DEC OSF/1

ﬂﬂﬂﬂﬂu Writing Device Drivers

Volume 1: Tutorial

'

Part Number: AA-PUBVB-TE

DEC OSF/A

Writing Device Drivers, Volume 1: Tutorial

Order Number: AA-PUBVB-TE

February 1994
Product Version: DEC OSF/1 Version 2.0 or higher

This guide contains information needed by systems engineers who write
device drivers for hardware that runs the DEC OSF/1 operating system.
Included is information on driver concepts, device driver interfaces,
kernel interfaces used by device drivers, kernel data structures,
configuration of device drivers, and header files related to device drivers.

digital equipment corporation
Maynard, Massachusetts

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c) (1) (ii).

Digital Equipment Corporation makes no representations that the use of its products in the
manner described in this publication will not infringe on existing or future patent rights, nor
do the descriptions contained in this publication imply the granting of licenses to make, use,
or sell equipment or software in accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only
pursuant to a valid written license from Digital or an authorized sublicensor.

© Digital Equipment Corporation 1994
All rights reserved.

The following are trademarks of Digital Equipment Corporation:

ALL-IN-1, Alpha AXP, AXP, Bookreader, CDA, DDIS, DEC, DEC FUSE, DECnet,
DECstation, DECsystem, DECUS, DECwindows, DTIF, MASSBUS, MicroVAX, Q-bus,
ULTRIX, ULTRIX Mail Connection, ULTRIX Worksystem Software, UNIBUS, VAX,
VAXstation, VMS, XUI, and the DIGITAL logo.

UNIX is a registered trademark licensed exclusively by X/Open Company Limited. Open
Software Foundation, OSF, OSF/1, OSF/Motif, and Motif are trademarks of the Open
Software Foundation, Inc. MIPS is a trademark of MIPS Computer Systems, Inc.

All other trademarks and regiétered trademarks are the property of their respective holders.

Contents

About This Book

AUIBNCE oeeiieiiiii ettt ettt e XX Vil
Scope Of the BOOK ...vviveiiiiiiieiiiie it er et et e e e e et e e e e e cenaees XXVii
OrganiZation vveeeeiimioreriiiie et e ettt ettt ee e e s et XX Viii
Related Documentation o..ivieiiiiiiiiiiiiiiiii et XXX1
Hardware Documentation coceeeuiviiiiniriinieiine e eeie e XXXii
Bus-Specific Device Driver Documentation ccceeveveeiereenrnennnnn. XXXii
Programming Tools Documentationccccevveininiiiiiininniininn. XXXiii
System Management Documentation ocooeiiiiiiiiiiinieniiine. XXXiV
Porting Documentation coueeveeuirriniiiiiieeeiiie e e XXXiV
Reference Pagesoo.oiiviiiiiiiiiiiiiiiie e XXXV
Reader’s COMMENLS oiiiineiiiireiiineeiie et e e eere e e eeeeeesr e e eaens XXXV
CONVENLONS .euritiieitie ittt teiieeetii ettt e ettan e eenneetenaeeetnieeeenanrenrerannennns XXXVi
Summary of Changes and Additionsovveiiieniiiiiiiiiiiiiiii XXXVi
Chapter 2: Developing a Device Driver ccccceceeermieiviiiiiiinnnnen. XXXVi
Chapter 3: Analyzing the Structure of a Device Driverc........... XXXVii
Chapter 4: Coding, Configuring, and Testing a Device Driver XXX Viii
Chapter 6: Hardware Components and Hardware Activities —............ XXX Viii
Chapter 7: Device Autoconfiguration —ccecvvevveeineinninieneinenennes XXX Viil
Chapter 9: Using Kernel Interfaces with Device Drivers XXXViii
Chapter 10: Writing a Character Device Driver ccocooevvininnnn. x1
Chapter 13: Device Driver Configuration Examplesc.ccoeeennene. xli
Appendix A: Summary Tablesooooiiiiiiiiiiiii xli
Appendix B: Device Driver Example Source Listings —ccceeeeee xliii

GLOSSATY eiiiiiiiie ittt et e et et xliii

Part 1 Overview

1 Introduction to Device Drivers

1.1 Purpose of a Device Drivercooooviiiiiiiiiiiiiiiiiieiineiecccii

1.2 Types of Device DIIVErS ...ccccoviiiiiiiiiieiiiiiiiineviiiiinn i,
1.2.1 Block Device DIIVET co.vniniiiiiiiiies et
1.2.2 Character Device DIIVET .oovivnieiiniiiieieieeeeeeeeeie e
1.2.3 Network Device DIivVer ...iooooiiiiiiii e
1.2.4 Pseudodevice DIIVET .o.ouinieiiiiiiiiie e e

1.3 Static Versus Loadable Device DIiVErScocvvvvvveiiniiiiiieinienineennn,

1.4 When a Device Driver Is Called ..oeeeeeeeeeeeeeeeeeee e
1.4.1 Place of a Device Driver in DEC OSF/1 ..o,
1.4.2 User Program or Utility ooevvviiiiiiiiiciiecin e,
1.4.3 KeMel oo
1.4.4 DevICE DITVETS oooniniiiiiii e ettt
145 BUSES ittt e e
1.4.6 Device CONtroller ..ovovniniiieii e e
1.4.7 Peripheral Devicescoooviiiiiiiiiiiiiiiiieeeiir e

1.5 Example of Reading a Charactercccoiiiiiiiiiiiiiiiciiieecnneene.
1.5.1 A Read Request Is Made to the Device Driver
1.5.2 The Character Is Captured by the Hardware
1.5.3 The Interrupt Is Generatedcccoeeeeniiieniriiniiieiiniiinnanna.
1.5.4 The Interrupt Service Interface Handles the Interrupt
1.5.5 The Character Is Returnedcccoeviiiiiiiiiiiiini e,
1.5.6 Summary of the Exampleccccooviiiiiiiriiiiiinniiiiineeicnnanns

Part 2 Anatomy of a Device Driver

iv Contents

1-1
1-1

1-2
1-2
1-2
1-2

1-3

1-5
1-6
1-6
1-7
1-7
1-8
1-8

1-8

1-10
1-10
1-10
1-10
1-11
1-11

2.1

22

Developing a Device Driver

Gathering Informationcccocceeeiiiiiiiiiiiiiiiii s
2.1.1 Specifying Information About the Host System
2.1.1.1 Specifying the Host CPU or CPUs on Which Your

Driver Operatescoeeveeiemmiereerieieieeeriirinneeeeeeennnn.
2.1.1.2 Specifying the Operating System or Systems on
Which Your Driver Operates —.......cccceevvveeeieiueiennnnnnn.
2.1.1.3 Specifying the Bus or Buses to Which Your Driver
CONNECES .oiiiiiie ettt et e e e
2.1.2 Identifying the Standards Used in Writing the Driver
2.1.2.1 Specifying a Naming Scheme cccoeeevvvinnrennn.
2.1.2.2 Choosing an Approach for Writing Comments and
Documentation cociiiiiiiiiiiiiii e
2.1.3 Specifying Characteristics of the Devicecceevivvrnnnennn.
2.1.3.1 Specifying Whether the Device Is Capable of Block
O e
2.1.3.2 Specifying Whether the Device Supports a File
SYSIEIM tevteeiireiiieeieier i e e et e erieeerie e erreee s eerans
2.1.3.3 Specifying Whether the Device Supports Byte Stream
ACCESS teuiiiieieiie et ettt et e e e
2.1.34 Specifying Actions to Take on Interrupts
2.1.3.5 Specifying How to Reset the Device c.cceceeenne
2.1.3.6 Specifying Other Device Characteristics —..................
2.1.4 Describing Device Usagecoevveeiieiiiiieieriineriiieeieeineennnn.
2.1.4.1 Listing the Device Documentationcc.......
2.1.4.2 Specifying the Number of Device Types to Reside on
the SYSIEM .oooiieiiiii e
2.1.43 Describing the Purpose of the Devicecccce.
2.1.5 Providing a Description of the Device Registers —.................
2.1.6 Identifying Support in Writing the Drivercccccoceeeernn.
Designing the Device Driverccooooeiiiiiiiiiiiniiiniieiciiiieeeeeeiennnn
2.2.1 Specifying the Device Driver Type ccoevviiiiiiiinierinneenennnes
2.2.2 Identifying Device Driver Entry Points =ccccevveeeviieieenennns

2-2

2-2

24

2-5
2-5
2-5

2-8
2-10

2-10

2-12

2-12
2-12
2-14
2-14

2-14
2-16
2-16
2-16
2-16
2-19
2-21

2-21
2-23

“Contents v

2.3 Determining the Structure Allocation Techniqueccccoevveeeennnns,

2.3.1 Static Allocation Technique Model 1ccoovviiiiiiiiiiiienn.
2.3.2 Static Allocation Technique Model 2cceiiiiiiiinann.
2.3.3 Dynamic Allocation Techniquecccccooeeeiiiiniiiriniinnninnn.
2.3.3.1 Determining the Maximum Configuration
2.3.3.2 Statically Declaring an Array of Pointers to the Data
SIUCTUIES .eeeeiiiiiiiiiiiii ettt
2.3.3.3 Allocating the Data Structurescccceveevneiinnrennen.
2.3.3.4 Accessing the Members of the Dynamically Allocated
Data STrucCtures coovveeiimniiiiirieiiee e eeeeeeeaeen,
2.3.3.5 Freeing up the Dynamically Allocated Memory
24 Understanding CPU Issues That Influence Device Driver Design
2.4.1 Control Status Register ISSUES cevvviiiiiiiiiiineiieniiieeineenne.
2.4.2 Input/Output Copy Operation Issuesccceevvveerieinnieinnn.
2.4.3 Direct Memory Access Operation Issuesccceeeeeennne.
2.44 Memory Mapping ISSUES cccoiviruierrirreiniiiiieiieineiieineennn.
2.45 64-Bit Versus 32-Bit ISSUES ceeeiiieiiiiiiiiiiiiiiiinicciiiiiinia,
24.5.1 Declaring 32-Bit Variablesc.coccovviiiiiiieiiiininnn.n.
2.4.5.2 Declaring 32-Bit and 64-Bit Variables
2.4.5.3 Declaring Arguments to C Functions —cccoe....
24.5.4 Declaring Register Variablescc...ccoeeeiiiiieinnnien.
24.5.5 Performing Bit Operations on Constants
24.5.6 Using NULL and Zero Values ccccceevereviiineeennnnn.
2457 Modifying Type char ...,
2.4.5.8 Declaring Bit Fieldscccooeiviiiiiiiiiiiiniiienee,
2.4.59 Using printf Formatscccocovmeveriiiiiiierniinieeninnn...
2.4.5.10 Using mb and wbflush ...,
2.4.5.11 Using the Compiler Keyword volatile —...................
2.4.6 Loadable Driver ISSUES cooevivvreeiiiiiiiiiiiiiiiineececciciiiiinee
247 Memory Barmiers coooviieiiiiiiiii e
24.77.1 Forcing a Barrier Between Load/Store Operations
2472 After the CPU Has Prepared a Data Buffer in Memory .
2473 Before Attempting to Read Any Device CSRs
2474 Between WIS coooviiiiiiiiiiiiiiniiii e

2.5 Creating a Device Driver Development and Kitting Environment

2.6 Porting ULTRIX Device Drivers to the DEC OSF/1 Operating
System

vi Contents

..

2-25

2-25
2-26
2-27

2-28

2-28
2-28

2-30
2-30

2-31

2-32
2-33
2-33
2-34
2-34

2-35
2-35
2-35
2-36
2-36
2-36
2-36
2-36
2-37
2-37
2-38

2-39
2-39
2-40
2-41

2-42
2-43

2-44

2-45

3.1

32
33

34
35

3.6

2.6.1 Writing Test SUites oeevvveiiieeeiiniiniennnes

2.6.2 Checking Header Filesc..ccoeeviiviinennnn.
2.6.3 Reviewing Device Driver Configuration
2.6.4 Checking Driver Interfacescc.ooooeeiiiins
2.6.5 Checking Kernel Interfacesc...o.occiun
2.6.6 Checking Data Structuresccooeeeeennnis

Analyzing the Structure of a Device Driver

Include Files Section ..ocovviviiiiiiiiiiiiniieineinenes

3.1.1 Device Driver Header Filecocevvevnnnnn.n.
3.1.2 Common Driver Header Files

3.1.2.1 The types.h Header File
3.1.2.2 The errno.h Header File
3.1.2.3 The devdriver.h Header File
3.1.2.4 The uio.h Header File

3.1.3 Loadable Driver Header Files

3.1.3.1 The conf.h Header File
3.1.3.2 The sysconfig.h Header File

3.14 Device Register Header File
3.1.5 The name_data.c Fileccoooiiiin
Declarations Section ccovevnvieniiiiiiiineeieieieennnen
Autoconfiguration Support Section cceeeiiienne.
3.3.1 Setting Up the Probe Interface
3.3.2 Setting Up the Slave Interface
3.3.3 Setting Up the Attach Interface
3.34 Setting Up the Controller Unattach Interface

3.3.5 Setting Up the Device Unattach Interface ...
Configure Section ceevveviveineeierinrieieeeieiieeneens
Open and Close Device Section cccoeeevueveennnnnin
3.5.1 Setting Up the Open Interface
3.5.2 Setting Up the Close Interface
Read and Write Device Section ccoevveeeevennnnnnee.

....................... 2-45
....................... 2-46
....................... 2-46
....................... 2-46
....................... 2-47
....................... 2-49

....................... 34

....................... 3-4
....................... 3-5

....................... 3-5
....................... 3-6
....................... 3-6
....................... 3-6

....................... 3-6

....................... 3-6
....................... 3-7

....................... 3-7
....................... 3-8
....................... 3-9
....................... 3-9

....................... 3-10
....................... 3-11
....................... 3-11

...................... 3-12

....................... 3-13

....................... 3-13
....................... 3-14

....................... 3-14
....................... 3-15

Contents vii

3.6.1

Setting Up the Read Interface ettt aaas
3.6.2 Setting Up the Write Interfacecccevvivmiiiieineiennicnnnens

3.7 The 10CtI SECION ooinieieiii e e aas

3.8

3.9 Stop Section

3.10
3.11
3.12
3.13
3.14
3.15

4

4.1

viii Contents

Strate@y SECHOM ..ivtiiieiiie et

RESEE SECHION orinienien ittt et

Interrupt SECioN ...ccoeuniiii it

SEIECE SECLION ovniinitii ittt eaeas

DUump SECHON ..uuiiiiiiiiieeiiii e ettt eeeeees

The PSIZe SECHON .iovviiiiiieiiiiiee e

Memory Map SECtion ccouvueirririimiiinieeeeiiiir et eeeeieeeeeeeene

Coding, Configuring, and Testing a Device Driver

Coding a Device DIiver cccovvviviiiieiiiiiniiiiee e e e

4.1.1
4.1.2
4.1.3
414
4.1.5

4.1.6

4.1.7

The nonereg.h Header Fileccccooiiiiiiiiiiiiiii i
Include Files Section cccooviiiiiiiiiiiiiniiiiiiieeeeiie e
Autoconfiguration Support Declarations and Definitions
SECHON eeiiiiiie ettt
Loadable Driver Configuration Support Declarations and
Definitions SEction ccoviiiiiiiiiieeieiiie e
Loadable Driver Local Structure and Variable Definitions
SECHOM .eeeitiiii et e et et et e e e e aaaeeen

4.1.6.1
4.1.6.2
4.1.63

Implementing the noneprobe Interface
Implementing the nonecattach Interface
Implementing the none_ctlr_unattach Interface

Loadable Device Driver SECtON ...ovevirviniiiiiiiieieeieieeeenen,

4.1.7.1
4.1.7.2
4.1.7.3

4.1.74

Setting Up the none_configure Interface
Configuring (Loading) the /dev/none Device Driver
Unconfiguring (Unloading) the /dev/none Device
DIIVET et

3-17
3-18
3-19
3-20
3-20
3-21
3-24
3-25
3-26

4-1
43

4-6

49
4-12
4-13
4-14
420
421
4-23
4-24
425

4-31
4-33

4.2
4.3

4.1.8 Open and Close Device Section ccceeevvevvriminierennnnn.

4.1.8.1 Implementing the noneopen Interface
4.1.8.2 Implementing the noneclose Interface

4.1.9 Read and Write Device SEeCtiOn ...vevevvviiiiivnieiiieiieenenenas

4.1.9.1 Implementing the noneread Interface
4.1.9.2 Implementing the nonewrite Interface

4.1.10 Interrupt SECHON teeevvviiiiiiieieiiiieeee et e e
4.1.11 The ioctl SECLON ..cevvuiiiiiiiiiiiieiiiie et eeae s
Configuring the Device Driver —.........ccccoeviiviiiiiiiiiniiiiciiiinneen,
Testing a Device DIIvVer — ...ccoviiiiiieiiiiiriiie e eeii e ee e e

4.3.1 Writing the Test Programcccoovviiiiiiiriiieeciiiinereinens
4.3.2 Deciding on More Rigorous Testingcceceevvereiiinnen,
4.3.3 Hints for Tracking Problems in Testingouvuvereneenn.

Part 3 Hardware Environment

5

5.1
52
53
54

6.1

Hardware-Independent Model and Device Drivers

Hardware-Independent Subsystem ccoocooiiiiiiiiniiiin i,
Hardware-Dependent SubsyStem ooouiiiiiiniiiiiiiiiiinieiinnee,
Bus Support Subsystem ...

Device Driver SubSyStem ceeeeriiiniieniiiiieii i,

Hardware Components and Hardware Activities

Hardware COMPONENLS ooiiiniiiiiiiiieiiii et

6.1.1 Central Processing Unitceeiiiiiiiiiiiiiiiiiiieeiiiiees
6.1.2 MEMOIY teiiiiiiiiiiiiiiie e ee ettt e e e e e e e e e ereeaei e
6.1.3 BUS oo

6.1.3.1 Specifying Which Bus a Device sOn
6.1.3.2 When Writing probe and slave Interfaces

6.1.3.3 When Direct Memory Access (DMA) Is Done by a

DEVICE o

.. 4-34

cee 435
eeee 437

v 4-39

. 440
e 441

e 444
e 445

. 446

eeee 447
e 451
e, 451

52
e 53
e 54
e 54

6-1

6-2
6-2
6-3

64
64

Contents ix

B.1.4 DEVICE it 6-5

6.1.4.1 Device RegiStersccooeiiiiiiiriiiiiriieiiniereeiieeeaeens 6-5

6.1.4.2 Block and Character Devicesccoeevvvvieerievnnnnnnn. 6-5

6.1.4.3 Terminal DeVICESccvvrrririiiiriiniirerieeiiiriiriiiienenn, 6-6

6.1.4.4 Network Devicesc.cceeeiiiiiierieiiiiiieiiiiiiieeeeeeiinnenn 6-6

6.1.4.5 DMA and non-DMA Devices coeeevvreeverrrennnnnnns 6-6

6.2 Hardware ACHVILIES ..eoveviuririireeriieeeeeree it eeeeeeeeeeeeraens 6-7
6.2.1 How a Device Driver Accesses Device Registers — 67

6.2.2 How the Device Uses the Registersceeeeveeereeierinnnnnan 6-7

6.2.3 How the Device Driver Interrupts the CPU ccccceeeeees 6-8

6.3 Parts of the System Accessing Hardware —..........ccoeeeeeeieiiiiiiniiinnnnnn. 6-8

Part 4 Kernel Environment

7 Device Autoconfiguration

7.1 Files Used by the Autoconfiguration Softwarecccccceevvvunennnnnn. 7-1
T.1.1 FOr bus StruCtures ceevvviiirreeriieeriiieeiiiereiieerernreannneanens 7-5
7.1.2 For controller SIructures eeeuvuvverinneeriieeeiinrerieeririaeens 7-5
7.1.3 For device StruCturesc.ucevevvieierinreriiieeerineerrinaensnnneens 7-5
7.2 Autoconfiguration Processccocoveeiiiiiiiinieiiiiiiieeeeiie e 7-6
7.2.1 Autoconfiguration for Static Device Drivers —............cccc....... 7-6
7.2.1.1 Locating the bus Structure for the System Bus 7-6
7.2.1.2 Calling the Level 1 Bus Configuration Interfaces 7-7
7.2.1.3 Configuring All Devicesceevveirererriireriininennnnn. 7-7
7.2.14 Calling the Level 1 Configuration Interfaces for Any
Other BUSES ...viiiiniiiiiiiiiii e 7-7
7.2.1.5 Calling the Level 2 Configuration Interfaces for Any
Other Buses ooeiiiiiiiiiii e 7-8
7.2.1.6 Creating a System Configuration Tree 7-8
7.2.2 Autoconfiguration for Loadable Device Drivers 7-12
7.3 The bus StrUCUIE co.iiiiiiiiiiii e e e e 7-13

X Contents

7.4

7.5

7.6

7.3.1
732
7.33
7.34
7.3.5
7.3.6
7.3.7
7.3.8
7.3.9
7.3.10

The controller Structure

7.4.1
7.4.2
7.4.3
744
74.5
7.4.6
7.4.7
7.4.8
7.4.9
7.4.10
7.4.11
7.4.12
74.13
7.4.14
7.4.15
7.4.16
7.4.17

The device Structure

7.5.1
7.5.2
753
7.54
755

The driver Structure

7.6.1

The bus_mbox Memberccocvvvivvinieniininnnn.
The bus_type Member ...
The bus_name and bus_num Members

The slot, connect_bus, and connect_num Members

The confil and confl2 Memberscccceeevnnenn.
The pname and port Members —coeeeeeeenn
The intr Member —cccooovvviiiiiiiiiiieeieeeeeie,
The alive Membercccoovvviviriiiieieeeenn,
The framework and driver_name Members

The private, conn_priv, and rsvd Members

The ctlr_mbox Membercccoiviiiiiiiiiiiiiinnn,
The driver MemMDbEr ..ovvvviiiiiieieieeei e,

The ctlr_type, ctlr_name, and ctlr_num Members

The bus_name and bus_num Members
The rctlr Membercooovvvvvvvieiiiiiiinineieneeeeen,
The slot Member —cooviviiiiiiniiiieieeeeeeenn
The alive Memberccooovvviiiiiiiininenieieenes
The pname and port Members —
The intr Member — ...oooviviiniiiiiiee e,
The addr and addr2 Members —cccceevneeneen.
The flags Memberccoovviiiiiiiiiiieniiiiineee.
The bus_priority Membercccooeeiiiiie.
The ivoium Memberc.covvvvvniiniiiieieinnannenn,
The priority Member ccooooiiiiiiiiiiiiinnie
The cmd Member —......coovviiiiiiiiniiieee,
The physaddr and physaddr2 Members —...........
The private, conn_priv, and rsvd Members

The dev_type and dev_name Members
The logunit and unit Members —............cccceeeeeee.
The ctlr_name and ctlr_num Members
The alive Memberccoovoviiviviiiiiiiiiiieiniane,
The private, conn_priv, and rsvd Members

..

