

THE ART
OF DIGITAL
DESIGN
An Introduction
to Top-Down Design
SECOND EDITION

Franklin P. Prosser
David E. Winkel

Indiana University

Prentice-Hall, Inc., Englewood Cliffs, New Jersey 07632

Library of Congress Cataioging-in-Publication Data

WINKEL, DAVID E. (date)
The art of digital design.

Order of authors' names reversed on previous ed.
Includes bibliographies and index.
I. Electronic digital computers-Design and

construction. 2. Minicomputers-Design and construction
I. Prosser, Franklin P. II. Title.
TK788.3.W56 1986 004.2'1 86-5042
ISBN 0-13-046780-4

Editorial/production supervision and
interior design: Diana Drew

Cover design: 20/20 Services
Manufacturing buyer: Gordon Osbourne

© 1987 by Prentice-Hall, Inc.
A Division of Simon & Schuster
Englewood Cliffs, New Jersey 07632

All rights reserved. No part of this book
may be reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America

109876543

ISBN 0-13-046780-4 025

PRENTICE-HALL INTERNATIONAL (UK) LIMITED, London

PRENTICE-HALL OF AUSTRALIA PTY. LIMITED, Sydney
PRENTICE-HALL CANADA INC., Toronto

PRENTICE-HALL HISPANOAMERICANA, S.A., Mexico
PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi
PRENTICE-HALL OF JAPAN, INC., Tokyo

PRENTICE-HALL OF SOUTHEAST ASIA PTE. LTD., Singapore
EDITORA PRENTICE-HALL DO BRASIL, LTDA., Rio de Janeiro

Contents

PREFACE TO THE SECOND EDITION

Part I Tools for Digital Design

11 DESCRIBING LOGIC EQUATIONS

The Need for Abstraction, Formalism, and Style,
Style, 1
Abstraction, 2
Formalism, 3

Logic in Digital Design, 3
Logical Constants, 4
Logical Variables, 4
Truth Tables, 5
Logical Operators and Truth Tables, 6

Elements of Boolean Algebra, 9
Basic Manipulations, 9
Equations from Truth Tables, 11
Truth Tables from Equations, 15
Condensing Truth Tables, 17
Don't-Care Outputs in Truth Tables, 18

Kamaugh Maps, 19
Building K-maps, 21
Simplifying with K-maps, 22
K-map Simplification Blunders, 24
Other Ways of Reading K-maps, 25

xiii

1

iii

Conclusion, 26
Readings and Sources, 26
Exercises, 27

~ REALIZING LOGIC IN HARDWARE

Representing TRUE and FALSE with Physical Devices, 33
Mixed Logic: Representing AND, OR, and NOT, 35

Mixed Logic, 36
Mixed-Logic Th'!ory, 42

Building and Readin~ \fixed-Logic Circuits, 49
Analyzing Mixe. Logic Circuits, 49
Synthesizing Mixed-Logic Circuits, 50
Other Mixed-Logic Notations, 55

The Positive-Logic Convention, 55
Reading Positive-Logic Circuit Diagrams, 58

Mixed Logic for Other Logic Functions, 61
EXCLUSIVE OR and COINCIDENCE, 61
Open-Collector Gates, 63
Implementing the Less-Used Logic Functions, 66

Readings and Sources, 68
Exercises, 69

BUILDING BLOCKS FOR DIGITAL DESIGN

Integrated Circuit Complexity, 76
Combinational Building Blocks, 76

Combinational and Sequential Circuits, 76
The Multiplexer, 77
The Demultiplexer, 80
The Decoder, 83
The Encoder, 86
The Comparator, 87
A Universal Logic Circuit, 90
Binary Addition, 92
The Arithmetic Logic Unit, 94
Speeding Up the Addition, 95

Data Movement, 99
The Bus, 100

Readings and Sources, 104
Exercises, 105

41 BUILDING BLOCKS WITH MEMORY

The Time Element, 108
Hazards, J08
Circuits with Feedback, 111

iv

33

75

108

Contents

Sequential Circuits, 112
Unclocked Sequential Circuits, 112
Clocked Sequential Circuits, 118

Clocked Building Blocks, 120
The JK Flip-Flop, 120
The D Flip-Flop, 120

Register Building Blocks, 126
Data Storage, 126
Counters, 126
Shift Registers, 131
Three-State Outputs, 133
Bit Slices, 133

Large Memory Arrays, 134
Random Access Memory, 135
Read-Only Memory, 139
Field-Programmable Read-Only Memories, 142

Programmable Logic, 143
The PLA, 144
The PROM as a Programmable Logic Device, 145
The PAL, 147
PAL, PLA, and PLE Programming, 150

Timing Devices, 152
The Single Shot, 152
The Delay Line, 153

The Metastability Problem, 154
Conclusion, 155
Readings and Sources, 156
Exercises, 157

Part II The Art of Digital Design

~ DESIGN METHODS

Elements of Design Style, 166
Top-Down Design, 166
Separation of Controller and Architecture, 166
Refining the Architecture and Control Algorithm, 168

Algorithmic State Machines, 170
States and Clocks, 171
ASM Chart Notations, 172

Realizing Algorithmic State Machines, 176
Traditional Synthesis from an ASM Chart, 176
The Multiplexer Controller Method of ASM Synthesis, 178
The One-Hot Method of ASM Synthesis, 183
The ROM-Based Method of ASM Synthesis, 186

Design Pitfalls, 188
Clock Skew, 188

165

Contents v

Asynchronous Inputs and Races, 190
Asynchronous ASMs, 190
Sidestepping the Pitfalls, 193
Debugging Synchronous Systems, 193

Conclusion, 194
Summary of Design Guidelines, 195

Readings and Sources, 195
Exercises, 196

(ffi PRACTICING DESIGN

Design Example 1: Single Pulser, 203
Algorithmic Solution of the Single Pulser, 204
A Combined Architecture-Algorithm Solution, 206
A Single-Pulser Building Block, 207
Generalizing the Single Pulser, 207

Design Example 2: A System Clock, 208
Statement of the Problem, 208
Digesting the Problem, 209
Algorithm for the System Clock, 209
Implementing the Circuit, 210
Critique, 211

Design Example 3: A Serial Bit Clock, 212
Approaching the Problem, 212
The Initial Architecture, 213
The Control Algorithm, 213
Implementing the ASM, 215

Design Example 4: Serial-Parallel Data Conversions, 217
Specifying the Problem, 218
Building the P ~ S Converter, 219
Building the S ~ P Converter, 221
Critique, 224

Design Example 5: Traffic Light Controller, 224
Statement of the Problem, 224
Preliminary Considerations, 225
The Control Algorithm, 225
Realizing the ASM, 226
Choosing a Particular Traffic Signal, 229

Design Example 6: Simple Combination Lock, 229
Stating the Problem, 230
Digesting the Problem, 230
Developing the Algorithm, 231
An Elegant Combination Lock ASM, 231
Architecture, 235
Implementing the Control, 236

Design Example \ The Black Jack Dealer, 237
The Rules of Play for the Dealer, 238
Stating the Problem, 239

vi

203

Contents

Digesting the Problem, 239
Initial ASM for the Black Jack Dealer, 241
Reducing the Number of States, 241
Errors in the Algorithm, 244
Races, Again, 244
Process Synchronization, 246
The Single-Pulser Revisited, 247
The Final ASM for the Black Jack Dealer, 247
The Final Architecture of the Black Jack Dealer, 249
Implementing the Control Algorithm, 250
Summing Up, 253

Readings and Sources, 253
Exercises, 254

Y DESIGNING A MINICOMPUTER

PDP-8I Specifications, 261
PDP-8 Memory Addressing, 262
PDP-81 Instructions, 266

Architecture of the LD20, 272
Principal Elements of the Architecture, 272
Data Paths, 274

Preliminary Sketch of the LD20's Control, 279
Fetch and Execute, 281
Investigating the Fetch Phase, 281

Developing an ASM Chart for the LD20, 286
Conventions, 286
Memory Control, 287
State FI, 291
State F2, 293
State F3, 294
State F4, 296
State FS, 297
State F6, 297
State F7, 297
State IDLE, 298
Execute-Phase Processing, 300
State EO: The Single-Instruction Switch, 300
State EO: Detection of Manual Operation, 302
Execute Phase: Manual Commands, 303
Execute Phase: Memory-Accessing Instructions, 304
Execute Phase: The lOT Instruction, 304
State EO: Operate Microinstructions, 309

Conclusion, 315
Readings and Sources, 319
Exercises, 319

260

Contents vii

(0)00
lQ) BUILDING THE MINICOMPUTER

Preliminaries, 324
Auxiliary Variables, 324
Labels for ASM Chart Location, 326

The Data-Routing System, 327
Inputs to the Data Multiplexer, 327
The Select Signals of the Data Multiplexer, 329
ALU Operations, 329
Register-Load Signals, 331
Architecture and Control of the Link Bit, 333

State Sequencing System, 334
The State Generator, 334

Special Systems, 337
Priority Control in the Operate Instruction, 337
The lOP Signal Enabler, 339
Control of the Interrupt System, 340
The Manual System, 341
Logic Equations, 341

The Memory System, 342
Memory Access to the LD20, 342
The Memory Unit, 342

Finished!, 347
Readings and Sources, 347
Exercises, 348

INTERFACING TO THE MINICOMPUTER

Terminal Communications, 352
The PDP-8's Input-Output Protocol, 353

From Terminal to PDP-8 (DA03), 354
From PDP-8 to Terminal (DA04), 354

Requirements of the LD20-Terminal Interface, 355
Interface Flags and Interrupts, 355
The Receive Section (DA03), 355
The Transmit Section (DA04), 356

Preliminary Architecture of the Interface, 356
The UART, 357
Incorporating the UART into the Design, 358

The Interface Control Algorithm, 358
Clocking Events in the Interface, 358
Synchronizing Signals to the LD20 and the UART, 360
Algorithm for the Receive Circuit, 360
Circuit Algorithm for the Transmit, 362
Interrupt Generation, 364

Implementing the Terminal Interface, 364
Polishing the LD20's Input-Output Processes, 366

viii

Maintaining the LD20's Control of the Status Inputs, 366
Attaching Several Devices, 367

324

352

Contents

A Final Word about Part II, 368
Readings and Sources, 368
Exercises, 369

Part III Bridging the Hardware-Software Gap

'Il® MICROPROGRAMMED DESIGN

Classical Microprogramming, 372
Classical Microprogramming with Modem Technology, 375

Microprogramming with Multiple Qualifiers per State, 376
One Qualifier per State, 379
Single-Qualifier, Single-Address Microcode, 382
Comparison of the Microprogramming Approaches, 385

Moving toward Programming, 385
Cleaning Up the Outputs, 387
Enhancing the Control Unit, 388
The 2910 Microprogram Sequencer, 390
Choosing a Microprogram Memory, 393

The Logic Engine-A Development System for Microprogramming, 393
The Base Unit, 396
The Backpanel, 397
The Supporting Software, 397

Designing and Debugging with the Logic Engine, 398
The Initial Design, 399
The Initial Testing of the Architecture, 401
Developing the Control Program, 401
Testing the System, 405

Designing a Microprogrammed Minicomputer, 406
Developing a Microprogram, 406
The Architecture of the LD30, 406
A First Approximation of the Command Bits, 407
Writing the High-Level Microcode, 408
The Idle Phase of the LD30, 409
The Manual Phase of the LD30, 411
The Fetch Phase of the LD30, 412
The Execute Phase of the LD30, 413
Interrupt Processing in the LD30, 416
Instruction Decoding in the LD30, 417
Declarations for the LD30 Control Microprogram, 419
Our Design of the LD30 is Complete, 423

Summing Up, 423
Readings and Sources, 425
Exercises, 426

371

1111 MICROCOMPUTERS IN DIGITAL DESIGN

The Computer as a Device Controller, 431
Enter the Microcomputer, 432

The Microcomputer in Digital Design, 432
Data Flow in a Microcomputer, 434

Memory-Mapped Input-Output, 435
Separate Input-Output, 435
Hardware for the Bus Interface, 436
Bus Protocols, 437

Microcomputer Input-Output, 438
Programmed Input-Output, 438
Programmed Input-Output with Interrupts, 440

Design Example 1: A Wire-Wrap Controller-Pure Software Control, 442
The Architecture, 443
Specifications for the Controller, 443
The Control Algorithm, 445
Wrapping Up, 449

430

Design Example 2: A Terminal Multiplexer-Hybrid Hardware-Software Control, 449
Specifications, 451
The Structure of the Terminal Multiplexer, 452
The Control Algorithm for the Microcomputer, 455
Checking Out the System, 458
Alternative Approaches, 460

Conclusion, 461
Readings and Sources, 462
Exercises, 462

Part IV Digital Technology

ll~ MEETING THE REAL WORLD

On Transistors and Gates, 465
The Flow of Electrical Charge, 466
Metallic Conduction, 466
Insulators, 466
Semiconductors, 466
Diodes, 467
Bipolar Transistors, 467
MOS Transistors, 469
Gates from Transistors, 471

Bipolar Logic Families, 472

x

RTL: Resistor-Transistor Logic, 472
TTL: Transistor-Transistor Logic, 473
ECL: Emitter-Coupled Logic, 474

465

Contents

Unipolar Logic Families, 475
p-MOS and n-MOS Logic, 476
CMOS: Complementary MOS Logic, 476

Three-State and Open-Collector Outputs, 477
Open-Collector Outputs, 477
Three-State Outputs, 479

Integrated Circuit Data Sheets, 480
Electrical Data, 481

Performance Parameters of Integrated Circuit Families, 483
Input and Output Loadings, 483
Noise Margins, 485

Unused Gate Inputs, 485
The Schmitt Trigger, 486
A Power-On Reset Circuit, 488
Oscillators, 488

The Schmitt Trigger Oscillator, 488
The 555 Oscillator, 489
Crystal-Controlled Oscillators, 490
The System Clock, 490

Switch Debouncing, 491
Lamp Drivers, 492
Driving Inductive Loads, 493

Protecting Switches with Diodes, 494
Solid-State Relays, 494

The Optical Coupler, 494
Power Supplies, 495

Remote Sensing, 496
Integrated-Circuit Voltage Regulators, 496

Power Distribution, 497
Losses in Power Distribution Systems, 497
Combatting Inductance in Power Distribution Systems, 498
Bypassing the Power Supply, 499

Noise, 500
Crosstalk, 501
Reflections, 502
Line Drivers and Line Receivers, 504
Summary, 505

Metastability in Sequential Circuits, 505
What should you do?, 511

A Selection of Integrated Circuits, 512
Readings and Sources, 515

INDEX 517

Preface
to the Second Edition

This book is an introduction to the art of designing hardware for digital circuits.
The design of computer hardware, once the exclusive province of the electrical
engineer, is now of vital interest to the computer scientist, and techniques for
the systematic solution of complex problems-the computer scientist's specialty­
are of increasing importance to the electrical engineer.

Traditional approaches to design, which evolved prior to the integrated
circuit, place great emphasis on the devices themselves. In earlier times, this
was natural, since the devices were so expensive that the cost of the hardware
controlled the design. This led to the development of many complex methods
of logic minimization, state assignment, handling asynchronous circuits, and so
on, that are now little used because of the smaller cost and greater power and
flexibility of digital components. The complexity of traditional design methods
can actually interfere with the designer's ability to create a straightforward,
understandable, and correct design.

When we first studied digital design, we consulted traditional textbooks
and practiced traditional design methods, but we found that these methods did
not really help us much to solve complex digital hardware problems. A vast
body of vital knowledge of design was missing from the books, and there was
a great lack of systematic methodology for dealing with a digital problem as a
system. Eventually, we realized that the traditional emphasis was misplaced.
The difficult part of digital design is not choosing or assembling the hardware,
but rather is understanding the problem and developing a systematic solution
for the system's architecture and its control. For this book, we have looked

xiii

closely at each design technique and have been ruthless in eliminating methods
that do not contribute substantially to the goal of clear and correct design.

Here is our thesis. We must approach hardware design from the top,
remaining aloof from the actual components as long as we can. We must understand
the problem thoroughly and must let its requirements guide us to suitable hardware"
rather than allow premature selections of hardware to force us to make inappropriate
design decisions.

With the realization that the human cost of designing and maintaining a
digital system far exceeds the cost of the materials, digital designers are developing
a new approach to design. This new approach, which this book exploits, means
that our tools must significantly assist us to understand, solve, and document
complex hardware and software problems-if necessary, at the cost of additional
hardware. The designer's mind must be uncluttered by unnecessary detail. To
one experienced in computer programming, this has a familiar sound. Methods
of designing software have improved drastically. Software writers accept as
valid and powerful such concepts as structured programming and top-down design.
This book is a contribution, in the same spirit, to the field of digital hardware
design.

COURSE LEVEL

This book is for self-study and for classroom use. It should benefit the student
or the professional unsophisticated about digital hardware, yet it provides an
opportunity for old hands to come to grips with some newer trends in basic
design. For background, we assume that the reader has an elementary knowledge
of computer problem solving in a high-level language and some elementary exposure
to the structure of computers and the use of assembly language. The student
should be familiar with such number systems as binary, octal, and hexadecimal,
and with number representations, particularly two's-complement. We assume
no prior knowledge of electronics or hardware other than Ohm's law and simple
formulas for series and parallel resistances.

In a college curriculum, this book is suitable for a first course in digital
design. The course may be at the middle or upper undergraduate level in electrical
engineering or computer science. The text is a modernization of the traditional
first course in digital design, emphasizing the solution of design problems rather
than the study of hardware. Students of computer science should feel at home
with the structured methods and will be delighted to find that they can understand
and design complex hardware. Electrical engineering students will gain insight
into modern, systematic design principles and will develop an understanding of
the computer scientist's emphasis on structure.

PLAN OF THE BOOK

This book first provides a foundation for digital design, emphasizing basic hard­
wired design. It then introduces microprogramming and microprocessor-based

xiv Preface

design and prepares the student for further study of these topics. Throughout,
we apply the principles of top-down design.

This book has four parts. Three of the parts form a sequence leading
systematically from the fundamentals of logic through digital design with micro­
computers, with an emphasis on solving digital problems using hardwired structures
of the complexity of medium- and large-scale integration (MSI and LSI). The
ordering of the topics is from primitive to complex, the natural way. The fourth
part is a collection of information on digital technology that the student may
read whenever appropriate. Part IV does not depend on the previous parts of
the book.

In Part I, we develop the tools of digital design. In these four chapters,
we present the theory and formalism required for systematic digital design. In
Chapter 1 we cover the theory of logical expressions-Boolean algebra, truth
tables, and useful techniques of simplification. In Chapter 2 we present the
realization of logic in hardware, using small-scale integration circuits. In this
chapter the crucial distinction between voltage and logic is introduced and the
mixed-logic method of drafting physical circuits from logic expressions is developed.
In Chapter 3, we develop a collection of basic design tools: useful combinational
building blocks such as the multiplexer, decoder, and the arithmetic logic unit.
The treatment emphasizes the systematic uses of the building blocks. In Chapter
4 we introduce the theory of circuits with memory-the sequential circuits.
After establishing the theory and use of basic sequential elements such as flip­
flops, we describe standard sequential building blocks such as registers, bit­
slices, random-access and read-only memories, and programmable logic. In
Chapter 4, the student is introduced to the real-world pitfalls awaiting the unwary
designer; these topics are elaborated in Chapter 12.

Part II is an exploration of the art of digital design at the hard wired MSI
and LSI levels. The theme of these five chapters is that a designer must understand
the problem before becoming committed to specific chips and wires-top-down
design. In Chapter 5 we introduce the structure of the solution to a digital
hardware problem: the architecture and the control. We present the ASM method
of expressing control algorithms. Chapter 6 consists of a series of digital design
examples that illustrate the systematic solutions of common design problems at
the MSI level. In Chapter 7, we execute a large-scale design-a complete
minicomputer-using top-down style-and in Chapter 8 we translate that design
into hardware, using the principle of deferring the decisions about hardware.
Chapter 9 is an introduction to asynchronous design through the design of a
terminal interface for the minicomputer.

Part III is a bridge between hardware and software. Here we consider the
control of hardware using microprogramming and microprocessors. In Chapter
10 we discuss microprogramming and its impact on computer design. As an
illustration, we develop a microprogrammed version of the minicomputer designed
in Part II. Chapter 11 is an introduction to the use of conventional microprocessors
and microcomputers in digital control.

In its single chapter, Part IV contains material on digital technology. The
topics in Chapter 12 are independent of the previous material; students may

Preface xv

explore these topics whenever they need the information. Representative topics
are transistor technology, reading integrated-circuit data sheets, handling pull­
up resistors, clocks, power systems and power distribution, noise problems, line
driving, and metastability.

SUGGESTIONS FOR COURSE CONTENT

This book provides abundant material for a one-semester or two-quarter course
at the undergraduate level, and adequate material for a year's study. Unless the
student will study microprogramming in a subsequent course, we feel that Chapter
10 should be included. In a compressed schedule, an instructor might use Chapters
1-5, several of the Design Examples in Chapter 6, Chapters 7 and 8 (possibly
excluding the treatment of the OPERATE instruction), and Chapter 10.

Chapter 12 (Part IV) is a buffer in that the instructor can adjust the degree
of coverage of hardware technology without disturbing the main theme of the
course.

LABORATORY

Laboratory experience is a vital part of any study of digital design. In our
courses, taught for over a decade at Indiana University, the students construct,
study, debug, and extend the complete minicomputer designed in Chapters 7,
8, and 9. This is a major project, occupying about a semester of laboratory
work. The students experience a great sense of achievement when their mini­
computer-a fully operational PDP-8 built with MSI technology-actually runs
sophisticated PDP-8 software.

We have found that lengthy experiments with individual gates, flip-flops,
and registers are unnecessary; the laboratory time is better spent working on
the design and construction of more complex systems. Students master individual
components in a natural way while studying the structure of larger systems. In
any event, we encourage instructors to provide a digital laboratory to accompany
the course for, after all, no design works until it is built, and executing designs
on paper is only a part of the art of digital design.

With the installation in 1984 of our Logic Engine Development Systems as
the basis for supporting the laboratory work, our students have been able to
build a microprogrammed version of the large minicomputer lab project. They
are able to compare firsthand and in detail the characteristics of hard wired
control and microprogrammed control. Such lab experience is impossible without
sophisticated microprogramming support. A laboratory manual for the mini­
computer project, including both hard wired and microprogrammed versions of
the control, is available from Franklin Prosser.

xvi Preface

THE SECOND EDITION

In the time since our first edition appeared, we have observed increased acceptance
of the principles of structured design. ASM charts now appear in many textbooks.
Mixed logic, although not yet as extensively used as ASMs, has gained a proper
central place in several new texts and manufacturers' handbooks.

For our second edition, we have extensively revised many sections while
retaining the first edition's basic format. We feel that the following enhancements
are of particular importance:

In Chapter 2, the theory of mixed logic is formalized and extended, and
the treatment of positive logic is enlarged.
In Chapter 3, digital arithmetic is given more thorough treatment.
In Chapter 4, read-only memory and programmable logic are substantially
emphasized, and the problem of metastability is addressed.
In Chapter 5, ROM-based controller synthesis, omitted in the first edition,
is given its proper treatment.
Chapter 10 has been rewritten, and examples of top-down microprogramming
based on our Logic Engine microassembly language LEASMB are included.
A microprogrammed version of the minicomputer project of Chapters 7, 8,
and 9 is fully expounded, and serves as an important vehicle to display
top-down microprogramming techniques.
Chapter 12 contains new treatments of transistor electronics and bipolar
and unipolar logic families, and several additional topics. Metastability,
widely recognized in the design community at last, is thoroughly discussed,
and guidelines for dealing with the problem are presented.
In all chapters, exercises have been revised and new exercises added. Each
chapter ends with suggested additional readings and sources.

Franklin Prosser
David Winkel

Preface xvii

Describing Logic
Equations

Before you begin this journey into digital design, it is important that you understand
the philosophy that will guide your study. If you have not read the Preface, do
so now before you go on. There we discuss the issues that give rise to the need
for good style and structure in digital design. Also, the Preface contains an
outline of the book, which will give you a view of where you are heading and
how you will get there. It is particularly important that you understand our
approach to the details of digital hardware. The overriding emphasis is to let
the problem solution dictate the hardware, rather than allowing premature com­
mitments to hardware to coerce the solution. This conscious suppression of
hardware detail during most ,of the design pays big dividends. Chips and wires
and power supplies are still important-they are vital to success, and you will
need a good background in many areas of digital technology in order to become
an accomplished designer-but too often in digital design the hardware has
dominated the solution to the problem. To head off this common malady, we
have deferred to the end of the book almost all of the technology needed for
your introduction to digital design. This information, in Part IV, does not depend
on the material in Parts I through III. Read the topics in Part IV as you require
or desire them while you are progressing through the first three parts of the text.

THE NEED FOR ABSTRACTION, FORMALISM, AND STYLE

Style

The human mind needs help when it tackles complex tasks. As we use the term,
style is a method of partitioning a large problem into manageable subunits in a

1

systematic and understandable way. The need for good style is more apparent
as problems become larger. The most complex projects ever attempted by human
beings have been computer programs; some, exceeding 500,000 lines of code,
are so large that no one person is able to encompass the entire program, or even
a significant part of it. The study of programming style was forced upon practitioners
of the art as a way of gaining control over their projects. Programming style
has blossomed into a rather well-defined set of techniques, bearing such names
as "top-down" and "structured." The hardware of a large computer involves
complexity on the same scale as these giant computer programs. The study of
style in digital system design is not as well developed as its programming counterpart
but is nonetheless essential to success. In this book, we emphasize style.

Here are some rules of good style in digital design:

(a) Design from the top down. The design starts with the specification of the
complete system in a form compact enough that one person can readily
comprehend it. The design proceeds by sectioning the digital system into
subunits such as memory, arithmetic elements, and control, with well­
defined interrelationships. You may then describe each unit in more detail
and still retain the ability to comprehend both the whole structure and the
details of the units. This process continues until you have completely
specified the system in detail, at which time construction may begin.

(b) Use only foolproof techniques that will keep you on the narrow path of
safety in the design process. Digital hardware allows a high degree of
flexibility in design-so much flexibility that designers can bury themselves
in clever and unusual circuits. Uncontrolled use of such flexibility promotes
undisciplined, unintelligible, and incorrect design of products. This phe­
nomenon has its counterpart (to a less severe degree) in computer software
because assembly language programming offers access to the full power of
a digital computer. Experience in the solution of hardware and software
problems has shown that we must restrict our design tools and techniques
to those that can be shown to work reliably and understandably under a
variety of circumstances.

(c) Use documentation techniques, at both the system level and the detailed
circuit level, that clearly portray what you, the designer, were thinking
when you reduced your problem first to an abstract solution and then to
hardware. This often-violated precept boils down to common courtesy.
Put yourself in the position of a user or a maintainer of your hardware
design; in such a position you would be grateful for clear, complete
documentation.

Abstraction

In our context, abstraction means dealing with digital design at the conceptual
level. The concept of a memory, a central theme in every computer, is an
abstraction. When starting a design we need to deal with conceptual elements
and their interrelationships: it is only later in the design process that we need

2 Tools for Digital Design Part I

to worry about the realization of the concepts in hardware. This freedom from
concern about the details of various hardware devices is absolutely essential if
we are to get a good start on a new design of any complexity. Start at the top
and begin reducing the problem to its natural conceptual elements. For example,
a computer will need a memory, an input-output system, an arithmetic unit,
and so on. We ordinarily begin a design at this highly abstract level, and carry
the conceptual process down, level by level. Thus, at the next level we draw
a block diagram of an arithmetic unit by interconnecting functional units such
as registers, control units, and data paths. The initial abstraction is a critical
part of any design, since bad early planning will inevitably lead to bad imple­
mentations. There is no way to rescue a bad design with clever tricks of Boolean
algebra or exotic integrated circuits.

Formalism

Formalism is the theory of the behavior of a system. In a digital design, formalisms
help us to establish systematic rules and procedures with known characteristics.
Formalisms are important at all levels of design. In the traditional study of digital
systems, one of the principal formalisms is Boolean algebra, the theory of binary
logic, named after George Boole, who studied it long before the advent of digital
computers. Boolean algebra is an essential tool for describing and simplifying
the detailed logical processes at the root of digital design. Powerful and well
developed as Boolean algebra is, it nevertheless becomes of less benefit as our
level of abstraction increases. For instance, at the top ("systems") level of
abstraction, where we are thinking in terms of the movement, storage, and
manipUlation of data, Boolean algebra is of little use. As we move closer to the
detailed implementation-as our design becomes less abstract and more concrete­
Boolean algebra begins to be a useful tool.

At the systems level, the formalisms are less well developed, appearing as
structures and rules rather than mathematical constructs. High-level formalisms
are nevertheless of great importance to good design, for only by adopting systematic
methods at all levels can we hope to transform correct concepts reliably into
correct hardware.

LOGIC IN DIGITAL DESIGN

Imagine trying to speak without the words and, or, and not. Discarding these
little words would severely handicap our ability to express complex thoughts.
Although and, or, and not each have several meanings in English, the most
profound uses describe logical combinations of thoughts: "I have money for gas
and my car is running"; "There is a paper jam or the printer is out of paper";
"She will not fail." Our thought processes are molded by our language, and
when we design digital systems we will use and, or, and not in the same sense
as above. In this book, we denote the specific logical uses of and, or, and not
by the symbols AND, OR, and NOT.

Chap. 1 Describing Logic Equations 3

It is nearly always useful to formalize heavily used concepts; by so doing
we achieve compactness and are able to handle more complexity than if we
wrestle with informal concepts such as the normal English language uses of and,
or, and not. To pave the way for a Boolean algebraic treatment of digital logic,
we will formalize the concepts of logical constants, variables, and operators.

Logical Constants

The statement "There is a photodiode error" is either true or false. The operators
AND, OR, and NOT are likewise concerned with two logical values, true and
false.

We will concern ourselves only with logic systems that can be formalized
with a binary set of logical constants, TRUE and FALSE. Since we use these
concepts so heavily, it is worthwhile seeking abbreviations. We will represent
TRUE by T or 1, and FALSE by F or O. In this context 1 and 0 are not decimal
numerical values; they are abbreviations for TRUE and FALSE, and nothing
more. We will use 1 and T, 0 and F interchangeably in the text. Each abbreviation
has its value, and both are widely used in digital design. In the study of hardware
implementation of logic in Chapter 2, we will show a strong bias toward the
T ,F notation, to avoid a common point of confusion. On the other hand, in
much of this chapter the 1,0 form for TRUE and FALSE is convenient. Be
prepared to accept and use either form.

Logical Variables

Consider the declaration

A = photodiode error

We use the logical variable A as an abbreviation for the cumbersome phrase
"photodiode error" to achieve compactness. The variable A can have two
values, T or F. If we do not have a photodiode error, then A = F; if we do,
then A = T. Although it is possible to use single letters to represent logical
elements, as we have above, it is usually better to use a more recognizable
abbreviation, such as

PDE = photodiode error

In general, the abbreviations should be a compromise between clarity
and brevity. It is not really necessary to abbreviate at all. We could use
PHOTODIODE.ERROR as the name of the logical variable, but it is too long
to be convenient. A is short but conveys no meaning; PDE is a good compromise.
We often use numbers in logical variables to indicate a particular member of a
set of variables. A common unit of computer information is the 8-bit byte. If
we needed to examine the individual bits of the byte, we might choose to assign
distinct names to the bit values:

4 Tools for Digital Design Part I

BO = 1 in leftmost bit

B7 = 1 in rightmost bit

Other notations for sets of variables will suggest themselves. Instead of the
distinct names for bits in the byte, we might choose to use a sUbscripted variable
Bo ... B7 , with equivalent meanings.

In this book we will capitalize the letters in the names of logical variables
and will always start each name with a letter. To preserve the mnemonic value,
names of variables may include periods as separators; GO.ON is an example.

Truth Tables

Consider a set of logical variables, each variable of which may have one of two
values, Tor F. In digital design we are interested in combining logical variables
(e.g., using AND, OR, and NOT) to produce new variables that again have only
two possible values, T or F, for any combination of given variable values. In
other words, we wish to study binary functions of binary variables.

For a set of logical variables, we may define any desired function by giving
the function value for each possible set of variable values. A tabular form with
input variables on the left and the function on the right is useful for this display.
For example, here is a logical function X of three variables A, B, and C, shown
in both the 1,0 and the T ,F notations.

A C B X A C B X

0 0 0 0 F F F F
0 0 1 1 F F T T
0 0 1 F T F T
0 1 0 F T T F

0 0 1 T F F T
0 1 0 T F T F

0 0 T T F F
1 0 T T T F

Such a display is called a truth table. Having chosen an ordering of the
input variables (A, C, B in this case), we list all possible combinations of the
variables' values, in binary numeric order. A tabulation in this standard form
is called a canonical truth table. "Canonical" means standard. For three variables,
the canonical truth table has 23 = 8 rows, arranged from binary 000 through
binary 111. Since each binary bit pattern corresponds to a decimal number, we
may describe a row of a canonical truth table by its decimal number equivalent.
For example, the row corresponding to the variable values 0110 for a four-variable

Chap. 1 Describing Logic Equations 5

function may be called row 6. When convenient, you may write the row numbers
on the left of the canonical truth table.

For canonical truth tables, we may compactly describe the function by a
vector of function values. For example, the three-variable truth table for X
above yields an eight-element vector

X(A,C,B) = (0,1,1,0,1,0,0,0)

Although we usually choose to list the values of variables in canonical
order, any other order of rows displays the same information. The following
two truth tables are equivalent, but the right-hand table lacks the useful uniformity
of the canonical form on the left:

Row number D E Y Row number D E Y

0 0 0 0 2 1 0 1
1 0 1 0 0 0 0 0
2 1 0 1 1 0 0
3 0 3 1 0

Logical Operators and Truth Tables

We will now give a precise definition of the three logical operators AND, OR,
and NOT.

NOT. We represent logical NOT by the overscore. Thus, if PDE is a
logical variable, then

NOT PDE = PDE

In words, we would describe the notation PDE as "PDE not." We may define
NOT by listing in a truth table all possible values for an arbitrary logical variable,
and the corresponding values of the logical NOT of that variable. Since a logical
variable A can have only two values, 1 and 0, the following list is exhaustive:

iliA

o 1
1 0

We regard the formal definition of logical NOT to be given by its truth
table. Remember that 1 and ° represent TRUE and FALSE.

AND. We represent logical AND by a dot separating two logical variables­
we write BAND C as B·C. We shall faithfully use the "." symbol to represent

6 Tools for Digital Design Part I

the AND operator even though some authors omit it when dealing with single­
letter logical variables. Thus, if you insist upon single-letter names, you might
interpret BC as B·C. This is dangerous because we may want to name a single
logical variable with the two-letter name BC. In real-world logic design, single­
letter names are not descriptive enough to be of use. There are only 26 possible
single-letter names and a typical design may require many more than 26 names.
We therefore give up the dubious advantage of having an implied AND for the
real advantage of multiletter names for logical variables.

We will define AND with a truth table. There are two independent variables
in the logical AND, each of which can assume either of the two values, 1 and
O. Therefore, specifying the function value for each of the four combinations
of inputs completely defines AND:

B

o
o

C

o
1
o

B·C

o
o
o
1

The table corresponds to our intuitive notion of AND in that B·C is true only
if both Band C are simultaneously true.

Just as we may generalize the English use of and to encompass more than
two variables, we can do so for the formal logical AND. The truth table for
A·B·C is

A B C A·B·C

0 0 0 0
0 0 1 0
0 0 0
0 1 0
1 0 0 0
1 0 1 0

1 0 0

For more than three variables, the truth table becomes unwieldy, and we
revert to a verbal definition of the logical AND:

The logical AND of several variables is true only when all the variables
are simultaneously true.

OR. The symbol for logical OR is the + sign. Do not confuse this with
the use of + in other contexts to represent arithmetic addition. Since in logic

Chap. 1 Describing Logic Equations 7

design the uses of logical OR will vastly outnumber the uses of an arithmetic
plus, we choose a convenient single symbol for the OR operator and we use the
more cumbersome word "plus" or the symbol "(+)" for an arithmetic plus.
Here are two word statements translated into their corresponding logic design
notations

A is true if B OR C is true

2 added to 3 is 5

A = B+C

5 = 2 plus 3, or 5 = 2 (+) 3

The defining truth table for a two-input logical OR is

B

o
o
1

c

o
I
o

B+C

o
I
1
1

As with the AND operator, we may generalize the definition of the logical OR
to more than two input variables. In words, the output is true if at least one of
the inputs is true. For instance,

AY PDE X AY + PDE + X

0 0 0 0
0 0 I 1
0 I 0
0 I I

0 0
0 I
I 0

I

This completes our definition of AND, OR, and NOT. These logical operators
operate on input variables to yield a single output. The NOT operates only on
single variables, while AND and OR fundamentally operate on two inputs. For
our convenience we may also think of AND and OR as multi-input operators.
Truth tables are useful in many designs, but we need a more compact and
powerful tool for representing logical manipulations. An algebra oflogical operators,
called Boolean algebra in honor of George Boole, who first explored the properties
of the logical operators, is analogous to the familiar algebra of arithmetic operators.
In the next section, we present some simple but important Boolean algebraic
results.

8 Tools for Digital Design Part I

ELEMENTS OF BOOLEAN ALGEBRA

Basic Manipulations

Boolean algebra is important to hardware designers because it allows the compact
specification and simplification of logic formulas. Physical devices can perform
the AND and OR functions, and it is this fact that raises Boolean algebra from
the realm of interesting theory to the role of a vital design tool. The algebra
may be developed from any of several starting points. Modern mathematicians
derive Boolean algebra from a compact set of abstract postulates, producing an
elegant and rigorous theory; however, in building a useful tool to assist structured
digital design, we best achieve our goals by emphasizing the relationship of truth
tables to logic equations. Truth tables and allied tabular displays play an important
role in digital design and implementation. Therefore, we will assume as our
starting point the existence of the two binary values TRUE (T or 1) and FALSE
(F or 0), and the three operators AND, OR, and NOT, with behavior described
by their truth tables.

Boolean algebraic formulas follow certain conventions. Our intuition tells
us that we want the operators AND and OR to commute (e.g., A + B == B +
A) and associate [e.g., A + (B + C) == (A + B) + e]. The operators also
distribute according to the relations

A-(B + e) == (A-B) + (A-C)

A + (B-e) == (A + B)-(A + e)

The conventional hierarchy of operator action in complex expressions is

First: NOT
then: AND
last: OR

Our notation for logical NOT (the overscore) explicitly shows the scope of action
of the NOT operation, so the only possible confusion in evaluating expressions
would occur with AND and OR. As the hierarchy shows, AND takes precedence.
As an example, consider

x = A + B-e

Evaluation is in the order specified below by the parentheses, innermost par­
enthesized expressions being evaluated first. Thus

x = (A + (B-(e))))

Parentheses are useful in Boolean equations to override the normal hierarchy,
just as we use them for similar purposes in conventional algebra.

Below are some fundamental relations of Boolean algebra; memorize these
results.

Chap. 1 Describing Logic Equations 9

A =A (1-1)

AoT=A A+F=A (1-2)

AoF= F A+T=T (1-3)

AoA =A A+A=A (1-4)

AoA =F A +A =T (1-5)

AoB =A +Jj A+B=AoJj (1-6)

Each identity involving AND or OR operators comes in two forms, one emphasizing
AND, the other emphasizing OR. This principle of duality is a characteristic
of Boolean algebra, and it has important applications in the study of logic and
in the implementation of logic functions with physical devices. The dual identities
are related by this rule:

Change each AND to OR, and each OR to AND, and change each T to
F, and each F to T.

Equation (1-6) is the well-known De Morgan's law. It is of special importance
because it allows us to convert Boolean operators from AND to OR, and vice
versa.

You may prove each of the foregoing identities by using the truth-table
definitions of the logical operators. To illustrate the art of proving theorems
with truth tables, we will prove the validity of De Morgan's law. Start with the
form A ° B = A + B. Develop truth tables for the left -hand side and for the
right-hand side of the identity. (When convenient, we may show several functions
[outputs] in the same table: we write two or more truth tables in one package.)

A B A-B A-B A B A B A+B

F F F T F F T T T
F T F T F T T F T
T F F T T F F T T
T T T F T T F F F

A truth table is an exhaustive list of function values for each possible combination
of inputs; therefore, if two truth tables have identical rows, the functions behave
identically . You see that the truth table for A oBis the same as that for A +
B; this proves Eq. (1-6).

De Morgan's law extends to more than two variables. For example, the
following identities are valid.

A+B+C=AoJjoC

Several other Boolean identities find frequent use in our design work. You
may demonstrate each relationship using truth tables or using the previous Boolean
identities.

10 Tools for Digital Design Part I

A+A-B==A

A+A-B==A+B

A-B+A-B==B

A-(A+B)==A

A-(A + B) == A-B

(1-7)

(1-8)

(1-9)

The left-hand form of Eq. (1-8) is not immediately obvious, but it is of great
help in reducing the complexity of commonly occurring Boolean expressions.
After De Morgan's law, Eq. (1-9) is perhaps the most widely used relation. It
is the basis for several systematic Boolean simplification procedures. Presently,
we will develop the one simplification method, Kamaugh maps, that will be of
most benefit to our design work.

Truth tables serve as an easy means of verifying the validity of small
Boolean equations, whereas the Boolean identities presented above are useful
in manipulating both large and small Boolean equations. Here is an example of
Boolean algebraic manipulations.

Ao(B + Co(B + A» = Ao(B + CoB + CoA)

= Ao(B + CoA)

= AoB + Ao(CoA)

= AoB + Ao(A°C)

= A-B + (A-A)oC

=AoB+poC

= AoB

=A+B

Equations from Truth Tables

(distribution law)

[Eq. (1-7)]

(distribution law)

(commutation law)

(association law)

[Eq. (1-5)]

[Eqs. (1-3) and (1-2)]

(De Morgan's law)

If the truth table and logic equation are to work hand in hand as design aids,
we must be able to derive a logic equation for a function from its truth table.
Consider this example:

Row number A B W

0 F F F
1 F T F
2 T F T
3 T T F

In words, W is true only if A is true and B is false (from row 2). More formally,
W = A-B. Another example is

Row number A B Y

0 F F T
1 F T F
2 T F T
3 T T T

Chap. 1 Describing Logic Equations 11

Here, our intuitive understanding of the truth table is that Y is true whenever
A is false and B is false (row 0), or whenever A is true and B is false (row 2),
or whenever A is true and B is true (row 3). Thus

Incidentally, we may simplify this equation:

Y = A·Jj + A·Jj + A·B

= Jj + A·B

= lJ +A

[by Eq. (1-9)]

[by Eq. (1-8)]

(1-tO)

(1-11)

Viewing this truth table another way, we may say that Y is false only when
A is false and B is true (row 1):

y = A·B (1-12)

We have two equations for Y derived from the same truth table-Eqs. (1-tO)
and (1-12). Can you show that the expressions for Yare equivalent?

Which way is best for writing equations from truth tables-reading true
conditions for the function, or reading false conditions? Both ways result in
equivalent expressions, usually in somewhat different form. For equations of
more than two variables, when there are many rows in the truth table, you will
usually wish to use the method that involves the fewer AND terms. In this
example, Eq. (1-12), derived from the false function values, yields the more
direct and simple result.

Sum-of-products form. Equation (1-10) (and also Eq. [1-11]) expresses
the function Y in the sum-of-products form. This is the most common form for
deriving Boolean equations from truth tables, and in this context the form fits
nicely with our thought processes. The name "sum of products" comes from
an analogy of the Boolean operator symbols with those of arithmetic: the expression
is a sum (OR) of product (AND) terms.

In sum-of-products form, a product term consists of the logical AND of a
set of operands, each operand being a logic variable or its negation. (A trivial
form of product term consists of a single variable or its negation.) A variable's
name must appear at most once in a product term. For example, A, A·Jj, and
A ·B·e are valid product terms, whereas A·A and A ·B·B·e, although valid
Boolean expressions, are not proper product terms.

A product term containing exactly one occurrence of every variable (either
asserted or negated) is called a minterm or a canonical product term. A function
expressed as a logical OR of distinct minterms is in canonical sum-of-products
form or disjunctive normal form. Our intuitive method for deriving equations
from truth tables yields the canonical sum-of-products form, as in Eq. (1-tO).
An expression may be in sum-of-products form yet not be canonical. Equation
(1-11) is a noncanonical sum-of-products expression.

12 Tools for Digital Design Part I

We may now state formal prescriptions for deriving sum-of-products logic
equations from canonical truth tables:

To derive a sum-of-products form for a function from a canonical truth
table, write the OR (sum) of the minterms for which the function is true.
Similarly, to derive a sum-of-products form for the complement of a function
from a canonical truth table, write the OR of the minterms for which the
function is false.

Applying these rules to the previous truth table yields Eqs. (1-tO) and
(1-12).

For n-variable functions, there are 2n possible minterms. A minterm is
sometimes designated by mj , where i is the number of the single canonical truth­
table row for which the minterm yields truth. For example, m4 = AoBoe yields
truth only for variable values A = 1, B = 0, e = 0; this corresponds to row
4, since binary 100 is decimal 4. Again, m2 = A oBoe produces truth only for
row 2 (binary 010). (The name minterm denotes that the term is true for only
one row of the table.) With this notation, we may describe canonical sum-of­
products equations as sums of minterms. Equation (1-10) becomes Y = mo +
m2 + m3' Although this notation is important in certain developments of Boolean
algebra, we will not use it frequently in this book.

Equation (1-12) is a canonical sum-of-products equation for Y, albeit a
somewhat trivial form containing only one term. We may use the minterm
notation for this form also:

Product-of-sums form. There is another formulation of logic expressions
from truth tables: the product-o/-sums form. This form consists of the AND
(the product) of a set of OR terms (the sums), such as (A + B)o(A + B)o(B).
In a product-of-sums expression, a sum term consists of the logical OR of a set
of operands, each operand being a logic variable or its negation, and each variable
appearing at most once.

A sum term that contains exactly one occurrence of every variable (either
asserted or negated) is called a maxterm or canonical sum term. A function
expressed as a logical AND of distinct maxterms is in canonical product-of-sums
form or conjunctive normal form. The product-of-sums notation is not much
used in practical design, since it lacks the sum-of-products' easy kinship with
our thought processes. An expression may be in product-of-sums form yet not
be canonical, if one or more of the sum terms is not a maxterm. For a three­
variable function, A + B + e is a maxterm; B + e is not. W = (P + Q + R)o
(P + Q + R) is in canonical product-of-sums form; W = (P + Q)o(P + Q +
R) is not canonical.

The prescriptions for forming product-of-sums logic equations from truth
tables are:

Chap. 1 Describing Logic Equations 13

To derive a product-of-sums form of a function from a canonical truth table,
write the AND (product) of each maxterm for which the function is false.
Similarly, to derive a product-of-sums form for the complement of a function,
write the AND of each maxterm for which the function is true.

Applying these rules to the previous truth table, we have

Y = (A + B)
Y = (A + B)e(A + B)e(A + B)

(1-13)

The first equation agrees with Eq. (1-11), obtained by simplifying the sum-of­
products form in Eq. (1-tO). With the aid of the distributive law, we may simplify
Eq. (1-13) to yield

in agreement with Eq. (1-12).
A maxterm is true for every row of the canonical truth table except one;

we sometimes specify the maxterm by Mj , where i is the row number for which
the maxterm is false. For example, (A + B + C) is true for every combination
of values of variable except A = 1, B = 0, C = 1, which designates row 5
(binary 101 = decimal 5). Maxterm Mo is (A + B + C), since only for variable
values 000 does the term produce a false value. The name maxterm connotes
that the term is true for all but one set of variable values. We occasionally write
canonical product-of-sums expressions, analogous to the sum-of-products formalism,
as products of maxterms. For instance, the products of sums above become

Y = (A + !l) = M,

Y = (A + B)e(A + B)e(A + B) = MoeM2eM3

To illustrate the four rules for producing canonical equations, we derive
the equations for a function W of three variables:

Row number J K L W

0 0 0 0 0
1 0 0 1 1
2 0 1 0 1
3 0 1 1 1
4 0 0 0
5 0 1 0
6 1 0 0
7 1 0

Sum of products on true outputs:

W = JeKeL + JeKer + JeKeL (1-14)

14 Tools for Digital Design Part I

Sum of products on false outputs:

w = JoKoL + JoKoL + JoKoL

+ JoKoL + JoKoL

Product of sums on false outputs:

W = (J + K + L)oO + K + L)oO + K + L)

00 + K + L)o(J + K + L)

Product of sums on true outputs:

W = (J + K + L)o(J + K + L)o(J + K + L)

(1-15)

(1-16)

(1-17)

You should simplify each equation, using algebraic identities, and verify that
the equations are equivalent.

Truth Tables from Equations

Sometimes you will wish to convert a logic expression into its truth-table form.
If the expression is in sum-of-products form, the conversion is easy. Each
product term will form one or more truth-table rows having a true function value.
A canonical product term (one with all the variables in it; a minterm) produces
one row with an output of TRUE. A product term with fewer variables yields
more rows, since such a term is true for any values of the missing variables.
Often more than one product term in the sum will contribute truth for a given
row of the truth table. This is fine-double-truth is still truth!

As an example, consider this equation of three variables:

(1-18)

Term 1 Term 2 Term 3 Term 4

The truth table for this equation is

J K L Y

0 0 0 0
0 0 1 0
0 1 0 0
0 (Terms 2 and 4) (1-19)

1 0 0 (Term 1)
1 0 1 (Term 1)

0 (Term 3)
(Term 4)

Terms 2 and 3 are canonical; each contributes a true output to one row of the
table. Terms 1 and 4, having a missing variable, contribute true outputs to two
rows each.

Chap. 1 Describing Logic Equations 15

Equations in product-of-sums form are most easily translated into truth
tables by focusing on the conditions for having false function values. Each sum
term in the product will assure a false expression value whenever all its variables
are the opposite of the form in the term. For example, consider the following
equation of three variables:

G = (A + B + C)o(A + B)o(A + Jj + C)

Term 1 Term 2 Term 3

Term 1 makes G false for row 4 (100) of the truth table; term 3 produces a result
of false for row 7 (111). Term 2, with its missing variable C, produces a result
of false for two rows, 4 (100) and 5 (101). Terms 1 and 3 are canonical: each
contributes a false function value for one row; term 2 is not canonical. Here is
the truth table:

Row number A B C G

0 0 0 0
1 0 0 1
2 0 1 0
3 0 1 1
4 1 0 0 0 (Terms 1 and 2)
5 0 1 0 (Term 2)
6 0 1
7 1 0 (Term 3)

For logic expressions of more general form than the sum of products or
the product of sums, we fall back on the ultimate method of deriving truth tables:
evaluating the function for every combination of values of the input variables.
This means that we explicitly determine each function value. The process is
often laborious, but (barring error!) is foolproof. For example, from the equation

K = (L + G)o(L + G)

we get the following truth table by computing the value of K for each of the
four .sets of values of Land G:

L G K

F F T
F T F
T F F
T T F

Another approach for forming a truth table from a general Boolean equation
is to manipulate the expression (usually using De Morgan's law) until it becomes

16 Tools for Digital Design Part I

a sum-of-products or product-of-sums form, and then use the methods presented
earlier in this section.

Condensing Truth Tables

A canonical truth table of n input variables has 2n rows arranged in binary
numerical order on its inputs, corresponding to all the possible values of the
input variables. The canonical form explicitly displays the function's value for
every possible set of input conditions. This form of truth table-the only one
we have used so far-is the counterpart of the canonical forms of sum-of­
products and product-of-sums equations. Just as we frequently use Boolean
equations in a simplified form, we also sometimes wish to deal with a simplified
or collapsed truth-table notation.

Consider Eq. (1-18) again:

Y = JoK + JoKoL + JoKor + KoL

Term 1 Term 2 Term 3 Term 4

The canonical terms (2 and 3) each contribute one row to the canonical truth
table in Eq. (1-19). Term 1, however, is independent of the value of variable
L (L does not appear), so term 1 contributes two rows with true output to the
canonical truth table, one for each value of the missing variable. If we are willing
to abandon the canonical form for the truth table, we may introduce a shorthand
notation for this situation. We collapse these two rows for term 1 into a single
row and place an X for the value of the missing variable L. The X means "both
values" and implies that the function value is independent of that variable whenever
the other inputs are in their stated conditions. Similar arguments apply to term
4, which lacks the variable J.

Applying this concept to the expression, we may derive a shortened truth
table

J K L Y

0 0 0 0
0 0 1 0 (1-20)
0 1 0 0
X 1 1 (Terms 2 and 4)

0 X (Term 1)

0 (Term 3)

Note how this truth table yields the original equation in a direct manner.
The X is the truth-table equivalent of the important Boolean algebraic

identity of Eq. (1-9)

There are various applications of this identity that we could introduce directly

Chap. 1 Describing Logic Equations 17

into the truth table of Eq. (1-20) if we desired. For instance, here are two more
stages in the condensation of this table:

J K L Y J K L Y

0 0 x 0 0 0 x 0
0 1 0 0 0 x 0 0 (1-21)
x 1 1 1 X 1 1

0 X X X
0

If we are presented with a truth table containing X's, the derived Boolean
equation will not be canonical, but will contain some simplified terms. A sum­
of-products equation for the right-hand truth table in Eq. (1-21) is

Y = K·L + J

Satisfy yourself that the original Eq. (1-18) is equivalent to this, and that all
these truth tables based on Eq. (1-18) are equivalent.

Condensed tables are convenient, since the original statement of a problem
will often lead in a natural way to the condensing of rows. The main virtue of
the notation is in allowing the truth table to reflect its origins more faithfully.
A secondary virtue is in the resultant shortening. Attempts as in Eq. (1-21) to
simplify truth tables by collapsing rows of a less simplified form are tricky and
can lead the inexperienced into errors. Soon we will discuss a graphical method
for simplifying logic functions that is easier for people to use.

Don't-Care Outputs in Truth Tables

Truth tables have a useful property that a logic equation cannot express. We
often know from the nature of the problem that the function's value is irrelevant
for certain combinations of the input variables. This situation usually arises
when we know that the inputs will never legitimately assume certain sets of
values. We may use a small dash "-" for the truth-table function value in such
cases. The - means "don't care." In deriving a logic equation from the truth
table, we are free to use either a T or F value for the don't-care dash, whichever
will yield the more useful form. For instance, look at the condensed truth table
below:

18

A

F
T
T

B

X
F
T

y

T

F

Tools for Digital Design Part I

Of the various equations that we may derive from this truth table, a choice of
T for the don't-care output might yield the sum-of-products form

Y = A +A-B"

which can be simplified to

Y=A+B

whereas a choice of F for the don't-care gives the quite different equation

Y=A

You may use either equation; your choice may depend on other factors in the
problem design.

KARNAUGH MAPS

In the early years of digital computers, each logic element in a circuit was large
and cumbersome by modem standards, and consumed considerable power. There
was a natural emphasis on reducing the number of circuit elements to the bare
minimum so as to cut the total cost. Designers developed many elaborate techniques
for simplifying logic expressions, and much effort went into perfecting these
tools. Today, hardware for digital logic is inexpensive, and in modem design
work the emphasis on circuit minimization has given way to a concern for
modularity and clarity in the design process.

One result of this shift in technology and design style is that circuit building
blocks have become larger and more powerful, while the "glue" that holds them
together (the logic equations) has become simpler and less voluminous. Although
the minimization of complex Boolean equations is no longer of paramount im­
portance, simplification of small and manageable equations remains a routine
task that we should make as easy and mechanical as practical. Manipulating
equations through the Boolean algebraic identities, as we have done in the
previous sections, is an arcane art. There are few guidelines to follow other
than our intuition (based on experience) and trial and error. You have seen that
sum of products is a common form of Boolean expression. This form results
from truth-table derivations and occurs in other steps of our design process. The
Boolean identity that is of most frequent use in simplifying sum-of-products
forms is Eq. (1-9), which allows the elimination of a variable and its complement
when these have a common factor:

A-B +A-B = (A +A)-B = T-B = B

The Karnaugh map (K-map) is a graphic display whose visual impact assists
us in the systematic application of this identity. * A Kamaugh map is a canonical

* The Karnaugh map is also known as a Veitch diagram.

Chap. 1 Describing Logic Equations 19

truth table rearranged in form. Figure 1-1 is a truth table and its K-map for an
arbitrary function of two variables. The Karnaugh map has a square for each
truth-table row; each combination of variables identifies a square in the map.
In the two-variable case, the values of one variable appear as the labels for the
vertical edges of the squares (B = 0 and B = 1 in Fig. 1-1), and the other
variable's values mark the horizontal edges (A = 0 and A = O. Each square
contains the value of the given function (YJ corresponding to the appropriate
truth-table row, as specified by the labels on the edges of the K-map. For
instance, the lower left square in the K-map of Fig. 1-1, corresponding to A =

0, B = 1, has the function value Y j •

Row
number A B Y

0 0 0 Yo

0 I Y j

2 0 Y2

3 Y3

A
B

0

Y:
I

0

Yo

Y j

I

Y2

Y3
Figure 1-1. A truth table and its Kar­
naugh map.

Functions of more than two variables also have K-map representations.
Three- and four-variable functions are easy to manage; with more than four
variables, the K-map technique becomes unwieldy, but fortunately most of the
simplifications of design equations that we encounter in practice involve no more
than four variables. The three-variable map contains eight squares, corresponding
to the eight rows in the canonical truth table. Figure 1-2 shows two notations
for K-maps of three variables. Both forms are equivalent, and both are in
common use. Our mild preference is for the left-hand form, but you should be
familiar with each. We like the left-hand form because it has an explicit display
of the values of the variables on each edge of the map. The right-hand form
explicitly labels only the location of true values for each variable. Some people
prefer this form; take your pick. Conventionally, the third variable (rightmost
in the truth table) appears on the vertical edge, while the horizontal edge displays
the first and second variables.

AB
C

00 01 II
A

10 Y

Y:
0 Yo Y2 Y6 Y4

I Y j Y3 Y7 Ys

Yo Y2

Y j Y3

B

Y6 Y4

Y7 Ys

Figure 1-2. Two forms of a K-map of
three variables.

Note carefully the order of the labels on the top edge. In moving from
square to square across a row (and around the corner, also), the value of only
one variable changes at a time. As you will see, this unit distance property
gives the K-map its virtue in simplifying logic expressions.

Extending the K-map to four variables adds an additional variable to the

20 Tools for Digital Design Part I

AB
CD

00

01
Y:

11

10

vertical edge, resulting in 16 squares. Figure 1-3 illustrates both notations for
Karnaugh maps of four variables.

00 01 11 10

Yo Y4 YJ2 Ys

YI Ys Y!3 Y9

Y3 Y7 YIS Yu

Y2 Y6 YI4 YIO

Building K-Maps

Y

Yo Y4

YI Ys

Y3 Y7

Y2 Y6

B

A

YJ2

Y!3

YIS

YI4

Ys

Y9

Vu

YIO

Figure 1-3. Two forms of a K-map of
four variables.

There is a one-to-one correspondence between Karnaugh map squares and canonical
truth-table rows. Deriving either the map or the table from the other is just a
matter of rearranging the information. Don't-care outputs from truth tables are
directly transferable to the appropriate K-map squares. Condensed truth-table
rows yield values for more than one K-map square, in an obvious way.

We may view the K-map as a representation of the canonical sum-of­
products form of a Boolean expression. Just as we may derive a truth table
from a logic equation, we may move directly to a K-map from an equation, when
this is appropriate. Figure 1-4 shows the three forms for a function of two
variables.

The techniques for creating a truth table from a logic equation will also
yield the K-map for the equation. The expression in Fig. 1-4 is already in
canonical form, so the transformations among table, K-map, and equation are
easy. Consider now the three-variable equation

v = AoJj + B + AoJjoe

The first term in the sum yields l's in the K-map when A,B = 10 and e =
anything. To give a true value, the second term requires B = 1, but A and e
may be anything. The third term yields 1 for A,B,e = 101, which already
appears in the map because of the AoB term. The resulting map is Fig. 1-5.

A
0

0

X=AoJj +AoJj

/ ~
B X

Bm 0

1 0 o 1 1 .. • X:
0

1 0 0
0

Figure 1-4. Three representations of
a Boolean function.

Chap. 1 Describing Logic Equations

AB

C
00 01 11 10

0 0 1 1 1
v:

1 0 1 1 1

Figure 1.::.5. K-map for V = A·B +
B + A·B·C.

21

Simplifying with K-Maps

Why bother with these maps? You may get a clue from Fig. 1-4. You have
probably noticed that the expression for X can be simplified with Eq. (1-9):

X=A·Jj+AoJj

= (A+A)oJj

= ToJj

=Jj

How does the K-map display this simplification? The key point is that a certain
term (B in this case) is ANDed with both A and A. On the K-map this results
in 1 's in both the A = 0 and A = 1 squares for B = O. Let's circle these
adjacent l' s to remind us that the A variable disappears from the simplified
expression because it appears as both A and A (see Fig. 1-6). Note how the
simplified form A = Jj stands out more clearly: the condition for X to be true
is that B is false (or B is true). Thus X = B.

The drawing of circles (really ovals) among adjacent 1 's is the basis for
using K-maps in Boolean simplification. On K-maps of two variables, there are
five ways to display applications of the basic identity of Eq. (1-9) with circles.
Figure 1-7 shows these forms.

B~ m m o I I o I 0 000

I 0 0 I I 0 I I I

AoB + Aoii = ii ;joii +;joB =;j ;joB + AoB = B

BmO
1 B~O I

X: 0 1 1 __ X: 0 1 1

1 0 0 1 0 0

BtE0 1 o 0 1

1 0 I

mOl

o 1 I

I 1 1

Figure 1-6. Circling adjacent 1 'so Figure 1-7. Simplifications of K-maps of two variables.

In using the K-map for simplification, we look for applications of the rules
for circling. Depending on the position of the 1 's, we may have several circles,
each spanning a grouping of one, two, four, eight, ... 1 'so The K-map method
requires that each 1 in the map appear in at least one circle, even if it is by
itself. Circling two 1 's causes two canonical terms to collapse into one term;
one variable drops out. Four circled 1 's bring four terms into one term, eliminating
two variables. A proper group of eight circled 1 's drops three variables, and so
on.

22 Tools for Digital Design Part I

On K-maps of three or more variables, some applications of the simplifying
identity do not involve physically adjacent 1 'so In these cases, we must draw
"around-the-corner" circles. Figure 1-8a shows some typical ordinary circle
patterns for a K-map of three variables; Fig. 1-8b gives all the around-the-corner
patterns of two 1 's; and Fig. 1-8c shows the only around-the-corner pattern
involving four 1 'So

(a)

DrTlCl
OCIJG

(b) (c)

Figure 1-8. Typical circlings of K-maps of three variables.

Figure 1-9 shows three improper circlings.
ments do not correspond to applications of Eq.
three 1 's, since 3 is not a power of 2.

Diagonal or L-shaped arrange­
(1-9), nor does the circling of

Figure 1-9. Improper K-map circling
patterns.

K-maps of four variables are similar to the three-variable variety. Figure
1-10 shows some forms involving correct circlings of four and eight l's. You
should inspect these patterns until you are comfortable with their meaning.

~ L IC l j
1
I

'--~

-, / j
I I ~

('\

Figure 1-10. Typical circlings of four l's and eight l's on K-maps of four
variables.

Here is the prescription for circling 1 's in a K-map: Draw circles (ovals or
around-the-corner patterns) around properly positioned collections of 1 's, starting
with the largest possible circles, and working toward smaller circles. Overlapping
circles are appropriate when they allow a larger circle to appear. (Do not draw
a circle that is completely within a larger circle; this would result in a redundant
term and an incompletely simplified function.) Drawing the largest circles possible,

Chap. 1 Describing Logic Equations 23

cover all the l's on the map. Use don't-care dashes "-" as either a 1 or a 0,
as convenient. The point of using K-maps is to let the drawing display the
simplified result in a systematic and mechanical fashion. When you have finished
drawing circles, read off the simplified function as a sum of products, in which
each circle contributes one product term to the sum.

Figure 1-11 shows two examples of functions of two variables, derived
from their K-maps. Figure 1-11b yields no simplification.

The K-map method allows a simple derivation of the important identity of
Eq. (1-8); Fig. 1-12 shows the process.

HlffijG a 1
a a a

X:

1 1 1

A
B a

Y:
a(0

1 a

1

a

CD Bma 1
X=H

(a) Simplifies (b) Does not simplify

Figure 1-11. Simplifiable and unsim­
plifiable functions of two variables.

A +AoB
a a 1 - -- A+B
1 1 I

Figure 1-12. Proof of the identity
A + XoB= A + B.

Figure 1-13 shows the simplifications of two functions of four variables.
Notice the use of overlapping circles to achieve the largest circles. Some l' s
must be circled by themselves, yielding un simplified four-variable terms.

M A

x y

::D a a ~
I~ ,---

I a a I

a a CD a
/' CD a I a

I a I I

1 I I I }
a Lj 8 a

'---..L
I I 1 I

N B

Y = Ii + C + Aon

Figure 1-13. Simplification of two functions of four variables.

K-Map Simplification Blunders

The most common error in simplifying expressions with K-maps is to fail to
circle the largest possible groupings of 1 'so A less common error is to introduce
a redundant smaller circle within a larger one. Figure 1-14 shows some typical
blunders and the correct forms. Although Figs. 1-14a and 1-14c produce correct
Boolean expressions, these expressions are not as simple as the K-map method
allows. Design criteria may sometimes require the use of an incompletely simplified

24 Tools for Digital Design Part I

1(1 I I I) III I I I)

0 (I I) 0 0 I I 0

0 0 0 0 0 0 0 0

I~I I) (I IJ 1(1 I I 1\
(a) Incorrect (b) Correct

(I (I 8 0 !(I I I) 0

0 G 0 0 0 I 0 0

r- ---.."

I I 0 0 I I 0 0

I I 0 I 0
'--- .---/ 8 I) ~

Figure 1-14. Common blunders in
circling K-maps. (c) Incorrect (d) Correct

form, but these occasions are rare and we will not consider them here. Make
all your circles as large as possible. Figure 1-14a has four circling errors: two
incomplete circlings and two redundant circles. Figure 1-14c has three errors,
all incomplete circlings.

Other Ways of Reading K-Maps

We have stressed the method of circling l's and reading a sum of products for
the function. If you are interested in developing the best facility with K-maps,
you will want to investigate three other interpretations. These are analogous to
the forms for reading expressions from truth tables shown earlier in this chapter.
We give the three additional K-map methods below, with one example, leaving
a comprehensive study of these techniques as grist for your mental mill.

Method 1: Circle l's and read a sum of products for the function (the
normal method).

Method 2: Circle O's and read a sum of products for the inverse of the
function (also a frequently used method).

Method 3: Circle O's and read a product of sums for the function.
Method 4: Circle l's and read a product of sums for the inverse of the

function.

Figure 1-15a shows a K-map with l's circled; Fig. 1-15b is the same map
with O's circled. The resulting equivalent simplified forms of the function are:

From method 1: S = A oB + A oC
From method 2: S = A + lioc
From method 3: S = A o(B + C)
From method 4: S = (A + li)o(A + C)

Chap. 1 Describing Logic Equations 25

s:

AB

C

0

00

0

I I(I

01 II 10

" I 0 0

I 0 0

(a) Circling I's

AB

C
00

O~
s:

I I

01

I

I

II 10

0 I~
0 0

(b) Circling O's
Figure I-IS. Two ways of circling a
K-map.

CONCLUSION

You now have the knowledge of the foundations of digital logic that you need
to continue your introduction to digital design. Boolean algebra and its allied
techniques are a fascinating field of study, and you may wish to pursue these
topics in more depth as your skill as a designer grows. We have just scratched
the surface of the field, but the information in this chapter is sufficient for our
purposes. Going deeper would deflect us from our goal, which is to build up
the necessary tools as rapidly as possible in Part I so you may quickly reach
the study of the design process in later parts of the book.

Now it is time to develop tools for systematically translating logic expressions
into hardware.

READINGS AND SOURCES

BLAKESLEE, THOMAS R., Digital Design with Standard MSI and LSI, 2nd ed. John Wiley
& Sons, New York, 1979.

BOOLE, GEORGE, An Investigation of the Laws of Thought, on which are Founded the
Mathematical Theories of Logic and Probability, 1849. Dover Publications, 31 East
2nd Street, Mineola, N.Y. 11501, 1954. Where it all started. A Dover reprint of the
classic work.

DIETMEYER, DoNALD L., Logic Design of Digital Systems, 2nd ed. Allyn & Bacon, Boston,
1978. Good exposition of traditional switching theory and minimizations.

FLETCHER, WILLIAM I., An Engineering Approach to Digital Design. Prentice-Hall, En­
glewood Cliffs, N.J., 1980. Chapter 3 contains a good exposition of Kamaugh maps
and minimization.

HILL, FREDERICK J., and GERALD R. PETERSON, Introduction to Switching Theory and
Logical Design, 3rd ed. John Wiley & Sons, New York, 1981.

KARNAUGH, M., "The map method for synthesis of combinational logic circuits," Com­
munications and Electronics, No.9, November 1953.

MILLER, RAYMOND E., Switching Theory, Vol. 1: Combinational Circuits. John Wiley &
Sons, New York, 1966. An important early work.

SHANNON, C. E., "Symbolic analysis of relay and switching circuits," Transactions AlEE,
Vol. 57, 1938, p. 713.

VIETCH, E. W., "A chart method for simplifying truth functions," Proceedings ACM,
Pittsburgh, 1952, p. 127.

26 Tools for Digital Design Part I

EXERCISES

1-1. Have you read the Preface?

1-2. What is the goal of Part I of this book? Part II? Part III? When may you read
the material in Part IV?

1-3. What are the basic logical operators in digital design? What are the constants?
What does the numeral 1 mean in digital design?

1-4. How many different Boolean functions of two variables are there? Of three variables?
Derive an expression for the number of different Boolean functions of n variables.

1-5. What is a canonical truth table? Give examples of a canonical truth table and a
noncanonical truth table of three variables.

1-6. Give the operator hierarchies for AND, OR, and NOT. By inserting full parentheses,
show the order of evaluation of these functions:
(a) B-A-C + D + E
(b) A + B-C + D
(c) A + B-(C + D)

1-7. By using the operator hierarchies, write the following expressions with as few
parentheses as possible:
(a) «Q + (R-S» + U- V)
(b) «Q-(R + S»-(U + V»

1-8. Prove the following identities by writing the truth tables for both sides.
(a) A-(B + C) == (A-B) + (A-C)
(b) A + (B-C) == (A + B)-(A +C)
(c) if == A
(d) ~ == A + B + C
(e) A + B + C == A-B-C
(I) A + if-B == A + B
(g) A-(A + B) == A

1-9. The cancellation law of regular algebra states that

If X (+) Y = X (+) Z, then Y = Z

Show by giving counterexamples that Boolean algebra has no equivalent cancellation
law. In other words, show that the following statements are false:

If X + Y = X + Z, then Y = Z
If X-Y = X-Z, then Y = Z

1-10. NAND and NOR are Boolean functions sometimes used in design. NAND (NOT
AND) is defined as AND followed by NOT; NOR (NOT OR) is defined as OR
followed by NOT. Write the defining truth tables for A NAND B and A NOR B.

1-11. (a) Write each of the following expressions in a form that has no AND operators:

(A + B)-C

(b) Write each of the following expressions in a form that has no OR operators:

A + B + C if + B + CoD + E

1-12. Define the following terms:

Chap. 1 Describing Logic Equations 27

(a) Canonical.
(b) Minterm.
(c) Maxterm.
(d) Sum-of-products form.
(e) Product-of-sums form.
(f) Canonical sum-of-products form.
(g) Canonical product-of-sums form.

1-13. Which of the following expressions is in sum-of-products form? Which is in product­
of-sums form?
(a) A + BoD
(b) CoDoE + F + D
(c) (A + B)oC

1-14. (a) Write a four-element vector describing the function X(A,B):

A

F
T
F
T

B

F
F
T
T

x

F
T
F
F

(b) Derive a logic equation for X directly from the truth table.
(c) Derive a logic equation for X directly from your vector expression.
(d) Show that the results from parts (b) and (c) are equivalent.

1-15. Without formally deriving any logic expressions, deduce the value of each function
W, X, Y, and Z:

A B C W X y Z

0 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 1 1 0 0

0 0 0 1
0 1 0
1 0 0
1 0

1-16. Write the logic equations corresponding to the following:
(a) X(A,B,C) = Il1o + m2 + m5
(b) X(P,Q) = M)oM3

1-17. Write the canonical truth tables for each of the following:
(a) Y(V,W,X) = M2oM3oM5oM6

(b) Y(C,B,G) = m) + m2 + m7
1-18. Show that Eq. (1-13) reduces to Y = XoB:

(a) By using Boolean algebraic reductions.

1
0
1
0
1
0
1
0

(b) By developing the canonical truth table for each sum term in Eq. (1-13), then

28 Tools for Digital Design Part I

1-19.

performing the AND of the truth-table function values to produce a truth table
for Y, and finally reading the sum-of-products logic equation for Y from the
truth table.

Consider the following truth table:

A X YZ G

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0

0 1 1
0 1
1 0

Derive canonical equations for G or G in the following forms:
(a) Sum of products on true outputs.
(b) Sum of products on false outputs.
(c) Product of sums on true outputs.
(d) Product of sums on false outputs.

1-20. Prove the correctness of your answers to Exercise 1-19 by reconstructing a truth
table for G from each equation.

1-21. Consider the following canonical truth table for two functions Sand C:

p Q R S C

0 0 0 0 0
0 0 1 1 0
0 0 1 0
0 1 1 0 1

0 0 1 0
0 1 0

0 0

(a) Express Sand C as eight-element vectors.
(b) Working directly from the vectors, write a canonical sum-of-products equation

for S and a product-of-sums equation for S. Show the equivalence of the
equations by Boolean algebraic manipulations.

(c) Repeat part (b) for functions C and C.
(d) Directly from the truth table, write a vector for the function S·C. Working

from the vector, give a logic equation for S·C.
(e) Repeat part (d) for the function S + C.

1-22. By Boolean algebraic transformations, show the equivalence of the forms in Eqs.
0-14) through 0-17).

1-23. Express Eqs. 0-14) through (1-17) using the minterm and maxterm notations.
1-24. Explain the use of X for "both values" and - for "don't care" in truth tables.

Chap. 1 Describing Logic Equations 29

1-25. Derive the canonical truth tables that correspond to each of the following K-maps:

~
~

0

0

-

0

1

1

1

1

0 0

- 0

1 0

1 0

1-26. Plot the function in Exercise 1-19 on two K-maps, one map labeled as in Fig.
1-2a and the other as in Fig. 1-2b. Simplify the function if possible.

,)-27. Draw a K-map for each ofthe truth tables below. Derive a simplified logic equation
from each K-map.

A B C M A B C M A B C D M

0 0 0 0 0 0 0 X 0 X 1
0 0 1 0 0 1 0 X 1 1 0
0 0 0 1 0 0 0 0 1 0
0 1 1 0 1 1 0 X 1 1 0 0
1 0 0 1 0 0 0 0 0 1
1 0 1 0 1 1 X X 1
1 1 0 0 1 0 0 0 1 0 1
1 1 1 0 1 1 0 1 0 0 0

1-28. Here is a K-map for a function S:

AB
CD

00

01
s:

11

10

00

0

1

1

0

01 11 10

0 1 0

0 1 1

0 0 1

0 0 0

By circling zeros, give a logic equation for S as a sum of products with each
product term containing two variables.

1-29. By circling zeros, simplifY the functions in Fig. 1-13.
1-30. Assuming that there are three inputs A, B, and C, write a truth table to describe

each of these ideas:

30

(a) The output should be true only when two or more of the input variables are
true.

(b) The output should be true only when the number of true input variables is odd.
(c) The output should be true only when the number of false input variables is

even.

Tools for Digital Design Part I

(d) The output should be false only when exactly two of the input variables are
true.

1-31. Simplify the functions derived in Exercise 1-30, using K-maps.
1-32. Often the natural formulation of a logic function is not in perfect sum-of-products

or product-of-sums form. For example, consider the equation M = X·(B + C)
+ A·C. Simplify this equation using two different K-map circlings. Are the resulting
sum-of-products forms less compact or more compact than the original? (A criterion
for compactness is the number of binary AND and OR operators in the expression.)
Can you perform elementary factorings on the K-map results that make the results
more compact? Compare the original equation with each of the final equations.

1-33. Consider two 2-bit binary numbers, say, A,B and C,D. A function X is true only
when the two numbers are different.
(a) Construct a truth table for X.
(b) Construct a four-variable K-map for X, directly from the word definition of X.
(c) Derive a simplified logical expression for X.

1-34. You are installing an alarm bell to help protect a room at a museum from unauthorized
entry. Sensor devices provide the following logic signals:

ARMED = The control system is active

DOOR = The room door is closed

OPEN = The museum is open to the public

MOTION = There is motion in the room

Devise a sensible logic expression for ringing the alarm bell.
1-35. A large room has three doors, A, B, and C, each with a light switch that can turn

the room light on or off. Flipping any switch will change the condition of the
light.
(a) Assuming that the light is off when the switch variables have the values 0, 0,

0, write a truth table for a function LIGHT that can be used to direct the
behavior of the light.

(b) Derive a logic equation for LIGHT.
(c) Can you simplify this equation?
(d) How is this exercise related to Exercise I-30?

1-36. Electronic watches display time by turning on a certain combination of seven light­
bar segments to yield approximations of the shape of the decimal digits. For each
digit position, the segments are labeled as follows:

The decimal digit displays have the form

Chap. 1 Describing Logic Equations 31

For example, the digit 4 has segments b, c,f, and g lighted. Internally, the watch
represents a decimal digit by a 4-bit binary code, say, D,C,B,A. For example

DeB A
7=0 1 1 1

(a) Develop a multi-output truth table for lighting the segments. The truth table
will have inputs D, C, B, and A, and outputs a, b, c, d, e, t, and g. Notice
that don't-care conditions arise naturally, since 4 bits can encode 16 combinations,
whereas the decimal digits use only 10 of them. Binary codes above 1001 will
never occur.

(b) Plot the light segment outputs a through g on four-variable K-maps, and derive
a simplified equation for each segment.

1-37. The university pool room has four pool tables lined up in a row. Although each
table is far enough from the walls of the room, students have found that the tables
are too close together for best play. The experts are willing to wait until they can
reserve enough adjacent tables so that one game can proceed unencumbered by
nearby tables. A light board visible outside the poolroom shows vacant tables.
The manager has developed a digital circuit that will display an additional light
whenever the experts' desired conditions arise. Give a logic equation for the
assertion of the new light signal. Simplify the equation, using a K-map.

32 Tools for Digital Design Part I

Realizing Logic
in Hardware

REPRESENTING TRUE AND FALSE WITH PHYSICAL DEVICES

Boolean algebra and truth tables are our tools for expressing logical relationships.
To use these tools in the real world, we must have some physical way to represent
TRUE and FALSE, the fundamental constants of logic. Digital systems record
T and F in several ways:

(a) Punched cards . . A hole punched at a given spot in the card might represent
logic 1; no hole at that spot would then represent O.

(b) Magnetic tapes or disks. Magnetic tapes or disks represent logic data with
magnetized areas on the recording surface. The designer might choose a
south pole sticking out of the surface to be a 1, in which case a north pole
would be O.

(c) Switches. A switch has two states, closed and open. The digital designer
may choose either state (but not both!) to represent logic truth; for example,
an open switch may represent 1.

(d) Voltages. In digital electronic circuits, T and F are represented by voltage.
For instance, the popular transistor-transistor logic (TTL) 74LS family of
digital circuits produces two voltage levels: <0.5 V and >2.7 V.

Each of these four examples has only two states-in a punched card either
there is a hole or there is not a hole. This two-valued, or binary, characteristic
of the digital world makes Boolean algebra the natural way to formalize the
behavior of these physical devices. Conversely, the need to implement logical

33

constructs in physical devices makes these binary devices useful. If more than
two values existed, more complex algebras would be needed to handle the
multiplicity of values. Perhaps fortunately, engineers have had only limited
success in designing reliable nonbinary devices. It is questionable whether multi­
valued devices would be desirable, since the resulting systems would be harder
to troubleshoot. In practice, it is important to know that any signal can have
only two values, TRUE or FALSE.

The designer may select the physical representation for T and F. In a
punched card, representing 1 with a hole seems natural, but such an assignment
is not a logical necessity. With equal validity, we could let the absence of a
hole represent 1. On magnetic tapes either a north or a south pole can be a 1;
both conventions exist. The same is true of switches.

In this book, we will use electronic logic circuits extensively. We let H
stand for the high-output voltage level of a digital device and let L stand for the
low-output voltage level. Each family of devices has its own Hand L output
voltage ranges. (Chapter 12 contains information on the performance of the
various families of devices. Remember, you may read the material on digital
technology in Chapter 12 whenever you desire, without mastering the intervening
material.) In this book, we use the 74LS TTL (low-power Schottky transistor­
transistor logic) family as our main source for digital electronic devices.

A particular device is called an integrated circuit or a chip. Each type of
integrated circuit has an identifying number and a descriptive name. In this
book, most of the chip numbers are of the form 74LSxx, where xx is two or
more digits specifying the particular member of the low-power Schottky TTL
line. The chip has a set of pins that provides connections to the elements within
the chip. Each pin has a pin number that identifies its location on the chip. The
pin numbers are usually not printed on the chip itself, but they occur in a standard
arrangement, with pin 1 marked. The pins are mounted in a dual in-line package
(DIP).

Many chips of interest in the next few chapters have 14 or 16 pins. Here
is a drawing of a 14-pin chip, about twice actual size:

Operating power enters the chip through two pins, Vee and GND (ground),
usually at opposite corners. In the drawing, pin 7 is GND and pin 14 is Vee.
A chip may contain one or more independent logic elements.

The manufacturers' data books are authoritative sources of information on
available integrated circuit chips. Learning to use a data book is a necessary
part of building digital circuits. (Refer to Chapter 12; the bibliography lists some
of the more comprehensive books.)

34 Tools for Digital Design Part I

In this chapter, we will use simple devices to build the basic logic functions
described in Chapter 1; historically, each such device is called a gate. Here we
concentrate on chips with gates-the basic tools for realizing logic equations.
In Chapters 3 and 4, you will meet more complex chips.

Like other forms of digital devices, electronic logic circuits offer a choice
for representing T and F. Be flexible in your choice. Sometimes it is advantageous
to let H represent T and to let L represent F; at other times the converse is
more convenient. Either will do, if you let the rest of the world know your
choice.

MIXED LOGIC: REPRESENTING AND, OR, AND NOT

We may represent logic truth by either of the two voltage levels in a digital
electronic device. If we apply this notion faithfully, a powerful and beautiful
design tool emerges as we represent logic equations with physical hardware. We
now undertake the development of clear and systematic ways of building and
describing hardware circuits for logic expressions. Efforts at solving digital
problems yield logic equations and logical structures; the hardware must faithfully
embody these equations and structures. Furthermore, we certainly wish the
documentation of our hardware (our circuit diagrams) to convey the spirit of
the solution to the original problem. Documenting the hardware for a logic circuit
is called digital drafting.

The foregoing thoughts suggest some criteria for drafting methods:

(a) We wish to synthesize (create) a physical realization of any logic expression
directly from the logic, in a straightforward, natural, and rigorous manner.

(b) We wish to be able to analyze (pick apart) a physical realization and directly
recover the original logic expressions.

These are strong conditions; many digital drafting and construction techniques
in use today do not meet them. The conditions require that the circuit diagram
clearly and fully display both the logic and hardware. We can identify several
implications of these requirements:

(1) The drafting notation should represent the Boolean expressions in AND,
OR, and NOT form-the natural way we develop our logic.

(2) The correspondence between a logical value (T or F) and its voltage coun­
terpart (H or L) should be evident everywhere in the circuit diagram.

(3) The notation should clearly identify each physical device in the circuit.

The key to satisfying these requirements is a representation called mixed
logic. This notation was first published in a coherent form in 1971,* although

* P. M. Kintner, "Mixed logic: a tool for design simplification," Computer Design, August
1971, pp. 55-60; and F. Prosser and D. Winkel, "Mixed logic leads to maximum clarity with minimum
hardware," Computer Design, May 1977, pp. 111-117.

Chap. 2 Realizing Logic in Hardware 35

mixed logic was used in the Philco TRANSAC computers in 1957 and the technique
is probably even older than that. We will develop mixed-logic methodology
carefully, since the principle is vital to clear, top-down design.

Mixed Logic

Showing the logic. We choose a unique symbol for each of the natural
logical operators. The following shapes represent the AND and OR operators:

o D
AND OR

Whenever we see these shapes, we know that we are representing a logical AND
or a logical OR function. Furthermore, every logical AND and OR in our original
expression will appear in the circuit diagram as the corresponding shape. Inputs
to the symbols enter from the left, and the output leaves from the right. The
notations

specify that Z = X·PDQ and XYZ = A + B. The graphic symbols for AND
and OR can have more than two inputs. For example, Fig. 2-1 shows AND
gates with 4 and 8 inputs. Figure 2-2 shows OR gates with 4 and 8 inputs.

4 inputs 8 inputs

Figure 2-1. Symbols for AND with
multiple inputs.

In circuit diagrams, the graphic symbols imply a physical device that performs
the logic operation. In our applications, the physical device is an integrated
circuit (usually of the 74LS family), and logic values appear as voltages on copper
wires. Let's see how to record the voltage information on the diagram without
altering the logic.

Logic conventions. How does a device represent T and F? There are
two logic levels (T and F) and two voltage levels (H and L). Two useful possibilities
exist:

36 Tools for Digital Design Part I

(a) T is represented by H (and F is represented by L).
(b) T is represented by L (and F is represented by H).

The first form, with T = H, is called positive logic; the form with T = L is
negative logic. When one of these relationships of truth and voltage is used
consistently throughout a design, we refer to a positive-logic convention or a
negative-logic convention for the design. The mixed-logic convention-our con­
vention-allows us to use positive or negative logic at any point in our design,
as we desire. The clarity gained by this innocent-sounding step is enormous.

4 inputs 8 inputs

Figure 2-2. Symbols for OR with
multiple inputs.

Showing the device. In our exposition of mixed logic, we represent
T = L by a small circle on the corresponding terminal of the logic symbol. The
absence of a small circle means that T = H at that point. The circles do not
change the logic operation. For example, each of the symbols in Fig. 2-3 is a
mixed-logic implementation of a logical AND function of two variables. We
emphasize this point again: each of these symbols (and there are four more)
represents a physical realization of the same truth table:

Logic

Inputs Output

F F F
F T F
T F F
T T T

Each symbol defines a particular type of physical device. Since we know the
truth table (because of the symbol's shape) and the voltage representation of
truth on each input and output (by the presence or absence of circles), we can

Figure 2-3. Symbols for logical AND.

Chap. 2 Realizing Logic in Hardware 37

immediately write down the voltage table for any symbol. Then, referring to a
data book for integrated circuits, we can identify the device. For example:

Logic Voltage

A B M A B M
:=[J-M F F F L L H

-+------+- F T F .. - L H H
T F F H L H
T T T H H L

Here, the symbol completely defines the behavior of both the logic and the
voltage. Can we find a physical device with this voltage table? If so, we can
use this mixed-logic symbol to perform AND with a real device. A look at the
first chip in a TTL data book shows that the 74LSOO Quad Two-Input Nand
Gate behaves this way. Now we have a symbol that describes both a logic
operation and a piece of hardware.

The term quad in the chip's name signifies that the chip contains four
similar gates. "Triple" means three gates on a chip; "dual," two gates, and so
on. The number of gates per chip is determined by the number of inputs and
outputs per gate and the number of pins on the chip.

The term Nand in the name of the 74LSOO chip arose historically from the
view that this chip implemented the logical NAND (NOT AND) function in
positive logic. The user of positive logic is forced into this interpretation, but
since NAND is not a familiar and intuitive logic function, mixed logicians are
not much interested in expressing logic in terms of NANDs. We discuss the
positive-logic convention later in this chapter.

Another common TTL device is the 74LS02 Quad Two-Input Nor Gate.
This device can perform the logical OR function when T = H at the inputs and
T = L at the output:

Logic Voltage

p Q R P Q R
:=L>-R F F F L L H

~ F T T ---- L H L

T F T H L L

T T T H H L

The name Nor derives historically from conventional positive logic, in which
this chip performs the logical NOR (NOT OR) function.

Signal names in mixed logic. In a physical circuit, voltages represent
values of the logic variables. We will refer to the actual voltage representation
of a logic variable as a signal. When we label a circuit's inputs and outputs
with the names of logic variables, we need a rule for also describing the voltage
polarity of that variable at that point. Naming the logic variable is not enough;
we must also name the signal. Here is the convention used in this book for
creating names of signals that correspond to names of logic variables:

38

If a signal has T = L, append a terminal .L to the logic variable's name.
If a signal has T = H, append a terminal .H to the logic variable's name.

Tools for Digital Design Part I

For example, the logic variable PICK might appear in a circuit as the signal
PICK.L or as PICK.H, depending on its particular voltage representation at that
point in the circuit. The terminal .L is always associated with a small circle on
a line in the circuit diagram; the .H form is always associated with a line having
no circle:

PICK.H---- P1CK.L 0----

----PICK.H ----0 P1CK.L

Understand two points thoroughly:

(a) The logic variable is the same in both representations. PICK.H and PICK.L
are two different ways of physically forming the logic variable PICK.

(b) .L does not mean that the voltage is low. Rather, it means that if the
voltage is low, then the value of the logic variable is true . . H is interpreted
analogously.

Frequently, a circuit diagram contains both signals for a logic variable (on
different wires!). We display the voltage convention on the wires of the circuit
diagram and also in the signals' names. You may think this is redundant, but
it is an important aid to clarity. If you show line and signal notations rigorously,
your diagrams will show all the logic and all the voltage information in the
circuit, clearly and conveniently.

Whenever it is necessary to write the name of a logic variable or signal
more than once in a design, the need for the signal notation arises. This happens
when signals appear on more than one page of the circuit diagram, when the
designer prepares a master list of signal names for the circuit, and in other
circumstances. Figure 2-4 illustrates a common digital drafting situation. In the
figure, a signal generated on one page serves as an input elsewhere. With proper
notation, there is never any doubt as to which signal is meant.

-- XYZ.H

--0 PQ.L

Page a

XYZ.L 0-­

PQ.L 0-­

XYZ.H --
Page b Figure 2-4. Illustrating the need for a

'----'- convention for naming signals.

Naming signals is important. The particular notation for distinguishing the
two signals for a variable is not crucial as long as you are consistent. Some
people prefer to append a + and -, or i and ~, to a variable's name; others use
a terminal/to indicate that T = L. There is no widely accepted standard
convention. We use .H and.L in this book because oftheir strength in displaying
voltage assignments.

U sing this signal convention, we reach the final form of the earlier AND
implementation:

Chap. 2 Realizing Logic in Hardware 39

Logic Voltage

A B M A.H B.H M.L

A.H~ ~M.L __ ; ~ ; _ ~ ~ :

B.H~ T F F H L H
T T T H H L

AND/OR duals. Here is another example, this time for an OR operation:

Logic Voltage

C D N C.L D.L N.H

C.L~ N.H __ ~ ~ ~ __: ~ ~
D.L~ T F T L H H

T TTL L H

Inspect the voltage table. You can see that it is equivalent to the one in the
previous example, and therefore again corresponds to the 74LSOO Nand gate.
But this time the logic operation is OR. In this particular use of OR, T = L at
both inputs and T = H at the output. We have identified two uses for the
74LSOO Nand gate-to implement AND and to implement OR. The AND-OR
duality of gate usage is always present, and is related to the principle of duality
in Boolean algebra. On a given gate, the dual symbols for AND and OR have
reversed circles.

Similarly, you may derive mixed-logic notations for other devices. In Fig.
2-5, we have drawn some common chips and have shown their mixed-logic
symbols and their standard chip names. In practice, it is simple to find the
mixed-logic uses of any gate chip, since the data book gives one symbol directly,
and the other one follows immediately by swapping AND-OR shapes and reversing
the circles. Also, the conventional chip names are usually sufficient for writing
down the mixed-logic symbols. Many integrated circuit chips embody AND and
OR, giving us powerful and flexible tools for implementing the logic.

74LS02 =:[)-- =L>--Quad two-input
Nor gate

74LSI0 =t=>- =f:>-Triple three-input
Nand gate

74LS08 =r=>- :[>-Quad two-input
And gate

Figure 2-5. Mixed-logic symbols for some TTL gates.

Some detailed circuit examples. To bring home the exact implications
of the mixed-logic notations, let's study the circuit in Fig. 2-6. Figure 2-6 means:

(a) There are two physical devices (both 74LSOO gates) that function as logical
ANDs when T = H at the inputs and T = L at the outputs.

40 Tools for Digital Design Part I

A.H

XY.H

Z.H
Rll.H

(A-XY).L

(ZoRl]).L

Y.H

Figure 2-6. Schematic of
Y = AoXY + ZoRll.

(b) There is another physical device (again a 74LSOO gate) that functions as
the logical OR when T = L at its inputs and T = H at its output.

(c) There are seven copper wires carrying voltages for the logic variables A,
XY, Z, Rll, (AoXY), (ZORll), and Y.

(d) Truth (T) is represented by a high voltage (H) on signal wires A.H, XY.H,
Z.H, Rll.H, and Y.H.

(e) Truth (T) is represented by a low voltage (L) on signal wires (AoXY).L
and (ZoRll).L.

(f) The circuit implements the .logic equation Y = A 0 XY + ZO Rll .

Consider another example, Fig. 2-7. This drawing tells us:

(a) There is one physical device (a 74LSOO gate) that functions as the logical
OR when T = L at its inputs and T = H at its output.

(b) There is another physical device (again a 74LSOO gate) that functions as
the logical AND when T = H at its inputs and T = L at its output.

(c) There are five copper wires carrying voltages for the logic variables P, R2,
(P + R2), AB, and A3.

(d) Truth (T) is represented by a high voltage (H) on signal wires (P + R2).H
andAB.H.

(e) Truth (T) is represented by a low voltage (L) on signal wires P.L, R2.L,
and A3.L.

(f) This circuit implements the logic equation A3 = ABo(P + R2).

Figures 2-6 and 2-7 are straightforward illustrations of the mixed-logic drafting
conventions.

Chap. 2

P.L~ (P+R2).H
R2.Lo----<:i-/------,

_ ___________ ...,~A3.L
AB.H ~

Figure 2-7. Schematic of A3 = (P + R2) 0 AB.

Realizing Logic in Hardware 41

Mixed-Logic Theory

With this introduction to basic notations, let's examine the theoretical basis of
mixed logic. We will first consider the logical identity operation-one that we
usually take for granted, but which provides important insight into the properties
of mixed logic. Look at Fig. 2-8.

A logic variable A is the input to a box that performs the logical identity
operation and produces Y as output: Y = A.The truth table for the behavior
of the box is just that of the identity function. If we consider the possible voltage
implementations of this box, we have four choices: A.H and Y.H; A.H and Y.L;
A.L and Y.H; and A.L and Y.L. Each of these choices of voltage representation
yields a voltage table, and each choice results in a different mixed-logic realization.
As usual, we use mixed-logic circles to indicate that T = L.

m.H Y.H

L L
H H

A.Ii--t3- y .H

Piece of
wire

Logic my

F F
T T

Four choices of voltage

W.H Y.L

L H
H L

A.H~Y.L

Voltage
inverter

m.L Y.H

H L
L H

A.Lo-G-y .H

Voltage
inverter

m.L Y.L

H H
L L

A.Lo-&y.L

Piece of
wire

A.H------Y.H A.H-{:>o-oy.L A.Lo--{>-y.H A.LO----.... Oy.L

Figure 2-8. Realizations of the logical identity operation.

42 Tools for Digital Design Part I

Contemplate the devices required to realize the four voltage tables that
correspond to our four diagrams. When A.H yields Y.H, we need only a piece
of wire, since the voltage does not change in passing through the identity box.
Similarly, when A.L yields Y.L, we need only a piece of wire. On the other
hand, the voltage table for A.H and Y.L specifies a voltage inverter, for instance
the 74LS04 Inverter Gate. The voltage table for A.L and Y.H also specifies a
voltage inverter. The triangle with a single circle on the input or output is the
customary symbol for the voltage inverter.

We have four ways of performing the identity operation, two of which
require pieces of wire and two of which require a voltage-inverting device. The
mixed logician may use any of the four, as required in the circuit. The obvious
choice is to use minimal hardware, and in most instances the wire will suffice.
However, if the design calls for a change in the voltage representation with no
change in logic, then the mixed logician has convenient ways to change the
voltage representation. The use of a real device-the 74LS04-to accomplish
the logical identity operation is an immediate consequence of mixed-logic theory.

Now consider the logical AND operation, as developed in Fig. 2-9. Two
logic variables A and B are inputs to a box that must provide the logical AND
of A and B as its output Y: Y = A· B. When there are two inputs and one
output, there are 23 = 8 ways to select the voltage conventions. Eight voltage
tables result from the eight assignments. Each voltage assignment produces its
own mixed-logic diagram: the square box labeled "AND" shows the logic, and
the circles show signals in which T = L. Since logical AND is of great importance
to designers, we use the special AND shape instead of the box labeled "AND."

We may ask which of these eight realizations of logical AND correspond
to readily available integrated circuits. A scan of a TTL data book discloses
chips that embody four of the voltage tables. As shown in Fig. 2-9, these chips
are the 74LS08 Quad Two-Input And Gate, which performs AND when T = H
everywhere; the 74LSOO Quad Two-Input Nand Gate, for AND when T = L at
the output; the 74LS02 Quad Two-Input Nor Gate, for AND when T = L at
its inputs; and the 74LS32 Quad Two-Input Or Gate, for AND when T = L
everywhere. Mixed logic gives us four useful building blocks for realizing logical
AND. The other four voltage tables in Fig. 2-9 offer perfectly valid ways of
performing logical AND, but we are unable to find readily available integrated
circuits that conform to these voltage tables; we shall avoid using them in circuit
diagrams meant for actual construction.

The positive-logic convention allows only one choice for logical AND­
the 74LS08. Similarly, the negative-logic convention allows only one choice,
the 74LS32. Mixed logic offers four.

The logical OR operation gives analogous results. Figure 2-10 shows the
treatment. Again, we have eight ways of representing voltage at the inputs and
output, and each choice transforms the truth table for logical OR into a voltage
table. A tour through a TTL data book discloses that the same four integrated
circuits that perform logical AND will also perform logical OR, but the voltages
representing truth are different. The 74LS32 Or Gate, which performs logical
AND when T = L at inputs and output, will perform logical OR when

Chap. 2 Realizing Logic in Hardware 43

:~ AND t- y

Logic

A B Y

F F F
F T F
T F F
T T T

~
Eight choices of voltage

A.H B.H Y.H A.H B.H Y.L A.H B.L Y.H A.H B.L Y.L

L L L L L H L H L L H H

L H L L H H L L L L L H
H L L H L H H H L H H H

H H H H H L H L H H L L

~ =E:}- =13- :f:}-

~ ~ :[)- :[)-

A.L B.H Y.H A.L B.H Y.L A.L B.L Y.H A.L B.L Y.L

H L L H L H H H L H H H
H H L H H H H L L H L H
L L L L L H L H L L H H

L H H L H L L L H L L L

=r:t- :GT ~ ~
:0- :[)-- :G:>- ~

Figure 2-9. Realizations of logical AND.

44 Tools for Digital Design Part I

:j OR r- y

Logic

A B Y

F F F
F T T
T F T
T T T

~
Eight choices of voltage

A.H B.H Y.H A.H B.H Y.L A.H B.L Y.H A.H B.L Y.L

L L L L L H L H L L H H

L H H L H L L L H L L L

H L H H L L H H H H H L

H H H H H L H L H H L L

=G- B- =r:J---
B- B- D-
A.L B.H Y.H A.L B.H Y.L A.L B.L Y.H A.L B.L Y.L

H L L H L H H H L H H H
H H H H H L H L H H L L
L L H L L L L H H L H L
L H H L H L L L H L L L

=r:J-- :G}- :r:J-- :E}-

:[>- =L> B- B-
Figure 2-10. Realizations of logical OR.

Chap. 2 Realizing Logic in Hardware 45

T = H everywhere. Similarly, the 74LS02 Nor Gate performs logical OR when
T = L on the output only; the 74LSOO Nand Gate, when T = L at both inputs;
and the 74LS08 And Gate, when T = L at inputs and output.

Mixed logic gives us four readily available implementations of logical OR.
The other four representations, although valid, do not correspond to readily
available integrated circuits. Positive logic permits only one choice for logical
OR-the 74LS32; negative logic permits only the 74LS08.

Last, let's look at logic inversion. In Fig. 2-11 the development is similar
to that of the logical identity operator, but Y must equal NOT A. The truth
table shows that for logical NOT the logical value ofthe variable must be inverted.
There are four voltage realizations of this truth table: A.H and Y.H, A.H and
Y.L, A.L and Y.H, and A.L and Y.L. Each gives rise to its own mixed-logic
diagram, with the square box labeled "NOT" surrounded by appropriate circles
to display the voltage representation of truth at the input and output.

m.H Y.H

L H
H L

A.H~Y.H

Voltage
inverter

A-1 NOT ~Y
Logic my

F T
T F

Four choices of voltage

m.H Y.L

L L
H H

A.H-&Y.L

Piece of
wire

m.L Y.H

H H
L L

A.L~Y.H

Piece of
wire

m.L Y.L

H L
L H

A.L~Y.L

Voltage
inverter

A.H -[:>0- Y.H A.H -----0 Y.L A.L 0----- Y.H A.L ~ Y.L

Figure 2-11. Realizations of logical NOT.

46 Tools for Digital Design Part I

The four voltage tables correspond, respectively, to a voltage-inverting
device (for instance, the 74LS04), a piece of wire, a piece of wire, and a voltage­
inverting device. This is interesting: the mixed logician may implement logical
NOT with a piece of wire! You can see what is required to achieve this design:
the voltage representing truth is different at the two ends of the wire.

The positive logician and the negative logician each have only one way to
implement logical NOT -with a voltage inverter. The mixed logician potentially
has four ways, two using a piece of hardware and two using just the wire
connecting the input and output.

We get the logical identity "for free" along a wire, as long as the voltage
representations are the same at each end of the wire. We get logical inversion
"for free" along a wire if the voltage representations for truth are different at
the two ends. Occasions arise when we wish to change the voltage representation
of a signal without performing any logic or to perform logical NOT while maintaining
the same voltage representation at the input and output. In digital design, we
do not consciously perform logical identity operations; we assume that we have
identity logic at any point in our circuit unless otherwise specified. On the other
hand, we do indeed frequently perform logical NOT; it is one of our three
important logical operators. Now we make an important choice: the mixed
logician chooses to use the voltage inverter solely to generate the logical identity.
This means that we will never insert a voltage inverter-a real device-into our
circuit unless absolutely necessary. This choice also assures that the voltage
inverter is never used for logical NOT. A corollary is that logical NOT is
performed along a wire if and only if the voltages representing truth are different
at the two ends.

We already have useful symbols for AND and OR; these correspond to
real devices in a circuit. Since we generate logical NOT without a real device,
we need a notation to display logical inversion. 'In a diagram, logical NOT
appears as a slash along the line. In a logic diagram, the slash is necessary to
display the logic. In a circuit diagram that shows both voltage and logic, the
slash is not strictly necessary, since we may infer logic inversion from the
difference in voltage representations at the two ends of the wire. However, we
always include the slash in mixed-logic circuit diagrams. Formally, the slash
shows the point at which the voltage representation changes, and so one side
of the slash should have a circle representing T = L. On either side of the
slash we have our usual identity operation; logical inversion occurs at the slash:

---,(;6>---0 0--...(9)1-' ---

The exact point along the wire at which we put the slash is arbitrary; the designer
chooses a convenient place.

When we need the same voltage representation for the input signal and its
inverted output, we may insert a voltage inverter to the left or to the right of
the slash:

Chap. 2 Realizing Logic in Hardware 47

In practice, we usually omit the T = L circle on the logic-inversion slash, since
it conveys no information that cannot be gained by following the wires from the
slash to the ends. In this book, we will use the slash without the circle except,
in a few cases, for emphasis.

Once again, note carefully that the voltage-inverting device performs no
change in logic; the same logic variable is implemented on both sides of the
voltage inverter, but with different voltage polarities. The device inverts voltage,
not logic. To avoid using the term "inverter," which smacks of logic inversion,
we sometimes refer to the voltage inverter as the "oops" function, implying that
we are satisfied with our logic variable, but, "oops," we need to switch voltage
levels.

Let's implement z = X' Y, making input X available as signal X.L (i.e.,
T = L), and Yavailable with T = H. We would prefer to have a physical
device that performs like this:

X.LO 0
- -----i ---- Z.H

Y.H

No commonly available integrated circuit gate behaves this way. If instead we
choose to use the 74LS02 Nor Gate, the circuit is:

X.LO-__ ~
LH

. Y.L
Y.H---

We inserted a voltage inverter to change signal Y.H into Y.L, the input required
for our AND gate. You will find that adding voltage inverters where necessary
requires no active thought; the little mixed-logic voltage-polarity circles direct
you to do the right thing.

The 74LS04 Inverter is not the only way to invert voltage. Spare Nand
and Nor gates provide several ways, such as those shown in Fig. 2-12. You
may verify the validity of these methods by recalling the logical behavior of
AND and OR. (Integrated circuit data books describe physical considerations
that determine whether you should tie the input signal to both input terminals
of the gate or should fix one input to H or L.)

This is the entire mixed-logic theory. We have laid a firm foundation for
achieving our original circuit-design goals. We have tools to realize logical AND,
OR, and NOT. We have notations that show the voltage representing truth at
every point in the circuit and that show each physical device. We are able to
keep a strict separation of logic and voltage in our diagram-all the logic is
there and all the voltage behavior is there. These mixed-logic notations and
theory can be applied immediately to more complex digital building blocks. As

48 Tools for Digital Design Part I

74LSOO Nand gates 74LS02 Nor gates

--ro--- rt=>- L[>- --r:[>-
T.H F.H

(implemented as H) (implemented as L)

t[)-- P -cC)- P
F.L T.L

(implemented as H) (implemented as L)

Figure 2-12. Nand and Nor gates used as voltage inverters.

we now turn to the analysis and synthesis of mixed-logic circuits, you will see
that the mixed-logic methods allow the creation of a circuit from the original
logic equation (synthesis) as well as the recovery of the original logic equation
from the circuit (analysis), an advantage shared by no other method.

BUILDING AND READING MIXED-LOGIC CIRCUITS

Analyzing Mixed-Logic Circuits

In setting the goals of our circuit design methods, we said that a good circuit
diagram should present the logic in a way that allows the reader to retrieve the
designer's original expression. Mixed logic fulfills this condition; analyzing a
mixed-logic circuit is simple. Here is the prescription: ignore circles and inverters
(since they perform no logic in themselves), interpret the slash as logical NOT
and the AND and OR symbols as logical AND and OR, and read the original
logic equation from the diagram. For instance, read the circuit in Fig. 2-13 to
recover the logic equation

Y=Ao]f+(C+D)

A.L o-------cr--.,
B.Lo--q

C.H -------\ p--oOY.L

D.Lo--d

Figure 2-13. Implementation of Y = A-B + (C + D).

Chap. 2 Realizing Logic in Hardware 49

In words, the thought process is

Yequals A and B-NOT or (C or D)-NOT

If you feel the need for additional information on the diagram, insert the
intermediate signal names and the missing circles on the slashes. You will quickly
develop the skill to read a mixed-logic circuit without these extra legends.

Synthesizing Mixed-Logic Circuits

To implement a given logic equation, begin by sketching a picture of the equation,
using the AND and OR logic symbols, and using the slash for logical NOT.
Label the inputs and outputs with appropriate names of logic variables. At this
point, the emphasis is on the logic, and it is this initial logic framework that
allows us to analyze completed circuits with relative ease. Next, if the input or
output variables have fixed voltage representations, add the appropriate .H, or
.L and its companion circle. This step converts some of the logic variables into
signals and fixes the voltage representation on some of the lines. You may
assume that logic variables without a stated representation are available in either
signal form, and you may use this flexibility in synthesizing the circuit. Usually,
the devices available for implementing the AND and OR operations will be
restricted. The tighter the restrictions, the easier the synthesis. For instance,
if you are given only 74LSOO Nand gates, the synthesis is straightforward however
complex the equations. There is no flexibility, since the only symbols available
are:

This one chip is sufficient: we have a device for AND, one for OR, we can
obtain voltage inversion with the 74LSOO if necessary, and we need no device
for logical NOT.

With a wide choice of building blocks, we have more flexibility, and therefore
more decisions. We wish to optimize the circuit. An obvious criterion for
optimization is to minimize the number of voltage inverters, but other factors
are often relevant, such as using up surplus gates on chips. When a variety of
chips is available, the designer may display virtuosity in developing a satisfying
implementation of the original equation.

Producing a valid circuit design is easy; producing an aesthetic design is
an art. Nevertheless, the general process is straightforward. Select a likely chip
for a gate, insert the corresponding mixed-logic symbol by adding required circles
to the logic symbol, add voltage inverters where needed to make the circles in
the design conform to the requirements of the logic, and then move to a neighboring
element. As the synthesis proceeds, you may notice that a different choice of
chip in a previous step results in fewer inverters. Within reason, you would
probably wish to backtrack and introduce the change. In a short time, the circuit
will converge to an acceptable solution.

50 Tools for Digital Design Part I

AND and OR functions of more than two variables can be handled either
with multi-input gates or with gates with fewer inputs. For instance, either of
the forms in Fig. 2-14 describes a three-variable AND function. Design con­
siderations dictate the choice; the original logic is not affected.

=Op-
Figure 2-14. Realizing a 3-input AND.

Circuit drafting conventions. Circuit diagrams show the logic of the
digital system; they frequently also specify the hardware. The information on
the diagram varies with its intended use. On circuit diagrams that document
actual constructions, each gate must display four hardware items:

(a) An arbitrary label for the specific chip containing the gate, for example,
A13.

(b) The integrated circuit device type, for example, 74LS04.
(c) The pin numbers for each gate input and output.
(d) The function of each pin.

The labels for the chip and the type of device appear either within the symbol
for the device or close by. The pin numbers appear outside the device symbol,
close to each input and output line; and pin-function labels go within the sym­
bol, adjacent to the corresponding input or output.

The mixed-logic symbols for realizations of AND and OR are usually sufficient
to identify the type of device. Our habit is to omit explicit device labels where
no confusion exists, in order to unclutter the diagrams, but specifying device
types is always proper.

Pin-function labels are not necessary for most gates, since the symbol itself
specifies the function of each input and output. On more complex integrated
circuits, function labels are helpful and often necessary for clarity. We omit
pin-function labels on gates, but include the labels on other circuit symbols.

On circuit diagrams intended for actual construction, we must include chip
labels and pin numbers even if we choose to delete device-type notations. Most
of the diagrams in this book deal with the logical properties of circuits rather
than with the detailed hardware; usually, we omit pin numbers and chip labels
to improve the readability of the diagrams.

A chip usually contains several gates; for example, the 74LS02 has four
Nor gates. A common drafting convention is to label each gate as a fraction of
a whole chip; for instance, each 74LS02 Nor gate is labeled "Y4 74LS02," or
"V4 'LS02." Circuit diagrams easily become top-heavy with notation, and in
this book we omit the fraction unless there is a real possibility of confusion.

Chap. 2 Realizing Logic in Hardware 51

You may adopt our conventions or develop your own. In the next section, to
illustrate the full notations, we display each gate with a chip label, device type
(with fraction), and pin numbers. Thereafter, we preserve only information useful
to the context.

Mixed-logic style. Experience in synthesizing mixed-logic circuits leads
to concern about several points of style. We present a few points here and you
will discover others as your mixed-logic skills grow.

Our habit of dropping the circle adjacent to the / operator is a matter of
convention; you are free to accept or reject this convention. The slash is itself
a convention, since we may infer the existence of logical NOT from a diagram
of a voltage circuit without the slash. Nevertheless, we strongly recommend
that you use the slash to indicate logical NOT; it adds greatly to the clarity of
the diagram.

In dealing with voltage inverters and voltage polarities in mixed-logic
syntheses, opportunities for decisions occur. Consider a design for K = A + B,
with input signals A.L and B.H. Any implementation with readily available gates
will have an inverter on one input. Figure 2-15 shows two designs. Which is
better? The designer who will need signal K.L later would probably choose Fig.
2-15b. In other situations, Fig. 2-15a would be appropriate.

A.L

B.H

.!. 'LS04
6

(a)

.!. 'LS04
6

9
A.L

B.H

(b)

K.H

.!. 'LSOO
4

~-"VK.L
Figure 2-15. Two circuits for K =

A + B with signals A.L and B.H. The
diagrams in this section are fully la­
beled. The choice of a particular gate
within a chip is arbitrary.

The next illustration is more clear-cut. To realize G = A + B, again with
inputs A.L and B.H, a good circuit is

A.LO &-
- ----1"'- 'LSOO C.H

B.H /

The circuit has no inverters. Designs using more gates are inferior, even if they
perform the same logic; for example, the following circuit has two inverters:

52 Tools for Digital Design Part I

'-'LS04
6 '-'LS02

~
4 24

A.L Al3 -------~
5~6 3 A15 1 C.L

B.H (~ -

~'LS04
6

Even if we desire G.L as the output in preference to G.H, the second circuit is
still bad, since for any voltage signal we are always only one inverter away from
its other voltage counterpart: we could produce G.L from the first circuit by
adding an inverter to the output. We might find some merit in the second circuit
if, encountering it at the end of the entire design, we find a 74LS02 gate, some
74LS04 inverters, and no 74LSOO gate left over. Then the poor design might
use up spare gates without the need for introducing a new 74LSOO chip. Don't
look too hard for this kind of circuit optimization. Gates are cheap, and your
brain is usually better used in thinking about other aspects of the design.

Be wary of subtly changing the logic with your drafting notations. Figure
2-16 shows three partial circuits, each an implementation of the equations
M = JeX and N = G + X. These circuits have identical wires and gates, and
therefore must perform equivalent logic. But remember the guideline for digital
drafting: the circuit must display the original logic. Only Fig. 2-16a is a proper
implementation of the original logic equations. It is unlikely that the double
logic inversion of X in Figs. 2-16b and 2-16c would have survived earlier sim­
plifications of the logic. We would not expect to see such a form presented for
construction.

We have found the following rule to be helpful in drafting logical NOT in
complex logic circuits:

Place the slash as far to the right as practical on its signal line.

Frequently, an input to a device will always be fixed at F or at T. This
often occurs with the complex chips described in Chapters 3 and 4, where you
may wish never to enable a certain chip feature, or always to enable it. Suppose
that we wish to say "never do it" -we wish to make a signal permanently
FALSE. Here are two mixed-logic representations for the F operation:

F.Lo----{) F.H---t

In this unchanging operation, the voltage on the wire never varies. For convenience,
we sometimes show only the voltage level (H or L) on the diagram:

Chap. 2 Realizing Logic in Hardware 53

Ho---Q L--""'""1

A similar analysis yields two obvious forms for the "always do it" operation.
Part II contains examples of these shorthand notations.

Other Mixed-Logic Notations

The presence or absence of the little circle in mixed logic shows the voltage
polarity at each node in the diagram. Another popular mixed-logic notation for
circuit diagrams is a small triangle to show the polarity of the voltage. A triangle
lying above the line means T = H at that point; a triangle below the line means
T = L. Figure 2-17 illustrates this notation.

eq uivalent to

(a) Inputs

equivalent to

(b) Outputs

THE POSITIVE-LOGIC CONVENTION

Figure 2-17. An alternative mixed-logic
notation.

The positive-logic convention has been widely used in engineering practice. The
convention is easy to learn, but this ease of learning is deceptive, because
designing real circuits with positive logic requires clumsy, constricting rules and
transformations.

When the positive-logic convention is used, logical TRUE is represented
everywhere by a high voltage, and FALSE is represented by a low voltage.
Under these conditions, the voltage table for the 74LS02 Nor Gate can be
transformed into. the truth table for the logical NOR function:

Voltage Positive logic

A B y A B y

L L H F F T
L H L - F T F
H L L T F F
H H L T T F

74LS02 NOR logic function

Similarly, the voltage tables for the 74LSOO Nand Gate, the 74LS08 And
Gate, and the 74LS32 Or Gate can be translated into truth tables for logical
NAND, AND, and OR, respectively. A voltage inverter, for instance the 74LS04,

Chap. 2 Realizing Logic in Hardware 55

performs the logical inversion function. In positive logic, we also may achieve
logic inversion with Nand and Nor gates by feeding the same signal into both
gate inputs; therefore in what follows we are free to use Nand or Nor gates or
inverters for logic inversion. An application of De Morgan's law shows that the
NAND function may be transformed into the inverted-input OR function:

A NAND B = A· B = A + B

Similar transformations of NOR, AND, ~nd OR produce inverted-input
AND, inverted-input NOR; and inverted-input NAND logic functions, respectively.

In positive logic, since logic and voltage are tightly bound together, picking
a physical gate is equivalent to picking a particular logic function. Nand and
Nor gates arise naturally in most transistor-based technologies; fabricating And
and Or gates requires the insertion of voltage inverters within the chips. The
positive logician, in dealing with Nand and Nor gates, implements NAND and
NOR logic or their De Morgan counterparts.

In the customary notation for circuits based on positive logic, a small circle
represents the logical inversion operation. Figure 2-18 shows positive-logic
interpretations of some common gates.

B 8 B V
NAND Inverted-input OR Inverted-input AND NOR

B & G G
AND Inverted-input NOR Inverted-input NAND OR

Figure 2-18. Interpretation of gates in the positive-logic convention.

To realize a logic equation, the positive-logic designer must transform the
logic, either algebraically or graphically, into a form that corresponds to the
chosen gates; in the process, the flavor of the original logic equation vanishes.
An algebraic approach involves repeated applications of De Morgan's law to
recast the original logic expression into one using the positive logic supported
by the chips. Consider the following equation, to be rewritten so as to accommodate
two-input Nor gates:

Y = A + B·C·D

We may transform this equation into one involving only NOR operators (or NOR
and inversion operators, if desired), by any of several sequences of tedious steps.
Here is one such sequence:

56 Tools for Digital Design Part I

Y = A + B·C + D

A+B+C+D

A+B+C+D

Such transformations are prone to error. Figure 2-19 is a positive-logic circuit
diagram of the final form.

A ---------------------------------------,

B ----------------------------~)0.----- y

D

Figure 2-19. Positive-logic implementation of Y = A + BoCoD, using De Morgan's
law and Nor gates.

Digital-design textbooks in which positive-logic techniques are used contain
prescriptions for drafting circuit diagrams using Nand and Nor gates without
performing the algebraic transformations. There are separate sets of rules for
using Nand gates alone, Nor gates alone, and certain combinations of Nand,
Nor, And, and Or gates. The prescriptions require starting with a sum-of-products
or product-of-sums logic expression, thereby forcing upon the designer a particular
form of logic expression solely to achieve a hardware circuit.

We will illustrate circuits based on positive logic using the simplest set of
rules-those for pure Nand-gate synthesis of two-level circuits. (The term level
refers to the maximum number of gates encountered from an input to the output.)
It is assumed that multiple-input Nand gates are available. The rules are:

1. Simplify the function as a sum of products.
2. Draw a Nand gate for each product that has at least two variables. The

variables form the inputs to the Nand gate. These Nand gates are the
first level of gates.

3. Draw a single Nand gate, using either the NAND or inverted-input OR
graphic symbol at the second level. The inputs come from the first­
level outputs.

4. For a product consisting of a single variable, insert an inverter at the
first level; alternatively, use the complement of the variable as an input
to the second-level Nand gate.

Applying these rules to the preceding example produces the two-level result
shown in Fig. 2-20.

Rules for other two-level syntheses are more complex in application. Positive­
logic textbooks do not contain rules for building a circuit for a general multi-

Chap. 2 Realizing Logic in Hardware 57

B ----------1
c ---------~

D

A-------......

y

Figure 2-20. Positive-logic implementation of Y = A + B.C.Jj, using Nand­
gate rules.

level logic expression using arbitrary choices of gates-the rules would be too
cumbersome.

To the mixed logician, these techniques are obnoxious and unnecessary.
With mixed logic, we can readily develop a circuit for any logic equation, of
any complexity, using any desired chips, while preserving the original structure
of the logic equation. In mixed logic, there are no special cases for different
types of gates.

In subsequent chapters, where we encounter complex integrated circuits
with various true-high and true-low inputs and outputs, the benefits of the mixed­
logic notation are even more pronounced.

Reading Positive-Logic Circuit Diagrams

The mixed-logic concept of performing a logic operation (NOT) without a physical
device, and the related concept of a physical device (the inverter) that performs
no logic, evolve directly from our insistence that the original logic be visible in
the circuit diagram. In the positive-logic and negative-logic conventions, where
logic and voltage are rigidly tied together, the inverter performs logic inversion.
We sometimes wish to extract a logic equation from a fixed-convention circuit.
As we have shown, it is not possible to recover the original logic; the circuit
shows only a transformed version of the original. Can a mixed logician read a
positive logic circuit? Certainly; there are several approaches. One method is
to read the positive-logic diagram directly, interpreting Nand gates as logical
NAND (NOT AND), Nor gates as logical NOR (NOT OR), inverters as logical
NOT, and so on. Then write a logic equation from the circuit. Using this
approach, we write A NAND Bas AoB, and A NOR B becomes A + B. If you
are unhappy with the number of logic inversions in the result, then apply
De Morgan's law to try to eliminate some of them. Similar approaches allow
us to read negative-logic diagrams.

As an example, consider Fig. 2-21, a positive-logic-convention circuit.
Following the prescription, we have

58

K = (AoB)o(B + C)

=(A+B)o(B+C)

= (A + B) + (B + C)

=AoB+]JoC

Tools for Digital Design

(2-1)

(2-2)

Part I

A

B------~--~ __ ~ K

c-------/
Figure 2-21. A circuit in the positive-logic convention. The circles represent
logic inversions.

When do we stop manipulating the expressions for K? From the circuit in Fig.
2-21, we don't know. All the above Boolean algebraic forms of K are legitimate,
but we have no way to tell what the designer originally had in mind. We can
be fairly sure it was not Eq. (2-1)!

This method of reading positive-logie-convention diagrams produces a Boolean
equation from the unmodified circuit diagram and transforms the equation into
a more tractable form. Another method is to transform the positive-logie-convention
circuit diagram into mixed logic, from which we read off an equation. This is
a graphical method, whereas the first method is algebraic. For the graphical
method, take the following steps. First, append .H to the positive logic inputs
and outputs. If you wish, replace a negated input or output by the non-negated
mixed-logic form. For example, an input G becomes a mixed logic G .H, and
you may express this as G.L with a circle on the input line. Next, wherever
the circles do not match at the end~ of a line, insert a slash to emphasize the
implied logical NOT. Where a gate is surrounded by slashes, you may simplify
the solution by altering the AND or OR gate symbol to its mixed-logic OR or
AND counterpart. This is an application of De Morgan's law, and on the diagram
the result is an inversion of circles and a change of the logic symbol to its dual.
The circle inversions require rectification of the slashes on the gate input and
output lines, leading to a simpler circuit. The process is shown in Fig. 2-22.
Mter this conversion to a mixed-logic circuit, reading the logic is simple.

In Fig. 2-23 we depict a conversion of the previous example to mixed
logic. The result is the same as Eq. (2-2). Again, we cannot be sure if this is
the designer's original equation, since Fig. 2-21 does not preserve the original
equation.

We might investigate how a mixed logician would handle the original synthesis
problem. Equation (2-2) represents one of the possible starting points. In a
mixed-logic synthesis for this equation, one choice for inputs is A.H, B.H, and
C.L, in accordance with Fig. 2-21, and we might assume that the form of output
K is unspecified. Figure 2-24 shows a mixed-logic circuit for Eq. (2-2). Because
we permit K to appear in either signal form, Fig. 2-24 contains one less inverter
than Fig. 2-21. Whether this ends up saving a gate will be determined by the
needs of the larger design. We may require only signal K.H later, and thus the

Chap. 2 Realizing Logic in Hardware 59

Figure 2-22. Some logic transforma­
tions on gates.

saved 74LS04 would reappear to convert K.L to K.H. However, the mixed
logician is not preoccupied with voltages; the drafting conventions handle voltages
automatically. The mixed-logic method creates the opportunity for saving gates.

In our experience, for a given logic expression, mixed logic always produces
a result that is at least as economical of hardware as other systems. Mixed­
logic circuits often save hardware while preserving the original logic in the
diagram.

A.H

B.H ----,--1._..--/ K.H

C.L 0-----1----1

(a) Step I

A.H

B.H ----,-........,L_/ K.H

C.L o------<t ___

(b) Step 2: K = /ioB + jjoc

Figure 2-23. Converting Fig. 2-21 to mixed logic.

60 Tools for Digital Design Part I

A.H ------f-q

B.H-........ --i

X>--OK.L

C.Lo-------q

Figure 2-24. A mixed-logic circuit for K = A-B + B-C.

We close the discussion of other drafting conventions with a warning. In
some parts of the electrical engineering community, "logic 1" and "logic 0"
refer to the high-voltage level and the low-voltage level, respectively. This is
an old use of the word logic, originating in the early days of digital circuits to
distinguish a voltage level (a range of voltage) from an exact value of voltage.
The terminology illustrates the confusion that arises when logic values and voltage
levels are not kept as separate concepts. This jargon is giving way to more
modern concepts of separate logic and voltage, but you will sometimes encounter
the old usage, so be alert when you deal with existing documentation and when
you talk with other hardware designers.

MIXED LOGIC FOR OTHER LOGIC FUNCTIONS

EXCLUSIVE OR and COINCIDENCE

We have stressed AND, OR, and NOT as natural logic elements for designers.
Are there other Boolean functions of two variables that are used intuitively in
designs? Two more functions are of sufficient value to be included in our set
of simple logic building blocks. These correspond to our concepts of "different"
and "same." The EXCLUSIVE OR (EaR) logic function is true only if its two
inputs have different logical values; one input is true while the other is false.
The COINCIDENCE (or EQUIVALENCE) function is true only when both of
its inputs are the same-both true or both false. Logic operator notations and
drafting symbols for these logic operations are

Logic symbol Drafting symbol

EXCLUSIVE OR

COINCIDENCE o jD-
Chap. 2 Realizing Logic in Hardware 61

These operators have the following truth tables:

Logic

A B A EEl B A0B

F F F T
F T T F
T F T F
T T F T

Observe that0is the inverse of EEl. The methods used in Chapter 1 yield Boolean
equations for these functions in terms of the familiar AND, OR, and NOT
operators:

AEElB=A-B+A-:B

A0B = A-:B +A-B

These are well-known and useful expansions of EOR and COINCIDENCE.
Memorize them. In the evaluation hierarchy for logical operators, EOR and
COINCIDENCE fall below NOT and above AND.

