Second Edition

THE ART OF
DIGITAL

DESIGN

An Introduction to Top-Down Design

By K

CH> s

%@L

FRANKLIN P PROSSER/DAVID E.WINKEL




THE ART
OF DIGITAL
DESIGN

An Introduction
to Top-Down Design
SECOND EDITION

Franklin P. Prosser
David E. Winkel

Indiana University

Prentice-Hall, Inc., Englewood Cliffs, New Jersey 07632



Library of Congress Cataloging-in-Publication Data

WINKEL, Davip E. (date)
The art of digital design.

Order of authors’ names reversed on previous ed.

Includes bibliographies and index.

1. Electronic digital computers—Design and
construction. 2. Minicomputers—Design and construction
1. Prosser, Franklin P. 1II. Title.

TK788.3.W56 1986 004.2'1 86-5042
ISBN 0-13-046780-4

Editorial/production supervision and
interior design: Diana Drew

Cover design: 20/20 Services

Manufacturing buyer: Gordon Osbourne

© 1987 by Prentice-Hall, Inc.
A Division of Simon & Schuster
Englewood Cliffs, New Jersey 07632

All rights reserved. No part of this book
may be reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America

10 9 87 6 5 43

ISBN 0-13-04k780-4 025

PRENTICE-HALL INTERNATIONAL (UK) LiMITED, London
PRENTICE-HALL OF AUSTRALIA PrY. LIMITED, Sydney
PrenTICE-HALL CANADA INC., Toronto

PreENTICE-HALL HISPANOAMERICANA, S.A., Mexico
PrENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi
PreNTICE-HALL OF JAPAN, INC., Tokyo

PRENTICE-HALL OF SOUTHEAST AsiA PTE. LTD., Singapore
EpitorA PRENTICE-HALL DO BRASIL, LTDA., Rio de Janeiro



Contents

PREFACE TO THE SECOND EDITION xiii

Part I Tools for Digital Design

ﬂ DESCRIBING LOGIC EQUATIONS 1

The Need for Abstraction, Formalism, and Style, 1
Style, 1
Abstraction, 2
Formalism, 3
Logic in Digital Design, 3
Logical Constants, 4
Logical Variables, 4
Truth Tables, 5
Logical Operators and Truth Tables, 6
Elements of Boolean Algebra, 9
Basic Manipulations, 9
Equations from Truth Tables, 11
Truth Tables from Equations, 15
Condensing Truth Tables, 17
Don’t-Care Outputs in Truth Tables, 18
Karnaugh Maps, 19
Building K-maps, 21
Simplifying with K-maps, 22
K-map Simplification Blunders, 24
Other Ways of Reading K-maps, 25



Conclusion, 26
Readings and Sources, 26
Exercises, 27

2 REALIZING LOGIC IN HARDWARE 33

Representing TRUE and FALSE with Physical Devices, 33
Mixed Logic: Representing AND, OR, and NOT, 35
Mixed Logic, 36
Mixed-Logic Theory, 42
Building and Reading Mixed-Logic Circuits, 49
Analyzing Mixe. Logic Circuits, 49
Synthesizing Mixed-Logic Circuits, 50
Other Mixed-Logic Notations, 55
The Positive-Logic Convention, 55
Reading Positive-Logic Circuit Diagrams, 58
Mixed Logic for Other Logic Functions, 61
EXCLUSIVE OR and COINCIDENCE, 61
Open-Collector Gates, 63
Implementing the Less-Used Logic Functions, 66
Readings and Sources, 68
Exercises, 69

3 BUILDING BLOCKS FOR DIGITAL DESIGN 75

Integrated Circuit Complexity, 76
Combinational Building Blocks, 76
Combinational and Sequential Circuits, 76
The Multiplexer, 77
The Demultiplexer, 80
The Decoder, 83
The Encoder, 86
The Comparator, 87
A Upniversal Logic Circuit, 90
Binary Addition, 92
The Arithmetic Logic Unit, 94
Speeding Up the Addition, 95
Data Movement, 99
The Bus, 100
Readings and Sources, 104
Exercises, 105

4 BUILDING BLOCKS WITH MEMORY 108

The Time Element, 108
Hazards, 108
Circuits with Feedback, 111

iv Contents



Sequential Circuits, 112
Unclocked Sequential Circuits, 112
Clocked Sequential Circuits, 118
Clocked Building Blocks, 120
The JK Flip-Flop, 120
The D Flip-Flop, 120
Register Building Blocks, 126
Data Storage, 126
Counters, 126
Shift Registers, 131
Three-State Outputs, 133
Bit Slices, 133
Large Memory Arrays, 134
Random Access Memory, 135
Read-Only Memory, 139
Field-Programmable Read-Only Memories, 142
Programmable Logic, 143

The PLA, 144
The PROM as a Programmable Logic Device, 145
The PAL, 147

PAL, PLA, and PLE Programming, 150
Timing Devices, 152
The Single Shot, 152
The Delay Line, 153
The Metastability Problem, 154
Conclusion, 155
Readings and Sources, 156
Exercises, 157

Part I The Art of Digital Design

5 DESIGN METHODS 165

Elements of Design Style, 166
Top-Down Design, 166
Separation of Controller and Architecture, 166
Refining the Architecture and Control Algorithm, 168
Algorithmic State Machines, 170
States and Clocks, 171
ASM Chart Notations, 172
Realizing Algorithmic State Machines, 176
Traditional Synthesis from an ASM Chart, 176
The Multiplexer Controller Method of ASM Synthesis, 178
The One-Hot Method of ASM Synthesis, 183
The ROM-Based Method of ASM Synthesis, 186
Design Pitfalls, 188
Clock Skew, 188

Contents v



Asynchronous Inputs and Races, 190
Asynchronous ASMs, 190
Sidestepping the Pitfalls, 193
Debugging Synchronous Systems, 193
Conclusion, 194
Summary of Design Guidelines, 195
Readings and Sources, 195
Exercises, 196