................. 7-15
................. 7-16
................. 7-17

.............. 7-19

................. 7-21
................. 7-23
................. 7-25
................. 7-27
................. 7-29
................. 7-31

................. 7-32

................. 7-34
................. 7-35

................ 7-36

................. 7-38
................. 740
................. 742
................. 7-43
................. 7-46
................. 748
................. 7-50
................. 7-51
................. 7-53
................. 7-54
................. 7-56
................. 7-58
................. 7-59
................. 7-60

................. 7-62

................. 7-63
................. 7-64
................. 7-65
................. 7-66
................. 7-67

................. 7-68

............. 7-69

Contents xi

7.6.2 The addr_List MemMDbEr ...oviviiiiiiiiiiiiveeeie e,

7.6.3 The dev_name and dev_list Membersccccoevvvviiveniininnenens
7.6.4 The ctlr_name and ctlr_list Membersccooveviniivenveninnennns
7.6.5 The XCIu MEMDET oooininiiieeee e
7.6.6 The addrl_size, addrl_atype, addr2_size, and addr2_atype
Members et ee et eararns
7.6.7 The ctlr_unattach and dev_unattach Members
7.7 The port SIrUCIUIE ..eeeniiiiiiiiiii ettt et eer e e e e
7.8 The ihandler_t STIUCIUIE ..uvviieiiniiini et ee e ans
7.9 The tc_intr_info SIrUCIUIE ccooviiiiieiiiiiieiiiieeiieeeeiiee e e e reeeaeees
7.10 The handler_key Structure ccooiiiiiiiiiiiiiiiiieeie e
7.11 The device_config_t StruCture ccovvvviieviineiineeiieriieeiieerinaennnes

8 Data Structures Used in I/O Operations

8.1 The DUl SUCIUIE ooeeeiiiiiniie et ee e saens
8.1.1 Using the Systemwide Pool of buf Structures
8.1.2 Declaring Locally Defined buf Structuresccccoeeeevenneee
8.1.3 Understanding buf Structure Members Used by Device

DIIVEIS ot
8.1.3.1 The b_flags Memberccoeeiviiiiiiiiniiiniiieiieeins
8.1.3.2 The b_forw and b_back Memberscccoeevenverennen.
8.1.3.3 The av_forw and av_back Memberscccoevvvvnennen.
8.1.3.4 The b_bcount and b_error Membersccoceevevnenenns
8.1.3.5 Theb_devMember ...ccocovvvievininiiiiiiiiiieeeiineenes
8.1.3.6 The b_un.b_addr Membercccooviviiiiiiiniiinnns
8.1.3.7 The b_lblkno and b_blkno Memberscccovvveneen.
8.1.3.8 The b_resid and b_iodone Membersouvevveen
8.1.3.9 The b_proc Memberccoeeevuiiiiiiiiiiiiiiiiiiinriienes

8.2 Device SWICh Tables oviniieiii et
8.2.1 Character Device Switch Tablec.cooovvviniiiiiinieieeneen

8.2.1.1 The d_open and d_close Memberscccccceereeriinnn.
8.2.1.2 The d_read and d_write Membersccoeeveeninnenn
8.2.1.3 The d_ioctl and d_stop Memberscccoceeerreennnnnnn.
8.2.1.4 The d_reset and d_ttys Members ccccovveriinennneee.

Xii Contents

8-1

8-1
8-2

8-3

34
84
8-5
8-5
8-5
85
8-5
8-6
86

86
87

8-10
8-11
8-11
8-12

8.2.1.5 The d_select and d_mmap Membersccoeeeen 812

8.2.1.6 The d_funnel Membercocvvieiiiiiieiiiiiiiieinn.. 813

8.2.2 Block Device Switch Table . .ccooeviiiviiiiiieieeee, 8-13
8.2.2.1 The d_open and d_close Membersccccuennn... 8-16

8.2.2.2 The d_strategy and d_dump Memberscc...c...... 8-16

8.2.2.3 The d_psize and d_flags Memberscc.eevnnnnin 8-17

8.2.2.4 The d_ioctl and d_funnel Membersc.cocevnnene. 8-17

8.3 The UI0 SHUCIUIE ..evvniiniiiiiineiniie et ereeeeternrtnererneteneerernnreasnenennes 8-17
8.3.1 The uio_iov and uio_iovent Members —......o.ccvvvvivnviinneenennnnn. 8-18

8.3.2 The uio_offset and uio_segflg Membersccocoeveeennnnenn. 8-18

8.3.3 The uio_resid and uio_rw Membersccovevvevirvvinvininninnn. 8-18

8.4 Buffer Cache Managementccceeviiviieeiriiiiiniiiiiiiniinnienininneee 8-19
8.4.1 Buffer Headercooviriiiiiiiiiii e 8-19

8.5 Interrupt Code ceoniiiiiiiii e e 8-19

9 Using Kernel Interfaces with Device Drivers

9.1 String INterfacesccceurceriiimmiieriiiiieni ettt 9-1
9.1.1 Comparing Two Null-Terminated Stringsccceeevunierinnee 9-1
9.1.2 Comparing Two Strings by Using a Specified Number of

Characters cecieeeeieiiiiiiiie ettt ee e e ere e e eeananee 9-3
9.1.3 Copying a Null-Terminated Character Stringc..c.cccoeene.. 9-4
9.14 Copying a Null-Terminated Character String with a Specified

LIMIt oot 9-5
9.1.5 Returning the Number of Characters in a Null-Terminated

SN ettt e e 9-6

9.2 Virtual Memory Interfacesc.ccoooeiiiiiiiin 9-7
9.2.1 Allocating a Section of Kernel Virtual Memory —.................. 9-8
9.2.2 Returning Previously Allocated Kernel Virtual Memory 9-8
9.2.3 Performing Nonblocking Allocation of Kernel Virtual

MEMOTY ceeiiiiiii it et e 9-9

9.3 Data Copying INterfacesccoeeeeeeriieiieiiiinereimiiniieeiiieieceeennn. 9-10

Contents xiii

9.3.1 Copying a Series of Bytes with a Specified Limit 9-10
1

9.3.2 Zeroing a Block of Memory ocoeeiiiiiiiiiiiiieniiiiiene e 9-1
9.3.3 Copying Data from User Address Space to Kernel Address
SPACE oiiiiiiiiee e e eai s 9-12
9.3.4 Copying Data from Kernel Address Space to User Address
SPACE ittt 9-13
9.3.5 Moving Data Between User Virtual Space and System Virtual
SPACE et 9-14
9.4 Hardware-Related Interfacesccoccevvriiiiieiiinieiiinieeinreenneennens 9-15
9.4.1 Checking the Read Accessibility of Addressed Data 9-15
9.4.2 Delaying the Calling Interface a Specified Number of
MICIOSECONAS ..veeuneiiiiieeinrieiieeeiiee e et e e eiiaeerreeevaieeenns 9-16
9.4.3 Setting the Interrupt Priority Mask c.coovvviiiiiiiiniiiininnnnnn. 9-17
9.5 Kernel-Related Interfaceso.ceeveiiiiiiiiiiciiiiiiiriiiiiie e 9-19
9.5.1 Causing a System Crash ccooeieiiiiiiieiiiiiiiinr e, 9-19
9.5.2 Printing Text to the Console and Error Logger 9-20
9.5.3 Putting a Calling Process to SIEepccevvverieirieeiiiiriininnnnn. 9-21
9.5.4 Waking Up a Sleeping Processccccooveeeeeieiiirereeinnneeennn, 9-22
9.5.5 Initializing a Callout Queue Elementcccoeevnennnnenn. 9-22
9.5.6 Removing the Scheduled Interface from the Callout Queues . 9-23
9.6 Loadable Driver INterfacescoeviriiiimiiiiiineeerieiiireiiiiiiieen, 9-23
9.6.1 Adding or Deleting Entry Points in the bdevsw Table 9-24
9.6.2 Adding or Deleting Entry Points in the cdevsw Table 9-27
9.6.3 Registering and Enabling a Driver’s Interrupt Service
INterface .ooeeeeiiiiiiii e 9-30
9.6.4 Deregistering and Disabling a Driver’s Interrupt Service
INterface .oeooiiiii e e 9-32
9.6.5 Merging the Configuration Datacoeeevveiiierrreiiiiieiinnnnnnn. 9-34
9.6.6 Configuring and Unconfiguring the Specified Controller 9-36
9.7 Input/Output (I/O) Handle—Rélated Interfaces ...coovvvviviiiiiiiiiiinininnn, 9-38
9.7.1 Control Status Register (CSR) Input/Output (I/O) Access
INterfaces ...ooiiiii e e e 9-39
9.7.1.1 Reading Data from a Device Register 9-39
9.7.1.2 Writing Data to a Device Registercccccceeeee. 942

xiv Contents

9.8

9.9

9.7.2 Input/Output (I/O) Copy Interfacescocccevvereveererinnneerenens
9.7.2.1 Copying a Block of Memory from I/O Address Space
10 System MEMOLY ...ocvvvieviireeriireiiieeiiieeneineneanenns
9.7.2.2 Copying a Block of Byte-Contiguous System Memory
to /O Address Spaceccevvvvvivviiiieeiiiiieeiiieeeiinens
9.7.2.3 Copying a Memory Block of I/O Address Space to
Another Memory Block of I/O Address Space
DMA-Related Interfacescccovveveriiiiemmiieriiciiniccciiie e,
9.8.1 DMA Handlecoomiiiiiiiiiiiiie e,
9.8.2 The sg_entry SIUCIUIE ...ovvveviriieeeeeeeiiiiicieeee e eeeeeiereeeenanns
9.8.3 Allocating System Resources for DMA Data Transfers
9.84 Loading and Setting Allocated System Resources for DMA
Data Transferscoeeiiiiiiiinriiiiiiien et
9.8.5 Unloading System Resources for DMA Data Transfers
9.8.6 Releasing and Deallocating Resources for DMA Data
Transfers .ooooiviiiii e
9.8.7 Returning a Pointer to the Current Bus Address/Byte Count
Pair PO UP PO PPERIPPPPRPPR
9.8.8 Putting a New Bus Address/Byte Count Pair into the List ...
9.8.9 Returning a Kernel Segment Address of a DMA Buffer
Miscellaneous Interfaces ccoooviiiioiiiiiieiciiiee e,
9.9.1 Indicating that /O is Completeccoceeeuiiiiieiiiiiiiieeeeennne.
9.9.2 Getting the Device Major Number —c.ccoeevvrviiiveecennnnnn.
9.9.3 Getting the Device Minor Number —.......ccccceeeveeiiiiiniinneennnnn.
9.9.4 TImplementing Raw /O ...,

Part 5 Device Driver Example

10 Writing a Character Device Driver

10.1
10.2
10.3
10.4

Overview of the /dev/cb Device DIIVET .ovviiiniiiiiieeieie s
The cbreg.h Header File ...,

Include Files SECHOM .oiviiniiniiiiii et ens

Autoconfiguration Support Declarations and Definitions Section

9-45

946
9-48
9-50

9-52

9-53
9-53
9-53

9-55
9-58

9-59

9-60
9-62
9-64
9-66

9-66
9-66
9-67
9-67

10-2
104
10-7
10-8

Contents xv

10.5 Loadable Driver Configuration Support Declarations and Definitions
SECLION oieiireiiie et e et et e e e e et e e et e et e eeb e e e ana e

10.6 Local Structure and Variable Definitions Section cocovvvvenvnenneen.
10.7 Loadable Driver Local Structure and Variable Definitions Section
10.8 Autoconfiguration Support SEctioncoeeveiiiiiriiiiiiiiiniiin.

10.8.1 Implementing the cbprobe Interfaceoocoiiiiiiiiinnn,
10.8.2 Implementing the cbattach Interfacec....ooooviniiinnnnn.
10.8.3 Implementing the cb_ctlr_unattach Interface
10.9 Loadable Device Driver SECtiOn cocevvvvimeereiiiiiiinnneeiniinnnecnnnnen.

10.9.1 Setting Up the cb_configure Interfacecccooeeeneeeennneeen.
10.9.2 Configuring (Loading) the /dev/cb Device Driver
10.9.3 Unconfiguring (Unloading) the /dev/cb Device Driver
10.9.4 Querying the /dev/cb Device Driverccccoevviveeiinnreeeennnn.
10.10 Open and Close Device Section c.ceeerveeieviieemeireereiiinnenenennnn.
10.10.1 Implementing the cbopen Interfacecccoeeeveveeriennnnnn.
10.10.2 Implementing the cbclose Interfacec...coooeeiinniinnne.
10.11 Read and Write Device Section cc.cvveeemiveiinniiiinieiiiieenncnenn.
10.11.1 Implementing the cbread Interfacec...c..cocceiiiiiinii.
10.11.2 Implementing the cbwrite Interfaceocooiiiniiiiin.
10.12 Strategy SECHON ceveviiieiieiiiiieeeeiiiiieeeeetnrie e e erere s eeeat e eersnnan

10.12.1 Setting Up the cbminphys Interfacecc....ccoceeviniiinnnee.
10.12.2 Setting Up the cbstrategy Interfacec.ccceeeveeiennnrennnne.

10.12.2.1 Initializing the buf Structure for Transfer
10.12.2.2 Testing the Low Order Two Bits and Using the
Internal Bufferccoooiiiiiiiiiiii
10.12.2.3 Converting the Buffer Virtual Address
10.12.2.4 Converting the 32-Bit Physical Address
10.12.2.5 Starting I/O and Checking for Time Outs

10.13 Start SECION ..ooveiiiiiiiiiiiiiiii e
10.14 The ioctl SECON c.eouieiiiiiiinie ettt
10.14.1 Setting Up the cbioctl Interfacecccevviiiiinni

xvi Contents

10.14.2 Incrementing the Lights cccocoviiiiiiiiiiiiniiiinenees 10-73

10.14.3 Setting the /O Modecoooviiviiiiiiiniiii 10-74

10.14.4 Performing an Interrupt Testcccoeeeviiiiiniiiiiiieennniennnn. 10-75
10.14.5 Returning a ROM Word, Updating the CSR, and Stopping

Increment of the Lights ..., 10--78

10.15 Increment LED Section ccccooeiiiiiiiiiiiiiiiiiiniiniinieiienns 10-80

10.16 INterrupt SECTON ..ovviiiiiiiiiiiiiiiieeeereie sttt e e eeveiae e 10-82

Part 6 Device Driver Configuration

11 Device Driver Configuration Models

11.1 Third-Party Device Driver Configuration Modelcooveeenee. 11-1
11.1.1 Creating a Driver Development Environment and Writing
the DIIVET oo 114
11.1.2 Creating a Driver Kit Development Environment 114
11.1.2.1 The /usr/sys/conf/NAME Filec...cccooeviiiniininne. 11-6
11.1.2.2 The .products.list and NAME.list Files 11-7
11.1.2.3 The config.file File Fragmentcc....ccccvneeiininnn. 11-9
11.1.2.4 The files File .iviriiiiiiiiiiie e 11-11
11.1.2.5 The stanza.loadable File Fragment 11-12
11.1.2.6 The stanza.static File Fragmentcc.....cocoeeeeeee. 11-14
11.1.2.7 The name _data.c Fileccccovvviiiiiiiiiiiniinienenns 11-14
11.1.2.8 Files Related to the Device Driver Product 11-14
11.1.2.9 Theconf.c File .o 11-15
11.1.3 Providing the Contents of the Device Driver Kit 11-15
11.1.4 Preparing the Device Driver Kit ooooeviiiiiiiiiiinniennnnnnns. 11-17
11.1.5 Loading the Distribution Medium and Running setld 11-17
11.1.5.1 Installing Static Device Driversccoeeevvvvinreenneen 11-19
11.1.5.2 Installing Loadable Device Drivers —ccccoeveeeenen. 1120
11.2 Traditional Device Driver Configuration Modelceveevenneee. 11-23
11.2.1 Creating a Driver Development Environment and Writing
the DIIVET oo 1124
11.2.1.1 The /usr/sys/conf/NAME Fileccccco.cceveniiiiiinnin. 11-26
11.2.1.2 The files File coniviiiiie e 11-27

Contents xvii

12

12.1

11.2.1.3

The name_data.c File

...................................

11.2.1.4 Driver Header, Source, Object, and Load Module

Files o

Device Driver Configuration Syntaxes and
Mechanisms

Reviewing Device Driver Configuration-Related Files

12.2 Specifying Information in the config.file File Fragment and the

12.3
12.4
12.5
12.6

System Configuration File

12.2.1 Specifying Device Definitions

..................

......

...................................

...................................

12.2.1.1 Bus Specificationccoevvimiiiiiiiiiiinniiiiin
12.2.1.2 Controller Specificationcoooevvviiiiiiiiiiiinniinn,
12.2.1.3 Device Specification cccoeevuveiivirirennieereennnnnnn.
12.2.1.4 Device Options Syntaxes Exampleccc.c..o.oo..

12.2.2 Specifying Callouts

Specifying Information in the BINARY System Configuration File
Understanding the Format of the NAMEJlist File

Specifying Information in the files File Fragment and files File

Specifying Information in the stanza Files
/

12.6.1 Stanza File Format
12.6.2 Stanza File Syntax

12.6.2.1
12.6.2.2
12.6.2.3
12624
12.6.2.5
12.6.2.6
12.6.2.7
12.6.2.8
12.6.2.9
12.6.2.10
12.6.2.11
12.6.2.12
12.6.2.13

xviii Contents

Subsystem_Description Field
Method_Name Field
Method_Type Field
Method_Path Field
Module_Type Field
Module_Path Field
Device_Dir Field
Device_Subdir Field

Device_Block_Subdir Field
Device_Char_Subdir Field
Device_Major_Req Field
Device_Block_Major Field
Device_Block_Minor Field

...................................

...................................

.................................

12.7
12.8

12.9

13

13.1

12.6.2.14 Device_Block_Files Fieldccovvviviiviiiniininnen.
12.6.2.15 Device_Char_Major Fieldccccoeiiieeniin.
12.6.2.16 Device_Char_Minor Fieldccovoeiiiiiiiiianeninn.

12.6.2.17 Device_Char_Files Fieldcc.ccovviviiinnnnnn.

12.6.2.18 Device_User, Device_Group, and Device_Mode
Fields i

12.6.2.19 Module_Config_Name Fieldc.....cceeeeennn.n.

12.6.2.20 Module_Config Field for Bus Specification
12.6.2.21 Module_Config Field for Controller Specification

12.6.2.22 Module_Config Field for Device Specification ...

12.6.3 Stanza File Fragment Examplescccooovviiiinnninnie.

Specifying Information in the name_data.c Filec..c........
Specifying Information in the conf.c File ...

12.8.1 Using cdevsw_add to Add Entries to the cdevsw Table ...
12.8.2 Using the stanza.static File Fragment to Add Entries to the
Device Switch Tables ocoieiiiiiiviiiiiiiiiiiiieeeceeein,

Supplying the Subset Control Programccc.ccoiiiiiiiiiniiinn.s.

Device Driver Configuration Examples

Device Driver Development Phase ccccoccoiiiiiiiiiiiiiiininnenn.

13.1.1 Creating the Device Driver Development Environment ...
13.1.2 Writing the Device Driverccooovivviiiiiiiiiiiicieeen,
13.1.3 Configuring the Static Device Driverc....ccccceeevveeeennn.

13.1.3.1 Step 1: Make an Entry in the tc_option_data.c Table .

13.1.3.2 Step 2: Compile and Link the Static Device Driver

Step 2a: Back Up Files ..ccoouiiiiiiiiiiiiiiiiiiiieccicce e,

Step 2b: Make an Entry in the System Configuration File
Step 2c: Add the Driver Source to the files File
Step 2d: Declare the Device Driver Entry Points in conf.c ...
Step 2e: Modify the bdevsw or cdevsw Table
Step 2f: Run config on the System Configuration File
Step 2g: Create a Device Special File ccccoeiiiiiiieninine
Step 2h: Create a New Kernel c..c.cooiiiiiiiiiiiiannnn.
13.1.3.3 Step 3: Back Up the New Kernelcc..ceuunennee.

Contents xix

13.1.4 Configuring the Loadable Device Driverooeiiiinniiis

13.1.4.1 Step 1: Create a stanza.loadable File Fragment
13.1.4.2 Step 2: Compile and Link the Device Driver
Step 2a: Add the Driver Source to the files File
Step 2b: Make an Entry in the BINARY System Configuration
File oo
Step 2c: Run config on the System Configuration File
Step 2d: Construct the BINARY makefileccccviinininnie.
Step 2e: Build the Driver Load Moduleccoovvveveeniininn
13.1.43 Step 3: Run the sysconfigdb Utilityccc.ooeeiniin,
13.1.4.4 Step 4: Run the sysconfig Utilitycovvvvinniinnann.

