PDP-11 FORTRAN-77/RT-11
Object Time System Reference Manual

AA-BR71A-TC

March 1984

This document describes the object modules that are linked with com-
piled FORTRAN-77/RT-11 V5.0 code by the RT-11 linker to produce
an executable job. includes a description of the character-handling
modules.

SUPERSESSION/UPDATE INFORMATION: This is a new document
for this release. -

OPERATING SYSTEM AND VERSION: RT-11 V5.1

SOFTWARE VERSION: FORTRAN-77/RT-11 VS.0

NWN

Muitiware, Inc.

Adapted from PDP-11 FORTRAN-77/RSX by Multiware, Inc.
139 G Street, Suite 161, Davis, California 95616

digital equipment corporation - maynard, massachusetts

First Printing, March 1984

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibilty
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be wused or copied only in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on

equipment that is not supplied by Digital Equipment Corporation or its
affiliated companies.

Copyright (:) 1984 by Digital Equipment Corporation

All Rights Reserved

Printed in U.S.A.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0s/8
DECUS EduSystem PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAX TYPESET-8
DDT LAB-8 TYPESET-11
DECCOMM DECSYSTEM-20 TMS-11
ASSIST-11 RTS-8 ITPS-10
VAX VMS SBI
DECnet IAS PDT

DATATRIEVE TRAX Eﬂgﬂnau MW-F77-006

HOW TO ORDER ADDITIONAL DOCUMENTATION

In Continental USA and Puerto Rico call 800-258-1710 DIRECT MAIL ORDERS (CANADA).
In New Hampshire, Alaska, and Hawaii call 603-884-6660 Digital Equipment of Canada Ltd.
940 Belfast Road
in Canada call 613-234-7726 (Ottawa-Huil) Ottawa, Ontario K1G 4C2
800-267-6146 (ail other Canadian) Attn: A&SG Business Manager

DIRECT MAIL ORDERS (USA & PUERTO RICO)* DIRECT MAIL ORDERS (INTERNATIONAL)

Digital Equipment Corporation Digital Equipment Corporation

P.O. Box CS2008 A&SG Business Manager

Nashua, New Hampshire 03061 c/o Digital's local subsidiary or

approved distributor

*Any prepaid order from Puerto Rico must be piaced with the
local Digital subsidiary (809-754-7575)

International orders should be placed through the Software Distribution Center (SDC), Digital Equipment
Carporation, Morthboro, Massachusetts 01532,

' CONTENTS

CHAPTER 1 OBJECT TIME SYSTEM OVERVIEW

1.1 TABLES, BUFFERS, AND IMPURE STORAGE
1.2 I/0 PROCESSING ROUTINES . o .
1.3 JOB CONTROL AND ERROR PROCESSING ROUTINES .o o
1.4 MATHEMATICAL FUNCTIONS AND SYSTEM SUBROUTINES
1.5 COMPILED-CODE SUPPORT ROUTINES . . « « &+ o o o

e 9 e o @

CHAPTER CONVENTIONS AND STANDARDS
REGISTERS . .
CALLING SEQUENCES
R5 Calls
PC Calls
R4 Calls
FO Calls
Special Call Conventlons
LABELING CONVENTIONS . . .
CONTEXT SAVE AND RESTORE .

LN
e o o & &
U o W N
® o o ® a
e & o 8 o
s & o s e
s s o o o @
5 o e & o @ o & o
¢« 8 o o o o & @ o
® s 2 & o o o » &
¢« a4 o s & o e 8 @
5 o © o o s o & s
® & 8 o 6 o 8 o @
e 8 o6 o 8 & o o »
s 8 & © » @ o & @
s o o 6 6 & & o o
& 2 o 8 & & b o 8

CHAPTER 3 ASSEMBLY LANGUAGE INTERFACES TO THE OTS

3.1 WRITING A FORTRAN MAIN PROGRAM IN ASSEMBLY
LANGUAGE . . . o o e
3.2 LINRKAGE TO THE FORTRAN IMPURE STORAGE AREA s s e

CHAPTER DATA STRUCTURES AND STORAGE

.1 WORK AREA STORAGE DESCRIPTION . . « o o o o« o =
02 LOGICAL UNIT CONTROL TABLE . « « o o o s o o o »
«2.1 LUB Definitions . « ¢« ¢ ¢ ¢ « o o o o o o o =

CHAPTER OVERVIEW OF FORTRAN INPUT/OUTPUT
COMPILED-CODE INTERFACE . . .
Initialization Processing .

1 The Routines . . « « « « & .
2 SINITIO & & o « s o o o o« .
List Element Transmission .
Termination Call
DATA-FORMATTING LEVEL
RECORD PROCESSING LEVEL . . .
PRINT, TYPE, AND ACCEPT STATEMENTS

e 2 s o o o o
e 2 e @ o o @

OPEN AND CLOSE STATEMENTS . . .
OTHER INTERNAL SUPPORT ROUTINES
$FCHNL, $GETFILE, and $IOEXIT

¢« & s & o © © ® 6 © @

@ & © ¢ & o o © s & o ®

© © % 6 © 4 o & © ¢ 9 © o

°
.
°
.
°
.
°
.
.
.
-
.
°

.1

.2 Default File Open Processing =-- SOPEN
.3 Default File Close Processing -- $CLOSE . .
.4 Direct Access Record Number Checking == S$CKRC
.5 Associated Variable Update -- $SASVAR

auuuotohnuuiunnunuiutununnowm w
@ & & 8 6 s s & & & o © 0 o o 8

AN NO U W N

o Zo o s 6 s s s s s 6 8 s 0 »

e
INFNENYER

e o e e ®

NODRNNODNDNDDNDND
Ut WwWWw

® &2 e o o & o © o

ww
[N

P re
N

Ul‘.iﬂUlU'iUlUlU‘IU‘I
COoOWVWWWYWOUIWWN

a 8 8 o 8 ® o o

i
=

CHAPTER

CHAPTER

CHAPTER

CHAPTER

NoetwiNnNdND NN -
® L] . ®)
U W N

NN NN NN NN NSNS N NN NN ~
e ¢ ® 2 ° & © © © € © & & B 8 © o

WOk WWwWwWwNHFFFF -

CONTENTS

Register Save and Restore -- $SAVPx
Register Save and Restore ——- .SAVRI
FORTRAN FILE AND RECORD FORMATS . .
Sequential Organization Files . .
Random Organization Files

I/0 SUPPORT

I/0 CONTROL BLOCK . . - - »
OPEN PROCESSING . « « s« s =
OPEN Statement Processing

Default OPEN Processing .
SOPENS$ Procedure

USEROPEN Interface Spec1f1c

File Name Processing . . .
FILE CLOSE PROCESSING . . «
SEQUENTIAL I/0O PROCESSING .
DIRECT ACCESS I/0 PROCESSING
AUXILIARY I/0 OPERATIONS . .
I/0-RELATED SUBROUTINES . .

tio

o ¢ o ® o o fl e o & 8 2
e o 8 ® 8 ® o 8 0 ° 8
6 o & s o e e o & o &
e & o & 8 o % o© 8 6 o o

e © 8 @ o 8 o @ © 8 © ©

s e o @ 2

s & ® & ® & © o © © 0o @

FORMAT PROCESSING AND FORMAT CONVERSIONS

COMPILER FORMAT LANGUAGE .
Format Code Byte . . o .
Format Code Parameters .
Hollerith Formats . . o
Default Formats . . « e e
Format Compiled Code Example

FORMAT PROCESSING PSECTS . . .

FORMAT AND LIST-DIRECTED PROCESSORS
Format Processor =- $FIO« &«

5 o o o

s o o
o o o o © @
e 5 © o o o

o e © & 3 &

e o © & o 6 & © ©°

List-Directed Input Processor =-- SLSTI
List-Directed Output Processor -- $LSTO

RUN-TIME FORMAT COMPILER -~ FMTCVS$.
INTEGER AND OCTAL CONVERSIONS . .
HEXADECIMAL AND NEW OCTAL CONVERSIONS
LOGICAL CONVERSIONS . .

REAL, DOUBLE-PRECISION, AND COMPLEX CONVE

FORMAT CONVERSION ERROR PROCESSING .

ERROR PROCESSING AND EXECUTION CONTRO

PROGRAM INITIALIZATION . . « « « « =
EXECUTION-TIME ERRORS . . - « o = o
Trap Instruction Processing . . .
Error Control Byte Processing . .
Contlnuatlon Processing . . . «
W.IOEF Errdr Processing . . . « »
Floating~Point Processor Errors .
Error Message Processing
STOP AND PAUSE STATEMENT PROCESSING
USER INTERFACING TO TERMINAL MESSAGE
EXECUTION CONTROL SUBROUTINES . . .

OTHER COMPILED-CODE SUPPORT ROUTINES

ARITHMETIC OPERATIONS . . . & s =« =
Exponentiation . . . <« ¢ o & & o .
Complex Arithmetic Operations . .
INTEGER*4 Arithmetic Operations .
Stack Swap Operations SWPxy$. .

ii

°

°

L

s Oo o o o s o s

e ¢ o & o©

(=]
e FHs s s s s 6

°

3

& & 8 ©° e

d

e Clo & o o o o & & o

e a o o &

e 8 ¢ @ © o @ © ©® © o ©

a & o o ® 5 & © @ ©

RS

e o ¢ 8 @ © © © & O & @

e pfo e @ o & o & © © 8 5 S 9 & O

e e o o o 8 @ & ®

e 8 o o @

¢ © © o o

N

e ® o o o & & ¢ ¢ o a

s o e & @

e & 8 © @ o © @ € & 6 ©

s o © o © © & e © 6 ©® © & € ©

e & o 8 5 @ 5 &

© e o o &

o & ¢ e 6 6 & © e e © © © e o © e o« & o ®© e © @ © & o @

e s 9 o ® o e @

e o ¢ ® o

5-15
5-15
5-15
5-15
5-16

O\O\O’\O\O\O\O‘\O\G\O\O\G\
WO~V b &N

| 2 T T T I N |

[L L |

\l\l\l\l\l\l\l?\l\l\l\l\l\l\l\i
OWOO~IAUT UL &b WWWH

~
[}
’—ﬂ

[|

mcnona:m:faomcna:m
Vb WWwWWN -

W WO WWWWWOWOWwWY

v e » e o

APPENDIX A

APPENDIX B

APPENDIX D

FIGURE

TABLE

N

U UT U UL UT R b B b B D B N

[T T I I L I I L L L
HUOBWODHFOdA&EWNDHN

B WWWLWNDNNDNDN

=

.
[§)]

....
B W N

e o o
[V Sl o)

CONTENTS

Character Operations
ARRAY PROCESSING SUPPORT
Adjustable Array Initialization.
Array Subscript Checking
Virtual Array Processing
Notes on ADB Usage . « « + « « &
GO TO STATEMENT SUPPORT
Computed GO TO Statement Support
Assxgned GO TO Statement Support
Label List Argument Format . . .
TRACEBACK CHAIN PROCESSING

¢« o ¢ o » & 83 @ o o o

© o o o o
2 © ® © e @ ® ® & o o
e 8 9 2 ® & e e 8 & 8

e« o * *+ & 8 o s o ° @

FORTRAN IMPURE AREA DEFINITIONS

s s ® & © & & & s © =

FORTRAN LOGICAL UNIT CONTROL BLOCK DEFINITIONS

LUB CONTROL BLOCK FORMAT « « & « o o
STATUS BIT DEFINITIONS . ¢ o o o o o o s s =

OTS SIZE SUMMARY

MODULES ALWAYS PRESENT . . . « .« =
File I/O Support . . « « & o =
COMMON I/O SUPPORT . . .
COMPILED-CODE CHARACTER SUPPORT
SERVICE SUBROUTINES . . « .« & o
OPTIONAL MODULES . . » o s & s o

s e o o @
« o @ o o @
¢ s o o o o
o 8 s s s
s e v o s o
« o o & o @

PROGRAM SECTION DESCRIPTIONS

FIGURES

The I/0 Subsystem . . . « o o o o o o o « =
Format Code FOrM . « « s « ¢ o o o o o o o &

TABLES

Register Assignments for Subprogram Results
(RS CallS) ¢ « o« o o o s o s o s s o o s =

Processor-Defined Functions.
Job Control Information. . . .
I/0 Control Information. . . .
Format Control Information . . -

° .

e o o
e e 9

s o & & ®

Run-Time Format Control Informatlon
Error Control Information.

Error Message and Traceback Control Inf
Virtual Array Control Information.
Trap Routine Information
I/0 Initialization Entries
I/0 Initialization Symbols
I/0 Initialization Argument Masks. . .

rma

a
®
.
°

I/0 Initialization Routine Functions
Summary of Argument Blocks by Keyword
Compiled Format Codes. . .« « « « + &

¢ s e s & s 8 8 O s s s o s
e T
s & 5 8 o 5 s e (Fe s o 9 &

iii

s o & @ @

s s e s o o e s O s s s s e

a o 8 © o w & 2 & & &

®» o © & ® @ ® o 6 o o 5 a

e ¢

« & s 8 o o 8 & ©° s »

OO(POOO

s 8 © © ¢ ¢ ® © 4 o & s & © @

WO WO WWWWWYWWWO W
U
WWWOIIOO & b

c‘nm
N

1
SIS SR el e o

~ U
i
N

[UL

mmmmhk»‘hkﬁhhhl\)l\)

wm

i

(o] 1
MNHARAUTWI~10O OO0 WM&

~J
I

PREFACE

MANUAL OBJECTIVES

This manual contains detailed information about the FORTRAN-77/RT-11
Object Time System (OTS) not contained in the PDP-11 FORTRAN-77/RT-11
User's Guide. The information 1is not needed for typical use of
FORTRAN-77; however, many users need to know more about the 0TS for
specialized applications. This manual 1is especially helpful to
programmers interfacing MACRO-11 and FORTRAN routines to the OTS.

INTENDED AUDIENCE

This manual assumes that the readers know MACRO and FORTRAN and are
familiar with the information in the PDP-1l FORTRAN-77/RT-1l1l User's
Guide, the RT-11 Software Support Manual, and the RT-11 Programmer's
Reference Manual.

Internal OTS interfaces are not guaranteed to remain constant across
releases of FORTRAN-77/RT-11. Calling the OTS the same way as the
compiled code is called and using the OTS named offsets ensure as much
release~to~release compatibility as possible.

STRUCTURE OF THIS DOCUMENT
This manual contains nine chapters and four appendixes.

® Chapter 1, "Object Time System Overview," provides a
conceptual view of the structure of the OTS.

@ Chapter 2, "Conventions and Standards," describes the calling
sequences and naming conventions used by FORTRAN-77.

® Chapter 3, "Assembly Language Interfaces to the oTs,"
describes how to write MACRO-1l1l programs that interface with
the OTS.

® Chapter 4, "Data Structures and Storage," describes the OTS
work area and logical unit control table.

® Chapter 5, "Overview of FORTRAN ZInput/Output," provides a
conceptual view of OTS I/0 processing and describes the I/0
modules employed.

® Chapter 6, "I/O Support," addresses the specifics of
FORTRAN-77 input/output =-- OPEN, CLOSE, READ, WRITE and other
operations.

PREFACE

Chapter 7, "Format Processing and Format Conversions,"
describes the internal form of format specifications, the
format processing algorithm, and the format conversion
routines.

Chapter 8, "Error Processing and Execution Control," discusses
execution control processing, the detection and processing of
run-time errors, and the generation of error messages.

Chapter 9, "Other Compiled-Code Support Routines," describes
routines that support various arithmetic and housekeeping
operations required by the compiled code.

Appendix A, "FORTRAN Impure Area Definitions,” shows the
layout of the OTS work area described in Chapter 4.

Appendix B, "FORTRAN Logical Unit Control Block Definitions,"”
describes the data structures used in OTS I/0 processing.

Appendix C, "OTS Size Summary,"” provides the approximate sizes
of all the OTS modules.

Appendix D, "Program Section Descriptions," describes the
program sections (PSECTs) used by the OTS.

ASSOCIATED DOCUMENTS

The following documents provide related information:

PDP-11 FORTRAN-77/RT-11 User's Guide

PDP=11 FORTRAN-77 Language Reference Manual

RT-11 System User's Guide

RT-11 Software Support Manual

RT-11 System Utilities Manual

RT-11 Programmer's Reference Manual

CONVENTIONS USED IN THIS DOCUMENT

The manual follows these conventions:

Unless otherwise noted, numeric values are represented in
decimal notation. Values in MACRO-1l1 examples are in octal
notation.

Unless otherwise specified, all commands end with a carriage
return,

The name FORTRAN-~77 1in the manual refers to PDP-11
FORTRAN=-77/RT=11, unless otherwise specified.

vi

CHAPTER 1

OBJECT TIME SYSTEM OVERVIEW

The FORTRAN-77 Object Time System (OTS) consists of assembly language
modules that complement the wuser's compiled code. Most of the 0TS
routines are independent of the RT-1ll operating system. However,
certain routines access system functions by using RT-11 Programmed
Requests. These calls are the same ones available to a MACRO
programmer, and are described in the RT-1ll Programmer's Reference
Manual. They wusually concern the performing of input/output
functions, file management, and job control.

The OTS has five main parts:

1. Tables, buffers, and impure storage that the OTS routines
need

2., 1I/0 processing routines

3. Job control and error-processing routines

4. Mathematical functions and system subroutines
'5. Other compiled~code support routines

The rest of this chapter introduces each of these parts.

l.1 TABLES, BUFFERS, AND IMPURE STORAGE

The OTS uses data areas that include read-only constants, logical unit
control tables, various buffers, and the impure storage area. Chapter
4 describes these data areas.