@ PRACTICING DESIGN 203

Design Example 1: Single Pulser, 203
Algorithmic Solution of the Single Pulser, 204
A Combined Architecture-Algorithm Solution, 206
A Single-Pulser Building Block, 207
Generalizing the Single Pulser, 207
Design Example 2: A System Clock, 208
Statement of the Problem, 208
Digesting the Problem, 209
Algorithm for the System Clock, 209
Implementing the Circuit, 210
Critique, 211
Design Example 3: A Serial Bit Clock, 212
Approaching the Problem, 212
The Initial Architecture, 213
The Control Algorithm, 213
Implementing the ASM, 215
Design Example 4: Serial-Parallel Data Conversions, 217
Specifying the Problem, 218
Building the P — S Converter, 219
Building the S — P Converter, 221
Critique, 224
Design Example 5: Traffic Light Controller, 224
Statement of the Problem, 224
Preliminary Considerations, 225
The Control Algorithm, 225
Realizing the ASM, 226
Choosing a Particular Traffic Signal, 229
Design Example 6: Simple Combination Lock, 229
Stating the Problem, 230
Digesting the Problem, 230
Developing the Algorithm, 231
An Elegant Combination Lock ASM, 231
Architecture, 235
Implementing the Control, 236
Design Example 7; The Black Jack Dealer, 237
The Rules of Play for the Dealer, 238
Stating the Problem, 239

vi Contents



Digesting the Problem, 2
Initial ASM for the Black Jack Dealer, 241
Reducing the Number of States,
Errors in the Algorithm,
Races, Again,
Process Synchronization,
The Single-Pulser Revisited, 247
The Final ASM for the Black Jack Dealer,

The Final Architecture of the Black Jack Dealer,

244

39

244

246

241

Implementing the Control Algorithm,
Summing Up,
Readings and Sources,

Exercises,

254

253

253

7 DESIGNING A MINICOMPUTER

PDP-8I Specifications,

PDP-8 Memory Addressing,

261

PDP-8I Instructions, 266
Architecture of the LD20, 272

Principal Elements of the Architecture,
Data Paths,

274

262

Preliminary Sketch of the LD20’s Control,
Fetch and Execute, 281
Investigating the Fetch Phase,

Developing an ASM Chart for the LD20, 286
Conventions,
Memory Control,
State F1,
State F2,
State F3,
State F4,
State FS,
State F6,
State ¥17,
State IDLE, 298
Execute-Phase Processing, 300
State EO0:. The Single-Instruction Switch, 300
State E0: Detection of Manual Operation,
Execute Phase: Manual Commands,
Execute Phase: Memory-Accessing Instructions,
Execute Phase: The IOT Instruction,
State EO: Operate Microinstructions,

Conclusion,

315

291
293
294
296
297
297
297

286

Readings and Sources,

Exercises,

Contents

319

287

319

281

250

279

303

304
309

247

272

302

249

304

260

vii



BUILDING THE MINICOMPUTER 324

Preliminaries, 324
Auxiliary Variables, 324
Labels for ASM Chart Location, 326
The Data-Routing System, 327
Inputs to the Data Multiplexer, 327
The Select Signals of the Data Multiplexer, 329
ALU Operations, 329
Register-Load Signals, 331
Architecture and Control of the Link Bit, 333
State Sequencing System, 334
The State Generator, 334
Special Systems, 337
Priority Control in the Operate Instruction, 337
The IOP Signal Enabler, 339
Control of the Interrupt System, 340
The Manual System, 341
Logic Equations, 341
The Memory System, 342
Memory Access to the LD20, 342
The Memory Unit, 342
Finished!, 347
Readings and Sources, 347
Exercises, 348

@ INTERFACING TO THE MINICOMPUTER 352

Terminal Communications, 352
The PDP-8’s Input-Output Protocol, 353
From Terminal to PDP-8 (DA03), 354
From PDP-8 to Terminal (DA04), 354
Requirements of the LD20-Terminal Interface, 355
Interface Flags and Interrupts, 355
The Receive Section (DA03), 355
The Transmit Section (DA04), 356
Preliminary Architecture of the Interface, 356
The UART, 357
Incorporating the UART into the Design, 358
The Interface Control Algorithm, 358
Clocking Events in the Interface, 358
Synchronizing Signals to the LD20 and the UART, 360
Algorithm for the Receive Circuit, 360
Circuit Algorithm for the Transmit, 362
Interrupt Generation, 364
Implementing the Terminal Interface, 364
Polishing the 1.D20’s Input-Output Processes, 366
Maintaining the LD20’s Control of the Status Inputs, 366
Attaching Several Devices, 367

viii Contents



A Final Word about Part II, 368
Readings and Sources, 368
Exercises, 369

Part III Bridging the Hardware-Software Gap

ﬂ@ MICROPROGRAMMED DESIGN

Classical Microprogramming, 372
Classical Microprogramming with Modern Technology, 375
Microprogramming with Multiple Qualifiers per State, 376
One Qualifier per State, 379
Single-Qualifier, Single-Address Microcode, 382
Comparison of the Microprogramming Approaches, 385
Moving toward Programming, 385
Cleaning Up the Outputs, 387
Enhancing the Control Unit, 388
The 2910 Microprogram Sequencer, 390
Choosing a Microprogram Memory, 393
The Logic Engine— A Development System for Microprogramming,
The Base Unit, 396
The Backpanel, 397
The Supporting Software, 397
Designing and Debugging with the Logic Engine, 398
The Initial Design, 399
The Initial Testing of the Architecture, 401
Developing the Control Program, 401
Testing the System, 405
Designing a Microprogrammed Minicomputer, 406
Developing a Microprogram, 406
The Architecture of the LD30, 406
A First Approximation of the Command Bits, 407
Writing the High-Level Microcode, 408
The Idle Phase of the LD30, 409
The Manual Phase of the LD30, 411
The Fetch Phase of the LD30, 412
The Execute Phase of the LD30, 413
Interrupt Processing in the LD30, 416
Instruction Decoding in the LD30, 417
Declarations for the LD30 Control Microprogram, 419
Our Design of the LD30 is Complete, 423
Summing Up, 423
Readings and Sources, 425
Exercises, 426

Contents

393

371



ﬂﬂ MICROCOMPUTERS IN DIGITAL DESIGN

The Computer as a Device Controller, 431
Enter the Microcomputer, 432
The Microcomputer in Digital Design, 432
Data Flow in a Microcomputer, 434
Memory-Mapped Input-Output, 435
Separate Input-Output, 435
Hardware for the Bus Interface, 436
Bus Protocols, 437
Microcomputer Input-Output, 438
Programmed Input-Output, 438
Programmed Input-Output with Interrupts, 440
Design Example 1: A Wire-Wrap Controller—Pure Software Control, 442
The Architecture, 443
Specifications for the Controller, 443
The Control Algorithm, 445
Wrapping Up, 449
Design Example 2: A Terminal Multiplexer—Hybrid Hardware-Software Control,
Specifications, 451
The Structure of the Terminal Multiplexer, 452
The Control Algorithm for the Microcomputer, 455
Checking Out the System, 458
Alternative Approaches, 460
Conclusion, 461
Readings and Sources, 462
Exercises, 462

