
Guide to Writing a P/OS
I/O Driver and Advanced
Programmer's Notes

Guide to Writing a PIOS
1/0 Driver and Advanced
Programmer's Notes

Order No. AA-BT73B-TH
Order No. AD-BT73BA-T1

June 1987

This reference manual describes the procedures for
writing an I/O driver for P/OS systems. Executive
routine descriptions and sample code are included.
Advanced programmer information is also provided.

REQUIRED SOFTWARE:

OPERATING SYSTEM:

Host Tool Kit V3.0,
or PRO/Tool Kit V3.2

PIOS V3.2

DIGITAL EQUIPMENT CORPORATION
Maynard, Massachusetts 01754-2571

First Printing, April 1982
Revised, December 1985

Updated, June 1987

The information in this document is subject to change without
notice and should not be construed as a commitment by Digital
Equipment Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this document.

The software described in this document is furnished under a
license and may only be used or copied in accordance with the
terms of such license.

No responsibility is assumed
software on equipment that
affiliated companies.

for the use or reliability of
is not supplied by DIGITAL or its

The specifications and drawings, herein, are the property of
Digital Equipment Corporation and shall not be reproduced or
copied or used in whole or in part as the basis for the
manufacture or sale of items without written permission.

Copyright © 1982, 1985, 1987 by Digital Equipment Corporation
All Rights Reserved

The following are trademarks of Digital Equipment Corporation:

CTI BUS MASSBUS Rainbow
DEC PDP RSTS
DECmate P/OS RSX
DECsystem-10 PRO/BASIC RT
DECSYSTEM-20 PRO/Communications Tool Kit
DECUS Professional UNIBUS
DECwriter PRO/FMS VAX
DIBOL PRO/RMS VMS

~DmDOmD PROSE VT
PROSE PLUS Work Processor

Update Notice Number 1

Guide to Writing a PIOS 1/0 Driver
and Advanced Programmer's Notes

AD-BT73B-T1

June 1987

Insert this page in the Guide to Writing a P/OS I/O Driver and
Advanced Programmer's Notes to maintain an up-to-date record of
changes to the manual.

NEW AND CHANGED INFORMATION

This update reflects software changes and additions made in P/OS Version 3.2.
Also included are corrections to the original documentation.

Copyright © 1987 Digital Equipment Corporation

INSTRUCTIONS

Add the following pages to the Guide to Writing a P/OS I/O Driver and Advanced
Programmer's Notes as replacements for, or additions to, the current pages. The
technical changes made on replacement pages are indicated in the left margin
by change bars. Changes of an editorial nature are not marked.

OLD PAGE

Title page/copyright page
iii/iv through xi/xii
4-55/4-56
4-63/4-64 through 4-65/4-66
5-3/5-4 through 5-5/5-6
(Continued)

NEW PAGE

Title page/copyright page
iiiliv through xvii/xviii
4-55/4-56
4-63/4-64 through 4-65/4-66
5-3/5-4 through 5-5/5-6

OLD PAGE

7 -45/7 -46 through 7-65/7-66
C-1/C-2 through C-33/blank
0-1/0-2
E-1/E-2 through E-43/E-44
Index-1 through Index-6
Reader's comments/mailer

NEW PAGE

7-45/7-46 through 7-65/7-66
C-1/C-2 through C-35/C-36
0-1/0-2
E-1/E-2 through E-45/E-46
Index-1 through Index-8
Reader's comments/mailer

CHAPTER 1

CHAPTER

1.1
1.2
1.2.1
1.2.2
1.3
1.3.1
1.3.2

1.3.3
1.3.4
1.4
1.4.1
1.4.2
1.4.3
1.4.4
1.5

2

2.1
2.1.1
2.1.2
2.1.3
2.1.4
2.1.5
2.2
2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.2.6
2.3
2.3.1

2.3.2

2.3.3
2.4

CONTENTS

P/OS I/O DRIVERS

VECTORS AND CONTROL AND STATUS REGISTERS . · 1-1
SERVICE ROUTINES . . . · 1- 3

· 1-3 Executive and Driver Layout
Driver Contents · 1- 5

EXECUTIVE AND DRIVER INTERACTION · 1-6
The Driver Process · 1-6
Interrupt Dispatching and the Interrupt Control
Block . . • 1-7
Interrupt Servicing and Fork Process 1-9
Nonsense Interrupt Entry Points 1-11

ADVANCED DRIVER FEATURES 1-11
Overlapped Seek I/O . . • 1-12
Delayed Controller Access 1-13
Full Duplex Input/Output 1-13
Buffered Input and Output 1-14

OVERVIEW OF INCORPORATING A USER-WRITTEN DRIVER
INTO P/OS .•................. 1-15

DEVICE DRIVER I/O STRUCTURES

I/O STRUCTURES · · · · · · · · · · · · 2-1
Controller Table (CTB)* · · · · · · · · · · 2-1
Controller Request Block (KRB)* · · · · · 2-2
Device Control Block (DCB) · · · · · 2-3
Unit Control Block (UCB) · · · 2-3
Status Control Block (SCB) · · · · · · · · · 2-4

DRIVER DISPATCH TABLE (DDT) · 2-5
I/O Initiation · · · 2-6
Cancel I/O · · · · · · · · · · · · · · 2-7
Device Timeout · · · · · 2-7
Device Power Failure · · · · · · 2-7
Controller and Unit Status Change · · · · · 2-8
Device Interrupt Addresses · 2-8

TYPICAL CONTROL RELATIONSHIPS · · · · · · · 2-8
Multiple Units per Controller, Serial Unit
Operation · · · · · · · · · · · · · · · · · · · 2-9
Multiple Controllers, Single Unit per
Controller · · · · · · · · · · · · 2-10
Parallel Unit Operation · · · · 2-10

OVERVIEW OF DATA STRUCTURE RELATIONSHIPS 2-12

iii

CHAPTER 3

3.1
3.1.1
3.1.2
3.2
3.2.1
3.2.2
3.2.3

CHAPTER 4

4.1
4.1.1
4.1.2
4.2

4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.3
4.3.1
4.3.2
4.3.3
4.3.4
4.3.5
4.4
4.4.1
4.4.2
4.4.3
4.4.3.1
4.4.4
4.4.5
4.4.6
4.4.7
4.4.8
4.5
4.5.1
4.5.2
4.5.3
4.5.4
4.5.5
4.5.6
4.5.7
4.5.8
4.5.9
4.5.10

EXECUTIVE SERVICES AND DRIVER PROCESSING

FLOW OF AN I/O REQUEST . . . • 3-1
Predriver Initiation Processing · 3-2
Driver Processing · 3-4

EXECUTIVE SERVICES AVAILABLE TO A DRIVER . · 3-5
Get Packet ($GTPKT)
Create Fork Process ($FORK)
I/O Done ($IODON or $IOALT)

· 3-5
· 3-6
· 3-6

PROGRAMMING SPECIFICS FOR WRITING AN I/O DRIVER

PROGRAMMING STANDARDS 4-1
Programming Protocol Summary 4-1
Accessing Driver Data Structures . . 4-2

OVERVIEW OF PROGRAMMING USER-WRITTEN DRIVER DATA
BASES •••••••••••••••••••••• 4-3

General Labeling and Ordering of Data Structures 4-3
Device Control Block Labeling 4-3
Unit Control Block Ordering •......... 4-3
Status Control and Controller Request Blocks . . 4-4
Controller Table . . . • 4-4

OVERVIEW OF PROGRAMMING USER-WRITTEN DRIVER CODE . 4-6
Generate Driver Dispatch Table Macro Call - DDT$ 4-6
Get Packet Macro Call - GTPKT$. . . • 4-9
Interrupt Save Macro Call - INTSV$ 4-10
Using the UCBSV Argument in Macro Calls 4-11
Driver Entry Points for PROLOD 4-12

DRIVER DATA STRUCTURE DETAILS .. . • . . . 4-13
The I/O Packet • . . . 4-14
The QIO Directive Parameter Block (DPB) 4-20
The Device Control Block (DCB) . . . 4-23

Establishing I/O Function Masks 4-29
The Unit Control Block (UCB) 4-35
The Status Control Block (SCB) . . . 4-47
The Controller Request Block (KRB) . 4-55
Contiguous Allocation of the SCB and KRB . 4-62
Controller Table (CTB) 4-62

DRIVER CODE DETAILS 4-67
Driver Dispatch Table Format . 4-68
I/O Initiation Entry Point . 4-72
Cancel Entry Point 4-73
Device Timeout Entry Point . 4-73
Deallocation Entry Point . 4-73
Power Failure Entry Point • . . . 4-74
Controller Status Change Entry Point . 4-74
Unit Status Change Entry Point 4-76
Interrupt Entry Point 4-77
Volume Valid Processing• 4-78

iv

CHAPTER 5

5.1
5.1.1

5.1.2
5.1.3
5.1.4
5.2
5.2.1
5.2.2
5.2.3
5.2.4

CHAPTER 6

6.1
6.1.1
6.1.2
6.1.3
6.1.4
6.2
6.3
6.3.1
6.3.1.1
6.3.1.2
6.3.1.3
6.3.2
6.4
6.4.1

6.4.2

6.4.3
6.4.4
6.4.5
6.5

CHAPTER 7

7.1
7.2
7.3
7.3.1
7.3.2
7.4
7.5
7.5.1
7.5.2

INCORPORATING A USER-SUPPLIED DRIVER INTO P/OS

INCORPORATING AN I/O DRIVER INTO A P/OS SYSTEM 5-1
Guidelines for Creating/Adding a Driver Into the
System . • 5-1
Assembling the I/O Driver 5-2
Taskbuilding the I/O Driver • . . 5-2
Loading an I/O Driver Into the System 5-3

PROLOD.5-3
PROLOD Operations and Diagnostic Checks . • 5-5
Using PROLOD Autoconfiguration 5-8
PROLOD Errors 5-9
PROLOD Sample Program 5-11

DEBUGGING A USER-SUPPLIED DRIVER

THE EXECUTIVE DEBUGGING TOOL . • 6-1
XDT Commands •..• 6-1
XDT Start Up • 6-2
XDT General Operation . 6-2
XDT and Debugging a User-Supplied Driver • • 6-3

MAINTENANCE- OR MICRO-ODT . 6-3
FAULT ISOLATION • . . . •. . 6-4

Immediate Servicing• . 6-4
The System Traps to XDT . 6-4
The System Halts but Displays No Information . 6-4
The System Is in an Unintended Loop • 6-5

Pertinent Fault Isolation Data . . . 6-5
TRACING FAULTS . . . • . . . 6-6

Tracing Faults Using the Executive Stack and
Register Dump
Tracing Faults When the Processor Halts Without
Display
Tracing Faults After an Unintended Loop
Additional Hints for Tracing Faults
System Bugcheck without XDT

REBUILDING AND REINCORPORATING A DRIVER

EXECUTIVE SERVICES AVAILABLE TO AN I/O DRIVER

SYSTEM-STATE REGISTER CONVENTIONS
EXECUTIVE TIMER RELATED FACILITIES .
ADDRESSING A TASK BUFFER

Address Checking a Task Buffer . .
QIO Directive Processing Specifics .

THE ADDRESS DOUBLE WORD . • . .
SERVI CE CALLS • • .

Address Check • • •
Allocate Core Buffer ...•.

v

· 6-9

6-12
6-13
6-13
6-13
6-15

· 7-1
· 7-1
· 7-4
· 7-6
· 7-6
7-11
7-12
7-14
7-16

7.5.3
7.5.4
7.5.5
7.5.6
7.5.7
7.5.8
7.5.9
7.5.10
7.5.11
7.5.12
7.5.13
7.5.14
7.5.15
7.5.16
7.5.17
7.5.18
7.5.19
7.5.20
7.5.21
7.5.22
7.5.23

7.5.24
7.6
7.7
7.7.1
7.7.2
7.7.3
7.7.4

CHAPTER 8

8.1

CHAPTER 9

9.1
9.1.1
9.1.2
9.1.3
9.1.4
9.1.5

APPENDIX A

A.l
A.2
A.3

Check Logical Block
Move Block of Data
Check I/O Buffer
Clock Queue Insertion
Convert Logical Block Number .
Deallocate Core Buffer . .
Fork . . .
Forkl
Get Byte
Get Packet
Get Word
Initiate I/O Buffering .
Interrupt Exit .•.•......
I/O Done Alternate Entry and I/O Done . • . .
I/O Finish
Put Byte
Put Word
Queue Insertion by Priority
Relocate •
Queue Kernel AST to Task
Test if Partition Memory Resident for Kernel
AST • • • • . • • . • • • • • • • • • • • • •
Test for I/O Buffering • . . . •

ADDING PHYSICAL MEMORY TO THE P/OS CONFIGURATION
EXECUTIVE DATA STRUCTURE AND ROUTINE VECTORS . .

Pointer Location and Format • . .
Referencing LOWCR and SYSCM Data Structures
Referencing Executive Routines
Executive Routine Vector Table

HANDLING SPECIAL USER BUFFERS

7-17
7-19
7-20
7-22
7-23
7-24
7-25
7-27
7-28
7-29
7-32
7-33
7-34
7-35
7-36
7-38
7-39
7-40
7-41
7-42

7-43
7-44
7-44
7-48
7-48
7-49
7-50
7-51

DRIVER CODE 8-1

ACCESSING VIDEO HARDWARE AND TERMINAL SUBSYSTEM

APPLICATION LEVEL ACCESS TO THE VIDEO HARDWARE • . 9-1
Disabling the Terminal Subsystem . • . . 9-2
Accessing the Video Device Registers . . 9-3
Accessing Video Memory Through the Bus . • 9-4
The Screen Timer••. . 9-4
Returning the Video Hardware to the System .. 9-5

PIOS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

ABODF$.
ACNDF$.
ACTDF$

vi

• • A-4
• A-6
. A-8

A.4
A.5
A.6
A.7
A.8
A.9
A.l0
A.ll
A.12
A.13
A.14
A.15
A.16
A.17
A.18
A.19
A.20
A.21
A.22
A.23
A.24

APPENDIX B

B.l
B.l.l
B.l.2
B.l.2.1
B.l.2.2
B.l.2.3
B.l.2.4
B.2
B.2.1
B.2.2
B.2.3
B.2.4
B.2.5
B.2.6
B.2.7
B.2.8

B.2.9
B.2.10
B.3
B.3.1
B.3.1.1
B.3.1.2
B.3.1.3
B.3.1.4
6.3.2

BCKDF$ · · · · · · A-l0
CLKDF$ · · · · · A-13
CTBDF$ · · · · · · · · ~. · A-1S
DCBDF$ · A-17
DDT$. · · · · · · · · · · A-19
FllDF . · · · A-21
GTPKT$ · · · . · A-26
HDRDF$ · . . . · · · · · A-27
HWDDF$ · · · · · A-29
INTSV$ · · · · · · A-36
ITBDF$ · A-37
KRBDF$ · · A-39
LBLDF$ · · · · · A-42
LNMDF$ · · · · · · A-4S
PCBDF$ · · · · · · A-46
PKTDF$ · A-52
QIOSY$ · · · · · A-59
SCBDF$ · · · · · · . . . · A-70
TTSYM$ · A-73
TCBDF$ · · . A-79
UCBDF$ · · · · · · A-83

TASK BUILDING AND CLUSTER LIBRARIES

AN OVERVIEW OF OVERLAYING · . 8-1
8asic Overlay Concepts and Constraints . · 8-2
The Overlay structure . • · B-4

· B-4 Overlaying Code Segments . • . .
Making the Tree More Flexible · . 8-8
Co-trees
Overlaying Data • . .

CLUSTER LIBRARIES AND THEIR USE IN APPLICATIONS
Simple Task structure and Memory Mapping . . .
Libraries and Virtual Address Windows •...
Library Sharing and Multiple Libraries ..
Library with Memory-Resident Overlays
Clustered Libraries •
Cluster Libraries - Implementation Detail
Summary and Implications .•......
Inter-Library References and Miscellaneous
Points . . . •
WRITE Access to Clustered Libraries
NULL I B •

OPTIONS IN TASK ORGANIZATION
FLAT. TSK . . . •

FLATBLD.CMD
ROOT • MAC . • .
MAINLINE.MAC .
ROOTDATA.MAC .

CLUST.TSK

vii

· B-9
8-10
B-ll
8-11
8-14
8-16
8-18
8-20
8-23
8-24

8-25
8-26
B-27
B-28
8-30
8-30
8-30
8-31
8-34
8-37

B.3.2.1
B.3.2.2
B.3.3
B.3.3.1
B.3.3.2
B.3.3.3
B.3.3.4
B.3.3.5
B.3.3.6
B.3.3.7
B.3.4
B.3.4.1
B.3.4.2
B.3.4.3
B.3.4.4
B.3.4.5

APPENDIX C

C.l
C.l.l
C.l.2
C.2
C.2.l
C.2.2
C.2.2.l
C.2.2.2
C.2.2.3
C.2.2.4
C.2.3
C.2.4
C.2.4.1
C.2.4.2
C.2.4.3
C.2.4.4
C.2.4.5
C.3
C.3.l
C.3.l.l
C.3.2
C.3.3
C.4
C.4.l
C.4.l.l
C.4.l.2
C.4.l.3
C.4.l.4
C.4.2
C.4.2.l
C.4.2.2

CLUSTBLD.CMD
CLUST.ODL

VECTOR.TSK and USRRES.TSK
USRRESBLD.CMD
USRRES.ODL .
Discussion
Excerpt from RESVEC.MAC
VECTOR.MAC (Root vector module)
VECTORBLD.CMD
VECTOR.ODL .

OVERLAY.TSK
OVERLAY.ODL
OVERLABLD.CMD
ROOT2.MAC
CLLWTR.MAC .
COMPUTE.MAC

B-37
B-38
B-39
B-39
B-40
B-40
B-42
B-42
B-43
B-44
B-45
B-45
B-46
B-46
B-47
B-47

FILES-11 ON-DISK STRUCTURE SPECIFICATION

MEDIUM .
Volume
Volume sets

FILES
File 10
File Header

Header Area
Ident Area . .
Map Area . .
End Checksum .

Extension Headers
File Header - Detailed Description

Header Area Description
Ident Area Description . .
Map Area Description . . .
End Checksum Description .
File Header Layout

DIRECTORIES
Directory Hierarchies

User File Directories
Directory structure
Di rectory Protection

KNOWN FILES
Index File

Bootstrap Block
Home Block
Index File Bitmap
File Headers. . .

storage Bitmap File
Storage Control Block
Storage Bitmap ..

viii

· . . . C-1
· . . . C-l

· C-2
· C-2
· C-2
· C-3
· C-3

• • • • . C- 4
• • • • C - 4

· C-4
· C-4
· C-4

• • • • C- 5
• • • • • • • C - 9

· . . . C-lO
C-l3
C-14
C-16
C-16
C-16
C-17
C-18
C-19
C-19
C-19
C-20
C-27

· . . . C-28
C-28
C-28
C-29

C.4.3
C.4.3.1
C.4.4
C.4.S
C.S
C.S.l
C.S.l.l
C.S.l.2
C.S.l.3
C.S.l.4
C.S.l.S
C.S.l.6
C.S.l.7
C.S.l.8
C.S.2
C.S.2.1
C.S.2.2
C.S.2.3

APPENDIX 0

0.1
0.1.1
0.1.2
0.1.2.1
0.1.2.2
0.1.2.3
0.1.3
0.1.4
0.1.5
0.2
0.3
0.4
0.5
0.5.1
0.5.2
0.5.3
0.5.4
0.5.5
0.6
0.6.1
0.6.2
0.6.3
0.7
0.8
0.9

Bad Block File . · · · ·
Bad Block Oescriptor ·

Master File Oirectory · · · · · · · ·
Core Image File · · · ·

FCS FILE STRUCTURE · · · ·
FCS File Attributes · · · ·

F.RTYP: 1 Byte - Record Type
F.RATT: 1 Byte - Record Attributes · · · · F.RSIZ: 2 Bytes - Record Size
F.HIBK: 4 Bytes - Highest VBN Allocated
F.EFBK: 4 Bytes - End of File Block
F.FFBY: 2 Bytes - First Free Byte
S.FATT: 14 Bytes - Size of Attribute
FCS File Attrfbutes Layout ·

Record Structure · · · · ·
Fixed Length Records · · ·
Variable Length Records
Sequenced Variable Length Records

Format of Two Byte Print Control
R.SEQ Records · · · · · · .

FILES-ll QIO INTERFACE TO THE ACPS

QIO PARAMETER LIST FORMAT
File Identification Block
The Attribute List

The Attribute Type
Attribute Size
Attribute Buffer Address . .

Size and Extend Control
Window Size and Access Control . .
File Name Block Pointer

PLACEMENT CONTROL
BLOCK LOCKING
SUMMARY OF FllACP FUNCTIONS
HOW TO USE THE ACP QIOS

Creating a File
Opening a File
Closing a File .
Extending a File
Deleting a File

FILE HEADER BLOCK FORMAT
Header Area
Identification Area
Map Area . . •

STATISTICS BLOCK .

· ·

ERRORS RETURNED BY THE FILE PROCESSORS .
FILENAME BLOCK • . . .

ix

Block

· · ·

Field

· · ·

·

·
·

in

·

C-29
C-30
C-30
C-30
C-31
C-31
C-31
C-31
C-32
C-32
C-32
C-32
C-33
C-33
C-33
C-33
C-34
C-34

C-34

· 0-1
· 0-2
· 0-2
· 0-3
· 0-4
· 0-5
· 0-6
· 0-6
· 0-7

0-8
· 0-8
· 0-9
0-11
0-11
0-11
0-11
0-12
0-12
0-12
0-15
0-16
0-17
0-18
0-19
0-23

APPENDIX E QUAD SERIAL LINE UNIT (PC3XC-BA)

Appendix
E.1 INTRODUCTION
E.2 THEORY OF OPERATION
E . 2 . 1 DUART s
E.2.2 Interrupt Logic
E.2.3 Modem Controls

E-1
· E-1

E-2
· E-2
· E-2

· • E- 3
E.3 DUART TRANSMITTER OPERATION • • • • • • • E - 4
E.3.1 Receiver Operation.
E.3.2 Interrupts..
E.3.3 Programming
E.3.4 Multidrop Mode
E.3.5 Registers
E.3.6 Diagnostic ROM Data Register (RDR) .
E.3.7 Diagnostic ROM Address Register (RAR)
E.3.8 Module Status Register (MSR) .. .
E.3.9 DUART Registers
E.3.9.1 Channel A Mode Register 1 (MR1A) .
E.3.9.2 Channel A Mode Register 2 (MR2A)
E.3.9.3 Channel A Status Register (SRA)

E-5
· . E-7
· . E-7

E-7
· . E-8
· . E-9

• • • • E -1 0
E-10
E-11
E-13
E-15
E-18

E.3.9.4 Channel A Clock Select Register (CSRA)
E.3.9.5 Channel A Command Register (CRA) ...
E.3.9.6 Channel A Receive Holding Register (RHRA)
E.3.9.7 Channel A Transmitter Holding Register (THRA)

E-21
E-22
E-24
E-25
E-26
E-26
E-30
E-32
E-32
E-32
E-33
E-33
E-33
E-34
E-35
E-35
E-35
E-36
E-36
E-36
E-36
E-37

E.3.9.8 Input Port Change Register (IPCR)
E.3.9.9 Auxiliary Control Register (ACR) ...
E.3.9.10 INTERRUPT STATUS REGISTER (ISR)
E.3.9.11 INTERRUPT MASK REGISTER (IMR)
E.3.9.12 Counter/Timer Upper Byte Value (CTU) .
E.3.9.13 Counter/Timer Upper Register (CTUR)
E.3.9.14 Counter/Timer Lower Byte Value (CTL) .
E.3.9.15 Counter/Timer Lower Register (CTLR)
E.3.9.16 Channel B Mode Register 1 (MR1B) .. .
E.3.9.17 Channel B Mode Register 2 (MR2B)
E.3.9.18 Status Register B (SRB)
E.3.9.19 CHANNEL B CLOCK SELECT REGISTER (CSRB) .
E.3.9.20 CHANNEL B COMMAND REGISTER (CRB) ...
E.3.9.21 CHANNEL B RECEIVE HOLDING REGISTER (RHRB)
E.3.9.22 CHANNEL B TRANSMITTER HOLDING REGISTER (THRB)
E.3.9.23 INPUT PORT (IP)
E.3.9.24 Output Port Configuration Register (OPCR)
E.3.9.25 START COUNTER Command
E.3.9.26 SET OUTPUT PORT BITS Command ..
E.3.9.27 STOP COUNTER Command
E.3.9.28 RESET OUTPUT PORT BITS Command.
E.4 MODEM CONTROLS FOR 2/2 CONFIGURATION
E.4.1 Input Port Assignments
E.4.2 Output Port Bit Definitions
E.4.3 Input Port Set-Up
E • 4 • 3 • 1 CT S

x

E-37
E-38
E-38
E-38
E-38
E-39
E-40
E-40

INDEX

FIGURES

E.4.3.2
E.4.3.3
E.4.3.4
E.4.4
E.4.4.1
E.4.4.2
E.4.4.3
E.4.4.4
E.4.4.5
E.5
E.5.1
E.5.2
E.5.3
E.5.3.1
E.5.3.2
E.5.3.3
E.5.4
E.5.4.1
E.5.4.2
E.5.5

DSR
CD . .
RI . .

Set-Up For Outputs
RTS
LL . .
DTR
RL .
DSRS .

MODEM CONTROLS FOR 4/0 CONFIGURATION . .
Input Port Assignments . . .
Output Port Bit Definitons
Input Port Set-Up

CTS
CD .
DSR

Set-Up For Outputs .
RTS
DTR

Connector Box

E-40
E-40
E-40
E-40
E-41
E-41
E-41
E-41
E-41
E-41
E-41
E-42
E-43
E-43
E-43
E-43
E-43
E-43
E-43
E-43

1-1 Virtual to Physical Mapping for the Executive .. 1-4
1-2 Interrupt Dispatching for a Driver 1-8
2-1 Multiple Units per Controller, Serial Unit

Operation 2-9
2-2 Multiple Controllers, Single Unit per Controller 2-11
2-3 Parallel Unit Operation (Overlapped Seek) 2-11
2-4 Composite I/O Data Structures 2-14
4-1 I/O Packet Format - Control Function . . . 4-16
4-2 I/O Packet Format - Transfer Function 4-17
4-3 QIO Directive Parameter Block (DPB) 4-21
4-4 Device Control Block 4-23
4-5 D.PCB and D.DSP Bit Meanings 4-30
4-6 Unit Control Block . 4-36
4-7 Unit Control Byte 4-38
4-8 Unit Status Byte 4-40
4-9 unit Status Extension 2 4-42
4-10 Status Control Block . . . 4-48
4-11 Controller Status Extension 3 4-51
4-12 Controller Status Extension 2 4-53
4-13 Controller Request Block 4-56
4-14 Controller Status Word 4-58
4-15 Contiguous KRB/SCB Allocation 4-63
4-16 Controller Table 4-64
4-17 Controller Table Status Byte. 4-66

xi

TABLES

4-18
4-19
6-1
6-2
6-3
6-4
6-5
B-1
B-2
B-3
B-4
B-5
D-1
E-1
E-2
E-3
E-4
E-5
E-6
E-7
E-8
E-9
E-10
E-11
E-12

Driver Dispatch Table Format•.
Sample Interrupt Address Block in the DDT
Interaction of Task Header Pointers . . • .
Task Header
Stack Structure: Internal SST Fault.
Stack Structure: Abnormal SST Fault
Stack Structure: Data Items on Stack .
Simple Task Structure and Memory Mapping . .
Libraries and Virtual Address Windows
Library Sharing and Multiple Libraries
Library With Memory-Resident Overlays
Clustered Libraries • . .
Filename Block Format . • . .
PRO 300 Modules Addressing Scheme . . . •
Module Status Register . .
Channel A Mode Register 1 (MR1A) . . .
Channel A Mode Register 2 (MR2A) .
Channel A Status Register (.ref status .•••.
Channel A Clock Select Register (CSRA)
Channel A Command Register . . • . . .
Auxiliary Control Register
Interrupt Status Register . • . •
Interrupt Mask Register
Channel B Mode Register 2
Output Port Configuration Register .

4-69
4-71

• 6-7
· 6-8
6-10
6-11
6-12
B-13
B-15
B-17
B-19
B-22
D-25

• E-8
E-l0
E-13
E-15
E-19
E-21
E-23
E-26
E-30
E-32
E-34
E-37

1-1 Option Slot Address Assignments . . 1-2
4-1 System Macro Calls for Driver Code* . . . • . . • 4-7
4-2 DDT$ Macro Call Arguments 4-7
4-3 GTPKT$ Macro Call Arguments 4-9
4-4 INTSV$ Macro Call Arguments 4-11
4-5 Mask Values for Standard I/O Functions • • . 4-31
4-6 Mask Word Bit Settings for Disk Drives. • • . . 4-32
4-7 Mask Word Bit Settings for Magnetic Tape Drives 4-33
4-8 Mask Word Bit Settings for Unit Record Devices. 4-34
4-9 Labels Required for the Driver Dispatch Table 4-68
4-10 Standard Labels for Driver Entry Points . • . . 4-71
7-1 QIO Processing By Function Type and Device

Characteristics • • . • . 7-7
7-2 I/O Packet Usage by Function Type 7-9
7-3 Summary of Executive Service Calls for Drivers. 7-13
A-1 Summary of System Data Structure Macros • A-2
0-1 Maximum Size for Each File Attribute . • 0-5
D-2 File Header Block 0-12
D-3 Statistics Block Format 0-18
D-4 File Processor Error Codes 0-19
D-5 Filename Block Offset Definitions . • . . 0-23
D-6 Filename Block Status Word (N.STAT) 0-25

xii

D-7 Filename Block Offset Definitions for ANSI
Magnetic Tape . . . · · · · · · · · D-26

E-l PRO 300 Module Register Summary . E-9
E-2 Configuration of Bits 2 and 3 (MSR) · · · · E-ll
E-3 DUART 0 Register Addresses · · · · · · E-12
E-4 Channel A Receiver Baud Rate · · · · · E-21
E-5 Baud Rate Generator Characteristics (CLOCK

3.6864 MHZ) · · · · · E-28
E-6 Counter/Timer Mode and Clock · · · E-29
E-7 2/2 Input Port Bits · · · · · . · · · · E-38
E-8 2/2 Output Port Bits · · E-39
E-9 4/0 Input Port Bits · · · · E-41
E-l0 4/0 Output Port Bits · · · · · E-42

xiii

PREFACE

Document Objectives

The primary goal of this manual is to introduce P/OS physical I/O
concepts, define Executive and I/O service routine protocol,
describe system I/O data structures, and prescribe I/O service
routine coding procedures. This information is in sufficient
detail to allow you to:

• Prepare software that interfaces with the Executive and
supports a conventional I/O device.

• Incorporate the user-written software into an P/OS
system.

• Detect typical errors that cause the system to crash.

• Use Executive service routines that an I/O service
routine typically employs.

• Develop P/OS video applications that directly access the
video hardware.

CAUTION

Unless explicitly noted otherwise, all
information in this manual is subject to change
without notice.

Intended Audience

This manual is written for the senior-level system programmer who
is familiar with the hardware characteristics of both the
Professional 300 Series and the device that the user-written
software supports. The programmer should also be knowledgeable
about DIGITAL peripheral devices and experienced in using the
software supplied with a P/OS system. The manual neither
describes general Executive concepts nor defines general system
structures. The manual does describe I/O concepts,the Executive

xv

role in processing I/O requests, and some pertinent aspects of
I/O processing done by DIGITAL-supplied software. Therefore,
with a firm understanding of hardware characteristics and P/OS
system software, a senior-level system programmer could attempt
to write an I/O driver.

Structure of This Document

This manual has three types of information: conceptual,
procedural, and reference. The following are abstracts of the
chapters in the document:

• Chapter 1, P/OS I/O Drivers, introduces terms and concepts
fundamental to understanding physical I/O in P/OS, and
describes the protocol that a driver must follow to preserve
system integrity. It summarizes advanced driver features and
P/OS capabilities helpful in becoming acquainted with overall
Executive and driver interaction.

• Chapter 2, Device Driver I/O Structures, continues the
conceptual discussion begun in Chapter 1. It introduces on a
general level the software data structures involved in
handling I/O operations at the device level, examines typical
arrangements of data structures that are necessary for
controlling hardware functions, and presents a macroscopic
software configuration that summarizes the logical
relationships of the I/O data structures.

• Chapter 3, Executive Services and Driver Processing, ends the
conceptual presentation. It summarizes how an I/O request
originates, how the Executive processes the request, and how
a driver would use Executive services to satisfy an I/O
request.

• Chapter 4, Programming Specifics for writing an I/O Driver,
provides the detailed reference information necessary to code
a conventional I/O driver. Included is a summary of
programming standards and protocol, an introduction to the
programming facilities and requirements for both the driver
data base itself and the executable code that constitutes the
driver, and an extensive elaboration of the driver data base
and of the driver code.

• Chapter 5, Incorporating A user-Supplied Driver into P/OS,
supplies the procedural information that you need to assemble
and build a loadable driver image, load it into memory, and
make accessible the devices that the driver supports.

xvi

• Chapter 6, Debugging A User-Supplied Driver, summarizes
software features provided to help you uncover faults in
drivers and gives procedures to follow that might prove
successful in isolating faults in drivers.

• Chapter 7, Executive Services Available to An I/O Driver,
gives general coding information relating to the PDP-ll and
P/OS Executive service routines.

• Chapter 8, Sample Driver Code, shows the source code for the
data base and driver of a conventional device and an excerpt
of source code from a driver that handles special user
buffers.

• Chapter 9, Accessing Video Hardware and Terminal Subsystem,
provides reference information on the driver'S control of
Professional video hardware and software.

• Appendix A, System Data Structures and Symbol Definitions,
lists the source code of system macro calls that define
system device structures, driver-related structures, and
system-wide symbolic offsets needed to access those
structures.

• Appendix B, Task Building and Cluster Libraries, is a
collection of three documents describing overlaying task
structures, cluster libraries, and task organization.

• Appendix C, Files-11 On-Disk Structure Specification,
describes the general-purpose file structure intended for use
on medium and large-size PDP-ll systems.

• Appendix 0, 010 Interface to the ACPs, describes the QIO
level interface to the file processors (ACPs).

• Appendix E, Ouad Serial Line Unit
describes the Quad Asynchronous
(PC3XC-BA) .

Associated Documents

Driver (PC3XC-BA),
Communications Module

documentation are documents that
and hardware on the system. The
and described in the Tool Kit

Included in your P/OS Tool Kit
describe both the software
software documents are listed
User's Guide. Consult this
software-related publications.
technical specifications, see
Technical Manual.

document for concise summaries of
For information on hardware

the Professional 300 Series

xvii

•

Also, it is recommended that you
listings, which· are published
Executive Listings and Maps.

Associated Files

refer to the
on microfiche.

PIOS Executive
It is entitled

• As mentioned in your installation guide, the directory
• [ZZPRIVDEV] on the PRODCL2 diskette contains several library and
• symbol table files, which are needed for writing privileged
• applications.

xviii

CHAPTER 1

P/OS I/O DRIVERS

Device drivers on P/OS are the primary method of interfacing the
Executive's I/O subsystem with hardware attached to the computer.
Most DIGITAL-supplied hardware is supported by drivers accompanying
the system that the user receives. This chapter introduces the
concept of device drivers and explains driver operations and features.

1.1 VECTORS AND CONTROL AND STATUS REGISTERS

Associated with a device contoller are device control and status
registers. The addresses of these registers are determined by the
physical slot in which the controller has been inserted, rather than
the actual option module. A given controller may have up to 64.
words of device registers as shown in Table 1-1. To provide a unique
identification for controllers, a hardware ID is expected to be
present, and may be accessed at the first address within a given
slot's device register address range. The bootstrap and diagnostic
ROM examines each option slot and places the hardware IDs in a
configuration table located at the top of physical memory. This table
is referenced by PROLOD to resolve the hardware ID specified in the
controller table (CTB) located in the driver's database. The table
may also be accessed by the executive's WIMP$ directive (See the PjOS
System Reference Manual for further details of the directive arguments
and table format.) Certain controllers are physically present on the
motherboard. These devices have predefined device registers and are
fully described in the Professional 300 Series Technical Manual.

1-1

VECTORS AND CONTROL AND STATUS REGISTERS

Table 1-1: Option Slot Address Assignments

Vector Vector
Physical Logical Address Address
Slot Slot Device Register Interrupt A Interrupt B
Position Number Address Range ICSRA= ICSRB=

17773206 ICSRA+4
-------- ------ ----------------- -------------- --------------

1 0 17774000-17774177 300 304
2 1 17774200-17774377 310 314
3 2 17774400-17774577 320 324
4 3 17774600-17774777 330 334
5 4 17775000-17775177 340 344
6 5 17775200-17775377 350 354

System peripheral Address Assignments

Logical (ICSR;::: 17773202)
Slot Device Register Vector
Number Address Range Address Device Type
------- ----------------- ------- ----------------------
0 Not used
1 17773500-17773506 200 Keyboard receiver
2 204 Keyboard transmitter
3 17773300-17773314 210 Comm. Port rec./trans.
4 214 Comm. Port modem status
5 17773400-17773406 220 Printer Port receiver
6 224 Printer Port trans.
7 17773000-17773032 230 System clock

Optionally, a controller may utilize one or two of the two-word areas
associated with each slot, called interrupt vectors. A vector
provides a connection between the device and the software that
services the device. A vector allows a device to trigger certain
software actions because of some external condition related to the
device. When a device interrupts, the vector address is sent to the
processor. The first word of the interrupt vector contains the
address of the interrupt service routine for that device. The
processor uses the second word of the vector as a new Processor Status
Word. Thus, when the processor services the interrupt, the first word
of the vector is taken as the new Program Counter (PC) and the second
word is the new PS.

1-2

VECTORS AND CONTROL AND STATUS REGISTERS

Space is reserved on the PDP-ll for the interrupt vectors. This space
is in the low part of Kernel I-space. The vectors are considered to
be in Kernel mode virtual address space and are thus mapped by the
Executive. Because the interrupt vector is in Kernel space, the
Executive receives control of the processor on every interrupt.

1.2 SERVICE ROUTINES

The service routine that is entered to process an interrupt is most
frequently in the device driver. Device drivers vary in complexity
depending on the capabilities of the type of device and the number of
device units they service.

Although linked into the Executive structures, a driver resides in
memory outside the virtual address space of the Executive. An
application can add or remove a driver by means of PROLOD, a callable
POSSUM system routine. In addition, any driver not required for a
period of time need not be loaded. The space normally occupied by the
unloaded driver can hold user tasks or another driver.

1.2.1 Executive and Driver Layout

A device driver is a logical extension of the Executive that is not
contiguous in physical memory with the Executive code. Active Page
Registers (APRs)* 0 through 4 map the Executive, APR 7 is reserved to
map the I/O page, and APR 5 maps the driver. Therefore, a driver is
by default restricted to the 4K words of space mapped by APR 5 unless
it controls its own mapping with APR 6 to gain access to an extra 4K
words.

The virtual to physical mapping of a P/OS system is shown in Figure
1-1.

* Active Page Register is a term referring to the Memory Management
register pair (Page Address Register (PAR) and Page Descriptor
Register (PDR).) Refer to the Professional 300 Series Technical Manual
for information on hardware mapping and memory management. Refer to
the RSXIIM-Plus and Micro/RSX Task Builder Manual for a description of
mapping and APR assignments by software.

1-3

Physical Memory
Address Space

1/0 Page

Privileged Task
or

Driver

Dynamic Storage
Region

System Resident
1/0 Data Base

Executive
Code

VECTORS

SERVICE ROUTINES

Virtual
Kernel
Space

32K Words

APR 7

- - - 28K Words

- - -
APR 5

20K Words

APR 1
4K Words

APR 0
OK Words

Figure 1-1: Virtual to Physical Mapping for the Executive

Virtual addresses 20K through 28K words (APR 5 and APR 6) are reserved
to map drivers and privileged tasks in Kernel mode. (Although APR5
and APR6 are reserved for drivers, the Executive maps only APR5 when
it calls a driver.) Finally, virtual addresses 28K through 32K words
(APR 7) map the I/O page.

1-4

SERVICE ROUTINES

Thus, a device driver is mapped with the Executive code and the I/O
page. When a driver has control, it can access the device registers
in the I/O page to perform its operations. While in system state, a
driver has access to all the Executive service routines to help it
process I/O requests. While in interrupt state, the driver must save
and restore APR 6 (access to APR 6 is unrestricted when the driver is
in system state).

Because of
functions
routines.
coding in
reduced to

the layout of the Executive and device drivers, many common
related to I/O are centralized in the Executive as service
This commonality eliminates the inclusion of repetitive

each and every driver. Coding in each driver is therefore
handling the specific functions of the device supported.

1.2.2 Driver Contents

A device driver consists of two parts. One part is the executable
instructions of the driver itself. This part has the entry points to
the driver. The entry points are those places where the Executive
calls the driver to perform a specific action, and their addresses are
established in the driver dispatch table (DDT). The table contains
addresses of routines in a fixed order so that the Executive can enter
the driver at the appropriate place for a given action.

The other part of a device driver is the data structures forming the
data base that describes the controllers and units supported by the
driver. Two structures, the controller table (CTB) and the controller
request block (KRB), describe the controller of the device being
supported. Because the CTB supplies generic information about the
controller type, only one CTB need exist for each controller type on a
system. The KRB holds information related to a specific controller
and therefore each controller has its associated KRB.

Three structures in the driver data base--the device control block
(DCB), the unit control block (UCB), and the status control block
(SCB)--describe the device as a logical entity. The DCB contains
information related to the type of device, whereas the UCB holds
information specific to an individual unit of the device. The seB is
used mainly to store data (driver context) concerning an operation in
progress on the device unit.

The driver data structures are tailored to the number of controllers
on the system, the number of units attached to each controller, and
the types of features the devices support. The structures increase in
complexity as the number of supported features increases.

1-5

EXECUTIVE AND DRIVER INTERACTION

1.3 EXECUTIVE AND DRIVER INTERACTION

The Executive and a driver interact by accessing and manipulating
common data structures. An I/O activity typically begins when a task
generates.a request for input or output. The Executive performs
preliminary processing of that request before it initiates the driver.
This preliminary processing, called predriver initiation, is common
for all drivers and eliminates a great deal of code from all drivers.

In performing predriver initiation, the Executive accesses the driver
data structures to assess the legality of the I/O request. For
example, cells in the device control block (DCB) define the functions
that the driver supports. If the function specified in the I/O
request is not supported by the driver, the Executive need not call
the driver. The driver is not aware of the I/O request. Therefore,
the Executive calls the driver only when the predriver initiation
warrants ·it.

1.3.1 The Driver Process

When the Executive does call the driver to process an I/O request, the
driver begins I/O initiation. Once an I/O request is created, a
driver process is initiated. The Executive has queued to the driver
an I/O packet that must be processed to satisfy the request.
Potentially there exist on the system as many driver processes as
there are distinct units capable of being active simultaneously.
(Moreover, some drivers supporting advanced features can have multiple
I/O requests simultaneously active for a given unit. In this case,
each active I/O request is part of a separate driver process. Refer
to Section 1.4.3 for more information.

Central to a full understanding of a driver and the I/O structure is
the difference between a driver process and the driver code. The
driver code, (which is pure instruction), invokes an Executive routine
called $GTPKT to get an I/O packet to process. This activity
generates data for the request being processed and the unit doing the
processing. The driver process, once initiated, starts the proper I/O
fupction, waits for a completion interrupt and performs any required
data transfers. It then completes the I/O by specifying I/O status
and requesting another I/O packet. This sequence of execution steps
continues until the I/O queue is empty and the driver process
terminates.

Because a driver may be capable of servicing several I/O requests in
parallel, it is possible that, for a s{ngle driver, many driver
processes exist at the same time. However, there is only one copy of
driver code. The driver process is reentrant code and the data that
defines the state of the code is stored in the driver data base when
the process is not executing (for example, when it is waiting for an

1-6

EXECUTIVE AND DRIVER INTERACTION

interrupt). The driver process executes driver code for a particular
device type on behalf of a specific unit. If independent units of a
particular device type are concurrently active, several driver
processes are also active at the same time, each with its own set of
data.

1.3.2 Interrupt Dispatching and the Interrupt Control Block

Once a driver starts an I/O function, it must await the I/O completion
interrupt. When a device interrupt occurs, the processor pushes the
current PS and PC onto the current stack and loads the new PS and PC
from the device controller interrupt vector. By convention, the PS in
the interrupt vector is preset with a priority of 7 and the number of
the controller associated with the vector. (The controller number,
which identifies a particular controller for a given controller type,
is in the low-order four bits.)

For a driver, the hardware cannot dispatch directly to the interrupt
service routine in the driver because the driver is mapped, outside the
address space of the Executive. Therefore, some code in the Executive
must initially handle the interrupt, load the mapping context of the
driver, and dispatch to the proper driver. This code resides in the
Executive in a structure called an interrupt control block (ICB).
Figure 1-2 shows this mechanism. A common Executive coroutine, called
interrupt save ($INTSI) is called from the ICB. The $INTSI coroutine
saves two registers, R4 and R5, which are thereafter free for the
driver to use. These registers are typically used by drivers to hold
addresses of the data blocks containing unit status and control
information, the SCB and UCB. (Most Executive routines assume these
two registers hold pointers to the two structures. If the driver
needs to use more registers, it saves them on the stack and restores
them when it finishes.) Kernel APR 5 is then saved and the driver is
mapped through APR 5 and called at the interrupt entry point. When
the interrupt save coroutine returns to the driver, the driver runs at
the interrupt level of the device that it is servicing and has two
free registers that it can use.

The driver may then run for a short interval at the partially
interruptable level. By convention, this interval should not exceed
500 microseconds. When the driver finishes processing the interrupt,
it may execute a RETURN instruction to transfer control back to the
coroutine which gives control of the CPU to the next process.*

* An Executive interrupt exit routine, $INTXT, exists to standardize
the way a driver exits from an interrupt. This routine is executed by
the $INTSI coroutine. Therefore, interrupt exit processing is
effected via the "RTS PC" (RETURN) instruction.

1-7

EXECUTIVE AND DRIVER INTERACTION

Thus, the ICB actually contains a JSR instruction to an Executive
interrupt save routine ($INTSI) that performs the following:

o Save R4 and R5

o Save the Kernel mapping (APR 5)

o Load APR 5 to map the driver

o Transfer control to the driver via a JSR instruction

o Restore the mapping after return from the driver

o Perform interrupt exit processing

o Restore R4 and R5

o Return from interrupt

Thus, the interrupt vector for a controller serviced by a driver
points to an ICB rather than to the driver.

INTERRUPT
CONTROL

CONTROLLER
BLOCK

NUMBER
(ICB)

INTERRUPT
VECTOR DRIVER

ZK-247-81

Figure 1-2: Interrupt Dispatching for a Driver

The ICB conceptually allows up to 128 controllers of the same type on
a system. The low-order four bits in the PS of the interrupt vector
restricts the number of controllers to 16. In the ICB, the system
maintains a controller group number and the PS bits describe the
controller number within the group. To obtain the controller index
(controller number #2), the executive interrupt service routine first
multiplies the controller within group number that was in the low 4
bits of the PS by two. The group number byte in the ICB is then added
to this number.

1-8

EXECUTIVE AND DRIVER INTERACTION

The simplest case in handling an interrupt is that in which a
controller can have only one unit active at anyone time. Multiple
controllers may be active concurrently, yet only one unit per
controller may be active. The interrupt service routine in the driver
uses the controller index passed in R4 to index a table in the CTB and
to access the proper KRB. From the KRB, the UCB (via K.OWN) may be
determined to access the proper unit data and context. For those
devices that have a static one-to-one static relationship between a
controller and a perticular UCB, the controller index may be used to
index a table of UCB addresses within the driver.

The more complex case in dispatching an interrupt is that in which a
controller can have multiple units operating in parallel. This is an
advanced driver feature called overlapped seek I/O and is described in
Section 1.4.1.

1.3.3 Interrupt Servicing and Fork Process

A driver handling an interrupt and operating at the partially
interruptable level may need to (1) access structures in its data base
or (2) call centralized Executive service routines which may access
structures in the data base. Because a driver may have more than one
process active simultaneously, the driver itself may need to access
structures in the data base shared among separate, unrelated
processes. A method must exist to coordinate access to the data
structures shared among the processes and the Executive.

The mechanism that coordinates access to the shared structures is
called the fork process. An Executive routine, called fork ($FORK),
causes the driver process to be placed in a queue of processes waiting
for access to the shared data structures, to run at processor priority
level 0, and to be completely interruptable.*

A driver must therefore call the fork routine before it calls any
other Executive service routine (except for $INTSI), or before it
accesses any device-specific (nonprivate) structures in its data base.
If a driver does not follow this protocol, it will corrupt the system
data base and lead to a system crash.

A driver that calls the fork routine requests the Executive to
transform it into a fork process. The routine saves a snapshot of the

* By convention, drivers may operate at a partially interruptable
level for no more than 500 microseconds. Some drivers conceivably
could need more time than this convention allows. Thus, an additional
reason for the fork mechanism is to preserve the response time of the
system and not lock out interrupts from lower-priority levels.

1-9

EXECUTIVE AND DRIVER INTERACTION

process in a fork block. The snapshot is the context of the driver
process--the PC of the process and the contents of R4 and R5. The
fork block itself can (and usually does) reside in the I/O data
structure holding the status information of the device being serviced
(that is, the status control block, or SCB). The Executive maintains
a list of fork blocks in FIFO order. A new fork block is added to the
list after the last block in the list.

When the driver calls $FORK, the CPU priority is lowered to 0, which
allows other interrupts to be serviced. When there are no more
pending interrupts (they have either been dismissed or the drivers
have called $FORK), the Executive checks to see whether the first
interrupt preempted a priority 0 Executive process. If a preemption
occurred, the Executive process is continued from where it was
interrupted.* If no priority level 0 Executive process was
interrupted, the Executive executes the process at the head of the
fork list. The Executive restores the saved context of the process
from the SCB and returns control to the driver at the statement
immediately following the call to the fork routine. The process is
unaware that a pause of indeterminate length has elapsed.

Fork processes thereby are granted FIFO access to the common I/O data
structures. Once granted such access, a fork process has control of
the structures until it exits. The protocol guarantees that the
driver process has unrestricted access to shared system data
structures. As one fork process exits, the next in the list is
eligible to run and access the data structures. Thus, the fork
mechanism allows both controlled access to the common data structures
and sufficient time to process an interrupt without locking up the
system.

The status of a fork process lies between an interrupting routine and
a task requesting system resources. This is known as "system state."
Interrupt routines are run first and can be interrupted only by
higher-priority interrupts. Processes in the fork list run after
other system processes either terminate or call $FORK themselves.
Because system processes save and restore user task registers and
cannot be interrupted by a fork process, a fork process can use all
registers. The fork processes are completely interruptable. Tasks
run only when the fork list is empty.

The fork mechanism establishes linear, or serial, access to the shared
data structures. For example, an Executive routine that completes I/O
processing ($IODON) manipulates the I/O queue to deallocate an I/O
packet that the driver processed. If multiple processes were allowed

* The stack must be restored to its state on
calling $FORK. Therefore, it cannot be
context.

1-10

interrupt entry before
used to pass additional

EXECUTIVE AND DRIVER INTERACTION

to alter the queue at random times, the queue pointers could become
disarranged. Without the fork mechanism, any process could be
interrupted by a higher-priority process and not be able to complete
its manipulation. Because the Executive complete~ a currently active
fork process before it starts the next fork process in the queue, the
integrity of the I/O data structures is maintained if all routines
that call $IODON run at system state.

Between the time that a driver process calls $FORK and the Executive
starts the process at system state, the driver cannot call $FORK again
for that same device. If the $FORK routine is called again before the
first process starts, context stored in the fork block for the first
fork process is overwritten. However, once a fork process starts, the
data in the fork block is stale and the process may call $FORK again
while it is at system state. If the driver does not ensure against
unexpected interrupts, it may double fork as described above. As a
result of the double fork, the system will bugcheck (crash) with an
lOT trap as a result of a failed sanity check while queuing the
forkblock. A common protocol used by DIGITAL device drivers is to
clear the saved PC in the forkblock immediately following a fork, and
to test this work before forking. If the word is non-zero, it is not
possible to call $FORK.

If all drivers adhere to the interrupt protocol, the integrity of the
I/O data structures is preserved. Thus, when a device interrupt
occurs while a fork process is executing, the protocol demands that
the service routine handling the interrupt not destroy any of the
registers. The registers are part of the context of the fork process.
After the driver dismisses the interrupt or itself becomes a fork
process, the interrupted fork process can safely resume execution with
its proper context. If any driver violates the protocol, the
integrity of the I/O data structures is endangered. (That is, the
system crashes in mysterious ways.)

1.3.4 Nonsense Interrupt Entry Points

All vectors for off-line devices and vectors for which there are no
devices contain the addresses of Executive nonsense interrupt entry
points. Code at these special entry points exists to properly dismiss
unexpected interrupts from these devices via an RT1 instruction.

1.4 ADVANCED DRIVER FEATURES

This section introduces optional features so you can better understand
the structures and concepts described in the remainder of the manual.

1-11

ADVANCED DRIVER FEATURES

1.4.1 Overlapped Seek 1/0

Some disk devices allow multiple device units attached to the same
controller to execute operations in parallel. This is called
overlapped seek support and is a software option designed to take
advantage of a hardware feature found in most advanced disk drives and
controllers. This feature allows any or all drives to be attached to
the same controller, allowing this functionality to execute a seek
function simultaneously. Each unit may perform a seek operation
independent of what another unit may be doing. Only one data transfer
can occur at anyone time. Some types of drives allow seek functions
to overlap a data transfer function, whereas other types do not.

The increased difficulty for overlapped seek devices stems from
determining whether the controller or the unit generated the
interrrupt. Most control functions issued to the drive unit
(including the positioning commands SEEK and SEARCH) terminate with a
unit interrupt. The controller reports the physical unit number of
the interrupting unit. A controller interrupt indicates the
termination of a function (usually a data transfer command) that
changes the controller status from busy to ready. Only one unit may
issue a data transfer complete notification to a particular controller
at anyone time because only one data transfer can be in progress at
anyone time. Most hardware defers seek termination interrupts until
the current data transfer is complete.

To handle interrupts for a device that supports overlapped seek
operations, a device controller-specific interrupt service routine
must be built into the driver to examine the device registers in order
to determine whether the interrupt was initiated by the controller or
the drive unit. Using the controller index on interrupt entry, the
routine uses this as an offset into a table of addresses in a
structure (called the controller table or CTB) in the I/O data base.
The routine accesses the table to determine the address of the I/O
data structure of the interrupt controller (called the controller
request block or KRB) that generated the interrupt. Accessing the KRB
yields the address of the CSR of that controller and having the CSR
address allows the routine to examine the device registers.

If the controller itself initiated the interrupt, the routine
determines the data base structure of the unit that is active. This
determination is possible because such a controller interrupt relates
to a termination of a data transfer, and only one such unit can be
active for a data transfer. A cell in the KRB has the address of the
data structure describing the active unit (the unit control block or
UCB). The routine can then determine the address of the driver
dispatch table and transfer control to the driver.

1-12

ADVANCED DRIVER FEATURES

If a device unit initiated the interrupt, the routine retrieves its
unit number from the device registers. Using the physical unit
number, the routine indexes a table at the end of the KRB to yield the
address of the related UCB. The driver is entered through the driver
dispatch table.

1.4.2 Delayed Controller Access

Drivers that support overlapped seeks also must request access to a
controller before executing a function on an independent unit and must
release access after completing the function. To take maximum
advantage of simultaneous operation of units on one controller, the
system delays controller access when the controller is busy.

The Executive maintains a request queue for the controller. Whenever
a driver process requests access to a controller and must wait for
access to the controller, the Executive places the associated fork
block in the controller request queue. When a driver releases a
controller, the Executive automatically grants access to the next
driver process waiting for access. Precedence is given to positioning
requests over requests for data transfer. The controller request
queue thereby provides the means for the Executive to synchronize
access.

1.4.3 Full Duplex Input/Output

In certain circumstances it may be necessary for a driver to handle
more than one I/O request on a unit at the same time. Typically a
driver processes only one I/O packet per unit at anyone time. In
normal operation the driver calls the Executive routine $GTPKT to get
an I/O packet to process. When $GTPKT returns an I/O packet, it marks
the device busy and does not allow additional I/O until the first I/O
activity completes. Therefore, only one I/O process can be in
progress at the same time on a device. Full duplex operation allows
more than one I/O process to be in progress on a device at the same
time.

To allow full duplex operation, the $GTPKT routine has a special entry
point called $GSPKT. A driver calling $GSPKT specifies an acceptance
routine, to which $GSPKT returns control when an eligible packet is
found. The acceptance routine determines whether to accept or reject
the packet. The criteria that the acceptance routine applies could be
that a write request is accepted if a write has just completed or that
a read request is accepted if a read has just completed. If the
routine rejects the packet, it indicates so to $GSPKT, which continues
to search for another packet. If the acceptance routine accepts the
packet, $GSPKT dequeues the packet and passes it to the driver but

1-13

ADVANCED DRIVER FEATURES

does not modify U.BUF and U.CNT in the unit control block (UCB) nor
does it mark the
operation the device
request. For this
executiv~'s standard
suggested.

device busy. As a result, during full duplex
appears idle even while it is processing an I/O

reason, it may be difficult to make use of the
driver timeout facility. Clock queue entries are

To complete an I/O request under full duplex operation, the driver
calls the $IOFIN routine rather than the $IOALT or $IODON routine.
$IOFIN does final processing without making the device look idle, as
$IOALT and $IODON attempt to do. In full duplex operation, a unit
will always appear idle to the system and the driver acceptance
routine will determine whether the device can handle an I/O request.

A driver handling full duplex operations requires augmented data base
structures. The conventional data base structures are defined for
only one I/O request in progress per unit. Because the driver has to
keep more information concerning a unit that allows two I/O requests
in progress, you may have to alter the UCB and other data base
structures to provide additional offsets. The DIGITAL-supplied full
duplex terminal driver not only uses a lengthened UCB and a
nonstandard SCB, but also connects to a dynamically allocated UCB
extension.

1.4.4 Buffered I~put and Output

Typically, data for input and output requests are transferred directly
to and from task memory. To allow the successful transfer of data,
the task cannot be checkpointed until the transfer is complete. For
most high-speed devices, the transfer occurs quickly enough so that a
task does not occupy memory for too long a time. For slow-speed
devices, however, some mechanism must be available to avoid binding
memory to a task for too long a time while the task is performing I/O.

Using the routines $TSTBF, $INIBF, and $QUEBF in the Executive module
IOSUB, a driver can execute an I/O request for a slow-speed device and
allow the task to be checkpointed while the request is in progress.
To perform the I/O request, the driver buffers the data in memory
al'located to the driver while the task is checkpointed and the I/O
request is in progress.

To test whether a task is in a proper state to initiate I/O buffering,
the driver calls the $TSTBF routine and passes it the address of the
I/O packet. By extracting the address of the task control block (TCB)
from the I/O packet, $TSTBF can examine various task attributes. For
example, if the task is not checkpointable, buffered I/O is not
desirable. $TSTBF returns to the driver and indicates whether
buffered I/O can be performed.

1-14

ADVANCED DRIVER FEATURES

If buffered I/O can be performed, the driver performs two operations.
First, it establishes the buffering conditions. For an output
request, it copies the task buffers to dynamically allocated pool
space. For an input request, it allocates sufficient pool space to
receive the incoming data. Second, the driver calls the $INIBF
routine to initiate the I/O buffering. $INIBF decrements the task I/O
count, increments the task's buffered I/O count in T.TIO, and releases
the task for checkpointing and shuffling. If the task is currently
blocked, the task state is transformed into a "stopfor" state until
the task is unblocked, buffered I/O completes, or both. Checkpointing
the task is subject to the normal requirements of an active or
"stopfor" state as described in the P/OS System Reference Manual.

After the driver transfers the data, it calls the $QUEBF routine to
queue the buffered I/O for completion. $QUEBF sets up a kernel
asynchronous system trap (AST) for the buffered I/O request and if
necessary, unstops the task. When the task is active again, a routine
($FINBF) in the Executive module SYSXT notices the outstanding AST and
processes it. (If the request is for input, the routine copies the
buffered data to task memory.) This mechanism occurs transparently to
the task, thus the name kernel AST. The routine then calls the driver
to deallocate the buffer from pool. $IOFIN complet~s the processing.

1.5 OVERVIEW OF INCORPORATING A USER-WRITTEN DRIVER INTO PIOS

A callable system service called PROLOD, located in the POSSUM
library, is responsible for loading and unloading a driver. When
loading, PROLOD establishes the linkage between the data base
structures in the system device tables and the driver code being
loaded. When unloading, PROLOD removes the driver's code from memory
(although PROLOD removes a driver, it does not remove a data base).

To incorporate a user-written driver into P/OS, you first create two
modules, one in which you define the data base and the other in which
you include the driver code itself. You must supply in your code the
global symbols that PROLOD needs.

PROLOD also loads the driver's data base. It reads the driver symbol
definition file to find the start and end of the data base in the
driver image. (Thus, you must have defined its start and end in the
data base source code.) Knowing the start and end, PROLOD reads the
data base from the driver image. It then places the data base in the
system pool so that it resides in Executive address space, accordingly
relocates pointers and links within the data base to be valid
Executive addresses, and also connects the CTB and DCB(s) in the data
base to the system device tables. Moreover, so that the system device
tables are not corrupted by an incorrect data base, PROLOD performs
many consistency and validity checks on the data base being loaded.

1-15

OVERVIEW OF INCORPORATING A USER-WRITTEN DRIVER INTO PIOS

You must build both of the following:

1. A single image (a .TSK file without a header) containing the
driver code module followed by the driver data base module
(see Section 5.1.3).

2. A symbol definition (.STB) file that PROLOD requires to find
critical data base and driver locations.

You will link the driver image to the Executive version under which
the driver will run. However, the driver image will be separate from
the Executive image. PROLOD is responsible for loading both your
driver data base and driver code, for connecting the data base to the
system device tables, and for connecting your driver code to the data
base.

1-16

CHAPTER 2

DEVICE DRIVER 1/0 STRUCTURES

This chapter deals mainly with structures at the block
relationship to the hardware configuration and
supported, and their relationships to each other.
description of each structure is given in Chapter 4.

2.1 1/0 STRUCTURES

level, thei r
functionality
The precise

The main elements in the driver I/O environment essentially define the
logical and physical characteristics of the supported hardware and
establish the links and connections by which routines can access and
manipulate driver data. The following subsections describe the
control blocks that a driver data base module defines, and explain in
general terms the purposes for each block.

2.1.1 Controller Table (CTB) *

A controller table defines a unique controller type on the system. A
CTB must exist for each physical controller type. All controller
tables are linked together, in a list, with the head of the list
$CTLST in the Executive common area. The list of the controller
tables is one of the threads through the system data base to provide
access to all device-related data. The link in the last CTB in the
list has a value of zero.

Associated with each CTB is a 2-character ASCII controller name which
must be unique within the system. This unique name allows PROLOD to
find the correct CTB for the controller type.

* Drivers that are not associated with hardware devices
memory disk or pipe driver) do not need a CTB or KRB.
UCBs are a sufficient database.

2-1

(such as in
DCBs, SCBs, and

I/O STRUCTURES

Any user-written driver data base must have its own CTB. The
user-created controller table will also be linked into the system CTB
list, if necessary.

A CTB has· generic status information, links, and pointers to other
structures on the system. The table of KRB addresses in the CTB is
the means by which the Executive handles interrupts for the controller
type and dispatches to the correct driver routine.

2.1.2 Controller Request Block (KRB) *

The controller request block is the means by which the Executive
maintains controller-specific or hardware-specific information and
accesses the correct information for a unit which its associated
controller owns. One KRB exists for each device controller of a given
type in the configuration. It stores such data as the the device CSR
and vector addresses, the slot number, the interrupt controller CSR
address, and controller's status.

In a configuration where a device controller allows only one operation
at a time, the KRB is combined with another structure called the
status control block (SCB). (The SCB holds context for a unit while
an operation is in progress.) Because only one access path is possible
in such a configuration, unit context is always associated with the
same controller. Moreover, because only one operation is possible at
a time, the same context storage area can be used for all units
attached to the controller. Thus, in a conventional driver operating
environment, the context storage is merely an extension of the
controller request block.

In a configuration where multiple operations in parallel on the same
controller are possible, the controller context is separate from each
independent unit context. Therefore, each unit capable of operating
independently on a controller has the context of the current I/O
operation stored in an SCB separate from the controller KRB. In such
an operating environment, any unit can access the controller while
other operations are pending, but only one unit can have access at a
t~me. The KRB indicates which unit owns the controller for the
current operation, and synchronizes access among driver processes on
the same controller.

Where multiple operations in parallel are allowed on a controller, it
may be necessary to delay access to the controller when it is busy.
Therefore, in the KRB the Executive holds the head of a list of access
requests called the controller request queue. The list contains fork

* See footnote on page 2-1.

2-2

I/O STRUCTURES

blocks for driver processes awaiting controller access. The queue is
the means by ~hich the Executive serializes access to the controller.

When a controller allows parallel operations, the software must have a
means of determining which of several units generated an interrupt.
The KRB, therefore, contains a table of addresses which associate the
controller with all the units connected to it. This table, indexed by
physical unit number, must appear if the controller in question
supports overlapped seek operations or multiple simultaneous data
transfers for each physical unit attached to the controller (comm.
multiplexers).

The KRB also holds the configuration status of the controller. If the
KRB indicates that the controller is off-line, no activity can take
place on any unit connected to the controller.

2.1.3 Device Control Block (DCB)

The device control block describes the static characteristics of a
device type and of units associated with a certain device type. The
DCB is the means of access to the driver dispatch table and thus to
the driver. At least one DCB exists for each logical type of device
on a system. There may be more than one DCB for a logical device
type. (Note that the logical device type is not the same as the
physical device type.)

A cell in each device control block forms a link in a forward-linked
list, with the head of the list starting in a cell ($DEVHD) in the
Executive common area. This list, as with the CTB list, is a main
thread through the system data structures to device-related data. The
link in the last DCB in the list has a value of zero.

The static data in the DCB gives such information as the generic
device name, unit quantity and links to individual unit d~ta, the
address of the driver dispatch table, and types of I/O functions
supported by the driver. Typically, the Executive QIO directive
processing code and not the driver code accesses the DCB.

2.1.4 Unit Control Block (UCB)

The unit control block holds much of the static information about an
individual device unit and contains a few dynamic parameters.
Although unit control blocks need not be any prescribed length for
different devices, all unit control blocks for the same DCB must be of
equal length. (The UCB length is stored in the device control block
to calculate the offset to a particular UCB in the concatenated set of
UCBs described by the DCB's logical unit numbers.) This condition

2-3

I/O STRUCTURES

allows the UCB to contain varying amounts of unit- and
device-independent data for different types of devices.

A UCB, one of which exists for each device unit, -enables a driver to
access most of the other structures in the I/O environment. A UCB
provides access to most of the dynamic data associated with I/O
operations. Given the address of a UCB, a driver may readily find
most of the other data structures in which it is interested because
the proper links exist. Because of this access information, the UCB
is a key control block in the driver I/O structure.

The static data in the UCB includes pointers to other I/O structures,
definitions of unit control bits which regulate directive processing,
definitions of unit status bits which describe operational conditions,
and definitions of unit- and device-dependent characteristics and
storage cells.

Data in the UCB is accessed and modified by both the Executive and the
driver.

2.1.5 Status Control Block (SCB)

The status control block holds driver context for operations on a
device unit. In the SCB are stored such data as the pointer to the
head of the queue of input/output requests; the link to the fork
blocks queued for the unit; the fork process context; timeout, and
unit status; and the address for the controller request block (KRB)
representing the device controller (if the device has a controller).

The Exe~utive accesses the SCB to set up an
context while a request is in progress,
status. When the driver accesses the SCB, it
access only.

I/O request, to store
and to post results and
is usually for read

If the controller itself cannot handle parallel operations, only one
SCB is needed for each controller. In such a case, a controller can
have only one unit processing a command at a time, and there is no
need to store context for more than one unit at a time. There is also
no need for a physically separate controller request block (KRB) to
separate controller information from operation state information.
Therefore, the driver data base contains the required KRB cells in the
status control block since the KRB and SCB overlap.

If the controller allows parallel operations, there must be one seB to
store operation state information for each unit capable of operating
independently on the controller. In such a configuration, a cell in
each SCB points to the KRB of the controller to which the units are
connected.

2-4

I/O STRUCTURES

Certain operations, such as data transfers, could require exclusive
use of a controller. A controller can be requested for this purpose
using the routines located in the MDSUB module of the Executive (the
microfiche distributed with the Tool Kit contains the MDSUB listing).
If the device controller can support unqualified parallel operations
to multiple units, the driver can use $GSPKT and $IOFIN, and can
maintain its own unit busy state internally.

Being capable of unqualified parallel operations means that the
controller can handle any operations in parallel.

2.2 DRIVER DISPATCH TABLE (DDT)

The driver dispatch table* contains the entry points to and the
interrupt entry addresses for the driver. An entry point is the
location at which the Executive calls the driver to perform a specific
function. An interrupt entry address is a location to which the
central processor or the Executive transfers control within the driver
for servicing hardware interrupts. The pointer to the interrupt entry
address resides in an interrupt control block.

Every driver has four conventional entry points as follows:

o I/O initiation

o cancel I/O

o device timeout

o device powerfail

Two more entry points are added for controller and unit on-line and
off-line status changes:

o KRB status change

o UCB status change

For many devices, these status change entry points are merely a return
to the Executive calling routine.

There are. two addi tional entry points that have been added for the

* The DDT is not a structure in the strict sense of the word because
it is defined in the instruction part of the driver code. However,
because it contains addresses for dispatching code, it is included in
the data structure description.

2-5

advanced driver
processing:

DRIVER DISPATCH TABLE (DDT)

feature of buffered I/O and terminal driver

o Deallocate buffers (buffered I/O)

o Send next command (FDX TTDRV)

2.2.1 1/0 Initiation

The Executiv~ transfers control to this entry point to inform the
driver that work for it is waiting to be done. To reduce work for the
driver, the Executive performs predriver-initiation processing.
(Predriver initiation is described in Chapter 3). If, at the end of
predriver processing, the Executive has I/O packets queued for the
driver, it calls the driver at this entry point.

When the driver receives control at its I/O initiation entry point, RS
contains the address of the UCB for the unit on which the request is
to be processed. To establish access to the I/O packet, the driver
calls an Executive routine that does either of the following*:

o It returns information concerning the dequeued packet to be
processed and information needed to gain access to the unit's
data structures

o It causes the driver to dismiss the initiation request,
because the $GTPKT routine processed the request on behalf of
the driver. (There may be no packet to process or the driver
may already be busy.)

Once control is returned to a driver and there is a request to
process, the driver must extract the information from the registers,
establish data within the control blocks, and process the request.
This means that the driver proceeds with an I/O request until it
issues a command to the controller hardware, which physically
initiates the I/O operation.

Typically a driver is called at this entry point after an I/O packet
has been inserted into the I/O queue. However, a driver can be called
before a packet is placed in the I/O queue. Refer to the description
of the U.CTL control flag UC.QUE in Section 4.4.4 for information on
queueing an I/O packet to the driver.

* The $GTPKT routine, which gets a packet for the driver to process,
is described in Chapter 7.

2-6

DRIVER DISPATCH TABLE (DDT)

2.2.2 Cancel 1/0

To terminate an in-progress I/O operation, the system flushes the I/O
queue and calls the driver at this entry. There are many situations
in which a task, or the Executive (on behalf of an exiting task), must
terminate I/O. When such a termination becomes necessary, a task
issues an IO.KIL Executive QIO request and the Executive relays the
request to the driver by calling the driver at its cancel entry point.
Cancel requests are not queued and have no associated I/O packet.

The driver is responsible for checking that the I/O operation
in-progress was issued from the task that is forcing the termination,
and for completing or terminating the operation before returning to
the caller.

Typically, a driver is called at this entry point only when an I/O
operation is in progress. A driver also can be called, even if the
unit specified is not busy. Refer to the description of the U.CTL
control flag UC.KIL in Section 4.4.4 for information on unconditional
cancelling of I/O. (For instance, the driver may need to clean up
data structures created during pre-initiation processing (UC.QUE=l)
and has "hidden" the I/O packet listhead in some other structure).

2.2.3 Device Timeout

When a driver initiates an I/O operation, it can establish a timeout
count. If the operation fails to complete within the specified
interval, the Executive notes the lapse and calls the driver at this
entry point. Using this facility, a driver can wait for an interrupt
but need not hang if the interrupt never occurs. Thus, no driver
should ever stall on a request because a hardware failure prevented an
expected interrupt from happening.

NOTE

Extreme caution must be exercised to avoid completing
an I/O request twice. It can happen once for timeout,
and again when a pending forked process becomes active
and completes I/O again.

2.2.4 Device Power Failure

The Executive calls the power failure entry point upon successful
completion of loading.

2-7

DRIVER DISPATCH TABLE (DDT)

2.2.5 Controller and Unit Status Change

Two entry points are required for configuration status changes of the
controller and units. The Executive enters one entry point to put the
controller on-line and take it off-line. The other entry point,
called once for each unit whose status changes, is for putting units
on-line and taking them off-line. The driver must show successful
completion of the on-line or off-line request or the Executive will
not effect the status change.

2.2.6 Device Interrupt Addresses

Control passes to a driver's interrupt service routine address when a
device, previously initiated by the driver, completes an I/O operation
and causes an interrupt in the central processor. A device may have
associated with it more than one interrupt entry.

You specify the interrupt addresses in a block in the DDT. The
arrangement is general enough to support multicontroller drivers such
as the terminal driver. The block defines the address or addresses to
include in the vector for the driver.

2.3 TYPICAL CONTROL RELATIONSHIPS

This section presents different arrangements of the control structures
that are found in P/OS. The section concentrates on the relationships
among device control, unit control, status control, and controller
request blocks and controller tables based on hardware and functions
supported. Descriptions of the detailed contents of the structures is
left to Chapter 4, where the coding requirements are presented. Some
of the arrangements are not conventional but are shown to convey the
flexibility. Section 2.4 shows how such arrangements fit into the
overall system I/O data structure.

The arrangements described in this section illustrate the strategy in
offering a flexible I/O data structure. There need be only one
controller table for each ~ontroller type. Multiple-device control
blocks for a single device type reflect the capability to handle
varying characteristics. The existence of one or more status control
blocks depends on the degree of parallelism possible: one SCB for
each controller servicing several units (no parallelism); or one for
each device unit combination on the same controller (unit operation in
parallel).

2-8

TYPICAL CONTROL RELATIONSHIPS

The I/O data structure reflects the hardware configuration that the
data structures describe. The flexibility in the data structure
arrangements provide flexibility in configuring I/O devices. The
information density in the structures themselves reduces the coding
requirements for the associated drivers.

2.3.1 Multiple Units per Controller, Serial Unit Operation

A typical arrangement of structures for a user-written driver is shown
in Figure 2-1. The arrangement could represent an RXSO controller
with dual drives. A single controller table (CTB) defines the
existence of the controller type on the system. One device control
block (DCB) establishes the characteristics for the type of device
running on the controller.

DCB CTB ..
List i I List i I
~ -

DCB CTB

-
I

~

KRB

- ~ -
UCB SCB

I

-
UCB

ZK-249-81

Figure 2-1: Multiple Units per Controller, Serial Unit Operation

2-9

TYPICAL CONTROL RELATIONSHIPS

The status control block (SCS) and controller request block (KRS) are
contiguous in this arrangement because the software does not allow
another I/O operation to begin while the controller is busy. A
separate unit control block (UCS) describes each unit attached to the
controller. The UCSs are associated with the SCS, which contains the
context of the operation currently in progress.

2.3.2 Multiple Controllers, Single Unit per Controller

Another typical conventional arrangement of structures for a
user-written driver is shown in Figure 2-2, which could represent two
Winchester controllers, one with an RDSO and the other with an RDS1
attached. It represents the simplest case of driver processing.
Figure 2-1 shows what is required for a controller that allows only a
single I/O operation for each controller. A single controller table
defines the existence of the controller type on the system. One
device control block establishes the characteristics for the type of
device running on the controller.

The status control and controller request blocks are contiguous in
this arrangement because, while the controller is busy, another I/O
operation cannot begin. Only one sca is necessary to store the
context of the unit operation. The UCS points to the SCS, which in
turn points to the KRS of the unit's controller. Secause the system
must handle interrupts from multiple controllers, the controller table
points to the KRS of each controller present.

2.3.3 Parallel Unit Operation

Some devices allow multiple units to have operations in progress at
the same time. For example, a controller could allow seek operations
to overlap data operations. Figure 2-3 shows the arrangement needed
in the software structures to support parallel operations on one
controller.

T.wo additional structural changes are required from the serial
operation arrangement. First, because more than one unit may have an
operation pending at the same time, a structure is needed to store
unit context. Therefore, for each unit (and each unit control block)
there is a separate status control block. Second, because interrupts
can come from more than one unit, some way must exist to access the
proper unit. As a result, the controller request block contains a
table of unit control block addresses that allows the driver to find
the structures fo~ the unit generating an interrupt.

2-10

TYPICAL CONTROL RELATIONSHIPS

DCB CTB

List t I List t I
---- DCB CTB

-- I
KRB

r ----- UCB SCB

-
UCB

KRB
,

L
SCB

ZK-2S0-81

Figure 2-2: Multiple Controllers, Single Unit per Controller

,......-.
DCB CTB

...

-- -----
UCB seB

--....
~

:---- KRB
UCB SCB

UCB
Table

ZK-2S1-81

Figure 2-3: Parallel Unit Operation (Overlapped Seek)

2-11

OVERVIEW OF DATA STRUCTURE RELATIONSHIPS

2.4 OVERVIEW OF DATA STRUCTURE RELATIONSHIPS

This section presents an overview of the relationships among the
user-written driver data structures previously introduced in this
chapter and the Executive I/O structures and DIGITAL-supplied driver
structures. The goal of the section is to convey the general manner
in which user-written structures and code link into the system I/O
scheme and to describe generally the use to which the system puts the
structures. The specific user-written structures are simplified
somewhat so that the emphasis is placed on the linkages with other
parts of the system rather than on the details of user-written
structural relationships.

This section should be used with Section 2.3 to understand the general
structural concepts. For example, Section 2.3 describes various
arrangements of unit control, status control, and controller request
blocks based on hardware functions the software structures support.
This section treats such arrangements as an engineering black box that
is oriented in the general I/O environment. Thus, in the generalized
I/O data structure depicted in this section, the pointers in the KRB
table of the SCB are not shown and the table is simply marked KRB
Table.

Figure 2-4, which provides the basis for the presentation of the I/O
data structure, shows the individual elements and the important link
fields within them. The numbers in the figure correspond to the
numbers in the lead paragraphs of the text to simplify the discussion
and to guide you through the data structures.

1. The location represented by the Executive symbol $DEVHD is a
cell in system common (SYSCM). It is the head (or start) of
a singly-linked, unidirectional list of all device control
blocks in the system. The first word in each DCB is a link
to the next DCB.

The list of device control blocks is one of the two threads
through the system data tables for device-related
information. For example, the list is the means by which
executive routines scan the data structures to determine what
devices are on the system and what is the status of units.
User-written device control blocks must be linked into the
list of system defined DCBs.

2. Every driver is associated with a partition control block
(PCB). The PCB defines the characteristics of the memory
area into which the driver is loaded. The Executive and
services such as PROLOD reference the data in the PCB. A
driver is not concerned with the PCB.

2-12

OVERVIEW OF DATA STRUCTURE RELATIONSHIPS

3. If a task is attached to a unit, the UCB has a pointer to the
task control block (TCB) of that task.

4. The task header is an independent entity in the I/O data
structure and the driver never accesses it. (In fact, it may
not be memory resident.) The task header is in physical
memory immediately before the task region when the task's
"task region" is resident in memory.

A logical unit table (LUT) entry in the task header has two
items of interest: a pointer to an associated unit control
block and, if a file is being accessed, a pointer to a window
block. The Executive accesses the logical unit table of a
task during a QIO request and ·indexes the table by the
logical unit number specified in the QIO request.

5. A device control block has a pointer to the unit control
block of the first related unit. Because the length of a UCB
is stored in the DCB and all ueBs are allocated in a
contiguous area, access to all the UCBs related to that DCB
is possible. This arrangement allows software to access all
related unit information for a device type.

A DeB also has a pointer to the start of the driver dispatch
table. This pointer allows the Executive to call the driver
at its entry points to process an I/O-related request.

6. Each unit control block contains a pointer back to its
related DCB. This backpointer allows the Executive QIO
directive to preprocess an I/O request and possibly call the
driver (through the pointer to the driver dispatch table).

Associated with each ueB is a status control block. The seB
is shared by all units for a device type that does not
require units to operate in parallel. When units can operate
in parallel, each UCB has its own associated SCB.

2-13

11 DEVICE VECTOR

to
c: ICB

""'" (l)

I\)
I

A

(')
0
3

"'0
0

(2)
$DEVHD

-.J

l- eD
(f) -(l)

DCB DCB

-0
0
Q) -

I -
LOADABLE 0 CD

Q)

(J) -
DRIVER f-

PCB
UCB

""'" N c:
I 0

P -,j::>,. c: TCB OF
CD

""'" (l)
(f)

ATTACHED UCB
TASK

TCB OF
ACP

TASK
HEADER LUT ENTRY

o
LUT 1""- - r-

t- - _ r-

NOTE

This diagram shows only a typical example;
it does not show every possible arrangement.

POINTER TO DRIVER CODE
1\1 I::: J\ 1 ut..o

@

DDT

r-----------,
I r- r-- I
I I
I I
I I
I 0 I/O PACKETS I I/O QUEUE
L
~----------

J
I Current

I/O
$FRKHD Packet

I

CD
FORKBLOCK

SCB Ii
KRB

KRB TABLE

l UCB TABLE

@
L....-...-. FORKBLOCKf- r KRB

SCB

KRB TABLE UCB TABLE

@ WB
(TASK)

°1
..

FCB
(TASK)

LINK TO
FIRST ICB

~- ---
CTB

r-

@

VCB
MOUNTED
VOLUME

f---

@, $CTLST . I

t--l

CTB

rll- e---

I

FCB .

(INDEXj I

WB

(VOLUME)

o
<:
t"l1
~
<:
H
t"l1
~

o
~

o
!J:oI
t-3
!J:oI

en
t-3
~
C
()
t-3
c:
~
t"l1

~
t"l1
t'1
!J:oI
t-3
H
o
Z
en
::t:
H
I"tJ
en

OVERVIEW OF DATA STRUCTURE RELATIONSHIPS

7. As part of processing a QIO directive (queued I/O request),
the Executive builds a structure called an I/O packet.
Storage for packets is in the system dynamic storage region
(the primary pool). The Executive connects the packets by a
pointer in each packet to form a linked rist called the I/O
queue. The Executive maintains two pointers in the SCB to
the list of packets. The first pointer is to the start of
the list and the second pointer is to the last packet in the
list.

Normally, the driver should not access the list of I/O
packets directly. When the Executive transfers control to
the driver to initiate processing of an I/O request, the
driver immediately calls an Executive service routine to get
a packet to process. The routine passes, to the driver, data
sufficient to process the request (for example, the address
of the packet). Thus, the Executive, and not the driver,
removes a packet from the queue of packets. However, in
performing the I/O request, the driver can access certain
fields in the packet to be processed because a pointer to the
currently active I/O packet is kept in the SCB.*

The Executive determines the ordering of packets in the
queue. Typically, higher-priority requests are placed at the
head of the queue.

8. At least one status control block (SCB) exists for each
controller. Where a controller and software support
operations in parallel on multiple units, one SCB exists for
each unit capable of operating independently. A pointer in
the SCB connects to the controller request block (KRB) of the
controller to which the related unit is connected.

The fork block in the SCB contains some of the driver process
context. The driver executes an Executive routine so that
processing will occur at fork level. To preserve processing
status, the routine stores some context in the fork block.
When the driver eventually runs again, the fork processing
restores the proper context from the fork block.

The fork blocks for pending driver processes are connected in
a singly-linked list, the head of which is in a location

* Normally, the driver does not directly manipulate the I/O queue. An
exception is when a driver needs to examine an I/O packet before it is
queued or instead of having it queued. This exception involves a
status bit in a control byte of the unit control block. For more
information on queuing of I/O packets to the driver, refer to the
description of the UC.QUE bit in Section 4.4.4.

2-15

OVERVIEW OF DATA STRUCTURE RELATIONSHIPS

($FRKHD) in the Executive region. Generally, the
processing routines link a fork block in FIFO order.
location $FRKHD+2 the executive maintains a pointer to
last fork block in the list.

fork
At

the

9. Associated with each open file on a mounted volume is a file
control block (FCB). The file system alone uses the FCB to
control access to the file.

10. For each open file on a mounted volume, a window block exists
for each task that has the file open to hold pointers to
areas on the volume on which the file resides. The function
of the window block is to speed up the process of retrieving
data items from the file. (The associated ACP need not be
called to convert a virtual block number in a file to a
logical block number on the device.) The driver is not
concerned with the window block or this VBN to LBN
conversion.

11. The driver dispatch table (DDT) is part of the driver code
and is the means by which the executive calls the driver.

12. The controller request blocks (KRB) are linked into the I/O
data structure through the pointers in the controller table
(CTB) .

The KRB table in the CTB allows the Executive access to the
structures for a controller when it initiates an interrupt.
To report the termination of a data transfer command, a
controller initiates an interrupt. (While such a
controller-initiated interrupt is in progress, the hardware
delays interrupts from units.) The driver determines the
correct KRB by indexing the CTB with the controller index.

For a controller that allows unit operation in parallel
(overlapped seek support), the related KRB must have a table
of UCB addresses. This table allows the driver to access the
structures of the unit that generates an interrupt. When a
unit interrupts, its controller has the physical number of
the interrupting unit. The driver must retrieve the number
and use it to index the UCB table in the KRB to access the
proper unit control block. (For example, see DZDRV.MAC
interrupt "B", door open, processing.)

To support multiple parallel unit operations, the KRB also
contains a queue to regulate controller access. This queue,
known as the controller request queue, is a list of fork
blocks for driver processes that have requested and have been
denied immediate access to the controller. If the driver
requests access to a controller and the controller is busy,
the Executive forces the driver to wait for access by placing

2-16

OVERVIEW OF DATA STRUCTURE RELATIONSHIPS

the fork block in the queue of processes waiting for access.
The Executive gives precedence to control access over
requests for data transfer by placing positioning requests
onto the front of the queue and adding data transfer requests
to the end of the queue. When a unit is given access, the
controller status is set to busy and unit UCB address is set
to connect the KRB to the owned UCB.

To indicate what unit to process on a controller initiated
interrupt, a cell in the KRB points to the unit control block
(UCB) of the unit that currently owns the KRB (data
transfer).

The KRB controller request queue listhead consists of two
words. The first word points to the fork block in the SCB of
the next unit to get access. The second word points to the
fork block in the SCB of the last unit to get access. If the
first word is 0, then the second word points to the first and
no unit is waiting for access to the controller.

13. The location represented by the Executive symbol $CTLST is a
cell in system common (SYSCM). It is the head (or start) of
a singly-linked, unidirectional list of all controller tables
(CTBs) in the system. A word in each CTB is a link to the
next CTB. The last CTB in the list contains a link word of
o .

The list of controller tables is one of the two threads
through the system for device-related information. (The list
of device control blocks is the other thread.) A user-written
controller table will be linked into the list of system­
defined CTBs. This list is the mechanism by which system
routines access I/O data structures for hardware information.

14. One volume control block (VCB) exists for each mounted volume
in the system. The VCB maintains volume-dependent control
information.

Pointers within the veB connect to the file control block
(FCB) and window block (WB). The FeB and WB control access
to the volume's index file, which is a file of file headers.
All FCBs for a volume form a linked list starting from the
index file FeB. These linkages aid in keeping file access
time to a minimum. A conventional driver never accesses any
of these structures.

2-17

CHAPTER 3

EXECUTIVE SERVICES AND DRIVER PROCESSING

The Executive provides services related to I/O drivers. Some services
are provided before a driver process is initiated and are therefore
called predriver initiation services. The predriver initiation
services are those performed by the Executive during its processing of
a QIO directive; these services are not available as Executive calls.

Predriver initiation processing extracts from the QIO directive all
I/O support functions not directly related to the actual issuance of a
function request to a device. If the outcome of predriver initiation
processing does not result in the queuing of an I/O Packet to a
driver, the driver is unaware that a QIO directive was issued. Many
QIO directives do not result in the initiation of an I/O operation.

other services are available to the driver after it has been given
control, either by the Executive or as the result of an interrupt.
They are available as needed by means of Executive calls.

An important concept used in this section and in Chapter 4 is the
state of a process. In P/OS, a process can run in one of two states,
user or system. Drivers operate entirely in the system state; the
programming standards described in Chapter 4 apply to system-state
processes.

3 .. 1 FLOW OF AN I/O REQUEST

Following an I/O request through the system at the functional level
(the level at which this chapter is directed) requires that limiting
assumptions be made about the state of the system when a task issues a
QIO directive. The following assumptions apply:

o The system is running and ready to accept an I/O request.
All required data structures for supporting devices attached
to the system are intact.

3-1

FLOW OF AN I/O REQUEST

o The only I/O request in the system is the sample request
under discussion.

o The example progresses without encountering any errors that
would prematurely terminate its data transfer; thus, no error
paths are discussed.

o The controller in question executes only a single operation
at a time.

3.1.1 Predriver Initiation Processing

The I/O flow proceeds as described below:

1. Task issues QIO directive

The user program first either statically (by QIOW$C, QIOW$,
QIO$C, or QIO$) or dynamically (by QIOW$S or QIO$S) creates a
directive parameter block (DPB) containing information about
what I/O is to be performed on what device. Then, it issues
the directive.

All Executive directives are called by means of EMT 377. The
EMT causes the processor to push the PS and PC on the stack
and to pass control to the Executive's directive processor.

2. QIO Dispatching

The Executive directive dispatcher DRDSP ascertains that the
EMT is a QIO directive and calls the QIO directive processor
DRQIO.

3. First-level validity checks

The QIO directive processor validates the logical unit number
(LUN) and the Unit Control Block (UCB) pointer. DRQIO checks
whether the LUN supplied in the directive parameter block is
a legal value. If it is not a legal value, the directive is
rejected. If the LUN is legal, DRQIO checks whether a valid
UCB pointer exists in the Logical unit Table (LUT) for the
specified LUN. This check ascertains whether the LUN is
assigned. If the check fails, the directive is rejected. If
both these checks are successful, DRQIO then performs the
redirect algorithm.

3-2

FLOW OF AN I/O REQUEST

4. Redirect algorithm

Because the UCB may have been dynamically redirected by a
Redirect command, QIO directive processing traces the
redirect linkage until the target UCB is found. The target
UCB provides the links to most of the other structures of the
device to which the I/O operation will be directed.

5. Additional validity checks

The event flag number (EFN) is validated, as well as the
address of the I/O Status Block (IOSB). If either is
illegal, the directive is rejected. Immediately following
successful validation, DRQIO resets the event flag and clears
the I/O status block.

6. Obtain storage for and create an I/O Packet

The QIO directive processor now acquires a 20-word block of
dynamic storage for use as an I/O Packet. It inserts into
the packet the device-independent data items that are used
subsequently by both the Executive and the driver in
fulfilling the I/O request. Most items originate in the
requesting task's Directive Parameter Block (DPB).

At this point, DRQIO sets the directive status to +1, which
indicates directive acceptance. Note that a directive
rejection is a return to the caller with the C bit set. In
addition, a directive rejection is transparent to the driver.

7. Validate the function requested

If the function is legal, DRQIO checks to see whether the
unit is on-line. If the unit is off-line, the packet is
rejected. The function is one of four possible types:

Control

No-op

ACP

Transfer (default if not control, no-op, or ACP)

with the exception of Attach/Detach, control functions are queued to
the driver. If the bit UC.ATT is set, Attach/Detach will also be
queued to the driver. If the requested function does not require a
call to the driver, the Executive takes the appropriate action and
calls the I/O Finish routine ($IOFIN).

3-3

FLOW OF AN I/O REQUEST

No-op functions do not result in data transfers. The Executive
performs them without calling the driver. No-ops return a status of
IS.SUC in the I/O status block.

ACP functions may require processing by the file system. More
typically, the request is a read or write virtual function that is
transformed into a read or write logical function without requiring
file-system intervention. When transformed into a read or write
logical • function, the function becomes a transfer function (by
definition).

Transfer functions are address checked and queued to the proper
driver. This means that DRQIO checks the addre~s of the I/O buffer,
the byte count, and the alignment requirement for the specified
device. If any of these checks fails, DRQIO calls the I/O Finish
routine ($IOFIN), which returns an I/O error status and clears the I/O
request from the system. If the checks succeed, DRQIO either places
the I/O Packet in the driver request queue according to the priority
of the requesting task or, if the UC.QUE bit is set, gives the packet
directly to the driver. (See Section 4.4.5 for a description of the
UC.QUE bit.)

3.1.2 Driver Processing

1. Request work

The Executive passes control to the driver by using the
driver's initiation entry point for each new I/O request.

To obtain work, the driver calls Get Packet ($GTPKT). $GTPKT
either provides work, if it exists, or informs the driver
that no work is available or that the SCB is busy; if no work
exists, the driver returns to its caller. If work is
available, $GTPKT sets the device controller and unit to
busy, dequeues an I/O request packet, and returns to the
driver.

2. Issue I/O

From the available data structures, the driver initiates the
required I/O operation and returns to its caller. A
subsequent interrupt may inform the driver that the initiated
function is complete, assuming the device is interrupt
driven.

3-4

FLOW OF AN I/O REQUEST

3. Interrupt processing

When a previously issued I/O operation interrupts, the
interrupt causes the driver to be entered. The driver
processes the interrupt according to the programming protocol
described in Chapter 1. According to the protocol, the
driver may process the interrupt at priority 7, at the
priority of the interrupting device, or at fork level. If
the processing of the I/O request associated with the
interrupt is still incomplete, the driver initiates further
I/O on the device (step 9). When the processing of an I/O
request is complete, the driver calls $IODON.

4. I/O Done processing

$IODON removes the busy status from the device unit and
controller, queues an AST if required, and determines whether
a checkpoint request pending for the issuing task can now be
effected. The IOS8 and event flag, if specified, are
updated, and $IODON returns to the driver. The driver
branches to its initiation entry point and looks for more
work (step 1). This procedure is followed until the driver
cannot obtain work; then the driver returns to its caller.

Eventually, the processor receives a ready-to-run task that
issues a QIO directive, starting the I/O flow allover again.

3.2 EXECUTIVE SERVICES AVAILABLE TO A DRIVER

Once a driver is given control following an I/O interrupt or by the
Executive itself, a number of Executive services are available to the
driver. These services are discussed in detail in Chapter 7.

However, four Executive services merit special emphasis because
virtually every driver in the system uses them:

1. Get Packet ($GTPKT)

2. Create Fork Process ($FORK)

3. I/O Done ($IODON or $IOALT)

3.2.1 Get Packet ($G'TPKT)

The Executive, after it queues an I/O Packet, calls the appropriate

3-5

EXECUTIVE SERVICES AVAILABLE TO A DRIVER

driver at its I/O initiation entry point. The driver then immediately
calls the Executive routine $GTPKT to obtain work.* If work is
available, $GTPKT delivers to the driver the highest-priority,
executable I/O Packet in the driver's I/O queue, and sets the SCB
status to busy. If the driver's I/O queue is empty or if the driver
is busy, $GTPKT returns a no-work indication.

If the SCB related to the device is already busy, $GTPKT so
the driver, and the driver immediately returns control
Executive.

informs
to the

Note that, from the driver's point
between no-work and SCB busy,
initiated in either case.

of view, no distinction exists
because an I/O operation cannot be

3.2.2 Create Fork Process ($FORK)

Synchronization of access to shared data bases is accomplished by
creating a fork process. When a driver needs to access a shared data
base, it must do so as a fork process; the driver becomes a fork
process by calling $FORK. The SCB contains preallocated storage for a
5-word fork block. See Section 4.4.5 for a description of the fork
block. Section 1.3.3 contains details on $FORK. After $FORK is
called, a routine is fully interruptable (priority 0), and its access
to shared system data bases is strictly linear.

3.2.3 1/0 Done ($IODON or $IOAl T)

At the completion of an I/O request, the subroutines $IODON or $IOALT
perform a number of centralized checks and additional functions:

o Store status if an rOSB address was specified

o Set an event flag if one was requested

o Determine whether a checkpoint request can now be honored

o Determine whether an AST should be queued

$rODON and $rOALT also declare a significant event, reset the SCB and
device unit status to idle, and release the dynamic storage used by

* An exception is a driver that handles special user buffers. Such a
driver must call certain other Executive routines before calling
$GTPKT. See Section 4.4.4 for a description of the UC.QUE bit.

3-6

EXECUTIVE SERVICES AVAILABLE TO A DRIVER

the completed I/O operation.

3-7

CHAPTER 4

PROGRAMMING SPECIFICS FOR WRITING AN 110 DRIVER

Chapters 2 and 3 give overviews of data structures and Executive
services, respectively. This chapter summarizes programming
standards, presents overviews of programming requirements for
user-written driver code and data, and gives details of the data
structures and driver code. Executive services are covered in Chapter
7 •

4.1 PROGRAMMING STANDARDS

IIO drivers function as integral components of the PIOS Executive, and
this manual enables you to incorporate IIO drivers into your system.
User-written drivers must follow the same conventions and protocol as
the Executive itself if they are to avoid complete disruption of
system service. Failure to observe the internal conventions and
protocol that are described fully in Chapter 1 can result in poor
service and reductions in system efficiency.

The programming conventions used
identical to those described in
Language Reference Manual. DIGITAL
conventions.

4.1.1 Programming Protocol Summary

by PIOS system components are
Appendix E of the PDP-11 MACRO-11
urges you to adhere to these

Drivers are required to adhere to the following internal conventions
when processing device interrupts:

1. Registers R4 and R5 are available; any other registers must
be saved and restored.

4-1

PROGRAMMING STANDARDS

2. Processing at the priority of the interrupting source should
be minimized and kept well under 500 usecs. On Professional
Series hardware, all devices interrupt at processor priority
4 and, as a result, processing at device priority is
equivalent to processing at priority 7 with all pending
interrupts (including the clock) locked out. The interrupt
arbitration described in the "Professional 300 Series
Technical Manual" only addresses which of the interrupts is
subsequently serviced at priority 4 when the processor drops
its priority to o.

3. Kernel APR 6 mapping
~ervice routine if
data buffers.

must be preserved by the interrupt
needed to map additional driver code or

4. Only a fork process, which by definition is in system state,
may modify a system data base or examine dynamic system data
structures such as the installed task directory (the STD).

~. A fork process has unrestricted access to APR 6, and RO-R5.

6. Complex drivers and system processes that require extended
periods of processing at system state should consider
reforking to allow other system processes' execution time.
These other system processes could, for example, perform
clock-related and I/O completion-related processing. Care
must be exercised that any additional context is preserved if
required, since only R4, R5 and APR 5 mapping are preserved
across the fork. As always, "double forking" must not occur;
it is avoided by either using an interlock protocol on the
forkblock, or through the use of a separate forkblock
allocated from primary pool.

4.1.2 Accessing Driver Data Structures

All the driver data structure elements have symbolic offsets. Because
the physical offset values may vary from one version of the Executive
to another, your user-written driver code should always use the
symbols to access the elements.

Accordingly, your driver code should not step from one structural
element to another (relying on the juxtaposition of data structures
and individual words in a data structure) but should access each
element by symbolic offset. On the other hand, it is a common coding
practice to assume that zero offsets (particularly link pointers such
as D.LNK) will remain zero. This assumption allows the saving of one
word per instruction by substituting an instruction such as MOV
(R3),R3 for MOV D.LNK(R3),R3. DIGITAL recognizes that such practices

4-2

PROGRAMMING STANDARDS

are followed and consequently attempts to keep such offsets zero.

4.2 OVERVIEW OF PROGRAMMING USER-WRITTEN DRIVER DATA BASES

You should create the source code for your user-written driver data
base in a file separate from that of the driver code. You assemble
this file to create the driver data base module. If your data base is
in a separate module, it will be linked to the end of the driver code
module. If your driver data base is in the same module as that of
your driver code, it must be at the end of the driver code.

To create the source code, you need to know, in addition to the
detailed structures, what ordering and labeling are required. These
requirements, though not extensive, are important in linking and
loading your driver data base. The general coding requirements for
driver data bases are described in the following subsections.

4.2.1 General Labeling and Ordering of Data Structures

When creating a data base, you must specify, for the PROLOD routines,
two global labels as follows:

$xxDAT:: marks the start of the user-written driver data base.

$xxEND: : marks the end of the user-written driver data base,
that is, immediately following the final word of the
data base.

If either or both of these labels are not defined, PROLOD cannot
determine the length of your data base when you attempt to load your
driver.

There is no
data base.
followed by
not follow
location of

mandatory ordering of the different structures in a driver
DIGITAL suggests, however, that you place the DeB first,

the UCB, the SCB(s), the KRB(s), and the eTB. If you do
this ordering scheme, you must specify the starting

the first (or only) DeB as described in Section 4.2.2.

4.2.2 Device Control Block Labeling

When writing a driver data base, the PROLOD routines require either
that the first (or only) DeB be identified by the global label
$xxDCB:: or that the DCB be at the start of the data base.

4-3

OVERVIEW OF PROGRAMMING USER-WRITTEN DRIVER DATA BASES

4.2.3 Unit Control Block Ordering

All the UCBs associated with a specific device control block (DCB)
must be contiguous with each other and must be of equal length. These
requirements are necessary because the DCB has only one link to the
UCBS, and that link is to the first UCB. Two data elements, the UCB
length and the number of units, are stored in the DCB; they, together
with the link to the first UCB, are used to locate subsequent UCBs.
If you do not follow these requirements, no software can access the
UCBs.

4.2.4 Status Control and Controller Request Blocks

All user-written drivers that do not need separate storage for
independent unit context should use the contiguous allocation of the
KRB and SCB. {For an explanation of when independent unit context is
required, refer to the discussion of overlapped seek I/O in Section
1.4.1. Therefore, the KRB and SCB are contiguous and some fields of
each structure overlap. This arrangement saves space that would be
required for one SCB for each independent unit. Because only one unit
can be active at anyone time, all units attached to the same
controller can share the SCB. This arrangement of the KRB and the SCB
is described in Section 4.4.7.

4.2.5 Controller Table

You must define the start of the table of KRB addresses in the CTB
with the global label $xxCTB::. Both the INTSV$ macro call and the
Executive PROLOD routines require this label. You must assemble a
global symbol of the form $xxCTB in the CTB starting at the first word
in the table of KRB addresses. An ~xample follows.

$XXCTB: :

CTB storage cells ...

. WORD $XXDCB

.BYTE 3

.BYTE 0

. WORD

.WORD

.WORD

KRB1
KRB2
KRB3

iOffset L.DCB in CTB
iL.NUM, where 3 is # of KRBs {controllers
iL.STS, controller status
iStart of table of KRB addresses
;Address of 1st KRB

The symbol $xxCTB (defined globally, where xx is the two character

4-4

OVERVIEW OF PROGRAMMING USER-WRITTEN DRIVER DATA BASES

driver generic name) is used by PROLOD to find the CTB in your driver
data base image. The value of this symbol (that is, the address) is
placed into the DDT in the word labeled by xxCTB (no $). The INTSV$
macro references the value of the word in the DDT labeled by xxCTB to
obtain the address (in the CTB) of the table of KRB addresses at
runtime.

4-5

OVERVIEW OF PROGRAMMING USER-WRITTEN DRIVER CODE

4.3 OVERVIEW OF PROGRAMMING USER-WRITTEN DRIVER CODE

To create the source code to drive a device, you must perform the
following steps:

1. Thoroughly read and understand this manual.

2. Familiarize yourself in detail with the physical device and
its operational characteristics.

3. Determine the level of support required for the device.

4. Determine actions to be taken at the driver entry points.

5. Create the driver source code.

To assist you in generating proper code for your user-written driver
and to provide a stable user-level interface from one release of the
system ,to another, P/OS provides the macro calls listed in Table 4-1.

The definitions of the system macro calls for drivers are in the
Executive assembly prefix file RSXMC .. MAC. The following subsections
describe the format of the macro calls and other features of
user-written driver code. Driver code details (such as labeling
requirements and entry point conditions) are presented in Section 4.5.

