

TOPS-20 Version 5 1-4 April 1982

INTRODUCTION

Table 1-1
P-Field Values for One-word Global Byte Pointers

P (octal) Byte Size Position of the Right-Most Bit
(count, in octal, of the number
of bits to the right of the
current pointer position)

Less thean 45 a local byte pointer.

45 6 44
46 6 36
47 6 30
50 6 22
51 6 14
52 6 6
53 6 0
54 8 44
55 8 34
56 8 24
57 8 14
60 8 4
61 7 44
62 7 35
63 7 26
64 7 17
65 7 10
66 7 1
67 9 44
70 9 33
71 9 22
72 9 11
73 9 0
74 18 44
75 18 22
76 18 0
77 unused (causes an 1llegal instruction trap)

You cannot use indexing or indirect addressing with one-word globel
byte pointers. In addition, you cannot use one-word global byte
pointers in section 0.

1.2.5 File Handles and File Designators

A file handle is also known a2s a job file number, or JFN. It 1is an
18-bit number that, within the context of a job, uniquely identifies a
file.

An indexable file handle, or full-word JFN, has a JFN 1in the right
half and flags in the 1left balf. This file handle is useful for
handling several files in seguence. See Section 2.2.3 for a more
complete discussion of file handles.

TOPS-20 Version 5 1-5 April 1982

INTRODUCTION

1.2.6 Source/Destination Designators

Some monitor calls act upon bytes or strings of bytes, or transfer
bytes from one place to another. Such calls often wuse
source/destination designators to identify where the bytes are sent or
cbtained.

A source/destination designator is a 36-bit guantity that can have the
formats given 1in Table 1-2. The paragraphs following the table
describe each designator. Note that byte pointers are also
source/destination designators.

Table 1-2
Source/Destination Designators

Symbol Left Half Right Half Meaning

(none) 0 JFN a job file number. The JFN
is the job's handle on a
file, and 1s assigned with
the GTJFN monitor call.
(Refer to Section 2.2.3.)

.PRIIN 0 100 primary input designator

.PRIOU 0 101 primary output designator

.NULIO 0 377777 null designator

.TTDES 0 4XXXXX universal terminal designator

.CTTRM 0 777777 the process's controlling
terminal

.DVDES 6XXXXX XXXXXX universal device designator

(for use only in section 0)
777777 address implicit byte pointer.
TOPS-20 changes left half to
440700. (Refer to Sections
1.2.4 and 1.2.6.2.)

777777 777777 universal default

5XXXXX XXXXXX numeric value

Note: The designators ,PRIIN and .PRIOU are legal wherever a JFN
1s expected. You cannot assiagn them as JFN's, however. GTJFN and
GNJFN never assign 100 or 101.

The most commonly used source/destination designators are:

1. A JFN, 1dentifying a particular file. Before a JFN can be
used, 1t must be obtained by means of the GTJFN monitor call.
(See Section 2.2.3.)

2. The primary 1input and output deslgnators. (Refer to Section
2.2.9.) These designators are the ones recommended for use in
referring to the job's controlling terminal because they can
be changed to cause terminal input and/or output to be taken

TOPS-20 Version 5 1-6 April 1982

INTRODUCTION

from and/or sent to a file. The controlling terminal
designatcr .CTTRM (0,-1) cannot be redirected in this way,
and its use is not recommended in normal situations.

3. A byte pcinter to the beginning of the string being read or
written.

1.2.6.1 File Designator - A file designator indicates that I/0 to be
done by the monitor call is to be done as though to a terminal. A
file designator can be any of the following: .PRIIN, .PRIOU, .NULIO,
.TTDES, .CTTRM, or .DVDES.

1.2.6.2 Byte Pointers and ASCII Strings - Many monitor calls deal
specifically with ASCII strings. The following conventions apply to
such strings.

1. A file designator can be used if the file is in 7-bit ASCII
format. This is the usual format for text files.

2. One of the following is used to designate a string in the
caller's address space:

a. -1,,ADR to designate a 7-bit ASCII string beginning 1in
the leftmost byte of ADR. This 1is for convenience,
making HRROI 1,ADR functionally equivalent to
MOVE 1, [POINT 7,ADR].

b. A byte pointer with a byte size of 7 bits. TIf the byte
size 1s not 7 bits, the results might be incorrect. This

is because monitor «calls use the ILDB and IDPB
instructions to reference byte strings, and do no
additional checking to see that the data 1is 1in the
correct format. Note, however, that for historical

reasons some monitor calls accept byte pointers with byte
sizes larger or smaller than 7 bits.

NOTE

Unless otherwise noted, the term "byte
pointer" is wused 1n this manual to
indicate an ILDB/IDPB byte pointer that
polints to an ASCIZ string. The
following example generates such a byte
pointer:

PCINT 7, ([ASCIZ/character string/]

The term "pointer" is wusually used to
refer to an address, except in
discussions that must make repeated
references to the term "byte pointer".

Ir the latter case, some of the
occurrences of "byte pointer”™ will be
shortened to "pointer" to avoid

monotonous repetition. In these cases,
however, 1t will be clear from the
context that "pointer" implies "byte
pointer".

INTRODUCTION

Normally, monitor calls assume that ASCII strings are terminated with
a byte containing zeroes (an ASCIZ string). A few calls terminate on
other ASCII characters because of context (the NIN call, for example),
and some optionally accept an explicit byte count or allow you to
determine the terminating byte. These 1latter calls (SIN and SOUT
calls, for example) are generally those that can handle non-ASCII
strings and byte sizes other than 7 bits.

After a monitor call 1s used to read a string, the source byte pointer
argument 1s updated such that an ILDB would read the character
following the terminating character; an LDB would reread the
terminating character.

After a monitor call is used to write a string, the destination byte
pointer argument 1is updated to point to the character following the
last nonnull character written. If there is room, a null byte 1is
appended to the string, but the byte pointer returned is such that an
IDPB will overwrite the null.

1.2.6.3 Special Designators - The universal default designator of -1
1s used to indicate the current designator, such as the current job or
the connected directory. For example, the GETJI monitor call accepts
an argument of -1 as the designator for the current job.

1.2.6.4 Numeric Designators - The designator 5xxxxX XXXXxX (where a
numeric value is in bits 3-35) is used to supply a numeric designator
as an argument to a call. Numeric designators are used to 1identify
account numbers, directory numbers, user numbers, and the like. The
DIRST monitor call, for example, accepts a user number as 5B2+33-bit
number.

1.2.7 Device Designator

Many monitor calls dealing with devices (refer to Section 2.4) take a
device designator as an argument. A device designator can be either

LH: .DVDES(600000) +device type number

RH: unit number for devices that have units, arbitrary code for
structures, or -1 for nonstructure devices that do not have
units

or

LH: O

RH: .TTDES(400000)+ terminal number, or .CTTRM(777777) for
controlling terminal

Thus, terminals can be represented in two ways; the second way 1is

provided for compatibility with the source/destination designator.
Because designators for structures contain an arbitrary code, these
designators must always be obtained from the monitor (by means of the
STDEV call) and cannot be created by the program.

Section 2.4 describes the various devices and their type numbers.

INTRODUCTION

1.2.8 Process Handles

Several monitor calls accept an 18-bit argument called a process
handle. The following fork handles are defined within the context of
a job.

Value Symbol Meaning

400000 .FHSLF current process

400000+n - process n, relative to the current process
-1 .FHSUP superior process
-2 . FHTOP top-level process
-3 .FHSAT current process and all of its inferiors
-4 . FHINF 211 of the current process' inferiors
-5 .FHJOB all processes in the job

Use of the superior process argument (.FHSUP) 1is 1legal only 1f the
process has the superior process access capability (SC%SUP) enabled in
its capability word. Meaningful operations may usually be performed
with the top level process argument (.FHTOP) only 1f the process has
WHEEL or OPERATOR capability enabled (SC$WHL or SC%OPR) in 1its
capability word. Refer to Section 2.7.1 for information on the
capability word.

Process handles in the range 400001 to 400777 are called relative
process handles, and are generated by the monitor to refer to specific
processecs. (See the CFORK monitor call description.) These handles
are valid only within the context of the process to which they are
given. Thus, they may not be passed between processes. GFRKH may be
used to convert process handles for use by another process.

1.2.8.1 Process/File Handle - Some monitur calls accept an 18-bit
argument called a ©process/file handle. This handle 1is either a
process handle (as defined in Section 1.2.8), or a JFN.

Note that string pointers and terminal identifiers cannot be used 1in

this context. This 1is not a 1limitation, however, because the
operations that use the process/file handle are used for changing page
maps. Such operations are not meaningful for string pointers or

terminals.

1.3 SYSTEM DATE AND TIME

The internal system date and time is a 36-bit dquantity. It can be
passed to a monitor call as an argument, or returned as a value. The
internal date-land-|time word has the following format:

day,,fraction
where day is the number of days since November 18, 1858, and fraction
is the fractional part of the day elepsed since midnight, Greenwich
Mean Time. The fraction is the numerator of a fraction that has a
denominator of 2**18. Thus the fraction

fraction/2**18

represents the portion of the d3y elapsed since midnight. This format
conforms to the Smithsonian Astronomical Date Standerd.

INTRODUCTION

Because the time is stored as Greenwich Mean Time, the monitor adds
the wvalue of the TIMEZONE offset to the 1nternal date and time to
obtain your local time. The TIMEZONE offset 1is specified in
<SYSTEM>CONFIG.CMD. (See the Installation Guide for more information
on the TIMEZONE offset.)

Monitor calls convert local dates and times to 1internal dates and
times, and internal dates and times to local dates and times. Refer
to Section 2.9.2 for more information about the date and time
conversion.

1.4 PROCESSING ERRORS

After execution of a monitor call, program control returns to the
calling program at one of two locations. The +2 return indicates
successful completion of the monitor call. The +1 return 1is often
used to indicate failure of the monitor call to perform its intended
function. (Refer to Chapter 3 for specifics on the returns possible
from each monitor call.,)

When a failure occurs during the execution of a mwmwonitor call, the
monitor stores an error code. The error code indicates the cause of
the failure. This error code is usually stored in the right half of
ACl, but can also be stored in the monitor's data base. 1In either
case, you can obtain the message associated with the error by using
the GETER or ERSTR calls.

Some monitor calls, however, have only a single return (+1), to the
instruction following the <call. This instruction is executed upon
successful completion of the call.

When an error occurs during execution of single-return call, the
monitor examines that next instruction. If it is a JUMP instruction,
and the AC field is 16 or 17, the monitor transfers control to the
address specified in the JUMP 1nstruction.

If the instruction following the call is not a JUMP instruction, the
monitor generates a software interrupt. The <calling program can
process the interrupt by means of the software interrupt system. 1f
the program 1s not prepared to process the interrupt, the process is
usually terminated, and a message is output. (Refer to Section 2.6.)

Instead of a JUMP instruction, vyou can use one of the following
symbols as the instruction followina the call:

ERJMP address
ERCAL address

These symbols correspond to JUMP 16, and JUMP 17, respectively, which
are machine no-ops. Because ERJMP and ERCAL are symbols that are
defined in MONSYM, you must place a SEARCH MONSYM statement at the top
of your program. (See the Assembler Manuel for a description of the
SEARCH pseudo-op.)

When an ERJMP 1ic used, the monitor simulates a
JRST address

instruction. This transfers conrtrol permanently to the effective
address. The address should be the starting address of ar
error-processing routine. To return control to the program after
processing the monitor call error, the error routine must include a
JRST instruction.

1-10

INTRODUCTION

When an ERCAL is used, the monitor simulates a
PUSHJ 17, address

ihstruction. This is a subroutine call. To return control to the
code that follows the unsuccessful monitor call, the subroutine must
include a

POPJ 17,

instruction. Note that ERCAL requires accumulator 17 to be set up as
a pushdown pointer.

The ERJMP or ERCAL instruction can be wused with all monitor calls
independent of whether the <call has one or two returns. These
instructions allow you to process an error without using the software
interrupt system. In fact, use of these symbols overrides the
software interrupt system.

An ERJMP or ERCAL may also be used following a machine 1instruction,
and will trap for the following conditions:

1. 1Illegal instruction

2. Illegal memory read

3. Illegal memory write
4. Pushdown list overflow

The ERJMP or ERCAL executes if it 1is either the next instruction
following a monitor call that fails, or the next instruction following
a machine 1instruction that generates the errors shown above;
otherwise, it is a no-op.

NOTE

If an ERJMP or ERCAL executes on an
error from a monitor call, the contents
of any AC's that would normally contain
an error code may be unreliable. Using
the GETER monitor call is the sure way
to obtain the error code in such a case.

1.5 CONVENTIONS USED IN THIS MANUAL
1.5.1 Number Bases

Except where otherwise noted, numbers used in this manual, 1including
those in the definition of & monitor call description, are octal.
When indicated, bits in words are numbered 1n decimal with the
leftmost bit of the word labeled B0 and the rightmost bit of the word
labeled B35.

1-11

INTRODUCTION

1.5.2 Abbreviations
The following abbreviations are used in this manual:
BO, Bl, ... Bit 0, bit 1, ... of the computer word

nBm Field whose rightmost bit is m and whose value is
n (5B2, for example).

LH Left Half (B0O-Bl17 of the word)

RH Right Half (B18-B35 of the word)

JFN Job File Number

PSB Process Storage Block (a table containing all

monitor data for the process)

JSB Job Storage Block (a table containing all monitor
data relevant to the job)

CCOC words Control Character Output Control words

(2 words containing 36 2-bit bytes that determine
the way 1in which control characters are output.
Refer to Section 2.4.9.2.)

FDB File Descriptor Block (a table in a file that
contains 1information about the file). Refer to
Section 2.2.8.

1.5.3 Symbols

The symbols used in this manual, including the names of the monitor
calls, are defined in the system file MONSYM.MAC. A program that uses
a monitor call or other symbol must include the statement

SEARCH MONSYM

before the first occurrence of a symbol. Failure to 1include this
statement causes errors in the compilation of the program. Refer to
Appendix B for a listing of MONSYM.

1.5.4 Unimplemented Features

The MONSYM file contains symbol names for several monitor calls and
bitt positions that are not described in this manual. These features
are not implemented in TOPS-20.

If an unimplemented monitor call is used in a user program, it causes
an 1llegal instruction interrupt unless followed by an ERJMP or ERCAL
symbol. In this case, the ERJMP will be executed. It is recommended
that unimplemented or undefined bit positions be zero to allow for
future expansion.

CHAPTER 2

FUNCTIONAL ORGANIZATION OF JSYS'S

2.1 ACCOUNTING FUNCTIONS

The monitor calls in this group initiate and delete Jjobs from the
system. They also change and read accounting information about these
jobs.

The monitor calls that perform accounting functions are as follows:

LOGIN Logs a job into the system

GACCT Reads a job's account

SACTF Sets a file's account

GACTF Reads a2 file's account

USAGE Writes entries into the system's accounting data file
VACCT Validates an account

2.2 REFERENCING FILES

All files in the gystem, including the system's file directory, are
normally referenced with the <c¢alls in this group. Section 2.11
describes the privileged calls for referencing the disk directly,
without using the TOPS-20 file system.

2.2.1 File Specifications

A file in TOPS-20 is identified by 1ts node name, device name,
directory name, filename, file type, and generation number. These
five items uniquely identify any file on the system that is accessible
to a user. The device name identifies the device on which the file 1is
stored. The directory name identifies the directory containing the
file. The filename, type, and generation number identify a particular
file in the directory.

A file can also have attributes associated with it to further specify
information about the file. See the description of the long-form
GTJFN JSYS for 2 list of the possible file attributes.

The general format of a file specification is:

node::dev:<directory>name.typ.gen;attribute~l;attribute-2...

Refer to the TOPS-20 User's Guide for the complete description of file
specifications.

FUNCTIONAL ORGANIZATION OF JSYS'S

If a field of the file specificaticon (or filespec) 1s omitted, it can
be supplied by the program or from standard system values. (Refer to
Section 2.2.3.)

Whenever an ESC 1s encountered in the file specification string, the
system looks for a file whose specification matches the fields input
thus far. &2 match is indicated 1if the 1input string either exactly
matches an entry in the appropriate table, or is an initial substring
of exactly one entry. In the latter case, the portion of the matching
entry not appearing in the input string is output to a specified
output file. The field terminator is output also.

Recognition is done on successive fields with the fields beling
defaulted 1if need be. 1If the file specification cannot be uniquely
determined, the system recognizes as many entire fields as are unigue,
and outputs a bell to the terminal, signifying that more input is
required from the user. TIf the input string cannot possibly match any
existing file specification, the system returns an error.

CTRL/F behaves like ESC except recognition stops after the current
field. This allows the filename to be recognized, for example, but
not the file type.

If recognition is not used, then each field must be included sas
indicated 1in the general format above. The input must exactly match
some ex1sting file specification unless the program specifies in the
GTJIFN call that new specifications are allowed (output files).

Without ESC or CTRL/F, no recognition is done. The system substitutes
the default values supplied by vyour program for fields completely
omitted from the file specification. The file specification 1is
complete whenever all fields have been recognized or a terminator has
been input. File specification terminators are described in the GTJFN
call description.

The following editing characters are recognized during the input of
file specifications:

DELETE erases one character. If no more characters remain 1in
the input, a bell 1is output.

CTRL/W deletes back to the last punctuation character. If no
more characters remain in the input, a bell is output.

CTRL/U aborts the entire filename-gathering operation.

CTRL/R retypes the entire input as specified so far and awaits
further input.

2.2.2 Logical Names

Logical names are user-specified default values for one or more fields
in a file specification. Through the use of logical names, the user
can override standard file specification fields built into TOPS-20
programs because logical name fields take precedence over default
fields set by a program. However, the wuser «can still specify any
fields explicitly since a logical name defines values to be used only
1f none are given by the user. The user defines 1logical names with
the DEFINE command or the CRLNM monitor call. Refer to the TQOPS-20
User's Guide for the complete description of logical names.

FUNCTIONAL ORGANIZATION OF JSYS'S

2.2.3 File Handles

It is necessary to have file handles that can be contained in a few
bits and do not require extensive lookup procedures for each refer-
ence, The file specification is the fundamental handle on a file, but
this specification fits neither criterion above. Therefore 1in
TOPS-20, files are referenced by handles called JFNs (Job File
Numbers) . The JFN is a small number and is valid within the context
of the job (i.e., within any process of the 3job to which it 1is
assigned). However, the handle is not valid between jobs. That is,
JFN 2 in job 11 will generally be a handle on a completely different
file than JFN 2 in job 18.

A JFN is associated with a file with either the GTJFN or GNJFN monitor
call. The GTJFN call accepts a file specification and returns a JFN
for the indicated file. TIf a field of the specification 1s omitted,
it may be supplied by the program defaults or from standard system
values. TIf the file specification refers to a group of files (because
of wildcard <characters, see below), the GNJFN call can be used to
associate the JFN to the next file in the group.

A logical name can apply to one or more fields of the file
specification passed to the GTJFN call. The logical name must be the
first i1dentifier passed to GTJIJFN and must be terminated with a colon.

The GTJFN call uses a certain search order when obtaining a field 1in a
file specification. This order is as follows:

1. Use the field explicitly typed by the wuser or the one
specified in the primary input string.

2. Use the value for the field that is specified in the 1logical
name specification.

3. Use the value for the field that is specified in the default
block by the program. This is only for the long form of the
GTJFN caill.

4. Use the system default value if all of the above searches
fail.

In the special case of a device field specification, where the device
name has been obtained from either the program default or the system
default, the device field 1s checked to see 1if it 1s actually a
logical name. If it is, then the values specified in its definition
become defaults for all fields, including the device field.

If the specific call to GTJFN permits, wildcard characters (either an
asterisk or a percent sign) <can appear in the device, directory,
filename, type, or generation number fields. (The percent sign cannot
appear in the generation number field.) An asterisk matches any
occurrence of the field, including a null field. An asterisk as part
of a field matches 0 or more characters anywhere in the field. A
percent sign matches any single existing character in the field. Upon
completion of the operation, the JFN returned references the first
file found when scanning in the following order:

In order by structure name
(PS: 1is first, arbitrary order for others)
In alphabetic order by directory name
Ir alphabetic order by filename
In alphabetic order by file type
In ascending numeric order by generation number

FUNCTIONAL ORGANIZATION OF JSYS'S

Note that for structures, only the construct DSK*: can be used. This
means all available structures on the system.

The GNJFN call can then be given to associate the JFN to the next file
that matches the file specification.

The fullword JFN (flags,,JFN) is termed an "indexable file handle"
because it accepts a generic file specification (one including
wildcard characters) and can be successively associated (by GNJFN)
with each file matching the specification. Thus the JFN is "indexed"
rthrough a range of files. The number and type of files in the range
are limited by the file specification, the privileges of the program,
and the protection of individual files and directories within the file
system. A program with WHEEL capabilities enabled can access any file
in the TOPS-20 file system.

The maximum number of JFN's allowed depends upon the space reserved
for JFN-related information in the Job Storage Block (JSB). Currently
the maximum number of JFN's allowed is 140 (octal).

The JFN's 100 (.PRIIN) and 101 (.PRIOU) are reserved for the primary
input and output designators, respectively, and are never returned by
the GTJFN (or GNJFN) call. The JFN 377777 (.NULIO) is reserved for
the null designator.

Ordinarily, the process of getting a file handle with GTJFN consists
of the following:

1. The user specifies the file name string.

2. GTJFN checks the file name string for grammatical
correctness.

3. GTJFN checks the file for velidity (For example, does the
file actually exist?)

4. If the file name passes these two checks, GTJFN returns a JFN
or handle for the file.

Thus a JFN 1s associated with an actual file 1in the TOPS-20 file
system.

It is sometimes desirable to skip the step of checking & JFN for
validity. This is necessary any time that the association between the
JFN and the physical file cennot be made, as happens when a JFN 1is
reaquested for a file on magnetic tape. Also, it may be that the user
himself wishes to prevent the JFN/file association from being made in
crder to check the file specification for grammatical correctness and
then manipulate the file specification by adding or removing selected
fields, or comparing it against another file specification. This type
of JFN is termed a "parse-only" JFN. As 1t is not associated with any
file, no file operations may be performed on it.

Cnly the following JSYS's will accept a parse-only JFN:

1. JFNS - converts a JFN to 1its file specification (1n
characters)

2. WILD% - compares character strings and file specifications

FUNCTIONAL ORGANIZATION OF JSYS'S

2.2.4 File References

All file operations are initiated by acguiring a JFN on a file using
the GTJFN (or GNJFN) call. Some file operations, such as deleting,
renaming, and status queries about the file, may be performed
immediately after the JFN is acquired. Certain operations,
particularly data transfers, require that the file be opened with an
OPENF call on the JFN.

When the user opens a file, he specifies the byte size to be used for
byte I/0 operations and the access requested to the file. Several
implicit initialization operations, which affect subsequent references
to the file, are also invoked when a file is opened. For example, a
file's position pointer is normally reset to the beginning of the file
such that the first sequential input operation reads the beginning
data of the file.

Access to files on regulated structures (those being tracked by the
accounting system) cannot be given until the mount count for that
structure is incremented with the .MSIMC function of the MSTR JSYS (or
with the TOPS-20 MOUNT STRUCTURE command). All JFN's must be released
before the mount count can be decremented with the .MSDMC function of
the MSTR JSYS (or the TOPS-20 DISMOUNT STRUCTURE command) .

All structures are regulated by default except the primary structure
(PS:) .

2.2.4.1 Files and Devices - Under TOPS-20, most devices may be
treated as 1f they were files. For exemple, a GTJFN, OPENF, CLOSF,
etc. may be performed directly on magnetic tape device MTAl: without
specifying a file name. This is because the device name itself 1s the
file name. Disk devices, however, have multiple directories and
multiple files, and the device name 1itself 1is not sufficient to
uniquely identify a file. The general rule is that, for a complete
TOPS-20 file specification, only those fields necessary to make the
file unique for that device are required to get a JFN for the file.
Thus, for most devices, the device name itself is sufficiently unigue
to get a JFN for the file. 1In this manual, when the phrase "opening a
device" is used, it is in reference to the feature described above.

For TOPS-20, disk devices are the only major exception to the rule
that devices can be treated as files. Labeled tapes on MT: devices
may be referenced either by device name alone (which gives access to
all files on the tape) or by device name and file name (which gives
access only to the specified file).

2.2.5 Sample Program

The following sample program acguires JFN's, opens both an input and
an output file, and then copies data from the input file to the output
file in 7-bit bytes until the end of the input file is encountered.

FUNCTIONAL ORGANIZATION OF JSYS'S
s *** PROGRAM TO COPY INPUT FILE TO OUTPUT FILE. ***
; (USING BIN/BOUT AND IGNORING NULL'S)

TITLE FILEIO ;TITLE OF PROGRAM
SEARCH MONSYM ; SEARCH SYSTEM JSYS-SYMBOL LIBRARY

; *** TMPURE DATA STORAGE AND DEFINITIONS ***

INJFN: BLOCK 1 ; STORAGE FOR INPUT JFN

OUTJFN: BLOCK 1 ; STORAGE FOR OUTPUT JFN
PDLEN=3 ; STACK HAS LENGTH 3

PDLST: BLOCK PDLEN ; SET ASIDE STORAGE FOR STACK

T1==1 ;JSYS AC'S

T2==2

T3==3

T4==4

T5==5 ; TEMPORARY AC'S

° o o s

p==17 ; PUSH DOWN POINTER
;*¥** PROGRAM INITIALIZATION ***

START: RESET? ;CLOSE FILES ANL INITIALIZE PROCESS
MOVE P, [IOWD PDLEN,PDLST] ;ESTABLISH STACK

; *** GET INPUT-FILE ***

INFIL: HRROI T1,[ASCIZ /
INPUT FILE: /] ; PROMPT FOR INPUT FILE
PSOUT% ;ON CONTROLLING TERMINAL
MOVE T1, [GJ%OLD+GJ%FNS+GJ%SHT] ; SEARCH MODES FOR GTJFN
; [EXISTING FILE ONLY , FILE-NR'S IN B

; SHORT CALL]
MOVE T2,[.PRIIN,,.PRIOU] ;GTJFN'S I/0 WITH CONTROLLING TERMINAL
GTJFN% ;GET JOB FILE NUMBER (JFN)
ERJMP [PUSHJ P,WARN ; IF ERROR, GIVE WARNING
JRST INFIL] ;AND LET HIM TRY AGAIN
MOVEM T1,INJFN ; SUCCESS, SAVE THE JFN

;*¥*%*% GET OUTPUT~FILE ***

OUTFIL: HRROI T1,[ASCIZ /
OUTPUT FILE: /] ; PROMPT FOR OUTPUT FILE
PSOUT% ; PRINT IT
MOVE T1, [GIJ%FOU+GISMSG+GJI2CFM+GI%FNS+GJ%SHT] ; GTJFN SEARCH MODES
; [DEFAULT TO NEW GENERATION , PRINT
; MESSAGE , REQUIRE CONFIRMATION
; FILE-NR'S IN B , SHORT CALL]

MOVE T2, [.PRIIN,,.PRIOU] ;I/0O WITH CONTROLLING TERMINAL

GTJFN% ;GET JOB-FILE NUMRER
ERJMP [PUSHJ P,WARN ; IF FRROR, GIVE WARNING
JRST OUTFIL] ;AND LET HIM TRY AGAIN
MOVEM T1,0UTJFN ; SAVE THE JFN

FUNCTIONAL ORGANIZATION OF JSYS'S

;NOW, OPEN THE FILES WE JUST GOT

; INPUT
MOVE T1,INJFN ;RETRIEVE THE INPUT JFN
MOVE T2, [7B5+OF%RD] ; DECLARE MODES FOR OPENF [7-BIT BYTES + INPUT]
OPENF$% ;OPEN THE FILE
ERJMP FATAL ;IF ERROR, GIVE MESSAGE AND STOP
: OUTPUT
MOVE T1,0UTJFN ;GET THE OUTPUT JFN
MOVE T2, [7B5+OF3$WR] ; DECLARE MODES FOR OPENF [7-BIT BYTES + OUTPUT
OPENF$% ;OPEN THE FILE
ERJMP FATAL ;IF ERROR, GIVE MESSAGE AND STOP

;*** MAIN LOOP :COPY BYTES FROM INPUT TO OUTPUT ***

LOOP: MOVE T1,INJFN ;GET THE INPUT JFN
BIN$% ; TAKE A BYTE FROM THE SOURCE
ERJMP DONE ; IF ERROR, CHECK FOR END OF FILE.
JUMPE T2,LOOP : SUPRESS NULLS
MOVE T1,0UTJFN ;GET THE OUTPUT JFN
BOUT% :OUTPUT THE BYTE TO DESTINATION

ERJMP FATAL :IF ERROR, GIVE MESSAGE AND STOP
JRST LOOP ;LOOP, STOP ONLY ON A 0 BYTE (FOUND
;AT LOOP+2)

;*** TEST FOR END OF FILE, ON SUCCESS FINISH UP ***

DONE: GTSTS% ;GET THE STATUS OF INPUT FILE.
TLNN T2, (GS$EOF) ;AT END OF FILE?
PUSHJ P,FATAL ;NO, I/0 ERROR
CLOSIF: MOVE T1,INJFN ;YES, RETRIEVE INPUT JFN
CLOSF% ;CLOSE INPUT FILE
ERJMP FATAL ; IF ERROR, GIVE MESSAGE AND STOP
CLOSOF: MOVE T1,0UTJFN s RETRIEVE OUTPUT JFN
CLOSF$% ;CLOSE OUTPUT FILE
ERJMP FATAL ;IF ERROR, GIVE MESSAGE AND STOP
HRROI T1,{ASCIzZ/
[DONE] /] ; SUCCESSFULLY DONE
PSOUT$% s PRINT IT
JRST ZAP ; STOP

2-7

FUNCTIONAL ORGANIZATION OF JSYS'S

; *** ERROR HANDLING ***

FATAL: HRROI T1,[ASCIZ/

2/1 ; FATAL ERRORS PRINT ? FIRST
PUSHJ P, ERROR ; THEN PRINT ERROR MESSAGE,
JRST ZAP ;AND STOP
WARN: HRROI T1, [ASCIZ/
$/1 ;WARNINGS PRINT % FIRST
; AND FALL THRU 'ERROR' BACK TO CALLER
ERROR: PSOUT% ;PRINT THE ? OR %
MOVE T1,[.PRIOU] ;DECLARE PRINCIPAL OUTPUT DEVICE FOR ERROR MESSAGE
MOVE T2, [.FHSLF,,-1] ;CURRENT FORK,, LAST ERROR
SETZB T3,T4 ;:NO LIMIT,, FULL MESSAGE
ERSTR% : PRINT THE MESSAGE
JFCL : IGNORE UNDEFINED ERROR NUMBER
JFCL : IGNORE ERROR DURING EXECUTION OF ERSTR
POPJ P, :RETURN TO CALLER
ZAP: HALTF% ; STOP
JRST START :WE ARE RESTARTABLE
END START ; TELL LINKING LOADER START ADDRESS

2.2.6 File Access

TOPS-20 provides a general mechanism for protecting files against
unauthorized access. This mechanism includes the ability to protect
access to files on a directory-wide basis as well as on an
individual-file basis.

Generally, access to a file depends on the kind of access desired and
the relationship of the wuser making the access to the directory
contalning the file. The possible relationships a user may have to
the file's directory are:

1. The directory containing the file is the user's connected or
one of the wuser's accessed directories. Users satisfying
this relationship have owner access to the files 1in the
directory.

2. The directory containing the file is in the same group as the
user. Users satisfying this relationship have group member
access to the files in the directory.

3. The directory containing the file 1is outside the group
membership. Users satisfying this relationship have world
access to the files in the directory.

Both users and directories may belong to groups. The group-member
relationship is satisfied if both the directory and the user belong to
one or more of the same groups. Groups are assigned by the system
manager or operator. (Refer to the TOPS-20 System Manager's Guide.)

FUNCTIONAL ORGANIZATION OF JSYS'S

The type of access permitted to a file for each relationship 1is
represented by the value of a 6-bit field. The possible values are:

Value Symbol Meaning
40 FP%RD Read access
20 FP3WR Write access
10 FPREX Execute access
4 FP%APP Append access
2 FP2DIR Directory listing access. If a

user does not have at least this
type of access, a GTJFN will find
the file only if wildcards are not
used. A GNJFN will not find the
file.

The following table illustrates some useful combinations of the values
shown above:

Value Symbol Meaning
12 FP$EX+FP3DIR Execute-only access
42 FP3RD+FP%DIR Usual protection allowing users to

access a file without being able
to modify 1it.

60 FP%RD+FP%WR Good for hiding files that
specific programs can write to.
Programs should be execute-only
and the program should set the
"restricted" access bit 1in the
GTJFN so as not to reveal the
filename.

The 6-bit field and the three relationships (owner, group, remaining
users) are represented by an 18-bit code, with bits 0-5 being the
owner, bits 6-11 being the group, and bits 12-17 being the remaining
users. When a particular bit 1is on, the corresponding access is
permitted for the particular relationship.

The access given to a group member includes the access given to all
members outside the group. Alsc, the access given to the owner
includes the access given to group members. Thus, the owner of a file
or a wuser 1in the owner's group cannot have less access than users
outside the group.

2.2.7 Directory Access

Access to a directory 1s protected in a manner similar to, but
distinct from, that of a file. An 18-bit code, containing three 6-bit
fields, is associated with each directory. FEach of the three fields
controls access by users 1in the same way that access to files is
controlled. For directories, however, each 6-bit field can have one
of the following values.

2-9

FUNCTIONAL ORGANIZATION OF JSYS'S

Value Symbol Meaning

40 DP%RD Accessing files in the directory
according to the access code on
the individual files 1is allowed.
A GTJFN call for a file in the
directory will feil if the user
does not have this access.

10 DP%CN Connecting to the directory
without giving a password 1is
allowed. With this access, 3

group member can change the FDB
(as the owner) as well as times,
dates, and accounting information
for files in the directory. Other
operations on the files are
subject to the access codes of the
files. If the user is connected
to the directory, he has ownership
access to the files; 1if he 1is not
connected, he has group membership
access.

4 DP%CF Creating files in the directory 1is
allowed.

When a user requests access to a file, the monitor checks the
directory access code first. If the directory code allows the desired
access, the monitor then checks the access code of the individual
file.

The access actually granted to a file is specified when the user opens
the file with the OPENF call. If the access cspecified in the OPENF
czll is the same as or less than the access permitted by the 18-bit
access code, the user is granted access to the file. Thus, for a user
tco be granted access to a specific file, two conditions must be met:

1. The access code (both directory and file) must permit the
user to access the file in the desired manner (e.g., read,
write).

2. The file must not be open for a conflicting type of access.

2.2.8 File Descriptor Block

Each file has an associated File Descriptor Block (FDB) that contains
various information about the file. The format of the FDB is shown in
Table 2-1.

The description of each word or bit in the FDB indicates whether the

user can change it, and if so, what types of access are required. The
types of access are:

1. WRITE - write access
2. OWNER - owner access

3. W/CPR - WHEEL or OPERATOR capabilities enabled

FUNCTIONAL ORGANIZATION OF JSYS'S

In some cases, separate JSYS's are required to read, set, and/or clear
various words or bits. These functions are indicated by:

1. (R) - read

2. (S) - set

3. (C) - clear

4, (SC) - set/clear

Table 2-1
File Descriptor Rlock (FDB)

Word Symbol Meaning
0 . FBHDR FDR header word. 1Individual fields are as
follows:
B0-B28 Reserved for DEC
UNCHANGEABLE

B29-35(FB%LEN)
Length of this file's FDB

UNCHANGEABLE
1 .FBCTL BO (FBRTMP) File 1s temporary.
JSYS WRITE OWNER W/OPR
CHFDB N Y Y
Bl (FB%PRM) File is permanent. The

contents of the file may be
deleted, but the FDB may not.

JSYS WRITE OWNER W/OPR
CHFDB N Y Y
B2 (FBRSNEX) File does not yet have a file
type; file does not really
exist.
UNCHANGEABLE
B2 (FBSDEL) File is deleted.
JSYS WRITE OWNER W/OPR
CHFDB N Y* Y
*This bit may be changed by the

owner providing that bit FB%ARC
(in .FBCTL) is not set.

FUNCTIONAL ORGANIZATION OF JSYS'S

Table 2-1 (Cont.)
File Descriptor Block (FDB)

Word Symbol Meaning
1 .FBCTL B4 (FB%NXF) File does not exist because it
(Cont.) has not yet been closed.
UNCHANGEABLE

B5 (FB%LNG) File is longer than 512 pages.
UNCHANGEABLE

B6 (FB%SHT) Reserved for DEC.
UNCHANGEABLE

B7 (FB$DIR) File is a directory.
UNCHANGEABLE

B8 (FBENOD) File 1s not to be saved by the
backup system.

JSYS WRITE OWNER W/OPR
CHFDB Y Y Y

B9 (FB%BAT) File may have one or more bad
pages. This bit indicates that
I/0 errors have occurred for a
page (or pages) of a file and
the contents of these pages are
suspect.

This bit is set whenever the
system has a disk I/O error on
a page of an open file. The
faulty disk address 1is also
added to the 1list in the
system's BAT blocks for that
disk structure.

If an EXPUNGE is performed for
a file for which bit FB%BAT is
set, the system performs an
additionel function as it
releases the pages of the file
back to the available resource
pool: it checks each disk
address in the file against the
list of bad regions in the
structure's BAT blocks and if
1t finds a match, it leaves
that page marked as "in use" in
the bit map of available disk
pages, so that the faulty page
is not reused.

UNCHANGEABLE

FUNCTIONAL ORGANIZATION OF JSYS'S

Table 2-1 (Cont.)
File Descriptor Block (FDB)

Word | Symbol Meaning
1 .FBCTL B10(FB%SDR) Directory has subdirectories.
(Cont.)
UNCHANGEABLE
B11 (FB%$ARC) File has archive status.

Appropriate words 1n the FDB
(below) specify where the file
is archived.

JSYS WRITE OWNER W/OPR
ARCF N N Y
B12(FB%INV) File is 1invisible. Invisible
files can be seen only by using
the G1%IIN option to GTJFN.
JSYS WRITE OWNER W/OPR
CHFDB N Y Y
B13(FB%OFF) File is offline. This 1is set
by DELF when it removes the

contents from disk and cleared
when ARCF restores the contents

to disk.

JSYS WRITE OWNER W/OPR
DELF (S) N N Y
ARCF(C) N N Y

R14-B17 (FBRFCF)
File class field. 1If value of
field is O0(.FBNRM), file is not
an RMS file. TIf value of field
i1s 1(.FBRMS), file 1s an RMS

file.

JSYS WRITE OWNER W/OPR

CHFDB N Y Y
R18 (FRSNDL)

Do not delete this file. Do

not delete even if overwritten
by & write or a rename.

JSYS WRITE OWNER W/OPR

CHFDB N N Y

TOPS-20 Version 5 2-13 April 1932

FUNCTIONAL ORGANIZATION OF JSYS'S

Table 2-1 (Cont.)
File Descriptor Block (FDB)

Word Symbol Meaning

2 . FBEXL Link to FDB of next file with the same name
but different file type.

UNCHANGEABLE
3 . FBADR Disk address of file index block.
UNCHANGEABLE

4 . FBPRT File access code.
LH: 500000

UNCHANGEABLE
RH: file access bits.
JSYS WRITE OWNER W/OPR
CHFDB N Y N
5 . FBCRE Date and time that the file was closed

after the last write to the file. Modified
when any program writes to the file.

JSYS WRITE OWNER W/OPR
CHFDB N N Y

6 .FBAUT Pointer to string containing the name of
the author. This word is not under direct
user control. Tt 1is only changed
indirectly, when the file author string is
changed.
JSYS WRITE OWNER W/CPR
GFUST (R) Y Y Y
SFUST(SC) N Y N

7 .FBGEN Generation and directory numbers of file.
LH(FBR%GEN): genreration number of the file.

UNCHANGEABLE

RH(FB%DRN): monitor internal directory
number of the file (only if B7
of .FBCTL is on).

UNCHANGEABLE

FUNCTIONAL ORGANIZATION OF JSYS'S

Table 2-1 (Cont.)
File Descriptor Block (FDB)

Word Symbol Meaning
10 .FBACT Account information. This word contains a
byte pointer to an alphanumeric account
designator; it can be changed with the

SACTF monitor call.

JSYS WRITE OWNER W/OPPR
SACTF Y Y Y
11 .FBBYV File I/0 information.

BO0-B5 (FB%RET)
Number of generations to retain

(retention count) . If two
generations of the same file
have different retention

counts, the count is taken from
the generation currently being

used.
JSYS WRITE OWNER W/OPR
CHFDB Y Y Y

B6-B11(FB%BSZ)
File byte size. This field can
be changed by user with write

access.
JSYS WRITE OWNER W/OPR
CHFDB Y Y Y

B14-B17 (FB%MOD)
Data mode of last open of file.
This field <can be changed by
user with write access.

JSYS WRITE OWNER W/OPR
CHFDB Y Y Y

B18-B35(FB%PGC)
Page count of file. Note that
the monitor keeps the page
count updated, so under normal
circumstances a user need not
and should not alter this

count.
JSYS WRITE OWNER W/OPR
CHFDB N N Y

FUNCTIONAL ORGANIZATION OF JSYS'S

Table 2-1 (Cont.)
File Descriptor Block (FDB)

Word Symbol Meaning

12 .FBSIZ Number of bytes in the file. (Refer to
Section 2.2.11.)
JSYS WRITE OWNER W/OPR
CHFDB Y Y Y

13 .FBCRV Date and time of creation of file.
JSYS WRITE OWNER W/OPR
CHFDB Y Y Y

14 . FBWRT Date and time that the file was opened when
the last write to the file was made.
JSYS WRITE OWNER W/OPR
CHFDB Y Y Y

15 . FBREF Date and time of last nonwrite access to
file.
JSYS WRITE OWNER W/OPR
CHFDB Y Y Y

16 .FBCNT Count word.

