
mamaoma

"

DEC aSP/1

Writing Device Drivers
Volume 1: Tutorial

Part Number: AA-PUBVB-TE

DEC OSF/1

Writing Device Drivers, Volume 1 : Tutorial

Order Number: AA-PUBVB-TE

February 1994

Product Version: DEC OSF/1 Version 2.0 or higher

This guide contains information needed by systems engineers who write
device drivers for hardware that runs the DEC OSFIl operating system.
Included is information on driver concepts, device driver interfaces,
kernel interfaces used by device drivers, kernel data structures,
configuration of device drivers, and header files related to device drivers.

digital equipment corporation
Maynard, Massachusetts

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c) (I) (ii).

Digital Equipment Corporation makes no representations that the use of its products in the
manner described in this publication will not infringe on existing or future patent rights, nor
do the descriptions contained in this publication imply the granting of licenses to make, use,
or sell equipment or software in accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only
pursuant to a valid written license from Digital or an authorized sub licensor.

© Digital Equipment Corporation 1994
All rights reserved.

The following are trademarks of Digital Equipment Corporation:

ALL-IN-I, Alpha AXP, AXP, Bookreader, CDA, DDIS, DEC, DEC FUSE, DECnet,
DECstation, DECsystem, DECUS, DECwindows, DTIF, MASSBUS, Micro VAX, Q-bus,
ULTRIX, ULTRIX Mail Connection, ULTRIX Worksystem Software, UNIBUS, VAX,
V AXstation, VMS, XUI, and the DIGITAL logo.

UNIX is a registered trademark licensed exclusively by X/Open Company Limited. Open
Software Foundation, OSF, OSFIl, OSFlMotif, and Motif are trademarks of the Open
Software Foundation, Inc. MIPS is a trademark of MIPS Computer Systems, Inc.

All other trademarks and registered trademarks are the property of their respective holders.

Contents

About This Book

Audience xxvii

Scope of the Book xxvii

Organization .. xxviii

Related Documentation xxxi

Hardware Documentation xxxii
Bus-Specific Device Driver Documentation xxxii
Programming Tools Documentation .. xxxiii
System Management Documentation .. XXXIV

Porting Documentation ... xxxiv
Reference Pages xxxv

Reader's Comments

Conventions

Summary of Changes and Additions .. .

Chapter 2: Developing a Device Driver
Chapter 3: Analyzing the Structure of a Device Driver
Chapter 4: Coding, Configuring, and Testing a Device Driver
Chapter 6: Hardware Components and Hardware Activities
Chapter 7: Device Autoconfiguration .. .
Chapter 9: Using Kernel Interfaces with Device Drivers
Chapter 10: Writing a Character Device Driver
Chapter 13: Device Driver Configuration Examples
Appendix A: Summary Tables
Appendix B: Device Driver Example Source Listings
Glossary .. .

xxxv

XXXVI

xxxvi

xxxvi
xxxvii

xxxviii
xxxviii
XXXVllI

xxxviii
xl

xli
xli

xliii
xliii

Part 1 Overview

1 Introduction to Device Drivers

1.1 Purpose of a Device Driver ... 1-1

1.2 Types of Device Drivers .. 1-1

1.2.1
1.2.2
1.2.3
1.2.4

Block Device Driver
Character Device Driver
Network Device Driver
Pseudodevice Driver .. .

1-2
1-2
1-2
1-2

1.3 Static Versus Loadable Device Drivers ... 1-3

1.4

1.5

When a Device Driver Is Called

1.4.1
1.4.2
1.4.3
1.4.4
1.4.5
1.4.6
1.4.7

Place of a Device Driver in DEC OSFIl
User Program or Utility .. .
Kernel .. .
Device Drivers
Buses
Device Controller .. .
Peripheral Devices

Example of Reading a Character

1.5.1 A Read Request Is Made to the Device Driver
1.5.2 The Character Is Captured by the Hardware
1.5.3 The Interrupt Is Generated .. .
1.5.4 The Interrupt Service Interface Handles the Interrupt
1.5.5 The Character Is Returned
1.5.6 Summary of the Example .. .

Part 2 Anatomy of a Device Driver

ivContents

1-3

1-5
1-6
1-6
1-7
1-7
1-8
1-8

1-8

1-10
1-10
1-10
1-10
1-11
1-11

2 Developing a Device Driver

2.1 Gathering Information 2-1

2.1.1 Specifying Information About the Host System 2-2

2.1.1.1 Specifying the Host CPU or CPUs on Which Your
Driver Operates 2-2

2.1.1.2 Specifying the Operating System or Systems on
Which Your Driver Operates 2-4

2.1.1.3 Specifying the Bus or Buses to Which Your Driver
Connects ... 2-S

2.1.2 Identifying the Standards Used in Writing the Driver 2-S

2.1.2.1
2.1.2.2

Specifying a Naming Scheme
Choosing an Approach for Writing Comments and
Documentation .. .

2-S

2-8

2.1.3 Specifying Characteristics of the Device 2-10

2.1.3.1 Specifying Whether the Device Is Capable of Block

2.1.3.2

2.1.3.3

2.1.3.4
2.1.3.S
2.1.3.6

I/O .. 2-10
Specifying Whether the Device Supports a File
System
Specifying Whether the Device Supports Byte Stream
Access .. .
Specifying Actions to Take on Interrupts
Specifying How to Reset the Device
Specifying Other Device Characteristics

2-12

2-12
2-12
2-14
2-14

2.1.4 Describing Device Usage 2-14

2.1.S
2.1.6

2.1.4.1 Listing the Device Documentation 2-16
2.1.4.2 Specifying the Number of Device Types to Reside on

the System ... 2-16
2.1.4.3 Describing the Purpose of the Device 2-16

Providing a Description of the Device Registers
Identifying Support in Writing the Driver

2-16
2-19

2.2 Designing the Device Driver ... 2-21

2.2.1 Specifying the Device Driver Type 2-21
2.2.2 Identifying Device Driver Entry Points 2-23

. Contents v

2.3 Determining the Structure Allocation Technique

2.3.1 Static Allocation Technique Modell
2.3.2 Static Allocation Technique Model 2
2.3.3 Dynamic Allocation Technique .. .