A glance through a TTL data book reveals a chip with a promising name,
the 74LS86 Quad Two-Input Exclusive Or Gate, whose voltage table is

74LS86 Voltage

Inputs Output

L
L
H
H

L
H
L
H

L
H
H
L

Our usual method of comparing a logic truth table with a device's voltage table
produces an amazing result: the 74LS86 yields four mixed-logic realizations for
the EXCLUSIVE OR logic function! The drafting symbols are:

You should verify that substituting the indicated voltage values for the T and F
in the truth table will in each case give a voltage table that is equivalent to that
of the 74LS86.

This is not all-the 74LS86 also gives four representations of the logical
COINCIDENCE operator. Here are the symbols:

62 Tools for Digital Design Part I

Notice the pattern: the EOR symbols have an even number of circles, whereas
the COINCIDENCE symbols have an odd number of circles. This marvelous
74LS86 chip gives eight building blocks for our drafting kit. We may use any
of the four EOR symbols, depending on the requirements for our particular
circuit, and still perform EOR logic. For instance, Fig. 2-25 is a drawing of
two syntheses of a logic equation involving EOR. With mixed logic, these designs
arise naturally, with no mental effort wasted on logic-voltage interrelations.

A.H
B.H

~M.L
C.H
D.H

D-M.H

Figure 2-25. Mixed-logic circuits for M = (A-B) (fJ (C + D).

Such elegant and useful results send a thrill of joy through the mixed
logician. These eight easily remembered symbols allow us to produce EOR and
COINCIDENCE in a simple, efficient manner.

Open-Collector Gates

In typical TTL integrated circuits, we cannot connect two outputs directly together;
such an act results in improper electronic circuit operation and may damage the
gates. If one output is in its low-voltage state and the other is in its high-voltage
state, an "output fight" ensues. High current passes from Vee to ground through
both chips. To merge logic signals, we normally use an OR or an AND gate;
the choice depends on the function we wish to perform. However, the open­
collector branch of TTL technology allows us to tie outputs together without
using an explicit AND or OR gate, thereby creating a wired OR or wired AND.
Open-collector gates are an interesting use of mixed-logic theory.

The technology of regular and open-collector TTL circuits is discussed in
Chapter 12; for now it is sufficient to describe the effect of the open collector.
In an open-collector gate, the output circuit is incomplete-the output has no
internal path to Vee as in regular TTL gates. A regular TTL gate supplies solid
voltages for both high and low output states. The open-collector gate can supply
a solid low-voltage level when this is desired, but in its high-output state the
gate acts as if it is disconnected. Many open-collector outputs can be wired
together without electronic conflict, even if the outputs are in different states;
the lows dominate, and the highs act as if they are not there. Any low output
voltage will cause the voltage of the entire output circuit to be low. To provide
a valid high-voltage level, the designer of an open-collector circuit must supply
a single connection to Vee. This is done with a pull-up resistor. The function
of the resistor is to establish a valid high-voltage level when none of the open­
collector outputs is in the low-voltage state. With the addition of the pull-up
resistor, the open-collector circuit produces a normal TTL-level output that can
serve as an input to one or more TTL-compatible circuits.

Chap. 2 Realizing Logic in Hardware 63

With this voltage behavior, what logic is performed? We think of each
open-collector output as an input to a logic box that actually contains wires
connected together and a pull-up resistor. What is the output of this logic box?

Outputs from
open-collector g ates

\
Input 1 -

Input 2 -

-

Output

I--

When two open-collector outputs serve as inputs to the box, the voltage table
is:

Input, Input2 Output

L L L
L H L
H L L
H H H

If we choose the T = H convention at all inputs and outputs, this voltage
table transforms into the truth table for AND; when T = L at all inputs and
outputs, we get the OR truth table. The results are the same when there are
more than two inputs to the circuit. Here is the fundamental logical behavior
of open collectors: open-collector circuits perform a wired AND when high
voltage equals truth, and a wired OR when low voltage equals truth.

Let's consider a specific open-collector chip. The 7406 Open-Collector
Inverter is a typical gate of this type. To get the wired-OR behavior, T must
equal L at each 7406 output in the circuit. (Of course, this means that T = H
at the inputs to the 7406, but this has no bearing on the open-collector behavior.)
In Fig. 2-26 we show open-collector circuits for a wired OR and a wired AND,
using the 7406 Inverter. The figure also shows the customary graphic notation
for open-collector outputs-a vertical line within the gate symbol, near the
output. In Fig. 2-26, the logic is emphasized with a dotted-line symbol; in actual
circuit diagrams you may use such a notation or omit it.

Open-collector circuits are now used only in a few special applications.
You will encounter several of these later in this book. Open-collector circuits
are used only rarely to build combinational logic functions, but such uses provide
such a satisfying display ofthe power of mixed logic that we include one example.

64 Tools for Digital Design Part I

A.H-----(

B.H---!

C.H-----(

W.Lo---a

X.LG---Cl

Y.Lo----a

\-------...

\
\
\
\
I

+

/O-------<~--+----~----~::>___O Y.L
I /
I /1
I /
I ",./

/o--O/C-.---l ///

7406
L _____ ---

Y=A+B+C

(a) Wired OR

+

-...,
"-"-

'\
\
\
\
\

>---~~-----~----_+--Z.H

,/

7406
L _______ ---//

(b) Wired AND

/
/

/

I
I

Figure 2-26. Wired logic with a 7406 open-collector inverter.

Suppose we wish to design a circuit to satisfy the equation

OUT = A· B·C + D + E

using the 7406 Open-Collector Inverter. The mixed logician proceeds as follows.
We require a three-input OR circuit, one of the inputs being a three-input AND.
The wired AND and the wired OR will each require a pull-up resistor. At the
output of the wired AND, T = H, but T must equal L at the contributors to
the wired OR. Therefore, we know we must introduce a device to change voltage
conventions, and this device must produce an open-collector output to feed into
the wired OR. The 7406 is a perfectly good voltage inverter that produces an
open-collector output, and so our schematic takes the form of Fig. 2-27. Since

Chap. 2 Realizing Logic in Hardware 65

+ +

A.L XJ---...--+--u OUT.L

B.L

C.L

7406

D.H-----------I

E.H -----------1

7406

OUT = AoBoC + D + E

Figure 2-27. A logic realization with open-collector gates.

the 7406 contains six open-collector inverter gates, this design requires only one
chip and two pull-up resistors.

The Less-Used Logic Functions

To close our discussion of the use of mixed-logic methods for simple logic
functions we will examine how we might directly realize each of the Boolean
functions of up to two variables. Hardware designers make heavy use of AND,
OR, NOT, EOR, and COINCIDENCE, since each represents a construct that
humans use in their everyday lives. There are other Boolean functions of two
input variables, seldom used by designers but of interest to symbolic logicians.
A truth table for a function with two inputs has four rows; 24 = 16 different
output functions are possible with two inputs.

Table 2-1 contains truth tables for these 16 functions, ZO through Z15.
You are already familiar with several of these: Zl implements the AND function,
Z6 is EOR, Z7 is OR, and Z9 is COINCIDENCE. We know that mixed logicians
have several ways to handle these functions; one is to use the 74LSOO Nand
Gate and the 74LS86 Exclusive Or Gate. Several other functions listed in Table
2-1 are available to mixed logicians "for free": ZO and Zl5 are the FALSE and
TRUE logic functions, easily created by connecting a wire to an appropriate
voltage source. Z3, Z5, ZlO, and Z12 are really functions of a single variable,

66 Tools for Digital Design Part I

TABLE 2-1 LOGIC FUNCTIONS OF TWO VARIABLES

A B ZO Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 Z11 Z12 Z13 Z14 Z15

F F F F F F F F F F T T T T T T T T
F T F F F F T T T T F F F F T T T T
T F F F T T F F T T F F T T F F T T
T T F T F T F T F T F T F T F T F T

representing the identity operation on A and B, and the inversion operation on
B and A, respectively. These functions are available at no cost, with proper
choices of voltage conventions.

The remaining six two-variable Boolean functions are less familiar, since
they do not correspond closely to everyday concepts:

Z14 = A NANDB

Z8 = ANORB

Z13 = A IMPLIES B

Z11 = B IMPLIES A

Z2 = NOT(A IMPLIES B)

Z4 = NOT(B IMPLIES A)

We found that the 74LS86 chip would generate two logic functions, EOR
and COINCIDENCE, each in four different ways. All eight ways of choosing
input and output voltage conventions produce realizations of these two functions.
Now consider the 74LSOO Nand Gate. We have used only two of its eight
possible choices of voltage representation-one to implement AND and another
to implement OR. What logic functions will the other six ways implement?

In Fig. 2-28 we display all of the eight possibilities, using a logician's
notation for the operators. Rearrange the rows of the truth tables into the more
familiar form and compare the tables with those of Table 2-1. You can see that
the 74LSOO Nand Gate will, if we desire, produce eight different logic functions!
In fact, given the mixed-logician's freedom to select useful voltage representations
of the logic variables, we now have designs requiring no more than a single gate
for each of the 16 Boolean functions of two variables-an elegant result.

In Fig. 2-28, notice how the mixed logician produces the logical NAND
function with the Nand gate: no voltage-polarity circles on any input or output.
In the positive-logic convention, NAND logic generated by the 74LSOO appears
with an inversion circle on the output.

You may use chips other than the 74LSOO for a variety of logic functions;
ways are suggested in the exercises at the end of the chapter. In Chapter 3 you
will see an elegant circuit that will produce all 16 functions.

Our discussion of the foundations and methodology of mixed logic is complete.
You have a design tool of unsurpassed power for realizing logic expressions of
arbitrary form with any gates you wish to use. In the next chapter we explore
more complex combinational building blocks. Each of these has one or more
mixed-logic symbols to add to your drafting tool kit.

Chap. 2 Realizing Logic in Hardware 67

74LSOO
Voltage

A B Y

L L H
L H H
H L H
H H L

A.H B.H Y.H A.L B.H Y.H

r F T =f0- T F T :rJ-F T T T T T
T F T F F T
T T F Y = A NAND B F T F Y = B IMPLIES A

A.H B.H Y.L A.L B.H Y.L

F F F =fJ- T F F :Gr F T F T T F
T F F F F F
T T T Y = A AND B F T T Y = B IMPLIES A

A.H B.L Y.H A.L B.L Y.H

F T T :LJ- T T T :LJ-F F T T F T
T T T F T T
T F F Y = A IMPLIES B F F F Y =A OR B

A.H B.L Y.L A.L B.L Y.L

F T F ~ T T F ~ F F F T F F
T T F F T F
T F T Y = A IMPLIES B F F T Y = A NOR B

Figure 2-28. What logic does the 74LSOO Nand Gate peIform?

READINGS AND SOURCES

DIETMEYER, DONALD L., Logic Design of Digital Systems, 2nd ed. Allyn & Bacon, Boston,
1978. Traditional positive-logic development.

FAST: Fairchild Advanced Schottky TTL. Fairchild Camera and Instrument Corporation,
Digital Products Division, South Portland, Maine. Data book for the FAST series of
TTL chips.

FLETCHER, WILLIAM I., An Engineering Approach to Digital Design. Prentice-Hall, En­
glewood Cliffs, N.J., 1980. Uses mixed logic.

HILL, FREDERICK J., and GERALD R. PETERSON, Introduction to Switching Theory and
Logical Design, 3rd ed. John Wiley & Sons, New York, 1981. Traditional positive­
logic development.

68 Tools for Digital Design Part I

MALEY, G. A., and J. EARLE, The Logic Design of Transistor Digital Computers. Prentice­
Hall, Englewood Cliffs, N.J., 1963. An influential work; look here (for example, at
page 114) to see how difficult design was before the advent of mixed logic.

MANa, M. MORRIS, Digital Design. Prentice-Hall, Englewood Cliffs, N.J., 1984. Traditional
positive-logic development.

PROSSER, FRANKLIN, and DAVID WINKEL, "Mixed logic leads to maximum clarity with
minimum hardware," Computer Design, May 1977, page 111.

Systems Design Handbook, 2nd ed. Monolithic Memories, 2175 Mission College Blvd.,
Santa Clara, Calif. 95054, 1985. Manufacturer's data book espousing mixed logic (see
pages 2-48).

The TTL Data Book. Texas Instruments, P.O. Box 225012, Dallas, Tex. 75265. A good
source of information about TTL chips.

EXERCISES

2-1. Write the voltage tables for the following devices:

(a) (b) (c)

::::[)-
(d) (e) (I)

2-2. Using a TTL data book for reference, find physical devices (where possible) that
correspond to the logic symbols of Exercise 2-l.

2-3. Many popular integrated circuits have 16 pins. What is the widest (most inputs)
AND or OR gate that a 16-pin chip will accommodate? Base your answer solely
on the number of pins. Look in a TTL data book to see if you can find any chips
of this type.

2-4. What is positive logic? Negative logic? What is the positive-logic convention?
The negative-logic convention? The mixed-logic convention?

2-5. Explain carefully the meaning of these mixed-logic notations:
LOADH
LOADH.H
LOADH.L

2-6. What is the difference in logic performed by the signals XYZ.H and XYZ.L?
2-7. True or false: The .H notation means that the voltage used to represent a given

logic variable is high.
2-8. Without looking at a data book, give the probable complete chip name for an

integrated circuit that contains elements represented by the following symbol:

Chap. 2 Realizing Logic in Hardware 69

2-9. Why do we not wish to think of a 74LSOO Quad Two-Input Nand gate as generating
the NAND logic function?

2-10. Give the dual of each of these mixed-logic symbols:

(a) (b) (c) (d)

2-11. Why do we wish to maintain a strict separation of the concepts oflogic and voltage?
2-12. How does a mixed logician denote logical NOT? What device is used?
2-13. Fill in all intermediate signal names on this mixed-logic circuit diagram:

A.H---~

B.Lo-~f-~

C.H---4

D.H----{

2-14. What logic does each of these circuit elements perform?

K.H

CH~, ALfO-' ML[D-' PHr=r'
H L H F

(a) (b)

2-15. Here is a legal mixed-logic diagram:

A.H

B.H

(c)

D.H
C.H

(d)

What logic does this circuit implement? Why do we not prefer this notation? What
is the preferred notation?

2-16. Explain the difference between synthesis and analysis.

2-17. State the prescription for analyzing mixed-logic circuits.
\ 2-18. Analyze these circuits to produce the equations for the outputs:

70

AH:;:r=r B.L Y.L

C.L

A.H

B.H

C.H

(a)

(b)

Y.H

Tools for Digital Design Part I

A.H

B.H Y.H

C.H

(c)

A.H
B.H

Y.H
C.H

D.H

E.H

G.H

(d)

2-19. Synthesize the following equations using only the 74LSOO Quad Two-Input Nand
Gate. The inputs are generated elsewhere as A.L, B.H, C.L, D.L, and E.H. The
desired voltage representation for truth on the output is given with each equation.
(a) Y=AoB+CoD (Y.H)
(b) Y = (A + D)o(B + E) (Y.L)
(c) Y = A + C + B + E (Y.H)
(d) Y=AoBoC+BoE (Y.H)
(e) Y = AoD (Y.L)

2-20. Repeat Exercise 2-19 with the same voltage conventions, but expand your catalog
of available integrated circuits to include the 74LS02, 74LS04, and 74LSIO chips.

2-21. Synthesize the following equations, using any chip in the TTL data book. The
available signals are A.H, B.H, B.L, C.H, D.H, and E.L. Let the output signal
convention for each circuit be the natural one arising from your synthesis.
(a) Y = JjoCoD + EoBoA
(b) Y = JjoCoD + 1NJ'
(c) Y = (A + B + C) o(D + E)
(d) Y = (A + B + C)oD
(e) Y = A + B + C + D + E
(f) Y = (AoB + C)o(D EEl E)
(g) Y = (AoB + C)o(D 0 E)

2-22. We may express any Boolean function using only the AND, OR, and NOT logic
functions. Therefore, if we wish, we may build any Boolean function using only
74LSOO Nand gates. Why? Can we similarly implement any Boolean function
using only 74LS08 And gates? Why or why not?

2-23. (a) Give expressions for X EEl Y and X 0 Y in terms of AND, OR, and NOT
operators.

(b) By comparing truth and voltage tables, derive the four 74LS86 mixed-logic
representations for EEl.

(c) In similar manner, derive the four 74LS86 representations for 0.
2-24. Give efficient mixed-logic syntheses for the following logic equations, using only

the specified gates and signal polarities. Do not perform any transformations on
the logic equations.

Chap. 2 Realizing Logic in Hardware 71

(a) OUT = (troB + C) 0 (BoDoE) + D, using two-input Nor gates (74LS02),
two-input Exclusive Or gates (74LS86), and signals A.H, B.H, C.H, G.L, D.L,

E.L, OU.;::.T..;.::.H=.=-------==--==~::__
(b) OUT = «X 0 (YoZ»oZ + W) <±l P, using two-input Or gates (74LS32), two-

input Exclusive Or gates (74LS86), Inverters (74LS04), and signals P.H, P.L,
W.H, XH, Y.L, Z.H, and OUT.H.

(c) X = A <±l (Ji + C 0 (DoA », using two-input Nor gates (74LS02), two-input
Or gates (74LS32), two-input Exclusive Or gates (74LS86), Inverters (74LS04),
and signals A.L, B.H, G.L, D.H, D.L, and X.L.

(d) Y = (A oB + C)o(D <±l E + B), using two-input Nand gates (74LSOO), two­
input Nor gates (74LS02), two-input Exclusive Or gates (74LS86), Inverters
(74LS04), and signals A.L, B.H, G.L, D.H, D.L, E.L, Y.H, and Y.L.

2-25. Consider the function X of Exercise 1-33: X is true only when tw02-bit binary
numbers A,B and C,D are different.
(a) Working directly from the definition of X, write a logic equation for X, making

use of the EOR operator.
(b) Working directly from the definition of X, write a logic equation for X, making

use of the COINCIDENCE operator.
(c) Show how you may use De Morgan's law to transform the expression for X

of part (a) into the expression for X of part (b).
(d) Show the equivalence of your results for parts (a) and (b) to the results of

Exercise 1-33.
2-26. Derive a logic expression that is true if one 5-bit positive binary number A is less

than another similar number B.

2-27. Many cars have an alarm buzzer that warns of unfastened seat belts, lights left
on, and the key left in the ignition. The system might operate as follows:

The alarm should sound if the driver's seat belt is not fastened when the motor
is running, or if the passenger seat is occupied and the passenger's seat belt is
not fastened when the motor is running, or if the lights are on when the key is
not in the ignition switch, or if the key is in the ignition switch when the motor
is not running and the driver's door is open.

Assign a meaningful name to each variable in the statement, and write a logic
equation for the alarm buzzer's control signal. You may find it useful to break
the statement of the buzzer's behavior into several statements and combine these
statements to produce your final result.

2-28. You are to design a 5-input circuit, 4 inputs of which form the binary representa­
tion of a decimal digit (in other words, the BCD code D,C,B,A for a digit 0
through 9). The fifth line is a control signal CL. If the control signal is false, the
single output of the circuit should be true only if the decimal input number is 4 or
greater. If CL is true, the output should be the inverse of input bit C . You should
be able to write an equation for the output without writing the large (32-row) truth
table. Express the equation in a circuit, using chips of your choice.

2-29. In circuit diagrams, the small circle means dramatically different things to a mixed
logician than to a positive logician. Explain.

2-30. To a positive logician, what logic does the inverter chip perform? To a mixed
logician, what logic does the inverter chip perform?

2-31. Here is a circuit with the positive-logic convention.

72 Tools for Digital Design Part I

A
B

C

D

E
G

(a) Write a logic equation directly from the diagram.
(b) Convert the diagram to mixed-logic notation.

x

(c) Analyze the mixed-logic diagram, and show the equivalence of the result with
that obtained in part (a).

2-32. Exercise 1-36 produced logic equations for the seven segments a through g of a
decimal digit display. Design a circuit for each of these seven equations, making
T = H at all inputs and T "= L at each output. Use only 74LSOO, 74LS02, and
74LS04 chips, and try to minimize the total chip count in the entire design. Don't
overlook the possibility of sharing common terms among the seven equations.

2-33. Design a circuit embodying OUT = AoBoC + D + E, using only the 7406 Open
Collector Inverter. You may choose the voltage representations of truth at the
inputs and outputs.

2-34. Read the section in Chapter 12 on computing resistor values for open-collector
circuits. Specify suitable values of any resistors in your solution to Exercise 2-33.

2-35. The Boolean implication function, denoted by::>, is important in the study of
symbolic logic, but not in digital design. From Fig. 2-28, you saw that it is possible
to realize logical implication with a 74LSOO gate. Show a mixed-logic symbol that
realizes Y = A ::> B, using a single 74LS02 Nor gate.

2-36. Suppose a 74LS32 Or Gate were used as indicated by the mixed-logic diagram

What Boolean logic function (of two inputs) does the output produce?
2-37. At one time, designers developed a complete logic family of inverters, AND and

OR gates, and so on, based on fluid flow. These devices were proposed to immunize
military devices from nuclear radiation. It was also suggested that fluid-flow devices
might drive mechanical devices such as printers and card readers directly with fluid
logic, bypassing the expensive conversion of electronic digital signals to mechanical
control signals. The scheme is now only of historical interest, but it is interesting
to contemplate how this class of device might fit in with our modern design methods.
Suppose you are given a family of fluid-flow devices and are asked to build a digital
system using them.

Chap. 2 Realizing Logic in Hardware 73

(a) What definition of fluid flow (either at rest or moving) would you choose to
represent logic truth?

(b) Could you still use our standard drafting symbols to represent designs with
fluid logic elements?

(c) Would there still be little circles? If so, what would they mean?
(d) On our standard logic diagrams, a line represents a wire or an electrical path.

What would a line represent in a fluid-logic circuit?
2-38. Read the sections in Chapter 12 on integrated circuit data sheets and performance

parameters. Now consider a 74LS04 Inverter chip. What can you say about the
voltage on one of the inverter outputs if its input receives:
(a) A voltage of O.6V?
(b) A voltage of 1.6V?
(c) A voltage of 2.6V?

2-39. Using the triangle notation of Fig. 2-17 for displaying mixed-logic voltage polarities,
redraw Fig. 2-13.

74 Tools for Digital Design Part I

Building Blocks
for Digital Design

The construction of most digital systems is a large task. Disciplined designers
in any field will subdivide the original task into manageable subunits-building
blocks-and will use the standard subunits wherever possible. In digital hardware,
the building blocks have such names as adders, registers, and multiplexers.

Logic theory shows that all digital operations may be reduced to elementary
logic functions. We could regard a digital system as a huge collection of AND,
OR, and NOT circuits, but the result would be unintelligible. We need to move
up one level of abstraction from gates and consider some of the common operations
that digital designers wish to perform. Some candidates are:

(a) Moving data from one part of the machine to another.
(b) Selecting data from one of several sources.
(c) Routing data from a source to one of several destinations.
(d) Transforming data from one representation to another.
(e) Comparing data arithmetically with other data.
(f) Manipulating data arithmetically or logically, for example, summing two

binary numbers.

We can perform all these operations with suitable arrangements of AND,
OR, and NOT gates, but always designing at this level would be onerous, lengthy,
and error-prone. Such an approach would be comparable to programming every
software problem in binary machine language. Instead, we need to develop
building blocks to perform standard digital system operations. The building
blocks will allow us to suppress much irrelevant detail and design at a higher

75

level. The procedure is analogous to giving the architect components such as
doors, walls, and stairs instead of insisting that he design only with boards, nails,
and screws.

INTEGRATED CIRCUIT COMPLEXITY

In Chapter 2, you studied low-level building blocks-AND, OR, and NOT.
These come in integrated circuit packages containing a few gates that are not
interconnected and that can be used in synthesizing elementary circuits from
Boolean algebraic equations. The industry's name for devices of this complexity,
containing up to 10 gates, is SSI (small-scale integration).

Digital designers find that operations such as those we listed above-(a)
to (O-occur in nearly any system design. As a result, manufacturers have
provided integrated circuit packages of interconnected gates to perform these
operations. Chips that contain from 10 to about 100 gates are called MSI (medium­
scale integration). Circuits with a nominal complexity of about 100 to 1,000
gates are classified as LSI (large-scale integration), and circuits with more than
the equivalent of 1 ,000 gates are called VLSI (very-large-scale integration). Micro­
processors and memory arrays are examples of VLSI integrated circuits, as are
many special-purpose chips. The boundaries between the categories are only
suggestive; in fact, the use of the term LSI as a measure of chip complexity is
waning.

Each class of integrated circuit-SSI, MSI, LSI, and VLSI-is important
at its appropriate level of design. The digital designer should try to design at
the highest conceptual level suitable to the problem, just as the software specialist
should seek to use prepackaged programs or a high-level language instead of
assembly language when possible. In software programming, the accomplished
problem solver has not only a knowledge of Fortran, but also of computer
organization, system structure, assembly language, and machine processes. Sim­
ilarly, to achieve excellence in solving problems with digital hardware, we need
skill in using all our tools, from the elementary to the complex.

COMBINATIONAL BUILDING BLOCKS

Combinational and Sequential Circuits

In this chapter, we will develop a set of building blocks that have hardware
implementations of the MSI or LSI level of complexity, and have no internal
storage capacity, or "memory." Such circuits, with outputs that depend only
on the present values of the inputs, are called combinational. The important
class of circuits that depend also on the ,condition of past outputs is called
sequential. We will present sequential circuits and sequential building blocks in
Chapter 4. Table 12-1, at the end of Chapter 12, is a list of useful SSI and MSI
integrated circuits.

76 Tools for Digital Design Part I

The Multiplexer

A multiplexer is a device for selecting one of several possible input signals and
presenting that signal to an output terminal. It is analogous to a mechanical
switch, such as the selector switch of a stereo amplifier (Fig. 3-1). The amplifier
switch is used for selecting the input that will drive the speaker. Except for the
moving hand, the electronic analog is easily constructed. We use Boolean variables
instead of mechanical motion to select a given input. Consider a two-position
switch with inputs A and B and output Y, such as shown in Fig. 3-2. Introduce
a variable S to describe the position of the switch and let S = 0 if the switch
is up and S = 1 if the switch is down. A Boolean equation for the output Y is

Y = AoS + B-S

Using this equation, we can build an electronic analog of the switch; Fig. 3-3
is one design. There, S is the select input.

TAPE

PHONO

•

Speaker

• AUX

Figure 3-1. A mechanical selector
switch.

A.H--------/

S.H --4_--__ ~
B.H -------~

Y.H

A •• --"~ ----.Y
B •• --••

Figure 3-2. A two-position mechani­
cal switch.

Figure 3-3. Implementation of the
electronic switch Y = A'S + B'S.

Commercial MSI devices correspond to the more complex switch shown
in Fig. 3-4. The right-hand switch, called an enable (or strobe), acts as a Boolean
AND function. If we call the closed position of the enable switch G and the
open position G, then

Chap. 3

Y = Go(A-S + BoS) (3-1)

Select Enable

Building Blocks for Digital Design

Figure 3-4. An enabled selector
switch.

77

Figure 3-5 is a schematic for a device based on this equation that behaves like
common commercial devices. Such a circuit is called a 2-input multiplexer (mux);
its mixed-logic symbol and the representation of Eq. (3-1) are shown in Fig. 3-6.
Figure 3-7 is a diagram ofa typical commercial device, the 74LS157 Quad Two­
Input Multiplexer. This chip has four 2-input mUltiplexer units (designated 1
through 4) packaged in a single integrated circuit chip, with each mux sharing
a common select input S and a common enable input En.

A.H--------,.......(

G.Lo--I-<l

s.H=~=====LJ B.H

A.H

B.H

G.L

S.H

(a) Mux symbol (b) Mux circuit for
Y=Go(AoS+BoS)

Figure 3-6. Mixed-logic multiplexer notations.

78

Y.H

Y.H

Figure 3-5. An enabled two-position
electronic selector switch.

r------------ -En ---1

IB

2A

2B

3A

3B

14A
I
I

14B
I
I
I

IY

3yI

4Y

I S L ___________________ J

Figure 3-7. The 74LS157 Quad ITwo­
Input Multiplexer.

Tools for Digital Design Part I

If we desire to select an output from among more than two inputs, the
multiplexer must have more than one select input. The select inputs to a mux
form a binary code that identifies the selected data input. One select line has
21 = 2 possible values; two select lines allow the specification of 22 = 4 different
values. For instance, if we have select lines S1 and SO, the pair S1, SO represents
a binary number that may identify one of four possible inputs:

Sl so Selected input position

0 0 0
0 1 1
1 0 2

3

Commercial integrated circuits provide 2-, 4-, 8-, and 16-input multiplexers,
with a variety of inverted and noninverted outputs, separate and common enable
inputs, and so on. You should consult the manufacturers' integrated circuit data
books for detailed information about these useful devices.

The mUltiplexer select code represents an address, or index, into the ordered
inputs. We may view the data inputs to the mux as a vector or table, and the
select lines as an address. A multiplexer is thus a hardware analog of a I-bit
software "table look-up." Figure 3-8 illustrates the analogy. In systems design,
table look-up is an important concept which hardware designers have not exploited
to the same extent as programmers. In subsequent chapters, you will see many
powerful uses of this concept. When you are faced with selecting, looking up,
or addressing one of a small number of items, think MUX.

Table look-up, or input selection, is convenient for up to 16 inputs, using
the appropriate MSI integrated circuit chip. For more than 16 inputs the solution
is not as neat but is nevertheless systematic. Suppose that you need to do a
look-up in a table of 32 entries. Divide the inputs into groups, say four groups
of 8 entries each. Then we may view the 32-element look-up as consisting of
two look-ups, one to select the proper group of 8, and the second to pick the
correct member of that group. The selection index for the 32-element look-up
is a 5-bit binary code of the form S4,S3,S2,S1 ,SO. Each group of8 inputs requires
3 bits for specifying an input and 2 bits for picking the proper group of 8. Figure
3-9 shows a realization that uses four 8-input multiplexers and one 4-input mux.

The conventional symbol for a multiplexer shows the inputs as having
T = H, but the output may be either high- or low-active, depending on the partic­
ular chip. As mixed logicians, we realize that we may present all the inputs in
T = L form without affecting the circuit; then the output will be of opposite
polarity to that in the conventional symbol for the device. In Fig. 3-10 we show
the two equivalent mixed-logic forms for an element of a 74LS352 Dual Four­
Input Multiplexer, a circuit whose output polarity is inverted. Changing the
polarity of the inputs affects all the input lines and the output (all the data paths)
but has no effect on the selection or enabling systems.

Chap. 3 Building Blocks for Digital Design 79

I-bit

o
I
2

I-bit
table entries
in memory

(a) Software table lookup

I Result of J
I table lookup

(b) Hardware table lookup using multiplexer

The Demultiplexer

Figure 3-8. A hardware analog of a
software table lookup. A single multi­
plexer provides a I-bit lookup. Sev­
eral multiplexers addressed by a com­
mon signal form a multibit lookup.

A demultiplexer sends data from a single source to one of several destinations.
Whereas the multiplexer is a data selector, the demultiplexer is a data distributor
or data router. A mechanical analog is the switch used to route the power
amplifier output of an automobile radio either to a front or a rear speaker, as
illustrated in Fig. 3-11. This switch is the same type of two-position mechanical
switch shown in Fig. 3-1. A mechanical switch can transmit a signal in either
direction, whereas the electronic analog can transmit data in only one direction.
Since we cannot use a multiplexer in the reverse direction, we are forced to
provide a demultiplexer to handle this operation.

80 Tools for Digital Design Part I

Inputs
0-7

Inputs
8-15

Inputs
16-23

Inputs
24-31

o

0

,
7

Y

0

S4 S3

--"""'"'10

S2 Sf SO

Figure 3-9. A 32-element table lookup.

r1 Front

~r----'_O_U_T r ~ ---""L-J speaker

! Amplifier I ~

Chap. 3 Building Blocks for Digital Design

Figure 3-10. Mixed-logic symbols for
the 74LS352 4-input multiplexer.

Figure 3-11.
switch.

A mechanical distributor

81

G B

F X
T F
T F
T T
T T

The Boolean equations for the switch in Fig. 3-11 are

Front speaker = DUT-S

Rear speaker = DUT-S

S = T when the switch is down. The electronic gate equivalent of these equations
is so simple that no commercially packaged version is available.

The smallest demultiplexer that is available in an integrated circuit package
is a dual 4-output device. Figure 3-12 is the mixed-logic symbol for one of the
two identical and independent demultiplexer elements in the 74LS139 Dual One­
to-Four Demultiplexer chip. Inputs B and A are the routing controls for the data
source. Just as the multiplexer has a binary code for the selection of an input,
the demultiplexer has a similar code for selecting a particular output. All the
outputs on the demultiplexer must have a value of FALSE except the one selected
by the routing code. The selected output will be T or F, following the condition
of the input G. The 74LS139 produces a high voltage level at all un selected
outputs (T = L), so the mixed-logic symbol must have small circles on the
outputs. Since this demultiplexer routes the input data to an output unchanged,
there must also be a circle on the demultiplexer input.

Figure 3-12. An element of the
74LS139 Dual One-to-Four
Demultiplexer.

The truth table for a 4-output demultiplexer and the voltage table for the
74LS139 are

Demultiplexer logic 74LS139 Voltage

A YO Yl Y2 Y3 G.L B.H A.H YO.L Yl.L Y2.L Y3.L

X F F F F H X X H H H H
F T F F F L L L L H H H
T F T F F L L H H L H H
F F F T F L H L H H L H
T F F F T L H H H H H L

The logic equations for the outputs follow either from the truth table or from
the description of the operation of the demultiplexer

82

YO = Jj-A-G

Yl = Jj-A-G

Y2=B-A-G

Y3 = B-A-G

Tools for Digital Design Part I

For practice, you may wish to design a mixed-logic SSI circuit for this demultiplexer,
using Nand gates and inverters. This circuit has three inputs (B, A, and G) and
four outputs Yj •

Eight-output demultiplexers are available as MSI chips. For example, the
74LS42 chip, usually described as a "decoder," functions as a demultiplexer.
Figure 3-13 is its symbol, plus the logic equations for each output. There are
actually two more outputs on this chip:

Y8 = C-Jj-A-D

Y9 = C-Jj-A-D

These outputs do not correspond to any function of the demUltiplexer and they
do not appear on the mixed-logic symbol. We will encounter them in the next
section, when we discuss decoders.

YO = "G-jj-li-n
YJ = "G-jj-A-n
Y2 = "G-B-li-n
Y3= "G-B-A-n
Y4 = c-jj-li-n
Y5 = c-jj-A-n
Y6 = c-B-li-n
Y7 = C-B-A-n Figure 3-13. The 74LS42 demulti­

plexer and the equations for its
outputs.

To summarize, the demultiplexer building block routes a single source to
one of several destinations. A routing code is supplied to the control inputs to
select the destination.

The Decoder

In digital design, we frequently need to convert an encoded representation of a
set of items into an exploded form in which each item in the set has its own
signal. The concept of "encoded information" pervades our lives. Encoding is
a useful way of specifying a single member of a large set in a compact form.
For instance, every decimal number is a code for a particular member of the
set of natural numbers. In everyday affairs, we usually do not need to decode
the code explicitly, but sometimes the decoding becomes necessary.

Suppose you walk into a store in a foreign country to buy a coffee cup.
You choose a cup on the shelf, so you tell the clerk that you want the fourth
cup from the left. You have used a code (4) to identify the desired cup, but the
clerk does not know English and cannot pick out the correct cup. Since the
clerk is unable to decode your "4" into a specific item, you point to the cup.
Your pointed finger means "This one." You were forced to decode your code.

Whenever we use a number to designate a particular object, decoding must

Chap. 3 Building Blocks for Digital Design 83

occur. Usually, we do this implicitly or intuitively, without thinking about it,
but sometimes, as in the china shop, the decoding becomes very explicit.

In hardware, codes are frequently in the form of binary numbers and, in
most cases, the decoding required to gain access to an item is buried within a
building block. For example, an 8-input multiplexer has a 3-bit select code to
specify the particular input. We purposely include within the mux the decoding
of the select code-the mux building block contains the circuitry to translate
"input 4" on the control lines to "this input."

In computer programming we specify a memory location by giving its
address. In the hardware (the memory unit of the computer), this numeric
address must be decoded to gain access to the particular memory cell.

Another common use of codes is in the operation code of a typical computer
instruction. Most computers allow only one operation to be specified in each
instruction, and the operation code describes the particular operation. In Part
II of this book you will study the art of digital design and will participate in the
design of a minicomputer modeled after the PDP-8. The PDP-8 instruction has
a 3-bit operation code field that specifies one of eight possible operations. For
now we will call the 3 bits of this field C, B, and A. The operation codes and
their instruction mnemonics are

Operation Bits
code C B A Instruction

0 0 0 0 AND
1 0 0 1 TAD
2 0 1 0 ISZ
3 0 1 1 DCA
4 1 0 0 JMS
5 0 1 JMP
6 1 0 lOT
7 1 1 OP

From the viewpoint of the computer prqgrammer, the decoding of the
operation code is buried inside the computer. But we are studying hardware
design, and we must face the decoding problem squarely. To implement this
instruction set, we require eight logic variables (AND . .. OP) to control the
specific activities of each instruction. Only one of these eight variables will be
true at any time. The translation from the operation code into the individual
logic variables is a decoding. We could build the decoding circuits from gates,
using the methods of the previous chapters. For instance, the logic equations
for two of the variables are

TAD = C·Jj·A

JMS = C·Jj·A

Decoding is so common in digital design that our appropriate posture is to
package the decoding circuitry into a logical building block. The decoder building

84 Tools for Digital Design Part I

block has the characteristic that only one output is true for a given encoded
input and the remaining outputs are false. Integrated circuits for decoders are
available in several forms, typically with 2, 3, or 4 inputs. The main limitation
on the size of the input code is the number of pins required for the outputs,
since the number of outputs grows exponentially with the size of the code. For
instance, a 3-bit binary decoder has 8 outputs (23 = 8), whereas a full 4-bit
binary decoder has 16 outputs (24 = 16), requiring a larger integrated circuit
package. Decoding a 5-bit binary number would produce 32 outputs-too many
for useful packaging as an MSI chip.

The 74LS42 Four-Line-to-Ten-Line Decoder is a typical MSI decoder. This
chip will decode a decimal number 0 through 9, expressed as a 4-bit binary code,
into one of 10 individual outputs. The binary representation for 9 is 1001; the
4-bit codes from 1010 through 1111 do not arise from the encoding of the decimal
numbers. By eliminating 6 of the possible 16 output pins, the 74LS42 circuit
can be made to fit conveniently into a 16-pin chip. Figure 3-14a is the mixed­
logic symbol for the 74LS42. The outputs are all low-active (T = L)-a char­
acteristic of most commercial MSI decoders.

0 0

0 C

2
C B 2

3
B

4 A 3

A 5 4

6
5

'LS42
7

8 Enable 6

'LS42
9 7

(a) 4-to-1O decoder (b) Enabled 3-to-8 decoder

Figure 3-14. Two uses of the 74LS42 decoder.

The 74LS42 serves as a 3-bit decoder when the high-order bit (D) of the
input code is false. The 8 outputs from the resulting 3-bit decoding are YO
through Y7.

Another important use of the 74LS42 is as an enabled 3-to-8 decoder. The
enabling feature is similar to that found on multiplexers in that outputs are always
false unless the circuit is enabled. Whenever the D input to the 74LS42 is H,
outputs YO through Y7 are false, regardless of the condition of the inputs C, B,
and A; thus the 8 outputs for the 3-bit code are false and the chip is disabled.
When input D is L, the chip is enabled for 3-bit decoding, and exactly 1 of the
8 outputs YO through Y7 is true. When the normal mixed-logic representation
for the decoder is used, the D code bit acts as a disabling or not-enabling signal

Chap. 3 Building Blocks for Digital Design 85

(with T = H). To use the 74LS42 as an enabled decoder, we usually represent
the D input as an enabling signal (with T = L) rather than as a part of the input
code. The mixed-logic notation for this enabled 3-to-8 decoder building block
is shown in Fig. 3-14b.

In addition to the 74LS42 chip's uses as a decoder, this same chip serves
as a demultiplexer, as we saw in the previous section. In that application, we
viewed the A, B, and C inputs as a select code, and the D input as a data signal
to be routed to a selected destination. This duality of function is characteristic
of decoders and demultiplexers. In practice, the decoding applications far out­
number those of demultiplexing.

The Encoder

The converse of the decoding operation is encoding-the process of forming an
encoded representation of a set of inputs. This operation does not occur in
digital design as frequently as decoding, yet it is of sufficient importance to be
a candidate for one of our standard building blocks. In strict analogy with
decoding, we should require that exactly one input to an encoder be true. Since
there is no way that an encoder building block can enforce this restriction on
input signal values, encoders always appear in the form of priority encoders.
This variation, which is more useful than the regular encoder, allows any number
of inputs to be simultaneously true, and produces a binary code for the highest­
numbered (highest-priority) true input.

A well-designed priority encoder should provide some way to denote a
situation in which no input is true. There are two approaches to this problem.
Method 1 is to number the input lines beginning with 1 and reserve the output
code 0 to indicate that no inputs are true. Method 2 is to number the inputs
beginning with 0, but provide a separate output signal which is true only when
no input is true. The first method requires fewer output lines but uses up a code
pattern to indicate no active inputs. The second method requires an extra output
but allows all the code values to represent true conditions at the input.

As a small illustration of priority encoding, consider circuits that produce
a 2-bit code from a set of individual inputs. The first method will handle only
3 input lines, whereas the second method accommodates 4 inputs. Here are
truth tables for the two styles of priority encoders (remember, X in the truth
table means "both values" and - means "don't care"):

Method 1 Method 2

D3 D2 Dl B A D3 D2 Dl DO B A W

F F F F F F F F F T
F F T F T F F F T F F F
F T X T F F F T X F T F
T X X T T F T X X T F F

T X X X T T F

86 Tools for Digital Design Part I

Equations for the output variables can be derived by the methods described
in Chapter 1. For instance, the logic equations for the outputs for method 2 are

B = D3·D2 +D3 = D2 + D3

A = D3·D2 ·Dl + D3 = D2·Dl + D3

W = D3 ·D2 ·DI-DO

Commercial priority encoders come in a variety of forms representing both
of these methods, sometimes also having an enabling control input, and occasionally
with extra inputs and outputs to permit several chips to be cascaded. Customarily,
the inputs and code outputs are low-active (T = L). Figure 3-15 is the mixed­
logic symbol for a typical chip, the 74LS147 Ten-Line-to-Four-Line Priority
Encoder, which conforms closely to method 1 above and produces a 4-bit output
code, D, C, B, A. The chip has only 9 input lines, not 10 as the name suggests.
The tenth line, corresponding to the output code 0000, is inferred from the
absence of any true input.

2

3

4

5

6

7

8 'LS147

9

0

C

B

A

Figure 3-15. The 74LS147 Ten-Line­
to-Four Line Priority Encoder.

Priority encoders are frequently used in managing input-output and interrupt
signals. The encoder produces a code for the highest-priority true signal. This
code may serve as an index for branching or for table lookup in a computer
program.

The Comparator

Comparators help us to determine the arithmetic relationship between two binary
numbers. Occasionally, we need to compare one set of n bits with another
reference set of n bits to determine if the first set is identical to the reference
set. The proper way to determine identity is with a logical COINCIDENCE
operation. For instance, to find if a single bit A is identical to a reference bit
B, we use

A.EQ.B = A0B (3-2)

For a pattern of n bits, we need the logical AND of each such term:

A.EQ.B = (AO 0 BO)-(Al 0 Bl)- ... -(An 0 Bn) (3-3)

Chap. 3 Building Blocks for Digital Design 87

We can make an important distinction based on whether the reference set
of bits is an unvarying (constant) or a varying pattern. Expanding the single­
bit Eq. (3-2) into its AND, OR, NOT form, we have

A.EQ.B = A·B + A'R

If B is constant, this equation can be simplified into one of two forms:

A.EQ.B = AifB = T

A.EQ.B= A if B = F

Consider a comparison of an arbitrary 4-bit A with a fixed 4-bit B
T. Equation (3-3) can be reduced to

A.EQ.B = AO·Al·A2·A3

which can be realized with a 4-input AND element.

T, F, F,

If the reference pattern is not fixed, we are stuck with Eq. (3-3). Figure
3-16 is a circuit for 4-bit inputs, using common SSI chips. This type of circuit
is a candidate for a building block, and there are MSI chips that perform multibit
arithmetic comparisons.

A3.H=1
'LS86

B3.H

A2.H=1
'LS86

B2.H

(A = B).H

Al.H=1
'LS86

Bl.H H

AO.H=1

BO.H
'LS86

Figure 3-16. An SSI implementa­
tion of the equality comparison in Eq.
(3-3).

We frequently treat arrays of bits as representations of positive binary
numbers. Sometimes we need to determine if one such representation A is
arithmetically greater than, equal to, or less than another reference pattern B.
In addition to chips that perform only the equality comparison, there are also
several arithmetic magnitude comparators, which have outputs capable of si­
multaneously showing the values of the conditions A < B, A = B, and A > B.
A common MSI chip of this type is the 74LS85 Four-Bit Magnitude Comparator.
This chip has three status inputs that permit several chips to be cascaded so as
to yield comparisons of multiples of 4 bits. Figure 3-17 contains the arrangement

88 Tools for Digital Design Part I

Q7-Q4.H P7-P4.H Q3-QO.H P3-PO.H

4 '"
4'" 4

4 "

B A B A

A>B.IN A>B.IN -- L

'LS85 A= B.IN 'LS85 A= B.IN I-H

A< B.lN f- A<B.IN L
A>BA=BA<B A>BA=BA<B

l I
P<Q.H

P=Q.H

P>Q.H

Figure 3-17. An 8-bit magnitude comparison using the 74LS85.

of 74LS85 comparators to accomplish a comparison of 8-bit quantities P and Q.
The status outputs of a comparator stage connect to the corresponding status
inputs ofthe next most significant comparator. The results of the final comparison
are available as outputs of the most significant stage. It is necessary to pass to
the least significant chip the information that the previous (nonexistent) comparison
showed equality; this is done by asserting T (a high voltage) on the A =B.IN
pin, and F on the other two.

There are several diagrammatic conventions in Fig. 3-17. To avoid cluttering
functional diagrams, we often show a group of similar signal lines as a single
line with a numbered slash across it. The notation for inputs Q7.H, Q6.H, Q5.H,
and Q4.H appears as Q7-Q4.H with a "~" mark on the wire. Figure 3-17
also contains three other similarly collected groups of inputs. This use of the
numbered slash is a widely accepted convention; the numbered slash has nothing
to do with inversion.

Figure 3-17 forced us to make a choice. We usually desire that signals
move toward the right in a circuit diagram, with an output on the left feeding
inputs to the right. We also usually wish for the least significant part of numerical
information to be on the right and the more significant parts on the left. In this
figure, variables Q7-QO and P7-PO represent numbers. We cannot easily ac­
commodate both these goals in the diagram without creating a nightmare oflines,
so we usually choose to show the numbers in their customary order rather than
adhere to the convention of rightward-moving signals. In practice you will encounter
both conventions.

Since Fig. 3-17 is the first instance of this drafting custom in the book,
we have placed arrows on all the signal lines to show the direction of the signals'
travel. Although we frequently use arrows in high-level functional diagrams, in
most instances we would not use such arrows on an actual circuit diagram; the
chip's nomenclature shows which pins are inputs and which are outputs.

Chap. 3 Building Blocks for Digital Design 89

A Universal Logic Circuit

We have gates for implementing the specific logic operations AND, OR, EaR,
and so on. These gates are useful when we know at the time we design what
logic we must implement in a given circuit. But in many applications we must
perform various logic operations on a set of inputs, based on command information
that is not available when we are designing. The best example is the digital
computer, which must be designed to meet the requirements of any of its set of
instructions. Just as we may select an input with a multiplexer, so must we be
able to select a logic operation with a suitable circuit.

Let the inputs to this circuit be A and B, and the output Z. To select the
particular logic operation, we must have some control inputs Sj. Figure 3-18
shows this black box. We may require that the black box be able to perform
any possible Boolean logic function of its two inputs. We routinely use several
of these logic functions: AND, OR, NOT, EaR, and COINCIDENCE. As we
mentioned in Chapter 2, there are 16 functions of two variables. They are
enumerated in Table 3-1. Some are already familiar:

Z1 = A·B Z7 = A +B Z10 = B

Z6 = AEBB Z9 = A0B Z12 = A

TABLE 3-1 LOGIC FUNCTIONS OF TWO VARIABLES

Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
A B 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0 0 0 1 1 1
0 1 0 0 0 0 1 1 0 0 0 0 1 1

0 0 0 1 1 0 0 0 0 1 1 0 0 1
0 0 0 0 0 0 0 0

There are some others in the table that at first sight appear to be uninteresting
but are in fact useful:

ZO = F

A

B

90

Z3 =A

Universal
logic

black box

Control
inputs

Sj

Z5 = B Z15 = T

z

Figure 3-18. Inputs and output for
the universal logic circuit.

Tools for Digital Design Part I

If we can produce such a comprehensive black box, we will have a circuit
that can:

(a) Ignore both inputs and produce a fixed FALSE or TRUE output (ZO, Z15).
(b) Pass input A or input B through the circuit unchanged (Z3, Z5).
(c) Perform our important logic functions (Zl, Z6, Z7, Z9, ZlO, Z12).
(d) Perform the remaining functions of two variables (Z2, Z4, Z8, Zll, Z13,

Z14). These last operations include the NAND and NOR logic functions
and four variations of the logical implication function that play no important
role in our study of digital design but which we list for completeness.

You will see later that such a general-purpose device is a "natural" at the
heart of the digital computer. Computers usually operate on two numbers to
produce a result. Not only could this device perform useful logic operations
upon two inputs, but it could transmit either input, unaltered or inverted. In
addition, it could be a source of T and F bit values.

Many designs for producing the 16 Boolean functions are known, but from
our viewpoint the most elegant is a single 4-input multiplexer. To produce a
function, our circuit must receive a 4-bit code specifying the particular function
Zi. The obvious code values are 0 to 15, corresponding to ZO through Z15. Call
the code Z.CODE, with the code bits designated Z.CODEo through Z.CODE3.
Notice, in Table 3-1, how the definition of each function Zi is exactly the binary
representation of the corresponding Z.CODE. In an unusual interpretation of
the multiplexer in its table-lookup role, we may use the "data" variables A and
B as the select inputs of the mux, and feed the function-specifying code Z.CODE
into the data inputs:

Z.CODEo

Z.CODEj

Z.CODE2 ---I

Z.CODE3 ---1

A B

Thus we may produce all 16 Boolean functions of two variables with one-half
of a 74LS153 Multiplexer chip. This is tight design!

The universal logic circuit is elegant, but it is capable of performing logic
operations only. If it is to be used as the heart of a computer, it should also
be able to perform arithmetic operations. Let us leave our universal logic circuit
for a moment and discuss the structure of circuits that can perform arithmetic
on binary numbers. Later we will consider circuits that can perform both logic
and arithmetic.

Chap. 3 Building Blocks for Digital Design 91

Binary Addition

The full adder. We assume that you are familiar with the process of
binary addition and the representation of numbers in the two's-complement
notation. For each bit position, the truth tables defining the addition process
are given as Table 3-2. A and B are the bits to be added, CIN is the carry bit
generated by the previous bit position, SUM is the sum bit for the current bit
position, and COUT is the carry generated in the current bit position. A device
for summing three bits in this manner is called a full adder. (A similar circuit
without the CIN input is called a half adder.)

TABLE 3-2 TRUTH TABLE FOR
BINARY ADDITION

CIN A 8 SUM COUT

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0

0 1 0
1 0 0

The full-adder truth table yields Boolean equations for the sum and carry
bits:

SUM= CINoA °B + CINoAoJj + CINoA oJj + CINoAoB

= (A EB B)oCIN + (A 0 B)°CIN

= (A EB B)°CIN + (A EB B)oCIN

<=A EB B EB CIN

COUT= CINoAoB + CINoAoB + CINoAoB + CINoAoB
'I'

= AoB + CINo(A + B)

You may derive the simplification of COUT from the K-map:
c/N A

B 00 01 II 10

0 0 0 '1' 0

I 0 (I I 1)

To perform addition on arrays of bits representing unsigned binary numbers,
we may connect full adders together as in Fig. 3-19. As a concrete example,
let's add two 3-bit binary numbers A and B, where A = 101 and B = 110. The
result of the binary addition is 1011. The corresponding values that would be
present on the wires of the hardware are shown in Fig. 3-20.

This method of connecting full adders is called the ripple carry configuration,

92 Tools for Digital Design Part I

An Bn Al Bl AO BO

A B A B

COUT COUT CIN COUT CIN COUT CIN o

SUM SUM SUM

Sn SI so
Figure 3-19. Addition with cascaded full adders.

0 0

A

0 0
COUT CIN COUT CIN COUT C1N 0

SUM SUM SUM

o
Figure 3-20. 101 + 110 = 1011, using full adders.

since stage zero must produce output before stage 1 can become stable. After
stage one becomes stable, stage two will begin to develop its stable outputs. In
other words, the carry does indeed ripple down the chain of adders. This is the
simplest but slowest way to perform binary addition. Presently we will look at
ways of speeding up the process.

Cascading single-bit full adders is not a particularly useful way to perform
addition. In digital design we need to add numbers whose binary representations
span several bits, and we wish to have building blocks suited to this task. The
74LS283 Four-Bit Full Adder is a useful MSI chip constructed with four full
adders packaged as an integral, interconnected unit. The device accepts two 4-
bit inputs and a single carry-in bit CIN into the low-order bit position; it produces
a 4-bit sum and a carry-out bit COUT from the most significant bit position. By
feeding the COUT of the chip into the CIN of the next-most-significant stage,
it is easy to produce binary adders for any reasonable word length. In the typical
application, the CIN to bit 0 would be forced to be false, representing numeric
O. In Fig. 3-21, we show the data paths for a 12-bit full adder composed of
three 4-bit full adders.

Signed arithmetic. The multibit full adder circuit of Fig. 3-21 does binary
addition on 12-bit positive numbers. If the inputs A and B represent signed
integers in the two's-complement notation, the circuit of Fig. 3-21 can perform
signed arithmetic. In the two's-complement notation, the leftmost bit represents
the sign of the number, and so the circuit shown in Fig. 3-21 can handle ll-bit
integers plus a sign.

Chap. 3 Building Blocks for Digital Design 93

All-AB.H Bll-BB.H A7-A4.H B7-B4.H A3-AO.H 83-BO H

4' r--- 4 ~I'- 4'!,- 4 'i' 4'1'- 4'

A B A B A B

r-- COUT CIN - COUT CIN - COUT CIN r-- L
'LS283 'LS283 'LS283
SUM SUM SUM

4'!,- 4 I' 4'

COUT.H SUMll-SUMB.H SUM7-SUM4.H SUM3-SUMO.H

Figure 3-21. A 12-bit addition, using 74LS283 Four-Bit Full Adders.

When the circuit receives two integers, it produces the (signed) sum: A
PLUS B. The circuit performs subtraction if the B input receives the two's­
complement of the subtrahend: A MINUS B = A PLUS (MINUS B). Incrementing
and decrementing are useful special cases: A PLUS 1, and A MINUS 1 = A
PLUS (MINUS O.

Similar results occur if the A and B inputs are represented in one' s-complement
form. The same circuit performs addition on positive integers and on signed
integers represented in one's- or two's-complement notation. The hardware did
not change-only the interpretation of the data.

The Arithmetic Logic Unit

This building block, as its name implies, combines the logic capability of the
universal logic circuit with a general set of binary arithmetic operations built
around cascaded full adders. With the multibit full adder, we may produce
arithmetic operations such as subtraction and incrementing only by manipulating
the input data; the adder circuit itself only adds.

If we are to have a general arithmetic capability as a building block, such
special preparation of the input data is inappropriate; the arithmetic unit should
allow us to select an operation. This is a similar situation to that which led us
to the universal logic circuit for the performance of arbitrary logic operations
on its inputs.

For operands A and B, each consisting of several bits, some useful types
of binary arithmetic operations are

Addition:
Subtraction:
Incrementing:
Decrementing:
Negation:

A PLUS B
A MINUS B
A PLUS 1
A MINUS 1
MINUS A

To supplement operations of this type, we might wish to have a source of special
constants, such as 0, plus 1, minus 1, and so on.

lt would be nice to include multiplication and division in our list, but these

94 Tools for Digital Design Part I

operations prove to be quite complex. Although some LSI integrated circuit
chips perform multiplication and division, we will exclude these operations from
the present discussion.

We might wish to include operations such as B MINUS A, MINUS B, A
PLUS A, and so on-close relatives of the basic operations given above. In
any event, it appears that the number of basic arithmetic operations in our list
will not exceed 16, so a 4-bit control input would suffice to select any desired
operation. Aiming toward a 4-bit arithmetic unit, we would have two 4-bit data
inputs, a 4-bit output for the result, an input for carry-in and an output for carry­
out, and a 4-bit control input to select the operation.

Can we combine these arithmetic operations with the logic capability of
the universal logic implementer to produce an arithmetic logic unit? Our universal
logic circuit requires four control inputs to specify a code for any of its 16 logic
functions. To include the arithmetic operations within a similar control structure
will require one additional control bit, producing a 5-bit code. We may use this
fifth bit to separate the 32 possible operations into two groups-the 16 logic
operations and 16 operations that are arithmetic in nature.

An arithmetic logic unit (ALU) circuit would provide a nice building block
for our bag of design tools, and there are a number of integrated circuit chips
that approximate the structure developed above. The original chip of this type
is the 74LS181 Four-Bit Arithmetic Logic Unit. It has five control inputs and
provides the 16 logic functions of two variables, operating simultaneously on
each pair of bits. It also provides 16 other operations that have an arithmetic
character. The 74LS181 does not have all the arithmetic operations in our wish
list, but it is capable of adding, subtracting, incrementing, and decrementing
numbers in the two's-complement representation. Several of the "arithmetic"
operations of the 74LS181 are somewhat bizarre, and are of little interest to us,
but do no harm.

The 74LS181 allows the cascading of 4-bit chips to provide arithmetic
capability for long words. The arrangement of the data paths is the same as in
Fig. 3-21 for the full adder.

Most of the building blocks described in this chapter are tools for performing
a single useful function, such as decoding or multiplexing. The ALU is a step
toward more powerful LSI building blocks that perform a variety of functions
on a small number of bits, under the control of a set of input signals that we
may view as an operation code. Such building blocks are frequently called bit
slices, alluding to their ability to be ganged together to process larger numbers
of bits. Most bit-slice devices have internal registers and are designed to support
the basic operations required in modem computer processors. You will encounter
additional bit-slice components in Chapter 4 and later in this book.

Speeding Up the Addition

Bit-slice circuits such as the 74LS283 Four-Bit Adder and the 74LS181 Arithmetic
Logic Unit are helpful digital building blocks, but if they depended on the simple
ripple-carry scheme for binary addition they would be very slow. Binary addition

Chap. 3 Building Blocks for Digital Design 95

is a combinational process. You know that, at least in theory, any combinational
process can be expressed as a truth table and implemented as a two-level sum­
of-products function. This approach has only limited practical value in binary
arithmetic, since the truth tables for a multibit sum become too large to manage.
For instance, the truth table for a 12-bit sum has 24 input variables (25 if we
allow for separately specifying the initial carry-in to bit position 0).

Truth tables are a way of specifying in detail the outputs for each combination
of input values. In nonarithmetic work we can usually find a simple repetitive
pattern of one or two bits that serves as a model for the behavior of the entire
circuit, and we can express the repeating function as a small truth table or as
an equation. This works well in logic operations, since for each bit the result
of an operation depends only on the data entered for that bit, and not on the
data in adjacent or more distant bits. Unfortunately, arithmetic does not have
this simple property, because of the complex way in which the carry bits affect
the result. So two-level binary addition, although desirable because of its speed,
is intractible when there are more than a few bits. Within a small bit-slice,
however, it is sometimes feasible to produce two-level addition-for instance,
four-bit data inputs yield five 9-input truth tables, for the 4 bits of the sum and
the single carry-out bit. Each of these truth tables has 29 = 512 rows-painful
but not impossible to produce if the rewards are great enough. But you can see
that this is hardly a promising general approach.

Ripple-carry is a serial method, slow and simple; two-level circuits are fully
parallel, fast but difficult. We need an intermediate technique that provides some
parallelism with a reasonable effort. A widely used approach is to cast the
problem of addition into terms of carry generate and carry propagate functions.
For the moment, consider a one-bit full adder, with inputs Ai, B;, and Ci , and
outputs Si and Ci+ I. We will focus on some properties of the data inputs Ai and
B i • We introduce a carry-generate function Gi that is true only when we can
guarantee that the data inputs will generate a carry-out. We introduce a carry­
propagate function Pi that is true only when a carry-in will be propagated as an
identical carry-out. For a I-bit sum, the truth tables for Gi and Pi are

Ai Bi Gi Pi

0 0 0 0
0 1 0 1

0 0 1
1 0

Using these functions, we may express the carry-out and sum:

Ci+1 = G; + PioCi

Si = P; (f) C;

(3-4)

(3-5)

(To verify the equation for Si' you may wish to refer to Table 3-2, our original
definition of the full adder.) These equations express the sum and carry-out in

96 Tools for Digital Design Part I

terms of just the generate and propagate operators and the carry-in-an important
property that we will use when we extend these concepts to bit-slice adders.
With these equations, we may implement multibit full adders, but the ripple­
carry effect is still present, since each bit's carry-in depends on the preceding
bit's carry-out. However, we may expand the equation for Ci in terms of the
equations for less-significant bits, to achieve a degree of carry look-ahead. For
instance

CI = Go + po·Co

C2 = GI + PI·(GO+ po·Co)

(3-6)

(3-7)

We can derive similar equations (of increasing complexity) for C3 and C4 •

Again, each equation involves only the generate and propagate operators and
the original carry-in.

When the generate and propagate operators apply to one-bit slices

(3-8)

(3-9)

These equations involve only the arithmetic data inputs for the ith one-bit unit.
By substituting and simplifying, we may derive the following equations for the
carry bits:

CI = Ao·Bo + Ao·Co + Bo·Co

C2 = Aj·B j + AI·Ao·Bo + AI·Ao·Co + AI·Bo·Co + BI·Ao·Bo

+ Bj·Ao·Co + Bj·Bo·Co

These equations yield two-level results. The expansion of C3 and C4 are more
lengthy, and will be left as homework problems. Within a bit-slice chip, for
instance the 74LS181, these equations could be used for high-speed implementations
of the sum outputs So through S3 and the carry-out bit C4 •

If we are building a large adder or ALU from smaller bit-slices, we are
still faced with the ripple-carry problem across the boundaries of each chip, even
though within each chip the carry-out is being computed rapidly. For instance,
in Fig. 3-21, the most-significant carry-out cannot be computed until its cor­
responding carry-in (into bit 8) is stable, which in turn must await the stabilization
of the carry-in to bit 4. We have carry look-ahead within the chips, but not
among the chips.

The concept of carry generate and propagate, as typified by Eqs. (3-6) and
(3-7), may be extended to larger bit slices. The 74LS181, in addition to producing
the carry-out C4 , also produces two outputs G and P that are equivalent to our
one-bit G3 and P 3 • The 74LS181 's G output is true whenever the data inputs
assure that its carry-out is true; the P output is true only when the data inputs
are such that the block carry-out is the same as the block carry-in. These G
and P functions are considerably more complex than our one-bit Eqs. (3-8) and
(3-9), but still involve only the arithmetic data inputs for the chip.

Chap. 3 Building Blocks for Digital Design 97

-
G

C12 GU

J 1 l l l l
A B A B A B

'LSI8l CIN f- 'LSI8l CIN r- 'LSI8l CIN

P F G P F G P F

l l l
SUMll-SUMs SUM7 -SUM4 SUM3-SUMo

PH Cs G7 P7 C4 G3 P3

Block-carry look-ahead circuit Co f-

Figure 3-22. A 12-bit ALU containing a block-carry look-ahead circuit.

Figure 3-22 is the circuit for a 12-bit adder constructed with 74LS181 ALU s
and a block-carry look-ahead circuit. Instead of relying on each 74LS181 to
send its computed carry-out on to the next most significant 74LS181, we send
the G and P outputs to the block-carry look-ahead box. The look-ahead box is
a combinational circuit that accepts all the G's and P's and the initial carry-in,
and simultaneously computes all the carry-outs that must be sent to the 74LS181s.
The more significant 74LS181 chips do not have to wait for their carry-in signals
to ripple in from lower stages.

We may build the look-ahead box from equations such as the following,
which can be inferred from the intuitive meaning of the generate and propagate
operators in Fig. 3-22.

C4 = G3 + P3oCO

Cs = G7 + P7oG3 + P7oP3oCO

Integrated circuits that perform the block-carry look-ahead functions are available.
The 74LS182 Look-Ahead Carry Generator supports the look-ahead process in
up to four 74LS181 chips. Furthermore, the 74LS182 produces its own version
of G and P, so that look-ahead circuits of more than 16 bits may be constructed
by adding levels of74LS182s. Two levels of74LS182 will support 64-bit addition.
Each new level of look-ahead circuitry increases the time required for the adder
outputs to stabilize, but only by about 10 nanoseconds. Since the 74LS181
requires about 20 nanoseconds to perform a binary addition and produce its
generate and propagate outputs, the 12-bit adder in Fig. 3-22 requires about 30
nanoseconds and a 64-bit adder would require only about 40 nanoseconds. On
the other hand, the 74LS181 requires about 25 nanoseconds to compute its carry­
out. Were the 74LS181s used in a ripple-carry configuration, as in Fig. 3-21,
each stage would require 25 nanoseconds. The 12-bit addition would require 50
nanoseconds, with longer words requiring an additional 25 nanoseconds for each
additional 4 bits.

98 Tools for Digital Design Part I

Arithmetic is a vital function in most computer applications, and much
effort has gone into producing fast and efficient arithmetic circuits. Multiplication
and division present their own sets of difficulties; fast division is a particularly
challenging problem. We will not cover these specialized areas; consult either
the textbooks listed at the end of the chapter or the technical literature on specific
computers.

DATA MOVEMENT

One of the most important operations in digital design is moving data between
a source and a destination. This often occurs inside computers, and is a major
activity of peripheral devices. Frequently, the data itself involves several bits­
an n-bit byte or word-that must move through the system in parallel. Typical
data paths in modern digital design are 8 to 64 bits wide.

If there is only a single source of data and a single destination, we have
no problem. We simply run n wires from the source's output to the destination's
input. With several sources and various destinations, the situation becomes more
complex and requires that we allow data to be moved from any source to any
destination. One alternative is separate data paths from each of S sources to
each of D destinations. An item that is a source of data at one time may be a
destination of data at other times. In Fig. 3-23, we show the data paths in two
configurations: three sources SJ-S3 with three different destinations DI-D3, and
four common sources and destinations, A, B, C, D.

Sources Destinations

(a) Sources and destinations
are different

(b) Sources and destinations
are the same

Figure 3-23. Moving data by complete connection of sources and destinations.
All paths are n bits wide.

There are obvious drawbacks to this scheme. The number of wires becomes
very large as the number of sources and destinations increases, in general being
S x D x N. Adding new nodes to the system involves massive rewiring,
affecting each source and destination. A completely connected system allows
several simultaneous data transactions to occur over the independent data paths,
and this is the main advantage of the scheme. When high-speed parallel movements

Chap. 3 Building Blocks for Digital Design 99

of data are vital, we would expect to pay the price of inflexibility and complex
wiring, and would adopt some form of the completely connected system.

The Bus

In most applications, especially when the number of sources and destinations is
not fixed at design time, we need a more flexible solution to the problem of
moving data. By giving up parallelism, we may achieve this flexibility. Suppose
we run all sources into a single node and take all destination paths from this
node. We call this configuration a data bus, or just a bus. Figure 3-24 consists
of two ways to represent a bus, Fig. 3-24b being the more common way.
(Remember that all the data paths are actually n bits wide, although we usually
only draw a single path representing the entire word or byte.) The bus structure
permits only one data transfer to occur at a time, since all data paths funnel
through the bus node. However, adding or deleting elements on the bus is simple,
and this overwhelming advantage accounts for the widespread use of this con­
figuration in digital computers.

A B c z

Data bus

(a) (b)

Figure 3-24. Two ways to view a data bus.

Controlling the bus. We have a building block to move data-the bus­
that takes the form of just n wires. How do we regulate the traffic over these
wires? In any scheme with more than one source or destination, there is a need
to control the movement of the data. This control takes two forms: who talks,
and who listens. On the bus, there must be no more than one talker (source)
at a time, but several destinations may listen.

The responsibility for listening on the bus (receiving data) is part of each
destination device and is not directly a part of the bus operation. All destinations
are physically capable of listening; whether they actually accept data is under
their control. Maintaining control over the bus sources, to assure only one talker
at a time, is very much a concern of the designer of the bus. We shall mention
four control mechanisms, two of which you have already encountered.

Bus access with the multiplexer. Our job is to select one source from
several candidates. The digital designer, when encountering the concept of se-

100 Tools for Digital Design Part I

lection, has a knee-jerk response-the multiplexer. For each bit of the bus's
data path, attach a multiplexer output to the bus, making each source an input
to the mux.W e control this collection of n multiplexers with a common source­
select code feeding into the multiplexers' select inputs. We show the idea in
Fig. 3-25. In this approach, we collect the control for access to the bus in one
spot, and assure that only one source is talking at a time-both important
advantages. Further, it is easy to debug, since we maintain explicit centralized
control over which source has access to the bus. On the other hand, the data
mux method of bussing requires considerable hardware; we use an S-wide mux
for each of the n data bits in the bus path. If n is large, we have a boardful of
data multiplexers. Adding new sources is convenient as long as we do not exhaust
the input capability of our muxes. If we exceed this capacity, we have a difficult
hardware-modification job. For instance, with 8-input multiplexers, we may
manage up to eight sources, but the ninth source causes great agony. Thus, the
data mUltiplexer method of bussing suffers from a certain inflexibility and is not
very conserving of hardware. Nevertheless, it is a good method of bussing a
moderate number of sources and we will use it in the design of a minicomputer
in Chapters 7 and 8.

Data bus bit i

I-----~O

Select code to
all n muxes

Figure 3-25. Bus control with multi­
plexers. The mux selects a single
source, and the bus routes it to all
receivers.

The remaining three methods lack the security of the multiplexer's encoded
selection control.

Bus access with OR gates. A primitive form of bus control is to merge
all sources into the bus data path, using OR gates. For S n-bit sources, we
would have n OR gates, each accepting S inputs. This produces the merging
required to give all sources access to the single bus path, but it does not provide
the control needed to allow only one source onto the bus at a time. Each bit
of each source is either T or F; we must arrange for all sources but one to have
all their bits false, while the one designated source presents its T or F data

Chap. 3 Building Blocks for Digital Design 101

Device I
bili

Device I
select

Device S
bili

Device S
select

through the OR gates onto the bus. This approach places the responsibility for
access with each source, rather than directly with the bus as in the multiplexer
method. Each source must have its own gating signal to open or close the gate
on its data bits. Typically, the sources have some form of AND gate on each
data bit: the data forms one input and the control signal forms the other. (It is
this usage that gave rise to the "gate" terminology in digital circuits.) The
method is shown in Fig. 3-26.

Bus access
control

One of N similar circuits

Data bus bit i

Figure 3-26. Controlling access to the
data bus with OR gates.

The OR-gate method has little to recommend it. Electronically, it performs
the same functions as the mux method, with the mux circuits split into OR gates
and AND gates. We might view this as a "poor man's mux," although its
components will cost more than those of the actual mux method. It suffers from
the same inflexibility of input-size as the mux method and lacks the certainty of
control provided by the multiplexer's encoded selection process.

The remaining two methods introduce new concepts of digital building
blocks.

Open-collector gates. Open-collector technology provides a way to im­
plement the OR logic function, and thus can be used in bussing applications.
We must adhere to the stipulation that open-collector gates produce wired-OR
when truth is represented by a low voltage. In Fig. 3-27, we show the 7407
Open-Collector Buffer used as a bus driver.

Since their primary use was for bussing, where several destinations may
listen in on the bus, open-collector chips usually can carry more current than
their normal TTL counterparts. This provision of extra power is called buffering,
and such chips are called buffers or drivers.

The advantage of open-collector circuits is the elimination of the wide OR
gates. As long as only one source at a time is on the bus (at most one input is
asserting truth), we may connect a large number of open-collector outputs together.
Aside from this, achieving proper control of the bus with open-collector wired­
OR logic involves the same concerns as the ordinary OR-gate method: we must
still control each of the sources so that at most one is talking at a time.

102 Tools for Digital Design Part I

Device 1
biti

Device 2
biti

Device S
biti

7407
Open-collector Vee

buffer

R

Data bus
~--+----o bit i

Figure 3-27. Controlling access to the
data bus with open-collector buffers.

Three-state outputs. The three-state output has, as its name implies,
three stable states instead of the customary two. In addition to the usual high
and low voltage levels, the third state provides a high-impedance mode, usually
called Z, in which the output appears as if it were disconnected from its destinations.
The three-state output requires an enabling three-state control input. When the
output is enabled, the circuit transmits the normal H or L signal presented at
the input of the three-state circuit. If the output is disabled, the circuit output
is for practical purposes not there at all. (Logicians should note that three-state
outputs are not the same as ternary logic, which is a true base-3 system.)

Many SSI, MSI, and LSI chips incorporate three-state data outputs. The
fundamental use is in bussing, so three-state outputs often provide power buffering
like their open-collector cousins. We might select the 74LS244 Octal Three­
State Buffer as our prototype three-state chip. This is one of several SSI building
blocks that perform no logic but simply afford three-state control of their inputs.
This particular chip has two three-state sections-a two-buffer unit controlled
by another three-state-enable input.

We find three-state outputs in many useful building blocks. The multiplexers
discussed earlier in this chapter have an enable input that holds their output
false when the chip is disabled. In the three-state varieties, the output is "dis­
connected" when the chip is disabled. In Chapter 4, you will see more examples
of three-state outputs in MSI building blocks.

The uses of three-state output control in data bussing are substantial. We
may connect almost any number of three-state devices together and, with proper
three-state enabling of only one source at a time, control access to the bus.
Often the chips providing the bus's source data will have three-state output
control built in; in other cases, we may need to add buffers such as the 74LS244
to achieve three-state control. Figure 3-28 is a typical three-state bussing con­
figuration.

There are two drawbacks to three-state bus control. First, as in the last
two bussing methods, the control of access is decentralized, residing with the
sources rather than with the bus structure itself. This makes more difficult the
task of assuring that only one source at a time is talking on the bus. Second,

Chap. 3 Building Blocks for Digital Design 103

Device I
biti

Device 2
bit i

Device S
biti

Device I
select

Device 2
select

Device S
select

Three-state
buffers

Data bus
biti

Figure 3-28. Controlling access to the
data bus with three-state buffers.

the three-state bus is more difficult to debug than the bus formed from multiplexers.
The three-state bus itself is just a collection of n wires. A debugger who sees
bad data on the bus cannot easily identify which source or sources are contributing.
Failure of the three-state circuitry often requires tedious disconnecting of sources
from the bus until the guilty party identifies itself by a change in the bus's
behavior. In the multiplexer method, we may check inputs, controls, and output
directly, and quickly determine which element is misbehaving.

These drawbacks to three-state bus control are insufficient to counteract
the tremendous advantages that this technology offers, and three-state control
is used in most modern applications of data bussing.

One caveat: Do not try to use three-state control at the output of a control
signal. Control signals must be either true or false (asserted or negated) at all
times, and we cannot afford to have them simply not there. Only with data
whose use is governed by control signals do we have the opportunity to have
certain data sources disconnected some of the time.

READINGS AND SOURCES

BLAKESLEE, THOMAS R., Digital Design with Standard MSI and LSI, 2nd ed. John Wiley
& Sons, New York, 1979.

FAST: Fairchild Advanced Schottky TTL. Fairchild Camera and Instrument Corp., Digital
Products Division, South Portland, Maine.

FLETCHER, WILLIAM I., An Engineering Approach to Digital Design. Prentice-Hall, En­
glewood Cliffs, N.J., 1980. Chapter 4 discusses MSI building blocks.

HILL, FREDERICK J., and GERALD R. PETERSON, Digital Logic and Microprocessors. John
Wiley & Sons, New York, 1984.

MANO, M. MORRIS, Digital Design. Prentice-Hall, Englewood Cliffs, N.J., 1984.

104 Tools for Digital Design Part I

The TTL Data Book. Texas Instruments, P.O. Box 225012, Dallas, Texas 75265.
WIATROWSKI, CLAUDE A., and CHARLES H. HOUSE, Logic Circuits and Microcomputer

Systems, McGraw-Hill Book Co., New York, 1980.

EXERCISES

3-1. What are SSI, MSI, LSI, and VLSI?
3-2. What distinguishes a combinational circuit from a sequential one?
3-3. Explain the structure and the function of the multiplexer. What are the two major

types of output enable found in MSI multiplexers?
3-4. Figure 3-5, which corresponds to the commercial equivalent of the enabled multi­

plexer, is not a direct counterpart of Fig. 3-4 or Eq. (3-1). Give a logic equation
that best describes the device shown in Fig. 3-5.

3-5. By consulting a TTL data book, make a list of the available MSI multiplexers and
their distinguishing characteristics. You must inspect the data sheets to discern
the details; chip names alone are not sufficient. (Since the multiplexer is such an
important digital building block, this effort is well worthwhile.)

3-6. Why not have one select input for each multiplexer data input rather than encoding
the select information?

3-7. The 74LS251 Eight-Input Multiplexer has a three-state output-enable feature. Con­
struct a 16-input mUltiplexer building block from two 74LS251 chips and an inverter.

3-8. Build the 4-input multiplexer in Fig. 3-10, using SSI gates.
3-9. Show how to construct a 64-input multiplexer building block using eight 74LS251

chips and a 74LS42 decoder.
3-10. The 4-input multiplexer symbol below looks like a mixed-logic notation. Why do

we not find this symbol useful?

3-11. The 74LS42 serves as a demultiplexer and a decoder. Characterize the difference
in these two views of it.

3-12. Build the 4-output demultiplexer in Fig. 3-12, using SSI gates. Will your design
also serve as a decoder? If so, how?

3-13. What is the most important characteristic of the outputs of a decoder?
3-14. Explain how we may view the 74LS42's decoding capability as either a 4-to-1O

or an enabled 3-to-8 decoder.
3-15. The 74LS42 is sometimes called a BCD (binary-coded decimal) decoder. Why is

this an appropriate name?
3-16. Construct a building block that will decode a 4-bit binary code into one of 16

outputs, using 74LS42 decoders and any necessary gates.
3-17. What is the purpose of an encoder? Why are practical encoders priority encoders?

Chap. 3 Building Blocks for Digital Design 105

3-18. Explain the difference between the concepts of encoding and decoding.
3-19. Using SSI gates, design a priority encoder that accepts five inputs and produces

a 3-bit output code. Use method 1 of the text.
'3-20. Parity is an important concept, frequently used in error-detection circuits within

digital systems. The parity of a group of bits is odd if there are an odd number
of I-bits in the group; even parity implies an even number of I-bits. Although
rapid parity-computing circuits are available, the EXCLUSIVE-OR function provides
the basis for parity computation.
(a) Show that the EXCLUSIVE OR of two bits computes odd parity.
(b) Show that, in general, AI EEl A2 EEl A3 EEl ... EEl An expresses an odd-parity

function of n bits.
3-21. Multiplexers offer another interesting approach to parity computation. In the following,

the output should be asserted if the parity is odd.
(a) Show how a 4-input multiplexer (for instance, one-half of a 74LS153) can be

used to compute the parity of a 3-bit group.
(b) Write the logic equation (in terms of AND, OR, and NOT) for the actions of

the multiplexer in part (a), and show that this equation is equivalent to the
EXCLUSIVE-OR use suggested in the preceding exercise.

(c) Show how to use four 4-input multiplexers to compute the parity of a 9-bit
group. How many 74LS153 chips would be required for this design?

3-22. The 74LS280 Parity Generator/Checker accepts 9 bits of data and reports the
parity. Use this chip and any necessary SSI gates to design a circuit that will
assert an output when the parity of a lO-bit group is odd.

3-23. Derive logic equations for determining if one 4-bit positive binary number is greater
in magnitude than another. Design a circuit for this logic, using SSI gates.

3-24. The 74LS85 Magnitude Comparator has outputs for designating A < B, A = B,
and A > B. How may we determine if A :;;; B? A;;;, B? A f= B?

3-25. Draw a circuit for lO-bit magnitude comparison, using 74LS85 chips.
3-26. Performing arithmetic comparisons on signed numbers is more complex than comparing

magnitudes. Consider two 4-bit signed numbers A and B, recorded in signed­
magnitude notation. (This notation denotes a negative number with a 1 in the
leftmost bit position and a positive number with a 0 in that bit position; the other
bits record the magnitude of the number.) Develop logic equations to determine
if A < B, A = B, and A > B in this notation. Explore whether the 74LS85 Magnitude
Comparator is useful in realizing these equations. Produce a circuit (either with
or without the 74LS85) for generating the three comparisons.

3-27. Design a 3-bit full adder equivalent to Fig. 3-19, using I-bit full adders fabricated
from SSI gates.

3-28. Modify Fig. 3-21 to perform the operation A (+) B (+) 1.
3-29. Using 74LS283 Four-Bit Full Adders and any necessary SSI gates, design a circuit

that will accept a 12-bit signed number in the two's-complement representation
and produce the negative of that number.

3-30. Devise a circuit that will accept a 12-bit signed number in the two's-complement
representation and produce the absolute value of that number.

3-31. Verify Eq. (3-5) for the full-adder sum expressed in terms of the carry-generate
and carry-propagate operators.

106 Tools for Digital Design Part I

3-32. Derive equations for C3 and C4 , similar to Eqs. (3-6) and (3-7), using the carry­
generate and carry-propagate operators.

3-33. Derive the expressions for the 74LS181's G and P outputs. (Hint: consider the
generate and propagate operators for the bits within the 4-bit slice; ask yourself
what conditions must apply to obtain truth on the overall G and P.) Verify your
results by consulting a 74LS181 data sheet.

3-34. Describe a data bus. Give the main advantages and disadvantages of this method
of moving data. Why is the bus such a widely used concept?

3-35. Discuss the merits of controlling a bus with:
(a) Multiplexers.
(b) OR gates.
(c) Open-collector buffers.
(d) Three-state buffers.

3-36. Three-state control of outputs is common. Why do we not employ three-state
control of inputs?

3-37. Design bussing systems similar to Fig. 3-25 for six 4-bit devices, using:
(a) Open-collector bus drivers.
(b) Three-state bus drivers.

3-38. The multiplexer bus control method shown in Fig. 3-25 has the desirable property
that only one source can be talking on the bus at any time. Devise a three-state
bus control system that also has this "guaranteed single-talker" feature.

3-39. A logic probe is a small laboratory instrument that, when touched to a point in a
digital circuit, indicates the digital voltage level at that point. A typical logic probe
shows a low voltage level as a green light and a high voltage level as a red light.
If the voltage level is outside the acceptable ranges, the probe shows no light or
indicates invalidity in some other way. Read the sections in Chapter 12 on integrated
circuit data sheets and performance parameters. Using this information, specify
the following voltages for a logic probe designed to operate with the 74LS family
of integrated circuits:
(a) The highest voltage that will light the green light.
(b) The lowest voltage that will light the red light.

Chap. 3 Building Blocks for Digital Design 107

Building Blocks
with Memory

In the preceding chapters, we tacitly assumed that electronic devices are infinitely
fast and that they generate outputs that depend only on the present input values.
In this chapter, we explore the interesting consequences of violating these
assumptions.

First, we examine what can happen when there are finite propagation delays
within gates. Output signals from assemblies of gates sometimes have spurious
short pulses that are not predicted by standard Boolean algebra. These spurious
pulses are seldom useful, but we must contend with them, usually by waiting
until they have gone away.

Next, we explore gate circuits that include feedback. Some of these circuits
exhibit memory, which is an essential tool for the system designer. We consider
useful sequential (memory) building blocks: flip-flops, registers, counters, and
so on. These are basic tools for developing the digital architectures in the coming
chapters of Part II.

We then discuss large memory arrays-RAMs, ROMs, and allied solid­
state memories. Then, after a treatment of programmable logic devices, we
conclude with a description of some timing devices that are needed when designing
with these large memories.

THE TIME ELEMENT

Hazards

The outputs of real gates cannot change instantaneously when an input is changed.
Integrated circuits operate by movement of holes and electrons within some

108 Tools for Digital Design Part I

physical material, usually silicon. Not even very light particles such as electrons
can move at infinite speeds, and their movement will always involve delays. The
time between a change in an input signal and a corresponding change in an output
is called the propagation delay of the circuit. When inputs change, an output
may undergo a change from L to H or from H to L. The corresponding propagation
delays are denoted tpLH and tpHL . Propagation delays depend on the input wave­
forms, temperature, output loadings, operating power, logic family, and a host
of other parameters. Single-gate propagation delays are about 5 nanoseconds in
TTL low-power Schottky devices.

Another source of delay is the wire carrying signals between gates. Electricity
in a wire can travel only about 8 inches in a nanosecond, so when wires become
long, the interconnection delays may become serious.

Our purpose here is to show how these delays can create spurious outputs
called hazards. Consider the following simple circuit that changes the voltage
polarity of a signal:

Assume that the voltage at the input A has been stable for a long time. The
output will also be stable and of the opposite voltage level. If the voltage at
the input changes, the output will change a short time later. When an input
changes from L to H, the output will change from H to L after a propagation
delay tpHL ; similarly, a H ~ L transition in the input will produce a L ~ H
output transition after a time tpLH . Figure 4-1 is a timing diagram, a graph of
input and output values (either voltage or logic) as a function of time. Each
variable's graph is called a waveform.

H
Input

L

H
Output

L

Time-----

Figure 4-1. Timing diagram showing
propagation delays in a logic circuit.

To see what can happen when we introduce time into Boolean algebra,
consider the following circuit, whose output is A + A:

A.H--"'~~------~--~(A+A).L

~/ rA.H~
Chap. 4 Building Blocks with Memory 109

A.H

A.H

(A +A).L

Of course, we know that A + A = T regardless of the logic value of A, and
we predict, from Boolean algebra, that the output of the circuit will always be
L. But assume that each circuit element has a propagation delay tp for any
transition. If A changes from T to F, the voltage pattern in Fig. 4-2 will prevail;
there is a spurious high-voltage (F) output that lasts for one gate delay.

H---""I

L

H

L -------'

:---~-~~~~-----------
Time-

Figure 4-2. A hazard caused by
propagation delay in an inverter.

These spurious outputs of combinational circuits, called hazards or glitches,
are common in digital systems. Fortunately, given sufficient time they will die
out and the outputs of gates will assume the values predicted by classical Boolean
algebra.

Occasionally, it is necessary to generate gate outputs that are clean-that
have no hazards. It can be shown that a function may have a hazard if the
function's Karnaugh map has adjacent 1 's not enclosed in the same circle. The
preceding example, when plotted on a one-variable K-map, becomes

A A

18181
The two adjacent 1 's do not share a common circle, and indeed the circuit has
a hazard. If we circle both 1 's in the K-map, we have the TRUE function, which
is hazard-free.

The following function is a more complex example

AB
C 00 01 11 10

o

o

The theory is that a circuit based on the two solid loops mayor may not contain
a hazard; however, if we build a circuit that includes the dashed loop, we can
be sure that the circuit will have no hazards. Using the dashed loop requires
extra hardware (additional AND and OR gates), a necessary penalty when we
cannot tolerate hazards.

110 Tools for Digital Design Part I

This technique of eliminating hazards works in simple sum-of-products
circuits derived from K-maps. In more general circuits, the elimination of hazards
is quite complex, and therefore we must use finesse instead of brute force. Rather
than use design techniques that require hazard-free signals, we will make our
designs insensitive to the hazards that occur when combinational inputs are
changing. A standard technique is to wait a fixed time after the inputs of the
gates change, during which time the hazards will die out. We may then proceed
to use the stable signals. This idea is the basis of synchronous (clocked) design,
which we introduce in Chapter 5.

Circuits with Feedback

In the preceding section, we discussed purely combinational circuits. Except
for momentary hazards, the behavior of the circuits is adequately described by
the Boolean algebraic or truth-table methods used in the previous chapters. After
a sufficient time to "settle," the circuit's outputs become a function only of the
inputs. We now consider another class of circuits, in which the value of the
outputs after the settling time depends not only on the external inputs but also
on the original value of the outputs. Such circuits exhibit feedback: the output
feeds back to contribute to the inputs of earlier elements in the circuit.

Feedback yields curious results in some circuits. The following circuit,
which has no external inputs, consists of three inverters and feedback:

r-------------------------------~

I i
I I

I I I~I
N, ,,'," i ,. 'J 0"",

I
I I
L ____________________________ ~

The voltage at the output is fed back into the input where, after a short time,
it appears inverted on the output. The new voltage causes a similar inversion;
the output voltage oscillates rapidly.

Remove one inverter from this circuit, producing the following circuit:

If you construct this circuit with real inverters and apply operating power, the
output voltages of each inverter will go through a period of instability, during
which one output will settle at a high level and the other at a low level. Although
there is no way to predict which output will be high and which low, the circuit
will remain stable after the settling time. You can verify the stability by tracing

Chap. 4 Building Blocks with Memory 111

Figure 4-3. Memory displayed by a
circuit with feedback.

voltages around the circuit. Redrawing the circuit, as in Fig. 4-3, helps to
illustrate the stability. Since neither of the inverter feedback circuits shown
above has external inputs, Boolean algebra is powerless to describe the circuit's
behavior.

SEQUENTIAL CIRCUITS

The circuit in Fig. 4-3 exhibits a primitive form of memory: the circuit' 'remembers"
the resolution of the initial voltage conflict. Without external inputs, this memory
is useless. In contrast, certain feedback circuits with external inputs not only
exhibit memory, but also allow the designer to control the value stored in the
memory. Controllable memory is the digital designer's most powerful tool. Digital
systems with memory are called sequentiaL circuits.

Sequential devices may be synthesized from gates, but this procedure is
not within the scope of this book, except in that it shows the typical structure
of some simple memory elements. Manufacturers have packaged proven gate
designs of various sequential circuits, and we can use these as building blocks
once we know their behavior. Sequential building blocks have names such as
Latch, flip-flop, and register.

Unclocked Sequential Circuits

The latch. The latch is the simplest data storage element. Its logic diagram
is in Fig. 4-4. To describe the action of the latch, we must introduce time as
a parameter. This was not necessary in combinational logic, but it is always
necessary in sequential logic. The timing diagram is frequently used to portray
sequential circuit behavior. To analyze the latch circuit, consider the several
cases shown in the timing diagram, Fig. 4-5.

Case A: HOLD = F. In this case, Y = DATA.

DATA:::::::::~==~~------l
HOLD ... --y

112

Figure 4-4. A latch circuit; the heavy
line is the feedback path.

Tools for Digital DeSign Part I

DATA ; --1IJli--__ ----'Il ___ ----'n __

T
HOLD F _____ -'

- Case - - Case - - Case­
B2 A B1

Time ---+-

- Case­
B3

Figure 4-5. A timing diagram for a latch. Note the I's catching behavior.

Case B: HOLD = T. Any occurrence of DATA = T will be captured,
and the output will thereafter remain true until HOLD becomes false. We
consider three subcases:
Case Bl: DATA is false throughout the period when HOLD is true. Then
Y is false.
Case B2: DATA is true when HOLD is true. When HOLD becomes true,
the latch captures the (true) value of DATA and stores it as long as HOLD
remains true. (After HOLD becomes false, case A applies.)
Case B3: DATA is false when HOLD becomes true. At the beginning, Y
is false. The first occurrence of a true signal on the DATA line will cause
Y to become true; the output will remain true until HOLD becomes false.

The latch has the property of passing true input data to its output immediately.
This behavior is sometimes useful in digital design, but it can be quite dangerous.
Suppose that while HOLD is true, a glitch or noise pulse on the DATA line
causes DATA to become true momentarily. This momentary true, or 1, will
cause output Y to become true and remain true as long as HOLD is true. This
behavior is sometimes called 1's catching; it is useful only rarely.

The latch circuit in Fig. 4-4 is not frequently used, and it is not generally
available as an SSI integrated circuit. A true latch is a memory element that
exhibits combinational behavior at some values of its inputs. There are other
varieties of latch; unfortunately, designers use the term loosely to describe various
signal-capturing events. We will soon develop more satisfactory memory devices.

Timing diagrams may be used to show gross voltage or logic behavior, or
to show fine detail. The timing diagrams in Figs. 4-1 and 4-2 show the fine
detail of gate delays. On the other hand, the timing diagram in Fig. 4-5 shows
only the gross behavior of the latch circuit and is accurate only when the time
scale is sufficiently large. On a fine time scale, the output Y in Fig. 4-5 would
be shifted slightly to the right to account for the delays incurred while changes
in DATA or HOLD are absorbed by the gates in the circuit.

The asynchronous RS flip-flop. The feedback circuit in Fig. 4-3 exhibits
a peculiar form of memory: it remembers which inverter had a low output after
"power-up." The circuit has two stable states, and is indeed a memory, albeit
a useless one, since there is no way to change it from one state to the other.

Chap. 4 Building Blocks with Memory 113

By changing the inverters to two-input Nor gates, we obtain a useful device
known as the asynchronous RS flip-flop (see Fig. 4-6). We will study voltage
behavior in this circuit before we introduce the concept of logic truth.

s-----\

R------i

X>--...... --x

X>--...... --Q Figure 4-6. An asynchronous RS flip­
flop constructed with Nor gates.

The RS flip-flop is a bistable device, which means that in the absence of
any inputs it can assume either of two stable states. To see this, assume that
R = S = L, and assume that the output X of gate 1 is L. Gate 2 will then
present a high voltage level to Q. When this H feeds back to the input of gate
1, it will produce an L at X, which is consistent with our original assumption
about the polarity of X. We can describe this behavior by saying that the circuit
is in a stable state when gate 1 outputs L and gate 2 outputs H. Once the circuit
assumes this state, it will remain there as long as there are no changes in the
Rand S inputs.

There is another stable state during which gate 1 outputs H and gate 2
outputs L. We could predict this from the symmetry of the circuit, but you
should verify it by tracing signals as we just did.

We have shown that the circuit of two cross-coupled Nor gates can exist
in two stable states. We call one of the stable states the set state and the other
the reset state. By convention, the set state corresponds to Q = H, and the
reset state to Q = L.

The conventional representation of a flip-flop is a rectangle from which
Q.H emerges at the upper right side. Most flip-flops produce two voltages of
opposite polarity and the second output appears below the Q.H output. In data
books, the second output is usually called Q. Since this output behaves like Q
with a voltage inversion, mixed logicians prefer to designate the signal as Q.L,
the alternative voltage form of Q.H. Nevertheless, the nomenclature within the
flip-flop symbol, like our other building blocks, must conform to normal data
book usage so that there will be no confusion about the interpretation of the
pins of the chip. The interior of the symbol serves to identify pin functions; the
external notations for inputs and outputs represent specific signals in a logic
design. Thus, if we have a flip-flop whose output is a logic variable RUN, our
standard notation for the output is

Q RUN.H

Q RUN.L

114 Tools for Digital Design Part I

Now we will consider the Sand R inputs to the RS flip-flop. We know
that as long as Sand R are low, the flip-flop remains in its present state. We
may use the Sand R lines to force the flip-flop into either state. S is a control
input that places the RS flip-flop into the set state (Q = H) whenever S = H.
Analogously, R = H resets the flip-flop by making Q = L. The obvious association
of truth and voltage is T = H at S, R, and Q, so that we set the flip-flop by
making S = T, and we reset by making R = T. This leads us to our usual
mixed-logic notation for an RS flip-flop constructed of Nor gates:

---IS Q-

---IR 00---

Figure 4-7 is a similar asynchronous RS flip-flop designed with Nand gates.
This figure, a mixed-logic diagram of the cross-coupled gates, emphasizes that
T = L at the inputs of this flip-flop.

S.Lo---~-"'"
>-.... --Q.H

--as

--QR

R.Lo----<I
}-..... -f-<>Q.L

(a) Mixed logic circuit (b) Circuit symbol

Figure 4-7. An asynchronous RS flip-flop constructed with Nand gates.

The term asynchronous associated with the RS flip-flop implies that there
is no master clocking signal that governs the activity of the flip-flop; suitable
changes of S or R cause the outputs to react immediately. Asynchronous means
unclocked. Its counterpart is a clocked, or synchronous, circuit. (Some workers
refer to all the unclocked storage elements as latches; we will not adopt this
practice.) The asynchronous RS flip-flop is sensitive to noise, or glitches, at the
S input when in the reset state, and at the R input when in the set state. This
sensitivity is occasionally useful, but in general you should avoid using asynchronous
devices, since glitches are undesirable byproducts of gate delays and noise is
usually unpredictable in digital systems. Part of our goal is to develop design
techniques that bypass these inevitable problems. Therefore, one of our dictums
will be: don't use asynchronous RS flip-flops as a general design tool.

Switch debouncing. There is one standard use of the RS flip-flop-as
a switch debouncer. It is an unfortunate fact that mechanical switches do not

Chap. 4 Building Blocks with Memory 115

make or break contact cleanly. At closure there will be several separate contacts
over a period of many microseconds. The same is true during switch opening.
The switch bounces. Since we do not wish to use a bouncy or spiky signal in
our digital designs, we need a way to clean up the switch output.

Whenever a mechanical switch changes its position, we wish the associated
digital signal to undergo one smooth change of voltage level. The asynchronous
RS flip-flop is well suited for this. Figure 4-8 contains two switch debouncing
circuits. In Chapter 12 we discuss the electrical details of the input circuits;
here we will be satisfied to state that the resistors keep the control inputs inactive
unless the voltage from the switch forces one input to become active. When
the switch is off, it is constantly resetting the flip-flop, producing a constant F
output. As the switch moves toward the on position, there will be a period of
oscillation or bounce on the R input, caused by the mechanical switch breaking
and making its contact with its off terminal. The S input is false throughout all
of this, and the repeated resetting does not affect the false output of the flip­
flop. There follows a "long" period when the switch moves between its off and
on positions, during which time both Sand R are false. Then the switch begins
its bouncy contact with the on terminal. The first contact causes S to become
true, which sets the flip-flop to its true state, where it remains throughout the
on-position bounce and until the switch is returned to off.

On On

I:
:t~ONH voc~E'

s Q

Vee

R Q SW.ON.L
Oft Ofr

(a) High-active inputs (b) Low-active inputs

Figure 4-8. Mechanical switch debouncing circuits using asynchronous RS
flip-flops.

SW.ON.H

SW.ON.L

Ambiguous behavior in the RS flip-flop. Of the four voltage combinations
of the S and R inputs, we have used three: to hold, set, and reset. What happens
when Sand R are simultaneously true? In the Nor-gate version, the voltages
at both outputs of the flip-flop will be low-a disturbing situation. In the Nand­
gate version, both will be high. Although this deviation from voltage comple­
mentarity is unwelcome, it nevertheless represents a well-defined and stable
configuration of the flip-flop. But watch what happens when we try to retreat
from this configuration of inputs. If we change only one of the inputs, the flip­
flop enters either the set or reset state, without difficulty. But if we try to change
both inputs simultaneously (in an attempt to move to the hold state), the flip­
flop is in deep trouble. Consider the Nor-gate version of the RS flip-flop, Fig.
4-6. If the voltages at Sand R are both high, then they are low at both X and
Q. If the voltages at S and R both become low simultaneously, then after one
gate delay both gates in the flip-flop will produce high outputs. These high
outputs, feeding back to the inputs of the Nor gates, will result in low gate

116 Tools for Digital Design Part I

outputs after one more gate delay. And so on. The circuit oscillates rapidly,
at least at the beginning, with both outputs producing either high or low voltage
levels "in phase." The resulting changes occur so rapidly that the flip-flop is
forced out of the digital mode of operation for which it was designed, and the
output voltages quickly cease to conform to reliable digital voltage levels-an
example of metastable behavior that is discussed in Chapter 12. Eventually,
the slight differences in the physical properties of the two gates will allow the
flip-flop to drop into the set state or the reset state. The time required for the
voltages to settle and the final result are uncertain, so this behavior is of no use
to designers. Therefore, it is considered improper design practice to allow R
and S to be asserted at the same time.

Excitation tables. Timing diagrams are useful for displaying the time­
dependent characteristics of sequential circuits, but for most purposes a tabular
form is better. The excitation table is the sequential counterpart of the truth
table or voltage table for combinational circuits. The excitation table looks much
like a truth table, but it contains the element of time. In a sequential circuit,
the new outputs depend on the present inputs and also on the present values of
the outputs. We can display the behavior of the RS flip-flop of Fig. 4-6 in the
following excitation table:

S R Q(t) x(t) Q(tH) X(tH)

L L q x q x Hold
L H q x L H Reset
H L q x H L Set
H H q x Disallowed

Q(t) is the value of output Q at time t; Q(t+B) is the value of Q at a small time ()
after t, where () is sufficiently long for the effects of the gate delays to settle
down.

The excitation table is also useful for displaying the logical behavior of
sequential circuits. For instance, the following excitation table describes the
logical behavior of RS flip-flops, using a modification of the previous notation:

S R Q Q'

F F q q Hold
F T q F Reset
T F q T Set
T T q Disallowed

In the literature, notations for excitation tables vary greatly and in this
chapter we will use a variety of forms. You should be able to recognize these
notational differences.

Chap. 4 Building Blocks with Memory 117

Clocked Sequential Circuits

Asynchronous flip-flops are 1 's catchers. A more useful class of flip-flop is
available for general digital design. In these flip-flops, outputs will not change
unless another signal, called the clock, is asserted. Since the activity is synchronized
with the clock signal, these flip-flops are called synchronous. Digital systems
usually have a repetitive clock with a square waveform. The clock signal alternates
between its Hand L signal levels. Depending on the application, we may view
either H or L as representing truth on the clock line, although in almost all our
applications we shall use the T = H assignment for clock signals. In Chapter
12 we discuss ways of generating this important signal, and you will encounter
clocked circuits throughout the remainder of this book.

Clocked R$ flip-flop. We can derive a clocked flip-flop from an asyn­
chronous RS flip-flop by gating the Rand S input signals to restrict the time
during which they are active, as in Fig. 4-9. The flip-flop outputs may change
whenever the clock is true-a potentially risky situation similar to the l' s catching
of the latch circuit. In digital systems, flip-flop outputs often contribute to
combinational circuits that produce inputs to other flip-flops. Shortly after the
rise of the clock, the system is in "shock" owing to the changing of flip-flops.
During this period of shock, hazards may be present that can feed erroneous
signals into flip-flop inputs while the clock is still true, resulting in false setting
or resetting of the flip-flops.

S.H-----I

>-~~---Q.H

CLK.H--'"

}---4 -!--OOQ.L

R.H-----1

Figure 4-9. A clocked RS flip-flop circuit.

It is natural to try to avoid this problem by making the true portion of the
clock signal as narrow as possible. Unfortunately, this is not a good solution,
since the system's behavior is crucially dependent on the quality of the clock
and narrow clock signals are difficult to generate and distribute.

The aim is to reduce the time during which the flip-flop outputs respond
to the inputs. Since altering the clock waveform leads to difficulties, can we
achieve the goal by further modification of the flip-flop circuit itself? Can we
devise a flip-flop that will recognize R and S only at a single instant and ignore
the inputs at other times? Such behavior would be desirable because all flip­
flops would change at precisely the same time if they were clocked from the

118 Tools for Digital Design Part I

same source. This would mean that we could arrange for all the Rand S inputs
on all flip-flops to be stable at the time of clocking, and the flip-flops would not
be influenced by the shock of the changes induced just after clocking.

Flip-flops that allow output changes to occur only at a single clocked instant
are called edge-driven or edge-triggered. An edge is a voltage transition on the
clock signal, and may be either a positive edge (L -? H) or a negative edge
(H -? L). The clocked circuit in Fig. 4-9 is level-driven, since its outputs may
change at any time during the true part of the clock cycle. In your designs of
clocked sequential circuits, use only edge-driven devices.

Master-slave flip-flop. The master-slave flip-flop is a relic from the early
days of integrated circuit technology, but is still widely used because of its
pseudo-edge-driven characteristics. It is a relatively simple device that we can
easily discuss at the gate level, so we will show how one is derived by extending
the clocked RS flip-flop. Figure 4-10 is a master-slave flip-flop schematic. The
master flip-flop will respond to inputs Sand R as long as the clock signal is
high. This period must be long enough to ensure that Sand R are stable when
the clock goes from high to low. This H -? L transition, the negative clock
edge, isolates the master flip-flop from the inputs Sand R. The master flip-flop
will now remain unchanged until the next positive clock edge.

Master Slave

S.H p--os Q 1-----1 p--os Q.H

Q.L

R.H
Qb-+--f----I

P--OR

CLK.H --.. ______ --1

Figure 4-10. A master-slave clocked RS flip-flop.

Because of the voltage inverter, the slave flip-flop does not become sensitive
to its input until one gate delay after the negative clock edge. At that time, it
receives its Sand R inputs from a stable master flip-flop. The net effect is that
the outputs of the master-slave combination change only on the negative clock
edge rather than during a clock level.

Pure edge-driven flip-flop. The master-slave flip-flop appears to be an
attractive edge-driven device. Why are we not content with this design? Because
the master flip-flop is still ai' s catcher during the positive half of the clock
cycle. This means that Rand S must stabilize during the negative half of the
clock, since the master flip-flop will react to any T glitches during the positive
clock phase. We could greatly simplify our digital circuit designs if we could

Chap. 4 Building Blocks with Memory 119

eliminate the 1 's-catching behavior. We need a flip-flop that samples its inputs
only on a clock edge and changes its outputs only as a result of the clock edge.
Such a device is called a pure edge-drivenflip-Jiop. The F ~ T clock transition
is called the active edge. It may be either the H ~ L or L ~ H transition,
although in the most useful integrated circuits the L ~ H transition is the active
edge.

The property of changing state and sensing inputs only at a given instant
gives the designer a powerful tool for combatting glitches and noise. We can
now choose the time to look at signals and can fix that time to allow adequate
stabilization of the system. We will make constant use of pure edge-driven
sequential circuits in our designs. The internal structure of these devices is
rather complex, but for purposes of digital system design it is not necessary for
us to examine their construction in detail. Hereafter, in all our discussions of
clocked sequential circuits, we will assume the use of pure edge-driven devices.

Excitation tables for edge-driven flip-flops. Assume that the edge-driven
flip-flop is subjected to a steady stream of active clock edges. Each clock edge
will cause the flip-flop to enter either its set or its reset state, in accordance with
the values of its inputs and the current value stored in the flip-flop. Mter the
flip-flop has received n clock triggers, the value stored in the flip-flop is Q(n)' If
the flip-flop is in the set state after the nth clock edge, then Q(n) = T; if in the
reset state, Q(n) = F. After the appearance of the next clock edge, the value
of Q will be Q(n+ I)' The excitation table for edge-driven devices is a tabulation
of Q(n+l) for all combinations of the exciting variables.

In the remainder of this chapter, we will use excitation tables to classify
flip-flops. For the excitation table to be valid, we must ensure that the control
inputs are stable for a short time before the active clock edge (the setup time),
and perhaps for a short time after the active clock edge (the hold time). The
input voltages may go through wild excursions prior to the onset of the setup
time and after the hold time, as long as they remain stable during the setup and
hold times. (See Chapter 12 for a discussion of setup and hold times.)

CLOCKED BUILDING BLOCKS

In this section, we present the common SSI building blocks for clocked digital
design. Table 12-1, at the end of Chapter 12, contains a selected list of useful
integrated circuits for these as well as more complex building blocks.

The JK Flip-Flop

Whereas the RS flip-flop displays ambiguous behavior if both Rand S are true
simultaneously, the JK flip-flop produces unambiguous results in all combinations
of its inputs. A logical excitation table for the basic JK flip-flop is:

120 Tools for Digital Design Part I

Clock J K Q(n) Q(n+!)

F X X q q
T X X q q

t F F q q Hold

t F T q F Reset

t T F q T Set

t T T q q Toggle (complement)

J is the counterpart of the S input of an RS flip-flop, and K is the counterpart
of R. The first two lines of the excitation table demonstrate the edge-triggered
behavior of the flip-flop: when the clock signal is a stable false or true, the output
of the flip-flop is insensitive to the other inputs. Often these lines do not appear
in the excitation table, since such behavior is expected of an edge-triggered
device. The remaining four lines in the table describe the flip-flop behavior when
the clock undergoes its active (F ~ T) transition. The first three of these lines
are analogous to the RS flip-flop. The last line shows that, if both control inputs
are true when the clock fires, the flip-flop will complement its output. This
behavior is called toggling.

Commercial JK flip-flops come in various forms. The most interesting
variations are:

(a) Active clock edge: positive or negative. On all clocked devices, we show
the clock input as a small wedge p. inside the device symbol. A negative
edge-triggered flip-flop has a small circle (representing T = L) on the clock
input: 1>.

(b) Active voltage level for J and K. We find flip-flops with both J and K
active-high (T = H), and also a flip-flop with J active-high and K active­
low. In the latter form, the K input has a small circle on the circuit symbol.

(c) Availability of asynchronous Rand S inputs. These are often called direct
clear or preclear and direct set or preset. One, both, or neither may be
present on the chip. Direct set usually appears at the top of the flip-flop
symbol, and direct clear at the bottom. Truth is usually a low voltage
level, in which case these inputs will bear small circles. As long as an
asynchronous input is asserted, it will override the normal synchronous
behavior of the flip-flop.

The 74LSI09 Dual JK Flip-Flop is our most-used version. It is positive­
edge-triggered, which is compatible with the standard MSI sequential building
blocks, and has a high-active J input and a low-active K input. As usual, when
designing with JK flip-flops we think in terms of logical operations rather than
voltages. It is useful to describe the primary logical operations on the JK flip­
flop as the "set" and the "clear," setting Q to T and clearing Q to F. The
74LS 109 flip-flop has two useful mixed-logic representations, shown in Fig.

Chap. 4 Building Blocks with Memory 121

4-11 with appropriate input and output signals. "Pr" is the asynchronous preset
input; "Clr" is preclear. The symbol in Fig. 4-11a is conventional and causes
no difficulty. The circuit shown in Fig. 4-11b is less easy to derive, but it gives
us a degree of flexibility that repays our efforts. The voltage excitation table
for the 74LS109 is

Preset Preclear Clock J K Q(n+l) Action if Q is active-high

L H X X X H Direct set
H L X X X L Direct clear
L L X X X Disallowed configuration
H H i L L L Clear (Reset)
H H i L H Q(n) Hold
H H i H L -Q(n) Toggle
H H i H H H Set

Here, ~Q(n) means the voltage inversion of Q(n); as usual, X means "don't care."
This excitation table contains yet another variation of notation, in which the
monotonous input column for the present value of the flip-flop's output is eliminated.

Y(DIRSET).L

Y(SET).H

Y(CLEAR).L

CLOCK.H ---I:>

Y(DIRCLR).L

(a) Setting with J,
clearing with K

Z(DIRCLR).L

Y.H Z(CLEAR).H

Z(SET).L

Y.L CLOCK.H ---I:>

Z(DIRSETJ.L

(b) Setting with K,
clearing with J

Figure 4-11. Two mixed-logic uses of the 74LSI09 Dual JK Flip-Flop.

Z.L

Z.H

When T = H at Q, we derive the mixed-logic symbol in Fig. 4-11a, the
usual form. If T = L at Q, the logical act of setting the flip-flop must result in
an L output at Q; logical clearing must yield Q = H. In order to match this
behavior with the voltage excitation table, we are led to the conclusion that we
must set the flip-flop with the K input and clear with the J input. In turn, this
causes the preset input Pr to perform as a logical direct clear, and the preclear
input elr to perform as a logical direct set.

The advantage of the form used in Fig. 4-11b is its versatility, since we
use a different voltage convention for setting and clearing than we do with the
conventional symbol. This mixed-logic symbol for the 74LSI09 is the most
difficult of the common building blocks to derive, yet having once derived and

122 Tools for Digital Design Part I

mastered it, we may use either symbol for the 74LSI09, as our use dictates,
without further thought.

This exercise in mixed logic illustrates one aspect of good design: We try
to define the general behavior of common circuit elements, and arrive at general
solutions to common design problems. We move these recurring but perhaps
difficult items up front, where we face them squarely, so that having dealt with
their intricacies once, we may thereafter use the standard results in our design
work. You will see this principle invoked many times in this book; it is the
essence of top-down design.

The JK flip-flop is our most powerful SSI storage element, and you must
master its use. There are several ways of using a single flip-flop, and later you
will see many larger constructions based on this flexible element.

JK flip-flop as controlled storage. The most general use of the JK flip­
flop, and the one that gives it such power and flexibility, is as a storage element
under explicit control. In digital design, whenever we must set or clear or toggle
a signal to form a specific value for later use, we usually think of a JK flip-flop.
The penalty for this generality is the need to control two separate inputs.

JK flip-flop for storing data. The JK flip-flop is basically a controlled
storage element. On occasion, we wish to adopt a different posture and view
the JK flip-flop as a medium for entering and storing data. From the excitation
table, we see that Q(n+l) = Q(n) whenever J = K = F at the clock edge. This
is simply a data-storage mode. All that is necessary to continue holding data in
the flip-flop is to ensure that J = K = F during the setup time before each
clock edge.

JK flip-flop for entering data. The J and K inputs are not data lines;
they are control lines for the flip-flop storage. Nevertheless, we can view the
JK flip-flop as a data-entry device. We can enter data in three ways:

(a) Clearing, followed by later setting if necessary.
(b) Setting, followed by later clearing if necessary.
(c) Forcing the data into the flip-flop in one clock cycle.

The rule for case (a) is:

If you are sure that the flip-flop is cleared, you may enter data D into the
flip-flop on a clock edge by having J = D, independent of the value of K.

Case (b) is analogous to case (a). The rule is:

If you are sure that the flip-flop's output is true, you may enter data D
into the flip-flop on a clock edge by having K = D, regardless of the value
of J.

You should verify the rules for cases (a) and (b).

Chap. 4 Building Blocks with Memory 123

As for case (c), the designer often cannot guarantee that a flip-flop will be
in a given state. Proceeding as we did in cases (a) and (b) would waste one
clock cycle for the initial clearing or setting operation. It would be nice to have
a mode that would force data to enter the flip-flop at a clock edge, regardless
of the present condition at the output. Such a data-entry mode is called a jam
transfer, since the data is "jammed" into the flip-flop independent of prior
conditions. Examination of the excitation table for the JK flip-flop shows that
such a mode is indeed available. We enter data D as follows: If D = F, J must
equal F and K must equal T. If D = T, J must equal T and K must equal F.
Combining these conditions, we see that Q(n+1) will equal D whenever J = D
and K = D. Now you see the utility of having opposite voltage conventions
for truth on the J and K inputs of the 74LSI09 flip-flop. With this device, we
can connect the J and K inputs together to make K = J as required by the
analysis above. Then, by connecting the input data D to the joined inputs of
the flip-flop, we will enter D into Q at each clock edge.

The D Flip-Flop

The D (Delay) flip-flop has a simpler excitation table than the JK, and is used
in applications that do not require the full power of the JK flip-flop. The symbol
and excitation table for the D flip-flop are:

---10 Q
D Qln+ll

o
1

o
1

As an SSI device, the D flip-flop appears in these common varieties:

(a) The active clock edge can be either positive (L ~ H) or negative (H ~ L),
which is shown by the absence or presence of a small circle on the clock
terminal.

(b) Direct (asynchronous) set and clear inputs appear in these combinations:
both, neither, or clear only. Almost always, these inputs, when present,
are low-active, and appear in the diagram with the small circle. These
asynchronous inputs are 1 's catchers, and you should use them only with
great caution.

(c) Some D flip-flops have only the Q output; others provide both polarities.
Although it appears to be ideal for data storage, there are, in fact, just a
few common uses of the D flip-flop in good design.

o flip-flop as a delay. As its name implies, the D flip-flop serves to delay
the value of the signal at its input by one clock time. You will see such a use
in Chapter 6 when we discuss the single-pulser circuit for manual switch processing.

124 Tools for Digital Design Part I

D flip-flop as a synchronizer. One natural application of the D flip-flop
is as a synchronizer of an input signal. Clocked logic must sometimes deal with
input signals that have no fixed temporal relation to the master clock. An example
is a manual pushbutton such as a stop switch on a computer console. The
operator may close this switch at any time, perhaps so near the next edge of
the system clock that the effect of the changing signal cannot be fully propagated
through the circuit before the clock edge arrives. If the inputs to clocked elements
are not stable during their setup times, their behavior is not predictable after
the clock edge: some outputs may change, others may not. We need some way
to process this manual switch signal so that it changes only when the active
clock edges appear. This is called synchronization. Since the output of a clocked
element changes only in step with the system clock, we may use the D flip-flop
as a synchronizer by feeding the un synchronized signal to the flip-flop input.
We deal with this matter more fully in later chapters.

D flip-flop for data storage. The D flip-flop appears to be well suited to
data entry and storage. Unfortunately, designers use it far too often for this
purpose. The problem is that every clock pulse will "load" new data and this
is seldom wanted. We usually need a device that allows us to control when the
flip-flop accepts new data, just as we could with the JK flip-flop. With the D
flip-flop, it seems natural to gate the clock by ANDing it with a control signal
in order to produce a clock edge at the flip-flop only when we wish to load data.
This is a dangerous practice, as you will see in later chapters. Clocked circuit
design relies on a clean clock signal that arrives at all clock inputs simultaneously.
We have the best chance of meeting these conditions if we use unmodified clock
signals. This means that the devices will be clocked every cycle, so we must
seek other ways of effecting the necessary control over the flip-flop activities.

The enabled D flip-flop. To alleviate the problems caused by gating the
clock input to a D flip-flop, we will construct a new type of device called the
enabled D flip-flop. Figure 4-12 shows the principle. The circuit consists of a
D flip-flop with a multiplexer on its input. A new control signal LOAD appears,
in addition to the customary data input.

The system clock goes directly to the clock input, thereby avoiding the
problems of a gated clock. As long as LOAD is false, the data selector selects
the current value of the flip-flop output as input to the flip-flop. The net effect
is that Q recirculates unchanged: the flip-flop stores data. When LOAD = T,
the mUltiplexer routes the external signal DATA into the D input, where it will

r--oooj D Q t--~-
DATA

LOAD ----'

CLOCK
Figure 4-12. An enabled D flip-flop.

Chap. 4 Building Blocks with Memory 125

be loaded into the flip-flop on the next clock edge. The loading process is a jam
transfer.

The enabled D flip-flop is the element of choice for simple data storage
applications. Although we can accomplish the same effect with the JK flip-flop,
the enabled D device provides a more natural way of handling data. Curiously,
integrated circuit manufacturers were slow to produce SSI elements containing
several independent enabled D flip-flops. However, the concept is widely used
in arrays of storage elements, and we have available a good selection of tools
for registers.

REGISTER BUILDING BLOCKS

A register is an ordered set of flip-flops. It is normally used for temporary
storage of a related set ,of bits for some operation. This is a common activity
in digital design, especially when the system must process byte- or word-organized
data. You are familiar with the use of the word register in the context of digital
computers, but the notion is more general than just accumulators and instruction
registers. Multiple-bit storage is such a desirable architectural element that it is
a natural candidate for building blocks. Integrated-circuit manufacturers have
provided an assortment of useful devices at the MSI level of complexity.

Data Storage

Enabled D register. The most elegant data storage element for registers
contains the enabled D flip-flop. Chips are available with four, six, or eight
identical elements per package with common clock and enable inputs. The
74LS378 Hex D Register with Enable is typical of this building block. This 16-
pin chip provides six flip-flops, each with a data input and a single Q output.
The 74LS379 Quad D Register with Enable has four flip-flops, each with both
output signal polarities.

As you have seen, we favor the enabled D configuration because we may
hook the system clock directly to the device's clock input. The apparently small
point of not gating the clock line is really of great importance to the reliability
of the system, and you should adopt the practice routinely.

Pure D register. There are a few occasions when a register of pure D
flip-flops is the element of choice. We can always achieve this behavior with
the enabled variety by setting the enabling input to the true condition. Pure D
registers are also available, usually with a common asynchronous (direct) clear
input. The only reason to choose such an element is if you want the direct clear
feature; you know to be wary of its l's-catching properties.

Counters

Modulus counting. Counting is a necessary operation in digital design.
Since all binary counters are modulus counters, we will explore the concept of
modulus counting before we examine the hardware for it.

126 Tools for Digital Design Part'

Counting the positive integers is an infinite process. We have a mathematical
rule for writing down the integer n + 1 if we are given the integer n. This may
cause the creation of a new column of digits; for example, if n is the three-digit
decimal number 999, then n + 1 is the four-digit number 1,000. In an abstract
mathematical sense, the creation of the fourth digit is trivial. Not so in hardware.
Hardware counters are limited to a given number of columns of digits, and thus
there is a maximum number that a counter can represent. A three-digit decimal
counter can represent exactly 103 different numbers, from 000 through 999. We
define such a counter as a modulus (mod) 1000 counter. (A number M modulo
some modulus N, written M modulo N, is defined as the remainder after dividing
M by N.) Another way of viewing this is that the counter will count normally
from 000 through 999, and one more count will cause it to cycle back to 000.
An automobile's odometer behaves much the same way.

Counting with the JK flip-flop. The JK flip-flop, operating in its toggle
mode, goes through the following sequence

Clock pulse number: 0123456 .. .
Flip-flop output Q: 0101010 .. .

We see that the flip-flop behaves as a modulo-2 binary counter. Counters of
higher moduli can be formed by concatenating other binary counters. For instance,
a modulo-4 counter made from two modulo-2 counters must behave as follows

Clock pulse number: 012345678 .. .
Counter outputs Q\, Qo: 00 01 10 11 00 01 10 11 00 .. .

Can we devise a logic configuration that will cause two JK flip-flops to
count in this fashion? One answer is in Fig. 4-13. Here, for drafting convenience,
we draw the least significant bit Qo on the left, whereas Qo appears on the right
in the usual mathematical representation of the number QJ, Qo· Qo alternates
in value (toggles) at each clock. At alternate clock edges, QJ is clocked when
Qo = T; at these times the value QJ toggles.

T-..... --t

K

CLOCK - -------'

Q

Figure 4-13. A two-bit binary
counter. The least significant bit is on
the left.

Figure 4-14 contains another solution that appears to give equivalent results.
Again, Qo will toggle at each clock pulse, since J = K = T on that flip-flop.
This is necessary for a binary counting sequence. Every time Qo generates a
T ~ F transition (H ~ L in this circuit), Q\ will toggle since J = K = T on
that flip-flop also, and Qo provides the Q\ clock. Figure 4-15 is a timing diagram
for this circuit.

Chap. 4 Building Blocks with Memory 127

T.H - --1
Qo·H

Q T.H
Figure 4-14. A binary ripple counter.
The least significant bit is on the left.
This circuit displays both logic and
voltage, whereas the related Fig. 4-13
displays only logic.

K

CLOCK.L o---Q;>

T.H

CLOCK.L

The timing diagram for Fig. 4-13 is almost identical to Fig. 4-15; the
difference is due to propagation delays. In Fig. 4-13, if we assume that tp is
the flip-flop propagation delay, both Q, and Qo will change tp nanoseconds after
the clock edge, since J and K were stable during the setup time of both flip­
flops. We define such counters as synchronous.

H

CLOCK.L L

-h--tp
H l l L Qo·H L

--I ~tp
H I I QI·H L

Time -+-

Figure 4-15. A timing diagram for a 2-bit ripple counter. Each stage suffers
a cumulative propagation delay. In synchronous counters there is only one
delay.

By contrast, Q, in Fig. 4-14 cannot change until tp nanoseconds after Qo
has changed. Counters that change their outputs in this staggered fashion are
called asynchronous, or ripple, counters, since a change in output must ripple
through all the lower-order bits before it can serve as a clock for a high-order
bit.

Ripple counters are easily extensible to any number of bits. Thus a modulo-
16 ripple counter would be as in Fig. 4-16. This simple configuration is useful
if you are not interested in the temporal relation of Q3 to any lower-order bits.
A common example is the digital watch, in which a 32,768-(2'5)-Hz quartz crystal
oscillator is the primary timing source. The watch display is driven at a rate of
1 Hz, using the output of a IS-stage ripple counter.

Qo·H
Q T.H T.H

K

Figure 4-16. A 4-bit (modulo-16) ripple counter.

128 Tools for Digital Design Part I

To discover the problems that can arise with ripple counters, consider a
modulo-8 counter that is changing its count from 3 to 4. The ripple sequence
from the initial clock edge would be

Time Q2 Ql Qo

0 -0 1 1

tp o lS~
2tp ~S~ 0

3tp 1 0 0

In a typical application, the count code is fed into a decoder to produce individual
signal lines for each count. In this case, we would have momentary true hazards
at decoder outputs 2 and 0, each lasting for a time tp. These glitches are seldom
useful and may be quite harmful. We can eliminate them by using a synchronous
counter.

Figure 4-13 represents a 2-bit special case of synchronous counters. The
rule for changing the nth bit of a binary counter is that all lower bits must be
1. Using this rule, we can construct a modulo-16 sychronous counter from JK
flip-flops, as in Fig. 4-17. At the cost of the extra AND gates, we have manipulated
the inputs to each flip-flop to cause the flip-flops to toggle at the proper time.
Since a common clock signal runs to each flip-flop, the output changes will occur
simultaneously, without ripple.

T Q~'-'-""'-I Q Q Q

K K K K

CLOCK
Figure 4-17. A 4-bit (modulo-16) synchronous counter.

MSI counters. Synchronous counters are so useful that manufacturers
have prepared a wide variety as MSI integrated circuits, typically modulo-lO
(decade) and modulo-16 (4-bit binary) devices with provisions for cascading to
form higher-modulus counters. Some synchronous counters have an asynchronous­
clear input. You must be careful to supply a noise-free signal to this terminal

Chap. 4 Building Blocks with Memory 129

to ensure reliable operation. Remember, it is aI's catcher! Novices (and some
experienced designers) tend to use the asynchronous clear feature too often.
About the only time it can be safely used is during a power-up or master reset
sequence to drive crucial flip-flops to a known state.