LH: number of writes to file.
JSYS WRITE OWNER W/OPR
CHFDB N N Y

RH: number of references to file.

JSYS WRITE OWNER W/OPR
CHFDR N N Y

17 . FBBKO Used by DUMPER for backup purposes.
JSYS WRITE OWNER W/OPR
CHFDB N N Y

20 .FBBK1 Reserved for DEC.
UNCHANGEABLE

21 .FBBK2 Reserved for DEC
UNCHANGEARLE

FUNCTIONAL ORGANIZATION OF JSYS'S

Table 2-1 (Cont.)
File Descriptor Block (FDB)

Word Symbol Meaning

22 . FBBRT The right half contains the number of pages
in the file when the contents were deleted
from disk.

UNCHANGEABLE

The left half 1is wused for the following
flags:

B1 (AR%RAR) User request for a file to be
archived.

JSYS WRITE OWNER W/OPR
ARCF Y Y Y

B2 (AR%RIV) System request for an involuntary
migration of a file.

JSYS WRITE OWNER W/OPR
ARCF N N Y

B3 (ARSNDL) Do not delete the contents of the
file from disk when the archival
is complete.
JSYS WRITE OWNER W/OPR
ARCF N Y Y

R4 (AR%NAR) Resist involuntary migration.
This bit is @ note from the user
to the system access control
progrem asking that the file not
be moved offline if possible.
JSYS WRITE OWNER W/OPR
ARCF N Y Y

B5 (AR%FXM) File is exempt from 1involuntary
migration.

JSYS WRITE OWNER W/OPR
ARCF N N Y

R6 (AR%1ST) First pass of an
archival-collection run 1is 1in

progress.
JSsys WRITE OWNER W/OPR

CHFDB N N Y

FUNCTIONAL ORGANIZATION OF JSYS'S

Table 2-1 (Cont.)

File Descriptor Block (FDB)

Word Symbol Meaning
22 .FBBBT B7 (AR%RFL) Restore failed. Set by ARCF to
(Cont.) to indicate that the restore it
is waiting for has failed.
JSYS WRITE OWNER W/OPR
ARCF N N Y
B10(AR%WRN) Generate a message warning that
the file's off-line expiration
date is approaching.
7B17 (AR%RSN)
Reason file was moved offline:
.AREXP (1) file expired
.ARRAR(2) archiving was
requested
.ARRIR(3) migration was
requested
JSYS WRITE OWNER W/OPR
ARCF (W) N N Y
GTFDB (R) Y Y Y
B18-B35(AR3PSZ)
The right half of .FBBBT is used
to store the number of pages in a
file when the contents were
removed from disk.
JSYS WRITE OWNER W/OPR
ARCF (W) N N Y
GTFDB (R) Y Y Y
23 .FBNET On-line expiration date and time. Specifies
the date and time at which a file is
considered expired, or specifies an interval
(in days) after which the file is considered
expired.
JSYS WRITE OWNER W/OPR
SFTAD N Y Y
24 . FBUSW User-settable word.
JSYS WRITE OWNER W/OPR
CHFDB N Y Y
25 .FBGNL Address of FDB for next generation of file.
UNCHANGEABLE
26 . FBNAM Pointer to filename block.

UNCHANGEABLE

TOPS-20 Version 5

April 1982

FUNCTIONAL ORGANIZATION OF JSYS'S

Table 2-1 (Cont.)

File Descriptor Block (FDB)

Word Symbol Meaning

27 .FBEXT Pointer to file type block. UNCHANGEABLE

30 . FBLWR Pointer to string containing the name of
the user who last wrote to the file. This
name 1s read with the GFUST monitor call
and can be changed with the SFUST monitor
call, .
Note that word .FBLWR may only be changed
indirectly (by specifying a new name
string). This word cannot be changed
directly.
JSYS WRITE OWNER W/OPR
GFUST (R) Y Y Y
SFUST (CS) N N Y

31 .FBTDT Archive or collection tape-write date and
time. This is the date and time (in
internal format) that file was last written
to tape (for either archiving or
migration).
JSYS WRITE OWNER W/OPR
ARCF N N Y

32 .FBFET Offline expiration date and time.
Specifies the date and time (or interval)
after which a file in the archives or on
virtual disk 1is considered expired. Used
for tape recycling. Modified by SFTAD.
JSsYs WRITE OWNER W/OPR
SFTAD Y Y Y

33 .FBTP1 Contains the tape ID for the first archive
or collection run,
JSYS WRITE OWNER W/OPR
ARCF N N Y

34 .FBSS1 Contains the saveset and tape file numbers
for the first tape. The left half is the
number of the saveset in which the file 1s
recorded, and the right half 1s the tape
file number within that saveset.
JSYS WRITE OWNER W/OPR
ARCF N N Y

TOPS-20 Version 5

FUNCTIONAL ORGANIZATION OF JSYS'S

Table 2-1 (Cont.)
File Descriptor Block (FDB)

Word Symbol Meaning

35 .FBTP2 Tape ID for second archive or collection
run. Otherwise similar to .FBTP1.

JSYS WRITE OWNER W/OPR
ARCF N N Y

36 .FBSS2 Saveset and tape file numbers for the
second archive or collection run.

Otherwise similar to .FBSS1.
JSYS WRITE OWNER W/OPR

ARCF N N Y

The maximum length FDB block that TOPS-20 will create (37 octal) may
be specified with the symbol .FBLEN.

2.2.9 Primary Input and Output Files

Each process in a job has a primary input file and a primary output
file. Both files are normally the controlling terminal, but can be
changed to other files (with the SPJFN call).

The primary input and output files are referenced with designators
LPRIIN (JFN 100) and .PRIOU (JFN 101), respectively. Programs should
be coded to do their "terminal" I/0 to these designators, so that they
can be used with command files without modification. Only in extreme
cases should a program reference 1its controlling terminal (.CTTRM)
directly.

2.2.10 Methods of Data Transfer

The most simple form of I/0 is sequential byte I/0, as shown in the
sample program. (Refer to Section 2.2.5.) This form of data transfer
may be used with any file. A pointer maintained in the monitor 1is
implicitly initialized when a file is opened and advanced as data is
transferred. For files on disk, there are two other methods of Cdata
transfers. First, random access byte T/0 1s possible by using the
SFPTR call or the RIN/ROUT calls. Second, entire pages of data may be
mapped with the PMAP call.

2.2,11 File Byte Count

For disk files, TOPS-20 maintains a file byte count (.FBSIZ) in the
FDB. This count is set by the monitor when seguential output (e.g.,
BOUT, SOUT) occurs to the file and thus, on sequential output,
reflects the number of bytes written in the file,.

FUNCTIONAL ORGANIZATION OF JSYS'S

When output occurs to the file using the PMAP call, the monitor does
not set the file byte count. In this case, the number of bytes in the
file may be different from the file byte count stored in the FDB. To
allow seguential TI/0O to occur later to the file, the program should
update the file byte count (.FBSIZ) and the file byte size (FB%BSZ) in
the FDB before closing the file. This is done with the CHFDB monitor
call.

When output occurs to the file using random output <calls (ROUT, for
example), the file byte count is a number one greater than the highest
byte number in the file.

The file byte count is interpreted according to the byte size stored
in the FDB, not the byte size specified when the file is opened. When
a new file is opened, the byte size stored in the FDB 1is 36 bits,
regardless of the byte size specified 1in the OPENF call. TIf the
program executes a CHFDB call to change the file byte count, 1t must
usually change the byte size (FB%BSZ) so that both values reflect the
same size bytes.

2.2.12 EOF Limit

There is an EOF limit associated with every opening of a file. This
limit 1s the number of bytes that can be read with a seaguential 1input
call (e.g., BIN, SIN). When the program attempts to read beyond this
limit wusing seqguential 1input, the <call returns a 0 byte and ar

end-of-file condition. This condition may generate a software
interrupt (refer to Section 2.6) if the user has not included an ERJMP
or ERCAL as the next 1instruction following the call. (Refer to

Chapter 1.)

The EOF limit is computed when the file is opened with the OPENF call.
The monitor computes this 1limit by determining the total number of
words in the file and dividing this number by the byte size given 1n
the OPENF call. The total number of words in the file is determined
from the file byte count (.FRSIZ) and the file byte size (FB%BSZ)
stored 1n the FDB.

Note that page-mode I/0 JSYS's, such as PMAP, ignore the EOF limit and
can read any existing page of the file. However, page-mode JSYS's can
only read padgdes within an existing file section (the address space of
a file delimited by 1 index block - 512 pages).

2.2.13 Input/Output Errors

While performing I/0 or I/0O-related operations, 1t 1 possible to
encounter one or more error conditions. Some of these are user-causcd
errors (e.g., illegal access attempts), and others are I/0 device or
medium errors. TOPS-20 1indicates such error conditions by setting
error bits in the JFN status word (refer to the GTSTS call) and by
initiating a software interrupt request (refer to Section 2.6) 1f the
user has not included an FRIJMP or ERCAL after the <call. T1f the
process in which an I/0 error occurs 1s not prepared to process the
interrupt, the interrupt 1is ~changed 1into a process terminating
condition with the expectation that the process' immediate superior
will handle the error condition. The TOPS-20 Command Language 1is
prepared to detect and diagnose I/0 errors; thus, a process running
directly beneath the process containing the Ccmmand Language need not
do 1its own JT/0 error bhandling unless it chooses to do something
special.

FUNCTIONAL ORGANIZATION OF JSYS'S

I/0 errors can occur while a process is executing ordinary machine
instructions as well as JSYS's. For example, if a PMAP operation is
performed that maps a page of a file into a page of a process, the
file I/0 transfer does not usually occur until a reference 1is made by
the process to that particular page of the file. TIf there is an I/O
error in the transfer, it is detected at the time of this reference.

An attempt to do I/O to a terminal that is assigned to another job (as
a controlling terminal or with the ASND call) normally results in an
error, but is legal if the process has the WHEEL capability enabled.

2.2.13.1 Testing for End-of-File - The GTSTS JSsys, used in
conjunction with ERCAL (or ERIJMP), is used to test for end-of-file.
The following code fragment illustrates this:

MOVE T1,INJFN ;Get input JFN
BIN% ;Read a byte
ERCAL EOFTST
. ;Process byte
EOFTST: MOVE T1,INJFN ;Get input JFN
GTSTS% ;Get status of that JFN
TLNN T2, (GS$EOF) ;Did end of file occur?
PUSHJ P,FATAL : No, I/O error occurred
MOVE T1,INJFN ; Yes, close file
CLOSF%
ERCAL FATAL ;If can't close, issue message
POPJ P, ;OK to return
FATAL: . ;Here to issue error messages
. ; on fatal file errors
HALTF% ;Halt on fatal error

In the example above, the ERCAL after the BIN 1s executed only 1if a
file ervor condition arises. The code that is entered as a result of
the ERCAL can then do a GTSTS for the appropriate file and test for
end-of-file.

An alternate method to test for end-of-file is tc use the GETER JSYS
and determine 1if the last error for the process is TO0X4 (end of file
reached) .

The monitor calls used 1n referencing files are:

GTJFN Assigns a JFN to a file

GNJFN Ascigns a JFN to the next file

JFNS Translates a JFN to a string

WILD$% Compares a wild file specification against a non-wild
file specification. Also compares strings.

SPJFN Sets primary JFN's

GPJFN Returns primary JFN's

SWJIFN Transposes two JFN's

RLJFN Releases a JFN

OPENF Opens a file

CLOSF Closes & file

CLZFF Closes a process' files

BIN
BOUT
FLIN
FLOUT
NIN
NOUT
PSOUT
PBIN
PBOUT
SIN
SOouT
SINR
SOUTR
RIN
ROUT
DUMPI
DUMPO
PMAP

RSCAN
RDTTY
TEXTI

CRLNM
INLNM
LNMST

CHFDB
GTFDB
SFUST
GFUST
CHKAC
ACCES
DIRST
RCDIR
RCUSR

SIZEF
SFBSZ
RFBSZ
SFPTR
RFPTR
BKJFN
RNAMF
SFTAD
RFTAD
STSTS
GTSTS
UFPGS

DELF
DELDF
DELNF

FFFFP
FFUFD

FUNCTIONAL ORGANIZATION OF JSYS'S

Reads the next byte

Writes the next byte

Reads a floating-point number

Writes a floating-point number

Reads a number

Writes a number

Writes string to primary output designator
Reads byte from primary irput designator
Output byte to primary output designator
Reads a string

Writes a string

Reads a record

Writes a record

Reads a byte nonsequentially

Writes a byte nonsequentially

Reads data 1in unbuffered data mode
Writes data in unbuffered data mode

Maps pages

Reads and outputs rescan buffer
Reads data from primary input designator
Reads data from terminal or file

Creates a logical name
Writes logical names
Translates logical name to string

Changes a File Descriptor Block

Reads a File Descriptor Block

Changes the author or last writer name string
Reads the author or last writer name string
Checks access to a file

Specifies access to a directory

Translates directory or user number to a string
Translates directory name to number

Translates user name to number

Obtains file's length

Sets file's byte size
Reads file's byte size
Sets file's pointer

Reads file's pointer
Backspaces file's pointer
Renames a file

Sets file's time and dates
Reads file's time and dates
Sets file's status

Reads file's status
Updates file's pages

Deletes a file
Expunges deleted files
Retains specified number of generations of file

Finds first free file page
Finds first used file page

FUNCTIONAL ORGANIZATION OF JSYS'S

2.3 OBTAINING INFORMATION

The monitor calls in this group are used to obtain information from
the system, such as the time of day, resources used by the current
job, error conditions, and the contents of system tables.

Several of these calls return time values (intervals and accumulated
times, for example). Unless otherwise specified, these values are
integer numbers in units of milliseconds.

2.3.1 Error Mnemonics and Message Strings

Each failure for a JSYS is associated with an error number identifying
the particular failure. These error numbers are indicated in the
menual by mnemonics (DEVX1l, for example), and are 1listed with the
appropriate calls.

Some calls return the error number 1in the right half of an
accumulator, usually 1in ACl; however, all calls leave the number 1in
thke Process Storage Block for the process in which the error occurred.
Thus, a process can obtain the number for the last error that occurred
(by means of the GETER call).

In addition to the mnemonic of six characters or less, each error
number has a text message associated with it that describes the error
in more detail. The ERSTR call can be wused to return the message
string associated with any given error number. This call should be
used for handling error returns.

Refer to Chapter 3 and Appendix B for the 1listing of the error
numbers, mnemonics, and messages.

2.3.2 System Tables

The contents of several system tables are available to programs for
such purposes as generating status reports and collecting system
performance statistics. Each table is identified by a fixed name of
up to six characters, and consists of a variable number of entries.
The -1 entry in each table is the negative of the number of data
entries in the table; the data entries are identified by an index
that increments from 0.

Two calls exist for accessing tables. The first, SYSGT, accepts a
table neme and returns the table length, its first data entry, and a
number 1i1dentifying the table. The second, GETAB, accepts the table
number returned by SYSGT, or obtained from the MONSYM file, and
returns additional entries from the table.

The system tables are as follows. Numeric table indexes are given 1in
octal. Parallel tables, those for which a agilven index produces
related information, are indicated by "(Pn)" where n 1is a unigue
number for that set of parallel tables.

FUNCTIONAL ORGANIZATION OF JSYS'S

Table 2-2
System Tables

Name Index Contents
APRID Processor serial number
BLDTD Date and time system was generated
DBUGSW Debugging information
0 tate of operator coverage

s

0 = unattended

1 = attended

2 = debugging

1 state of BUGCHK handling
O=proceed

l=breakpoint

DEVCHR (P1) Device <characteristics word, as
described wunder the DVCHR JSYS in
Chapter 3, except that B5 (DV%AV) 1is

‘ not meaningful.

DEVNAM (P1) SIXBIT device name including unit
number, e.g., MTA3

DEVUNT (P1) LH: Job number to which device is
assigned (with ASND), or -1 1if
device is not assigned, or -2 1if

reserved for device allocator.
| RH: wunit number, or -1 if device has no
units (e.g., DSK:)

DRMERR Information on drum errors
number of recoverable errors

to n varies depending on type of drum
being used

= O

DSKERR Information on disk errors
0 number of recoverable disk errors
1 ton varies depending on type of disk

being used

DWNTIM Downtime information
0 date and time when system will be
shut down next
1 date and time when system will

subsequently be up

HQLAV ‘ High gueue load averages

2-25

FUNCTIONAL ORGANIZATION OF JSYS'S

Table 2-2 (Cont.)
System Tables

Name Index Contents
IMPLT1 c(P2) ARPANET - 1 fullword for each link:
LH: internal c¢onnection number, index
for:
NETAWD
NETBAL
NETBTC
NETBUF
NETFSK
NETLSK
NETSTS
or -1 if control link
RH: B18-19 00 receive
10 send
11 free
01 delete
B20-27 host number
B28-35 1link number
c (1index) is derived from
bits 24-35 of NETAWD.
IMPLT2 c(P2) ARPANET - 1 fullword for each link:
LH: BO0-9 flags
B10-17 byte size of buffer
RH: address of input buffer
c (index) 1is derived from bits 24-35
of NETAWD.
IMPLT3 c(P2) ARPANET - 1 fullword for each link:
LH: address of output buffer
RH: message saved for retransmission
¢ (index) 1is derived from bits 24-35
of NETAWD.
IMPLT4 c(P2) ARPANET - 1 full word for each link
LH: address of current buffer
RH: message allocation in bits
¢ (index) is derived from bits 24-35
of NETAWD.
JBONT Job # Owning job for CRJOB-created jobs.

FUNCTIONAL ORGANIZATION OF JSYS'S

Table 2-2 (Cont.)
System Tables

Name Index Contents
JOBNAM Job # LH: reserved for DEC
RH: 1index into the system program tables
for the system program being used by
this job (determined by the last
SETSN call executed by the job)
JOBPNM Job # SIXBIT name of program running 1in
this job
JOBRT Job # CPU time used by the job (negative
if no such job)
JOBTTY Job # LBE: controlling terminal line number, or
-1 if none (i.e., job is detached)
RH: reserved for DEC
LOGDES Logging information
0 designator for logging information
1 designator for Jjob 0 and error
information
LQLAV Low queue load averages
NETHST c(P2) ARPANET - 1 full word for each
internal connection:
-1 if no foreign host, otherwise the
same as IMPLTS.
c (index) 1is derived from bits 24-35
of NETAWD.
NETAWD c(P2) ARPANET - 1 full word for each
internal connection:
B0-8 link number
B9-17 unused
R18-23 timeout countdown
B24-35 index to link tables
c (index) is internal connection
(see IMPLT1).
NETBAL c(P2) ARPANET - number of bits allocated

to each internal connection

c (index) is internal connection
{see IMPLT1).

FUNCTIONAL ORGANIZATION OF JSYS'S

Table 2-2 (Cont.)
System Tables

Name Index Contents
NETBTC c(P2) ARPANET - byte count statistics:
the number of bits gent or received
over each internal connection since
the socket was created.
c (index) is 1internal connection
(see IMPLT]).
NETBUF c(P2) ARPANET - 1 fullword for each
internal connection:
LH: Dbytes per buffer
RH: buffer location -1
c (index) is internal connection
(see IMPLTI1).
NETFSK c(P2) ARPANET - foreign socket number (32
bits) for each internal connection
¢ (index) is internal connection
(see IMPLTI]).
NETLSK c(P2) ARPANET - local socket number for
each internal connection
c (index) is 1nternal connection
(see IMPLT1).
NETRDY ARPANET operational status table
0 0 IMP down
.GT.0 IMP going down
-1 IMP up
1 0 = network off, non-zero = network
on
2 flags for NETSER (not for user)
3 time of last NCP cycle up
4 last IMP GOING DOWN message
B0-15 reserved
B16-17 0 ©panic
1 scheduled hardware PM
2 software reload
3 emergency restart
R18-21 number of 5-minute
intervals before IMP goes
down
B22-31 number of 5-minute intervals
IMP will be down
5 time of last IMP ready drop
6 time of last IMP ready up
7 time of IMP GOING DOWN message

FUNCTIONAL ORGANIZATION OF JSYS'S

Table 2-2 (Cont.)
System Tables

Name

Index

Contents

NCPGS

NSWPGS

PTYPAR

QTIMES

SNAMES

SNBLKS

SPFLTS

SSIZE
STIMES

SYMTAB

SYSTAT

T QO U W

N -~ O

0 to n

(P3)

(P3)

(P3)

(P3)

(P3)

= o

—
w

[
>

LH:
RH:

One-word table containing number of
pages of real (physicel) user core
available in system. ©Note that this
value 1includes resident variables,
and thus not all of the pages can be
assigned to a user process.

Default swapping pages
Pseudo-TTY parameter information

number of PTYs in system
TTY number of first PTY

Accumulated runtime of jobs on the n
scheduler gueues

SIXBIT name of system program, or O
if this entry is unused in this and
the corresponding four tables.

Number of samples 1in working set
size integral

Total number of page faults of
system program

Time integral of working set size
Total runtime of system program

SIXBIT table names of all GETAB
tables

Monitor statistics. The entries 1in
this table are as follows:

time with no runnable jobs

waiting time with 1 or more runnable
jobs (waiting for page swapping)
time spent in scheduler

time spent processing pager traps
number of drum reads

number of drum writes

number of disk reads

number of disk writes

number of terminal wakeups

number of terminal interrupts

time integral of number of processes
in the balance set

time integral of number of runnable
processes

exponential 1l-minute average of
number of runnable processes

FUNCTIONAL ORGANIZATION OF JSYS'S

Table 2-2 (Cont.)
System Tables

Name Index Contents

15 exponential 5-minute average of
number of runnable processes

16 exponential 15-minute average of
number of runnable processes

17 time integral of number of processes
waiting for the disk

20 time integral of number of processes
waiting for the drum

21 number of terminal input characters

22 number of terminal output characters

23 number of system core management
cycles

24 time spent doing postpurging

25 number of forced balance set process
removals

26 time integral of number of processes
in swap wait

27 scheduler overhead time (same as
entry 2) in high precision units

30 1dle time (same as entry 0) in high
precision units

31 lost time (same as entry 1) in high
precision units

32 user time

33 time integral of number of processes

on high queue. (High gueue is high
priority, low numerical value.)

34 time 1ntegral of number of processes
on low dgueue. (Low gqgueue is low
priority, high numerical value.)

35 sum of process disk-write waits

36 number of forced adjustments to
balance set

37 integral of number of reserve pages
of all processes in memory

40 integral of number of pages on

replaceable gqueue. The replaceable
gqueue contains pointers to all free
memory pages.

41 high precision pager trap time
42 number of context switches
43 time spent on background tasks.

These tasks include low-level data
transfer between RSX20F and TOPS-20,
and moving data from-swappinag space
to file space.

44 total system page traps
45 total saves from replacement gueue.
A "save" occurs when a desired page

1s found on the replacement queue
and need not be paged in.

46 number of pages removed from memory
during system-wide garbage
collection.

47 integral of number of working sets

in memory

FUNCTIONAL ORGANIZATION OF JSYS'S

Table 2-2 (Cont.)
System Tables

Name

Index

Contents

SYSVER

TICKPS

TTYJOB

50

51
52

53

line # LH:

RH:

integral of number of wait time
without swap waits

count of working set loads

count of runable processes removed
from balance set

number of pages removed from memory
during process-wide garbage
collection.

NOTE

This table 1is subject to
change (usually additions)
as measuring routines are
added to the system.

An ASCIZ string 1identifyilng the
system name, version, and date. The
string has the following format:

string, TOPS-20 Monitor n.m(o)-p

where "string" 18 the text
contained in the file
structure:<SYSTEM>MONNAM.TXT, "n" 1is
the major version number (1 to 3
digits), "m" 1is the minor version
number (0 to 2 digits), "o" 1i1s the
edit number (1 to 6 digits), and "p"
is the number of the group that last
edited the version (0 or 1 digit).

If "m" is zero, it and 1ts preceding
period are omitted. If "p" is zero,
it and 1its preceding hyphen is
omitted. Otherwise, the period and
the hyphen are stored along with the
other information, including the
spaces and parentheses as shown, 1in
the table.

One-word table containing number of
clock ticks per second.

positive job number for which this 1is
the controllinag terminal, or

-1 for vunassigned line, or

-2 for line currently being assigned,
or Jjob number to which this line 1s
assigred.

-1 if no process 1is waiting for 1input
from this terminal; other than -1 if
some process 1s waiting for input.

FUNCTIONAL ORGANIZATION OF JSY¥S'S

The system program being run by a specific job may be determined from
SNAMES, using an index obtained from table JOBNAM.

The following monitor calls are used for obtaining information:

GETER Returns the last error condition

ERSTR Translates an error number to a string

ESOUT Returns an error string

SYSGT Returns values for a system table

GETAB Returns a word from a system table

GETNM Returns the program name being used by the job
GETJI Returns job information for specified job
GJINF Returns job information for current job

GTAD Returns the system's date

TIME Returns the time since the system was restarted
RUNTM Returns the runtime of a job or process

HPTIM Returns the high-precision clock values

GTDAL Returns the disk allocation of a directory
GTRPI Returns the paging trap information

GTRPW Returns the trap words

2.4 COMMUNICATING WITH DEVICES

The monitor calls in this group are wused to communicate with the
devices on the system. Some of these devices are line printers,
magnetic tapes, terminals, and card readers.

Many of the monitor calls in this group take a device designator as an
argument. This designator can be either

LH: .DVDES(600000)+device type number

RH: unit number for devices that have units, arbitrary code
for structures, or -1 for non-structure devices that do not
have units

LH: O
RH: .TTDES(400000)+terminal number, or .CTTRM(0,,-1) for
controlling terminal

The STDEV monitor c¢all 1is wused to convert a string to its
corresponding device designator.

The various devices are as follows:

FUNCTIONAL ORGANIZATION OF JSYS'S

Table 2-3
Device Types

Name Description Type Symbol Units
DSK: disk structure 0 .DVDSK no
MTA: magnetic tape 2 .DVMTA yes
MT: logical magnetic tape 2 .DVMTA yes
LPT: spooled line printer 7 - yes
PLPT: physical line printer 7 .DVLPT yes
CDR: spooled card reader 10 - yes
PCDR: physical card reader 10 .DVCDR yes
FE: front-end

pseudo-device 11 .DVFE no
TTY: terminal 12 .DVTTY yes
PTY: pseudo-terminal 13 .DVPTY yes
NUL: null device 15 .DVNUL no
NET: ARPA network 16 .DVNET no
CDP: spooled card punch 21 - yes
PCDP: physical card punch 21 .DVCDP yes
DCN: DECnet active

component 22 .DVDCN no
SRV: DECnet passive

component 23 .DVSRV no

Device-designators may be formed for the devices shown above by taking
the given symbolic¢ device-type and adding .DVDES (600000).

The null device is an infinite sink for unwanted output and returns an
EOF on input.

Device-dependent status bits are defined for some devices. These bits
can be set or returned with the SDSTS or GDSTS call, respectively.

When an assignable device is assigned (by the ASND call) or opened (by
the OPENF call) by one job, other jobs cannot do the following:

1. Assign the device with ASND.

2. Execute an OPENF call for the device, even 1if the JFN
properly represents the device.

Structures are not restricted to these 1limitations; more than one
user can simul taneously execute the OPENF call for files on
structures.

The following sections describe each of the devices 1listed 1in the
table above. The sections are in alphabetic order by generic device
type (thus PCDR: and CDR: are listed under "c").

2.4.1 Physical Card Reader (PCDR:)

The following device-dependent status bits are defined for the card
reader. These bits can be obtained with the .MORST function of the
MTOPR call.

FUNCTIONAL ORGANIZATION OF JSYS'S

Table 2-4
PCDR: Status Bits

Bit Symbol Meaning
BO MO%COL Device is on line.
B10 MORFER Fatal hardware error. This error dgenerates

an 1interrupt on software channel .ICDAE.
(Refer to Section 2.6.1.)

B12 MO%EOF Card reader 1is at end of file.
B13 MO%IOP I/0 in progress.
B1l4 MO%SER Software error. (Would generate an

interrupt on an assignable channel.)

B15 MO%HE Hardware error. (Would generate an
interrupt on software channel .ICDAE.)

B16 MO%OL Device 1s off line.
B17 MO%FNX Device 1s nonexistent.
B31 MO%SFL Output stacker full,
B32 MORHEM Input hopper empty.
B33 MO%SCK Stack check.

B34 MO%PCK Pick check.

R35 MO%RCK Read check.

2.4.2 Spooled Card Reader (CDR:)

On most systems, the physical card reader devices (PCDR: devices) are
under the control of the card reader spooler, SPRINT, and thus the
ordinary user cannot open a PCDR: device, and must 1instead open a
spooled card reader device (CDR:).

When a GTJFN 1is performed on device CDR:, the device characteristics
(returned by DVCHR) are the same as those for device PCDR:. Thus,
CDR: devices have units, and a unit number may be cpecified for the
GTJFN.

When the OPENF 1s performed, However, the dJdevice characteristics
become the same as device DSK:. This is because data read from device
CDR: is actually read from a file in the spool directory <SPOOL>. The
file 1s spooled from the PCDR: device to the spool directory by
SPRINT.

Thus device CDR: is effectively a disk device, and no monitor call
that can be used only to set the characteristics of a PCDR: device can
be used for a CDR: device. Also, disk-only operations (such as PMAP)
should not be done for a CDR: device. Both ASCII and image mode are
supported for CDR: devices.

FUNCTIONAL ORGANIZATION OF JSYS'S

2.4.3 Physical Card Punch (PCDP:)

The following device-dependent bits are defined for the card reader.
These functions can be obtained with the .MORST function of the MTOPR
monitor call.

Table 2-5
PCDP: Status Bits

Bit Symbol Meaning

B10 MOSFER Fatal error condition

B12 MOSEOF All pending output has been processed

B13 MO%IOP Output in progress

B14 MO%SER Software error has occurred (would generate

interrupt on an assignable channel)

B15 MO%HE Hardware error has occurred (would generate
interrupt on channel .ICDAE)

Bl6 MO%OL Card-punch is off-line. This bit 1is set
when operator intervention is redguired (card
jam, hopper empty, stacker full).

B17 MO%FNX Card punch doesn't exist

B32 MOSHEM Stacker 1s full or hopper is empty

B33 MO%SCK Stacker is full or hopper is empty (same as
above)

B34 MO%PCK Pick check

2.4.4 Spooled Card Punch (CDP:)

On most systems, the physical card punch devices (PCDP: devices) are
under the contrcl of the card punch spooler, SPROUT, and thus the
ordinary user canriot open a PCDP: device, and must instead open a
spooled card punch device (CDP:).

When a GTJFN is performed on device CDP:, the device <characteristics

(returned by DVCHR) are the same as those for device PCDP:. Thus,
CDP: devices have units, and a unit number may be specified for the
GTJFN. However, when the OPENF is performed, the device

characteristics become the same as device DSK:. This is because data
written to device CDP: is actually written to a file in the spool
directory <EPCOOL>. The file is then spooled from the spool directory
to the PCDR: device by SPROUT.

Thus device CDP: is effectively a disk device, and no monitor call
that can be used only to set the characteristics of a PCDP: device can
be used for a CDP: device. 2also, disk-only operations (such as PM2P)
should not be done for a CDP: device. Both ASCII and imade mode are
supported for CDP: devices.

2-35

FUNCTIONAL ORGANIZATION OF JSYS'S

2.4.5 Physical Line Printer (PLPT:)

The line printer normally accepts the 128 7-bit ASCII character codes
(0-177 octal). However, by specifying a byte size of 8 when opening
the printer, a program can transfer 8-bit bytes. Thus, the program
can take advantage of printers that have more than 128 characters.

Each code sent usually causes a graphic to be printed. (Note that on
a 64-character printer, lower case letters are represented as upper
case.) However, the carriage control characters do not cause a graphic
to be printed; instead they cause specific actions to be taken. The
actions taken are determined by the translation RAM and the Vertical
Formatting Unit. These actions can be redefined by the installation,
and the method by which they are redefined depends on the type of
printer being used.

For the LPl0 printer, which has a carriage control tape, the
installation must change the tape to redefine the resulting actions.

For the LP05 and LP14 printers, which have a direct access Vertical
Formatting Unit and a programmable translation RAM, the installation
can redefine the resulting actions by:

1. Reprogramming the VFU by changing the VFU file with the
MAKVFU program and reloading this file and the RAM.

2. Reprogramming the translation RAM by changing the RAM file
with the MAKRAM program and reloading this file.

Refer to the LPINI and MTOPR monitor calls for the functions used 1in
loading the VFU and RAM files.

The default actions taken on the carriage control characters, along
with the default channels that determine these actions, are as
follows:

FUNCTIONAL ORGANIZATION OF JSYS'S

Table 2-6
PLPT: Control Characters

I

ASCII Character | Default Name Default
Code Channel Action
11 ‘ Tab No vertical motion.

Skips to the beginning
of every 8th column on
the same line.

12 8 Line feed Skips to column 1 on the
next line. The last six
lines of each page are
skipped.

13 7 Vertical tab Skips to column 1 on the
line at the next third
of a page.

14 1 Form feed Skips to column 1 on the
top of the next page.

15 Carriage
return No vertical motion.
Returns to column 1 of
the <current 1line and
does not advance the

paper.

20 2 Half page Skips to column 1 on the
next half page.

21 3 Alternate
lines Skips to column 1 on the
next even line.

22 4 Three lines Skips to column 1 on the
next of every third
line.

23 5 Next line Skips to column 1 on the
next line without
skipping the last six
lines on a page.

24 6 Sixth page Skips to column 1 on the
next sixth of a page.

The association between the ASCII code and the channel 1is determined
by the RAM. The association between the channel and the default
action is determined by the VFU. Therefore, a change in the VFU
changes the association between the channel and the action, which
causes the ASCII code to be associated with the new action.

FUNCTIONAL ORGANIZATION OF JSYS'S

2.4.5.1 PLPT: Status Bits - The following device-dependent status
bits are defined for the line printer. These bits can be obtained
with the .MORST function of the MTOPR call.

Table 2-7
PLPT: Status Bits

Bit Symbol Meaning
BO MOSLCP Lower case printer
B10O MORFER Fatal hardware error. This error generates an

interrupt on software channel .ICDAE (refer to
Section 2.6.1).

B12 MO&EOF All data sent to the printer has actually been
printed.

B13 MO%IOP I/0 in progress

B14 MO%SER Software error (e.g., interrupt character, page

counter overflow)

B15 MO%HE Hardware error. Forms must be realigned. This
error generates an 1interrupt on software
channel .ICDAE.

B1l6 MO%OL Device 1is off line

B17 MO%FNX Device 1s nonexistent

B30 MO%RPE RAM parity error

B31 MO3LVU Optical VFU

B33 MORLVF VFU error

B34 MO3LCI Character interrupt. This generates an

interrupt on channel .ICDAE.

B35 MO3LPC Page counter register overflow

2.4.6 Spooled Line Printer (LPT:)

On most systems, the physical line printer devices (PLPT: devices)
are under the control of the line printer spooler, LPTSPL and thus
the ordinary user cannot open a PLPT: device and must, instead, open
a spooled line printer device (LPT:)

When a GTJFN 1s performed on device LPT:, the device characteristics
(returned by DVCHR) are the same as those for device PLPT:. Thus,
LPT: devices have units, and a unit number may be specified for the
GTJFN. However, when the OPENF 1gc performed, the device
characteristics become the same as device DSK:. This 1is because
data written to device LPT: is actually written to a file in the
spool directory PS:<SPOCL>. When device LPT: is closed, the file in
<SPOOL> 1is closed and a message sent to the line printer spooler
LPTSPL causing it to print the file on the line printer.

2-38

FUNCTIONAL ORGANIZATION OF JSYS'S

Thus device LPT: is effectively a disk device, and none of the
monitor calls that can be used only to set the characteristics of a
PLPT: device can be used for a LPT: device. Also, disk-only
operations (such as PMAP) should not be performed for LPT: devices.
Note that LPTSPL writes only 7-bit bytes, so opening a LPT: device
with any other byte size will cause erroneous results. Also, only
ASCII mode is supported for LPT: devices.

2.4.7 Physical Magnetic Tape (MTA:)

The following device-dependent bits are defined for magnetic tape.

Table 2-8
MTA: Status Bits

Bit Symbol Meaning

18 MTRILW Drive 1s write protected

19 MT%DVE Device error (hung or data late)

20 MT%DAE Data error

21 MT%SER Suppress automatic error recovery procedures

22 MTREOF Device EOF (file) mark

23 MT$IRL Incorrect record length (not the same number of

words as specified by the read operation or not
a whole number of words)

24 MT&BOT Beginning of tape

25 MTSEOT End of tape

26 MTSEVP Even parity

29-31 MT&CCT Character counter if MT®IRL is on. In the case

of an error generated by an incorrect record
length, this field contains the number of bytes
actually transferred.

32 MT¥NSH The selected data mode or density 1is not
suppor ted by the hardware (such as using
ANSI-ASCII mode on a TMO3 controller).

Data transfers to and from the magnetic tape can be performed using
either buffered or unbuffered I/0.

FUNCTIONAL ORGANIZATION OF JSYS'S

2.4.7.1 Buffered I/0 - The monitor wuses buffered 1I/0 when the
sequential I/0 calls (e.g., BIN/BOUT, SIN/SOUT) are used to read from
or write to the magnetic tape. When the tape is opened for sequential
I/0 (data mode .GSNRM on the OPENF call), the monitor reserves buffer
space large enough to hold two records of data. The maximum size of
the records is specified with the SET TAPE RECORD-LENGTH command or
the .MOSRS function of the MTOPR monitor call. The maximum record
lengths for magnetic tapes supported by TOPS-20 are listed in the
description of the .MOSRS function of the MTOPR monitor call. The
buffers reserved by the monitor allow the user's program to overlap
computation with the transfer of data to and from the tape.

The BIN monitor call is used to read one byte from the tape, with the
monitor filling one buffer with data as the user program is reading
bytes from the other buffer. A program reading data from the tape
with successive BIN calls obtains a stream of bytes until a tape mark
is read. The SIN monitor call is used to read a speciried number of
bytes with the monitor again performing the double buffering. Both
the BIN and the SIN calls read across record boundaries on the tape.
The SINR monitor call is used to read variable-length records from the
tape because each call returns one record to the user program. If the
record on the tape contains more data than the SINR call requests, the
remaining bytes in the record are discarded. The SINR call never
reads across record boundaries on the tape. Thus, each SINR call
begins reading at the first byte of the next record on the tape. With
all three <calls, the specified record size must be at least as large
as the largest record being read from the tape.

The BOUT monitor call is used to write one byte on the tape. A
program writing data on the tape with successive BOUT calls writes a
stream of bytes packed into records of the specified size. The SOUT
monitor call 1s wused to write a specified number of bytes into one
record equal to the given record size. The SOUTR <call 1is used to
write variable-length records on the tape because each call writes at
least one record. The size of the record 1is equal to either the
number of bytes specified 1in the SOUTR call or the number of bytes
specified in the maximum record size, whichever is smaller. If the
number of bytes requested in the call is greater than the specified
record size, then records of the maximum size are written, plus
another record containing the remaining bytes. If the end of tape
marker is reached during seguential mode output, the data 1s written
and an error return 1s given. Bit MTREOT (bit 25) in the device
status word will be set to indicate this condition.

When a CLOSF monitor call is executed for a magnetic tape to which
buffered output 1s being done, any data remaining in the monitor's
buffers will be written to the tape. The monitor writes two tape
marks after the 1last record written and backspaces over the second
mark. This allows a subseguent write operation to overwrite the 1last
tape mark, and always leaves two tape marks (a logical end of tape)
after the last record written.

The monitor does not write records of less than four words long. Thus
if the user requests less than four words to be written on a SOUTR or
DUMPO (see below) call, the monitor writes a four-word record,
completing it with zeros. On a SOUT call, if less than four words
remaln in the buffer at the time of the CLOSF call, the monitor again
fi1lls the record with zeros.

FUNCTIONAL ORGANIZATION OF JSYS'S

2.4.7.2 Unbuffered I/0 - The DUMPI and DUMPO monitor calls are used
to read from or write to the magnetic tape without using buffered I/0.
(Unbuffered I/0 is sometimes called dump mode 1I/0.) Unbuffered 1I/0
uses a program-supplied command list to determine where to transfer
data into or out of the program's address space. The command list can
contain three types of entries:

1. IOWD n, loc transfers n words from loc through loc+n-1. The
next command is obtained from the location following the
IOWD. Each IOWD word reads or writes a separate magnetic
tape record.

2. XWD 0, y takes the next command from location y.
3. 0 terminates the command list.
Refer to the DUMPI call description for more information.

On input, a new record is read for each IOWD entry in the command
list. If the IOWD request does not egqual the actual size of the
record on the tape, an error (IOX5) is returned. The GDSTS monitor
call can then be executed to examine the status bits set and to
determine the number of bytes transferred. 1In addition, 1if a tape
mark is read, an error (IOX4) is returned. On output, a new record is
written for each IOWD entry in the command list.