2.3.3.1
2.3.3.2

2.3.3.3
2.3.3.4

2.3.3.5

Determining the Maximum Configuration
Statically Declaring an Array of Pointers to the Data
Structures
Allocating the Data Structures
Accessing the Members of the Dynamically Allocated
Data Structures .. .
Freeing up the Dynamically Allocated Memory

2-25

2-25
2-26
2-27

2-28

2-28
2-28

2-30
2-30

2.4 Understanding CPU Issues That Influence Device Driver Design 2-31

2.4.1 Control Status Register Issues
2.4.2 Input/Output Copy Operation Issues
2.4.3 Direct Memory Access Operation Issues
2.4.4 Memory Mapping Issues
2.4.5 64-Bit Versus 32-Bit Issues

2.4.5.1 Declaring 32-Bit Variables
2.4.5.2 Declaring 32-Bit and 64-Bit Variables
2.4.5.3 Declaring Arguments to C Functions
2.4.5.4 Declaring Register Variables
2.4.5.5 Performing Bit Operations on Constants
2.4.5.6 Using NULL and Zero Values
2.4.5.7 Modifying Type char
2.4.5.8 Declaring Bit Fields
2.4.5.9 Using printf Formats .. .
2.4.5.10 Using mb and wbflush
2.4.5.11 Using the Compiler Keyword volatile

2.4.6 Loadable Driver Issues
2.4.7 Memory Barriers

2.4.7.1
2.4.7.2
2.4.7.3
2.4.7.4

Forcing a Barrier Between Load/Store Operations
After the CPU Has Prepared a Data Buffer in Memory.
Before Attempting to Read Any Device CSRs
Between Writes

2-32
2-33
2-33
2-34
2-34

2-35
2-35
2-35
2-36
2-36
2-36
2-36
2-36
2-37
2-37
2-38

2-39
2-39

2-40
2-41
2-42
2-43

2.5 Creating a Device Driver Development and Kitting Environment 2-44

2.6 Porting ULTRIX Device Drivers to the DEC OSFIl Operating
System 2-45

vi Contents

2.6.1
2.6.2
2.6.3
2.6.4
2.6.5
2.6.6

Writing Test Suites .. .
Checking Header Files
Reviewing Device Driver Configuration
Checking Driver Interfaces .. .
Checking Kernel Interfaces
Checking Data Structures .. .

2-45
2-46
2-46
2-46
2-47
2-49

3 Analyzing the Structure of a Device Driver

3.1

3.2

Include Files Section 3-4

3-4
3-5

3.1.1
3.1.2

Device Driver Header File
Common Driver Header Files

3.1.2.1
3.1.2.2
3.1.2.3
3.1.2.4

The types.h Header File
The errno.h Header File
The devdriver.h Header File
The uio.h Header File

3-5
3-6
3-6
3-6

3.1.3 Loadable Driver Header Files ... 3-6

3.1.4
3.1.5

3.1.3.1 The conf.h Header File .. 3-6
3.1.3.2 The sysconfig.h Header File 3-7

Device Register Header File
The name_data.c File

3-7
3-8

Declarations Section 3-9

3.3 Autoconfiguration Support Section .. 3-9

3.3.1 Setting Up the Probe Interface .. 3-10
3.3.2 Setting Up the Slave Interface .. 3-11
3.3.3 Setting Up the Attach Interface ... 3-11
3.3.4 Setting Up the Controller Unattach Interface 3-12
3.3.5 Setting Up the Device Unattach Interface 3-13

3.4 Configure Section 3-13

3.5 Open and Close Device Section .. 3-14

3.6

3.5.1
3.5.2

Setting Up the Open Interface
Setting Up the Close Interface

Read and Write Device Section

3-14
3-15

3-16

Contents vii

3.7

3.8

3.9

3.10

3.11

3.12

3.13

3.14

3.15

3.6.1
3.6.2

Setting Up the Read Interface
Setting Up the Write Interface

The ioctl Section

Strategy Section

Stop Section

Reset Section

Interrupt Section

Select Section

Dump Section

The psize Section

Memory Map Section

3-16
3-17

3-17

3-18

3-19

3-20

3-20

3-21

3-24

3-25

3-26

4 Coding, Configuring, and Testing a Device Driver

4.1 Coding a Device Driver 4-1

4-3
4-4

4.1.1
4.1.2
4.1.3

4.1.4

4.1.5

4.1.6

The nonereg.h Header File .. .
Include Files Section .. .
Autoconfiguration Support Declarations and Definitions

Section
Loadable Driver Configuration Support Declarations and

Definitions Section .. .
Loadable Driver Local Structure and Variable Definitions

Section
The Autoconfiguration Support Section

4-6

4-9

4-12
4-13

4.1.6.1 Implementing the noneprobe Interface 4-14
4.1.6.2 Implementing the nonecattach Interface 4-20
4.1.6.3 Implementing the none_ctlr_unattach Interface 4-21

4.1.7 Loadable Device Driver Section .. 4-23

4.1.7.1
4.1.7.2
4.1.7.3

4.1.7.4

Setting Up the none_configure Interface
Configuring (Loading) the Idev/none Device Driver
Unconfiguring (Unloading) the Idev/none Device
Driver .. .
Querying the Idev/none Device Driver

4-24
4-25

4-31
4-33

viii Contents

4.2

4.1.8 Open and Close Device Section

4.1.8.1
4.1.8.2

Implementing the noneopen Interface
Implementing the noneclose Interface

4-34

4-35
4-37

4.1.9 Read and Write Device Section .. 4-39

4.1.9.1 Implementing the noneread Interface 4-40
4.1.9.2 Implementing the nonewrite Interface 4-41

4.1.10 Interrupt Section 4-44
4.1.11 The ioctl Section ... 4-45

Configuring the Device Driver 4-46

4.3 Testing a Device Driver 4-47

4.3.1 Writing the Test Program 4-47
4.3.2 Deciding on More Rigorous Testing 4-51
4.3.3 Hints for Tracking Problems in Testing 4-51

Part 3 Hardware Environment

5 Hardware-Independent Model and Device Drivers

5.1 Hardware-Independent Subsystem 5-2

5.2 Hardware-Dependent Subsystem ... 5-3

5.3 Bus Support Subsystem 5-4

5.4 Device Driver Subsystem

6 Hardware Components and Hardware Activities

6.1 Hardware Components

6.1.1
6.1.2
6.1.3

Central Processing Unit .. .
Memory
Bus .. .