Part IV Digital Technology

312 MEETING THE REAL WORLD

On Transistors and Gates, 465
The Flow of Electrical Charge, 466
Metallic Conduction, 466
Insulators, 466
Semiconductors, 466
Diodes, 467
Bipolar Transistors, 467
MOS Transistors, 469
Gates from Transistors, 471
Bipolar Logic Families, 472
RTL: Resistor-Transistor Logic, 472
TTL: Transistor-Transistor Logic, 473
ECL: Emitter-Coupled Logic, 474

430

449

465

X Contents



Unipolar Logic Families, 475
p-MOS and n-MOS Logic, 476
CMOS: Complementary MOS Logic, 476
Three-State and Open-Collector Outputs, 477
Open-Collector Outputs, 477
Three-State Outputs, 479
Integrated Circuit Data Sheets, 480
Electrical Data, 481
Performance Parameters of Integrated Circuit Families, 483
Input and Output Loadings, 483
Noise Margins, 485
Unused Gate Inputs, 485
The Schmitt Trigger, 486
A Power-On Reset Circuit, 488
Oscillators, 488
The Schmitt Trigger Oscillator, 488
The 555 Oscillator, 489
Crystal-Controlled Oscillators, 490
The System Clock, 490
Switch Debouncing, 491
Lamp Drivers, 492
Driving Inductive Loads, 493
Protecting Switches with Diodes, 494
Solid-State Relays, 494
The Optical Coupler, 494
Power Supplies, 495
Remote Sensing, 496
Integrated-Circuit Voltage Regulators, 496
Power Distribution, 497
Losses in Power Distribution Systems, 497
Combatting Inductance in Power Distribution Systems, 498
Bypassing the Power Supply, 499
Noise, 500
Crosstalk, 501
Reflections, 502
Line Drivers and Line Receivers, 504
Summary, 505
Metastability in Sequential Circuits, 505
What should you do?, 511
A Selection of Integrated Circuits, 512
Readings and Sources, 515

INDEX 517

Contents xi






Preface
to the Second Edition

This book is an introduction to the art of designing hardware for digital circuits.
The design of computer hardware, once the exclusive province of the electrical
engineer, is now of vital interest to the computer scientist, and techniques for
the systematic solution of complex problems—the computer scientist’s specialty—
are of increasing importance to the electrical engineer.

Traditional approaches to design, which evolved prior to the integrated
circuit, place great emphasis on the devices themselves. In earlier times, this
was natural, since the devices were so expensive that the cost of the hardware
controlled the design. This led to the development of many complex methods
of logic minimization, state assignment, handling asynchronous circuits, and so
on, that are now little used because of the smaller cost and greater power and
flexibility of digital components. The complexity of traditional design methods
can actually interfere with the designer’s ability to create a straightforward,
understandable, and correct design.

When we first studied digital design, we consulted traditional textbooks
and practiced traditional design methods, but we found that these methods did
not really help us much to solve complex digital hardware problems. A vast
body of vital knowledge of design was missing from the books, and there was
a great lack of systematic methodology for dealing with a digital problem as a
system. Eventually, we realized that the traditional emphasis was misplaced.
The difficult part of digital design is not choosing or assembling the hardware,
but rather is understanding the problem and developing a systematic solution
for the system’s architecture and its control. For this book, we have looked

xiii



closely at each design technique and have been ruthless in eliminating methods
that do not contribute substantially to the goal of clear and correct design.

Here is our thesis. We must approach hardware design from the top,
remaining aloof from the actual components as long as we can. We must understand
the problem thoroughly and must let its requirements guide us to suitable hardware,
rather than allow premature selections of hardware to force us to make inappropriate
design decisions.

With the realization that the human cost of designing and maintaining a
digital system far exceeds the cost of the materials, digital designers are developing
a new approach to design. This new approach, which this book exploits, means
that our tools must significantly assist us to understand, solve, and document
complex hardware and software problems—if necessary, at the cost of additional
hardware. The designer’s mind must be uncluttered by unnecessary detail. To
one experienced in computer programming, this has a familiar sound. Methods
of designing software have improved drastically. Software writers accept as
valid and powerful such concepts as structured programming and top-down design.
This book is a contribution, in the same spirit, to the field of digital hardware
design.

COURSE LEVEL

This book is for self-study and for classroom use. It should benefit the student
or the professional unsophisticated about digital hardware, yet it provides an
opportunity for old hands to come to grips with some newer trends in basic
design. For background, we assume that the reader has an elementary knowledge
of computer problem solving in a high-level language and some elementary exposure
to the structure of computers and the use of assembly language. The student
should be familiar with such number systems as binary, octal, and hexadecimal,
and with number representations, particularly two’s-complement. We assume
no prior knowledge of electronics or hardware other than Ohm’s law and simple
formulas for series and parallel resistances.

In a college curriculum, this book is suitable for a first course in digital
design. The course may be at the middle or upper undergraduate level in electrical
engineering or computer science. The text is a modernization of the traditional
first course in digital design, emphasizing the solution of design problems rather
than the study of hardware. Students of computer science should feel at home
with the structured methods and will be delighted to find that they can understand
and design complex hardware. Electrical engineering students will gain insight
into modern, systematic design principles and will develop an understanding of
the computer scientist’s emphasis on structure.

PLAN OF THE BOOK

This book first provides a foundation for digital design, emphasizing basic hard-
wired design. It then introduces microprogramming and microprocessor-based

Xiv Preface



design and prepares the student for further study of these topics. Throughout,
we apply the principles of top-down design.

This book has four parts. Three of the parts form a sequence leading
systematically from the fundamentals of logic through digital design with micro-
computers, with an emphasis on solving digital problems using hardwired structures
of the complexity of medium- and large-scale integration (MSI and LSI). The
ordering of the topics is from primitive to complex, the natural way. The fourth
part is a collection of information on digital technology that the student may
read whenever appropriate. Part IV does not depend on the previous parts of
the book.

In Part I, we develop the tools of digital design. In these four chapters,
we present the theory and formalism required for systematic digital design. In
Chapter 1 we cover the theory of logical expressions—Boolean algebra, truth
tables, and useful techniques of simplification. In Chapter 2 we present the
realization of logic in hardware, using small-scale integration circuits. In this
chapter the crucial distinction between voltage and logic is introduced and the
mixed-logic method of drafting physical circuits from logic expressions is developed.
In Chapter 3, we develop a collection of basic design tools: useful combinational
building blocks such as the multiplexer, decoder, and the arithmetic logic unit.
The treatment emphasizes the systematic uses of the building blocks. In Chapter
4 we introduce the theory of circuits with memory—the sequential circuits.
After establishing the theory and use of basic sequential elements such as flip-
flops, we describe standard sequential building blocks such as registers, bit-
slices, random-access and read-only memories, and programmable logic. In
Chapter 4, the student is introduced to the real-world pitfalls awaiting the unwary
designer; these topics are elaborated in Chapter 12.