There are two modes available in unbuffered I/0. 1In the normal mode,
the monitor waits for the data transfer to complete before returning
control to the program. 1In the no-wait mode, the monitor returns
control immediately after gueuing the first transfer so that the
program can set up the second transfer. The monitor then waits for
the first transfer to complete before queuing the second. TIf the
first transfer is successful, the second one is started, and control
is returned to the program. TIf the first transfer is not successful,
an error is returned in ACl, and the second one is not started. The
desired mode 1is specified by bit DM%NWT in ACl on the DUMPI or DUMPO
call.

2.4.7.3 Magnetic Tape Status - The status word of a magnetic tape can
be obtained with the GDSTS <call or individual status bits can be
obtained with the MTOPR call. The GDSTS call waits for all activity
to stop during seguential mode output, dump mode, and spacing
operations before obtaining the status. A GDSTS call executed during
segquential mode input returns the status of the current record.

Reading from or writing to a magnetic tape cannot be done if there are
any errors set 1in the device status word. The program can clear
errors with the SDSTS call or the .MOCLE function of the MTOPR call.

2.4.7.4 Reading a Tape in the Reverse Direction - With the .MOSDR
function of the MTOPR call, the program can cause the tape to move 1in
the reverse direction (toward the beginning of the tape) during read
operations. The data in each record are returned in the forward
order, but the records themselves are returned in the reverse order.
The sensing-foil marking the beginning of tape is treated as an EOF
tape mark.

FUNCTIONAL ORGANIZATION OF JSYS'S

When the SIN call is used to read data in the reverse direction, the
bvte size and record length specified in the call should equal the
byte size and record length of the records on the tape. If the record
characteristics specified in the call do not egual the characteristics
of the records on tape, the bytes are returned out of phase with the
bytes in the tape record.

When the SINR call is used to read data in the reverse direction, the
number of bytes reguested by the call should be at least as large as
the size of the record on the tape. If the requested number 1is
smaller than the number of bytes in the tape record, the remaining
bytes in the record are discarded from the beginning of the record and
not from the end of the record.

2.4.7.5 Hardware Data Modes - By using the .MOSDM function of the
MTOPR call, the program can set the mode for storing data on a
magnetic tape. The following descriptions 1indicate how bits are
stored in the tracks and the number of frames required to store a
36-bit word of data.

The parity bit i1s represented in the diagrams by "P".

NOTE

Data undergoes 2 transformations before
it 1s actually written to magnetic tape.
The first transformation occurs when a
word of data 1s formed into frames by
the tape controller. The formats of
these frames are 1llustrated in the
diagrams below.

A second transformation occurs when the
tape drive receives a frame of data from
the controller, and physically writes
that frame to tape: the bits within the
frame are rearranged and then written.
This final format is standardized
throughout the computer industry and 1is
designed to (among other things) place
the parity bit in the center of the tape
(the "safest" part of the tape).
Because this final format is
standardized, it 1is "invisible" and does
not affect user programs in any way.

Programmers who must deal with the
problem of transferring data between DEC
machines and the machines of other
vendors need only concern themselves
with the formets shown below. Thus,
while 1t 1s technically 1incorrect to
think of the diagrams below as showing
the physical format of a word stored on
magnetic tape, it is convenient to do
so, and this simplification 1s made 1in
this manual.

FUNCTIONAL ORGANIZATION OF JSYS'S

Unbuffered (Dump) Mode

This mode stores a word of data as a 36-bit byte in five frames of a
9-track tape. Note that the fifth frame is partially used. This mode
is normally the default mode.

TRACKS FRAMES
9 8 7 6 5 4 3 2 1
BO Bl B2 B3 B4 B5 B6 B7 P 1
B8 B9 B10 Bl1 B1l2 B13 B14 B1l5 P 2
Blé6 B17 B18 B19 B20 B21 B22 B23 P 3
B24 B25 B26 B27 B28 B29 B30 B31 P 4
0 0 0 0 B32 B33 B34 B35 P 5

Industry Compatible Mode

This mode stores a word of data as four 8-bit bytes in four frames of
a 9-track tape. On a read overation, four frames of 8-bit bytes are
read, left-justified, into a word. The remaining four bits of the
word are 0, or are copies of the parity bits, depending on the
hardware; these bits are not deata. On a write operation, the
leftmost four 8-bit bytes (i.e., bits 0 through 31) of the word are
written in four frames on the tape. The rightmost four bits (i.e.,
bits 32 through 35) of the word are ignored and are not written on the
tape. This mode is compatible with any machine that reads and writes
8-bit bytes.

TRACKS FRAMES
9 8 7 6 5 4 3 2 1
BO Bl B2 B3 B4 B5 B6 B7 P 1
B8 B9 B10 Bl1 B12 B13 B14 B15 P 2
Blé6 B17 B18 B19 B20 B21 B22 B23 P 3
B24 B25 B26 B27 B28 B29 B30 B31 P 4

ANSI ASCII Mode

This mode stores a word of data as five 7-bit bytes in five frames of
a 9-track tape. On a read operation, five frames of 7-bit bytes are
read, left-justified, into a word. The remaining bits (bits 35) of
each frame are ORed togethber, and the result is placed in bit 35 of
the word. On a write operation, the leftmost five 7-bit bytes of the
word are written in five frames on the tape. Bit 35 of the word must
be zero to conform to ANSI standards. It 1is written 1into the
high-order bit of the fifth frame, and the remaining high-order bits
of the first four frames are 0. This mode is useful when transferring
ASCII data from TOPS-20 to machines that read 8-bit bytes. This mode
1s available on any 9-track drive connected to a TM02 or DX20 tape
controller.

nNnooCoCo

B3

8

BO
B7
Bl4
B21
B28

SIXBIT Mode

Bl

B15
B22
B29

FUNCTIONAL ORGANIZATION OF JSYS'S

B2

B16
B23
B30

TRACKS
5

B3
B10O
B17
B24
B31

This mode stores a word of data

7-track
7-track

7

BO
B6
B1l2
B18
B24
B30

tape.
tapes.

6

Bl
B7
B13
B19
B25
B31

5

B2
B8
B14
B20
B26
B32

High Density Mode

In this

mode,

two

mode is available

BO
B8
B16
B24
B32

R12
B20
B28

Bl
B9
B17
B25
B33

B13
B21
B29

B2
B10O
B18
B26
B34

B14
B22
B30

This mode is

TRACKS

4 3
B3 B4
B9 B10O
B15 Bl6
B21 B22
B27 B28
B33 B34

36-bit words are stored in 9 frames.

B4
B1l1
B18
B25
B32

B5
B12
B19
B26
B33

B6
B13
B20
B27
B34

—

‘g go

FRAMES

b wn -

as six 6-bit bytes in six frames of a
only supported hardware mode for

the

B5
B11
B17
B23
B29
B35

—

Lo BV L Bl v B vl o)

FRAMES

AU WN -

High density

on any 9-track drive connected to a DX20 controller.

B3
B11
B19
B27
B35

B7
B15
B23
B31

TRACKS
5

B4
B12
B20
B28

BO

B8
Bl6
B24
B32

2-44

B6
B14
B22
B30

B10
B18
B26
B34

B7
B15
B23
B31

B1l1
B19
B27
B35

it

vl B vl e By e B o B v B v B o)

FRAMES

OOV WN -

FUNCTIONAL ORGANIZATION OF JSYS'S

2.4.8 Logical Magnetic Tape (MT:)

Logical magnetic tape devices are used so that the system operator can
fulfill a MOUNT request with any available tape drive that meets the
requirements of the MOUNT reguest. The user never knows and need not
know which physical drive (MTA:) is mapped to the logical drive (MT:).

Some JSYS functions available for MTA: devices are not available for

MT: devices. Also, MT: devices are commonly used in a tape-labeled
environment which causes further restrictions in the JSYS functions
available for MT: devices. See the appropriate JSYS's for any

restrictions that may apply.

2.4.9 Terminal (7'TY:)

Most monitor calls in this group return an error 1if the device
referenced 1is assigned to another job. However, a process with WHEEL
capability enabled can reference a terminal assigned to another job
(as controlling terminal or with ASND). The monitor calls pertaining
to terminals have no effect, or return default-value information, when
used with other devices.

The following status bits are defined for TTY's.
Bit Symbol Meaning

B35 GD$PAR The TTY will tolerate a parity bit. Any program
producing binary output for a TTY should check
this bit to determine if it should apply parity.
If parity is to be applied, the TTY must be opened
with an 8-bit bytesize; otherwise, a 7-bit
bytesize must be used.

DECNET NVT's will not accept a parity bit.

2.4.9.1 JFN Mode Word - Each terminal in TOPS-20 is associated with a
mode word. This word can be read with the RFMOD call and changed with
the SFMOD and STPAR calls. The SFMOD call affects only the modes that
are program-|related: wakeup control, echo mode, and terminal data
mode; thus a program can execute a SFMOD call without affecting
previously-|established device modes. The STPAR call, on the other
hand, affects fields that describe device parameters (mechanical
characteristics, page 1length and width, case conversion, and duplex
control). Table 2-9 shows the format of the JFN mode word.

FUNCTIONAL ORGANIZATION OF JSYS'S

Table 2-9
JFN Mode Word
Bit Symbol |Changed by Function
0 TT$OSP SFMOD output suppress control (1=ignore
output; 0=allow output)
1 TTEMFF STPAR has mechanical form feed
2 TT3%TAB STPAR has mechanical tab
3 TTILCA STPAR has lower case
4-10 TT3LEN STPAR page length
11-17 | TT¥WID STPAR page width
18-23 | TT$WAK SFMOD wakeup control on:
B18: not used
TT$IGN B19: ignore the other TT%WAK bits
TTIWKF B20: formatting control character
TTEWKN B21: non-formatting control character
TTEWKP B22: punctuation character
TTEWKA R23: alphanumeric character
24 TT$ECO SFMOD echos on
25 TT%ECM STPAR echo mode
26 TT%ALK TLINK accept links
27 TT%AAD TLINK accept advice
28-29 | TT3DAM SFMOD terminal data mode
.TTBIN 00: no translation
. TTASC 01l: translate both echo and output
. TTATO 10: translate output only
. TTATE 11: translate echo only
30 TT$UOC STPAR upper case output control
0: do not indicate
1: indicate by 'X
31 TTSLIC STPAR lower case 1nput control
0: no conversion
1: convert lower to upper
32-33 | TT$DUM STPAR duplex mode
. TTFDX 00: Full duplex
. TTHDX 10: Character half duplex
. TTLDX 11: TLine half duplex
01l: Reserved for DEC
34 TT%PGM STPAR pause-on-command mode (l=enable
pause-on-command mode, 0=disable
pause-on-command mode.)
This function enables/disables the
TOPS-20 feature that allows a user to
manually stop TTY output with ~S and
resume it with "Q. See MTOPR function
.MOXOF for pause-at-end-of-page mnode.
35 TT$CAR system carrier state; on if line 1is a
dataset and the carrier is on.

Bit 0 (TTR0SP) implements the CTRL/O function. If this bit is set,
all program output directed to the terminal is discarded. When the
bit 1s off, program output is buffered and sent as usual. The current
contents of the output buffer are not cleared when this bit is set;
clearing the buffer must be done explicitly (by means of the CFOBF
call) if output 1is to be stopped immediately. Any input function
clears this bit.

FUNCTIONAL ORGANIZATION OF JSYS'S

Bits 1, 2, and 3 (TT$MFF, TT%TAB, and TT%LCA) define several of the
mechanical capabilities of the terminal and affect character handling
on both input and output. Form feeds and tabs are simulated if the
terminal does rot have the required mechanical capability, or if
simulation has been requested by the SFCOC call.

Bits 4-10 (TTR%LEN) determine the number of 1line feeds necessary to
simulate a formfeed, or the number of lines to fit on the display
screen. A 0 value means the declared 1length of the page 1is
indefinitely large.

Bits 11-17 (TT$WID) determine the point at which the output line must
be continued on the next 1line by inserting a carriage return-line
feed. TIf 0, no line folding occurs.

Bits 18-23 (TT%WAK) define the particular class of characters that,
when 1input from the terminal, will wake up a waiting program. Refer
to Section 2.4.9.3 for the definitions of the wakeup classes. Note
that the class-wakeup scheme is maintained for compatibility with
older programs. Newer programs should use the .MOSBM function of the
MTOPR JSYS as 1t has more resolution and causes less system load.

Bit 24 (TT%$ECO) defines if echos are to be given. If this bit is off,
echoing is turned off. This 1s useful when the program is accepting a
password or is simulating non-standard echoing procedures.

Bit 25 (TT$ECM) defines when the echo will occur. If this bit is off,
the echo will occur when the program reads the character. That 1is,
the echo occurs immediately if the program is waiting for input or 1is
deferred 1f the program 1is not waiting for input. This is the
standard echo mode which produces a correctly ordered typescript
(1.e., program input and output appear in the order in which they

occurred). If this bit 1s on, the echo occurs as soon as the
character 1is typed. Note that this mode may cause editing to appear
out of order on the typescript. This occurs because editing 1is

performed as the program reads the character and not necessarily when
the echo occurs.

Bits 28-29 (TT%DAM) define the terminal data mode. The four possible
data modes are:

00 Binary (.TTBIN), 8-bit input and output. There is no format
control or control group translation and no echoing.
However, "S and "Q are still under control of TT%PGM.

01 ASCII (.TTASC), 7-bit input and output, plus parity on for
control group output. There i1s format control as well as
simulation and translation of control group for input (echo)
and output according to the control words given on the SFCOC
JSYS. This is the usual terminal data mode.

10 Disable the translation of echo (.TTATO) . In all other
respects, same as .TTASC.

11 Disable the translation of output (.TTATE). Obeys the CCOC
word on input only. 1In all other respects, same as ,TTASC.

The last two data modes allow the wuser to selectively disable the
translation of control characters for input or output. When
translation 1s disabled, control characters are always sent.
Simulation of formatting control characters 1is still performed if
requested by the control words of the RFCOC or SFCOC JSYS or if the
device does not have the required mechanical capability. The
translation typically results in some control characters being

2-47

FUNCTIONAL ORGANIZATION OF JSYS'S

indicated by graphics 1instead of being sent as is. For example,
disabling the translation of output characters is appropriate for some
display terminals when the program must send untranslated control
characters to control the display, but reguires that the control
characters typed by the user be indicated in the usual way.

Bit 30 (TTRUOC) specifies that upper case terminal output 1is to be
indicated Dby 'X (single guote preceding character that is upper case)
if TTYLCA is not set. This is primarily intended for terminals that
are not capable of lower case output.

Bit 31 (TT3LIC) specifies that lower case terminal input 1s to be
translated to upper case and that <codes 175 and 176 are to be
converted to code 33, This is useful for older terminals that send
codes 175 or 176 1in response to the ALT or ESC key.

Bits 32-33 (TT%DUM) define the three duplex modes presently available.
Full duplex (.TTFDX) requires the system to generate the appropriate
echo for each character typed 1in. Character half duplex (.TTHDX)
assumes the terminal will internally echo each character typed but
will require an additional echo for formatting characters such as
carriage return. Line half duplex (.TTLDX) is similar to character
half duplex but does not generate a line feed echo after a carriage
return.

Bit 34 (TT%$PGM) specifies the output mode. 1In display mode, the user
can create a pause in the output while he reads material that would
otherwise quickly disappear off the screen. The output 1s stopped
with the CTRL/S character and started with the CTRL/Q character.
Also, output automatically stops whenever & page, as defined by
TT%LEN, has been output; output is resumed with CTRL/Q.

Bit 35 (TT%CAR) indicates the carrier state. If the 1line 1is a
dataset, this bit 1is on if the carrier is on. If the line is not a
dataset, this bit is undefined.

2.4.9.2 Control Character Output Control - Each terminal has two
control character output control (CCOC) words. Each word consists of
2-bit bytes, one byte for each of the control characters (ASCII codes
0-37). The bytes are interpreted as follows:

00: 1ignore (send nothing)

0l: indicate by "X (where X is the character)
10: send character code

11: simulate format action

The RFCOC and SFCOC monitor calls read and manipulate the CCOC words.
Table 2-10 lists the ASCII code for each character.

2.4.9.3 Character Set - The following information describes each
character in the TOPS-20 <character set that 1is pertinent to the
monitor calls in this group. The wakeup class (refer to TT$WAK 1in
Section 2.4.9.1) is abbreviated as follows:

formatting control character
non-formatting control character
punctuation character
alphanumeric character

PrO0m™

FUNCTIONAL ORGANIZATION OF JSYS'S
Refer to Section 2.4.9.2 for the explanation of the control character
output control (CCOC) words.

The following takle lists the wakeup classes for the TOPS-20 character
set (ASCII):

Table 2-10
Wake-up Classes/CCOC Word Bits
ASCII Wake-up ccoc Character or Control Character
Code Class Word (bits)
0 C 1(BO,1) CTRL/@ null,break
1 C 1(B2,3) CTRL/A
2 C 1(B4,5) CTRL/B
3 C 1(B6,7) CTRL/C
4 C 1(B8,9) CTRL/D
5 C 1(B10,11) CTRL/E
6 C 1(B12,13) CTRL/F
7 C 1(B14,15) CTRL/G Dbell
10 F 1(B16,17) CTRL/H backspace
11 P 1(B18,19) CTRL/I horizontal tab
12 F 1(B20,21) CTRL/J line feed
13 C 1(B22,23) CTRL/K vertical tab
14 F 1(B24,25) CTRL/L form feed
15 F 1(B26,27) CTRL/M carriage return
16 C 1(B28,29) CTRL/N
17 C 1(B30,31) CTRL/O
20 C 1(B32,33) CTRL/P
21 C 1(B34,35) CTRL/Q
22 C 2(B0,1) CTRL/R
23 C 2(B2,3) CTRL/S
24 C 2(B4,5) CTRL/T
25 C 2(B6,7) CTRL/U
26 C 2(R8,9) CTRL/V
27 C 2(B10,11) CTRL/W
30 C 2(B12,13) CTRL/X
31 C 2(B14,15) CTRL/Y
32 C 2(B16,17) CTRL/Z
33 all 2(B18,19) escape (altmode)
34 C 2(B20,21) CTRL/backslash
35 C 2(B22,23) CTRL/right sguare bracket
36 C 2(B24,25) CTRL/uparrow
37 F 2(B26,27) CTRL/backarrow
40 p space
41 P !
42 P "
43 P #
44 P $
45 P %
46 P &
47 P !
50 P (
51 P)
52 P *
53 P +
54 P ’

FUNCTIONAL ORGANIZATION OF JSYS'S

Table 2-10 (Cont.)
Wake-up Classes/CCOC Word Bits
ASCII Wake—-up ccoc Character or Control Character
Code Class Word(bits)
55 P -
56 P .
57 P /
60-71 A 0-9
72 P :
73 P ;
74 P <
75 P =
76 P >
77 P ?
100 P @
101-132 A upper case letters A-2
133 P [
134 P \
135 P]
136 P ~
137 P _
140 P accent (grave)
141-172 A lower case letters a-z
173(1) P left brace
174 (1) P vertical bar
175(1) p right brace
176 (1) P tilde
177 all delete (rubout)
NOTE

1. ESC(33) and DELETE(177) are
considered to be 1n all wakeup
classes.

2. If the terminal has B31(TT$LIC) on
in the JFN mode word, codes 175 and
176 are converted to code 33 on
input.

3. The class-wakeup scheme 1s
maintained for compatibility with
older programs. New programs should
use the .MOSBM function of the MTOPR
JSYS as 1t has more resolution (it
allows a 4-word character mask to
specify individual wakeup

characters) and causes less system
load (low-level monitor I/O routines
are subjected to fewer wakeups).
Both SFMOD and .MOSBM set the same
mask; however SFMOD computes wakeup
classes from the mask while .MOSBM
uses character-oriented wakeups.

FUNCTIONAL ORGANIZATION OF JSYS'S

2.4.9.4 Terminal Characteristics Control - The various types of
terminals have different characteristics for output processing,
depending on their type and speed. The characteristics that can be
associated with terminals are:

1. mechanical formwr feed and tab

2. lower case

3. padding after carriage return

4. padding after line feed

5. padding after mechanical tab

6. padding after mechanical form feed

7. page width and length

8. cursor commands
Instead of setting each of these parameters for his line, the user can
specify a terminal type number, which causes the appropriate

parameters to be set. Refer to the STTYP monitor call. The defined
terminal types, along with their characteristics, are listed below.

Table 2-11
Terminal Characteristics

Number Terminal Symbol Characteristics
0 TTY model 33 | .TT33 no mechanical form feed or tab, has
upper case only, no padding after
carriage return and line feed,

padding after tab and form feed,
page width 72, page length 66

1 TTY model 35 | .TT35 has mechanical form feed and tab,
has upper <case only, no padding
after carriage return and line

feed, padding after tab and form
feed, page width 72, page length 66

2 TTY model 37 | .TT37 no mechanical form feed or tab,
lower case, no padding after
carriage return and line feed,

padding after tab and form feed,
page width 72, page length 66

3 TI/EXECUPORT | .TTEXE no mechanical form feed or tab,
lower <case, padding after carriage
return only page width 80, page
length 66

4-7 reserved for customer

2-51

FUNCTIONAL ORGANIZATION OF JSYS'S

Table 2-11 (Cont.)
Terminal Characteristics

Number | Terminal Symbol Characteristics

10 Default .TTDEF no mechanical form feed or tab,
lower case, full padding, page
width 72, page length 66

11 Ideal .TTIDL has mechanical form feed and tab,
lower case, no padding, no
specified width and length

12 VT05 .TTVO5 no mechanical form feed, has
mechanical tab, has upper case
only, no padding after carriage
return and tab, padding after line
feed and form feed, page width 72,
page length 20, has cursor commands

13 vVT50 .TTV50 no mechanical form feed or tab, has
upper case only, no padding, page
width 80, page 1length 12, has
cursor commands

14 LA30 .TTL30 no mechanical form feed or tab, has
upper case only, full padding, page
width 80, page length 66

15 GT40 .TTG40 no mechanical form feed or tab, lower
case, no padding, page width 80, page
length 30

16 LA36 .TTL36 no mechanical form feed or tab, lower

case, no padding, page width 132,
page length 66

17 VT52 .TTV52 no mechanical form feed, has
mechanical tab, lower case, no
padding, page width 80, page 1length
24

20 vVT100 .TT100 no mechanical form feed, has
mechanical tab, lower case, no

padding, page width 80, page length
24, has cursor commands

When used in VT52 mode, the terminal
type should be set to .TTV52.

21 LA38 .TTL38 no mechanical form feed, has
mechanical tab, lower case, no
padding, page width 132, page 1length
66

FUNCTIONAL ORGANIZATION OF JSYS'S

Table 2-11 (Cont.)
Terminal Characteristics

Number | Terminal Symbol Characteristics

22 LAl120 .TT120 has mechanical form feed and tab,
lower case, no padding, page width
132, page length 60

35 VT125 .TT125 no mechanical form feed, has
mechanical tab, lower case, no
padding, page width 80, page 1length
24, has cursor commands and graphics

capabilities
36 VK100 .TTK10 no mechanical form feed, has
mechanical tab, lower case, no

padding, page width 80, page length
24, has cursor commands and color
graphics capabilities

The STTYP monitor call sets the terminal type number for a 1line, and
the GTTYP monitor call obtains the terminal type number.

2.4.9.5 Terminal Linking - It is possible to link the output of any
line to wup to four other lines. The refuse/accept link bit TT$%ALK
(bit 26) in the JFN mode word controls terminal linking. If the bit
is off for a particular terminal, a user cannot link to that terminal
unless the user has WHEEL or OPERATOR privileges enabled. Al though
this bit can be read with the RFMOD monitor call, the bit can only be
set with the TLINK call.

Refer to the TLINK monitor call for a description of terminal linking.

2.4.9.6 Terminal Advising - It is possible to receive advice from any
terminal line in the system. The refuse/accept advice bit TT%AAD (bit
27) in the JFN mode word controls terminal advising. If this bit 1is
off for a particular terminal, users cannot simulate typing on that
terminal by means of the STI monitor call unless the user has WHEEL or
OPERATOR privileges enabled. Although this bit can be read with the
RFMOD monitor call, it can only be set with the TLINK call.

Refer to the TLINK monitor call for a description of terminal
advising.

TOPS-20 Version 5 2-53 April 1982

FUNCTIONAL ORGANIZATION OF JSYS'S

The following monitor calls are used for device control:

ASND Assigns a device

RELD Releases a device

SPOOL Pefines and 1nitializes input spooling

LPINI Loads VFU or translation RAM

DVCHR Returns device characteristics

GDSTS Returns the device status

SDSTS Sets the device status

GDSKC Returns disk usage

MSTR Performs structure-dependent functions

MTOPR Performs device-dependent functions

MTU% Performs functions for logical tape devices
(MT: Jdevices)

STDEV Translates a string to a device designator

DEVST Translates a device designator to 3 string

GTTYP Returns terminal type number

STTYP Sets terminal type number

ATACH Attaches controlling terminal to a job

DTACH Detaches controlling terminal from a job

TLINK Controls terminal linking

RFMOD Returns the JFN mode word

SFMOD Sets program-related fields in the JFN mode word

STPAR Sets device-related fields in the JFN mode word

RFPOS Returns current position of the terminal

SFPOS Sets current position of the terminal

RFCOC Returns control character output control words

SFCOC Sets cortrol character output control words

CFIBF Clears terminal's 1input buffer

CFOBF Clears terminal's output buffer

SIBE Skips if input buffer 1is empty

SOBE Skips 1f output buffer is empty

SOBF Skips if output buffer is full

DIBE Dismisses until terminal input buffer is empty

DOBE Dismisses until terminal output buffer is empty

2.5 SOFTWARE DATA MODES

I/0 may be performed in one of several modes, depending on the device.
(The mode 1s specified with the OPENF call.) The range of possible I/0
modes 1s from 0 to 17 (octal). However, except for ARPANET devices
and less common hardware devices (such as paper-tape punches/readers)
the only meaningful modes are 0, 10, and 17.

The following discussion lists the major devices supported by TOPS-20
and the applicable I/0 modes:

Device Mode Symbol Explanation
CDP:

PCDP: 0 .GSNRM Normal mode - allows unit-record output.
For card punches, this mode converts each
7-bit ASCII character to a 12-bit
card-column code (Hollerith code) and

outputs that code to the device.

1 .GSSMB Small Ruffer mode - allows small data
segments to be transmitted to terminals.
This mode 1s used by DECnet in communication
with terminals, SRV:, and DCN: devices.

TOPS-20 Version 5 2-54 April 1982

Device

CDR:
PCDR:

DCN:

DSK:

LPT:

Mode

10

10

FUNCTIONAL ORGANIZATION OF JSYS'S

Symbol

.GSIMG

.GSNRM

.GSIMG

.GSNRM

.GSNRM

Explanation

Image mode - sends an "image" (rather than
converting to Hollerith) of each byte.
These are 12-bit bytes and are assumed to be
in Hollerith code. If the device 1is opened
with a byte size smaller than 12-bits, each
byte sent is zero-padded on the left to form
a 12-bit byte.

Normal mode - allows unit-record input. For
card readers, this mode converts each 12-bit
card-column code (Hollerith code) to a 7-bit
ASCII character and returns the ASCII
character to the program.

Image mode - returns an "image" (rather than
converting to ASCII) of the 12-bit card-code
for each character read. In order to
receive the full 12 bits, the program must
use 12-bit bytes.

Augmented image mode - this 1s a 16-bit
version of image mode. The leftmost 4 bits
are returned by the card reader controller.
The first bit indicates that the column has
a Hollerith error (and thus the card should
be rejected). The next 3 bits contain @
value ranging from 0 to 7. TIf the value 1s
from 1 to 7, 1t 1indicates that a punch
occurred in thaet row. TIf the value 1s 0, 1t
indicates that no punch occurred in columns
1 - 7. Effectively, a zero value 1indicates
that a non-ASCITI character was punched.
This mechanism allows conversion to ASCII
using a table with only 256 -entries as
opposed to a table with 4096 entries for
12-bit characters, This mode 1s avalilable
on PCDR: devices only and 1s used by
specifying mode .GSIMG with & 16-bit
bytesize.

Normal mode - allows byte I/C. This device
may be opened with 7, 8 cr 36-bit bytes.
However, all transfers are actually dJdone
with 8-bit bytes, and opening the device
with an &-bit bytesize will give the
greatest efficiency. Reguires DECnet
software.

Normal mode - allows buffered byte, string,
and paged I/C 1in 1 to 36-bit bytes. By
definition, a DSK: device may be opened 1in
any I/0 mode, however the effect 1s the same
as mode 0.

PLPT: 0 .GSNRM Normal mode - allows buffered
byte and string output.

Device

PTY:

MTA:
MT:

NET:

NUL:

Mode

17

17

FUNCTIONAL ORGANIZATION OF JSYS'S

Symbol

.GSNRM

.GSNRM

.GSDMP

.GSNRM
.GSIMG
.GSDMP

Explanation

Normal mode - for a PTY, the "mode" 1is
merely used to open the device. The PTY
will receive data according to the I/0 mode
of the TTY associated with it.

Normal mode - allows buffered byte and
string 1I/0. This 1is the most common I/O
mode.

Dump mode - this mode 1is unbuffered by
default (it can be set up for
double~buffering) and 1is wusually used to
transfer blocks of data from tape to disk or
disk to tape. For tape, a dump-mode read
(performed by DUMPI JSYS) performs reads on
the basis of physical records. 1If less than
a physical record 1is read, the data is
transferred and an error 1is returned. A
subsequent DUMPI will begin reading the tape
at the start of the next physical record.

For ARPANET systems only. Allows buffered
or non-buffered byte and string I/0 in 8,
32, or 36-bit bytes as follows:

Non-buffered send mode with wait. Waits for
State of connection to be other than
"request for connection sent" before the
OPENF returns. Data 1s transmitted on every
JSYS.

Buffered send mode with wait. Waits for
state of connection to be other than
"request for connection sent" before the
OPENF returns. Data 1s sent a buffer-load
(8000 bits) at a time. The concept of
buffering does not apply to input.

Non-buffered send mode with no wait.

Buffered send mode with no wait. Data 1is
sent a buffer-load (8000 bits) at a time.
The concept of buffering does not apply to
input.

Normal mode
Image mode
Dump mode

The NUL device is a pseudo device used to
"throw away" unwanted output from a program.
The device may be opened in any mode.

FUNCTIONAL ORGANIZATION OF JSYS'S

Device Mode Symbol Explanation

SRV: 0 .GSNRM Normal mode - allows byte I/0. This device
may be opened with 7, 8, or 36-bit bytes.
However, all transfers are actually done
with 8-bit bytes, and opening the device
with an 8-bit bytesize will give the
greatest efficiency. Reguires DECnet
software.

TTY: 0 .GSNRM Normal mode - allows buffered byte and
string 1I/0. In this mode, format control
and simulation and translation of control
characters are performed by the monitor for
input (echo) and output. (These services
can be turned off by setting the appropriate
bit in the JFN mode word.) Using an 8-bit
bytesize in this mode implicitly changes the
mode to .GSIMG (see below).

10 .GSIMG Image mode - allows buffered byte and string
1/0, but disables format control and
simulation and translation of control

characters. On input, if the byte size is 8
bits, a parity bit (odd) 1is returned with
the character. The parity bit 1is the
high-order bit. On output, attempting to
send an 8-bit byte that has incorrect parity
may cause a device error. However, most
terminals ignore a user-supplied parity bit.

This mode can cause some reduction in the
CPU time <charged to a 3job for doing TTY
output. The reduction 1is small, however,
for TTY input. This is because the average
process outputs many more characters than it
inputs (the average ratio 1s approximately
20 cbharacters output for each character
input).

2.6 SOFTWARE INTERRUPT SYSTEM

The monitor calls in this group are used for controlling the software
interrupt system. Note that 1if the program has an ERJMP or ERCAL
after a monitor call that normally causes an interrupt on failure, the
ERJMP or ERCAL overrides the interrupt. Refer to the TOPS-20 Monitor
Calls User's Guide for an overview and description of the software
interrupt system.

2.6.1 Software Interrupt Channels

Each interrupt 1s associated with one of 36 software 1interrupt
channels below. The user program can assign channels 0-5 and 23-35 to
various conditions, such as terminal interrupts, IPCF interrupts,
ENQ/DEQ interrupts, PTY conditions, and terminal buffers becoming
empty. The remaining channels are permanently assigned to certain
error conditions. Any channel may be wused for program—-initiated
interrupts (IIC call).

FUNCTIONAL ORGANIZATION OF JSYS'S

Table 2-12
Software Interrupt Channels

Channel Symbol Meaning

0-5 Assignable by user program

6 . ICAOV Arithmetic overflow (includes NODIV)

7 .ICFOV Arithmetic floating point overflow
(includes FXU)

8 Reserved for DEC

9 . ICPOV Pushdown list (PDL) overflow!l

10 . ICEOF End of file condition

11 . ICDAE Data error file condition!

12 .ICQTA Disk full or guota exceeded when creating
a new page 1

13-14 Reserved for DEC

15 .ICILI Illegal instructionl

16 .ICIRD Illegal memory readl

17 .ICIWR Illegal memory writel

18 Reserved for DEC

19 LICIFT Inferior process termination or forced
freeze

20 .ICMSE System resources exhausted !

21 Reserved for DEC

22 . ICNXP Reference to non-existent page

23~35 Assignable by user program

1 These channels are panic channels and cannot be completely
deactivated. (Refer to Section 2.6.5.)

2.6.2 Software Interrupt Priority Levels

Each channel is assigned to one of three priority levels. The
priority levels are numerically referenced as level 1, 2, or 3 with
level 1 being the highest level interrupt. Level 0 1is not a legal
priority level. If an interrupt request occurs in a process where the
level associated with the channel 1is 0, the system considers the
process not prepared to handle the interrupt. The process is then
frozen or terminated according to the setting of SC%FRZ (bit 17) 1in
its capabilities word. (Refer to Section 2.7.1.)

FUNCTIONAL ORGANIZATION OF JSYS'S

2.6.3 Software Interrupt Tables

Before using the software interrupt system, a process must set up the
following two tables and declare their addresses with the XSIR% or SIR
calls.

LEVTAB

A 3-word table, indexed by priority level minus 1. There are two
forms of this table.

In the general form, each word contains the 30-bit address of the
first word of a two-word block in the process address space. The
block address=sd by word n of LEVTAB is used to store the global
PC flags and address when an interrupt of level n+l occurs.

The PC flags are stored in the first word of the PC block, and
the PC address is stored in the second. This form of the table
must be used with the XSIR% and XRIR% monitor calls, and can be
used 1n any saction.

The older form of the interrupt level table can be wused in any
single-|section program, and must be used with the SIR and RIR
calls. This table also contains three words, 1indexed by the
priority level minus 1. Each word contains zero in the left
half, and the 18-bit address of the word in which to store the
one-word section-relative PC in the right half.

CHNTAB

A 36-word table, indexed by channel number. This table also has
two formats.

The general format, for use with the XSIR% and XRIR% calls, can
be used 1n any section of memory. Each word contains, in bits
0-5, the priority level (1, 2, or 3) to @assign to interrupts

generated on that channel; and in bits 6-35, the starting
address of the routine to process interrupts denerated on that
channel.

In the older format, for use with the SIR and RIR calls by any
single-section program, the left half of each word contains the
priority level (1, 2, or 3) for that channel. The right half
contains the address of the interrupt routine that will handle
interrupts on that channel.

2.6.4 Terminating Conditions

If an interrupt is received on a channel that is activated, but the
interrupt cannot be 1nitisted because

1. the interrupt system for the process 1is not enabled (EIR
JSYS) and the channel on which the i1interrupt occurred 1s a
panic channel,

2. the table addresses have not been defined (SIR call),

3. no priority level has been assigned to the channel (i.e.,
left half of channel's word in CHNTAB is 0), or

4. the channel has been "reserved" by the superior process
(refer to the SIRCM call description),

TOPS-20 Version 5 2-59 April 1982

FUNCTIONAL ORGANIZATION OF JSYS'S

then the interrupt is considered a process termination condition.

this case the process that was to have received the interrupt is
halted or frozen according to the setting of SC%FRZ (bit 17) in
capabilities word, and a process termination interrupt is sent to its
superior. The superior process can then execute the RFSTS call
determine the status of the inferior process.

2.6.5 Panic Channels

Panic channels (refer to Section 2.6.1) céannot be completely
deactivated by disabling the channel or the entire interrupt system.
A software interrupt received on a panic <channel that has been
deactivated will be considered a process terminating condition.
However, panic channels will respond normally to the channel on/off
and read channel mask monitor calls.

2.6.6 Terminal Interrupts

There are 36 (decimal) codes used to specify terminal characters
conditions on which interrupts can be initiated. A process can assign

a character or conditio
rupt channels with the
to a channel and
occurrence of the
causes an interrupt to

their associated conditions,

the
character

n to any one of the
ATI call.
channel

is

be generated.

program-assignable
Once the particular code is assigned
activated
or condition corresponding to the code
The terminal codes,
are shown in the table below.

(by

means of

along

Table 2-13
Terminal Interrupt Codes
Terminal Symbol Character or Condition
Code
0 .TICBK CTRL/@ or break
1 .TICCA CTRL/A
2 .TICCB CTRL/B
3 .TICCC CTRL/C
4 .TICCD CTRL/D
5 .TICCE CTRL/E
6 .TICCF CTRL/F
7 .TICCG CTRL/G
8 .TICCHB CTRL/H
9 .TICCI CTRL/I (tab)
10 .TICCJ CTRL/J (line feed)
11 .TICCK CTRL/K (vertical tab)
12 .TICCL CTRL/L (form feed)
13 .TICCM CTRL/M (carriage return)
14 .TICCN CTRL/N
15 .TICCO CTRL/O
16 .TICCP CTRL/P
17 .TICCQ CTRL/Q
18 .TICCR CTRL/R

2-60

inter-
AIC),

with

FUNCTIONAL ORGANIZATION OF JSYS'S

Table 2-13 (Cont.)
Terminal Interrupt Codes

Terminal Symbol Character or Condition
Code

19 .TICCS CTRL/S

20 .TICCT CTRL/T

21 .TICCU CTRL/U

22 .TICCV CTRL/V

23 .TICCW CTRL/W

24 .TICCX CTRL/X

25 .TICCY CTRL/Y

26 .TICCZ CTRL/Z

27 .TICES escape (altmode)

28 .TICRB delete (rubout)

29 .TICSP space

30 .TICRF dataset carrier off

31 .TICTI typein

32 .TICTO typeout

33-35 reserved for DEC

The terminal code .TICRF (30) is used to generate an interrupt when
the dataset carrier state changes from on to off. Although any
process can enable for this interrupt, only the top-level process in
the Jjob is guaranteed to recelve it when the carrier state changes.
If other processes enable for the interrupt, they can receive the
interrupt either when the carrier state changes to off or later when
the job is reattached after the detach caused by the carrier-off
condition. In general, the occurrence of the change in the dataset
carrier state is usable only by the top-level process.

The terminal codes .TICTI (31) and .TICTO (32) are used to denerate
interrupts on receipt of any character 1instead of a specific
character. The .TICTI code dgenerates an interrupt when the
terminal's input buffer becomes nonempty (i.e., when a character is
typed and the buffer was empty before the input of the character).
The .TICTO code dgenerates an interrupt when the terminal's output
buffer becomes nonempty. WNote that neither one of these codes
generates an interrupt if the buffer is not empty when the character
is placed into it. The SIBE and SOBE calls can be used to determine
1f the buffers are empty.

The frozen or unfrozen state (refer to Section 2.7.3.1) of a process
determines 1if the interrupt 1s 1initiated immediately. Terminal
interrupts are effectively deactivated when a process 1s frozen,
even though the interrupts are indicated in the process' terminal
interrupt word (obtained with the RTIW JSYS). When the process 1is
unfrozen, tne terminal interrupts are automatically reactivated.

When an operation is completed that explicitly changes the terminal
interrupt word for the Jjob (e.g., a process freeze or unfreeze
operation), the interrupt word for the job (and for the terminal
line if the job is attached) is set to the inclusive OR (IOR) of all
the unfrozen processes in the job. When an interrupt character 1is
received, frozen processes are not considered when searching for a
process to interrupt.

FUNCTIONAL ORGANIZATION OF JSYS'S

The user cannot directly access the actual terminal interrupt word.
However, by specifying a process identifier of -5 as an argument to
the RTIW or STIW JSYS's, he can read or change the terminal

interrupt enable mask. The function of this mask is to allow
processes to turn off interrupt codes activated by superior
processes. Normally, the mask is -1, thereby enabling all terminal

interrupts to be activated. A zero in any position of the mask
prevents the corresponding terminal interrupt from being active.
However, the fact that a code has been activated is remembered, and
the code 1s activated when the mask is changed with a one 1in the
corresponding position. Note that the process must have SC3%CTC
enabled 1in 1its <capabilities word (refer to Section 2.7.1) to
activate the terminal code for CTRL/C interrupts.

The SCTTY monitor call can be used to change the source of terminal
interrupts for a process. Note that the proces: must have SC%SCT
enabled 1in 1ts capabilities word (refer to Section 2.7.1) to change
the source of terminal interrupts.

2.6.6.1 Terminal Interrupt Modes - TOPS-20 handles the receipt of a
terminal interrupt character in either immediate mode or deferred
mode. An interrupt character handled in immediate mode causes the
initiation of a software interrupt immediately upon 1its receipt by
the system (i.e., as soon as the user types 1it). An interrupt
character handled in deferred mode is placed 1in the 1nput stream and
initiates a software interrupt only when the program attempts to
read 1t from the input buffer. In either case, the character is not
passed to the program. If two occurrences of the same deferred
interrupt character are received without any 1ntervening character,
the interrupt has an immediate effect. To detect this situation,
tke system maintains a separate one-character buffer in case the
input buffer is otherwise full. The system assumes that interrupts
are to be handled immediately unless the process has declared them
deferred with the STIW monitor call.