13.1.5 Testing the Device Drivercceeeiiiiiiiiiiiiiiincnecniiniinn.
13.1.6 Creating the Device Driver Kit Development Environment
13.1.7 Providing the Contents of the Device Driver Kit

13.1.7.1 Providing the Contents of the config.file File
Fragment ...
13.1.7.2 Providing the Contents of the files File Fragment
13.1.7.3 Providing the Contents of the stanza.loadable File
Fragmentcoooiiiiiiiiiiiiiii
13.1.7.4 Providing the Contents of the stanza.static File
Fragmentooooiiiiiiiiiii
13.1.7.5 Providing the Device Driver Object Files -
13.1.7.6 Providing the Device Driver Load Modules

13.2 Device Driver Kit Development Phase —ccovvveviiiiiinnnninnnnn,

13.2.1 Writing the SCP ..coiiiiiiiiiiiiicc
13.2.2 Preparing the Device Driver Kit ...

13.3 Device Driver Installation Phaseccoooviiiiiiiiiiiiiieiiieieiieenann

13.3.1 Restoring the Backed Up Files ..o
13.3.2 Loading the Device Driver Kitccooiiiiiiiiiiiiiiiiine
13.3.3 Running the setld Utilitycccooeeviiiiiiiiiiiniiin,

Part 7 Appendixes

xx Contents

A

Summary Tables

A.1 Listof Header FIles cocoviviiiiiiiiiiiiiiiin e A-1
A2 List of Kernel Support Interfacescccoooeeeiviimiireiiiiiiiiineecnnnnenn. A-3
A3 List of Global Variables that Device Drivers Use ccccvvvneiiinnnnne. A-7
A4 List of Data SIUCLUIES ..ovvvviiiiiiiiiiieeeiiiee e v e e e era e eeans A-7
A.5 List of Device Driver Interfacesccoeevvviiieerinririieniniieneerinennnn. A-8
A.6 List of Bus Configuration Interfacescc....cccveiiiiiiiiiiiineiennnnn.. A-10
B Device Driver Example Source Listings

B.1 Source Listing for the /dev/none Device Driver cccoooeeeveenenenn.. B-1
B.2 Source Listing for the /dev/cb Device Drivercevvvvvciereennenn... B-24
C Device Driver Development Worksheets

Glossary

Index

Figures

1-1: When the Kernel Calls a Device Driverccoooeveviiiiiiiiiiiineiniiennnn, 1-4
1-2: Place of a Device Driver in DEC OSF/1 coiiiiiiiiieiiieeee, 1-5
1-3: Simple Character Driver Interrupt Exampleccocoeviiiiieeinnieinennnnn. 1-9
2-1: Host System Worksheet for /dev/nonec....ccoevivrievviiniirrennnennnn. 2-3
2-2: Host System Worksheet for /dev/none (Cont.)ccooeeveevernivnreenneennn. 24
2-3: Device Driver Conventions Worksheet for /dev/none 2-7
2-4: Device Driver Conventions Worksheet for /dev/none (Cont.) 2-9
2-5: Device Characteristics Worksheet for the none Device 2-11

Contents xxi

2-6: Device Characteristics Worksheet for the none Device (Cont.) 2-13

2-7: Device Usage Worksheet for the none Device ccccoeeiiivviinnernnenn. 2-15
2-8: Device Register Worksheet for /dev/none c.cccceeveriiiiiieenennnnn... 2-17
2-9: Device Register Worksheet for /dev/none (Cont.) coevvvvinnvernnnennn. 2-18
2-10: Device Driver Support Worksheet for /dev/none ccoceeereeeeennn 2-19
2-11: Device Driver Type Worksheet for /dev/nonecovvveeienreenenies 2-22
2-12: Device Driver Entry Points Worksheet for /dev/none 2-24
3-1: Sections of a Character Device Driver and a Block Device Driver 3-3
4-1: Testing Worksheet for /dev/none ccccccvviiiiiiininiiniiiiieiiiiinnen. 4-52
5-1: Hardware-Independent Model —cooiiiiiiiiiiiiiiiiiiiiiiiiiiiiiee e 5-2
6-1: Hardware Components of Interest to a Device Driver Writer —............ 6-2
7-1: Structures Created from the Exampleccooooviiiiiiiiiiiiiiiiinn.n. 7-4
7-2: Configuration Tree Based on Example System Configuration File 7-9
7-3: Configuration Tree for Loadable Drivers Based on Example

SYSCONTIZAD oiiiitiiiiiii it 7-13
7-4: The bus_type Member Initializedccocceoiiiiiiiiiiiiiiiiiiireccceeeene 7-17
7-5: The bus_name and bus_num Members Initializedcccevvennene 7-19
7-6: The slot, connect_bus, and connect_num Members Initialized 7-21
7-7: The confll and confl2 Members Initialized —cccooeeeiiiiiiieinnennn.. 7-23
7-8: The pname and port Members Initializedcoocooeiiniiiii. 7-25
7-9: The intr Member Initialized ooooiiiiiiiiiiiiiii e 7-27
7-10: The alive Member Initializedccoiieriiiiiiiiiiiiiiiee e, 7-29
7-11: The framework and driver_name Members Initialized 7-31
7-12: The private, conn_priv, and rsvd Members Initialized 7-32
7-13: The driver Member Initialized c.coooiiiiiiiiiiiiiiiiieii e 7-36
7-14: The ctlr_type, ctlr_name, and ctlr_num Members Initialized 7-38
7-15: The bus_name and bus_num Members Initializedc...ccooeeen. 7-40
7-16: The rctlr Member Initializedocoviiiiiiiiiniiiiiie e 742

xxii Contents

7-17:
7-18:
7-19:
7-20:
7-21:
7-22:
7-23:
7-24:
7-25:
7-26:
7-27:
7-28:
7-29:
7-30:
7-31:
7-32:
7-33:
7-34:
7-35:
7-36:
7-37:
7-38:

7-39:

8-1:
8-2:
8-3:
8-4:

The slot Member Initialized cooooiiiiii e,
The alive Member Initializedccooeiiiiiiiiiiiiiiee,
The pname and port Members Initialized —ccoooeiiiiiciiiinnenes
The intr Member Initialized —........cc.oooiviiiiiiiiiiiiiii e,
The addr and addr2 Members Initializedoocviiiiiiiin...
The flags Member Initializedccooviviieiiiiniiiiiii e,
The bus_priority Member Initialized —...........ccooeeiiiiiniinnnn .
The ivhum Member Initialized —ccccooiiiiiiiiiiiiiii e,
The priority Member Initializedcccoovviviiiiiiineiinriien,
The physaddr and physaddr2 Members Initializedc.
The private, conn_priv, and rsvd Members Initialized
The dev_type and dev_name Members Initializedc...cc......
The logunit and unit Members Initializedccoccoiiviiiiiininnnn.e.
The ctlr_name and ctlr_num Members Initializedcccccceeennee.
The alive Member Initializedcc.ocoeeiiiiiiiiiiniiiiin e,
The private, conn_priv, rsvd Members Initializedccccceoeennnee
The probe, slave, cattach, dattach, and go Members Initialized
The addr_list Member Initialized —cocoveniininiiii e,
The dev_name and dev_list Members Initializedccccceeeee.
The ctlr_name and ctlr_list Members Initializedcoooeinniinis

The xclu Member Initialized —ooviviiiiie e,

The addr1_size, addr1_atype, addr2_size, and addr2_atype Members

InQtialized .oooeiiiii e
The ctlr_unattach and dev_unattach Members Initialized
Adding Entries to the cdevsw Table for Loadable Drivers
Adding Entries to the cdevsw Table for Static Drivers
Adding Entries to the bdevsw Table for Loadable Drivers
Adding Entries to the bdevsw Table for Static Drivers

7-75
7-76
8-8
8-10
8-14
8-15

Contents xxiii

9-1: Results of the stremp Interfacecccoooeveiiiiiiiiiiiiiiiinniii e,
9-2: Results of the strncmp Interface cccoeviiiiiiiiiiiiiieinnie,
9-3: Results of the strepy Interfaceccoovviiiiiiiiiiiiiiiii e,
9-4: Results of the strncpy Interfacecoovvvvviiiioniiiiiiiniiincei e,
9-5: Results of the strlen Interfacecoovveiieiiiiiiiiiiiinniii e,
9-6: Results of the bcopy Interface
9-7: Results of the copyin Interfaceccocveveeeeieiiiiiireeeeiiiiieieeeerenens
9-8: Results of the copyout Interfacec...ccooiiiiiiiiiiiiiiiieeees
9-9: Results of the bdevsw_add Interface cc...oooeiiiiiiiiiiiiiiininiiinnn...
9-10: Results of the bdevsw_del Interface cccooviiiiiiiiiiiiiiiiieean,
9-11: Results of the cdevsw_add Interfaceccoviiiiiiiiiivirniiiinninn,
9-12: Results of the cdevsw_del Interfaceooviiviiiiniiiiiiiiieinn,
11-1: Third-Party Device Driver Kit Delivery Processcccocceveeeennnnn.n.
11-2: Driver Kit Development Environment for EasyDriver Incorporated

11-3: Comparison of .products.list File and NAMEL.list ccccocevernnnnn...

11-4: Comparison of config.file File Fragment and System Configuration
File e e

11-5: Comparison of files File Fragment and Customer’s files File

11-6: Comparison of stanza.loadable File Fragment and sysconfigtab
Database ..o e

11-7: Sequence of Events for Installation of Static Drivers —ccoeeeeen
11-8: Sequence of Events for Installation of Loadable Drivers
11-9: Tasks for Traditional Modelc.ooiiiiiiiiiiiiiiiiie e

11-10: Driver Development Environment for EasyDriver Incorporated
Using the Traditional Model —oooiiiiiiiiiiiii e,

12-1: A NAME.list File for EasyDriver Incorporatedcccceevivecennenee
12-2: Format of the Stanza Files ccccoiiiiiiiiiiiiiii i,

13-1: Device Driver Configuration as Done by EasyDriver Incorporated

xxiv Contents

9-3
94
9-5
9-6
9-17
9-11
9-13
9-14
9-26
9-27
9-29
9-30
11-3
11-5
11-8

Tables

2-1:
2-2:
2-3:

2-4:

3-1:
4-1:
4-2:

4-3:
4-4:
4-5:
7-1:
7-2:
7-3:
7-4:
7-5:
7-6:
7-7:
7-8:
7-9:
8-1:
8-2:
8-3:
9-1:
9-2:

Structure Allocation Technique Guidelinesccoceeveiieniicinneen.
C Compiler Data Types and Bit Sizes cccvvveiiiiiiniiieiieniiiiinnene.

Highlights of Differences Between DEC OSF/1 and ULTRIX Kernel
INEIfaces oovieiiiiii i

Highlights of Differences Between DEC OSF/1 and ULTRIX Data
STUCTUTES tevvtiieeeieiii ettt ettt eee e ee s e e e e e e ennai e

System Data Types Frequently Used by Device Drivers —........c.........
Parts of the /dev/none Device Drivercoooevivievveiieieniinenneiinnennn.

Interfaces Implemented as Part of the Autoconfiguration Support
SECHOM oot

Loadable Device Driver SECtion ccuiiiiiiiiiiiiinieiiiiiiiiiee e,
Interfaces Implemented as Part of the Open and Close Device Section .
Interfaces Implemented As Part of the Read and Write Device Section .
Members of the bus Structure cccceieiiiiiiiiiiiniiiiiinn e
Members of the controller SrUCIUIe coeevumiireieriiiiieeeiiii e
Members of the device StruCture c.cvvevviviniiieriiiieeiiereiiererennnes
Members of the driver SIruCture ccoeveveiiiireeiineieiiieeeieiineeennn,
The Member of the port Structureccoovveiimmiiiiiiiinieeneeineenieennn,
Members of the ihandler_t Structure ccooevieeiiiviiieiiiirieiieeeenne.
Members of the tc_intr_info Structure c.ccooeeiriiirieeiiiiiieiieeeennnn.
Members of the handler_key Structureooooeeeiiiiiieiiiiiiiieiiieenennn.
Members of the device_config_t Structure cccceeeviiviiienninnnenn.s
Members of the buf Structure c.ovveviiiieriieiiiieee e
Binary Status Flags Applicable to Device Drivers cc..cocoueeenen.
Members of the uio Structureoooiiiiiiiiiiiiiiii e,
Uses for spl INtEIfaces cocveverneeiiieiiieiii e e e eae

Members of the sg_entry Structure ccoceeveiiiiiiinreinneninniiirennenes

2-25
2-34

2-47

2-49
3-5
4-2

4-13
4-23
4-34
4-39
7-14
7-33
7-62
7-69
7-76
7-77
7-79
7-81
7-82

8-3

84
8-18
9-17
9-53

Contents xxv

10-1: Parts of the /dev/cb Device DIiver — ..ocooiniiiiieeececeeeeene, 10-1

10-2: Interfaces Implemented as Part of the Autoconfiguration Support

SECHOM vttt 10-18
10-3: Tasks Associated with Implementing the Loadable Device Driver

SECHOM criiiiiiiiiiiie ettt et ettt 10-27
10-4: Interfaces Implemented as Part of the Open and Close Device

SECLOM trviiniiiiiiiiieeiiiin ettt s eaaa e 10-41
10-5: Interfaces Implemented as Part of the Read and Write Device Section. 1045
10-6: Tasks Associated with Implementing the Strategy Section 10-54
10-7: Tasks Associated with Implementing the The ioctl Section 10-70
11-1: Contents of Device Driver Kit ccooeoiiiiiiiiiiiniiine, 11-16
11-2: Summary of System Management Toolsccocoeiiiiiiiiiiiiinienn. 11-18
12-1: Contents of Device Driver Configuration-Related Files 12-2
12-2: The callout Keywords —coouiiiieiiiiiiiiiiiiiieei e 12-10
12-3: The stanza File Fields cccoooiiiiiiiiiiiiiin e 12-19
A-1: Summary Descriptions of Header Filesc..ccccoveiiiiiiiiiiniiiinnnen. A-1
A-2: Summary Descriptions of Kernel Support Interfacesc.......... A-3
A-3: Summary Descriptions of Global Variablescccooiieiieiinne.n. AT
A-4: Summary Descriptions of Data Structures —cccooveveivviinniicniinnnnnn. AT
A-5: Summary of Block and Character Device Driver Interfaces —............. A-9
A-6: Summary Description of Bus Configuration Interfaces A-10

xxviContents

About This Book

This book discusses how to write device drivers for computer systems
running the DEC OSF/1 operating system.

Audience
This book is intended for systems engineers who:
* Use standard library interfaces to develop programs in the C language
* Know the Bourne or some other UNIX-based shell

* Understand basic DEC OSF/1 concepts such as kernel, shell, process,
configuration, and autoconfiguration

¢ Understand how to use the DEC OSF/1 programming tools, compilers,
and debuggers

* Develop programs in an environment involving dynamic memory
allocation, linked list data structures, and multitasking

» Understand the hardware device for which the driver is being written

» Understand the basics of the CPU hardware architecture, including
interrupts, direct memory access (DMA) operations, and /O

Although the book assumes a strong background in UNIX-based operating
systems and C programming, it does not assume any background in device
drivers. In addition, the book assumes that the audience has no source code
licenses.

A secondary audience are systems engineers who need to implement a new
bus or make changes to the implementation of an existing bus. Topics of
interest to this audience include descriptions of the bus structure members.

Scope of the Book

The book is directed towards DEC OSF/1 on computer systems developed by
Digital Equipment Corporation. However, the book provides information on
designing drivers, on OSF-based data structures, and OSF-based kernel
interfaces that would be useful to any systems engineer interested in writing
UNIX-based device drivers.

The book presents a variety of examples including:
+ A simple device driver that introduces the driver development process

¢ A character device driver operating on a TURBOchannel bus that
illustrates a minimal implementation of all the TURBOchannel hardware
functions

The book does not emphasize any specific types of device drivers. However,
mastering the concepts and examples presented in this book would be very
useful preparation for writing a variety of device drivers, including drivers
for disk and tape controllers as well as more specialized drivers such as array
processors.

Organization

Part 1 Overview

Part 1 contains one chapter, whose goal is to provide you with an overview
of device drivers. The chapter is:

Chapter 1 Introduction to Device Drivers

Provides an overview of device drivers. Read this chapter
to obtain introductory information on device drivers and to
understand the place of a device driver in DEC OSF/1.

Part 2 Anatomy of a Device Driver

Part 2 contains three chapters, whose combined goal is to provide enough
information to allow you to write a simple DEC OSF/1 device driver. The
chapters are: '

Chapter 2 Developing a Device Driver

Describes how to design a device driver. Read this chapter
if you are not familiar with the driver development process
on DEC OSF/1. Even if you have written UNIX device
drivers, you may want to read the sections that describe the
design issues related to loadable drivers, to CPU
architectures, and to porting drivers from ULTRIX to DEC
OSF/1.

Chapter 3 Analyzing the Structure of a Device Driver

Analyzes the sections that make up character and block
device drivers. Read this chapter if you are not familiar
with the sections that make up character and block drivers
on DEC OSF/1. If you are experienced writing UNIX

xxviii About This Book

Chapter 4

drivers, you may want to read selected sections,
particularly the section that describes how to set up a
configure interface for loadable device drivers.

Coding, Configuring, and Testing a Device Driver

Using a simple example, describes how to code, configure,
and test a device driver. Read this chapter if you have
never written a UNIX-based driver before. If you have
written a UNIX-based driver, you may want to read only
selected sections.

Part 3 Hardware Environment

Part 3 contains two chapters, whose combined goal is to provide you with a
view into the device drivers’ hardware environment. The chapters are:

Chapter 5

Chapter 6

Hardware-Independent Model and Device Drivers

Provides an overview of the hardware-independent model
and how it relates to device drivers. Read this chapter to
gain an understanding of how device drivers fit into the
hardware-independent model.

Hardware Components and Hardware Activities

Describes the hardware components and activities related
to device drivers. Read this chapter to obtain an
understanding or to refresh your knowledge about the
individual hardware components you will work with when
writing your drivers.

Part 4 Kernel Environment

Part 4 contains three chapters, whose combined goal is to provide
information about the kernel environment. The chapters are:

Chapter 7

Device Autoconfiguration

Discusses the events that occur during the
autoconfiguration of devices, with an emphasis on how
autoconfiguration relates to static and loadable device
drivers. In addition, the chapter provides detailed
information on the data structures related to
autoconfiguration. Read this chapter if you are not
familiar with autoconfiguration on DEC OSF/1. Those of
you experienced in writing UNIX device drivers may want
to read selected sections, especially the sections that
discuss data structure members that you are not familiar
with.

About This Book xxix

Chapter 8

Chapter 9

Data Structures Used in I/O Operations

Describes members of the structures used in input/output
(I/O). Read this chapter if you are not familiar with the
I/O-related data structures. If you are experienced with
other UNIX 1/O subsystems, you may want to read
selected sections, especially those sections that will refresh
your memory about the I/O data structures.

Using Kernel Interfaces with Device Drivers

Discusses the kernel interfaces most commonly used by
device drivers, including those interfaces used to move
data and allocate and free memory. Read this chapter if
you need examples of when, how, and why you would use
these kernel interfaces in device drivers.

Part 5 Device Driver Example

Part 5 contains one chapter, whose goal is to offer a more complex and
challenging device driver for you to analyze. The chapter is:

Chapter 10

Writing a Character Device Driver

Describes how to code a character device driver for a real
device that operates on a TURBOchannel bus. Read this
chapter if you want source code examples that exemplify a
driver implementation for a real device. Those of you
experienced in writing TURBOchannel device drivers may
want to study only selected sections of the code.

Part 6 Device Driver Configuration

Part 6 contains three chapters, whose combined goal is to provide enough
information to allow you to choose the driver configuration procedure most
suitable for your development environment. The chapters are:

Chapter 11

Chapter 12

xxx About This Book

Device Driver Configuration Models

Provides an overview of the two configuration models: the
third-party device driver configuration model and the
traditional device driver configuration model. Read this
chapter to obtain a general overview of the two models.
The third-party driver configuration model is particularly
well suited for driver developers who want to deliver DEC
OSF/1 device drivers to their customers.

Device Driver Configuration Syntaxes and Mechanisms

Describes the syntaxes and mechanisms used to populate
the files needed for device driver configuration. Read this

Chapter 13

Part 7 Appendixes

chapter if you are not familiar with these syntaxes and
mechanisms.

Device Driver Configuration Examples

Provides step-by-step instructions for configuring the
example device drivers, using the third-party and
traditional models. Read this chapter to learn how to
configure the example drivers using the third-party and the
traditional driver configuration models.

Part 7 contains three appendixes and a glossary.

Appendix A

Appendix B

Appendix C

Glossary

Summary Tables

Presents tables that summarize the header files, kernel
interfaces, data structures, and other interfaces used by
device drivers.

Device Driver Example Source Listings

Contains the source code listings for the examples
presented in this book.

Device Driver Development Worksheets

Provides worksheets for use in designing and coding a
device driver.

Glossary

Related Documentation

The printed version of the DEC OSF/1 documentation set is color coded to
help specific audiences quickly find the books that meet their needs. (You
can order the printed documentation from Digital.) This color coding is
reinforced with the use of an icon on the spines of books. The following list
describes this convention:

Audience

lcon Color Code

General Users

System Administrators

Programmers

Reference Page Users

S

Network Administrators N Yellow
P
R

G Teal
Red

Blue
Black

About This Book xxxi

Some books in the documentation set help meet the needs of several
audiences. For example, the information in some system books is also used
by programmers. Keep this in mind when searching for information on
specific topics.

The Documentation Overview provides information on all of the books in the
DEC OSF/1 documentation set.

Writing device drivers is a complex task; driver writers require knowledge in
a variety of areas. One way to acquire this knowledge is to have at least the
following categories of documentation available:

* Hardware documentation

* Bus-specific device driver documentation
* Programming tools documentation

* System management documentation

* Porting documentation

» Reference pages

The following sections list the documentation associated with each of these
categories.

Hardware Documentation

You should have available the hardware manual associated with the device
for which you are writing the device driver. Also, you should have access to
the manual that describes the architecture associated with the CPU that the
driver operates on, for example, the Alpha Architecture Reference Manual.

Bus-Specific Device Driver Documentation

Writing Device Drivers, Volume 1: Tutorial is the core book for developing
device drivers on DEC OSF/1. It contains information needed for developing
drivers on any bus that operates on Digital platforms. Writing Device
Drivers, Volume 2: Reference is a companion volume to the tutorial and
describes, in reference (man) page style, the header files, kernel interfaces,
data structures, and other interfaces used by device drivers. The following
books provide information about writing device drivers for a specific bus that
is beyond the scope of the core tutorial and reference:

e Writing EISA Bus Device Drivers

This manual provides information for systems engineers who write device
drivers for the EISA bus. The manual describes EISA bus-specific topics
including EISA bus architecture and kernel interfaces used by EISA bus
drivers.

xxxii About This Book

Writing Device Drivers for the SCSI/CAM Architecture Interfaces

This manual provides information for systems engineers who write device
drivers for the SCSI/CAM Architecture interfaces.

The manual provides an overview of the DEC OSF/1 SCSI/CAM
Architecture and describes User Agent routines, data structures, common
and generic routines and macros, error handling and debugging routines.
The manual includes information on configuration and installation.
Examples show how programmers can define SCSI/CAM device drivers
and write to the SCSI/CAM special /O interface supplied by Digital to
process special SCSI I/O commands.

The manual also describes the SCSI/CAM Utility (SCU) used for
maintenance and diagnostics of SCSI peripheral devices and the CAM
subsystem.

Writing TURBOchannel Device Drivers

This manual provides information for systems engineers who write device
drivers for the TURBOchannel. The manual describes TURBOchannel-
specific topics, including TURBOchannel architecture and kernel
interfaces used by TURBOchannel drivers.

Programming Tools Documentation

To create your device drivers, you use a number of programming
development tools and should have on hand the manuals that describe how to
use these tools. The following manuals provide information related to
programming tools used in the DEC OSF/1 operating system environment:

Kernel Debugging

This manual provides information on debugging a kernel and analyzing a
crash dump of a DEC OSF/1 operating system. The manual provides an
overview of kernel debugging and crash dump analysis and describes the
tools used to perform these tasks. The manual includes examples with
commentary that show how to analyze a running kernel or crash dump.
The manual also describes how to write a kdbx utility extension and
how to use the various utilities for exercising disk, tape, memory, and
communications devices.

This manual is for system administrators responsible for managing the
operating system and for systems programmers writing applications and
device drivers for the operating system.

Programming Support Tools

This manual describes several commands and utilities in the DEC OSF/1
system, including facilities for text manipulation, macro and program
generation, source file management, and software kit installation and

About This Book xxxiii

creation.

The commands and utilities described in this manual are intended
primarily for programmers, but some of them (such as grep, awk,
sed, and the Source Code Control System (SCCS)) are useful for other
users. This manual assumes that you are a moderately experienced user of
UNIX systems.

* Programmer’s Guide

This manual describes the programming environment of the DEC OSF/1
operating system, with an emphasis on the C programming language.

This manual is for all programmers who use the DEC OSF/1 operating
system to create or maintain programs in any supported language.

System Management Documentation

Refer to the System Administration book for information about building a
kernel and for general information on system administration. This manual
describes how to configure, use, and maintain the DEC OSF/1 operating
system. It includes information on general day-to-day activities and tasks,
changing your system configuration, and locating and eliminating sources of
trouble.

This manual is for the system administrators responsible for managing the
operating system. It assumes a knowledge of operating system concepts,
commands, and configurations.

Porting Documentation

Refer to the DEC OSF/1 Migration Guide for a discussion of the differences
between the DEC OSF/1 and ULTRIX operating systems. This manual
compares the DEC OSF/1 operating system to the ULTRIX operating system
by describing the differences between the two systems.

This manual has three audiences, as follows:

e General users can read this manual to determine what differences exist
between using an ULTRIX system and using the DEC OSF/1 system.

s System and network administrators can read this manual to determine
what differences exist between ULTRIX and DEC OSF/1 system
administration.

* Programmers can read this manual to determine differences in the DEC
OSF/1 programming environment and the ULTRIX programming
environment.

This manual assumes you are familiar with the ULTRIX operating system.

xxxiv About This Book

Reference Pages

The following provide reference (man) pages that are of interest to device
driver writers:

Reference Pages Section 2

This section defines system calls (entries into the DEC OSF/I kernel) that
programmers use. The introduction to Section 2, intro(2), lists error
numbers with brief descriptions of their meanings. The introduction also
defines many of the terms used in this section. This section is for
programmers.