The ideal counter would be cascadable and have a synchronous clear input
terminal, such as in the 74LS163 Four-Bit Programmable Binary Counter. With
this device, a cascaded 12-bit synchronous counter would appear as in Fig. 4-18.
Each 74LS163 chip is a synchronous counter. CLOCK.H is the system clock
signal, and since it goes to each 4-bit chip, all output changes will be synchronous.

CLOCK.H

COUNT.H

LOAD.L

CLEAR.L

D3-DO.H Q3-QO.H D7-D4.H Q7-Q4.H Dll-DB.H

4 "- 4 I' 1'4 4 I' 1'4 -- 0; Q; f-- i.-- 0; Q; - i.-- 0; Q,.

T.H CET TC CET TC CET TC

CEP CEP CEP
'LS163 'LS163 'LS163 - r>LD CLR - r>LD CLR - PLD CLR

Figure 4-18. A 12-bit binary counter constructed with 74LS163 chips.

Qll-QB.H

4,,1"-

f--

~

TC (Terminal Count) and CET (Count Enable Trickle) are individual device
controls that permit proper counting in a cascaded configuration. The counting
rule is that a given bit must toggle if all lower bits are equal to 1. This rule will
yield the normal binary counting sequence. We may reinterpret the binary sequence
as a hexadecimal sequence by grouping the binary bits into 4-bit units and giving
each 4-bit unit a range of 016 to F 16' The rule for counting a hexadecimal digit
IS:

all lower-order hexadecimal digits must equal F 16'

TC and CET implement this rule. The defining equation for TC is

TC = (COUNT=F I6)oCET

The signal to the CET input comes from the TC output of the previous counting
stage. When CET is true, it serves as a signal to the chip that all previous stages
are at the terminal F16 count. TC is thus an output that notifies the next stage
if all lower bits in the counter cascade are 1. You can see the proper cascading
connections in Fig. 4-18.

130 Tools for Digital Design Part I

CEP (Count Enable Parallel) is a master count enable signal which goes
to all chips. It allows the designer to specify when the circuit should engage in
counting activity.

The 74LS163 has two more controls: the synchronous clear input CLR,
which permits clearing of the chip to zero at the next clock pulse, and the
synchronous load input LD, which allows loading of the counter with the 4-bit
pattern appearing at the data inputs. The existence of the load feature accounts
for the "programmable" in the chip's name. The priority of operations is such
that asserting CLR will override LD, which will override CEP.

It will be a useful exercise for you to derive the 1 and K inputs to each
flip-flop in the 74LS163 counter. For an input data bit Do, the (unsimplified)
result for bit 0 is

10 = CLR·F + CLRoLD·Do + CLR·LD·CEp·CET·T

Ko = CLR·T + CLR·LD·D o + CLR·LD·CEp·CET·T

Many other synchronous counters are available as MSI chips. We have
covered the 74LS163 in detail, since it is an example of a useful and well­
engineered MSI building block. When dealing with circuits of MSI or LSI
complexity, you must be cautious about adopting new designs. Frequently, a
chip that appears to be exciting will have subtle features that make it less desirable
or useless in good design. An example is the 74LS193 Four-Bit Binary Up­
Down Counter. This chip has two serious flaws that may escape the attention
of the "chip-happy" designer. First, its data-loading feature is asynchronous,
which presents us with the necessity of keeping the data-load input signal clean
at all times, to avoid its habit of reacting to any momentary true glitch. Second,
the chip has two clocks, one for counting up and another for counting down.
U sing this chip requires very careful and arduous planning of the type that we
choose to avoid entirely in our designs in Part II. Another up-down counter,
the,74LS669, does not suffer from the 74LS193's deficiencies. Our point is that
you must be alert to detect such deviations from good design and should choose
your building blocks carefully and conservatively.

Shift Registers

A shift register performs an orderly lateral movement of data from one bit position
to an adjacent position. We may construct a simple shift register from D flip­
flops, as shown in Fig. 4-19. This circuit accepts a single bit of data DATA and
shifts it down the chain of flip-flops, one shift per clock pulse. Data enter the
circuit serially, one bit at a time, but the entire 4-bit shifted result is available
in parallel. Bits shifted off the right-hand end are lost. Such a circuit is a primitive
serial-in, parallel-out shift register.

In practice, we have need for four shift register configurations: serial-in,
parallel-out; parallel-in, serial-out; parallel-in, parallel-out; and serial-in, serial­
out. The parallel-in, parallel-out variety is the most general, subsuming the other
forms. Let's design one.

Chap. 4 Building Blocks with Memory 131

Q3 Q2 Ql QO

DA TA- D Q 0 Q 0 Q ~- 0 Q ~~

- > - t> -> - >

CLOCK

Figure 4-19. A simple shift register constructed with D flip-flops.

Assume that we are building a 4-bit general shift register. What features
do we require?

(a) We must be able to load initial data into the register, in the form of a 4-
bit parallel load operation.

(b) We must be able to shift the assembly of bits right or left one bit position,
accepting a new bit at one end and discarding a bit from the other end.

(c) When we are not shifting or loading, we must retain the present data
unchanged.

(d) We must be able to examine all 4 bits of the output.

Suppose we start with an assembly of four identical and independent D
flip-flops, clocked by a common clock signal. Let the flip-flop inputs be DrDo
and the outputs be Q3-QO, from left to right. Let the external data inputs be
DA TA3-DA TAo . We have four shift register operations: load, shift left, shift
right, and hold. These will require at least 2 bits of control input to the circuit;
let S1 and SO be the names of two such control bits. Our task is to derive the
proper input to each D flip-flop, based on the value of the control inputs S1 and
SO. In our design of an enabled D flip-flop, we encountered a related problem,
actually a subset of the present problem. There we had two operations, hold
and load, that we implemented with one control input, using a multiplexer. We
may employ the same technique here, using a four-input multiplexer to provide
input to each flip-flop. We may then define codes S1 ,SO for our four operations.
Using S1 and SO as mux selector signals, we may infer the proper inputs to the
multiplexers. Here are the inputs for a typical bit i of the shift register:

Clock Sl SO

t 0 0
t 0 I

t I 0
t I

Result desired

Hold present data
Shift right
Shift left
Load new data

Selected
mux position

0
I
2
3

Required
mux input

Q,
Qi+t
Q,-t
DATA,

In Fig. 4-20, the logic for the ith bit is displayed.

132 Tools for Digital Design Part I

0

Q;+1 D;
D Q Q;

Q;-1 2

DATA; 3

Sl SO CLOCK

Figure 4-20. A typical bit Q; of a general shift register.

This circuit makes a useful parallel-in, parallel-out shift register. These
functions are incorporated into the 74LS194 Four-Bit Bidirectional Universal
Shift Register in this way.

Providing both parallel inputs and parallel outputs requires many pins on
an integrated circuit chip, so chip manufacturers make a variety of good shift
registers for all four combinations of serial and parallel input and output, with
up to 8 bits per package.

Three-State Outputs

In Chapter 3, you learned the advantage of three-state control of the inputs to
a data bus. We may provide such control with three-state buffers, such as the
74LS244. However, some register chips provide built-in three-state control of
their outputs. In bussing applications, this can be very convenient. When you
are using such a chip but do not need the high-impedance state, you may per­
manently enable the outputs by wiring the three-state output enable line to a
true value.

Bit Slices

In Chapter 3 we discussed combinational circuits that incorporated a complex
set of functions for a several-bit array of inputs. The arithmetic logic unit was
the central example of this purely combinational bit-slice circuitry. In Chapter
7 you will see in detail how to assemble registers, ALUs, multiplexers, shifters,
and other components into a central processing unit for a computer. EX'perience
has shown that the architecture of the processing units of a large class of register­
based computers and device controllers is quite similar, even when the width
of the computer words varies over a wide range. Figure 4-21 is an abstraction
of this common architecture. A collection of registers, usually called a register
file, provides inputs to an ALU. The output of the ALU passes through a shift
unit before being routed back into the register file. The register file is a three­
port memory that accepts three addresses and simultaneously reads from two
addresses and writes into the third. Within this common architecture, the width

Chap. 4 Building Blocks with Memory 133

Figure 4-21. The architecture of a
typical processor.

of the data paths, the internal structure of the register file, the operations performed
by the ALU, and the complexity of the shifter vary. Several manufacturers have
abstracted a processor bit slice from this architecture, and have provided integrated
circuits that capture 4 or 8 bits of the architecture. These chips are frequently
general enough to span a range of likely designs of processors, and powerful
enough to eliminate much of the MSI-Ievel "glue" usually found in such designs.
By stacking the bit slices side-by-side, it is often possible to design a high-speed,
simple, and powerful processor.

One of the first chips to be designed as a bit-slice component was Advanced
Micro Devices' Am2901 Four-Bit Processor, which incorporated a 16-word register
file, 16 arithmetic and logical operations, and rudimentary provisions for supporting
the extra storage required for multiplication and division. Bit-slice architecture
has evolved into quite powerful ALU slices, supported by large families of
auxiliary chips for processor sequencing, input-output support, and so forth. The
Am2903 and the TI888 are representative of the central elements in such bit­
slice families. The TI888 has an auxiliary multiplier-quotient register to support
mUltiplication and division, and also supports a wide range of logical and arithmetic
operations, including binary multiplication and division and binary-coded decimal
arithmetic. It has provisions for attaching an external register file, to enlarge
the capacity of the holding store.

To build structures based on conventional processor architecture, you should
investigate the use of processor bit-slice chips. But be aware that these are
highly complex circuits whose data sheets will require considerable study before
you understand the details of the architecture, set of instructions, and timing.

LARGE MEMORY ARRAYS

If a few bits of register storage are good, would 1,024 bits be better? How about
4K, 64K, or 1M? For data storage alone, the more bits per package the better.
But with such a large number of bits stored, we would have to give up the ability

134 Tools for Digital Design Part I

to gain access to all the bits simultaneously, and we would need some way of
specifying which bit or group of bits we wish to look at. Several forms of large­
scale solid-state memories are available. Such devices have revolutionized computer
technology by making inexpensive, fast storage readily available to the computer
architect. Integrated circuit manufacturers are doubling the number of bits per
package roughly every three years, whereas the price per bit is steadily declining.
This trend will continue, and memories will be in the forefront of new electronic
technology, because manufacturers can spread engineering and development
costs over millions of identical units.

Random Access Memory

A large memory that requires the same time to access each data bit is called a
random access memory (RAM). All RAMs share some common features. The
unit of storage is the bit, which is built into the surface of a thin silicon wafer.
The area of silicon devoted to a bit is a cell. Several cell structures are in use:
some closely resemble the D flip-flop and others store a bit by the presence or
absence of an electric charge on a microscopic capacitor embedded in the silicon
surface.

A typical RAM has so many cells that it would be impossible to connect
each cell to its own integrated circuit pin. To conserve pins, RAMs contain a
demultiplexer to distribute an incoming data bit along an internal bus to the
correct cell. Similarly, there is a multiplexer to select one cell's output and
route it to the output pin. Both the demultiplexer and the multiplexer receive
their control from an address supplied to the chip on a set of address lines. The
address is encoded: eight pins devoted to an address can select one of 256 cells;
12 pins will' handle 4,096 cells.

RAMs are characterized by their total number of storage cells, for example
4K (4,096), and by the size of the words they contain. A 4Kx 1 RAM contains
4K 1-bit words, whereas a lKx4 RAM still contains 4K cells, but the cells are
organized as 1,024 four-bit words. The 1-bit-per-word organization saves integrated
circuit package pins as compared to the 4-bits-per-word structure. (You should
figure out why this is so, and how many pins are saved.) Thus in large memories,
1-bit-per-word RAMs are common, whereas designers of smaller memories often
use the 4-bits-per-word type to keep down the number of chips devoted to
memory.

Large RAMs require many address bits to specify the cells. A 64K x 1-bit
RAM requires 16 address bits; a 1M x 1-bit RAM requires 20 address bits. In
each case there are too many address bits to allocate each bit to a separate pin
on the chip. To alleviate this problem, the address bits in large RAMs are split
into two parts, a row address and a column address. At the proper time in the
memory cycle, each part is fed to the RAM over the same address inputs-that
is, the row address and column address are time-multiplexed. (The row-and­
column nomenclature derives from the internal structure of the RAM, which can
be viewed as a large, two-dimensional array with elements addressed by row
and column indices.) A 256K RAM has 9 input pins devoted to the address;

Chap. 4 Building Blocks with Memory 135

Data In

Data Ou

Data In

the row address and the column address each have 9 bits. The multiplexing of
address inputs saves valuable pins on the chip, but at the cost of considerable
additional complexity in the timing of the memory. The multiplexing of addresses
permits physically smaller integrated circuit packages, which saves valuable
space on printed circuit boards having many RAM chips. We discuss aspects
of RAM memory timing later in this chapter.

Memory system organization. Just as RAM chips have an internal bus
structure, so is each chip designed to be a component of a bus-organized memory
system in which only one unit of memory is available at any time. Suppose we
are given the task of building a 3M x 2 memory (3 million words, 2 bits per
word), using 1M x 1 RAM chips. We would create a pair of system busses, data
in and data out, and hang the memories onto the busses as shown in Fig. 4-22.
As in all bus-organized systems, we must have some way of selecting a given
element while ensuring that all other devices stay off the bus. RAMs provide
a chip enable (CE) for this purpose. The system in Fig. 4-22 enables RAMs in
pairs, since the original specification called for 2 bits per word. The input and
output busses may be either open-collector or three-state, depending on the type
of chip. For most applications, we prefer the three-state systems because they
are faster and eliminate the open-collector's pull-up resistors.

Having developed an architecture for our memory system, we must now

1

t 1

f f t
DO DI DO DI DO DI

1M XI CE f-- 1M XI CE f-- 1M XI CE .-
WRT ADDR; WRT ADDR; WRT ADDR;

t t t

0
Data Ou to

t t t
DO DI DO DI DO DI

1M XI CE 1-- 1M XI CE 1-- 1M XI CE f-<
WRT ADDR; WRT ADDR; WRT ADDR;

'FE WRI t t t
\

1'0
Rowand Column

Address inputs
Bank Enable 0 Bank Enable 1 Bank Enable 2

136

Figure 4-22. A 3M-word by 2-bit memory constructed with 1M x 1 RAM
chips.

Tools for Digital Design Part I

determine how to address a particular word in the memory. To derive this
address, we shall back away from the chips, look at the memory system as a
whole, and ask how we specify a location within the system. Our memory device
will need a 22-bit address, since 221 = 2M, and 222 = 4M. Each I-megabit RAM
chip requires 20 bits of address; the remaining 2 bits will specify which of the
three banks of 1M-bit RAM chips is being selected. Although the partition of
the address is arbitrary, it is common to select the bits for the bank field from
the most significant positions in the address. Since 1M-bit RAM chips require
multiplexed address inputs, the 20 bits of RAM chip address must be presented
as a to-bit row address followed by a 10-bit column address. The division of
the 20 bits of chip address into row and column addresses is arbitrary, and is
often decided by the ease of layout on the printed circuit board. Here is one
straightforward choice for the system memory address:

System Memory Address(A21 ••• Ao) = (A21A20)(AI9 ... A IO)(A9 ••• Ao)

Bank Column Row

Address Address Address

We can now route the 10 RAM address lines to all RAMs in parallel, and use
the bank address A 21A 20 as a code for the proper bank. A decoder can produce
individual enable signals for each bank from the 2-bit bank address code:

Decoder

Not used in
our design

BEo enables the chips in bank 0, BEl enables bank 1, and so on. A bank contains
two RAM chips, since there are 2 bits per word. (The row-select and column­
select control lines are not shown in the diagram.)

The last system-wide signal is the read-write selector WRITE. RAMs can
both read and write, so we must supply a logic signal for the operation to be
performed when the chip is enabled. By convention, WRITE = F implies reading;
WRITE = T means writing.

RAM timing requirements. RAMs are unclocked (asynchronous) devices
that require detailed specification of the timing of their control and data signals.
Timing is a function of the internal technology of the chip, and varies widely
with the type of memory. To achieve reliable RAM operation, you must adhere
rigidly to the manufacturer's requirements. In this section, we will present a
few of the major timing parameters. The crucial parameters are:

(a) The period of stability of the address lines.
(b) The period when the chip enable CE is active.

Chap. 4 Building Blocks with Memory 137

(c) The value of the WRITE signal.
(d) During RAM writes, the period of stability of the write-data input.
(e) During RAM reads, the period of stability of the read-data output.

There are three parameters that characterize all RAMs. The read cycle time is
the minimum time that must elapse after the start of a read operation until another
operation may begin. This usually determines the time during which the address
must be stable. Read-cycle times may range from a few nanoseconds to several
hundred nanoseconds, depending on the type of chip. The write cycle time is
the corresponding parameter for the write operation. It is usually similar in
magnitude to the read-cycle time. Read access time is a measure of the time
that must elapse after the start of a read operation before read data is available
for use. The access time for read is equal to or less than the cycle time for
read.

For RAM write operations, the data sheet specifies when the WRITE signal
may become true relative to the address, chip enable, and data signals, and for
how long WRITE must remain stable to complete the write operation.

Besides these fundamental measures of RAM performance, the data sheets
usually contain a welter of other timing figures, specifying times between various
possible signal changes. You can simplify all this by making such reasonable
design assumptions as:

(a) Chip enable (CE) becomes true at the same time as the address becomes
stable.

(b) During a RAM write operation, the data to be written stabilizes at the same
time as the address lines.

With these assumptions, provided you choose the most conservative values for
the timing parameters, you can usually reduce the number of relevant timing
figures to a handful.

RAM timing parameters fall loosely into two groups: setup times and hold
times. Setup implies that a signal must be stable prior to some event; it is similar
to the setup time for inputs to clocked circuits. Hold time means that an input
signal must remain stable for a time after some event.

Read access time is an example of a setup time; it describes the required
period of stability of the address prior to the appearance of stable data at the
output. The data sheets also contain setup times for chip enable. The intervals
during which address, chip enable, and data must remain stable after WRITE
becomes false are examples of hold times. Conversely, in RAM reading, the
data is often stable for a period after the address or CE changes; such a period
is also called a hold time.

In using RAMs in digital designs, you must remember that there will also
be delays in the host system. These will arise from combinational propagation
delays, bus driving delays, and so on. The RAM timing computations begin with
the arrival of stable signals at the RAM, so you must take into account any
delays in the host when you determine how fast your system will really be.

138 Tools for Digital Design Part I

Static RAM. The static RAM contains bit cells that are similar to a type
D flip-flop, similar enough that you may use the D flip-flop as a model for
predicting static RAM behavior. As long as the address is constant and the
WRITE line is false, the selected cell will continue to put its read data onto the
output data bus. A transition from false to true on the WRITE line serves as a
clock signal to the RAM to cause input data to be written into the specified
RAM cell. As long as the power is on, the static RAM will retain its contents
without the need for intervention. The address lines of most static RAMs are
not multiplexed-the entire address is presented to the chips, considerably sim-

. plifying the RAM control circuitry. These properties make static RAMs simple
to incorporate into designs, once you have mastered the basic timing requirements.
We will use a static RAM for the memory in our minicomputer design in Chapters
7 and 8.

Dynamic RAM. This device stores data on a tiny capacitor within each
bit cell. The dynamic storage cell is much smaller than a cell in a static RAM,
typically allowing four times as many bits per unit area of silicon. This factor
of 4 becomes of overwhelming importance in large memory systems and nearly
all large systems use dynamic RAM chips. The penalty is a significantly increased
complexity of the control of the memory; nevertheless, you should consider
dynamic RAMs for systems that would require more than, say, 32 static RAM
chips.

Most dynamic RAMs have such a large storage capacity that their address
inputs are multiplexed to save pins. The multiplexing complicates the control
of the RAM -each half of the address must be presented separately to the RAM.
The RAM has additional row address strobe and column address strobe control
pins, which the circuit that controls the memory must assert at the proper time
in the memory cycle to announce that the row address or column address is
stable on the address input pins.

The storage element in a dynamic RAM is a capacitor which, like all
capacitors, is an imperfect holder of charge. After a period of time-a function
of the temperature and geometry of the device and of circuit technology-the
charge will leak away. To preserve the data, the system using a dynamic RAM
must periodically read and rewrite the stored contents. This periodic restoration
is called refreshing: the entire memory must be refreshed at intervals of several
milliseconds. Dynamic RAMs allow an entire column of bits to be refreshed at
once. A typical RAM controller will cycle through the column addresses, inserting
a refresh cycle at regular intervals so that each column is refreshed in a timely
fashion. The control circuitry of dynamic RAMs may be contained within each
RAM chip or in a separate controller chip.

Read-Only Memory

Read-only memory (ROM) is actually a write-once, read-thereafter memory.
Since the writing takes place during the manufacture of the chip, large numbers
of identical ROMs can be fabricated at low cost. Changing the write pattern is

Chap. 4 Building Blocks with Memory 139

very expensive, and ROMs are therefore only appropriate when we can amortize
the initial cost by purchasing several thousand identical chips.

The bussing and timing requirements tend to be similar to those of the
static RAM, with the omission of the now-superfluous read-write line.

The ROM has important uses in digital design as a permanent memory, a
code converter and, surprisingly, a logic function generator.

Firmware memory. Consider the ubiquitous pocket calculator with tran­
scendental functions such as square root and trigonometrics. A debugged square­
root routine need never change, and could therefore be committed to ROM and
made a part of the calculator's address space. Such an application is called
firmware. ROM firmware remains in the memory when the power is off, and is
ready to use as soon as power is restored.

Code conversion. As you learned in Chapters 2 and 3, we may use
conventional Boolean algebraic techniques to synthesize outputs from inputs.
In a sense, we are using gates to compute the outputs. Consider ExercisQ 1-
36, in which a 4-bit BCD code generates the outputs to drive a seven-segment
lamp. To aid your recollection, we will sketch the Boolean algebraic solution:

(a) List the BCD bit patterns for digits 0 through 9, and draw the corresponding
segments to be lit for each digit:

o 2
DCBA 0000 0001 0010

a a

fOb b ~~}
e c c e~

d d

9
1001

a

f~:
(b) Plot each segment a through g on a 4-bit Karnaugh map with the unused

codes 10 through 15 plotted as "don't cares." Derive equations for each
of the seven segments. For example, the result for segment a is

BA

DC
00 01 II 10

00 --.0 0 t)' ~
01 0 I I 0

SEG.a = .::toe + AoB + AoC + D
II - - - -

'- ----'

10 ~ I - r=:
(c) Assemble gates to compute the functions a through g. In other words,

synthesize logic circuits corresponding to the equations for segments a
through g.

140 Tools for Digital Design Part I

Viewing the problem in this light, we have a large combinational logic
circuit that accepts four inputs and computes seven outputs. We may package
this as a building block if we wish; such a seven-segment lamp driver is available
as an MSI chip.

From another viewpoint, the seven-segment lamp driver is a problem in
code conversion, in which we must convert a 4-bit BCD code into a 7-bit lamp
driver code. A seven-function truth table with four inputs and seven outputs is
a convenient way to display the code conversions; refer to Table 4-1. We may
consider the truth table as representing the contents of an addressable memory:
Each row of the truth table is an address, and the corresponding set of output
values is the contents of the addressed memory element. Table 4-1 then represents
a 16-word memory, with 7 bits in each word. The outputs (the contents of the
memory) do not change, so we can realize the truth table as a 16-word by 7-bit
ROM; such a ROM requires four address inputs: the BCD code.

TABLE 4-1. TRUTH TABLE FOR A BCD-TO-SEVEN-SEGMENT CODE
CONVERTER

Inputs Outputs
Row D C B A a b c d e f g

0 0 0 0 0 1 1 1 1 0
1 0 0 0 1 0 0 0 0 0
2 0 0 1 0 1 0 1 0 1
3 0 0 1 1 1 0 0
4 0 0 0 0 1 0 0
5 0 0 1 1 0 1 0
6 0 1 0 0 0 1 1 1
7 0 1 1 1 1 0 0 0 0
8 0 0 0 1 1 1 1
9 0 0 1 0 0

10 0 1 0
11 0 1 1
12 1 0 0
13 0 1
14 0
15

The conversion of a 7-bit ASCII code to the corresponding 12-bit Hollerith
card code can be accomplished with a ROM. The ASCII code contains 128
characters; each character has a Hollerith representation as a set of holes (1 's)
and blanks (O's) in the 12 rows of a card column. The ROM will contain 27 =

128 words, each of 12 bits. Every ASCII code represents the address of one
ROM word; the content is the corresponding Hollerith code. Each word of ROM
contains a unique code.

ROM may also be used to convert a valid 12-bit Hollerith code into 7-bit
ASCII. This ROM has 12 address inputs and consists of 212 = 4,096 words of
7 bits. Of the 4,096 rows in the Hollerith-to-ASCII truth table, only 128 are

Chap. 4 Building Blocks with Memory 141

relevant; the rest correspond to don't-care outputs, present in the ROM but of
no interest in this code conversion.

Generating logic functions. The foregoing descriptions show that a ROM
provides a general way to generate an arbitrary logic function. Every logic
function has a truth-table representation. A ROM gives the function value, T
or F, for every row in some canonical truth table; the ROM explicitly contains
each bit of information in the full truth table. In a synthesis of logic functions
using gates, we explicitly use only a portion of the truth-table's information­
the product terms leading to true values of functions (or, equivalently, those
leading to false values). Furthermore, we often can simplify the logic expressions
to reduce the number of terms.

Such simplifications are not useful, and in fact are disadvantageous, in
ROM synthesis of logic functions. Although the ROM approach is completely
general, it suffers severely because the size of the ROM is doubled by each
additional input '."ariable. In logic synthesis, ROMs are best used in situations
similar to code conversion, where highly encoded information must be transformed
into a large number of output functions. Other, more appropriate, devices are
available to support the uniform synthesis of logic functions. We will discuss
these devices later in this chapter.

Field-Programmable Read-Only Memories

In the preceding section you learned some of the uses of the ROM in digital
design. A ROM must be programmed by the manufacturer and is therefore not
a suitable tool in the developmental phases of a design, nor in systems in which
the read-only material must occasionally be altered. When only a few copies of
a system are required, or occasional changes in the memory are required, we
need permanent or semipermanent memories that can be programmed by the
designer in the laboratory. Several types of programmable memories are available.

PROM. The programmable read-only memory, or PROM, is a ROM in
which the one-time writing process has been deferred to the end user. During
manufacture, the bits of the PROM have microscopic metallic or polysilicon
fuses that set all the bits to 1. The user can blow these fuses by selecting a
given bit and then applying a pulse to a special programming pin, thereby creating
a O. The process is inexpensive and relatively easy, and PROM programming
devices are readily available. In use, the access to a PROM is rapid, equivalent
in speed to ROM. PROMs are also physically similar to ROMs, and the layout
of the circuit board is simplified in systems that will eventually contain ROMs.
Once the PROM is programmed, it cannot be reprogrammed.

EPROM. The erasable programmable read-only memory (EPROM) is an
even more flexible design based on the ROM. As its name implies, the EPROM
allows the designer to erase the contents and start over. Bits are stored by
electric charges that are trapped in the silicon of the chip. When erased, all the
bits of the EPROM become 1 'so To write a zero value into a bit, the bit receives

142 Tools for Digital Design Part I

a high voltage that temporarily makes the silicon a conductor, allowing charge
to accumulate at the site of the bit. After the high voltage is removed, the
trapped charge remains, essentially forever. EPROMs are programmed with
PROM programmers, using techniques similar to, but more complex than, those
used to program PROMs.

A transparent quartz lid covers the silicon of the EPROM chip. Erasure
occurs when high-intensity ultraviolet light makes the silicon a weak conductor,
allowing the trapped charge to bleed slowly away from the bits in the memory.
To be erased, the chip must be placed in an EPROM eraser and exposed to
ultraviolet light for about a half-hour. The EPROM will withstand many erasures
before it becomes unreliable.

The EPROM is convenient in system development because the designer
may write the content of the memory, test the design and, if necessary, erase
the old pattern and install a new one. The housing of microcomputer firmware
is a common and important use of EPROMs, but we can use them with equal
facility to generate digital logic functions. The device is slower than the PROM,
but its capacity for erasure makes it a potent design tool. EPROMs are physically
larger than ROMs or PROMs, and have longer access times. Sizes range from
16K (2K x 8) to 256K (32K x 8).

EEPROM. The electrically-erasable programmable read-only memory
(EEPROM) may be altered without removing it from the circuit in which it is
used. Sequences of voltages of 5V or greater are applied to special programming
pins to permit the rewriting of selected bytes of the memory. This device and
its cousins are important in designs in which in-place "writing with difficulty"
is necessary - for instance in a unit housed in a remote area that must be
manipulated at a distance. The structure and the pin assignment of EEPROMs
are not compatible with other read-only devices, and only a meager selection of
chips is available. A typical size is 16K, as exemplified by the 2K x 8-bit 2816
EEPROM.

As you have seen, the devices for "read-only memory," whether permanent
or reprogrammable, are used in data and program storage, in code conversion,
and even to generate random logic functions, but the first two uses of ROMs
are by far the most important. We shall now describe programmable devices
suitable for general logic applications in digital design.

PROGRAMMABLE LOGIC

Programmable logic provides a systematic way to generate complex logic functions.
Programmable logic devices allow the designer to create arbitrary sum-of-product
functions of many variables, in a highly structured and regular manner. The
term programmable means that the functions may be specified after the chip
has been manufactured.

Usually the programming is accomplished by blowing (breaking) fuses along
the chip's internal data lines, as is done in the PROM. The fuse is a narrow
ribbon of metal or other conductor deposited during the manufacture of the chip,

Chap. 4 Building Blocks with Memory 143

and it serves a role similar to the three-state gate. When the fuse is intact, it
allows an input signal to proceed unimpeded; when the fuse is blown, no signal
can pass and the input is disconnected from the remainder of the circuit. Unlike
a three-state circuit, once the fuse is blown, its input is forever disconnected.

As you saw in Chapter 1, it is always possible to express an arbitrary
combinational logic function in sum-of-products form. This is the starting point
of the application of programmable logic. To construct an arbitrary sum-of­
products function, we need to be able to form the required AND (product) terms,
and then form the OR of the product terms to create the appropriate sum.

The PLA

The most general programmable logic structure is the programmable logic array
(PLA), which allows the programming of arbitrary products and arbitrary sums.
Within a VLSI design, the PLA is an important tool for creating complex circuits
on a single chip. The PLA may also be packaged as an LSI-level integrated
circuit, to be used at the level of design that we are now studying. But because
of its extreme generality, requiring many inputs, many outputs, and much internal
circuitry, the PLA is not widely available as a discrete integrated circuit.

Consider the programmable logic implementation of a single function of
three variables

TEST = A·Jj + A·e + A·B·e

In this example, the programmable device must have at least three inputs and
one output, and must have the capability of specifying at least three product
terms within its structure. Within the device, each input passes through a non­
inverting and an inverting buffer, thereby providing the true and complemented
forms of each input variable. Figure 4-23 is a schematic of the portion of the
PLA required for this example. Every vertical line represents a product term,
and each horizontal crossline is an input to the AND gate that forms the product.
The horizontal line at the bottom represents the single sum of the product terms;
each product term is an input to the OR gate that forms the sum. Before
programming, each crossing has a fuse that determines if the input will contribute
to its product or sum. In Fig. 4-23, each vertical line initially generates the
trivial case of

which, of course, is identically false. The act of programming the PLA destroys
the unwanted fuses. In Fig. 4-23, the large dots represent the remaining fuses;
all the other fuses have been blown.

Usually, the designer wishes to create several functions using the same
input variables. Figure 4-24 is a PLA pattern for producing four functions of
five input variables. This PLA is capable of receiving up to six input variables,
generating up to twelve different product terms, and producing up to five different

144 Tools for Digital Design Part I

Product terms

a b c

A.H----T-----------;-------~------~--------

B.H----T-----------;-------~------~--------

CH ----T-----------;-------... ------+--------

Sum term ------.... ------... ------... ---1 TEST.H

Figure 4-23. A PLA realization of TEST = A'B + A'C + A·B·C.

sums of these products. One input, three product terms, and one sum output
are unused. The equations implemented by this PLA are

YI = 13 + 11012 + I j o12

Y2 = 13014015 + 11 013014

Y3 = 13014015 + 12013014015 + 12014

Y4 = 11 013014 + 12014 + 13014015 + 13014015

(4-1)

(4-2)

(4-3)

(4-4)

A typical PLA that is available as an integrated circuit is the National
Semiconductor DM7575, which accepts 14 inputs, supports 96 product terms,
and generates 8 logic functions as outputs.

The PROM as a Programmable Logic Device

We have already mentioned that the programmable memory devices, exemplified
by the PROM, can be used to generate logic functions. We usually think of a
PROM as a memory device whose n address inputs select one of 2n words of
memory. To perform this selection, the PROM must contain a complete decoding
of its address inputs. Think of a truth table with the address lines as the inputs.

Chap. 4 Building Blocks with Memory 145

4>/
~ I

~ I

~
~ I

~ I

I
Five

possible
outputs

L_

146

f~-------- Twelve possible AND terms--------~t

2 3 4 5 6 7 8 9 10 II 12

l

Six possi ble
inputs,

inverted and
ed noninvert

Figure 4-24. A PLA realization of Eqs. (4-1) to (4-4). The sixth input, the fourth output,
and AND gates 10, 11, and 12 are not used. This PLA is smaller than commercial chips.

Tools for Digital Design Part I

For a PROM, the truth table is canonical-it explicitly contains all 2n rows.
Thus, the PROM provides all possible product terms of its inputs, whether we
like it or not. Each bit of the PROM's output can represent a logic function­
a column in the output section of the truth table. To generate a logic function,
we must specify whether each canonical product term is to be a contributor (the
value in the memory is 1) or not (the value in the memory is 0). In such
applications as code conversion, this is quite useful, since we are concerned
with converting all possible patterns of input bits. For random logic, the PROM
is of limited attractiveness.

Monolithic Memories, a leader in the development of programmable logic
devices, has coined the term PLE, programmable logic element, for such ap­
plications. Manufacturers produce a limited variety of PLEs, with a fixed array
of ANDs (fixed product terms) but with less than the full canonical set found
in PROMs.

The PAL

The PLA generates a general sum of general products; within the limits of the
design, the designer may specify the detailed structure of each product term and
each sum of products. However, the great generality of the PLA makes for
difficulties in its manufacture and use. The PROM (or PLE) provides a pre­
determined set of product terms, and the designer may specify the nature of
each sum of products. This structure is useful as a memory and for logic operations
requiring the full decoding of inputs, but the PROM has limited application as
a tool for programmable logic.

The PAL (programmable array logic) allows the designer to specify the
nature of the product terms, but the ways in which the products may be formed
into sums is fixed in the chip. In practice, the PAL is by far the most useful
of the trio for generating random logic functions. The programmable product
array, coupled with a limited summing capability, fulfills the requirements of
digital designs well. The term PAL is a registered trademark of Monolithic
Memories, which originated this application. PALs are available from many
manufacturers in a wide variety of useful configurations. The PAL is indeed a
pal of the designer of digital circuits.

The PAL18L4, shown schematically in Fig. 4-25, is typical of the PALs
that generate combinational logic functions. As suggested by its number, the
PAL18L4 has 18 input pins and 4 output pins. The "L" signifies that the outputs
are produced in low-active (T = L) form. Two of the 4 outputs, pins 18 and
19, each provide the sum of four product terms. The other two outputs, pins
17 and 20, each provide the sum of six product terms. Within the chip, each
of the 18 inputs is split into its true and complemented form. Each of the twenty
product terms available in this chip can contain any combination of the true and
complemented forms of the 18 inputs. Fuses appear at each intersection on the
product-term lines. The programming task consists of blowing the unwanted
fuses.

Chap. 4 Building Blocks with Memory 147

PAL/HAL Logic Diagram

18L4
It 2~ a}) 21 It)O 11 J' JJ JoI n li]1 lI39

~
I

I
I

2

3 ~ 23

~ 22

5 21

..
"
" r-J 20

" " ~ "
6

~

"
"

19 ..
"

~ ..
"

18

" -t5-t-' "
~

.. .. "-.. 17

" " "
8 16

9
~

15

~~
14

"

11
13

-11:

Figure 4-25. A PAL18L4. (Courtesy of Monolithic Memories, Inc.)

148

Il.H
5

12.H 6

n.L 7

14.H 8

Figure 4-26 shows an implementation of Yl, Y2, and Y3 in Eqs. (4-1)
through (4-3), using the PAL18L4. Unused portions of the PAL do not appear
in the figure. Yl.L, Y2.L, and Y3.L are formed as sums of products, drawn
directly from the equations (the high-active Y2.H is discussed later). Each bold
dot denotes a contribution to a product term, and represents a fuse that is to
remain unblown. The unused product terms in a sum have been blacked in.
Inputs of either voltage polarity are easily handled, using standard mixed-logic
notations. Within the chip, the PAL generates sums of products with T = H.
The manufacturer's diagram shows the input buffers with the inverted voltage
form of the input emerging below the noninverted form in each buffer. If
T = H at the input, the logic inversion occurs on the bottom of the two buffer
outputs; if T = L at the input, we redraw the input buffer to show that the
logic-inverted form emerges from the upper buffer. Figure 4-26 contains illustrations
of the notational changes to accommodate low-active inputs.

The PAL18L4 produces low-active sum-of-products outputs. If we desire
a high-active output, we mixed logicians have several choices. We may add a
voltage inverter to the output signal to change its polarity-a reasonable but
inelegant solution. If the PAL has an unused output and an unused input, we
may feed the low-active form of our signal back into the PAL and produce the
high-active form on the unused output. We may use a different PAL, such as
a PAL18H4, that produces high-active outputs. Another approach, useful when
one is striving to use minimal hardware, is to generate a sum-of-products form

21
"> <:

24 ~
25

~Y 26 ~
27
28 ~

29

>
32

.....

1.L

-c- 19 y 33
34 2.L -35 -
40 ...n----,

18 Y 41
42 3.L
43

y

48
49
50
51
52
53

~

1J -
1---0

J

<:

Figure 4-26. An implementation of Eqs. (4-1) through (4-3), using the PALl8L4. Note
the mixed-logic changes to the diagram.

17 y 2 .. H

16
IS.L

Chap. 4 Building Blocks with Memory 149

of the inverse of the desired function. The mixed logician immediately recognizes
that the output represents a high-active version of the desired function

FUNCTION.H = FUNCTION.L

For instance, suppose we wish to produce the Yz of Eq. (4-2) in high-active
form, using the PAL 18L4. To generate the inverse of Yz, we may plot a Karnaugh
map of the function, circle the O's, and write an equation for Yz:

1113
Is 00 01 II 10

00 a a a a

01 a a a a

II a a a I

10 I a a I

Figure 4-26 contains the resulting implementation of Yz .H.
Many PALs are available with clocked flip-flops and three-state control at

their outputs. An example is the PAL16R8, shown in Fig. 4-27. The R8 in the
chip number signifies a PAL with eight "registered" outputs. Each of the eight
flip-flops in the register receives a clock signal from a single input pin, and each
flip-flop's output is buffered by a three-state inverter controlled by another input
pin. The 16 inputs implied by the chip number arise from 8 external input pins
and 8 signals fed back from the flip-flop outputs.

PAL, PLA, and PLE Programming

Programmable logic devices are a powerful tool for the designer, providing the
equivalent of complex, tedious logic and architecture within compact and relatively
inexpensive integrated circuit chips. These devices must be programmed and,
with the exception of reprogrammable devices such as EPROMs and certain
PALs, the programming is a one-time, unalterable act. The programming requires
special equipment for the presentation to the chip of a complex sequence of
properly timed voltages. Modern "programmers" are costly, but they provide
many necessary capabilities conveniently and reliably. Most such programming
devices are capable of accepting programming data from an external source­
valuable when one is transmitting computer-generated programming files. The
fuse patterns become the raw data for the programmer, but developing fuse
patterns from diagrams such as Fig. 4-26 is a tedious and error-prone task.
Many programmers for PALs permit the designer to enter logic equations directly;
these equations, expressed in a suitable notation, provide the input to a software
translator that produces fuse patterns.

150 Tools for Digital Design Part I

16R8

1

1123 .. ~ i 1 111111 12l3l'n 1111111t 2021%223 242SlUl 21213031

,
1

Dl~
2

"'" ,
• j
5

•
7

2
T iI::

I
.-

I

~ 10 r--
11 "" 12

o 01--

Il

" ~~1 15

3
~ 'I:

" 17

~ 11

T " "" 2D J
21

~ 22

"
W ..

24
25

~ " r--
27 " " J o 01---

" 30

~1 31

5 .. ~

"7l
12

" ~ ,.

Pl " " " .J
37
31

"
6

... ...
..
" ~ " Pl " .. .-/
OS

" "
7

.. ...
.. ..

~ " Pl " "" "
J

" 54
55

8
~

" "

~~ " " " j

" " "
9 ~ ~ .. """ 0123 45&1 1111011 12111415 1&1111192021222324252621 2829J031

Figure 4-27. A PAL16R8. (Courtesy of Monolithic Memories, Inc.)
151

Programmable logic devices are powerful design tools that provide some
of the desirable attributes of VLSI for the chip-level designer, without the ex­
traordinary commitment necessary to develop a custom-made VLSI chip. The
size and complexity of programmable logic devices are growing rapidly-PALs
with 64 inputs and 30 registered outputs, and containing more than 32,000 fuses,
are available. You will read about several applications of PALs and PROMs in
later sections of this book.

TIMING DEVICES

Such systems as RAMs and ROMs have rigid timing requirements that a designer
must obey. In this section, we discuss two nondigital devices, the single shot
and delay line, that help the designer to develop appropriate signals for timing.

We might use a single shot or a delay line when we must derive a timing
event of arbitrary duration and with respect to some arbitrary starting point.
For instance, in RAM reading, we must produce a timing signal for the host
system that starts when the RAM read operation begins, and ends only after the
read access time has elapsed. This time is independent of the system clock; the
RAM's timing requirements remain the same whether the system clock is slow
or fast.

The idea is simple, but the simplicity of the concept does not mean that
the corresponding hardware is simple to use. Another way of describing the
arbitrary starting time and duration of the operation is to say that the timing is
asynchronous. Synchronous devices derive their timing from some external
source, usually the system clock. Asynchronous devices are internally timed.
This is not inherently bad, but the result is that independent timings are spread
throughout the system. We have relinquished central control, and for this reason
alone we should avoid asynchronous devices unless absolutely necessary.

Centralized control is nice, but we cannot always have it. Memory devices,
for example, require internal timing that is independent of the host system. We
cannot do without devices for memory so we are forced to generate their arbitrary
timing locally. The alternative is distinctly worse: we could have central control
if we rigidly fixed our system clock to match the local asynchronous timing
requirements. This would eliminate our most powerful hardware debugging tool,
the ability to slow the central clock to zero speed, thereby freezing our system
in a given condition.

The Single-Shot

The single-shot, or monostable multivibrator, is based on the electrical properties
of capacitors. A capacitor stores a charge (electrons) as a function of the voltage
impressed across the capacitor. The amount of stored charge q is proportional
to the impressed voltage V; the proportionality constant is the capacitance C.
Thus

q = CV

152 Tools for Digital Design Part I

Capacitors require a period of time for the charge to build up or decay, and it
is this behavior that allows the single shot to function as a timed delay element.

A single-shot behaves like the electrical circuit below
C R

11f------/ e------1i Vee
Start

switch

p

Normally, the single-shot switch is open and no current is flowing. The voltage
at point P is Vee, which causes the single-shot output Q to be false. When we
trigger the single-shot by (digitally) closing the switch, charge begins to rush into
the capacitor C. Because of this current flow through R, the voltage at point P
becomes low, which in turn causes the single-shot output Q to assume a true
value. As the flow of current charges the capacitor, the voltage at P slowly rises
back toward Vee. When the voltage at P reaches a certain level, the single-shot
turns off, bringing output Q to false. The time during which Q is asserted is
the single-shot delay time.

By choosing capacitor C and resistor R according to tables or formulas in
the single-shot data sheet, we may select any desired single-shot delay time
within a wide range of values. Typical delays, using the popular 96L02 Dual
Single-Shot, range from about 50 nanoseconds to 10 seconds.

In circuit diagrams, we draw a single-shot as a rectangle similar to a flip­
flop and add the external timing capacitor and resistor (see Fig. 4-28),

R
C

TRIG Q

Single
shot

Q Figure 4-28. A single-shot circuit
symbol.

Single-shots respond to a F ~ T transition on the trigger input, so they
will start up if any glitch occurs at the input. Therefore, you must be careful
to drive the single shot with a clean trigger to avoid spurious results. The value
of the single-shot delay will drift somewhat, and 5 percent stability is about all
you should expect.

The Delay Line

Delay lines, on the other hand, generate highly stable delays. Their stability
derives from the fact that they are passive devices-they have no transistor

Chap. 4 Building Blocks with Memory 153

amplifiers built into them, as do all gates, flip-flops, and so on. This explains
their lack of power-supply pins, since with no active amplifiers they do not need
operating power.

Delay lines are available in standard integrated circuit packages. Internally,
they are constructed from a series of stable inductors and capacitors. Whatever
waveform is put into the delay line will appear, after a given delay, on the output.
There is no concept of a trigger; the waveform at the input is simply reproduced
after the delay.

In their most convenient form, delay lines have a series of taps (pins), often
10, that yield fractions of the nominal delay. For instance, in a to-tap delay
line with delay rated at td, the nth tap will produce a delay of td x nl10. Such
taps are useful in generating the timing in dynamic RAMs, which require a
sequence of accurately timed pulses of varying duration. We may obtain the
pulses by sending an edge down the delay line and using an Exclusive Or gate
to detect the period during which the edge has arrived at the input but not yet
reached the output. For example, suppose that we need a pulse that starts 200
nanoseconds after START becomes true and lasts for 150 nanoseconds. Figure
4-29 is a diagram of the circuit, using the standard delay-line symbol.

10 tap, 500 nsec delay line

START
200 350

L...-_____ ----/ D-- PULSE

Figure 4-29. A circuit for a delay line to produce a 150-nsec pulse delayed by
200 nsec.

Delay lines are moderately expensive but can generate delays from about
2 nanoseconds to greater than 1 microsecond. Since a delay line faithfully
transmits the input waveform, you must be sure the signal at the input is clean.
Often the operating specifications of the delay line will require that the input
signal be derived from a line driver, and that the output be properly terminated
(see Chapter 12).

THE METASTABILITY PROBLEM

We began this chapter with a discussion of hazards, a nuisance created by the
characteristics of physical devices used to implement logical concepts. In Chapter
5 you will encounter other design pitfalls rooted in physical behavior-pitfalls
that arise through the interactions of several components of a design. In this
chapter, there remains to discuss the most alarming physical problem of all­
metastability. We will alert you to the problem and give some advice, but you
should look to Chapter 12 for a more extensive treatment of this topic.

154 Tools for Digital Design Part I

Digital devices are fundamentally analog devices that behave digitally only
when stringent rules of operation are obeyed. Sequential devices contain amplifiers
(gates) and feedback loops to achieve their storage properties. In addition to
establishing proper voltage levels at the inputs, to assure proper operation of a
sequential device you must adhere to the setup times, hold times, and other
timing specified in the data sheets. When the operational requirements are met,
the device's outputs will be proper digital voltage levels, and changes in the
level of the output will occur quickly and cleanly. Except during the rapid period
of transition, the circuit remains in one of its stable states. You have seen that
there are difficulties associated with the RS flip-flop when one tries to move
from the R = S = T input configuration to the hold configuration, in which
R = S = F. The difficulties arose from the attempt to change both inputs
simultaneously. As long as no more than one input is changing at a time, the
sequential circuit performs well, but if the voltage level of more than one input
is allowed to change at nearly the same time, the circuit is being required to
perform outside the framework of design for digital operation and the result may
be unpleasant. For the proper operation of clocked circuits, the setup and hold
times require that certain inputs must not change too near the time that the clock
signal is changing.

Violation of the timing requirements of a sequential circuit may throw the
circuit into a metastable state, during which the outputs may hold improper or
nondigital values for an unspecified duration. In one form of metastability, the
output voltage lingers for an indefinite period in the transition region between
digital voltage levels, before it eventually resolves into a stable value. In another
form of metastability, the output appears to be a proper digital value, but after
an unpredictable interval switches to another value. Metastability can be disastrous.
In synchronous design, we sidestep the problem by never changing the inputs
in the vicinity of the clock. As you will see, this allows vast simplification of
the design of complex circuits. But every circuit is at some point exposed to
external reality-other circuits with different clocks, unclocked or nondigital
devices, and human operators, for instance. Signals from such sources are not
tied to our clock and may change at any time during our clock cycle. Therefore,
although we can simplify our design by using good practices, no amount of digital
or analog wizardry will eliminate the problem of metastability. However, by
proper design or choice of components, we may lower the probability of finding
the circuit in a metastable state to a satisfactory level. In Chapter 12, we discuss
metastability in more detail and offer guidelines for dealing with the problem.

CONCLUSION

You have completed Part I of this book, in which we have explored the fundamental
tools underlying digital design. From basic combinational circuits we have de­
veloped a set of building blocks that range from simple logic gates to complex
ALU s, from flip-flops to large memories. Now you are ready to begin the exciting
activity of digital design. Part II introduces you to this process.

Chap. 4 Building Blocks with Memory 155

READINGS AND SOURCES

BLAKESLEE, THOMAS R., Digital Design with Standard MSI and LSI, 2nd ed. John Wiley
& Sons, New York, 1979. Sound design practices.

DIETMEYER, DONALD L., Logic Design o/Digital Systems, 2nd ed. Allyn & Bacon, Boston,
1978. Chapter 12: hazards. Chapter 13: traditional asynchronous design.

ERCEGOVIC, MILOS D., and TOMAS LANG, Digital Systems and Hardware/Firmware Al­
gorithms. John Wiley & Sons, New York, 1985. Good treatment of sequential systems.

FLETCHER, WILLIAM I., An Engineering Approach to Digital Design. Prentice-Hall, Englewood
Cliffs, N.J., 1980. Chapter 5 contains a good discussion of flip-flops.

HILL, FREDERICK J., and GERALD R. PETERSON, Digital Logic and Microprocessors. John
Wiley & Sons, New York, 1984.

HILL, FREDERICK J., and GERALD R. PETERSON, Introduction to Switching Theory and
Logical Design, 3rd ed. John Wiley & Sons, New York, 1981. Good standard treatment
of sequential circuits.

HWANG, KAI, Computer Arithmetic-Principles, Architecture, and Design. John Wiley
& Sons, New York, 1979.

KLINGMAN, EDWIN E., Microprocessor System Design. Vol. 2, Microcoding, Array Logic,
and Architectural Design. Prentice-Hall, Englewood Cliffs, N.J., 1982. Bit slices and
programmable logic.

MANO, M. MORRIS, Digital Design. Prentice-Hall, Englewood Cliffs, N.J., 1984.

MICK, JOHN, and JAMES BRICK, Bit-Slice Microprocessor Design. McGraw-Hill Book Co.,
New York, 1980. A collection of design notes for the Advanced Micro Devices 2900
bit-slice family. This book is useful far beyond the Am2900 chips.

MYERS, GLENFORD J., Digital System Design with LSI Bit-Slice Logic. John Wiley &
Sons, New York, 1980.

WIATROWSKI, CLAUDE A., and CHARLES H. HOUSE, Logic Circuits and Microcomputer
Systems, McGraw-Hill Book Co., New York, 1980.

Data Books

Am29300 Family Handbook. Advanced Micro Devices, 901 Thompson Place, P.O. Box
3453, Sunnyvale, Calif. 94088. High-performance 32-bit building blocks.

Bipolar Microprocessor Logic and Inter/ace. Advanced Micro Devices, 901 Thompson
Place, P.O. Box 3453, Sunnyvale, Calif. 94088. Data book for the AM2900 family and
its support devices.

Bipolar/MOS Memories. Advanced Micro Devices, 901 Thompson Place, P.O. Box 3453,
Sunnyvale, Calif. 94088. Data book.

FAST: Fairchild Advanced Schottky TTL. Fairchild Camera and Instrument Corporation,
Digital Products Division, South Portland, Maine. Data book.

LSI Databook. Monolithic Memories, 2175 Mission College Blvd., Santa Clara, Calif.
95954. PALs, memory products, arithmetic units, system building blocks.

Memory Components Handbook. Intel Corp., Literature Department, 3065 Bowers Avenue,
Santa Clara, Calif. 95051.

PAL Programmable Array Logic Handbook. Monolithic Memories, 2175 Mission College
Blvd., Santa Clara, Calif. 95054. Authoritative practical treatise on PALs and their
uses.

156 Tools for Digital Design Part I

Systems Design Handbook, 2nd ed. Monolithic Memories, 2175 Mission College Blvd.,
Santa Clara, Calif. 95054, 1985. Good discussion of DRAMs and their control in Section
10. Good discussion of multiplication algorithms in Section 8.

The TTL Data Book. Texas Instruments, P.O. Box 225012, Dallas, Tex. 75265.

EXERCISES

4-1. (a) Show that the following combinational circuit contains a hazard.

B.H ----------4
C.Lo--..... ---I-----I

Y.H

A.Lo-----~_I_

(b) Write the logic equation corresponding to the circuit, and draw a K-map with
circles corresponding to the circuit.

(c) Most of the time our design techniques will nullify the bad effects of hazards;
nevertheless, suppose that you must eliminate the above hazard from the circuit.
Starting with the K-map you drew for part (b), produce a hazard-free map by
making certain that adjacent 1 's share at least one circle. Write the logic
equation and draw the hazard-free circuit.

(d) Prove, by using a timing diagram, that your new circuit is free of hazards .
. 4-2. Assume that each combinational circuit element has a propagation delay of tp.

What is the total (worst-case) propagation delay in the following circuit?

B.H AH~ CH~ YL

4-3. In Fig. 3-5, the circuit for the enabled multiplexer imposes the enabling operation
on each of the initial AND gates, forcing them to have three inputs. Suggest why,
in Fig. 3-5, the enabling operation was not designed as a single final AND gate
with only two inputs.

4-4. A circuit consisting of a closed loop of an odd number of inverters (greater than
one) can function as an oscillator. Assume that the propagation delay through an
inverter is 10 nanoseconds.
(a) With a timing diagram, show the oscillatory behavior of a loop of three in­

verters.
(b) The oscillator consisting of a loop with just a single inverter is not stable.

Speculate about why this circuit is unsatisfactory.
4-5. What is feedback in digital design? Draw a gate circuit that exhibits feedback with

memory.
4-6. Why are combinational methods inadequate to deal with sequential circuits?
4-7. Explain "1' s catching." Why is this behavior usually a disadvantage in digital

design?

Chap. 4 Building Blocks with Memory 157

4-8. Explain the terms asynchronous and synchronous.

4-9. Show that the asynchronous RS flip-flop has two stable states.
4-10. Why do we usually avoid asynchronous flip-flops in digital design?
4-11. What is switch debouncing? Why can we usually not use a mechanical switch

signal directly in a digital design? Draw a switch-debouncing circuit.
4-12. Using a timing diagram, analyze the behavior of the switch debouncer shown in

Fig. 4-8a or 4-8b.
4-13. Assume that two (noisy) mechanical switches generate the DATA and HOLD signals

for the latch in Fig. 4-4. Is there any sequence of switch closings and openings
that would yield a clean output signal at Y?

4-14. The RS flip-flop exhibits anomalous output behavior if both Rand S are true.
(a) What is the anomaly?
(b) Does the anomaly occur in outputs X and Q of Fig. 4-6?
(c) In Fig. 4-6, assume that R = S = T. What is the value of Q if both signals

become false, but R becomes false slightly before S?
(d) Under similar conditions, what value does Q assume after precisely simultaneous

T ~ F transitions of Rand S?
4-15. What is an edge-driven flip-flop? Why is it desirable? What is the defect in the

master-slave flip-flop? What is a pure edge-driven flip-flop? What kind of flip-flops
do we use in digital design?

4-16. Consider an edge-driven JK flip-flop such as the 74LS109 with the direct set input
and the K input asserted (true), and the direct clear input and the J input negated
(false). What will be the flip-flop's output shortly after the next active clock edge
arrives?

4-17. Suppose your design requires a 74LS109 JK flip-flop with output FLG. You wish
to set the flip-flop with a logic variable SETFLG and clear the flip-flop with a
variable CLRFLG. In the design, you find that the control inputs are available as
SETFLG.L and CLRFLG.H. Draw the desired circuit with a 74LS109 flip-flop,
using no inverters. Draw the mixed-logic diagram.

4-18. Repeat Exercise 4-17 under the condition that both SETFLG and CLRFLG are
available with T = L, and inverters are available.

4-19. The text describes three cases in which the JK flip-flop may be used to store a
bit. Two. of these cases are (a) clearing, followed by later setting if the data bit
is true; (b) setting, followed by later clearing if the data bit is false. Verify the
text's rules for implementing these two cases.

4-20. Figure 4-30 shows the structure of a commercial 74LS74 D flip-flop. The notation
is mixed logic; the asynchronous set and clear inputs have been deleted to simplify
the diagram. In this exercise, you will demonstrate that the circuit does indeed
exhibit pure edge-triggered behavior-it copies and stores its D input only when
the clock fires, and it changes its output only as a result of the clock transition.

158

Assume (reasonably) that the propagation delay tpr is the same through each
gate in the circuit. To demonstrate the flip-flop's behavior, you will start from a
known configuration of gate inputs and outputs and will manually simulate the
effects of a given change in one input, in time units of tpr , until no further changes
occur in the circuit. Using the mixed-logic diagram, you may choose to deal with
either logical variables or voltage signals. In the explanation below, we use logic
rather than voltage.

Start, for instance, with both Q outputs, the D input, and the clock input all

Tools for Digital Design Part I

>--1--Q.H

CLK.H __ I---+~r--...... ~-"'-I--o Q.L

D.H----"""'1.._~

Figure 4-30. A 74LS74 D flip-flop without an asynchronous set and clear.

false, and establish the initial conditions of gate outputs A through G. Tabulate
the values of all signals so that you will have a detailed record. Make the D input
true and follow any changes in gate outputs until the circuit stabilizes. (You should,
of course, observe that the outputs are unaffected by this activity.) Then, from
this new configuration, bring the D input back to false and verify that the outputs
do not change as the circuit stabilizes. Once again, bring the D input true to set
the stage for some clocked activity. Make the clock input true and watch the
circuit accept and store the value on the D input. Continue in this manner with
other sequences of changes at the input.

4-21. Do you want to observe metastability in action? In the preceding simulation of
the actions of the D flip-flop, you changed only one input at a time and observed
the effect on the internal structure of the circuit. Changing both the input D and
clock input at the same time is a violation of the flip-flop's setup specifications.
Start at the same point as in the previous exercise, with the input D and clock
input false, and with both Q outputs false. Set both inputs true simultaneously
and simulate the behavior of the circuit. What behavior do you observe on the Q
outputs?

4-22. Figure 4-31 is a mixed-logic diagram of the internal structure of a commercial
74LS109 JK flip-flop, with the asynchronous set and clear inputs deleted to simplify
the diagram. Perform a hand simulation similar to that of Exercise 4-20 to show
the edge-triggered operation of the JK flip-flop.

4-23. What is the difference between the names used for inputs and outputs inside a
mixed-logic circuit symbol and the names appearing outside the symbol?

4-24. Draw an efficient mixed-logic circuit in which you use a 74LSI09 JK flip-flop to
synchronize a signal TIME*.L. On your diagram, call the synchronized logic
variable TIME.SYNC.

Chap. 4 Building Blocks with Memory 159

A

>-......... --Q

>-..... -+ +Q'
CLOCK--~~----~

J --------~~

K-+---+-i

Figure 4-31. A 74LSI09 JK flip-flop without an asynchronous set and clear.

4-25. There are four possible transitions Q(n) to Q(n+1l for a clocked flip-flop output:
o --? 0, 0 --? 1, 1 --? 0, and 1 --? 1. These transitions are given the names to, ta ,

tfJ , and t1, respectively. Consider the ways in which we can make a D flip-flop
and a JK flip-flop execute each of these transitions. Fill in the missing elements
in the following table:

160

D flip-flop JK flip-flop
Transition Q(n) D Cn) QCn) len) K(n)

to 0 0 0 0 X
t.

t"
tj

[In each case there will be two ways that the JK flip-flop can execute the transition.
For instance, the 0 --? 0 (to) transition occurs by clearing the flip-flop to 0 (having

Tools for Digital Design Part I

J = 0, K = 1), or by holding the previous 0 (having J = 0, K = 0). These cases
give rise to the X (don't-care) entry in the table.]

4-26. Compare the asynchronous RS flip-flop and the synchronous JK, D, and enabled
D flip-flops as to their best uses in digital design.

4-27. Two types of clocked flip-flop behavior that are occasionally useful are the T (toggle)
and the SOC (set overrides clear) flip-flop modes. A toggle flip-flop changes its
output Q only when its input TOG is true at the time of the clock edge. A SOC
flip-flop behaves like a clocked RS flip-flop except that it ignores the value of input
R whenever input S is true. Write excitation tables defining each type.

4-28. By means of external gates, convert the 74LSI09 flip-flop into a type T (toggle)
and a type SOC (set overrides clear) flip-flop.

4-29. By analogy with Fig. 4-12, construct a type T (toggle) flip-flop from a D flip-flop.
4-30. What is a register? How does it differ from a flip-flop?

, 4-31. Construct synchronous modulo-2, modulo-4, and modulo-8 counters using:
(a) D flip-flops.
(b) JK flip-flops.
(c) T (toggle) flip-flops.

4-32. Repeat Exercise 4-31 with ripple counters instead of synchronous counters.
4-33. For a 4-bit ripple counter, demonstrate how the output ripple can produce hazards

in circuits that receive the outputs.
4-34. Using a TTL data book, compare the characteristics of the 74LSl60, 74LS161,

74LS162, and 74LS163 counters.
4-35. Use two 74LS163 counters to build a divide-by-24 circuit. The output of your

circuit should be true during 1 of every 24 clock periods. This and similar circuits
are frequency dividers.

4-36. Using two 74LS163 counters and any required gates, design a circuit that functions
as an 8-bit counter or as an 8-bit multiply-bY-2 circuit. The circuit should be
controlled by two control signals, according to the following table:

CTLl CTLO

0 0 Do nothing
0 1 Count

0 Multiply by 2
1 Clear

4-37. There are many special counting sequences that are of some interest in digital
design. The binary counter produces the sequence of binary integers. The gray
code counter produces a sequence in which exactly one bit changes in moving
from one element of the sequence to the next. For a 2-bit counter, the gray code
is 00, 01, 11, 10. (Where have you seen this sequence in this book?) Build a series
of 2-bit gray code counters using the following approaches:
(a) Use logic gates to compute the inputs to D flip-flops.
(b) Use multiplexers to look up the inputs to D flip-flops.
(c) Use logic gates to compute the inputs to JK flip-flops.
(d) Use multiplexers to look up the inputs to JK flip-flops.

Chap. 4 Building Blocks with Memory 161

4-38. The moebius counter produces another special sequence. The algorithm for N bits
numbered CN ••• C1 is

when k= N - 1, ... , 1

(a) Design a 4-bit moebius counter, using JK flip-flops as the storage elements.
(b) Design a 4-bit moebius counter using a shift register as the basic storage element.
(c) How many elements are in an N-bit moebius sequence that begins with O?

Determine the answer empirically.
4-39. Consider a 74LS163 4-bit Programmable Binary Counter used in a mixed-logic

circuit with data outputs and inputs expressed as T = L.
(a) What are the logical effects of performing the 74LS163 count, load, and clear

operations with such a circuit?
(b) With the T = L interpretation of the data signals, can we still cascade 74LS163

chips to provide larger counters?
(c) Why are we not free to alter the voltage representations of the LD, CLR, CEP,

CET, or TC signals?
4-40. The programmable counters in the 74LS160 through 74LS163 series may act as

enabled D registers. In such an application, what, if anything, should you do with
the clear and count control inputs?

4-41. From a TTL data book, find an example of:
(a) A serial-in, serial-out shift register.
(b) A serial-in, parallel-out shift register.
(c) A parallel-in, serial-out shift register.

4-42. Use three 74LS194 shift registers to implement 12-bit shift registers with the following
capabilities:
(a) Left shift with serial input; parallel output.
(b) Right shift with serial input; paraIlelload; serial output.
(c) Full left and right shifts with serial inputs; parallel load; parallel and serial

outputs.
4-43. Use gates or multiplexers to modify the 74LS194 to include a fifth mode of operation.

This new mode will preserve the most significant (leftmost) bit during a right shift;
in other words, after the shift, the two leftmost bits will be the same. This is called
an arithmetic right shift-useful in computing with signed two's-complement numbers.

4-44. Describe the principal characteristics of the RAM, ROM, PROM, and EPROM.
4-45. Describe the principal characteristics and applications of the PLA, PLE, and PAL.
4-46. Consider two static RAMs, each with a capacity of 16K (214) bits, one RAM

organized in a 16K x 1 configuration, the other in a 4K x 4 format. Assume that
each type of RAM has two power supply pins, one read-write-select pin, one chip­
select pin, and one three-state-output-enable pin. Also assume that each data bit
has a single bus-oriented pin for input and output. Determine the smallest number
of pins in each type of RAM organization.

4-47. How do static and dynamic RAMs differ? What advantages do dynamic RAMs
offer? What disadvantages?

'4-48. Design PROMs that realize the following sets of logic functions:

162 Tools for Digital Design Part I

(a)

(b)

x = A-B-e + A-B-e + A-B-e + A-B-e
Y = A-B-e + A-B-e + A-B-e
Z = A-B-e + A-B-e + A-B-e
x = A-B + A-e + A-e
Y = A-B + B-e + A-B-e
Z = B-e + B-e + A

4-49. Design PLAs that realize the sets of logic functions in Exercise 4-48.
, 4-50. Synthesize the logic equations in Exercise 4-48, using a PALI8L4. For each set

of equations, use X and Y with T = L, and Z with T = H.
4-51. The PALI6R8, whose functions are shown in Fig. 4-27, produces T = L outputs

in a natural way. A proper mixed-logic diagram for an output stage of this PAL
is

OUT(D).H OUT.H
---+--If-----I D Q 1------1

OUT.L

OUT.L

OUT.H

OUT.H

For emphasis, the diagram shows each signal and its polarity. If a T = H output
is required, one useful technique is to produce the inverse of the required flip-flop
input. Develop a standard mixed-logic diagram for an output stage of this PAL
that produces an output having T = H.

4-52. The following prescription will convert an n-bit binary number into an n-bit gray
code (n is the most significant bit):

gray n = binary n

graYk = binaryk ED binaryk+l (k = n - 1, ... ,2, 1)

(a) Tabulate the 5-bit binary and 5-bit gray codes.
(b) Design a PROM that converts 5-bit binary numbers into 5-bit gray codes.

4-53. When k = 1, 2, ... , n, bit k of an n-bit binary number is equal to the EaR of
the corresponding gray code bits from k through n (n is the most significant bit).
That is

Chap. 4 Building Blocks with Memory 163

(a) Tabulate the 4-bit gray code and the 4-bit binary code.
(b) Design a PLA that converts a 4-bit gray code into a binary number.

4-54. Under what circumstances do we use a single-shot in digital design? How is the
delay period for the single-shot established?

4-55. Refer to a data sheet for the 96L02 Dual Single-Shot. Determine suitable values
for the resistor and capacitor to provide delays of:
(a) 100 nsec
(b) 1 msec
(c) 1 sec

4-56. Why does a delay line not require a power supply?
4-57. Using the delay line in Fig. 4-29, construct circuits that will do the following:

(a) Delay a signal HURRY by 400 nsec.

164

(b) Assert a signal BINGO for 100 nsec, beginning when the signal GOMANGO
becomes true.

Tools for Digital Design Part I

Design Methods

In Part I we presented basic design tools and introduced components used to
build digital systems at the MSI level of complexity. The fascinating part of
digital design lies before us. We now consider how we may assemble a complete
system from building blocks. It is in this area that the designer can create
elegance and beauty, or chaos and headaches. In Part II we present methods
of designing systems of moderate complexity, using the fundamental integrated
circuit building blocks. In Part III we will introduce programmed control of
complex digital systems, using microprogramming and conventional microcom­
puters. The methods of Part II serve to support independent designs and to
provide the "glue" required to design systems with programmed control.

To some extent, digital design is an art form. Most designers have had to
develop a style of digital design by trial and error, and their efforts often have
not converged to an efficient and aesthetic style. On the other hand, there are
underlying principles that can be immensely useful to designers. Our goal in
this book is to start you down the right path, and to take you far enough so that
you can develop your own designs with a solid sense of good style.

Design style is a curiously neglected subject, perhaps because a traditional
study of logic design emphasizes the microscopic transistor and gate aspects of
the subject. We emphasize a macroscopic view of digital systems by starting
from the original problem. The result is a top-down approach to design.

165

ELEMENTS OF DESIGN STYLE

Here are the guidelines for good design style:

(a) Design from the top down.
(b) Maintain a clear distinction between the controller and the controlled hardware

(the architecture).
(c) Develop a clearly defined architecture and control algorithm before making

detailed decisions about hardware.

Top-Down Design

A design starts with a careful study of the overall problem. At this stage, we
deliberately ignore details and ask such questions as:

(a) Is the problem clearly stated?
(b) Could we restate the problem more clearly or more simply?
(c) If we are working with a subsystem of a larger system, what is its relationship

to its host? Would a different partitioning of the entire system yield a
simpler structure?

At this stage our concerns are global, and we must stay at that level until
we have hammered out a sensible statement of the problem and have digested
the problem to the point where we understand what we must solve. This is
essential, since any difficulties at this level are serious. No amount of wizardry
with components can remedy errors in the understanding of the problem.

After we have clearly specified the problem at the global level, we seek a
rational way to partition the problem into smaller pieces with clearly defined
interrelationships. Our goal is to choose "natural" pieces in such a way that
we can comprehend each piece as a unit and understand the interaction of the
units. This partitioning process proceeds to lower levels until finally we choose
the actual integrated cicuits.

Unfortunately, many designers reverse this process by rushing to integrated
circuit data books to find the chip that will "solve" their problem. Often they
find a circuit that solves a slightly different problem. Thus enters the infamous
"patch" to force the problem, which is itself not well defined in the designer's
mind, to the integrated circuit. This process proceeds from the bottom up, often
in a divergent manner. Many commercial designs bear unmistakable traces of
this method of design.

Separation of Controller and Architecture

One of the first steps in a top-down design is to partition the design into (a) a
control algorithm and (b) an architecture that will be controlled by this algorithm.
The top-down analysis will suggest a rough preliminary version of the system's
architecture, involving abstract building blocks such as registers, memories, and
data paths. Since the architecture is specific to the particular design, there is

166 The Art of Digital Design Part II

no general prescription for writing down this preliminary architecture. The main
guidelines are to make the architecture natural to the problem and to design with
high-level units rather than with chips and voltages. The examples of design in
Chapter 6 will illustrate the art of specifying the rough architecture.

Next, we work out the details of the control algorithm at an abstract level.
The control algorithm is often surprisingly independent of hardware. For example,
if you were designing a computer, what operations would you expect your control
algorithm to accomplish?

(a) Get the next instruction.
(b) Test to see if operands are needed and get the operands if required, making

any necessary indirect memory references to indirectly addressed operands.
(c) Execute the individual instruction.

As you will see in Chapter 7, we may specify a complete flowchart (algorithm)
for operations like this with almost no knowledge of the specific hardware.

You should explore the construction of the control algorithm until you have
a clear understanding of your approach to the solution. The exploration may
go through several iterations, but eventually you will complete the process, at
which time you should turn your attention to the hardware for the architecture
that is suggested by the control algorithm. The algorithm will guide you to the
hardware. Note how powerful this concept is. We have a tool that allows us
to solve a problem in a rational way instead of randomly looking at integrated
circuits and wondering if they will fit into the design.

We can formalize the controller-architecture separation with the diagram
in Fig. 5-1. The controller issues properly sequenced commands to the controlled
device. These commands make the architecture perform the actions dictated by
the control algorithm. Usually, the controller will need status information from
the architecture that serves as decision variables for the control algorithm. As
the design matures, the controller's command outputs and status inputs go from
abstract concepts of control to Boolean variables, and finally to voltage repre­
sentations of the Boolean variables.

Consider the following example. A problem requires that a word be written
into a memory. The preliminary architecture for the problem is just a black box
for the memory, the details of its inner construction being deferred until later.
The memory will require four items of input: a memory address MA to tell where
to write the data, a word of DATA for input, a line R/W to tell whether to read
or write, and a GO signal to start the read or write operation. The only status
returned by the memory will be memory cycle complete Cc.

Status

l- Controller Commands I
I
I

Chap. 5 Design Methods

Architecture -.J
Figure 5-1. The structure of a state
machine.

167

Figure 5-2 is the functional diagram corresponding to this analysis. The
command lines are:

MA (n lines)
DATA (m lines)
R/W (1 line)
GO (lline)

The parameters nand m are determined by the characteristics of the memory
needed by the problem. For instance, a 1,024-word by 8-bit memory would have
n = 10 (1,024 = 210) and m = 8 (each word of memory has eight bits). The
status line is CC.

MA - DATA

Controller
R/W

GO

n

m
Architecture

(Memory
box)

..££..

Figure 5-2. A diagram of a memory­
write machine.

We now have a good idea of what signals the controller and architecture
must generate and accept, even before we know what hardware we will use to
build the controller or what the memory box is like inside. We choose the
memory command lines by realizing that we must have data to write into memory
and a location where it must be written. The structure in Fig. 5-2 is not affected
by the actual type of memory.

We can say something about the nature of the control algorithm that initiates
a memory write operation, without knowing exactly how we will translate that
algorithm into hardware. The algorithm must look something like Fig. 5-3. The·
purpose of the first step STW is to issue a GO signal to the memory, along with
the necessary data and commands to initiate a writing operation. The next step
WAITs until the memory has finished the writing.

We can accomplish an amazing amount of the design by a general consideration
of the problem. Carry the top-down analysis as far as you can, because decisions
at this level are more easily altered than they will be once the hardware has
intruded.

Refining the Architecture and Control Algorithm

We are now ready to move down one level. We have sketched out the algorithm
by ignoring the hardware as much as possible; instead we were trying to reduce
our problem to high-level, abstract statements of control and architecture. The
only consideration about hardware introduced thus far were general ones that

168 The Art of Digital Design Part II

~ .-----------~
Select write mode.
Issue GO signal.

to memory.
Present write data

to memory.
Present MA to

memory.

Figure 5-3. Algorithm for writing to a
memory.

we could state from a knowledge of the variables required for the operation of
abstract building blocks such as memories, registers, and arithmetic units. We
now begin to refine the control algorithm by introducing more detail.

As we refine algorithm, we need a more detailed knowledge of the architecture
of the system. We therefore begin to elaborate the architecture as a set of
building blocks, moving carefully through a set of high-level building blocks
toward a selection of the major hardware. We choose the architectural elements
by asking what specific building blocks the developing control algorithm requires;
we do not select elements by looking in a data book and saying, "Hey, this is
a neat chip-I must fit it into my next design."

A good architecture will be simple, clear, and easy to control. If it is not,
there is no way to rescue the resulting mess with exotic integrated circuits or
Boolean algebra. If the architecture is clear and simple, the rest of the design
will be relatively straightforward. This step-the first introduction of hardware­
is an important point in the design.

Mter we choose the major building blocks, we know what control signals
they will require. At this point, we tabulate these signals and then quit worrying
about the hardware. In fact, we suppress consideration of the hardware lest it
capture our thought processes and cause us to lose sight of the algorithm we
are trying to develop. Let the algorithm drive the design process as much as
possible. Now we can continue with an elaboration of the algorithm, whose
function is to provide a properly sequenced set of commands to the architecture.
Spend a large fraction of the total time for the project on the detailed algorithm­
architecture phase.

Mter we have completely specified the algorithm, we can reconsider the
architecture and our choice of building blocks. The detailed construction of the
algorithm will usually reveal areas of the design that we can simplify or speed

Chap. 5 Design Methods 169

up by using slightly different architectural components. We incorporate these
changes into the architecture and make the corresponding changes in the algorithm.
At this point the process should have converged to a final solution. We should
have:

(a) The architecture. This should include a detailed set of components and
data paths for the controlled device-usually a specification of the actual
integrated circuits for the major components such as registers, ALUs, and
memories, and a statement of the command signals that these components
require and the status signals that they produce. Our specification of the
architecture does not include any logic required to generate these commands,
since the generation of commands is assigned to the control algorithm.

(b) The algorithm. This will produce a properly sequenced set of command
signals to make the architecture perform the original problem. It does not
include the hardware to implement the algorithm. We can derive the hardware
from the algorithm in a straightforward and mechanical way, as you will
see later in this chapter.

If by this time the process has not converged to a stable solution, you
probably had trouble at an earlier stage of the design process. In such circum­
stances, proceeding further is fruitless; you should go back to the beginning and
start over. Do not "kludge" your solution. You have not yet wrapped any
wires or drawn any hardware circuit diagrams, so beginning anew is relatively
painless.

And now, a secret: whether in hardware or software, no one designs a
system strictly from the top down. A knowledge of low-level components and
techniques always influences the design, even at the highest levels. The best
top-down hardware designers have an intimate knowledge of hardware, and this
knowledge tempers and guides the high-level design decisions. As their under­
standing of the design expands, good designers use their knowledge of lower­
level technology to avoid unproductive approaches. The designer dips repeatedly
into lower and more detailed levels for short excursions, but invariably returns
to the present top level. The top-down approach has the great virtue of providing
the discipline that keeps one thinking at the highest useful level. We like to
imagine that a complex design proceeds linearly from the top to the bottom, but
that is rarely so. But whenever you dip down, your top-down training will pull
you back up as soon as possible.

ALGORITHMIC STATE MACHINES

The control algorithm plays a major role in a digital design, so we need a good
notation for expressing hardware algorithms. The notation should assist the
designer in expressing the abstract algorithm and should support the conversion
of the algorithm into hardware. There are several ways of describing the control.
For synchronous circuits, the ASM chart technique is the superior notation.

170 The Art of Digital Design Part II

ASM stands for algorithmic state machine. * The name is appropriate, since all
controllers are state machines, and we are trying to translate algorithms into
controllers. The ASM chart is a flowchart whose notations superficially bear a
strong resemblance to the conventional software flowchart. The ASM chart
expresses the concept of a sequence of time intervals in a precise way, whereas
the software flowchart describes only the sequence of events and not their
duration.

States and Clocks

An algorithmic state machine moves through a sequence of states, based on the
position in the control algorithm (the state) and the values of relevant status
variables. The concept of a state implies sufficient knowledge of present and
past conditions to determine future behavior. It is the task of the present state
of the system to produce any required output signals and to use appropriate
input information to move at the proper time to the next state. In most of this
book we are dealing with synchronous systems whose state times are determined
solely by a master clock. The most convenient form of clock is a periodic
square-wave voltage:

eLK

HLJ
~T

Time
~

L

The clock event that triggers the transition from one state to another and other
actions of the system is called the active edge, and in synchronous systems is
usually the rising (L ~ H) edge of the clock. In a synchronous system, the
clock will thus have T = H. Commonly, the clock period T ranges from 20
nanoseconds to several microseconds. The frequency f of the clock is its number
of oscillations per second. Frequency and period are related by the expression

The unit of frequency is the hertz (Hz), which is defined as one oscillation per
second. Convenient units for fast waveforms are kilohertz (KHz = 103 Hz) and
megahertz (MHz = 106 Hz).

The clock's frequency may vary, and the clock may even stop-desirable
during the debugging phases of a design. Within reasonable limits, the duration
of the high portion of the clock waveform in relation to the total clock period

* T. E. Osborne developed the ASM chart notation and C. R. Clare describes the method in
his book, Designing Logic Systems Using State Machines (New York: McGraw-Hill Book Co.,
1973).

Chap. 5 Design Methods 171

(the duty cycle) is unimportant. The crispness and reliability of the active clock
edge is of extreme irriportance, and designers of systems pay close attention to
the production and distribution of an excellent clock signal.

ASM Chart Notations

States. Each active transition of the clock causes a change of state from
the present state to the next state. The ASM chart describes the control algorithm
in such a way that, given the present state, the next state is determined un­
ambiguously for any values of the input variables. The symbol for a state is a
rectangle with its symbolic name enclosed in a small circle or oval at the upper
left corner:

SAME
.-, ---,

We would represent a purely sequential algorithm as an ASM chart of a sequence
of states, as in Fig. 5-4. The corresponding division of the time axis would be

eLK :~ I I I L
~ State X + State Y + State PDQ ~

Time~

A sequence is an inherent property of an ASM chart; state Y follows state
X, and so on. It is cumbersome to show time relations with a timing diagram
such as the above; therefore, you should learn to think of time as rigorously
implied in the ASM chart notation.

Figure 5-4. A purely sequential
ASM.

Outputs. The function of a controller is to send properly sequenced outputs
(voltage command signals) to the controlled device according to some algorithm.
To indicate an output, we place the command description within the appropriate
state rectangle. In this book we use several notations for outputs. Depending

172 The Art of Digital Design Part II

on our depth of understanding of our design and on the level of detail we wish
to convey, we may use informal expressions of actions or detailed statements
of particular output operations. Figure 5-5 contains some examples. In state
PRINT.LINE, the expression "Start print cycle" represents a set of actions, as
yet not fully elaborated, that initiates a printer cycle. The arrows in the next
two lines imply actions that are to be consummated at the end of this state; at
that time LINE is to be loaded into PRINTBUF, and the AC register is to be
cleared. The fourth line, MOVING, calls for the assertion of the signal MOVING
(making MOVING true) during this state. The last line means that the output
variable STATUS is to have the value of the variable ERRFLAG (T or F) during
this state. Other output notations may be useful; improvising notations is fine
as long as you define your terminology.

~RINT.LIN9

Start print cycle
LINE PRINTBUF
O AC
MOVING
STATUS = ERRFLAG

Figure 5-5. ASM output notations.

Branches. Purely sequential ASMs are of little interest because they are
usually not powerful enough to describe useful algorithms. We need some way
to express conditional branches so that the next state is determined not only by
the present state but also by the present value of one or more test (status) inputs.
Our symbol is the same as in conventional flowcharts for software: the diamond
or diamond-sided rectangle

We incorporate this symbol into the ASM chart by appending it to a state
rectangle, placing the description of the test input inside the diamond, as in Fig.
5-6. In this case a portrayal of the time line would be

Chap. 5

F
T I

CLK .-J

IfX=F: L
IfX=T. L

U
StateA ±!
State A

Design Methods

L..----JI I L
~I~ s<,," :

~ State ...

State C

State B

Time----

173

x
T CD r------,

Figure 5-6. An ASM with a condi­
tional branch.

The decision to jump to one of the two states B or C is made during state A,
and the jump occurs at the end of state A. In hardware implementations the
voltage representing input X must be stable for some time before the decision.
Ideally, X should be stable for the entire clock period of state A, for then the
hardware that decides to jump to B or C has the maximum time to settle. It is
important to realize that a test does not require a separate clock period-it is
done "in parallel" with the actions of the parent state rectangle and thus is part
of the parent state.

We are not limited to two-way branches from a state. We may draw
sequences of test diamonds or we may have more than two paths coming from
the same diamond. Two ways of representing a three-way branch are shown in
Fig. 5-7. The test structure in Fig. 5-7a is a diagrammatic representation of a
truth table in which neither P nor Q appears to dominate. Figure 5-7b conveys
the feeling that the test of variable P is of higher priority than the test of Q.
Which form is preferable depends on the designer's thought process. Use the
ASM notations that best describe your design.

(X = Either vallie)

(a) (b)

Figure 5-7. Alternative representations of a three-way branch.

174 The Art of Digital Design Part II

Conditional outputs. A command written within a state rectangle indicates
that the controller is to produce the output whenever the algorithm is in that
state. Sometimes we want a command to occur only when some other condition
also exists. We call such a command a conditional output and specify it within
an oval, as in Fig. 5-8. Command CMDI will appear for one state time whenever
the ASM is in state P. The command CMD2 will occur during one state time
whenever the ASM is in state Q, but when the ASM is in state P, CMD2 will
occur only if test input Z is false. In this example, CMD2 is an unconditional
output in state Q and a conditional output in state P. *

Figure 5-8. An ASM with a condi­
tional output.

Test inputs may serve two functions in ASM charts: they may help specify
the next state and they may control the issuing of conditional outputs. Ovals
for conditional outputs and diamonds for tests of inputs belong to the parent
state, since the activities will occur during the same state time. A state thus
consists of its rectangle, which is always present, and any test diamonds and
conditional output ovals associated with that state. Unconditional outputs are
a function only of the parent state; conditional outputs depend on both the state
and the path within that state. It would be appropriate to draw a dashed line
around the entire structure for each state, but we usually do not do this because
the chart defines each state without this aid.

This is the entire ASM chart notation. Our goal is to use it to help us
build digital circuits. In the following chapters we emphasize the design phase,
the difficult part of our work. Once we have an architecture and a control
algorithm, we must then implement them. In this chapter we next present some
standard and systematic methods for realizing any ASM chart control algorithm.

* An ASM with only unconditional outputs is equivalent to the Moore machine of traditional
sequential circuit theory; the traditional Mealy machine has conditional outputs. The ASM formulation
subsumes both traditional cases.

Chap. 5 Design Methods 175

REALIZING ALGORITHMIC STATE MACHINES

Once we have expressed the control algorithm as an ASM chart, it is a simple
job to express the flow of control as hardware. We describe four methods-a
traditional technique and three style-driven methods.

Our task is to construct a state generator for a given ASM. In any state
machine, the concepts of present state and next state are vital. The state generator's
task is to record the present state and generate the next state. State machines
are sequential circuits, and to keep track of the present state we need a memory.
In this part of the book, we use flip-flops as the state memory. There are two
ways to express the present state in a flip-flop memory. We may assign a binary
number to each state and express the present state as an encoding, using its
binary number. In this scheme, n flip-flops will encode up to 2D states. We may
describe a state by its name or by its number in binary or in decimal, as we
find convenient. Alternatively, we may avoid the encoding by assigning one flip­
flop to each state. We will use each of these approaches.

Traditional Synthesis from an ASM Chart

The traditional technique for state generation is to use an encoded representation
of the present state and compute the code for the next state. The bits of the
code are the state variables: n state variables describe up to 2n states. The term
state variable used in this way is unfortunate, since there is a more important
use for this term-to specify the name of a logic variable for each state. Never­
theless, in this section, we use the term in the traditional way. We make an
arbitrary state assignment of binary state variable values to states. On the ASM
chart, we show the binary assignment for each state above its state rectangle
on the right-hand side. We might choose the state assignment shown in Fig. 5-
9 . We need not label the test diamond or the conditional output oval since they
are part of state 00. The state assignment is arbitrary. There may be more
hardware associated with one state assignment than another, but this is not an

State variables: BA o 00

176

Figure 5-9. A simple ASM with a
state assignment.

The Art of Digital Design Part II

important factor. The two state variables B and A in Fig. 5-9 specify an address
that points to the present state. If we could compute the next address and put
it into the state flip-flops, we would then be pointing at a new state. As you
might guess, we can use gates to build a combinational circuit to compute the
next address. Figure 5-10 is the model of this process. This figure displays
only the control portion of the digital system, not the architecture.

We can use either JK or D flip-flops for the state variables. JK flip-flops
usually result in less combinational logic than D flip-flops, but they also require
twice as many input lines. The JK form is more compact but yields more obscure
results. In this example, we use D flip-flops to provide a more direct comparison
with the methods to follow.

For the ASM chart in Fig. 5-9, the state generator model of Fig. 5-10 has
one status input Z, two command outputs CMDI and CMD2, and two state flip­
flops Band A. The combinational logic must compute the value of the next­
state address:

Present Next
B A Z B(D) A(D)

0 0 0 1 0
0 0 1 1 1
0 1 X- 0' 0

0 X- 0 0
X 0 0

The condensation of rows on variable Z arises because the move from states 10
or 11 does not depend on Z.

Status inputs

I Combinational
logic

Q D
I
I FF I

Present n
state

address <-
I
I

I I
I

I
I

I I
I
I

Q D

FF
I

State flip-flops

Chap. 5 Design Methods

Command outputs

J-L-

I
I
I

Next
state

address
I
I
I
I
I
I
I

Sys tern
ck clo

Figure 5-10. A model of an encoded
ASM state generator.

177

The state assignment 01 is a possible pattern of the flip-flop's outputs but
does not label any state in the algorithm of Fig. 5-9. Hardware is perverse and
may get into this state, for example during power-up, when flip-flops may settle
into random values. In our example, pathological behavior would result if the
next-state logic computes 01 whenever the present state is 01. We would be
locked into state 01 and could not get out unless we did something drastic, such
as shut off system power. Clearly, if we ever get into state 01, we must get
back to the main algorithm loop. Thus, we have arbitrarily chosen to go to state
00. We must always take into account all unused state assignments in encoded
designs of state generators.

We may write the equations for state flip-flop inputs B(D) and A(D) by
inspecting the logic table above. They are

B(D) = BoAoZ + BojfoZ = BoA

A(D) = BoA oZ

When we are designing more complex state machines, K-maps may help to
simplify the expressions for the state flip-flop inputs.

This completes our discussion of the design of the state generator. But the
purpose of the algorithm was to produce properly sequenced outputs. An ex­
amination of Fig. 5-9 yields these equations for the outputs:

CMDI = STATE.P = BoA (5-1)

CMD2 = STATE.poZ + STATE.Q = BoA oZ + BoA (5-2)

The hardware for the ASM is shown in Fig. 5-11.

Comments. The approach we used in this section-to compute the code
for the next state-is a traditional method. JK flip-flops used to store the state
variables may lead to somewhat more compact next-state logic than D flip-flops,
since the JK flip-flop is the more flexible device.

Unfortunately, the traditional method results in no obvious correspondence
between the hardware for the state generator logic and the algorithm it represents.
This is true of D flip-flops, and even more true of JKs. Every change in the
algorithm, no matter how minor, requires a fresh design of the next-state com­
binational logic. The traditional approach violates our goal of clarity in design.
Next-state generation is the standard implementation process associated with
ASM charts, and we would like both the synthesis and the analysis of our state
generators to be as straightforward and mechanical as possible. The next technique,
while using the same structure for expressing states with encoded state variables,
differs dramatically in the method by which the next-state combinational logic
is generated.

The Multiplexer Controller Method for ASM Synthesis

Here is a simple method of synthesizing the combinational logic for any controller.
The method has several desirable attributes:

178 The Art of Digital Design Part II

Z.H --+-4f-+------l
Status
input

Combinational logic

CMD2.H

Command
outputs

1-... ------..... ----+- CMD1.H

A.H
....... -----IQ

B.H
~----+---I Q

SYSCLK.H ----<..-....;>

D
A(D).H

B(D).H
Df-------'

State flip flops

Figure 5-11. Traditional synthesis of the ASM in Fig. 5-9.

(a) It produces a design having a direct correspondence with the algorithm that
generated it.

(b) It is a standard method that can be applied to any ASM chart.
(c) It forces the designer to complete the ASM chart before the hardware is

constructed.
(d) It is easy to learn.

The design progresses in the traditional way through the state assignment:
we select an appropriate number of D flip-flops for the state variables and we
make an arbitrary assignment of binary values to the states in the ASM chart.
Now consider the model of state generation in Fig. 5-10. Given the code for
the present-state address and the status variable inputs, we must produce the
code for the next state.

The traditional way is to use gates to compute the next-state code. An
alternative way is to look up the next-state code in a table. Rather than compute
each bit of the next-state code, in this simplified method we will look up the
value of each bit. In Chapter 3, we described the multiplexer as our table-lookup
building block.

Chap. 5 Design Methods 179

The multiplexer controller method uses a mux for the input to each state
flip-flop. Each mux produces the new input to its state flip-flop. The assembly
of multiplexers, each providing the input to its respective flip-flop, yields the
code for the next state. We choose a multiplexer wide enough to have an input
for each state of the ASM. The present-state address code, which is the ordered
output of the state flip-flops, feeds into the select inputs of each multiplexer,
where it selects the mux input appropriate for the present state of the system.

Our design task is to see that for each present state the mux inputs provide
the 1 or 0 necessary to produce the next-state code. In effect, we have, for
each present state, a table entry that produces the code for the next state.

Let's use the multiplexer controller method for building the state generator
for the simple ASM in Fig. 5-9. A four-input multiplexer produces the input to
each state flip-flop Band A. We prepare Table 5-1, showing the conditions for
reaching any possible next state from each present state. For present state 0
(state P), look at the column for the next value of state variable A. If the ASM
is in state 0, the A-mux must produce truth (1) only when Z is true. Thus the
equation for this multiplexer input is

MUXA(O) = Z

For present states 1, 2, or 3, the table shows that the A-mux inputs are always
false; we always produce a 0 for the A bit of the next-state code from these
states.

TABLE 5-1. STATE TRANSITION DATA FOR THE ASM
IN FIG. 5-9

Present state: Next state: Condition for
Number Name Name B A transition

0 P R 0 z
Q z

2 R P 0 0 T

3 Q P 0 0 T

P 0 0 T

Now consider the B-multiplexer. In present state 0, the required expression
for the input is

MUXB(O) = Z + Z = T

In the remaining states 1, 2, and 3, the B-mux inputs are again all 0, as they
were in the A-mux. Figure 5-12 shows the resulting state generator. Equations
for the outputs CMDl and CMD2 are the same as in the traditional method:
Eqs. (5-1) and (5-2).

This was a fairly simple illustration. With some familiarity with the multiplexer
controller method, you could have read off the mux inputs directly from the
ASM chart without using the table. Let's do a more complex example-the
ASM in Fig. 5-13. This four-state machine will require two state flip-flops B

180 The Art of Digital Design Part II

~ Next-statebits

j 1 Pro,,"' ,,",, ---j------,

T.H 0 Z.H

F.H B.H
D Q

F.H A.H
D Q

F.H 2 F.H 2

F.H 3 F.H 3

A.H A.H

B.H B.H

SYSCLK.H ---_------------------'

Figure 5-12. A multiplexer controller for the ASM in Fig. 5-9.

State variables: BA

x

Figure 5-13. A more complex ASM.

and A. Again, two four-input mUltiplexers will provide the proper table-lookup
environment for the inputs of the state flip-flop.

Table 5-2 contains the ASM chart information in a convenient form for
the preparation of the multiplexer inputs. From the table, we derive these
equations

Chap. 5

MUXA(O) = X' y + X = X + y

MUXA(1) = F

Design Methods 181

MUXA(2) = F

MUXA(3) = Z
MUXB(O) = X-Y + x = x + y
MUXB(1) = W

MUXB(2) = F

MUXB(3) = Z-X+Z = X+Z

TABLE 5-2. STATE TRANSITION DATA FOR THE ASM
IN FIG. 5-13

Present state: Next state: Condition for
Number Name Name B A transition

0 p Q 0 1 X·Y
R 0 Y·},
S 1 X

Q p 0 0 W
R 1 0 W

2 R P 0 0 T

3 S P 0 0 Z·X
R 1 0 z·X
S 1 1 Z

Figure 5-14 shows the completed state generator for this ASM.

182

X.H---;
Y.H--...1

Z.L o-----f---i

XH
Y.L

W.H

X.H
Z.L

'>----ID Q A.H

B.H A.H SYSCLK.H

D Q B.H

B.H A.H SYSCLK.H

Figure 5-14. A multiplexer control for the ASM in Fig. 5-13.

The Art of Digital Design Part II

This example has four outputs-two unconditional and two conditional.
We may write equations directly from the ASM chart:

OUT1 = P (5-3)

OUT2 = Q (5-4)

OUT3 = QoW (5-5)

OUT4 = SoZoX (5-6)

To make use of these equations, we need implementations of the logic variables
P, Q, and S, which correspond to states P, Q, and S, respectively. We may
expand these logic variables in terms of the state variables B and A, as we did
in the earlier example. A more systematic, and therefore usually better, technique
is to use a decoder with inputs B and A to produce the individual logic variables
for each state. The outputs of the decoder will be, in order, P, Q, R, and S.
The generation of Eqs. (5-3) through (5-6) for the ASM outputs proceeds easily,
using standard mixed-logic techniques. You will see examples of this use of a
decoder at several points in this book.

Comments. The multiplexer controller method provides a systematic,
easily documented, and easily altered way of implementing ASM controllers.
We prefer this method to the traditional method in virtually every case. How
big a system will this method handle? The number of multiplexers, being the
same as the number of state flip-flops, increases only as the logarithm of the
number of states, whereas the size of each mux increases linearly. For example,
systems with five to eight states require three 8-input multiplexers, nine to sixteen
states require four 16-input multiplexers, and 17 to 32 states must have five 32-
input muxes. Commercial muxes with up to 16 inputs are available; we may
fabricate larger multiplexers from smaller components, using the methods in
Chapter 3. In our experience, for systems of 17 to 32 states, the method is
practical but unwieldy. For systems of up to 16 states, the mux method provides
a comfortable approach.

The traditional method, using either D or JK flip-flops, becomes a pile of
spaghetti beyond eight states and gives none too clear a result in smaller systems.

Most of the systems we wish to handle with the methods of Part II have
fewer than 17 states. What do we do about the occasional system with more
states? Our last method of state generation provides a way of extending the
useful range of hardware state generators to more states than the mux method
will handle easily.

The One-Hot Method of ASM Synthesis

In this method of generating states, we use one D flip-flop for each state. There
is no encoding of the states, so there is no need to specify a state assignment
as we did in the previous methods. Since we must always be in only one state
at a time, we must arrange for only one of the state flip-flops to be true during
each state time. Therefore, we must compute with combinational logic the value

Chap. 5 Design Methods 183

Tor F of each flip-flop's input to provide the one true input required to produce
the next state of the system. This property of exactly one flip-flop being true
at a time gives the method its name, "one-hot."

We may make exactly one flip-flop true with the aid of a tabular presentation
slightly different from the one used in the multiplexer method. Consider the
one-hot implementation of the ASM in Fig. 5-13. For this four-state system,
we need four D flip-flops labeled with the states' names. Table 5-3 contains the
information needed to produce the inputs to the one-hot flip-flops.

TABLE 5-3. STATE TRANSITION DATA
FOR A ONE-HOT IMPLEMENTATION OF
THE ASM IN FIG. 5-13

Condition for
Next state Present state transition

p Q w
R T
S Z·X

Q p X·Y

R p X·y
Q w
s X·Z

S p X
S Z

The equations for the flip-flop inputs follow from the table:

NEXT.STATE.P = P(D) = Q·W + R + s·z·x
NEXT.STATE.Q = Q(D) = p·x·y
NEXT.STATE.R = R(D) = p·x·y + Q·W + s·x·z
NEXT.STATE.S = SeD) = p·x + s·z

Figure 5-15 is an implementation of this controller, assuming that the status
inputs W, X, Y, and Z are available in both voltage forms. For the ASM outputs,
we may generate Eqs. (5-3) through (5-6) directly, since the logic variables P,
Q, and S are available from the one-hot flip-flops.

Initializing the one-hot controller. The first two methods of generating
states require an encoded representation of the present state; the code inherently
specifies only one state at a time. In the one-hot method, we must take care to
initialize the system in such a way that exactly one flip-flop-representing the
starting state-is true and the rest false. Once started, the one-hot controller
will propagate from state to state in the proper manner. We can envision any
one-hot circuit with a master reset signal built into its design to provide for
initializing the state generator. (You will see that virtually all designs should

184 The Art of Digital Design Part II

Q.H ---I
W.L

R.L o--------cl

S.H ... ,--
Z.H
X.L U-"'--L_/

P.H --------..---...,
X.L o------~--.;
Y.H -----......:..--L._ /

P.H
X.L
Y.L

Q.H

W.H

S.H
Z.H
X.H

P.H

X.H

S.H

Z.L

'LS175
RESET.L

"xl--<lD Q P.L

P.H

Q.H

Q.L

D Q R.H

R.L

'>-----4--1 D Q S.H

S.L

Figure 5-15. A one-hot controller for the ASM in Fig. 5-13.

Chap. 5 Design Methods 185

have such a reset facility; resetting is the only routine use of an asynchronous
input to our systems.)

The implementation of the state flip-flops will usually contain a set of D
register chips having a common asynchronous clear input. In our example, we
use a 74LS175 Quad D Register to provide the four flip-flops needed for state
storage. Asserting the asynchronous "clear" input on this chip will clear the Q
outputs to low voltages. We may use our mixed-logic notation to good advantage
here, to provide for initializing exactly one flip-flop to true. In Fig. 5-15, we
have assumed that state P is the desired starting state. Note how a master reset
signal "clears" the P flip-flop to true and the Q, R, and S flip-flops to false.
This is a routine application of mixed logic; the diagram shows exactly what is
happening.

Comments. The one-hot method has the advantages of ease of design
and clarity of circuit. The inputs to the state flip-flops directly describe the
conditions under which each state is the next state. As you know, the mixed­
logic notation provides for ease of analysis of circuits, so we may read off the
next-state conditions from the circuit diagram. The size of the state generator
circuit does not grow rapidly with the number of states. At first you may be
horrified at the idea of using a flip-flop for each state instead of the more compact
encoded scheme used in the other methods. However, the packaging of MSI
integrated circuits gives us four, six, or eight D flip-flops on a chip, so the
package count stays low. In medium-size to large designs, the one-hot method
compares favorably in total package count with the other methods and usually
wins the count.

The main disadvantage of the one-hot method is the need to take great care
to initialize the system to a starting state. Also, if the hardware (or the design,
heaven forbid!) is faulty, more than one state flip-flop may be true at once. This
situation is difficult to debug because the system follows several ASM paths at
the same time.

Our preference is to use the multiplexer controller method in systems of
up to 16 states and the one-hot method for larger hardwired systems. You will
see in Part III that as the systems become complex, involving many states, we
shift gears and adopt the method of microprogramming for designing systems
rather than using hardwired controllers.

Occasionally, an ASM of a special form will suggest a special type of state
generator. For example, a cyclic ASM offers the opportunity to use a binary
counter as its state generator. This special form appears in several of the examples
in Chapter 6.

The ROM-Based Method of ASM Synthesis

Our fourth method for synthesizing ASMs is based on table-lookup from a
permanent memory such as a ROM, PROM, or EPROM. This method has the
advantage that it is highly regular in its approach, but it suffers from a serious
explosion in the size of the ROM as the ASMs become more complex. In this
method, we use the now-familiar encoded state generator shown in Fig. 5-10.

186 The Art of Digital Design Part II

The combinational logic box, which produces the next-state address and the
ASM outputs, consists of a ROM of suitable size. The inputs to the combinational
logic box form the address of the ROM, and the outputs are the outputs of the
ROM. To realize an ASM, we must choose a suitable ROM and specify its
contents.

TABLE 5-4. STATE GENERATOR AND OUTPUTS
FOR THE ASM OF FIG. 5-9, USING A ROM

Address Output
B A z B(D) A(D) CMDl CMD2

0 0 0 0 1
0 0 1 1 1 1 0
0 1 0 0 0 0 0
0 1 0 0 0 0

0 0 0 0 0 0
0 1 0 0 0 0
1 0 0 0 0 1

0 0 0

We will illustrate the method by implementing the ASM in Fig. 5-9. The
ROM will have three address inputs-B, A, and Z-so we will need an 8-word
ROM. We require 4 bits of output-B(D), A(D), CMDl, and CMD2-so an 8-
word x 4-bit ROM is appropriate. The contents of the ROM are listed in Table
5-4, and Fig. 5-16 is the implementation.

ADDR2 oun
ADDRI OUT2

z- ADDRO OUT!

OUTO

ROM

A A(D)
Q D

<

B B(D)
Q D

<

Chap. 5 Design Methods

CMDI

CMD2

Figure 5-16. Implementation of the
ASM in Fig. 5-9, using a ROM.

187

The synthesis of an ASM using a ROM appears straightforward, systematic,
and elegant. There is a problem, however. As the complexity of the ASM
grows, the size (number of words) of the ROM increases quickly. The state
variables do not present a problem, since their number increases only logarithmically
with the number of ASM states, and the ROM's size therefore increases only
linearly with the number of ASM states. But the ROM address must contain a
bit for each test input in the design, and thus the ROM's size increases exponentially
with the number of test inputs. The ASM in Fig. 5-12, with four states and
four distinct test inputs, would require a ROM with 8 address inputs, having 64
words. Complex ASMs with lots of test inputs can require huge ROMs with
this method.

Another mildly unpleasant characteristic of the ROM-based method for
synthesizing an ASM is the enormous redundancy of information. Since the
ROM address is fully decoded, the ROM contains a word for each possible
combination of address bits. Each test input tends to be used only in a few
states, yet the ROM must contain a word for every combination of all test inputs
and state variables. For small systems, this method can be effective; large
systems will usually require computer software support to generate the ROM's
contents. To sum up: the ROM-based method is attractive because of its regularity,
but its use is limited by the exponential growth of the ROM's size as the number
of test inputs to the ASM increases.

DESIGN PITFALLS

In our study of design, we have made several important assumptions about our
systems.

(a) We have assumed that our ASMs are synchronous, with changes in state
and other actions governed by a master clock.

(b) We have assumed that at the time of a state change, all inputs to the ASM
are stable; in other words, inputs change synchronously with the system
clock.

(c) We have assumed that the system clock edge reaches each element in the
circuit simultaneously.

Let's investigate the effect of violating these conditions. Conditions (a)
and (b) are design decisions of great importance, violation of which will lead to
serious problems. Condition (c) is a subtle matter that we enforce by good
construction practices. Let's consider (c) first.

Clock Skew

In a synchronous system, it is important that every clocked element in the system
receive its clock edge at precisely the same time. To see why this is so, consider
the general model of a controller with just two state flip-flops, shown in Fig.
5-17. Proper synchronous operation results when the CLKA and CLKB active

188 The Art of Digital Design Part II

Status Commands

- Com binational
logic --

L--.....;;.B_-lQ

CLKB->

A
'---';';;""--!Q

CLKA->

-

Brn)
D~-~..I

D ~.;.;A.;,;;(D;..;.)_--,

Figure 5-17. A model of a digital
system for studying clock skew.

edges occur at the same instant. In that case, the combinational logic network
will compute new values for A(D) and B(D) based on the current values of A
and B and the status signals and, a few nanoseconds after the clock edge arrives,
A and B will assume new values equal to the old values of A(D) and B(D). The
changing flip-flop outputs will throw the combinational logic network into shock
as it adjusts to the new inputs and computes new values of A(D) and B(D). The
combinational logic outputs will experience hazards and delays caused by the
finite propagation time of the gates. A(D) and B(D) may therefore have momentary
wrong values but will eventually settle to levels predicted by Boolean algebra
and will then wait for the next clock edge to come along.

Now suppose that CLKB is delayed with respect to CLKA. Signal A
changes when CLKA fires; this will throw the gates into shock as before, and
both A(D) and B(D) may have momentary wrong values for a few nanoseconds.
Suppose that the "late" CLKB edge comes during this time of instability; then
B can record a false value. Even more galling: suppose that before CLKB fires
the combinational logic stabilizes to "new" values of A(D) and B(D), based on
the new value of A and the old (unchanged) value of B. At this time, both A(D)
and B(D) can be incorrect. Then, when CLKB fires, an incorrect B is stored,
and this change ripples through the logic. This phenomenon, clock skew, occurs
when the clock edges do not appear simultaneously at all clock inputs: Clock
skew can arise from gates in the clock path or from different wire lengths between
the clock source and the clock inputs.

Don't gate your clock. Gating a clock is bad practice because it introduces
skew (and may introduce hazards on the clock line). Suppose that flip-flop A
responds to a positive clock edge but that we use a different type of flip-flop

Chap. 5 Design Methods 189

for B that acts on a negative clock edge. We may be tempted to create the
CLKB signal by running an inverter from CLKA, but this is just a case of gate­
created clock skew. To avoid this type of skew, it is best to drive all flip-flops
with the same active clock edge, thereby eliminating the need for inverters in
part of the clock system. In all our clocked building blocks for synchronous
design, we use positive-edge clocks.

Beware different length of clock paths. It is also desirable to have the
clock distribution lines spread radially from the clock source to the separate
elements of the system rather than linking them together in one long chain.
When designing large systems you may have to buffer the clock lines to build
up sufficient power, as shown in the radial clock distribution system in Fig.
5-18. This "gating" of the clock lines is acceptable if the three buffers are all
of the same kind and, preferably, in the same integrated circuit package, so that
they all have precisely the same propagation delays. The distribution wires
should also be of the same length, within a few inches, since 8 inches of wire
represents about 1 nanosecond of signal propagation time.

Asynchronous Inputs and Races

Figure 5-18. A buffered radial distri­
bution system for the master clock.

Design assumption (b) is that all the inputs to an ASM change synchronously
with the master clock. In practice, inputs often arise from sources outside our
digital circuit, and the timing of changes in these inputs is beyond our direct
control. These inputs are asynchronous, and we usually append an asterisk *
to their variable name to indicate their asynchronous nature. To see why asyn­
chronous behavior is troublesome, consider the three-state ASM fragment in
Fig. 5-19. We assume that we have made the (encoded) state assignment shown
in the figure and that the sole test input IN* is asynchronous. For the moment,
ignore the conditional output.

Transition races. Each state flip-flop requires that its input be stable for
a few nanoseconds prior to the clock edge. This allows the input values to
circulate through the internal circuitry of the flip-flop and stabilize to await the
clock edge. If the flip-flop inputs change during this "setup time," the value of

190 The Art of Digital Design Part II

Figure 5-19. An ASM fragment that
illustrates races.

the flip-flop's output after the clock edge will be unpredictable. Mter settling
down, the output will assume either a T or F value, but which value is uncertain.

Now assume that the ASM in Fig. 5-19 is in state 00, and IN* = T. Then
the inputs to both state flip-flops are 0, and the system is preparing to move
next to state 00, the same state as before. If IN* changes to F, the inputs to
flip-flops A and B will change to 1, in preparation for the move to state 11. If
the change in IN* occurs during the flip-flop setup time, we cannot predict the
changes in the flip-flops. Thus the next-state code may be 00, 01, 10, or 11,
depending on the outcome of the race at the flip-flop inputs. Although we might
argue that either state 00 or state 11 is an acceptable next state, clearly to reach
states 01 or 10 is a calamity. This situation, in which the next state depends on
the exact timing of the flip-flop input changes, is called a transition race. The
situation is obviously intolerable and you must be certain that such races do not
appear in your designs. Before considering the solution to the problem, let's
investigate another type of race.

Output races. Now see what happens to the conditional output CMDI
in the ASM of Fig. 5-19 when IN* changes at an awkward time. For the moment,
ignore the possibility of transition races. In state 00, when IN* is true, CMDI
is false, whereas when IN* is false, CMDI is true. A change in IN* will cause
a corresponding change in CMDI. If IN* changes from T to F late in the state
00 time, CMDI will be true for only a short part of a clock time, before the
system moves into state 11. The possibility of a "runt pulse" for CMDI is in
itself a serious matter, since the output CMDI may be used in situations that
cannot tolerate such a short pulse. This problem is called an output race; it is
a direct result of an ASM output being conditional on an asynchronous input.
For example, suppose that the purpose of CMDI is to set a flip-flop that lights
a light announcing that we have left state 00. If IN* changes so late in the clock

Chap. 5 Design Methods 191

cycle that the flip-flop is not set to true, we will be in state 11 and the light will
still be off.

The combination of the transition race and the output race in this ASM
may lead to numerous ludicrous results, depending on the exact reactions of the
flip-flops to the changing IN* input. We could end up in state 00 with the light
on, or in state 01 with the light off, and so on.

Avoiding races. Asynchronous inputs are at the root of the problem of
races. Asynchronous inputs are fatal, dangerous, or at best difficult to use safely.
There is no way to avoid output races except to avoid conditional outputs that
depend on asynchronous inputs. The engineering literature is full of elaborate
methods for skirting around the transition race problem by tinkering with the
state assignments. The proper approach for good design style is to eliminate
the cause of the problem-the asynchronous input. We may do this by syn­
chronizing the input using a D flip-flop clocked by the system clock. The ASM
will test the output of this flip-flop, and since this output only changes synchronously
with the clock, there will never be a race in the ASM caused by that input. So
we have a golden rule for synchronous design:

Don't allow dangerous asynchronous inputs into your ASM chart.

You must be alert to identify asynchronous inputs-they have a habit of
sneaking into the design. In our example, the input was easy to detect, since
we had added an * to the signal name, but in practice, adding the asterisk is
your responsibility, whether or not the original name was so equipped. Many
useful synchronous integrated circuit chips have asynchronous control inputs for
clearing, setting, or loading. The only routine use that we make of such inputs
is as a master clear signal to be asserted when power is first applied or when
the system "hangs up." In the one-hot controller method you saw an illustration
of this usage; most controllers will require one such master clear signal. In other
circumstances, avoid using asynchronous control signals.

Asynchronous ASMs

Our ASMs have all been synchronous, with a master clock to define the times
for state transitions. It is possible to build asynchronous state machines, which
depend not on a clock but on changes in the inputs themselves to create transitions
between states. Troubles abound in this form of design, primarily because of
these factors:

(a) All inputs must be clean, with no glitches, since any instability or noise
on the input signals may induce spurious state transitions.

(b) The theory of asynchronous circuits is complex and diverse, involving
numerous special cases and usually invoking unacceptably restrictive design
conditions.

(c) The debugging of asynchronous systems is difficult.

192 The Art of Digital Design Part II

We will not instruct you in the theory of asynchronous circuits, beyond
the microscopic view we took in Chapter 4. Rather, we wish you to avoid this
mode of design wherever possible. In Chapter 9 you will encounter a form of
asynchronous ASM used to connect a peripheral device to a minicomputer, but
this special case is as far as we will take the subject. If at some later stage in
your design career you wish to investigate asynchronous circuits, you will find
a rich literature. However, we wager that, after your investigation, you will still
refrain from designing circuits in this mode.

Sidestepping the Pitfalls

Getting into trouble in digital design is easy. Asynchronous methods constantly
expose the control algorithm to every signal change, intentional or accidental.
Designing each circuit to be secure against such an unceasing attack requires
enormous effort. Asynchronous control, despite its tempting generality, is too
tedious to use as a major tool in design.

Synchronous methods ease the pressure on the designer by isolating the
sensitive periods into small, regular intervals preceding clock edges. Expressing
problems synchronously effectively moves the asynchronous difficulties away
from the algorithm into the clock. This is a great simplification. We must work
hard to make the synchronous clock system reliable, but the procedure is the
same for all designs. In return, we gain breathing room in the algorithm. Syn­
chronous design causes specialization of the hardware, where extreme versatility
is rarely needed, yet it decreases the number of special cases in the process of
algorithm design, giving designers valuable systematic methods.

As you saw in Chapter 4, the problem of metastability in the outputs of
sequential circuits is inherent in every design. Wherever two or more inputs
may change at the same time, metastability is possible. In asynchronous design,
virtually every input may present this problem. In synchronous design, the
asynchronous external inputs, which we routinely run through synchronizing
circuits, are trouble spots. By synchronizing these inputs we have greatly simplified
the internal structure of our control algorithm, but we have not eliminated the
possibility of metastability. In Chapter 12 we offer recommendations for dealing
with this irritating issue.

Debugging Synchronous Systems

Not only do synchronous methods ease the designer's worries, but they also
support a powerful debugging technique. The system clock controls the speed
of a synchronous design. Consider the benefits of a design that will behave
properly not only at high clock speeds but also at slow speeds, even at zero
speed. We are particularly interested in the zero-speed case, because with this
feature we may freeze the system in any state by stopping the system clock.
We may then debug the logic at leisure. Compare this technique with a system
that requires a closely controlled clock frequency. Error conditions may be
observable for only one clock cycle. If maintenance engineers cannot slow or

Chap. 5 Design Methods 193

stop the machine at will, they must troubleshoot it in real time. Debugging
systems at high speed is much more complicated than freezing the machine in
the erroneous state.

Synchronous designs that work at a variety of clock speeds, including zero,
are called static. The benefits of static systems are so great that we should strive
to use this technique whenever possible. Mter you have debugged a few dynamic
(nonstatic) systems, you will better appreciate the beauty of static designs. In
Chapter 6, we develop a system clock module for use in static designs.

CONCLUSION

This ends our exposition of basic design methods. We have covered the basic
building blocks and there were remarkably few types. Next, for expressing
algorithms, we described a language that contained only three constructs: the
state box, the conditional output oval, and the conditional branch diamond. With
these simple tools we can create digital systems limited only by our imagination.

The basic elements of style emerge from a desire to achieve understandable
designs. We have discovered through bitter experience that opaque designs are
enormously expensive in the long run. A good designer will use a design approach
that always promotes clarity. We mention three important aspects of such an
approach:

(a) Good documentation. It is tempting to avoid the drudgery of documentation.
After all, the real fun is in the design and debugging. It is hard enough to
document a simple design; complex designs are seldom documented well
enough for anyone but the designer to understand them. Often, after a few
months, even the designer cannot fathom the design. A good designer will
adopt techniques that encourage or require good documentation during the
design process. Mixed logic, functional building blocks, and ASM charts
are powerful aids to documentation, built into the design discipline.

(b) Modular designs. Nearly every design will require small changes during
its useful life. Monolithic designs are hard to understand and modify. Our
goal is to build more accessible designs, so that we may change part of
the complete system without the change rippling through the rest of the
design.

Too often, digital designers overlook the cost of servicing digital equip­
ment. Since servicing usually falls to other people, poor designers are not
forced to live with their abominations. Hardware will need repair. Digital
devices should be simple and modular so that other people can perform
the maintenance. The use of functional building blocks and the separation
of architecture from control both encourage modular design.

(c) Absence of tricks. Digital design affords unbounded opportunity for clever
tricks. Such trickery should not be, but often is, confused with good design.
We can benefit from the experience of computer programmers who, after
years of maneuvering bits in clever ways, have come to realize that systematic,
clear methods yield far more dividends than cute but obscure tricks.

194 The Art of Digital Design Part II

Perhaps we can sum up good design philosophy in a single phrase: common
courtesy. Consider the users and maintainers of your system, and ask yourself
what they will need in order to deal efficiently with your creation. Let courtesy
be your guide.

Summary of Design Guidelines

Here we bring together the three forms of design guidance presented in this
chapter.

Basic Approach to Solving a Digital Problem
(a) Design from the top down.
(b) Separate the architecture from the control.
(c) Refine the design, letting the control algorithm and the architecture

influence each other as you converge on the solution.

Technical Design Considerations
(a) Use synchronous (clocked) design techniques.
(b) Avoid asynchronous inputs in the algorithm.
(c) Make your designs static-independent of clock speed.

A Courteous Philosophy
(a) Develop good documentation during the design.
(b) Keep designs modular and simple.
(c) Avoid obscure tricks.

In Chapter 6, we will work out several examples of designs. In the process,
you will see the design tools in action and study in their proper context a number
of common design situations and their handling. In Chapter 7, we will embark
on the construction of a complete minicomputer, using top-down techniques at
the MSI level of complexity. Finally, in Part III, we will introduce the powerful
techniques of microprogramming and software control for managing complex
design problems.

So now begins the actual design!

READINGS AND SOURCES

CLARE, CHRISTOPHER R., Designing Logic Systems Using State Machines. McGraw-Hill
Book Co., New York, 1973. The original exposition of the ASM approach.

DIETMEYER, DONALD L., Logic Design of Digital Systems, 2nd ed. Allyn and Bacon,
Boston, 1978. Chapter 13: traditional asynchronous design.

ERCEGOVIC, MILOS D., and TOMAS LANG, Digital Systems and Hardware/Firmware Al­
gorithms. John Wiley & Sons, New York, 1985. Good treatment of sequential systems.

FLETCHER, WILLIAM I., An Engineering Approach to Digital Design. Prentice-Hall, En­
glewood Cliffs, N.J., 1980. Uses ASMs.

Chap. 5 Design Methods 195

HILL, FREDERICK J., and GERALD R. PETERSON, Introduction to Switching Theory and
Logical Design, 3rd ed. John Wiley & Sons, New York, 1981. Good traditional
treatment of sequential circuits.

MALEY, G. A., and J. EARLE, The Logic Design of Transistor Digital Computers. Prentice­
Hall, Englewood Cliffs, N.J., 1963. An influential early work; you can see how difficult
design can be without systematic methods.

MANO, M. MORRIs, Digital Design. Prentice-Hall, Englewood Cliffs, N.J., 1984. Presents
ASM charts as an alternative to traditional techniques.

MEALY, G. H., "A method for synthesizing sequential circuits," Bell System Technical
Journal, Vol. 34, September 1955, page 1045. The Mealy state machine.

MILLER, RAYMOND E., Switching Theory. Vol. 2, Sequential Circuits. John Wiley &
Sons, New York, 1966. An important early work.

MOORE, E. F., "Gedanken experiments on sequential machines," in Automata Studies,
edited by C. E. Shannon and and J. McCarthy. Princeton University Press, Princeton,
N.J., 1956. The Moore state machine.

WIATROWSKI, CLAUDE A., and CHARLES H. HOUSE, Logic Circuits and Microcomputer
Systems, McGraw-Hill Book Co., New York, 1980. Uses ASMs. Sensible treatment
of asynchronous ASMs.

EXERCISES

5-1. Sketch a general method for the top-down solution of a digital problem.
5-2. How does the ASM chart differ from a software flowchart? Using Fig. 5-8 as an

illustration, explain the fundamental differences in viewpoint.
5-3. What is meant by "active clock edge"?
5-4. What is a state time? In a synchronous system, what determines the duration of

the state time?
5-5. Draw diagrams to illustrate the following:

(a) A four-state cyclic (sequential) ASM.
(b) A three-state ASM with a fixed sequence of states containing a conditional

output.
(c) A two-state ASM with a two-way branch in one state and no conditional outputs.
(d) A four-state ASM that can produce this sequence of states: SI, S3, S2, SI, S4,

S2, SI, SI, SI,
5-6. Explain the difference between an ASM input and an ASM output.
5-7. What is the difference between an ASM conditional branch and an ASM conditional

output? Does one imply the other?
5-8. In a synchronous ASM, an unconditional output is stable for virtually the entire

~ duration of the state. For what period is a conditional output stable?
'5-9. Produce ASM charts that perform each of the following software operations:

(a) If X = N, then
(b) If X f. N, then ... ; else
(c) For X from A to B step C, do
(d) While X = Y, do

5-10. Here is a two-state ASM:

196 The Art of Digital Design Part II

(a) Convert the ASM into a form that has a single decision box of the form below,
with eight branches:

(b) Implement the original ASM and your modification. From the viewpoint of
the implementer, which form is best?

5-11. Using timing diagrams, show the difference between these two ASMs:

5-12. In many instances, we may remove a conditional output from an ASM by creating
a new state dedicated to generating the old conditional output (see the diagrams
in Exercise 5-11). Under what circumstances will this translation produce difficulties?

5-13. A conditional output is a function of both state and path. In a logic equation for
a conditional output, what logic operator connects the state term with the path
term? In other words, what logic operator corresponds to the box in the equation

Conditional.output = State l1J Path

5-14. The ASM notation

Chap. 5 Design Methods 197

\

can be used to indicate that "A assumes the value of B at this time." Show that
this notation may be viewed as a shorthand for an ASM state that contains a test
and a conditional output.

5-15. Consider the following fragments of an ASM chart. Carefully state what, if anything,
is wrong with or objectionable about these notations.

(a)

(b)

(c)

5-16. What is a state generator? With an encoded state assignment, how many states
can four state variables specify?

5-17. Some older design methods lump the controller and architecture of Fig. 5-1 into
the combinational logic of Fig. 5-10. Why is this poor practice?

5-18. Design a one-hot controller for Fig. 5-8.
5-19. Produce a realization of the ASM in Fig. 5-9 that is equivalent to Fig. 5-11 but

with the state assignment P = 00, Q = 01, R = 10. Is there any difference in
hardware complexity?

5-20. Can you make a state assignment in Fig. 5-9 that will simplify the hardware for
generating CMDl?

'-. \
'. 5-21. Design a traditional state generator for the ASM in Fig. 5-20, using D flip-flops.

' .. \
5-22. Design a multiplexer controller for the ASM in Fig. 5-20.
5-23. Design a one-hot controller for the ASM in Fig. 5-20. What special precaution

'. must you take when using the one-hot method?
~ 5-24. Design a ROM-based controller for the ASM in Fig. 5-20. Tabulate the contents

of the ROM.

198 The Art of Digital Design Part II

®.----,

T y F

01 10

Figure 5-20.

5-25. Devise implementations, including circuit diagrams, for the synchronous ASM in
Fig. 5-21, using each of the state-generation techniques given below.
(a) Multiplexer controller, using SSI- and MSI-Ievel components.
(b) Multiplexer controller, using PALs.
(c) ROM-based controller. Show the contents of the ROM.
(d) One-hot controller, using SSI- and MSI-Ievel components.
(e) One-hot controller, using PALs.

5-26. Perform Exercise 5-25 for the ASM in Fig. 5-22. Generate W with a JK flip-flop
and N with an enabled D flip-flop. The notation "Z : Y" implies "Z assumes the
value of Y at this time" (see Exercise 5-14).

5-27. The logic equation for an ASM output has terms involving distinct logic variables
for each ASM state in which the output appears.
(a) For a state generator with encoded state assignments, show a standard and

systematic method of transforming the state code into logic variables for each
state, using a decoder.

(b) Instead of using a decoder, we can generate ASM outputs with AND gates to
decode the required logic variables for states from the state code. Demonstrate
this method. When would you use this method in preference to the method
of part (a)?

5-28. In the one-hot state generator method, show how logic equations are generated
for conditional and unconditional outputs. Is output signal generation simpler with
the one-hot method than with the multiplexer method?

5-29. Use two 8-input priority encoders to detect when more than 1 bit is true in an 8-
bit quantity. (Hint: Connect the input signals to each of the encoders, but in
opposite order.) Can this design be extended to more than 8 bits? Show a use of
this circuit in the design of one-hot controllers.

Chap. 5 Design Methods 199

@.-------.

F

e· .----'----.

Figure 5-21.

Figure 5-22. A "loaded" ASM for practice in implementing.

200 The Art of Digital Design Part II

5-30. Consider the following eight-state cyclic ASM:

Design state generators for this ASM as a multiplexer controller, a one-hot, and a
binary counter. Which method is simplest in this special case?

5-31. Consult a TTL data book, and design a state generator equivalent to Fig. 5-14,
using 74LSOO, 74LS02, 74LS04, 74LS175, and 74LS352 integrated circuits. Draw
a complete circuit diagram, including pin numbers. How many chips are required?

5-32. Why is the clock such an important element in a synchronous design?
5-33. What is meant by "gating the clock"? Why is this practice dangerous?
5-34. For the ASM in Fig. 5-19, show with a timing diagram how the asynchronous

input IN* can cause a transition race.
5-35. Using Fig. 5-19, demonstrate an output race.
5-36. How may you avoid races in your designs?
5-37. Suppose that, contrary to our basic design approach, you must deal with a synchronous

ASM that tests an asynchronous input T2*, as shown below. The logic-level timing
diagram shows the condition of three signals over a period of six state times.
Complete the logic-level timing diagram for the signals OUT], OUT2, and OUT3.