1.2 1I/0 PROCESSING ROUTINES

The I/0 processing routines are a collection of small modules. Only
those modules required by a given FORTRAN source program need to be
linked into -the user's job.

Chapters 5 and 6 describe the I/O system design and the I/O routines

involved with file management support. Chapter 7 contains information
on format processing routines.

1-1

OBJECT TIME SYSTEM OVERVIEW

1.3 JOB CONTROL AND ERROR PROCESSING ROUTINES

For every FORTRAN main program, the compiler inserts a call to OTS
initialization. You can control program termination by using the
USEREX subroutine to set up a procedure that is called when a program
terminates.

When the OTS detects an error, it executes a TRAP instruction with the
error number - in the low byte of the instruction. A service routine
within the error-processing modules handles floating-point processor
asynchronous traps.

There are two methods of error recovery: an 'ERR=' transfer within an
I/0 statement, or a return to the error site for appropriate action.
A byte in the OTS impure storage determines which action to take.
Each defined error number corresponds to an error control byte that
you can access using the FORTRAN-callable subroutines ERRSET, ERRTST,
and ERRSNS.

For more information on these subroutines, see Chapter 8.

1.4 MATHEMATICAL FUNCTIONS AND SYSTEM SUBROUTINES

The FORTRAN-77 User's Guide describes how to use special names to call
mathematical routines from compiled code. These routines are commonly
known as processor-defined functions. Appendix B of the User's Guide
describes the algorithms for these mathematical library routines.

Appendix D of the User's Guide describes the system subroutines.

1.5 COMPILED-CODE SUPPORT ROUTINES

These routines complement the compiled code by performing operations
too complicated or cumbersome to perform with in-~line code, such as
array subscript checking, exponentiation, character assignment and
comparison operations, and complex arithmetic.

For more information on these routines, see Chapter 9.

CHAPTER 2

CONVENTIONS AND STANDARDS

FORTRAN-77/RT-11 has specific procedural and naming conventions. The
following sections describe those conventions.

2.1 REGISTERS

The eight [processor general registers] are referenced as follows:

e RO - R5 = Registers 0-5
® SP = Register 6
@ PC = Register 7

The six floating-point processor accumulators are referenced as FO0-F5.

2.2 CALLING SEQUENCES

FORTRAN-77 compiled code uses the following four calling sequence
conventions to call components of the OTS:

1. RS Calls -- for all system subroutines, most
processor—-defined functions, and all user-routine calls

2. PC Calls -- for I/O operations, system—dependent routines,
and character assignment and comparison operations

3. R4 Calls -- for out-of-line, stack-oriented arithmetic
routines and certain compiled-code support routines

4. F0 Calls —-- for faster calls to certain processor-defined
functions

The sections that follow describe these calls.

2.2.1 R5 Calls

This calling sequence convention 1is the standard for PDP-11
FORTRAN-77.

CONVENTIONS AND STANDARDS

Its basi; form is:

;s IN INSTRUCTION-SPACE

MOV #LIST,RS ;Address of argument list to
1register 5
JSR PC,SUB :Call subroutine

; IN DATA-SPACE

LIST: .BYTE N,0 ;Number of arguments
.WORD ADR1 :First argument address
.WORD ADRN sN'th argument address

The argument list must reside in data-space and, except for label type
arguments, addresses in the list must also refer to data-space.

User programs should not reference the byte at address LIST+l. It is
reserved for future use by DIGITAL software; thus, references to it
could cause unpredictable results.

Control returns to the calling program by restoring (if necessary) the
stack pointer (SP) to 1its value on entry and executing an RTS PC
instruction.

Function subprograms return a single result in the processor general
registers. The type of variable returned by the function determines
which registers receive the result. The variable types and their
associated register assignments are shown in Table 2-1.

Table 2-1l: Register Assignments for Subprogram Results (R5 Calls)

If the
Result Type Is: The Result Is in:
INTEGER*2
LOGICAL*1l RO
LOGICAL*2
INTEGER*4 RO ~- Low=-order result
LOGICAL*4 Rl -- High-order result
REAL RO -- High=-order result
Rl -~ Low—-order result
DOUBLE RO -- Highest-order result
PRECISION R1
R2
R3 -- Lowest-order result
COMPLEX RO -~ High-order real result
Rl -~ Low-order real result
R2 ~- High-order imaginary
result
R3 -- Low-order imaginary result

CONVENTIONS AND STANDARDS

Calling programs use RO through R5 to save values needed after a
return from a subprogram. The argument list pointer value in register
R5 may not be valid after return. Calling programs must save and
restore the floating-point registers they use, and they cannot assume
that the called routines will restore the floating-point status bits
I/L (integer/long integer) or F/D (floating/double precision).

An address of -1 (177777 octal) represents a null argument in an
argument list, It is wused to ensure that using null arguments in
subprograms that cannot handle them will result in an error when the
routine is called. The errors most likely to occur are illegal memory
references and word references to odd byte addresses.

For more information about this calling sequence convention, see the
PDP-11 FORTRAN-77/RT-1ll User's Guide.

2.2.2 PC Calls
PC calls are made with a JSR PC,xxx instruction. They pass all
arguments on the stack and return with the arguments deleted from the
stack. There are no changes to registers RO-R5, F0-F5, or the FPP
status register.
PC calls are used for the following operations:

® All I/O statements except OPEN and CLOSE

@ STOP, PAUSE, computed GO TO, and assigned GO TO statements

® Character out-of-line support routines for assignment and
comparison

® Array subscript checkingr if enabled
Example:
The FORTRAN statement
REWIND 3
is compiled into the code

MOV #3,-(SP) ;Unit number
JSR PC, REWIS ;s REWIND processor

2.2.3 R4 Calls

This convention'is used for out-of-line, stack-oriented arithmetic
routines and other compiled-code support. These routines receive
argument values on the stack, or a pointer to an argument value as an
in-line argument immediately following the call. They delete the
stack arguments and return a value on the stack. This type of routine
is called by a JSR R4,xxx instruction. R4 calls modify the FPP status
register and registers FO0-F5 and R0-R4, but preserve RS5. Chapter 9
describes the modules that use this convention.

CONVENTIONS AND STANDARDS

Example:
The FORTRAN statement
X=A**]
is compiled into the code

MOV A+2,-(SP) ;Push A

MOV A,~(SP)

JSR R4, PWRICS ;Compute A**I
.WORD I ;Address of I
MOV (SP)+,X ;Store at X
MOV (SP)+,X+2

2.2.4 FO Calls

Commonly used processor-defined functions use this convention. It
sets the FPP F/D status bit to the type of argument and loads the
argument into FO. A JSR PC,xxx instruction calls this routine. It
returns a result in FO0 and preserves the FPP F/D status bit, but does
not preserve registers R0O-R5, F1-F5, and the FPP I/L status bit. The
functions that use F0 calls are named $$xxxx, as shown in Table 2-2.

Table 2-2: Processor~Defined Functions

Name Function

$$SIN Real sine

$SDSIN Double-precision sine

S$SSQRT Real square root

$$DSQR Double-precision square root
$SATAN Real arctangent

$$DATN Double-precision arctangent
$$COS Real cosine

$$DCOS Double-precision cosine

$$ALOG Real logarithm (base e)
$$DLOG Double~precision logarithm (base e)

SALGL Real logarithm (base 10)
$SDLGL Double~precision logarithm (base 10)

$SEXP Real exponential (base e)
$$SDEXP Double-precision exponential (base e)
$STAN Real tangent

$$DTAN Double~precision tangent

2-4

CONVENTIONS AND STANDARDS

Example:
The FORTRAN statement
Y = SIN(X)
is compiled into the code
SETF ;set FPP mode
LDF X,FO

JSR PC,$$SIN
STF FO0,Y

2.2.5 Special Call Conventions
The following are exceptions to the four general calling conventions:

@ OPEN (OPENS$) and CLOSE (CLOS$) statements use the R5
convention with a special argument list encoding.

® Run-time format compilation (FMTCV$) uses a PC call but
returns a stack result for use 1in a subsequent 1I/0
initialization call.

e Adjustable array initialization calls (MAK1$, MAK2$, MAKNS,
and MAKVS$) use a PC call but preserve only R5.

@ Traceback name initialization (@NAM) uses a co-routine call.

® Virtual array processing (SVRTxy) uses a PC call that
preserves all registers except RO.

@ Job initialization ($SOTI) uses a PC call that does not
preserve the registers.

® The intrinsic function INDEX uses the R5 convention, but the
addresses in the 1list point to 2-word (length, address)
descriptors of the argument.

See the corresponding module descriptions in other chapters for more
details on these special variants.

2.3 LABELING CONVENTIONS

The labels of OTS routines begin with a § and are followed by the name

or a contraction of the name. All external entry point names contain
a $ as either the first or last character.

2.4 CONTEXT SAVE AND RESTORE

The calling sequence determines the OTS register context conventions.
See Section 2.2.

Internal OTS calls use various conventions. 1In general, the «calling
routine saves those registers it requires. Registers not mentioned in
the OTS routine descriptons are saved.

CHAPTER 3

ASSEMBLY LANGUAGE INTERFACES TO THE OTS

Chapter 2 describes how the compiled code that is output from your
FORTRAN-77 source program compilation interfaces with the 0TS. You
also can write MACRO-11 programs that interface with the OTS. This
chapter summarizes how you can set up that interface.

3.1 WRITING A FORTRAN MAIN PROGRAM IN ASSEMBLY LANGUAGE

The following MACRO-1l code represents a hypothetical FORTRAN main
program:

START::

JSR PC, OTIS Initialize the OTS and file management

system

~o we

.

MOV #°"R<IN.>,-(SP)
MOV #“R<,.MA>, R4
JSR R4, Q@SNAMS

Last 3 letters of name in RADIX-50
First 3 letters of name in RADIX-50
Initialize traceback chain if desired

“e e we

JSR PC, EXITS
.GLOBL SOTSVA
.GLOBL RCIS
.GLOBL LCI$
.GLOBL ICIS

.END START

Close files and exit

Link in the impure area

Floating point format conversions
Logical format conversions
Integer format conversions

e No o we w8

Notes:
1. The call to OTI$ initializes the FPP (SFPASS). .

2. The reference to $OTSVA loads the FORTRAN impure storage
area.

3., The references to the FORMAT conversion routines are needed
only if the desired conversion routine is required. (Note
that a FORTRAN subprogram that contains a FORMAT statement
contains the required FORMAT conversion references.)

ASSEMBLY LANGUAGE INTERFACES TO THE OTS

3.2 LINKAGE TO THE FORTRAN IMPURE STORAGE AREA

The FORTRAN impure storage area defines a global symbol $OTSVA, which
is referenced by the compiled code in FORTRAN main programs. Note
that subprograms do not reference this symbol. When the linker
processes a reference to $OTSVA, it loads the FORTRAN impure area and
defines global symbol $0TSV in the job that contains the address of
the symbol $0TSVA. All FORTRAN OTS routines obtain the address of the
impure area by referencing the location $OTSV.

CHAPTER 4

DATA STRUCTURES AND STORAGE

The OTS maintains two major areas of impure storage: the work area
and the logical unit control table. This chapter describes those two
areas.

4.1 WORK AREA STORAGE DESCRIPTION

The work area contains job-specific data, such as address pointers,
and information about the currently active operation, such as a direct
access record number.

For example, the work area contains:

® Named offsets -- The named offsets make up the first 113 words
of the work area and have names of the form W.XXXX Or XXXXXX.
There are both word and byte offsets, and some of the offsets
have an associated global symbol name.

@ Error message text buffer -- The buffer for the error text
message line is 70 bytes. The offsets W.ERLN (start address)
and W.ERLE (end address+l) point to the buffer.

® Error control table -- The error control table is 128 bytes,
with one byte for each error. The error control table is an
impure data area that the error-handling routines use and
manipulate. The job initialization routine OTI$ copies a
prototype version of the table into this area. The offset
W.ERTB points to this table.

® Window block -- An 8-word address mapping window block is used
by the wvirtual array processing routines. The virtual array
initialization routine $VINIT initializes this window block.
The offset W.WDB points to this window block.

In this section, the named offsets are organized into functional
groups and described in Tables 4-1 through 4-8. The functional groups
and their corresponding tables are as follows:

Job control - Table 4-1
I/0 control - Table 4-2
Format control - Table 4-3
Run-time format - Table 4-4
control

Error control - Table 4-5

4-1

DATA STRUCTURES AND STORAGE

Error message and - Table 4-6
traceback control

Virtual array control = Table 4-7
Trap routines - Table 4-8

Table 4-1: Job Control Information

Global Description Global Name Default
Symbol
EXADDR Address of USEREX routine or 0
W.ACPT Logical unit number for ACCEPT $ACCPT S
statements
W.BEND High address+l of the user
record buffer
W.BFAD Start address of the user record
buffer
W.BLEN Length of the user record 133
buffer; computed at job
initialization time and equal
to W.BEND - W.BFAD
W.DEV Start address of the logical unit
control table
W.DEVL The high address+l of the
logical unit control table
W.END Last word of named offsets
W.EXST Exit with status value
W.FNML Maximum length of file name $MXFNL 80
strings nonblank characters
W.FPPF FP-1l1 flag byte; 0 if FP-11
present, 1 if not
W.LIMT Address of a .LIMIT directive
block
W.LNMP Number of valid negative unit 4
numbers
W.LUNS Number of valid logical units .NLUNS
W.PRNT Logical unit number for PRINT $PRINT 6

statement

(continued on next page)

DATA STRUCTURES AND STORAGE

Table 4-1 (Cont.): Job Control Information
Global Describtion Global Name Default
Symbol
W.READ Logical unit number for READ $READ
statement
W.SKLM Job's current stack overflow
W.SST Limit address of the SST
table
W.TYPE Logical unit number for TYPE $TYPE
statement
Table 4-2: I/0 Control Information
Glébal Description
Symbol
BLBUF Address of next data byte in current
- record ‘
CHNATB Address of Channel Table
COUNT Length of array in an I/0 list
DENCWD Maximum number of I/O records or 0 if no limit
DEVHDR Address of lowest device handler
ENDEX Address of END= statement or 0
ENMLNK Pointer to last name on entry names queue
EOLBUF End address+l of current I/0 record
ERREX Address of ERR= statement or 0
FILETB Address of first Logical Unit Control Table
(LUB)
FILPTR Address of active LUB or 0
FMTAD Current pointer into format string
FMTCLN Value of SP on entry to I/0 processing
FREESP Pointer to free memory
ITEMSZ Size in bytes of current I/0 list element
PLNBUF Start address of current I/0 record

(continued on next page)

DATA STRUCTURES AND STORAGE

Table 4-2 (Cont.): I/0 Control Information

Global Description

Symbol

QELEM Address of queue element flag

RACNT Number of data bytes remaining in current I/O record

RECIO Address of record-processing I/0 routine (GET or
PUT)

RTCNLS RT-11 channel-usage bitmap

UNCNT Number of data bytes remaining in record segment

UNFLGS Segmented record control word

VARAD Address of current I/O list element or 0

W.EXJ Co-routine address of current I/0 element processing
routine

W.FDB1 Pseudo I/O0 control block for ENCODE/DECODE and
internal files (word 1)

W.FDB2 Pseudo I/0 control block for ENCODE/DECODE and
internal files (word 2)

W.FPST FP-1l status register at I/0 entry

W.OPFL Count of errors during OPEN or CLOSE statement
processing

W.RECH High—-order direct access record number

W.RECL Low-order direct access record number

W.VTYP Data type code of current I/O list element

Table 4-3: Format Control Information

Global Description

Symbol

D Decimal fraction width of current format item

DOLFLG Dollar sign format flag for the current 1I/0
record

FMTAD Address of current format byte

FMTLP Infinite format loop flag

FMTRET Address in format for format reversion

(continued on next page)

DATA STRUCTURES AND STORAGE

Table 4-3 (Cont.): Format Control Information

Global Description

Symbol

FSTK Base of l6-word stack for format parenthesis
nesting

FSTKP Address in FSTK of current nesting level

LENGTH Fieldlwidth of current format item

PSCALE P format value

REPCNT Repeat count of current format item

TSPECP Highest address used in current I/0 record

TYPE Current format code

W.CPXF Complex data item flag: 1l=real part; O=not
complex; =-l=imaginary part

W.DFLT Current default format code or 0

W.ELEM Flag 1indicating data element has been
processed

W.NULL Flag indicating a slash separator character
was seen during list-directed input processing

W.PLIC Address in list-directed data value control
block of current data value

W.PNTY Variable format expression flag byte

W.R5 Saved R5 value for variable format expressions

W.SPBN The SP/SS, BN/BZ, and T format flags

DATA STRUCTURES AND STORAGE

Table 4-4: Run-Time Format Control Information

Global Description

Symbol

NOARG Number of arguments required by current format
code .