Reference Pages Section 3

This section describes the routines available in DEC OSF/1 programming
libraries, including the C library, Motif library, and X library. This
section is for programmers. In printed format, this section is divided into
volumes.

Reference Pages Sections 4, 5, and 7

— Section 4 describes the format of system files and how the files are
used. The files described include assembler and link editor output,
system accounting, and file system formats. This section is for
programmers and system administrators.

— Section 5 contains miscellaneous information, including ASCII
character codes, mail-addressing formats, text-formatting macros, and
a description of the root file system. This section is for programmers
and system administrators.

— Section 7 describes special files, related device driver functions,
databases, and network support. This section is for programmers and
system administrators.

Reference Pages Section 8

This section describes commands for system operation and maintenance.
It is for system administrators.

Reader’s Comments

Digital welcomes your comments on this or any other DEC OSF/1 manual.
You can send your comments in the following ways:

Internet electronic mail:
readers_comment@ravine.zk3.dec.com

Fax: 603-881-0120 Attn: USG Documentation, ZK03-3/Y32

A completed Reader’s Comments form (postage paid, if mailed in the
United States). Two Reader’s Comments forms are located at the back of

About This Book xxxv

each printed DEC OSF/1 manual.

If you have suggestions for improving particular sections or find any errors,
please indicate the title, order number, and section numbers. Digital also
welcomes general comments.

Conventions
The following conventions are used in this book:

A vertical ellipsis indicates that a portion of an example that
would normally be present is not shown.

In syntax definitions, a horizontal ellipsis indicates that the
preceding item can be repeated one or more times.

filename In examples, syntax descriptions, and function definitions,
this typeface indicates variable values.

buf In function definitions and syntax definitions used in driver
configuration, this typeface is used to indicate names that you
must type exactly as shown.

[] In formal parameter declarations in function definitions and
in structure declarations, brackets indicate arrays. Brackets
are also used to specify ranges for device minor numbers and
device special files in stanza.loadable file fragments.
However, for the syntax definitions used in driver
configuration, these brackets indicate items that are optional.

Vertical bars separating items that appear in the syntax
definitions used in driver configuration indicate that you
choose one item from among those listed.

This book uses the word kernel ‘‘interface’’ instead of kernel ‘‘routine’’ or
kernel ‘‘macro’’ because, from the driver writer’s point of view, it does not
matter whether the interface is a routine or a macro.

Summary of Changes and Additions

The following sections summarize the changes and additions made to each
chapter for this version of the book.

Chapter 2: Developing a Device Driver

The following list summarizes the changes and additions made to each
section in this chapter:

xxxvi About This Book

* Section 2.1.5: Providing a Description of the Device Registers

This section recommends that device drivers use two new interfaces to
access device registers: read_io port and write io port.

* Section 2.4,1: Control Status Register Issues

This section recommends that device drivers use the CSR I/O access
interfaces to read from and write to device registers.

e Section 2.4.2: Input/Output Copy Operation Issues

This section recommends that device drivers use the I/0 copy interfaces
to perform I/O copy operations.

* Section 2.4.3: Direct Memory Access Operation Issues

This section recommends that device drivers use the DMA interfaces to
perform direct memory access operations.

e Section 2.4.7.1: Forcing a Barrier Between Load/Store Operations

This section uses the new interfaces read_io_port and
write_io_port in the code example.

* Section 2.4.7.2: After the CPU Has Prepared a Data Buffer in Memory

This section uses the new interface read_io_port in the code
example.

* Section 2.4.7.3: Before Attempting to Read Any Device CSRs

This section uses the new interface read_io_port in the code
example.

e Section 2.4.7.4. Between Writes

This section uses the new interface write io_port in the code
example.

» Section 2.6.5: Checking Kernel Interfaces

The table in this section provides technical corrections to the remarks
column for the useracc interface.

Chapter 3: Analyzing the Structure of a Device Driver

The following list summarizes the changes and additions made to each
section in this chapter:

¢ Section 3.1.2.3: The devdriver.h Header File

This section mentions two new opaque data types: io_handle_t and
dma_handle_t.

* Section 3.1.4: Device Register Header File
This section describes and provides an example of another technique for

About This Book xxxvii

defining the registers of a device.

Chapter 4: Coding, Configuring, and Testing a Device Driver

The following list summarizes the changes and additions made to each
section in this chapter:

* Section 4.1.1: The nonereg.h Header File

This section uses the new technique for defining the registers of the
none device.

¢ Section 4.1.3: Autoconfiguration Support Declarations and Definitions
Section

This section contains a rewrite of code explanation items to reflect the use
of the new technique for defining the registers of the none device.

* Section 4.1.6.1: Implementing the noneprobe Interface

This section contains a rewrite of code explanation items to reflect the use
of the I/O handle, read_io_port, and write_io port.

e Section 4.1.8.2: Implementing the noneclose Interface

This section contains a rewrite of code explanation items to reflect the use
of the I/O handle and write io port.

Chapter 6: Hardware Components and Hardware Activities

Section 6.2.1, How a Device Driver Accesses Device Registers, contains a
rewrite to correct technical inaccuracies.

Chapter 7: Device Autoconfiguration

Section 7.4.6, The slot Member, contains a rewrite to correct technical
inaccuracies.

Chapter 9: Using Kernel Interfaces with Device Drivers

The following list summarizes the changes and additions made to each
section in this chapter:

* Section 9.1.3: Copying a Null-Terminated Character String

This section contains a rewrite of the code explanation item to make it
more technically accurate.

e Section 9.5.2: Printing Text to the Console and Error Logger

This section contains a rewrite of the code explanation item to make it
more technically accurate.

xxxviii About This Book

Section 9.5.3: Putting a Calling Process to Sleep
This section contains a rewrite to correct technical inaccuracies.
Section 9.7: Input/Output (I/O) Handle-Related Interfaces

This section introduces the I/O handle and the CSR I/O access and 1/0
copy interface categories.

Section 9.7.1.1: Reading Data from a Device Register

This section describes the new CSR I/O access interface
read_io_port.

Section 9.7.1.2: Writing Data to a Device Register

This section describes the new CSR I/O access interface
write_io port.

Section 9.7.2.1: Copying a Block of Memory from I/O Address Space to
System Memory

This section describes the new I/O copy interface io_copyin.

Section 9.7.2.2: Copying a Block of Byte-Contiguous System Memory
to I/O Address Space

This section describes the new I/O copy interface io_copyout.

Section 9.7.2.3: Copying a Memory Block of I/O Address Space to
Another Memory Block of /O Address Space

This section describes the new I/O copy interface io_copyio.
Section 9.8: DMA-Related Interfaces

This section introduces the DMA-related interfaces.

Section 9.8.1: DMA Handle

This section introduces the DMA handle concept.

Section 9.8.2: The sg_entry Structure

This section describes the data structure returned by some of the DMA-
related interfaces. This new data structure is called sg_entry.

Section 9.8.3: Allocating System Resources for DMA Data Transfers
This section describes the new DMA interface dma_map_alloc.

Section 9.8.4: Loading and Setting Allocated System Resources for
DMA Data Transfers

This section describes the new DMA interface dma_map_load.
Section 9.8.5: Unloading System Resources for DMA Data Transfers

This section describes the new DMA interface dma_map_unload.

About This Book xxxix

Section 9.8.6: Releasing and Deallocating Resources for DMA Data
Transfers

This section describes the new DMA interface dma_map dealloc.

Section 9.8.7: Returning a Pointer to the Current Bus Address/Byte
Count Pair

This section describes the new DMA interface
dma_get curr_sgentry.

Section 9.8.8: Putting a New Bus Address/Byte Count Pair into the List

This section describes the new DMA interface
dma_put_ curr_sgentry.

Section 9.8.9: Returning a Kernel Segment Address of a DMA Buffer

This section describes the new DMA interface dma_kmap buffer.

Chapter 10: Writing a Character Device Driver

The following list summarizes the changes and additions made to each
section in this chapter:

Section 10.2: The cbreg.h Header File

This section contains a rewrite of code explanation items to reflect the use
of the new technique for defining the registers of the CB device.

Section 10.3: Include Files Section

This section adds a define for DEV_FUNNEL NULL, which the
/dev/cb device driver uses to initialize the d_funnel member of the
cdevsw structure.

Section 10.6: Local Structure and Variable Definitions Section

This section removes the pointer to the CB. REGISTERS struture as a
member of the cb unit structure and replaces it with an I/O handle.
The associated code explanation item reflects this change.

Section 10.8.2: Implementing the cbattach Interface

This section shows that the example driver uses the io_handle_ t data
type to perform a type cast operation with the CB_ ADR macro. The
associated code explanation item reflects this change.

Section 10.11.1: Implementing the cbread Interface

This section updates the example code and its associated code explanation
item to reflect the use of the read_io port interface.

Section 10.11.2: Implementing the cbwrite Interface

This section updates the example code and its associated code explanation
item to reflect the use of the write_ io_port interface.

x!/ About This Book

Section 10.12.2.3: Converting the Buffer Virtual Address

This section updates the example code and its associated code explanation
item to reflect the use of the vtop interface.

Section 10.12.2.4: Converting the 32-Bit Physical Address

This section updates the example code and its associated code explanation
item to reflect the use of the write io_port interface.

Section 10.13: Start Section

This section updates the example code and its associated code explanation
items to reflect the use of the read_io_port and write_io port
interfaces.

Section 10.14.4: Performing an Interrupt Test

This section updates the example code and its associated code explanation
items to reflect the use of the read_io_port and write io port
interfaces.

Section 10.14.5: Returning a ROM Word, Updating the CSR, and
Stopping Increment of the Lights

This section updates the example code and its associated code explanation
items to reflect the use of the read_io port andwrite_io_port
interfaces.

Chapter 13: Device Driver Configuration Examples

Section 13.1.7, Providing the Contents of the Device Driver Kit, expands on
the specific contents that driver writers provide to their kit developers. Six
sections describe the following file fragments and files that become the
contents of the device driver kit:

L

config.file file fragment
files file fragment
stanza.loadable file fragment
stanza.static file fragment
Device driver objects

Device driver load modules

Appendix A: Summary Tables

The following list summarizes the changes and additions made to each
section in this chapter:

About This Book x/i

* Section A.1: List of Header Files
The table lists a new header file cpu.h.
* Section A.2: List of Kernel Support Interfaces
The table lists the following new kernel interfaces:
— dma_get_curr sgentry
— dma_get next sgentry
- dma_get_private
~ dma_kmap buffer
- dma map_alloc
— dma_map dealloc
— dma map load
— dma_map_unload
— dma_min boundary
— dma_put_curr_sgentry
— dma_put prev_sgentry
- dma_put_private
- drvr_register shutdown
- io_copyin
- 1lo_copyio
- 1io_copyout
- 1lo_zero
~ IS_KSEG_VA
— KSEG_TO_PHYS
— PHYS_TO_KSEG
- read_io port
- vtop
- write_io_port
* Section A.3: List of Global Variables that Device Drivers Use
The table lists a new global variable page size.
* Section A.4: List of Data Structures

The table lists a new data structure sg_entry.

xlii About This Book

Appendix B: Device Driver Example Source Listings

Section B.1, Source Listing for the /dev/none Device Driver, reflects changes
made as a result of using the new interfaces read io_port and
write io port.

Glossary
The following terms now appear in the glossary:
* DMA handle
¢ /O handle

About This Book xliii

Part 1 Overview

Device
Drivers

Block 1 | Character | Network |
Device ' Device | : Deyice
Drivers : Drivers | 1 Drivers

Introduction to Device Drivers 1

This chapter presents an overview of device drivers by discussing:
* The purpose of a device driver

» The types of device drivers

» Static versus loadable device drivers

* When a device driver is called

» The place of a device driver in DEC OSF/1

The chapter concludes with an example of how a device driver in DEC
OSF/1 reads a single character.

1.1 Purpose of a Device Driver

The purpose of a device driver is to handle requests made by the kernel with
regard to a particular type of device. There is a well-defined and consistent
interface for the kernel to make these requests. By isolating device-specific
code in device drivers and by having a consistent interface to the kernel,
adding a new device is easier.

1.2 Types of Device Drivers

A device driver is a software module that resides within the DEC OSF/1
kernel and is the software interface to a hardware device or devices. A
hardware device is a peripheral, such as a disk controller, tape controller, or
network controller device. In general, there is one device driver for each type
of hardware device. Device drivers can be classified as:

* Block device drivers

* Character device drivers (including terminal drivers)
* Network device drivers

* Pseudodevice drivers

The following sections briefly discuss each type.

1.2.1 Block Device Driver

A block device driver is a driver that performs I/O by using file system
block-sized buffers from a buffer cache supplied by the kernel. The kernel
also provides for the device driver support interfaces that copy data between
the buffer cache and the address space of a process.

Block device drivers are particularly well-suited for disk drives, the most
common block devices. For block devices, all I/O occurs through the buffer
cache.

1.2.2 Character Device Driver

A character device driver does not handle input and output through the buffer
cache, so it is not tied to a single approach for handling I/O.

A character device driver can be used for a device such as a line printer that
handles one character at a time. However, character drivers are not limited to
performing I/O one character at a time (despite the name ‘‘character’’ driver).
For example, tape drivers frequently perform I/O in 10K chunks. You can
also use a character device driver when it is necessary to copy data directly to
or from a user process.

Because of their flexibility in handling I/O, many drivers are character
drivers. Line printers, interactive terminals, and graphics displays are
examples of devices that require character device drivers.

A terminal device driver is actually a character device driver that handles
input and output character processing for a variety of terminal devices. Like
any character device, a terminal device can accept or supply a stream of data
based on a request from a user process. It cannot be mounted as a file
system and, therefore, does not use data caching.

1.2.3 Network Device Driver

A network device driver attaches a network subsystem to a network interface,
prepares the network interface for operation, and governs the transmission
and reception of network frames over the network interface. This book does
not discuss network device drivers.

1.2.4 Pseudodevice Driver

Not all device drivers control physical hardware. Such device drivers are
called ‘‘pseudodevice’’ drivers. Like block and character device drivers,
pseudodevice drivers make use of the device driver interfaces. Unlike block
and character device drivers, pseudodevice drivers do not operate on a bus.
One example of a pseudodevice driver is the pseudoterminal or pty terminal
driver, which simulates a terminal device. The pty terminal driver is a

1-2 Introduction to Device Drivers

character device driver typically used for remote logins.

1.3 Static Versus Loadable Device Drivers

Traditional kernels require that device drivers be installed by performing
tasks that include rebuilding the kernel, shutting down the system, and
rebooting. In these kinds of environments, device drivers can be viewed as
static, that is, they are linked directly into the kernel at build time.
Historically, this was necessary because many kernel interfaces consisted of
static tables with no means of dynamic expansion. Thus, when changes are
made to these device drivers, the only way to link them into the kernel is to
go through the previously listed steps.

A design goal of OSF/1 was to provide cleanly architected kernel interfaces
that would make it easier to add functionality to the kernel. To accomplish
the task of allowing functional enhancements at kernel run time rather than at
kernel build time, it was necessary for these kernel interfaces not to rely
exclusively on statically configured tables. Thus, a set of kernel subsystems
was defined.

A subsystem is a kernel module that defines a set of kernel framework
interfaces that allow for the dynamic configuration and unconfiguration
(adding and removal) of subsystem functionality. Examples of subsystems
include (but are not restricted to) device drivers, file systems, and network
protocols. The ability to dynamically add subsystem functionality is utilized
by loadable drivers to allow the driver to be configured and unconfigured
without the need for kernel rebuilds and reboots.

The DEC OSF/1 operating system embraces and builds on this portability
and configurability philosophy by providing the ability for device drivers to
be installed dynamically at run time without having to rebuild the kernel,
shut down the system, and reboot. You must know the bus type and CPU
architecture when deciding to make your device driver loadable. For DEC
OSF/1, loadable drivers are not supported on the Alpha AXP architecture.
However, you might want to follow the approach taken by the example
drivers in this book and implement the loadable driver code now in
anticipation of future support.

1.4 When a Device Driver Is Calied
Figure 1-1 shows that the kernel calls a device driver during:
* Autoconfiguration

The kernel calls a device driver at autoconfiguration time to determine
what devices are available and to initialize them.

Introduction to Device Drivers 1-3

* Input/output operations

The kernel calls a device driver to perform input/output (I/O) operations
on the device. These operations include opening the device to perform
reads and writes and closing the device.

e Interrupt handling

The kernel calls a device driver to handle interrupts from devices capable
of generating them.

e Special requests

The kernel calls a device driver to handle special requests through ioctl
calls.
¢ Reinitialization

The kernel calls a device driver to reinitialize the driver, the device, or
both when the bus (the path from the CPU to the device) is reset.

Figure 1-1: When the Kernel Calls a Device Driver

To handle
——— special requests

. . such as an ioctl
At autoconfiguration,

to determine availability — On some buses,
and to initialize to reset and reinitialize
the device

To perform I/O
resulting from
standard library
1/O calls

To handle interrupts
from the device

to say data

is ready

Device
Driver

Some of these requests, such as input or output, result directly or indirectly
from corresponding system calls in a user program. Other requests, such as
the calls at autoconfiguration time, do not result from system calls but from
activities that occur at boot time.

1—4 Introduction to Device Drivers

1.41

Place of a Device Driver in DEC OSF/1

Figure 1-2 shows the place of a device driver in DEC OSF/I relative to the
device:

* User program or utility

A user program, or utility, makes calls on the kernel but never directly
calls a device driver.

e Kernel

The kernel runs in supervisor mode and does not communicate with a
device except through calls to a device driver.

Figure 1-2: Place of a Device Driver in DEC OSF/1

Utility

Controller

Bus

User Program

¢ Device driver

A device driver communicates with a device by reading and writing
through a bus to peripheral device registers.

e Bus

The bus is the data path between the main processor and the device
controller.

Introduction to Device Drivers 1-5

¢ Controller

A controller is a physical interface for controlling one or more devices.
A controller connects to a bus.

* Peripheral device

A peripheral device is a device that can be connected to a controller.
Disk and tape drives are examples of peripheral devices that can be
connected to the controller. Other devices (for example, the network)
may be integral to the controller.

The following sections describe these parts with an emphasis on how a
device driver relates to them.

1.4.2 User Program or Utility

User programs, or utilities, make system calls on the kernel that result in the
kernel making requests of a device driver. For example, a user program can
make a read system call, which calls the driver’s read interface.

1.4.3 Kernel

The kernel makes requests to a device driver to perform operations on a
particular device. Some of these requests result directly from user program
requests. For example:

* Block I/O (open, strategy, close)
* Character I/O (open, write, close)

Autoconfiguration requests, such as probe and attach, do not result
directly from a user program, but result from activities performed by the
kernel. At boot time, for example, the kernel calls the driver’s probe
interface.

A device driver may call on kernel support interfaces to support such tasks
as:

» Sleeping and waking (process rescheduling)
* Scheduling events

* Managing the buffer cache

¢ Moving or initializing data

* Configuring loadable drivers

1-6 Introduction to Device Drivers

1.4.4

1.4.5

Device Drivers

A device driver, run as part of the kernel software, manages each of the
device controllers on the system. Often, one device driver manages an entire
set of identical device controller interfaces. On DEC OSF/1, you can
configure more device drivers than there are physical devices configured into
the hardware system. At boot time, the autoconfiguration software can
determine which of the physical devices are accessible and functional and can
produce a correct run-time configuration for that instance of the running
kernel. Similarly, when a driver is dynamically loaded, the kernel performs
the configuration sequence for each instance of the physical device.

As stated previously, the kernel makes requests of a driver by calling the
driver’s standard entry points (such as probe, attach, open, read,
write, close). In the case of I/O requests such as read and write, it is
typical that the device causes an interrupt upon completion of each I[/O
operation. Thus, a write system call from a user program may result in
several calls on the interrupt entry point in addition to the original call
on the write entry point. This is the case when the write request is
segmented into several partial transfers at the driver level.

Device drivers, in turn, make calls upon kernel support interfaces to perform
the tasks mentioned earlier.

The structure declaration giving the layout of the control registers for a
device is part of the source for a device driver. Device drivers, unlike the
rest of the kernel, can access and modify these registers.

Buses

When a device driver reads or writes to the hardware registers of a controller,
the data travels across a bus.

A bus is a physical communication path and an access protocol between a
processor and its peripherals. A bus standard, with a predefined set of logic
signals, timings, and connectors, provides a means by which many types of
device interfaces (controllers) can be built and easily combined within a
computer system. The term OPENbus refers to those buses whose
architectures and interfaces are publicly documented, allowing a vendor to
easily plug in hardware and software components. The TURBOchannel and
the VMEDbus, for example, can be classified as having OPENbus
architectures.

Device driver writers must understand the bus that the device is connected to.
This book covers topics that all driver writers need to know regardless of the
bus. However, the TURBOchannel is the bus used for describing the
implementation of the /dev/none and /dev/cb example drivers.

Introduction to Device Drivers 1-7

1.4.6 Device Controller

A device controller is the hardware interface between the computer and a
peripheral device. Sometimes a controller handles several devices. In other
cases, a controller is integral to the device.

1.4.7 Peripheral Devices

A peripheral device is hardware, such as a disk controller, that connects fo a
computer system. It can be controlled by commands from the computer and
can send data to the computer and receive data from it. Examples of
peripheral devices include:

* A data acquisition device, like a digitizer
¢ A line printer

* A disk or tape drive

1.5 Example of Reading a Character

This section provides an example of how DEC OSF/1 processes a read
request of a single character in raw mode from a terminal. (Raw mode
returns single characters.) Although the example takes a simplified view of
character processing, it does illustrate how control can pass from a user
program to the kernel to the device driver. It also shows that interrupt
processing occurs asynchronously from other device driver activity. Figure
1-3 summarizes the flow of control between a user program, the kernel, the
device driver, and the hardware. The figure shows the following sequence of
events:

* A read request is made to the device driver (C-1 to C-3).

» The character is captured by the hardware (I-4 and I-5).

* The interrupt is generated (I-6).

* The interrupt service interface handles the interrupt (I-7 to [-9).
¢ The character is returned (C-10 to C-13).

Figure 1-3 provides a snapshot of the processing that occurs in the reading of
a single character. The following sections elaborate on this sequence.

1-8 Introduction to Device Drivers

Figure 1-3: Simple Character Driver Interrupt Example

User Read Call
Program _ read(fd, buf, 1);

c-1 '
Kernel

Keyboard

oogooodo

Device Driver
Read Interface g

‘-

Keyboard Controller

o

. Register
Interrupt Service : g
Interface

<

KEY

-- =transfer data only
— = transfer of control
I =interrupt processing
C =calls and returns

Introduction to Device Drivers 1-9

1.5.1 A Read Request Is Made to the Device Driver

A user program issues a read system call (C-1). The figure shows that the
read system call passes three arguments: a file descriptor (the £d
argument), the character pointer to where the information is stored (the buf
argument), and an integer (the value 1) that tells the driver’s read interface
how many bytes to read. The calling sequence is blocked inside the device
driver’s read interface because the buffer where the data is stored is empty,
indicating that there are currently no characters available to satisfy the read.
The kernel’s read interface makes a request of the device driver’s read
interface to perform a read of the character based on the arguments passed by
the read system call (C-2). Essentially, the driver read interface is waiting
for a character to be typed at the terminal’s keyboard. The currently blocked
process that caused the kernel to call the driver’s read interface is not
running in the CPU (C-3).