The purpose of deferred mode is to allow 1nterrupt actions to occur
in sequence with other actions in the input stream. However, with
multiple processes, the deferred interrupt occurs when any process
of the job reads the interrupt character. TIf this process 1s the
one enabled for the interrupt, it will be interrupted before any
more characters are passed to the program. If the process to be
interrupted is the top process, then the 1interrupt occurs before
more characters are passed to the program, unless another process 1is
also reading from the same source (usually an abnormal condition).
If neither of the above situations applies, then the process doing
terminal input continues to run and may receive several characters
before the interrupt can take effect. This is unavoidable since the
process doing input and the process to be interrupted are logically
running 1n parallel.

2.6.7 Dismissing an Interrupt

Once the processing of an 1interrupt 1is complete, the user's
1nterrupt routlne returns control to the interrupted process by
means of the DEBRK call. When the DEBRK <call 1is executed, the
monitor examines the contents of the return PC word to determine
where to resume the process. If the PC word has not been changed,
the process 1s restored to 1ts state prior to the interrupt. For
example, 1f the process wes dismissed waiting for I/0 to complete,
1t 15 restored to that state after execution of the DEBRK call. If
the PC word has been changed, the process resumes execution at the
new PC location.

2-62

FUNCTIONAL ORGANIZATION OF JSYS'S

The process can determine if an interrupt occurred during the
execution of monitor code or user code by examining the user/exec
mode bit (bit 5) of the return PC word. If the bit 1is on, the
process was executing user code; 1f the bit is off, the process was
executing monitor code (i.e., a JSYS). If the interrupt routine
changes the return PC Jduring the processing of an interrupt, the
user-mode bit of the new PC word must be on. Note that the process
may be executing monitor code but that the address portion of the PC
1s referencing a location in user code. To return to that user code
location (i.e., to interrupt the execution of a monitor call), the
process must turn on the user-mode bit.

The monitor calls for controlling the software interrupt system are:

SIR Sets the interrupt table addresses for a
single-section process

XSIR% Sets the interrupt table addresses for a
multiple-section process

RIR Reads the interrupt table addresses for a
single-section program

XRIR% Reads the interrupt table addresses for a
multiple~section program

EIR Enables the interrupt system

DIR Disables the interrupt system

CIs Clears the interrupt system

SKPIR Skips 1if the interrupt system is enabled

AIC Activates interrupt channels

I1C Initiates 1interrupts on specific channels in a
process

DIC Deactivates interrupt channels

RCM Reads activated channel word mask

RWM Reads waiting channel word mask

SIRCM Sets inferior reserved channel mask

RIRCM Reads inferior reserved channel mask

DEBRK Dismisses current interrupt

ATI Assigns terminal code to channel

DTI Deassigns terminal code

STIW Sets terminal interrupt word

RTIW Reads terminal interrupt word

GTRPW Returns trap words

XGTPW% Returns page-fail words

SCTTY Changes source of terminal interrupts

2.7 PROCESS CAPABILITIES

The TOPS-20 system allows capabilities, such as the ability to
examine the monitor and to enable for CTRL/C interrupts, to be given
to certaln processes. Each capability 1s separately protected and
activated. The capabilities are assigned on a per-process basis,
and their status is kept in the process' PSB.

The number of capabilities 1s limited to 36, and two words are used
to store the status. For each cepability, there 1s a bit in the
first word that is set if the capability 1s available to the
process. If the <corresponding bit in the other word is also set,
the capability is currently enabled. This allows the user to
protect himself against accidental use without actually giving up
the capability.

TOPS-20 Version 5 2-63 April 1982

FUNCTIONAL ORGANIZATION OF JSYS'S

Inferior processes are created by superior processes (by means of
the CFORK monitor call) with either no special capabilities or the
capabilities of the creating process. Most capabilities relate to
system functions and may be passed from superior to inferior process
only 1f the superior itself has the capability. Some capabilities
relate the inferior to the suverior process, and may be given to an
inferior whether or not available in the superior.

2.7.1 Assigned Capabilities
The following table lists the capabilities available for processes
and jobs.

Table 2-14
Process/Job Capabilities

Bit Symbol Meaning

B0-8 Job Capaebilities

0 SC%CTC Process can enable for CTRL/C software
interrupts.

1 SC%GTB Process can examine monitor tables with the
GETAB call.

Note that the possession of this capability
allows the process to do a GETAB. The
capability need not be enabled.

3 SC8LOG Process can execute protected log functions (by
means of the LGOUT JSYS).

Note that the ©possession of this capability
allows the process to do a LGOUT. The
capability need not be enabled.

6 SC8SCT Process can change the source of terminal
interrupts for other processes.

B9-17 Capabilities that can be gilven to an
inferior whether or not the superior itself has
them. Of these, SC%FRZ (B1l7) cannot be changed
by a process for itself.

9 SC%SUP Process can manipulate its superior process.

17 SC%FRZ Unprocessed software interrupts can cause the
process to be frozen instead of terminated.

B18-35 User capabilities

18 SC&WHL User has wheel privileges.
19 SC%OPR User has operator privileges.
20 SC&%CNF User has confidential information access.

FUNCTIONAL ORGANIZATION OF JSYS'S

Table 2-14 (Cont.)
Process/Job Capabilities

Bit Symbol Meaning

21 SCEMNT User has maintenance privileges.

22 SC%IPC User has IPCF privileges.

23 SC%ENQ User has ENQ/DEQ privileges.

24 SC¥NWZ User has ARPANET wizard privileges.

25 SC®NAS User has absolute ARPANET socket privileges.
26 SC3DNA User has access to DECNET

27 SC%ANA User has access to ARPANET

User capabilities are originally established when the user's logged-in
directory is created. (Refer to the CRDIR monitor call.)

The capability word can be read with the RPCAP monitor call.
Capabilities can be enabled with the EPCAP monitor call.

2.7.2 Access Control

It 1s often necesseary for an installation to have more control over
system resources than that offered by the process capability word.
The following JSY¥S's allow each installation to write 1ts own
access-control program:

1. GETOK%
2. GIVOK%
3. RCVOK%
4. SMON
5. TMON

The access-control facility works as follows:

1. The installation writes its own access—-control program. This
program uses the SMON JSYS (privileged) to (1) enable or
disable access checking for a variety of system resources and
(2) allow or disallow access by default for those resources
that are not explicitly checked by the access-control
program.

2. The access-control program initializes itself and then iscsues
the (SFSOK function of the SMON JSYS (privileged) to enable
various types of access checking and to define itself as the
access-control program.

TOPS-20 Version 5 2-65 April 1982

Note

FUNCTIONAL ORGANIZATION OF JSYS'S

The access-control program issues a RCVOK% JSYS (privileged).
As the reguest gueue is empty until a GETOK% request has been
made, the RCVOK% JSYS causes the access-control program to
block.

A system program or the monitor issues a GETOK% JSYS, causing
an access reguest block to be appended to the GETOK% request
gueue (maintained by the monitor). The system program Or
monitor then blocks.

The monitor wakes up the access-control program and the
blocked RCVOK% JSYS completes execution, retrieving the
access request hlock from the GETOK% request queue. This
block contains information supplied by the GETOK% call, plus
certain job parameters.

The access-control program determines whether to allow or
deny the reguest and issues the GIVOK$% JSYS (privileged) with
the appropriate response for this request. The
access-control program now lssues another RCVOK$% JSYS, which
blocks or completes, depending on whether or not any
additional requests are 1n the queue.

The system program or the monitor unblocks and gets a +1
return from the original GETOK% JSYS if the reguest has been
granted, or gets an 1llegal instruction trap if the reqguest
has been denied.

following characteristics of the access-control facility:

The GETOK% JSYS 1s 1mbedded 1in the code that 1s being
protected against unauthorized use. For example, a
DEC-supplied GETOK% function allows access-control of the
CRJOB JSYS; thus the TOPS-20 code that implements CRJOB will
1tself execute a GETOK% JSYS. An installation can also place
GETOK% JSYS's 1in appropriate places 1in other software to
provide additional access control.

However, this entire process 1s 1invisible to the ordinary
user program. The only change such a program would encounter
1n an access-controlled environment would be the 1illegal
1nstruction trap generated 1f the program attempted to use a
protected resource that i1t was not entitled to use.

JSY¥S's performed by the access-control program or job 0 will
not invoke access control.

After a system has been brought up, the first fork to execute
the SFSOK function of the SMON JSYS defires itself as the
access-control fork. Any other fork that subsequently tries
to 1ssue a RCVOK% JSYS, a GIVOK% JSYS, or an SMON JSYS with
function .SFSOK will receive an error.

The access-control facility has two timers associated with
1t

1.) The time period between the execution of a GETOK% JSYS
and 1ts corresponding GIVOK% JSYS 1s measured. If the period
exceeds a maximum, 3 BUGINF 1s generated on the CTY.

FUNCTIONAL ORGANIZATION OF JSYS'S

2.) The time period between the GETOK entry into the queue
and the RCVOK% being executed is measured. If the period
exceeds a maximum, a BUGCHK is generated on the C(CTY, all
defaults are reestablished, +the GETOK% regquest gueue 1S
flushed (the defaults are in effect for those reguests also),
and the monitor will no longer place GETOK% requests in the
GETOK$% guecue.

2.7.3 Processes and Scheduling

These monitor calls deal with establishing and 1interrogating the
process structure of a job. Refer to the TOPS-20 Monitor Calls User's

Guide for an overview and description of the process structure.

2.7.3.1 Process Freezing - A superior process can cause one or all of
its inferior ©processes to be frozen. A frozen process is one whose
execution 1s suspended (as soon as it is stoppable from the system's
point of view) in such a way that it can be continued at the point it
was suspended. A process can be frozen directly or indirectly. A
process 1is directly frozen when 1ts superior makes an explicit reguest
to freeze 1it. A process is indirectly frozen when 1its superior 1is
frozen. When a process 1is directly frozen, all of its inferior
processes are indirectly frozen. Therefore, a process <can be both
directly frozen by its superior process and indirectly frozen 1if its
superior process 1s subsequently frozen.

The explicit unfreezing of a process clears both its direct freeze and
the indirect freeze on all its inferior processes unless an inferior
process has a direct freeze. The indirect unfreezing of a process
clears only the freeze on that process. This means that an explicit
freeze of a process prevents the running of any of 1ts 1inferior
processes, and an explicit unfreezing of a process automatically
resumes its inferiors.

The FFORK and RFORK monitor calls are wused to freeze and unfreeze
processes, respectively. An argument of -4 to these calls directly
freezes or resumes all immediately inferior processes, and any
processes below the immediately inferior ones are indirectly frozen or
resumed. (The freeze and unfreeze operations are never legal on any
process that is not inferior to the one executing the monitor call.)

The frozen or unfrozen state of a process can only be changed
directly. Thus, monitor calls 1like SFORK and HFORK change other
states of a process but do not affect the frozen state. If the
process 1s frozen and a <call 1is executed that changes one of its
states, the process remains frozen and does not begin operating in the
changed state until it is resumed. For example, a program can change
a frozen process' PC with the SFORK call, but the process will not
begin running at the new PC until it is unfrozen. Similarly, the
HFORK call can be executed on a frozen process, but the process will
not be 1in the halted state until it is unfrozen. The changed status
is always reflected in the information returned by the RFSTS call. 1In
the first example above, RFSTS would return the changed PC, and in the
second, 1t would return the halted code in the status word.

2-67

FUNCTIONAL ORGANIZATION OF JSYS'S

The monitor calls associated with capabilities and processes are:

RPCAP Returns process capabilities word

EPCAP Enables process capabilities word

RESET Resets and initializes current process

CFORK Creates inferior process

SFORK Starts a process 1in section zero

XSFRK% Starts a process in a non-zero sectlon

HFORK Halts an inferior process

HALTF Halts a process

DISMS Dismisses process for specified amount of time
WAIT Dismisses process until interrupt occurs

WFORK Waits for process to terminate

KFORK Kills one or more processes

FFORK Freezes one or more processes

RFORK Resumes one or more processes

TFORK Sets and removes monitor call intercepts

RTFRK Returns the handle of the process suspended because of

a monitor call intercept

UTFRK Resumes a process suspended because of a monitor call
intercept

RFSTS Returns process' status

SFACS Sets process' accumulators

RFACS Returns process' accumulators

PRARG Sets or returns process argument block

RFRKH Releases process handles

GFRKS Gets current process structure

GFRKH Gets process handle

SPLFK Splices a process structure

RMAP Obtains a handle on a page 1n a process

SPACS Sets accessibility of page

RPACS Returns accessibility of page

RSMAP$% Returns information about the mapping of one section of
a process

RWSET Releases working set

ADBRK Controls address breaks

2.7.3.2 Execute-Only Files and Execute-Only Processes -
definition of an execute-only file is one that cannot be
or manipulated 1n the usual manner, but can be run as a
execute-only file has the following characteristics:

1. The file must be protected with execute access
with read access not allowed.

2. The file cannot be read or written using

The basic
copied, read,
program. An

allowed, but

any of the

file-oriented monitor <calls (SIN, SOUT, BIN, BOUT, PMAP,

etc.).

3. The file can be mapped into a process (using GET), but only

1in 1ts entirety and only into a virgin process.
created 1s called an execute-only process.

NOTE

A virgin process 1s one that has Jjust been

A process so

created

(using CFORK). Furthermore, if a process 1is virgin,

no operations have been performed on the

process.

This means no changes have been made to its address
space, PC, AC's, 1interrupt system, or traps, and the
process has not been mapped to a file or another

address space.

TOPS-20 Version 5 2-68

April 1982

FUNCTIONAL ORGANIZATION OF JSYS'S

4. Only disk-resident files can be considered execute-only.

5. A process with WHEEL or OPERATOR capabilities enabled can
gain read access to any file and can thus circumvent the
execute-only features of an execute-only file.

An execute-only process has the following characteristics:

1. An execute-only process can be started only at its entry
vector.

2. A process that is created by an execute-only process and
shares the same address space becomes execute-only itself.

3. No other process can read from an execute-only process'
address space or accumulators.

4. No other process can change any part of an execute-only
process' context 1n such a way as to cause the execute-only
process o unintentionally reveal any part of 1its address
space.

5. An execute-only process can not be prevented from mapping
pages of 1ts own address space into an inferior process. It
1s the programmer's responsibility to avoid revealing an
execute-only process through its inferior forks.

6. No JSYS explicitly 1indicates that a given process is
execute-only. However, the RFACS JSYS will always fail for
an execute-only process and can be used to determine this
information, if it is reqguired.

A program is execute-only for particular users based on 1its file
protection. If a user tries to run a file and can't read it, but does
have execute access, a process is created as usual. The file 1is
mapped 1into this virgin process, circumventing the read protection on
the file. This process is then an execute-only process.

Users may select a file to be execute-only by allowing execute but not
read access to the file. This can be done by setting the protection
field for the desired class of users (owner, group, or world) to
FP¥EX+FP$DIR, or 12 octal. For example, to make a file execute-only
for everybody except the owner of the file, the user would set the
protection to 771212 octal.
The following JSY$'s do not work for execute-only programs:

1. ADBRK - referring to an execute-only process

2. GET - referring to an execute-only process

3. PMAP - with either source or destination an execute-only

process

4, SCVEC - referring to an execute-only process

5. ©SDVEC - referring to an execute-only process

6. SEVEC - referring to an execute-only process

7. SMAP% - with either source or destination an execute-only I
process

TOPS-20 Version 5 2-69 April 1982

FUNCTIONAL ORGANIZATION OF JSYS'S

8. SPACS - referring to an execute-only process
9. XGVEC% - referring to an execute-only process
10. XSVEC% - referring to an execute-only process

The START command cannot be used with a start address argument for an
execute-only process. A program that is execute—-only must be written
to protect itself. The program should not map itself out to inferior
processes unless the entire address space 1s mapped. The program
should not do a GET and execute programs in 1ts address space over
which it has no control.

Some programs cannot be made execute-only. Some major examples are:

1. Any object-time system, such as LIBOL or FOPROTS. They must
be merged into the address space and thus violate the
restriction of reading an execute-only file 1into a virgiln
address space. Note that an execute-only process can merge
in an object-time system, however.

2. The TOPS-10 compatibility package (PA1050). This has the
same restriction that object-time systems have.

3. Any program that uses the TOPS-10 RUN or GETSEG UUO's. These
UUO's require mapping into a non-virgin address space.

4. Any program that needs to be started at any location other
than its entry vector (START or REENTER address).

2.8 SAVE FILES

A save file is a method of storing an executable memory image on disk.
TOPS-20 handles two formats of save files: nonsharable (primarily
intended for compatibility with TOPS-10) and sharable.

Save files use data compression to reduce the size of the on-disk
copy. Non-sharable save files use word-oriented compression: memory
words containing zero are not stored in the disk file. Sharable save
files use page-oriented compression: memory pages in which all words
contain zero are not stored in the disk file.

Shareable save files are generated with the TOPS-20 SAVE command or
the SSAVE JSYS. Non-sharable save files are generated with the

TOPS-20 CSAVE command or the SAVE JSYS. The formats of the two types
of save files are discussed below.

2.8.1 Format for Nonsharable Save Files
The format of a nonsharable save file 1s as follows:
IOWD length, address at which to put "length" data words

"length" data words

TOPS-20 Version 5 2-70 April 19382

FUNCTIONAL ORGANIZATION OF JSYS'S

IOWD length, address at which to put "length" data words

"length" data words

XWD length of entry vector, pointer to first word of
entry vector

2.8.2 Format of Sharable Save Files

A sharable save file is divided into two main areas: the directory
area contains information about the structure of the file, and the
data area contains the data of the file.

The following diagram illustrates the general format of a sharable
save file:

Dlrectory ST ESCm=—=S====S=XS=S==S====
Area:

! Section !

Data Area: Data Section

The directory area of the save file has four sections: the directory
section, the entry vector section, the program data vector section,
and the terminating section. The directory area may be from 1 to 3
pages long, depending on the access-characteristics of the pages in
the data area of the save file. Although SSAVE® creates a directory
area that 1s only one page long, there is no limit to the size of a
directory area created with the SAVE% monitor call.

Each of the four sections in the directory area begins with a word
containing 1ts identifier code in the left half and its length in the
right half. Each section is described in the paragraphs below.

The directory section 1s the first of the three sections and describes
groups of contiguous pages that have identical access. The length of
this section varies according to the number of groups that can be
generated from the data portion of the save file. The more data pages
that can be combined into a single group, the fewer groups required,
and the smaller the directory section.

TOPS-20 Version 5 2-71 April 1982

FUNCTIONAL ORGANIZATION OF JSYS'S

The format of the directory section is as follows:

0 8 9 17 18 35
! -+ -t 4 S F 4 F = 5 !
! Identifier code ! Number of words !
! 1776 ! (including this word) !
! ! in directory section !
| === =====================C==C=—=====S=S=S==SS=SS=======S======3 !
! Access ! Page number in file, or 0 if group !
! bits ! of pages 1s all zero !
'===================================:====================!
! Repeat ! Page number in the process !
! count ! !
] > 1
/ additional word pairs (as necessary) /
/ to describe each group of pages /
/ in the process address space /
' =ttt ittt !
! Access bits ! Page number in the file !
! e s Tt - - -ttt !
! Repeat count ! Page number in the process !

The access bits are determined from the access bits specified by the
user on the SSAVE monitor call. The bits currently defined in the
directory sectlion are:

B1 The process pages in this group are sharable

B2 The process pages 1in thls group are writable
The remaining access bits in the directory section are zero.
The repeat count is the number (minus 1) of consecutive pages 1n the
group described by the word pair. Pages are considered to be in a
group when the following three conditions are met:

1. The pages are contiguous.

2. The pages have the same access.

3. The pages either are all =zerc or are all existent and
readable.

A page 1s considered to be all zero if 1t is nonexistent or 1s not
readable. A page containing all zeros 1is considered to be exlstent.
A group of all zero pages is 1ndicated by a file page number of 0.

The word pairs are repeated for each group of pages 1in the address
space.

FUNCTIONAL ORGANIZATION OF JSYS'S

The entry vector section follows the directory section, and points to
the entry vector. The format of the entry vector section is as
follows:

0 17 18 35
l===!
! Identifier code ! Number of words !
! 1775 ! (including this word) !
! ! 1n entry vector section !
' ¢+ 4+ T+ F T F 3+ T F F I F I PP T T i Rt E T P FE T T T F T T
! Number of words in entry vector !
I===!
! Address of entry vector !
|===!

This section contains the address of the entry vector. Refer to

Section 2.8.3 for a description of the entry vector.

The program data vector section follows the entry vector section. The
program data vector section contains the addresses at which the
program data vectors begin (PDVA's). This section is optional, and
only appears if the program declares some program data vectors.

The format of the program data vector section is as follows:

1774 ! (including this word)

1

Identifier code ! Number of words !
]

! in data vector section !

The terminating section fcllows the program data vector section. Its
format is as follows:

! 1777 ! 1 !

The remaining words in the last page of the save file are filled with
zeros and are ignored by the monitor.

TOPS-20 Version 5 2-73 April 1982

FUNCTIONAL ORGANIZATION OF JSYS'S

2.8.3 Entry Vector

The entry vector is a block of data that describes entry conditions to
be used when the program in the process is executed. The first word
of the entry vector contains the program start instruction, the second
word contains the program reenter instruction, and the third word
contains the program version number. (The version number format 1is:
B0-B2 containing the group who last modified the program, B3-Bll
containing major version number, B12-Bl7 containing minor version
number, and Bl8-B35 containing edit number.) Subsequent words in the
entry vector can contain data applicable to the particular entry
(refer to the GCVEC and GDVEC monitor calls).

Typically, the entry vector looks like this:

JRST start—addr
JRST reenter-addr
version number

.

Each process has an entry vector word in its process storage block.
The format of the entry vector word is:

LH: 1length of the entry vector (1-777)
RH: address of the first word of the entry vector.

The data for this word 1s obtained from the entry vector in the save
file when a GET monitor call 1s executed for the file.

Note that if the left half of the entry vector (usually the length) 1is
254000 (octal), then there is no real entry vector. The program start
address is in the right half of location 120, the reenter address 1is
in the right half of 1location 124, and the program version is in
location 137. This format is not recommended, but is maintained for
compatability with older monitors.

The following monitor calls are used in conjunction with save files:

GET Obtains a saved file

SAVE Saves a process as nonsharable

SSAVE Saves a process as sharable

SEVEC Sets the entry vector for a single-section program

XSVEC% Sets the entry vector for a multiple-section program

GEVEC Gets process entry vector of a single-section program

XGVEC% Gets process entry vector for a multiple-section
program

SFRKV Starts process using its entry vector

XSFRK% Starts a process using a user-supplied, global PC

SCVEC Sets compatibility package entry vector

GCVEC Gets compatibility package entry vector

SDVEC Sets RMS entry vector

GDVEC Gets RMS entry vector

TOPS-20 Version 5 2-74 April 1982

FUNCTIONAL ORGANIZATION OF JSYS'S

2.8.4 Program Data Vector

The program data vector (PDV) is a block of data that LINK writes into
memory when loading and linking a program. The PDV resides in memory
as a part of the program, and starts at a program data vector address
(PDVA) . User programs can use this data. Although TOPS-20 currently
does not use the cdata in the PDV, words 13, 14, and 15 of the PDV are
provided for possible future system use.

The format of the program data vector is as follows:

Word Symbol Meaning
0 .PVCNT Length of the PDV (including this word).
1 .PVNAM Name of the program for which this data
vector exists. The name is word-aligned

ASCII, which means that the characters in the
name are represented by seven-bit bytes, and
that the first byte in each word begins with
bit zero.

2 .PVSTR Program starting address.

3 .PVREE Program reenter address.

4 .PVVER Program version number,

5 . PVMEM Address of a block of memory that contains
data describing the program memory (a memory
map). See the LINK manual, Appendix G, for a
description of this block.

6 .PVSYM Address of the program symbol table.

7 .PVCTM Time at which the program was compiled.

10 .PVCVR Version number of the compiler.

11 .PVLTM Time at which the program was loaded.

12 .PVLVR Version number of LINK.

13 . PVMON Address of a monitor data block. (Not
currently used.)

14 . PVPRG Address of a program data block. (Not
currently used.)

15 .PVCST Address of a customer-defined data block.

The PDVOP% monitor call manipulates PDV's. When loading a program
into memory, LINK executes a PDVOP% call to give the monitor the
addresses of the PDV's for that program. The PDVA's are the only data
regarding PDV's that the monitor keeps in its data base.

Once the monitor knows the PDVA's for a program, other programs and
other processes can use PDVOP%¥ to obtain those PDVA's from the
monitor. An inguliring program or process must use the PDVA (and
another PDVOP% call) to obtain the data in the PDV.

The PDVOP% call also allows you to add PDVA's to, or delete PDVA's
from, the monitcr's data base. Refer to Chapter 3 for a complete
description of PDVOP%.

2.9 INPUT/OUTPUT CONVERSION

The monitor calls in this group perform input/output conversion.
Calls are availeble to convert in both directions between ASCII text
(in core or in a file) and integer numbers, floating point numbers,
and TOPS-20 internal dates and times.

TOPS-20 Version 5 2-75 April 1982

FUNCTIONAL ORGANIZATION OF JSYS'S

2.9.1 Floating Output Format Control

2.9.1.1 Free Format - The most common format control wused with the
FLOUT JSYS 1is free format. This is specified by setting B18-23
(FL%FST) of the format control word to 0. (Refer to Section 2.9.1.2.)
Normally, the entire format control word 1is set to 0; however,
certain fields may be specified to force a particular output.

Most numbers greater than or equal to 107-4 but less than 1076 (with
some exceptions) are output in a typical FORTRAN F format. If the
number is an exact integer, it i1s output with no terminating decimal
point unless B6(FL%PNT) 1is on. If the number is a fraction, it is
output as .xxxX with no leading O's. Nonsignificant trailing zeros in
the fraction are never output. A maximum of seven digits is output if
the second field (FL%SND) is not specified. The sign of the number 1is
output only if negative.

If the number is outside the range above, it 1s output 1in a typical
FORTRAN E format (with some exceptions). The exponent is output as
Esxx, where s is the sign output only on negative exponents and xx are
the digits of the exponent. The above exceptions about outputting the
decimal point and suppressing trailing, nonsignificant zeros apply.

Another free format similar to that above is invoked by specifying a
nonzero value for B13-17 (FL%RND) of the format control word. The
value in this field specifies the place at which rounding should
occur. If this wvalue 1is 7, the output is the same as if the value
were 0 as above. If this value is less than 7, rounding occurs at the
specified place, but the output will be as above with a maximum of 7
digits (e.g., 12360 with a rounding specification of 3 will output as
12400). If this wvalue 1is greater than 7, rounding occurs at the
specified position, but more than 7 digits are output. In this case,
digits are output until either the rounding specification number 1is
reached or until trailing, nonsignificant zeros are reached.

2.9.1.2 General Format Control - The format control word specifies
the format for floating point output when free format is not desired.
The control word indicates the desired output for the three fields of
the number, plus additional control for items such as rounding. The
first field of the number is up to the decimal point. The second
field 1is from the decimal point to the exponent. The third field is
the exponent.

FUNCTIONAL ORGANIZATION OF JSYS'S

The format control word is as follows:

Table 2-15
Floating-Point Format Control

Bit Symbol Meaning

0-1 FL%SGN Sign control for first field. The first
character position is always used for the minus
for negative numbers. For positive numbers, the
first character position is defined according to
the values below:

Value Symbol Meaning
0 .FLDIG First character is digit.
1 .FLSPC First character 1is space.
2 .FLPLS First character 1s plus sign.
3 .FLSPA First character 1is space.
2-3 FL%JUS Justification control for first field.
Value Symbol Meaning
0 .FLLSP Right Jjustify number using
leading spaces.
1 .FLLZR Right Jjustify number using
leading 0's.
2 .FLLAS Right Jjustify number using
leading asterisks.
3 .FLTSP Left Jjustify number up to

decimal point wusing trailing
spaces after third field.

4 FL%ONE Qutput at least one digit (0 if necessary) 1in
first field.
5 FL%DOL Prefix the number with a dollar sign ($).
6 FL$PNT Output a decimal point.
7-8 FL$EXP Third (exponent) field control.
Value Symbol Meaning
0 . FLEXN No exponent field.
1 .FLEXE Output E as first character of
exponent field.
2 .FLEXD Output D as first character of
exponent field.
3 .FLEXM Output *10" as first

characters of exponent field.

FUNCTIONAL ORGANIZATION OF JSYS'S

Table 2-15 (Cont.)
Floating-Point Format Control

Bit Symbol Meaning

9-10 FLRESG Exponent sign control. The first character
position 1s always used for the minus for
negative exponents. For positive exponents, the
first character position is defined according to
the values below:

Value Symbol Meaning

0 . FLDGE First character after exponent
prefix 1is digit.

1 .FLPLE First character after prefix
is plus sign.

2 .FLSPE First character after prefix
1s space.

3 . FLDGT First character after exponent

prefix 1is digit.

11 FL%OVL Use free format on overflow of the first field
and expand exponent on overflow of the third
field. If this bit 1s not set, no additional
output occurs on column overflow.

13-17 | FL$RND Digit position at which rounding will occur. 1If
field 1s 0, rounding occurs at the 12th digit.
If field is 37, no rounding occurs.

18-23 | FLRFST Number of characters 1n first field, including a
dollar sign ($) if FL3%DOL is set. (refer to
FL%JUS) .

24-29 | FL%SND Number of characters i1n second field.

30-35 | FL%THD Number of characters in third field.

As an example, to output a number in the format xx.yy, the following
bits should be set in AC3 of the FLOUT monitor call.

B4 (FL3ONE) output at least one digit in the first field

B6 (FL%PNT) output a decimal point

B13-B17 (FL¥RND) do not round the number

B22 output a maximum of two digits in the first field
B28 output a maximum of two digits in the second field

Examples of numbers output in this format are:

43.86 4.24 0.43

FUNCTIONAL ORGANIZATION OF JSYS'S

2.9.2 Date And Time Conversion Monitor Calls

TOPS-20 internal date and time 1s maintained in a 36-bit word and 1is
based on Greenwich Mean Time. The date is 1in the left half and is the
number of days since November 17, 1858; the time is in the right half
ahd 1is represented as a fraction of a day. This allows the 36-bit
value to be in units of days with a binary point between the left and
right halves. The resolution 1s approximately one-third of a second;
that 1s, the least significant bit represents approximately one-third
of a second. The date changes at the transition from 11:59:59 PM to
12:00:00 midnight.

For conversions between local and internal date and time, the time
zone in which the installation 1s located is normally used, with
daylight saving applied from 4AM on the next to last Sunday in April
to 3:59:59AM on the next to last Sunday in October.

Two monitor calls in this group, IDTIM and ODTIM, convert date and
time between text strings (in core or in a file) and internal format.
These should satisfy most users. However, there are four more calls,
which are subsets of IDTIM and ODTIM. The calls ODTNC, IDTNC, ODCNV,
and IDCNV make available separately the conversion between 1internal
format date and time and separate numbers for local year, month, and
day, and the conversion between those numbers and text strings. They
also provide additional options, which give the caller more control
over the conversion performed than IDTIM and ODTIM.

Time zones occur in the calling sequences of the latter four JSY¥S's.
A time zone is represented internally as a number between -12 and 12
decimal, representing the number of hours west of Greenwich. For
example, EST is zone 5. Zones -12 and 12 represent the same time but
different days because the =zones are on opposite sides of the
international date line.

The following are examples of valid dates and times:

6-FEB-76
FEB-6-76
FEB 6 76
FEB 6, 1976
6 FEB 76
6/2/1976
2/6/76

Below are examples of valid times:

1:12:13

1234

16:30 (4:30PM)

1630

1234:56

1:56AM

1:56-EST

1200NOON

12:00:00AM (midnight)
11:59:59AM-EST (late morning)
12:00:01AM (early morning)

"AM" or "PM" can follow a time specification that is not greater than
12:59:59. "NOON" or "MIDNIGHT" can follow 12:00:00.

FUNCTIONAL ORGANIZATION OF JSYS'S

Any time specification can be followed by a dash and a time =zone.
Table 2-16 1lists the time 2zones defined within TOPS-20, their
abbreviations, and the left half of the word generated or accepted by
the calls that read, write, or convert dates and times. The right
half of the word ordinarily contains the time expressed as seconds
after midnight.

Table 2-16
Time Zones

Zone Name Abbreviation Left half
GREENWICH DAYLIGHT TIME GDT 700000
GREENWICH MEAN TIME GMT 500000
GREENWICH STANDARD TIME GST 500000
ATLANTIC DAYLIGHT TIME ADT 700004
ATLANTIC STANDARD TIME AST 500004
FEASTERN DAYLIGHT TIME EDT 700005
EASTERN STANDARD TIME EST 500005
CENTRAL DAYLIGHT TIME CDT 700006
CENTRAL STANDARD TIME CST 500006
MOUNTAIN DAYLIGHT TIME MDT 700007
MOUNTAIN STANDARD TIME MST 500007
PACIFIC DAYLIGHT TIME PDT 700010
PACIFIC STANDARD TIME PST 500010
YUKON DAYLIGHT TIME YDT 700011
YUKON STANDARD TIME YST 500011
ALASKA-HAWAII DAYLIGHT TIME HDT 700012
ALASKA-HAWAII STANDARD TIME HST 500012
BERING DAYLIGHT TIME BDT 700013
BERING STANDARD TIME BST 500013
LOCAL DAYLIGHT TIME DAYLIGHT 600000

All strings (e.g., months, time =zones, AM-PM-NOON-MIDNIGHT) can be
represented by any nonambiguous abbreviation (e.g., D-DECEMBER, M-
MIDNIGHT) .

Spaces are 1gnored before and between fields whenever they do not
terminate the 1input string. This means spaces are not allowed before
colons, AM,PM,NOON, and MIDNIGHT, the dash before the time =zone, or
the time zone. A tab is also allowed between the date and time.

The 1nput string can be terminated by any nonalphanumeric character.

Monitor calls relating to date and time are as follows:

IDTIM Inputs date and time, converting to internal format

ODTIM Outputs date and time, converting from internal format
to text

IDTNC Inputs date and time without converting to internal
format

ODTNC Outputs date and time 1n internal format

IDCNV Converts from day, month, year to internal date and
time

ODCNV Converts from internal date and time to day, month,
year

GT2D Gets current date and time in internal format

FUNCTIONAL ORGANIZATION OF JSYS'S

2.10 ARCHIVE/VIRTUAL DISK SYSTEM

The following section defines terms that are used in the description
of the archive/virtual disk system:

Virtual disk A storage technique in which the contents of
some files reside on disk, while the contents
of other files may reside on tape. When a
file is "migrated" to tape, a copy of its FDB
i1s left on disk and the file 1is deleted from
disk. Note that the term "migration" applies
only to files transferred to tape by the
virtual disk system.

Archived file A file of unchanging data stored on magnetic
tape. Although copies of the file may exist
on disk, the original is stored on magnhetlc

tape. When a file gains archive status, it
can no longer be changed. If a writeable
copy 1s desired, the COPY command must be
used.

When a file is archived, the file contents
are wusually deleted from disk, leaving only
the FDB on disk. However, it is possible to
override the deletion process.

Offline/online A file is said to be offline if the file has
been moved to tape by either the virtual disk
system or the archive system. A file is said
to be online if the original or a copy of it
1s on disk. A file may be offline, online,
or both. A file that 1is offline and not
online will have only its FDB stored on disk.
In the 1last case, the FDB will contain
pointers to the saveset and tape file number.
This provides a link between the FDB on disk
and the file on tape.

Invisible/visible An invisible file is one that does not appear
in a simple DIRECTORY 1listing, and is not
accessable to programs (unless the GTJFN
specifically sets bit G1%IIN) and EXEC
commands. A visible file appears 1in a
DIRECTORY listing and 1s accessable to
programs and EXEC commands.

The concept of an invisible file is primarily
designed to make offline-only files
transparent to the user. However, the
invisible/visible status of a file may be
changed regardless of whether the file is
online, coffline, archived, not archived,
migrated, or not migrated.

The virtual disk system is designed to conserve disk space by moving
selected files from disk to tape. Files are marked for migration to
tape by the REAPER program. At the option of the system
administrator, REAPER may mark files in any of the following three
categories:

FUNCTIONAL ORGANIZATION OF JSYS'S

1. Files that have not been referenced within a specified period
of time.

2. Online copies of migrated or archived files that have not
been referenced within a specified period of time.

3. Files 1n a directory that is over permanent disk quota. If
the directory contains a file named MIGRATION.ORDER, then
REAPER uses that file as an order 1list for marking files,.
Otherwise REAPER follows the order given 1in the REAPER
command list. Two REAPER passes are made with the first pass
using the order specified in MIGRATION.ORDER or the REAPER
command string. If the first pass fails to bring the
directory under guota, the second pass will consider any file
in the directory for migration.

The actual migration of disk files to tape is performed by a special
DUMPER run. The actual run will occur periodically, with the length
of the period determined by the system administrator.

File archiving 1s designed to write unalterable "permanent" copies of
disk files on tape. The user voluntarily marks a file for archiving,
and the next archive/virtual disk DUMPER run will archive the file.

For added security two tape copies of each archived or migrated file
are made.

The following JSYS's are used to implement the archive/virtual disk
system:

ARCF
CRDIR
DELDF
DELFN
GTJFN
GNJFN
JFNS
OPENF
RFTAD
SETJB
SFTAD
SMON
TMON

2.11 PRIVILEGED MONITOR CALLS

The following monitor calls are privileged and reqguire the process to
have WHEEL or OPERATOR capability enabled. The JSYS's marked with an
asterisk ("*") require privileges for specific functions only.

ACCES* Accesses a directory

ALLOC Allocates a device to a particular job

ARCF* Performs archive/virtual-disk operations

ASNSQ Assigns ARPANET speclal message gueue

ATACH* Attaches job to new controlling terminal

BOOT Performs functions required for loading front-end
software

CRDIR* Creates or modifies a directory

CRJOB* Creates a new job

DELDF* Expunges deleted files

DELF* Deletes files

DIAG Reserves and releases hardware channels

DSKAS Assigns specific disk addresses

2-82

DSKOP
EFACT
ENQ*
ENQC*
FLHST
GACCT*
GIVOK%
GTDIR¥*
HALTF*
HSYS
LGOUT*
LPINI
MDDT%
MRECV*
MSEND*
MSFRK
MSTR*
MTALN
MTOPR*
MTU%
MUTIL*
NODE*
PEEK
PLOCK
PMCTL
RCVOK$%
SETJIB*
SFTAD*
SFUST*
SJPRI
SKED%*
SMON
SNOOP
SPOOL
SPRIW
STAD*
STI*
SYERR
TTMSG*
USAGE
USRIO
UTEST

FUNCTIONAL ORGANIZATION OF JSYS'S

Allows hardware address specification in disk transfers
Makes entries to the FACT file

Places a request in ENQ/DEQ resource queue
Returns status of a resource

Flushes an ARPANET host

Returns job account information
Allows/denies access Lo a protected system resource
Returns directory information

Halts a process

Halts the monitor

Logs a job out

Loads line-printer VFU

Enters MDDT program

Retrieves TPCF message

Sends IPCF message

Starts a process in monitor mode

Performs structure-related functions
Associates magnetic tape drive with logical unit number
Performs device-related functions

Performs MT-device functions

Performs IPCF functions

Performs DECnet functions

Reads monitor data

Locks physical pages

Controls physical memory

Services GETOK% requests

Sets job parameters

Sets file data/time

Sets file author

Sets job priority

Manipulates scheduler data base

Sets monitor flags

Performs system performance analysis
Performs spooling-related functions

Sets process priority

Sets system date/time

Simulates terminal input

Places information in the System Error file
Sends a message to a terminal

Makes entries in accounting file

Places program in user I/0 mode

Monitors executed instructions

The capabilities for a process are be enabled by the EPCAP JSYS.

TOPS-20 Version 5 2-83 April 1982

CHAPTER 3

TOPS-20 MONITOR CALLS

TOPS-20 MONITOR CALLS
(ACCES)

ACCES JSYS 552
Gives a particular type of access to a given directory. The possible
types of accesses are:
1. Connecting to a directory on a given structure.
2. Gailning owner and group access rights to directories on a
structure without actually connecting to a directory on that

structure,

3. Relingquishing owner and group access rilghts to directories on
a structure without disconnecting from a directory on that

structure.
RESTRICTIONS: some functions require WHEEL or OPERATOR capabilities
enabled.

When this call is used 1in any section other than
section zero, one-word global byte polnters used as
arguments must have a byte size of seven bits.

ACCEPTS IN ACl: BO(AC%CON) connect the job to the specified
directory. After successful completion of
the call, the job is connected to and has
owner access to the directory. The job's
default directory becomes this directory.

B1 (ACR0WN) give the job owner access to the specified
directory and group access to directories
in the same groups as the specified
directory. The job's connected directory
1s unchanged. This function cannot be
given for another job or for a files-only
directory.

B2 (AC%REM) relingquish the owner access (obtained with
the AC%OWN function) to the specified
directory and the group access to
directories 1n the same group. The job's
connected directory 1is unchanged. This
function <cannot be given for another job
or for a files-only directory. The
settings of B0 and Bl are 1gnored if B2 is
on and the job number given 1is for the
current Jjob.

B18-B35 length of the argument block.
AC2: address of the argument block
RETURNS +1: always
Access cannot be given to a regulated structure unless the MSTR JSYS
has been first used to increment the mount count. All structures are
regulated by default except the primary structure (PS: on most
systems) or any structure that has been made nonregulated with the

MSTR JSYS. Access rights and all JFNs on the regulated structure must
be released before the mount count can be decremented.