Chap. 5

State time :

T
ST.X F

TI T
F

-
1

W

Design Methods

2

I

3 4 5 6

r-

I I I L

201

5-38. In Fig. 5-11, assume that the propagation delay of gates and flip-flops is tp.

202

(a) How much clock skew is tolerable between flip-flops A and B during the
transition from state 11 to state OO?

(b) Repeat part (a) for the transition 10 ~ 00.
(c) Repeat part (a) for the transition 01 ~OO.

The Art of Digital Design Part II

Practicing Design

And now, let's do some design. In this chapter we present several detailed
examples of digital design, from the small, yet important, to the substantial
project. The goals are two: to illustrate good design methodology and to introduce
important design problems and their treatment. There is repetition of some
aspects of design, particularly the use of ASM charts, yet each example has
fresh material. We will indulge in some excursions into interesting topics as
they occur in the context of design. We hope that in this way the concepts will
be more meaningful to you than they would be as separate, isolated subjects.

Examples 1 and 2 illustrate some basic design issues related to human
interaction with a digital device. In examples 3 and 4 we develop circuits to
support the conversion of information from a serial bit stream to a sequence of
bytes and vice versa, common operations in data communications (in Chapter
11 we use these circuits as a part of a larger microcomputer-based project). The
traffic-light controller and combination lock examples, 5 and 6, provide more
practice in design. In example 7, a Black Jack Dealer, we bring together several
design problems and techniques (this example reappears in a different design
mode in Chapter 10).

DESIGN EXAMPLE 1 : A SINGLE PULSER

Our first illustration of design is the development of a circuit for handling a
common situation involving a human operator of a machine. Most real systems
involve humans, usually at switches, pushbuttons, and lights. Digital systems
generally (but not always) run at speeds many thousands of times faster than

203

human reactions. When a machine operator presses a button to initiate some
action, the digital device must detect this signal and perform the appropriate
steps. In the typical case, the machine completes the actions in a flash, and is
back interrogating the pushbutton signal again long before the operator can
release the button. We must develop a scheme so that the machine processes
a particular button depression only once. A circuit for this is called a single
pulser; it delivers a pulse only a single clock cycle long when a button is pressed.
If we have such a circuit, our digital machine may test the single-pulser output
instead of dealing directly with the pushbutton signal and may thereby detect
only one event as long as the button is down.

We will study this problem and its solution in several ways. First, we
develop the most fundamental solution.

Algorithmic Solution of the Single Pulser

Statement of the problem. We have a debounced pushbutton, on (true)
in the down position, off (false) in the up position. Devise a circuit to sense
the depression of the button and assert an output signal for one clock pulse.
The system should not allow additional assertions of the output until after the
operator has released the button.

Approach. We will develop an ASM solution to the problem. Since the
problem is stated in terms of clock pulses, we know we are dealing with a
synchronous system (for which we are grateful). Let us name the important
inputs and outputs. Clearly, the position of the pushbutton is of great importance
to the algorithm. The pushbutton signal can change at any time, independently
of the state of the system clock, so the signal is asynchronous, and our name
for it should have a terminal *: for instance, PB*. Call the output of the single­
pulser circuit PB.PULSE.

We know to be cautious about allowing asynchronous test inputs to creep
into our ASM charts. To avoid testing PB*, we should synchronize the signal
using a clocked D flip-flop. This flip-flop, with input PB* and output PB.SYNC,
becomes part of the architecture of our solution.

Control algorithm. Now we may write an ASM chart to describe the
algorithm. The algorithm will test PB.SYNC and produce an output PB.PULSE.
The algorithm has two states: one for detecting the first moment that PB.SYNC
becomes true (button goes down), and the other to wait until PB.SYNC becomes
false (button goes up). Figure 6-1 is the ASM.

Implementing the design. The equation for the output PB.PULSE is

PB.PULSE = FIND·PB.SYNC

Once we have a way of producing the variable FIND, our problem is solved.
To obtain the value of FIND, we must implement a state generator for our ASM.
We will use the multiplexer method of state generation. The two-state ASM

204 The Art of Digital Design Part II

State variable: A

Figure 6-1 A single-pulser ASM.

will require one flip-flop to record the state, and one two-input multiplexer to
develop the next-state input to the flip-flop. In systems with more states, the
state flip-flops hold an encoding of the current state and, in order to obtain logic
variables for each individual state, we must decode the state code. However,
in our present design, the output of one flip-flop has two distinct states, and this
is sufficient to produce signals for the two states WAIT and FIND directly, without
decoding.

Look at Fig. 6-1. Formally, the flip-flop output is a state variable A, A
o representing the FIND state and A = 1 the WAIT state. Thus

WAIT = A

FIND = A

So we may just call the flip-flop output WAIT, and then we have

FIND = WAIT

What are the two inputs to the next-state multiplexer? If the system is in
state 0 (FIND), the condition for a true input to the flip-flop is the same as for
moving next into state 1, namely, PE.SYNC. If the present state is 1 (WAIT),
a true flip-flop input for the next state again requires that the next state be 1.
The condition from the ASM chart is again PE.SYNC. Here is a multiplexer
whose inputs are all the same! We can eliminate the mux from the state generator
and run the signal PE.SYNC directly into the flip-flop input. Now, our complete
circuit consists of the synchronizing flip-flop PE.SYNC, the state flip-flop WAIT,
and the logic to form PE.PULSE. Figure 6-2 is the single-pulser circuit.

Chap. 6 Practicing Design 205

PB •. H

CLOCK.H

PB.PULSE.H

Figure 6-2 A single-pulser circuit.

A Combined Architecture-Algorithm Solution

Although the foregoing derivation is our most fundamental solution of the single­
pulser problem, there is another approach that illustrates an important connection
between the architecture and the algorithm in digital design. Suppose we reason
as follows. Our architecture consists of a synchronizing flip-flop for PB*, with
output PB.SYNC, and another D flip-flop whose function is to delay the PB.SYNC
signal by one clock time. The second flip-flop has input PB.SYNC and output
PB.DELAYED. Then our single-pulser output signal PB.PULSEshould be true
only when PB.SYNC is true and PB.DELAYED is still false. As soon as
PB.DELAYED becomes true, we must stop asserting PB.PULSE. Can we formalize
these thoughts with an ASM? Of course; Fig. 6-3 is a one-state solution. This
ASM requires no flip-flops for state generation, since there is only one state.
The equation for PB.PULSE is

PB.PULSE = PB.SYNC·PB.DELAYED

The implementation looks identical to our original circuit in Fig. 6-2 except for
a trivial change in the names in the interior of the circuit.

Implications. This is an interesting phenomenon. We first had a two­
state system with minimal architecture (one flip-flop), and now we have a one-

F
PB.SYNC

206

Figure 6-3 A single-pulser ASM in
one state.

The Art of Digital Design Part II

state system with more inputs and more architecture (two flip-flops). Both solutions
yield the same hardware.

This reflects an important concept in digital design. The distinction between
architecture and algorithm is arbitrary. In general, by enlarging the architecture,
we may convert any ASM into one with fewer but more complex states. At the
limit, it is always possible to describe any algorithm in a single state. For complex
systems, this yields such a messy ASM that it is not useful; nevertheless, it is
technically correct. The vital point is that architectures and ASMs are tools to
assist us to understand our problem and to produce a clear, correct implementation.
The tools are to serve us, not control us!

Whereas we prefer the first solution to our example as more fundamental,
there is merit in the second solution also. Both result in equivalent (in this case,
identical) hardware.

A Single-Pulser Building Block

Having developed a circuit for producing a single pulse from a long input signal,
we may package the circuit in a black box and treat it as one of our design
building blocks. The single-pulser black box has an input PB* from an asynchronous
source, and produces a one-clock-cycle true output PB.PULSE when the input
becomes true. Whenever we need this type of behavior, we may mentally plug
in our black box, and when we build our circuit, we use hardware similar to
Fig. 6-2 in the box. It would be nice if the single-pulser box were available in
a single chip, but it is not. However, we still treat the single-pulser operation
as a building block in our work.

Generalizing the Single Pulser

Think about the human-machine interaction implied by our single-pulser problem.
When the operator presses the button, the single pulse promptly appears (and
disappears). The machine must have been ready to act on the pulse signal. How
did the operator know when it was okay to press the button? Somehow, the
operator must infer the correct time from the condition of the machine. Usually
this would mean a light or some combination of lights on the control panel. The
circuit controls these lights, indicating its readiness to process a button depression.
The single pulser works well in this common situation.

Now suppose we treat the operator-machine interaction differently. Let
the operator press a button at will but require the operator to hold the button
down until there is some indication that the machine has received the signal.
Then the machine may be in any state when the button is depressed, and only
when the circuit is ready to respond to the button will the light come on.

The single pulser will not work in this case, but we can handle the situation
with an ASM structure that looks for the pushbutton depression, then lights the
light until the operator releases the button, and then performs the desired operation.
Figure 6-4 is a typical form of this ASM. (In Design Example 7 in this chapter,
we discuss an additional variation of the single-pulser algorithm.)

Chap. 6 PractiCing Design 207

F
PB.SYNC

T

DESIGN EXAMPLE 2: A SYSTEM CLOCK

Figure 6-4 Diagram of an ASM if the
operator may press a pushbutton at
any time. In this algorithm, the ma­
chine waits until the operator releases
the button before it responds to the
pushbutton.

The clock is the master pacer in digital systems, and we must design it carefully.
A good clock is perhaps the most potent debugging tool a designer can put into
a system. At the least, the clock must have an automatic mode whose frequency
may be fixed at some high value and a manual mode that generates one hazard­
free active clock edge when a pushbutton is depressed. To do this, there must
be a mode switch to select automatic or manual status. Throwing the mode
switch must not shorten a clock cycle in the automatic mode. If the mode switch
were flipped 10 percent of the way into a clock cycle, thereby truncating the
cycle at that point, our circuit could suffer from timing problems. We must let
the last cycle run its normal course before the clock system enters the manual
mode.

Our approach to design requires that we move difficult, universal concepts
up front so that we can solve them once and then apply them to all projects.
The system clock is an important concept, so let's design a circuit for it.

Statement of the Problem

(a) Design a hazard-free system clock that runs in two modes, automatic and
manual. The automatic mode is a fixed-frequency mode derived from a
continuously running clock or oscillator. (Chapter 12 shows ways of fab-

208 The Art of Digital Design Part II

ricating clock signals from oscillators.) The manual mode should produce
a true clock output when a pushbutton is depressed, and a false output
otherwise.

(b) Activating the mode switch must never cause truncation of a clock cycle.
(c) In the automatic mode, the clock circuit should ignore the manual pushbutton.

Digesting the Problem

There are two inputs, from a debounced mode switch and from a debounced
pushbutton. We may formalize the variables in the problem. Let the mode
switch output be MAN, and let MAN = T in the manual mode and MAN = F
in the automatic mode. Let the manual pushbutton's output be PB, and let
PB = T when the button is down and PB = F when the button is up. Let the
clock output be eLK. Since we are dealing with a clock for synchronous edge­
triggered systems, it is natural to let eLK = T be the high voltage level and
eLK = F be the low voltage level, although this choice is not essential to the
design.

In digesting the problem, we uncover a crucial point: the clock output must
be free of hazards. In Chapter 4, you learned about the catastrophies that will
occur when clocks deliver spurious edges. The most general way to avoid
hazards is to avoid gates on the lines that must be hazard-free. How can we
build something without gates? Commercial flip-flops are designed to have hazard­
free outputs, and using a flip-flop output is the most convenient way to avoid
gates. We will produce the clock output eLK directly from a flip-flop.

Now we are ready to derive an ASM chart for our system clock circuit.

Algorithm for the System Clock

Our system is a synchronous circuit clocked by a continuously running oscillator
that will drive the system clock ASM. The output eLK has two levels, T and
F, so we might use two ASM states, one for eLK = T and the other for
eLK = F. In the automatic mode, we would expect to flip back and forth
between the states constantly. Our design problem is to fit the manual-mode
operations into this framework. Figure 6-5 is the ASM chart.

This ASM ignores the pushbutton unless the mode switch is in the manual
mode. In the automatic mode, the active state alternates between LO and HI,
producing a eLK output of half the ASM clock frequency, as shown in the
following timing diagram:

Oscillator

eLK

T

F

L
Time_

In the manual mode, the ASM moves to whichever state reflects the PB position.

Chap. 6 Practicing Design 209

@) 0

CLK=F

MAN "T
Manual

F Auto

® I

I CLK=T

F/ MAN" T
Auto / Manual

F

"

/

"

Up

PB

T Down

T Down
F

PB >-i;- Figure 6-5 An ASM of a system
clock.

The ASM formulation clearly demonstrates that the automatic mode overrides
the pushbutton and that, whenever we switch from the automatic to the manual
mode, the last automatic clock phase exists for its full duration, without any
shortening.

But the inputs MAN and PB in the ASM are asynchronous to the ASM
clock. In Chapter 5, you were told to avoid such signals in the ASM, since they
introduce many dangers, and even when they are not dangerous, it is usually
difficult to establish that their use is safe. Must we synchronize these signals
to protect our ASM from harm? In this case, we can quickly demonstrate that
we do not need to. Figure 6-5 is a two-state ASM with no conditional outputs.
The machine is always either in one state or in the other. When the mode switch
is changed from automatic to manual, the ASM either detects the change during
the present ASM state, or it doesn't. If it does, at the next state transition it
moves into the manual mode; if the ASM misses the change, it remains in the
automatic mode for one more clock cycle before entering manual mode. In
either event, in this simple ASM there is nothing to go wrong as a result of the
asynchronous nature of the MAN signal. A similar argument applies to PB.

Implementing the Circuit

Let's use the multiplexer controller method for implementing the state generator.
One flip-flop will encode the two states in our ASM. The purpose of the design
is to produce the system clock output eLK. We have already decided to produce
the system clock signal eLK as the output of a flip-flop. According to the ASM,
eLK is true in state HI and false in state LO. In Fig. 6-5, we chose to represent
LO by 0 and HI by 1. This is the same behavior as the eLK output: false in
LO and true in HI. In this case, we get our desired eLK output from the same
flip-flop used in the state generator. Very convenient.

210 The Art of Digital Design Part II

For the state generator, we set up a table of next-state conditions:

Present Next
state state Conditions

LO LO 0 MAN·PB
HI 1 MAN + MAN·PB = MAN + PB

HI LO 0 MAN + MAN·PB = MAN + PB
HI 1 MAN·PB

Both voltage signal forms will be available for the debounced switch and pushbutton
variables. In Fig. 6-6, we show a multiplexer controller for our clock machine.
This completes our solution to the design problem.

Critique

All three individual gates in Fig. 6-6 come from a single 74LSOO Quad Two­
Input Nand Gate chip, since a spare Nand gate will implement the voltage
inversion conveniently. Our solution costs one chip for gates, one chip for the
two-input multiplexer, and one chip for the flip-flop. To be sure, there are unused
components in these packages, but for a fundamental module such as a system
clock you probably don't want to share the chips with other parts of the system.
In the unshared mode, the cost is three chips; sharing with other circuits, the
cost is i + i + ! = H chips.

Advantages of using the mux controller are its simplicity of construction
(synthesis) and its ability to display the original ASM structure in the circuit
(analysis). The mux method seldom takes more chips than alternative solutions.
In this simple case, using a JK flip-flop for the state generator can yield a solution
requiring one flip-flop and two OR gates-a cost of two unshared chips or one
shared chip. We have not taught you this JK method because it results in obscure
circuits that bear little detectable relation to the original design and because any

PB.L<>--<l

>-----lD
MAN.H ----'"~-'-.....

Q 1-...... -- CLK.H

PB.H ---L_../
P--a

OSCILLATOR.H

Figure 6-6 A circuit for a system clock.

Chap. 6 Practicing Design 211

change in the design requires a complete recalculation of the entire state generator.
Also, in most complex designs, the JK method and the multiplexer method require
comparable numbers of components.

The statement of the problem was the key step in its solution. Once we
phrased the problem properly, the ASM chart followed naturally. In turn, the
hardware followed easily from the ASM chart. The smoothness of the process
is gratifying and is a sign that we are doing things right.

The original goal seemed deceptively simple. Our natural urge, and probably
yours also, was to rush to the lab bench and try a few circuits. Almost surely
we would have wound up with a circuit that appeared to work but contained
undetected hazards. In earlier days, we tried various bottom-up approaches.
This top-down circuit looks very different from our bottom-up designs, and it
is unlikely that we would have stumbled onto it by random experimentation.
Now we stay out of the lab until we have mastered the problem!

DESIGN EXAMPLE 3: A SERIAL BIT CLOCK

For our third example of digital design, let's look at a different type of clock.
In the transmission of serial data, bits arrive at the receiving station one at a
time on a single signal line, at some nominal rate. Typical rates are 1200, 9600,
and 19,200 bits per second. The data transmitter uses a clock of the appropriate
frequency to regulate the serial transmission of the data bits. The receiver, a
completely separate device, has no knowledge of the transmitter clock other
than the agreed-upon nominal bit rate.

The receiver picks off the incoming data bits by sampling the serial data
line at points about midway into the interval for each data bit. Sampling at the
midpoint avoids the problem of sampling while the data stream is undergoing a
transition. To accomplish this midpoint sampling, the receiver needs a clock
that delivers its active edge in the middle of each data-bit interval. Figure 6-7
shows a typical bit stream and the required waveform of the receiver's bit clock.

Bit stream

Receiver
sampling points

Receiver
bit clock

o

t t

o 0 000

t t t t t

Time ____

Approaching the Problem

t

Figure 6-7 Deriving a receiver bit
clock from the data stream.

Our design problem is to produce a clock signal for use by a serial data receiver.
How can we create a clock for such a bit stream? What information do

we have?

212 The Art of Digital Design Part II

(a) We know the nominal bit rate.
(b) We can sense the incoming bits as voltage levels on the input line.

Item (a) tells us the basic frequency of the bit clock but not exactly when the
clock edges should occur. Item (b) tells us where bit boundaries are by the
voltage transitions on the input.

We will develop an ASM that will sample the incoming stream of bits often
enough so that we will not miss any action. It will be simplest if the ASM
samples the bits at a rate that is some multiple of the nominal bit rate. We
choose a speed for our ASM that is 16 times the stated bit rate; call this ASM
clock signal X16CLK. The sole output of our circuit will be a receiver bit clock
signal BIT. CLOCK. Every time we detect a change in voltage level on the serial
input, we will reset the bit clock to its false (inactive) level. After eight ASM
clock cycles, we will change BIT. CLOCK to its true (active) level. At that point
we have created a F --? T edge on BIT.CLOCK that a data receiver can use to
sample a data bit.

If, in the absence of a transition in the input data stream, we execute 16
ASM clock cycles after resetting the bit clock, we must again reset BIT. CLOCK
to false, completing a bit-clock cycle. We use each transition of the input bit
stream to create an inactive clock edge, and then after half a bit time, we create
the active bit clock edge. If there is not another bit transition, then after a whole
bit time elapses, we reset the bit clock and begin again.

There is one hitch: Whenever a string of O's or a string of 1 's arrives, the
data stream will contain no transitions. In this case, there is no information in
the input data stream to keep our bit clock aligned with the transmitted bit
boundaries. Our method (and any method) will work only if the nominal bit
clock frequencies of the transmitter and receiver are similar, so that the active
edges of the generated receiver bit clock do not wander far from the center of
each incoming bit. Designers of data-transmission systems are aware of this
problem and usually avoid it by making sure that their message protocol produces
some change in the values of the data at frequent intervals. Therefore, we will
not worry further about this problem.

The Initial Architecture

In line with our general practices, we do not test the incoming stream of bits
directly, since it changes asynchronously to our ASM clock. We will place a
synchronizing D flip-flop into our architecture, with input DATA* and output
DATA.SYNC. The output of the bit clock circuit will be used as a clock by
other systems, so we must be sure that the output is free of hazards. Therefore,
we use a flip-flop to produce the output BIT. CLOCK. Since we must exert
control over the value of BIT. CLOCK at several points in our algorithm, we will
use a controlled (JK) flip-flop.

The Control Algorithm

At this point, the designer has a choice. We can create a 16-state ASM chart,
or we can develop a one-state ASM that manipulates a 16-count counter in the

Chap. 6 Practicing Design 213

architecture. We choose the latter, because we must always be on the lookout
for a transition in the incoming data stream and putting such a test into each
state of a 16-state ASM would require rather tiresome drafting. So we add a 4-
bit binary counter to our architecture.

We know we are looking for transitions in the input data. How do we
detect a transition? This requires a knowledge of the present value of DATA.SYNC
and of its value during the ASM's previous state. To save the old value, we
will need a D flip-flop with the input DATA.SYNC and the output OLD.DATA.
Now, how do we tell if DATA.SYNC and OLD.DATA are different? The EX­
CLUSIVE OR logical operator is ideal for this. The function EOR is true if
and only if its two inputs are different. Thus the condition required for a transition
on the input data line is

DATA.SYNC EB OLD.DATA

Now we may write our ASM to embody the analysis in the preceding
paragraphs. Figure 6-8 is the one-state ASM for the receiver bit clock. Before
implementing this ASM, however, we should ask a question. We should be
suspicious of a clock circuit that has two different ways of creating one of the
clock edges. Can the BIT.CLOCK output have any undesirable short clock
phases? In the ASM, a data transition will preempt all other events. What if
a data transition occurs when the ASM count is at 14 or 15, at 0 or I?

Transitions at 14 are okay, since BIT.CLOCK has been true since the 7-
count. A transition at 14 makes the T ~ F edge come slightly early, but that
is necessary to keep BIT.CLOCK synchronized with the incoming bit stream.
It is for exactly this purpose that we selected an ASM clock with a considerably

214

F

COUNT: 7

F

COUNT(+j 1
---COUNT

T F---BITCLOCK
O---COUNT

T

T
T---BITCLOCK

Figure 6-8 An ASM for a serial bit clock.

The Art of Digital Design Part II

faster frequency than the bit frequency, so that early or late bit transitions will
still result in rather even clock intervals. A transition at 15 is fine and is the
most probable case since it means that the bit transitions and the ASM count
are synchronized. Transitions at 0 or 1 will cause BIT. CLOCK to be set to false,
whereas BIT. CLOCK underwent a T -? F move just one or two ASM cycles
earlier. Again, this is okay, because clearing an already-cleared flip-flop causes
no change in the output. The inactive phase of BIT.CLOCK will last a little
longer than usual but, again, this is proper to maintain synchronization.

If transitions occur at intermediate counts far from the normal time, then
there is trouble in the input data stream and all we can do is try to follow the
input data, which the ASM will surely do. Noise on the line-"glitches" -will
cause problems. Our assumption about this circuit must therefore be that the
data stream is free of noise. There are more sophisticated techniques involving
phase-locked loops that help alleviate the problem of noisy lines, but these
methods are beyond the scope of this book. The technique proposed in this
example is quite acceptable for data transmission at moderate speeds over clean
lines.

Implementing the ASM

Since we have a one-state machine, we need no state generator. Most of the
detail is in the architecture. The 4-bit binary counter performs several operations:
clearing to zero, counting, and testing for counts of 7 and 15. A fine choice for
our counter building block is the 74LS163 Four-Bit Programmable Binary Counter,
which has synchronous clear, count, and load inputs, and a "terminal count"
status output to report a count of 15. With this knowledge, we may write the
equations for the ASM outputs. Define an auxiliary variable DATA. TRANS as
follows:

Then

DATA.TRANS = DATA.SYNC E8 OLD.DATA

COUNT(CLR) = DATA.TRANS + DATA. TRANS o(COUNT= IS)

= DATA.TRANS + (COUNT=IS)

COUNT(CNT) = DATA. TRANS o(COUNT=IS) o (--;-;(C"""'O=U""'""'N'"'"'T;;-=---:7=)

+ (COUNT=7)
= DATA. TRANS o""'"'(C"""'O=U=N:-;"T==--""'IS=)

= COUNT(CLR)

BIT.CLK(SET) = DATA. TRANS o(COUNT= IS) o(COUNT= 7)

BIT.CLK(CLR) = COUNT(CLR)

To complete the specification of the logic equations, we need expressions
for (COUNT= IS) and (COUNT = 7). The terminal count output COUNT(TC)
of the 74LS163 gives us the former term directly; we will build the (COUNT= 7)

Chap. 6 Practicing Design 215

term with gates. Calling the data outputs of the counter C3 through CO, with
C3 being the most significant bit, we have

(COUNT=15) = COUNT(TC)

(COUNT=7) = C3-C2-CI-CO

Look at the equation BIT.CLK(SET). Our intuition tells us that if the count
is 7, then it certainly is not 15, and so we should be able to toss out the term
(COUNT=15) from the equation. We may confirm our intuition by expanding
the meaning of the two terms

(CO UNT = 15) -(COUNT= 7) = (C3-C2-CI-CO) - (C3 -C2-CZ-CO)

= (C3 + C2 + Cl + CO) - (C3 -C2-CI-CO)

= C3 -C2-CI-CO

= (COUNT=7)

In the second step we use De Morgan's Law [Eq. (1-6)], and in the third Eq.
(1-5), A-A = F.

Now we may draft circuit diagrams. Figures 6-9 and 6-10 show the ar­
chitecture and the control signals. We have assumed that on the data line T =
H, although the choice does not affect the result.

Now we have a serial bit clock. In the next example, we will use this
clock in a circuit for a data receiver that converts a serial stream of bits into a
sequence of bytes.

DATA.SYNC.H
DATA-.H ---ID Q 1--------4 D OLD.DATA.H

'LS74 'LS74

X16CLK.H --------....

COUNTfCLR).L

H

COUNTfCNT).H

X16CLK.H

216

H

C3.H

C2.H

Cl.H

CO.H

BIT.CLK(SET).H

BIT.CLK(CLR).L

X16CLK.H

Figure 6-9 The architecture of a serial bit clock.

H

H

The Art of Digital Design

BIT.CLK.H

BIT.CLK.L

Part II

C3H~

C2.H=====~~;~{3~[= (COUNT=7J.L Cl.H= ~~
CO.H

DATA.SYNC.H =:=jD-­
DATA.TRANS.H

OLD.DATA.H

DATA.TRANS.H ~I--__
(COUNT'=7).L ~ B1T.CLK(SET).H

DATA.TRANS.H __ ---.l~
COUNT(CLRJ.L

(COUNT=15).H
BIT.CLK(CLRJ.L

COUN1YCNT).H

COUN1YTC).H -----(COUNT= 15).H

DESIGN EXAMPLE 4: SERIAL-PARALLEL DATA
CONVERSIONS

Figure 6-10 Control signals for a se­
rial bit clock.

Serial data transmission is a practical and economical way to move information
between distant points. Each bit moves in serial fashion over a single signal
path, according to some agreed-upon protocol. This method is conservative of
signal wires but slower than if more bits were transmitted in parallel. Within a
computer system, serial bit transfers are inefficient, since the basic unit of ma­
nipulation is the byte or word; within computers, data is transferred in parallel.
To accommodate these different modes of moving data, we need the ability to
convert serial data into parallel form and parallel data into serial form.

In this example, we design circuits for serial-parallel conversions. (We will
use the designs in Chapter 11 to support a more complex microcomputer-based
data multiplexing scheme.) Our example has two independent circuits: a serial­
to-parallel converter and a parallel-to-serial converter. Both converters deal with
9-bit parallel bytes, an unusual byte size dictated by the structure of the hardware
at the other end of our serial data lines. (LSI chips are available to assist the
serial-parallel conversions of the more common byte sizes, such as 8 bits. You
will see an example in Chapter 9. For this 9-bit application, no LSI chip is
available.)

Chap. 6 Practicing Design 217

Specifying the Problem

Parallel-to-serial conversion. The parallel-to-serial (P ~ S) converter
accepts 9-bit bytes from some source (in Chapter 11, this source will be a
microcomputer) and transmits the bits serially on a serial-out line (SO) at a
specified bit rate. As long as the system is running, the serial bit rate is constant,
and the P ~ S process never stops. In our example, we may use a rate of 9600
bits per second.

The need to maintain a valid serial stream of data at this fixed rate places
a severe constraint on the device that supplies the 9-bit bytes: whenever the P
~ S converter needs a new byte, the new byte must be present. But the byte
supplier is running at its own speed, engaged in its own duties, only one of which
is to supply bytes to the P ~ S converter. A simple way to handle such a
situation is to provide a one-byte buffer register in the converter to hold the
incoming byte whenever the sending device supplies it. Then our converter can
move the data to another spot when it is ready to process the byte, thus freeing
the buffer to hold another byte.

(The term buffer has two meanings in digital design. Previously in this
book, the word has meant a source of power for a logic signal. Here, we use
the term in the software sense of a temporary storage area to accommodate
differences in the operating characteristics of a source and a destination.)

We need some way to notify the supplier of bytes when it is time to fill
the converter's buffer with a new byte. The byte supplier must not provide a
new byte too soon, lest the new byte destroy the previous byte in the buffer
before the P ~ S converter has processed it. On the other hand, a basic
presumption of this system is that the byte supplier must not fail to supply a
byte on time; otherwise, we cannot supply the continuous stream of bits required
by the serial-out line. We may use a simple one-way signal to tell the byte
supplier to fill up the buffer. No response from the byte supplier (other than
filling the buffer!) is necessary, since we cannot tolerate any slippage and our
converter could do nothing about a failure if one occurred. Let's use a variable
FILLIT as a signal to the byte supplier; whenever the converter accepts a new
byte from its buffer, the converter will toggle (complement) FILLIT. At a time
safely before the converter needs the next byte, the byte supplier must sense
this change in FILLIT, and provide a new byte into the buffer. FILLIT behaves
like a modulo-2 counter.

Serial-to-parallel conversion. The serial-to-parallel (S ~ P) converter
captures the bits arriving serially on the serial-in line (S1), accumulates 9 bits
into a byte, and places the 9-bit byte into a buffer register. An external byte
receiver (again, in Chapter 11, the microcomputer) will accept the bytes for
further processing. We insist that the byte receiver keep up with the incoming
stream of bytes. The receiver must accept the buffer data before the converter
puts the next byte into the buffer. In analogy with the P ~ S case, the S ~ P
converter can toggle a variable READIT to announce to the byte receiver that

218 The Art of Digital Design Part II

a new byte is available. Since the byte receiver is committed to keep up, it
need not reply to the READIT signal, except to empty the buffer.

There are two complications in serial-to-parallel conversion:

(a) How do we find the serial bits in the incoming voltage waveform on the
serial-in line?

(b) How do we locate byte boundaries among the stream of bits?

The devices at the two ends of the serial line will be set to an agreed-on nominal
rate of incoming serial bits; in our example it is 9600 bits per second. With this
information, we may use the serial bit clock produced in Design Example 3 to
signal the S ~ P converter when to accept a bit.

Locating byte boundaries requires that the incoming serial bit stream have
some special characteristic that our system can recognize. In our protocol, we
assume that a special 9-bit pattern, SYNC, will periodically arrive in the serial
input stream. Our S ~ P converter must detect this SYNC pattern and use it
to establish the byte boundaries. We will defer to the byte receiver the decision
as to when to seek out this SYNC pattern. With this division of responsibilities,
we can add an input signal RESET to the S ~ P converter. Whenever the byte
receiver asserts this signal, the S ~ P converter will suspend normal byte
transfers until it locates a SYNC pattern among the incoming bits, at which time
it will resume placing bytes into the byte buffer and toggling READIT.

Building the P ~ S Converter

Design. The architecture will have a 9-bit buffer register to hold a byte
from the byte supplier, and a 9-bit shift register to hold a byte while it is being
disassembled and shipped out bit by bit over the serial-out line. Also, there will
be a controlled flip-flop FILLIT to tell the byte supplier when to deliver another
byte.

The basic timing element for parallel-to-serial conversion is the serial bit
time, so a clock operating at the P ~ S bit rate (9600 Hz) is a natural system
clock for our synchronous design. (To assist in debugging, we would probably
use the system clock of Design Example 2, which has both automatic and manual
modes; the automatic clock frequency would be fixed at 9600 Hz.)

There are two approaches to the design of the control algorithm. We could
draw a nine-state ASM chart that produces a serial bit for SO in each state.
This ASM could load a byte from the buffer into the shift register in one state
and shift the byte one position to the right in each of the other eight states.

Alternatively, we can view the ASM as having a single state, with the
architecture containing a binary counter capable of counting from 0 through 8,
to distinguish the nine activities per byte. Let's adopt this latter view and add
a counter to our architecture. The ASM in Fig. 6-11 is then self-explaining;
Fig. 6-12 shows the supporting architecture.

Chap. 6 Practicing Design 219

PSBYTE

PSBYTE(LOAD)

PSB YTE(CLOCK)

(Derived from
byte supplier)

COUNT(CLR)

COUNT(CNT)

PSCLK

so = Shifter (least
significant bit)

Shift right 1 bit
COUNT (+) 1 --> COUNT

Figure 6-11 An ASM for parallel-to-serial conversion,

9

Byte
buffer
register

Counter

9

SHIFTER(SHIFT)

SHIFTER(LOAD)

PSCLK
To serial

out line SO

FlLLl7YTOGGLE) ~ FlLLlT
Fli
tl p (To byte

op I')
PSCLK supp ler

4 Counter
compare

(COUNT",S)

Figure 6-12 The logical structure of a parallel-to-serial converter.

Implementation. The ASM yields the following equations for the P ~ S
control outputs:

COUNT(CLR)

COUNT(CNT)

= (COUNT~8)
= (COUNT~8)

SHIFTER(LOAD) = (COUNT~8)
SHIFTER(SHIFT) = (COUNT~8)

FILLIT(TOGGLE) = (COUNT~8)

Realizing the P ~ S converter is straightforward. Here are some hints for
selecting the chips. Nine-bit registers are not available in standard MSI, so we
must form them from other units. We may make the byte buffer in several ways,
perhaps with two 74LS378 Hex Enabled D-Register chips; the buffer register
will be clocked and loaded by the byte supplier. There are also several ways

220 The Art of Digital Design Part II

to fabricate the 9-bit shift register. For this parallel-to-serial conversion, we
need a parallel-in serial-out register. Although not quite the most economical
in chip count, two 74LS165 Parallel-Load Eight-Bit Shift Register chips form an
easily understood arrangement. In addition to the loading and shifting controls
and the 8 data inputs, these chips have a serial input into the most significant
data bit and a serial output from the least significant bit. This allows for the
cascading of units to form longer registers. (As usual, you should consult a TTL
data book for the exact specifications.) The output from bit 0 (the least significant
bit) is the serial data signal used to produce SO from the P ~ S converter.

FILLIT can be a 74LSI09 Dual JK Flip-Flop. Our faithful 74LS163 Four­
Bit Programmable Binary Counter can be the counter required by the ASM.
With the 74LS163 counter, we note that the (COUNT~8) variable is just the
most significant bit of the counter output; the "counter compare" box in Fig.
6-12 is therefore trivial.

Building the S ~ P Converter

Design. The architecture requires a 9-bit shift register to accumulate a
byte from the serial-in line, and a 9-bit buffer register to hold a byte for the byte
receiver. The signal READIT will require a flip-flop with its output available to
the byte receiver. At this stage, it is not clear if the incoming RESET signal
line from the byte receiver also requires a flip-flop.

The S ~ P architecture has a "SYNC byte identifier" black box that
constantly compares the 9-bit pattern currently in the shift register with the fixed
SYNC pattern and produces a true output only when the patterns match.

Timing of the serial-to-parallel conversion is provided by the serial bit clock
in Design Example 3, which produces a clock signal that is synchronized with
the incoming bit stream.

Our ASM will have two states: RUN, for the normal serial-to-parallel byte
assembly analogous to the P ~ S ASM; and START, for locating the SYNC
pattern in response to a RESET signal from the byte receiver. The RESET signal
arrives as an asynchronous signal from the byte receiver; it signals a precipitous
retreat from normal operations. As the S ~ P converter ASM in Fig. 6-13
shows, we enter the START state as soon as we receive a RESET signal; we
remain (synchronously) in START until SYNC appears. Once the algorithm
locates the SYNC pattern, we move to RUN for regular accumulations and
transfers of bytes.

To help protect the asynchronous RESET* signal from noise, we will capture
the byte receiver's RESET signal in a flip-flop, and use the flip-flop output as
the S ~ P converter's RESET* signal. The RESEn signal will cause an immediate
transition to the START state, where the S ~ P system will remain until after
the receiver has transmitted RESET to clear the flip-flop. The architecture of
the S ~ P converter is shown in Fig. 6-14.

Implementation. Once in state RUN, the ASM remains there until a reset
signal causes a precipitous transfer to state START. The state generator for this

Chap. 6 Practicing Design 221

o

Asynchronous
RESET.

~ r-----~----~

Transfer byte from
shifter to buffer.

0-+ COUNT
Toggle READfT

o

Shift in I bit from Sf
to shifter (most ~----.
significant bit)

Transfer byte from
shifter to buffer.

0-+ COUNT
Toggle READfT

Shift in I bit from Sf
to shifter (most
significant bit)

F

COUNT(+) I-+COUNT

Figure 6-13 An ASM for serial-to-parallel conversion.

two-state machine is a JK flip-flop with output R UN. The reset signal must
perform a direct (asynchronous) clear function on the flip-flop, and is thus labeled
RESET*.

In Fig. 6-13, we have labeled each conditional output oval. These labels
are not state names, but just represent positions within the parent state. For
the conditional output term CD in state START, we will create a logic variable
START.]; similarly, the notations CD and @ in state RUN will result in variables
R UN.] and R UN.2. Conditional output labels are excellent aids in the systematic
implementation of complex ASM charts.
From the S ~ P ASM chart in Fig. 6-13, we derive the following equations:

222

START.] START-SYNCBYTE

RUN.]

RUN.2

START

RUN(SET)

RUN-(CQUNT?:!8)

RUN-(CQUNT?:!8)

RUN

START.]

The Art of Digital Design Part II

From serial in
lineSl ----,

SHlFTER(SHlFT)

SPCLK

SI

Shift
register

9

PUFFER(LOAD)

9 SPCLK

Byte
buffer

register

SPBYTE
(To byte
receiver)

SYNC
byte

detector
SYNCBYTE

RESET(SET)

RESE1YCLR)

RESET(CLOCK)

(Derived from
byte receiver)

COUNT(CLR)

COUN1YCNT)

SPCLK

Flip
flop

RESET-

SYNCBYTE

(COUNT,;?-S)

4

State
generator

START

RUN

READlT(TOGGLE)

Count
~ompare

SPCLK

(COUNT,;?-S)

Figure 6-14 The logical structure of a serial-to-parallel converter.

R UN(DIRECT.CLEAR)

SHIFTER(SHIFT)

COUNT(CLR)

COUNT(CNT)

BUFFER(LOAD)

READIT(TOGGLE)

RESET*

T

START.] + RUN.]

RUN.2

START.] + RUN.]

START.] + RUN.]

READlT
(To byte
receiver)

Here are some suggestions for chips to implement the S ~ P converter.
The 9-bit buffer register may be two 74LS378 Hex Enabled D-Register chips.

Chap. 6 Practicing Design 223

The shift register is a serial-in, parallel-out variety; two 74LSI64 Eight-Bit Parallel~
Out Serial Shift Register chips would serve. The counter may be the 74LS163
Four-Bit Programmable Binary Counter, and once again the determination of
(COUNT;38) for this device is trivial, just as it was in the similar P ~ S circuit.
The flip-flop for READIT should be a 74LS109 JK Flip-Flop.

The SYNC byte detector must produce truth whenever the current 9-bit
data pattern matches the fixed SYNC pattern. In Chapter 3, we showed how
to compare a fixed quantity with a variable one. For this circuit, we need a 9-
bit AND function; a 74LS133 Thirteen-Input Nand Gate would do the job. Note
that although the SYNC byte detector constantly checks for the SYNC pattern,
the result is used only when the ASM is in the START state.

Critique

This completes our design of serial-to-parallel and parallel-to-serial converters.
We have left unspecified the detailed nature of the devices on the serial and the
parallel ends of our converters. (In Chapter 11, we will incorporate the converter
circuits into their larger environment.)

Our protocol is a rather strange one, with its 9-bit byte. For the more
ordinary 8-bit conversions, available complex LSI chips perform many of the
same activities as our circuits. When appropriate, we would use these single­
chip solutions in preference to building a multiple-chip MSI circuit. In this case,
the available LSI chips were not suitable, and the exercise gives you an un­
derstanding of serial-parallel conversion.

DESIGN EXAMPLE 5: A TRAFFIC-LIGHT CONTROLLER

This example was inspired by a similar problem in Carver Mead and Lynn
Conway's pioneering book, Introduction to VLSI Systems. We will solve the
problem with our structured design techniques.

Statement of the Problem

A busy highway is intersected by a little-used farm road, as shown in Fig.
6-15. The farm road contains sensors that cause the signal CARS to go true
when one or more cars are on the farm road at the positions labeled 'C.' We
wish to control the traffic signals at the intersection so that, in the absence of
cars waiting on the farm road, the highway light will be green. If a car activates
the sensor at either position C, we wish the highway light to cycle through yellow
to red and the farm-road light then to tum green. The farm-road light is to
remain green only while the sensors indicate the presence of one or more cars,
but never longer than some fraction of a minute, after which it is to cycle through
yellow to red and the highway light is to tum green. The highway signal is not
to be interrupted again for farm-road traffic until some fraction of a minute has
elapsed.