1.5.2 The Character Is Captured by the Hardware

Later, a user types the letter ‘‘k’’ on the terminal keyboard (I-4). The letter
is stored in the device’s data register (I-5).

1.5.3 The Interrupt Is Generated

When the user types a key, the console keyboard controller alters some
signals on the bus. This action notifies the CPU that something has changed
inside the console keyboard controller. This condition causes the CPU to
immediately start running the console keyboard controller’s interrupt service
interface (I-6). The state of the interrupted process (either some other process
or the idle loop) is saved so that the process can be returned to its original
state as though it were never interrupted in the first place.

1.5.4 The Interrupt Service Interface Handles the Interrupt

The console device driver’s interrupt service interface first checks the state of
the driver and notices that a pending read operation exists for the original
process. The console device driver manipulates the controller hardware by
way of the bus hardware in order to obtain the value of the character that was
typed. This character value was stored somewhere inside the console
controller’s hardware (I-7). In this case, the value 107 (the ASCIIL
representation for the ‘°k’’ character) is stored. The interrupt service
interface stores this character value into a buffer that is in a location known
to the rest of the console driver interfaces (I-8). It then awakens the original,
currently sleeping, process so that it is ready to run again (I-9). The interrupt
service interface returns, in effect restoring the interrupted process (not the
original process yet) so that it may continue where it left off.

1-10 Introduction to Device Drivers

1.5.5 The Character Is Returned

Later, the kernel’s process scheduler notices that the original process is ready
to run, and so allows it to run. After the original process resumes running
(after the location where it was first blocked), it knows which buffer to look
at to obtain the typed character (C-10). It removes the character from this
buffer and puts it into the user’s address space (C-11). The device driver’s
read interface returns control to the kernel’s read interface (C-12). The
kernel read interface returns control to the user program that previously
initiated the read request (C-13).

1.5.6 Summary of the Example

Although this example presents a somewhat simplified view of character
processing, it does illustrate how control passes from a user program to the
kernel to the device driver. It also shows clearly that interrupt processing
occurs asynchronously from other device driver activity.

Introduction to Device Drivers 1-11

Part 2 Anatomy of a Device Driver

ol

o
.
S

G

mmas—

o
e

e

e

P

.

L

o
o
-

G
i
o

Hea

o

-

o
e

e

S

Developing a Device Driver 2

This chapter discusses how you develop a device driver. Included is a simple
example called /dev/none, which is written by a fictitious third-party
driver company called EasyDriver Incorporated. The chapter uses worksheets
to illustrate the kinds of information you need to gather to make developing
the device driver easier. Appendix C provides these same worksheets for use
in developing your own device drivers. If you use the worksheets for your
driver development, consider organizing them in a device driver project
binder. This will make them available to systems engineers who need to
maintain the driver.

Specifically, the chapter describes the following tasks associated with
developing any device driver:

* Gathering information

* Designing the device driver

* Determining the structure allocation technique

e Understanding differences in CPU architectures

* Creating a device driver development environment

The chapter concludes with a section on porting device drivers. This task is
only for device driver writers who want to port device drivers from ULTRIX
to DEC OSF/1 systems.

2.1 Gathering Information

The first task in writing a device driver is to gather pertinent information
about the host system and the device for which you are writing the driver.
You need to:

» Specify information about the host system

* Identify the conventions used in writing the driver
* Specify characteristics of the device

* Describe device usage

* Provide a description of the device registers

* Identify support in writing the driver

The following sections describe how you would fill out the worksheets
provided for each of these tasks, using the /dev/none device driver as an
example.

2.1.1 Specifying Information About the Host System

Figure 2-1 and Figure 2-2 show the host system information associated with
the /dev/none driver. As the worksheets show, you gather the following
information about the host system:

* The host CPU or CPUs your driver operates on
¢ The operating system or systems your driver operates on

* The bus or buses that your driver connects to

2.1.1.1 Specifying the Host CPU or CPUs on Which Your Driver
Operates

The /dev/none driver will be developed for use on a DEC 3000 Model
500 AXP Workstation.

The goal should always be to write any device driver to operate on more than
one CPU hardware platform, so you should be aware of any differences
presented by different CPU architectures. By identifying the hardware
platforms you want the driver to operate on, you can address any driver
design decisions related to the CPU hardware architecture. This
identification can help you determine whether one driver, with appropriate
conditional compilation statements, can handle the CPU hardware platforms
you want the driver to operate on. You might decide that it would be easier
to write two device drivers. Section 2.4 discusses some device driver design
issues that are affected by CPU architectures.

2-2 Developing a Device Driver

Figure 2-1: Host System Worksheet for /dev/none

HOST SYSTEM WORKSHEET

Specify the Host CPU

Alpha-based CPUs:

DEC 3000 Model 400 AXP Workstation
DEC 3000 Model 500 AXP Workstation

DEC 4000 Model 600 AXP Distributed/
Departmental Server

DEC 7000 Model 600 AXP Server
DEC 10000 Model 600 AXP Server

Other Alpha-based CPUs:

0 DB\D

MIPS-based CPUs:

DECstation 5000 Model 100
DECstation 5000 Model 200
DECstation 5000 Model 300
DECstation 5400
DECstation 5500
DECstation 5900

Jooooo

Other MIPS-based CPUs:

Developing a Device Driver 2-3

Figure 2-2: Host System Worksheet for /dev/none (Cont.)

HOST SYSTEM WORKSHEET (Cont.)

Other CPU Architectures:

l oo |

Specify the host operating system:

DEC OSF/1 m’

ULTRIX —

Other operating systems

Specify the bus or buses you plan to
connect to the driver:

TURBOchannel lﬁ
VMEbus -
Q-bus —
UNIBUS 1
SCSI 1
Pseudodevice drivers []

Other buses

2.1.1.2 Specifying the Operating System or Systems on Which Your
Driver Operates

The /dev/none driver will be developed for use on the DEC OSF/1
operating system. This is an important consideration because data structures
and kernel interfaces differ between operating systems. For example, device
drivers developed for DEC OSF/1 systems might initialize a driver
structure, while drivers developed for other versions of UNIX systems would
initialize a different structure. This identification can help you determine the
amount of work that is involved in porting an existing device driver from
some other UNIX operating system to the DEC OSF/1 operating system.
Section 2.6 provides information to help you understand the tasks involved in

2-4 Developing a Device Driver

porting from ULTRIX to DEC OSF/| systems.

The host CPU types you select may dictate which host operating system you
can use. For example, VAX-based CPUs do not support the DEC OSF/1
operating system. When you choose a CPU type, ensure that it supports the
chosen operating system.

2.1.1.3 Specifying the Bus or Buses to Which Your Driver Connects

2.1.2

2.1.2.1

You must identify the bus that the device is connected to. Different buses
require different approaches to writing the driver. For example, a VMEbus
device driver writer must know how to allocate the VMEbus address space.
This task is not applicable for drivers that operate on other buses. For
example purposes, the /dev/none driver will be developed for use on the
TURBOchannel bus.

You must know the bus type and CPU architecture when deciding to make
your device driver loadable. For DEC OSF/1, loadable drivers are not
supported on the Alpha AXP architecture. However, you might want to
follow the approach taken by the example drivers in this book and implement
the loadable driver code now in anticipation of future support.

Note that the worksheet provides a space for pseudodevice drivers. A
pseudodevice driver, such as the pty terminal driver, is structured like any
other driver. The difference is that a pseudodevice driver does not operate on
a bus. This book does not specifically address pseudodevice drivers.

Identifying the Standards Used in Writing the Driver

Figure 2-3 and Figure 2-4 show the device driver conventions worksheet for
the /dev/none driver. As the worksheets show:

* You specify a naming scheme

* You choose an approach for writing comments and documentation

Specifying a Naming Scheme

The /dev/none driver uses the name none as the prefix for device driver
interface names. Device driver interfaces written for DEC OSF/1 can use the
following naming conventions:

» A prefix that represents the name of some device. In this example, the
device is called none; therefore, each driver interface begins with that
prefix.

* The name of the interface, for example, open and close. Thus, the
example driver has interface names such as noneopen and
noneclose.

Developing a Device Driver 2~-5

The /dev/none driver uses the name none as the prefix for data structures
internal to the device driver. These structures include the device register
structure and, possibly, a data structure to store driver-specific information.

The /dev/none driver uses the prefix DN for device driver constant names.
The prefix matches the first two characters in the driver name, /dev/none.
These constants can represent values or macros. For example, the constant
DN_SIZE might represent the size of the device register area.

The previously described naming schemes are recommendations, not
requirements. The one naming requirement you must follow concerns the
name of the configure interface, which for the /dev/none driver is
none_configure. This interface is the configuration entry point called
when the driver is dynamically loaded. For the configure interface, the
underscore character (_) must follow the driver’s name. This underscore
character in the name is a requirement of the configuration process for
loadable drivers and is the OSF convention.

Before choosing a naming scheme, you have to make sure that these names
do not conflict with other driver interface and structure names. To help you
determine what names are currently used by the system, run the nm command
on the kernel image file. This image file is usually called /vmunix. If you
follow the third-party device driver configuration model described in Chapter
11, you will want to be particularly careful about choosing a naming scheme
to ensure that it does not conflict with other third-party driver vendors.

If you follow the third-party device driver configuration model, you also need
to choose a naming scheme for specifying device connectivity information in
the following files: system configuration file and the stanza.static file
fragment for static drivers and the stanza.loadable file fragment for
loadable drivers. A naming scheme is discussed along with these files in
Chapter 12. However, a brief discussion here can prepare you for a better
understanding of the naming scheme when you encounter it in Chapter 12.

Third-party driver writers may need to specify bus, controller, and device
information in the previously mentioned files. If you are supporting Digital
devices, you specify valid strings listed in the System Administration guide.
These strings represent the buses, controllers, and devices supported by
Digital.

If you are supporting non-Digital devices, you can select any string other
than those already chosen by Digital to represent the device. However,
without an exclusive naming scheme, your choices could conflict with other
third-party driver vendors. To avoid these conflicts, you can select a string
that includes the vendor and product names and, possibly, the version and
release numbers. This type of naming scheme minimizes the potential for
name conflicts. For example, the driver writers at EasyDriver Incorporated
might specify edgd for an internally developed device.

2-6 Developing a Device Driver

Figure 2-3: Device Driver Conventions Worksheet for /dev/none

DEVICE DRIVER CONVENTIONS WORKSHEET

Describe the naming scheme you are following for

Device driver interfaces:

The prefix for the /dev/none driver is none

Device driver structures:

The prefix for structures internal to the

/dev/none driver is none

Device driver constants:

The naming scheme for device driver constants

is DN (for Device None)

Device connectivity information:

The naming scheme for this information uses the

first two characters of the company name and

characters that represent the product name.

For devices supported by Digital, the nanﬁng scheme

follows that specified by Digital.

Developing a Device Driver 2-7

2.1.2.2 Choosing an Approach for Writing Comments and
Documentation

The /dev/none driver takes two approaches to supplying comments in the
driver code. In the first approach, the /dev/none driver contains no inline
comments. Instead, the following convention is used:

int unit = minor(dev); [

A number appears after a line of code in the /dev/none device driver
example. Following the example, a corresponding number appears that
contains an explanation of the associated line or lines. The device driver
examples in Chapter 4 and Chapter 10 use the first approach to make the
source code easier to read.

In the second approach, the /dev/none device driver supplies appropriate
inline comments. The source code listings in Appendix B use the second
approach.

In addition to providing background information and detailed explanations of
the /dev/none driver, this book also provides information on device driver
concepts, kernel interfaces, data structures, and so forth. Your approach to
writing device driver documentation may be different.

2-8 Developing a Device Driver

Figure 2-4: Device Driver Conventions Worksheet for /dev/none
(Cont.)

DEVICE DRIVER STANDARDS WORKSHEET (Cont.)

Describe the approach to writing
comments in the device driver:

The /dev/none device driver will take two
approaches for supplying comments :
1) The first approach has no inline comments

(source code examples in chapters)

2) The second approach uses inline comments

(source code examples in appendix)

Describe the approach to writing
device driver documentation:

The book that describes /dev/none also provides

information on driver concepts, device driver

interfaces, kernel struétures, and so forth.

Developing a Device Driver 2-9

2.1.3 Specifying Characteristics of the Device

Figure 2-5 and Figure 2-6 show the device characteristics for the none
device associated with the /dev/none driver.

As the worksheets show, you specify the following characteristics associated
with the device:

* Whether the device is capable of block I/0

* Whether the device will support a file system

* Whether the device supports byte stream access
* Actions to be taken on interrupts

* How the device should be reset

* Other device characteristics

2.1.3.1 Specifying Whether the Device Is Capable of Block I/0

If the device is capable of block I/O, then you would write a block device
driver. A block device is one that stores data on its media in a standard way.
For example, most disk drives store data in disk sectors (typically 512 bytes).
Tape drives sometimes store data in a standard size tape record.

Typically, block devices are random access devices (that is, disks) because
the file system does not always perform I/O to sequential disk sectors. Tape
devices are typically sequential access devices and, therefore, not suitable for
using as a block device.

The none device is not capable of handling blocks of data so the No box on
the worksheet is marked.

2-10 Developing a Device Driver

Figure 2-5: Device Characteristics Worksheet for the none
Device

DEVICE CHARACTERISTICS WORKSHEET
Specify the following about the device:

YES N
1. The device is capable of block 1/O —

2. The device will support a file system [II(

3. The device supports byte stream
access PP y |I(|:|

Specify the actions that need to be
taken if the device generates interrupts:

Developing a Device Driver 2-11

2.1.3.2 Specifying Whether the Device Supports a File System

Most block devices can support file systems. If a block device supports a file
system, it must be able to map between file system blocks and the underlying
structure on the device. In DEC OSF/1, this mapping is accomplished
through partition tables.

The none device is not capable of supporting file systems, so the No box on
the worksheet is marked.

2.1.3.3 Specifying Whether the Device Supports Byte Stream Access

Most devices support byte stream access. This access can be viewed as
sequentially accessing data through the device. For example, a sequence of
characters typed at a terminal constitutes a byte stream. Most block devices
can also be accessed in this manner. When a block device is accessed as a
stream of bytes, the access is typically called ‘‘raw’’ access. When accessed
this way, the data on the block device is accessed sequentially without any
underlying structure being placed on the data (for example, disk sectors).

For the none device, the Yes box on the worksheet is marked.

2.1.3.4 Specifying Actions to Take on Interrupts

Use this space to summarize what the driver interrupt interfaces will do when
the device generates an interrupt. For example, a terminal type character
driver’s interrupt service interface (ISI) can receive a character that was typed
on a user’s keyboard. Typically, the ISI must determine the source of the
interrupt, respond to the interrupt (for example, by reading in the data), and
perform the appropriate actions to cause the interrupt to be dismissed.

Some other issues concerning interrupts are:

* Locking out interrupts when performing vulnerable operations
¢ Not locking out interrupts for an extended period of time

* Queueing the data so that handling of it can be interrupted

Because the none device has no underlying physical hardware, it cannot
generate interrupts. Therefore, this part of the worksheet is left blank.

2-12 Developing a Device Driver

Figure 2-6: Device Characteristics Worksheet for the none
Device (Cont.)

DEVICE CHARACTERISTICS WORKSHEET (Cont.)

Specify how the device should be reset:

This characteristic is of no concern to the

/dev/none driver

Use the remainder of the worksheet to
specify any other device characteristics:

Developing a Device Driver 2-13

2.1.3.5 Specifying How to Reset the Device

If the bus that the device controller is connected to supports the reset
function, the device driver must be able to stop all current work and place the
device connected to the controller in a known, quiescent state.

For example purposes, the none device is connected to the TURBOchannel
bus. To keep the example driver simple, the reset function will not be
implemented as part of the /dev/none device driver. Thus, this
characteristic is of no concern to the /dev/none device driver.

2.1.3.6 Specifying Other Device Characteristics

Use this space to identify other characteristics of the device that might
influence how you design your device driver.

2.1.4 Describing Device Usage

Figure 2-7 shows the device usage information for the none device
associated with the /dev/none driver. As the worksheet shows, you gather
the following information about device usage:

* The documentation you have on the device
* The number of instances of this device type that can reside on the system
* The purpose of the device

2-14 Developing a Device Driver

Figure 2-7: Device Usage Worksheet for the none Device

DEVICE USAGE WORKSHEET

List the documentation you have on the device

(the device documentation can help you answer
subsequent questions):

Answer the followiﬁg questions about the
usage of the device:

1. How many of this device type can reside on the system?

The dev/none driver supports four instances of the
none device

2. What will the device be used for?

Not applicable to the none device

Developing a Device Driver 2-15

2.1.41 Listing the Device Documentation

For a real device, you should have on hand the manual for the device that is
supplied by the manufacturer. The none device is a fictitious device;
therefore, this section of the worksheet is left blank.

2.1.4.2 Specifying the Number of Device Types to Reside on the
System ‘

The number of devices that can be supported has a direct effect on the design
of the driver. If only one will be supported, the driver need not worry about
determining which device is being accessed. If a small number (for example,
2 —5) is supported, the driver can use simple data structures and indexing to
keep track of device access. If a greater number is to be supported, the driver
must use more sophisticated methods to keep track of which device is being
accessed.

The /dev/none driver is written to accommodate more than one instance.
It will allocate fixed storage for four instances of the none device.

2.1.4.3 Describing the Purpose of the Device

For this device usage item, enter a short description of the purpose of the
device. For example, the purpose of most disk devices is to provide storage
for user data and files. The purpose of most terminal devices is to provide a
means for interacting with users of the system.

This item is not applicable to the none device because it is a fictitious
device.

2.1.,5 Providing a Description of the Device Registers

Figure 2-8 and Figure 2-9 show the device register information for the
/dev/none driver. As the worksheets show, you gather the following
information about the device registers:

* A description or sketch of the layout of the device registers

The manual supplied with the device would most likely have the
following:

— The layout of the registers and their offset
— How the registers are used

The worksheet shows a structure definition of the device register for the
none device along with a comment as to its function. In previous
versions of DEC OSF/1, device drivers directly accessed the device
registers. With this version of DEC OSF/1, Digital recommends that
device drivers access the device registers by calling the read_io_port
and write io port interfaces. The /dev/none driver now accesses

2-16 Developing a Device Driver

the device registers for the none device by calling these interfaces. See
Section 9.7.1 for more information on read_io port and
write io port.

* A mapping of the device register with the memory address

Figure 2-8: Device Register Worksheet for /dev/none

DEVICE REGISTER WORKSHEET

Describe or sketch the layout of the device
registers. Include a short description
of the purpose of each register:

typedef volatile struct {
/* 32-Dbit read/write CSR/LED register */

int csr;

} none_registers;

Developing a Device Driver 2-17

Figure 2-9: Device Register Worksheet for /dev/none (Cont.)

DEVICE REGISTER WORKSHEET (Cont.)
Specify which memory address the
registers are associated with:

| Device Register 1 [Memory Addressj

csT base address + 0x2000

2-18 Developing a Device Driver

2.1.6 Identifying Support in Writing the Driver

Figure 2-10 shows the support associated with writing the /dev/none
driver.

Figure 2-10: Device Driver Support Worksheet for /dev/none

DEVICE DRIVER SUPPORT WORKSHEET

Specify one of the following
about the device driver:

YE NO
1. There is no driver for this device. -
You are going to write it from scratch.
2. The driver for this device was previously 1 E(
written for an ULTRIX system and the code
is available.
3. The driver for this device was previously [[{
written for a UNIX system and the code
is available.
4. The driver for this device was previously 1 Iﬂ/

written for another operating system
and the code is available.

5. The existing device driver has documentation. (1 l{

If the answer is yes, specify the title

and location of documentation:
Title:
L.ocation:

6. If the source code is available,
specify the location:

Location:

7. ldentify any experts available whose JRS3{IIa&N\ETNI-N
experience you can draw on for: Number, Location:
The device: Colonel Green
The design: Professor Plum

The coding: Colonel Green, Mrs. White
The installation: Lieutenant Lemon, Colonel Green

The debugging: _Professor Plum
The testing: Professor Plum

Developing a Device Driver 2-19

As the worksheet shows, you gather the following information about device
driver support:

Whether you are writing the driver from scratch

Answering this question can help determine the amount of time you need
to spend writing the driver. Most device drivers are written by modifying
an existing device driver that contains similar functionality. However, if
source code for an existing driver is not available, it may take you more
time to develop the driver. The /dev/none driver will be developed
from scratch; therefore, the Yes box on the worksheet is marked.

Whether the driver for the device was written previously for an ULTRIX
system

If the source code is available, you can update the device driver to reflect
the DEC OSF/1 operating system. Section 2.6 provides information to
help you understand the tasks involved in porting from ULTRIX to DEC
OSF/1. In this case, no source code is available so the No box on the
worksheet is marked.

Whether the driver for the device was written previously for a UNIX
system

If the source code is available, you can begin updating the device driver
by identifying areas that are different from DEC OSF/1. Other versions
of UNIX would probably have different data structures and some of the
kernel interfaces would probably behave differently and expect different
arguments. In this case, no source code is available so the No box on the
worksheet is marked.

Whether the driver for the device was written previously for another
operating system

If the source code is available, you must study the differences between
writing a device driver on that operating system and on the DEC OSF/1
operating system. This would probably be more difficult than the
previous two situations. For the /dev/none device driver, the No box
is marked.

Whether the existing driver has documentation

If the existing driver has documentation, specify the title and where it is
located. Look for chapters on data structures and the use of kernel
interfaces. These chapters might help in the porting task. For the
/dev/none device driver, the No box is marked.

Location of the existing driver source code

This information is important. It allows systems engineers added to the
project to locate the source code quickly. This item is left blank for the
/dev/none device driver.

2-20 Developing a Device Driver

» Experts available
Writing complex device drivers is always easier when you have access
not only to documentation but also to other device driver experts. The
worksheet shows the experts who helped in writing the /dev/none
device driver. Identifying your experts will make it easier for any future
driver writers who work on your driver projects.

2.2 Designing the Device Driver

2.2.1

After you gather information about the host system and the device, your next
task is to design the device driver. You need to:

* Specify the type of device driver
* Identify device driver entry points

The following sections describe how you would fill out the worksheets
provided for each of the above tasks, using the /dev/none device driver as
an example.

Specifying the Device Driver Type

Figure 2-11 shows the types of device drivers you can write on a DEC OSF/1
operating system. As the worksheet shows, you identify your driver as one
of the following:

* Block

¢ Character

* Block and character
* Network

When using the buffer cache to perform I/O on blocks of data, you use block
device drivers. Otherwise, you use character device drivers. Most device
drivers are character drivers. Some device drivers are both character and
block drivers. The network driver is another type of device driver. This book
does not discuss network device drivers. The Character box is marked for
the /dev/none device driver because it has no requirements to handle
blocks of data.

The worksheet also shows that these types of device drivers can be both
loadable and static. When a driver is both loadable and static, the system
manager decides at installation time whether to configure the driver as
loadable or static. By designing and writing the driver to be both loadable
and static, you offer customers maximum flexibility. Even though loadable
drivers are not currently supported on Alpha AXP systems, you may want to
design and implement the loadable driver-specific code.