6.1.3.1
6.1.3.2
6.1.3.3

Specifying Which B us a Device Is On
When Writing probe and slave Interfaces
When Direct Memory Access (DMA) Is Done by a
Device .. .

5-4

6-1

6-2
6-2
6-3

6-4
6-4

6-4

Contents ix

6.2

6.3

6.1.4 Device

6.1.4.1
6.1.4.2
6.1.4.3
6.1.4.4
6.1.4.5

Device Registers
Block and Character Devices
Terminal Devices
Network Devices
DMA and non-DMA Devices

Hardware Activities

6.2.1
6.2.2
6.2.3

How a Device Driver Accesses Device Registers
How the Device Uses the Registers
How the Device Driver Interrupts the CPU

Parts of the System Accessing Hardware

Part 4 Kernel Environment

7 Device Autoconfiguration

7.1

7.2

7.3

Files Used by the Autoconfiguration Software

7.1.1
7.1.2
7.1.3

For bus Structures
For controller Structures
For device Structures

Autoconfiguration Process

7.2.1 Autoconfiguration for Static Device Drivers

7.2.1.1 Locating the bus Structure for the System Bus
7.2.1.2 Calling the Levell Bus Configuration Interfaces
7.2.1.3 Configuring All Devices
7.2.1.4 Calling the Level 1 Configuration Interfaces for Any

Other Buses .. .
7.2.1.5 Calling the Level 2 Configuration Interfaces for Any

Other Buses .. .
7.2.1.6 Creating a System Configuration Tree

7.2.2 Autoconfiguration for Loadable Device Drivers

The bus Structure

x Contents

6-5

6-5
6-5
6-6
6-6
6-6

6-7

6-7
6-7
6-8

6-8

7-1

7-5
7-5
7-5

7-6

7-6

7-6
7-7
7-7

7-7

7-8
7-8

7-12

7-13

7.3.1
7.3.2
7.3.3
7.3.4
7.3.5
7.3.6
7.3.7
7.3.8
7.3.9
7.3.10

The bus_mbox Melnber .. .
The bus_type Melnber .. .
The bus_name and bus_num Members
The slot, conneccbus, and connecCnum Members
The confU and conft2 Members
The pname and port Members
The intr Member
The alive Member .. .
The framework and driver_name Members

The private, conn_priv, and rsvd Members

7-15
7-16
7-17
7-19
7-21
7-23
7-25
7-27
7-29
7-31

7.4 The controller Structure 7-32

7-34
7-35
7-36
7-38
7-40
7-42
7-43
7-46
7-48
7-50
7-51
7-53
7-54
7-56
7-58
7-59
7-60

7.5

7.4.1
7.4.2
7.4.3
7.4.4
7.4.5
7.4.6
7.4.7
7.4.8
7.4.9
7.4.10
7.4.11
7.4.12
7.4.13
7.4.14
7.4.15
7.4.16
7.4.17

The ctlr_mbox Member .. .
The driver Member .. .
The ctlr_type, ctlr_name, and ctlr_num Members
The bus_name and bus_num Members
The rctlr Member
,The slot Member
The alive Member
The pname and port Members
The intr Member
The addr and addr2 Members
The flags Member .. .
The bus_priority Member .. .
The ivnum Member .. .
The priority Member .. .
The cmd Member
The physaddr and physaddr2 Members
The private, conn_priv, and rsvd Members

The device Structure

7.5.1
7.5.2
7.5.3
7.5.4
7.5.5

The dev _type and dev _name Members
The logunit and unit Members
The ctlr_name and ctlr_num Members
The alive Member
The private, conn_priv, and rsvd Members

7-62

7-63
7-64
7-65
7-66
7-67

7.6 The driver Structure ... 7-68

7.6.1 The probe, slave, cattach, dattach, and go Members 7-69

Contents xi

7.6.2
7.6.3
7.6.4
7.6.5
7.6.6

7.6.7

The addr_Iist Member .. .
The dey _name and dey _list Members
The ctlr_name and ctlr_list Members
The xclu Member .. .
The addrl_size, addrl_atype, addr2_size, and addr2_atype

Members .. .
The ctlr_unattach and dey _unattach Members

7.7 The port Structure

7.8

7.9

7.10

7.11

The ihandler_t Structure

The tc_intr_info Structure .. .

The handler_key Structure

The device_config_t Structure

8 Data Structures Used in 1/0 Operations

8.1 The buf Structure

8.1.1
8.1.2
8.1.3

U sing the Systemwide Pool of buf Structures
Declaring Locally Defined buf Structures
Understanding buf Structure Members Used by Device

Drivers

8.1.3.1
8.1.3.2
8.1.3.3
8.1.3.4
8.1.3.5
8.1.3.6
8.1.3.7
8.1.3.8
8.1.3.9

The b_flags Member .. .
The b_forw and b_back Members
The av _forw and av _back Members
The b_bcount and b_error Members
The b_dev Member
The b_un.b_addr Member
The b_Iblkno and b_blkno Members
The b_resid and b_iodone Members
The b_proc Member .. .

8.2 Device Switch Tables

8.2.1

xii Contents

Character Device Switch Table

8.2.1.1
8.2.1.2
8.2.1.3
8.2.1.4

The d_open and d_close Members
The d_read and d_ write Members
The d_ioctl and d_stop Members
The d_reset and d_ttys Members

7-70
7-71
7-72
7-73

7-74
7-75

7-76

7-77

7-79

7-80

7-81

8-1

8-1
8-2

8-3

8-4
8-4
8-5
8-5
8-5
8-5
8-5
8-6
8-6

8-6

8-7

8-10
8-11
8-11
8-12

8.3

8.4

8.5

8.2.1.5
8.2.1.6

The d_select and d_mmap Members
The d_funnel Member .. .