Part II is an exploration of the art of digital design at the hard wired MSI
and LSI levels. The theme of these five chapters is that a designer must understand
the problem before becoming committed to specific chips and wires—top-down
design. In Chapter 5 we introduce the structure of the solution to a digital
hardware problem: the architecture and the control. We present the ASM method
of expressing control algorithms. Chapter 6 consists of a series of digital design
examples that illustrate the systematic solutions of common design problems at
the MSI level. In Chapter 7, we execute a large-scale design—a complete
minicomputer—using top-down style—and in Chapter 8 we translate that design
into hardware, using the principle of deferring the decisions about hardware.
Chapter 9 is an introduction to asynchronous design through the design of a
terminal interface for the minicomputer.

Part III is a bridge between hardware and software. Here we consider the
control of hardware using microprogramming and microprocessors. In Chapter
10 we discuss microprogramming and its impact on computer design. As an
illustration, we develop a microprogrammed version of the minicomputer designed
in Part II. Chapter 11 is an introduction to the use of conventional microprocessors
and microcomputers in digital control.

In its single chapter, Part IV contains material on digital technology. The
topics in Chapter 12 are independent of the previous material; students may

Preface XV



explore these topics whenever they need the information. Representative topics.
are transistor technology, reading integrated-circuit data sheets, handling pull-
up resistors, clocks, power systems and power distribution, noise problems, line
driving, and metastability.

SUGGESTIONS FOR COURSE CONTENT

This book provides abundant material for a one-semester or two-quarter course
at the undergraduate level, and adequate material for a year’s study. Unless the
student will study microprogramming in a subsequent course, we feel that Chapter
10 should be included. In a compressed schedule, an instructor might use Chapters
1-5, several of the Design Examples in Chapter 6, Chapters 7 and 8 (possibly
excluding the treatment of the OPERATE instruction), and Chapter 10.

Chapter 12 (Part 1V) is a buffer in that the instructor can adjust the degree
of coverage of hardware technology without disturbing the main theme of the
course.

LABORATORY

Laboratory experience is a vital part of any study of digital design. In our
courses, taught for over a decade at Indiana University, the students construct,
study, debug, and extend the complete minicomputer designed in Chapters 7,
8, and 9. This is a major project, occupying about a semester of laboratory
work. The students experience a great sense of achievement when their mini-
computer—a fully operational PDP-8 built with MSI technology—actually runs
sophisticated PDP-8 software.

We have found that lengthy experiments with individual gates, flip-flops,
and registers are unnecessary; the laboratory time is better spent working on
the design and construction of more complex systems. Students master individual
components in a natural way while studying the structure of larger systems. In
any event, we encourage instructors to provide a digital laboratory to accompany
the course for, after all, no design works until it is built, and executing designs
on paper is only a part of the art of digital design.

With the installation in 1984 of our Logic Engine Development Systems as
the basis for supporting the laboratory work, our students have been able to
build a microprogrammed version of the large minicomputer lab project. They
are able to compare firsthand and in detail the characteristics of hard wired
control and microprogrammed control. Such lab experience is impossible without
sophisticated microprogramming support. A laboratory manual for the mini-
computer project, including both hard wired and microprogrammed versions of
the control, is available from Franklin Prosser.

Xvi Preface



THE SECOND EDITION

In the time since our first edition appeared, we have observed increased acceptance
of the principles of structured design. ASM charts now appear in many textbooks.
Mixed logic, although not yet as extensively used as ASMs, has gained a proper
central place in several new texts and manufacturers’ handbooks.

For our second edition, we have extensively revised many sections while
retaining the first edition’s basic format. We feel that the following enhancements
are of particular importance:

In Chapter 2, the theory of mixed logic is formalized and extended, and
the treatment of positive logic is enlarged.

In Chapter 3, digital arithmetic is given more thorough treatment.

In Chapter 4, read-only memory and programmable logic are substantially
emphasized, and the problem of metastability is addressed.

In Chapter 5, ROM-based controller synthesis, omitted in the first edition,
is given its proper treatment.

Chapter 10 has been rewritten, and examples of top-down microprogramming
based on our Logic Engine microassembly language LEASMB are included.
A microprogrammed version of the minicomputer project of Chapters 7, 8,
and 9 is fully expounded, and serves as an important vehicle to display
top-down microprogramming techniques.

Chapter 12 contains new treatments of transistor electronics and bipolar
and unipolar logic families, and several additional topics. Metastability,
widely recognized in the design community at last, is thoroughly discussed,
and guidelines for dealing with the problem are presented.

In all chapters, exercises have been revised and new exercises added. Each
chapter ends with suggested additional readings and sources.

Franklin Prosser
David Winkel

Preface xvii






Describing Logic
Equations

Before you begin this journey into digital design, it is important that you understand
the philosophy that will guide your study. If you have not read the Preface, do
so now before you go on. There we discuss the issues that give rise to the need
for good style and structure in digital design. Also, the Preface contains an
outline of the book, which will give you a view of where you are heading and
how you will get there. It is particularly important that you understand our
approach to the details of digital hardware. The overriding emphasis is to let
the problem solution dictate the hardware, rather than allowing premature com-
mitments to hardware to coerce the solution. This conscious suppression of
hardware detail during most .of the design pays big dividends. Chips and wires
and power supplies are still important—they are vital to success, and you will
need a good background in many areas of digital technology in order to become
an accomplished designer—but too often in digital design the hardware has
dominated the solution to the problem. To head off this common malady, we
have deferred to the end of the book almost all of the technology needed for
your introduction to digital design. This information, in Part IV, does not depend
on the material in Parts I through III. Read the topics in Part IV as you require
or desire them while you are progressing through the first three parts of the text.