Developing a Device Driver 2-21

The Loadable and Static boxes are marked for the /dev/none device
driver.

Figure 2-11: Device Driver Type Worksheet for /dev/none

DEVICE DRIVER TYPE WORKSHEET

Specify the type of driver:

Character EK

Block 3
1
—

Character and Block

Loadable

o
Static Iﬂ

2-22 Developing a Device Driver

2.2.2 Identifying Device Driver Entry Points

Figure 2-12 shows the device driver entry points for the /dev/none device
driver. The worksheet is divided into parts because the possible entry points
vary depending on whether the driver is a block, character, or network driver.
Because the /dev/none driver is a character driver, the worksheet shows
the following entry points:

* noneprobe

This interface will determine if the device exists.
* nonecattach

This interface performs initialization for the none controller.
* none_configure

This interface is the configuration entry point called when the driver is
dynamically loaded. For the configure interface, the underscore character
(L) must follow the driver’s name. This underscore character in the name
is a requirement of the configuration process for loadable drivers and is
the OSF convention.

* noneopen
This interface will turn on the open flag.
* noneclose
This interface will turn off the open flag.
* noneread
This interface will return an EOF (end-of-file).
* nonewrite
This interface will add to the count the number of characters written.
* noneioctl
This interface will handle the following special requests:
— Reinitialize the count to zero
— Return the current count
* noneintr
This interface is a stub for future development
Chapter 3 shows you how to set up the interfaces associated with character

and block device drivers. Chapter 4 explains how the above interfaces are
implemented for the /dev/none driver.

You may want to describe the goals of the interfaces for your-driver in a
more formal device driver development specification. Consider adding this
specification along with the worksheets to the device driver project binder.

Developing a Device Driver 2~23

Figure 2-12: Device Driver Entry Points Worksheet for /dev/none

DEVICE DRIVER ENTRY POINTS WORKSHEET
Block driver entry points:

Entry point: Name:

probe
slave
cattach
dattach
configure
open
close
strategy
ioctl
interrupt
psize
dump

Character driver entry points:

Entry point: Name:

probe noneprobe
slave

cattach nonecattach (stub)
dattach

configure none_configure
open noneopen

close noneclose
strategy

ioctl noneioctl

stop

reset

read noneread

write nonewrite
mmap

interrupt noneintr (stub)

2-24 Developing a Device Driver

2.3 Determining the Structure Allocation Technique

Another design consideration is the technique you plan to use for allocating
data structures. Generally, there are two techniques you can follow: dynamic
allocation and static allocation. Dynamic allocation is the recommended
method; however, static allocation is discussed in this book because many
existing drivers allocate their data structures statically. Table 2-1 lists the
structure allocation techniques discussed in this book along with some
guidelines to help you choose the best method for your device drivers.
Sections that provide examples of each follow the table.

Table 2-1: Structure Allocation Technique Guidelines

Technique Guidelines for Using

Static Use this technique if you do not plan to
allocation implement loadable device drivers now or
model 1 in the future.
Static Use this technique if you:
allocation . . .
model 2 * Plan to implement loadable drivers now or in the future
* Know that the maximum number of devices is five or less
* Know that the driver does not use numerous data structures
Dynamic Use this technique if you:
allocation . . -
* Plan to implement loadable drivers now or in the future
¢ Know that the maximum number of devices is greater than five
¢ Know that the driver uses numerous data structures
2.3.1 Static Allocation Technique Model 1

The static allocation technique model 1 lets you statically allocate data
structures by using the compile time variable. The following code fragment
uses the none_softc structure associated with the /dev/none device
driver to illustrate the static allocation technique model 1:

.
/***

* softc structure used to compare static and *

* dynamic allocation techniques *
************************-k**************************/

Developing a Device Driver 2—25

struct none_softc {
int sc_openf; .
int sc_count;
int sc_state;

OQOIEI

/**

* Declarations using the static technique * 2]
**/

struct controller *noneinfo[NNONE];
struct none_softc none softc[NNONE];

[1] These lines define a structure called none_softc, which is used to
share data between the different /dev/none device driver interfaces.
The members of this data structure are not important to the discussion of
the static allocation technique model 1.

[2] These declarations appear in the driver source none.c. The declarations
show that the main characteristic of this structure allocation technique is
the use of the compile time variable to size the structure arrays. Thus, in
the example, the array of pointers to controller structures and the
none_softc structure array use the compile time variable NNONE.
Note that in the none _softc structure array there is one structure for
each instance of the device as specified in the system configuration file.

The config program defines the compile time variable for statically
configured drivers and stores it in the device driver header file. In the
example, the device driver header file created by config would contain
the following entry if there were four devices on the system:

#define NNONE 4

Section 3.1.1 provides additional details about the device driver header
file and the compile time variable. The major drawback to statically
allocating the data structures is that the number of configured devices is
not available when loadable drivers are built. If you want your drivers to
be both static and loadable, you need to dynamically allocate the data
structures or statically allocate enough data structures to match the
maximum configuration.

2.3.2 Static Allocation Technique Model 2

The static allocation technique model 2 lets you statically allocate enough
data structures to accommodate the maximum configuration. To make access
to the data structures as easy as possible, you statically declare an array of

2--26 Developing a Device Driver

pointers to the data structures. The only difference between the static
allocation techniques is that static allocation technique model 1 uses the
compile time variable created by config and static allocation technique
model 2 uses a constant that defines the maximum number of devices.

The following code fragment illustrates the static allocation model 2
technique:
/***

* structure declarations to illustrate static *

* allocation technique model 2 *
**'k/

#define MAX NONE 4 /* Define maximum number of */
/* devices */ [1]

/**

* Use the constant to size the arrays * [2]
**/

struct controller *noneinfo[MAX NONE];
struct none_softc none softc[MAX NONE];

[] If you knew that your device driver supported at most four instances of
some device (for example, four controllers), you would first declare a
constant to represent this maxium number. Thus, the example defines a
MAX NONE constant and assigns it the maximum value 4.

You would probably want to declare this constant in a name_data.c
file. See Section 3.1.5 for a description of the name_data.c file.

[2] The next two lines use the MAX NONE constant to size the respective
arrays. In the first line, MAX NONE sizes the array of pointers to
controller structures, and in the second line it sizes an array of
none_softc structures.

The disadvantage of the static allocation model 2 technique is that, if you
have only one instance of the device on the system, you are wasting three of
the four declared none_softc data structures. If the number of these data
structures does not exceed five and if they contain no more than a reasonable
number of data members, the static allocation model 2 technique technique is
acceptable.

2.3.3 Dynamic Allocation Technique

The previously described static allocation technique model 2 is suitable for
device drivers that support a small number of devices (five or less). Some
device drivers, however, support more than five devices and declare a

Developing a Device Driver 2-27

significant number of data structures that might contain a large amount of
data. For example, the Digital Storage Architecture (DSA) subsystem can
support up to 256 disks and at least 16 controllers. Clearly, it would not be
desirable to always allocate all the required data structures because for most
configurations there are not nearly that many devices present. Statically
allocating the maximum number of data structures would waste too much
space. The DSA subsystem and systems like it are good examples of where
dynamic configuration of the required data structures would be beneficial.

In this model of dynamically allocating the data structures, you need to:
* Determine the maximum configuration

» Statically declare an array of pointers to the data structures

¢ Allocate the data structures

* Access the members of the dynamically allocated data structures

* Free up the dynamically allocated memory

2.3.3.1 Determining the Maximum Configuration

The first task is to determine the maximum number of instances of the device
that can exist on your system. In the example, suppose that there can be a
maximum of 16 none devices. Thus, there is one driver that handles, at
most, 16 instances of the device. In this case, you could define a constant
similar to the following in the name_data. c file:

#define MAX NONE 16

2.3.3.2 Statically Declaring an Array of Pointers to the Data Structures

Your next task is to statically declare an array of pointers to the data
structures that will be used by the device driver. The example declares an
array of pointers to controller and none_softc data structures as
follows:

struct controller *noneinfo[MAX NONE];
struct none_softc *none_softc[MAX NONE];

These declarations are pointers to the data structures, not the data structures
themselves. Although this approach is not required, it is chosen for the
example because having the static array of pointers makes access to the data
structures easy.

2.3.3.3 Allocating the Data Structures

The next task is to allocate the data structures in the Autoconfiguration
Support Section of the device driver. This section is where you implement
the driver’s probe, attach, and slave interfaces. The following

2-28 Developing a Device Driver

example shows how to allocate the data structures with the probe interface.

The driver’s probe interface is called for each instance of the device that is
actually present on the system. This makes the probe interface one place to
dynamically allocate the data structures, as in the following example:

noneprobe (unit, ctlr)
caddr_t unit; /* Unit number of device */ [l
struct controller *ctlr;

{
if (unit > MAX NONE) /* Is unit greater than 16?7 */ 2
return(0);

.
/***

* Allocate the softc structure associated *

* with this instance * [3]
***/

if (none_softc[unit]} == (struct none softc *)NULL) ({
none_softcf[unit] = kalloc(sizeof(struct none_softc));
if (none_softc[unit] == (struct none_softc *)NULL) {
return(0);

}
}

return(sizeof(struct none_reg));

[1] The device driver has been passed the unit number as a parameter to the
noneprobe interface. This unit parameter tells you which instance of
the device you are referring to.

[2] This if statement determines if there are more than 16 controllers. If
there are, noneprobe returns the value zero (0) to indicate an error.
Otherwise, it allocates the data structures.

38 Now you allocate the data structures associated with this instance. The
first 1 f statement is a test to make sure that the noneprobe interface
has not already been called for this unit.

You then dynamically allocate the memory to accommodate the
none_softc data structures by calling the kalloc interface and
passing to it the number of bytes to allocate.

The second if statement checks the return value from kalloc. The
return value is NULL if there is no memory available to be dynamically
allocated for this instance of the driver. The driver will not be
operational without its data structures. In this case, return the value zero
(0) to indicate that the driver’s probe interface failed.

Developing a Device Driver 2-29

Structures

2.3.3.4 Accessing the Members of the Dynamically Allocated Data

After you dynamically allocate the data structures in the probe interface,
you need to correctly access them. When using the compile time variable to

size the arrays, the declaration looked like this:

struct none_softc none_softc[NNONE];

The declaration for dynamically allocating the data structures looks like this:

struct none_softc *none_softc[MAX NONE];

The difference is that one declares the actual data structures while the other
declares pointers to an array of the data structures. Thus, to access the data
structures, you must reference the data structures as an array of pointers:

/***

* Accessing statically allocated data
* structures

*
*

***/

struct controller *ctlr =
struct none_softc *sc =

noneinfo[unit];
&none_softc[unit];

/***

* Accessing dynamically allocated data
* structures

*
*

***/

struct controller *ctlr = /*
/*
none_softc[unit]; /*

/*

noneinfofunit];

struct none_softc *sc =

No change from */

static allocation */
Different from static */
allocation */

The reference to the none_softc structures uses the address operator in the
static case. In the dynamic case, the address operator is not used.

2.3.3.5 Freeing up the Dynamically Allocated Memory

Loadable drivers have a ctlr unattach or a dev_unattach interface.
When the driver is unloaded, these interfaces are called for each instance of
the controller or device present on the system. When these interfaces are
called, they should free up the dynamically allocated memory. For the
/dev/none device driver, the ctlr unattach interface frees up

2-30 Developing a Device Driver

memory as follows:

.
if (unit < MAX NONE) {
/***

* Free up the dynamically allocated memory * [f]
********************************"k*‘k************/

if (none softc[unit] != (struct none softc *)NULL) {

kfree(none_softc[unit], sizeof(struct none_softc));
/***

* Set the array element to NULL * 2]

***/

none_softcfunit] = (struct none_softc *)NULL;

This example of a ct1lr unattach interface uses unit to refer to the
specific instance of the driver /dev/none. The if statement is
included as a safety check. Note that the kfree interface is used to free
the memory previously allocated in a call to kalloc.

[2] After the dynamically allocated memory has been freed, the following
line sets the none_softc array to NULL. This ensures that there will
be no dangling references to the memory.

2.4 Understanding CPU Issues That Influence Device
Driver Design

Whenever possible, you should design a device driver so that it can
accommodate peripheral devices that operate on more then one CPU
architecture. You need to consider the following issues to make your drivers
portable across CPU architectures. The discussion centers around Alpha
AXP and MIPS CPU platforms, but the topics may be applicable to other
CPU architectures:

+ Control status register (CSR) access issues

* Input/output (I/O) copy operation issues

e Direct memory access (DMA) operation issues
* Memory mapping issues

* 64-bit versus 32-bit issues

e Loadable driver issues

Developing a Device Driver 2—31

¢ Memory barriers

2.4.1 Control Status Register Issues

Many device drivers based on UNIX access a device’s control status register
(CSR) addresses directly through a device register structure. This method
involves declaring a device register structure that describes the device’s
characteristics, which include a device’s control status register. After
declaring the device register structure, the driver accesses the device’s CSR
addresses through the member that maps to it. In the following code
fragment, the device driver accesses the none device’s CSR address through
the status member of the device register structure:

/***

* Device register structure *
***/
typedef volatile struct {
int status;
int error;
}some registers;
o
.
.

/***
* noneprobe interface *

***/
noneprobe(vbaddr, ctlr)
caddr_t vbaddr; /* System virtual address for */
/* the none device*/
struct controller *ctlr; /* controller structure */
/* for this unit */
/***

* Initialize pointer to none_registers *
* structure *
***/
register some_registers *reg = (struct some_registers *) vbaddr;
.
.
.

/***

* If device error, return 0 *
***/

if (reg->status & SOME_ERROR)

{
return(0);
}
/***
* Otherwise, initialize the csr *

***/
reg->status = 0;

There are some CPU architectures that do not allow you to access the device
CSR addresses directly. If you want to write your device driver to operate on

2-32 Developing a Device Driver

both types of CPU architectures, you can write one device driver with the
appropriate conditional compilation statements. You can also avoid the
potentially confusing proliferation of conditional compilation statements by
using the CSR 1/0 access kernel interfaces provided by DEC OSF/I to read
from and write to the device’s CSR addresses. Because the CSR /O access
interfaces are designed to be CPU hardware independent, their use not only
simplifies the readability of the driver, but also makes the driver more
portable across different CPU architectures and different CPU types within
the same architecture. Section 9.7.1 shows you how to use the CSR I/O
access kernel interfaces to read from and write to the device’s CSR
addresses.

2.4.2 Input/Output Copy Operation Issues

Input/output (I/O) copy operations can differ markedly from one device
driver to another because of the differences in CPU architectures. Using the
current techniques for performing I/O copy operations, you would probably
not be able to write one device driver that operates on more than one CPU
architecture or more than one CPU type within the same architecture. To
overcome this lack of portability when performing I/O copy operations, DEC
OSF/1 provides generic kernel interfaces to the system-level interfaces
required by device drivers to perform an I/O copy operation. Because these
I/O copy interfaces are designed to be CPU hardware independent, their use
makes the driver more portable across different CPU architectures and more
than one CPU type within the same architecture. Section 9.7.2 shows you
how to call these I/O copy operation interfaces.

2.4.3 Direct Memory Access Operation Issues

Direct memory access (DMA) operations can differ markedly from one
device driver to another because of the DMA hardware support features for
buses on Alpha AXP systems and because of the diversity of the buses
themselves. Using the current techniques for performing DMA, you would
probably not be able to write one device driver that operates on more than
one CPU architecture or more than one CPU type within the same
architecture. To overcome this lack of portability when it comes to
performing DMA operations, DEC OSF/1 provides generic kernel interfaces
to the system-level interfaces required by device drivers to perform a DMA
operation. These generic interfaces are typically called ‘‘mapping interfaces.’
This is because their historical background is to acquire the hardware and
software resources needed to map contiguous I/O bus addresses and accesses
into discontiguous system memory addresses and accesses. Because these
interfaces are designed to be CPU hardware independent, their use makes the
driver more portable across different CPU architectures and more than one
CPU type within the same architecture.

E)

Deveioping a Device Driver 2-33

Section 9.8 shows you how to use these mapping interfaces to achieve device
driver portability across different CPU architectures.

244 Memory Mapping Issues

Many device drivers based on UNIX provide a memory map section to
handle applications that make use of the mmap system call. An application
calls mmap to map a character device’s memory into user address space.
Some CPU architectures, including some Alpha AXP CPUs, do not support
an application’s use of the mmap system call. If your device driver operates
only on CPUs that support the mmap feature, you can continue writing a
memory map section. If, however, you want the device driver to operate on
CPUs that do not support the mmap feature, you should design the device
driver so that it uses something other than a memory map section.

2.4.5 64-Bit Versus 32-Bit Issues

This section describes issues related to declaring data types for 32-bit and
64-bit CPU architectures. By paying careful attention to data types, you can
make your device drivers work on both 32-bit and 64-bit systems. Table 2-2
lists the C compiler data types and bit sizes for the MIPS 32-bit and the
Alpha AXP 64-bit CPUs.

Table 2-2: C Compiler Data Types and Bit Sizes

C Type MIPS 32-Bit Data Size Alpha AXP 64-Bit Data Size
short 16 bits 16 bits

int 32 bits 32 bits

long 32 bits 64 bits

* (pointer) 32 bits 64 bits

long long 64 bits 64 bits

char 8 bits 8 bits

The following sections describe some common declaration situations:
. De’claring 32-bit variables

* Declaring 32-bit and 64-bit variables

* Declaring arguments to C interfaces (functions)

* Declaring register variables

2-34 Developing a Device Driver

¢ Performing bit operations on constants
* Using NULL and zero (0) values

* Modifying type char

* Declaring bit fields

* Using printf formats

* Using mb and wbflush

* Using the compiler keyword volatile

Note

The /usr/sys/include/io/common/iotypes.h file
defines constants used for 64-bit conversions. See Writing
Device Drivers, Volume 2: Reference for a description of the
contents of this file.

2.4.5.1 Declaring 32-Bit Variables

Declare any variable that you want to be 32 bits in size as type int, not type
long. The size of variables declared as type int is 32 bits on both the 32-
bit MIPS systems and the 64-bit Alpha AXP systems.

Look at any variables declared as type int in your existing device drivers to
determine if they hold an address. On Alpha AXP systems, sizeof
(int) is not equal to sizeof (char *).

In your existing device drivers, also look at any variable declared as type
long. If it must be 32 bits in size, you have to change the variable
declaration to type int.

2.45.2 Declaring 32-Bit and 64-Bit Variables

If a variable should be 32 bits in size on a 32-bit MIPS system and 64 bits in
size on a 64-bit Alpha AXP system, declare it as type long.

2.4.5.3 Declaring Arguments to C Functions

Watch out for arguments to C interfaces (functions) where the argument is
not explicitly declared and typed. You should explicitly declare the formal
parameters to C interfaces; otherwise, their sizes may not match up with the
calling program. The default size is type int, which truncates 64-bit
addresses.

Developing a Device Driver 2-35

2.4.5.4 Declaring Register Variables

When you declare variables with the register keyword, the compiler
defaults its size to that of type int. For example:

register somevariable;

Remember that these variable declarations also default to type int. For
example:

unsigned somevariable;

Thus, if you want the variable to be 32 bits in size on both the 32-bit MIPS
and 64-bit Alpha AXP systems, the above declarations are correct. However,
if 'you want the variable to be 32 bits in size on a 32-bit MIPS system and 64
bits in size on a 64-bit Alpha AXP system, declare the variables explicitly,
using the type long.

2.4.5.5 Performing Bit Operations on Constants

By default, constants are 32-bit quantities. When you perform shift or bit
operations on constants, the compiler gives 32-bit results. If you want a 64-
bit result, you must follow the constant with an L. Otherwise, you get a 32-
bit result. For example, the following is a left shift operation that uses the L:

long foo, bar;
foo = 1L << bar;

2.4.5.6 Using NULL and Zero Values

Using the value zero (0) where you should use the value NULL means that
you get a 32-bit constant. On Alpha AXP systems, this usage could mean
the value zero (0) in the low 32 bits and indeterminate bit values in the high
32 bits. Using NULL from the types.h file allows you to obtain the
correct value for both the MIPS and Alpha AXP CPUs.

2.4.5.7 Modifying Type char

Modifying a variable declared as type char is not atomic on Alpha AXP
systems. You will get a load of 32 or 64 bits and then byte operations to
extract, mask, and shift the byte, followed by a store of 32 or 64 bits.

2.4.5.8 Declaring Bit Fields

Bit fields declared as type int on Alpha AXP systems generate a load/store
of longword (32 bits). Bit fields declared as type Long on Alpha AXP
systems generate a load/store of quadword (64 bits).

2-36 Developing a Device Driver

2.4.5.9 Using printf Formats

The printf formats %d and %x will print 32 bits of data. To obtain 64
bits of data, use %Id and %lx.

2.4.5.10 Using mb and wbflush

Device drivers used the wbf 1ush interface in ULTRIX on MIPS CPUs.
You can continue to call wbflush because in DEC OSF/1 it is aliased to
the mb interface for Alpha AXP CPUs. The remainder of this section
discusses when to call the mb interface on Alpha AXP CPUs.

In most situations that would require a cache flush on other CPU
architectures, call the mb (memory barrier) interface on DEC OSF/1 Alpha
AXP. The reason is not that mb is equivalent to a cache flush (as it is not).
Rather, a common reason for doing a cache flush is to make data written by
the host CPU available in main memory for access by the DMA device or to
access from the host CPU data that was put in main memory by a DMA
device. In each case, on an Alpha AXP CPU you should synchronize with
that event by using a memory barrier.

A call to mb is occasionally needed even where a call to wbflush was not
needed. In general, a memory barrier causes loads/stores to be serialized (not
out-of-order), empties memory pipelines and write buffers, and assures that
the data cache is coherent.

You should use the mb interface to synchronize DMA buffers. Use it before
the host releases the buffer to the device and before the host accesses a buffer
filled by the device.

Alpha AXP CPUs do not guarantee to preserve write ordering, so memory
barriers are required between multiple writes to I/O registers where order is
important. The same is also true for read ordering.

Use the memory barrier to prevent writes from being collapsed in the write
buffer, that is, to prevent bytes, shorts, and ints from being merged into one
64-bit write.

Alpha AXP CPUs require that data caches be transparent. Because there is no
way to explicitly flush the data cache on an Alpha AXP platform, you need
not call mb before or after. The following code fragment illustrates the use
of a memory barrier:

bcopy (data, DMA buffer, nbytes);
mb();

device->csr = GO;

mb();

Developing a Device Driver 2-37

Another example is presented in the following code fragment:

device_intr()

{
mb();
bcopy (DMA buffer, data, nbytes);
/* If we need to update a device register, do: */
mb () ;
device->csr = DONE;
mb();
}

Another way to look at this issue is to recognize that Alpha AXP CPUs
maintain cache coherency for you. However, Alpha AXP CPUs are free to
do the cache coherency in any manner and time. The events that cause you
to want to read buffers, or the events you want to trigger to release a buffer
you have written, are not guaranteed to occur at a time consistent with when
the hardware maintains cache coherency. You need the memory barrier to
achieve this synchronization.