224 The Art of Digital Design Part II

Highway

I
I
I
I

0:
~~~ 
/~, 

/ I \ 

:0 
I 
I 
I 
I 

Farm road 

Preliminary Considerations 

Figure 6-15 The location of the 
traffic signal and the sensors in Design 
Example 5. 

The highway traffic is given priority, but not to the extent that the farm-road 
traffic can be stalled indefinitely. Since the default condition is a green light on 
the highway, we do not need any sensors in the highway lanes. To keep the 
example uncluttered, we will assume that the outputs of the sensors are combined 
external to our design to produce the single signal CARS, and that this signal 
satisfactorily indicates the presence of cars desiring to enter or cross the highway. 
We might ask what signals the traffic lights must receive to activate their three 
colors, but we defer such inquiries because we would like our solution to be 
independent of any particular brand of traffic signal until we are ready to specify 
one. 

The control of the traffic signals involves four intervals: the minimum time 
the highway light will be green, the maximum time the farm-road light will be 
green, the duration of the highway's yellow signal, and the duration of the farm­
road's yellow signal. For simplicity, we assume that the first two intervals are 
the same and that both yellow-light intervals are the same. To generate signals 
representing these two intervals, we plan to have a timer, driven by a (high­
speed) master clock and initiated by a starting signal START. TIMER. Whenever 
the timer is started, two output signals, THOLD and TYEL, are negated. If the 
timer is not interrupted, the two signals will be asserted after their respective 
intervals have elapsed; the signals will remain asserted until the timer is restarted 
with START. TIMER. The same timing unit and the same enabling signal will 
suffice for both timings, since the two intervals do not overlap. 

Our preliminary architecture is shown in Fig. 6-16. 

The Control Algorithm 

The control of the traffic signals breaks naturally into four events, which will 
result in four ASM states: 

State HG: Highway light green (and farm-road light red). 

Chap. 6 Practicing Design 225 



Highway 
light 

Farm road 
'light 

{GRN} 
HL YEL 

RED 

{GRN} 
FL YEL 

RED 

START. 
TIMER 

CLOCK 

Figure 6-16 The preliminary architecture of the traffic-light controller. 

State HY: Highway light yellow (and farm-road light red). 
State FG: Farm-road light green (and highway light red). 
State FY: Farm-road light yellow (and highway light red). 

CARS 

When the highway light is green (state HG), the controller must be alert for 
farm-road traffic, and, if cars are on the farm road and sufficient time has elapsed, 
must cycle the lights through state HY to state FG. In state FG, when the farm­
road light is green, the controller must be prepared to cycle through state FY 
to state HG whenever no cars remain on the farm road or if the stipulated time 
has elapsed. These obs..ervations lead quickly to the A5M in Fig. 6-17. Each 
state tests one of the two intervals THOLD or TYEL, and so, as we enter each 
state, we must start the timer unit. 

, In state HG, the ASM describes the mutual requirement of farm-road cars 
and it sufficiently long interval, using a single test of the product of THOLD and 
CARS. In state FG, the ASM uses separate tests of THOLD and CARS to 
describe the logic resulting in the escape to the next state. These constructions 
seem natural to us, so we used them. Other ways of representing the test 
conditions will lead to exactly the same output equations and state generator; 
for instance, follow the synthesis below, and then repeat the synthesis with these 
tests: 

InHG InFG 

Realizing the ASM 

From the ASM chart, we derive equations for the outputs and we tabulate 
information that will lead to the construction of a state generator. The natural 

226 The Art of Digital Design Part II 



)---tHG 
Figure 6-17 The ASM for the traffic­
light controller. 

parameters to describe the condition of a traffic signal are, of course, the colors 
of the signal. We derive 

HL.GRN = HG 
HL.YEL = HY 

HL.RED = FG + FY 

The signal for starting the timer unit is 

START.TIMER = 

FL.GRN = FG 

FL.YEL = FY 

FL.RED = HG + HY 

HG·THOLD·CARS + HY·TYEL + FG·(THOLD + CARS) + FY·TYEL 

Let's use the multiplexer method to implement the state generator. In this 

Chap. 6 Practicing Design 227 



method, we assume an encoded state generator, which will require two D flip­
flops. The encoding is arbitrary: we use B and A as the state variables, and the 
following assignment: 

State 

HG 
HY 
FY 
FG 

B 

o 
o 
1 
1 

A 

o 
1 
o 

For such a simple ASM, we could write down the state generator by· 
inspection. Nevertheless, in almost every design we find it useful to tabulate 
the conditions for changes in state. Table 6-1 shows the next-state conditions 
for our traffic light controller. Figure 6-18 shows the state generator. 

F 

TYEL 

TYEL 

T 

THOLD-CARS 

T 

F 

THOLD-CARS 

228 

TABLE 6-1 CONDITIONS FOR STATE TRANSITIONS IN THE 
TRAFFIC-LIGHT CONTROLLER 

Present state 
Code 

HG o 

HY 

FY 2 

FG 3 

B A 

B A 

D 

D 

Next state Condition 
BA 

HG 00 THOLD-CARS 
HY 01 THOLD-CARS 

HY 01 TYEL 
FG 11 TYEL 

FY 10 TYEL 
HG 00 TYEL 

FG 11 THOLD-CARS 
FY 10 THOLD + CARS 

Q B 

Q A 

Figure 6-18 A multiplexer state gen-
erator for the traffic-light controller. 

The Art of Digital Design Part II 



HLl 

HLO 

FLl 

FLO 

Choosing a Particular Traffic Signal 

The ASM's outputs that are to control the traffic signals are expressed in terms 
of the active color of the lights. Now suppose we select a particular traffic signal 
and, reading the instructions, find that each signal is controlled by a 2-bit code 
that specifies which of the three colors is active. In Fig. 6-19 we show this 
particular choice of a traffic light, adopting T = H for the code. Now we may 
derive logic equations that express the bits of the manufacturer's code in terms 
of our traffic-light variables: 

HLl = HL.YEL 

HLO = HL.RED 

FLl = FL.YEL 

FLO = HL.RED 

Now that the behavior of the particular traffic signal has been expressed in our 
nomenclature, there remains only to plug in the particular expressions for each 
light's colors to complete the implementation. Using the ASM output equations, 
we get 

HLl = HY 

HLO = FG + FY 

FLl = FY 

FLO = HG+HY 

Our refusal to commit ourselves to a particular traffic signal left us with 
an incomplete early statement of the architecture in Fig. 6-16 but allowed us to 
form a solution independent of the brand. When we finally settled on a brand, 
in Fig. 6-19, we completed the solution without altering our original work. This 
is an important technique, and represents good top-down design. 

HLl HLO HL 
Highway HL 0 0 GRN 

light 0 YEL 
0 RED 

FLl FLO FL 
Farm road 

FL 0 0 GRN 
light I 0 YEL Figure 6-19 A particular traffic light 

0 RED for Design Example 5. 

DESIGN EXAMPLE 6: A SIMPLE COMBINATION LOCK 

Now let's use our design tools to build an electronic combination lock. Combination 
locks come in two varieties, parallel and serial. An example of a parallel lock 
is a bicycle-chain lock with four disks that we must rotate to the correct combination. 

Chap. 6 Practicing Design 229 



We can change each disk independently without having to start over if we have 
a wrong number. A serial lock is the common dial type: we rotate a single dial 
to three or more preset numbers in sequence. Any wrong number requires us 
to start over. 

There are electronic equivalents of most components of locks. Rotary 10-
position switches replace the disks and dial. These switches are available as 
side-by-side stackable units called thumbwheel switches, which look like the 
individual disks of a parallel bicycle lock. As we rotate a thumbwheel switch, 
numbers from 0 through 9 appear in a small window and appropriate contacts 
close on four lines to represent the decimal number in binary form. We can use 
a pushbutton switch to replace the manual pull test of a correct lock combination. 
We can then use a lamp driver to light a lamp if the try was successful. (In 
Chapter 12, we show how to take a low-power logic signal such as the lamp 
input and amplify it to do useful work, for example to drive the lamp or to 
provide power to a solenoid to pull the latch on a door.) 

Let's build a simple lock to explore the design principles. Since we are 
digital designers, we will enter the lock's combination in binary form, one digit 
at a time. In this way we can build up the combination a bit at a time, starting 
from either end. A wrong digit should abort the entire procedure and send us 
to an error state, where the system waits for a reset signal to send it back to 
the start. 

Stating the Problem 

Build a 3-bit serial combination lock that lights a light when the correct combination 
is entered. 

Digesting the Problem 

We should have several questions. For instance: 

(a) How is the data entered? 
(b) What is the combination? 
(c) How do we reset the lock to start a new sequence? 
(d) How do we enter the combination-left to right or right to left? 
(e) How do we know when we have made an error? 

We might answer these questions in the following way: 

(a) Binary data (0 or 1) is set on a toggle switch. The operator will signal that 
the switch data is ready to enter by pressing a pushbutton switch Read. 

(b) Assume that the combination is 0112 • 

(c) We will need a Reset switch of some sort. 
(d) Right to left. 
(e) We can do clever things with the error condition. The worst thing would 

be to light a Wrong light the first time the machine detected a bad digit. 

230 The Art of Digital Design Part " 



This would allow a thief to build up the correct combination a digit at a 
time by writing down the preceding correct string of bits and experimenting 
with the current bit. The best procedure is to wait until all 3 bits are 
entered before signalling that an error was made. 

We do not have to tell the thief how many bits to enter, and someone 
trying to use our lock might therefore try 5, 6, or more digits. We can add this 
feature with a Try pushbutton to test the combination already entered. If Try 
is pressed any time except when the machine has processed 3 correct bits, we 
should terminate the operation in an error state. 

Developing the Algorithm 

Figure 6-20 is a possible ASM for our lock problem. The essence of this chart 
is to test each fixed bit of the combination in. a separate state and end up in 
either a correct state or an error state. Some states loop back to themselves 
while waiting on a human action. During the looping, these states must detect 
any erroneous actions and also any attempt to reset the system. For example, 
while the loop in state BIT 1. OK waits for the READ signal, it must provide loop 
exits for an erroneous TR Y signal and for a RESET signal. (Why is this important?) 
State BIT3.0K, which paves the way for a success, loops on TR Y, and must 
recognize a READ signal as an error. 

This is a fairly boring ASM chart. The only interesting part is the state 
assignment. Since so many paths lead to an error state, we give state BAD a 
state assignment of 000. The multiplexer controller uses gates to evaluate those 
paths that lead to state assignments containing 1 'so By making the largest number 
of paths lead to a state with all O's, we can sometimes simplify the mUltiplexer 
inputs. 

This ASM chart has two objectionable features: 

(a) The combination is built into the chart by the bit tests. Altering the bit 
pattern of the combination requires a tedious reexamination of the ASM 
chart and modification of the gate structure of the control mux system. 
Changing the number of bits in the combination is a major undertaking­
distinctly poor design. 

(b) Tests of the reset signal appear in every state and clutter up the ASM 
chart. 

Let's rework the algorithm to try a more elegant approach. 

An Elegant Combination Lock ASM 

The reset tests in Fig. 6-20 are correct but unpleasing. A reset is often a 
cataclysmic action that is intended to throw the system into a known state, 
regardless of the present state and independent of the ASM's clocking. Although 
our intended reset action is not quite this dramatic, the result is much the same. 
Any time the operator hits Reset, the machine should go to the initial state and 

Chap. 6 Practicing Design 231 



Figure 6-20 An ASM for a primitive combination lock. 

start the lock algorithm anew. Nothing needs to be saved in the ASM. In this 
problem, we may make one of our few standard uses of asynchronous signals: 
treat the reset as an asynchronous event that will blast the ASM into the initial 
state. By doing this, we can remove the synchronous tests of RESET and replace 
them with a master asynchronous entry to the initial state by means of the signal 
RESET*. 

If we intend to reset the state flip-flops asynchronously, we must choose 
a state assignment that lets the initial state conform to the results of the reset. 
Usually, we assign 000 to the destination of the asynchronous reset. 

232 The Art of Digital Design Part II 



Meeting the other objection, the fixed nature of the combination, requires 
a more subtle and more significant answer. First, we will get rid of the wired­
in combination. Instead of branches such as 

and 

we could compare the current value of the toggle switch with a reference value 
supplied by the architecture and not by the ASM chart itself. If we call this 
reference value for a particular bit REF, then the ASM chart would contain 

Now, by altering the reference bits we may change the lock's combination easily. 
Next, we will put the bit test in a loop. The number of bits in the combination 

will determine when the loop terminates. Clearly, a 3-bit lock is not very safe, 
since the probability of opening it in one try is 2 - 3 = i. It would be much nicer 
to have a 10-bit lock, which would reduce the probability to 1/1024. Our mod­
ification will easily support such a change. 

The new ASM, incorporating the proposed changes, is shown in Fig. 
6-21. This is a much better algorithm. By coincidence, it has the same number 
of states as before, yet it is able to handle a combination of M bits as easily as 
three. Furthermore, we have regularized the branch out of the bit test-branching 
occurs only when the input BIT is not equal to the reference bit. This systematic 
feature allows us to embed the test inside a loop. 

We have to pay something for the increased power of this algorithm: 

(a) We now need a loop counter. 
(b) We now need a table of reference bits-in other words, the combination. 

Can we find hardware for this algorithm? The counter is no problem, since 
it is one of our standard building blocks. For example, the 74LS163 Four-Bit 
Programmable Binary Counter is able to support clearing, loading, and counting, 
and can handle lock combinations with up to 16 serial bits. The combination 
lookup table could be in a ROM (read only memory), a PLA (programmable 
logic array), or a multiplexer. (Remember the discussions of building blocks in 
Chapters 3 and 4.) The multiplexer is the cheapest solution for short tables. 
We use CNT as the table index to find the current bit. For a combination of 
10011110, the table lookup suggests an eight-input multiplexer: 

Chap. 6 Practicing Design 233 



234 

0---1 

---14 
0----1 
0----1 
1---1 

8 

8 
F 

;>----REF(CNT) 

CNT 

Asynchronous 
RESET. 

000 
'itate variables: 

CBA 

T 

READ 

T 

BIT = REF(CNT) 
F 

T 

F 

8 T 

READ 
T 

F 

F 

Figure 6-21 An ASM for an elegant combination lock. 

The Art of Digital Design Part II 



Notice the great similarity of our hardware algorithm in Fig. 6-21 to a 
flowchart loop in software programming. All the ingredients are there; initialization 
of the loop counter, the loop body, the test of the loop counter, and the modification 
of the counter. Although we must refrain from drawing too close an analogy 
with software, it is gratifying to find, in good hardware design, many of the same 
concepts as software. 

It is worthwhile considering the effect of placing the loop-counter incrementing 
step in different locations in the ASM. What is wrong with putting the counter 
modification operation into state LOOP? (Hint: The loop has an embedded loop.) 
Why not put the INCR state at the head of the loop instead of at the end? (Hint: 
Consider the table-lookup's indexing.) 

Architecture 

Normally, the operator of a digital system will follow the progress of the work 
by observing status responses such as lights or motor noises; the operator can 
thus determine when to perform various actions. In our combination lock, we 
wish the machine to be quiet, yielding no information except lighting an Open 
light following a successful Try. If the machine's clock is faster than human 
reactions, we may avoid "handshakes" between the operator and the machine, 
since the machine will always be ready to process the operator's input. 

The clock speed of our lock machine may be as slow as 0.2 sec or 5 Hz. 
If we are driving our machine with batteries, for instance in a car, we would 
use an oscillator of perhaps 100 Hz for our clock. (We discuss this technology 
in Chapter 12.) 

Our ASM chart tests the TRY and READ signals, which originate from 
debounced pushbutton signals TRY* and READ*. We will pass these signals 
through a single pulser to achieve synchronization and to assure that only a 
single ASM action results from the push of a button. The single-pulser outputs 
are TR Y and READ. 

The bit-entry switch for the serial combination may be a plain toggle switch 
BIT. (Why does it not need to be debounced or synchronized or single-pulsed?) 
The specifications call for a Reset pushbutton with the output RESET*. The 
sole output of the machine is a light, Open, so we include a black box in the 
architecture to drive the lamp. 

Buried within our hardware, inaccessible to the operator, will be a binary 
counter with output CNT to control the loop count. A 74LS163 Four-Bit Pro­
grammable Binary Counter will do nicely; CNTwill then consist of 4 bits, CNT3-
CNTO. The architecture will also contain a multiplexer, with an output REF(CNT), 
of sufficient size to provide an indexed table lookup for the bits of the combination. 
For our illustration, let's use an 8-input mux such as the 74LS151. We do not 
really need to commit ourselves to particular chips this early. All we need at 
this point is a knowledge of what operations will be easily possible with each 
building block. 

Last, we may include a black box with output (CNT==M) and inputs CNT 
and M to determine when the loop count CNT has reached the terminal value 

Chap. 6 Practicing Design 235 



M. Since the loop starts with a count of zero, M must be one less than the 
number of bits in the combination. We must build this black box. If we think 
it unlikely that the number of bits in the combination will change, we could 
implement the output (CNT=M) with a simple gate. For example, in an 8-bit 
combination, M would be 7, and we would have 

mT3H~ 
CNT2.H (CNT:M) L 
CNT1.H . 
CNTO.H 

However, a more elegant approach is to allow the black box's input M to 
vary. Then we would use one of our standard building blocks, an arithmetic 
magnitude comparator such as the 74LS85 Four-Bit Magnitude Comparator. 
With 4-bit inputs CNT and M, this circuit can provide a signal (CNT=M) when 
the input values are identical. We could then complete the architecture by 
including assemblies of tiny toggle switches for M (4 bits) and for the combination 
(8 bits). We would hide these switches inside the combination lock machine, 
away from prying eyes. 

Figure 6-22 is the architecture of our elegant combination lock. 

Implementing the Control 

There are few outputs in our ASM, and the equations are simple: 

CNT(CLR) = INIT 

CNT(COUNT) = INCR 

OPEN = OK 

All the ASM test inputs are available in the architecture except for 
(BIT=REF(CNT)). How do we determine if one arbitrary logic signal is equal 
to another? In Chapter 3, we introduced the logic function COINCIDENCE, 
which produces truth if and only if its two inputs are the same. We may express 
the bit test as 

(BIT=REF(CNT)) = BIT 0 REF(CNT) 

Now for the state generator. We use the multiplexer controller method 
and the state assignment given in Fig. 6-21. The destination of the ASM asyn­
chronous reset has state assignment 000 to allow easy use of an asynchronous 
clear input on the state generator flip-flop assembly. Table 6-2 contains the 
state transitions required by our ASM. The six states require a 3-bit code. A 
4-bit D register with asynchronous clear, such as the 74LS175, and three 8-input 
mUltiplexers, for example the 74LS151, will support the structure. 

To provide the three state signals INIT, INCR, and OK required by the 
ASM output equations, we may use a 74LS42 Four-Line-to-Ten-Line Decoder. 
This one-chip solution is more convenient than constructing the three signals 
from gates. 

236 The Art of Digital Design Part" 



Debounced 
pushbutton 

Debounced 
pushbutton 

CNTfCLR).L 

H 

CNTfCOUNT).H 

CLK.H 

TRY*.H 

READ*.H 

CET 

H 

Single 
~ pulser TRY.H OPEN 

Single 
pulser r-- READ.H 

3 

~~==~~==========~ 
O~CN~~-H~~----------------~ 

Figure 6-22 The architecture for an elegant combination lock. 

Lamp 
driver 
and 

lamp 

REFfCNT).H 

Figure 6-23 is the state generator's structure. Figure 6-24 shows imple­
mentations of a few of the mux inputs. You should draft the rest. 

DESIGN EXAMPLE 7: THE BLACK JACK DEALER 

As our last example in this chapter, we will design a machine to simulate the 
dealer's actions in a blackjack game. Blackjack is a familiar card game involving 
a dealer and one or more players. The players can exercise their judgment but 
the rules specify what the dealer will do with each new card he receives. 

Chap. 6 Practicing Design 237 



TABLE 6-2 ELEGANT COMBINATION LOCK ASM STATE TRANSITIONS 

Present Next state Condition from ASM 
state CBA 

0 INIT LOOP 001 T 

LOOP LOOP 001 TRY·READ 
TEST 010 TRY·READ·(BIT=REF(CNT))·(CNT=M) 
INCR 011 TRY·READ·(BIT=REF(CNT))·(CNT=M) 
ERROR 101 TRY + TRY·READ·(BIT=REF(CNT)) 

= TRY + READ·(BIT=REF(CNT)) 
2 TEST TEST 010 READ·TRY 

OK 100 READ·TRY 
ERROR 101 READ 

3 INCR LOOP 001 T 
4 OK OK 100 T 
5 ERROR ERROR 101 T 

(any) INIT 000 RESET* (asynchronous) 

L 
D 0 INIT.L 

MUXGO.H 
GD).H C.H 

C 1 LOOP.L 
D Q 

B.H 
B 2 TEST.L 

A.H 
A 3 INCR.L 

'LS175 4 OK.L 

CLR LS42 5 ERROR.L 

MUXB(i).H 

RESET*.L 

MUXA(O.H 
A(D).H 

Figure 6-23 A state generator for an elegant combination lock. 

The Rules of Play for the Dealer 

The cards have values of 1 (ace) to 10 (10 and face cards). An ace may have 
the value of 1 or 11 during the play of the hand, whichever is advantageous. 
The dealer deals himself cards one at a time, counting ace as 11, until his score 
is greater than 16. If the dealer's score does not exceed 21, he "stands," and 
his play of the hand is finished. If the dealer's score is greater than 21, he is 
"broke" and loses the hand. The dealer must revalue an ace from 11 to 1 to 

238 The Art of Digital Design Part II 



BIT.H~~ LS86 (BIT=REF(CNT)J.L 
REFICNT).H 

H ---- MUXA(3).H 

READ.H 

(BIT=REF(CNT)).L 0--;--1. __ / 
}--- MUXC{J).H 

TR Y.L o----------q~ _____ 

READ.L=f>-
MUXC(2).H 

TRY.L 

Figure 6-24 Some control mux inputs for an elegant combination lock. 

avoid going broke but must then continue accepting cards ("hits") until the count 
exceeds 16. 

Stating the Problem 

These rules understood, we may state our hardware design problem. With a 
human operator to present cards to the Black Jack Dealer machine, play the 
dealer's hand to produce Stand or Broke. 

Digesting the Problem 

We will call the hardware device Dealer. The basic questions we might ask in 
our first stab at an architecture are: How will the operator present cards to 
Dealer? How will the operator know what the result of each card is? We can 
see that the operator interacts closely with the machine: 

(a) Dealer must signal the operator when to deal a new card. 
(b) The operator must signal Dealer when the new card's value is ready for 

processing. 
(c) Dealer must tell the operator if Dealer stands, went broke, or if the hand 

is still in progress. 
(d) When Dealer stands, the operator must be able to see the point value of 

Dealer's hand. 

These thoughts suggest that an important aspect of Dealer's design is the 
interaction between the machine and the human. Assuming that the operator 
knows the binary number system, we choose a set of four toggle switches to 
hold a card value of from 1 to 10 in binary. These toggle switches will act as 

Chap. 6 Practicing Design 239 



a register for the input data. A set of five lights is a simple way to display 
Dealer's score, which cannot exceed 21. To control the interaction, we can give 
the machine a set of status lights: Hit, to tell the operator when to enter a new 
card for Dealer; Stand and Broke, to inform the operator of the final results of 
the hand. We could provide a New.Game status light to show when to begin a 
new hand, but this is unnecessary, since either Stand or Broke must be signalled 
when the previous hand is complete, and thus the operator knows when a new 
game may begin without a special New.Game light. 

We must not forget to give the operator a way to tell Dealer when to 
process a card; therefore, we will specify a pushbutton switch Card.Ready which 
the operator can press. 

At this point we have a fairly good idea of the interface between Dealer 
and the human operator. Figure 6-25 shows the general plan. This is an important 
step in our design, for at this point we may go to our potential operators and 
describe how they will use the Dealer machine. Presumably, the operators don't 
much care what Dealer is like inside, but they will be interested in the operating 
instructions-the user's manual. Talking to users at this stage in the design can 
help avoid agonizing redesign later, in case we have misunderstood the problem. 

(pushbutton) Stand 
Dealer L ht 

Card.Ready ~ ~Hit 1 
Card value 4 5 Broke 19 s 
(switches) Score 

'-------' 

Figure 6-25 The Black Jack Dealer's 
interface with the operator. 

Most of the architecture is not yet specified-only the interface signals. 
Now we can begin work on the control algorithm. To gain a clear understanding 
of the problem, it is useful to write a "software" version of the algorithm. This 
suppresses most of the machine details, including the detailed state timings that 
we must eventually specify. If we don't understand the problem at an operational 
level, we surely cannot build a correct machine! Here is a high-level statement 
of the dealer's algorithm. The variables have obvious meanings, except for 
acellflag, to remember if the algorithm has valued an ace as 11 points. 

240 

Operational Algorithm for the Black Jack Dealer: 

AI: (*prepare to start a new game*) score := 0; acellflag := false; 
stand := false; broke := false; 

A2: (*make a hit*) accept a card; score := score + card value; 
(*check for ace*) if card = ace and acellflag = false then 
{score := score + 10; acellflag := true} 

A3: (*check for hit*) if score ~ 16 then goto A2 else 
(*check for stand*) if score ~ 21 then 
{stand := true; display score; goto AI} else 
(*check for broke*) if acellflag = true then 
{score := score - 10; acellflag := false; goto A3} else 
(*indicate a broke*) {broke := true; goto AI}. 

The Art of Digital Design Part II 



Initial ASM for the Black Jack Dealer 

With the operational algorithm as a guide, we may propose a hardware algorithm, 
using the ASM notation. As usual, our design will be synchronous, running 
from its own internal clock at a speed independent of the human operator's 
actions. As we develop the ASM, we will gain insight into the internal architecture 
required by Dealer. Figure 6-26 is a first attempt to describe an ASM for Dealer. 
The ASM assumes the following architectural elements: 

(a) Memory flip-flops for the HIT, STAND, and BROKE signals. 
(b) A register to hold the current card value. 
(c) A register to hold SCORE. 
(d) A flip-flop for ACEIIFLAG. 
(e) A black box to add, subtract, and clear the SCORE. 
(f) A black box to report if CARD = ACE, if SCORE> 16, and if SCORE 

> 21. 

Reducing the Number of States 

Our ASM has quite a few states, and you may wonder if this is desirable. States 
are the fundamental element of a hardware control algorithm, but they may have 
two undesirable side effects: 

(a) Each state requires a clock cycle to execute. 
(b) In a hardwired design such as this, excess states can enlarge the state 

generator's circuitry. 

In the Black Jack Dealer machine, neither of these objections to states is apt to 
be serious. It is likely that the human operator is much slower than the clock, 
so superfluous clock cycles will not cause difficulty. Also, we have straightforward 
methods of developing state generators from ASM charts of any reasonable size. 

Nevertheless, as practice in dealing with more complex and demanding 
designs, we will attempt to reduce the 10 states to a smaller number. Our basic 
technique is to introduce conditional outputs into an existing state, to replace 
the unconditional outputs of a separate state. States are candidates for collapse 
into the previous state if the state's activities (particularly its outputs) do not 
need to follow the activities of its predecessor state sequentially. Such state­
saving moves do not necessarily save hardware. Although the number of flip­
flop memory elements for states may decrease, the command output logic usually 
becomes more complex. Experience shows that a moderate effort to save states 
is worthwhile, as long as we maintain clarity in our design. 

Another technique to reduce the number of states is to create new test 
inputs to direct a single state down several new paths. We encountered this 
technique in the single-pulser example at the beginning of this chapter. An 
extreme example would be to place the entire ASM into a single state: take any 
ASM and its set of state variables and create a new single-state ASM, using the 

Chap. 6 Practicing Design 241 



242 

W AIT.FOR.CARD 

CARD.READY 

T 

GET. CARD 

F 

Get card 
F-+HIT 
F-+STAND 
F-+BROKE 

REQUEST.HIT 
F r---~--~ 

T-+HIT 

NEW. GAME 

T 0 -+SCORE 
F -+ ACE 11 FLAG 

F 

USE.ACE'=11 

Add 10 to 
SCORE 

T -+ ACE 11 FLAG 

CANCEL.ACE=11 

T T Subtract 10 
SCOREGT21)----_-(:'ACE 11 FLAG)--_-i from SCORE 

F 
F-+ACE11FLAG 

Figure 6-26 A primitive ASM for a Black Jack Dealer, with too many states 
and an error. 

The Art of Digital Design Part II 



State variables: BA 

00 

F 

Figure 6-27 Converting a four-state ASM into a one-state ASM. 

old state variables as test inputs. Figure 6-27 is an example. Obviously, this 
recasting of the algorithm, although technically equivalent to the original four­
state version, is neither as clear nor as meaningful. The test inputs B and A are 
artificial and have no real meaning in the algorithm. Since we want maximum 
clarity, we reject this particular single-state ASM. There are occasions when 
saving states through the introduction of new test inputs is helpful. An example 
is a purely sequential ASM-a cycle of states with no tests, as in Fig. 6-28a. 
A simple state generator uses a binary counter, which counts up to the maximum 
state value and then resets to o. On occasion, we may increase the clarity by 

Chap. 6 

o r-...L.--, 

Nr-...L.--, 

(a) (N + I )-state cyclic ASM 

R 
CNT(+) I-+-CNT 

(b) One-state ASM with 
counter in architecture 

Figure 6-28 Equivalent formulations of a cyclic process of N + I elements. 

Practicing Design 243 



making the counter a part of the architecture, as in Fig. 6-28b. In both designs, 
the hardware is the same. Choose the algorithm that seems clearer for your 
problem. Design Examples 3 and 4 in this chapter also illustrate this point. 

In general, use moderation in eliminating states, having increased clarity 
as your goal. In the Black Jack Dealer ASM, we may easily incorporate the 
outputs of states LIGHT.STAND, LIGHT.BROKE, and CANCEL.ACE=l1 
into conditional outputs within state ANALYZE. We may also eliminate the 
NEW. GAME state. 

Errors in the Algorithm 

The ASM in Fig. 6-26 contains two errors. Can you find them? They are both 
in the interface with the operator, and you have seen both earlier in this chapter. 
Consider the Card.Ready button and its use. First, we assume by now that you 
will have debounced the CARD.READY signal. (We always debounce mechanical 
switch signals that are used to provide test inputs in our ASM.) But CARD.READY 
changes with the operator's actions and is not synchronized with the ASM's 
clock. In our ASM, we should therefore label this signal CARD.READY* (* for 
asynchronous). We hope you noticed this error, since asynchronous inputs are 
a commor; problem and you must be alert to them. Our treatment of this asyn­
chronous test input is immediate and ruthless. Without pausing to investigate 
whether this asynchronous signal will cause problems, we eliminate it. We 
synchronize CARD.READY* with a D flip-flop operating synchronously with our 
ASM. In so doing, we add an element to our architecture. Call the output of 
the flip-flop CARD.RDY.SYNC. It is this new synchronized signal that the ASM 
tests in the WAIT .FOR.CARD state. 

Races, Again 

Let's again explore the problems introduced when an ASM tests an asynchronous 
input. Assume that we have allowed the CARD.READY* signal to remain in 
the ASM and that we have made an encoded state assignment. Figure 6-29 is 
the relevant part of the ASM. In state 0000, when CARD.READY* = F, the 
state generator logic will be preparing to change the state variable C from 0 to 

State variables: DeBA 

WAIT.FOR.CARD 0000 

244 

Figure 6-29 A segment of an ASM 
with a transition race. 

The Art of Digital Design Part II 



1. If CARD.READY* becomes true in state 0000, the state generator logic will 
switch C back to 0, and B and A to 1. If CARD.READY* changes to true very 
close to the transition point for leaving state 0000, the inputs to the state flip­
flops will be changing when the clock edge occurs, and the resulting outputs of 
flip-flops C, B, and A are unpredictable. The next state might be any of eight 
possibilities: 0000, 0001, 0010, 0011, 0100, 0101, 0110, or 0111! In this particular 
example, states 0000, 0011, and 0100 would be tolerable, but the rest are clearly 
erroneous. The situation is a transition race, and you must eliminate it. 

By modifying our ASM chart in a straightforward way (but retaining the 
asynchronous CARD.READY* signal), we can illustrate another type of race, 
the output race. If we manipulate HIT in conditional outputs in state 
WAIT.FOR.CARD instead of in separate states, we have the partial ASM in 
Fig. 6-30. Should CARD.READY* change from F to T near the clock edge, 
not only is the next state in doubt, but since the input to the HIT flip-flop is 
changing from T to F, the HIT output is also uncertain. We may reach the 
GET.CARD state successfully, but the Hit light may still be on! The output race 
is characteristic of outputs that are conditional on asynchronous test inputs. You 
must eliminate these races. 

WAIT.FOR.CARD 
,------., 

Figure 6-30 A segment of an ASM 
with an output race. 

There is a welter of traditional and complex techniques for dealing with 
the problem of races by manipulating state assignments. The straightforward 
way, as you know, is to eliminate the cause of the problem! If all test inputs 
are synchronous with the ASM clock, there can be no races. It is tempting to 
study your particular ASM to see if a particular asynchronous input can cause 
trouble. Usually, this is wasteful, mind-cluttering activity. Synchronize the input 
and move ahead. 

This sweeping simplification works because the ASM's action depends on 
only one (synchronized) input at a time. If the control of the ASM requires the 
simultaneous synchronization of more than one asynchronous input, no method 
will produce reliable results. This is bad design of the external interface. Modern 
practice requires that all relevant inputs be stable (unchanging) at the time the 
single status signal announces that an event is to occur. For our Black Jack 
Dealer, we require that the card switches be set prior to the single CARD.READY* 
announcement. 

Chap. 6 Practicing Design 245 



Process Synchronization 

Our problems are not quite over. Suppose the operator presses the Card.Ready 
button. What happens if, as is likely, the ASM completes its actions in response 
to the CARD.RDY.SYNC signal and returns to the WAIT.FOR.CARD state 
before the operator has released the pushbutton? Dealer will process the same 
card again, since CARD.RDY.SYNC is still true. This is the problem studied 
in this chapter's first example, the single-pulser. Because of its importance and 
the subtlety of some of the implications, we will discuss the subject again, from 
a different perspective. 

Handshakes. The problem is a failure to complete afull handshake between 
the operator and the dealer. A full handshake is an important mechanism for 
controlling the activities of two independent but cooperating processes. Frequently 
one device (A) must issue a request for action to another device (B). Since the 
speed and state of device B are unknown to device A (and vice versa), we need 
a general method by which device A can request action of device B and can be 
certain that device B has recognized the request. The sequence of events in the 
full handshake is: 

(1) Device A senses that device B is not still acknowledging a previous request 
and requests an action (device A extends its hand). 

(2) Device B senses the request and acknowledges receipt of the request (device 
B extends its hand). 

(3) Device A senses device B's acknowledgment and drops its request (device 
A drops its hand). 

(4) Device B senses that device A has recognized device B' s acknowledgment 
and drops its acknowledgment (device B drops its hand). 

The success of the handshake depends heavily on the sequence of events 
but does not depend at all on the duration of any step. In our Black Jack Dealer, 
the operator and Dealer must shake. hands in the process of requesting and 
entering a new card. HIT requests a new card; CARD.READY* is the operator's 
acknowledgment of the request. The desired sequence is: 

(1) Dealer senses that the (synchronized) CARD.READY signal is false, and 
asserts HIT, keeping HIT true at least until CARD.READY goes true. 

(2) Operator sees the Hit light on, and (after preparing a new card) presses 
the Card.Ready button, keeping it on at least until the Hit light goes off. 

(3) Dealer detects that the (synchronized) CARD.READY signal is true, and 
drops HIT (and proceeds to process the new card), keeping HIT false at 
least until CARD.READY goes false. 

(4) Operator sees the Hit light off, and releases the Card.Ready button, keeping 
it released (and hands off the card switches) at least until the Hit light goes 
on. 

246 The Art of Digital Design Part II 



The Single-Pulser Revisited 

What is wrong with our preliminary design? The operator's role appears correct 
(we would, of course, fully describe the rules in the user's operating instructions). 
The Dealer ASM performs step (1) properly, and most of step (3), but fails to 
keep HIT false until it detects that the operator's button is released. Dealer is 
failing to observe the dropping of the operator's hand. We can recast this 
requirement by saying that Dealer must respond once and only once to each 
action of the operator. Earlier in this chapter you studied several ways of 
describing and handling this common phenomenon of "once and only once." 
Here, let us express the solution yet another way. We incorporate the one-state 
single-pulser algorithm (Fig. 6-3) directly into the ASM, so that we may add 
our own specialized conditional outputs to the test branches. You have already 
seen that we will have a CARD.RDY.SYNC flip-flop in the architecture; to 
accommodate the single pulser we will include another flip-flop with output 
CARD.RDY.DELAYED. Then in the control algorithm, we explicitly test the 
values of these two flip-flops in order to isolate one and only one recognition of 
the operator's button push. The handshake signal HIT arises from a conditional 
output whenever the pushbutton is up. The relevant part of this ASM is in Fig. 
6-31. 

Wait.for.card 

,,-----'----, T Wait until button 
CARD.RDYDELA YED r--,;,;,;;;;;,,;;;;~~~...1 

is raised 
F 

Figure 6-31 A specialized single­
pulser for the Black Jack Dealer. 

This algorithm solves the difficulty of accomplishing the full handshake: 
HIT will only be asserted in the Wait.for.Card branch of state GET. If the button 
is up, Dealer is happy to request a new card in state GET. Whenever GET 
detects that the button is pressed, HIT will go false. The first time GET sees 
the button pressed, the ASM will process anew card. If control returns to GET 
while the button is still down, the algorithm simply waits (with HIT still false) 
until the operator releases the button. 

The Final ASM for the Black Jack Dealer 

The algorithm for the Black Jack Dealer now seems to be developing nicely. 
We have found that we may eliminate some of the states in our original proposal 
without jeopardizing clarity. We have explored in detail the synchronization 
requirements of certain inputs and the larger handshaking requirements between 

Chap. 6 Practicing Design 247 



the operator and Dealer. Figure 6-32 is the improved ASM for Dealer. In this 
figure, as in Fig. 6-13, the labels on the conditional output boxes describe 
conditional output terms-logic terms useful in developing a systematic imple­
mentation of a complex ASM. The conditional output terms are not state names; 
they merely represent positions within their parent state. For instance, the circled 
label CD on the conditional output in state GET is a shorthand for the label 

248 

State variables: BA 

F-->STAND 
F-->BROKE 

T-->STAND 

T 

Wait for card 

HiT 

Wait until button 

is lifted 

New game 

O-->SCORE 
F-->ACEllFLAG 

ACEllFLAG 

T 

Analyze score 

T-->BROKE 

a Use ace = II 

~.--____ ---=I~O 
F Select ADD 10 

Load SCORE 
T-->ACEllFLAG 

Cancel 
ace = II 

Select SUB 1 0 
Load SCORE 

F-->ACEllFLAG 

Figure 6-32 The final ASM for the Black Jack Dealer. 

The Art of Digital Design Part II 



GET. 1. During the implementation of the control algorithm, we will derive 
equations for the logic variable GET.1 as well as each of the other terms. 

The Final Architecture of the Black Jack Dealer 

Figure 6-33 is the functional architecture of Dealer. Along the way, as we 
developed a more detailed understanding of the problem, we made certain mod­
ifications to the original architecture; these are reflected in the figure. The 
significant modifications or elaborations include the following: 

(a) Since the operating procedures stipulate that the card switches are stable 
throughout the time that Dealer processes the card (in other words, as long 

Chap. 6 

~ 4 " "t:I.<: 
... () " ~ 
u~ 

4 

+10 

-10 Adder 
input 

selector 

ZERO bit 

ACECARD 

ACEllFLAG 

CARD.RDY* 

CARD.RDY. 
SYNC 

CARD.RDY. 
DELAYED 

5 

CLEAR 

..... --l...-..-J Compa­
rator 

light 

5 

SCORE 

SCOREGT16 

SCOREGT21 

-1 HIT 

L....--.....J 

~ BROKE 

~ light 

Figure 6-33 The functional architecture of the Black Jack Dealer. 

Practicing Design 249 



as HIT is false), we do not need a separate register to hold the current 
card value; the card switches themselves will suffice. 

(b) The ASM manages the HIT signal directly, without a flip-flop to preserve 
its value across states. 

(c) Our treatment of CARD.READY* introduces two new flip-flops, the com­
ponents of the single pulser. 

(d) We have elaborated on the black box for preparing the input to the SCORE 
register. There are four operations that modify SCORE: clearing SCORE 
to 0, adding CARD to SCORE, adding + 10 to SCORE, and subtracting + 10 
(adding - 10) from SCORE. A 5-bit adder can add the appropriate value 
to SCORE if we can select the proper value. You know how to manage 
selection, so you will probably guess that we will use multiplexers. The 
important point to realize at this stage is that we can select one input from 
several, without worrying about the exact chips. With SCORE as one input 
to the 5-bit adder and the other input selected by a selector black box, the 
circuit is nearly specified. A judicious choice of the chips for SCORE 
should allow us to clear this register separately from the register-load op­
eration. On this basis, the original nebulous black box has separated into 
three components: an adder building block, a selector building block, and 
a control input for clearing the SCORE register building block. 

Surely now we will sit down and define the exact chips to support the 
dealer architecture. This would be a reasonable step to take at this time, but 
as a further illustration of the power of the methods you are learning, let's see 
how far we can carry the implementation of the control algorithm without specifying 
the exact chips in the architecture. 

Implementing the Control Algorithm 

It is the task of the ASM to generate the necessary commands (outputs) to 
control the architecture and to provide the outputs to the external world. In 
Fig. 6-34 we show how the ASM controls the architecture. The inputs and 
outputs of the ASM are still specified at a somewhat abstract level. We will 
develop the logic equations for each signal, prior to selecting chips. Such a 
development depends on our understanding of how to convert building blocks 
into chips, just as implementing a software flowchart requires a knowledge of 
the programming language. As we have stressed repeatedly, the goal is to think 
of the problem, not of the chips, for as long as possible. 

Our design now involves two tasks: Implementing the flow of the ASM 
(the state generator), and implementing the outputs (commands). First, we will 
define the conditional output terms, which will be useful parameters for many 
of the remaining equations. Reading directly from the ASM, we have the following 
logic equations 

GET. 1 = OET·CARD.RDY.SYNC 

GET.2 = GET·CARD.RDY·SYNC·CARD.RDY.DELAYED 

250 The Art of Digital Design Part II 



CARD. RDY SYNC Adder input select 

CARD.RDYDELAYED ASM SCORE reg. load 
control 

SCORE reg. clear 

ACEllFLAG STAND FF inputs 

SCOREGT16 BROKE FF inputs 

SCOREGT21 HIT 

STAND ACEllFLAG FF inputs 

BROKE 
State 

generator 

Figure 6-34 The functional control of the Black Jack Dealer. 

GET.3 = GET.2-(STAND + BROKE) 

TEST.1 = TEST-SCOREGT16-SCOREGT21 

TEST.2 = TEST-SCOREGT16-SCOREGT21-A'=CE=1""1r;FL-;-A"TG~ 

= TEST-SCOREGT21-ACEllFLAG (by observation) 

TEST.3 = TEST-SCOREGT16-SCOREGT21-ACEllFLAG 

= TEST-SCOREGT21-ACEllFLAG (by observation) 

Next, we implement the state generator. We again choose a multiplexer 
controller, leaving the one-hot method as an exercise. Figure 6-32 shows a 
suitable (arbitrary) state assignment. Four states require two flip-flops for the 
encoding of the state variables. A four-input multiplexer feeds each flip-flop. 
Table 6-3 is a summary of the ASM state transitions. 

Notice the handy use of the conditional output terms, which results in a 
simplification of the control mUltiplexer inputs and achieves a savings of hardware 
while increasing clarity. For example, the full condition for moving from state 
GET to state ADD is 

FROM.GET.TO.ADD = CARD.RDY.SYNC-CARD.RDY.DELAYED 

TABLE 6-3 STATE TRANSITIONS IN THE BLACK JACK DEALER ASM 

Present state Next state Condition from ASM 

0 GET GET 00 GET.2 
ADD 01 GET.2 

ADD USE 10 ACECARD·ACEIIFLAG 
TEST 11 ACECARD· ACEIIFLAG 

2 USE TEST 11 T 

3 TEST GET 00 TEST.3 
TEST 11 TEST.3 

Chap. 6 Practicing Design 251 



But conditional output term GET.2 is just this expression ANDed with GET. 
Producing the conditional output in the oval at position GET.2 will require that 
we implement the conditional output term GET.2, so we know that this term 
is available in the final circuit. Appending GET to the expression for 
FROM.GET.TO.ADD has no logical effect, since the expression already implies 
that the ASM is in state GET. It is therefore permissible, and convenient, to 
use the conditional output terms as required to develop the state generator logic. 

As usual, it is convenient to decode the state flip-flop outputs, producing 
in this case the four state terms GET, ADD, USE, and TEST. These terms 
complete the requirements of the logic equations developed thus far. 

As a last step in the ASM synthesis, we derive the output signals. Reading 
almost directly from the ASM, we have 

HIT = GET.1 

STAND(SET) = TEST.1 

STAND(CLR) = GET.2 

BROKE(SET) = TEST.2 

BROKE(CLR) = GET.2 

A CEllFLAG(SET) = USE 

ACEllFLAG(CLR) = GET.3 + TEST.3 

SCORE(LOAD) = ADD + USE + TEST.3 

SCORE(CLEAR) = GET.3 

Deriving the controls for the adder selector requires one further set of 
parameters. We need 3 data inputs to the selector: CARD, +10, and -10. Each 
data path is 5 bits wide, so five 4-input multiplexers will serve nicely as the basis 
for this selector, each mux being controlled by the same select signals, S1 and 
SO. We shall assign + 10 as the input to the O-position of the multiplexers, -10 
to the I-position, and CARD to the 2-position. Our task is to derive logic 
equations for the selector controls S1 and SO. With these specifications and the 
ASM chart, we develop Table 6-4. From this tabulation we easily derive the 
select input equations: 

S1 = ADD 

SO = TEST.3 

TABLE 6-4 ADDER INPUT SELECTION FOR THE BLACK JACK DEALER 

Mux Select inputs Data inputs Notation in ASM ASM condition 
position Sl SO 

0 0 0 +10 ADDJO USE 
1 0 1 -10 SUBlO TEST.3 
2 1 0 CARD ADDCARD ADD 
3 1 Don't care 

252 The Art of Digital Design Part II 



We now have equations for all the control signals, still without a commitment 
to specific chips. The last step, hopefully straightforward and bug-free, is to 
select chips and draft the final circuit diagrams for the architecture, state generator, 
and output signals. Here is the first point at which voltage enters our design! 
Using mixed-logic drafting conventions, you can implement the logic equations 
with whatever gates are handy. JK flip-flops are an obvious choice for the storage 
elements for those signals requiring controlled setting and clearing: STAND, 
BROKE, and A CEllFLAG. As you learned in Chapter 4, you may use either 
the J or the K input to represent the set condition. 

Summing Up 

This completes the Black Jack Dealer problem. The methodology is important 
and well worth your close study. The documentation of this design should include 
most of the figures and tables developed in this exercise that relate to the final 
design. Think what a help this high-level documentation would be to you if you 
were presented with a real, nonfunctioning circuit and told to get it running or 
to modify it in some way. Once again, note that although our thinking was 
conditioned by our knowledge of the available types of integrated circuits and 
their characteristics, it was only at the end of the design that we introduced 
actual voltages and chips. 

READINGS AND SOURCES 

ERCEGOVIC, MILOS D., and TOMAS LANG, Digital Systems and Hardware/Firmware Al­
gorithms. John Wiley & Sons, New York, 1985. Good treatment of sequential systems. 

FLETCHER, WILLIAM I., An Engineering Approach to Digital Design. Prentice-Hall, En­
glewood Cliffs, N.J., 1980. Contains numerous system-level examples of design. 

GLASSER, LANCE A., and DANIEL W. DOBBERPUHL, The Design and Analysis of VLSI 
Circuits. Addison-Wesley Publishing Co., Reading, Mass., 1985. 

HILL, FREDERICK J., and GERALD R. PETERSON, Digital Logic and Microprocessors. John 
Wiley & Sons, New York, 1984. 

HILL, FREDERICK J., and GERALD R. PETERSON, Introduction to Switching Theory and 
Logical Design, 3rd ed. John Wiley & Sons, New York, 1981. 

HWANG, KAI, Computer Arithmetic-Principles, Architecture, and Design. John Wiley 
& Sons, New York, 1979. 

LALA, PARAG K., Fault Tolerant and Fault Testable Hardware Design. Prentice-Hall 
International, London, 1985. 

LSI Databook. Monolithic Memories, 2175 Mission College Blvd., Santa Clara, Calif. 
95954. PALs, memory products, arithmetic units, and system building blocks. 

MEAD, CARVER, and LYNN CONWAY, Introduction to VLSI Systems. Addison-Wesley 
Publishing Co., Reading, Mass., 1980. The first VLSI textbook. 

Memory Components Handbook. Intel Corporation, Literature Department, 3065 Bowers 
Avenue, Santa Clara, Calif. 95051. 

MYERS, GLENFORD J., Digital System Design with LSI Bit-Slice Logic. John Wiley & 
Sons, New York, 1980. 

Chap. 6 Practicing Design 253 



WAKERLY, JOHN F., Logic Design Projects Using Standard Integrated Circuits. John 

Wiley & Sons, New York, 1976. A good source of laboratory projects. 
WESTE, NEIL, and KAMRAN ESHRAGHIAN, Principles of CMOS VLSI Design: A Systems 

Perspective. Addison-Wesley Publishing Co., Reading, Mass., 1985. 

EXERCISES 

6-1. Show that any ASM may be expressed as an ASM with only one state. Why do 
we not do away with state generators by always designing with single-state ASMs? 
Discuss the advantages and disadvantages of this approach. 

6-2. Using a 60-Hz periodic logic signal, produce a signal that can serve as a I-Hz 
clock. 

6-3. Although we find that we must debounce manual control switches, we usually do 
not need to debounce manual data entry switches. Why? 

6-4. Build a fOUf-state ASM that emits one of two BCD number sequences, depending 
on the value of a control variable NINESCOMP. Each sequence has a cycle of 
fOUf digits: 

WhenNINESCOMP = F, the sequence is 0,1,2,3,0,1, ... . 

When NINESCOMP = T, the sequence is 9, 8,7,6,9,8, ... . 

6-5. Exercises 1-36 and 2-32 deal with the seven-segment numeric display. Assume 
that the display integrated circuit requires discrete signals for each segment a 
through g. Build a fOUf-state ASM to repeatedly display the first four prime numbers 
in proper sequence: 2, 3, 5, 7, 2, 3, 5, .... 

6-6. Using seven-segment decimal display chips, design the two-digit "second" display 
of a digital clock. The clock must cycle continuously from 00 through 59, except 
when a signal from a pushbutton forces the display to 00. Assume that a I-Hz 
synchronous clock signal is available. 

6-7. Extend the previous exercise to produce a full 24-hour clock display. How will 
you set the correct time? (Hint: Commercial LSI digital clock units often provide 
a speed-up mode, in which the displayed time goes through a complete cycle in 
less than 1 minute.) 

6-8. Add an alarm feature to the digital clock. 
6-9. Design an implementation of Fig. 6-1 using the formal one-hot method with no 

simplifications. Show how this implementation may be rigorously transformed into 
the circuit of Fig. 6-2. 

6-10. Implement the system clock of Design Example 2 using a JK flip-flop instead of 
the D flip-flop. 

6-11. Consider Figs. 6-9 and 6-10 of Design Example 3. Show that if you have DATA* 
with T = L, the mixed-logic circuit diagram notations change but the hardware 
remains the same. 

6-12. Implement the traffic-light controller of Design Example 5 with PALs. 
6-13. Add a blinking-light feature to the traffic-light controller in Design Example 5. 

254 

Assume that a new BLINK signal is available and that, when BLINK is asserted, 
the highway lights blink yellow and the farm-road lights blink red. 

The Art of Digital Design Part " 



6-14. Finish the detailed design of the combination lock in Design Example 6. Produce 
circuit diagrams suitable for actual construction of the lock's electronics. 

6-15. 10 the elegant combination lock of Design Example 6, we used a 74LS163 counter 
and a comparator to determine when the proper number of combination digits have 
been entered (see Fig. 6-22). Eliminate the comparator by using the two's complement 
of the count and counting down instead of counting up. 

6-16. Complete the detailed design of the Black Jack Dealer of Design Example 7. 
Produce circuit diagrams suitable for construction of the electronics. 

6-17. For the Black Jack Dealer, the initial ASM in Fig. 6-26 required a flip-flop for the 
output HIT. Show how the further development of the control algorithm led to 
the elimination of the HIT flip-flop from the architecture. This is a typical example 
of the algorithm modifying the architecture. 

6-18. In Fig. 6-29, state variables C, B, and A are all involved in transition races. Why 
is state variable D not similarly involved? 

6-19. Binary patterns that differ in exactly 1 bit are said to be a unit distance apart. 
Consider an ASM state (the "predecessor") that has branch paths to several 
"successor" states. (Note that one possible successor is the predecessor state 
itself.) 
(a) If all successor states have encoded state assignments at most a unit distance 

from the predecessor, show that no transition races will arise, even if asynchronous 
test inputs are present in the predecessor state. 

(b) Show that the condition in part (a) is not sufficient to preclude output races. 
6-20. In the Black Jack Dealer, the architecture contains black boxes that produce such 

signals as ACECARD, SCOREGT16, and SCOREG121. For example, see Fig. 
6-33. These black boxes involve only simple combinational circuits. Why do we 
choose to use the black boxes during the design process, instead of showing the 
circuits directly? 

6-21. The ASM for the Black Jack Dealer (Fig. 6-32) tests several signals (ACECARD, 
SCOREGT16, SCOREG121) that are generated by combinational logic within ar­
chitectural black boxes. Since these black boxes are not clocked, how do we know 
that their outputs are synchronous and therefore suitable for testing in the ASM? 

6-22. Convert the algorithm for the Black Jack Dealer (Fig. 6-32) into an ASM with 
only one state. Since such a move simplifies the state generator circuitry, why do 
we not choose a one-state ASM for the Black Jack Dealer? 

6-23. Define carefully the use of a full handshake to synchronize two independent processes. 
Show how the need for process synchronization arises whenever a human operator 
interacts with a machine. lllustrate these concepts with the Black Jack Dealer. 

6-24. To synchronize events in two cooperating but independent processes, designers 
have used a variety of techniques, many of which we may describe as "incomplete 
handshakes." For instance, consider the following incomplete handshake: 
(1) Device A requests an action (device A extends its hand). 
(2) Device B senses the request and acknowledges receipt of the request (device 

B extends its hand). 
(3) Device A senses device B's acknowledgment and drops its request (device A 

drops its hand). 
(4) Device B drops its acknowledgment at any time after asserting its acknowledgment 

(device B drops its hand). 
This looks like a "complete" handshake, but there are circumstances in which 

Chap. 6 Practicing Design 255 



the handshake may be incomplete. Draw timing diagrams for the possible behaviors 
of the request and acknowledge signals. Discuss the effectiveness of the above 
protocol for the following conditions: 
(a) Device A is a machine; device B is a human being. 
(b) Device A is a human being; device B is a machine. 
(c) Both devices are machines. 
(d) Both devices are human beings. 

6-25. Implement a one-hot state generator for the Black Jack Dealer. 
6-26. In the Black Jack Dealer example, the signals SCOREGTl6 and SCOREGT21 

arise from a comparator architectural element. Write logic equations for these 
two variables. Show by Boolean algebraic manipulation that the term 
SCOREGTl6·SCOREGT21 reduces to SCOREGT21, thus rigorously demonstrating 
the validity of the simplifications of TEST.2 and TEST.3 performed "by observation" 
in the text. 

6-27. Design a synchronous digital circuit with the following properties: 
Inputs: 

(a) Two 4-bit binary numbers, A and B, in signed magnitude notation (1 sign 
bit, 3 magnitude bits). 

(b) A GO signal from a manual pushbutton. 
Outputs: 

(a) A 4-bit binary number C in signed magnitude notation. 
(b) A signal EVEN for a display lamp. 

Task: 
(a) Wait for the GO signal to be asserted. 
(b) When GO appears, clear the signal EVEN to false, and load the values on 

the input lines A and B into two 4-bit registers RA and RB. [Hereafter, (RA) means 
"contents of RA," etc.] 

(c) Then, produce an output C in register RC, as follows: 
If (RA) > (RB), then transfer the quotient of (RA)/2 to RC. 
If (RA) ~ (RB), then transfer (RB) to RC. 

(d) If (RA) > (RB) and the remainder of (RA)/2 is 0, then assert EVEN; 
otherwise, EVEN remains false. 

(e) Return to step (a) to await another GO signal. 

6-28. Construct an ASM that will turn on a light as the first person enters a room, and 
turn off the light as the last person leaves. Assume that there is a single door 
fitted with two photocells that generate TTL-compatible outputs. One photocell 
is on the inner side of the door and the other is on the outer side. Light beams 
shine on each photocell, producing a false output from the cell; a true output from 
a photocell arises when the light beam is interrupted. Assume that once a person 
starts through the door, the process is completed, and that only one person enters 
or leaves at a time. 

6-29. Design a versatile timer circuit. The circuit has two input codes: 

256 

(1) A 3-bit code describing the unit of counting: code 0 = 100 nsec, code 
1 p.,sec, code 2 = 10 p.,sec, ... , code 7 = 1 sec. 

(2) An 8-bit code describing the number of counts. 
Asserting an input signal START will cause the timer to begin counting the specified 
number of counts, each count being of the specified duration. The only output 
from the timer is a signal TIMES UP, which becomes false when timing begins and 

The Art of Digital Design Part II 



becomes true when the specified interval has elapse.d. The timer can time an interval 
from 100 nsec to 255 sec. Use a 100-nsec clock to drive the timer. Consider using 
the 74LSl62 decade counter as the basic counting element. Use good synchronous 
design techniques in determining how to clock and advance the decade counters. 
Timers similar to this are available as LSI integrated circuits. 

6-30. A popular microcomputer requires a l-lLsec square-wave clock for normal operation. 
Advanced modes of operation for high-speed input-output and for refreshing dynamic 
RAM require that the inactive (false) portion of the clock be stretched as follows: 

Normal operations: Inactive clock time = 0.5 ILsec 

Refresh request (RFRQ): Inactive clock time = 1.0 ILsec 

Input-output request (IORQ): Inactive clock time = 1.0 ILsec 

Both requests simultaneously: Inactive clock time = 2.0 ILsec 

The active (true) portion ofthe clock signal is always 0.5 ILsec. Design a microcomputer 
clock that responds to RFRQ and IORQ as shown above. The clock output must 
be free of hazards. 

6-31. In high-speed input-output operations on a microcomputer, the input-output device 
may assert a signal that will put the microprocessor "to sleep," allowing the input­
output device to have uninterrupted access to the microcomputer's memory until 
the transfer of data is complete. If the device is faulty, it is possible to put the 
processor to sleep for an indefinite period. To protect the processor from such 
faulty behavior, we may introduce a timer that will issue a "wakeup" signal to 
the processor after a period of memory inactivity. The timer should conform to 
these requirements: 
(a) The timer should be enabled only when the processor is asleep. 
(b) Timing should begin whenever the processor goes to sleep, and upon the 

successful transfer of each data word between the memory and the input-output 
device. 

(c) While the processor is asleep, if no memory read or write occurs for 10 msec, 
the timer should assert its WAKEUP signal. 

(d) The WAKEUP signal should remain asserted until the processor asserts an 
acknowledge signal ACK. 

(e) WAKEUP should be synchronous with the microcomputer system clock, and 
should be free of hazards. 

Design the timer. Use a single-shot for the lO-msec delay. Is the poor stability 
of the single-shot (about 5 percent) a disadvantage in this application? 

6-32. Repeat Exercise 6-28, using decade counters to generate the lO-msec delay. Assume 
a l-lLsec microcomputer system clock. 

6-33. In this exercise, you will design a circuit to resolve conflicts in memory accesses. 
Two microprocessors driven by the same system clock share access to a single 
dynamic RAM. The RAM can complete a memory operation in one clock cycle. 
Consider three types of memory request: for dynamic RAM refresh (RFRQ), for 
microprocessor 1 (CPUlRQ), and for microprocessor 2 (CPU2RQ). Memory request 
conflicts are resolved as follows: 
(a) RAM refresh has highest priority. 
(b) If both microprocessors simultaneously request memory access, the micropro­

cessor that more recently received memory service has the lower priority. 

Chap. 6 Practicing Design 257 



Each device contending for memory access receives a status signal (RFGNT, 
CPUIGNT, or CPU2GNT) that specifies when memory access is granted to 
the device. 

Design a device that accepts requests and responds with status signals according 
to the preceding rules. 

6-34. The stack is a software data structure often implemented in hardware. A stack is 
an ordered set of elements analogous to a stack of plates in a cafeteria. Only the 
top element (plate) is accessible. Removal of the top element exposes the next­
to-top element, which then becomes the top. Addition of an element to the stack 
causes the former top element to become next-to-top; the added element becomes 
the top. The operation of adding an element to a stack is called push. The removal 
operation is called pop. These are the only allowed stack operations. A stack is 
sometimes called a LIFO (last in, first out) memory. 

In hardware, we may implement a stack in RAM or with an array of discrete 
registers. 
(a) Using RAM, design a stack that accepts push and pop operations and properly 

adds or removes an element from the top of the stack. 
(b) Design a small five-element stack using MSI registers. 

6-35. Repeat Exercise 6-34 for a stack that also provides two status signals: 
EMPTY: Asserted when the stack contains no elements. Your stack should 

ignore a command to pop an empty stack. 
FULL: Asserted when the stack contains a predetermined maximum number 

of elements. Your stack should ignore an attempt to push a full stack. 
6-36. The queue is a software data structure that is sometimes implemented in hardware. 

The queue has a front and a rear, like a line for tickets at a theater. A write 
operation adds an element to the rear of the queue; a read operation removes the 
element at the front of the queue. No other operations are allowed. The queue 
is also called a FIFO (first in, first out) memory. A queue has two status indicators: 

EMPTY: Asserted when the queue contains no elements. The circuit should 
ignore an attempt to read an empty queue. 

FULL: Asserted when the last available memory location is occupied with 
a queue element. The circuit should ignore an attempt to write into a full queue. 
(a) One approach to implementing a queue in RAM is to maintain two pointers 

FRONT and REAR as RAM addresses to the extremities of the queue. WRITE 
increments REAR and adds an element to the rear of the queue; READ extracts 
the front queue element and increments FRONT. FULL becomes true when 
REAR points to the highest memory location in the RAM. Design such a 
queue. You may alter the foregoing suggestions as long as you still implement 
a queue. 

Why is this project more difficult than designing the stack of Exercises 
6-34 and 6-35? In this implementation, when FULL is true, is all of the memory 
filled with queue elements? If EMPTY is true, what should be the values of 
FRONT and REAR? 

(b) Another approach to a RAM implementation of a queue is similar to that in 
part (a) but allows the queue to go "around the corner," so that REAR and 
FRONT may advance from the highest memory address to address zero. Design 
such a queue. When does FULL become true? 

6-37. Design a controller for an elevator in a six-story building. Your controller must 
respond to call switches on each floor and floor-select switches within the car. 

258 The Art of Digital Design Part II 



6-38. Design a four-way traffic-light controller that will keep traffic moving efficiently 
along two busy streets that intersect. In this exercise, consider only straight­
through traffic. 

6-39. Extend Exercise 6-38 to include left-tum signals at each approach to the intersection. 

6-40. Extend Exercise 6-38 to include pedestrian crosswalk signals. 

Chap. 6 Practicing Design 259 



Designing 
a ~iniconaputer 

You are ready to tackle a really substantial project to round out your study of 
hardwired design. Nothing will sharpen your design skills more than wading 
through the design of a complex project from start to finish. Thus far, you have 
studied pieces of the design process; in the next three chapters we will help you 
forge your knowledge into an integrated and workable design tool. What project 
should we choose? Such an undertaking should be detailed yet elegant, large 
yet not too large. Let's design a computer! 

Our aim is to design an entire operational computer system, taking no 
shortcuts, leaving nothing out. Most computers, even the smallest microcomputers, 
are highly complex structures-too complex to be a suitable teaching illustration 
at the MSI and LSI level of design. Instead, we choose the first minicomputer, 
the Digital Equipment Corporation PDP-8. 

The PDP-8 has had a successful history. More than 100,000 units have 
been installed, many of which are still in use. The PDP-8 also has an extensive 
library of software and is a good machine for illustrating device interfacing. 

The great advantage of the PDP-8 for our purpose is that it has a simple 
structure with only eight basic instructions. It exists in several models; each 
executes the same basic set of instructions, but they differ in minor ways. We 
will use the PDP-8I as the basis for our exercise. We will develop our design 
from first principles and make no reference to the Digital Equipment Corporation's 
design. The result will be functionally equivalent to the PDP-8I-for example, 
it will run PDP-8I software-but we will use top-down design techniques. The 

260 



only detailed information we need about the PDP-8I is a description of the action 
of each instruction. We shall call our design the LD20. t 

The statement of the problem is brief: build a computer that will execute 
the PDP-8I instruction set. 

PDP-SI SPECIFICATIONS 

The first step is the obvious one of studying the PDP-8I to see what we must 
emulate. The major characteristics of the PDP-8I are: 

(a) A 12-bit word size. This is quite small and will cause memory-addressing 
limitations. If a memory word is used to hold an address, it can refer to 
only 4096 (212) different locations. Therefore, the standard PDP-8 is limited 
to 4096 words of addressable memory. 

(b) A single accumulator. Several instructions refer to an accumulator (AC), 
used to store intermediate results for later manipulation. Having only one 
accessible register forces a programmer to use care in saving and restoring 
vital data in the AC, for example upon subroutine entry and exit. Many 
computers have several registers, which can speed the execution of programs 
but which expose the programmer to subtle bugs if the data in all registers 
is not properly handled. In many applications the single AC is a blessing! 

(c) A 3-bit operation code. Each instruction occupies a 12-bit word, of which 
3 bits are devoted to the operation code. This provides eight basic com­
mands-an adequate but hardly abundant number. Only 9 bits remain in 
the instruction for such purposes as addressing memory, whereas the 4096-
word memory requires a full 12-bit address. 

(d) Paging. Addressing limitations in minicomputers and microcomputers have 
forced computer architects to find a number of ingenious solutions. The 
PDP-8's method is based on memory pages of 128 (27) words. The 4096-
word address space is divided into 32 pages, and each memory-referencing 
instruction has 7 bits to address a word within a page. The missing 5 bits 
of the address are not a part of the instruction, but are derived implicitly 
from the context. Without some trick of this sort there would be no way 
to pack a 3-bit command and an address into a 12-bit word. Maneuvers 
such as this are common features of minicomputers. The paging mechanism 
of the PDP-8 is perhaps the simplest technique and serves as a foundation 
for studying more complicated schemes used in other computers. 

Throughout this design exercise, we will use the octal numbering system 
to specify particular values of the PDP-8's instructions, addresses, and so on. 

t The LD20 design developed in this book is used in instructional laboratories for digital 
design. The equipment to support this design and the LD30 microprogrammed version (developed 
in Chapter 10) is produced by Logic Design, Inc. A laboratory manual for the LD20 and LD30 is 
available. See Readings and Sources at the end of this chapter. 

Chap. 7 Designing a Minicomputer 261 



Any such numbers not in octal will have an explicitly designated base. Thus 
305 is 305 octal, 1011 2 is 1011 binary, and 4210 is 42 decimal. 

PDP-8 Memory Addressing 

In many memory addressing schemes for small instructions, the location of the 
current instruction is used to specify part of the operand address. For example, 
assume a program with five instructions stored sequentially, starting at location 
300. Call these instructions CMO (command 0) through CM4 (command 4). A 
memory map of this program would be: 

Location Contents 

300 CMO 
301 CMl 
302 CM2 
303 CM3 
304 CM4 

If instruction CM3 is being executed, we know that it is located at address 303, 
since that is where we placed it. Instruction CM3 can employ a subset of the 
12 bits in its word to reference data located close to location 303. In the 
PDP-8, "close to" means in the same page. 

The PDP-8 splits 4096 words of memory into 32 pages of 128 words each, 
as shown in Fig. 7-1. Instruction CM3 is in page 1; 7 bits are sufficient for that 
instruction to access any word in that page. 

Page 0 

Page 1 

Page 2 

Page 3110 

0-177 

200 - 377 

400 - 577 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

7600 - 7777 

All addresses are octal. 
Each page contains 
27 = 128)0 = 2008 words 

Figure 7-1 Page structure of the 
memory of the PDP-8. 

We now have a mechanism such that an instruction needs only 7 bits to 
access a memory cell in one particular page. Let us call these 7 bits the page 
offset, and let the page offset occupy the rightmost 7 bits of a PDP-8 instruction: 

262 The Art of Digital Design Part II 



Suppose location 301 contains the 12 bits 001 XYl 000 1012 , (for the moment 
we will ignore the 2 bits X and Y). The operation code is 001 2 , which means 
an addition of the AC and the contents of a memory location. Which location? 
The 7 page-offset bits are 1 000 1012 = 1058 , The instruction is to add the 
contents of location 105 in this page (the page containing the add instruction) to 
the accumulator. We know that the instruction is at location 301, and since the 
instruction is in page 1, the page offset is referring to page 1. Thus we will get 
the contents of word 105 in page 1 and add it to the AC. 

What if instructions in different pages require the same data? It would be 
nice if some common page could be accessed by instructions in any page. In 
the PDP-8, page 0 has this function. We have two precious unused bits in the 
instruction, and we need one of them to tell if we want word 105 in the current 
page (page 1 in our example) or word 105 in the common page (page 0). In the 
PDP-8, the Y bit is used for this page selection; we call it the page hit. 

If the page bit is 1, the page address of the current instruction is concatenated 
with the 7-bit offset in the instruction to form a full 12-bit address, which is 
sufficient to identify any word of the 4096-word memory. If the page bit is 0, 
the reference will be to a word in page 0 of the memory. 

If we execute an instruction at location 301 that contains 001 011 000 
1012 , we will add the contents of location 105 in page 1 to the AC. Location 
105 in page 1 is memory location 305 

000 01 
I 

Page 
address 

1 000 101 2 = 3058 

I 
Page 
offset 

If location 301 contains 001 001 000 1012 , the instruction would mean to add the 
contents of location 105 in page 0 to the AC. Location 105 in page 0 is memory 
location 105. 

Indirect addressing. We have shown how the page bit and the page offset 
combine to yield an address either in page 0 or in the current instruction page. 
What happens if a command in page 2 needs to access a location in page 7? 
We must use all 12 bits of a word as address bits. We can do this if the word 
accessed by an instruction is treated not as an operand but as the address of 
an operand. This extra step is called indirect addressing. The PDP-8 uses the 
remaining instruction bit X as the indirect hit to specify indirect addressing. The 
complete format of a memory referencing instruction is 

In the previous examples, the contents of locations 305 or 105 (for page 
bits 1 or 0) were treated as 12-bit data words. If the indirect bit is on, these 

Chap. 7 Designing a Minicomputer 263 



contents are treated as 12-bit addresses of data. We require one extra memory 
cycle to access this final indirectly addressed data location. 

Indirect addressing is a powerful concept since it provides a way to specify 
arbitrary 12-bit addresses. Into some memory word IND that is close to our 
instruction or in page 0, we load the address of the final location that we wish 
to access. We can then access the location by indirectly addressing it through 
IND. 

It is useful to have a shorthand for the final memory location referenced 
in an instruction after all applicable paging and indirect addressing are invoked. 
We call this final location the effective address, EA. The contents of location 
EA is called the contents of the effective address, CA. (CA is sometimes called 
the effective operand.) Using EA and CA, we can compactly describe the memory 
references of any PDP-8 instruction. 

Examples of memory addressing. Here are some examples of referencing 
memory using PDP-8 instructions. The addresses will have 12 bits, since the 
PDP-8 has 4096 words of memory. We refer to the contents of an addressed 
memory location by enclosing the address in parentheses: If location 0301 contains 
0305, then (0301) = 0305. Note that (EA) = CA. 

Now assume that the following memory locations have been loaded with 
the data shown: 

(0301) = 1305 
(0302) = 1105 
(0303) = 1705 

(0304) = 1505 

(0305) = 1234 
(0105) = 4321 

(1234) = 5567 
(4321) = 7765 

(a) What are the EA and the CA for the instruction located at 0301? 

Command = 0012 = TAD (Add) 

1305 = 001 01 1 000 
Indirect bit = 
Page bit 
Page offset 

EA = 000 01 
I 

Page 
address 

~~ I 
105 

1 000 101 2 = 0305 
I 

Page 
offset 

CA = (0305) = 1234 

This instruction would add the quantity 1234 to the contents of the AC. 
(b) What are the EA and the CA for the instruction located at 0302? 

264 The Art of Digital Design Part II 



Command = 0012 = TAD 

1105 = 001 00 1 000 101 2 

Indirect bit ~ 0 II I 
Page bit = 0 
Page offset = 105 
EA = 0105 
CA = (0105) = 4321 

This instruction would add the quantity 4321 to the contents of the AC. 
(c) What are the EA and the CA for the instruction located at 0303? 

Command = 0012 = TAD 
1705 = 001 11 1 000 101 2 

Indirect bit ~ 1 II I 
Page bit = 1 
Page offset = 105 
EA = (0305) = 1234 
CA = (1234) = 5567 

This instruction would add the quantity 5567 to the contents of the AC. 
(d) What are the EA and the CA for the instruction located at 0304? 

Command = 0012 = TAD 
1505 = 001 10 1 000 101 2 

Indirect bit ~ 1 II I 
Page bit = 0 
Page offset = 105 
EA = (0105) = 4321 
CA = (4321) = 7765 

This instruction would add the quantity 7765 to the contents of the AC. 

Auto indexing. The PDP-8 has a feature called auto indexing that provides 
some flexibility in addressing. Most large computers have index registers to 
facilitate access to arrays of data. Unfortunately, specifying an index register 
takes 1 or more bits of the instruction and we have no bits left. The PDP-8's 
auto indexing is a primitive way to index without using bits in the instruction. 
An auto index register is a word in the memory that will be automatically 
incremented every time it is used as the source of an indirect address. The word 
is incremented before it is used as an address. Repeated use of the same auto 
index register will sequence the effective address EA throughout the full address 
space of the memory. There are 8 auto index registers in the PDP-8's main 
memory, locations 109 through 17g • When not performing auto indexing, these 
locations behave like normal memory words. 

Here are some examples of auto indexing. Assume that the following 
locations have the contents shown: 

Chap. 7 Designing a Minicomputer 265 



(0013) = 4102 

(4102) = 1111 

(4103) = 2000 

(a) Instruction: 1013 = 001 00 0 001 011 2 

Command = 001, = TAD II 
Indirect bit = 0 
Page bit = 0 
EA = 0013 
CA = (0013) = 4102 

Although location 0013 is the address, there is no auto indexing because 
the indirect bit is O. This instruction adds the quantity 4102 to the contents 
of the AC. 

(b) Instruction: 1413 = 001 10 0 001 011 2 

Command = 001, = TAD II 
Indirect bit = 1 
Page bit = 0 

The initial address is 0013. This is an auto index location used as an indirect 
address. The auto indexing feature causes 

Then 

(0013) (+) 1 ~ (0013), or 
4102 (+) 1 ~ (0013) 

EA = (0013) = 4103 

CA = (4103) = 2000 

The effect of executing this instruction is to increment the contents of location 
0013 by 1, and to add the quantity 2000 to the contents of the AC. 

PDP-81 Instructions 

Its instruction set characterizes a computer, and therefore we must carefully 
study the PDP-81's instructions. The effective address EA and contents of the 
effective address CA notations allow a compact description of the memory­
referencing instructions. 

AND (Twelve-bit logical AND). Operation code 0002 = 08 , 

AC·CA ~AC 

This is a bit-by-bit AND of the AC with the effective address contents. For 
example, 

266 The Art of Digital Design Part II 



AC = 001 101 111 0002 

CA = 110 111 101 100 2 

AC·CA = 000 101 101 0002 

The value of AC·CA replaces the old contents of the AC. 

TAD (Two's-complement add). Operation code 001 2 18 • 

AC(+)CA~AC 

The addition is performed in the two's-complement mode; that is, the instruction 
implies that the numbers are 12-bit signed quantities represented in the two's­
complement notation. If an arithmetic overflow occurs, the CPU toggles (com­
plements) a special flag called the link bit (LINK). 

ISZ (Increment and skip if 0). Operation code 0102 = 28 • 

CA (+) 1 ~ (EA); then, if CA (+) 1 = 0, skip the next instruction; otherwise 
execute the next instruction. 

This instruction is useful in controlling loop execution. 

DCA (Deposit and clear AC). Operation code 0112 38 • 

AC ~ (EA); then 0 ~ AC 

The contents of the AC goes into the specified memory location, then the AC 
is set to O. 

JMP (Jump). Operation code 1012 = 58. 

Jump to location with address EA for the next instruction. 

JMS (Jump to subroutine). Operation code 1002 = 48 • 

Store the address of the word following the JMS instruction (i.e., the return 
location) in the memory word with address EA. Then jump to the location 
with address EA (+) 1 for the next instruction. 

The return location is the word after the JMS instruction. This instruction stores 
the return address in the first word of the subroutine and then jumps to the 
second word, which must contain the starting instruction for the subroutine. 
The normal entry to a subroutine X is thus with a JMS X, which saves the return 
address in location X. The normal exit from the subroutine is with a JMP *X 
(indirect jump through location X). 

OP (Operate). Operation code 1112 = 78 • This is by far the most complex 
command in the PDP-So It does not reference memory, so the address field bits 

Chap. 7 Designing a Minicomputer 267 



are available for other purposes. The Operate instruction permits the following 
basic actions: 

Clear accumulator: O~AC 

Clear link bit: o ~ LINK 
Complement accumulator: AC ~ AC 
Complement link bit: LINK ~ LINK 
Increment accumulator: AC (+) 1 ~ AC 
Rotate the concatenated accumulator and link bit right or left, 1 or 2 bit 
positions. 
OR console switches with AC: SR + AC ~ AC 
Skip on various conditions of the accumulator or link bit. 
Halt the computer. 

Each of these operations is controlled by 1 or more bits in the address field 
of the instruction. These are sometimes called microcoded instructions or mi­
croinstructions. The programmer may invoke combinations of these microin­
structions within one Operate instruction. There is a huge number of possible 
combinations; about 20 of these are useful to the programmer. These combinations 
of microinstructions ease the pinch of having only eight basic instructions in the 
PDP-8. 

The operation code 1112 occupies bits 0 through 2, as usual. Instruction 
bits 3 through 11 have individual functions. The Operate instruction on the PDP-
81 is split into two groups, group 1 (G 1) and group 2 (G2). Bit 3 specifies the 
group: in group 1, bit 3 = 0; in group 2, bit 3 = 1, 

The format for group 1 is 

o 23456789 

I I I 0 

'---.r-------' I 
Op code Group 

I 

c c 
L L 
A L 

c C R R 
M M A A 
A L R L 

10 II 

Rotate 
I 
A 

twice C 

The meaning of the microcode bits in G 1 is 

Bit Mnemonic Name 

4 CLA Clear accumulator 
5 CLL Clear link 
6 CMA Complement accumulator 
7 CML Complement link 
8 RAR Rotate accumulator and link right 
9 RAL Rotate accumulator and link left 

10 o = I-bit rotation; I = 2-bit rotation 
11 lAC Increment accumulator 

268 The Art of Digital Design Part" 



The format for group 2 is 

o 2 3 4 5 6 7 8 9 10 11 

1 1 1 1 

,--_~ ___ . I 
Op code Group 

2 

c s 
L M 
A A 

s S 
Skip 0 H 

Z N S L 0 
A L sense 

R T 

The meaning of the microcode bits in G2 is 

Bit Mnemonic Name 

4 CLA Clear accumulator 
5 SMA Skip on minus accumulator 
6 SZA Skip on zero accumulator 
7 SNL Skip on nonzero link 
8 (specifies sense of skips; see discussion) 
9 OSR OR switch register into accumulator 

10 HLT Halt the computer 

(In group 2 micro-operations, bit 11 is O. On the PDP-8I, the condition of bit 
11 is irrelevant, but some other models of the PDP-8 computer have another set 
of microinstructions, group 3, identified by bits 3 and 11, both of which are set 
to 1.) 

To find the exact result of combining microinstructions, we must define 
the sequence in which the operations of each group occur. The PDP-8 describes 
the sequence in terms of priorities. There are four priority levels, 1 through 4: 
priority 1 operations occur before priority 2, and so on. The priority sequences 
of the micro-operations of Gland G2 are 

Priority Group 1 Group 2 

1 CLA CLL Skips 
2 CMA CML CLA 
3 lAC OSR HLT 
4 Rotates 

The group 2 "skip" microinstructions require further explanation. There 
are three conditions for skipping: SMA, SZA, and SNL. Bit 8 determines the 
skip mode. The operations are as follows: 

If bit 8 is 0: a skip occurs if any of the chosen conditions is satisfied; 
otherwise, no skip occurs. 

If bit 8 is 1: no skip occurs if any of the chosen conditions is satisfied; 
otherwise, a skip occurs. 

Chap. 7 Designing a Minicomputer 269 



lOT (input-output transfer). The operation code is 1102 = 68, The PDP-
8 has a primitive but adequate facility for the input and output of data. We will 
discuss the lOT instruction more thoroughly later; but now we will note how 
data enters and leaves the computer. Outgoing data (from the PDP-8 to the 
external world) comes from the AC. Incoming data reaches the AC by being 
ORed with the existing contents of the AC. There is a programmable facility 
for clearing the AC prior to accepting incoming data. Thus the basic input 
operations are 

o ~ AC (optional) 
Input.Data + AC ~ AC 

The lOT instruction also permits the programmer to enable and disable the 
PDP-8's interrupt system. These lOT subcommands are ION (Interrupt System 
On) and lOP (Interrupt System Oft), and have instruction bit patterns 60018 and 
60028, respectively. The presence of interrupt commands alerts us to the need 
to investigate the interrupt mechanism. 

Interrupts. The PDP-8 specification requires that the machine be able to 
sense the presence of an external interrupt request. This request originates in 
some peripheral device and means that the device wishes to report an event of 
interest to the computer program. Any number of devices can request interrupt 
processing through this one external interrupt request line. When the PDP-8's 
interrupt system is activated, the computer monitors the interrupt request signal 
to see if any device needs servicing. If so, then at an appropriate time in the 
normal instruction processing cycle, the PDP-8 will force an automatic subroutine 
jump (JMS) to a fixed memory location (cell 0000). It is the programmer's 
responsibility to see that a valid subprogram for processing interrupts begins at 
location 0000. This subroutine is responsible for reading data from the peripheral 
device, writing data, or perhaps placing control information into the device. The 
characteristics of the device generating the interrupt determine what the interrupt 
subprogram must do. Therefore, the interrupt subprogram must determine which 
device is responsible for the interrupt and then perform actions tailored to that 
device. Mter servicing the interrupt, the subprogram will make a normal subroutine 
return through cell 0000 and processing of regular instructions will resume. 

Interrupt requests originate from external devices running at their own pace, 
and may interrupt the program at any time. This is both a blessing and a curse 
to the programmer. Interrupt requests can occur whenever a peripheral device 
decides it needs service from the main computer. This is a potent programming 
tool, since the computer program need not waste time continually checking its 
peripheral devices to see if one needs service. 

Interrupts are powerful; they are also tricky. The difficulty arises because 
interrupt requests originate from external devices and are therefore not reproducible. 
An interrupt may occur when the resident computer program is not prepared to 
handle it. Por instance, suppose that the programmer has not established an 
interrupt service routine beginning at memory location 0000. Then the program 

270 The Art of Digital Design Part II 



will not run correctly if the computer recognizes an interrupt and jumps to 
location 0000. Even if the interrupt service program is present, it may not 
properly treat all the interrupt requests that may arise. These problems are 
difficult to diagnose, since the debugger of the program cannot reproduce the 
exact sequence of instructions that led to the difficulty. Interrupt programming 
requires much more foresight and care than conventional programming. 

To allow more control over this difficult programming task, computers with 
interrupts always allow the programmer to enable (tum on) and disable (tum 
off) the computer's interrupt detection apparatus. The programmer may select 
those times when interrupt requests may result in the interruption of the program. 
Some computers permit the handling of several types of interrupts, each type 
having its own interrupt jump location. We will not pursue this subject, because 
our focus is on the PDP-S's interrupt capabilities. 

The PDP-S programmer may enable or disable the recognition of interrupts 
by using the ION (Interrupt System On) and IOF (Interrupt System Off) sub­
commands of the lOT instruction. The PDP-S's hardware will automatically 
disable the interrupt system whenever an interrupt causes a jump to location 
0000. This action is needed to give the programmer's interrupt service routine 
enough time to react to one interrupt without the danger of another interrupt 
occurring in the middle of the processing of the first interrupt. It is the programmer's 
responsibility to enable the interrupt system again at the proper time, to permit 
the detection of further interrupts. This gives rise to a subtle problem. The 
interrupt subroutine will normally leave the interrupt system disabled until it is 
time to return to the main (interrupted) program. At this time the interrupt 
subprogram must enable the interrupt system and return. The last two instructions 
of the subprogram are: 

ION 
JMP*O 

(Tum on interrupt system) 
(Indirect jump to point of interruption) 

We must make sure that we can execute the return jump to get back to the main 
program. Consider what would happen if an interrupt request is pending at the 
time the ION command is executed. The ION would reenable the interrupt 
system and the computer would immediately jump again to location 0000 without 
executing the jump instruction after the ION. The interrupt-forced JMS 0 causes 
cell 0000 to receive the address of the point of interruption-the address following 
the ION in this example. This act destroys the old return address in location 
0000 which the unexecuted JMP *0 instruction wanted to use. The PDP-S's 
solution to this dilemma is to inhibit the recognition of interrupt requests for 
one instruction following an ION command, thus allowing the program the time 
to execute the crucial JMP *0 to return to the interrupted program before the 
computer recognizes any additional interrupt requests. 

Interrupts are a complex feature of computers, and they place a heavy 

Chap. 7 Designing a Minicomputer 271 



responsibility on the programmer. Whether or not the programmer does the job 
correctly, the computer must faithfully perform its assigned duty of detecting 
interrupt requests and forcing subroutine jumps to location 0000 whenever the 
interrupt system is enabled. 

THE ARCHITECTURE OF THE LD20 

We will now choose the main building blocks and data paths for the LD20. In 
order to be consistent with the principles set forth in Chapter 5, we plan for our 
design to be synchronous and static. We may make a few basic observations 
about the architecture: 

(a) All major building blocks should be "out in the open." We wish to use 
building blocks of the right scale for our example. We could build everything 
from transistors or from AND, OR, and NOT circuit elements, as designers 
were forced to do a few years ago, but such approaches are far too detailed 
and would not teach you how to use higher-level building blocks. At the 
other end of the scale, it is possible to buy a complete PDP-8 processor 
in a single integrated circuit chip, and we would expect you to use such a 
chip in appropriate designs. However, a one-chip processor would be a 
poor vehicle for studying digital logic design, since all the interesting structure 
is buried inaccessibly within the chip. 

(b) The control panel should continuously display all the major registers and 
control signals, so that the observer may see at a glance what is happening 
in the machine. With lamp drivers and LEDs (light-emitting diodes), the 
cost of displaying signals is minimal. Now is the time for the beginning 
designer to think about making designs that are easy to understand and 
debug. 

(c) The control panel should provide ample mechanisms for the operator to 
control the progress of the machine. Synchronous, static design implies 
that we have ways to control the speed of the master clock, halt the clock 
entirely, and deliver manually produced clock pulses. The ability to reset 
or restart the machine is crucial in debugging. Since the basic unit of 
computer operation is the instruction, the ability to allow only one complete 
instruction at a time to be executed (single-stepping) is a powerful debugging 
aid. As creative designers, we will be eager to include such useful features 
in the control panel. 

The Principal Elements of the Architecture 

Our knowledge of the PDP-8 lets us specify certain architectural structures 
immediately. 

Accumulator (AC). We will need a 12-bit register to store intermediate 
results. 

272 The Art of Digital Design Part II 



Link. LINK is a I-bit storage register used primarily to handle arithmetic 
overflow during addition to the AC. It also participates with the AC in shifting 
operations. 

Memory (MEM). The PDP-8I has 4096 words of 12-bit memory. We will 
use standard RAM chips. The memory system requires two data items for its 
operation: a memory address and a memory buffer. 

Memory address (MA). This is a natural part of any RAM, since the 
memory system must know where in its memory to perform a read or write 
operation. We will provide a register to hold the address-the memory address 
register MA. 

Memory buffer (MB). Our selected memory presents read data on a set 
of output lines (MEM) for use in other parts of the computer. The memory 
must receive write data at a closely specified time in its cycle; this data is 
generated by other parts of the computer at earlier times. We need to hold the 
data until it is needed for the write operation, so we store it in a memory buffer 
register MB. 

Control panel switches. Every PDP-8 contains a switch register SR of 
12 toggle switches that allows the user to enter data into the computer manually. 
Calling these switches a register is unusual, since the data is stored in mechanical 
switches instead of flip-flops. Nonetheless, the switches are a memory device, 
and so we retain the nomenclature. The control panel also contains control 
switches such as START, STOP, and CLEAR, which will be described more 
fully in a later section. 

Arithmetic logic unit (ALU). We must develop a building block to handle 
the various logical and arithmetic operations required by the PDP-8's instructions. 
The description of the PDP-8's instructions shows that the LD20 must perform 
the following operations on 12-bit data words: 

Logical AND: from the AND instruction. 
Logical OR: from one of the Operate microinstructions. 
Logical NOT: from the Complement AC microinstruction. 
Clear to zero: There are a number of times when a register must be cleared. 
The best way is to synchronously load the register with 12 bits of zero 
generated by the ALU. 
Add: from the TAD instruction. 
Increment: from the Increment AC microinstruction. 

The ALU must be able to perform all these operations. We plan to use the 
74LS181 Four-Bit ALU chip for this function, since it can perform all 16 logical 
operations as well as addition, subtraction, and incrementing. The 74LS181 is 
the only integrated-circuit chip that we specify at this time. Most of the actual 

Chap. 7 Designing a Minicomputer 273 



selection of chips will be made much later in the design process. The only reason 
to fix on the 74LS181 now is to identify the likely features and limitations of 
our ALU. We care only about its functional characteristics, not about the details 
of how it is controlled. 

Program counter (PC). Every comput~r has a program counter that spec­
ifies the location of the next instruction to be executed. 

Instruction register (lR). The IR is another register found in every com­
puter; it holds the current instruction for the duration of its execution. 

Data Paths 

We have identified major elements of the LD20's architecture by looking at the 
PDP-8's functions. Now that we have this set of elements, how do we put them 
together? In true top-down spirit, we will leave them scattered about on the 
desk and back off far enough to ask a question. How does the PDP-8 instruction 
set say they should be connected? Contemplating this question will lead us 
surprisingly close to the final architecture. We assume that the ALU has two 
12-bit input paths and that it will handle all logical and arithmetic operations. 
Let's see how the PDP-8's instructions guide us to a model of the data paths 
among the building blocks. 

(a) lAC Increment Accumulator: AC (+) 1 ~ AC. If the ALU does the addition, 
the AC and the ALU must be connected in a manner similar to Fig. 7-2. 
(In this and subsequent figures, the data paths are all 12 bits wide, and we 
call the output of the ALU the ALUBUS.) Execution of the lAC microin­
struction must result in setting the ALU control lines to force the ALU to 
increment the input and place the result on the ALUBUS. 

(b) TAD Two's-Complement Add: AC (+) CA ~ AC. This instruction requires 
an architecture like that in Fig. 7-3. Here the ALU's control lines must 
make the ALU add its two data input quantities and place the result on 
the ALUBUS. 

ALUBUS 

AC 

AC(LOAD) ALU 

Figure 7-2 Data flow for increment-
ALU controls ing the AC. 

274 The Art of Digital Design Part II 



ALUBUS 

ALU 

CA 

ALU controls Figure 7-3 Data flow for addition. 

(c) AND: AC·CA ---+ AC. This instruction again leads to Fig. 7-3, where this 
time the ALU must perform the bit-by-bit logical AND of its data inputs. 

(d) OSR OR Switch Register: AC + SR ---+ AC. Both the switch register and 
the AC must be inputs to the ALU, as shown in Fig. 7-4. 

(e) Increment the program counter: PC (+) 1 ---+ PC. This operation is implied 
in any computer, since after one instruction is completed the next one will 
be executed. This normal sequencing will continue, instruction after in­
struction, until a programmed branch operation causes the PC to be set to 
a branch address. Normal (nonbranch) sequencing leads to Fig. 7-5, in 
which the ALU performs the increment operation. 

(f) Load the program counter: This results from the branching case mentioned 
above and requires the operation EA ---+ PC. At this point we could establish 
a private data path into the PC so that EA ---+ PC; but look at the requirements 
of operations (a) through (e) that are leading to a common architecture. 
Examining those cases, we may reason as follows. 

AC 

AC(LOAD) 

Chap. 7 

ALUBUS 

ALU 

~R 

ALU controls 

Designing a Minicomputer 

Figure 7-4 Data flow for the OR 
Switch Register (OSR) instruction. 

275 



ALUBUS 

PC 

PC(LOAD) 
ALU controls 

ALU 

Figure 7-5 Data flow for increment­
ing the program counter (PC). 

Developing the main bus structure. The AC seems to have pinned down 
one of the two data inputs that are a part of the ALU building block. The other 
input comes from a variety of sources: the contents of the effective address CA, 
the switch register SR, and the program counter PC, so we require a way of 
selecting the proper input to the ALU. Recall the discussions of data busing in 
Chapters 3 and 4. One good way to route several data sources to an output is 
to have· three-state buffers on each source output. Enabling one of the source 
buffers lets that source "talk" to the ALU, as shown in Fig. 7-6. (Remember, 
all data paths are 12 bits wide.) This is an economical way to route the data. 
Some register integrated circuits include three-state output control; using such 
chips might eliminate some of the separate buffers in Fig. 7-6. 

ALUBUS 

CA----t 

SR----t 

276 

Three·sta te 
buffers 

ALU 

ALU controls 

Figure 7-6 Controlling the input to 
the ALU with three-state buffers. 

The Art of Digital Design Part II 



Another approach to the selection of the ALU's input is to use the mUltiplexer 
building block to select the appropriate input (see Fig. 7-7). There is one multiplexer 
for each bit of the 12-bit data path. We have two good choices for busing the 
ALV input. To design the LD20, we have chosen the mux method of Fig. 
7 -7, primarily for its ease of debugging. 

CA -------I~ 

SR------~ 

ALUBUS 

Data 
mux 

Data mux 
select 

controls 

ALU 

ALU controls 

Figure 7-7 Selecting the input to the ALU with a mUltiplexer. 

Our study of PDP-8 operations has led to this architecture. We may ask 
if the structure could be generalized to handle the case EA ~ PC, which arises 
when the PC register is loaded with a branch address. The answer is, of course, 
yes: we add an EA input to the data multiplexer. To execute the branch operation, 
we must set the mux control inputs to select EA, and must set the AL V controls 
to pass this ALV input unchanged to the ALVEVS. If a load signal to the PC 
accompanies these operations, we would perform EA ~ Pc. It is significant 
that we have accomplished the goal by generalization rather than specialization. 

This is a discovery that we should try to carry as far as we can. We now 
have a mechanism for moving data from one register to any other, as well as a 
way of performing logical or arithmetic operations on the ALV data inputs. 
These capabilities are nearly all the structure we need to build a computer. 
Again, let us note that we were led to the architecture in a direct manner by a 
careful consideration of the fundamental requirements of the PDP-8's instruction 
set. 

This is not the way some deslgners proceed. They start with a structure 
(a guess, really) based on a certain set of integrated circuit chips, and then try 
to bend the design to fit that guess. Sometimes the bending can require enormous 
leverage, when it could be side-stepped by redefining the architecture. Unfor­
tunately, at that point it is too late; the designer's mind is already in a groove 

Chap. 7 Designing a Minicomputer 277 



and it is difficult to jolt it out. If you let your target lead you to the architecture, 
you can avoid this groove until the last possible moment and save yourself 
anguish. 

Adding memory. Now it is a simple matter to expand the tentative 
architecture of the LD20 to handle the remaining data transfers. We need to 
take care of memory and its interaction with the memory address and memory 
buffer registers MA and MB. The MA register gives memory the address at 
which to perform a read or write operation; therefore, MA must be wired directly 
to the memory. MA must be loaded with address data from various sources 
(e.g., EA), so we make MA a destination on the ALUBUS. So that data from 
the memory can reach other destinations, the output of memory connects to the 
data mux. Memory write operations require input from MB in addition to MA. 
The MB holds the write data and must be connected directly to the memory. 
The memory buffer register's input may come from a variety of sources yet to 
be specified, so we will make MB a destination on the ALUBUS. Figure 7-8 
shows the proposed routing of the memory data. 

ALUBUS 

MA 

MB Figure 7-8 The data flow in the 
memory system. 

Handling CA. This is a good time to investigate CA, the contents of 
address EA. CA is not a register; rather, it is a concept that we introduced to 
aid our understanding of the operations of PDP-8 instructions. Where do values 
for CA come from? Remember that CA = (EA): CA is the contents of the 
location referenced by EA. Thus CA comes from the memory. We have just 
proposed an architecture for reading and writing memory data. If we route an 
address EA into MA over the existing paths, then a subsequent memory read 
command will give us CA. Therefore, we may eliminate CA from our data mux 
inputs, realizing that our recent addition of the memory system incorporates the 
data movement for CA. 

Fetching instructions. Can we use our basic data routing scheme to 
acquire the next instruction from memqry and move it to the instruction register 
IR? The memory is already a source on the data bus, so we simply make the 

278 The Art of Digital Design Part II 



IR a destination on the ALUBUS. At the time of instruction fetch, our design 
must select MEM through the data mux, cause the ALU to pass its input without 
modification, and then cause the IR to load the result from the ALUBUS. 

Handling shift operations. Last, we must lay a plan for the data movements 
for the left and right shift instructions, which involve the AC and the link bit. 
One approach would be to include the shifting capability in the ALU building 
block. This would be acceptable design practice. On the other hand, one of 
our basic MSI building blocks is the parallel-in parallel-out shift register, which 
will shift or retain its value or load a new value upon command. Since the shift 
operations in the PDP-8 involve only the AC and LINK, let's make the AC a 
shift register in addition to its earlier assignment as a holding register. In this 
event it appears unlikely that the shift operations will affect the basic routing of 
the data. 

The LD20 data bus. The initial proposal for the architecture of the data 
path is complete, and appears in Fig. 7-9. We have derived the structure from 
first principles based on the requirements of the PDP-8's instructions, and although 
we have used our knowledge of good building blocks we have not committed 
ourselves to any particular chip other than the 74LS181 ALU. This initial ar­
chitecture turns out to be very close to the final requirements that will emerge 
from more detailed study. 

It is now time to consider the LD20's control algorithm. We use our 
tentative architecture as a framework for developing the control; understanding 
the control will, in tum, lead us to a refined architecture. Throughout all this, 
we remain aloof from the actual hardware until we thoroughly understand both 
the architecture and the control. 

A PRELIMINARY SKETCH OF THE LD20'S CONTROL 

You have seen how a study of the PDP-8's instruction set led naturally to a 
tentative specification of the LD20's data storage and data paths. In this section 
we will write a control algorithm that will make the architecture execute the 
PDP-8's instructions. If we have chosen the tentative architecture well, we can 
write the control flowchart with only minor changes to the architecture. If we 
must make any major change to our structure because of the algorithm, we 
should start over and reconsider the architecture on the basis of our increased 
understanding of the problem. As you will see, our preliminary structure is a 
good one, requiring little revision. 

First, we draw a preliminary flowchart of the control process. This broad 
treatment, although not detailed enough to serve as an implementation specification, 
nevertheless can help us understand the complex flow of operations involved in 
processing the instructions. Then, guided by our general description, we will 
develop a detailed ASM chart. It is at this point that we will find the ASM chart 
forcing small changes in the architecture. A complete ASM chart is the key to 
a good design. By its very nature, it requires us to think through our problem 

Chap. 7 Designing a Minicomputer 279 



AC 
shift 

register 

PC 

EA----..-i 

SR----..-i 

IR 

ALUBUS 

Data 
mux 

Data mux 
select 

controls 

ALU 

AL U controls 

Figure 7-9 An initial proposal for the architecture of the main data path in the 
LD20. 

completely before we touch a gate or a soldering iron. This is the time to avoid 
problems, and a good ASM chart is worth all the effort expended on it. 

We have proposed a preliminary structure that can move data among registers, 
perform arithmetic and logical operations on the A C, and load the memory control 
registers MA and MB with data to support a memory read or write. The major 
commands required to accomplish these results are: 

(a) Data multiplexer select controls. These signals select one of the data mul­
tiplexer input registers and present the data to the ALV. 

(b) AL V controls. These signals tell the AL V what logical or arithmetic operation 
to perform on its inputs. The result appears as output on the data bus 
ALVBVS, for distribution throughout the machine. 

280 The Art of Digital Design Part II 



(c) Register load commands. The ALUBUS distributes data to the registers 
of the machine. At any time, only certain selected registers must load this 
data. The loading operations are controlled by a load signal for each register. 

(d) Memory control. The memory unit requires read and write commands, 
delivered in accordance with a standard memory control protocol. 

The function of the control hardware is to generate a properly sequenced 
set of these commands to carry out the control algorithm. Before we plunge 
into an ASM chart formulation, we will express the control algorithm as a 
simplified diagram analogous to a programmer's flowchart, one which does not 
carry the detailed timing and signal information that will appear later in the ASM 
chart. 

Fetch and Execute 

At this stage, we are looking for ways to subdivide the control algorithm into 
manageable parts. In computer design, a common practice is to split the control 
flow into units for instruction fetch and instruction execute phases. Fetch is 
that portion of the control algorithm responsible for fetching the next instruction 
and getting the operands or operand addresses required to execute that instruction. 
Execute is that portion of the algorithm that carries out the operations required 
by a given instruction. Fetch calls Execute, which calls Fetch, and so on until 
the computer is halted. Figure 7-10 shows the gross flow of the control. 

Fetch 

Investigating the Fetch Phase 

Execute 
Figure 7-10 The fetch and execute 
phases of the LD20. 

From our discussion of PDP-8 instruction codes, we may divide the LD20's 
instructions into three categories: 

(a) Those that require neither EA nor CA. For example, a CMA (Complement 
AC) microinstruction needs no information other than the instruction word. 

(b) Those that need an effective address EA but do not require CA. An example 
is a JMP instruction. We jump to the memory word at the EA but we do 
not care about the contents of that word. 

(c) Those that require the contents CA of the effective address. An example 
is the AND instruction, which ANDS the CA and the AC. 

Chap. 7 Designing a Minicomputer 281 



The fetch unit in Fig. 7-10 is rather crude, since it always obtains an EA 
and a CA, whereas only a few instructions require CA and some instructions do 
not even need an EA. Can we expand the fetch phase to take advantage of 
these facts? If the instruction obtained from memory is CMA, for example, we 
could go to the execute phase as soon as we know that the instruction code did 
not require EA or CA. We modify Fig. 7-10 into the more efficient Fig. 7-11. 

Fetch Execute 
Figure 7-11 Saving time in the fetch 
phase. 

The CMA microinstruction takes the "No" branch in Fig. 7-11. Another 
example is the DCA instruction. The location at the effective address EA will 
receive the contents of the AC. The contents of location EA (in other words, 
CA) will be destroyed, so the execution phase will not need CA from Fetch. 
Examples of instructions that will take the "Yes" branch in Fig. 7-11 are AND 
and TAD; these instructions operate on the contents of the EA, which is CA. 

Forming EA and CA. We must explore the effect of the PDP-8's memory 
accessing arrangements on the formation of the effective address EA. Recall 
that a PDP-8 memory referencing instruction has, in addition to the operation 
code, a page bit, a 7-bit page offset, and an indirect addressing bit. When the 
indirect addressing bit is 0, we may generate the EA as soon as we know what 
the operation code is. If the indirect addressing bit is 1, the formation of EA 
requires an additional memory access. 

If the page bit is 1, the page address is the page that contains the instruction. 
If the page bit is 0, the page address is page 0. We expect to derive knowledge 
of the current instruction's location from the program counter PC. We may 
specify the 5-bit address as 

PAGE.ADDRESS = (PCO-PC4)·PAGE.BIT (7-1) 

The high-order 5 bits of PC specify the page of the current instruction. If the 
page bit is 1, we wish to use these 5 bits·· of PC as our page address. If the 
page bit is 0, we need 5 zero bits for the page address. Equation (7-1) specifies 

282 The Art of Digital Design Part II 



that the page address is the logical AND of the page bit with each bit PCO 
through PC4. 

For direct addressing, the 12-bit effective address EA is the 5-bit page 
address concatenated with the 7-bit page offset: 

EA = PAGE.ADDRESS PAGE. OFFSET (7-2) 

If the instruction requires an operand, we must access the memory at location 
EA to get CA. Instructions with indirect addressing require another iteration to 
obtain the final EA and CA. Thus, if the instruction requires an operand or if 
it specifies indirect addressing, we must obtain the contents of the memory 
location EA. We may think of the contents of EA as a tentative CA. For direct 
addressing, this is actually the CA we seek. For indirect addressing, this tentative 
CA becomes the new EA, so that the indirect process may continue. Figure 
7-12 shows the result of this analysis. 

Auto indexing requires a further addition to our general fetch flowchart. 
If the acquisition of an indirect EA makes use of one of the auto index locations 

Chap. 7 

Fetch 

Process 
instruction 

Execute 

Designing a Minicomputer 

Figure 7":12 An LD20 with indirect 
addressing. 

283 



108 through 178 , we must increment the contents of that location before we use 
it as an indirect address. This activity is shown in Fig. 7-13. 

You can see that, little by little, as our understanding of the control process 
grows, the general flowchart becomes more complex and our notations become 
more succinct. This is characteristic of work on both hardware and software: 
as understanding grows, the detail increases and the notation is compressed. 

DIRECT 

No 

AUTO 

Fetch 

No 

Yes 

Yes 

No 

Process 
instruction 

Execute 
Figure 7-13 An LD20 with auto 
indexing. 

Halts and interrupts. The LD20's flowchart must make provision for 
halting and for detection of interrupts in a systematic way. A halt can result 
either from manual intervention or from the execution of the HLT microinstruction. 
In either case, the machine must move to an idle state whose purpose is to 
monitor the manual start switch. Halt processing must wait until the machine 
has finished the execution of the current instruction; the natural place to look 
for a halt is therefore at the start of the next fetch cycle. 

This is also the natural place to examine interrupt requests. If the LD20 
were to process an interrupt request at the instant it arose, chaos would result, 
since the LD20 would no doubt be in the middle of processing some instruction 

284 The Art of Digital Design Part" 



of a program. The proper time to handle interrupts is after an instruction is 
executed but before the computer fetches the next instruction from memory. 
Thus we will add a section for handling interrupt requests to our flowchart. 
Figure 7-14 shows these additions. 

No 

Yes 

Yes 
AUTO 

No 

Fetch 

Force JMS 
to locn. 0 

Process 
instruction 

Execute 
Figure 7-14 A preliminary flowchart 
for the LD20. 

The fetch portion of our preliminary flowchart for the LD20 is now complete. 
Since Fetch involves some rather complex steps (to produce the proper EA and 
CA), it was useful to undertake this preliminary study of the control algorithm. 
The execute phase of the LD20's control algorithm consists primarily of well­
separated sections for each instruction, and we will be able to handle these when 
we produce the actual ASM chart, without needing a detailed preliminary analysis. 

Chap. 7 Designing a Minicomputer 285 



DEVELOPING AN ASM CHART FOR THE LD20 

Figure 7-14 is a high-level flowchart of the algorithm for emulating the PDP-So 
We must reduce it to a more detailed flowchart that recognizes the architecture 
developed earlier in this chapter as well as the timing of the individual operations 
of the hardware. The ASM chart is the appropriate way to show these relationships. 

In this section we will develop the ASM chart for the LD20 in detail since 
it is the most important step in reaching a good final design. We cannot over­
emphasize the importance of a good control algorithm. This portion of the design 
should occupy at least half of the time devoted to developing the digital system; 
every minute will be well spent. The design of the LD20 has been through at 
least five iterations and has had several hundred hours of thought devoted to it. 
You may think this excessive, but it isn't, for design errors in the hardware can 
be very hard to correct after a system is completed. It is far better to produce 
the best possible design before construction begins. 

We will develop each segment of the LD20's ASM systematically and many 
of the remaining figures in this chapter show fragments of the complete algorithm. 
The entire ASM for the LD20 appears in three charts (Figs. 7-42, 7-43, and 
7-44) toward the end of the chapter. You may wish to refer to these diagrams 
as you study the details in order to enhance your understanding of the inter­
relationship of the parts. 

Conventions 

We will adopt the conventions developed in Chapter 6 for naming states and 
any conditional output terms associated with them. The symbolic names for the 
states of the fetch phase of the LD20 are FI through F7, and for the execute 
phase are EO through ES. The first fetch state of each instruction is always FI, 
and the first execute state is always EO. Some of the states have many conditional 
outputs. We would like the names of the conditional output terms to reflect the 
parent state of the term. Our convention is simple. We give each conditional 
output term within a state a number and use a period to concatenate this number 
to the parent state name. Thus EO.lS is conditional output term 15 of state EO. 
A conditional output term may produce several output signals. 

Occasionally, we will need to label other points or sections of the ASM 
chart, so that we can identify them in different figures. Our convention is to 
give the state's name, then a period followed by a nonnumeric name. For 
instance, the execute phase is divided early into two parts, one for manual 
operations, and one for normal processing of the instruction register; we call 
these parts EO.MAN and EO.IR, respectively. 

The main purposes of the fetch phase are to get an instruction from memory, 
to prepare the effective address EA and its contents CA as required by the 
instruction, and then to go to the execute phase to process the instruction. We 
need a uniform mechanism for passing the instruction word, the EA, and the 
CA from the fetch phase to the execute phase. Obviously, the instruction should 
go into the instruction register IR. The memory address register MA is a good 
spot to place the address EA. What about CA? 

286 The Art of Digital Design Part II 



From the discussion of the LD20's tentative architecture, you recall that 
CA comes from the memory word at location EA - the word whose address is 
in the MA register. During the fetch phase, we will perform the memory read 
operation to get CA for later use in the execute phase. Where can we put CA 
until it is needed? We could add another register to the data architecture for 
this purpose, but perhaps we already have a satisfactory intermediate register. 
The memory buffer register MB is promising, and we adopt the standard convention 
that CA appears in register MB when we enter the execute phase. Notice that 
in Fig. 7-9 the MB is not connected to the data mux. If the MB is to be the 
source of CA, we must add MB to the data mux inputs. Our general data-routing 
scheme allows us to make this modification of the architecture immediately, 
without elaborate analysis. 

Memory Control 

It will be useful to define a protocol for memory control before we embark on 
the detailed development of an ASM for the LD20. We want to treat memory 
as a black box that will behave in a reliable and well-defined way when it is 
presented with proper input commands and data. 

In Chapter 4 you saw how typical memory building blocks behave. Memory 
integrated circuit chips operate at their own pace, asynchronous to outside events. 
Our design goals for the LD20 allow the system clock to operate at any reasonable 
rate. Depending on the clock speed and on the requirements of the particular 
memory device, the memory may be slower or faster than the LD20 clock. We 
must develop a set of ru1es-a protocol-according to which the LD20 will use 
the memory. We hope that these rules will be general enough to allow the use 
of memory independently of clock speeds and particular memory chips. What 
control signals and data are necessary to deal with a memory system? As far 
as the memory user (the LD20) is concerned, the memory box should have three 
elements for handling data: 

(a) A memory address input. 
(b) An input for memory write data. 
(c) An output for memory read data. 

To control the memory's activities, the box should have: 

(d) An input command to start read operations. 
(e) An input command to start write operations. 
(f) An output that announces when the memory operation is finished. 

In addition to these specific signals, the system clock is available, if it is needed. 
Figure 7-15 shows the black box for the memory. 

At this point, we assume that the box exists, and we establish the protocol 
for using it in the ASM for our LD20. We will worry about the actual design 
of the box later. This modular approach to the problem of controlling the memory 
is an important aid to clear design, since we may put aside the intricacies of 

Chap. 7 Designing a Minicomputer 287 



BEGIN. READ MEMORY. 
BUSY 

Memory control 

DATA. DATA. 
ADDRESS IN OUT 

Figure 7-15 A control unit for the 
memory of the LD20. 

manipulating particular chips, knowing that the memory controller's interface 
with the outside world must conform to the established protocol. 

In Fig. 7-9 we specified the data interconnections between the LD20 and 
its memory. The address input to the memory box comes from MA, the MB 
register provides memory-write data, and the memory's data output feeds into 
the data mux. There remains to specify the behavior of the control and status 
lines of the memory box. We will use START.READ, START. WRITE, and BUSY 
for the LD20 signals interfacing with the corresponding inputs and outputs of 
the memory box. Figure 7-16 shows the resulting interface. 

START.READ 

START. WRITE 

SYSCLK 

BEGIN. READ MEMORY.BUSY 

BEGIN. WRITE 

EXTERNAL. 
CLOCK 

Memory control 

MAO- MBO- MEMO­
MAll MBll MEMll 

BUSY 

Figure 7-16 The LD20's interface 
with its memory control unit. 

We initiate a memory read by asserting START.READ during some state. 
The memory controller senses this signal and begins the read operation on the 
next LD20 clock pulse. Thus read begins at the transition from the "start read" 
state. When the read operation begins, the memory-busy status signal BUSY 
must become true, and the controller must keep the signal true at least until the 
operation is complete. For convenience, we will require that changes in the 
BUSY signal be synchronous with the LD20 clock. The transition from BUSY 

288 The Art of Digital Design Part II 



= T to BUSY = F will occur at the next clock pulse after the memory box 
determines that the memory cycle is complete. The write operation, initiated 
by START. WRITE, behaves analogously. 

The completion of a write operation implies that the memory box no longer 
needs the address and data inputs. Completion of a read operation means that 
the memory has had time to produce valid data, based on the stable address 
supplied to the box. As long as the address remains the same (or until another 
memory operation begins), the output data is valid. 

Standard memory read and write sequences. The typical memory read 
sequence based on the memory protocol appears in the ASM chart of Fig. 
7-17. The first state prepares to form a stable memory address in MA, and 
prepares to initiate the read operation. The second state loops until BUSY 
becomes false. We then exit that state while loading the now-valid memory data 
into a register. The third state is the earliest time that the contents of the register 
are available for use. This is a perfectly valid algorithm for reading a memory, 
and we could use it unhesitatingly in the LD20 ASM. It has the disadvantage 
that the memory activity is spread out over three states. If the design requires 
many accesses to memory, our ASM will contain quite a few states and will 
appear cluttered and unwieldy. Can we conveniently collapse the presentation 
of the algorithm into a more compact form? If we could arrange to wait upon, 
load, and then use the memory's contents in a single state, we may achieve 
some improvement. The following reasoning is useful. 

Chap. 7 Designing a Minicomputer 

Figure 7-17 An ASM for a memory 
read. 

289 



We introduce a signal BUSY.HELD that behaves like BUSY except it 
remains true one clock cycle longer. The purpose of this signal is to help identify 
the first state time after BUSY becomes false; only then is BUSY = F while 
BUSY.HELD = T. This is the time when we wish to load the stable memory 
output into a register. Any time after this we may use the register contents. 
This fancy footwork allows us to express the memory read sequence in only 
two states, as illustrated in Fig. 7-18. 

We have reduced the number of states but have not improved the readability 
of the ASM sequence. On the contrary, it is more obscure than before. If we 
notice that it does no harm to load invalid memory data into the register as long 
as we finish by loading valid data, we may entirely eliminate the test on BUSY, 
leaving the single test signal BUSY.HELD, as shown in Fig. 7-19. 

Figure 7-18 Reducing states in the 
ASM for memory read. 

Figure 7-19 Improving the ASM for 
memory read. 

Last, as a matter of personal style, we choose to cast the remaining test 
in terms of the concept of Cycle Complete (CC), which in this treatment is the 
inverse of BUSY.HELD. Figure 7-20a is the final form of a memory read 
sequence. The somewhat simpler sequence for memory write appears in Fig. 
7-20b. 

This is a general read-write protocol. The requirement on CC is that during 
the entire last clock cycle before CC became true, the memory operation was 
complete. We may now use the protocol with confidence, with all the detail 
packaged in the memory box and the associated CC circuit. 

290 The Art of Digital Design Part II 



(a) Memory read 

State F1 (Fig. 7-21) 

(b) Memory write 

Figure 7-20 ASMs for the LD20's 
memory. 

Halt detection. State F1 is the first state of every fetch cycle, and is a 
good place to check for a halt condition. The LD20 must remember halt requests 
that arose during the processing of the last instruction, so we will add a halt­
status flip-flop HALTFF to the architecture. (At this time we do not care exactly 
what type of chip we use for the flip-flop, although we suspect it will be a JK 
since the ASM will set and clear the halt status at various points in its processing.) 
If a halt request occurred, the ASM will have set HALTFF to T, and we can 

@ 
r-------, 

~H_A~LrT-FF-J~T----~~ 

Figure 7-21 ASM of state Fl. 

Chap. 7 Designing a Minicomputer 291 



test it in state Fl. If HALTFF is true at this time, the ASM should move to an 
idle state IDLE, which will inhibit further processing of instructions. If HALTFF 
is false, the fetch phase proceeds. 

Detecting an interrupt. State F1 is the proper place to test the status 
of the interrupt request system. Using the commands ION (6001 8) and IOF 
(60028), the programmer may enable or disable the interrupt system. To record 
the current enabled or disabled condition, we need a memory element; this 
addition to the LD20 architecture is the INT. EN (Interrupt Enabled) flip-flop. 
Let INTREQ be the interrupt request signal coming into the LD20, and let INT 
represent a detected interrupt signal. Then 

INT = INTREQoINT.ENoION 

The term ION ensures that interrupt recognition will be inhibited immediately 
after an ION command, in conformity with the PDP-8's instructions. At the 
time the ASM enters state FI to start processing a new instruction, the instruction 
register IR still contains the previous instruction. If that instruction was an ION, 
we must ignore any pending interrupt request and instead allow an additional 
instruction to complete its execution. The equation for interrupt recognition 
means that INT is true only if INTREQ is true and INT.EN is true and ION is 
false. INT is interrogated in state FI, and if it has the value T at that time, 
interrupt processing takes place. 

If INT is true, we must force a subroutine jump to location 0000 (JMS 0) 
and disable the interrupt system. Jump commands require an effeCtive address 
EA, and the execute portion of the ASM expects to find the EA for a JMS in 
the memory address register and the operation code in the instruction register. 
Therefore, the proper response to interrupt recognition is shown in the conditional 
output term Fl.2 in Fig. 7-21. 

A style-motivated digression. Term Fl.2 changes the MA and IR registers. 
We ask ourselves if there is any condition which would make us regret destroying 
the old values of MA and IR. As long as the machine is running at full speed 
we would never notice, since the overall processing of the interrupt would be 
correct-the changes in console displays for MA and IR would last only a few 
microseconds. The only time we might notice a change is when the machine is 
stopped, when its clock is operating at slow or manual speed, or when the single 
instruction switch is on and we are executing individual instructions. Suppose 
an interrupt request arose during the execution of a halt instruction. In that 
case HALTFF would be true upon the next entry to state Fl. In Fig. 7-21 we 
see that the HALTFF test occurs before the INT test in state FI, so the machine 
will go to IDLE without interrupting, with the old instruction in IR; there is no 
problem with this behavior. 

In manual clock mode, or at slow clock speeds, we are presumably checking 
for correct machine operation or debugging a newly constructed machine. Then 

292 The Art of Digital Design Part II 



we would want to see all the detailed micro-operations of the hardware, including 
any interrupt processing, so our ASM is appropriate for this situation also. 

The remaining condition arises when the single instruction switch is on and 
we are single-stepping through the program when the interrupt occurs. But 
again, the HALTFF flip-flop would be true, causing the machine to return to 
IDLE after each instruction, with the old values of MA and IR preserved. Thus 
we find that we may jam 0 into MA and the JMS operation code into IR bits 
0-2 without the loss of useful information. This digression points up the desirability 
of thorough study of a design in its conceptual stages; now is the easiest time 
to detect and correct design flaws. 

Normal processing of instructions. If HALTFF and INT are both false, 
normal instruction processing will proceed and the ASM must prepare to get the 
next instruction from memory. In state FI, the program counter PC contains 
the address of the next instruction. Since we have to perform a read from 
memory at that location to get the next instruction, in Ft.t we transfer the 
contents of the program counter to the memory address register, in preparation 
for the read. Later in the fetch phase the memory data becomes the current 
instruction. The effective address EA (which may be needed by this new instruction) 
is formed by concatenating a 5-bit page address with the 7-bit page offset. For 
this purpose, the EA computation may require PC bits 0 through 4, so we must 
preserve PC until EA is formed. But the formation of EA must await the arrival 
of the new instruction from the memory. Normal instruction sequencing dictates 
that PC be incremented by t, and we wish to do this in the fetch phase so as 
not to waste time in the execute phase. (The execution of a branch instruction 
will later replace the program counter's value with a branch address.) Now we 
have a subtle problem: We must hasten to increment PC, yet we must save PC 
for possible use in forming EA. PC bits 0-4 may be different in the incremented 
PC than in the current PC. (Why?) Our solution is to look for a temporary 
place to hold the current value of the PC until EA is formed. The memory buffer 
register ME will serve. Until this point, ME's only role has been to hold data 
to write into memory and to hold CA for instruction execution. Neither of these 
is occurring now, so ME may hold the old PC awhile. Fl.1 moves PC to ME. 

State F2 (Fig. 7-22) 

Incrementing the program counter is an operation common to all one-address 
computers. Such machines assume that the next instruction will come from the 
memory location immediately following the current instruction, unless there is 
a jump instruction. We can achieve the normal sequential case by incrementing 
PC in state F2. We also initiate a memory read cycle to obtain the next instruction. 
MA contains the address, placed there in state Fl. The downward arrow in Fig. 
7-22 implies that the start-read operation is to begin at the end of the state (like 
a register load or a flip-flop set). 

Chap. 7 Designing a Minicomputer 293 



@) 
,---------, 

Figure 7-22 ASM of state F2. 

State F3 (Fig. 7-23) 

This state serves two main purposes: 

(a) To wait for the memory to finish the read process started at the end of 
state F2, and load the memory data into the instruction register. 

(b) To generate the effective address EA from the instruction newly placed in 
IR. 

We use the standard protocol for controlling the memory read operation: The 
ASM loops in state F3 until the cycle complete signal CC becomes true. During 
the last loop with CC = F, the memory data copied into IR at term F3. 2 comprises 
the new instruction. 

Once the new instruction is in IR, control will pass through term F3.1. 
Here we generate EA for the new instruction by concatenating the 5-bit page 
address with the 7-bit page offset, according to Eq. (7-2). The program counter 

@ 
,--------, 

Figure 7-23 ASM of state F3. 

294 The Art of Digital Design Part II 



PC no longer points to the current instruction, since state F2 incremented the 
PC register. However, we saved the old value of PC in the MB register, so we 
can calculate EA by 

(\ 
EA = [(MBO-MB4)oIR4] [IR5-IRll] (7-3) 

(Remember that if IR4 is 0, the first 5 bits of EA are 0.) Since in the execute 
phase the effective address is to be found in the memory address register, we 
move EA to MA in F3.1. 

Early exits to Execute. We now have an opportunity to be clever by 
noticing that certain instructions need no more fetch-phase processing. Two 
such instructions are lOT and OP, which do not reference the memory. The 
instruction bits that would normally be treated as a part of a memory address 
have a different meaning. All the information that Execute needs is already in 
the instruction register, so we may immediately branch to the execute phase. 

Three other instructions are possible candidates for this early exit to Execute: 
the directly addressed versions of DCA, HMP, and JMS. These instructions do 
something to or at a memory location, but they do not require the contents of 
that location. For example, a JMP X instruction will jump to location X regardless 
of the value stored in X. Remember the meanings of EA and CA: 

EA: The target address of the operand after any indexing or indirect addressing 
is done. 
CA: The contents of the word at the target address: CA = (EA). 

The PDP-8 does not have an index register. If the instruction calls for direct 
addressing (bit IR3 is 0), then we are already moving the final EA into the MA 
register. For the directly addressed DCA, JMP, and JMS instructions, we may 
exit immediately to state EO. Since the condition for branching to EO involves 
several logic terms, we find it convenient to define a new variable NOMEM (No 
Memory Reference) to express the opportunities to exit to EO at this point: 

NOMEM = OP + lOT + DIRECTo(DCA + JMS + JMP) 

where 

DIRECT = IR3 

We may use NOMEM in the ASM chart for state F3 as a compact representation 
of the EO branching condition. 

If NOMEM is true, the ASM goes to state EO. If NOMEM is false, the 
instruction in IR requires further memory accesses, so we may initiate a read 
from the memory in term F3.3 as we exit from state F3. The memory read will 
use the newly established value of the memory address register. 

Chap. 7 Designing a Minicomputer 295 



State F4 (Fig. 7-24) 

Since state F3 initiated a read operation, state F4 must observe the memory­
read protocol and loop on CC, capturing the memory's output. We are reading 
an operand at this point, so the memory buffer register MB is the correct place 
to put the memory data, in anticipation that this operand will be required by 
Execute. This activity occurs in term F4.1 of Fig. 7-24. 

@ 
,--------, 

Figure 7-24 ASM of state F4. 

If the instruction involves direct addressing, we have just acquired the 
necessary operand CA and we may go immediately to state EO. This case arises 
when there are directly addressed AND, TAD, and ISZ instructions. We have 
already defined the variable DIRECT as IR3; if DIRECT is true, we now exit to 
state EO. In order to continue, all remaining fetch instructions have DIRECT = 
F (IR3 = 1). 

We are now on a path for indirect addressing, since IR3 = 1. We must 
test to see if we are referencing one of the auto index memory locations, which 
have addresses 108 through 178 , If a PDP-8 instruction accesses one of these 
locations for use as an indirect address, the location is automatically incremented 
and put back into the memory before it is used for indirect addressing. To keep 
the ASM chart compact, we introduce a variable A UTO that is true if the effective 
address EA specifies one of the locations 108 through 178 , These addresses have 
bits 0-8 in common, whereas bits 9-11 select the particular address. Since the 
effective address is in MA at this time, the equation for AUTO is 

AUTO = MAO· MAl· MA2 • MA3 • MA4 • MA5 • MA6 • MA7 • MAS 

If AUTO is true in state F4, auto indexing must occur. The ASM must 
increment MB, which holds the contents of the auto index location, and also 
initiate a memory-write operation. The MA register still points to the auto index 

296 The Art of Digital Design Part II 



location and remains unchanged during the write operation. The auto indexing 
preparation takes place in term F4.2; the ASM must then move to a state (F5) 
that will wait for the completion of the write. 

If no auto indexing was associated with the indirect addressing, the ASM 
exits from state F4 into state F6, where indirect processing continues. 

State F5 (Fig. 7-25) 

This state completes the auto indexing operation and then merges into the main 
fetch stream at state F6. Auto indexing appeared as a "side operation" from 
state F4, and it has no further influence on indirect addressing. 

State F6 (Fig. 7-26) 

We enter this state only in the presence of a memory referencing instruction 
involving indirect addressing. Indirect addressing requires that we use the current 
Contents of Effective Address CA (held in ME) as the final Effective Address 
EA. Thus state F6 moves MB into MA. If the instruction is of the type DCA, 
JMS, or JMP that does not use the contents of EA, we may again exit immediately 
to state EO. The surviving instructions are indirectly-addressed AND, TAD, and 
ISZ. They require memory contents as operand data, and so we must start one 
last read operation and move to a final fetch state F7 to complete the read. 

Figure 7-25 ASM of state F5. Figure 7-26 ASM of state F6. 

State F7 (Fig. 7-27) 

In state F7 we complete the acquisition of the necessary CA data for indirectly 
addressed instructions. The contents of the memory go into the MB register, 
as required by our conventions for the entry into the execute phase of the LD20's 
ASM. 

Chap. 7 Designing a Minicomputer 297 



Figure 7-27 ASM of state Fi. 

State IDLE 

In many respects, IDLE is the most important state in the machine; without it 
we would have no way to halt or start the computer. The function of IDLE is 
to scan the control panel switches for activity. When it occurs, IDLE must pass 
control to an appropriate section of the ASM. When the machine is in IDLE, 
the LD20 will loop in that state as long as no switch is depressed. 

Control panel switches. Let's consider what control switches we desire 
on the control panel. 

CONT (Continue): This is the start switch. When the IDLE ASM senses 
that CONT = T, it will branch to the fetch phase to continue routine processing 
of instructions. 

Loading the registers: Our design calls for the contents of each main register 
to be continuously on display. We also desire to be able to load the contents 
of each register from the control panel's switch register SR. We provide six 
switches for this purpose: 

LDMA (Load memory address register from SR) 

LDMB (Load memory buffer register from SR) 

LDPC (Load program counter register from SR) 

LDIR (Load instruction register from SR) 
LDAC (Load accumulator register from SR) 

LDMEM (Load the memory word at address MA from SR) 

These load switches are not part of the commercial PDP-8 but are a great 
convenience to the LD20 designer during implementation and to the LD20 pro­
grammer who is debugging programs and operating the computer. 

Two more switches have counterparts in the PDP-8: 
DEP (Deposit) is used to load the panel switch register SR into sequential 

memory locations. Since it advances MA after each memory load, DEP is useful 
for entering programs or other data into consecutive locations. 

EXAM (Examine): The currently addressed word is always on display in 
the memory's panel lights. EXAM advances the memory address register MA, 

298 The Art of Digital Design Part II 



allowing the operator to view the next word. This is of value for examining the 
contents of consecutive memory locations. 

Three more switches complete the panel controls: 
CLR (Clear) fulfills a PDP-8 requirement that the operator be able to clear 

the link bit and the interrupt enable flag from the control panel. 
RESET is the master reset switch. Its function is to force the LD20 into 

the IDLE state, regardless of the present condition of the machine. This operation 
is useful for starting the LD20 and, during debugging, for escaping from any 
hangup that may arise from improper design or implementation, or from mal­
functioning components. 

SING.INST (Single Instruction): In its normal operating mode, when 
SING.lNST is false, the LD20 processes a continuous sequence of instructions. 
When SING.lNST is true, the LD20 halts after processing each instruction. 
Whereas the other control switches are "momentary-on" pushbuttons which 
return to the false condition after the button is released, Single Instruction is a 
toggle switch that has stable false and true positions. 

The IDLE state examines the condition of all the LD20 control switches 
except RESET and SING. INS T. State EO processes SING.INST; the action of 
the RESET switch is asynchronous to the LD20's clock. 

The other switches are also asynchronous to the LD20's system clock, but 
we will insist that our design handle them within the synchronous ASM structure 
that we are now developing. The output of each of the switches will have the 
* appended to its name to indicate its asynchronous nature. 

IDLE operations. To specify the operation of the IDLE state, it is useful 
to define a signal MANSW* that is a composite of 10 manual pushbutton signals: 

MANSW* = LDMA* + LDMB* + LDPC* + LDIR* + LDAC* 

+ LDMEM* + DEP* + EXAM* + CLR* + CONn 

In the IDLE state MANSW* can assist in detecting a depressed switch. By now 
you should be sensitive to our two old problems: testing asynchronous signals 
and processing a signal from a pushbutton more than once. We can coordinate 
IDLE's scan of the pushbuttons with the operator's push of the button by syn­
chronizing MANSW*. This will synchronize the pushbutton operation with the 
LD20. If the operator keeps the button down until the operation is completed, 
we will not need to synchronize each individual switch signal. 

We must also arrange to handle each depression of a switch just once. For 
practice, you might consider what would happen if depressions of the DEP, 
EXAM, or CaNT pushbuttons were acted upon more than once. Of the several 
schemes for dealing with the problem, we choose to add a single pulser to the 
architecture to isolate the first whole clock period in which MANSW* is true. 
As we showed in Chapter 6, the single pulser provides for synchronizing the 
input and delivering truth on the output for only the first clock period after the 
input becomes true. In the present case, the input to the single pulser is MANSW* 

Chap. 7 Designing a Minicomputer 299 



and the output is MANPULSE. IDLE can test MANPULSE, and the operation 
appears in the ASM in a compact form. 

With MANPULSE true, IDLE will go to state F1 if CONT* is also true, 
and will go to state EO otherwise. The execute phase therefore not only controls 
the execution of instructions, but also provides for manual operations. At various 
points, the execute phase will depend on whether entry to state EO was from 
Fetch (normal instruction processing) or from IDLE (manual operations). We 
provide a storage element MANEX (Manual Execution) in the architecture that 
will be true in Execute only if state EO was entered from IDLE. MANEX protects 
the execute phase from improper pushbutton depressions, since Execute will 
respond to manual signals only if MANEX is true. 

The IDLE state performs one further function: In the normal process of 
halting the LD20, state Fl finds HALTFF = T and branches to IDLE. Since 
HALTFF has served its purpose, IDLE must reset the flip-flop to false. 

Figure 7-28 shows the ASM for state IDLE. 

~== Asynchronous 
RESET. 

Figure 7-28 ASM of the IDLE state. 

Execute-Phase Processing 

The execute phase processes program instructions and manual operations. Within 
each category, we must perform a many-way branch to accomplish the processing 
for each type of command. In Fig. 7-29 we show the structure of the execute 
phase. Each square box represents the sequence of actions required for that 
operation. Our task is to convert this general flow diagram into an ASM chart. 

State EO: The Single-Instruction Switch 

The main state in Execute is EO; it is rather complex because each of the 17 
different operations begins (and many also end) in this state. In addition to the 

300 The Art of Digital Design Pa rt II 



("') 
::::r 
m 

"'!=' 
-..J 

o 
CD 
f/I 

cO' 
:::J 
:::J 
rc 
m 
s: 
:::J o· 
o 
3 
'C 
c: .... 
CD ..... 

Co) 
o .... 

Yes,l ! " No 
Manual operations )-----------, 
" I 

Pushbutton 

Instruction type »--....,...-----.....-----, 

Figure 7-29 The execute phase of the LD20. (This is not an ASM chart.) 



individual operations, some Execute activities are common to all the operations. 
The principal common activity is the examination of the Single Instruction Switch, 
a switch that allows the operator to select either continuing instruction processing 
or a halt after the execution of each instruction. The signal emerging from the 
debounced toggle switch is SING.INST*. Before testing this signal, we must 
synchronize it with the LD20 system clock. We use a clocked D flip-flop with 
input SING.INST* and output SING.lNST. If SING.INST is true, then state 
EO sets the halt flip-flop HALTFF to true; otherwise, state EO will set the halt 
flip-flop to false. In other words, HALTFF receives the value of SING.INST 
during state EO. Setting HALTFF to true will not stop the machine immediately, 
since the ASM does not examine the value of HALTFF until state Fl of the 
next fetch phase. If HALTFF is true at that time, the ASM will jump to IDLE 
rather than continuing to process instructions routinely. There is no need for a 
separate stop switch on the LD20, since it would duplicate the effect of the 
single instruction switch. 

State EO: Detection of Manual Operations 

The execute phase is entered from a fetch state or from IDLE. Entering EO 
from Fetch implies normal instruction processing; entering from IDLE must cause 
processing of the relevant manual switch. For calls from IDLE, the manual 
execute flip-flop MANEX is true, having been set in IDLE.1 so that Execute 
can determine the correct type of processing. Experience has shown us that it 
is advantageous to elaborate slightly on the simple testing of MANEX in EO. In 
debugging, we often wish to execute the instruction in the instruction register 
IR without going through the normal fetch process. This is especially true in 
the early stages of debugging, when the memory system is not yet working. 
During normal operations the system clock will be running at microsecond speeds. 
A debounced depression of a manual switch lasts for at least 100 msec, which 
would be on the order of 100,000 clock cycles. Thus, during normal operation, 
a manual switch that causes a call to Execute will be depressed for the entire 
duration of the execute phase. However, during debugging, the operator will 
advance the system clock at a slow rate, probably manually. The operator can 
press a button for one clock period to escape from the IDLE state, and then 
release the button before the next clock edge arrives. The LD20 is then in state 
EO, deciding either to process a manual pushbutton or to process the contents 
of the instruction register. When no button is depressed, the composite pushbutton 
signal MANSW* is false. By insisting that MANSW* be true in order to process 
manual operations, we have a way to force the machine to process an instruction, 
even though we did not reach Execute by way of Fetch. 

We now have two requirements for manual operations: MANEX must be 
true to assure that any manual activity originated from IDLE, and MANSW* 
must be true to show that a button is still depressed. We define the relevant 
test signal as 

MANEX.SW* = MANEX·MANSW* 

302 The Art of Digital Design Part II 



If MANEX.SW* is false, the execute phase will process the contents of IR. The 
ASM chart for the beginning stages of EO is shown in Fig. 7-30. 

~,,----~~ 
Process ~ 

Figure 7-30 Initial processing in state 
EO. 

Here is what the operator does when debugging a given instruction while 
bypassing the fetch phase: 

(a) Loads IR from SR with the desired command, using a high-speed clock 
and the LDIR button. 

(b) Loads the desired effective address into MA, using the LDMA switch. 
(c) Loads the desired operand into MB, using the LDMB switch. 
(d) Switches to a low-speed (or manual) clock. 
(e) Holds any manual pushbutton down for the duration of one clock edge. 

This will cause a transition from IDLE to EO. 
(f) Releases the pushbutton before the next clock edge. The ASM will now 

be in state EO on the false path in Fig. 7-30. 
(g) Proceeds through the execute ASM chart. 

When MANEX is true, we may thus traverse either the manual or instruction 
parts of the execute phase. We must clear MANEX to false before we leave 
the execute phase. It is tempting to put this clearing operation into the unconditional 
part of state EO, right up front. This will not work, because throughout its 
duration the execute phase needs a knowledge of the status of MANE X to control 
the flow. We must remember to insert the term F ---? MANEX just before any 
exits from the execute phase back to Fetch or IDLE. This is a subtle point, and 
in one of the exercises at the end of this chapter we ask you to consider what 
would happen if MANEX were reset unconditionally in EO. 

As we develop the ASM for the execute phase, we will insert the F ---? 

MANEX term at the appropriate places, without further comment. 

Execute Phase: Manual Commands 

Most of the LD20's manual pushbuttons are not a part of the standard PDP-8 
computer. We have incorporated them into this design for the convenience of 
the operator. Six pushbutton signals load a given register from the SR: LDMA*, 
LDMEM*, LDMB*, LDPC*, LDAC*, and LDIR*. LDMEM* requires that the 
MA be set appropriately. The EXAM pushbutton supports a sequential dump 
to the memory lights on the display panel: each depression of the EXAM switch 

Chap. 7 Designing a Minicomputer 303 



will increment MA, and thus the contents of the next memory location will 
appear in the lights. Recall the design of the memory box. As long as MA is 
stable, the memory box produces good output data after the short memory read 
cycle. The DEP pushbutton enables a sequential memory load from SR. It acts 
like LDMEM except that, after loading the memory, it increments MA, so that 
the next word appears in the memory lights and is available for changing. 

The ASM description of most of these pushbutton operations is straight­
forward. EXAM does not require us to perform an ASM memory read because 
as long as MA is stable, the read occurs automatically at a speed thousands of 
times faster than human reactions. According to the memory protocol, LDMEM 
and DEP activities require the execution of a state after the state that initiates 
the write operation. Also, looking ahead to instruction processing, we know 
that at least DCA (Deposit and Clear Accumulator) requires a memory write. 
We could declare a separate state for each path from EO (for LDMEM, DEP, 
DCA, etc.), but the memory write operations have so much in common that we 
should see if it is convenient to combine all these second execute states into a 
single state. Let's call the new state El. If any of the users of state El require 
special processing during or after El, we must be prepared to introduce a many­
way branch, similar to but smaller than the one in EO. With this in mind, we 
derive the ASM descriptions of the manual operations (see Fig. 7-31). 

The EXAM and DEP operations require that the MA register be incremented. 
According to our plan for the LD20's architecture, we perform the incrementing 
by routing the MA through the ALU, and routing the incremented value, on the 
ALUBUS, back into the MA. This action requires that MA be attached to the 
data multiplexer as a source. Our design allows us to add this register immediately, 
without difficulty. 

Execute Phase: Memory-Accessing Instructions 

Our convention upon entering state EO from Fetch is that MA contains the 
effective address EA, and MB contains the contents of that address, whenever 
these values are relevant to the instruction. The ASM descriptions of the memory­
accessing instructions are simple and are based directly on the descriptions of 
the PDP-8's instructions earlier in this chapter. Figure 7-32 is the ASM for 
AND, TAD, ISZ, DCA, JMS, and JMP. 

Execute Phase: The lOT Instruction 

This instruction performs input and output operations to or from the LD20 
accumulator. It is an important command, and PDP-8 input-output procedures 
require careful study. We defer a detailed discussion of PDP-8 input-output 
programming and interfacing until Chapter 9; at this time we treat only the LD20's 
responsibilities for the execution of lOT instructions. The lOT instruction has 
three fields: the operation code (1102), a 6-bit device address field, and a 3-bit 
control field. The format of the instruction word is 

304 The Art of Digital Design Part II 



012 3 8 9 10 II 

Op code Device IOP4 IOP2 lOP] 
]10 address request request request 

The interface between the LD20 and the external devices consists of the following 
signals: 

(a) Six device address lines from the LD20: lR3-IR8. 
(b) Twelve data lines from the LD20: ACO-ACll. 
(c) Three control lines IOPl, IOP2, and IOP4 from the LD20, derived as 

requested by lRll, lRlO, and lR9, respectively. 
(d) Twelve external data lines into the LD20: lNPUTO-lNPUTll. 
(e) Three control lines into the LD20: IOSKlP, ACCLR, and ORAC. 

lOT protocol. The protocol requires the following. With the device address 
stable on the outgoing device address lines, the LD20 issues a sequence of 0 to 
3 lOP signals, as specified by 1-bits in lRll, lRIO, and lR9. IOPl will be issued 
first, if requested by lRll, followed by IOP2 and then IOP4, if requested. During 
the lifetime of each of these three lOP signals, the LD20 must interrogate the 
three incoming control signals, in the order IOSKlP, ACCLR, and ORAC. If 
IOSKlP is true, the LD20 must skip an instruction. If ACCLR is true, the LD20 