TOPS~20 Version 5 3-2 April 1982

TOPS-20 MONITOR CALLS
(ACCES)
The format of the argument block is as follows:
Word Symbol Meaning

0 .ACDIR Byte pointer to ASCIZ string containing the
structure and directory name or a 36-bit
directory number. The ASCIZ string must be
of the form structure:<directory>.

1 .ACPSW Byte pointer to ASCIZ string containing the
password of the specified directory. The
password 1s not reguired if:

1. the directory 1s on a domestic structure
and has the same name as the user's
logged-~in directory.

2. function AC%CON is being done and the

directory does not require a password for
connecting.

2 .ACJOB Number (decimal) of job or -1 for the current
job. The process must have WHEEL or OPERATOR
capability enabled to give a specific job
number other than its own.

The ACCES monitor call can be given for another job if the type of
access being reguested is for connecting the job (AC%CON) and if the
process executing the call has WHEEL or OPERATOR capability enabled.

The ACCES monitor call is used to implement the CONNECT, ACCESS, and
END-ACCESS commands of the TOPS-20 Command Language.

Generates an 1illegal instruction interrupt on error conditions below.
ACCES ERROR MNEMONICS:

ACESX1: Argument block too small

ACESX3: Password is required

ACESX4: Function not allowed for another job

ACESX5: No function specified for ACCES

ACESX6: Directory 1s not accessed

ACESX7: Directory 1is "files-only" and cannot be accessed

CNDIX1: Invalid password

CNDIX5: Job 1s not logged in

STRX01: Structure 1s not mounted
STRX02: Insufficient system resources
STRX03: No such directory name

TOPS+<20 MONITOR CALLS
(ACCES)

STRX04: Ambiguous directory specification
STRX09: Prior structure mount required
LGINX2: Directory 1is "files-only" and cannot be logged inhto
CAPX1: WHEEL or OPERATOR capability reqgquired
RCDIX2: Invalid directory specification
ARGX07: Invalid job number

BRGX08: No such job

TOPS-20 MONITOR CALLS
(ADBRK)

ADBRK JSYS 570

Controls address breaks. An address break 1is the suspension of a
process when a specified location is referenced in a given manner.

RESTRICTIONS: Not available on 2020 hardware.
ACCEPTS IN AC1l: function code in the left half and process handle in
the right half
AC2: function-specific argument
AC3: function-specific argument
RETURNS +1: always

This JSYS is useful when debugging a program. For example, consider
the problem of debugging a program consisting of a fork running
several inferior forks mapped to the same address space. One (or
more) of the inferior forks is erroneously referencing a particular

address. To find out which fork(s) are referencing that address, do
the following:

l. Set up the software interrupt system for interrupts on
channel 19.

2. Perform the ADBRK .ABSET function for each inferior process,
using the handle of the 1inferior process and the address
being erroneously referenced.

3. When a channel 19 interrupt occurs, perform an RFSTS JSYS for
each 1inferior process. The interrupted process that caused
the address break will have a code 7 (.RFABK) returned 1n 1its
status word.

4. Perform the ADBRK .ABGAD function for each process that
caused an address break. This returns the address of the
instruction that erroneously referenced the break address.

5. Perform the RFORK JSYS to restart the process(es) halted by
address break(s).

6. Continue running the program and repeating the last three
steps until the program completes execution, or it no longer
generates address breaks.

The ADBRK JSYS can also be used to find which instruction in a process

references a wrong memory location. The available functions are as
follows:

Code Symbol Meaning
0 .ABSET Set address break.
1 .ABRED Read address break.
2 .ABCLR Clear address break.
3 .ABGAD Return address of break instruction.

TOPS-20 MONITOR CALLS
(ADBRK)

Each function 1s described in the paragraphs below.

Setting address breaks - .ABSET

This function initializes the address break facility for the specified
process. When the process references the location in the manner for
which the break has been set, 1t 1s suspended. Its superior receives
a software interrupt on channel 19 (.ICIFT) if 1t has enabled for that
channel. After processing the interrupt, the superior process can
resume the inferior by executing the RFORK monitor call.

Only one address break can be in effect for a process at any one time,
and the break affects only the process for which it is set. If
ariother process references the location on which a break 1is set, 1t 1is
not affected by the break. When an address break 1s set in a page
shared among processes and each process is to be suspended when 1t
references the location, the ADBRK call must be executed for each
process.
Breaks cannot be specified for the accumulators.
The .ABSET function requires the following arguments to be given:

AC2: address of location on which to break.

AC3: flag word indicating the type of reference on which to
break. The following flags are currently defined:

BO (AB%RED) Break on a read reference.
B1 (AB¥WRT) Break on a write reference.
B2 (AB%XCT) Break on an execute (instruction fetch)
reference.
Reading address breaks - .ABRED
This function returns the current address break 1nformation for the
specified process. It returns the following information on a
successful return:
AC2: address of location on which a break 1s set
AC3: flag word indicating the type of reference on which the
break will occur. The following flags are currently
defined:
BO (AB%RED) Break will occur on a read reference.

B1 (AB%WRT) Break will occur on a write reference.

B2 (AB%XCT) Break will occur on an execute (instruction
fetch) reference.

If no address break has been set for the process, the contents of AC2
and AC3 are zero on return.

Clearing address breaks -

This function removes
process. A program
function with AC2 and

Returning the address

This function returns
process encountered

occurred 1s in a JSYS
not the address of
the JSYS by executing

TOPS-20 MONITOR CALLS
(ADBRK)

.ABCLR
any address break that was set for the specified

can also remove a break by executing the .ABSET
AC3 contalning zero.

of the break instruction - .ABGAD

in AC2 the address of the location on which the

a break. When the location on which the break
routine, the address returned is a monitor PC,
the JSYS. The program can obtain the address of

an RFSTS monitor call.

Generates an 1illegal instruction lnterrupt on error conditions below.

ADBRK ERROR MNEMONICS:

Address break not available on this system

process handle

to manipulate a superior process

of multiple process handle

ABRKX1:

ARGX02: Invalid function
FRKHX1: Invalid

FRKHX2: Illegal

FRKHX3: Invalid use
FRKHXS8: Illegal

to manipulate an execute-only process

TOPS-20 MONITOR CALLS
(AIC)

AIC JSYS 131

Activates specific software interrupt channels. (Refer to Section
2.6.)

ACCEPTS IN ACl: process handle

AC2: 36-bit word
Bit n on means activate channel n

RETURNS +1: always

The DIC monitor call can be used to deactivate specified software
interrupt channels.

Generates an 1llegal instruction interrupt on error conditions below.
AIC ERROR MNEMONICS:

FRKHX1: Invalid process handle

FRKHX?2: Illegal to manipulate a superior process

FRKHX3: Invalid use of multiple process handle

FRKHX8: Illegal to manipulate an execute-only process

TOPS-20 MONITOR CALLS
(ALLOC)

ALLOC JSYS 520

Allocates a device to a job or to the device pool of the monitor's
resource allocator. A device under control of the monitor's resource
allocator cannot be opened or assigned by any job other than the one
to which 1t 1is currently allocated. When the allocated device 1is
deassigned, it is returned to the monitor's resource allocator.

RESTRICTIONS: requires WHEEL or OPERATOR capabilities enabled.
ACCEPTS IN ACl: function code (.ALCAL)
AC2: device designator
AC3: job number, -1, or -2
RETURNS +1: failure, error code in ACl
+2: success

If AC3 contains a job number, then the designated device is allocated
to that job.

If AC3 contains -1, then the device is returned to the pool of devices
available to all wusers of the system (the device 1is no longer
allocated). This is the 1initial state of all devices.

If AC3 contains -2, then the device 1is assigned to the monitor
resource allocator's pool of devices.

Once a job assigns or opens a nonallocated device (a device not under
control of the resource allocator), the resource allocator cannot take
the device from the job. The resource allocator <can allocate the
device, however, to the job that currently has it. Then, when the job
releases the device, the resource allocator gets control of the
device.

When a job returns control of a device to the system resource
allocator, the allocator receives an IPCF packet. The flag word
(.IPCFL) of the packet descriptor block contains a code that indicates
the message was sent by the monitor. This code is 1(.IPCCC) in the
IP$CFC field (bits 30-32).

The first word of the IPCF packet data block contains .IPCSA, which
means that the second and subsequent words contain designators for
devices returned to the control of the resource allocator.

.IPCFL/<.IPCCC>B32
DATA/.IPCSA
DATA+1/device designator
DATA+2/device designator

The ALLOC monitor call requires the process to have WHEEL or OPERATOR
capability enabled.

TOPS-20 MONITOR CALLS

(ALLOC)
ALLOC ERROR MNEMONICS:
ALCX1: Invalid function
ALCX2: WHEEL or OPERATOR capability required
ALCX3: Device 1s not assignable
ALCX4: Invalid job number
ALCX5: Device already assigned to another job
ALCX6: Device assigned to user Jjob, but will be given to allocator
when released
DEVX1: Invalid device designator

Performs operations

TOPS-20 MONITOR CALLS
(ARCF)

ARCF JSYS 247

pertaining to the archive and wvirtual disk

systems. These include requesting archival and migration, requesting
retrieval, and setting archive status and tape information for a file.

RESTRICTIONS:

ACCEPTS IN AC1l:

Some functions requlire WHEEL or OPERATOR capabilities
enabled.

JFN

Function code. The available functions and their

argument blocks are described below.

AC2:
AC3:
Code Symbol
0 . ARRAR
1 .ARRIV
2 .AREXM
3 .ARRFR
4 .ARDIS

(Function-dependent, normally 0)

Function

Sets/clears AR%RAR (in .FBBBT of the FDB),
activating or deactlivating a user request for
archival. The value .ARSET (1) in AC3 reguests
an archive while .ARCLR (0) clears the request.
Specifying .ARSET in AC3 sets AR%NDL (in .FBBBT
of the FDB) and requests that the contents of
the file not be flushed from disk upon
archival.

Sets/clears AR%RIV (in .FBBBT of the FDB),
activating or deactivating a system request to

migrate a file from disk to tape. The value
.ARSET 1n AC3 regquests migration while .ARCLR
clears the reguest. This function reqgquires

WHEEL or OPERATOR capabilities to be enabled.

Sets/clears AR%EXM (in .FBBBT of the FDB),
activating or deactivating exemption from
involuntary migration. Code .ARSET (1) in AC3
sets AR%EXM, while code .ARCLR (0) in AC3
clears AR%EXM. This function reguires WHEEL or
OPERATOR capabilities to be enabled.

Request that the contents of a file be restored
to disk. The contents of AC3 determine 1f
.ARRFR walts or returns without waiting for the
contents of the file to be restored to disk.

Options for AC3

BO AR$NMS Do not wait for the file to be
restored.

Bl ARSWAT Wait until the file 1s restored.

Discard tape information. Clears FBRARC (1if
set) , .FBTP1, .FBTP2, .FBTSN, .PBTFN, and
.FBTDT. The file must be on 1line for the
function to succeed. Options for AC3 (which
regulre WHEEL or OPERATOR privileges enabled to
be used separately):

BO AR%CR1 Clear information for run 1.
Bl AR%CR2 Clear information for run 2.

3-11

Code

5

Symbol

.ARSST

TOPS-20 MONITOR CALLS
(ARCF)

Function

Set tape information for a file. This function
1s used to set information for the first,
second, or both tape runs. AR%¥01 and AR%02 are
used together when restoring files to disk. It
requires enabled WHEEL or OPERATOR privileges.

AC3 contains a polinter to an argument block as
follows:

Word Symbol Contents
0 .AROFL Flags:

BO(AR%01l) Set information for
run 1.

Bl (AR%02) Set information for
run 2.

B2 (AR%OFL) Delete disk contents
of file when done.
Requires both run 1

and run 2 tape
information to be
set.

B3 (AR%ARC) Set FB%ARC in the
FDB (archive the
file.)

B4 (AR%CRQ) Clear archive and/or
migration reqguests
(clear AR%RAR and

ARSRIV.)
1 .ARTP1 Tape 1 identification.
2 .ARSF1 TSN 1,,TFN 1 - Tape saveset

number 1in the 1left half and
tape file number in the right

half.

3 .ARTP2 Tape 2 identification.

4 .ARSF2 TSN 2,,TFN 2 - similar to
.ARSF1.

5 -ARODT time and date of tape write 1n
internal format; 0 1implies

present time.

6 .ARPSZ Number of pages in the file.
This word can be set only if
AR%01 and AR%02 are set first.

Code

10

11

TOPS-20 MONITOR CALLS
(ARCF)
Symbol Function

.ARRST Restore contents of a file to
contains a JFN for a temporary file

disk. AC3
(created by
DUMPER) that contains the data for an

archived

file that is currently off-line. After .FBADR,

.FBBSY, and .FBSIZ are copied, the

temporary

file 1is deleted. Both files must be on the
same device or structure, and enabled WHEEL or

OPERATOR capabilities are required.

.ARGST Get tape information for file. AC3

contailins

the address of an argument block that has the

same format as the block for .ARSST.

.ARRFL The restore for this file has failed. Sets
AR%RFL 1in L.FBBBT to notify a walting process
that the retrieval regquest cannot be completed.
Requires WHEEL or OPERATOR capabilities.

.ARNAR Resist involuntary migration. Sets

or clears

AR¥NAR 1n .FBBBT. Using .ARSET 1in AC3 causes
resist to be set, while using .ARCLR clears

resist.

ARCF ERROR MNEMONICS:

CAPX1:
ARGX02:
ARCFX2:

ARCFX3:

ARCFX4:
ARCFX5:
ARCFX6:
ARCFX7:
ARCFX8:
ARCFX9:
ARCX10:
ARCH11:
ARCH12:
ARCX13:
ARCX14:

ARCX15:

WHEEL or OPERATOR capabilities reguired
Invalid function code
File already has archive status

Cannot perform ARCF functions on nonmultiple
devices

File is not on line

Files are not on the same device or structure
File does not have archive status

Invalid parameter for .ARSST

Archive not complete

File not off line

Archive prohibited

Archive requested, modification prohibited
Archive requested, delete prohibited
Archive system request not completed
Restore failed

Migraticn prohibited

directory

ARCX16:

ARCX17:

ARCX18:

ARCX19:

TOPS-20 MONITOR CALLS
(ARCF)
Cannot exempt off-line, archived, or archive-pending files
FDB improper format for ARCF
Retrieval wait cannot be fulfilled for waiting process

Migration already pending

TOPS-20 MONITOR CALLS
(ASND)

ASND JSYS 70

Assigns a device to the caller. The successful return is given if the
the device 1s already assigned to the caller.
ACCEPTS IN ACl: device designator
RETURNS +1: failure, error code in ACl

+2: success
The RELD call can be used to release devices assigned to the caller.
ASND ERROR MNEMONICS:
DEVX1: Invalid device designator
DEVX2: Device already assigned to another job
ASNDX1: Device 1s not assignable
ASNDX2: Illegal to assign this device
ASNDX3: No such device

DSMX1: File(s) not closed

TOPS-20 MONITOR CALLS
(ASNSQ)

ASNSQ JSYS 752

Assigns a special message queue to a job. See ARPANET manual for more

details.

RESTRICTIONS:

ACCEPTS IN AC1l:
AC2:
RETURNS +1:

+2:

for ARPANET systems only. Requires NET WIZARD
capabilities enabled.

mask
header value
failure, error code in AC1l

success, special message queue assigned with special
queue handle in AC1

ASNSQ ERROR MNEMONICS:

NTWZX1: NET WIZARD capability required

ASNSX1: Insufficient system resources (All special queues in use)

ASNSX2: Link (s)

assigned to another special queue

TOPS-20 MONITOR CALLS
(ATACH)

ATACH JSYS 116

Detaches the specified job from its controlling terminal (if any) and
attaches it to a new controlling terminal. A
console-attached entry is appended to the accounting data file.

optionally

RESTRICTIONS:

ACCEPTS IN ACl:

RETURNS

AC2:

AC3:

AC4:

+1:

+2:

some functions require WHEEL or OPERATOR capabilities
enabled.

B0 (AT3%CCJ) generate a CTRL/C interrupt to the 1lowest
process in the job that is enabled for a
CTRL/C interrupt if the job is currently
attached to another terminal. If this bit
is not set or if the job is currently not
attached to another terminal, the job

simply continues running when it is
attached.
Bl (AT$NAT) do not attach. Prevents both the

detaching of the job from its terminal and
the attaching of a remote job to the local
terminal. Is a no-op unless the remote
job has a controlling terminal, in which
case the remote job is detached and
remains detached. This bit in effect
makes ATACH like a remote DTACH.

B2 (AT3%TRM) attach the given job to the terminal
specified in AC4. 1If this bit is not set,
the job is attached to the <controlling
terminal of the caller.

B18-B35 job number of the desired job.
(AT%JOB)

user number under which the job to be attached is
logged in. The user number can be obtained with the
RCUSR monitor call.

byte pointer to an ASCIZ password string in the
caller's address space.

number of the terminal to be attached to the
specified job. This argument is required if
B2 (AT%TRM) is set.

failure, error code in AC1l.

success. If there 1is a 1logged-in Jjob currently
attached to the specified terminal, it is detached
and primary I/0 for that Jjob is not redirected.
Thus, if a process has primary I/0 from the
controlling terminal, it will block when it attempts
primary I/0 and will continue when it is reattached
and a character is typed. A job attached to the
terminal but not logged in is killed.

TOPS-20 MONITOR CALLS
(ATACH)

It is legal to attach to a job that has a controlling terminal if one
of the following conditions exists:

1. The job is logged in under the same user name as the job
executing the ATACH.

2. The job executing the ATACH supplies the correct password of
the job it is attaching to.

3. The job executing the ATACH has WHEEL or OPERATOR capability
enabled.

4. The job executing the ATACH has ownership of the job because
it created the job (and maintained ownership) with the CRJOB
call.

If the controlling terminal is a PTY, a password is not required in
the following cases:

1. The owner of the PTY has WHEEL or OPERATOR capability
enabled.

2. The specified job is logged in with the same name as the
owner of the PTY.

The DTACH monitor call can be used to detach the controlling terminal
from the current job.

ATACH ERROR MNEMONICS:

ATACX1: Invalid job number

ATACX2: Job already attached

ATACX3: Incorrect user number

ATACX4: Invalid password

ATACX5: This job has no controlling terminal
ATACX6: Terminal is already attached to a job

ATACX7: Illegal terminal number

TOPS-20 Version 5 3-18 April 1982

TOPS-20 MONITOR CALLS
(ATI)

ATI JSYS 137

Assigns a terminal code to a software interrupt channel. (Refer to
Section 2.6.) This <call also sets the corresponding bit in the
process' terminal interrupt mask. (Refer to the STIW and RTIW monitor
calls.)

ACCEPTS IN ACl: terminal interrupt code, ,channel number
(Refer to Section 2.6.6.)

RETURNS +1: always

If there is no controlling terminal (if the Jjob is detached), the
assignments are remembered and are in effect when a terminal becomes
attached.

The DTI monitor call can be used to deassign a terminal code.
Generates an illegal instruction interrupt on error conditions below.
ATI ERROR MNEMONICS:

TERMX1: Invalid terminal code

ATIX1: Invalid software interrupt channel number

ATIX2: Control-C capability required

TOPS-20 MONITOR CALLS
(ATNVT)

ATNVT JSYS 274

Creates the Network Virtual Terminal (NVT) connection. See the
ARPANET manual for more details.

RESTRICTIONS: for use with ARPANET only

ACCEPTS IN ACl: flag bits in the left half and the JFN of the opened
receive connection in the right half

AC2: JFN of the opened send connection

RETURNS +1: failure, with error code in ACl
+2: success, with terminal designator specific to this
NVT in ACl
Flags for AC1l:
Bit Symbol Meaning
B2 ATENTP If set, this bit indicates new TELNET protocol.

If clear, this bit indicates o0ld TELNET protocol.

ATNVT ERROR MNEMONICS:

ATNX1: Invalid receive JFN

ATNX2: Receive JFN is not open for read

ATNX3: Receive JFN is not open

ATNX4: Receive JFN is not a network connection
ATNX5: Receive JFN has been used

ATNX6: Receive connection has been refused
ATNX7: Invalid send JFN

ATNX8: Send JFN is not open for write

ATNX9: Send JFN is not open

ATNX10: Send JFN is not a network connection
ATNX11: Send JFN has been used

ATNX12: Send connection has been refused
ATNX13: Insufficient system resources (no NVTs)

TOPS-20 MONITOR CALLS
(BIN)

BIN JSYS 50

Inputs the next byte from the specified source. When the byte is read
from a file, the file must first be opened, and the size of the byte
given, with the OPENF call. When the byte is read from memory, a
pointer to the byte is given. This pointer is updated after the call.

ACCEPTS IN ACl: source designator

RETURNS +1: always, with the byte right-justified in AC2

If the end of the file is reached, AC2 contains 0 instead of a byte.
The program can process this end-of-file condition if an ERJMP or

ERCAL is the next instruction following the BIN call.

The BOUT monitor call can be used to output a byte sequentially to a
destination.

Can cause several software interrupts or process terminations on
certain file <conditions. (Refer to bit OF%HER of the OPENF call
description.)

BIN ERROR MNEMONICS:

DESX1: Invalid source/destination designator
DESX2: Terminal is not available to this job
DESX3: JFN is not assigned

DESX5: File is not open

I0X1: File is not open for reading

I0X4: End of file reached

IOX5: Device or data error

TOPS-20 MONITOR CALLS
(BKJFN)

BKJFN JSYS 42

Backs up the source designator's pointer by one byte.
ACCEPTS IN ACl: source designator
RETURNS +1: failure, error code in AC1

+2: success, updated string pointer in ACl, if pertinent.
(This return actually decrements the pointer.)

The BKJFN call, when referring to a terminal, can be executed only
once per TTY to back up one character. The BKJFN call cannot be
issued again for the same TTY unless the input buffer has been cleared
(with the CFIBF JSYS) or an input JSYS is executed for the TTY.

BKJFN, when referring to other designators, can be executed more than
once in succession.

This call cannot be used with the DECnet devices SRV: or DCN:.

BKJFN ERROR MNEMONICS:

DESX1: Invalid source/destination designator
DESX2: Terminal is not available to this job
DESX3: JFN is not assigned

DESX5: File is not open

BRJFX1: Illegal to back up terminal pointer twice
SFPTX2: Tllegal to reset pointer for this file
SFPTX3: Invalid byte number

TTYXO01: Line is not active

TOPS-20 MONITOR CALLS
(BOOT)

BOOT JSYS 562

Performs basic maintenance and utility functions required for 1loading
and dumping communications software. The TOPS-20 system process that
performs these furctions uses a DIGITAL-supplied protocol to perform
them.

On 2040,2050, and 2060 hardware, the BOOT JSYS is wused to load and
dump a PDP-11 connected to a DTE20. On 2020 hardware, the BOOT JSYS
loads and dumps the KMC1l1l microcode, dumps 1line counters, controls
DDCMP on a 1line, performs nmultidrop functions, and loads and dumps
front-end images.

RESTRICTIONS: requires WHEEL or OPERATOR capabilities enabled.
Some functions are hardware specific.

ACCEPTS IN ACl: function code

AC2: @address of argument block
RETURNS +1l: always
The available functions and their argument blocks are described below.
Note that in the discussion of each function, the applicable processor
is indicated as follows:
Group Processor

A 2020

B 2040,2050,2060

BOOT JSYS Functions:
Code Symbol Meaning
0 . BTROM Puts the 1line in MOP (Maintenance-Operation
Protocol) mode and activates the bootstrap ROM
in the front end.
Applicable Hardware: processor group A, B
Processor Group A Argument Block

0 .BTPRT Line number

Activates the hardware ROM bootstrap 1in the
communications front end.

Processor Group B Argument Block
0 .BTDTE DTE-20 number

1 .BTERR Error status flags returned on
failure of the call

3-23

Code

1

Symbol

.BTLDS

.BTLOD

TOPS-20 MONITOR CALLS
(BOOT)

Meaning

Load a secondary bootstrap program into the
communications front end. The secondary
bootstrap, with a maximum size of 256 PDP-11
words, 1is loaded using the ROM bootstrap. The
data to be loaded must be packed as two 16-bit
PDP-11 words left justified 1in each 36-bit
word. The entire bootstrap program must be
loaded at once, and the caller blocks until the
transfer is complete.

Applicable Hardware: processor group A,B

Processor Group A Argument Block

0 .BTPRT Line number

1 Not used, must be zero

2 .BTSEC Address of bootstrap program to
be loaded

Processor Group B Argument Block

0 .BTDTE DTE-20 number

1 .BTERR Error status flags returned on
failure of the call

2 .BTSEC Address of bootstrap program to
be loaded

Load the communications front-end memory using
the previously 1loaded secondary or tertiary
bootstrap program. The bootstrap program in
the front end must abide by the protocol for
DTE-20 transfers: the first two bytes of data
supplied by the caller must be a count of the
remaining number of data bytes.

Applicable Hardware: processor group A,B

Processor Group A Argument Block

0 .BTDTE line number

1 Not used and must be zero

2 Not used and must be zero

3 Not used and must be zero

4 .BTCNT Number of bytes to transfer
5 .BTLPT Pointer to data to be loaded

Code

2

Symbol

.BTLOD
(Cont.)

.BTDMP

TOPS-20 MONITOR CALLS
(BOOT)

Meaning

Processor Group B argument block

0 .BTDTE DTE-20 number

1 .BTERR Error status flags returned on
failure of the call

2 Not used and must be zero

3 .BTFLG User-supplied flag word

BO(BT%BEL) Send a doorbell to
the front end to
indicate when the

setup is complete
and the transfer can
begin.

4 .BTCNT Number of bytes to transfer

5 .BTLPT Pointer to data to be loaded

Dump the communications front-end memory using
the ROM bootstrap program. The caller must
activate the ROM bootstrap (function .BTROM)

before dumping memory. Subsequent .BTDMP
functions to dump memory start where the
previous dump terminated unless the ROM
bootstrap is activated again by a .BTROM

function. The caller blocks until the transfer
is complete.

Applicable Hardware: processor group B

Argument Block

0 .BTDTE DTE-20 number

1 .BTERR Error status flags returned on
failure of the call

2 Not used and must be zero

3 .BTFLG User-supplied flag word. This
word is not wused and must be
zero.

4 .BTCNT Number of bytes to transfer

5 .BTDPT Pointer to where the data is to

be dumped in TOPS-20

Code

4

Symbol

.BTIPR

.BTIPR

.BTTPR

TOPS—-20 MONITOR CALLS
(BOOT)

Meaning
Generates and 1links a DDCMP Station Table.
Starts up 1lines and terminals not previously
known to the system. (Must be issued once for

each multidrop terminal being started up.)

Applicable Hardware: Processor group A (See
below for group B.)

Processor Group A Argument Block

0 .BTPRT Drop,,line number
1 .BTPRV Version number of protocol to be
used

Processor Group A protocol types are:

Symbol Meaning

.VNDDC (2) DDCMP protocol

. VNMOP (3) MOP (DDCMP maintenance) mode
.VNCNL (4) Controller loopback

.VNCBL (5) Cable loopback

Initialize the protocol to be used with this
communications front end. After successful
execution of this function, TOPS-20 processes
interrupts from the given DTE-20.

Applicable Hardware: processor group B
Processor Group B Argument Block

0 .BTDTE DTE-20 number

1 .BTPRV Version number of the protocol
to be used

Processor Group B protocol types are:

Symbol Meaning
.VN20OF (0) RSX20F protocol
.VNMCB (1) MCB DECNET protocol

Stop the protocol currently running on this
communications front end or line. After
successful execution of this function, TOPS-20
ignores interrupts from the given DTE-20 or
line.

Applicable Hardware: processor group A,B
Processor Group A Argument Block

0 .BTPRT Line number

Processor Group B Argument Block

0 .BTDTE DTE-20 number

Code

6

Symbol

.BTSTS

.BTBEL

TOPS-20 MONITOR CALLS
(BOOT)

Meaning

Return the status type of the protocol running
on the communications front end to the
specified DTE or line. Also returns the name
of the adjacent DECNET node for this front end.
Applicable Hardware: processor groups A,B
Processor Group A Argument Block
0 .BTPRT Line number
1 .BTCOD Returned protocol version type.

If no protocol is running, this

word contains -1.

Processor Group A protocol types are:

Symbol Meaning

.VNDDC (2) DDCMP protocol

. VNMOP (3) MOP (DDCMP maintenance) mode
.VNCNL (4) Controller loopback

.VNCBL (5 Cable loopback

Processor Group B Argument Block

0 .BTDTE DTE-20 number

1 .BTCOD Returned protocol version type.
If no protocol is running, this

word contains -1.

Processor Group B protocol types are:

Symbol Meaning
.VN20OF (0) RSX20F protocol
.VNMCB (1) MCB DECNET protocol

Block until a signal (doorbell) to TOPS-20 is
initiated by the communications front end.
This function is used to synchronize the caller
with the bootstrap program in the front end.
Applicable Hardware: processor group B
Argument Block

0 .BTDTE DTE-20 number

Code

Symbol

.BTRMP

. BTRMP

TOPS-20 MONITOR CALLS
(BOOT)
Meaning
Read data from the communications front end
using the previously loaded secondary or

tertiary bootstrap program.

Applicable Hardware: processor dgroup A (See
below for group B.)

Processor Group A Argument Block

0 .BTPRT Line number

1 Not used and must be zero

2 Not used and must be zero

3 Not used and must be zero

4 .BTCNT Number of bytes to transfer

5 .BTLPT Pointer to where the data is to

be dumped in TOPS-20

Read data from the communications front end
using the previously 1loaded secondary or
tertiary bootstrap program. The bootstrap
program must abide by the protocol for DTE-20
transfers. The first two bytes of data are
interpreted as a count of the remaining number
of bytes of data.

Applicable Hardware: processor group B

Processor Group B Argument Block

0 .BTDTE DTE-20 number
1 .BTERR Error status flags returned on
failure of the call
2 Not used and must be zero
3 .BTFLG User-supplied flag word
BO(BT%$BEL) Send a signal
(doorbell) to
TOPS-20 to indicate
the transfer is

finished.

4 .BTCNT Maximum number of bytes to
transfer. After successful
execution of this function, this
word is updated to reflect the
actual number of bytes
transferred.

5 .BTMPT Pointer to where data is to be
placed

Code

11

Symbol

. BTKML

TOPS-20 MONITOR CALLS
(BOOT)

Meaning

Load a KMCll., This function will optionally
load the CRAM, DRAM, and the four UNIBUS
registers. Before the KMCll is 1loaded, the
system verifies that each bit in UNIBUS
registers can be set and cleared. Before the
DRAM is 1loaded, the system verifies that each
bit in the entire DRAM can be set and cleared.
aAfter the CRAM, DRAM, and registers are loaded,
they are verified to ensure that the data was
properly 1loaded. If the register data is not
supplied, the UNIBUS registers are cleared
before the KMCll is started.

Applicable Hardware: processor group A

Argument Block

0 .BTKMC KMC11 address

1 .BTKER Error flags returned in 1left
half and bad data word (16 bit)
returned in right half
B0 (BT%CVE) CRAM verify error

Bl (BT%DVE) DRAM verify error

B2 (BT%RVE) Register verify
error

2 .BTKCC Count of CRAM data

3 .BTKCP Pointer to CRAM data (l6-bit
data)

4 .BTKDC Count of DRAM data

5 .BTKDP Pointer to DRAM data (8-bit
data)

6 .BTKRC Count of register data

7 .BTKRP Pointer to register data (l6-bit
data)

8 .BTKSA If bit 0 of this word 1is set,
then the right halfword contains
the starting address;

otherwise, this word is ignored.

B0 (BT%KSA) Right halfword 1is
set; start KMC1l1

Code

12

Symbol

. BTKMD

.BTRLC

TOPS-20 MONITOR CALLS
(BOOT)

Meaning

Dump a KMC11l.
the CRAM,

This function opt
DRAM, and registers
provided. The registers are SELO
SELG6, INDATA, OUTDATA, INBA
MISC*400+NPR.

Applicable Hardware: processor g

Argument Block

0 .BTKMC KMC11 address

1 Not used, must be

2 .BTKCC Count of CRAM data

3 .BTKCP Pointer to CRAM
data)

4 .BTKDC Count of DRAM data

5 .BTKDP Pointer to DRAM
data)

6 .BTKRC Count of register

7 .BTKRP Pointer to area
register data (16-

Return 1line <counters. All

positive numbers.
Applicable Hardware: processor g

Argument Block

0 .BTPRT Port number

1 .BTZTM Time since counte
zeroed

2 .BTSCC Number of status
return

3 .BTSCP Pointer to area
status counters

4 .BTRCC Number of receiv
return

5 .BTRCP Pointer to area to
counters

6 .BTTCC Number of transm
return

7 .BTTCP Pointer to area

transmit counters

ionally dumps

if space is
, SEL2, SEL4,
, OUTBA, and

roup A

zero

data (l6-bit
data (8-bit
data

for storing
bit data)
counters are
roup A

rs were 1last

counts to

to receive

e counts to

store receive

it counts to

to receive

TOPS-20 MONITOR CALLS
(BOOT)
Code Symbol Meaning
14 .BTCLI Convert line id to port number
Applicable Hardware: processor groups A,B

Argument Block

0 .BTPRT Port number
1 .BTLID Pointer to ASCIZ line id
15 .BTCPN Convert NSP port number to line id

Applicable Hardware: processor groups A,B

Argument Block

0 .BTPRT Port number
1 .BTLID Pointer to ASCIZ line id
16 .BTSTA Set the station's polling state to active to

cause the terminal to be polled, or set it to
idle to prevent the terminal from being polled.

Applicable Hardware: VT62 on processor group A

Argument Block

0 .BTPRT Drop,,Line number
1 .BTCOD Flags:
0 .BTACT Set line active
1 .BTIDL Set line idle
16 .BTD60 Send a message to or receive a message from a
front end (a DN60) using the .VND60 protocol.
The argument block controls whether this

function sends or receives a message.

Applicable Hardware: DN60 on KL-10 Model B
processor

Argument Block

0 .BT6DTE DTE number
1 .BT6ERR Error flags (returned):

30 D6%BDP The data byte
pointer passed
in the argument
block is bad.

31 D6%ARD The PDP-11
attempted to
send data when
none was
expected.

32 D6%TRS DTESRV timed

out waiting for
response header
from the front
end.

TOPS-20 Version & 3-31 April 1982

TOPS=20 MONITOR CALLS
(BOOT)

Code Symbol Meaning

16 .BTD60 (Cont.)

33 D6&TDT DTESRV timed
out waiting for
data from the
front end.

34 D6%TPO DTESRV timed
out waiting for
the DTE to be
free. Another
job is using
the DTE and is
probably hung.

35 D6%NT6 The front end
is not running
the DN60
protocol.

2 .BT6HBC Number of bytes
in the DN60
header

2 .BT6HDR Address at

which the DN60
header Dbegins.

This header
contains 4
words, which

contain 4 8-bit
bytes each.

3 .BT6DBC Number of bytes
of data.

4 _BT6PTR Pointer to the
first byte of
the data

5 L.BT6TMR Time the
request was
made (returned)

6 .BT6TAS Time DTE was
assigned
(returned)

7 .BT6THQ The time

TOPS-20 queued
the header to
the DTE

10 .BT6TRD The time

11 .BT6TDD The time

12 .BT6TFR The time
TOPS-20
satisfied the
request

TOPS-20 Version 5 3-32 April 1982

Code
17

Symbol

.BTSSP

.BTSTP

.BTSDD

TOPS-20 MONITOR CALLS
(BOOT)

Meaning

Set the start-|up priority value. This value
specifies the relative frequency at which
start-{ups are attempted. That is, for a value
of N, each active station is polled N times for
each DDCMP start. This is wused to prevent
unresponsive stations from deteriorating
performance of a multidrop line. N is a 4-bit
field in which truncation occurs if the field
size is exceeded. If N is =zero, stations 1in
start-up mode will be polled along with active
stations.

Applicable Hardware: VT62 on processor group A
Argument Block

0 .BTPRT Line number
1 .BTSPR Start priority count

Set the polling priority. This parameter is
maintained in the Station Table to specify the
relative polling priority of a station. If
this feature 1is not used, all priority values
default to 1 and polling proceeds 1in a round
robin manner.

Applicable Hardware: VT62 on processor group A
Argument Block

0 .BTPRT Drop,,line number
1 .BTPRI Priority value

Typical range: 1 (high) to 5
(low)

Send a DDCMP message. A DDCMP message will be
queued for transmission on the specified line.

Applicable Hardware: Processor group A

Argument Block

0 .BTPRT Drop,,line

1 .BTMSG Address of message or byte
pointer to message

2 .BTLEN Byte count of message

Code

22

Symbol

.BTRDD

.BTCHN

TOPS-20 MONITOR CALLS
(BOOT)

Meaning

Receive a DDCMP message. An item from the
DDCMP input queue is returned or .BTLEN is set
to zero if the gueue is empty. Items on the
queue will be data segments, completion
postings, or status postings (station going up
or down).

Applicable Hardware: Processor group A

Argument Block

0 .BTPRT Line number

1 .BTMSG Address of buffer or byte
pointer to buffer

2 .BTLEN Size of user buffer

For data messages, the byte
count of the message is returned
in .BTLEN. If the buffer is too
small, the JSYS will fail. For

completion postings, the
following are returned in
.BTLEN:

BT3CTL (1BO) + .BTSUP (1) -~
station came up

BT%CTL (1B0) + .BTSDW (2) -
station went down

BT%CTL (180) + .BTCMP (3) -
transmit complete

BT%CTL (1B0) + .BTSSF (4) - a
start-up failed

.BTPRT will contain the drop
that this message pertains to.

Set the interrupt channel so that software
interrupts will be generated when input data is
available.

Applicable Hardware: Processor group A

Argument Block

0 .BTPRT Drop,,line number
1 .BTCOD Software interrupt channel

TOPS-20 MONITOR CALLS
(BOOT)
Code Symbol Meaning

24 .BTSLS Set type of 1line service to be done on a
synchronous communications line.

Applicable Hardware: Processor group A
Argument Block

0 .BTPRT Drop,,line number
1 .BTCOD Define protocol

Protocol values can be:

0 .BTNSP NSP protocol
1 .BTDCP DDCMP protocol

The error status flag returned in word .BTERR on failure of a BOOT
call (for group B processors) contains front-end reload status bits
recorded in the system error file. Refer to the SPEAR manual for an
explanation of these status bits. Note that error logging is not
performed for group A processors.

Generates an illegal instruction interrupt on error conditions below.

BOOT ERROR MNEMONICS:

BOTX01: For group A processors, this message indicates an illegal
line number. For group B processors, this message indicates

an invalid DTE-20 number.

BOTX02: Invalid byte size

BOTX03: Invalid protocol version number
BOTX04: Byte count is not positive
BOTX05: Protocol initialization failed

BOTX06: GTJFN failed for dump file
BOTX07: OPENF failed for dump file
BOTX08: Dump failed

BOTX09: To -10 error on dump

BOTX10: To =11 error on dump

BOTX11: Failed to assign page on dump
BOTX12: Reload failed

BOTX13: -11 didn't power down

BOTX14: -11 didn't power up

BOTX15: ROM did not ACK the -10
BOTX16: -11 boot program did not make it to -11

BOTX17: -11 took more than 1 minute to reload; will cause retry

TOPS-20 Version 5 3-35 April 1982

TOPS-20 MONITOR CALLS

(BOOT)
I BOTX18: Unknown BOOT error
CAPX1: WHEEL or OPERATOR capability required
ARGX02: invalid function

TOPS-20 Version 5 3-36 April 1982

TOPS-20 MONITOR CALLS
(BOUT)

BOUT JSYS 51

Outputs a byte secuentially to the specified destination. When the
byte is written tc a file, the file must first be opened, and the size
of the byte given, with the OPENF call. When the byte is written to
memory, ACl contains a pointer to the location in which to write the
byte. This pointer is updated after the call.

ACCEPTS IN ACl: destination designator
AC2: the byte to be output, right-justified
RETURNS +1l: always

The BIN monitor call can be used to input a byte sequentially from a
source.

Can cause several software interrupts or process terminations on
certain file conditions. (Refer to bit OF%HER of the OPENF call
description.)

BOUT ERROR MNEMONICS:

DESX1: Invalid source/destination designator
DESX2: Terminal is not available to this job
DESX3: JFN is not assigned

DESX5: File is not open

I0X2: File is not open for writing

IOX5: Device or data error

I0X6: Illegal to write beyond absolute end-of-file
I0X11: Quota exceeded

I0X33: TTY input buffer full

I0X34: Disk full

I0X35: unable to allocate disk - structure damaged

TOPS-20 Version 5 3-37 April 1982

TOPS-20 MONITOR CALLS
(CACCT)

CACCT JSYS 4

Changes the account for the current job.

RESTRICTIONS: When this call is used in any section other than
section zero, one-word global byte pointers used as
arguments must have a byte size of seven bits.

ACCEPTS IN ACl: byte pointer that points to the new account string in
the calling program's address space. This call reads
the string until a null byte is read, or until 39
characters are read.
If executed in section 0, this AC can contain a local
byte pointer or an account number. The account
number must be in bits 3-35, and bits 0-2 must
contain 5.
RETURNS +1: failure, error code in ACl
+2: success, updated string pointer in AC1
The CACCT call sets the current account for the job to the specified
account. Subsequent session charges will be to this new account.
This call also validates the account given if the account wvalidation
facility 1s enabled. (Refer to the .SFAVR function of the SMON/TMON
monitor call.)