8.2.2 Block Device Switch Table

8.2.2.1
8.2.2.2
8.2.2.3
8.2.2.4

The d_open and d_close Members
The d_strategy and d_dump Members
The d_psize and d_flags Members
The d_ioctl and d_funnel Members

The uio Structure

8.3.1 The uio_iov and uio_iovcnt Members
8.3.2 The uio_offset and uio_segflg Members
8.3.3 The uio_resid and uio_rw Members

Buffer Cache Management .. .

8.4.1 Buffer Header .. .

Interrupt Code

8-12
8-13

8-13

8-16
8-16
8-17
8-17

8-17

8-18
8-18
8-18

8-19

8-19

8-19

9 Using Kernel Interfaces with Device Drivers

9.1 String Interfaces .. 9-1

9.1.1 Comparing Two Null-Terminated Strings 9-1
9.1.2 Comparing Two Strings by Using a Specified Number of

Characters 9-3
9.1.3 Copying a Null-Terminated Character String 9-4
9.1.4 Copying a N ull-Terminated Character String with a Specified

Limit .. 9-5
9.1.5 Returning the Number of Characters in a Null-Terminated

String .. 9-6

9.2 Virtual Memory Interfaces .. 9-7

9.3

9.2.1
9.2.2
9.2.3

Allocating a Section of Kernel Virtual Memory
Returning Previously Allocated Kernel Virtual Memory
Performing Nonblocking Allocation of Kernel Virtual

Memory

Data Copying Interfaces

9-8
9-8

9-9

9-10

Contents xiii

9.4

9.5

9.3.1
9.3.2
9.3.3

9.3.4

9.3.5

Copying a Series of Bytes with a Specified Limit
Zeroing a Block of Memory .. .
Copying Data from User Address Space to Kernel Address

Space
Copying Data from Kernel Address Space to User Address

Space
Moving Data Between User Virtual Space and System Virtual

Space

Hardware-Related Interfaces

9.4.1
9.4.2

9.4.3

Checking the Read Accessibility of Addressed Data
Delaying the Calling Interface a Specified Number of

Microseconds .. .
Setting the Interrupt Priority Mask

Kernel-Related Interfaces

9.5.1
9.5.2
9.5.3
9.5.4
9.5.5
9.5.6

Causing a System Crash
Printing Text to the Console and Error Logger
Putting a Calling Process to Sleep
Waking Up a Sleeping Process .. .
Initializing a Callout Queue Element
Removing the Scheduled Interface from the Callout Queues

9-10
9-11

9-12

9-13

9-14

9-15

9-15

9-16
9-17

9-19

9-19
9-20
9-21
9-22
9-22
9-23

9.6 Loadable Driver Interfaces .. 9-23

9.6.1
9.6.2
9.6.3

9.6.4

9.6.5
9.6.6

Adding or Deleting Entry Points in the bdevsw Table
Adding or Deleting Entry Points in the cdevsw Table
Registering and Enabling a Driver's Interrupt Service

Interface
Deregistering and Disabling a Driver's Interrupt Service

Interface
Merging the Configuration Data
Configuring and U nconfiguring the Specified Controller

9-24
9-27

9-30

9-32
9-34
9-36

9.7 Input/Output (lIO) Handle-Related Interfaces 9-38

9.7.1 Control Status Register (CSR) Input/Output (lIO) Access
Interfaces ... 9-39

xiv Contents

9.7.1.1
9.7.1.2

Reading Data from a Device Register
Writing Data to a Device Register

9-39
9-42

9.8

9.9

9.7.2 Input/Output (I/O) Copy Interfaces 9-45

9.7.2.1 Copying a Block of Memory from 1/0 Address Space
to System Memory.. 9-46

9.7.2.2 Copying a Block of Byte-Contiguous System Memory
to I/O Address Space 9-48

9.7.2.3 Copying a Memory Block of 1/0 Address Space to
Another Memory Block of I/O Address Space 9-50

DMA-Related Interfaces .. .

9.8.1
9.8.2
9.8.3
9.8.4

9.8.5
9.8.6

9.8.7

9.8.8
9.8.9

DMA Handle
The sg_entry Structure
Allocating System Resources for DMA Data Transfers
Loading and Setting Allocated System Resources for DMA

Data Transfers
Unloading System Resources for DMA Data Transfers
Releasing and Deallocating Resources for DMA Data

Transfers .. .
Returning a Pointer to the Current Bus AddresslByte Count

Pair
Putting a New Bus AddresslByte Count Pair into the List
Returning a Kernel Segment Address of a DMA Buffer

Miscellaneous Interfaces

9.9.1 Indicating that 1/0 is Complete .. .
9.9.2 Getting the Device Major Number
9.9.3 Getting the Device Minor Number
9.9.4 Implementing Raw I/O

9-52

9-53
9-53
9-53

9-55
9-58

9-59

9-60
9-62
9-64

9-66

9-66
9-66
9-67
9-67

Part 5 Device Driver Example

10 Writing a Character Device Driver

10.1

10.2

10.3

10.4

Overview of the Idevlcb Device Driver 10-2

10-4

10-7

10-8

The cbreg.h Header File

Include Files Section

Autoconfiguration Support Declarations and Definitions Section

Contents xv

10.5 Loadable Driver Configuration Support Declarations and Definitions
Section 10-10

10.6 Local Structure and Variable Definitions Section

10.7 Loadable Driver Local Structure and Variable Definitions Section

10.8 Autoconfiguration Support Section

10.8.1 Implementing the cbprobe Interface
10.8.2 Implementing the cbattach Interface
10.8.3 Implementing the cb_ctlr_unattach Interface

10.9 Loadable Device Driver Section

10.10

10.11

10.12

10.13

10.9.1
10.9.2
10.9.3
10.9.4

Setting Up the cb_configure Interface
Configuring (Loading) the /dev/cb Device Driver
Unconfiguring (Unloading) the /dev/cb Device Driver
Querying the /dev/cb Device Driver