2.4.5.11 Using the Compiler Keyword volatile

The volatile keyword prevents compiler optimizations from being
performed on data structures and variables; such actions could result in
unexpected behavior. The following example shows the use of the
volatile keyword on a device register structure:
typedef volatile struct {

unsigned adder;

unsigned padl;

unsigned data;

unsigned pad2;

unsigned csr;

unsigned pad3; -

unsigned test;

unsigned pad4;
} CB_REGISTERS;

The following variables or data structures should be declared as volatile by
device drivers:

* Any variable or data structure that can be changed by a controller or
processor other than the system CPU

* Variables that correspond to hardware device registers
* Any variable or data structure shared with a controller or coprocessor

2-38 Developing a Device Driver

2.4.6

2.4.7

The purpose of using the volatile keyword on the example data structure
is to prevent compiler optimizations from being performed on it; such actions
could result in unexpected behavior.

Loadable Driver Issues

Although some CPUs do not support loadable drivers, you can implement
device drivers that are both loadable and static. In fact, you might want to
implement the loadable sections of the device driver now in anticipation that
the CPU will eventually support loadable drivers. Chapter 10 shows how to
implement a character device driver that is both loadable and static. This
driver is implemented in such a way that the differences between the loadable
and static versions of the driver are identified at run time and not at compile
time.

Memory Barriers

The Alpha AXP architecture, unlike traditional CPU architectures, does not
guarantee read/write ordering. That is, the memory subsystem is free to
complete read and write operations in any order that is optimal, without
regard for the order in which they were issued. Read/write ordering is not
the same as cache coherency, which is handled separately and is not an issue.
The Alpha AXP architecture also contains a write buffer (as do many high-
performance RISC CPUs, including the MIPS R3000). This write buffer can
coalesce multiple writes to identical or adjacent addresses into a single write,
effectively losing earlier write requests. Similarly, multiple reads to the same
identical or adjacent addresses can be coalesced into a single read.

This coalescing has implications for multiprocessor systems, as well as
systems with off-board I/O or DMA engines that can read or modify memory
asynchronously or that can require multiple writes to actually issue multiple
data items. The mb (memory barrier) interface guarantees ordering of
operations. The mb interface is derived from the MB instruction, which is
described in the Alpha Architecture Reference Manual.

The mb interface is a superset of the wbflush interface used on MIPS
CPUs. For compatibility, woflush is aliased to mb in DEC OSF/1 Alpha
AXP.

You call mb in a device driver under the following circumstances:
* To force a barrier between load/store operations

* After the CPU has prepared a data buffer in memory and before the
device driver tries to perform a DMA out of the buffer

» Before attempting to read any device CSRs after taking a device interrupt

e Between writes

Developing a Device Driver 2—39

Each of these is briefly discussed in the following sections.

Note

Device drivers and the DEC OSF/1 operating system are the
primary users of the mb interface. However, some user
programs, such as a graphics program that directly maps the
frame buffer and manipulates registers, might need to call mb.
The DEC OSF/1 operating system does not provide a C library
interface for mb. User programs that require use of mb should
use the following asm construct:

#include <c_asm.h>

asm ("m.b") ;

2.4.7.1 Forcing a Barrier Between Load/Store Operations

You can call the mb interface to force a barrier between load/store operations.
This call ensures that all previous load/store operations access memory or I/O
space before any subsequent load/store operations. The following call to mb
ensures that the first register is physically written before the load attempts to
read the second register. The call assumes that device is an I/O handle that
you can use to reference a device register located in bus address space (either
I/O space or memory space). You can perform standard C mathematical
operations on the I/O handle. For example, this code fragment adds the I/O
handle and general register 1 and general register 2 in the calls to
write_io port and read io_port.

#define csr 0 /* Command/Status register */
#define regl 8 /* General register 1 */
#define reg2 16 /* General register 2 */

io_handle_t device;

write_io port(device + regl, 8, 0, value); [l

mb (); @

next value = read io port(device + reg2, 8, 0); [3

[1] Writes the first value to general register 1 by calling the
write io_ port interface. In previous versions of this book, this code
fragment directly accessed the device reglsters The code fragment now
follows the recommendation of accessing the device registers by calling

2-40 Developing a Device Driver

write_io_port. See Section 9.7.1.2 for a discussion of
write_io port.

[2] Calls the mb interface to ensure that the write of the value is completed.

[8] Reads the new value from general register 2 by calling the
read_io_port interface. In previous versions of this book, this code
fragment directly accessed the device registers. The code fragment now
follows the recommendation of accessing the device registers by calling
the read_io_port interface. See Section 9.7.1.1 for a discussion of
read_io_port.

2.4.7.2 After the CPU Has Prepared a Data Buffer in Memory

You call the mb interface after the CPU has prepared a data buffer in memory
and before the device driver tries to perform a DMA out of the buffer. You
also call mb in device drivers that perform a DMA into memory and before
using the data in the DMA buffer. The following calls to mb ensure that data
is available (out of memory pipelines/write buffers) and that the data cache is
coherent. The call assumes that device is an I/O handle that you can use
to reference a device register located in bus address space (either I/O space or
memory space). You can perform standard C mathematical operations on the
I/O handle. For example, this code fragment adds the I/O handle and the
command/status register in the call to read_io_port.

#define csr 0 /* Command/Status register */
tdefine regl 8 /* General register 1 */
#define reg2 16 /* General register 2 */

io_handle_t device;

bcopy (data, dma_buf); [l
mb (); [2
write io_port(device + csr, 8, 0, START DMA); [3

/* or */ (4

if (read_ic_port(device + csr, 8, 0) | DMA DONE) {
mb ();
bcopy (dma_buf, data);

[1] Writes the data into the DMA buffer.

Developing a Device Driver 2-41

[2] Calls the mb interface to ensure that the write of the data is completed.
[8] Issues the start command to the device.

[4] This sequence of code presents another way to accomplish the same
thing. In previous versions of this book, this code fragment directly
accessed the device registers. The code fragment now follows the
recommendation of accessing the device registers by calling the
read io_port interface. See Section 9.7.1.1 for a discussion of
read_io_port.

If the DMA is finished:
— Calls the mb interface to ensure that the buffer is correct
— Gets the data from the DMA buffer

2.4.7.3 Before Attempting to Read Any Device CSRs

You call the mb interface before attempting to read any device CSRs after
taking a device interrupt. The call assumes that device is an I/O handle
that you can use to reference a device register located in bus address space
(either I/O space or memory space). You can perform standard C
mathematical operations on the I/O handle. For example, this code fragment
adds the I/O handle and the command/status register in the call to
read_io_port.

#define csr 0 /* Command/Status register */
#define regl 8 /* General register 1 */
#define reg2 16 /* General register 2 */

io_handle_t device;

device_intr()

{
mb(); [:
stat = read io port(device + csr, 8, 0); 2
/* or */ 8
mb();
bcopy (dma_buf, data);
}

[1] Calls the mb interface to ensure that the device CSR write completes.

2-42 Developing a Device Driver

[2 Reads the status from the device. In previous versions of this book, this
code fragment directly accessed the device registers. The code fragment
now follows the recommendation of accessing the device registers by
calling the read_io_port interface. See Section 9.7.1.1 for a
discussion of read_io_port.

[8] This sequence of code presents another way to accomplish the same
thing. It calls the mb interface to ensure that the buffer is correct. It then
gets the data from the DMA buffer by calling the bcopy interface.

Note

DEC OSF/1 on Alpha AXP provides a memory barrier in the
interrupt stream before calling any device interrupt service
interfaces. Thus, a call to mb is not strictly necessary in the
device interrupt case. For performance reasons in the device
interrupt case, you can omit the call to mb.

2.4.7.4 Between Writes

You call the mb interface between writes if you do not want a write buffer to
collapse the writes (merge bytes/shorts/ints/quads or reorder). The call
assumes that device is an I/O handle that you can use to reference a device
register located in bus address space (either I/O space or memory space).
You can perform standard C mathematical operations on the I/O handle. For
example, this code fragment adds the I/O handle and general register 1 and

" general register 2 in the calls to write_io_port.

.

#define csr 0 /* Command/Status register */
#define regl 8 /* General register 1 */
#define reg2 16 /* General register 2 */

io_handle_t device;
*ptr = value; [l
mb (); B2
*(ptr+l) = value2; [

/* or */ [

write_io port(device + regl, 8, 0, value);

Developing a Device Driver 2—-43

mb ();
write_io port(device + reg2, 8, 0, value2);

Writes the first location.
Calls the mb interface to force a write out of the write buffer.

Writes the second location.

B @ N =

This sequence of code illustrates an example more specifically tailored to
device drivers. Note that this use of mb is exactly equivalent to
wbflush.

In previous versions of this book, this code fragment directly accessed the
device registers. The code fragment now follows the recommendation of
accessing the device registers by calling the write_io_port interface.
See Section 9.7.1.2 for a discussion of write io_port. This
sequence:

~ Writes the first location by calling write io_ port.
— Calls mb to force a write out of the write buffer

— Writes the second location by calling write io port a second
time.

Note

The Alpha Architecture Reference Manual (1992 edition) has a
technical error in the description of the MB instruction. It
specifies that MB is needed only on multiprocessor systems. This
statement is not accurate. The MB instruction must be used in
any system to guarantee correctly ordered access to I/0O registers
or memory that can be accessed via off-board DMA. All such
off-board I/O and DMA engines are considered ‘processors’ in
the Alpha AXP’s definition of multiprocessor.

2.5 Creating a Device Driver Development and Kitting
Environment

When you are ready to write your driver, you will probably want to design a
logical directory structure to hold the different files associated with the
driver. Chapter 11 discusses the device driver configuration models and
provides examples of driver development environments suitable for the
third-party and traditional device driver configuration models.

2-44 Developing a Device Driver

2.6 Porting ULTRIX Device Drivers to the DEC OSF/1
Operating System

This section discusses the tasks you need to perform when porting device
drivers from the ULTRIX operating system (running on Digital hardware) to
the DEC OSF/1 operating system (also running on Digital hardware). The
section does not discuss how to port drivers running on other UNIX
operating systems, such as System V, or running on other hardware
platforms, such as Sun Microsystems. Specifically, you need to:

* Write test suites

* Check header files

* Review device driver configuration
¢ Check driver interfaces

¢ Check kernel interfaces

¢ Check data structures

These tasks are discussed in the following sections.

2.6.1 Writing Test Suites

Porting a device driver requires that you understand the hardware device and
the associated driver you want to port. One way to learn about the hardware
device and its associated driver is to run a test suite, if it exists, on the
machine and the operating system you are porting from (the source machine
and the source operating system). If the test suite does not exist, you need to
write a full test suite for that device on the source machine and the source
operating system. For example, if you port a device driver written for a
Digital CPU running the ULTRIX operating system, write the full test suite
on that Digital CPU.

Write the test suite so that only minimal changes are necessary when you
move it to the Digital CPU running the DEC OSF/1 operating system you are
porting to (the target machine and the target operating system). The test suite
represents a cross section of your users, and they should not have to modify
their applications to work with the ported driver. You need to have both the
source machine and source operating system and the target machine and
target operating system on a network or make them accessible through a
common interface, such as the Small Computer System Interface (SCSI).

After writing the test suite on the source machine, move the driver and the
test suite to the target machine. Move only the .c and the .h files that were
created for the driver. Do not copy any header or binary executable files
because these files on the source machine will probably not be compatible on
the target machine.

Developing a Device Driver 2-45

2.6.2 Checking Header Files

Check the header files in the driver you want to port with those in the DEC
OSF/1 device drivers. Section 3.1 provides information on the header files
used in DEC OSF/1, including those header files related to loadable device
drivers. Writing Device Drivers, Volume 2: Reference provides reference
(man) page-style descriptions of the header files most frequently used by
DEC OSF/1 device drivers.

The following example summarizes the differences in the way header files are
included in device drivers on ULTRIX and DEC OSF/1 systems:

/* Header Files Included in ULTRIX */ [
#include "../h/types.h"

/* Header Files Included in DEC OSF/1 */ [l
#include <sys/types.h>

[This example shows that drivers written for DEC OSF/1 use left (<) and
right (>) angle brackets, instead of the begin (") and end (") quotes used
in ULTRIX pathnames. Note also that the location of the file has
changed for DEC OSF/1.

2.6.3 Reviewing Device Driver Configuration

Device driver configuration on ULTRIX systems follows what this book
refers to as the traditional model. The DEC OSF/1 operating system
supports both the traditional model and the third-party device driver
configuration model, as described in Chapter 11. Chapter 13 gives examples
on configuring drivers by using both the third-party and the traditional
models.

2.6.4 Checking Driver Interfaces

You need to check the driver interfaces used in ULTRIX device drivers and
to compare them with those used in DEC OSF/1 device drivers. Writing
Device Drivers, Volume 2: Reference provides reference (man) page-style
descriptions of the driver interfaces used by DEC OSF/1 device drivers. Use
this information to compare the interface’s behavior, number and type of
arguments, return values, and so forth with its associated ULTRIX driver
interface.

2-46 Developing a Device Driver

2.6.5 Checking Kernel Interfaces

You need to check the kernel interfaces used in ULTRIX device drivers and
to compare them with those used in DEC OSF/1 device drivers. Writing
Device Drivers, Volume 2: Reference provides reference (man) page-style
descriptions of the kernel interfaces used by DEC OSF/I device drivers. Use
this information to compare the interface’s behavior, number and type of
arguments, return values, and so forth with its associated ULTRIX kernel
interface. Table 2-3 lists some of these differences.

Table 2-3: Highlights of Differences Between DEC OSF/1 and

ULTRIX Kernel Interfaces

Kernel Interface

Remarks

BADADDR

bufflush

KM_ALLOC
KM_FREE
printf

interfaces

selwakeup

Device drivers written for ULTRIX systems use the BADADDR
interface in the autoconfiguration section to determine if a device
is present on the system. You can use BADADDR in device
drivers that are configured statically on DEC OSF/1. However,
you cannot use BADADDR in device drivers that are configured as
loadable on DEC OSF/1.

Loadable device drivers cannot call the BADADDR interface
because it is usable only in the early stages of system booting.
Loadable device drivers are loaded during the multiboot stage. If
your driver is both loadable and static, you can declare a variable
and use it to control any differences in the tasks performed by the
loadable and static drivers. Thus, the static driver can still call
BADADDR.

Section 4.1.6.1

shows how noneprobe uses such a variable called
none_is_dynamic.

ULTRIX BSD device drivers written for platforms based on
MIPS use the bufflush interface. This interface is not used for
platforms based on Alpha AXP. Therefore, delete this interface
from your device driver.

Replace calls to KM_ALLOC with calls to kalloc. Note that
kalloc does not zero out memory.

Replace calls to KM_FREE with calls to kfree.

ULTRIX device drivers can call cprintf, mprintf, printf,
and uprintf. DEC OSF/I device drivers can call printf and
uprintf.

The selwakeup interface is not used in DEC OSF/1. Replace
calls to selwakeup with calls to select_wakeup. Note that
the formal parameters for the two interfaces are different.

Developing a Device Driver 2-47

Table 2-3: (continued)

Kernel Interface

Remarks

useracc

vslock

vsunlock

The useracc interface is obsolete on DEC OSF/1. If you called
useracc with vslock, replace both interfaces with a call to
vm_map_ pageable. Typically, the useracc interface was
called by the driver’s xxstrategy interface. In most cases, the
driver’s xxstrategy interface would be called indirectly from
the physio interface (in response to read and write system
calls or file-system access). In DEC OSF/1, the physio
interface verifies access permissions to the user buffer and locks
down the memory. For this reason, in existing drivers that may
have historically called useracc, it is no longer necessary to
perform such a check and subsequent locking of memory with
vslock. The general rule is that any interface called from the
physio interface (that is, the driver’s xxstrategy interface)
should not call useracc or its replacement
vm_map_pageable because the physio interface performs
those functions.

If you called useracc prior to accessing user data, replace it
with calls to copyin and copyout to access user space.
Calling useracc simply verifies access permissions to the
specified memory at the time the useracc interface is called. It
is possible that immediately after the useracc interface has
returned back to the driver that the corresponding memory could
be invalid. The memory could be invalid if it was swapped out
or otherwise remapped by the virtual memory management
portion of the kernel. Therefore, a driver should not assume that
the memory region whose access permissions are verified through
a call to useracc is persistent. In DEC OSF/1, calls to
useracc are either unnecessary (as previously explained) or
should be replaced by direct calls to vm_map_pageable. This
interface performs functions for both verifying access permissions
and for locking down the memory so that it cannot be invalidated
until it is unlocked by subsequent calls to vm_map pageable
for this memory reigon.

The vslock interface is obsolete on DEC OSF/1. Therefore,
replace calls to vslock with calls to vm_map_pageable.

The vsunlock interface is obsolete on DEC OSF/1. Therefore,
replace calls to vsunlock with calls to vm_map pageable.

2-48 Developing a Device Driver

2.6.6 Checking Data Structures

You need to check the data structures used in ULTRIX device drivers and
compare them to those used in DEC OSF/1 device drivers. Writing Device
Drivers, Volume 2: Reference provides reference (man) page-style
descriptions of the data structures used by DEC OSF/1 device drivers. Use
this information to compare the data structure’s members with its associated
ULTRIX data structure. Table 2-4 lists some of these differences.

Table 2-4: Highlights of Differences Between DEC OSF/1 and
ULTRIX Data Structures

Data Structure Remarks

uba ctlr Replace references to the uba_ctlr structure and its associated
members with references to the controller structure and its
associated members.

uba_device Replace references to the uba_device structure and its
associated members with references to the device structure and
its associated members. Make sure that the reference is to a
slave, for example, a disk or tape drive. If the reference is to a
controller, reference the controller structure, not the device
structure.

uba_driver Replace references to the uba_driver structure and its
associated members with references to the driver structure and
its associated members.

Developing a Device Driver 2-49

Analyzing the Structure of a Device
Driver 3

Before implementing the sample device driver discussed in the previous
chapter, you need to understand the sections of a DEC OSF/1 device driver.
Analyzing the sections of a device driver gives you the opportunity to learn
how to set up the device driver interfaces in preparation for writing your own
device drivers. This chapter mentions some structures (for example, the
device structure) you may not be familiar with yet. However, to learn how
to set up the device driver interfaces, you do not need an intimate
understanding of the structures. Chapter 7 discusses these structures.

The sections that make up a DEC OSF/1 device driver differ depending on
whether the driver is a block, character, or network driver. Figure 3-1
illustrates the sections that a character device driver can contain and the
possible sections for a block device driver. Device drivers are not required to
use all of the sections and more complex drivers can have additional sections.

Both types of drivers contain:

* An include files section

* A declarations section

* An autoconfiguration support section

* A configure section (only for loadable drivers)

* An open and close device section

* Anioctl section

* An interrupt section

The block device driver can also contain a strategy section, a psize section,
and a dump section.

The character device driver contains the following sections not contained in a
block device driver:

* A read and write device section

* A reset section

* A stop section

* A select section

* A memory map section (only for CPUs that include map registers)

Each device driver section is described in the following sections. For
convenience in referring to the names for the driver interfaces, the chapter
uses the prefix xx. For example, xxprobe refers to a probe interface for
some XX device.

3-2 Analyzing the Structure of a Device Driver

Figure 3-1: Sections of a Character Device Driver and a Block

Device Driver

Character Device Driver

Block Device Driver

/* Include Files Section */

/* Declarations Section */

/* Autoconfiguration Support Section */

/* Configure Section */

/* Open and Close Device Section */

/* ioctl Section */

.

/* Interrupt Section */

/* Read and Write Device Section */

/* Reset Section */

/* Stop Section */

.

/* Select Section */

/* Memory Map (mmap) Section */

~

* Include Files Section */
/* Declarations Section */

/* Autoconfiguration Support Section */

/* Configure Section */

~

* Open and Close Device Section */

~

* joctl Section */

o T

* Interrupt Section */

/* Strategy Section */

.

/* psize Section */

/* Dump Section */

.

Analyzing the Structure of a Device Driver 3-3

3.1 Include Files Section

Data structures and constant values are defined in header files that you
include in the include files section of the driver source code. The number
and types of header files you specify in the include files section vary,
depending on such things as what structures, constants, and kernel interfaces
your device driver references. You need to be familiar with:

» The device driver header file

* The common driver header files
* The loadable driver header files
« The device register header file

* The name_data.c file

The following sections describe these categories of header files. Writing
Device Drivers, Volume 2: Reference provides reference (man) page-style
descriptions of the header files most frequently used by DEC OSF/1 device
drivers.

3.1.1 Device Driver Header File

The device driver header file contains #define statements for as many
devices as are configured into the system. This file is generated by the
config program during static configuration of the device driver. This file
need not be included if you configure the driver as a loadable driver.

The config program creates the name for this file by using the name of the
controller or device that you specify in the system configuration file. For
example, if you specified rd as the device in the system configuration file,
config creates a header file called rd.h. The following example shows
the possible contents for the rd.h device driver header file:

#define NRD 1

The config program creates a compile time variable, in this example NRD,
which defines how many devices exist on the system. This variable is set to
the value zero (0) to indicate that no devices exist on the system. It is set to
a specific number, for example 4, to indicate that four devices exist on the
system. Many existing ULTRIX-based drivers use this compile-time variable
in device driver code to refer to the number of this type of device on the
system. This usage most frequently occurs in structure array declarations and
in condition (for example, 1f and while) statements.

3-4 Analyzing the Structure of a Device Driver

3.1.2 Common Driver Header Files

The following example lists the header files most frequently used by device
drivers:

#include <sys/types.h>

#include <sys/errno.h>

#include <io/common/devdriver.h>
#include <sys/uio.h>

#include <machine/cpu.h>

The example shows that device drivers should not use explicit pathnames.
Using angle brackets (< and >) means you will not have to make changes to
your device driver if the file path changes.

The following sections contain brief descriptions of the previously listed
common driver header files.

3.1.2.1 The types.h Header File

The header file /usr/sys/include/sys/types.h defines system data
types used to declare members in the data structures referenced by device
drivers. Table 3-1 lists the system data types most frequently used by device
drivers.

Table 3-1: System Data Types Frequently Used by Device
Drivers

Data Type Meaning

daddr_t Block device address

caddr_t Main memory virtual address
ino t Inode index \
dev_t Device major and minor numbers
off t File offset

paddr_t Main memory physical address
time t System time

u_short unsigned short

The /usr/sys/include/sys/types.h header file includes the file
/mach/machine/vm_types.h. This file defines the data type
vm_offset t, which “driver writers should use when addresses are treated
as arithmetic quantities (that is, as ints and longs). The vm_offset t data
type is defined as unsigned long on Alpha AXP and as unsigned

Analyzing the Structure of a Device Driver 3-5

int on MIPS.

3.1.2.2 The errno.h Header File

The header file /usr/sys/include/sys/errno.h defines the error
codes returned to a user process by a device driver. Examples of these error
codes include EINVAL (invalid argument), ENODEV (no such device), and
EIO (I/O error).

3.1.2.3 The devdriver.h Header File

The header file /usr/sys/include/io/common/devdriver.h
defines structures, constants, data types, and external interfaces used by
device drivers and the autoconfiguration software. Two opaque data types
that you can use to make your device drivers more portable are
io_handle t and dma_handle_t. See Section 9.7 for a discussion of
the I/O handle.

3.1.2.4 The uio.h Header File

The header file /usr/sys/include/sys/uio.h contains the definition
of the uio structure. The kernel sets up and uses the uio structures to read
and write data. Character device drivers include this file because they may
reference the uio structure.

3.1.3 Loadable Driver Header Files

You need to include the following files related to loadable device drivers:

#include <sys/conf.h>
#include <sys/sysconfig.h>

The following sections contain brief descriptions of these files.

