=4

Professional ™

300.

| Guide to Writing a P/OS

| /0 Driver and Advanced
| Programmer’s Notes

Guide to Writing a P/OS
I/O Driver and Advanced
Programmer’s Notes

Order No. AA-BT73B-TH

Order No. AD-BT73BA-T1

June 1987

This reference manual describes the procedures for
writing an /O driver for P/OS systems. Executive
routine descriptions and sample code are included.
Advanced programmer information is also provided.

REQUIRED SOFTWARE: Host Tool Kit V3.0,
or PRO/Tool Kit V3.2

OPERATING SYSTEM: P/OS V3.2

EﬂannanTM

DIGITAL EQUIPMENT CORPORATION
Maynard, Massachusetts 01754-2571

First Printing, April 1982
Revised, December 1985
Updated, June 1987

The information in this document is subject to change without
notice and should not be construed as a commitment by Digital
Equipment Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this document.

The software described in this document 1is furnished under a
license and may only be used or copied in accordance with the
terms of such license.

No responsibility is assumed for the wuse or reliability of
software on equipment that is not supplied by DIGITAL or its
affiliated companies.

The specifications and drawings, herein, are the property of
Digital Equipment Corporation and shall not be reproduced or
copied or used in whole or in part as the basis for the
manufacture or sale of items without written permission.

Copyright © 1982, 1985, 1987 by Digital Equipment Corporation
All Rights Reserved

The following are trademarks of Digital Equipment Corporation:

CTI BUS MASSBUS Rainbow
DEC PDP RSTS
DECmate P/0S RSX
DECsystem-10 PRO/BASIC RT
DECSYSTEM-20 PRO/Communications Tool Kit
DECUS Professional UNIBUS
DECwriter PRO/FMS VAX
DIBOL PRO/RMS } VMS

fifonmn :
PROSE PLUS Work Processor

Update Notice Number 1
Guide to Writing a P/OS I/O Driver
and Advanced Programmer’s Notes
AD-BT73B-T1

June 1987

Insert this page in the Guide to Writing a P/OS I/O Driver and
Advanced Programmer’s Notes to maintain an up-to-date record of
changes to the manual. '

NEW AND CHANGED INFORMATION

This update reflects software changes and additions made in P/OS Version 3.2.
Also included are corrections to the original documentation.

Copyright © 1987 Digital Equipment Corporation

INSTRUCTIONS

Add the following pages to the Guide to Writing a P/OS I/O Driver and Advanced
Programmer’s Notes as replacements for, or additions to, the current pages. The
technical changes made on replacement pages are indicated in the left margin
by change bars. Changes of an editorial nature are not marked.

OLD PAGE NEW PAGE
Title page/copyright page Title page/copyright page
iifiv through xi/xii jii/iv through xvii/xviii
4-55/4-56 4-55/4-56
4-63/4-64 through 4-65/4-66 4-63/4-64 through 4-65/4-66
5-3/5-4 through 5-5/5-6 5-3/5-4 through 5-5/5-6

(Continued)

OLD PAGE

7-45/7-46 through 7-65/7-66
C-1/C-2 through C-33/blank
D-1/D-2

E-1/E-2 through E-43/E-44
Index-1 through Index-6
Reader’'s comments/mailer

NEW PAGE

7-45/7-46 through 7-65/7-66
C-1/C-2 through C-35/C-36
D-1/D-2

E-1/E-2 through E-45/E-46
Index-1 through Index-8
Reader’s comments/mailer

CONTENTS

CHAPTER 1 , P/0S I/0 DRIVERS

1.1 VECTORS AND CONTROL AND STATUS REGISTERS . . . 1-1
1.2 SERVICE ROUTINES e e e e e e e W 1-3
1.2.1 Executive and Driver Layout . . 1-3
1.2.2 Driver Contents 1-5
1.3 EXECUTIVE AND DRIVER INTERACTION . 1-6
1.3.1 The Driver Process . . . 1-6
1.3.2 Interrupt Dispatching and the Interrupt Control

Block e e . 1-7
1.3.3 Interrupt Servicing and Fork Process .« e e e . 1-9
1.3.4 Nonsense Interrupt Entry Points 1 11
1.4 ADVANCED DRIVER FEATURES + . « « « . 1-11
1.4.1 Overlapped Seek IO . . . ¢ « & « « « « « « o 1-12
1.4.2 Delayed Controller Access « « « « « . 1-13
1.4.3 Full Duplex Input/Qutput 1-13
1.4.4 Buffered Input and Output P S
1.5 OVERVIEW OF INCORPORATING A USER- WRITTEN DRIVER

INTO P/OS & &« & ¢ o« « & « « s o o o« o« « o o o« o« 1-15
CHAPTER 2 DEVICE DRIVER I/O STRUCTURES

2.1 I/0 STRUCTURES e e e e 4 e e 2-1
2.1.1 Controller Table (CTB)* . . e e e e e e 2-1
2.1.2 Controller Request Block (KRB)* e e e e e e e . 2-2
2.1.3 Device Control Block (DCB) « . « <« . . 2-3
2.1.4 Unit Control Block (UCB) . « + ¢ ¢ ¢ o« o « o« « o« 2-3
2.1.5 Status Control Block (SCB) . . « « « « .« . . 2-4
2.2 DRIVER DISPATCH TABLE (DDT) e e e e e e 2-5
2.2.1 I/0 Initiation ¢ < ¢ . ¢ 2-6
2.2.2 Cancel I/0 . . . v v v ¢ 4 e v e« e e e e e e 217
2.2.3 Device Timeout 2-7
2.2.4 Device Power Failure . . . e e e e 2-7
2.2.5 Controller and Unit Status Change « e e s« . . 2-8
2.2.6 Device Interrupt Addresses « +« « « . . 2-8
2.3 TYPICAL CONTROL RELATIONSHIPS 2-8
2.3.1 Multiple Units per Controller, Serlal Unlt

Operation e e e+ o« + 2-9
2.3.2 Multiple Controllers, Slngle Unlt per

Controller e e e e+ e s« . . 2-10
2.3.3 Parallel Unit Operatlon . e . .« .« . 2-10
2.4 OVERVIEW OF DATA STRUCTURE RELATIONSHIPS e e . . 2-12

iii

CHAPTER 3

CHAPTER

=3

Lo -

[R R g R N N N - T N~ - - - -
. . . .

. . o o

.

. . . . L] . .
UOTITOT NI S &b B dbdbWWWwWwWWWwNNDdDDNDN
.

DB

[\ SN

e & o
gL W N

.

. . L] .
bW

.

¢ o .

P OO~V SE WN -

o

O~JOhN B WWNE-

.
[y

EXECUTIVE SERVICES AND DRIVER PROCESSING

FLOW OF AN I/O REQUEST . . . ¢ v ¢ ¢« o o & o o o =
Predriver Initiation Processing
Driver Processing e e e e e e

EXECUTIVE SERVICES AVAILABLE TO A DRIVER e e s e .
Get Packet (SGTPKT) . +v v ¢ & o o« o o o o o o
Create Fork Process (SFORK) . . ¢ ¢ « « ¢ o « &
I/0 Done (SIODON or SIOALT) . « ¢ « o « o o &

PROGRAMMING SPECIFICS FOR WRITING AN I/0 DRIVER

PROGRAMMING STANDARDS . . . e e e e s e e e s
Programming Protocol Summary e e e e e e e e e
Accessing Driver Data Structures

OVERVIEW OF PROGRAMMING USER~-WRITTEN DRIVER DATA

BASES e e e e e e e . . o e e
General Labelxng and Ordering of Data Structures
Device Control Block Labeling
Unit Control Block Ordering e . .
Status Control and Controller Request Blocks . .
Controller Table ¢« ¢« « ¢ « ¢ « « .« .

OVERVIEW OF PROGRAMMING USER-WRITTEN DRIVER CODE
Generate Driver Dispatch Table Macro Call - DDTS$
Get Packet Macro Call - GTPKTS . . « « « « « +« &
Interrupt Save Macro Call - INTSVS
Using the UCBSV Arqument in Macro Calls . . .
Driver Entry Points for PROLOD

DRIVER DATA STRUCTURE DETAILS« &
The I/0 Packet . . . & ¢ ¢ ¢ ¢ ¢ o o o o o o &
The QIO Directive Parameter Block (DPB) . . .
The Device Control Block (DCB) « . . .

Establishing I/0 Function Masks
The Unit Control Block (UCB) + . +. . .
The Status Control Block (SCB) « . .
The Controller Request Block (KRB)
Contiguous Allocation of the SCB and KRB . . .
Controller Table (CTB) . ¢« v « ¢ « o o o o o &

DRIVER CODE DETAILS e & s e a s s e e
Driver Dispatch Table Format e e e e e e e e
I/0 Initiation Entry Point
Cancel Entry Point « « . + « . .
Device Timeout Entry Point
Deallocation Entry Point « .+ . .
Power Failure Entry Point
Controller Status Change Entry Point
Unit Status Change Entry Point
Interrupt Entry Point
Volume Valid Processing . . « . ¢« ¢« « « « o &

iv

[~ -N
| B T | [}
o

P bbb bbb
t

]
= 1
POV D LS WWWW

PGS
1

e

w N

4-14
4-20
4-23
4-29
4-35
4-47
4-55
4-62
4-62
4-67
4-68
4-72
4-73
4-73
4-73
4-74
4-74
4-76
4-77
4-78

CHAPTER 5 INCORPORATING A USER-SUPPLIED DRIVER INTO P/0OS

5.1 INCORPORATING AN I/O DRIVER INTO A P/0OS SYSTEM . . 5-1
5.1.1 Guidelines for Creating/Adding a Driver Into the
System . . . « e e 4 e e e e 4 . . 51
5.1.2 Assembling the I/O Drlver e e e e s e e e e & o 5-2
5.1.3 Taskbuilding the I/0 Driver . . e e . 5-2
5.1.4 Loading an I/0 Driver Into the System .« « <« « . 5-3
5.2 PROLOD « « « « 5-3
5.2.1 PROLOD Operatlons and D1agnost1c Checks . « .« . 5-5
5.2.2 Using PROLOD Autoconflguratlon e <« « « « +« . . 5-8
5.2.3 PROLOD Errors . . -
5.2.4 PROLOD Sample Program e e e e e e e e e 5-11
CHAPTER 6 DEBUGGING A USER-SUPPLIED DRIVER
6.1 THE EXECUTIVE DEBUGGING TOOL « « « « « + . 6-1
6.1.1 XDT Commands . . « & & « & o o « « o o o « o « o+ 6-1
6.1.2 XDT Start Up . . . T 1]
6.1.3 XDT General Operatlon e e e e e e .. . 6-2
6.1.4 XDT and Debugging a User-Supplied Drlver .« . . 6-3
6.2 MAINTENANCE- OR MICRO-ODT . . « +. ¢« « « o« « « « . 6-3
6.3 FAULT ISOLATION . . . ¢ &+ & « o« o 4« o « o o« « « « 6-4
6.3.1 Immediate Servicing . e e e 4 e e e e . . . 6-4
6.3.1.1 The System Traps to XDT e e . . 6-4
6.3.1.2 The System Halts but Displays No Informatlon 6-4
6.3.1.3 The System Is in an Unintended Loop 6-5
6.3.2 Pertinent Fault Isolation Data 6-5
6.4 TRACING FAULTS« o o . . 6-6
6.4.1 Tracing Faults 031ng the Executlve Stack and
Register Dump e . . 6-9
6.4.2 Tracing Faults When the Processor Halts Wlthout
Display e - +« . 6-12
6.4.3 Tracing Faults After an Unlntended Loop . .« . 6-13
6.4.4 Additional Hints for Tracing Faults 6-13
6.4.5 System Bugcheck Without XDT . . . e « . . 6-13
6.5 REBUILDING AND REINCORPORATING A DRIVER e « « . 6-15
CHAPTER 7 EXECUTIVE SERVICES AVAILABLE TO AN I/O DRIVER
7.1 SYSTEM-STATE REGISTER CONVENTIONS 7-1
7.2 EXECUTIVE TIMER RELATED FACILITIES 71-1
7.3 ADDRESSING A TASK BUFFER . . ¢ « ¢ ¢ ¢ « o« « o« & 7-4
7.3.1 Address Checking a Task Buffer 7-6
7.3.2 QIO Directive Processing Specifics 1-6
7.4 THE ADDRESS DOUBLE WORD . . ¢ ¢« ¢ « o o o o« @ 7-11
7.5 SERVICE CALLS . . ¢ « v & « o o o « o o o o o« « 1-12
7.5.1 Address Check . . P A X4
7.5.2 Allocate Core Buffer Y R 1)

.

NN NN NNNNNNNSNNNNSNNNNa

.

.

NN NN

CHAPTER 8

CHAPTER 9

.

(Ve JiVe JEVe R Ve Ve JNo])
.

APPENDIX A

> >

OOt oo,

NN do o,

.1

.
PR PR RRR
. .

w N =

. .

NN PRPRPRPRPRRPEPRPPOOCIONIS W

WNhNPRPOWOLWOJOUTDS WN FO

N
o~

Sw N e

s wN e

Check Logical Block « . « . . 17-17
Move Block of Data « + + « « « « . 17-19
Check I/0 Buffer ¢ ¢« ¢ ¢« ¢« ¢« o« « « « « 1-20

Clock Queue Insertion « ¢« « ¢ o« « o 1-22
Convert Logical Block Number 7-23
Deallocate Core Buffer « 7-24
FOPK & & v i i i i e e e e e e e e e e e e e . 1-25
FOrRl . v i v i et e e e e e e e e e e e e . 1-27

Get Byte . . . v ¢« v 4« v 4 e 4 e 4 e e a e« . T1-28
Get Packet ¢ . . . e i e e e e« o T-29

Get wWord e e e e e e e e e e e . 1-32
Initiate I/0 Bufferlng e+ e &+ &« &« e« « « « . 1-33
Interrupt Exit e e e e e e e .. 1-34
I/0 Done Alternate Entry and I/0 bone 17-35
IO Finish ¢« ¢ v ¢ v ¢ ¢ v « « « « « 1-36
Put Byte« v ¢« ¢ ¢« « ¢ « « + 4 e « . . . 1-38
Put Word e e e e e e e e <. . T-39
Queue Insertion by Pr1or1ty c s e« e « &« « . 1-40
Relocate C e e e e e e e e .. T1-42
Queue Kernel AST to Task e e e . . o . T-42
Test if Partition Memory Re51dent for Kernel

AST . . . e 4 e e e 4 e e 4 4 e e s . . 1-43
Test for I/O Bufferlng . e . . 7-44

ADDING PHYSICAL MEMORY TO THE P/OS CONFIGURATION 7-44
EXECUTIVE DATA STRUCTURE AND ROUTINE VECTORS . . 7-48

Pointer Location and Format . . e « « « « . 1-48
Referencing LOWCR and SYSCM Data Structures . 71-49
Referencing Executive Routines 7-50
Executive Routine Vector Table 7-51

HANDLING SPECIAL USER BUFFERS

DRIVER CODE . & & ¢ 4 o o o s « o o « o« « o « « o 8-1

ACCESSING VIDEO HARDWARE AND TERMINAL SUBSYSTEM

APPLICATION LEVEL ACCESS TO THE VIDEO HARDWARE 9
Disabling the Terminal Subsystem e e e e e . .9
Accessing the video Device Registers e e e e . 9-
Accessing Video Memory Through the Bus I
The Screen Timer . . e e e e o . 9
Returning the video Hardware to the System . .9

P/0S SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS
ABODFS & v v v 4 4 v o o o 4 o v et e e e e e e

A-4
ACNDFS . . v « & v &« & o o« « o o « « o« « o« o« o« « « A-6
ACTDFS . &+ + ¢ « & « o o o o o o o o« o o o « o« - . A-8

vi

0
1

PP
e R K WO N

>
-
[\]

A.13
A.14
A.15
A.16
A.17
A.18
A.19
A.20
A.21
A.22
A.23
A.24

APPENDIX B

.

. . .

. «
NN ERRPRPR R
. .

DO TOOOEOWE WO oW W w

.
WWwWwwwwwwhN
. « o o o e

DWW owwWwww
e
PRI

NN

o s e
oW

O~V WN P

= O
o

BCKDFS . &« & &« ¢ v ¢ 4 o« o 4« « « &« « « « « « <« « A=10
CLEDFS . & v v v v v 4« o o o « o« « « « « « « « « A-13
CTBDFS . & +« & v v « v o o o « o o & o e o« o « « A-15
DCBDFS . & v v v v 4 4 4 4 e e 4 e e e e e e e . A-17
DDTS . & & & 4 4 4 « o o o o o o o o« o« o« « o« « « A-19
FLIIDF . v v v v v 4 4 e e v e e e e e e e e e . A-21
GTPKTS « v + ¢ « + o o o o o o o« o« o« « « « « « « A=26
HDRDFS & & &« v v 4 v v v « « o o o & « o o « « « A-27
HWDDFS & & v v v v 4 ¢ v o o o o o« « « « o « « . A-29
INTSVS « v & v 4« 4 & ¢ o« o o o o « o o « « « « . BA-36
ITBDFS © & & v &« & & o « o« o o o o o « « « « « « £A-37
KRBDFS . . v & v v & 4 v & 4 ¢« o o o o o« « « « « A-39
LBLDFS . & ¢« &« ¢« « « « o o o« o« o o « « o« « « « . £-42
LNMDFS . . & v v v 4 4 4 & & o &« o« o o « « « « . A-45
PCBDFS +. &« + &« « ¢ « v o « « « o o « « o« « « « . Bn-46
PKTDFS . & +© +v & v v o o o o o o« o« « « « « « « « A-52
QIOSYS &« v & 4« 4« 4 4 e e e 4 4 e e e e e e « « . A-59
SCBDFS &+ « v v v« v o 4 o o « « o o « « « « « « . n-70
TTSYMS & & & & ¢ v 4 v e o o o o« o « o o « o« « « A-73
TCBDFS &+ v v v v v v 4 ¢ o o e o « « o « o« « « . A-79
UCBDFS +« & & & & v « « o o « « « o « « « « « « . NA-83

TASK BUILDING AND CLUSTER LIBRARIES

AN OVERVIEW OF OVERLAYING « « + « « « . B-1
Basic Overlay Concepts and Constraints B-2
The Overlay Structure B-4

Overlaying Code Segments B-4
Making the Tree More Flexible B-8
Co-trees . . . v v ¢ ¢ v 4 4 e a4 e e e e . . B-9
Overlaying Data e . B-10

CLUSTER LIBRARIES AND THEIR USE IN APPLICATIONS B-11
Simple Task Structure and Memory Mapping . B-11
Libraries and Virtual Address Windows . . B-14
Library Sharing and Multiple Libraries B-16
Library with Memory-Resident Overlays B-18

Clustered Libraries . . . e e e e B-20
Cluster Libraries - Implementatlon Deta11 . . B-23
Summary and Implications e e« e« « « & « « + . B-24
Inter-Library References and Miscellaneous

Points e e e . e « « « .« . B=25
WRITE Access to Clustered lerarles « « « . . B-26
NULLIB « . « . e e o & e o o o o B-27

OPTIONS IN TASK ORGANIZATION « + « « « « « « . . B-28
FLAT.TSK . . + .+ ¢ &« « & « « « « « « « « « « « B=30
FLATBLD.CMD . . . « +« ¢« « &« &« « « « « « « «» B-=30
ROOT.MAC . &+ ¢ ¢ « & « « o « « & « « « « « « B=30
MAINLINE.MAC . . . ¢« « &« « o« ¢ « « o« « « « » B=-31
ROOTDATA.MAC . . . + ¢« & « « o « o« « « « . . B=34
CLUST.TSK . &+« &+« « & & « « & o« o « o« o« o « « « B=37

vii

CLUSTBLD.CMD . . v ¢ « &« « &« « « o o o o« « « B-37
cLust.obDL . . . e« « + « « +« + « « . B-38
VECTOR.TSK and USRRES TSK e « s+ « « +« o« « < . B-39
USRRESBLD.CMD . . . + ¢ « ¢ « « o« s« « « « « B=39
USRRES.ODL . .+ v &+ +v ¢ « « o« o« o« o« o« « « « o« B-40
Discussion . . . e s« « +« +« « « « . B-40
Excerpt from RESVEC MAC e+ e « e « e+ « « . B-42
VECTOR.MAC (Root vector module) B-42
VECTORBLD.CMD . . ¢ ¢« +v « o « « o o o« « « o B-43
VECTOR.ODL ¢ ¢ ¢« « « o « o« « o« « « « B-44
OVERLAY.TSK e e e 4 e e e a s e 4 e s e e e B-45
OVERLAY.ODL . . + v « &+ ¢« « « o « « s« « « « B-45
OVERLABLD.CMD . . . ¢ « « « « « o« « « « -« « B-46
ROOT2.MAC . ¢ v v « ¢ o « « o« « o« o« « « o« - B-46
CLLWTR.MAC . . ¢« v v o o o o o o o o« o o o = B-47
COMPUTE.MAC . . . &+ ¢« @« o « &« « « o« o« « « « B-47

L]
DS

. « e e .
BB BB B R WWWWWwwWwwwNNn
. .« . « s s e e e

N OoONUT e W

DO OO WOwwW W w
WWWWWWWwWwwWwwwwwwww

. .
g WwWN PP

APPENDIX C FILES~-11 ON-DISK STRUCTURE SPECIFICATION

MEDIUM . . & ¢ ¢ o o o« o o o o o o o« « =«
Volume . & & v v v v v e e e e e e e e e e e
Volume Sets ¢« . ¢« ¢ ¢ 0 v e e e e .
FILES e e e s 4 e 4 e e s & e e e 4 e o & e« o @
File ID e e s e e e e e e e e e 4 e e e e e .
File Header ¢ ¢ ¢ ¢ « v « « o« o o

ot

.
[
[|

1 Header AT€a . v v o o « o o o o o o o o o -
2 Ident Area . . . ¢ ¢ ¢ v v v e 4 e e e e e .
.3 Map Area . .« v ¢ « o o o« o o o « o o o« o -
. .4 End Checksum ¢ ¢ ¢ ¢ o« o . . -
. Extension Headers . . e e e e e . -

File Header - Detailed Descrlptlon e e e e e
Header Area Description
Ident Area Description
Map Area Description
End Checksum Description

File Header Layout

DIRECTORIES

Directory Hlerarchles . . .