NUMFLG Current numeric value

PARLVL Current[parenthesis] level

W.0OBFH End address.- +1 of run-time format buffer

W.OBFL Start address of run-time format buffer

Table 4~5: Error Control Information

Global . Description

Symbol

W.ECNT Job error limit count, global name: S$ERCNT
W.ERNM Last error number or 0

W.ERTB Start address of error control table

W.ERUN Logical unit number of last I/0 error or 0
W.FERR Primafy I/0 error code of last I/0 error or 0
W.FER1 gecondary I/0 error code of last I/0 error or
W.IOEF Special I/0 error processing flag

W.PC PC value of FP-ll errors

Table 4-6: Error Message and Traceback
Control Information

Global Description

Symbol

W.ERLE End address+l of error message text buffer
W.ERLN Start address of error message text buffer
W.NAMC Traceback chain list head, global name: $NAMC
W.SEQC Traceback current statement number, global

name: S$SEQC

DATA STRUCTURES AND STORAGE

Table 4-7: Virtual Array Control Information

Global Description

Symbol

W.WDB Address of window block for mapping
W.WNHI Current high-window address+l
W.WNLO Current low-window address

Table 4-8: Trap Routine Information

Global Routine Whose
Symbol Address Contained
W.ERXT $ERXIT
W.ERLG SERRLG
W.FIN $EXIT
W.FPER $FPERR
W.NAM NAMS
W.IOXT $IOEXIT

4.2 LOGICAL UNIT CONTROL TABLE

The logical unit control table contains a block of storage £for each
logical unit allocated to the FORTRAN OTS. Each block contains all
the information that the OTS requires to perform I/0 to the associated
unit.

FORTRAN I/O is performed either with logical units, or through RT-11
channels and calls to SYSLIB. The logical unit method is best suited
for applications requiring sequential I/0.

The sections that follow describe the LUB symbolic names and their
use. Appendix B contains the offset values for each symbolic name.

4.2.1 LUB Definitions

Each logical unit has a LUB allocated dynamically when a 3job is
executed. There 1is one LUB allocated for each unit declared in the
compiler's /N:m or /UNITS= qualifier (if neither the /N nor the
/UNITS= qualifier 1is not specified, the default value is six logical
units). Each LUB is a fixed-length block consisting of 20 decimal
16-bit words. At job initialization time, each LUB is set to 0. A
close operation also sets each LUB to 0.

Offsets of the
as follows:

ASSOCV

BLKNO ~--
BUFNO -~
BUFRAD --—
BUFRSZ ==
CHNLNQ ~-
DATAD ~--
DEVNM --
FILNM --
FILSZ --
EXTEN --
HIGHBL =~-
RECMAX -~
RECSZ --
D.FDB --
D.STAT --
D.STA2 --
D.RCNM --
D.RCN2 --
D.RCCT ~--
D.RCC2 --
D.AVAD ==
D.RSIZ --

Several of the
I/0 operation.

DATA STRUCTURES AND STORAGE
form D.xxxx and xxxxxx describe portions of each

Address of associated variable

Current block number

Number of buffers, one byte

Address of start of buffer

Size of buffer in words

Channel number, one byte

Address of data pointer

Device name (RAD50)

File name (RAD50), two words

Number of blocks for file creation
File type (RADS50)

Highest block number written

Number of records in file

Record size

status word 0 (see below)

status word 1 (see below)

status word 2 (see below)

direct access record limit (low order)
direct access record limit (high order)
record count for BACKSPACE (low order)
record count for BACKSPACE (high order)
address of associated variable address or 0

maximum record length

words have different uses depend}ng upon the kind

Each LUB contains three status words; D.FDB, D.STAT and D.STAZ.
bits in these status words have symbolic names of the form DV.xxx or

XXXXXX. These

Status Bits us

bits are defined as follows:

ed in D.FDB

LUB,

of

The

Symbol Value Description
BUFBIT 1 Double buffering flag bit
EOF 10000 End of file reached

KB 20000 File open to KB

DATA STRUCTURES AND STORAGE

Status Bits used in D.FDB (cont.)

Symbol Value Description

LISTMD 20 Force output for listing device
LP 2000 File open to LP:

LSTFMT 40 File is open for -listing format
MWRB 2 Modified random block flag

OLD 400 'OLD' flag for RT-~11 SYSLIB
OPNBIT 4000 'OPEN' flag for RT-11 SYSLIB
RDBFWT 1000 Read before write

RDO 100 'READONLY' flag for RT-11 SYSLIB
SCR 4 'SCRATCH' flag for RT-11 SYSLIB
TT 200 File open to console terminal
UNLIST 10 Forced for FORTRAN output

WRITE 100000 Writes have been performed on file

Status Bits used in D.STAT

Symbol Value Description

DV.FIX 2 -Fixed-length records

DV.FNB 4 File Name Block initialized

DV.DFD 10 Direct access unit

DV.FAK 20 Partial LUB for ENCODE/DECODE and internal
files

DV.FACC 40 File attributes defined

DV.OPN 200 Unit open

DV.VAR 400 Variable—~length Records

DV.SEG 1000 Segmented Records

DV.FMP 2000 Formatted unit
DV.UFP 4000 Unformatted unit
DV.ASGN 10000 File name defined

DV.CLO 20000 Close in progress

DV.FRE 40000 Free format prohibited (short field
termination)
DV.RW 100000 Input or output operation (0 = read, 1 = write)

DATA STRUCTURES AND STORAGE

Status Bits used in D.STA2

Symbol Value Description

DV.AI4 2 Associated variable is INTEGER*4 data type
DV.RS2Z 4 Explicit RECORDSIZE specified

DV.CC 10 Explicit carriage control specified

DV,.SPL 20 DISP = 'PRINT' specified

DV.DEL 40 DISP = 'DELETE' specified

DV.RDO 400 READONLY specified

DV .UNK 1000 TYPE

"UNKNOWN' specified
DV.OLD 2000 TYPE = ‘OLD' specified

DV.NEW 4000 TYPE

'NEW' specified
DV.SCR 10000 TYPE = 'SCRATCH' specified
DV.APD 20000 ACCESS = 'APPEND' specified
DV .SAV 40000 DISPOSE = 'SAVE' specified

DV.BN 100000 BLANK = 'NULL' specified

4-10

CHAPTER 5

OVERVIEW OF FORTRAN INPUT/OUTPUT

This section describes some of the independent I/0 modules and
provides an overview of the I/0 subsystem. Input/output support
provided by PDP-11 FORTRAN-77/RT-11 uses the RT-11l file system. The
I/0 support modules in OTS reduce all input/output calls to RT-11
programmed requests for logical block read or write functions.
Special functions such as OPENing, CLOSing, REWINDing or writing
ENDFILE marks are accomplished through other appropriate RT-11
programmed requests. See Chapter 7 for descriptions of the
format-processing routines.

FORTRAN I/0O processing consists of three layers or levels:

@ Compiled~code interface

® Data formatting

@ Record processing
The compiled-code interface level consists of the routines called
directly by the compiled code. The routines (listed in Table 5-1)
take the compiled-code arguments, transform them into OTS standard
form, and pass them to the data-formatting level.
The data-formatting level accepts the standard I/0 arguments and
produces I/0 records as specified by the data elements and format
control. Then the records are passed to or received from the next
level ~- the record-processing level.
The record-processing level interfaces with the file management
systems to read and write logical records. It is the only level
dependent on the RT-11 file system.

Figure 5-1 illustrates the I/O subsystem.

OVERVIEW OF FORTRAN INPUT/OUTPUT

COMPILED COMPILED-CODE 10 STATEMENT
CODE READLN (1.X.ABC)
END
INIT INTEGER REAL STRING OF
i X ABC LIST
CODE INTEGER REAL STRING END-OF-
INTERFACE INITIALIZE VALUE VALUE e o o ARRAY LIST
LEVEL TRANSMIT | TRANSMIT TRANSMIT MARK
INTEGER
] y]] y //I CONVERSIONS
DATA
FORMATTING FORMAT PROCESSING | o] BOOLEAN
RECORD CONSTRUCTION CONVERSIONS
LEVEL
. \\N REAL
CONVERSIONS
¥
RECORD FILE RECORD /0 FOR
PROCESSING OPEN FILE-ORIENTED
DEVICES
LEVEL
/
. LOOKUP . READW
. ENTER . WRITEW
. DSTATUS . PRINT

Figure 5-1: The I/O Subsystem

5.1 COMPILED-CODE INTERFACE

The compiled-code interface is the external interface for the OTS

I/0

subsystem.

I/0 statements produce three types of subroutine calls in the compiled

® Initialization calls -- set up the I/O system for the specific

I/0 requested, open the specified logical unit if necessary,
and declare the I/0 system to be active
to the

Element transmission calls (if any) -- generate calls

0TS for entities in the I/O list

Termination calls -- complete the I/0 operation and declare

‘the I/0 system inactive

OVERVIEW OF FORTRAN INPUT/OUTPUT

For example, the FORTRAN statements

DIMENSION A(10)
READ (2) I,A,B

are compiled into the following code:

MOV #2,-(SP) ;:Unit number

JSR PC,ISUS ;Initialize READ

MOV #I,-(SP) ;Address of I

JSR PC,IOAIS ;Transmit integer

MOV #ASADB,- (SP) ;Address of array descriptor for A
JSR PC,IOAAS ;Transmit array A

MOV #B,- (SP) sAddress of B

JSR PC,IOARS ;Transmit real

JSR PC,$EOLST ;End-of-1list

5.1.1 1Initialization Processing

There is a separate initialization-processing routine for -each
compiled FORTRAN I/0 statement. These routines take the 1I/0O
statement-specific arguments, construct a mask word describing the
arguments, and pass them to the I/O statement initialization module
$INITIO.

5.1.1.1 The Routines - Table 5-1 lists the entry point names for the

initialization-processing routines. Each routine has two entry
points:

® XXX$ -- for I/0 statements that do not use END= or ERR=

® XXXE$ -~ for I/0 statements that do use END= or ERR=

Table 5~1: I/0 Initialization Entries

Entry

Name Arguments Function

ISFS u,f " Sequential formatted input
ISFES u,f,e

IsU$ u Sequential unformattted input
ISUES u,e

IRFS u,c, £ Direct formatted input

IRFES u,c,f,e

IRUS u,r Direct unformatted input
IRUES u,r,e

OSF$ u,f Sequential formatted output
OSFES u,f,e

0sus u Sequential unformatted output
OSUES$ u,e

5-3

OVERVIEW OF FORTRAN INPUT/OUTPUT

ORFS$ u,r,f Direct formatted output
ORFES u,r,f,e
ORUS u,r Direct unformatted output
ORUES$ u,r,e
ENFS c,f,a ENCODE
ENFE$ c,f£,a,e
DEFS$ c,f,a DECODE
DEFES$ c,f,a,e
ISLS u List—-directed input
ISLES u,e
OSLS$ u List-directed output
OSLES u,e
FDR$ u,r Direct FIND
FDRE$ u,r,e
ENDF$ u ENDFILE
ENDFE$ u,s
REWIS u REWIND
REWIES u,s
DEFFS$ u,mr,rl,v,vE DEFINEFILE
IIFS 4,f Internal file read
IIFES 4d,£f,e
IIFAS adb, £
IIFAES adb,f,e
OIFS d,f Internal file write
OIFES d,f,e
OIFAS adb, £
OIFAES adb,f,e
Arguments: .

u Logical unit number -- INTEGER*2 value.

r Direct access record number -- INTEGER*4 value.

£ Format specifier —- address of compiled format text.

adb Address of the array descriptor block.

e END=/ERR= specifier -- address of END= label, followed by
address of ERR label. If one of the labels is missing, a 0
address is supplied for that label.

a ENCODE/DECODE buffer -- address of buffer.

c ENCODE/DECODE buffer =-- INTEGER*2 value.

d Address of the character descriptor. The first word of the
descriptor contains the length of the string; the second
word contains the address of the string.

s ERR= statement label address.

OVERVIEW OF FORTRAN INPUT/OUTPUT

mr Maximum direct access record number -- INTEGER*4 value.

rl Record length in 16-bit words =-- INTEGER*2 value.

v Address of associated variable.

vE Aséociated variable data type £flag =- INTEGER*2 value

encoded as follows:

0
-1

INTEGER*2 data type
INTEGER*4 data type

NOTE

If a run—-time format is specified, the
run-time format compiler FMTCV$
overwrites the source address of the
run-time format array with the address
of the compiled format string.

5.1.1.2 $INITIO - The $INITIO routine performs specific Ffunctions
based on the arguments passed by the initialization-processing
routines described in Section 5.1.1.1. 1In addition, $INITIO paves the
way for the remaining levels of processing by storing the appropriate
data-formatting routine address in the impure area offset W.EXJ, and
the 4appropriate record-processing routine address in the impure area
offset RECIO.

As mentioned, the routines that pass arguments to S$INITIO use a
bit-encoded mask to indicate what operations need to be performed.
When $INITIO is called, RO points to the stack arguments and Rl
contains the bit-encoded mask.

The symbols and argument masks used by the routines are described in

Tables 5-2 and 5-3, respectively. Table 5-4 describes the operations
SINITIO performs based on the bit settings.

Table 5-2: I/0 Initialization Symbols

Symbol Value Description

FL.ERR 100000 END=/ERR= present

FL.INB 40000 Internal files passed by ADB

FL.IND 20000 Internal files passed by descriptor
FL.ENC 11000 ENCODE/DECODE statement

FL.FMT 4200 Format present

FL.REC 2400 Direct access record number present
FL.FMP 200 Formatted operation permitted
FL.WRT 140 WRITE operation (with implied OPEN)
FL.RD 40 Read operation (with implied OPEN)
FL.EDA 10000 ENCODE/DECODE buffer address
FL.FMA 4000 Format address

FL.RNM 2000 Record number

FL.EDL 1000 ENCODE/DECODE buffer length

FL.DIR 400 Direct access

FL.OUT 100 Output operation

FL.OPN 40 OPEN required

OVERVIEW OF FORTRAN INPUT/OUTPUT

Table 5-2 {(cont.): I/O Initialization Symbols

Symbol Value Description
FL.IGN 20 Ignore format and record type
checks
FL.KEY 10 Keyed access (not allowed in RT-11)
FL.REW 4 REWRITE (not allowed in RT-1l)
FL,.DEL 2 DELETE (not allowed in RT-11l)
FL.KIN 1 Integer key value
Table 5-3: I/O Initialization Argument Masks
Mask Meaning
ISFS Sequential formatted input: FL.FMT+FL.RD
OSF$ Sequential formatted output: FL.FMT+FL.WRT
ISUS Sequential unformatted input: FL.RD
0sus Sequential unformatted output: FL.WRT
ISLS Sequential list-directed input: FL.FMP+FL.RD
OSL$ Sequential list-directed output: FL.FMP+FL.WRT
IRFS Direct formatted input: FL.FMT+FL.REC+FL.RD
ORF$ Direct formatted output: FL.FMT+FL.REC+FL.WRT
IRUS Direct unformatted input: FL.REC+FL.RD
ORUS Direct unformatted output: FL.REC+FL.WRT
ENFS$ ENCODE statement: FL.FMT+FL.ENC
DEFS$ DECODE statement: FL.FMT+FL.ENC
ENDF$ ENDFILE statement: FL.WRT+FL.IGN
FDRS$ FIND statement: FL.RD+FL.REC+FL.IGN
ILFS Internal file read: FL,IND+FL.FMT
IIFAS Internal file read with address of ADB passed as the
Internal logical unit number:
FL.INB+FL.FMT
OIFS$ Internal file write: FL.IND+FL.FMT
QIFAS Internal file write with address of ADB passed as the
Internal logical unit specifier:
FL.INB+FL.FMT
NOTE
If the corresponding END=/ERR= entry
point is called (for instance, ISFE$
rather than ISF$), the argument mask
includes FL.ERR.
Table 5-4: I/O Initialization Routine Functions
Function Description
FL.DIR Compare the access mode of the I/O statement with the

access mode of the logical unit; issue OTS error 31
if the access mode does not match. Issue OTS error 26
if direct access 1is required but has not been
specified.

OVERVIEW OF FORTRAN INPUT/OUTPUT

Table 5-4 (cont.): I/O Initialization Routine Functions

Function

Description

FL.EDA

FL.EDL

FL.ERR

FL.FMA

FL.FMP

FL.IGN

FL.INB

FL.IND

FL.OPN

FL.OUT

FL.REW

FL.RNM

Save the ENCODE/DECODE buffer address in the impure
area offsets, PLNBUF (start address) and BLBUF
(current address).

Add the ENCODE/DECODE buffer length to the start
address to determine the end address of the buffer.
Save this value in impure area offset EOLBUF.

Save the END= address in impure area offset ENDEX, and
the ERR= address in impure area offset ERREX.

Save the format address ‘in impure area offset FMTAD.

Compare formatting type specified with format type of
the logical unit. Mixed formatted and unformatted
operations are not permitted. Issue OTS error 31 if
the format types do not match.

Ignore the format checks for ENDFILE, FIND, and DELETE
since both formatted and unformatted are permitted.
Ignore the record type check since record type depends
on format.

Save the format address in impure area offset FMTAD.
Save the internal logical unit address in the impure
area offsets LNBUF (start address) and BLBUF (current
address). Add the bytes per element from offset A.BPE
in the array descriptor block to offset LNBUF to
determine the end address of the internal logical
unit. Save this value in impure area offset EOLBUF.
Divide the total size of the array in bytes (offset
A.SIZB in the ADB) by the bytes per element (offset
A.BPE) to determine the number of records and store
this value in the impure area offset DENCWD.

Save the format address in impure area offset FMTAD.
Save the internal logical unit address in the impure
area offsets PLNBUF (start address) and BLBUF (current
address). Add the length of the internal logical unit
specifier to offset PLNBUF to determine the end
address of the internal logical unit. Save this value
in impure area offset EOLBUF. '

If the logical unit is not yet open, open it using the
default open processor $OPEN.

Set the logical unit status to input or output as
appropriate. If output is specified and the logical
unit is declared read-only, issue OTS error 47.

If the file organization is sequential or relative,
issue error OTS 54, REWRITE statement error.

Save the direct access record number in impure area
offsets W.RECL and W.RECH as an INTEGER*4 value.