4.3.1 Generate Driver Dispatch Table Macro Call - DDT$

The DDT$ macro call facilitates generation of the driver dispatch
table. The format of the DDT$ macro call is as follows:

DDT$ dev,nctrlr,iny,inx,ucbsv,new,buf,opt

Table 4-2 lists the arguments of the DDT$ macro call. The macro
constructs the DDT, using as addresses those locations indicated by
the standard labels. The macro has arguments allowing you to tailor
some of the standard entry points. The format of the DDT generated by
the DDT$ macro is described in Section 4.5.1.

* See Appendix A for Macro definitions.

4-6

OVERVIEW OF PROGRAMMING USER-WRITTEN DRIVER CODE

Table 4-1: System Macro Calls for Driver Code*

Macro Name General Functions

DDT$ Used conventionally at the start of the driver code
(1) to allocate storage for and to generate a
driver dispatch table containing the addresses of
entry points in the order in which the Executive
expects them; (2) to generate special global labels
required by the Executive; (3) to tell the
Executive PROLOD routines: (a) which controllers
the driver supports, (b) how many interrupt vectors
each controller supports, and (c) the association
between the interrupt vectors and the driver
interrupt entry points; and (4) to generate default
controller and unit status change entry point
procedures (for on-line and off-line transitions)

GTPKT$ Used at the I/O initiator entry point to generate
the call to the $GTPKT routine and to generate code
to save the address of the currently active unit's
UCB

INTSV$ Used at an interrupt entry point to conditionally
generate a call to the $INTSV routine and to
generate code to load the UCB address of the
interrupting device into R5

Table 4-2: DDT$ Macro Call Arguments

Argument Meaning

dev

nctrlr

Is the 2-character device mnemonic (used
entry point symbol names such as a
dev=xx) .

to generate
$xxINI where

Is the number of controllers that the driver services
(counting from 1).

iny Allows the definition of no interrupt entry point or
multiple interrupt entry points. If you leave the
argument null, the macro generates as the interrupt

4-7

OVERVIEW OF PROGRAMMING USER-WRITTEN DRIVER CODE

entry point address the location defined by the
conventional label $xxINT.

If you specify NONE, no interrupt entry point is
generated for the controller.

If you specify an argument list of the form <aaa,bbb>,
the macro generates multiple cells containing
addresses defined by unconventional labels of the form
$xxaaa and $xxbbb. This latter mechanism allows you
to define multiple interrupt entry points in the
driver. For example, the argument list <INP,OUT>
generates two interrupt address labels of the form
$xxINP and $xxOUT, the typical names used by drivers
with two interrupt entry points.

inx Uses an alternate I/O initiation entry point address
label instead of the conventional INI form. If you
specify inx, the macro uses as the only I/O initiation
entry point address the location defined by the label
inx.

ucbsv This argument is optional on P/OS systems. Section
4.3.4 provides guidelines on specifying this argument.
If this argument is non-blank, a table of nctrlr words
in length is generated to contain the controller index
to UCB mapping of a per controller I/O operation in
progress.

new If present, causes the DDT$ macro to generate the DDT
table that refers to the online reconfiguration entry
points. (See the macro definition of DDT$ in Appendix
A.)

buf Required if the driver performs
output. The entry point xxDEA:

buffered input
is generated.

and

opt Required if the mass storage device driver supports
queue optimization.

4-8

OVERVIEW OF PROGRAMMING USER-WRITTEN DRIVER CODE

4.3.2 Get Packet Macro Call - GTPKT$

The GTPKT$ macro call standardizes use of the Executive $GTPKT
routine, which retrieves an I/O packet for the driver to process.
The format of the GTPKT$ macro call is as follows:

GTPKT$ dev,nctrlr,addr,ucbsv,suc

The description of the arguments appears in Table 4-3.

Table 4-3: GTPKT$ Macro Call Arguments

Argument Meaning

dev Is the 2-character device mnemonic.

nctrlr

addr

ucbsv

suc

Is the number of controllers that the driver services
(counting from 1).

Is the local label defining the location at which to
continue execution if there is no I/O packet
available. A driver typically executes a RETURN
instruction when the $GTPKT routine indicates that
there is no I/O packet to process. If you leave this
argument null, therefore, the macro generates a RETURN
instruction.

Strictly speaking, this argument is not needed on P/OS
systems and can not be used directly if a given
controller can support parallel operations on multiple
units simultaneously. If this argument is non-blank,
a table of "nctrlr" words in length is generated to
contain the controller index to UCB mapping of a per
controller I/O operation in progress. The macro then
generates code to load the pointer S.OWN with the
address of the UCB returned by $GTPKT. For guidelines
on using the argument, refer to Section 4.3.4.

Indicates single unit controller. If you are writing
a driver that supports a controller type such as the
LP11, to which only a single unit can be attached, you
should specify this argument (any character(s) except
null). If you specify this argument, you should
ensure that the offset K.OWN/S.OWN in the KRB(s) of
your driver data base points to the UCB(s) of the
unit(s) to which the controller(s) is attached. Thus,
the macro does not generate code that stores the UCB

4-9

OVERVIEW OF PROGRAMMING USER-WRITTEN DRIVER CODE

address in the KRB for a device that has only one UCB
per KRB.

If your driver has multiple units attached to the same
controller, you should leave this argument null. The
macro will then generate code to store the UCB address
of the unit to process in the SCB or SCB/KRB.

Note that for non-contiguous SCB/KRB configurations,
the UCB is stored in K.OWN when the controller request
is granted, depending on controller characteristics
(see $RQCNC and $RQCND in MDSUB).

This macro call generates the call to the Executive $GTPKT routine.
You should place it at the I/O initiation (xxINI) entry point because
the $GTPKT routine is the standard manner for a driver to receive work
from the Executive. When the driver receives control at its INI entry
point, the Executive has loaded R5 with the address of the UCB of the
unit that the driver must service. Because of the code the macro call
generates, the driver immediately calls $GTPKT, which can set the C
bit to indicate that no work is pending. The call additionally
generates the BCS instruction that returns control to the calling
routine when there is no work. If you specify an address as the
"addr" argument in the macro call, it is used as the destination of
the BCS instruction. The address is typically that of a RETURN
instruction, but does not have to be. Eventually the driver must
execute a RETURN to the system.

The $GTPKT routine indicates that the driver has an I/O packet to
process by clearing the C bit. Therefore, when the test of the BCS
instruction is false, execution continues inline and the driver can
process the I/O packet that the Executive queued to it. The $GTPKT
routine leaves information in the driver registers to enable the
driver to process the request. Refer to the description of the $GTPKT
routine and the GTPKT$ macro listing in Chapter 7.

4.3.3 Interrupt Save Macro Call - INTSV$

You should specify the INTSV$ macro call at each interrupt entry point
in the driver. The format of the INTSV$ macro call is as follows:

INTSV$ dev,pri,nctrlr,pswsv,ucbsv

The arguments of the call are described in Table 4-4. The macro
generates the cod~ to load R5 with the UCB address of the current
controller owner, given the controller index is in R4 (R4 is not
modified by macro). Note that R5may be zero in case of either an
unexpected interrupt (e.g., no current I/O operation), or an interrupt

4-10

OVERVIEW OF PROGRAMMING USER-WRITTEN DRIVER CODE

as a result of a parallel operation on the same controller. (For
example, an overlapped seek completing after a data transfer
completion.) In general, for configurations which support overlap seek
it is the driver's responsibility to differentiate between a transfer
function completion interrupt from a control 'function completion
interrupt.

Table 4-4: INTSV$ Macro Call Arguments

Argument Meaning

dev Is the 2-character device mnemonic.

pri Is not used.

nctrlr

pswsw

ucbsv

Is the number of controllers that the driver services
(counting from 1).

Leave this argument null; it has no effect. It is an
anachronism, and must be positionally present if ucbsv
is specified.

Strictly speaking, this argument is not needed on PIOS
systems and can not be used directly if a given
controller can support parallel operations on multiple
units simultaneously. If this argument is non-blank,
a table of "nctrlr" words in length is generated to
contain the controller index to UCB mapping of a per
controller I/O operation in progress. The macro
generates code which uses the controller index
returned in R4 by $INTSI to index into a UCB table to
load the UCB address of the interupting device into
R5.

4.3.4 Using the UCBSV Argument in Macro Calls

You can optionally specify the ucbsv argument in calls to the macros
DDT$, GTPKT$, and INTSV$. This argument allows you to use an
alternative technique to map the controller index to a UCB address.
This provides a simple mechanism for retrieving the UCB when an
expected interrupt occurs.

The argument ucbsv in the DDT$ macro allocates nctrlr words of
storage (one word for each controller that the driver supports) and
labels the first word ucbsv:. This table contains the address of
the unit control block of the interrupting devices for each

4-11

OVERVIEW OF PROGRAMMING USER-WRITTEN DRIVER CODE

controller.
initiation
address.

The GTPKT$
and INTSV$

macro updates
references this

table entries at I/O
table to retrieve the UCB

If you specify the argument ucbsv in the GTPKT$ macro call, it must
be the same label you supplied for the ucbsv argument in the DDT$
and INTSV$ macro calls. The macro generates code to move the UCB
address returned by $GTPKT to the correct location in the table
starting at the label ucbsv.

If you specify the argument ucbsv in the INTSV$- macro call, it
should be the same label you supplied for the ucbsv argument in the
DDT$ and GTPKT$ macro calls. The matro uses ucbsv to locate the UCB
address of the interrupting unit, and then generates code to load
the address into RS.

4.3.5 Driver Entry Points for PROLOD

A driver that requires additional initialization and completion
functions can define two entry points by labels of the form $xxLOA
and $xxUNL. Because these two labels ~o not appear in the DDT
itself, their format is fixed; you must use the exact format in your
driver code. When you load the driver, the

NOTE

Drivers should not attempt to access controller
registers at the load entry point. Device access is
only possible after the driver has been called at
its controller online entry point.

PROLOD routines check for the $xxLOA entry point.

The driver is entered, once per UCB, at the $xxLOA entry point at
priority zero. At this stage, the driver data base has been loaded
and pointers have been relocated. The driver is mapped through APR
5, and the following registers are set up:

R3 Controller index (undefined if S.KRB 0)
R4 - Address of the status control block
RS - Address of the unit control block

NOTE

The driver cannot access any device CSRs at this
point because ownership has not been established.
To access device CSRs, wait until the controller is
online.

4-12

OVERVIEW OF PROGRAMMING USER-WRITTEN DRIVER CODE

The driver may use all the registers. When you unload the driver,
PROLOD calls it at the $xxUNL entry point with the same conditions.
These two entry points in the driver are independent of the
controller and unit status change entry points used by the
Executive. That is, the two entry points $xxLOA and $xxUNL are used
for initialization and at driver load and unload time and not at
on-line and off-line status change time. Note that $xxUNL is called
only when all controllers and units are offline. The data base is
not removed, but it is reused on subsequent reloads.

4.4 DRIVER DATA STRUCTURE DETAILS

The following elements in the I/O data structure are of concern to
the programmer writing a driver:

1. The I/O packet

2. The DCB

3. The UCB

4. The seB

5. The KRB

6. The CTB

The I/O data structure, and the control blocks listed previously in
particular, contain an abundance of data pertaining to input/output
operations. Drivers themselves are involved with only a subset of
the data.

NOTE

Except where explicitly noted otherwise, all unused
bits, fields, and words in all driver data base
structures are reserved for DIGITAL system use and
expansion.

In the following descriptions, most data fields (words or bytes) are
classified by one of five descriptions. Two items in each
description indicate:

o Whether the field is initialized in the data-structure
source, and

4-13

DRIVER DATA STRUCTURE DETAILS

o What sort of access the driver has to the field during
execution

The five descriptions are:

<initialized, not referenced>
This field is supplied in the data-structure source code,
and is not referenced by the driver during execution.

<initialized, read-only>
This field is supplied in the data-structure source code,
and may be read by the driver.

<not initialized, read-only>
Either an agent other than the driver establishes this
field, or the driver sets it up once and thereafter
references it read-only.

<not initialized, read-write>
Either the driver or some other agent establishes this
field, and the driver may read it or write over it.

<not initialized, not referenced>
This field does not involve the driver in any way.

These five descriptions cover most of the fields in the control
blocks described in this section. No system software or hardware
checks or enforces any of the access described. Exceptions are
noted in the text.

4.4.1 The 1/0 Packet

Figure 4-1 shows the layout of a control function I/O Packet, and
Figure 4-2 shows the layout of a transfer function I/O Packet. Both
are constructed and placed in the driver I/O queue by QIO directive
processing, and subsequently delivered to the driver by a call to
$GTPKT. The DPB from which the I/O Packet is generated is
illustrated in Section ·4.4.2. QIO directive processing dynamically
builds the I/O packet from the data in the DPB. Fields in the I/O
Packet (see the following text) are classified as:

o Not referenced,

o Read-only, or

o Read-write.

I.LNK

Driver access:

4-14

I.EFN

I.PRI

DRIVER DATA STRUCTURE DETAILS

Not referenced.

Description:

Links I/O Packets queued for a driver. A zero ends the
chain. The listhead is in the seB (S.LHD).

Driver access:

Not referenced.

Description:

Contains the event flag number as copied by QIO directive
processing from the requester's DPB. Bit 0<200> indicates
a virtual function.

Driver access:

Not referenced.

Description:

Priority copied from the TCB of the requesting task.

4-15

DRIVER DATA STRUCTURE DETAILS

LLNK Link to next liD packet o
LPRI } LF.FN

EFN I PRI 2

LTCB TCB address of requester 4

LLN2 Address of second LUT word 6

LUCB Address of redirect UCB 10

LFCN Function code I Modifier 12

1.I0SB Virtual address of liD status block 14

Relocation bias of 10SB 16

Real address of 10SB 20

I.AST Virtual address of AST service routine 22

LPRM P1 24
I--- -

P2
~ -

Device P3
~ parameters -

(control functions) P4
f--- -

P5
~ -

P6

LAADA Attachment Descriptor Pointer

I.AADA+2 Attachment Descriptor Pointer

Figure 4-1: 1/0 Packet Format - Control Function

4-16

DRIVER DATA STRUCTURE DETAILS

LLNK Link to next 1/0 packet

LPRI } LEFN
EFN I PRI

LTCB TeB address of requester

I.LN2 Address of second LUT word

LUCB Address of redirect UC8

I.FCN Function code I Modifier

1.I0SB Virtual address of 1/0 status block

Relocation bias of IOS8

Real address of 10SB

I.AST Virtual address of AST service routine

I.PRM Relocation B lAS of buffer

-
Displacement of buffer (+140000)

~

P2
Device

~ parameters
P3

(transfer functions)
r---

P4
r---

P5

P6

LAADA Attachment Descriptor Pointer

I.AADA+2 Attachment Descriptor Pointer

P1 assumed to be buffer virtual address
P2 assumed to be buffer size in bytes

o

2

4

6

10

12

14

16

20

22

24

-
-
-
-

Figure 4-2: I/O Packet Format - Transfer Function

4-17

I.TCB

I.LN2

I.UCB

I.FCN

DRIVER DATA STRUCTURE DETAILS

Driver access:

Not referenced usually. Referenced at I/O cancel.

Description:

TCB address of the requesting task.

Driver access:

Not referenced.

Description:

Contains the address of the second word of the LUT entry in
the task header to which the I/O request is directed, if
even. Also, for virtual functions, if even, the task
region, and consequently the header, was locked in memory
by incrementing the appropriate I/O counts. For open files
on file-structured devices, this word contains the address
of the Window Block. If odd, it is the window block
pointer; otherwise zero.

Driver access:

Not referenced by conventional driver; frequently
referenced by drivers that use $GSPKT and maintain parallel
active unit context UCBs rather that the SCBs, and
therefore have a "many to one" UCB to SCB configuration.

Description:

contains the address of the unit to which I/O is to be
directed. I.UCB is the address of the Redirect UCB if the
starting UCB has been subject to a Redirect command. The
field is referenced by the $GTPKT routine.

Driver access:

Read-only~

Description:

4-18

DRIVER DATA STRUCTURE DETAILS

Contains the function code for the I/O request. It
consists of two bytes. The high-order byte contains the
function code; the low-order byte contains modifier
(subfunction) bits. During predriver initiation the
Executive compares the function code wit~ a function mask
value in the DCB. The driver interprets the modifier
(subfunction) bits.

I.IOSB

I.AST

I.PRM

Driver access:

Not referenced. Do not touch. Driver specifies status at
I/O completion in registers to $IODON or $IOFIN. The
region containing the IOSB is not guaranteed to be memory
resident, except at predriver initiation time (see UC.QUE).

Description:

I.IOSB contains the virtual address of the I/O Status Block
(IOSB), if even, or zero if one was not specified.

I.IOSB+2 and I.IOSB+4 contain the address doubleword for
the IOSB if I.IOSB is even and nonzero (see Section 7.4 for
a detailed description of the address doubleword.

Driver access:

Not referenced.

Description:

Contains the virtual address of the AST service routine to
be executed at I/O completion. If no address is specified,
the field contains zero.

Driver access:

Read-write.

Description:

Device-dependent parameters constructed from the last six
words of the DPB. Note that if the I/O function is a
transfer (refer to the description of D.MSK in Section
4.4.3, the buffer address (first DPB device-dependent
parameter) is translated to an equivalent address
doubleword. Therefore, the virtual buffer address, which

4-19

I.AADA
I.AADA+2

DRIVER DATA STRUCTURE DETAILS

occupied one word in the DPB, occupies two words in I.PRM.
As a result, all other parameters in I.PRM are shifted by
one word so that device-dependent parameter n is copied to
I.PRM +(2*n)+2.

Most DIGITAL-supplied drivers treat these· words as a
read/write storage area after their initial contents have
been used.

When the last word of the device-dependent parameters is
nonzero, the value can have one of several special meanings
to the Executive. For example, if the value is nonzero and
the I/O function is marked "virtual," the Executive assumes
that the value is a block locking word. Therefore, if the
driver uses the word, it should restore its contents before
calling $IODON.

Driver access:

Not referenced; maintained by the Executive transparently
to the driver.

Description:

Two pointers, each to an attachment descriptor block of the
region in which the task I/O buffer resides. These
pointers account for I/O by region and enable the Executive
to lock a region to make it noncheckpointable while I/O is
in progress, and to unlock a region after I/O completes.

4.4.2 The 010 Directive Parameter Block (DPB)

The QIO DPB is constructed as shown in Figure 4-3. Usually drivers
never access the DPB; the information is supplied here for general
reference.
The,parameters in the DPB have the following meanings:

Length (required):

The length of the DPB, which for the QIO directive is always
fixed at 12 words.

DIe (required):

Directive Identification Code. For the QIO directive, this
is 1. For QIOW it is 3.

4-20

DRIVER DATA STRUCTURE DETAILS

Q.IOFN (required):

The code of the requested I/O function (0 through 31).

Length ole o

UIOFN Function code Modifier 2

O.IOLU Reserved LUN 4

UIOPR/O.IOEF Priority EFN 6

0.IOS8 1/0 status block address 10

O.IOAE AST address 12

O.lOPL +0 14
f--- -

+2
- -

Device-

- dependent -
+4

+6 parameters

I--- -
+10

r-- -
+12

ZK-255-81

Figure 4-3: 010 Directive Parameter Block (DPB)

Modifier:

Device-dependent modifier bits.

Reserved:

Reserved byte; must not be used.

Q.IOLU (required):

Logical Unit Number.

4-21

DRIVER DATA STRUCTURE DETAILS

Q.IOPR:

Request priority. Ignored by PIOS but space must be allocated
for IAS compatibility.

Q.IOEF (optional):

Event flag number. Zero indicates no event flag.

Q.IOSB (optional):

This word contains a pointer to the I/O status block, which is
a 2-word, device-dependent I/O-completion data packet formatted
as:

Byte 0

I/O status byte.

Byte 1

Augmented data supplied by the driver.

Bytes 2 and 3

The contents of these bytes depend on the value of byte O.
If byte 0 1, then these bytes usually contain the
processed byte count. If byte 0 does not equal 0, then
the contents are device-dependent.

Q.IOAE (optional):

Address of the I/O done AST service routine.

Q.IOPL

Up to six parameters specific to the device and to
function to be performed. Typically, for data
functions, the following four are used:

o Buffer address

o Byte count

o Carriage control type

a Logical block number

the I/O
transfer

The fields for any optional parameters not specified must be filled
with zeros.

4-22

DRIVER DATA STRUCTURE DETAILS

4.4.3 The Device Control Block (DCB)

Figure 4-4 is a schematic layout of the DCB. The DCB describes the
static characteristics of a device controller and the units attached
to the controller. All fields must be specified.

D.LNK Link to next DCB (O=last) o

D.UCB Link to first UCB 2

D.NAM Generic device name (ASCII) 4

D.UNIT Highest unit no. I Lowest unit no. 6

D.UCBL Length of UCB 10

D.DSP Address of driver dispatch table 12

D.MSK Legal function mask bits 0 - 15. 14

Control function mask bits 0 - 15. 16

No-op'ed function mask bits 0 - 15. 20

ACP function mask bits 0 - 15. 22

Legal function mask bits 16. - 31. 24

Control function mask bits 16. - 31. 26

No-op'ed function mask bits 16. - 31. 30

ACP function mask bits 16. - 31. 32

D.PCB Address of partition control block 34

ZK-2S6-81

Figure 4-4: Device Control Block

The fields* in the DeB are described as follows:

D.LNK (link to next DeB)

* Parenthesized contents following the symbolic offset indicate the
value to be initialized in the data base source code.

4-23

DRIVER DATA STRUCTURE DETAILS

Driver access:

Initialized, not referenced.

Description:

Address link to the next DCB. If this cell is in the last
(or only) DCB, you should set its value to zero. If you
are incorporating more than one user-written driver at one
time, then this field should point to another DCB in a DCB
chain, which is terminated by a value of zero.

D.UCB (pointer to first UCB)

Driver access:

Initialized, not referenced.

Description:

Address link to the U.DCB field of the first, and possibly
the only, unit control block associated with the DCB. For
a given DCB, all UCBs are in contiguous memory locations
and must all have the same length.

D.NAM (ASCII device name)

Driver access:

Initialized, not referenced.

Description:

Generic logical device name in ASCII by which device units
are mnemonically referenced.

D.UNIT (unit number range)

Driver access:

Initialized, not referenced.

Description:

unit number range for the device. The low-order byte
contains the lowest logical unit number; the high-order
byte contains the highest logical unit number. This range
covers those logical units available to the user for device
assignment. Typically, the lowest number is zero or one,
and the highest is n-1, where n is the number of

DRIVER DATA STRUCTURE DETAILS

device-units described by the DCB.

D.UCBL (UCB length)

Driver access:

Initialized, not referenced.

D~scription:

The unit control block can have any length to meet the
needs of the driver for variable storage. However, all
UCBs for a given DCB must have the same length. The
specified length must include prefix words (such as U.LUIC
and U.OWN), if present.

D.DSP (driver dispatch table pointer)

Driver access:

Not referenced.

Description:

Address of the driver dispatch table, which is located
within the driver code. (When the Executive wishes to
enter the driver at any of the entry points contained in
the driver dispatch table, it accesses D.DSP, locates the
appropriate address in the table, and calls the driver at
that address.)

D.MSK (driver-specific function masks)

Driver access:

Initialized, not referenced.

Description:

Eight words, beginning at D.MSK , are critical to the proper
functioning of a device driver. The Executive uses these
words to validate and dispatch the I/O request specified by
a QIO directive. The following description applies only to
nonfile-structured devices.* Four masks, with two words per

* Although no DIGITAL publication describes writing drivers for
file-structured devices (drivers that interface with Fl1ACP), you
could write a disk driver by using a DIGITAL-supplied driver as a

4-25

DRIVER DATA STRUCTURE DETAILS

mask, are described by the bit configurations that you
establish for these words:

1. Legal function mask

2. Control function mask

3. No-op function mask

4. ACP function mask

The QIO directive allows for 32 possible I/O functions.
The masks, as stated, are filters to determine validity and
I/O requirements for the subject driver.

The Executive filters the function code in the I/O request
through the four masks. The I/O function code is the
high-order byte of the function parameter issued with the
QIO directive. The decimal representation of that
high-order byte is equivalent to the decimal bit number of
the mask. If you want the function to be true in one of
the four masks, you must set the bit in that mask in the
position that numerically corresponds to the function code.
For example, the code for IO.RVB is 21 (octal) and its
decimal representation is 17. If you want IO.RVB to be
true for a mask, therefore, you must set bit number 17 in
the mask.

The masks are laid out in memory in two 4-word groups.
Each 4-word group covers 16 function codes. The first 4
words cover the function codes 0 through 15i the second 4
words cover codes 16 through 31. Below is the exact layout
used for the driver example in Chapter 8.

. WORD

. WORD

. WORD

. WORD

. WORD

. WORD

. WORD

. WORD

177477
70
o
177200
377
o
o
377

iLEGAL FUNCTION MASK CODES 0-15 .
iCONTROL FUNCTION MASK CODES 0-15 .
iNO-OP FUNCTION MASK CODES 0-15 .
iACP FUNCTION MASK CODES 0-15 .
iLEGAL FUNCTION MASK CODES 16.-31 .
iCONTROL FUNCTION MASK CODES 16.-31 .
iNO-OP FUNCTION MASK CODES 16.-31 .
iACP FUNCTION MASK CODES 16.-31 .

The Executive filters the function code through the mask
words sequentially as follows:

Legal Function Mask:

4-26

DRIVER DATA STRUCTURE DETAILS

Legal function values have the corresponding bit position
in this word set to 1. Function codes that are not legal
are rejected by QIO directive processing, which returns
IE.IFC in the I/O status block, provided an IOSB address
was specified.

Control Function Mask:

If any device-dependent data exists in the DPB, and this
data does not require further checking by the QIO directive
processor, the function is considered to be a control
function. Such a function allows QIO directive processing
to copy the DPB device-dependent data directly into the I/O
packet.

No-op Function Mask:

A no-op function is any function that is considered
successful as soon as it is issued. If the function is a
no-op, QIO directive processing immediately marks the
request successful; no additional filtering occurs.

ACP Function Mask:

If a function code is legal but specifies neither a control
function nor a no-op, then it specifies either an ACP
function or a transfer function. If a function code
requires intervention of an Ancillary Control Processor
(ACP), the corresponding bit in the ACP function mask must
be set. ACP function codes must have a value greater than
7 •

In the specific case of read-write virtual functions, the
corresponding mask bits may be set at your option. If the
corresponding mask bits for a read-write virtual function
are set, QIO directive processing recognizes that a
file-oriented function is being requested to a
nonfile-structured device and converts the request to a
read-write logical function.

This conversion is particularly useful. Consider a
read-write virtual function to a specific device:

1. If the device is file-structured and a file is open on
the specified LUN, the block number specified is
converted from a virtual block number in the file to a
logical block number on the medium. Moreover, the
request is queued to the driver as a read-write logical
function.

4-27

DRIVER DATA STRUCTURE DETAILS

2. If the device is file-structured and no file is open on
the specified LUN, then an error is returned and no
further action is taken.

3. If the device is not file-structured, then the request
is simply transformed to a read-write logical function
and is queued to the driver. (The specified block
number is unchanged.)

Transfer Function Processing:

Finally, if the function is not an ACP function, then it is
by default a transfer function. All transfer functions
cause the QIO directive processor to check the specified
buffer for legality (that is, inclusion within the address
space of the requesting task) and proper alignment (word or
byte). In addition, the processor checks the number of
bytes being transferred for proper modulus (that is,
nonzero and a proper multiple). All transfer functions
except IO.WLB and IO.WVB are assumed to require Read and
Write access to the buffer region, and are access checked
accordingly. By convention, the first user-supplied
parameter is the buffer address and the second is the byte
count.

Creating Mask Words:

Creating function mask words involves the following five
steps:

1. Establish the I/O functions available on the device for
which driver support is to be provided.

2. Build the Legal Function mask: Check the standard PIOS
function mask values in Table 4-6 for equivalencies.
Only the IO.KIL function is mandatory. IO.ATT and
IO.DET functions, if used, must have the P/OS system
interpretation. DIGITAL suggests that functions having
an PIOS system counterpart use the PIOS code, but this
is required only when the device is to be used in.
conjunction with an ACP. From the supported function
list in Table 4-5, you can build the two Legal Function
mask words.

3. Build the control Function mask by asking:

Does this function carry a standard buffer address and
byte count in the first two device-dependent parameter
words?

4-28

D.PCB (0)

DRIVER DATA STRUCTURE DETAILS

If it does not, then either it qualifies as a control
function or the driver itself must effect the checking
and conversion of any addresses to the format required
by the driver. See Section 8.1 for an example of a
driver that does this. (Buffer addresses in standard
format are automatically converted to Address
Doubleword format.)

Control functions are essentially those functions whose
DPBs do not contain buffer addresses or counts.

4. Create the No-op Function mask by deciding which legal
functions are to be no-oPe Typically, for
compatibility with File Control Services (FCS) or
Record Management Services (RMS) on nonfile-structured
devices, the file access/deaccess functions are
selected as legal functions, even though no specific
action is required to access or deaccess a
nonfile-structured device; thus, the access/deaccess
functions are no-oPe

5. Finally, include the ACP functions write Virtual Block
and Read Virtual Block for those drivers that support
both read and write. (Include only one related ACP
function if the driver supports only read or write).
Other ACP functions that might be included fall into
the nonconventional driver classification and are
beyond the scope of this document.

Driver access:

Initialized, not referenced.

Description:

Address of the driver's Partition Control Block (PCB). The
driver data base source must initialize the address to
zero. The DCB can be extended by adding words after D.PCB.
A PCB exists for every partition in a system. A driver PCB
describes the partition in which it resides.

The Executive uses D.PCB together with D.DSP (the address
of the driver dispatch table) to determine a driver is in
memory. Zero and nonzero values for these two pointers
have the meanings shown in Figure 4-5.

4-29

DRIVER DATA STRUCTURE DETAILS

4.4.3.1 Establishing I/O Function Masks - Table 4-5 is supplied to
assist you in determining the proper values to set in the function
masks. The mask values are given for each I/O function used by
DIGITAL-supplied drivers. The bit number allows you to determine
which mask group to use: for bits numbered 0 through 15, use the
mask value for a word in the first 4-word group; for bits numbered
16 through 31, use the mask value for a word in the second 4-word
group.

D.DSP:

D.pes: =0 #0

Loadable
driver, (not

"'0 possible) not in

memory

(not Loadable

:#0 possible) driver,

in memory

Figure 4-5: D.peB and D.DSP Bit Meanings

Of the function mask values listed in Table 4-5, only IO.KIL is
mandatory and has a fixed interpretation. However, if IO.ATT and
IO.DET are used, they must have the standard meaning. (Refer to the
P/OS System Reference Manual) for a description of standard I/O
functions.) If QIO directive processing encounters a function code
of 3 or 4 and the code is not no-op, QIO assumes that these codes
represent Attach Device and Detach Device, respectively. The other
codes are suggested but not mandatory. You are free to establish
all other function-code values on nonfile-structured devices.
However, the mask words must still reflect the proper filtering
process.

If you are writing a driver for a file-structured device, you must
establish the standard function mask values of Table 4-5.

To determine the proper bit masks for disks, tapes, and unit record
devices (such as terminals, card readers, line printers, paper tape
punches/readers), use Table 4-6, Table 4-7, and Table 4-8 as guides.

4-30

DRIVER DATA STRUCTURE DETAILS

Table 4-5: Mask Values for Standard I/O Functions

Bit Mask Related I/O
Value Symbolic Function

0 1 IO.KIL I Cancel I/O
1 2 IO.WLB Write Logical Block
2 4 IO.RLB Read Logical Block
3 10 IO.ATT Attach Device
4 20 IO.DET Detach Device
5 40 General Device Control
6 100 General Device Control
7 200 General Device Control
8 400 Diagnostics
9 1000 IO.FNA Find File in Directory

10 2000 IO.ULK Unlock Block
11 4000 IO.RNA Remove File from Directory
12 10000 IO.ENA Enter File in Directory
13 20000 IO.ACR Access File for Read
14 40000 IO.ACW Access File for Read/Write
15 100000 IO.ACE Access File for Read/Write/Extend
16 1 IO.DAC Deaccess File
17 2 IO.RVB Read Virtual Block
18 4 IO.WVB Write Virtual Block
19 10 IO.EXT Extend File
20 20 IO.CRE Create File
21 40 IO.DEL Mark File for Delete
22 100 IO.RAT Read File Attributes
23 200 IO.WAT Write File Attributes
24 400 IO.APC ACP Control
25 1000 Unused
26 2000 Unused
27 4000 Unused
28 10000 Unused
29 20000 Unused
30 40000 IO.APV ACP Privileged
31 100000 Unused

4-31

DRIVER DATA STRUCTURE DETAILS

Table 4-6: Mask Word Bit Settings for Disk Drives

Bit

o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

P/OS

c
t
t
c
c
c

sa
sd
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a

a

Related Symbolic

IO.KIL
IO.WLB
IO.RLB
IO.ATT
IO.DET
IO.STC

IO.CLN
Diagnostic
IO.FNA
IO.ULK
IO.RNA
IO.ENA
IO.ACR
IO.ACW
IO.ACE

IO.DAC
IO.RVB
IO.WVB
IO.EXT
IO.CRE
IO.DEL
IO.RAT
IO.WAT
IO.APC

IO.APV

t - transfer function, bit set only in legal function mask
c - control function, bit set in legal and control function masks
n - no-op function, bit set in legal and no-op function masks
a - ACP function, bit set in legal and ACP function masks

sa - special case, bit set only in ACP function mask, but not legal
sd - special case, bit set only if diagnostic support in system and

driver

4-32

DRIVER DATA STRUCTURE DETAILS

Table 4-7: Mask Word Bit Settings for Magnetic Tape Drives

Bit P/OS (currently IS.PND) Related Symbolic

o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

16

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

c
t
t
c
c
c
c
sa
sd
a

n
a
a
a

a

a
a
a

a

a

a

IO.KIL
IO.WLB
IO.RLB
IO.ATT
IO.DET
IO.STC

IO.CLN
Diagnostic
IO.FNA
IO.ULK
IO.RNA
IO.ENA
IO.ACR
IO.ACW
IO.ACE

IO.DAC

IO.RVB
IO.WVB
IO.EXT
IO.CRE
IO.DEL
IO.RAT
IO.WAT
IO.APC

IO.APV

t - transfer function, bit set only in legal function mask
c - control function, bit set in legal and control function masks
n - rio-op function, bit set in legal and no-op function masks
a - ACP function, bit set in legal and ACP function masks

sa - special case, bit set only in ACP function mask, but not legal
sd - special case, bit set only if diagnostic support in system and

driver

4-33

DRIVER DATA STRUCTURE DETAILS

Table 4-8: Mask Word Bit Settings for Unit Record Devices

Bit PIOS Related Symbolic

0 c IO.KIL
1 t IO.WLB
2 t IO.RLB
3 c IO.ATT
4 c IO.DET
5 c IO.STC
6
7 sa IO.CLN
8 sd Diagnostic
9 a IO.FNA

10 a IO.ULK
11 a IO.RNA
12 a IO.ENA
13 a IO.ACR
14 a IO.ACW
15 a IO.ACE

16 a IO.DAC
17 a IO.RVB
18 a IO.WVB
19 a IO.EXT
20 a IO.CRE
21 a IO.DEL
22 a IO.RAT
23 a IO.WAT
24 a IO.APe
25
26
27
28
29
30
31

t - transfer function, bit set only in legal function mask
c - control function, bit set in legal and control function masks
n - no-op function, bit set in legal and no-op function masks
a - ACP function, bit set in legal and ACP function masks

sa - special case, bit set only in ACP function mask, but not legal
sd - special case, bit set only if di~gnostic support in system and

driver

4-34

DRIVER DATA STRUCTURE DETAILS

4.4.4 The Unit Control Block (UCB)

Figure 4-6 is a layout of the UCB (a variable-length control block).
One UCB exists for each physical device-unit generated into a system
configuration. For user-added drivers, this control block is defined
as part of the source code for the driver data structure.

The fields* in the UCB are described below:

U.UAB (0)

Driver access:

Initialized, not referenced.

Description:

For terminal UCBs only. Reserved.

U.MUP

Driver access:

Not initialized, not referenced.

Description:

For terminal UCBs only.

U.LUIC (0<100200»

U.OWN

Driver access:

Initialized, not referenced.

Description:

(0)

For terminal ueBs only, and only in multiuser systems:
logon UIe of the user at the particular terminal.
offset must exist for any device on a multiuser system
which the DV.TTY bit is set.

Driver access:

Initialized, not referenced.

the
This

for

* Parenthesized contents following the symbolic offset indicate the
value to be initialized in the data base source code.

4-35

DRIVER DATA STRUCTURE DETAILS

Description:

The UCB address of the owning terminal for allocated devices.

U.UAB1

U.MUp1

U.LUIC1

r- I

~-
reserved

-1
10

- --
reserved 6

~- - -- ~
reserved -4

U.OWN Owning terminal UCB address -2

U.DCB Back pointer to DCB o

U.RED Redirect UCB pointer 2

U.CTL } U.STS
Unit status Control flags 4

U.UNIT } U.ST2
Unit status Physical unit no. 6

U.CW1 Characteristics word 1 10

U.CW2 Characteristics word 2 12

U.CW3 Characteristics word 3 14

U.CW4 Characteristics word 4 16 All

devices
U.SCB Pointer to SCB 20

U.ATT TCB address of attached task 22

U.BUF Buffer relocation bias 24

U.BUF+2 Buffer address 26

U.CNT Byte count 30
~------ - - - --- -- --

U.UCBX 2 Er to the UCB :;;;~~~ in s~onda~ ~ ::

C storage ~
1. This offset appears only for terminal devices (that is. devices that have DV.TTY set)

2. This offset appears only for those devices that have DV.MSO set.

Figure 4-6: Unit Control Block

4-36

DRIVER DATA STRUCTURE DETAILS

U.DCB (pointer to associated DCB)

Driver access:

Initialized, not referenced.

Description:

This word is a pointer to the corresponding device control
block. Because the UCB is a key control block in the I/O
data structure, access to other control blocks usually occurs
by means of links implanted in the UCB.

U.RED (pointer to start of this UCB (.-2))

Driver access:

Initialized, not referenced.

Description:

Contains a pointer to the unit control block to which this
device-unit has been redirected. The redirect chain ends
when this word points to the beginning of the UCB itself
(U.DCB of the UCB, to be precise).

U.CTL (device-dependent values)

Driver access:

Initialized, not referenced.

Description:

U.CTL and the function mask words in the device control block
control QIO directive processing. Figure 4-7 shows the
layout of the unit control byte.

The driver data base code statically establishes this bit
pattern. Any inaccuracy in the bit setting of U.CTL produces
erroneous I/O processing. Bit symbols and their meanings are
as follows:

UC.ALG - Alignment bit.

If this bit is 0, then byte alignment of data buffers is
allowed (for example, a communications driver). If UC.ALG is
1, then buffers must be word-aligned (for example, a disk
driver).

4-37

15

DRIVER DATA STRUCTURE DETAILS

U.STS U.CTL

Figure 4-7: Unit Control Byte

}UC.LGH. Buffer size mask bits for transfer length

UC. K I L . Uncondi tional cancel I/O (1 =yes)

UC.ATT . Attach/detach notification (1 =yes)

UC.PWF· Unconditional call at powerfail (1=yes)
UC.QUE· Queue to driver bit (1=yes)

UC.NPR· NPR device bit (1=yes)

UC.ALG· Alignment (byte or word)(1=no)

ZK·258·81

UC.ATT - Attach/Detach notification.

If this bit is set, then the driver is called when $GTPKT
processes an Attach/Detach I/O function. Typically, the
driver does not need to obtain control for Attach/Detach
requests, and the Executive performs the entire function
without any assistance from the driver. When the need
exists, the most common use of UC.ATT is for event
notification without outstanding I/O. Attachment coupled
with UC.ATT provides an I/O rundown operation (IO.DET) to
occur so that the driver can remove this context when the
issuing task exits - gracefully or otherwise.

UC.KIL - Unconditional Cancel I/O call bit.

If set, the driver is called on a Cancel I/O request, even if
the unit specified is not busy. Typically, the driver is
called on Cancel I/O only if an I/O operation is in progress.
In any case, the Executive flushes the I/O queue.

UC.QUE - Queue to-driver bit.

4-38

U.STS (0)

DRIVER DATA STRUCTURE DETAILS

If set, the QIO directive processor calls the driver at its
I/O initiation entry point without queuing the I/O packet.
After the processor makes this call, the driver is
responsible for the disposition of the I/O packet.
Typically, the processor queues an I/O Packet before calling
the driver, which later retrieves it by a call to $GTPKT.

The most common reason for a driver to examine a packet
before queuing is that the driver employs a special user
buffer, other than the normal buffer used in a transfer
request. Within the context of the requesting task, the
driver must address-check and relocate such a special buffer.
See Section 8.1 for an example of a driver that does this.
Use $CKBFR, $CKBFB, OR $CKBFW rather than $ACHRO, $ACHKB,
$ACHKW, since the later routines do not increment region and
ACB I/O counts.

UC.PWF - Unconditional calIon loading driver bit.

If set and the unit is on-line, the driver is always to be
called when driver is loaded. Driver may then ignore unit
and controller status changes by simply performing a RETURN
instruction. The driver, however, can never be unloaded
without reboot if these entry points are ignored for the
online to offline transition.

UC.NPR - NPR device bit.

If set, the device is an NPR device. This bit determines the
format of the 2-word address in U.BUF (details given in the
discussion of U.BUF below). It is normally cleared.

UC.LGH - Buffer size mask bits (two bits).

These two bits are used to check whether the byte count
specified in an I/O request is a legal buffer modulus. You
select one of the values below by ORing into the byte a 0, 1,
2, or 3.

00 - Any buffer modulus valid
01 - Must have word alignment modulus
10 - Combination invalid
11 - Must have double word-alignment modulus

UC.ALG and UC.LGH are independent settings.

Driver access:

4-39

DRIVER DATA STRUCTURE DETAILS

Initialized, not referenced.

Description:

15

This byte contains device-independent status information.
Refer to the UCBDF$ macro definition in Appendix A. Figure
4-8 shows the layout of the unit status byte.

U.ST2 U.UNIT

o ar I I I I I I __ ---il...-.&.-................ I...-.A.---L. _____________ J Unused bits are reserved
- • for system use and expansion.

I I
I I

I
US.OFL - Unit offline (l=yes)

US. RED - Unit redirectable (l=no)
US.PUB - Unit is public device (1=no)
US.UMD - Unit attached for diagnostic s (l=yes)

US.PDF - Privileged diagnostic functions only (l=yes)

US.MUN - clusterdevice (l=yes)
US.TRN - unit transition has accured (l=yes)

L--_______________ . _____ . US.SIO - stall I/O to unit (l=yes)

Figure 4-8: Unit Status Byte

US.MDM, US.MNT, Us.vv and US. FOR apply only to mountable
devices.* The bit meanings are as follows:

US.BSY

If set, device-unit is busy.

US.MNT

If set, volume is not mounted.

US.FOR

If set, volume is mounted foreign.

US.MDM

* If your user-written driver services a mountable device,
Section 4.5.7 for information on volume valid processing.

4-40

refer to

DRIVER DATA STRUCTURE DETAILS

If set, device is marked for dismount.

US.vv

If set, volume is valid from a software viewpoint.

U.UNIT (unit number)

D~iver access:

Initialized, read-only.

Description:

This byte contains the physical unit number of the
device-unit serviced by this UCB. If the controller for the
device supports only a single unit, the unit number is always
zero.

NOTE

This is the physical unit number
not the logical unit number.
number is from zero to n where n
The logical designation DBO:
imply a zero in this byte.

U.ST2 (US.OFL)

Driver access:

Initialized, not referenced.

Description:

of the device and
The range of this

is device-dependent.
does not necessarily

This byte contains additional device-independent status
information. Different parts of the system set and clear
these bits. The layout of the unit status extension byte is
shown in Figure 4-9.

The bit meanings are as follows:

US.OFL=l

If set, the device is off-line (that is, not in the
configuration). This bit should be initialized to 1.

US.RED=2

4-41

DRIVER DATA STRUCTURE DETAILS

If set, the device cannot be redirected.

US.PUB=4

If set, the device is a public device.

US.UMD=10

If set, the device is attached for diagnostics.

US.PDF=20

If set, this unit can be used for a privileged diagnostic
function only.

US.TRN=100

If set, unit volume status change in progress.

US.SIO=200

If set, I/O is stalled typically until volume is reverified.

U.STS U.CTL

15 8 7 I

I I I I I I I I I ---- ---I

Figure 4-9: Unit Status Extension 2

U.CWl (device-specific characteristics)

Driver access:

Initialized, not referenced.

Description:

4-42

o

I
•

Unused hits are reserved

for system use and expansion .

US.MDM - Marked for dismount (1 yes)

US.FOR - Mounted as foreign volume (O=yes)

US.MNT - Volume is mounted (1- no)

US.BSY - Device-unit busy (1 ~oyes)

DRIVER DATA STRUCTURE DETAILS

The first of a 4-word contiguous cluster of device
characteristics information. U.CWl and U.CW4 are
device-independent, whereas U.CW2 and U.CW3 are
device-dependent. The four characteristics words are
retrieved from the UCB and placed in the requester's buffer
on issuance of a Get LUN information (GLUN$) Executive
directive. It is your responsibility to supply the contents
of these four words in the assembly source code of the data
structure.

U.CWl is defined as follows. (If a bit is set to 1, the
corresponding characteristic is true for the device.)

DV.REC=l

Record-oriented device

DV.CCL=2

Carriage-control device

DV.TTY=4

Terminal device. If DV.TTY is set, then the UCB contains
extra cells (for U.LUIC, U.CLI, and optionally U.UAB).

DV.DIR=lO

Directory device

DV.SDI=20

Single directory device DV.SQD=40

Sequential device

DV.MSD=100

Mass Storage device

DV.UMD=200

Device supports user-mode diagnostics

DV.EXT=400

unit is on an extended 22-bit controller

4-43

DRIVER DATA STRUCTURE DETAILS

DV.SWL=1000

Unit is software write-locked

DV.ISP=2000

Input spooled device

DV.OSP=4000

output spooled device

DV.PSE=10000

Pseudo device. If this bit is set, the UCS does not extend
past the U.CWi offset.

DV.COM=20000

Device mountable as a communications channel

DV.Fii=40000

Device mountable as a FILES-i1 device

DV.MNT=100000

Device mountable*

U.CW2 (device-specific characteristics)

Driver access:

Initialized, read-write.

Description:

Specific to a given device driver (available for working
storage or constants}.**

U.CW3 (device-specific characteristics)

Driver access:

Initialized, read-write.

* If your user-written driver services a mountable device, refer to
Section 4.5.7 for information on volume valid processing and
privileged ACP functions.

4-44

DRIVER DATA STRUCTURE DETAILS

Description:

Specific to a given device driver (available for working
storage or constants).*

U.CW4 (device-specific characteristics)

Driver access:

Initialized, read-only.

Description:

Default buffer size in bytes. This word is changed by a
system command (SET with the IBUF keyword). The value in
this word effects FCS, RMS, and many utility programs.

U.SCB (SCB pointer)

Driver access:

Initialized, read-only.

Description:

U.ATT (0)

This field contains a pointer to the status control block for
this UCB. In general, R4 contains the value in this word
when the driver is entered by way of the driver dispatch
table, because service routines frequently reference the SCB.

Driver access:

Initialized, not referenced.

** An exception is that, for block-structured devices, U.CW2 and U.CW3
may not be used for working storage. In drivers for block-structured
devices (disks and DECtape), these two words must be initialized to a
double-precision number giving the total number of blocks on the
device. Place the high-order bits in the low-order byte of U.CW2 and
the low-order bits in U.CW3.

* An exception is that, for block-structured devices, U.CW2 and U.CW3
may not be used for working storage. In drivers for block-structured
devices (disks and DECtape), these two words must be initialized to a
double-precision number glvlng the total number of blocks on the
device. Place the high-order bits in the low-order byte ofU.CW2 and
the low-order bits in U.CW3.

4-45

DRIVER DATA STRUCTURE DETAILS

Description:

If a task has attached itself to the device-unit, this field
contains its task control block address.

U.BUF (reserve two words of storage)

Driver access:

Not initialized, read-write.

Description:

U.BUF labels two consecutive words that serve as a
communication region between $GTPKT and the driver. If a
nontransfer function is indicated (in D.MSK), then U.BUF,
U.BUF+2, and U.CNT receive the first 3 parameter words from
the I/O Packet.

For transfer operations, the initial format of these two
words depends on the setting of UC.NPR in U.CTL. The driver
does not format the words; all formatting is completed before
the driver receives control. The format is determined by the
UC.NPR bit, which is set for an NPR device and reset for a
program-transfer device.

The format for program-transfer devices is an address
doubleword identically formatted to I.IOSB+2 and I.IOSB+4.

In general, the driver does not manipulate these words when
performing I/O to a program-transfer device. Instead, it
uses the Executive routines Get Byte, Get Word, Put Byte, and
Put Word to effect data transfers between the device and the
user's buffer.

The details of the construction of the Address Doubleword
appear in Chapter 7.

U.CNT (reserve one word of storage)

Driver access:

Not initialized, read-write.

Description:

Contains the byte count of the buffer described by U.BUF.
The driver uses this field in constructing the actual device
request.

4-46

U.UCBX

DRIVER DATA STRUCTURE DETAILS

U.BUF and U.CNT keep track of the current data item in the
buffer for the current transfer (except for NPR transfers).
Because this field is being altered 'dynamically, the I/O
Packet may be needed to reissue an. I/O operation (for
instance, after a powerfail or error retry).

Driver access:

Not initialized, not referenced

Description:

This field contains
secondary pool for
(DV.MSD=l).

a pointer to
mass storage

the UCB extension in
devices with DV.MSD set,

For information on formatting, see the description of the
UCBDF$ macro.

U.PRM (Device-dependent words)

Driver access:

Not initialized, read-write.

Description:

The driver establishes this variable-length' block of words to
suit device-specific requirements. For example, a disk
driver uses the first words to store the disk geometry as
follows:

.BLKB

.BLKB

.BLKW

1
1
1

i# OF SECTORS PER TRACK
i# OF TRACKS PER CYLINDER
i# OF CYLINDERS PER VOLUME

The driver can call the $CVLBN routine (described in Chapter
7) to convert a logical block number to a disk address based
on the values in U.PRM and U.PRM+2.

4.4.5 The Status Control Block (SCB)

Figure 4-10 is a layout of the SCB. The SCB contains the context for
a unit operation and describes the status of a unit that can run in
parallel with all other units.

4-47

DRIVER DATA STRUCTURE DETAILS

S.LHD

- Input/Output
Queue Listhead

S.FRK Fork Link Word

Fork PC

Fork R5

Fork R4

- o

2

6

10

12

14

Driver/Fork KISAR5 S.KS5 16

I/O Packet Address S.PKT 20

Initial Time-Out Count Current Time-Out Count S.CTM/S.ITM 22

Status Extension Status S.STS/S.ST3 24

S.ST2 26 Status Extension

S.KRB 30 KRB Address

•

•

•
S.KTB r KRB Address 0

I- - - - -- -,
L_ KRB Address 1 _J

•
•

•
r KRB Address n

1
t- -I
L

0
J

Figure 4-10: Status Control Block

4-48

DRIVER DATA STRUCTURE DETAILS

The fields* in the sca are described as follows:

S.LHD (first word equals zero; second word points to first)

Driver access:

Initialized, not referenced.

Description:

Two words forming the I/O queue listhead. The first word
points to the first I/O Packet in the queue, and the second
word points to the last I/O Packet ln the queue. If the
queue is empty, the first word is zero, and the second word
points to the first word.

S.FRK (reserve four words of storage)

Driver access:

Initialize words to zero, not referenced.

Description:

S.KS5 (0)

The four words starting at S.FRK are used for fork-block
storage if and when the driver deems it necessary to
establish itself as a Fork process. Fork-block storage
preserves the state of the driver, which is restored when the
driver regains control at fork level. This area is
automatically used if the driver calls $FORK.

Driver access:

Initialized, not referenced.

Description:

This word contains the contents of KISAR5 necessary to
correctly alter the Executive mapping to reach the driver for
this unit. It is set by PROLOD, and whenever a fork block is
de queued and executed, this word is unconditionally jammed
into KISAR5. ADJACENCY WITH THE FORK BLOCK IS ASSUMED!

S.PKT (reserve one word of storage)

* Parenthesized contents following the symbolic offset indicate the
value to be initialized in the data base source code.

4-49

DRIVER DATA STRUCTURE DETAILS

Driver access:

Not initialized, read-only.

Desqription:

S.CTM (0)

Address of the current I/O Packet established by $GTPKT. The
Executive uses this field to retrieve the I/O Packet address
upon the completion of an I/O request. S.PKT is not modified
after the packet is completed.

Driver access:

Not initialized, read-write.

Description:

P/OS supports device timeout, which enables a driver to limit
the time that elapses between the issuing of an I/O operation
and its termination. The current timeout count (in seconds)
is typically initialized by moving S.ITM (initial timeout
count) into S.CTM. The Executive clock service (in module
TDSCH) examines active times, decrements them, and, if they
reach zero, calls the driver at its device timeout entry
point.

The internal clock count is kept in i-second increments.
Thus, a time count of 1 is not precise because the internal
clocking mechanism is operating asynchronously with driver
execution. The minimum meaningful clock interval is 2 if you
intend to treat timeout as a consistently detectable error
condition. If the count is zero, then no timeout occurs; a
zero value is, in fact, an indication that timeout is not
operative. The maximum count is 250. The driver is
responsible for setting this field. Resetting occurs at
actual timeout or within $FORK and $IODON.

S.ITM (initial timeout count)

Driver access:

Initialized, read-only.

Description:

Contains the initial timeout value that the driver can load
into S.CTM to begin device timeout.

4-50

DRIVER DATA STRUCTURE DETAILS

S. STS (0)

Driver access:

Initialized, not referenced.

Description:

Establishes the controller as busy/not busy (nonzero/zero).
This byte is the interlock mechanism for marking a driver as
busy for a specific controller. The byte is tested and set
by $GTPKT and reset by $IODON.

S.ST3 (driver-specific status byte)

Driver access:

Initialized, referenced by driver for synchronization.

Description:

This status byte is reserved for driver-specific status bits
concerning driver-executive or driver-driver communication.
Figure 4-11 shows the layout of this byte.

S.ST3 (S.STS)

15 8 I

I I I I I I I I I
j t ~

I
S3 • DRL - Reserv ed

ed S3 • NRL - Reserv
S3.SIP - Seek i n progress on drive

ed 83.ATN - Reserv
ed S3 • SIN - Reserv

83. SPA - Rese rved
ed S3. SPB - Rese:rv

83.0 ptimization enabled (1 yes) PT - Seek a

Figure 4-11: Controller Status Extension 3

The following are the descriptions for the currently defined
bits. All currently defined bits are used by mass storage
devices.

4-51

DRIVER DATA STRUCTURE DETAILS

S3.SIP=4

If this bit is set, the drive has a seek in progress. A
driver that supports overlapped seek operations examines this
bit to keep track of whether the drive is seeking. For a
driver that does not support overlapped operations, this bit
is set to indicate that a positioning operation is in
progress.

S3.SPB=100

If this bit is set, port B on this unit is spinning up.

S3.0PT=200

Reserved for future use. Must be clear.

S.ST2 (controller status extension)

Driver access:

Initialized.

Description:

This status word defines certain status conditions for the
controller-unit combination. Figure 4-12 shows the layout of
this word.

4-52

S.ST2

DRIVER DATA STRUCTURE DETAILS

All unused bits are reserved
for system use and expansion.

52.EIP - Error in progress (1 = yes)
52. ENB - Reserved

'---- 52.LOG - Reserved
~--- 52.MAD - Multiaccess device (l = yes)

'--_____ 52.IDS - Reserved (not supported)

'--------- 52.0PI' - Device supports seek optimization (1 yes)
'--------- 52.roN - Contiguous KRB/SCB allocation (1 yes)

'"---------- 52.0P1 - Irrlicates the type of optimization used
'----------- 52.0P2 - Irxlicates the type of optimization used

'------------- 52.ACT - Driver has operation (I/O) active (1 yes)

Figure 4-12: Controller Status Extension 2

DIGITAL has attempted to restrict bits in this word to those
defining system-wide status. Specific bits for driver and
Executive synchronization or driver internal synchronization
are allocated from S.ST3. The following are the descriptions
for the currently defined bits:

S2.MAD=10

This bit indicates the presence of the table of KRB addresses
at the end of the Status Control Block. PROtOD will relocate
these KRB addresses, but it is the drivers' responsibility to
manage controller assignment.

S2.CON=200

This bit indicates the contiguous allocation of the
controller request and status control blocks. Devices that
do not support overlapped operation do not require a separate
SCB for each unit. The KRB and SCB for such devices can be
contiguous and some fields in the SCB overlap those in the
KRB. Therefore, the SCB offsets S.CSR, S.PRI, S.VCT, and
S.CON are valid only for such devices. For these devices,
S2.CON is set.

For the layout of the contiguous KRB and SCB, refer to
Section 4.4.7.

S2.ACT=2000

4-53

DRIVER DATA STRUCTURE DETAILS

If this bit is set, the driver has active I/O.

S.KRB (pointer to currently assigned KRB)

Driver access:

Initialized, referenced by driver to access the KRB.

Description:

This word points to the currently assigned controller request
block. If this word has a value of zero, then the device has
no currently assigned KRB. It may, in fact, not have a KRB
or CTB at all. Both the null driver and virtual terminal
driver have no KRB.

Certain restrictions apply to drivers whose data bases do not
include KRBs. They will receive powerfail, timeout, and
cancel calls like any other driver, but the priority will
always be zero, and the CSR address and controller index
(where supplied) will be undefined.

NOTE

All code that checks S.KRB for a KRB pointer
must check for a possible zero value and take
appropriate action. A zero value in S.KRB
does not necessarily mean that a KRB does not
exist, but perhaps rather that one is not
currently assigned. P/OS systems do not
currently provice active support of
multi-access devices. If needed, however,
the driver may dynamically change this KRB
pointer for its own purposes.

The first cell in the KRB (K.CSR) contains the control and
device register address for the controller.

S.KTB (KRB addresses)

Driver access:

Initialized.

Description:

This table appears only if and the device is multiaccess (the
S2.MAD bit set).

4-54

DRIVER DATA STRUCTURE DETAILS

Every controller to which the unit (unit control block
and status control block combination) can communicate
is represented in this table by a controller request
block address. The table contains at least two
entries, with the list terminated by a zero word. Only
the driver may change S.KRB, and it mayor may not use
the low-order bit of the KRB addresses in S.KRB as an
on-line and off-line flag. System software (other than
the driver) must not modify S.KRB and must tolerate a 1
in the low-order bit of the values in S.KTB.

4.4.6 The Controller Request Block (KRB)

Figure 4-13 is a layout of the controller request block. One KRB
exists for each controller. If a controller allows only a single
operation on a single unit at a time, then the driver can
allocate the controller request block and the status control
block in contiguous space. with such contiguous allocation, all
offsets commonly used by the driver are referenced by their S.xxx
forms. The system will still use the offset S.KRB and the K.xxx
forms for all references. Refer to Section 4.4.7 for the
contiguous SCB/KRB allocation.

The fields* in the KRB are described as follows:

K.PRM (device-dependent storage)

Driver access:

Initialized, read-write.

Description:

PROLOD does not relocate any addresses in this area.

* Parenthesized comments following the symbolic offset indicate
the value to be initialized in the data base source code.

4-55

DRIVER DATA STRUCTURE DETAILS

K:PRM

K.SlT

K.ICSR

K.VCTSI K.PRI S

K.IOC/K.CON 5

K.STS

K.CSR S

K.OFF

K.HPU

K.OWN

K.CRQ 1

K.URM 1.2

Start of UCB table
4

4

4

Driver dependent storage

interrupt controller CSR

reserved slot number

Vector/4 Priority

Controller I/O count Controller index

Controller status

Control and status register address

Offset to UCB table

Unused Highest physical unit

Owner (UCB address of unit owned)

Controller request queue listhead

L_ Controller UNIBUS run mask - _I
•
•
•

UCB address physical unit 0

•
•
•

UCB address physical unit n

-1

Figure 4-13: Controller Request Block

4-56

-6

-4

- 2

o

2

4

6

10

14

DRIVER DATA STRUCTURE DETAILS

K.PRI (device priority)

Driver access:

Initialized, read-only.

Description:

Contains the priority at which the device interrupts. Use
symbolic values (for example, PR4) to initialize this field
in the driver data source code. These symbolic values are
defined by issuing the HWDDF$ macro.

K.VCT (interrupt vector divided by 4)

Driver access:

Initialized, not referenced.

Description:

First interrupt vector address divided by 4.

K.CON (controller number times 2)

Driver access:

Initialized, read-only.

Description:

K.IOC (0)

Controller number multiplied by 2. Drivers that support more
than one controller use this field. A driver may use K.CON
to index into a controller table created in the driver data
base source code and maintained internally by the driver
itself. By indexing the controller table, the driver can
service the correct controller when a device interrupts.

Because this number is an index into the table of addresses
in the CTB, its maximum value is limited by the value of
L.NUM in that CTB.

Driver access:

Initialized, not referenced.

Description:

4-57

DRIVER DATA STRUCTURE DETAILS

Reserved for future use.

K.STS (controller-specific status)

D.river access:

Initialized, not referenced.

Description:

This word is
controller.
status word.

used
Figure

as a status word that concerns the
4-14 shows the layout of the controller

K.STS

Figure 4-14: Controller Status Word

(1 = yes)

Unused bits are reserved
for system use and expansion.

KS.OF L . Controller offline
KS.MOF - Controller marked for offline

KS.UOP· Supports overlapped operation
KS.MBC - Reserved
KS.SDX • Seeks allowed during data transfers
KS.POE • Parallel operation enabled
KS.UCB· UCB table present
KS.DIP . Data transfer in progress
KS.PDF . Privileged diagnostic functions only

KS.EXT - Extended 22-bit UNIBUS controller
KS.SLO - Controller is slow coming online

All undefined bits are reserved for use
Currently defined bits are:

by DIGITAL.

KS.MOF=2

If this bit is set, the unit/controller is in the process of
becoming offline.

KS.UOP=4

4-58

DRIVER DATA STRUCTURE DETAILS

This bit indicates whether the controller supports unit
operation in parallel and requires synchronization. If this
bit is set, each unit attached to the controller is capable
of operating independently. Therefore, the KRB contains a
UCB table holding the UCB addresses of each independent unit.

KS.SDX=20

If this bit is set, the controller allows seek operations to
be initiated while a data transfer is in progress. (Some
types of disks, such as the RK06 and RK07, support overlapped
seek operations but do not allow a seek to be initiated if a
data transfer is in progress.) The Executive routines Request
Controller for Control Function ($RQCNC) and Request
Controller for Data Transfer ($RQCND) examine this bit to
distinguish between the two types of controllers that support
overlapped seeks.

KS.POE=40

If this bit is set, the driver may initiate an I/O operation
on the controller in parallel with other I/O operations. A
driver that supports overlapped seek operations checks this
bit to decide whether it should attempt to perform an I/O
operation as a seek phase and then a data transfer phase
(that is, overlapped) or as an implied seek (that is,
nonoverlapped). If this bit is set, the driver can then
attempt the overlapped operation.

An overlapped driver must check this bit once only for each
I/O operation. The driver must not rely on the bit value to
decide whether, upon being interrupted, the driver was
attempting a seek operation. The driver should use the
S2.SIP bit to hold its internal state.

KS.UCB=100

This bit indicates the presence of the table of unit control
block addresses associated with the KRB. If this bit is set,
K.OFF gives the offset from the beginning of the KRB to the
start of the UCB table.

Devices that support unit operation in parallel (for example,
overlapped seeks) require a mechanism for finding the UCB of
the unit generating an interrupt. Therefore, if KS.UOP is
set, a UCB table must exist. If KS.UOP is not set, however,
a UCB table may still exist because some devices (for
example, terminal multiplexers) support full unit operation
in parallel but do not require synchronization. Therefore,
KS.UCB may be used to determine whether the UCB table exiats,
regardless of whether KS.UOP is set.

4-59

DRIVER DATA STRUCTURE DETAILS

KS.DIP=200

If this bit is set, a data transfer is in progress. A driver
that supports overlapped seek operation sets or clears this
bit to indicate to itself whether, after an interrupt, a data
transfer is in progress. The driver must set or clear this
bit. Usage of this bit eliminates the need for the software
to access the device registers to determine what type of
operation was in progress.

K.CSR (start of controller device register addresses)

Driver access:

Initialized, read-only.

Description:

Contains the first address
controller. The driver
operations.

of the
uses

NOTE

device
K.CSR

for
to

the device
initiate I/O

This word is guaranteed to be offset zero for
the KRB.

K.OFF (offset in bytes (from K.CSR) to start of UCB table)

Driver access:

Initialized, referenced by interrupt dispatch code.

Description:

This word contains the offset to the beginning of the unit
control block table. When added to the starting address of
the KRB, it yields the UCB table address.

The status bit KS.UCB may be used to determine whether the
UCB table exists. A UCB table may exist if KS.UOP is not
set, since some devices (for example, terminal multiplexers)
support full unit operation in parallel with no
synchronization required. If KS.UOP is set, a UCB table must
appear (and KS.UCB will also be set).

K.HPU (highest physical unit number)

Driver access:

4-60

DRIVER DATA STRUCTURE DETAILS

Initialized.

Description:

K.OWN (0)

This byte contains the value of the highest physical unit
number used on this controller.

Driver access:

Initialized, referenced for actual unit.

Description:

This word has three slightly different uses, depending on the
particular device.

1. For controllers which always have only a single unit
connected to them (for example, the line printer),
K.OWN/S.OWN always points to the UCB of that unit. You
can use the suc argument in the GTPKT$ macro to
statically initialize this cell in the data base.

2. For controllers that may have multiple units attached but
do not support unit operation in parallel, K.OWN/S.OWN is
set with the currently active unit by code generated with
the GTPKT$ macro suc argument set to blank.

3. For controllers that support unit operation in parallel
and require synchronization (KS.UOP is set), this is a
busy/nonbusy interlock for the controller. If the
controller is busy for a data transfer, this word
contains the UCB address of the currently active unit.
This word is set and cleared by the Request Controller
for Control Access ($RQCNC), Request Controller for Data
Access ($RQCND), and Release Controller ($RLCN) routines.

K.CRQ (first word equals 0; second word points to first)

Driver access:

Initialized, not referenced.

Description:

Two words that form the controller wait queue. Fork
blocks are queued here for driver processes that have
requested controller access. Driver processes that
request access for control functions are queued on the
front of the list, and those that request access for data

4-61

DRIVER DATA STRUCTURE DETAILS

transfer are queued on the end of the list.

KE.UCB

Driver access:

Initialized, referenced by interrupt dispatch code.

Description:

This table contains the unit control block addresses for
the units on this controller. Physical unit zero is in
the first word, unit one is in the second word, and unit
n is in word n+1. The table has a length of (K.HPU+1)
words. A value of zero in this table indicates a
physical unit number for which no actual physical unit
exists. The table is terminated by a-i.

NOTE

This table exists only for those devices that
have KS.UCB set.

4.4.7 Contiguous Allocation of the SCB and KRB

In a configuration where a controller and the Executive supports only
a single operation on a unit at one time, the driver can allocate
space for the KRB and the SCB in a contiguous area. Some fields of
the KRB overlap those in the SCB. Although the KRB and SCB in this
arrangement are contiguous, the system still considers the I/O data
structure to contain a KRB. The system will still use the S.KRB
offset and the K.xxx forms for all references. The driver can
reference the fields by the S.xxx form of the symbolic offset
definitions. Figure 4-15 shows the physical layout of the contiguous
KRB and SCB allocation.

4.4.8 Controller Table (CTB)

Figure 4-16 is a layout of the controller table. You ensure that the
CTB is linked into the system list of controller tables by placing the
global label $xxCTB at the start of the table of the KRB addresses in
the CTB.

4-62

DRIVER DATA STRUCTURE DETAILS

S.VCT/S.PRI

S.CON

S.CSR

S.LHD

S.FRK

S.KS5

S.PKT

S.CTM/S.ITM

S.STS/S.ST3

S.ST2

S.KRB

K.PRM

K.SLT

K.ICSR

K.VCT/K.PRI

K.IOC/K.CON

K.STS

K.CSR

K.OFF

K.HPU

K.OWN

K.CRQ

KE.RHB
Start of UCB table

Driver-dependent storage

interrupt controller CSR

reserved slot nUll1ber

Vector/4 Priority

Controller 1/0 Count Controller index

Controller status

Pointer to CSR

Offset to UCB table

Unused Highest physical unit

Owner UCB

Input/output queue listhead

~ - - - - - - - - - - -
Fork Link
Fork PC
Fork R5
Fork R4

KISAR5

I/O packet address

Initial Time-Out Count Current Time-Out Count

Status Extension Status

Status extension

KRB address

•
•
•

UCB address physical unit 0

•
•
•

UCB address physical unit n

.,
Figure 4-15: Contiguous KRB/SCB Allocation

4-63

~

~

-6

-4

-2

o
2

4

6

10

DRIVER DATA STRUCTURE DETAILS

l.CLK

l.olD

L.ICB

L.LNK 1

L.NAM

l.oCB 2

L.STS/L.NUM

LKRB!

r----
8-word
Clock
Block

(Optional)

hardware device 10

Link to first ICB

Link to next eTB

Generic controller name

oCB address

Controller status INumber of KRB addresses

KRB address 0

KRB address n

-4

-2

o
2

4

6

10

1 The head of the list of controller tables is $CTLST in SYSCM.
21f LS.CIN is set. this cell points to the common interrupt

address table rather than to the oCB.

Figure 4-16: Controller Table

The fields* in the CTB are described below:

L.CLK

Driver access:

Initialized

Description:

* Parenthesized contents following the symbolic offset indicate
the value to be initialized in the data base source code.

4-64

DRIVER DATA STRUCTURE DETAILS

This is the clock queue entry for these devices that
need a single clock block per generic controller type.
It only appears if LS.CLK is set.

L.ICB (reserve one word of storage)

Driver access:

Not initialized, not referenced.

Description:

This word contains the address of the first interrupt
control block for this type of controller, divided by
two (2).

L.LNK (0 or link to next CTB in list)

Driver access:

Not initialized, not referenced.

Description:

All the controller tables in the system are linked
together so they can be found, and they are threaded
through this first word. A zero link terminates this
list.

A CTB must exist for every physical controller type in
the system.

L.DID (controller's hardware ID)

Driver access:

Initialized, read-only.

Description:

This hardware ID is the controller mnemonic used to find
this controller table from among all the others in the
system.

L.NUM (number of KRB addresses)

Driver access:

Initialized, read only.

Description:

4-65

DRIVER DATA STRUCTURE DETAILS

Used by programs that scan the controller tables to
compute the number of KRB addresses. This value is
never zero, since without controller .request blocks
there should be no controller table.

L.STS (generic controller status)

Driver access:

Initialized, read only.

Description:

The controller table status bits give information about
the class of controllers. Figure 4-17 shows the layout
of this byte.

l.STS l.NUM (1 yes)

Unused bits are reserved
for system use and expansion.

LS.CLK - Clock block allocated

LS.MDC - Multidriver controller
LS.CBL - Clock block linked into clock queue
LS.CIN - Controller uses common interrupt address tabh
LS.NET - DECnet device

Figure 4-17: Controller Table Status Byte

The following are the descriptions of these bits:

LS.CLK=l

If this bit is set, the controller table has an 8-word
clock block.

LS.MDC=2

If this bit is set, multiple drivers service units
attached to the associated controller.

LS.CBL=4

4-66

DRIVER DATA STRUCTURE DETAILS

If this bit is set, the clock block is linked into the clock
queue.

L.KRB (KRB addresses of controllers)

Driver access:

Initialized once for the controller, not referenced.

Description:

A list of the controller request block addresses ordered by
their respective controller numbers. This table is indexed
by the controller index retrieved from the PS word
immediately after an interrupt. The table is of length
(L.NUM) words. While the interrupt routines will not have to
scan the list in a linear fashion, the only way to find all
the controller request blocks in the system includes a linear
scan of all the controller tables. The CTB is static.

The address of the start of the KRB address list in the CTB
is the global symbol $xxCTB in the driver dispatch table.
PROLOD supplies this address in the DDT when it loads the
driver.

Proper action for drivers to access their list of KRB
addresses is to retrieve the address of the start of the KRB
list in the CTB from the cell in the driver dispatch table
set up by PROLOD.

4.5 DRIVER CODE DETAILS

This section describes the specific requirements for driver code. The
driver code must contain a driver dispatch table which allows the
Executive to call the driver to perform discrete system functions. If
the driver needs to access either system structures such as the
partition and task control blocks or structures within its own data
base, it should use the system-wide symbolic offsets rather than the
real offsets. Because the driver is built with the Executive library
EXELIB.OLB, the symbolic offsets are automatically defined for the
driver code. If you want to see the definitions of the symbols in
your driver listing, place in your driver source code the related
macro name in a .MCALL directive and invoke the macro. (For your
convenience, the source code of the macro calls that define the
symbols of structures is in Appendix A.) The detailed descriptions of
the driver data base structures are in Section 4.4.

4-67

DRIVER CODE DETAILS

4.5.1 Driver Dispatch Table Format

The driver dispatch table associates the entry points that the
Executive expects to find in a device driver and the actual locations
of the routines in the driver code. The DDT also provides a link from
the driver code to the driver data base. Figure 4-18 shows the format
of the DDT. Section 4.3.1 describes the DDT$ macro call, which
automatically generates the DDT.

All device drivers require a driver dispatch table somewhere in the
first 4K words of the driver code. Conventionally, the table is
located at the begjnning of the code.

NOTE

If the length of a driver must exceed 4K words (20000
octal bytes), then your driver must set up the mapping
for the second 4K words whenever it is entered; and,
of course, all entry points must be in the first 4K
words of the driver.

The driver must define some labels that the Executive routines and the
INTSV$ macro call use to access the DDT. Table 4-10 lists these
labels, which are automatically generated by the DDT$ macro call.
Because these labels do not appear in the DDT itself, their format is
fixed and they must be specified in the format shown.

Table 4-9: Labels Required for the Driver Dispatch Table

Required Format

$xxTBL::

xxCTB:

$xxTBE: :

Meaning

Defines the start of the DDT.
routines use this label to fill

The PROLOD
in D.DSP.

Defines the pointer to the table of KRB
addresses in the eTB of the controller for
device xx. Because a driver can support
different types of controllers, there may
be more than one of this form of label.
(The DDT$ macro supports only one
controller type.)

Defines the end of the DDT for Executive
PROLOD routines that scan the DDT.

4-68

DRIVER CODE DETAILS

D.VNXC. D.VCHKl

D.VDESl I

$xxTBL: : D.VINI I/O Initiation Entry Point Address

D.VCAN Cancel Entry Point Address

D.VTIM Timeout Entry Point Address

D.VPWF Powerfailure Entry Point Address

D.VKRB Controller Status Change Entry Point Address

D.VUCB Unit Status Change Entry Point Address

+ D.VINT Generic Controller Name (ASCII) for xy

Interrupt Entry Point Address 0 - -Interrupt Entry Point Address 1

0

Pointer to KRB table in CTB (for INTSV$) for xy controller

0

t wzCTB: Pointer to KRB Table in CTB (for INTSV$) for wz controller

o

$xxTBE:: o

1. These are optional advance driver features

Figure 4-18: Driver Dispatch Table Format

-4

-2

o
2

4

6

10

12

14

At offsets D.VINI through D.VUCB in the DDT of your

4-69

driver appear

DRIVER CODE DETAILS

labels defining the addresses of the entry points in the driver. As a
standard procedure, you supply the labels described in Table 4-10 at
the entry points in the driver code. The formats of the standard
labels that appear in the DDT are not fixed. Because the Executive
expects to find the entry point addresses at fixed offsets from the
start of the DDT and the labels themselves appear in the DDT, you can
change their format if you construct the DDT without using the DDT$
macro call. However, other labels that are required in the driver
code but do not appear in the DDT have a certain, fixed format which
you must not change. For reference, these fixed format labels are the
following:

$xxTBL::
$xxTBE::
$xxLOA::
$xxUNL::

These fixed-format labels are described elsewhere in this chapter.
The DDT$ macro uses the standard labels but allows you to alter the
forma~ of some of them.

At offset D.VINT in the DDT is the name of the controller type that
the driver supports. (The same name is in the CTB.) If the driver has
no controller (such as the virtual terminal driver VTDRV), this word
is zero. The structure allows the driver to support multiple
controller types. (The terminal driver supports different controller
types.) Although the DDT$ macro supports only one controller type,
there is no restriction on the number of controller types that a
driver can support.

After each controller name follows a block of interrupt entry
addresses. At location D.VINT+2 begins the first interrupt address
block, each word of which defines an address to be included in a
vector for the driver. A zero terminates the block and indicates that
there are no more interrupt entry points for the controller. There is
no restriction on the number of vectors each controller may have. For
a single interrupt device, location D.VINT+2 (interrupt entry address
0) is the interrupt address.

4-70

DRIVER CODE DETAILS

Table 4-10: Standard Labels for Driver Entry Points

Label

xxINI:

xxCAN:

xxCHK:

xxOUT:

xxPWF:

xxKRB:

xxUCB:

$xxINT:

Entry Point

I/O initiation

Cancel I/O

Block check and conversion

Device timeout

Power failure

Controller status change

Unit status change

Interrupt entry point

* The characters xx are the 2-character mnemonic.

D.VINT xx

XXIN1

XXIN2

o

XXCTB: 0

Figure 4-19: Sample Interrupt Address Block in the DDT

4-71

DRIVER CODE DETAILS

4.5.2 1/0 Initiation Entry Point

The offset D.VINI in the driver dispatch table contains the address of
this entry point. A driver is called at this entry point at priority
o from the Executive routine $DRQRQ in the module DRSUB. A driver
should call the Executive $GTPKT routine to get an I/O packet to
process. This action dequeues an I/O request. The following are the
register conventions when the Executive enters the driver.

RS = address of the UCB of the unit for which the Executive has
queued an I/O packet

This entry condition pertains unless the driver wants to delay the
queuing operation. Therefore, if the queue-to-driver bit UC.QUE in
the unit status block offset U.CTL is set, the following are the
register conventions.

RS UCB address of unit for which a packet has been created
R4 SCB address of the related unit
Rl address of the I/O packet

For information on coding requirements for the queue-to-driver
operation, see the description of the UC.QUE bit in Section 4.4.4.
See Chapter 8 for an example of its use.

The GTPKT$ macro call automatically generates the call to the $GTPKT
routine and the code to process the return from $GTPKT. Upon return
from $GTPKT, the C bit indicates whether there is a packet to process.

C = 1

C o

If the C bit is set, the Executive found the controller
busy, could not dequeue a request, or had to call $FORK
to have the driver run on the correct processor.

If the C bit is clear, the Executive successfully
dequeued a packet for the driver and placed it in the
device's input/output queue.

If a request was successfully dequeued, the following are the contents
of the registers:

R5 Address of unit control block
R4 Address of status control block
R3 Controller index
R2 Physical unit number of device to process
Rl Address of the I/O packet

If the C bit is set, the driver returns control to the caller (a
RETURN instruction should be executed). If the C bit is clear, the
generated code loads the location at offset K.OWN/S.OWN in the
contiguous KRB/SCB with the UCB address of the unit to process. The
driver may then process the request and activate the device. All

4-72

DRIVER CODE DETAILS

registers are available to the driver. The driver executes a RETURN
instruction to transfer control to the system.

4.5.3 Cancel Entry Point

The offset D.VCAN in the driver dispatch table contains the address of
this ~ntry point. The Executive routine $IOKIL in the IOSUB module
calls the driver at this entry point at device priority. When the
Executive enters the driver, the following register conventions
pertain:

R5 UCB address
R4 SCB address
R3 = Controller index (undefined if S.KRB equals zero)
Rl Address of TCB of current task
RO Address of active I/O packet

The usage of this entry point is explained in Section 2.2.2. All
registers are available to the driver. The driver returns control to
the Executive by executing a RETURN instruction.

4.5.4 Device Timeout Entry Point

The offset D.VTIM in the driver dispatch table contains the address of
this entry point. Routines in the Executive module TOSCH call the
driver at this entry point at device priority. When the Executive
enters the driver, the entry conditions are as follows:

R5 UCB address
R4 SCB address
R3 Controller index (undefined if S.KRB equals zero)
R2 Address of device CSR
RO I/O status code IE.DNR (Device Not Ready)

The usage of this entry point is explained in Section 2.2.3. All
registers are available to the driver. The driver returns control to
the Executive by executing a RETURN instruction.

4.5.5 Deallocation Entry Point

The offset D.VDEB in the driver dispatch table contains the address of
this entry point. This entry point is called at priority zero from
the routine $FINBF in the Executive module SYSXT after a buffered I/O
request completes. The driver is expected to deallocate its buffers
at this entry point. When called, the registers are set up as

4-73

DRIVER CODE DETAILS

follows:

RO = address of the first buffer

All regist~rs are available to the driver. The driver returns control
to the Executive by executing a RETURN instruction.

4.5.6 Power Failure Entry Point

The offset D.VPWF in the driver dispatch table contains the address of
this entry point. The routines in the Executive module POWER call the
driver at this entry point at priority 0 for both unit and controller
power failures. The Executive first calls the driver for controller
power failure with the C bit set. The driver is called in this
fashion once for each controller. The following are the register
conventions:

C bjt set (controller power failure)

R3 CTB address
R2 KRB address

The driver may use all registers.

After the Executive has called the driver for all related controllers,
it calls the driver once for each unit power failure at priority 0
with the C bit clear. The following are the register conventions:

C bit clear (unit power failure)

RS UCB address
R4 SCB address
R3 Controller index

For both controller and unit power failures, the driver returns
control to the calling routine by executing a RETURN instruction.

4.5.7 Controller Status Change Entry Point

The offset D.VKRB in the driver dispatch table contains the address of
this entry point. The Executive routine $KRBSC in the OLRSR module
calls the driver at this entry point at priority 0 to put a controller
on-line or to take a controller off-line.
The C bit indicates whether the request is for off-line or on-line.
The following are the register conventions upon entry to the driver.

R3 = CTB address for the controller

4-74

DRIVER CODE DETAILS

KRB address of controller changing status
Return address for completion

R2
O(SP)
2(SP) Return address for caller of the Executive routine

The C bit is set to indicate the requested status change as follows:

CiOn-line to off-line transition
C 0 Off-line to on-line transition

The status change byte $SCERR is preset as follows:

$SCERR = 1

The driver indicates the return status in the $SCERR byte as follows:

$SCERR < 0 Operation is not successful and a negative value in
$SCERR is the I/O error code. Thus, a negative value
rejects the status change requested by the C bit.

$SCERR 1 Operation is successful.
status change requested.
condition.

The driver
This is

accepts the
the default

All registers are available to the driver. The Executive does not
change the status of the controller until and unless the driver shows
successful completion of the on-line or off-line request.

The driver must return immediately by either of the following methods:

1. The driver can indicate the return status immediately and can
return to the first address on the stack in the normal
fashion. If the driver accepts the status change, it merely
executes a RETURN instruction. (The status change byte
$SCERR has been preset with 1.) If the driver rejects the
status change, it loads the relevant I/O error code into
$SCERR and executes a RETURN instruction.

2. The driver need not indicate the status immediately but
removes the first address from the stack, saves it, and
returns immediately to the second address. The driver then
has 60 seconds to perform its processing, to indicate the
return status, and to return to the first address. The
driver can use the offset S.CTM in the status control block
to time out some operation (such as a protocol rundown) and
then accept or reject the operation by using $SCERR.

If the driver does not return to the first address on the stack, the
system can be considered to be in an indeterminate state and possibly
corrupted. The driver must return immediately because status changes
should not stall the system. The 60-second delay allows a driver time
to overcome conditions over which it has little control (such as

4-75

DRIVER CODE DETAILS

network connections). System disk and terminal drivers must indicate
return status immediately.

4.5.8 Unit Status Change Entry Point

The offset D.VUCB in the driver dispatch table contains the address of
this entry point. The Executive routine $UCBSC in the OLRSR module
calls the driver at this entry point at priority 0 to put a unit
on-line or to take a unit off-line. This entry is called once for
each unit whose status changes. The C bit indicates whether the
request is for on-line or off-line. The following are the register
conventions:

= Address of UCB or unit changing status
Address of SCB of unit

R5
R4
R3

O{SP)
2{SP)

Controller index (undefined if S.KRB equals zero)
Return address for driver completion
Return address for caller of the Executive routine

The C bit is set to indicate the requested status change as follows:

C = lOn-line to off-line transition
C 0 Off-line to on-line transition

The status change byte $SCERR is preset as follows:

$SCERR = 1

The driver indicates the return status in the $SCERR byte as follows:

$SCERR < 0 Operation is not successful and a negative value in
$SCERR is the I/O error code. Thus, a negative value
rejects the change requested by the C bit.

$SCERR 1 Operation is successful.
status change requested.
condition.

The driver
This is

accepts the
the default

All registers are available to the driver. The driver must return
within 60 seconds. The Executive does not change the status of a unit
until and unless the driver shows successful completion of the on-line
or off-line request.

The driver must return immediately by either of the following methods:

1. The driver can indicate the return status immediately and can
return to the first address on the stack in the normal
fashion. If the driver accepts the status change, it merely
executes a RETURN instruction. (The status change byte

4-76

DRIVER CODE DETAILS

$SCERR has been preset with 1.) If the driver rejects the
status change, it loads the relevant I/O error code into
$SCERR and executes a RETURN instruction.

2. The driver need not indicate the status immediately but
removes the first address from the stack, saves it, and
returns immediately to the second address. The driver then
has 60 seconds to perform its processing, to indicate the

• return status, and to return to the first address. The
driver can use the offset S.CTM in the status control block
to time out some operation (such as a protocol rundown) and
then accept or reject the operation by using $SCERR.

If the driver does not return to the first address on the stack, the
system can be considered to be in an indeterminate state and possibly
corrupted. The driver must return immediately because status changes
should not stall the system. The 60-second delay allows a driver time
to overcome conditions over which it has little control (such as
network connections). System disk and terminal drivers must indicate
return status immediately.

4.5.9 Interrupt Entry Point

Upon an interrupt, control is dispatched to the driver from an
interrupt vector through an interrupt control block or directly from
an interrupt vector. A device may have more than one interrupt entry
point. The entries in the DDT interrupt address block are used to
initialize either the vector(s) or the interrupt control block with
the address(es) of the related interrupt entry point(s). (Refer to
Section 4.5.1 for a discussion of the interrupt address block.) All
drivers should observe the protocol for handling interrupts introduced
in Section 1.3 and summarized in Section 4.1.

The driver will be called from the interrupt dispatch coroutine $INTSI
in the Executive. The following are the register contents when the
driver gets control:

R4 = Controller index

Registers R4 and R5 are available to the driver. The driver runs at
the priority set in the interrupt control block. To dismiss the
interrupt, a driver executes a RETURN instruction.

Drivers should use the INTSV$ macro call at an interrupt entry point,
in order to resolve entry processing. INTSV$ does not generate a call
to $INTSV because PROLOD establishes in the interrupt control block
the call to the $INTSI coroutine. The $INTSI coroutine saves R4 and
R5; sets the priority to that in the interrupt control block; and
forms the controller index from the PS and stores it in R4.

4-77

DRIVER CODE DETAILS

INTSV$ generates code to
interrupting unit. After
following conditions apply:

load
the

RS with the UCB address of the
INTSV$ call in the driver code, the

RS = U~B address of the interrupting unit
R4 = Controller index

The driver may then do the following:

1. Save extra registers if necessary

2. Do whatever processing is necessary

3. Become a fork process to access the data structures or to
call Executive routines if necessary

4. Restore the explicitly saved extra registers

5. Execute a RETURN instruction to the
~ismisses the interrupt

4.5.10 Volume Valid Processing

coroutine, which

System-supplied drivers that service mountable devices (those that
have the DV.MNT bit in the UCB U.CW1 word set) take advantage of
special processing of volume valid for a device. For such devices the
Executive directive processor DRQIO checks that either of the mounted
status bits US.MNT or US. FOR in the UCB U.STS word is set. If a
mounted status bit is not set, DRQIO requires that a device-specific
bit called volume valid (US.VV) be set or else it rejects the
directive. If a mounted status bit is set, DRQIO does not check the
volume valid bit. (DRQIO assumes that the MOUNT command properly set
the volume valid bit.)

To effectively service a mountable device on the system, a
user-written driver should perform in one of two ways. First, it can
take advantage of the volume valid capability in the same way that a
system-supplied driver does. This processing involves calling the
$VOLVD routine in the Executive module IOSUB, and handling the
spinning-up status bit (US.SPU) and the volume valid bit (US.VV) in
the UCB status byte U.STS. (For details of this mechanism, refer to
driver source code supplied on the system.) Second, a user-written
driver can circumvent the volume valid processing by doing the
following:

4-78

DRIVER CODE DETAILS

1. Enable the set characteristics function (IO.STC) for volume
valid in the DCB legal function mask word

2. Enable the same function in the DCB no-op function mask work

3. Statically set the Us.vv bit in the UCB in the driver data
base source code

The second method allows the device to be successfully mounted and
associated with an ancillary control processor without your having to
include code in the driver to handle US.VV.

4-79

CHAPTER 5

INCORPORATING A USER-SUPPLIED DRIVER INTO PIOS

This chapter describes how to incorporate a user-supplied driver into
an P/OS system. The material in the chapter depends on your having
created source code according to the programming specifics given in
Chapter 4.

5.1 INCORPORATING AN 110 DRIVER INTO A PIOS SYSTEM

With the exception of DIGITAL supplied disk I/O drivers and the
terminal driver, all P/OS I/O drivers are loadable with a loadable
data base and are incorporated directly into a running system via a
call to the PROLOD (POSSUM) system service. The driver may also be
unloaded at runtime, as a result of a specific unload request to
PROLOD. The driver data base is never removed as there are many
structures in the system which reference the UCB. Even if it were
possible to track down all references, the required structures might
not be memory resident. Since the system image is not modified as a
result of loading a new driver, the data base can be removed from the
system by rebooting P/OS.

5.1.1 Guidelines for Creating/Adding a Driver Into the System

To incorporate a loadable driver with a loadable data base, use the
following procedure:

1. Create the driver's macro source code file and the data base
source code file in the directory of your choice.

2. Assemble the driver and data base using the prefix file
RSXMC.MAC and the executive data structures macro library
EXEMC.MLB. RSXMC contains the various system configuration
symbols used by the executive's conditionalization and
commonly used macros, such as DOT$, GTPKT$, and INTSV$.

5-1

INCORPORATING AN I/O DRIVER INTO A P/OS SYSTEM

3. Taskbuild (using PAB) your driver code and data base. Ensure
that a symbol table file (.STB) is generated at this time,
since it is required by the PROLOD system service. The
symbol table file is expected to be located in the same
directory and have the same file name as the driver image
file (.TSK). The only difference will be the file name
extension.

4. ,Create a program that will issue the PROLOD system service
call to load your driver. As an aid to debugging, the
logical "PROLOD$MSG" (without the quotes) may be created
using the DCL "ASSIGN" command and set to ASCII "0". This
logical's existence will enable PROLOD ASCII error messages
to be sent to the debugging terminal (TT2:).

5.1.2 Assembling the 1/0 Driver

After you have created the driver source code and data base files,
they must be assembled by the P/OS macro assembler (PMA). It is
suggested that listing files be created in the event debugging is
needed. The following commands illustrate this:

PMA>DRVCOD,DRVCOD=[1,S]EXEMC/ML,RSXMC/PA:1,[]DRVCOD
; Assemble the driver code.

PMA>DRVTAB,DRVTAB=[1,S]EXEMC/ML,RSXMC/PA:1,[]DRVTAB
; Assemble the driver data base.

Note that it is not possible to use ODT in a driver since a driver is
not a task, and it is not possible to issue a system directive from
system state. For debugging tips and procedures, see Chapter 6.

5.1.3 Taskbuilding the 1/0 Driver

After completing the assemblies with no detected errors, taskbuild the
driver code and data base with the following commands:

PAB>DRIVER/-HD/-MM,DRIVER,DRIVER=

PAB>DRVCOD
PAB>DRVTAB

1) The I-HD switch is specified since a task header is not
needed. The driver is not a task but rather an
extension to the executive.

2) The switch /-MM must be used in the command line.
3) A map file is produced and is useful for debugging.
4) A symbol table file is specified since it will be

required by PROLOD.

5-2

INCORPORATING AN I/O DRIVER INTO A P/OS SYSTFM

5) PAB reprompts for input files. Both the code and the
data base are specified. The driver data base is built
into the image following the driver code.

PAB>[1,5]POS.STB/SS
PAB>[1,5]EXELIB/LB
PAB>/

6) POS.STB is specified as input so that executive routine and
listhead references may be resolved.
Note that ISS is required because the presence of certain
global symbols, such as $INTSV, cause PROLOD to reject
load attempts.

7) EXELIB is specified so that data structure offsets, mask,
and bit references may be resolved.

; 8) The single slash begins the option phase of the task builder.
Enter options:
TKB>STACK=O

; 9) The taskbuilder is directed not to allocate stack space. A
driver uses the executive's stack sparingly.

PAB>PAR=GEN:120000:40000
PAB>//

10)A partition, base virtual address and maximum size are
specified and the double slash terminates task builder
input.

5.1.4 Loading an I/O Driver Into the System

After completing the taskbuilding of your driver without any
detected errors, you must create a small task to issue the POSSUM
"PROLOD" system service call. If you are in the process of
debugging the driver, it is suggested that you attach a debugging
terminal to the printer port (TT2:), define the logical name
"PROLOD$MSG", eqtiating it to "0", and run XDT prior to invoking
PROLOD.

5.2 PROLOD

The callable PROLOD system routine provides a method to load or
unload an I/O driver into P/OS. PROLon is an entry point in the
POSSUM system resident library; the routine calls the server task
$xxLOAD. (See the P/OS System Reference Manual for a general
description of POSSUM system services.)

To avoid memory fragmentation, PROLOD loads the driver in the
highest available physical memory, checkpointing any eligible
regions that may be resident in high memory.

5-3

PROLOD

PROLOD requires that both the driver image (.TSK) and the driver
symbol table (.STB) be located in LB:[ZZSYS]. PROLOD provides
the primary values for the device, directory, filename extension,
and last three letters (DRV) of the filename itself. You cannot
specify these in the request, and the name of the device in D.NAM
must be the same as the two characters provided. Also, PROLOD
uses only the highest version of the files.

Unload operations currently have a restriction that requires
access to the image and symbol table files so that PROLOD can
easily determine which units and controllers need to be placed
offline prior to unloading the driver code from memory. The
driver's data base is never removed from primary pool and, if the
driver is reloaded, it is assumed that the old data base can be
reused.

Optionally, a driver can specify the $xxLOA and $xxUNL entry
points so that it can save, restore, or initialize any required
context.

To load or unload a driver, invoke PROLOD with the following
arguments:

status, request, fnam, fnamsz

where:

status

request

fnam

The address of the 8-word status Block. The
chapter on POSSUM in the P/OS System Reference
Manual describes the Status Block.

The address of a word containing a request value
indicating the operation to be performed. The
defined decimal values are:

1. = Load a driver and bring
associated controllers and units.

online all

2. = Unload
bringing all
offline.

a driver
associated

after successfully
controllers and units

If the request is to load or unload, this
argument contains the address of a word
containing two ASCII characters that PROLOD can
use to derive the driver task filename and the
symbol table filename. (Both files must be
present to successfully load a driver.)

5-4

• • • • •
• • • •

fnamsz

PROLOD

The derived names are of the form
LB:[ZZSYS]xxDRV.TSK and LB:[ZZSYS]xxDRV.STB,
respectively, where xx are the two characters
you supply. For example, you supply the two
characters BM for a driver named BMDRV.

If the request is to load or unload a driver,
this argument contains the address of a value
indicating the size in bytes of the filename
argument. This value is currently 2.

5.2.1 PROLOD Operations and Diagnostic Checks

The PROLOD routines relocate and validate many of the pointers
within the data base and, in the process, validate other data in
the structures. The driver itself is then loaded into the
highest available physical address space, and the data base is
loaded into system pool.

To read the data base from the driver image file into the system
pool, the global labels $xxDAT and $xxEND, defining the start and
end of the data base, are needed.

To check the data base, the PROLOD routines must know the
starting address of the DCB. If the global label $xxDCB is not
defined (it is not in the symbol table file), PROLOD assumes that
the DCB is the first word of the data base. When this assumption
is incorrect because the DCB is elsewhere in the data base and is
not labeled properly, many unusual error conditions result. To
avoid this type of problem, you should always define the start of
the DCB with the global label $xxDCB.

Each eTB is checked and relocated.
both checked and relocated:

The following offsets are

L.LNK

L.DCB

The link to the next CTB must be even. If it
is not zero, it must point within the data
base, and the CTB to which it points must lie
within the data base. (Because it is highly
unusual to have two controller types in one
driver data base, this value is usually
ze ro.)

The address of the related DCB must be even,
point within the data base, and the DCB to
which it points must lie within the data
base.

5-5

L.DID

L.KRB

PROLOD

The DCB address(es) in the table must be
even, and the DCB(s) to which each address
points must lie within the data base.

If non-zero, PROLOD scans the system
configuration table for the presence of a
device with a matching hardware ID. If a
match is found, then PROLOD uses information
in the system configuration table to assign
the values K.SLT, K.ICSR, K.CSR and K.VCT of
the KRB.

See Section 5.2.2 for
specifying L.DID
autoconfiguration.

information
during

about
PROLOD

Each pointer in the table of KRB addresses
must be even and must point within the data
base, and the KRB to which each cell points
must lie within the data base.

The following offsets in the CTB are checked:

L.NAM

L.NUM

The controller name cannot duplicate other
L.NAM entries in the loadable data base.

The number of controllers, must be less than
17 (decimal).

Each KRB is checked and relocated. The following offsets in the
KRB are both checked and relocated:

K.OWN

K.OFF

K.CRQ

K.CRQ+2

The pointer to the owner UCB must be even and
point within the data base, or be zero. If
it is nonzero, the pointer is relocated.

The start of the table of UCB addresses
produced from K.OFF must be even and must
point within the data base. The entries
themselves must be even, point within the
data base, and the UCB to which each cell
points must lie within the data base.

The listhead for the controller
queue.

request

It is initialized to an empty list with the
first word zero, and the second word pointing
to the first, relocated.

5-6

PRO tOO

Each DCB is checked and relocated. The following offsets are both
checked and relocated:

D.tNK

D.UCB

D.UCBt

D.UNIT

The link to the next DCB must be even. If it is
nonzero, it must point within the data base, and
the DCB to which it points must lie within the
data base.

The link to the first UCB must be even- and must
point within the data base, and the UCB to which
it points must lie within the data base.

The length of the UCB must be even and nonzero.

The highest unit number (increased by 1) used with
D.UCBt forms the last address of all UCBs. This
address must lie within the data base.

The pointer to the driver dispatch table (D.DSP) is set to zero
to show. that the driver is not yet loaded.

Each UCB is checked and relocated.
both checked and relocated:

The following offsets are

U.DCB

U.SCB

U.RED

The pointer to the DCB must point to the DCB
that points to this UCB.

The pointer to the SCB must be even, must
point within the data base, and the SCB 'to
which it points must lie within the data
base.

The unit redirect pointer must be nonzero and
even if it is an Executive address. If it is
not an Executive address, it must be nonzero,
even, and point within the data base.

Each SCB is checked and relocated.
both checked and relocated:

The following offsets are

S.KRB

S.KTB

The pointer to the KRB must be even, must
point within the data base, and the KRB to
which it points must lie within the data
base. If S.KRB is nonzero, there must be a
CTB in the loadable data base.

If the table of KRB addresses is present,
each entry must point within the data base.
(PROtOD preserves bit zero in each entry.)
Each entry in the table must also have a
matching entry in the table of KRB addresses

5-7

PROLOD

of a CTB in the loadable data base.

The following offsets in each SCB are initiali~ed as described:

S.LHD

S.PKT

The head of the I/O queue is set to zero and
the pointer to the end of the queue (S.LHD+2)
is set to point at S.LHD.

The pointer to the current I/O packet is set
to 1.

These last checks end the loading and validating of the data
base.

After the data base is loaded and validated and no error is
found, the driver itself is loaded into memory. In loading the
driver, the driver dispatch table is validated, each interrupt
entry in the driver dispatch table is inspected, and the
vector(s) are checked. If a vector address is higher than the
highest available vector address PROLOD prints a warning message.
Interrupt control blocks are created and linked into the list
starting at L.ICB in the CTB.

The format of the DDT must be consistent with that described in
Section 4.3.1. If the device that the data base describes does
not have any physical controllers (that is, a CTB does not
exist), the DDT is not checked. Otherwise, the device has at
least one interrupt vector and therefore at least one interrupt
entry point. The DDT is then checked. The two global labels
$xxTBL and $xxTBE must define the start and end of the DDT. The
generic controller name(s) must be nonzero and the interrupt
entry values must be valid. Interrupt entry point 0 must be
nonzero, even, and lie in the range 117777 and 140000. If the
format of DDT is inconsistent, PROLOD prints an error message,
restores the system device tables, and exits.

When the driver is loaded, all links are established. The DCB of
the loadable data base is put in the list of DCBs just in front
of the DCBfor the first pseudo device. The CTB(s) are linked to
the end of the eTB list. The DDT address D.DSP, the driver PCB
address D.PCB, and the driver mapping S.KS5 (the block number of
the first word of the driver) in the fork block are initialized.
The address of the start of the KRB table in the CTB, denoted in
the driver data base by the local label $xxCTB, is loaded into
the DDT.

5.2.2 Using PROLOD Autoconfiguration

PROLOD autoconfiguration provides option slot independence for

5-8

PROLOD

your driver. When you use autoconfiguration, PROLOD
automatically determines the option slot in which a particular
device resides. Additionally, PROLOD sets the controller CSR,
the vector, the interrupt controller CSR, and the slot number in
the driver's data base.

We recommend that all drivers for
autoconfiguration bec~use of the option
provides. This independence eliminates
simplifies end user installation.

P/OS systems use
slot independence it

slot contention and

To use autoconfiguration, specify a hardware option device ID in
the L.DID field of the driver's CTB. The hardware option device
ID identifies the controller type. Also, you must specify the
value of K.CSR to be equal to zero.

During autoconfiguration, if PROLOD successfully finds the device
and gains access to that device for.the driver (by attempting to
offline a driver which is currently using the device), then
PROLOD sets the values of K.CSR, K.ICSR, K.SLT, and K.VCT.

As an alternative to using autoconfiguration, you can explicitly
access a particular slot by preconfiguring your driver data base.
Note that drivers that access system options such as the kernel
Communications Port must always preconfigure their controller
data base.

To preconfigure your driver data base, specify the following
values:

o K.CSR--associated controller CSR

o K.ICSR--associated interrupt controller's CSR

o K.SLT--the slot number in which the option is present

PROLOD does not check the values K.ICSR and K.SLT. Once loaded,
your driver can change K.ICSR or K.SLT for its own purposes;
however, the value of K.CSR must always be within the address
range of those CSRs assigned to the particular option. PROLOD
derives the controller's vector address (K.VCT) from the
specified CSR.

5.2.3 PROLOD Errors

PROLOD attempts to return error message text if and only if you
have defined the logical name PROLOD$MSG. with the equivalence
value O. Multiple errors may be detected in the course of

5-9

PRO LaD

loading and checking the driver and its data base.

PROLOD returns the following server-specific error codes in word
2 of the status Control Block when word 1 contains the value -4
(server-specific error):

1.
2.
3.
4.
5.
6.
7 .
8.
9.

- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 27.
- 33.
- 34.
- 35.
- 40.
- 46.
- 50.
- 51.
- 60.
- 61.
- 62.
- 63.
- 64.
- 65.
- 66.
- 68.
- 69.
- 70.
- 72.
- 73.
- 74.
- 75.
- 76.
- 77.
- 78.
- 79.
- 80.

O. Illegal request format
File not a valid driver task image
Privileged command
Inconsistent argument length
Illegal request function code
Illegal unit name format specified
Specified unit not found
Illegal controller name specified
Specified controller not found
Failed to offline device
I/O error on input file
Failed to bring device online
Controller already online
Unit already online
File has illegal STB format
Device not found in system
Illegal device name specified
Data base for not found in system or driver
partition/region not in system
Device not mounted
File not contiguous
Open failure on file
Task image I/O error ih file
Partition too small
Illegal driver task APR usage
partition/region is a common
Driver already resident
Driver being loaded or unloaded
Insufficient pool space
Loadable driver support not in system
Driver not loaded
Driver cannot be unloaded, still online
Device is attached, busy, online and/or mounted
Invalid driver data base at offset in file
Driver built with wrong executive STB file
Warning - KRB interrupt vector too high
warning - KRB interrupt vector in use
Symbol is undefined in file
Symbol is doubly defined by file
Illegal value for symbol in file
Driver dispatch table is inconsistent
CTB is not supported by driver -- not loaded
Cannot load/unload a pseudo device
Too many symbols of the form in file
CTB does not exist

5-10

- 81.
- 82.
- 83.
- 84.
- 85.
- 86.
- 87.
- 88.