User File Directories
Directory Structure C-17
Directory Protection C-18

KNOWN FILES . . . ¢ ¢ ¢ ¢« « o « « « « « o« « « - =19

Index File . . . O R
Bootstrap Block e e e e e e e e e e e e .. C-19
Home Block . . . e e e e e e e e e e ... C=20
Index File Bltmap e e e e e e e e e e e .. €27
File Headers . . .« « + o o o « o« o « « « « o C$-28

Storage Bitmap File C-28
Storage Control Block C-28
Storage Bitmap o . . . C-29

.

H’LOOOOOOOOOGGOOO
!
WOoOOVWULESsEB__DWWINNNDREPR

B AR B WD NN
e e s e . P

bW

a0
]]]
e
oo

...
WK
[N

.
« e e
o wn e

e Ne e Ne Ko Re e e R e R N e e Ko N e N e Ko e N e e e e Ko e R N N o KD !

....
NN R R R
.o . .

[NS]

.
BB BB S DD DR WWWWWRNRNDODNDNDNODNDNDNODNDNODNDNNDODDND R P
e & o e . . . o e . . .

viii

APPENDIX D

a0 0n

0OUU0UUDUUDUUDUU0UDUDUDUDUDUDUUDUUODUODUOUO

. .

. . . L]
oo ummununuuoTul&s:EWNERPRPRRPRPRPRPRPPE

GOttt OO oE & DD

.
U ww
.

.

.

.

. e ¢ o .
G W NN
« o .

.« e o s e o
wN e G W

O dO UL W

NN P R R PR R R
w N

-

wN -

Bad Block File + « .+ o . .
Bad Block Descriptor
Master File Directory e e e e e e
Core Image File « « « o + .
FCS FILE STRUCTURE « ¢« « « « o« &
FCS File Attributes .
F.RTYP: 1 Byte - Record Type

F.RATT: 1 Byte - Record Attributes
F.RSIZ: 2 Bytes - Record Size

F.HIBK: 4 Bytes - Highest VBN Allocated
F.EFBK: 4 Bytes - End of File Block
F.FFBY: 2 Bytes - First Free Byte . . .

S.FATT: 14 Bytes - Size of Attribute Block
FCS File Attributes Layout . .

Record Structure o . . .
Fixed Length Records
Variable Length Records« e e .

Sequenced Variable Length Records . .
Format of Two Byte Print Control Fleld in
R.SEQ RecOrds . « v ¢ ¢ v o « o« o « « =

FILES-11 QIO INTERFACE TO THE ACPS
QIO PARAMETER LIST FORMAT « « ¢ « .

File Identification Block
The Attribute List «

The Attribute Type «
Attribute Size . . e e e e e e e e e
Attribute Buffer Address e e e e e e e
Size and Extend Control
Window Size and Access Control
File Name Block Pointer
PLACEMENT CONTROL . ¢ .« v ¢ ¢« o o« o o o o o =
BLOCK LOCKING . . . e e e 4 e e e e .
SUMMARY OF F11ACP FUNCTIONS e e e+ 4 e e e e .
HOW TO USE THE ACP QIOS . . ¢ ¢ ¢ v o o« « o &
Creating a File
Opening a File ¢« + « « « + « .
Closing a File
Extending a File
Deleting a File « .+ . .

FILE HEADER BLOCK FORMAT
Header Area . . . « « o « « o .

Identification Area
Map AP€a v v o o o o o o o o o o 4 0 4 e e . .
STATISTICS BLOCK . . ¢ ¢ ¢ ¢ o e o o o o o o o =«

ERRORS RETURNED BY THE FILE PROCESSORS
FILENAME BLOCK ¢ ¢ ¢« ¢ o ¢ 4 o o o o« o« &

ix

sBvlvivRvilvivivielvRvie

1
P RPRFREP T L0
N R

C-29
Cc-30
C-30
Cc-30
c-31
c-31
Cc-31
Cc-31
c-32
Cc-32
Cc-32
Cc-32
C-33
C-33
Cc-33
Cc-33
C-34
C-34

PPRPOUOO~JOOOUT_WNDNDE

vBolvie)
[}

1
[N
28]

APPENDIX E QUAD SERIAL LINE UNIT (PC3XC-BA)

Appendix ¢ v e 4 v e 4 4 e e e 4 . . . E-1
E.1 INTRODUCTION . . . e 4+ 4+ 4 e e e 2 s+ e+ e« « . o E-1
E.2 THEORY OF OPERATION e e s e e s e 4 e e E-2
E.2.1 DUARTs . . . e s e e e e e e 4 e e e e . E-2
E.2.2 Interrupt Loglc e e e e e e e e e e e e e E-2
E.2.3 Modem Controls . . . e e e e e e e e E-3
E.3 DUART TRANSMITTER OPERATION e e e 4 e e s . E-4
E.3.1 Receiver Operation E-5
E.3.2 Interrupts o0 . 0L E-7
E.3.3 Programming E-7
E.3.4 Multidrop Mode « ¢ ¢ « « « « o o . E-7
E.3.5 Registers . . . e e e e e E-8
E.3.6 Diagnostic ROM Data Reglster (RDR) . E-9
E.3.7 Diagnostic ROM Address Register (RAR) . E-10
E.3.8 Module Status Register (MSR) « « « 4 +« « « . . E-10
E.3.9 DUART Registers . . .+ « .« .« . E-11
E.3.9.1 Channel A Mode Reglster 1 (MRlA) . . . E-13
E.3.9.2 Channel A Mode Register 2 (MR2A) E-15
E.3.9.3 Channel A Status Register (SRA) E-18
E.3.9.4 Channel A Clock Select Register (CSRA) . . . E-21
E.3.9.5 Channel A Command Register (CRA) E-=22
E.3.9.6 Channel A Receive Holding Register (RHRA) . E-24
E.3.9.7 Channel A Transmitter Holding Register (THRA) E-25
E.3.9.8 Input Port Change Register (IPCR) E-26
E.3.9.9 Auxiliary Control Register (ACR) E-26
E.3.9.10 INTERRUPT STATUS REGISTER (ISR) e« +« <« « « « E-30
E.3.9.11 INTERRUPT MASK REGISTER (IMR) . . e e e e E-32
E.3.9.12 Counter/Timer Upper Byte Value (CTU) . « « . E=32
E.3.9.13 Counter/Timer Upper Register (CTUR) E-32
E.3.9.14 Counter/Timer Lower Byte Value (CTL) E-33
E.3.9.15 Counter/Timer Lower Register (CTLR) E-33
E.3.9.16 Channel B Mode Register 1 (MR1B) E-33
E.3.9.17 Channel B Mode Register 2 (MRZB) . « +« .« . E-34
E.3.9.18 Status Register B (SRB) E-35
E.3.9.19 CHANNEL B CLOCK SELECT REGISTER (CSRB) . .« . E-35
E.3.9.20 CHANNEL B COMMAND REGISTER (CRB) E-35
E.3.9.21 CHANNEL B RECEIVE HOLDING REGISTER (RHRB) . E-36
E.3.9.22 CHANNEL B TRANSMITTER HOLDING REGISTER (THRB) E-36
E.3.9.23 INPUT PORT (IP) < . . . E-36
E.3.9.24 Output Port Conflguratlon Reglster (OPCR) . E-36
E.3.9.25 START COUNTER Command . . e« « + « « « . E-37
E.3.9.26 SET OUTPUT PORT BITS Command e e « e « <« « . E-=37
E.3.9.27 STOP COUNTER Command . . . « + + +« + + . E-38
E.3.9.28 RESET OUTPUT PORT BITS Command e« « +« + « « o E-38
E.4 MODEM CONTROLS FOR 2/2 CONFIGURATION E-38
E.4.1 Input Port Assignments E-38
E.4.2 Output Port Bit Definitions E-39
E.4.3 Input Port Set-Up ¢« « « « « . . E-40
E.4.3.1 CTS & & & v 4« ¢ « « o + o s o« & s o« « « « « E-40

INDEX

FIGURES

(e I s I s T v I e I I O o O I T O s I e T 3 I e O 5 O s M o
b b wWwwwwioek

OWOT O UTL T YOO D BB BB DD DD
. e e e 8 e e o e e s s+ e ® o e o o

(SR
|
R

[I N |
o

[}
PP OOdOUTs W E & Wb

[SRN

[=St~ A S S S = Y Y = N A« A e K L S S I S
|

1
e
PRI NY

4-15
4-16
4-17

BB BB W W W
. .

.
oW N

. e e
Ul W

N

[N

DSR &« v ¢ v v ¢ o & o o o o o e e e e o e s

03 1

2
Set-Up For Outputs « . « « ¢« « «
RTS v ¢ v v v v v v e v o o o & o o o o o

1
DTR v v v v o o« o o o o o o o o o o o o o &

3
DSRS . . . e e e e e e e e e e e e
MODEM CONTROLS FOR 4/0 CONFIGURATION
Input Port Assignments
Output Port Bit Definitons
Input Port Set-Up « ¢« ¢ ¢« ¢« ¢ ¢ o « .
CTS v v i v v e e e e e e e e e e e e e e
(03
DSR . . . e e e e e e e e e e e e e
Set-Up For Outputs e e e e e s e 4 e e e e e
RTS & v v ¢ v e e e o o o o o o o o o o o
DTR v &« v v v o o o o o o o o o o o o o o
Connector Box . . . « +« « ¢ ¢ o ¢ ¢ o 4« . .

Virtual to Physical Mapping for the Executive

Interrupt Dispatching for a Driver . . .« . .
Multiple Units per Controller, Serial Unlt
Operation

Multiple Controllers, Slngle Unlt per Controller
Parallel Unit Operation (Overlapped Seek) . .
Composite I/O Data Structures
I/0 Packet Format - Control Function
I/0 Packet Format - Transfer Function
QIO Directive Parameter Block (DPB)
Device Control Block . . . e e e e e e e e e
D.PCB and D.DSP Bit Meanlngs e e e e e e e e e
Unit Control Block « « « ¢« « .
Unit Control Byte « « ¢ « o « o
Unit Status Byte « « « + o o . . .
Unit Status Extension 2
Status Control Block e e e e e e e
Controller Status Extension 3 e e e e e
Controller Status Extension 2
Controller Request Block

Controller Status Word . . e e e e e e e e
Contiguous KRB/SCB Allocatlon e e e e e e e
Controller Table e e e e e e e e e

Controller Table Status Byte e b s 4 e e e

xi

E-40
E-40
E-40
E-40
E-41
E-41
E-41
E-41
E-41
E-41
E-41
E-42
E-43
E-43
E-43
E-43
E-43
E-43
E-43
E-43

4-18 Driver Dispatch Table Format . . . e+ .+« . 4-69
4-19 Sample Interrupt Address Block in the DDT . .. 4-711
6-1 Interaction of Task Header Pointers 6-7
6-2 Task Header ¢« ¢ ¢ ¢ ¢« ¢« ¢« & & « « . . 6-8
6-3 Stack Structure: Internal SST Fault 6-10
6-4 Stack Structure: Abnormal SST Fault 6-11
6-5 Stack Structure: Data Items on Stack 6-12
B-1 Simple Task Structure and Memory Mapping B-13
B-2 Libraries and Virtual Address Windows B-15
B-3 Library Sharing and Multiple Libraries « « . . B-17
B-4 Library With Memory-Resident Overlays B-19
B-5 Clustered Libraries B-=22
D-1 Filename Block Format « e + « « « . D=25
E-1 PRO 300 Modules Addressing Scheme e « « « +« « « + E-8
E-2 Module Status Register . . . « + + + « « .« .« E-10
E-3 Channel A Mode Register 1 (MRlA) e « e o« o+ e« +« o E-13
E-4 Channel A Mode Register 2 (MR2A) E-15
E-5 Channel A Status Register (.ref status E-19
E-6 Channel A Clock Select Register (CSRA) E-21
E-7 Channel A Command Register E-=23
E-8 Auxiliary Control Register E-26
E-9 Interrupt Status Register E-30
E-10 Interrupt Mask Register E-32
E-11 Channel B Mode Register 2 « . E-34
E-12 Output Port Configuration Register E=-37
TABLES
1-1 Option Slot Address Assignments 1-2
4-1 System Macro Calls for Driver Code* 4-7
4-2 DDT$ Macro Call Arguments 4-7
4-3 GTPKTS$ Macro Call Arguments ¢« ¢« .« « . . 4-9
4-4 INTSVS Macro Call Arguments . . . e e e .. 4-11
4-5 Mask values for Standard I,/0 Functlons e« o+ o 4-31
4-6 Mask Word Bit Settings for Disk Drives 4-32
4-7 Mask Word Bit Settings for Magnetic Tape Drives 4-33
4-8 Mask Word Bit Settings for Unit Record Devices . 4-34
4-9 Labels Required for the Driver Dispatch Table . 4-68
4-10 Standard Labels for Driver Entry Points 4-71
7-1 QIO Processing By Function Type and Device
Characteristics Y £
7-2 I/0 Packet Usage by Functlon Type e e e e e e e . 19
7-3 Summary of Executive Service Calls for Drivers . 7-13
A-1 Summary of System Data Structure Macros A-2
D-1 Maximum Size for Each File Attribute D-5
D-2 File Header Block D-12
D-3 Statistics Block Format D-18
D-4 File Processor Error Codes . . . « « « . . « . . D-19
D-5 Filename Block Offset Definitions D-23
D-6

Filename Block Status Word (N.STAT) D-=25

1

xii

Filename Block Offset Definitions for ANSI
Magnetic Tape . . . c s - e o .
PRO 300 Module Reglster Summary e e e e .
Configuration of Bits 2 and 3 (MSR)

DUART 0 Register Addresses
Channel A Receiver Baud Rate . . .

Baud Rate Generator Characteristics (CLOCK

3.6864 MHZ) . . . e e e e e e
Counter/Timer Mode and Clock e e e
2/2 Input Port Bits
2/2 Output Port Bits
4/0 Input Port Bits e e e e e e e
4/0 Output Port Bits

xiii

D-26
E-9

E-11

E-12
E-21

E-28
E-29
E-38
E-39
E-41
E-42

PREFACE

Document Objectives

The primary goal of this manual is to introduce P/0S physical I/O
concepts, define Executive and I/O service routine protocol,
describe system I/O data structures, and prescribe I/0 service
routine coding procedures. This information is in sufficient
detail to allow you to:

@ Prepare software that interfaces with the Executive and
supports a conventional I/O device.

® Incorporate the user-written software into an P/0OS
system.

e Detect typical errors that cause the system to crash.

® Use Executive service routines that an I/0 service
routine typically employs.

e Develop P/0S video applications that directly access the
video hardware.

CAUTION

Unless explicitly noted otherwise, all
information in this manual is subject to change
without notice.

Intended Audience

This manual is written for the senior-level system programmer who
is familiar with the hardware characteristics of both the
Professional 300 Series and the device that the wuser-written
software supports. The programmer should also be knowledgeable
about DIGITAL peripheral devices and experienced in wusing the
software supplied with a P/0S system. The manual neither
describes general Executive concepts nor defines general system
structures. The manual does describe I/O concepts, the Executive

XV

role in processing I/0 requests, and some pertinent aspects of
I/0 processing done by DIGITAL-supplied software. Therefore,
with a firm understanding of hardware characteristics and P/0OS
system software, a senior-level system programmer could attempt
to write an I/0 driver.

Structure of This Document

This manual has three types of information: conceptual,
procedural, and reference. The following are abstracts of the
chapters in the document:

e Chapter 1, P/0S I/0 Drivers, introduces terms and concepts
fundamental to wunderstanding physical I/0 in P/0S, and
describes the protocol that a driver must follow to preserve
system integrity. It summarizes advanced driver features and
P/0S capabilities helpful in becoming acquainted with overall
Executive and driver interaction.

e Chapter 2, Device Driver I/0 Structures, continues the
conceptual discussion begun in Chapter 1. It introduces on a
general 1level the software data structures involved in
handling I/O operations at the device level, examines typical
arrangements of data structures that are necessary for
controlling hardware functions, and presents a macroscopic
software configuration that summarizes the logical
relationships of the I/O data structures.

e Chapter 3, Executive Services and Driver Processing, ends the
conceptual presentation. It summarizes how an I/O request
originates, how the Executive processes the request, and how
a driver would use Executive services to satisfy an I/0
request.

e Chapter 4, Programming Specifics for Writing an 1I/0 Driver,
provides the detailed reference information necessary to code
a conventional 1I/0 driver. Included is a summary of
programming standards and protocol, an introduction to the
programming facilities and requirements for both the driver
data base itself and the executable code that constitutes the
driver, and an extensive elaboration of the driver data base
and of the driver code.

e Chapter 5, Incorporating A User-Supplied Driver into P/0S,
supplies the procedural information that you need to assemble
and build a loadable driver image, load it into memory, and
make accessible the devices that the driver supports.

xvi

e Chapter 6, Debugging A User-Supplied Driver, summarizes
software features provided to help you uncover faults in
drivers and gives procedures to follow that might prove
successful in isolating faults in drivers.

® Chapter 7, Executive Services Available to An I/0 Driver,
gives general <coding information relating to the PDP-11 and
P/0S Executive service routines.

® Chapter 8, Sample Driver Code, shows the source code for the
data base and driver of a conventional device and an excerpt
of source code from a driver that handles special wuser
buffers.

e Chapter 9, Accessing Video Hardware and Terminal Subsystem,
provides reference information on the driver’s control of
Professional video hardware and software.

e Appendix A, System Data Structures and Symbol Definitions,
lists the source code of system macro calls that define
system device structures, driver-related structures, and
system-wide symbolic offsets needed to access those
structures.

e Appendix B, Task Building and Cluster Libraries, 1is a
collection of three documents describing overlaying task
structures, cluster libraries, and task organization.

e Appendix C, Files-11 On-Disk Structure Specification,
describes the general-purpose file structure intended for use
on medium and large-size PDP-11 systems.

e Appendix D, QIO Interface to the ACPs, describes the QIO
level interface to the file processors (ACPs).

e Appendix E, Quad Serial Line Unit Driver (PC3XC-BA),
describes the Quad Asynchronous Communications Module
(PC3XC-BA).

Associated Documents

Included in your P/0S Tool Kit documentation are documents that
describe both the software and hardware on the system. The
software documents are listed and described in the Tool Kit
User’s Guide. Consult this document for concise summaries of
software-related publications. For information on hardware
technical specifications, see the Professional 300 Series
Technical Manual.

xvii

Also, it is recommended that you refer to the P/0S Executive

~listings, which are published on microfiche. It is entitled

Executive Listings and Maps.

Associated Files

As mentioned in your installation guide, the directory
[ZZPRIVDEV] on the PRODCL2 diskette contains several library and
symbol table files, which are needed for writing privileged
applications.

xviii

CHAPTER 1
P/OS 1/0 DRIVERS

Device drivers on P/0S are the primary method of interfacing the
Executive’s 1I/0 subsystem with hardware attached to the computer.
Most DIGITAL-supplied hardware is supported by drivers accompanying
the system that the wuser receives. This chapter introduces the
concept of device drivers and explains driver operations and features.