must clear the AC, and if ORAC is true, the LD20 must perform a bit-by-bit 
OR operation of incoming data into the AC: 

AC + INPUT ~ AC 

Figure 7-33 shows the general structure of lOT processing in the LD20. 

lOT architecture and control algorithm. To support the lOT protocol, 
the LD20 needs: 

(a) A way to assert the requested lOP signals, in order. 
(b) Within each lOP time, a way to interrogate the incoming control signals, 

in the specified order. 

We have chosen a simple yet effective design. During the execution of an lOT 
instruction, state EO is responsible for creating each requested lOP signal. An 
asserted lOP signal stays true throughout three more states, E3, E4, and E5, 
which perform a sequence of tests on IOSKlP, ACCLR, and ORAC. State E5, 
in addition to testing the ORAC signal, determines if three passes through the 
state sequence EO, E3, E4, E5 have elapsed. If fewer than three passes have 
occurred, state E5 will return control to state EO for another pass; otherwise, 
control passes to state FI, ending the execution of the lOT instruction. 

The architecture must contain an element to produce the requested lOP 

Chap. 7 Designing a Minicomputer 305 



EO 
.MAN 

0 LDMA* 
SR .... MA 

LDMB* 0 
SR .... MB 

LDPC* G 
SR .... PC 

LDIR* 0 
SR .... IR F .... MANEX 

LDAC* 0 
SR .... AC 

0 EXAM*J 
MA (+) j .... MA 

CLR* CD F .... UNK 
F .... INT.EN 

SR .... MB G 
LDMEM* START.WRITEf 

F 

F .... MANEX 

r-----...,.......;..T-(MANEX.SW* 

(Ei\ DEP* LDMEM* 
\2)~_-, ___ a,nd others 

Figure 7-31 ASM of manual operations in the execute phase. 

306 The Art of Digital Design Part II 



EO 
.lR 

TAD G F 
MB (+)AC-->AC ALUCOUT 

001 

AND @ 
MB'AC-->AC 

000 

JMP G 
101 

ISZ 
@ MB(+) I-->MB 

010 
START. WRITE , 

DCA @ 
AC->MB 

all 
START. WRITE, 

JMS 

lOa 

El 
.IR 

ISZ 
@ 

010 

C) DCA .3 F 
O-->AC (MB=O) 

all 

T 

~ CD JMS .4 .1 

100 
MA(+)I-->PC 

others 8 
Figure 7-32 ASM of instructions that access the memory in the execute phase. 

Chap. 7 Designing a Minicomputer 307 



Figure 7-33 General flow of an lOT 
instruction. (This is not an ASM 
chart.) 

signals in the proper sequence and hold them throughout the execution of the 
E3, E4, and ES states. A 4-bit parallel-in parallel-out shift register, one of our 
standard building blocks, serves nicely to provide the sequencing of the lOP 
signals. We initialize the shift register with the binary bit pattern TFFF prior 
to reaching the execute phase. For an lOT instruction, passage through state 
EO shifts the bits one position to the right. Think of the bit positions as being 
named 0, 1,2, and 4. Output signals from bits 1,2, and 4 represent the enabling 
conditions for the respective lOP signals, say lOP I.EN, IOP2.EN, and IOP4.EN. 
For instance, after two right shifts, the bit pattern in the lOP enabler is FFTF. 
This corresponds to IOP2 time and IOP2.EN is true; if the programmer has 
requested an IOP2 signal (with instruction bit IRIO = 1), it will be issued at 
this time. The logic equivalent of this operation is 

IOP2 = IOP2.EN-IRIO 

Figure 7-34 is a functional sketch of the lOP enabler system. 
The LD20 ASM of the execute phase of lOT processing is shown in Fig. 

7-35. Our architecture for the LD20 already can support the PC (+) 1 ~ PC 
and the 0 ~ AC operations required in response to the incoming control signals. 
To accomplish AC + INPUT ~ AC, we must provide a data path for the 12 
bits of INPUT into the ALU, where the OR operation will occur. Since we have 
adopted a readily expansible data routing scheme, we can easily add INPUT to 
the list of items on the data multiplexer inputs. 

State Fl is a convenient place to initialize the lOP enabler; see Fig. 7-39a. 

308 The Art of Digital Design Part II 



SYSCLK ------. 

T 00 QO 

IRll 
lOPI 

F 01 QI 
lOPI.EN 

Shift 
register IRIO 

JOP2 
F 02 Q2 

lOP2.EN 

IR9 
JON 

F 04 Q4 
Right lONEN 

shift Load 

lOP SHIFT 

lOPLOAD 

Figure 7-34 An enabler for the lOP signals. 

The initialization to TFFF occurs with each instruction fetch; this does no harm 
since the only shifting of the lOP enabler occurs with lOT instructions. 

Enabling and disabling the interrupt system. The lOT instruction con­
tains the ION (Interrupt System On) and lOF (Interrupt System Off) commands, 
which allow the programmer to enable or disable the interrupt system. The 
instruction format for these operations is 60018 for ION and 60028 for IOF; in 
both cases the device address is O. Execution of these commands requires that 
the ASM set the interrupt enable flip-flop INT.EN to T or F, respectively. Figure 
7-35 shows actions in state EO that handle these activities. 

State EO: Operate Microinstructions 

Operate priority system. From the programmer's point of view, the 
PDP-81's Operate instruction is divided into two groups, Gl and G2. In our 
hardware, the important structural feature of the Operate instruction is the priority 
system for specifying the sequence of micro-operations. The simplest way to 
process the Operate instruction is to devote four states to it, one for each priority 
level, as shown in Fig. 7-36. 

Frequently, a programmer will use an Operate instruction that specifies 
only one micro-operation. For example, CLA (72008), a priority-l operation, 
has only the CLA bit set. The ASM chart in Fig. 7-36 would perform the CLA 
in the first state and then do nothing in the next three states except waste time. 

Chap. 7 Designing a Minicomputer 309 



@ 

--8 

T 
@ 

ION T-->INTEN 

F 

IOF 
T 

CD T .1 
IOSKIP PC(+) 1 -->PC 

Figure 7-35 ASM of the IOT instruction. 

We prefer to use only one clock period to process the CLA bit and then go 
immediately to the fetch phase for the next instruction. Similarly, an RAR 
instruction involves a single priority-4 operation. We prefer to bypass the first 
three priority states and go directly to the fourth state. In general, we wish to 
process the highest-priority micro-operation, followed in order by lower-priority 
operations, without wasting clock cycles on unpopulated priorities. 

We may formalize this priority-resolution problem by assuming that there 
exist four requests for service, RQSTl through RQST4, each representing one 
priority level. The requests are initialized prior to the execute phase of the 
Operate instruction, based on the pattern of bits in the instruction word. For 
example, if the instruction specifies lAC, a priority-3 operation, then RQST3 
would be true after the initialization. If the highest-priority request (RQSTl) is 
true, the LD20 must perform the specified priority-l operations and set RQSTl 
false; then if any priority requests remain, the LD20 must return for another 

310 The Art of Digital Design Part II 



Figure 7-36 A primitive ASM of the 
Operate instruction. 

pass through the execute phase of the Operate instruction. If RQSTl is false 
(which is possible the first time through, and will definitely be so the second 
time), then RQST2 is examined; and so on. Figure 7-37 is a flowchart of this 
process. 

The hardware for this scheme involves storage elements for the RQST 
terms; four flip-flops will serve. Also, we need the ability to determine if any 
priority requests remain after a pass, so that control may return for more processing 
of the instruction. We will define a variable MOREOP to be true when more 
processing is needed and false otherwise. We may test this variable at the end 
of each pass and act accordingly. 

The ASM chart for managing Operate instruction priorities is almost within 
our grasp. One final point needs study. The shift microinstructions (the "rotates") 
generate either a I-bit or a 2-bit shift. The shift register building blocks described 
in Chapter 4 perform only I-bit shifts per clock cycle, leading us to implement 
the 2-bit rotate operations as two I-bit rotates. This will mean looping twice 
through the priority-4 part of the Operate ASM. We need a flag to tell the ASM 
when a second pass through priority 4 is needed, so we will add to the architecture 
a flip-flop with output DOUBLE, to serve as a signal to "shift again." When 
DOUBLE is false, no more shifts are needed. When DOUBLE is true, another 
shift must occur, and DOUBLE, having served its purpose, must be reset to 
false. Bit IRlO = 1 specifies a double shift, and IRlO = 0 denotes a single shift. 
We may initialize DOUBLE with the value of bit IRlO, once the instruction has 
been acquired but before the execute phase begins. 

With these additions to the LD20's architecture, we may specify the ASM 
chart for the priority control of the Operate instruction. The execute phase for 
this instruction occurs entirely within state EO. Figure 7-38 is the ASM counterpart 
of the flowchart in Fig. 7-37. 

Chap. 7 Designing a Minicomputer 311 



RQSTl 
F 

T 

L...-_________ -< More requests? 

No 

Figure 7-37 The general flow of an efficient execution of the Operate instruction. 
(This is not an ASM chart.) 

Initializing the priority request flip-flops. To complete the processing 
of the Operate instruction, we must arrange to initialize the priority request flip­
flops prior to entering state EO. This must occur during Fetch, after the instruction 
reaches the instruction register IR. Examining the fetch-phase ASM, we see 
that there is only one place to do this-in term F3.1 of state F3. We will set 
or reset the request flip-flops (and also the DOUBLE flip-flop for shifts) at this 
point, according to the values of the bits in the instruction. These additions to 
the fetch-phase ASM appear in Fig. 7-39b; Fig. 7-39a contains the addition to 
state Fl for initializing the lOP enabler. 

Individual microinstructions. We have conquered the Operate instruction 
priority system in an elegant way. There remains the specification of the individual 
micro-operations at each of the four priority levels. Except for the skip and 
rotate operations, the ASMs are simple. We have already developed a structure 
that will handle both single and double rotates. Let's examine the skip instructions. 

Bit 8 of the Operate instruction specifies the sense of the skip logic. We 
may define a variable SKIP that will tell the LD20 whether the condition for a 
skip is met. In a group 2 Operate instruction, SKIP = T will mean that the 
LD20 must skip an instruction; SKIP = F will mean no skip. To aid the 
description of the logic, we require variables that indicate the three skip criteria: 
a zero accumulator, a minus accumulator, and a nonzero link. For the last 

312 The Art of Digital Design Part II 



---8 
RQSTI 

F 
RQST2 

F 
RQST3 

F 
RQST4 

F 

Figure 7-38 ASM of the Operate instruction's priority system. 

condition, the value of the link bit suffices. In the PDP-8's two's-complement 
representation of numbers, bit ACO gives the sign of the number in the accumulator: 
ACO = 0 for positive numbers and ACO = 1 for negative numbers. We use a 
new variable (AC=O) to denote a zero accumulator; its implementation in terms 
of the bits of the accumulator is given in Chapter 8. 

Assume that a group 2 Operate instruction is in the instruction register and 
that the skip-sense bit (bit IRS) is O. Then we may describe the PDP-8's skip 

TFFF -+ 

fOP enabler 

(a) lOP enabler initialization 

Load RQSTj 

fRIO -+ DOUBLE 

Figure 7-39 Additions to the fetch 
(b) Operate instruction priority phase of the lOT and Operate 

initializations instructions. 

Chap. 7 Designing a Minicomputer 313 



Co) 
~ 

~ 

-l 
:::T 
CD 

» 
:4 
o -.. 
o 
cO' s· 
o 
CD 
!!1. 

CO 
::J 

." 
Q) 

:4 

Priority I 

G 

@ ,~---'------, 

@ ------'---

Priority 2 Priority 3 Priority 4 

@ -----'---~ @/ " 

0, , @, , @/ " @ 

@ r----'---~ @r , 

@r , 

Figure 7-40 Fragments of the ASM of the Operate instruction . 



actions for this situation by a variable SKIPO: 

SKIPO = SMA·ACO + SZA ·(AC=O) + SNL-LINK 

If bit 8 is 1, then we may declare another variable SKIPI to express this condition: 

SKIP1 = SMA·ACO + SZA·(AC -0) + SNL·LINK 

The definition of the PDP-8's skip micro-operation expresses SMA as bit IR5, 
SZA as bit IR6, and SNL as bit IR7. Noticing that SKIP1 = SKIPO, we may 
combine these two conditions into a single equation for the skip operation: 

SKIP = IR8·SKIPO + IR8·SKIP1 

= IR8·SKIPO + IR8·SKIPO 

= IR8 EB SKIPO 

= IR8 EB (IR5·ACO + IR6 o (AC=0) + IR7 oLINK) 

We now have all the tools for describing the individual Operate micro­
operations. In Fig. 7-40 we show the ASMs of each of the four priority levels. 

CONCLUSION 

Now that we have derived the details of the LD20's architecture and control, 
it is desirable to collect the results into a more compact form. Figure 7-41 

Chap. 7 

ALUBUS 

Data mux 
select controls 

ALU 

ALU 
controls 

Designing a Minicomputer 

Figure 7-41 Architecture of the 
LD20: main data paths; one of twelve 
1-bit slices. 

315 



316 

Figure 7-42 ASM of the LD20's fetch 
phase. 

The Art of Digital Design Part" 



® 
® QD MAN .JR 

MANEX.SW* 

LDMA* 
0 

TAD ® 
SR -+MA MB(+)AC -+ AC 

0] 
DOl 

LDMB* AND @ 
SR -MB MB·AC-+AC 

0 
000 

@ LDPC* 
SR -pc 1MP MA -+pc 

0 
101 F-+MANEX 

LDIR* @ 
ISZ 

SR -+IR MB(+)l -+ M8 

(0 010 START. WRITE 1 
LDAC* 

SR -+AC 
DCA @) 

AC-+MB 

0 
Oil STARTWRITEl 

@ EXAM* JMS PC-+MB MA(+)l-+MA 
STARTWRlTEl 100 

CD 
eLR*- F-+L1NK OP OP 

F-+JNT,EN ASM: 
III Fig. 7-44 

@ 
lOT 

liD 

CD ® .2 .3 
DEP*- DCA 

Oil 

LDMEM* 1MS 

and others lao 

ISZ 

OlD 

others 

Figure 7-43 ASM of the LD20's execute phase, excluding the Operate instruction. 

shows the architecture of the main data paths in the LD20; each of the 12 bits 
has a similar diagram. (In Chapter 8 we will make one further refinement to 
this architecture to support possible expansions of the system.) In addition to 
this main data structure, the LD20's architecture at this point includes simple 
storage elements for the following variables: 

LINK: 
HALTFF: 
INT. EN: 

Link bit 
Halt status 
Interrupt enable 

Chap. 7 Designing a Minicomputer 317 



From 
EO: 

Fig. 7-43 

"--
Co) 

F F .... F 
CO RQST2 RQSTJ RQST4 

T T 

aD ® ® .PI .P2 .P3 

G G G 
aD .P4 

F 

r 
(0 G (0 G 

G o r~---'-~ G r~---L-~ 

-I G :J 
CD 

» 
0 ;::!. Grk erk 0 F -+ RQSTI F-+ RQST2 

..... 
CJ 

CO ;;.. @ ~ TSI 

CJ 
CD G rn 

cO· 
::J 

\l 
III 
;::!. 

Figure 7-44 ASM of the LD20's Operate instruction. 



MANEX: Denotes that the execute phase was reached from IDLE 
SING.INST: Synchronized single-instruction switch signal 
RQSTi : Four priority request flip-flops for the Operate instruction 
DOUBLE: Number of I-bit rotate micro-operations specified 

The architecture also has a single-pulser unit with output MANPULSE, to denote 
the first full clock cycle after the depression of a manual pushbutton. The lOP 
signal enabler, consisting primarily of a shift register, completes the list. 

Figures 7-42, 7-43, and 7-44 present the LD20's ASM in three charts: the 
fetch phase, the execute phase, and the complex Operate instruction. These 
three ASM charts will be of great use in Chapter 8. 

This completes the specification of the architecture and the control for the 
LD20. The implementation lies before us! This will involve: 

(a) Deriving the logic equations for the ASM outputs. 
(b) Developing the state generator. 
(c) Specifying the hardware for the architecture and converting the ASM output 

equations to fit the exact integrated circuits. 
(d) Specifying hardware for the control logic and the ASM outputs. 

READINGS AND SOURCES 

BELL, C. GORDON, J. CRAIG MUDGE, and JOHN E. McNAMARA, Computer Engineering­
A DEC View of Hardware Systems Design. Digital Press, Bedford, Mass., 1978. Chapter 
8 discusses the history and structure of the PDP-8 family. 

KUCK, DAVID J., The Structure of Computers and Computations, Vol. 1. John Wiley & 
Sons, New York, 1978. 

MANO, M. MORRIS, Computer System Architecture, 2nd ed. Prentice-Hall, Englewood 
Cliffs, N.J., 1982. 

PDP8/1 and PDP8/L Small Computer Handbook. Digital Equipment Corp., Maynard, 
Mass., 1972. User's manual for the PDP-8I minicomputer. 

PROSSER, FRANKLIN, and ROBERT WEHRMEISTER, C421-C422 Advanced Computer Organization 
Laboratory Manual. Computer Science Department, Indiana University, Bloomington, 
Ind. 47405, 1985. Laboratory manual to support the construction, debugging, and study 
of the LD20 and LD30 implementations of the PDP-81. The laboratory project uses 
the Logic Engine Development System, manufactured by Logic Design, Inc. Ask the 
authors of this book for information. 

EXERCISES 

7-1. What determines the maximum number of words in the PDP-81's memory? What 
determines the size of a memory page? What two pages of the PDP-8I are directly 
accessible from an instruction? What memory locations are accessible using indirect 
addressing? 

Chap. 7 Designing a Minicomputer 319 



7-2. Here are the contents of six words of PDP-8 memory. Treat each word as an 
instruction and give the command, the effective address EA, and, where appropriate, 
the contents of the effective address CA. All numbers are in octal. 

(0061) = 0261 

(0071) = 0061 

(0342) = 3245 

(1000) = 5725 

(1015) = 2600 

(2410) = 1471 

7-3. Some computers allow multilevel indirect addressing, such that each word used as 
an indirect address can specify an additional level of indirect addressing. Why is 
this not possible in the PDP-8? 

7-4. Explain the PDP-8's auto indexing. Here are the contents of three memory locations 
(all numbers are in octal): 

(0016) = 0016 

(0017) = 0016 

(0020) = 0016 

Starting always from this point, show the results of executing each of the following 
instructions: 

(a) 0417 
(b) 0420 
(c) 0416 
(d) 2016 
(e) 2416 
(f) 2420 

7-5. Describe the PDP-8's interrupt mechanism. How is an interrupt request conveyed 
to the PDP-8? What does the machine do if it detects an interrupt request? How 
can the programmer control the issuing of interrupts? What are the programmer's 
responsibilities for processing an interrupt? 

7-6. Explain why the PDP-8's ION (Interrupt System On) command does not take effect 
until after the execution of one additional instruction. 

7-7. What is meant by a static design? Why is this such a valuable attribute of a digital 
system? 

7-8. List the principal elements of the LD20's architecture. Which of these elements 
may the LD20 programmer directly manipulate? 

7-9. Why does the LD20's architecture have the accumulator register as the sole source 
for one of the two ALU inputs? 

7-10. Why is the instruction register IR not attached to the LD20 data multiplexer as a 
source? 

7-11. Design a three-state data bus for the LD20, to replace the multiplexer bus control 
system used in the text. 

7-12. What are the principal types of commands needed to control the LD20 architecture? 

320 The Art of Digital Design Part II 



7-13. What is the principal function performed by the fetch ASM? The idle ASM? The 
execute ASM? 

7-14. This exercise takes you through most of the fetch ASM and parts of the execute 
ASM. Assume the following (numbers are in octal): 

HALTFF = INT = F 

(0010) = 2221 (0200) = 2222 (2222) = 1111 
(AC) = 1234 (PC) = 0305 

Starting from state Fl, trace the LD20's ASM operations in each of the following 
cases. 

(a) (0305) = 5200 

(b) (0305) = 3200 

(c) (0305) = 0200 

(d) (0305) = 0600 

(e) (0305) = 0410 

7-15. This exercise takes you through the major sections of the execute ASM. Assume 
that (MA) = 0200 and (MB) = 2222. Trace the ASM flow from state EO to state 
Fl for each of the following instructions. (X means "irrelevant." All numbers are 
in octal.) 

(a) (IR) = 1XXX 

(b) (IR) = 2XXX 

(c) (IR) = 4XXX 

(d) (IR) = 6XXX 

7-16. This exercise takes you through the operate section of the execute ASM. Trace 
each of the following instructions from state EO to state Fl. The numbers are in 
binary. 

(a) (IR) = 111 011 000 001 

(b) (IR) = 111 000 100 001 

(c) (IR) = 111 000 010 111 

(d) (IR) = 111 101 001 010 

7-17. Make a table showing the sequence of fetch-phase states for each distinct form of 
the eight PDP-8I instructions. Also list the total number of memory references 
required in each case (including memory references in the execution phase). 

7-18. Why does the LD20 not process an interrupt request immediately upon its assertion? 
7-19. Explain carefully the significance of the three terms in the interrupt generation 

signal: 

INT = INTREQoINT.ENoWN 

7-20. In the LD20 ASM, is it feasible to move the test for interrupt from its present 
position in state Fl into state F2? 

Chap. 7 Designing a Minicomputer 321 



7-21. Give a specific illustration to show why we must save the LD20 program counter 
(in state Fl) for later use in computing the effective address EA. Why not use the 
value in PC at the time EA is generated? 

7-22. What is the latest point in the fetch ASM that we may place the PC (+) 1 ---'? PC 
operation? 

7-23. Refer to the memory control interface in Fig. 7-16. Carefully state the difference 
between the similar labels inside and outside the box. 

7-24. Explain the memory accessing protocol of the LD20 as displayed in Fig. 7-20. 
What are the conditions under which this protocol works? 

7-25. Redraft the LD20's fetch phase using the basic read protocol of Fig. 7-17. Can 
you see a strong argument against using this memory control ASM? 

7-26. State two ways in which the LD20 user may cause the machine to halt. 
7-27. Why is it desirable that the RESET* pushbutton signal perform an asynchronous 

reset of the LD20? 
7-28. Show why the asynchronous CONT* input in the IDLE state does not need to be 

synchronized with the LD20 system clock. 

7-29. The most complex processing in the fetch phase involves a memory-referencing 
instruction that employs indirect addressing and auto indexing to fetch an operand. 
The minimum number of fetch-phase clock cycles for such an instruction is 11. 
(a) Give an example of a PDP-8 instruction that requires at least this number of 

LD20 clock cycles. 
(b) Verify from Fig. 7-42 that 11 clock cycles are minimal for this type of instruction. 
(c) Can you find a way to shorten the number of clock cycles by modifying the 

fetch ASM? (Hint: Look at state F6.) 
7-30. With the present architecture of the LD20, why can't we eliminate state F2 by 

including F2' s actions in a conditional output of state Fl? 
7-31. Suppose you wish to reduce the number of states in the LD20's fetch phase (Fig. 

7-42). 
(a) Collapse states F2 and F3 into a single state that performs actions equivalent 

to the former two states. 
(b) What are the disadvantages of the collapse in part (a)? 

7-32. Suppose that all the F ---'? MANEX commands in the execute phase were replaced 
by a single unconditional F ---'? MANEX in state EO. What would be the effect on 
the execution of the LD20 ASM? 

7-33. (a) With the present LD20, show what happens if an operator depresses a manual 
pushbutton such as LDAC while the LD20 is not in the IDLE state. 

(b) Answer part (a) assuming that the entire MANEX signal is deleted from the 
ASM. 

7-34. The LD20's manual operations are performed in the execute phase, like regular 
instruction processing. An attractive alternative would be to perform manual push­
button executions in a manual phase, using states separate from Execute. 
(a) Develop an LD20 ASM with such a manual phase. 
(b) What simplifications does this form of LD20 ASM introduce? 
(c) What disadvantage of this form of ASM can you see? 

7-35. State E2 may be eliminated from the LD20 ASM. Eliminate it. What are the 
advantages and disadvantages of this elimination? 

322 The Art of Digital Design Part II 



7-36. Design a detailed ASM for the LD20's Operate instruction along the pattern of 
Fig. 7-36. Discuss the advantages and disadvantages of this primitive approach. 

7-37. Modify the ASM of the LD20's Operate instruction to replace the two-position 
rotate flag DOUBLE by a fifth priority level, RQST5. 

7-38. The LD20's algorithm for the lOT instruction always makes three passes through 
states E3, E4, and E5, regardless of the number of lOP signals requested by the 
instruction. Modify the LD20's ASM so that E3, E4, and E5 (or their equivalent) 
are executed only When the LD20 asserts one of the lOP signals. 

7-39. Suppose the PDP-8 lOT instruction protocol is altered so that the computer issues 
all requested lOP signals at one time. How will this affect the LD20's ASM? 

7-40. Combine states E3, E4, and E5 for the lOT instruction into a single state that 
performs activities equivalent to the former three states. 

Chap. 7 Designing a Minicomputer 323 



Building the Minicomputer 

In Chapter 7, we designed the architecture and control algorithm for the LD20 
minicomputer-the architecture in terms of functional units, and the control as 
an ASM chart. In this chapter, we will sketch the implementation of the LD20 
from these starting points. We will not specify each building block and logic 
equation in detail, because we use the standard methods illustrated in Chapters 
5 and 6, and you will be able to work out the details with only general guidance. 

Good design style dictates that we defer the actual decisions about hardware 
as long as we can. Up to this point, the design of the LD20 has required us to 
commit ourselves to only a few specific pieces of hardware. In this chapter, we 
will continue to defer hardware decisions until we have dealt with the system 
on the logical level to the fullest useful extent. 

We use the ASM chart extensively to derive the control signals. The ASM 
chart for t~e LD20 was shown in Figs. 7-42, 7-43, and 7-44. 

PRELIMINARIES 

Auxiliary Variables 

The ASM chart uses a number of convenient variables that we have constructed 
from primary signals. The definition of many of these appears in Chapter 7, but 
we list them here for reference. In general, the outputs of elements of the 
architecture are primary signals and do not appear in this list. 

324 



AUTO 

DIRECT 

GI 

G2 

INT 

IOF 

ION 

IOPI 

IOP2 

IOP4 

= MAO -MAl -MA2 -MA3 -MA4 -MA5 -MA6 -MA7 -MA8 
= IR3 

= IR3 

= IR3 

= INTREQ-INT.EN-ION 

= IOT-IR3 -IR4 -IR5 -IR6 -IR7 -IR8 -IR9-IRlO-IRll 

= IOT-IR3 -IR4 -IR5 -IR6 -IR7 -IR8 -IR9 -IRlO-IRll 

= IOPI.EN-IRll 

= IOP2.EN-IRlO 

= IOP4.EN-IR9 

MANEX.SW* = MANEX-MANSW* 

MANSW* 

MOREOP 

NOMEM 

SKIP 

(AC=O) 

(MB=O) 

= LDMA* + LDMB* + LDPC* + LDIR* + LDAC* 

+ LDMEM* + DEP* + EXAM* + CLR* + CONT* 

(see implementation of operate priority circuit) 

OP + lOT + DIRECT-(DCA + JMS + JMP) 

= IR8 ® (IR5-ACO + IR6-(AC=O) + IR7-LINK) 

= ACO-ACI-AC2-AC3-AC4 -AC5 -AC6-AC7-AC8 

-AC9-AClO-ACll 

= MBO -MBI -MB2 -MB3 -MB4 -MB5 -MB6 -MB7 -MB8 

-MB9 -MBlO -MBll 

Effective address EA: According to Eq. (7-3), the effective address is 

EA; = MB;- IR4 

EA; = IR; 

(i = 0-4) 

(i = 5-11) 

Instruction variables: We may most easily form the individual instruction variables 
as the outputs of a decoder. Technically, they are not auxiliary variables, but 
it is useful to emphasize their derivation here. 

0: AND = IRO -IRI -IR2 

1: TAD = IRO -IRI-IR2 

2: ISZ = IRO -IRI-IR2 

3: DCA = IRO -IRI -IR2 

4: JMS = IRO-IRI-IR2 

5: JMP = IRO-IRI-IR2 

6: lOT = IRO- IRI- IR2 

7: OP = IRO-IRI-IR2 

Chap. 8 Building the Minicomputer 325 



Labels for ASM Chart Locations 

These variables are useful parameters for forming output equations and control 
routings in a systematic manner. The logic equations come immediately from 
the ASM chart. We have two types of labels: the conditional output terms, 
which are the basic parameters for expressing the output equations, and the 
other position markers, not directly associated with conditional outputs but used 
to label various components of the states of the execute phase. 

ASM chart position labels. You should verify each of these equations. 

DBL.IS.T = RQSTI-RQST2 -RQST3 -RQST4-DOUBLE 
(this is an auxiliary variable used in EO.DBL and 
EO.TST below) 

EO.DBL = EO.lR-OP-DBL.lS.T 

EO.lR = EO-MANEX.SW* 

EO.MAN = EO-MANEX.SW* 

EO.Pl = EO.IR-OP-RQSTl 

EO.P2 = EO./R-OP-RQSTI-RQST2 

EO.P3 = EO.lR-OP-RQSTl-RQST2 -RQST3 

EO.P4 = EO.lR-OP-RQSTl-RQST2 -RQST3 -RQST4 

EO.TST = EO.lR-OP-DBL.lS.T 

El.IR = El-MANEX.SW* 

Conditional output terms. Here are a few of these terms. You should 
verify them and derive the rest. 

IDLE.l = IDLE-MANPULSE-CONT* 

Fl.2 

F4.2 

EO.l 

EO. 11 

EO.18 

E0.37 

= FI-HALTFF-INT 

= F4-CC-DIRECT-AUTO 

= EO.2 + EO.3 + EO.4 + EO.5 + EO.6 + EO.7 + EO.8 

= EO.lR-TAD 

= EO.Pl-G2-SKIP 

= EO.11-ALU.COUT 

The most difficult conditional output term to derive is E0.34, at the final 
exit to FI from the execution of an Operate instruction (see Fig. 7-38). To assist 
the synthesis of this equation and the equations for moving from state EO to EO 
and from state EO to FI, we have defined ASM labels EO.DBL and EO.TST and 
the auxiliary definition DBL.IS.T. With these judiciously chosen variables, we 
have 

E0.34 = EO.TST-MOREOP 

326 The Art of Digital Design Part II 



We will encounter EO.TST and EO.DBL again in the development of state transitions. 
You should derive the defining equations for EO.DBL and EO. TST, using the 
ASM in Fig. 7-44. The exercise will increase your intuitive feeling about im­
plementing the flow of control and also will be excellent practice in manipulating 
Boolean expressions. 

THE DATA-ROUTING SYSTEM 

Inputs to the Data Multiplexer 

The LD20's 12-bit data path uses 12 multiplexers to control access to the A 
input of the ALU. In the initial specification, in Fig. 7-9, we had four sources 
in the data mux system. As the design progressed, we found that we needed 
to add MB, MA, and INPUT to the data mux. Looking ahead, we find that the 
implementation of ALU operations will require that the AC register be available 
at the ALU's A input, in addition to its position as the sole source of the ALU's 
B input. 

The data path now has eight sources of 12-bit data, a convenient number 
because 8-input multiplexers are available. However, as good designers we 
consider the possibility that later we might wish to extend the LD20's basic 
design to accept additional instructions. New instructions are likely to require 
additional registers on the main data path. Is there an easy way to leave open 
an input to the data multiplexers, to allow for such a possibility? Yes: We 
choose to combine INPUT and EA into a single data multiplexer input, thereby 
reducing to 7 the data mux inputs committed to our basic design. In the treatment 
of the input-output interface in Chapter 9, you will see that the INPUT lines 
from the external device are required to have three-state control. Data is presented 
on these lines only when required by an appropriate lOT instruction. On the 
other hand, EA is used only in ASM state F3. If we use three-state control on 
the 12 bits of EA, we may create a "minibus" consisting of INPUT and EA. 
This minibus will use only a single input on the data multiplexer system. INPUT's 
access to this data mux input is controlled by the lOT protocol. The signal to 
control the three-state outputs of EA is 

SELEA == F3.1 

Although we may use AND gates for the first 5 bits of EA, we find it convenient 
to use three-state multiplexers for these bits and three-state buffers for the 
remaining bits, as shown in Fig. 8-1. 

The Select Signals of the Data Multiplexer 

In our final design the data multiplexer system has seven 12-bit sources: AC, 
MA, MB, MEM, PC, SR, and the combined INPUT/EA. A set of twelve 8-
input multiplexers such as the 74LS151 will provide efficient control of these 
inputs. The muxes require three select inputs, B4, B2, and Bl. Our task is to 
develop the logic equations that provide the proper inputs to these three control 

Chap. 8 Building the Minicomputer 327 



SELEA 

0---1 

EN 

>--EA; (i = 0, ... , 4) 

MB;---I 

SELEA 

IR; >------ EA; (i = 5, ... , II) 
Figure 8-1 A three-state implementa­
tion of EA. 

pins on each mux chip. We first make an assignment of the registers to input 
positions on the multiplexers. The order is arbitrary; Fig. 8-2 shows our choice. 
For each source register, we may write the contributing state terms from the 
ASM chart. Remember, we are looking for registers used as a source of data 
in the chart. Table 8-1 contains the result. Now we can derive the equations 
for B4, B2, and Bl. 

328 

1---+----13 '--__ ---..J AC4.H 

I---.;MA~4;;;.;.H~......j 2 

PC 

1-=:':":'::'~-I6 

INPUT4.H 

EA4.H 

SR4.H 

L 

MUX4.H 

B4.H 

ALUBUS4.H 

B 

ALU 
'LS181 F 

A 

Figure 8-2 Bit slice 4 of the main data-routing system, showing the data multiplexer 
and register assignments to the data multiplexer inputs. 

The Art of Digital Design Part II 



TABLE 8-1 DATA MULTIPLEXER CONTROLS 

Source 

PC 
MB 
MA 
AC 
SR 
MEM 
EA 
INPUT 

Mux 
Mux controls 
input B4 B2 B1 ASM terms 

0 0 0 0 F1.1 + F2 + EO.14 + EO.18 + E2.1 + E3.1 
1 0 0 1 F4.2 + F6 + EO.1O + EO.11 + EO.12 
2 0 1 0 EO.7 + EO.15 + E1.2 + E1.4 
3 0 1 EO.13 + EO.20 + EO.24 
5 1 0 EO.2 + EO.3 + EO.4 + EO.5 + EO.6 + EO.9 + EO.25 
6 0 F3.2 + F4.1 + F7.1 
7 1 F3.1 
7 1 E5.1 

B4 SR + MEM + EA + INPUT 

F3.1 + F3.2 + F4.1 + F7.1 + EO.2 + EO.3 + EO.4 + EO.5 + EO.6 
+ EO.9 + EO.25 + E5.1 

B2 MA + AC + MEM + EA + INPUT 

F3.1 + F3.2 + F4.1 + F7.1 + EO.7 + EO.13 + EO.15 
+ EO.20 + E0.24 + El.2 + El.4 + E5.1 

Bl MB + AC + SR + EA + INPUT 

F3.1 + F4.2 + F6 + EO.2 + EO.3 + EO.4 + EO.5 + EO.6 + EO.9 
+ EO. 10 + EO. 11 + EO.12 + EO.13 + EO.20 + EO.24 + EO.25 + E5.1 

ALU Operations 

Although we have always supposed that we would use the 74LS181 ALU chips 
as the basis for our ALU, we have done nothing to this po~nt that requires these 
particular chips. Rather, we specified only that the ALU black box must be able 
to perform certain logic and arithmetic functions on its inputs. We may carry 
this generality one step further and develop logic equations for each ALU operation. 
A scan of the LD20's ASM chart shows that we require the following operations: 
INCREMENT, PLUS, AND, OR, and NOT. In Chapter 7, we decided to use 
the ALU as a source of zeros to clear registers, so the ZERO operation emerges. 
Since the AL U also serves as a transparent box for moving data from a source 
to a destination, the last ALU operation is PASS. 

Our ALU black box has two sets of 12-bit inputs A and B. The AC feeds 
into the B input, and the data multiplexer output goes into the A input. We may 
now tabulate the conditions under which the ALU must perform each operation. 
Table 8-2 shows this information; the logic equations for each ALU operation 
can be drawn from the presentation. 

Now at last we specify that the ALU unit contains three 74LS181 Four­
Bit ALU chips, linked together to perform 12-bit arithmetic. All the chips share 
5 control inputs: S3, S2, SI, SO, and M. The least significant chip has a carry­
in input that we must control, and the most significant chip has a carry-out 

Chap. 8 Building the Minicomputer 329 



TABLE 8-2 ALU OPERATIONS 

ASM ALU 
notationa operation ASM terms 

R (+) 1 -> INCREMENT A F2 + F4.2 + EO.7 + EO.12 + EO.18 + 
E0.24 + E1.2 + E1.4 + E2.1 + E3.1 

R·AC -> AANDB EO. 10 
R + AC-> A ORB E0.25 + E5.1 
R-> NOTA EO.20 
R (+) AC-> A PLUS B EO. 11 
0-> ZERO Fl.2 + EO.16 + E0.22 + El.3 + E4.1 
R-> PASS A All other conditions 

aR is any source register on the data mUltiplexer system. 

output, which we may use if necessary. Figure 8-3 shows the arrangement, 
with the proper LD20 logic variables as inputs and outputs. From a TTL data 
book, we find the 74LSl81 control input values for our seven arithmetic and 
logical operations. Table 8-3 contains the information; 83-80 and Mare T = 
H, while CIN is T = L. Now, using Tables 8-2 and 8-3, we may write the 
sum-of-products form of each control input equation: 

ALU83 

ALU82 

ALU81 

ALU80 

AND + PLUS 

EO.IO + EO.11 

F 

AND + ZERO 

F1.2 + EO.10 + EO.16 + E0.22 + E1.3 + E4.1 

AND + OR + PLUS + ZERO 

F1.2 + EO.1O + EO.11 + EO.16 + E0.22 + E0.25 + E1.3 

+ E4.1 + E5.1 

MUXO.H - ACO.H- MUX4.H - AC4.H- MUXB.H - ACB.H­
MUXll.H ACll.H MUX3.H AC3.H MUX7.H AC7.H 

4 I' 4' 4 I' 4' I' 4'" 4' I' 

A B A B A B 

ALUCOUT.L 0---< COUT 'LS181 CIN COUT 'LS181 CIN COUT 'LS 181 CIN - ALUC/N.L 

ALUS3.H 
I 
I 
I 

ALUM.H 

5 

330 

\ 

F 

4 !' 

ALUBUSO.H -
ALUBUS3.H 

F 

4'!, 

ALUBUS4.H -
ALUBUS7.H 

F 

4' .... 

ALUBUSB.H -
ALUBUSll.H 

Figure 8-3 Implementation of the ALU. The most significant bits are on the left. 

The Art of Digital Design Part II 



TABLE 8-3 74LS181 ALU CONTROL INPUTSa 

S3 S2 S1 SO M CIN Function 

F F F F F T INCREMENT 
T F T T F T AND 
F F F T F F OR 
F F F F T F NOT 
T F F T F F PLUS 
F F T T T F ZERO 
F F F F F F PASS 

"Adapted from 74LS181 data sheet. SO, S1, S2, S3, and Mare T = H; CIN is T = L. 

ALUM NOT + ZERO 

Fl.2 + EO.16 + EO.20 + EO.22 + El.3 + E4.1 

ALUCIN = INCREMENT + AND 

F2 + F4.2 + EO.7 + EO.1O + EO.12 + EO.18 + EO.24 + El.2 
+ El.4 + E2.1 + E3.1 

Register-Load Signals 

The output of the ALU serves as the 12-bit data bus ALUBUS that connects to 
the input of several of the registers. We need equations to specify when each 
register should load the ALUBUS data. Such loading activity shows up in the 
ASM charts as a register-transfer notation of the form "~ register". We may 
read the relevant terms for each register load from the ASM charts. Of the five 
equations-for MA(LD) , MB(LD), PC(LD), IR(LD), and AC(LD)-we show two 
below. You should develop the remaining ones. 

IR(LD) = Fl.2 + F3.2 + EO.5 

AC(LD) = EO.6 + EO.1O + EO.11 + EO.16 + EO.20 + EO.22 + E0.24 

+ E0.25 + El.3 + E4.1 + E5.1 

We will implement four of the registers (MA, MB, PC, and IR) with enabled 
D-register chips. The 74LS378 Six-Bit Enabled D-Register and 74LS379 Four­
Bit Enabled D-Register are good choices. (The 74LS378 presents its outputs 
with one voltage polarity; the 74LS379 provides both voltage polarities for its 
outputs.) These registers have a load enable input, so the register load equations 
derived above apply directly to the enable inputs of these registers. The AC 
register must also serve as a shift register to implement the rotate micro-operation. 
The shift register building block, with responsibilities for shifting left, shifting 
right, loading, and holding data unchanged, is more complex to control than is 
the simple enabled D register. If we choose the 74LS194 as our shifter, two 
control lines SI and SO govern the operations. The serial inputs for left and 

Chap. 8 Building the Minicomputer 331 



right shifts must come from the LINK bit, since the PDP-8 rotate operations 
treat the AC and LINK as a combined 13-bit circular register. In Fig. 8-4 we 
show the structure of the AC circuit. Table 8-4 contains the relationship of 
accumulator controls to the ASM chart logic. Let ACS] and ACSO be the LD20 
signals that control the S] and SO inputs. Then the logic equations follow from 
the table: 

ACSO.H 

ACSI.H 

SYSCLK.H 

-

:t: 
:-i 
~ 
'-l 

V 

RI 

:t: 

8 
"<: 

ACSO = LOAD + RIGHT 

= AC(LD) + E0.29 

ACS] = LOAD + LEFT 

= AC(LD) + E0.28 

ALUBUSO.H­
ALUBUS3.H 

ALUBUS4.H­
ALUlJUS7.H 

4 4't-

SI so D V SI so D 
CLR p-I-H CLR p.r.H 

'LS194 'LS194 

LI~ r-RI LI~ r- RI 

:t: :t: :t: :t: :t: :t: :t: 
tj (j (j ~ t3 ~ r..: v 
"<: "<: "<: "<: "<: "<: "<: 

ALUBUS8.H­
ALUBUSll.H 

4 t-

V SI so D 
CLR F>-f-

'LS194 

LI r-

:t: :t: :t: :Ii :t: 

tl e c::; ..... ~ ..... 
~ "<: "<: v ..... 

"<: "<: '-l 

Figure 8-4 Implementation of the AC accumulator and shift register. 

TABLE 8-4 ACCUMULATOR CONTROLS 

74LS194 74LS194 control inputs" 
ASM output operation S1 SO ASM terms 

--+ AC LOAD T T = AC(LD) 
ROTATE RIGHT RIGHT F F EO.29 
ROTATE LEFT LEFT T T EO.28 
No Change HOLD F F All others 

"Adapted from 74LS194 data sheet. S1 and SO are T = H. 

H 

332 The Art of Digital Design Part II 



Architecture and Control of the Link Bit 

The PDP-8 uses the link bit in several ways. There are specific instructions to 
clear and complement the link. Overflows from arithmetic operations cause 
LINK to be complemented. The rotate micro-operations in the Operate instruction 
use the combined AC-LINK as a 13-bit circular register. 

We could use a JK flip-flop for LINK storage, and derive the control 
equations for setting and clearing the flip-flop from the ASM chart. Since there 
are so many different operations on LINK, we look for a more orderly way to 
proceed. Suppose that we implement LINK as a simple data storage element 
such as a D flip-flop. What is the input to LINK in each of the necessary 
operations? For clearing and complementing, the inputs are zero and LINK, 
respectively. For left rotates, ACO is the input to LINK, and for right rotates, 
ACll. Is this all? If we use a D flip-flop, we must also provide for the frequent 
occasions when nothing happens to LINK. The "do-nothing" situation requires 
that the input to LINK be LINK itself. If an enabled D flip-flop were available, 
we could use the enable feature to manage the constructive actions, leaving the 
flip-flop disabled during the do-nothing periods. However, such individual enabled 
D flip-flops are not common, so we choose to implement LINK with a simple 
D flip-flop. Therefore, at all times we must select one of the five inputs to the 
link register: LINK, LINK, zero, ACO, or ACII. That magic word select shows 
us the way: use the mUltiplexer building block. We dodged the link architecture 
in Chapter 7 because at that time we did not understand the complete role of 
the link bit. Now that we know what is required, we can add a LINK circuit 
to our architecture. We need a 5-input mUltiplexer, but an 8-input mux is the 
smallest useful and commonly available chip. Choose a 74LS151; we will control 
its three select inputs with LD20 signals LINKMB4, LINKMB2, and LINKMBI. 
Figure 8-5 shows the link unit. Table 8-5 is a summary of the control conditions 

Chap. 8 

LINK.H 

LINK.L 

ACO.H 2 

ACII.H 3 
'LS151 

L 4 Bl 

L 5 B2 

L 

L 

LINKMB4.H -----' 

LlNKMB2.H -----~ 

LINKMBI.H ------.... 

0 

'LS175 

CLR 

SYSCLK.H 

H 

Figure 8-5 Circuit for the link bit. 

Building the Minicomputer 

LINK.L 

333 



TABLE 8-5 MULTIPLEXER CONTROLS FOR LINK 

Link mux controls 
ASM output B4 B2 Bl ASM terms 

o ~ LINK (Clear) X X £0.8 + £0.17 
SHIFT RIGHT 0 1 £0.29 
SHIFT LEFT 0 0 £0.28 
LINK ~ LINK (Complement) 0 0 £0.21 + £0.37 + £0.38 
No Change (Hold) 0 0 0 All others 

for the link multiplexer. The resulting equations for the control inputs are 

LINKMB4 = CLEAR 
= EO.8 + EO.17 

LINKMB2 = SHIFT.RIGHT + SHIFT.LEFT 

= EO.28 + E0.29 

LINKMBl = SHIFT.RIGHT + COMPLEMENT 

= EO.21 + EO.29 + E0.37 + E0.38 

STATE SEQUENCING SYSTEM 

The State Generator 

To produce the proper sequence of states, we will use the mUltiplexer table­
lookup technique. There are fourteen states in the LD20's ASM, so 16-input 
multiplexer chips are suitable. Four 16-input control multiplexers will provide 
inputs to the four state flip-flops. The 4 flip-flop outputs specify a 4-bit code for 
the current state. This code serves as the select input to each of the four control 
muxes. The state generator's architecture is illustrated in Fig. 8-6, which shows 
one of the four state-variable circuits. 

The state decoder. The encoded form of the current state is fine for 
driving the control muxes, which require an encoded select input, but the output 
terms in the ASM require individual signals for each state. To provide these, 
we decode the state code using a decoder building block. Since we have fourteen 
states, we choose the 74154 Four-Line-to-Sixteen-Line Decoder. 

State assignment and state transitions. With the multiplexer imple­
mentation of a synchronous ASM, we have little reason to favor one state 
assignment over another. An orderly and easily remembered assignment is 
IDLE = 00002 , Fl through F7 = 0001 2 through 01112 (18 through 78), and EO 
through E5 = 10002 through 11012 (108 through 158), Using this assignment and 
the ASM charts, Table 8-6 shows the conditions for state transitions. Whenever 

334 The Art of Digital Design Part II 



MUXA(O).H 

I 
I 
I 

16 Inputs 

I 

I 
I 
I 
I 

MUXA(JS).H 

RESET*.L 

)-----~D 

B 
SYSCLK.H ---I.> 

c 

SVA.H 

I-.--SVB.H 

'----- SV C.H 
1-. _____ SVD.H 

Q 

Figure 8-6 Implementation of one of the four state variables. 

SVA.H 

SVA.L 

it is profitable, we use conditional output terms, since we must implement them 
anyway to provide the appropriate output signals. 

There are two unused states, with assignments 11102 and 11112 • If for any 
reason the machine is in either of these states, we wish to go next to the IDLE 
state. Also, for any state, an asynchronous RESET* signal from the control 
panel must force an immediate (unclocked) jump to IDLE. This apocalyptic 
master reset is the only asynchronous state change in the design. The 74LS175 
Quad D Register that serves as our state-variable memory has an asynchronous 
clear input. Therefore, if we choose positive logic (T = H) for the state variables, 
we may use this clearing feature with input RESET* to force the LD20 immediately 
to IDLE (00002). Although in general we are wary of asynchronous circuit elements, 
the feature is convenient here. 

State multiplexer inputs. Using Table 8-6, we may derive the inputs 
to the four state multiplexers, such as the one shown in Fig. 8-6. Here is a 
selection ofthe input equations; you should verify them and derive the remainder. 

MUXA.EO = MUXA(8) = EO.9 + EO.12 + EO.13 + EO.14 + EO.15 

+ EO.3l·ION·IOF + E0.32 + E0.33 

+ E0.34 + E0.35 

MUXB.Fl = MUXB(1) = Fl.l 

MUXC.F5 = MUXC(5) = CC + CC = T 

MUXC.El = MUXC(9) = F 

MUXD.El = MUXD(9) = CC + El.IR·ISZ 

MUXD.E4 = MUXD(12) = T 

Chap. 8 Building the Minicomputer 335 



TABLE 8-6 STATE TRANSITIONS IN THE LD20 

Next-state 
Present Next code 
state state D C B A Conditions for transition 

IDLE IDLE 0 0 0 0 MANPULSE 
Fl 0 0 0 1 MANPULSE·CONT* 
EO 0 0 0 IDLE. 1 

FI IDLE 0 0 0 0 HALTFF 
F2 0 0 1 0 F1.1 
EO 1 0 0 0 FI.2 

F2 F3 0 0 T 

F3 F3 0 0 CC 
F4 0 1 0 0 F3.3 
EO 1 0 0 0 CC·NOMEM 

F4 F4 0 0 0 CC 
F5 0 0 1 F4.2 
F6 0 1 0 CC·DIRECT·AUTO 
EO 1 0 0 0 CC·DIRECT 

F5 F5 0 0 1 CC 
F6 0 0 CC 

F6 F7 0 1 1 1 F6.1 
EO 0 0 0 (DCA + JMS + JMP) 

F7 F7 0 1 1 1 CC 
EO 1 0 0 0 CC 

EO IDLE 0 0 0 0 EO.1 
F1 0 0 0 1 EO.15 + E0.32 + E0.33 + E0.34 + EO.35 
EO 1 0 0 0 EO.DBL + EO.TST·MOREOP 

= EO.IR·OP·(DBL.IS.T + MOREOP) 
EI 0 0 EO.9 + EO.12 + EO.13 + EO.14 
E3 0 1 EO.31·ION·IOF 

EI IDLE 0 0 0 0 CC·MANEX.SW* 
FI 0 0 0 1 E1.3 + E1.4 
EI 0 0 1 CC 
E2 0 1 0 El.IR·ISZ 

E2 FI 0 0 0 T 

E3 E4 0 0 T 

E4 E5 1 0 1 T 

E5 F1 0 0 0 1 IOP4.EN 
EO 0 0 0 IOP4.EN 

(1110) IDLE 0 0 0 0 T 

(1111) IDLE 0 0 0 0 T 

(Any) IDLE 0 0 0 0 RESET* (asynchronous) 

336 The Art of Digital Design Part II 



SPECIAL SYSTEMS 

Priority Control in the Operate Instruction 

Perhaps the most sophisticated aspect of the LD20's design is the priority system 
for the Operate instruction. We must develop logic equations for controlling the 
priority-level memory element RQSTI-RQST4 and the double-shift flag DOUBLE, 
and deriving the value of the Operate priority looping variable MOREOP. 

Table 8-7 is a summary of the priority assignments for the PDP-81's Operate 
instruction and the instruction register's bit patterns for the Operate micro­
operations. From this table we derive logic equations for each priority level 
PRIl-PRI4: 

PRIl = IR3 ° (IR4 + IR5) + IR3 o(IR5 + IR6 + IR7 + IR8) 

PRI2 = IR3 o(IR6 + IR7) + IR3 oIR4 

PRI3 = IR3 0 IRll + IR3 o(IR9 + IRIO) 

PRI4 = IR3 ° (IR8 ® IR9) 

Once the LD20's IR is loaded, these equations establish the priority levels 
requested by the Operate instruction. 

TABLE 8-7 PRIORITY ASSIGNMENTS FOR THE PDP-81'S OPERATE 
INSTRUCTION 

PDP-81 Operate 
Priority Group micro-operations Definition 

1 CLA,CLL IRJ o(IR4 + IR5) 
2 Skips IR3 o(IR5 + IR6 + IR7 + IR8) 

2 1 CMA, CML IR3 o(IR6 + IR7) 
2 CLA IR3 olR4 

3 1 lAC IR3 0 lRll 
2 OSR, HLT IR3 o(IR9 + IRIO) 

4 1 Rotates IR3 ° (IR8 EB IR9) 
2 None IR3 0 P 

Controlling the priority flip-flops. The priority flip-flops designate those 
priority levels of the Operate instruction not yet acted upon. The priority flip­
flops RQSTI-RQST4 are initialized in state F3 at ASM term F3.1 (see Fig. 
7-42). According to the ASM chart of the Operate instruction, Fig. 7-44, RQSTl, 
RQST2, and RQST3 are cleared in state EO at ASM terms EO.19, EO.23, and 
EO.27, respectively; RQFF4 does not require clearing in state EO. We may use 
JK flip-flops for RQSTi. We have the following equations for controlling the 
priority flip-flops: 

Chap. 8 

RQSTl(SET) = F3.1 opRIl 

RQST2(SET) = F3.1 opRI2 

Building the Minicomputer 337 



RQST3(SET) = F3.I·PRI3 

RQST4(SET) = F3.I·PRI4 

RQSTI(CLR) = F3.I·PRIJ + EO.I9 

RQST2(CLR) = F3.I·PRI2 + E0.23 

RQST3(CLR) = F3.I·PRI3 + E0.27 

RQST4(CLR) = F3.I·PRI4 

The double-rotate flag DOUBLE. We implement DOUBLE with a JK 
flip-flop, which requires set and clear control inputs. In F3.1, DOUBLE receives 
the value of bit IRIO of the instruction register; term EO.30 resets DOUBLE to 
F. The equations are 

DOUBLE(SET) = F3.IeIRIO 

DOUBLE(CLR) = F3.IeIRIO + E0.30 

Using our mixed-logic notations for the JK flip-flop, we may use either J or K 
as the set input for DOUBLE, adopting the most convenient voltage polarities 
for the set and clear terms above. 

The MOREOP loop test variable. Look now at the MOREOP test at the 
bottom of the Operate instruction's ASM in Fig. 7-44. MOREOP is a derived 
variable that specifies when it is necessary to return to state EO to process 
another priority level of the Operate instruction. How is the value of MOREOP 
related to the condition of the request flip-flops? MOREOP must be true if and 
only if there is at least one more priority level to process. In any pass through 
the MOREOP test, the request flip-flop presently being honored is still true, 
since it will not be reset until the end of the current EO state. Thus MOREOP 
must be true whenever two or more request flip-flops are true. Table 8-8 explicitly 
displays this relation. 

Once again we have several possible implementations. Using SSI gates to 
derive MOREOP is straightforward but messy. Another implementation of this 
"two-or-more-of-four" circuit is to use a 16-input multiplexer with MOREOP as 
its output. RQSTI, RQST2, RQST3, and RQST4 serve as select inputs to the 
mux, and each data input is permanently true or permanently false, according 
to Table 8-8. 

We obtain a more compact implementation using an 8-input multiplexer, 
again with MOREOP as its output. Look at Table 8-8 and view the data as 
arranged, not in sixteen rows but in eight groups of 2 rows each, based on the 
values of RQSTl, RQST2, and RQST3. The two entries for each pair are dis­
tinguished by the value of RQST4, and the entries for each pair have outputs 
that behave in one of three ways: 

a. Both outputs are true; 
b. Both outputs are false; or 
c. The outputs have the same value as RQST4. 

338 The Art of Digital Design Part " 



TABLE 8-8 MOREOP AS A TWO-OR-MORE-OF-
FOUR IMPLEMENTER 

RQSTl RQST2 RQST3 RQST4 MOREOP 

F F F F F 
F F F T F 

F F T F F 
F F T T T 

F T F F F 
F T F T T 

F T T F T 
F T T T T 

T F F F F 
T F F T T 

T F T F T 
T F T T T 

T T F F T 
T T F T T 

T T T F T 
T T T T T 

This leads us to the elegant implementation of MOREOP shown in Fig. 8-7. If 
by now you suspect that the multiplexer is a flexible and powerful building block, 
you are quite right. 

L 
L 

RQST4.H 
RQST4.H 

H 3 'LS151 
RQST4.H 4 A 

H 5 B 
H 6 C 
H 7 

RQSTl.H ------' 
RQST2.H--------' 
RQST3.H----------' 

The lOP Signal Enabler 

MOREOP.H 

Figure 8-7 Implementation of 
MOREOP. 

In Chapter 7, we developed a shift register architecture for issuing the lOP 
signals for the lOT instruction. To select the proper time for enabling each lOP 
signal, we have outputs IOPl.EN, IOP2.EN, andlOP4.ENfrom the shift register. 
The equations for issuing each lOP signal are 

IOP1 = IOP1.EN-IRll 

Chap. 8 Building the Minicomputer 339 



IOP2 = IOP2.EN-IRlO 

IOP4 = IOP4.EN-IR9 

State E5 tests the signal IOP4.EN to see if the third pass through the lOT states 
is in progress. If IOP4.EN is true at that time, the execution of the instruction 
is complete and the next state will be F1; otherwise, the next state will again 
be EO. 

We select a 74LS194 Four-Bit Universal Shift Register as the lOP enabler. 
This chip has two control inputs SI and SO. Table 8-9 shows the conditions 
for each operation required of the lOP enabler. We may immediately develop 
logic variables IOPSI and IOPSO to control the 74LS194's SI and SO inputs: 

IOPSO = LOAD + RIGHT. SHIFT = Fl + E0.31 

IOPSI = LOAD + LEFT.SHIFT = Fl 

TABLE 8-9 lOP ENABLE CONTROL 

74LS194 74LS194 controla 

ASM output operation SI SO 

TFFF --> lOP Enabler LOAD T T 
lOP Enabler Right Shift RIGHT F T 
(Not used) LEFT T F 
(No change) HOLD F F 

"Adapted from 74LS194 data sheet. SI and SO are T = H. 

Control of the Interrupt System 

ASM terms 

Fl 
E0.31 
F 
All others 

Sensing an interrupt request. Since an interrupt request signal EXTINT* 
may arrive at any time, we must synchronize this signal to the system clock to 
produce the LD20's INTREQ, used in the formation of the auxiliary signal INT. 
We may synchronize EXT INn with a D flip-flop; the input is EXTINT*, the 
output is INTREQ. 

Interrupt system enable control. The interrupt system's enable flip-flop 
JNT.EN requires set and clear commands to control its J and K inputs. According 
to the ASM chart, the equations are 

JNT.EN(SET) = E0.32 

JNT.EN(CLR) = Fl.2 + EO.8 + E0.33 

Forcing the interrupt. State term F1.2 generates an interrupt by forcing 
a JMS operation code into the first 3 bits of the instruction register, so that the 
execute phase will proceed as if it is processing a regular JMS instruction. The 
MA register is also set to zero at this time to provide the proper effective address 
for the JMS instruction. The ALU output ALUBUS is the normal data pat\! for 
input to the instruction register JR. We must add the necessary logic td the 

340 The Art of Digital Design Part II 



inputs of IRa, IRI, and IR2 to create the JMS operation code (1002) in term 
F1.2, but to pass normal ALUBUS data at other times. 

One way to do this is to add a "JMS" (40008) source to the data mux 
system and select this source into IR during F1.2. However, we are reluctant 
to use our last, carefully preserved data mux input. But there are only three 
data bits involved in this transaction. Therefore, rather than enlarging the data 
muxes to 16-input varieties, we will modify the inputs to instruction register bits 
IRa, IRI, and IR2 to accommodate the JMS jam at term Fl.2. The equations 
are 

IRa = FI.2oALUBUSO + FI.2°T = ALUBUSO + FI.2 

IRI = FI.2°ALUBUSI + FI.2°F = Fl.2-ALUBUSI 

IR2 = FI.2°ALUBUS2 + FI.2°F = Fl.2 0 ALUBUS2 

The inputs to bits IR3 through IRII are unchanged by this activity and remain 
directly connected to the corresponding ALUBUS lines. 

The Manual System 

MANPULSE. According to our plan, a depression of a manual switch 
must cause the assertion of a signal MANPULSE for only one clock cycle 
following the depression. MANPULSE is the output of a single-pulser circuit 
whose input is MANSW*. 

MANEX. In the ASM for the execute phase we use the MANEX flip­
flop's output to help decide if manual operation or regular instruction processing 
is appropriate. If you implement MANEX using a JK flip-flop, you should be 
able to derive the equations for MANEX(SET) and MANEX(CLR) from the ASM 
charts. 

Logic Equations 

We have derived some of the logic equations in this chapter, but have shown 
actual circuits for only a few. Figure 8-8 shows some typical circuits for LD20 
logic equations. 

Chap. 8 

IR5.H 

ACO.H 

IR6.H 

(AC=O).H 

IR7.H 

LlNK.H 

D---o SKIP.L 

El.IR.L~ D----~ 
ISZ.L --- CC.H~MUXD.El.H 

Figure 8-8 Some typical circuits for logic equations in the LD20. 

Building the Minicomputer 341 



With your knowledge of mixed logic, you should be able to draft clear and 
correct circuits for realizing the logic equations needed for controlling the LD20. 
All the control signals can be constructed with SSI or MSI chips. But don't 
forget PALs as candidates for creating some of these signals. For instance, 
several control signals are functions of the bits of the IR: ION, IOF, NOMEM, 
the Operate instruction priorities PRIl-PRI4, and so on. Perhaps many or all 
of these signals can be generated by a suitable PAL, with fewer chips. 

THE MEMORY SYSTEM 

Access to the LD20's Memory 

Read and write signals. In the LD20, START.READ and START. WRITE 
initiate memory reads and writes, according to the memory protocol developed 
in Chapter 7. From the ASM, we may derive the equations for these variables: 

START.READ = F2 + F3.3 + F6.1 

START. WRITE = F4.2 + EO.9 + EO.12 + EO.13 + EO.14 

The L020's memory interface. The LD20 signals that interface with the 
memory control unit appear in Fig. 7-16. The correspondence between the 
standard memory unit signals and our LD20 variables is 

BEGIN.READ 

BEGIN. WRITE 

MEM.BUSY 

ADDRESSi 

DATA.INi 

DATA. o UTi 

= START.READ 

= START.WRITE 

= BUSY 

=MAi 

=MBi 

=MEMi 

EXTERNAL.CLOCK = SYSCLK 

The LD20 can supply all these inputs directly from signals available in its architecture 
or control circuits. Data from the memory unit also goes directly into the LD20's 
architecture. The remaining LD20 signal from the memory control unit, BUSY, 
does not appear directly in our LD20 ASM charts. To achieve a compact ASM 
representation of LD20 memory reads and writes, we introduced in Chapter 7 
a signal CC (Cycle Complete), which has the property of becoming false when 
a memory read or write begins, and becoming true one clock cycle after the 
BUSY signal from the memory controller becomes false. We must fabricate this 
LD20 extension to the standard memory controller. If we use a D flip-flop for 
CC, we may most readily specify the input CC(D) by describing when CC(D) 
is false: 

CC(D) = BUSY+ START.READ + START. WRITE 

342 The Art of Digital Design Part" 



CC(D) must be false whenever BUSY is true, or whenever we are about 
to begin a read or write (i.e., when START.READ or START. WRITE is true). 
This assures that the output CC is false during the first clock cycle of the memory 
operation, because either START.READ or START. WRITE was true when the 
clock pulse that began the memory operation arrived. After that, CC remains 
false during all remaining cycles in which the memory operation is in progress, 
because BUSY is true. BUSY will not become false until the first clock pulse 
after the memory operation is finished; the output CC will not respond to the 
change in BUSY until the following clock pulse. Figure 8-9 shows this circuit. 

H 

STAR T. READ.H 
START. WRITE.H---1 Q CC.H 

BUSY.H 

'LS74 

SYSCLK.H --I> CC.L 

H 

Figure 8-9 Extension of the standard memory interface of the LD20. 

The Memory Unit 

It is now time to specify the memory chips we wish to use and to design the 
control unit to use these memory chips in conformity with the protocol developed 
in Chapter 7. The memory unit has the following responsibilities: 

(a) Use the 12 input address lines to access the proper word in the memory. 
(b) Perform a write operation upon command, using the information on the 

data input lines. 
(c) Perform a read operation upon command, and maintain the information on 

the data output lines thereafter, until another memory operation commences. 
(d) Provide a timing signal BUSY to indicate to the user when the memory 

unit is occupied with a user-originated read or write operation. 

We have chosen the 6147 4K x 1 Static RAM as the building block for 
the LD20 memory. Here is a brief description of its characteristics. 

The 6147 memory chip. The 6147 is a 4K x 1 static RAM having 12 
address pins, 1 data input pin, 1 three-state data output pin, a write control pin, 
and a chip-enable pin. The write control and chip enable pins are low-active; 

Chap. 8 Building the Minicomputer 343 



the rest are high-active. The data-out line is in its high-impedance state during 
write operations and whenever chip enable is false. 

We will use a version of the 6147 having a 70-nsec cycle time: the minimum 
read and write cycles require 70 nsec. The maximum guaranteed read access 
time is 70 nsec. Since our design will stabilize the address, chip enable, and 
input data signals at about the same time (shortly after the initiating clock pulse), 
we can simplify the rather complex timings for read and write. There are no 
additional critical timings for the read operation. For the write operation, the 
address-write-setup time (time that the address lines must be stable before making 
the write signal true) is 0, the address-hold time (time that the address must be 
stable after write becomes false) is 15 nsec, and the data-hold time (time that 
the data must be stable after write becomes false) is 10 nsec. 

Memory organization and addressing. The LD20 requires 4096 words 
of 12 bits. We will use twelve 6147 RAM chips, one for each bit. The RAM 
chips will be controlled identically. 

Memory timing. The 6147 memory chip has no mechanism to announce 
when its operations are complete. We must determine the guaranteed upper 
limits of its timing from the data sheet, and we must establish our own means 
of providing the proper intervals for its operation. In the discussion above, you 
saw that with stable inputs our major timing constraint is the memory cycle time, 
which is 70 nsec. How can we produce a signal that reflects the memory cycle 
time? Perhaps the simplest way is to use a single-shot, for instance the 96L02 
Dual Single Shot discussed in Chapter 4. With the proper combination of external 
resistor and capacitor, the single-shot will produce a true output for the required 
time whenever it receives a triggering signal. Call the single-shot output TIMER. 
Since the single-shot is an asynchronous edge-triggered device, we must be 
careful in our design to avoid spurious edges (glitches) on the single-shot inputs. 
We must now consider how to use this TIMER signal in our memory control 
unit. 

The busy status signal. The memory protocol defines MEM.BUSY as 
a signal that changes synchronously with the external clock signal. By the nature 
of the protocol, a memory operation begins synchronous with the clock, so 
MEM.BUSYand its LD20 counterpart BUSY become true after a clock edge. 
Since the termination of a memory operation is an event that is asynchronous 
to the external clock, we deduce that we will need a synchronizing element to 
produce a valid MEM.BUSY signal. We have three sources of control of this 
element-the BEGIN.READ and BEGIN. WRITE inputs and the internal signal 
TIMER, which indicates the completion of a memory operation. A controlled 
(JK) flip-flop is the proper building block; we will use two, one to control read 
and one to control write, each clocked by the input signal EXTERNAL. CLOCK. 
The input equations for the read-control flip-flop are 

READ.BUSY(SET) = BEGIN.READ 

READ.BUSY(CLEAR) = TIMER 

344 The Art of Digital Design Part II 



The flip-flop's output is READ.BUSY. The circuit for the write-control flip-flop 
is similar, with output WRITE.BUSY. MEM.BUSY is the OR of these two out­
puts: 

MEM.BUSY = READ.BUSY + WRITE.BUSY 

You can see this structure in Fig. 8-10, which shows the entire memory control 
circuit. 

We must investigate the behavior of the flip-flop outputs to verify that they 
do indeed represent the synchronized busy conditions for read and write operations. 
Table 8-10 is a summary of the READ.BUSYflip-flop's output during the sequence 
of operations dictated by the memory protocol. Under the legitimate input 
conditions we see that the circuit performs correctly. There is an equivalent 
formulation for WRITE.BUSY. 

MEM.BUSY is a clean signal, composed of the OR of the output of two 
flip-flops, only one of which will be changing at any time. Since MEM.BUSY 
is free of glitches, we may confidently use it to trigger the TIMER single-shot 
used to time the memory operations. 

The WRITE signal. The 6147 has a low-active control pin for write; the 
memory chips will be in the read mode whenever we are not writing. The only 
time we wish to send a write signal to the memory is when WRITE.BUSY is 
true. We may use the WRITE.BUSY flip-flop's output as a source of the 6147 
WRITE input. The address setup time is 0, but the hold times require that we 
release the 6147's write signal at least 15 nsec before any changes in address or 
input data. Fifteen nsec is on the order of one 74LS gate delay-much shorter 
than our LD20 clock cycle. The memory protocol for our LD20 assures that 

TIMER.L 

BEGIN.READ.L 

EXTERNAL. --I> 
CLOCK.H 

TIMER.L 

BEGIN. WRITE. L 

EXTERNAL. --D 
CLOCK.H 

READ.BUSY.H Q 1---------\ 

96L02 

INI 

Q~~~~~~------------~--~ 
WRITE.BUSY.H 

Figure 8-10 A memory control circuit for a 6147 RAM. 

Chap. 8 Building the Minicomputer 

TIMER.L 

TIMER.H 

WRITE.L (to 
memory chips) 

345 



TABLE 8-10 BEHAVIOR OF THE READ.BUSY SIGNAL UNDER THE MEMORY PROTOCOL 

Sequence Inputs Output 
of input 
changes 

2 
3 

4 

BEGIN.READ TIMER 
l(n) K(n) 

F T 

T T 
F F 

F T 

T F 

READ.BUSY 
Q(n) Q(n+l) 

X-+ F 

F-+ T 
T-+ T 

T -+ F 

x -+ T 

Interpretation 

Normal quiescent condition. Flip-flop 
cleared. 

BEGIN.READ toggles the flip-flop. 
Holding: both inputs are false. 

Time out. Flip-flop clears to the quiescent 
condition. 

Illegal activity. 

the LD20 ASM will remain in its read or write loop for one full clock cycle after 
the single-shot timer has forced CC to become true. Thus if we control the 
6147's write signal with the single-shot timer, we are assured of an ample hold 
time. As shown in Fig. 8-10, the 6147's write signal is true whenever TIMER 
is true and we are performing a write operation. 

This completes the design and implementation of the memory control unit 
of the LD20. In Fig. 8-11 we show the timings of the events in a typical memory 
read sequence of the LD20. 

346 

SYSCLK t t t t t t t 
LD20 State I F6 I F7/ F7) F7J F7 EO 

Load memory data 

START.READ ) 
CC 

MEM.BUSY 

TIMER 

C 
(I 

~ D (\ 
c: rJ \ ) 

6147 DATA.OUT 
Old r' fX Invalid A Valid data 

\.. r----.. 
LD20MA Old IxYNew 

Time-

Figure 8-11 Timing of a typical memory read operation of the LD20, beginning 
at state F6. 

The Art of Digital Design Part II 



FINISHED! 

The specification of the LD20 is complete. The implementation of this chapter 
was easier and more mechanical than the design of architecture and control in 
Chapter 7. This is typical of good design. Because of the care and work put 
into the abstract design, the implementation is straightforward. When we have 
drafted the remaining circuit diagrams, and added pin numbers, chip locations, 
and so on, to each element, we will be ready to commence actual construction. 
The LD20 is a real computer. Many people have constructed their own LD20 
(or one of its predecessors), and it really works. 

Designing the LD20 was a major project. In the course of the design, you 
have learned in considerable detail how a typical computer is organized, how 
data flows among its components, and how the control system provides for 
orderly processing of instructions. Most important, you have had a chance to 
observe the design process in its entirety. It would be wrong to think that 
designing the LD20 is easy or obvious. It is neither. Much thought and work 
went into its structure. So do not be overconfident of your abilities but conversely, 
do not be dismayed if you cannot produce a quick solution of a complex problem. 
The main theme of this book is that by adhering to good top-down design 
methodologies-good style-you can deal with the inherent complexity of a 
problem at the abstract logical level, where it is easier to manage, without creating 
additional complexities and restrictions by the premature introduction of hardware. 
Only when you have mastered the problem at the abstract level should you 
introduce the hardware. 

In order to use the LD20 fully as a real PDP-8 emulator, we must now 
consider how to interface peripheral devices to the computer. We examine this 
problem in Chapter 9. 

READINGS AND SOURCES 

KUCK, DAVID J., The Structure of Computers and Computations, Vol. 1. John Wiley & 
Sons, New York, 1978. 

MANa, M. MORRIS, Computer System Architecture, 2nd ed. Prentice-Hall, Englewood 
Cliffs, N.J., 1982. 

PDP8/1 and PDP8/L Small Computer Handbook. Digital Equipment Corp., Maynard, 
Mass., 1972. User's manual for the PDP-8I minicomputer. 

PROSSER, FRANKLIN, and ROBERT WEHRMEISTER, C421-C422 Advanced Computer Organization 
Laboratory Manual. Computer Science Department, Indiana University, Bloomington, 
Ind. 47405, 1985. Laboratory manual to support the construction, debugging, and study 
of the LD20 and LD30 implementations of the PDP-81. The laboratory project uses 
the Logic Engine Development System, manufactured by Logic Design, Inc. Ask the 
authors of this book for information. 

Chap. 8 Building the Minicomputer 347 



EXERCISES 

8-1. Why do we sometimes define auxiliary variables for use in the ASM chart? 
8-2. Verify the logic equations for the position labels in the LD20's ASM chart. Pay 

particular attention to the derivation of EO.DBL and EO.TST. 
8-3. Verify the logic equations for the LD20 ASM conditional output terms given in 

the text. Derive the remaining terms. 
8-4. Derive the equation for E0.34 directly from Fig. 7-44, without using the auxiliary 

variables EO.DBL, EO.TST, or DBL.IS.T. 
8-5. The equations for the data multiplexer select control signals B4, B2, and Bi depend 

on the mux input position assigned to each register. Although the assignment is 
a designer's choice, some choices may result in simpler implementation logic than 
others. Show that the register attached to mux position 0 does not enter into any 
of the sum-of-product equations for B4, B2, or Bi. Is the register used in position 
o in the LD20 the optimal choice? If not, which register is optimal? 

8-6. Suppose we elect to assign sources to the 8 data mux inputs in the following order: 
AC, MA, MEM, PC, EA, SR, MB, INPUT. Derive appropriate logic equations for 
the data mux select controls B4, B2, and Bi. Does such an assignment change any 
other equations in the LD20? 

8-7. In Fig. 8-1, the instruction register IR is not an input to the data mux. Why? 
8-8. Suppose the multiplexers in the main data path were replaced with three-state 

circuits to control access to the ALU. We then would have three-state output­
enable signals on each register: AC(OE) , MB(OE) , etc. Draw a circuit diagram 
of such a data bus, and derive logic equations for each of the output-enable signals. 

8-9. For several paths in the LD20's ASM, no data mux activity is required, yet the 
main data mux in Fig. 8-1 is always enabled, and the ALU controls are performing 
a PASS operation. Examples are in state F5 and conditional term EO.26. What 
information is present on the ALUBUS at such times? Why is this phenomenon 
not harmful to the activities of the LD20? 

8-10. Why is MEM not a destination on the ALUBUS? Why are EA, SR, and INPUT 
not destinations? 

8-11. In the LD20, the AC forms the B input to the 74LS181 ALU chips, and the data 
mux output is the A input. Consult a data sheet for the 74LS181, and show why 
we cannot successfully reverse these two inputs to the ALU. 

8-12. Derive the LD20's logic equations for the 74LS181 ALU control inputs. 
8-13. Table 8-3 presents the logic for the 74LS181 ALU control inputs, under our 

assumption that CIN is T = L. Show why this is a wise choice for CIN. (Hint: 
Consider the expression for the PASS operation in Table 8-2.) 

8-14. Derive equations for the register load signals MA(LD), MB(LD), and PC(W). 
8-15. Verify Table 8-4. Derive the accumulator register control inputs ACSi and ACSO. 
8-16. Implement the link bit as a JK flip-flop. Derive logic equations for setting and 

clearing the link flip-flop. Compare the clarity and compactness of this approach 
with the method used in the LD20. 

8-17. Verify Table 8-5. Why do we assign input position 0 on the link mux to the hold 
condition? Derive logic equations for the link mux select inputs. 

8-18. Implement a one-hot state generator for the LD20. Compare the complexity with 

348 The Art of Digital Design Part II 



that of the multiplexer controller method. What effect must the RESEn signal 
have on the one-hot system? 

8-19. In Fig. 8-5, the mux select code is implemented as T = H. What changes would 
be required in Fig. 8-5 if the code were: 
(a) Implemented with T = L? 
(b) Implemented with the state variables in reverse order; in other words, with 

SV.A.H going into mux select input D, and so on? Are such variations on Fig. 
8-5 useful or wise? 

8-20. The 74154 Four-Line-to-Sixteen-Line Decoder, used as a state decoder in the LD20, 
is a large 24-pin chip that requires more power than chips of the low-power Schottky 
family. Show a circuit for the state decoder with 74LS42 Four-Line-to-Ten-Line 
Decoder chips, which have 16 pins and require less power. 

8-21. Working directly from the LD20's ASM, derive Table 8-6. 
8-22. Derive logic equations for all inputs to the state generator multiplexers in the LD20. 
8-23. The 74LS163 Programmable Binary Counter chip can serve as a 4-bit D register 

with a synchronous clear. Why do we not use this chip to implement the state 
generator flip-flops, and thereby support a synchronous resetting of the LD20? 

8-24. Show why the variable MOREOP, which controls looping in the LD20 Operate 
instruction, is a two-or-more-of-four implementer rather than a one-or-more-of­
four. 

8-25. Show that the Operate instruction variable MOREOP, described in Table 8-8, has 
three more implementations equivalent to Fig. 8-7. 

8-26. Derive equations for the control inputs to the MANEX 74LSI09 flip-flop. 
8-27. The halt flip-flop HALTFF may be implemented with a JK or an enabled D flip­

flop. 
(a) Using a JK flip-flop, write logic equations and draw circuit diagrams for inputs 

HALTFF(SET) and HALTFF(CLR). 
(b) Using an enabledD flip-flop, write logic equations and draw circuit diagrams 

for inputs HALTFF(D) and HALTFF(EN). 

8-28. Draft circuit diagrams for each auxiliary variable in the LD20. 
8-29. Draft circuit diagrams for the LD20 ASM chart's position labels and conditional 

output terms. 
8-30. Draft circuit diagrams for the LD20 data multiplexer's select inputs, the ALU 

control inputs, and the register load signals. 
8-31. Draft complete circuit diagrams for the LD20 ALU system in Fig. 8-2. Show pin 

numbers. 
8-32. Draft circuit diagrams for the LD20 registers MA, MB, PC, and IR. Show pin 

numbers. 
8-33. Draft circuit diagrams for the LD20 AC and LINK circuits. Also draft circuits for 

the control signals for these systems. Show pin numbers. 
8-34. Draft circuit diagrams for the LD20 state generator system, including the instruction 

decoder. Show pin numbers. 
8-35. Implement each input to the state-generator multiplexers. 
8-36. Suppose the LD20 ASM were implemented with a one-hot state generator, using 

D-registers. Write logic equations and draw a circuit diagram for the D-inputs to 
the flip-flops. How will you implement the RESET operations in the ASM? 

Chap. 8 Building the Minicomputer 349 



8-37. Implement the LD20's multiplexer-based state generator, using PALs. For the 
inputs to the multiplexers, use the logic equations you developed in earlier exercises. 

8-38. Implement the LD20's one-hot state generator of Exercise 8-36, using PALs. 
8-39. Draft circuit diagrams for implementing the priority system of the LD20's Operate 

instruction using MSI-Ievel technology. Include the priority request flip-flops and 
their inputs,. the DOUBLE flip-flop and its inputs, and the MOREOP function. 

8-40. Show two different implementations of the circuit for the Operate instruction variable 
DOUBLE, using a 74LSI09 flip-flop. In one, assume that DOUBLE(SET).H and 
DOUBLE(CLR).L are conveniently available; in the other, assume the availability 
of DOUBLE(SET).L and DOUBLE(CLR).H. 

8-41. The LD20's SKIP signal may be implemented with a PAL20LlO. With this PAL, 
you can also implement the intermediate term (AC=O) that appears in the equation 
for SKIP. 
(a) The most straightforward implementation with this PAL yields SKIP.L. Show 

this implementation of SKIP. 
(b) By producing the inverse of SKIP within the PAL, you can achieve an efficient 

implementation of SKIP.H. Show this implementation. 
8-42. Using PALs, implement the Operate instruction's priority request system. This 

can be done, for instance, with a PAL20LlO and a PALl6R4. The PALl6R4 
provides four D flip-flops, which can serve as the request flip-flops. The 20LlO 
can generate the PRI; signals, which are functions only of the bits in the instruction 
register. (There is room left over in the 29L1O to generate several other auxiliary 
signals that are functions of the instruction register bits.) You will have to recast 
the equations in the text for the inputs to the request flip-flops so that they apply 
to the D flip-flop implementation. 

8-43. Draft circuit diagrams for the LD20 lOP signal enabler. Include the logic for the 
control inputs. 

8-44. What changes would be required in the LD20 memory unit if 1024 X 1 RAM chips 
were used instead of 4096 x 1 chips? What if 1024 x 4 RAM chips were used? 

8-45. Why is it necessary that the memory unit's output signal MEM.BUSYbe synchronized 
with the LD20 clock? 

8-46. Develop and explain a table similar to Table 8-10 for the behavior of the WRITE.B US Y 
flip-flop in the memory unit of the LD20. 

8-47. The 96L02 Dual Single Shot has two equivalent and independent sections. Figure 
8-10 uses only one of these. Devise an alternative memory control circuit that 
uses both sections of the 96L02 and avoids the necessity of using the OR gate as 
a part of the sensitive single-shot trigger input. 

8-48. Complete the memory control circuit diagram of Fig. 8-10. Include pin numbers. 
By referring to a data sheet for the 96L02 single shot, estimate values of the single­
shot timing resistor and capacitor required to produce a delay of 200 nsec. 

8-49. In Exercise 7-34 we proposed a "manual phase" of the LD20's ASM to perform 
manual pushbutton operations separately from the execute phase. Implement a 
modification of the LD20 that incorporates this manual phase. 

8-50. To provide console control of the link bit, we wish to modify the LD20 so that 
manually loading the accumulator (using the LOAD AC pushbutton) will also toggle 
the link bit. Make this modification, showing any alterations or additions to the 
LD20's ASM chart, and any alterations or additions to the LD20's logic equations 
and architecture. 

350 The Art of Digital Design Part " 



8-51. Suppose we have decided to add a new PDP-8 instruction to the LD20, as a part 
of group 3 of the Operate instruction. The new instruction is: if the interrupt 
request input is true, then skip two instructions and set the link bit true. Show 
any changes in the LD20's architecture and ASM required by this new micro­
instruction. 

8-52. The PDP-8E, another model ofthe PDP-8 minicomputer, has an additional programmer­
accessible element-a 12-bit MQ (mUltiplier-quotient) register. The MQ register is 
manipulated by an extension of the Operate instruction that includes a set of group 
3 microinstructions, designated by Operate instruction bits 3 and 11 equal to 1. 
Group 3 has three microinstructions, which fall into two priority classes: 

Priority 1: CLA (instruction bit 4 is 1) 

Priority 2: MQA (instruction bit 5 is 1) 

MQL (instruction bit 7 is 1) 

The PDP-8E defines these microinstructions as follows: 

CLA (Clear accumulator): 0 --? AC 

MQL (MQ load): AC --? MQ; 0 --? AC 

MQA (MQ into AC): MQ +AC --?AC 

In this exercise you will add this set of microinstructions to the LD20. There is 
one point that makes this modification nontrivial. The PDP-8E manual states that 
specifying both MQL and MQA in a microinstruction will cause the AC and MQ 
register contents to be swapped. The defined operations of MQL and MQA will 
not support this swap (try it!), so you must be artful in your solution. Your task: 
make suitable modifications to the architecture and ASM of the LD20 to support 
the group 3 microinstructions. 

8-53. A customer insists that she needs a computer like the LD20 but in which the 
computer's AND instruction is replaced by a new instruction that performs the 
customary AND operation and then replaces the contents of the referenced memory 
location by its one's complement. Show all the modifications to the LD20's ar­
chitecture and ASM, and implement the modified instruction. 

8-54. Assume you are testing the LD20, with the clock in its manual mode so that you 
can easily deliver clock pulses and observe the effects on the display panel lights. 
The LD20 is in its IDLE state and the Single Instruction Switch is off. The present 
contents (in octal) of some of the registers are 

MA: 1017 

IR: 4212 

AC: 0013 

MB: 2222 

SWR: 4444 

What is the sequence of states executed by a properly functioning LD20 if you 
hold down the CONT (Continue) button and issue a sequence of manual clock 
pulses? 

Chap. 8 Building the Minicomputer 351 



Interfacing 
with the 
Minicomputer 

To make the LD20 truly useful, we need to be able to attach input and output 
devices to it. In this chapter, we will design an asynchronous interface between 
a keyboard-display terminal and the LD20. The interface will support the execution 
of PDP-8 lOT instructions designed for controlling the terminal. We will first 
describe the terminal device and its communication mechanism. Then after 
reviewing the PDP-8 input-output protocol, we will describe the specific lOT 
instructions for the terminal. With this background, we will design the interface. 
The design will follow the usual pattern of separating architecture and control, 
but we will develop an asynchronous ASM for the control section of the interface. 

TERMINAL COMMUNICATIONS 

A typical terminal consists of a keyboard and a display which communicate with 
other devices over two pairs of signal wires. One pair of wires transmits data 
from the terminal; the other pair receives data into the terminal. The terminal 
transmits and receives data serially, one character at a time. Each character is 
itself sent serially, I bit at a time, at a set rate, typically 300 to 9600 bits per 
second. The terminal transmits and accepts characters in an 8-bit code: usually 
the 7 -bit ASCII character code plus an eighth bit that sometimes represents 
character parity. Data is transferred using the standard asynchronous commu­
nication discipline, which sends each character as a self-contained entity. In 
this discipline, a signal line has two valid levels: mark, corresponding to a data 
I-bit, and space, corresponding to a data O-bit. When no data is being com­
municated, the signal line is in the mark level. To begin transmitting a character, 

352 



the transmitting device changes the signal level from mark to space, and holds 
the space level for one bit-time. This creates a start bit for the character. After 
the start bit, the 7 ASCII character code bits and the eighth (parity) bit follow, 
each occupying one bit-time. Following the eighth bit are one or two stop bits, 
in the mark level. Figure 9-1 shows the waveform for the asynchronous trans­
missions of the ASCII character "P," which has the code 1208 • We assume 
that the parity bit records even parity for the 8 data bits; in the example we use 
one stop bit. A character requires 7 data bits, 1 parity bit, 1 start bit, and 1 
stop bit, for a total of 10 bits per transmitted character, making the maximum 
rate of character transmission one-tenth of the transmission bit rate. 

ASCII "P" 

0 0 0 0 0 0 
Mark (I) 

UlJl Space (0) 

Start 1 2 3 4 5 6 7 Parity Stop 
bit Data bits bit bit 

Time_ 

Figure 9-1 Asynchronous transmission of the ASCII character "P." Even parity, 
1 stop bit. 

The receiving device detects the start bit by observing the transition from 
mark to space on its incoming data line, and then senses each bit as it arrives, 
at the agreed-upon data rate. Each character forms a packet of information 
independent of other characters. 

THE PDP-8'S INPUT-OUTPUT PROTOCOL 

The PDP-8's input-output protocol is specified by the lOT instruction, which is 
described in Chapter 7. The programmer may request that any of three lOP 
signals be sent to the external world, along with an address to identify the 
particular device. The PDP-8 (and our LD20) receives control information from 
the addressed device over the three lines IOSKIP, ACCLR, and ORAC. Twelve 
bits of data leave the computer from the AC, and 12 bits enter the computer 
over the LD20's INPUT lines. The external device must respond only when 
addressed, and then only according to the protocol established between that 
device and the PDP-8. The PDP-8's protocol specifies the sequence for delivering 
lOP signals, and for processing the incoming control signals. 

Our principal concern in this chapter is to design an interface between a 
keyboard-display terminal and the LD20. The interface must reconcile the vast 
difference between the behavior of the terminal and the behavior of the LD20. 
The terminal will transmit and receive characters according to the asynchronous 
communication discipline, whereas the LD20 uses the rather curious input-output 
protocol implied by the PDP-8's lOT instruction. 

Chap. 9 Interfacing with the Minicomputer 353 



The PDP-81 computer manual contains a set of elementary instructions for 
communicating with a simple keyboard-display terminal. Since we wish to use 
PDP-81 software, we must adopt the standard format of PDP-8 terminal instructions. 
The PDP-8 interface has two device addresses: 03 (DA03) for receiving characters 
from the terminal, and 04 (DA04) for transmitting characters to the terminal. 
Each of the three lOP signals plays a role in both transmitting and receiving 
data. Here are the lOT instructions for the PDP-8's standard interface with a 
terminal. 

From Terminal to PDP-8 (DA03) 

IOP1 (Instruction 6031 8 ). If there is a character from the terminal ready 
to be sent into the PDP-8, the interface must respond to the DA03 IOP1 signal 
with IOSKlP = T; at all other times, IOSKlP = F. This instruction allows the 
programmer to skip an instruction if incoming data is ready. If no new data is 
present, no instruction is skipped. 

IOP2 (Instruction 60328), In response to the DA03 IOP2 signal, the interface 
clears its internal indication that a character is ready and sends ACCLR = T to 
the PDP-8. At other times, ACCLR = F. Asserting ACCLR causes the PDP-8 
to clear the accumulator, anticipating the IOP4 exchange to follow. 

IOP4 (Instruction 60348 ), When IOP4 = T, the DA03 interface places 
its incoming data (12 bits) on the external input lines INPUT to the PDP-8. The 
interface also issues ORAC = T to the PDP-8, which initiates the loading of 
incoming data into the previously cleared AC. Of the 12 bits of data supplied 
by the interface, the leftmost 4 are zeros, and the rightmost 8 contain the terminal 
data. 

The programmer will usually combine IOP2 and IOP4 into one instruction 
(60368), The following is a simple input sequence for receiving one character 
from the terminal; the code begins at address 10048 , 

Location 

1004 
1005 
1006 
1007 

Instruction 

6031 
5204 
6036 
3---

lOT 
IMP 
lOT 
DCA 

From PDP-8 to Terminal (DA04) 

I,DA03: Skip if character ready 
$- I: Wait for character 
2 + 4,DA03: Clear flag and load character 
---: Store data from accumulator 

IOP1 (Instruction 6041 8), If the DA04 interface can accept a character 
from the PDP-8, the interface must respond to the DA04 IOP1 signal with 
IOSKlP = T; otherwise, IOSKlP = F. This gives the programmer the ability 
to skip an instruction if it is acceptable to send a character to the terminal. 

354 The Art of Digital Design Part " 



IOP2 (Instruction 60428), The transmit interface must clear its internal 
indication that the transmit stage is free, thus marking DA04 as busy. The 
interface remains in this condition until a character has passed through the 
transmit stage and the transmit stage can again accept a character. 

IOP4 (Instruction 60448), This signal causes the DA04 interface to load 
a character of data from the lower 8 bits of the PDP-8's accumulator. The 
interface transmits these 8 data bits to the terminal, and having done so, marks 
the DA04 internal flag as free to accept another character. 

The programmer will ordinarily issue IOP2 and IOP4 together in one lOT 
instruction. Here is a sequence for transmitting one character to the terminal; 
the code begins at location 1004: 

Location 

1004 
1005 
1006 
1007 

Instruction 

6041 
5205 
6046 

Load character data into accumulator 
IOT I,DA04: Skip if transmit unit is available 
JMP $-1: Wait until transmit unit is free 
lOT 2 + 4,DA04: Clear transmit flag, and send character 

REQUIREMENTS OF THE LD20-TERMINAL INTERFACE 

We have described the terminal and the PDP-8 instructions for reading and writing 
terminal information. Now we can specify our interface between the LD20 and 
the terminal. The interface has three responsibilities: to support input from the 
terminal to the LD20, to support output from the LD20 to the terminal, and to 
provide proper interrupt signals to the LD20. 

Interface Flags and Interrupts 

The interface must maintain a status flag for each device address. DA03FLG 
becomes true when the interface has a new character for the PDP-8; DA04FLG 
becomes true when the interface is able to accept a new character from the 
PDP-8. The PDP-8 programmer is responsible for resetting each flag to false, 
using appropriate lOT commands. 

Whenever either flag is true, the PDP-8's external interrupt signal EXTINT* 
must be true. For a single terminal device, this means 

EXTINT* = DA03FLG + DA04FLG 

These two flags not only affect the PDP-8's external interrupt system; they are 
also the key to controlling the terminal operations using the lOT instructions. 

The Receive Section (DA03) 

The receiving section of the interface: 

(a) Receives serial data from the terminal according to the asynchronous com-

Chap. 9 Interfacing with the Minicomputer 355 



munication discipline, converts the data to an 8-bit parallel byte, and holds 
the byte for possible transmission to the LD20. 

(b) Keeps an internal receive status flag (DA03FLG) to inform the LD20 of 
the status of the receive station. The interface sets DA03FLG to true upon 
receipt of a complete character from the terminal. The LD20 programmer 
may set the flag to false with an lOT instruction that issues IOP2 with 
device address DA03. 

(c) Recognizes DA03, and when DA03 is present responds to the LD20's signals 
lOP], IOP2, and IOP4 with the actions described earlier. Device address 
03 is 

(d) Issues T on the external interrupt line EXTINT* whenever DA03FLG is 
true. 

The Transmit Section (DA04) 

The transmitting section of the interface: 

(a) Recognizes DA04, and when DA04 is present responds to the LD20's signals 
lOP], IOP2, and IOP4 with the actions described earlier. Device address 
04 is 

(b) Upon recognizing IOP4 with DA04, receives 8 bits in parallel from the 
LD20 and transmits these bits serially to the terminal, using the asynchronous 
communication discipline. 

(c) Keeps an internal transmit status flag (DA04FLG) to inform the LD20 of 
the status of the transmit section. This flag becomes false when the LD20 
program issues IOP2 with device address DA04. The flag goes true after 
the LD20 has written a character to the terminal and the character has 
passed through the interface sufficiently for the interface to be able to accept 
another character from the LD20. 

(d) Issues T on the external interrupt line EXTINT* whenever DA04FLG is 
true. 

PRELIMINARY ARCHITECTURE OF THE INTERFACE 

In Fig. 9-2, we show the signals between the LD20 and the interface, and between 
the terminal and the interface. 

To build the interface black box, we could design a complete MSI serial­
to-parallel and parallel-to-serial system. However, 8-bit serial data transmission 
is common, and manufacturers have produced a device to assist in the conversion 
between serial and parallel data. 

356 The Art of Digital Design Part II 



LD20 

IR3-IR8 

IOP1 
IOP2 

IOP4 
IOSKIP 
ACCLR 
ORAC 

EXTINT* 

INPUTO-INPUT11 

AC4-ACll 

6\ 

12 

8\\ 

\ 

Interface 

Device address 

IOPl 
IOP2 
IOP4 
IOSKIP Serial out 

ACCLR 
ORAC Serial in 

EXTINT* 

Parallel data 
out 

Parallel data 
in 

Figure 9-2 Interface signals in the LD20-terminal interface. 

The UART 

Terminal 

Terminal input 

Terminal output 

The universal asynchronous receiver-transmitter (UART) is a complex LSI circuit 
in a 40-pin integrated circuit package. Several manufacturers produce functionally 
equivalent chips. The purposes of the UART are to receive data according to 
the asynchronous communication protocol and render it into parallel form, and 
to accept parallel data and transmit it serially according to the asynchronous 
protocol. The UART has inputs to specify the number of bits per character 
(from 5 to 8), the parity mode, and the number of stop bits; hence the name 
"universal." In our design these are fixed parameters, so we will not consider 
them further. Design Examples 3 and 4 in Chapter 6 illustrate the internal 
operations of a UART. 

The UART has independent serial receive and serial transmit sections. 
Here is a description of the important UART signals. All signals are high-active 
(T = H) unless otherwise specified. (UART nomenclature is not standardized; 
check the appropriate data sheet for the names of signals, the direction of bit 
numbering in registers, and so forth.) 

Signals of the UART's receive section 
Receive Serial In (RSI): The serial data line from the terminal. 
Receive Buffer Register (RBR8-RBRl): Outputs from an 8-bit register that 
holds an assembled character received from the terminal (bit 1 is on the 
right). These outputs are three-state. 
Data Received (DR): A status flag that becomes true when a valid terminal 
character enters RBR. DR becomes false upon the F -? T transition of 
the DRR signal, described next. 
Data Received Reset (DRR): A F -? T transition of this signal clears DR 
to false. This signal is low-active (T = L). 
Receive Register Disable (RRD): The receive buffer register has three-state 

Chap. 9 Interfacing with the Minicomputer 357 



outputs that are disabled as long as RRD is true. When RRD = F, the 
outputs RBRS-RBRI are available for use. 
Receive Clock: The UART expects a receiver clock input of 16 times the 
serial bit rate. A typical clock frequency is 1200 x 16 = 19,200 Hz. 

Signals of the UART's transmit section 
Transmit Serial Out (TSO): The serial data line to the terminal. 
Transmit Buffer Register (TBRS-TBRl): Inputs to an 8-bit register that 
holds a character prior to its being serialized to the terminal (bit 1 is on 
the right). 
Transmit Buffer Register Load (TBRL): Upon a F ~ T transition on this 
line, the UART accepts an 8-bit character at inputs TBRS-TBRI. When 
the transmit data serializing section of the UART is free, the UART will 
then move the new character into the serializing section, thus freeing the 
TBR. This signal is low-active (T = L). 
Transmit Buffer Register Empty (TBRE): This signal is true whenever the 
UART can accept a character into the TBR. It is false when the TBR is 
full, awaiting access to the transmit data serializing section. 
Transmit Clock: Provides clocking for the UART's transmit section. It has 
the same characteristics as the receive clock and will usually originate from 
the same external timing source. 

Incorporating the UART into the Design 

Using the UART will save us much design work. With it, we have transformed 
our main problem for interfacing the LD20 to the terminal into interfacing the 
LD20 to the UART-a much simpler task. We must now determine how to 
reconcile the LD20's input-output protocol with the UART's status and command 
signals. Before we can further specify the architecture of the interface, we must 
investigate the control algorithm for the interface between the LD20 and the 
UART. 

THE INTERFACE CONTROL ALGORITHM 

Clocking Events in the Interface 

So far, the designs in this book have been synchronous, driven by a master 
clock whose effect was implied in the ASM chart but which did not explicitly 
appear. What is the clock for the LD20-terminal interface? We must supply a 
UART clock, but it is too slow (perhaps 19,200 Hz) to interface with the LD20, 
which runs a hundred times faster. Also, the UART's fixed clock rate violates 
our variable-clock-speed design criterion. The LD20 system clock would serve 
nicely, especially since most of the interface control information consists of lOP 
signals that are synchronized with the LD20's clock. However, the PDP-8's 
input-output protocol does not specify that the computer's clock is available to 
its peripheral devices. 

358 The Art of Digital Design Part II 



Should we devise an asynchronous design? In Chapter 5, we sidestepped 
asynchronous methods in favor of synchronous design, which is easier to manage 
and has fewer pitfalls. Providing the interface with the LD20 system clock would 
allow a synchronous design-the easiest solution to our problem. However, to 
present the flavor of unclocked circuits, we will develop an asynchronous interface. 

In asynchronous design, with no master clock to drive the system, states 
can change only when the test inputs change. What are the test inputs for our 
interface? The main tasks are recognizing the two terminal device addresses 
and then responding to the LD20's lOP signals. The start of an event in our 
algorithm will be the recognition of DA03 or DA04 and the assertion of an lOP 
signal. The event will last until the lOP signal becomes false or the device 
address changes. Figure 9-3 is a partial ASM chart for the interface events. 

In synchronous design, fluctuations in input signals cause no trouble provided 
that the inputs are stable at the clock transition. In an asynchronous circuit, 
the inputs act as clocks; any change in an input can produce ASM transitions, 
intended or accidental. This is the great difficulty with asynchronous design; 
the circuit is sensitive to its inputs at all times. Unclocked circuits lack the 
systematic periods of calm that are characteristic of clocked systems. In our 
interface, hazards in the device address or the lOP signals can cause spurious 
asynchronous transitions, but by careful planning we can eliminate hazards without 
elaborate techniques. 

Figure 9-3 shows that interface events depend on pseudo-clocks such as 
DA03'IOPl, formed from a combination of a specific device address and an lOP 

03 04 

T 
IOPl 

F 

T 

F 

IOP4 
1 

F 

Chap. 9 Interfacing with the Minicomputer 

Figure 9-3 An asynchronous ASM 
for lOP signals. 

359 



signal. Bits lR3-IR8 of the LD20's instruction register present a "device address" 
at all times; spurious device addresses appear as the LD20 processes assorted 
instructions. Figure 9-3 shows that fluctuations of the device address lines 
produce no algorithmic actions unless they occur while an lOP signal is true. 
lOP signals are true only during the execution of lOT instructions. Since the 
instruction register's outputs change only during the instruction fetch in LD20 
state F3, the device address is stable whenever an lOP signal is asserted. 

We must also verify that the lOP signals themselves are free of hazards. 
lOP signals arise in the LD20 from AND-gate implementations of equations like 

IOPI = IOPI.EN-lRll 

Since IOPI.EN and lRll are outputs of flip-flops, their transitions are smooth 
and free of hazards. Transitions of these two signals are well separated in the 
ASM; lRll changes only during instruction fetch in state F3, and lOP I.EN 
changes only at the end of states EO or Fl. Therefore, the composite IOPI 
signal experiences hazard-free F ~ T and T ~ F transitions. Similarly, IOP2 
and IOP4 are free of hazards. 

We have shown that the interface pseudo-clocks are free of hazards. We 
emphasize that in synchronous design we avoid this type of analysis, freeing our 
minds to construct our algorithm rather than worrying about the behavior of the 
hardware. 

The LD20 will deliver only one lOP signal at a time; we need not worry 
about two or more of these asynchronous events occurring simultaneously. 

Synchronizing Signals to the LD20 and the UART 

The LD20 expects replies from its lOP signals to be synchronous with its clock. 
How do we achieve this if the LD20's clock is not available to the device 
interface ? We must use the pseudo-clocks developed from the combination of 
device address and lOP signal, since these are themselves synchronous with the 
LD20. To satisfy the synchronizing requirement, a selected device must issue 
proper replies for the duration of the lOP signals. The ASM notation in Fig. 
9-3 is intended to convey this behavior. 

To satisfy our LD20 synchronizing requirement, the combinational interface 
circuits must use only LD20-synchronized inputs to generate the IOSKlP, ACCLR, 
and ORAC replies. This means that we must synchronize certain DART outputs 
to the LD20 pseudo-clocks. . 

The DART's control inputs DRR (Data Receive Reset) and TBRL (Transmit 
Buffer Register Load) are both edge-triggered. Any F ~ T edge will trigger the 
DART's actions; the DART has its own internal synchronizing circuitry to avoid 
difficulties caused by input transitions that are asynchronous to its clock. 

We next specify the interface's detailed reactions to each lOP signal. 

Algorithm for the Receive Circuit 

IOP1 for device address DAD3. To satisfy the PDP-8's protocol, IOSKlP 
must assume the value of DA03FLG during this event. DA03FLG must become 

360 The Art of Digital Design Part II 



true when a character is available for input, and must become false when the 
program issues an lOP2 signal. The UART signal DR (Data Received) parallels 
DA03FLG: it becomes true when a character is ready, and it becomes false when 
the UART input DRR (Data Received Reset) is asserted. We use a terminal * 
on names of signals that change independently of the LD20 pseudo-clocks. Thus 
we have 

DA03FLG* = DR* 

DR* (and thus DA03FLG*) may change fromF to T at any time, depending on 
the activities of the terminal and the UART. Before it can serve as a source 
for lOSKlP, DA03FLG* must be synchronized to the LD20's timings. We care 
if DA03FLG* is synchronized only when lOP1 is true, since only then is the 
LD20 looking at the signal. To achieve synchronization, we will clock a D flip­
flop with the hazard-free DA03·l0P1 signal. The flip-flop's input is DA03FLG*; 
the output is DA03FLG.SYNC. lOSKlP must have the value DA03FLG.SYNC 
for the duration of lOP 1. In our ASM, these activities appear as conditional 
outputs of lOP1: 

DA03FLG' -+ DA 03FLG. SYNC 
IOSKIP= DA03FLG.SYNC 

The upward-pointing arrow indicates that the flip-flop activity occurs on the 
rising (F ~ T) edge of the DA03·l0P1 pseudo-clock. The equals sign in the 
second expression implies that the item on the left has the value of the item on 
the right for the duration of the pseudo-clock. The synchronizing D flip-flop 
becomes a part of the interface's architecture. 

IOP2 for device address DA03. During this event, we must reset 
DA03FLG* and must assert the LD20's input signal ACCLR. Clearing DA03FLG* 
is the PDP-8 programmer's way of clearing the terminal receiver's contribution 
to the external interrupt signal EXTlNT*. Since DA03FLG* comes directly from 
the UART signal DR*, we may clear DA03FLG* by asserting the UART's control 
input DRR (Data Received Reset). DR*, and thus DA03FLG*, will not return 
to T until the UART has received another character from the terminal. The 
ASM conditional output term for lOP2 is 

~ 
~ 

IOP4 for device address DA03. During this event (and only during this 
event), we must place the received data on the LD20's external input lines 
lNPUTO-lNPUTll, and assert the PDP-8's input signal ORAC. We gain access 
to the UART's 8-bit data character by enabling the three-state data outputs 
RBRS-RBR1, using the control signal RRD (Receive Register Disable). We need 
to assert RRD. However, we have a small problem with notation. In the ASM 
charts, signals are considered false except when they are specifically asserted. 

Chap. 9 Interfacing with the Minicomputer 361 



Here we have a signal RRD that is normally true, but must be false only when 
IOP4 is true. We avoid this situation by defining another signal RRE (Receive 
Register Enable) to use in the ASM chart: 

RRE = RRD 

During IOP4 time, we assert RRE; it is otherwise false. 
The UART provides 8 bits of three-state data for the LD20, but the LD20 

expects 12 bits. Our interface must therefore contain 4 bits of three-state zero, 
which is enabled at the same time as the UART data bits. Adding a three-state 
zero box to our architecture, we have this ASM for IOP4: 

RRE 
ZERO( ENABLE) 

ORAC 

This completes the algorithm for the receive section of our interface. 

Algorithm for the Transmit Circuit 

IOP1 for device address DA04. During this event, the interface must 
supply the value of DA04FLG* to IOSKIP. It is tempting to let DA04FLG* be 
the UART signal TBRE* (Transmit Buffer Register Empty), and for the moment 
we will make this assumption. Since we must synchronize the signal, we will 
use a D flip-flop clocked by the DA04·IOPl pseudo-clock. This addition to the 
architecture has input DA04FLG* and output DA04FLG.SYNC, and our ASM 
conditional output term is 

DA04FLG* ~ DA 04FL G. SYNC J 
IOSKIP = DA04FLG.SYNC 

IOP2 for device address DA04. For this event, the interface's only activity 
is to clear the output status flag DA04FLG*. Now we have a tricky problem, 
typical of the kind of irritation found in device interfacing. Using the assumption 
we made in the previous paragraph, we should clear DA04FLG* by clearing 
TBRE*, but the only way to clear TBRE* is to load an outgoing character into 
the UART, using signal TBRL (Transmit Buffer Register Load). The PDP-8's 
protocol does not allow the loading of a character during IOP2 time, so we must 
seek an alternative solution. 

To hold DA04FLG*, we introduce a flip-flop that we may clear independently 
of the UART. Now we must determine exactly how to set the DA04FLG* flip­
flop. DA04FLG* must record the availability of the UART's Transmit Buffer 
Register (TBR) until the LD20 program clears the flag. Once DA04FLG* is 
cleared, it must remain false until a new event occurs to make TBR freshly 
available; we must avoid recording an old buffer availability status. The typical 
program activity involves testing the flag (IOPl), clearing the flag (IOP2), and 
writing a character to the interface (IOP4). Once cleared, DA04FLG* should 

362 The Art of Digital Design Part " 



remain false until TBR again becomes available after the transmission of the 
character. To set DA04FLG*, we must record the occurrence of a F ~ T edge 
of the TBRE* signal. A clock input is the only readily available edge-sensitive 
element in our design repertoire; TBRE* becomes a pseudo-clock in our ASM, 
as follows: 

This implies a D flip-flop to hold DA04FLG*, as proposed earlier. The flip­
flop will have T as its input and DA04FLG* as its output. The F ~ T transition 
of TBRE* will act as an active clock edge, which will transfer the true input 
into the flip-flop, where it will remain until an lOP2 command clears the flag. 
After clearing, only a subsequent F ~ T transition of TBRE* will clock truth 
into DA04FLG* again. 

The clearing operation originates with the LD20 and is not synchronized 
with the DART's TBRE* activity. To permit clearing at IOP2 time, we must 
use a D flip-flop with an asynchronous clear input, such as the 74LS74. Figure 
9-4 shows this architecture and the controls of the DA04FLG* circuit. The 
lOP2 conditional output of the ASM chart looks as follows: 

( F ~ DA04FLG* ) 

IOP4 for device address DA04. After the tortuous lOP2 exercise, IOP4 
is easy! At this time, the LD20 is placing a character on the external output data 
lines, and our interface must accept it and initiate serial transmission to the 

H- D Q 
DA04FLG*.H 

D DA04FLG.SYNC.H 
Q 

'LS74 'LS74 

CLR r--j> CLR 

I-' 

TBRE*.H DA04.IOP2.L DA04·IOPl.H H 

Figure 9-4 A circuit for DA04FLG*. 

terminal. The DART signal TBRL (Transmit Buffer Register Load) will do this 
if data from the LD20 feeds into the TBR8-TBRl DART inputs. The ASM 
segment for IOP4 is 

( TBRL ) 

Chap. 9 Interfacing with the Minicomputer 363 



Interrupt Generation 

The LD20's external interrupt signal EXTINT* is a composite of the device flag 
signals. EXTINT* is true if any of the device flags is true. Programmers may 
clear an interrupt request by resetting the appropriate flag. The terminal interface 
must transmit the status of its two flags onto the LD20's external interrupt input. 
This activity is continuous, independent of the ASM pseudo-clocks. Therefore, 
the ASM unconditional output for generating an interrupt is 

I EXT/NT. = DA03FLG. + DA04FLG. 

This completes the development of the algorithm for the terminal interface. 
Figure 9-5 shows the full ASM. 

03 (Input) 

EXT/NT· = 
DA03FLG.+DA04FLG.~----------------------------------~ 

T .... DA04FLG.J 

Others 

Figure 9-5 ASM chart of the interface between an LD20 and a terminal. 

IMPLEMENTING THE TERMINAL INTERFACE 

With the foregoing discussion, specifying the circuit for the interface is simple. 
Figure 9-6 shows the architecture and a sketch of the control circuits. You 
should find it straightforward to complete the details of the circuit. 

364 The Art of Digital Design Part" 



n 
::r 
Q) 

"'C 

co 

::J ..... 
(J) 

~ 
Q) 

£1. 
::J 
co 

::E 
~ 
::r 
..... 
::r 
(J) 

s:: 
::J 
o· 
o 
3 

"'C 
C ..... 
(J) .... 

Co) 
en 
U'I 

INPUTO-L 

INPUT4-IN. 

lOP] 

IOP2 

IOP4 

IOSKIP 

ACCLR 

ORAC 

EXTINT* 

IR3-IR8 

AC4-A 

Zeros 19,200 Hz 
4 I clock 

+ IT3 
, 

EN 
S " Clocks 

fn ~ 
RBRS-I 

ZERO(EN) 
RRE - RRD 

DRR - DRR - RSI I- Output 

Control DA03FLG.SYNC DA03FLG* - logic Q D DR 

- Sync 
TBRL 

UART Terminal - < - l- I Fixed ~ parameters 

DAo~l JDA04 TBRL 
TSO ~ Input 

Device Q D Q D-T 
~ address DA 04FLG. SYNC DA04FLG* 

recognizer Sync Capture 

< TBRE 

S 

" TBR8-1 

Figure 9-6 Architecture of the interface between the LD20 and a terminal. 



We can provide the clock for the DART's clock inputs with a standard 
555 timer circuit, as described in Chapter 12. The DART is connected with the 
terminal through a nondigital circuit that matches the TTL-compatible voltage 
signals of the DART with signal-level requirements of the terminal. The circuit 
contains a line driver and line receiver such as the 1488 and 1489. 

POLISHING THE LD20'S INPUT-OUTPUT PROCESSES 

Maintaining the LD20's Control of the Status Inputs 

Suppose an LD20 program is trying to read from the terminal. Once the LD20 
issues an lOT instruction with a nonzero device address, the algorithm executes 
states EO, E3, E4, and E5 three times. This occurs whether or not the lOT 
instruction specifies any lOP signals. For proper hardware execution, we must 
have valid logic levels (T or F) on the test inputs IOSKIP, ACCLR, and ORAC. 
This is an important but subtle point: whenever the LD20 executes an lOT 
instruction, the test signals must be valid. Furthermore, the input signal EXTINT* 
must be correct at all times. 

If we could be sure that the terminal and its interface were attached and 
operating, our problem would be less serious, since we could require that the 
device interface respond with false on the status inputs whenever it is not actively 
responding with truth. But we cannot guarantee that the terminal interface is 
plugged in whenever an LD20 program issues an lOT instruction. We cannot 
weasel out of this predicament by rationalizing that no self-respecting computer 
operator would run a terminal program if the terminal were not turned on. The 
terminal might be located in another building or another city, outside the control 
of the operator. In any event, we do not want our hardware to be dependent 
on an operator's intervention. If the terminal interface were turned off, there 
would be no logic signals at all on the IOSKIP, ACCLR, ORAC, and EXTINT* 
lines from the terminal. Obviously, then, the LD20 must protect itself from 
hardware failures caused by missing control signals. 

When will lOT instructions arrive? The LD20 does not know, since lOT 
instructions are a function of the particular program in the memory. So, we 
may extend our concept of when the LD20 should protect itself: Whenever its 
power is on, the LD20 must protect itself against spurious external signals. Since 
the peripheral power supply is independent of the LD20's power supply, this 
protection must be in the LD20 hardware itself. 

How to do this? Consider gating each input status line with the device 
address so that the LD20 holds IOSKIP and its counterparts false except when 
the device is being addressed. This won't work, for three reasons: 

(a) Just because the LD20 addresses a device does not assure that the device 
will respond. 

(b) Assertion of the EXTINT* signal occurs independently of device addressing. 
(c) Making the LD20 hardware dependent on particular device addresses is 

abominable design. 

366 The Art of Digital Design Part II 



We need a soft but constant source of false for the status lines IOSKIP, 
ACCLR, ORAC, and EXTINT*. By "soft" we mean that any valid true signal 
will override the LD20's protective false. The solution is to require each peripheral 
device to transmit its status signals using open-collector outputs. Recall from 
Chapter 2 that the open-collector circuit allows and requires a pull-up resistor. 
This resistor connects the open-collector output to a source of Vee, which in 
the TTL family is equivalent to connecting the output to the high-voltage level. 
If the resistor is located in the LD20, then the LD20's power can provide Vee. 
In this way, whenever the LD20 is functioning, the signal it uses will be H unless 
a peripheral device pulls it to L. By adopting the convention T = L for each 
of the status signals, we have solved our problem. 

This analysis causes us to modify the LD20's design to include pull-up 
resistors on the inputs IOSKIP, ACCLR, ORAC, and EXTINT*. We also require 
that peripheral devices provide these signals as open-collector outputs, using the 
T = L convention. 

The open-collector solution works for our LD20 status inputs even if no 
peripheral device sends a signal, since the pull-up resistor would hold the input 
high (false). In Chapter 12, we describe how to determine a suitable value of 
the resistor. 

Attaching Several Devices 

In our design of the LD20, we assume the presence of input-output data and 
control signals as required by the PDP-8's input-output protocol. We may place 
these lines into three categories: 

(a) Signals from the LD20 (device address, lOP, and data out). 
(b) Data lines to the LD20 (INPUT). 

(c) Device status responses to the LD20 (IOSKIP, ACCLR, ORAC, and 
EXTINT*). 

Let's investigate how several devices can share these lines. When the LD20 
has only one peripheral device, there is little difficulty, since we may attach the 
interface wires directly to the LD20. When there is more than one device, this 
crude method fails. Let's examine each of the three categories of signals. 

Signals from the L020. All devices share access to the device address, 
data, and lOP lines. The individual interface must interpret the message on 
these lines and act appropriately (or refrain from acting). The LD20 must produce 
output signals of adequate power, but the computer has no further responsibilities 
for getting signals to their proper destinations. 

Data lines to the L020. Input devices must share access to the input 
data lines. A device must take control at the proper point in its input sequence 
and at that time must present valid data on each of the 12 lines. At other times, 
the device must relinquish control. Treating the INPUT lines as a data bus is 
a convenient way to manage this activity. Of the methods in Chapter 3 for 

Chap. 9 Interfacing with the Minicomputer 367 



controlling bus access, the most convenient is to use three-state output controls. 
We may formalize the data input system for more than one device by requiring 
each input device to have three-state control of its data lines to the LD20. Each 
device must keep its three-state outputs disabled unless an lOT instruction requires 
the device to place data on the INPUT lines. Since data input is accompanied 
by the ORAC signal, the LD20 knows exactly when to accept the data. 

Device status responses to the LD20. We have already shown that the 
status input signals will reach the LD20 from open-collector outputs. Since open­
collector technology provides a wired OR under the T = L convention, peripheral 
devices should have the open-collector sources of each status signal wired together 
at the input to the LD20. There are four wired ORs, for IOSKIP, ACCLR, 
ORAC, and EXTINT*. This method will work well for our LD20 input-output 
system. 

A FINAL WORD ABOUT PART II 

The goal of the LD20 project was to extend your design skills using techniques 
and components at the MSI level of complexity. As a study project in digital 
design, the hardwired LD20 minicomputer is nearly ideal. This scale of problem 
is about at the upper limit of practicality for design with hardwired control. The 
PDP-8 is a simple computer-that is why we chose it for our example. Although 
the fundamental concepts of register architecture, memory, and sequential control 
apply to more complex computers as well as to our teaching example, more 
complex designs require additional components and techniques. More powerful 
VLSI circuits combining the basic elements of computer control or arithmetic 
operations are available. In Part III we will describe some of these tools and 
introduce you to microprogramming-a powerful method of digital control that 
forms part of the bridge between hardware and software. 

The methods and materials of Part II of this book are fundamental components 
of digital design. With your work thus far, you are well on the way to acquiring 
a solid proficiency in design. 

READINGS AND SOURCES 

ARTWICK, BRUCE A., Microcomputer Interfacing. Prentice-Hall, Englewood Cliffs, N.J., 
1980. 

FLETCHER, WILLIAM I., An Engineering Approach to Digital Design. Prentice-Hall, En­
glewood Cliffs, N.J., 1980. Asynchronous ASMs. 

KUCK, DAVID J., The Structure of Computers and Computations. Vol. 1. John Wiley & 
Sons, New York, 1978. 

PDP8jI and PDP8jL Small Computer Handbook. Digital Equipment Corp., Maynard, 
Mass., 1972. User's manual for the PDP-81 minicomputer. 

PROSSER, FRANKLIN, and ROBERT WEHRMEISTER, C421-C422 Advanced Computer Organization 

368 The Art of Digital Design Part II 



Laboratory Manual. Computer Science Department, Indiana University, Bloomington, 
Ind. 47405, 1985. Laboratory manual to support the construction, debugging, and study 
of the LD20 and LD30 versions of the PDP-81. The laboratory project uses the Logic 
Engine Development System, manufactured by Logic Design, Inc. Ask the authors of 
this book for information. 

WIATROWSKI, CLAUDE A., and CHARLES H. HOUSE, Logic Circuits and Microcomputer 
Systems. McGraw-Hill Book Co., New York, 1980. Asynchronous ASMs. 

EXERCISES 

9-1. Describe the asynchronous communication discipline used in terminals and other 
low-speed serial devices. 

9-2. What type of clocking is necessary in the asynchronous communication discipline? 
Design Example 4 in Chapter 6 deals with serial-parallel conversions involving a 
synchronous stream of data bits. Explain the difference between the two data 
communication disciplines. 

9-3. Describe the PDP-8's lOT protocol for the terminal, including the expected responses 
of the terminal interface to the lOP signals. 

9-4. What is the purpose of an input-output interface? Why do we need an interface 
between the terminal and the LD20? Why does the LD20 not process the terminal's 
signals directly? 

9-5. Why must the LD20 process the external interrupt signal EXTINT* independently 
of any lOT instructions? 

9-6. Why must the LD20-terminal interface maintain internal transmit and receive flags? 
9-7. What type of event causes state transitions in an asynchronous ASM? How is this 

behavior different from a synchronous system? 
9-8. Why must the test inputs in an asynchronous ASM be free of hazards? Explain 

how we assure that the asynchronous test inputs in the LD20-terminal interface 
are hazard-free. 

9-9. Describe the behavior of the receive section of the LD20-terminal interface ASM. 
9-10. Describe the behavior of the transmit section of the LD20-terminal interface ASM. 

Pay particular attention to the circuit in Fig. 9-4. 
9-11. Describe the behavior of a UART. 
9-12. Why do we not need to present the UART with input signals that are synchronized 

to its clock? 
9-13. Develop a complete circuit diagram for the LD20-terminal interface suitable for 

use as a construction guide. 
9-14. Assume that the LD20's system clock is available to the interface. Design a 

synchronous LD20-terminal interface (using a UART) that is driven by the LD20's 
clock. Compare this interface with the asynchronous one. 

9-15. The LD20 delivers only one lOP signal at a time. Suppose that the lOP signals 
for a given device address had no coherent interrelationship; in other words, suppose 
that they were asynchronous to each other. What effects might this situation have 
on the proper functioning of the LD20-terminal interface? 

9-16. Expand the LD20-terminal interface to allow its use with other devices similar to 

Chap. 9 Interfacing with the Minicomputer 369 



a terminal. To do this, add an additional device address to the interface. The new 
address should allow the LD20 programmer to specify the following DART parameters 
with suitable lOT instructions: 

Number of bits per character (from 5 to 8, using a 2-bit code to the DART). 
Parity mode (odd or even, using 1 DART input bit). 
Parity inhibit (no parity checking or production, using 1 DART input bit). 
Number of stop bits (1 or 2, using 1 DART input bit). 

Also, the new device address should permit the programmer to determine the 
various error conditions in the DART: 

Parity error on input (1 DART output bit). 
Framing error on input (1 DART output bit). 
Data overrun error on input (1 DART output bit). 

Design appropriate sequences ofIOT instructions to set the DART control parameters 
and to read the DART status information. Develop an ASM for the interface. 
Implement the interface. (You may wish to consult the complete data-sheet description 
of a DART.) 

9-17. Explain why a computer must maintain hardware control over all incoming status 
signals. Show how the LD20 handles this problem. Why did we choose an open­
collector structure? Why not three-state? 

9-18. In the open-collector structure by which the LD20 protects itself against spurious 
activity of external devices, why do we insist on the convention T = L? 

9-19. Discuss the peripheral device's responsibilities for assuring orderly operation of 
the LD20's input-output busses when several devices are attached. 

370 The Art of Digital Design Part II 



Microprogrammed 
Design 

llCID 

At the heart of our development of digital design is the algorithm. It is our basic 
tool for organizing our thoughts, and we use it to guide the design process. The 
actual implementation of the control algorithm is less important than the algorithm 
itself. We will accept any reasonable implementation scheme that conforms to 
our demands for clarity, simplicity, and regUlarity. In Part II, we developed 
systematic methods of realizing algorithmic state machines using building blocks 
of the scale of MSI integrated cicuits. Are there other ways to transform ASM 
charts into circuits? 

From the earliest days of computers, programmers have regarded computers 
as machines for executing algorithms. In 1951, Maurice Wilkes* proposed building 
a special "computer" for executing algorithmic state machines, with the logic 
of the algorithm residing in a special program call1ed a microprogram. Wilkes's 
concept, microprogramming, was well ahead of the state of digital technology. 
Microprogramming was not used commercially until 1964, when IBM employed 
it extensively in the construction of the System/360 series of computers. 

The year 1964 also saw the beginnings of the small, inexpensive computer. 
In that year the Digital Equipment Corporation introduced the PDP-8 minicomputer, 
which was the first CPU inexpensive enough to be dedicated to running algorithms 
to control a particular device. The PDP-8 and its successors and imitators 

* M. V. Wilkes, "The best way to design an automatic calculating machine," Manchester 
University Computer Inaugural Conference, 1951, p. 16. A more accessible reference is M. V. 
Wilkes, "The growth of interest in microprogramming: a literature survey," Computing Surveys, 
Vol. 1, September 1969, pp. 139-145. 

371 



enjoyed wide use for more than ten years in sophisticated digital control applications, 
although engineers looked upon these uses as simply an extended form of con­
ventional programming. In 1974 another wave of technology produced the dra­
matically less expensive CPUs that we call microprocessors and microcomputers. 
The ensuing explosion of applications will continue in the foreseeable future. 
Unfortunately, many people equate the microprocessor with the concept of mi­
croprogramming, a serious misconception. Today's microprocessors and micro­
computers are inexpensive, small, conventional computers, programmed in a 
conventional way. Microprogramming represents a different approach to pro­
gramming, and although many computers are constructed with the aid of micro­
programming techniques, the conventional software programmer normally does 
not use the technique. To separate these ideas more clearly, we refrain from 
using the sadly diluted "microcomputer" and "microprocessor" names when 
referring to microprogrammed devices. Instead, we will speak of a "micropro­
grammed controller," or "microcontroller." 

CLASSICAL MICROPROGRAMMING 

Wilkes recognized the fundamental separation between controller and architecture 
and was able to contemplate new and systematic ways of implementing the 
control function. Although formal ASM charts had not yet been invented, Wilkes 
proposed a machine whose fundamental operation was the execution of the ASM 
state in Fig. 10-1. This standard state has at most one test variable, and may 
have none. 

Figure 10-1 The ASM state executed 
by Wilkes's microprogramming 
machine. 

Wilkes proposed to use diodes for his machine. At that time, diodes were 
used to construct logic AND and OR functions. Although we no longer use 
diodes for this purpose, to appreciate Wilkes's proposal you should understand 
that diode construction provides a wired-OR capability similar to that of the 
modern open-collector gate. 

We will describe Wilkes's method by means of an example. Consider the 
simple ASM in Fig. 10-2. Let's proceed with a clocked implem~ntation of the 
state generator using an encoded state assignment of the usual sort; Fig. 10-2 
shows an arbitrary assignment of state variables B and A for the three states. 
Implementing the algorithm calls for constructing the new values of the state 
variables, B(NEW) and A(NEW), which serve as inputs to the clocked state flip-

372 Bridging the Hardware-Software Gap Part III 



State variables: BA 

@ 
r---'------, 

F 
y 

Figure 10-2 An ASM with three 
states, to illustrate classical micropro­
grammed control. 

flops. If we decode the current state variables, we may produce logic signals 
SO, Sl, and S2 for the individual states. A routine examination of the ASM 
leads us to the following equations for the various outputs required in the imple­
mentation: 

R(NEW) = SO·X + S2·Y 

A(NEW) = SO·X 

p = SO + S2 

Q = Sl 

R = SO·X 

Wilkes proposed a systematic way of implementing these equations, which 
we will model as follows. Arrange the test inputs on vertical wires, with individual 
state signals emerging from the decoder on horizontal wires. Then, with diode 
AND gates, produce the branch path terms required for each state and send 
these horizontally to the right for use in constructing the command and next 
state functions. For instance, in the first step, the scheme accepts state signal 
SO and test input X, and produces SO·X and SO·X. Rather than use notations 
for diode or simple AND gates, let us suppress the detail in order to emphasize 
the standard, systematic structure of the design. We use a special square symbol 
with two outputs: 

X 

so ~I,-__ ---,f---- ::~: 
Chap. 10 Microprogrammed DeSign 373 



One such operation in each branching state will produce all the product terms 
required by the logic equations. If a state has no test input, we omit the square 
symbol, sending the raw state signal on to the right. 

To merge the terms into final expressions, we must have a systematic way 
of performing the logic OR operation of the appropriate product terms. The 
product terms all appear on horizontal lines, so we will arrange the output signals 
on a second set of vertical wires, to the right of the input lines. Taking advantage 
of the wired OR capability of diodes, we add a diode at wire crossings where 
we require the OR operation. For simplicity, we show this as a dot.... The 
hardware will produce the OR of all the dotted horizontal signals on a vertical 
wire. Figure 10-3 shows the implementation for the ASM of Fig. 10-2, using 
our square and dot notations for the logic operations. 

Wilkes's idea was masterful. Here is a systematic method of building up 
the random logic needed to implement any ASM with no more than one branch 
per state. There is another powerful way of viewing the diode matrix, which 
shows its close connection to conventional programming and which led to the 
term microprogramming. The orderly arrangement of the matrix of wires in Fig. 
10-3 suggests a lookup table. From the discussion of ROMs in Chapter 4 you 
saw that we could represent any Boolean expression as a table in which we look 
up the result for a particular set of values of the input variables. This was what 
Wilkes did, using the technology of his day; he implemented the next-state 
computation as a "table" of diodes. Each row at the right in Fig. 10-3 corresponds 
to a table entry for a particular branch path of the algorithm. The table entry 
describes the values of each output element in the system: the new values of 
state variables and values for each command variable. We can interpret the 

374 

0 
Decoder 

~ I 

r---- 2 

31--

B 

A 

x Y 

~ 

~ 

P 

State 
t1ip-
flops 

< B(NEW) 

A(NEW) 

Q R 

SOoX 

SOoX 

S1 

S20Y 

S20Y 

Figure 10-3 A diode-based microprogrammed implementation of Fig. 10-2. 

Bridging the Hardware-Software Gap Part III 



state machine as a primitive computer whose instruction set executes only the 
ASM branch operation, and whose instructions come from a special bit pattern 
program, a microprogram. Each row in Fig. 10-3 is an instruction in the mi­
croprogram; in each row, the OR dots represent I-bits, and the absence of a 
dot represents a O-bit. 

Why is this viewpoint powerful? We have substituted bits of memory for 
a random collection of gates. Since the bits of the diode array have a close 
correspondence to the ASM structure, and are out in the open, we may readily 
understand and manipulate them. Changing a Wilkes microprogram merely involves 
changing some diodes in a systematic manner. 

CLASSICAL MICROPROGRAMMING 
WITH MODERN TECHNOLOGY 

Let us now explore the design of microprogrammed controllers with modern 
devices. We will find that this causes a few changes in Wilkes's scheme, but 
only in the details. At the conceptual level, microprogramming remains the 
realization of controllers by means of tables rather than gates, an idea that 
survives from Wilkes. We may reduce any ASM chart to a table with inputs of 
current state and status variables and outputs of next-state variables and commands. 
If we translate an ASM chart into a table and then implement the table directly, 
using hardware lookup techniques, we are microprogramming in the broadest 
sense. The essential step is the direct implementation of the table, bypassing 
gates, Boolean algebra, and so on. 

To simplify our treatment, we adopt for the present a uniform representation 
of logic truth in the microcode. The customary convention is positive logic, with 
T = H; we adhere to this convention in this section. In software programming, 
the choice of convention is of no consequence to the programmer, who is not 
dealing with voltage. In microprogramming, where we remain close to the hardware, 
this choice of positive logic will create problems, and we will return to discuss 
how to reinsert the full power of mixed logic into the microcode. 

If our micro controller is to implement really large algorithms, comparable 
to computer programs, we may need a sizable memory to hold the microinstructions 
for all the branch paths of the ASM. At this stage, ROM is a good choice since 
its contents remain intact even when the power is off. This means that the 
algorithm is instantly available when the power goes on, which seems quite 
desirable. The absence of inexpensive, fast ROM was the stumbling block in 
implementing microprogrammed control after its introduction, and many years 
of research ensued before the development of practical devices; it is no longer 
a problem. 

In the testing of status variables newer technology has forced some changes 
in Wilkes's scheme. In the jargon of microprogramming, ASM variables are 
called qualifiers. In Fig. 10-3, we supply the current 2-bit state address B,A 
that we decode into individual signals for each state. After this decoding of the 
state address, we incorporate the qualifier tests using AND gates, to create one 

Chap. 10 Microprogrammed Design 375 



line for each decision path in the ASM. There are more branch paths than states, 
and each branch path results in one microinstruction. . 

As long as we implement the micromemory bit by bit with diodes, we can 
dive into the hardware following the address-decoding stage and insert or remove 
AND gates as needed. But ROMs and RAMs come as indivisible integrated 
circuits-the designer has access to address inputs and memory outputs, but to 
none of the interior circuitry. With RAM or ROM, the decoder of Fig. 10-3 is 
inside the device, and we have no way to get in to insert the AND gates. We 
need some other way to test the status variables in any given state, while 
preserving the table-driven nature of microcoded design. 

Microprogramming with Multiple Qualifiers per State 

The only way to access microinstructions stored in RAM or ROM is through 
the address inputs. The important elements in identifying a microinstruction are 
the current state and the test inputs or qualifiers. We might construct the ROM 
address from these two sources of bits: the current state code, obtained from 
the state flip-flops, and the individual qualifier signals, using one address bit for 
each qualifier. The size of the address field is the sum of the number of state 
flip-flops and the number of test inputs used in the design. For n address bits, 
a ROM contains 2n words. Since the ROM's size grows exponentially with the 
number of qualifiers, this method rapidly gets out of hand. 

In this approach, the value of every qualifier contributes to each next 
instruction address. This is highly redundant addressing, since most of the 
combinations of qualifiers are of no interest. For ASMs built from such states 
as are shown in Fig. 10-1, at most one qualifier is needed in each state, yet the 
microinstruction address includes all the qualifiers. In general, every address is 
possible, so each word in the ROM must contain a valid microinstruction. Each 
microinstruction must supply the value of all command outputs and the value 
of the next ROM address: 

Next-state Command 
address outputs 

To illustrate this approach, let's again implement the small algorithm in 
Fig. 10-2, this time basing it on a ROM. (In practice, we would choose PROM, 
EPROM, or RAM, to permit more ready modification of the microcode during 
the development phase of the design. After the design has stabilized, we could 
then find a manufacturer to produce the ROMs if our production volume warranted 
this step. Let's use PROM in this example.) There are two state variables and 
two qualifiers, we we must have at least 4 ROM address bits, resulting in sixteen 
microinstructions. We begin by exhaustively enumerating the outputs required 
for each of the sixteen instructions: 

376 Bridging the Hardware-Software Gap Part III 



Address Contents 
B A X Y B(NEW) A(NEW) P Q R 

0 0 0 0 0 0 1 
0 0 0 1 1 0 0 1 
0 0 1 0 0 1 1 0 0 
0 0 1 1 0 1 1 0 0 
0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 
0 1 1 0 0 0 0 1 0 
0 1 1 1 0 0 0 1 0 
1 0 0 0 1 0 1 0 0 

0 0 1 0 0 0 0 
0 1 0 1 0 0 0 
0 1 1 0 0 0 0 

0 0 0 0 0 0 0 
0 1 0 0 0 0 0 
1 0 0 0 0 0 0 
1 1 0 0 0 0 0 

Next, we implement the table directly in a system of sixteen 5-bit words. Figure 
10-4 is a sketch of the circuit. All lines into the PROM are address inputs; of 
the 5 output bits from the PROM, 2 are inputs to the state flip-flops, and 3 are 
command outputs to the architecture. 

This approach to microprogrammed design is conceptually straightforward 
but requires enormous ROMs as the algorithm becomes more complex. There 
is an added benefit, however. Our original treatment based on Wilkes' s work 
allowed us to implement ASMs containing at most one test variable per state. 
Since the present approach requires us to create a microinstruction for every 
possible combination of qualifier values for each state, we are automatically able 
to implement an ASM of arbitrary complexity; hence the name "multiple qualifier." 
No matter how complicated the branch path through a state, it corresponds to 
some microinstruction in this ROM-based design. Note the strong similarity to 
the ROM-based implementation of logic circuits discussed in Chapter 4. 

As an exercise in using the mUltiple qualifier method, you might wish to 
implement the Black Jack Dealer machine of Chapter 6, using microprogrammed 
control. Suppose you use the same architecture as in the hardwired solution 
presented in Chapter 6. In Fig. 6-32, you can identify two state variables (say 
B and A) and eight qualifiers (CARD.RDY.SYNC, CARD.RDY.DELAYED, 
STAND, BROKE, ACECARD, ACEllFLAG, SCOREGT16, and SCOREGT21), 
so the ROM address field will contain 10 bits. The number of microinstructions 
is 210 = 1024! The eleven command signals (including the adder select signals) 
together with the two inputs to the state-variable flip-flops require that each ROM 
word have 13 bits. You will need a system containing a 1K x 13 ROM. 

You may wish to write down the contents of some of the 1024 microinstruc­
tions to solidify your grasp of the concepts in the multiple qualifier method. You 

Chap. 10 Microprogrammed Design 377 



A 

B 

'--+- A 
d 
d 
r 
e 
s - s 

S a 
Y t u 
~ 

a t 
X t p 

u u 
s t 

s 

State 
flip-flops 

Q D 

< 

Q D 

< 

PROM 

Architecture 

A (NEW) 

B(NEW) 

~ 

0 
u 
t 
p 
u 
t 

-

C i~ 0 
m n Q 
m P 

u a t p 
n s d 

Figure 10-4 A PROM-based micro­
programmed implementation of Fig. 
10-2. 

can appreciate the tedium of using this "simple" method to implement a complex 
algorithm manually. 

What is your reaction to this approach? Ours is: 

(a) It is a straightforward but tedious implementation of a general ASM. 
(b) The tables are very large, even for relatively small problems. 
(c) The method would be feasible only with inexpensive ROMs or PROMs. 

The problem is that the address for the ROM is a concatenation of a small 
number of encoded state-variable bits and a large number of individual qualifier 
bits. The state variables are important at all times in the execution of the 
algorithm, but each qualifier appears only occasionally in the ASM. Most of the 
time, the algorithm is indifferent to the value of most of the qualifiers, yet we 
must enumerate each combination. We are forced to use a canonical form of 
truth table rather than the compact form allowed by the typical ASM. This 
ROM-based method is feasible if you have a "smart" PROM programmer that 

378 Bridging the Hardware-Software Gap Part III 



can accept your logic equations and expand them into a canonical truth table. 
But in most applications another approach might be better. 

One Qualifier per State 

The Wilkes scheme tests only one qualifier per state. The address is formed 
from the state variables alone, requiring the decoding of only a small number 
of variables. The scheme implements the qualifier tests with AND gates inserted 
in an orderly manner inside the circuit, following the decoding of the address. 
You have seen that using a ROM precludes this method, and our first attempt 
was to move all the qualifier signals out into the address field. This allowed us 
to implement general ASMs, but at a severe penalty. We would like to remove 
the qualifier variables from the ROM address field so that we can eliminate 
redundant microinstructions. 

Providing properly sequenced command outputs to the architecture is the 
purpose of an ASM. In microprogramming, the command outputs arise from 
bits in the microcode. In addition to these command bits, microprogramming 
instructions also provide the new values of the state variables. This gives us a 
clue: our microcode has two components, an external one (command outputs) 
and an internal one (the next microinstruction address). Perhaps by enlarging 
the internal portion of the microinstruction we can shrink the number of instructions. 
We are striving to develop a method of handling large problems, and we may 
have to compromise the generality of the ASM structures that our method will 
handle. 

Let's start instead with the most elementary useful ASM operation; one 
qualifier per state with no conditional outputs. Further, let's try to realize each 
state with only one microinstruction. In such a scheme, the ROM address would 
consist solely of the state variables, which would select the proper microinstruction. 
This instruction must contain sufficient information to guide the development of 
the next-state address. In particular, the instruction itself must specify which 
qualifier this particular state is testing. 

If we organize all the qualifiers in a list, we may designate any qualifier 
by its index n in the list. The ASM structure we are trying to realize is 

T F 
X(n) 

k 

where X(n) is one of the qualifiers X. Let's include this index n-the qualifier 
index-in the microinstruction. Then, in our single microinstruction for state 

Chap. 10 Microprogrammed Design 379 



i, we must also include the next-state addresses j and k for the true and false 
branches. Each microinstruction in our ROM will now look like: 

Qualifier True False Command 
index address address outputs 

n TA FA 

Each word is now wider than in the multiple qualifier method, since it includes 
the index field and an extra address field, but our microinstruction table is reduced 
to one row per state. 

To execute a microinstruction, our primitive microcontroller must be able 
to select the proper X(n) using the value of n in the instruction. Based on the 
present value of the selected test input X(n) the processor must choose one of 
the two address fields as input to the state flip-flops. Let's construct this selection 
hardware. Index n is an address in a table, so we may use a multiplexer building 
block with n as the code for the test input selection. The output of this multiplexer 
is a variable X(n), whose value must specify either the true or the false address. 
We can perform this last selection with a set of two-input multiplexers, using 
X(n) as the select input. Figure 10-5 is the circuit for our processor. 

Address 

v 

.------4.. Command outputs 

ROM 

FA ~ ___ .;..v..lo-____ ~ 

TA~ ___ ';"V~ ____ ~ 

X(O) 

X(J) 

Index ~ _____ .... 
f1 

Test input 
selector 

One mux for each 
address bit 

v 

Next state 
address 

'-----~---_1 Q D ~-----------..... 

One flip flop for 
'--_---' each address bit 

Figure 10-5 A primitive microprogram controller with an input qualifier index 
and both true and false jump addresses. 

To illustrate the use of this microprogrammable machine to execute an 
algorithm, we will write the microcode for the ASM of Fig. 10-6, which is a 

380 Bridging the Hardware-Software Gap Part III 



State variables: BA 

y Figure 10-6 Figure 10-2 redesigned 
to have no conditional outputs. 

variant of Fig. 10-2 modified to eliminate the conditional output. Assigning 
indices 0 and 1 to the qualifiers X and Y, respectively, yields the following four 
microinstructions: 

Code 
Address n TA FA P Q R 

0 0 1 3 1 0 0 
1 0 0 0 0 1 0 
2 1 0 2 1 0 0 
3 0 2 2 0 0 

TA and FA each require 2 bits, n has I bit, and there are three command outputs, 
so this design would require four words of 8-bit ROM. 

Unconditional state transitions occur in instructions 1 and 3. Since each 
microinstruction must specify the index n of some test variable, we simply choose 
any index and make both TA and FA point to the same next instruction. 

Why did we eliminate the ASM's conditional output from our single-qualifier 
scheme? Conditional outputs arose naturally in Wilkes's scheme and in the 
multiple-qualifier approach. But here we have exactly one microinstruction per 
ASM state, and all the information for the execution of that state must reside 
in that microinstruction. If we were to permit conditional outputs, we would 
need a way to designate, for each command output bit, whether it is to be 
asserted unconditionally, or only on the true branch, or on the false branch, or 
not at all. This would require 2 microinstruction bits per command output-a 
considerable burden on the hardware. One of the virtues of the present method 

Chap. 10 Microprogrammed Design 381 



is its simplicity of form. Another reason for eliminating conditional outputs will 
surface later. 

Single-Qualifier, Single-Address Microcode 

The preceding single-qualifier structure is feasible, but the two address fields 
can consume considerable space in the microinstruction. We can eliminate one 
address field if we adopt a rule for inferring that address from the present address. 
The obvious choice, which conforms closely to the practice used in conventional 
computers, is to insist that one of the branch addresses be the next sequential 
address. In the single-qualifier method, state assignments correspond to micro­
instruction addresses, and since the state assignments are at our disposal, we 
may use normal sequencing to save bits in the microinstruction. The ASM 
operation reflecting this modification of the single-qualifier scheme is shown in 
Fig. 1O-7a. 

The microinstruction now contains one jump address, the qualifier index, 
and the command output bits. In the version of ASM in Fig. 1O-7a the jump 
address is always the true path. We can enhance the versatility of this approach 
by adding one more bit to the microinstruction, to allow the microprogrammer 
to specify which path, true or false, the jump address refers to. Now the format 
for the microinstruction is 

Index 
Jump 

Command 
TFBIT address 

outputs n 
JA 

This form of microprogramming implements the basic ASM operation in Fig. 
1O-7b. 

(a) (b) 

Figure 10-7 ASMs for single-qualifier, 
single-jump address microinstructions. 
(a) Microinstruction branches on a true 
qualifier. (b) Microinstruction allows 
selection of the jump condition. 

Now consider how we might build the processor for this method. Since 
we have eliminated one of the address fields, we have also removed the need 
for the two-input multiplexers on the state flip-flop inputs in Fig. 10-5. Instead, 
we need to be able to increment the current address whenever the test variable 
value is opposite of TFBIT in the microinstruction. We may incorporate this 

382 Bridging the Hardware-Software Gap Part III 



operation into our state flip-flop assembly by replacing the simple flip-flops with 
a programmable binary counter building block. Our micro controller processes 
a microinstruction in each clock cycle, so we are always either branching, which 
corresponds to landing a new value into the counter, or sequencing the counter. 

With the aid of the ASM in Fig. 1O-7b, we may derive the condition for 
loading the counter. We load the counter whenever the next address is to be 
the microinstruction jump address fA: 

(NEXT.ADDRESS = fA) = X(n)oTFBIT + X(n) oTFBIT 

= X(n) 0 TFBIT 

We sequence the counter whenever we do not jump. An implementation of this 
microprogrammable controller is shown in Fig. 10-8. 

T 

Com ... ,", I X(IJ 
outputs X(2) 

v 

n 

PROM 

Addr TFBIT 

JA 

Qk Dk 

LD 
Counter 

CNT 

< 
74LS163 
counters 

I 
I 

I 

v 

I-

~ 
2 

V1 
I 

X(n) 

-<:::-'-

Figure 10-8 A counter:based imple­
mentation of the microinstruction con­
trol in Fig. IO-7b. 

Another convenience shown in Fig. 10-8 is making test input position 0 a 
permanent true signal. The microprogrammer may then execute an unconditional 
branch (no test variable) by designating n = 0 and TFBIT = 1 in the microin­
struction. Conversely, unconditional sequencing to the next instruction· occurs 
when n = 0 and TFBIT = O. 

Having constructed this sophisticated single-qualifier controller, let's use 
it for the simple ASM in Fig. 10-6. Earlier, when we used the single-qualifier 
method with two address fields for this algorithm, our exact choice of state 
assignment was unimportant. (Why?) In the present method, we are required 

Chap. 10 Microprogrammed Design 383 



to make one of the exits from each state sequential. We encounter difficulty 
with the assignment in Fig. 10-6 since, as it happens, neither branch from state 
S2 is sequential. T() avoid this problem, we may renumber the states in Fig. 
10-6 so that SO = 2, SI = 0, S2 = 1, and S3 = 3. If we assign indices 1 and 
2 to qualifiers X and Y, respectively, the microcode for the program is 

Index Jump address Command outputs 
State Address n TFBIT JA P Q R 

SI 0 0 1 2 0 1 0 
S2 1 2 0 1 1 0 0 
SO 2 1 0 1 0 0 
S3 3 0 1 0 0 

As another illustration, we could implement the Black Jack Dealer of Chapter 
6 using the sophisticated single-qualifier scheme. The ASM in Fig. 6-32 is not 
suitable, since it contains conditional outputs and states with multiple tests. 
Converting this ASM to an appropriate form is a useful exercise. In most cases, 
we may convert a conditional output to an unconditional one by creating a new 
state for the output. This simple method will not work when the exact timing 
of ' the conditional output is crucial; an example is in the GET state of Fig. 
6-32. If we create a separate state for the HIT output, the hit light will blink 
on and off as the ASM loops around the two-state loop. We will deal with this 
particular problem presently. 

States with multiple tests also require modification before we can use the 
single-qualifier method. Where the timings are not critical, we may create new 
states to perform each individual test. This approach would handle all cases in 
Fig. 6-32 except the first two tests in the GET state. You will recall that this 
structure is a manifestation of the familiar single pulser; it requires that 
CARD.RDY.SYNC and CARD.RDY.DELAYED be tested simultaneously. For 
the Black Jack Dealer algorithm, the solution, which also solves the problem of 
the HIT output, is to use one of the other forms for describing the action of the 
single pUlser. (Notice how valuable was the knowledge that this troublesome 
structure represented a standard design element. How much more difficult the 
analysis would have been without this knowledge!) 

Figure 10-9, the result of the ASM transformation, is a version of the Black 
Jack Dealer algorithm that we may implement as a single-qualifier microprogram. 
Figure 10-9 contains an address (state) assignment that makes good use of the 
requirement that one branch of each state must lead to the next sequential state. 
We have made an arbitrary choice of the qualifier index, and have shown the 
index in brackets in each test in the ASM. 

Here is the microcode for the Black Jack Dealer of Fig. 10-9, without the 
command outputs. You should find it easy to include command bits in each 
microinstruction. What is the size of the ROM required by this microprogram? 

384 Bridging the Hardware-Software Gap Part III 



Index Jump address 
Address n TFBIT fA 

0 1 0 
1 0 1 
2 2 11 
3 3 11 
4 4 1 12 
5 6 0 0 
6 7 0 10 
7 5 0 9 
8 0 1 5 
9 0 0 

10 0 0 
11 0 4 
12 5 5 
13 0 5 

Comparison of the Microprogramming Approaches 

We have considered microprogramming from two viewpoints. How does the 
single-qualifier approach compare with the multiple-qualifier method? Some facts 
to consider are: 

(a) The single-qualifier method has a one-to-one correspondence with an ASM 
chart; the multiple-qualifier method does not. 

(b) The single-qualifier method requires much less microcode. 
(c) The single-qualifier method will handle large problems easily; the multiple­

qualifier method cannot tolerate many qualifiers before it becomes unman­
ageable. 

(d) The multiple-qualifier method handles a completely general ASM; the single­
qualifier method handles only a special case. 

(e) The single-qualifier method requires more special hardware in the micro­
controller, although the multiple-qualifier method requires the larger ROM. 

From these points we may draw some conclusions. The single-qualifier 
method is clearer and easier to manage. It is more likely to result in correct 
microcode the first time. Field-service personnel are more likely to understand 
single-qualifier programs and they are much easier to document. 

Item (c) is probably decisive, but even so, our sense of style leads us to 
recommend the single-qualifier method for most applications. 

MOVING TOWARD PROGRAMMING 

As we have developed the concepts of microprogramming in this chapter, our 
language and our emphasis have come ever closer to those of the software 
programmer. We began by emphasizing hardware, looking for ways to systematize 

Chap. 10 Microprogrammed Design 385 



CARD.RDY.SYNC[I] ~T_--, 

F 
CARD.RDYSYNC [I] >--.... 

T 

5 

F 
SCOREGT16 [6J 

10 

SCOREGT2J [7J 

ACEllFLAG [5J 
T 

3 

Select SUBJO 
Load SCORE 

F-+ACEllFLAG 

8 

13 

SelectADDJO 
Load SCORE 

T-+ACEllFLAG 

Figure 10-9 The Black Jack Dealer ASM revised for microprogrammed implementation. 

386 Bridging the Hardware-Software Gap Part III 



the design process to handle large problems. We followed Wilkes through his 
discovery of table-driven hardware controllers. We finally arrived at a design 
of a machine that executes only a restricted form of ASM operation but that 
executes all such operations in a systematic manner. We call the specification 
of each standard ASM state a "microinstruction," and we refer to the state­
variable values as a "memory address." We think in terms of writing a set of 
instructions-a microprogram-to describe an algorithm for this specialized 
machine, and we place the program into a memory. 

It sounds like programming, but how far have we gone? Microprogramming 
is a middle ground between hardwired design and conventional programming, 
drawing advantages from each. From the viewpoint of the designer of hardware, 
microprogramming offers a way to tackle large and complex control problems. 
It retains much but not all of the speed and capability of parallel action that is 
characteristic of hardwired ASM implementations. The single-qualifier approach 
to microprogramming permits the designer simultaneously to receive status in­
formation, control the flow of the algorithm, and issue detailed commands to 
the controlled device. We lose multiple branches and conditional outputs and 
also a bit of speed, but we gain a compact, highly structured, easily modified 
method of formulating and implementing algorithms. At the other end of the 
microprogramming spectrum, the multiple-qualifier approach costs nothing in 
speed or in the flexibility of the algorithm, but tends to overpower the designer 
with its exponentially increasing size of microcode. 

The software programmer sees microprogramming as an entry into the field 
of hardware. The serial, one-step-at-a-time nature of conventional programming 
gives way to a more parallel but still program-oriented approach. The micro­
controller has a more primitive command structure than a conventional computer, 
yet the simple but parallel nature of its operations makes for much greater speed 
and versatility. 

Why do we stress the programming aspect? Why has microprogramming 
come to be considered a conceptual breakthrough in hardware design? The 
answers lie in the great store of experience that computer science has gained in 
using programs to emulate algorithms. Conventional programmers have a host 
of software tools and strategies that we can use in microprogramming. By 
transforming a hardware problem into the programming domain, we may look 
forward to using editors, assemblers, language translators, and debugging aids 
in support of the development of our microcode. 

Let us try, then, to borrow from programming concepts to expand the 
usefulness of microprogrammable controllers, without detracting from their inherent 
power as emulators of hardware algorithms. 

Cleaning Up the Outputs 

Throughout our development of microprogramming, the microinstruction memory­
ROM, PROM, or RAM-has been the source of command outputs to the ar­
chitecture and control signals to the next-state controller. Unfortunately, these 
memories undergo relatively long periods of instability when their address inputs 

Chap. 10 Microprogrammed Design 387 



change, and so the signals emerging from the memory outputs have undesirable 
voltage characteristics. Our circuits for sequencing microinstructions have worked 
despite this drawback, since the changes in the memory addresses have been 
synchronized with the system clock. The architecture is exposed to the impurities 
of the command outputs, but since it is driven by the same clock as the control 
unit, the designer may use these outputs reliably to feed the clocked architectural 
elements. The command outputs are unsatisfactory for nonclocked uses, such 
as serving as control signals to the world outside the clocked design. In these 
important cases, the designer must purify the command outputs, usually by 
passing them through a clocked flip-flop to assure a clean output. 

The microinstruction memory has served as an instruction register, but in 
recent practice the role of instruction register is removed from the microprogram 
memory and is assumed by a true clocked register. This register, known as the 
microinstruction register or pipeline register, receives the full output of the 
microinstruction memory and delivers clean, reliable signals to the architecture 
and to the circuits that produce the next microinstruction address. The designer 
then has a uniform and reliable interface with the microprogram control unit. 

Enhancing the Control Unit 

Just as Fig. 10-8 grew out of consideration of more primitive controllers, we 
may generalize it to produce a more powerful controller. In Fig. 10-8, the counter 
and the coincidence gate perform a control function that responds to inputs and 
produces an output. The inputs are the test input signal from the external 
architecture and the TFBIT and jump address from the present microinstruction. 
The output is the address of the next microinstruction. We may view the TFBIT 
and jump address as components of an elementary computer branch instruction, 
and the counter and coincidence gate as a primitive computer control unit. In 
this view, Fig. 10-8 implements a computer with one flow-of-control instruction, 
a simple branch. But ordinary computers have much more sophisticated branching 
than this, so why should we not incorporate some of this sophistication into the 
next-instruction-address evaluator within our microinstruction control unit? 

We will view a microinstruction as consisting of two components, a mi­
croinstruction sequencing part and a command output part: 

Sequencer component Command component 

Command outputs 
Sequencer Test 
instruction index 

To architecture 

To architecture 

To sequencer 

The sequencing component of the microinstruction becomes an instruction to 
be processed by a microprogram sequencer, contained within the microprogram 