Open and Close Device Section

10.10.1
10.10.2

Implementing the cbopen Interface
Implementing the cbclose Interface

Read and Write Device Section

10.11.1
10.11.2

Implementing the cbread Interface
Implementing the cbwrite Interface

Strategy Section

10.12.1
10.12.2

Setting Up the cbminphys Interface
Setting Up the cbstrategy Interface

10.12.2.1 Initializing the buf Structure for Transfer
10.12.2.2 Testing the Low Order Two Bits and Using the

Internal Buffer .,
10.12.2.3 Converting the Buffer Virtual Address
10.12.2.4 Converting the 32-Bit Physical Address
10.12.2.5 Starting 110 and Checking for Time Outs

Start Section

10.14 The ioctl Section

]0.14.1 Setting Up the cbioctl Interface

xvi Contents

10-13

10-16

10-18

10-19
10-23
10-25

10-27

10-28
10-30
10-36
10-39

10-41

10-42
10-44

10-45

10-46
10-50

10-54

]0-55
10-56

10-58

10-59
10-61
10-62
10-64

]0-66

10-70

10-71

10.15

10.16

10.14.2
10.14.3
10.14.4
10.14.5

Incrementing the Lights .. .
Setting the 110 Mode .. .
Performing an Interrupt Test .. .
Returning a ROM Word, Updating the CSR, and Stopping

Increment of the Lights .. .

Increment LED Section

Interrupt Section

Part 6 Device Driver Configuration

11 Device Driver Configuration Models

11.1

11.2

Third-Party Device Driver Configuration Model

11.1.1 Creating a Driver Development Environment and Writing
the Driver

11.1.2 Creating a Driver Kit Development Environment

11.1.2.1 The lusrlsys/conflNAME File
11.1.2.2 The .products.list and NAME.list Files
11.1.2.3 The config.file File Fragment
11.1.2.4 The files File
11.1.2.5 The stanza.loadable File Fragment
11.1.2.6 The stanza. static File Fragment
11.1.2.7 The name_data.c File
11.1.2.8 Files Related to the Device Driver Product
11.1.2.9 The conf.c File .. .

11.1.3
11.1.4
11.1.5

Providing the Contents of the Device Driver Kit
Preparing the Device Driver Kit
Loading the Distribution Medium and Running setld

11.1.5.1
11.1.5.2

Installing Static Device Drivers
Installing Loadable Device Drivers

Traditional Device Driver Configuration Model

11.2.1 Creating a Driver Development Environment and Writing

10-73
10-74
10-75

10-78

10-80

10-82

11-1

11-4
11-4

11-6
11-7
11-9

11-11
11-12
11-14
11-14
11-14
11-15

11-15
11-17
11-17

11-19
11-20

11-23

the Driver .. 11-24

11.2.1.1
11.2.1.2

The lusrlsys/conflNAME File
The files File

11-26
11-27

Contents xvii

11.2.1.3 The name_data.c File .. 11-27
11.2.1.4 Driver Header, Source, Object, and Load Module

Files .. 11-27

12 Device Driver Configuration Syntaxes and
Mechanisms

12.l Reviewing Device Driver Configuration-Related Files 12-1

12.2 Specifying Information in the config.file File Fragment and the
System Configuration File 12-4

12.2.1 Specifying Device Definitions ... 12-4

12.2.1.1 Bus Specification .. 12-5
12.2.1.2 Controller Specification 12-6
12.2.1.3 Device Specification 12-8
12.2.1.4 Device Options Syntaxes Example 12-9

12.2.2 Specifying Callouts ... 12-10

12.3 Specifying Information in the BINARY System Configuration File . 12-11

12.4 Understanding the Format of the NAME.list File 12-12

12.5 Specifying Information in the files File Fragment and files File 12-13

12.6 Specifying Information in the stanza Files 12-16
/

12.6.1 Stanza File Format .. 12-16
12.6.2 Stanza File Syntax .. 12-18

12.6.2.1
12.6.2.2
12.6.2.3
12.6.2.4
12.6.2.5
12.6.2.6
12.6.2.7
12.6.2.8
12.6.2.9
12.6.2.10
12.6.2.11
12.6.2.12
12.6.2.13

xviii Contents

Subsystem_Description Field
Method_Name Field .. .
Method_Type Field
Method_Path Field .. .
Module_Type Field
Module_Path Field .. .
Device_Dir Field
Device_Subdir Field .. .
Device_Block_Subdir Field

Device_Char_Subdir Field
Device_Major_Req Field
Device_Block_Major Field
Device_Block_Minor Field

12-20
12-20
12-21
12-21
12-21
12-21
12-22
12-22
12-22
12-23
12-23
12-24
12-24

12.7

12.6.2.14
12.6.2.15
12.6.2.16
12.6.2.17
12.6.2.18

Device_Block_Files Field
Device_Char_Major Field
Device_Char_Minor Field
Device_Char_Files Field
Device_User, Device_Group, and Device_Mode

Fields
12.6.2.19 Module_Config_Name Field
12.6.2.20 Module_Config Field for Bus Specification
12.6.2.21 Module_Config Field for Controller Specification
12.6.2.22 Module_Config Field for Device Specification

12.6.3 Stanza File Fragment Examples

Specifying Information in the name_data.c File

12-25
12-27
12-27
12-28

12-30
12-30
12-31
12-32
12-33

12-35

12-37

12.8 Specifying Information in the conf.c File 12-37

12.8.1 Using cdevsw_add to Add Entries to the cdevsw Table 12-38
12.8.2 Using the stanza. static File Fragment to Add Entries to the

Device Switch Tables .. 12-39

12.9 Supplying the Subset Control Program 12-41

13 Device Driver Configuration Examples

13.1 Device Driver Development Phase

13.l.1
13.l.2
13.l.3

Creating the Device Driver Development Environment
Writing the Device Driver
Configuring the Static Device Driver

13.1.3.1 Step 1: Make an Entry in the tc_option_data.c Table .
13.l.3.2 Step 2: Compile and Link the Static Device Driver
Step 2a: Back Up Files
Step 2b: Make an Entry 'in the System Configuration File
Step 2c: Add the Driver Source to the files File
Step 2d: Declare the Device Driver Entry Points in conf.c
Step 2e: Modify the bdevsw or cdevsw Table
Step 2f: Run config on the System Configuration File
Step 2g: Create a Device Special File
Step 2h: Create a New Kernel
13.l.3.3 Step 3: Back Up the New Kernel