THE NEED FOR ABSTRACTION, FORMALISM, AND STYLE

Style

The human mind needs help when it tackles complex tasks. As we use the term,
style is a method of partitioning a large problem into manageable subunits in a

1



systematic and understandable way. The need for good style is more apparent
as problems become larger. The most complex projects ever attempted by human
beings have been computer programs; some, exceeding 500,000 lines of code,
are so large that no one person is able to encompass the entire program, or even
a significant part of it. The study of programming style was forced upon practitioners
of the art as a way of gaining control over their projects. Programming style
has blossomed into a rather well-defined set of techniques, bearing such names
as ‘“‘top-down’’ and ‘‘structured.”” The hardware of a large computer involves
complexity on the same scale as these giant computer programs. The study of
style in digital system design is not as well developed as its programming counterpart
but is nonetheless essential to success. In this book, we emphasize style.
Here are some rules of good style in digital design:

(a) Design from the top down. The design starts with the specification of the
complete system in a form compact enough that one person can readily
comprehend it. The design proceeds by sectioning the digital system into
subunits such as memory, arithmetic elements, and control, with well-
defined interrelationships. You may then describe each unit in more detail
and still retain the ability to comprehend both the whole structure and the
details of the units. This process continues until you have completely
specified the system in detail, at which time construction may begin.

(b) Use only foolproof techniques that will keep you on the narrow path of
safety in the design process. Digital hardware allows a high degree of
flexibility in design—so much flexibility that designers can bury themselves
in clever and unusual circuits. Uncontrolled use of such flexibility promotes
undisciplined, unintelligible, and incorrect design of products. This phe-
nomenon has its counterpart (to a less severe degree) in computer software
because assembly language programming offers access to the full power of
a digital computer. Experience in the solution of hardware and software
problems has shown that we must restrict our design tools and techniques
to those that can be shown to work reliably and understandably under a
variety of circumstances.

(c) Use documentation techniques, at both the system level and the detailed
circuit level, that clearly portray what you, the designer, were thinking
when you reduced your problem first to an abstract solution and then to
hardware. This often-violated precept boils down to common courtesy.
Put yourself in the position of a user or a maintainer of your hardware
design; in such a position you would be grateful for clear, complete
documentation.

Abstraction

In our context, abstraction means dealing with digital design at the conceptual
level. The concept of a memory, a central theme in every computer, is an
abstraction. When starting a design we need to deal with conceptual elements
and their interrelationships: it is only later in the design process that we need

2 Tools for Digital Design Part |



to worry about the realization of the concepts in hardware. This freedom from
concern about the details of various hardware devices is absolutely essential if
we are to get a good start on a new design of any complexity. Start at the top
and begin reducing the problem to its natural conceptual elements. For example,
a computer will need a memory, an input—output system, an arithmetic unit,
and so on. We ordinarily begin a design at this highly abstract level, and carry
the conceptual process down, level by level. Thus, at the next level we draw
a block diagram of an arithmetic unit by interconnecting functional units such
as registers, control units, and data paths. The initial abstraction is a critical
part of any design, since bad early planning will inevitably lead to bad imple-
mentations. There is no way to rescue a bad design with clever tricks of Boolean
algebra or exotic integrated circuits.

Formalism

Formalism is the theory of the behavior of a system. In a digital design, formalisms
help us to establish systematic rules and procedures with known characteristics.
Formalisms are important at all levels of design. In the traditional study of digital
systems, one of the principal formalisms is Boolean algebra, the theory of binary
logic, named after George Boole, who studied it long before the advent of digital
computers. Boolean algebra is an essential tool for describing and simplifying
the detailed logical processes at the root of digital design. Powerful and well
developed as Boolean algebra is, it nevertheless becomes of less benefit as our
level of abstraction increases. For instance, at the top (‘‘systems’’) level of
abstraction, where we are thinking in terms of the movement, storage, and
manipulation of data, Boolean algebra is of little use. As we move closer to the
detailed implementation—as our design becomes less abstract and more concrete—
Boolean algebra begins to be a useful tool.

At the systems level, the formalisms are less well developed, appearing as
structures and rules rather than mathematical constructs. High-level formalisms
are nevertheless of great importance to good design, for only by adopting systematic
methods at all levels can we hope to transform correct concepts reliably into
correct hardware.

LOGIC IN DIGITAL DESIGN

Imagine trying to speak without the words and, or, and not. Discarding these
little words would severely handicap our ability to express complex thoughts.
Although and, or, and not each have several meanings in English, the most
profound uses describe logical combinations of thoughts: ‘‘I have money for gas
and my car is running’’; ‘“There is a paper jam or the printer is out of paper’’;
““‘She will not fail.”” Our thought processes are molded by our language, and
when we design digital systems we will use and, or, and not in the same sense
as above. In this book, we denote the specific logical uses of and, or, and not
by the symbols AND, OR, and NOT.

Chap. 1 Describing Logic Equations 3



It is nearly always useful to formalize heavily used concepts; by so doing
we achieve compactness and are able to handle more complexity than if we
wrestle with informal concepts such as the normal English language uses of and,
or, and not. To pave the way for a Boolean algebraic treatment of digital logic,
we will formalize the concepts of logical constants, variables, and operators.

Logical Constants

The statement ‘‘There is a photodiode error’’ is either true or false. The operators
AND, OR, and NOT are likewise concerned with two logical values, true and
false.

We will concern ourselves only with logic systems that can be formalized
with a binary set of logical constants, TRUE and FALSE. Since we use these
concepts so heavily, it is worthwhile seeking abbreviations. We will represent
TRUE by T or 1, and FALSE by F or 0. In this context 1 and 0 are not decimal
numerical values; they are abbreviations for TRUE and FALSE, and nothing
more. We will use 1 and T, 0 and F interchangeably in the text. Each abbreviation
has its value, and both are widely used in digital design. In the study of hardware
implementation of logic in Chapter 2, we will show a strong bias toward the
T,F notation, to avoid a common point of confusion. On the other hand, in
much of this chapter the 1,0 form for TRUE and FALSE is convenient. Be
prepared to accept and use either form.

Logical Variables
Consider the declaration
A = photodiode error

We use the logical variable A as an abbreviation for the cumbersome phrase
“‘photodiode error’’ to achieve compactness. The variable A can have two
values, T or F. If we do not have a photodiode error, then A = F; if we do,
then A = T. Although it is possible to use single letters to represent logical
elements, as we have above, it is usually better to use a more recognizable
abbreviation, such as

PDE = photodiode error

In general, the abbreviations should be a compromise between clarity
and brevity. It is not really necessary to abbreviate at all. We could use
PHOTODIODE.ERROR as the name of the logical variable, but it is too long
to be convenient. A is short but conveys no meaning; PDE is a good compromise.
We often use numbers in logical variables to indicate a particular member of a
set of variables. A common unit of computer information is the 8-bit byte. If
we needed to examine the individual bits of the byte, we might choose to assign
distinct names to the bit values:

4 Tools for Digital Design Part |



B0 = 1 in leftmost bit

B7 = 1 in rightmost bit

Other notations for sets of variables will suggest themselves. Instead of the
distinct names for bits in the byte, we might choose to use a subscripted variable
B, . . . B,;, with equivalent meanings.