PROLOD

DeB table for eTB is full
KRB table of eTB will not accept KRB
KRB not in loadable data base
eTB name is a duplicate
Warning - loadable driver larger than 4K
partition/region is not a common
KRB is not offline
Illegal use of partition or region

5.2.4 PROLOD Sample Program

The following macro program illustrates a PROLOD call .

. TITLE LOAD - Example PROLOD call

.mcall qiow$s,exit$s irequest system macros

This ~ask requests PROLOD to load the driver XXDRV from LB:[ZZSYS]

start: mov
call

mov
mov
mov
call
qiow$s
exit$s

local data

loaarg: .word
.word
.word
.word
.word

stat: .blkw
fnmsiz: .word
rqst: .word
fnm: .ascii

fnmsz=.-fnm

#loaarg,rS
prolod

iget args for sample call to PROLOD
iload the driver
iprint status block always

#stat,r2 ipoint to status args
#fmt,rl ;output format
#outbf,rO ;output buffer
$edmsg ;format it
#io.wlb,#S,#S",,<#outbf,rl> ;print it

4
stat
rqst
fnm
fnmsiz
8 .
fnmsz
1
/XX/

;exit

ifour arguments (simple load call)
ipointer to eight word status block
ipointer to PROLOD request
ipointer to filename size
ipointer to size (in bytes) of fnm
ieight word status block
iwOrd containing size of fnm
iload (and online all) request
idriver name
iimplied filename "LB:[ZZSYS]XXDRV.TSK"
i AND "LB:[ZZSYS]XXDRV.STB"
iname extension as this can't be spec'd)

outbf:
fmt:

.blkb 132. ioutput buffer for status display

.asciz /%Nload request status: %N%8P/ ioutput format string

5-11

PROLOD

.even

.end start

5-12

CHAPTER 6

DEBUGGING A USER-SUPPLIED DRIVER

Adding a user-supplied driver carries with it the risk of introducing
obscure bugs into a P/OS system. Because the driver runs as part of
the Executive, P/OS provides an Executive debugging tool (XDT).

6.1 THE EXECUTIVE DEBUGGING TOOL

XDT is an interactive debugging tool which can aid in debugging
Executive modules, I/O drivers, and interrupt service routines. This
debugging aid is similar to ODT, the task-level debugger. XDT
occupies physical address space in the GEN partition but does not take
up any Executive virtual address space. XDT also does not interfere
with user-level OOT, which can be used with any number of tasks while
you are debugging your driver with XOT.

6.1.1 XDT Commands

XDT commands are generally compatible with ODT commands. XDT does not
contain the following commands available in ODT:

o No $M - (Mask) register

o No $X - (Entry Flag) registers

o No $V - (SST vector) registers

o No $D - (I/O LUN) registers

o No $E - (SST data) registers

o No $W - (Directive status word) $DSW word

6-1

THE EXECUTIVE DEBUGGING TOOL

0 No E - (Effective Address Search) command

0 No F - (Fill Memory) command

0 No N - (Not word search) command

0 No V - (Restore SST vectors) command

o. No W - (Memory word search) command

In addition, the X (Exit) command in XDT will simply issue a HALT
instruction. This will drop the printer port terminal into Micro-ODT.
(See Section 6.2.

6.1.2 xor Start Up

You may install XDT from DCL with the command: INSTALL XDT/NOREMOVE.
The "noremove" switch will inform the executive not to abort XDT when
the DCL or PRO/Tool Kit application exits. From DCL, use the SPAWN
RUN XDT command. An initialization message will appear. When active,
XDT runs entirely at priority level 7.

6.1.3 xor General Operation

Prior to embarking on an XDT debugging session, plug a maintenance
cable (BCC-08) into the printer port and attach a VT100 or similar
terminal. A maintenance cable is the same as a printer cable
(BCC-OS), except that pins 8 and 9 are shorted. If the cable was in
place when the system was turned on, the terminal must be set to 9600
baud; otherwise, the terminal must be at 4800 baud. Input and output
are directed to this port.

Assemble the driver with an embedded BPT instruction, or use the ZAP
utility to set the breakpoint by replacing a word of code with the BPT
instruction. (Make sure to write down the instruction that you
replace with the BPT instruction.) When the breakpoint instruction in
the driver is executed, XDT prints:

Then:

BE:xxxxxx
XDT>

1. Using XDT, replace the BPT instruction with the desired
instruction.

6-2

THE EXECUTIVE DEBUGGING TOOL

2. Decrement the PC by subtracting 2 from the contents of
register R7.

3. Then proceed by using the P or 5 commands, after optionally
setting breakpoints within the driver or examining memory
locations.

6.1.4 XDT and Debugging a User-Supplied Driver

Using XDT to debug a driver has special pitfalls.
can arise is a T-bit error:

TE:xxxxxx
XDT>

One problem that

This error results when control reaches a breakpoint that you have
set, using XDT, in a loaded driver. The T-bit error, rather than the
expected BE: error, occurs unless register APRS is mapped to the
driver at the time XDT sets the breakpoint. Assembling or zapping the
BPT (as opposed to setting it from an XDT prompt) will help avoid this
T-bit error.

NOTE

You should not set breakpoints in more than one module
that maps into the Executive through APR 5 or APR 6.
In particular, do not set" breakpoints in more than one
driver at a time or XDT will overwrite words of main
memory when it attempts to restore what it considers
to be the contents of breakpoints.

6.2 MAINTENANCE- OR MICRO-ODT

The processor microcode supports a more limited set of debugging
commands which permit debugging of a system in an otherwise
inaccessible state. Be advised, however, that Micro-ODT is able to
access only the low 28K words o~memory and the I/O Page, whereas XDT
can be mapped to any part of" memory. Micro-ODT is more fully
documented in the Professional 300 Series Technical Manual. It will
also be discussed further in this chapter.

6-3

FAULT ISOLATION

6.3 FAULT ISOLATION

Four causes can be identified when the system faults:

1. A user-state task has faulted in such a ~ay that it causes
the system to fault.

2. The user-supplied driver has faulted in such a way that it
causes the system to fault.

3. The system software itself has faulted.

4. The hardware has faulted.

When the system faults, you must first decide which of the above four
potential causes is responsible. This section presents some
procedures that can help you isolate the source of the fault.
Correcting the fault itself is your responsibility.

6.3.1 Immediate Servicing

Faults manifest themselves in four ways as listed below (in order of
increasing difficulty to isolate):

1. If XDT is running, an unintended trap to XDT occurs.

2. The system displays a software bugcheck and halts.

3. The system halts but displays nothing.

4. The system is in an unintended loop.

The immediate aim, regardless of the fault manifestation, is to get to
the point where you can obtain pertinent fault isolation data.

6.3.1.1 The System Traps to XDT - A trap mayor may not be intended
(for example, a previously set breakpoint). If it is nq,t intended and
you have some idea of the source of the problem (for example, a recent
coding change), you may use XDT to examine pertinent data structures
and code.

6.3.1.2 The System Halts but Displays No Information - Before taking
any action, preserve the current PS and PC and the pertinent device
registers (that is, examine and record the information these registers
contain). See Section 6.2.

6-4

FAULT ISOLATION

6.3.1.3 The System Is in an Unintended Loop - Proceed as follows:

1. Halt the processor by pressing <BREAK> from the debugging
terminal (Micro-DDT).

2. Record the PC, the PS, and any pertinent device registers, as
in Section 6.3.1.2.

You may then want to step through a number of instructions in an
attempt to locate the loop. Toggle the Micro-DDT Halt register by
entering "H" at the "@" prompt. Following this, each "PH command will
result in a single step. To restore "proceed" functionality to the
"P" command, enter "H" again.

In order to avoid the side-effects of printer port interrupts you may
first wish to disable printer receiver interrupts. Then proceed as
follows:

1. In micro-DDT open location 173202 (the CSR).

2. Set the printer receiver IMR (interrupt mask register) bit by
depositing a 75 in this location.

6.3.2 Pertinent Fault Isolation Data

Before you attempt to locate the fault, you should examine the system
common (SYSCM). SYSCM contains a number of critical pointers and
listheads. In addition, you should examine the dynamic storage region
(system pool and ICB pool) and the device tables. The device tables
are in the module SYSTB. At this point, you have the following data,
which represents a minimal requirement for effectively tracing the
fault:

o PS

o PC

o The stack

o RO through R6

o Pertinent device registers

o The dynamic storage region

6-5

FAULT ISOLATION

o The device tables

o System common

6.4 TRACING FAULTS

Three pointers in SYSCM are critical in fault tracing. These pointers
are described below:

$STKDP - Stack Depth Indicator

This data item indicates which stack was being used at the time
of the crash. $STKDP plays an important role in determining the
origin of a fault. The following values apply:

+1 -- User (task-state) stack or a privileged task at user
state

o or less -- System stack

If the stack depth is +1, then the user has crashed the system.

$TKTCB - Pointer to the Current Task Control Block (TCB)

This is the TCB of the user-level task in control of the CPU.

$HEADR - Pointer to the Current Task Header (Pool-Resident)

Figure 6-1 shows the interaction of task header pointers. Note that
all tasks on PIOS systems have a pool-resident (external) header.

The pointers $HEADR, $SAHPT, and $SAVSP all point to the first word of
the task header, which contains the user task's stack pointer (SP)
from the last time it was saved.

Figure 6-2 shows a brief description of the task header. The task
header is fully described in the RSXIIMIM-PLUS and MicrolRSX Task
Builder Manual, which is distributed with the Tool Kit Documentation.

6-6

$SAHPT 140000

$HEADR

$SAVSP

TRACING FAULTS

NON.POOL·RESIDENT TASK HEADER (External)

Executive
Data Area

1·word bloCk

Executive

Task

Current Task
Header

T.HDLN 0

SSAHDB KISAR6 Address resolution

Figure 6-1: Interaction of Task Header Pointers

The header (as pointed to by $HEADR) also contains the last-saved
register set, just before the header guard word (the last word in the
heaaer -- pointed to by H.GARD).

6-7

TRACING FAULTS

0 f4--

RO

· · ·
R5

PC

PS

· · ·
H.NLUN N

H.GARD f---

H.HDLN Length in bytes

SP

Figure 6-2: Task Header

The pointers associated with a pool-resident (external) header are
described next:

$HEADR - Points to the current task header.

The $HEADR word points to the pool-resident task header of
the task currently running. The value in $HEADR is a kernel
virtual address in primary pool.

$SAVSP - Points to the first word of the current task header, which
contains the saved stack pointer.

6-8

TRACING FAULTS

$SAHPT - Points to the current task header in pool. $SAHPT contains
the virtual address of the header. $SAHPT and $HEADR contain
the same virtual address for a pool-resident header.

$SAHDB - Contents undefined .x $SAHDB

6.4.1 Tracing Faults Using the Executive Stack and Register Dump

The following discussion implies that XDT is active. If the system
crashes while XDT is not active, a software bugcheck occurs.
Procedures for analyzing a bugcheck are discussed in Section 6.4.5.
To trace a fault after a software crash, first examine the system
stack pointer. Usually an Executive failure is the result of an
SST-type trap within the Executive. If an SST does occur within the
Executive, then the origin of the calIon the crash-reporting routine
is in the SST service module. (The crash call is initiated by issuing
an lOT at a stack depth of zero or less.)

A call to crash also occurs in the Directive Dispatcher when an EMT is
issued at a stack depth of zero or less, or a trap instruction is
executed at a stack depth of less than zero. The stack structure in
the case of an internal SST fault is shown in Figure 6-3.

6-9

TRACING FAULTS

PS

PC

R5

R4

R3

R2

Rl

RO

Return to system exit

Zero or more SST parameters

SST fault code

Number of bytes 1-------- SP

Figure 6-3: Stack Structure: Internal SST Fault

The fault codes are:

o
2
4
6
10
12
14
16
20
22
24
26
30
32
34

;TRAPS TO 4
;MEMORY PROTECT VIOLA~ION
;BREAK POINT OR TRACE TRAP
;IOT INSTRUCTION
iILLEGAL OR RESERVED INSTRUCTION
;NON RSX EMT INSTRUCTION
iTRAP INSTRUCTION
;11/40 FLOATING POINT EXCEPTION
iSST ABORT-BAD STACK
;AST ABORT-BAD STACK
iABORT VIA DIRECTIVE
;TASK LOAD READ FAILURE
;TASK CHECKPOINT READ FAILURE
iTASK EXIT WITH OUTSTANDING I/O
;TASK MEMORY PARITY ERROR

6-10

TRACING FAULTS

The PC points to the instruction following the one that caused the SST
failure. The number of bytes is the number normally transferred to
the user stack when the particular type of SST occurs. If the number
is 4, then a non-normal SST fault occurred, and only the PS and PC are
transferred. There are no SST parameters.

If the failure is detected in $DRDSP, the stack is the same as that
shown in Figure 6-3, except that the number of bytes, the SST fault
code (the fault codes are listed above), and the SST parameters are
not present.