13-3

13-3
13-3
13-3

13-4
13-6
13-6
13-6
13-7
13-7
13-8
13-9
13-9
13-9

13-10

Contents xix

13.1.4 Configuring the Loadable Device Driver

13.1.4.1 Step 1: Create a stanza.loadable File Fragment
13.1.4.2 Step 2: Compile and Link the Device Driver
Step 2a: Add the Driver Source to the files File
Step 2b: Make an Entry in the BINARY System Configuration

File .. .
Step 2c: Run config on the System Configuration File
Step 2d: Construct the BINARY makefile
Step 2e: Build the Driver Load Module
13.1.4.3 Step 3: Run the sysconfigdb Utility
13.1.4.4 Step 4: Run the sysconfig Utility

13.1.5 Testing the Device Driver
13.1.6 Creating the Device Driver Kit Development Environment
13.1.7 Providing the Contents of the Device Driver Kit

13.1.7.1 Providing the Contents of the config.file File
Fragment .. .

13.1. 7.2 Providing the Contents of the files File Fragment
13.1. 7.3 Providing the Contents of the stanza.loadable File

Fragment .. .
13.1. 7.4 Providing the Contents of the stanza. static File

Fragment .. .
13.1.7.5 Providing the Device Driver Object Files
13.1. 7.6 Providing the Device Driver Load Modules

13.2 Device Driver Kit Development Phase

13.2.1
13.2.2

Writing the SCP .. .
Preparing the Device Driver Kit

13.3 Device Driver Installation Phase

13.3.1
13.3.2
13.3.3

Restoring the Backed Up Files
Loading the Device Driver Kit
Running the setld Utility

Part 7 Appendixes

xx Contents

13-10

13-10
13-11
13-12

13-12
13-13
13-13
13-13
13-13
13-14

13-15
13-15
13-15

13-16
13-16

13-16

13-17
13-18
13-18

13-18

13-19
13-19

13-19

13-19
13-20
13-20

A Summary Tables

A.l

A.2

A.3

AA

A.S

A.6

List of Header Files

List of Kernel Support Interfaces

List of Global Variables that Device Drivers Use

List of Data Structures

List of Device Driver Interfaces

List of Bus Configuration Interfaces

B Device Driver Example Source Listings

B.l

B.2

Source Listing for the Idev/none Device Driver

Source Listing for the Idev/cb Device Driver

C Device Driver Development Worksheets

Glossary

Index

Figures

1-1: When the Kernel Calls a Device Driver

1-2: Place of a Device Driver in DEC OSFIl

1-3: Simple Character Driver Interrupt Example

2-1: Host System Worksheet for Idev/none

2-2: Host System Worksheet for Idev/none (Cont.)

2-3: Device Driver Conventions Worksheet for Idev/none

2-4: Device Driver Conventions Worksheet for Idev/none (Cont.)

2-S: Device Characteristics Worksheet for the none Device

A-I

A-3

A-7

A-7

A-8

A-I0

B-1

B-24

1-4

I-S

1-9

2-3

2-4

2-7

2-9

2-11

Contents xxi

2-6: Device Characteristics Worksheet for the none Device (Cont.)

2-7: Device Usage Worksheet for the none Device

2-8: Device Register Worksheet for Idev/none

2-9: Device Register Worksheet for Idev/none (Cont.)

2-10: Device Driver Support Worksheet for Idev/none

2-11: Device Driver Type Worksheet for Idev/none

2-12: Device Driver Entry Points Worksheet for Idev/none

3-1: Sections of a Character Device Driver and a Block Device Driver

4-1: Testing Worksheet for Idev/none

5-1: Hardware-Independent Model

2-13

2-15

2-17

2-18

2-19

2-22

2-24

3-3

4-52

5-2

6-1: Hardware Components of Interest to a Device Driver Writer 6-2

7 -1: Structures Created from the Example .. 7-4

7-2: Configuration Tree Based on Example System Configuration File 7-9

7-3: Configuration Tree for Loadable Drivers Based on Example
sysconfigtab 7 -13

7-4: The bus_type Member Initialized .. 7-17

7-5: The bus_name and bus_num Members Initialized 7-19

7 -6: The slot, connect_bus, and connect_num Members Initialized 7 -21

7-7: The confll and confl2 Members Initialized 7-23

7-8: The pname and port Members Initialized 7-25

7-9: The intr Member Initialized ... ,. 7-27

7-10: The alive Member Initialized

7 -11: The framework and driver_name Members Initialized

7-12: The private, conn_priv, and rsvd Members Initialized

7 -13: The driver Member Initialized

7-14: The ctlr_type, ctlr_name, and ctlr_num Members Initialized

7 -15: The bus_name and bus_num Members Initialized

7 -16: The rctlr Member Initialized .. .

xxii Contents

7-29

7-31

7-32

7-36

7-38

7-40

7-42

7-17: The slot Member Initialized

7-18: The alive Member Initialized

7-19: The pname and port Members Initialized

7 -20: The intr Member Initialized

7-43

7-46

7-48

7-49

7-21: The addr and addr2 Members Initialized 7-51

7 -22: The flags Member Initialized 7-52

7-23: The bus_priority Member Initialized

7-24: The ivnum Member Initialized .. .