OVERVIEW OF FORTRAN INPUT/OUTPUT

5.1.2 List Element Transmission

The compiled code makes one data transmission call to the OTS for each
data item in the I/0 list. The data transmission entry points are of

the form:

I0at$

Designates whether the argument is an address or a value; can be

A, for address, or V, for wvalue.

The data type of the list element as follows:

NUUHIPW
|
|

byte

Logical*2
Logical*4
Integer*2
Integer*4

real

double precision
complex

There are additional entry points, used only for arguments that are
They are defined as follows:

addresses.

IOAHS

IOAAS

IOAVAS

IOACHS

transmits a Hollerith constant (output only). The
argument is the address of the first byte of the
constant as an ASCIZ string.

transmits an entire array by name. The argument is the
address of the array descriptor block. For formatted
I/0, each array element is passed individually to the
data-formatting level. For unformatted I/0, the entire
array is passed as a single large data item.

transmits an entire wvirtual array by name. The
argument is the address of the array descriptor block.

One entry is used for an argument that is two words
(length, address descriptor):

transmits a character string. The argument 1is the
length of the character string and the address of the
first byte of the ASCII string.

The routines at each of these entry points set up impure area offsets
and then invoke the data-formatting level of processing at impure area

offset W.EXJ
ITEMSZ

VARAD

W.VTYP

W.CPXF

The impure area offsets set up are as follows:
size in bytes of the data item.

address of the first byte of the data item,.or 0 if at
end of list. i

data type code of data item.

complex data type flag. Complex data items are passed
as a pair of real values. W.CPXF=0 indicates a
noncomplex item; +1 indicates the real part of a
complex item; -1 indicates the imaginary part of a
complex item.

5-8

OVERVIEW OF FORTRAN INPUT/OUTPUT

5.1.3 Termination Call

The routine at entry point EOLST$ is called to specify the end of the
I/0 list. No arguments are required.

5.2 DATA-FORMATTING LEVEL

The compiled-code interface level calls data-formatting routines to
transmit data between records and I1/0 list items, including any common
operations that are required.

Por formatted I/0, there are three routines:

$FIO -~ format processor
$LSTI -- list-directed input processor
$STO =-- list-directed output processor

These routines are called with no register arguments; on return all
registers are undefined.

For unformatted I/0, since conversion is not needed, the appropriate
initialization modules maintain the transfer code as routines.

The data-formatting routines accept data item descriptions from the
impure area offsets ITEMSZ, VARAD, W.VTYP, and W.CPXF. On input, the
routines read the next field of the record and transfer data to the
item. On output, the data item value is transferred to the record.
The following impure area offsets describe the record being processed:

PLNBUF =-- start of buffer address
BLBUF -- address of next data byte
EOLBUF -- end of buffer address

When a new record must be read, or an output record is full, the
record-processing routine specified by impure area offset RECIO is
called to process the record. On input, the old record is discarded,
a new record 1is read, and the impure area record description is
updated. On output, the record is written and a new buffer area 1is
set up.

5.3 RECORD PROCESSING LEVEL

The record-processing routines are called to transfer records to and
from the RT-11 file system. The record-processing routines are:

$GETS -- sequential input
$PUTS -- sequential output
$GETR -~ direct input

$PUTR -~ direct output

OVERVIEW OF FORTRAN INPUT/OUTPUT

5.4 PRINT, TYPE, AND ACCEPT STATEMENTS

The PRINT, TYPE, and ACCEPT statements compile into equivalent READ
and WRITE statements using default unit numbers. Default unit numbers
are small negative integers, which $FCHNL maps through a table in
impure storage to actual unit numbers. This table also has global
names for each statement to allow modification of the mapping. The
global names are:

$PRINT for PRINT
$TYPE for TYPE
$ACCPT for ACCEPT
$READ for READ
The unit number value is at impure area offset W.LNMP. The mapped

values are at offsets W.PRNT for PRINT, W.TYPE for TYPE, W.ACPT for
ACCEPT, and W.READ for READ, with no unit number.

PRINT -- compiles into OSF$ with unit number = -1, maps to 6
TYPE -~ compiles into OSF$ with unit number = -2, maps to 5
AéCEPT -~ compiles into ISF$ with unit number = -3, éaps to 5
READ -— compiles into ISF$ with unit number = -4, maps to 1

5.5 OPEN AND CLOSE STATEMENTS

The OPEN and CLOSE source statements allow user programs to control
the attributes and characteristics of files. The compiled code for
these statements uses the standard R5 calling sequence with a special
argument list encoding, as follows:

ARGLST: .WORD 2n
KEY1

KEYn

There 1is one argument for each keyword in the FORTRAN source
statement. Each argqument consists of a 2-word block, formatted as
follows:

15 8 7 0

ARGTYPE KEYWRD ID

INFO

KEYWRD ID
The low-order byte of the first word contains the keyword
identification number associated with the keyword name in the
source statement (see Table 5-5).

ARGTYPE
The high-order byte of the first word contains the argument type.
It is wused 1in conjunction with the INFO word to identify the
keyword's value.

5-10

OVERVIEW OF FORTRAN INPUT/OUTPUT

INFO
The second word is called the information word; its use depends
on the ARGTYPE value.

The possible ARGTYPE values are 1 through 7. The meanings of each
ARGTYPE are as follows:

ARGTYPE Value Meaning

1 The keyword's value 1is an INTEGER*2 constant
expression. The INFO word contains the value.

2 The keyword's value is an INTEGER*2 variable. The
INFO word contains the address of the variable.

3 The keyword's value is an INTEGER*4 variable. The
INFO word contains the address of the variable.

4 The keyword's value is an alphanumeric 1literal
decodable by the compiler. The INFO word contains
the keyword's value encoded as a small integer.

5 The keyword's value is a variable, array, array
element, or character constant terminated by an
ASCII null character (zero-byte). The INFO word
contains the address of the start of the string.

6 The keyword's value is the address of an external
procedure. The INFO word contains the address.

7 The keyword's value is the address of a 2-word
descriptor. The £first word of the descriptor

contains the length of the string; the second word
contains the address of the string. The INFO word
contains the address of the first word of the
descriptor.

A statement's keywords can be in any order, but there cannot be any
duplicates, Table 5-5 lists the keyword names, their associated
identification numbers, and the ARGTYPES permissible with each
keyword. The table also 1lists the 1literal values and associated
literal encoding possible for keywords whose ARGTYPES are 4.

Table 5-5: Summary of Argument Blocks by Keyword

Keyword Keyword Allowed Literal Literal
Name Number Argtypes Values Encoding
ACCESS 4 4 DIRECT 1
SEQUENTIAL 2
APPEND 3
KEYED 4
ASSOCIATE VARIABLE 17 2,3
BLANK 25 4 NULL 1
ZERO 2

(continued on next page)

OVERVIEW OF FORTRAN INPUT/OUTPUT

Table 5-5 (Cont.): Summary of Argument Blocks by Keyword

Keyword Keyword Allowed Literal Literal
Name Number Argtypes¥* Values Encoding

BLOCKSIZE . 18 1,2,3

BUFFERCOUNT 9 1,2,3

CARRIAGECONTROL 7 4 FORTRAN 1
LIST 2
NONE 3

DISPOSE 2 4 SAVE 1
DELETE 2
PRINT 3

ERR 3 - Label

address

EXTENDSIZE 11 1,2,3

FILE or NAME 14 5,7

FORM : 5 4 FORMATTED 1
UNFORMATTED 2

INITIALSIZE 10 1,2,3

MAXREC 16 1,2,3

NOSPANBLOCKS 12 ——

READONLY 8 -

RECORDSIZE or RECL 6 1,2,3

RECORDTYPE 20 4 FIXED 1
VARIABLE 2
SEGMENTED 3

SHARED 13 -

STATUS or TYPE 15 4 OLD 1
NEW 2
SCRATCH 3
UNKNOWN 4

UNIT 1 1,2,3

* The ARGTYPE field for the ERR= keyword contains the number of
bytes of temporary stack storage which must be deleted if an ERR=
transfer occurs.

5-12

OVERVIEW OF FORTRAN INPUT/OUTPUT

As an example, consider the following FORTRAN source statement:
OPEN (UNIT=I, ERR=99, NAME='A.DAT')
When it is compiled, the code (in part) looks like the following:

MOV ARGLST,R5 ;Address of arg list
JSR PC,OPENS ;0pen the file

ARGLST: .WORD 6 ;3 args
.BYTE 1,2 ;UNIT, ARGTYPE=2
.WORD I sAddress of I
.BYTE 3,2 ;ERR, 2 bytes of stack temp
.WORD .99 ;Address of label
.BYTE 14,5 sNAME, ARGTYPE=5
-WORD STRING ;Address of string
STRING: .BYTE 101,56,104,101,124,0 ¢ 'A.DAT'

5.6 OTHER INTERNAL SUPPORT ROUTINES

The following sections describe several other internal support
routines the OTS uses.

5.6.1 $FCHNL, $GETFILE, and $IOEXIT

The $FCHNL, S$GETFILE, and S$SIOEXIT routines serve as the common
entrance and exit to the I/O system.

$FCHNL locates the LUB for a given logical unit number and 1issues an
error for invalid units. It is called with the logical unit number in
R2 and returns the address of the associated LUB in RO. The PSW C-bit
is used as an error flag on return: it is set if there is an error,
clear if there is not an error. On return, registers R1 and R2 are
undefined, R3 contains the impure area pointer, and R4 and R5 are
preserved.

SGETFILE executes a $FCHNL, sets the FILPTR impure area offset, and

checks the status of the unit. It is called the same way as $FCHNL.
It does not return the C-bit error flag; however, 1its register
returns are identical to S$FCHNL.

SIOEXIT restores the user-level status and register state and executes
the ERR= transfer. It is called with the ERR= transfer address in R4
and the work area pointer in R3.

OVERVIEW OF FORTRAN INPUT/OUTPUT

5.6.2 Default File Open Processing —- $OPEN

A default open is the implicit opening of a logical unit due to
executing an I/0 statement on a closed logical unit. If a READ or
FIND statement is executed, the default open 1is equivalent to the
following OPEN statement (unless a DEFINEFILE has been executed):

OPEN (UNIT=unit, TYPE='OLD', ORGANIZATION= ' SEQUENTIAL', BLANK='ZERO',
FORM= "form of the I/0 statement", ACCESS='SEQUENTIAL')

If a WRITE statement is executed, the default open 1is equivalent to
the following OPEN statement (unless a DEFINEFILE has been executed) :

OPEN (UNIT=unit, TYPE='NEW', ORGANIZATION= 'SEQUENTIAL', BLANK='ZERO',
FORM= "form of the I/0 statement", ACCESS= 'SEQUENTIAL')

All other OPEN statement parameters assume their default values as
described in Chapter 7.

The default file open processor is called with RO pointing to the LUB
and R3 pointing to the impure area. On return, all registers are
preserved.

5.6.3 Default File Close Processing -- $CLOSE

The file close processor is invoked when any one of the following
occurs:

® A CLOSE statement is executed.

® A CALL CLOSE subroutine is executed.
@ A program terminates.

® 3 file open fails.

The $CLOSE routine implements the DISPOSE= parameter set by the OPEN
or CLOSE statement, and 1invokes the appropriate routine to close,
delete, or print the file.

This routine is called with the logical unit number in R2. On return,
RO, Rl, R2, and R4 are undefined; R3 points to the impure area; RS
is preserved; and the processor C-bit is set to indicate whether an
error occurred during the close operation.

5.6.4 Direct Access Record Number Checking -- $CKRCN

$CKRCN compares the current record number with the maximum record
number for the file. The current record number is stored at offsets
W.RECL (low order) and W.RECH (high order). The maximum record
number, if it exists, is at D.RCNM (low order) and D.RCN2 (high order)
in the LUB. If the record number is valid, it is returned in Rl (high
order) and R2 (low order). This routine 1is called with the LUB
address in RO, and the impure area pointer in R3. Registers R4 and RS
are preserved.

5-14

OVERVIEW OF FORTRAN INPUT/OUTPUT

5.6.5 Associated Variable Update -- $ASVAR

The current record number is obtained from offsets W.RECL and W.RECH,
incremented by one, and stored in the associate variable at the
address in D.AVAD in the LUB.

5.6.6 Register Save and Restore ~- $SAVPx

The $SAVPx routine provides the register save/restore and argument
processing support for implementing the OTS PC call convention (see
Section 2.2.2), which pushes all arguments on the stack, calls the 0TS
routine by a JSR PC,xxx instruction, and returns with arguments
deleted and all context preserved. This register save/restore routine
is called by the OTS routine. It saves all registers on the stack,
sets RO to point to the call arguments, and co-routine calls the OTS
module. Upon return from the OTS routine, the register save/restore
routine restores the registers, deletes the stack arguments, and
returns to the original caller. Seven entry points are provided:
$SAVP0-$SSAVP8 for routines with zero to eight argument words on the
stack. For routines with more than eight arguments or with a variable
number of arguments, $SAVPO is called to save the registers; upon
return to the OTS module, RO contains the number of arguments and a
jump to $SAVPC is executed at the completion of the OTS module, rather
than a return to the register restore portion of the $SAVPx routine.
For ERR= transfers, $SAVPx is jumped ¢to with RO containing the
transfer address.

5.6.7 Register Save and Restore -- .SAVRL

Several OTS routines call the register save co-routine .SAVRl to save
and restore registers Rl through R5 in co-routine fashion.

5.7 FORTRAN FILE AND RECORD FORMATS

This section describes the file and record formats that are processed
by the FORTRAN I/O system.

5.7.1 Sequential Organization Files

You can process sequential files on all devices. Records may be fixed
length, or variable 1length. Fixed~length records have no control
information and are packed densely into blocks by the file system.
Variable-length formatted sequential records are separated from one
another by the control character sequence <CARRIAGE-RETURN><LINEFEED>
(octal 15, octal 12).

Unformatted sequential records have a byte-count value prepended to
the beginning of each record. In addition, each block that holds
records of this type contains a list of record pointers at the block's
end. This structure facilitates backspace operations through
unformatted sequential files.

OVERVIEW OF FORTRAN INPUT/OUTPUT

5.7.2 Random Organization Files

Files that are randomly organized are also called direct-access files.
All records in a direct—-access file have the same length. Random
files can be opened only on block-replacable devices, such as disks.
They cannot be used with sequential devices, such as terminals,
printers or magnetic tape.

Direct-access records contain no system-produced control information
and are packed densely into blocks by the file system.

CHAPTER 6

I/0 SUPPORT

This chapter discusses file-system specific portions of the OTS, In
particular, it describes explicit operations used to implement FORTRAN
I/0 operations.

The following register assignments are normally made within the 1I/0
portion of the OTS:

® RO -- address of the Logical Unit Block (LUB)

® R] -~ address of the Logical Unit Block (LUB) (copy)
@ R3 -- address of the work area

® R2 and R4 -- scratch registers

A JSR PC,xxx instruction calls all routines except the co-routine
calls. R5 is generally preserved.

6.1 I/O CONTROL BLOCK

The I/0 system associates a single control block, called the Logical
Unit Block (LUB), with each open unit. See Section 4.2 and Appendix B
for more information about the LUB.

6.2 OPEN PROCESSING

Default file open processing and OPEN statement processing merge into
a single common routine, $OPEN$ (see Section 6.2.3), for a file open.
SOPEN$ invokes RT-11l's .LOOKUP programmed request for opening existing
files, and the .ENTER request for opening new output files. 1In either
case, a required device handler is .FETCHed if it is not already
resident.

The RT-11 programmed requests .LOOKUP, .ENTER, and .FETCH make use of
the User Service Routine (USR). This set of RT-11 file~services
routines can be allowed to swap in and out of memory as required (SET
USR SWAP), or it can be forced to remain resident (NOSWAP). See the
RT-11 User's Guide for more information about USR SWAPPING.

If the main module of a FORTRAN-77 program is compiled without the /U
or /NOSWAP options, and the USR is set to SWAP, then the 2K-word USR
will be " allowed to become resident in memory temporarily in a
pre-designated location in the FORTRAN-77 OTS. This location is a
pure-code area in PSECT $$OTSI, where no USR programmed requests are
made. In most programs, the OTS pure code region occupies at least 2K
words, and will execute properly while USR swapping takes place. In
very small programs that use very few OTS routines, it is possible to

6-1

I/0 SUPPORT

link a job with inadequate space in $$OTSI for the USR to swap over.
Here it is recommended to SET USR to NOSWAP., If it is not possible to
SET USR to NOSWAP, then you should expand the area by wusing the
provided PSECT $SPACE and a short MACRO routine:

.TITLE USRSPC

.PSECT S$SPACE

.BLKW 200. ; Required extra space in words
.END

Assemble the routine with the MACRO assembler, and then link it with
your small program.

6.2.1 OPEN Statement Processing

In OPEN statement processing, an argument list is searched and each
keyword is located in a prescribed order. All information required
for each keyword is available when that keyword is processed. An
appropriate default is used for keywords not in the list. If any
errors occur during the search, the execution of the OPEN statement is
not attempted, the ERR= transfer is executed, and the LUB is zeroed.

The processing for each keyword is as follows:

® ACCESS -- 'DIRECT' sets DV.DFD; ‘APPEND' (not supported) sets
DV.APD, producing an error 48. If DV.APD is not specified,
the default is 'SEQUENTIAL'.

® ASSOCIATEVARIABLE -- The variable address is stored at D.AVAD
in the LUB. If the variable is type INTEGER*4, DV.AI4 is set
in D.STA2.

® BLANK -- 'NULL' sets DV.BN in D.STA2. Note that if the /X (NO
F77 syntax) switch is not set and no BLANK= is specified, the
compiler passes a BLANK='NULL' parameter.

¢ BLOCKSIZE ~- Causes run-time error 48 in RT-11 implementation.