In this book we will capitalize the letters in the names of logical variables
and will always start each name with a letter. To preserve the mnemonic value,
names of variables may include periods as separators; GO.ON is an example.

Truth Tables

Consider a set of logical variables, each variable of which may have one of two
values, T or F. In digital design we are interested in combining logical variables
(e.g., using AND, OR, and NOT) to produce new variables that again have only
two possible values, T or F, for any combination of given variable values. In
other words, we wish to study binary functions of binary variables.

For a set of logical variables, we may define any desired function by giving
the function value for each possible set of variable values. A tabular form with
input variables on the left and the function on the right is useful for this display.
For example, here is a logical function X of three variables A, B, and C, shown
in both the 1,0 and the T,F notations.

>
a
>}
-

—_———— o o O
—_——0 O OO
R - - )
cCoomOommo
=== >
ST QO
e e T B B Mo s B e s T I~
Mo T | X

Such a display is called a truth table. Having chosen an ordering of the
input variables (A, C, B in this case), we list all possible combinations of the
variables’ values, in binary numeric order. A tabulation in this standard form
is called a canonical truth table. ‘‘Canonical’’ means standard. For three variables,
the canonical truth table has 2° = 8 rows, arranged from binary 000 through
binary 111. Since each binary bit pattern corresponds to a decimal number, we
may describe a row of a canonical truth table by its decimal number equivalent.
For example, the row corresponding to the variable values 0110 for a four-variable

Chap. 1 Describing Logic Equations 5



function may be called row 6. When convenient, you may write the row numbers
on the left of the canonical truth table.

For canonical truth tables, we may compactly describe the function by a
vector of function values. For example, the three-variable truth table for X
above yields an eight-element vector

X(A,C,B) = (0,1,1,0,1,0,0,0)

Although we usually choose to list the values of variables in canonical
order, any other order of rows displays the same information. The following
two truth tables are equivalent, but the right-hand table lacks the useful uniformity
of the canonical form on the left:

Row number D E Y Row number D E Y
0 0 0 0 2 1 0 1
1 0 1 0 0 0 0 0
2 1 0 1 1 0 1 0
3 1 1 0 3 1 1 0

Logical Operators and Truth Tables

We will now give a precise definition of the three logical operators AND, OR,
and NOT.

NOT. We represent logical NOT by the overscore. Thus, if PDE is a
logical variable, then

NOT PDE = PDE

In words, we would describe the notation PDE as ‘‘PDE not.”” We may define
NOT by listing in a truth table all possible values for an arbitrary logical variable,
and the corresponding values of the logical NOT of that variable. Since a logical
variable A can have only two values, 1 and 0, the following list is exhaustive:

Al A

—
O

We regard the formal definition of logical NOT to be given by its truth
table. Remember that 1 and 0 represent TRUE and FALSE.

AND. We represent logical AND by a dot separating two logical variables—
we write B AND C as B*C. We shall faithfully use the ‘“«>> symbol to represent

6 Tools for Digital Design Part |



the AND operator even though some authors omit it when dealing with single-
letter logical variables. Thus, if you insist upon single-letter names, you might
interpret BC as B+C. This is dangerous because we may want to name a single
logical variable with the two-letter name BC. In real-world logic design, single-
letter names are not descriptive enough to be of use. There are only 26 possible
single-letter names and a typical design may require many more than 26 names.
We therefore give up the dubious advantage of having an implied AND for the
real advantage of multiletter names for logical variables.

We will define AND with a truth table. There are two independent variables
in the logical AND, each of which can assume either of the two values, 1 and
0. Therefore, specifying the function value for each of the four combinations
of inputs completely defines AND:

B C B+C
0 0 0
0 1 0
1 0 0
1 1 1

The table corresponds to our intuitive notion of AND in that B<C is true only
if both B and C are simultaneously true.

Just as we may generalize the English use of and to encompass more than
two variables, we can do so for the formal logical AND. The truth table for
A*B+C is

A B C | ABeC
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 o 0
10 1 0
1 10 0
1 1 1 1

For more than three variables, the truth table becomes unwieldy, and we
revert to a verbal definition of the logical AND:

The logical AND of several variables is true only when all the variables
are simultaneously true.

OR. The symbol for logical OR is the + sign. Do not confuse this with
the use of + in other contexts to represent arithmetic addition. Since in logic

Chap. 1 Describing Logic Equations 7



design the uses of logical OR will vastly outnumber the uses of an arithmetic
plus, we choose a convenient single symbol for the OR operator and we use the
more cumbersome word ‘‘plus’’ or the symbol ‘“(+)”’ for an arithmetic plus.
Here are two word statements translated into their corresponding logic design
notations

A is true if B OR Cis true A=B+C
2 added to3is 5 S=2plus3,or5=2(+)3

The defining truth table for a two-input logical OR is

]
9}
&
+
9}

_—— O
—_—0 = O
—_——— O

As with the AND operator, we may generalize the definition of the logical OR
to more than two input variables. In words, the output is true if at least one of
the inputs is true. For instance,

>
h<
~
8
b

AY + PDE + X

—_————-e o O O
— O D e e—m OO
—_—O OO -=O
—_— - O

This completes our definition of AND, OR, and NOT. These logical operators
operate on input variables to yield a single output. The NOT operates only on
single variables, while AND and OR fundamentally operate on two inputs. For
our convenience we may also think of AND and OR as multi-input operators.
Truth tables are useful in many designs, but we need a more compact and
powerful tool for representing logical manipulations. An algebra of logical operators,
called Boolean algebra in honor of George Boole, who first explored the properties
of the logical operators, is analogous to the familiar algebra of arithmetic operators.
In the next section, we present some simple but important Boolean algebraic
results.

8 Tools for Digital Design Part |



ELEMENTS OF BOOLEAN ALGEBRA
Basic Manipulations

Boolean algebra is important to hardware designers because it allows the compact
specification and simplification of logic formulas. Physical devices can perform
the AND and OR functions, and it is this fact that raises Boolean algebra from
the realm of interesting theory to the role of a vital design tool. The algebra
may be developed from any of several starting points. Modern mathematicians
derive Boolean algebra from a compact set of abstract postulates, producing an
elegant and rigorous theory; however, in building a useful tool to assist structured
digital design, we best achieve our goals by emphasizing the relationship of truth
tables to logic equations. Truth tables and allied tabular displays play an important
role in digital design and implementation. Therefore, we will assume as our
starting point the existence of the two binary values TRUE (T or 1) and FALSE
(F or 0), and the three operators AND, OR, and NOT, with behavior described
by their truth tables.