7-25: The priority Member Initialized

7 -26: The physaddr and physaddr2 Members Initialized

7-27: The private, conn_priv, and rsvd Members Initialized

7-28: The de v_type and deY_name Members Initialized

7-29: The logunit and unit Members Initialized

7-30: The ctlr_name and ctlr_num Members Initialized

7-31: The alive Member Initialized

7-32: The private, conn_priv, rsvd Members Initialized

7-33: The probe, slave, cattach, dattach, and go Members Initialized

7-34: The addr_list Member Initialized

7-35: The de v_name and dey_list Members Initialized

7-36: The ctlr_name and ctlr_Iist Members Initialized

7-37: The xc1u Member Initialized

7-38: The addrl_size, addrl_atype, addr2_size, and addr2_atype Members
Initialized

7 -39: The ctlr_unattach and dey _un attach Members Initialized

8-1: Adding Entries to the cdevsw Table for Loadable Drivers

8-2: Adding Entries to the cdevsw Table for Static Drivers

8-3: Adding Entries to the bdevsw Table for Loadable Drivers

8-4: Adding Entries to the bdevsw Table for Static Drivers

7-54

7-56

7-58

7-60

7-61

7-64

7-65

7-66

7-67

7-68

7-70

7-71

7-72

7-73

7-74

7-75

7-76

8-8

8-10

8-14

8-15

Contents xxiii

9-1 : Results of the strcmp Interface

9-2: Results of the strncmp Interface

9-3: Results of the strcpy Interface

9-4: Results of the strncpy Interface

9-5: Results of the strlen Interface

9-6: Results of the bcopy Interface

9-7: Results of the copyin Interface

9-8: Results of the copy out Interface

9-9: Results of the bdevsw_add Interface

9-10: Results of the bdevsw _del Interface

9-11: Results of the cdevsw _add Interface

9-12: Results of the cdevsw _del Interface

11-1: Third-Party Device Driver Kit Delivery Process

11-2: Driver Kit Development Environment for EasyDriver Incorporated

11-3: Comparison of .products.list File and NAME.list

11-4: Comparison of config.file File Fragment and System Configuration
File .. .

11-5: Comparison of files File Fragment and Customer's files File

11-6: Comparison of stanza.loadable File Fragment and sysconfigtab
Database .. .

11-7: Sequence of Events for Installation of Static Drivers

11-8: Sequence of Events for Installation of Loadable Drivers

11-9: Tasks for Traditional Model

11-10: Driver Development Environment for EasyDriver Incorporated
U sing the Traditional Model

12-1: A NAME.list File for EasyDriver Incorporated

12-2: Format of the Stanza Files .. .

13-1: Device Driver Configuration as Done by EasyDriver Incorporated .. .

xxiv Contents

9-3

9-4

9-5

9-6

9-7

9-11

9-13

9-14

9-26

9-27

9-29

9-30

11-3

11-5

11-8

11-10

11-12

11-13

11-20

11-22

11-24

11-25

12-12

12-18

13-2

Tables

2-1: Structure Allocation Technique Guidelines 2-25

2-2: C Compiler Data Types and Bit Sizes ... 2-34

2-3: Highlights of Differences Between DEC OSF/I and ULTRIX Kernel
Interfaces 2-47

2-4: Highlights of Differences Between DEC OSFIl and UL TRIX Data
Structures ... ,

3-1: System Data Types Frequently Used by Device Drivers

4-1: Parts of the Idev/none Device Driver

4-2: Interfaces Implemented as Part of the Autoconfiguration Support

2-49

3-5

4-2

Section 4-13

4-3: Loadable Device Driver Section 4-23

4-4: Interfaces Implemented as Part of the Open and Close Device Section. 4-34

4-5: Interfaces Implemented As Part of the Read and Write Device Section. 4-39

7 -1: Members of the bus Structure

7-2: Members of the controller Structure

7-3: Members of the device Structure

7-4: Members of the driver Structure

7-5: The Member of the port Structure

7-6: Members of the ihandler_t Structure

7-7: Members of the tc_intr_info Structure .. .

7-8: Members of the handler_key Structure

7 -9: Members of the device_config_t Structure

8-1: Members of the buf Structure .. .

8-2: Binary Status Flags Applicable to Device Drivers

8-3: Members of the uio Structure .. .

9-1 : Uses for spl Interfaces .. .

9-2: Members of the sg_entry Structure

7-14

T--33

7-62

7-69

7-76

7-77

7-79

7-81

7-82

8-3

8-4

8-18

9-17

9-53

Contents xxv

10-1: Parts of the /dev/cb Device Driver

10-2: Interfaces Implemented as Part of the Autoconfiguration Support
Section

10-3: Tasks Associated with Implementing the Loadable Device Driver
Section

10-4: Interfaces Implemented as Part of the Open and Close Device
Section

10-5: Interfaces Implemented as Part of the Read and Write Device Section.

10-6: Tasks Associated with Implementing the Strategy Section

10-7: Tasks Associated with Implementing the The ioctl Section

11-1: Contents of Device Driver Kit

11-2: Summary of System Management Tools

12-1: Contents of Device Driver Configuration-Related Files

12-2: The callout Keywords .. .

12-3: The stanza File Fields

10-1

10-18

10-27

10-41

10-45

10-54

10-70

11-16

11-18

12-2

12-10

12-19

A-I: Summary Descriptions of Header Files A-I

A-2: Summary Descriptions of Kernel Support Interfaces A-3

A-3: Summary Descriptions of Global Variables A-7

A-4: Summary Descriptions of Data Structures A-7

A-5: Summary of Block and Character Device Driver Interfaces A-9

A-6: Summary Description of Bus Configuration Interfaces A-10

xxvi Contents

About This Book

This book discusses how to write device drivers for computer systems
running the DEC OSFIl operating system.

Audience
This book is intended for systems engineers who:

• Use standard library interfaces to develop programs in the C language

• Know the Bourne or some other UNIX-based shell

• Understand basic DEC OSFIl concepts such as kernel, shell, process,
configuration, and autoconfiguration

• Understand how to use the DEC OSFIl programming tools, compilers,
and debuggers

• Develop programs in an environment involving dynamic memory
allocation, linked list data structures, and multitasking

• Understand the hardware device for which the driver is being written

• Understand the basics of the CPU hardware architecture, including
interrupts, direct memory access (DMA) operations, and I/O

Although the book assumes a strong background in UNIX-based operating
systems and C programming, it does not assume any background in device
drivers. In addition, the book assumes that the audience has no source code
licenses.

A secondary audience are systems engineers who need to implement a new
bus or make changes to the implementation of an existing bus. Topics of
interest to this audience include descriptions of the bus structure members.

Scope of the Book
The book is directed towards DEC OSFIl on computer systems developed by
Digital Equipment Corporation. However, the book provides information on
designing drivers, on OSF-based data structures, and OSF-based kernel
interfaces that would be useful to any systems engineer interested in writing
UNIX -based device drivers.