® BUFFERCOUNT -- The value specified is stored at BUFNO in
D.FDB. If the value 1is less than 1, or greater than 2, an
error occurs.

® CARRIAGECONTROL -- If DV.CC is set, 'FORTRAN' sets UNLIST bit
in D.FDB, and 'LIST' sets LISTMD in D.FDB. If DV.CC is not
set and DV.FMP is specified, UNLIST is the default.

® DISPOSE -- 'SAVE' sets DV.SAV in D.STA2; 'PRINT' sets DV.SPL
(not implemented); and 'DELETE' sets DV.DEL. If DV.RDO is
. set, and DV.DEL or DV.SPL is specified, an error occurs. If a
DISPOSE value is not specified and DV.SCR is set, 'DELETE' is

the default; otherwise, 'SAVE' is the default.

® ERR -- The ERR= transfer address is obtained and the stack
adjustment value is saved in the work area at offset COUNT.
The transfer address, if present, is stored at offset ERREX;
if it is not present, ERREX is cleared.

® EXTENDSIZE -- Causes run~time error 45 in RT-11 implementation
® FILE or NAME -- If a file is specified, '$FNBST is called to

initialize the file Name block and DV,.ASGN is set in D.STAT.
$FNBST returns an error if the string is incorrect.

I/0 SUPPORT

® FORM -- 'FORMATTED' sets DV.FMP; 'UNFORMATTED' sets DV,UFP,.
If no value is specified and DV.DFD is set, DV.UFP is the
default; otherwise, DV.FMP is the default.

® INITIALIZE -- The value specified is stored at FILSZ in the
LUB. If it is positive, a contiquous allocation is made. If
the value is greater than 32767, an error occurs.

¢ KEY -- Causes run-time error 48 in RT-1l1 implementation.

® MAXREC -- The value specified is stored at D.RCNM and D.RCN2
in the LUB. If the value is negative, an error occurs.

® NOSPANBLOCKS =-- Causes run-time error 48 in RT-11
implementation.
® ORGANIZATION -~ If 'SEQUENTIAL', ignored. Otherwise, run-time

error 48 is generated.

© READONLY -- If this keyword is present, DV.RDO is set in
D.STA2.

® RECORDSIZE or RECL -- The value is stored at D.RSIZ, and bit
DV.RSZ is set in D.STA2 of the LUB., If the size is negative
or is larger than the user record buffer size, an error
occurs. If DV.UFP (unformatted) is specified, the value is
converted to bytes from storage units (four bytes per storage
unit). If the wvalue given does not equal the value for an
existing file, an error occurs unless the system subroutine
ERRSET has been called to set the continuation-type for error
37 (inconsistent record length) to a return continuation.

® RECORDTYPE -- 'FIXED' sets DV.FIX; 'VARIABLE' sets DV.VAR:;
and 'SEGMENTED' sets DV.SEG.
The defaults are 'FIXED' for direct access; 'VARIABLE' for
formatted sequential access; and 'SEGMENTED' for

unformatted sequential access. For direct access, 'VARIABLE'
or 'SEGMENTED' is an error; for formatted, 'SEGMENTED' is an

error.

® SHARED -- Causes run—~time error 48 in RT-11 implementation.

® STATUS or TYPE -- If STATUS is not present, the default is
'NEW'. Note, however, that if the /X (NO F77 syntax) switch
is not set and no STATUS = parameter is specified in the
source code, the compiler passes a STATUS = 'UNKNOWN'
parameter. 'NEW' sets DV.NEW; 'OLD' sets DV.OLD; 'SCRATCH'

sets DV.SCR; and 'UNKNOWN' sets DV.UNK. The resulting code
is placed in D.STA2 in the LUB. If DV.RDO is set, and DV.SCR,
DV.NEW, or DV.UNK is specified, an error occurs. If DV.APD is
sety and DV.SCR or DV.NEW is specified, an error occurs.

® UNIT -- The unit number is obtained and $FCHNL is called to
obtain the LUB pointer. Processing is aborted immediately if
there is no unit number, the unit number is invalid, or the
unit is already open.

® USEROPEN -~ Saves passed LUB address in work area's W.UOPN,

6-3

I/0 SUPPORT

6.2.2 Default OPEN Processing

If DV.FACC is not set, default OPEN processing performs the following
operations:

® For input, it sets DV.OLD.
e For output, it sets DV.NEW.

Other fields and values may have been set by CALL ASSIGN, or
DEFINEFILE statements.

6.2.3 S$SOPENS$ Procedure

The $OPEN$ procedure opens the file and performs the checks and
computations common to OPEN statement processing (6.2.1) and default
OPEN processing (6.2.2).

Before the file is opened, $OPEN$ performs the following operations:

@ If no user file specification 1is provided (DV.ASGN 1is not
set), a default file specification is set up. The routine
SFLDEF is called to assemble the file dd:FOROnn.DAT, where dd
is the device name, and nn is the logical unit number.

® The user record buffer description in the LUB, BUFRAD and
BUFRSZ, 1is initialized with the address specified by the
impure area offset W.BFAD and the length specified by W.BLEN.

® A record length is computed. If a user-specified value is
available, that wvalue 1is used; otherwise, one of the
following values is used:

132 for formatted files
128 for unformatted files of fixed-length records

126 for other unformatted files

If impure area offset W.UOPN is nonzero, the user's routine is called
to perform the OPEN operation; otherwise, .LOOKUP or .ENTER is called
to open the file, given the specified or default name fields. If the
open operation fails because the file cannot be found, and DV.UNK is
set, the operation is retried with DV.NEW set.

After the file is open, the followihg operations are performed:
& DV,.OPN is set Eo indicate that the file is open.

@ The record format 1is checked for consistency: if the
user-specified record type does not match the file's record
format, an error occurs.

® The record length, D.RSIZ, is checked for consistency.

- If the user-specified length does not match the file's
record length for fixed-length records, an error occurs.
If the error continuation bit specifies "RETURN", the
user-specified length is used.

- For variable-length records, the record length is set to

the maximum of the user-specified length and the file's
maximum size.

6-4

I/0 SUPPORT

® The user record buffer description 1in the LUB, BUFRAD and
BUFRSZ, is 1initialized with the address specified by the
impure area offset W.BFAD and the length specified by D.RSIZ.

e If D.RSIZ is larger than the user record buffer, as specified
by impure area offset W.BLEN, a record size error occurs.

If any errors occur, either reported by the RT-11 programmed request
or resulting from the consistency checks, the file is closed. If the
file was just created, it is deleted as well.

6.2.4 USEROPEN Interface Specification

The USEROPEN parameter of the OPEN statement gives you a way to access
special processing options not explicitly available in the FORTRAN
language. The value of the USEROPEN parameter 1is the name of a
user-written MACRO-11l routine that the OTS calls to open a file. To
use the special processing options, you must do the following:

® Using the MACRO-1ll language, write a routine that opens the
file.

® In your FORTRAN program, include the statement:
EXTERNAL filename

where "filename" is the name of the MACRO-11 routine you wrote
to open the file,

@ In the OPEN statement in your FORTRAN program, include the
keyword parameter USEROPEN=filename, where, again, "filename"
is the name of your MACRO-1l routine.

Although the MACRO-1ll routine is called by the OTS (not your FORTRAN
program), you should write it as if it were being called by a FORTRAN
program. You must report the status of the open operation in RO. The
OTS invokes the routine as a standard FORTRAN function of one argument
using the standard FORTRAN calling convention:

ISTS = userprocedure (FDB)

FDB
The address of the LUB for the logical unit.

ISTS
The INTEGER*2 error status to be returned. The value is expected
to be the F.ERR completion'status and to follow the convention
used for SYSLIB status returns (positive numbers indicate
success, negative numbers failure). Note that the status is
returned only to the OTS, not to the FORTRAN program.

The following limits and constraints are imposed on the user-written
procedure:

@ All FORTRAN processing is completed prior to the call.

® The LUB address specified is valid until the logical unit is
closed. Note, however, that you do not have access to the LUB
in the FORTRAN program. You can access the LUB in a MACRO-1ll1l
program; the LUB address is at 2(RS5).

I/0 SUPPORT

The following sample FORTRAN program and user-open procedure specify
that an existing file of the same name should not be superseded by a
create operation:

EXTERNAL NOSUP
OPEN (UNIT = 1, USEROPEN=NOSUP,TYPE='NEW')

END
+MCALL .LOOKUP, .ENTER
ERRBYT=52
DEVNM=6
NOSUP:: MOV 2(R5) ,R0O Get LUB addr

ADD #DEVNM, RO
.LOOKUP #AREA,0,RO
CMPB @4ERRBYT, #1
BNE ERROR
.ENTER #AREA,0,RO
MOVB @#ERRBYT, RO
NEG RO

RETURN

Point to name block
does it exist?

- wo me

Error if anything but.
Open the file

Return completion status
Make error code negative

we w8 wa o

ERROR: ...
RETURN

6.2.5 File Name Processing

Two routines -- $FNBST and $FLDEF -- are used to process file name
strings and supply FORTRAN default file names.

The File Name Block Initialization module, $FNBST, sets up the File
Name Block (FNB) of the LUB.

If there is a file name argument (the NAME keyword is used), $FNBST is
called from the ASSIGN subroutine. $SFNBST is called with R3
containing the impure area pointer, R2 containing the length of the
name string, and Rl pointing to the start of the string. Registers
RO, R1, and R2 are destroyed; R3, R4, and R5 are preserved.

If no file name is provided, the Default File Name Generation module,
SFLDEF, 1is called to fill in the default file name. It stores the
default FORTRAN file name and file type in the FNB. On input, the
FORTRAN default file name is FOROnn.DAT, where nn is the unit number.
R3 points to the impure area. All registers are preserved.

6.3 FILE CLOSE PROCESSING

File close processing is performed by the OTS routine S$CLOSE, which
uses the following RT-11 programmed requests:

® The File Close Processing request, .CLOSE, to close files
® The File Deletion request, .DELETE, to delete files

The CLOSE source statement is compiled using an encoded argument list
similar to that for the OPEN statement; however, only the UNIT, ERR,
and DISPOSE keywords are allowed. The processing used 1is also
similar: The argument list is searched for each allowed keyword and
appropriate actions are taken. If any errors are encountered, the
CLOSE is not attempted and the LUB is NOT zeroed.

6-6

I/0 SUPPORT

The processing for each keyword 1is described below, 1in order of
execution:

1. ERR -- The ERR= transfer address is obtained and the stack
adjustment value 1is saved at offset COUNT. The address is
stored at offset ERREX, if present.

2, UNIT -- The unit number is obtained, and $FCHNL is called to
obtain the LUB address. If no unit number is present, or if
an invalid unit number is specified, a fatal error occurs.

3. DISPOSE -- If not present, the existing disposition is used.
'SAVE' sets DV.SAV; 'PRINT' sets DV.SPL; and 'DELETE' sets
DV.DEL. If DV.SCR is set, and DV.SPL or DV.SAV is specified,

an error occurs., 1If DV.RDO is set, and DV.SPL or DV.DEL is
specified, an error occurs.

6.4 SEQUENTIAL I/O PROCESSING
This section describes low-level OTS routines called by the I/0
statement processors and format processors to perform sequential
record transfers. The routines are called with the work area address
in R3.
The sequential input routine, $GETS, does the following:

® Obtains the LUB pointer from offset FILPTR.

® Maintains a pointer to next available byte

® Transfers bytes from the device buffer to the user buffer

® When an end of file condition is detected, the END= transfer
is executed. Errors cause the ERR= transfer to be executed.

e Increments the record count in D.RCCT and D.RCC2.

@ Returns the actual record length in R1l, and returns the start
address of the record in R2 (RO is undefined).

The Sequential Output routine, $PUTS, proceeds as follows:
® Obtains the LUB pointer from offset FILPTR

® Maintains an output pointer to the next available buffer
position

® Transfers byte data from the user buffer to an appropriate
device buffer.

® Increments the record count in D.RCCT and D.RCC2

SPUTS is called with the record length in Rl. Registers RO, R1l, and
R2 are undefined upon return.

6.5 DIRECT ACCESS I/0 PROCESSING

This section describes low-level OTS routines called by the I/0
statement processors and format processors to perform the actual calls
to the file system for direct access record transfers, and to perform
miscellaneous utility tasks. The routines are called with the work
area address in R3.

I/0 SUPPORT

The Direct Access Input routine, $GETR, proceeds as follows:

® Obtains the LUB pointer from offset FILPTR, and calls $CKRCN
to verify the record number and return it in R1 and R2

@ Calls $GETBL to read the required block when necessary
® Calls $ASVAR to update the associated variable
Registers RO, R1, and R2 are undefined.

The Direct Access Output routines, $PUTR and $PUTRI, proceed as
follows:

® SPUTRI is called to initialize a direct access write
operation.

® Obtains the LUB pointer from offset FILPTR and calls $CKRCN to
verify the record number.

® Stores the record number at F.RCNM and F.RCNM+2 in the LUB.
® SPUTR is called to write the record.
® Obtains the LUB pointer from FILPTR.

® Computes the number of unfilled bytes in the record. The
record is padded to the correct length with blanks for
formatted records and zero bytes for unformatted records.

® Calls $ASVAR to update the associate variable.
Registers RO, R1, and R2 are undefined.

The Direct Access Record Number Checking routine, $CKRCN, verifies the
current record number by comparing it against the maximum record
number for the file. The current record number is stored at offsets
W.RECL (low-order) and W.RECH (high=-order). The maximum record
number, if it exists, is at D.RCNM (low-order) and D.RCN2 (high-order)
in the LUB, The record number, if wvalid, 1is returned in Rl
(high-order) and R2 (low-order).

$CKRCN is called with the LUB address in RO, and the impure-area
pointer in R3. Registers R4 and R5 are preserved.

The Associated Variable Update routine, $ASVAR, obtains the current
record number from offsets W.RECL and W.RECH, increments it by 1, and
stores it in the associate variable at the address in D.AVAD in the
LUB. $ASVAR is called with RO pointing to the LUB. Registers Rl and
R2 are undefined.

6.6 AUXILIARY I/0 OPERATIONS

This section identifies and explains the routines that perform the
operations of the following FORTRAN source statements: BACKSPACE,
REWIND, ENDFILE, DEFINEFILE, and FIND.

BACKSPACE -~ BKSP$

The unit number is obtained and S$GETFILE is called to obtain the
LUB address. If the file is closed or is a direct access file,
the operation is ignored. If the file is opened for append, an
error occurs. The current block number and offset are reset to
that the file is "rewound"”. The record count is obtained from

6-8

I/0 SUPPORT

D.RCCT and D.RCC2 in the LUB. The record count is decremented by
1, and n-1 reads are performed. Note that the count is the
logical record count, and therefore that multiple physical reads
may.be required for unformatted segmented records.

REWIND =~ REWIS

The unit number is obtained and $GETFILE is called to obtain the
LUB address. If the file is closed or is a direct access file,
the operation is ignored. The append bit is cleared and the
record count D.RCCT and D.RCC2 is zeroed.

ENDFILE -- ENDFS$

The unit number is obtained and $GETFILE is called to obtain the
LUB address. If the file 1is a direct access file, an error
occurs and the operation is ignored. If not open, the £file is
opened by S$OPEN (default open) for write. A l-byte record,
containing an octal 32 (CTRL/Z), is output to the £file, using
$PUTS.

DEFINEFILE -- DEFFS$

FIND

6.7

The unit number is obtained and $GETFILE is called to obtain the
LUB address. If the unit is open, an error occurs. The number
of records is stored at D.RCNM and D.RCN2 in the LUB. The
recordsize is converted to bytes and stored at D.RSIZ. The
associated variable address is stored at D.AVAD, and DV.AI4 is
set if the associated variable is Integer*4. DV.DFD and DV.UFP
are set. If DV.DFD was previously set, an error occurs. If the
number of records or record size is negative, an error occurs.

--= FINDS
The FIND statement is contained in the same module as that of the
DEFINEFILE statement. The argument mask for $INITIO is set to

FL.REC!FL.RD and $INITIO is called. The associated variable, if
present, is set to the record number.

I/0-RELATED SUBROUTINES

This section describes the operation of three I/O-related subroutines.
The subroutines are described in detail in the PDP-1l1 FORTRAN-77/RT-11
User's Guide.

ASSIGN

The unit number is placed in R2 and $GETFILE is called to get the
LUB address. The file specification string address is placed in
Rl. If no string length is present, it is computed by scanning
for a zero-byte.

CLOSE

The unit number argument is moved to R2 and the OTS routine
$CLOSE is called to close the file.

CHAPTER 7

FORMAT PROCESSING AND FORMAT CONVERSIONS

This chapter discusses the internal form of format specifications, the
format processing algorithm, and the format conversion routines.

7.1 COMPILER FORMAT LANGUAGE

Format specifications are compiled into a standard internal form.
That form, which is illustrated in Figure 7-1, consists of a format
code byte followed by one to five bytes of optional format code
parameters.

bit 7 65 0 address
o]

VFE MASK n+1

REPEAT COUNT :N n+2

FIELD WIDTH:W n+3

DECIMAL PART:D n+4

EXPONENT FIELD:E n+5

Figure 7-1: Format Code Form

7.1.1 PFormat Code Byte

The format code byte consists of a 6-bit format code, a l-bit Variable
Format Expression (VFE) flag, and a l-bit repeat count flag.

The flags indicate whether the VFE mask and repeat count bytes are
included in the compiled code. If the VFE flag equals 0, no VFEs are
present in the format. If the VFE flag equals 1, VFEs are present and
the compiled code includes a VFE mask byte followed by VFE addresses.
If the repeat count flag equals 0, the repeat count for the format
specification is 1. If the repeat count flag equals 1, the repeat
count for the specification is greater than 1 or is a VFE, and the
repeat count byte is included in the compiled code.