One SST-type failure, stack underflow, does not result in the stack
structure of Figure 6-3. To determine where the crash occurred, first
establish the stack structure. This can be deduced by the value of
the SP and the contents of the top word on the stack. If the stack
structure is that of Figure 6-3, then the failure occurred in $DRDSP,
or was a normal SST crash. If the stack structure is that of Figure
6-4, then an abnormal SST crash has occurred.

~~~----------------SP 

PS 

PC 

Figure 6-4: Stack Structure: Abnormal SST Fault 

Abnormal SST failures occur when it is not possible to push 
information on the stack without forcing another SST fault. When this 
situation occurs, a direct jump to the crash-reporting routine is made 
rather than an lOT crash. The PS and PC on the stack are those of the 
actual crash, and the address printed out by the crash-reporting 
routine is the address of the fault rather than the address of the lOT 
that crashes the system. Note that the crash-reporting routine 
removes the PC and PS of the rOT instruction from the stack, which in 
this case is incorrect. Thus, the SP appears to be four bytes greater 
th~n it really is (as in Figure 6-4). 

You now have all the information needed to isolate the cause of the 
failure. From this point on, rely on personal experience and a 
knowledge of the interaction between the driver and the services 
provided by the Executive. 

6-11 



TRACING FAULTS 

6.4.2 Tracing Faults When the Processor Halts Without Display 

To trace a fault when the processor halts but displays no information, 
first examine $STKDP, $TKTCB, $HEADR, $SAVSP, $SAHPT and $SAHDB~ The 
difficulty in tracing failures in this case is th~t the system stack 
is not directly associated with the cause of a failure. 

By examining $STKDP, you can determine the system state at the time of 
failure. If it was in user state, the next step is to examine the 
user's stack. The examtnation focuses on scanning the stack for 
addresses that may be subroutine links that can ultimately lead to a 
thread of events isolating the fault. This is essentially the aim of 
looking at the system stack if $STKDP is zero or less. 

Frequently, a fault can occur that causes the SP to point to Top of 
Stack (TOS)+4. This fault results from issuing an RTI when the top 
two items on the stack are data. The result is a wild branch and 
then, most probably, a halt. Figure 6-5 shows a case in which two 
data items are on the stack when the program executes an RTI. TOS 
points to a word containing 40100. Suppose that location 40100 
contains a halt. This indicates that the original SP was four bytes 
below the final SP, and fault tracing should begin from the original 
SP. 

....41-------- SP 

5 

40100 ...... 1-------- SP 

Figure 6-5: Stack Structure: Data Items on Stack 

This type of fault also occurs when an RTS instruction is executed 
with an inconsistent stack. However, in that case, SP points to 
TOS+2. 

A scan of the contents of the general registers may give some hint as 
to the neighborhood in which a fault (or the sequence of events 
leading up to the fault) occurred. 

If the fault occurred in a new driver, a frequent source of clues is 
the buffer address and count words in the UCB (U.BUF, U.BUF+2, U.CNT), 
as are the activity flags (US.BSY and S.STS). Other locations in both 
the UCB and SCB may also provide information that may help locate the 
source of the fault. 

6-12 



TRACING FAULTS 

6.4.3 Tracing Faults After an Unintended Loop 

To trace a fault when an unintended loop has occurred, first halt the 
processor by hitting <BREAK> from the debugging terminal. 

After you halt the processor; the same state exists as was discussed 
in Section 6.4.2. Follow a similar tracing procedure to the one 
described there. A specific suggestion is to check for a stack 
overflow loop. Patterns of data successively duplicated on the stack 
indicate a stack looping failure. 

6.4.4 Additional Hints for Tracing Faults 

Another item to check is the current (or last) I/O Packet, the address 
of which is found in S.PKT of the SCB. The packet function (I.FCN) 
defines the last activity performed 'on the unit. 

If trouble occurred in terminating an I/O request, a scan of the 
system dynamic memory region may provide some insight. This region 
starts at the address contained in $CRAVL, a cell in SYSCM. Because 
all I/O packets are built in system dynamic memory, their memory is 
returned to the dynamic memory region when they are successfully 
terminated. Following the link pointers in this region may reveal 
whether I/O completion proceeded to that point. In systems with QIO 
optimization, $PKAVL (SYSCM) points to a list of I/O packet-sized 
blocks of dynamic memory that are not linked into the $CRAVL chain. 

A frequent error for an interrupt-driven device is to terminate an I/O 
Packet twice when the device is not properly disabled on I/O 
completion and an unexpected interrupt occurs. This action ultimately 
produces a double deallocation of the same packet of dynamic memory. 
Double deal location of a dynamic buffer causes a loop in the module 
$DEACB on the next deallocation (of a block of higher address) after 
the second deallocation of the same block. At that time, R2 and R3 
both contain the address of the I/O Packet memory that has been doubly 
deallocated. 

6.4.5 System Bugcheck Without XDT 

If a software error causes the system to crash while XDT is not 
active, the system will bugcheck. A bugcheck will request the 
diagnostic ROM to display an unhighlighted picture of the Professional 
with a two-number code, for facility and type of bugcheck. Errors 
with a facility code of 000300 are executive or other system state 
errors, in which case, the type is represented in the following list: 

000000 rOT in System State 

6-13 



TRACING FAULTS 

000001 Stack Overflow 

000002 Trace Trap or Breakpoint 

000003 Illegal Instruction Trap 

000004 Odd Address or Other Trap 4 

NOTE 

Since there are no odd address traps or memory parity 
errors on the 350, these traps are most likely NXM 
(non-existent memory), caused by illegal address 
computation, bus timeou~, or memory management fault. 

000005 Segment Fault 

000006 A Background Task (one without a parent) aborted or 
exited with I/O outstanding 

The processing of the diagnostic ROM changes some of the context of 
the system at the time of the crash, so that the diagnosis of the 
problem is made somewhat more difficult. In particular, after a 
bugcheck, KISAR5, KISAR6, UISARO, and UISARl have been altered, and 
the Kernel Stack Pointer has not been preserved. You must therefore 
examine the Kernel stack from $STACK toward low memory in order to 
locate the trap. 

When the processor traps, the PSW and PC are pushed onto the stack. 
If the trap is a directive issued by a task in user state (i.e. an 
EMT trap), the task's general purpose registers are pushed beginning 
with R5 and ending with RO. Then the return call to $DIRXT and an 
initial DSW success code of 1 are pushed onto the stack. The 
directive processing may call other system subroutines, some of which 
might save R5 and R4 (by convention the "nonvolatile" registers). 
When the stack contents are analyzed to determine whether they are 
pointing to data structures or subroutine addresses, a picture of the 
flow of control can be outlined. Often there will be pointers on the 
stack to UCB's or other driver-related structures, TCB's or other 
task-related structures, or saved APR mapping biases for temporary 
remapping of KISAR5 and KISAR6. Since most of these structures are in 
primary pool (and thus in the low 28KW of physical memory), they may 
be examined using micro-ODT. 

Ultimately, a crash will be preceded by a trap in system state. 
Again, the PSW and PC at the time of the crash will be pushed onto the 
stack. A PSW of 0300nn or OOOnnn indicates Kernel mode, previous mode 
User or Kernel, respectively. The PC will point to the instruction 
following the one causing the trap. Remember that after a bugcheck R6 
(or SP) will not point to this address on the stack. 

6-14 



REBUILDING AND REINCORPORATING A DRIVER 

6.5 REBUILDING AND REINCORPORATING A DRIVER 

After correcting and assembling the 
version using PROLOD, task build 
PROLOD. 

driver source, 
the new one, 

unload the old 
and load it using 

Once loaded, the data base is not removed by PROLOD. If the data base 
is incorrect and cannot be patched, correct its source, reassemble it, 
and build the new driver task. Then bootstrap the system before 
loading the driver task image containing the corrected data base. 

6-15 





CHAPTER 7 

EXECUTIVE SERVICES AVAILABLE TO AN 1/0 DRIVER 

Because a driver is mapped within the Executive address space, it can 
call Executive routines on the same basis as that of any other module 
in the Executive. The driver must observe the protocol and 
conventions established on the system. The following sections 
summarize the conventions, describe the address double word, tell what 
special processing is required for NPR devices attached to a PDP-11 
processor with extended memory support (22-bit addressing), and 
summarize some of the typical Executive services available. 

7.1 SYSTEM-STATE REGISTER CONVENTIONS 

In system state, R5 and R4 are, by convention, nonvolatile registers. 
This means that an internally called routine is required to save and 
restore these two registers if the routine destroys their contents. 
R3, R2, R1, and RO are volatile registers and may be used by a called 
routine without save and restore responsibilities. 

When a driver is entered directly from an interrupt, it is operating 
at interrupt level, not at system state. At interrupt level, any 
register the driver uses must be saved and restored. INTSV$ .generates 
code to preserve R5 and R4 for the driver's use. All drivers must 
follow these conventions. 

See the description of the driver dispatch table in Section 4.5 for 
the contents of registers when a driver is entered. 

7.2 EXECUTIVE TIMER RELATED FACILITIES 

The executive provides a number of timer related facilities which are 
available to an I/O driver. They are typically used to periodically 
poll a device for a status change in the absence of an interrupt 
capability, to provide general timer services to the driver so that it 
can perform it's own timeout processing (needed by more advanced 

7-1 



EXECUTIVE TIMER RELATED FACILITIES 

drivers such as the full duplex terminal driver), or to call the 
driver back after some specified period of time. 

A timer request requires a structure called a clock block. It is 
normally located in the device driver's database which has been 
allocated from primary pool and is "C.LGTH" bytes in length. A driver 
can however simply allocate the clock block from primary pool using 
the $ALOCB executive subroutine. The clock block contains the request 
type, the absolute time when request is to occur, and the bias and 
APR5 displacement of the driver routine to be called when inserted in 
the system clock queue. A timer request is made by calling the 
executive's $CLINS routine. Input parameters to $CLINS are the 
virtual address of the primary pool resident clock block, the request 
type of "C.SYST", the high and low order time delta (in tics), and a 
unique identifier. "C. SUB" is expected to contain the virtual address 
of the driver routine to be called by executive's clock processor 
(executive module TOSCH) when the specified interval of time has 
elapsed. The unique identifier is used to dequeue timer requests 
before completion and must be a unique executive (primary pool) 
virtual address. This unique identifier could be a UCB address, or 
even the address of the clock block itself. Note that since this 
identifier is a system wide identifier, and an ad hoc value could 
potentially corrupt the system. 

Timer requests are one shot in nature and as such, the clock block is 
dequeued by the TOSCH processing. The request must be respecified via 
the $CLINS routine to achieve a periodic timer facility. The driver 
subroutine specified in the request will be called at system state at 
processor priority O. 

If it is necessary to cancel a timer request, this may be done by 
removing the" clock block from the system's clock queue via the 
executive's $CLRMV routine. The following examples further illustrate 
the manipulations required: 

i+ 
Example clock queue insertion and removal 

Driver database contains clock block in UCB and thus avoids resource 
allocation errors associated with dynamic allocation from primary 
pool. 

+---------------+ 
I .BLKB C.LGTH <--- driver specific clock block at U.MYCB 
+---------------+ 

UCB 

7-2 



EXECUTIVE TIMER RELATED FACILITIES 

i examples assume R5 => UCB 

i -

The first example is a periodic polling of some device status. Though 
status changes are traditionally communicated to the driver via an 
interrupt, there are instances of when this hardware functionality is 
not available. 

INITIM: MOV 
ADD 
MOV 
CLR 
MOV 

R5,RO 
#U.MYCB,RO 
#POLL,C.SUB(RO) 
Rl 

iCOPY UCB address 
ipoint to clock block 

#H$$RTZ/2,R2 

ispecify address of timer routine 
izero high order delta time 
iget number of ticks per half 
isecond 
ifor low order time delta 

Note that for a request type (6) "C.SYST" $CLINS will save 
current APR5 mapping and restore it when time delta expires 
before calling driver. The implication is that the virtual 
address specified in C.SUB must be mapped through APR5 and that 
the caller of $CLINS is also mapped through APR5 with the same 
mapping. If a request type (8) "C.SYTK" is specified, then the 
caller must have already specified the APR bias in C.AR5 in 
addition to the virtual address in C.SUB. Calling $CLINS after 
the clock block has already been inserted in the clock block can 
cause unpredictable results including the removal of other system 
timer requests as a result of the clock queue corruption. Should 
this be a problem, C.RQT could be used as an interlock by 
clearing it after clock queue removal and checking this word to 
determine if the clock block is in use before attempting to call 
$CLINS. 

MOV 
CALLR 

#C.SYST,R4 
$CLINS 

ispecify request type 
iinsert clock block into clock 
iqueue 
;and return to this subroutine's 
icaller. 

The driver is called at this entry point every .5 seconds. All 
registers may be used by the driver and upon entry, R4 contains 
the address of the clock block dequeued. 

POLL: 
MOV 
CLR 
MOV 
MOV 

R4,RO 
Rl 
#H$$RTZ/2,R2 
C.TCB(RO) ,R5 

ifirst, respecify clock request 
;specify address of clock block 
;init high order delta time 
iinit low order delta time 
iget address of identifier (UCB 
;address despite symbolic offset 
iname) 

7-3 



EXECUTIVE TIMER RELATED FACILITIES 

CALL $CLINS 

;note that C.SUB is not modified 
;and still valid. 
irespecify timer request 
;note that C.AR5, or C.SUB need 
;not be respecified. 

On return from $CLINS, (RO,R4, and R5) are unmodified. 

RETURN 

;driver does what needs to be 
;done 

The second example builds on the first example and illustrates 
how to cancel a timer request. 

The CANTIM routine may be called to remove the clock block 
inserted above. 

CANTIM: MOV R5,Rl ;specify identifier of clock 
;block 
;(in this case, the UCB address) 

A clock block may be removed from the system clock queue however, 
the listhead $CLKHD is not a double word listhead and therefore, 
$QRMVT may not be called. $CLRMV can be called to remove clock 
blocks from the system clock queue and if the request type was 
not "C.SYST", the clock block will be deallocated from primary 
pool. Therefore, if the driver's clock block is located in the 
driver's database (such as in the UCB or KRB), only the request 
type "C.SYST" should be specified. 

MOV #C.SYST,R4 

CALL $CLRMV 

RETURN 

7.3 ADDRESSING A "TASK BUFFER 

;specify type of request to 
;dequeue 
;dequeue it (if there) 

;return to caller 

A typical user task has no knowledge of the physical locations of 

7-4 



ADDRESSING A TASK BUFFER 

every region mapped into its virtual space, since the physical 
addresses ~f a task's regions can change due to checkpointing or 
shuffling.* Given that a task can only specify the virtual address of 
a buffer to a system directive such as QIO$, this virtual address must 
be resolved to some form of an actual physical address being used 
while the issuing task's context is loaded. Most I/O operations are 
asynchronous to the execution of user tasks. As a result, the issuer 
could change its virtual address space mapping, and thus invalidate 
the specified virtual address. The executive assists the driver by 
keeping a count of all ~ctive I/O requests on a per region basis, and 
converting the user buffer virtual address in the first parameter to a 
physical address for transfer functions. If a region contains a 
non-zero I/O count, the executive will not checkpoint or shuffle the 
region. This would both invalidate the physical address and 
compromise the integrity of the system, since the outstanding I/O 
could be transferred into the another region resident in memory. 

For non-DMA devices, there are three common methods for a driver to 
reference a task buffer: 

1. The simplest approach is to move the "bias" half of the 
physical address double word into KISAR6 and then use the 
"displacement-in-block" half, which has been adjusted by the 
QIO directive processor to map through APR6 for transfer 
functions. Unless the bias and displacement are adjusted by 
the driver, the maximum size of the user task buffer is 
limited to <4096.-32.> words. 

2. In certain cases, it is not possible for the driver to unmap 
KISAR6 because another structure, such as an intermediate 
buffer (or possibly the driver code itself), is required to 
be mapped. These cases can use a method in which the 
executive $BLXIO routine is used to temporarily unmap the 
driver in KISAR5, map the source and destination buffers 
through KISAR5 and KISAR6. It then performs the transfer and 
restores the mapping. 

3. Another method is useful for drivers that sequentially empty 
or fill a task buffer word by word, or byte by byte. with 
this method, the executive's $GTBYT, $GTWRD, $PTBYT and 
$PTWRD routines unmap KISAR6, perform the transfer, adjust 

* Checkpointing is the process of copying a region to a disk so it can 
be used by another contending region. Shuffling is the process of 
moving a region from one physical location to another location in 
order to reduce fragmentation. Though a fixed region or a 
non-checkpointable region cannot be checkpointed, it can be shuffled -
provided the region has a zero I/O count and is not explicitly marked 
as non-shufflable (PS.NSF). 

7-5 



ADDRESSING A TASK BUFFER 

the bias and displacement of the target buffer. The buffer 
could be as large as 32KW and restore the KISAR6 mapping (see 
module BFCTL). 

7.3.1 Address Checking a Task Buffer 

Address checking is the process of validating that a buffer is fully 
mapped within the task's virtual address space, that a buffer is 
contained within one region, and that the issuing task has write 
access to the region. A buffer can be checked for read only access or 
read/write access, depending upon the I/O function. For instance, an 
IO.WLB or IO.WVB check the buffer for read-only access, since it is 
known that the transfer will not write to the region. Normally, a 
driver does not need to explicitly address check the I/O buffer, as 
the executive's QIO$ directive (see DRQIO) assumes this function for 
transfer and ACP I/O functions. 

7.3.2 010 Directive Processing Specifics 

As the Executive processes a QIO directive, it checks for certain 
conditions and performs actions as follows: 

o The specified LUN must be valid and assigned. If it is not, 
a directive error IE.ILU or IE.ULN is returned. 

o The UCB address in LUN is resolved to the target UCB by 
following the redirect pointer U.RED. 

o If I/O is stalled for the unit (US.SIO=l) or if a file 
operation is pending (bit 0 in the second LUN word =1), the 
issuing task's PC is modified so that the directive is 
reissued at a later point in time after a significant event 
occurs. The Files-ii reverification task (VER ... ) is allowed 
to break through a stalled I/O state. 

o The driver must be resident. 
(IE.HWR) is returned. 

If not, a directive error 

o If an optional event flag is specified, it is validated and 
cleared. If an invalid (non-existent) event flag is 
specified, a directive error (IE.IEF) is returned. 

o An I/O packet is allocated from the primary pool. If there 
is insufficient pool to create the I/O packet, a directive 
error (IE.UPN) is returned. 

7-6 



ADDRESSING A TASK BUFFER 

o If the directive QIOW$ is received, the task is placed in a 
"waitfor" state - if the event flag was specified. 

o An I/O rundown count (T.IOe) is incremented in the issuer's 
task control block. 

o The optional I/O status block is validated, and the contents 
cleared. The virtual address and physical address double 
word of the I/O status block are stored in the I/O packet. 

o I/O packet fields are initialized and used as indicated in 
Table 7-2. 

o IO.KIL functions are always legal and are processed 
immediately by the executive. The driver's I/O packet queue 
(listhead S.LHD) is flushed, whether the unit is online or 
not, of all packets with the same TCB address and UCB address 
if the device is not mounted with an associated ACP. If the 
unit is online and cancel notification has been requested by 
the driver (UC.KIL=l), the driver is always called at the 
D.VCAN entry point - independent of whether the unit was busy 
or if any packets were flushed. If the unit was busy at the 
time of the cancel I/O request, the driver will be called. 

o Depending on device characteristics, unit status, and type of 
function, specific processing is performed and the I/O packet 
is either queued to the driver or to the ACP. 

Table 7-1: 010 Processing By Function Type and Device Characteristics 

DV.MNT I TYPE I US.MNTI US. FORI US.LABI Checks and action performed 
-----~--+-------+-------+-------+-------+----------------------------
0 N 1,2,IS.SUC is returned 
0 C 1,2, A 
0 T 1,2,B 
0 A 1,2,3,B 
1 N 2,IS.SUC is returned 
1 C 1 2,1,A,6 
1 T 1 2,4,B,6 
1 A 1 2,5 
1 C 0 1 2,1,A,6 
1 C 0 0 1 2,7,A,6 
1 C 0 0 0 2,1,A,6 
1 T 0 1 2,8,B,6 
1 T 0 0 2,9,B,6 
1 A 0 1 2,8,C,6 
1 A 0 0 (beyond scope of this table) 

7-7 



where 

N NOP 
C Control 
T = Transfer 
A ACP 

ADDRESSING A TASK BUFFER 

1. If the device unit is allocated (U.OWN <> 0 ), and not public 
(US.PUB=O), then an I/O error of IE.PRI is return unless the 
issuing task is privileged or the issuing task's TI is the 
allocator ((T.UCB)=(U.OWN)). 

2. If the function is not legal then an I/O error of IE.IFN is 
returned. Also, if the device unit is marked offline 
(US.OFL=l) then an I/O error of IE.OFL is returned. 

3. If function code is IO.RVB ((I.FCN+1)=IO.RVB/A 0400) then 
function code is converted to IO.RLB and all subfunction bits 
cleared. If function code is an IO.WVB, then subfunction is 
converted to an IO.WLB again clearing all subfunction bits. 

4. If device unit's volume status is not valid (US.VV=O) an I/O 
error of IE.PRI is returned. 

5. ACP functions to a dismounted volume result in an IE.PRI 
error. 

6. Task load overlay checks. IO.LOV and IO.LOD have a 
particular meaning for mountable devices, whether or not 
device is mounted or not, and check is performed for both 
control and transfer functions. (These I/O functions are 
equivilent to IO.RLB!10 or IO.RLB!110 .) 

7. Control functions to a mounted ANSI tape required the issuer 
to be privileged. 

8. An ACP must be associated with the unit otherwise an I/O 
error of IE.PRI is returned. 

9. A transfer function to a mounted volume must be a load 
overlay function or the task must be privileged. 

A. A control function format I/O packet is built and queued 
to the driver. 

B. A transfer function format I/O packet is built and queued 
to the driver. If the I/O function was an IO.WVB or an 
IO.WLB, then the buffer is address checked for read only 
access, otherwise the buffer is checked to ensure that 
the task has write access to the buffer's region. 

7-8 



ADDRESSING A TASK BUFFER 

C. Same action as B except that packet is queued to ACP. 

Table 7-2: I/O Packet Usage by Function Type 

1/0 packet 
Field 

I.LNK 

I.PRI 

I.EFN 

I.TCB 

I.LN2 

I. UCB 

I.FCN 

I.IOSB 

I.IOSB+2 

I.IOSB+4 

I.AST 

I.PRM 

I.PRM+2 

I.PRM+4 

I.PRM+6 

I.PRM+10 

I.PRM+12 

I.PRM+14 

I.PRM+16 

I.MDA 

control 
Functions 

(T.PRI) 

(Q.IOLU) 

($TKTCB) 

Transfer 
Functions 

utility link word 

(T.PRI) 

(Q.IOLU) 

($TKTCB) 

($HEADR)+H.NLUN+2+«Q.IOLU-1>*4>+2 

redirected UCB address 

(Q.IOFN) (Q.IOFN) 

virtual address of 1/0 status block 

bias of 1/0 status block 

Notes 

1 

2 

3 

4 

5 

5 

disp. in blck+140000 of 1/0 status blck 5 

virtual address of 1/0 completion AST 

(Q.IOPL) bias of buffer 

(Q.IOPL+2) OIB+140000 of buf. 

(Q.IOPL+4) (Q.IOPL+2) 

(Q.IOPL+6) (Q.IOPL+4) 

(Q.IOPL+I0) (Q.IOPL+6) 

(Q. IOPL+12) (Q.IOPL+I0) 

o (Q.IOPL+12) 

o o 

o address of AOB 8 

7-9 



ADDRESSING A TASK BUFFER 

I.AADA+2 o o 

Notes: 

1. If the high bit in the event flag byte field is set, it 
indicates a virtual I/O function. I.PRM+16 is then treated 
as a FILES-ll lock block during I/O completion. Mass storage 
device drivers should ensure that I.PRM+16 is not used as 
temporary storage of I/O context. 

2. If the bit 0 is set in the contents (not the address) of the 
second LUN word I.LN2, it indicates that this word contains 
the window block pointer. If the function is virtual and 
this word is even, the task's header (task region) has been 
locked in memory by incrementing the attachment descriptor 
I/O count and the task region's PCB I/O count. 

3. UCB addresses in the task header are not fully resolved to 
the target UCB, so a level of indirection is possible. For 
instance, a task which is pre installed in the system before 
boot may need to read a disk overlay from LB:. The UCB 
address of the pseudo device LB: is in the LUN, and the 
system has redirected the pseudo device to the physical boot 
unit during the boot process to DW1:, DZ1:, or Dz2:. 

4. The I.FCN word consists of two bytes. The high byte is 
function code and the low byte is the subfunction code. 
subfunction consists of eight independent bits which 
interpreted within the context of the function code. 
exceptions are as follows: 

the 
The 
are 
The 

o The subfunction IQ.UMD (4) stamps any I/O function as a 
diagnostic function, independent of any device 
characteristics. 

o The subfunction IQ.X (1) means inhibit reties. It is of 
primary interest to mass storage device drivers. 

o The subfunction IQ.LCK (A0200) is used by FILES-l1 ACP 
functions and will not be seen normally by the mass 
storage device driver. 

o Another subfunction bit of concern to mass storage device 
drivers occurs when "write checking" is requested on a 
mounted volume. This is indicated by an IO.WLB function 
with subfunction bit (20) specified. 

7-10 



ADDRESSING A TASK BUFFER 

5. I/O counts are not maintained for the I/O status block. 
Therefore, the I/O status block may not be accessed by the 
driver except at predriver initialization time (UC.QUE=l). 
I/O completion processing uses the physical address of the 
I/O status block, provided no event has occurred while I/O 
was outstanding that would have invalidated this address 
(such as unmapping a region, an EXTK$, or a checkpoint), as 
indicated by T3.MPC. If such an event has occurred, the I/O 
packet is converted into a kernel AST packet such that when 
the task's context is loaded, the virtual address can be 
used. Note that system's integrity is preserved here, rather 
than the issuing task's, if the task remapped or unmapped the 
I/O status block. "In general, a task may not change the 
virtual mapping of it's I/O status block, but can unmap an 
I/O buffer if needed. 

If I.IOSB+4 is odd, it indicates that the I/O packet is 
internal I/O which was issued from another driver or system 
process. When I/O is completed, a specified kernel mode 
completion routine is called - rather than performing normal 
I/O completion processing (see $IOFIN in IOSUB for details). 
This is intended to be transparent to the driver. 

7.4 THE ADDRESS DOUBLE WORD 

P/OS can accommodate configurations whose maximum physical memory is 
2048K words. Individual tasks, however, are limited to 32K words. 
The addressing is accomplished by using virtual addresses and memory 
mapping hardware. I/O transfers, however, use physical addresses 18 
bits in length. Since the PDP-ll word size is 16 bits, some scheme is 
necessary to represent an address internally until it is actually used 
in an I/O operation. The choice was made to encode two words as the 
internal representation of a physical address and to transform virtual 
addresses for I/O operations into the internal doubleword format. 

On receipt of a QIO directive, the buffer address in the Directive 
Parameter Block, which contains a task virtual address, is converted 
to address doubleword format. 

The virtual address in the DPB is structured as follows: 

Bits 0 through 5 Displacement in terms of 32-word blocks 

Bits 6 through 12 Block number 

Bits 13 through 15 Page Address Register Number (PAR_#) 

The internal P/OS translation restructures this virtual address into 

7-11 



THE ADDRESS DOUBLE WORD 

an address doubleword as described in the following paragraphs. 

The relocation base contained in the PAR specified by the PAR number 
in the virtual address in the OPB is added to the block number in the 
address. The result becomes the first word of the address doubleword. 
It represents the nth 32-word block in a memory viewed as a collection 
of 32-word blocks. Note that at the time the address doubleword is 
computed, the user's task issuing the QIO directive is mapped by the 
processor's memory management registers. 

The second word is formed by placing the displacement in block (bits 0 
through 5 of virtual address) into bits 0 through 5. The block number 
field was accommodated in the first word and bits 6 through 12 are 
cleared. Finally, a 6 is placed in bits 13 through 15 to enable use 
of PAR #6, which the Executive uses to service I/O for program 
transfer devices. 

For nonprocessor request (NPR) devices, the driver requirements for 
manipulating the address doubleword are direct and are discussed with 
the description of U.BUF in Section 4.4.4. 

7.5 SERVICE CALLS 

This section contains general commentary on the Executive routines 
typically used by I/O drivers. The descriptions of the routines are 
taken from the source code of modules linked to form the Executive. 
Table 7-3 summarizes the routines described in this section. Only the 
most widely used routines are described; however, many other Executive 
services are available. The source code for the related routines is 
in the MACRO-ll source files for the Executive modules. 

7-12 



SERVICE CALLS 

Table 7-3: Summary of Executive Service Calls for Drivers 

Routine Location in 
Module 

Name Function 

$ACHKB 
$ACHCK 
$ALOCB 
$BLKCK 
$BLKCl 
$BLKC2 
$BLXIO 
$CKBFI 
$CKBFR 
$CKBFW 
$CKBFB 
$CLINS 
$CVLBN 
$DEACB 
$FORK 
$FORKl 
$GTBYT 
$GTPKT 
$GSPKT 
$GTWRD 
$INIBF 
$INTXT 
$IOALT 
$IODON 
$IOFIN 
$PTBYT 
$PTWRD 
$QINSP 
$RELOC 
$REQUE 
$REQUl 
$TSPAR 

$TSTBF 

EXSUB 
EXSUB 
CORAL 
MDSUB 
MDSUB 
MDSUB 
BFCTL 
EXESB 
EXESB 
EXESB 
EXESB 
QUEUE 
MDSUB 
CORAL 
SYSXT 
SYSXT 
BFCTL 
IOSUB 
IOSUB 
BFCTL 
IOSUB 
SYSXT 
IOSUB 
IOSUB 
IOSUB 
BFCTL 
BFCTL 
QUEUE 
MEMAP 
IOSUB 
IOSUB 
REQSB 

IOSUB 

Address check for byte-aligned buffers 
Address check for word-aligned buffers 
Alocate core buffer 
Check logical block number 
Check logical block number 
Check logical block number 
Move block of data 
Check I/O buffer 
Check I/O buffer 
Check I/O buffer 
Check I/O buffer 
Clock queue insertion 
Convert logical block number 
Deallocate core buffer 
Create a fork process 
Fork but bypass clearing timeout count 
Get byte 
Get an I/O packet 
Get a special I/O packet 
Get word 
Initiate I/O buffering 
Interrupt exit 
Alternate entry to $IODON 
I/O done for completing an I/O request 
I/O finish for special I/O completion 
Put byte 
Put word 
Queue insertion by priority 
Relocate address 
Queue kernel AST to task 
Queue kernel AST to task 
Test if partition memory resident 
for kernel AST 
Test for I/O buffering 

7-13 



$ACHKB 
$ACHCK 

SERVICE CALLS 

7.5.1 Address Check 

These routines are in the file IOSUB. A driver can call either 
routine to address-check a task buffer while the task is the current 
task. The Address Check routines are normally used only by drivers 
setting UC.QUE in U.CTL. See Section 8.1 for an example. 

Calling Sequences: 

CALL $ACHKB 

or 

CALL $ACHCK 

Description: 

+ 
**-$ACHKB-ADDRESS CHECK BYTE ALIGNED 
**-$ACHCK-ADDRESS CHECK WORD ALIGNED 

THIS ROUTINE IS CALLED TO ADDRESS CHECK A BLOCK OF MEMORY TO SEE 
WHETHER IT LIES WITHIN THE ADDRESS SPACE OF THE CURRENT TASK. 

INPUTS: 

RO=STARTING ADDRESS OF THE BLOCK TO BE CHECKED. 
Rl=LENGTH OF THE BLOCK TO BE CHECKED IN BYTES. 

OUTPUTS : 

C=l IF ADDRESS CHECK FAILED. 
C=O IF ADDRESS CHECK SUCCEEDED. 

R2 =ADDRESS OF WINDOW BLOCK MAPPING BUFFER 
(FOR PRIV TASKS SEE NOTE.) 

RO AND R3 ARE PRESERVED ACROSS CALL. 

NOTE : SINCE PRIVILEGED TASK I /0 BUFFERS ARE NOT 
ADDRESS CHECKED, R2 ALWAYS RETURNS A POINTER TO 
THE FIRST WINDOW BLOCK. CHECKPOINTING AND 
SHUFFLING OF COMMONS WILL STILL WORK PROPERLY 
PROVIDED THAT A PRIVILEGED TASK NEVER SPECIFIES 
AN I /0 INTO A COMMON WHICH IT ALLOWS TO REMAIN 

7-14 



Note: 

SERVICE CALLS 

CHECKPOINTABLE AND SHUFFLEABLE. 

1. In P/OS, almost all drivers will wish to use the alternate 
routines $CKBFB/$CKBFW which correctly maintain the 
attachment and partition I/O count mechanism in addition to 
address checking the user buffer. If the driver completes 
all references to the buffer in the initiation routine (that 
is, fills the buffer and calls $IOFIN, rather than queueing 
the packet and/or starting a transfer which is completed via 
interrupt service) then it is permissible to use 
$ACHKB/$ACHCK. See Section 7.5.5 for a description of 
$CKBFB/$CKBFW and Section 8.1 for an example. 

7-15 



SERVICE CALLS 

$ALOCB 

7.5.2 Allocate Core Buffer 

This routine is in the file CORAL. 

Calling Sequences: 

CALL $ALOCB 

or 

CALL $ALOCl 

Description: 

i+ 

i -

**-$ALOCB-ALLOCATE CORE BUFFER 
**-$ALOC1-ALLOCATE CORE BUFFER (ALTERNATE ENTRY) 

THIS ROUTINE IS CALLED TO ALLOCATE AN EXEC CORE BUFFER, THE 
ALLOCATION ALGORITHM IS FIRST FIT AND BLOCKS ARE ALLOCATED IN 
MULTIPLES OF FOUR BYTES. 

INPUTS: 

RO=ADDRESS OF CORE ALLOCATION LISTHEAD-2 IF ENTRY AT 
$ALOCl Rl=SIZE OF THE CORE BUFFER TO ALLOCATE IN BYTES. 

OUTPUTS: 

C=l IF INSUFFICIENT CORE IS AVAILABLE TO ALLOCATE THE 
BLOCK. 

C=O IF THE BLOCK IS ALLOCATED. 
RO=ADDRESS OF THE ALLOCATED BLOCK. 
Rl=LENGTH OF BLOCK ALLOCATED 

7-16 



$BLKCK 
$BLKCl 
$BLKC2 

SERVICE CALLS 

7.5.3 Check Logical Block 

This routine is in the file MDSUB. The output from this routine is 
used by disk drivers as input to the $CVLBN routine to handle logical 
block numbers in data transfers. 

Calling Sequence: 

CALL $BLKCK 

or 

CALL $BLKC2 

Description: 

;+ 
**-$BLKCK-LOGICAL BLOCK CHECK ROUTINE 
**-$BLKC1-LOGICAL BLOCK CHECK ROUTINE (ALTERNATE ENTRY) 
**-$BLKC2-LOGICAL BLOCK CHECK ROUTINE (ALTERNATE ENTRY FOR 

QUEUE OPT) 

THIS ROUTINE IS CALLED BY I/O DEVICE DRIVERS TO CHECK THE 
STARTING AND ENDING LOGICAL BLOCK NUMBERS OF AN I/O TRANSFER TO 
A FILE STRUCTURED DEVICE. IF THE RANGE OF BLOCKS IS NOT LEGAL, 
THEN $IODON IS ENTERED WITH A FINAL STATUS OF "IE.BLK" AND A 
RETURN TO THE DRIVER'S INITIATOR ENTRY POINT IS EXECUTED. ELSE 
A RETURN TO THE DRIVER IS EXECUTED. 

$BLKC2 RETURNS TO $QOPDN IN $DRQRQ IF THERE IS AN ERROR INSTEAD 
OF THE DRIVER'S INITIATOR ENTRY POINT. THIS ALLOWS THE QUEUE 
OPTIMIZATION CODE TO USE BLKCK 

INPUTS: 

Rl=ADDRESS OF I/O PACKET. 
R5=ADDRESS OF THE UCB. 

OUTPUTS: 

IF THE CHECK FAILS, THEN $IODON IS ENTERED WITH A FINAL 
STATUS OF "IE.BLK" AND A RETURN TO THE DRIVER'S INITIATOR 
ENTRY POINT IS EXECUTED. 

IF THE CHECK SUCCEEDS, THEN THE FOLLOWING REGISTERS ARE 

7-17 



;-

SERVICE CALLS 

RETURNED: 
RO=LOW PART OF LOGICAL BLOCK NUMBER. 
Rl=POINTS TO I.PRM+12 (LOW PART OF USER LBN) 
R2=HIGH PART OF LOGICAL BLOCK NUMBER. 
R3=ADDRESS OF I/O PACKET. 

7-18 



SERVICE CALLS 

$BLXIO 

7.5.4 Move Block of Data 

This routine is in file BFCTL. 

Calling Sequence: 

CALL $BLXIO 

Description: 

i+ 

; -

**-$BLXIO-MOVE BLOCK OF DATA. 

THIS ROUTINE IS CALLED TO MOVE DATA IN MEMORY IN A MAPPED 
SYSTEM. 

INPUTS: 

RO=NUMBER OF BYTES TO MOVE. 
Rl=SOURCE APRS BIAS. 
R2=SOURCE DISPLACEMENT. 
R3=DESTINATION APR6 BIAS. 
R4=DESTINATION DISPLACEMENT. 

OUTPUTS: 

DESCRIBED MOVE IS ACCOMPLISHED. 
RO ALTERED 
R1,R3 PRESERVED 
R2,R4 POINT TO LAST BYTE OF SOURCE AND DESTINATION + 1 

NOTE: THE COUNT INPUT IN RO MUST NOT BE ZERO AND IT MUST 
NOT BE LARGE ENOUGH TO CROSS APR BOUNDARIES (THIS 
TYPICALLY MEANS A MAXIMUM OF 8KB-64.BYTES). 

7-19 



$CKBFI 
$CKBFR 
$CKBFW 
$CKBFB 

SERVICE CALLS 

7.5.5 Check 1/0 Buffer 

These routines are in file EXESB. 

Calling Sequences: 

CALL $CKBFB (or appropriate entry name) 

Description: 

i+ 
i ,**-$CKBFI-CHECK I/O BUFFER FOR I-SPACE (OVERLAY) ACCESS 

**-$CKBFR-CHECK I/O BUFFER FOR READ-ONLY (BYTE) ACCESS 
**-$CKBFW-CHECK I/O BUFFER FOR READ-WRITE (WORD) ACCESS 
**-$CKBFB-CHECK I/O BUFFER FOR READ-WRITE (BYTE) ACCESS 

THESE ROUTINES ARE CALLED TO ADDRESS CHECK AN I/O BUFFER 
ASSOCIATED WITH THE CURRENT (UNDER CONSTRUCTION) I/O PACKET. 
IF THE ADDRESS CHECK PASSES, THEN AN ATTEMPT IS MADE TO POINT 
ONE OF THE ATTACHMENT DESCRIPTOR POINTERS AT THE ASSOCIATED 
ADB. THIS WILL HAVE ONE OF THE FOLLOWING OUTCOMES: 

1) - THERE IS CURRENTLY NO ATTACHMENT POINTER IN THE PACKET TO 
THIS ADB, AND THE POINTERS AREN'T FULL. A POINTER IS FILLED 
IN AND THE A.IOC, P.IOC FIELDS FOR THIS I/O ARE 
INCREMENTED. THIS IS THE "NORMAL" SUCCESSFUL CASE. 

2) - THERE IS ALREADY ONE POINTER TO THIS ADB. THE PACKET IS 
UNTOUCHED, AS ARE THE A.IOC AND P.IOC FIELDS, AND THE CHECK 
IS CONSIDERED SUCCESSFUL. THE IMPLICATION OF NOT 
INCREMENTING A.IOC AND P.IOC IS THAT DRIVERS AND ACPS MAY 
NOT RELEASE BUFFERS FOR AN I/O REQUEST ONE AT A TIME, I.E. 
THE DRIVER SHOULD NOT CALL $DECIO DIRECTLY, BUT SHOULD CALL 
$IODON OR $DECAL AFTER ALL BUFFER ACCESS HAS COMPLETED. 

3) - THERE ARE ALREADY TWO POINTERS, NONE OF THEM TO THIS 
ATTACHMENT DESCRIPTOR. THIS IS CONSIDERED A CHECK FAILURE 
AND RETURN IS MADE WITH CARRY SET. 

INPUTS: 

RO=STARTING ADDRESS OF BLOCK TO BE CHECKED 
R1=LENGTH OF BUFFER TO BE CHECKED 

7-20 



SERVICE CALLS 

$ATTPT=ADDRESS OF I.AADA IN CURRENT I/O PACKET 
HEADER OF THE SUBJECT TASK IS MAPPED THROUGH KISAR6 

OUTPUTS: 

C=o CHECK AND PACKET UPDAT SUCCESSFUL 
I.AADA OR I.AADA+2 POINTS TO THE ADB 
A.IOC, P.IOC INCREMENTED 

C=l CHECK UNSUCCESSFUL OR PACKET COULD NOT BE FILLED IN 

7-21 



SERVICE CALLS 

$CLINS 

7.5.6 Clock Queue Insertion 

This routine is in the file QUEUE. 

Calling Sequence: 

CALL $CLINS 

Description: 

i+ 
**-$CLINS-CLOCK QUEUE INSERTION 

THIS ROUTINE IS CALLED TO MAKE AN ENTRY IN THE CLOCK QUEUE. THE 
ENTRY IS INSERTED SUCH THAT THE CLOCK QUEUE IS ORDERED IN 
ASCENDING TIME. THUS THE FRONT ENTRIES ARE MOST IMMINENT AND 
THE BACK LEAST. 

INPUTS: 

RO=ADDRESS OF THE CLOCK QUEUE ENTRY CORE BLOCK. 
Rl=HIGH ORDER HALF OF DELTA TIME. 
R2=LOW ORDER HALF OF DELTA TIME. 
R4=REQUEST TYPE. 
R5=ADDRESS OF REQUESTING TCB OR REQUEST IDENTIFIER. 

OUTPUTS: 

THE CLOCK QUEUE ENTRY IS INSERTED IN THE CLOCK QUEUE 
ACCORDING TO THE TIME THAT IT WILL COME DUE. 

7-22 



SERVICE CALLS 

$CVLBN 

7.5.7 Convert Logical Block Number 

This routine is in the file MDSUB. The input to this routin~ is the 
same as the output from the $BLKCK routine. Typically, a disk driver 
calls this routine to convert a logical block number to a physical 
disk address. The routine accesses the U.PRM fields in the driver 
data base unit control block. These fields contain the sector, track, 
and cylinder parameters for the type of disk supported. Refer to the 
description of the U.PRM fields in Section 4.4.4. 

Calling Sequence: 

CALL $CVLBN 

Description: 

i+ 

; -

**-$CVLBN-CONVERT LOGICAL BLOCK NUMBER TO DISK PARAMETERS 

THIS SUBROUTINE WILL CONVERT THE SPECIFIED LOGICAL BLOCK 
NUMBER TO A SECTOR/TRACK/CYLINDER ADDRESS. 

INPUTS: 

(SAME AS $BLKCK OUTPUTS) 
RO=LOW PART OF LBN 
R2=HIGH PART OF LBN 
R3=I/O PACKET ADDRESS 
R5=UCB ADDRESS 

OUTPUTS: 

RO=SECTOR NUMBER 
Rl=TRACK NUMBER 
R2=CYLINDER NUMBER 

7-23 



SERVICE CALLS 

$DEACB 

7.5.8 Dea1locate Core Buffer 

This routine is in the file CORAL. 

Calling sequences: 

CALL $DEACB 

or 

CALL $DEACl 

Description: 

;+ 

; -

**-$DEACB-DEALLOCATE CORE BUFFER 
**-$DEACI-DEALLOCATE CORE BUFFER (ALTERNATE ENTRY) 

THIS ROUTINE IS CALLED TO DEALLOCATE AN EXEC CORE BUFFER. THE 
BLOCK IS INSERTED INTO THE FREE BLOCK CHAIN BY CORE ADDRESS. IF 
AN ADJACENT BLOCK IS CURRENTLY FREE, THEN THE TWO BLOCKS ARE 
MERGED AND INSERTED IN THE FREE BLOCK CHAIN. 

INPUTS: 

RO=ADDRESS OF THE CORE BUFFER TO BE DEALLOCATED. 
Rl=SIZE OF THE CORE BUFFER TO DEALLOCATE IN BYTES. 
R3=ADDRESS OF CORE ALLOCATION LISTHEAD-2 IF ENTRY AT 

$DEAC1. 

OUTPUTS: 

THE CORE BLOCK IS MERGED INTO THE FREE CORE CHAIN BY CORE. 
ADDRESS AND IS AGLOMERATED IF NECESSARY WITH ADJACENT 
BLOCKS. 

7-24 



SERVICE CALLS 

$FORK 

7.5.9 Fork 

Fork is in the file SYSXT. A driver calls $FORK to switch from a 
partially interruptable level (its state following a call on $INTSV) 
to a fully interruptable level. 

Calling sequence: 

CALL $FORK 

Description: 

i+ 

i -

Notes: 

**-$FORK-FORK AND CREATE SYSTEM PROCESS 

THIS ROUTINE IS CALLED FROM AN I/O DRIVER TO CREATE A SYSTEM 
PROCESS THAT WILL RETURN TO THE DRIVER AT STACK DEPTH ZERO TO 
FINISH PROCESSING. 

INPUTS: 

R5=ADDRESS OF THE UCB FOR THE UNIT BEING PROCESSED. 
O(SP)=RETURN ADDRESS TO CALLER. 
2(SP)=RETURN ADDRESS TO CALLERS CALLER. 

OUTPUTS: 

REGISTERS R5 AND R4 ARE SAVED IN THE CONTROLLER FORK BLOCK 
AND A SYSTEM PROCESS IS CREATED. THE PROCESS IS LINKED TO 
THE FORK QUEUE AND A JUMP TO $INTXT IS EXECUTED. 

1. $FORK cannot be called unless $INTSV has been previously 
called or $INTSI has run. The fork-processing routine 
assumes that the Executive has set up entry conditions. 

2. A driver's current timeout count is cleared in calls to 
$FORK. This protects the driver from synchronization 
problems that can occur when an I/O request and the timeout 
for that request happen at the same time. After a return 
from a call to $FORK, a driver's timeout code will not be 
entered. 

7-25 



SERVICE CALLS 

If the clearing of the timeout count is not desired, a driver 
has two alternatives: 

1. Perform timeout operations by directly inserting elements 
in the clock queue (refer to the description of the 
$CLINS routine). 

2. Perform necessary initialization, including clearing 
S.STS in the SCB to zero (establishing the controller as 
not busy), and call the $FORKl routine rather than $FORK. 
Calling $FORKl bypasses the clearing of the current 
timeout count. 

3. The driver must not have any information on the stack when 
$FORK is called. 

7-26 



SERVICE CALLS 

$FORK1 

7.5.10 Forkl 

Fork1 is in the file SYSXT. A driver calls $FORK1 to bypass the 
clearins of its timeout count when it switches from a partially 
interruptable level to a fully interruptable level (refer also to the 
description of the $FORKroutine). 

Calling Sequence: 

CALL $FORK1 

Description: 

i+ 

; -

Notes: 

**-$FORK1-FORK AND CREATE SYSTEM PROCESS 

THIS ROUTINE IS AN ALTERNATE ENTRY TO CREATE A SYSTEM PROCESS 
AND SAVE REGISTER R5. 

INPUTS: 

R4=ADDRESS OF THE LAST WORD OF A 3-WORD FORK BLOCK PLUS 2. 
R5=REGISTER TO BE SAVED IN THE FORK BLOCK. 

OUTPUTS: 

REGISTER R5 IS SAVED IN THE SPECIFIED FORK BLOCK AND A 
SYSTEM PROCESS IS CREATED. THE PROCESS IS LINKED TO THE 
FORK QUEUE AND A JUMP TO $INTXT IS EXECUTED. RS IS 
RESERVED FOR CALLERS CALLER. 

1. A 5-word fork block is required for calls to $FORK1. 

2. When a 5-word fork block is used, the driver must initialize 
the fifth word with the base address (in 32-word blocks) of 
the driver partition. This address can be obtained from the 
fifth word of the standard fork block in the SCB. 

3. The driver must not have any information on the stack when 
$FORKl is called. 

7-27 



SERVICE CALLS 

$GTBYT 

7.5.11 Get Byte 

Get Byte is in the file BFCTL. Get Byte manipulates words U.BUF and 
U.BUF+2 in the UCB. 

Calling sequence: 

CALL $GTBYT 

Description: 

i+ 

i 

i -

**-GTBYT-GET NEXT BYTE FROM USER BUFFER 

THIS ROUTINE IS CALLED TO GET THE NEXT BYTE FROM THE USER BUFFER 
AND RETURN IT TO THE CALLER ON THE STACK. AFTER THE BYTE HAS 
BEEN FETCHED, THE NEXT BYTE ADDRESS IS INCREMENTED. 

INPUTS: 

R5=ADDRESS OF THE UCB THAT CONTAINS THE BUFFER POINTERS. 

OUTPUTS: 

THE NEXT BYTE IS FETCHED FROMT HE USER BUFFER AND RETURNED 
TO THE CALLER ON THE STACK. THE NEXT BYTE ADDRESS IS 
INCREMENTED. 

ALL REGISTERS ARE PRESERVED ACROSS CALL. 

7-28 



$GTPKT 
$GSPKT 

SERVICE CALLS 

7.5.12 Get Packet 

Get Packet and Get Special Packet are in the file IOSUB. The 
recommended way to use $GTPKT is to use the GTPKT$ macro call defined 
in Section Section 4.3. Usage of $GSPKT is described briefly in 
Section 1.4.3. 

Calling Sequences: 

CALL $GTPKT 

or 

CALL $GSPKT 

Description: 

i+ 
**-$GTPKT-GET I/O PACKET FROM REQUEST QUEUE 
**-$GSPKT-GET SELECTIVE I/O PACKET FROM REQUEST QUEUE 

THIS ROUTINE IS CALLED BY DEVICE DRIVERS TO DEQUEUE THE NEXT I/O 
REQUEST TO PROCESS. IF THE DEVICE CONTROLLER IS BUSY, THEN A 
CARRY SET INDICATION IS RETURNED TO THE CALLER. ELSE AN ATTEMPT 
IS MADE TO DEQUEUE THE NEXT REQUEST FROM THE CONTROLLER QUEUE. 
IF NO REQUEST CAN BE DEQUEUED, THEN A CARRY SET INDICATION IS 
RETURNED TO THE CALLER. ELSE THE CONTROLLER IS SET BUSY AND A 
CARRY CLEAR INDICATION IS RETURNED TO THE CALLER. 

IF QUEUE OPTIMIZATION IS SUPPORTED AND ENABLED FOR THE DEVICE 
THE APROPRIATE PACKET FOR THE CURRENT OPTIMIZATION ALGORITHM 
IS RETURNED. THREE ALGORITHMS ARE SUPPORTED: NEAREST CYLINDER, 
ELEVATOR, AND C-SCAN. ALL THREE ALGORITHMS INCORPORATE A 
FAIRNESS COUNT. IF THE FIRST PACKET ON THE LIST IS PASSED OVER 
MORE THAN "FCOUNT" TIMES, IT IS DONE IMMEDIATELY. 

THE ALTERNATE ENTRY POINT $GSPKT IS INTENDED FOR USE BY DRIVERS 
WHICH SUPPORT PARALLEL OPERATIONS ON A SINGLE UNIT, A COMMON 
EXAMPLE BEING FULL DUPLEX. SUCH DRIVERS ARE EXPECTED TO LOOK TO 
THE SYSTEM AS IF THEY ARE ALWAYS FREE, WHILE MAINTAINING THE 
STATUS OF ALL PARALLEL OPERATIONS INTERNALLY WITHIN THEIR OWN 
DEVICE DATA STRUCTURES. PARALLELISM IS ACCOMPLISHED BY HANDLING 
DRIVER-DEFINED CLASSES OF I/O FUNCTION CODES IN PARALLEL WITH 
EACH OTHER. FOR EXAMPLE A FULL-DUPLEX DRIVER WOULD HANDLE INPUT 

7-29 



SERVICE CALLS 

; REQUESTS IN PARALLEL WITH OUTPUT REQUESTS. A DRIVER CALLS $GSPKT 
; WHEN IT WANTS TO DEQUEUE A PACKET WHOSE I/O FUNCTION CODE BELONGS 

TO A CERTAIN CLASS. WHICH FUNCTIONS QUALIFY IS DETERMINED BY AN 
; ACCEPTANCE ROUTINE IN THE DRIVER WHOSE ADDRESS IS PASSED TO $GSPKT 
; IN R2. THE ACCEPTANCE ROUTINE IS CALLED BY $GSPKT EACH TIME A 
; PACKET IS FOUND IN TaE QUEUE WHICH IS ELIGIBLE TO BE DEQUEUED. 

THE ACCEPTANCE ROUTINE IS THEN EXPECTED TO TAKE ONE OF THE 
FOLLOWING THREE ACTIONS: 

1. RETURN WITH CARRY CLEAR IF THE PACKET SHOULD BE 
DEQUEUED. IN THIS CASE $GSPKT PROCEEDS AS $GTPKT 
NORMALLY WOULD ON DEQUEUEING THE PACKET. 

2. RETURN WITH CARRY SET IF THE PACKET SHOULD NOT BE 
DEQUEUED. IN THIS CASE $GSPKT WILL CONTINUE THE 
SCAN OF THE I/O QUEUE. 

3. ADD THE CONSTANT G$$SPSA TO THE STACK POINTER TO 
ABORT THE SCAN WITH NO FURTHER ACTION. 

THE ACCEPTANCE ROUTINE MUST SAVE AND RESTORE ANY REGISTERS WHICH 
IT INTENDS TO MODIFY. WHEN A PACKET IS DEQUEUED VIA $GSPKT, THE 
FOLLOWING NORMAL $GTPKT ACTIONS DO NOT OCCUR: 

1. FILLING IN OF U.BUF, U.BUF+2 AND U.CNT. THESE 
FIELDS ARE AVAILABLE FOR DRIVER-SPECIFIC USE. 

2. BUSYING OF UCB AND SCB. 

3. EXECUTION OF $CFORK TO GET TO PROPER PROCESSOR 
(MULTI-PROCESSOR SYSTEMS). 

NOTE: $GSPKT MAY NOT BE USED BY A DRIVER WHICH SUPPORTS 
QUEUE OPTIMIZATION. 

INPUTS: 

R2=ADDRESS OF DRIVER'S ACCEPTANCE ROUTINE (IF CALL AT 
$GSPKT). 

R5=ADDRESS OF THE UCB OF THE CONTROLLER TO GET A PACKET 
FOR. 

OUTPUTS: 

C=l IF CONTROLLER IS BUSY OR NO REQUEST CAN BE DEQUEUED. 
C=O IF A REQUEST WAS SUCCESSFULLY DEQUEUED. 

Rl=ADDRESS OF THE I/O PACKET. 
R2=PHYSICAL UNIT NUMBER. 
R3=CONTROLLER INDEX. 
R4=ADDRESS OF THE STATUS CONTROL BLOCK. 

7-30 



SERVICE CALLS 

R5=ADDRESS OF THE UNIT CONTROL BLOCK. 

NOTE: R4 AND R5 ARE DESTROYED BY THIS ROUTINE. 
;-

7-31 



SERVICE CALLS 

$GTWRD 

7.5.13 Get Word 

Get Word is in the file BFCTL. It manipulates words U.BUF and U.BUF+2 
in the UCB. 

Calling Sequence: 

CALL $GTWRD 

Description: 

i+ 

; -

**-$GTWRD-GET NEXT WORD FROM USER BUFFER 

THIS ROUTINE IS CALLED TO GET THE NEXT WORD FROM THE USER BUFFER 
AND RETURN IT TO THE CALLER ON THE STACK. AFTER THE WORD HAS 
BEEN FETCHED, THE NEXT WORD ADDRESS IS CALCULATED. 

INPUTS: 

R5=ADDRESS OF THE UCB THAT CONTAINS THE BUFFER POINTERS. 

OUTPUTS: 

THE NEXT WORD IS FETCHED FROM THE USER BUFFER AND RETURNED 
TO THE CALLER ON THE STACK. THE NEXT WORD ADDRESS IS 
CALCULATED. 

ALL REGISTERS ARE PRESERVED ACROSS CALL. 

7-32 



SERVICE CALLS 

$INIBF 

7.5.14 Initiate I/O Buffering 

This routine is in the file IOSUB. 

Calling Sequence: 

CALL $INIBF 

Description: 

i+ 

i -

**-$INIBF-INITIATE I/O BUFFERING 

THIS ROUTINE INITIATES I/O BUFFERING BY DOING THE FOLLOWING: 

1. DECREMENT THE TASK'S I/O COUNT. 

2. INCREMENT THE TASK'S BUFFERED I/O COUNT 

3. INITIATE CHECKPOINTING IF A REQUEST IS PENDING 

INPUTS: 

R3=ADDRESS OF I/O PACKET FOR I/O REQUEST.' 

OUTPUTS: 

R3 IS PRESERVED. 

7-33 



SERVICE CALLS 

$INTXT 

7.5.15 Interrupt Exit 

Interrupt Exit is in the file SYSXT. 

Calling Sequence: 

JMP 

Description: 

$INTXT 

;+ 

;-

**-$INTXT-INTERRUPT EXIT 

THIS ROUTINE MAY BE CALLED VIA A JMP TO EXIT FROM AN INTERRUPT 

INPUTS: 

O(SP)=INTERRUPT SAVE RETURN ADDRESS. 

OUTPUTS: 

A RETURN TO INTERRUPT SAVE IS EXECUTED. 

7-34 



SERVICE CALLS 

$ IOALT/$IODON 

7.5.16 I/O Done Alternate Entry and 1/0 Done 

These routines are in the file IOSUB. 

Calling Sequences: 

CALL $IOALT 

CALL $IODON 

Description: 

Note: 

i+ 

i-

**-$IOALT-I/O DONE (ALTERNATE ENTRY) 
**-$IODON-I/O DONE 

THIS ROUTINE IS CALLED BY DEVICE DRIVERS AT THE COMPLETION OF AN 
I/O REQUEST TO DO FINAL PROCESSING. THE UNIT AND CONTROLLER ARE 
SET IDLE AND $IOFIN IS ENTERED TO FINISH THE PROCESSING. 

INPUTS: 

RO=FIRST I/O STATUS WORD. 
R1=SECOND I/O STATUS WORD. 
R2=STARTING AND FINAL ERROR RETRY COUNTS IF ERROR LOGGING 

DEVICE. 
R5=ADDRESS OF THE UNIT CONTROL BLOCK OF THE UNIT BEING 

COMPLETED. 
(SP)=RETURN ADDRESS TO DRIVER'S CALLER. 

NOTE: IF ENTRY IS AT $IOALT, THEN Rl IS CLEAR TO SIGNIFY 
THAT THE SECOND STATUS WORD IS ZERO. 

OUTPUTS: 

THE UNIT AND CONTROLLER ARE SET IDLE. 

ALL REGISTERS ARE DESTROYED. 

1. All registers are destroyed when either of these routines is 
called. 

7-35 



SERVICE CALLS 

$IOFIN 

7.5.17 1/0 Finish 

I/O Finish is in the file IOSUB. Most drivers do not call I/O Finish, 
but you should be aware that this routine is executed when a driver 
calls $IOALT or $IODON. A driver that references an I/O packet before 
it is queued (bit UC.QUE set--see Section 8.1 for an example) calls 
I/O Finish if the driver finds an error while preprocessing the I/O 
packet. 

Calling Sequence: 

CALL $IOFIN 

Description: 

i+ 
**-$IOFIN-I/O FINISH 

THIS ROUTINE IS CALLED TO FINISH I/O PROCESSING IN CASES WHERE 
THE UNIT AND CONTROLLER ARE NOT TO BE DECLARED IDLE. IF THE TASK 
WHICH ISSUED THE I/O HAS HAD A RECENT MAPPING CHANGE WHICH MAY 
HAVE UNMAPPED ITS I/O STATUS BLOCK, THE I/O PACKET IS QUEUED TO 
THE FRONT OF ITS AST QUEUE TO BE COMPLETED LATER IN $FINBF BY 
CALLING $IOFIN AGAIN. 

INPUTS: 

RO=FIRST I/O STATUS WORD. 
Rl=SECOND I/O STATUS WORD. 
R3=ADDRESS OF THE I/O REQUEST PACKET. 

OUTPUTS: 

THE FOLLOWING ACTIONS ARE PERFORMED 

1-THE FINAL I/O STATUS VALUES ARE STORED IN THE I/O 
STATUS BLOCK IF ONE WAS SPECIFIED. 

2-ALL ASSOCIATED I/O COUNTS ARE DECREMENTED AND TS.RDN IS 
CLEARED IN CASE THE TASK WAS BLOCKED FOR I/O RUNDOWN. 
T3.MPC IS CLEARED IF THE TASK I/O COUNT GOES TO ZERO TO 
INDICATE THAT THE I/O COUNT WENT TO ZERO AFTER A 
MAPPING CHANGE. 

3-IF 'TS.CKR' IS SET, THEN IT IS CLEARED AND 
CHECKPOINTING OF THE TASK IS INITIATED. 

7-36 



; 

; -

SERVICE CALLS 

4-IF AN AST SERVICE ROUTINE WAS SPECIFIED, THEN AN AST IS 
QUEUED FOR THE TASK, ELSE THE I/O PACKET IS DEALLOCATED. 

5-A SIGNIFICANT EVENT OR EQUIVALENT IS DECLARED. 

NOTE: R4 IS DESTROYED BY THIS ROUTINE. 

7-37 



SERVICE CALLS 

$PTBYT 

7.5.18 Put Byte 

Put Byte is in the file BFCTL. Put Byte manipulates words U.BUF and 
U.BUF+2 in the UCB. 

Calling Sequence: 

CALL $PTBYT 

Description: 

i+ 

i -

**-$PTBYT-PUT NEXT BYTE IN USER BUFFER 

THIS ROUTINE IS CALLED TO PUT A BYTE IN THE NEXT LOCATION IN THE 
USER BUFFER. AFTER THE BYTE HAS BEEN STORED, THE NEXT BYTE 
ADDRESS IS INCREMENTED. 

INPUTS: 

R5=ADDRESS OF THE UCB THAT CONTAINS THE BUFFER POINTERS. 
2(SP)-BYTE TO BE STORED IN THE NEXT LOCATION OF THE USER 
BUFFER. 

OUTPUTS: 

THE BYTE IS STORED IN THE USER BUFFER AND REMOVED FROM THE 
STACK. 

THE NEXT BYTE ADDRESS IS INCREMENTED. 

ALL REGISTERS ARE PRESERVED ACROSS CALL. 

7-38 



SERVICE CALLS 

$PTWRD 

7.5.19 Put Word 

Put Word is in the file BFCTL. It manipulates words U.BUF and U.BUF+2 
in the UCB. 

Calling Sequence: 

CALL $PTWRD 

Description: 

;+ 

; -

**-$PTWRD-PUT NEXT WORD IN USER BUFFER 

THIS ROUTINE IS CALLED TO PUT A WORD IN THE NEXT LOCATION IN 
THE USER BUFFER. AFTER THE WORD HAS BEEN STORED, THE NEXT WORD 
ADDRESS IS CALCULATED. 

INPUTS: 

R5=ADDRESS OF THE UCB THAT CONTAINS THE BUFFER POINTERS. 
2(SP)=WORD TO BE STORED IN THE NEXT LOCATION OF THE 
BUFFER. 

OUTPUTS: 

THE WORD IS STORED IN THE USER BUFFER AND REMOVED FROM THE 
STACK. THE NEXT WORD ADDRESS IS CALCULATED. 

ALL REGISTERS ARE PRESERVED ACROSS CALL. 

7-39 



SERVICE CALLS 

$QINSP 

7.5.20 Queue Insertion by Priority 

This routine is in the file QUEUE. A driver may call $QINSP to insert 
into the I/O queue an I/O packet that the Executive has not already 
placed in the queue. Queue Insertion by Priority is used only by 
drivers setting UC.QUE in U.CTL. See Section 8.1 for an example. 

Calling Sequence: 

CALL $QINSP 

Description: 

i+ 

i -

**~$QINSP-QUEUE INSERTION BY PRIORITY 

THIS ROUTINE IS CALLED TO INSERT AN ENTRY IN A PRIORITY ORDERED 
LIST. THE LIST IS SEARCHED UNTIL AN ENTRY IS FOUND THAT HAS A 
LOWER PRIORITY OR THE END OF THE LIST IS REACHED. THE NEW ENTRY 
IS THEN LINKED INTO THE LIST AT THE APPROPRIATE POINT. 

INPUTS: 

RO=ADDRESS OF THE TWO WORD LISTHEAD. 
Rl=ADDRESS OF THE ENTRY TO BE INSERTED. 

OUTPUTS: 

THE ENTRY IS LINKED INTO THE LIST BY PRIORITY. 

RO AND Rl ARE PRESERVED ACROSS CALL. 

7-40 



SERVICE CALLS 

$RELOC 

7.5.21 Relocate 

Relocate is in the file MEMAP. A driver may call $RELOC to relocate a 
task virtual address while the task is the current task. Relocate is 
normally used only by drivers setting UC.QUE in U.CTL. See Section 
8.1 for an example. 

Calling Sequence: 

CALL $RELOC 

Description: 

i+ 

; -

**-$RELOC-RELOCATE USER VIRTUAL ADDRESS 

THIS ROUTINE IS CALLED TO TRANSFORM A 16-BIT USER VIRTUAL 
ADDRESS INTO A RELOCATION BIAS AND DISPLACEMENT IN BLOCK 
RELATIVE TO APR6. 

INPUTS: 

RO=USER VIRTUAL ADDRESS TO RELOCATE. 

OUTPUTS: 

Rl=RELOCATION BIAS TO BE LOADED INTO PAR6. 
R2=DISPLACEMENT IN BLOCK PLUS 140000 (PAR6 BIAS). 

RO AND R3 ARE PRESERVED ACROSS CALL. 

7-41 



SERVICE CALLS 

$REQUE 
$REQUl 

7.5.22 Queue Kernel AST to Task 

This routine is in module IOSUB. 

Calling Sequence: 

CALL $REQUE 

or 

CALL $REQUl 

Description: 

i+ 
i**-$REQUE-REQUEUE A REGION LOAD AST TO A TASK AST. 
i**-$REQU1-REQUEUE A REGION LOAD AST TO A TASK AST (ALTERNATE 

; -

ENTRY) . 

THESE ROUTINES ARE USED TO QUEUE A TASK KERNEL AST WHICH HAS 
BEEN USED AS A REGION LOAD AST BACK AS A TASK AST. THE BUFFERED 
I/O COUNT OF THE TASK IS DECREMENTED IF ENTRY AT $REQUE. 

INPUTS: 
RO=TCB ADDRESS OF ASSOCIATED TASK 
R3=ADDRESS OF PACKET TO BE QUEUED 

OUTPUTS: 
NONE. 

7-42 



SERVICE CALLS 

$TSPAR 

7.5.23 Test if Partition Memory Resident for Kernel AST 

This routine is in file REQSB. 

Calling Sequence: 

CALL $TSPAR 

Description: 

;**-$TSPAR-TEST IF PARTITION IS IN MEMORY FOR KERNEL AST 

;-

THIS ROUTINE IS CALLED TO CHECK A REGION FOR MEMEORY RESIDENCE 
TO DETERMINE IF IT IS SAFE TO SERVICE A KERNEL AST (E.G. COpy 
A BUFFER) INTO THE REGION. IF THE REGION IS CHECKPOINTED OR 
CURRENTLY BEING CHECKPOINTED, THEN A REGION LOAD AST IS QUEUED 
AND THE REGION IS ACCESSED ON THE TASKS BEHALF. 

INPUTS: 
RO=ADDRESS OF PACKET PEING PROCESSED 
Rl=PCB ADDRESS OF REGION 
R5=TCB ADDRESS OF ASSOCIATED TASK 

OUTPUTS: 
C=O IF REGION IS MEMORY RESIDENT 
C=l IF REGION IS NON-RESIDENT. IN THIS CASE THE REGION AST 

HAS BEEN QUEUED, ETC. 

7-43 



SERVICE CALLS 

$TSTBF 

7.5.24 Test for 1/0 Buffering 

This routine is in file IOSUB. 

Calling Sequence: 

CALL $TSTBF 

Description: 

i+ 

i -

**-$TSTBF-TEST IF I/O BUFFERING CAN BE INITIATED 

THIS ROUTINE DETERMINES IF A GIVEN I/O REQUEST IS ELIGIBLE FOR 
I/O BUFFERING, AND IF SO IT STORES THE PCB ADDRESS OF THE REGION 
INTO WHICH THE TRANSFER IS TO OCCUR IN I.PRM+16 OF THE I/O 
PACKET. 

INPUTS: 

R3=ADDRESS OF I/O PACKET FOR I/O REQUEST 

OUTPUTS: 

R3 IS PRESERVED. 

C=o IF I/O BUFFERING CAN BE INITIATED. 

C=l IF I/O BUFFERING CAN NOT BE INITIATED. 

7.6 ADDING PHYSICAL MEMORY TO THE PIOS CONFIGURATION 

Option modules that contain additional (possibly special purpose) 
memory, can allow it to be accessible to the system and applications 
by calling the privileged executive subroutine $STPAR in the 
distributed PRVLIB.OLB object library. It must be called at system 
state. In order to access the executive vector table, kernel APR6 is 
used. Therefore, the routine must be mapped through APR5 when called. 
This routine is system version independent. Note that system state 
may be entered without the necessity of being bound to the system 
version, by using the SWST$ directive. 

7-44 



ADDING PHYSICAL MEMORY TO THE PjOS CONFIGURATION 

If the additional memory is general purpose and there are no 
restrictions on its use, it may be added to the "GEN" main 
partition. Tasks, commons, and most PLAS regions are allocated 
from GEN on demand. If the memory is to be used for a dedicated 
purpose, a main partition of the name "$PARsx" can be specified -
where "s" is the logical slot number corresponding to the slot in 
which the board is located and "x" is any legal RAD50 character. 
This convention reduces the likelihood of a collision on the 
partition name. The partition name must be unique among all of 
the (region and partition) names in the system. Dedicated memory 
can be accessed, specifying the given main partition name in the 
creation of a PLAS region subpartition. Memory is allocated from 
the main partition, using a "first fit" algorithm unless the 
region is being fixed. If it is, the region is loaded high. If 
the region is already in memory, an attempt is made to checkpoint 
it so that it can be loaded high. Once additional memory has 
been added to the system configuration, it cannot be removed. 

If adding memory to the "GEN" partition, do not exit system state 
until you have turned on the physical memory and configured the 
base address to the value returned by $STPAR. 

The calling interface to $STPAR is as follows: 

i+ 
$STPAR -- add additional memory to system configuration 

Inputs: 

Rl = base address modulus-l (modulus granularity = 64 bytes) 
for example, if a base address modulus of 128KB was 
required, this parameter would be 3777(8). 

R2 size of memory to add (granularity = 32 Kbytes) 
R3 address of the name of main partition 

(must be unique if not "GEN ") 
(if the partition name "GEN "is specified, the 
additional memory will be appended to to this 
main partition.) 

7-45 



i -

ADDING PHYSICAL MEMORY TO THE P/OS CONFIGURATION 

Output: 

C=O, 
R2 base address of the region (granularity = 64 bytes) 

C=l, 
R2 ° 
R2 = 2 

R2 4 

R2 = 6 

partition name already exists 
insufficient space in available physical 
address space 
insufficient primary pool space to allocate 
required PCBs 
$STPAR uses the vectoring scheme described in 
this section in addressing several executive 
subroutines. If any of the IDENTS of the 
vectored subroutines do not match the IDENTS 
that $STPAR expects, $STPAR will fail with 
this error code. 

This is an example of using the _$STPAR routine . 
. b 
i+ 
i This test program will call $STPAR to extend the GEN partition. 
i -

.MCALL DIR$,SWST$,EXIT$S,WIMP$ 

In order to guarantee that both this code and the code in module 
$STPAR are mapped by APR5 during execution in system state, 
declare this code to reside in the PSECT $STPAQ, which the task 
builder will locate directly preceding PSECT $STPAQ of module 
$STPAR . 

. PSECT $STPAQ,I,GBL 

START: 

Verify that this is a V2.0 or later system. To do this, 
invoke the WIMP$ directive to retrieve the system version 
number. Since this form of the WIMP$ directive was not implementec 
before V2.0, if the directive fails, assume that it is not a 
V2.0 system. 

MOV #-2,RO iASSUME VERSION # FAILURE 
DIR$ #WIMP iGET VERSION 
BCS 5$ iVERSION NOT AVAILABLE 

iMUST BE PRE V2.0 
MOV #777,Rl iBIAS MASK (32KB BOUNDARY) 
MOV #20,R2 iSIZE OF PARTITION = 2000000 (=512.KB) 

<16.>*<32KB> 
DIR$ #SWITCH iDROP THROUGH THE LOOKING GLASS 

7-46 



5$: 

10$: 

SWITCH: 

STPAR: 

ADDING PHYSICAL MEMORY TO THE PjOS CONFIGURATION 

TST 
BEQ 

CALL 

EXIT$S 

CLR 
MOV 
MOV 
CALL 
MOV 

i(ENTER SYSTEM) 
RO iDID AN ERROR OCCUR? 
10$ iIF EQ NO 

ERRMSG iYES, DO SOMETHING 

iEXAMPLES HAVE NO REAL FUNCTION 

SWST$ START,STPAR 

CLR S.WSRO(SP) iiASSUME SUCCESS 
-(SP) iiSPECIFY SECOND HALF OF PARTITION NAME 
#ARGEN,-(SP) iiSPECIFY FIRST HALF OF PARTITION NAME 
SP,R3 iiPOINT TO NAME 
$STPAR iiEXPAND GEN 
(SP)+,(SP)+ iiPOP STACK TWICE WITHOUT AFFECTING 

i iC-BIT 
MOV R2,S.WSR1(SP) iiQUALIFY ERROR IF FAILURE 
BCS 10$ iiIF CS ERROR OCCURRED 

The memory has been configured in system data structures. It must 
be enabled at this point. Code in module TURNON must also reside in 
same APR5 mapping as this routine and $STPAR. 

; 
5$: 

10$: 

20$: 

CALL 

BCC 
MOV 
RETURN 

TURNON iiENABLE MEMORY AND SET BASE ADDR. 
iiBIAS AT VALUE RETURNED IN R2 BY $STPAR 

20$ 
#-l,S.WSRO(SP) iiINDICATE FAILURE TO PROVIDE MEMORY 

Turn on memory 

Input: 

TURNON: 

R2 contains base address bias (in units of-64. bytes) 
of new memory 

i CODE HERE TO ENABLE MEMORY 

RETURN 

; Error messages 
i 

This subroutine runs entirely in user mode, so it should not occupy 
i the same PSECT as system state routines. 
i 
i Input: RO = error code 
; 

7-47 



ADDING PHYSICAL MEMORY TO THE PIOS CONFIGURATION 

.PSECT USRCOD iuser code psect 
ERRMSG: 

i ERROR HANDLING 

RETURN 

.PSECT DBPS,D 

WIMP: WIMPS GI.FMK,BUF,BUFSIZ iGET SYSTEM IDENT 

BUFSIZ = 9. iTHIS FORM OF WIMPS RETURNS 9. 
iWORDS 

BUF: . BLKW 9 . 

.END START 

7.1 EXECUTIVE DATA STRUCTURE AND ROUTINE VECTORS 

In order to allow greater system version independence for 
privileged tasks and device drivers, a simple vectoring scheme 
has been implemented in PIOS version 2.0 and later. 

Prior to version 2.0, a privileged task was needed to link with 
the system's symbol table file to resolve references to various 
executive routine and data structure addresses. Since these 
addresses changed with every system version, it was necessary to 
rebuild the component for each version of the system. By 
creating a set of absolute addresses which point to various 
tables, a privileged component can resolve the necessary 
addresses at runtime. 

While it cannot be guaranteed, DIGITAL will attempt to maintain 
upward compatibility of the PIOS executive data structures and 
routines. Therefore, the tables provided below are on a "USE AT 
YOUR OWN RISK" basis. In particular, the data structures may 
change in future versions of P/OS. Each vectored executive 
routine is stamped with an IDENT which may be used as a validity 
check during initialization. 

There are three absolute pointers in the PIOS executive. The 
first points to the executive module LOWCR, the second to SYSCM 
and the third pointer consists of a bias and a displacement 
offset by 140000, which is used to map the executive routine 
vector table. In addition, the $BTMSK bit table has been moved 
to an absolute location. 

7-48 



EXECUTIVE DATA STRUCTURE AND ROUTINE VECTORS 

r .1.1 Pointer Location and Format 

~he vector table pointers are located in the following absolute 
Locations: 

Symbolic Name 

$BTMSK 
$VECLC 
$VECSC 
$VECVT 

Address 

1002 
1042 
1044 
1046 
1050 

Description 

bitmask table 
address of $STACK 
address of $CMBEG 
bias of vector table 
displacement+140000(8) 

rhe executive routine vector table's format is: 

$VECVT--) 

where, 

$xxx 
reserved 

IDENT 

.WORD 

. WORD 

. WORD 

number of vectors in table 
$XXX,reserved,IDENT ;entry point 0 
$XXX,reserved,IDENT ;entry point 1 

is the address of the executive routine 
is not currently used though may be used in 
the future to contain a bias. 
is a value associated with the particular 
routine which is incremented when the routine 
changes in a non upward compatible manner. 

7.1.2 Referencing LOWCR and SYSCM Data Structures 

The following example illustrates one method of binding an 
executive data structure reference at runtime . 

. MCALL QIOW$S,EXIT$S 

.PSECT DATA,D 

MYTCB: . WORD 

ARGBLK: .BLKW 
BUF: . BLKB 

$TKTCB-$STACK 

2 
80. 

;system macros 

;form offset from base of 
;LOWCR to $TKTCB (absolute) 

;argument block/taskname buf 
;output buffer 

FORMAT: .ASCIZ /My name is %2R and I got it the hard way/ 
. EVEN 

7-49 



EXECUTIVE DATA STRUCTURE AND ROUTINE VECTORS 

.PSECT CODE,I 

This task prints its taskname and exits. Could have been 
done simpler using GTSK$ however, the example is one 
technique to resolve the symbol $TKTCB in LOWCR. 

INIT: 

TYPIT: 

MOV 
CALL 
ADD 
MOV 
MOV 
MOV 
RETURN 

MOV 
MOV 
MOV 
CALL 
QIOW$S 
EXIT$S 

#ARGBLK,R2 ipoint at taskname buffer 
$SWSTK,TYPIT ienter system state 
@#$VECLC,MYTCB ;resolve address of $TKTCB 
MYTCB,R5 ;get current task's TCB addr 
T.NAM(R5),(R2)+ iget my task name 
T.NAM+2(R5),(R2) 

ireturn to user state (which 
;restores registers) 

#BUF,RO ipoint at output buffer 
#FORMAT,Rl ipoint to format string 
#ARGBLK+2,R2 ipoint to argument block 
$EDMSG iformat output 
#IO.WVB,#5,#5",,<#BUF,Rl,#40> ioutput to msg 

iexit 

.END INIT 

7.1.3 Referencing Executive Routines 

The following example subroutine illustrates one method of 
referencing a vectored executive routine . 

TKTCB: 
SETFG: 

HIVEC: 

. PSECT DATA,D 

$TKTCB-$STACK 
SETFG$ 

. WORD 1 

. WORD SETFG$/<3*2> 

. PSECT CODE,I 

;offset in LOWCR to $TKTCB 
;entry point symbols defined 
i in PRVLIB 
iversion number at time routine 
i written 
ieach entry point consists of 3 
; words . 

This subroutine sets the this task's local event flag the 
hard way. (It illustrates the vectoring as opposed to a 
SETF$ replacement.) 

SETF: CLR 
CALL 
ADD 
MOV 

$ERROR 
$SWSTK,20$ 
@#VECLC,TKTCB 
@#KISAR6,-(SP) 

;enter system state 
iresolve reference to $TKTCB 
isave current APR6 mapping 

7-50 



EXECUTIVE DATA STRUCTURE AND ROUTINE VECTORS 

MOV 
MOV 
CMP 

BHI 

ADD 
CMP 
BNE 
MOV 
MOV 
MOV 
CALL 

@#$VECVT,@#KISAR6 imap vector table 
@#VECVT+2,Rl ipoint to vector table 
HIVEC,-2(Rl) idoes vector table describe 

10$ 

SETFG,R1 
SETFG+2,4(Rl) 
10$ 
(R1) , R1 
#l,RO 
@TKTCB,R5 
(R1) 

ientry point? 
iif hi vectoring error has 
ioccurred 
ipoint to entry point in table 
isame IDENT? 
iif ne no, routine has changed 
iresolve reference to $SETFG 
ispecify event flag to set 
iget this task's TCB address 
iset a this task's local event 
iflag 1 

BR 15$ 
10$: DEC $ERROR 
15$: MOV (SP)+,@#KISAR6 
20$: RETURN 

7.1.4 Executive Routine Vector Table 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

i+ 

21 i-

.TITLE EXEVEC 

.IDENT /01.00/ 

COPYRIGHT (c) 1984 BY DIGITAL EQUIPMENT CORPORATION. 
ALL RIGHTS RESERVED. 

THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED 
OR COPIED ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE. 

EXEVEC -- THIS MODULE DEFINES SELECTED EXECUTIVE ENTRY POINTS 
SO THAT DRIVERS AND PRIVILEGED TASKS MAY BE SYSTEM 
VERSION INDEPENDENT. THERE IS NO IMPLIED GUARANTEE 
THAT THE EACH ENTRY POINT'S INTERFACE WILL REMAIN STABLE 
THOUGH THERE IS SOME INTEREST IN KEEPING THEM UPWARD 
COMPATIBLE IF POSSIBLE. AN IDENT HAS BEEN PROVIDED 
WHICH CAN BE USED TO IDENTIFY THE VERSION OF THE 
REFERENCED ROUTINE. 

$ALOCB -- ALLOCATE CORE BLOCK 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

7-51 

1 MODULE NAME = CORAL 
ALOCB$ OFFSET VALUE= 0 



EXECUTIVE DATA STRUCTURE AND ROUTINE VECTORS 

$DEACB -- DEALLOC. CORE BLK 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

= 1 MODULE NAME = CORAL 
DEACB$ OFFSET VALUE= 6 

$ALOC1 -- ALLOC. CORE BLK (SPECIFIABLE LSTHD) 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

1 MODULE NAME = CORAL 
ALOC1$ OFFSET VALUE= 14 

$DEAC1 -- DEALLOC. CORE BLK (SPECIFIABLE LSTHD) 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

1 MODULE NAME = CORAL 
DEAC1$ OFFSET VALUE= 22 

$ALCLK -- ALLOC. CLOCK QUEUE CORE BLK 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

1 MODULE NAME = CORAL 
ALCLK$ OFFSET VALUE= 30 

$DECLK -- DEALLOC. CLOCK QUEUE CORE BLK 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

$ALPKT -- ALLOC. I/O PACKET 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

1 MODULE NAME = CORAL 
DECLK$ OFFSET VALUE= 36 

1 MODULE NAME = CORAL 
ALPKT$ OFFSET VALUE= 44 

$DEPKT -- DEALLOC. I/O PACKET 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

7-52 

1 MODULE NAME = CO~AL 
DEPKT$ OFFSET VALUE= 52 



; 

EXECUTIVE DATA STRUCTURE AND ROUTINE VECTORS 

$ALSEC -- ALLOC. SECONDARY POOL CORE BLK 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

= 1 MODULE NAME = CORAL 
ALSEC$ OFFSET VALUE= 60 

$DESEC -- DEALLOC. SECONDARY POOL CORE BLK 

ROUTINE VERSION NUMBER 1 MODULE NAME = CORAL 
VECTOR TABLE OFFSET NAME = DESEC$ OFFSET VALUE= 66 

$GTBYT -- GET NEXT BYTE FROM USER BUFFER 

ROUTINE VERSION NUMBER = 1 MODULE NAME = BFCTL 
VECTOR TABLE OFFSET NAME = GTBYT$ OFFSET VALUE= 74 

$PTBYT -- PUT NEXT BYTE IN USER BUFFER 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

= 1 MODULE NAME = BFCTL 
PTBYT$ OFFSET VALUE= 102 

$GTWRD -- GET NEXT WORD FROM USER BUFFER 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

= 1 MODULE NAME = BFCTL 
GTWRD$ OFFSET VALUE= 110 

$PTWRD --' PUT NEXT WORD IN USER BUFFER 

ROUTINE VERSION NUMBER = 1 MODULE NAME = BFCTL 
VECTOR TABLE OFFSET NAME = PTWRD$ OFFSET VALUE= 116 

$BLXIO -- MOVE BLOCK OF DATA 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

1 MODULE NAME = BFCTL 
BLXIO$ OFFSET VALUE= 124 

$CLINS -- CLOCK QUEUE INSERTION 

7-53 



EXECUTIVE DATA STRUCTURE AND ROUTINE VECTORS 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

= 1 MODULE NAME = QUEUE 
CLINS$ OFFSET VALUE= 132 

$CLRMV -- CLOCK QUEUE REMOVAL 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

= 1 MODULE NAME = QUEUE 
CLRMV$ OFFSET VALUE= 140 

$QINSF -- QUEUE INSERTION AT END OF LIST 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

= 1 MODULE NAME = QUEUE 
QINSF$ OFFSET VALUE= 146 

$QINSP -- QUEUE INSERTION BY PRIORITY 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

= 1 MODULE NAME = QUEUE 
QINSP$ OFFSET VALUE= 154 

$QINSB -- QUEUE INSERTION AT BEGINNING 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

= 1 MODULE NAME = QUEUE 
QINSB$ OFFSET VALUE= 162 

$QRMVA -- QUEUE REMOVAL BY BLOCK ADDRESS 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

= 1 MODULE NAME = QUEUE 
= QRMVA$ OFFSET VALUE= 170 

$QRMVT -- QUEUE REMOVAL BY TCB ADDRESS 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

= 1 MODULE NAME = QUEUE 
QRMVT$ OFFSET VALUE= 176 

$QSPIB -- QUEUE INSERTION (SEC. POOL) AT BEG. 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

7-54 

= 1 MODULE NAME = QUEUE 
QSPIB$ OFFSET VALUE= 204 



EXECUTIVE DATA STRUCTURE AND ROUTINE VECTORS 

$QSPIF -- QUEUE INSERTION (SEC. POOL) AT END. 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

= 1 MODULE NAME = QUEUE 
QSPIF$ OFFSET VALUE= 212 

$QSPRF -- QUEUE REMOVAL (SEC. POOL) FROM FRONT 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

1 MODULE NAME = QUEUE 
QSPRF$ OFFSET VALUE= 220 

$QSPIP -- QUEUE INSERTION (SEC. POOL) BY PRI. 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

= 1 MODULE NAME = QUEUE 
QSPIP$ OFFSET VALUE= 226 

$GTSPK -- QUEUE REMOVAL (SEC. POOL) BY BLK ADR 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

1 MODULE NAME = QUEUE 
GTSPK$ OFFSET VALUE= 234 

$ACHCK -- ADDRESS CHECK WORD ALIGNED (NO I/O CNTS) 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

= 1 MODULE NAME = EXESB 
ACHCK$ OFFSET VALUE= 242 

$ACHKB -- ADDRESS CHECK BYTE ALIGNED (NO I/O CNTS) 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

= 1 MODULE NAME = EXESB 
ACHKB$ OFFSET VALUE= 250 

$ACHRO -- ADDRESS CHECK FOR READONLY ACCESS NO IOC 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

7-55 

= 1 MODULE NAME = EXESB 
ACHRO$ OFFSET VALUE= 256 



EXECUTIVE DATA STRUCTURE AND ROUTINE VECTORS 

$CKBFW -- CHECK I/O BUFFER FOR READONLY (BYTE) 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

= 1 MODULE NAME = EXESB 
CKBFW$ OFFSET VALUE= 264 

$CKBFB -- CHECK I/O BUFFER FOR READWRITE (BYTE) 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

= 1 MODULE NAME = EXESB 
CKBFB$ OFFSET VALUE= 272 

$CKBFR -- CHECK I/O BUFFER FOR READWRITE (WORD) 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

= 1 MODULE NAME = EXESB 
= CKBFR$ OFFSET VALUE= 300 

$CEFIG -- CONVERT EVENT FLAG AND LOCK FOR I/O 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

= 1 MODULE NAME = EXESB 
CEFIG$ OFFSET VALUE= 306 

$CEFI -- CONVERT EVENT FLAG FOR I/O 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

= 1 MODULE NAME = EXESB 
CEFI$ OFFSET VALUE= 314 

$CVDVN -- CONVERT DEV NAM AND LOGICAL UNIT TO UCB 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

1 MODULE NAME = EXESB 
CVDVN$OFFSET VALUE= 322 

$MPLNE -- MAP LOGICAL UNIT NUMBER 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

= 1 MODULE NAME = EXESB 
MPLNE$ OFFSET VALUE= 330 

$MPLND -- MAP LOGICAL UNIT NUMBER (ALTRN. ENTRYPT) 

7-56 



; 

;. 

; 

EXECUTIVE DATA STRUCTURE AND ROUTINE VECTORS 

ROUTINE VERSION NUMBER = 1 MODULE NAME = EXESB 
VECTOR TABLE OFFSET NAME = MPLND$ OFFSET VALUE= 336 

$TKWSE -- WAIT FOR SIGNIFICANT EVENT 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

= 1 MODULE NAME = EXESB 
TKWSE$ OFFSET VALUE= 344 

$RELOC -- RELOCATE USER VIRTUAL ADDRESS 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

= 1 MODULE NAME = MEMAP 
RELOC$ OFFSET VALUE= 352 

$RELOM -- RELOCATE AND MAP USER VIRTUAL ADDRESS 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

= 1 MODULE NAME = MEMAP 
RELOM$ OFFSET VALUE= 360 

$CVLBN -- CONVERT LOGICAL BLOCK NUMBER TO DISK PARAMS 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

= 1 MODULE NAME = MDSUB 
CVLBN$ OFFSET VALUE= 366 

$BLKCK -- LOGICAL BLOCK CHECK ROUTINE 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

1 MODULE NAME = MDSUB 
BLKCK$ OFFSET VALUE= 374 

$BLKCl -- LOGICAL BLOCK CHECK ROUTINE ALTRN. ENTRYPT 

ROUTINE VERSION NUMBER 1 MODULE NAME = MDSUB 
VECTOR TABLE OFFSET NAME = BLKC1$ OFFSET VALUE= 402 

$BLKC2 -- LOGICAL BLOCK CHECK ROUTINE FOR QUEUE OPT 

ROUTINE VERSION NUMBER 1 MODULE NAME = MDSUB 

7-57 



; 

; 

EXECUTIVE DATA STRUCTURE AND ROUTINE VECTORS 

VECTOR TABLE OFFSET NAME BLKC2$ OFFSET VALUE= 410 

$RQCNC -- REQUEST CONTROLLER FOR CONTROL OPERATION 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

= 1 MODULE NAME = MDSUB 
RQCNC$ OFFSET VALUE= 416 

$RQCND -- REQUEST CONTROLLER FOR DATA TRANSFER 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

$RLCN -- RELEASE CONTROLLER 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

= 1 MODULE NAME = MDSUB 
RQCND$ OFFSET VALUE= 424 

= 1 MODULE NAME = MDSUB 
RLCN$ OFFSET VALUE= 432 

$VOLVD -- PREPROCESS VOLUME VALID FUNCTION 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

= 1 MODULE NAME = MDSUB 
VOLVD$ OFFSET VALUE= 440 

$VOLSC -- VOLUME STATUS CHANGE 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

= 1 MODULE NAME = OLRSR 
VOLSC$ OFFSET VALUE= 446 

$DECIO -- DECREMENT I/O COUNT VIA ADB 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

= 1 MODULE NAME = IOSUB 
DECIO$ OFFSET VALUE= 454 

$DECIP -- DECREMENT I/O COUNT PARTITION ONLY 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

7-58 

= 1 MODULE NAME = IOSUB 
DECIP$ OFFSET VALUE= 462 



EXECUTIVE DATA STRUCTURE AND ROUTINE VECTORS 

$GTPKT -- GET I/O PACKET FROM REQUEST QUEUE 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

1 MODULE NAME = IOSUB 
GTPKT$ OFFSET VALUE= 470 

$GSPKT -- GET SELECTIVE I/O PACKET FROM REQUEST QUEUE 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

= 1 MODULE NAME = IOSUB 
GSPKT$ OFFSET VALUE= 476 

$TSTBF -- TEST IF I/O BUFFERING SHOULD BE INITIATED 

ROUTINE VERSION NUMBER = 1 MODULE NAME = IOSUB 
VECTOR TABLE OFFSET NAME = TSTBF$ OFFSET VALUE= 504 

$INIBF -- INITIATE I/O BUFFERING 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

= 1 MODULE NAME = IOSUB 
INIBF$ OFFSET VALUE= 512 

$QUEBF -- QUEUE BUFFERED I/O FOR COMPLETION 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

= 1 MODULE NAME = IOSUB 
QUEBF$ OFFSET VALUE= 520 

$REQUE -- REQUEUE A REGION LOAD AST TO A TASK AST 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

= 1 MODULE NAME = IOSUB 
REQUE$ OFFSET VALUE= 526 

$REQU1 -- REQUEUE A REG LOAD AST (ALTERNATE ENTRYPOINT) 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

7-59 

= 1 MODULE NAME = IOSUB 
= REQU1$ OFFSET VALUE= 534 



EXECUTIVE DATA STRUCTURE AND ROUTINE VECTORS 

$IOALT -- I/O DONE ALTERNATE ENTRY POINT (ERRORS) 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

$IODON -- I/O DONE 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

$IOFIN -- I/O FINISH 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

= 1 MODULE NAME = IOSUB 
IOALT$ OFFSET VALUE= 542 

= 1 MODULE NAME = IOSUB 
= IODON$ OFFSET VALUE= 550 

= 1 MODULE NAME = IOSUB 
IOFIN$ OFFSET VALUE= 556 

$DECAL -- DECREMENT ALL I/O COUNTS AND UNBLK TASK. 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

= 1 MODULE NAME = IOSUB 
DECAL$ OFFSET VALUE= 564 

$DECBF -- DECREMENT ALL PARTITION I/O CNTS & UNBLK TASK 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

$IOKIL -- I/O KIL 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

$SCDVT -- SCAN DEVICE TABLES 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

= 1 MODULE NAME = IOSUB 
DECBF$ OFFSET VALUE= 572 

= 1 MODULE NAME = IOSUB 
IOKIL$ OFFSET VALUE= 600 

= 1 MODULE NAME = IOSUB 
SCDVT$ OFFSET VALUE= 606 

$SCDVl -- SCAN DEVICE TABLES (ALTRN. ENTRYPT) 

7-60 



EXECUTIVE DATA STRUCTURE AND ROUTINE VECTORS 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

= 1 MODULE NAME = IOSUB 
SCDV1$ OFFSET VALUE= 614 

$SRNAM -- SEARCH FOR NAMED PARTITION 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

= 1 MODULE NAME = PLSUB 
SRNAM$ OFFSET VALUE= 622 

$SETCR -- SET CONDITIONAL SCHEDULE REQUEST 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

= 1 MODULE NAME = REQSB 
= SETCR$ OFFSET VALUE= 630 

$SETRQ -- SET SCHEDULE REQUEST 

ROUTINE VERSION NUMBER = 1 MODULE NAME = REQSB 
VECTOR TABLE OFFSET NAME = SETRQ$ OFFSET VALUE= 636 

$SETRT -- SET SCHEDULE REQUEST FOR CURRENT TASK 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

= 1 MODULE NAME = REQSB 
SETRT$ OFFSET VALUE= 644 

$SETMG -- SET EVENT FLG & UNLCK W/EVNT FLG MASK 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

= 1 MODULE NAME = REQSB 
SETMG$ OFFSET VALUE= 652 

$SETFG -- SET EVENT FLAG AND UNLOCK W/EFN NUMBER 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

$DASTT -- DECLARE AST TRAP 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

7-61 

= 1 MODULE NAME = REQSB 
SETFG$ OFFSET VALUE= 660 

= 1 MODULE NAME = REQSB 
DASTT$ OFFSET VALUE= 666 



EXECUTIVE DATA STRUCTURE AND ROUTINE VECTORS 

$QASTC -- QUEUE AST TO TASK (USED W/CINT$) 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

$QASTT -- QUEUE AST TO TASK 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

= 1 MODULE NAME = REQSB 
QASTC$ OFFSET VALUE= 674 

= 1 MODULE NAME = REQSB 
QASTT$ OFFSET VALUE= 702 

$SRSTD -- SEARCH SYSTEM TASK DIRECTORY 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

$STPCT -- STOP CURRENT TASK 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

$STPTK -- STOP TASK 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

= 1 MODULE NAME = REQSB 
SRSTD$ OFFSET VALUE= 710 

= 1 MODULE NAME = REQSB 
STPCT$ OFFSET VALUE= 716 

= 1 MODULE NAME = REQSB 
STPTK$ OFFSET VALUE= 724 

$NXTSK -- ASSIGN NEXT REGION TO PARTITION 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

= 1 MODULE NAME = REQSB 
NXTSK$ OFFSET VALUE= 732 

$TSPAR -- TEST IF PARTITION IN MEMORY FOR KERNEL AST 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

7-62 

= 1 MODULE NAME = REQSB 
TSPAR$ OFFSET VALUE= 740 



EXECUTIVE DATA STRUCTURE AND ROUTINE VECTORS 

$ICHKP -- INITIATE CHECKPOINT 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

1 MODULE NAME = REQSB 
ICHKP$ OFFSET VALUE= 746 

$EXRQP -- EXEC REQUEST WITH QUEUE INSERT BY PRIORITY 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

= 1 MODULE NAME = REQSB 
EXRQP$ OFFSET VALUE= 754 

$EXRQF -- EXEC REQUEST WITH QUEUE INSERT FIFO 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

= 1 MODULE NAME = REQSB 
EXRQF$ OFFSET VALUE= 762 

$EXRQN -- EXEC REQUEST WITH NO QUEUE INSERT 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

= 1 MODULE NAME = REQSB 
EXRQN$ OFFSET VALUE= 770 

$EXRQU -- EXEC REQUEST AND UNSTOP WITH NO INSERT 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

= 1 MODULE NAME = REQSB 
EXRQU$ OFFSET VALUE= 776 

; $EXRQS -- EXEC REQUEST WITH NO SCHEDULE REQUEST 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

= 1 MODULE NAME = REQSB 
EXRQS$ OFFSET VALUE= 1004 

$TSKRT -- TASK REQUEST (DEFAULT UCB) 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

= 1 MODULE NAME = REQSB 
TSKRT$ OFFSET VALUE= 1012 

$TSKRQ -- TASK REQUEST (SPECIFY UeB) 

7-63 



EXECUTIVE DATA STRUCTURE AND ROUTINE VECTORS 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

= 1 MODULE NAME = REQSB 
TSKRQ$ OFFSET VALUE= 1020 

$TSKRP -- TASK REQUEST (SPECIFY DEFAULT UIC) 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

= 1 MODULE NAME = REQSB 
TSKRP$ OFFSET VALUE= 1026 

$FORK -- FORK AND CREATE SYSTEM PROCESS 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

= 1 MODULE NAME = SYSXT 
FORK$ OFFSET VALUE= 1034 

$FORK1 -- FORK AND CREATE SYSTEM PROCESS 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

= 1 MODULE NAME = SYSXT 
FORK1$ OFFSET VALUE= 1042 

$FORKO -- FORK AND CREATE SYSTEM PROCESS 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

= 1 MODULE NAME = SYSXT 
FORKO$ OFFSET VALUE= 1050 

$FORK2 -- FORK AND CREATE SYSTEM PROCESS USED W/CINT$ 

ROUTINE VERSION NUMBER = 1 MODULE NAME = SYSXT 
VECTOR TABLE OFFSET NAME = FORK2$ OFFSET VALUE= 1056 

$QFORK -- INSERT FORK BLOCK AT END OF FORK QUEUE 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

= 1 MODULE NAME = SYSXT 
QFORK$ OFFSET VALUE= 1064 

$NONSI -- NONSENSE INTERRUPT ENTRY POINT 

ROUTINE VERSION NUMBER = 1 MODULE NAME SYSXT 

7-64 



EXECUTIVE DATA STRUCTURE AND ROUTINE VECTORS 

VECTOR TABLE OFFSET NAME NONSI$ OFFSET VALUE= 1072 

$DSPKA -- DISPATCH KERNEL AST 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

1 MODULE NAME = SYSXT 
DSPKA$ OFFSET VALUE= 1100 

$SGFIN -- SEGMENT FAULT AND TRAP 4 INTERCEPT ROUTINE 

ROUTINE VERSION NUMBER = 1 MODULE NAME = SYSXT 
VECTOR TABLE OFFSET NAME = SGFIN$ OFFSET VALUE= 1106 

$NLTMO -- NULL TIMEOUT ROUTINE 

ROUTINE VERSION NUMBER = 1 MODULE NAME = TDSCH 
VECTOR TABLE OFFSET NAME = NLTMO$ OFFSET VALUE= 1114 

$MUL -- INTEGER MULTIPLY MAGNITUDE NUMBERS 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

= 1 MODULE NAME = UTSUB 
MUL$ OFFSET VALUE= 1122 

$DIV -- INTEGER DIVIDE MAGNITUDE NUMBERS 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

= 1 MODULE NAME = UTSUB 
DIV$ OFFSET VALUE= 1130 

$DBDIV -- DOUBLE PRECISION DIVIDE MAGNITUDE NUMBERS 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

= 1 MODULE NAME = UTSUB 
DBDIV$ OFFSET VALUE= 1136 

$CAT5 -- CONVERT ASCII TO RAD50 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

7-65 

= 1 MODULE NAME = UTSUB 
CAT5$ OFFSET VALUE= 1144 



EXECUTIVE DATA STRUCTURE AND ROUTINE VECTORS 

$SAVNR -- SAVE NON VOLATILE REGISTERS 

ROUTINE VERSION NUMBER = 1 MODULE NAME = UTSUB 
VECTOR TABLE OFFSET NAME = SAVNR$ OFFSET VALUE= 1152 

$DRQRQ -- QUEUE I/O REQUEST (INTERNAL ENTRYPT) 

ROUTINE VERSION NUMBER 
VECTOR TABLE OFFSET NAME 

7-66 

= 1 MODULE NAME = DRSUB 
DRQRQ$ OFFSET VALUE= 1160 



CHAPTER 8 

HANDLING SPECIAL USER BUFFERS 

Some drivers need to handle user buffers in addition to the buffer 
that the Executive address-checks and relocates in a normal transfer 
request. Address-checking and relocation operations must take place 
in the context of the task issuing the I/O request, because the 
mapping registers are set for the issuing task. However, in the 
normal ,driver interface, the task context after the call to $GTPKT is 
not, in general, that of the issuing task. 

Thus, drivers that need to handle special buffers must be able to 
refer to the I/O packet before it is queued, while the context of the 
issuing task is still intact. 

8.1 DRIVER CODE 

The coding shown in this chapter is an excerpt from 
illustrates the handling of a special user buffer. 
are: 

a driver that 
The key points 

1. The UC.QUE bit has been set in the control byte (U.CTL) of 
the UCB for each device/unit. 

2. The routine (ZZINI) that is defined as the I/O initiation 
entry point in the driver dispatch table (DDT$) macro call 
performs the following actions: 

1. Retrieves the user virtual address and address-checks it 

2. Relocates the virtual address and stores the result back 
into the packet 

3. Inserts the packet 
execution inline 
$GTPKT 

into the I/O queue and continues 
to the entry point BMINI, which calls 

8-1 



DRIVER CODE 

3. The driver propagates its own execution by branching back to 
BMINI to call $GTPKT . 

. TITLE BMTAB - DATA BASE FOR BLOCK MOVE DRIVER 

.IDENT /01/ 

COPYRIGHT (c) 1981, 1982 BY 
DIGITAL EQUIPMENT CORPORATION, MAYNARD 

MASSACHUSETTS. ALL RIGHTS'RESERVED. 

iTHIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED 
iAND COPIED ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE 
iAND WITH THE INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS 
iSOFTWARE OR ANY OTHER COPIES THEREOF, MAY NOT BE PROVIDED OR 
iOTHERWISE MADE AVAILABLE TO ANY OTHER PERSON. NO TITLE TO AND 
iOWNERSHIP OF THE SOFTWARE IS HEREBY TRANSFERRED. 

iTHE INFORMATION IN THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT 
iNOTICE AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL 
iEQUIPMENT CORPORATION. 

iDIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF 
iITS SOFTWARE ON EQUIPMENT THAT IS NOT SUPPLIED BY DIGITAL. 

;LOADABLE DATA BASE FOR EXAMPLE BUFFERED I/O DRIVER 

;MACRO LIBRARY CALLS 

$BMDAT:: 

.MCALL CLKDF$ 

.MCALL HWDDF$ 

.MCALL SCBDF$ 

.MCALL UCBDF$ 

CLKDF$ 
HWDDF$ 
SCBDF$ "SYSDEF 
UCBDF$ 

;DEFINE CLOCK BLOCK OFFSETS 
iDEFINE HARDWARE REGISTERS 
;DEFINE SCB OFFSETS 
;DEFINE UCB OFFSETS 

BM DCB 

8-2 



DRIVER CODE 

$BMDCB: : 

. WORD 0 D.LNK 

. WORD .BMO D.UCB 

.ASCII JBMj D.NAM 

.BYTE 0,1-1 D.UNIT,D.UNIT+1 

. WORD BMND-BMST D.UCBL 
• WORD $0 D.DSP 

D.MSK - FUNCTION MASKS 
. WORD 33 LEGAL 0-17 IO.KIL,IO.WLB,IO.ATT 

IO.DET 
.WORD 31 CONTROL 0-17 IO.KIL,IO.ATT,IO.DET 
. WORD 0 NOOP 0-17 
. WORD 0 ACP 0-17 
. WORD 4 LEGAL 20-37 IO.WVB 
.WORD 0 CONTROL 20-37 
.WORD 0 NOOP 20-37 
.WORD 0 ACP 20-37 
. WORD 0 D.PCB 

BM UCB'S 

PRO=O 

.IF OF M$$MUP 

. WORD 0 

.ENDC 

.BMO:: 
. WORD $BMDCB U.DCB 
. WORD .-2 U.RED 
.BYTE UC.QUE,O U.CTL,U.STS 
.BYTE O,US.OFL U.UNIT,U.ST2 
.WORD DV.REC U.CW1 
. WORD 0 U.CW2 
. WORD a U.CW3 
. WORD 72. u.CW4 
. WORD $BMO U.SCB 
.WORD 0 U.ATT 
. WORD 0,0 U.BUF,U.BUF+2 
.WORD 0 U.CNT 

BMND=. 

8-3 



$BMO:: . WORD 
. WORD 
. WORD 

0, . -2 
0,0,0,0 
a 
a 
0,0 
0,0 
a 

DRIVER CODE 

S.LHD 
S.FRK 
S.KS5 
S.PKT 
S.CTM,S.ITM 
S.STS,S.ST3 
S.ST2 

BM SCB'S 

• .WORD 
.BYTE 
.BYTE 
. WORD 
. WORD a S.KRB - NO KRB SINCE NO CONTROLLER 

$BMEND: : 

i+ 

.END 

.TITLE BMDRV - BLOCK MOVE DRIVER 

.IDENT /01/ 

iCOPYRIGHT (c) 1981,1982 BY DIGITAL EQUIPMENT CORPORATION. 
iALL RIGHTS RESERVED. 

iTHIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED 
iOR COPIED ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE. 
i 
i 

i 
i 
i THIS IS A SAMPLE DRIVER WHICH DEMONSTRATES HOW TO USE SOME 
i OF THE MORE SOPHISTICATED EXECUTIVE SERVICES AVAILABLE TO 

I/O DRIVERS. THIS DRIVER DEMONSTRATES: 

1 ) THE CHECKING OF ADDITIONAL USER BUFFERS PRIOR TO QUEUEING 
i AN I/O PACKET. 
i 
i 2 ) USE OF THE CLOCK QUEUE FROM A DRIVER. 

3 ) USE OF THE BUFFERED I/O MECHANISM 

4 ) USE OF THE GENERAL BUFFERED I/O KERNEL AST MECHANISM 

5 ) USE OF REGION LOAD KERNEL ASTS 

6 ) USE OF BLXIO 

THIS DRIVER UNDERSTANDS PRECISELY ONE QIO, WHICH IS: 

8-4 



i-

i+ 

DRIVER CODE 

IO.WLB, .•..• ,<DEST-BUFFER,LENGTH,TIME,SRC-BUFFER) 
OR 

IO.WVB 

TH~ DRIVER QUEUES A CLOCK BLOCK FOR TIME TICKS AND AT THE 
END OF THAT TIME INTERVAL COPIES THE SOURCE BUFFER TO THE 
DESTINATION BUFFER. IF POSSIBLE, THE REQUEST IS BUFFERED 
INTERNALLY WHILE THE CLOCK REQUEST IS POSTED. 

. MCALL 

CLKDF$ 
PKTDF$ 

CLKDF$, PKTDF$ 

iDEFINE CLOCK BLOCK OFFSETS 
iDEFINE I/O PACKET OFFSETS 

DEFINE MAXIMUM TRANSFER LENGTH WHICH WILL BE BUFFERED 

BUFLIM 100. 

DDT$ BM"NONE",NEW 

i** - BMINI - I/O INITIATION ENTRY POINT 

iINPUTS: 

DRQIO (BECAUSE THE UC.QUE BIT IS SET IN THE UCB) SETS THE 
REGISTERS TO THE FOLLOWING: 

R1 = ADDRESS OF I/O PACKET 
R4 ADDRESS OF SCB 
R5 ADDRESS OF UCB 

iOUTPUTS: 

IF THE SPECIFIED CONTROLLER IS NOT BUSY AND AN I/O REQUEST IS 
WAITING TO BE PROCESSED, THEN THE REQUEST IS DEQUEUED AND THE 
I/O OPERATION IS INITIATED. 

I/O REQUEST PACKET FORMAT: 

I.LNK 
I.PRI/I.EFN 

I/O QUEUE THREAD WORD. 
REQUEST PRIORITY, EVENT FLAG NUMBER. 

8-5 



. -, 

BMINI: 

I.TCB 
I.LN2 

I.UCB 
I.FCN 
I.IOSB 
I.IOSB+2 
I.IOSB+4 

I.IOSB+6 
I.PRM 
I.PRM+2 
I.PRM+4 
I.PRM+6 

DRIVER CODE 

ADDRESS OF THE TCB OF THE REQUESTER TASK. 
POINTER TO SECOND LUN WORD IN REQUESTER TASK 
HEADER. 
UCB ADDRESS OF DEVICE 
I/O FUNCTION CODE (IO.WLB). 
VIRTUAL ADDRESS OF I/O STATUS BLOCK. 
RELOCATION BIAS OF I/O STATUS BLOCK. 
I/O STATUS BLOCK ADDRESS (DISPLACEMENT + 
140000). 
VIRTUAL ADDRESS OF AST SERVICE ROUTINE. 
RELOCATION BIAS OF SOURCE BUFFER. 
BUFFER ADDRESS OF I/O TRANSFER. 
NUMBER OF BYTES TO BE TRANSFERED. 
TIME DISPLACEMENT IN TICKS 

I.PRM+10 VIRTUAL ADDRESS (TO BECOME RELOCATION BIAS) OF 
DESTINATION BUFFER 

I.PRM+12 

I.PRM+14 
I.PRM+16 

.ENABL LSB 

FILLED IN WITH DISPLACEMENT ADDRESS OF 
DESTINATION BUFFER 
USED TO STORE BUFFER/CLOCK BLOCK ADDRESS 
FILLED IN WITH PCB ADDRESS OF OUTPUT BUFFER 

************************************************************* 
* 
* 
* 

I NIT I A T ION E N TRY POI N T 
* 
* 
* 

************************************************************* 

; PRE-QUEUING INITIALIZE ENTRY POINT 

************************************************************* 
* 
* 
* 
* 
* 

ADDRESS CHECK THE SOURCE BUFFER WHILE THE TASKS 
CONTEXT IS LOADED, AND FILL IN THE NECESSARY 
PARAMETERS IN THE I/O PACKET 

* 
* 
* 
* 
* 

************************************************************* 

MOV 
MOV 

MOV 

R1,R3 
I.PRM+10(Rl),RO 

I . P RM + 4 ( R 3 ) , R 1 

COpy ADDRESS OF I/O PACKET 
GET VIRTUAL ADDRESS OF SOURCE 
BUFFER 
AND LENGTH OF SOURCE BUFFER 

+------------------------------------------------------------+ 
I 
I THE INPUT PARAMETERS FOR $CKBFR ARE: 

8-6 



DRIVER CODE 

RO = STARTING ADDRESS OF BLOCK TO BE CHECKED 
Rl = LENGTH OF THE BLOCK TO BE CHECKED 
$ATTPT = ADDRESS OF I.AADA IN I/O PACKET 

(ESTABLISHED IN DRQIO) 
CURRENT TASK HEADER MUST BE MAPPED THROUGH APR 6 

(ESTABLISHED BY DIRECTIVE DISPATCHER) 

THE OUTPUT PARAMETERS ARE: 

C = 0 IF CHECK AND PACKET UPDATE SUCCESSFUL 
I.AADA OR I.AADA IN PACKET POINTS TO 
RELATED ADB, P.IOC, A.IOC INCREMENTED 

C 1 IF CHECK UNSUCCESFUL OR I.AADA, I.AADA 
ALREADY FILLED IN 

+------------------------------------------------------------+ 
CALL $CKBFR 

BCC 10$ 

CHECK BUFFER, INCREMENT A.IOC AND 
P.IOC FOR APPROPRIATE REGIONS 
IF CC ALL WAS OK 

************************************************************* 
* 
* 
* 

SOURCE BUFFER WAS ILLEGAL, FINISH I/O HERE 
* 
* 
* 

************************************************************* 

MOV 
CLR 

iIE.SPC&377,RO 
R1 

SET COMPLETION STATUS 
AND NUMBER OF BYTES TRANSFERRED 

+-----------------------------------------------------------+ 
THE INPUT PARAMETERS FOR $IOFIN ARE: 

RO FIRST WORD OF I/O STATUS TO RETURN 
R1 SECOND WORD OF I/O STATUS TO RETURN 
R3 ADDRESS OF I/O PACKET 

THE OUTPUT PARAMETERS ARE: 

R4 IS DESTROYED 

+-----------------------------------------------------------+ 

CALLR $IOFIN COMPLETE I/O AND EXIT DRIVER 

************************************************************* 
* * 

8-7 



10$: 

* 
* 
* 

DRIVER CODE 

BUFFER WAS LEGAL, CONVERT VIRTUAL ADDRESS TO 
ADDRESS DOUBLEWORD AND STORE PARAMETERS 

* 
* 
* 

************************************************************* 

+-----------------------------------------------------------+ 
I I 
l THE INPUT PARAMETERS FOR $RELOC ARE: I 
I I 
I RO = USER VIRTUAL ADDRESS TO RELOCATE I 
I I 
I THE OUTPUT ·PARAMETERS ARE: I 
I I 
I Rl APR6 RELOCATION BIAS OF USER BUFFER I 
I R2 DISPLACEMENT IN BLOCK + 140000 I 
I I 
+-----------------------------------------------------------+ 

CALL 
MOV 
MOV 
CLR 

$RELOC 
Rl,I.PRM+l0(R3) 
R2,I.PRM+12(R3) 
I.PRM+16(R3) 

RELOCATE BUFFER ADDRESS 
SAVE APR BIAS OF SOURCE BUFFER 
AND DISPLACEMENT ADDRESS 
INDICATE NOT BUFFERED I/O 

************************************************************* 
* 
* 
* 

NOW QUEUE THE PACKET IN THE DEVICE QUEUE 
* 
* 
* 

************************************************************* 

MOV 
MOV 

R4,RO 
R3,Rl 

COPY POINTER TO I/O QUEUE LISTHEAD 
AND ADDRESS OF I/O PACKET 

+-----------------------------------------------------------+ 

THE INPUT PARAMETERS FOR $QINSP ARE: 

RO = ADDRESS OF THE TWO WORD LISTHEAD 
Rl ADDRESS OF THE PACKET TO BE INSERTED 

NO OUTPUT PARAMETERS 

+-----------------------------------------------------------+ 
CALL $QINSP ; INSERT PACKET IN QUEUE 

8-8 



DRIVER CODE 

************************************************************* 
* 
* 
* 

BEGIN SERIAL PROCESSING OF I/O PACKETS 
* 
* 
* 

************************************************************* 

+-----------------------------------------------------------+ 
THE INPUT PARAMETERS FOR $GTPKT ARE: 

RS = ADDRESS OF THE UCB OF REQUESTING UNIT 

THE OUTPUT PARAMETERS ARE: 

C = 0 IF A REQUEST WAS SUCCESSFULLY DEQUEUED 
Rl ADDRESS OF THE I/O PACKET 
R2 = PHYSICAL UNIT NUMBER 
R3 CONTROLLER INDEX 
R4 = SCB ADDRESS OF CONTROLLER 
RS = UCB ADDRESS OF UNIT 

C = 1 IF UNIT BUSY OR NO PACKETS QUEUED 

+-----------------------~-----------------------------------+ 

BMIN1: CALL $GTPKT ATTEMPT TO GET A REQUEST 
BCC 20$ IF CC WE GOT ONE 
RETURN DEVICE BUSY OR QUEUE EMPTY 

20$: ; REFERENCE LABEL 
************************************************************* 
* 
* 
* 

ATTEMPT TO ALLOCATE CLOCK BLOCK 
* 
* 
* 

************************************************************* 

MOV 
MOV 

Rl,R3 
#C.LGTH,Rl 

COpy I/O PACKET ADDRESS 
SET LENGTH OF CLOCK BLOCK 

+-----------------------------------------------------------+ 
THE INPUT PARAMETERS FOR $ALOCB ARE: 

Rl = SIZE OF THE BLOCK TO ALLOCATE (IN BYTES) 

THE OUTPUT PARAMETERS ARE: 

C = 0 IF A BLOCK WAS SUCCESSFULLY ALLOCATED 
RO = ADDRESS OF THE ALLOCATED BLOCK 
Rl = LENGTH OF THE ALLOCATED BLOCK 

C 1 IF NO BLOCK IS CURRENTLY AVAILABLE 

8-9 



DRIVER CODE 

+-----------------------------------------------------------+ 

CALL 
Bec 
MOV 

$ALOCB 
30$ 
#IE.NOD&377,RO 

ATTEMPT TO ALLOCATE 
IF CC SUCCESSFUL 
SET I/O STATUS 

+-----------------------------------------------------------+ 
; I 

30$: 

I THE INPUT PARAMETERS FOR $IOALT ARE: 
I 
I RO = FIRST WORD OF I/O STATUS BLOCK 
I R1 SECOND WORD OF I/O STATUS BLOCK 
I R2 STARTING AND FINAL RETRY COUNTS 
I (IF AN ERROR LOGGING DEVICE) 
I R5 UCB ADDRESS OF UNIT TO COMPLETE 
I 
I THE OUTPUT PARAMETERS ARE: 
I 
I R4 IS DESTROYED 
I 
+-----------------------------------------------------------+ 

CALL 
BR 
MOV 

$IOALT 
BMIN1 
RO,I.PRM+14(R3) 

AND COMPLETE T~E I/O 
GO LOOK FOR MORE WORK 
SAVE ADDRESS OF CLOCK BLOCK 

************************************************************* 
* 
* 
* 

DETERMINE IF I/O REQUEST IS BUFFERABLE 
* 
* 
* 

************************************************************* 

+-----------------------------------------------------------+ 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

THE INPUT PARAMETERS FOR $TSTBF ARE: 

R3 = ADDRESS OF I/O PACKET TO TEST 

THE OUTPUT PARAMETERS ARE: 

C o IF REQUEST MAY BE BUFFERED 
C 1 IF REQUEST MAY NOT BE BUFFERED 

+-----------------------------------------------------------+ 

CALL 
BCS 

$TSTBF 
40$ 

TEST FOR BUFFERABLE I/O REQUEST 
IF CS CAN'T ALLOCATE A BUFFER 

8-10 



DRIVER CODE 

************************************************************* 
* 
* 
* 

ATTEMPT TO ALLOCATE A BUFFER 
* 
* 
* 

************************************************************* 

MOV 
CMP 
BHI 

I.PRM+4(R3),Rl 
Rl,#BUFLIM 
40$ 

GET LENGTH OF BUFFER 
BIGGER THAN BUFFER LIMIT ? 
IF HI YES, DON'T BUFFER 

+-----------------------------------------------------------+ 

THE INPUT PARAMETERS FOR $ALOCB ARE: 

Rl = SIZE OF THE BLOCK TO ALLOCATE (IN BYTES) 

THE OUTPUT PARAMETERS ARE: 

C = 0 IF A BLOCK WAS SUCCESSFULLY ALLOCATED 
RO = ADDRESS OF THE ALLOCATED BLOCK 
Rl = LENGTH OF THE ALLOCATED BLOCK 

C = 1 IF NO BLOCK ISCURRENTLY AVAILABLE 

+-----------------------------------------------------------+ 

CALL 
BCS 

$ALOCB 
40$ 

TRY TO ALLOCATE BUFFER 
IF CS COULDN'T GET ONE 

************************************************************* 
* 
* 
* 

COpy USER BUFFER TO INTERNAL BUFFER 
* 
* 
* 

************************************************************* 

MOV RO,R4 SET ADDRESS OF DESTINATION BUFFER 
MOV R3,R5 SAVE ADDRESS OF I/O PACKET 
MOV I.PRM+4(R5),RO SET LENGTH OF TRANSFER 
MOV I.PRM+l0(R5),Rl SET BIAS OF SOURCE BUFFER 
MOV I.PRM+12(R5),R2 AND DISPLACEMENT 
BIC #140000,R2 STRIP OFF APR6 ADDRESS BITS 
BIS #120000,R2 AND SUBSTITUTE APR5 
MOV R4,I.PRM+l0(R5) SET INTERNAL BUFFER ADDRESS INTO 

PACKET 

+-----------------------------------------------------------+ 

8-11 



DRIVER CODE 

THE INPUT PARAMETERS FOR $BLXIO ARE: 

RO = NUMBER OF BYTES TO MOVE 
R1 = SOURCE APR 5 BIAS 
R2 = SOURCE DISPLACEMENT 
R3 = DESTINATION APR6 BIAS 
R4 = DESTINATION DISPLACEMENT 

THE OUTPUT PARAMETERS ARE: 

RO ALTERED 
R1,R3 PRESERVED 
R2,R4 POINT TO LAST BYTE OF SOURCE/DESTINATION +1 

+-----------------------------------------------------------+ 

CALL $BLXIO COPY TO INTERNAL BUFFER 

************************************************************* 
* 
* 
* 

CONVERT TO BUFFERED I/O REQUEST 
* 
* 
* 

************************************************************* 

MOV RS,R3 COpy I/O PACKET ADDRESS BACK 

+-----------------------------------------------------------+ 
I 
I THE INPUT PARAMETERS FOR $INIBF ARE: 
I 
I R3 = ADDRESS OF THE I/O PACKET TO BUFFER 
I 
I NO OUTPUT PARAMETERS. 
I 
+-----------------------------------------------------------+ 

CALL $INIBF INITIALIZE BUFFERED I/O 

************************************************************* 
* 