1.1 VECTORS AND CONTROL AND STATUS REGISTERS

Associated with a device contoller are device control and status
registers. The addresses of these registers are determined by the
physical slot in which the controller has been inserted, rather than
the actual option module. A given controller may have up to 64.
words of device registers as shown in Table 1-1. To provide a wunique
identification for <controllers, a hardware 1ID is expected to be
present, and may be accessed at the first address within a given
slot’s device register address range. The bootstrap and diagnostic
ROM examines each option slot and places the hardware 1IDs in a
configuration table located at the top of physical memory. This table
is referenced by PROLOD to resolve the hardware ID specified in the
controller table (CTB) 1located in the driver’s database. The table
may also be accessed by the executive’s WIMPS directive (See the P/0S
System Reference Manual for further details of the directive arguments
and table format.) Certain controllers are physically present on the
motherboard. These devices have predefined device registers and are
fully described in the Professional 300 Series Technical Manual.

VECTORS AND CONTROL AND STATUS REGISTERS

Table 1-1: Option Slot Address Assignments

Vector Vector
Physical Logical Address Address
Slot Slot Device Register Interrupt A Interrupt B
Position Number Address Range ICSRA= ICSRB=
17773206 ICSRA+4
1 0 17774000-17774177 300 304
2 1 17774200-17774377 310 314
3 2 17774400-17774577 320 324
4 3 17774600-17774777 330 334
5 4 17775000-17775177 340 344
6 5 17775200-17775377 350 354

System Peripheral Address Assignments

Logical (ICSR= 17773202)

Slot Device Register Vector

Number Address Range Address Device Type

0 Not used

1 17773500-17773506 200 Keyboard receiver

2 204 Keyboard transmitter

3 17773300-17773314 210 Comm. Port rec./trans.
4 214 Comm. Port modem status
5 17773400-17773406 220 Printer Port receiver
6 224 Printer Port trans.

7 17773000-17773032 230 System clock

Optionally, a controller may utilize one or two of the two-word areas
associated with each slot, called interrupt wvectors. A vector
provides a connection between the device and the software that
services the device. A vector allows a device to trigger certain
software actions because of some external condition related to the
device. When a device interrupts, the vector address is sent to the
processor. The first word of the interrupt vector contains the
address of the interrupt service routine for that device. The
processor uses the second word of the vector as a new Processor Status
Word. Thus, when the processor services the interrupt, the first word
of the vector is taken as the new Program Counter (PC) and the second
word is the new PS.

VECTORS AND CONTROL AND STATUS REGISTERS

Space is reserved on the PDP-11 for the interrupt vectors. This space
is in the low part of Kernel I-space. The vectors are considered to
be in Kernel mode virtual address space and are thus mapped by the
Executive. Because the interrupt wvector 1is in Kernel space, the
Executive receives control of the processor on every interrupt.

1.2 SERVICE ROUTINES

The service routine that is entered to process an interrupt 1is most
frequently in the device driver. Device drivers vary in complexity
depending on the capabilities of the type of device and the number of
device units they service.

Although linked into the Executive structures, a driver resides in
memory outside the wvirtual address space of the Executive. An
application can add or remove a driver by means of PROLOD, a callable
POSSUM system routine. In addition, any driver not required for a
period of time need not be loaded. The space normally occupied by the
unloaded driver can hold user tasks or another driver.

1.2.1 Executive and Driver Layout

A device driver is a logical extension of the Executive that 1is not
contiquous 1in physical memory with the Executive code. Active Page
Registers (APRs)* 0 through 4 map the Executive, APR 7 is reserved to
map the I/0 page, and APR 5 maps the driver. Therefore, a driver is
by default restricted to the 4K words of space mapped by APR 5 unless
it controls 1its own mapping with APR 6 to gain access to an extra 4K
words.

The virtual to physical mapping of a P/0OS system is shown in Figure
1-1.

* Active Page Register is a term referring to the Memory Management
register pair (Page Address Register (PAR) and Page Descriptor
Register (PDR).) Refer to the Professional 300 Series Technical Manual
for information on hardware mapping and memory management. Refer to
the RSX11M-Plus and Micro/RSX Task Builder Manual for a description of
mapping and APR assignments by software.

1-3

SERVICE ROUTINES

Physical Memory

Address Space
1/0 Page
Virtual
Kernel
\ Space 32K Words
— APR 7
Privileged Task - — — — | 28KWords
or
Driver b — — -
APR 5
,<_ _— e —-— 20K Words
haes — —
APR 1
Dynamic Storage | 4K Words
| __Regon | APR 0
System Resident 0K Words
1/0 Data Base /
— —— ——cw— — /
Executive
Code
— /4
VECTORS

Figure 1-1: Virtual to Physical Mapping for the Executive

Virtual addresses 20K through 28K words (APR 5 and APR 6) are reserved
to map drivers and privileged tasks in Kernel mode. (Although APR5
and APR6 are reserved for drivers, the Executive maps only APR5 when
it calls a driver.) Finally, virtual addresses 28K through 32K words
(APR 7) map the I/O page.

SERVICE ROUTINES

Thus, a device driver is mapped with the Executive code and the 1I,/0
page. When a driver has control, it can access the device registers
in the I/0 page to perform its operations. While in system state, a
driver has access to all the Executive service routines to help it
process I/O requests. While in interrupt state, the driver must save
and restore APR 6 (access to APR 6 is unrestricted when the driver is
in system state).

Becaus€ of the layout of the Executive and device drivers, many common
functions related to I/0 are centralized in the Executive as service
routines. This commonality eliminates the inclusion of repetitive
coding in each and every driver. Coding in each driver is therefore
reduced to handling the specific functions of the device supported.

1.2.2 Driver Contents

A device driver consists of two parts. One part 1is the executable
instructions of the driver itself. This part has the entry points to
the driver. The entry points are those places where the Executive
calls the driver to perform a specific action, and their addresses are
established in the driver dispatch table (DDT). The table contains
addresses of routines in a fixed order so that the Executive can enter
the driver at the appropriate place for a given action.

The other part of a device driver is the data structures forming the
data base that describes the controllers and units supported by the
driver. Two structures, the controller table (CTB) and the controller
request block (KRB), describe the controller of the device being
supported. Because the CTB supplies generic information about the
controller type, only one CTB need exist for each controller type on a
system. The KRB holds information related to a specific controller
and therefore each controller has its associated KRB.

Three structures in the driver data base--the device control block
(DCB), the wunit control block (UCB), and the status control block
{SCB)--describe the device as a logical entity. The DCB contains
information related to the type of device, whereas the UCB holds
information specific to an individual unit of the device. The SCB is
used mainly to store data (driver context) concerning an operation in
progress on the device unit.

The driver data structures are tailored to the number of controllers
on the system, the number of units attached to each controller, and
the types of features the devices support. The structures increase in
complexity as the number of supported features increases.

EXECUTIVE AND DRIVER INTERACTION

1.3 EXECUTIVE AND DRIVER INTERACTION

The Executive and a driver interact by accessing and manipulating
common data structures. An I/O activity typically begins when a task
generates .a request for input or output. The Executive performs
preliminary processing of that request before it initiates the driver.
This preliminary processing, called predriver initiation, is common
for all drivers and eliminates a great deal of code from all drivers.

In performing predriver initiation, the Executive accesses the driver
data structures to assess the 1legality of the I/O request. For
example, cells in the device control block (DCB) define the functions

that the driver supports. If the function specified in the I/0
request is not supported by the driver, the Executive need not call
the driver. The driver is not aware of the I/O request. Therefore,

the Executive calls the driver only when the predriver initiation
warrants ‘it.

1.3.1 The Driver Process

When the Executive does call the driver to process an I/O request, the
driver begins I/O initiation. Once an I/0 request is created, a
driver process is initiated. The Executive has queued to the driver
an I/0 packet that must be processed to satisfy the request.
Potentially there exist on the system as many driver processes as
there are distinct wunits capable of being active simultaneously.
(Moreover, some drivers supporting advanced features can have multiple
I/0 requests simultaneously active for a given unit. In this case,
each active I/O request is part of a separate driver process. Refer
to Section 1.4.3 for more information.

Central to a full understanding of a driver and the I/0 structure 1is
the difference between a driver process and the driver code. The
driver code, (which is pure instruction), invokes an Executive routine
called S$GTPKT to get an I/0 packet to process. This activity
generates data for the request being processed and the unit doing the
processing. The driver process, once initiated, starts the proper I/0
function, waits for a completion interrupt and performs any required
data transfers. It then completes the I/0 by specifying I/0 status
and requesting another I/O packet. This sequence of execution steps
continues until the TI/O queue 1is empty and the driver process
terminates.

Because a driver may be capable of servicing several I/0 requests 1in
parallel, it 1is possible that, for a single driver, many driver
processes exist at the same time. However, there is only one copy of
driver code, The driver process is reentrant code and the data that
defines the state of the code is stored in the driver data base when
the process 1is not executing (for example, when it is waiting for an

1-6

EXECUTIVE AND DRIVER INTERACTION

interrupt). The driver process executes driver code for a particular
device type on behalf of a specific unit. If independent units of a
particular device type are concurrently active, several driver
processes are also active at the same time, each with its own set of
data.

1.3.2 Interrupt Dispatching and the Interrupt Control Block

Once a driver starts an I/0 function, it must await the I/0 completion
interrupt. When a device interrupt occurs, the processor pushes the
current PS and PC onto the current stack and loads the new PS and PC
from the device controller interrupt vector. By convention, the PS in
the interrupt vector is preset with a priority of 7 and the number of
the controller associated with the vector. (The controller number,
which identifies a particular controller for a given controller type,
is in the low-order four bits.)

For a driver, the hardware cannot dispatch directly to the interrupt
service routine in the driver because the driver is mapped outside the
address space of the Executive. Therefore, some code in the Executive
must 1initially handle the interrupt, load the mapping context of the
driver, and dispatch to the proper driver. This code resides in the
Executive in a structure called an interrupt control block (ICB).
Figure 1-2 shows this mechanism. A common Executive coroutine, called
interrupt save ($SINTSI) is called from the ICB. The $INTSI coroutine
saves two registers, R4 and R5, which are thereafter £free for the
driver to use. These registers are typically used by drivers to hold
addresses of the data blocks containing wunit status and control
information, the SCB and UCB. (Most Executive routines assume these
two registers hold pointers to the two structures. If the driver
needs to wuse more registers, it saves them on the stack and restores
them when it finishes.) Kernel APR 5 is then saved and the driver is
mapped through APR 5 and called at the interrupt entry point. When
the interrupt save coroutine returns to the driver, the driver runs at
the 1interrupt 1level of the device that it is servicing and has two
free registers that it can use.

The driver may then run for a short interval at the partially
interruptable level. By convention, this interval should not exceed
500 microseconds. When the driver finishes processing the interrupt,
it may execute a RETURN instruction to transfer control back to the
coroutine which gives control of the CPU to the next process.*

* An Executive interrupt exit routine, $INTXT, exists to standardize
the way a driver exits from an interrupt. This routine is executed by
the $INTSI coroutine. Therefore, interrupt exit processing is
effected via the "RTS PC" (RETURN) instruction.

1-7

EXECUTIVE AND DRIVER INTERACTION

Thus, the ICB actually contains a JSR instruction to an Executive
interrupt save routine ($INTSI) that performs the following:

o Save R4 and R5

o Save the Kernel mapping (APR 5)

o Load APR 5 to map the driver

o Transfer control to the driver via a JSR instruction

0 Restore the mapping after return from the driver

o Perform interrupt exit processing

0 Restore R4 and R5

o Return from interrupt

Thus, the interrupt vector for a controller serviced by a driver
points to an ICB rather than to the driver.

= INTERRUPT
CONTROL
CONTROLLER %hg;K
NUMBER
e
INTERRUPT

ZK-247-81

Figure 1-2: Interrupt Dispatching for a Driver

The ICB conceptually allows up to 128 controllers of the same type on
a system. The low-order four bits in the PS of the interrupt vector
restricts the number of controllers to 16. 1In the ICB, the system
maintains a controller group number and the PS bits describe the
controller number within the group. To obtain the controller index
(controller number #2), the executive interrupt service routine first
multiplies the controller within group number that was in the low {4
bits of the PS by two. The group number byte in the ICB is then added
to this number.

EXECUTIVE AND DRIVER INTERACTION

The simplest case in handling an interrupt is that in which a
controller can have only one unit active at any one time. Multiple
controllers may be active concurrently, yet only one unit per
controller may be active. The interrupt service routine in the driver
uses the controller index passed in R4 to index a table in the CTB and
to access the proper KRB. From the KRB, the UCB (via K.OWN) may be
determined to access the proper unit data and context. For those
devices that have a static one-to-one static relationship between a
controller and a perticular UCB, the controller index may be wused to
index a table of UCB addresses within the driver.

The more complex case in dispatching an interrupt is that in which a
controller can have multiple units operating in parallel. This is an
advanced driver feature called overlapped seek I/O and is described in
Section 1.4.1.

1.3.3 Interrupt Servicing and Fork Process

A driver handling an interrupt and operating at the partially
interruptable level may need to (1) access structures in its data base
or (2) call centralized Executive service routines which may access
structures 1in the data base. Because a driver may have more than one
process active simultaneously, the driver itself may need to access
structures in the data base shared among separate, unrelated
processes. A method must exist to coordinate access to the data
structures shared among the processes and the Executive.

The mechanism that coordinates access to the shared structures is
called the fork process. An Executive routine, called fork ($FORK),
causes the driver process to be placed in a queue of processes waiting
for access to the shared data structures, to run at processor priority
level 0, and to be completely interruptable.=*

A driver must therefore call the fork routine before it calls any
other Executive service routine (except for SINTSI), or before it
accesses any device-specific (nonprivate) structures in its data base.
If a driver does not follow this protocol, it will corrupt the system
data base and lead to a system crash.

A driver that «calls the fork routine requests the Executive to
transform it into a fork process. The routine saves a snapshot of the

* By convention, drivers may operate at a partially interruptable
level for no more than 500 microseconds. Some drivers conceivably
could need more time than this convention allows. Thus, an additional
reason for the fork mechanism is to preserve the response time of the
system and not lock out interrupts from lower-priority levels.

1-9

EXECUTIVE AND DRIVER INTERACTION

process in a fork block. The snapshot is the context of the driver
process--the PC of the process and the contents of R4 and R5. The
fork block itself can (and wusually does) reside in the I/0 data
structure holding the status information of the device being serviced
(that is, the status control block, or SCB). The Executive maintains
a list of fork blocks in FIFO order. A new fork block is added to the
list after the last block in the list.

When the driver calls $FORK, the CPU priority is lowered to 0, which
allows other interrupts to be serviced. When there are no more
pending interrupts (they have either been dismissed or the drivers
have <called S$SFORK), the Executive <checks to see whether the first
interrupt preempted a priority 0 Executive process. If a preemption
occurred, the Executive process 1is continued from where it was
interrupted.* If no priority level 0 Executive process was
interrupted, the Executive executes the process at the head of the
fork list. The Executive restores the saved context of the process
from the SCB and returns control to the driver at the statement
immediately following the call to the fork routine. The process 1is
unaware that a pause of indeterminate length has elapsed.

Fork processes thereby are granted FIFO access to the common I/O data
structures. Once granted such access, a fork process has control of
the structures until it exits. The protocol guarantees that the
driver process has unrestricted access to shared system data
structures. As one fork process exits, the next 1in the 1list 1is
eligible to run and access the data structures. Thus, the fork
mechanism allows both controlled access to the common data structures
and sufficient time to process an interrupt without locking up the
system.

The status of a fork process lies between an interrupting routine and
a task requesting system resources. This is known as "system state."
Interrupt routines are run first and can be interrupted only by
higher-priority interrupts. Processes in the fork list run after
other system processes either terminate or call S$FORK themselves.
Because system processes save and restore user task registers and
cannot be interrupted by a fork process, a fork process can wuse all
registers. The fork processes are completely interruptable. Tasks
run only when the fork list is empty.

The fork mechanism establishes linear, or serial, access to the shared
data structures. For example, an Executive routine that completes I/O
processing ($IODON) manipulates the I/O queue to deallocate an 1I/0
packet that the driver processed. If multiple processes were allowed

* The stack must be restored to its state on interrupt entry before
calling $FORK. Therefore, 1t cannot be wused to pass additional
context.

EXECUTIVE AND DRIVER INTERACTION

to alter the queue at random times, the queue pointers could become
disarranged. Without the fork mechanism, any process could be
interrupted by a higher-priority process and not be able to complete
its manipulation. Because the Executive completes a currently active
fork process before it starts the next fork process in the queue, the
integrity of the I,/0 data structures is maintained if all routines
that call $SIODON run at system state.

Between the time that a driver process calls $FORK and the Executive
starts the process at system state, the driver cannot call $FORK again
for that same device. 1If the SFORK routine is called again before the
first process starts, context stored in the fork block for the first
fork process is overwritten. However, once a fork process starts, the
data in the fork block is stale and the process may call S$SFORK again
while it is at system state. If the driver does not ensure against
unexpected interrupts, it may double fork as described above. As a
result of the double fork, the system will bugcheck (crash) with an
IOT trap as a vresult of a failed sanity check while queuing the
forkblock. A common protocol used by DIGITAL device drivers 1is to
clear the saved PC in the forkblock immediately following a fork, and
to test this work before forking. If the word is non-zero, it is not
possible to call $FORK.

If all drivers adhere to the interrupt protocol, the integrity of the
I/0 data structures 1is preserved. Thus, when a device interrupt
occurs while a fork process is executing, the protocol demands that
the service routine handling the interrupt not destroy any of the
registers. The registers are part of the context of the fork process.
After the driver dismisses the interrupt or itself becomes a fork
process, the interrupted fork process can safely resume execution with
its proper context. If any driver violates the protocol, the
integrity of the I/O data structures is endangered. (That 1is, the
system crashes in mysterious ways.)

1.3.4 Nonsense Interrupt Entry Points

All vectors for off-line devices and vectors for which there are no
devices contain the addresses of Executive nonsense interrupt entry
points. Code at these special entry points exists to properly dismiss
unexpected interrupts from these devices via an RT1 instruction.

1.4 ADVANCED DRIVER FEATURES

This section introduces optional features so you can better understand
the structures and concepts described in the remainder of the manual.

ADVANCED DRIVER FEATURES

1.4.1 Overlapped Seek /O

Some disk devices allow multiple device units attached to the same
controller to execute operations in parallel. This 1is called
overlapped seek support and is a software option designed to take
advantage of a hardware feature found in most advanced disk drives and
controllers. This feature allows any or all drives to be attached to
the same controller, allowing this functionality to execute a seek
function simultaneously. Each wunit may perform a seek operation
independent of what another unit may be doing. Only one data transfer
can occur at any one time. Some types of drives allow seek functions
to overlap a data transfer function, whereas other types do not.

The increased difficulty for overlapped seek devices stems from
determining whether the controller or the wunit generated the
interrrupt. Most <control functions issued to the drive unit
(including the positioning commands SEEK and SEARCH) terminate with a
unit interrupt. The controller reports the physical wunit number of
the interrupting unit. A controller interrupt indicates the
termination of a function (usually a data transfer command) that
changes the controller status from busy to ready. Only one unit may
issue a data transfer complete notification to a particular controller
at any one time because only one data transfer can be in progress at
any one time. Most hardware defers seek termination interrupts until
the current data transfer is complete.

To handle interrupts for a device that supports overlapped seek
operations, a device <controller-specific interrupt service routine
must be built into the driver to examine the device registers in order
to determine whether the interrupt was initiated by the controller or
the drive unit. Using the controller index on interrupt entry, the
routine wuses this as an offset into a table of addresses in a
structure (called the controller table or CTB) in the I/O data base.
The routine accesses the table to determine the address of the I/0
data structure of the interrupt controller (called the controller
request block or KRB) that generated the interrupt. Accessing the KRB
yields the address of the CSR of that controller and having the CSR
address allows the routine to examine the device registers.

If the controller itself initiated the interrupt, the routine
determines the data base structure of the unit that is active. This
determination is possible because such a controller interrupt relates
to a termination of a data transfer, and only one such unit can be
active for a data transfer. A cell in the KRB has the address of the
data structure describing the active unit (the unit control block or
UCB). The routine can then determine the address of the driver
dispatch table and transfer control to the driver.

ADVANCED DRIVER FEATURES

If a device unit initiated the interrupt, the routine retrieves its
unit number from the device registers. Using the physical unit
number, the routine indexes a table at the end of the KRB to yield the
address of the related UCB. The driver is entered through the driver
dispatch table.

1.4.2 Delayed Controller Access

Drivers that support overlapped seeks also must request access to a
controller before executing a function on an independent unit and must
release access after completing the function. To take maximum
advantage of simultaneous operation of units on one controller, the
system delays controller access when the controller is busy.

The Executive maintains a request queue for the controller. Whenever
a driver process requests access to a controller and must wait for
access to the controller, the Executive places the associated fork
block in the controller request gqueue. When a driver releases a
controller, the Executive automatically grants access to the next
driver process waiting for access. Precedence is given to positioning
requests over requests for data transfer. The controller request
qgueue thereby provides the means for the Executive to synchronize
access.