The GACCT monitor call can be used to return the account for the
current job.

CACCT ERROR MNEMONICS:

CACTX1: Invalid account identifier
CACTX2: Job is not logged in
VACCXO0: Invalid account

VACCX1: Account string exceeds 39 characters

TOPS-20 Version 5 3-38 April 1982

TOPS-20 MONITOR CALLS
(CFIBF)

CFIBF JSYS 100

Clears the designated file input buffer.

ACCEPTS IN ACl: csource designator

RETURNS +1: always

Is a no-op if the source designator is not associated with a terminal.

The CFOBF monitor call can be used to clear a designated file output
buffer.

Generates an illegal instruction interrupt on error conditions below.

CFIBF ERROR MNEMONICS:

DESX1: Invalid source/destination designator
DESX3: JFN is not assigned

DESX5: File is not open

DEVX2: Device already assigned to another job
TTYX01: Line is not active

3-39

TOPS-20 MONITOR CALLS
(CFOBF)

CFOBF JSYS 101

Clears the designated file output buffer.
ACCEPTS IN ACl: destination designator
RETURNS +1: always

Is a no-op if the destination designator is not associated with
terminal.

The CFIBF call can be used to clear a designated file input buffer.
Generates an illegal instruction interrupt on error conditions below.

CFOBF ERROR MNEMONICS:

DESX1: Invalid source/destination designator
DESX3: JFN is not assigned

DESX5: File is not open

DEVX2: Device already assigned to another job
TTYXO01: Line is not active

TOPS-20 MONITOR CALLS
(CFORK)

CFORK JSYS 152

Creates a process inferior to the calling process. (Refer to Section

2.7.)

ACCEPTS IN ACl:

AC2:

RETURNS +1:

+2:

B0 (CR$MAP) make the inferior process' map the same as
the current process' map by means of
indirect pointers. If this bit is not on,
the inferior process will have no pages in
its map. If desired, the creating process
can then wuse PMAP or GET to add pages to
the inferior's map.

Bl (CR%CAP) make the inferior process' capabilities
the same as the current process'. If this
bit is not on, the inferior process has no
special capabilities.

B3 (CR%ACS) set the inferior process' ACs from the
block whose address 1is in AC2. If this
bit is not on, the inferior process' ACs
are set to 0.

B4 (CR%ST) set the PC of the inferior process to the
value in the right half of ACl and start
the process. If this bit is not on, the
inferior process 1is not started, and the
right half of ACl is ignored. (Also see
the XSFRK% call.)

B18-B35 PC value for the inferior process if CR%ST
(CREPCV) is on.

address of 20 (octal) word block (optional). This
block contains the AC values for the inferior
process. (Refer to bit CR%ACS above.)

failure, error code in AC1

success, relative process handle in AC1l

The inferior process receives the same primary input and output JFNs

as the current

process. However, the primary input and/or output

files may be changed with the SPJFN monitor call.

The CR%MAP argument in ACl allows the inferior to see the same address

space as that

of the superior. The inferior process will have read

and write access to the superior's address space. The pages are
shared, and changes made by one process will be seen by the other.

CFORK creates a nonvirgin process if:

1. CR%ST is set and

2. CR%ACS and/or CR%MAP is set.

CFORK creates an execute-only process if bit CREMAP is set and the

creating process

is an execute-only process. This is the only other

way to create an execute-only process besides using the GET JSYS on a

virgin process.

TOPS-20 Version 5

3-41 April 1982

TOPS-20 MONITOR CALLS
(CFORK)

The KFORK monitor call can be used to kill one or more processes.

CFORK ERROR MNEMONICS:

FRKHX6 : All relative process handles in use
FRKHX8: Illegal to manipulate an execute-only process
CFRKX3: Insufficient system resources

TOPS-20 MONITOR CALLS
(CHFDB)

CHFDB JSYS 64

Changes certain words in the file descriptor block (FDB) for the
specified file. (Refer to Section 2.2.8 for the format of this
block.)

ACCEPTS IN ACl: BO(CF%NUD) do not wait for the disk copy of the
directory to be updated.

The specified changes are made to the
directory in memory and are written to the
disk as a part of the normal monitor disk
updating procedure. (See below for more
information.)

B9-B17 index into FDB indicating word to be
(CF%DSP) changed

B18-B35 JFN (for a disk file)

(CF$JFN)

AC2: mask indicating bits to be changed. If changing a
count value (in AC3), use -1 as a mask.

AC3: new values for changed bits. These values must be
given in the bit positions corresponding to the mask
given in AC2.

RETURNS +1: always

Because each CHFDB call changes only one word in the FDB, several
calls must be executed to change several words. Each call causes disk
I/0. And to keep this I/0 to a minimum, the program should set bit
CF8NUD on each call. The setting of this bit on each call permits the
program to run faster by allowing several changes to be made to the
FDB with minimum disk I/O.

To ensure that all the changes have been written to the disk, the
program can 1issue the last CHFDB call with bit CF%NUD off. Also, if
the program requires the FDB on the disk to be updated after each
call, it should execute each CHFDB call with bit CF$NUD off.

There are a variety of calls used in manipulating the FDB; see the
description of the FDB in Chapter 2 for information on these calls.

Generates an illegal instruction interrupt on error conditions below.

CHFDB ERROR MNEMONICS:

CFDBX1: Invalid displacement
CFDBX2: Illegal to change specified bits
CFDBX3: Write or owner access required

TOPS~<20 MONITOR CALLS

(CHFDB)
CFDBX4: Invalid value for specified bits
DESX1: Invalid source/destination designator
DESX3: JFN is not assigned
DESX4: Invalid use of terminal designator or string pointer
DESX7: Illegal use of parse-only JFN or output wildcard-designators

TOPS-20 Version 5 -44 April 1982

W

TOPS-20 MONITOR CALLS
(CHKAC)

CHKAC JSYS 521

Checks if a user is allowed access to files in

This monitor call determines if the user can acc
specified protection code if the user is 1logged

capabilities and connected to the directory.

RESTRICTIONS: When this call is used 1in any
section zero, one-word global
arguments must have a byte size

ACCEPTS IN ACl: 1length of the argument block in
B0 (CK%JFN) 1is on, word .CKAUD
contains a JFN.

AC2: address of argument block

RETURNS +1: failure, error code in AC1

+2: success, access check 1is co
containing -1 if access is allo
not allowed.

The format of the ergument block is as follows:

a given directory.
ess files that have a
in with the given

section other than
byte pointers used as
of seven bits.

the right half. If
of the argument block

mpleted, with AC1l
wed or 0 if access is

Word Symbol Meaning

0 .CKAAC Code of desired access to files.

1 .CKALD Byte pointer to user name string, or 36-bit
user number of user whose access is being
checked.

2 .CKACD Byte pointer to directory name string (with

punctuation), or 36-bi
which user whose access
connected.

3 .CKAEC Enabled capabilities of
being checked. (Refer t

4 .CKAUD Byte pointer to director
punctuation), or 36-bi
the directory containi
accessed. If BO(CK%JF
word contains a JFN
accessed.

5 .CKAPR Protection of the fil
(Refer to Section 2.2
required if a JFN is sup

Access codes are as follows:

0 .CKARD read existing files

1 . CKAWR write existing files

2 .CKAEX execute existing files

3 .CKAAP append to existing files

4 .CKADL obtain directory listing of e

6 .CKADR read the directory

10 .CKACN connect to the directory

11 .CKACF create files in the directory
TOPS-20 Version 5 3-45

t directory number to
is being checked 1is

user whose access 1is
o Section 2.7.1.)

y name string (with
t directory number of
ng the files being
N) of ACl is on, this
for the file being

es being accessed.
.6.) This word is not
plied in word .CKAUD.

xisting files

April 1982

TOPS-20 MONITOR CALLS

(CHKAC)
CHKAC ERROR MNEMONICS:
CKAX1: Argument block too small
CKAX2: Invalid directory number
CKAX3: Invalid access code
CKAX4: File is not on disk

3-46

TOPS-20 MONITOR CALLS
(CIS)

CIS JSYS 141

Clears the software interrupt system for the current process. Clears
all interrupts in progress and all waiting interrupts.

RETURNS +1: always

Closes

ACCEPTS

RETURNS

If AC1
(with
closed
taken
(400000

TOPS-20 MONITOR CALLS
(CLOSF)

CLOSF JSYS 22

a specific file or all files.
IN ACl: BO(CO%NRJ) do not release the JFN.

B6 (CZ%ABT) abort any output operations currently
being done. Close the file but do not
perform any cleanup operations normally
associated with closing a file. (If
output is to a magnetic tape, for example,
do not output remaining buffers or write
tape marks. If output is to a disk file,
do not change the end-of-file pointer.) If
output is to a new disk file that has not

been closed (and is therefore
nonexistent), the file is closed and then
expunged.

B7(CZ3NUD) do not update the copy of the directory on
the disk. (Refer to CF¥NUD of the CHFDB
call description for further information.)

B18-B35 JFN of the file being closed
(CO%JFN)

+1: failure, error code in ACl
+2: success

contains -1, all files (and all JFNs) at or below this process
the exception of the primary I/0 files and files that cannot be
by this process) are closed. This action is identical to that
on a CLZFF call with ACl containing the process handle .FHSLF
).

The OPENF monitor call can be used to open a specific file.

CLOSF ERROR MNEMONICS:

DES3X1:

DES5X2:

DESX3:

DE5X4:

CL3X1:

CL5X2:

CL5X3:

CL5X4:

Invalid source/destination designator

Terminal is not available to this job

JFN is not assigned

Invalid use of terminal designator or string pointer
File is not open

File cannot be closed by this process

File still mapped

Device still active

TOPS-20 MONITOR CALLS

(CLOSF)
ENQX20: Locked JFN cannot be closed
IOX11: Quota exceeded
I0X34: Disk full
I0X35: Unable to allocate disk - structure damaged

All output errors can occur.

TOPS-20 Version 5 3-49 April 1982

TOPS-20 MONITOR CALLS
(CLZFF)

CLZFF JSYS 34

Closes process' files. Closes all files and/or releases all JFNs at
and/or below a specified process.

ACCEPTS IN ACl: BO(CZ%NIF) do not close files of inferior.
processes

B1(CZ%NSF) do not close files of this process.
B2(CZ%3NRJ) do not release JFNs.

B3(CZ%NCL) do not close any files; only release
nonopen JFNs

B4 (CZ%UNR) unrestrict files opened with restricted
access for specified ©process. The
specified process must be the same as,
or inferior to, the process executing
the call.

B5(CZ%ARJ) wait until file can Dbe <closed, then
close it, and release JFNs.

B6 (CZ%ABT) abort any output operations currently
being done. Close the file but do not
perform any cleanup operations normally
associated with «closing a file (for
example, do not output remaining buffers
or write tape marks 1if output to a

magnetic tape is aborted). If output to
a new disk file that has not been closed
(file is nonexistent) is aborted, the

file is closed and then expunged.

B7(CZ%NUD) do not update the copy of the directory
on the disk. (Refer to CF%NUD of the
CHFDB call description for further
information.)

B18-B35 process handle
(CZ%PRH)
RETURNS +1: always. No action is taken if the call is in any

way illegal.

If ACl1 contains only the process handle L.FHSLF, the action is
identical to that taken on a CLOSF call with ACl containing -1.

Generates an illegal instruction interrupt on error conditions below.
CLLZFF ERROR MNEMONICS:
FRKHX1: Invalid process handle

FRKHX2: Illegal to manipulate a superior process

TOPS-20 MONITOR CALLS

(CLZFF)
FRKHX3: Invalid use of multiple process handle
IOX11: Quota exceeded
I0X34: Disk full
I0X35: Unable to allocate disk - structure damaged

TOPS-20 Version 5 3-51 April 1982

TOPS-20 MONITOR CALLS
(COMND)

COMND JSYS 544

Parses one field of a command that is either typed by a wuser or
contained in a file. When this monitor call is used to read a command
from a terminal, it provides the following features:

1. Allows the input of a command (including the guide words) to
be given in abbreviated, recognition (ESC and CTRL/F), and/or
full input mode.

2. Allows the user to edit his input with the DELETE, CTRL/U,
CTRL/W, and CTRL/R editing keys.

3. Allows fields of the command to be defaulted if an ESC or
CTRL/F is typed at the beginning of any field, or if a field
is omitted entirely.

4., Allows a help message to be given if a question mark (?) 1is
typed at the beginning of any field.

5. Allows input of an indirect file (@file) that contains the
fields for all or the remainder of the command.

6. Allows a recall of the correct portion of the 1last command
(up to the beginning of the field where an error was
detected) if the next command line begins with CTRL/H. The
correct portion of the command is retyped, and the user can
then continue typing from that point.

7. Allows input of a line to be continued onto the next line if
the wuser types a hyphen (-) immediately preceding a carriage
return. (The carriage return is invisible to the ©program
executing the COMND call, although it is stored in the text
buffer.) The user can type the hyphen while he 1is typing a
comment. The comment is then continued onto the next line.

A hyphen not immediately followed by a carriage return is
parsed as ordinary text.

The COMND call allows comments in the command 1line. 3 command line
can contain a comment if the field before the comment has been
terminated and the comment is preceded by an exclamation point or a
semicolon. If the comment starts with an exclamation point, COMND
ignores all text between the exclamation point and either the end of
the 1line or the next exclamation point. If the comment starts with a
semicolon, COMND ignores all text on the remainder of the line.

A command line can contain the name of an indirect command file so
long as the file name comes at the beginning of a field. It must,
however, be the last item on the line, and its contents must complete
the command. The user must follow the name of the indirect command
file (after any recognition is performed) with a carriage return.

If a carriage return does not end the command line immediately after
the name of the indirect command file, the system outputs the message
?INDIRECT FILE NOT CONFIRMED. Also, if the user types a guestion mark
(instead of the file specification of the indirect file) after he
types the at-sign (@) character, the message FILESPEC OF INDIRECT FILE
is output.

TOPS-20 MONITOR CALLS
(COMND)

If the indirect file itself contains an ESC or a carriage return,
COMND treats them as spaces. COMND places the contents of the
indirect file in the text buffer, but does not display them on the
user's terminal.

As the user types his command, the characters are placed in a command
text buffer. This buffer can also include the command line prompt.
Several byte pointers and counts reflect the current state of the
parsing of the command. These pointers and counts are as follows:

1. Byte pointer to the beginning of the prompting-text buffer
(.CMRTY). This pointer is also called the CTRL/R buffer byte
pointer, since a CTRL/R causes COMND to redisplay the prompt
contained 1in this buffer, along with anything the user typed
on the command line before he typed the CTRL/R.

The buffer that contains the prompt need not be contiguous
with the buffer containing the remainder of the command line.

2. Byte pointer to the beginning of the buffer that contains the
user's input (.CMBFP). This is the limit back to which the
user can edit.

3. Byte pointer to the beginning of the next field of the
command line to be parsed (.CMPTR).

4. Count of the space remaining in the text input buffer
(.CMCNT) .

5. Count of the number of characters in the buffer that have not
yet been parsed (.CMINC).

The illustration below is a logical arrangement of the byte pointers
and counts. Remember that the prompting text buffer need not be
adjacent to the text buffer.

.CMCNT

.CMBFP .CMPTR
.CMRTY

These byte pointers and other information are contained in a command
state block whose address is given as an argument to the COMND monitor
call. The .CMINI function initializes these pointers.

TOPS-20 MONITOR CALLS
(COMND)

COMND Parses a command line field by field. COMND substitutes default
values for missing fields in the command line when the user types a
carriage return, ESC, CTRL/F, or question mark. These characters are
called action characters because they cause the system to act on the
command as typed so far. Other characters that terminate a field are
space, tab, slash, comma, and any other nonalphanumeric character.

Normally, parsing does not begin, and the COMND call does not return
control to the program, until an action character is typed. But if
B8 (CM%WKF) is on in word .CMFLG when the COMND call executes, parsing
begins after each field is terminated.

A program parses a command line by repeated COMND calls. Each call
specifies the type of field the program expects to be parsed. The
program supplies this information, placing a function code and any
data needed for the function 1in a function descriptor block. On
successful completion of each call, the byte pointers and counts are
updated in the command state Dblock, and any data obtained for the
field is returned.

The program executing the COMND <call should not reset the byte
pointers in the command state block after it completes parsing a
command line. Tt should set up the command state block before it
begins to parse any commands, and then use the .CMINI function to
initialize the command state block before parsing each command line.
This allows the .CMINI function to use the CTRL/H error-recovery
feature.

If the program resets the pointers and counts in the command state
block, instead of wusing the .CMINI function to do so, use of the
CTRL/H feature is not possible. When a CTRL/H is typed, the .CMINI
function allows recovery from an error in the last command only if the
following are both true:

1. The pointer to the beginning of the user's input (.CMBFP) and
the pointer to the beginning of the next field to be parsed
(.CMPTR) are not equal.

2., The last character parsed in the previous command is not an
end-of-line character.

The COMND call allows the user to delete his typed input with the
DELETE, CTRL/W, and CTRL/U keys without regard to field boundaries.
When the user deletes part of a field that has &lready been parsed,
the COMND <call returns to the program with B3 (CM3%RPT) set in word
.CMFLG, or the program resumes execution at the reparse address
contained in word L.CMFLG of the command state block. This address
should be the place in the program at which parsing of the command

line Dbegins. If this address is zero, the program must test ACl for
this bit, and reparse the <command 1line from the beginning, if
necessary. (See the description of word .CMFLG of the command state
block.)

TOPS-20 MONITOR CALLS
(COMND)

The calling sequence to the COMND call is as follows:

ACCEPTS IN ACl:

RETURNS

AC2:

+1:

add

add
blo

ress of the command state block

ress of the first alternative function descriptor
ck

always (unless a reparse is needed and the right half

of
AC1

AC2

AC3

.CMFLG is nonzero), with

containing flags in the left half and the address
of the command state block in the right half.
The flags are copied from word .CMFLG in the
command state block.

containing either the data obtained for the field
or a monitor call error code if the field could
not be parsed (CM&NOP is on in AC1l).

containing in the left half the address of the
function descriptor block given in the call, and
in the right half the address of the function
descriptor block actually used. Note that the
contents of the right half uniquely identifies
the type of atom that was parsed.

The format of the command state block is shown below.

.CMFLG
.CMIOJ
.CMRTY
.CMBFP
.CMPTR
.CMCNT
.CMINC
.CMABP
.CMABC

.CMGJB

Inp

ut JFN ! Output JFN !
__ 1

Byte Pointer to CTRL/R Text !

Word

Symbol

.CMFLG

.CMIOJ

.CMRTY

.CMBFP

.CMPTR

.CMCNT

.CMINC

.CMABP

TOPS-20 MONITOR CALLS
(COMND)

Command State Block
Meaning

Flag bits in the 1left half, and the reparse
dispatch address in the right half. Some flag
bits can be set by the program executing the COMND
call; others can be set by the COMND call after
its execution. The bits that can be set by the
program are described following the Command State
Block description.

The reparse dispatch address is the 1location to
which control is transferred when a reparse of the
command is needed. This happens when a user edits
characters in a field that was already parsed.

If this field 1is zero, the COMND call sets
B3 (CM%RPT) in the 1left half of this word, and
gives the +1 return when a reparse is needed. The
program must then test the left half of ACl to see
if CM%RPT is set. If it is, the user must reenter
the code that parses the first field of the
command.

The code at the reparse dispatch address should
initialize the program's state to what it was
after the last .CMINI function. This
initialization should include resetting the stack
pointer, closing and releasing any JFNs acquired
since the 1last .CMINI function, and transferring
control to the code immediately following the last
.CMINI function call.

Input JFN in the left half, and output JFN in the
right half. These designators identify the source
for the input of the command and the destination
for the output of the typescript. These
designators are usually .PRIIN (for input) and
.PRIOU (for output).

Byte pointer to the beginning of the prompting
text.

Byte pointer to the beginning of the user's input.
The user cannot edit back past this pointer.

Byte pointer to the beginning of the next field to
be parsed.

Count of the space remaining in the buffer after
the .CMPTR pointer.

Count of the number of unparsed characters in the
buffer after the .CMPTR pointer.

Byte pointer to the atom buffer, a temporary
storage buffer that contains the last field parsed
by the COMND call. The terminator of the field is
not placed in this buffer. The atom buffer is
terminated with a null.

TOPS-20 MONITOR CALLS
(COMND)

Word Symbol Meaning

10 .CMABC The size of the atom buffer in bytes. The atom
buffer should be at least as large as the largest
field the program must parse.

11 .CMGJB Address of a GTJFN argument block. This block
must be at least 16(octal) words long and must be
writable. If a 1longer GTJFN block 1is being
reserved, the count in the right half of word
.GJF2 of the GTJFN argument block must be greater
than four.

The GTJFN block is filled in by the COMND call
with arguments for the GTJFN call if the specified
COMND function reguests a JFN (functions .CMIFT,
.CMOFI, and .CMFIL). The user should store data
in this block on the .CMFIL function only.

The flag bits that can be set by the user in the 1left half of word
.CMFLG in the Command State Block are described below. These bits
apply to the parsing of the entire command and are preserved by COMND
after execution. See the end of the COMND JSYS discussion for the
bits that are returned by COMND in the left half of word .CMFLG.

Bits Supplied in State Block on COMND Call

Bit Symbol Meaning
6 CM%RAI Convert lowercase input to uppercase.
7 CM%XIF Do not recognize the at-sign (@) character as
designating an indirect file; instead
consider the character as ordinary

punctuation. A program sets this bit to
prevent the input of an indirect file.

8 CMSWKF Begin parsing after each field is terminated
instead of only after an action character
(carriage return, ESC, CTRL/F, guestion mark)
is typed. A program sets this bit if it must
change terminal characteristics in the middle
of a command. Turning off echoing during the
input of a password is an example of a use
for this bit.

Use of this bit is not recommended, however,
because terminal wakeup occurs after each
field 1is terminated, thereby increasing
system overhead.

The recommended method of changing terminal
characteristics within a command is to input

the field requiring the special
characteristic on the next line with its own
prompt. For example, 1if a program is

accepting a password, it should turn off
echoing after the .CMCFM function of the main
command and perform the .CMINI function to
type the prompt requesting a password on the
next line.

The format of the

TOPS-20 MONITOR CALLS
(COMND)

function descriptor block is shown below.

0 9 17 18 35
1 ==3=============!
! function ! function ! address of next function !
.CMFNP! code ! flags ! descriptor block !
T T R 1
.CMDAT! Data for specific function !
e e 1
.CMHLP! Byte pointer to help text for field !
e e et e e 1
.CMDEF! Byte pointer to default string for field !
et = 1
.CMBRK! Address of 4-word break mask !
'==.’=============!
Function Descriptor Block
Word Symbol Meaning

0 .CMFNP Function code and pointer to next function

descriptor block.

B0-B8 (CM%FNC) Function code

B9-B17(CM%FFL) Function-specific flags

B18-B35(CM%LST) Address of the next function
descriptor block, or zero if this
is the last function descriptor
block.

1 .CMDAT Data for the specific function, if any.

2 .CMHLP Byte pointer to the help text for this field.
This word can be zero if the program is not
supplying its own help text. CM%HPP must be set
(in word 0) in order for this pointer to be used.

3 .CMDEF Byte pointer to the default string for this field.
This word can be zero if the program is not
supplying its own default string. CM%DPP must be
on in word 0 in order for this pointer to be used.

4 .CMBRK Address of a 4-word break mask that specifies

which characters terminate a field. Word .CMBRK
is ignored unless CM%BRK (B13) is on in word 0 of
the function descriptor block.

The individual words in the function descriptor block are described in
the following paragraphs.

TOPS-20 MONITOR CALLS
(COMND)

Words .CMFNP and .CMDAT of the function descriptor block

Word .CMFNP contains the function code for the field to be parsed, and
word .CMDAT contains any additional data needed for that function.
The function codes, along with any required data for the functions,
are described below.

Code Symbol Meaning

0 .CMKEY Parse a keyword, such as a command name. Word
.CMDAT contains the address of a keyword symbol
table. The keyword table must be in alphabetical
order. See the TBLUK monitor call description for
more information on the format of the keyword
table.

The table entries point to argument blocks. The
right half of the first word of each such block
contains the following bits, which can be set when
B0-B6 of that first word are off and B7(CM%FW) is
set:

B35(CM%INV) Suppress this keyword in the 1list
output on a question-mark (?). The
program can set this bit to include
entries in the table that should be
output as part of the help text
because they are not preferred
keywords. This bit is also used
with the CM%ABR bit to prevent an
abbreviation from being output when
a question mark (?) is typed.

This bit can be set, for example,
to allow the keyword LIST to be
valid, even though the preferred
keyword may be PRINT. The LIST
keyword is not listed in the output
given when a question mark (?) is
typed.

B34 (CM%NOR) Do not recognize this keyword even
if an exact match is typed by the
user and suppress its 1listing in
the 1list output when & question
mark (?) is typed. (Refer to the
TBLUK call description for more
information on using this bit.)

Code

0

Symbol

.CMKEY
(Cont.)

. CMNUM

.CMNOI

TOPS-20 MONITOR CALLS
(COMND)

Meaning

B33 (CM%ABR) Consider this keyword a valid
abbreviation for another entry in
the table. The right half of this
table entry points to the command
table entry of the keyword for
which this is an abbreviation. The
program can set this bit to include
entries in the table that are less
than the minimum unique
abbreviation.

For example, this bit can be set to
include the entry ST (for START) in
the table. If the user then types
ST as a keyword, COMND accepts it
as a valid abbreviation for START
even though there may be other
keywords beginning with ST.

To suppress the output of this
abbreviation in the list of
keywords output when a question
mark (?) is typed, the program must
also set the CMRINV bit.

On a successful return, AC2 contains the address
of the table entry where the keyword was found.

Note that keywords in the table that contain
trailing spaces (such as FORTRAN literals) are not
recognized.

Parse a number. Word .CMDAT contains the radix
(from 2 to 10) of the number. On a successful
return, AC2 contains the number.

Parse a guide word string, but do not return an

error 1if no guide word is input. Guide words are
output if the user terminated the previous field
with ESC. Guide words are not output, nor can

they be input, if the user has caused parsing into
the next field.

For COMND to input a guide word, the guide word
field must be delimited by parentheses. Word
.CMDAT contains a byte pointer to an ASCIZ string
that contains the guide word. This string does
not contain parentheses.

An error is returned only if a guide word is input
that does not match the one expected by the COMND
call.

Code

Symbol

.CMSWI

.CMIFI

.CMOF1I

TOPS-20 MONITOR CALLS
(COMND)

Meaning

Parse a switch., A switch field must begin with a
slash, and can end with a colon or any legal field
terminator.

Word .CMDAT contains the address of a switch
keyword symbol table. (Refer to the TBLUK monitor
call description for the format of the table.)
Switch entries in the keyword table must not
contain a slash. If switch requires a value,
however, its entry must end with a colon.

The data bits CM%INV, CM$%NOR, and CM%ABR, defined
for the .CMKEY function, can also be set on this
function.

On a successful return, AC2 contains the address
of the table entry where the switch keyword was
found.

Parse an input file specification. This function
causes the COMND call to execute a GTJFN call,
which attempts to parse the specification for an
existing file using no default fields. Hyphens in
the file specification are treated as alphanumeric
characters.

The .CMGJB address (word 11 in the command state
block) must be supplied, but the GTJFN block
should be empty. Data stored in the GTJFN block
is overwritten by the COMND JSYS, and GTJFN flags
are set in the GTJFN block.

On a successful return, AC2 contains the JFN
assigned.

See note following .CMFIL function.

Parse an output file specification. This function
causes the COMND <c¢a8ll to execute a GTJFN call,
which parses the specification for either a new or
an existing file. The default generation number
is the generation number of the existing file plus
1. The .CMGJB address must be supplied, but the
GTJFN block should be empty. (Data stored in the
block will be overwritten by the COMND JSYS.
Also, certain GTJFN flags are set.) On a
successful return, AC2 contains the JFN assigned.
Hyphens are treated as alphanumeric characters for
this function.

See note following .CMFIL function.

3-61

Code

Symbol

.CMFIL

TOPS—-20 MONITOR CALLS
(COMND)

Meaning

Parse a general (arbitrary) file specification.
This function causes the COMND call to execute a
GTJFN to attempt to parse the specification for
the file. The .CMGJB address must be supplied,
but data stored in certain words of the GTJFN
block is overwritten by the COMND JSYS and certain
GTJFN flags are set (see note below). On a
successful return, AC2 contains the JFN assigned.
Hyphens are treated as alphanumeric characters for
this function.

Note that portions of the GTJFN block used by
functions .CMOFI, .CMIFI, and .CMFIL are
controlled by COMND. The following 1list shows
which words are under the control of COMND and
which words are under the control of the user:

GTJFN Controlled Characteristics
Word (s) by
.GJGEN COMND 1. .CMOFI sets flags GJ%FOU,

GJgMSG, and GJ%$XTN and
clears all other flags.

2. .CMIFI sets flags GJ%OLD,
and GJ%XTN and clears all
other flags.

3. .GMOFI and .GMIFI zero
the right half of word
.GJGEN.

4, .CMFIL sets flag GJ%XTN
and clears GJ%CFM.

.GJSRC COMND None
.GJDEV -
.GJJFN COMND/
USER Functions .CMIFI AND

.CMOFI give COMND control
of these words. .CMFIL
gives the user control of
these words.

.GJF2 -
.GJBFP COMND None
.GJATR USER Function .CMFIL gives the

user control of this
word. .GJATR 1is not used
for other functions.

Code

10

11

12

13

Symbol

.CMFLD

.CMCFM

.CMDIR

.CMUSR

.CMCMA

TOPS-20 MONITOR CALLS
(COMND)
Meaning

Parse an arbitrary field. This function is useful
for fields not normally handled by the COMND call.

The input, as delimited by the first
nonalphanumeric character, is copied into the atom
buffer; the delimiter is not copied. Note the

following:

1. This function will parse a null field

2. Hyphens are treated as alphanumeric characters
for this function

3. No validation is performed (such as filename
validation)

4. ©No standard help message 1is available (see
description of word .CMHLP, below)

5. The FLDBK. and BRMSK. macros can be used for
including other characters in the field (such
as the asterisk (*) character)

Confirm. This function waits for the user to
confirm the command with a carriage return and
should be used at the end of parsing a command
line.

Parse a directory name. Login and files-only
directories are allowed. Word .CMDAT contains
data bits for this function. The currently

defined bit is as follows:

BO (CM3DWC) Allow wildcard characters to be
typed in a directory name.
On a successful return, AC2
contains the 36-bit directory
number.

Parse a user name. Only 1login directories are

allowed. On a successful return, AC2 contains the
36-bit user number.

Parse a comma. This function sets Bl (CM%NOP-no
parse) in word .CMFLG of the command state block
and returns an error if a comma is not the next
item in the input. Blanks can appear on either
side of the comma. This function 1is wuseful for
parsing a list of arguments.

Code

14

15

16

17

Symbol

.CMINI

.CMFLT

.CMDEV

.CMTXT

TOPS-20 MONITOR CALLS
(COMND)

Meaning

Initialize the command line by setting up internal
monitor pointers, typing the prompt, and checking
to see if the user typed CTRL/H. This function
should be used before beginning of parsing a
command line, but not before reparsing a 1line.
Reinitializing the command line with this function
before starting to reparse the command line
prevents the use of the CTRL/H feature.

To use this function, the wuser first moves the
needed data into the command state block and then
issues .CMINI. 1If an error occurs while a line is
being parsed, .CMINI is issued again by the COMND
JSYS to reinitialize the line.

For the second and all subsequent .CMINI function
calls for a given line, the vuser should not alter
the byte pointers and character counts in the
command state block. To do so would disable the
CTRL/H feature. This feature allows the user
program, on parsing a bad atom, to print an error
message, reissue the prompt, and parse the command
line again without forcing the user to retype the
entire line.

If .CMINI reads a CTRL/H character, .CMINI resets
all Dbyte pointers and character counts except the
.CMINC count to their original state. .CMINI sets
the .CMINC count to the number of characters in
the buffer up to the bad atom. These characters
are output to the terminal and parsed again.
Control then passes to the reparse address (if
provided), and normal parsing resumes. The effect
on the program is as if the bad atom had never
been typed.

Parse a floating-point number. On a successful
return, AC2 contains the floating-point number.

Parse a device name. A device name consists of up
to six alphanumeric characters terminated by a
colon (":"). On a successful return, AC2 contains
the device designator.

Parse the input text wup to the next carriage
return, place the text in the atom buffer, and
return. If an ESC or CTRL/F is typed, it causes
the terminal bell to ring (because recognition is
not available with this function) and is otherwise

ignored. If a question mark (?) is typed, an
appropriate response is given, and the question
mark (?) 1is not included in the atom buffer. (A

question mark can be included in the input text if
it is preceded by a CTRL/V.)

Code

20

21

22

Symbol

.CMTAD

.CMQST

.CMUQS

TOPS-20 MONITOR CALLS
(COMND)

Meaning

Parse a date and/or time field according to the
setting of bits CM%IDA and CM3ITM. The user must
input the field as requested. Any date format
allowed by the IDTIM call can be input. If a date
is not input, it is assumed to be the current
date. If a time is not input, it is assumed to be
00:00:01. When both the date and time fields are
input, they must be separated by one or more
spaces. If the fields are input separately, they
must be terminated with a space or carriage
return. Word .CMDAT contains bits in the 1left
half and an address in the right half as data for
the function. The bits are:

BO (CM%IDA) Parse a date

B1(CM%ITM) Parse a time

B2 (CM%NCI) Do not convert the date and/or time to
internal format. (Refer to Section
2.9.2.)

The address in the right half is the beginning of
a three-word block in the caller's address space.
On a successful return, this block contains data
returned from the IDTNC call executed by COMND if
B2 (CM2NCI) was on in the COMND call (if the input
date and/or time field was not to be converted to
internal format). If B2(CM%NCI) was off 1in the
COMND <call, on a successful return, AC2 contains
the internal date and time format.

Parse a quoted string up to the terminating quote.
The delimiters for the string must be double
quotation marks and are not copied to the atom
buffer. A double quotation mark is input as part
of the string if two double quotation marks appear
together. This function is useful if the legal
field terminators and the action characters are to
be included as part of a string. The characters
?, ESC, and CTRL/F are not treated as action
characters, and are included in the string stored
in the atom buffer. Carriage return is an invalid
character in a quoted string and causes Bl (CM%NOP)
to be set on return.

Parse an unguoted string up to one of the
specified break characters. Word .CMDAT contains
the address of a 4-word block of 128 break
character mask bits. (Refer to word .RDBRK of the
TEXTI call description for an explanation of the
mask.) The characters scanned are not placed in
the atom buffer. On return, .CMPTR is pointing to
the break character. This function is useful for
parsing a string with an arbitrary delimiter. The
characters ?, ESC, and CTRL/F are not treated as
action characters (unless they are specified in
the mask) and can Dbe included in the string.
Carriage return can also be included if it is not
one of the specified break characters.

Code

23

24

25

Symbol

.CMTOK

.CMNUX

.CMACT

.CMNOD

TOPS-20 MONITOR CALLS
(COMND)

Meaning

Parse the 1input and compare it with a given
string. Word .CMDAT contains the byte pointer to
the given string. This function sets Bl (CM3NOP)
in word .CMFLG of the command state block and
returns if the next input characters do not match
the given string. Leading blanks in the input are
ignored. This function 1is useful for parsing

single or multiple character operators (e.g., + or
**) .

Parse a number and terminate on the first
nonnumeric character. Word .CMDAT contains the
radix (from 2 to 10) of the number. On a

successful return, AC2 contains the number. This
function is useful for parsing a number that may
not be terminated with a nonalphabetic character
(e.g., 100PRINT FILEA).

Note that nonnumeric identifiers can begin with a
digit (for example, 1SMITH as a user name). When
a nonnumeric identifier and a number appear as
alternates for a field, the order of the function
descriptor Dblocks 1is important. The . CMNUX
function, if given first, would accept the digit
in the nonnumeric identifier as a valid number
instead of as the beginning character of a
nonnumeric identifier.

Parse an account string. The input, as delimited
by the first nonalphanumeric character, is copied
into the atom buffer; the delimiter 1is not
copied. No verification is performed nor is any
standard help message available. The length of
the string 1is checked, and if it exceeds 39
characters, an error is generated.

Parse a network node name. A node name consists
of up to six alphanumeric characters followed by 2
colons ("::"). The node name must begin with an
alphabetic character. Lowercase characters are
converted to uppercase characters. The node name
is copied into the atom buffer without the colons.

In addition to the function code in bits 0-8 (CM$%FNC), .CMFNP also
function-specific flag bits in bits 9-17 (CM%FFL), and the
address of another function descriptor block in bits 18-35 (CM%LST).

contains

TOPS-20 MONITOR CALLS
(COMND)

The flag bits that can be set in bits 9-17 (CM3FFL) are as follows:
Bit Symbol Meaning

12 CMENSF Indicates that a suffix is optional. This bit is
meaningful only with the .CMDEV and .CMNOD
functions. If this bit is not set, the suffix 1is
required.

13 CM%BRK Notifies COMND that word .CMBRK of the function
descriptor block contains a pointer to a 4-word
break mask. See description of word .CMBRK for
more details.

14 CM%PO The field is to be parsed only, and the field's
existence is not to be verified. This bit
currently applies to the .CMDEV, .CMDIR, .CMNOD,
and LCMUSR functions and 1is ignored for the
remaining functions. On return, COMND sets
Bl (CM%NOP-no parse) only if the field typed is not
in the correct syntax. Also, data returned in AC2
may not be correct.

15 CM3HPP A byte pointer to a program-supplied help message
for this field is given in word 2 (.CMHLP) of this
function descriptor block.

16 CM%DPP A Dbyte pointer to a program-supplied default
string for this field is given in word 3 (.CMDEF)
of this function descriptor block.

17 CM%SDH The output of the default help messeage is to be
suppressed if the wuser types a guestion mark.
(See below for the default messages.)

The address of another function descriptor block can be given in bits
18-35 (CMRLST) of the .CMFNP word. The use of this second descriptor
block is described below.

Usually one COMND call is executed for each field in the command.
However, for some fields, more than one type of input may be possible
(e.g., after a keyword field, the next field could be a switch or a
filename field). In these cases, all the possibilities for a field
must be tried in an order selected to test unambiguous cases first.

When the COMND call cannot parse the field as indicated by the
function code, it does one of two things:

1. It sets the current pointer and counts such that the next
call will attempt to parse the same input over again. It
then returns with Bl (CM3NOP) set in the 1left half of the
.CMFLG word in the command state block. The caller can then
issue another COMND call with a function <code indicating
another of the possible fields. After the execution of each
call, the caller should test the CM%NOP flag to see that the
field was parsed successfully.

2. If an address of another function descriptor block is given
in CM%LST, the COMND call moves to this descriptor block
automatically and attempts to parse the field as indicated by
the function code contained in BO-B8(CM%FNC) in word .CMFNP
of that block. If the COMND call fails to parse the field
using this new function code, it moves to a third descriptor
block if one is given. This sequence continues until either

TOPS~-20 Version 5 3-67 April 1982

TOPS-20 MONITOR CALLS
(COMND)

the field 1is successfully parsed or the end of the chain of
function blocks is reached. Upon completion of the COMND
call, AC3 contains the addresses of the first and last
function blocks used.

By specifying a chained list of function blocks, the program can have
the COMND call automatically check all possible alternatives for a
field and not have +to issue a separate <call for each one. In
addition, 1if the user types a question mark, a list is output of all
the alternatives for the field as indicated by the 1list of function
descriptor blocks.

Word .CMHLP of the function descriptor block

This word contains a byte pointer to a program-supplied help text.
The COMND call outputs this help if the user types a question mark
when entering a command field. Bit 15(CM3HPP) must be set in word O
(.CMFNP) of the function descriptor block for this pointer to be used.

If B17(CM%SDH) is set in this word, COMND outputs only the
program-supplied message. If B17(CM%SDH) is not set, COMND appends
the default help message to the program-supplied message, and outputs
them both.

If .CMHLP is zero, COMND outputs only the default message.
The default help message depends on the particular function being used
to parse the <current field. The following table lists the default

help message for each function available in the COMND call.

Default Help Messages

Function Message

.CMKEY (keyword) one of the following
followed by the alphabetical 1list of wvalid
keywords. If the user types a question mark

in the middle of the field, only the keywords
that can possibly match the field as
currently typed are output. If no keyword
can possibly match the currently typed field,
the following message is output:

keyword (no defined keywords match this input)

If there 1is only 1 keyword, the keyword
becomes the HELP message.

.CMNUM (number) The help message output depends on the radix

specified in .CMDAT in the descriptor block.

If the radix is octal, the help message is
octal number

If the radix is decimal, the help message is
decimal number

If the radix is any other radix, the help

message is
a number in base nn

where nn is the radix.

Function

.CMNOI

.CMSWI

.CMIFI
.CMOFI
.CMFIL

.CMFLD
.CMCFM
.CMDIR
.CMUSR
.CMCMA
.CMINI
.CMFLT
.CMDEV
.CMTXT

.CMTAD

.CMQST

.CMUQS

.CMTOK
.CMNUX
.CMACT

.CMNOD

(guide word)

(switch)

(input file)
(output file)
(any file)

(any field)
(confirm)
(directory)
(user)
(comma)

(initialize)

(floating point)

(device)
(text)

(date)

(quoted)

(unquoted)

(token)
{number)
(account)

(node)

TOPS-20 MONITOR CALLS
(COMND)
Message

None

one of the following

followed by the alphabetical 1list of wvalid
switch keywords. The same rules apply as for
.CMKEY function, above.