* 
* 

QUEUE THE CLOCK BLOCK 
* 
* 
* 

************************************************************* 

8-12 



40$: MOV 
MOV 
CLR 
MOV 
MOV 
MOV 

DRIVER CODE 

I.PRM+14(R3),RO ; 
#CLKSRV,C.SUB(RO) 
Rl 
I.PRM+6(R3),R2 
iC.SYST,R4 
R3,RS 

GET ADDRESS OF CLOCK BLOCK 
; SET ADDRESS OF SUBROUTINE 
HIGH ORDER DELTA TIME 
LOW ORDER PART 
SET REQUEST TYPE 
USE PACKET ADDRESS AS IDENTIFIER 

+-----------------------------------------------------------+ 
I 

THE INPUT PARAMETERS FOR $CLINS ARE: I 
I 

RO = ADDRESS OF THE CLOCK BLOCK TO QUEUE I 
; Rl = HIGH ORDER HALF OF DELTA TIME I 

R2 = LOW ORDER HALF OF DELTA TIME I 
R4 = REQUEST TYPE I 
RS ADDRESS OF REQUESTING TASK OR IDENTIFIER I 

I 
; NO OUTPUT PARAMETERS. I 

I 
+-----------------------------------------------------------+ 

CALLR $CLINS QUEUE CLOCK BLOCK AND TEMPORARILY 
EXIT THE DRIVER 

************************************************************* 
* 
* 
* 

C L 0 C K E N TRY POI N T 
* 
* 
* 

************************************************************* 

************************************************************* 
* 
* 
* 

CHECK TO SEE IF THE I/O WAS BUFFERED 
* 
* 
* 

************************************************************* 

CLKSRV: MOV 
TST 
BNE 

C.TCB(R4),R5 
I.PRM+16(RS) 
50$ 

GET ADDRESS OF I/O PACKET 
WAS IT BUFFERED I/O 
IF NE YES, GO QUEUE KERNEL AST 

************************************************************* 
* 
* 
* 

COULDN'T BUFFER, PERFORM COpy HERE AND NOW 
* 
* 
* 

************************************************************* 

8-13 



DRIVER CODE 

MOV I.PRM+4(R5),RO SET LENGTH T.o TRANSFER 
MOV I.PRM+10(R5),R1 BIAS OF SOURCE BUFFER 
MOV I.PRM+12(R5),R2 DISPLEACEMENT OF SOURCE 
BIC #140000,R2 STRIP OFF APR6 ADDRESS BITS 
BIS #120000,R2 AND CONVERT TO APR5 
MOV I.PRM(R5),R3 SET BIAS OF DESTINATION 
MOV I.PRM+2(R5),R4 SET DISPLACEMENT 

+-----------------------------------------------------------+ 

THE INPUT PARAMETERS FOR $BLXIO ARE: 

RO NUMBER OF BYTES TO MOVE 
R1 SOURCE APR5 BIAS 
R2 SOURCE DISPLACEMENT 
R3 DESTINATION APR6 BIAS 
R4 DESTINATION DISPLACEMENT 

THE OUTPUT PARAMETERS ARE: 

RO ALTERED 
R1,R3 PRESERVED 
R2,R4 POINT TO LAST BYTE OF SOURCE/DESTINATION +1 

+-----------------------------------------------------------+ 

CALL 
MOV 
MOV 

$BLXIO 
I.PRM+14(R5),RO 
#:C.LGTH,R1 

COpy BUFFER 
GET ADDRESS OF CLOCK BLOCK 
GET LENGTH OF CLOCK BLOCK 

+-----------------------------------------------------------+ 

THE INPUT PARAMETERS FOR $DEACB ARE: 

RO ADDRESS OF BLOCK TO DEALLOCATE 
Rl LENGTH OF BLOCK TO DEALLOCATE 

NO OUTPUT PARAMETERS. 

+-----------------------------------------------------------+ 

CALL 
MOV 

BMSUC: MOV 
MOV 

$DEACB 
R5,R3 
#:IS.SUC&377,RO 
I.PRM+4(R3),R1 

DEALLOCATE IT 
COpy PACKET ADDRESS FOR $IODON 
SET FINAL I/O STATUS 
AND LENGTH OF TRANSFER = REQUESTED 

8-14 



DRIVER CODE 

BMDON: MOV I.UCB{R3) ,RS ; GET UCB ADDRESS OF DEVICE 

+-----------------------------------------------------------+ 
I I 

; I THE INPUT PARAMETERS FOR $IODON ARE: I 

SO$: 

I I 
I RO = FIRST WORD OF I/O STATUS BLOCK I 
I Rl = SECOND WORD OF I/O STATUS BLOCK I 
I R2 = STARTING AND FINAL RETRY COUNTS I 
I (IF AN ERROR LOGGING DEVICE) I 
I RS = UCB ADDRESS OF UNIT TO COMPLETE I 
I I 
I THE OUTPUT PARAMETERS ARE: I 
I I 
I R4 IS DESTROYED I 
I I 
+-----------------------------------------------------------+ 

CALL 
BR 

$IODON 
BMINl 

; COMPLETE THE I/O 
; GO LOOK FOR MORE WORK 

************************************************************* 
* 
* 
* 
* 

BUFFERED I/O, CONVERT I/O PACKET TO KERNEL 
AST AND EXIT FROM DRIVER 

* 
* 
* 
* 

************************************************************* 

MOV 
MOV 
TST 
MOV 
MOV 
MOV 
MOV 

R4,R3 
I.TCB(RS),RO 
(R4)+ 
#AK.GBI,{R4)+ 
KISARS,{R4)+ 
#KATSRV, (R4) + 
RS, {R4 } + 

COpy CLOCK BLOCK ADDRESS FOR $REQUE 
POINT TO TCB OF TASK 
SKIP LINK WORD 
SET A.CBL=AK.GBI 
SET APR BIAS OF SERVICE ROUTINE 
SET ADDRESS OF PROCESSING ROUTINE 
SAVE I/O PACKET ADDRESS IN CLOCK BLOCK 

+-----------------------------------------------------------+ 

THE INPUT PARAMETERS FOR $REQUE ARE: 

RO TCB ADDRESS TO QUEUE AST BLOCK TO 
R3 = ADDRESS OF THE PACKET TO QUEUE 

NO OUTPUT PARAMETERS. 

; +-----------------------------------------------------------+ 
CALLR $REQUE ; QUEUE AST TO TASK 

************************************************************* 
* 
* K ERN E L A S T 

8-1S 

E N TRY POI N T 
* 
* 



DRIVER CODE 

* * 
************************************************************* 

************************************************************* 
* * 
* 
* 

GET PCB ADDRESS AND SEE IF PARTITION IS RESIDENT * 
* 

************************************************************* 

KATSRV: MOV 
MOV 
BEQ 

10(R3) ,R5 
I.PRM+16(R5),R1 
70$ 

GET I/O PACKET ADDRESS 
GET PCB ADDRESS OF BUFFER REGION 
IF EQ THERE IS NO COpy TO PERFORM 

+-----------------------------------------------------------+ 
I 
I THE INPUT PARAMETERS FOR $TSPAR ARE: 
I 
I RO = ADDRESS OF THE PACKET (THE KERNEL AST BLOCK) 
I R1 = PCB ADDRESS OF THE PCB CONTAINING THE BUFFER 
I R5 = TCB ADDRESS OF ASSOCIATED TASK 

; I 
i I THE OUTPUT PARAMETERS ARE 

I 
I COIF REGION IS RESIDENT AND CAN BE ACCESSED 

; I C = 1 IF REGION IS NOT RESIDENT AND AST HAS 
I BEEN QUEUED 

i I 

60$: 

+-----------------------------------------------------------+ 

CALL 
BCC 
RETURN 

$TSPAR 
60$ 

REGION IN MEMORY ? 
IF CC REGION IN MEMORY 
ELSE PARTITION AST HAS BEEN QUEUED 

************************************************************* 
* 
* 
* 

PERFORM BUFFER COpy OPERATION 
* 
* 
* 

************************************************************* 

MOV I.PRM+4(R5),RO GET COUNT OF BYTES 
MOV I.PRM+10(R5),R2 SET SOURCE BUFFER ADDRESS 
MOV P . REL ( R1 ) , R3 GET STARTING BIAS OF PARTITION 
ADD I.PRM(R5),R3 AND ADD IN OFFSET 
MOV I.PRM+2(R5),R4 SET DISPLACEMENT 

+-----------------------------------------------------------+ 

THE INPUT PARAMETERS FOR $BLXIO ARE: 

8-16 



70$: 

RO 
R1 = 
R2 = 
R3 
R4 

DRIVER CODE 

NUMBER OF BYTES TO MOVE 
SOURCE APR 5 BIAS 
SOURCE DISPLACEMENT 
DESTINATION APR6 BIAS 
DESTINATION DISPLACEMENT 

THE OUTPUT PARAMETERS ARE 

RO ALTERED 
R1,R3 PRESERVED 
R2,R4 POINT TO LAST BYTE OF SOURCE/DESTINATION +1 

+-----------------------------------------------------------+ 

CALL 
MOV 
MOV 

$BLXIO 
I.PRM+10(R5),RO 
I.PRM+4(R5),R1 

COpy THE BUFFER 
GET BUFFER ADDRESS AGAIN 
GET LENGTH OF BUFFER 

+~----------------------------------------------------------+ 

I I 
I THE INPUT PARAMETERS FOR $DEACB ARE: I 
I I 
I RO ADDRESS OF BLOCK TO DEALLOCATE I 
I R1 LENGTH OF BLOCK TO DEALLOCATE I 
I I 
I NO OUTPUT PARAMETERS. I 
I I 
+-----------------------------------------------------------+ 

CALL $DEACB ; DEALLOCATE IT 

************************************************************* 
* 
* 
* 

IF THIS WASN'T A REGION LOAD AST, FINISH THE I/O 
* 
* 
* 

************************************************************* 

MOV 
TST 
BNE 

MOV 

I.PRM+14(R5),RO 
(RO) 
80$ 

#C.LGTH,Rl 

RETRIEVE AST BLOCK ADDRESS 
WAS THIS A REGION LOAD AST ? 
IF NE YES 

SET LENGTH OF CLOCK BLOCK 

+-----------------------------------------------------------+ 

THE INPUT PARAMETERS FOR $DEACB ARE: 

RO ADDRESS OF BLOCK TO DEALLOCATE 
R1 LENGTH OF BLOCK TO DEALLOCATE 

8-17 



i. 

80$: 

DRIVER CODE 

NO OUTPUT PARAMETERS. 

+-----------------------------------------------------------+ 

CALL 
MOV 

MOV 
MTPD$ 

MOV 
MTPD$ 
CLR 

MOV 
JMP 

$DEACB 
I.IOSB(R5),R3 

iIS.SUC&377,-{SP) 
(R3)+ 

I.PRM+4{R5),-{SP) 
(R3) 
I.IOSB(R5) 

R5,R3 
BMSUC 

DEALLOCATE CLOCK BLOCK 
GET VIRTUAL ADDRESS OF I/O STATUS 
BLOCK 
; SET FIRST I/O STATUS WORD 
WRITE FIRST WORD OF STATUS (MAY 
TRAP) 
; SET SECOND WORD OF I/O STATUS 
WRITE SECOND WORD (MAY TRAP) 
PREVENT $IODON ATTEMPT TO WRITE 
STATUS 
COPY I/O PACKET ADDRESS 
FINISH IN COMMON CODE 

************************************************************* 
* 
* 
* 

RECONVERT REGION LOAD AST TO A TASK AST 
* 
* 
* 

************************************************************* 

MOV 
CLR 
MOV 

RO,R3 
10{RO) 
I.TCB(R5),RO 

COpy BLOCK ADDRESS 
INDICATE NO BUFFER NEXT TIME 
GET TCB ADDRESS 

+-----------------------------------------------------------+ 

THE INPUT PARAMETERS FOR $REQUE ARE: 

RO TCB ADDRESS TO QUEUE AST BLOCK TO 
R3 ADDRESS OF THE PACKET TO QUEUE 

NO OUTPUT PARAMETERS. 

+-----------------------------------------------------------+ 

CALLR $REQUE REQUEUE TASK AST AND EXIT AST 
SERVICE 

************************************************************* 
* 
* 
* 

MISCELLANEOUS ENTRY POINTS 
* 
* 
* 

************************************************************* 

************************************************************* 
* 
* 
* 

CAN C E L E N TRY 

8-18 

POI N T 
* 
* 
* 



BMCAN: 

; 

BMOUT: 

BMPWF: 

; 

BMKRB: 
BMUCB: 

* 
* 
* 

DRIVER CODE 

WE COULD DEQUEUE PENDING CLOCK REQUEST, ETC HERE, 
BUT WE DON'T, WE JUST LET THEM COMPLETE LATER 

* 
* 
* 

************************************************************* 

************************************************************* 
* 
* 
* 
* 
* 

TIM E 0 U T E N TRY POI N T 
* 
* 
* 

SINCE THERE'S NO PHYSICAL DEVICE TO TIME OUT, NO-OP * 
* 

************************************************************* 

************************************************************* 
* 
* 
* 
* 
* 

POW E R F A I L E N TRY POI N T 

POWERFAIL DOESN'T AFFECT NON-EXISTENT DEVICES 

* 
* 
* 
* 
* 

************************************************************* 

************************************************************* 
* 
* 
* 
* 
* 
* 

S TAT U S C HAN G E E N TRY 
* 

POI N T S * 
* 

DON'T NEED TO TOUCH NON-EXISTENT DEVICE, JUST LET 
EXEC PUT DEVICE ON/OFF LINE 

* 
* 
* 

************************************************************* 

RETURN ALL THESE ARE NO-OP FOR NOW 

.END 

8-19 





CHAPTER 9 

ACCESSING VIDEO HARDWARE AND TERMINAL SUBSYSTEM 

This chapter provides reference information for programmers needing 
access to the Professional's video hardware, as well as to the 
text-handling component of the Terminal Subsystem. (For information 
on the graphics capabilities, see the PROIGIDIS Manual.) 

To use the information provided here, you should be familiar with the 
Professional hardware at the level of detail provided in the 
Professional 300 Series Technical Manual. Also, your familiarity with 
PIOS should include an understanding of the Executive directives and 
the Application Task Builder. This chapter does not include 
step-by-step instruction. 

9.1 APPLICATION LEVEL ACCESS TO THE VIDEO HARDWARE 

Under PIOS, the video generator device registers and display memory 
are generally accessed only by the Terminal Subsystem, with a 
higher-level interface provided for applications. However, it is also 
possible for an application to directly access the hardware. 

The main reasons for having an application access the hardware 
directly are that the application might be able to: 

o Achieve faster throughput than if it went through the 
supported system services. 

o Provide functionality that the system software 
support. 

doesn't 

The main reasons for NOT having an application access the hardware 
directly are as follows: 

o Future versions of the system software may interact 
differently with the video hardware. An application that 
accesses the hardware directly may not work under all 
versions of P/OS. DIGITAL is not and will not attempt to 

9-1 



APPLICATION LEVEL ACCESS TO THE VIDEO HARDWARE 

achieve this type of compatibility. 

o The video hardware may change. The system software keeps up 
with such changes, but if the application accesses the 
hardware directly (thus does not use the system services), it 
will also have to be adapted to account for the video 
hardware changes. 

o Developing an application that accesses the hardware directly 
requires considerable familiarity with the hardware. The 
relevant sections of the Professional 300 Series Technical 
Manual, along with the contents of this document, are 
pre-requisites to acquiring this familiarity, but are not 
necessarily sufficient by themselves. 

This document deals only with a Professional running PIOS, but some of 
the information may be useful for applications running under other 
operating systems. 

9.1.1 Disabling the Terminal Subsystem 

Before directly accessing the video hardware, an 
ensure that the Terminal Subsystem is not active. 
the Terminal Subsystem can have unpredictable 
system software failure. 

application must 
Failure to disable 

results, including 

Steps for disabling the Terminal Subsystem (P/OS Versions 1.7 and 
later) are as follows. 

1. Send a reset-to-initial-state (RIS) sequence, <ESC>c. This 
resets the Terminal Subsystem to its initial state and clears 
the screen. 

2. Send a disable cursor sequence, <ESC>[?25l. This turns the 
text mode cursor off. 

After disabling the cursor, the Terminal Subsystem accesses the video 
harQware only when it is requested to display something, or when it 
blanks the screen at the end of its time-out period. 

If the application combines requests to the Terminal Subsystem with 
its own manipulation of the video hardware, it must save and restore 
the contents of the following device registers: 

o Control and Status Register 

9-2 



APPLICATION LEVEL ACCESS TO THE VIDEO HARDWARE 

o Plane 1 Control Register 

o Plane 2 and 3 Control Register 

o Memory Base Register (should not be modified at all) 

CAUTION 

DO NOT SET THE INTERRUPT ENABLE BITS 

The results of doing so are unpredictable, and 
probably undesirable. The system could hang or crash. 

9.1.2 Accessing the Video Device Registers 

In the CTI architecture, as on other PDP-ll buses, devices are 
controlled via device registers, which appear as memory in the top 8KB 
(the I/O page) of the bus address space. 

However, unlike those on UNIBUS and Q-BUS devices, the device 
registers on a CTI device do not have fixed addresses on the bus. 
Instead, each option slot has a 128-byte device register address 
space, the location of which can be found in the Professional 300 
Series Technical Manual. 

The registers on a given module appear at a fixed displacement within 
the address space of the slot containing the module. This means that 
in order to access the device registers on the video, software must 
determine at run-time which slot it is in. The WIMPS Executive 
Directive provides the means for doing this. 

The WIMPS Directive returns a dump of the configuration table, 
including the IDs of the devices in all the slots. Scan the list to 
find out which slot contains the video controller. The PIOS System 
Reference Manual lists the device IDs. 

NOTE 

The ID value for the PC350 video controller is 
different from that of the PC380 video controller. Be 
sure to use the correct ID. 

The slot number gives you the bus address. 
your application in a resident common 
covers the I/O page. 

9-3 

You can then taskbuild 
in partition CTPAGE, which 



APPLICATION LEVEL ACCESS TO THE VIDEO HARDWARE 

9.1.3 Accessing Video Memory Through the Bus 

Because the Terminal Subsystem puts the video display memory on the 
CTI bus at boot time, the CPU can read from and write to this memory 
without using the device registers. P/OS uses this capability. 

The video memory occupies a partition called BITMAP, and a region 
called TFWBMP fills this partition. The Terminal Subsystem creates 
TFWBMP and places it on the bus at boot time. An application can 
attach the region and map a portion of it. 

TFWBMP is 32KB (PC350) or 128KB (PC380). The displayed portion of 
TFWBMP is the first 30KB (PC350, or PC380 low resolution) or 60KB 
(PC380 high resolution). A bit in the CSR indicates the resolution, 
as described in the Technical Manual. 

Note that the least significant portion of the first word of the 
region corresponds to the upper left corner of the screen. If there 
is an Extended Bit Option (EBO) in the system, all three planes of 
memory share the same bus address space. (To determine if a system 
has an EBO option, check the CSR of the video hardware.) 

To read from or write to any of the planes (whether or not there is an 
EBO), the memory reference enable bit (bit 5) in its plane control 
re~ister must be set to 1. If there is an EBO, the memory reference 
enable bit can be set for more than one plane. 

Reads will come in ascending order (1, 2, 3) from each plane that has 
the memory reference enable bit set. plane numbers are defined by the 
hardware and do not necessarily correspond to any software numbering 
scheme. Writes will go to all planes that have the memory reference 
enable bit set. 

Remember that a transfer, once started, can take a long time. Check 
the Done bit before modifying any registers other than the X and Y 
registers, unless you are certain that the transfer is complete. 

9.1.4 The Screen Timer 

A screen time-out feature is built into the Terminal Subsystem to 
prevent the burn-in of a static image in the screen phosphor. The 
Terminal Subsystem blanks the screen if there has been no keyboard or 
video activity for 30 minutes. This is accomplished by setting the 
horizontal resolution to off in the Plane 1 Control Register. 

For applications that process input from the keyboard, the screen 
timer is not a problem, but for display-only applications it can be a 
problem because the Terminal Subsystem cannot detect the ongoing video 
activity. 

9-4 



APPLICATION LEVEL ACCESS TO THE VIDEO HARDWARE 

One solution to this problem is to send a null byte to the screen (via 
the Terminal Subsystem) at regular intervals (at least every 30, 
minutes). This will cause the Terminal Subsystem to reset its timer, 
without causing any visual effects. 

9.1.5 Returning the Video Hardware to the System 

After the application has completed, it must restore the hardware 
device registers, especially the Plane 1 control register. Failure to 
do so may cause the system to crash during a split-screen scroll or 
insert/delete operation. You should re-initialize the Terminal 
Subsystem by issuing a RIS sequence. 

9-5 





APPENDIX A 

P/OS SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS 

This appendix describes the P/OS system macros that supply symbolic 
offsets for data structures listed in Table A-i. 

The data structures are defined by macros in the Executive macro 
library. To reference any of the data structure offsets from your 
code, include the macro name in an .MCALL directive and invoke the 
macro. For example: 

.MCALL DCBDF$ iDefine DCB offsets 

NOTE 

All physical offsets and bit definitions are subject 
to change in future releases of the operating system. 
Code that accesses system data structures should 
always use the symbolic offsets rather than the 
physical offsets. 

The first two arguments, <:> and <=>, make all definitions global. If 
they are left blank, the definitions will be local. The SYSDEF 
argument causes the variable part of a data structure to be defined. 

All of these macros are in the Executive 
LB:[1,5]EXEMC.MLB. All except FliDF$ and ITBDF$ 
Executive definition library, LB:[l,l]EXELIB.OLB. 

A-l 

macro library, 
are also in the 



Table A-1: Summary of System Data Structure Macros 

Macro Arguments 

ABODF$ 

ACNDF$ 

ACTDF$ 

BCKDF$ 

CLKDF$ <:>,<=> 

CTBDF$ <:>,<=> 

DCBDF$ <:>,<=>,SYSDEF 

DDT$ 

FiiDF$ <:>,<=>,SYSDEF 

GTPKT$ 

HDRDF$ <:>,<=> 

HWDDF$ <:>,<=>,SYSDEF 

INTSV$ 

ITBDF$ <:>,<=>,SYSDEF 

KRBDF$ <:>,<=> 

LBLDF$ 

LNMDF$ 

Data structures 

Task abort and termination 
notification message codes 

UAB definitions 

Account file definitions 

Bugcheck code 

Clock queue control block 

Controller table 

Device control block 

Macro to generate driver dispatch 
table 

Files-ii data structures 
(volume control block, mount list 
entry, file control block, file 
window block, locked block list 
node) 

Macro to generate $GTPKT UCB 
address 

Task header and window block 

Hardware register addresses and 
feature mask definitions 

Macro to generate interrupt entry 
code to determine UCB address 

Interrupt transfer block 

Controller request block 

Task image file label block 
definitions 

Logical name block (LNB) 

A-2 



PCBDF$ 

PKTDF$ 

QIOSY$ 

SCBDF$ 

TCBDF$ 

TTSYM$ 

UCBDF$ 

<:>,<=>,SYSDEF 

<:>,<=> 

<:>,<=>,SYSDEF 

<:>,<=>,SYSDEF 

Partition control block and 
attachment descriptor 

I/O packet, AST control block, 
offspring conttol block, group 
global event flag control block, 
and CLI parser block 

I/O error function code definition 

status control block 

Task control block 

Terminal driver symbols 

<:>,<=>,TTDEF,SYSDEF Unit control block 

A-3 



ABODF$ 

A.1 ABODF$ 

i+ 
TASK ABORT CODES 

NOTE: S.COAD-S.CFLT ARE ALSO SST VECTOR OFFSETS 
i-

177774 
177776 
000000 
000002 
000004 
000006 
000010 
000012 
000014 
000016 
000020 
000022 
000024 
000026 
000030 I 

000032 
000034 
000036 
000040 
000042 
000044 

000046 
000050 
000052 

000000 
000002 
000004 
000006 
000010 
000012 
000014 
000016 
000020 
000022 
000024 
000026 
000030 

• S . CACT= - 4 . 
S.CEXT=-2. 
S.COAD=O. 
S.CSGF=2. 
S.CBPT=4. 
S.CIOT=6. 
S.CILI=8. 
S.CEMT=10. 
S.CTRP=12. 
S.CFLT=14. 
S.CSST=16. 
S.CAST=18. 
S.CABO=20. 
S.CLRF=22. 
S.CCRF=24. 
S.IOMG=26. 
S.PRTY=28. 
S.CPMD=30. 
S.CELV=32. 
S.CINS=34. 
S.CAFF=36. 

S.CCSM=38. 
S.COTL=40. 
S.CTKN=42. 

iTASK STILL ACTIVE 
iTASK EXITED NORMALLY 
iODD ADDRESS AND TRAPS TO 4 
iSEGMENT FAULT 
iBREAK POINT OR TRACE TRAP 
iIOT INSTRUCTION 
iILLEGAL OR RESERVED INSTRUCTION 
iNON RSX EMT INSTRUCTION 
iTRAP INSTRUCTION 
ill/40 FLOATING POINT EXCEPTION 
iSST ABORT-BAD STACK 
iAST ABORT-BAD STACK 
iABORT VIA DIRECTIVE 
iTASK LOAD REQUEST FAILURE 
iTASK CHECKPOINT READ FAILURE 
iTASK EXIT WITH OUTSTANDING I/O 
iTASK MEMORY PARITY ERROR 
iTASK ABORTED WITH PMD REQUEST 
iTI: VIRTUAL TERMINAL WAS ELIMINATED 
iTASK INSTALLED IN 2 DIFFERENT SYSTEMS 
iTASK ABORTED DUE TO BAD AFFINITY (REQUIRED BUS 
iRUNS ARE OFFLINE OR NOT PRESENT) 
iBAD CSM PARAMETERS OR BAD STACK 
iTASK HAS RUN OVER ITS TIME LIMIT 
iABORT VIA DIRECTIVE WITH NO TKTN MESSAGE 

TASK TERMINATION NOTIFICATION MESSAGE CODES 

T.NDNR=O 
T.NDSE=2 
T.NCWF=4 
T.NCRE=6 
T.NDMO=8. 
T .. NUER=10. 
T.NLDN=12. 
T.NLUP=14. 
T.NCFI=16. 
T.NUDE=18. 
T.NMPE=20. 
T.NKLF=22. 
T.NAAF=24. 

iDEVICE NOT READY 
iDEVICE SELECT ERROR 
iCHECKPOINT WRITE FAILURE 
iCARD READER HARDWARE ERROR 
iDISMOUNT COMPLETE 
iUNRECOVERABLE ERROR 
iLINK DOWN (NETWORKS) 
iLINK UP (NETWORKS) 
iCHECKPOINT FILE INACTIVE 
iUNRECOVERABLE DEVICE ERROR 
iMEMORY PARITY ERROR 
jVCODE LOADER NOT INSTALLED 
iACCOUNTING ALLOCATION FAILURE 

A-4 



000032 
000034 
000036 
000040 

000042 

T.NTAF=26. 
T.NDEB=28. 
T.NRCT=30. 
T.NWBL=32. 

T.NVER=34. 

ABODF$ 

iACCOUTING TAB ALLOCATION FAILURE 
iTASK HAS NO DEBUGGING AID 
iREPLACEMENT CONTROL TASK NOT INSTALLED 
iWRITE BACK CACHING DATA LOST. UNIT WRITE 

iLOCKED 
iMOUNT VERIFICATION TASK NOT INSTALLED 

A-S 



ACNDF$ 

A.2 ACNDF$ 

i+ 
ACCOUNTING BLOCK OFFSET AND STATUS DEFINITIONS 
FOR EACH TRANSACTION TYPE. 

HEADER COMMON TO ALL TRANSACTIONS 
i-

000000 .ASECT 
000000 .=0 

000000 B. LNK: . BLKW 
000002 B.TYP:.BLKB 
000003 B. LEN: . BLKB 
000004 B. TIM: . BLKW 
000012 B.HID=. 
000012 B.UID: .BLKW 

000016 B .ACN: . BLKW 
000020 B.TID: .BLKB 

000021 .BLKB 
000022 B.HEND=. 
000022 $$$HLN=. 

i+ 

1 
1 
1 
3 

2 

1 
1 

1 

iLINK TO NEXT IN SYSLOG QUEUE' 
iTRANSACTION TYPE 
iTRANSACTION LENGTH 
iENDING TIME OF TRANSACTION 
iSTART OF HEADER IDENTIFICATION AREA 
iUNIQUE SESSION IDENT 
i FIRST WORD-RADIX-50, SECOND-BINARY 
iACCOUNT NUMBER 
iASCII TERMINAL TYPE (V,T, OR C) 
i(VIRTUAL,REAL,BATCH, OR CONSOLE) 
iUNIT NUMBER 
iEND OF HEADER 10 AREA 
iHEADER LENGTH 

i ACCUMULATION FIELDS FOR TAB, UAB, AND SAB 
i -

000022 B . CPU: . BLKW 2 iTOTAL CPU TIME USED 
000026 B . D I R: . B L KW 2 iTOTAL DIRECTIVE COUNT 
000032 B. QIO: . BLKW 2 iTOTAL QIO$ COUNT 
000036 B.TAS:.BLKW 2 iTOTAL TASK COUNT 
000042 B.MEM: .BLKW 3 iRESERVED 
000050 B.BEG: .BLKW 3 iBEGINNING/LOGIN TIME 
000056 B.CPUL:.BLKW 2 jCPU LIMIT 
000062 B . PNT : . BLKW 1 jPOINTER TO HIGHER LEVEL 
000064 B. STM: . BLKB 1 jSTATUS MASK 
000065 $$$TLN=. iTOTAL'S LENGTH 

i+ 
j USER ACCOUNT BLOCK (UAB) 

NOTE: UAB'S MUST END ON A WORD BOUNDARY 
i -

000065 .=$$$TLN 
000065 B.USE:.BLKB 1 

jSTART AFTER TOTALS 
iUSE COUNT 

A-6 

TOTALS 



000066 
000070 
000072 
000074 
000102 
000104 

000112 
000130 
000131 
000132 

000144 

B.ACT:.BLKW 1 
B.UUIC:.BLKW 1 
B.UCB:.BLKW 1 
B.LGO:.BLKW 3 
B.ULNK:.BLKW 1 
B.RNA:.BLKW 3 

B.NAM:.BLKB 14. 
.BLKB 1 
.BLKB 1 

B.LDS:.BLKB 10. 
.IF OF R$$PRO 

B.CBT:.BLKW 1 
.ENDC 

ACNDF$ 

~NUMBER OF CURRENTLY ACTIVE TASKS 
;LOGIN UIC 
;POINTER TO UCB 
;LOGOFF TIME 
;LINK TO NEXT UAB 
;LOC IN SYSACCT FILE (OFFSET,VBN-HI, 
iVBN-LO) 
iLAST NAME OF USER 
iFIRST INITIAL OF USER 
iFLAG BYTE FOR UAB (bs.sil) etc. 
;LOGIN DIRECTORY STRING 

iPOINTER TO CHANNEL BLOCK TABLE 

000146 B.ULEN=. iUAB LENGTH 
000002 $$$= <.+77>/100 iUAB LENGTH (ROUNDED UP TO 32 

iWORD BOUND) 

A-7 



ACTDF$ 

A.3 ACTDF$ 

000000 
000062 

000000 
000003 
000006 
000014 
000032 
000046 

000054 
000056 
000062 
000064 
000070 
000074 
000076 
000100 
000113 
000114 
000116 

000120 
000122 

000123 
000124 

000134 
000135 

000136 

000136 
000144 
000145 
000163 
000164 
000174 

ACTDF$ 
.ASECT 

000000 .=0 
A.GRP: .BLKB 3 
A.MBR: .BLKB 3 
A.PSWD: .BLKB 6 
A.LNM: .BLKB 14. 
A.FNM: .BLKB 12. 
A.LDAT: .BLKB 6 

A.NLOG: .BLKB 2 
A.SYDV: .BLKB 4 
A.ACN: .BLKW 1 
A.CLI: .BLKW 2 

.BLKW 2 
A. LPRV: . BLKW 1 
A . SID: . B L KW 1 
A.DDS: .BLKB 11. 

.BLKB 1 
A.FPRO: .BLKW 1 
A.RLVL: .BLKW 1 

000401 AR.LVL=401 

AH.RLN= 

A. SALT: . BLKW 1 
A.ENCT: .BLKB 1 

i 
.BLKB 1 

A.HPW: .BLKW 4 
.IF DF R$$PRO 

AH.TYP: .BLKB 1 
AH. S Z 1: . BLKB 1 

AH.HOM: 

AH.NOD: .BLKB 6 
AH.SZ2: .BLKB 1 
AH.USN: .BLKB 14. 
AH. SZ3: .BLKB 1 
AH.HPW: .BLKB 8. 

BIT DEFINITIONS FOR AH.TYP 

000000 
000001 
000002 

AH.NUL= a 
AH.CLL= 1 
AH.DVS= 2 

.ENDC 

A-8 

GROUP CODE (ASCII) 
MEMBER CODE 
PASSWORD 
LAST NAME 
FIRST NAME 
LAST LOG ON-­
DD/MM/YY HH:MM:SS 

i TOTAL NUMBER OF LOGONS 
DEFAULT SYSTEM DEVICE 

iACCOUNT NUMBER (BINARY) 
i RADIX-50 USER CLI 
i UNUSED 
iLOGIN PRIVILEGE WORD 
i SESSION IDENTIFIER 
iDEFAULT DIRECTORY STRING 
iUNUSED BYTE 
iDEFAULT FILE PROTECTION 
iACCOUNT RECORD REV. LEVEL 

i16-BIT ENCRYPTION SALT VALUE 
iENCRYPTION TYPE 
o = PLAIN TEXT OR ENCRPT 
1 = PURDY-V ALGORITHM 
iUNUSED 
iHASHED PASSWORD 

iTYPE OF HOME DEFINITION 
iIF AH.TYP=l,LENGTH OF NODENAME 
iIF AH.TYP=2,LENGTH OF 
iDEVICE SPEC 
iIF AH.TYP=2,START OF 
iDEVICE SPEC 
iIF AH.TYP=l,NODENAME IN ASCII 
iLENGTH OF USERNAME 
iUSERNAME IN ASCII 
iLENGTH OF PASSWORD 
iHASHED PASSWORD 

iHOME VALUE IS NULL 
iHOME VALUE IS CLUSTER LOG TRIO 
iHOME VALUE IS A DEVICE SPEC 
iDF R$$PRO 



ACTDF$ 

000200 A.LEN 128. LENGTH OF CONTROL BLOCK 

BIT DEFINITIONS ON A.LPRV - LOGIN PRIVILEGE BITS 
i. 
000001 
000002 
000004 

002000 
004000 
010000 
020000 

AL.SLV= 1 
AL.DDS= 2 
AL.SIL= 4 

AL.AUT= 10 
AL.BND= 20 
AL.RMT= 40 
AL.NET= 100 
AL.DIS= 200 
AL.PRI= 400 
AL.SEC= 1000 

AL.NDL= 
AL.NMD= 
AL.NFL= 
AL.FPC= 

.IF OF 
2000 
4000 
10000 
20000 
.ENDC 

iSLAVE TERMINAL ON LOGIN 
iINDICATOR FOR PROLOGUE 2 FORMAT 
iSILENT LOGIN/LOGOUT 

.IF OF A$$LOG 

iAUTO LOGIN ENABLED 
iBINDING ENABLED 

( , * ) 
( , Y) 

iREMOTE DIALUP l=NO 
iNETWORK LOGIN l=NO 
iDISABLE THIS ACCOUNT FROM 
iPRIMARY DAYS LIMIT SET 
iSECONDARY DAYS LIMIT SET 

LOGIN 

.ENDC i OF A$$LOG 
R$$PRO 

iRECORD MARKED FOR NO DELETE 
iRECORD CANNOT BE MODIFIED 
iFOREGROUND LOGIN'S DISABLED 
iFORCE PASSWD CHANGE 

iDF R$$PRO 

A-9 



BCKDF$ 

A.4 BCKDF$ 

000100 
000200 
100400 
000300 
000000 
000001 
000002 
000003 
000004 
000005 
000006 

000007 
000010 
000011 

000400 
000001 
000002 
000003 
000007 

000010 
000011 
000012 
000013 
000014 
000015 
000016 

000500 

000001 

000002 

000003 
000004 
000005 

BF.PKS=000100 
BF.TTD=000200 
BF.PTS=100400 
BF.EXE=000300 
BE.IOT=OOOOOO 
BE.STK=OOOOOl 
BE.BPT=000002 
BE.ILI=000003 
BE.ODD=000004 
BE.SGF=000005 
BE.NPA=000006 

BE.EMT=000007 
BE.TRP=000010 
BE.NOD=OOOOll 

BF.UP =000400 
BE.IN1=000001 
BE.SP1=000002 
BE.SP2=000003 
BE.FNF=000007 

P/OS Keyboard Handler 
Terminal Driver 
P/OS Terminal Subsystem 
Exec - SSTSR, General 
lOT in System State 
Stack Overflow 
Trace Trap or Breakpoint 
Illegal Instruction Trap 
Odd Address or Other Trap 4 
Segment Fault 
A Task on P/OS Without a 
Parent Aborted 
EMT Trap 
TRAP Trap 
Out of POOL 

System Startup Processing 
Can't Install Task CBOOT 
Can't Spawn Task CBOOT 
Can't Spawn Task CMAIN 
Required File Not Found 

; PRO/DECnet startup failure codes 

BE.DSC=000010 
BE.BDP=OOOOll 
BE.NWB=000012 
BE.DAF=000013 
BE.VIU=000014 
BE.NPD=000015 
BE.NSD=000016 

DSR corrupt 
Bad dispatch 
No way to Boot via DECNA (Cluster) 
DSR Allocation Failure 
DDM Vector in use 
Required PDV not found. 
Required Hardware not present. 

P/OS Server network failure codes 

SCA facility code 
, 
BF.SCA= 000500 
; 
; SCAINT bugcheck codes 

BE.NCS= 000001 

BE.NSP= 000002 

BE.ECL= 000003 
BE.SYC= 000004 
BE.SAF= 000005 

SCA network 

No PDV index for a required Cluster 
process 
Error creating Cluster secondary 
pool 
Error creating FS: logicals 
Error creating system channel 
Error allocating structures from 

A-10 



000006 

000007 
000010 
000011 
000012 

000013 

000101 

000102 

000103 

000104 

000105 
000106 
000107 

000110 
000111 
000112 
000113 
000114 

000201 
000202 

000203 

000204 
000205 

000206 
000207 
000210 
000211 
000212 
000213 

BE.ASY= 000006 

BE.PAF= 000007 
BE.OVL= 000010 
BE.NFS= 000011 
BE.NCL= 000012 

BE.ISL= 000013 

PPO bugcheck codes 

BE.ANI= 000101 

BE.POV= 000102 

BE.CTL= 000103 

BE.UAQ= 000104 

BE.IMT= 000105 
BE.REG= 000106 
BE.SB = 000107 

BE.IOT= 000110 
BE.CTM= 000111 
BE.XMT= 000112 
BE.XMC= 000113 
BE.VCS= 000114 

SCS bugcheck codes 

BE.ILM= 000201 
BE.SCB= 000202 

BE.CNT= 000203 

BE.OSP= 000204 
BE.CNB= 000205 

BE.LST= 000206 
BE.CNN= 000207 
BE.ACC= 000210 
BE.RJC= 000211 
BE.XCT= 000212 
BE.SNT= 000213 
; 
; FSD bugcheck codes 

BCKDF$ 

Cluster secondary pool 
; CCB allocation failure during system 

channel creation 
Error allocating from primary pool 
Error creating device list 
No FS: device 
COMINI spawned SCAINT without a 
command line 
Command line string invalid length 

Allocation failure during network 
startup 
Required PDV index not found (UNA or 
EPM) 
Decnet control function completed 
unsuccessfully (enable port,start 
channel,set protocol type) 
Entry not found in unacknowledged 
queue 
Illegal message type (datagram) 
No entry in retransmit queue 
System block address not in link 
list 
Illegal entry into dispatch table 
Unack'd queue empty (CHKTMR routine) 
Unack'd queue empty (XMIT routine) 
Unack'd queue empty (XMITC routine) 
VCSTART timed out, can't communicate 
with the fileserver 

Illegal message type (datagram) 
Connect block address not in link 

list (at VCHALT processing) 
Usage count not = 0 (at 

VCHALT processing) 
Illegal entry into dispatch table 
Connect block address not in link 

list (in DCBCT) 
Not enough info passed in listen vadd 
Not enough info passed in connect vadd 
Not enough info passed in accept vadd 
Not enough info passed in reject vadd 
Illegal transmission of control msg 
Invalid entry into send table 

A-ll 



000301 

000303 

000304 

000305 

000306 
000307 

000310 
000311 

000312 

000313 
000314 
000315 

000316 
000317 

000320 

000321 
000322 

000323 
000324 

000401 
000402 
000403 
000404 
000405 
000406 
000407 

000501 

BCKDF$ 

BE.NET= 000301 

BE.DSL= 000302 

BE.CHN= 000303 

BE.ACO= 000304 

BE.COF= 000305 

BE.DEV= 000306 
BE.ASD= 000307 

BE.NST= 000310 
BE.CAF= 000311 

BE.SND= 000312 

BE.ATT= 000313 
BE.IOP= 000314 
BE.NCB= 000315 

BE.NCD= 000316 
BE.NRF= 000317 

BE.ILE= 000320 

BE.VCH= 000321 
BE.IOQ= 000322 

BE.SYS= 000323 
BE.CBF= 000324 
; 
; FSI/FSA bugcheck codes 

BE.DBA= 000401 
BE.DBI= 000402 
BE.SNF= 000403 
BE.ENT= 000404 
BE.LDR= 000405 
BE.VCP= 000406 
BE.HLT= 000407 

Unable to communicate with 
fileserver during channel processing 
Unable to communicate with 
fileserver during device select proc 
Error during channel processing, no 
entry in clock block queue 
Allocation failure during connection 
processing 
Connect failed for reason other 
than allocation failure 
Too many devices in device list 
Unable to allocate system data 
structures (VCB, UCB extension) 
No TCB for startup task SCAINT 
CCB allocation failure in retry 
routine 
Unable to communicate with the 
fileserver during wlb/wvb/ctl/ulk/rlb 
Attribute list spans a CTNA buffer 
I/O packet not in queue 
Channel block not in link list for 
delete channel 
QIO to LUN without concealed device 
Deaccess can't find RFCB entry in 
queue 
Illegal entry point in dispatch 
table . 
VCHALT, fileserver has gone down 
Queue length is <>the number of 
entries in the I/O queue 
No matching system at login 
Channel block table full (V3.0 only) 

BAD DISPATCH OFFSET - FSA 
BAD DISPATCH OFFSET - FSI 
STRUCTURE NOT FOUND IN ACTIVE LIST 
BAD ENTRY POINT 
LOADR NOT FOUND IN ATL 
VCP NOT ACTIVE 
BAD DISPATCH FOR VCH 

bugcheck codes for cluster subroutines that are 
built with the POS exec 

BE.BDB= 000501 DLBOB. - BOB address not in active 
list 

A-12 



CLKDF$ 

A.S CLKDF$ 

i+ 
CLOCK QUEUE CONTROL BLOCK OFFSET DEFINITIONS 

CLOCK QUEUE CONTROL BLOCK 

THERE ARE FIVE TYPES OF CLOCK QUEUE CONTROL BLOCKS. 
EACH CONTROL BLOCK HAS THE SAME FORMAT IN THE FIRST 
FIVE WORDS AND DIFFERS IN THE REMAINING THREE. 

THE FOLLOWING CONTROL BLOCK TYPES ARE DEFINED: 
i -

000000 
000002 

000004 
000006 

000010 

000012 

000000 
000002 
000003 
000004 

000006 

000012 
000012 
000014 
000016 
000020 

C.MRKT=O 
C.SCHD=2 

C.SSHT=4 
C.SYST=6 

C.SYTK=8 

C.CSTP=10. 

.ASECT 
.=0 
C.LNK: .BLKW 
C.RQT: .BLKB 
C.EFN: .BLKB 
C.TCB: .BLKW 

C.TIM: .BLKW 

.=C.TIM+4 
C.AST: .BLKW 
C.SRC: .BLKW 
C.DST: .BLKW 

. BL'KW 

1 
1 
1 
1 

2 

1 
1 
1 
1 

MARK TIME REQUEST 
TASK REQUEST WITH PERIODIC 

RESCHEDULING 
SINGLE SHOT TASK REQUEST 
SINGLE SHOT INTERNAL SYSTEM SUBROUTINE 

( IDENT) 
SINGLE SHOT INTERNAL SYSTEM SUBROUTINE 

(TASK) 
CLEAR STOP BIT (CONDITIONALIZED ON 

SHUFFLING) 

CLOCK QUEUE CONTROL BLOCK TYPE INDEPENDENT 
OFFSET DEFINTIONS 

CLOCK QUEUE THREAD WORD 
REQUEST TYPE 
EVENT FLAG NUMBER (MARK TIME ONLY) 
TCB ADDRESS OR SYSTEM SUBROUTINE 

IDENTIFICATION 
ABSOLUTE TIME WHEN REQUEST COMES DUE 

CLOCK QUEUE CONTROL BLOCK-MARK TIME 
DEPENDENT OFFSET DEFINITIONS 

START OF DEPENDENT AREA 
AST ADDRESS 
FLAG MASK WORD FOR 'BIS' SOURCE 
ADDRESS OF 'BIS' DESTINATION 
UNUSED 

A-13 



000012 
000012 
000016 
000020 

000012 
000012 
000016 
000020 

.=C.TIM+4 
C.RSI: .BLKW 
C . U I C : . B L KW 
C.UAB: .BLKW 

.=C.TIM+4 

.BLKW 

.BLKW 

.BLKW 

2 
1 
1 

2 
1 
1 

CLKDF$ 

CLOCK QUEUE CONTROL BLOCK-PERIODIC 
RESCHEDULING DEPENDENT OFFSET 
DEFINITIONS 

START OF DEPENDENT AREA 
RESCHEDULE INTERVAL IN CLOCK TICKS 
SCHEDULING UIC 
POINTER TO ASSOCIATED UAB 

CLOCK QUEUE CONTROL BLOCK-SINGLE 
SHOT DEPENDENT OFFSET DEFINITIONS 

START OF DEPENDENT AREA 
TWO UNUSED WORDS 
SCHEDULING UIC 
C.UAB 

CLOCK QUEUE CONTROL BLOCK-SINGLE SHOT INTERNAL SUBROUTINE OFFSET 
DEFINITIONS 

THERE ARE TWO TYPE CODES FOR THIS TYPE OF REQUEST: 

000012 
000012 
000014 

000016 

000020 
000022 

000000 

TYPE 6=SINGLE SHOT INTERNAL SUBROUTINE WITH A 16 BIT VALUE AS 
AN IDENTIFIER. 
TYPE 8=SINGLE SHOT INTERNAL SUBROUTINE WITH A TCB ADDRESS AS 
AN IDENTIFIER. 

.=C.TIM+4 START OF DEPENDENT AREA 
C.SUB: .BLKW 1 SUBROUTINE ADDRESS 
C. AR5 : .BLKW 1 RELOCATION BASE (FOR LOADABLE 

DRIVERS) 
C.URM: .BLKW 1 URM TO EXECUTE ROUTINE ON 

(MP SYSTEMS, C.SYST ONLY) 
.BLKW 1 UNUSED 
C.LGTH=. LENGTH OF CLOCK QUEUE CONTROL 

BLOCK 
.PSECT 

A-14 



CTBDF$ 

A.6 CTBDF$ 

i+ 
CONTROLLER TABLE (CTB) 

THE CONTROLLER TABLE IS A CONTROL BLOCK THAT CONTAINS A VECTOR 
OF KRB ADDRESSES. THIS VECTOR MAY BE ADDRESSED BY THE CONTROLLER 
INDEX TAKEN FROM THE' INTERRUPT PS BY $INTSI. 

i-

.ASECT 

.=177754 

177754 L.CLK:'L' .BLKW 8. iSTART OF CLOCK BLOCK (CLK BLK IS 
iOPTIONAL, AND DRIVER DEPENDENT. 
iALtOCATION OF THESE 8 WORDS IS NOT 
iREQUIRED IN THE DRIVER'S DATA BASE 
iUNLESS USED BY THE DRIVER ITSELF) 
iHARDWARE DEVICE ID (WORD ALLOCATION 
iALWAYS REQUIRED. MAY BE 0). 

177774 L.DID: 'L' .BLKW 

177776 L. ICB: ' L' .BLKW 
000000 L.LNK:'L' .BLKW 
000002 L. NAM: ' L' .BLKW 
000004 L.DCB:'L' .BLKW 
000006 L. NUM: ' L' .BLKB 
000007 L.STS:'L' .BLKB 
000010 L.KRB:'L' .BLKW 

1 

1 
1 
1 
1 
1 
1 
1 

iICB CHAIN FOR THIS CTB 
iCTB LINK WORD 
iGENERIC CONTROLLER NAME (ASCII) 
iDCB ADDRESS OF THIS DEVICE 
iNUMBER OF KRB ADDRESSES IN TABLE 
iCTB STATUS BYTE 
iSTART OF KRB ADDRESSES 

NOTE: THE SYMBOL $XXCTB:: IS DEFINED FOR EACH CTB, WHERE THE 
SYMBOL IS NOT THE START OF THE CTB, BUT INSTEAD THE START OF 

i+ 

THE KRB .TABLE AT THE END OF THE CTB (L.KRB). THE SYMBOL XXCTB (NO"$") 
IS GENERATED BY THE DDT$ MACRO AND IS USED TO IDENTIFY THE 
WORD IN THE DRIVER WHICH CONTAINS THE ADDRESS OF THE CONTROLLER'S 
CTB IN PRIMARY POOL. XXCTB IS REFERENCE BY THE CODE GENERATED IN THE 
INTSV$ MACRO WHEN DETERMINING THE UCB ADDRESS. 

i CONTROLLER TABLE STATUS BYTE BIT DEFINITIONS 
i -

LS.CLK='B'l 
LS.MDC='B'2 
LS.CBL='B'4 

iCLOCK BLOCK AT TOP OF CTB (l=YES) 
iMULTIDRIVER CTB (l=YES) 
iCLOCK BLK LINKED INTO CLK Q (l=YES) 

A-15 



LS.CIN='B'10 
LS.NET'B'=20 

CTBDF$ 

iCONT. USE COMMON INT TABLE (l=YES) 
;THIS IS DECNET DEVICE 
;ICB LISTHEAD IN K.PRM, L.DCB INVALID (l=YES) 

A-16 



DCBDF$ 

A.7 DCBDF$ 

i+ 

DEVICE CONTROL BLOCK 

THE DEVICE CONTROL BLOCK (DCB) DEFINES GENERIC INFORMATION 
ABOUT THE LOGICAL ACCESS TO THE DEVICE. THIS INCLUDES THE 
LOWEST AND HIGHEST LOGICAL UNIT NUMBERS (NOT THE PHYSICAL 
UNIT NUMBERS FOUND IN U.UNIT), THE LENGTH OF THE ASSOCIATED 
UCB(S), A POINTER TO THE FIRST UCB (ADDITIONAL UCBS IMPLIED 
BY D.UNIT ARE ALLOCATED CONTIGUOUSLY TO THE FIRST UCB), THE 
CLASSIFICATION OF EACH POSSIBLE I/O FUNCTION CODE, AND A 
POINTER TO THE DEVICE DRIVER AND ITS DISPATCH TABLE. THE IS 
AT LEAST ONE DCB FOR EVERY LOGICAL DEVICE NAME IN THE SYSTEM. 

FOR EXAMPLE THE LOGICAL DEVICE NAME 'TT' IS ASSOCIATED WITH 
THE BITMAP VIDEO (TTl:) AND THE PRINTER PORT (TT2:). BOTH ARE 
MANAGED BY THE FULL DUPLEX TERMINAL DRIVER AND SINCE 
IO.RSD/IO.WSD ARE TTl: SPECIFIC, TWO DCBS ARE USED RATHER THAN 
ONE SINCE THE FUNCTION CODE MASKS ARE DIFFERENT. IT IS 
CONCEPTUALLY POSSIBLE TO ADD A USER WRITTEN DRIVER THAT HAS THE 
LOGICAL DEVICE NAME 'TT' THOUGH IT MUST HAVE DIFFERENT LOGICAL 
UNIT NUMBERS (IE:TT3:) 

. -, 

000022 .ASECT 
000000 .=0 
000000 D.LNK: .BLKW 1 LINK TO NEXT DCB 
000002 D.UCB: .BLKW 1 POINTER TO FIRST UNIT CONTROL BLOCK 
000004 D.NAM: .BLKW 1 GENERIC DEVICE NAME 
000006 D.UNIT: .BLKB 1 LOWEST UNIT NUMBER COVERED BY THIS 

DCB 
000007 .BLKB 1 HIGHEST UNIT NUMBER COVERED BY THIS 

DCB 
000010 D.UCBL: .BLKW 1 LENGTH OF EACH UNIT CONTROL BLOCK 

IN BYTES 
000012 D.DSP: .BLKW 1 POINTER TO DRIVER DISPATCH TABLE 
000014 D.MSK: .BLKW 1 LEGAL FUNCTION MASK CODES 0-15. 
000016 .BLKW 1 CONTROL FUNCTION MASK CODES 0-15. 
000020 .BLKW 1 NOP'ED FUNCTION MASK CODES 0-15. 
000022 .BLKW 1 ACP FUNCTION MASK CODES 0-15. 
000024 .BLKW 1 LEGAL FUNCTION MASK CODES 16.-31. 
000026 .BLKW 1 CONTROL FUNCTION MASK CODES 16.-31. 
000030 .BLKW 1 NOP'ED FUNCTION MASK CODES 16.-31. 
000032 .BLKW 1 ACP FUNCTION MASK CODES 16.-31. 
000034 D.PCB: .BLKW 1 LOADABLE DRIVER PCB ADDRESS 

.PSECT 

A-17 



DCBDF$ 

i+ 
i DRIVER DISPATCH TABLE OFFSET DEFINITIONS 
i -

177770 

177772 

177774 

177774 

177776 
000000 
000002 
000004 
000006 
000010 
000012 

000014 

D.VTOU=-10 

D.VTIN=-6 

D.VCHK=-4 

D.VNXC=-4 

D.VDEB=-2 
D.VINI=O 
D.VCAN=2 
D.VOUT=4 
D.VPWF=6 
D.VKRB=10 
D.VUCB=12 

ADDRESS OF ROUTINE IN TTDRV CALLED 
FOR OUTPUT COMPLETION 
ADDRESS OF ROUTINE IN TTDRV CALLED 
FOR INPUT FROM THE CT FIRMWARE TASK 
ADDRESS OF ROUTINE CALLED TO VALIDATE 
AND CONVERT THE LBN. USED BY DRIVERS 
THAT SUPPORT SEEK OPTIMIZATION. 
ADDRESS OF ROUTINE IN TTDRV CALLED TO 
HAVE IT SEND THE NEXT COMMAND IN THE -. 
TYPEAHEAD BUFFER TO MCR (NOT USED BY 
P/OS) 
DEALLOCATE BUFFER(S) 
DEVICE INITIATOR 
CANCEL CURRENT I/O FUNCTION 
DEVICE TIMEOUT 
POWERFAIL RECOVERY 
CONTROLLER STATUS CHANGE ENTRY 
UNIT STATUS CHANGE ENTRY 

.IF NB SYSDF 

D.VINT=14 iBEGINNING OF INTERRUPT STUFF 

.ENDC 

A-18 



DDT$ 

A.S OOT$ 

i+ 
i GENERATE THE I/O DEVICE DRIVER DISPATCH TABLE -- DDT$ 
i-

. MACRO 
· IF NB 
. WORD 
.ENDC 

DDT$ DEV,NCTRLR,INY,INX,UCBSV,NEW,BUF,OPT 
<OPT> 
'DEV'CHK 

.IF NB <BUF> 
· WORD ' DEV' DEA 
.IFF 
.IF NB <OPT> 
.WORD 172361 jENTRY SHOULD NOT BE USED - CRASH 
.ENDC 
.ENDC 
.ENABL 
.IF B 

$'DEV'TBL::.WORD 
.IFF 

$'DEV'TBL::.WORD 
.ENDC 
. WORD 
. WORD 
· IF B 
. WORD 
. WORD 
. WORD 
.IFF 
. WORD 
. WORD 
. WORD 
.ENDC 

LSB 
<INX> 
DEV'INI 

DEV'INX 

DEV'CAN 
DEV'OUT 
<NEW> 
65533$ 
o 
65531$ 

DEV'PWF 
DEV'KRB 
DEV'UCB 

.IF DIF <INY>,<NONE> 

.ASCII /DEV/ 

.IF B <INY> 

. WORD $'DEV'INT 

'DEV'CTB: 

.IFF 
· IRP 
.WORD 
.ENDM 
.ENDC 
.WORD 

.ENDC 
$'DEV'TBE::.WORD 

.IF NB 
UCBSV: .BLKW 

.ENDC 
· IF B 

X,<INY> 
$' DEV' , X 

0 
.WORD 

0 
<UCBSV> 
NCTRLR 

<NEW> 

0 

A-19 



DDT$ 

65531$: BITB 
BEQ 

65533$: BCS 

#UC.PWF,U.CTL(R5) 
65532$ 
65532$ 

JMP DEV'PWF 
65532$: RETURN 

.ENDC 

. DSABL LSB 

.ENDM 

A-20 



A.9 F11DF 

VOLUME CONTROL BLOCK 

000174 
000000 

000000 
000002 
000000 
000001 
000002 
000010 
000011 
000003 
000001 
000002 
000004 
000010 
000020 

000004 
000020 
000024 
000024 
000026 
000032 
000033 
000034 
000036 
000040 

000041 
000042 
000044 
000045 
000046 
000050 
000'052 
000054 
000056 
000057 
000060 
000062 
000001 
000002 
000063 
000064 
000066 

.ASECT 
.=0 

V . TRCT: . BLKW 
V.TYPE:.BLKB 
VT.FOR= 0 
VT.SL1= 1 
VT.SL2= 2 
VT.ANS= 10 
VT.UNL= 11 
V. VCHA: . BLKB 
VC.SLK= 1 
VC.HLK= 2 
VC.DEA= 4 
VC.PUB= 10 
VC.DUP= 20 

V.LABL:.BLKB 
V . PKSR: . BLKW 
V.SLEN: 
V . I FW I : . B L KW 
V . FCB: . BLKW 
V. IBLB: . BLKB 
V . I B S Z : . B L KB 

.BLKW 
V . FMAX: . BLKW 
V.WISZ:.BLKB 

V. SBCL: . BLKB 
V • S B S Z : • B L KW 
V . SBLB: . BLKB 
V. FlEX: . BLKB 

.BLKW 
V. VOWN: . BLKW 
V . VPRO: . BLKW 
V. FPRO: . BLKW 
V . FRBK: . BLKB 
V.LRUC:.BLKB 

.BLKW 
V. STS : . BLKB 
VS.IFW= 1 
VS.BMW= 2 
V . F FNU: . B L KB 
V . EXT: . BLKW 
V.HBLB:.BLKW 

1 
1 

1 

14 
2 

1 
2 
1 
1 
1 
1 
1 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1 
1 
2 

FllDF 

TRANSACTION COUNT 
VOLUME TYPE DESCRIPTOR 
FOREIGN VOLUME STRUCTURE 
FILES-ll STRUCTURE LEVEL 1 
FILES-11 STRUCTURE LEVEL 2 
ANSI LABELED TAPE 
UNLABELED TAPE 
VOLUME CHARACTERISTICS 
CLEAR VOLUME VALID ON DISMOUNT 
UNLOAD THE VOLUME ON DISMOUNT 
DEALLOCATE THE VOLUME ON DISMOUNT 
SET (CLEAR) US.PUB ON DISMOUNT 
DUPLICATE VOL NAME; 
DON'T DELETE LOGICALS 
VOLUME LABEL (ASCII) 
PACK SERIAL NUMBER FOR ERROR LOGGING 
LENGTH OF SHORT VCB 
INDEX FILE WINDOW 
FILE CONTROL BLOCK LISTHEAD 
INDEX BIT MAP 1ST LBN HIGH BYTE 
INDEX BIT MAP SIZE IN BLOCKS 
INDEX BITMAP 1ST LBN LOW BITS 
MAX NO. OF FILES ON VOLUME 
DEFAULT SIZE OF WINDOW IN RTRV PTRS 
VALUE IS < 128. 
STORAGE BIT MAP CLUSTER FACTOR 
STORAGE BIT MAP SIZE IN BLOCKS 
STORAGE BIT MAP 1ST LBN HIGH BYTE 
DEFAULT FILE EXTEND SIZE 
STORAGE BIT MAP 1ST LBN LOW BITS 
VOLUME OWNER'S UIC 
VOLUME PROTECTION 
VOLUME DEFAULT FILE PROTECTION 
FREE BLOCKS ON VOLUME HIGH BYTE 
AVAILABLE LRU SLOTS IN FCB LIST 
FREE BLOCKS ON VOLUME LOW BITS 
VOLUME STATUS BYTE, CONTAINING: 
INDEX FILE IS WRITE ACCESSED 
STORAGE BITMAP FILE IS WRITE ACCESSED 
FIRST FREE INDEX FILE BITMAP BLOCK 
POINTER TO VCB EXTENSION 
LBN OF HOME BLOCK 

A-21 



FllDF 

V.HBCS:.BLKW 2 ; HOME BLOCK CHECKSUMS 
000076 V.LGTH: ; SIZE IN BYTES OF VCB 

MOUNT LIST ENTRY 

EACH ENTRY ALLOWS ACCESS TO A SPECIFIED USER FOR A NON-PUBLIC DEVICE 

TO ALLOW EXPANSION, ONLY THE ONLY TYPE CODE DEFINED IS "1" FOR 
DEVICE ACCESS BLOCKS 

000076 
000000 

.ASECT 
.=0 

M.LNK:.BLKW 1 
M.TYPE:.BLKB 1 
MT.MLS= 1 
M.ACC:.BLKB 1 
M.DEV:.BLKW 1 
M.TI:.BLKW 1 

LINK WORD 
TYPE OF ENTRY 
MOUNTED VOLUME USER ACCESS LIST 
NUMBER OF ACCESSES 
DEVICE UCB 
ACCESSOR TI: UCB 

000000 
000002 
000001 
000003 
000004 
000006 
000010 M.LEN: ; LENGTH OF ENTRY 

FILE CONTROL BLOCK 

000010 
000000 

000000 
000002 
000004 
000006 
000010 
000012 
000014 
000015 
000016 

000022 

000026 
000032 
000033 
000012 
000034 
000034 
000035 
100000 
040000 

.ASECT 
.=0 

F.LINK:.BLKW 1 
F.FNUM:.BLKW 1 
F.FSEQ:.BLKW 1 
F.DREF:.BLKW 1 
F.FOWN:.BLKW 1 
F.FPRO:.BLKW 1 
F.UCHA:.BLKB 1 
F.SCHA:.BLKB 1 
F.HDLB:.BLKW 2 

F.LBN:.BLKW 2 

F.SIZE:.BLKW 2 
F.NACS:.BLKB 1 
F.NLCK:.BLKB 1 
S.STBK=.-F.LBN 
F.STAT: 
F.NWAC:.BLKB 1 

.BLKB 1 
FC.WAC= 100000 
FC.DIR= 40000 

FCB CHAIN POINTER 
FILE NUMBER 
FILE SEQUENCE NUMBER 
DIRECTORY EOF BLOCK NUMBER 
FILE OWNER'S UIC 
FILE PROTECTION CODE 
USER CONTROLLED CHARACTERISTICS 
SYSTEM CONTROLLED CHARACTERISTICS 
FILE HEADER LOGICAL BLOCK NUMBER 
BEGINNING OF STATISTICS BLOCK 
LBN OF VIRTUAL BLOCK 1 IF CONTIGUOUS 
o IF NON CONTIGUOUS 
SIZE OF FILE IN BLOCKS 
NO. OF ACCESSES 
NO. OF LOCKS 
SIZE OF STATISTICS BLOCK 
FCB STATUS WORD 
NUMBER OF WRITE ACCESSORS 
STATUS BITS FOR FCB CONSISTING OF 
SET IF FILE ACCESSED FOR WRITE 
SET IF FCB IS IN DIRECTORY LRU 

A-22 



020000 
010000 
004000 

FC.CEF= 20000 
FC.FCO= 10000 
FC.DNV= 4000 

FllDF 

SET IF DIRECTORY EOF NEEDS UPDATING 
SET IF TRYING TO FORCE DIRECTORY CONTIG 
SET IF DIRECTORY NAME IS VALID 

IF FC.DNV IS SET, THEN THIS FCB IS ENTERED IN THE DIRECTORY FCB LRU 
CACHE. IN THIS CASE, F.DRNM IS THE FIRST WORD OF THE DIRECTORY NAME, 
F.LKL AND F.WIN ARE REUSED FOR THE SECOND AND THIRD WORDS OF THE 
DIRECTORY NAME, RESPECTIVELY, AND F.DID IS THE FILE 10 OF THE 
DIRECTORY THAT THIS DIRECTORY IS ENTERED IN. IF FC.DNV IS CLEAR, 
F.DRNM IS ZERO, F.LKL IS USED AS ADVERTISED BELOW, F.WIN IS RESERVED 
FOR FUTURE USE AS THE WINDOW BLOCK LISTHEAD, AND F.DID IS ZERO. 

000036 F.DRNM: .BLKW 
000040 F. FEXT : . BLKW 
000042 F.FVBN: .BLKB 

000043 F.FSQN: .BLKB 
000044 .BLKW 
000046 F . L K L: . B L KW 
000050 F.WIN: .BLKW 
000052 F . DID: . BLKW 

000054 F.LGTH: 

WINDOW 

000054 .ASECT 
000000 .=0 

000000 W.ACT: 

000000 W.BLKS: 

000000 W. CTL : . BLKW 

000400 WI.RDV= 400 
001000 WI. WRV= 1000 
002000 WI.EXT= 2000 
004000 WI.LCK= 4000 
010000 WI.DLK= 10000 
020000 WI.PND= 20000 
040000 WI.EXL= 40000 
100000 WI.WCK= 100000 
000002 W. IOC: . BLKB 
000003 .BLKB 
000004 W. FCB: . BLKW 
000006 W . T C B: . B L KW 
000010 W . UCB: . B L KW 
000012 W . L KL: . B L KW 

1 
1 
1 

1 
1 
1 
1 
1 

1 

1 
1 
1 
1 
1 
1 

1ST WORD OF DIRECTORY NAME 
POINTER TO EXTENSION FCB 
HIGH ORDER BYTE: STARTING VBN 
FILE SEGMENT 
FILE SEGMENT NUMBER 
LOW ORDER VBN WORD OF FILE SEGMENT 
POINTER TO LOCKED BLOCK LIST FOR FILE 
WINDOW BLOCK LIST FOR THIS FILE 
ID OF DIRECTORY THIS DIRECTORY IS 
ENTERED IN 
SIZE IN BYTES OF FCB 

NUMBER OF ACTIVE MAPPING POINTERS 
WHEN NO SECONDARY POOL 

BLOCK SIZE OF SECONDARY POOL SEGMENT 
WHEN SECONDARY POOL 

LOW BYTE = NO. OF MAP ENTRIES ACTIVE 
HIGH BYTE CONSISTS OF CONTROL BITS 
READ VIRTUAL BLOCK ALLOWED IF SET 
WRITE VIRTUAL BLOCK ALLOWED IF SET 
EXTEND ALLOWED IF SET 
SET IF LOCKED AGAINST SHARED ACCESS 
SET IF DEACCESS LOCK ENABLED 
WINDOW TURN PENDING BIT 
SET IF MANUAL UNLOCK DESIRED 
Data check all writes to file 
COUNT OF I/O THROUGH THIS WINDOW 
Reserved 
FILE CONTROL BLOCK ADDRESS 
TCB address of accessor 
Original UCB address of device 
POINTER TO LIST OF USERS LOCKED BLOCKS 

A-23 



000014 W.WIN: .BLKW 1 

.IF 

.IF 
NB,SYSDEF 
NDF,P$$WND 

FllDF 

WINDOW BLOCK LIST LINK WORD 

IF SYSDEF SPECIFIED IN CALL 
IF SECONDARY POOL WINDOWS NOT ALLOWED 

NON-SECONDARY POOL WINDOW BLOCK 
IF SECONDARY POOL WINDOWS ARE NOT ENABLED, THE WINDOW BLOCK 

• CONTAINS THE CONTROL INFORMATION AND RETRIEVAL POINTERS. 

W.VBN: .BLKB 1 ; HIGH BYTE OF 1ST VBN MAPPED BY WINDOW 
; DEFINE LABEL WITH ODD ADDRESS TO CATCH 

; BAD REFS 
W.MAP: 

W.WISZ: .BLKB 1 
1 

SIZE IN RTRV PTRS OF WINDOW (7 BITS) 
; LOW ORDER WORD OF 1ST VBN MAPPED .BLKW 

W.RTRV: ; OFFSET TO 1ST RETRIEVAL POINTER 
; IN WINDOW 

W.SLEN=-4 Dummy definition to prevent incorrect reference 
(-4 when rounded "up" is a VERY large block) 

.IFF IF WINDOWS IN SECONDARY POOL 

SECONDARY POOL WINDOW CONTROL AND MAPPING BLOCK 

000016 

000020 

IF SECONDARY POOL WINDOW BLOCKS ARE ENABLED, LUTN2 POINTS 
TO A CONTROL BLOCK IN SYSTEM POOL WHICH CONTAINS THE 
FOLLOWING CONTROL FIELDS AND THE MAPPING INFORMATION 
FOR THE SECONDARY POOL WINDOW. 

W . MAP: . B L KW 1 

W. SLEN: 

ADDR TO THE MAPPING 
PTRS IN SECONDARY POOL 
Length of primary pool stub 

SECONDARY POOL WINDOW 
IF SECONDARY POOL WINDOW BLOCKS ARE ENABLED, THE RETRIEVAL 
POINTERS ARE MAINTAINED IN SECONDARY POOL IN THE FOLLOWING 
FORMAT. 

000000 .:=0 

000000 

000000 
000001 
000002 

ASSUME W.CTL,O 
.IIF NE <W.CTL>-<O> . ERROR ;EXPRESSIONS NOT EQUAL 

.BLKB 
W. USE: . BLKB 
W.VBN:.BLKB 

1 
1 
1 

NUMBER OF ACTIVE MAPPING POINTERS 
STATUS OF BLOCK 
HIGH BYTE OF 1ST VBN MAPPED BY WINDOW 

A-24 



000003 
000004 
000006 

W.WISZ:.BLKB 
.BLKW 

W.RTRV: 

1 
1 

FllDF 

SIZE IN RTRV PTRS OF WINDOW (7 BITS) 
LOW ORDER WORD OF 1ST VBN MAPPED 
OFFSET TO 1ST RETRIEVAL POINTER IN WIND 

.~NDC END SECONDARY POOL WINDOW CONDITIONAL 

.ENDC END SYSDEF CONDITIONAL 

LOCKED BLOCK LIST NODE 

000006 
000000 

000000 
000002 
000004 
000005 
000006 
000010 

.ASECT 
.=0 

L.LNK: .BLKW 
L. Wll: . BLKW 
L.VB1:.BLKB 
L.CNT: .BLKB 

.BLKW 
L.LKSZ: 

END OF DEFINITIONS 

1 
1 
1 
1 
1 

LINK TO NEXT NODE IN LIST 
POINTER TO WINDOW FOR FIRST ENTRY 
HIGH ORDER VBN BYTE 
COUNT FOR ENTRY 
LOW ORDER VBN 

A-25 



GTPKT$ 

A.10 GTPKT$ 

GET I/O PACKET MACRO -- AUTOMATES UNIT DETERMINATION -- GTPKT$ 

65535$: 

. MACRO 
CALL 
.IF B 
BCC 
RETURN 

· IFF 
BCS 
.ENDC 
.IF B 
· IF B 
MOV 
.ENDC 
.IFF 
· IF GT 
MOV 
.IFF 
MOV 
.ENDC 
.ENDC 
.ENDM 

GTPKT$ 
$GTPKT 
<ADDR> 
65535$ 

DEV,NCTRLR,ADDR,UCBSV,SUC 

ADDR 

<UCBSV> 
<SUC> 
R5,S.OWN(R4) 

NCTRLR-l 
R5,UCBSV(R3) 

R5,UCBSV 

A-26 



A.11 HDRDF$ 

i+ 
i TASK HEADER OFFSET DEFINITIONS 
; -

000000 
000002 
000004 
000005 
000006 
000010 
000012 
000014 
000016 
000020 
000022 
000024 
000026 
000030 
000032 
000034 
000036 
000040 
000042 
000044 
000046 
000050 
000052 
000054 
000056 
000060 
000061 
000062 
000064 
000065 
000066 
000072 
000074 
000076 

i+ 

.ASECT 
.=0 
H.CSP: .BLKW 
H . HDLN: . BLKW 
H. SMAP: . BLKB 
H.DMAP:.BLKB 

.BLKW 
H.CUIC:.BLKW 
H.DUIC:.BLKW 
H . IPS: . B L KW 
H . I PC: . B L KW 
H • I S P : • B L KW 
H. ODVA: . BLKW 
H.ODVL: .BLKW 
H. TKVA: . BLKW 
H.TKVL:.BLKW 
H . P FVA: . B L KW 
H. FPVA: . BLKW 
H.RCVA: .BLKW 
H . EFSV: . BLKW 
H.FPSA: .BLKW 
H.WND: .BLKW 
H.DSW: .BLKW 
H.FCS: .BLKW 
H. FORT: . BLKW 
H.OVLY:.BLKW 
H . VEXT: . BLKW 
H.SPRI:.BLKB 
H.NML: .BLKB 
H. RRVA: . BLKW 
H.X25: .BLKB 

.BLKB 

.BLKW 
H.GARD:.BLKW 
H . NLUN: . BLKW 
H.LUN: .BLKW 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
1 
1 
2 

HDRDF$ 

iCURRENT STACK POINTER 
iHEADER LENGTH IN BYTES 
iSUPERVISOR D SPACE OVERMAP MASK 
iUSER D SPACE OVERMAP MASK 
iRESERVED 
iCURRENT TASK UTC 
iDEFAULT TASK UIC 
iINITIAL PROCESSOR STATUS WORD (PS) 
iINITIAL PROGRAM COUNTER (PC) 
iINITIAL STACK POINTER (SP) 
iODT SST VECTOR ADDRESS 
iODT SST VECTOR LENGTH 
iTASK SST VECTOR ADDRESS 
iTASK SST VECTOR LENGTH 
iPOWER FAIL AST CONTROL BLOCK ADDRESS 
iFLOATING POINT AST CONTROL BLOCK ADDR 
iRECEIVE AST CONTROL BLOCK ADDRESS 
iEVENT FLAG ADDRESS SAVE ADDRESS 
iPOINTR TO FLOATING POINT/EAE SAVE AREA 
iPOINTER TO NUMBER OF WINDOW BLOCKS 
iTASK DIRECTIVE STATUS WORD 
iFCS IMPURE POINTER 
iFORTRAN IMPURE POINTER 
iOVERLAY IMPURE POINTER 
iWORK AREA EXTENSION VECTOR POINTER 
iPRIORITY DIFFERENCE FOR SWAPPING 
iNETWORK MAILBOX LUN 
iRECEIVE BY REF AST CONTROL BLOCK ADDR 
iFOR USE BY x25 SOFTWARE 
i5 RESERVED BYTES 

iPOINTER TO HEADER GUARD WORD 
iNUMBER OF LUN'S 
iSTART OF LOGICAL UNIT TABLE 

i LENGTH OF FLOATING POINT SAVE AREA 
i -

H.FPSL=25.*2 

i+ 
i WINDOW BLOCK OFFSETS 

A-27 



.-, 

.=0 
000000 W . BPCB : . BLKW 1 
000002 W.BLVR:.BLKW 1 
000004 W. BHVR: . BLKW 1 
000006 W.BATT: .BLKW 1 
000010 W.BSIZ:.BLKW 1 
000012 W. BOFF : . BLKW 1 
000014 W.BFPD:.BLKB 1 
000015 W .BNPD: .BLKB 1 
000016 W.BLPD:.BLKW 1 
000020 W.BLGH: 

i 
BIT DEFINITION FOR W.BLPD 

WB.NBP=20 

WB.BPS=40 

.PSECT 

HDRDF$ 

iPARTITION CONTROL BLOCK ADDRESS 
iLOW VIRTUAL ADDRESS LIMIT 
iHIGH VIRTUAL ADDRESS LIMIT 
iADDRESS OF ATTACHMENT DESCRIPTOR 
iSIZE OF WINDOW IN 32W BLOCKS 
iPHYSICAL MEMORY OFFSET IN 32W BLOCKS 
iFIRST PDR ADDRESS 
iNUMBER OF PDRs TO MAP 
iCONTENTS OF LAST PDR 
iLENGTH OF WINDOW DESCRIPTOR 

iCACHE BYPASS IS NOT DESIRED FOR THIS 
iWINDOW 
iALWAYS BYPASS THE CACHE FOR THIS 
iWINDOW 

A-28 



HWDDF$ 

A.12 HWDDF$ 

i+ 
i MACROS FOR DEFINING MAPPING REGISTER DEFINITIONS 
i-

i+ 

. MACRO CRESET NAM,ADDR 
$$$=0 
.REPT 8. 
CRENAM NAM,ADDR+<$$$*2),\$$$ 
$$$=$$$+1 
.ENDR 
.ENDM 

. MACRO CRENAM NAM,ADDR,N 
'NAM' 'N'==ADDR 
.ENDM 

i HARD~ARE REGISTER ADDRESSES AND STATUS CODES 
i -

177746 MPCSR=177746 iADDRESS OF PDP-11/70 MEMORY PARITY REGISTER 
172100 MPAR=172100 iADDRESS OF FIRST MEMORY PARITY REGISTER 
177772 PIRQ=177772 iPROGRAMMED INTERRUPT REQUEST REGISTER 
000000 PRO=O iPROCESSOR PRIORITY 0 
000040 PR1=40 iPROCESSOR PRIORITY 1 
000200 PR4=200 iPROCESSOR PRIORITY 4 
000240 PR5=240 iPROCESSOR PRIORITY 5 
000300 PR6=300 iPROCESSOR PRIORITY 6 
000340 PR7=340 iPROCESSOR PRIORITY 7 
177776 PS=177776 iPROCESSOR STATUS WORD 
177570 SWR=177570 iCONSOLE SWITCH AND DISPLAY REGISTER 
177564 TPS=177564 iCONSOLE TERMINAL PRINTER STATUS REGISTER 

i+ 
i EXTENDED ARITHMETIC ELEMENT REGISTERS 
i -

i+ 

.IF DF E$$EAE 

AC=177302 
MQ=177304 
SC=177310 

.ENDC 

iACCUMULATOR 
iMULTIPLIER-QUOTIENT 
;SHIFT COUNT 

i MEMORY MANAGEMENT HARDWARE REGISTERS AND STATUS CODES 
i -

A-29 



HWOOF$ 

172340 KINARO 
172342 KINAR1 
172344 KINAR2 
172346 KINAR3 
172350 KINAR4 
172352 KINAR5 
172354 KINAR6 
172356 KINAR7 
172300 KINDRO 
172302 KINDR1 
172304 KINDR2 
172306 KINDR3 
172310 KINOR4 
172312 KINDR5 
172314 KINDR6 
172316 KINDR7 
172360 KDSARO 
172362 KOSAR1 
172364 KDSAR2 
172366 KDSAR3 
172370 KDSAR4 
172372 KDSAR5 
172374 KDSAR6 
172376 KDSAR7 
172320 KDSDRO 
172322 KDSDR1 
172324 KDSDR2 
172326 KDSDR3 
172330 KDSDR4 
172332 KDSDR5 
172334 KDSDR6 
172336 KDSDR7 
172240 SISARO 
172242 SISAR1 
172244 SISAR2 
172246 SISAR3 
172250 SISAR4 
172252 SISAR5 
172254 SISAR6 
172256 SISAR7 
172200 SISDRO 
172202 SISDR1 
172204 SISDR2 
172206 SISDR3 
172210 SISDR4 
172212 SISDR5 
172214 SISDR6 
172216 SISDR7 
172260 SDSARO 
172262 SDSAR1 
172264 SDSAR2 

A-30 



HWDDF$ 

172266 SDSAR3 
172270 SDSAR4 
172272 SDSAR5 
172274 SDSAR6 
172276 SDSAR7 
172220 SDSDRO 
172222 SDSDR1 
172224 SDSDR2 
172226 SDSDR3 
172230 SDSDR4 
172232 SDSDR5 
172234 SDSDR6 
172236 SDSDR7 
177640 UINARO 
177642 UINAR1 
177644 UINAR2 
177646 UINAR3 
177650 UINAR4 
177652 UINAR5 
177654 UINAR6 
177656 UINAR7 
177600 UINDRO 
177602 UINDR1 
177604 UINDR2 
177606 UINDR3 
177610 UINDR4 
177612 UINDR5 
177614 UINDR6 
177616 UINDR7 
177660 UDSARO 
177662 UDSAR1 
177664 UDSAR2 
177666 UDSAR3 
177670 UDSAR4 
177672 UDSAR5 
177674 UDSAR6 
177676 UDSAR7 
177620 UDSDRO 
177622 UDSDR1 
177624 UDSDR2 
177626 UDSDR3 
177630 UDSDR4 
177632 UDSDR5 
177634 UDSDR6 
177636 UDSDR7 
172340 KISARO 
172342 KISAR1 
172344 KISAR2 
172346 KISAR3 
172350 KISAR4 
172352 KISAR5 

A-31 



172354 
172356 
172300 
172302 
172304 
172306 
172310 
172312 
172314 
172316 
177640 
177642 
177644 
177646 
177650 
177652 
177654 
177656 
177600 
177602 
177604 
177606 
177610 
177612 
177614 
177616 

170200 
140000 
030000 
040000 
010000 
177572 
172516 
177766 
177744 
177746 

;+ 

KISAR6 
KISAR7 
KISORO 
KISOR1 
KISOR2 
KISOR3 
KISOR4 
KISOR5 
KISDR6 
KISOR7 
UISARO 
UISAR1 
UISAR2 
UISAR3 
UISAR4 
UISAR5 
UISAR6 
UISAR7 
UISORO 
UISOR1 
UISOR2 
UISOR3 
UISOR4 
UISDR5 
UISDR6 
UISDR7 

UBMPR=170200 
CMODE=140000 
PMODE=30000 
CSMODE=40000 
PSMODE=10000 
SRO=177572 
SR3=172516 
CPUERR=177766 
MEMERR=177744 
MEMCTL=177746 

HWDDF$ 

iUNIBUS MAPPING REGISTER 0 
iCURRENT MODE FIELD OF PS WORD 
iPREVIOUS MODE FIELD OF PS WORD 
iCURRENT MODE = SUPERVISOR PS WORD BITS 
;PREVIOUS MODE = SUPERVISOR PS WORD BITS 
;SEGMENT STATUS REGISTER 0 
iSEGMENT STATUS REGISTER 3 
iCPU ERROR REGISTER 
iMEMORY SYSTEM ERROR REGISTER 
;MEMORY CONTROL REGISTER 

i DEFINE THE LOCATIONS USED IN THE NON-VOLATILE RAM (NVR) 
i FOR XT SYSTEMS 
; -

173054 
173064 
173074 
173104 
173114 
173116 
173120 

N.KEY=173054 
N.UPT=173064 
N.DZA=173074 
N.DWA=173104 
N.DAY=173114 
N.MON=173116 
N.YEA=173120 

iNUMBER OF KEYS PRESSED 
iUPTIME IN MINUTES 
iNUMBER OF I/OS DONE ON THE DZ 
iNUMBER OF I/OS DONE ON THE DW 
iDATE THAT THE NVR WAS LAST INITIALIZED 
I ••• 

, ... 

A-32 



HWDDF$ 

i+ 
i FEATURE SYMBOL DEFINITIONS 
i-

000001 
000002 
000004 
000010 
000020 
000040 
000100 
000200 
000400 
001000 
002000 
004000 
010000 
020000 
040000 
100000 

i+ 

FE.EXT=l 
FE.MUP=2 
FE. EXV=4 
FE.DRV=10 
FE.PLA=20 
FE.CAL=40 
FE.PKT=100 
FE.EXP=200 
FE.LSI=400 
FE.OFF=1000 
FE.FDT=2000 
FE.X25=4000 
FE.DYM=10000 
FE.CEX=20000 
FE.MXT=40000 
FE.NLG=100000 

i22-BIT EXTENDED MEMORY SUPPORT 
iMULTI-USER PROTECTION SUPPORT 
iEXECUTIVE IS SUPPORTED TO 20K 
iLOADABLE DRIVER SUPPORT 
iPLAS SUPPORT 
iDYNAMIC CHECKPOINT SPACE ALLOCATION 
iPREALLOCATION OF I/O PACKETS 
iEXTEND TASK DIRECTIVE SUPPORTED 
iPROCESSOR IS AN LSI-ll 
iPARENT/OFFSPRING TASKING SUPPORTED 
iFULL DUPLEX TERMINAL DRIVER SUPPORTED 
iX.25 CEX IS LOADED 
iDYNAMIC MEMORY ALLOCATION SUPPORTED 
iCOM EXEC IS LOADED 
iMCR EXIT AFTER EACH COMMAND MODE 
iLOGINS DISABLED - MULTI-USER SUPPORT 

i FEATURE MASK DEFINITIONS (SECOND WORD) 
i-

000001 
000002 
000004 
000010 
000020 
000040 
000100 
000200 
000400 
001000 
002000 
004000 
010000 
020000 
040000 
100000 

i+ 

F2.DAS=1 
F2.LIB=2 
F2.MP=4 
F2.EVT=10 
F2.ACN=20 
F2.SDW=40 
F2.POL=100 
F2.WND=200 
F2.DPR=400 
F2.IRR=1000 
F2.GGF=2000 
F2.RAS=4000 
F2.AHR=10000 
F2.RBN=20000 
F2.SWP=40000 
F2.STP=100000 

iKERNEL DATA SPACE SUPPORTED 
iSUPERVISOR MODE LIBRARIES SUPPORTED 
iSYSTEM SUPPORTS MULTIPROCESSING 
iSYSTEM SUPPORTS EVENT TRACE FEATURE 
iSYSTEM SUPPORTS CPU ACCOUNTING 
iSYSTEM SUPPORTS SHADOW RECORDING 
iSYSTEM SUPPORTS SECONDARY POOLS 
iSYSTEM SUPPORTS SECONDARY POOL FILE WINDOWS 
iSYSTEM HAS A SEPARATE DIRECTIVE PARTITION 
iINSTALL, RUN, AND REMOVE SUPPORT 
iGROUP GLOBAL EVENT FLAG SUPPORT 
iRECEIVE/SEND DATA PACKET SUPPORT 
iALT. HEADER REFRESH AREA SUPPORT 
iROUND ROBIN SCHEDULING SUPPORT 
iEXECUTIVE LEVEL DISK SWAPPING SUPPORT 
iEVENT FLAG MASK IS IN THE TCB(l=YES) 

i THIRD FEATURE MASK SYMBOL DEFINITIONS 
i -

000001 
000002 
000004 
000010 
000020 

F3.CRA=1 
F3.XCR=2 
F3.EIS=4 
F3.STM=10 
F3.UDS=20 

iSYSTEM SPONTANEOUSLY CRASHED (l=YES) 
iSYSTEM CRASHED FROM XDT (l=YES) 
iSYSTEM REQUIRES EXTENDED INSTRUCTION SET 
iSYSTEM HAS SET SYSTEM TIME DIRECTIVE 
iSYSTEM SUPPORTS USER DATA SPACE 

A-33 



000040 
000100 
000200 
000400 
001000 
002000 
004000 
010000 
020000 
040000 

i+ 

F3.PRO=40 
F3.XHR=100 
F3.AST=200 
F3.11S=400 
F3.CLI=1000 
F3.TCM=2000 
F3.PMN=4000 
F3.WAT=10000 
F3.RLK=20000 
F3.SHF=40000 

HWDDF$ 

iSYSTEM SUPPORTS SEC. POOL PROTO TCBS 
iSYSTEM SUPPORTS EXTERNAL TASK HEADERS 
iSYSTEM HAS AST SUPPORT 
iRSX-llS SYSTEM 
iMULTIPLE CLI SUPPORT 
iSYSTEM HAS SEPARATE TERMINAL DRIVER POOL 
iSYSTEM SUPPORTS POOL MONITORING 
iSYSTEM HAS WATCHDOG TIMER SUPPORT 
iSYSTEM SUPPORTS RMS RECORD LOCKING 
iSYSTEM SUPPORTS SHUFFLER TASK 

i FOURTH FEATURE MASK BITS 
i-

000001 
000002 
000002 
000004 
000010 
000020 
000040 
000100 
000200 
000400 
001000 
002000 
004000 
010000 
020000 
040000 
100000 
000001 

i+ 

F4.CXD=1 
F4.XT=2 
F4.POS=F4.XT 
F4.ERL=4 
F4.PTY=10 
F4.DVN=20 
F4.LCD=40 
F4.NIM=100 
F4.CHE=200 
F4.LOG=400 
F4.NAM=1000 
F4.FMP=2000 
F4.DCL=4000 
F4.DDS=10000 
F4.ACD=20000 
F4.NCT=40000 
F4.LSD=100000 
FS.P3X=1 

iCOMM EXEC IS DEALLOCATED (NON-I/O ONLY) 
iSYSTEM IS AN XT SYSTEM (l=YES) 
iSYNONYM -- SYSTEM IS A P/OS SYSTEM (l=YES) 
iSYSTEM SUPPORTS ERROR LOGGING (l=YES) 
iSYSTEM SUPPORTS PARITY MEMORY (l=YES) 
iSYSTEM SUPPORTS DECIMAL VERSIONS (l=YES) 
iSYSTEM SUPPORTS LOADABLE CRASH (l=YES) 
iSYSTEM SUPPORTS DELETED TASK IMAGES (l=YES) 
iSYSTEM SUPPORTS DISK DATA CACHING (l=YES) 
iSYSTEM SUPPORTS LOGICAL NAMES (l=YES) 
iSYSTEM SUPPORTS NAMED DIRECTORIES (l=YES) 
iSYSTEM SUPPORTS FAST MAP DIRECTIVE 
iDCL IS DEFAULT CLI (l=YES) 
iNAMED DIRECTORY MODE IS THE DEFAULT (l=YES) 
iSYSTEM SUPPORTS ACDs (l=YES) 
iSYSTEM HAS NCT SUPPORT (l=YES) 
iSYSTEM HAS LUT SCAN DISABLED 
iSYSTEM SUPPORTS PROFESSIONAL 3XX SERIES 

HARDWARE FEATURE MASK BIT DEFINITIONS 

i -

000001 
000002 
000004 
000010 
000200 
100000 

i+ 

HF.CIS,HF.FPP DEFINED AS SIGN BITS FOR RUN TIME SPEED 

HF.UBM=l 
HF.EIS=2 
HF.QB=4 
HF.DSP=10 
HF.CIS=200 
HF.FPP=100000 

iPROCESSOR HAS A UNIBUS MAP (l=YES) 
iPROCESSOR HAS EXTENDED INSTRUCION SET 
iSYSTEM HAS A QBUS (l=YES) 
iHARDWARE SUPPORTS DATA SPACE 
iPROCESSOR SUPPORTS COMMERCIAL INSTRUCTION SET 
i(l=PROC. HAS NO FLOATING POINT UNIT) 

i SECOND HARDWARE FEATURE MASK BIT DEFINITIONS 
i THIS WORD IS RESERVED FOR XT HARDWARE FEATURES 
i -

A-34 



HWDDF$ 

000001 H2.NVR=1 iXT NON-VOLATILE RAM PRESENT (l=YES) 
000002 H2. INV=2 iNON-VOLATILE RAM IS INVALID (l=YES) 
000004 H2.CLK=4 iXT CLOCK IS PRESENT (l=YES) 
000010 H2.ITF=10 iINVALID TIME FORMAT IN NON-VOLATILE RAM 

i(l=YES) 
000020 H2.PRO=20 iRUNNING ON PRO/3XX HARDWARE 
000040 H2.WS=40 iSYSTEM IS A WORKSTATION (l=YES) 
000100 H2.FS=100 iSYSTEM IS A FILESERVER (l=YES) 
100000 H2.BRG=100000 iXT BRIDGE MODULE PRESENT (l=YES) 

i+ 
SYSGEN FEATURE SELECTIONS MASK. THIS IS INTENDED TO RECORD IN A 
BIT MASK THE CHOICES THE USER HAS MADE AT SYSGEN TIME. FEATURES WILL 
BE LISTED HERE WHEN THEY ARE BEING RECORDED FOR OUR INFORMATIONAL 
PURPOSES ONLY. THEY CANNOT BE TESTED LIKE BITS IN THE FEATURE MASK 
SINCE THIS ONLY EXISTS IN THE RSXllM.STB FILE. NO BITS IN MEMORY ARE 
USED. THEY ARE ONLY INTENDED TO BE PRINTED FROM THE STB FILE BY CDA. 

i-

000001 
000002 

i+ 

SF.STD=l 
SF.PGN=2 

iSTANDARD EXEC SELECTED 
iSYSTEM WAS PRE-GENERATED (EX. 

iRL02/RC25 SYSTEM) 

i MULTIPROCESSOR STATUS TABLE DEFINITIONS (TEMPORARY) 
i -

100000 
040000 
020000 
010000 
000004 
007777 

MP.CRH=100000 
MP.PWF=40000 
MP.RSM=20000 
MP.NOP=10000 
MP.STP=4 
MP.INT=7777 

iCRASH PROCESSOR IMMEDIATELY 
iPOWERFAIL ON ONE CPU 
iRESET INTERRUPT MASKS 
iNOP FUNCTION FOR TRANSMISSION CHECK 
jSTOP PROCESSOR IN ORDERLY FASHION 
iSIC MASK FOR INTERRUPT LVL FUNCTIONS 

. MACRO HWDDF$ X,Y,Z 

.ENDM 

A-35 



INTSV$ 

A.13 INTSV$ 

INTERRUPT SAVE GENERATION FOR NON-ERROR LOGGING DEVICES -- INTSV$ 

. MACRO 
GTUCB$ 
.ENDM 

INTSV$ DEV,PRI,NCTRLR,PSWSV,UCBSV 
UCBSV,NCTRLR,DEV 

GENERATE CODE TO LOAD UCB ADDRESS INTO R5 -- CALLED 
ONLY BY INTSV$, AND TTSET$ (IN TTDRV) . 

. MACRO GTUCB$ UCBSV,NCTRLR,DEV 

.IF NB <UCBSV> 

.IF GT NCTRLR-l 
MOV UCBSV(R4),R5 
.IFF 
MOV UCBSV,R5 
.ENDC 
.IFF 
MOV 
ADD 
MOV 
MOV 
.ENDC 
.ENDM 

'DEV'CTB,R5 
R4,R5 
(R5) ,R5 
K.OWN(R5),R5 

;;;GET ADDRESS OF KRB TABLE IN CTB 
;;;ADD CONTROLLER INDEX 
;;;GET KRB ADDRESS FROM CTB 
;;;RETRIEVE OWNER'S UCB ADDRESS 

A-36 



ITBDF$ 

A.14 ITBDF$ 

i+ 
i INTERRUPT TRANSFER BLOCK (ITB) OFFSET DEFINITIONS 
i-

000000 

000002 
000006 
000007 
000010 
000012 
000012 
000014 
000016 
000020 

000022 
000024 

000026 

000030 
000032 

.IF OF A$$TRP 

• MCALL PKTDF$ 
PKTDF$ 

.ENDC 

.ASECT 
.=0 
X.LNK: .BLKW 

X.JSR: JSR 
X.PSW: .BLKB 

.BLKB 
X. ISR: .BLKW 
X.FORK: 

.BLKW 

.BLKW 

.BLKW 

.BLKW 

1 

RS,@#O 
1 
1 
1 

1 
1 
1 
1 

.IF OF M$$MGE 

X.REL: .BLKW 

.ENDC 

X.DSI: .BLKW 
X.TCB: .BLKW 

1 

1 
1 

.IF NB SYSDF 

.IF OF A$$TRP 

.BLKW 1 
X.AST: .BLKB A.PRM 

.ENDC 

X.VEC: .BLKW 

X.VPC: .BLKW 
X.LEN: 

.ENDC 

1 

1 

DEFINE AST BLOCK OFFSETS 

LINK WORD FOR ITB LIST STARTNG IN 
TCB 
CALL $INTSC 
LOW BYTE OF PSW FOR ISR 
UNUSED 
ISR ENTRY POINT (APRS MAPPING) 
FORK BLOCK 
THREAD WORD 
FORK PC 
SAVED RS 
SAVED R4 

RELOCATION BASE FOR APRS 

ADDRESS OF DIS. INT. ROUTINE 
TCB ADDRESS OF OWNING TASK 

A.DQSR FOR AST BLOCK 
AST BLOCK 

VECTOR ADDRESS (IF AST SUPPORT, 
THIS IS FIRST AND ONLY AST PARAMETER) 
SAVED VECTOR PC 
LENGTH IN BYTES OF ITB 

A-37 



ITBDF$ 

.PSECT 

A-38 



KRBDF$ 

A.15 KRBDF$ 

i+ 
CONTROLLER REQUEST BLOCK (KRB) 

THE CONTROLLER REQUEST BLOCK DEFINES THE ENVIRONMENT OF A 
DEVICE CONTROLLER. ONE KRB EXISTS FOR EVERY DEVICE CONTROLLER 
IN A P/OS SYSTEM. THE KRB CONTAINS CERTAIN DEVICE STATUS 
INCLUDING THE CSR -- FIRST DEVICE REGISTER, VECTOR ADDRESS, 
INTERUPT CONTROLLER 'A' CSR AND THE SLOT NUMBER FOR THE 
CONTROLLER . . -, 

.ASECT 
.=177764 
177764 K.PRM: .BLKW 1 iDEVICE DEPENDANT PARAMETER WORD 
177766 K.ICSR: .BLKW 1 iINTERRUPT 'A' CONTROLLER CSR (ADD 

iFOR ICSR IF APPROPRIATE TO DEVICE) 
177770 K.SLT: .BLKB 1 iSLOT NUMBER 
177771 .BLKB 1 iRESERVED 
177772 K.PRI: .BLKB 1 iCONTROLLER PRIORITY 
177773 K.VCT: .BLKB 1 iINTERRUPT VECTOR ADDRESS 
177774 K.CON: .BLKB 1 iCONTROLLER INDEX WITHIN THE SYSTEM 
177775 K.IOC: .BLKB 1 iCONTROLLER I/O COUNT 
177776 K.STS: .BLKW 1 iCONTROLLER STATUS 
000000 K.CSR: .BLKW 1 iADDRESS OF CONTROL STATUS REGISTER 

i NOTE: K.CSR MUST BE THE ZERO OFFSET! 

000002 K.OFF: .BLKW 1 iOFFSET TO UCB/UMR/RHBAE TABLE 
000004 K.HPU: .BLKB 1 iHIGHEST PHYSICAL UNIT NUMBER 
000005 .BLKB 1 iUNUSED BYTE 
000006 K.OWN: .BLKW 1 iOWNER OF CONTROLLER 
000010 K.CRQ: .BLKW 2 iCONTROLLER REQUEST QUEUE 
000014 K.URM: .BLKW 1 iRESERVED FOR FUTURE USE 
000016 K.FRK: .BLKW 1 iPOSSIBLE KRB FORK BLOCK 

i+ 
OFFSETS FOR THE KRB EXTENSION REACHED BY ADDING .(K.OFF) TO 
THE STARTING ADDRESS OF THE KRB. 

i -

WHEN ONE ADDS (K.OFF) TO THE KRB ADDRESS, IT YIELDS AN 
ADDRESS WHICH POINTS TO HERE. 

6 

000020 KE.UCB: .BLKW 1 iOFFSET TO UCB TABLE (IF KS.UCB SET) 

.PSECT 

i+ 
i CONTROLLER REQUEST BLOCK (KRB) STATUS BIT DEFINITIONS 

A-39 



· -, 

000001 
000002 
000004 
000010 
000020 

000040 • 
000100 
000200 
000400 

001000 

002000 

;+ 

KS.OFL=l 
KS.MOF=2 
KS.UOP=4 
KS.MBC=10 
KS.SDX=20 

KS.POE=40 
KS.UCB=100 
KS.DIP=200 
KS.PDF=400 

KS.EXT=1000 

KS.SLO=2000 

KRBDF$ 

iCONTROLLER OFFLINE (l=YES) 
iCONTROLLER MARKED FOR OFFLINE (l=YES) 
iSUPPORTS OVERLAPPED OPERATION (l=YES) 
i(RESERVED) 
;SEEKS ALLOWED DURING DATA XFERS 

(l=YES) 
iPARALLEL OPERATION ENABLED (l=YES) 
;UCB TABLE PRESENT (l=YES) 
iDATA TRANSFER IN PROGRESS (l=YES) 
;PRIVILEGED DIAGNOSTIC FUNCTIONS ONLY 
; (l=YES) 
;EXTENDED 22-BIT UNIBUS CONTROLLER 

(l=YES) 
;CONTROLLER IS SLOW COMING ONLINE 

(l=YES) 

; DEFINE THE CONTIGUOUS SCB OFFSETS 
;-

000022 .ASECT 
.=177756 

177756 S . I CSR: . BLKW 
177760 S.SLT: .BLKB 
177761 .BLKB 
177762 S.PRI: .BLKB 
177763 S.VCT: .BLKB 
177764 S.CON: .BLKB 
177765 .BLKB 
177766 .BLKW 
177770 S.CSR: .BLKW 
177772 .BLKW 
177774 .BLKB 
177775 .BLKB 
177776 S.OWN: .BLKW 

;+ 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

;INTERRUPT 'A' CONTROLLER CSR 
iSLOT NUMBER 
;RESERVED 
iCONTROLLER PRIORITY 
;INTERRUPT VECTOR ADDRESS 
;CONTROLLER INDEX 

;CONTROL AND STATUS REGISTER 

;DISTRIBUTED CNTBL 

SUBCONTROLLER REQUEST BLOCK (KRB1) 

; -

THE SUBCONTROLLER REQUEST BLOCK DEFINES THE ENVIRONMENT OF 
A DEVICE SUBCONTROLLER. EXACTLY ONE KRBl EXISTS FOR EVERY 
DEVICE SUBCONTROLLER IN AN RSX-llM+ SYSTEM. 

.ASECT 

.=-4 
177774 Kl.CON: .BLKB 1 ;SUBCONTROLLER INDEX WITHIN THE SYSTEM 

A-40 



177775 
177776 
000000 

000002 
000004 
000010 

.BLKB 
K1.STS:.BLKW 
K1.MAS:.BLKW 
; 

1 
1 
1 

KRBDF$ 

iUNUSED BYTE 
iSUBCONTROLLER STATUS 
iUCB ADDRESS OF THE MASTER UNIT 

i. NOTE: K1.MAS MUST BE THE ZERO OFFSET 
; 
K 1 . OWN: . B L KW 
K1 . CRQ: . BLKW 
K1.UCB: 

.PSECT 

1 
2 

iOWNER OF SUBCONTROLLER 
iSUBCONTROLLER REQUEST QUEUE 
iSTART OF THE UCB TABLE (IF ANY) 

A-41 



LBLDF$ 

A.16 LBLDF$ 

j+ 

TASK IMAGE FILE LABEL BLOCK DEFINITIONS 

RESIDENT LIBRARY DESCRIPTOR OFFSETS 

j-

000010 

000000 
000004 
000006 
000010 
000012 
000014 
000016 

000020 
000022 
000024 
000026 
000034 

100000 
040000 
020000 
000010 
000004 
000002 

000000 
000000 

.ASECT 

000000 .=0 
R$LNAM: . BLKW 
R$LSA: .BLKW 
R$LHGV: . BLKW 
R$LMXV: . BLKW 
R$LLDZ:.BLKW 
R$LMXZ:.BLKW 
R$LOFF:.BLKW 

R$LWND: . BLKW 
R$LSEG:.BLKW 
R$LFLG:.BLKW 
R$LDAT:.BLKW 
R$LSIZ:.BLKW 

2 
1 
1 
1 
1 
1 
1 

1 
1 
1 
3 
o 

RADIX-50 LIBRARY NAME 
LIBRARY STARTING VIRTUAL ADDRESS 
LIBRARY ADDRESS WINDOW 0 BOUND 
LIBRARY HIGH VIRTUAL ADDRESS LIMIT 
LIBRARY LOAD SIZE (32W BLOCKS) 
LIBRARY MAX. SIZE (32W BLOCKS) 
LIBRARY OFFSET INTO PARTITION 
(32W BLOCKS) 
NUMBER OF LIBRARY ADDRESS WINDOWS 
SIZE OF LIBRARY SEGMENT DESCRIPTORS 
LIBRARY FLAGS WORD 
LIBRARY CREATION DATE (YR., MO., DAY) 
LENGTH OF LIBRARY DESCRIPTOR 

; LIBRARY LIST ENTRY FLAGS 
, 
LD$ACC=100000 
LD$RSV=040000 
LD$CLS=020000 
LD$SUP=000010 
LD$REL=000004 
LD$TYP=000002 

ACCESS INTENT (l=RW, O=RO) 
APR RESERVATION FLAG (l=APR RESERVED) 
LIBRARY IS PART OF A CLUSTER 
SUPERVISOR MODE LIBRARY (l=YES) 
PIC FLAG (l=POSITION INDEPENDANT) 
SHARED REGION IS LIB (=0) OR COMMON (=1) 

LABEL BLOCK OFFSETS 

.=0 
L$BTSK:.BLKW 

*** NOTE *** 

2 RADIX-50 TASK NAME 

LABEL BLOCK PARAMETERS BETWEEN THIS OFFSET AND THE START OF THE 
TASK LIBRARY DESCRIPTORS MUST BE IDENTICAL IN FORMAT AND CONTENT 
TO A RESIDENT LIBRARY DESCRIPTOR ENTRY. 

A-42 



000004 
000010 
000012 
000014 
000016 
000020 
000022 

000024 

000025 
000026 
000030 
000032 
000040 
000346 
000350 
000352 
000354 

000356 

000360 
000362 
000364 

000366 
000370 
000372 
000374 
000376 
000400 
000402 
000404 
001000 
000340 

000772 
000772 
000774 
000776 

L$BPAR: . BLKW 
L$BSA: . BLKW 
L$BHGV: . BLKW 
L$BMXV: . BLKW 
L$BLDZ:.BLKW 
L$BMXZ: . BLKW 
L$BOFF:.BLKW 

L$BWND:.BLKB 

L$BSYS:.BLKB 
L$BSEG: . BLKW 
L$BFLG: .-BLKW 
L$BDAT: . BLKW 
L$BLIB:.BLKW 
L$BPRI:.BLKW 
L$BXFR:.BLKW 
L$BEXT:.BLKW 
L$BSGL:.BLKW 

L$BHRB:.BLKW 

L$BBLK:.BLKW 
L$BLUN:.BLKW 
L$BROB:.BLKW 1 

LBLDF$ 

2 RADIX-SO PARTITION NAME 
1 TASK STARTING VIRTUAL ADDRESS 
1 WINDOW 0 VIRTUAL ADDRESS LIMIT 
1 TASK HIGH VIRTUAL ADDRESS LIMIT 
1 TASK LOAD SIZE (32W BLOCKS) 
1 TASK MAX. SIZE (32W BLOCKS) 
1 TASK OFFSET INTO PARTITION 

(32W BLOCKS) 
1 NUMBER OF TASK WINDOWS 

(LESS LIBRARIES) 
1 SYSTEM IDENTIFICATION 
1 SIZE OF TASK SEGMENT DESCRIPTORS (BYTES 
1 TASK FLAGS WORD 
3 ; TASK CREATION DATE (YR., MO., DAY) 
<7.*<R$LSIZ/2»+1 ; RESIDENT LIBRARY ENTRIES 
1 TASK PRIORITY 
1 TASK TRANSFER ADDRESS 
1 TASK EXTEND SIZE (32W BLOCKS) 
1 RELATIVE BLOCK NUMBER OF SEGMENT 

LENGTH LIST 
1 

1 
1 

RELATIVE BLOCK NUMBER OF TASK 
IMAGE HEADER 
NUMBER OF BLOCKS IN LABEL 
NUMBER OF LOGICAL UNITS 
RELATIVE BLOCK NUMBER OF R/O 
TASK IMAGE 

L$BROL:.BLKW 1 R/O LOAD SIZE (32W BLOCKS) 
L$BRDL:.BLKW 1 R/O DATA LOAD SIZE (32W BLOCKS) 
L$BHDB:.BLKW 1 RELATIVE BLOCK NUMBER OF DATA HEADER 
L$BDHV:.BLKW 1 DATA WINDOW 1 HIGH VIRTUAL ADDRESS 
L$BDMV:.BLKW 1 DATA HIGH VIRTUAL ADDRESS 
L$BDLZ:.BLKW 1 DATA LOAD SIZE 
L$BDMZ:.BLKW 1 ; DATA MAX SIZE 

.BLKW <512.-.>/2 
L$BASG:.BLKW 0 START OF DEVICE ASSIGNMENT TABLES 
$LBXL=<8.*<R$LSIZ» LENGTH OF EXTRA WINDOWS ADDED FOR 

M+ TASK'S 

OFFSETS AT END OF LABEL BLOCK 

.=772 
L$BFL2:.BLKW 1 SECOND TASK FLAGS WORD 
L$BLRL:.BLKW 1 LABEL BLOCK REVISION NUMBER 
L$AME: .BLKW 1 MUST ALWAYS BE NULL 
.IIF NE .-1000 . ERROR jDEFINITIONS OVERLAP NEXT LABEL BLOCK 

DEFINE LABEL BLOCK REVISION NUMBER. THIS SHOULD BE INCREMENTED 
WHENEVER A NEW FIELD IS ADDED TO THE LABEL BLOCK. IT IS 

A-43 



LBLDF$ 

STRUCTURED WITH MAJOR/MINOR REVISION NUMBERS IN THE HIGH/LOW 
BYTES, RESPECTIVELY. L$BLRL IS VALID ONLY IF TS$NEW IS SET. 
LABEL BLOCKS WITHOUT TS$NEW SET ARE CONSIDERED REVISION O. THIS 
TURNS OUT HANDY, SINCE WE BELIEVE THEY ALL HAVE ZEROS IN THE 
L$BLRL OFFSET, ANYWAY. 

100000 
040000 
020000 
010000 
004000 
002000 
000400 
000200 
000100 
000040 
000020 
000010 
000004 
000002 
000001 

000002 
000001 

000000 

000400 LB$REV=000400 MAJOR REVISION LEVEL = 1 
MINOR REVISION LEVEL = 0 

LABEL BLOCK TASK FLAG WORD DEFINITIONS 

TS$PIC=100000 
TS$NHD=040000 
TS$ACP=020000 
TS$PMD=010000 
TS$SLV=004000 
TS$NSD=002000 
TS$PRV=000400 
TS$CMP=000200 
TS$CHK=000100 
TS$RES=000040 
TS$IOP=000020 
TS$SUP=000010 
TS$XHR=000004 
TS$NXH=000002 
TS$NEW=OOOOOl 

TASK IS PIC (l=YES) 
NO HEADER IN TASK IMAGE (l=YES) 
TASK IS ANCILLARY CONTROL PROCESSOR (l=YES) 
GENERATE POST-MORTEM DUMP (l=YES) 
TASK IS SLAVEABLE (l=YES) 
NO SEND TO TASK IS PERMITTED (l=YES) 
TASK IS PRIVELEGED (l=YES) 
TASK BUILT IN COMPATIBILITY MODE (l=YES) 
TASK IS CHECKPOINTABLE (O=YES) 
TASK HAS RESIDENT OVERLAYS (l=YES) 
PRIVILEGED TASK NOT MAPPED TO I/O PAGE 
TASK LINKED TO A SUPER MODE LIBRARY (l=YES) 
TASK HAS AN EXTERNAL HEADER (l=YES) 
TASK CAN NOT HAVE AN EXTERNAL HEADER (l=YES) 
LABEL BLOCK USES NEW FORMAT 
(MEANS L$BLRL DESCRIBES FORMAT) 

SECOND TASK FLAGS WORD 

T2$FMP=000002 
T2$CLI=OOOOOl 

.PSECT 

TASK USES FAST MAP DIRECTIVE (l=YES) 
TASK IS A CLI (l=YES) 

. MACRO LBLDF$ X,Y 

.ENDM 

A-44 



LNMDF$ 

A.17 LNMDF$ 

i+ 
LOGICAL NAME BLOCK (LNB) 

. -, 
001000 .ASECT 
000000 .=0 
000000 L.NLNK: .BLKW 1 
000002 L.NLNS: .BLKW 1 
000004 L.NENS: .BLKW 1 
000006 L.NMOD: .BLKW 1 
000010 L.NCNT: .BLKW 1 
000012 L.NCBT: .BLKW 2 
000016 L.NNAM: 
000016 L.NHSZ=. 
i+ 

TABLE NUMBER DEFINITIONS 
. -, 
000000 LT.SYS=O 
000001 LT.GRP=l 
000002 LT.USR=2 
000003 LT.TSK=3 
000004 LT.SES=4 
i+ 

STATUS BITS 

iLINK WORD 
iSIZE OF LOGICAL NAME STRING 
iLENGTH OF EQUIVALENCE NAME STRING 
iMODIFIER VALUE 
iUSE COUNT 
iCHANNEL BLOCK TABLE BIAS AND OFFSET 
iVARIABLE LENGTH LOGICAL NAME STRING 
iSIZE OF LOGICAL NAME BLOCK HEADER 

iSYSTEM WIDE LOGICAL NAME 
iGROUP LOGICAL NAME (UIC GROUP NUMBER) 
iUSER SPECIFIC LOGICAL NAME 
iTASK SPECIFIC LOGICAL NAME 
iSESSION LOGICAL NAME 

i-
000001 
000000 

LS.TRM=l iTERMINAL LOGICAL 
.PSECT 

. MACRO LNMDF$ X,Y,Z 

.ENDM 
000001 . END 

A-45 



A.18 PCBDF$ 

i+ 
i MAIN PARTITION PCB 
i -

000000 
000002 
000004 
000010 
000012 
000014 

000016 
000016 
000020 
000024 
000030 
000032 

000034 

000042 
000043 

.ASECT 
.=0 
P.LNK: .BLKW 

.BLKW 
P.NAM: .BLKW 
P.SUB: .BLKW 
P.MAIN: .BLKW 
P.REL: .BLKW 

P.BLKS: 
P . S I Z E : . B L KW 
P.WAIT: .BLKW 

.BLKW 
P.STAT: .BLKW 
P • S T 2 : • B L KW 

.BLKW 

P.HDLN: .BLKB 
P.IOC: .BLKB 

$$$=. 

P . RRM : . B L KW 

1 
1 
2 
1 
1 
1 

1 
2 
2 
1 
1 

3 

1 
1 

1 

.IF NDF M$$PRO 

.=$$$ 

.ENDC 

.IF NB SYSDF 

000044 P.LGTH= . 

. ENDC 

i+ 
i TASK REGION PCB 
i -

000000 
000002 
000003 

.=0 
P.LNK: .BLKW 
P . PRI : . BLKB 
P • RM CT : . B L KB 

1 
1 
1 

PCBDF$ 

jLINK TO NEXT MAIN PARTITION PCB 
i (UNUSED) 
iPARTITION NAME IN RADIX-50 
iPOINTER TO FIRST SUBPARTITION 
iPOINTER TO SELF 
jSTARTING PHYSICAL ADDRESS IN 32W 
jBLOCKS 

iSIZE OF PARTITION IN 32W BLOCKS 
jPARTITION WAIT QUEUE LISTHEAD 
j (UNUSED) 
jPARTITION STATUS FLAGS 
jSTATUS EXTENSION FOR COMMON AND MAIN 
iPCBs 
j (UNUSED) 

jSIZE OF EXTERNAL HEADER IN 32W BLOCKS 
jPARTITION I/O COUNT 

jREQUIRED RUN MASK 

jPARTITION CONTROL BLOCK LENGTH 

iUTILITY LINK WORD 
iPRIORITY OF PARTITION 
iRESIDENT MAPPED TASKS COUNT 

A-46 



000004 
000010 
000012 
000014 
000016 
000016 
000020 
000022 
000024 
000026 
000030 
000032 
000034 
000036 

000042 
000043 

000044 

i+ 

P.NAM: .BLKW 
P.SUB: .BLKW 
P . MAl N : . BLKW 
P.REL: .BLKW 
P.BLKS: 
P • S I Z E : . B L KW 

.BLKW 
.SWSZ: .BLKW 

P . 0 PCB: . BL KW 
P. TCB: . P,LKW 
P.STAT: .BLKW 
P.HDR: .BLKW 

.BLKW 
P.ATT: .BLKW 

P. HDLN: . BLKB 
P.IOC: .BLKB 

000044 

P . RRM: . B L KW 

.IF NDF M$$PRO 

.=$$$ 

.ENDC 

i COMMON REGION PCB 
i -

000000 
000002 
000003 
000004 
000010 
000012 
000014 
000016 
000016 
000020 
000022 
000024 
000026 
000030 
000032 

000034 

.=0 

P.LNK: .BLKW 
P.PRI: .BLKB 
P.RMCT: .BLKB 
P.NAM: .BLKW 
P.SUB: .BLKW 
P.MAIN: .BLKW 
P • R E L : • B L KW 
P.BLKS: 
P • S I Z E : • B L KW 
P.CBDL: .BLKW 
P. SWSZ: . BLKW 
P.DPCB: .BLKW 
P.OWN: .BLKW 
P.STAT: .BLKW 
P.ST2: .BLKW 

P.PRO: .BLKW 

2 
1 
1 
1 

1 
1 
1 
1 
1 
1 
1 
1 
2 

1 
1 

1 

1 
1 
1 
2 
1 
1 
1 

1 
1 
1 
1 
1 
1 
1 

1 

PCBDF$ 

iPARTITION NAME IN RADIX-50 
iPOINTER TO NEXT SUBPARTITION 
iPOINTER TO MAIN PARTITION 
iSTARTING PHYSICAL ADDR IN 32W BLOCKS 

iSIZE OF PARTITION IN 32W BLOCKS 
i (UNUSED) 
iPARTITION SWAP SIZE 
iCHECKPOINT ALLOCATION PCB 
iTCB ADDRESS OF OWNER TASK 
iPARTITION STATUS FLAGS 
iPOINTER TO HEADER CONTROL BLOCK 
i (UNUSED) 
iATTACHMENT DESCRIPTOR LISTHEAD 

iSIZE OF EXTERNAL HEADER IN 32W BLOCKS 
iPARTITION I/O COUNT 

$$$=. 

iREQUIRED RUN MASK 

;UTILITY LINK WORD 
;PRIORITY OF PARTITION 
iRESIDENT MAPPED TASKS COUNT 
iPARTITION NAME IN RADIX-50 
;POINTER TO NEXT SUBPARTITION 
;POINTER TO MAIN PARTITION 
iSTARTING PHYSICAL ADDR IN 32W BLOCKS 

;SIZE OF PARTITION IN 32W BLOCKS 
iCOMMON BLOCK DIRECTORY LINK 
iPARTITION SWAP SIZE 
iPOINTER TO DISK PCB 
iOWNING UIC OF REGION 
iPARTITION STATUS FLAGS 
iSTATUS EXTNSN FOR COMMON AND MAIN 
iPCBS 
iPROTECTION WORD [DEWR,DEWR,DEWR,DEWR] 

A-47 



000036 

000042 
000043 

000044 

i+ 

P .ATT: . BLKW 

P • HDLN : . BLKB 
P. IOC: . BLKB 

$$$=. 

P • RRM: . BLKW 

2 

1 
1 

1 

.IF NDF M$$PRO 

.=$$$ 

.ENDC 

.PSECT 

PCBDF$ 

iATTACHMENT DESCRIPTOR LISTHEAD 

iSIZE OF EXTERNAL HEADER IN 32W BLOCKS 
iPARTITION I/O COUNT 

iREQUIRED RUN MASK 

i PARTITION STATUS WORD BIT DEFINITIONS 
i-

i+ 

PS.OUT=100000 
PS.CKP=40000 

PS.CKR=20000 

PS.CHK=10000 

PS.FXD=4000 
PS.CAF=2000 

PS.LIO=1000 

PS.NSF=400 
PS.COM=200 
PS.LFR=100 
PS.PER=40 

PS.DEL=10 

PS.AST=4 

i REQUIRED RUN MASK 
i-

PR.UBT=100000 
PR.UBS=40000 
PR.UBR=20000 
PR.UBP=10000 
PR.UBN=4000 

iPARTITION IS OUT OF MEMORY(l=YES) 
iPARTITION CHECKPOINT IN PROGRESS 
i(l=YES) 
iPARTITION CHECKPOINT IS REQUESTED 
i(l=YES) 
iPARTITION IS NOT CHECKPOINTABLE 
i(l=YES) 
;PARTITION IS FIXED (l=YES) 
iCHECKPOINT SPACE ALLOCATION FAILURE 
i(l=YES) 
;MARKED BY SHUFFLER FOR LONG I/O 
i(l=YES) 
iPARTITION IS NOT SHUFFLEABLE (l=YES) 
iLIBRARY OR COMMON BLOCK (l=YES) 
iLAST LOAD OF REGION FAILED (l=YES) 
iPARTIY ERROR OCCURED IN THIS REGION 
i(l=YES) 
iPARTITION SHOULD BE DELETED WHEN NOT 
iATTACHED (l=YES) 
iPARTITION HAS REGION LOAD AST PENDING 

;UNIBUS RUN T 
iUNIBUS RUN S 
;UNIBUS RUN R 
;UNIBUS RUN P 
;UNIBUS RUN N 

A-48 



PCBDF$ 

PR.UBM=2000 iUNIBUS RUN M 
PR.UBL=1000 iUNIBUS RUN 
PR.UBK=400 iUNIBUS RUN K 
PR.UBJ=200 iUNIBUS RUN J 
PR.UBH=100 iUNIBUS RUN H 
PR.UBF=40 iUNIBUS RUN F 
PR.UBE=20 iUNIBUS RUN E 
PR.CPD=10 iPROCESSOR D 
PR.CPC=4 iPROCESSOR C 
PR.CPB=2 iPROCESSOR 
PR.CPA=l iPROCESSOR A 

i+ 
STATUS EXTENSION WORD BIT DEFINITIONS 

i -

(THESE BITS CAN ONLY BE EXAMINED IN COMMON OR MAIN 
PCBs) 

P2.LMA=40000 iDON'T SHUFFLE,DELETE SPINDLE OR MUTILATE 
iTHIS PARTITION (ACTUALLY ON P/OS Vl.7 AND V2.0 
iTHIS BIT HAS TAKEN ON THE EXACT OPPOSITE 
iMEANING SINCE IT HAS YET TO BE IMPLEMENTED ON 
iM-PLUS. TEMPORARILY, IT HAS BEEN REDEIFNED TO 
iMEAN "THIS COMMON IS PART OF THE APPL. 
iAND SHOULD BE REMOVED FROM THE SYSTEM (IF 
iPOSSIBLE) WHEN THE APPLICATION EXITS") 

p2.CPC=20000 iCPCR INITIATED CHECKPOINT PENDING 
P2.SEC=4000 iTHIS IS RO SECTION OF MU TASK WITH TCB IN SEC. POOL 
P2.PAR=2000 iTHE FIXER TASK HAS HANDLED A PARITY ERROR 
P2.POL=1000 iSECONDARY POOL PARTITION 
P2.CPU=400 iMULTIPROCESSOR CPU PARTITION 
P2.PIC=200 iPOSITION INDEPENDENT LIBRARY OR COMMON (l=YES) 
P2.RON=100 iREAD-ONLY COMMON (l=YES) 
P2.DRV=40 iDRIVER COMMON PARTITION (l=YES) 
P2.APR=7 iSTARTING APR NUMBER MASK FOR NON-PIC COMMON 

i+ 
i CHECKPOINT FILE PCB 
i -

.ASECT 
.=0 

000000 P.LNK: .BLKW 
000002 P.UCB: .BLKW 
000004 P.LBN: .BLKW 
000006 .BLKW 
000010 P.SUB: .BLKW 

000012 P.MAIN: .BLKW 
000014 P.REL: .BLKW 

1 
1 
1 
1 
1 

1 
1 

iLINK WORD OF CHECKPOINT FILE PCBs 
iUCB ADDRESS OF CHECKPOINT FILE DEVICE 
iHIGH PART OF STARTING LBN 
iLOW PART OF STARTING LBN 
iPOINTER TO FIRST CHECKPOINT 
iALLOCATION PCB 
iMUST BE 0 (FOR $RLPR1) 
iCONTAINS 0 IF FILE IN USE, 1 IF NOT 
iIN USE 

A-49 



000016 P.SIZE: .BLKW 1 

000020 P.DLGH=. 

i+ 
i CHECKPOINT ALLOCATION PCB . -, 

.=0 
000000 .BLKW 4 
000010 P.SUB: .BLKW 1 

000012 P.MAIN: .BLKW 1 
000014 P.REL: .BLKW 1 

000016 P.SIZE: .BLKW 1 

i+ 
i COMMON TASK IMAGE FILE PCB . -, 

.=0 
000000 P.FID1: .BLKW 1 
000002 P.UCB: .BLKW 1 

000004 P.LBN: .BLKW 1 
000006 .BLKW 1 
000010 P.FID2: .BLKW 1 
000012 P.MAIN: .BLKW 1 
000014 P.REL: .BLKW 1 
000016 P.FID3: .BLKW 1 

i+ 
i ATTACHMENT DESCRIPTOR OFFSETS 
i -

.ASECT 

.=0 
000000 A.PCBL: .BLKW 1 
000002 A.PRI: .BLKB 1 
000003 A. IOC: .BLKB 1 
000004 A.TCB: .BLKW 1 
000006 A.TCBL: .BLKW 1 
000010 A.STAT: .BLKB 1 
000011 A.MPCT: .BLKB 1 

000012 A.PCB: .BLKW 1 
000014 A.LGTH= . 
;+ 

PCBDF$ 

iSIZE OF CHECKPOINT FILE IN 256W 
iBLOCKS 
iLENGTH OF ALL DISK PCBs 

j (UNUSED) 
iLINK TO NEXT CHECKPOINT ALLOCATION 
iPCB 
iADDRESS OF CHECKPOINT FILE PCB 
iRELATIVE POSITION IN FILE IN 256W 
jBLOCKS 
iSIZE ALLOCATED IN 256W BLOCKS 

iFILE ID WORD FOR SAVE 
iUCB ADDRESS OF DEVICE ON WHICH 
iCOMMON RESIDES 
jHIGH PART OF STARTING LBN 
iLOW PART OF STARTING LBN 
iFILE ID WORD FOR SAVE 
iPOINTER TO SELF 
jALWAYS CONTAINS A 0 
iFILE ID WORD FOR SAVE 

iPCB ATTACHMENT QUEUE THREAD WORD 
iPRIORITY OF ATTACHED TASK 
iI/O COUNT THROUGH THIS DESCRIPTOR 
;TCB ADDRESS OF ATTACHED TASK 
;TCB ATTACHMENT QUEUE THREAD WORD 
;STATUS BYTE 
iMAPPING COUNT OF TASK THRU THIS 
iDESCRIPTOR 
iPCB ADDRESS OF ATTACHED TASK 
iLENGTH OF ATTACHMENT DESCRIPTOR 

; ATTACHMENT DESCRIPTOR STATUS BYTE BIT DEFINITIONS 
i -

A-50 



.PSECT 
AS.PRO=100 
AS.SBP=20 
AS.RBP=40 
AS.DEL=10 
AS.EXT=4 
AS.WRT=2 
AS.RED=l 

PCBDF$ 

iA.TCB IS SEC POOL PROTO TCB BIAS (l=YES) 
iCACHE BYPASS REQUESTED 
iREQUEST TO NOT BYPASS CACHE 
iTASK HAS DELETE ACCESS (l=YES) 
iTASK HAS EXTEND ACCESS (l=YES) 
iTASK HAS WRITE ACCESS (l=YES) 
iTASK HAS READ ACCESS (l=YES) 

A-51 



PKTDF$ 

A.19 PKTDF$ 

SOME POSITIONAL DEPENDENCIES BETWEEN THE OCB AND THE AST CONTROL 
BLOCK ARE RELIED UPON IN THE ROUTINE $FINXT IN THE MODULE SYSXT. 

i-

177774 
177776 
000000 
000002 

000004 

000006 
000010 
000012 

.ASECT 
.=177774 
A.KSR5: .BLKW 1 
A.DQSR: .BLKW 1 

.BLKW 1 
A.CBL: .BLKW 1 

A.BYT: .BLKW 1 

A.AST: .BLKW 1 
A.NPR: .BLKW 1 
A.PRM: .BLKW 1 
AS.FPA=l 
AS.RCA=2 
AS.RRA=3 
AS.PEA=4 
AS.REA=5 
AS.PFA=6 
AS.CM=7 
AS.TEA=10 

iSUBROUTINE KISAR5 BIAS (A.CBL=O) 
iDEQUEUE SUBROUTINE ADDRESS (A.CBL=O) 
iAST QUEUE THREAD WORD 
iLENGTH OF CONTROL BLOCK IN BYTES 
iIF A.CBL = 0, THE AST CONTROL BLOCK IS 
iTO BE DEALLOCATED BY THE DEQUEUE 
iSUBROUTINE POINTED TO BY A.DQSR 
iMAPPED VIA APR 5 VALUE A.KSR5. THIS 
iIS CURRENTLY USED ONLY BY THE FULL 
iDUPLEX TERMINAL DRIVER FOR UNSOLICITED 
iCHARACTER ASTS. IF THE LOW BYTE OF 
iA.CBL = 0, AND THE HIGH BYTE IS NOT 
i= 0, THE AST CONTROL BLOCK IS A 
iSPECIFIED AST, WITH LENGTH, C.LGTH. 
iIF THE HIGH BYTE OF A.CBL=O 
iAND THE LOW BYTE> 0, THEN 
iTHE LOW BYTE IS THE LENGTH OF THE 
iAST CONTROL BLOCK. 
iIF HIGH BYTE = 0 AND LOW BYTE IS 
iNEGATIVE, THEN THE BLOCK IS A KERNEL 
iAST BIT 6 IS SET IF $SGFIN SHOULD 
iNOT BE CALLED PRIOR TO DISPATCHING 
iTHE AST, AND THE LOW SIX BITS (5-0) 
iREPRESENT THE INDEX/2 INTO THE 
iKERNEL AST DISPATCH TABLE ($KATBL) 
iNUMBER OF BYTES TO ALLOCATE ON TASK 
iSTACK 
iAST TRAP ADDRESS 
;NUMBER OF AST PARAMETERS 
iFIRST AST PARAMETER 
iCODE FOR FLOATING POINT AST 
iCODE FOR RECEIVE DATA AST 
;CODE FOR RECEIVE BY REFERENCE AST 
;CODE FOR PARITY ERROR AST 
iCODE FOR REQUESTED EXIT AST 
iCODE FOR POWER FAIL AST 
;CODE FOR CLI COMMAND ARRIVAL AST 
iCODE FOR TAST EXIT AST 

; ABORTER SUBCODES FOR ABORT AST (AS.REA) TO BE RETURNED ON 

A-52 



i+ 

i USER'S STACK 

AB.NPV=l 
AB.TYP=2 

A.PLGH=70 
A.DUCB=10 
A.DLGH=10. 

PKTDF$ 

iABORTER IS NONPRIVILEGED (l=YES) 
iABORT FROM DIRECTIVE (O=YES) 
iABORT FROM CLI COMMAND (l=YES) 
iSIZE OF PARITY ERROR AST CONTROL BLOCK 
iUCB OF TERM ISSUING DEBUG COMMAND 
iLENGTH OF DEBUG (AK.TBT) AST BLOCK 

i KERNEL AST CONTROL CODES (A.CBL) 

AK.BUF=200 

AK.OCB=201 
AK.GBI=202 
AK.TBT=203 
AK.DIO=204 
AK.GGF=205 

iBUFFERED I/O COMPLETION 
iTHIS CODE MUST BE 200 UNTIL ALL 
iREFERENCES IN TTDRV ARE FIXED 
iOFFSPRING TASK EXIT 
iSEGMENTED BUFFERED I/O COMPLETION 
iTASK FORCE T-BIT TRAP (DEBUG CMD) 
iDELAYED I/O COMPLETION 
iGRP. GBL. RUNDWN 

i I/O PACKET OFFSET DEFINITIONS 
i -

000000 
000002 
000003 
000004 
000006 
000010 
000012 
000014 
000016 
000020 
000022 
000024 
000026 
000042 
000044 

000050 

i+ 

.ASECT 
.=0 
I.LNK: .BLKW 
I . PRI : . BLKB 
I . EFN: . BLKB 
I . T CB : . B L KW 
I . LN2 : . BLKW 
I . UCB : . BLKW 
I. FCN: .BLKW 
I • lOS B : • B L KW 

.BLKW 

.BLKW 
I .AST: . BLKW 
I • P RM : . B L KW 

.BLKW 

.BLKW 
I.ATTL=. 

I.AADA: .BLKW 
I.LGTH=. 
I.ATRL=6*8. 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
6 
1 

2 

iI/O QUEUE THREAD WORD 
iREQUEST PRIORITY 
iEVENT FLAG NUMBER 
iTCB ADDRESS OF REQUESTOR 
iPOINTER TO SECOND LUN WORD 
iPOINTER TO UNIT CONTROL BLOCK 
iI/O FUNCTION CODE 
iVIRTUAL ADDRESS OF I/O STATUS BLOCK 
iI/O STATUS BLOCK RELOCATON BIAS 
iI/O STATUS BLOCK ADDRESS 
iAST SERVICE ROUTINE ADDRESS 
iRESERVED FOR MAPPING PARAMETER #1 
iPARAMETERS 1 TO 6 
iUSER MODE DIAGNOSTIC PARAMETER WORD 
iMINIMUM LENGTH OF I/O PACKET (USED BY 
iFILE SYSTEM TO CALCULATE MAXIMUM 
iNUMBER OF ATTRIBUTES) 
iSTORAGE FOR ATT DESCR PTRS WITH I/O 
iLENGTH OF I/O REQUEST CONTROL BLOCK 
iLENGTH OF FILE SYSTEM ATTRIBUTE BLOCK 

i ANCILLARY CONTROL" BLOCK (ACB) DEFINITIONS 
; -

A-53 



000000 
000002 
000004 
000006 
000007 
000010 
000012 
000013 
000014 

000010 
000012 
000014 
000016 

000020 
000022 
000024 
000030 
000034 

000000 
000002 
000004 
000006 
000010 
000012 
000014 
000016 
000020 
000022 

.=0 
A.REL: .BLKW 
A. DIS: . BLKW 
A.MAS: .BLKW 
A.NUM: .BLKB 

.BLKB 
A.LIN: .BLKW 
A.ACC: .BLKB 
A. STA: . BLKB 
A.LEN1=. 

.=A.LIN 
A. IMAP: . BLKW 
A. I B U F : . B L KW 
A.ILEN: .BLKW 
A.SMAP: .BLKW 

A.SBUF: .BLKW 
A.SLEN: .BLKW 
A.IOS: .BLKW 
A.RES: .BLKW 
A.LEN2=. 

UA.ACC=l 
UA.PRO=2 
UA.ECH=4 
UA.TYP=10 
UA.SPE=20 
UA.PUT=40 
UA.CAL=100 
UA.COM=200 

UA.ALL=400 
UA.TRA=1000 

1 
1 
1 
1 
1 
1 
1 
1 

1 
1 
1 
1 

1 
1 
2 
2 

PKTDF$ 

iACD RELOCATION BIAS 
iACD DISPATCH TABLE POINTER 
iACD FUNCTION MASK 
iACD IDENTIFICATION NUMBER 
iRESERVED 
iACD LINK WORD 
iACD ACCESS COUNT 
iACD STATUS BYTE 
iLENGTH OF PROTOTYPE ACB 

iFULL ACB OVERLAPS PROTOTYPE ACB 
iACD INTERRUPT BUFFER RELOCATION BIAS 
iACD INTERRUPT BUFFER ADDRESS 
iACD INTERRUPT BUFFER LENGTH 
iACD SYSTEM STATE BUFFER RELOCATION 
iBIAS 
iACD SYSTEM STATE BUFFER ADDRESS 
iACD SYSTEM STATE BUFFER LENGTH 
iACD I/O STATUS 
iRESERVED FOR USE BY THE ACD 
iLENGTH OF FULL ACB 

DEFINE THE FLAG VALUES IN THE OFFSET 
U.AFLG 

iACCEPT THIS CHARACTER 
iPROCESS THIS CHARACTER 
iECHO THIS CHARACTER 
iFORCE THIS CHARACTER INTO TYPEAHEAD 
iTHIS CHARACTER HAS A SPECIAL ECHO 
iPUT THIS CHARACTER IN THE INPUT BUFFER 
iCALL THE ACD BACK AFTER THE TRANSFER 
iCOMPLETE THE INPUT REQUEST 

iALLOW PROCESSING OF THIS I/O REQUEST 
iTRANSFER CHARS. WHEN I/O COMPLETES 

i DEFINE THE ACD ENTRY POINTS (OFFSETS INTO THE DISPATCH TABLE) 

.=0 
A.ACCE: .BLKW 
A.DEQU: .BLKW 
A.POWE: .BLKW 
A.INPU: .BLKW 
A.OUTP: .BLKW 
A.CONN: .BLKW 
A.DISC: .BLKW 
A.RECE: .BLKW 
A. PROC: . BLKW 
A.CALL: .BLKW 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

iI/O REQUEST ACCEPTANCE ENTRY POINT 
iI/O REQUEST DEQUEUE ENTRY POINT 
iPOWER FAILURE ENTRY POINT 
iINPUT COMPLETION ENTRY POINT 
iOUTPUT COMPLETION ENTRY POINT 
iCONNECTION ENTRY POINT 
iDISCONNECTION ENTRY POINT 
iINPUT CHARACTER RECEPTION ENTRY POINT 
iINPUT CHARACTER PROCESSING ENTRY POINT 
iCALL ACD BACK AFTER TRANSFER ENTRY 

A-54 



000001 
000002 

j+ 

PKTDF$ 

jPOINT 

DEFINE THE STATUS BITS IN A.STA OF THE PROTOTYPE ACB 

AS.DEL=l 
AS.DIS=2 

jACD IS MARKED FOR DELETE 
jACD IS DISABLED 

j SECONDARY POOL COMMAND BUFFER BLOCKS 
j-

000000 
000002 
000004 
000006 

000010 
000012 
000012 

000014 
000015 

000016 

i+ 

.=0 
C.CLK: .BLKW 
C.CTCB: .BLKW 
C.CUCB: .BLKW 
C . CCT : . BLKW 

C . CST S : . B L KW 
C.CMCD: 
C.CSO: .BLKW 

C. CTR: . BLKB 
C.CBLK: .BLKB 

C.CTXT: 

1 
1 
1 
1 

1 

1 

1 
1 

iLINK WORD 
iTCB ADDRESS OF TASK TO RECEIVE COMMAND 
iUCB ADDRESS OF RESPONSIBLE TERMINAL 
jCHARACTER COUNT, EXCLUDING TRAILING 
iCR 
iSTATUS MASK 
jSYSTEM MESSAGE CODE 
jSTARTING OFFSET OF VALID COMMAND 
jTEXT 
iTERMINATOR CHARACTER 
jSIZE OF PACKET IN SEC POOL (32 WD.) 
jBLOCKS 
iCOMMAND TEXT, FOLLOWED BY CR 

j BIT DEFINITIONS FOR THE GIN$ (AKA WIMPS) INFORMATION 
; DIRECTIVE. 
; -

i+ 

j -

SF.PRV=100000 
SF.IN= 40000 

jFUNCTION IS PRIVILEGED 
iFUNCTION IS AN INPUT FUNCTION 

OFFSPRING CONTROL BLOCK DEFINITIONS 

SOME POSITIONAL DEPENDENCIES ARE DEPENDED ON BETWEEN THE 
OCB AND THE AST BLOCK IN THE ROUTINE $FINXT IN THE MODULE 
SYSXT. 

.=0 
000000 O.LNK: .BLKW 1 iOCB LINK WORD 
000002 O.MCRL: .BLKW 1 iADDRESS OF MCR COMMAND LINE 
000004 O.PTCB: .BLKW 1 iPARENT TCB ADDRESS 
000006 O.AST: .BLKW 1 ;EXIT AST ADDRESS 
000010 O.EFN: .BLKW 1 ;EXIT EVENT FLAG 
000012 O.ESB: .BLKW 1 i EXIT STATUS BLOCK VIRTUAL ADDRESS 
000014 O.STAT: .BLKW 8 . ;EXIT STATUS BUFFER 

000034 O.LGTH=. ;LENGTH OF OCB 

A-55 



PKTDF$ 

i++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
i THE FOLLOWING CPB,C.PSTS,AND C.CMCD ARE NOT CURRENTLY USED BY P/OS. 
i THEY ARE, HOWEVER, RESERVED FOR A POSSIBLE FUTURE USE. 
;------------------------------------------------------------------------

000000 
000002 
000006 
000010 
000011 
000012 

CLI PARSER BLOCK (CPB) DEFINITIONS 

.=0 
C.PTCB: .BLKW 1 iADDRESS OF CLI'S TCB 
C.PNAM: .BLKW 2 iCLI NAME 
C.PSTS: .BLKW 1 iSTATUS MASK 
C.PDPL: .BLKB 1 iLENGTH OF DEFAULT PROMPT 
C.PCPL: .BLKB 1 iLENGTH 0 CNTRL/C PROMPT 
C.PRMT: iSTART OF PROMPT STRINGS. DEFAULT 

iIS CONCATENATED WITH CONTROL C PROMPT 

STATUS BIT DEFINITIONS 

CP.NUL=l 
CP.MSG=2 
CP.LGO=4 

CP.DSB=10 
CP.PRV=20 

CP.SGL=40 

CP.NIO=100 

CP.RST=200 

CP.EXT=400 
CP.POL=1000 
CP.CTC=2000 

iPASS EMPTY COMMANDS TO CLI 
iCLI DESIRES SYSTEM MESSAGES 
iCLI WANTS COMMANDS FROM LOGGED OFF 
iTTYS 
iCLI IS DISABLED 
iUSER MUST BE PRIV TO SET TTY TO THIS 
iCLI 
iDON'T HANDLE CONTINUATIONS (M-PLUS 
iONLY) 
iMCR ••• , HEL, BYE DO NO I/O TO TTY 
iHEL, BYE DO NOT SET CLI ETC. 
iABILITY TO SET TO THIS CLI IS 
;RESTRICTED 
iTO THE CLI ITSELF 
;PASS TASK EXIT PROMPT REQUESTS TO CLI 
iCLI TCB IS IN SECONDARY POOL 
;AC NOTIFICATION PACKETS ARE WANTED 

STATUS BITS FOR COMMAND BLOCKS 

CC.MCR=l 
CC.PRM=2 
CC.EXT=4 
CC.KIL=10 

CC.CLI=20 
CC.MSG=40 
CC.TTD=100 
CC.CTC=200 

iFORCE COMMAND TO MCR 
iISSUE DEFAULT PROMPT 
;TASK EXIT PROMPT REQUEST 
iDELETE ALL CONTINUATION PIECES FROM 
iTHIS TTY 
iCOMMAND TO BE RETREIVED BY GCCI$ ONLY 
iPACKET CONTAINS SYSTEM MESSAGE TO CLI 
;COMMAND CAME FROM TTDRV 
iAC NOTIFICATION PACKET 

A-56 



000000 
000002 
000003 
000004 
000006 

000012 

;+ 

;+ 

PKTDF$ 

IDENTIFIER CODES FOR SYSTEM TO CLI MESSAGES 

CODES 0-127. ARE RESERVED FOR USE BY DIGITAL 
CODES 128.-255. ARE RESERVED FOR USE BY CUSTOMERS 

CM. INE=l 
CM. IND=2 
CM.CEN=3 
CM.CDS=4 
CM.ELM=5 
CM.EXT=6 
CM.LKT=7 
CM.RMT=8. 
CM.MSG=9. 

;CLI INITIALIZED ENABLED 
;CLI' INITIALIZED DISABLED 
;CLI ENABLED 
;CLI DISABLED 
;CLI BEING ELIMINATED 
;CLI MUST EXIT IMMEDIATELY 
;NEW TERMINAL LINKED TO CLI 
;TERMINAL REMOVED FROM CLI 
;GENERAL MESSAGE TO CLI 

; GROUP GLOBAL EVENT FLAG BLOCK OFFSETS 
; (CURRENTLY NOT USED BY P/OS) 
; -

.=0 
G.LNK: .BLKW 1 ;LINK WORD 
G.GRP: .BLKB 1 ;GROUP NUMBER 
G.STAT: .BLKB 1 iSTATUS BYTE 
G.CNT: .BLKW 1 ;ACCESS COUNT 
G.EFLG: .BLKW 2 ; EVENT FLAGS 

G.LGTH=. ;LENGTH OF GROUP GLOBAL EVENT FLAG 
iBLOCK 

GS.DEL=l ; STATUS BIT -- MARKED FOR DELETE 

; EXECUTIVE POOL MONITOR CONTROL FLAGS (HISTORICAL INTEREST 
; ONLY) 
; -

$POLST IS THE SYNCHRONIZATION WORD BETWEEN THE EXEC AND POOL 
MONITOR 

PC.HIH=l 
PC.LOW=2 
PC.ALF=4 
PC.XIT=200 

PC.NRM=PC.HIH*400 
PC.ALM=PC.LOW*400 

iHIGH POOL LIMIT CROSSED (l=YES) 
iLOW POOL LIMIT CROSSED (l=YES) 
iPOOL ALLOCATION FAILURE (l=YES) 
iFORCE POOL MONITOR TASK TO EXIT (MUST 
iBE COUPLED WITH SETTING FE.MXT IN THE 
iFEATURE MASK) 
jPOOL TASK INHIBIT BIT FOR HIGH POOL 
jPOOL TASK INHIBIT BIT FOR LOW POOL 

i$POLFL IS THE POOL USAGE CONTROL WORD 

A-57 



PF.INS=40 
PF.LOG=100 
PF.REQ=200 

PF.ALL=177777 

.PSECT 

PKTDF$ 

iREJECT NONPRIVILEGED INS/RUN/REM 
iNONPRIVILEGED LOGINS ARE DISABLED 
iSTALL REQUEST OF NONPRIV. TASKS 

iTAKE ALL POSSIBLE ACTIONS TO SAVE POOL 

A-58 



QIOSY$ 

A.20 QIOSV$ 

SYSTEM STANDARD CODES, USED BY EXECUTIVE AND DRIVERS 

IE.BAD 
IE.IFC 
IE.DNR 
IE.VER 
IE.ONP 
IE.SPC 
IE. DNA 
IE.DM 
IE.DUN 
IE.EOF 
IE.EOV 
IE.WLK 
IE.DAO 
IE.SRE 
IE.ABO 
IE.PRI 
IE.RSU 
IE.OVR 
IE.BYT 
IE.BLK 
IE.MOD 
IE.CON 
IE.BBE 
IE.STK 
IE.FHE 
IE.EOT 
IE.OFL 
IE.BCC 
IE.NFW 
IE.DIS 

IE~~NDR 
IE··~"TMO 
IE.CNR 
IE.MII 
IE.SPI 

DECIMAL 

-01. 
-02. 
-03. 
-04. 
-05. 
-06. 
-07. 
-08. 
-09. 
-10. 
-11. 
-12. 
-13. 
-14. 
-15. 
-16. 
-17. 
-18. 
-19. 
-20. 
-21. 
-22. 
-56. 
-58. 
-59. 
-62. 
-65. 
-66. 
-69. 
-69. 

-72. 
-95. 
-96. 
-99. 
-100. 

OCTAL 

177777 
177776 
177775 
177774 
177773 
177772 
177771 
177770 
177767 
177766 
177765 
177764 
177763 
177762 
177761 
177760 
177757 
177756 
177755 
177754 
177753 
177752 
177710 
177706 
177705 
177702 
177677 
177676 
177673 
177673 

177670 
177641 
177640 
177635 
177634 

FILE PRIMITIVE CODES 

Bad parameters 
Invalid function code 
Device not ready 
Parity error on device 
Hardware option not present 
Illegal user buffer 
Device not attached 
Device already attached 
Device not attachable 
End of file detected 
End of volume detected 
Write attempted to locked unit 
Data overrun 
Send/receive failure 
Request terminated 
Privilege violation 
Sharable resource in use 
Illegal overlay request 
Odd byte count (or virtual address) 
Logical· block number too large 
Invalid UDC module # 
UDC connect error 
Bad block on device 
Not enough stack space (FCS or FCP) 
Fatal hardware error on device 
End of tape detected 
Device off line 
Block check, CRC, or framing error 
Path lost to partner ;THIS CODE MUST BE ODD 
Path lost to partner ;DISCONNECTED (SAME 

AS NFW) 
No dynamic space available ; SEE ALSO IE.UPN 
Timeout on request ; see also IS.TMO 
Connection rejected 
Media inserted incorrectly 
Spindown ignored 

IE.NOD -23. 177751 Caller's nodes exhausted 

A-59 



IE.OFU 
IE.IFU 
IE.NSF 
IE.LCK 
IE.HFU 
IE.WAC 
IE.CKS 
IE.WAT 
IE.RER 
IE.WER 
IE.ALN 
IE.SNC 
IE.SQC 
IE.NLN 
IE.CLO 
IE.OUP 
IE.BVR 
IE.BHD 
IE.EXP 
IE.BTF 
IE.ALC 
IE.ULK 
IE.WCK 
IE.OSQ 

-24. 
-25. 
-26. 
-27. 
-28. 
-29. 
-30. 
-31. 
-32. 
-33. 
-34. 
-35. 
-36. 
-37. 
-38. 
-57. 
-63. 
-64. 
-75. 
-76. 
-84. 
-85. 
-86. 
-90. 

177750 
177747 
177746 
177745 
177744 
177743 
177742 
177741 
177740 
177737 
177736 
177735 
177734 
177733 
177732 
177707 
177701 
177700 
177665 
177664 
177654 
177653 
177652 
177646 

QIOSY$ 

Oevice full 
Index file full 
N6 such file 
Locked from read/write access 
File header full 
Accessed for write 
File header checksum failure 
Attribute control list format error 
File processor device read error 
File processor device write error 
File already accessed on LUN 
File 10, file number check 
File 10, sequence number check 
No file accessed on LUN 
File was not properly closed 
ENTER - duplicate entry in directory 
Bad version number 
Bad file header 
File expiration date not reached 
Bad tape format 
Allocation failure 
Unlock error 
Write check failure 
Disk quota exceeded 

FILE CONTROL SERVICES CODES 

IE.NBF 
IE.RBG 
IE.NBK 
IE. ILL 
IE.BTP 
IE.RAC 
IE.RAT 
IE.RCN 
IE.2DV 
IE.FEX 
IE.BDR 
IE.RNM 
IE.BDI 
IE. FOP 
IE.BNM 
IE.BDV 
IE.NFI 
IE.ISQ 
IE.NNC 

-39. 
-40. 
-41. 
-42. 
-43. 
-44. 
-45. 
-46. 
-48. 
-49. 
-50. 
-51. 
-52. 
-53. 
-54. 
:"'55. 
-60. 
-61. 
-77. 

177731 
177730 
177727 
177726 
177725 
177724 
177723 
177722 
177720 
177717 
177716 
177715 
177714 
177713 
177712 
177711 
177704 
177703 
177663 

OPEN - no buffer space available for file 
Illegal record size 
File exceeds space allocated, no blocks 
Illegal operation on file descriptor block 
Bad record type 
Illegal record access bits set 
Illegal record attributes bits set 
Illegal record number - too large 
Rename - 2 different devices 
Rename - new file name already in use 
Bad directory file 
Can't rename old file system 
Bad directory syntax 
File already open 
Bad file name 
Bad device name 
File ID was not specified 
Illegal sequential operation 
Not ANSI 'D' format byte count 

NETWORK ACP, PSI, AND DECDATAWAY CODES 

A-60 



IE.NNN 
IE.BLB 
IE.URJ 
IE.NRJ 
IE.NDA 
IE. IQU 
IE.RES 
IE.TML 
IE.NNT 
IE.UKN 

-68. 
-70. 
-73. 
-74. 
-78. 
-91. 
-92. 
-93. 
-94. 
-97. 

177674 
177672 
177667 
177666 
177662 
177645 
177644 
177643 
177642 
177637 

ICS/ICR ERROR CODES 

IE.NLK 
IE.NST 
IE.FLN 

-79. 
-80. 
-81. 

TTY ERROR CODES 

IE.IES 
IE. PES 

-82. 
-83. 

177661 
177660 
177657 

177656 
177655 

RECONFIGURATION CODES 

IE. ICE 
IE.ONL 
IE.SZE 

-47. 
-67. 
-98. 

PCL ERROR CODES 

IE.NTR 
IE.REJ 
IE.FLG 

-87. 
-88. 
-89. 

177721 
177675 
177636 

177651 
177650 
177647 

QIOSY$ 

No such node 
Bad logical buffer 
Connection rejected by user 
Connection rejected by network 
No data available 
Inconsistent qualifier usage 
Circuit reset during operation 
Too many links to task 
Not a network task 
Unknown name 

Task not linked to specified ICS/ICR interrupts 
Specified task not installed 
Device offline when offline request was issued 

Invalid escape sequence 
Partial escape sequence 

Internal consistancy error 
Device online 
Unable to size device 

Task not triggered 
Transfer rejected by recelvlng CPU 
Event flag already specified 

SUCCESSFUL RETURN CODES---

IS.PND +00. o OPERATION PENDING 

A-61 



QIOSY$ 

IS.SUC +01. 1 OPERATION COMPLETE, SUCCESS 
IS.RDD +02. 2 FLOPPY DISK SUCCESSFUL COMPLETION 

OF A READ PHYSICAL, AND DELETED 
DATA MARK WAS SEEN IN SECTOR HEADER 

IS.TNC +02. 2 (PCL) SUCCESSFUL TRANSFER BUT MESSAGE 
TRUNCATED (RECEIVE BUFFER TOO SMALL). 

IS.CHW +04. 4 

IS.BV +05. 5 

IS.DAO +02. 2 

TTY SUCCESS CODES 

IS.CR 
IS.ESC 
IS.CC 
IS.ESQ 
IS.PES 
IS.EOT 
IS.TAB 
IS.TMO 

<015*400+1> 
<33*400+1> 
<3*400+1> 
<0233*400+1> 
<200*400+1> 
<4*400+1> 
<11*400+1> 
+2. 2 

( IBM COMM) DATA READ WAS RESULT OF 
IBM HOST CHAINED WRITE OPERATION 

(A/D READ) AT LEAST ONE BAD VALUE 
WAS READ (REMAINDER MAY BE GOOD). 
BAD CHANNEL IS INDICATED BY A 
NEGATIVE VALUE IN THE BUFFER. 

SUCCESSFUL BUT WITH DATA OVERRUN 
(NOT TO BE CONFUSED WITH IE.DAO) 

CARRIAGE RETURN WAS TERMINATOR 
ESCAPE (ALTMODE) WAS TERMINATOR 
CTRL/C WAS TERMINATOR 
ESCAPE SEQUENCE WAS TERMINATOR 
PARTIAL ESCAPE SEQUENCE TERMINATOR 
EOT WAS TERMINATOR (BLOCK MODE INPUT) 
TAB WAS TERMINATOR (FORMS MODE INPUT) 
REQUEST TIMED OUT 

Professional Bisync Success Codes 

DATA SUCC. XMITTEDi HOST ACKED WIRVI IS.RVI 
IS.CNV 
IS.XPT 

+2. 
+3. 
+5. 

2 
3 
5 

DATA SUCC. XMITTEDi HOST ACKED WICONVERSATION 
DATA SUCC. RECVD IN TRANSPARENT MODE 

Professional Bisync Abort Codes 

These codes are returned in the high byte of the first word of the 
IOSB when the low byte contains IE.ABO. 

SB.KIL -1. 377 ABORTED BY IO.KIL 
SB.ACK -2. 376 ABORTED BECAUSE TOO MANY ACKS RECD OUT OF SEQ 
SB.NAK - 3. 375 ABORTED BECAUSE NAK THRESHOLD EXCEEDED 
SB.ENQ -4. 374 ABORTED BECAUSE ENQ THRESHOLD EXCEEDED 
SB.BOF -5. 373 ABORTED BECAUSE OF IO.RLB BUFFER OVERFLOW 
SB.TMO -6. 372 ABORTED BECAUSE OF TIMEOUT 
SB.DIS -7. 371 ABORTED BECAUSE HOST DISCONNECTED WI DLE, EOT 

STANDARD ERROR CODES RETURNED BY DIRECTIVES IN THE DIRECTIVE 

A-62 



; STATUS WORD 

IE.UPN 

IE. INS 
IE.PTS 
IE.UNS 
IE.ULN 
IE.HWR 
IE.ACT 
IE. ITS 
IE.FIX 
IE.CKP 
IE.TCH 
IE.RBS 
IE.PRI 
IE.RSU 
IE.NSW 
IE.ILV 
IE.ITN 
IE.LNF 

IE.AST 
IE.MAP 
IE. lOP 
IE.ALG 
IE.WOV 
IE.NVR 
IE.NVW 
IE.ITP 
IE.IBS 
IE.LNL 
IE. lUI 
IE. IDU 
IE.ITI 
IE.PNS 
IE. IPR 
IE.ILU 
IE.IEF 
IE.ADP 
IE.SDP 

-01. 

-02. 
-03. 
-04. 
-05. 
-06. 
-07. 
-08. 
-09. 
-10. 
-11. 
-15. 
-16. 
-17. 
-18. 
-19. 
-20. 
-21. 

-80. 
-81. 
-83. 
-84. 
-85. 
-86. 
-87. 
-88. 
-89. 
-90. 
-91. 
-92. 
-93. 
-94. 
-95. 
-96. 
-97. 
-98. 
-99. 

QIOSY$ 

177777 Insufficient dynamic storage 
IE.NOR 

SEE ALSO 

177776 
177775 
177774 
177773 
177772 
177771 
177770 
177767 
177766 
177765 
177761 
177760 
177757 
177756 
177755 
177754 
177753 

177660 
177657 
177655 
177654 
177653 
177652 
177651 
177650 
177647 
177646 
177645 
177644 
177643 
177642 
177641 
177640 
177637 
177636 
177635 

Specified task not installed 
Partition too small for task 
Insufficient dynamic storage for send 
Un-assigned LUN 
Device handler not resident 
Task not active 
Directive inconsistent with task state 
Task already fixed/unfixed 
Issuing task not checkpointable 
Task is checkpointable 
Receive buffer is too small 
Privilege violation 
Resource in use 
No swap space available 
Illegal vector specified 
Invalid table number 
Logical name not found 

Directive issued/not issued from AST 