3.1.3.1 The conf.h Header File

The header file /usr/sys/include/sys/conf .h defines the bdevsw
(block device switch) and cdevsw (character device switch) tables. This file
should be included by loadable block and character device drivers because
these drivers define and then initialize entry points for the bdevsw and
cdevsw tables. In the case of loadable device drivers, the driver then passes
the initialized structure to the bdevsw_add or cdevsw_add kernel
interfaces. Section 8.2 describes the device switch tables.

3-6 Analyzing the Structure of a Device Driver

3.1.3.2 The sysconfig.h Header File

3.14

The header file /usr/sys/include/sys/sysconfig.h defines
operation codes and data structures used in loadable device driver
configuration. The operation codes define the action to be performed by the
driver configure interface. Examples of the operation types include
configure, unconfigure, and query. This file also defines many of the
constants that are shared between the device driver method and the drivers
themselves. Within this file also appears the declaration of the data structure
that is passed to and returned from the driver’s configure interface. Section
3.4 shows how to set up the configure interface.

Device Register Header File

The device register header file contains any public declarations used by the
device driver. This file usually contains the device register structure
associated with the device. A device register structure is a C structure whose
members map to the registers of some device. These registers are often
referred to as the device’s control status register or CSR addresses. The
device driver writer creates the device register header file.

The following example shows a device register structure contained in a
device register header file for a device driver written for a TURBOchannel
test board:
typedef volatile struct {

unsigned adder;

unsigned padl;

unsigned data;

unsigned pad2;

unsigned csr;

unsigned pad3;

unsigned test;

unsigned pad4;
} CB_REGISTERS;

The example shows the use of the compiler keyword volatile. Section

2.4.5.11 provides guidelines for which variables and data strucures device
drivers should declare as volatile.

The device register structure is most often used in device drivers that directly
access a device’s CSR addresses. There are some CPU architectures that do
not allow you to access the device CSR addresses directly. If you want to
write your device driver to operate on both types of CPU architectures, you
can write one device driver with the appropriate conditional compilation
statements. You can also avoid the potentially confusing proliferation of
conditional compilation statements by using the CSR I/O access kernel
interfaces provided by DEC OSF/1 to read from and write to the device’s
CSR addresses. Because the CSR I/O access interfaces are designed to be
CPU hardware independent, their use not only simplifies the readability of

Analyzing the Structure of a Device Driver 3-7

the driver, but also makes the driver more portable across different CPU
architectures and different CPU types within the same architecture. Section
9.7.1 shows you how to use the CSR I/O access kernel interfaces to read
from and write to the device’s CSR addresses.

This technique of calling kernel interfaces to access a device’s CSR addresses
also requires defining the registers of a device, usually through constants that
map to these device registers. The following example shows the device
register definitions contained in a device register header file for a device
driver that uses the kernel interfaces to access a device’s CSR addresses:
/**************************'k************************

* Define offsets to nvram device registers *
***/
#define ENVRAM CSR 0xc00 /* CSR */
#define ENVRAM BAT 0xc04 /* Battery Disconnect */
tdefine ENVRAM HIBASE 0xc08 /* Ext. Mem Config */
#define ENVRAM CONFIG 0xcOc /* EISA config reg */

tdefine ENVRAM ID 0xc80 /* EISA ID reg */
#define ENVRAM CTRL 0xc84 /* EISA control */
#define ENVRAM DMAO 0xc88 /* DMA addr reg 0 */
#define ENVRAM DMAl 0xc8c /* DMA addr reg 1 */

3.1.5 The name_data.c File

The name_data. c file provides a convenient place to size the data
structures and data structure arrays that device drivers use. In addition, the
file can contain definitions that third-party driver writers might want their
customers to change. This file is particularly convenient for third-party
driver writers who do not want to ship device driver sources. The device
driver writer creates the name_data.c file.

The name argument is usually based on the device name. For example, the
none device’s name_data.c file is called none_data.c. The CB
device’s name_ data.c file is called cb_data.c. The edgd device’s
name_data.c file would be called edgd data.c.

The name data.c files supplied by Digital Equipment Corporation are
found in the /usr/sys/data directory. The following example illustrates
some of the name_data. c files contained in the /usr/sys/data
directory for DEC OSF/1:

audit_data.c ga_data.c np_data.c
autoconf data.c gvp_data.c pmap data.c
binlog data.c gw_screen_data.c presto_data.c
cam_data.c gx_data.c scc_data.c

cam special data.c if fta data.c scs_data.c
ci_data.c if fza data.c sysap data.c
cippd data.c if 1n data.c tc_option_data.c

Third-party device driver writers can place their name_data.c file in a
products directory with all of the other files they plan to ship to customers.

3-8 Analyzing the Structure of a Device Driver

Figure 11-2 shows a sample directory structure for the fictitious driver
development company, EasyDriver Incorporated.

3.2 Declarations Section

The declarations section of a block or character device driver contains:
e Definitions of symbolic names

* Variable declarations

* Structure declarations

* Declarations of driver interfaces

The following example shows the declarations section for a device driver.
The example provides declarations and initializations that would be provided
in any device driver:

/* Definitions of symbolic names */
define MAX XFR 4

/* Variable declarations */
extern int hz;

/* Sstructure declarations */

struct controller *cbinfo[NCB];

/* Declarations of driver interfaces */

int cbstart(), cbprobe(), cbattach(), cbstrategy(), cbminphys();

Note the compile time variable NCB is used to size the array of pointers to
controller structures. This usage is an example of statically allocating
data structures. Section 2.3 provides information to help you choose an
appropriate data structure allocation technique.

3.3 Autoconfiguration Support Section

When DEC OSF/1 boots, the kernel determines what devices are connected
to the computer. After finding a device, the kernel initializes it so that the
device can be used at a later time. The probe interface determines if a
particular device is present and the attach interface initializes the device.

The system performs a functionally equivalent process when a loadable
driver is configured. A loadable driver, like the static driver, has a probe,

Analyzing the Structure of a Device Driver 3-9

attach, and possibly a slave interface. From the device driver writer’s point
of view, these interfaces are the same for static and loadable drivers.

The autoconfiguration support section of a device driver contains the code
that implements these interfaces and the section applies to both character and
block device drivers. It can contain:

e A probe interface
* A slave interface
e An attach interface

For loadable drivers, the autoconfiguration support section also contains a
controller unattach or a device unattach interface, which is called when the
driver is unloaded. You define the entry point for each of these interfaces in
the driver structure. Section 7.6 describes the driver structure. The
following sections show you how to set up each of these interfaces.

3.3.1 Setting Up the Probe Interface

The way you set up a probe interface depends on the bus on which the driver
operates. The following code fragment shows you how to set up a probe
interface for a driver that operates on a TURBOchannel bus:

xxprobe(addr, ctlr)

caddr_t addr; /* System virtual address */
struct controller *ctlr; /* Pointer to controller */
/* structure */
{
/* Variable and structure declarations */
/* Code to perform necessary checks */
}

The code fragment declares the two arguments associated with a probe
interface that operates on a TURBOchannel bus. To learn what arguments
you would specify for other buses, see the bus-specific device driver manual.
The code fragment also sets up the sections where you declare local variables
and structures and where you write the code to implement the probe
interface.

Section 4.1.6.1 shows you how to implement a probe interface for the
/dev/none device driver. Section 10.8.1 shows you how to implement a
probe interface for a character device driver that operates on a
TURBOchannel bus. Writing Device Drivers, Volume 2: Reference provides
a reference (man) page that gives additional information on the arguments

3-10 Analyzing the Structure of a Device Driver

3.3.2

3.3.3

and tasks associated with an xxprobe interface.

Setting Up the Slave Interface

A device driver’s slave interface is called only for a controller that has slave
devices connected to it. This interface is called once for each slave attached
to the controller. The way you set up a slave interface depends on the bus on
which the driver operates. The following code fragment shows you how to
set up a slave interface for a driver that operates on a TURBOchannel bus:

xxslave(device, addr)
struct device *device; /* Pointer to device structure */
caddr_t addr; /* System virtual address ¥/

{
/* Variable and structure declarations */

/* Code to check that the device is wvalid */

}

The code fragment declares the two arguments associated with a slave
interface that operates on a TURBOchannel bus. To learn what arguments
you would specify for other buses, see the bus-specific device driver manual.
The code fragment also sets up the sections where you declare local variables
and structures and where you write the code to implement the slave interface.
Writing Device Drivers, Volume 2: Reference provides a reference (man)
page that gives additional information on the arguments and tasks associated
with an xxslave interface.

Setting Up the Attach Interface

A device driver’s attach interface establishes communication with the device.
There are two attach interfaces: an xxcattach interface for controller-
specific initialization (called once for each controller) and an xxdattach
interface for device-specific initialization (called once for each slave device
connected to a controller). The following code fragment shows you how to
set up an xxdattach interface:

xxdattach(device)
struct *device; /* Pointer to device structure */

{

/* Variable and structure declarations */

/* Code to perform tasks associated with establishing */

Analyzing the Structure of a Device Driver 3—11

/* communication with the device */

}

The code fragment declares the argument associated with a device attach
interface. If the controller attach interface were used, you would be passed a
pointer to a controller structure. The code fragment also sets up the
sections where you declare local variables and structures and where you write
the code to implement the device attach interface.

Section 4.1.6.2 shows you how to implement an attach interface for the
/dev/none device driver. Section 10.8.2 shows you how to implement an
attach interface for a character device driver that operates on a
TURBOchannel bus. Writing Device Drivers, Volume 2: Reference provides
a reference (man) page that gives additional information on the arguments
and tasks associated with the xxcattach and xxdattach interfaces.

3.3.4 Setting Up the Controller Unattach Interface

A device driver’s controller unattach interface removes the specified
controller structure from the list of controllers it handles. The following
code fragment shows you how to set up a controller unattach interface:

xxctrl unattach(bus_struct, ctlr_struct)
struct bus *bus_struct; /* Pointer to bus structure */
struct controller *ctlr_struct; /* Pointer to controller */

/* structure */

{

/* Variable and structure declarations */
/* Code to perform controller unattach tasks */

}

The code fragment declares the two arguments associated with a controller
unattach interface. The code fragment also sets up the sections where you
declare local variables and structures and where you write the code to
implement the controller unattach interface.

Section 4.1.6.3 shows how to implement a controller unattach interface for
the /dev/none device driver. Section 10.8.3 shows how to implement a
controller unattach interface for a character device driver that operates on a
TURBOchannel bus.

3-12 Analyzing the Structure of a Device Driver

3.3.5

Writing Device Drivers, Volume 2: Reference provides a reference (man)
page that gives additional information on the arguments and tasks associated
with an xxctrl unattach interface.

Setting Up the Device Unattach Interface

A device driver’s device unattach interface removes the specified device
structure from the list of devices it handles. The following code fragment
shows you how to set up a device unattach interface:

xxdev_unattach(ctlr_struct, dev_struct)

struct controller *ctlr_ struct; /* Pointer to controller */
/* structure */

struct device *dev_struct; /* Pointer to device */
/* structure */

{

/* Variable and structure declarations */

/* Code to perform device unattach tasks */

}

The code fragment declares the two arguments associated with a device
unattach interface that operates on a TURBOchannel bus. The code fragment
also sets up the sections where you declare local variables and structures and
where you write the code to implement the device unattach interface.

Writing Device Drivers, Volume 2: Reference provides a reference (man)
page that gives additional information on the arguments and tasks associated
with an xxdev_unattach interface.

3.4 Configure Section

The configure section applies to the loadable versions of both character and

block device drivers and it contains a configure interface. A device driver’s
configure interface is called as a result of a user-level request to dynamically
load a device driver. The following code fragment shows you how to set up
a configure interface:

xx_configure(optype, indata, indatalen, outdata, outdatalen)

sysconfig op t optype; /* Configure operation */
device config t *indata; /* Input data structure */
size t indatalen; /* Size of input data */

/* structure */

Analyzing the Structure of a Device Driver 3-13

device config t *outdata; /* Output data structure */
size_t outdatalen; /* Output data structure */

{

/* Variable and structure declarations */
/* Code to perform configure tasks */

}

The code fragment declares the five arguments associated with a configure
interface. The code fragment also sets up the sections where you declare local
variables and structures and where you write the code to implement the
configure interface.

Section 4.1.7.1 shows you how to set up the configure interface for the
/dev/none device driver. Section 10.9.1 shows you how to implement a
configure interface for a character device driver that operates on a
TURBOchannel bus. Writing Device Drivers, Volume 2: Reference provides
a reference (man) page that gives additional information on the arguments
and tasks associated with an xx configure interface.

3.5 Open and Close Device Section

The open and close device section applies to both character and block device
drivers. This section contains:

* An open interface
* A close interface

You specify the entry for the driver’s open and close interfaces in the
bdevsw for block device drivers and the cdevsw for character device
drivers. Section 8.2 describes the device switch tables. The following
sections discuss how to set up each of these interfaces.

3.5.1 Setting Up the Open Interface

A device driver’s open interface is called as the result of an open system
call. The following code fragment shows you how to set up an open
interface:

3-14 Analyzing the Structure of a Device Driver

3.5.2

xxopen(dev, flag, format)

dev_t dev; /* Major/minor device number */
int flag; /* Flags from /usr/sys/h/file.h */
int format; /* Format of special device */

{
/* Variable and structure declarations */

/* Code to open the device */

}

The code fragment declares the three arguments associated with an open
interface that operates on any bus. The code fragment also sets up the
sections where you declare local variables and structures and where you write
the code to implement the open interface.

Section 4.1.8.1 shows you how to implement an open interface for the
/dev/none device driver. Section 10.10.1 shows you how to implement
an open interface for a character device driver that operates on a
TURBOchannel bus. Writing Device Drivers, Volume 2: Reference provides
a reference (man) page that gives additional information on the arguments
and tasks associated with an xxopen interface.

Setting Up the Close Interface

The open interface is called every time that any user initiates an action that
invokes the open system call. The close interface, however, is called only
when the last user initiates an action that closes the device. The reason for
this difference is to allow the driver to take some special action when there is
no work left to perform. The following code fragment shows you how to set
up a close interface:

xxclose(dev, flag, format)

dev_t dev; /* Major/minor device number */
int flag; /* Flags from /usr/sys/h/file.h */
int format; /* Format of special device */

{

/* Variable and structure declarations */

/* Code to correctly close the device */

Analyzing the Structure of a Device Driver 3-15

The code fragment declares the three arguments associated with a close
interface that operates on any bus. It also sets up the sections where you
declare local variables and structures and where you write the code to
implement the close interface.

Section 4.1.8.2 shows you how to implement a close interface for the
/dev/none device driver. Section 10.10.2 shows you how to implement a
close interface for a character device driver that operates on a
TURBOchannel bus. Writing Device Drivers, Volume 2: Reference provides
a reference (man) page that gives additional information on the arguments
and tasks associated with an xxclose interface.

3.6 Read and Write Device Section

The read and write device section applies only to character device drivers.
This section contains:

* A read interface
¢ A write interface

You specify the entry for the driver’s read and write interfaces in the
cdevsw table. Section 8.2.1 describes the cdevsw table. The following
sections discuss how to set up both of these interfaces.

3.6.1 Setting Up the Read Interface

The read interface is called from the I/O system as the result of a read
system call. The following code fragment shows you how to set up a read
interface:

xxread(dev, uio)
dev_t dev; /* Major/minor device number */
struct uio *uio; /* Pointer to uio structure */

{

/* Variable and structure declarations */

/* Code to read data from the device */

}

The code fragment declares the two arguments associated with a read
interface that operates on any bus. It also sets up the sections where you
declare local variables and structures and where you write the code to
implement the read interface.

3—16 Analyzing the Structure of a Device Driver

3.6.2

Section 4.1.9.1 shows you how to implement a read interface for the
/dev/none device driver. Section 10.11.1 shows you how to implement a
read interface for a character device driver that operates on a TURBOchannel
bus. Writing Device Drivers, Volume 2: Reference provides a reference
(man) page that gives additional information on the arguments and tasks
associated with an xxread interface.

Setting Up the Write Interface

The write interface is called from the I/O system as the result of a write
system call. The following code fragment shows you how to set up a write
interface:

xxwrite(dev, uio)

dev_t dev; /* Major/minor device number */
struct uio *uio; /* Pointer to uio structure */
{

/* Variable and structure declarations */

/* Code to write data to the device */

}

The code fragment declares the two arguments associated with a write
interface that operates on any bus. It also sets up the sections where you
declare local variables and structures and where you write the code to
implement the write interface.

Section 4.1.9.2 shows you how to implement a write interface for the
/dev/none device driver. Section 10.11.2 shows you how to implement a
write interface for a character device driver that operates on a
TURBOchannel bus. Writing Device Drivers, Volume 2: Reference provides
a reference (man) page that gives additional information on the arguments
and tasks associated with an xxwrite interface.

3.7 The ioctl Section

The ioctl interface typically performs all device-related operations other
than read or write operations. A device driver’s ioctl interface is called as
aresult of an ioctl system call. Only those ioctl commands that are
device specific or that require action on the part of the device driver result in
a call to the driver’s ioctl interface. You specify the entry for the driver’s
ioctl interface in the cdevsw table for character drivers and in the
bdevsw table for block device drivers. Section 8.2 describes the device
switch tables. The following code fragment shows you how to set up an
ioctl interface:

Analyzing the Structure of a Device Driver 3-17

xxioctl(dev, cmd, data, flag)

dev_t dev; /* Major/minor device number */
unsigned int cmd; /* The ioctl command */

caddr_t data; /* ioctl command-specified data */
int flag; /* Access mode of the device */

{

/* Variable and structure declarations */
/* Code to perform device-related operations */

}

The code fragment declares the four arguments associated with an ioctl
interface that operates on any bus. It also sets up the sections where you
declare local variables and structures and where you write the code to
implement the ioctl interface.

Section 4.1.11 shows you how to implement an ioctl interface for the
/dev/none device driver. Section 10.14 shows you how to implement an
ioctl interface for a character device driver that operates on a
TURBOchannel bus. Writing Device Drivers, Volume 2: Reference provides
a reference (man) page that gives additional information on the arguments
and tasks associated with an xxioctl interface.

3.8 Strategy Section

The strategy section applies to block device drivers and contains a
strategqy interface. However, character device drivers can also contain a
strategy interface that is called by the character driver’s read and
write interfaces.

The strategy interface performs block I/O for block devices and initiates read
and write operations for character devices. You specify the entry point for
the strategy interface in the bdevsw table. Section 8.2.2 describes the
bdevsw table. ‘For character drivers, you do not specify the entry point for
the strategy interface because it is called only by the character driver’s
read and write interfaces. There is no entry point defined in the cdevsw
table. The following code fragment shows you how to set up a strategy
interface:

3-18 Analyzing the Structure of a Device Driver

xxstrategy(bp)
struct buf *bp; /* Pointer to buf structure */

{

/* Variable and structure declarations */

/* Code to perform block I/0 or read/write operations */

}

The code fragment declares the argument associated with a strategy interface
that operates on any bus. It also sets up the sections where you declare local
variables and structures and where you write the code to implement the
strategy interface.

Section 10.12 shows you how to implement a strategy interface for a
character device driver that operates on a TURBOchannel bus. Writing
Device Drivers, Volume 2: Reference provides a reference (man) page that
gives additional information on the arguments and tasks associated with an
xxstrategy interface.

3.9 Stop Section

The stop section applies only to character device drivers and it contains a
stop interface. The stop interface is used by terminal device drivers to
suspend transmission on a specified line. You specify the entry for a driver’s
stop interface in the cdevsw table. Section 8.2.1 describes the cdevsw
table.

The following code fragment shows you how to set up a stop interface:

xxstop(tp, flag)

struct tty *tp; /* Pointer to tty structure */
int flag; /* Output flag */

{

/* Variable and structure declarations */

/* Code to suspend transmission on the specified line */

H

The code fragment declares the two arguments associated with a stop
interface that operates on any bus. It also sets up the sections where you
declare local variables and structures and where you write the code to
implement the stop interface.

Analyzing the Structure of a Device Driver 3—19

Writing Device Drivers, Volume 2: Reference provides a reference (man)
page that gives additional information on the arguments and tasks associated
with an xxstop interface.

3.10 Reset Section

The reset section applies only to character device drivers and it contains a
reset interface. The reset interface is used to force a device reset to place the
device in a known state after a bus reset. You specify the entry for a driver’s
reset interface in the cdevsw table. Section 8.2.1 describes the cdevsw
table. The following code fragment shows you how to set up a reset
interface:

xxreset (busnum)
int busnum; /* Logical unit number of bus */

{
/* Variable and structure declarations */

/* Code to force the device to reset */

}

The code fragment declares the argument associated with a reset interface
that operates on any bus. It also sets up the sections where you declare local
variables and structures and where you write the code to implement the reset
interface.

Writing Device Drivers, Volume 2: Reference provides a reference (man)
page that gives additional information on the arguments and tasks associated
with an xxreset interface.

3.11 Interrupt Section

The interrupt section applies to both character and block device drivers and it
contains an interrupt service interface (ISI). The interrupt service interface is
called as a result of a hardware interrupt. For static drivers, you specify the
entry point for the interrupt service interface in the system configuration file.
Section 12.2 describes the system configuration file. For loadable drivers,
you specify the entry point for the interrupt service interface through the
handler_ add and handler_enable kernel interfaces.

The following code fragment shows you how to set up an interrupt service
interface:

3-20 Analyzing the Structure of a Device Driver

3.12

xxintr (parameter)
caddr_t parameter; /* Logical controller number */

{

/* Variable and structure declarations */

/* Code to handle a hardware interrupt */

}

The code fragment declares the argument associated with an interrupt service
interface that operates on any bus. The code fragment also sets up the
sections where you declare local variables and structures and where you write
the code to implement the interrupt service interface.

Section 10.16 shows you how to implement an interrupt service interface for
a character device driver that operates on a TURBOchannel bus. Writing
Device Drivers, Volume 2: Reference provides a reference (man) page that
gives additional information on the arguments and tasks associated with an
xxintr interface. It also provides information on the handler interfaces.

Select Section

The select section applies only to character device drivers and it contains a
select interface. A device driver’s select interface is called to determine
whether data is available for reading and whether space is available for
writing data. You specify the entry point for a driver’s select interface in the
cdevsw table. Section 8.2.1 describes the cdevsw table. Because the
/dev/none and /dev/cb device drivers do not implement a select
section, the following code fragment not only shows you how to set up a
select interface, but it also illustrates some typical tasks. For example
purposes, the example refers to some xx device.

xxselect(dev, events, revents, scanning)

dev_t dev;

short *events; [2

short *revents; [3

int scanning;

{
int nread; [8
struct xxdevstruct *xxdevice; [6

xxdevice = xxdevs[minor(dev)]; [

/**’k********

* Poll for input reads *
**************‘k************************************/
if (*events & POLLNORM) {
if (scanning) { [0
nread = xxnread(dev);

Analyzing the Structure of a Device Driver 3—-21

if (nread > 0)
*revents |= POLLNORM; [11]
else
select_enqueue(xxdevice); [12
} else
select_dequeue(xxdevice); [13]
/***

* Poll for output write *
***/

if (*events & POLLOUT) {
if (scanning) { [5
if (xxnwrite(dev))
*revents |= POLLOUT; [i7
else
select_enqueue(xxdevice); [18l
} else
select_dequeue(xxdevice);

}
return (0);

[1] Declares an argument that specifies the major and minor device nu