The help message output depends on the
settings of certain bits in the GTJFN call.
If bit GJI%OLD is off and bit GJ%FOU 1is on,
the help message is

output filespec
Otherwise, the help message is
input filespec

None

confirm with carriage return

directory name

user name

comma

None

number

device name

text string

The help message depends on the bits set in
.CMDAT in the descriptor block. If CMRIDA is

set, the help message is
date

If CM%ITM is set, the help message is
time

If both are set, the help message is
date and time

Quoted string

Unguoted string if "?" is a break
otherwise none

character,

None
Same as .CMNUM
None

node name

TOPS-20 MONITOR CALLS
(COMND)

Word .CMDEF of the function descriptor block

This word contains a byte pointer to the ASCIZ string to be used as
the default for this field. For this pointer to be used, bit 16
(CM3%DPP) must be set in word 0 (.CMFNP) of the descriptor block. The
string 1is output to the destination, as well as copied to the text
buffer, if the user types an ESC or CTRL/F as the first nonblank
character 1in the field. If the user types a carriage return, the
string is copied to the atom buffer, but 1is not output to the
destination.

When the caller supplies a list of function descriptor blocks, the
byte pointer for the default string must be included in the first
block. The CM%DPP bit and the pointer for the default string are
ignored when they appear in subsequent blocks. However, the default
string can be worded so that it applies to any of the alternative

fields. The effect 1is the same as if the user had typed the given
string.

Defaults for fields of a file specification can also be supplied with
the JCMFIL function. If both the byte pointer to the default string
and the JFN defaults have been provided, the COMND default 1is wused
first, and then, if necessary, the GTJFN defaults are used.

NOTE

The function descriptor block, whose
address is given in AC2, can be set up
by the FLDDB. and FLDBK. macros defined

in MACSYM. (See the end of the COMND
section for a description of these
macros.)

Word .CMBRK of the function descriptor block

This word contains a pointer to a 4-word user-specified mask that
determines which characters constitute end of field. The leftmost 32
bits of each word correspond to a character in the ASCII <collating
sequence (in ascending order). If the bit 1is on for a given
character, typing that character causes the COMND JSYS to treat the
characters +typed so far as a separate field and to parse them
according to the function being used. CM%BRK (B13) must be on in the
first word of the function descriptor block, or COMND ignores word
.CMBRK.

Ordinarily, the wuser vrelies on COMND's default masks (varying
according to function) to specify which characters signal end of
field, and thus is not concerned with word .CMBRK of the function

block. But for special purposes such as allowing "*" or "%" to be
part of a field, rather than a field delimiter, the user must specify
his own mask. (In this example, the bits for "*" and "%" would be off

in the mask word.) The user may inspect COMND's default masks (defined
in MONSYM) for help in designing a custom mask.

TOPS-20 MONITOR CALLS
(COMND)

The following is a list of the COMND functions that use masks:

Mask
Symbols

KEYB0O. - KEYB3.
DEVB0. - DEVB3.
FLDBO. - FLDB3.
EOLBO. - EOLB3Z.
KEYBO. - KEYB3.
User-specified
USRBO. ~ USRB:.
FILBO. - FILB3.
FILBO. - FILB3.
FILBO. - FILBZ3.
internal

FILBO. - FILB:Z.
internal

ACTBO. - ACTB:Z.

COMND Changeable
Function by User
.CMKEY Yes

.CMDEV Yes (only if parse-only)
.CMFLD Yes

.CMTXT Yes

.CMSWI Yes

.CMDAT Yes

.CMUSR No

.CMFIL No

.CMIFI No

.CMOFI No

.CMNUM No

.CMDIR No

.CMFLT No

.CMACT No

COMND will ignore any break masks that are specified for functions
that do not allow user-modified masks.

Note that specifying a zero mask with CM%BRK set will cause the TTY

line buffer to fill

up and gcnerate an error.

On a successful return, the COMND call returns flag bits in the 1left
half of ACl1 and preserves the address of the command state block in
the right half of ACl. These flag bits are copied from word .CMFLG in
the command state klock and are described as follows.

Bit Symbol
0 CM%ESC
1 CMENOP
2 CM3EOC
3 CM&RPT
4 CM&SWT
5 CM%$PFE

Bits Returned on COMND Call
Meaning

An ESC was typed by the user as the terminator for
this field.

The field could not be parsed because it did not
conform to the specified function(s). An error
code is returned in AC2. If this bit is set, bits
0 (CM%ESC) and 2 (CM%EOC) might not contain valid
information.

The field was terminated with a carriage return.

Characters already parsed need to be reparsed
because the user edited them. This bit does not
need to be examined if the program has supplied a
reparse dispatch address in the right half of
.CMFLG in the command state block.

A switch field was terminated with a colon. This
bit is on if the user either used recognition on a
switch that ends with a colon or typed a colon at
the end of the switch.

The previous field was terminated with an ESC.

TOPS-20 MONITOR CALLS
(COMND)

When a field cannot be parsed, B1(CM%NOP) is set in ACl, and one of
the following error codes is returned in AC2. Note that if a list of
function descriptor blocks is given and an error code is returned, the
error is associated with the function that had the largest atom buffer
after all function blocks have been tried without a successful parse
of the field.

NPXAMB: ambiguous

NPXNSW: not a switch - does not begin with slash
NPXNOM: does not match switch or keyword

NPXNUL: null switch or keyword given

NPXINW: invalid guide word

NPXNC: not confirmed

NPXICN: invalid character in number

NPXIDT: invalid device terminator

NPXNQS: not a quoted string - does not begin with double quote

NPXNMT: does not match token

NPXNMD: does not match directory or user name

NPXCMA: comma not given

COMX18: invalid character in node name

COMX19: too many characters in node name
Macros

Several macros (defined in MACSYM) are available to make wusing the
COMND JSYS more convenient. These macros are as follows:

FLDDB. (TYP,FLGS,DATA,HLPM,DEFM,LST)

where:

TYP = function type

FLGS = function flags

DATA = function-specific data

HLPM = help message

DEFM = default text

LST = additional invocations of the FLDDB. macro (used only if

multiple function blocks are required)

This macro generates function descriptor blocks for COMND. For
example, the following code performs a .CMINI function:

MOVEI T1,STEBLK ;Get address of COMND state block
MOVEI T2, [FLDDB. (.CMINI)] ;Get address of function block
COMND

TOPS-20 MONITOR CALLS

(COMND)
The following code performs a .CMKEY function (assuming that
the keyword table started at address CMDTAB:
MOVEI T1,STEBLK ;Get address of COMND state block

MOVEI T2, [FLDDB(.CMKEY,<CM%DPP+CM%HPP>,CMDTARB,
<help text>,<default text>)]
COMND

FLDBK. (TYP,FLGS,DATA ,HLPM,DEFM,BRKADR,LST)

This is exactly the same as FLDDB., except that a provision has
been made for the address of the first word of a 4-word
character mask (BRKADR). This version 1is for wuse when a

user-specified character mask is required.

BRMSK. (INIO,INI1,INI2,INI3,ALLOW,DISALLOW)

where:

INIO = first word of character mask
INI1 = second word of character mask
INI2 = third word of character mask
INI3 = fourth word of character mask

ALLOW = characters to allow in the mask
DISALLOW = characters to disallow in the mask

This macro generates 4-word character masks for use with

those

COMND functions that allow the user to specify his own mask.

For example, executing the following code allows "*" in
predefined mask for the .CMFLD function (FLDBO thru BLDB3):

BRMSK. (FLDBO. ,FLDBl. ,FLDB2. ,FLDB3.,<*>,)

the

Also, the BRMSK. macro may be invoked within the FLDBK. macro:

FLDBK. (TYP,FLGS,DATA ,HLPM,DEFM, |
BRMSK., (INIO,INT1,INI2,INI3,ALLOW,DISALLOW)] ,LST)

The COMND call causes other monitor calls to be executed, depending on
the particular function that 1is requested. Failure of these calls
usually results in the failure to parse the requested field. 1In these
cases, the relevant error code can be obtained by the GETER and ERSTR

monitor calls.

Any TBLUK error can occur on the keyword and switch functions.

Any NIN/NOUT and FLIN/FLOUT error can occur on the
functions.

Any GTJFN error except for GJFX37 can occur on the
specification functions.

Any IDTNC error can occur on the date/time function.

Any RCDIR or RCUSR error can occur on the directory and
functions.

Any STDEV error can occur on the device function.

number

file

user

TOPS-20 MONITOR CALLS
(COMND)
Generates an illegal instruction interrupt on error conditions below.
COMND ERROR MNEMONICS:
COMNX1: Invalid COMND function code
COMNX2: Field too long for internal buffer

COMNX3: Command too long for internal buffer

COMNX5: Invalid string pointer argument
COMNX8: Number base out of range 2-10
COMNX9: End of input file reached
COMX10: Invalid default string

COMX11: Invalid CMRTY pointer

COMX12: Invalid CMBFP pointer

COMX13: Invalid CMPTR pointer

COMX14: Invalid CMABP pointer

COMX15: Invalid default string pointer

COMX16: Invalid help message pointer

COMX17: Invalid byte pointer in function block

VACCX1: Account string too long

TOPS~20 MONITOR CALLS

(CRDIR)
CRDIR JSYS 240
Creates, changes, or deletes a directory entry.

RESTRICTIONS:
enabled.

ACCEPTS IN AC1l:
and

byte pointer to ASCIZ string containing the
directory name.

some functions reguire WHEEL or OPERATOR capabilities

structure

The string must be of the form:

structure:<directory>.

AC2: BO(CD%LEN) set flags and 1length of the argument

block from the wvalues given in word
.CDLEN.

Bl (CD%PSW)} set password from argument block

B2 (CD%LIQ) set working disk storage 1limit from
argument block

B3 (CD%PRV) set capability bits from argument block

B4 (CD3MOD) set mode bits from argument block

B5(CD%LOQ) set permanent disk storage 1limit from
argument block

B6 (CD%NUM) set directory number from argument block
(valid only when creating a directory)

B7 (CD%FPT) set default file protection from argument
block

BB (CD%DPT) set directory protection from argument
block

B9 (CD%RET) set default retention count from argument
block

B10(CD%LLD) set last LOGIN date from argument block

B11(CD%UGP) set user groups from argument block

B12 (CD%DGP) set directory groups from argument block

B13(CD%SDQ) set subdirectory gquota from argument
block

B14(CD8%CUG) set user groups assignable by this
directory from argument block

B15(CD%DAC) set default account from argument block

B17 (CD%DEL) delete this directory entry

B18-B35(CD%APB) address of the argument block

AC3: byte pointer to ASCIZ string containing the password
of the directory. This pointer is required when a
nonprivileged user is <changing parameters for his

directory.

TOPS-20 Version 5

April 1982

RETURNS

TOPS-20 MONITOR CALLS
(CRDIR)

+1: always, with directory number in AC1l

This monitor call requires the process to have WHEEL or OPERATOR
capability enabled unless one of the following conditions is true:

1.

The specified directory is one to which the caller has owner

access, and the caller is changing any one of the following
parameters:

password (.CDPSW)

default file protection (.CDFPT)
directory protection (.CDDPT)
default retention count (.CDRET)
default account (.CDDAC)

This feature is installation dependent and 1is enabled by
issuing function .SFCRD of the SMON monitor call.

The specified directory is inferior to the one to which the
caller 1is <currently connected, and the caller has owner
access to this inferior directory.

Refer to Section 2.2.6 for the description of owner access.

The format of the argument block is as follows:

Word

0

Symbol Meaning

.CDLEN flag bits in the left half, and length of the
argument block in the right half. The
following bits are defined:

BO (CD%NSQ) When restoring this directory, do
not update its superior directo-
ry's quotas (permanent, working,
and subdirectory guotas) to
account for this directory. If
this bit is off, the superior di-
rectory's quotas are updated.
This bit is set by the DLUSER or
DUMPER program to retain the
superior directory's quotas when
restoring its subdirectories.
The process must have WHEEL or
OPERATOR capability enabled to
set this bit.

Bl (CD%NCE) When restoring or reconstructing
this directory, do not change any

directory parameters if the
directory currently exists on
disk; set the parameters only if

the directory does not exist. If
this bit is off, the directory
parameters as saved are restored
for the directory. This bit 1is
set by the DLUSER or DUMPER
program to restore or reconstruct
directories from out-of-date
files without <causing existing
directories to revert to older
parameters. The process must
have WHEEL or OPERATOR capability
enabled to set this bit.

TOPS-20 MONITOR CALLS

(CRDIR)
Word Symbol Meaning
0 .CDLEN B2 (CD$NED) Set default on-line expiration
(Cont.) date from word .CDDNE. Currently

not implemented.

B3 (CD%FED) Set default on-line expiration
date from word .CDDFE. Currently
not implemented.

1 .CDPSW byte pointer to password string, which 1is a
string from 1 to 39 alphanumeric characters
(including hyphens).

2 .CDLIQ maximum number of pages that can be used for
working disk storage (also known as logged-in
guota).

3 .CDPRV capabilities for this |user. (Refer to

Section 2.7.1 for the capability bits.)

4 . CDMOD mode word.

BO (CD%DIR) directory name can be used only
to connect to (the directory is a
files-only directory). If this
bit is off, the directory name
can be used for logging in and
connecting to.

B1 (CD%ANA) accounts are alphanumeric. This
bit is not used and is provided
for compatibility with systems
earlier than TOPS-20 version 3.

B2 (CD%RLM) all messages from the file
<SYSTEM>MAIL.TXT are repeated
each time the user logs in. If
this bit is off, only the
messages not previously printed
are output when the user logs in.

B7 (CD%DAR) If on, this bit indicates that
the file should be archived
rather than migrated to wvirtual
disk when the on-line expiration
date has been reached.

5 .CDLOQ maximum number of pages that can be used for
permanent disk storage (also known as
logged-out guota).

6 .CDNUM directory number, valid only when creating a
directory. An error code is returned if the
user changes the number of an existing
directory (CRDIX2) or gives a nonunique

number (CRDIXS8).

7 .CDFPT default file protection (18 bits,
right-justified).

TOPS-20 Version 5 3-77 April 1982

TOPS-20 MONITOR CALLS
(CRDIR)

Word Symbol Meaning

10 .CDDPT directory protection (18 bits,
right-justified).

11 .CDRET default number of generations of a file to be
retained in the directory (retention count).
Valid numbers are 0 to 63, with 0 being an
infinite number.

12 .CDLLD date of last login.

13 .CDUGP address of user group list for this
directory.

14 .CDDGP address of directory group list.

15 .CDSDQ maximum number of directories that can be

created inferior to this directory. This
parameter allows a user to create directories
with the BUILD command.

16 .CDCUG address of user group 1list. This list
contains the group numbers that can be
assigned to subdirectories.

17 .CDDAC byte pointer to default account string for
this user.

20 .CDDNE default on-line expiration date and time,
which can be an explicit date and time
(internal format) or an interval (in days).
In either case, the specified date/interval
cannot exceed the system maximum. This
parameter is read if CDSNED (1B2) or CDSFED
(1B3) in .CDLEN are set. TIf a new directory
is created and this parameter is not
specified, the system default is used.

20 .CDDNE An unprivileged user can modify his defaults
to be less than or egual to those that are
currently specified or the system maximum,
whichever is greater.

This word is currently reserved and 1is not
implemented.

21 .CDDFE default off-line expunge date and time.
Otherwise similar to .CDDNE (above).

This word is currently reserved and 1is not
implemented.

The format of each group 1list is a table with the first word
containing a count of the number of words (including the count word)
in the table and each subsequent word containing a group number.

When CRDIR is being executed to create a directory, bits 0-17 of AC2
can optionally be on or off. If a particuler bit is on, it indicates
that the corresponding argument in the argument block should be
examined. If the bit is off, it indicates that the argument should be
defaulted.

TOPS-20 MONITOR CALLS

(CRDIR)
The following table lists the bits and the corresponding argument
defaults:
Bits Argument Defaults

B2 (CD%LIQ)

maximum working disk file storage to 250 pages

B3 (CD%PRV) no special capabilities

B4 (CD%MOD) directory name that can be used for 1logging in and
that 1lists the messages from <SYSTEM>MAIL.TXT only
once

B5 (CD%LOQ)

maximum permanent disk file storage to 250 pages
B6 (CDENUM)

the first wunused directory number. B6 should
normally be off.

default file protection to 777700
directory protection to 777700

default file retention count to 1

never logged in

no user groups

no directory groups

no ability to create inferior directories

no assignable user groups for inferior directories
no default account

B7 (CDSFPT)
B8 (CD3DPT)
B9 (CDSRET)
B10 (CD$LLD)
B11 (CD%UGP)
B12 (CD%DGP)
B13(CD%SDQ)
B14 (CD%CUG)
B15 (CD%DAC)

When CRDIR is being executed to change a directory and any of B0-B1l7
of AC2 is off, the corresponding parameter is not affected.
When CRDIR is being executed to delete a directory, the settings of

B0-B17 of AC2 are ignored. A CRDIR call cannot be given to delete a
directory that has directories inferior to it.

The GTDIR call can be used to obtain the directory information.
Generates an illegal instruction interrupt on error conditions below.

CRDIR ERROR MNEMONICS:

ACESX3: Password required

CRDIX1: WHEEL or OPERATOR capability required

CRDIX2: Illegal to change number of o0ld directory

CRDIX3:. Insufficient system resources (Job Storage Block full)

CRDIX4: Superior directory full

CRDIX5: Directory name not given

CRDIX6: Directory file is mapped

CRDIX7: File(s) open in directory

CRDIXS8: Invalid directory number

CRDIX9: Internal format of directory is incorrect

CRDI1O0: Maximum directory number exceeded; index table needs
expanding

CRDI11: Invalid terminating bracket on directory

CRDI12: Structure is not mounted

CRDI13:

Request exceeds superior directory working quota

3-79

CRDI1l4:
CRDI15:
CRDI16:

CRDI17:

CRDI18:
CRDI19:
CRDI20:
CRDI21:
CRDI22:
CRDI23:

CRDI24:

TOPS-20 MONITOR CALLS
(CRDIR)
Reguest exceeds superior directory permanent quota
Reguest exceeds superior directory subdirectory quota
Invalid user group

Illegal to create nonfiles-only subdirectory
files-only directory

Illegal to delete logged-in directory
Illegal to delete connected directory
WHEEL, OPERATOR, or requested capability required

Working space insufficient for current allocation

under

Subdirectory quota insufficient for existing subdirectories

Superior directory does not exist

Invalid subdirectory gquota

TOPS—-20 MONITOR CALLS
(CRJOB)

CRJOB JSYS 2

Creates a new job and optionally logs it in. This monitor call causes
the functions that are normally performed when a job is created (for
example, assignment of a JSB, the primary I/0 designators, and the job
controlling terminal) to be performed for the new job.

RESTRICTIONS: some functions require WHEEL or OPERATOR capabilities
enabled.

When this call is used 1in any section other than
section zero, one-word global byte pointers used as
arguments must have a byte size of seven bits.

ACCEPTS IN ACl: flag bits,,0
AC2: adcress of argument block
AC3: (optional) If CRJOB is to be used to release control
over a job previously created with CRJOB (bit 17 in
ACl must be on), then AC3 contains the job number of
the previously-created job.
RETURNS +1: failure, with error code in AC1
+2: success, with the number of the new job in AC1
The flag bits defined in the left half of ACl are as follows:
Bit Symbol Meaning

0 CJI%LOG Log in the new job. If this bit is off, the new
job is created but not logged in.

1 CJ$NAM Set the user name and password from the argument
block. If this bit is off, the user name of the
caller is given to the new job.

2-3 CJ%ACT Set the account of the new job to the following:
Code Symbol Meaning
0 .CJjuca Use current account of caller.
1 .CJUAA Use account from the argument
block.
2 .CJUDA Use default account of user

whose job is being created.

4 CJSETF If set, place the TOPS-20 command processor in the
top-level process of the new job. The command
processor reads its program argument block (see
below) at the time it is started.

CJ%FIL and CJ%ETF interact in the following ways:

1. If CJ%FIL is on and CJ%ETF is on, then a job
is created with a top process consisting of
the TOPS-20 command processor and an inferior
process consisting of the file to which word
.CJFIL points.

TOPS-20 Version 5 3-81 April 1982

Bit

Symbol

CJRETF

TOPS-20 MONITOR CALLS
(CRJOB)

Meaning

2. IF CJ%FIL is off and CJ%ETF is on, then a job
is «created with a top process consisting of
the TOPS-20 command processor. No inferior
process is created.

3. If CJ%FIL is on and CJRETF is off, then a Jjob
is created with a top process consisting of
the file to which word .CJFIL points. No
inferior process is created.

The format of the program argument block 1is as
follows:
Word Contents

0 Count of words in block, not 1including
this word.

1 1B0+3B6+2B12+CR3PRA - indicates this is
a program argument block created by the
CRJOB JSYS.

2 1BO0 + offsetl - offsetl is the offset in
this block of the first argument being
passed.

3 1B0 + offset2 - offset2 is the offset in
this block of the second argument being
passed.

n (offsetl) This argument is a copy of the

flag bits from word 10 (.CJEXF) of the
CRJOB argument block, which contains the
flags for the command language
processor.

n+1 (offset2) This argument contains
information about the process being
started: the process handle in the left
half, and the entry vector offset in the
right half. The entry vector offset 1is
from word .CJSVF (word 4) of the CRJOB
argument block.

The program argument block is created by the CRJOB
monitor «call and is ©passed to the process by a
PRARG monitor call (performed internally by
CRJOB) . The user does not specify any of the
information in the program argument block. Only
the program at the top fork 1level of the job
(usually the TOPS-20 EXEC) can read the PRARG
block.

Bit

10

11

12

13

Symbol

CISFIL

CJ%ACS

CJI%0OWN

CISWTA

CIENPW

CJ&NUD

CJ%SPJ

cJscap

CJsCaM

TOPS-20 MONITOR CALLS
(CRJOB)

Meaning

Move the file to which a word 1in the argument
block points into a process in the new job (by
means of a GET call). 1If B4(CJ%ETF) is off, the
file is placed in the top-level process of the new
job. If B4 (CJRETF) is on, the file is placed 1in
the process designated 1in the Command Language
Processor's PRARG argument block (see below).

If B5(CJ%FIL) is off, no file is moved into a
process of the new job, and the top-level process
of the new job is the Command Language Processor.

Load the ACs from the value in the argument block.
The ACs are loaded only if a program other than
the Command Language Processor is being run.

Maintain ownership of the new job. This means
that the new Jjob cannot be logged out until the
caller releases ownership of it. If this bit 1is
off, control of the new job is released.

Do not start the new job until it 1is attached
(using ATACH JSYS) to a terminal. If this bit is
off, the new job is started.

Do not check the password given when the new job
is logged in. If this bit is off, the password is
checked unless the new job is being logged in with
the same user name as the caller, or with WHEEL or
OPERATOR capability enabled.

Do not update the date of LOGIN for the user
logging in to the new job. If this bit is off,
the date of LOGIN is updated, unless the user 1is
logging in with the same user name as the caller,
or with WHEEL or OPERATOR capability enabled.

Set (by means of a SPJFN call) the primary input
and output designators from the argument block
before starting the job. The primary I/0
designators are not changed for a Commend Language
Processor in the top-level process of the new job;
they are changed only for inferior processes. If
this bit is off, the primary I/0 designators of
the new job are the job's controlling terminal.

Set the allowed user capaebilities of the new Jjob
(right half) tc be the same as the caller's
currently enabled capabilities, until the new Jjob
is logged in. If this bit is off, the new job has
the user capabilities associated with the user
whose job is being created.

Set the allowed user capabilities of the new job
to the combination of (AND function) the
capability mask in the argument block and the new
job's user capabilities. If this bit is off, the
new job has the capabilities associated with the
user whose job is being created.

Bit

14

17

Symbol

CJI%SLO

CJ3%DSN

TOPS-20 MONITOR CALLS
(CRJOB)

Meaning
Send an IPCF message to the PID supplied in the
argument block when the new job is logged out. If
this bit is off, no message is sent when the new

job is logged out.

The IPCF logout message has the following format:

Word Contents
0 0,,.IPCLO
1 N,,# of job logged out. N is the count

of the remaining words in this message
(currently 10 octal).

2 flags, ,reserved
Bits Symbol Meaning
BO SP%BAT job is <controlled by
batch.
Bl SP%DFS spooling is deferred.
B2 SP%ELO the job executed LGOUT.
B3 SPYFLO the job was forced to
logout. If this bit is
on, check word 10 of the
IPCF message (gives code
of most recent monitor
call error). B3 will be
on only if the job has
an interrupt to be
handled by
MEXEC (Mini-EXEC) .
B4 SP3OLO the job was 1logged out
by another job. Word 6
of the IPCF message
contains the job number
of the job that did the
logout.
3 job connect time
4 job CPU time
5 TTY number of job at 1logout (-1 if
detached)
6 job number of the job that did the
logout
7 reserved
10 code of the most recent monitor call
error

Release ownership of the previously created job
whose number 1is in AC3. If this bit is on, it
overrides the setting of all other bits in ACl;
and no change 1is made to the job's status other
than the change in ownership.

TOPS-20 MONITOR CALLS
(CRJOB)

The format of the argument block (whose address is given in AC2) is as

follows:

Word Symbol
0 .CIJNAM
1 .CIJPSW
2 .CJACT
3 .CJFIL
4 .CISFV
5 LCITTY
6 .CJTIM
7 .CJACS
10 . CJEXF

TOPS-20 Version 5

Meaning
Byte pointer to the user name string.
Byte pointer to the password string.

5B2 + numeric account number or byte pointer to
account string.

Byte pointer to the name of the file +to be
moved (by a GET call) into a process of the new
job. The new job must have read access to the
file. The process into which the file is
placed depends on the setting of B4 (CJRETF).

Offset in the entry vector to use as the start
address of the file to which word .CJFIL
points. This offset is the argument to the
SFRKV call used to start the process.

Terminal designator of the new job's
controlling terminal. This terminal must be
assigned by the caller. The terminal is then
released and assigned to the new job. If the
new Jjob is to Dbe detached, the .NULIO
designator (377777) is given.

Connect-time for new Jjob before a LGOUT is
forced on it; 0 indicates no limit.

Address of a l6-word block whose contents are
to be loaded in the new job's ACs if a program
other than the Commend Language Processor 1is
being run.

Flag bits to be passed to the Command Language
Processor in the top-level process of the new
job. The bits are:

BO Suppress the herald printed by the
Command Language Processor.

Bl Move the file to which word .(CJFIL
points into the process whose handle is
in the PRARG block (see below).

B2 Start the process at the offset in the
entry vector given in word .CJSFV. This
process is started after the Command
Language Processor is initialized.

B3 Output the text printed when a LOGIN
command 1is given (system messages, Jjob
number, or terminal number, for

example).
This word is copied into the PRARG argument

block passed to the Command Language Processor
(see below).

3-85 April 1982

TOPS-20 MONITOR CALLS

(CRJOB)
Word Symbol Meaning
11 .CJPRI Primary input and output designators for the
inferior processes of the new job. These

designators must refer to device designators.
The Command Language Processor in the top-level
process of the new job executes an SPJFN call
to set these designators.

12 .CFCPU Run-time limit for the new job. When this

limit is reached, an interrupt is generated (by
a TIMER <call), and the Command Language
Processor executes a LGOUT call for the new
job. A zero in this word means there 1is no
run-time limit on the job.

13 .CJCAM Capability mask for the new job. This mask 1is

used only if CJ%CAM is set.

14 .CJSLO PID to which an IPCF message is to be sent when

the new job is logged out.

When CRJOB creates a new job, it also creates the top-level process,

which is always a virgin process. Thus, an execute-only program can
be run as the top-level fork.

The CRJOB call
the particular

Any GTJFN
file.

Any SFRKV
specified

Any LOGIN
the job.

causes other monitor calls to be executed, depending on
function that is performed.

and OPENF errors can occur when obtaining the specified

error can occur when starting the ©program in the
file.

and account validation errors can occur when logging in

CRJOB ERROR MNEMONICS:

CRJBX1: Invalid parameter or function bit combination

CRJIBX2: Illegal for created job to enter MINI-EXEC

CRJIBX4: Terminal is not available

CRJIBX5: Unknown name for LOGIN

CRJIBX6: Insufficient system resources

TOPS-20 MONITOR CALLS
(CRLNM)

CRLNM JSYS 502

Defines or deletes a logical name assignment. Logical names are used
to specify a set of default values for each field requested by a GTJFN
monitor call. When a logical name is passed to the GTJFN call, any
fields not specified by the user are supplied from the fields defined
in the logical name definition. (Refer to Section 2.2.2 and to the
INLNM and LNMST monitor <call descriptions for more information on
logical names.)

ACCEPTS IN ACl: function code

AC2: byte pointer to the logical name (A terminating colon
is optional in the logical name.)

AC3: Dbyte pointer to the logical name definition string
RETURNS +1: failure, error code in AC1
+2: success, updated string pointer in AC3

The codes for the functions are as follows:

0 .CLNJ1 delete one logical name from the job

1 .CLNS1 delete one logical name from the system
2 .CLNJA delete all logical names from the job

3 .CLNSA delete all logical names from the system
4 .CLNJB <create a logical name for the job

5 .CLNSY create a logical name for the system

CRLNM ERROR MNEMONICS:

ARGX09: Invalid byte size

CRLNX1: Logical name is not defined

CRLNX2: WHEEL or OPERATOR capability required

CRLNX3: Invalid function

GJFX4: Invalid character in file name

GJFX5: Field cannot be longer than 39 characters

GJIFX6: Device field not in a valid position

GJFX7: Directory field not in a valid position

GJFX8: Directory terminating delimiter is not preceded by a valid
beginning delimiter

GJFX9: More than one name field is not allowed

GJFX10: Generation number is not numeric

GJFX11: More than one generation number field is not allowed

TOPS-20 Version 5 3-87 April 1982

TOPS-20 MONITOR CALLS
(CRLNM)
GJFX12: More than one account field is not allowed
GJFX13: More than one protection field is not allowed
GJFX14: Invalid protection
GJFX15: Invalid confirmation character
GJFX22: Insufficient system resources (Job Storage Block full)

GJFX31: Invalid wildcard designator

TOPS-20 MONITOR CALLS
(CVHST)

CVHST JSYS 276

Converts a host number to a primary name.
RESTRICTIONS: for use with ARPANET only
ACCEPTS IN ACl: destination designator for the ASCIZ string

AC2: host number

RETURNS +1: failure
(Use the GETER call to obtain the error code.)
+2: success, host name string returned to area designated
by AC1

CVHST ERROR MNEMONICS:

CVHST1: No string for that host number

TOPS-20 MONITOR CALLS
(CVSKT)

CVSKT JSYS 275

Converts a local socket number to absolute form.
RESTRICTIONS: for use with ARPANET only
ACCEPTS IN ACl: JFN

RETURNS +1: failure, error code in AC1

+2: success, absolute socket number in AC2

CVSKT ERROR MNEMONICS:

CVHSTI1: No string for that host number
CVSKX1: Invalid JFN
CVSKX2: Local socket invalid in this context

TOPS-20 MONITOR CALLS
(DEBRK)

DEBRK JSYS 136

Dismisses the software interrupt routine in progress and resumes the
process at the location specified by the PC stored in the priority
level table. (Refer to Section 2.6.7.)

RETURNS +1: only if no software interrupt 1is currently in
progress and if an ERJMP or ERCAL instruction follows
the DEBRK

Generates an illegal instruction interrupt on error conditions below.

DEBRK ERROR MNEMONICS:

DBRKX1: No interrupts in progress

TOPS-20 MONITOR CALLS
(DELDF)

DELDF JSYS 67

Reclaims disk space by expunging disk files that have been marked for
deletion with DELF. This call first checks to see that the user has
connect access to the directory. The <calling process must have
connect access to the directory to expunge files from it.

RESTRICTIONS: some functions require WHEEL or OPERATOR capabilities
enabled.

ACCEPTS IN ACl: BO(DD%DTF) delete temporary files (;T) also

Bl (DD%DNF) delete nonexistent files that are not now
open

B2 (DD%RST) rebuild the symbol table

B3 (DD%CHK) check internal consistency of directory.
If an error occurs, the symbol table
should be rebuilt. If B2(DD%RST) is also
set, it 1s 1ignored; and the DELDF call
must be executed agein with B2 (DD%RST) set
to rebuild the symbol table.

AC2: directory number
RETURNS +1: always

The directory number given in AC2 must be that of the user's connected
or logged-in directory wunless the process has WHEEL or OPERATOR
capability enabled, or the process has connect access to the directory
being deleted.

If errors still occur after the symbol table is rebuilt, the process
should restore the directory from magnetic tape; or the user should
request help from the operator.

When a file with archive status is deleted and expunged, DELDF sends
an IPCF message to GALAXY. This message contains all archive status
information, which includes tape information, as well as the present
file name, the wuser who expunged the file, and the time it was
expunged.

Generates an illegal instruction interrupt on error conditions below.
DELDF ERROR MNEMONICS:

ARGX26: File is off line

DELDX1: WHEEL or OPERATOR capability required

DELDX2: Invalid directory number

DELFX2: File cannot be expunged because it is currently open

DELFX4: Directory symbol table could not be rebuilt

TOPS-20 Version 5 3-92 April 1982

DELFX5:
DELFX6:
DELFX7:

DELFX8:

TOPS-20 MONITOR CALLS
(DELDF)
Directory symbol table needs rebuilding
Internal format of directory is incorrect
FDB formatted incorrectly; file not deleted

FDB not found; file not deleted

TOPS-20 MONITOR CALLS
(DELF)

DELF JSYS 26

Deletes the specified disk file and, if the file is closed, releases
the JFN. The file is not expunged immediately, but is marked for
later expunging either by the system or with the DELDF or LGOUT
monritor calls.

RESTRICTIONS: some functions require WHEEL or OPERATOR capabilities
enabled.

ACCEPTS IN ACl: BO(DF%NRJ) do not release the JFN.

Bl (DF$EXP) expunge the contents of the file. This
also deletes the FDB entry in the
directory. BO (DF3NRJ) and Bl (DF%EXP)
cannot be set simultaneously.

B2 (DF3FGT) expunge the file but do not deassign its
addresses. The process must have WHEEL or
OPERATOR capability enabled to set this
bit. This bit should be set only by an
operator or system specialist to delete a
file that has a damaged or inconsistent
index block.

B3 (DF%DIR) delete and expunge a directory file. The
process must have WHEEL or OPERATOR
capability enabled to set this bit. This
bit should be set only by an operator or
specialist to delete a bad directory.

B4 (DF%ARC) allow a file with archive status to be
deleted.

B5 (DF%CNO) delete and expunge the contents of the
file but preserve the file's name and FDB
as they were (with the exception of the
page count and the page table address).
Setting this bit causes the DELF to fail
if bit AR%NDL is set in word .FBBBT of the
FDB, or if a complete set of tape back-up
information is not in the FDB.

B18-B35 JFN of the file being deleted.
(DF$JFN)
RETURNS +1: failure, error code in ACl
+2: success, JFN is released unless BO(DF%NRJ) is on or

the file is open.

By setting BO(DF%NRJ), the user can delete multiple files by giving a
JFN to GNJFN that represents a group of files and processing each file
in the group.

The DELF call takes the +1 return if the JFN 1is assigned to a
nondirectory device.

TOPS-20 MONITOR CALLS

(DELF)
DELF ERROR MNEMONICS:
DESX1: Invalid source/destination designator
DESX3: JFN is not assigned
DESX4: Invalid use of terminal designator or string pointer
DESX7: Illegal use of parse-only JFN or output wildcard-designators I
DESX9: Invalid operation for this device

DELFX1: Delete access required

DELFX2: File cannot be expunged because it is currently opened
DELFX3: System scratch area depleted; file not deleted
DELFX4: Directory symbol table could not be rebuilt

DELFX5: Directory symhol table needs rebuilding

DELFX6: Internal format of directory is incorrect
DELFX7: FDB formatted incorrectly; file not deleted
DELFX8: FDB not found; file not deleted

DELFX9: File is not a directory file

DELF10: Directory still contains subdirectory
DLFX10: Cannot delete directory; file still mapped
DLFX11: Cannot delete directory file in this manner
DELX12: File has no pointer to offline storage
DELX13: File is marked "Never Delete"

WHELX1: WHEEL or OPERATOR capability required

TOPS~-20 Version 5 3-95 April 1982

TOPS-20 MONITOR CALLS
(DELNF)

DELNF JSYS 317

Deletes all but the specified number of generations of a disk file.
The files are marked for deletion and are expunged at a later time,

either automatically by the system or explicitly with the DELDF or
LGOUT call.

ACCEPTS IN ACl: BO(DF3NRJ) do not release the JFN

B4 (DF%ARC) allow a file with archive status to be
deleted.

B5 (DF%CNO) delete and expunge the contents of the
file but preserve the file's name and FDB
as they were (with the exception of the
page count and the page table address).
Setting this bit causes the DELNF to fail
if bit ARSNDL is set in word .FBBBT of the
FDB or if a complete set of tape backup
information is not in the FDB.

B18-B35 JFN of the file being deleted
AC2: the number of generations to retain
RETURNS +1: failure, error code in AC1

+2: success, with the number of files deleted in AC2
Starting at the file specified by the JFN, the DELNF call decrements
the generation number, first retaining the specified number of
generations before deleting the remaining generations.

DELNF ERROR MNEMONICS:

DELX13: File is marked "Never Delete"

DESX1: Invalid source/destination designator

DESX3: JFN is not assigned

DESX4: Invalid use of terminal designator or string pointer

DESX7: Illegal use of parse-only JFN or output wildcard-designators
DELFX1: Delete access required

TOPS-20 Version 5 3-96 April 1982

TOPS-20 MONITOR CALLS
(DEQ)

DEQ JSYS 514

Removes a request for a specific resource from the qgueue associated
with that resource. The request is removed whether the process has a
lock for the resource, or is only waiting in the queue for the
resource.

This call can be used to remove any number of requests. If one of the
requests cannot be dequeued, the dequeueing procedure continues until
all requests that can be dequeued have been. An error return is given
for the 1last request found that could not be degueued. The process
can then execute the ENQC call to determine the current status of each
request. However, 1if the process attempts to dequeue more pooled
resources than it originally allocated, the error return is taken and
none of the pooled resources are dequeued.

Refer to the TOPS-20 Monitor Calls User's Guide for an overview and
description of the Enqueue/Dequeue facility.

RESTRICTIONS: When this call is used in any section other than
section =zero, one-word global byte pointers used as
arguments must have a byte size of seven bits.

ACCEPTS IN ACl: function code

AC2: address of argument block (required only for the
.DEQDR function)

RETURNS +1: failure, error code in ACl
+2: success
The available functions are as follows:
Code Symbol Meaning

0 .DEQDR Remove the specified requests from the queue.
This function 1is the only one requiring an
argument block.

1 .DEQDA Remove all requests for this process from the
queues. This action is taken on a RESET or
LGOUT call. The error return is taken if the
process has not given an ENQ call.

2 .DEQID Remove all requests that correspond to the
specified request identifier (ID). This
function allows the process to release a
class of locks in one call without itemizing
each lock in an argument block. It is useful
when dequeueing in one call the same locks
that were enqueued in one call. To use this
function, the process places the 18-bit
request ID in AC2.

The format of the argument block for function .DEQDR is identical to
that given on the ENQ call. (Refer to the ENQ monitor call
description.) However, the .ENQID word of the argument block 1is not
used on a DEQ call and must be zero.

TOPS-20 Version 5 3-97 April 1982

TOPS-20 MONITOR CALLS

(DEQ)
DEQ ERROR MNEMONICS:
DESX5: File is not open
ENQX1: Invalid function
ENQX2: Level number too small
ENQX3: Request and lock level numbers do not match
ENQX4: Number of pool and lock resources do not match
ENQX6: Requested locks are not all locked
ENQX7: No ENQ on this lock
ENQX9: Invalid number of blocks specified

ENQX10: Invalid argument block length

ENQX11: Invalid software interrupt channel number
ENQX13: Indirect or indexed byte pointer not allowed
ENQX14: Invalid byte size

ENQX15: ENQ/DEQ capability required

ENQX16: WHEEL or OPERATOR capability required
ENQX17: Invalid JFN

ENQX18: Quota exceeded

ENQX19: String too long

ENQX20: Locked JFN cannot be closed

ENQX21: Job is not logged in

DESX8: File is not on disk

TOPS-20 MONITOR CALLS
(DEVST)

DEVST JSYS 121

Translates the given device designator to its corresponding ASCIZ
device name string. The string returned contains only the
alphanumeric device name; it does not contain a colon.
ACCEPTS IN ACl: destination designator

AC2: device designator
RETURNS +1: failure, error code in AC1

+2: success, updated string pointer in ACl, if pertinent

The STDEV monitor call can be used to translate a string to 1its
corresponding device designator.

DEVST ERROR MNEMONICS:

DEVX1: Invalid device designator

DESX1: Invalid source/destination designator
DESX2: Terminal is not available to this job
DESX3: JFN is not assigned

IOX11: Quota exceeded

I0X34: Disk full

I0X35: Unable to allocate disk - structure damaged

TOPS-20 Version 5 3-99 April 1982

TOPS-20 MONITOR CALLS
(DFIN)

DFIN JSYS 234

Inputs a double-precision, floating-point number, rounding if

necessary.
ACCEPTS IN ACl:

RETURNS +1:

+2:

source designator

failure, error code in AC4 and updated string pointer
in AC1, if pertinent.

success, double-precision, floating-point number in
AC2 and AC3 and updated string pointer in ACl, if
pertinent.