Illegal mapping specified 
Window has I/O in progress 
Alignment error 
Address window allocation overflow 
Invalid region 10 
Invalid address window ID 
Invalid TI parameter 
Invalid send buffer size ( .GT. 255.) 
LUN locked in use 
Invalid UIC 
Invalid device or unit 
Invalid time parameters 
partition/region not in system 
Invalid priority ( .GT. 250.) 
Invalid LUN 
Invalid event flag ( .GT. 64.) 
Part of DPB out of user's space 
DIC or DPB size invalid 

; SUCCESS CODES FROM DIRECTIVES - PLACED IN THE DIRECTIVE STATUS WORD 

IS.CLR o o 

IS.SET 2 2 

IS.SPD 2 2 

EVENT FLAG WAS CLEAR 
FROM CLEAR EVENT FLAG DIRECTIVE 

EVENT FLAG WAS SET 
FROM SET EVENT FLAG DIRECTIVE 

TASK WAS SUSPENDED 

A-63 



QIOSY$ 

IS.SUP 3 3 LOGICAL NAME SUPERSEDED 

; 
THE FOLLOWING LIST IS PROVIDED FOR COMPLETENESS AND INFORMATIVE OR 

; SUGGESTIVE PURPOSES. NOT ALL OF THE I/O FUNCTION CODES AND DEVICES 
; ARE SUPPORTED ON P/OS. 
; 
; COLUMN HEADINGS: 
; 
; 
; 
; 
; 

WORD CODE 
EQUIVALENT (HIGH 

BYTE) 

SUBCODE 
(LOW 
BYTE) 

GENERAL I/O QUALIFIER BYTE DEFINITIONS 

IQ.X 000001 000 001 
IQ.Q 000002 000 002 
IQ.S 000004 000 004 
IQ.UMD 000004 000 004 
IQ.LCK 000200 000 200 

EXPRESS QUEUE COMMANDS 

IO.KIL 000012 000 012 
IO.RDN 000022 000 022 
IO.UNL 000042 000 042 
IO.LTK 000050 000 050 
IO.RTK 000060 000 060 
IO.SET 000030 000 030 

; GENERAL DEVICE HANDLER CODES 

IO.WLB 000400 001 000 
IO.RLB 001000 002 000 
IO.LOV 001010 002 010 
IO.LDO 001110 002 110 
IO.ATT 001400 003 000 
IO.DET 002000 004 000 

; DIRECTORY PRIMITIVE CODES 

IO.FNA 
IO.RNA 
IO.ENA 

004400 011 
005400 013 
006000 014 

; FILE PRIMITIVE COPES 

IO.CLN 003400 007 

000 
000 
000 

000 

NO ERROR RECOVERY 
QUEUE REQUEST IN EXPRESS QUEUE 
SYNONYM FOR IQ.UMD 
USER MODE DIAGNOSTIC STATUS REQUIRED 
MODIFY IMPLIED LOCK FUNCTION 

KILL CURRENT REQUEST 
I/O RUNDOWN 
UNLOAD I/O HANDLER TASK 
LOAD A TASK IMAGE FILE 
RECORD A TASK IMAGE FILE 
SET CHARACTERISTICS FUNCTION 

WRITE LOGICAL BLOCK 
READ LOGICAL BLOCK 
LOAD OVERLAY (DISK DRIVER) 
LOAD D-SPACE OVERLAY (DISK) 
ATTACH A DEVICE TO A TASK 
DETACH A DEVICE FROM A TASK 

FIND FILE NAME IN DIRECTORY 
REMOVE FILE NAME FROM DIRECTORY 
ENTER FILE NAME IN DIRECTORY 

CLOSE OUT LUN 

A-64 



QIOSY$ 

IO.ULK 005000 012 000 UNLOCK BLOCK 
IO.ACR 006400 015 000 ACCESS FOR READ 
IO.ACW 007000 016 000 ACCESS FOR WRITE 
IO.ACE 007400 017 000 ACCESS FOR EXTEND 
IO.DAC 010000 020 000 DE-ACCESS FILE 
IO.RVB 010400 021 000 READ VIRTUAL BLOCK 
IO.WVB 011000 022 000 WRITE VIRTUAL BLOCK 
IO.EXT 011400 023 000 EXTEND FILE 
IO.CRE 012000 024 000 CREATE FILE 
IO.DEL 012400 025 000 DELETE FILE 
IO.RAT 013000 026 000 READ FILE ATTRIBUTES 
IO.WAT 013400 027 000 WRITE FILE ATTRIBUTES 
IO.APV 014010 030 010 PRIVILEGED ACP CONTROL 
IO.APC 014000 030 000 ACP CONTROL 

; IIO FUNCTION CODES FOR SPECIFIC DEVICE DEPENDENT FUNCTIONS 

IO.WLV 000500 001 100 (DECTAPE) WRITE LOGICAL REVERSE 
IO.WLS 000410 001 010 (COMM.) WRITE PRECEDED BY SYNC TRAIN 
IO.WNS 0.00420 001 020 (COMM.) WRITE, NO SYNC TRAIN 
IO.WAL 000410 001 010 (TTY) WRITE PASSING ALL CHARACTERS 
IO.WMS 000420 001 020 (TTY) WRITE SUPPRESSIBLE MESSAGE 
IO.CCO 000440 001 040 (TTY) WRITE WITH CANCEL CTRLIO 
IO.WBT 000500 001 100 (TTY) WRITE WITH BREAKTHROUGH 
IO.WLT 000410 001 010 (DISK) WRITE LAST TRACK 
IO.WLC 000420 001 020 (DISK) WRITE LOGICAL WI WRITECHECK 
IO.WPB 000440 001 040 (DISK) WRITE PHYSICAL BLOCK 
IO.WDD 000540 001 140 (FLOPPY DISK) WRITE PHYSICAL WI 

DELETED DATA 
IO.RSN 001140 002 140 (MSCP DISK) READ VOLUME SERIAL NUMBER 
IO.RLV 001100 002 100 (MAGTAPE,DECTAPE) READ REVERSE 
IO.RST 001001 002 001 (TTY) READ WITH SPECIAL TERMINATOR 
IO.RAL 001010 002 010 (TTY) READ PASSING ALL CHARACTERS 
IO.RNE 001020 002 020 (TTY) READ WITHOUT ECHO 
IO.RNC 001040 002 040 (TTY) READ - NO LOWER CASE CONVERT 
IO.RTM 001200 002 200 (TTY) READ WITH TIME OUT 
IO.RDB 001200 002 200 (CARD READER) READ BINARY MODE 
IO.SCF 001200 002 200 (DISK) SHADOW COpy FUNCTION 
IO.RHD 001010 002 010 ( COMM.) READ, STRIP SYNC 
IO.RNS 001020 002 020 ( COMM.) READ, DON'T STRIP SYNC 
IO.CR'C 001040 002 040 ( COMM.) READ, DON'T CLEAR CRC 
IO.RPB 001040 002 040 (DISK) READ PHYSICAL BLOCK 
IO.RLC 001020 002 020 (DISK,MAGTAPE) READ LOGICAL 

WI READCHEC;**-l 
IO.ATA 001410 003 010 (TTY) ATTACH WITH AST'S 
IO.GTS 002400 005 000 (TTY) GET TERMINAL SUPPORT 

CHARACTERISTICS 
IO.R1C 002400 005 000 (AFC,AD01,UDC) READ SINGLE CHANNEL 
IO.INL 002400 005 000 (COMM. ) INITIALIZATION FUNCTION 
IO.TRM 002410 005 010 (COMM.) TERMINATION FUNCTION 
IO.RWD 002400 005 000 (MAGTAPE,DECTAPE) REWIND 

A-65 



IO.SPB 
IO.RPL 

IO.SPF 
IO.STC 
IO.SMD 
IO.SEC 
IO.RWU 
IO.SMO 
IO.HNG 
IO.HLD 
IO.BRK 
IO.RBC 

IO.MOD 
IO.HDX 
IO.FDX 
IO.SYN 
IO.EOF 
IO.ERS 
IO.DSE 
IO.RDF 
IO.RTC 
IO.SAO 
IO.SSO 
IO.RPR 
IO.MSO 
IO.RTT 
IO.SLO 
IO.MLO 
IO.LED 
IO.SDO 
IO.SDI 
IO.SCS 
IO.REL 
IO.MCS 
IO.ADS 
IO.CCI 
IO.LOD 
IO.MDI 
IO.DCI 
IO.PAD 
HT.RPP 
IO.XMT 

002420 005 
002420 005 

002440 005 
002500 005 
002510 005 
002520 005 
002540 005 
002560 005 
003000 006 
003100 006 
003200 006 
003000 006 

003000 006 
003010 006 
003020 006 
003040 006 
003000 006 
003020 006 
003040 006 
003110 006 
003400 007 
004000 010 
004400 011 
004400 011 
005000 012 
005001 012 
005400 013 
006000 014 
012000 024 
012400 025 
013000 026 
013000 026 
013400 027 
013400 027 
014000 030 
014000 030 
014000 030 
014400 031 
014400 031 
014400 031 
000010 000 
014400 031 

IO.XNA 014410 031 
IO.INI 014400 031 
IO.HIS 015000 032 
IO.RCI 015000 032 
IO.RCV 015000 032 

020 
020 

040 
100 
110 
120 
140 
160 
000 
100 
200 
000 

000 
010 
020 
040 
000 
020 
040 
110 
000 
000 
000 
000 
000 
001 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
010 
000 

010 
000 
000 
000 
000 

QIOSY$ 

(MAGTAPE) SPACE "N" BLOCKS 
(DISK) REPLACE LOGICAL BLOCK 

(RESECTOR) 
(MAGTAPE) SPACE !'N" EOF MARKS 
SET CHARACTERISTIC 
(FLOPPY DISK) SET MEDIA DENSITY 
SENSE CHARACTERISTIC 
(MAGTAPE,DECTAPE) REWIND AND UNLOAD 
(MAGTAPE) MOUNT & SET CHARACTERISTICS 
(TTY) HANGUP DIAL-UP LINE 
(TMS) HANGUP BUT LEAVE LINE ON HOLD 
(PRO/TTY) SEND SHORT OR LONG BREAK 
READ MULTICHANNELS (BUFFER DEFINES 

CHANNELS) 
(COMM.) SETMODE FUNCTION FAMILY 
(COMM.) SET UNIT HALF DUPLEX 
(COMM.) SET UNIT FULL DUPLEX 
(COMM.) SPECIFY SYNC CHARACTER 
(MAGTAPE) WRITE EOF 
(MAGTAPE) ERASE TAPE 
(MAGTAPE) DATA SECURITY ERASE 
(DISK) READ DISKETTE FORMAT 
READ CHANNEL - TIME BASED 
(UDC) SINGLE CHANNEL ANALOG OUTPUT 
(UDC) SINGLE SHOT, SINGLE POINT 
(TTY) READ WITH PROMPT 
(UDC) SINGLE SHOT, MULTI-POINT 
(TTY) READ WITH TERMINATOR TABLE 
(UDC) LATCHING, SINGLE POINT 
(UDC) LATCHING, MULTI-POINT 
(LPS11) WRITE LED DISPLAY LIGHTS 
(LPS11) WRITE DIGITAL OUTPUT REGISTER 
(LPS11) READ DIGITAL INPUT REGISTER 
(UDC) CONTACT SENSE, SINGLE POINT 
(LPS11) WRITE RELAY 
(UDC) CONTACT SENSE, MULTI-POINT 
(LPS11) SYNCHRONOUS A/D SAMPLING 
(UDC) CONTACT INT - CONNECT 
(LPAll) LOAD MICROCODE 
(LPSll) SYNCHRONOUS DIGITAL INPUT 
(UDC) CONTACT INT - DISCONNECT 
(PSI) DIRECT CONTROL OF X.29 PAD 
(PSI) RESET PAD PARAMETERS SUBFUNCTION 
(COMM.) TRANSMIT SPECIFIED BLOCK WITH 

ACK 
(COMM.) TRANSMIT WITHOUT ACK 
(LPA11) INITIALIZE 
(LPSll) SYNCHRONOUS HISTOGRAM SAMPLING 
(UDC) CONTACT INT - READ 
(COMM.) RECEIVE DATA IN BUFFER 

SPECIFIED 

A-66 



IO.CLK 
IO.CSR 
IO.MDO 
IO.CTI 
IO.CON 

IO.ORG 

IO.ANS 

IO.STA 

IO.DTI 
IO.DIS 

IO.MDA 
IO.DPT 

IO.RTI 
IO.CTL 
IO.STP 

IO.SWI 
IO.CNT 

IO.ITI 

015000 032 
015000 032 
015400 033 
015400 033 
015400 033 

015410 033 

015420 033 

015400 033 

016000 034 
016000 034 

016000 034 
016010 034 

016400 035 
016400 035 
016400 035 

016400 035 
017000 036 

017000 036 

000 
000 
000 
000 
000 

010 

020 

000 

000 
000 

000 
010 

000 
000 
000 

000 
000 

000 

QIOSY$ 

(LPAll) START CLOCK 
(BUS SWITCH) READ CSR REGISTER 
(LPSll) SYNCHRONOUS DIGITAL OUTPUT 
(UDC) TIMER - CONNECT 
(COMM.) CONNECT FUNCTION 
(VTll) - CONNECT TASK TO DISPLAY 

PROCESSOR 
(BUS SWITCH) CONNECT TO SPECIFIED BUS 
(COMM./PRO) DIAL TELEPHONE AND ORIGINATE 
(COMM.) INITIATE CONNECTION IN 

ORIGINATE MODE 
(COMM.) INITIATE CONNECTION IN 
ANSWER MODE 
(LPAll) START DATA TRANSFER 
(XJDRV) - SHOW STATE 
(UDC) TIMER - DISCONNECT 
(COMM.) DISCONNECT FUNCTION 
(VTll) - DISCONNECT TASK FROM DISPLAY 

PROCESSOR 
(BUS SWITCH) SWITCHED BUS DISCONNECT 
(LPSll) SYNCHRONOUS D/A OUTPUT 
(BUS SWITCH) DISCONNECT TO SPECIF 

PORT NO. 
(UDC) TIMER - READ 
(COMM.) NETWORK CONTROL FUNCTION 
(LPSll,LPAll) STOP IN PROGRESS 

FUNCTION 
(VTll) - STOP DISPLAY PROCESSOR 
(BUS SWITCH) SWITCH BUSSES 
(VTll) - CONTINUE DISPLAY PROCESSOR 
(XJDRV) - SHOW COUNTERS 
(UDC) TIMER - INITIALIZE 

PRO 300 SERIES BITMAP FU~CTIONS 

IO.RSD 
IO.WSD 

NOTE: THESE FUNCTIONS ARE FOR DEC USE ONLY AND ARE SUBJECT 
TO CHANGE 

006030 014 
005410 013 

SO. TXT 
SD.GDS 

030 
010 

READ SPECIAL DATA 
WRITE SPECIAL DATA 

o TEXT DATA TYPE FOR SPECIAL DATA 
1 GIDIS DATA TYPE FOR SPECIAL DATA 

PROFESSIONAL 300 BISYNC DRIVER (XJDRV) FUNCTIONS 

SB.PRT 001420 003 020 ATTACH AS A PRINTER 
SB.CLR 017010 036 010 CLEAR COUNTERS (IO.CNT 

SUBFUNCTION) 
SB.RDY 015410 033 010 SET DEVICE STATE READY (IO.STA SUBFUNC) 

A-67 



SB.NRD 

IO.LBK 

SB.CBL 
SB.CLK 

015420 033 

016400 035 

016410 035 
016420 035 

020 

000 

010 
020 

; COMMUNICATIONS FUNCTIONS 
; 

IO.CPR 
IO.CAS 
IO.CRJ 
IO.CBO 
IO.CTR 
IO.GNI 
IO.GLI 
IO.GLC 
IO.GRI 
IO.GRC 
IO.GRN 
IO.CSM 
IO.CIN 
IO.SPW 
IO.CPW 
IO.NLB 
IO.DLB 

015410 033 
015420 033 
015440 033 
015510 033 
015610 033 
016410 035 
016420 035 
016430 035 
016440 035 
016450 035 
016460 035 
016470 035 
016500 035 
016510 035 
016520 035 
016530 035 
016540 035 

ICS/ICR I/O FUNCTIONS 

IO.CTY 
IO.DTY 
IO.LDI 
IO.UDI 
IO.LTI 
IO.UTI 
IO.LTY 
IO.UTY 
IO.LKE 
IO.UER 
IO.NLK 
IO.ONL 
IO.FLN 
IO.RAD 

003400 007 
006400 015 
007000 016 
011410 023 
007400 017 
011420 023 
010000 020 
011430 023 
012000 024 
011440 023 
011400 023 
017400 037 
012400 025 
010400 021 

IPll I/O FUNCTIONS 

IO.MAO 
IO.LEI 

003410 007 
007410 017 

010 
020 
040 
110 
210 
010 
020 
030 
040 
050 
060 
070 
100 
110 
120 
130 
140 

000 
000 
000 
010 
000 
020 
000 
030 
000 
040 
000 
000 
000 
000 

010 
010 

QIOSY$ 

SET DEVICE STATE NOT READY 

PERFORM LOOPBACK TEST 

PERFORM CABLE LOOPBACK TEST 
DEVICE PERFORMS LINE CLOCKING 

CONNECT NO TIMEOUTS 
CONNECT WITH AST 
CONNECT REJECT 
BOOT CONNECT 
TRANSPARENT CONNECT 
GET NODE INFORMATION 
GET LINK INFORMATION 
GET LINK INFO CLEAR COUNTERS 
GET REMOTE NODE INFORMATION 
GET REMOTE NODE ERROR COUNTS 
GET REMOTE NODE NAME 
CHANGE SOLO MODE 
CHANGE CONNECTION INHIBIT 
SPECIFY NETWORK PASSWORD 
CHECK NETWORK PASSWORD. 
NSP LOOPBACK 
DDCMP L90PBACK 

CONNECT TO TERMINAL INTERRUPTS 
DISCONNECT FROM TERMINAL INTERRUPTS 
LINK TO DIGITAL INTERRUPTS 
UNLINK FROM DIGITAL INTERRUPTS 
LINK TO COUNTER MODULE INTERRUPTS 
UNLINK FROM COUNTER MODULE INTERRUPTS 
LINK TO REMOTE TERMINAL INTERRUPTS 
UNLINK FROM REMOTE TERMINAL INTERRUPTS 
LINK TO ERROR INTERRUPTS 
UNLINK FROM ERROR INTERRUPTS 
UNLINK FROM ALL INTERRUPTS 
UNIT ONLINE 
UNIT OFFLINE 
READ ACTIVATING DATA 

MULTIPLE ANALOG OUTPUTS 
LINK EVENT FLAGS TO INTERRUPT 

A-68 



QIOSY$ 

IO.RDD 010010 020 010 READ DIGITAL DATA 
IO.RMT 010020 020 020 READ MAPPING TABLE 
IO.LSI 011000 022 000 LINK TO DSI INTERRUPTS 
IO.UEI 011450 023 050 UNLINK EVENT FLAGS 
IO.USI 011460 023 060 UNLINK FROM OSI INTERRUPTS 
IO.CSI 013000 026 000 CONNECT TO DSI INTERRUPTS 
IO.DSI 013400 027 000 DISCONNECT FROM DSI INTERRUPTS 
IO.RAM 015000 032 000 READ ANALOG MAPPING TABLES 

PCLll I/O FUNCTIONS 

IO.ATX 000400 001 000 ATTEMPT TRANSMISSION 
IO.ATF 001000 002 000 ACCEPT TRANSFER 
IO.CRX 014400 031 000 CONNECT FOR RECEPTION 
IO.DRX 015000 032 000 DISCONNECT FROM RECEPTION 
IO.RTF 015400 033 000 REJECT TRANSFER 

DEFINE THE GENERAL USER-MODE I/O QUALIFIER BIT. 
; 

IQ.UMD 000004 000 004 USER MODE DIAGNOSTIC REQUEST 

; DEFINE USER-MODE DIAGNOSTIC FUNCTIONS. 

IO.HMS 004000 010 000 (DISK) HOME SEEK OR RECALIBRATE 
IO.BLS 004010 010 010 (DISK) BLOCK SEEK 
IO.OFF 004020 010 020 (DISK) OFFSET POSITION 
IO.RDH 004030 010 030 (DISK) READ DISK HEADER 
IO.WDH 004040 010 040 (DISK) WRITE DISK HEADER 
IO.WCK 004050 010 050 (DISK) WRITECHECK (NON-TRANSFER) 
IO.RNF 004060 010 060 (DECTAPE) READ BLOCK NUMBER FORWARD 
IO.RNR 004070 010 070 (DECTAPE) READ BLOCK NUMBER REVERSE 
IO.RDS 004070 010 070 (OISK-RX50) RETURN DISKETTE SPEED 
IO.LPC 004100 010 100 (MAGTAPE) READ LONGITUDINAL PARITY 

CHAR 
IO.~TD 004120 010 120 (DISK) READ TRACK DESCRIPTOR 
IO.WTD 004130 010 130 (DISK) WRITE TRACK DESCRIPTOR 
IO.TDD 004140 010 140 (DISK) WRITE TRACK DESCRIPTOR 

DISPLACED 
IO.DGN 004150 010 150 DIAGNOSE MICRO PROCESSOR FIRMWARE 
IO.WPD 004160 010 160 (DISK) WRITE PHYSICAL BLOCK 
IO.RPD 004170 010 170 (DISK) READ PHYSICAL BLOCK 
IO.CER 004200 010 200 (DISK) READ CE BLOCK 
IO.CEW 004210 010 210 (DISK) WRITE CE BLOCK 

A-69 



SCBDF$ 

A.21 SCBDF$ 

i+ 
STATUS CONTROL BLOCK 

THE STATUS CONTROL BLOCK (SCB) DEFINES THE STATUS OF A DEVICE 
CONTROLLER. THERE IS ONE SCB FOR EACH CONTROLLER IN A SYSTEM. 
THE SCB IS POINTED TO BY UNIT CONTROL BLOCKS. NORMALLY, AN 
SCB EXISTS FOR EACH "PROCESS" THAT A DRIVER CAN POSSIBLY HAVE 
CONCURRENTLY ACTIVE. FOR EXAMPLE, A DISK THAT SUPPORTS 
OVERLAPPED SEEK OPERATIONS REQUIRES THAT THERE EXIST A 
SEPARATE SCB FOR EACH UNIT THAT CAN BE ACTIVE. IN THIS CASE, 
THE FORKBLOCK IN THE SCB IS USED TO SUSPEND THE DRIVER PROCESS 
DURING GTPKT AND IS LINKED INTO THE CONTROLLER REQUEST QUEUE 
WHOSE LISTHEAD IS IN THE KRB OF THE ASSIGNED CONTROLLER 
(USUALLY STATIC S.KRB). 

IN ADDITION TO CONTAINING THE DRIVER'S PROCESS CONTEXT AND 
; DEFINING THE STATE OF THE CURRENT CONTROLLER STATE (NOT 

NECESSARILY THE PHYSICAL CONTROLLER STATE) A LISTHEAD IS 
MAINTAINED OF ALL PENDING I/O PACKETS TO BE PROCESSED. 

i -
. IF NB 

.=0 
000000 

000004 
000006 
000010 
000012 
000014 
000016 
000020 
000021 
000022 
000023 
000024 
000026 
000030 

000031 

000032 

000034 

SYSDF 

.ASECT 

S. LHD: . BLKW 

S.FRK: .BLKW 
.BLKW 
.BLKW 
.BLKW 

S.KS5: .BLKW 
S . PKT : . BLKW 
S.CTM: .BLKB 
S.ITM: .BLKB 
S . STS : . BLKB 
S.ST3: .BLKB 
S. ST2 : . BLKW 
S.KRB: .BLKW 
S . RCNT : . BLKB 

S . ROFF: . BLKB 

S . EMB : . BLKW 

S . KTB : . BLKW 

.PSECT 

2 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1 

1 

1 

iPENDING I/O REQUEST (PACKET) QUEUE 
LISTHEAD 

iFORK BLOCK LINK WORD 
iFORK-PC 
iFORK-R5 
iFORK-R4 
iFORK KISAR5 
iADDRESS OF CURRENT I/O PACKET 
iCURRENT TIMEOUT COUNT 
iINITIAL TIMEOUT COUNT 
iSTATUS (O=FREE, NE O=BUSY) 
iSTATUS EXTENSION BYTE 
iSTATUS EXTENSION 
iADDRESS OF KRB 
iNUMBER OF REGISTERS TO COpy 
;(NOT IN USE) 
iOFFSET TO FIRST DEV REG TO COPY 
i (NOT IN USE) 
iERROR MESSAGE BLOCK POINTER 
; (NOT IN USE) 
iSTART OF MULTI-ACCESS KRBS (OPTIONAL) 

A-70 



SCBDF$ 

.IFF 

i+ 
i STATUS CONTROL BLOCK STATUS EXTENSION BIT DEFINITIONS 
i-

i+ 

S2.EIP=1 
S2.ENB=2 
S2.LOG=4 
S2.MAD=10 
S2.LDS=40 

S2.0PT=100 

S2.CON=200 
S2.0Pl=400 
S2.0P2=1000 

S2.ACT=2000 

S2.XHR=4000 

iERROR IN PROGRESS (l=YES) 
iERROR LOGGING ENABLED (O=YES) 
iERROR LOGGING SUPPORTED (l=YES) 
iMULTIACCESS DEVICE (l=YES) 
iLOAD SHARING ENABL. (l=YES, MUST BE 
iO ON P/OS) 
iSUPPORTS EXECUTIVE BLOCK CHECKING 
i (MAX LBN) 
iSUPPORTS ACCOUNTING STATISTICS 
iAND MIGHT SUPPORT SEEK OPTIMIZATION 
i(DEPENDS ON S3.0PT) 
iSCB AND KRB ARE CONTIGUOUS (l=YES) 
iTHESE TWO BITS DEFINE THE OPTIMIZATION 
iMETHOD. 
iOP2,OP1=O,0 INDICATES NEAREST CYLINDER 
iOP2,OP1=0,1 INDICATES ELEVATOR 
iOP2,OP1=1,0 INDICATES C-SCAN 
;OP2,OP1=1,1 RESERVED 
iDRIVER HAS OPERATION OUTSTANDING 
i(l=YES) 
iEXTERNAL HEADER AND NEW I.LN2 SUPPORT 
;(0 FOR FILES-ll OR ANSI MAGTAPE ACPS) 

i STATUS CONTROL BLOCK STATUS EXTENSION (S.ST3) DEFINITIONS 
i-

i+ 

S3.DRL=1 

S3.NRL=2 

S3.SIP=4 
S3.ATN=10 

S3.SLV=20 
S3.SPA=40 
S3.SPB=100 
S3.0PT=200 
S3.SPU=S3.SPA!S3.SPB 

iMULTI-ACCESS DRIVE IN RELEASED STATE 
i(l=YES) 
iDRIVER SHOULDN'T RLS MULTI-ACCESS 
iDRIVE (l=YES) 
iSEEK IN PROGRESS (l=YES) 
iDRIVER MUST CLEAR ATTENTION BIT 
i(l=YES) 
iDEVICE USES SLAVE UNITS (l=YES) 
iPORT 'A' SPINNING UP 
iPORT SPINNING UP 
iSEEK OPTIMIZATIONS ENABLED (l=YES) 
i.OR. OF PORT SPINUP BITS 

i KRB ADDRESS TABLE (S.KTB) PORT OFFLINE FROM THIS SCB FLAG. 
i -

KP.OFL=l iKRB ADDRESS POINTS TO OFFLINE PORT (l=YES) 

A-71 



SCBDF$ 

;+ 
MAPPING ASSIGNMENT BLOCK (FOR UNIBUS MAPPING REGISTER 

i ASSIGNMENT) .. OF HISTORICAL INTEREST ONLY ON PIOS AND 
; QBUS PROCESSORS . -, 

.ASECT 
.=0 
M.LNK: .BLKW 
M.UMRA: .BLKW 
M.UMRN: .BLKW 
M.UMVL: .BLKW 

M.UMVH: .BLKB 
M.BFVH: .BLKB 

M.BFVL: .BLKW 

M.LGTH= . 
. ENDC 

.PSECT 

1 
1 
1 
1 

1 
1 

1 

;LINK WORD 
;ADDRESS OF FIRST ASSIGNED UMR 
;NUMBER OF UMR'S ASSIGNED * 4 
;LOW 16 BITS MAPPED BY 1ST ASSIGNED 
;UMR 
;HIGH 2 BITS MAPPED IN BITS 4 AND 5 
;HIGH 6 BITS OF PHYSICAL BUFFER 
;ADDRESS 
iLOW 16 BITS OF PHYSICAL BUFFER 
iADDRESS 
iLENGTH OF MAPPING ASSIGNMENT BLOCK 

A-72 



A.22 TTSYM$ 

DECIMAL OCTAL 

TC.WID 
TC.LPP 
TC.RSP 
TC.XSP 
TC.STB 
TC. ISL 
TC.RAT 
TC.TTP 
TC.SCR 
TC.SCP 
TC.HFL 
TC.VFL 
TC.NL 
TC.SFF 
TC.HFF 
TC.LVF 
TC.HHT 
TC.NST 
TC.BSP 
TC.ACR 
TC.SMR 
TC.SMP 

TC.SMO 
TC.CCF 
TC.ALT 
TC. IMG 
TC.NKB 
TC.NPR 
TC.ESQ 
TC.LCP 
TC.PAR 
TC.EPA 
TC.DLU 
TC.BLK 
TC,. FRM 
TC.HLD 
TC.TAP 
TC.CEQ 
TC.NEC 
TC.SLV 
TC.PRI 
TC.UCO 
TC.UCl 
TC.UC2 
TC.UC3 
TC.UC4 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 
22. 

23. 
24. 
25. 
26. 
27. 
28. 
29. 
30. 
31. 
32. 
33. 
34. 
35. 
36. 
37. 
38. 
39. 
40. 
41. 
42. 
43. 
44. 
45. 
46. 

1 
2 
3 
4 
5 
6 
7 
10 
11 
12 
13 
14 
15 
16 
17 
20 
21 
22 
23 
24 
25 
26 

27 
30 
31 
32 
33 
34 
35 
36 
37 
40 
41 
42 
43 
44 
45 
46 
47 
50 
51 
52 
53 
54 
55 
56 

TTSYM$ 

LINE WIDTH 
LINES PER PAGE 
RECEIVER SPEED 
TRANSMITTER SPEED 
TWO STOP BITS 
SUBLINE ON INTERFACE 
READ-AHEAD TYPE 
TERMINAL TYPE 
SCRIPT LINE 
SCOPE 
HORIZONTAL FILL REQUIREMENT 
VERTICAL FILL 
ASCII NEWLINE TERMINAL 
SIMULATE FORMFEED AND VERTAB 
HARDWARE FORMFEED AND VERTAB 
LA36 VERTICAL FILL 
HARDWARE HORIZONTAL TAB 
NON-STANDARD HARDWARE TAB 
HARDWARE BACKSPACE 
AUTOMATIC CARRIAGE RETURN REQUIRED 
SMALL CHARACTER INPUT ENABLED 
SMALL CHARACTER INPUT REQUIRED 
(/LOWERCASEINPUT) 
SMALL CHARACTER OUTPUT ENABLED 
CTRL/C FLUSHES TYPEAHEAD AND READ 
ALTERNATIVE ALTMODE RECOGNITION 
lAS - MESSAGES INHIBITED 
NO KEYBOARD 
NO PRINTER 
ESCAPE SEQUENCE RECOGNITION 
LOCAL COpy LINE 
PARITY RECOGNITION/GENERATION REQUIRED 
EVEN PARITY 
DIALUP LINE 
BLOCK MODE TERMINAL 
FORMS MODE TERMINAL 
TERMINAL HOLD MODE 
LOW SPEED PAPER TAPE READER 
COMPATIBLE ESCAPE SEQUENCES 
TERMINAL IN NO-ECHO MODE 
TERMINAL IN SLAVE MODE 
TERMINAL IS PRIVILEGED 
USER CHARACTERISTIC 0 
USER CHARACTERISTIC 1 
USER CHARACTERISTIC 2 
USER CHARACTERISTIC 3 
USER CHARACTERISTIC 4 

A-73 



TC.UC5 
TC.UC6 
TC.UC7 
TC.UC8 
TC.UC9 
TC.FDX 
TC.BIN 

TC.REM 
TC.8BC 
Tc.p8B 
TC.TBF 
TC.CTS 
TC.ANS 
TC.CSQ 
TC.CTC 
TC.ASP 
TC.ABD 
TC.TBS 
TC.TBM 
TC.NBR 
TC.ACD 
TC.ARC 
TC.TRN 
TC.XMM 
TC.FSZ 
XT.DLM 
XT.DMD 
XT.DTT 
XT.DIT 
XT.MTP 
XT.SDE 
XT.TAK 
XT.GOV 

XT.TSP 
XT.TTO 
TC.ANI 
TC.AVO 
TC.DEC 
TC.EDT 
TC.RGS 
TC.INT 

TC.TLC 
TC.MAX 

i+ 

47. 
48. 
49. 
50. 
51. 
52. 
53. 

54. 
55. 
56. 
57. 
58. 
59. 
60. 
61. 
62. 
63. 
64. 
65. 
66. 
67. 
68. 
69. 
70. 
71. 
72. 
73. 
74. 
75. 
76. 
77. 
78. 
79. 

80. 
81. 
82. 
83. 
84. 
85. 
86. 
87. 

88. 
89. 

57 
60 
61 
62 
63 
64 
65 

66 
67 
70 
71 
72 
73 
74 
75 
76 
77 
100 
101 
102 
103 
104 
105 
106 
107 
110 
111 
112 
113 
114 
115 
116 
117 

120 
121 
122 
123 
124 
125 
126 
127 

130 
131 

TTSYM$ 

USER CHARACTERISTIC 5 
USER CHARACTERISTIC 6 
USER CHARACTERISTIC 7 
USER CHARACTERISTIC 8 
USER CHARACTERISTIC 9 
LINE HAS FULL DUPLEX CAPABILITY 
TERMINAL HAS BINARY INPUT (DO NOT 
RECOGNIZE IMMEDIATE CONTROL CHARS) 
TERMINAL IS REMOTE (CONNECTED VIA MODEM) 
ACCEPT 8-BIT CHARACTERS 
PASS 8 BITS ON READ PASS ALL 
TYPEAHEAD BUFFER CHARACTER COUNT 
CTRL/S STATE 
ESCAPE SEQUENCES ARE ANSI FORMAT 
ONLY PASS CTRL/S,Q ON READ PASS ALL 
ONLY PASS CTRL/S,Q,C ON REAL PASS ALL 
REMOTE ANSWER SPEED 
AUTO-BAUD SPEED DETECTION 
TYPEAHEAD BUFFER SIZE 
TYPEAHEAD BUFFER MODE (TASK OR CLI) 
DON'T BROADCAST TO THIS TERMINAL 
ANCILLARY CONTROL DRIVER 
AUTOANSWER RING COUNT 
SET DIALING TRANSLATE TABLE 
MAINTENANCE MODE 
FRAME SIZE, DATA BITS + PARITY BIT (IF ANY) 
DIALING MODE (TONE, PULSE, ... ) 
DATA MODE (SERIAL, CODEC, VOICE, DTMF) 
DTMF TONE LENGTH (10MS MULTIPLES) 
DTMF INTERDIGIT LENGTH 
MODEM TYPE 
SET DTMF ESCAPE SEQUENCE 
AUX KEYBOARD INTERPRETATION EN/DISABLE 
GO VOICE (I.E. DELAY LOSS OF CARRIER 
DISCONNECT) 
MONITOR LINE (TURN TMS SPEAKER ON/OFF) 
HARDWARE SILENCE TIMEOUT (SECONDS) 
ANSI CRT TERMINAL 
VT100-FAMILY TERMINAL DISPLAY 
DIGITAL CRT TERMINAL 
LOCAL TERMINAL EDITING 
REGIS GRAPHICS 
HANDLE AC (OR INT-DO) DIFFERENTLY FOR IO.RTT 
FOR P/OS 
INDICATE CLI SHOULD GET AC NOTIFICATION 
THIS MUST BE ONE GREATER THAN THE HIGHEST 
VALUE USED FOR A SYMBOL 

; SET CHARACTERISTIC ERROR CODES 
; -

A-74 



SE. ICN 
SE.FIX 
SE.BIN 
SE.VAL 
SE.TER 
SE.SPD 
SE.SPL 
SE.PAR 
SE.LPR 
SE.NSC 

SE.UPN 
SE.NIH 

i+ 

1. 
2. 
3. 
4. 
5. 
6. 
7 . 
8. 
9. 
10. 

11. 
12. 

1 
2 
3 
4 
5 
6 
7 
10 
11 
12 

13 
14 

TTSYM$ 

ILLEGAL CHARACTERISTIC NAME 
ATTEMPT TO CHANGE FIXED CHARACTERISTIC 
ILLEGAL VALUE FOR BINARY CHARACTERISTIC 
ILLEGAL VALUE FOR NON-BINARY CHARACTERISTIC 
ILLEGAL TERMINAL TYPE 
ILLEGAL SPEED FOR INTERFACE 
ILLEGAL SPLIT SPEED FOR INTERFACE 
ILLEGAL PARITY TYPE FOR INTERFACE 
OTHER ILLEGAL LINE PARAMETERS 
INTERFACE DOES NOT HAVE SETTABLE 
CHARACTERISTICS 
NO SPACE TO SAVE DEFAULT CHARACTERISTICS 
CHARACTERISTIC NOT ASSEMBL~D IN HANDLER 

i NOW THE SUBFUNCTION CODES FOR THE SET CHARACTERISTICS FUNCTION 
i -

SF.SSC 
SF.SMC 
SF.RDF 
SF.STT 
SF.STS 
SF.GSC 
SF.GMC 
SF.GAC 
SF.SAC 

SF.DEF 

i+ 
i NOW 
i -

5.0 
S.50 
S.75 
S.100 
S.110 
S.134 
S.150 
S.200 
S.300 
S.600 
S.1200 
S.1800 
S.2000 
S.2400 
S.3600 
S.4800 

24001020 
24001040 
2400 060 
2400 100 
2400 120 
2400 140 
2400 160 
2400 200 
2400 220 

010 

THE SPEED TYPES 

1 1 . 
2 2. 
3 3 . 
4 4. 
5 5 . 
6 6. 
7 7 . 
8 10. 
9 11. 
10 12. 
11 13. 
12 14. 
13 15. 
14 16. 
15 17. 
16 20. 

SET SINGLE CHARACTERISTIC 
SET MULTIPLE CHARACTERISTICS 
RESTORE DEFAULT 
SET TERMINAL TYPE 
SET TERMINAL TYPE AND SPEED 
GET SINGLE CHARACTERISTIC 
GET MULTIPLE CHARACTERISTICS 
GET ALL CHARACTERISTICS 
SET ALL CHARACTERISTICS 

SET DEFAULT CHARACTERISTICS 

A-75 



S.7200 17 
S.9600 18 
S.EXTA 19 
S.EXTB 20 
S.19.2 21. 
S.38.4 22. 

21. 
22. 
23. 
24. 
25 
26 

i+ 
i NOW THE TERMINAL TYPES 
i -

T.UNKO 
T.AS33 
T.KS33 
T.AS35 
T.L30S 
T.L30P 
T.LA36 
T.VT05 
T.VT50 
T.VT52 
T. VTS'5 
T.VT61 
T.L180 
T.VI00 
T.L120 
T.SCRO 
T.LA12 
T.LI00 
T.LA34 
T.LA38 
T.VI0l 
T.VI02 
T.VI05 
T.V125 
T.V131 
T.V132 
T.LA50 
T.LQPl 
T.LQP2 
T.BMPl 
T.USRO 
T.USRl 
T.USR2 
T.USR3 
T.USR4 

O. 0 
1. 1 
2. 2 
3. 3 
4. 4 
5. 5 
6. 6 
7. 7 
8. 10 
9. 11 
10. 12 
11. 13 
12. 14 
13. 15 
14. 16 
15. 17 
16. 20 
17. 21 
18. 22 
19. 23 
20. 24 
21. 25 
22. 26 
23. 27 
24. 30 
25. 31 
26. 32 
27. 33 
28. 34 
29. 35 
128. 200 
T.USRO+l 
T.USR1+1 
T.USR2+1 
T.USR3+1 

; DIAL MODES 

XT.DIA 
XT.DTM 

o 
1 

o 
1 

TTSYM$ 

19.2KBPS 
38.4KBPS 

UNKNOWN (UNSPECIFIED) 
ASR33 
KSR33 
ASR35 
LA30S 
LA30P 
LA36 
VT05 
VT50 
VT52 
VT55 
VT61 
LA180S 
VT100 
LA120 
SCRIPT LINE 
LA12 
LAI00 
LA34 
LA38 
VT101 
VT102 
VT105 
VT125 
VT131 
VT132 
LA50 
LQP I 
LQP II 
BIT MAP TERMINAL #1 (ORIGINAL PRO 350) 
USER TERMINAL 0 
USER TERMINAL 1 
USER TERMINAL 2 
USER TERf1INAL 3 
USER TERMINAL 4 

DIAL PULSE, 10 PULSES PER SEC 
DTMF 

A-76 



XT.D20 
XT.OHS 

2 
3 

; DATA MODES 

XT.VOI 
XT.SER 
XT.ENC 
XT.DTD 

6 
1 
2 
3 

; MODEM TYPE 

XTM.NO 
XTM.FS 
XTM.PS 
XTM.21 
XTM.Ml 
XTM.M2 
XTM.US 

-1. 
o 
1 
5 
6 
7 
10. 

2 
3 

o 
1 
2 
3 

177777 
o 
1 
5 
6 
7 
12 

; UNSOLICITED EVENT TYPES 

XTU.UI 
XTU.CD 
XTU.CL 
XTU.DR 
XTU.OF 
XTU.ON 
XTU.RI 
XTU.TU 
XTU.TD 

o 
2 
4 
6 
8. 
10. 
12. 
14. 
16. 

o 
2 
4 
6 
10 
12 
14 
16 
20 

TTSYM$ 

DIAL PULSE, 20 PULSES PER SEC 
OFF-HOOK SERVICE (EXTERNAL FIXED NUMBER) 

VOICE TELEPHONE (NO DATA) 
SERIAL DATA 
ENCODED VOICE 
DTMF DATA 

NO MODEM, HARD-WIRED LINE 
US FSK, 0 .. 300 BAUD BELL 103 
US DPSK, 1200 BAUD BELL 212 
CCITT V.21, 0 .. 300 BAUD EUROPEAN 
CCITT V.23 MODE 1, 75/0 .. 600 
CCITT V.23 MODE 2, 75/0 .. 1200 
MICRO-SWITCH 

UNSOLICITED INPUT 
CARRIER DETECT NOTIFICATION 
ARRIER LOSS 
DTMF ESCAPE SEQUENCE RECEIVED 
XOFF RECEIVED 
XON RECEIVED 
RING 
TELSET OFF HOOK 
TELSET ON HOOK 

BITS FOR RETURN FROM 'GET TERMINAL SUPPORT' 

Fl.ACR 
Fl.BTW 
Fl'. BUF 
Fl.UIA 
Fl.CCO 
Fl.ESQ 
Fl.HLD 
Fl.LWC 
Fl.RNE 
Fl.RPR 
F1.RST 
F1.RUB 
F1.SYN 

BIT MASK 

000001 
000002 
000004 
000010 
000020 
000040 
000100 
000200 
000400 
001000 
002000 
004000 
010000 

AUTO CR/LF ON LONG LINES 
BREAK THROUGH WRITE 
INTERMEDIATE BUFFERING 
UNSOLICITED INPUT AST'S 
CANCEL CTRL-O ON WRITE 
ESCAPE SEQUENCE SUPPORT 
HOLD SCREEN SUPPORT 
LOWER CASE CONVERSION 
READ NO ECHO 
READ WITH PROMPT 
READ WITH SPECIAL TERMINATORS 
SCOPE RUBOUTS 
XON/XOFF 

A-77 



Fl.TRW 
Fl.UTB 
Fl.VBF 
F2.SCH 
F2.GCH 
F2.DCH 
F2.DKL 
F2.ALT 
F2.SFF 
F2.CUP 
F2.FDX 

020000 
040000 
100000 
000001 
000002 
000004 
000010 
000020 
000040 
000100 
000200 

TTSYM$ 

TRANSPARENT READ/WRITE 
BUFFERING IN TASK BUFFER 
EXEC BUFFERS ARE VARIABLE LENGTH 
SET CHARACTERISTICS 
GET CHARACTERISTICS 
DUMP/RESTORE CHARACTERISTICS 
HISTORICAL 11D/IAS IO.KIL 
ALTMODE IS ECHOED 
FORMFEED CAN BE SIMULATED 
DEVICE INDEPENDENT CURSOR POSITIONING 
FULL DUPLEX TERMINAL DRIVER 

SUBFUNCTION BITS FOR TERMINAL HANDLER QIO'S. NOTE THAT THIS 
MUST REFLECT THE REALITY IN QIOMAC.MAC. 

TF.RST 
TF.BIN 
TF.RAL 
TF.RNE 
TF.RNC 
TF.XOF 
TF.TMO 
TF.RCU 
TF.WAL 
TF.WMS 
TF.CCO 
TF.WBT 
TF. SYN 
TF.XCC 
TF.NOT 
TF.AST 
TF.ESQ 
TF.UCH 

001 
002 
010 
020 
040 
100 
200 
001 
010 
020 
040 
100 
200 
001 
002 
010 
020 
040 

[IO.RLB/IO.RPR] READ WITH SPECIAL TERMINATORS 
SEND PROMPT AS 'PASS ALL' 
READ PASS ALL 
READ WITH NO ECHO 
READ WITH NO CASE CONVERSION 
SEND XOF AFTER PROMPT 
READ WITH TIMEOUT 

[IO.WLB] RESTORE CURSOR POSITION 
WRITE PASS ALL 
WRITE SUPPRESSIBLE MESSAGE 
CANCEL CTRL/O 
BREAK THROUGH READ 
SYNCHRONOUS WRITE (lAS ONLY) 

[IO.ATT] DO NOT TRAP CTRL/C 
NOTIFICATION ONLY FOR TYPEAHEAD 
SPECIFY AST'S IN ATTACH 
RECOGNIZE ESCAPE SEQUENCES 
CHARACTER AST NOTIFICATION (lAS) 

A-78 



TCBDF$ 

A.23 TCBDF$ 

i+ 
TASK CONTROL BLOCK OFFSET AND STATUS DEFINITIONS 

TASK CONTROL BLOCK 
i -

000000 
000002 
000003 
000004 
000006 
000012 
000016 
000022 
000026 
000030 
000032 
000034 
000036 
000040 
000041 
000044 
000046 
000050 

000052 
000054 
000060 
000062 
000063 
000064 
000065 
000066 
000072 
000074 
000076 
000077 

000100 
000104 
000110 
000112 

000114 
000116 

.ASECT 
.=0 
T.LNK: .BLKW 
T.PRI: .BLKB 
T. IOC: . BLKB 
T.PCBV: .BLKW 
T.NAM: .BLKW 
T.RCVL: .BLKW 
T.ASTL: .BLKW 
T.EFLG: .BLKW 
T.UCB: .BLKW 
T.TCBL: .BLKW 
T . STAT: . B L KW 
T . S T 2 : • B L KW 
T • S T 3 : • B L KW 
T.DPRI: .BLKB 
T.LBN: .BLKB 
T.LDV: .BLKW 
T.PCB: .BLKW 
T.MXSZ: .BLKW 

T.ACTL: .BLKW 
T.ATT: .BLKW 
T • S T 4 : • B L KW 
T . HDLN: . BLKB 

.BLKB 
T.GGF: .BLKB 
T.TIO: .BLKB 
T.EFLM: .BLKW 
T.TKSZ: .BLKW 
T.OFF: .BLKW 

.BLKB 
T.SRCT: .BLKB 

T.RRFL: .BLKW 
T.OCBH: .BLKW 
T.RDCT: .BLKW 
T. SAST: . BLKW 

1 
1 
1 
1 
2 
2 
2 
2 
1 
1 
1 
1 
1 
1 
3 
1 
1 
1 

1 
2 
1 
1 
1 
1 
1 
2 
1 
1 
1 
1 

2 
2 
1 
1 

.IF NB SYSDF 
$$$ = . 

T.RRM: .BLKW 
T • I RM : . B L KW 

1 
1 

iUTILITY LINK WORD 
iTASK PRIORITY 
iI/O PENDING COUNT 
;POINTER TO COMMON PCB VECTOR 
;TASK NAME IN RADIX-50 
iRECEIVE QUEUE LISTHEAD 
iAST QUEUE LISTHEAD 
;TASK LOCAL EVENT FLAGS 1-32 
;UCB ADDRESS FOR PSEUDO DEVICE 'TI' 
iTASK LIST THREAD WORD 
;FIRST STATUS WORD (BLOCKING BITS) 
iSECOND STATUS WORD (STATE BITS) 
;THIRD STATUS WORD (ATTRIBUTE BITS) 
;TASK'S DEFAULT PRIORITY 
iLBN OF TASK LOAD IMAGE 
iUCB ADDRESS OF LOAD DEVICE 
;PCB ADDRESS OF TASK PARTITION 
;MAXIMUM SIZE OF TASK IMAGE (MAPPED 
iONLY) 
;ADDRESS OF NEXT TASK IN ACTIVE LIST 
iATTACHMENT DESCRIPTOR LISTHEAD 
;FOURTH TASK STATUS WORD 
iLENGTH OF HEADER (0 IF HDR IN POOL) 
;UNUSED 
iGROUP GLOBAL USE COUNT FOR TASK 
iBUFFERED I/O IN PROGRESS COUNT 
iTASK WAITFOR MASK/ADDRESS 
;TASK LOAD SIZE IN 32 WD BLOCKS 
iOFFSET TO TASK IMAGE IN PARTITION 
iRESERVED 
iSREF WITH EFN COUNT IN ALL RECEIVE 
iQUEUES 
iRECEIVE BY REFERENCE LISTHEAD 
iOFFSPRING CONTROL BLOCK LISTHEAD 
iOUTSTANDING OFFSPRING AND VT: COUNT 
iSPECIFY AST LISTHEAD 

;REQUIRED RUN MASK (NOT USED) 
;INITIAL RUN MASK SET UP BY INSTALL 

A-79 



000120 

000121 

i+ 

T.CPU: .BLKB 

.=$$$ 

$$$=. 

.BLKB 

1 

1 

TCBDF$ 

i (NOT USED) 
iPROCESSOR NUMBER ON WHICH TASK LAST 
iEXECUTED 
; (UNUSED) 

T.ACN: .BLKW 1 iPOINTER TO ACCOUNTING BLOCK 

.IF NDF A$$CNT iNOT CURRENTLY USED 

.=$$$ 

.ENDC 

$$$=. 

T.ISIZ: .BLKW 1 iSIZE OF ROOT I SPACE 

.=$$$ 

T.LGTH=. 
T.EXT=O 

.IF NDF U$$DAS 

.ENDC 

.IFF 

NDF U$$DAS 

iLENGTH OF TASK CONTROL BLOCK 
iLENGTH OF TCB EXTENSION 

TASK STATUS DEFINITIONS 

; -
FIRST STATUS WORD (BLOCKING BITS) 

TS.EXE=100000 
TS.RDN=40000 
TS.MSG=20000 
TS.CIP=10000 

TS.RUN=4000 
TS.STP=1000 
TS.CKR=100 
TS.BLC=37 

;TASK NOT IN EXECUTION (l=YES) 
iI/O RUN DOWN IN PROGRESS (l=YES) 
;ABORT MESSAGE BEING OUTPUT (l=YES) 
iTASK BLOCKED FOR CHECKPOINT IN PROGRESS 
i(l=YES) 
iTASK IS RUNNING ON ANOTHER PROCESSOR (l=YES) 
iTASK BLOCKED BY CLI COMMAND 
iTASK HAS CKP REQUEST (MP SYSTEM ONLY) (l=YES) 
;INCREMENT BLOCKING COUNT MASK 

A-80 



TCBDF$ 

i+ 
i TASK BLOCKING STATUS MASK 
i-

TS.BLK=177777 

i+ 
i SECOND STATUS WORD (STATE BITS) 
i-

i+ 

T2.AST=100000 
T2.DST=40000 
T2.CHK=20000 

T2.REX=10000 
T2.SEF=4000 
T2.SIO=1000 
T2.AFF=400 
T2.HLT=200 
T2.ABO=100 
T2.STP=40 
T2.STP=20 
T2.SPN=10 
T2.SPN=4 
T2.WFR=2 
T2.WFR=1 

iAST IN PROGRESS (l=YES) 
iAST RECOGNITION DISABLED (l=YES) 
iTASK NOT CHECKPOINTABLE(l=YES,SEE PCB AS 
iWELL) 
iREQUESTED EXIT AST SPECIFIED 
iTASK STOPPED FOR EVENT FLAG(S) (l=YES) 
iTASK STOPPED FOR BUFFERED I/O 
iTASK IS INSTALLED WITH AFFINITY 
iTASK IS BEING HALTED (l=YES) 
iTASK MARKED FOR ABORT (l=YES) 
iSAVED T2.SPN ON AST IN PROGRESS 
iTASK STOPPED (l=YES) 
iSAVED T2.SPN ON AST IN PROGRESS 
iTASK SUSPENDED (l=YES) 
iSAVED T2.WFR ON AST IN PROGRESS 
iTASK IN WAITFOR STATE (l=YES) 

i THIRD STATUS WORD (ATTRIBUTE BITS) 
i -

T3.ACP=100000 
T3.PMD=40000 
T3.REM=20000 
T3.PRV=10000 
T3.MCR=4000 

T3.SLV=2000 
T3.CLI=1000 
T3.RST=400 
T3.NSD=200 
T3.CAL=100 
T3.ROV=40 
T3.NET=20 
T3 .. MPC=10 
T3.CMD=4 
T3.SWS=2 

iANCILLARY CONTROL PROCESSOR (l=YES) 
iDUMP TASK ON SYNCHRONOUS ABORT (O=YES) 
iREMOVE TASK ON EXIT (l=YES) 
iTASK IS PRIVILEGED (l=YES) 
iTASK REQUESTED AS EXTERNAL MCR FUNCTION 
i(l=YES) 
iTASK IS A SLAVE TASK (l=YES) 
iTASK IS A COMMAND LINE INTERPRETER (l=YES) 
iTASK IS RESTRICTED (l=YES) 
iTASK DOES NOT ALLOW SEND DATA 
iTASK HAS CHtCKPOINT SPACE IN TASK IMAGE 
iTASK HAS RESIDENT OVERLAYS 
iNETWORK PROTOCOL LEVEL 
iMAPPING CHANGE WITH OUTSTANDING I/O (l=YES) 
iTASK IS EXECUTING A CLI COMMAND 
iRESERVED FOR SPM-11, (NOT AVAILABLE ON P/OS, 
iTHIS BIT HAS BEEN TEMPORARILY REDEFINED 
iTO DISTINGUISH APPLICATION TASKS 
iFROM SYSTEM TASKS. THE FORMER ARE REMOVED 
iWHEN APPLICATION EXITS. IT IS SOMETIMES 
;REFERRED TO AS THE "BEAT ME" BIT). 

A-81 



TCBDF$ 

T3.GFL=1 iGROUP GLOBAL EVENT FLAG LOCK 

i+ 
i STATUS BIT DEFINITIONS FOR FOURTH STATUS WORD (T.ST4) 
i -

i+ 

T4.VCT=100 
T4.MUT=40 

T4.LDD=20 
T4.PRO=10 
T4.PRV=4 

T4.DSP=2 
T4.SNC=1 

i REQUIRED RUN MASK 
i -

TR.UBT=100000 
TR.UBS=40000 
TR.UBR=20000 
TR.UBP=10000 
TR.UBN=4000 
TR.UBM=2000 
TR.UBL=1000 
TR.UBK=400 
TR.UBJ=200 
TR.UBH=100 
TR.UBF=40 
TR.UBE=20 
TR.CPD=10 
TR.CPC=4 
TR.CPB=2 
TR.CPA=l 

.ENDC 

.PSECT 

iTASK HAS BEEN VICTIMIZED (BLASTED) 
iTASK IS A MULTI-USER TASK (MEANING SEPARATED 
iREAD ONLY AND READ/WRITE FOR TASK REGION. THIS 
iHAS PERFORMANCE ADVANTAGES OVER A NON MU TASK 
iAND IS FULLY SUPPORTED ON P/OS) 
iTASK'S LOAD DEVICE HAS BEEN DISMOUNTED 
iTCB IS (OR SHOULD BE) A PROTOTYPE 
iTASK WAS PRIV, BUT HAS CLEARED T3.PRV 
iWITH GIN (MAY RESET WITH GIN IF T4.PRV SET) 
iTASK WAS BUILT FOR USER I/D SPACE 
iTASK USES COMMONS FOR SYNCHRONIZATION 

iUNIBUS RUN T 
iUNIBUS RUN S 
iUNIBUS RUN R 
iUNIBUS RUN P 
iUNIBUS RUN N 
iUNIBUS RUN M 
iUNIBUS RUN 
iUNIBUS RUN K 
iUNIBUS RUN J 
iUNIBUS RUN H 
iUNIBUS RUN F 
iUNIBUS RUN E 
iPROCESSOR D 
iPROCESSOR C 
iPROCESSOR 
iPROCESSOR A 

A-82 



UCBDF$ 

A.24 UCBDF$ 

i+ 
UNIT CONTROL BLOCK 

THE UNIT CONTROL BLOCK (UCB) DEFINES THE STATUS OF AN 
INDIVIDUAL DEVICE UNIT AND IS THE CONTROL BLOCK THAT IS POINTED 
TO BY THE FIRST WORD OF AN ASSIGNED LUN. THERE IS ONE UCB FOR 
EACH DEVICE UNIT OF EACH DCB. THE UCB'S ASSOCIATED WITH A 

i PARTICULAR DCB ARE CONTIGUOUS IN MEMORY AND ARE POINTED TO BY 
THE DCB. UCB'S ARE VARIABLE LENGTH BETWEEN DCB'S BUT ARE OF THE 
SAME LENGTH FOR A SPECIFIC DCB. A UCB EXISTS FOR EVERY LOGICAL 
UNIT ON THE SYSTEM AND DEFINES UNIT CHARACTERISTICS AS WELL AS 
CURRENT UNIT STATUS. 

i -
.ASECT 

.=177772 

.IF NB SYSDEF 

.IF OF A$$CNT 

.=177770 

U.UAB: .BLKW 1 

.IFF 

U.UAB: 

.ENDC 

.ENDC 

177772 U.MUP: .BLKW 

177774 U.LUIC: .BLKW 
177776 U.OWN: .BLKW 
000000 U.DCB: .BLKW 
000002 U.RED: .BLKW 
000004 U.CTL: .BLKB 
000005 U.STS .BLKB 
000006 U.UNIT: .BLKB 
000007 U.ST2: .BLKB 
000010 U.CW1: .BLKW 
000012 U.CW2: .BLKW 
000014 U.CW3: .BLKW 
000016 U.CW4: .BLKW 
000020 U.SCB: .BLKW 

;POINTER TO USER ACCOUNT BLOCK (DV.TTY ONLY) 

1 ; (-6) MULTI-USER PROTECTION WORD (DV.TTY 
; ONLY) 

1 ;(-4) LOGIN UIC (DV.TTY ONLY) 
1 ;(-2) OWNING TERMINAL(DEVICE ALLOCATION) 
1 iBACK POINTER TO DCB 
1 iPOINTER TO REDIRECT UNIT UCB 
1 iCONTROL PROCESSING FLAGS 
1 iUNIT STATUS 
1 iPHYSICAL UNIT NUMBER 
1 iUNIT STATUS EXTENSION 
1 iFIRST DEVICE CHARACTERISTICS WORD 
1 iSECOND DEVICE CHARACTERISTICS WORD 
1 iTHIRD DEVICE CHARACTERISTICS WORD 
1 iFOURTH DEVICE CHARACTERISTICS WORD 
1 iPOINTER TO SCB 

A-83 



000022 
000024 
000026 
000030 

000032 
000034 
000036 
000032 
000040 
000042 
000046 
000050 
000046 
000050 
000052 

000054 
000060 

000062 

000064 

000040 
000042 
000044 

000000 
000022 
000026 
000032 
000033 
000034 
000035 
000036 

U.ATT: .BLKW 
U.BUF: .BLKW 

.BLKW 
U.CNT: .BLKW 

U.UCBX=U.CNT+2 
U.ACP=U.CNT+4 
U.VCB=U.CNT+6 
U.CBF=U.CNT+2 
U.UMB=U.CNT+i0 
U.PRM=U.CNT+12 
U.UTMO=U.CNT+16 
U.LHD=U.CNT+20 
U.ICSR=U.CNT+16 
U.SLT=U.CNT+20 
U.SPRM=U.CNT+22 

1 
1 
1 
1 

UCBDF$ 

iTCB ADDRESS OF ATTACHED TASK 
iRELOCATION BIAS OF CURRENT I/O REQUEST 
iBUFFER ADDRESS OF CURRENT I/O REQUEST 
iBYTE COUNT OF CURRENT I/O REQUEST 
i(DV.MSD) 
iBIAS OF UCB EXTENSION IN SEC POL 
iADDRESS OF TCB OF MOUNTED ACP 
iADDRESS OF VOLUME CONTROL BLOCK 
iCONTROL BUFFER RELOCATION AND ADDRESS 
iADDRESS OF UMB FOR SHADOW RECORDING 
iDISK SIZE PARAMETER WORDS 
iUNIT COMMAND TIME OUT 
iUNIT OUTSTANDING I/O PACKET LISTHEAD 
iCSR ADDRESS (P/OS Vi DRIVER ACCESS ONLY) 
iSLOT NUMBER (P/OS Vi DRIVER ACCESS ONLY) 
i4 WD SAVED I/O PACKET AREA (DV.MSD AND 
iUSAGE 

iOF $VOLSC) USED AT I/O COMPLETION TO RESTORE 
iI/O PACKET IF STALLED I/O CONDITION IN EFFECT) 

U.BPKT=U.CNT+24 
U.UC2X=U.CNT+30 

U.OTRF=U.CNT+32 

U.CMST=U.CNT+34 

iUNIT BAD BLOCK PACKET WAITING LIST 
iPOINTER TO SECOND EXTENSION IN 
iSECONDARY POOL 
iOUTSTANDING COMMAND STATUS REQUEST 
iREGISTER 
iCOMMAND STATUS PROGRESS REGISTER 

MAGTAPE DEVICE DEPENDANT UCB OFFSETS 

U.SNUM=U.CNT+i0 
U.FCDE=U.CNT+12 
U.KRB1=U.CNT+14 

iSLAVE UNIT NUMBER 
iFUNCTION CODE 
iSUBCONTROLLER KRBi POINTER 

DEFINE SECONDARY POOL UCB EXTENSION OFFSETS 
(DV.MSD DEVICES ONLY) 

.=0 
.BLKW 9.iFIXED ACCOUNTING TRANSACTION 

_X. NAME: .BLKW 2 ;DRIVE NAME IN RADIX-50 
X. IOC: .BLKW 2 i I/O COUNT 
X.ERHL: .BLKB 1 iHARD ERROR LIMIT 
X.ERSL: .BLKB 1 iSOFT ERROR LIMIT 
X.ERSC: .BLKB 1 iSOFT ERROR COUNT 
X.ERHC: .BLKB 1 iHARD ERROR COUNT 
X.WCNT: .BLKW 2 iWORDS TRANSFERED COUNT 

A-84 

HEADER 



UCBDF$ 

DEFINE OFFSETS FOR SEEK OPTIMIZATION DEVICES 

000042 X.CYLC: .BLKW 2 iCYLINDERS CROSSED COUNT 
000046 X.CCYL: .BLKW 1 iCURRENT CYLINDER 
000050 X.FCUR: .BLKB 1 iCURRENT FAIRNESS COUNT 
000051 X.FLIM: iFAIRNESS COUNT LIMIT 
000051 X.DSKD: .BLKB 1 iDISK DIRECTION (HIGH BIT l=OUT) 

000052 X.DNAM: .BLKW 1 iDEVICE NAME FOR ACCOUNTING 
000054 X.UNIT: .BLKB 1 iUNIT NUMBER FOR ACCOUNTING 
000055 .BLKB 1 iUNUSED FOR NOW 
000056 X.LGTH=. iLENGTH OF THE UCB EXTENSION 
000012 X.DFFL=10. iDEFAULT FAIRNESS COUNT LIMIT 
000010 X.DFSL=8. iDEFAULT SOFT ERROR LIMIT 
000005 X.DFHL=5. iDEFAULT HARD ERROR LIMIT 

DEFINE OFFSETS FOR DISK MSCP CONTROLLERS (SECOND UCB 
EXTENSION) 

CHARACTERISTICS OBTAINED FROM "GET UNIT STATUS" END 
PACKETS 

.=0 
000000 X.MLUN: .BLKW 1 iMULTI-UNIT CODE 
000002 X.UNFL: .BLKW 1 iUNIT FLAGS 
000004 .BLKW 2 iRESERVED 
000010 X.UNTI: .BLKW 4 iUNIT IDENTIFIER 
000020 X.MEDI: .BLKW 2 iMEDIA IDENTIFIER 
000024 X. SHUN: .BLKW 1 iSHADOW UNIT 
000026 X.SHST: .BLKW 1 iSHADOW UNIT STATUS 
000030 X.TRCK: .BLKW 1 iUNIT TRACK SIZE 
000032 X.GRP: .BLKW 1 iUNIT GROUP SIZE 
000034 X.CYL: .BLKW 1 iUNIT CYLINDER SIZE 
000036 X.USVR: .BLKB 1 iUNIT SOFTWARE VERSION 
000037 X.UHVR: .BLKB 1 iUNIT HARDWARE VERSION 
000040 X.RCTS: .BLKW 1 iUNIT RCT TABLE SIZE 
000042 X.RBNS: .BLKB 1 iUNIT RBN 's / TRACK 
000043 X.RCTC: .BLKB 1 iUNIT RCT COPIES 

CHARACTERISTICS OBTAINED FROM "ONLINE" OR "SET UNIT 
CHARACTERISTICS" END PACKETS 

000044 X.UNSZ: .BLKW 2 iUNIT SIZE 
000050 X.VSER: .BLKW 2 iVOLUME SERIAL NUr1BER 

A-85 



000054 

000024 
000026 
000036 
000040 
000041 
000042 
000044 
000045 
000046 
000047 
000050 

000050 

000051 
000052 
000054 
000056 

X.DUSZ=. 

UCBDF$ 

iSIZE OF DISK MSCP CONTROLLER UCB 
i EXTENSION 

.IF NB TTDEF 

TERMINAL DRIVER DEFINITIONS 

.=U.BUF 
U.TUX: .BLKW 
U.TSTA: .BLKW 
U.UIC: .BLKW 
U.TLPP: .BLKB 
U.TFRQ: .BLKB 
U . T F L K : . BL KW 
U.TCHP: .BLKB 
U . TCVP : . BLKB 
U.TTYP: .BLKB 
U . TMT I: . BLKB 
U.TTAB: .BLKW 

.=.-2 

U.TECO: .BLKB 

U.TBSZ: .BLKB 
U.ACB: .BLKW 
U.AFLG: .BLKW 
U.ADMA: .BLKW 

1 iPOINTER TO UCB EXTENSION (UCBX) 
4 iSTATUS QUADRUPLE-WqRD 
1 iDEFAULT UIC <====(ANY DV.TTY DEVICE) 
1 iLINES PER PAGE 
1 iFORK REQUEST BYTE 
1 iFORK LIST LINK WORD 
1 iCURRENT HORIZONTAL POSITION 
1 iCURRENT VERTICAL POSITION 
1 iTERMINAL TYPE 
1 iMODEM TIMER 
1 iIF 0: U.TTAB+1 IS SINGLE-CHARACTER 

TYPEAHEAD BUFFER, CURRENTLY EMPTY 

1 

1 
1 
1 
1 

iIF ODD: U.TTAB+1 IS SINGLE-CHARACTER TYPE­
AHEAD BUFFER AND HOLDS A CHARACTER 

iIF NON-O AND EVEN: POINTER TO MULTI­
CHARACTER TYPEAHEAD BUFFER 

iTHE NEXT TWO OFFSETS OVERLAP U.TTAB WHEN 
THE TYPEAHEAD BUFFER IS IN 
SECONDARY POOL 

iECHO BUFFER FOR DMA OPERATIONS WHEN UCBX 
IS SECONDARY POOL AND THUS NOT 
MAPPED BY A UMR 

iTYPEAHEAD BUFFER SIZE 
iANCILLARY CONTROL DRIVER BLOCK ADDR 
iANCILLARY CONTROL DRIVER FLAGS WORD 
iANCILLARY CONTROL DRIVER DMA BUFFER 

DEFINE BITS IN STATUS WORD 1 (U.TSTA) 
i 
Sl.RST=l 
Sl.RUB=2 
Sl.ESC=4 
Sl.RAL=10 
Sl.RNE=20 
Sl.CTO=40 
Sl.0BY=100 
Sl.IBY=200 
Sl.BEL=400 
Sl.DPR=1000 
Sl.DEC=2000 

iREAD WITH SPECIAL TERMINATORS IN PROGRESS 
iRUBOUT SEQUENCE IN PROGRESS (NON-SCOPE) 
;ESCAPE SEQUENCE IN PROGRESS 
iREAD ALL IN PROGRESS 
;ECHO SUPPRESSED 
;OUTPUT STOPPED BY CTRL-O 
iOUTPUT BUSY 
;INPUT BUSY 
iBELL PENDING 
;DEFER PROCESSING OF CHAR. IN U.TECS 
;DEFER ECHO OF CHAR. IN U.TECS 

A-86 



Sl.DSI=4000 
Sl.CTS=lOOOO 
Sl.USI=20000 
Sl.0BF=40000 
Sl.IBF=100000 

UCBDF$ 

iINPUT PROCESSING DISABLED 
iOUTPUT STOPPED BY CTRL-S 
iUNSOLICITED INPUT IN PROGRESS 
iBUFFERED OUTPUT IN PROGRESS 
iBUFFERED INPUT IN PROGRESS 

DEFINE BITS IN STATUS WORD 2 (U.TSTA+2) 

S2.ACR=1 
S2.WRA=6 
S2.WRB=2 
S2.CR=10 
S2.BRQ=20 
S2.SRQ=40 

S2.0RQ=100 
S2.IRQ=200 
S2.HFL=3400 
S2.VFL=4000 
S2.HHT=10000 
S2.HFF=20000 
S2.FLF=40000 
S2.FDX=100000 

iWRAP-AROUND (AUTOMATIC CR-LF) REQUIRED 
iCONTEXT FOR WRAP-AROUND 
iLOW BIT IN S2.WRA BIT PATTERN 
iTRAILING CR REQUIRED ON OUTPUT 
iBREAK-THROUGH-WRITE REQUEST IN QUEUE 
iSPECIAL REQUEST IN QUEUE 

(IO.ATT, IO.DET, SF.SMC) 
iOUTPUT REQUEST IN QUEUE (MUST = Sl.0BY) 
iINPUT REQUEST IN QUEUE (MUST = Sl.IBY) 
iHORIZONTAL FILL REQUIREMENT 
iVERTICAL FILL REQUIREMENT 
iHARDWARE HORIZONTAL TAB PRESENT 
iHARDWARE FORM-FEED PRESENT 
iFORCE LINE FEED BEFORE NEXT ECHO 
iLINE IS IN FULL DUPLEX MODE 

DEFINE BITS IN STATUS WORD 3 (U.TSTA+4) 

S3.RAL=10 

S3.RPO=20 
S3.WES=40 
S3.TAB=100 
S3.8BC=200 
S3.RCU=400 
S3.ABD=1000 
S3.ABP=2000 
S3.WAL=4000 
S3.VER=10000 

S3.BCC=20000 

S3.DAO=40000 

S3.PCU=100000 

iTERMINAL IS IN READ-PASS-ALL MODE 
i(S3.RAL MUST = Sl.RAL) 
iREAD W/PROMPT OUTPUT IN PROGRESS 
iTASK WANTS ESCAPE SEQUENCES 
iTYPEAHEAD BUFFER ALLOCATION REQUESTED 
iPASS 8 BITS ON INPUT 
iRESTORE CURSOR (MUST = TF.RCU*400) 
iAUTO-BAUD SPEED DETECTION ENABLED 
iAUTO-BAUD SPEED DETECTION IN PROGRESS 
iWRITE-PASS-ALL (MUST = TF.WAL*400) 
iLAST CHAR. IN TYPEAHEAD BUFFER 
iHAS PARITY ERROR 
iLAST CHAR. IN TYPEAHEAD BUFFER 
iHAS FRAMING ERROR 
iLAST CHAR. IN TYPEAHEAD BUFFER 
iHAS DATA OVERRUN ERROR 
iNOTE - THE 3 BITS ABOVE MUST CORRESPOND 
iTO THE RESPECTIVE ERROR FLAGS IN THE 
iHARDWARE RECEIVE BUFFER 
iPOSITION CURSOR BEFORE WRITE 

DEFINE BITS IN STATUS WORD 4 (U.TSTA+6) 

A-87 



000006 

000024 
000026 
000030 
000032 
000034 

000040 

000026 
000030 
000034 

i 
S4.INT=40 

S4.DLO=100 
S4.ANI=400 
S4.AVO=1000 
S4.BLK=2000 
S4.DEC=4000 
S4.EDT=10000 
S4.RGS=20000 
S4.CTC=40000 

.ENDC 

UCBDF$ 

iAC INT-DO HANDLED DIFFERENTLY FOR 
iIO.RTT ON P/OS 
iDIAL-OUT LINE (IMPLIES U2.RMT) 
iANSI CRT TERMINAL 
iVT100-FAMILY TERMINAL DISPLAY 
iBLOCK MODE TERMINAL 
iDIGITAL CRT TERMINAL 
iTERMINAL HAS LOCAL EDITING FUNCTIONS 
iTERMINAL SUPPORTS REGIS GRAPHICS 
iTERMINAL WANTS CLI TO HAVE AC 
iNOTIFICATION 

VIRTUAL TERMINAL UCB DEFINITIONS 

.=U.UNIT 
U.OCNT: .BLKB 1 iOFFSPRING WITH THIS AS TI: 
.=U.BUF 
U.RPKT: .BLKW 1 iCURRENT OFFSPRING READ I/O PACKET 
U.WPKT: .BLKW 1 iCURRENT OFFSPRING WRITE I/O PACKET 
U. lAST: .BLKW 1 iINPUT AST ROUTINE ADDRESS 
U.OAST: .BLKW 1 iOUTPUT AST ROUTINE ADDRESS 
U.AAST: .BLKW 1 iATTACH AST ROUTINE ADDRESS 

.IF NB TTDEF 

.IIF NE U.AAST+2-U.UIC .ERROR iADJACENCY ASSUMED 

.ENDC 

.=U.AAST+4 
U.PTCB:.BLKW 1 iPARENT TCB ADDRESS 

CONSOLE DRIVER DEFINITIONS 
i 
.-=U.BUF+2 
U.CTCB: .BLKW 1 iADDRESS OF CONSOLE LOGGER 
U.COTQ: .BLKW 2 iI/O PACKET LIST QUEUE 
U.RED2: .BLKW 1 iREDIRECT UCB ADDRESS 

.PSECT 

A-88 

TCB 



i+ 

i-

i+ 

UCBDF$ 

DEVICE TABLE STATUS DEFINITIONS 

DEVICE CHARACTERISTICS WORD 1 (U.CW1) DEVICE TYPE 
DEFINITION 
BITS. 

DV.REC=1 
DV.CCL=2 
DV.TTY=4 
DV.DIR=10 
DV.SDI=20 
DV.SQD=40 
DV.MSD=100 
DV.UMD=200 
DV.MBC=400 
DV.EXT=400 
DV.SWL=1000 
DV.ISP=2000 
DV.OSP=4000 
DV.PSE=10000 
DV.COM=20000 
DV.F11=40000 
DV.MNT=100000 

iRECORD ORIENTED DEVICE (1=YES) 
jCARRIAGE CONTROL DEVICE (l=YES) 
iTERMINAL DEVICE (1=YES) 
jFILE STRUCTURED DEVICE (1=YES) 
iSINGLE DIRECTORY DEVICE (1=YES) 
jSEQUENTIAL DEVICE (1=YES) 
jMASS STORAGE DEVICE (1=YES) 
jUSER MODE DIAGNOSTICS SUPPORTED (1=YES) 
iRESERVED 
iRESERVED 
iUNIT SOFTWARE WRITE LOCKED (1=YES) 
iINPUT SPOOLED DEVICE (1=YES) 
iOUTPUT SPOOLED DEVICE (1=YES) 
iPSEUDO DEVICE (1=YES) 
iRESERVED 
iDEVICE IS MOUNTABLE AS F11 DEVICE (1=YES) 
iDEVICE IS MOUNTABLE (1=YES) 

; TERMINAL (DV.TTY)DEPENDENT CHARACTERISTICS WORD 2 
i (U.CW2) BIT DEFINITIONS 
; -

U2.DH1=100000 
U2.DJ1=40000 
U2.RMT=20000 
U2.HFF=10000 
U2.L8S=10000 
U2.NEC=4000 
U2.CRT=2000 

U2.ESC=1000 
U2.LOG=400 
U2.SLV=200 

U2.DZ1=100 
U2.HLD=40 

U2.AT.=20 
U2.PRV=10 

U2.L3S=4 
U2.VT5=2 

iUNIT IS A MULTIPLEXER (l=YES) 
iUNIT IS A DJ11 (1=YES) 
iUNIT IS REMOTE (l=YES) 
iUNIT DOES HRDWRE FORM FEEDS(1=YES) 
JOLD NAME FOR U2.HFF 
iDON'T ECHO SOLICITED INPUT (1=YES) 
jUNIT IS A CRT (l=YES, ANY DV.TTY IMPLIES 
i(DEL=BSP,SPC,BSP AND TERM TYP INDEPENDENT 

CURS POSITIONING)) 
iUNIT GENERATES ESCAPE SEQ. (l=YES,ANY DV.TTY) 
iUSER LOGGED ON TERMINAL (O=YES) (ANY DV.TTY) 
iUNIT IS SLAVE TERM(l=YES) (RESRVD ANY 

iDV.TTY) 
iUNIT IS A DZ11 (l=YES) 
iTERMINAL IS IN HOLD SCREEN MODE (l=YES) 

(VT52) 
i (RESERVED) 
iUNIT IS A PRIVILEGED TERM. (l=YES, ANY 

iDV.TTY) 
iUNIT IS A LA30S TERMINAL (l=YES) 
iUNIT IS A VT05B TERMINAL (l=YES) 

A-89 



U2.LWC=1 

i+ 

UCBDF$ 

iLOWER CASE TO UPPER CASE CONVERSION ON INPUT 
i(O=YES) 

i BIT DEFINITIONS FOR U.MUP (NOT USED CURRENTLY, DV.TTY ONLY) 
i -

i+ 

UM.OVR=l 
UM.CLI=36 
UM.DSB=200 
UM.NBR=400 
UM.CNT=1000 
UM.CMD=2000 
UM.SER=4000 
UM.KIL=10000 

iOVERRIDE CLI INDICATOR 
iCLI INDICATOR BITS 
iTERMINAL DISABLED SINCE CLI ELIMINATED 
iNO BROADCAST 
iCONTINUATION LINE IN PROGRESS 
iCOMMAND IN PROGRESS 
iSERIAL COMMAND RECOGNITION ENABLED 
iTTDRV SHOULD SEND KILL PKT ON CNTRL/C 

i TERMINAL SECONDARY POOL OFFSETS FOR THE UCB EXTENSION AND 
i TYPEAHEAD BUFFER 
i -

i+ 

U.TAPR=24 

U.TTBF=46 

iOFFSET WITHIN UCB WHICH POINTS TO UCB 
EXTENSION 

iOFFSET WITHIN UCB EXTENSION WHICH POINTS 
TO TYPEAHEAD BUFFER 

i TERMINAL DEPENDENT CHARACTERISTICS WORD 3 (U.CW3) BIT 
i DEFINITIONS 
i-

i+ 

U3.UPC=20000 
U3.PAR=40000 
U3.0PA=100000 

iUPCASE OUTPUT FLAG 
iPARITY GENERATION AND CHECKING 
iPARITY SENSE (1=000 PARITY) 

i VIRTUAL TERMINAL 3RD CHARACTERISTICS WORD DEFINITIONS 
i (DRIVER SPECIFIC) 
i -

i+ 

U3.FDX=1 
U3.DBF=2 
U3.RPR=4 

iFULL DUPLEX MODE (l=YES) 
;INTERMEDIATE BUFFERING DISABLED (l=YES) 
iREAD W/PROMPT IN PROGRESS (l=YES) 

; TERMINAL DEPENDENT CHARACTERISTICS WORD 4 (U.CW4) BIT DEF. 
i (DRIVER SPECIFIC) 
; -

U4.CR=100 iLOOK FOR CARRIAGE RETURN 

i+ 
i UNIT CONTROL PROCESSING FLAG DEFINITIONS 
i -

UC.ALG=200 iBYTE ALIGNMENT ALLOWED (l=NO) 

A-90 



i+ 

UC.NPR=100 
UC.QUE=40 
UC.PWF=20 
UC.ATT=10 
UC.KIL=4 
UC.LGH=3 

UCBDF$ 

iDEVICE IS AN NPR DEVICE (l=YES) 
iCALL DRIVER BEFORE QUEUING (l=YES) 
iCALL DRIVER AT POWERFAIL ALWAYS (l=YES) 
iCALL DRIVER ON ATTACH/DETACH (l=YES) 
iCALL DRIVER AT I/O KILL ALWAYS (l=YES) 
iTRANSFER LENGTH MASK BITS 

i UNIT STATUS BIT DEFINTIONS 
i -

;+ 

US.BSY=200 
US.MNT=100 

US.FOR=40 
US.LAB=4 

US.MDM=20 
US.PWF=10 

iUNIT IS BUSY (l=YES) 
iUNIT IS MOUNTED (0= YES)<=CAREFUL OF 

POLARITY! 
iUNIT IS MOUNTED AS FOREIGN VOLUME (l=YES) 
iUNIT HAS LABELED TAPE ON IT (l=YES) 
i(HAS MEANING FOR DV.MNT AND 

(US.MNT!US.FOR=O)) 
iUNIT IS MARKED FOR DISMOUNT (l=YES) 
iPOWERFAIL OCCURED (l=YES). 

; CARD READER DEPENDENT UNIT STATUS BIT DEFINITIONS 
; -

US.ABO=l iUNIT IS MARKED FOR ABORT IF NOT READY 
i (l=YES) 

US.MDE=2 ;UNIT IS IN 029 TRANSLATION NODE (l=YES) 

;+ 
; DV.MSD DEPENDENT UNIT STATUS BITS 
;-

i+ 

US.WCK=10 
US.SPU=2 
US.W=l 

iWRITE CHECK ENABLED (l=YES) 
iUNIT IS SPINNING UP (l=YES) 
iVOLUME VALID IS SET (l=YES) 

; TERMINAL DEPENDENT UNIT STATUS BIT DEFINITIONS 
; -

i+ 

US.CRW=4 
US.DSB=2 
US.OIU=l 

iUNIT IS WAITING FOR CARRIER (l=YES) 
iUNIT IS DISABLED (l=YES) 
iOUTPUT INTERRUPT IS UNEXPECTED ON UNIT 

(l=YES) 

i UNIT STATUS EXTENSION (U.ST2) BIT DEFINITIONS 
i -

US.OFL=l 
US.RED=2 
US.PUB=4 
US.UMD=10 
US.PDF=20 

iUNIT OFFLINE (l=YES) 
iUNIT REDIRECTABLE (O=YES) 
iUNIT IS PUBLIC DEVICE (l=YES) 
iUNIT ATTACHED FOR DIAGNOSTICS (l=YES) 
iPRIVILEGED DIAGNOSTIC FUNCTIONS ONLY 

(l=YES) 

A-91 



i+ 

US.MUN=40 
US.TRN=100 
US.SIO=200 

UCBDF$ 

iMULTI-UNIT FLAG 
iUNIT TRANSITION HAS OCCURRED (l=YES) 
iSTALL I/O TO UNIT (l=YES) (ANY DEVICE) 

i MAGTAPE DENSITY SUPPORT DEFINITION IN U.CW3 
i -

UD.UNS=O 
UD.200=1 
UD.556=2 
UD.800=3 
UD.160=4 
UD.625=5 

.ENDM 

UNSUPPORTED 
200BPI, 7 TRACK 
556BPI, 7 TRACK 
800BPI, 7 OR 9 TRACK 
1600BPI, 9 TRACK 
6250BPI, 9 TRACK 

A-92 



APPENDIX B 

TASK BUILDING AND CLUSTER LIBRARIES 

This appendix provides an overview and examples of conceptual and 
detailed information on overlaying task structures and cluster 
libraries for PDP-11 and RSX systems. Note that the information is 
generic. For more detail, also see the Task Builder Manual. 

B.l AN OVERVIEW OF OVERLAYING 

This discussion of overlaying covers a complex subject. The 
RSX-IIM/M-PLUS and Micro/RSX Task Builder Manual provides more detail 
on the material covered here, plus information on the extended 
overlaying facilities that involve mapping via the PLAS directives and 
memory-resident libraries. 

The complexity of task structure on RSX and related PDP-11 systems 
reflects both the utility and the limitations of the system hardware 
and software. Over the years, users have found the PDP-11 a suitable 
base for increasingly ambitious applications. The sizes of these 
applications have grown far beyond the hardware's 16-bit (64 Kbyte) 
direct addressing capabilities. Therefore, task structure extensions 
have evolved to meet the increased addressing needs of such 
applications in as transparent a manner as possible. 

The focus for these extensions has been the PDP-11 Task Builder (TKB), 
which is a powerful, complex utility. The TKB utility is sometimes 
c~iticized for its complexity. Note, however, that it must support 
run-time transparency (by and large its mechanisms must be transparent 
to code execution), structural transparency (by and large its 
structures must continue to support flexible handling of program 
sections), and performance requirements (whatever it does should not 
bring the task to its knees). Obviously, providing these level of 
support will require some assistance from the program's designer. The 
various DIGITAL products (e.g., language object-time systems, data 
management service~ like RMS and FeS, and the Forms Management System) 
each provide pre-packaged task configuration aids designed to make 
task-building as automated as possible. If application size requires 

8-1 



AN OVERVIEW OF OVERLAYING 

further packaging efforts, however, the user must become more actively 
involved in this process. The following overview supplements the 
detailed descriptions of overlaying in the RSX-IIM/M-PLUS and 
Micro/RSX Task Builder Manual. 

B.1.1 Basic Overlay Concepts and Constraints 

When total program size grows beyond the virtual addressing limits of 
the task "envelope," some tradeoffs must be made. Arrangements must 
be made to allow currently-executing code and currently-accessed data 
to reside in virtual memory while currently-unneeded code and data 
reside elsewhere (typically on disk), and to allow the configuration 
of resident segments to change dynamically with changing demands. 

One way to accomplish the required tradeoff is with a "code cache" (in 
this discussion, data segments are included with program code, since 
even if are separated, they are treated analagously). Also, presume 
that developers generate code/data segments that are sufficiently 
small and modular to be easily moved, vector any external CALLs or 
data references into control structures that specify the module 
required, and finally, create a wholly-transparent software "paging" 
scheme along the lines of VAX hardware paging. 

Examining some of the difficulties with this approach will help 
explain the mechanism we actually use: 

1. The major problem is the data references. They cannot be 
"caught" without interpreting the entire instruction stream 
in software. This tends to defeat the purpose of the PDP-11 
instruction set. Also, despite the advantages of "clean" 
inter-module data linkages, they shouldn't be absolutely 
mandatory. If they were, it would be necesary for us to 
detect cases in which pointers to external data (in data 
structures, the general registers, etc.) are passed as input 
arguments, and vector these references as well (possibly 
through multiple levels of indirection). 

The performance overhead (perhaps 100-to-1) of software 
instruction interpretation rules out mandatory "clean" 
inter-module data linkages. Also, the goal of reasonable 
coding transparency rules out the extremely strict rules on 
inter-module data references that we would need without such 
interpretation. The conclusion is that data, when present, 
must always appear at the same virtual address. 

If the software supports the "PC-relative" hardware 
addressing modes for external data, then code, when present, 
also must appear at the same virtual address. In fact, even 
without external data references it could be awkward for code 

8-2 



AN OVERVIEW OF OVERLAYING 

to move around - consider the case of nested subroutines with 
RETURN addresses on the stack. 

2. Having constant data addresses solves only half the 
interpretation problem. structure conventions are needed, 
perhaps supported by semi-automated mechanisms, to ensure 
that the desired data is actually resident in virtual memory 
when it is referred to by an instruction. The instruction 
itself won't be able to verify this. 

3. 

limit our flexibility for 
To allow for special cases, we 

escape mechanism so that the 
request a data segment be loaded 

Any conventions, of course, 
configuring overlaid data. 
should consider providing an 
user code can explicitly 
prior to referring to it. 

Normal external CALL and JMP transfers 
intercepted fairly easily. TKB 
destinations, and can route them through 
that preserves the general registers and 
demand-loads the target code segment if 
resident. 

of control can be 
must resolve the 

a loading routine 
stack depth while it 
it is not already 

Given the lack of "save/restore condition codes" instructions 
in the hardware, trying to preserve them across CALL/JMP 
transfers of control would be difficult, and would increase 
instruction overhead during the transfer. Transfers should 
be as efficient as possible when the code segment is already 
resident. Since passing condition code information as an 
input argument to an external routine is fairly unusual, it 
should be viewed as a coding restriction. 

Returning condition codes as output from a CALLed routine is 
not unusual, however, and they should be preserved. The 
easiest way to ensure their preservation is to require that 
the CALLing routine remain resident while the target routine 
executes. In that way, the RETURN requires no special 
handling. 

Using this approach as described, not only optimizes 
CALL/RETURN linkage performance, but also solves the problem 
of how to re-load the CALLer transparently should it be . 
displaced by the target routine. It isn't feasible to keep 
loading information describing the CALLer on the stack (since 
stack depth is frequently relevant to the target routine), 
and would have to maintain a special overlay run-time system 
stack for this purpose. Also, some routine linkages use the 
RETURN address as a pointer to in-line input arguments. It 
would be best not to tamper with it. 

8-3 



AN OVERVIEW OF OVERLAYING 

4. Other less common transfer-of-control mechanisms include 
coroutines and tables containing external dispatch addresses. 
Some of the same issues mentioned above apply to them. It 
may be reasonable to restrict generality of support for such 
linkages, but be certain you understand what is entailed. 

5. Even creating vectoring information for just the external 
CALL/JMP references could result in very large vector tables, 
which in turn would increase pressure on the very virtual 
memory resources we are trying to conserve. Instead of 
"paging" on a module-by-module basis, it is better to provide 
a way of grouping related modules together so that (a) 
references that occur within the group need not be vectored 
at all (the group is "paged" as a unit), and (b) a single 
structure descriptor can serve the entire group (though 
individual vectors will still be needed for each entry point 
referred to externally). 

6. Another good reason to page related modules as a group is 
that performance will degrade if many small modules are 
"paged" individually, as several short disk "read" operations 
typically take much longer than a single long "read" of 
equivalent content. 

8.1.2 The Overlay Structure 

Our main implementation constraints so far are thus: 

o To support the way the hardware performs data references in 
executing instructions. When a given segment of code or data 
appears in the overlay cache area, it should always appear at 
the same virtual address. 

o To support frequently-used subroutine linkage mechanisms. 
The CALLing routine should remain resident while the CALLed 
routine executes. 

o To achieve reasonable performance. Groups of related modules 
should be pageable as single units ("overlay segments"). The 
vector table overhead is minimized, since purely intra-group 
references need not be vectored. 

B.1.2.1 Overlaying Code Segments - The requirement stated in Section 
8.1 above that CALLers remain resident in the "code cache" while the 
target routine executes, plus the desirability of allowing CALLed 

8-4 



AN OVERVIEW OF OVERLAYING 

routines to be nested, means that the logical structure for organizing 
code segment overlays in virtual memory is a "tree". 

With such a tree structure, the "root" of the tree is not overlaid. 
It permanently resides at a fixed location in the task's virtual 
address space. Routines in the root may CALL routines in one of the 
multiple overlay segments in the first level above the root level. 
(They may of course CALL other routines in the root level as well.) 
When a Level 1 routine is CALLed in this manner, TKB has actually 
caused the CALL to be redirected to an "autoload vector" in the root 
segment. This vector passes a "segment descriptor" address (in the 
root segment) plus the virtual address of the target routine within 
that segment to a common "autoload" routine in the root segment's 
overlay run-time system. This system uses the segment descriptor 
information to load the segment into virtual memory, if it is not 
already resident, and then passes control to the real target routine 
as if it had been CALLed directly. 

One autoload vector can service all references from the root to a 
single Levell routine. A single such segment descriptor can service 
all references to all routines in a single Level 1 overlay segment. 

Each routine in Level 1 may in turn CALL routines in the overlay 
segments directly above its segment in the second level of the 
structure, as well as routines in its own overlay segment. Each Level 
1 to Level 2 CALL is similarly redirected through an appropriate 
autoload vector, which resides in the Levell segment rather than in 
the root. Therefore, use of valuable non-overlaid virtual memory 
space in the root will not be affected. 

Note that while a routine in the root may CALL routines in any Level 1 
segment, a Level 1 routine may CALL only the sub-set of Level 2 
routines directly above its segment. Other Level 2 routines (and 
routines in other Levell segments) are inaccessible and invisible to 
it, because of the "CALLer must remain resident" requirement that led 
to the tree structure and the rules for its use. 

A sample 4-level overlay tree is diagrammed below. Each entity marked 
with brackets [] (except the root) represents an overlay segment 
containing potentially multiple routines in multiple modules. The 
segment names are arbitrary, but useful, for the discussion. 

B-5 



AN OVERVIEW OF OVERLAYING 

Level 3 [BBA] [BBB] [BBC] 
\1 / 

Level 2 [AA] [AB] [BA] [BB] [BC] [BD] [CAl [CB] [CC] 
\ / \ 1 1 / \ 1 / 

Level 1 [A] [B] [C] 
\ 1 / 

Root Level [non-overlaid portion of the task] 

Before analyzing transfers of control in this structure, however, it 
is advisable to look at two possible extensions: 

o The "CALLer must remain resident" rule, when applied to 
subroutine nesting, implies that whenever we are executing 
within an overlay segment, all lower segments along the 
"path" from that segment to the root are also resident. For 
example, if executing in segment BBC, then BB, B, and of 
course the root are resident. There is no reason not to 
allow a routine in segment BBC to CALL routines in BB, B, and 
the root - and CALL them directly, without vectoring. This 
is a "down-tree" CALL. . 

Such "down-tree" CALLs are allowed, but are conditional. For 
instance, assume a BBC routine CALLs a BB routine. Before 
RETURNing to the BBC routine, the BB routine MUST NOT itself 
CALL "up-tree" (as it would normally be able to do had it not 
been CALLed from above). If the BB routine CALLed aBBA 
routine, for example, the BBA routine could successfully 
RETURN to the BB routine, but when the BB routine then 
RETURNed to the BBC routine it would find the BBA segment 
resident instead of the BBC segment. Since the program could 
not detect this, the program would quickly run into trouble. 

In other words, CALLing up-tree presents no problems, but 
when CALLing down-tree, watch out for nested up-tree 
excursions that would violate the "CALLer 
resident" rule. 

must remain 

o While it is reasonable to .distribute autoload vectors into 
the overlay segments that actually use them, it is awkward to 
distribute segment descriptors in the same manner (e.g., with 
sharable and/or read-only PLAS-mapped memory-resident 
libraries). Therefore, you should place all segment 
descriptors in the task root segment. Given their typical 
size and numbers, they should present no problems. 

Placing task root segments in the segment descriptor allows 
you to relax the requirement that up-tree CALLs go up just 
one tree level. You link the segment descriptors into an 
actual tree structure that mirrors the conceptual overlay 

B-6 



AN OVERVIEW OF OVERLAYING 

tree. Then you modify the autoload routine to load ALL 
segments on the path between the CALLer and the target. 
Thus, for example, when a "B" segment routine CALLs a "BBB" 
segment routine, the CALL is redirected to an autoload vector 
in the B segment that specifies the actual target virtual 
address plus the segment descriptor address of the BBB 
segment. The autoload routine then checks to see if BBB is 
resident and, if not, loads the BBB segment and works its way 
down the segment descriptor tree toward the root, loading 
additional segments as necessary. 

Under the assumption that a segment is resident only if all 
lower segments on the path between it and the root are also 
resident, this approach should achieve the desired result. 
However, to guarantee that assumption, the autoload routine 
must mark all segments that do not share the new path 
non-resident, even if some of them do not conflict with the 
virtual memory used by the new path. This ususally has 
little effect upon the overlay cache, since overlay 
configurations frequently conflict. Cases to the contrary 
can often be optimized through use of the co-tree structures 
discussed below. 

The previous description of the basic code-overlaying mechanisms 
translate into the following: 

1. Any "node" (overlay segment) in the tree can "see" and CALL 
directly all routines in the same node and in any lower nodes 
that lie on the path between it and the root. 

2. Any node in the tree can "see" and CALL indirectly (through 
an autoload vector) all routines in nodes directly above it 
in the overlay tree. In our sample tree, a routine in node B 
could CALL routines in any node whose name begins with B -
but no node whose name begins with A or C. A routine in the 
task root can clearly CALL routines in any node in the 
structure. 

3. Except as discussed in the first two items above, nodes 
cannot "see" (or CALL) each other. You may normally place 
routines with the same globally-defined entry point names in 
nodes that cannot see each other without conflict. However, 
if a reference to such a duplicated entry point is made by a 
lower node which can "see" both instances of it, TKB cannot 
determine which node should be used to satisfy the up-tree 
CALL and will generate a diagnostic message indicating the 
ambiguity. 

B-7 



AN OVERVIEW OF OVERLAYING 

4. Down-tree CALLs should always be carefully examined for 
nested up-tree CALLs that would displace the CALLer. 

5. Any use of overlays at task AST (asynchronous) level also 
runs a risk. The task-level overlay context could easily be 
changed "underneath" the running code. Isolating segments 
used at AST level from those used at task level in separate 
co-trees is one possible way to avoid this. A few products 
such as RMS-11 have special asynchronous versions with 
internal controls that allow mixed task/AST level operation, 
but most do not. 

Wherever a CALL is specified in the above list, a JMP would also be 
usable. 

B.1.2.2 Making the Tree More Flexible - The structure described above 
works well for applications that fall naturally into tree-structured 
organization of control flow. Though applications in many cases do 
lend themselves to such organization, and in many others can be made 
to comply with minimal changes, there are times when strict 
tree-structuring imposes significant penalties in use of task virtual 
address space and/or task image size on disk due to excessive module 
duplication throughout the structure. 

One way to add flexibility to the available control flow mechanisms is 
to build some explicit extensions into selected portions of the code. 
For example, suppose that the Faa routine in node BBC of our sample 
tree would benefit from access to the copy of the BAR routine in node 
AB of the tree. We could legally just duplicate the BAR routine in 
node BBC (as long as the root does not CALL BAR, since duplicating BAR 
would then result in an ambiguous up-tree reference), but if BAR is 
very large this could be awkward. Instead, however, we could create 
the following "cross-tree" transfer mechanism: 

[Faa routine in node BBC] 

Faa: : 

JMP BAR1 
F002: : 

(Normal initial Faa code) 

(We would normally CALL BAR here) 
(Remainder of the Faa code) 

[Special transfer routine in the root] 

BAR1:: CALL 
JMP 

BAR 
Faa2 

B-8 



AN OVERVIEW OF OVERLAYING 

The result of this is that FOO legally JMPs to the BARl transfer 
routine (which must be low enough in the tree so that both FOO can see 
it and it can see BAR), BARl legally CALLs BAR, BAR legally RETURNs to 
BAR1, and BARl legally JMPs back to the proper point in FOO. The 
stack depth has not been affected by this indirection. 

For high-level languages that do not permit coding such a sequence 
directly, one could add a second special MACRO-ll transfer module in 
the CALLing overlay segment that JMPs to BARl and then RETURNs after 
the root module JMPs back to it, and CALL this second module from the 
high-level language code. Though such a linkage does not preserve 
stack depth, due to the added CALL, it will be suitable in many cases 
(e.g., routines that communicate using the "standard" PDP-ll R5 
CALLing sequence). 

While inelegant in some ways, the approach as described is a 
reasonable way to avoid excessive module duplication and reduce 
virtual address space use by effectively allowing a CALLed routine to 
displace its CALLer. One must of course be willing to accept the 
performance overhead of loading the target (plus any non-resident 
lower nodes) on every CALL and reloading the CALLer (plus any 
displaced lower nodes) on every RETURN, but for infrequent operations 
this may well be tolerable. One must also ensure that the target 
routine does not require access to any data (or codel) resident in the 
portion of the tree that is displaced when the target is loaded, but 
again for restricted use this may not be a difficult limitation. 
Finally, remember that the condition codes are not preserved through 
the RETURN to FOO in this case. 

B.l.2.3 Co-trees - TKB makes another mechanism available for further 
control over use of the overlay cache area: the co-tree. 
Conceptually, co-trees allow division of the cache into independent 
segments that do not affect each other. In effect, they become 
multiple tree structures, each of which functions independently of the 
others. 

Since overlay activity in one tree does not affect the others, all 
.nodes in each tree can "see" all entry points in all other trees just 
as if these entry points were in the root segment (though the CALLs 
must still be vectored through the autoload mechanism). Thus a CALL 
to a different co-tree is much like a "down-tree" CALL. In 
particular, you must ensure that any nested CALLs back to the 
originating tree's code do not change its overlay context such that 
the CALLer becomes non-resident (the RMS-ll user-provided "get-space" 
routine feature is an example of such a "CALL-back" situation that 
must be handled with care). 

B-9 



AN OVERVIEW OF OVERLAYING 

The Task Builder's normal processing of the default object module 
library (typically SYSLIB) is designed to avoid occurrences of such 
inter-co-tree CALL-back situations in cases where their existence 
would not be obvious due to the implicit natu~e of the references. 
The /FULL switch may be used with caution to override this 
behavior when necessary. 

Because each co-tree must reserve its full complement of virtual 
memory all the time, co-tree structures may be somewhat less efficient 
in use of virtual memory (though more efficient in use of disk space) 
than equivalent-function single-tree structures with increased module 
duplication. The Task Builder Manual's descriptions and examples of 
overlaying provide insights into optimizations and trade-offs among 
virtual memory, task image size on disk, and performance for single­
and multiple-tree structures, as does the RMS-11 "prototype" ODL file 
RMS11.0DL for specific cases involving the RMS-11 co-tree. 

B.1.2.4 OVerlaying Data - At the beginning, we decided that 
intercepting data references would have required on-the-fly 
interpretation of the instruction stream with prohibitive performance 
and complexity cost. For this reason, all overlaying of data is left 
to the user to do correctly. 

TKB does, however, provide the tools for overlaying data. Data 
program sections (PSECTs) can be given the "local" attribute, in which 
case they will be placed in the overlay segment where the module 
containing them occurs. As long as such data is referred to only by 
the code in that segment (or, optionally, by code in segments directly 
above that segment in the tree structure), all should go well. If 
referred to by lower segments in the tree, or by segments in other 
trees, there is no guarantee that the correct data will be resident, 
and the user is responsible for avoiding such references. 

(Data may also occur in-line with code, though this is normally not 
considered good programming practice. Such data acts much the same as 
data in a "local" PSECT.) 

When a data PSECT is given the "global" attribute, on the other hand, 
TKB merges all contributions to that PSECT on a given path downward so 
that they in fact occur in the lowest segment on that path in which 
any contribution to that PSECT is made. Thus all segments that make 
contributions to that PSECT may freely refer to it in its entirety 
without the danger of up-tree data references. Note, however, that 
there is still no active protection against reference from lower in 
the tree. 

8-10 



AN OVERVIEW OF OVERLAYING 

A common programming error involves mixing 
that have the same name. Since the 
treated as different PSECTs, and the local 
with the global portions. 

local and global PSECTs 
attributes differ, they are 
portions are not merged 

TKB recognizes use of routine addresses as data just as it recognizes 
any up-tree CALL-type reference. In a CALL or JMP table, for example, 
an entry of the form .WORD Faa will be correctly resolved to an 
autoload vector when the routine is up-tree (or in another tree) from 
the reference to it. TKB has one unfortunate idiosyncracy in this 
area: when an up-tree module makes a contribution to a global data 
PSECT that is forced down-tree to the lowest node in which references 
to this PSECT occur, any autoload -vectors associated with this 
contribution are placed in the up-tree module's segment rather than in 
the lower segment in which the reference actually winds up. Thus if a 
lower node refers to such a contribution, there is no guarantee that 
the required autoload vector will be resident, and the results can be 
both surprising and difficult to diagnose. Thankfully, such 
situations seldom occur in normal use of the overlay facilities. 

Finally, TKB allows explicit loading of up-tree data segments via use 
of the . NAME directive and a "dummy" CALL. This can be useful when 
large amounts of data must be referred to under program control. 

B.2 CLUSTER LIBRARIES AND THEIR USE IN APPLICATIONS 

Library clustering retains the performance and ease-of-development 
advantages associated with use of memory-resident libraries, allows 
more flexible and efficient use of physical memory by RSX-11M-PLUS and 
RSTS/E operating systems, and competes favorably with disk overlay 
structures in use of task virtual memory. 

This discussion reviews and supplements the extensive description in 
the Task Builder Manual, which covers much of this material in 
slightly different, and sometimes more detailed, form. 

B.2.1 Simple Task Structure and Memory Mapping 

The 16-bit byte-oriented architecture of the PDP-ll presents the user 
with 32 KW of addressable memory in the address range 0 to 177777 
(octal). In multiprogramming systems, the operating system uses the 
memory management hardware to map this range of VIRTUAL addresses (as 
seen by the task) onto one or more ranges of PHYSICAL memory 
locations, and to ensure that the physical memory associated with each 
task is suitably protected from unauthorized use by other tasks. This 
mapping is established through eight hardware Active Page Registers 
(APRs), each of which controls the mapping and protection of up to 4 

B-11 



CLUSTER LI8RARIES AND THEIR USE IN APPLICATIONS 

KW of task virtual address space, beginning on the appropriate 4 KW 
virtual address boundary. The APR specifies the start address in 
physical memory and the size of the task section (both in units of 
32-word blocks, the mapping granularity). 

The simplest structure is one in which task virtual memory maps onto a 
continuous series of physical memory locations, as illustrated in 
Figure 8-1. As shown in the figure, the task does not require a full 
32 KW of physical memory, and APRs 5, 6, and 7 are set up to reflect 
the limits of the task memory envelope. Mapping need not be static. 
If the task is checkpointed to disk to give another task an 
opportunity to use the physical memory, for example, it may on return 
occupy a different area in physical memory. If the task requests more 
space from the operating system, it will acquire access rights to 
additional physical memory. 

The physical memory associated with a task may, in fact, exceed 32 KW, 
under software control of the operating system. The virtual memory 
mapped under hardware control at any instant, however, can never 
exceed eight "pages," each a maximum of 4 KW in size, and each 
beginning on a 4 KW virtual address boundary. This ignores systems 
that support supervisor mode mapping and instruction/data space 
separation in user tasks - these extend addressable virtual memory 
through use of the additional APR sets available on PDP-ll/70 and 
PDP-ll/44 processors. 

For large applications, 32 KW may be inadequate to contain all the 
necessary code and data for a task. The traditional solution is to 
overlay the task code. This breaks it up into segments, which are 
loaded on demand from disk and replaced with other segments when no 
longer needed. Such disk overlaying (which decreases task performance 
due to the extra disk I/O overhead) is performed under software 
control of the task's integral overlay run-time system. Overlay 
segments can be loaded at any word-aligned virtual address boundary. 
They do not change the virtual-to-physical mapping of the task in any 
way. 

8-12 



CLUSTER LIBRARIES AND THEIR USE IN APPLICATIONS 

TASK VIRTUAL 

MEMORY 

VIRTUAL 
ADDRESS 
(octal) 

12(1000 

1110000 

60000 

411000 

211000 

0 

.... 
APR 5 

APR 4 

APR 3 

APR 2 

APR 1 

APR 0 
~ 

PHYSICAL MEMORY 

~ 

~ 

Pt1YSICAL 
ADDRESS 
(octal) 

464000 

330000 

Figure 8-1: Simple Task Structure and Memory Mapping 

8-13 



CLUSTER LIBRARIES AND THEIR USE IN APPLICATIONS 

8.2.2 Libraries and Virtual Address Windows 

Having eight APRs to work with, a task can map to as many as eight 
disjoint sections of physical memory (und~r operating system 
supervision, of course). Intermediate software structures called a 
Virtual Address Windows in the system- controlled task header describe 
each such disjoint section. 

The example described in the previous section had the entire task 
contained in a single continuous section of physical memory, and hence 
required only a single window (Window 0). As illustrated in Figure 
B-2, however, Task A has been linked to Library A, a memory-resident 
library. Since there is no guarantee that the two wilY be loaded into 
adjacent sections of physical memory (or that they will have 
equivalent hardware protection requirements), two virtual address 
windows are needed. Window 0, as always, maps the task itself, using 
APRs 0 through 4; the task is permitted both read and write access to 
this section of memory. Window 1 maps the library using APRs 6 and 7; 
typical libraries will allow only read access by tasks. Since APR 5 
is not currently in use, the task could dynamically extend itself into 
this virtual address range (libraries are conventionally mapped in the 
highest available APRs to facilitate this), or could dynamically 
create an additional virtual address window to map APR 5 to some other 
portion of physical memory if space for a third window in the task 
header was specified when the task was built. 

B-14 



CLUSTER LIBRARIES AND THEIR USE IN APPLICATIONS 

APR 4 

APR 3 

APR 2 

APR 1 

APR 0 

TASK 

WINDOW 
TASK 

A 

Figure B-2: Libraries and Virtual Address Windows 

B-15 



CLUSTER LIBRARIES AND THEIR USE IN APPLICATIONS 

8.2.3 Library Sharing and Multiple Libraries 

Figure B-3 illustrates a more complex (and more typical) case, with 
multiple tasks and libraries resident in physical memory at the same 
time. 

Task A is still mapped to Library A as before. Task B is also mapped 
to the same physical copy of Library A. One of the benefits of using 
sharable re-entrant memory-resident libraries - rather than linking 
the library code into each task that uses it - is the saving in 
physical memory use that sharing allows. If the code were resident in 
the tasks, however, it might be possible to overlay it from disk. 
ThiS would cut down on per-task physical memory requirements and 
increase the amount of virtual memory available for the rest of the 
code in the task (but also decrease performance due to the additional 
I/O to disk required for task execution). 

Whereas Task A maps Library A in APRs 6 and 7 (base virtual address 
140000), Task B maps Library A in APRs 4 and 5 (base virtual address 
100000). This can be done only if the code in the library is 
position-independent (PIC - descriptions of position-independent code 
and re-entrancy can be found in the PDP-11 Processor Handbook). The 
fact that both tasks use Window 1 to map the library is coincidental. 

Task B is also mapped to Library B. Two areas are worthy of note: 

1. It is fortunate that Task B is small. The two libraries 
combined take up fully half the available virtual address 
space (by using four APRs between them). Task A is too large 
to be able to map to both libraries simultaneously. If their 
code were instead disk-overlaid within Task A, there might be 
room for it, though performance would suffer and the code for 
Library A would no longer be sharable. 

2. Whenever Task B is in memory, both libraries must also be in 
memory. A region is forced into physical memory whenever an 
in-memory task maps any portion of it, and Task 8 cannot run 
unless 25 KW of physical memory is available - a 9 KW block 
for the task itself, and an 8 KW block for each library. 

8-16 



CLUSTER LIBRARIES AND THEIR USE IN APPLICATIONS 

18SK 8 LIB ~ 18SK B 

~ 
B TASK B 

APR 7 WINDOW 2 APR 7 

~ TASK A 
APR 6 WINDOW 1 LIB 

APR 6 

~ A WINDOW 1 
APR 5 

l 

~ APR 4 APR 4 

APR 3 

TASK A 

WINDOW f1 
TASK 

A P"R 2 A 

APR 1 APR 1 

APR 0 APR f1 

4 ): WINDOW f1 

TASK 

B 

Figure B-3: Library Sharing and Multiple Libraries 

B-17 



CLUSTER LIBRARIES AND THEIR USE IN APPLICATIONS 

8.2.4 Library with Memory-Resident Overlays 

The RMS-ll Vl.8 full-function memory-resident library RMSRES is an 
example of code which, for reasons of performance, and sharability, is 
configured as a (re-entrant, position-independent) library but, for 
reasons of size (about 23 KW), cannot reasonably be mapped "flat-out" 
by tasks. The Task Builder allows such large libraries to be 
"resident-overlaid," using the Program Logical Address Space (PLAS) 
directives to map within the library region. The mapping operation is 
far less time-consuming than a disk overlay operation. with RMSRES, 
one APR is continually mapped to common support code in the library 
"root," and a second APR is used to map whichever library "leaf" 
segment is currently in use (there are five of these). Even though 
the library is contained in a single region, the code is mapped in two 
often discontinuous pieces, therefore an additional window is required 
in the task. 

This approach consumes only 8 KW (two APRs) of the task's virtual 
address space, while giving the task the benefit of 23 KW of 
(sharable) support code. This all happens with no disk overlay 
performance penalty though disk-overlaid RMS can be contained in 
about 5 KW per task virtual/physical memory. Despite the fact that no 
more than 8 KW of the library is mapped by a single task at anyone 
time, the entire library must be resident in physical memory when any 
portion is mapped by a resident task, since regions cannot be loaded 
piecemeal. 

In Figure B-4, a single task is using both RMSRES (mapping to an 
arbitrary "leaf" segment is shown) and the 7 KW DIBOL memory-resident 
library - which is not PLAS-overlaid. Two points are worth noting: 

1. The two libraries again consume half the available task 
virtual address space. Even though the DIBOL library is 
smaller than 8 KW, the fact that it exceeds 4 KW means that 
two APRs are needed to map it. While the physical memory 
required is 7 KW, the virtual memory impact on the task is 8 
KW. The "extra" 1 KW at the "top" of APR 5 is not available 
for use by the task. No other task window can be mapped to 
it, as it does not begin on an APR (4 KW) address boundary_ 
Similar smaller unusable virtual address ranges can be found 
at the top of both of the APRs (6 and 7) used to map into 
RMSRES. The unused 1 KW at the top of APR 3, however, could 
be used by the task if necessary. It is continuous with the 
task region, and task Window 0 could be extended to include 
it. 

2. To run at all, the task requires 45 KW of physical memory (15 
KW for the task itself, 23 KW for RMSRES, and 7 KW for DIBOL, 
in continuous blocks). 

B-18 



CLUSTER LIBRARIES AND THEIR USE IN APPLICATIONS 

~v / //~ 
R 

M 
SR 

ES 

APR 7 

---- -~--

APR 6 

APR 5 

(L
E 

Av 
ES) 

APR 4 WINDOW (Roor) 
1 

APR 3 

D I B 0 L 
APR 2 

WINDOW 
APR 1 

APR fI TASK 

·V / /~, 

Figure 8-4: Library With Memory-Resident Overlays 

8-19 



CLUSTER LIBRARIES AND THEIR USE IN APPLICATIONS 

8.2.5 Clustered Libraries 

AS described in the previous section, multiple libraries are good for 
performance and potential sharing of physical memory, but not so good 
for task virtual address space, and m1n1mum physical memory 
requirement (at least when only a single task is using the libraries). 
More flexibility is needed - and POP-ll task structure provides it in 
the window mechanism. Windows are not statically associated with 
specific regions. They may be created and deleted as needed, at 
relatively low performance cost. In particular, when two libraries do 
not interact directly with one another (i.e., they do not need to be 
mapped simultaneously), they may alternately make use of the same task 
virtual address space (APR) range under control of the task's integral 
overlay run-time system. 

As Figure B-5 illustrates, this structure presents the same task 
configuration as discussed in the previous section. NOw, however, RMS 
and OIBOL share the same two APRs (6 and 7). At the moment, OIBOL is 
mapped by the task, and RMS is not. Because of this, RMS need not 
occupy physical memory (unless some other resident task is mapped to 
RMSRES), and the instantaneous physical memory requirement for the 
running task drops from 45 KW to 22 KW. If an RMS request occurs, of 
course, RMSRES must be mapped. However, OIBOL must first be unmapped, 
and hence again the instantaneous physical memory requirement is 
reduced (38 KW vs. 45 KW). 

Thus, the task can run in as little as 38 KW of physical memory, 
though if there is less than 45 KW (appropriately distributed) RMSRES 
and OI80L will "swap" against each other, resulting in disk I/O 
similar to overlaying. The effect is to use the physical memory 
controlled by the operating system as a code cache. When the supply 
is plentiful, performance approaches the optimal multiple library 
case. When memory gets tight, performance degrades gradually as disk 
I/O activity relieves the pressure (and improves again dynamically 
when more physical memory becomes available). Additional libraries 
(such as an FMS library) may be added to the cluster as long as the 
rule that all are independent of each other is followed. In such a 
case, the minimum physical memory requirement is unaffected unless one 
of the libraries added is larger than the previous largest library in 
the cluster. 

P/OS and RSX-l1M-PLUS systems allow the most dynamic use of memory, as 
described above. RSTS/E systems tie libraries to specific areas in 
physical.memory, but allow use of this physical memory for other 
purposes when it is not required by the library that "owns" it. 
RSX-llM systems do not support demand region loading, and hence do not 
experience any reduction in required physical memory. All libraries 
must always be resident. 

B-20 



CLUSTER LIBRARIES AND THEIR USE IN APPLICATIONS 

Also, the largest VIRTUAL address space requirement of any library in 
the cluster is all the user task sees. RMSRES, OAPRES (the library 
supporting RMS remote access via DECNET), FMS, and OIBOL can, for 
example, all share the same 8 KW (two APRs) of task virtual address 
space. ~his was, in fact, the original impetus for library 
clustering. The advantages in using physical memory were recognized 
later. 

B-21 



CLUSTER LIBRARIES AND THEIR USE IN APPLICATIONS 

RM 

SR 

ES 

-- _-'t 

----
fI;- (Task Window 2) ~ (LE ---- AV 

APR 7 -- ES) -
~ 

+----
APR 6 (Task --~ 

Window 1) 
4-- ____ (ROOr) 

TASK - - - - - - - ~ 
WINDOW 1 

D I B 0 L 

( , 
APR 3 

TASK 
APR 2 

WINDOW 
TASK 

APR 1 a 

APR 0 
'( ~ 

Figure 8-5: Clustered Libraries 

8-22 



CLUSTER LIBRARIES AND THEIR USE IN APPLICATIONS 

8.2.6 Cluster Libraries - Implementation Detail 

The library clustering mechanism is implemented as an extension to 
existing Task Builder overlay structures. To the overlay run-time 
system, a library cluster resembles a null-rooted PLAS- overlaid 
co-tree, with each library a sub-tree. with the optional exception of 
the first library in the cluster, each of these sub- trees must itself 
have a null root. This structure simply aids the TKB in using its 
normal tree processing mechanisms to build the task structure. 

When the first library in the cluster has a non-null root segment, TKB 
builds the task such that the loader will load and map this library 
root when the task itself is loaded. Thereafter, the task-r~sident 
overlay run-time system keeps watch over the co-tree mapping. If a 
reference into the library cluster causes its APR mapping to change 
from one library (region) to another, the mapping context for the 
displaced library (region) is saved on the stack and is restored upon 
exit from the newly-called library. 

The first library in the cluster (assuming it has a non-null root) is 
always the initial library mapped. Therefore, any reference to 
another library in the cluster will always displace it, and it will 
always be re-mapped on exit. It is thus termed the "default" member 
of the cluster, for two reasons. First, mapping reverts to it when no 
other library has a routine in progress, and second, references made 
to it normally do not require any "push-down" mapping context to be 
saved on the stack - since the reference will not normally displace 
one of the other libraries' mapping. In other words, the default 
member of the cluster may usually be treated by the task just as if it 
were a non-clustered library. TKB takes advantage of this by 
suppressing generation of overlay run-time system autoload vectors for 
references to the non-null root of the default cluster member. The 
four words per root entry point saved by such direct addressing can be 
significant for default libraries with large numbers of entry points 
in the root - such as language OTS libraries. (If such libraries have 
PLAS-mapped "leaves" above the root, reference to entry points in the 
leaves will be autoload-vectored as usual). 

If all libraries in the cluster have null roots, the first library to 
be called by the task takes the role of the default member of the 
cluster. Once it has been mapped, any reference to another cluster 
member will displace it, and restore its mapping on exit. Since it 
(as well as the other libraries) has a null root, autoload vectors 
will be generated for ALL entry points referenced by the task. 

Note that this implementation does not require that all libraries in 
the cluster use the same number of APRs or the same number of virtual 
address windows. It does require, however, that they all be mapped, 
starting at the same task virtual address (APR boundary). This, in 
turn, means that all member libraries in a cluster must either be PIC, 
or Juilt at the same virtual address. 

8-23 



CLUSTER LIBRARIES AND THEIR USE IN APPLICATIONS 

8.2.7 Summary arid Implications 

Understanding how cluster libraries work makes it easier to understand 
(and remember) how to design and use them properly. To summarize: 

o Library clustering allows tasks to use the same virtual 
address space range (APRs) for multiple purposes (leaving a 
larger range of virtual address space free for other use), 
while retaining the ease-of-development and code-sharability 
features of normal memory-resident libraries. 

There are two costs associated with use of cluster libraries: 

1. The overlay run-time 
(several hundred words 
of your task. If your 
run-time system for 
increase is relatively 

system and its data structures 
total) must be built into the root 
task already required the overlay 
other reasons, the additional size 
small. 

2. A reference to a non-default member of the cluster causes 
mapping/re-mapping operations to occur. The typical 
overhead is 2-10 milliseconds per reference (far less 
than a typical disk I/O operation), depending on 
processor speed and the number of windows in the affected 
libraries. 

o Library clustering allows P/OS, RSX-11M-PLUS and RSTS/E 
operating systems to make more flexible use of physical 
memory, since a task maps only one library at a time. When 
memory is in short supply, a task may be able to run (albeit 
more slowly) which could not run at all if the libraries were 
not clustered. When a library is not mapped for long periods 
of time, the physical memory may be put to other use. 

o Library clustering is not transparent to the libraries in the 
cluster. They must make no direct reference to each other 
(see below), and any which are not PIC must be built at the 
same starting virtual address. 

Library clustering is not fully transparent to the user task: 

1. The nature of the "push-down" mapping mechanism requires that 
any CALL into the cluster be of the form JSR PC, ... (rather 
than, for example, JSR R5, ... ). While JMPs into the cluster 
are acceptable, co-routine linkages are unacceptable. 

8-24 



CLUSTER LIBRARIES AND THEIR USE IN APPLICATIONS 

2. In general, the task must access the cluster only as 
described above. The task must not "remember" virtual 
addresses within the cluster, and cannot use the . NAME 
facility to load library data tables. 

3. Since push-down mapping affects the stack depth, parameters 
may be passed on the stack across the task/cluster interface 
only if an argument pointer is used. 

The above three restrictions are relaxed only in the case of the 
default member of the cluster, and only then when it is known that no 
other member is currently "pushed down" on the stack (see next 
section) . 

8.2.8 Inter-Library References and Miscellaneous Points 

That completes this description of how clustering works and what its 
limitations are. One of the limitations clearly needs a work-around. 
For example, a language or FMS library needs access to the FCS or RMS 
library for file access, and to say that such combinations cannot be 
clustered is just not acceptable. 

Any work-around is not a part of the clustering mechanism per see It 
is a cooperative effort on the part of the interacting libraries. FCS 
and RMS, for example, both provide linkage routines (modules FCSVEC 
and RORMSC, respectively) which must be built into any library whose 
code contains direct references to the FCS/RMS functions (e.g., 
OPEN$/$OPEN). These special modules field any FCS/RMS request made 
within the library and pass it - using the low-core absolute linkage 
to the FCS or RMS task-resident impure area - to another FCS or RMS 
routine which exists in the task itself. This routine then calls into 
the FCS/RMS library, thus avoiding any direct inter-library call. (In 
the case of FCS, the "routine" is simply a JMP through an autoload 
vector.) 

Note, however, that the FCS/RMS global entry point symbols now appear 
in the calling library's symbol table. They will be visible to the 
~ser task, unless the calling library is built with .GBLXCL statements 
for each such symbol. Since it is not normally desirable to "vector" 
RMS references from the task through some intermediate library, the 
.GBLXCL mechanism is generally appropriate. In the case of FCS, it is 
mandatory, as these same symbols are used as the entry points to the 
FCS library and will conflict if not suppressed. 

The mechanism described above is equally useful for non-clustered 
libraries which need access to FCS or RMS without being bound to 
specific external routine entry points. This is independent of 
whether the FCS/ RMS code is task-resident or in a library of its own. 
An alternative approach is for the calling library to invoke a service 

B-25 



CLUSTER LIBRARIES AND THEIR USE IN APPLICATIONS 

routine of its own in the task, which then dispatches to FCS/RMS 
directly. 

Finally, the calling library must contain nothing (data structures, 
file specification strings, etc.) that the FCS/RMS library needs to 
"see" in the execution of its duties. This is the caller's end of the 
bargain. RMS completion routines are called from the in-task RMS 
linkage code after exit from RMSRES, and hence may be present in the 
caller's library (which has by then been re-mapped). "Get space" 
(GSA) routines provided by the user are called with the RMS library 
mapped, but will execute correctly regardless of location provided the 
address given to RMS reflects an in-task autoload vector (the RMS 
mapping will be "pushed down" if necessary to map the GSA routine, and 
will be restored transparently on GSA routine exit). 

This last situation reflects one of the potential pitfalls of 
"default" libraries. If such a library is clustered with RMS and 
provides a GSA routine address in its (non-null) root segment, when an 
RMS operation is performed, the callout of RMSRES to the GSA routine 
will, in fact, transfer control to some random location within the RMS 
library. This is because the default member is not mapped at the time 
and the overlay run-time system is not invoked on the reference (no 
autoload vector was generated). There are three possible remedies: 

1. Place the GSA routine in the task rather than in the library. 

2. Place the GSA routine in a PLAS-overlaid "leaf" of the 
default library - whose entry points are autoload-vectored. 

3. Build the first library as the other cluster members with a 
null root - which will force autoload vectoring throughout. 

A situation similar to the above applies to synchronous traps. Any 
trap service routine in the cluster must be suitably autoload-vectored 
through the controlling task, as the routine may not be mapped at the 
moment the trap occurs. At present, the overlay run-time system's 
handling of its data structures is not suited to any use of overlaying 
during asynchronous trap processing unless it is the only time 
overlaying occurs. An enhancement is under development, and when it 
appears, asynchronous trap servicing may be handled as described for 
synchronous trap servicing. 

8.2.9 WRITE Access to Clustered Libraries 

For P/OS Vi.7, the overlay run-time system has been modified to allow 
write access to (non-"default") clustered libraries that have not been 
installed read-only. 

8-26 



CLUSTER LIBRARIES AND THEIR USE IN APPLICATIONS 

Such libraries may be useful for the following purposes: 

o Passing information between cooperating application tasks 
(the tasks should provide their own access synchronization) 

o To extend the effective available read/write virtual memory 
usable for task impure data 

In both cases, the task(s) must ensure that the library is mapped by 
calling a routine in the library that does not RETURN to the caller 
until any access to the read/write data is completed. This is not 
normally necessary for a non-null-rooted 'default' cluster member, 
since it is usually already mapped as desired. 

B.2.10 NULLIB 

The special non-null-rooted default cluster member NULLIB was provided 
in previous P/OS releases for two purposes: 

o to guard against potential memory fragmentation problems that 
might cause task deadlock in certain instances. 

o to provide better performance in cases when a null-rooted 
cluster member would otherwise become the 'effective' default 
member of the cluster and would be re-mapped (and potentially 
re-Ioaded from disk) unnecessarily. Assuming that, 
typically, the application would access other cluster members 
than the first one accessed, re-mapping that first member 
after every access to some other one could prove costly. 

The~ncreased physical memory now standard for P/OS makes the memory 
fragmentation problems considerably less likely for most applications. 
Also now that the RMSRES and POSSUM resident libraries are fixed in 
memory, there is no possibility of disk loading overhead when one of 
these becomes the effective default member of a cluster. 

AS a general rule, when all members of a library cluster have null 
roots, the application should attempt to ensure that the first library 
accessed (which will become the effective default cluster member) is 
the one that the application will refer to most frequently. This will 
minimize the likelihood of unnecessary mapping and possible disk 
loading. 

8-27 



OPTIONS IN TASK ORGANIZATION 

B.3 OPTIONS IN TASK ORGANIZATION 

The following examples have been chosen to demonstrate the options for 
organizing a task which needs to use the following PIOS services: 
RMS, Callable System Services (POSSUM), and User Interface Services 
(POSRES). 

o Option 1: FLAT.TSK 

Completely flat task structure. All task modules are in a 
single segment. The three resident libraries are mapped in 
their own APRs. 

Advantages: Easiest taskbuild command file to construct. No 
special attention has to be made to placement of data. Less 
mapping activity necessary. 

Disadvantages: Most costly in terms of virtual memory space. 

o Option 2: CLUST.TSK 

Task region is a flat structure. The resident libraries are 
clustered against each other. 

Advantages: Because the resident libraries 
mapping, other APRs are freed for task use. 

share APR 

Disadvantages: More mapping and unmapping required by 
runtime services. 

o Option 3: VECTOR.TSK 

Task space contains minimal code. Most code has been 
relocated to a user-written cluster library (USRRES). This 
library is clustered against RMSRES, POSSUM, and POSRES. 
Data required by USRRES must reside in task address space. 

Advantages: Even more address space available in task area. 

Disadvantages: More difficult to organize task code and 
data. A vectoring scheme must be implemented for library 