control unit. The sequencer and its instruction input may be relatively simple, 

388 Bridging the Hardware-Software Gap Part III 



as in Fig. 10-8 and earlier figures, or it may be quite sophisticated. Our view 
of the microinstruction control unit has been transformed into Fig. 10-tO. With 
these moves, we have a structure that is close indeed to conventional computers, 
yet retains much of the power of hardware. Our microprogram control unit has 
a memory, an instruction register, and is capable of determining the microprogram's 
flow based on the present state of the system and an external input. 

With these expanded capabilities, we can express quite complex control 
algorithms. Our new model of a microprogrammable controller (Fig. 10-tO) still 
implements an ASM similar to Fig. 10-7 in which all command outputs are 
unconditional and control of the microprogram either moves to the next sequential 
state or branches to a new state in response to the test of a single input signal. 
However, the possibilities for branching are considerably enlarged. We will see 
that we may use subprogram calls and returns, loops, and other useful constructs 
from the programming world. The opportunity to express highly complex algorithms 
as microprograms means that the designer will need sophisticated aids to support 
the development, debugging, and maintenance of the microprogram. At the same 
time, the architectures to be managed by these moreQomplex algorithms become 
larger and more complex, requiring additional aids for hardware development. 

Several microprogram sequencers are available as integrated circuit chips. 

Architecture 

r+" 

-~ -
Test ~ 

inputs I 

--l-
- /' 

• Selected input 

Next-instruction 
address 

Sequencer 

I> 

Sequencer 
instruction P 

i - 0 A 
p u d 

Test index e 
D_~ 

W ~f-Q I C 
i u S e 
n _t s 

Command e s 
A 

out uts p 

Chap. 10 Microprogrammed Design 

Figure 10-10 A sophisticated micro­
program sequencer. 

389 



The first was the 2909, introduced by Advanced Micro Devices in 1975. The 
2909 accepts a 2-bit operation code and provides 4 bits of next-instruction address; 
several 2909s can be cascaded to produce larger addresses. The 2909 supports 
conditional branches and subprogram calls and returns. As the technology ad­
vanced, more address bits were provided within a single chip and more complex 
operations were introduced. For instance, the 2910 integrated circuit produces 
12 bits of next-instruction address and executes 32 instructions. The Texas 
Instruments 74AS890 supports 64 instructions and has 14 address bits. 

The 2910 Microprogram Sequencer 

Microprogram sequencers are sophisticated devices with many features . We will 
limit our discussion to the 2910 and those characteristics that support our study 
pf microprogramming. If another micro sequencer is used, it will have similar 
characteristics. Figure 10-11 shows the principal signals entering and leaving 
the 2910. The 2910 is designed to produce the address of the next microinstruction 
to be loaded into the pipeline register. It accepts a 4-bit operation code I, a 
test-input signal CC (Condition Code), a control signal CCEN (Condition Code 
Enable) to guide the use of the test-input signal, and a 12-bit data-Input field D. 
The D-field usually provides a microprogram branch address (our familiar jump 
address) from the pipeline register, although it has other uses in the 2910. The 
output of the 2910 is a 12-bit next-instruction address Y. The 2910 can support 
microprograms containing up to 4096 instructions. Since the 2910 contains internal 
registers, we must supply a system clock signal CPo 

Figure 10-12 shows the internal architecture· of the 2910. The next-instruction 
address Yoriginates from one of four sources, selected by a 4-input multiplexer 
based on the operation code and the value of the test input signal. Two of the 
four sources are already familiar to us: the next sequential address (current 
microinstruction address + 1), and a branch address derived from the current 
microinstruction. The 2910 contains a microprogram counter-register ({JPC) 
which records Y + 1, the next sequential address, in case it is needed later. 

CLOCK---...., 

12 

DIRECT.lNPUT D 

INSTR UCTION 

CONDITION. CODE 
ENABLE 

CC CI 

CONDlTIONCODE -----' 

CARR Y.IN ------' 

r---------- PIPELINE. ENABLE 

r-------+-MA~ENABLE 

r----- VECT.ENABLE 

PL MAP VECT 
(EN) (EN) (EN) 

2910 

FULL 

12 
y NEXT. INSTR UCTION 

ADDRESS 

'----- FULL.STACK 

Figure 10-11 The 2910 microprogram sequencer. 

390 Bridging the Hardware-Software Gap Part III 



Register 

D-..... ---, 

y 

Stack 
pointer 

5-word 
stack 

Figure 10-12 Twelve-bit data paths in 
the 2910 microprogram sequencer. 

The output of the p,PC forms one input to the Y multiplexer. The 12-bit external 
data input D forms another multiplexer input. UsuallY,.D comes from the jump­
address field of the pipeline register. 

The two remaining multiplexer inputs support subprogram calls and program 
looping. The 2910 contains a five-word stack. In a subprogram call, the 2910 
must save the return address on the top of the stack; a subprogram return must 
supply the return address from the top of the stack. The 2910's internal stack 
allows calls to microprogram subprograms to be nested five deep. Each subprogram 
call results in a stack push operation, and each subprogram return causes a stack 
pop operation. When a microinstruction executes a subprogram call, the required 
return point is the address of the control store word following the subprogram 
call instruction. This address is exactly the quantity that is currently stored in 
the 2910's p,PC; Fig. 10-12 shows a data path from the p,PC to the stack that 
supports subprogram calls. 

The fourth input to the Y multiplexer is from an internal register R that 
can hold a loop counter. The R-register can be loaded from the 2910's D-input. 
Several 2910 instructions support the loading, testing, and decrementing of the 
value in the R-register. 

The 2910's 4-bit operation code supports 16 basic instructions. Each in­
struction has a "pass" and a "fail" option, generating a total of 32 possible 
operations. The selection of pass or fail is controlled by the values of the 2910 
inputs CC and CCEN, according to the following prescription: if the enable signal 
CCEN is true and the test input (condition code) CC is false, then fail; otherwise 
pass. Viewed another way, this structure allows the execution of the pass version 
of an instruction when we are not testing the input, or when the input is true 

Chap. 10 Microprogrammed Design 391 



while we are testing it. The following table specifies the conditions for selecting 
the option: 

CCEN 

F 
F 
T 
T 

CC 

F 
T 
F 
T 

Result 

Pass 
Pass 
Fail 
Pass 

CJP (conditional jump) is a typical 2910 instruction. In its fail mode, this 
instruction selects the j.tPC as the Y-output, accomplishing normal sequencing. 
In its pass mode, CJP selects the D-input as the Y-output, thus performing a 
branch. At the next system clock edge, the pipeline register will receive the 
appropriate instruction and the 2910's j.tPC will capture the address + 1 of this 
instruction. 

Another example is CJS (conditional jump to subprogram). In its fail mode, 
CJS sequences to the next microinstruction address, with no effect on the 2910's 
internal stack. In its pass mode, CJS performs a subprogram jump, which selects 
the branch address in the D-input as the value of Y, and, when the system clock 
fires, causes the contents of f,LPC to be pushed onto the internal stack. (As 
usual, j.tPC will receive the new Y + 1 when the clock transition occurs.) 

In the fail mode, the instruction CRTN (conditional subprogram return) 
performs normal sequencing, with no effect on the 2910's stack. In the pass 
mode, CRTN delivers the top-of-stack element to Y, thereby supplying the return 
address to the previous subprogram as the address of the next microinstruction. 
When the clock transition occurs, the 2910 pops its stack, and f,LPC receives Y 
+ 1. 

When the 2910 is used as the sequencing element in Fig. 10-12, an appropriate 
form for the flow-of-control portion of the microinstruction is: 

Sequencer component 

D I Test index 

Each microinstruction provides the 2910 with the /, CCEN, and D fields. The 
index field goes to the architecture to guide the selection of the appropriate test 
input, which becomes the 2910's CC input. 

Thus far, the 2910's D-field arises from the corresponding field in the mi­
croinstruction pipeline register. Although this is by far the most common and 
useful mode of operation, the 2910 also permits an alternative source of the D­
input. With each instruction, the 2910 asserts one of three D-field selection 
signals. In the instructions described above, the 2910 asserts its Pipeline-Enable 
signal PL(EN). On the other hand, the 2910's JMAP (Jump on Map Address) 
instruction, which causes an unconditional jump to the D-field address, asserts 

392 Bridging the Hardware-Software Gap Part 1/1 



the Map-Enable signal MAP(EN) instead of PL(EN). This feature provides a 
limited yet useful capability to select the D-field input from a source in the 
designer's architecture, under control of the MAP(EN) signal. We will use this 
feature of the 2910 in a subsequent design example. One other 2910 instruction 
has similar characteristics; all other instructions cause the assertion of PL(EN). 

If MAP(EN) is chosen, all inputs to the 2910's D-field must have three­
state characteristics and the designer must use the 2910 PL(EN) and MAP(EN) 
signals to select the proper input. 

Table 10-1 is a summary of the 2910's instructions. In this chapter we use 
about half of these instructions, and will explain each new instruction at the 
time of use. Consult an AM2910 data sheet for additional information, if you 
desire. The instructions CJP, CJS, CRTN, and CONT (Continue) are by far the 
most commonly used 2910 instructions. In this chapter, we use the alternative 
mnemonics JUMP, CALL, and RTN in place of CJP, CJS, and CRTN. 

Choosing a Microprogram Memory 

With the realization that our microprogramming methods are capable of describing 
and executing quite complex algorithms, we begin to see the need for sophisticated 
equipment to help the designer to manage the complexity. We have assumed 
that the microprogram storage was a read-only memory-ROM, PROM, or 
EPROM. In accordance with good programming practice, our microprograms 
do not change; all the "data storage" is in the architecture. Even when sophis­
ticated microprogram sequencers such as the 2910 are used, the microprogram 
remains fixed during execution-the sequencer itself contains storage for sub­
program return points and loop control. For such an environment, ROM seems 
the natural choice. Many designers initially discarded RAM for this purpose 
because of the volatility of its contents when power drops. But as the size and 
complexity of modern microprograms have increased, this choice has been reversed. 
For debugging complex microprograms, and when the microcode may be modified 
in the field, RAM is essential. In microprogramming jargon, the microprogram 
storage is the control store. If the control store is easily alterable, as is RAM, 
it is called writable control store (WCS). If we use RAM, we must load it 
frequently, and we need powerful microprogramming aids. In the next section 
we describe a microprogrammable development system that provides the designer 
with the hardware and software tools required to manage the design and de­
velopment process. 

THE LOGIC ENGINE-A DEVELOPMENT SYSTEM 
FOR MICROPROGRAMMING* 

Microprogramming permits the designer to tackle complex control tasks, but this 
ability to deal conceptually with complex designs entails numerous practical 

* This section is modified from Franklin Prosser and David Winkel, "The Logic Engine 
Development System-Support for Microprogrammed Bit-Slice Development," Proceedings of 
MICRO-J6, October 1983, pages 84-91. 

Chap. 10 Microprogrammed Design 393 



TABLE 10-1 INSTRUCTIONS OF THE 2910 MICROPROGRAM SEQUENCER 

REGI FAIL PASS 

HEX CNTR CCEN = LOW and CC = HIGH CCEN = HIGH or CC = LOW REGI CON-
13-10 MNEMONIC NAME TENTS Y STACK Y STACK CNTR ENABLE 

° JZ JUMP ZERO X ° CLEAR ° CLEAR HOLD PL 

HOLD 
._-~------~-

1 CJS COND JSB PL X PC 0 PUSH HOLD PL 

2 JMAP JUMP MAP X 0 HOLD 0 HOLD HOLD M~ 

3 CJP COND JUMP PL X PC HOLD 0 HOLD HOLD PL 

4 PUSH PUSH/COND LD CNTR X PC PUSH PC PUSH Note 1 PL 

5 JSRP COND JSB R/PL X R PUSH 0 PUSH HOLD PL 
t----

6 CJV COND JUMP VECTOR X PC HOLD 0 HOLD HOLD VECT 

7 JRP COND JUMP R/PL X R HOLD 0 HOLD HOLD PL 
---~------. 

*0 F HOLD F HOLD DEC PL 
8 RFCT REPEAT LOOP, CNTR * ° 

=0 PC POP PC POP HOLD PL 
-- ~------

*0 0 HOLD 0 HOLD DEC PL 
9 RPCT REPEAT PL, CNTR * ° t----

=0 PC HOLD PC HOLD HOLD PL 

C~TN 
-.-

-- HOLO-I------t--r-
A COND RTN X PC POP HOLD PL 

- --t---D --- --POP II CJPP COND JUMP PL & POP X PC HOLD HOLD PL 
-,~ 

C LDCT LD CNTR & CONTINUE X PC HOLD PC HOLD LOAD PL 

0 LOOP TEST END LOOP X F HOLD PC POP HOLD PL 

E CONT CONTINUE X PC HOLD PC HOLD HOLD PL 

*0 F HOLD PC ---POp DEC PL 
F TWB THREE-WAY BRANCH --I-------PC =0 0 POP POP HOLD PL 

Note 1: If CCEN == LOW and CC = HIGH, hold; else load. X = Don't Care 

I-field 
Value 

$0 
$1 
$2 
$3 
$4 
$5 
$6 
$7 
$8 
$9 
$A 
$B 
$C 
$D 
$E 
$F 

Mnemonic 

JZ 
CJS 
JMAP 
CJP 
PUSH 
JSRP 
CJV 
JRP 
RFCT 
RPCT 
CRTN 
CJPP 
LDCT 
LOOP 
CaNT 
TWB 

Function 

Jump to location 0 
Conditional jump to subroutine at pipeline address 
Jump to map address 
Conditional jump to pipeline address 
Push with conditional load of counter 
Conditional jump to subroutine at R address or at pipeline address 
Conditional jump to vector address 
Conditional jump to R address or pipeline address 
Repeat loop if counter is non-zero 
Jump to pipeline address if counter is non-zero 
Conditional return from subroutine 
Conditional jump to pipeline address with stack pop 
Load counter from D input 
Test end of loop 
Continue 
Three-way branch 

Alternative instruction mnemonics: 

394 

CALL 
RTN 
JUMP 

Equivalent to CJS 
Equivalent to CRTN 
Equivalent to CJP 

Bridging the Hardware-Software Gap Part III 



problems. On what type of breadboard should we construct the architecture? 
How do we debug the architecture? How do we produce the microcode? How 
do we load the microcode into a control store? How do we design and build 
the microinstruction sequencer? How do we debug the microcode? How do we 
modify the microcode? 

These questions imply that designers need a powerful support system to 
allow them to manage microprogrammed control. The control unit is itself only 
one part of a good development system. The system must also support the 
development and debugging of the architecture and the control algorithm. It 
should minimize the usual headaches of design and the subtleties of constructing 
the hardware. It should provide for convenient wire-wrapping for initial testing, 
and for lights and switches for displaying and controlling individual signals during 
the testing of the design, as well as lend powerful support to the development, 
debugging, and modification of the control program. 

Several commercial microprogrammable development systems have appeared. 
We will describe one of these, the Logic Engine, which we designed and built. 
Our goal is to reach a position from which we may easily produce and manage 
complex hardware projects using microprogrammed control. The goal is ambitious, 
and to achieve it requires an understanding of the design principles and practices 
presented in this section. 

Figure 10-l3 shows the parts of the Logic Engine DeVelopment System. 
The base unit houses the microprogrammable controller, a microcomputer-based 

BACKPANEL 

r------ Designer's 
wire-wrap board I 

I 
I 
I 
I 

Display 
panel 

Chap. 10 

Test 
input 

n Commands 

Logic Engine 

Microprogrammable 
controller 

Serial 
data 

Control 

Monitor 

Microcomputer 
support system 
wi th disk storage 

BASE UNIT 

Microprogrammed Design 

Status 

Figure 10-13 The Logic Engine. 

395 



debugging support system, and a debugging display panel. Attached to the base 
unit is a large, detachable backpanel for wire-wrap of the hardware architecture. 
A terminal provides for convenient interaction between the development system 
and its user. 

The Base Unit 

The Logic Engine's microprogrammable control unit contains a 2910 microprogram 
sequencer, a writable control store of up to 4K words, a microinstruction pipeline 
register to deliver command signals to the designer's architecture, and a buffer 
register to support communication between the controller and the microcomputer­
based monitor. Figure 10-14 shows the structure of the Logic Engine's controller. 
The task of the controller is to present a properly sequenced set of signal voltages 
(commands) to the designer's architecture. Therefore, a Logic Engine micro­
instruction has two primary fields: a fixed-format sequencing field to direct the 
2910 in the production of the address of the next microinstruction and an open­
ended field for specifying command signals to the designer's circuit. The sequencing 
field consists primarily of the items required to direct the 2910: I, CCEN, and 
D. The length of the command-bit field is determined by the particular project 
and may exceed 100 bits. 

Serial 
in/out 

To monitor 
WCS address 

r-l 

Shift register 

I WCS data 

t 
I 
I 

Writable control store 
I 
I 

l 
Pipeline register 

2910 instruction I Commands 

I 
Designer's 
commands 

2910 sequencer I 
Designer's 
test inpu! 

Figure 10-14 The architecture of the 
Logic Engine controller. 

The designer may choose two ways of executing the microinstructions. In 
the automatic mode, the controller loads microinstructions from the writable 
control store (WeS) into the pipeline register under the control of the 2910 
sequencer. In the debugging mode, the designer can influence the delivery of 

396 Bridging the Hardware-Software Gap ,Part III 



command signals to the architecture in several ways, using features of the Logic 
Engine's debugging monitor. 

The Logic Engine's support system consists of software running on a mi­
crocomputer inside the base unit. The microcomputer has dual floppy-disk drives, 
two serial input-output ports, and one parallel input-output port. The parallel 
port provides the interface between the support system and the Logic Engine's 
controller. One serial port is dedicated to the designer's display terminal; the 
other serial port is available for connecting a serial printer, remote computer, 
or other device. The Logic Engine's support software is organized around a 
debugging monitor. Additional software includes a text editor, a microprogram 
assembler, and various utility programs. 

The Logic Engine's display panel provides about 100 LEDs for displaying 
data, over two dozen pushbuttons and toggle switches for entering data, and a 
variable-speed clock that includes a manual mode. The designer has access to 
these whenever the backpanel is attached to the base unit. The base unit contains 
a power supply adequate to operate the Logic Engine and the designer's circuit. 

The Backpanel 

The Logic Engine's backpanel is large: 16 in. wide and 20 in. high. It has a 
general-purpose work area to handle integrated circuit chips of 8 to 64 pins. For 
a typical design, the backpanel can accommodate several hundred chips. The 
designer has access to both sides of the board at all times. Ground and +5 V 
appear as power grids on opposite sides of the board and there are extensive 
provisions for attaching power-bypass capacitors (see Chapter 12). 

Along one side of the backpanel is an area committed to the microinstruction 
pipeline register and WCS for the designer's command signals. This permits 
easy wire-wrapping of the command signals to the architecture, and allows the 
designer to employ as many command signals as the design requires. 

The Supporting Software 

The Logic Engine's development and debugging monitor supports the detailed 
control of the WCS and of the operations of the microprogram sequencer and 
pipeline register. The designer may load the WCS from a floppy-disk file-an 
example of downloading. The designer may read and modify any word in the 
WCS, modify any word without disturbing the remainder, and display the contents 
of a block of WCS. Since the 2910 microprogram sequencer is an integral part 
of the Logic Engine, the monitor knows its characteristics in detail and thus can 
support the display and modification of all of the sequencer's internal registers. 
The designer may display the microinstruction pipeline register and modify any 
portion of it. The monitor also permits the designer to specify whether, with 
each manual change of the pipeline register, a designer's clock signal is to be 
issued. These features give the designer an important debugging tool: the manual 
entry of microinstructions into the pipeline register without modifying the writable 
control store. Since the pipeline register's command field is wired to the designer's 
architecture, the designer may exert detailed manual control of the circuit. 

Chap. 10 Microprogrammed Design 397 



Table 10-2 summarizes some of the functions of the Logic Engine's monitor 
that are available to the designer. In executing microcode from the WCS, the 
most powerful debugging features are single-step and breakpoint. Single-step 
permits the designer to execute one instruction at a time from the WCS, with 
a complete Logic Engine register dump accompanying each instruction. The 
breakpoint feature is used when the designer is running microcode at high speed. 
The designer announces a particular WCS address that, if it becomes the candidate 
for next microinstruction, will cause the controller to halt. Breakpoints permit 
the designer to stop the execution of instructions at any address and then observe 
the status of the system. 

TABLE 10-2 FUNCTIONS OF THE LOGIC 
ENGINE'S MONITOR 

M Display and modify the WCS 
E Examine a block of the WCS 
R Display and modify the Logic Engine's registers 
P Load the pipeline and execute an instruction 
C Clear the 2910 
B Set or clear a breakpoint 
G Go! (Run microcode from the WCS) 
I Idle the Logic Engine 
S Execute a single instruction 
H Help! 
L Load the WCS from a disk file 
U Unload the WCS to a disk file 

The Logic Engine's microprogram assembler provides powerful development 
features within a structured microprogramming language. The microassembly 
language encourages the designer to express the control algorithm in high-level 
terms and provides for transforming the high-level specification into microcode. 
The assembler supports the symbolic naming of single command bits and fields 
of bits, and there is a convenient syntax for invoking the desired values of the 
command bits. The assembler provides full mixed-logic capabilities, giving the 
designer the freedom to specify signal values as voltages or as logic levels and 
to describe the voltage convention for truth for each signal. The designer may 
specify default values for command signals, so that in writing microcode only 
command signals that deviate from the default values need be described. In the 
sequencing portion of the microinstruction, the assembler supports the 2910's 
instruction set and has a convenient syntax for specifying the designer's test 
inputs. 

DESIGNING AND DEBUGGING WITH THE LOGIC ENGINE 

To illustrate the process of design using microprogrammed control, let's study 
the design of a small portion of a machine that can directly execute the Forth 
language in hardware. (It is not necessary to know the Forth language to follow 
the example.) 

398 Bridging the Hardware-Software Gap Part III 



The Initial Design 

Our first step is to work out the architecture-the registers, busses, and data 
paths. Forth is a stack-oriented language, and several of its important operations 
involve manipulations of the elements on the stack. In this example, we focus 
on the stack operations. We wish the several top elements of the stack to be 
available for direct use; the deeper elements will be kept in a RAM. Figure 10-15 
is a portion of the architecture, showing the top three elements of the stack. 
(The stack elements may contain as many bits as required by the problem, but 
this decision does not concern us here.) The input to each stack element is 
through a set of multiplexers. Each of the potential sources of a given element 
of the stack becomes an input to that element's multiplexer. (Notice the similarity 
of this data-routing design to that used in the LD20.) For testing purposes, in 

SWR 

SO 
Sl 
S2 

S3 

SO 
Sl 
S2 

S3 

so 

Sl 

S2 

S3 

Chap. 10 

MUXCTL 
(8 bits) 

Stack 

Stack 

Stack 

SOCTL 

SlCTL 

S2CTL 

Figure 10-15 The architecture of a microprogrammed design. 

Microprogrammed Design 

REGCTL 
(6 bits) 

399 



addition to the elements of the stack, inputs include the switch register on the 
display panel. We will call the select signals for the three multiplexers MO, M], 
and M2, and refer to the entire collection of multiplexer select signals as MUXCTL. 
In addition to holding its contents and loading new information, each element 
of the stack may perform internal bit-shifting operations. To support these 
activities, each stack element requires 2 control inputs; for stack elements, SO, 
S], and S2, we call the stack controls SOCTL, S] CTL, and S2CTL, and we call 
the collection of six stack-element controls REGCTL. 

The next step in the design is to work out, in rough form, the algorithms 
to control the architecture. The thought put into this step will often lead to 
modifications of the architecture. The design process involves moving between 
increasingly refined sketches of the architecture and control until we feel reasonably 
confident that we understand our problem thoroughly. Then there is hope that 
when we build our machine, it might actually work! 

At this stage in the design of the algorithm, we can see what signals from 
the architecture we must test in our microcode in order to direct the flow of the 
microinstructions. The 2910 sequencer accepts a single signal as a test input, 
and the 2910's instructions may act upon the value of this signal. Consistent 
with our earlier development of microprogrammed controllers, we place a test­
input multiplexer in the Forth Machine's architecture to deliver the single test 
signal to the 2910. Since we know which, if any, signal is required for testing 
in each microinstruction, we may use some of the microinstruction's command 
bits as the select code for the multiplexer. The full Forth Machine design requires 
about a dozen test inputs, so a 16-input multiplexer with a 4-bit select code is 
appropriate. Figure 10-16 shows the structure of the apparatus for selecting 
test inputs, including the two that we use in this design. We have allocated the 
first 4 microinstruction command bits (bits 0-3) to the control of the test multiplexer; 
this is an arbitrary choice. 

400 

Logic Engine 
con trol unit 

LD.L 
TST.L 

Designer's test input 

Designer's 
architecture 

Figure 10-16 Structure of the test input in a microprogrammed design. 

Bridging the Hardware-Software Gap Part III 



The Initial Testing of the Architecture 

Now it is time to construct and test the architecture. On the Logic Engine's 
backpanel, we layout the chips required by the architecture, assemble the 
appropriate sockets and chips, and wire-wrap the design. The size of the backpanel 
permits us to develop and debug the architecture without partitioning the com­
ponents among small printed circuit boards. 

At this point, we usually make some preliminary tests of the registers and 
the data paths. The Logic Engine's display panel has numerous lights and 
switches to assist us. Using wire-wraps or jumpers, we connect the important 
outputs to any of the display panel's LEDs and connect switches to the inputs. 
A disposable cardboard overlay for the display panel allows us to label the lights 
and switches. We may use the display panel's variable-speed clock to provide 
clocking signals. Manual clocking permits us to debug statically-we deliver 
clock transitions only when we wish. This is a powerful debugging technique. 

Now we exercise the architecture with the display panel's switches, and 
observe the results on the lights. In effect, we are manually delivering rudimentary 
control to the architecture prior to developing the actual control program, thus 
allowing early detection of gross errors in the wiring or design. 

Developing the Control Program 

Once we are satisfied that the architecture is working properly, we turn to the 
detailed development of the control algorithm. We rely on the Logic Engine to 
help us develop the control in two ways: by providing a standard environment 
for developing and executing microprograms, and by aiding us to program and 
test the code. 

The Logic Engine's microprogram assembler, LEASMB, has two parts. 
In the declaration phase we specify symbolic names for all the variables and 
quantities of interest, and we describe the structure of the microinstruction. The 
program phase contains the microcode itself, in symbolic form. The use of 
symbolic notations is of great value .because of their descriptive power and 
because changes in the design may usually be made with little disturbance to 
the program. During the earlier phases of the design, natural names will emerge 
for the important signals that control the architecture. It is convenient to use 
these names in the microcode. 

Figure 10-17 is a microprogram for our Forth Machine design. We will 
use this code to introduce the elements of the microassembly language. (Later, 
you will study the process of generating a microprogram for a more complex 
microprogrammed design. Our treatment of the microassembly language will be 
informal.) 

The microcode in Fig. 10-17 supports a small portion of the testing of the 
Forth Machine-the manual loading of data from the switch register on the 
display panel and the exercising of the Forth language's rotate instruction. This 
code includes declarations and microinstructions that illustrate a variety of features 
of the microassembler. 

Chap. 10 Microprogrammed Design 401 



~ 
N 

OJ .... c: 
(C 

:;' 
(C -:r 
CD 

:::c 
III .... c. 
:E 
III 

~ 
en 
o 

~ 
III .... 
CD 

G) 
III 
"C 

"0 
III 
~ 

= 

lOOIC ENGINE DEVEIDEMENT SYSTEM MICROPROGRAM ASSEMBLER 
FORl'H TEST: LOGIC ENGINE DEMCNSTRATION PROGRAM 

LOC XDDDI ccce C 
000 
000 

000 10033 OFFO 0 
001 50013 OFFO 0 

002 30003 OODF C 
003 10003 lFFO 0 
004 50043 lFFO 0 
005 30003 OADF C 

ID FORI'H TEST 
* FORI'H ENGINE 
* SAMPLE DECLARATIONS AND SAMPLE MICROCODE 

SIZE 18: Number of command bits 
MODE IDGIC 

* TEST MUX CCNFIGURATICN 
INMUX COM (O:3),T=%HHHH,D=Q 
LD. L INV INMUX=O, T--%L 
TST.L INV INMUX=l,T=%L 
* crMMAND FIELD DEClARATIONS 
MID<CI'L (7 : 0 ) COM (4: 11 ) , T=$FF , D=%'rrrl'rrrr 
MO EQU MID<CI'L (7 : 5 ): Mux 0 select signals 
Ml EQU MUXCI'L(4:2): Mux 1 select signals 
M2 EOO MUXCI'L(l:O): Mux 2 select signals 
MOS2 INV M0=5: Select Reg S2 thru Mux 0 
MOSWR INV MO=O: Select 9.lTi tch Reg thru Mux 0 
M1SO INV Ml=3: Select Reg SO thru Mux 1 
M2S1 INV M2=1: Select Reg Sl thru Mux 2 
REOCTL COM (12: 17 ), T=%HHHHHH, D=%FFFFFF 
!.DAD3 EOO %111111: load 80,81,S2 
ROl'ATE INV MOS2,M1SO,M2S1,REOCTL=!.DAD3: Rotate stack. 

BEGIN 
!.DAD 

TEST 

ROI' 

PROG 

ORG 0 
EQU * 
.nMP TEST IF LD .L=%F 
JUMP * IF LD. L=%'r 
JUMP BEGIN:MOSWR,M180,M2S1, 

REOCTL=LOAD3: **Push swi. tches onto stack. 
JUMP LOAD IF TST. L=%F 
.nMP * IF T8T.L=%'r 
JUMP BEGIN:ROI'ATE: **Rotate top 3 stack. elenents 
END 

o ERROR (S) DETECl'ED 

Figure 10-17 Microcode for the design example, 



LEASMB microprogram statements have an optional label field, an operation 
field, and an optional operand field, in that order. Within the operand field, the 
required subfields are separated by semicolons; comments may follow the operand 
field, if preceded by a semicolon. Lines beginning with an asterisk are comments. 
An LEASMB output listing, such as in Fig. 10-17, shows the source program 
and, to the left of the program phase, the object code in hexadecimal notation. 

An LEASMB program begins with the directive ID and ends with the 
directive END. The ID is the name assigned to the object code produced by 
the assembler, END marks the physical end of the program text. The declarations 
precede the program; the directive PROG separates the two. In the declaration 
phase, the directive SIZE specifies how many command bits are used in the 
design. The directive MODE, which takes an argument LOGIC or VOLTAGE, 
announces how the assembler is to interpret numeric data that could describe 
either logical or voltage values. As mixed logicians, we choose LOGIC mode. 

Unless otherwise specified, numbers are in decimal notation. Binary constants 
are preceded by %, and may contain numerals 1 and 0, logical T and F, or 
voltage Hand L. 

The declaration phase has three main directives: COM, INV, and EQU. 
The program phase has, besides mnemonics for each of the 2910 sequencer's 
instructions, two directives: ORG and EQU. COM specifies the nature of the 
command bits in the microinstruction; INV allows a symbolic name to invoke 
complex operations on command bits; EQU allows the equivalencing of names 
to values or to other names. ORG declares the origin of the microinstructions 
in the control store. 

Command bits, presented to the architecture by the command field of the 
pipeline register, are defined by the COM directive. In Fig. 10-17, the definition 
of REGCTL provides the following information: REGCTL is a field of 6 bits 
which occupy bits 12 through 17 of the command field of the microinstruction. 
[If we choose, we may refer to individual bits or groups of bits of REGCTL 
using a default set of indices, 0 for the leftmost bit through 5 for the rightmost 
bit. Thus REGCTL(0:3) would reference the leftmost 4 bits of the field. This 
notation frees the programmer from a dependence on the positions of particular 
command bits.] For each bit of REGCTL, truth is represented by a high voltage 
level (T = %HHHHHH). Whenever any bits of REGCTL are not mentioned in 
a microinstruction, the default values will be false (D = %FFFFFF). (A mi­
croinstruction will usually deal explicitly with only a few command bits; the 
default declarations of command bits are therefore of great importance in freeing 
the programmer from unnecessary details. In this example, the default values 
hold the current contents of the stack registers.) 

The MUXCTL(7:0) declaration specifies that MUXCTL occupies bits 4 
through 11 of the command field. In our program we may refer to individual 
bits or groups of bits using indices 7 (for the leftmost bit) to 0 (for the rightmost). 
This explicit indexing notation overrides the normal default notation. For each 
bit of MUXCTL, truth is represented by a high voltage (T = %HHHHHHHH). 
By convention, their unspecified default values are false. 

In our illustration, we usually wish to deal with the group of command 

Chap. 10 Microprogrammed Design 403 



signals that controls a particular multiplexer in Fig. 10-15. So, for convenience, 
we define three variables MO, Ml, and M2 in the next three lines of the program. 
MO is declared to be a field of 3 bits, equivalent to bits 7 to 5 of MUXCTL. 
Similarly, Ml and M2 are declared to be equivalent to bits 4 to 2 and bits 1 to 
o of MUXCTL. With these definitions, we may refer to the field MUXCTL as 
a whole or to subfields MO, Ml, and M2, or to any bit or group of bits of 
MUXCTL. 

These uses of the EQU directive equate names with fields. EQU may also 
be used to equate names with values or with addresses. LOAD3 is defined with 
an EQU as equivalent to the binary pattern %111111. BEGIN is defined in the 
program phase as equivalent to *. Since * in this context designates the current 
assignable control-store address, this notation equates the symbol BEGIN to the 
address 000. 

In examining Fig. 10-15, you will see that, in order to select stack element 
SO as the output of multiplexer 1, we must present the code 3 (binary %011) to 
the MUXI select inputs. For convenience, we define a symbol MlS0 that will 
invoke (INV) the value 3 on the field M1. If we wish to pass element SO through 
MUXI, we write MlS0, thus assigning the value 3 (%011) to the field Ml in the 
microinstruction. In the microcode in Fig. 10-17, the instruction at location 002 
illustrates this usage. The symbol ROTATE illustrates how we easily may develop 
complex invocations. The use of ROTATE in the instruction at location 005 
invokes the previously defined invocations MOS2, MlS0, and M2S1, and invokes 
the value LOAD3 in the command bits defined for REGCTL. Invocations are 
the most important concept in LEASMB; they are the key to achieving high­
level specifications of our microinstruction operations. 

The microprogram performs two operations: loading the contents of the 
display panel's switch register into stack element SO (and simultaneously pushing 
the stack down), and performing a cyclic rotation of the top 3 elements of the 
stack. Two pushbuttons on the display panel, LD and TST, control the actions. 
When LD is pressed and released, the load-and-push operation will occur; pressing 
and releasing TST will cause the execution ofthe rotate operation. It is necessary 
to assure that the microcode for loading and rotating will be executed only once 
for each push of the button. The code at locations 000 and 001 performs a 
single-pulser function for the LD button; the code at location 003 and 004 performs 
a similar function for the TST button. From the discussion in Chapter 6, you 
can see that in our microcode we have developed pure-control versions of the 
single-pulsers. We return for a closer examination of this structure later in this 
chapter. 

When the instruction at location 003, JUMP LOAD IF TST.L=%F, is 
executed, test input signal TST.L must be selected through the designer's test 
multiplexer, and a false value of TST.L must cause a branch to microinstruction 
LOAD. In the declaration phase, the command variableINMUX describes the 
select signals for the test mUltiplexer. The declaration of the variable TST.L 
specifies that TST.L will invoke the value 1 for INMUX. This agrees with Fig. 
10-16, in which TST.L appears at input position 1 of the test multiplexer. 

Test signals entering the test multiplexer may be represented as T = H or 

404 Bridging the Hardware-Software Gap Part III 



T = L, like LD.H and TST.L. A jump may be desired for either a true or a 
false value of a test signal, as in the microinstructions at locations 000 and 001, 
or at 003 and 004. The LEASMB microassembler arranges for the correct voltage 
to be presented to the 2910's CC input, in accordance with the specifications in 
the program's instructions and declarations. The designer declares the voltage 
conventions once and may thereafter deal with signals as logical entities. In our 
example, the declaration of TST.L has a term T = %L appended to an otherwise 
normal invocation. This declares that if a microinstruction ever specifies TST.L 
as the source for the 2910's CC input, then truth is represented as a low voltage 
level. The microprogram sequencer portion of an LEASMB microinstruction 
contains a bit, set by the assembler, that specifies whether the incoming test 
voltage should be inverted before it enters the 2910. (In exercises at the end of 
the chapter, you are asked to ascertain from Fig. 10-17 which bit of the micro­
instruction corresponds to this CC-inversion flag, and what voltage transformations 
are induced by the instructions in the microcode.) 

Use this informal description of the language to follow the test program. 
In the Logic Engine's microassembly language, we have tried to encourage the 
use of high-level structured coding within a simple syntax. Let us now return 
to the design of our Forth Machine circuit. 

Testing the System 

U sing the command-bit structure declared in the microprogram, we wire the 
appropriate bits of the Logic Engine's pipeline register to our architecture. We 
assemble the test microprogram and load it into the Logic Engine's WCS, making 
the appropriate monitor commands. We clear the Logic Engine, thereby causing 
the next microinstruction to be taken from location 000. Feeling bold, we enter 
the automatic run mode, causing the Logic Engine repeatedly to execute the 
instructions at locations 000 and 003, waiting for us to press the LD or TST 
pushbuttons on the display panel. We put a desired value into the display panel's 
switch register, and press and release the LD button. Assuming that we have 
wired the outputs of the stack elements to the LEDs on the display panel, we 
may observe the results directly on the panel. 

If, as is likely, there is some problem with the behavior of the load-and­
push operation, we must debug the architecture and the code. The single-step 
mode is useful at this point; it allows us to execute our microcode yet freeze 
the system after each instruction so that we may observe the status of any signals 
in the architecture. Breakpoints are also useful, to suspend the execution of 
microinstruction. In debugging larger microprograms, a combination of breakpoint 
and single-stepping is a powerful aid to the designer. 

If we isolate a problem and wish to supply a particular set of commands 
to the architecture, we may use the monitor's manual-execution mode, in which 
we present manually generated command-bit patterns for loading into the pipeline 
register. During manual execution, we may (in fact, must) specify whether we 
wish the Logic Engine to issue a clocking signal to our architecture. We have 
detailed control of the entire debugging process. If we determine that a particular 

Chap. 10 Microprogrammed Design 405 



microinstruction is incorrect and the error does not warrant a reassembly of the 
program at this time, we may manually change the microcode in the WCS. 
Without all this assistance from the development system, the designer would 
find it very difficult to express the control algorithm and debug the design. 

Now we are ready to study a more complex microprogrammed design. 

DESIGNING A MICROPROGRAMMED MINICOMPUTER 

With the aid of powerful development facilities such as those provided by the 
Logic Engine, we are in a position to tackle a more difficult problem. You have 
already studied the LD20 hardwired minicomputer in Chapters 7, 8, and 9; in 
this chapter we will borrow its architecture and will develop a microprogrammed 
version of the control algorithm. We call the new design the LD30. Although 
the execution will be slower, the development of the LD30's control algorithm 
will be vastly simpler than the hardwired algorithm of the LD20. Nevertheless, 
to accomplish a microprogrammed implementation of this magnitude will require 
the use of all the sophisticated development aids offered by the Logic Engine. 

Developing a Microprogram 

The following prescription is useful for developing the microprogram: 

1. Develop the main architecture. For our LD30, we would follow almost 
identically the path taken in Chapter 7, and we will adopt the LD20's main 
architecture. 

2. Specify the obvious command bits for controlling the architecture. We 
need not worry about details at this stage, but our knowledge of the ar­
chitecture will give us much insight into the commands needed to control 
it. We may modify our list of commands later. 

3. Write high-level microinstructions for the control algorithm. We will use 
the Logic Engine's microassembly language, which will allow us to express 
complex operations in symbolic terms without going into details. Since we 
have already studied the elements of the control process for the LD20, we 
can draw on this experience, using notations that are as close as reasonable 
to those used in the LD20's ASM chart. 

4. Develop the declaration phase of the microcode. This is primarily the 
specification of invocation variables to expand in ever-increasing detail the 
high-level notations used in the microinstructions. 

5. Tidy up. Complete the details of command-bit representations, test inputs, 
minor architectural elements, and definitions of the behavior of specific 
chips used in the architecture. 

The Architecture of the LD30 

We adopt almost intact the architecture developed for the LD20. Figure 10-18 
shows one of the twelve bit-slices in the main data structure. We see the principal 
registers, the ALU, and the main bussing system for the 12-bit data of the LD30. 

406 Bridging the Hardware-Software Gap Part III 



AC 

MA 
MA j 

OUT MEM MEMj ALUj 
IN ALU 

DATA MUXj 

MB MUX MEj 

PC 
PCj 

EA j 

INPUTj ----_ .... 

IR 
IR j 

Figure 10-18 The main data paths of the LD30. 

We will use the LD20's structure for the accumulator and link; this is shown 
in Fig. 10-19. Also, we will use the LD20's structure for the memory and its 
controller. We anticipate that the LD20's state generator will be completely 
missing from our microprogrammed implementation, since the microprogram 
controller in the Logic Engine performs the next-state selection. We expect our 
LD30 to contain at least one new architectural element: the test multiplexer that 
supports the delivery of the specified test signal to the microprogram controller. 
We will specify other architectural elements as we encounter them in developing 
the control algorithm for the LD30. 

LINK 

LINK 
ACO 

ACll 
o 

Q 1---41 ...... -1 RT IN 
LINK 

AC shift 
register 

12 

ACO-ACII 

Figure 10-19 The accumulator and link of the LD30. 

A First Approximation of the Command Bits 

To provide a concrete point of reference for our later work, it is useful to specify 
as many of the architecture's control signals (the microinstruction commands) 

Chap. 10 Microprogrammed Design 407 



as are evident from the LD30's present architecture. This step could be deferred, 
since at this point it is just an approximation, but we have learned to appreciate 
having this early anchor to reality. As we pursue a top-down design, this knowledge 
can keep us from generating interesting but unproductive microcode. 

Our first attempt to define control signals for our LD30 might take the form 
of Table 10-3. At a rough guess, we expect to have to test around 30 input or 
status signals; 5 or 6 bits will probably be required for the test multiplexer's 
select code. The controls for the data mux, the ALU, and the principal data 
registers are the same as in the LD20. The link mUltiplexer and the memory 
controls are also carried over from the earlier work on the LD20. 

TABLE 10-3 PRELIMINARY 
COMMAND SIGNALS FOR THE LD30 

TESTMUXCTL COM 5 or 6 bits 
DATAMUXCTL COM 3 bits 
ALUCTL COM 6 bits 
MALD COM 1 bit 
MBLD COM 1 bit 
PCLD COM 1 bit 
IRLD COM 1 bit 
ACCTL COM 2 bits 
LINKMUXCTL COM 3 bits 
MEMORYCTL COM 2 bits 
ENABLE.EA COM 1 bit 

We expect to need additional architectural elements for our LD30's interrupt 
control, input-output control, Operate instruction priority control, and the halting 
operations, but we are not yet clear about their nature. 

Writing the High-Level Microcode 

We will use our earlier analysis of the LD20's control algorithm (see Chapter 
7) to help develop the LD30's microcode. The hard work-understanding the 
PDP-8's specifications well enough to describe a correct control algorithm-is 
the same for the microprogrammed LD30 as for the hardwired LD20. In the 
LD20, we expressed the algorithm as an ASM chart. For the LD30, we will 
use the Logic Engine's LEASMB microassembly language. The two versions 
differ dramatically in appearance-the ASM chart is a two-dimensional flow 
diagram, whereas the microassembly language is linear, like a computer program. 
The two versions also differ in detail, since the LD20's ASM contains many 
states with multiple tests (multiple qualifiers) and conditional outputs, which are 
not permitted in the single-qualifier microinstructions supported by the Logic 
Engine. And the implementations of the two control algorithms are wildly different. 
However, the overall sequencing should remain the same. We do not need an 
ASM for our work on the LD30, but to tie this work more closely with the 
LD20, we will use LD20 nomenclature when practical. Figure 10-20 is a high­
level diagram of the LD30's control algorithm. The algorithm consists of four 

408 Bridging the Hardware-Software Gap Part III 



FETCH PHASE 

Halt Yes 

? 
IDLE 

....-... 
No 

l Fetch next 
instruction Continue Yes 

') 

~ 

Form 
No l 

effective Manual 
address operation 

No ? 

yesl 
Operand y 
needed Perform 

? MANUAL 
operation 

Yes 

J 
Get operand 

from memory 

EXECUTE PHASE 

Execute the 
instruction 

I 
Figure 10-20 LD30 control. 

principal blocks: the fetch phase, the execute phase, the idle phase, and the 
manual phase. We must decompose each block into a sequence of microinstruc­
tions. As always, we will strive for a top-down development. 

The Idle Phase of the LD30 

The purpose of the idle phase is to detect an operator's action at the LD30 
display panel. As in the LD20, we must take care to process only synchronized 
input signals in our algorithm, and we must provide a means of processing each 
depression of a pushbutton on the display panel only once. 

We may contemplate the use of a flip-flop HALTFF to record the status 
of halt requests, as we did in designing the LD20. A request to halt will eventually 
cause the algorithm to reach the idle phase; we should be prepared to clear the 

Chap. 10 Microprogrammed Design 409 



halt request at this time. The addition of a HALTFF flip-flop to our architecture 
will require appending two command bits to our list (for controlling J and K in 
a JK flip-flop or D and its enable in an enabled D flip-flop). 

In the LD20 a composite signal MANSW* indicates the assertion of at least 
one pushbutton signal. MANSW* is the input to a single-pulser whose output 
is MANPULSE. MANPULSE is synchronized with our system clock and assures 
that a depression of a pushbutton is responded to only once. Following the 
discussion of single-pulsers in Chapter 6, we can envision several implementations 
of the MANPULSE signal. 

Figure 1O-21a shows an architectural implementation of MANPULSE, in­
volving the two flip-flops and an AND gate that we have come to expect of this 
circuit. In this circuit, the microcode for the LD30's idle phase might be: 

IDLE EQU * 

MANSW. 

JUMP * IF MANPULSE=%F; CLEAR.HALTFF 
JUMP FETCH IF CONT.SW=%T 
CALL MANUAL 
JUMP IDLE 

D Q 

(a) Pure. architectural implementation 

MANSW* MANUAL.SW 

(b) For a pure microprogrammed implementation 

MANPULSE 

Figure 10-21 Two versions of the hardware for the LD30's single-pulser. 

From Chapter 6, we learned that the single-pulser could be expressed as 
a pure algorithm rather than as an architectural element. In hardwired design, 
both views result in the same circuit. In microprogrammed design, the algorithm 
is expressed as microcode, and is never reduced to a hardwired circuit. Thus, 
we may implement the LD30's idle phase using a single flip-flop to synchronize 
the asynchronous signal MANSW*, as shown in Fig. lO-21b and in the following 
microcode: 

410 Bridging the Hardware-Software Gap Part III 



IDLE EQU * 
JUMP * IF MANUAL.SW=%T; CLEAR.HALTFF 
JUMP * IF MANUAL.SW=%F 
JUMP FETCH IF CONT. SW=%T 
CALL MANUAL 
JUMP IDLE 

The first instruction jumps in place until all buttons are released, thus assuring 
that any previous depression of a pushbutton is processed only once. The next 
step is to hang up until the operator depresses a pushbutton, which then allows 
the idle phase to proceed. This second procedure is superior, since it requires 
less hardware and only one additional microinstruction. This form of single­
pulser was used in our Forth Machine design example. 

As we did in the LD20, we will insert into the architecture the large OR 
gate necessary to produce MANSW* from the collection of individual pushbutton 
signals on the display panel. We could dispense with this OR gate by writing 
microcode that serially single-pulses through the individual pushbutton signals, 
but this would require synchronizing each signal separately and would generate 
much additional microcode. 

The Manual Phase of the LD30 

The processing of manual operations in the LD20 was rather tedious, since the 
manual operations were merged with the execute phase. In the LD30, the manual 
phase is much more straightforward, as the following microcode shows: 

MANUAL EQU * 
CALL LDMA IF LDMA.SW=%T 
CALL LDMB IF LDMB.SW=%T 
CALL LDPC IF LDPC.SW=%T 
CALL LDIR IF LDIR.SW=%T 
CALL LDAC IF LDAC.SW=%T 
CALL CLEAR IF CLEAR.SW=%T 
CALL EXAMINE IF EXAMINE. SW=%T 
CALL LDMEM IF LDMEM.SW=%T 
CALL DEPOSIT IF DEPOSIT. SW=%T 
RTN 

LDMA RTN SWR.TO.MA (the first 11.11 marks a null sequencer 
field) 

LDMB RTN SWR.TO.MB 
LDPC RTN SWR.TO.PC 
LDIR RTN SWR. TO. IR 
LDAC RTN SWR.TO.AC 
CLEAR RTN CLEAR. LINK, CLEAR. INT. ENABLE 

LDMEM CALL WRITE; SWR.TO.MB 
RTN 

DEPOSIT CALL WRITE; SWR.TO.MB 
RTN ; INCREMENT.MA 

Chap. 10 Microprogrammed Design 411 



This microcode employs a sequential test of each pushbutton; if one is 
depressed, a subprogram is called to process it. A typical operation such as 
SWR.TO.MA must cause the transfer of the switch register to the selected 
register, in this case the memory address register. At this stage, we are unconcerned 
with the details of this transfer, other than to realize that, in our architecture, 
it can be performed in one clock cycle. Later, we will expand SWR.TO.MA 
and its cousins into the proper command-bit assertions, but now we do not 
permit these details to interrupt our thoughts. 

Writing into memory requires the presentation to the memory buffer register 
of the data to be written, followed by an execution of a standard memory-write 
subprogram. We may specify the details of the WRITE subprogram at our 
convenience, but to satisfy your curiosity, we will do so now: 

WRITE EQU * 
CONT START.WRITE 
JUMP * IF CC=%F 
RTN 

Using the standard memory protocol of the LD20, we issue a START. WRITE 
signal (one of our two memory command signals) and wait until the cycle­
complete response CC becomes true. 

We've completed the microcode for the idle and manual phases. Next 
comes the instruction-fetch phase. 

The Fetch Phase of the LD30 

The conversion of the fetch phase of the LD20's ASM to our microprogrammed 
version is straightforward: 

412 

FETCH 
Fl 

Fl.l 

F2 

F3 
F3.l 

F4 

F6 

F7 

EQU * 
JUMP IDLE IF HALTFF=%T 
CALL INTERRUPT.TEST 
CONT PC.TO.MA. PC.TO.MB. LOAD.IOP.ENABLER 

CONT INCREMENT. PC 

CALL READ.TO.IR 
JUMP FETCH.DONE IF NO.MEMORY; EA.TO.MA 

CALL READ.TO.MB 
JUMP FETCH.DONE IF DIRECT.ADDRESSING 
CALL AUTO IF AUTO. INDEXING 

JUMP FETCH.DONE IF NO.INDIRECT.OPERAND; MB.TO.MA 

CALL READ.TO.MB 

FETCH.DONE JUMP EXECUTE;; operand. if any, is in MB 
EA, if any. is in MA * 

Bridging the Hardware-Software Gap Part III 



AUTO EQU *; auto-indexing 
CALL WRITE; INCREMENT.MB 
RTN 

This microcode calls on several subprograms that are as yet unspecified: 
INTERRUPT.TEST, READ.TO.IR, READ.TO.MB. The memory-read subpro­
grams are short, and we will elaborate them here; the treatment of INTER­
R UPT. TEST will appear later. 

READ.TO.MB EQU * read memory(MA) into MB 
CALL READ 
RTN MEM.TO.MB 

READ.TO.IR EQU * read memory(MA) into IR 
CALL READ 
RTN MEM.TO.IR 

READ EQU * ; initiate and synchronize memory reads 
CONT START. READ 
JUMP * IF CC=%F 
RTN 

In Chapter 7, developing the fetch phase was rather complex but now that 
we understand it, rendering our understanding into microcode is simple. As 
always, we have made good use of our ability to describe each microinstruction 
in high-level terms. 

The Execute Phase of the LD30 

At the start of the execute phase, IR will contain the current instruction, MB 
will contain any needed operand from memory, and MA will contain the effective 
address EA, if required. For the execute phase, we must develop microcode to 
decode the instruction and perform each type of PDP-8 operation. Given our 
work on the LD20, the execution of most of the instructions is straightforward, 
and we might proceed as follows; some of the details are left for you to complete. 

EXECUTE EQU * main entry for execute phase 
JUMP *+2 IF SING.INST.SW=%F 
CONT SET.HALTFF only if single instruction switch 
JUMP DECODE.INST , , decode the instruction, somehow 

EXEC.DONE JUMP FETCH .. all done. return to fetch phase 

* PDP-8 instruction-execution code. The LD30 instruction 
* decoding step must branch to the proper code. 

AND. CODE EQU *; for PDP-8 AND instruction 
* You complete this microcode. 

Chap. 10 Microprogrammed Design 

is on 

413 



TAD. CODE EQU *; for PDP-8 TAD instruction 
JUMP TAD. END IF ALU.COUT=%F; ADD.MB.TO.AC 
CONT ; COMPLEMENT. LINK; only for a carry-out 

TAD. END JUMP EXEC. DONE 

ISZ.CODE EQU *; for PDP-8 ISZ instruction 
CALL WRITE; INCREMENT.MB 
JUMP ISZ.END IF MB.IS.ZERO=%F 
CO NT ; INCREMENT.PC ; only if result is zero 

ISZ.END JUMP EXEC.DONE 

DCA.CODE EQU *; for PDP-8 DCA instruction 
* You complete this microcode. 

JMS.CODE EQU *; for PDP-8 CALL instruction 
CALL WRITE; PC.TO.MB 
JUMP EXEC.DONE; INCR.MA.TO.PC 

JMP.CODE EQU *; for PDP-8 JUMP instruction 
* You complete this microcode. 

IOT.CODE EQU *; for PDP-8 lOT instruction 
* This one is more complex. Defer it until later. 

OP.CODE EQU *; for PDP-8 Operate instruction 
* This one is more complex. Defer it until later. 

In the TAD.CODE block, the development of the arithmetic sum is caused 
by the execution of the ADD.MB.TO.AC invocation in the first microinstruction. 
The result of the addition, both the sum and the carry-out status, are available 
during the instruction. At the end of the instruction, the sum is loaded into the 
AC. During the instruction, we test the carry-out signal ALU.COUT, and if it 
is true, we arrange to complement the link bit. 

The microcode for the execution of three of the PDP-8's instructions is left 
to you to complete. Of the algorithm for the LD30's execute phase, there remain 
only to specify the code for the Operate and lOT instructions, deal with interrupts, 
settle on how we will decode instructions, and clean up a few loose ends. 

The Operate instruction. In designing the LD20, we developed a so­
phisticated method of saving clock cycles in the execution of the PDP-8's Operate 
instructions. Microprogrammed control, although allowing much parallel activity 
in each microinstruction, is inherently more serial than hardwired control. The 
elaborate priority-detection system of the LD20 usually saved a few cycles (and 
served as a good illustration of priority circuits), but attempting a similar scheme 
in our inherently slower LD30 would be misplaced effort. We resign ourselves 
to plodding serially through all the possible operations within each group of the 
PDP-8's operate instruction. Let's assume that the decoding of the instruction, 
in addition to detecting the Operate instruction, has also identified the subgroup. 

414 Bridging the Hardware-Software Gap Part III 



This is an arbitrary but reasonable choice, and it will fit right in with the elegant 
scheme to be discussed later. 

A reasonable microcode for a part of the PDP-8's Operate instruction might 
then be as follows: 

OP.Gl.CODE EQU * . for PDP-8 Operate instruction, group 1 

Gl.Pl JUMP *+2 IF IR4=0 
CONT CLEAR.AC CLA operation 

JUMP *+2 IF IR5=0 
CONT CLEAR. LINK CLL operation 

Gl. P2 JUMP *+2 IF IR6=0 
CONT COMPLEMENT.AC ; CMA operation 

In problems at the end of the chapter, you are asked to complete the 
microcode for the Operate instruction, 

lOT Instruction. The PDP-8's lOT instruction performs input and output 
operations. As in the LD20, our LD30 must arrange for the signals IOP1, IOP2, 
and IOP4 to be asserted, if requested, long enough to examine the values of the 
incoming status signals IOSKIP, ACCLR, and ORAC. This examination will 
require several microinstructions, during which the appropriate lOP signal must 
remain solidly asserted. We could write brute-force microcode for this problem, 
with code to test the status of each of the three lOP signals. However, our 
choice is to introduce an element into the LD30's architecture to generate and 
maintain the lOP signals as required. We have already seen such an element 
in the LD20: the lOP signal enabler. This circuit has a 4-bit shift register that 
allows the enabling of each lOP signal in turn. We will use this circuit, shown 
in Fig. 7-34, in our LD30. The microcode for the lOT instruction must then 
loop three times over the status tests-once for each of the possible lOP signals. 
We use the 2910 sequencer's internal counting instructions to manage the looping. 

IOT.CODE EQU *; for PDP-8 input-output operations 
LDCT 2 ;; load the 2910 R-register with (loop-count - 1) 

IOT.LOOP CONT ; SHIFT. lOP. ENABLER 
E3 JUMP *+2 IF IOSKIP=%F 

CONT ; INCREMENT.PC ; if IOSKIP is asserted 
E4 JUMP *+2 IF ACCLR=%F 

CONT ; CLEAR.AC ; if ACCLR is asserted 
E5 JUMP *+2 IF ORAC=%F 

CONT ; OR.INPUT.TO.AC ; if ORAC is asserted 

RPCT IOT.LOOP; decrement & test R-reg, branch if non-zero 
JUMP EXEC.DONE 

The lOT instruction provided two suboperations ION and IOF for enabling 
and disabling the interrupt system. The suboperations are distinguished from 

Chap. 10 Microprogrammed Design 415 



regular lOT instructions by a zero device address in IR3-IR8. The microcode 
for these operations is: 

IOT.ION.CODE EQU *; turn on (enable) interrupt system 
JUMP EXEC.DONE; SET.INT.ENABLE 

IOT.IOF.CODE EQU *; turn off (disable) interrupt system 
JUMP EXEC.DONE; CLR.INT.ENABLE 

Interrupt Processing in the L030 

The LD30 must be able to detect an interrupt request and present a synchronized 
version of the request to the microprogrammed control algorithm. The PDP-8's 
interrupt protocol also requires that we be able to determine if interrupts are 
enabled. If an interrupt is to occur, we must be able to force the execution of 
a CALL 0 instruction. For these functions, we adopt the same architectural 
elements used in the LD20. We show the architecture for the interrupt system 
in Fig. 10-22. 

Handling an interrupt request began early in the fetch phase with a subprogram 
call to INTERRUPT. TEST. At the time we wrote that call, we had no clear 

416 

INTERRVPTREQVEST* 

INT.EN.CTL(O) 

INT.EN.CTL( l) 

Q 

Forcing a JMS 

I JAMIRO 

o ALVa 

o ALVl --------------~ 

o AL V2 -------------.;~ 

INTERR VPTREQVEST 
(Synchronized) 

INTERRVPTENABLE 

lRO 

JRl 

JR2 

Figure 10-22 Architecture of the interrupt system in the LD30. 

Bridging the Hardware-Software Gap Part III 



idea how interrupts would be handled. Now, having made some architectural 
commitments to generate the INTERRUPT.REQUEST and INTERRUPT.ENABLE 
signals, and to finesse the awkward problem of generating a CALL 0, we are 
able to specify the microcode fully. 

INTERRUPT. TEST EQU *; determine if an interrupt should occur 
* no interrupt is possible if the previous instruction was an 
* lOT instruction that enabled the interrupt system. 

RTN IF IOT.ION=%T ; no interrupt if just enabled 
RTN IF INTERRUPT.ENABLE=%F; no int if disabled 
RTN IF INTERRUPT.REQUEST=%F; no int if no request 

* Create an interrupt! Disable interrupts and force a "CALL 0' '. 
CJPP EXECUTE, PASS; CLR.INT.ENABLE, FORCE.JMS.TO.ZERO 

We called the interrupt-test code as a subprogram. If no interrupt occurs, 
the INTERRUPT.TEST microcode returns to the subprogram caller. If an interrupt 
occurs, the algorithm enters the regular execute-phase microcode, which is not 
a subprogram. Then, the code never makes a normal subprogram return back 
to the fetch phase, so we must take care to adjust the 2910 stack to remove the 
unused return point. The 2910 operation CJPP in the pass mode accomplishes 
both a jump and a stack pop. 

Instruction Decoding in the LD30 

The microcode for the execute phase calls a subprogram to decode the PDP-8 
instruction residing in the IR. The operation code for most instructions is specified 
by the three bits in IRO, IRl, and IR2. Since our microinstructions can examine 
only one signal at a time, a pure microcode solution to instruction decoding is 
clumsy (although perfectly feasible). Here is a brute-force way: 

DECODE.INST EQU * pure microcode instruction decoding 
JUMP CODE.IXX IF IRO=l 

CODE.OXX JUMP CODE.OIX IF IRl=l 
CODE.OOX JUMP TAD. CODE IF IR2=1 

JUMP AND. CODE 
CODE.OIX JUMP DCA. CODE IF IR2=1 

JUMP ISZ.CODE 
CODE.IXX JUMP CODE .11X IF IRl=l 
CODE. lOX JUMP JMP.CODE IF IR2=1 

JUMP JMS.CODE 
CODE .I1X JUMP OP.CODE IF IR2=1 

JUMP lOT. CODE 

In developing microcode for the execution phase, we decided that the 
instruction-decoding step would distinguish the three groups of Operate instructions 
and the two special cases of the IOT instruction. We could complete this decoding 
with further tests of additional bits of the LD30's IR, although the test for the 
lOT-instruction special cases of the lOT instruction is complicated by having to 

Chap. 10 Microprogrammed Design 417 



identify a 6-bit field of zeroes in bits IR3-IR8. All of this microcode is a serialized 
version of a basically parallel function-the decoding of a several-bit code. We 
already know that combinational logic, implemented with gates, decoders, or 
ROMs, can achieve rapid decoding. 

We may simplify the decoding of LD30 instructions and illustrate some 
powerful control techniques by developing a solution that mixes architecture and 
algorithm. The 2910, at the heart of the Logic Engine's microprogram controller, 
normally expects to receive its D input from the microinstruction pipeline register; 
14 of the 2910's 16 operation codes assume this. However, for the 2910's JMAP 
instruction, the D input comes from a different source, usually from a "mapping 
ROM." Let's use a ROM to assist the decoding. 

Our goal is to examine bits of the LD30's IR and branch within our control 
microcode to the proper code for executing each type of PDP-8 instruction. The 
decoding of the PDP-8's basic instructions and our special cases requires examining 
all 12 bits of the IR. A pure ROM solution would use ROMs with 12 address 
inputs to produce about a dozen microcode addresses. However, many of the 
bits of the IR are needed only to detect the two special cases of the lOT 
instruction, ION and IOF. Our plan is to incorporate two signals in hardware: 
IOT.ION will be true for the interrupt-enable suboperation; IOT.IOF will be true 
for the interrupt-disable suboperation. For now, we assume the existence of 
these two signals; we will discuss how to create them later. 

Now the inputs to our instruction-decoding ROM are considerably simplified. 
We require IRO, IRI, and IR2 to decode the main operation code; IR3 and IRll 
to distinguish the Operate instruction groups; and IOT.ION and IOT.lOF to 
identify the lOT subinstructions and to distinguish ordinary input-output lOT 
instructions from the special cases. These 7 signals form the inputs to the ROM; 
the ROM's output must produce microcode branch addresses that we can use 
to transfer to sections of the microprogram dealing with the PDP-8's 12 instructions 
and subinstructions. What are the 12 microcode branch addresses? From our 
microcode for the execute phase we see examples such as AND.CODE, 
IOT.CODE, and OP.G2.CODE. But the experienced microprogram mer will rec­
ognize a pitfall: the actual addresses of these locations in the microprogram 
memory depend heavily on the details of the microcode. If we modify the 
microcode, the likelihood is that a reassembly of the microcode will change the 
addresses of the subprograms. We certainly do not desire to reprogram our 
ROM every time we reassemble the LD30's control microprogram! To avoid 
this difficulty, we introduce a jump table into our microprogram. This table will 
be in a fixed location in the microinstruction memory, and we will guarantee 
not to alter its location. The ROM's outputs will point to entries in this jump 
table, and the table entries, from their fixed locations, will jump to the subprogram 
addresses. The advantages are great: the contents of the ROM remain fixed 
even though we modify the microcode, and our microassembler will handle the 
drudgery of locating the subprograms. Table 10-4 shows the structure of the 
mapping ROM and the microcoded jump table. If speed of execution is sufficiently 
important, after the design is ready for production you may program a new 

418 Bridging the Hardware-Software Gap Part III 



TABLE 10-4 DECODING THE LD30'S INSTRUCTIONS 

CONTENTS OF THE MAPPING ROM 

Inputs Z "" Outputs 
8 0 ...... 

0 P2 N '" P2 f-< ~ Jump 
e5 ~ ~ 0 0 address ...... ...... ...... ...... ...... ...... 

0 0 0 X X X X $10 AND.INST 
0 0 1 X X X X $11 TAD.INST 
0 1 0 X X X X $12 ISZ.lNST 
0 1 1 X X X X $13 DCA.INST 
1 0 0 X X X X $14 JMS.INST 

0 1 X X X X $15 JMP.lNST 
1 0 X X 1 0 $16 IOT.ION.INST 

0 X X 0 $17 IOT.IOF.INST 
0 X X 0 0 $18 IOT.lNST 
1 0 X X X $19 OP.G1.lNST 

1 0 X X $1A OP.G2.lNST 
X X $lB OP.G3.lNST 

MICROCODED JUMP TABLE 

ORG $10; opcode jump table 
AND. INST JUMP AND. CODE 
TAD.INST JUMP TAD. CODE 
ISZ. INST JUMP ISZ.CODE 
DCA.INST JUMP DCA. CODE 
JMS.INST JUMP JMS.CODE 
lOT. ION. INST JUMP IOT.ION.CODE 
IOT.IOF.INST JUMP IOT.IOF.CODE 
OP.Gl.INST JUMP OP. Gl. CODE 
OP.G2.INST JUMP OP.G2.CODE 
OP.G3.INST JUMP OP.G3.CODE 

mapping ROM to point directly to the instruction execution code, thereby eliminating 
the microcoded jump table. 

With the addition of the mapping ROM for decoding instructions, we may 
now write the DECODE.INST microcode whose existence we assumed when 
we developed the original microcode for the LD30's execute phase: 

DECODE.INST EQU *; instruction decoding 
JMAP ;; jump to correct instruction processing code 

Declarations for the LD30 Control Microprogram 

We have developed the main elements of the LD30's architecture and specified 
the control algorithm in high-level terms. Now we will develop the declaration 
phase of the microcode, in which we will expand our high-level invocations into 
actual command signals directed to the LD30 architecture. 

Chap. 10 Microprogrammed Design 419 



Consider operations involving the main data paths. If we scan the executable 
instructions in the microprogram, we can catalog a large number of operations 
on the main data path. PC.TO.MA, CLEAR.AC, ADD.MB.TO.AC, and 
SWR.TO.IR are examples. In our version of the microcode, there are 27 different 
invocations that refer to the main data path architecture. These require selecting 
an operand through the data multiplexer, performing an appropriate ALU operation, 
and loading the result into some register. Still resisting the temptation to jump 
into the details of the hardware too soon, we break down each of these high­
level invocations into more detailed specifications: 

PC.TO.MA INV SEL.PC, ALU.PASS, LOAD.MA 
CLEAR.AC INV ALU.ZERO, LOAD.AC 
ADD.MB.TO.AC INV SEL.MB, ALU.PLUS, LOAD.AC 
SWR.TO.IR INV SEL.SWR, ALU.PASS, LOAD.IR 

We have tried to choose obvious names for the intermediate operations. For 
instance, SEL.MB means "select the MB register as the input to the ALU," 
ALU.PLUS means "cause the ALU to add its operands," and LOAD.AC means 
"load the AC with whatever is at its data inputs." At this stage, if we were to 
change our minds about some details of our main data path architecture, it is 
likely that these declarations would not require alteration. 

Next, we must expand the specifications for each of the intermediate-level 
commands. Eventually, we will end up with detailed assignments of elementary 
signals to microinstruction command bits, but we need not hurry this process. 

We may describe the data multiplexer selection codes as follows, using the 
same ordering of the multiplexer inputs as in the LD20. 

* DATA MULTIPLEXER SELECTIONS 
SEL.PC INV DATAMUXCTL=O 
SEL.MB INV DATAMUXCTL=l 
SEL.MA INV DATAMUXCTL=2 
SEL.AC INV DATAMUXCTL=3 
SEL.SWR INV DATAMUXCTL=5 
SEL.MEM INV DATAMUXCTL=6 
SEL.INPUT INV DATAMUXCTL=7 
SEL.EA INV DATAMUXCTL=7, ENABLE.EA 

We have described the selection of each input to the multiplexer in terms 
of its multiplexer select code. (As in the LD20, we have left data multiplexer 
input 4 unused, to allow for expansion. We have routed INPUT and EA, both 
controlled by three-state signals, into a single data multiplexer input. EA's 
control signal is ENABLE.EA, which will become one of the LD30's micro­
instruction command signals; INPUT needs no microinstruction command signal 
for its three-state control since that is governed by the PDP-8's input-output 
protocol.) 

Now we can finally specify the details of DATAMUXCTL: it is a microin­
struction command-bit field of 3 bits, as suggested in Table 10-3. Until we begin 
the wiring, the actual locations of the three bits are unimportant, even distracting. 

420 Bridging the Hardware-Software Gap Part III 



If we later decide to change their position in the microinstruction, the only change 
to the microprogram is in the COM statement itself. 

A suitable final version of this command statement might be: 

DATAMUXCTL COM (6:8).T=%HHH 

where each select bit is declared as T = H. 
We may unravel the specifications of the ALU operations in a similar way. 

Here are specifications for two of the seven ALU operations needed in the LD30: 

* ALU OPERATIONS (using the 74LS181) 
ALU.PASS INV ALUCTL=LS181.PASS 
ALU.PLUS INV ALUCTL=LS181.PLUS 

To declare the operation of the 74LS181 ALU chip, we go to the integrated 
circuit data book and extract the voltage behavior of the chip. For instance: 

* 74LS181 arithmetic logic unit 
* Order of signals is S3,S2,Sl,SO,M,CIN 
LS181.PASS EQU %LLLLLH 
LS181.PLUS EQU %HLLHLH 

The final specification of the command-bit field ALUCTL is: 

ALUCTL COM (9: 14) ,D=LS181.PASS 

The field occupies 6 bits. We choose to specify the default assignment so that 
whenever we are not specifically controlling the ALU, it will be performing a 
PASS operation. 

Specifying the control of most of the data registers is simple, since only a 
single control signal is involved, but the AC, with its ability to shift and load, 
requires two control signals. Here is a representative sample of the declarations: 

* SOME DATA REGISTER OPERATIONS 
LOAD.MB INV MBLD 
LOAD.PC INV PCLD 

* ACCUMULATOR OPERATIONS (using 74LS194) 
LOAD.AC INV ACCTL=LS194.LOAD 
AC.RIGHT INV ACCTL=LS194.RIGHT 
AC.LEFT INV ACCTL=LS194.LEFT 

* 74LS194 SHIFT REGISTER OPERATION 
* Order of signals is Sl,SO 
LS194.HOLD EQU %LL 
LS194.RIGHT EQU %HL 
LS194.LEFT EQU %LH 
LS194.LOAD EQU %HH 

Finally, the specification of the command bits for the ME, PC, and AC 
registers is: 

Chap. 10 Microprogrammed Design 421 



MBLD COM (16),T=%L,D=%F 
PCLD COM (17),T=%L,D=%F 
ACCTL COM (19:20),T=%HH,D=LS194.HOLD 

We are nearly done. We may now tabulate the test input signals needed 
to drive the microcode, and prepare the necessary declaration statements. Table 
10-5 contains the declarations. Each invocation describes the voltage polarity 
of the signal and its position within the test multiplexer. 

422 

TABLE 10-5 TEST INPUT 
DECLARATIONS OF THE LD30 

*TEST MULTIPLEXER INPUTS 
TM EQU TESTMUXCTL 
MANUAL.SW INV TM=2,T=%H 
CONT.SW INV TM=12,T=%L 
LDMA.SW INV TM=ll,T=%L 
LDMB.SW INV TM=lO,T=%L 
LDPC.SW INV TM=9,T=%L 
LDIR.SW INV TM=8,T=%L 
LDAC.SW INV TM=7,T=%L 
CLEAR.SW INV TM=6,T=%L 
EXAMINE.SW INV TM=5,T=%L 
LDMEM.SW INV TM=4,T=%L 
DEPOSIT.SW INV TM=3,T=%L 
SING.INST.SW INV TM=13,T=%L 
IR4 INV TM=26,T=%H 
IR5 INV TM=27,T=%H 
IR6 INV TM=28,T=%H 
IR7 INV TM=29,T=%H 
IR8 INV TM=30,T=%H 
IR9 INV TM=31, T=%H 
IRIO INV TM=32,T=%H 
IRll INV TM=33,T=%H 
INTERRUPT. REQUEST INV TM=l,T=%H 
INTERRUPT. ENABLE INV TM=O,T=%H 
HALTFF INV TM=15,T=%L 
CC INV TM=14,T=%H 
NO.MEMORY INV TM=23,T=%L 
DIRECT.ADDRESSING INV TM=25,T=%L 
NO.INDIRECT.OPERAND INV TM=22,T=%L 
AUTO.INDEXING INV TM=21,T=%L 
IOT.ION INV TM=24,T=%L 
IOSKIP INV TM=18,T=%L 
ACCLR INV TM=17,T=%L 
ORAC INV TM=16,T=%L 
ALU.COUT INV TM=34,T=%L 
MB.IS.ZERO INV TM=20,T=%L 
SKIP INV TM=19,T=%H 

Bridging the Hardware-Software Gap Part III 



This concludes our presentation of the development of the LD30's microcode 
declarations. The declarations tend to be lengthy, but they contain information 
important both for the microprogram assembler and for the reader of the microcode. 
Properly specified, the declarations exhibit a gradual evolution of detail, from 
the high-level specifications in the microprogram algorithm down to the voltage 
behavior of each command line in the microinstruction. Later modification and 
maintenance of the design are greatly? simplified by the existence of this orderly, 
well documented record. We said earlier that the LEASMB invocation was the 
key to top-down design. Now you can see the power of this concept. 

Our Design of the LD30 is Complete! 

Our treatment of the microprogram for the LD30 is finished. We have shown 
representative portions of the algorithm and of the declarations that describe the 
terms used in the algorithm. How different is the LD30 machine from the LD20? 

The main elements of the architecture are the same in both the hardwired 
and microprogrammed designs. Several minor architectural features of the LD20 
survive in the LD30, and the LD30 contains two major additions: the test input 
multiplexer and the jump-address EPROM used in instruction decoding. Figure 
10-23 shows the elements of the LD30's architecture. Not much is left. 

The LD30 requires about 70 chips; the LD20, 125. The dramatic change 
between the two is, of course, in the implementation of the control algorithm. 
In moving from the LD20's hardwired control to the LD30's microprogrammed 
control, we eliminate about 55 integrated circuit chips and innumerable wires. 
The LD30's control algorithm looks like a program, and it is one. It contains 
about 120 microprogram instructions and several hundred lines of declarations. 
Comments are often useful in the microprogram, but with well-chosen nomenclature 
and systematic top-down development, the microcode is largely self-documenting. 

In the senior-level hardware laboratory at Indiana University, our students 
study, construct, debug, and extend the LD20 hardwired and the LD30 micro­
programmed versions of the PDP-8. With the aid of the Logic Engine, our 
students accomplish this in one semester, using wire-wrap technology. The proof 
of their performance is to download and execute actual PDP-8 programs-a 
source of immense satisfaction for the students and the instructors. 

SUMMING UP 

Starting in 1964 with IBM's use of microprogramming in their System/360 digital 
computers, manufacturers have increasingly adopted microprogramming methods 
for the control of computers. It is fair to say that most computer designs now 
have at least some microcode in their control-a fact often unknown to the 
programmer, since the microcode is not visible. The conventional programmer 
works with the computer's machine or assembly language, or with higher-level 
languages, without being aware that there is really another layer of programming­
the microcode-buried in the hardware. 

The great advantages of microcoding are its uniformity and ease of mod-

Chap. 10 Microprogrammed Design 423 



LINK AC 

Main data paths 

[J[J[JB D 
HALTFF Interrupt 

request 

BB 
Memory 
control 

5 combinational 
signals 

Effective 
address 

Interrupt 
enable 

o 
AUTO-INDEXING 

o 
MB.ZERO 

Instruction 
jump address 

lOP 
enabler 

JAMIRO 

FF 

MANUAL.SW 

Test input 
selector 

Figure 10-23 Hardware elements in the LD30. 

ification. Carrying the notion further, we could control all digital tasks with a 
single type of controller, such as a Logic Engine. Using microcode, we make 
the controller perform a specialized task for each type of device, for instance 
executing the PDP-8's instructions in the LD30. With identical copies of the 
basic microprogrammable processor, we could control computers, line printers, 
card readers, floppy disks, terminals, and other devices having suitable speed 
requirements. Each of these would have its own architecture, which would 

424 Bridging the Hardware-Software Gap Part III 



include the device itself and the logic needed to interface with the microcode. 
Each controller would have its own microcode to control the architecture. 

This has great potential advantages for both the designer and the maintenance 
engineer. The designer develops control algorithms with a uniform style, in a 
programming mode, using support systems derived from experience with software. 
The maintenance engineer would have to master only one type of control hardware. 
Each device's specialized control algorithm could be dealt with as a microprogram, 
a form that is generally easier to understand than a hardwired design. Diagnostic 
and documentation aids based on software principles can greatly speed both the 
development and the maintenance processes. 

Unfortunately, although computer manufacturers make extensive use of 
proprietary microprogrammable processors, few general-purpose microprogramming 
systems such as the Logic Engine are available commercially. 

In this chapter, we have discussed some basic principles of microprogramming 
and have shown how the concepts may become a powerful tool for design, 
requiring sophisticated support systems. We have not attempted to discuss the 
wide variety of microprogramming techniques; for this you may consult more 
specialized tests, such as those listed in the Readings and Sources. 

Microprogramming is a great stride toward bridging the gap between hardware 
and software. Let us now move all the way, to the use of small conventional 
computers, microcomputers, as digital controllers. 

READINGS AND SOURCES 

ANDREWS, M., Principles of Firmware Engineering in Microprogram Control. Computer 
Science Press, Woodland Hills, Calif., 1980. Good discussions of classical micropro­
grammed architectures. Techniques for reducing the width and length of a ROM. Uses 
ASM notation for microprogramming. 

Bipolar Microprocessor Logic and Intelface. Advanced Micro Devices, 901 Thompson 
Place, P.O. Box 3453, Sunnyvale, Calif. 94088. Technical data and applications for 
the Am2900, Am29100, and Am29300 series. 

BLAKESLEE, THOMAS R., Digital Design with Standard MSI and LSI, 2nd ed. John Wiley 
& Sons, New York, 1979. Good description of target versus host machines. 

GLASSER, LANCE A., and DANIEL W. DOBBERPUHL, The Design and Analysis of VLSI 
Circuits. Addison-Wesley Publishing Co., Reading, Mass., 1985. 

KLINGMAN, EDWIN E., Microprocessor System Design, Vol. 2. Microcoding, Array Logic, 
and Architectural Design. Prentice-Hall, Englewood Cliffs, N.J., 1982. Micro­
programming. 

LSI Databook. Monolithic Memories, 2175 Mission College Blvd., Santa Clara, Calif. 
95954. PALs, memory products, arithmetic units, system building blocks. 

MANO, M. MORRIS, Computer System Architecture, 2nd ed. Prentice-Hall, Englewood 
Cliffs, N.J., 1982. 

MEAD, CARVER, and LYNN CONWAY, Introduction to VLSI Systems. Addison-Wesley 
Publishing Co., Reading, Mass., 1980. The first VLSI textbook. 

Chap. 10 Microprogrammed Design 425 



MICK, JOHN, and JAMES BRICK, Bit-Slice Microprocessor Design. McGraw-HilI Book Co., 
New York, 1980. A collection of design notes for the Advanced Micro Devices 2900 
bit-slice family. This book is useful far beyond the AM2900 chips. 

MYERS, GLENFORD J., Digital System Design with LSI Bit-Slice Logic. John Wiley & 
Sons, New York, 1980. 

PROSSER, FRANKLIN, Logic Engine Development System: System Reference Manual. Logic 
Design, Laramie, Wyo., 1983. 

PROSSER, FRANKLIN, Logic Engine Development System: LEASMB Microprogram Assembler 
Reference Manual. Logic Design, Laramie, Wyo., 1983. 

PRoSSER, FRANKLIN, and ROBERT WEHRMEISTER, C421-C422 Advanced Computer Organization 
Laboratory Manual. Computer Science Department, Indiana University, Bloomington, 
Ind., 47405, 1985. Laboratory manual to support the construction, debugging, and 
study of the LD20 and LD30 implementations of the PDP-81. The laboratory project 
uses the Logic Engine Development System, manufactured by Logic Design. Ask the 
authors of this book for information. 

PROSSER, FRANKLIN, and DAVID WINKEL, "The Logic Engine Development System: Support 
for microprogrammed bit-slice development," Proceedings MICRO 16, October 1983, 
page 84. 

System Design Handbook, 2nd ed. Monolithic Memories, 2175 Mission College Blvd., 
Santa Clara, Calif. 95054, 1985. Section 3 contains a shifter and pipeline architecture 
similar to that of the Logic Engine. 

WESTE, NEIL, and KAMRAN ESHRAGHIAN, Principles of CMOS VLSI Design: A Systems 
Perspective. Addison-Wesley Publishing Co., Reading, Mass., 1985. 

EXERCISES 

10-1. Describe Wilkes's great contribution to the systematic development of control 
algorithms. 

10-2. Produce a Wilkes implementation similar to Fig. 10-3 for the ASM in Fig. 5-13. 
10-3. Produce a Wilkes implementation similar to Fig. 10-3 for the ASM in Fig. 5-20. 
10-4. Explain the meaning of "microprogram." 
10-5. How does a ROM implementation of an ASM differ from Wilkes's implementation? 

In what ways is the ROM method less flexible? 
10-6. In microprogramming terminology, what is a "qualifier"? 
10-7. Produce a ROM-based multiple-qualifier microprogrammed implementation of the 

ASM in Fig. 5-13. 
10-8. Produce a ROM-based multiple-qualifier microprogrammed implementation of the 

ASM in Fig. 5-20. 
10-9. Sketch a representative part of a ROM-based multiple-qualifier implementation of 

the Black Jack Dealer ASM in Fig. 6-32. 
10-10. Discuss the advantages and disadvantages of the following methods of ROM-based 

microprogramming design. Consider the ease of implementation, generality of 
ASM structure, understandability of the result, ease of use, and so on. 
(a) Multiple qualifier. 

426 Bridging the Hardware-Software Gap Part III 



(b) Single qualifier, two addresses. 
(c) Single qualifier, one address. 
(d) Single qualifier in a Logic Engine environment. 

10-11. Produce a single-qualifier, single-address microprogram implementation of an ap­
propriate modification of the ASM in Fig. 5-13. For this task you must alter Fig. 
5-13 to accommodate the requirements of the microprogram. State clearly any 
assumptions you make in producing the altered ASM. 

10-12. Perform Exercise lO-l1 for the ASM in Fig. 5-20. 
10-13. Design a controller for single-qualifier, two-address microinstructions (after Fig. 

10-5). The controller should support up to 256 microinstructions, up to 32 test 
inputs, and up to 40 command outputs. Specify the MSI chips that you use. 

10-14. Perform Exercise 10-13 for a controller to execute microinstructions of the form 
of Fig. 10-8. 

10-15. Why does the text's single-qualifier method not permit conditional outputs? Design 
a single-qualifier microinstruction interpreter that supports conditional outputs. 

10-16. Complete the specification of the microcontroller in Fig. lO-lO. 
10-17. Characterize microprogrammed design as seen by: 

(a) The hardware designer. 
(b) The computer programmer. 

10-18. Why is the hardwired control described in ASM charts not the best tool for the 
design of large, complex systems? 

10-19. Propose a Logic Engine implementation of the Black Jack Dealer's control algorithm 
of Fig. lO-9. Express the microcode in the style of the Logic Engine's microassembly 
language described in the text. 

10-20. Although RAM is appropriate for storing microcode in the Logic Engine during 
the development and debugging of an algorithm, why might RAM not be the best 
choice for a production version of a microprogrammed controller? On the other 
hand, what advantages might RAM-based microprogram storage have in a production 
version? 

10-21. Compare the LD20 and LD30 as to speed, number of states, total design effort, 
and anticipated ease of maintenance. 

10-22. The text mentions an early microprogram sequencer, the 2909 4-bit sequencer 
slice. To achieve a realistic number of microprogram address bits, several of 
these chips are to be cascaded together. What connections do you anticipate will 
be required between the cascaded 2909 chips? 

10-23. Look at Fig. 10-17, which contains the microcode for the Forth Machine design 
example. The object code is presented in hexadecimal notation, with 4 bits per 
hexadecimal digit. In the object code, 1 represents a high voltage and 0 a low 
voltage. One of the bits in the X field of the object code is the 2910's CCEN 
input. The Logic Engine implements an unconditional jump by making CCEN 
false, thereby forcing a pass operation in the 29lO. A conditional jump, which 
makes use of the 2910's CC input, requires CCEN to be true. 
(a) By inspection ofthe object code in Fig. lO-17, determine which bit of the X­

field is CCEN. 
(b) State whether the 29lO's CCEN is high-active or low-active. 

10-24. Another of the X-field bits in the Logic Engine microcode of Fig. 10-17 is CCINV, 

Chap. 10 Microprogrammed Design 427 



the assembler's specification that the voltage of the incoming test signal must be 
inverted in order that the 2910 properly interpret the signal. The 2910's CC input 
is low-active. 
(a) By inspection ofthe object code, determine which bit corresponds to CCINV. 
(b) Using the declaration for LD.L and TST.L, determine the correct status of 

the CCINV bits (true or false) in the microinstructions at locations 000, 001, 
003, and 005. 

(c) Determine if CCINV is high-active or low-active. 
10-25. From Fig. 10-17, expand the hexadecimal digits for the command bits in the 

object microinstructions at locations 001 and 002, so that you can observe the 18 
command signals individually. For each of these microinstructions, verify that 
the bits in the object code are consistent with the declarations in the source 
program. 

10-26. In Fig. 10-17, why is the curious term T=%L appended to the declarations for 
LD.L and TST.L? 

10-27. Complete the LD30 microcode for the following PDP-8 instructions: 
(a) AND. . 
(b) DCA. 
(c) JMP. 

10-28. Complete the LD30 microcode for the parts of the PDP-8's Operate instruction 
not elaborated in the text: 
(a) Group 1. 
(b) Group 2. 

10-29. Exercise 8-52 requires the addition of the PDP-8's Group 3 instructions to the 
LD20's hardwired design. Repeat that exercise for the LD30, showing all mod­
ifications or extensions of the architecture and the microcode. 

10-30. Consider the PDP-8's IOT instruction. Assume that the lOP signal enabler is 
eliminated from the LD30's architecture. Implement the lOT instruction solely 
in microcode. Remember to keep each required lOP signal asserted throughout 
the testing of the incoming status signals. 

10-31. Explain clearly why we chose to implement the decoding of the LD30's instructions 
with a mapping ROM and a separate jump table rather than by using the faster 
method of having the mapping ROM jump directly to the appropriate microcode. 

10-32. From the LD30 microcode given in the text, find ten examples of operations on 
the main data path, other than PC.TO.MA, CLEAR.AC, ADD.MB.TO.AC, and 
SWR.TO.IR. Write LD30 invocation declarations for your ten operations, following 
the examples in the text. Expand any intermediate operations until each element 
is finally reduced to command declarations. 

10-33. Perform Exercise 8-50 using the LD30's microprogrammed design. Show mod­
ifications or additions to the architecture and microcode. 

10-34. Perform Exercise 8-51 using the LD30's microprogrammed design. Show mod­
ifications or additions to the architecture and microcode. 

10-35. Perform Exercise 8-52 using the LD30's microprogrammed design. Show mod­
ifications or additions to the architecture and microcode. 

10-36. Perform Exercise 8-53 using the LD30's microprogrammed design. Show mod­
ifications or additions to the architecture and microcode. 

428 Bridging the Hardware-Software Gap Part III 



10-37. Choose a computer of your choice, such as the PDP-ll, M6809, M68000, or Intel 
8080, and write a microprogram to implement the processor's instruction set. Use 
the style of the Logic Engine's microassembly language. The suggested processors 
are complex, and you may wish to consider a subset of the instructions. The 
user's manual for your chosen processor will probably not give much insight into 
the internal organization of the processor. As we did with the LD20 and LD30 
versions of the PDP-8, start with the instruction set and the obvious registers 
referenced by the instructions. You are free to specify additional registers, data 
paths, and control signals required to achieve your implementation. 

10-38. Propose a Logic Engine implementation of the Black Jack Dealer's control algorithm 
of Fig. 10-10. Express the microcode in the style of the Logic Engine's assembly 
language described in the text. 

Chap. 10 Microprogrammed Design 429 



Microcomputers 
in Digital Design 

TITI 

In this chapter, we will complete the bridge from hardware to software by 
considering the role of microcomputers in digital design. We assume that you 
have some experience in programming a microcomputer at the assembly language 
or machine language level. From the programming viewpoint, microcomputers 
are small-scale versions of larger computers; given enough time and resources, 
any microcomputer can execute any algorithm. In this chapter, we will confine 
the discussion to the use of microcomputers to control digital devices. 

In Chapter 10, we developed primitive microprogrammable computers spe­
cialized to emulate algorithms of a specific form. Their basic command implemented 
an ASM state with a conditional branch. In many cases, there is no need to 
use such a specialized computer, since any computer is a universal algorithm 
emulator when properly programmed. Of course, some computers may be a 
poor choice for certain design problems, because of an ill-adapted instruction 
set, inadequate speed, unsuitable input-output facilities, or high cost. 

In digital design, the microcomputer can often serve as the controller­
the executer of the control algorithm. In earlier design methods used in this 
book, we maintained direct and intimate contacts between the controller and 
the controlled devices; the processing of status signals and command outputs 
was flexible, with a high degree of parallelism. The relationship of a microcomputer 
controller to its environment is quite different and more restrictive, and the 
control algorithms must abandon much of the former parallelism. We will devote 
most of this chapter to these aspects of microcomputer-based design. But first, 

430 



a bit of history will show how ordinary computers came to be used in digital 
design. 

THE COMPUTER AS A DEVICE CONTROLLER 

The first computer widely used as a controller of hardware was the PDP-8, 
primarily because it was the first computer whose price was less than astronomical. 
The history of the PDP-8 sheds insight on the evolution of microcomputer-based 
design. In the early 1960s, a group of engineers was assigned to build a controller 
for a nuclear reactor. The reactor supplied status signals such as neutron flux, 
core temperature, and power output. The primary controller commands were 
directed to motors that inserted and withdrew cadmium rods that absorbed 
neutrons and thereby controlled the reactor power. The initial design of the 
controller was hardwired. Unfortunately, the problem was incompletely specified, 
since the reactor was still under construction. The algorithm changed often, and 
each change required that the designers rip out gates and wires and start anew. 
The conviction gradually arose among the engineers that they must seek a general 
solution that could handle all the cases then known and the likely new ones to 
come. 

What characteristics must such a device have? It must be an arbitrary 
algorithm emulator. The algorithm may involve computation as well as control. 
For example, the motion of the control rod may be a complicated mathematical 
function of power output and neutron flux. Speed was of no particular importance, 
since the inertia of the control rods would limit the mechanical responses to 
milliseconds, regardless of the speed of the controller. 

There were two ways to meet these requirements: 

a. Extend the controlled architecture (the reactor) to include primitive arithmetic 
units, registers, and memories to support the computational requirements. 
The control algorithm would then manipulate these elements to perform 
computations as well as control the cadmium rods. This is a hardwired 
approach, using more powerful and general architectural elements such as 
bit slices that allow the handling of more general classes of algorithms. 

b. Use a conventional computer to emulate the algorithm. The reactor would 
be interfaced to the computer and treated as a peripheral device that received 
commands from the computer and supplied status signals in return. At that 
time, all computers were expensive, and were difficult or impossible to 
connect to so strange a device as a reactor. 

One way to meet the design" goals was to design and build a small, inexpensive 
computer with sufficient flexibility to allow easy interfacing of arbitrary peripheral 
devices. In an inspired decision, the engineers chose this approach, and the 
PDP-8 was the result. This early PDP-8 was crude by later standards, but it 
worked! A steady stream of new minicomputers followed, as manufacturers 
hastened to develop small computers priced to encourage their use in process 
control and automation applications. 

Chap. 11 Microcomputers in Digital Design 431 



Enter the Microcomputer 

In the early days, minicomputers were made with integrated circuit logic of the 
MSI level of complexity. Minicomputers had lots of chips; the more elaborate 
minicomputers can have chip counts exceeding one thousand. 

The VLSI technology that emerged in the late 1970s led to placing more 
and more circuitry on a single integrated circuit chip. With the introduction of 
the Intel 4004 microprocessor chip, the microcomputer revolution was under 
way. A microprocessor is a complete computer instruction processing unit on 
a single chip. Add a memory and a method for input and output of data, and 
you have a microcomputer. 

These devices differ from their large computer and minicomputer counterparts 
in many details, but in their basic approach to problem solving they remain 
conventional computers. It is their incredibly low cost that sets them apart; 
price, not concept, is the reason for the explosion of uses of microcomputers. 
A microprocessor chip can cost only one dollar; a microcomputer with mounted 
microprocessor, memory, input-output components, power supply, and cabinetry 
can cost as little as a hundred dollars. Common abbreviations for the microprocessor 
are MPU and CPU. 

THE MICROCOMPUTER IN DIGITAL DESIGN 

The technical community now has much experience in using computers to solve 
a wide variety of problems. Our interest is in digital design: how do we use a 
conventional computer (a minicomputer or a microcomputer) as an element of 
hardware design? A computer is a general algorithm executer, so it would seem 
reasonable that computers may be able to perform the control portion of suitable 
designs. 

This approach brings our view of the design of a controller much closer 
to conventional programming. We express our control algorithms in a computer 
assembly language or perhaps in a high-level language such as Fortran. The 
conventional computer greatly restricts the ways in which a designer can access 
the controlled device. The hardware view of testing continuously available variables 
gives way to a computer program that directs the computer to read status information 
from the controlled device into the computer for later testing. The conditional 
branch of the ASM becomes a step in a conventional software flowchart, or a 
high-level statement such as 

IF (STATUS) THEN ... ELSE ... 

The parallel activities in an ASM state become a sequence of steps in a computer 
program. Commands to a controlled device take the form of write statements. 
There remains little sense of the detailed hardware timings that characterized 
our earlier methods of control. 

432 Bridging the Hardware-Software Gap Part III 



We retain the underlying model of a controller as directing a controlled 
device (the architecture), but our view of control is quite different when using 
the microcomputer than when using hardwired or microprogrammed control. 
Here is a comparison of the three approaches: 

a. Hardwired control. The fastest emulation of an algorithm, with its speed 
limited by gate propagation delays. The ASM chart is the most convenient 
way to display algorithms. Multiway branches and conditional outputs can 
reduce the number of states, allowing many operations to proceed in parallel, 
further enhancing the speed of the circuit. In systems with up to about 16 
states, this method is simple enough to be our choice. The cost of components 
is minimal, but fabrication and debugging are laborious, and errors in design 
or implementation result in tedious alterations of the hardware. 

b. Microprogrammed control. Slightly slower than hardwired control, its speed 
is still limited by propagation delays. The slowdown results from the extra 
states required by multiple branches and conditional outputs. Micropro­
grammed control is most suited to complex algorithms, say with more than 
16 states, and is limited by the address space of the control store and by 
the management of the complex algorithms. Microprogram designers need 
high-level design aids such as the Logic Engine. The cost of the production 
version of a microprogrammed control is small. 

c. Conventional microcomputer control. The method of choice when slow 
speed and somewhat higher cost are acceptable. Speed is generally 10 to 
100 times less than in the two previous methods, because of two characteristics 
of computers. The basic time unit is that of a computer instruction, which 
requires several clock cycles, whereas hardwired and microprogrammed 
controllers execute a state in one cycle, and the execution of a state requires 
several instructions. The reading of status variables or the writing of command 
outputs requires one or more separate instructions, as does the testing of 
status variables. 

Offsetting these restrictions is the excellent human interface accompanying 
most computers, including microcomputers. The basic expression of the algorithm 
is the program, perhaps with the aid of a software flowchart. Complex computer 
programs, whether for control or for general problem solving, require considerable 
software support. Loaders, editors, assemblers, and operating systems are nec­
essary, and we expect these facilities to accompany the computer hardware. 
Still, after a microcomputer-based control design is complete, you may often 
remove from the production version much of the equipment that supported the 
development. 

Microcomputer control of a digital system can replace much of the control 
hardware with software, but the architecture remains "hard." The controlled 
device is frequently some existing piece of equipment, around which we construct 
sufficient hardware to adapt it to the requirements of our microcomputer system. 

Chap. 11 Microcomputers in Digital Design 433 



DATA FLOW IN A MICROCOMPUTER 

The severe limitation on the number of pins in a microprocessor chip means 
that there is usually only a single data path into and out of the chip. Instructions 
and data from memory, output to peripheral devices, and all other transfers of 
data into or out of the MPU occur over this one path, called the data bus. 
Remember, a bus is a data path consisting of a set of signal paths or wires, one 
wire per bit, over which many components may send or receive information. 
The data bus is usually as wide as a memory word-8, 16, and 32 bits are typical 
sizes. 

To direct the flow of information into and out of the microprocessor, two 
more busses emerge from the chip: an address bus and a control bus. The 
address bus designates the destination of a data transfer; since all data moves 
over the data bus, the microprocessor will use the address bus not only 10 describe 
memory locations but also to designate the peripheral devices attached to the 
system. This bus is usually 16 or 24 bits wide. The control bus determines the 
direction of information flow; input from the addressed device or output to it. 
The structure of the control bus varies. A simple-control bus might have just 
two lines, a read line for initiating inputs to the microprocessor, and a write line 
for starting output operations from the microprocessor. Most control busses 
have additional signals for managing timing and interrupts. 

Memory references are the most frequent use of the microprocessor busses. 
To retrieve a word from the memory, the MPU must place the proper address 
on the address bus and then place a read signal on the control bus. The memory 
must have enough internal logic to recognize the read signal, accept the address, 
and start a read cycle that will eventually place memory data on the data bus 
so the MPU can accept it. The MPU performs a write operation by placing the 
address, the MPU data, and a write signal on the proper busses; the memory 
must accept all this information and perform the memory write operation. 

The microcomputer's memory, terminal, and mass storage share the bus 
with other devices. Figure 11-1 is a generalized microcomputer bus. Each 

434 

Data 1-+-----.--------1------
Device I Device 2 

En En 
Microprocessor 

Address t----..... - ..... --1~---... - ..... _+----
Control 1-+------.... -------..... ---_ 

Figure 11-1. The bus structure ofa microcomputer. Each device has an address 
recognizer AR. 

Bridging the Hardware-Software Gap Part III 



device has an address recognizer, which scans the address bus and asserts an 
enabling signal whenever the bus contains an address associated with the device. 
The address recognizer is usually a simple combinational circuit, whose details 
vary with the microprocessor's addressing scheme and the addresses assigned 
to the device. Two addressing schemes are in common use. We may divide 
the activities of a microprocessor bus into memory accesses and input-output 
transfers. In a microcomputer system, these two bus activities may be separate 
concepts or manifestations of a single concept. In systems where memory and 
input-output are conceptually separated, we speak of the separate input-output 
approach; the concept of unified memory and input-output is called memory­
mapped input-output. 

Memory-Mapped Input-Output 

In memory-mapped input-output, every device attached to the system behaves 
like a memory location with an address. In a microprocessor designed for this 
approach, we input a byte from a terminal keyboard by executing a load instruction, 
just as we would to obtain the contents of a memory location. The load instruction 
has an operand address that identifies the particular device. Outputs arise through 
store instructions; there are no read or write instructions. A data transfer causes 
the address to appear on the address bus, to be interrogated by the address 
recognizers in all devices (including the memory). The selected device recognizes 
its address; then, governed by the control bus signals, the device transmits or 
receives information over the data bus. 

Memory-mapped input-output is elegant, simple, and flexible. The necessity 
of decoding the large address field is only a minor drawback. Many microcomputers 
use this approach: the Motorola 6809 and 68000 series are popular examples. 

Separate Input-Output 

The separate input-output strategy incorporates two bus systems, one for memory 
and a separate one for input-output devices. Peripheral devices are attached to 
the input-output bus, and the RAM goes on the memory bus. These microprocessors 
have read and write instructions for input and output. The Intel 8080 has a 
separate input-output system. 

Since the microprocessor chip itself has only a single data, address, and 
control bus structure, there must be extra hardware outside the chip to route 
the microprocessor bus information onto the correct external busses. In this 
method, the microprocessor has a select signal in its control bus to specify which 
of the external bus systems to use. This signal allows the decoding hardware 
to enable the address, data, and control signals onto either the memory bus 
system or the input-output bus system. 

Since the decoding hardware has separated the memory references from 
the input-output, the memory unit does not need to do further decoding to identify 
memory addresses. Similarly, the input-output address bus transmits only the 
addresses of peripheral devices, not memory addresses, so the address recognizers 
in the devices are usually simple. Because there are far fewer peripheral devices 

Chap. 11 Microcomputers in Digital Design 435 



than memory words, the input-output address bus may be much smaller than 
the memory address bus: 8 bits allow for addressing an ample number of peripherals. 

Separate input-output is less flexible than memory-mapped input-output, 
but the separation of memory and input-output functions seems more natural to 
some people. Either scheme is satisfactory, and the designer sees little fundamental 
difference between them. 

Device addressing. To each device one or more unique addresses are 
assigned. They may be permanently assigned and built into the device or they 
may be selected with switches on the device's cabinet. A printer may have only 
a single address, whereas a RAM would respond to a host of addresses corre­
sponding to each word in the memory. All devices monitor the address bus 
lines, and respond only to their particular addresses. 

Few devices have suitable circuitry for recognizing addresses built into 
them. If you are using the microcomputer as a controller for a piece of "foreign" 
equipment, you will have to interface the controlled device to the microcomputer 
controller. By using the methods described in Chapters 2 and 3, you can design 
efficient MSI address detection circuits, using gates for a fixed address or arithmetic 
magnitude comparators for a selectable address. 

Suppose the devices in Fig. 11-1 are assigned the following 16~bit addresses 
in a memory-mapped system. The addresses are given in hexadecimal notation; 
bit A 15 is most significant and bit Ao is least significant. 

Device 1: Address F002 
Device 2: Addresses F004-F007 

In Device 1, the address recognizer ARI must implement the equation 

Device 2 has a range of four addresses. All combinations of the least significant 
2 bits are valid, so address recognizer AR2 must implement 

Hardware for the Bus Interface 

The interface of a component to a bus is called bidirectional if the device can 
both send and receive signals, and unidirectional otherwise. For instance, RAMs 
have a bidirectional interface with the data bus and a unidirectional (input only) 
interface with the address bus. An MPU has a bidirectional interface with the 
data bus and a unidirectional (send only) interface with the address bus. 

Most busses in microcomputer systems rely on three-state control, as observed 
i-n Chapter 3. Microcomputer components are low-power devices, yet many 
components may be attached to the bus as receiving circuits. To provide adequate 
power for reliable bus operation, it is often necessary to buffer the outputs onto 
the bus. For unidirectional outputs, three-state buffer chips such as the 74LS244 

436 Bridging the Hardware-Software Gap Part III 



Octal Buffer are useful "drivers." Most logic inputs may serve directly as 
unidirectional bus receivers. 

For bidirectional bus attachments, in which a single pin of a device must 
carry both input and output data, we may use a three-state bus transceiver, 
shown in Fig. 11-2. To operate such a device, we send control signals to specify 
whether the transceiver is to transmit, receive, or do neither. This requires two 
control lines as in Fig. 11-2a. Often a single control line for the transceiver is 
sufficient, in which case the transceiver always passes data in one direction or 
the other, as in Fig. 11-2b. In some LSI chips in microcomputer systems, bus 
transceivers are built in; others require separate circuits. 

Part of the task of interfacing a device with a computer is to manage the 
system bus's transactions. This requires detailed adherence to the timing and 
format of the particular bus system. Many manufacturers provide support hardware 
to make this task easier at the peripheral end. Typical of this are special LSI 
chips with names such as input-output ports and peripheral interface adapters 
(PIAs). These chips are versatile, often managing 16 bits of parallel data in 
elaborate configurations determined by programming. PIAs have registers and 
buffers for the input and output of data, status and control signals for handling 
bus activities and peripheral timings, some address decoding capability, flexible 
support of interrupts, and other useful features. The microcomputer program 
establishes the complex operating conditions of the PIA by programming the 
contents of the PIA's control registers. 

Bus Protocols 

If you are attaching a device to a microcomputer, you must be thoroughly familiar 
with the bus control protocol of that system, whether you design the protocol 
yourself or use an established one. Bus protocols are more complex than those 
shown here. There are many protocols in use, including quite a few promulgated 
by manufacturers or technical groups. Several such "standard" protocols have 
gained favor, although not all of them are well conceived, nor are they completely 

74LS243 74LS243 
r------------...., r------------, 

I 

A B: 
I I 
I I 
I A B I 

A-+B( EN).L 0-_--+---' 

B-+A( EN).H-"';'I--I--... 
I 
I 
I 
I 
I 
I 

B .... A( EN).H -4-;--+--..., 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I L ____________ --.J L ____________ .J 

(a) Dual control (b) Single control 

Figure 11-2. A bus transceiver in two configurations. 

Chap. 11 Microcomputers in Digital Design 437 



standardized. Still, when it is possible, use a standard protocol rather than 
creating your own. 

MICROCOMPUTER INPUT-OUTPUT 

To the digital designer, a microcomputer program represents a control algorithm; 
the program issues commands and receives status information by means of input 
and output operations directed to the controlled device. Usually the microcomputer 
is dedicated to the task of device control, and the microcomputer program 
controls every aspect of the architecture's interface with the system. The technique 
for this detailed control is called programmed input-output, which can be used 
either with or without interrupts. 

Programmed Input-Output 

Programmed input-output is a simple and versatile scheme supported by every 
microcomputer. The MPU program explicitly controls the transmission or receipt 
of each byte of data passed over the data bus; thus the name programmed input­
output. Usually, the program uses one of the MPU's registers to hold a byte 
of outgoing data or to receive an incoming data byte. MPU input-output instructions 
cause transfers between the MPU's register and the system data bus; these 
instructions are the loads and stores of memory-mapped input-output or the 
reads and writes of separated input-output. 

Since the only data connection between the controller (the MPU) and the 
controlled device is the system data bus, command outputs from the controller 
take the form of a byte of data sent out by an MPU output instruction to the 
addressed device. The device may interpret one or more of the bits in this byte 
as control signals or may use the information as data, as specified by the designer. 
If the device requires more data or control information than one byte can hold, 
the designer must assign additional addresses to the device, providing another 
"home" for command information, or to process bytes of control information 
serially. 

The controlled device usually generates status information to guide the 
control algorithm in the MPU. These signals do not influence the MPU's activities 
the instant the device develops them, since the MPU must issue a programmed 
read before the device is allowed to place the status information on the data 
bus. After the status data is in the MPU, the program tests the status as a part 
of its execution of the control algorithm. 

Here is a simple example of microcomputer control using programmed 
input-output. We wish to turn on a light in response to a switch. We use a PIA 
to sense the setting of the switch and to maintain the control signal that governs 
the light. Our model for this example is the Motorola 6809 system, which has 
an 8-bit data bus and a 16-bit address bus. By software, we specify an 8-bit 
input port and an 8-bit output port in the PIA, as shown in Fig. 11-3. The 
switch is connected to the most significant ("sign") bit of the input port, and a 
relay that controls the lamp is connected to the least significant bit of the output 

438 Bridging the Hardware-Software Gap Part III 



Address 
bus 

Control 
bus 

Data 
bus 

16 

2 AI-Ao 

Enable Address 

Data PIA 

8 8 

Input port Output port 

7 6 

110VAC 
R 

Figure 11-3. A switch operating a lamp, controlled by programmed input-output 
through a PIA. 

0 

port. (In Chapter 12 we discuss how to drive relays.) This exercise requires 
only these 2 bits. 

We assign the address F008 (hexadecimal) to the input port and FOOA to 
the output port. In response to either address our address recognizer asserts 
an enabling signal to the PIA. PIAs usually have several addressing inputs to 
distinguish between the chip's internal registers. We will attach the two least 
significant address bus lines Al and Ao to the PIA's addressing inputs. Our 
address recognizer, working with the most significant 14 bits of the address bus, 
identifies the PIA as the target, and the remaining two address bus lines tell the 
PIA which register is being addressed. 

In Fig. 11-4 we present a section of 6809 assembly-language code for the 
control algorithm. You can understand this simple program without knowledge 
of the 6809. LDA and STA are load and store instructions, which in this memory­
mapped system are used to address the ports of the PIA. BPL and BMI are 
branches on plus and minus, respectively. JSR is a subroutine jump, and CLR 
is a clear or "store zero" instruction. EQU is the usual symbol-equivalencing 
assembly directive. 

The code performs a software switch-debouncing action by pausing sufficiently 
long after detection of a switch transition. A valid change in the switch setting 
prompts the turning on or off of the light, and spurious switch signals evoke no 
response. 

Chap. 11 Microcomputers in Digital Design 439 



INPORT 
OUTPORT 

INITPIA 

INITLITE 

SWOFF 

EQU F008 

EQU FOOA 

CLR OUTPORT 

LOA INPORT 
BPL SWOFF 
JSR WAIT 
LOA INPORT 
BPL SWOFF 

LIGHTON LOA #1 
STA OUTPORT 

SWON LOA INPORT 
BMI SWON 
JSR WAIT 
LOA INPORT 
BMI SWON 

LIGHTOFF CLR OUTPORT 

assign PIA input port address 
assign PIA output port address 

initialize the PIA 
this may take several program steps 
begin with the light off 

get the switch signal 
repeat while switch is off (sign bit off) 
switch is on. wait 10 msec for debouncing 
get switch again to check validity 
if not the same, exit to beginning 
set bit 0 on to turn on light 
store the bit in the PIA output port 
get switch and wait until it is turned off 
is it still on? if so, try again 
off. wait 10 msec to be sure it's real 
get switch again 
if false alarm, try again 
clear bit 0 of output port to turn off 
light 

Figure 11-4 Programmed control of the architecture in Figure 11-3. 

The architecture of the interface circuitry and the spirit of the programmed 
control of more complex designs are similar to this simple example. 

Programmed Input-Output with Interrupts 

Some types of peripheral interactions are sporadic and unpredictable. Keyboard 
entry from a low-speed terminal is an example: A user may depress a key the 
next second or not until next week. To control such a device with normal DMA 
or programmed input-output, we would execute a loop that tested the status of 
the keyboard device frequently, waiting for a character to come along. This 
straightforward approach is acceptable if the MPU does not have more pressing 
business, but in busy systems this may use up too much time. 

Most microcomputers support external interrupts. This feature requires an 
additional line on the control bus: the interrupt request signal. When the MPU 
senses that the interrupt request line is true, then at the end of the next instruction 
the MPU forces a subroutine jump to a special memory location set aside for 
this type of interrupt and begins executing the instructions located there. The 
programmer arranges for a suitable interrupt subprogram to reside in memory, 
beginning at the special interrupt location. 

The interrupt subprogram must determine the reason for the interruption 
of normal processing, and take appropriate action. For example, consider the 
processing of character data from a terminal keyboard, using interrupts to announce 
the availability of a character. The MPU program goes about its main business, 
for example, monitoring the status of temperature and pressure sensors in a 

440 Bridging the Hardware-Software Gap Part III 



chemical process and controlling a heater and a vacuum pump motor. The main 
MPU program takes no heed of the keyboard, which is present only for an 
occasional human intervention. When the experimenter presses a key on the 
terminal, the terminal's interface hardware asserts an interrupt request. This 
causes the MPU to suspend the execution of the program and make a subroutine 
call to the interrupt location. There, the interrupt subprogram determines that 
the reason for the interrupt is the availability of a character from the terminal. 
The interrupt subprogram reads the character, using programmed input, and 
deals appropriately with the character. The subprogram then does a subroutine 
return, which causes control to return to the next instruction following the original 
point of interruption. If the interrupt program has been properly written, all the 
relevant registers of the MPU will be unaffected by the interruption and the 
interrupted program will not be aware that the interrupt has occurred. 

As you learned in Chapter 7, computers always provide a way to turn the 
interrupt recognition hardware off and on, so as to give the MPU program some 
control over its operating environment. There are two situations in which we 
want the interrupt recognition system to be turned off: when the algorithm is 
not designed to handle any interrupts, and when the interrupt subprogram is 
already dealing with an interrupt. This last case is interesting; it arises to avoid 
the possibility of one interrupt piling on top of another one. 

In the simplest form, the entire interrupt detection structure would be 
inactive during the processing of an interrupt. A more sophisticated method is 
available in many microcomputers. The priority interrupt scheme provides hardware 
support for prioritized levels of interrupts. Here, the designer assigns each type 
of interrupt request a priority level, with interrupts requiring rapid processing 
having higher priorities. An interrupt occurring at a particular priority level will 
disable detection of all interrupt requests of equal or lower priority but will 
preserve the ability to detect higher-priority requests. In such a system, each 
priority level has its own interrupt location in the memory, which must contain 
the start of an interrupt subprogram capable of dealing with the interrupt. During 
the processing of an interrupt request at a certain level, if the MPU detects a 
higher-priority request, a new interrupt subroutine jump will occur. 

It sounds tricky, and it is. Interrupts are potent tools for providing service 
on demand, but they cause a host of difficult problems. 

Difficulties with interrupts. Interrupt programming is much more difficult 
than ordinary software development. The trouble is that interrupts are not re­
producible. The time of an interrupt request is not under the direct control of 
the MPU; interrupts do not occur in lockstep with the MPU algorithm. It is an 
intrinsic property of the interrupt concept that we cannot predict exactly when 
an interrupt will occur. Most complex programs have weak, perhaps little used, 
sections that have not undergone rigorous testing. It is difficult to test an in­
terruptable program thoroughly. An interrupt may occur during a section of the 
program that is not correctly written for interrupt processing. For instance, the 
main program must be careful in using memory data that an interrupt subprogram 
might also use. Might is the key word; an incorrect program may run for a long 

Chap. 11 Microcomputers in Digital Design 441 



time without an interruption in the erroneous section. Such nonreproducible 
errors are nearly impossible to diagnose after the fact. And creating flawless 
programs in an interrupt environment is orders of magnitude more difficult than 
in simpler circumstances. 

Since interrupts can occur between any two instructions of an executing 
program, the interrupt subprogram must be written with great care. Its execution 
must leave no effects that might disturb the correct execution of the interrupted 
program. In particular, the interrupt subprogram must not alter the MPU's 
operating registers, or at least must restore these registers to their original state 
before returning to the interrupted program. 

Of course, the interrupt subprogram will make some change in the state 
of the computer system; otherwise, why bother detecting the interrupt? Usually, 
the subprogram will store some information in the memory, or initiate a new 
input-output activity. Programmers must design their programs with great care, 
so that they perform flawlessly even in the presence of unpredictable interrupts. 

Interrupts are the software equivalent of asynchronous hardware circuit 
design. Both are powerful techniques loaded with opportunities for errors. In 
hardware, we found that synchronous design allows simpler handling of most 
problems, with little or no penalty. This was possible primarily because in 
hardware and in microprogramming we may perform many operations in parallel 
and can thereby achieve great overall speed whether or not the design is clocked. 
In conventional computer software, each instruction performs only a small task 
and activities are highly serial. Serial processing is slow. We need any facility 
that can help speed performance and enlarge the spectrum of problems amenable 
to conventional computer processing. We cannot forego interrupts as easily as 
we sidestepped asynchronous design. 

So interrupts are often necessary, but you must always be aware of the 
design and debugging problems introduced by this powerful concept. 

DESIGN EXAMPLE 1: A WIRE-WRAP CONTROLLER-PURE 
SOFTWARE CONTROL 

Printed circuits, wire-wrap, and wire plugboards are common ways of fabricating 
digital circuits. Plugboards-special connector boards with holes into which the 
designer pushes wires-provide a manual method suitable for testing small pro­
totypes. Printed circuits are best for high-volume production but require substantial 
efforts at circuit layout and fabrication. Wire-wrap serves a wide range of ap­
plications, including testing prototype of large circuits destined for printed circuits 
and production versions of circuits of varied complexity. 

In wire-wrapped circuits, integrated circuit chips are plugged into mounted 
sockets having special wire-wrap pins. Electrical connections are made through 
wires strung between pins and wrapped to each pin by means of a wire-wrap 
tool or "gun." Wire-wrap is inexpensive, and commercial products such as 
insulation stripping tools, wrapping tools, and sockets are plentiful. Wire-wrapped 
circuits are easy to modify in the field. 

Manual wire-wrapping is feasible, but in a large circuit the forest of pins 

442 Bridging the Hardware-Software Gap Part III 



and wires confuses the eye and leads to occasional errors. Locating the correct 
pins is tedious and slow, a likely candidate for automation. Fully automatic 
numerically controlled wire-wrap machines are commonplace in high-volume­
production plants, but these machines are expensive and require elaborate setting 
up. 

With a more modest investment, using commercial equipment, we can 
develop a semiautomatic wire-wrap facility. The system relies on a human 
operator to wrap the wires but provides for the automatic positioning of a guide 
for a wrapping tool so there is no doubt about a pin's proper location. The 
equipment consists of a wire-wrap table and its controller. In the following 
example we use a commercial wire-wrap table and a microcomputer for control. 

The Architecture 

The wire-wrap table is an upright X-Y positioner with a rigid rectangular frame 
that holds the board to be wrapped. On the frame is mounted a vertical beam 
that can move in the horizontal (X) direction along a precision screw. Attached 
to the vertical beam is a smaller beam that can move along another precision 
screw in the vertical (Y) direction. This smaller beam holds the guide for the 
wire-wrap tool. By a suitable combination of motions in the X and Y directions, 
the controller may place the guide at any location within the rectangular frame. 

Each beam has a stepping motor that can position the beam precisely by 
rotating the screw. A stepping motor responds to a control pulse by moving 
one step in a specified direction. In our system, a motor step results in a beam 
movement of 0.005 in.; thus there are 200 beam steps per inch. To move a 
beam 5 in. would require 1000 properly administered steps. 

The stepping motors are independent, so both beams may be in motion at 
the same time. Each stepping motor has a driver that responds to digital TTL 
control signals and converts them into high-power motor signals. In our example, 
each stepping motor control has a direction signal (specifying left or right; up 
or down) and a motor signal. To move a beam one step, we establish the proper 
value of the direction signal and then make the motor signal true for a specified 
time (about 1 msec). At other times, the motor signal must be false. 

Starting from a resting position, a stepping motor may reliably begin motion 
at a rate of up to 200 steps per second; once in motion, the motor may be 
gradually speeded up to 600 steps per second. For reliable operation, the stepping 
must be decelerated to a maximum of 200 steps per second before the motor is 
brought to a halt. Stepping the motors too fast can result in lost steps. The 
manufacturer specifies the desirable rates of increase and decrease of the stepping 
speed. 

Specifications for the Controller 

The wire-wrap table is ideal for microcomputer control: 

a. It is slow. Almost any microprocessor can drive the stepping motors at 
full speed and can easily keep up with the human operator. 

Chap. 11 Microcomputers in Digital Design 443 



b. The control is a complex task, easily handled in software, yet difficult for 
a pure hardware controller. 

c. The design is likely to change as our experience suggests minor modifications. 
d. We can use the microcomputer's interface with the operator to good ad­

vantage. A display terminal, floppy disk, editor, and assembler will assist 
the development task and may later become part of the production system. 

The wire list. The wire list contains the basic data for wire wrapping. 
Each wire connects two pins; the wire list gives the pins' location in terms of 
X and Y coordinates relative to an arbitrary origin. For convenience, each entry 
in the wire list contains the length of the wire and a commentary to assist the 
operator to identify the wire. 

The designer prepares the wire list before wrapping a board. There are 
several devices commonly available in microcomputer systems that can retain 
the wire list: paper tape, floppy disk and hard disk. The floppy disk is the most 
versatile. 

The operator's controls. The operator should have a foots witch to signal 
the controller that a wrap has been completed and the wire-wrap tool is removed 
from the guide. 

A small keyboard with 10 or 12 buttons is a convenient way to enter 
information into the controller. The keyboard has two basic functions; the panic 
button, which will cause the immediate halting of the stepping motor, and a set 
of four buttons to permit manual movement of the table beams. The operator 
can press anyone of the four buttons - X, + X, - Y, or + Y to move the guide 
in the indicated direction. If the operator holds a button down longer than 0.2 
sec, for example, the controller moves the beam at a rate of 200 steps per second 
until the button is released. Single steps result fwm depression of less than 0.2 
sec. 

Another keyboard button can cause the computer to position the wire-wrap 
guide at the point the controller believes to be the origin. This is useful to verify 
that the stepping motors have not missed steps during previous wrapping operations. 

We may design additional operator controls to be entered either from the 
keyboard or from the microcomputer's main display terminal. For example, it 
is useful to allow the operator to search the wire list for a given wire which can 
serve as a starting point for wrapping operations. This need arises when an 
operator has suspended wrapping and wishes to begin again. 

The controller. Any microcomputer can control the wire-wrap table. We 
might choose a Motorola MC6809 microprocessor with 32K RAM storage, a 
floppy disk, and a display terminal. This machine has memory-mapped input­
output for communication, and supports external interrupts. A peripheral interface 
adapter (PIA) provides a convenient interface between the wire-wrap table's 
motor drivers and the microcomputer. The PIA contains registers for data written 
from the microprocessor, so the control algorithm's responsibility is to enter 
proper signal changes into the bits of the PIA registers. Figure 11-5 shows the 

444 Bridging the Hardware-Software Gap Part III 



Keyboard 

000 
000 
000 
000 

_......I-_-+-___ ..J.... __ --I. __ ~,.__-..... ------"'--,.__t_-- System bus 

---..... ---------~,.__----------I.--- External 
interrupt 

Figure 11-5. Signal paths for the wire-wrap controller. 

logical interconnections of the microcomputer, its peripheral devices, and the 
wire-wrap components. 

The Control Algorithm 

The microcomputer manages a variety of operations: 

a. Positioning the wire-wrap tool guide, either from information in the wire 
list or in response to a pushbutton. 

b. Processing the panic button signal. 
c. Display of data pertinent to a wrap, including the length of the wire and 

an identification for the wire. 
d. Interpretation and execution of operator's commands, such as searching 

the wire list. 
e. Storing the wire list. 

With the aid of the software accompanying the display terminal and the 
peripheral storage device, parts (c), (d), and (e) become routine programming 
tasks. The organization of the control program is shown in Fig. 11-6. In response 
to the operator's commands, the supervisor program selects a subprogram to 
perform a task, such as seeking the origin or wrapping wires. Upon completion 
of the task, the subprogram returns to the supervisor, where the controller will 
await further instructions from the operator. 

Part (b), panic-button activity, is best handled by attaching the panic-button 
signal to the microcomputer's interrupt request line. Asserting the panic signal 
interrupts the program, causing immediate suspension of its normal activities. 
The interrupt subprogram must return control to a standard point in the supervisor 
program, to await further commands from the operator. 

Part (a), moving the stepping motors, requires careful study. 

Chap. 11 Microcomputers in Digital Design 445 



Manual 
position 

Wrap 
wires 

Wire-wrap control 
supervisor 

Event handlers 

Seek 
origin 

Locate 
a 

wire 
Others 

Figure 11-6. Organization of the 
wire-wrap control program. 

The wire-wrap algorithm. Figure 11-7 shows the software control for 
wrapping the wires given in the wire list. The footswitch provides the basic 
sequencing information for this algorithm. Each depression of the footswitch is 
a "clear to proceed" signal; the algorithm responds by positioning the wrapping 
tool guide over the next pin. The treatment is similar for the two wraps of a 
wire; however, prior to beginning each wire, the algorithm provides an opportunity 
for the operator to intervene. Upon sensing the assertion of the signal from the 
footswitch, the microcomputer algorithm reads the next record from the wire 
list and displays appropriate information for the operator's use. The important 
information to display is the wire length, to allow the operator to select the 
proper wire, and the wire identification, to permit the operator to know the 
present point in the wire list. 

To process a wrap, the algorithm must use the coordinates of the new pin 
and the present location of the guide to compute the number of X and Y steps 
required to reach the next pin. With this information, an X-Y positioning sub­
program MOVE can direct the stepping of the two motors. The operator will 
then wrap the first pin. 

Prompted by another depression of the footswitch, the algorithm will move 
the guide to the second pin of the wire and th~n return to the beginning of the 
loop to await further instructions. The operator will wrap the second pin and 
then press the footswitch or enter another command from the keyboard or the 
terminal. 

The MOVE subprogram should move the guide into position over a pin in 
minimal time. In general, both motors are in motion during each move, but for 
different durations. Each motor must start slowly and, depending on the distance 
the beam must travel, may be accelerated to a maximum speed before deceleration. 
A motor engaged in a short movement may not reach full speed before deceleration 
must begin. 

The optimal acceleration and deceleration are complex functions of the 
stepping speed, but in our application only a conservative approximation is 
necessary. We may change the stepping speed in discrete jumps , using a constant 
acceleration factor. Figure 11-8 is a typical pattern of software-generated X 
and Y motor speed changes. The X motor reaches the full speed of 600 steps 

446 Bridging the Hardware-Software Gap Part III 



No 

Process a wire ,....---'----, 

Process first wrap 

Display "1" 
Determine number of 
X and Y steps from 

current position 

Process second wrap 
,....------'----, 

Display "2" 
Determine number of 
X and Y steps from 

current position 

Figure 11-7. A software algorithm for 
wrapping wires in the wire list. 

per second, whereas the Y motor must decelerate before reaching maximum 
speed. 

Managing the independent motions of the X and Y motors with a single 
processor requires careful planning of the algorithm. We use a simplified version 
of the technique of discrete event simulation, which permits a single algorithm 
to manage several independent sequences of events. In our example, there are 

Chap. 11 Microcomputers in Digital Design 447 



'"Cl 
0:: 
0 

" &l 
.... 
" 0. 

"' 0. 

" '" 

600 

200 
I 

01 

0 

Distance (steps) 

Figure 11-8. Acceleration and decel­
eration patterns of stepping motors. 

X.STEPS 

two sequences of events: stepping the X motor and stepping the Y motor. The 
control algorithm must produce the proper sequence of true and false signals for 
each motor, for instance as shown in Fig. 11-9. 

Managing one motor is relatively simple, requiring only that the algorithm 
delays the proper time between changes to the motor signals. Given a formula 
for accelerating and decelerating the motor, the sequence of signals depends 
only on the distance to be traveled and is completely defined when the stepping 
subprogram starts. Therefore, when each motor event is processed, the subprogram 
can determine the time and nature of the next event. 

To control both motors, the algorithm keeps track of two intervals: for 
each motor, the computed time from the present event until the next event. 
Upon completing an event, the algorithm delays until the earlier of the two next 
events arrives, then executes that event and creates a new next event for that 
motor. This again allows one interval for each motor, allowing the stepping 
process to advance. The algorithm always processes the earlier event. 

Figure 11-10 shows the flowchart of the motor-movement subprogram MOVE, 
the heart of the control. The time-delay subprogram DELAY, called in the main 
loop of MOVE, accepts a single argument D and pauses for the appropriate 
interval D before returning. The delays are on the order of milliseconds, whereas 
the microprocessor's instruction times are on the order of microseconds. Since 
in this application we do not require exact timings, we may create delays by 

448 

T-1 r-- -1 msec 

X motor 
F 

T 
Y motor 

F 

Time-

Figure 11-9. Typical signal patterns for the independent X and Y stepping 
motors. 

Bridging the Hardware-Software Gap Part III 



MOVE 
(X.STEP, Y.STEP) 

Analyze X and Y 
step movements. 

Establish 
directions 

Create new 
event(s), and 
calculate time 
delay 0 until 

next event 

Yes 

Figure 11-10, Flowchart of the sub­
program MOVE for controlling the si­
multaneous movement of the X and Y 
stepping motors. 

executing an appropriate number of microprocessor instructions in a loop in the 
subprogram DELAY. 

Wrapping Up 

This completes our treatment of the controller for the wire-wrap table. We leave 
as an exercise the development of the algorithm for manual control of the stepping 
motors. The wire-wrap processes are slow enough that we may perform all the 
control with microcomputer software. Such control is easier to debug and modify 
than the hardwired form and allows us to implement more complex designs. In 
the next example, we describe a system that requires combined hardware and 
software control. 

DESIGN EXAMPLE 2: A TERMINAL MULTIPLEXER-HYBRID 
HARDWARE-SOFTWARE CONTROL 

The device in our second design example is a terminal multiplexer, which will 
manage the transmission of data between a large number of low-speed computer 

Chap. 11 Microcomputers in Digital Design 449 



terminals and a central computer system, merging the information to and from 
each terminal into a single path in each direction. 

This example which arose in a university, represents a common problem 
in which large numbers of terminals must communicate with a distant point. 
One method is to connect each terminal to the computer by a pair of signal 
paths, one for moving data from the terminal to the computer, and another for 
moving data in the other direction. Typically, there are separate connections 
for each terminal. These wires may belong to the organization, or be private 
lines leased from the telephone company, or be a part of the normal telephone 
dial-up network. 

System designers would like to minimize the overall cost of the communication 
system; one approach is to minimize the number of long connections to the 
computer. When only a single terminal exists at a location, there is little one 
can do except use a set of wires solely for that terminal, or rent a telephone 
dial-up connection. Where many terminals are close together-in the same room 
or the same building-there may be an opportunity to save on the cost of separate 
long communication links with each terminal. This university computing network 
has a switching system near its main computers. The switching system, purchased 
from a commercial manufacturer, provides a variety of complex functions to 
move information among the elements of the network. Among them, it provides 
access between the computers and individual low-speed terminals. 

A more sophisticated service is to handle the high-speed lines over which 
several terminals communicate. The sharing of the high-speed line among several 
terminals occurs by time multiplexing the characters: The terminals take turns 
sending characters over one signal path and take turns receiving characters over 
another path. Such sharing of high-speed lines is beyond the capabilities of the 
terminals themselves. We need a terminal multiplexer-a controller such as 
shown in Fig. 11-11, located near the terminals, to manage the complex operations 
involved in the time multiplexing of the data. 

450 

Distant 
switching 
system 

High speed 
serial lines 

Terminal 
multiplexer 
(local to the 
terminals) 

Terminals 

Figure 11-11. The environment of the terminal multiplexer. 

Bridging the Hardware-Software Gap Part III 



With the aid of some circuits developed in Chapter 6, we can construct 
such a terminal multiplexer, controlled by a microcomputer. 

Specifications 

Here are the conditions under which the multiplexer must function. We have 
simplified the specifications somewhat. 

Terminal communications. Each terminal communicates at a maximum 
rate of 300 bits per second in each direction, using the standard asynchronous 
character communication protocol described in Chapter 9. Each 8-bit ASCII 
character requires a total of 10 bits, including the asynchronous protocol's start 
and stop bits. The transmission is full duplex, since simultaneous communication 
in both directions is possible. All the terminal communication lines merge into 
the nearby terminal multiplexer, but so far as a user is concerned, each terminal 
is independent. 

High-speed communications. The terminal multiplexer system is con­
nected to a commercial switching system at a distant site. The transmissions 
travel over a single full duplex high-speed link, according to the protocols defined 
by the switching system. The speed of transmission is 9600 bits per second in 
each direction, although by consulting with the switching system's manufacturer 
we could raise or lower this value. In normal activity, transmission in each 
direction is continuous, without a break. The continuous streams of bits consist 
of 9-bit bytes organized into "frames." A frame begins with a special SYNC 
byte that marks its start and also permits the identification of byte boundaries 
in an incoming bit stream. Following the SYNC byte, the frame has one 9-bit 
byte for each terminal in the configuration. A given terminal's byte always 
occupies the same relative location in each frame. The byte for a given terminal 
may contain a terminal data character or, if there is no data character for this 
time slot, the byte will be a filler, or NULL, byte. 

Each 9-bit byte begins with a type specification bit: 0 means that the 
remaining 8 bits are data, 1 means that the 8 bits are a control code. The control 
codes are defined by the switching system's manufacturer; the only codes we 
will consider are SYNC and NULL. Figure 11-12 shows the structure of a 
frame. 

This high-speed protocol is an example of synchronous data transmission. 
(The terms "synchronous" and "asynchronous" in data communications do not 
have the same meaning as they do in digital design.) 

Number of terminals. We may compute the maximum number of terminals 
as follows: For N terminals, a frame contains N + 1 bytes, or (N + 1) x 9 
bits. At 9600 bits per second, a frame requires (N + 1) x 9/9600 sec. The 
frame contains a spot for each terminal, so each terminal receives processing 
once in each frame time period. 

Each transmission of a character in the asynchronous communication protocol 
involves 10 bits, of which 8 bits are an ASCII character. At 300 bits per second, 

Chap. 11 Microcomputers in Digital Design 451 



Term. Term. T~m·1 SYNC I 2 ------------
byte byte byte 

'---y----

I 0 
8 

o I 8 \...0 Data 
character 

Code for 1 SYNC 
control byte 

\..1 Code for 
NULL 

control byte 
Figure 11-12. The frame structure for 
the terminal multiplexer's high-speed 
transmissions. 

each terminal can process at most 30 characters per second in each direction. 
Therefore, each terminal requires lo sec to process a character. 

Solving for the number of terminals N, we have 

(N + 1) x 9 1 
9600 30 

N= 34 

We will use a maximum of 32 terminals in our example; all frames will contain 
32 terminal bytes, regardless of the actual number of terminals attached to the 
mUltiplexer or turned on. 

The Structure of the Terminal Multiplexer 

At the terminal side of the multiplexer in Fig. 11-11, the appearance is of a 
large number of independent and sporadic transmissions using the asynchronous 
communication protocol. On the switching system side, the communications are 
synchronous over a pair of high-speed signal lines, using the specific protocol 
defined by the switching system manufacturer. Our task is to design something 
to fit between these two disparate activities. The work of transforming between 
the synchronous frames and the asynchronous terminal communications will be 
structured around characters, yet both ends of our system require bit-serial 
communications, of which the character itself is only a part. We are surely 
faced with serial-parallel data conversions at each end, to produce the characters 
that are the common element of each form of communication. 

Our choices for dividing the responsibilities are: 

a. To translate the high-speed synchronous serial bit stream into 9-bit bytes, 
and vice versa, using hardware to provide the necessary speed for these 
operations. 

b. To translate serial asynchronous communications from terminals to 8-bit 
characters (and vice versa), using hardware if possible. 

c. To perform the complex manipulations on the resulting characters and bytes 

452 Bridging the Hardware-Software Gap Part III 



using a microcomputer. The hardware in items (a) and (b) will be attached 
to the microcomputer system bus. We will assume that the data bus is 16 
bits wide. Figure 11-13 shows the components of the terminal multiplexer. 
Let's see how each of these pieces will work. 

Switching system communications. In Chapter 6, we developed serial­
parallel conversion circuits that support the 9-bit byte format dictated by the 
switching system's protocol. These circuits include a serial-to-parallel (S ~ P) 
converter to produce bytes from the serial input line, and a parallel-to-serial 
(P ~ S) converter to serialize bytes onto the serial output line. The microcomputer 
is attached to the parallel side of both converters. The rules of operation require 
the microcomputer to process incoming and outgoing bytes fast enough to keep 
up with the continuous synchronous serial transmissions. The microcomputer 
obtains its basic algorithm timing through two status signals from the converters. 
A change in the value of READIT prompts the microcomputer to accept a 9-bit 
byte from the S ~ P converter; a change in FILLIT requires the microcomputer 
to write a 9-bit byte to the P ~ S converter. The only independent control the 
microcomputer can exert over the serial bit-stream processing is through the 
RESET line. Momentarily asserting RESET will cause the S ~ P converter to 
abandon its normal byte acquisition and search for the special SYNC bit pattern 
from among the bits of the incoming serial bit stream. This fixes byte acquisition 
on proper byte boundaries-a necessary operation upon startup, or if the mi­
crocomputer loses synchronization with the incoming bytes in a frame, or if 
there is a break in the serial communications. 

Synchronous 
serial 

frames, 
9600 bits per sec 

Chap. 11 

High-speed 
P-+S -converter 

High-speed 
S-+P -

converter 9-bit 
bytes 

I Microcomputer I 

~ 
Microcomputer 

system bus 
(16 bits wide) 

Terminal multiplexer 

1 Terminal I I 
Sop adapter 

y Terminal2 
Sop adapter I 

I 
I 
I 

I Terminal 32 I 
8-bit I Sop adapter I 

characters 

Asynchronous 
serial 

characters, 
300 bits per sec 

Figure 11-13. Components and data flow in the terminal multiplexer. 

Microcomputers in Digital Design 453 



To attach the serial-parallel converters to the microcomputer system bus, 
we must give address and data bus assignments to the various device signals. 
We will make the following allocations: 

Address ADDR.A (read only): READIT 
FILLIT 

Data bus bit 10 
Data bus bit 9 

s ~ P byte buffer Data bus bits 8-0 
Address ADDR.B (write-only): RESET Data bus bit 0 
Address ADDR.C (write-only): P ~ S byte buffer Data bus bits 8-0 

(Read-only and write-only are from the viewpoint of the microprocessor.) 
In a typical microcomputer memory-mapped input-output bus, the three 

addresses will each have a 16-bit code; a separated input-output bus will have 
a smaller code for the device addresses. We must provide our converters with 
bus interface logic to detect the presence of the three address patterns, and to 
assert the signals ADDR.A, ADDR.B, and ADDR.C appropriately. The bus 
interface must deliver the required control signals to the converters to load data 
from the bus at the proper time. 

Since address ADDR.A is read-only (i.e., input to the microcomputer), and 
addresses ADDR.B and ADDR.C are write-only (output/rom the microcomputer), 
we do not need bus transceivers. Simple three-state buffers will serve as bus 
drivers for the elements of ADDR.A. The output-enable signal for this collection 
of 11 bus drivers is ADDR.AoREAD, where READ is the read signal on the 
control bus. When the output enable signal is true, the ADDR.A data is available 
on the system data bus. 

Managing ADDR.B and ADDR.C requires a knowledge of the type of elements 
used in the converter's interfaces with the microcomputer bus. In Chapter 6, 
we suggested using a controlled (JK) flip-flop to receive the RESET signal, and 
a 9-bit enabled D register for the P -? S byte buffer. In order to load these 
elements under the bus's control, we must generate the correct clock and control 
signals from the information available on the system bus. The following equations 
are suitable, where WRITE is the write signal on the control bus: 

RESET*.FLIP.FLOP(CLOCK) = WRITE 

RESET*.FLIP.FLOP(SET) = RESEToADDR.B 

RESET*.FLIP.FLOP(CLR) = RESET °ADDR.B 

P-?S.BYTE.BUFFER (CLOCK) = WRITE 

P-?S.BYTE.BUFFER(ENABLE) = ADDR.B 

Terminal communications. You are already acquainted with an LSI 
device that performs conversions between parallel characters and serial asyn­
chronous bit streams; the DART described in Chapter 9 does exactly that. We 
may use a DART for each terminal, and interface each DART to the microcomputer 
system bus. Various LSI chips perform DART-like functions. For a particular 
microcomputer, interfacing some chips to the bus is simpler than others. Never­
theless, for all DARTs, there are three vital types of data movement on the bus: 

454 Bridging the Hardware-Software Gap Part III 



8-bit character data from a terminal into the microcomputer, 8-bit character data 
from the microcomputer into a terminal, and DART status information for the 
microcomputer. At the least, the status must include a character-ready signal 
to describe input from the terminal, and a transmit-buffer-empty signal to control 
output to the terminal. 

We may manage the bus transactions by allocating two microcomputer 
addresses to each DART, one for data transfer and the other for status. The 
microcomputer will read a character from a particular terminal by first reading 
the DART's status, using the assigned bus address for the status port of the 
selected terminal. If the status indicates that a character is present in the DART, 
the microcomputer program will read the data portion of the DART. Writing 
proceeds by a similar sequence of two bus operations: a status read followed, 
if appropriate, by a data write. 

Designing the detailed logic to interface the DART terminal controller with 
the system bus is not difficult; the pattern is much the same as in the high-speed 
serial-parallel converters discussed earlier. 

The Control Algorithm for the Microcomputer 

We have specified the hardware of our terminal multiplexer system: the high­
speed synchronous serial-parallel converters, the terminal's asynchronous serial­
parallel converters, and the microcomputer system bus's interfaces to these 
elements. Let's turn to the master controller for the mUltiplexer-the micro­
computer program. 

We require our microcomputer to process bytes to and from the high-speed 
synchronous system at a rate fast enough so that the algorithm never misses its 
cues. The high-speed serial activities go on all the time, and each frame has a 
specific position for each terminal. When a terminal's time slot arrives in either 
an incoming or an outgoing frame, we must process that terminal. It will do us 
no good to process a terminal at any other time! This important realization shows 
that the READIT and FILLIT signals are the master timing elements; a change 
in either of these flags must cause the microcomputer program to process a 9-
bit byte. We can forget about the timings of the terminal characters; if we keep 
track of the position in the frames, we will know when to process each terminal. 
The S ~ P and P ~ S bit streams operate independently, so the READIT and 
FILLIT signals are not synchronized with each other. The microcomputer program 
should poll (look at) each flag as frequently as it is able, to detect the changes 
that occur periodically. 

How much time is available for processing a byte? Bytes move at the rate 
of 9600/9 = 1067 bytes per second in each direction. The system must handle 
1067 x 2 = 2134 bytes per second, so there is about 470 J,Lsec for each byte. 
This corresponds to 100 or more microcomputer instruction executions. Our 
intuition, borne out by experience, tells us that this is ample time. 

Our initial model of the microcomputer software is in Fig. 11-14. (Note 
that this and the following diagrams are software flowcharts, not hardware ASMs.) 
The initialization occurs only during the startup of the system; thereafter, control 

Chap. 11 Microcomputers in Digital Design 455 



Initialize 

Synchronous 
input 

processor 

Synchronous 
output 

processor Figure 11-14. Algorithm for the ter­
minal multiplexer: basic modules. 

flips back and forth between the synchronous input (S ~ P) and the synchronous 
output (P ~ S) sections, as rapidly as the algorithm can manage. 

In each of these two sections of the algorithm, we must poll the appropriate 
status flag. If we detect no change in the flag, we will go immediately to the 
other section to perform a similar test on the other flag. If a change occurred 
in the flag, the algorithm must process a byte before going to the other section. 

Consider the synchronous output processor-the software that constructs 
the bytes ofthe P ~ S frames. Figure 11-15 shows the algorithm for synchronous 
output. Each time the software detects a change in FILLIT, our program must 
produce the correct 9-bit byte. To keep track of which byte position in the 
frame the algorithm is to fill, we use a counter PSCNT whose value ranges from 
1 through MAX + 1, where MAX is the maximum number of terminals in the 
system. In our example, MAX is 32. 

Values of PSCNT from 1 to MAX designate the frame slots for each terminal. 
When PSCNT exceeds MAX, we have completed a P ~ S frame, so we must 
transmit a SYNC byte to begin the next frame and reset PSCNT to 1. When 
PSCNT is in the range of 1 to MAX, we must acquire a character from the 
designated terminal, if one is available. We then form the 9-bit byte by adding 
a 0 bit to the front of the character. If the terminal has no new character, we 
transmit a 9-bit NULL byte, which begins with a 1 bit. 

The role of the synchronous input processor is to manage the bytes in the 
incoming S ~ P frames, dispersing any data characters to appropriate terminals. 
Figure 11-16 shows the algorithm. If READIT has changed, the meaning of the 
current byte is governed by a counter SPCNT, similar in function to the PSCNT 
of the P ~ S algorithm. If SPCNT is greater than MAX, the current input byte 
must be a SYNC pattern, marking the beginning of a new frame. Not finding 
a SYNC pattern at this time is a calamity! The only solution is to start S ~ P 
operations over by issuing RESET to the converter. (Our protocol calls for the 
microcomputer to follow its assertion of RESET with a clearing of RESET, as 
shown in Fig. 11-16.) Once we initiate the reset process, READIT will not 