DFIN ERROR MNEMONICS:

DESX1: Invalid source/destination designator
DESX2: Terminal is not available to this job
DESX3: JFN is not assigned

DESX5: File is not open

FLINX1: First character is not blank or numeric

FLINX2: Number too small

FLINX3: Number too large

FLINX4: Invalid format

3-100

Outputs a double-

ACCEPTS IN AC1l:

AC2:

AC3:

AC4:

RETURNS +1:

+2:

TOPS-20 MONITOR CALLS
(DFOUT)

DFOUT JSYS 235

precision, floating-point number.
destination designator

first word of a normalized,
floating-point number

second word of a normalized,
floating-point number

double~-precision,

double-precision,

format control word. (Refer to Section 2.9.1.2.)

failure, error code in AC4 and updated string pointer

in AC1, if pertinent.

success, updated string pointer in ACl, if pertinent.

DFOUT ERROR MNEMONICS:

DESX1: Invalid source/destination designator
DESX2: Terminal is not available to this job
DESX3: JFN is not assigned

DESX5: File is not open

FLOTX1: Column overflow in field 1 or 2
FLOTX2: Column overflow in field 3

FLOTX3: Invalid format specified

I0X11: Quota exceeded

I0X34: Disk full

I0X35: Unable to allocate disk - structure damaged
TOPS-20 Version 5 3-101

April 1982

TOPS-20 MONITOR CALLS
(DIAG)

DIAG JSYS 530

Reserves a channel and either a single device or all devices attached
to that channel. This call is also used to release the channel and
its devices. When the request is made, no new activity 1is 1initiated
on the requested channel, and the monitor waits for current activity
on all devices connected to the channel to be completed. When the

channel becomes idle, the process requesting the channel continues
running.

The DIAG JSYS can also be used to get and release memory. The .DGGEM

function 1is wused by the system program TGHA for performing its spare
bit substitution.

RESTRICTIONS: requires WHEEL, OPERATOR, or MAINTENANCE capabilities
enabled.

ACCEPTS IN ACl: negative length of the argument block in the 1left
half, and address of the argument block in the right
half.

RETURNS +1: failure, error code in AC1

+2: success
The available functions are as follows:

Function Symbol Meaning

1 .DGACU Assign the channel and a single device. Release
the device after the time limit specified.

Argument block:

Word Contents

0 function code

1 device address

2 time limit in milliseconds

2 .DGACH Assign the channel and all devices.

Argument block:

Word Contents
0 function code
1 device address

3 .DGRCH Release the channel and all assigned devices.

Argument block:

Word Contents
0 function code
1 device address

3-102

Function

4

100

Symbol

.DGSCP

.DGRCP

.DGGCS

.DGGEM

TOPS-20 MONITOR CALLS
(DIAG)

Meaning

Set up the channel program. The data transfer can
be up to 50 pages. This function locks in memory
the user page to which the channel control word
points. This function also causes the system to
update the Exec Process Table location
corresponding to the channel with the appropriate
channel control word (physical address).

Argument block:

Word Contents

0 function code

1 device address

2 channel control word 0
3 channel control word 1

n+2 channel control word n

Release the channel program. The page for the
specified channel, to which page the channel
control word points, is unlocked. This function

is not reguired before specifying a new channel
program.

Argument block:

Word Contents

0 function code

1 device address

Return the status of the channel. The argument

block contains the logout area for the channel.

Argument block:

Word Contents

0 function code

1 device address

2-5 4-word channel logout area

Get memory (for TGHA).

Argument block:

Word Contents

0 function code

1 first page in user address space

2 first physical memory page

3 number of pages

4 user address of AR/ARX parity trap

routines

3-103

Function

100

Symbol

.DGGEM

(Cont.)

TOPS-20 MONITOR CALLS
(DIAG)

Meaning

Upon successful return, this function accomplishes the following:

101

.DGREM

1.

2.

9.

Rele
Argu
Word

0

TOPS-20 has requested that all of the front
ends refrain from accessing common memory.

The hardware PI system has been turned off;
no scheduling can occur.

The time base and interval timer have been
turned off.

All DTE byte transfers have been completed.
All RH20 activity has ceased.

The designated pages of the ©process address
space have been set up to address the
designated physical memory. Note that this is
not the same as requesting the pages with
PLOCK. With the get memory function, the data
in the physical memory pages have been
retained, and ownership of the pages is
unchanged.

The CSTO entries for each of the designated
physical pages have been saved and set as
follows:

A The age is set to the present age of the
requesting process.

B The process use field is set to all ones.

C The modified bit is set to one.

The entire address space of the requesting
process has been locked in memory. (Actually,
only the pages that existed at the time of the
DIAG call are locked. Therefore, the process
must ensure that all of the ©pages it needs
exist and are private when DIAG is executed.)

The monitor has set up proper dispatch if TGHA
specified an AR/ARX trap address.

ase memory (for TGHA)
ment block:
Contents

function code

3-104

TOPS-20 MONITOR CALLS

(DIAG)
Function Symbol Meaning
102 .DGPDL Inform the monitor that a device previously
unknown to it is now available for use (is now
online). This functon 1is used with devices

interfaced through the DX20 (TX01l, TX03, TXO05,
TU70, or TU72). Argument block:

Word Contents

0 function code

1 primary channel number

2 primary unit number

3 primary controller number (-1 if no
controller)

alternate channel number

alternate unit number (should be same as
primary unit number)

6 alternate controller number (-1 if no
controller)

Ut o

The device address given in some of the argument blocks is a
machine-dependent specification for the channel and device to be
assigned. The devices that can be assigned must be attached to the
RH20 controller and must be mounted by a process with either WHEEL,
OPERATOR, or MAINTENANCE capability enabled. The format of the device
address word is:

! type ! code ! ! ! !

DIAG ERROR MNEMONICS:

DIAGX1: Invalid function

DIAGX2: Device is not assigned

DIAGX3: Argument block too small

DIAGX4: Invalid device type

DIAGX5: WHEEL, OPERATOR, or MAINTENANCE capability required
DIAGX6: Invalid channel command list

DIAGX7: Illegal to do I/0 across page boundary

DIAGX8: No such device

DIAGX9: Unit does not exist
DIAG1O0: Subunit does not exist
DIAG1l1: Device is already on-line

3-105

TOPS-20 MONITOR CALLS
(DIBE)

DIBE JSYS 212

Dismisses the process until the designated file input buffer is empty.
ACCEPTS IN ACl: file designator

RETURNS +1: always

Returns immediately if the designator 1is not associated with a
terminal.

The DOBE monitor call can be used to dismiss the process until the
designated file output buffer is empty.

Generates an illegal instruction interrupt on error conditions below.

DIBE ERROR MNEMONICS:

DESX1: Invalid source/destination designator
DESX3: JFN is not assigned

DESX5: File is not open

DEVX2: Device already assigned to another job
TTYXO01: Line is not active

3-106

TOPS-20 MONITOR CALLS
(DIC)

DIC JSYS 133

Deactivates the specified software interrupt channels. (Refer to
Section 2.6.1.)

ACCEPTS IN ACl: process handle

AC2: 36-bit word
Bit n means deactivate channel n

RETURNS +1: always

Software interrupt requests to deactivated channels are ignored except
for interrupts generated on panic channels. Panic channel interrupts
are passed to the closest superior process that has the specific
channel enabled.

The AIC monitor call is used to activate specified software interrupt
channels.

Generates an illegal instruction interrupt on error conditions below.
DIC ERROR MNEMONICS:

FRKHX1: Invalid process handle

FRKHX2: Illegal to manipulate a superior process

FRKHX3: Invalid use of multiple process handle

FRKHX8: Illegal to manipulate an execute-only process

3-107

TOPS-20 MONITOR CALLS
(DIR)

DIR JSYS 130

Disables the software interrupt system for a process.
ACCEPTS IN ACl: process handle
RETURNS +1: always

If software interrupt requests are denerated while the interrupt
system is disabled, the requests are remembered and take effect when
the interrupt system is reenabled unless an intervening CIS call |is
executed. However, interrupts on panic channels will still be
generated even though the system is disabled.

In addition, if the CTRL/C terminal code is assigned to a channel, it
will still generate an interrupt that cannot be disabled with a DIR
call. CTRL/C interrupts can be disabled by deactivating the channel
to which the code is assigned or by monitor action.

The EIR monitor call can be used to enable the software interrupt
system for a process.

Generates an illegal instruction interrupt on error conditions below.
DIR ERROR MNEMONICS:

FRKHX1: Invalid process handle

FRKHX2: Illegal to manipulate a superior process
FRKHX3: Invalid use of multiple process handle
FRKHX8: Illegal to manipulate an execute-only process

3-108

TOPS-20 MONITOR CALLS
(DIRST)

DIRST JSYS 41

Translates the specified 36-bit wuser or directory number to 1its
corresponding string and writes it to the given destination. When a
user number is given, the string returned is the <corresponding user
name without any punctuation. When a directory number is given, the
string returned is the <corresponding structure and directory name
including punctuation (structure:<directory>).

ACCEPTS IN ACl: destination designator
AC2: wuser or directory number
RETURNS +1: failure, with error code in AC1l.

+2: success, string written to destination, updated
string pointer, if pertinent, in ACl

The RCDIR monitor call can be used to translate a directory string to
its corresponding directory number. The RCUSR monitor call can be
used to translate a user name string to its corresponding user number.

DIRST ERROR MNEMONICS:

DESX1: Invalid source/destination designator
DESX2: Terminal is not available to this job
DESX3: JFN is not assigned

DESX5: File is not open

DELFX6: Internal format of directory is incorrect
DIRX1: Invalid directory number

DIRX2: Insufficient system resources

DIRX3: Internal format of directory is incorrect
STRXO01: Structure is not mounted

I0X11: Quota exceeded

I0X34: Disk full

I0X35: Unable to allocate disk - structure damaged

TOPS-20 Version 5 3-109 April 1982

TOPS-20 MONITOR CALLS
(DISMS)

DISMS

JSYS 167

Dismisses this process for the specified amount of time.

ACCEPTS IN AC1:
dismissed

RETURNS +1: when the elapsed

The maximum argument specifiable

minutes, 28 seconds, and 864
exceeded, the argument is ignored
used. The time resolution is

(about 20 milliseconds).

number of milliseconds for which the process is to be

time is up

in AaCl 1is 400,,0 (18 hours, 38
milliseconds). If this wvalue 1is
and the maximum dismiss time is

limited to the scheduling frequency

3-110

TOPS-20 MONITOR CALLS
(DOBE)

DOBE JSYS 104

Dismisses the process until the designated file output buffer is
empty.

ACCEPTS IN ACl: destination designator
RETURNS +1l: always
Returns immediately if designator is not associated with a terminal.

The DIBE monitor call can be used to dismiss the process until the
designated file input buffer is empty.

Generates an illegal instruction interrupt on error conditions below.

DOBE ERROR MNEMONICS:

DESX1: Invalid source/destination designator
DESX3: JFN is not assigned

DESX5: File is not open

DEVX2: Device already assigned to another job

TTYXO01: Line is not active

3-111

TOPS—-20 MONITOR CALLS
(DSKAS)

DSKAS JSYS 244

Assigns or deassigns specific disk addresses.

RESTRICTIONS:

ACCEPTS IN ACl:

RETURNS

AC2:

+1:

+2:

requires WHEEL or OPERATOR capabilities enabled.

BO (DARDEA) deassign the specified address. If the
address 1is currently assigned, control
returns to the next instruction following
the <call (+1 return). If the address was
not previously assigned, a BUGCHK occurs.

Bl (DA%ASF) assign a free page near the specified
address. Assignment is on the same
cylinder as the specified address, 1if
possible, or on a nearby cylinder. If the
specified address is 0, a page is assigned
on a cylinder that is at least one-half
free. If the assignment is not possible
because the disk is full, control returns
to the next instruction following the
call.

B2 (DARCNV) convert the specified address according to
the setting of B3 (DARHWA).

B3 (DA%HWA) the specified address 1is a hardware
address. If this bit is off, the
specified address is a software address.

B4 (DARINI) initialize a private copy of the bit
table.

B5(DASWRT) write the private copy of the bit table to
a new bit table file.

B18-B35 disk address
(DA%ADR)
device designator of structure. If DA%CNV is on in

ACl, this argument is not required.

failure, address already assigned or cannot be
assigned

success, address assigned in AC1

Generates an illegal instruction interrupt on error conditions below.

DSKAS ERROR MNEMONICS:

WHELX1:

WHEEL or OPERATOR capability required

3-112

TOPS-20 MONITOR CALLS
(DSKOP)

DSKOP JSYS 242

Allows the process to reference physical disk addresses when
performing disk transfers. This monitor call requires the process to
have WHEEL, OPERATOR, or MAINTENANCE capability enabled to read and
write data. However, a process with only MAINTENANCE capability
enabled can write data only if it is using physical addresses (.DOPPU)
and writing to a unit that is not part of a mounted structure.

RESTRICTIONS: requires WHEEL or OPERATOR capabilities enabled.
Some functions can be performed with MAINTENANCE
capabilities enabled.

ACCEPTS IN ACl: ®BO-B1l(DOP%AT) field indicating the address type.
For physical channel and unit
addresses, the value of the field is
1(.DOPPU) and the remainder of AC1l is

B2-B6 (DOP%CN) channel number
B7-B12(DOP%UN) unit number
B13-B35(DOP%UA) unit address
For physical channel, controller, and
unit numbers, refer to ACA4.

For a structure and a relative
address, the wvalue of the field 1is
2{(.DOPSR) and the remainder of AC1 is
B2-B10 (DOP%SN) structure designator
flag (0 is structure PS:). A
value of -1 means the structure is

indicated by the structure
designator (refer to Section 2.4)
in AC4.

B11-B35(DOP%RA) relative address

Any other values for this field are
illegal.

AC2: control flags in the left half and a <count of the
number of words to transfer in the right half. The
control flags are:

B9 (DOP3NF) use values in ACA4 for channel,
controller, and unit numbers

B10 (DOP%EO) error if unit offline

B11(DOP%IL) inhibit error logging

B12(DOP%IR) inhibit error recovery

B14 (DOP%WR) write data to the disk. If this bit is
off, read data from the disk.

B18-B35 word count. If this count is less than
(DOP%CT) or equal to 1000, the data to be
transferred cannot straddle a page

boundary. Thus the caller's buffer
should start at a page boundary and
cannot be longer than one page.

If this count is more than 1000, the
data to be transferred can straddle a
page boundary, so the <caller's buffer
need not start on a page boundary, and
the buffer can be larger than one page.
Two restrictions apply, however. First,
the buffer must be a multiple of the

3-113

TOPS-20 MONITOR CALLS
(DSKOP)

size of the sectors on the disk being
read or written. (Obtain the sector
size by using the .MSRUS function of the
MSTR JSYS.) Second, no error processing
is done (the JSYS executes as though the
DOPRIL and DOPR%IR bits were set). On an
error, the pages must be read one at a
time to determine which pages caused
errors.

AC3: address in caller's address space from which data is
written or into which data is read.

AC4: device designator of the structure. This word is
used if the value given for DOP%SN is -1.
or

physical channel, controller, and unit numbers if
B9 (DOP%NF) in AC2 is on. 1In this case,

BO-B11l (DOP%C2) channel number
B12-B23 (DOP%K2) controller number
B13-B35(DOP%U2) unit number

RETURNS +1: always, ACl is nonzero if an error occurred, or zero
if no error occurred.

If an error occurs and DOP%IL is on in the call, no error 1logging is
performed. If DOP%IL 1is off, the standard system error logging is
performed.

If an error occurs and DOP%IR is on in the call, no retries or ECC
corrections, if applicable, are attempted. If DOP%IR is off, the
standard system error recovery procedure is followed.

An error occurs if the format for channel, controller, and unit number
is used with Release 4 or any previous monitor.

Generates an illegal instruction interrupt on error conditions below.

DSKOP ERROR MNEMONICS:

WHELX1: WHEEL or OPERATOR capability required
DSKOX1: Channel number too large

DSKOX2: Unit number too large

DSKOX3: Invalid structure number

DSKOX4: Invalid address type specified

DECRSV: DEC-reserved bits not zero

3-114

TOPS-20 MONITOR CALLS
(DTACH)

DTACH JSYS 115

Detaches the controlling terminal from the current job. (The ATACH
call with bit 1 (AT%NAT) of AC2 set can be used to detach a job other
than the current job.) A console-detached entry 1is appended to the
accounting data file.

RETURNS +1: always

The DTACH call is ignored if the job is already detached.

The ATACH monitor ceall is used to attach the controlling terminal to a
specified job.

3-115

TOPS-20 MONITOR CALLS
(DTI)

DTI JSYS 140

Deassigns a terminal interrupt code.
ACCEPTS IN ACl: terminal interrupt code; refer to Section 2.6.6
RETURNS +1l: always

The DTI call is a no-op if the specified terminal code was not
assigned by the current process.

The ATI monitor call is used to assign a terminal code.
Generates an illegal instruction interrupt on error conditions below.
DTI ERROR MNEMONICS:

TERMX1: Invalid terminal code

3-116

TOPS-20 MONITOR CALLS
(DUMPI)

DUMPI JSYS 65

Reads data words into memory in unbuffered data mode. The file must
be open for data mode 17. (Refer to Section 2.4.7.5 for information
about unbuffered magnetic tape I1/0.)

ACCEPTS IN ACl: JFN

AC2: BO(DM%NWT) do not wait for completion of requested
operation

B18-B35 address of command list in memory
(DM&PTR)
RETURNS +1: failure, error code in ACl, pointer to offending

command in AC2
+2: success, pointer in AC2 updated to last command

The use of BO(DM%NWT) allows data operations to be double-buffered
with a resulting increase in speed. When this bit is on, DUMPI/DUMPO
returns immediately after the request 1is queued. This allows the
program to overlap computations with I/O transfers. If the second
request is then made, the program is blocked until the first request
is completed. Generally, for a sequence of overlapped DUMPI/DUMPO
calls, return from the Nth call indicates that the Nth-1 request has
completed and that the Nth request is now in progress. This bit is
implemented only for magnetic tape.

The GDSTS call <can be wused after the transfer 1is completed to
determine the number of bytes read.

If an error occurs on the Nth request, the failure return is given on
the Nth+l call, and the Nth+l request is ignored. This means that the
program will discover an error on a request only after making the next
request. The next request is ignored to prevent improper operation
and must be reissued after the error has been processed. The GDSTS
call can be executed to determine the cause for the error.

COMMAND LIST FORMAT
Three types of entries may occur in the command list.

1. IOWD n, loc - Causes n words to be transferred from the file
to locations loc through 1loc+n-1 of the process address
space. The next command 1is obtained from the 1location
following the IOWD. For magnetic-tape files, 1 IOWD word
reads 1 physical tape record. For 1labeled magnetic-tape
files, the data format must be "U".

The IOWD pseudo-op generates XWD -n,loc-1.

2., XWD 0, y - Causes the next command to be taken from location
y. Referred to as a GOTO word.

3. 0 - Terminates the command list.

3-117

TOPS-20 MONITOR CALLS

(DUMPI)
DUMPI ERROR MNEMONICS:
DUMPX1: Command list error
DUMPX2: JFN is not open in dump mode
DUMPX3: Address error (too big or crosses end of memory)
DUMPX4: Access error (cannot read or write data in memory)

DUMPX5: No-wait dump mode not supported for this device

DUMPX®6: Dump mode not supported for this device

DESX1: Invalid source/destination designator

DESX2: Terminal is not available to this job

DESX3: JFN is not assigned

DESX4: Invalid use of terminal designator or string pointer
DESX5: File is not open

I0X1: File is not opened for reading

I0X4: End of file reached

I0X5: Device or data error

3-118

TOPS-20 MONITOR CALLS
(DUMPO)

DUMPO JSYS 66

Writes data words from memory in unbuffered data mode. The file must
be open for data mode 17. (Refer to Section 2.4.7.5 for information
about unbuffered magnetic tape I/0.)

ACCEPTS IN ACl: JFN

AC2: BO(DMENWT) do not wait for completion of reguested

operation
B18-B35 address of command list in memory
(DM$PTR)
RETURNS +1: failure, error code in ACl, pointer to offending

command in AC2
+2: success, pointer in AC2 updated to last command

This call locks in memory the pages to be transferred. Any attempt to
write to these pages while DUMPO has them locked results in an illegal
memory reference.

The use of BO(DMSNWT) allows data operations to be double-buffered
with a resulting increase in speed. When this bit is on, DUMPI/DUMPO
returns immediately after the request 1is queued. This allows the
program to overlap computations with I/O transfers. If the second
request is then made, the program is blocked until the first request
is completed. Generally, for a sequence of overlapped DUMPI/DUMPO
calls, return from the Nth call indicates that the Nth-1 request has
completed and that the Nth request is now in progress. This bit is
implemented only for magnetic tape.

COMMAND LIST FORMAT
Three types of entries may occur in the command list.

1. 1IOWD n, loc - Causes n words from loc through loc+n-1 to be
transferred from the process address space to the file. The
next command is obtained from the 1location following the
IOWD. For mag-tape files, 1 IOWD word writes 1 physical tape
record. For labeled mag-tape files, the data format must be
IIUII .

NOTE
Dump mode output to a labeled tape can override the
block-size 1limit specified in the GTJFN. If any
write produces a block in excess of the specified
block-size parameter, then the file can be read only
in dump mode.

The IOWD pseudo-op generates XWD -n,loc-1l.

2. XWD 0, y - Causes the next command to be taken from location
y. Referred to as a GOTO word.

3. 0 - Terminates the command list.

3-119

TOPS-20 MONITOR CALLS
(DUMPO)

The GDSTS call can be used after the transfer 1is completed
determine the number of bytes written.
DUMPO ERROR MNEMONICS:

DUMPX1: Command list error

DUMPX2: JFN is not open in dump mode

DUMPX3: Address error (too big or crosses end of memory)
DUMPX4: Access error (cannot read or write data in memory)
DUMPX5: No-wait dump mode not supported for this device

DUMPX6: Dump mode not supported for this device

DESX1: Invalid source/destination designator

DESX2: Terminal is not available to this job

DESX3: JFN is not assigned

DESX4: Invalid use of terminal designator or string pointer
DESX5: File is not open

I0X2: File is not opened for writing

I0X5: Device or data error

IOX11: Quota exceeded

I0X34: Disk full

I0X35: Unable to allocate disk - structure damaged

to

TOPS-20 Version 5 3-120 April 1982

Returns the characteristics of the specified device.

ACCEPTS IN ACl:

RETURNS

+1:

AC1:

AC2:

TOPS-20 MONITOR CALLS
(DVCHR)

DVCHR

JSYS 117

JFN or device designator

always,

containing the device designator

given).

with

(even if a JFN was

containing the device characteristics word.

AC3 containing the

assigned

right half.
have units,

job number to

in the left half

If the

the right half

which the device 1is
and the unit number in the

device is a structure or does not

is -1.

The left half of AC3 contains -1 if the device is not assigned to any
job or -2 if the device allocator has ownership of the device.

Bit

b whHO

O oo

20-35

Device Characteristics Word

Symbol

DV30UT
DV3IN
DV&%DIR
DV%AS
DV&MDD
DV&AV

DV3ASN

DV3MNT
DV&TYP

DV%MOD

Meaning

is assignable with ASND
has multiple directories
is available or assigned to this

is assigned by ASND

disk

magnetic tape
line printer
card reader
front-end
pseudo-device
terminal
pseudo-terminal
null device
ARPA network
DECnet active
component
DECnet passive
component

data mode in which device can be opened

device can do output
device can do input
device has a directory
device
device
device
job
device
device is mounted
device type

0 .DVDSK

2 .DVMTA

7 .DVLPT

10 .DVCDR

11 .DVFE

12 .DVTTY

13 .DVPTY

15 .DVNUL

16 .DVNET

22 .DVDCN

23 .DVSRV

B20 DV&M17

B27 DV&M10

B34 DV&M1

B35 DV&MO

3-121

dump mode

image mode

small buffer mode
normal mode

TOPS-20 MONITOR CALLS
(DVCHR)

Generates an illegal instruction interrupt on error conditions below.

DVCHR ERROR MNEMONICS:

DEVX1: Invalid device designator

DESX1: Invalid source/destination designator

DESX3: JFN is not assigned

DESX4: Invalid use of terminal designator or string pointer

3-122

TOPS-20 MONITOR CALLS
(EIR)

EIR JSYS 126

Enables the software interrupt system for a process. (Refer to
Section 2.4.)

ACCEPTS IN ACl: process handle
RETURNS +1: always

The DIR monitor call can be used to disable the software interrupt
system for a process.

Generates an illegal instruction interrupt on error conditions below.

EIR ERROR MNEMONICS:

FRKHX1: Invalid process handle

FRKHX2: Illegal to manipulate a superior process
FRKHX3: Invalid use of multiple process handle

FRKHX8: Illegal to manipulate an execute-only process

3-123

TOPS-20 MONITOR CALLS
(ENQ)

ENQ JSYS 513

Requests access to a specific resource by placing a request in the
gueue for that resource. This call can be used to regquest any number
of resources.

Refer to the TOPS-20 Monitor Calls User's Guide for an overview and
description of the Enqueue/Dequeue facility.

RESTRICTIONS: some functions require WHEEL or OPERATOR capabilities
enabled.

When this call is used 1in any section other than
section zero, one-word global byte pointers used as
arguments must have a byte size of seven bits.

ACCEPTS IN ACl: function code
AC2: address of argument block
RETURNS +1: failure, error code in ACl
+2: success
The available functions are as follows:
Code Symbol Meaning

0 .ENQBL Queue the requests and block the process
until all requested locks are acquired. The
error return is taken only if the call is not
correctly specified.

1 .ENQAA Queue the requests and acgquire the locks only
if all requested resources are immediately
available. ©No reguests are queued and the
error return is taken 1f any one of the
resources is not available.

2 .ENQST Queue the requests. If all requested
resources are immediately available, this
function is identical to the .ENQBL function.
If all resources are not immediately
available, the request is queued and the the
call fails with the ENQX6 error. A software
interrupt will occur when all requested
resources have been given to the process.

3 .ENQMA Modify the access of a previously queued
request. (Refer to EN%SHR below.) The access
of each lock in this request is compared with
the access of each 1lock in the previously
queued request. If the two accesses are the
same, no modification is needed or made.

TOPS-20 Version 5 3-124 April 1982

Code

3

Symbol

. ENQMA
(Cont.)

TOPS-20 MONITOR CALLS
(ENQ)

Meaning

If the access in this request is shared and
the access in the previous request is
exclusive, the call succeeds. If the access
in this request is exclusive and the access
in the previous request 1is shared, this
function returns an error unless this process
is the only user of the lock. TIf the caller
is the only wuser of this 1lock, the call
succeeds. The error return is also taken if:

1. Any one of the specified locks does not
have a pending request.

2. Any one of the specified 1locks 1is a
pooled resource.

This function checks each lock specified, and
the access is changed for all locks that were
given correctly. If the call fails, the user
must execute the ENQC call to determine the
current state of each lock.

The format of the argument block is as follows:

Word

0

Symbol

.ENQLN

.ENQID

.ENQLV

.ENQUC

.ENQRS

.ENQMS

Meaning

length of the header and the number of
requested 1locks in the left half, and length
of argument block in the right half.

software interrupt channel number in the left
half, and the request ID in the right half.

flags and level number in the left half, and
JFN, -1, -2, or -3 in the right half (see
below) .

pointer to a string or a 5B2+33-bit user
code.

number of resources in pool in the left half
and number of resources requested in the
right half, or 0 in the left half and a group
number in the right half.

address of a resource mask block.

flags and level number in the left half, and
JFN, -1, -2, or -3 in the right half.

pointer to a string or a 5B2+33-bit user
code.

number of resources in pool in the left half
and number of resources requested 1in the
right half, or 0 in the left half and a group
nymber in the right half.

address of a resource mask block.

3-125

TOPS-20 MONITOR CALLS
(ENQ)

The following paragraphs describe the words in the argument block.

The argument block is divided into two logical sections: a header and
individual requests for each desired lock. Words .ENQLN and .ENQID
form the header. Word .ENQLV through word .ENQMS form the individ 1is
notual request and are repeated for each lock being requested. The
words in the argument block are described in the following paragraphs.

.ENQLN

The length of the header (.ENHLN) is contained in bits 0 through 5.
Currently, the length of the header is two words. (Note that a given
length of zero or one is assumed to be equal to a length of two.) The
number of 1locks being requested (.ENNLK) is contained in bits 6
through 17, and the length of the argument block (.ENALN) is contained
in bits 18 through 35.

.ENQID

The software interrupt channel specifies the number of the channel on
which to generate an interrupt with the .ENQSI function. The request
ID is an 18-bit user-generated value used to identify the particular
resource. This ID currently used by the system but is stored for
future expansion of the facility.

.ENQLV
The following flags are defined:

BO (EN%SHR) Access to this resource is to be shared. If this bit
is not set, access to the resource is to be exclusive.

Bl (EN%BLN) Ignore the level number associated with this resource.
Sequencing errors in level numbers will not be
considered fatal, and execution of the <call will
continue. If a sequencing error occurs, the successful
return is taken, and ACl will <contain &an error code
indicating the seqguencing error that occurred.

B2 (EN2NST) Allow ownership of this lock to be nested to any level

within a ©process. This means that a process can
request this resource again even though it already owns
it. If the process has a request in the resource's

queue or if the process already owns the 1lock, the
ownership of the lock is nested to a depth one greater
than the current depth. If the process does not have a
request in the resource's gueue, the setting of this
bit has no effect, and the execution of the ENQ call
continues. When a process has a nested lock, it must
DEQ the resource as many times as it ENQed it ©before
the resource becomes available to other processes.

B3 (EN2LTL) Allow a long-term lock on this resource. This notifies
the system that this resource will be locked and
unlocked many times in a short period of time. Setting
this bit permits a program to run faster if it is doing
multiple locks and unlocks on the same resource because
the argument block data is not deleted immediately from
the ENQ/DEQ data base when a DEQ call 1is executed.
Thus, the time required to re-create the data is
reduced.

B9-B17 Level number associated with this resource.

3-126

TOPS-20 MONITOR CALLS
(ENQ)

(EN$LVL)

The request is not queued and the error return is taken if ENS$RLN is
not set and

1. A resource with a level number less than or egqual to the
highest numbered resource requested so far is specified.

2. The level number of the current request does not match the
level number supplied on previous requests for this resource.

The right half of .ENQLV specifies the type of access desired for the
resource. If a JFN is given, the file associated with the JFN is
subject to the standard access protection of the system. The file
associated with the JFN in the right half of .ENQLV must be opened
before the ENQ is performed or an error will be generated. If -1 is
given, the resource can be accessed only by processes of the job. If
-2 1is given, the resource can be accessed by any job on the system.
(The process must have ENQ capability enabled to specify -2.) If -3 is
given, the resource can be accessed only by processes that have WHEEL
or OPERATOR capability enabled.

.ENQUC

This word is either a byte pointer or a 33-bit user code, either of
which serves to uniquely 1identify the resource to all users. This
quantity is the second part of the resource name. (JFN, -1, -2, or -3
is the first part of the resource name.) The system makes no
association between these identifiers and any physical resource.

The string identified by the byte pointer can contain bytes of any
size (from 1 to 36 bits), and is terminated by a null byte. The byte
size is specifiec by the byte pointer. The maximum length of the
string (including the terminating null byte) is 50 words.

.ENQRS

This word is used to allocate multiple resources from a pool of
identical resources. The left half contains the number of resources
in the pool, and is a parameter agreed upon by all users. All

requests for the same ©pooled resource must agree with the original
count or the call fails. The number of resources requested from the
pool must be greater than zero if a pool exists, and must be less than
or equal to the number in the pool.

If the left half of this word is zero, the system assumes only one
resource of the specific type exists. In this case, if the right half
of this word is positive, it is interpreted as the number of the group
of users who can simultaneously access the resource.

.ENQMS

Obtains a single 1lock representing many specific resources. For
example, a lock can be obtained on a particular data base, and the
specific resources requested can be individual records in that data
base.

This word contains an address of a mask block, consisting of a count
word and a group of mask words. The first word of the mask block
contains a count (in the right half-word) of the number of words 1in
the block, including the count word. The remaining words each contain
36 mask bits, where each bit represents a specific resource of the
lock. The maximum length of the mask block is 16 words. All requests

3-127

TOPS-20 MONITOR CALLS
(ENQ)

for the resources associated with the mask block must specify the same
length for the block or an error return is taken. Also, when a mask
block is specified, the ENQ call must request exclusive access to the
resource and the left half of word .ENQRS of the lock request must be
zero.

The set of resources comprising the lock is a parameter agreed upon by
all users. A process can obtain exclusive access to all or some of
the specific resources comprising the lock. When a process requires
exclusive access to all the resources, it executes an ENQ call (for
exclusive access) and does not specify a mask block. A successful
return 1is given 1if there are no other processes that have issued an
ENQ call for that lock. Otherwise, the process blocks until the
requested resources are available.

When a process requires exclusive access to some of the specific
resources comprising the lock, it sets up the mask block and sets the
bits corresponding to the specific resources it wants to lock. The
process then executes an ENQ call for exclusive access. On successful
execution of the ENQ call, the process has an exclusive lock for the
resources represented by the bits on in the mask. The process blocks
if another process owns an exclusive lock on the resource and that
process' ENQ call has not specified a mask block.

Once a mask block has been set up for a set of specific resources,
subsequent requests for a different set of resources will be honored.
The set of resources being requested is considered different if the
bits on in one process' mask block are not on in another process' mask
block. When a subsequent request is given for resources that are
currently locked by a process, the process with the request blocked
until the last of the currently locked resources is dequeued by the
owner of the lock.

A process can dequeue all or part of the original ENQ <call regquest.
When a DEQ call is executed, the bits on in the mask block of the DEQ
call are compared with the bits on in the original ENQ <call. The
resources not being dequeued remain locked and must be dequeued by a
subsequent DEQ call. This action allows a process to lock a number of
resources all at once, and then to release individual resources as it
finishes with them. However, a process cannot execute subsequent ENQ
calls to request additional resources from those requested in its
original ENQ call.

ENQ ERROR MNEMONICS:

DESX5: File is not open

ENQX1: Invalid function

ENQX2: Level number too small

ENQX3: Request and lock level numbers do not match
ENQX4: Number of pool and lock resources do not match
ENQX5: Lock already requested

ENQX6: Requested locks are not all locked

ENQX8: Invalid access change requested

ENQX9: Invalid number of blocks specified

3-128

ENQX10:
ENQX11:
ENQX12:
ENQX13:
ENQX14:
ENQX15:
ENQX16:
ENQX17:
ENQX18:
ENQX19:
ENQX20:
ENQX22:
ENQX23:

DESX8:

TOPS-20 MONITOR CALLS

(ENQ)
Invalid argument block length
Invalid software interrupt channel number
Invalid number of resources reguested
Indirect or indexed byte vointer not allowed
Invalid byte size
ENQ/DEQ capability required
WHEEL cr OPERATOR capability required
Invalid JFN
Quota exceeded
String too long
Locked JFN cannot be closed
Invalid mask block length
Mismatched mask block lengths

File is not on disk

3-129

TOPS-20 MONITOR CALLS
(ENQC)

ENQC JSYS 515

Returns the <current status of the given resource and obtains
information about the state of the gueues. This monitor call also
allows privileged processes to manipulate access rights to the queues
and to perform other utility functions on the queue structure.

Refer to the TOPS-20 Monitor Calls User's Guide for an overview and
description of the Enqueue/Dequeue facility.

The ENQC monitor call has two calling sequences, depending on whether
the process is obtaining status information or is modifying the gueue
structure.

Obtaining Status Information

RESTRICTIONS: some functions require WHEEL or OPERATOR capabilities
enabled.

When this call is used 1in any section other than
section =zero, one-word global byte pointers used as
arguments must have a byte size of seven bits.
ACCEPTS IN AC1l: function code (.ENQCS)
AC2: address of argument block
AC3: address of block in which to place status
RETURNS +1: failure, error code in AC1
+2: success

The function .ENQCS returns the status of the specified resources.

The argument block is identical in format to the ENQ and DEQ argument
blocks. (Refer to the ENQ monitor call description.)

The status block has a 3-word entry for each resource specified in the

argument block. This entry reflects the current status of the
resource and has the following format:

The following flag bits are currently defined.
BO (EN2QCE) An error has occurred in the <corresponding resource

request and bits 18-35 contain an appropriate error
code.

TOPS-20 Version 5 3-130 April 1982

TOPS-20 MONITOR CALLS
(ENQC)

B1 (EN%QCO) This process owns the lock.

B2 (EN%QCQ) This process is in the gqueue waiting for this
resource. This bit is set 1if Bl (EN%QCO) 1is set
because a request remains in the queue until a DEQ
call is given.

B3 (EN%QCX) The lock has been allocated for exclusive access.

B4 (EN3QCB) This process is in the queue waiting for exclusive
access to the resource. This bit is off if B2(EN3%QCQ)

is off.
B9-B17 The level number of the resource.
(EN$LVL)
B18-B35 Job number of the owner of the lock. For 1locks

(EN%JOB) with shared access, this value will be the job number
of one of the sharers. However, this value will be
the current job's number if the current job is one of
the sharers. If the lock is not owned, the value is
-1. If BO(EN%QCE) is on, this field contains the
appropriate error code.

The time stamp indicates the last time a process was given access to
the resource. The time is in the universal date-time standard. If no
process currently has access to the resource, the word is zero.

The number returned in the left half of the third word indicates the
number of processes that currently have the resource locked for either
exclusive access or shared access.

The request ID is either the request ID of the current process if that
process is in the queue, or the request ID of the owner of the lock.

Modifying the Queue Structure
RESTRICTIONS: When this call is used 1in any section other than
section zero, one-word global byte pointers used as
arguments must have a byte size of seven bits.
ACCEPTS IN ACl: function code
AC2: address of argument block
RETURNS +1: Ffailure, error code in AC1

+2: success

The available functions, along with their argument block formats, are
as follows:

Function Argument Block Meaning

.ENQCG One word containing Return the ENQ/DEQ quota for
a job number in the the specified job. The quota
right half. The left is returned in ACI.
half is ignored.

.ENQCC One word containing Change the ENQ/DEQ quota for
the new quota in the the specified job. The process
left half and a job executing the call must have
number in the right WHEEL capability enabled or an
half. error code is returned.

TOPS-20 Version 5 3-131 April 1982

TOPS-20 MONITOR CALLS

(ENQC)
Function Argument Block Meaning
.ENQCD A block of n words. Dump the ENQ/DEQ locks and
The first word is the queue entries into the

length of the block (n). argument block. The process
Remaining words contain executing the call must have
the returned WHEEL capability enabled or an
data. (See below.) error code is returned.

The data returned in the argument block concerns both the ENQ/DEQ
locks and the queues. The data concerning the locks is in a 4-word
block of the following format:

0 8 9 17 18 35
.ENQDF === E{ZSZ“==TTZ$ZT=§Z;ZZTT=SE§T"ZB’ZZEi?ZZITszT:ZTf?§
ENQDR | ‘total resources in pool ! # of resources remaining !
1 T N T S S S S S S S S S S T S S S S ST S S S S S S S S S TSN oSS S S SS=S==S======== 1
.ENQDT i time stamp of last request locked i
1 - S - I S 4+ 4+
.ENQDC i user code of lock or beginning of string i

If there are no pooled resources, word .ENQDR has the format:

The data concerning the queues is in a 2-word block of the following

format:
0 8 9 17 18 35
' ====================================:===================!
.ENQDF ! flags tsoftware chan! job # creator gueue entry !
|================:===================:===================!
.ENQDI !group # or number requested! request ID !
1

The flags returned in the first word of each block are as follows:

BO (EN2QCL) This block concerns data about the locks. If this bit
is off, the block concerns data about the queues.

Bl (EN%QCO) This process owns the lock.
B2 (EN%QCT) This lock contains a text string.
B3 (EN2QCX) This lock is for exclusive access.

B4 (EN%QCB) This process 1is blocked until exclusive access is
available.

3-132

TOPS-20 MONITOR CALLS
(ENQC)

ENQC ERROR MNEMONICS:

ENQX1:
ENQX2:
ENQX3:
ENQX4:
ENQX5:
ENQX6:
ENQX7:
ENQX8:
ENQX9:
ENQX10:
ENQX11:
ENQX12:
ENQX13:
ENQX14:
ENQX15:
ENQX16:
ENQX17:
ENQX18:
ENQX19:
ENQX20:
ENQX21:

DESX8:

Invalid function

Level number too small

Request and lock level numbers do not match
Number of pool and lock resources do not match
Lock already requested

Requested locks are not all locked

No ENQ on this lock

Invalid access change requested

Invalid number of blocks specified

Invalid argument block length

Invalid software interrupt channel number
Invalié number of resources requested
Indirect or indexed byte pointer not allowed
Invalid byte size

ENQ/DE(Q capability required

WHEEL or OPERATOR capability required
Invalid JFN

Quota exceeded

String too long

Locked JFN cannot be closed

Job is not logged in

File is not on disk

3-133

TOPS-20 MONITOR CALLS
(EPCAP)

EPCAP JSYS 151

Enables the capabilities for the specified process. (Refer to Section
2.7.1 for a description of the capability word.)

ACCEPTS IN ACl: process handle

AC2: capabilities the process can enable

AC3: capabilities to enable
RETURNS +1: always
The capabilities in bits 0-8 and bits 18-35 of AC2 are matched (ANDed)
with the <corresponding <capabilities of both the calling process and
the process specified in ACl. The calling process can only enable
those capabilities that both the calling process and the object

process have.

The contents of AC2 are ignored if the process handle in ACl 1is for
the current process.

The RPCAP monitor call can be used