data references and subroutine calls from one library in the 
cluster to another. Extra mapping and unmapping by the 
~verlay runtime system. 

o Option 4: OVERLAY.TSK 

Task itself is overlaid. All code and data which are needed 
to call RMSRES, POSSUM, and POSRES reside in one branch of 
the tree. Code not using these libraries is overlaid against 
code using libraries. 

B-28 



OPTIONS IN TASK ORGANIZATION 

Advantages: Extends task virtual address space considerably 
because code/data for library references are removed from 
root segment of task and are consequently able to be 
unmapped. 

Disadvantages: More complicated .ODL file. 
knowledge of library-specific requirements. 
separation of functionality. 

Implementation details follow. 

8-29 

Requires some 
Requires logical 



OPTIONS IN TASK ORGANIZATION 

8.3.1 FLAT.TSK 

This is the simplest structure to concoct. In a flat task structure, 
task control can be directly transferred to mainline code. 
Nevertheless, the example uses the control module ROOT in order to 
provide a basis for comparison with the alternative options. 

B.3.1.1 FLATBLD.CMD-
control mainline RMS,POSSUM 
module code & POSRES 

data 
FLAT, FLAT = ROOT, MAINLINE, ROOT DATA 
/ 

each library will have its own apr assignment 
LIBR POSRES:RO 
LIBR 
LIBR 

TASK 

RMSRES:RO 
POSSUM:RO 

FLAT 

; define and assign logical units needed by this task: 
UNITS = 7 
ASG = SY:1:2:3:4:7 
ASG = TI:5 
GBLDEF TRGTLN:1 
GBLDEF HL$LUN:2 
GBLDEF MN$LUN:3 
GBLDEF MS$LUN:4 
GBLDEF TT$LUN:5 
GBLDEF WC$LUN:7 
GBLDEF TT$EFN:2 

EXTSCT 
EXTSCT 
EXTSCT 

FL$BUF:2000 
MM$BUF:2000 
MN$BUF:2000 

// 

B.3.1.2 ROOT.MAC-

;+ 

.title coderoot 

.ident /01.00/ 

.enabl 

.mcall 
lc 
exit$s 

lun for target file (call to PROATR) 
lun for help file (not used in this example) 
lun for menu file 
lun for message file (not used in this example) 
lun for POSRES services terminal I/O 
lun for POSRES wildcard directory search 
event flag for POSRES terminal I/O 

lprovide a buffer for file specs (OLDFIL) 
lbuffer for multi-choice menu (OLDFIL) 
lbuffer for additional options menu (OLDFIL) 

The operational code for this test task is found in MAINLINE.MAC. 
i Necessary data structures are in ROOTDATA.MAC. 

8-30 



OPTIONS IN TASK ORGANIZATION 

; -
.sbttl Task root code 
.psect 

START: 
MOV 
CALL 
EXIT$S 

*DATATBL,RO 
MAINLN 

;table of subroutine parameter bloc 
imainline task code 
;done 

.sbttl 

.psect 
DATATBL: 

Data table to drive mainline code 
roodat,d,rw,con 

. WORD 

. WORD 
OLFPAR 
FAB 

. WORD LUN 

. WORD 

. WORD 
FIDBUF 
POSPAR 

.END START 

;call oldfil first 
;will need· FAB address to set up 

;call to rms 

;three-word buffer for file id 
iPossum (proatr) parameter block) 

B.3.1.3 MAINLINE.MAC-

;+ 

.title Mainline code 

.ident /01.00/ 

.enabl lc 

qiow$s, alun$s .mcall 
.mcall 
.mcall 
fhdof$ 

$parse, $search, $compare, $fetch, $store 
fhdof$ 

Mainline code for test task. 
This module will: 

;define file header offsets for 
;UC.CON 

1. Establish proper lun assignments for terminal and target file 
2. Call OLDFIL in POSRES to allow choice of target file. 
3. Call RMS to determine FILE-ID of target file. 
4. Call PROATR in POSSUM to determine whether file is contiguous 
5. Output result to screen. 

Most data for this module lives in ROOTDATA.MAC. This will permit 
this module to be incorporated into a resident library which may 
cluster against RMSRES, POSSUM, and POSRES and to share data with 
that library. 

There is some read-only data in this module which is included to 
demonstrate its possible use in a cluster library. 

B-31 



OPTIONS IN TASK ORGANIZATION 

; Inputs: RO -) Data table 
.word 
.word 
.word 
.word 
.word 

in the format: 

outputs: 

j -

.sbttl 

.psect 

none 

Mainline code 

oldfil parameter block 
address of rms FAB 
address of lun for target file 
address of 3-word buffer for file id 
address of parameter block for possum 

MAINLN: : 

i 

MOV 
MOV 
MOV 
CALL 
MOV 
MOV 
TST 
BLE 

MOV 
$STORE 
MOV 
$STORE 

(RO)+,RS 
RO,-(SP) 
RS,-(SP) 
OLOFIL 
(SP)+,RS 
(SP)+,RO 
@2(RS) 
10$ 

iparameter block for oldfil 
ipreserve input pointer across call 
iand also oldfil parameter block address 

iget a file spec 
jrestore oldfil parameter block 
;restore input table 

isuccessful? 
ino 

(RO)+,R2 jget fab address 
@8.(RS),FNS,R2 jstore size of filespec (from oldfil) 
@(RO)+,Rl 
Rl,LCH,R2 ienter lun in FAB 

$PARSE R2 icall RMS 
jsuccess? 
ino 

$COMPARE #SU$SUC,STS,R2 
BNE 10$ 

$SEARCH R2 
$COMPARE #SU$SUC,STS,R2 
BNE 10$ 

$FETCH 
MOV 
$FETCH 

Rl,NAM,R2 
(RO)+,R3 
O(R3),FIO,Rl 

iget file id into nam block 
isuccessful? 
ina, error 

jget NAM block address 
ibuffer to receive file id 

jretrieve File 10 into buffer 

MOV (RO)+,RS iproatr parameter block address 

The proatr parameter looks as follows: 
.word 5 
.word 
.word 
.word 
.word 
. word 

MOV 

addr. of 8-word status block 
addr. of request word 
addr. of buffer to construct attribute list 
addr. of file-id buffer 
lun addr . 

#O,@4(RS) iinitialize request - get file attributes 
by file id 

B-32 



MOV 
fill in 

MOVB 
MOVB 
MOV 
ADD 
CLR 
CLR 

1$: 

.BYTE 

.WORD 

.WORD 

CALL 
MOV 
TST 
BLE. 

BIC 

OPTIONS IN TASK ORGANIZATION 

6 (R5) , RO 
attribute list: 

#3,(RO)+ 
#2,(RO)+ 
RO, (RO ) 
#4,(RO)+ 
(RO)+ 
(RO) 

3,2 
1$ 
o 
. WORD 

PROATR 
2 (R5 ) , Rl 
2(Rl) 
10$ 

iget address of attribute buffer 

iattribute type is file characteristics 
itwo words 
iconstruct a buffer address 
ipoint past attribute list 

o 

iend of attribute list 
iinitialize cell to receive 
icharacteristics 

iattribute type, size 
ilocation of output 
inull ends attribute list 

ireturned value from proatr 

iget attributes 
istatus block address 

isuccess? 
ino, pass back error 

#"C<UC.CON),(RO) iclear all but contiguous bit in 
i attribute word 
iif bit set, then file contiguous 
iif bit clear, then file 
not-contiguous 

and (RO)=O 

ipick up address of messages 
code must be pic since this will go into a IPI library 

iassume contiguous 

5$: 

10$: 

MOV PC,Rl 
ADD #CONTIG-.,Rl 
MOV #CONTIZ,R2 
TST (RO) icontiguous if non-zero 

iyes, contiguous 
inon-contiguous 

BNE 5$ 
MOV 
ADD 
MOV 

ALUN$S 
CLR 
CLR 
MOV 
QIOW$S 
MOV 

RETURN 

.sbttl 

.psect 

PC,Rl 
#NOCONT-.,Rl 
#NOCONZ,R2 

#5,#"TI 
-(SP) 
-(SP) 

ipoint terminal lun to the right place 
icreate io status block 

SP,R3 ipoint to it 
#IO.WVB,#5,#1"R3,,<Rl,R2,#40) ientertain 
(SP)+,(SP)+ iclear off iosb 

Miscellaneous data 
misdat,d,ro 

B-33 



OPTIONS IN TASK ORGANIZATION 

contig: .ascii <33>/[2J/<33>/[10il0H/ 
.ascll /The file you have chosen is contiguous/ 

contiz = .-contig 

nocont: .ascii <33>/[2J/<33>/[10il0H/ 
.ascii /The file you have chosen is not contiguous/ 

noconz = .-nocont 
.even 

.end 

B.3.1.4 ROOTDATA.MAC-
.TITLE 
.ident 
.enabl 

DATA FOR TASK ROOT 
/01.00/ 
lc 

.mcall fab$b, nam$b, pool$b 

i+ 
; This module contains data needed by resident libraries (and in some 
i cases in-task root). Data must be mapped when resident library is 
; called. 
i -

.psect roodat,d,rw,con 

.SBTTL DATA FOR OLDFIL 

prompt: .ascii /Step right up! See if file is contiguous/ 
promz = .-prompt 

.even 
prompz: 

olfpar:: 
.word 
.word 
.word 
.word 
.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

olfpaz 
olfsts 
numcho 
fna 
ofsiz 

nowild 
nosiz 
prompt 
prompz 
nomsg 
nosiz 
nomsg 

.word nosiz 
olfpaz = <.-01fpar>/2 - 1 

promz ;indirect reference for 
ioldfil 

;size of parameter block 
istatus block address 
;number of choices 
;file name string 
;array (1 element) for 

ifilespec size(s) 
ina wildcard default 
ina length for no wildcard default 
itext 

ino message 

B-34 



olfsts: 
numcho: 
ofsiz: 
nowild: 
nomsg: 
nosiz: 

.SBTTL 

lun: : 

fidbuf:: 

.SBTTL 

pospar:: 
.word 
. word 
. word 
. word 
. word 
.word 

stablk: 
bufl: 
buf2: 

.SBTTL 

fna: . blkb 

dna: .ascii 
dns = .-dna 

.even 
dnasiz: 

rss = 
rsa: . blkb 

ess = 
esa: .blkb 

.even 

fab: : 
f$nam 
f$fna 
f$dna 
f$dns 

OPTIONS IN TASK ORGANIZATION 

.blkw 2 istatus block 

.word 1 ione choice only 

.blkw 1 iwill contain size of filespec 
ina wildcard 
ina message 

.word 0 ina size 

DATA FOR RMS CALLS 

.word trgtln itarget lun 

.blkw 3 

DATA FOR POSSUM CALL 

5 
stablk ;addr . of 8-word status block 
bufl ;addr . of request word 
buf2 ;addr . of buffer to construct call 
fidbuf ;addr . of buffer containing file-id 
lun ;addr. of lun for file 

.blkw 8. 

.word 0 ;request word 

.blkw 8. ;enough for an attribute 

RMS DATA STRUCTURES 

256. 

/SY:;O/ 

.word 

255. 
rss 

255. 
ess 

fab$b 
nam 
fna 
dna 
dns 

;buffer for file specification 

;look for the latest version on default volume 

;force even boundary 
dns iindirect reference for oldfil 

;resultant string 

;expanded string 

inam block address 
;file specification address 
;default file spec. addr. 
idna size 

B-35 



OPTIONS IN TASK ORGANIZATION 

fab$e 

nam: nam$b 
n$esa esa iexpanded string address 
n$ess ess isize of esa buffer 
n$rsa rsa ; resultant string address 
n$rss rss isize of rsa buffer 
nam$e 

pool$b 
p$fab 1 ione fab 
p$buf 512. ione-block buffer 
p$bdb 1 ione buffer descriptor block 
pool$e 

.end 

8-36 



OPTIONS IN TASK ORGANIZATION 

8.3.2 CLUST.TSK 

This task makes use of the cluster library facility to free some APRs 
which would otherwise be used to map to resident libraries. The task 
itself is still a flat structure. Because the cluster library 
facility uses the overlay runtime system the task incorporates an 
overlay descriptor file. The .ODL file describes this flat structure 
in a manner similar to the specification of modules in the previous 
example (FLAT.TSK). 

Only one member of a library cluster may have a non-null root. If 
there is a library which meets this description, it must be the 
default library of the cluster (appear first in the CLSTR option 
line). Mapping to this default library is always restored after the 
completion of a call to another member of the cluster. Normally a 
higher-level language OTS falls into this category. 

In the case in which there is no library with a non-null root, the 
library which is INVOKED first becomes the default library de facto, 
regardles~ of its position in the CLSTR option line. The consequence 
of this is that if the task makes repeated calls to a particular 
library, it would be advantageous to make a call to the most often 
invoked library before calling any less frequently used library. 

B.3.2.1 CLUSTBLD.CMD­
CLUST, CLUST = CLUST/MP 

CLSTR = RMSRES,POSRES,POSSUM:RO 

TASK = CLUST 

UNITS 
ASG = 
ASG = 
GBLDEF 
GBLDEF 
GBLDEF 
GBLDEF 
GBLDEF 
GBLDEF 
GBLDEF 

EXTSCT 
EXTSCT 
EXTSCT 
II 

= 7 
SY:l:2:3:4:7 
TI:5 

TRGTLN:l 
HL$LUN:2 
MN$LUN:3 

= MS$LUN:4 
TT$EFN:2 
TT$LUN:5 
WC$LUN:7 

FL$BUF:2000 
MN$BUF:2000 
MM$BUF:2000 

B-37 



OPTIONS IN TASK ORGANIZATION 

B.3.2.2 CLUST.ODL­
control 
module 

. ROOT ROOT- OTHER- RMSROT 

mainline RMS,POSSUM 
code & POSRES 

data 
OTHER: .FCTR MAINLINE- ROOTDATA 

; include RMS root modules (RMSROT) so that POSRES routines 
; can call RMS (see discussion of USRRES, below) 
@LB:[1,5]RMSRLX 

.END 

8-38 



OPTIONS IN TASK ORGANIZATION 

8.3.3 VECTOR.TSK and USRRES.TSK 

This example demonstrates 

1. How to remove code from task space and place it in a resident 
library. 

2. How to build a resident library with a null root so that the 
library may be used as part of a cluster of resident 
libraries. 

3. How to address data in the task root from the resident 
library. 

4. How to provide a facility to call other members of the 
cluster from the user-written cluster library. 

In this example, the user-written library is intended to be installed 
read-only and the library cluster mapped RO. As a result, there 
cannot be any read/write data in the library; there is, however, some 
read-only data in this library for demonstration purposes. 

Note 

In the following discussion, the terms "task space", 
"task root", and "task" all refer to a task which maps 
to the resident library USRRES. 

B.3.3.1 USRRESBLD.CMD­
Build a PIC 
resident library 

Include .STB 
file for 

tasks which 
map to this 
library 

USRRES/-HD/PI/LI, USRRES, USRRES 

PAR = USRRES:O:O 
STACK = 0 

USRRES/MP 

Insure that the symbol table for this library will contain 
references to the externally available entry point(s): 

GBLREF = MAINLN 

; Force the task builder to check that the root vectoring module 

B-39 



OPTIONS IN TASK ORGANIZATION 

; is included in the task using this library for cross-cluster calls 
; and accessing data in the root. 
; 
GBLINC = YANKME 
; 
; This library calls POSRES and POSSUM services (OLDFIL and 

PROATR, respectively). The entry point names must be resolved 
when building this library, but cannot be included in the library 

; .STa, since references to these symbols from the task must be 
resolved by the library which contains the routine. (See discussion 
of cross-cluster calls.) 

GBLXCL 
GBLXCL 
// 

PROATR 
OLDFIL 

B.3.3.2 USRRES.ODL - Resident Library The following .OOL file 
describes the resident library. It is a non-overlaid resident library 
with a null root. Any module without code or data allocation will 
suffice as a root; SYSLIB includes the module NULL for this purpose. 

. ROOT LB:[l,l]SYSLIB/LB:NULL- !(COOE) 

CODE: .FCTR *MAINLINE- RESVEC- SYSLIB/LB:RORMSC:RMSSYM 

.END 

B.3.3.3 Discussion - The module MAINLINE is declared autoloadable, 
indicating to the task builder to mark its global entry point(s) 
appropriately in the symbol table of USRRES. Calls to these routines 
from the task will generate autoload vectors. The autoload indicator 
is used in conjunction with the GBLREF option in the taskbuild command 
file. The GBLREF option instructs the taskbuilder to place the symbol 
in the .STB file for this library. This permits the calling task to 
have access to that entry point. 

The modules RORMSC and RMSSYM from SYSLIB permit this resident library 
to call. RMSRES, which may be clustered against USRRES. This is 
accomplished by vectoring these calls through the task root. The 
vectoring module RESVEC illustrates the use of this scheme for those 
components which do not already provide a similar facility (see 
below). 

B-40 



OPTIONS IN TASK ORGANIZATION 

Vectoring is required for two purposes: 

1. Accessing data in the task root from the library. 

2. Cross-cluster calls. 

Since the library must be taskbuilt before the referencing task, the 
library cannot reference the task directly. The task may pass data 
addresses, for example, as parameters to library routines. 
Alternatively, the library may address task space via a limited number 
of fixed addresses which remain meanings from task to task. This area 
is referred to as the "low-core" context of the task image. 

As part of the low-core context, the taskbuilder automatically 
deposits the address of the first word of the psect $$VEXl in the 
location $VEXT. Since $VEXT is always at the same address in all 
tasks, a library may use this location to find the beginning of the 
$$VEXl psect, whose actual virtual location will undoubtedly vary from 
task to task. 

Negative offsets from the beginning of the $$VEXl PSECT are reserved 
for Digital impure area vectors. Users may employ any positive 
offset; however, care should be taken to guarantee that other 
applications (e.g. high-level languages) are not already using the 
locations in $$VEX1. 

The psect has the following attributes: 

.PSECT $$VEX1,D,GBL,REL,OVR 

The OVR attribute allows contributions to the PSECT to come from 
different sources while maintaining a fixed point of reference from 
the beginning of the PSECT. A SYSLIB module contains a global symbol 
pointing to the beginning of this PSECT. The address of this symbol 
is deposited by the taskbuilder in the location $VEXT. 

Therefore a library routine may execute the following instruction to 
point Rn to the beginning of $$VEX1. 

Rn is anyone of the general purpose Registers. The absolute 
addressing mode (@ ) is required to guarantee position independence of 
the library. 

The library routine RESVEC makes use of the fact that a task built 
against this library will contain impure area vectors required by 
USRRES. The resident library can insure that the vector-declaring 
module is included in the task by using the GBLINC option; this option 
results in an error in a task built against this library if the 
specified symbol is not resolved. 

8-41 



OPTIONS IN TASK ORGANIZATION 

A module in USRRES callS PROATR by a normal JSR, pc: 

CALL PROATR 

A module must be included in the resident library to vector this call 
through the task root. 

B.3.3.4 Excerpt from RESVEC.MAC -
; This global symbol must be excluded from the .STB of USRRES. 

Otherwise, the taskbuilder would not be able to resolve the symbol 
unambiguously between USRRES and POSSUM. The GBLXCL option in the 
USRRES taskbuild command line instructs the taskbuilder to exclude 
the symbol. 

PROATR:: 
This code is written in 

MOV @#$VEXT,-(SP) 

MOV @(SP)+,-(SP) 

ADD #2,(SP) 

MOV @(SP)+,-(SP) 

In actuality, the stack 
autoload vector. 

JMP @(SP)+ 

this manner so as to preserve all registers. 
;get pointer to $$VEXl psect 
i (SP) address of MYVECT (see below) 
ipoint to table 
; (SP) addr of INDIRECT 
;PROATR transfer point is second in table­
; (SP) addr. of 2nd word in table 
iget contents of 2nd word of table 
i (SP) addr. of "PROATR" 
contains the address of an overlay runtime 

;transfer to "PROATR" (overlay runtime 
isystem) 

At this point, the task is executing in the overlay runtime system, 
which will save the mapping context of USRRES, remap to POSSUM, and 
transfer control to PROATR. At the conclusion of PROATR, the overlay 
runtime system will restore mapping to USRRES and return control to 
the instruction following the call to PROATR. 

A similar procedure would be followed to address the data space in the 
task root. Here a register is available. 

MOV 
MOV 
MOV 

@#$VEXT,RO 
(RO),RO 
4(RO),RO 

iaddress of MYVECT 
ipoint to INDIRECT (vector table) 
;contents of entry is address of data 

table 

B.3.3.5 VECTOR.MAC (Root vector module) -
; Define symbol required by USRRES 
YANKME == 0 

.PSECT $$VEX1,D,GBL,REL,OVR 

B-42 



OPTIONS IN TASK ORGANIZATION 

; This label will be equivalent to the value which the taskbuilder has 
deposited in $VEXT because the psect $$VEX1 is OVR (overlaid). 

MYVECT: 

It is good practice to add a level of indirection. This will insure 
that this use of this particular psect will consume only a single 
word . 

• WORD INDIRECT 

.PSECT JMPTBL,D,RO,CON 
INDIRECT: 

. WORD OLDFIL 

. WORD 

. WORD 
PROATR 
PNTDAT 

;used in cross-cluster calls 
;used in cross-cluster calls 
;used to point to data in task root 

.PSECT IMPURE,D,RW,CON 
PNTDAT: 

.BLKB 120 . ;read/write data area 

. END 

B.3.3.6 VECTORBLD.CMD-
; Command file to build task which maps to user-written resident 
; cluster library 
VECTOR, VECTOR = VECTOR/MP 

CLSTR = RMSRES,POSRES,POSSUM,USRRES:RO 
TASK = VECTOR 

UNITS 
ASG = 
ASG = 
GBLDEF 
GBLDEF 
GBLDEF 
GBLDEF 
GBLDEF 
GBLDEF 
GBLDEF 

EXTSCT 
EXTSCT 
EXTSCT 
II 

= 7 
SY:1:2:3:4:7 
TI:5 

TRGTLN:1 
= HL$LUN:2 

MN$LUN:3 
MS$LUN:4 
TT$EFN:2 
TT$LUN:5 
WC$LUN:7 

FL$BUF:2000 
MN$BUF:2000 
MM$BUF:2000 

B-43 



OPTIONS IN TASK ORGANIZATION 

B.3.3.7 VBCTOR.ODL-
• ROOT ROOT- OTHER- RMSROT 

OTHER: 

task root 
vectoring 

module 
.FCTR ROOTDATA- VECTOR 

@LB:[l,S]RMSRLX 

. END 

8-44 



OPTIONS IN TASK ORGANIZATION 

8.3.4 OVERLAY.T5K 

This example shows that a program can separate functionality in such a 
way that the data required by a resident clustered library need not 
always be.mapped. 

In order to achieve this goal, one must first carefully analyze the 
potential for functional independence of routines. The example is 
structured to demonstrate a group of routines which call services in 
RMSRES, POSSUM, and POSRES and a second group of routines which do 
some computation and QIO's to the terminal. 

The second stage in the process is to determine which moduleS are 
required by the resident library in question, and then force the 
taskbuilder (through the .ODL file) to place these modules in the 
appropriate branch of the overlay tree structure. If the modules were 
not specified by the .ODL file, they would be in the task root rather 
than in a branch and therefore would consume shared virtual address 
space and be mapped even when not needed. 

B.3.4.1 OVERLAY.ODL-

The root module has changed from previous examples because of the 
added calls (to COMPUTE and WTRES) 

. ROOT ROOT2- (LEFT, RIGHT) 

The module CLLWTR is included to call WTRES (wait for resume 
key) in POSRES. The module COMPUTE displays a message to press 
<RESUME> when the user is ready to continue. In order to keep 
all references to POSRES in the "left" branch of the tree, the 
.ODL forces the root to transfer control up-tree in order to 
call POSRES . 

LEFT: . FCTR *MAINLINE- *CLLWTR- ROOTDATA- BUFS- RMSROT- LIB 
; Force other syslib references into this branch 
LIB: .FCTR LB:[1,5]SYSLIB/DL 

; These are the buffers required by POSRES services in this example 
BUFS: .FCTR SYSLIB/LB:PTIMP:PTFLF:FLFAB:PTDUM 

RIGHT: .FCTR *COMPUTE- SYSLIB/LB:EDTMG 

@LB:[1,5]RMSRLX 

.END 

B-45 



OPTIONS IN TASK ORGANIZATION 

B.3.4.2 OVERLABLD.CMD­
OVERLAY, OVERLAY = OVERLAY/MP 

CLSTR = RMSRES,POSRES,POSSUM:RO 
TASK = OVERLY 

UNITS = 7 
ASG = SY:1:2:3:4:7 
ASG = TI:5 
GBLDEF = TRGTLN:1 
GBLDEF = HL$LUN:2 
GBLDEF = MN$LUN:3 
GBLDEF = MS$LUN:4 
GBLDEF TT$EFN:2 
GBLDEF TT$LUN:5 
GBLDEF WC$LUN:7 

EXTSCT = FL$BUF:2000 
EXTSCT = MN$BUF:2000 
EXTSCT = MM$BUF:2000 
II 

B.3.4.3 ROOT2.MAC­
.TITLE ROOT2 
.ident 101.001 

i+ 

.enabl lc 

.mcall exit$s 

The operational code for this test task is found in MAINLINE.MAC 
(Section B.3.1.3). 

i -

Necessary data structures are in ROOTDATA.MAC. 
(Section B.3.1.4). 

The alternate mapping is COMPUTE.MAC. All data for that segment 
is in the same module. 

.SBTTL TASK ROOT CODE 

.psect 
START: 

MOV #DATATBL,RO 
CALL MAINLN 

CALL COMPUTE 

CALL CLLWTR 

;table of subroutine parameter blocks 
imainline task code - "LEFT" 

ido something else - "RIGHT" 

iwait for the resume key - "LEFT" 
do the waiting in the posres services 
branch of the tree 

B-46 



MOV 
CALL 
EXIT$S 

OPTIONS IN TASK ORGANIZATION 

#DATATBL,RO 
MAINLN 

ijust for fun, call first operation again 
i 
idone 

.SBTTL DATA TABLE TO DRIVE MAINLINE CODE 

.psect roodat,d,rw,con 
DATATBL: 

.WORD OLFPAR 

. WORD FAB 

. WORD LUN 

. WORD FIDBUF 

. WORD POSPAR 

.END START 

icall oldfil first 
iwill need FAB address to set up call to rms 

ithree-word buffer for file id 
iPossum (proatr) parameter block) 

B.3.4.4 CLLWTR.MAC-

i+ 

i -

.TITLE CLLWTR - CALL WTRES FROM OVERLAY 

.ident /01.00/ 

This module will call the POSRES service WTRES (Wait for Resume key). 
It is placed in an overlay branch in order to segregate all posres 
calls from the root and/or other branches, i.e. to localize virtual 
address requirements for calling posres services. 

CLLWTR: : 
CALL 
RETURN 

. END 

WTRES 

B.3.4.5 COMPUTE.MAC­
.TITLE COMPUTE 
.ident /01.00/ 

i+ 

i -

.enabl Ie 

.mcall qiow$s, mrkt$s, wtse$s 

This module will consume space and time. The overlay branch which 
shares this virtual address space will do more interesting things, 
e.g. call RMS, POSSUM, and POSRES. 
After this module does its thing, it will instruct the observer to 
press the resume key. Since all calls to POSRES are in the other 
branch, this will return to ROOT2 to allow the root to transfer 
control to the POSRES-calling overlay. 

B-47 



OPTIONS IN TASK ORGANIZATION 

MRKEF = 3 ;event flag to mark time 

.psect 
COMPUTE: : 

MRKT$S #MRKEF,#2,#2 ;mark time for 2 seconds 

MOV #DATBUF,RO ;address of data buffer 
MOV #DATBUZ,Rl ;size in words 
MOV #1,R2 ;fill buffer with miscellaneous garbage 

1$: 
MOV R2, (RO ) + ;enter first word 
INC R2 ;bump data 
SOB Rl,l$ 

2$: 
MOV #DATBUF,RO ;now add it up 
MOV #DATBUZ,Rl 
CLR R2 ;double precision 
CLR R3 

3$: 
ADD (RO)+,R3 
ADC R2 
SOB Rl,3$ 

4$: 
MOV R2,DPHIGH ;copy to memory 
MOV R3,DPLOW 

5$: 
MOV #OUTBUF,RO iset up for $edmsg 
MOV #FORMAT,Rl ;input string 
MOV #ARGBLK,R2 iargument block 
CALL $EDMSG ;format output 

10$: 
WTSE$S #MRKEF ;let user read previous message 

15$: 
QIOW$S #IO.WVB,#5,#1,,#IOSB,,<#OUTBUF,Rl,#40> iprint new one 

20$: 
RETURN 

.SBTTL DATA FOR THIS BORING ROUTINE 

.psect boring,d,rw 

DATBUZ = 100. ia hundred bottles of beer on the wall 
DATBUF: .BLKW DATBUZ 

i KEEP THESE TWO VALUES TOGETHER, IN THIS ORDER: 
DPHIGH: .WORD 0 
DPLOW: . WORD 0 

OUTBUF: .SLKS 200. ibuffer for output message 

.NLIST SEX 
FORMAT: .ASCII <33>/[2J/<33>/[10i10H/ iclear screen and 

B-48 



OPTIONS IN TASK ORGANIZATION 

;locate cursor 
.ASCII /This is the total: %T. Whoopee!/ 
.ASCIZ /Press <RESUME> to continue./ 
. EVEN 
.LIST BEX 

ARGBLK: .WORD DPHIGH 
. WORD 0 

IOSB: .BLKW 2 

. END 

B-49 





APPENDIX C 

FILES-11 ON-DISK STRUCTURE SPECIFICATION 

This appendix provides a specification of the on-media structure 
that is used by Files-ll. Files-ll is a general purpose file 
structure which is intended to be the standard file structure for 
all medium to large POP-ll systems. Small systems such as RT-ll 
have been specifically excluded because the complexity of 
Files-ll would impose too great a burden on their simplicity and 
small size. 

This document describes structure level 1 of Files-ll, also 
called 005-1 (On-Disk Structure Version 1). This has been 
implemented on PIOS and on RSX. This document describes the 
final level of functionality for 005-1. Structure level 2 
(005-2) has been implemented on VMS and is the basis for all new 
disk structure enhancements. 

C.1 MEDIUM 

Files-ll is a structure which is imposed on a medium. That 
medium must have certain properties, which are described in the 
following section. Generally speaking, block addressable storage 
devices such as disks and oectape ar~ suitable for Files-ll. 
Therefore, Files-ll structured media are generically disks. 

C.1.1 Volume 

The basic medium that carries a Files-ll structure is a volume 
(also often called a unit), and is defined as an ordered set of 
logical blocks. A logical block is an array of 512 a-bit bytes. 
The logical blocks in a volume are consecutively numbered from 0 
to n-l, where the volume contains n logical blocks. The number 
assigned to a logical block is called its logical block number, 
or LBN. Files-ll is theoretically capable of describing volumes 
up to 2A 32 blocks in size. In practice, a volume should be at 

C-l 



MEDIUM 

least 100 blocks in size to be useful. Current implementations 
of Files-ll will handle volumes up to 2A24 blocks. 

The logical blocks of a volume must be randomly addressable. The 
volume must also allow transfers of any length up to 65k bytes, 
in multiples of four bytes. When a transfer is longer than 512 
bytes, consecutively numbered logical blocks are transfered until 
the byte count is satisfied. In other words, the volume can be 
viewed as a partitioned array of bytes. It must allow reads and 
writes of arrays of any length less than 65k bytes, provided that 
they start on a logical block boundary and that the length is a 
multiple of four bytes. When only part of a block is written, 
the contents of the remainder of that logical block will be 
undefined. 

C.1.2 Volume Sets 

ODS-l does not support volume sets. A volume set is a collection 
of related units that are normally treated as one logical device 
in the usual operating system concept. Each unit contains its 
own Files-l1 structure. However, files on the various units in a 
volume set may be referenced with a relative volume number, which 
uniquely determines which unit in the set the file is located on. 
Other sections in this specification will make occasional 
reference to volume sets and relative volume numbers where hooks 
for their implementation exist. Since volume sets have not been 
implemented as yet, however, no complete specification is 
provided here. 

C.2 FILES 

Any data in a volume or volume set that is of any interest (i.e., 
all blocks not available for allocation) is contained in a file. 
A file is an ordered set of virtual blocks, where a virtual block 
is an array of 512 8 bit bytes. The virtual blocks of a file are 
consecutively numbered from 1 to n, where n blocks have been 
allocated to the file. The number assigned to a virtual block is 
called (obviously) its virtual block number, or VBN. Each 
virtual block is mapped to a unique logical block in the volume 
set by Files-ll. Virtual blocks may be processed in the same 
manner as logical blocks. Any array of bytes less than 65k in 
length may be read or written, provided that the transfer starts 
on a virtual block boundary and that its length is a multiple of 
four. 

C-2 



FILES 

C.2.1 File 10 

Each file in a volume set is uniquely identified by a File ID. A 
File ID is a binary value consisting of 48 bits (3 POP-ll words). 
It is supplied by the file system when the file is created, and 
must be supplied by the user whenever he wishes to reference a 
particular file. 

The three words of the File 10 are used as follows: 

• Word 1 - File Number 

Locates the file within a particular unit of the volume 
set. File numbers must lie in the range 1 through 
65535. The set of file numbers on a unit is moderately 
(but not totally) dense. At any instant in time, a file 
number uniquely identifies one file within that unit. 

• Word 2 - File Sequence Number 

Identifies the current use of an individual file number 
on a unit. File numbers are re-used. When a file is 
deleted its file number becomes available for future use 
for some other file. Each time a file number is 
re-used, a different file sequence number is assigned to 
distinguish the uses of that file number. The file 
sequence number is essential since it is perfectly legal 
for users to remember and attempt to use a File 10 long 
after that file has been deleted. 

• Word 3 - Relative Volume Number 

Identifies which unit of a volume set the file is 
located on. Volume sets are at present not implemented. 
The only legal value for the relative volume number in 
any context is zero. 

C.2.2 File Header 

Each file on a Files-ll volume is described by a file header. 
The file header is a block that contains all the information 
necessary to access the file. It is not part of the file. It is 
contained in the volume's index file. (The index file is 
described in Section C.4.1. The header block is organized into 
four areas, of which the first three are variable in size. 

C-3 



FILES 

C.2.2.1 Header Area - The information in the header area permits 
the file system to verify that this block is in fact a file 
header and, in particular, is the header being sought by the 
user. It contains the file number and file sequence number of 
the file, as well as its ownership and protection codes. This 
area also contains offsets to the other areas of the file header, 
thus defining their size. Finally, the header area contains a 
user attribute area, which may be used by the user to store a 
limited amount of data describing the file. 

C.2.2.2 Ident Area - The ident area of a file header contains 
identification and accounting data about the file. Stored here 
are the primary name of the file, its creation date and time, 
revision count, date, and time, and expiration date. 

C.2.2.3 Map Area - The map area describes the mapping of virtual 
blocks of the file to the logical blocks of the volume. The 
mapping data consists of a list of retrieval pointers. Each 
retrieval pointer describes one logically contiguous segment of 
the file. The map area also contains the linkage to the next 
extension header of the file, if such exists. 

C.2.2.4 End Checksum - The last two bytes of the file header 
contain a 16 bit additive checksum of the remalnlng 255 words of 
the file header. The checksum is used to help verify that the 
block is in fact a file header. 

C.2.3 Extension Headers 

Since the file header is of fixed size, it is inevitable that for 
some files the mapping information will not fit in the allocated 
space. A file with a large amount of mapping data is therefore 
represented with a chain of file headers. Each header maps a 
consecutive set of virtual blocks. The extension linkage in the 
map area links the headers together in order of ascending virtual 
block numbers. 

Multiple headers are also needed for files that span units in a 
volume set. A header may only map logical blocks located on its 
unit. Therefore, a multi-volume file is represented by headers 
on all units that contain portions of that file. 

C-4 



FILES 

C.2.4 File Header - Detailed Description 

This section describes in detail the items contained in the file 
header. Each item is identified by a symbol which represents the 
offset address of that item within its area in the file header. 
Any item may be located in the file header by locating the area 
to which it belongs and then adding the value of its offset 
address. Users who concern themselves with the contents of file 
headers are strongly urged to use the offset symbols. The 
symbols may be defined in assembly language programs by calling 
and invoking the macro FHDOF$, which may be found in the macro 
library of any system that supports Files-ll. 

C.2.4.1 Header Area Description - The header area of the file 
header always starts at byte O. It contains the basic 
information needed for checking the validity of accesses to the 
file. 

H.IDOF: 1 Byte - Ident Area Offset 

This byte contains the number of 16 bit words between 
the start of the file header and the start of the ident 
area. It defines the location of the ident area and 
the size of the header area. 

H.MPOF: 1 Byte - Map Area Offset 

This byte contains the number of 16 bit words between 
the start of the file header and the start of the map 
area. It defines the location of the map area and, 
together with H.IDOF, the size of the ident area. 

H.FNUM: 2 Bytes - File Number 

This word contains the file number of the file. 

H.FSEQ: 2 Bytes - File Sequence Number 

This word contains the file sequence number of the 
file. 

H.FLEV: 2 Bytes - File Structure Level 

The file structure level is used to identify different 
versions of Files-ll as they affect the structure of 
the file header. This permits upwards compatibility of, 
file structures as Files-ll evolves, in that the 
structure level word identifies the version of Files-ll 
that created this particular -file. This document 

C-5 



FILES 

describes version 1 of Files-ll. 
contents for H.FLEV is 401 octal. 

H.FOWN: 2 Bytes - File Owner UIC 

H.PROG H.FOWN+O Programmer (Member) Number 

H.PROJ H.FOWN+l Project (Group) Number 

The only legal 

This word contains the binary user identification code 
(UIC) of the owner of the file. The file owner is 
usually (but not necessarily) the creator of the file. 

H.FPRO: 2 Bytes - File Protection Code 

This word controls what access all users in the system 
may have to the file. Accessors of a file are 
categorized according to the relationship between the 
UIC of the accessor and the UIC of the owner of the 
file. Each category is controlled by a four bit field 
in the protection word. The category of the accessor 
is selected as follows: 

• System - Bits 0 - 3 

The accessor is subject to system protection if the 
project number of the UIC under which he is running 
is 10 octal or less. 

• Owner - Bits 4 - 7 

The accessor is subject to owner protection if the 
UIC under which he is running exactly matches the 
file owner UIC. 

• Group - Bits 8 - 11 

The accessor is subject to group protection if the 
project number of his UIC matches the project 
number of the file owner UIC. 

• World - Bits 12 - 15 

The accessor is subject to world protection if he 
does not fit into any of the above categories. 

Four types of access intents are defined in 
Files-ll: read, write, extend, and delete. Each 
four bit field in the protection word is bit 
encoded to permit or deny any combination of the 
four types of access to that category of accessors. 

C-6 



FILES 

Setting a bit denies that type of access to that 
category. The bits are defined as follows (these 
values apply to a right-justified protection 
field): 

FP.RDV Deny read access 

FP.WRV Deny write access 

FP.EXT Deny extend access 

FP.DEL Deny delete access 

When a user attempts to access a file, protection 
checks are performed in all the categories to which 
he is eligible, in the order system - owner - group 
- world. The user is granted access to the file if 
any of the categories to which he is eligible 
grants him access. 

H.FCHA: 2 Bytes - File Characteristics 

H.UCHA 
H.SCHA 

H.FCHA+O User Controlled Char. 
H.FCHA+l System Controlled Char. 

The user controlled characteristics byte contains the 
following flag bits: 

1 Bit, Reserved. 

UC.NID Set if incremental dump (backup) is to 
be disabled for this file. 

UC.WBC Set if the file is to be write-back 
cached. For example, if a cache is used for 
the file data, data written by a user is 
only written back to the disk ~hen is it 
removed from the cache. Clear for 
write-through cache operation. 

UC.RCK Set if the file is to be read-checked. 
All read operations on the file, 
including reads of the file header(s), 
will be performed with a read, 
read-compare to assure data integrity. 

UC.WCK Set if the file is to be write-checked. 
All write operations on the file, 
including modifications of the file 

C-7 



FILES 

header(s), will be performed with a 
write, read-compare to assure data 
integrity. 

UC.CNB Set if the file is allocated contiguous 
best effort. In other words, as contiguous as 
possible. 

UC.DLK Set if the file is deaccess-Iocked. 
This bit is used as a flag warning that 
the file was not properly closed and may 
contain inconsistent data. Access to 
the file is denied if this bit is set. 

UC.CON Set if the file is logically contiguous. 
For example, if for all virtual blocks in the 
file, virtual block i maps to logical 
block k+i on one unit for some constant 
k. This bit may be implicitly set or 
cleared by file system operations that 
allocate space to the file. The user 
may only clear it explicitly. 

The system controlled characteristics byte contains the 
following flag bits: 

3 Bits, Reserved. 

Reserved (Access Control List). 

SC.SPL Set if the file is an intermediate file 
for spooling. 

SC.DIR Set if the file is a directory. 

SC.BAD Set if there is a bad data block in the 
file. This bit is as yet unimplemented. 
It is intended for dynamic bad block 
handling. 

SC.MDL Set if the file is marked for delete. 
If this bit is set, further accesses to 
the file are denied, and the file will 
be physically deleted when no users are 
accessing it. 

H.UFAT: 32 Bytes - User Attribute Area 

C-8 



FILES 

This area is intended for the storage of a limited 
quantity of "user file attributes", i.e., any data the 
user deems useful for processing the file that is not 
part of the file itself. An example of the use of the 
user attribute area is presented in Section C.S.1 (FCS 
File Attributes). 

S.HDHD: 46 Bytes - Size of Header Area 

This symbol represents the total size of the header 
area containing all of the above entries. 

C.2.4.2 Ident Area Description - The ident area of the file 
header begins at the word indicated by H.IDOF. It contains 
identification and accounting data about the file. 

I.FNAM: 6 Bytes - File Name 

These three words contain the name of the file, packed 
three Radix-50 characters to the word. This name 
usually, but not necessarily, corresponds to the name 
of the file's primary directory entry. 

I.FTYP: 2 Bytes - File Type 

This word contains the type of the file in the form of 
three Radix-50 characters. 

I.FVER: 2 Bytes - Version Number 

This word contains the version number of the file in 
binary form. 

I.RVNO: 2 Bytes - Revision Number 

This word contains the revision count of the file. The 
revision count is the number of times the file has been 
accessed for write. 

I.RVDT: 7 Bytes - Revision Date 

The revision date is the date on which the file was 
last deaccessed after being accessed for write. It is 
stored in ASCII in the form "DDMMMYY", where DO is two 
digits representing the day of the month, MMM is three 
characters representing the month, and YY is the last 
two digits of the year. 

I.RVTI: 6 Bytes - Revision Time 

C-9 



FILES 

The reV1Slon time is the time of day on which the file 
was last deaccessed after being accessed for write. It 
is stored in ASCII in the format "HHMMSS" , where HH is 
the hour, MM is the minute, and 55 is the second. 

I.CRDT: 7 Bytes - Creation Date 

These seven bytes contain the date on which the file 
was created. The format is the same as that of the 
revision date above. 

I.CRTI: 6 Bytes - Creation Time 

These six bytes contain the time of day at which the 
file was created. The format is the same as that of 
the revision time above. 

I.EXDT: 7 Bytes - Expiration Date 

These seven bytes contain the date on which the file 
becomes eligible to be deleted. The format is the same 
as that of the revision and creation dates above. 

1 Byte - (unused) 

This unused byte is present to round up the size if the 
ident area to a word boundary. 

S.IDHD: 46 Bytes - Size of Ident Area 

This symbol represents the size of the ident area 
containing all of the above entries. 

C.2.4.3 Map Area Description - The map area of the 
starts at the word indicated by H.MPOF. It 
information necessary to map the virtual blocks of 
the logical blocks of the volume. 

M.ESQN: 1 Byte - Extension Segment Number 

file header 
contains the 
the file to 

This byte contains the value n, where this header is 
the n+lth header of the file. In other words, headers 
of a file are numbered sequentially starting with O. 

M.ERVN: 1 Byte - Extension Relative Volume No. 

C-I0 



FILES 

This byte contains the relative volume number of the 
unit in the volume set that contains the next 
sequential extension header for this file. If there is 
no extension header, or if the extension header is 
located on the same unit as this header, this byte 
contains O. 

M.EFNU: 2 Bytes - Extension File Number 

This word contains the file number of 
sequential extension header for this file. 
no extension header, this word contains O. 

M.EFSQ: 2 Bytes - Extension File Sequence Number 

the next 
If there is 

This word contains the file sequence number of the next 
sequential extension header for this file. If there is 
no extension header, this word contains O. 

M.CTSZ: 1 Byte - Block Count Field Size 

This byte contains a count of the number of bytes used 
to represent the count field in the retrieval pointers 
in the map area. The retrieval pointer format is 
described under M.RTRV below. 

M.LBSZ: 1 Byte - LBN Field Size 

This byte contains a count of the number of bytes used 
to represent the logical block number field in the 
retrieval pointers in the map area. The contents of 
M.CTSZ and M.LBSZ must add up to an even number. 

M.USE: 1 Byte - Map Words In Use 

This byte contains a count of the number of words in 
the map area that are presently occupied by retrieval 
pointers. 

M.MAX: 1 Byte - Map Words Available 

This byte contains the total number of words available 
for retrieval pointers in the map area. 

M.RTRV: variable - Retrieval Pointers 

This area contains the retrieval pointers that actually 
map the virtual blocks of the file to the logical 
blocks of the volume. Each retrieval pointer describes 
a consecutively numbered group of logical blocks which 
is part of the file. The count field contains the 

C-ll 



FILES 

binary value n to represent a group of n+l logical 
blocks. The logical block number field contains the 
logical block number of the first logical block in the 
group. Thus each retrieval pointer maps virtual blocks 
j through j+n into logical blocks k through k+n, 
respectively, where j is the total number plus one of 
virtual blocks represented by all preceding retrieval 
pointers in this and all preceding headers of the file, 
n is the value contained in the count field, and k is 
the value contained in the logical block number field. 

Although the data in the map area provides for 
arbitrarily extensible retrieval pointer formats, 
Files-11 has defined only three. Of these, only the 
first is currently implemented. The other two are 
presented out of historical interest. They will never 
be supported. 

Format 1: M.CTSZ 1 
M.LBSZ = 3 

The total retrieval pointer length is 
four bytes. Byte 1 contains the high 
order bits of the 24 bit LBN. Byte 2 
contains the count field, and bytes 3 
and 4 contain the low 16 bits of the 
LBN. 

1----------1----------1 
1 Count 1 High 1 
1----------1- -I 
1 Low Order LBN 1 
1---------------------1 

Format 2: M.CTSZ = 2 
M.LBSZ = 2 

The total retrieval pointer length is 
four bytes. The first word contains a 
16 bit count field and the second word 
contains a 16 bit LBN field. 

1---------------------1 
1 Count 1 

1---------------------1 
1 LBN 1 

1---------------------1 

C-12 



FILES 

Format 3: M.CTSZ = 2 
M.LBSZ = 4 

The total retrieval pointer length is 
six bytes. The first word contains a 16 
bit count field and the second and third 
words contain a 32 bit LBN field. 

1---------------------1 
1 Count 1 
1---------------------1 
1 High 1 

1-- LBN --I 
1 Low 1 

1---------------------1 

S.MPHD: 10 Bytes - Size of Map Area 

This symbol represents the size of the map area, not 
including the space used for the retrieval pointers. 

C.2.4.4 End Checksum Description - The header check sum occupies 
the last two bytes of the file header. It is verified every time 
a header is read, and is recomputed every time a header is 
written. 

H.CKSM: 2 Bytes - Block Checksum 

This word is a simple additive checksum of all other 
words in the block. It is computed by the following 
PDP-11 routine or its equivalent: 

10$: 

MOV 
CLR 
MOV 

ADD 
SOB 
MOV 

Header-address,RO 
R1 
#255.,R2 

(RO)+,R1 
R2,10$ 
R1,(RO) 

C-13 



C.2.4.S File Header Layout -
Header Area 

FILES 

I~------------------I-------------------I 
H.MPOF 1 Map Area Offset 1 Ident Area Offset 1 

1-------------------1-------------------1 
1 File Number 1 
1---------------------------------------1 
1 File Sequence Number 1 

1---------------------------------------
1 File Structure Level 
1---------------------------------------

H.PROJ 1 File Owner UIC 
1---------------------------------------
1 File Protection 
1-------------------1-------------------

H.SCHA 1 System Char. 1 User Char. 
1-------------------1-------------------
1 

1 

1 

1 User Attribute Area 
1 

1 

1 

1---------------------------------------

C-14 

H.IDOF 

H.FNUM 

H.FSEQ 

H.FLEV 
H.FOWN 
H.PROG 

H.FPRO 
H.FCHA 
H.UCHA 

H.UFAT 

S.HDHD 



Ident Area 

I.RVTI 

I.CRDT 

FILES 

---------------------------------------1 
1 

--I 
File Name 1 

--I 
1 

---------------------------------------1 
File Type 1 

---------------------------------------1 
Version Number 1 

---------------------------------------1 
Revision Number 

Revision Date 

-------------------1 
1 

1-------------------
Revision Time 

-------------------1 
1 

1-------------------

Creation Date 

1 

--I 
Creation Time 1 

--I 
1 

---------------------------------------1 
1 1 
1-- --I 
1 Expiration Date 1 

1-- --I 
1 1 

1-------------------1 --I 
1 (not used) 1 1 

1-------------------1-------------------1 

C-15 

I.FNAM 

I.FTYP 

I.FVER 

I.RVNO 

I.RVDT 

I.CRTI 

I.EXDT 

S. IDHD 



FILES 

Map Area 

1-------------------1-------------------1 
M.ERVN 1 Extension RVN 1 Ext. Seg. Num. 1 

1-------------------1-------------------1 
1 Extension File Number 1 
1---------------------------------------1 
1 Extension File Seq. Num. 1 

1-------------------1-------------------1 
M.LBSZ 1 LBN Field Size 1 Count Field Size 1 

1-------------------1-------------------1 
M.MAX 1 Map Words Avail. 1 Map Words in Use 1 

1-------------------1-------------------1 
1 1 

1 1 

1 1 
1 Retrieval Pointers 1 

1 1 

1 1 

1 1 

1---------------------------------------1 
1 File Header Checksum 1 

1---------------------------------------1 

C.3 DIRECTORIES 

M.ESQN 

M.EFNU 

M.EFSQ 

M.CTSZ 

M.USE 
S.MPHD 
M.RTRV 

H.CKSM 

Files-11 provides directories to allow the organization of files 
in a meaningful way. While the File 10 is sufficient to locate a 
file uniquely on a volume set, it is hardly mnemonic. 
Directories are files whose sole function is to associate file 
name strings with File ID's. 

C.3.1 Directory Hierarchies 

Since directories are files with no special attributes, 
directories may list files that are in turn directories. Thus, 
an operating system may construct directory hierarchies of 
arbitrary depth and complexity. 

C.3.1.1 User File Directories - This implementation of Files-11 
supports a multilevel directory hierarchy. This hierarchy is a 
simple tree structure with root as the master file directory 
(MFD). There are two forms of valid directory names: 
alphanumeric and numeric. Alphanumeric directory names can be 

C-16 



DIRECTORIES 

any legal file name consisting of up to nine characters. 
Alphanumeric directory names are created in the form 
"yyyyyyyyy.DIRj1." Numeric directory names consist of two 
three-digit octal numbers, in the range a through 377. If fewer 
than nine characters are used, the name is padded with leading 
zeros. Numeric directory names are created in the form 
"nnnmmm.DIRj1." 

C.3.2 Directory Structure 

A directory is a file consisting of 16 byte records. It is 
structured as an FCS fixed length record file, with no carriage 
control attributes (see Section C.S for a description of FCS 
files). Each record is a directory entry. The entries are not 
required to be ordered, or densely packed, nor do they have any 
other relationship to each other, except that no two entries in 
one directory may contain the same name, type, and version. Each 
entry contains the following: 

File ID 

Name 

Type 

Version 

The three word binary File ID of 
this directory entry represents. 
number portion of the File ID field 
this record is empty and may be 
directory entry. 

the file that 
If the file 

is zero, then 
used for a new 

The name of the file may be up to 9 characters. 
It is stored as three words, each containing three 
Radix-50 packed characters. 

The type of the file (also historically 
to as the extension) may be up 
characters. It is stored as one word of 
packed characters. 

referred 
to three 
Radix-50 

The version number of the file is stored in binary 
in one word. 

1---------------------1 
1 1 
1-- --I 
1 File ID 1 

1-- --I 
1 1 

1---------------------1 
1 1 
1-- --I 
1 Name 1 

1-- --I 

C-17 



DIRECTORIES 

1 1 
1---------------------1 
1 Type 1 
1---------------------1 
1 Version 1 

1---------------------1 

C.3.3 Directory Protection 

Since directories are files with no special characteristics, they 
may be accessed like all other files, and are subject to the same 
protection mechanism. However, implementations of Files-11 
support three special functions for the management of 
directories, namely FIND, REMOVE, and ENTER. A user performing 
such a directory operation must have the following privileges to 
be allowed the various functions: 

Find: 
Remove: 
Enter: 

READ 
READ, WRITE 
READ, WRITE 

Note that the same privilege is required for both enter and 
remove. The recovery for an operation that involves a remove at 
the beginning of the sequence is an enter. 

C-18 



KNOWN FILES 

C.4 KNOWN FILES 

Clearly any file system must maintain some data structure on the 
medium which is used to control the file organization. In 
Files-ll this data is kept in five files. These files are 
created when a new volume is initialized. They are unique in 
that their File IO's are known constants. These five files have 
the following uses: 

File ID 1,1,0 is the index file. The index file is the root of 
the entire Files-ll structure. It contains the volume's 
bootstrap block and the home block, which is used to identify the 
volume and locate the rest of the file structure. The index file 
also contains all of the file headers for the volume, and a 
bitmap to control the allocation of file headers. 

File IO 2,2,0 is the storage bitmap file. It is used to control 
the allocation of logical blocks on the volume. 

File IO 3,3,0 is the bad block file. It is a file containing all 
of the known bad blocks on the volume. 

File IO 4,4,0 is the volume master file directory (or MFO). It 
forms the root of the volume's directory structure. The MFD 
lists the five known files, all first level user directories, and 
whatever other files the user chooses to enter. 

File IO 5,5,0 is the system core image file. Its use is 
operating system dependent. Its basic purpose is to provide a 
file of known File IO for the use of the operating system. 

C.4.1 Index File 

The index file is File ID 1,1,0. It is listed in the MFO as 
INOEXF.SYS;l. The index file is the root of the Files-ll 
structure in that it provides the means for identification and 
initial access to a Files-ll volume, and contains the access data 
for all files on the volume (including itself). 

C.4.1.1 Bootstrap Block - Virtual block 1 of the index file is 
the volume's boot block. It is always mapped to logical block ° 
of the volume. If the volume is the system device of an 
operating system, the boot block contains an operating system 
dependent program which reads the operating system into memory 
when the boot block is read and executed by a machine's hardware 
bootstrap. If the volume is not a system device, the boot block 
contains a small program that outputs a message on the system 

C-19 



• • 

KNOWN FILES 

console to inform the operator to that effect. 

C.4.1.2 Home Block - Virtual block 2 of the index file is the 
volume's home block. The logical block containing the home block 
is the first good block on the volume out of the sequence 1, 256, 
512, 768, 1024, 1280, .... 256n. The purpose of the home block 
is to identify the volume as Files-ll, establish the specific 
identity of the volume, and serve as the ground zero entry point 
into the volume's file structure. The home block is recognized 
as a home block by the presence of checksums in known places and 
by the presence of predictable values in certain locations. 

Items contained in the home block are identified by symbolic 
offsets in the same manner as items in the file header. The 
symbols may be defined in assembly language programs by calling 
and invoking the macro HMBOF$, which may be found in the macro 
library of any system that supports Files-ll . 

H.IBSZ: 2 Bytes - Index File Bitmap Size 

This 16 bit word contains the number of blocks that 
make up the index file bitmap. (The index file bitmap 
is discussed in Section C.4.1.3. This value must be 
non-zero for a valid home block. 

H.IBLB: 4 Bytes - Index File Bitmap LBN 

This double word contains the starting logical block 
address of the index' file bitmap. Once the home block 
of a volume has been found, it is this value that 
provides access to the rest of the index file and to 
the volume. The LBN is stored with the high order in 
the first 16 bits, followed by the low order portion. 
This value must be non-zero for a valid home block. 

H.FMAX: 2 Bytes - Maximum Number of Files 

This word contains the maximum number of files that may 
be present on the volume at any time. This value must 
be non-zero for a valid home block. 

H.SBCL: 2 Bytes - Storage Bitmap Cluster Factor 

This word contains the cluster factor used in the 
storage bitmap file. The cluster factor is the number 
of blocks represented by each bit in the storage 
bitmap. Volume clustering can not be implemented in 

C-20 



KNOWN FILES 

ODS-1. The only legal value for this item is 1. 

H.DVTY: 2 Bytes - Disk Device Type 

This word is an index identifying the type of disk that 
contains this volume. It is currently not used and 
always contains O. 

H.VLEV: 2 Bytes - Volume Structure Level 

This word identifies the volume's structure level. 
Like the file structure level, this word identifies the 
version of Files-11 which created this volume and 
permits upwards compatibility of media as Files-11 
evolves. The volume structure level is affected by all 
portions of the Files-11 structure except the contents 
of the file header. This document describes Files-11 
version 1. The only legal values for the structure 
level are 401 and 402 octal. The former (401) is the 
standard value for most volumes. The latter (402) is 
an advisory that the volume contains a multiheader 
index file. (A multiheader index file is required to 
support more than about 26,000 files. The index file 
may in fact be multiheader without the volume having a 
structure level of 402). 

H.VNAM: 12 Bytes - Volume Name 

This area contains the volume label as an ASCII string. 
It is padded out to 12 bytes with nulls. The volume 
label is used to identify individual volumes. 

_. 4 Bytes - Not Used 

H.VOWN: 2 Bytes - Volume Owner UIC 

This word contains the binary UIC of the owner of the 
volume. The format is the same as that of the file 
owner UIC stored in the file header. 

H.VPRO: 2 Bytes - Volume Protection Code 

This word contains the protection code for the entire 
volume. Its contents are coded in the same manner as 
the file protection code stored in the file header, and 
it is interpreted in the same way in conjunction with 
the volume owner UIC. All operations on all files on 
the volume must pass both the volume and the file 
protection check to be permitted. (Refer to the 
discussion on file protection described earlier under 
H.FPRO. 

C-21 



KNOWN FILES 

H.VCHA: 2 Bytes - Volume Characteristics 

This word contains bits which provide additional 
control over access to the volume. The following bits 
are defined: 

• CH.NDC - Obsolete, used by RSX-llD/IAS. Set if 
device control functions are not permitted on this 
volume. Device control functions are those which 
can threaten the integrity of the volume, such as 
direct reading and writing of logical blocks, etc. 

• CH.NAT - Obsolete, used by RSX-llD/IAS. Set if the 
volume may not be attached, i.e., reserved for the 
sole use by one task. 

• CH.SDI - Set if the volume contains only a single 
directory. If this bit is set, no directories 
should be created on the volume other than the MFD. 
The access methods should also be informed of this 
situation, e.g. by setting the DV.SDI bit in the 
device characteristics word. 

H.DFPR: 2 Bytes - Default File Protection 

This word contains the file protection that will be 
assigned to all files created on this volume if no file 
protection is specified by the user. 

_. 6 Bytes - Not Used 

H.WISZ: 1 Byte - Default Window Size 

This byte contains the number of retrieval pointers 
that will be used for the "window" (in core file access 
data) when files are accessed on the volume, if not 
otherwise specified by the accessor. 

H.FIEX: 1 Byte - Default File Extend 

This byte contains the number of blocks that will be 
allocated to a file when a user extends the file and 
asks for the system default value for allocation. 

H.LRUC: 1 Byte - Directory Pre-access Limit 

This byte contains a count of the number of directories 
to be stored in the file system's directory access 
cache. More generally, it is an estimate of the number 
of concurrent users of the volume and its use may be 

C-22 



• • 

KNOWN FILES 

generalized in the future. 

H.REVD: 7 Bytes - Date of Last Home Block Revision 

This field is in the standard ASCII date format and 
reflects the date of the last modifications to fields 
in the home block. 

H.REVC: 2 Bytes - Count of Home Block Revisions 

This field reflects the number of above mentioned 
modifications. 

_. 2 Bytes - Not Used 

H.CHK1: 2 Bytes - First Checksum 

This word is an additive checksum of all entries 
preceding in the home block (i.e., all those listed 
above). It is computed by the same sort of algorithm 
as the file header checksum (see H.CKSM). 

H.VDAT: 14 Bytes - Volume Creation Date 

This area contains the date and time that the volume 
was initialized. It is in the format "DDMMMYYHHMMSS", 
followed followed by a single null. (The same format 
is used in the ident area of the file header, Section 
C.2.4.2. 

_. 382 Bytes Not Used 

This area is reserved for the relative volume table for 
volume sets. This field will not be used, although 
some versions of DSC referenced this area. 

H.PKSR: 4 Bytes - Pack Serial Number 

This area contains the manufacturer supplied serial 
number for the physical volume. For last track 
devices, the pack serial number is contained on the 
volume in the manufacturer data. For other devices the 
user must supply this information manually. The serial 
number is contained in the home block for convenience 
and consistency . 

12 Bytes - Not Used 

C-23 



• • 

• • 

• 
• 

• • 

KNOWN FILES 

This field is reserved for the volume set name. 

H.INON: 12 Bytes - Volume Name 

This area contains another copy of the ASCII volume 
label. It is padded out to 12 bytes with spaces. 

H.INOO: 12 Bytes - Volume Owner 

This area contains an ASCII expansion of the volume 
owner UIC in the form "[proj,prog]". Both numbers are 
expressed in decimal and are padded to three digits 
with leading zeroes. The area is padded out to 12 
bytes with trailing spaces. 

H.INDF: 12 Bytes - Format Type 

This field contains the ASCII string "DECFILEllA" 
padded out to 12 bytes with spaces. It identifies the 
volume as being of Files-ll format. 

-. 2 Bytes - Not Used 

H.CHK2: 2 Bytes - Second Checksum 

This word is the last word of the 
contains an additive checksum of 
words of the home block, computed 
algorithm listed under H.CKSM. 

home block. It 
the preceding 255 

according to the 

Home Block Layout 

1---------------------------------------1 
1 Index File Bitmap Size 1 H. IBSZ 
1---------------------------------------1 
1 Index File 1 H. IBLB 
1-- --I 
1 Bitmap LBN 1 

1---------------------------------------1 
1 Maximum Number of Files 1 H.FMAX 
1---------------------------------------1 
1 Storage Bitmap Cluster Factor 1 H.SBCL 
1---------------------------------------1 

C-24 



H.FIEX 

H.REVD 

KNOWN FILES 

\ Disk Device Type 
\---------------------------------------
\ Volume Structure Level 
\---------------------------------------
\ 

\--
\ 

\--
\ Volume Name 
\-­
\ 

\--
\ 

(not used) 

Volume Owner UIC 

Volume Protection 

Volume Characteristics 

Default File Protection 

1-- --I 
(not used) 

-------------------1-------------------
Def. File Extend 1 Def. Window Size 

-------------------1-------------------
1 Directory Limit 
1-------------------

Volume Modification Date 

Volume Modification Count 

(not used) 

First Checksum 
---------------------------------------\ 

\ 

C-2S 

H.DVTY 

H.VLEV 

H.VNAM 

H.VOWN 

H.VPRO 

H.VCHA 

H.DFPR 

H.WISZ 

H.LRUC 

H.REVC 

H.CHKl 

H.VDAT 



I-­
I 
I--
I 
I--
I 
I--
I 
I--
I 
1--

I-­
I 

KNOWN FILES 

Volume Creation Date 

(not used) 

Pack Serial Number 

(not used) 

Volume Name 

C-26 

--I 
I 

--I 
I 

--I 
I 

H.PKSR 
-I 

H. INDN 



KNOWN FILES 

H.INDO 

Volume Owner 

H.INDF 

Format Type 

(not used) 

\ Second Checksum H.CHK2 
\---------------------------------------

C.4.1.3 Index File Bitmap - The index file bitmap is used to 
control the allocation of file numbers (and hence file headers). 
It is simply a bit string of length n, where n is the maximum 
number of files permitted on the volume (contained in offset 
H.FMAX in the home block). The bitmap spans over as many blocks 
as is necessary to hold it, i.e., maximum number of files divided 
by 4096 and rounded up. The number of blocks in the bitmap is 
contained in offset H.IBSZ of the home block. 

The bits in the index file bitmap are numbered sequentially from ° to n-1 in the obvious manner, i.e., from right to left in each 
byte, and in order of increasing byte address. Bit j is used to 
represent file number j+1: if the bit is 1, then that file 
number is in use. If the bit is 0, then that file number is not 
in use and may be assigned to a newly created file. 

The index file bitmap starts at virtual block 3 of the index file 
and continues through VBN 2+m, where m is the number of blocks in 
the bitmap. It is located at the logical block indicated by 

C-27 



KNOWN FILES 

offset H.IBLB in the home block. 

C.4.1.4 File Headers - The rest of the index file contains all 
the file headers for the volume. The first 16 file headers (for 
file numbers 1 to 16) are logically contiguous with the index 
file bitmap to facilitate their location. The rest may be 
allocated wherever the file system sees fit. Thus the first 16 
file headers may be located from data in the home block (H.IBSZ 
and H.IBLB) while the rest must be located through the mapping 
data in the index file header. The file header for file number n 
is located at virtual block 2+m+n (where m is the number of 
blocks in the index file bitmap). 

C.4.2 Storage Bitmap File 

The storage bitmap file is File ID 2,2,0. It is listed in the 
MFD as BITMAP.SYS;l. The storage bitmap is used to control the 
available space on a unit. It consists of a storage control 
block which contains summary information about the unit, and the 
bitmap itself which lists the availablilty of individual blocks. 

C.4.2.1 storage Control Block - Virtual block 1 of the storage 
bitmap is the storage control block. It contains summary 
information intended to optimize allocation of space on the unit. 
The storage control block has the following format for disks with 
less than 4096*126, (516,096) blocks: 

(3 bytes) 
(1 byte) 
(2 bytes) 
(2 bytes) 

(2 bytes) 
(2 bytes) 
(4 bytes) 

Not used (zero) 
Number of storage bitmap blocks (less than 127) 
Number of free blocks in 1st bitmap block 
Free block pointer in 1st bitmap block 

Number of free blocks in nth bitmap block 
Free block pointer in nth bitmap block 
Size of the unit in logical blocks 

For larger disks the following format is used: 

(3 bytes) Not used (zero) 
(1 byte) Number of storage bitmap blocks (greater than 126) 
(4 bytes) Size of the unit in logical blocks 
(246 bytes) Not used (zero) 

C-28 



KNOWN FILES 

NOTE 

Current implementations of Files-ii do not 
correctly initialize the word pairs containing 
number of free blocks and free block pointer for 
each bitmap block, nor are these values 
maintained as space is allocated and freed on the 
unit. They are therefore best looked upon as 2n 
garbage words and should not be used by future 
implementations of Files-ll until the disk 
structure is formally updated. 

C.4.2.2 storage Bitmap - Virtual blocks 2 through n+l are the 
storage bitmap itself. It is best viewed as a bit string of 
length m, numbered from 0 to m-l, where m is the total number of 
logical blocks on the unit rounded up to the next multiple of 
4096. The bits are addressed in the usual manner (packed right 
to left in sequentially numbered bytes). Since each virtual 
block holds 4096 bits, n blocks, where n = m/4096, are used to 
hold the bitmap. Bit j of the bitmap represents logical block j 
of the volume. If the bit is set, the block is free. If clear, 
the block is allocated. Clearly the last k bits of the bitmap 
are always clear, where k is the difference between the true size 
of the volume and m, the length of the bitmap. 

The size of the bitmap is limited to 256 blocks. In fact, due to 
existing implementations on all RSX systems, the retrieval 
pointers must be in one of the following two forms: 

1. A single retrieval pointer mapping the entire BITMAP.SYS 
file. 

2. Two retrieval pointers, the first mapping the storage 
control block only, and the second mapping the entire 
bitmap proper. 

This restriction limits 005-1 to a volume of 4096*255 
blocks (1,044,480 blocks or about 500 megabytes). 

C.4.3 Bad Block File 

The bad block file is File 10 3,3,0. It is listed in the MFO as 
BAOBLK.SYSji. The bad block file is simply a file containing all 
of the known bad blocks on the volume. 

C-29 



• • 

KNOWN FILES 

C.4.3.1 Bad Block Descriptor - The last virtual block of the bad 
block file is the bad block descriptor for the volume. It is 
always located on the last good block of the volume. This block 
may contain a listing of the bad blocks on the volume produced by 
a bad block scan program or diagnostic. The format of the bad 
block data is identical to the map area of a file header, except 
that the first four entries (M.ESQN, M.ERVN, M.EFNU, and M.EFSQ) 
are not present. The last word of the block contains the usual 
additive checksum. (See earlier in this chapter for a 
description of the map area.) This block is included in the bad 
block file to save the data it contains for future 
re-initialization of the volume. 

Bad Block Descriptor Layout 

-------------------1-------------------1 
LBN Field Size 1 count Field Size 1 

-------------------1-------------------1 
Map words Avail. 1 Map Words in Use 1 

-------------------1-------------------1 
1 

1 

1 

Retrieval Pointers 1 

1 

1 

1 

---------------------------------------1 
Block Checksum 1 

---------------------------------------1 

C.4.4 Master File Directory 

The master file directory is File 10 4,4,0. 
MFO (itself) as OOOOOO.OIR;l. The MFO 
volume's directory structure. It lists the 
plus whatever the user chooses to enter . 

C.4.S Core Image File 

It is listed in the 
is the root of the 
five known files, 

The core image file is File 10 5,5,0. It is listed in the MFO as 
CORIMG.SYS;l. Its use is operating system dependent. In 
general, it provides a file of known File 10 for the use of the 
operating system, for use as a swap area, for example, or as a 
monitor overlay area, etc. 

C-30 



FCS FILE STRUCTURE 

C.S FCS FILE STRUCTURE 

File Control Services (FCS) is a user level interface to 
Files-ll. Its principal feature is a record control facility 
that allows sequential processing of variable length records and 
sequential and random access to fixed length record files. FCS 
interfaces to the virtual block facility provided by the basic 
Files-ll structure. 

C.S.l FCS File Attributes 

FCS stores attribute information about the file in the file's 
user attribute area. (Refer to the discussion of the H.UFAT byte 
in Section C.2.4.1.) It uses only the first 7 words. The rest 
are ignored by FCS, but are reserved by DEC. (RMS uses an 
additional 3 words, 10 words in all, for relative and indexed 
file attributes.) The following items are contained in the 
attribute area. They are identified by the usual symbolic 
offsets (relative to the start of the attribute area). The 
offsets may be defined in assembly language programs by calling 
and invoking the macro FDOFF$ DEF$L. Flag values and bits may be 
defined by calling and invoking the macro FCSBT$. These macros 
are in the system macro library of any operating system that 
supports Files-ll. Alternatively, all these values are defined 
in the system object library of any system that supports 
Files-ii, and may be obtained at link time. 

C.S.1.1 F.RTYP: 1 Byte - Record Type - This byte identifies 
which type of records are contained in this file. The following 
three values are legal: 

R.FIX 
R.VAR 
R.SEQ 

Fixed length records. 
Variable length records. 
Sequenced Variable Length records 

C.S.1.2 F.RATT: 1 Byte - Record Attributes - This byte contains 
record attribute bits that control the handling of records under 
various contexts. The following flag bits are defined: 

FD.FTN Use Fortran carriage control if set. 
The first byte of each record is to be 
interpreted as a standard Fortran 
carriage control character when the 
record is copied to a carriage control 
device. 

C-31 



FCS FILE STRUCTURE 

FD.CR Use implied carriage control if set. 
When the file is copied to a carriage 
control device, each record is to be 
preceded by a line feed and followed by 
a carriage return. Note that the FD.FTN 
and FD.CR bits are mutually exclusive. 

FD.PRN Used to indicate that the two byte 
sequence number field for R.SEQ record 
format is to be interpreted as print 
control information. See later in this 
appendix for format of print information. 

FD.BLK Records do not cross block boundaries if 
set. Generally, there will be dead 
space at the end of each block. How 
this is handled is explained in the 
description of record structure in Section 
C.S.2.1. 

C.S.l.3 F.RSIZ: 2 Bytes Record Size - In a fixed length 
record file, this word contains the size of the records in bytes. 
In a variable or sequenced variable length record file, this word 
contains the size in bytes of the longest record in the file. 

C.S.l.4 F.HIBK: 4 Bytes - Highest VBN Allocated - This 32 bit 
number is a count of the number of virtual blocks allocated to 
the file. Since this value is maintained by FCS, it is usually 
correct, but it is not guaranteed since FCS is a user level 
package. 

C.S.l.S F.EFBK: 4 Bytes - End of File Block - This 32 
number is the VBN in which the end of file is located. 
F.HIBK and F.EFBK are stored with the high order half in 
first two bytes, followed by the low order half. 

bit 
Both 

the 

C.S.l.6 F.FFBY: 2 Bytes - First Free Byte - This word is a 
count of the number of bytes in use in the virtual block 
containing the end of file. In other words, it is the offset to 
the first byte of the file available for appending. Note that an 
end of file that falls on a block boundary may be represented in 
either of two ways. If the file contains precisely n blocks, 
F.EFBK may contain nand F.FFBY will contain 512., or F.EFBK may 

C-32 



FCS FILE STRUCTURE 

contain n+l and F.FFBY will contain O. 

C.S.1.7 S.FATT: 
symbol represents 
attribute block. 

14 Bytes 
the total 

Size 
number 

of Attribute Block - This 
of bytes in the FCS file 

C.S.1.8 FCS File Attributes Layout -

-------------------1-------------------1 
F.RATT Record Attr. 1 Record Type 1 

-------------------1-------------------1 
Record Size (Bytes) 1 

---------------------------------------1 
Highest VBN 1 

--I 
Allocated 1 

---------------------------------------1 
End of File 1 

--I 
VBN I 

---------------------------------------1 
First Free Byte 1 

---------------------------------------1 

C.S.2 Record Structure 

F.RTYP 

F.RSIZ 

F.HIBK 

F.EFBK 

F.FFBY 
S.FATT 

This section describes how records are packed in the virtual 
blocks of a disk file. In general, FCS treats a disk file as a 
sequentially numbered array of bytes. Records are numbered 
consecutively starting with 1. 

C.S.2.1 Fixed Length Records - In a file consisting of fixed 
length records, the records are simply packed end to end with no 
additional control information. If the record length is odd, 
each record is padded with a single byte. The content of the pad 
byte is undefined. For direct access, the address of a record is 
computed as follows: 

Let: n 
k 
m 

record number 
record size (in bytes) 
byte address of record in file 

C-33 



then 

FCS FILE STRUCTURE 

q number of records per block 
j VBN containing the start of the record 
i byte offset within VBN j 

h 
m 
j 
i 

((k+1}/2}2 (rounded up record length) 
(n-1}h 
m/512+1 (truncated) 
m mod 512 

The previous discussion assumes that records cross block 
boundaries (that is, FD.BLK is not set). If records do not cross 
block boundaries, they are limited to 512 bytes, and the 
following equations apply (the variables are defined as above): 

h ((k+1}/2)2 (rounded up record length) 
q 512/k (truncated) 
j (n-1)/q+1 (truncated) 
i ((n-1) mod q)h 

C.S.2.2 Variable Length Records - In a file consisting of 
variable length records, records may be up to 32767 bytes in 
length. Each record is preceded by a two byte binary count of 
the bytes in the record (the count does not include itself). For 
example, a null record is represented by a single zero word. The 
byte count is always word aligned. For example,if a record ends 
on an odd byte boundary, it is padded with a single byte. The 
content of the pad byte is undefined. 

If records do not cross block boundaries (FD.BLK is set), they 
are limited to a size of 510 bytes. A byte count of -1 is used 
as a flag to signal that there are no more records in a 
particular block. The remainder of that block is then dead space 
and the next record in the file starts at the beginning of the 
next block. 

C.S.2.3 Sequenced Variable Length Records - The format of a 
sequenced file is identical to a variable length record file 
except that a two byte sequence number field is located 
immediately after the byte count field of each record. This 
field contains a binary value which is usually interpreted as the 
line number of that record (see F.RATT, FD.PRN and Section 
C.5.2.3.1. The sequence number is not returned as part of the 
data when a record is read, but is available separately. Note 
that the record byte count field counts the sequence number field 
as well as the data of the record. 

C-34 



FCS FILE STRUCTURE 

Format of Two Byte Print Control Field in R.SEQ Records - If the 
FD.PRN bit is set in the record attribute then the two byte 
"sequence number" field is used to contain carriage control data 
for the record. Byte 0 is print control information to act upon 
before the record data is output to a unit record device. Byte 1 
is print control information to act upon after the record data 
has been output to a unit record device. 

C-35 





APPENDIX 0 

FILES-ll 010 INTERFACE TO THE ACPS 

This appendix describes the QIO level interface to the file 
processors (ACPs). These include F11ACP for Files-11 disks and 
MTAACP for ANSI magnetic tape. 

F11ACP supports the following functions: 

IO.CRE 
IO.DEL 
IO.ACR 
IO.ACW 
IO.ACE 
IO.DAC 
IO.EXT 
IO.RAT 
IO.WAT 
IO.FNA 
IO.RNA 
IO.ENA 
IO.ULK 

Create file 
Delete file 
Access file for read only 
Access file for read/write 
Access file for read/write/extend 
Deaccess file 
Extend file 
Read file attributes 
Write file attributes 
Find file name in directory 
Remove file name from directory 
Enter file name in directory 
Unlock block 

0.1 010 PARAMETER LIST FORMAT 

The device-independent part of a file processing QIO parameter 
list is identical to all other QIO parameter lists. The file 
processor QIOs require the following six additional words in the 
parameter lists: 

Parameter Word 1 

Parameter Word 2 

Parameter words 3 & 4 

Parameter Word 5 

Address of a 3-word block 
containing the file identifier 
Address of the attribute list 

Size and extend control information 

Window size information and access 
control 

D-1 



QIO PARAMETER LIST FORMAT 

Parameter word 6 Address of the file name block 

NOTE 

The P/OS Executive treats File Identifier Blocks, 
filename blocks, and attribute list entries as 
read/write data. For this reason, they may not 
be used in read-only code segments or libraries. 

0.1.1 File Identification Block 

The File Identification Block is a 3-word 
file number and the file sequence number. 
Identification Block is as follows: 

block containing the 
The format of the File 

1 File Number 1 
1-------------------------------1 
1 File Sequence Number 1 

1-------------------------------1 
1 Reserved 1 

FllACP uses the file number as an index to the file header in the 
index file. Each time a header block is used for a new file, the 
file sequence number is incremented. This insures that the file 
header is always unique. The third word is not currently used 
but is reserved for the future. 

0.1.2 The Attribute List 

The file attribute list controls FllACP reads or writes. File 
attributes are fields in the file header, described later in this 
appendix. 

The attribute list contains a variable 
terminated by a byte containing zero (0). 
entries in the attribute list is six. 

number of entries 
The maximum number of 

An entry in the attribute list has the following format: 

.BYTE <Attribute type), Attribute size 

. WORD Pointer to the attribute buffer 

0-2 



QIO PARAMETER LIST FORMAT 

D.l.2.1 The Attribute Type - This field identifies the individual 
attribute to be read or written. The sign of the attribute type code 
determines whether the transfer is a read or write operation. If the 
type code is negative, the ACP reads the attribute into the buffer. 
If the type code is positive, the ACP writes the attribute to the file 
header. Note that the sign of the type code must agree with the 
direction implied by the operation. For example, if the type code is 
positive, the operation must be an IO.WAT or IO.DAC. 

The attribute type is one of the following: 

o File owner (H.FOWN) 
The file owner UIC is a binary word. The low byte is the 
owner number and the high byte is the group number. 

o File protection (H.FPRO) 
The file protection word is a bit mask with the following 
format: 

Each of the fields contains four bits, as follows: 

Bit 1 
Bit 2 
Bit 3 
Bit 4 

Read Access 
Write Access 
Extend Access 
Delete Access 

o File characteristics (H.UCHA) 
The following user characteristics are currently contained in 
the i-byte H.UCHA field: 

UC.CON 
UC.OLK 

200 
100 

Logically contiguous file 
File improperly closed 

o Record I/O Area (U.UFAT) 
This field contains a copy of the first seven* words of the 
file descriptor block. 

o File name (I.FNAM) 
The file name is stored as nine Radix-50 characters. the 
fourth word of this block contains the file type and the fifth 
word contains the version number. 

o File type (I.FTYP) 
The file type is stored as three Radix-50 characters. 

o Version number (I.FVER) 

1. RMS uses 32 bytes. The first seven are compatible with FCS for 
sequential files. 

0-3 



QIO PARAMETER LIST FORMAT 

The version number is stored as a binary number. 

o Expiration date (I.EXOT) 
Creation date (I.CROT) 
Revision date (I.RVOT) 
The expiration date is currently unused. When the file is 
created, the ACP initializes the creation date to the current 
date and time. It initializes the expiration and revision 
dates to O. The ACP sets the revision date to the current 
date and time each time the file is deaccessed. 

o Statistics block 
This block is described later in this appendix. 

o Read entire file header 
This buffer is assumed to be 1000 blocks long. 
write this attribute. 

You cannot 

o Revision number (I.RVNO) 
The ACP sets the revision number to 0, and increments it every 
time the file is deaccessed. 

o Placement Control 

D.1.2.2 Attribute Size - This word specifies the number of bytes of 
the attribute to be transferred. Legal values are from 1 to the 
maximum size of the particular attribute. Table D-l shows the maximum 
size for each attribute type. 

Table 0-1: Maximum Size for Each File Attribute 

Attribute 
Type Code 

1 

2 

3 

4 

File owner 

Protection 

Attribute 
Type 

File characteristics 

Record I/O area 

0-4 

Maximum 
Attribute Size 
in Octal Bytes 

6 

4 

2 

40 



5 

6 

7 

10 

11 

12 

13 

15 

16 

QIO PARAMETER LIST FORMAT 

File name,type,version number 

File type 

Version number 

Expiration date 

Statistics block 

Entire file header 

Block Size (magtape only) 

Revision number and 
creation/revision/expiration dates 

Placement control 

12 

4 

2 

7 

12 

o 

43 

16 

D.l.2.3 Attribute Buffer Address - The attribute Buffer Address 
field contains the address of the buffer in the user's task space to 
or from which the attribute is to be transferred. 

0.1.3 Size and Extend Control 

These two parameters specify how many blocks the file processor 
allocated to a new file or adds to an existing file. These 
parameters also control the type of block allocation. 

The format is as follows: 

.BYTE <High 8 bits of size>, <extend control> 

.WORD <Low 16 bits of size> 

The size field specifies the number of blocks to be allocated to a 
file on IO.CRE and IO.EXT operations, and the final file size on 
IO.DEL operations. 

The extend control field controls the manner in which an extend 
operation is to be done. The following bits are defined: 

EX.AC1=1 

EX.AC2=2 

The extend size is to be added as a contiguous 
block. 

Extend by the largest available contiguous piece 
up to the specified size. 

0-5 



EX. FCO=4 

EX.AOF=10 

EX.ALL=20 

EX.ENA=200 

QIO PARAMETER LIST FORMAT 

The file must end up contiguous. 

Use the default rather than the specified size. 
The default extend size is the size that was 
specified when the volume was mounted. 

Placement control (see Section 0.2. 

Enable extend. 

0.1.4 Window Size and Access Control 

This parameter specifies the window size and access control 
information in the following format: 

.BYTE <window size>, <access control> 

This word is only processed if the high bit of the access control 
byte (AC.ENB) is set. 

Window size is the number of mapping entries. Specifying a negative 
window size minimizes window turns. If this byte is zero, the file 
processor uses the volume default. The size of the window allocated 
in the dynamic storage region is 6 times the number of mapping 
entries (each mapping entry is 3 words), plus 10 bytes for the 
window control block. The mapping entries are allocated in 
secondary pool. The window control block and a pointer to secondary 
pool are located in primary pool. 

The following access control bits are defined: 

AC.LCK=l 
AC.OLK=2 

AC.LKL=4 
AC.EXL=10 
AC.WCK=40 
AC.ENB=200 

Lock out further accesses for Write or Extend 
Enable Oeaccess lock 
The deaccess lock sets the lock bit in the file 
header if the file is deaccessed as the result of a 

task exit without explicitly deaccessing the file. 
The lock bit is set by the executive. The lock bit 
is not set when the system crashes. 
Enable block locking 
Enable explicit block unlocking 
Initiate driver write-checking 
Enable Access 

NOTE 

0-6 



QIO PARAMETER LIST FORMAT 

Both AC.LKL and AC.EXL must be set if 
you want block locking. If you do not 
want block locking, both bits must be 
clear. Any other combination is an 
error. 

0.1.5 File Name Block Pointer 

This word contains the address of a lS-word block in the 
task's space. This block is called the file name block. 
name block is described in detail later in this appendix. 

issuing 
The file 

The fields of the file name block that are particularly important in 
file-processing operations are: 

o Directory identification (N.DID) 
This field is required for all disk operations. 
the directory to which the operation applies. 
not used for tape operations. 

o File identification (N.FID) 

It specifies 
This field is 

This field is required as input for enter operations. This 
field is returned as output by find and remove operations. 

o File name (N.FNAM), type (N.FTYP), and version number (N.FVER) 
These fields are required as input to enter, find, and remove 
operations. For find and remove operations, the file 
processor locates the appropriate entry by matching the 
information in these fields with the directory entries. 

o Status word (N.STAT) 

o Wildcard context (N.NEXT) 
This field is required as input for wildcard operations. It 
specifies the point at which to resume processing. It is 
updated for the next operation. It must initially be set to 
o. 

0.2 PLACEMENT CONTROL 

The placement control attribute list entry controls the placement of a 
file in a particular place on the disk. You can specify either exact 
or approximate placement on IO.CRE and IO.EXT operations. 

D-7 



PLACEMENT CONTROL 

The placement control entry must be the first entry in the attribute 
list. 

The format of the placement control attribut~ list entry is as 
follows: 

.BYTE 

. WORD 

. WORK 

.BLKW 

placement control,O 
high-order bits of VBN or LBN 
low-order bits of VBN or LBN 
4 Buffer to receive starting and ending LBN if 

AL.LBN is set. 

The following bits are defined for the placement control field: 

AL.VBN=1 

AL.APX=2 

AL.LBN=4 

Set if block specified is a VBN; otherwise, the 
block is the LBN 
Set if you want approximate placement; 
otherwise, placement is exact 
Set if you want starting and ending LBN information 

0.3 BLOCK LOCKING 

Block locking only occurs when the user accesses a file with AC.LKL 
and AC.EXL set in the access control byte of the parameter list. Any 
read or write operation causes a check to see if the block is locked. 

A write access locks a block for exclusive access. A write operation 
can only access a block that is not locked by any accessor. The only 
exception to this is an exact match with a previous lock owned by the 
same accessor. 

A read access locks a block for shared access. A read operation can 
access any block locked for shared access. 

The user must unlock a block with an explicit unlock request, IO.ULK. 
IO.ULK may be used to unlock one or all blocks. 

If all accessors to a file have not requested block locking, the ACP 
returns an error. 

When the file is deaccessed, all locks owned by the accessor are 
released. 

Each active lock requires eight bytes from the dynamic storage region. 
This storage is deallocated when the file is deaccessed. 

D-8 



SUMMARY OF F11ACP FUNCTIONS 

0.4 SUMMARY OF FllACP FUNCTIONS 

The following is a summary of the functions implemented in F11ACP. A 
list of accepted parameters follows each function. All parameters are 
required unless specified as optional. Parameters other than those 
listed are illegal for that function and must be O. 

IO.CRE Create file 

#1 The file identifier block is filled in with the file 
identifier and sequence number of the created file. 

#2 Write Attribute and/or Placement Control list 
(optional) 

#3 & #4 Extend Control (optional) 
The amount allocated to the file is returned in the 
high byte of IOST(l) plus IOST(2). 

#5 May be nonzero but must be disabled 

IO.DEL Delete or truncate file 

IO.ACR 

IO.ACW 

IO.ACE 

IO.OAC 

#1 Optional if the file is accessed 

#3 & #4 Size to truncate the file to. If not enabled, the 
file is deleted. If enabled, the remaining 31 bits 
specify the size the file is to be after truncation. 
The change in file allocation is returned in the high 
byte of IOST(l) plus IOST(2). This amount will be 
zero or negative. 

Access file for read only 

Access file for read/write 

Access file for read/write/extend 

#1 File identifier pointer 

#2 Read attributes control (optional) 

#5 Access control must be enabled 

Oeaccess file 

#1 File identifier pointer (optional) 

#2 Write attributes control list 

#5 May be nonzero but must be disabled 

0-9 



IO.EXT 

IO.RAT 

IO.FNA 

IO.RNA 

IO.ENA 

IO.ULK 

IO.RVB 

IO.WVB 

SUMMARY OF F11ACP FUNCTIONS 

Extend file 

#1 Optional if file is accessed 

#2 Placement control attribute list (optional) 

#3 & #4 Extend control 

#1 

#2 

#S 

#6 

#2 

The amount allocated to the file is returned in the 
high byte of IOST(l) plus IOST(2). 

Read attributes 

Optional if file is access~d 

Read attributes control list 

Find name in directory 

Remove name from directory 

Enter name in directory 

May be nonzero but must be disabled 

File name block pointer 

Unlock block 

o or count of blocks to unlock 

#4 & #S Starting VBN to unlock or 0 to unlock all blocks. 

Read virtual block 

Write virtual block 

#1 User buffer 

#2 Buffer length 

#4 & #S·VBN 

0.5 HOW TO USE THE ACP OIOS 

Although the operations described in this section are normally 
performed by the file-access methods (RMS and FCS), your application 
~ay issue the ACP QIOs. The required parameters for each QIO are 
described above. The necessary steps for common operations follow. 

D-10 



HOW TO USE THE ACP QIOS 

NOTE 

The file identifier is the only way to refer to a 
file. 

0.5.1 Creating a File 

To create a file: 

o Use IO.CRE to create it. 

o Enter it in the Master File Directory (MFD) or a 'user 
directory with IO.ENA. 

0.5.2 Opening a File 

To open a file: 

o Use IO.FNA to find the File Identifier of the directory in the 
MFD. 

o Use IO.FNA to find the File Identifier of the file in the 
directory. 

o Access the file with IO.ACR, IO.ACW, or IO.ACE. 

0.5.3 Closing a File 

To close a file: 

o Deaccess the file with IO.DAC. 

0.5.4 Extending a File 

To extend a file: 

o Use IO.FNA to find the file identifier if the file is not 
accessed. 

o Use IO.EXT to extend the file. 

0-11 



HOW TO USE THE ACP QIOS 

0.5.5 Deleting a File 

To delete a file: 

o Use IO.FNA to find the file identifier. 

o Use IO.RNA to remove the directory name. 

o Use IO.DEL to delete the file. 

0.6 FILE HEADER BLOCK FORMAT 

Table 0-2 shows the format of the file header block. The various 
areas within the file header block are described in detail in the 
following sections. The offset names in the file header block may be 
defined either locally or globally, as shown in the following 
statements: 

FHOOF$ OEF$L ;OEFINE OFFSETS LOCALLY. 

FHOOF$ OEF$G ;OEFINE OFFSETS GLOBALLY. 

Table 0-2: File Header Block 

Area 

Header Area 

Size 
(in Bytes) 

1 

1 

2 

2 

1 

Content 

Identification area offset 
in words 

Map area offset in words 

File number 

File sequence number 

number 

Offset to file owner 
information, consisting of 
member number and group 
number 

~1embe r numbe r 

D-12 

Offset 

H. IOOF 

H.MPOF 

H.FNUM 

H.FSEQ 

H.FOWN 

H.PROG 



Identification 
Area 

Map Area 

FILE HEADER BLOCK FORMAT 

1 

2 

1 

1 

32. 

6 

2 

2 

2 

7 

6 

7 

6 

7 

1 

1 

1 

2 

2 

'Group numbe r 

File protection code 

User-controlled file 
characteristics 

System-controlled file 
characteristics 

User file attributes 

Size in byte~ of header 
area of file header block 

File name (Radix-50) 

File type (Radix-50) 

File version number 
(binary) 

Revision number 

Revision date 

Revision time 

Creation date 

Creation time 

Expiration date 

To round up to word 
boundary 

Size (in bytes) of 
identification area of 
file header block 

Extension segment number 

Extension relative volume 
number (not implemented) 

Extension file number 

Extension file sequence 

0-13 

H.PROJ 

H.FPRO 

H.UCHA 

H.SCHA 

H.UFAT 

S.HDHD 

I.FNAM 

I.FTYP 

I.FVER 

I.RVNO 

I.RVDT 

I.RVTI 

I.CROT 

I.CRTI 

I.EXDT 

S. IOBD 

M.ESQN 

M.ERVN 

M.EFNU 

M.EFSQ 



1 

1 

1 

1 

Checksum Word 2 

0.6.1 Header Area 

FILE HEADER BLOCK FORMAT 

number 

Size (in bytes) of the 
block count field of a 
retrieval pointer (lor 2); 
only 1 is used 

Size (in bytes) of the 
logical block number field 
of a retrieval pointer (2, 
3, or 4); only 3 is used 

Words of retrieval pointers 
in use in the map area 

Maximum number of words 
of retrieval pointers 
available in the map area 

Start of retrieval pointers 

Size in bytes of map area 
of file header block 

Checksum of words 0 through 
255 

NOTE 

M.CTSZ 

M.LBSZ 

M.USE 

M.MAX 

M.RTRV 

S.MPHD 

H.CKSM 

The checksum word is the last word of the 
file header block. Retrieval pointers 
occupy the space from the end of the map 
area to the checksum word. 

The information in the header area of the file header block consists 
of the following: 

Identification area 
offset 

Map area offset 

- Word 0, Bits 0-7. This byte locates the start 
of the identification area relative to the 
start of the file header block. This offset 
contains the number of words from the start of 
the header to the identification area. 

- Word 0, Bits 8-15. This byte locates the start 
of the map area relative to the start of the 
file header block. This offset contains the 

0-14 



File number 

FILE HEADER BLOCK FORMAT 

number of words from the start of the header 
area to the map area. 

- The file number defines the position this file 
header block occupies in the index file; for 
example, the index file is number 1, the 
storage bit map is file number 2, and so forth. 

File sequence number - The file number and the file sequence number 
constitute the file identification number used 
by the system. This number is different each 
time a header is reused. 

structure level 

File owner 
information 

- This word identifies the system that created 
the file and indicates the file structure. A 
value of [1,1] is associated with all current 
FILES-11 volumes. 

- This word contains the group number and owner 
number constituting the User Identification 
Code (UIC) for the file. Legal UICs are within 
the range [1,1] to [377,377]. UIC [1,1] is 
reserved for the system. 

File protection code - This word specifies the manner in which 
file can be used and who can use it. 
creating the file, you specify the extent 
protection desired for the file. 

the 
When 

of 

File characteristics - This word, consisting of two bytes, defines the 
status of the file. 

Byte a defines the user-controlled characteris­
tics, as follows: 

UC.CON = 200 - Logically contiguous file. 
When the file is extended (for example, by a 
WRITE or PUT), bit UC.CON is cleared whether 
or not the extension requests contiguous 
blocks. 

UC.OLK = 100 - File improperly closed. 

Byte 1 defines system-controlled characteris­
tics, as follows: 

SC.MOL = 200 - File marked for delete 

0-15 



User file 
attributes 

FILE HEADER BLOCK FORMAT 

SC.BAD = 100 - Bad data block in file 

- This area consists of 16 words. The first 
seven words of this area are a direct image of 
the first seven words of' the FOB when the file 
is opened. The other nine words of the record 
I/O control area are not used by FCS, although 
RMS does use them. 

0.6.2 Identification Area 

The information in the identification area of the file header block 
consists of the following: 

File name 

File type 

- The file's creator specifies a file name of up 
to nine Radix-50 characters in length. This 
name is placed in the name field. The unused 
portion of the field (if any) is zero-filled. 

This word contains the file type in Radix-50 
format. 

File version number This word contains the file version number, in 
binary, as specified by the creator of the 
file. 

Revision number This word is initialized to 0 when the file is 
created; it is incremented each time a file is 
closed after being updated or modified. 

Revision date - Seven bytes are used to maintain the date on 
which the file was last revised. The revision 
date is kept in ASCII form in the format day, 
month, year (two bytes, three bytes, and two 
bytes, respectively). This date is meaningful 
only if the revision number is a nonzero value. 

Revision time - Six bytes are used to record the time at which 
the file was last revised. This information is 
recorded in ASCII form in the format hour, 
minute, and second (two bytes each). 

Creation date The date on which the file was created is kept 
in a 7-byte field having the same format as 
that of the revision date (see above). 

Creation time - The time of the file's creation is maintained 
in a 6-byte field having the same format as 
that of the revision time (see above). 

0-16 



Expiration date 

0.6.3 Map Area 

FILE HEADER BLOCK FORMAT 

- The date on which the file becomes eligible to 
be deleted is kept in a 7-byte field having the 
same format as that of the revision date (see 
above). Use of expiration is not implemented. 

The map area contains the information necessary to map virtual block 
numbers to logical block numbers. This is done by means of pointers, 
each of which points to an area of contiguous blocks. A pointer 
consists of a count field and a number field. The count field defines 
the number of blocks contained in the contiguous area pointed to, and 
the logical block number (LBN) field defines the block number of the 
first logical block in the area. 

A value of n in the count field (following) means that n+1 blocks are 
allocated, starting at the specified block number. 

The retrieval pointer format used in the FILES-11 file structure is as 
follows: 

15 o 
COUNT·1 HIGH LBN I 

31 16 

LOW LBN I 
ZK·303-81 

The map area normally has space for 102 retrieval pointers. It can 
map up to 102 discontiguous segments or up to 26112 blocks if the file 