Boolean algebraic formulas follow certain conventions. Our intuition tells
us that we want the operators AND and OR to commute (e.g., A+ B=B +
A) and associate [e.g., A + (B + C) = (A + B) + C]. The operators also
distribute according to the relations

A*(B+ C)=(A*B) + (A-C)
A+ (BC)=(A+B)(A+C()

The conventional hierarchy of operator action in complex expressions is

First: NOT
then: AND
last: OR

Our notation for logical NOT (the overscore) explicitly shows the scope of action
of the NOT operation, so the only possible confusion in evaluating expressions
would occur with AND and OR. As the hierarchy shows, AND takes precedence.
As an example, consider

X =A+BC

Evaluation is in the order specified below by the parentheses, innermost par-
enthesized expressions being evaluated first. Thus

X = ((A+(B(C)))

Parentheses are useful in Boolean equations to override the normal hierarchy,
just as we use them for similar purposes in conventional algebra.

Below are some fundamental relations of Boolean algebra; memorize these
results.

Chap. 1 Describing Logic Equations 9



A=A (1-1)
AT=A A+F=A S (1=2)
AF=F A+T=T (1-3)
AA=A A+A=A (1-4)
A*A =F A+A=T 1-5)
AB=A+B A+B=A4A°B (1-6)

Each identity involving AND or OR operators comes in two forms, one emphasizing
AND, the other emphasizing OR. This principle of duality is a characteristic
of Boolean algebra, and it has important applications in the study of logic and
in the implementation of logic functions with physical devices. The dual identities
are related by this rule:

Change each AND to OR, and each OR to AND, and change each T to
F, and each F to T.

Equation (1-6) is the well-known De Morgan’s law. It is of special importance
because it allows us to convert Boolean operators from AND to OR, and vice
versa.

You may prove each of the foregoing identities by using the truth-table
definitions of the logical operators. To illustrate the art of proving theorems
with truth tables, we will prove the validity of De Morgan’s law. Start with the
form A*B = A + B. Develop truth tables for the left-hand side and for the
right-hand side of the identity. (When convenient, we may show several functions
[outputs] in the same table: we write two or more truth tables in one package.)

A B A*B A*B A B A B A+B
F F F T F F T T T
F T F T F T T F T
T F F T T F F T T
T T T F T T F F F

A truth table is an exhaustive list of function values for each possible combination
of inputs; therefore, if two truth tables have identical rows, the functions behave
identically. You see that the truth table for A*B is the same as that for A +
B; this proves Eq. (1-6).

De Morgan’s law extends to more than two variables. For example, the
following identities are valid.

A+B+C=A'B-C AB-C=A+B+C
Several other Boolean identities find frequent use in our design work. You

may demonstrate each relationship using truth tables or using the previous Boolean
identities.

10 Tools for Digital Design Part |



A+AB=A A*(A+B)=A (1-7)
A+A*B=A+B A*(A +B)=A+B (1-8)

The left-hand form of Eq. (1-8) is not immediately obvious, but it is of great
help in reducing the complexity of commonly occurring Boolean expressions.
After De Morgan’s law, Eq. (1-9) is perhaps the most widely used relation. It
is the basis for several systematic Boolean simplification procedures. Presently,
we will develop the one simplification method, Karnaugh maps, that will be of
most benefit to our design work.

Truth tables serve as an easy means of verifying the validity of small
Boolean equations, whereas the Boolean identities presented above are useful
in manipulating both large and small Boolean equations. Here is an example of
Boolean algebraic manipulations.

A*(B+C+(B + K)) = A*(B+ C*B + C*A) (distribution law)

= A+(B + C+A) [Eq. (1-7)]

= A*B + A*(C*A) (distribution law)

= m (commutation law)

= m (association law)
=AB+FC [Eq. (1-5)]

=A'B [Egs. (1-3) and (1-2)]
=A+B (De Morgan’s law)

Equations from Truth Tables

If the truth table and logic equation are to work hand in hand as design aids,
we must be able to derive a logic equation for a function from its truth table.
Consider this example:

Row number

ST | ®
mHETT | S

A
F
F
T
T

W -

In words, W is true only if A is true and B is false (from row 2). More formally,
W = A+B. Another example is

Row number

W=

= |
e e o Bor M s N I~
ST |~

Chap. 1 Describing Logic Equations 1



Here, our intuitive understanding of the truth table is that Y is true whenever
A is false and B is false (row 0), or whenever A is true and B is false (row 2),
or whenever A is true and B is true (row 3). Thus

Y=A*B +A*B + A+B (1-10)
Incidentally, we may simplify this equation:

Y=AB+A*B+AB
=B +A*B [by Eq. (1-9)] (1-11)
=B+A [by Eq. (1-8)]

Viewing this truth table another way, we may say that Y is false only when
A is false and B is true (row 1):

Y=A4A°B (1-12)

We have two equations for Y derived from the same truth table—Eqs. (1-10)
and (1-12). Can you show that the expressions for Y are equivalent?

Which way is best for writing equations from truth tables—reading true
conditions for the function, or reading false conditions? Both ways result in
equivalent expressions, usually in somewhat different form. For equations of
more than two variables, when there are many rows in the truth table, you will
usually wish to use the method that involves the fewer AND terms. In this
example, Eq. (1-12), derived from the false function values, yields the more
direct and simple result.

Sum-of-products form. Equation (1-10) (and also Eq. [1-11]) expresses
the function Y in the sum-of-products form. This is the most common form for
deriving Boolean equations from truth tables, and in this context the form fits
nicely with our thought processes. The name ‘‘sum of products’ comes from
an analogy of the Boolean operator symbols with those of arithmetic: the expression
is a sum (OR) of product (AND) terms.

In sum-of-products form, a product term consists of the logical AND of a
set of operands, each operand being a logic variable or its negation. (A trivial
form of product term consists of a single variable or its negation.) A variable’s
name must appear at most once in a product term. For example, A, A*B, and
A+B+C are valid product terms, whereas A*A and A <B+B+C, although valid
Boolean expressions, are not proper product terms.

A product term containing exactly one occurrence of every variable (either
asserted or negated) is called a minterm or a canonical product term. A function
expressed as a logical OR of distinct minterms is in canonical sum-of-products
form or disjunctive normal form. Our intuitive method for deriving equations
from truth tables yields the canonical sum-of-products form, as in Eq. (1-10).
An expression may be in sum-of-products form yet not be canonical. Equation
(1-11) is a noncanonical sum-of-products expression.