1.4.3 Full Duplex Input/Output

In certain circumstances it may be necessary for a driver to handle
more than one I/0 request on a unit at the same time. Typically a
driver processes only one I/0 packet per unit at any one time. In
normal operation the driver calls the Executive routine S$GTPKT to get
an I/0 packet to process. When $GTPKT returns an I/0 packet, it marks
the device busy and does not allow additional I/0 until the first I/O
activity completes. Therefore, only one I/O process can be in
progress at the same time on a device. Full duplex operation allows
more than one I/O process to be in progress on a device at the same
time.

To allow full duplex operation, the $GTPXT routine has a special entry
point called $GSPKT. A driver calling $GSPKT specifies an acceptance
routine, to which $GSPKT returns control when an eligible packet is
found. The acceptance routine determines whether to accept or reject
the packet. The criteria that the acceptance routine applies could be
that a write request is accepted if a write has just completed or that
a read request is accepted if a read has just <completed. If the
routine rejects the packet, it indicates so to $GSPKT, which continues
to search for another packet. If the acceptance routine accepts the
packet, S$GSPKT dequeues the packet and passes it to the driver but

1-13

ADVANCED DRIVER FEATURES

does not modify U.BUF and U.CNT in the unit control block (UCB) nor

does it mark the device busy. As a result, during full duplex
operation the device appears idle even while it is processing an 1I/0
request. For this reason, it may be difficult to make use of the

executive’s standard driver timeout facility. Clock queue entries are
suggested.

To complete an I/0O request under full duplex operation, the driver
calls the S$IOFIN routine rather than the $IOALT or $IODON routine.
SIOFIN does final processing without making the device look idle, as
SIOALT and S$SIODON attempt to do. 1In full duplex operation, a unit
will always appear idle to the system and the driver acceptance
routine will determine whether the device can handle an I/O request.

A driver handling full duplex operations requires augmented data base
structures. The conventional data base structures are defined for
only one I/0O request in progress per unit. Because the driver has to
keep more information concerning a unit that allows two I/0 requests
in progress, you may have to alter the UCB and other data base
structures to provide additional offsets. The DIGITAL-supplied full
duplex terminal driver not only uses a lengthened UCB and a
nonstandard SCB, but also connects to a dynamically allocated UCB
extension.

1.4.4 Buffered Irput and Output

Typically, data for input and output requests are transferred directly
to and from task memory. To allow the successful transfer of data,

the task cannot be checkpointed until the transfer is complete. For
most high-speed devices, the transfer occurs quickly enough so that a
task does not occupy memory for too 1long a time. For slow-speed

devices, however, some mechanism must be available to avoid binding
memory to a task for too long a time while the task is performing I/O.

Using the routines S$STSTBF, $INIBF, and SQUEBF in the Executive module
IOSUB, a driver can execute an I/0 request for a slow-speed device and
allow the task to be checkpointed while the request 1s in progress.
To perform the I/0 request, the driver buffers the data in memory
allocated to the driver while the task is checkpointed and the 1I/0
request is in progress.

To test whether a task is in a proper state to initiate I/0 buffering,
the driver calls the STSTBF routine and passes it the address of the
I1/0 packet. By extracting the address of the task control block (TCB)
from the I/O packet, $TSTBF can examine various task attributes. For
example, if the task is not checkpointable, buffered I/O 1is not
desirable. STSTBF returns to the driver and indicates whether
buffered I/0 can be performed.

ADVANCED DRIVER FEATURES

If buffered I/0 can be performed, the driver performs two operations.
First, it establishes the buffering conditions. For an output
request, it copies the task buffers to dynamically allocated pool
space. For an input request, it allocates sufficient pool space to
receive the incoming data. Second, the driver <calls the S$INIBF
routine to initiate the I/0 buffering. S$INIBF decrements the task I/O0
count, increments the task’s buffered I/O count in T.TIO, and releases
the task for checkpointing and shuffling. If the task is currently
blocked, the task state is transformed into a ‘"stopfor" state until
the task is unblocked, buffered I/O completes, or both. Checkpointing
the task is subject to the normal requirements of an active or
"stopfor" state as described in the P/0S System Reference Manual.

After the driver transfers the data, it calls the S$SQUEBF routine to
queue the buffered I/O0O for completion. SQUEBF sets up a kernel
asynchronous system trap (AST) for the buffered I/0 request and 1if
necessary, unstops the task. When the task is active again, a routine
(SFINBF) in the Executive module SYSXT notices the outstanding AST and
processes it. (If the request is for input, the routine copies the
buffered data to task memory.) This mechanism occurs transparently to
the task, thus the name kernel AST. The routine then calls the driver
to deallocate the buffer from pool. SIOFIN completes the processing.

1.5 OVERVIEW OF INCORPORATING A USER-WRITTEN DRIVER INTO P/OS

A callable system service called PROLOD, located in the POSSUM
library, 1is responsible for 1loading and unloading a driver. When
loading, PROLOD establishes the 1linkage between the data base
structures in the system device tables and the driver code being
loaded. When unloading, PROLOD removes the driver’s code from memory
(although PROLOD removes a driver, it does not remove a data base).

To incorporate a user-written driver into P/0S, you first create two
modules, one in which you define the data base and the other in which
you include the driver code itself. You must supply in your code the
global symbols that PROLOD needs.

PROLOD also loads the driver’s data base. It reads the driver symbol
definition file to find the start and end of the data base in the
driver image. (Thus, you must have defined its start and end in the
data base source code.) Knowing the start and end, PROLOD reads the
data base from the driver image. It then places the data base in the
system pool so that it resides in Executive address space, accordingly
relocates pointers and links within the data base to be wvalid
Executive addresses, and also connects the CTB and DCB(s) in the data
base to the system device tables. Moreover, so that the system device
tables are not corrupted by an incorrect data base, PROLOD performs
many consistency and validity checks on the data base being loaded.

OVERVIEW OF INCORPORATING A USER-WRITTEN DRIVER INTO P/0S

You must build both of the following:

1. A single image (a .TSK file without a header) containing the
driver code module followed by the driver data base module
(see Section 5.1.3).

2. A symbol definition (.STB) file that PROLOD requires to find
critical data base and driver locations.

You will link the driver image to the Executive version under which
the driver will run. However, the driver image will be separate from
the Executive image. PROLOD is responsible for 1loading both vyour
driver data base and driver code, for connecting the data base to the
system device tables, and for connecting your driver code to the data
base.

CHAPTER 2
DEVICE DRIVER I/O STRUCTURES

This chapter deals mainly with structures at the block level, their
relationship to the hardware configuration and functionality
supported, and their relationships to each other. The precise
description of each structure is given in Chapter 4.

2.1 /O STRUCTURES

The main elements in the driver I/0 environment essentially define the
logical and physical characteristics of the supported hardware and
establish the links and connections by which routines can access and
manipulate driver data. The following subsections describe the
control blocks that a driver data base module defines, and explain in
general terms the purposes for each block.

2.1.1 Controller Table (CTB)*

A controller table defines a unique controller type on the system. A
CTB must exist for each physical controller type. All controller
tables are linked together, in a list, with the head of the 1list
SCTLST in the Executive common area. The list of the controller
tables is one of the threads through the system data base to provide
access to all device-related data. The link in the last CTB in the
list has a value of zero.

Associated with each CTB is a 2-character ASCII controller name which
must be wunique within the system. This unique name allows PROLOD to
find the correct CTB for the controller type.

* Drivers that are not associated with hardware devices (such as in
memory disk or pipe driver) do not need a CTB or KRB. DCBs, SCBs, and
UCBs are a sufficient database.

I/0 STRUCTURES

Any user-written driver data base must have its own CTB. The
user-created controller table will also be linked into the system CTB
list, if necessary.

A CTB has generic status information, links, and pointers to other
structures on the system. The table of KRB addresses in the CTB is
the means by which the Executive handles interrupts for the controller
type and dispatches to the correct driver routine.

2.1.2 Controller Request Block (KRB)*

The controller request block is the means by which the Executive
maintains controller-specific or hardware-specific information and
accesses the correct information for a wunit which 1its associated
controller owns. One KRB exists for each device controller of a given
type in the configuration. It stores such data as the the device CSR
and vector addresses, the slot number, the interrupt controller CSR
address, and controller’s status.

In a configuration where a device controller allows only one operation
at a time, the KRB is combined with another structure called the
status control block (SCB). (The SCB holds context for a wunit while
an operation is in progress.) Because only one access path is possible
in such a configuration, unit context is always associated with the
same controller. Moreover, because only one operation is possible at
a time, the same context storage area can be wused for all units
attached to the controller. Thus, in a conventional driver operating
environment, the context storage 1is merely an extension of the
controller request block.

In a configuration where multiple operations in parallel on the same
controller are possible, the controller context is separate from each
independent unit context. Therefore, each unit capable of operating
independently on a controller has the context of the current I/0O
operation stored in an SCB separate from the controller KRB. In such
an operating environment, any unit can access the controller while
other operations are pending, but only one unit can have access at a
time. The KRB indicates which wunit owns the controller for the
current operation, and synchronizes access among driver processes on
the same controller.

Where multiple operations in parallel are allowed on a controller, it
may be necessary to delay access to the controller when it is busy.
Therefore, in the XRB the Executive holds the head of a list of access
requests called the controller request gqueue. The list contains fork

* See footnote on page 2-1.

I/0 STRUCTURES

blocks for driver processes awaiting controller access. The queue 1is
the means by which the Executive serializes access to the controller.

When a controller allows parallel operations, the software must have a
means of determining which of several units generated an interrupt.
The KRB, therefore, contains a table of addresses which associate the
controller with all the units connected to it. This table, indexed by
physical unit number, must appear if the controller in question
supports overlapped seek operations or multiple simultaneous data
transfers for each physical unit attached to the controller (comm.
multiplexers).

The KRB also holds the configuration status of the controller. If the
KRB indicates that the controller is off-line, no activity can take
place on any unit connected to the controller.

2.1.3 Device Control Block (DCB)

The device control block describes the static characteristics of a
device type and of units associated with a certain device type. The
DCB is the means of access to the driver dispatch table and thus to
the driver. At least one DCB exists for each logical type of device
on a system. There may be more than one DCB for a logical device
type. (Note that the 1logical device type is not the same as the
physical device type.)

A cell in each device control block forms a link in a forward-linked
list, with the head of the list starting in a cell (SDEVHD) in the
Executive common area. This list, as with the CTB 1list, 1is a main
thread through the system data structures to device-related data. The
link in the last DCB in the list has a value of zero.

The static data in the DCB gives such information as the generic
device name, wunit quantity and 1links to individual unit data, the
address of the driver dispatch table, and types of 1I/0 functions
supported by the driver. Typically, the Executive QIO directive
processing code and not the driver code accesses the DCB.

2.1.4 Unit Control Block (UCB)

The unit control block holds much of the static information about an
individual device wunit and contains a few dynamic parameters.
Although unit control blocks need not be any prescribed 1length for
different devices, all unit control blocks for the same DCB must be of
equal length. (The UCB length is stored in the device control block
to calculate the offset to a particular UCB in the concatenated set of
UCBs described by the DCB’s 1logical wunit numbers.) This condition

2-3

I/0 STRUCTURES

allows the ucCB to contain varying amounts of wunit- and
device-independent data for different types of devices.

A UCB, one of which exists for each device unit, enables a driver to
access most of the other structures in the I/0 environment. A UCB
provides access to most of the dynamic data associated with 1I/0
operations. Given the address of a UCB, a driver may readily find
most of the other data structures in which it is interested because
the proper 1links exist. Because of this access information, the UCB
is a key control block in the driver I/O structure.

The static data in the UCB includes pointers to other I/O structures,
definitions of unit control bits which regulate directive processing,
definitions of unit status bits which describe operational conditions,
and definitions of wunit- and device-dependent characteristics and
storage cells.

Data in the UCB is accessed and modified by both the Executive and the
driver.

2.1.5 Status Control Block (SCB)

The status control block holds driver context for operations on a
device unit. In the SCB are stored such data as the pointer to the
head of the queue of input/output requests; the 1link to the fork
blocks queued for the wunit; the fork process context; timeout, and
unit status; and the address for the controller request block (KRB)
representing the device controller (if the device has a controller).

The Executive accesses the SCB to set up an I/0 request, to store
context while a request 1is 1in progress, and to post results and
status. When the driver accesses the SCB, it is wusually for read
access only.

If the controller itself cannot handle parallel operations, only one
SCB is needed for each controller. In such a case, a controller can
have only one unit processing a command at a time, and there is no
need to store context for more than one unit at a time. There is also
no need for a physically separate controller request block (KRB) to
separate controller information from operation state information.
Therefore, the driver data base contains the required KRB cells in the
status control block since the KRB and SCB overlap.

If the controller allows parallel operations, there must be one SCB to
store operation state information for each unit capable of operating
independently on the controller. 1In such a configuration, a cell in
each SCB points to the KRB of the controller to which the units are
connected.

I/0 STRUCTURES

Certain operations, such as data transfers, could require exclusive
use of a controller. A controller can be requested for this purpose
using the routines located in the MDSUB module of the Executive (the
microfiche distributed with the Tool Kit contains the MDSUB listing).
If the device controller can support unqualified parallel operations
to multiple wunits, the driver can use $GSPKT and $IOFIN, and can
maintain its own unit busy state internally.

Being capable of wungqualified parallel operations means that the
controller can handle any operations in parallel.

2.2 DRIVER DISPATCH TABLE (DDT)
The driver dispatch table* contains the entry points to and the
interrupt entry addresses for the driver. An entry point is the
location at which the Executive calls the driver to perform a specific
function. An interrupt entry address 1is a location to which the
central processor or the Executive transfers control within the driver
for servicing hardware interrupts. The pointer to the interrupt entry
address resides in an interrupt control block.
Every driver has four conventional entry points as follows:

o I/0 initiation

o cancel I/0

o device timeout

o device powerfail

Two more entry points are added for controller and wunit on-line and
off-line status changes:

o KRB status change
o UCB status change

For many devices, these status change entry points are merely a return
to the Executive calling routine.

There are. two additional entry points that have been added for the

* The DDT is not a structure in the strict sense of the word because
it is defined 1in the instruction part of the driver code. However,
because it contains addresses for dispatching code, it is included in
the data structure description.

DRIVER DISPATCH TABLE (DDT)

advanced driver feature of buffered I,/0 and terminal driver
processing:

o Deallocate buffers (buffered I/0)

o Send next command (FDX TTDRV)

2.2.1 1/O Initiation

The Executive transfers control to this entry point to inform the
driver that work for it is waiting to be done. To reduce work for the
driver, the Executive performs predriver-initiation processing.
(Predriver initiation 1is described in Chapter 3). If, at the end of
predriver processing, the Executive has I/0O packets queued for the
driver, it calls the driver at this entry point.

When the driver receives control at its I/O initiation entry point, RS
contains the address of the UCB for the unit on which the request is
to be processed. To establish access to the I/O packet, the driver
calls an Executive routine that does either of the following*:

o It returns information concerning the dequeued packet to be
processed and information needed to gain access to the unit’s
data structures

o0 It causes the driver to dismiss the initiation request,
because the SGTPKT routine processed the request on behalf of
the driver. (There may be no packet to process or the driver
may already be busy.)

Once control is returned to a driver and there 1is a request to
process, the driver must extract the information from the registers,
establish data within the control blocks, and process the request.
This means that the driver proceeds with an I/0 request until it
issues a command to the controller hardware, which physically
initiates the I/O operation.

Typically a driver is called at this entry point after an I/0 packet
has been inserted into the I/O0 queue. However, a driver can be called
before a packet is placed in the I/O queue. Refer to the description
of the U.CTL control flag UC.QUE in Section 4.4.4 for information on
queueing an I/0 packet to the driver.

* The $GTPKT routine, which gets a packet for the driver to process,
is described in Chapter 7.

2-6

DRIVER DISPATCH TABLE (DDT)

2.2.2 Cancel |/O

To terminate an in-progress I/0 operation, the system flushes the 1I,/0
queue and calls the driver at this entry. There are many situations
in which a task, or the Executive (on behalf of an exiting task), must
terminate I/0. When such a termination becomes necessary, a task
issues an IO.KIL Executive QIO request and the Executive relays the
request to the driver by calling the driver at its cancel entry point.
Cancel requests are not queued and have no associated I/O packet.

The driver 1is responsible for checking that the I/0 operation
in-progress was issued from the task that is forcing the termination,
and for completing or terminating the operation before returning to
the caller.

Typically, a driver is called at this entry point only when an 1I/0
operation 1is in progress. A driver also can be called, even if the
unit specified is not busy. Refer to the description of the U.CTL
control flag UC.KIL in Section 4.4.4 for information on unconditional
cancelling of I/0. (For instance, the driver may need to clean up
data structures created during pre-initiation processing (UC.QUE=1)
and has "hidden" the I/O packet listhead in some other structure).

2.2.3 Device Timeout

When a driver initiates an I/0 operation, it can establish a timeout
count. If the operation fails to complete within the specified
interval, the Executive notes the lapse and calls the driver at this
entry point. Using this facility, a driver can wait for an interrupt
but need not hang if the interrupt never occurs. Thus, no driver
should ever stall on a request because a hardware failure prevented an
expected interrupt from happening.

NOTE
Extreme caution must be exercised to avoid completing
an I/0 request twice. It can happen once for timeout,

and again when a pending forked process becomes active
and completes I/0 again.

2.2.4 Device Power Failure

The Executive calls the power failure entry point upon successful
completion of loading.

2-7

DRIVER DISPATCH TABLE (DDT)

2.2,5 Controller and Unit Status Change

Two entry points are required for configuration status changes of the
controller and units. The Executive enters one entry point to put the
controller on-line and take it off-line. The other entry point,
called once for each unit whose status changes, is for putting units
on~-line and taking them off-line. The driver must show successful
completion of the on-line or off-line request or the Executive will
not effect the status change.

2.2.6 Device Interrupt Addresses

Control passes to a driver’s interrupt service routine address when a
device, previously initiated by the driver, completes an I/O operation
and causes an interrupt in the central processor. A device may have
associated with it more than one interrupt entry.

You specify the interrupt addresses in a block in the DDT. The
arrangement is general enough to support multicontroller drivers such
as the terminal driver. The block defines the address or addresses to
include in the vector for the driver.

2.3 TYPICAL CONTROL RELATIONSHIPS

This section presents different arrangements of the control structures
that are found in P/0S. The section concentrates on the relationships
among device control, unit control, status control, and controller
request blocks and controller tables based on hardware and functions
supported. Descriptions of the detailed contents of the structures is
left to Chapter 4, where the coding requirements are presented. Some
of the arrangements are not conventional but are shown to convey the
flexibility. Section 2.4 shows how such arrangements fit into the
overall system I/O data structure.

The arrangements described in this section illustrate the strategy in
offering a flexible 1I/0 data structure. There need be only one
controller table for each controller type. Multiple-device control
blocks for a single device type reflect the capability to handle
varying characteristics. The existence of one or more status control
blocks depends on the degree of parallelism possible: one SCB for
each controller servicing several units (no parallelism); or one £for
each device unit combination on the same controller (unit operation in
parallel).

TYPICAL CONTROL RELATIONSHIPS

The I1/0 data structure reflects the hardware configuration that the
data structures describe. The flexibility in the data structure
arrangements provide flexibility in configuring I/O devices. The
information density in the structures themselves reduces the coding
requirements for the associated drivers.

2.3.1 Multiple Units per Controller, Serial Unit Operation

A typical arrangement of structures for a user-written driver is shown
in Figure 2-1. The arrangement could represent an RX50 controller
with dual drives. A single controller table (CTB) defines the
existence of the controller type on the system. One device control
block (DCB) establishes the characteristics for the type of device
running on the controller.

DCB CTB
List I List I
— — —_—
DCB CTB
KRB

ucCB SCB o

ucsB

ZK-249-81

Figure 2-1: Multiple Units per Controller, Serial Unit Operation

2-9

TYPICAL CONTROL RELATIONSHIPS

The status control block (SCB) and controller request block (KRB) are
contiguous in this arrangement because the software does not allow
another I/0O operation to begin while the controller 1is busy. A
separate unit control block (UCB) describes each unit attached to the
controller. The UCBs are associated with the SCB, which contains the
context of the operation currently in progress.

2.3.2 Multiple Controllers, Single Unit per Controller

Another typical conventional arrangement of structures for a
usér-written driver is shown in Figure 2-2, which could represent two
Winchester controllers, one with an RD50 and the other with an RD51
attached. It represents the simplest case of driver processing.
Figure 2-1 shows what is required for a controller that allows only a
single 1I/0 operation for each controller. A single controller table
defines the existence of the controller type on the system. One
device control block establishes the characteristics for the type of
device running on the controller.