Table 7-1 lists the decimal value of each 6-bit format code, gives its
source code form, and indicates whether it uses the field width and
decimal part parameters.

FORMAT PROCESSING AND FORMAT CONVERSIONS

Table 7-1: Compiled Format Codes

Decimal Source Repeat
Code Form Count W D E Notes
0 -3 - —— - - = Format error, only 0 and 2
are used currently; 0 means
format syntax error; 2 means
format too large
4 (- - = = Format reversion point
6 n{(n-1 - - - Left paren. of repeat group
8) - - = - Right paren. of repeat group
10) - - - = End of format
12 / —— - - -
14 $ - - - -
16 : - - - -
18 sP - s - -
20 Q - - - -
22 Tn - n - -
24 nX n-1 - - - Previous PDP-11 FORTRAN
IV-PLUS behavior for nX
(Compiler does not generate
this code for nX; OTS still
includes routine for
26 nHcl...cn n-1 - = - compatibility) n not VFE
¥
or ‘cl..cn’ n characters follow
28 nAw n=-1 W - - Standard conversions
30 nLw n-1 w = -
32 nOw n-1 W = -
34 nlw n-1 w - =
36 nFw.d n=-1 w 4 -
38 nEw.d n-1 w 4 -
40 nGw.d n-1 w d -
42 nDw.d n-1 w d4 -
44 nA n-1 - - = Default formats
46 nL n-1 - - -
48 n0 n=-1 - - -
50 nI n-1 - - -
52 nF n-1 - - -
S4 nE n-1 - - -
56 nG n-1 - - -
58 nD n-1 - - -
5 s - - - - New format descriptors
7 SP - - - -
9 ss - - - -
11 BN - - - -
13 B2 - - - -
15 TLn - n - -
17 TRn or nX - n - -
19 naw n-1 w o= -
21 nZ n-1 - = = Default Z format
23 nEw.dEe n-1 w d e E format descriptor with
exponent component
25 nGw.dEe n=-1 w m - G with e component
27 nOw.m n-1 w m - O, 2, I with m component
29 nZw.m n-1 w m -
31 nIw.m n-1 w m -

FORMAT PROCESSING AND FORMAT CONVERSIONS

7.1.2 Format Code Parameters

Up to five bytes of format code parameters may appear in the compiled
code for a format specification. The parameters are:

® VFE Mask Byte ~- indicates whether the other format code
parameters are VFEs or compiled constants. Bits 7, 6, and 5
are associated with the repeat count, field width, and decimal
part parameters, respectively. A bit setting of 1 means that
the associated parameter is a VFE; a 0 setting means that the
associated parameter is a compiled constant.

® Repeat Count Byte -- contains the repeat count value when the
repeat count 1is not 1. This value is 1 less then the source
code value. It must be in the range 1 to 255.

® Field Width Byte -~- contains the field width or tab position
in the range 1 to 255, or the scale factor in the range -128
to +127.

® Decimal Part Byte -~ contains the decimal field width for the

floating-point conversion codes, in the range 0 to 2553; or
contains the significant digit part for the I, 0O, and 2
formats in the form Iw.m, Ow.m, or 2w.m.

® Exponent Field Width Byte -- contains the optional exponent
field width wvalue, in the range 0 to 253, The default value
is 2.

When the repeat count, field width, or decimal part is a VFE, the VFE
address begins on the next word boundary after the VFE mask byte. The
VFE is compiled as an unparameterized arithmetic statement function of
type INTEGER*2 and is called by the instruction JSR PC,XXX, with R5
pointing to the program unit argument list. The format interpreter
performs all range checking on the result.

7.1.3 Hollerith Formats

Quoted format strings (character constants) are compiled as Hollerith
constants. The characters to be transmitted are included in the
compiled code following the repeat count. The repeat count cannot be
a VFE.

7.1.4 Default Formats

Most format code field descriptors have default values that are
supplied if no numeric value is present. The defaults are determined
from the format code and the data type of the corresponding 1list
element, as follows:

Format Code Data Type Default Values of W, W.D, or W.DE

I I*2 7

I I*4 12

E,G R*4 15.7 (E=2)

E,G R*8 25.16 (E=2)

D,F R*4 15.7

D,F R*8 25,16

0,2 All W=MAX(7,MIN (255 (8*ELEM_SIZE)/3+2))
L All 2

A All Number of bytes in the variable

X —— 1

7-3

7.1.5

FORMAT PROCESSING AND FORMAT CONVERSIONS

Format Compiled Code Example

This section gives an example of the code resulting £rom the
compilation of a FORMAT source statement.

The FORTRAN statement:

1

is compiled into the

FORMAT (1X, F13.5,

.l: .BYTE 21,1

.BYTE 44,15,5

.BYTE 232
.BYTE 4

'ABCDE', <K>I10, 3(2El15.7E4)/)

following:

1x

Fl3.5
Hollerith code
Repeat count

~o w0 e we

.BYTE 101,102,103,104,105 ; 'ABCDE'

.BYTE 342
.BYTE 200
.WORD LS$VFE
.BYTE 12

.BYTE 4

.BYTE 206,2
.BYTE 227,1
.BYTE 17,7,4

.BYTE 10
.BYTE 14
.BYTE 12

L$VFE: Mmov K,RO

RTS PC

I format code

VFPE mask

VFE address

I10

Reversion point

Left paren and repeat count
E format code and repeat count
E15.7E4

Right paren

/ code

End-of-format

N8 NE WP NG MO NG Ne WR wE w9 N

7.2 FORMAT PROCESSING PSECTS

The OTS uses the following program sections (PSECTs) for format and
list-directed processing:

$$SFIOC =-- contains

the pure code of the format processor

($FIO) and the list-directed processors ($SLSTI and $LSTO)

$SFIOD -- contains pure data (constants and dispatch tables)

used by $FIO0, $LSTI

$SFIOI -- contains
$$FIOL -~ contains
$SFIOR =-- contains
$$FIOS -- contains
block

$$FI0Z -~ contains
conversions

$$SFIO2 -- contains

entry points

, and $LSTO

the code for integer conversions

the code for logical conversions

the code for floating~point convérsions

the list-directed input constant storage

the code for octal and hexadecimal

the addresses of the conversion routine

FORMAT PROCESSING AND FORMAT CONVERSIONS

Each module stores 1its own entry point address 1in $$FIO2. The
processing routines pick up the addresses of ‘the appropriate
conversion routines as needed (if that address is 0, an error occurs).
The PSECTs have the GBL attribute so that the linker can correctly
build overlaid job imagess.

None of the conversion routines reference the work area or any other
portion of the OTS. They preserve R5 and the FPP registers, and leave
all other registers undefined.

7.3 FORMAT AND LIST-DIRECTED PROCESSORS

The format and list-directed processors -- $FIO, $LSTI, and S$LSTO --
operate as co-routines with the I/0 transmission operators. They are
called at the end of I/0O initialization, and process formats and list
items until called with offset VARAD equal to 0.

7.3.1 Format Processor -~ $FIO

$FI0O processes through the format, calling an internal routine for
each format code. It calls VFEs as encountered, with all context
saved and R5 restored to the user code value. When $FIO encounters a
format requiring a list item, it calls the appropriate conversion
routines (except that 'A' format is handled within $FIO) until no
elements remain in the 1list (offset VARAD = 0). For nested group
repeat specifications, $FIO uses a pushdown stack in the work area.
Offset FSTKP points to the current position; offset FSTK is the base
of the pushdown stack.

7.3.2 List~Directed Input Processor == $LSTI

SLSTI lexically scans the external record, delimits a field of input
characters, determines the data type of the field, and calls the
appropriate input conversion routine. It converts the resulting
internal data value to the appropriate type and moves it to the list
element. The currently active data value is stored at the address in
PSECT $$FIOS pointed to by the work area offset W.PLIC.

The parameters passed to the format conversion modules include the
buffer pointer, the actual field width as determined by the delimiter
scan, and, for floating-point conversions, a decimal part of 0 and
scale factor of 0.

7.3.3 List-Directed Output Processor -- $LSTO

$LSTO accepts the list element and determines a format based on the
list element data type, as follows:

Data Type Format
BYTE IS5
LOGICAL*2 L2
LOGICAL*4 L2

FORMAT PROCESSING AND FORMAT CONVERSIONS

Data Type Format
INTEGER*2 17
INTEGER*4 I12
REAL*4 1PG15.7
REAL*8 1PG25.16
COMPLEX*8 1X,'(',1pG14.7,',"',1PG1l4.7,")"'
CHARACTER*n nAl where n is the string length.
Holle?§th

If the computed field length is longer than the number of remaining
characters in the record, $LSTO writes the current record and begins a
new record. Each item is contained in a single record except for
character constants that are 1longer than a single record. S$LSTO
inserts a space at the front of each record for carriage control. The
record length is the record size specified in the RECORDSIZE parameter
of the OPEN statement. If no RECORDSIZE parameter is specified, the
default is 81 bytes, whi ch yields 80 print positions.

7.4 RUN-TIME FORMAT COMPILER =-- FMTCVS

Format specifications stored in arrays are converted into the required
form during execution. This is done by the following: .

1. Pushing the address of the array specification
2. Executing JSR PC,FMTCV$

FMTCVS does not delete the stack argument; it replaces its value with
the address of the compiled format.

Object time formats are compiled into a buffer in the OTS, whose
length is set by the compiler's /R option (global S$LRECL). The
buffer's address is stored at offset W.OBFL and its high address+l is
stored at W.OBFH. Offset FMTAD points to the current entry in the
output format buffer.
Within the FMTCV$ processing routines:

® R5 points to the source characters.

® RO contains the current source bytes.

® R2 contains any numeric value being accumulated.

@ Offset NOARG indicates the number of expected arguments for
the code.

® Offset PARLVL specifies the parentheses depth encountered.
® Offset NUMFLG indicates whether a number is available in R2.
The module examines each source character. If the character is a

digit, a number is accumulated; if it 1is a number or a special
character, a dispatch is made to process the format code.

7-6

FORMAT PROCESSING AND FORMAT CONVERSIONS

If the buffer space is exhausted, FMTCV$ stores the FMTBIG format code
(2) in the first byte of the compiled format and returns an error. If
a format syntax error is detected, FMTCV$ stores the FMTBAD format
code (0) in the first byte and returns an error.

7.5 INTEGER AND OCTAL CONVERSIONS

For input, the routines called are OCI$ for octal conversions (F4P V3
version) and ICI$ for integer conversions. The calling sequence is:

1. Push the address of the input string.

2. Push the number of input characters (high bit of this word
indicates BN/BZ; 0=BZ and 1=BN).

3. Call ICI$ (or OCIS).
The routines return a 2-word result on the stack in INTEGER*4 format.
The calling arguments are deleted. 1If an error occurs, the C-bit is
set and the value returned is 0. The floating-point conversions call
the routine at entry point $ECI to input the exponent field.
For output, the routines called are O0CO$ for octal conversions
(previous PDP-11 FORTRAN IV-PLUS version), and ICO$ for integer
conversions. The calling sequence is: .

1. Push the address of the output field.

2. Push the width of the output field (high bit of this word
indicates SP/SS; 0=SS and 1=SP).

3. Push the INTEGER*4 value.

4. Call ICO$ (or 0OCOS$).
The return is made with the calling arguments deleted. If an error
occurs, the C-~bit 1is set and the output field 1is filled with

asterisks.

Also for output, IMOS is called for integer conversions of the form
Iw.m. The calling sequence is:

1. Push the address of the output field.

2. Push the width of the output field (high bit of this word
indicates SP/SS; 0=SS and 1=SP).

3. Push the INTEGER*4 value.
4. Push the least number of digits to be output.
5. Call IMOS.
NOTE
The OTS no longer uses the entry points
OCI$ and O0OCO$ for octal conversions.

They are included for compatibility
purposes.

7-7

FORMAT PROCESSING AND FORMAT CONVERSIONS

7.6 HEXADECIMAL AND NEW OCTAL CONVERSIONS
The hexadecimal and new octal conversions apply to all data types in
PDP-11 FORTRAN-77. The calling sequence uses descriptors instead of

values on the stack. For input, the routines called are 2CI$ for
hexadecimal conversions and NOCI$ for octal conversions. The calling

sequence is:
1. Push the address of the input string.

2. Push the number of input characters (high bit of this word
indicates BN/BZ; 0=BZ and 1=BN).

3. Push the variable address.

4. Push the variable length.

5. Call 2CI$ or NOCIS.
The return is made with the arguments deleted and the value loaded
into the variable whose address was given. If an error occurs, the

C-bit is set and the value returned is 0.

For output, the routines called are ZMO$ for hexadecimal conversions
and OMOS$ for octal conversions. The calling sequence is:

1. Push the address of the output field.

2. Push the width of the output field (high bit of this word
indicates SP/SS; 0=SS and 1=SP).

3., Push the least number of digits to be output (for 2Zw.m and
Ow.m) .

4, Push the variable address.
5. Push the variable length.
6., Call ZMO$ or OMOS.

The return is made with the arguments deleted. If an error occurs,
the C-bit is set and the output field is filled with asterisks.

7.7 LOGICAL CONVERSIONS
The input logical conversion routine, LCI$, is called as follows:
1. Push the address of the input field.
2. Push the width of the input field.
3. Call LCIS.
LCI$ returns a l-word result on the stack: 0 for .FALSE and -1 for

.TRUE., The calling arguments are deleted. If an error occurs, the
C-bit is set and .FALSE is returned.

FORMAT PROCESSING AND FORMAT CONVERSIONS

The output logical conversion routine, LCO$, is called as follows:
1. Push the address of the output field.
2. Push the width of the output field.
3. Push the l-word logical value.
4. Call LCOS.

The return is made with the calling arguments deleted and the C-bit
cleared.

7.8 REAL, DOUBLE-PRECISION, AND COMPLEX CONVERSIONS

The input conversion routine, RCI$, is called for all formats (D, E,
P, and G format codes) as follows:

1. Push the address of the input field.

2. Push the width of the input field (high bit of this word
indicates BN/BZ; 0=BZ and 1=BN).

3., Push the decimal part width.

4. Push the scale factor (P format).

5. Call RCIS.
RCI$ returns a 4-word, double-precision result on the stack. The
calling arguments are deleted. If an error occurs, the C-bit is set
and the value returned 1is 0.0. If an exponent subfield is
encountered, $ECT is called in the integer input conversion routine to

handle the conversion.

The output conversion routines, DCO$, ECO$, FCO$, and GCOS$, are called
as follows:

1. Push the address of the output field.

2. Push the width of the output field (high bit of this word
indicates SP/SS; 0=SS and 1=SP).

3. Push the decimal part width (high byte of this word contains
the value of e for forms Ew.dEe or Gw.dEe).

4. Push the scale factor.

5. Push the 4-word, double—pregision value.

6. Call DCO$, ECO$, FCO$, or GCOS.
The return is made with the calling arguments deleted. If an error
occurs, the C-bit 1is set and the output field 1is £filled with

asterisks.

The real, double-precision, and complex conversions are done in the
software; the FPP unit is not used.

The optional module provided, F77CVF, is an FPP implementation that is
significantly faster but slightly less accurate. The entire FPP state
is conserved.

FORMAT PROCESSING AND FORMAT CONVERSIONS

7.9 FORMAT CONVERSION ERROR PROCESSING

When a format conversion error occurs, both methods of error
continuation, ERR=transfer and return (see Section 9.2.2.1), are
generally supported. The actions taken for these errors are as
follows:

Error 51 -- list-directed I/O syntax error
The result value is null (no change).

Error 53 -- format/variable type mismatch error
The value is used as is, without conversion.

Error 55 -- output conversion error
The field is filled with asterisks.

Error 56 -- input conversion error
The result value is 0, 0. or 0.DO.

Error 60 =-- variable format expression value error
A value of 1 is used for repeat count or field width;
a value of 0 1is wused for the decimal part or scale
factor.

/
For more information on format conversion error processing, see the
PDP-11 FORTRAN-77/RT-11 User's Guide.

7-10

CHAPTER 8

ERROR PROCESSING AND EXECUTION CONTROL

This chapter discusses execution control processing, detecting and
processing run-time errors, and generating error messages.

8.1 PROGRAM INITIALIZATION

The first instruction of every FORTRAN main program calls the OTS
initialization routine, as follows:

JSR PC,0TIS
The following operations are performed:

® S$STFPP is called to initialize the FP-11 floating-point
processor or the KEFllA floating-point microcode option
(unless F77EIS is used).

@ The error control byte table is copied into impure storage.

® The number of available logical units 1is computed as the
minimum of the size of the device table program section
(PSECT) and the value iof impure area offset W.LUNS. The
device table PSECT is set to zero.

@ The user record buffer PSECT size is computed and stored at
impure area offset W.BLEN,

® Miscellaneous impure area offsets are set to zero.
® The job error count limit is set to 15.

@ S$VINIT is called to 1initialize the wvirtual array mapping
window if virtual arrays are used.

8.2 EXECUTION-TIME ERRORS

The following sections describe the types of errors reported by the
0TS.

8.2.1 Trap Instruction Processing

The OTS uses TRAP instructions to report errors. FORTRAN error
numbers range from 1 through 120 (decimal)., Not all numbers have a
definition; some are reserved for future error definitions. The
error number is in the low byte of the TRAP instruction. Internally,
it is 128 larger than the reported number; thus, error number 21 is

8-1

ERROR PROCESSING AND EXECUTION CONTROL

internally represented as 149. The first 128 TRAP values are
available to users (see Section 8.4).