12 Tools for Digital Design Part |



We may now state formal prescriptions for deriving sum-of-products logic
equations from canonical truth tables:

To derive a sum-of-products form for a function from a canonical truth
table, write the OR (sum) of the minterms for which the function is true.
Similarly, to derive a sum-of-products form for the complement of a function
from a canonical truth table, write the OR of the minterms for which the
function is false.

Applying these rules to the previous truth table yields Eqgs. (1-10) and
(1-12).

For n-variable functions, there are 2" possible minterms. A minterm is
sometimes designated by m;, where i is the number of the single canonical truth-
table row for which the minterm yields truth. For example, m, = A*B+C yields
truth only for variable values A = 1, B = 0, C = 0; this corresponds to row
4, since binary 100 is decimal 4. Again, m, = A +B+C produces truth only for
row 2 (binary 010). (The name minterm denotes that the term is true for only
one row of the table.) With this notation, we may describe canonical sum-of-
products equations as sums of minterms. Equation (1-10) becomes Y = m, +
m, + m;. Although this notation is important in certain developments of Boolean
algebra, we will not use it frequently in this book.

Equation (1-12) is a canonical sum-of-products equation for Y, albeit a
somewhat trivial form containing only one term. We may use the minterm
notation for this form also:

?=m1

Product-of-sums form. There is another formulation of logic expressions
from truth tables: the product-of-sums form. This form consists of the AND
(the product) of a set of OR terms (the sums), such as (A + B)*(A + B)*(B).
In a product-of-sums expression, a sum term consists of the logical OR of a set
of operands, each operand being a logic variable or its negation, and each variable
appearing at most once.

A sum term that contains exactly one occurrence of every variable (either
asserted or negated) is called a maxterm or canonical sum term. A function
expressed as a logical AND of distinct maxterms is in canonical product-of-sums
Jorm or conjunctive normal form. The product-of-sums notation is not much
used in practical design, since it lacks the sum-of-products’ easy kinship with
our thought processes. An expression may be in product-of-sums form yet not
be canonical, if one or more of the sum terms is not a maxterm. For a three-
variable function, A + B + Cis a maxterm; B + Cisnot. W = (P+ Q + R)+
(P + Q + R) is in canonical product-of-sums form; W = (P + Q)(P + Q +
R) is not canonical.

The prescriptions for forming product-of-sums logic equations from truth
tables are:

Chap. 1 Describing Logic Equations 13



To derive a product-of-sums form of a function from a canonical truth table,
write the AND (product) of each maxterm for which the function is false.
Similarly, to derive a product-of-sums form for the complement of a function,
write the AND of each maxterm for which the function is true.

Applying these rules to the previous truth table, we have
Y=(A+B)
Y = (A + B)*(A +B)*(A +B)
The first equation agrees with Eq. (1-11), obtained by simplifying the sum-of-

products form in Eq. (1-10). With the aid of the distributive law, we may simplify
Eq. (1-13) to yield

(1-13)

Y =A-B

in agreement with Eq. (1-12).

A maxterm is true for every row of the canonical truth table except one;
we sometimes specify the maxterm by M;, where i is the row number for which
the maxterm is false. For example, (A + B + C) is true for every combination
of values of variable except A = 1, B = 0, C = 1, which designates row 5
(binary 101 = decimal 5). Maxterm M, is (A + B + C), since only for variable
values 000 does the term produce a false value. The name maxterm connotes
that the term is true for all but one set of variable values. We occasionally write
canonical product-of-sums expressions, analogous to the sum-of-products formalism,
as products of maxterms. For instance, the products of sums above become

Y= (A + E) = M]
Y = (A+B)(A +B)(A +B) = My"M,*M;

To illustrate the four rules for producing canonical equations, we derive
the equations for a function W of three variables:

Row number J K L w
0 0 0 0 0
1 0 0 1 1
2 0 1 0 1
3 0 1 1 1
4 1 0 0 0
5 1 0 1 0
6 1 1 0 0
7 1 1 1 0

Sum of products on true outputs:
W =TeK*L+T*K*L +J*K-L (1-14)

14 Tools for Digital Design Part |



Sum of products on false outputs:

W = JeK*L + JeK*L + J*K+L

+ JoKL + J*K+L (1-15)
Product of sums on false outputs:
W={J+K+L)(J+K+L)(J+K+L)
«(J+K+L)}J+K+L) (1-16)
Product of sums on true outputs:
W=UJ+K+L)(J+K+L)(J+K+L) (1-17)

You should simplify each equation, using algebraic identities, and verify that
the equations are equivalent.

Truth Tables from Equations

Sometimes you will wish to convert a logic expression into its truth-table form.
If the expression is in sum-of-products form, the conversion is easy. Each
product term will form one or more truth-table rows having a true function value.
A canonical product term (one with all the variables in it; a minterm) produces
one row with an output of TRUE. A product term with fewer variables yields
more rows, since such a term is true for any values of the missing variables.
Often more than one product term in the sum will contribute truth for a given
row of the truth table. This is fine—double-truth is still truth!

As an example, consider this equation of three variables:

Y= JK + JeKeL + JeKL + K-°L (1-18)

‘Term 1 Term 2 Term 3 Term 4

The truth table for this equation is

J K L |vY

0 0o 0|0

0 o0 1]o0

o0 1 0] o0

0 1 1|1 (Terms 2 and 4) (1-19)
1 0 0 1 (Term 1)

1 0 1 1 (Term 1)

1 1 0 1 (Term 3)

1 1 1 1 (Term 4)

Terms 2 and 3 are canonical; each contributes a true output to one row of the
table. Terms 1 and 4, having a missing variable, contribute true outputs to two
rows each.

Chap. 1 Describing Logic Equations 15



Equations in product-of-sums form are most easily translated into truth
tables by focusing on the conditions for having false function values. Each sum
term in the product will assure a false expression value whenever all its variables
are the opposite of the form in the term. For example, consider the following
equation of three variables:

G=(A+B+C)(A+B)(A+B+0C)

Term 1 Term 2 Term 3

Term 1 makes G false for row 4 (100) of the truth table; term 3 produces a result
of false for row 7 (111). Term 2, with its missing variable C, produces a result
of false for two rows, 4 (100) and 5 (101). Terms 1 and 3 are canonical: each
contributes a false function value for one row; term 2 is not canonical. Here is
the truth table:

Row number A B C G
0 0 0 0 1
1 0 0 1 1
2 0 1 0 1
3 0 1 1 1
4 1 0 0 0 (Terms 1 and 2)
5 1 0 1 0 (Term 2)
6 1 1 0 