The status control and controller request blocks are contiguous in
this arrangement because, while the controller is busy, another I/0
operation cannot begin. Only one SCB 1is necessary to store the
context of the wunit operation. The UCB points to the SCB, which in
turn points to the KRB of the unit’s controller. Because the system
must handle interrupts from multiple controllers, the controller table
points to the KRB of each controller present.

2.3.3 Parallel Unit Operation

Some devices allow multiple units to have operations in progress at
the same time. For example, a controller could allow seek operations
to overlap data operations. Figure 2-3 shows the arrangement needed
in the software structures to support parallel operations on one
controller.

Two additional structural changes are required from the serial
operation arrangement. First, because more than one unit may have an
operation pending at the same time, a structure is needed to store
unit context. Therefore, for each unit (and each unit control block)
there is a separate status control block. Second, because interrupts
can come from more than one unit, some way must exist to access the
proper unit. As a result, the controller request block contains a
table of wunit control block addresses that allows the driver to find
the structures for the unit generating an interrupt.

TYPICAL CONTROL RELATIONSHIPS

DCB CTB
Tl Emmmmme
List | List I
DCB CcTB
KRB
= uce | SCB o
Qs
ucs
.- KRB
SCB
ZK-250-81
Figure 2-2: Multiple Controllers, Single Unit per Controller
L et —
DCB cT8
~
ucB SCB
L £ o
o —
— - KRB
ucs SCB
' l ucB
Table
. . . ZK-251-81
Figure 2-3: Parallel Unit Operation (Overlapped Seek)

2-11

OVERVIEW OF DATA STRUCTURE RELATIONSHIPS

2.4 OVERVIEW OF DATA STRUCTURE RELATIONSHIPS

This section presents an overview of the relationships among the
user-written driver data structures previously introduced in this
chapter and the Executive I/O structures and DIGITAL-supplied driver
structures. The goal of the section is to convey the general manner
in which user-written structures and code link 1into the system 1I/0
scheme and to describe generally the use to which the system puts the
structures. The specific wuser-written structures are simplified
somewhat so that the emphasis is placed on the linkages with other
parts of the system rather than on the details of wuser-written
structural relationships.

This section should be used with Section 2.3 to understand the general
structural concepts. For example, Section 2.3 describes various
arrangements of unit control, status control, and controller request
blocks based on hardware functions the software structures support.
This section treats such arrangements as an engineering black box that
is oriented in the general I/0 environment. Thus, in the generalized
I/0 data structure depicted in this section, the pointers in the KRB
table of the SCB are not shown and the table is simply marked KRB
Table.

Figure 2-4, which provides the basis for the presentation of the 1,0
data structure, shows the individual elements and the important link
fields within them. The numbers in the figure correspond to the
numbers in the lead paragraphs of the text to simplify the discussion
and to guide you through the data structures.

1. The location represented by the Executive symbol SDEVHD is a
cell in system common (SYSCM). It is the head (or start) of
a singly-linked, unidirectional list of all device control
blocks in the system. The first word in each DCB is a link
to the next DCB.

The list of device control blocks is one of the two threads
through the system data tables for device-related
information. For example, the list is the means by which
executive routines scan the data structures to determine what
devices are on the system and what is the status of units.
User-written device control blocks must be linked into the
list of system defined DCBs.

2. Every driver is associated with a partition control block
(PCB). The PCB defines the characteristics of the memory
area into which the driver 1is loaded. The Executive and
services such as PROLOD reference the data in the PCB. A
driver is not concerned with the PCB.

OVERVIEW OF DATA STRUCTURE RELATIONSHIPS

If a task is attached to a unit, the UCB has a pointer to the
task control block (TCB) of that task.

The task header is an independent entity in the 1I,/0 data
structure and the driver never accesses it. (In fact, it may
not be memory resident.) The task header 1is in physical
memory immediately before the task region when the task’s
"task region" is resident in memory.

A logical unit table (LUT) entry in the task header has two
items of interest: a pointer to an associated unit control
block and, if a file is being accessed, a pointer to a window
block. The Executive accesses the logical unit table of a
task during a QIO request and .indexes the table by the
logical unit number specified in the QIO request.

A device control block has a pointer to the wunit control
block of the first related unit. Because the length of a UCB
is stored in the DCB and all UCBs are allocated in a
contiguous area, access to all the UCBs related to that DCB
is possible. This arrangement allows software to access all
related unit information for a device type.

A DCB also has a pointer to the start of the driver dispatch
table. This pointer allows the Executive to call the driver
at its entry points to process an I/O-related request.

Each unit control block contains a pointer back to its
related DCB. This backpointer allows the Executive QIO
directive to preprocess an I/O request and possibly call the
driver (through the pointer to the driver dispatch table).

Associated with each UCB is a status control block. The SCB
is shared by all wunits for a device type that does not
require units to operate in parallel. When units can operate
in parallel, each UCB has its own associated SCB.

v1-¢

y-z 8inbig

seinonsg eleg O/l susodwod

POINTER TO LINK TO
DEVICE VECTOR NEXT DCB DRIVER CODE FIRST ICB
ICB !
DDT
$DEVHD @ $CTLST
© ® Fmm-—m-—mm - :
| - —_— —
| ! cTB
|
DCB DCB | : cTs
1/0 PACKETS =
| @ 1/0 QUEUE !
e R N L J
Current
® ® . s
LOADABLE $FRKHD S Packet
Dg::\éER e [—1 IFORKBLOCK
e SCB
uce I r_"
KRB
@ e KRB TABLE
TCB OF] UCB TABLE Coe
ATTACHED ucs (INDEX)
TASK
VCB
@ MOUNTED
TCB OF VOLUME
ACP FORKBLOCK[™ ™1 KR8
SCB =
@ TASK
HEADER LUT ENTRY KRB TABLE UCB TABLE WB
NV e S —— s
wB
(TASK) (VOLUME)

This diagram shows only a typical example;
itdoes not show every possible arrangement.

NOTE

@ FCB

(TASK}

SdAIHSNOIIVIIY FYNIONYIS VIVA 40 MITA¥IAO

OVERVIEW OF DATA STRUCTURE RELATIONSHIPS

7. As part of processing a QIO directive (queued I/0 request),
the Executive builds a structure called an I/O packet.
Storage for packets is in the system dynamic storage region
(the primary pool). The Executive connects the packets by a
pointer in each packet to form a linked list called the 1I,/0
queue. The Executive maintains two pointers in the SCB to
the list of packets. The first pointer is to the start of
the 1list and the second pointer is to the last packet in the
list. ’

Normally, the driver should not access the 1list of 1I,/0
packets directly. When the Executive transfers control to
the driver to initiate processing of an I/0O request, the
driver immediately calls an Executive service routine to get
a packet to process. The routine passes, to the driver, data
sufficient to process the request (for example, the address
of the packet). Thus, the Executive, and not the driver,
removes a packet from the queue of packets. However, in
performing the I/0 request, the driver can access certain
fields in the packet to be processed because a pointer to the
currently active I/0 packet is kept in the SCB.*

The Executive determines the ordering of packets 1in the
queue. Typically, higher-priority requests are placed at the
head of the queue.

8. At least one status control block (SCB) exists for each
controller. Where a controller and software support
operations in parallel on multiple units, one SCB exists for
each wunit capable of operating independently. A pointer in
the SCB connects to the controller request block (KRB) of the
controller to which the related unit is connected.

The fork block in the SCB contains some of the driver process
context. The driver executes an Executive routine so that
processing will occur at fork level. To preserve processing
status, the routine stores some context in the fork block.
When the driver eventually runs again, the fork processing
restores the proper context from the fork block.

The fork blocks for pending driver processes are connected in
a singly-linked 1list, the head of which is in a location

* Normally, the driver does not directly manipulate the I/0 queue. An
exception is when a driver needs to examine an I/O packet before it is
queued or instead of having it queued. This exception involves a
status bit in a control byte of the unit control block. For more
information on queuing of I/0 packets to the driver, refer to the
description of the UC.QUE bit in Section 4.4.4.

2-15

10.

11.

12.

OVERVIEW OF DATA STRUCTURE RELATIONSHIPS

(SFRKHD) in the Executive region. Generally, the fork
processing routines 1link a fork block in FIFO order. At
location S$FRKHD+2 the executive maintains a pointer to the
last fork block in the list.

Associated with each open file on a mounted volume is a file
control block (FCB). The file system alone uses the FCB to
control access to the file.

For each open file on a mounted volume, a window block exists
for each task that has the file open to hold pointers to
areas on the volume on which the file resides. The function
of the window block is to speed up the process of retrieving
data items from the file. (The associated ACP need not be
called to convert a virtual block number in a file to a
logical block number on the device.) The driver 1is not
concerned with the window block or this VBN to LBN
conversion.

The driver dispatch table (DDT) is part of the driver code
and is the means by which the executive calls the driver.

The controller request blocks (KRB) are linked into the 1I/0
data structure through the pointers in the controller table
(CTB).

The KRB table in the CTB allows the Executive access to the
structures for a controller when it initiates an interrupt.
To report the termination of a data transfer command, a
controller initiates an interrupt. (While such a
controller-initiated interrupt is in progress, the hardware
delays interrupts from wunits.) The driver determines the
correct KRB by indexing the CTB with the controller index.

For a controller that allows wunit operation in parallel
(overlapped seek support), the related KRB must have a table
of UCB addresses. This table allows the driver to access the
structures of the unit that generates an interrupt. When a
unit interrupts, its controller has the physical number of
the interrupting wunit. The driver must retrieve the number
and use it to index the UCB table in the KRB to access the
proper unit control block. (For example, see DZDRV.MAC
interrupt "B", door open, processing.)

To support multiple parallel unit operations, the KRB also
contains a queue to regulate controller access. This queue,
known as the controller request queue, 1is a 1list of fork
blocks for driver processes that have requested and have been
denied immediate access to the controller. If the driver
requests access to a controller and the controller is busy,
the Executive forces the driver to wait for access by placing

2-16

13.

14.

OVERVIEW OF DATA STRUCTURE RELATIONSHIPS

the fork block in the queue of processes waiting for access.
The Executive gives precedence to control access over
requests for data transfer by placing positioning requests
onto the front of the queue and adding data transfer requests
to the end of the queue. When a unit is given access, the
controller status is set to busy and unit UCB address is set
to connect the KRB to the owned UCB.

To indicate what unit to process on a controller initiated
interrupt, a cell in the KRB points to the unit control block
(ucB) of the wunit that currently owns the KRB (data
transfer).

The KRB controller request queue 1listhead consists of two
words. The first word points to the fork block in the SCB of
the next unit to get access. The second word points to the
fork block in the SCB of the last unit to get access. 1If the
first word is 0, then the second word points to the first and
no unit is waiting for access to the controller.

The location represented by the Executive symbol $CTLST is a
cell in system common (SYSCM). It is the head (or start) of
a singly-linked, unidirectional list of all controller tables
(CTBs) in the system. A word in each CTB is a link to the
next CTB. The last CTB in the list contains a link word of
0.

The list of controller tables 1is one of the two threads
through the system for device-related information. (The list
of device control blocks is the other thread.) A user-written
controller table will be 1linked into the list of system-
defined CTBs. This list is the mechanism by which system
routines access I/0 data structures for hardware information.

One volume control block (VCB) exists for each mounted volume
in the system. The VCB maintains volume-dependent control
information.

Pointers within the VCB connect to the file control block
(FCB) and window block (WB). The FCB and WB control access
to the volume’s index file, which is a file of file headers.
All FCBs for a volume form a linked list starting from the
index file FCB. These linkages aid in keeping £file access
time to a minimum. A conventional driver never accesses any
of these structures.

CHAPTER 3
EXECUTIVE SERVICES AND DRIVER PROCESSING

The Executive provides services related to I/0 drivers. Some services
are provided before a driver process is initiated and are therefore
called predriver 1initiation services. The predriver initiation
services are those performed by the Executive during its processing of
a QIO directive; these services are not available as Executive calls.

Predriver initiation processing extracts from the QIO directive all
I/0 support functions not directly related to the actual issuance of a
function request to a device. TIf the outcome of predriver initiation
processing does not result in the queuing of an I/0O Packet to a
driver, the driver is unaware that a QIO directive was 1issued. Many
QIO directives do not result in the initiation of an I/O operation.

Other services are available to the driver after it has been given
control, either by the Executive or as the result of an interrupt.
They are available as needed by means of Executive calls.

An important concept used in this section and in Chapter 4 1is the
state of a process. In P/0S, a process can run in one of two states,
user or system. Drivers operate entirely in the system state; the
programming standards described in Chapter 4 apply to system-state
processes.

3.1 FLOW OF AN I/O REQUEST

Following an I/O request through the system at the functional level
{the level at which this chapter is directed) requires that limiting
assumptions be made about the state of the system when a task issues a
QIO directive. The following assumptions apply:

o The system is running and ready to accept an I/O request.
All required data structures for supporting devices attached
to the system are intact.

FLOW OF AN I/O REQUEST

The only I/O request in the system is the sample request
under discussion.

The example progresses without encountering any errors that
would prematurely terminate its data transfer; thus, no error
paths are discussed.

The controller in question executes only a single operation
at a time.

3.1.1 Predriver Initiation Processing

The I/0 flow proceeds as described below:

1.

Task issues QIO directive

The user program first either statically (by QIOWSC, QIOWS,
QIOSC, or QIOS$) or dynamically (by QIOWSS or QIOS$S) creates a
directive parameter block (DPB) containing information about
what I/0 is to be performed on what device. Then, it issues
the directive.

All Executive directives are called by means of EMT 377. The
EMT causes the processor to push the PS and PC on the stack
and to pass control to the Executive’s directive processor.

QIO Dispatching

The Executive directive dispatcher DRDSP ascertains that the
EMT 1is a QIO directive and calls the QIO directive processor
DRQIO.

First-level validity checks

The QIO directive processor validates the logical unit number
(LUN) and the Unit Control Block (UCB) pointer. DRQIO checks
whether the LUN supplied in the directive parameter block 1is
a legal value. 1If it is not a legal value, the directive is
rejected. If the LUN is legal, DRQIO checks whether a wvalid
UCB pointer exists 1in the Logical Unit Table (LUT) for the
specified LUN. This check ascertains whether the LUN is
assigned. If the check fails, the directive is rejected. 1If
both these checks are successful, DRQIO then performs the
redirect algorithm.

FLOW OF AN I/O REQUEST

4. Redirect algorithm

Because the UCB may have been dynamically redirected by a
Redirect command, QIO directive processing traces the
redirect linkage until the target UCB is found. The target
UCB provides the links to most of the other structures of the
device to which the I/0 operation will be directed.

5. Additional wvalidity checks

The event flag number (EFN) is validated, as well as the
address of the I/0 Status Block (IOSB). If either is
illegal, the directive is rejected. Immediately following
successful validation, DRQIO resets the event flag and clears
the I/0 status block.

6. Obtain storage for and create an I/0 Packet

The QIO directive processor now acquires a 20-word block of
dynamic storage for wuse as an I/0 Packet. It inserts into
the packet the device-independent data items that are wused
subsequently by both the Executive and the driver in
fulfilling the I/0O request. Most items originate 1in the
requesting task’s Directive Parameter Block (DPB).

At this point, DRQIO sets the directive status to +1, which
indicates directive acceptance. Note that a directive
rejection is a return to the caller with the C bit set. In
addition, a directive rejection is transparent to the driver.
7. Validate the function requested

If the function is legal, DRQIO checks to see whether the
unit 1s on-line. If the wunit is off-line, the packet is
rejected. The function is one of four possible types:

Control

No-op

ACP

Transfer (default if not control, no-op, or ACP)

With the exception of Attach/Detach, control functions are queued to

the driver. If the bit UC.ATT is set, Attach/Detach will also be
gqueued to the driver. If the requested function does not require a
call to the driver, the Executive takes the appropriate action and

calls the I/0 Finish routine (SIOFIN).

FLOW OF AN I/O REQUEST

No-op functions do not result in data transfers. The Executive
performs them without calling the driver. No-ops return a status of
IS.SUC in the I/0 status block.

ACP functions may require processing by the file system. More
typically, the request 1is a read or write virtual function that is
transformed into a read or write logical function without requiring
file-system intervention. When transformed into a read or write
logical " function, the function becomes a transfer function (by
definition).

Transfer functions are address checked and queued to the proper
driver. This means that DRQIO checks the address of the I/0 buffer,
the byte count, and the alignment requirement for the specified
device. If any of these checks fails, DRQIO calls the I/O Finish
routine (SIOFIN), which returns an I/0 error status and clears the I/0
request from the system. If the checks succeed, DRQIO either places
the I/0 Packet in the driver request queue according to the priority
of the requesting task or, if the UC.QUE bit is set, gives the packet
directly to the driver. (See Section 4.4.5 for a description of the
UC.QUE bit.)

3.1.2 Driver Processing

1. Request work

The Executive passes control to the driver by wusing the
driver’s initiation entry point for each new I/0 request.

To obtain work, the driver calls Get Packet (SGTPKT). SGTPKT
either provides work, if it exists, or informs the driver
that no work is available or that the SCB is busy; if no work
exists, the driver returns to 1its caller. If work is
available, $GTPKT sets the device controller and wunit to

busy, degqueues an I/0 request packet, and returns to the
driver. ‘

2. Issue I/0

From the available data structures, the driver initiates the
required I/0 operation and returns to its caller. A
subsequent interrupt may inform the driver that the initiated
function 1is complete, assuming the device is interrupt
driven.

3-4

FLOW OF AN I/O REQUEST

3. Interrupt processing

When a previously issued I/O operation interrupts, the
interrupt causes the driver to be entered. The driver
processes the interrupt according to the programming protocol
described in Chapter 1. According to the protocol, the
driver may process the interrupt at priority 7, at the
priority of the interrupting device, or at fork level. 1If
the processing of the I/0O request associated with the
interrupt 1is still incomplete, the driver initiates further
I/0 on the device (Step 9). When the processing of an 1I/0
request is complete, the driver calls $IODON.

4. 1I,/0 Done processing

SIODON removes the busy status from the device wunit and
controller, queues an AST if required, and determines whether
a checkpoint request pending for the issuing task can now be
effected. The TIO0SB and event flag, if specified, are
updated, and $IODON returns to the driver. The driver
branches to 1its initiation entry point and looks for more
work (Step 1). This procedure is followed until the driver
cannot obtain work; then the driver returns to its caller.

Eventually, the processor receives a ready-to-run task that
issues a QIO directive, starting the I/0 flow all over again.

3.2 EXECUTIVE SERVICES AVAILABLE TO A DRIVER

Once a driver is given control following an I/O interrupt or by the
Executive itself, a number of Executive services are available to the
driver. These services are discussed in detail in Chapter 7.

However, four Executive services merit special emphasis because
virtually every driver in the system uses them:

1. Get Packet (S$SGTPKT)
2. Create Fork Process (SFORK)

3. I,/0 Done (SIODON or SIOALT)

3.2.1 Get Packet (SGTPKT)

The Executive, after it queues an I/0 Packet, «calls the appropriate

3-5

EXECUTIVE SERVICES AVAILABLE TO A DRIVER

driver at its I/O initiation entry point. The driver then immediately
calls the Executive routine S$GTPKT to obtain work.* If work is
available, SGTPKT delivers to the driver the highest-priority,
executable I/0 Packet in the driver’s I/O queue, and sets the SCB
status to busy. If the driver’s I/O queue is empty or if the driver
is busy, $GTPKT returns a no-work indication.

If the SCB related to the device is already busy, SGTPKT so informs
the driver, and the driver immediately returns control to the
Executive.

Note that, from the driver’s point of view, no distinction exists
between no-work and SCB busy, because an I/0 operation cannot be
initiated in either case.

3.2.2 Create Fork Process (SFORK)

Synchronization of access to shared data bases 1is accomplished by
creating a fork process. When a driver needs to access a shared data
base, it must do so as a fork process; the driver becomes a fork
process by calling $SFORK. The SCB contains preallocated storage for a
5-word fork block. See Section 4.4.5 for a description of the fork
block. Section 1.3.3 contains details on $FORK. After SFORK is
called, a routine is fully interruptable (priority 0), and its access
to shared system data bases is strictly linear.

3.2.3 1/O Done (SIODON or SIOALT)

At the completion of an I/O request, the subroutines SIODON or $IOALT
perform a number of centralized checks and additional functions:

o0 Store status if an IOSB address was specified

o Set an event flag if one was requested

o Determine whether a checkpoint request can now be honored
o Determine whether an AST should be queued

SIODON and SIOALT also declare a significant event, reset the SCB and
device wunit status to idle, and release the dynamic storage used by

* An exception is a driver that handles special user buffers. Such a
driver must <call certain other Executive routines before calling
SGTPKT. See Section 4.4.4 for a description of the UC.QUE bit.

3-6

EXECUTIVE SERVICES AVAILABLE TO A DRIVER

the completed I/0O operation,

CHAPTER 4
PROGRAMMING SPECIFICS FOR WRITING AN I/0 DRIVER

Chapters 2 and 3 give overviews of data structures and Executive
services, respectively. This chapter summarizes programming
standards, presents overviews of programming requirements for
user-written driver code and data, and gives details of the data
structures and driver code. Executive services are covered in Chapter
7.