When a TRAP instruction is executed, the operating system transfers
control to the TRAP instruction processor, which checks the range of
the error number. If that is wvalid, it calls $ERRAA to do the error
analysis and reporting. If the error number is invalid, it returns an
error number 1.
SERRAA's processing is based on the contents of an error control byte
in impure storage. The error control byte is bit encoded. The bit
descriptions are: :

EC.CON -- Continue.

EC.CNT -~ Count.

EC.UER -- Use ERR= exit if 1; return if 0.

EC.LOG -- Log.

EC.INU -~ This number defined for use.

EC.RTS -- Return continuation permitted.

EC.ERE -~ ERR= continuation permitted.
The sign bit of the error control byte has no name. It is tested and
cleared by the ERRTST system subroutine. When it is clear, an error
has not occurred; when it is set, an error has occurred.

The standard bit combinations are:

Fatal
Errors: EC.FAT

EC.INU + EC.LOG

I/0
Brrors: EC.IO
EC.ERE

EC.INU + EC.CON + EC.CNT + EC.LOG + EC,UER +

Other
Errors: EC.NRM

EC.INU + EC.CON + EC.CNT + EC.LOG + EC.RTS

8.2.2 Error Control Byte Processing

SERRAA obtains the error control byte from the OTS impure area. The
sign bit is set., S$ERRAA examines other bits in the error control byte
and acts as follows:

@ If the continue bit is cleared, the error report includes the
exit flag.

® If the count bit is set and no ERR=address exists, offset
W.ECNT is decr emented. If W.ECNT is less than or equal to
zero, the report includes the exit flag.

® If the continue-type bit is set and no ERR= address exists,
the error re port includes the exit flag.

® If the log bit is set, the error report includes the no-exit
flag. If the job exits, the message is always logged.

S$ERRAA calls $SERRLG to log all terminal messages, both error reports,
and the messages from STOP and PAUSE statements.

8-2

ERROR PROCESSING AND EXECUTION CONTROL

8.2.2.1 Continuation Processing - Two types of continuation after an
error are supported:

® Transfer to an ERR= address. This type is used for most I/0
errors.

@ Return to the source of the error. This type 1is generally
used for error s other than I/0 errors.

8.2.2.2 W.IOEF Error Processing -~ For some I/0 errors, it may be
better if the ERR= transfer is initiated by the I/O routine itself,
rather than by the error processor ($ERRAA). For example, when OPEN
statement processing detects an error in a keyword, the transfer to
the ERR= address is delayed until all of the statement's keywords have
been examined.

Work area offset W.IOEF is wused to obtain this special error
processing. The eff ects of W.IOEF's value are as follows:

e When it is 0, default processing is enabled.

® When it is negative, default processing 1is performed except
that the ERR= transfer is not made; instead, control is
returned to the source of the error and the ERR= transfer can
be made from there,

® When it is positive, the return type of continuation is always
executed.

W.IOEF is initially zero and 'is reset to zero before exiting £from a
routine that wuses 1it. Regardless of the W.IOEF setting, if no ERR=
address exists, the job will exit.

8.2.3 Floating-Point Processor Errors

All Floating-Point Processor (FPP) errors are processed by routine
S$FPERR. When divide-by-zero, overflow, or underflow occurs, zero is
supplied as the result of the operation that caused the trap.

8.2.4 Error Message Processing

Error message construction and processing is performed by many small
routines. Message processing begins with a call to $ERRLG, which
controls the flow of mess age processing, calling the appropriate
message utilities as required. SERRLG produces a 5-line error log
containing the following:

® On line 1, the job name and error number.
® On line 2, message text.

® On line 3, the value of the program counter at the time of the
error. This is found at offset W.PC.

® On line 4, the error count exceeded message. This is based on
the error limit count stored at offset W.ECNT,

® On line 5, the I/O error data, which is based on the primary

error field of the LUB (referenced by offset W.FERR), followed
by the program unit traceback.

8-3

ERROR PROCESSING AND EXECUTION CONTROL

For message construction, R3 points to the work area, RS points to the
current position in the message text being constructed, and offset
W.ERLN points to the beginning of the error message buffer.

$ERRLG is also called to output messages from STOP and PAUSE
statements. It uses the values of R0 and Rl to determine the type of
message being generated, as follows:

® If Rl is 0, the message is associated with a STOP or PAUSE
statement, and RO points to the message text block.

® If Rl is not 0, the message is an error message, and RO is ~1
if the job is exiting and 0 if the job is continuing.

8.3 STOP AND PAUSE STATEMENT PROCESSING
STOP and PAUSE statements are compiled to calls as follows:
1. Push address of display (0 indicates no display).
2. Call statement-specific entry:
STOP$ for STOP
PAUSS$ for PAUSE

All context is saved. $ERRLG (see Section 8.2.4) is called to output
the message. STOP then jumps to $EXIT; PAUSE issues a .TTYIN request
and then returns when a <CR><LF> sequence is encountered.

8.4 USER INTERFACING TO TERMINAL MESSAGE OUTPUT

The error-reporting message facility enables users to write text to
their terminals without doing FORTRAN 1I/0. A message text block
similar to that used for STOP and PAUSE statements is constructed as
follows. Rl equals O0; R0 points to a 2-word message block. The
first word of the block contains the address of an ASCIZ string (ASCII
string terminated by a zero byte); the second word is 0. The text is
output by executing a JSR PC, $ERRLG instruction.

Example:
The following prints 'HELLO' on the user terminal:
In FORTRAN:

CALL MSG ('HELLO')
END

IN MACRO-11

2nd word of message block
Address of ASCIZ text

RO points to message block
Signal non-error type message
Output the message

Delete message block

Return

MSG:: CLR - (SP)
MOV 2 (R5),- (SP)
MOV SP,RO
CLR R1
JSR PC,$ERRLG
CMP (SP)+, (SP)+
RTS PC
.END

NS e wE we w8 wE wa

Only a single line can be output.

ERROR PROCESSING AND EXECUTION CONTROL

8.5 EXECUTION CONTROL SUBROUTINES

The following subroutines are described in detail in the PDP-11
FORTRAN-77/RT-11 User's Guide:

ERRSET -- The error number specified by the user is extracted and
checked for v alidity. The logical arguments are extracted and
the appropriate bits in the error contro 1 byte are manipulated.
If a limit count is provided, it is stored at offset W.EC NT,

ERRSNS -- This routine is called with =zero to two integer
arguments:

CALL ERRSNS (NUM, UNIT)

The information saved from the latest error is returned as

follows:
offset W.ERNM into NUM
offset W.ERUN into UNIT

These offsets are then zeroed.

ERRTST -- The error number is retrieved and checked for validity.
The sign bit of the error control byte is tested and cleared, and
the result is returned in the second argument.

EXIT -- Performs a jump to SEXIT.

USEREX =-- Stores the argument address at work area offset EXADDR
for use during job termination.

CHAPTER 9

OTHER COMPILED-~CODE SUPPORT ROUTINES

This chapter describes routines that support various arithmetic and
housekeeping operations required by the compiled code.

9,1 ARITHMETIC OPERATIONS
All the routines follow a common naming convention in which:

® The first two letters indicate the operation performed, as

follows:

AD -- addition

SB -~ subtraction

ML -- multiplication
DV -- division

PW -~ exponentiation
CM -~ comparison

TS -- test for zero
NG =-- negation

® The next letter (next two, in the case of exponentiation)
indicates the data types of the arguments, as follows:

I ~- Integer*2

J -- Integer*4

R -=- Real

D == Double Precision
C =-- Complex

OTHER COMPILED-CODE SUPPORT ROUTINES

The last letter indicates how to access either the single
argument of a l-argument operation or the second (right hand)
argument of a 2-argument operation. For 2-argument
operations, the first (left hand) argument is always on the
stack. The last letter can be one of the following:

S -- indicates the argqument is at the top of the stack

C -=- indicates that the following in-line word is the
address of the argument

P -- indicates that the following in-line word 1is the
offset in the parameter list (pointed to by RS5) which
contains the address of the argument

All of these routines are called using the R4 convention described
Chapter 2. 1In addition, they all delete their stack arguments, return
and preserve

their result on the
register 5 (R5).

9.1.1 Exponentiation

stack,

the

The exponentiation routines are as follows:

Data Type
Routine Base Exponent Result
PWIIxS T*2 I*2 I*2
PWIJx$ I*2 I*4 I*4
PWJIIx$ I*4 I*2 I*4
PWJIJIx$ I*4 I*4 I*4
PWRIxS$ R*4 I*2 R*4
PWRJIxS$ R*4 I*4 R*4
PWDIx$ R*8 I*2 R*8
PWDJx$ R*8 I*4 R*8
RWRRxXS R*4 R*4 R*4
PWRDx$ R*4 R*8 R*8
PWDRx$ R*& R*4 R*8
PWDDx$ R*8 R*8 R*8
PWCIXS$ c*8 I*2 C*8
PWCJIx$ Cc*8 I*4 C*8
PWCCxS$ C*8 Cc*8 c*8

X is 8, C, or P

of general

OTHER COMPILED-CODE SUPPORT ROUTINES

NOTE

This table of routines shows only the
entry points called by the compiled
code; it is not a complete list of all
the supported forms of exponentiation.
For example, a base of complex and an
exponent of Real*4 is supported by
converting the Real*4 to a complex
number and calling the entry point that
supports a base and exponent of complex.
For a complete 1list of the supported
forms of exponentiation, see the PDP-1l1
FORTRAN-77/RT-11l User's Guide.

9.1.2 Complex Arithmetic Operations

The following entries are used:

ADCx$ =-- complex addition

SBCx$ -~- complex subtraction _
MLCx$ -- complex multiplication
DVCx$ == complex division

TSCx$ =-- complex test for zero
NGCx$ =-- complex negation

CMCx$ =- complex compare

X is S, C, or P

9.1.3 INTEGER*4vArithmetic Operations
The following entries are used:

MLIx$ ~-- Multiplication

DVIX§ -=- Division

x is 8§, C, or P

9.1.4 Stack Swap Operations SwPxy$

These routines are used in conjunction with the out-of-line arithmetic
operation entries when the order of evaluation causes the two
arguments of the operation to be on the stack in reverse order. Entry
names are of the form:

SWP1r$

OTHER COMPILED=-CODE SUPPORT ROUTINES

The number of words the left argument occupies: 1, 2, or 4

The number of words the right argument occupies: 1, 2, or 4.

The two arguments are swapped on the stack.

9.1.5 Character Operations
These routines are called using the PC convention described in Chapter
2, with the modification that a descriptor (length, address pair) is
pushed on the stack for each argument. The two character operations
are character assignment (entry point $CHASN) and character comparison
(entry point $CHCMP).
Character assignment is called as follows:

1. Push the length of the destination (in bytes).

2. Push the address of the first byte of the destination.

3. Push the length of the source (in bytes).

4, Push the address of the first byte of the source.

5. JSR PC,S$CHASN.
On return, the stack argquments are deleted.

Character comparison is called as follows:

1. Push the length of the left side of the comparison operation
(in bytes).

2. Push the address of the first byte of the left side of the
compar ison operation.

3. Push the length of the right side of the compatison operation
(in bytes).

4, Push the address of the right side of the comparison
operation (in bytes).

5. JSR PC,$CHCMP.

On return, the stack arguments are deleted and the condition codes are
set for an unsigned branch (C and 2 bits of the PSW are valid).

9.2 ARRAY PROCESSING SUPPORT
An Array Descriptor Block (ADB) is a data structure the compiler
provides to describe an array. FORTRAN-77 compiled code uses ADBs for
the following:

® Array subscript calculations for dummy argument arrays

® I/0 calls that transmit an entire array

OTHER COMPILED-CODE SUPPORT ROUTINES

® Array subscript limit checking when specified by the compiler
/1 command switch

® Virtual array load and store operations

The compiler defines the constant parts of an ADB. The varying parts
are initialized when the subprogram that contains the array"
declaration is executed.

The offsets

A.ASTR

A.ASUM

A.AQ

A,CWRD

A.BPE

A.D1

A.SIZB

A,PLYA

A.PLYV

A.PWRD

within the ADB are as follows:

Actual base storage address (first element) or, for
virtual arrays, the 64-byte block number of the array
base in virtual storage.

Assumed size array flag bit in code word A.CWRD.

Zeroth-element address (address of A (0,0,0...0)).
This offset is ignored for virtual arrays.

Code word containing the number of dimensions, data
type, element size, and information denoting whether it
is an assumed size array:

Assumed Size Data Type Number of Element
Array Flag Dimensions Size
1 bit v 4 bits 3 bits 8 bits

Number of bytes per array element (BPE). (Low byte of
A.CWRD.)

First dimension span. (Other dimensions follow A.Dl
but are not named; that 1is, A.Dl+2 is the second
dimension span.)

Total array size in bytes, A.SIZB = D1*D2*...Dn*BPE;
or, for wvirtual arrays, the number of elements in the
array.

Addressing polynomial evaluated for the first element,
polyA(Ll,L2,...Ln).

Addressing polynomial evaluated for the first element
of a virtual array, polyA(Ll,L2,...Ln).

Used for adjustable arrays. 2N l1l-bit fields denoting

an adjustable/non~adjustable bound. Encoding 1is
left~-justified as follows:

Un Ln Un=1 secen Ul L1 not used

Last upper bound. Other bounds are stored in front of
A.UN but are not named; that is, A.UN-2 is the last
lower bound, A.UN-4 is the next-to-last wupper bound,
and so on.

OTHER COMPILED-CODE SUPPORT ROUTINES

The data type codes contained in A.CWRD are:

[}

A.LGC1 LOGICAL*1 (BYTE)
A.LGC2 = LOGICAL*2

A,LGC4 = LOGICAL*4

A.INT2 = INTEGER*2
A.INT4 = INTEGER*4
A.REA4 = REAL*4

A.REA8 = REAL*8 (DOUBLE PRECISION)
A.CMP8 = COMPLEX
A.CHAR = CHARACTER

A.HOLL Hollerith

I/0 transmissions also use these codes to denote the list item data
type.

The dimension spans (Di) for arrays are the sizes of each dimension:
Di = upper bound (Ui)-lower bound (Li) + 1

The compiled code uses dimension spans to determine the subscript
value. The ADB retains the upper and lower bounds for each array.
The bounds determine the size and shape of arrays.

9.2.1 Adjustable Array Initialization

Four routines are used for initializing the contents of ADBs for dummy
argument adjustable arrays: MAKlS for one-dimensional arrays, MAK2$
for two-dimensional arrays, MAKNS for arrays with three to seven
dimensions, and MAKVS for wvirtual arrays. Only R5 is preserved by
these routines. They are called as follows:

1. Push the dimension bounds for any nonconstant elements onto
the stack in order of their appearance in the array
declarator.

2. Push the base address of the dummy argument array passed in
the subprogram call.

3. Push the address of the array descriptor block onto the
stack.

4, Execute a call in the form of JSR PC, to one of the following
routines: MAK1lS$, MAK2$, MARNS, or MAKVS.

5. On return, the stack arguments are deleted.

9.2.2 Array Subscript Checking

If the compiler switch option /I is in effect, each array reference
will be checked to verify that the array element address is within the
bounds established for the array by the array declarator.

OTHER COMPILED-CODE SUPPORT ROUTINES

The form of the call is:
1. Push the array element address onto the stack.
2. Push the address of the array descriptor block.
3. Execute a call in the form of JSR PC,ARYCKS.

This call preserves all registers.

9.2.3 Virtual Array Processing
Virtual array elements are processed by out-of-line calls 1in all
cases. The OTS call returns the mapped virtual address of the array
element. Either the value of the array element 1is loaded 1into a
register for use or a value is stored into the array element.
The form of the call is:
1. Push the address of the array descriptor block on the stack.
2. Move the indexing expression into RO.
3. Call the routine:
VRTxS, if /I was not specified
VRTxCS, if /I was specified
where x is one of the following data type code letters:
B - LOGICAL*1
L - LOGICAL*2
M - LOGICAL*4
I - INTEGER*2
J - INTEGER*4
R - REAL*4
D - REAL*S8
C - COMPLEX*8
4. On return, the stack argument is deleted, RO contains the

virtual address of the element, and all other registers are
preserved.

9.2.4 Notes on ADB Usage

The following defines the array—addteséing polynomial function, polya,
for a three-dimensional array:

DIMENSION A(L1:U1,L2:U2,L3:U3)
polyA(I,J,K)=((K*D2+J)*D1+I) *BPE

A.A0 is defined as A.ASTR - polyA(Ll,L2,L3).

OTHER COMPILED-CODE SUPPORT ROUTINES

The address of an array element is then calculated as:
address of A(i,j,k)=A.ASTR+polyA(i,j, k) -polyA(Ll,L2,L3)
=A.A0+polyA(i,j,k)

Array bounds checking consists of verifying that the array element
address is both of the following:

® Greater than or equal to the base address, A.ASTR

® Less than the high address+l, A.ASTR+A.SIZB
Note that only the complete subscript value is within the array:
individual dimensions are not checked against their corresponding
dimension bounds.

For example, the FORTRAN statements

SUBROUTINE X(A,N)
DIMENSION I(100), A(10:N-1,N)

cause the following ADBs to be created for I and A:

No Di values since I is not
an adjustable array

.WORD 310 ; A.SIZB
I.ADB: .WORD I ; A.ASTR
.WORD I-2 ; A.AQ0
-.WORD 20402 ; A.CWRD
’

«WORD 12 ; L1 =10

«WORD 0 ; Ul = N-1

-WORD 1 H L2 =1

-WORD 0 ; U2 =N

-WORD 120000 ; A.PWRD

.WORD 0 ; A.SIZB
A.ADB: .WORD 0 ; A.ASTR

«WORD 0 ; A.AQ

-WORD 31004 ; A.CWRD

. WORD 0 ; D1l

.WORD 0 H D2

9.3 GO TO STATEMENT SUPPORT

The following sections_ describe the code that results from the
compilation of FORTRAN-77 GO TO statements.