is contiguous. If more retrieval pointers are required because the 
file is too large or consists of too many discontiguous segments, 
extension headers are allocated to hold additional retrieval pointers. 
Extension headers are allocated within the index file. They are 
identified by a file number and a file sequence as are other file 
headers; however, extension file headers do not appear in any 
directory. 

A nonzero value in the extension file number field of the map area 
indicates that an extension header exists. The extension header is 
identified by the extension file number and the extension file 
sequence number. The extension segment number is used to number the 
headers of the file sequentially, starting with a 0 for the first. 

0-17 



FILE HEADER BLOCK FORMAT 

Extension headers of a file contain a header area and identification 
area that are a copy of the first header as it appeared when the first 
extension was created. Extension headers are not updated wh~n the 
first header of the file is modified. 

Extension headers are created and handled by the file control 
primitives as needed; their use is transparent to you. 

0.7 STATISTICS BLOCK 

The format of the statistics block is shown in Table D-3 below. The 
statistics block is allocated manually in your program. 

Table 0-3: Statistics Block Format 

Word 0 HIGH LOGICAL BLOCK NUMBER 

(0 if file is noncontiguous) 

Word 1 LOW LOGICAL BLOCK NUMBER 

(0 if file is noncontiguous) 

Word 2 SIZE (high) 

Word 3 SIZE (low) 

Word 4 LOCK COUNT ACCESS COUNT 

0.8 ERRORS RETURNED BY THE FILE PROCESSORS 

The error codes returned by F11ACP and MTAACP are shown in Table D-4. 

Table 0-4: File Processor Error Codes 

D-18 



ERRORS RETURNED BY THE FILE PROCESSORS 

Error 
Code Operations 

IE.ABO 10. RVB/IO.WVB 

IE.ALC Extend or create operation 

IE.ALN An attempt to access a file 

IE.BAD Any function 

IE.BDR Directory operations 

IE.BHD Any operation 

IE.BVR Directory operations 

0-19 

Explanation 

Indicates that all 
requested data was not 
transferred by the 
device. 

Indicates that the 
operation failed to 
allocate the file based 
on placement control or 
because of other related 
problems. 

Indicates that a file is 
already accessed on that 
LUN. 

Indicates that a required 
parameter is missing, 
that a parameter that 
must not be present is 
present, that a parameter 
that must be disabled is 
enabled, or that a 
parameter value is 
invalid. 

Indicates that you 
attempted a directory 
operation on a file that 
is not a directory, or 
that the specified 
directory is corrupted. 
This is usually caused by 
a 0 version number field. 

Indicates that a corrupt 
file header was 
encountered, or that the 
operation required a 
feature not supported by 
the FCP (such as 
multiheader support or 
support for unimplemented 
features). 

Indicates that you 
attempted to enter a name 



ERRORS RETURNED BY THE FILE PROCESSORS 

IE.BYT Any function 

IE.BTP Unlabeled Magtape Create 

IE.CKS Any operation 

IE.CLO File access operations 

IE.DFU An allocation request 

IE.DUP An enter name operation 

IE.EOF IO.RVBjIO.WVBjIO.DEL 

IE.HFU An extended operation 

0-20 

in a directory with a 
negative or 0 version 
number. 

This e~ror is returned if 
the buffer specified is 
on an odd byte boundary 
or is not a multiple of 
four bytes. 

An attempt was made to 
create an unlabeled tape 
file with a recdrd type 
other than fixed. 

Indicates that the 
checksum of a file header 
is incorrect. 

Indicates that the file 
was locked against access 
by the "deaccess lock 
bit." 

Indicates that there is 
insufficient free disk 
space for the requested 
allocation. 

Indicates that the name 
and version already 
exist. 

On read operations, this 
indicates an attempt to 
read beyond end of file. 
On truncate operations, 
it indicates an attempt 
to truncate a file to a 
length longer than that 
allocated or that the 
file was already at EOF. 

Indicates that the file 
header is full and cannot 
contain any more 
retrieval pointers and 
that adding an extension 
header is not allowed. 
When this is returned on 
a create operation, it 



ERRORS RETURNED BY THE FILE PROCESSORS 

IE.IFC Returned by exec 

IE.IFU Create or extend operation 

IE.LCK Returned on file access, 
directory operations, and 
on truncate 

IE.LUN Any operation requiring 
a file ID 

IE.NOD All file operations 
that require DSR 

IE.NSF All file operations 

IE.OFL Returned by exec 

IE.PRI Any operation 

D-21 

indicates that the index 
file could not be 
extended to allow a file 
header to be allocated. 

Illegal function code. 

Indicates that there are 
no file headers available 
based on the parameters 
specified when the volume 
was initialized. 

Indicates that the file 
is already accessed by a 
writer and that shared 
write has not been 
requested or is not 
allowed. 

Indicates that file ID 
has not been supplied and 
that the file is not 
accessed on the LUN. 

Indicates that an I/O 
request failed due to 
IE.UPN, that the FCP was 
unable to allocate 
required space from DSR 
or from secondary pool 
for data structures. 

Indicates that the 
specified directory entry 
does not exist, that a 
file corresponding to the 
file ID does not exist, 
or that the file is 
marked for delete. 

The device is off line. 

Indicates that the user 
does not have the 
required privilege for 
the requested operation, 
or that the user has not 
requested the proper 
access to the file if the 
file is already accessed 



ERRORS RETURNED BY THE FILE PROCESSORS 

IE.RER Any operation 

IE.SNC Any operation 

IE.SPC Returned by exec 

IE.SQC Any operation 

IE.WAC File access operations 

IE.WAT Write attributes 
and deaccess 

IE.WER Any operation 

D-22 

(for example, an attempt 
to write to a file that 
is accessed for read). 
This also indicates an 
attempt to do file I/O to 
a device that is not 
mounted. 

Indicates that the FCP 
encountered a fatal 
device read error during 
an operation; the 
operation has been 
aborted. 

Indicates that the file 
number and the value 
contained in the header 
do not agree. This 
generally means that the 
header has gone bad due 
to a crash or a hardware 
error. 

Indicates an illegal 
buffer. 

Indicates that the file 
sequence number does not 
agree wj~h the file 
header; usually indicates 
that the file has been 
deleted and the header 
has been reused. 

Indicates that the file 
is already write accessed 
and lock against writers 
is requested. 

Indicates that the FCP 
encountered an invalid 
attribute. 

Indicates that the FCP 
encountered a fatal 
device write error during 
an operation. The 
operation has been 
aborted but the disk 
structure may have been 



ERRORS RETURNED BY THE FILE PROCESSORS 

corrupted. 

IE.WLK Any operation 
requiring write access 

Indicates that the volume 
is software write-locked. 

0.9 FILENAME BLOCK 

The format of a filename block is illustrated in Figure 0-1. The 
offsets within the filename block are described in Table 0-5. 

The offset names in a filename block may be defined either locally or 
globally, as follows: 

NBOF$L iDEFINE OFFSETS LOCALLY. 

NBOFF$ DEF$L iDEFINE OFFSETS LOCALLY. 

NBOFF$ DEF$G iDEFINE OFFSETS GLOBALLY. 

NOTE 

When you are referring to filename block 
locations, it is essential to use the symbolic 
offset names, rather than the actual addresses of 
such locations. The position of information 
within the filename block may be subject to change 
from release to release, whereas the offset names 
remain constant. 

Table 0-5: Filename Block Offset Definitions 

Offset 

N.FID 

N. FNAM 

N.FTYP 

Size 
(in Bytes) 

6 

6 

2 

Contents 

File identification field 

File name 
characters 
format 

File type 
characters 
format 

0-23 

field; specified 
that are stored 

field; specified 
that are stored 

as nine 
in Radix-50 

as three 
in Radix-50 



N.FVER 2 

N.STAT 2 

N.NEXT 2 

N.DID 6 

N.DVNM 2 

N.UNIT 2 

FILENAME BLOCK 

File version number field (binary) 

Filename block status word 
definitions in Table D:6.) 

context for next .FIND operation 

Directory identification field 

ASCII device name field 

unit number field (binary) 

(See bit 

The bit definitions of the filename block status word (N.STAT) in the 
FDB and their significance are described in Table 0-6. 

Symbols marked with an asterisk (*) in Table D-6 indicate bits that 
are set if the associated information is supplied through an ASCII 
dataset descriptor. 

a 

N.FID 2 

4 

6 
N.FNAM 

10 

12 

N.FTYP 
14 

N.FVER CUMULATIVE 
16 LENGTH IN 

N.STAT BYTES (OCTAL) 
20 

N.NEXT 
22 

24 
N.DID 

26 

30 

N.DVNM 32 
N.UNIT 

34 

Figure 0-1: Filename Block Format 

D-24 



FILENAME BLOCK 

Table 0-6: Filename Block Status Word (N.STAT) 

Value 
Symbol (in Octal) Meaning 

NB.VER* 1 Set if explicit file version number is 
specified 

NB.TYP* 2 Set if explicit file type is specified 

NB.NAM* 4 Set if explicit file name is specified 

NB.SVR 10 Set if wildcard file version number is 
specified 

NB.STP 20 Set if wildcard file type is specified 

NB.SNM 40 Set if wildcard file name is specified 

NB.DIR* 100 Set if explicit directory string (UIC) is 
specified 

NB.DEV* 200 Set if explicit device name string is 
specified 

NB.SDl 400 Set if group portion of UIC contains 
wildcard specification* 

NB.SD2 1000 Set if owner portion of UIC contains 
wildcard specification* 

NB.ANS 2000 Set if file name is in ANSI format. 

1. Although NB.SDl and NB.SD2 are defined, they are not set or 
supported by FCS. 

Table 0-7: Filename Block Offset Definitions for ANSI Magnetic 
Tape 

Size 
Offset (in Bytes) 

0-25 

Definition 



N.FID 2 

N.ANM1 12 

N.FVER 2 

N.STAT 2 

N.NEXT 2 

N.ANM2 6 

N.OVNM 2 

N.UNIT 2 

FILENAME BLOCK 

File identification field 

First 12 bytes of ANSI filename string 

File version number field (binary) 

Filename block status word (See bit definitions 
in Table 0-6. 

Context for next .FIND operation 

Remainder of the ANSI file name string 

ASCII device name field 

unit number field (binary) 

The bit definitions of the filename block status word (N.STAT) are 
shown in Table 0-6. 

0-26 



APPENDIX E 

QUAD SERIAL LINE UNIT (PC3XC-BA) 

E.1 INTRODUCTION 

The Quad Asynchronous Communications Module (PC3XC-BA) is a 
Professional 300 series module that provides four full-duplex, 
serial asynchronous ports. The ports are EIA RS232C/RS-423A 
compatible with user selectable baud rates from 50 to 38.4K baud, 
contingent on system software. Each receiver is buffered four 
times. 

The ports are accessed through an external connector box 
containing four 25-pin O-sub connectors. The connector box is 
connected to the module by a 40-conductor ribbon cable. 

The four ports have modem control which can be configured in two 
ways 

• Two ports with full asynchronous modem support and two 
ports with no modem support 

• Four ports with partial modem support 

NOTE 

The P/OS terminal driver, which supports the Quad 
Serial Line Unit, does not support the use of 
modems or the modem control signals. 

The configuration is determined by the connector box. 

The PC3XC-BA hardware consists of the controller module, a ribbon 
cable, and a O-sub adapter module in a connector box. 

E-l 



THEORY OF OPERATION 

E.2 THEORY OF OPERATION 

The four-serial-line module consists of the following sections: 

• Two Dual Universal Asynchronous Receiver/Transmitters 
(DUARTs) 

• Interrupt logic 

• Modem control 

• Diagnostic ROM 

• CTI bus interface 

• Connecter adapter box 

E.2.1 DUARTs 

Two DUARTs are used in the four-serial-line module. Each DUART 
provides two independent channels. Each channel has several 
unique registers (i.e., Mode Registers, status Registers) as well 
as several registers that are shared between the two channels of 
the DUARTs (i.e., Interrupt Mask Register, Interrupt Status 
Register). All registers hold eight bits of data. 

Each channel of each DUART has a full-duplex asynchronous 
receiver/transmitter. The operating frequency for each receiver 
and transmitter can be selected independently. 

The transmitter accepts parallel data from the CPU, converts it 
to serial bit stream, inserts the appropriate start, stop, and 
optional parity bits and outputs a composite serial stream of 
data. The receiver accepts serial data, converts this serial 
input to parallel format, checks for start bit, stop bit, parity 
bit (if any), or break condition and sends an assembled character 
to the CPU. 

Each receiver is capable of holding up to four characters (a 
three character FIFO plus a character in the Receive Holding 
Register) before a data overrun occurs. 

E.2.2 Interrupt Logic 

The four-serial-line module uses only the option module interrupt 
request A to interrupt the CPU. Interrupt requested by either 

E-2 



THEORY OF OPERATION 

DUART causes an interrupt through the option module interrupt 
request A vector. Interrupts to the CPU only occur if interrupts 
are enabled in the Module Status Register (MSR). 

The Module Status Register provides an indication of any 
interrupts pending and the state of the interrupt enable bit. 
Interrupts are enabled/disabled by setting/clearing the interrupt 
enable bit. This allows the interrupt request to be re-toggled 
in the event an interrupt occurs before the previous interrupt 
has been serviced. The Module Status Register also identifies 
which DUART is requesting the interrupt. 

The events which can cause an interrupt are selectable by writing 
to the appropriate Interrupt Mask Register for the corresponding 
channel. The following events can be programmed to cause an 
interrupt: 

• A transmitter is ready to transmit a character. 

• A character has been received, or three characters have 
been received (FIFO full). 

• A receiver has detected the beginning or the end of a 
received break. 

Interrupt controllers on the PC350 and PC380 are edge triggered. 
Interrupts in the DUARTs and on the quad module are ORed. This 
dissimilarity must be handled in software. 

The problem is that when two (or more) interrupt conditions 
occur, only one interrupt will be generated (one IRQA). IRQA 
does not deassert when a particular interrupt condition is 
serviced if another interrupt condition is pending. 

In the interrupt service routine, one of the first instructions 
should disable interrupts (bit 6 of MSR) from the bus. This 
forces deassertion of IRQA. Psuedo-code follows: 

Disable module interrupts 
Do while interrupt pending 
Determine interrupt cause 

Service interrupt 
End do 
Enable module interrupts 

E.2.3 Modem Controls 

bit 6 of BASE + 4 
bit 7 of BASE + 4 

bit 6 of BASE + 4 

There are two possible modem configurations, determined by the 

E-3 



THEORY OF OPERATION 

connector box. 

• Configuration 2/2 - Two ports with full asynchronous 
modem control and two with no modem control 

Channel ° 
• Inputs CTS, DSR, CD, RI, TI, SPDMI 

• Outputs: RTS, LL, DTR, RL, DSRS 

Channel 1 

• No modem controls 

Channel 2 

• Inputs CTS, DSR, CD, RI, TI, SPDMI 

• Outputs: RTS, LL, DTR, RL, DSRS 

Channel 3 

• No modem controls 

• Configuration 4/0 - Four ports with partial asynchronous 
modem control 

Channels 0,1,2,3 

• Inputs: CTS, CD, DSR 

• Outputs: RTS, DTR 

E.3 DUART TRANSMITTER OPERATION 

When the transmitter is enabled through the command register, the 
DUART indicates to the CPU that it is ready to accept data by 
setting the transmitter-ready bit in the status register. This 
condition can be programmed to generate an interrupt request. 
When a character is loaded into the transmit holding register 

E-4 



DUART TRANSMITTER OPERATION 

(THR), transmitter ready is cleared. Data is transferred from 
the THR to the transmit shift register when it is idle or has 
completed transmission of the previous character. Transmitter 
ready is then reasserted. Characters cannot be loaded into the 
THR while the transmitter is disabled. 

The transmitter converts the parallel data from the CPU to a 
serial bit stream on the transmit data output pin. It 
automatically sends a start bit followed by the programmed number 
of data bits, an optional parity bit, and the programmed number 
of stop bits. The least significant bit is sent first. 
Following the transmission of the stop bits, if a new character 
is not available in the THR, the transmit data output remains 
high and the transmit-then-empty status bit is set to 1. 
Transmission resumes and the transmit-then-empty bit is cleared 
when the CPU loads a new character into the THR. If the 
transmitter is disabled, it continues operating until the 
character currently being transmitted is completely sent out. 
The transmitter can be forced to send a continuous low condition 
by issuing a send break command. 

The transmitter can be reset though a software command. If it is 
reset, operation ceases immediately and the transmitter must be 
enabled through the command register before resuming operation. 
If CTS operation is enabled, the clear-to-send input must be low 
in order for the character to be transmitted. If it goes high in 
the middle of a transmission, the character in the shift register 
is transmitted and transmit data output then remains in the 
marking state until the clear-to-send bit goes low. The 
transmitter can also control the deactivation of the 
request-to-send output. If programmed, the request-to-send 
output will be reset one bit time after the character in the 
transmit shift register and THR (if any) are completely 
transmitted, if the transmitter has been disabled. 

E.3.1 Receiver Operation 

The DUART is conditioned to receive data when enabled through the 
command register. The receiver looks for a high to low (mark to 
space) transition of the start bit on the receive data input pin. 
If a transition is detected, the state of the receive data input 
is sampled each 16X clock for 7-1/2 clocks (16X clock mode) or at 
the next rising edge of the bit time clock (lX clock mode). If 
receive data input is sampled high, the start bit is invalid and 
the search for a valid start bit begins again. If receive data 
input is still low, a valid start bit is assumed and the receiver 
continues to sample the input at one bit time intervals at the 
theoretical center of the bit, until the proper number of data 
bits and the parity bit (if any) have been assembled, and one 

E-5 



DUART TRANSMITTER OPERATION 

stop bit has been detected. The least significant bit is 
received first. The data is then transferred to the Receiver 
Holding Register (RHR), and the receive-ready bit in the Status 
Register (SR) is set to '1'. This condition can be programmed to 
generate an interrupt. If the character length is less than 
eight bits, the most significant unused bits in the RHR are set 
to zero. 

After the stop bit is detected, the receiver will immediately 
look for the next start bit. However if a non-zero character was 
received without a stop bit (framing error) and receive data 
input remains low for one-half of the bit period after the stop 
bit was sampled, then the receiver operates as if a new start bit 
transition had been detected at that point (one-half bit time 
after the stop bit was sampled). 

The parity error, framing error, overrun error and received break 
state (if any) are strobed into the SR at the received character 
boundary, before the receiver-ready status bit is set. If a 
break condition is detected (receive data input is low for the 
entire character including the stop bit), a character consisting 
of all zeros will be loaded into the RHR and the received break 
bit in the SR is set to one. The receive data input must return 
to a high condition for at least one-half bit time before a 
search for the next start bit begins. 

The RHR consists of a first-in-first-out (FIFO) stack with a 
capacity of three characters. Data is loaded from the receive 
shift register into the topmost empty position of the FIFO. The 
receiver-ready bit in the status register is set whenever one or 
more characters are available to be read, and a FFULL status bit 
is set if all three stack positions are filled with data. Either 
of these bits can be selected to cause an interrupt. A read of 
the RHR outputs the data at the top of the FIFO. After the read 
cycle, the data FIFO and its associated status bits are 'popped' 
thus emptying a FIFO position for new data. 

In addition to the data word, three status bits (parity error, 
framing error, and received break) are also appended to each data 
character in the FIFO(overrun is not). Status can be provided in 
two ways, as programmed by the error mode control bit in the mode 
register. In the 'character' mode, the status applies only to 
the character at the top of the FIFO. In the 'block' mode, the 
status provided in the SR for these three bits is the logical OR 
of the status for all characters coming to the top of the FIFO 
since the last 'reset error' command was issued. In either mode, 
reading the SR does not affect the FIFO. The FIFO is popped only 
when the RHR is read. Therefore the status register should be 
read prior to reading the FIFO. 

E-6 



DUART TRANSMITTER OPERATION 

If the FIFO is full when a new character is received, that 
character is held in the receive shift register until a FIFO 
position is available. If an additional character is received, 
the contents of the FIFO are not affected - the character in the 
receive shift register is lost and the overrun error status bit 
is set upon receipt of the start bit of the new (overrunning) 
character. 

The receiver can control the deactivation of request to send. If 
programmed to operate in this mode, the request-to-send output 
will be negated when a valid start bit was received and the FIFO 
is full. When a FIFO position becomes available, the 
request-to-send output will be re-asserted automatically. Ths 
feature can be used to prevent an overrun, in the receiver, by 
connecting the request-to-send output to the clear-to-send input 
of the transmitting device. 

If the receiver is disabled, the FIFO characters can be read. 
However, no additional characters can be received until the 
receiver is enabled again. If the receiver is reset, the FIFO 
and all of the receiver status, and the corresponding output 
ports and interrupt are reset. No additional characters can be 
received until the receiver is enabled again. 

E.3.2 Interrupts 

Each DUART provides a single active low interrupt output, which 
is activated upon the occurrence of any of eight internal events. 
Associated with the interrupt system are the interrupt mask 
register (IMR) and the interrupt status register (ISR). The IMR 
may be programmed to select only certain conditions to cause an 
interrupt. The ISR can be read by the CPU to determine all 
currently active interrupting conditions. 

E.3.3 Programming 

The contents of certain control registers are initialized to zero 
on power-up. Operational problems may result if certain register 
contents are changed during operation. For example, changing the 
number of bits per character while the transmitter is active may 
cause the transmission of an incorrect character. In general, 
the contents of the MR, CSR, and OPCR should only be changed 
while the receivers and transmitters are not enabled. 

Mode registers 1 and 2 of each channel are accessed with 
independent auxiliary pointers. The pointer is set to MRl with a 
'reset pointer' command. Any read or write cf the mode register 

E-7 



DUART TRANSMITTER OPERATION 

while the pointer is at MRl switches the pointer to MR2. The 
pointer then remains at MR2, so that subsequent accesses are 
always to MR2 unless the 'reset pointer' command is issued. 

Mode, command, clock select, and status registers are duplicated 
for each channel to provide total independent operation and 
control. 

E.3.4 Multidrop Mode 

The DUART is equipped with a wake-up mode used for multidrop 
applications. This mode is selected by programming bits 
MRIA[4:3] or MRIB[4:3]to '11' for channels A and B. In this mode 
of operation, a 'master' station transmits an address character 
followed by data characters for the addressed 'slave' station. 
The slave stations, with receivers that are normally disabled, 
examine the received data stream and 'wake-up' the CPU (by 
setting receiver ready) only upon receipt of an address 
character. The CPU compares the received address to its station 
address and enables the receiver if it wishes to receive the 
subsequent data characters. Upon receipt of another address 
character, the CPU may disable the receiver to initiate the 
process again. 

A transmitted character consists of a start bit, the programmed 
number of data bits, an address/data (A/D) bit, and the 
programmed number of stop bits. The polarity of the transmitted 
A/D bit is selected by the CPU by programming bit MR1[2]. MR1[2] 
= 0 transmits a zero in the A/D bit position, which identifies 
the corresponding bits as data. MR1[2] = 1 transmits a one in 
the A/D bit position, which identifies the corresponding bits as 
an address. The CPU should program the mode register prior to 
loading the corresponding data bits into the THR. 

In this mode, the receiver continuously looks at the received 
data stream, whether it is enabled or disabled. If disabled, it 
sets the receiver ready status bit and loads the character into 
the RHR FIFO if the received A/D bit is a one (address tag), but 
discards the received character if the received A/D bit is a zero 
(data tag). If enabled, all received characters are tranferred 
to the CPU via the RHR. In either case, the data bits are loaded 
into the data FIFO while the A/D bit is loaded into the status 
FIFO position normally used for parity error. Framing error, 
overrun error, and break detect operate normally whether or not 
the receiver is enabled. 

E-8 



DUART TRANSMITTER OPERATION 

E.3.S Registers 

Figure E-l shows the addressing scheme for PRO 300 Modules. 

+---+-------+-------+-------+-------+-------+-------+-------+ 
I 1 I 111 I 111 I 111 I lOS ISS X I X X X I X X X I 
+---+-------+-------+-------+-------+-------+-------+-------+ 
Figure E-1: PRO 300 Modules Addressing Scheme 

SSS is the slot position (relative to 0) and XXXXXXX is the 
offset from the base address. 

The registers on this module are located as shown in Table E-l. 

Table E-1: PRO 300 Module Register Summary 

+-----------+-------------------------------------------+ 
I 

Base + Function I 
+-----------+-------------------------------------------+ 

I 
176 I 

I DUART 1 Registers 
I Channels 2 and 3 
I 

140 I 
+-----------+-------------------------------------------+ 

I I 
136 I I 

I DUART 0 Registers I 
I Channels 0 and 1 I 
I I 

100 I I 
+-----------+-------------------------------------------+ 

76 

(RESERVED) 

06 
+-----------+-------------------------------------------+ 

I 
04 I Module Status Register 

+-----------+-------------------------------------------+ 
I I 

02 I Diagnostic ROM Address Register I 
+-----------+-------------------------------------------+ 

E-9 



DUART TRANSMITTER OPERATION 

+-----------+-------------------------------------------+ 
I I 

Base + I Function I 
+-----------+-------------------------------------------+ 

I 
00 Diagnostic ROM Data Register I 

+-----------+-------------------------------------------+ 
All registers are 8 bits wide. A word read will return Os in the 
high byte of defined registers. writes to the high byte of 
defined registers will have no effect. Reading RESERVED 
registers will return unpredictable data. Writing to RESERVED 
registers should be avoided. 

E.3.6 Diagnostic ROM Data Register (RDR) 

The low byte of the RDR is a data window into the Diagnostic ROM. 
Each time the RDR is read, the data in the ROM pointed to by the 
ROM address register is put on the bus, then the address pointer 
is incremented to the next location. The high byte is read as 
zeros and writes to this register have no effect. 

E.3.7 Diagnostic ROM Address Register (RAR) 

The RAR is used to reset the address pointer for the diagnostic 
ROM. Any data written to this register resets the pointer to the 
first byte of the ROM. Reads to this register will return zeros. 

E.3.8 Module Status Register (MSR) 

Figure E-2 shows the Module Status Register (MSR): 

7 6 5,4 3 2 1 o 

I INT I INT I Reserved I CONFIG I CONFIG I CH I CH I 

I PENDING I ENABLE I 1 0 I 2/3 I 0/1 I 

Figure E-2: Module Status Register 

The MSR provides a simple means of monitoring and controlling 
interrupts on the module. 

E-l0 



QUART TRANSMITTER OPERATION 

Bit 7 - Interrupt Pending 
This bit is set if there is any active interrupt 
pending. If the 
interrupt enable bit is set, it will cause Interrupt 
Request A to be 
asserted on the bus. This bit is read-only. 

Bit 6 - Interrupt Enable 
This bit controls the IRQA line. If it is set and either 
QUART has an 
interrupt pending, then Interrupt Request A is asserted. 

Bits 3,2 - Configuration bits. 

Table E-2: Configuration of Bits 2 and 3 (MSR) 

+-----------+----------+-----------------------------+ 
I I I 
I Config 1 I Confiq 2 I Configuration I 
+-----------+----------+-----------------------------+ 
I I I I 
I 0 I 0 I no connector box present I 
+-----------+----------+-----------------------------+ 
I I I 
I 0 I 1 I 2/2 - 2 channels with full 
I I I asynchronous modem control, 
I I I 2 channels with no modem 
I I I control 
+-----------+----------+-----------------------------+ 
I I I 
I 1 I 0 I 4/0 - 4 channe I s wi th 
I I I partial 
I I I asynchronous 
I I I modem control 
+-----------+----------+-----------------------------+ 
I I 
I 1 1 I manufacturing mode 
+-----------+----------+-----------------------------+ 
Bit 1 - Set if the pending interrupt came from channel 2 or 
channel 3. 

Bit 0 - Set if the pending interrupt came from channel 0 or 
channell. 

E-11 



DUART TRANSMITTER OPERATION 

E.3.9 DUART Registers 

Table E-3 shows the DUART 0 registers. For DUART 1 add 40 to the 
listed address offsets. 

NOTE 

In DUART descriptions, Channel A will be channel 
o in DUART 0, and Channel B will be channell in 
DUART O. Also, Channel A will be channel 2 in 
DUART 1, and Channel B will be channel 3 in DUART 
1. 

Table E-3: DUART 0 Register Addresses 

+--------+----------------------+-----------------------+ 
I I I 

BASE+ I Register Read I Register Write I 
+--------+----------------------+-----------------------+ 

I I I 
100 IMode Register A I Mode Register A I 

I (MRIA,MR2A) I (MRIA,MR2A) I 
+--------+----------------------+-----------------------+ 

I I I 
102 IStatus Register A I Clock Select Reg. A I 

I (SRA) I (CSRA) I 
+--------+----------------------+-----------------------+ 

I I 
104 I (RESERVED) I Command Register A 

I I (CRA) 
+--------+----------------------+-----------------------+ 
I I I I 
I 106 IRX Holding Register I TX Holding Register I 
I I A (RHRA ) I A (THRA ) I 
+--------+----------------------+-----------------------+ 

I I 
110 I Input Port Change I Aux. Control Reg. 

I Reg. (IPCR) I (ACR) 
+--------+----------------------+-----------------------+ 

I I 
112 I Interrupt Status Reg. I Interrupt Mask Reg. 

I (I S R ) I (I MR ) 
+--------+----------------------+-----------------------+ 

I I 
114 ICounter/Timer Upper I CIT Upper Register 

I (CTU) I (CTUR) 
+--------+----------------------+-----------------------+ 

E-12 



DUART TRANSMITTER OPERATION 

+--------+----------------------+-----------------------+ 
I I 

BASE+ I Register Read Register Write I 
+--------+------------------~---+-----------------------+ 

I I 
116 ICounter/timer Lower I CIT Lower Register 

I (CTL) I (CTLR) 
+--------+----------------------+-----------------------+ 

I I I 
120 IMode Register B I Mode Register B I 

I (MR1B,MR2B) I (MR1B,MR2B) I 
+--------+----------------------+-----------------------+ 

I I I 
122 IStatus Register B I Clock Select Reg. B I 

I (SRB) I ( CSRB ) I 
+--------+----------------------+-----------------------+ 

I I I 
124 I (RESERVED) I Command Register B I 

I I (CRB) I 
+--------+----------------------+-----------------------+ 
I I I I 
I 126 IRX Holding Register I TX Holding Register I 
I IB (RHRB) I B (THRB) I 
+--------+----------------------+-----------------------+ 
I I I 
I 130 I (RESERVED) I (RESERVED) 
+--------+----------------------+----------------------~+ 

I I 
132 IInput Port I Output Port Conf. 

I I Reg. (OPCR) 
+--------+----------------------+-----------------------+ 

I I 
134 IStart Counter Command, Set Output Port Bits 

, . I Command 
+--------+----------------------+-----------------------+ 

, I 
136 ,stop Counter Command ,Reset Output Port 

, , Bits Command 
+--------+----------------------+-----------------------+ 

E.3.9.l Channel A Mode Register 1 (MR1A) -
READ/WRITE 
Channel 0 address BASE + 100 
Channel 2 address BASE + 140 

MR1A is accessed when the Channel A MR pointer points to MR1. 
The pointer is set to MR1 by RESET or by a "set pointer" command 
applied via CRA. After reading or writing MR1A, the pointer will 
point to MR2A. Figure E-3 shows Channel A Mode Register 1 

E-13 



DUART TRANSMITTER OPERATION 

(MR1A) . 

7 6 5 4-3 2 1-0 

I RX I RX I I I I 
I RTS CTL lINT SEL I ERR MODE I PAR MODE I PAR TYPE I BITS PER CHAF 

Figure E-3: Channel A Mode Register 1 (MR1A) 

Bit 7 - Channel A Receiver Request-to-send Control (0 = no, 1 
yes) 

This bit controls the deactivation of the RTS output by 
the receiver. This output is normally asserted by 
setting OPR[O] and negated by resetting OPR[O]. 
MR1A[7]=1 causes RTSAN to be negated upon receipt of a 
valid start bit if the Channel A FIFO is full. However, 
OPR[O] is not reset and RTSAN will be asserted again 
when an empty FIFO position is available. This feature 
can be used for flow control to prevent overrun in the 
receiver by using the RTS output signal to control the 
CTS input of the transmitting device. 

Bit 6 - Channel A Receiver Interrupt Select (0 
FFULL) 

RxRDY, 1 

This bit selects either the Channel A receiver-ready 
status (RXRDY) or the Channel A FIFO full status (FFULL) 
to be used for CPU interrupts. 

Bit 5 - Channel A Error Mode Select (0 = char, 1 = block) 
This bit selects the operating mode of the three FIFOed 
status bits (FE, PE, received break) for Channel A. In 
the "character" mode, status is provided on a 
character-by-character basis: the status applies only 
to the character at the top of the FIFO. In the "block" 
mode, the status provided in the SR for these bits is 
the accumulation (logical OR) of the status for all 
characters coming to the top of the FIFO since the last 
"reset error" command for Channel A was issued. 

Bits 4-3 - Channel A Parity Mode Select 

00 with parity 

01 force parity 

10 no parity 

E-14 



DUART TRANSMITTER OPERATION 

11 multidrop mode 

If "with parity" or "force parity" is selected, a parity bit is 
added to the transmitted character and the receiver performs a 
parity check on incoming data. A "11" in these bits selects 
Channel A to operate in the special multidrop mode. 

Bit 2 - Channel A parity Type Select (0 = even, 1 odd) 
This bit selects the parity type (odd or even) if the 
"with parity" mode is programmed, and the polarity of 
the forced parity bit if the "force parity" mode is 
programmed. It has no effect if the "no parity" mode is 
programmed. In the special multidrop mode it selects 
the parity of the AID bit. 

Bits 1-0 - Channel A Bits Per Character Select 

00 5 bits 

01 6 bits 

10 7 bits 

11 8 bits 

This field selects the number of data bits per character to be 
transmitted and received. The character length does not include 
the start, parity, and stop bits. 

E.3.9.2 Channel A Mode Register 2 (MR2A) -
READ/WRITE 
Channel 0 address BASE + 100 
Channel 2 address BASE + 140 

MR2A is accessed when the Channel A MR pointer points to MR2, 
which 
occurs after any access to MRIA. Accesses to MR2A do not change 
the 
pointer. Figure E-4 shows Channel A Mode Register 2 (MR2A). 

E-15 



DUART TRANSMITTER OPERATION 

7-6 5 4 3-0 

I TX I TX 
CHANNEL MODE I RTS CTL I CTS EN 

I I 
I STOP BIT LENGTH I 

Figure E-4: Channel A Mode Register 2 (MR2A) 

Bits 7-6 - Channel A Mode Select 
Each channel of the DUART can operate in one of four 
modes: 
normal (00), auto echo (01), local loop (10), or remote 
loop (11). 

"00" - Normal Mode 
Transmitter and receiver operating independently. 

"01" - Automatic Echo Mode 
Automatically retransmits the received data. 
The following conditions are true while in echo mode: 

• Received data is reclocked and retransmitted. 

• The receive clock is used for the transmitter. 

• The receiver must be enabled, but the transmitter 
need not be enabled. 

• The Channel A transmitter ready and 
transmitter-empty status bits are 
inactive. 

• The received parity is checked, but is not 
regenerated for transmission, 
i.e., transmitted parity bit is as received. 

• Character framing is checked, but the stop bits are 
retransmitted as 
received. 

• A received break is echoed as received until the 
next valid start bit 
is detected. 

• CPU to receiver communication continues normally, 
but 
the CPU to transmitter link is disabled. 

E-16 



DUART TRANSMITTER OPERATION 

"10" - Local Loopback Diagnostic Mode 
In this mode the following are true: 

• The transmitter output is internally connected to 
the receiver input. 

• The transmitter clock is used for the receiver. 

• The transmit data output lead is held high. 

• The receive data input lead is ignored. 

• The transmitter must be enabled, but the receiver 
need not be enabled. 

• CPU to transmitter and receiver communications 
continue normally. 

"11" - Remote Loopback Diagnostic Mode 
In remote loopback diagnostic mode, the following is 
true: 

• Received data is relocked and retransmitted on the 
transmit data output lead. 

• The receive clock is used for the transmitter. 

• Received data is not sent to the local CPU, and the 
error status condition is inactive. 

• The received parity is not checked and is not 
regenerated for transmission, i.e., transmitted 
parity bit is as received. 

• The receiver must be enabled. 

• Character framing is not checked, and the stop bits 
are retransmitted as received. 

• A received break is echoed as received until the 
next 
valid start bit is detected. 

The user must exercise care when switching into and out of the 
various modes. The selected mode will be activated immediately 
upon mode selection, even if this occurs in the middle of a 
received or transmitted character. Likewise, if a mode is 
deselected, the device will switch out of the mode immediately. 
An exception to this is switching out of autoecho or remote 
loopback modes if the deselection occurs just after the 
receiver has sampled the stop bit (indicated in autoecho by 

E-17 



DUART TRANSMITTER OPERATION 

assertion of receive ready), and the transmitter is enabled, the 
transmitter will remain in autoecho mode until the entire stop 
bit has been retransmitted. 

Bit 5 - Channel A Transmitter Request-to-Send (0 = no, 1 = yes) 
This bit controls the deactivation of the RTS output by 
the transmitter. This output is normally asserted by 
setting OPR[O] and negated by resetting OPR[O]. A "1" 
in this bit causes OPR[O] to be reset automatically one 
bit time after the characters in the Channel A transmit 
shift register and in the THR, if any, are completely 
transmitted, including the programmed number of stop 
bits, if the transmitter is not enabled. This feature 
can be used to automatically terminate the transmission 
of a message as follows : 

• Program auto-reset mode (bit 5 1). 

• Enable transmitter. 

• Assert RTSAN (OPR[O] 1). 

• Send message. 

• Disable transmitter after the last character is 
loaded into the Channel A THR. 

• The last character will be transmitted and OPR[O] 
will be reset one bit time after the last stop bit, 
causing RTSAN to be negated. 

Bit 4 - Channel A Clear-to-Send Control (0 no, 1 = yes) 
If this bit is zero, CTS has no effect on the 
transmitter. If this bit is a one, the transmitter 
checks the state of CTS each time it is ready to send a 
character. If CTS is asserted, the character is 
transmitted. If it is negated, the transmit data output 
remains in the marking state and the transmission is 
delayed until CTS is asserted. Changes in CTS while a 
character is being transmitted do not affect the 
transmission of that character. 

Bits 3,2,1,0 - Channel A stop Bit Length Select 
This field programs the length of the stop bit appended 
to the transmitted character. stop bit lengths of 9/16 
to 1 and 1-9/16 to 2 bits, in increments of 1/16 bit, 
can be programmed for character lengths of 6,7, and 8 
bits. For a character length of 5 bits, 1-1/16 to 2 
bits can be programmed in increments of 1/16 bit. The 
receiver only checks for a "mark" condition at the 
center of the first stop bit position (one bit time 

E-18 



E.3.9.3 

Figure 

7 

DUART TRANSMITTER OPERATION 

after the last data bit, or after the parity bit if 
parity is enabled) in all cases. 

If an external lx clock is used for the transmitter, bit 
3 0 selects one stop bit and bit 3 = 1 selects two 
stop bits to be transmitted. 

0 0.563 8 1.563 

1 0.625 9 1.625 

2 0.688 A 1.688 

3 0.750 B 1.750 

4 0.813 C 1.813 

5 0.875 D 1.875 

6 0.938 E 1.938 

7 1.000 F 2.000 

NOTE 

Add 0.5 to values shown for 0-7 if channel is 
programmed for 5 bits/character. 

Channel A status Register (SRA) -
READ ONLY 
Channel 0 address BASE + 102 
Channel 2 address BASE + 142 

E-5 shows the Channel A Status Register ( SRA) . 

6 5 4 3 2 1 0 

I REC I FRAME I PAR I OVRUN I TxEMT I TxRDY I FFULL I RxRDY I 

I BREAK I ERROR I ERR I ERROR I I I I I 

Figure E-5: Channel A Status Register 

Bit 7 - Channel A Received Break (0 = no, 1 = yes) 
This bit indicates that an all zero character of the 
programmed length has been received without a stop bit. 

E-19 



Bit 6 -

DUART TRANSMITTER OPERATION 

Only a single FIFO position is occupied when a break is 
received further entries to the FIFO are inhibited 
until the receive data line returns to the marking state 
for at least one-half a bit time (two successive edges 
of the internal or external lX clock). 

When this bit is set, the Channel A 'delta break' bit in 
the ISR (ISR[2]) is set. ISR[2] is also set when the 
end of the break condition, as defined above, is 
detected. 

The break detect circuitry can detect breaks that 
originate in the middle of a received character. 
However, if a break begins in the middle of a character, 
it must persist until at least the end of the next 
character time in order for it to be detected. 

Channel A Framing Error (0 = no, 1 = yes) 
This bit, when set, indicates that a stop bit was 
detected when the corresponding data character in 
FIFO was received. The stop bit check is made in 
middle of the first stop bit position. 

not 
the 
the 

Bit 5 - Channel A Parity Error (0 = no, 1 = yes) 
This bit is set when the 'with parity' or 'force parity' 
mode is programmed and the corresponding character in 
the FIFI was received with incorrect parity. 

In the special multidrop mode the parity error bit 
stores the received AID bit. 

NOTE 

Bits 7-5 are appended to the corresponding 
character in the receive FIFO. A read of this 
register provides bits 7-5 from the top of the 
FIFO. These bits are cleared by a "reset error 
status" command. In character mode they are 
discarded when the corresponding data character 
is read from the FIFO. 

Bit4 - Channel A Overrun Error (0 = no, 1 = yes) 
This bit, when set, indicates that one or more 
characters in the receive data stream have been lost. 
It is set upon receipt of a new character when the FIFO 
is full and a character is already in the receive shift 
register waiting for an empty FIFO position. When this 
occurs, the character in the receive shift register (and 
its break detect, parity error and framing error status, 
if any) is lost. 

E-20 



DUART TRANSMITTER OPERATION 

This bit is cleared by a 'reset error status' command. 

Bit 3 - Channel A Transmitter Empty (TxEMTA) (0 = no, 1 = yes) 
This bit will be set when the Channel A transmitter 
underruns; i.e., both the transmit holding register 
(THR) and the transmit shift register are empty. It is 
set after transmission of the last stop bit of a 
character if no character is in the THR awaiting 
transmission. It is reset when the THR is loaded by the 
CPU or when the transmitter is disabled. 

Bit 2 - Channel A Transmitter Ready (TxRDYA) (0 = no, 1 = yes) 
This bit, when set, indicates that the THR is empty and 
ready to be loaded with a character. This bit is 
cleared when the THR is loaded by the CPU and is set 
when the character is transferred to the transmit shift 
register. Transmit ready is reset when the transmitter 
is disabled and is set when the transmitter is first 
enabled, i.e., characters loaded into the THR while the 
transmitter is disabled will not be transmitted. 

Bit 1 - Channel A FIFO Full (FFULLA) (0 = no, 1 = yes) 
This bit is set when a character is transferred from the 
receive shift register to the receive FIFO and the 
transfer causes the FIFO to become full; i.e., all three 
FIFO positions are occupied. It is reset when the CPU 
reads the RHR. If a character is waiting in the receive 
shift register because the FIFO is full, FFULL will not 
be reset when the CPU reads the RHR. 

Bit 0 - Channel A Receiver Ready (RxRDYA) (0 = no, 1 = yes) 
This bit indicates that a character has been received 
and is waiting in the FIFO to be read by the CPU. It is 
set when the character is transferred from the receive 
shift regster to the FIFO and reset whenthe CPU reads 
the RHR, if after this read there are no more characters 
in the FIFO. 

E.3.9.4 Channel A Clock Select Register (CSRA) -
WRITE ONLY 
Channel 0 address BASE + 102 
Channel 2 address BASE + 142 

Figure E-6 shows the Channel A Clock Select Register (CSRA). 

E-21 



DUART TRANSMITTER OPERATION 

7,6,5,4 3,2,1,0 

I Receiver Clock Select I Transmitter Clock Select I 

Figure E-6: Channel A Clock Select Register (CSRA) 

Bits 7,6,5,4 - Receiver Clock Select 
This field selects the baud rate clock for the Channel A 
receiver as follows in Table E-4: 

Table E-4: Channel A Receiver Baud Rate 

+----------------------------------------------------+ 
I I 
I Bits ACR[7]=O Baud Rate I 
I 7,6,5,4 ACR[7]=1 I 
+----------------------------------------------------+ 
I I 
I 0 0 0 0 50 75 I 
+----------------------------------------------------+ 
I 
I 0 0 0 1 110 110 
+----------------------------------------------------+ 
I I 
I 0 0 1 0 134.5 134.5 I 
+----------------------------------------------------+ 
I I 
I 0 0 1 1 200 150 I 
+----------------------------------------------------+ 
I 
I 0 1 0 0 300 300 
+----------------------------------------------------+ 
I 
10101 600 600 
+----------------------------------------------------+ 
I 
I 0 1 1 0 1200 1200 
+----------------------------------------------------+ 
I I 
I 0 1 1 1 1050 2000 I 
+----------------------------------------------------+ 
I I 
I 1 0 0 0 2400 2400 I 
+-------------------~--------------------------------+ 

I 
I 1 0 0 1 4800 4800 
+----------------------------------------------------+ 

E-22 



DUART TRANSMITTER OPERATION 

+----------------------------------------------------+ 
I 
I Bits 
I 7,6,5,4 

ACR[7]=O Baud Rate 
ACR[7]=1 

+----------------------------------------------------+ 
I I 
I 1 0 1 0 7200 1800 I 
+----------------------------------------------------+ 
I I 
I 1 0 1 1 9600 9600 I 
+----------------------------------------------------+ 
I I 
I 1 1 0 0 38400 19200 I 
+----------------------------------------------------+ 
I 
I 1 1 0 1 timer timer 
+----------------------------------------------------+ 
I I 
I 1 1 1 0 DO NOT USE I 
+----------------------------------------------------+ 
I 
I 1 111 DO NOT USE 

I 
I 

+----------------------------------------------------+ 
Bits 3,2,1,0 - Channel A Transmitter Clock Select 

This field selects the baud rate for the Channel A 
transmitter. Definitions are the same as for the 
Channel A receiver. 

E.3.9.5 Channel A Command Register (CRA) -
WRITE ONLY 
Channel 0 address BASE + 104 
Channel 2 address BASE + 144 

CRA is a register used to supply commands to Channel A. Multiple 
commands can be specified in a single write to CRA as long as the 
commands are non-conflicting (for example, the "enable 
transmitter" and "reset transmitter" commands cannot be specified 
in a single command word). 

Figure E-7 shows the Channel A Command Register (CRA). 

7 6-4 3 2 

I misc I dis I en 
I comm I Tx I Tx 

1 o 

I dis I en 
I Rx I Rx 

E-23 



DUART TRANSMITTER OPERATION 

Figure E-7: Channel A Command Register 

Bit 7 - Bit 7 is not used; it must be zero. 

Bits 6-4 
specify a 

- miscellaneous commands - these bits may be used to 
single 

0 0 0 

0 0 1 

010 

011 

100 

101 

110 

111 

command as follows: 

No command 

Reset MR pointer. 
Causes the Channel A MR pointer to point to 
MR1. 

Reset receiver. 
Resets the Channel A receiver as if a hardware 
reset had been applied. The receiver is 
disabled and the FIFO is flushed. 

Reset transmitter. 
Resets the Channel A transmitter as if a 
hardware reset had been applied. 

Reset error status. 
Clears the Channel A received break,. parity 
error, framing error, and overrun bits in the 
status register (SRA[7:4]). Used in character 
mode to clear OE status (SRA[7:4] are also 
cleared) and in block mode to clear all error 
status after a block of data has been received. 

Reset break change interrupt. 
Causes the Channel A break detect change bit in 
the interrupt status register (ISR[2]) to be 
cleared to zero. 

Start break. 
Forces the TDXA output low (spacing). If the 
transmitter is empty the start of the break 
condition will be delayed up to two bit times. 
If the transmitter is active the break begins 
when transmission of the character is 
completed. If a character is in the THR, the 
start of the break will be delayed until that 
character or any others loaded subsequently are 
transmitted. The transmitter must be enabled 
for this command to be accepted. 

stop break. 
The TXDA line will go high (marking) within two 
bit times. TXDA will remain high for one bit 

E-24 



DUART TRANSMITTER OPERATION 

time before the next character, if any, is 
transmitted. 

Bit 3 - Disable Channel A transmitter (0 = no, 1 = yes) 
This command terminates transmitter operation and resets 
the transmitter-ready and transmitter-empty status bits. 
However, if a character is being transmitted or if a 
character is in the THR when the transmitter is 
disabled, the transmission of the character(s) is 
completed before assuming the inactive state. 

Bit 2 - Enable Channel A transmitter (0 = no, 1 = yes) 
Enables operation of the Channel A transmitter. The 
transmitter-ready bit will be asserted. 

Bit 1 - Disable Channel A receiver (0 = no, 1 = yes) 
The command terminates operation of the receiver 
immediately a character being received will be lost. 
The command has no effect on the receiver status bits or 
any other control registers. If the special multidrop 
mode is programmed, the receiver operates even if it is 
disabled. 

Bit 0 - Enable Channel A receiver (0 = no, 1 = yes) 
Enables operation of the Channel A receiver. If not in 
the special wake-up mode, this also forces the receiver 
into the search for start-bit state. 

E.3.9.6 Channel A Receive Holding Register (RHRA) -
READ ONLY 
Channel 0 address BASE + 106 
Channel 2 address BASE + 146 

The RHR consists of a first-in-first-out (FIFO) stack with a 
capacity of three characters. Data is loaded from the receive 
shift register into the topmost empty position of the FIFO. The 
receiver-ready bit in the status register is set whenever one or 
more characters are available to be read, and a FFULL status bit 
is set if all three stack positions are filled with data. A read 
of the RHR outputs the data at the top of the FIFO. After the 
read cycle, the data FIFO and its associated status bits are 
'popped' thus emptying a FIFO position for new data. 

In addition to the data word, three status bits (parity error, 
framing error, and received break) are also appended to each data 
character in the FIFO. In the 'character' mode, the status 
applies only to the character at the top of the FIFO. In the 
'block' mode, the status provided in the SR for these three bits 
is the logical OR of the status for all characters coming to the 

E-25 



DUART TRANSMITTER OPERATION 

top of the FIFO since the last 'reset error' command was issued. 
The FIFO is popped only when the RHR is read. Therefore the 
status register should be read prior to reading the FIFO. 

If the FIFO is full when a new character is received, that 
character is held in the receive shift register until a FIFO 
position is available. If an additional character is received, 
the contents of the FIFO are not affected - the character in the 
receive shift register is lost and the overrun error status bit 
is set. 

If the receiver is disabled, the FIFO characters can be read. 
However, no additional characters can be received until the 
receiver is enabled again. If the receiver is reset, the FIFO 
and all of the receiver status, and the corresponding output 
ports and interrupt are reset. No additional characters can be 
received until the receiver is enabled again. 

E.3.9.7 Channel A Transmitter Holding Register (THRA) -
WRITE ONLY 
Channel 0 address BASE + 106 
Channel 2 address BASE + 146 

When the transmitter is enabled through the command register, the 
transmitter-ready bit gets set in the status register. When a 
character is loaded into the transmit holding register (THR), 
transmitter ready gets cleared. Data is transferred from the THR 
to the transmit shift register when it is idle or has completed 
transmission of the previous character. Transmitter-ready is 
then reasserted. Characters cannot be loaded into the THR while 
the transmitter is disabled. 

The transmitter converts the parallel data from the CPU to a 
serial bit stream on the transmit data output pin. It 
automatically sends a start bit followed by the programmed number 
of data bits, an optional parity bit, and the programmed number 
of stop bits. The least significant bit is sent first. 
Following the transmission of the stop bits, if a new character 
is not available in the THR, the transmit data output remains 
high and the transmitter-empty status bit is set to 1. 
Transmission resumes and the transmitter empty bit is cleared 
when the CPU loads a new character into the THR. If the 
transmitter is disabled, it continues operating until the 
character currently being transmitted is completely sent out. 
The transmitter can be forced to send a continuous low condition 
by issuing a send break command. 

E-26 



DUART TRANSMITTER OPERATION 

The transmitter can be reset though a software command. If it is 
reset, operation ceases immediately and the transmitter must be 
enabled through the command register before resuming operation. 

E.3.9.8 Input Port Change Register (IPCR) -
READ ONLY 
DUART 0 address BASE + 110 
DUART 1 address BASE + 150 

Bits 7,6,5,4 - IP3, IP2, IP1, IPO Change of State (O = no, 1 
yes) 

These bits are set when a change of state occurs at the 
respective input pins. They are cleared when the IPCR 
is read by the cpu. A read of the IPCR also clears 
ISR[7], the input change bit in the interrupt status 
register. The setting of these bits can be programmed 
to generate an interrupt to the cpu. 

Bits 3,2,1,0 - IP3, IP2, IP1, IPO Current State (O 
high) 

low, 1 

These bits provide the current state of the respective 
inputs. The information is unlatched and reflects the 
state of the input pins at the time the IPCR is read. 

E.3.9.9 Auxiliary Control Register (ACR) -
WRITE ONLY 
DUART 0 address BASE + 110 
DUART 1 address BASE + 150 

Figure E-8 shows the Auxiliary Control Register (ACR). 

7 6,5,4 3 

I Baud Rate I CNT/TIME I delta 
I Generator I Mode and I IP3 
I Set Select I Source lint 

delta 
IP2 
int 

Figure E-8: Auxiliary Control Register 

Bit 7 - Baud Rate Generator Set Select 

2 1 

delta 
IPl 
int 

o 

delta 
IPO 
int 

This bit selects one of two sets of baud rates to be 
generated by the baud rate generator. 

E-27 



DUART TRANSMITTER OPERATION 

• Bit 7 = 0 selects 50, 110, 134.5, 200, 300, 600, 
1050, 1200, 2400, 4800, 7200, 9600, 38400 

• Bit 7 = 1 selects 75, 110, 134.5, 150, 300, 600, 
1200, 1800, 2000, 2400, 4800, 9600, 19200 

Table E-5 shows baud rate generator characteristics. 

E-28 



DUART TRANSMITTER OPERATION 

Table E-5: Baud Rate Generator Characteristics (CLOCK = 
3.6864 MHZ) 

+---------------------------------------------------+ 
I 
I Nominal Actual 16x Error 
I Baud Rate Clock (KHZ) (percent) 
+---------------------------------------------------+ 
I I 
I 50 0.8 0 I 
+---------------------------------------------------+ 
I I 
I 75 1.2 0 I 
+---------------------------------------------------+ 
I I 
I 110 1.759 -0.069 I 
+---------------------------------------------------+ 
I I 
I 134.5 2.153 0.059 I 
+---------------------------------------------------+ 
I I 
I 150 2.4 0 I 
+---------------------------------------------------+ 
I 
I 200 3.2 o 
+---------------------------------------------------+ 
I 
I 300 4.8 0 
+---------------------------------------------------+ 
I 
I 600 9.6 o 
+---------------------------------------------------+ 
I 
I 1050 16.756 -0.260 
+---------------------------------------------------+ 
I 
I 1200 19.2 0 
+---------------------------------------------------+ 
I 
I 1800 28.8 o 
+---------------------------------------------------+ 
I I 
I 2000 32.056 0.175 I 
+---------------------------------------------------+ 
I I 
I 2400 38.4 0 I 
+---------------------------------------------------+ 
I I 
I 4800 76.8 0 I 
+---------------------------------------------------+ 

E-29 



DUART TRANSMITTER OPERATION 

+---------------------------------------------------+ 
I I 
I Nominal Actual 16x Error I 
I Baud Rate Clock (KHZ) (percent) I 
+---------------------------------------------------+ 
I I 
I 7200 115.2 0 I 
+---------------------------------------------------+ 
I I 
I 9600 153.6 0 I 
+---------------------------------------------------+ 
I I 
I 19200 307.2 0 I 
+---------------------------------------------------+ 
I 
I 38400 614.4 o 
+---------------------------------------------------+ 
Bits 6,5,4 - Counter/Timer Mode and Clock Source Select 

Table E-6 shows baud rate generator characteristics. 

Table E-6: Counter/Timer Mode and Clock 

+---------------------------------------------------+ 
I 
I Bits Mode Clock Source 
I 6,5,4 
+---------------------------------------------------+ 
I 
I 000 Counter DO NOT USE 
+---------------------------------------------------+ 

I 
o 0 1 Counter TXCA - 1X clock I 

of channel A I 
transmitter I 

+---------------------------------------------------+ 
I I 
I 0 1 0 Counter TXCA - 1X clock I 
I of channel B I 
I transmitter I 
+---------------------------------------------------+ 
I 
I 0 1 1 Counter 3.6864 MHZ/16 
+---------------------------------------------------+ 
I I 
I 1 0 0 Timer DO NOT USE I 
+---------------------------------------------------+ 

E-30 



DUART TRANSMITTER OPERATION 

+---------------------------------------------------+ 
I 
I Bits Mode Clock Source 
I 6,5,4 
+---------------------------------------------------+ 
I 
I 101 Timer DO NOT USE 
+---------------------------------------------------+ 
I 
111 0 Timer 3.6864 MHZ 
+---------------------------------------------------+ 
I 
111 1 Timer 3.6864 MHZ/16 
+---------------------------------------------------+ 

Bits 3,2,1,0 - Change of State Interrupt Enable (0 = off, 1 
on) 

This bit selects which bits of the Input Port Change 
Register (IPCR) cause the input change bit in the 
interrupt status register (ISR[7]) to be set. If a bit 
is in the "on" state, the setting of the corresponding 
bit in the IPCR will also result in the setting of 
ISR[7], which results in the generation of an interrupt 
output if IMR[7]=1. If a bit is in the "off" state, 
the setting of that bit in the IPCR has no effect on 
ISR[7]. 

E.3.9.10 INTERRUPT STATUS REGISTER (ISR) -

7 6 5 

I input I delta I RxRDY 
I port I break I or 
I chg I B I FFULLB 

READ ONLY 
DUART 0 address BASE 
DUART 1 address BASE 

4 3 2 1 

TxRDY I cnt I delta I RxRDY 
B I rdy I break I or 

I I A I FFULLA 

Figure E-9: Interrupt Status Register 

+ 
+ 

112 
154 

0 

TxRDY 
A 

This register provides the status of all potential interrupt 
sources. The contents of this register are masked by the 
interrupt mask register (IMR). If a bit in the ISR is a '1' and 
the bit in the corresponding IMR is also a '1', the INTRN output 
will be asserted. If the corresponding bit in the IMR is a zero, 
the state of the bit in the ISR has no effect on the INTRN 
output. Note that the IMR does not mask the reading of the ISR -

E-31 



DUART TRANSMITTER OPERATION 

the true status will be provided regardless of the IMR. All bits 
in the ISR are initialized to zero when the DUART is reset. 

Bit 7 - Input Port Change Status 

Bit 6 -

This bit is a '1' when a change of state has occurred 
at the IPO, IP1, IP2, or IP3 inputs and that event has 
been selected to cause an interrupt by the programming 
of ACR[3:0]. The bit is cleared when the CPU reads the 
IPCR. 

Channel B Change in Break 
This bit, when set, indicates that the Channel B 
receiver has detected the beginning or the end of a 
received break. It is reset when the CPU issues a 
Channel B 'reset break change interrupt' command. 

Bit 5 - Channel B Receiver Ready or FIFO Full 
The function of this bit is programmed by MR1B[6]. If 
programmed as receiver ready, it indicates that a 
character has been received in Channel B and is waiting 
in the FIFO to be read by the CPU. It is set when the 
character is transferred from the receive shift 
register to the FIFO and reset when the CPU reads the 
RHR. If after this read there are more characters 
still in the FIFO the bit will be set again after the 
FIFO is 'popped.' 

If programmed as FIFO full, it is set when a character 
is transferred from the receive holding register to the 
receive FIFO and the transfer causes the Channel B FIFO 
to become full; i.e., all three FIFO positions are 
occupied. It is reset when the CPU reads the RHR. If 
a character is waiting in the receive shift register 
because the FIFO is full, the bit will be set again 
when the waiting character is loaded into the FIFO. 

Bit 4 - Channel B Transmitter Ready (0 = no, 1 yes) 
This bit is a duplicate of Transmitter Ready (SRB[2]). 

Bit 3 - Counter Ready (0 = no, 1 = yes) 
In the counter mode, this bit is set when the counter 
reaches terminal count and is reset when the counter is 
stopped by a stop counter command. 

In the timer mode, this bit is set once each cycle of 
the generated square wave (every other time that the 
counter/timer reaches zero count). The bit is reset by 
a stop counter command. The command, however, does not 
stop the counter/timer. 

E-32 



DUART TRANSMITTER OPERATION 

Bit 2 - Channel A Change in Break 
Same as bit 6 except for Channel A. 

Bit 1 - Channel A Receiver Ready or FIFO Full 
Same as bit 5 except for Channel A. 

Bit 0 - Channel A Transmitter Ready 
This bit is a duplicate of Transmitter Ready (SRA[2]). 

E.3.9.11 INTERRUPT MASK REGISTER (IMR) -
WRITE ONLY 
DUART 0 address BASE + 112 
DUART 1 address BASE + 152 

7 6 5 4 3 2 1 0 
---------------------------------------------------------------

input delta RxRDY TxRDY cnt delta RxRDY TxRDY 
port break or int rdy break or int 
chg B FULLB B int A FULLA A 
int int int int int 

Figure E-10: Interrupt Mask Register 

The programming of this register selects which bits in the ISR 
cause an interrupt output. If a bit in the ISR is a '1' and the 
corresponding bit in the IMR is also a '1', the INTRN output will 
be asserted. If the corresponding bit in the IMR is a zero, the 
state of the bit in the ISR has no effect on the INTRN output. 
Note that the IMR does not mask the programmable interrupt 
outputs OP3-0P7 or the reading of the ISR. 

E.3.9.12 Counter/Timer Upper Byte Value (CTU) -
READ ONLY 
DUART 0 address BASE + 114 
DUART 1 address BASE + 154 

In the counter mode, the current value of the upper and lower 
eight bits of the counter (CTU and CTL) may be read by the cpu. 
It is recommended that the counter be stopped when reading to 
prevent potential problems which may occur if a carry from the 
lower eight bits to the upper eight bits occurs between the times 
that both halves of the counter are read. However, note that a 
subsequent start-counter command will cause the counter to begin 
a new count cycle using the values in CTUR and CTLR. 

E-33 



DUART TRANSMITTER OPERATION 

E.3.9.13 Counter/Timer Upper Register (CTUR) -
WRITE ONLY 
DUART 0 address BASE + 114 
DUART 1 address BASE + 154 

The CTUR and CTLR hold the eight MSBs and eight LSBs respectively 
of the value to be used by the counter/timer in either the 
counter or timer modes of operation. The minimum value which may 
be loaded into the CTUR/CTLR registers is 0002 (hex). Note that 
these registers are write-only and cannot be read by the cpu. 

In the counter mode, the CIT counts down the number of pulses 
loaded into CTUR/CTLR by the cpu. Counting begins upon receipt 
of a start-counter command. Upon reaching terminal count (zero), 
the counter-ready interrupt bit (ISR[3]) is set. The counter 
continues counting past the terminal count until stopped by the 
cpu. ISR[3] is cleared when the counter is stopped by a stop 
counter command. The CPU may change the values of CTUR/CTLR at 
any time, but the new count becomes effective only on the next 
start-counter command. If new values have not been loaded, the 
previous count values are preserved and used for the next count 
cycle. 

E.3.9.14 Counter/Timer Lower Byte Value (CTL) -
READ ONLY 

See section E.3.9.12. 

DUART 0 address BASE + 116 
DUART 1 address BASE + 156 

E.3.9.15 Counter/Timer Lower Register (CTLR) 
WRITE ONLY 

See section E.3.9.13. 

DUART 0 address BASE + 116 
DUART 1 address BASE + 156 

E.3.9.16 Channel B Mode Register 1 (HR1B) -
READjWRITE 
Channel 1 address BASE + 120 
Channel 3 address BASE + 160 

MR1B is accessed when the Channel B MR pointer points to MR1. 
The pointer is set to MR1 by RESET or by a "set pointer" command 
applied via CRB. After reading or writing MR1B, the pointer will 

E-34 



DUART TRANSMITTER OPERATION 

point to MR2B. 

The bit definitions for this register are identical to the bit 
definitions for MR1A, except that all control actions apply to 
the Channel B receiver and transmitter and the corresponding 
inputs and outputs. 

E.3.9.17 Channel B Mode Register 2 (MR2B) 
READjWRITE 
Channel 1 address BASE + 120 
Channel 3 address BASE + 160 

MR2B is accessed when the Channel B MR pointer points to MR2, 
which occurs after any access to MR1B. Accesses to MR2B do not 
change the pointer. 

7-6 5 4 3-0 

I I TX I TX I I 

I CHANNEL MODE I RTS CTL I CTS EN I STOP BIT LENGTH I 

Figure E-ll: Channel B Mode Register 2 

Bits 7,6 - Channel B Mode Select 
Same as Channel A mode select - See Section E.3.9.2. 

Bit 5 - Channel B Transmitter Request-to-send control 
This bit controls the deactivation of the RTS output by 
the transmitter. 

In the 2/2 configuration, this bit should be cleared, 
disabling RTS for channels 1 and 3 from appearing at 
the outputs. This leaves the outputs for use as LL. 

In the 4/0 configuration, this output is normally 
asserted by setting OPR[O] and negated by resetting 
OPR[O]. A "1" in this bit causes OPR[O] to be reset 
automatically one bit time after the characters in the 
Channel A transmit shift register and in the THR, if 
any, are completely transmitted, including the 
programmed number of stop bits, if the transmitter is 
not enabled. This feature can be used to automatically 
terminate the transmission of a message as follows: 

1. Program auto-reset mode (bit 5 = 1). 

E-35 



DUART TRANSMITTER OPERATION 

2. Enable transmitter. 

3. Assert RTS (OPR(O] 1). 

4. Send message. 

5. Disable transmitter after the last character is 
loaded into the Channel B THR. 

6. The last character will be transmitted and OPR(O] 
will be reset one bit time after the last stop bit, 
causing RTS to be negated. 

Bit 4 - Channel B Clear-to-Send Control 
This bit controls the deactivation of the CTS output 
(IPA1 or IPB1) by the transmitter. 

In the 2/2 configuration, this bit should be cleared, 
disabling IPA1 or IPBl from being used as an input for 
the channell and 3 transmitters. IPA1 and IPB1 are 
used for the modem control inputs DSR. 

In the 4/0 configuration, if this bit is zero, CTS has 
no effect on the transmitter. If this bit is a one, 
the transmitter checks the state of CTS (IPA1 or IPB1) 
each time it is ready to send a character. If IP1 is 
asserted (low), the character is transmitted. If it is 
negated (high), the Transmitter Data output remains in 
the marking state and the transmission is delayed until 
CTS goes low. Changes in CTS while a character is 
being transmitted do not affect the transmission of 
that character. 

Bits 3,2,1,0 - Channel B Stop Bit Length Select 

Same as Channel A - See Section E.3.9.2. 

E.3.9.18 Status Register B (SRB) -
READ ONLY 
Channel 1 address BASE + 122 
Channel 3 address BASE + 162 

Definitions same as for Channel A. See Section E.3.9.3. 

E.3.9.19 Channel B Clock Select Register (CSRB) -
WRITE ONLY 
Channel 1 address BASE + 122 

E-36 



DUART TRANSMITTER OPERATION 

Channel 3 address BASE + 162 

Definitions same as for Channel A. See Section E.3.9.4. 

E.3.9.20 Channel B Command Register (CRB) -
WRITE ONLY 
Channel 1 address BASE + 124 
Channel 3 address BASE + 164 

Definitions same as for Channel A. See E.3.9.5. 

E.3.9.21 Channel B Receive Holding Register (RHRB) -
READ ONLY 
Channel 1 address BASE + 126 
Channel 3 address BASE + 166 

Definitions same as for Channel A. See Section E.3.9.6. 

E.3.9.22 CHANNEL B TRANSMITTER HOLDING REGISTER (THRB) -
WRITE ONLY 
Channel 1 address BASE + 126 
Channel 3 address BASE + 166 

Definitions same as for Channel A. See Section E.3.9.7. 

E.3.9.23 INPUT PORT (IP) -
READ ONLY 
Duart 0 address BASE + 132 
Duart 1 address BASE + 172 

The inputs to this unlatched 7-bit port can be read by performing 
a read operation of the above addresses. A high input results in 
a logic 1 while a low input results in a logic O. Bit 7 will 
always be read as a logic 1. 

Four change-of-state detectors are provided which are associated 
with IP3, IP2, IP1, IPO. A high-to-low or a low-to-high 
transition of these inputs lasting longer than 25-50 useconds 
will set the corresponding bit in the IPCR. The bits are cleared 
when the register is read. Any change of state can also be 
programmed to generate an interrupt. 

E-37 



DUART TRANSMITTER OPERATION 

For input port bit definitions, see the appropriate modem 
configuration sections. 

E.3.9.24 Output Port Configuration Register (OPCR) -
WRITE ONLY 

7 6 5 4 3,2 

Duart ° address BASE + 132 
Duart 1 address BASE + 172 

1,0 

I OP7 I OP6 I OP5 I OP4 I OP3 OP2 
I CTL I CTL I CTL I CTL I CTL CTL 

Figure E-12: Output Port Configuration Register 

Bit 7 -

Bit 6 -

Bit 5 -

Bit 4 -

reserved - this functionality not used. 

reserved - this functionality not used. 

reserved - this functionality not used. 

OPA4, OPB4 control 

For 2/2 configuration, bit 4 ° . This causes the 
complement of OPR[4] to be ouput to OP4. 

For the 4/0 configuration, this bit is reserved, this 
functionality not used. 

Bits 3,2 - OPA3, OPB3 control 

For both configurations, bit[3,2] = 00. This causes 
the complement of OPR[3] to be output to OP3. 

Bits 1,0 - OPA2, OPB2 control 

For both configurations, bit[1,0] = 00. This causes 
the complement of OPR[2] to be output to OP2. 

E.3.9.25 START COUNTER Command -

E-38 

DUART ° address BASE + 134 
DUART 1 address BASE + 174 



DUART TRANSMITTER OPERATION 

A read of this address starts the counter. 

E.3.9.26 SET OUTPUT PORT BITS Command -
WRITE ONLY 
DUART 0 address BASE + 134 
DUART 1 address BASE + 174 

A bit is set in the output port by performing a write operation 
with the accompanying data specifying the bits to be set (1 = 
set, 0 = no change). 

E.3.9.27 STOP COUNTER Command -
READ ONLY 
DUART 0 address BASE + 136 
DUART 1 address BASE + 176 

A read Of this address stops the counter. 

E.3.9.28 Reset Output Port Bits Command -
WRITE ONLY 
DUART 0 address BASE + 136 
DUART 1 address BASE + 176 

A bit is reset in the output port by performing a write operation 
with the accompanying data specifying the bits to be reset (1 = 
reset, 0 = no change). 

E.4 MODEM CONTROLS FOR 2/2 CONFIGURATION 

This section describes the modern control signals when the module 
is configured to have two ports with full asynchronous modern 
control and two ports with no modern control (data leads only). 

E.4.1 Input Port Assignments 

The input port bits are assigned as follows 

E-39 



MODEM CONTROLS FOR 2/2 CONFIGURATION 

Table E-7: 2/2 Input Port Bits 

+------------------------------------------------------+ 
I 
I DUART 0 DUART 1 
+------------------------------------------------------+ 
I 
I BIT 0 channel 0 CTS channel 2 CTS 
+------------------------------------------------------+ 
I 
I BIT 1 channel 0 DSR channel 2 DSR 
+------------------------------------------------------+ 
I 
I BIT 2 channel 0 CD channel 2 CD 
+------------------------------------------------------+ 
I I 
I BIT 3 channel 0 RI channel 2 RI I 
+------------------------------------------------------+ 
I I 
I BIT 4 channel 0 TI channel 2 TI I 
+------------------------------------------------------+ 
I I 
I BIT 5 channel 0 SPDMI channel 2 SPDMI I 
+------------------------------------------------------+ 
I I 
I BIT 6 not used not used I 
+------------------------------------------------------+ 

E.4.2 Output Port Bit Definitions 

Table E-8: 2/2 Output Port Bits 

+------------------------------------------------------+ 
DUART 0 DUART 1 

+------------------------------------------------------+ 
I 
I BIT 0 channel 0 RTS channel 2 RTS 
+------------------------------------------------------+ 
I I 
I BIT 1 channel 0 LL channel 2 LL I 
+------------------------------------------------------+ 
I I 
I BIT 2 channel 0 DTR channel 2 DTR I 
+------------------------------------------------------+ 
I 
I BIT 3 channel 0 RL channel 2 RL 
+------------------------------------------------------+ 

E-40 



MODEM CONTROLS FOR 2/2 CONFIGURATION 

+------------------------------------------------------+ 
I I 
I DUART 0 DUART 1 I 
+------------------------------------------------------+ 
I 
I BIT 4 channel 0 DSRS channel 2 DSRS 

I 
I 

+------------------------------------------------------+ 
I 
I BIT 5 not used not used 

I 
I 

+------------------------------------------------------+ 
I 
I BIT 6 not used not used 

I 
I 

+------------------------------------------------------+ 
I 
I BIT 7 not used not used 

I 
I 

+------------------------------------------------------+ 

E.4.3 Input Port Set-Up 

E.4.3.1 CTS-

Channels 0 and 2 MR2A, bit 4 

If this bit is a zero, CTS has no effect on the channel 
transmitter. If this bit is a 1, the transmitter 
checks the state of CTS (IPAO or IPSO) each time it is 
ready to send a character. 

Channels 1 and 3 MR2B, bit 4 

This bit should be set to zero so that IPAl has no 
effect on the channell transmitter, and IPSl has no 
effect on the channel 3 transmitter. 

E.4.3.2 DSR - Set-up is as required above. Since IPAl is not 
set up to affect channell transmitter, it can be used for the 
channel 0 DSR. Also IPBl can be used for the channel 2 DSR. 

E.4.3.3 CD - The counter/timer clock source should NOT be 
programmed to be IPA2 (or IPB2). This leaves these bits free for 
use as channel 0 TI and channel 2 TI. 

E-41 



MODEM CONTROLS FOR 2/2 CONFIGURATION 

E.4.3.4 RI - The channel a or channel 2 transmitter clock source 
should not be programmed to be IPA2 (or IPB2). This leaves these 
bits free for use as channel a SPDMI and channel 2 SPDMI. 

E-42 



MODEM CONTROLS FOR 2/2 CONFIGURATION 

E.4.4 Set-Up for Outputs 

E.4.4.1 RTS - Bit 5 for MR2A (channels 0 and 2) can be set or 
cleared. See MR2A bit 5 definition. 

E.4.4.2 LL - Bit 5 for MR2B (channels 1 and 3) should be cleared 
( 0 ) • 

E.4.4.3 DTR - Bits 1 and 0 should be cleared (00) for OPCR in 
both DUARTs. 

E.4.4.4 RL - Bits 3 and 2 should be cleared (00) for OPCR in 
both DUARTs. 

E.4.4.S DSRS - Bit 4 should be cleared (0) for OPCR in both 
DUARTs. 

E.S MODEM CONTROLS FOR 4/0 CONFIGURATION 

This section describes the modem control signals when the module 
is configured to have four ports with partial asynchronous modem 
control. 

E.S.1 Input Port Assignments 

The input port bits are assigned as follows 

Table E-9: 4/0 Input Port Bits 

+---------------------------------------------------+ 
I 
I DUART 0 DUART 1 
+---------------------------------------------------+ 
I 
I BIT 0 channel 0 CTS channel 2 CTS 
+---------------------------------------------------+ 

E-43 



MODEM CONTROLS FOR 4/0 CONFIGURATION 

+-----------~---------------------------------------+ 

I I 
I DUART 0 DUART 1 I 
+---------------------------------------------------+ 
I 
I BIT 1 channel 1 CTS channel 3 CTS 
+---------------------------------------------------+ 
I 
I BIT 2 channel 0 CD channel 2 CD 
+---------------------------------------------------+ 
I 
I BIT 3 channel 1 CD channel 3 CD 
+---------------------------------------------------+ 
I I 
I BIT 4 channel 0 DSR channel 2 DSR I 
+---------------------------------------------------+ 
I I 
I BIT 5 channel 1 DSR channel 3 DSR I 
+---------------------------------------------------+ 
I I 
I BIT 6 not used not used I 
+---------------------------------------------------+ 

E.S.2 Output Port Bit Definitions 

Table E-l0: 4/0 Output Port Bits 

+---------------------------------------------------+ 
DUART 0 DUART 1 

+---------------------------------------------------+ 
I I 
I BIT 0 channel 0 RTS channel 2 RTS I 
+---------------------------------------------------+ 
I I 
I BIT 1 channel 1 RTS channel 3 RTS I 
+---------------------------------------------------+ 
I I 
I BIT 2 channel 0 DTR channel 2 DTR I 
+---------------------------------------------------+ 
I 
I BIT 3 channel 1 DTR channel 3 DTR 
+---------------------------------------------------+ 
I I 
I BIT 4 not used not used I 
+---------------------------------------------------+ 
I I 
I BIT 5 not used not used I 
+---------------------------------------------------+ 

E-44 



MODEM CONTROLS FOR 4/0 CONFIGURATION 

+---------------------------------------------------+ 
DUART 0 DUART 1 

+---------------------------------------------------+ 
I 
I BIT 6 not used not used 

I 
I 

+---------------------------------------------------+ 
I 
I BIT 7 not used not used 
+---------------------------------------------------+ 

E.S.3 Input Port Set-Up 

E.S.3.1 CTS - For all channels (DUART 1 MR2A and MR2B, and DUART 
2 MR2A and MR2B) , MR2 bit 4 controls CTS. If this bit is a zero, 
CTS has no effect on the channel transmitters. If this bit is a 
1, the transmitter checks the state of CTS each time it is ready 
to send a character. 

E.S.3.2 CD - The counter/timer clock source should NOT be 
programmed to be IPA2 (or IPB2). The channel 0 or channel 2 
transmitter clock source should NOT be programmed to be IPA3 (or 
IPB3). This leaves these bits free for use as channel 0-3 CD. 

E.S.3.3 DSR - The channel 0 or channel 2 receiver clock source 
should NOT be programmed to be IPA4 (or IPB4). The channell or 
channel 3 transmitter clock source should NOT be programmed to be 
IPA5 (or IPB5). This leaves these bits free for use as channel 
0-3 DSR. 

E.S.4 Set-Up for Outputs 

E.S.4.1 RTS - Bit 5 for MR2 channels 0-3 can be set or cleared. 
See MR2A and MR2B bit 5 definitions. 

E.S.4.2 DTR - Bits 3-0 should be cleared (0000) for OPCR in both 
DUARTs. 

E-45 



MODEM CONTROLS FOR 4/0 CONFIGURATION 

E.S.S Connector Box 

The connector box gives you the option of having full or partial 
modem control. The way that this is accomplished is by having 
two 40-pin connectors in the connector box. 

If you plug the 40-pin cable into the end of the box on the 
12-pin side of the D-subs, then you will be plugged into 
connector Jl, in the full modem control configuration. 

If you plug the 40-pin cable into the end of the box on the 
13-pin side of the D-subs, then you will be plugged into 
connector J6, in the partial modem control configuration. 

E-46 



ABODF$ macro, A-3, A-4 
Acceptance routine, 1-14 
Accounting block offsets, 4-35 
Accumulation fields 

See ACNDF$ 
$ACHCK routine, 7-15 
$ACHKB routine, 7-15 
ACNDF$ macro, A-3, A-6 
ACP function, 2-16, 3-3, 3-4, 

4-29 
ACP function mask, 4-26, 4-27, 

4-28, 4-32, 4-33, 4-34 
ACP QIOs 

usage, D-ll 
ACTDF$ macro, A-8 
Active Page Register 

see APR 
Address doubleword, 4-19, 4-20, 

4-29, 4-46, 7-5, 7-11 
Advanced driver features, 1-11 
$ALOCB routine, 7-16 
AP R , 1 - 3, 1 - 8 
AST, 1-15 
Asynchronous System Trap 

see AST 

BCKDF$ macro, A-l0 
$BLKC1 routine, 7-13 
$BLKC2 routine, 7-13 
$BLKCK routine, 7-13, 7-23 
$BLXIO routine, 7-13, 7-19 
Buffer 

special user 
sample of driver handling, 

3-5, 4-39, 4-46 
Buffered I/O, 1-14, 4-8, 4-20, 

4-39, 4-74 
Bug Checking 

without XDT, 6-13 

Cancel I/O, 2-5, 2-7, 4-38 
Checkpoint 

request, 3-5 
Checkpointing, 7-5 
CINT$ directive, 1-1 
$CKBFB routine, 7-15, 7-20 
$CKBFI routine, 7-20 

INDEX 

$CKBFR routine, 7-20 
$CKBFW routine, 7-15, 7-20 
$CLINS routine, 7-22 
CLKDF$, A-3 
CLKDF$ macro, A-13 
Clock queue, 4-65, 4-67, 7-22 

control block, A-3 
CLUST.TSK, B-37 
Clustered libraries 

WRITE access, B-26 
CON task, 5-8 
Concurrent I/O, 1-7 
Configuration 

hardware, 2-9 
Contiguous KRB and SCB, 2-10, 

4-53 
Control function mask, 4-26, 4-27, 

4-28 
Controller 

access, 2-3, 2-17, 4-62 
delayed, 2-17 

allowing parallel operations, 
2-3, 2-10 

configuration status for, 2-3, 
2-8 

defining type, 1-5, 2-1, 2-8, 
2-9, 4-10 

group number, 1-8 
interrupt vector, 1-2, 1-7, 1-8, 

4-7 
interrupts, 1-1, 1-9 
location of a CSR for a, 2-2 
maintaining hardware-specific 

information for, 2-2 
name, 2 -1, 4 - 70, 5 - 6, 5 - 8 
number, 1-7 
request queue, 2-3, 2-17 
status, 2-17, 4-52, 4-74 
status change 

entry point, 4-74 
status extension 2, 4-53 
status extension 3, 4-52 
status word, 4-58 
table status byte, 4-66 

Controller Request Block 
See KRB 

Controller table 

Index-l 



INDEX 

see CTB 
CSR, 2-2, 4-54 

address, 4-60 
assignments 

setting, 1-15 
/CTB 

use in PROLOD, 5-5 
CTB 

definition, 1-5 
description, 2-9 
format, 2-2 
layout, 4-62 
overview, 2-1 
system list, 4-62 
use in handling interrupts, 2-2, 

2-16 
validation during PROLOD, 5-5 

CTB label, 4-5 
CTBDF$, A-3 
CTBDF$ macro, A-iS 
$CTLST, 2-1 

symbol, 2-17 
$CVBLN routine, 4-47 

D.xxx offsets 
in DCB, 5-7 

Data base, 1-15, 4-3 
assembling, 4-3 
code, 4-67 
creating source code, 4-3 
CTB, 2-1 
details of structures, 4-13 
d rive r, 1- 5, 1-7, 1-9, 1-15, 

2-4 
fork routine, 1-9 
global label, 4-3 

$xxCTB, 4-5 
$xxDAT, 5-5 
$xxEND, 5-5 

labeling of data structures, 
4-3 

linked by DDT, 4-68 
loadable, 5-5 
module, 1-16 
overview of structures, 2-12 
programming 

requirements, 4-3 
shared access, 3-6 
structures 

augmented, 1-14 
composite arrangement, 2-13 

controllers and units, 1-5 
conventional, 1-14 
Executive, 1-6 
ordering of, 4-3 
typical arrangement, 2-9 

validation during PROLOD, 5-5 
Data structure 

definitions, A-l 
Data structures 

I/O, 1-10 
shared system, 1-10 

Data transfer, 1-14, 1-15 
DCB 

ASCII device name, 4-24 
composite arrangement, 2-13 
creating mask words in, 4-25 
definition, 1-5 
details, 2-3, 4-23 
driver dispatch table, 1-15 

entry points, 2-3 
driver dispatch table pointer, 

2-13, 4-25 
driver-specific function masks, 

4-25 
establishing characteristics 

for, 2-3 
establishing I/O function masks, 

4-30 
fields, 4-24 
format, 4-23 
labeling, 4-3 
length of UCB, 2-4 
link to next DCB, 2-3 
list of, 2-3 
number of units stored, 2-3 
overview, 2-3 
pointer to first UCB, 2-4 
unit number range, 4-24 
validation during PROLOD, 5-5 

DCBDF$, A-l 
DCBDF$ macro, A-17 
DDT$ macro, A-19 
DDT$ macro call 

arguments of, 4-6 
placement of, 4-7 

$DEACB routine, 6-13, 7-24 
Deallocation entry point, 4-74 
Delayed controller access, 2-17 
$DEVHD routine, 2-3, 2-12 
Device 

address, 1-1 

Index-2 



busy, not busy, 1-13 
configured on-line, 1-15 
generic name, 2-3, 4-24 
interrupt, 1-1, 1-2, 1-7, 1-11 
registers, 1-1, 1-5, 4-39 
storage of static 

characteristics, 2-3, 4-23 
Device Control Block 

see DCB 
Device controller, 1-1 

busy, not busy, 1-13 
Device driver, 1-5 

See Driver 
Device interrupt address 

overview, 2-8 
Device interrupt vector, 2-5 
Device timeout 

entry point, 4-50, 4-73 
overview, 2-7 

Directive Parameter Block 
see DPB 

Disk 
geometry calculations, 4-47 

Doubleword 

INDEX 

address, 4-19, 4-20, 4-29,7-11 
DPB 

details, 4-20 
format, 4-21 
I/O function allowances, 7-11 
usage in creating I/O packet, 

3-2, 3-3 
DRDSP 

directive dispatcher, 3-2, 6-11 
Driver 

acceptance routine, 1-14 
accessing a controller, 2-2 
advanced features, 1-6 
assembling, 5-2 
code 

details, 4-67 
standards, 4-1 

conversion routine, 4-27 
creating source code, 4-6 
data base, 1-5, 1-15 

linkages, 1-15 
data structure, 1-5, 2-12, 4-35 

accessing, 4-2 
details, 4-13 

DDT$ macro call, 4-6 
debugging, 6-1, 6-3, 6-4 

using XDT, 6-1 

Index-3 

defining labels, 4-12, 4-68 
Driver Dispatch Table, 2-5 

address of routines, 1-5 
entry points, 2-13 

association of, 4-68 
format, 4-68 
generation of 

from DDT$, 4-68 
labels required, 4-68 
link to the driver code and 

data base, 4-68 
entry points, 4-6, 4-12, 4-71 
Executive services 

typically used, 3-5, 7-1 
for NPR devices on PDP-11, 7-1 
full duplex, 4-18 
full-duplex, 1-13 
handling multiple I/O requests, 

1-13 
I/O packet, 2-15 
I/O request 

processing, 1-5 
I/O requirements, 4-26 
incorporating, 1-15, 4-1 

guidelines for, 5-1 
initiating I/O, 4-60 
interrupt handling, 1-7 
interrupt level, 1-7, 7-1 
interrupts, 7-1 
labels, 4-3 
loading into system, 5-3 
macro call, 4-6 
mapping with Executive, 1-3, 

1-7 
modifying data in UCB, 1-14, 

2-4 
module 

inserting into library,4-67 
predriver initiation, 1-6, 2-6, 

3-1, 3-2, 4-19 
process, 1-6, 1-7, 1-10 
processing 

I/O request, 1-6 
interrupt, 1-7 

programming 
conventions, 4-1 
requirements, 4-1 

protocol, 1-7, 1-10 
rebuilding and reincorporating, 

6-15 
requesting I/O packet, 1-6 



INDEX 

servicing I/O request, 1-5, 1-6, 
1-7, 1-13 

standards, 4-1 
system macro call 

arguments, 4-6 
general functions, 4-6 

unloading, 5-3 
use of symbolic offsets, 4-2, 

4-62, 4-67 
XDT support, 6-1 

Driver code 
creating, 4-6 
definition, 1-6 
function, 4-6 
general description, 4-6 
requirements, 4-67 

Driver entry point 
block check and conversion, 

4-70 
contoller I/O initiation, 4-70 
controller status change, 4-70, 

4-74 
deallocation, 4-74 
device timeout, 4-70, 4-73 
interrupt, 4-71 
power failure, 4-71 
PROLOD, 4-12 
standard labels, 4-70 
unit status change, 4-71 

DRQIO 
performing redirect algorithm, 

3-2 
DRQIO routine, 3-2, 4-72, 4-78 

locating the conversion routine, 
3-2 

Dynamic Controller Assignment, 
4-54 

EPKDF$, A-3 
Error codes 

file processors, D-19 
Errors 

PROLOD, 5-9 
executable instructions, 1-5 
Executive 

assessing I/O requests, 1-6 
calling the driver, 1-5 
coroutine 

$INTSI, 1-7 
directive dispatcher 

DRDSP, 3-2 

dispatching to correct driver 
routine, 2-2 

distributing I/O requests, 1-5 
handling 

interrupts, 2-2 
routines, 1-5 

interrupt exit routine, 1-7 
interrupt save routine, 1-7 
macro library 

EXEMC.MLB, A-l 
maintaining controller and 

hardware specific 
information, 2-2 

mapping of, 1-3 
modifying data in UCB, 2-4 
performing processor specific 

functions, 1-3 
predriver initiation, 1-6, 3-1 

3-2, 4-19 
queuing to the driver, 1-6 
request queue for controller, 

2-3, 2-17 
service routines, 1-3 
stack and register dump, 6-9 
symbol 

$CTLST, 2-1, 2-17 
Executive Debugging Tool 

see xnT 
Executive routine, 1-6, 1-9, 1-1: 

1-13, 2-15, 3-5, 4-46 
See also Executive services 
$GTPKT, 1-6, 1-13, 3-4, 3-5, 

4-9 
$IODON, 1-11,3-6,4-50,4-51 

Executive services 
summaries of technically used, 

7-13 
EXELIB.OLB, 4-67 
EXELIB.OLB file, A-l 
EXEMC.MLB, A-1 
Extended User Control Block 

See UCB 
External header, 6-6 

FllACP functions, D-9 
FllDF$, A-l, A-3 
FllDF$ macro, A-21 
Fault 

codes, 6-10 
isolation, 6-4 
tracing, 6-6, 6-9 

Index-4 



INDEX 

Fault Control Block 
See FCB 

FCB, 2-16, 2-17 
Files-ll 

block locking, 0-8 
definition, C-2 
directories, C-16 
file header layout, C-14 
file organization, C-19 
filename block, 0-23 
header block format, 0-12 
on-disk structure specification, 

C-l 
placement control, 0-8 
QIO interface to the ACPs, 0-1 
record structure, C-33 
statistics block, 0-18 
storage bitmap, C-29 

Fork block, 1-10, 1-11, 2-3, 2-4, 
2-15, 4-49 

storage area, 4-62 
Fork list 

head of ($FRKHO), 2-16 
Fork process, 1-9, 1-10, 3-5, 3-6 
Fork processing, 2-16 
Fork routine, 4-49 
Fork routine ($FORK), 1-9 

driver use in I/O processing, 
3-5, 3-6 

$FORKl routine, 7-26, 7-27 
See also $FORK 

Full-duplex I/O, 1-13 
Function mask 

ACP, 4 - 26, 4 - 2 7, 4 - 2 8 
building for mask word, 4-28 
control, 4-27 
creating words, 4-28 
establishing, 4-30 
layout, 4-27 
legal 

details, 4-27 
no-op, 4-26, 4-27, 4-29 

$GSPKT routine, 1-14, 7-29 
$GTBYT routine, 7-28 
$GTPKT routine, 1-6, 1-13, 3-5, 

4-7, 4-9, 7-29 
usage in driver code, 3-4 

GTPKT$ macro, A-26 
GTPKT$ macro call, 4-72 

arguments, 4-7, 4-9 

$GTWRD routine, 7-32 

Hardware configuration 
relationship to structures as 

block level, 2-1 
HDROF$, A-3 
HDROF$ macro, A-27 
$HEAOR, 6-6, 6-12 

pointer to first word of task 
header, 6-8 

High-speed device, 1-14 
HWDDF$, 4-57, A-3 
HWDDF$ macro, A-29 

I.FCN word, 7-10 
I.xxx offsets 

in I/O packet, 4-14, 4-18, 4-19 
I/O 

cancel in-progress, 2-7 
count, 1-15 
high-speed devices, 1-14 
overview, 4-1 
slow-speed devices, 1-14 

I/O data base structure 
composite arrangement, 2-13 
typical arrangement, 2-9, 2-10, 

2-12 
I/O data structure 

details, 4-13 
overview, 2-1 
typical arrangements, 2-8 

I/O finish 
See $IOFIN routine 

I/O function 
definition of types, 4-20 
mask values, 4-32 
mask word bit settings, 4-32, 

4-33, 4-34 
I/O function mask 

establishing, 4-30 
I/O initiation 

entry point, 4-70, 4-72, 8-1 
overview, 2-6 

I/O packet, 1-6 
building, 4-14 
composite arrangement, 2-13 
creation of, 3-3 
fields, 2-15, 4-14, 4-18, 4-19 
layout, 4-14 
usage by function type, 7-9 

I/O page, 1-3, 1-5 

Index-5 



INDEX 

I/O queue 
listhead, 4-15, 4-49 
placement of I/O packet, 4-14 

I/O request, 1-6, 1-7 
completing process for an, 3-5 
flow of, 3-1 
function codes for, 4-19, 4-26 
issuing I/O for an, 3-4 

I CB, 1-7, 4 - 65 
number of controllers allowed, 

1-8 
$INIBF routine, 1-14, 7-33 
Interrupt, 1-1 

addresses 
overview, 2-8 

$CINT directive, 1-1 
dispatching, 1-7 

overview, 2-8 
entry address, 2-5 
entry point, 1-11, 4-8, 4-70, 

4-77 
for overlapped seek, 2-11 
handling, 1-7, 1-9, 1-11 
processing by driver, 3-4 
protocol, 1-11, 3-5 
service routine, 1-8, 4-11, 6-1 
vector, 1-2, 1-7, 1-8, 4-7, 

4-57 
Interrupt Control Block 

See ICB 
Interrupt control block, 1-7 
Interrupt dispatching, 1-8 
Interrupt save 

See $INTSI routine 
Interrupt servicing, 1-9 
$INTSI routine, 1-7, 1-8, 1-9, 

4-77, 7-25 
$INTSV routine, 4-7, 7-13 
INTSV$ macro, A-36 
INTSV$ macro call, 4-7 

arguments, 4-10 
placement of, 4-10 

$INTXT routine, 1-7, 7-13, 7-34 
IO.WLB function, 7-6 
IO.WVB function, 7-6 
$IOALT routine, 1-14, 7-35 

driver use in I/O processing, 
3-6, 7-36 

$IODON routine, 1-14, 7-35 
driver use in I/O processing, 

3-6, 7-36 

$IOFIN routine, 1-14, 1-15, 3-3 4 

3-4, 7-13 
IOSB, 4-19, 4-22, 4-27, 4-46 

validity checks, 3-3, 3-5 
$ITBDF, A-3 
ITBDF$ macro, A-37 

K.STS, 4-58 
K.xxx offsets 

in KRB, 4 - 55, 4 - 59, 4 - 6 0 
KISAR6, 7-5 
KRB, 2-2 

access queue in the, 2-3 
combined with SCB, 2-4, 4-47 

layout, 4-47 
configuration status in the, 

2-3 
contiguous with SCB, 2-4, 4-4i 
control and device register, 

4-54 
controller device register 

addresses, 4-60 
defining start of addresses, 

4-5 
definition, 1-5 
details, 4-55, 4-58 
layout, 4-55 
overview, 2-2 
use in determining interruptir 

unit, 2-16 
KRBDF$, A-3 
KRBDF$ macro, A-39 

L.STS, 4-66 
L.xxx offsets 

in CTB, 4-65, 4-67 
LBLDF$ macro, A-42 
LCBDF$, A-3 
Legal function mask, 4-26, 4-28, 

4-32 
LNMDF$ macro, A-45 
Loadable data base 

See Data Base 
Loadable driver 

See Driver 
Logical unit table 

See LUT 
L UT, 2 -13, 3 - 2, 4 -18 

Mask word 
creating, 4-28 

Index-6 



I/O function, 4-28 
MTADF$, A-1, A-3 
Multi-access paths, 4-54 
Multiple controllers, 2-10 
Multiple drivers per controller, 

4-66 
Multiple interrupt entry points, 

4-8 
Multiple libraries, B-16 
Multiple units, 2-15 
Multiple units per controller, 

2-9, 2-10, 4-10, 4-61 
Multiple-access operation 

data base structures, 2-3 
Multiple-device control blocks, 

2-8 

NO-op function mask, 4-26, 4-27, 
4-29, 4-32, 4-33, 4-34, 4-79 

NPR device 
drivers for (on PDP-l1), 7-1 

005-1, C-1 
OLRDF$, A-1, A-3 
Overlapped Seek I/O 

executing parallel operation, 
2-11, 2-16 

executing parallel operations, 
2-3 

Overlay tree, B-6 

Page Address Register 
See PAR 

Page Description Register 
See PDR 

PAR, 1-3, 7-11 
Parallel Unit operation 

data base structures, 2-10 
Partition Control Block 

See PCB 
PCB, 2-12, 4-29 
PCBDF$, A-3 
PCBDF$ macro, A-46 
PDP-11 

standard file structure, C-1 
PDP-11 Cluster Libraries, B-11 
PDR, 1-3 
PKTDF$, A-3 
PKTDF$ macro, A-52 
Pool-resident 

header, 6-6, 6-8 

INDEX 

Power failure 
entry point, 4-74 
overview, 2-7 

Predriver initiation, 1-6, 4-19 
processing during, 3-2 

Processor 
halt 

tracing fault, 6-4 
loop 

tracing fault, 6-5 
PROLOD, 5-3 

Errors, 5-9 
Suggestions for using, 5-9 

PROLOD command, 1-15, 1-16 
overview, 1-15 

PTBYT routine, 7-38 
$PTWRD, 7-39 

Q.xxx offsets 
in I/O packet, 4-21 

QINSP routine, 7-40 
QIO directive 

building I/O packet, 4-14 
creating DPB, 3-2 
directive dispatching, 3-2 

QIO Directive Parameter Block 
See QIO OPB, 3-2 

QIO DPB, 4-14, 4-15, 4-20, 4-27, 
7-11 

QIO parameter 
list format, 0-1 

QIO request, 2-13 
QIOSY$ macro, A-59 
Quad serial line unit driver 

DUART transmitter, E-4 
introduction, E-l 
modem controls 

2/2 configuration, E-38 
4/0 configuration, E-41 

theory of operation, E-2 
$QUEBF routine, 1-14, 1-15 
Queue optimization, 2-6 

Redirect algorithm, 3-2 
Register 

conventions 
at system state, 7-1 

$RE~OC, 7-41 
$RELOP routine, 7-13 
$REQU1 routine, 7-42 
$REQUE routine, 7-42 

Index-7 



INDEX 

RQCNC, 4-59, 4-61 
RQCND, 4-59, 4-61 

S.ST2, 4-52 
S.ST3, 4-51, 4-53 
S.STS, 4-51, 6-12, 7-26 
S.xxx offsets 

in SCB, 4-53 
$SAHPT, 6-9, 6-12 

pointer to first word of task 
header, 6-6 

$SAVSP, 6-8 
pointer to first word of task 

header, 6-6 
SCB, 1-5 

address for KRB, 2-4 
combined with KRB, 4-62 
composite arrangement, 2-15 
contiguous with KRB, 2-2, 4-4 
details, 4-47 
format, 4-52 
KRB addresses for, 4-55 
layout, 4-47, 4-51 
link to fork blocks, 2-4 
overview, 2-4 
parallel operations, 2-4 
pointer 

to currently assigned KRB, 
4-55 

to head of queue for I/O 
requests, 2-4 

SCBDF$, A-3 
SCBDF$ macro, A-70 
Screen time-out, 9-4 
Serial operations 

single controller, 2-10 
Serial unit operation 

data base structures, 2-9 
multiple units per controller, 

2-9 
Service routine, 1-2, 1-5, 1-7, 

1-9, 1-11, 2-15, 4-11, 4-22, 
4-45, 6-1 

See also Executive and 
Executive services 

Service routines, 1-3 
SHDDF$, A-l, A-3 
Stack and register dump 

Executive, 6-9 
Stack depth indicator, 6-6 
Stack structure, 6-10 

Index-8 

data items, 6-12 
internal SST fault, 6-11 

Status Control Block 
See SCB 
see SCB 

Status returns 
PROLOD, 5-9 

$STKDP, 6-6, 6-12 
$STMAP routine, 7-43 
Subsystem, Terminal 

See Terminal Subsystem 
Suggestions 

for using PROLOD, 5-9 
Symbolic offsets, A-l 

usage, 4-2 
System 

data structures 
abort codes, A-3 
macro definitions, A-l 

stack, 6-6, 6-12 
System Account Block, A-3 
System I/O data base 

main thread through, 2-1 
System macro call, 4-6 
System state 

register conventions, 7-1 

Task 
checkpointing, 1-14 
decrementing I/O count, 1-15 
proper state to initiate 

buffered I/O, 1-14 
Task Account Block, A-3 
Task Buffer 

address checking, 7-6 
addressing, 7-5 

Task Builder 
PDP-ll, B-1 

Task Control Block 
See TCB 

Task header 
composite arrangement, 2-13 
pointers, 6-6 

Task organization 
options, B-28 

Task structures 
overlaying, B-1 

TCB, 1-14, 2 -13, 4 -18, 4 -73 
pointers, 6-6 

TCBDF$, A-3 
TCBDF$ macro, A-79 



INDEX 

Terminal Subsystem, 9-1 
Timeout 

entry point, 4-50 
Timeout count, 7-25, 7-26, 7-27 

entry point, 4-73 
initial, 4-50 

Timeout entry point 
overview, 2-7 

TKB, B-1 
$TKTCB 

pointer to current TCB, 6-6 
Tracing fault, 6-9, 6-11, 6-12, 

6-13 
$TSPAR, 7-43 
$TSTBF routine, 1-14, 7-13, 7-44 
TTSYM$ macro, A-73 

U.ST2, 4-41 
U.STS, 4-39, 4-78 
U.xxx offsets 

in UCB, 4-25 
UAB, 4-35 
UBCDF$ macro, A-83 
UCB , 1- 5, 1-14 

association with SCB, 1-7 
details, 4-35 
device-dependent values, 4-37 
device-specific characteristics, 

4-42, 4-44 
fields, 4-35 
format, 4-35 
layout, 4-37 
ordering, 4-4 
overview, 2-4 
pointer 

to associated DCB, 4-37 
to start of this UCB, 4-37 

UCB table, 4-59, 4-60 
UCBDF$, 4-40, 4-47, A-3 
UCBSV, 4-8, 4-9 

usage in macro calls, 4-6 

unit Control Block 
See UCB 
see UCB 

Unit status byte, 4-41 
Unit status change, 4-71 

entry point, 4-7, 4-76 
overview, 2-8 

Unit status extension, 4-41 
US.BSY, 6-12 
User Account Block, A-3 
VCB, 2-17 
vector 

interrupt, 1-1, 1-2 
vector Account Block 

See VCB 
Video 

access to device registers, 9-3 
access to memory, 9-4 
application access to hardware, 

9-1 
EBO, 9-4 
Terminal Subsystem disabling, 

9-2 

Window block 
composite arrangement, 2-16 

XDT, 6-1 
commands, 6-1 
debugging 

driver, 6-1 
general operation, 6-1 

$xxDCB 
global label, 4-3 

$xxLOA entry point, 4-12 
$xxLOA label, 4-12, 4-70 
$xxTBE label, 4-68, 4-70 
$xxTBL label, 4-68, 4-70 
$xxUNL, 4-12 
$xxUNL label, 4-13, 4-70 

Index-9 





1 

READER'S COMMENTS 

Guide to Writing a P/OS I/O Driver 
and Advanced Programmer's Notes 
AD-BT73B-T1 

NOTE: This form is for document comments only. DIGITAL 
will use comments submitted on this form at the com­
pany's discretion. If you require a written reply and 
are eligible to receive one under Software Perfor­
mance Report (SPR) service. submit your comments 
on an SPR form. 

Did you find this manual understandable. usable. and well-organized? 
Please make suggestions for improvement. 

Did you find errors in this manual? If so. specify the error and the page number. 

Please indicate the type of reader that you most nearly represent. 
o Assembly. language programmer 
o Higher-level language programmer 
o Occasional programmer (experienced) 
o User with little programming experience 
o Student programmer 
o Other (please specify) ________________________ _ 

Name _______________________ Date -------------

Organization _________________________________________ _ 
Street _______________________________________ _ 

City ____________________ State _________ Zip Code ________ _ 

or 

Country 



Do Not Tear - Fold Here and Tape 

Do Not Tear - Fold Here 

IIIII 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO.33 MAYNARD MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE 

DIGITAL EQUIPMENT CORPORATION 
CORPORATE USER PUBLICATIONS 
ML05-5/E45 
146 MAIN STREET 
MAYNARD, MA 01754-2571 

- - - - -I 

I 
NO POSTAGE 
NECESSARY 

IF MAILED 
IN THE 

UNITED STATES 