4.1 PROGRAMMING STANDARDS

I/0 drivers function as integral components of the P/0S Executive, and
this manual enables you to incorporate I/O drivers into your system.
User-written drivers must follow the same conventions and protocol as
the Executive itself if they are to avoid complete disruption of
system service. Failure to observe the internal conventions and
protocol that are described fully in Chapter 1 can result in poor
service and reductions in system efficiency.

The programming conventions wused by P/0OS system components are
identical to those described in Appendix E of the PDP-11 MACRO-11
Language Reference Manual. DIGITAL urges you to adhere to these
conventions.

4.1.1 Programming Protocol Summary

Drivers are required to adhere to the following internal conventions
when processing device interrupts:

1. Registers R4 and R5 are available; any other registers must
be saved and restored.

PROGRAMMING STANDARDS

2. Processing at the priority of the interrupting source should
be minimized and kept well under 500 usecs. On Professional
Series hardware, all devices interrupt at processor priority
4 and, as a result, processing at device priority is
equivalent to processing at priority 7 with all pending
interrupts (including the clock) locked out. The interrupt
arbitration described in the "Professional 300 Series

- Technical Manual” only addresses which of the interrupts is
subsequently serviced at priority 4 when the processor drops
its priority to 0.

3. Kernel APR 6 mapping must be preserved by the interrupt
Service routine if needed to map additional driver code or
ata buffers.

4. Only a fork process, which by definition is in system state,
may modify a system data base or examine dynamic system data
structures such as the installed task directory (the STD).

5. A fork process has unrestricted access to APR 6, and RO-RS5.

6. Complex drivers and system processes that require extended
periods of processing at system state should consider
reforking to allow other system processes’ execution time.
These other system processes could, for example, perform
clock-related and I/0 completion-related processing. Care
must be exercised that any additional context is preserved if
required, since only R4, R5 and APR 5 mapping are preserved
across the fork. As always, "double forking" must not occur;
it is avoided by either using an interlock protocol on the
forkblock, or through the wuse of a separate forkblock
allocated from primary pool.

4.1.2 Accessing Driver Data Structures

All the driver data structure elements have symbolic offsets. Because
the physical offset values may vary from one version of the Executive
to another, your wuser-written driver code should always use the
symbols to access the elements.

Accordingly, your driver code should not step from one structural
element to another (relying on the juxtaposition of data structures
and individual words in a data structure) but should access -each
element by symbolic offset. On the other hand, it is a common coding
practice to assume that zero offsets (particularly link pointers such
as D.LNK) will remain zero. This assumption allows the saving of one
word per instruction by substituting an instruction such as MOV
(R3),R3 for MOV D.LNK(R3),R3. DIGITAL recognizes that such practices

4-2

PROGRAMMING STANDARDS

are followed and consequently attempts to keep such offsets zero.

4.2 OVERVIEW OF PROGRAMMING USER-WRITTEN DRIVER DATA BASES

You should create the source code for your wuser-written driver data
base in a file separate from that of the driver code. You assemble
this file to create the driver data base module. If your data base is
in a separate module, it will be linked to the end of the driver code
module. If your driver data base is in the same module as that of
your driver code, it must be at the end of the driver code.

To create the source code, you need to know, in addition to the
detailed structures, what ordering and labeling are required. These
requirements, though not extensive, are important in 1linking and
loading your driver data base. The general coding requirements for
driver data bases are described in the following subsections.

4.2.1 General Labeling and Ordering of Data Structures

When creating a data base, you must specify, for the PROLOD routines,
two global labels as follows:

S$SxxXDAT:: marks the start of the user-written driver data base.

SXXEND:: marks the end of the user-written driver data base,
that 1is, immediately following the final word of the
data base.

If either or both of these 1labels are not defined, PROLOD cannot
determine the length of your data base when you attempt to load your
driver.

There is no mandatory ordering of the different structures in a driver
data Dbase. DIGITAL suggests, however, that you place the DCB first,
followed by the UCB, the SCB(s), the KRB(s), and the CTB. If vyou do
not follow this ordering scheme, vyou must specify the starting
location of the first (or only) DCB as described in Section 4.2.2.

4.2.2 Device Control Block Labeling

When writing a driver data base, the PROLOD routines require either
that the first (or only) DCB be identified by the global label
SxxDCB:: or that the DCB be at the start of the data base.

OVERVIEW OF PROGRAMMING USER-WRITTEN DRIVER DATA BASES

4.2.3 Unit Control Block Ordering

All the UCBs associated with a specific device control block (DCB)
must be contiguous with each other and must be of equal length. These
requirements are necessary because the DCB has only one 1link to the
UCBs, and that link is to the first UCB. Two data elements, the UCB
length and the number of units, are stored in the DCB; they, together
with the 1link to the first UCB, are used to locate subsequent UCBs.
If you do not follow these requirements, no software can access the
UCBs.

4.2.4 Status Control and Controller Request Blocks

All user-written drivers that do not need separate storage for
independent wunit context should use the contiguous allocation of the
KRB and SCB. (For an explanation of when independent unit context 1is
required, refer to the discussion of overlapped seek I/O in Section
1.4.1. Therefore, the KRB and SCB are contiguous and some fields of
each structure overlap. This arrangement saves space that would be
required for one SCB for each independent unit. Because only one unit
can be active at any one time, all wunits attached to the same
controller can share the SCB. This arrangement of the KRB and the SCB
is described in Section 4.4.7.

4.2.5 Controller Table

You must define the start of the table of KRB addresses in the CTB
with the global label $xxCTB::. Both the INTSV$ macro call and the
Executive PROLOD routines require this label. You must assemble a
global symbol of the form $xxCTB in the CTB starting at the first word
in the table of KRB addresses. An example follows.

-

CTB storage cells ...

.WORD S$XXDCB ;O0ffset L.DCB in CTB
.BYTE 3 ;L.NUM, where 3 is # of KRBs (controllers
.BYTE 0 ;L.STS, controller status
SXXCTB:: ;Start of table of KRB addresses
" .WORD KRB1 ;Address of 1st KRB

.WORD KRB2 ;
.WORD KRB3 ;

The symbol $xxCTB (defined globally, where xx 1s the +two character

4-4

OVERVIEW OF PROGRAMMING USER-WRITTEN DRIVER DATA BASES

driver generic name) is used by PROLOD to find the CTB in your driver
data base image. The value of this symbol (that is, the address) is
placed into the DDT in the word labeled by xxCTB (no $). The INTSVS
macro references the value of the word in the DDT labeled by xxCTB to
obtain the address (in the CTB) of the table of KRB addresses at
runtinme.

4-5

OVERVIEW OF PROGRAMMING USER-WRITTEN DRIVER CODE

4.3 OVERVIEW OF PROGRAMMING USER-WRITTEN DRIVER CODE

To create the source code to drive a device, you must perform the
following steps:

1. Thoroughly read and understand this manual.

2. Familiarize yourself in detail with the physical device and
its operational characteristics.

3. Determine the level of support required for the device.
4, Determine actions to be taken at the driver entry points.

5. Create the driver source code.

To assist you in generating proper code for your user-written driver
and to provide a stable user-level interface from one release of the
system to another, P/0OS provides the macro calls listed in Table 4-1.

The definitions of the system macro calls for drivers are in the
Executive assembly prefix file RSXMC.MAC. The following subsections
describe the format of the macro calls and other features of
user-written driver code. Driver code details (such as labeling
requirements and entry point conditions) are presented in Section 4.5.

4.3.1 Generate Driver Dispatch Table Macro Call - DDT$

The DDT$ macro call facilitates generation of the driver dispatch
table. The format of the DDTS$ macro call is as follows:

DDTS dev,nctrlr,iny,inx,ucbsv,new,buf,opt

Table 4-2 lists the arguments of the DDT$ macro call. The macro
constructs the DDT, wusing as addresses those locations indicated by
the standard labels. The macro has arguments allowing you to tailor
some of the standard entry points. The format of the DDT generated by
the DDT$ macro is described in Section 4.5.1.

* See Appendix A for Macro definitions.

4-6

OVERVIEW OF PROGRAMMING USER-WRITTEN DRIVER CODE

Table 4-1:

Macro Name

DDT$S

GTPKTS

INTSVS

Table 4-2:

Argument

dev

nctrlr

iny

System Macro Calls for Driver Code*

General Functions

Used conventionally at the start of the driver code
(1) to allocate storage for and to generate a
driver dispatch table containing the addresses of
entry points in the order in which the Executive
expects them; (2) to generate special global labels
required by the Executive; (3) to tell the
Executive PROLOD routines: (a) which controllers
the driver supports, (b) how many interrupt vectors
each controller supports, and (c) the association
between the interrupt vectors and the driver
interrupt entry points; and (4) to generate default
controller and unit status change entry point
procedures (for on-line and off-line transitions)

Used at the I/O initiator entry point to generate
the call to the $GTPKT routine and to generate code
to save the address of the currently active wunit’s
ucCB
)

Used at an interrupt entry point to conditionally
generate a call to the $INTSV routine and to
generate code to load the UCB address of the
interrupting device into R5

DDT$ Macro Call Arguments

Meaning

Is the 2-character device mnemonic (used to generate
entry point symbol names such as a $xxINI where
dev=xx).

Is the number of controllers that the driver services
(counting from 1).

Allows the definition of no interrupt entry point or

multiple interrupt entry points. If you leave the
argument null, the macro generates as the interrupt

4-7

OVERVIEW OF PROGRAMMING USER-WRITTEN DRIVER CODE

entry point address the 1location defined by the
conventional label $xxINT.

If you specify NONE, no interrupt entry point is
generated for the controller.

If you specify an argument list of the form <aaa,bbb>,
the macro generates multiple cells containing
addresses defined by unconventional labels of the form
$xxaaa and S$xxbbb. This latter mechanism allows you
to define multiple interrupt entry points in the
driver. For example, the argument 1list <INP,OUT>
generates two interrupt address labels of the form
$xxINP and $xxOUT, the typical names used by drivers
with two interrupt entry points.

inx Uses an alternate I/O initiation entry point address
label instead of the conventional INI form. If you
specify inx, the macro uses as the only I/O0 initiation
entry point address the location defined by the label
inx.

ucbsv This argument is optional on P/0OS systems. Section
4.3.4 provides guidelines on specifying this argument.
If this argument is non-blank, a table of nctrlr words
in length is generated to contain the controller index
to UCB mapping of a per controller I/O operation in
progress.

new If present, causes the DDT$ macro to generate the DDT
table that refers to the online reconfiguration entry
points. (See the macro definition of DDTS$ in Appendix
A.)

buf Required if the driver performs buffered input and
output. The entry point xxDEA: 1is generated.

opt Required if the mass storage device driver supports
queue optimization.

4-8

OVERVIEW OF PROGRAMMING USER-WRITTEN DRIVER CODE

4.3.2 Get Packet Macro Call - GTPKTS

The GTPKTS macro call standardizes wuse of the Executive S$GTPKT

routine,

which retrieves an I/0 packet for the driver to process.

The format of the GTPKTS macro call is as follows:

GTPKTS

dev,nctrlr,addr,ucbsv, suc

The description of the arguments appears in Table 4-3.

Table 4-3:

Argument

dev

nctrlr

addr

ucbsv

suc

GTPKTS$ Macro Call Arguments

Meaning

Is the 2-character device mnemonic.

Is the number of controllers that the driver services
(counting from 1).

Is the local label defining the location at which to
continue execution if there is no 1I/0 packet
available. A driver typically executes a RETURN
instruction when the $GTPKT routine indicates that
there is no I/0 packet to process. If you leave this
argument null, therefore, the macro generates a RETURN
instruction.

Strictly speaking, this argument is not needed on P/0OS
systems and can not be wused directly if a given
controller can support parallel operations on multiple
units simultaneously. If this argument is non-blank,
a table of "nctrlr"” words in length is generated to
contain the controller index to UCB mapping of a per
controller I/0 operation in progress. The macro then
generates code to 1load the pointer S.OWN with the
address of the UCB returned by $GTPKT. For guidelines
on using the argument, refer to Section 4.3.4.

Indicates single unit controller. If you are writing
a driver that supports a controller type such as the
LP11, to which only a single unit can be attached, you
should specify this argument (any character(s) except
null). TIf vyou specify this argument, you should
ensure that the offset K.OWN/S.OWN in the KRB(s) of
your driver data base points to the UCB(s) of the
unit(s) to which the controller(s) is attached. Thus,
the macro does not generate code that stores the UCB

4-9

OVERVIEW OF PROGRAMMING USER-WRITTEN DRIVER CODE

address in the KRB for a device that has only one UCB
per KRB.

If your driver has multiple units attached to the same
controller, you should leave this argument null. The
macro will then generate code to store the UCB address
of the unit to process in the SCB or SCB/KRB.

Note that for non-contiquous SCB/KRB configurations,
the UCB is stored in K.OWN when the controller request
is granted, depending on controller characteristics
(see SRQCNC and SRQCND in MDSUB).

This macro call generates the call to the Executive S$GTPKT routine.
You should place it at the I/0 initiation (xxINI) entry point because
the $GTPKT routine is the standard manner for a driver to receive work
from the Executive. When the driver receives control at its INI entry
point, the Executive has loaded R5 with the address of the UCB of the
unit that the driver must service. Because of the code the macro call
generates, the driver immediately calls $GTPKT, which can set the C
bit to indicate that no work 1is pending. The call additionally
generates the BCS instruction that returns control to the calling
routine when there 1is no work. If you specify an address as the
"addr" arqument in the macro call, it is used as the destination of
the BCS instruction. The address 1is typically that of a RETURN
instruction, but does not have to be. Eventually the driver must
execute a RETURN to the system.

The S$GTPKT routine indicates that the driver has an I/0 packet to
process by clearing the C bit. Therefore, when the test of the BCS
instruction is false, execution continues inline and the driver can
process the I/O packet that the Executive queued to it. The SGTPKT
routine leaves information in the driver registers to enable the
driver to process the request. Refer to the description of the S$GTPKT
routine and the GTPKT$ macro listing in Chapter 7.

4.3.3 Interrupt Save Macro Call - INTSVS$

You should specify the INTSV$ macro call at each interrupt entry point
in the driver. The format of the INTSVS macro call is as follows:

INTSVS dev,pri,nctrlr,pswsv,ucbsv

The arguments of the call are described in Table 4-4. The macro
generates the <code to 1load R5 with the UCB address of the current
controller owner, given the controller index 1is in R4 (R4 1is not
modified by macro). Note that R5 may be zero in case of either an
unexpected interrupt (e.g., no current I/0 operation), or an interrupt

4-10

OVERVIEW OF PROGRAMMING USER-WRITTEN DRIVER CODE

as a result of a parallel operation on the same controller. (For
example, an overlapped seek completing after a data transfer
completion.) In general, for configurations which support overlap seek
it is the driver’s responsibility to differentiate between a transfer
function completion interrupt from a control ‘function completion
interrupt.

Table 4-4: INTSVS$S Macro Call Arguments

Argument Meaning
dev Is the 2-character device mnemonic.
pri Is not used.
nctrlr Is the number of controllers that the driver services

(counting from 1).

pPSWSW Leave this argument null; it has no effect. It is an
anachronism, and must be positionally present if ucbsv
is specified.

ucbsv Strictly speaking, this argument is not needed on P/0S
systems and can not be wused directly if a given
controller can support parallel operations on multiple
units simultaneously. If this argument is non-blank,
a table of "nctrlr" words in length 1is generated to
contain the controller index to UCB mapping of a per
controller I/0O operation 1in progress. The macro
generates code which wuses the controller index
returned in R4 by SINTSI to index into a UCB table to
load the UCB address of the interupting device into
R5.

4.3.4 Using the UCBSV Argument in Macro Calls

You can optionally specify the ucbsv argument in calls to the macros
DDTS$, GTPKTS, and INTSVS. This argument allows you to use an
alternative technique to map the controller index to a UCB address.
This provides a simple mechanism for retrieving the UCB when an
expected interrupt occurs.

The argument ucbsv in the DDT$ macro allocates nctrlr words of
storage (one word for each controller that the driver supports) and
labels the first word ucbsv:. This table contains the address of
the wunit control block of the interrupting devices £for each

4-11

OVERVIEW OF PROGRAMMING USER-WRITTEN DRIVER CODE

controller. The GTPKT$ macro updates table entries at I1/0
initiation and INTSV$S references this table to retrieve the UCB
address.

If you specify the argument ucbsv in the GTPKT$ macro call, it must
be the same label you supplied for the ucbsv argument in the DDTS$
and INTSVS macro calls. The macro generates code to move the UCB
address returned by $GTPKT to the correct location in the table
starting at the label ucbsv.

If you specify the argument ucbsv in the INTSV$ macro call, it
should be the same label you supplied for the ucbsv argument in the
DDT$ and GTPKTS macro calls. The macro uses ucbsv to locate the UCB
address of the interrupting unit, and then generates code to load
the address into R5.

4.3.5 Driver Entry Points for PROLOD

A driver that requires additional initialization and completion
functions can define two entry points by labels of the form $xxLOA
and $xxXUNL. Because these two labels do not appear in the DDT
itself, their format is fixed; you must use the exact format in your
driver code. When you load the driver, the

NOTE

Drivers should not attempt to access controller
registers at the load entry point. Device access is
only possible after the driver has been called at
its controller online entry point.

PROLOD routines check for the $xxLOA entry point.

The driver is entered, once per UCB, at the $xxLOA entry point at
priority =zero. At this stage, the driver data base has been loaded
and pointers have been relocated. The driver is mapped through APR
5, and the following registers are set up:

R3 Controller index (undefined if S.KRB = 0)
R4 - Address of the status control block
R5 - Address of the unit control block

NOTE

The driver cannot access any device CSRs at this
point because ownership has not been established.
To access device CSRs, wait until the controller 1is
online.

OVERVIEW OF PROGRAMMING USER-WRITTEN DRIVER CODE

The driver may use all the registers. When you unload the driver,
PROLOD calls it at the $xxUNL entry point with the same conditions.
These two entry points in the driver are independent of the
controller and unit status change entry points wused by the
Executive. That is, the two entry points $xxLOA and $xxUNL are used
for initialization and at driver load and unload time and not at
on-line and off-line status change time. Note that $xxUNL is called
only when all controllers and units are offline. The data base is
not removed, but it is reused on subsequent reloads.

4.4 DRIVER DATA STRUCTURE DETAILS

The following elements in the I/0 data structure are of concern to
the programmer writing a driver:

1. The I/O packet
2. The DCB
3. The UCB
4. The SCB
5. The KRB
6. The CTB
The I/0 data structure, and the control blocks listed previously in
particular, contain an abundance of data pertaining to input/output
operations. Drivers themselves are involved with only a subset of
the data.
NOTE
Except where explicitly noted otherwise, all unused
bits, fields, and words in all driver data base
structures are reserved for DIGITAL system use and
expansion.
In the following descriptions, most data fields (words or bytes) are
classified by one of five descriptions. Two items in each

description indicate:

o Whether the field 1is initialized in the data-structure
source, and

DRIVER DATA STRUCTURE DETAILS

o What sort of access the driver has to the field during
execution

The five descriptions are:

<initialized, not referenced>
This field is supplied in the data-structure source code,
and is not referenced by the driver during execution.

<initialized, read-only>
This field is supplied in the data-structure source code,
and may be read by the driver.

<not initialized, read-only>
Either an agent other than the driver establishes this
field, or the driver sets it up once and thereafter
references it read-only.

<not initialized, read-write)
Either the driver or some other agent establishes this
field, and the driver may read it or write over it.

<not initialized, not referenced>
This field does not involve the driver in any way.

These five descriptions cover most of the fields in the control
blocks described in this section. No system software or hardware
checks or enforces any of the access described. Exceptions are
noted in the text.

4.4.1 The I/O Packet

Figure 4-1 shows the layout of a control function I/0 Packet, and
Figure 4-2 shows the layout of a transfer function I/O Packet. Both
are constructed and placed in the driver I/O queue by QIO directive
processing, and subsequently delivered to the driver by a call to
SGTPKT. The DPB from which the 1I/0 Packet 1is generated 1is
illustrated in Section 4.4.2., QIO directive processing dynamically
builds the I/0 packet from the data in the DPB. Fields in the 1I,/0
Packet (see the following text) are classified as:

o Not referenced,

o Read-only, or

o Read-write.
I.LNK

Driver access:

DRIVER DATA STRUCTURE DETAILS

Not referenced.
Description:

Links I/O Packets queued for a driver. A =zero ends the
chain. The listhead is in the SCB (S.LHD).

I.EFN
Driver access:
Not referenced.
Description:
Contains the event flag number as copied by QIO directive
processing from the requester’s DPB. Bit 0<200> indicates
a virtual function.
I.PRI
Driver access:
Not referenced.