9.3.1 Computed GO TO Statement Support
A computed GO TO statement is compiled to a call as follows:
1. Push the address of the label list.

2. Convert the index expression value to INTEGER*2 (if needed)
and push it on the stack.

3. Execute a call in the form of JSR PC,CGOS.

OTHER COMPILED-CODE SUPPORT ROUTINES

4. On return, the stack arguments are deleted.
5. If the index value is less than 1 or greater than the number

of 1labels in the 1list, no transfer takes place and all
registers are preserved.

9.3.2 Assigned GO TO Statement Support
An assigned GO TO statement is compiled to a call as follows:
1. Push the assigned label address.
2. Push the address of the allowed label list.
3. Execute a call in the form of JSR PC,AGOS.
4., On return, the stack arguments are deleted.

5. If the assigned label value is not in the list, no transfer
takes place and all registers are preserved.

9.3.3 Label List Argument Format

The label list for the assigned or computed GO TO statement has the
following form:

ADDR: .WORD n
.WORD labell
.WORD labeln

9.4 TRACEBACK CHAIN PROCESSING

The traceback chain for error processing is a linked list constructed
dynamically on the run-time stack.

The work area contains the list head and the current statement number.
The 1list head 1is at offset W.NAMC, with global name $NAMC. The
current statement number is at offset W.SEQC, with global name $SEQC.
The list elements are 4-word blocks located on the stack in the
following form:
$NAMC -> pointer to next
statement number

program unit

name in RADS50

OTHER COMPILED-CODE SUPPORT ROUTINES

The list head points to the currently active program unit entry. This
entry contains the following items:

® The currently active program unit name in Radix-50

® The current statement number in the calling program at the
time of the call

® A pointer to the calling program list-block

Note that the statement number pertains to the program unit of the
NEXT 1list block, since the current program unit statement number is
maintained at the fixed global location S$SEQC.

If the compiler command option /S:NAM, /S:BLO, or /S:ALL is specified,
a call is made to link the program unit name into the OTS name list
used for producing the error traceback information. The form of the
call is:

1. Push the last three letters of the entry name (represented in
Radix-50) onto the stack.

2. Load the first three letters of the entry name into register
R4,

3. Execute a call in the form of JSR R4,@$NAMS.

The current statement number, $SEQC, is set to zero. The traceback
information is maintained on the execution stack. When the program
unit returns, it returns to the NAMS$ routine, which resets the stack,
removes the name chain link, and returns control to the caller.

If /S:NAM is specified, the current statement number is not updated
($SEQC remains zero).

If /S:BLO is specified, the current statement number is periodically
updated by the compiler to contain the negative of the statement
number, for instance, =21 for statement 21.

If /S:LIN is specified, the current statement number is wupdated on
every statement, maintaining a positive number.

APPENDIX A

FORTRAN IMPURE AREA DEFINITIONS

= $OTSVA, $SEQC
(Points to LUB's)

- — - —— o " . - - s >t

$NAMC

——— > o — o —— — o s o o o = =

.NLUNS

[}

034 W.BFAD {

036 W.BLEN |

040 W.BEND f

042 RECIO

044 EOLBUF

!
046 FMTCLN ;
|

052 PSCALE

FORTRAN IMPURE AREA DEFINITIONS

o ————— +

| 054 W.LICP/FSTKP - |

frm————— e e e +
056 W.LICB/FSTK
NOARG=FSTK

PARLVL=FSTK+2
NUMFLG=FSTK+4

16-word scratch area

overflow word

I |
o —————————— +
| 120 FMTRET |
Fom e ——— +
| 122 VARAD |
Fom e ———— +
| 124 TSPECP |
Fre e —————————— +
| 126 TYPE |
Fom——————— e ————— + *
| 130 REPCNT/UNFLGS |
+ -+
| 132 LENGTH |
| 134 D 1
e e e +
| 136 ITEMSZ [
o o e e e e +
| 140 DOLFLG (byte) [
| 141 W.ELEM (byte) |
tomemmmn———— +
| 142 cCOUNT |
B et +
144 RACNT

FMTLP= RACNT

UNCNT= RACNT

W.UOPN= RACNT
o e e e e e e +
| 146 DENCWD |
o e o o e e e e e +
| 150 W.PC [
e o e e e e o i 1 +
| 152 EXADDR |
Fom e —— -+
| 154 ENDEX |
tom—m———— +
| 156 ERREX |
tmm——————— 1
| 160 W.ECNT | = $ERCNT
Fom———— +
| 162 W.ERNM |
| 164 W.LIMT |
+- +
| 166 W.OPFL |
e +
| 170 W.ERLN |
o e e e e e e e +
| 172 W.ERLE |

174 W.ERTB

A-2

FORTRAN IMPURE AREA DEFINITIONS

o ——————————_——————_———— +
| 176 W.OBFL |
Rt ettt +
| 200 W.OBFH |
T i +
| 202 W.ERUN {
B +
| 204 W.FPST |
e e +
| 206 W.EXJ |
tmmm————————— e +
| 210 W.PNTY (byte) |
+- - -—
| 211 W.IOEF (byte) |
B et et +
| 212 W.R5 {
e e e o 2 e e e e +
| 214 W.VTYP |
P ———————— +
216 W.RECL

W.KNUM=W, RECL

W.KDSC=W.RECL

W.SLEN=W.RECL
e ——————— +
| 220 W.RECH/W.SADR |
o o o +
| 222 W.FPPF (byte) |
o o e e e e e e +
| 223 W.DFLT (byte) |
Fmm e +
| 224 W.LNMP {
Fomm e ——— +
[226 W.PRNT |
+= -— +
| 230 W.TYPE |
o st e e e e - +
| 232 W.Acp |
e +
| 234 W.READ [
Fm—m——— ———
| 236 wW.MOTY |
e +
| 240 W.DEVL |
+ - - +
| 242 W.CPXF (byte) |
| 243 W.NULL (byte) |
tom e — e e~ —————— +
| 244 W.FDB1 [
s ettt +
| 246 W.FDB2 |
e e e e +
| 250 W.EXST [
o e e e e e e +
| 252 W.FNML [
o o e +
| 254 W.WDB |
o o e e e e e e e e +
| 256 W.TKLM |
B et atata b +
|

]

$PRINT
STYPE
SACCPT

$READ

FORTRAN IMPURE AREA DEFINITIONS

260 W.WNLO
o o e e e +
| 262 W.WNHI [
Fom - ———————_—_—_—_————— +
| 264 W.KREF |
tmm e —— e +
| 266 W.KMAT (byte) |
tmm———— +
| 267 W.KDTP (byte) |
e —— +
| 270 W.LUNO (byte)]
+ e —————————— +
| 271 W.SPBN (byte) |
Form e ——————————— +
| 272 wW.PLIC |
o e e +
| 274 W.TBST I
e +
| 276 W.TBFN (
Fom e ———— +
[300 W.ERXT |
Fom e ——— +
| 302 W.ERLG |
| 304 W.FIN |
E — ——+
| 306 W.FPER |
o ——————————— e e +
| 310 W.NAM |
o v e e +
| 312 W.IOXT]
Fmm e ————————_—_—_————————— +
| 314 TTYRWF |
Fom e ———————————————— +
| 316 NBLOCK |
o ———— -+
320 8 words extra
! |
o +
| 340 W.END |
o -

APPENDIX B

FORTRAN LOGICAL UNIT CONTROL BLOCK DEFINITIONS

B.l1 LUB CONTROL BLOCK FORMAT

o e o o o e +
| c00 D,.FDB | Status word 0
o e e +

| 002 BUFRAD |

o ———— ——— -

| 004 BUFRSZ |

+ +

| 006 DEVNM | File Name Block (FNB)
o e e e e e +

| 010 FILNM(1) |

Fom e ——— e e +

| 012 FILNM(2) |

Fmm——————————— e +

| 014 EXTEN |

o e e e e e e e s e e e +

| 016 DATAD]
frmm——————————————— +

| 020 BUFNO (byte) |

o e e +

| 021 CHNLNO (byte) |

- —_—— ————t

| 022 ASSOCV/D.AVAD |

B i Tep—— +

| 024 RECSZ/D.RSIZ |

o o o o s

| 026 BLEKNO

[R ——

| 030 FILSZ

- s s s s i s

032 HIGHBL

Status word 2

+
l
+
| 034 D.STA2
+
!

- ————t
036 D.STAT | Status word 1
——t
040 RECMAX |

+

042 D.RCCT/D.RCNM |

- —

!
| 044 D.RCC2/D.RCN2 [
!

046 F.LUN |

FORTRAN LOGICAL UNIT CONTROL BLOCK DEFINITIONS

B.2 STATUS BIT DEFINITIONS

D.FDB - Status Word 0

BUFBIT
MWRB
SCR
UNLIST
LISTMD
LSTFMT
RDO

T

OLD
RDBFWT
LP
OPNBIT
EOF

KB
WRITE

=1

=2

=4

=10
=20
=40
=100
=200
=400
=1000
=2000
=4000
=10000
=20000
=100000

DOUBLE BUFFERING FLAG BIT
MODIFIED RANDOM BLOCK FLAG
'SCRATCH' FLAG FOR RT SYSLIB
FORCED FOR FORTRAN OUTPUT
FORCED FOR LISTING OUTPUT
FILE IS OPEN FOR LISTING FORMAT
'READONLY' FLAG FOR RT SYSLIB
FILE OPEN TO CONSOLE TERMINAL
'OLD' FLAG FOR RT SYSLIB

READ BEFORE WRITE

FILE OPEN TO LP:

'OPEN' FLAG FOR RT SYSLIB

END OF FILE REACHED

FILE OPEN TO KB

WRITES HAVE BEEN PERFORMED

D.STAT - Status Word 1

DV.FIX
DV.FNB
DV.DFD
DV.FAR
DV.FACC

DV.OPN
DV.VAR
DV.SEG
DV.FMP
DV.UFP
DV.ASGN

DV.CLO
DV.FRE
DV.RW

D.STA2 - Status Word 2

DV.AI4

DV.RSZ
DV.CC

DV.SPL
DV.DEL
DV.RDO
DV .UNK
DV.OLD
DV.NEW
DV.SCR
DV.APD
DV.SAV
DV.BN

=2
=4
=10
=20
=40

=200
=400
=1000
=2000
=4000
=10000

=20000
=40000
=100000

=2

=4

=10
=20
=40
=400
=1000
=2000
=4000
=10000
=20000
=40000
=100000

RECORD TYPE ='FIXED'
FILE NAME BLOCK INITIALIZED
DEFINE FILE DONE DIRECT ACCESS UNIT
PARTIAL FDB FLAG FOR ENCODE/DECODE
FILE ATTRIBUTES: 0 - DEFAULT

1 - CALL FDBSET
UNIT OPEN MUST BE 200'S BIT
RECORDTYPE='VARIABLE'
RECORDTYPE='SEGMENTED'
FORMATTED ACCESSED UNIT
UNFORMATTED ACCESSED UNIT
FILESPEC: 0 - USE DEFAULT

1 - FROM CALL ASSIGN
CLOSE IN PROGRESS
FREE FORMAT ALLOWED
CURRENT OPERATION: 0 - READ

1l - WRITE

DEFINEFILE ASSOC VAR: 0 = I*2

1 - I*4
EXPLICIT RECORDSIZE SPECIFIED
EXPLICIT CARRIAGE CONTROL SPECIFIED

DISPOSE = 'PRINT'
DISPOSE = 'DELETE'
READONLY

TYPE = 'UNKNOWN'
TYPE = 'OLD'

TYPE = 'NEW'

TYPE = 'SCRATCH'

ACCESS ='APPEND'
DISPOSE='SAVE'
BLANK = 'NULL'

APPENDIX C

OTS SIZE SUMMARY

This appendix is a guide to the approximate sizes of all the modules
in the PDP~11 FORTRAN-77 OTS. Modules are grouped by related function
and identified by the TITLE, as shown in linker's storage maps. All
object module sizes are shown in decimal words.

C.1l MODULES ALWAYS PRESENT
C.1l.1 File I/O Support

Module Name Module Size in
Decimal Words

$CLOSE Close files 135
SERRLO Error message construction 303
$ERRMO Error message I/0 37/97
SERRPT Error control processing 252
$ERTXT Error message text 1004/0
$FCHNL LUB processing 49
$FPERR FPP interrupt processor 58
S$FPUTI FPP utilities 37
$OTI OTS initialization 84
$R50 Radix-50 to ASCII conversion 40
$SAVRG Register save co-routine 59
SVINIT Virtual array initialization 65

$O0TV OTS Impure area (by PSECT)

$$AOTS Common work area 224
$SOBF1 Object time format buffer 32
$$0TSI Mixed OTSs trap 2

C.2 COMMON I/0 SUPPORT
The following modules are common to all I/O operations.

Module Name Module Size in
Decimal Words

SCONVI Integer format conversions (1) 225
$CONVL Logical format conversions (1) 49
SCONVR Real format conversions (1) 680
$CONVZ Octal and hexadecimal format

conversions (2) 335
$FIO Format processor 1045
$FMTCV Run-time format compiler 532
$IOARY Array I/0 transmission 71

OTS SIZE SUMMARY

Module Name Module Size in
Decimal Words

$IOELE I/0 element transmission 164
$IOVAR Virtual array I/0 transmission 94
$LSTI List-directed input processor 484
$LSTO List~directed output processor 282
LICSBS List-directed input constant storage block (3) 129

(1) Loaded only if needed, or if list-directed or run—-time format
processing is used.

(2) Loaded only if needed, or if run-time format processing is used.

(3) Loaded only if list-directed input processing is used.

C.3 COMPILED-CODE CHARACTER SUPPORT

Module Name Module Size in
Decimal Words

$CHASN Character assignment 42
$CHCMP Character comparison 65

C.4 SERVICE SUBROUTINES

Module Name Module Size in
Decimal Words

SDATE DATE 68
SERRSE ERRSET 72
$ERRSN ERRSNS . 22
SERRTS ERRTST 22
SEXIT EXIT 13
SIDATE IDATE 29
$IRADS IDATES0 15
$R50AS R50ASC 6
SRADS0 RADS50 11
$RAN RAN 19
$RANDO Random number generation 53
$RANDU RANDU 18
$SECND SECNDS 49
STIME TIME 41
$USERE USEREX 11

C.5 OPTIONAL MODULES

Module Name Module Size in
Decimal Words

$CONVR Real format conversions(FPP version) 587
$FPPUT EIS version 7
$SHORT Null error message text 1
SERRLO Null error message logging 1
$MLJ EIS version 57
$DVJ EIS version 74
$IMOD EIS version 25

OTS SIZE SUMMARY

Module Name Module Size in
Decimal Words

$SOTV OTS Impure Area (by PSECT)

$SAOTS Common work area 266
$SOBF1 Run-Time format buffer 32
$$S0TSI Mixed OTSs traps 2
SNAMS 1

APPENDIX D

PROGRAM SECTION DESCRIPTIONS

This appendix describes the program sections (PSECTs) used by the OTS.
PSECTs are named segments of code or data. The attributes associated
with each PSECT direct the linker when constructing an executable job
image.

$SOTSI -- OTS Instructions

This PSECT contains all of the executable code in the OTS except the
formatted and list-~directed I/O processors. When RT-1ll's USR is set
to SWAP, it is this region that shares space with the USR. This PSECT
has the attributes: RO,I,CON,LCL.

$$0TSD - OTS Pure Data

This PSECT contains all of the read-only pure data in the OTS except
the formatted and 1list-directed I/0 data. This PSECT contains
constants and dispatch tables used by the code in $$0TSI. It has the
attributes: RO,D,CON,LCL.

$SAO0TS -~ OTS Impure Storage

$$AOTS contains the FORTRAN work area impure storage associated with
each job. It must be contained 1in the job's root segment and is
pointed to by the contents of global symbol $OTSV. A detailed
description is contained in Appendix A. All references in this manual
to "the work area" or "the FORTRAN work area" apply to this PSECT,
which has the attributes: RW,D,CON,LCL.

$SOBFl -~ Object~Time Format Buffer

$SOBFl defines the FORTRAN object time format buffer. The length is
fixed at 64 (decimal) bytes. This area is pointed to by offsets
W.OBFL (start address) and W.OBFH (end address+l) in the work area.
This PSECT has the attributes: RW,D,OVR. .

PROGRAM SECTION DESCRIPTIONS

Format Conversion PSECTs

The formatted and list-directed I/0 processors minimize Jjob size by
loading only those format conversion modules referenced by the user's
format specifications. Each module is in an independent PSECT and
places a pointer to itself in a special PSECT used as a dispatch
table. These PSECTs have the global (GBL) attribute to ensure that
this collection of modules will be placed in the lowest common segment
of an overlaid job.

The PSECTs are named as follows:

$SFIOC -- contains the format processor code and the
list-directed processor code

$SFIOD ~- contains the format and list-directed processor pure
data

$$FIOI -- contains the integer conversions

$$SFIOL -- contains the logical conversions

$SFIOR -~ contains the floating-point conversions

$$FIOS ~- contains the list-directed constant storage block
$$FI0Z -- contains the octal and hexadecimal conversions

$$FI02 -~ contains the conversion dispatch table