change until the S ~ P converter has detected a SYNC byte pattern among the 
incoming serial bits; therefore, the next byte to appear for processing by the 
MPU's synchronous input algorithm will be SYNC, to begin a new frame. 

When SPCNT has a value of 1 to MAX, the input byte is from a terminal 
and may contain a data character or be NULL. We transmit data characters to 
the appropriate terminal through its UART, and ignore null bytes. 

456 Bridging the Hardware-Software Gap Part III 



New frame 
r---------, 
I I 

I Write SYNC IYes 
I byte to 
I ADDR.C 
I 
I 
I 
I 
I 
I 
L __ _ 

Yes 

Synchronous 
input 

processor 
Terminal byte 

,r------- - - - -- --, 

/ / Read UART status I 
PSCNT > MAX No / for terminal I 

/ #PSCNT I 
// I 

/ I 
/ I 

( I 
I I 
I I 

I 
I 
I 

Write NULL 
byte to 

ADDR.C 

L ________ _ 

Synchronous 
input 

processor 

Read character 
from terminal 

#PSCNT 

Write data 
byte to 

ADDR.C 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I _________ J 

Figure 11-15. Algorithm for the terminal multiplexer: synchronous output 
(P ---... S) processing. 

Chap. 11 Microcomputers in Digital Design 457 



New frame 
r-------------l 

I 
I 
I 
I ,--~--, 
I 
1'------' 
L ______ _ 

I 

I Yes 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I ____ J 

SPCNT> MAX 

Synchronous 
output 

processor 

Figure 11-16. Algorithm for the terminal mUltiplexer: synchronous input 
(S -> P) processing. 

Figure 11-17 shows the activities of the initialization section of the micro­
computer algorithm. In addition to other routine activities, initialization sets 
SPCNT and PSCNT and resets the S ~ P converter system, so that all operations 
will begin with a new frame. 

Checking Out the System 

The terminal multiplexer has several hardware components that we were careful 
to retain as separate modules: the S ~ P and P ~ S converters, the serial bit 

458 Bridging the Hardware-Software Gap Part III 



Initialize 

Write RESET bit 
toADDR.B 

Write RESET bit 
toADDR.B 

Other initialization 
activities 

Synchronous 
input 

processor 
Figure 11-17. Algorithm for the ter­
minal multiplexer: initialization. 

clock, and the individual terminal controllers. The microcomputer software is 
also modular, with well-defined sections for processing incoming and outgoing 
bytes and for initializing the system. All this suggests that we can check out 
the system in a modular fashion. 

The worst approach is to design and construct the system, plug in the parts, 
hook up the terminals and the high-speed lines, and turn on the power. It is a 
virtual certainty that the system will not work at this stage, and such an attack 
may cause considerable damage to valuable components, perhaps even to the 
switching system or the terminals. In hardware, and in software to a somewhat 
lesser extent, there is much opportunity for error. Top-down design techniques 
reduce the likelihood of error in the logical and implementation phases of the 
project; in Chapter 12 we discuss some techniques for avoiding trouble in the 
circuit-fabrication phase. Despite this, it would be unusual for a system to work 
the first time. 

The proper checkout technique would be to test each hardware module 
separately, using manually produced signals to simulate the inputs that will 
eventually come from other modules. Here is an advantage of having a manual 
mode on the circuit clocks. After the hardware module passes this static debugging, 
we may subject the software modules to similar testing. Here, it may be necessary 
to use a single-instruction execution mode or to introduce breakpoints into the 
code. Again, we are trying to do as much debugging as possible under carefully 

Chap. 11 Microcomputers in Digital Design 459 



controlled static conditions. Only when the modules pass these tests should you 
move toward more elaborate testing. 

Next, hook two or more of the components together and do more static 
testing. The extent to which this is feasible depends on the details of the project, 
but time and effort spent at this level of testing will usually pay big dividends. 
When all systems respond satisfactorily, try running the local terminal multiplexer 
system up to speed. It is still unwise to attach the distance "innocent parties" 
to your unproven system. Instead, you may wish to consider building into the 
hardware or software some facilities for providing local loops. These are ways 
to simulate the effect of the distant communicator (the switching system or a 
terminal) by generating outgoing data and using this data as incoming data to 
test the system; we create a local loop to provide some input that would otherwise 
be difficult to provide during testing. . 

Next, hook up a terminal and test the system again. One test might be to 
use a local loop on the high-speed side of the terminal multiplexer, along with 
a live terminal on the low-speed side. Another stage might be to add a second 
terminal, to investigate whether the system will perform with more than one 
device attached. Then, at last, begin tests with the high-speed synchronous 
lines; this will not only exercise the hardware and software, but will help to 
determine if your understanding of the high-speed protocol is accurate. 

Debugging and checkout methods vary with the individual project, but a 
systematic, cautious approach is necessary to avoid expensive and time-consuming 
errors. 

Alternative Approaches 

Was our separation of the terminal multiplexer problem into software and hardware 
components a wise choice? Let's investigate some other options. At one extreme, 
we might have built the whole system in hardware. At the other end, we might 
have implemented all the control logic in microcomputer software, using minimal 
hardware. 

The algorithms in our example are uncomplicated enough so that a pure 
hardware solution is feasible. In the actual system on which this example is 
based, the switching system defines many more frame byte control codes than 
the SYNC and NULL used here. Although the basic control algorithms remain 
the same, the full algorithm is heavy with special coding to handle the control 
sequences. The extra frame byte codes deal with line protocols, terminal connect 
and disconnect operations, error handling, and other features that make the 
control algorithm messy with detail. Handling these controls with hardware 
would be an agonizing chore. The ability to write and correct the control algorithm 
easily is a major advantage of software control. Microcomputers are fast enough 
to keep up with the data, using the division of duties in our example, and so 
we have a strong bias against a pure hardware solution. 

Suppose we do everything in software, including the serial-to-parallel and 
parallel-to-serial conversions. In other words, suppose our microcomputer deals 
directly with the various serial data streams associated with the terminals and 

460 Bridging the Hardware-Software Gap Part III 



the high-speed lines. Since a computer is a universal logic implementer, it is 
certainly possible in theory to handle the logic of any algorithm. There are 64 
asynchronous bit streams and two high-speed synchronous bit streams to manage 
in this problem, and we must deal with every bit at just the right time. The 
software overhead to perform all the necessary chores would be ruinous. The 
code to interleave the bit processing for all the terminals and the synchronous 
lines would be very cumbersome. The computer might not be fast enough to 
do everything required at the proper rate. The effort required to write the 
software would be considerably greater than the energy expended to produce 
our hybrid system. 

A more modest move toward software would be to use U ARTs to reduce 
the terminal's asynchronous communications to parallel characters, as we did, 
but also to perform all the high-speed synchronous serial transfers with software. 
This approach has some merit, and is probably within the speed limitations of 
conventional microcomputers, at least for the data rates in our example. However, 
in developing such a system, we would find numerous places where hardware 
would be desirable and even necessary, such as in handling the system bus 
protocols and in deriving the serial bit clock. Furthermore, with a software­
heavy approach we could not tolerate much increase in the terminal or high­
speed data rates before the microcomputer is consumed with its duties. The 
method in our example will permit a considerable increase in the data rates 
before the system becomes saturated. 

CONCLUSION 

You have now completed Part III of this book, which concludes our presentation 
of the art of digital design. In Part I we developed the basic logic operations, 
circuit drafting methods, and building blocks. In Part II we applied this material 
to a study of digital design at the fundamental MSI level. In Part III we introduced 
powerful programming-oriented techniques used in handling many types of complex 
control problems. 

In Parts I and II, we tried to include all the material you need to design 
at the hardwired level. To avoid distracting you with interesting but less relevant 
material, we have firmly omitted a number of topics usually found in older or 
traditional treatments of design. 

The introduction to microprogramming and computer-based control in Part 
III is a foundation for further study. We have presented basic information without 
covering these subject areas in depth. 

Whereas the building blocks available at the hardwired MSI level of design 
are well established and subject to only minor embellishments, the situation at 
the LSI and VLSI levels is quite different. New products appear weekly. To 
maintain excellence and currency as a designer, one must have a sound knowledge 
of the fundamental principles underlying digital design at all levels. MSI design, 
feasible and appropriate for complete small systems and for special high-performance 
systems, is usually not effective for large and complex systems. On the other 

Chap. 11 Microcomputers in Digital Design 461 



hand, microprogramming and microcomputer-based control can succeed only 
when supported by MSI design to provide architectural structures and "glue." 

In presenting the art of design, we have tried to give you fundamental 
knowledge that will not be outdated by new technological developments. As 
you continue to mature as a designer, always remember to seek systematic and 
fundamental principles and procedures amid the welter of new devices. Happy 
problem solving! 

READINGS AND SOURCES 

ARTWICK, BRUCE A., Microcomputer Interfacing. Prentice-Hall, Englewood Cliffs, N.J., 
1980. 

Bipolar/MOS Memories. Advanced Micro Devices, 901 Thompson Place, P.O. Box 3453, 
Sunnyvale, Calif. 94088. Data book. 

BLAKESLEE, THOMAS R., Digital Design with Standard MSI and LSI, 2nd ed. John Wiley 
& Sons, New York, 1979. 

HILL, FREDERICK J., and GERALD R. PETERSON, Digital Logic and Microprocessors. John 
Wiley & Sons, New York, 1984. 

KLINGMAN, EDWIN E., Microprocessor System Design. Prentice-Hall, Englewood Cliffs, 
N.J., 1977. 

KLINGMAN, EDWIN E., Microprocessor System Design, Vol. 2: Microcoding, Array Logic, 
and Architectural Design. Prentice-Hall, Englewood Cliffs, N.J., 1982. 

MOS Microprocessors and Peripherals. Advanced Micro Devices, 901 Thompson Place, 
P.O. Box 3453, Sunnyvale, Calif. 94088. Data book. 

OSBORNE, ADAM, An Introduction to Microcomputers, Vol. 1: Basic Concepts, 2nd ed. 
Osborne/McGraw-Hill, Berkeley, Calif., 1980. One of the best technical presentations 
on microcomputer principles and operations. 

STONE, HAROLD S., Microcomputer Interfacing. Addison-Wesley Publishing Co., Reading, 
Mass., 1982. Good discussions of microcomputer structures, busses, handshaking, 
arbitration, and so forth. 

WIATROWSKI, CLAUDE A., and CHARLES H. HOUSE, Logic Circuits and Microcomputer 
Systems. McGraw-Hill Book Co., New York, 1980. 

EXERCISES 

11-1. What is a minicomputer? A microprocessor? A microcomputer? In digital design, 
does a microcomputer offer support for control, for architecture, or for both? 

11-2. Describe the methodology underlying each of these means of digital control: 
(a) Hardwired. 
(b) Microprogrammed. 
(c) Microcomputer-based. 

11-3. Describe the advantages and disadvantages of each of the methods in Exercise 
11-2. 

462 Bridging the Hardware-Software Gap Part III 



11-4. What are the basic components of a microcomputer system? Choose two popular 
microcomputers and investigate the major components of each. For each system, 
show how the components are interconnected. 

11-5. Characterize the two forms of microcomputer system bussing methods-memory­
mapped and separate input-output. 

11-6. Design address detection circuits for the following three device controller addressing 
configurations: 
(a) A fixed 16-bit address 2A0016 • 

(b) A switch-selectable 8-bit address. 
(c) A 16-bit address with the upper 12 bits fixed at F0016 and the lower 4 bits 

selectable by switch settings. 
11-7. Describe bidirectional and unidirectional bus interfaces. One often hears of "bi­

directional data bus" and "unidirectional data bus." Do these phrases have useful 
meaning? Why or why not? 

11-8. What is a bus driver? A bus transceiver? Using discrete interface components, 
draw a circuit diagram of a bus interface for a controller with a unidirectional 
address bus interface and a bidirectional data bus interface. 

11-9. Consult manufacturers' literature and investigate the characteristics of the following 
LSI chips: 
(a) The Intel 8251 Programmable Communications Interface. 
(b) The Motorola MC6820 Peripheral Interface Adapter. 

11-10. Two popular microcomputer bus protocols are the VMEBUS and the MULTIBUS­
II. Locate specifications for these two standards and study their properties. 

11-11. Describe programmed input-output. Choose a large computer, minicomputer, and 
microprocessor, and determine whether programmed input-output exists. Where 
it is present, show how it works. 

11-12. You must design a controller for a low-speed (15 bytes per second) paper tape 
reader, to be used in a microcomputer system with separate input-output. Design 
at the functional level two controllers for use with the following input-output 
modes of operation: 
(a) Programmed input-output without interrupts. 
(b) Programmed input-output with interrupts. 

11-13. Describe the interrupt system of two microcomputer systems of your choice. 
11-14. Develop a software flowchart for the manual-positioning event handler in Fig. 

11-6. 
11-15. Develop a software flowchart for the "seek origin" event handler in Fig. 11-6. 
11-16. For a microprocessor of your choice, implement the algorithm in Fig. 11-7 for 

wrapping wires with the wire-wrap table. 
11-17. Discuss the motivation behind the terminal multiplexer project. For the imple­

mentation, why did we choose a hybrid hardware-software approach instead of 
a pure hardware or a pure software solution? 

11-18. In the terminal mUltiplexer, why is a reset capability necessary for the serial-to­
parallel converter, but not for the parallel-to-serial? 

11-19. Discuss the effect on the terminal multiplexer hardware and software of: 
(a) Increasing the terminal data rate from 300 bits per second to 1200 bits per 

second, while retaining the synchronous transmission rate of 9600 bits per 
second. 

Chap. 11 Microcomputers in Digital Design 463 



(b) Increasing the synchronous transmission rate to 100,000 bits per second. 
(c) Reducing the maximum number of terminals from 32 to 10. 

11-20. Modify the terminal multiplexer hardware or software (or both) as required to 
accommodate a frame structure that begins with two SYNC bytes instead of one. 

11-21. Why is the NULL control code a necessary part of the synchronous frame in the 
terminal multiplexer? 

11-22. In the terminal multiplexer, how does the microprocessor know when to accept 
a new byte from the synchronous input stream? How does the microprocessor 
know when to seek a new character from a terminal? 

11-23. Consider the bytes for a particular terminal arriving over the synchronous data 
line in the terminal multiplexer example. If every byte contains a proper terminal 
data character, the rate at which characters for this terminal arrive in the system 
is 9600/(9 x 33) = 32.3 characters per second. Since each character sent to a 
terminal requires 10 bits in the asynchronous communication protocol, the effective 
data rate at the terminal is 10 x 32.3 = 323 bits per second-faster than the 
rated speed of the terminal. To cope with this situation, we must modify the 
structure of the incoming frame. The switching system at the far end of the 9600-
bit-per-second synchronous line must insert a certain number of dummy or "filler" 
bytes in each frame, preferably just after the SYNC byte or at the end of the 
frame, to lengthen the frame time. 
(a) For the 32-terminal maximum used in the example, calculate the number of 

dummy bytes required to assure that the data rate to any terminal does not 
exceed 300 bits per second. 

(b) Modify the software to accommodate the new incoming frame structure. 
(c) Why is it not necessary to also modify the outgoing frame structure? 

11-24. In the terminal multiplexer example we assumed a microcomputer data bus of 16 
bits. Modify the hardware and software to accommodate an 8-bit data bus. 

11-25. Design address detection circuits for the hardware of the terminal multiplexer to 
accommodate the following: 
(a) The Motorola MC6809 system bus. 
(b) The Intel 8080 input-output bus. 

11-26. For the terminal multiplexer example, implement the interface between a terminal 
and a microcomputer of your choice. For example, you might choose the Motorola 
MC6809 with a MC6850 Asynchronous Communications Interface Adapter. 

464 Bridging the Hardware-Software Gap Part III 



Meeting the Real World 

In this chapter, we discuss a selection of topics pertaining to digital hardware 
technology. In the first three parts of this book we emphasized the logical, 
functional, and organizational aspects of digital design. The design approach 
was top-down, with emphasis on the problem and its algorithmic and architectural 
solution, rather than on the details of the hardware. Of course, hardware is 
important; without it there would be no implementations! In this chapter we 
present some basic information about the hardware used to support digital design. 
Many of the topics have a nondigital flavor to them-at least, a nonbinary 
flavor-being concerned with transistors, currents, power distribution, and so 
on. Part of our goal in this chapter is to give you sufficient insight into critical 
areas of hardware technology so that you can perceive the limitations of digital 
logic and can avoid wandering blindly in areas that are by nature nonlogical. 
This is not a thorough course in hardware technology. We have tried to keep 
the number of topics and their depth of treatment to a reasonable size, and there 
is inevitably a certain arbitrariness in our choice. The Readings and Sources 
give sources of additional information. 

ON TRANSISTORS AND GATES 

Semiconductors form the basis of the electronic revolution and are the primary 
components of our circuits, so we will sketch some of their properties as background 
for the topics discussed in this chapter. 

465 



The Flow of Electrical Charge 

The conduction of electricity is the result of charged particles moving from one 
place to another. In a flashlight, electrons leave the negative battery terminal, 
flow through the flashlight case, through a wire (the light-bulb filament), and 
back into the positive battery terminal. Here the charged particles are negative 
electrons. 

When experiments on electrical conduction were first performed, electrons 
had not been discovered. The early workers guessed that the carriers were 
positively charged, and the convention of positive current remains with us today. 
Therefore, we draw arrows for the flow of charge from the positive battery 
terminal to the negative, just the opposite of the electron flow. This causes no 
real difficulty. The gain in clarity is not worth the chaos that would result from 
changing conventions. Therefore, all current arrows on diodes, transistors, and 
other electronic devices refer to positive current. 

Metallic Conduction 

In metals the mobile particles are electrons that have been stripped from the 
metal's atoms and are free to roam throughout the metal. The electrons act 
much like a gas of negative electricity trapped within the metal by the positively 
charged metal ions formed when the electrons left the neutral atoms. Compared 
with the electrons, these positive ions are massive chunks of matter, locked into 
a regular geometric pattern called a crystal lattice. It is this locked pattern that 
gives metals their strength. The free electrons contribute to metallic properties 
such as high thermal and electrical conductivity, and cause the bright, shiny 
appearance characteristic of metals. 

Insulators 

Insulators have no free electrons; all the electrons are locked up in the chemical 
bonds tying the atoms of the insulator together. The firmer the bonds, the better 
the insulator. These bonds are also responsible for the characteristic brittleness 
of insulators. 

Semiconductors 

Semiconductors are fundamentally insulators with a tiny proportion of broken 
chemical bonds. The bonds are broken by thermal vibrations. The vibrations 
set free electrons that form a gas which can then conduct electricity just as in 
a metal. The resulting gas is billions of times more dilute than in a metal, and 
semiconductors are correspondingly poor conductors. The most common semi­
conductor is silicon, which has four electrons available for bonding to other 
silicon atoms. The resulting crystal structure is a tetrahedral arrangement with 
each silicon atom bonded to four others. 

Interesting things happen when a phosphorus atom with five bonding electrons 
is placed in the silicon crystal. The phosphorus atom adapts as best it can by 

466 Digital Technology Part IV 



using four electrons to bond with surrounding silicon atoms, and releases the 
fifth electron to migrate throughout the crystal. This electron is in addition to 
those few that are set free by thermally broken silicon bonds. Now we have a 
way to control the number of free electrons in the crystal, by deliberately introducing 
phosphorus as an impurity. Since the resulting charge carriers are negative, we 
call the "doped" crystal an n-type conductor. 

But we may play the game with boron atoms instead of phosphorus. Boron 
has only three electrons available for bonding. When placed into a silicon crystal, 
a boron atom tries to get four electrons so it can look like its silicon neighbors. 
It does this by robbing an electron from a neighboring silicon atom, which then 
has only three electrons. This electron-deficient silicon atom may then steal an 
electron from a neighbor. The deficiency is called a hole, and it acts like a 
mobile positive charge; the result is call1ed a p-type semiconductor. 

Our present-day digital technology is built on the precise creation of adjacent 
chunks of p- and n-type silicon. The boundary between the p and n regions is 
called a p,n junction. In many cases, useful electronic properties arise at the 
p,n junction, so we will discuss some of the devices that can be built from 
junctions. 

Diodes 

The diode will pass current easily in one direction but block it in the opposite 
direction. The symbol has an arrow showing the direction of positive charge 
flow. The diode is constructed of a tiny chip of silicon with a single p,njunction 
as follows: 

Diode symbol Construction 

A diode is forward-biased when the voltage at the output end (the direction of 
the arrow) is more negative than at the input, thus causing the diode to pass 
current. When the output voltage is positive with respect to the input, no charge 
flows, and the diode is reverse-biased: 

Forward biased 
(charge flows~) 

Bipolar Transistors 

Reverse biased 
(no charge flow) 

Bipolar devices are three-layer sandwiches that come in two forms-pnp and 
npn. As shown below, the pnp transistor has an n layer sandwiched between 
two players; npn has the reverse arrangement. The term bipolar arises because 
conduction involves both p- and n-type charge carriers. The following figure 

Chap. 12 Meeting the Real World 467 



shows the construction and symbol of each type: 

C C 

B~ B~ 
E E 

npn 
transistor 

pnp 
transistor 

As always, the arrow shows the direction of positive current. In both types of 
transistor, the major current is between the emitter (E) and the collector (C). 
In a pnp transistor, the charge carriers are p-type holes; electrons are the carriers 
in the npn transistor. In both types, the charge must pass through a thin layer 
called the base (B), of opposite semiconductor type. The base can modulate 
(control) the emitter-collector current by increasing or decreasing the density of 
its charges. Changing the voltage on the base lead accomplishes this modulation. 

Supplying operation power. The arrow in the transistor symbol is the 
key to biasing the power supply properly. The arrow points in the direction of 
positive current, so we must have these arrangements: 

+ 

B l Current B t Current 

+ 

npn Transistor pnp Transistor 

In each case the resistor R limits the current whenever the transistor is conducting; 
without the resistor, the transistor could be damaged. Most bipolar digital circuits 
are made with npn transistors. The positive supply voltage in these circuits is 
called Vee. 

Turning on and off. In digital work the conducting path between emitter 
and collector is in one of two states, conducting or nonconducting. In the 
nonconducting, or off, state no current is flowing, whereas in the conducting, 

468 Digital Technology Part IV 



or on, state there is almost a short circuit between emitter and collector. We 
may think of the transistor as a small switch that can be flipped between open 
and closed positions. The analogy with a switch gives rise to the common name 
for a transistor used in digital work: the switching transistor. 

The base lead controls the opening and closing of the switch in the following 
way. If we bias the base to inject current in the same direction as the emitter 
arrow, the transistor switch will turn on. For example: 

+v +v 

+ Ie = 0 

On Off 

The transistor acts as an amplifier of current, in that a small base current 
can control a much larger current in the emitter-collector path. The term ..:lIe/ ..:lIB 
defines the gain of the transistor; in common switching transistors, the gain is 
from 20 to 100. 

In an npn transistor, current will begin to flow in the base lead when it is 
0.7 V more positive than the emitter. A pnp transistor will turn on when the 
base is 0.7 V more negative than the emitter. 

MOS Transistors 

The MOS (metal oxide semiconductor) transistor is a unipolar device-its con­
duction mechanism depends only on charge carriers of one type. The MOS 
transistor was proposed before the bipolar transistor, but technological difficulties 
slowed its development until the need for smaller cells in memory chips caused 
sufficient attention to be focused on the fabrication process. 

Consider a bar of p-type silicon with two n-type regions, source and drain, 
diffused into its surface: 

The p-type region between the n-type diffusions is called the channel. This 
arrangement appears similar to the bipolar npn transistor, except that the channel 
is several microns wide-much wider than the base region in a bipolar transistor. 

Chap. 12 Meeting the Real World 469 



Conductive electrodes, usually made of aluminum, are attached to the source 
and the drain, and are biased with the drain positive with respect to the source. 
The channel-drain junction is not forward-biased, so no current flows across the 
channel through the transistor. Now place a third electrode-the gate-over 
the channel, separated from the channel by a thin insulating layer of silicon 
dioxide. 

Si02 insulator Gate 

Source p Drain 

The gate and channel form a capacitor. The mobile carriers in the channel are 
positively charged holes. If the gate is unbiased or negatively biased with respect 
to the channel, the holes dominate in the channel, and no current can flow 
between the source and drain. If the gate is made positive with respect to the 
channel, electrons will be attracted to the channel region. With sufficient positive 
gate bias, enough electrons will be available to overcome the holes in a thin 
region of the channel adjacent to the insulating layer. The induced negative 
charge carriers form a conducting path from source to drain, allowing a current 
to flow across the transistor. A portion of the channel is temporarily converted 
from p-type to n-type. This is the principle of operation of the unipolar n-MOS 
transistor. 

Such a device is an enhancement-mode transistor, since biasing the gate 
enhances the concentration of the (n-type) charge carriers. It is also possible 
to fabricate depletion-mode n-MOS transistors, in which biasing the gate depletes 
the charge carriers. During fabrication of a depletion-mode n-MOS transistor, 
a thin layer under the gate is diffused with n-type impurities. Like the enhancement­
mode transistor, the drain is biased positive with respect to the source. When 
the gate is unbiased (or positively biased), the transistor conducts current from 
the source to the drain across the n-type channel. When the gate is biased 
negatively, positive charge carriers are attracted into the n-type channel region 
until the n carriers are neutralized. Conduction across the channel ceases, and 
the transistor turns off. 

The n-MOS transistors have negative charge carriers. MOS transistors with 
positive charge carriers may be constructed by forming a p-type source and drain 
on the surface of an n-type substrate. Such p-MOS transistors exist in enhancement­
mode and depletion-mode types. 

Several notations are used for representing MOS transistors. The preferred 
notation is a circle on the gate input of a p-MOS transistor and no circle on the 
n-MOS transistor. 

470 Digital Technology Part IV 



Drain Drain 

Gate --j Gate-q 

Source Source 

n-MOS p-MOS 

The drain voltage is V DD; the source voltage is V ss. Typical n-MOS supply 
voltages are 0 volts for V ss and 5 volts for V DD' In good mixed-logic style, the 
circle shows that a low gate-voltage turns on the p-MOS transistor. In circuits 
that are entirely of one type of transistor, the distinguishing notations are often 
omitted. 

Gates from Transistors 

An inverter. Consider the bipolar transistor circuit of Fig. 12-1. Resistors 
R) and R2 limit the flow of current in the base and collector leads. As the input 
voltage IN rises above 0.7 V, current will begin to flow in the base, the switch 
will close, and the emitter-collector path will approach a short circuit. The output 
will then be at ground voltage, so we see that an H input will yield an L output. 
As we reduce the voltage at input IN to below 0.7 V, current will cease to flow 
in the base, and the emitter-collector path will open. With the switch open, 
little current flows through R2, so the voltage at the output OUT is high. Thus 
an L input yields an H output, just the behavior of an inverter. 

Voltage 

~--OUT "TUT L H 

H L 

IN---'\fIJ'IIIr----1 

Figure 12-1. An npn transistor used as an inverter. 

A two-input gate. Connect two transistors to a common collector resistor 
as shown in Fig. 12-2. If either or both transistors are on, the output will be 
shorted to ground, and the OUT voltage will be low. If both transistors are off 
(both switches open), the collector resistor R2 can pull the output voltage high. 
The voltage table follows directly from this behavior, and the logic symbols 

Chap. 12 Meeting the Real World 471 



IN --I 

A --'WVIr---1 

r---~~---.--OUT 

B-...J\,fv\~--1 

Voltage 

A BOUT 
L L H 
L H L 
H L L 
HH L 

Figure 12-2. A 2-input gate made from two transistors. 

result from routine applications of mixed logic. This circuit is the basis of bipolar 
gate construction. Actual commercial gates are more complex, in order to achieve 
various advantages of speed, power, and stability. Similar logic gates arise from 
MOS technology. For instance, Fig. 12-3 shows an inverter and a Nand gate 
made using n-MOS transistors. 

OUT OUT 

A---1 

B-1 

(a) Inverter (b) Nand gate Figure 12-3. n-Mos logic gates. 

BIPOLAR LOGIC FAMILIES 

RTL: Resistor-Transistor Logic 

How transistors interconnect to form gates determines the type of integrated 
circuit logic, or logic family. The bipolar transistor arrangements in the previous 
section were used in an early family called RTL, which was simple to make but 
was sensitive to noise and had longer propagation delays on the L ~ H transition 
than on the H ~ L transition. When the output transistor turned on, there was 
a sudden low impedance to ground, which rapidly discharged stray capacitance, 
so the H ~ L transitions were fast. When the transistor switched off, resistor 
R2 had to charge up the stray capacitance, which took much longer. RTL soon 
gave way to DTL (diode-transistor logic), which in turn was supplanted by TTL. 

472 Digital Technology Part IV 



TTL: Transistor-Transistor Logic 

To make propagation times more symmetric, the output driver must have a low 
impedance path to Vee as well as to ground. This requirement resulted in the 
"totem pole" configuration of two output driver transistors, one to pull the 
output high and the other to pull it low; see Fig. 12-4. Here R is small, so it 
can charge and discharge stray capacitance on the output line rapidly. To produce 
an H output, transistor G must be on and G' off. An L output requires G to 
be off and G' on. The control signals G and G' are the complements of each 
other. 

A totem pole output stage, providing solid pullup to Vee and solid pulldown 
to ground, is common in modern logic families. However, the configuration has 
two problems: 

a. Current spikes. It is hard to switch one of the totem pole transistors off 
before the other comes on. There is an overlap of a few nanoseconds when 
both are on, and during this time the power supply is shorted to ground, 
except for the small resistance R. This puts a sudden short load on the 
power supply-a spike-which in turn can affect other gates. TTL circuits 
require good power supply and distribution of power to alleviate this problem. 

b. Output fights. One transistor in each totem pole is always on. Suppose 
you inadvertently tie two totem pole outputs together. If one circuit is 
trying to produce an L and the other an H, the two circuits provide a low 
impedance path from Vee to ground through the two turned-on transistors. 
In this case, the output voltage is indeterminate, and things will get hot! 

TTL logic families. TTL is a well-developed line of integrated circuits, 
with many subfamilies. Some of the subfamilies, such as the 74Lxx and 74Hxx 
series, are obsolete, and we will not discuss them. Here is a brief summary of 
the most important TTL subfamilies: 

a. 74xx series: regular TTL. This is the oldest TTL line, still found in some 
old systems. It was fairly fast but drew considerable power. 

vee 

R 

G 

t----OUT 

G' 

Chap. 12 Meeting the Real World 

Figure 12-4. The TTL totem pole 
output configuration. The internal sig­
nals G and G' are complements of 
each other. 

473 



b. 74Sxx series: Schottky TTL. This is the fastest TTL line, but it requires 
high power and suffers from severe noise problems because of its fast 
switching speed. Its use requires close attention to power distribution, wire 
length, and power supply bypassing. 

c. 74LSxx series: low-power Schottky TTL. This is a fairly fast series, with 
low power requirements. It was the predecessor to the improved series 
described below. Its speed is slow enough to permit standard wiring practices. 

d. 74ALSxx series: advanced low-power Schottky TTL. Twice as fast as 
74LSxx but consumes half the power. A good choice for new designs. 

e. 74Fxx series: Fairchild's advanced low-power Schottky TTL ("FAST"). 
Three times as fast as 74LSxx (and therefore faster than 74ALSxx) but 
requires nearly three times the power of 74LSxx. A good choice when 
speed is important. 

Schottky technology. Most digital circuits drive their switching transistors 
fully on and fully off, a switching mode called saturation. Such devices tend to 
be rugged, simple, and inexpensive, but slower than circuits that do not saturate 
their transistors. Consider an npn transistor: When the base voltage becomes 
sufficiently high, the transistor is conducting enough to establish a valid TTL 
output level. Further increases in the base voltage serve only to force more 
charge into the base until the transistor is saturated, without improving the logical 
capabilities of the device. When the base voltage drops, the transistor shuts off, 
but not before the accumulated charge on the base has bled off. The time required 
to bleed off the base charge is called storage time; to achieve high speed, the 
storage time must be reduced. 

Saturation can be avoided by clamping the circuit's inputs with Schottky 
diodes to prevent unnecessary upward excursions of base voltages. The resulting 
speedup is substantial. Nearly all newer TTL devices use this technique. Chip 
designers have used the extra speed in two ways, illustrated by the 74S and 
74LS series. In general, transistors will switch faster at higher power levels. In 
74S, the original Schottky series, the power consumption is about double that 
of regular TTL, but the speed is three times as great. In 74LS, the designers 
reduced the power consumption to one-fifth that of 74S, to give a family with 
the same speed as regular TTL. Subsequent improvements of74LS have resulted 
in several TTL series that consume even less power, and have greater speeds. 

The internal structure of modern TTL devices is quite complex, but the 
newer series provide rugged, economical chips that are the workhorses of the 
digital industry. 

ECl: Emitter-Coupled logic 

ECL is the fastest logic line in common use. It takes advantage of the increase 
in speed attained by operating transistors in the unsaturated mode. An ECL 
circuit contains a differential amplifier (an amplifier whose output is a function 
of the difference between two input voltages) that compares a logic input with 
a reference voltage. The result is used to steer a constant current into one of 

474 Digital Technology Part IV 



two paths without saturating the circuit's transistors. The output circuit always 
contains two paths that have complementary voltages, thus providing easy access 
to high- and low-active versions of the output logic variable. 

EeL circuits have gate propagation delays of about 1 nsec, and EeL flip­
flops can be toggled at a rate of 500 MHz-several times faster than their nearest 
competitor, 74S TTL. 

EeL has several advantages for designers: 

a. Since the current is nearly constant, even during switching, EeL circuits 
do not tend to cause current spikes on the power supply. This property 
simplifies the distribution of power to the EeL design-an important advantage 
since power distribution tends to become troublesome with faster logic 
lines. Yet EeL is the fastest of all. 

b. EeL outputs are available in .H and .L forms, with equal propagation 
delays. This virtually eliminates the need for voltage inverters. 

c. The complementary outputs are excellent for use as line drivers. 
d. In the most convenient EeL family, the rise time of the gate outputs is 

purposely made slower than the internal propagation delay. This simplifies 
the clocking of synchronous circuits and greatly reduces electrical crosstalk. 

e. The slowed rise times permit the use of EeL in properly designed wire­
wrapped circuits. 

f. EeL outputs may be directly connected, to achieve a wired-OR or wired­
AND logic function. 

g. Power supply current is independent of the system clock rate. This enhances 
EeL's role as a high-speed logic family. In most logic families, the power 
supply current increases with clock speed. 

Offsetting these advantages are several serious disadvantages of EeL: 

a. Although power consumption is nearly independent of clock speed, EeL 
is a "power hog." 

b. The high speed and fast rise time of signals in EeL circuits makes the 
propagation delay along circuit interconnections a significant factor in the 
design. To achieve reliable performance, one must frequently use trans­
mission-line techniques to inhibit signal reflections. 

Manufacturers have made ingenious modifications and compromises in EeL 
products to ease the problems brought on by their blinding speed, and EeL is 
a reasonable choice when speed is essential. However, using EeL in a design 
requires much more care than a slower family such as 74LS TTL, so EeL is 
not the first choice for the design of many circuits. 

UNIPOLAR LOGIC FAMILIES 

MOS technology provides the basis for several unipolar logic lines. All have 
the advantages of a small unit area and low power consumption and the dis-

Chap. 12 Meeting the Real World 475 



advantages of sensitivity to damage from static charge and of relatively slow 
speed. 

p-MOS and n-MOS Logic 

MOS technology is popular for large, complex digital systems because the basic 
MOS gate is much smaller than its bipolar counterpart. Since less power is 
consumed, the problem of heat dissipation is more manageable than in bipolar 
technology. Nearly all dynamic memories and most microprocessors are made 
with n-MOS technology. The p-MOS technology is little used today, except as 
a component of complementary MOS (CMOS) circuits. 

CMOS: Complementary MOS Logic 

CMOS is a logic family that uses both n-MOS and p-MOS transistors to produce 
a circuit that consumes much less power than either alone. Low power consumption 
is obviously desirable for such lightweight and portable devices as watches and 
pocket calculators, and it is also necessary if the packing density of transistors 
on chips is to increase. Power generates heat, which must be dissipated efficiently 
to keep the device's temperature within reliable working limits. 

To understand CMOS operation, consider the simple bipolar and unipolar 
inverters shown in Figs. 12-1 and 12-3. These inverters consume power whenever 
the transistor switch is conducting, because current flows between power and 
ground through the main output pullup resistor. When the transistor switch is 
not conducting, only a small current flows across the resistor. The resistor 
provides a means of establishing the high voltage level when the transistor is 
not conducting, and limits the current flowing through the transistor when the 
transistor is conducting. In CMOS, both these functions of the resistor are 
provided by a p-MOS transistor whose operation is complementary to the usual 
n-MOS output transistor: 

IN-( OUT 

In this arrangement, one transistor is conducting whenever the other is shut off. 
When IN is a high voltage, the n-MOS transistor is on and the p-MOS transistor 
is off, producing a low voltage level at the output OUT. When IN is a low 
voltage, the n-MOS transistor is off and the p-MOS transistor is on, producing 
a high voltage level at OUT. Except during the brief instant of switching, no 

476 Digital Technology Part IV 



current flows between V DD and V ss. The input IN and the destinations for OUT, 
connected only to the capacitative gate of MOS transistors, have no steady-state 
currents. Therefore, the power consumption of the CMOS gate is extremely 
small. The CMOS cell is nearly as small as in noMOS. 

Whereas earlier CMOS integrated circuits were slow, the newer Hi-Speed 
CMOS family rivals TTL in speed while retaining the extremely low power 
consumption of the earlier CMOS devices. CMOS is popular in VLSI and is 
also available as pin-compatible counterparts to 74LS-series SSI, MSI, and LSI 
components. One may develop a circuit using the rugged 74LS chips and then 
substitute the less-robust CMOS equivalents to drastically reduce the power 
consumption. 

THREE-STATE AND OPEN-COLLECTOR OUTPUTS 

Open-Collector Outputs 

The TTL open-collector circuit is essentially a switching transistor without an 
internal connection to Vee: the collector is open. To complete the circuit, we 
must supply a connection from the open-collector output to Vee, through a 
suitable external resistor. Here is the circuit for an open-collector inverter, with 
one commonly used circuit symbol: 

IN 

TIL logic 
signal 

R 

...---..... -OUT R 

[N.H .x>----OUT.L 

The supply voltage V + may vary over a wide range, and we must choose the 
resistor R to suit the requirements of the circuit. Since the open-collector circuit 
does not use a totem pole configuration, it is slower than its other TTL counterparts. 
Various chips in the 74 and 74LS lines are available with open-collector outputs, 
including inverters and various gates that perform AND and OR logic. We use 
the vertical line within the gate symbol to designate open-collector output; there 
is no universal standard notation. 

There are two main uses of open-collector gates: 

Buffer-Driver. Whereas the normal open-collector chip has current behavior 
similar to its parent 74 or 74LS family, it is possible to build an open-collector 
current buffer that can accept much higher currents than the ordinary variety. 
This, coupled with the ability to set V + at any reasonable level, makes the open 

Chap. 12 Meeting the Real World 417 



A 

collector useful for driving display lamps and other devices with non-TTL voltage 
requirements or with high current demands; see the later section on lamp driving 
for more details. 

Wired OR. Suppose we tie the outputs of several open-collector gates 
together, and power them all from V + through a single resistor, as in Fig. 
12-5. In this circuit, if any open-collector transistor is on, the output will be 
L. For a transistor to be on, its base must be H, so we observe the voltage 
behavior shown in the figure. This voltage table corresponds to an AND or OR 
logic operation, depending on the voltage convention we select. Since we achieve 
this logic operation without an actual AND or OR gate, we speak of a "wired 
OR" or a "wired AND." The rule is: 

Wired OR if T L. 
Wired AND if T H. 

The wired OR has some uses in bussing and interfacing, but it appears 
more attractive than it turns out to be in practice. The circuit is spread over 
several packages. Suppose it doesn't work: which package is bad? This alone 
is sufficient cause for caution. Another minor problem is that now we have to 
put an external resistor into the circuit, which is awkward packaging. Still a 
third objection is the open collector's slow speed. The open collector has its 
place, but as a logic tool it is not popular with designers; the three-state output 
has largely eliminated the need for it as an implementer of logic. Chapters 2 
and 3 have additional discussions of open-collector circuits. 

Open-collector resistor value. The open-collector pullup resistor R must 
be within a certain range for proper operation. We will demonstrate a computation 
of R for a wired OR circuit. In this case, where we must produce a TTL­
compatible logic signal as output, V + will be equal to Vee, namely, 5 V. Assume 
that we have six ordinary 74LS open-collector outputs wired together, with the 
wired output feeding four 74LS inputs. We must consult the data sheets for the 
information needed for the computations. A 74LS open-collector output can 
safely pass only a certain amount of current, at most 8 rnA. This maximum 
current could occur when the transistor is on and the voltage at the output is 
close to zero. We must make certain that the total current that can flow through 

R 

r---------~--~--OUT 

B 

478 

Voltage 

A BOUT 

L L H 
L H L 
HL L 
H H L 

Figure 12-5. An open-collector wired 
OR. 

Digital Technology Part IV 



the transistor is less than its maximum rating. This current comes from two 
sources: through the resistor, and from each input tied to the open-collector 
output. Each 74LS input may provide as much as 0.4 rnA in the low state. The 
current allowed through R is the difference of the maximum open-collector current 
(8 rnA) and the total current from the inputs. The computation is 

E 5 - 0 
Rmin = I = 0.008 _ 4 x 0.0004 = 780 0 

We may determine the maximum R from the number of inputs and outputs 
attached to the output line. Low-power Schottky gates will treat an input voltage 
of 2.0 V or greater as a high level, and we must make sure that the voltage drop 
across R is not so great that the actual high-level voltage of the output drops 
below 2.0 V. Each 74LS input draws as much as 20 p.,A in the H state, and 
each 74LS open-collector output will draw 100 p.,A (into the output). All of this 
current must come from V cc through R, so 

5 - 2 
Rmax = 6 x 0.0001 + 4 x 0.00002 = 44000 

One more consideration: the resistor must be of sufficient wattage to dissipate 
the power generated in it. Power is P = E x I. Using Ohm's Law, we may 
write R = E2 jP. The maximum power loss in the resistor occurs when the 
voltage drop is greatest, about 5 V. If we wish to use a V4-watt resistor, the 
minimum safe value of R is 

52 
Rpower min = 0.25 = 100 0 

This value is much lower than the earlier minimum of 780 0, so our 1/4-watt 
resistor will be quite sufficient for any proper value of R. 

From these computations we see that a value of 1000 to 2000 0 is safe. 
More details will be found in manufacturers' data books. 

Three-State Outputs 

Many chips in the major integrated circuit families have three-state outputs. In 
addition to the normal Hand L output states, a three-state gate has a third state 
Z, called the high-impedance state. When the gate is in the high-tmpedance 
state, the chip's output is effectively disconnected from the circuit. In addition 
to its normal inputs, a three-state chip also has a control input called the three­
state enable, whose purpose is to select between normal (enabled) and high­
impedance (disabled) modes. 

U sing TTL As a model, we may show how the high-impedance state comes 
about. In the normal TTL totem pole output stage, one of the two totem pole 
transistors is always on, so there is always a relatively low-impedance path 
through the totem pole. The three-state circuit permits the control input to turn 

Chap. 12 Meeting the Real World 479 



both totem pole transistors off when the control is false. Schematically, the 
output circuit is as in Fig. 12-6. When the three-state signal is false, the outputs 
of the ANDs are both low, and both totem pole transistors are off. In this case, 
the current in the output circuit has no low-impedance path and the output 
behaves as if the gate were not attached. 

As long as we make sure that at most one three-state element is enabled 
at a time, we may tie many such outputs together. This property has had a 
great, almost revolutionary, effect on data bus design, where we wish to wire 
all data sources onto the bus and allow at most one to "talk. " (See the discussion 
in Chapter 3.) 

r-----------l 
I 
I 

G I 
)-+------1 

Complementary 
totem pole 
controls OUT 

G'-..---+---i 

Three-state 
enable 

Figure 12-6. A model of TIL three-state output control. 

INTEGRATED CIRCUIT DATA SHEETS 

The integrated circuit data sheet is the document that defines a given device. It 
contains much important information, some unique to the device, and some fairly 
standard for the logic family. There is no standard format for data sheets, 
although some of the terminology is uniform among manufacturers. In a typical 
data sheet for a digital device, we expect to find: 

a. The chip's name and number and a description of its major characteristics. 
b. A logic symbol of the manufacturer's choosing, naming the functions of 

each input and output of the chip. 
c. A pin diagram, showing the function associated with each pin. 
d. A complete description of the use of the chip, often with a detailed voltage 

table. For SSI chips, this description can be quite brief; for MSI and LSI, 
it can be complex. For VLSI, the description may require dozens of pages. 

e. Electrical and environmental specifications for the chip's operation. 

480 Digital Technology Part IV 



f. For MSI, LSI, and VLSI circuits, perhaps some information about 
applications. 

Electrical Data 

The electrical information is the most difficult part of the data sheet to master, 
but it is important that you understand some of the details. Fortunately, the 
terminology is nearly standard, and for TTL many of the values of the parameters 
are standard, although the exact form of presenting the information varies. The 
following discussion applies to the low-power Schottky TTL family. Other logic 
families have different values of parameters, but the treatment is similar. 

The data sheet will usually describe two versions of a chip, a military grade 
and a commercial grade. The military grade is designed to operate over a wider 
temperature range than the commercial grade and will have slightly different 
operating characteristics. Manufacturers differ in how they specify these grades, 
but most manufacturers use the prefix "74" for the commercial grade and "54" 
for the military grade. We will discuss the commercial grade. 

Standard nomenclature is V for voltage, I for current, and subscripts I for 
input, a for output, H for high voltage level, and L for low voltage level. Thus 
V OL stands for low-level output voltage. Hand L represent the binary voltage 
levels; the electrical data will specify the actual range of voltages for these levels. 

The electrical information falls into three categories: operating conditions, 
static operating characteristics, and switching data. 

Operating conditions. These are the basic conditions under which the 
manufacturer states that the chip will perform as specified. The usual parameters 
are: 

Temperature: 0° to 75°C for commercial-grade chips; - 55° to 125°C for 
military grade. 
Vee: supply voltage. For all commercial TTL chips, the allowable range 
is 4.75 to 5.25 V, with a typical value of 5.0 V. 
IOH: high-level output current. IOH must not exceed the stated value, which 
for 74LS is typically 400 /LA, directed out of the output. 
IOL: low-level output current. This is the maximum allowable current through 
the output in the low level. For 74LS, the usual value is 8 rnA, directed 
into the output. 

Static characteristics. The static, or dc, electrical characteristics describe 
how the chip's outputs and inputs will react to specified stable operating conditions. 
The major parameters are: 

VIH : high-level input voltage. This is the minimum voltage that the chip 
guarantees to recognize as a high signal level. For 74LS, this is 2.0 V. 
The chip will treat any input voltage from 2 to 5 V as H. 
V1L : low-level input voltage. This is the maximum voltage that the chip 
guarantees to recognize as a low signal level. For 74LS, this is 0.8 V, so 

Chap. 12 Meeting the Real World 481 



the chip accepts an input between 0 and 0.8 V as an L. An input voltage 
between VlL and VIH is in the forbidden region, and the manufacturer does 
not guarantee reliable performance. 
V OH: high-level output voltage. If the output-high current IOH does not 
exceed its maximum rating (given in the operating conditions), then VOH 
represents the voltage that the chip will produce for a high signal level. 
Usually, the data sheet will give a guaranteed minimum VOH (2.7 V for 
74LS) and a typical VOH (usually 3.4 V for 74LS). 
VOL: low-level output voltage. This is the low-level counterpart of V OH. 
If IOL does not exceed its maximum rating, then VOL represents the voltage 
that the chip will produce for a low signal level. The guaranteed maximum 
value of this voltage for 74LS is 0.5 V. The typical low-level output voltage 
for 74LS is usually 0.25 V. 
IIH: high-level input current. This is the current that an input will draw 
when presented with a high voltage level. The data sheet gives a maximum 
value, which for 74LS is 20 f.1-A at 2.7 V. The direction of this current is 
into the input, and the value is a function of VIH . The higher the voltage 
on the input, the higher is the current demanded by the input. 
ILL: low-level input current. This is the current that an input will require 
when presented with a low voltage level. For 74LS, the maximum value 
of ILL is 0.4 mA at 0.4 V; the direction is out of the input. The lower the 
voltage on the input, the higher is the current. 
Icc: supply current. This is a measure of the chip's power consumption. 
The data sheet will specify the operating conditions under which the supply 
current is measured and will usually give a typical and a maximum value 
for Icc. The supply current varies greatly with the chip type; the information 
is useful when estimating the size of the power supply needed for a given 
circuit. 

Switching characteristics. The switching, or ac, characteristics show 
the time dependence of various transitions in the chip. The most fundamental 
switching parameter is the propagation delay, which is the elapsed time from 
the initiation of an action until the outputs reflect the result of the action. 

In the usual notation, tpLH is the propagation delay of an output going from 
L to H; tpHL is the counterpart for an output going from H to L. In combinational 
circuits, the delay period starts with a change in an input. For complex circuits, 
either combinational or sequential, having several types of inputs and outputs, 
the data sheet may list several propagation delays. Propagation delay information 
usually has maximum and typical values. For simple 74LS gates, propagation 
delays are about 5 nsec; more complex circuits may have delays of a few tens 
of nanoseconds. 

Sequential circuits have another class of switching information in the data 
sheet: the setup and hold times. Setup is the time prior to some event (such as 
a clock edge) during which an input must be stable to assure reliable device 
operation. Hold time is how long after an event the input must remain stable. 

482 Digital Technology Part IV 



Setup and hold times are usually stated as minimum and typical times. Setup 
times for 74LS vary considerably but range up to about 30 nsec, with 15 or 20 
nsec being typical. Generally, we like the hold times for inputs relative to the 
clock to be no greater than zero. The minimum setup and hold times listed in 
the data sheet are conservative values. If you meet these conditions, all chips 
of that type should work. The "typical" entries for setup and hold times are 
usually considerably smaller than the "minimum"; the typical chip will be faster 
than the slowest chip, to which the minimum values apply. It is not easy to 
tell, so it is best to stick with the conservative specifications. 

PERFORMANCE PARAMETERS OF INTEGRATED-CIRCUIT 
FAMILIES 

Loadings, noise margins, and propagation delays are given in integrated circuit 
data sheets or may be inferred from data sheet information. During the imple­
mentation phase of a project, the designer must take care to avoid violating the 
manufacturer's specifications. Here we discuss these design parameters and 
compare the TTL-compatible integrated circuit families. 

Input and Output Loadings 

Consider a wire representing a signal path from an output to one or more inputs. 
Every input on the wire places a current load on the signal source; the data 
sheet specifications IIH and IlL characterize the load. The output of an integrated 
circuit is capable of handling only a specified maximum current before the quality 
of its signal deteriorates; we measure the output drive capability by the data 
sheet specifications IOH and IoL . Each family of integrated circuits is designed 
around standard values of these four specifications of current; if the standard 
specifications of output current are not exceeded, the "standard gate" will perform 
correctly within the standard input current limits. The standard IIH and IlL values 
are called the unit load for the high and low logic levels. In most cases, inputs 
draw one unit load. Sometimes, when an input goes directly to several gates 
within the device, the input will draw two, three, or more unit loads. Familiarity 
with the concept of unit load will help you to interpret the specifications in the 
data sheet. 

The ratio IOH/IIH of the standard values is called the fanout of the high 
voltage level; similarly, the ratio IodIIL is the fanout of the low voltage level. 
For a given family of integrated circuits, fanout describes how many standard 
inputs a standard output will drive. Designers use fanout as a rule of thumb to 
avoid overloading circuit outputs with too many inputs. For most families the 
fanout values for high and low voltage levels are the same; when they differ, 
we use the smaller value. 

The TTL-compatible integrated circuit families have the current behavior 
shown in the accompanying table. A 74ALS standard output will drive 20 standard 
74ALS loads, and a Hi-Speed CMOS standard output will drive 50 standard Hi­
Speed CMOS loads. The output drive capability of integrated circuits is well 

Chap. 12 Meeting the Real World 483 



stClndardized. However, since inputs may use several unit loads, you must do 
more than simply count inputs; you must check the data sheets for each chip. 

Maximum current (rnA) Fanout 
Family IlL IOL IIH IOH Fanout to 74LS 

74 TTL 1.6 16 0.04 0.4 10 40 
74LS TTL 0.4 8 0.02 0.4 20 20 
74ALS TTL 0.2 8 0.02 0.4 20 20 
74F TTL ("FAST") 0.6 20 0.02 1.0 33 50 
Hi-Speed CMOS (Vee = 5 V) -0 4 -0 4 50 10 

When using chips from different families within a circuit, you must compute 
the loading of each output, using the actual inputs attached to the output. The 
table shows the fanout of each family into inputs of the same family, and also 
the fanout of each family into 74LS inputs. From the current data in the table 
you can compute the fanouts of any family into any other family by using the 
appropriate standard input and output currents. The mixing of "compatible" 
integrated-circuit families requires close attention to the loadings. In the course 
of constructing or debugging a circuit, it is easy to insert a 74F chip in place of 
a 74ALS chip without bothering about the possible consequences. You gain 
additional drive capability at the 74F output, but the inputs to the 74F chip 
require more current than the 74ALS chip and you may be overloading earlier 
outputs by making this exchange. 

Handling overloaded outputs. The drive capability of modern logic chips 
is usually sufficient to handle the input loadings, but occasionally you will have 
to drive more loads than the output will handle. One solution to this problem 
is to split the inputs into groups and form an identical output to drive each 
group. For example: 

(a) Overloaded 

X----1I---j 
y-.... ~--1 

(b) Acceptable 

17 Inputs 

10 Inputs 

Another technique is to use a high-power amplifier called a buffer to drive 
the entire set of inputs. For instance, in a 74LS37 Quad Two-Input Nand Buffer 
IOH = 1.2 mA and IOL = 24 mA, three times the values of the standard 74LS 
gate output. 

As you design a complex circuit, you must watch out for overloading. An 
undetected overload can pull your signal into the forbidden voltage region, producing 
unreliable performance which may be hard to diagnose. 

484 Digital Technology Part IV 



Noise Margins 

For each integrated circuit family, the allowable voltage ranges of valid high and 
low levels are rigidly defined. Inputs will accept a wider range of voltages than 
outputs produce. This is necessary because signals inevitably undergo deterioration 
between the source (an output) and the destinations (inputs). For each voltage 
level, the difference between what the input will tolerate and what the output 
is guaranteed to produce is called the noise margin. The low-level noise margin 
is 

The high-level noise margin is 

These figures represent how much deterioration a signal may suffer in going 
from an output to an input before the voltage enters the forbidden region between 
the levels, where it is no longer recognizable as a valid digital signal level. High 
noise margins are desirable. The accompanying table shows the standard voltage 
limits and derived noise margins of the TTL-compatible integrated circuit families. 

Guaranteed voltages Noise margins 
(V) (V) 

Family VIH VOH V1L VOL High Low 

74 TTL 2.0 2.4 0.8 0.4 0.4 0.4 
74LS TTL 2.0 2.7 0.8 0.5 0.7 0.3 
74ALS TTL 2.0 2.7 0.8 0.5 0.7 0.3 
74F TTL ("FAST") 2.0 2.7 0.8 0.5 0.7 0.3 
Hi-Speed CMOS (Vee = 5 V) 3.5 4.9 1.0 0.1 1.4 0.9 

CMOS can operate within a range of power supply voltages; our figures 
assume the use of the normal TTL power supply voltage of 5 V. Hi-Speed 
CMOS has excellent noise margins, so inputs are less affected by noise than 
with the other families. (On the other hand, CMOS is much more sensitive to 
damage from static electric charge than TTL, and must be handled with care.) 

Noise margins are an important figure of merit for an integrated circuit 
family, since noise, whether introduced by circuit losses or from external sources, 
is a fact of life in digital equipment. Imagine the difficulty we would be in if 
the noise margins were zero! 

UNUSED GATE INPUTS 

Logic chips frequently have unused inputs. Gates often have too many inputs 
(e.g., when a 74LSOO Nand gate is used as an inverter) and so do flip-flops and 
registers having asynchronous set and clear inputs. Here are some procedures 
for neutralizing these unneeded inputs. 

Chap. 12 Meeting the Real World 485 



To force a high voltage level on an unused input: for 74 TTL, connect the 
input to Y cc through a l-kO resistor; for 74LS, 74ALS, and 74F TTL and for 
CMOS, connect the input directly to Y cc. 

To force a low voltage level on an unused input: connect the input directly 
to ground. 

For unused AND and OR gate inputs, another option is available for standard 
74 TTL: connect the unused input to a used input on the same gate. This is 
equivalent to an application of the Boolean algebraic identities A· A == A + 
A == A. Because it makes the chips more sensitive to noise, this method should 
not be used with low-power Schottky or CMOS integrated circuits. 

In the TTL families, an unattached (floating) input tends to assume a high 
voltage level, and it is tempting to just let the input float to achieve an H. Don't 
do it! The floating input acts like a small antenna and can easily pick up sufficient 
noise from the surroundings to cause spurious behavior. Always establish a firm 
value for unused inputs. 

THE SCHMITT TRIGGER 

The Schmitt trigger is an ordinary inverter with a little bit of internal feedback. 
The amount of feedback is chosen so that the circuit is not yet a flip-flop, but 
has some flip-flop characteristics superimposed on normal inverter behavior. 
Figuratively, it takes a big push to switch the output, but once switched it will 
stay there even if the push is partially relaxed. 

Figure 12-7 describes the behavior of the Schmitt trigger's input and output 
voltages. If we start with Yin = 0, the output is H as with a normal inverter 
(point A). Now increase the input voltage from 0 toward Y. The output will 
remain H, on path A ~ B. Increase Yin a little more, and the output will switch 
suddenly to L at Yin = Y, and will remain L as the input voltage undergoes 
limited excursions around Y (between points E and D). Now decrease Yin' The 
output will not switch until Yin is considerably less than Y. In fact, we will have 
to lower Yin all the way to X (point F) before YoU! will switch to H. 

+5 

A B 
H 

Vout Vin~Vout 

E C D 
L F 

0 X y +5 

Vin 

Figure 12-7. Voltage behavior and symbol of the Schmitt trigger. 

486 Digital Technology Part IV 



It is this different switching point on increasing and decreasing voltage that 
gives the Schmitt trigger its utility. The action, called hysteresis, is measured 
by the difference between the X and Y voltages. The Schmitt trigger circuit 
symbol is a standard inverter with a hysteresis curve drawn inside the triangle, 
as shown in Fig. 12-7. For a TTL Schmitt trigger, typical values for X and Y 
are 0.8 and 1.6 V, respectively. 

The Schmitt trigger is a potent device for combatting noise at the inputs 
to digital systems. Here is how it works. Suppose we have a poorly formed 
signal coming into our system, such as this: 

~----H \,..---H 

v v 

L---~ L---"\ 

Time---- Time--

Intended input Actual input 

Let us put this waveform into a Schmitt trigger and see what happens. In Fig. 
12-8, the sloppy input waveform with the Schmitt trigger switching voltages X 
and Y is shown. The input must rise to Y before the Schmitt trigger will switch. 
The hysteresis in the Schmitt trigger rejects all the noise in the lower part of 
the signal, and a clean switch occurs in the output at point S. Once switched, 

Chap. 12 

I 

-1------------
1 

1 

I 

H---------i 

L s 

Time---

Figure 12-8. How the Schmitt trigger removes noise. 

Meeting the Real World 487 



the Schmitt trigger will ignore voltage excursions above X. The hysteresis in 
the Schmitt trigger has cleaned up the terrible waveform and recaptured the 
original intent. 

Schmitt triggers have another important application with slowly varying 
input voltages. A standard low-power Schottky gate interprets H as being > 
2.0 V and an L as < 0.8 V. Voltages in the forbidden region between 0.8 V 
and 2.0 V can cause indeterminate or even oscillating outputs. The outputs of 
normal gates switch through the forbidden region so fast that subsequent inputs 
are not confused. Problems can arise if the inputs receive slowly changing 
signals, such as from a 60-Hz alternating current or a charging or discharging 
capacitor. To use such signals in logic circuits, you must first feed them into 
Schmitt triggers, whose "snap" action (hysteresis) produces clean, fast output 
transitions, no matter how slowly the inputs change. 

A POWER-ON RESET CIRCUIT 

Orderly startup of a digital system requires that certain crucial flip-flops be set 
to known values when power is applied. We need a reset signal that will come 
on for a short time as the power supply is coming up to voltage, and will then 
go off and remain off. 

A resistor-capacitor combination provides a slowly increasing voltage across 
the capacitor in response to a step (rapidly increasing) input voltage. We made 
use of this property in the single-shot delay circuit discussed in Chapter 4. If 
we feed this slowly increasing voltage into a Schmitt trigger, we have a circuit 
that produces an immediate H signal as output, and then switches to L as the 
capacitor charges during power up. Figure 12-9 shows the circuit and the waveforms 
reSUlting from the power-up sequence. The duration of the reset signal is roughly 
the product of Rand C: t = R x C, where R is in ohms, C is farads, and tin 
seconds. 

OSCILLATORS 

Synchronous systems need a clock. There are many oscillators that can serve 
as the basis for a system clock. We mention a few here. Some of the criteria 
influencing the selection of an oscillator are cost, stability, and frequency range. 

The Schmitt Trigger Oscillator 

This is about the least expensive and simplest oscillator you can make. Figure 
12-10 shows the circuit, which uses an R-C combination to cause the oscillation. 
This circuit will continue to oscillate reliably as long as power is applied. The 
Schmitt trigger oscillator suffers from a lack of stability-the clock frequency 
is not precisely constant. Another mild disadvantage is the 30 percent duty cycle 
of the square-wave output. If you want a perfectly symmetric square wave, you 
may run the output into the clock input of a JK flip-flop wired in toggle mode. 

488 Digital Technology Part IV 



R 
vpower ---AJINv---.--Q 

vpower----..... 

VSIOW----~/ 

POWER. ON. RESET 

Time_ 

POWER. ON. RESET 

Figure 12-9. A power-on reset 
circuit. 

This produces a flip-flop output transition at every rising edge of the oscillator. 
The flip-flop thus provides a clock with one-half the frequency of the oscillator. 

In the Schmitt trigger oscillator, the capacitor continually charges and dis­
charges between the hysteresis points. When the capacitor charges to the upper 
trip point, the output will switch to low. This will discharge the capacitor until 
the lower trip point is reached, which causes the output voltage to go high. The 
cycle repeats indefinitely. 

The 555 Oscillator 

The 555 Timer is a low-cost integrated circuit built for timing industrial devices. 
It can be configured as a single shot or as an oscillator. One of the virtues of 

R 

x>--+-osc 

-1 f- 30% 

~ 
f---10O%---j 

Time----

Chap. 12 Meeting the Real World 

Figure 12-10. A simple Schmitt trig­
ger oscillator. Rand C control the 
frequency. 

489 



the 555 Timer is the slow oscillation frequency that can be achieved with capacitors 
of moderate size. It is also more stable than the Schmitt trigger oscillator. This 
is a popular chip-a fine choice for clocks with periods slower than several 
microseconds. Figure 12-11 shows the 555 Timer wired as an oscillator. The 
values of Rand C determine the frequency of oscillation; consult the data sheet 
for timing computations. 

Crystal-Controlled Oscillators 

A variety of integrated circuit clock chips derive their frequency from an external 
quartz crystal. The Motorola MC12060 and MC12061 are examples of chips that 
permit a wide range of clock frequencies that are determined by the oscillation 
frequency of the quartz crystal. The MC14411 is useful for clocking data trans­
mission, since the chip provides a large selection of standard clock frequencies, 
including such popular ones as 110, 300, 1200, and 9600 Hz. The chip uses a 
crystal of fixed frequency (1.8432 MHz) and has internal logic to reduce this 
frequency to the values selected by the control inputs. Another excellent wide­
range oscillator is the RCA CD4047. 

The disadvantage of these chips in general synchronous design is their fixed 
frequencies, which preclude any gradual varying of the clock rate in debugging. 

The System Clock 

Remember that in synchronous system design, we usually want more from a 
clock than just an oscillating logic signal. In Chapter 6 we designed a useful 
system clock that supports an automatic clock derived from an oscillator, and 
also a manual mode that permits the designer to issue manual clock transitions. 
The oscillator forms the first stage of such a system clock. 

Also, remember that system clocks for synchronous circuits must often 

vee 

RA Reset Output OSC 

Discharge 

RB 
555 

Timer 

Threshold 

Trigger Control 

Ground 
c1 1,01 IlF Figure 12-11. The 555 timer used as 

an oscillator. RA , Rs, and C control 
-:- .,- -:- the frequency. 

490 Digital Technology Part IV 



drive many chips, so the clock's output must be well buffered to provide the 
necessary operating power. 

SWITCH DEBOUNCING 

Mechanical switches are important parts of digital devices, but they present 
signals that are unsuitable for use in digital logic circuits. The switch contacts 
do not open or close cleanly; they undergo a period of "bounce" in which the 
electrical signal from the switch will change noisily between its voltage extremes 
many times in the course of a few milliseconds. A switch debouncer removes 
the bounce by responding to only one of the voltage excursions during each 
switch operation. In Chapter 4 we analyzed this situation and offered a solution 
that used RS flip-flops. 

Here we repeat these circuits, and discuss the component values and the 
electrical efficiency of the solutions. Figure 12-12 shows two switch-debouncing 
circuits, each using a single-pole, double-throw toggle switch and gates from the 
74 LS logic line. 

Consider the circuit in Fig. 12-12a. Whenever the switch closes the On 
contact, the voltage on that line goes to ground (L) and causes the cross-coupled 
gate flip-flop to record truth on the SWITCH. ON outputs. Once the flip-flop 
responds to the On signal, further bounces on the line will have no effect on 
the outputs. The debouncer will register a change only when the Off contact 
closes, at which time the debouncer will respond to only one of the Off bounces. 

The resistors have a pull-up or pull-down function to assure a proper default 



H or L voltage level at the gate inputs. We derive the values of the resistors 
in Fig. 12-12a by noting that when a contact is open the current path is from 
the gate input through a resistor to ground. The 74LS02 input requires a maximum 
of 0.4 rnA current in the L state. We must make sure that the voltage at the 
gate input does not rise above the low-level logic threshold of 0.8 V; for safety, 
we will choose 0.4 V as our maximum allowable low-level voltage. Then 

0.4 - 0 
Rmax = 0.0004 = 1000 G 

The maximum suitable resistance value is 1 kG. 
To calculate the resistance in Fig. 12-12b, we must ensure that the voltage 

at a gate input is at a valid H level when the switch is open. Choosing 3 V as 
our lower limit for H, and using lIB = 20 f.LA for 74LS gates, we have 

5 - 3 
Rmax = 0.00002 = 100 kG 

In our circuit, we showed a smaller resistance value, 10 kG. 
There is a small advantage in the circuit in Fig. 12-12b, since it consumes 

less power. Except during switching transitions, one side of the switch is always 
closed, so there is a virtually constant 5 V drop across one of the resistors. The 
current drawn by this circuit is 5 rnA for Fig. 12-12a, which is equivalent to 12 
or more normal 74LS loads. In Fig. 12-12b, the circuit draws only one-tenth 
of this current, and so is about equivalent to one 74LS load. The power saved 
in Fig. 12-12b can be significant if the design has several debounced switches. 

This illustrates the typical reasoning when choosing values for pull-up or 
pull-down resistors in digital circuits. In most cases, only Ohm's Law is needed, 
coupled with the ability to identify the important issues. 

LAMP DRIVERS 

It is often necessary to display critical signals in a digital system. Gates seldom 
have enough current-handling capability to drive lamps as well as other gates, 
so it is usually necessary to isolate the lamp from the logic signal by an open 
collector buffer. We may use standard buffers that will load the logic signal 
with one additional standard TTL current load; alternatively, Darlington buffers 
are available that require close to zero input current. 

In digital display, the incandescent lamp has given way to a solid-state 
device called a LED (light-emitting diode). LEDs have the advantages of low 
cost, low power drain, and long service life. The brightness of a LED is a 
function of the current passing through it. Most LEDs are limited to currents 
of about 10 rnA. Higher currents produce more light but shorten the life of the 

492 Digital Technology Part IV 



LED. The typical LED driver circuit is: 

x 

LED 

where the open collector gate might be a 7406 buffer or a 9667 Darlington buffer. 
If the input signal X is H, the output of the open collector inverter is L, 

and the LED will light. The resistor R limits the current through the LED. We 
may determine a suitable value for R using Ohm's Law. The voltage at the 
output of the open-collector gate is close to zero; the voltage drop across the 
LED itself is about 1.6 V when it is conducting, regardless of the current. Thus 
for a 5 V power supply, the voltage drop across resistor R when the LED is lit 
is (5 - 1.6 - 0) = 3.4 V. If we wish to limit the current through the LED to 
5 rnA, then 

R = § = ~ = 6800 
I 0.005 

A resistor in the range of 700 to 1000 0 would be appropriate. 

DRIVING INDUCTIVE LOADS 

Mechanical relays, solenoids, and motors depend for their operation on coils of 
wire, which exhibit electrical inductance. Although inductance is sometimes 
useful, it can cause difficulties for the digital designer who wishes to switch an 
inductive load on and off. Even at low voltages, inductance can damage switches. 
Inductance tends to stabilize current by resisting changes in current through the 
coil. Consider a coil containing a sufficient length of wire to provide a safe 
current-limiting resistance when the coil is connected between its design voltage 
and ground: 

Coil Switch 

V+~-<>----1lo 
Reoil ---I 

With the switch closed, the current is given by Ohm's Law: 

1= Vee 
Rcoil 

When the switch is opened, the resistance across it rapidly moves from zero 
toward infinity. Ohm's Law predicts that the current would rapidly drop to zero, 
but the inductance in the coil prevents the current from dropping immediately. 
Where can this current go? The inductance creates a large transient voltage 

Chap. 12 Meeting the Real World 493 



across the switch, polarized to maintain the flow of the current across the switch. 
In many cases, the voltage becomes great enough to create a spark across the 
switch's contacts. If the switch is a switching transistor, the voltage surge will 
destroy it unless it is protected. Even mechanical switches will burn out unless 
they are robust or otherwise protected. 

Protecting Switches with Diodes 

In dc circuits, a diode across the coil will protect the switch from damage: 

When the switch is closed, the diode is back-biased and no current flows through 
the diode. When the switch opens and the inductance tries to maintain the 
current, the voltage rises at the switch terminal, and the diode becomes forward­
biased. Current can flow in a circular path through the diode until the inductive 
effect has dissipated. Therefore, no large voltage surge is developed across the 
switch. 

Protected by diodes, switching transistors can safely switch many inductive 
loads. The IN4000 series of diodes is useful for bypassing common inductances 
arising with relays and solenoids. 

Solid-State Relays 

For switching heavy dc or ac loads, we recommend a solid-state relay. These 
devices are carefully engineered to amplify weak logic signals to the level where 
they can drive a final switching transistor for dc loads or a TRIAC for ac loads. 
The logic switching component is often optically isolated from the relay, providing 
excellent protection to the digital circuit driving the relay. When using a solid­
state relay to switch a dc load, you should still protect the relay from dc voltage 
surges by using an external diode, as described previously. 

THE OPTICAL COUPLER 

When interfacing distant or dissimilar devices, we frequently wish to assure that 
electrical problems at one end of the system will not damage components at the 
other end. As long as there is an electrical connection between elements of a 
system, we face the risk of one malfunctioning element damaging another. For 
instance, the Teletype produces its signals from electromechanical circuits. A 

494 Digital Technology Part IV 



mechanical short circuit within the Teletype might produce violent electrical 
disturbances on the serial signal lines. 

Fortunately, there is a nondigital device called the optical coupler or optical 
isolator that uses light instead of electrons to pass signals. The optical coupler 
has a light-emitting diode as its input component and a phototransistor as the 
output, sealed together in one unit. You are already familiar with the light­
emitting diode. In a phototransistor, the switching action is controlled by light 
shining on the base of the transistor rather than by electrical current flowing 
through the base. When current flows through the light-emitting diode, it lights 
up. The phototransistor, which is off (switch open) when the diode is dark, 
responds to the light by closing its transistor switch. Figure 12-13 shows the 
optical coupler circuit in its customary notation. 

There is no electrical connection between the input and the output sections; 
within wide ranges of power supply voltages, the input and output stages are 
electrically independent of each other. It is this property that proves so valuable 
in protecting or isolating systems. 

The principal disadvantage of the optical coupler is its relatively slow switching 
speed; 1 to 100 JLsec is typical performance-much slower than digital logic 
circuits, but satisfactory in many data communication applications. 

Input 
stage 

POWER SUPPLIES 

Light-emitting Photo transistor 
diode 

Figure 12-13. An optical coupler. 

Output 
stage 

Power supplies are nondigital devices, and the construction of a good power 
supply is something of a mystery. Although the elements of power-supply tech­
nology are easy to understand and primitive supplies appear simple to construct, 
it usually pays to purchase them unless you have a good understanding of analog 
design techniques. Usually, you get what you pay for, and usually you are 
paying for things other than volts and amperes-for example overload protection, 
service life, voltage regulation, efficient cooling methods, compactness, and ability 
to run at high ambient temperatures. 

A typical power supply has four major components, shown in Fig. 12-14. 

Chap. 12 Meeting the Real World 495 



110 V AC 
line voltage 

00 
VV 

AC 
transformer 

IOVAC 9VDC 

AC-+DC 
rectifier Filter 

8 VDC 
unregulated 

Voltage 
regulator 

Figure 12-14. Components and waveforms of a de power supply. 

5 V DC 
regulated 

The raw power comes from the power company as 110 or 220 Vac. A transformer 
lowers the voltage to several volts above that required by the supply output. A 
full-wave rectifier changes this alternating voltage to a bumpy dc version. A 
filter smooths this waveform, producing a somewhat fluctuating voltage slightly 
above the desired one. Finally, a voltage regulator removes the last fluctuations 
and fixes the output voltage at the precise level desired. 

Remote Sensing 

Quality power supplies have a remote sensing feature to compensate for the 
small voltage drop generated in the conducting paths connecting the power supply 
with the circuit. Two small wires (sense wires) sample the voltage in the circuit 
itself and feed this voltage back to the power supply so that it can regulate the 
voltage into the digital circuit rather than the voltage produced at the power 
supply. The sense wires can be small, since they carry virtually no current. 

Integrated-Circuit Voltage Regulators 

Commercial power supplies often provide all the components in Fig. 12-14 (and 
other refinements) in one package, providing regulated power that must then 
travel to the digital systems. Another approach is to use regulators contained 
in an integrated circuit chip. These can supply a few amperes at fixed voltages 
and can be an economical way to supply power. They have the advantage that 
all the analog complexities of power regulation are wrapped up inside the package; 
troubleshooting is reduced to swapping components. 

The main power supply, without the regulation section, is easier to build 
than the complete supply. This approach allows us to furnish unregulated power 
to each circuit card and to perform the voltage regulation right on the card, a 
design that tends to minimize ground loops and other undesirable power distribution 
phenomena discussed in the next section. However, on-board regulation places 
a major heat-producing element on each logic card, making efficient heat dissipation 
essential. 

496 Digital Technology Part IV 



POWER DISTRIBUTION 

In digital logic, well-developed formalisms exist for solving problems in terms 
of the pure binary concepts of truth and falsity. What happens when these binary 
concepts are emulated by voltages? If the voltages are clean and stable, digital 
hardware provides a reliable correspondence between the logic values and the 
voltage levels. If the voltages are noisy or unstable, we are no longer in the 
true digital domain and unpleasant things can happen. 

Two common problems that remove us from a simple binary world are the 
generation and distribution of power. Chips require power, and a circuit with 
many chips may require much power. You should develop an intuitive under­
standing of where current is flowing in digital circuits and what effect that flow 
has upon noise generation. Fortunately, it is not difficult to gain this understanding. 

Every integrated circuit package has a pair of power pins. In the TTL 
logic family, these pins are Vee and ground. We do not (and should not) show 
these pins on logic diagrams, since they are not logical in nature. Vee is a source 
of current that flows into the chip and out through the ground pin. The chip 
accepts voltages representing logical signals as inputs and uses a portion of the 
supply power to produce voltages for logical output signals. The conversion of 
power is never 100 percent efficient. The lost power appears as heat, and the 
chip warms up. The circuit assembly must be able to dissipate this heat, or the 
chip's temperatures may rise to the point that the circuits behave improperly. 

Losses in Power Distribution Systems 

Resistive losses. Figure 12-15 shows two gates powered by the same 
power supply; the inevitable resistances of the power distribution system are 
lumped in the diagram for convenience. The Rv terms are resistances associated 
with Vee distribution; RG is ground distribution. For the sake of our exposition, 
let us assume that each gate requires 10 rnA of operating current and that all 
resistances are zero except RGl , which is 10 O. The voltage at the ground pin 
of gate 1 will be 100 mV above the power supply (system) ground. This comes 
from Ohm's Law: 

+5V 

Power 
supply 

System 
ground 

Chap. 12 

E = I x R = 0.01 x 10 = 0.10 V 

lOrnA lOrnA 

t t 

Meeting the Real World 

Figure 12-15. Two gates powered by 
one supply, with resistance in the 
power-distribution system. Line resist­
ances are lumped for convenience. 
Logic inputs and outputs are omitted. 

497 



Each gate produces logical output signals referenced to the internal ground 
voltage of the integrated circuit chip. Suppose that each gate produces an output 
of I volts in the low voltage level and h volts in the high level. Gate 1 produces 
outputs of I + 0.1 V and h + 0.1 V with respect to the system ground. Now 
suppose that the output of gate 1 goes into the input of gate 2. Since RG2 is 
zero, gate 2 is operating with its internal ground equal to the system ground. 
The 0.1 V offset of gate l' s output reduces the noise margin at gate 2, since the 
gates have a maximum threshold with respect to their own internal grounds, 
above which they will not interpret a signal as a low voltage level. The offset 
at gate 1 is in the direction that moves gate 2's input closer to the threshold, 
thereby reducing gate 2's margin for error. In 74LS TTL, the low-level noise 
margin is 0.3 V. In our example, instead of a 0.5 V low-level signal, gate 2 
would receive 0.6 V; only 0.2 V remains of the safety factor to handle other 
types of voltage disturbance. 

Inductive losses. Ten ohms is an intolerably high resistance in a power 
circuit, and almost any power-distribution system will have resistances much 
lower than this. Don't relax! The problem may still be with you. We used 
resistances in the example above because they provided us with a simple, static 
example. The real villain is inductance. Inductance exists in any conductor, 
independent of resistance, and it depends on the geometry of the conductor. An 
inductor will generate a voltage across itself if the current it carries changes. 
For a given inductance, the faster the rate of change of the current, the larger 
is the voltage across the conductor. 

Now look again at Fig. 12-15. The power distribution resistances are 
typically a few milliohms, and we can usually neglect them. As long as each 
gate draws constant current, the rate of change of current is zero. The induced 
voltage due to the inductance of the power paths will also be zero, so we have 
no problem. Unfortunately, the power-supply current drawn by a gate surges 
up and down when its logic output changes. This phenomenon is particularly 
acute in TTL, the most popular logic family. Since any useful logic system will 
have changing internal logic signals, we have no alternative but to reduce stray 
inductances to a minimum. Circuit geometry is the only avenue available to us. 
We will discuss several fabrication techniques for combatting inductance. 

Combatting Inductance in Power-Distribution 
Systems 

Ground planes. Solid-sheet conductors have the lowest possible inductance, 
and it is almost independent of the sheet's thickness. The best system is to 
mount integrated circuits on such a plane and connect the chip's ground pins to 
it. Piercing the plane with small holes to allow the other pins to pass through 
the ground plane to the other side of the board has virtually no harmful effect. 

Strip distribution. Many commercial integrated-circuit packaging systems 
have interdigitated (interleaved) strip busses for power distribution, as shown in 
Fig. 12-16. In the section on TTL integrated-circuit data sheets we showed that 

498 Digital Technology Part IV 



Figure 12-16. A circuit board with 
strip power busses. Two integrated­
circuit chips are attached. 

noise margins in the L state are often smaller than in the H state, so we want 
the lowest possible inductance on the ground distribution system. Inductance 
is proportional to length, so in Fig. 12-16 we should use the bus marked G for 
ground since it has the shortest run to the supply pin on the edge connector. 

Wire distribution. A round wire has much more inductance per unit 
length than a strip bus; it is usually pointless to try to use wire for power 
distribution on a printed circuit board. Nonetheless, wires are usually necessary 
to carry power from the power supply to a digital system. There are two ways 
to reduce the wire inductance-stranding and changing the shape to a flat braid. 
Flat braid is stranded wire that has been rolled into strip form, thereby gaining 
the low inductance of strips while retaining the flexibility of woven wire. 

Many commercial systems use laminated bus bars to distribute ground and 
V cc in a system. These bus bars have low inductance and low resistance, and 
also represent a distributed capacitance useful for filtering high-frequency noise. 
For power distribution on printed circuit boards, bus bars often allow the use 
of two-sided rather than multilayered boards. 

Recommendations. If you are new to digital logic systems, we strongly 
recommend that you use a commercial ground-plane system for your first few 
projects. This will keep you safely in the digital domain and make success more 
likely. 

Some commercial ground-plane systems are expensive, but you can justify 
them if the system will see extensive use. Be prepared to pay more for power 
supplies, power distribution, and circuit cabinetry than you pay for the integrated 
circuits. 

For small systems, printed circuit cards with a power bus on one side and 
a ground plane on the other are available at low cost. They are more desirable 
than a one-sided interdigitated bus card. 

Bypassing the Power Supply 

Even a distribution system with the least inductance will need help in order to 
deliver clean, stable power to the integrated circuits. The solution is a capacitor. 

Chap. 12 Meeting the Real World 499 



NOISE 

The function of the capacitor is to store charge that can power the surges of an 
integrated circuit when its outputs change. The ideal geometry is to place a 
capacitor directly across the Vee and ground pins of each chip. In a sense, this 
capacitor is a local power supply that is inexpensive enough to dedicate to each 
chip and will thereby have short leads and low inductance. More properly, it 
is a power averager that supplies surge demands and is then recharged from the 
main power supply. A capacitor used in this way is called a bypass capacitor, 
since the surges of current are absorbed in the capacitor and bypass the power 
supply. 

Most capacitors come with round wire leads that have a high inductance 
per unit length. A rule of thumb is to keep these leads less than 3 mm long. 
Only certain types of capacitors have low enough internal inductance to be useful 
for bypassing. Ceramic capacitors have low internal inductance and are suitable 
if in the range 0.01 to 0.1 /LF. Ceramic dielectric disks are commonly used 
because of their small cost. 

Tantalum dielectric capacitors also have low internal inductance and more 
capacitance per unit volume than ceramics, but with higher price. It is good 
practice to bypass the power supply leads with a 10 /LF tantalum capacitor where 
the leads enter the circuit card, in order to handle any current surge remaining 
from the smaller bypass capacitors at the individual chips. 

A common mistake is to mount one bypass capacitor per chip on interdigitated 
power strip cards, but across the wrong strips. The correct way is the shortest 
possible path through the capacitor between the Vee and ground pins of a chip. 
The wrong way will force the surge current from a chip to go all the way to the 
end of a strip and back down an adjacent strip to reach the bypass capacitor. 
Short is beautiful in digital fabrication! 

So you have done a fine job on the algorithmic and architectural phases of your 
digital design, your logic implementations are flawless, and you have constructed 
your circuit neatly on a circuit board with a good ground plane and well-bypassed 
power supply. Is everything just fine? Not necessarily. Despite all your efforts, 
noise may still be a problem. Noise is unwanted voltage on the signal lines. 
Good digital logic design attacks noise at the logical level. For instance, in 
synchronous design we process information only at certain fixed times governed 
by a clock signal, so that we are sure that, in our design, all the vital signals 
are stable. After a clock edge, we expect a certain amount of turbulence on the 
signal lines as they adjust to their new status, but this will die out long before 
the next edge. Similarly, we avoid using asynchronous inputs as decision variables, 
since we cannot control when they change. 

However, other sources of noise arise from the physical layout of the 
hardware. They are unrelated to the logic of our problem, and we must attack 
them on the hardware level. Fortunately, there are ways to lessen the effect of 
the noisemakers. 

500 Digital Technology Part IV 



Crosstalk 

One source of spurious signal information is crosstalk, a signal picked up from 
a changing voltage on another wire. The most common source of crosstalk is 
nearby logic signal wires. Each wire acts like a little antenna, capable of receiving 
"transmissions" from energy radiated by other wires. The antenna is sensitive 
to a range of frequencies that is a function of the length of the wire. The longer 
the wire, the longer the duration of the noise pulses picked up by the antenna. 

Why is the length of a noise pulse important? Sequential logic elements 
such as flip-flops change their state upon being activated by their input signals. 
These inputs must remain in the active state long enough for the flip-flop circuitry 
to respond. This required stable period is similar to the setup time of the flip­
flop. As a general rule, if the noise has a shorter duration than the setup time, 
the flip-flop will still behave correctly. Now you can see the significance of the 
length of the input wire. If the wire is long enough, crosstalk can create noise 
of sufficient duration to cause the flip-flop to act incorrectly. 

For the TTL-compatible families of integrated circuits, typical setup times 
range from about 20 nsec (for regular 74, 74LS, and Hi-Speed CMOS) to about 
3 nsec (for 74S and 74F). ECL setup times are on the order of 1 or 2 nsec. We 
may encounter problems with noise when the wires are longer than about 2! ft 
for chips with the longer setup times; with 74S we are in trouble when the 
interconnections are longer than about 6 in. ECL is even worse; limits are about 
3 in. unless special precautions are taken. 

Remedies. What do we do? First, use synchronous design. In this mode, 
the logic signals change only for a short time following the active clock edge. 
If we are not running our circuit too fast, the signals will settle down before the 
next clock pulse. Crosstalk in logic signals is thus primarily limited to an insensitive 
period of the clock cycle. 

Second, do not run the clock so fast that the unsettled period of the logic 
signals can endure until the next clock edge. Remember that the crucial propagation 
delay is the sum of the delays in the slowest circuit path. Third, do not use the 
very fast integrated circuit families such as Schottky TTL and ECL unless the 
design definitely requires them. 

Crosstalk onto the clock line during the signal's transition period can be 
serious, since noise on the clock line at any time can generate spurious clock 
pulses. To make further progress, we must look to the actual fabrication of the 
circuit. As in power distribution, short is beautiful. Keep interconnections as 
short as possible. In addition, there are other ways to reduce the antenna effect 
on a signal wire. The coupling of one signal to another (the crosstalk) is significant 
only when the two wires are roughly parallel and fairly close to each other. 
When wiring a circuit board, run your wires directly from point to point, making 
them as short as possible, so that the collection of wires tends to form a random 
arrangement. This reduces the likelihood that any two wires will be parallel for 
a long distance. Do not run neat channels of wires between the rows of chips. 
Such packets look pretty, but they greatly increase the chance of crosstalk. 

Chap. 12 Meeting the Real World 501 



On printed circuit boards, where paranel signal traces are inevitable, in­
terposing a trace tied to either ground or Vee will shield adjacent signals. 

Reflections 

Even a signal wire isolated from other wires can cause noise. Consider a signal 
injected into a wire; for example, let the voltage at the sending end of the wire 
change rapidly from 0 to 4 V. Launching this signal into the wire causes a 
change in current because of the change in voltage. The change in current (and 
with it a voltage step function) travels down the wire at a rate of about 2 nsec/ft 
until it reaches the other end. We would like the signal to be absorbed at the 
receiving end, and that would be the end of it. However, if the receiving end 
is an open circuit (a dangling wire, for example), the current has no place to go 
and simply turns around and reflects back toward the sending end. Part or all 
of the current may be reflected, causing the received voltage to be different from 
the intended value during the reflections. The reflections may continue to bounce 
back and forth, forming amazing and quite unacceptable patterns of voltage. 
Eventually, the reflections will die out and the receiving end will have the same 
voltage as the sending end (less the very small resistive loss in the wire). 

The open circuit approximates a gate input attached to the receiving end 
of the wire, since the gate input draws little current and acts like a high-impedance 
load. Once again, the severity of this type of unwanted behavior is related to 
the speed of the integrated circuit logic family we are using. Our earliier warnings 
about maximum wire lengths for the various logic families apply to reflections 
as well as to other types of noise. In short wires, the reflections die out before 
they can do any harm. However, if the wire is long enough, reflections become 
a serious matter, even in an otherwise noise-free environment. In this case, we 
must take further action. 

Synchronous design solves many of the problems of reflections by assuring 
that they will occur only in insensitive parts of the clock cycle. However, when 
we encounter crosstalk, the clock line and any asynchronous inputs are vulnerable 
to spurious voltages at any time. Reflections are an inherent property of the 
particular type of signal wire and its source and load. The method of combatting 
reflections in the hardware is more exact and definitive than the procedures for 
crosstalk. 

The astonishing behavior of voltage reflections is the subject of transmission­
line theory, whch predicts the observed waveforms quite accurately. Although 
we are hardly inclined to think of our circuit board signal wires as transmission 
lines, that is exactly the viewpoint we must take. The theory predicts that the 
reflections are a function of the relative impedance of the signal line and the 
receiving device. Impedance is the counterpart of resistance that includes 
the frequency-dependent capacitative and inductive effects introduced when the 
flow of charge undergoes a change. 

Every wire has a characteristic impedance that is a function of the capacitance 
and inductance of the wire. These depend on the type of wire and its insulation, 
where the wire is positioned with respect to ground, and so on. The characteristic 

502 Digital Technology Part IV 



TTL IN 

impedance is independent of the wire's length, and in the frequency range of 
interest in digital switching (above 100 kHz) the characteristic impedance of all 
practical conductors falls in a narrow range from about 30 to 600 n. For the 
type of conductors used in printed circuit boards and wire-wrap assemblies, the 
characteristic impedance is 150 n ± 50 n; 150 n is sufficiently accurate for our 
purposes. 

Transmission-line theory shows that if the receiver has the same impedance 
as the line, there is no reflection; the entire current step is absorbed and the 
received voltage is correct on the first try. This is the key to dealing with long 
signal wires. The inputs of integrated circuits present a high impedance to the 
line, so we can match the line's characteristic impedance by placing a 150 n 
resistance in parallel with the path of the input current (for instance, between 
the input terminal and ground). This is called terminating the line in its characteristic 
impedance. It is sometimes desirable to terminate the sending end of the wire 
also, to damp out any reflections that arrive back at the sender. Figure 12-17 
shows the typical behavior on an unterminated and a properly terminated line. 
The figure displays a common technique in which the termination is shared 
between ground and the high-voltage supply. For this purpose, which depends 
on ac rather than dc behavior, the two terminating resistors are in parallel. The 
net impedance is 132 n, well within the suitable range. 

Source 

+5 V 

I 

1 

+5 V 

Characteristic 
impedance 

Vs Ro"" 150n 

R2 ; 

220n 

Receiver 

+5 V 

I 

Effective R; 132 n 

TTL OUT 

Sent voltage ~ 

Received voltage 
ifR;oo V, 

(unterminated) 

Received voltage 
ifR; Ro V, 

(terminated) 

Chap. 12 Meeting the Real World 

Figure 12-17. Signal transmissions on 
a long line. The unterminated line has 
reflections; proper termination solves 
the problem. 

503 



Line Drivers and Line Receivers 

Line-termination resistors consume power. Five volts across a 150 n resistor 
requires 33 rnA of current, far more than the typical logic gate output can supply. 
Therefore, when terminating long lines, we usually make use of special integrated 
circuits called line drivers and line receivers. These chips are designed to mesh 
with logic signals such as TTL, and transmit and receive the signals over the 
long lines according to one of several accepted methods. The driver, in addition 
to other characteristics desirable in this application, will have sufficient drive 
capability to handle the extra load created by the terminating resistor. 

Since the long lines often run many feet, they are especially susceptible to 
external noise. The noise travels toward both ends of the wire from the point 
of pickup. Although in a properly terminated line the noise is not reflected, it 
nevertheless appears as a part of the received signal. The simple line-driving 
technique illustrated in Fig. 12-19 is called single-ended and is rather susceptible 
to external noise. Another method, much more effective at rejecting the noise, 
is called differential line driving and is shown in Fig. 12-18. Instead of sending 
the signal as a voltage on one wire, referenced to ground, the differential line 
driver and receiver communicate over two signal wires, carrying equal voltages 
opposite in sign. In the differential method, it is only the signed difference in 
the voltages on the two wires that carries signal information, a positive difference 
representing an H and a negative difference being an L. If one wire picks up 
noise, it is likely that the other wire will pick up the same noise, since the wires 
are exposed to almost identical environments. Noise added to each wire has no 
effect on recovering the signal. 

Another advantage of differential line driving is its insensitivity to differences 
in the ground potential at the ends of the line. Because of variations in the earth 
ground potential and other factors, this common-mode voltage can sometimes 
be many volts. Since the transmitted and received signal voltages refer to the 
local ground level as the zero reference point, a voltage difference between the 
two ground points may result in loss of information in the single-ended method. 
The differential method relies solely on the voltage difference on its two wires, 
so differences in ground potential, which affect both wires equally, do not affect 
the detection of signals at the receiver. 

Line driving and line termination are common in digital design, and often 
involve many signal and data lines. Groups of resistors of appropriate values 
are available in dual in-line packages that can be mounted in the same way as 

+ 5 V Characteristic + 5 V 

I impedance I .. r. Ro-lson ~_ 
TTL IN ~"",> ____ ---*tif?_R-'O'-----IV-TTL OUT 

1 1 

504 

Figure 12-18. Differential line driv­
ing. The lines are properly terminated 
and the sign of the voltage difference 
on the two lines determines the logic 
signal information. 

Digital Technology Part IV 



conventional SSI integrated circuits. These "resistor packs" greatly simplify 
the fabrication of circuits requiring terminators. 

Summary 

Combatting noise requires careful attention to design methods and fabrication 
practices. We have concentrated on noise arising within the digital system itself 
but, as indicated in the previous section, noise from external sources such as 
automobile engines, transmitters, and motors can also cause problems. Our 
recommendations for noise abatement serve to protect against external as well 
as internal noise. 

Here are the basic steps to minimize noise in digital circuits: 

a. Use synchronous design methods. 
b. Keep wires short. 
c. Don't use fast integrated-circuit families. 
d. Use a well-designed power supply and power-distribution system. 
e. Keep wires close to the ground plane. 
f. Let the wires run in random directions whenever possible. 
g. Take special care with the clock line. 
h. Use line-termination procedures when necessary, but avoid them wherever 

possible by conforming to points (b) and (c). 

Noise in digital systems is a complex subject. We have touched on only 
its major aspects. Your best bet is to stay well within the safe area described 
in the recommendations. 

METASTABILITY IN SEQUENTIAL CIRCUITS 

In Chapter 4 we saw how hazards could cause a physical version of a logic 
circuit to produce momentary signals that were different than those predicted 
by Boolean algebra. To nullify the effects of these hazards, we adopted synchronous 
design. In Chapter 5 we saw that the introduction of asynchronous test inputs 
into an otherwise synchronous ASM could result in transition and output races. 
To avoid these problems, we synchronized the asynchronous external inputs by 
using D flip-flops. Throughout these procedures we assumed that we are not 
violating the setup and hold times of the devices in the circuit. But when there 
are external signals that change asynchronously to our circuit, we cannot make 
such a guarantee. What happens when, despite our best efforts, an input transition 
occurs close to the active clock edge? 

Realizing that the clock signal in a synchronous device can be viewed as 
just another input, we can broaden our question to ask what happens when two 
inputs to a sequential circuit change shortly before or after each other. The 
facts, which were not widely recognized nor even believed until recently, are 
disquieting. 

Chap. 12 Meeting the Real World 505 



Consider the standard D flip-flop, the 7474. Figure 12-19 is the observed 
behavior of this device when the D-input changes about 3 nsec before the rising 
clock edge. The outputs of the transistors in the main feedback circuit can 
assume voltages that do not correspond to either of the valid digital voltage 
levels. This behavior is called metastability, and flip-flops exhibiting these char­
acteristics are said to be in a metastable state. Eventually, the metastability 
will resolve and the flip-flop outputs will assume valid (and complementary) 
voltage levels, but the duration of the metastable state is indeterminate and may 
be quite long compared with the propagation delay listed in the data sheet. 

Q Q orQ' 
H----_ 

Metastable 
state 

Q' Q' orQ 
L----" 

Figure 12-19. Metastability in the 
7474 D flip-flop. The final stable state 
is unpredictable, but Q and Q' are 
inverses. 

L-Indeterminate ------.J 
1- time ~ 1 

Other bizarre and awkward forms of metastability may occur. If the 7474's 
clock and D-input signals switch to high at nearly the same time, the outputs 
may display proper digital voltage levels with normal signal rise and fall times, 
but the transitions may be delayed for an indeterminate time. In an RS flip-flop 
constructed from crosscoupled 7400 Nand Gates, the outputs may behave as 
shown in Fig. 12-20 if the gates are set or cleared by a runt pulse. In this form 
of metastability, which occurs in circuit families such as TTL in which signal 
rise times are less than the gate propagation delay, the Q and Q' outputs oscillate 
in-phase for an indeterminate time before resolving into valid digital voltage 
levels. 

Q H----_ Metastable 

L-----
Q' I..--- Indeterminate I 

time -----I 
Figure 12-211. Metastability in cross-coupled 7400 Nand gates. When set or 
cleared with a runt pulse, the outputs may oscillate in phase. 

Why do flip-flops behave this way? A gate is really an analog amplifier. 
In digital circuits, the gate inputs are overdriven so that the output transistor 
saturates (is fully conducting or nonconducting) in its high or low state. These 
states form the familiar digital voltage levels. Digital logic relies on inputs passing 
quickly through the transition region between the voltage levels. But by judiciously 

506 Digital Technology Part IV 



biasing the inputs we can force a gate's output to be in the linear region. For 
instance, consider a 7404 Inverter gate driving another inverter gate: 

Rl 

V intermediate X)---vout 

R2 

By proper choice of the resistors RI and R2, we can set the input voltage V in 

such that V out = V in and Vintermediate = V in • Both inverters are in their transition 
region. Now, if we carefully connect the output to the input and remove the 
source of V in , we will have constructed a crosscoupled flip-flop circuit that is 
metastable: 

Rl 

")(:I----t--- V intermediate 

R2 

X)I------- Vout 

Eventually, electronic noise or the random thermal fluctuations of the atoms in 
the gates will upset the metastability and drive the outputs to a stable condition. 
The duration of the metastable interval is unpredictable. Real flip-flops always 
have feedback and can always be balanced at this metastable point. There is 
no way to avoid this phenomenon! 

How serious is this problem? If a flip-flop is in a metastable state, the 
probability P of still being in the metastable state after time t can be approximated 
by 

where K and T are constants determined by experiment or calculation. The 
probability of remaining metastable decreases exponentially with time-a reassuring 
trend, but insufficient to guarantee the flip-flop's performance or to alleviate 
problems at fast clock rates. 

To understand the effective treatment of metastability, we must gain a 
quantitative understanding of the timings and probabilities. At present, this 
information is available only from detailed experiments with devices in the various 

Chap. 12 Meeting the Real World 507 



logic families. These complex experiments rely on circuits with both digital and 
nondigital elements to detect the existence of metastable behavior and record 
the frequency of metastability resulting from repeated attempts to induce the 
metastable condition. In the experiments, the system clock rate is fixed, and 
input transitions randomly distributed about the clock edge are produced at a 
selected rate. The usually complementary outputs of the flip-flop being tested 
are compared using analog comparators to detect metastability. At a specified 
time after the system clock transition, the result of the comparison is captured 
in a flip-flop. A true output, indicating metastability lingering at least as long 
as the sampling delay, increments a digital counter. From the count of the 
metastable errors that occur during the experiment, the mean time between 
failures (MTBF) under the given conditions can be determined. 

The relationship among the experimental variables is given by 

1 I" I" K -K2/),.t 
MTBF = Jcp X Jdata X Ie 

where fcp is the system clock frequency, fdata is the frequency of data transitions, 
at is the sampling delay, and KI and K2 are constants describing the metastable 
characteristics of the device being tested. By determining the MTBF at two 
sampling delays, the experimenter may determine the constants KI and K2 for 
the device under test. 

T. J. Chaneyt, who has been a leader in the experimental study of me­
tastability, has published extensive tables of KI and K2 for many devices. For 
example, for the 74LS74 D Flip-flop, KI = 0.4 sec and K2 = 0.67 nsec -I. 
Consider an experiment in which the system clock rate is 10 MHz and the average 
rate of input transitions is 0.1 MHz. Assume we are interested in the probability 
of a metastable failure that endures until the next clock pulse-a measure of 
the reliability of a simple D flip-flop synchronizer. The calculated MTBF is 
several billion years. But doubling the clock frequency reduces the MTBF to 
only 3.7 sec! The results are extraordinarily sensitive to the clock frequency. 
By running the clock slowly enough, you can obtain any degree of reliability 
you wish. There is a wide difference between flip-flops ofthe same type produced 
by different manufacturers and even between different batches of the same flip­
flop from one manufacturer. Experiments on several 74874 flip-flops running at 
a frequency of 25 MHz, receiving 105 input transitions per second, show a 
variation in failure rates from 2 hours to 5 x 1031 sec. (The age of the universe 
is about 3 x 1017 sec.) Push the clock speed at your own risk! 

What might we do about the metastability problem? 

a. We might do nothing, aside from synchronizing our external input with a 
D flip-flop. This method is satisfactory if we wait long enough, since the 
probable duration of a metastable state decreases exponentially with time. 

b. We might choose a flip-flop that resolves input conflicts faster. This requires 
a small K2 , not just a small propagation delay. When we wish to run the 

t T. J. Chaney, "Measured flip-flop responses to marginal triggering," IEEE Transactions on 
Computers C-32, December 1983, p. 1207. 

508 Digital Technology Part IV 



clock at maximum speed and can't afford special detection circuits, such 
as in VLSI design, this method can be beneficial. Chaney's tables of 
metastability constants for standard elements can be helpful here. The 
Fairchild FAST series, an extension of the 74ALS series, seems to have 
especially good resolving characteristics. Special flip-flops constructed with 
tunnel diode resolvers or with ECL or gallium arsenide technologies can 
work at clock frequencies up to five times those suitable for standard TTL 
elementst. 

c. We might run our clock at high speed until a detector senses metastability 
and then freeze the clock until the metastability resolves. This method 
requires two tricky circuits: a system clock that can be stopped synchronously 
and started asynchronously and a metastability detector. 

The detection circuit used in Chaney'S experiments can be adapted to our 
purpose. In Fig. 12-21 we show the basis of this detector. The reference voltages 
V OH and V OL for the comparators correspond to the boundaries of the voltage 
transition region for the D flip-flop's outputs. If the flip-flop's output voltage 
V Q is lower than the high-level threshold and higher than the low-level threshold, 
the signal METASTABLE is true. This type of detector is useful with circuits 
in which the flip-flop output is directly available and the flip-flop does not suffer 
from the oscillating form of metastability. Standard metastability detectors are 
available for inclusion within VLSI designs. 

True when VQ < VOH 

METASTABLE 
D 

True when V Q > VOL 

Figure 12-21. A simple metastability detector. 

An accepted way to form a system clock that can be stopped synchronously 
(the false portion ofthe clock is extended indefinitely) and started asynchronously 
begins with a delay line and an inverter in a feedback loop: 

I-.... --CLOCK 

t G. Elineau and W. Wiesbeck, "A new JK flip-flop for synchronizers," IEEE Transactions 
on Computers C-26, December 1977, p. 1277. 

Chap. 12 Meeting the Real World 509 



Once the circuit is properly initialized upon power-up, the delay line processes 
two internal states, the true and false portions of the clock signal, that travel 
down the line. Whenever the output CLOCK is false, the delay line is processing 
the next true signal through its internal storage, to emerge after the appropriate 
delay. Whenever the output is true, the delay line processes the next false. The 
waveform repeats after two delay-line time periods. We may modify this circuit 
to include the control signal METASTABLE in the feedback loop: 

METASTABLE --~ CLOCK 

In using this circuit, the assumption is made that METASTABLE will become 
true only during the positive part of the clock cycle. This is reasonable for the 
common form of metastability detected by the circuit in Fig. 12-21 since, if 
metastability occurs, it arises soon after a clock transition. Then the positive 
portion of the clock cycle will run its normal course and the negative portion 
will be stretched by the assertion of METASTABLE. If METASTABLE becomes 
true during the negative phase of the clock, the impending positive phase traveling 
down the delay line will cause another rising edge on the clock line, defeating 
our intention to freeze or stretch the clock cycle in order to wait out the metastable 
period. Furthermore, the new positive phase will be foreshortened, and the 
delay line may begin to "multimode," operate at a multiple of the desired 
frequency. 

An even number of inverters may be substituted for the delay line. Delay 
lines are quite stable, but they are sensitive to multimoding. Inverter chains 
do not have the stable delays of delay lines, but are less sensitive to multimoding. 

Three potentially useful treatments of metastability were suggested above, 
but the technical literature is full of incorrect proposals for solving the problem. 
Many of these just move the source of potential metastability from one point in 
the circuit to another. Here are a few treatments that do not work: 

a. Using Schmitt triggers in feedback loops to clip runt pulses. If a runt pulse 
causes metastability in a circuit with feedback, then that same runt pulse 
will not cause metastability in that circuit if a Schmitt trigger is inserted 
in the feedback loop. However, a runt pulse of different duration and 
magnitude can still cause metastability in the modified circuit. This has 
been verified mathematically by Marinot and experimentally by Chaney*. 

b. Using unit distance codes so that only one state variable depends on an 

t L. R. Marino, "The effect of asynchronous inputs on sequential network reliability," IEEE 
Transactions on Computers C-26, November 1977, p. 1082. * T. C. Chaney, "Comments on 'A note on synchronizer or interlock maloperation,' " IEEE 
Transactions on Computers C-28, October 1979, p. 802. 

510 Digital Technology Part IV 



asynchronous qualifier. This technique can eliminate transition races in 
state machines, but does not address the metastability dilemma. The state 
flip-flop affected by the asynchronous qualifier can become metastable. The 
state flip-flops contribute to the production of the state machine outputs 
through combinational logic circuits, so metastability in a flip-flop output 
can have drastic consequences. 

c. Using a chain of flip-flops. If a clocked flip-flop fed by an asynchronous 
input can become metastable, they why not feed the flip-flop output into 
another flip-flop to clean it up? Such a technique can indeed reduce the 
frequency of occurrence of metastability in the final output, but cannot 
eliminate it. With each flip-flop in the chain, the probability of failure 
decreases, yet at fast clock speeds the final probability may still be un­
comfortably high, and is certainly not zero. 

d. Starting and stopping crystal oscillators used for clock generation. Crystal 
oscillators and LC resonant circuits are often used to generate precise clock 
frequencies. Such oscillators do not start cleanly and instantly-many 
cycles will pass before the oscillator's amplitude stabilizes. Therefore, an 
attempt to stop and restart these oscillators to stretch the clock pulse when 
metastability occurs will not produce satisfactory performance. 

e. Gating the output of continuously running clock oscillators. "Gating the 
clock" was discouraged in synchronous circuits because of the possibilities 
of clock skew, runt pulses, and hazards. With these drawbacks, this method 
has little to recommend it for the treatment of metastability. 

f. Using an "asynchronous arbiter." Many such complicated circuits have 
been proposed; all fail to solve the problem of metastability, but instead 
move the sensitive points to other parts of the circuit. 

What Should You Do? 

Metastable behavior cannot be eliminated in real circuits. The proper defenses 
against metastability involve lowering the probability of its occurrence, shortening 
its duration, or sensing its presence and freezing the action of the system until 
the metastable state has passed. 

The simplest defense is to run your synchronous systems at moderate 
speeds. If you avoid pressing the system clock to the limit of your circuit, the 
probability of inducing metastability can be made acceptably low. As you approach 
a crucially fast clock speed, your circuit's behavior can deteriorate dramatically. 

If running the system clock at a slow speed is not acceptable, then the 
next defense against metastability is to use a well-designed interruptible clock 
and a metastability detector. The detector will catch metastable states that 
manifest themselves as voltages in the transition region but will not detect the 
delayed-transition form of metastability. 

If your clock must run fast and stretching it is intolerable, then you must 
investigate using flip-flops that resolve metastable states faster. At this stage, 
you may have to do your own experiments on metastability. 

Chap. 12 Meeting the Real World 511 



A SELECTION OF INTEGRATED CIRCUITS 

The low-power Schottky families of integrated circuits are our mainstays at the 
MSI level of design. The popular chips are produced by several manufacturers 
under the standard 74LS, 74ALS, and 74F nomenclatures. In Table 12-1 we 
list a selection of chips that we have found useful. The table is not exhaustive, 
nor is it a substitute for the manufacturers' data books. We list 74LS chips, if 
available; many of these are also available in the improved 74ALS and 74F lines. 
Some manufacturers' data books are cited at the end of the chapter. 

TABLE 12-1 SELECTED INTEGRATED CIRCUITS 

Number 
of pins 

Chip 
designation 

AND and OR 
14 74LSOO 
14 74LS02 
14 74LS08 
14 74LS32 
14 74LSIO 
14 74LS27 
14 74LSll 
14 74LS20 
14 74LS21 
14 74LS30 
16 74LS133 
20 74ALS804 
20 74ALS805 
20 74ALS808 
20 74ALS832 

Inverter 
14 74LS04 

EOR and COINCIDENCE 

14 74LS86 
14 74ALS810 

Description 

Quad 2-input Nand gates 
Quad 2-input Nor gates 
Quad 2-input And gates 
Quad 2-input Or gates 
Triple 3-input Nand gates 
Triple 3-input Nor gates 
Triple 3-input And gates 
Dual 4-input Nand gates 
Dual 4-input And gates 
8-input Nand gate 
13-input Nand gate 
Hex 2-input Nand gates 
Hex 2-input Nor gates 
Hex 2-input And gates 
Hex 2-input Or gates 

Hex inverters 

Quad Exclusive Or gates 
Quad 2-input Coincidence gates 

Buffers, Drivers, and Bus Transceivers 
14 7406 Hex Open-collector inverting buffers 
14 7407 Hex Open-collector noninverting buffers 
14 74LS125 Quad 3-state buffers with independent enables 
16 74LS367 Hex 3-state buffers 
16 74LS368 Hex 3-state buffers, inverting 
20 74LS240 Octal 3-state buffers, inverting 
20 74LS241 Octal 3-state buffers 
20 74ALS640 Octal 3-state transceivers, inverting 
20 74ALS641 Octal open-collector transceivers 
20 74ALS642 Octal open-collector transceivers, inverting 
20 74ALS643 Octal 3-state transceivers, inverting and true 
20 74ALS644 Octal open-collector transceivers, inverting and true 
20 74ALS645 Octal 3-state transceivers 
20 74ALS62x Series of octal transceivers, similar to the 64x series 

512 Digital Technology Part IV 



TABLE 12-1 (Continued) 

Number 
of pins 

Chip 
designation Description 

Multiplexers (with common selects and enable, unless specified) 

16 74LS157 Quad 2-input multiplexers 
16 74LS158 Quad 2-input multiplexers, inverted outputs 
16 74LS257 Quad 2-input multiplexers, 3-state outputs 
16 74LS258 Quad 2-input multiplexers, 3-state inverted outputs 
16 74LS153 Dual 4-input multiplexers, separate enables 
16 74LS352 Dual 4-input multiplexers, inverted outputs, separate enables 
16 74LS253 Dual 4-input multiplexers, 3-state outputs, separate enables 
16 74LS353 Dual 4-input multiplexers, 3-state inverted outputs, separate 

16 74LS151 
16 74LS251 
24 74150 

Decoders 

16 74LS139 
16 74LS138 
16 74LS42 
24 74154 

Comparators 

16 74LS85 
20 74ALS518-

522 
20 74ALS677-

Flip-flops 

16 
14 

D Registers 

678 

74LSI09 
74LS74A 

16 74LS175 

16 74LS379 

16 74LS173 

16 74LS174 
16 74LS378 
20 74LS273 
20 74LS377 
20 74LS374 

Shift Registers 

16 74LS194 
20 74LS299 

enables 
8-input multiplexer, inverted and noninverted outputs 
8-input multiplexer, 3-state inverted and noninverted outputs 
16-input mUltiplexer, inverted output 

Dual 2-t0-4 decoders, independent enables 
3-t0-8 decoder, with 3 enables 
4-to-l0 decoder (also functions as enabled 3-t0-8) 
4-to-l6 decoder, enabled 

4-bit arithmetic magnitude comparator: <, =, > 
Series of 8-bit comparators 

Series of 16-bit comparators against a fixed pattern 

Dual JK flip flops, with direct set and direct clear 
Dual D flip flops, with direct set and direct clear 

4-bit D register with asynchronous clear; inverting and non­
inverting outputs 

4-bit D register with enabled load; inverting and noninverting 
outputs 

4-bit D register with enabled load, 3-state outputs, and asyn-
chronous clear 

6-bit D register with asynchronous clear 
6-bit D register with enable 
8-bit D register with asynchronous clear 
8-bit D register with enable 
8-bit D register with 3-state outputs 

4-bit parallel-in, parallel-out universal shift register 
8-bit parallel-in, parallel-out bus-oriented shift register with 

asynchronous clear 

Chap. 12 Meeting the Real World 513 



TABLE 12-1 (Continued) 

Number 
of pins 

20 

16 
16 
24 
24 

Counters 

16 
16 
16 
24 

PALs 

Chip 
designation 

74LS323 

74LS166 
74LSI64 
74LS674 
74LS673 

74LS161 
74LS163 
74LS669 
74AS869 

Description 

8-bit parallel-in, parallel-out bus-oriented shift register with syn-
chronous clear 

8-bit parallel-in, serial-out shift register with asynchronous clear 
8-bit serial-in, parallel-out shift register 
16-bit parallel-in, serial-out shift register 
16-bit serial-in, parallel-out shift register 

4-bit binary counter with asynchronous clear 
4-bit binary counter with synchronous clear 
4-bit binary up-down counter 
8-bit binary up-down counter 

Many useful chips exist, too numerous to list here. Monolithic Memories pioneered the con­
cept; many others also manufacture PALs. Some PALs are erasable. 

Single Shots 

16 96L02 
14 TTLPWG-x 

ALU Bit Slices 

24 74LS181 
20 74LS381 
20 74LS382 
48 74LS481 
68 74AS888 
40 AM2901 
48 AM2903 
84 MM677081 

Microsequencers 

68 74AS890 
40 AM2910 

Dynamic RAM Support 

40 AM2963 
20 AM2966 
14 DZTMI-300 

514 

Dual single shot 
Rhombus TTL pulse-width generator. x can be 5-100 nsec (see 

Dynamic RAM Support for Rhombus Industries' address). 

4-bit ALU, combinational, with look-ahead and ripple carry 
4-bit ALU, combinational, with look-ahead carry 
4-bit ALU, combinational, with ripple carry 
4-bit processor slice 
8-bit processor slice 
4-bit processor slice 
4-bit processor slice 
16-bit ALU, combinational 

Sequencer, 14-bit address 
Sequencer, 12-bit address 

Address multiplexer, refresh controller 
High-speed address line driver 
Rhombus 300-nsec delay line 

Rhombus Industries, 15801 Chemical Lane, Huntington 
Beach, Calif. 92649, makes a wide series of delay lines with 
internal drivers and terminators. Available with standard 
ECL or TTL drivers; programmable versions with 8 or 16 
steps also available. 

Digital Technology Part IV 



READINGS AND SOURCES 

BLAKESLEE, THOMAS R., Digital Design with Standard MSI and LSI, 2nd ed. John Wiley 
& Sons, New York, 1979. Sound advice about implementations. Good section on 
noise and transmission lines. Includes a thoughtful treatment of the social consequences 
of engineering. 

BREUNINGER, ROBERT K., and KEVIN FRANK, Metastable Characteristics of Texas Instruments 
Advanced Bipolar Logic Families. Texas Instruments, 1985. Test procedure and results 
of metastability experiments. 

CHANEY, THOMAS J., "Comment on 'A note on synchronizer or interlock maloperation,' " 
IEEE Transactions on Computers C-28, October 1979, p. 802. Metastability experiments. 

CHANEY, THOMAS J., "Measured flip-flop responses to marginal triggering," IEEE Trans­
actions on Computers C-32 , December 1983, p. 1207. Metastability experiments. 

ELINEAU, GERALD, and WERNER WIESBECK, "A new JK flip-flop for synchronizers," IEEE 
Transactions on Computers C-26, December 1977, p. 1277. Metastability. 

FLETCHER, WILLIAM I., An Engineering Approach to Digital Design. Prentice-Hall, En­
glewood Cliffs, N.J., 1980. Practical engineering information throughout. 

GLASSER, LANCE A., and DANIEL W. DOBBERPUHL, The Design and Analysis of VLSI 
Circuits. Addison-Wesley Publishing Co., Reading, Mass., 1985. 

MARINO, LEONARD R., 'The effect of asynchronous inputs on sequential network reliability," 
IEEE Transactions on Computers C-26, November 1977, p. 1082. Metastability. 

MEAD, CARVER, and LYNN CONWAY, Introduction to VLSI Systems. Addison-Wesley 
Publishing Co., Reading, Mass., 1980. The first VLSI textbook. 

MICK, JOHN, and JAMES BRICK, Bit-Slice Microprocessor Design. McGraw-Hili Book Co., 
New York, 1980. A collection of design notes for the Advanced Micro Devices 2900 
bit-slice family. This book is useful far beyond the Am2900 chips. 

STONE, H., Microcomputer Interfacing. Addison-Wesley Publishing Co., Reading, Mass., 
1982. Good discussion of noise and shielding in Chapter 2. 

WESTE, NEIL, and KAMRAN ESHRAGHIAN, Principles of CMOS VLSI Design: A Systems 
Perspective. Addison-Wesley Publishing Co., Reading, Mass., 1985. 

WILLIAMS, GERALD E., Digital Technology. Science Research Associates, Chicago, 1977. 
Good nuts-and-bolts technology. 

Manuals and Data Books 

Am29300 Family Handbook. Advanced Micro Devices, 901 Thompson Place, P.O. Box 
3453, Sunnyvale, Calif. 94088, 1985. High-performance 32-bit building blocks. 

Bipolar Microprocessor Logic and Interface. Advanced Micro Devices, 901 Thompson 
Place, P.O. Box 3453, Sunnyvale, Calif. 94088. The Am2900 family and support devices. 
Good discussion of Schottky logic. 

Bipolar/MOS Memories. Advanced Micro Devices, 901 Thompson Place, P.O. Box 3453, 
Sunnyvale, Calif. 94088. Data book. 

FAST: Fairchild Advanced Schottky TTL. Fairchild Camera and Instrument Corporation, 
Digital Products Division, South Portland, Maine 04101. Data book. 

FAST: High Speed Logic Systems and Solutions. Fairchild Camera and Instrument Corp., 
Digital Unit, 333 Western Avenue, South Portland, Maine 04101. Notes for a 1984 
Fairchild seminar on FAST/LSI. Discusses metastability. 

Chap. 12 Meeting the Real World 515 



High-Speed CMOS Logic Data. Motorola Semiconductor Products, 3501 Ed Bluestein 
Blvd., Austin, Tex. 78721. Data Book. 

LSI Databook. Monolithic Memories, 2175 Mission College Blvd., Santa Clara, Calif. 
95954. PALS, memory products, arithmetic units, system building blocks. 

MECL Device Data. Motorola Semiconductor Products, Box 20912, Phoenix, Ariz. 85036. 
Data book. 

MECL System Design Handbook, 4th ed. Motorola Semiconductor Products, Box 20912, 
Phoenix, Ariz. 85036, 1983. A wealth of practical ECL design advice. Good general 
treatment of noise and transmission lines. 

Memory Components Handbook. Intel Corp., Literature Department, 3065 Bowers Ave., 
Santa Clara, Calif. 95051. Data book and applications. 

MOS Microprocessors and Peripherals. Advanced Micro Devices, 901 Thompson Place, 
P.O. Box 3453, Sunnyvale, Calif. 94088. Data book. 

PAL Programmable Array Logic Handbook. Monolithic Memories, 2175 Mission College 
Blvd., Santa Clara, Calif. 95054. 

Systems Design Handbook, 2nd ed. Monolithic Memories, 2175 Mission College Blvd., 
Santa Clara, Calif. 95054, 1985. Excellent manufacturer's design handbook. Good 
treatment of ECL (pp. 2-40). 

The TTL Data Book. Texas Instruments, P.O. Box 225012, Dallas, Tex. 75265. 

516 Digital Technology Part IV 



Index 

Abstraction in digital design, 2, 167 
Access time, RAM, 138 
Accumulator, LD20, 272 
Active clock edge, 120, 171 
Adder, 75, 92-94 

full, 92 
half, 92 
ripple carry, 92 

Addition, binary, 92-98 
speedup, 95-98 

Address: 
microcomputer device, 436 
PDP-8, 262-66 
RAM, 135 
table lookup, 79 

Address bus, microprocessor, 434 
Address recognizer, 435, 439 
Algorithm (See Control algorithm) 
Algorithmic state machine, 170-88 (See also 

Controller) 
ASM chart, 172-75 
asynchronous, 192-93 
branch, 173-74 
conditional output, 175 
output, 172-73, 175 
qualifier, 375 
state, 172 
synchronous, 171 

synthesis, 176-88 
unconditional output, 175 

ALU (See Arithmetic logic unit) 
Amplifier, 506 

differential, 474 
AND logic function: 

definition, 3, 6-7 
drafting symbol, 36 
implementation, 37-38, 40 
logic notation, 6 

Arbiter, asynchronous, 511 
Architecture, 166-70 
Arithmetic, signed, 93-94 
Arithmetic logic unit (ALU), 94-98 

in LD20, 273-74 
in LmO, 406-7 

Arithmetic magnitude comparator, 87-89 
Arithmetic shift, 162 
ASCII character code, 352-53 
ASM (See Algorithmic state machine; 

Controller) 
Assembler, Logic Engine (See Logic Engine 

microassembler) 
Associative law, 9, 11 
Asynchronous arbiter, 511 
Asynchronous ASM, 192-93, 359-64 
Asynchronous circuit, 114-15, 152, 359-64, 

451 

517 



Asynchronous communication discipline, 352 
Asynchronous design (See Asynchronous 

circuit) 
Asynchronous input, 121, 129, 190-93, 244-45 
Auto-indexing: 

LD20, 296-97 
PDP-8, 265-66 

Bank, memory, 137 
Base, bipolar transistor, 468 
Bias, transistor, 469 
Bipolar logic families (See Logic families) 
Bipolar transistor, 467-69 
Bistable device, 114 
Bit slice, 95, 133-34 

AMD 2901, 134 
AMD 2903, 134 
TI 74AS888, 134 

Black Jack Dealer, 237-53 
microprogrammed, 377-78, 384-85 

Block carry, 97-98 
Boolean algebra, 3, 8-19 

conventions, 9 
duality principle, 10, 40 
indentities, 10-11, 19 
manipulations, 10-11 
operator hierarchy, 9 

Breakpoint, microprogram, 398 
Buffer: 

open collector, 102,477-78 
for power, 436, 484 
register for data, 218 
three-state, 103-4, 479-80 

Building block: 
combinational, 75-104 
sequential, 120-34 

Bus, 100-104, 136-37 
bidirectional, 436-37 
LD20 data, 274-79 
microcomputer, 434 
protocol, 437-38 
unidirectional, 436-37 

Bus control methods, 100-104 
Bypass capacitor, 500 
Bypassing, power supply, 499-500 

CA (See Contents of effective address) 
Canonical product-of-sums form, 13-14 
Canonical sum-of-products form, 12-13 
Canonical truth table, 5, 19-20 
Capacitance, 152-53, 470, 499-500 
Carry, ripple, 92-93 
Carry-generate function, 96-98 
Carry look-ahead, 97-98 
Carry-propagate function, 96-98 

518 

Channel, MOS transistor, 469 
Characteristic impedance (See Impedance, 

characteristic) 
Charge, electrical, 466 

induced, 470 
Charge flow (See Current, electrical) 
Chip (See Integrated circuit) 
Circuit analysis, 35, 49-50 
Circuit diagram, 35 
Circuit synthesis, 35, 50-54 
Clock, 118, 171-72 (See also Oscillator) 

serial bit, 212-19, 358, 366 
system, 208-12, 257, 490-91 

Clocked circuit (See Synchronous circuit) 
Clock frequency, 171 
Clock period, 171 
Clock skew, 188-90 
CMOS (Complementary MOS) (See Logic fam­

ilies, CMOS) 
Code: 

binary, 83-87, 161 
gray, 161 
unit-distance, 255 

Code conversion: 
with ROM, 140-42 

Coincidence logic function, 61-63, 91 
Collector, bipolar transistor, 468 
Column address, 135 
Column address strobe, 139 
Combinational circuit, 75 
Combination lock, 229-37 
Command output, 172-73, 175 
Common-mode voltage, 504 
Communications (See Asynchronous communi­

cation discipline) 
Commutative law, 9, II 
Comparator (See Arithmetic magnitude 

comparator) 
Comparison, equality, 88 
Complementary MOS logic (CMOS) (See Logic 

families, CMOS) 
Conditional output, 175 
Conduction, 466 
Conductor, 466 
Conjunctive normal form, 13 
Contents of effective address (CA): 

in PDP-8, 264 
Control (See Controller) 
Control algorithm, 166-70 
Control bus, microprocessor, 434 
Controller: 

ASM,176-88 
binary-counter, 201 
hardwired, 176-88, 433 
microcomputer, 372, 430, 433, 460-61 

Index 



microprogrammed, 372, 433 
multiplexer, 178-83 
one-hot, 183-86 
ROM-based, 186-88 

Control store, microprogram, 393 
Counter, 108, 126-31 

asynchronous, 128 
binary, 126-31, 161 
gray-code, 161 
moebius, 162 
ripple, 128 
synchronous, 128 

Coupler, optical (See Optical coupler) 
CPU (See Microprocessor) 
Crosstalk, 501 
Crystal, quartz, 490 
Crystal lattice, 466 
Crystal oscillator, 490, 511 
Current, electrical, 152-53, 466-71 
Current spike, 473 
Cycle Time, RAM, 138 

Data bus, (See Bus) 
Data sheet (See Integrated circuit data sheet) 
Debouncer, switch (See Switch debouncing) 
Decoder, 83-86 
Delay: 

interconnection, 109 
propagation, 109, 482-83 

Delay line, 153-54 
DeMorgan's law, 10-11 
Demultiplexer, SO-83, 86 
Depletion mode, 470 
Differential amplifier, 474 
Differential line driving, 504-5 
Digital drafting, 35 
Diode, 373-75, 467 

light-emitting, 493-95 
for switch protection, 494 

DIP (See Dual inline package) 
Direct clear, 121 
Direct set, 121 
Disable (See Enable) 
Disjunctive normal form, 12 
Display, seven-segment, 31-32, 73, 140-41 
Distributive law, 9, 11 
Documentation, 2, 35, 194 
Don't-care outputs, 18-19, 22-24 
Doping, 467 
Downloading, 397 
Drain, MOS transistor, 469 
Drive, output, 483 
Driver (See also Buffer): 

lamp, 492-93 

Index 

line, 504-5 
open-collector, 102, 477-78 

Dual inline package, 34 
Duality principle, 10, 40 
Dynamic RAM (See Random-access memory, 

dynamic) 

EA (See Effective address) 
ECL (Emitter-coupled logic) (See Logic Fami-

lies, ECL) 
Edge-driven circuit (See Edge-triggered circuit) 
Edge-triggered circuit, 119 
EEPROM,143 
Effective address (EA), 264 

contents of (CA), 264 
Electrode, 470 
Electrons, 466 
Emitter, bipolar transistor, 468 
Emitter-coupled logic (ECL) (See Logic Fami-

lies, ECL) 
Enable: 

decoder, 85-86 
interrupt, 271 
multiplexer, 77 
RAM,136 
three-state-output, 103, 136, 479 

Encoder (See Priority encoder) 
Enhancement mode, 470 
EOR logic function (See Exclusive OR logic 

function) 
EPROM, 142-43 
EPROM eraser, 143 
Equality comparison (See Comparison, 

equality) 
Equivalence logic function, 61-63, 91 
Excitation table, 117, 120 
Exclusive OR logic function, 61-63, 90 
Execute phase, LD20, 281, 300-319 

Fanout, 483-84 
Feedback, 111-12, 486, 507 
Fetch phase, LD20, 281-85, 291-97 
Fight, output, 473 
Filter, power-supply, 496 
Firmware, 140 
Flip-flop, lOS, 112-26 

asynchronous RS, 113-17 
clocked RS, 118-19 
D,124-26 
edge-driven, 119-20 
edge-triggered, 119-20 
enabled D, 125-26 
JK, 120-24, 127-28 
level-driven, 119 
master-slave, 119 

519 



Flip-flop (cont.) 
pure edge-triggered, 119-20 
RS, 113-18 
SOC, 161 
toggle, 161 

Formalism in digital design, 3 (See also Bool­
ean algebra; Algorithmic 
state machine, ASM chart; Mixed logic) 

FORTH Machine, 398-406 
Forward-biased diode, 467 
Frequency divider, 161 
Full adder (See Adder) 

Gain, transistor, 469 
Gate, 35, 38, 76, 101-2, 471-72 

MOS transistor, 470 
Gating the clock, 125, 189-90 
Glitch, 110 (See also Hazard) 
Gray-code counter (See Counter, gray-code) 
Ground, integrated circuit, 34, 497-98 
Ground plane, 498 

Handshake, synchronizing, .246, 255-56 
Hardwired control, 176-88, 368 
Hazard, 108-11,208 
Hierarchy of logical operators, 9 
High-impedence mode, 103,479-80 
.H naming convention, 38-39 
Hold time: 

flip-flop, 120 
RAM,138 
sequential circuit, 482-83 

Hole, 467 
Hysteresis, 487 

IC (See Integrated circuit) 
Idle state, LD20, 298-300 
Impedance, characteristic, 502-5 
Implication logic function, 67, 73, 91 
Index, table-lookup, 79 
Indirect addressing: 

LD20, 296-97 
PDP-8, 263-64 

Indirect bit, PDP-8, 263 
Inductance, 493-94, 498 
Induction, charge, 470 
Inductive load, 493-94 
Input, unused, 485-86 
Input load, 483-84 
Input-output: 

interface, in LD20, 355-66 
interrupt-driven, 440-42 
LD20, 304-8, 339-40, 353-55, 366-68 
memory-mapped, 435 

520 

microcomputer, 438-42 
PDP-8, 270, 353-55 
port, 437 
progranuned, 438-42 
separate, 435-36 

Instruction register, LD20, 274 
Insulator, 466 
Integrated circuit, 34, 76 

characteristics, 481-85 
data sheet, 34, 74, 480-82 
loadings, 483-84 
names, 38 
noise margins, 485 
operating conditions, 481 
static (DC) characteristics, 481-82 
switching (AC) characteristics, 482-83 

Integrated circuit devices, 512-14 
12060 oscillator, 490 
12061 oscillator, 490 
1488 line driver, 366 
1489 line receiver, 366 
14411 baud rate generator, 490 
2901 ALU bit-slice, 134 
2903 ALU bit-slice, 134 
2909 sequencer, 390, 427 
2910 sequencer, 390-94 
555 timer, 366, 489-90 
6147 static RAM, 343-44 
6809 microprocessor, 435, 438 
68000-series microprocessor, 435 
7400 nand gate, 506 
7404 inverter, 507 
7406 open-collector inverter, 64-66 
7407 open-collector buffer, 102-3 
7474 D flip-flop, 506 
74154 decoder, 334 
74AS888 ALU bit-slice, 134 
74AS889 sequencer, 390 
74LSoo nand gate, 38, 43-46, 211 
74LS02 nor gate, 38, 43-46 
74LS04 inverter, 42-43, 46-48 
74LS08 and gate, 40, 43-46 
74LSI0 nand gate, 40 
74LS25 nor gate, 88 
74LS32 or gate, 43-46 
74LS37 nand buffer, 484 
74LS42 decoder, 83, 85-86, 105, 236 
74LS74 D flip-flop, 158, 216 
74LS85 arithmetic comparator, 88, 106, 236 
74LS86 exclusive-or gate, 62-63, 88 
74LSI09 JK flip-flop, 121-24, 216, 221, 224, 

345 
74LS133 nand gate, 224 
74LS139 decoder, 82 
74LS147 priority encoder, 87 

Index 



74LS151 multiplexer, 235-36, 328, 333, 339 
74LS153 multiplexer, 91, 106 
74LS157 multiplexer, 78, 215-16 
74LS163 binary counter, 130-31, 215-16, 

221, 224, 233, 235, 349, 383 
74LSI64 shift register, 224 
74LS165 shift register, 221 
74LS175 D register, 185, 236, 333, 335 
74LS181 ALU, 95-98, 107,273-74, 328-30 
74LS182 ALU carry-generate-propagate, 98 
74LS193 binary counter, 131 
74LS194 shift register, 133, 331-32, 340 
74LS243 bus transceiver, 437 
74LS244 three-state buffer, 103, 133 
74LS251 multiplexer, 105 
74LS280 parity generator-checker, 106 
74LS283 adder, 93, 106 
74LS352 multiplexer, 79, 81 
74LS378 D-register, 126, 331 
74LS379 D-register, 126, 331 
74LS669 binary counter, 131 
8080 microprocessor, 435 
%L02 single-shot, 153, 344-45, 350 
CD4047 oscillator, 490 
DM7575 PLA, 145 
PALl6R4,350 
PALl 6R8 , 150, 163 
PALl8H4, 149 
PALl8L4, 147 
PAL20LlO, 350 

Interrupt: 
input-output, 440-42 
LD20, 284-85, 292, 309, 340-41 
PDP-8, 270-72 
priority, 441 
terminal, in LD20, 355, 364 

Interrupt-driven input-output, 440-42 
Interrupt request, 440 
Interrupt subprogram: 

microcomputer, 440-41 
PDP-8, 271-72 

Inverter, voltage, 42-43, 46-47, 471 

Jam transfer, 124, 126 

Karnaugh map, 19-26 
construction, 21 
definition, 19-20 
errors, 24-25 
in hazard elimination, 110 
simplification, 22-25 

K-map (See Karnaugh map) 

Lamp driver, 492-93 
Large-scale integration (LSI), 76 

Index 

Latch, 112-13 
Lattice, crystal (See Crystal lattice) 
LD20 minicomputer, 261 

ALU controls, 329-31 
architecture, 272-79, 315-19 
ASM, 286-319 
ASM chart auxiliary variables, 324-25 
ASM chart labels, 326 
conditional output terms, 326-27 
control, 279-86 
data multiplexer inputs, 327-29 
execute phase, 281, 300-319 
fetch phase, 281-85, 291-97 
interrupt system controls, 340-41 
lOP signal enabler, 339-40 
link-bit control, 333-34 
manual operations, 298-300, 302-4, 341-

42 
memory control, 278, 287-91, 342-46 
microprogrammed implementation, 406-24 
priority circuit, 337-39 
register-load signals, 331-32 
state assignment, 334-35 
state decoder, 334 
state generator, 334-36 
state multiplexer inputs, 335 
state transitions, 334-36 

LD30 minicomputer, 406-24 
architecture, 406-7, 423-24 
command bits, 407-8 
execute phase, 413-16 
fetch phase, 412-13 
idle phase, 409-11 
instruction decoding, 417-19 
interrupt processing, 416-17 
manual phase, 411-12 
microcode, 408-23 
test inputs, 422 

LEASMB (See Logic Engine microassembler) 
LED (See Light-emitting diode) 
Level-driven circuit, 119 
Light-emitting diode, 492-95 
Line driver, 504-5 
Line receiver, 504-5 
Line termination, 503 
Link, LD20, 273 
.L naming convention, 38-39 
Load: 

inductive, 493-94 
input, 483-84 
integrated circuit, 483-84 

Loadings, integrated circuit, 483-84 
Lock (See Combination lock) 
Logical constants, 4, 9 

implementation, 53-54, 66-67 

521 



Logical operators, 3, 6-8 
hierarchy, 9 
implementation, 35-38, 40-49, 55-58, 61-68 

Logical variables, 4-5 
Logic Engine, 393-98 

backpanel, 397 
base unit, 396-97 
microassembler, 401-5 
support software, 397-98 

Logic families: 
bipolar, 472-75 
CMOS, 476-77 
ECL,474-75 
MOS, 475-77 
n-MOS, 476 
p-MOS, 476 
RTL,472 
TTL,473-74 
unipolar, 475-77 

Low-power Schottky TTL, 33-34, 474 
LSI (See Large-scale integration) 

Mark level, 352-53 
Maxterm, 13-14 
Medium-scale integration (MSI), 76 
Memory, 3, 108, 134-43 (See also EEPROM, 

EPROM; Flip-flop; PAL; PLA; PLE; 
PROM; RAM; ROM) 

LD20, 273 
microcomputer, 434 

Memory addressing: 
PDP-8, 262-66 
RAM,136-37 

Memory address register, LD20, 273 
Memory bank, 137 
Memory buffer register, LD20, 273 
Memory-mapped input-output, 435 
Metal-oxide semiconductor (MOS) (See Logic 

families, MOS) 
Metastability, 117, 154-55, 505-11 
Metastable state (See Metastability) 
Microcomputer, 372, 432 

6809,438 
68000,435 
8080,435 

Microinstruction, 375 (See also 
Microprogramming) 

control store, 393 
LD20, 309-15 
PDP-8, 267-69 
pipeline register, 388 
writable control store, 393 

Microprocessor, 432 
Microprogramming, 374 

classical, 372-75 

522 

Microprogram sequencer, 388-90 
2909,390 
2910, 390 
74AS889, 390 

Minicomputer, 260, 371-72, 431 
Minterm, 12-13 
Mixed logic, 35-55, 61-68 

AND/OR duals, 40 
circuit analysis, 40-41, 49-50 
circuit synthesis, 50-55, 65-66 
drafting conventions, 35-40, 51-52, 55, 163 
NOT implementation, 46-48 
"oops," 48 
operator symbols, 36, 47, 61 
in PALs, 149, 163 
signal naming conventions, 38-40 
theory, 42-49 
voltage inversion, 42-43, 47-48 

Mixed-logic convention, 37 
Modulus counting, 126-27, 218 
MOS (Metal-oxide semiconductor) (See Logic 

families, MOS) 
MOS transistor, 469-71 

depletion-mode, 470 
enhancement-mode, 470 

MPU (See Microprocessor) 
MSI (See Medium-scale integration) 
MUltiple qualifier (See Qualifier, mUltiple) 
Multiplexer, 75, 77-80, 91, 100-101 

terminal, 449-61 
MUltiplexer controller, 178-83 
Multivibrator, monostable (See Single-shot) 
Mux (See Multiplexer) 

Nand gate, 38, 472 
as voltage inverter, 49 

NAND logic function, 27, 38, 55-58, 67-68, 91 
Negative clock edge, 119 
Negative logic, 37 
Negative-logic convention, 37 
n-MOS (See Logic families, MOS) 
n-MOS transistor, 470-71 
Noise, 500-505 (See also Glitch; Hazard) 
Noise margin, 485 
Nor gate, 38, 472 

as voltage inverter, 49 
NOR logic function, 27, 38, 55-58, 67-68, 91 
NOT logic function: 

definition, 3, 6 
drafting symbol, 47-48 
implementation, 46-48 
logic notation, 6 

npn transistor, 467-'-68 
n-type silicon, 467 
Numbered slash, 89 

Index 



Ohm's Law, 479, 492-93, 497 
One-hot controller, 183-86 
1 's catching, 113, 129 ' 
One's complement, 93 
"Oops" function, 48 
Open-collector: 

buffer, 102, 477-78 
circuit, 63-66, 102-3, 367-68, 477-79 
driver, 102, 477-78 
resistor, 478-79 

Operate instruction: 
LD20, 309-15, 337-39 
PDP-8, 267-69 

Optical coupler, 494-95 
Optical isolator (See Optical coupler) 
OR logic function: 

definition, 3, 7-8 
drafting symbol, 36-37 
implementation, 38, 40 
logic notation, 8 

Oscillating output, III 
Oscillator, 488-91 

crystal-controlled, 490 
555 timer, 489-90 
Schmitt trigger, 485-89 
system clock, 490-91 

Output drive, 483 
Output fight, 473 

Page bit, PDP-8, 263 
Page offset, PDP-8, 262 
PAL (See Programmable array logic) 
Parallel-to-serial conversion, 217-21, 453 
Parity, 106 
PDP-8 minicomputer, 260, 371-72 

description, 261-72 
as device controller, 431 
input-output protocol, 270, 353-55 
instructions, 266-70 
interrupts, 270-72 
memory addressing, 262-66 
operation codes, 84, 261, 266-72 
single-chip, 272 

PDP-8E minicomputer, 351 
PDP-8I minicomputer (See PDP-8 

minicomputer) 
Peripheral interface adapter, 437 
Phototransistor, 495 
PIA (See Peripheral interface adapter) 
PLA (See Programmable Logic Array) 
PLE (See Programmable Logic Element) 
p-MOS logic family (See Logic families, MOS) 
p-MOS transistor, 470-71 
p,n junction, 467 
pnp transistor, 467-68 

Index 

Port, input-output, 437 
Positive clock edge, 119 
Positive logic, 37 
Positive-logic convention, 37, 55-61 

analyzing circuits, 58-61 
converting to mixed logic, 59-60 
synthesizing circuits, 56-58 

Power distribution, 497-500 
losses, 497-98 

Power supply, 495-96 
Precedence rules (See Hierarchy of logic 

operators) 
Preclear (See Direct clear) 
Preset (See Direct set) 
Priority encoder, 86-87 
Priority interrupt, 441 
Priority system, LD20, 309-12, 337-39 
Product-of-sums form, 13-14, 16, 25 
Program counter, LD20, 274 
Programmable Array Logic, 147-52 
Programmable logic, 143-52 

programming, 150-52 
Programmable Logic Array, 144-45 
Programmable Logic Element, 147 
Programmable Read-Only Memory, 142, 145-

47 
electrically-erasable, 143 

Programmed input-output, 438-42 
PROM (See Programmable Read-Only 

Memory) 
Propagation delay (See Delay, propagation) 
Protocol, microcomputer bus, 437-38 
Pseudo-clock, 359-64 
p-type silicon, 467 
Pullup resistor (See Resistor, pullup) 

Qualifier, 374 
mUltiple, 376-79, 385 
single, 379-85 

Queue, 258 

Race, 190-92 
output, 191-92, 244-45 
transition, 190-91, 244-45 

RAM (See Random access memory) 
Random access memory, 108, 135-39, 376 

access time, 138 
dynamic, 139 
read cycle time, 138 
refresh, 139 
static, 139 
write cycle time, 138 

Read-Only Memory, 108, 139-43, 375-76 
field-programmable, 142-43 

Receiver, line, 504-5 

523 



Rectifier, 496 
Reflection, voltage, 502-3 
Refresh, 139 
Register, 75, 108, 112, 126-34 

counter, 126-31 
D,126 
enabled D, 126 
shift, 131-33 

Register file, 133 
Regulator, voltage, 496 
Relay, solid-state, 494 
Remote sensing, 496 
Reset: 

asynchronous, 121, 186 
LD20, 299-300 
power-on, 488 

Reset state, flip-flop, 114 
Resistor: 

pulldown, 116,491-92 
pullup, 63, 116, 491-92 

Resistor-transistor logic (RTL) (See Logic fam-
ilies, RTL) 

Reverse-biased diode, 467 
ROM (See Read-Only Memory) 
ROM-based controller, 186-88 
Row address, 135 
Row-address strobe, 139 
RTL (Resistor-transistor logic) (See Logic fam­

ilies, RTL) 

Saturation, transistor, 474, 506 
Schmitt trigger, 486-88, 510 

as oscillator, 488-89 
Schottky diode, 474 
Schottky technology, 474 
Select, multiplexer, 77 
Semiconductor, 466-67 
Separate input-output, 435-36 
Sequential circuit, 75, 112-20 
Serial data transmission, 212, 352-53, 451 
Serial-to-parallel conversion, 217-19, 221-24, 

453 
Set state, flip-flop, 114 
Setup time: 

flip-flop, 120 
RAM,138 
sequential circuit, 482-83 

74xx TTL, 473 
74ALSxx TTL, 474, 509, 512 
74Fxx TTL, 474, 509, 512 
74LSxx TTL, 33-34, 474, 512-14 
74Sxx TTL, 474 
Shift register, 131-33 

LD20, 308-9 
Signal, 38-40 

524 

Signed arithmetic (See Arithmetic, signed) 
Silicon, 466-67 
Single-ended line driving, 504-5 
Single-pulser, 203-8, 247 

building block, 207 
generalized, 207 
one-state, 204-6 
two-state, 206-7 

Single qualifier (See Qualifier, single) 
Single-shot, 152-53 
Slash (See NOT logic function, drafting sym-

bol; Numbered slash) 
Small-scale integration (SSI), 76 
Solid-state relay, 494 
Source, MOS transistor, 469 
Space level, 352-53 
Spike, current, 473 
SSI (See Small-scale integration) 
Stable state (See State, stable) 
Stack, 258, 391, 399 
Start bit, 353 
State: 

ASM,171-72 
flip-flop, 113-15 
stable, 114 

State assignment, 176 
State generator, 176 
State machine (See Algorithmic state machine) 
State variable, 176 
Static design, 194 
Static RAM (See Random Access Memory, 

static) 
Stepping motor, 443-49 
Stop bit, 353 
Storage time, transistor, 474 
Strobe (See Enable) 
Structured design (See Top-down design) 
Style, digital design, 1, 52-54, 194-95 
Sum-of-products form, 12-13, 15, 19, 25 
Switch debouncing, 115-16, 491-92 
Switching transistor, 469 
Switch register, LD20, 268-69, 273 
Synchronization, process, 246 
Synchronizer, 125, 219 
Synchronous circuit, 111, 115, 118, 170, 193-

94 
Synchronous communications, 218-24, 451 
Synchronous design (See Synchronous circuit) 
System clock (See Clock, system) 

Table lookup, 79-80, 179, 374, 418-19 
Teletype, 494-95 
Terminal: 

communications protocol, 352-53 
input-output with PDP-8, 352-55 

Index 



LD20 interface, 355-66 
mUltiplexer, 449-61 

Termination, line, 503 
Three-state output, 103-4, 133, 479-80 
Time-multiplexing, 450 
Timer, 225-26, 489-90 
Timing devices, 152-54 (See also Clock; 

Oscillator) 
Timing diagram, 109 
Toggle, 121 
Top-down design, 2, 166 
Totem-pole output, 473, 477 
Traffic-light controller, 224-29 
Transceiver, bus, 437 
Transistor, 467-72 

bipolar, 467-69 
depletion-mode, 470 
enhancement-mode, 470 
MOS, 469-71 
npn, 467-68 
pnp, 467-68 
switching, 469 
unipolar, 469 

Transistor-transistor logic (TTL), 33-34, 474 
families, 473-74 
low-power Schottky, 33-34, 474 
Schottky technology, 474 

Transmission line theory, 502-5 
Tri-state output (See Three-state output) 
True, false (See Logical constants) 
Truth table, 5-19 

in Boolean algebra, 10-19 
canonical, 5 
condensed, 17-18 
definition, 5 

Index 

don't-care output, 18-19 
vector representation, 6 

TTL (See Transistor-transistor logic) 
Two's complement, 93-94 

UART (See Universal asynchronous receiver-
transmitter) 

Unipolar logic families (See Logic families) 
Unipolar transistor, 469 
Unit-distance code (See Code, unit-distance) 
Unit load, 483 
Universal asynchronous receiver-transmitter, 

357-58, 360, 362-63, 365-66, 370, 454 
Universal logic element, 90-91 
Unused gate inputs, 485-86 

Vee, 34, 468 
Voo , 471 
Vss , 471 
Vector, truth table, 6 
Very-large-scale integration (VLSI), 76, 509 
Vietch diagram (See Kamaugh map) 
VLSI (See Very-large-scale integration) 
Voltage inverter (See Inverter, voltage) 
Voltage regulator, 4% 

Waveform, 109 
clock, 171 

Wilkes, Maurice, 371-75 
Wired AND, 63, 478 
Wired OR, 63, 102-3, 478 
Wire list, 444 
Wire-wrap, 442-43 
Wire-wrap controller, 445-49 
Writable control store, 393 

525 





ISBN 0 - 13 ~ 046780-4 