Description:

Priority copied from the TCB of the requesting task.

DRIVER DATA STRUCTURE DETAILS

1.LNK Link to next 1/0 packet 0
:::?:\l } EFN PRI 2
1.TCB TCB address of requester 4
l.LN2 Address of second LUT word 6
1.UCB Address of redirect UCB 10
I.LFCN Function code Modifier 12
1.10SB Virtual address of 1/0 status block 14
Relocation bias of 10SB 16
Real address of 10SB 20
ILAST Virtual address of AST service routine 22
I.PRM ’ pr| 24
P2
e Device —_P;-
I parameters —
(control functions) P4
P5
P6
1.AADA Attachment Descriptor Pointer
|LAADA+2 Attachment Descriptor Pointer

Figure 4-1: 1/0 Packet Format - Control Function

DRIVER DATA STRUCTURE DETAILS

I.LNK Link to next 1/0 packet 0]
1.PRI } EFN PRI | 2
I.LEFN
1.TCB TCB address of requester 4
I.LN2 Address of second LUT word 6
L.ucs Address of redirect UCB 10
I.FCN Function code Modifier 12
1.10SB Virtual address of 1/0 status block 14
Relocation bias of 10SB 16
Real address of 10SB 20
LAST Virtual address of AST service routine 22

I.PRM Relocation BIAS of buffer 24

Displacement of buffer (+140000)

P2

Device
P3 parameters
(transfer functions)

P4

P5

P6
I.LAADA Attachment Descriptor Pointer
I.LAADA+2 Attachment Descriptor Pointer

P1 assumed to be buffer virtual address
P2 assumed to be buffer size in bytes

Figure 4-2: /O Packet Format - Transfer Function

DRIVER DATA STRUCTURE DETAILS

I.TCB
Driver access:
Not referenced usually. Referenced at I/O cancel.
Description:
TCB address of the requesting task.
I.LN2
Driver access:
Not referenced.
Description:
Contains the address of the second word of the LUT entry in
the task header to which the I/0 request is directed, if
even. Also, for wvirtual functions, if even, the task
region, and consequently the header, was locked in memory
by incrementing the appropriate I/0 counts. For open files
on file-structured devices, this word contains the address
of the window Block. If odd, it is the window block
pointer; otherwise zero.
I.UCB
Driver access:
Not referenced by conventional driver; frequently
referenced by drivers that use $GSPKT and maintain parallel
active unit context UCBs rather that the SCBs, and
therefore have a "many to one" UCB to SCB configuration.
Description:
Contains the address of the unit to which I/0 1is to be
directed. I.UCB is the address of the Redirect UCB if the
starting UCB has been subject to a Redirect command. The
field is referenced by the SGTPKT routine.
I.FCN
Driver access:

Read-only.

Description:

I.IOSB

DRIVER DATA STRUCTURE DETAILS

Contains the function code for the I/O request. It
consists of two bytes. The high-order byte contains the
function code; the low-order byte = contains modifier
(subfunction) bits. During predriver initiation the
Executive compares the function code with'a function mask
value in the DCB. The driver interprets the modifier
(subfunction) bits.

Driver access:

Not referenced. Do not touch. Driver specifies status at
I1/0 completion in registers to $IODON or $IOFIN. The
region containing the IOSB is not guaranteed to be memory
resident, except at predriver initiation time (see UC.QUE).

Description:

I.AST

I.I0SB contains the virtual address of the I/0 Status Block
(10SB), if even, or zero if one was not specified.

I.I0SB+2 and I.IO0SB+4 contain the address doubleword for
the IOSB if I.IOSB is even and nonzero (see Section 7.4 for
a detailed description of the address doubleword.

Driver access:

Not referenced.

Description:

I.PRM

Contains the virtual address of the AST service routine to
be executed at I/0 completion. If no address is specified,
the field contains zero.

Driver access:

Read-write.

Description:

Device-dependent parameters constructed from the last six
words of the DPB. Note that if the I/0 function is a
transfer (refer to the description of D.MSK in Section
4.4.3, the Dbuffer address (first DPB device-dependent
parameter) 1is translated to an equivalent address
doubleword. Therefore, the virtual buffer address, which

4-19

DRIVER DATA STRUCTURE DETAILS

occupied one word in the DPB, occupies two words in I.PRM.
As a result, all other parameters in I.PRM are shifted by
one word so that device-dependent parameter n is copied to
I.PRM +(2*n)+2.

Most DIGITAL-supplied drivers treat these words as a
read/write storage area after their initial contents have
been used.

When the last word of the device-dependent parameters is
nonzero, the value can have one of several special meanings
to the Executive. For example, if the value is nonzero and
the I1/0 function is marked "virtual," the Executive assumes
that the value is a block locking word. Therefore, if the
driver uses the word, it should restore its contents before
calling $IODON.

I.AADA
I.AADA+2

Driver access:

Not referenced; maintained by the Executive transparently
to the driver.

Description:

Two pointers, each to an attachment descriptor block of the
region in which the task 1I/0 buffer resides. These
pointers account for I/O by region and enable the Executive
to lock a region to make it noncheckpointable while I/0 is
in progress, and to unlock a region after I/O completes.

4.4.2 The QIO Directive Parameter Block (DPB)

The QIO DPB is constructed as shown in Figure 4-3. Usually drivers
never access the DPB; the information is supplied here for general
reference.

The parameters in the DPB have the following meanings:

Length (required):

The length of the DPB, which for the QIO directive is always
fixed at 12 words.

DIC (required):

Directive Identification Code. For the QIO directive, this
is 1. For QIOW it is 3.

DRIVER DATA STRUCTURE DETAILS

Q.IOFN (required):

The code of the requested I/0 function (0 through 31).

Length DIC 0
Q.I0OFN Function code Modifier 2
Q.loLu Reserved LUN 4
Q.I0PR/Q.IOEF Priority EFN 6
Q.10SB 1/0 status block address 10
Q.10AE AST address 12
Q.I0PL +0 14
+2 [T
) I
+6 parameters
+10 [
+12 -]

ZK-255-81

Figure 4-3: QIO Directive Parameter Block (DPB)

Modifier:

Device-dependent modifier bits.
Reserved:

Reserved byte; must not be used.
Q.IOLU (required):

Logical Unit Number.

DRIVER DATA STRUCTURE DETAILS

Q.IOPR:

Request priority. 1Ignored by P/0S but space must be allocated
for IAS compatibility.

Q.IOEF (optional):
Event flag number. Zero indicates no event flag.
Q.I0SB (optional):
This word contains a pointer to the I/O status block, which is
a 2-word, device-dependent I/O-completion data packet formatted
as:
Byte 0
I/0 status byte.
Byte 1
Augmented data supplied by the driver.
Bytes 2 and 3
The contents of these bytes depend on the value of byte 0.
If byte 0 = 1, then these bytes usually contain the
processed byte count. If byte 0 does not equal 0, then
the contents are device-dependent.
Q.IOAE (optional):

Address of the I/0O done AST service routine.

Q.IOPL

Up to six parameters specific to the device and to the 1I/0
function to be performed. Typically, for data transfer
functions, the following four are used:

o Buffer address

0 Byte count

o Carriage control type

o Logical block number

The fields for any optional parameters not specified must be filled
with zeros.

DRIVER DATA STRUCTURE DETAILS

4.4.3 The Device Control Block (DCB)

Figure 4-4 is a schematic layout of the DCB. The DCB describes the
static characteristics of a device controller and the units attached
to the controller. All fields must be specified.

D.LNK Link to next DCB (0=last) 0

D.UCB Link to first UCB 2

D.NAM Generic device name (ASCIH) 4

D.UNIT Highest unit no. Lowest unit no. 6

D.UCBL Length of UCB 10

D.DSP Address of driver dispatch table 12

D.MSK Legal function mask bits O - 15. 14

Control function mask bits 0 - 15. 16

No-op’ed function mask bits 0 - 15. 20

ACP function mask bits 0 - 15. 22

Legal function mask bits 16. - 31. 24

Control function mask bits 16. - 31. 26

No-op’ed function mask bits 16. - 31. 30

ACP function mask bits 16. - 31. 32

D.PCB Address of partition control block 34
ZK-256-81

Figure 4-4: Device Control Block

The fields* in the DCB are described as follows:

D.LNK (link to next DCB)

* Parenthesized contents following the symbolic offset indicate the
value to be initialized in the data base source code.

4-23

DRIVER DATA STRUCTURE DETAILS

Driver access:
Initialized, not referenced.

Description:
Address link to the next DCB. 1If this cell is in the last
(or only) DCB, vyou should set its value to zero. If you
are incorporating more than one user-written driver at one
time, then this field should point to another DCB in a DCB
chain, which is terminated by a value of zero.

D.UCB (pointer to first UCB)

Driver access:

Initialized, not referenced.

Description:

Address link to the U.DCB field of the first, and possibly
the only, unit control block associated with the DCB. For
a given DCB, all UCBs are in contiguous memory locations
and must all have the same length.
D.NAM (ASCII device name)
Driver access:

Initialized, not referenced.

Description:

Generic logical device name in ASCII by which device units
are mnemonically referenced.

D.UNIT (unit number range)

Driver access:
Initialized, not referenced.

Description:
Unit number range for the device. The low-order Dbyte
contains the lowest logical wunit number; the high-order
byte contains the highest logical unit number. This range
covers those logical units available to the user for device

assignment. Typically, the lowest number is zero or one,
and the highest is n-1, where n 1is the number of

4-24

DRIVER DATA STRUCTURE DETAILS

device-units described by the DCB.
D.UCBL (UCB length)
Driver access:
Initialized, not referenced.
Description:
The unit control block can have any length to meet the
needs of the driver for variable storage. However, all
UCBs for a given DCB must have the same length. The
specified length must include prefix words (such as U.LUIC
and U.OWN), if present.
D.DSP (driver dispatch table pointer)
Driver access:
Not referenced.
Description:
Address of the driver dispatch table, which 1is located
within the driver code. (When the Executive wishes to
enter the driver at any of the entry points contained in
the driver dispatch table, it accesses D.DSP, locates the
appropriate address in the table, and calls the driver at
that address.)
D.MSK (driver-specific function masks)
Driver access:
Initialized, not referenced.
Description:
Eight words, beginning at D.MSK, are critical to the proper
functioning of a device driver. The Executive uses these
words to validate and dispatch the I/O request specified by

a QIO directive. The following description applies only to
nonfile-structured devices.* Four masks, with two words per

* Although no DIGITAL publication describes writing drivers for
file-structured devices (drivers that interface with F11ACP), you
could write a disk driver by using a DIGITAL-supplied driver as a

DRIVER DATA STRUCTURE DETAILS

mask, are described by the bit configurations that you
establish for these words:

1. Legal function mask
2. Control function mask
3. No-op function mask
4., ACP function mask

The QIO directive allows for 32 possible I/0 functions.
The masks, as stated, are filters to determine validity and
I/0 requirements for the subject driver.

The Executive filters the function code in the I/0O request
through the four masks. The 1I,/0 function code is the
high-order byte of the function parameter issued with the
QIO directive. The decimal representation of that
high-order byte is equivalent to the decimal bit number of
the mask. If you want the function to be true in one of
the four masks, you must set the bit in that mask in the
position that numerically corresponds to the function code.
For example, the code for IO.RVB 1is 21 (octal) and 1its
decimal representation is 17. If you want IO.RVB to be
true for a mask, therefore, you must set bit number 17 in
the mask.

The masks are laid out in memory in two 4-word groups.
Each 4-word group covers 16 function codes. The first 4
words cover the function codes 0 through 15; the second 4
words cover codes 16 through 31. Below is the exact layout
used for the driver example in Chapter 8.

.WORD 177477 ;LEGAL FUNCTION MASK CODES 0-15.
.WORD 70 ; CONTROL FUNCTION MASK CODES 0-15.
.WORD 0 ;NO-OP FUNCTION MASK CODES 0-15.
.WORD 177200 ;ACP FUNCTION MASK CODES 0-15.

.WORD 377 ;LEGAL FUNCTION MASK CODES 16.-31.
.WORD 0 ;CONTROL FUNCTION MASK CODES 16.-31.
.WORD 0 ;NO-OP FUNCTION MASK CODES 16.-31.
.WORD 3717 ;ACP FUNCTION, MASK CODES 16.-31.

The Executive filters the function code through the mask
words sequentially as follows:

Legal Function Mask:

DRIVER DATA STRUCTURE DETAILS

Legal function values have the corresponding bit position
in this word set to 1. Function codes that are not legal
are rejected by QIO directive processing, which returns
IE.IFC 1in the 1I/0 status block, provided an I0SB address
was specified.

Control Function Mask:

If any device-dependent data exists in the DPB, and this
data does not require further checking by the QIO directive
processor, the function 1is <considered to be a control
function. Such a function allows QIO directive processing
to copy the DPB device-dependent data directly into the I/0
Packet.

No-op Function Mask:

A no-op function 1is any function that 1is considered
successful as soon as it is issued. If the function is a
no-op, QIO directive processing immediately marks the
request successful; no additional filtering occurs.

ACP Function Mask:

If a function code is legal but specifies neither a control
function nor a no-op, then it specifies either an ACP
function or a transfer function. If a function code
requires intervention of an Ancillary Control Processor
(ACP), the corresponding bit in the ACP function mask must
be set. ACP function codes must have a value greater than
7.

In the specific case of read-write virtual functions, the
corresponding mask bits may be set at your option. If the
corresponding mask bits for a read-write wvirtual function
are set, QIO directive processing recognizes that a
file-oriented function is being requested to a
nonfile-structured device and converts the request to a
read-write logical function.

This conversion is particularly useful. Consider a
read-write virtual function to a specific device:

1. If the device is file-structured and a file is open on
the specified LUN, the block number specified 1is
converted from a virtual block number in the file to a
logical block number on the medium. Moreover, the
request is gqueued to the driver as a read-write logical
function.

4-27

DRIVER DATA STRUCTURE DETAILS

2. If the device is file-structured and no file is open on
the specified LUN, then an error is returned and no
further action is taken.

3. If the device is not file-structured, then the request
is simply transformed to a read-write logical function
and is queued to the driver. (The specified block
number is unchanged.)

Transfer Function Processing:

‘Finally, if the function is not an ACP function, then it is
by default a transfer function. All transfer functions
cause the QIO directive processor to check the specified
buffer for legality (that is, inclusion within the address
space of the requesting task) and proper alignment (word or

byte). In addition, the processor checks the number of
bytes being transferred for proper modulus (that is,
nonzero and a proper multiple). All transfer functions

except IO.WLB and IO.WVB are assumed to require Read and
Write access to the buffer region, and are access checked
accordingly. By convention, the first user-supplied
parameter is the buffer address and the second is the byte
count.

Creating Mask Words:

Creating function mask words involves the following f£five
steps:

1. Establish the I/0 functions available on the device for
which driver support is to be provided.

2. Build the Legal Function mask: Check the standard P/0S
function mask values in Table 4-6 for equivalencies.
Only the IO.KIL function 1is mandatory. IO.ATT and
IO.DET functions, if wused, must have the P/0S system
interpretation. DIGITAL suggests that functions having
an P/0S system counterpart use the P/0S code, but this
is required only when the device 1is to be wused 1in.
conjunction with an ACP. From the supported function
list in Table 4-5, you can build the two Legal Function
mask words.

3. Build the Control Function mask by asking:
Does this function carry a standard buffer address and

byte <count in the first two device-dependent parameter
words?

4-28

D.PCB (0)

DRIVER DATA STRUCTURE DETAILS

If it does not, then either it qualifies as a control
function or the driver itself must effect the checking
and conversion of any addresses to the format required
by the driver. See Section 8.1 for an example of a
driver that does this. (Buffer addresses in standard
format are automatically converted to Address
Doubleword format.)

Control functions are essentially those functions whose
DPBs do not contain buffer addresses or counts.

4. Create the No-op Function mask by deciding which legal
functions are to be no-op. Typically, for
compatibility with File Control Services (FCS) or
Record Management Services (RMS) on nonfile-structured
devices, the file access/deaccess functions are
selected as 1legal functions, even though no specific
action 1is required to access or deaccess a
nonfile-structured device; thus, the access/deaccess
functions are no-op.

5. Finally, include the ACP functions Write Virtual Block
and Read Virtual Block for those drivers that support
both read and write. (Include only one related ACP
function if the driver supports only read or write).
Other ACP functions that might be included £fall into
the nonconventional driver classification and are
beyond the scope of this document.

Driver access:

Initialized, not referenced.
Description:

Address of the driver’s Partition Control Block (PCB). The
driver data base source must initialize the address to
zero. The DCB can be extended by adding words after D.PCB.
A PCB exists for every partition in a system. A driver PCB
describes the partition in which it resides.

The Executive uses D.PCB together with D.DSP (the address
of the driver dispatch table) to determine a driver is in
memory. Zero and nonzero values for these two pointers
have the meanings shown in Figure 4-5.

4-29

DRIVER DATA STRUCTURE DETAILS

4.4.3.1 Establishing I/O Function Masks - Table 4-5 is supplied to
assist you in determining the proper values to set in the function
masks. The mask values are given for each 1I/0 function wused by
DIGITAL-supplied drivers. The bit number allows you to determine
which mask group to use: for bits numbered 0 through 15, use the
mask value for a word in the first 4-word group; for bits numbered
16 through 31, use the mask value for a word in the second 4-word
group.

D.DSP: .
D.PCB: =0 *0
Loadable
=0 driver, inot
not in possible)
memory
{not Lgadable
#0 possible) firlver,
in memory

Figure 4-5: D.PCB and D.DSP Bit Meanings

Of the function mask values listed in Table 4-5, only IO.KIL is
mandatory and has a fixed interpretation. However, if IO.ATT and

IO.DET are used, they must have the standard meaning. (Refer to the
P/0S System Reference Manual) for a description of standard I/0
functions.) If QIO directive processing encounters a function code

of 3 or 4 and the code is not no-op, QIO assumes that these codes
represent Attach Device and Detach Device, respectively. The other
cpdes are suggested but not mandatory. You are free to establish
all other function-code values on nonfile-structured devices.
However, the mask words must still reflect the proper filtering
process.

If you are writing a driver for a file-structured device, you must
establish the standard function mask values of Table 4-5.

To determine the proper bit masks for disks, tapes, and unit record
devices (such as terminals, card readers, line printers, paper tape
punches/readers), use Table 4-6, Table 4-7, and Table 4-8 as guides.

Table 4-5:
Bit Mask

Value

0 1
1 2
2 4
3 10
4 20
5 40
6 100
7 200
8 400
9 1000
10 2000
11 4000
12 10000
13 20000
14 40000
15 100000
16 1
17 2
18 4
19 10
20 20
21 40
22 100
23 200
24 400
25 1000
26 2000
27 4000
28 10000
29 20000
30 40000
31 100000

DRIVER DATA STRUCTURE DETAILS

Related
Symbolic

IO.
.WLB
I0.
I0.
I0.

I0

I0

I0

10

I0

I0

I0
I0

KIL

RLB
ATT
DET

.FNA
I0.
IO.
IO.
I0.

ULK
RNA
ENA
ACR

JACW
.ACE
I0.
IO.
<WVB
I0.
.CRE
IO.
I0.
.WAT
.APC

DAC
RVB

EXT

DEL
RAT

I0.APV

Mask Values for Standard 1I/0 Functions

I1/0
Function

/ Cancel 1,0

Write Logical Block
Read Logical Block
Attach Device

Detach Device

General Device Control
General Device Control
General Device Control
Diagnostics

Find File in Directory
Unlock Block

Remove File from Directory
Enter File in Directory
Access File for Read
Access File for Read/Write
Access File for Read/Write/Extend
Deaccess File

Read Virtual Block
Write Virtual Block
Extend File

Create File

Mark File for Delete
Read File Attributes
Write File Attributes
ACP Control

Unused

Unused

Unused

Unused

Unused

ACP Privileged

Unused

n n

DRIVER DATA STRUCTURE DETAILS

Table 4-6: Mask Word Bit Settings for Disk Drives

Bit P/0S Related Symbolic
0 (o] IO.KIL
1 t IO.WLB
2 t IO.RLB
3 c IO.ATT
4 c IO.DET
5 ¢ I0.STC
6
7 sa IO.CLN
8 sd Diagnostic
9 a IO.FNA

10 a IO.ULK

11 a IO.RNA

12 a IO.ENA

13 a I0.ACR

14 a IO.ACW

15 a IO.ACE

16 a I0.DAC

17 a IO.RVB

18 a IO.WVB

19 a I0.EXT

20 a IO.CRE

21 a IO.DEL

22 a IO.RAT

23 a IO.WAT

24 a IO.APC

25

26

27

28

29

30 a I0.APV

31

- transfer function, bit set only in legal function mask

- control function, bit set in legal and control function masks
- no-op function, bit set in legal and no-op function masks

ACP function, bit set in legal and ACP function masks

- special case, bit set only in ACP function mask, but not legal
- special case, bit set only if diagnostic support in system and
driver

QLY Y 30
1

DRIVER DATA STRUCTURE DETAILS

Table 4-7: Mask Word Bit Settings for Magnetic Tape Drives

Bit P/0S (currently IS.PND) Related Symbolic
0 c I0.KIL
1 t IO.WLB
2 t IO.RLB
3 c IO.ATT
4 c IO.DET
5 C I0.STC
6 c
7 sa I0.CLN
8 sd Diagnostic
9 a IO.FNA

10 I0.ULK

11 IO.RNA

12 n IO.ENA

13 a IO.ACR

14 a IO.ACW

15 a IO.ACE

16 a IO.DAC

17 a IO.RVB

18 a I0.WVB

19 a I0.EXT

20 IO.CRE

21 IO.DEL

22 a IO.RAT

23 IO.WAT

24 a IO.APC

25

26

27

28

29

30 a IO.APV

31

- transfer function, bit set only in legal function mask

- control function, bit set in legal and control function masks
- no-op function, bit set in legal and no-op function masks

ACP function, bit set in legal and ACP function masks

- special case, bit set only in ACP function mask, but not legal
- special case, bit set only if diagnostic support in system and
driver

0
Qe e 30
I

[

DRIVER DATA STRUCTURE DETAILS

Table 4-8: Mask Word Bit Settings for Unit Record Devices

Bit P/0S Related Symbolic
0 c IO.KIL
1 t IO.WLB
2 t IO.RLB
3 c IO.ATT
4 (o} I0.DET
5 c I0.STC
6
7 sa I0.CLN
8 sd Diagnostic
9 a IO.FNA

10 a I0.ULK

11 a IO.RNA

12 a I0.ENA

13 a IO0.ACR

14 a IO.ACW

15 a IO0.ACE

16 a I0.DAC

17 a I0.RVB

18 a I0.WVB

19 a I0.EXT

20 a IO.CRE

21 a IO.DEL

22 a IO.RAT

23 a IO.WAT

24 a I0O.APC

25

26

27

28

29

30

31

- transfer function, bit set only in legal function mask

- control function, bit set in legal and control function masks
- no-op function, bit set in legal and no-op function masks

ACP function, bit set in legal and ACP function masks

- special case, bit set only in ACP function mask, but not legal
- special case, bit set only if diagnostic support in system and
driver

(]
[oTRE S T = B o Ml o 4
1

n

DRIVER DATA STRUCTURE DETAILS

4.4.4 The Unit Control Block (UCB)
Figure 4-6 is a layout of the UCB (a variable-length control block).
One UCB exists for each physical device-unit generated into a system
configuration. For user-added drivers, this control block is defined
as part of the source code for the driver data structure.
The fields* in the UCB are described below:
U.UAB (0)
Driver access:
Initialized, not referenced.
Description:
For terminal UCBs only. Reserved.
U.MUP
Driver access:
Not initialized, not referenced.
Description:
For terminal UCBs only.
U.LUIC (0<100200>)
Driver access:
Initialized, not referenced.
Description:
For terminal UCBs only, and only in multiuser systems: the
logon UIC of the wuser at the particular terminal. This
offset must exist for any device on a multiuser system for
which the DV.TTY bit is set.
U.OWN (0)

Driver access:

Initialized, not referenced.

* Parenthesized contents following the symbolic offset 1indicate the
value to be initialized in the data base source code.

4-35

DRIVER DATA STRUCTURE DETAILS

Description:

The UCB address of the owning terminal for allocated devices.

vuae! | e a0
u.mup! T _;;;;-.—‘_ T j 6
swic' | s a
U.OWN Owning terminal UCB address -2 “
u.0Cc8 Back pointer to DCB 0
U.RED Redirect UCB pointer 2
3‘5::; } Unit status Control flags 4
gg;‘lzl'r } Unit status Physical unit no. 6
U.Cw1 Characteristics word 1 10
u.cw2 Characteristics word 2 12
u.cw3 Characteristics word 3 14
u.cw4 Characteristics word 4 16 All
u.scs Pointer to SCB 20 devices
U.ATT TCB address of attached task 22
U.BUF Buffer relocation bias 24
U.BUF+2 Buffer address 26
U.CNT Byte count 30]
u.ucex 2 !-P;imer to th: l.E:B—exten;orT in— se:or;ar—y ;ocdl 32 T
b Device-] 34
dependent

.
.

storage |

1. This offset appears only for terminal devices (that is, devices that have DV.TTY set)
2. This offset appears only for those devices that have DV.MSD set.

Figure 4-6: Unit Control Block

DRIVER DATA STRUCTURE DETAILS

U.DCB (pointer to associated DCB)
Driver access:
Initialized, not referenced.
Description:
This word is a pointer to the corresponding device control
block. Because the UCB 1is a key control block in the I/O
data structure, access to other control blocks usually occurs
by means of links implanted in the UCB.
U.RED (pointer to start of this UCB (.-2))
Driver access:
Initialized, not referenced.
Description:
Contains a pointer to the unit control block to which this
device-unit has been redirected. The redirect chain ends
when this word points to the beginning of the UCB itself
(U.DCB of the UCB, to be precise).
U.CTL (device-dependent values)
Driver access:
Initialized, not referenced.
Description:
U.CTL and the function mask words in the device control block

control QIO directive processing. Figure 4-7 shows the
layout of the unit control byte.

The driver data base code statically establishes this bit
pattern. Any inaccuracy in the bit setting of U.CTL produces
erroneous I/0 processing. Bit symbols and their meanings are
as follows:

UC.ALG - Alignment bit.

If this bit is 0, then byte alignment of data buffers 1is
allowed (for example, a communications driver). If UC.ALG is
1, then buffers must be word-aligned (for example, a disk
driver).

DRIVER DATA STRUCTURE DETAILS

U.STS U.CTL

[TTTTT]
NN

}UC. LGH - Buffer size mask bits for transfer length

UC.KIL - Unconditional cancel 1/0O {(1=vyes)
UC.ATT - Attach/detach notification (1=yes)
UC.PWF - Unconditional call at powerfail {1=yes)
UC.QUE - Queue to driver bit (1=yes)

UC.NPR - NPR device bit (1=yes)

UC.ALG - Alignment (byte or word){1=no)

2K-258-81

Figure 4-7: Unit Control Byte

UC.ATT - Attach/Detach notification.

If this bit is set, then the driver is called when S$GTPKT
processes an Attach/Detach I,/0 function. Typically, the
driver does not need to obtain control for Attach/Detach
requests, and the Executive performs the entire function
without any assistance from the driver. When the need
exists, the most common use of UC.ATT is for event
notification without outstanding 1I/0. Attachment coupled
with UC.ATT provides an I/O rundown operation (IO.DET) to
occur so that the driver can remove this context when the
issuing task exits - gracefully or otherwise.

UC.KIL - Unconditional Cancel I/0 call bit.

If set, the driver is called on a Cancel I/0 request, even if
the wunit specified is not busy. Typically, the driver is
called on Cancel I/0 only if an I/0 operation is in progress.
In any case, the Executive flushes the I/0O queue.

UC.QUE - Queue to-driver bit.

U.STS (0)

DRIVER DATA STRUCTURE DETAILS

If set, the QIO directive processor calls the driver at its
I/0 initiation entry point without queuing the I/O packet.
After the processor makes this call, the driver is
responsible for the disposition of the 1I/0 packet.
Typically, the processor queues an I/0 Packet before calling
the driver, which later retrieves it by a call to $GTPKT.

The most common reason for a driver to examine a packet
before queuing is that the driver employs a special user
buffer, other than the normal buffer wused in a transfer
request. Within the context of the requesting task, the
driver must address-check and relocate such a special buffer.
See Section 8.1 for an example of a driver that does this.
Use S$CKBFR, $CKBFB, OR $CKBFW rather than $ACHRO, $ACHKB,
SACHKW, since the later routines do not increment region and
ACB I/0 counts.

UC.PWF - Unconditional call on loading driver bit.

If set and the unit is on-line, the driver is always to be
called when driver 1is loaded. Driver may then ignore unit
and controller status changes by simply performing a RETURN
instruction. The driver, however, can never be unloaded
without reboot if these entry points are ignored for the
online to offline transition.

UC.NPR - NPR device bit.

If set, the device is an NPR device. This bit determines the
format of the 2-word address in U.BUF (details given in the
discussion of U.BUF below). It is normally cleared.

UC.LGH - Buffer size mask bits (two bits).

These two bits are used to check whether the byte count
specified in an I/0 request is a legal buffer modulus. You
select one of the values below by ORing into the byte a 0, 1,
2, or 3.

00 - Any buffer modulus valid

01 - Must have word alignment modulus

10 - Combination invalid

11 - Must have double word-alignment modulus

UC.ALG and UC.LGH are independent settings.

Driver access:

DRIVER DATA STRUCTURE DETAILS

Initialized, not referenced.
Description:

This byte contains device-independent status information.
Refer to the UCBDFS$ macro definition in Appendix A. Figure
4-8 shows the layout of the unit status byte.

U.sT2 U.UNIT

7 0

Iisl I l [_l l l - Unused bits are reserved

for system use and expansion.

US.RED - Unit redirectable (1=no}
US.PUB - Unit is public device {1=no)
US.UMD - Unit attached for diagnostic s {1=yes}
US.PDF - Privileged diagnostic functions only (1=yes)
US.MUN - clusterdevice (1=yes)
US.TRN - unit transition has accured {1=yes)

" US.SIO - stall 1/0 to unit (1=yes)

l ‘ l L US.OFL - Unit offline (1=vyes)

Figure 4-8: Unit Status Byte

US.MDM, US.MNT, US.VV and US.FOR apply only to mountable
devices.* The bit meanings are as follows:

US.BSY

If set, device-unit is busy.

US .MNT

If set, volume is not mounted.
US.FOR

If set, volume is mounted foreign.

US .MDM

* If your user-written driver services a mountable device, refer to
Section 4.5.7 for information on volume valid processing.

4-40

DRIVER DATA STRUCTURE DETAILS

If set, device is marked for dismount.
Uus.vv
If set, volume is valid from a software viewpoint.
U.UNIT (unit number)
Driver access:
Initialized, read-only.
Description:
This byte contains the physical wunit number of the
device-unit serviced by this UCB. 1If the controller for the
device supports only a single unit, the unit number is always
zero.
NOTE
This is the physical unit number of the device and
not the 1logical wunit number. The range of this
number is from zero to n where n is device-dependent.
The 1logical designation DBO: does not necessarily
imply a zero in this byte.
U.ST2 (US.OFL)
Driver access:
Initialized, not referenced.
Description:
This byte contains additional device-independent status
information. Different parts of the system set and clear
these bits. The layout of the unit status extension byte is
shown in Figure 4-9.
The bit meanings are as follows:

US.OFL=1

If set, the device 1is off-line (that 1is, not 1in the
configuration). This bit should be initialized to 1.

US.RED=2

U.Cwl

DRIVER DATA STRUCTURE DETAILS

If set, the device cannot be redirected.
US.PUB=4

If set, the device is a public device.
US.UMD=10

If set, the device is attached for diagnostics.
US.PDF=20

If set, this unit can be used for a privileged
function only.

US.TRN=100
If set, unit volume status change in progress.

US.SI10=200

diagnostic

If set, I/0 is stalled typically until volume is reverified.

TITTITLL]

“ ‘ ‘ ‘ ~—T T —— Unused bits are reserved

Figure 4-9: Unit Status Extension 2

(device-specific characteristics)

Driver access:

Initialized, not referenced.

Description:

4-42

- for system use and expansion.

US.MDM - Marked for dismount {1 yes)
US.FOR - Mounted as foreign volume (0=ves)
US.MNT - Volume is mounted (1--no)
US.BSY - Device-unit busy (1==yes)

DRIVER DATA STRUCTURE DETAILS

The first of a 4-word contiguous cluster of device

characteristics information. U.cwl and U.CW4 are
device-independent, whereas U.CW2 and U.Cw3 are
device-dependent. The four characteristics words are

retrieved from the UCB and placed in the requester’s buffer
on issuance of a Get LUN information (GLUNS) Executive
directive. It is your responsibility to supply the contents
of these four words in the assembly source code of the data
structure.

U.CWl is defined as follows. (If a bit is set to 1, the
corresponding characteristic is true for the device.)

DV.REC=1
Record-oriented device
DV.CCL=2
Carriage-control device
DV.TTY=4

Terminal device. 1If DV.TTY is set, then the UCB contains
extra cells (for U.LUIC, U.CLI, and optionally U.UAB).

DV.DIR=10

Directory device

DV.SDI=20

Single directory device DV.SQD=40
Sequential device

DV.MSD=100

Mass Storage device

DV.UMD=200

Device supports user-mode diagnostics
DV.EXT=400

Unit is on an extended 22-bit controller

DRIVER DATA STRUCTURE DETAILS

DV.SWL=1000

Unit is software write-locked
DV.ISP=2000

Input spooled device
DV.0SP=4000

Output spooled device
DV.PSE=10000

Pseudo device. 1If this bit is set, the UCB does not extend
past the U.CWl1l offset.

DV.COM=20000
Device mountable as a communications channel
DV.F11=40000
Device mountable as a FILES-11 device
DV.MNT=100000
Device mountable*
U.CW2 (device-specific characteristics)

Driver access:
Initialized, read-write.

Description:

Specific to a given device driver (available for working
storage or constants).**

U.CW3 (device-specific characteristics)
Driver access:

Initialized, read-write.

* If your user-written driver services a mountable device, refer to
Section 4.5.7 for information on volume valid processing and
privileged ACP functions.

DRIVER DATA STRUCTURE DETAILS

Description:

Specific to a given device driver (available for working
storage or constants).*

U.CW4 (device-specific characteristics)
Driver access:
Initialized, read-only.
Description:
Default buffer size in bytes. This word 1is changed by a
system command (SET with the /BUF keyword). The value in
this word effects FCS, RMS, and many utility programs.
U.SCB (SCB pointer)
Driver access:
Initialized, read-only.
Description:
This field contains a pointer to the status control block for
this UCB. In general, R4 contains the value in this word
when the driver is entered by way of the driver dispatch
table, because service routines frequently reference the SCB.
U.ATT (0)
Driver access:
Initialized, not referenced.
** An exception is that, for block-structured devices, U.CW2 and U.CW3
may not be used for working storage. 1In drivers for block-structured
devices (disks and DECtape), these two words must be initialized to a
double-precision number giving the total number of blocks on the

device. Place the high-order bits in the low-order byte of U.CW2 and
the low-order bits in U.CW3.

* An exception is that, for block-structured devices, U.CW2 and U.CW3
may not be used for working storage. 1In drivers for block-structured
devices (disks and DECtape), these two words must be initialized to a
double-precision number giving the total number of blocks on the
device. Place the high-order bits in the low-order byte of U.CW2 and
the low-order bits in U.CW3.

4-45

DRIVER DATA STRUCTURE DETAILS

Description:

If a task has attached itself to the device-unit, this field
contains its task control block address.

U.BUF (reserve two words of storage)
Driver access:
Not initialized, read-write.

Description:

U.BUF labels two consecutive

communication region between

words
SGTPKT

nontransfer function is indicated (in
U.BUF+2, and U.CNT receive the first

the I/0 Packet.

For transfer operations, the

initial

that serve as a
and the driver. If a
D.MSK), then U.BUF,
3 parameter words from

format of these two

words depends on the setting of UC.NPR in U.CTL. The driver
does not format the words; all formatting is completed before

the driver receives control.

The format is determined by the

UC.NPR bit, which is set for an NPR device and reset for a

program-transfer device.

The format £for program-transfer

devices 1is an address

doubleword identically formatted to I.IOSB+2 and I.IOSB+4.

In general, the driver does not manipulate these words when
performing I/O to a program-transfer device. Instead, it
uses the Executive routines Get Byte, Get Word, Put Byte, and
Put Word to effect data transfers between the device and the

user’s buffer.

The details of the construction

appear in Chapter 7.
U.CNT (reserve one word of storage)
Driver access:
Not initialized, read-write.
Description:

Contains the byte count of the

of the Address Doubleword

buffer

described by U.BUF.

The driver uses this field in constructing the actual device

request.

DRIVER DATA STRUCTURE DETAILS

U.BUF and U.CNT keep track of the current data item in the
buffer for the current transfer (except for NPR transfers).
Because this field is being altered ‘dynamically, the 1I/0
Packet may be needed to reissue an ,I/0 operation (for
instance, after a powerfail or error retry).
U.UCBX

Driver access:
Not initialized, not referenced

Description:
This field contains a pointer to the UCB extension in
secondary pool for mass storage devices with DV.MSD set,

(DV.MSD=1).

For information on formatting, see the description of the
UCBDFS$ macro.

U.PRM (Device-dependent words)
Driver access:
Not initialized, read-write.
Description:

The driver establishes this variable-length-block of words to

suit device-specific requirements. For example, a disk
driver uses the first words to store the disk geometry as
follows:

.BLKB 1 ;# OF SECTORS PER TRACK

.BLKB 1 ;# OF TRACKS PER CYLINDER

.BLKW 1 ;# OF CYLINDERS PER VOLUME

The driver can call the SCVLBN routine (described in Chapter
7) to convert a logical block number to a disk address based
on the values in U.PRM and U.PRM+2.

4.4.5 The Status Control Block (SCB)

Figure 4-10 is a layout of the SCB. The SCB contains the context for
a unit operation and describes the status of a unit that can run in
parallel with all other units.

DRIVER DATA STRUCTURE DETAILS

S.LHD 0
Input/Output
Queue Listhead 2
S.FRK Fork Link Word 6
Fork PC 10
Fork RS 12
Fork R4 14
S.KS5 Driver/Fork KISARS 16
S.PKT 1/0 Packet Address 20
S.CTM/S.ITM Initial Time-Out Count | Current Time-Out Count | 22
S.STS/S.ST3 Status Extension Status 24
S.ST2 Status Extension 26
S.KRB KRB Address 30
®
L]
L
S.KTB r KRB Address 0 |
P — = = = = - - =
KRB Address 1
L e e e e e e e m - d
®
[]
[)
r KRB Address n -'
Fmmmm === == —
b e e e e e e e . e — — Jd

Figure 4-10: Status Control Block

4-48

DRIVER DATA STRUCTURE DETAILS

The fields* in the SCB are described as follows:
S.LHD (first word equals zero; second word points to first)
Driver access:
Initialized, not referenced.
Description:
Two words forming the I/O queue 1listhead. The first word
points to the first I/O Packet in the queue, and the second
word points to the last I/O Packet in the queue. If the
queue 1is empty, the first word is zero, and the second word
points to the first word.
S.FRK (reserve four words of storage)
Driver access:
Initialize words to zero, not referenced.
Description:
The four words starting at S.FRK are wused for fork-block
storage if and when the driver deems it necessary to
establish itself as a Fork process. Fork-block storage
preserves the state of the driver, which is restored when the
driver regains control at fork level. This area is
automatically used if the driver calls S$SFORK.
S.KS5 (0)
Driver access:
Initialized, not referenced.
Description:
This word contains the contents of KISAR5 necessary to
correctly alter the Executive mapping to reach the driver for
this unit. It is set by PROLOD, and whenever a fork block is
dequeued and executed, this word is unconditionally jammed

into KISARS5. ADJACENCY WITH THE FORK BLOCK IS ASSUMED!

S.PKT (reserve one word of storage)

* Parenthesized contents following the symbolic offset indicate the
value to be initialized in the data base source code.

4-49

DRIVER DATA STRUCTURE DETAILS

Driver access:

Not initialized, read-only.

Description:

S.CTM (0)

Address of the current I/0 Packet established by $GTPKT. The
Executive wuses this field to retrieve the I/0 Packet address
upon the completion of an I/O request. S.PKT is not modified
after the packet is completed.

Driver access:

Not initialized, read-write.

Description:

P/0S supports device timeout, which enables a driver to limit
the time that elapses between the issuing of an I/O operation
and its termination. The current timeout count (in seconds)
is typically initialized by moving S.ITM (initial timeout
count) into 8.CTM. The Executive clock service (in module
TDSCH) examines active times, decrements them, and, if they
reach zero, calls the driver at its device timeout entry
point.

The internal clock count 1is kept in 1-second increments.
Thus, a time count of 1 is not precise because the internal
clocking mechanism is operating asynchronously with driver
execution. The minimum meaningful clock interval is 2 if you
intend to treat timeout as a <consistently detectable error

condition. If the count is zero, then no timeout occurs; a
zero value is, in fact, an indication that timeout 1is not
operative, The maximum count is 250. The driver 1is

responsible for setting this field. Resetting occurs at
actual timeout or within $FORK and $IODON.

S.ITM (initial timeout count)

Driver access:

Initialized, read-on<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>