The book presents a variety of examples including:

A simple device driver that introduces the driver development process

• A character device driver operating on a TURBOchannel bus that
illustrates a minimal implementation of all the TURBOchannel hardware
functions

The book does not emphasize any specific types of device drivers. However,
mastering the concepts and examples presented in this book would be very
useful preparation for writing a variety of device drivers, including drivers
for disk and tape controllers as well as more specialized drivers such as array
processors.

Organization

Part 1 Overview
Part 1 contains one chapter, whose goal is to provide you with an overview
of device drivers. The chapter is:

Chapter 1 Introduction to Device Drivers

Provides an overview of device drivers. Read this chapter
to obtain introductory information on device drivers and to
understand the place of a device driver in DEC OSFIl.

Part 2 Anatomy of a Device Driver
Part 2 contains three chapters, whose combined goal is to provide enough
information to allow you to write a simple DEC OSFIl device driver. The
chapters are:

Chapter 2 Developing a Device Driver

Chapter 3

xxviii About This Book

Describes how to design a device driver. Read this chapter
if you are not familiar with the driver development process
on DEC OSFIl. Even if you have written UNIX device
drivers, you may want to read the sections that describe the
design issues related to loadable drivers, to CPU
architectures, and to porting drivers from ULTRIX to DEC
OSF/I.

Analyzing the Structure of a Device Driver

Analyzes the sections that make up character and block
device drivers. Read this chapter if you are not familiar
with the sections that make up character and block drivers
on DEC OSFIl. If you are experienced writing UNIX

Chapter 4

drivers, you may want to read selected sections,
particularly the section that describes how to set up a
configure interface for loadable device drivers.

Coding, Configuring, and Testing a Device Driver

Using a simple example, describes how to code, configure,
and test a device driver. Read this chapter if you have
never written a UNIX-based driver before. If you have
written a UNIX-based driver, you may want to read only
selected sections.

Part 3 Hardware Environment
Part 3 contains two chapters, whose combined goal is to provide you with a
view into the device drivers' hardware environment. The chapters are:

Chapter 5 Hardware-Independent Model and Device Drivers

Provides an overview of the hardware-independent model
and how it relates to device drivers. Read this chapter to
gain an understanding of how device drivers fit into the
hardware-independent model.

Chapter 6 Hardware Components and Hardware Activities

Describes the hardware components and activities related
to device drivers. Read this chapter to obtain an
understanding or to refresh your knowledge about the
individual hardware components you will work with when
writing your drivers.

Part 4 Kernel Environment
Part 4 contains three chapters, whose combined goal is to provide
information about the kernel environment. The chapters are:

Chapter 7 Device Autoconfiguration

Discusses the events that occur during the
auto configuration of devices, with an emphasis on how
autoconfiguration relates to static and loadable device
drivers. In addition, the chapter provides detailed
information on the data structures related to
autoconfiguration. Read this chapter if you are not
familiar with autoconfiguration on DEC OSFIl. Those of
you experienced in writing UNIX device drivers may want
to read selected sections, especially the sections that
discuss data structure members that you are not familiar
with.

About This Book xxix

Chapter 8

Chapter 9

Data Structures Used in 110 Operations

Describes members of the structures used in input/output
(110). Read this chapter if you are not familiar with the
I/O-related data structures. If you are experienced with
other UNIX 110 subsystems, you may want to read
selected sections, especially those sections that will refresh
your memory about the 110 data structures.

Using Kernel Interfaces with Device Drivers

Discusses the kernel interfaces most commonly used by
device drivers, including those interfaces used to move
data and allocate and free memory. Read this chapter if
you need examples of when, how, and why you would use
these kernel interfaces in device drivers.

Part 5 Device Driver Example
Part 5 contains one chapter, whose goal is to offer a more complex and
challenging device driver for you to analyze. The chapter is:

Chapter 10 Writing a Character Device Driver

Describes how to code a character device driver for a real
device that operates on a TURBOchannel bus. Read this
chapter if you want source code examples that exemplify a
driver implementation for a real device. Those of you
experienced in writing TURBOchannel device drivers may
want to study only selected sections of the code.

Part 6 Device Driver Configuration
Part 6 contains three chapters, whose combined goal is to provide enough
information to allow you to choose the driver configuration procedure most
suitable for your development environment. The chapters are:

Chapter 11 Device Driver Configuration Models

Chapter 12

xxx About This Book

Provides an overview of the two configuration models: the
third-party device driver configuration model and the
traditional device driver configuration model. Read this
chapter to obtain a general overview of the two models.
The third-party driver configuration model is particularly
well suited for driver developers who want to deliver DEC
OSFIl device drivers to their customers.

Device Driver Configuration Syntaxes and Mechanisms

Describes the syntaxes and mechanisms used to populate
the files needed for device driver configuration. Read this

Chapter 13

Part 7 Appendixes

chapter if you are not familiar with these syntaxes and
mechanisms.

Device Driver Configuration Examples

Provides step-by-step instructions for configuring the
example device drivers, using the third-party and
traditional models. Read this chapter to learn how to
configure the example drivers using the third-party and the
traditional driver configuration models.

Part 7 contains three appendixes and a glossary.

Appendix A Summary Tables

Appendix B

Appendix C

Glossary

Presents tables that summarize the header files, kernel
interfaces, data structures, and other interfaces used by
device drivers.

Device Driver Example Source Listings

Contains the source code listings for the examples
presented in this book.

Device Driver Development Worksheets

Provides worksheets for use in designing and coding a
device driver.

Glossary

Related Documentation
The printed version of the DEC OSFIl documentation set is color coded to
help specific audiences quickly find the books that meet their needs. (You
can order the printed documentation from Digital.) This color coding is
reinforced with the use of an icon on the spines of books. The following list
describes this convention:

Audience Icon Color Code

General Users G Teal

System Administrators S Red

Network Administrators N Yellow

Programmers P Blue

Reference Page Users R Black

About This Book xxxi

Some books in the documentation set help meet the needs of several
audiences. For example, the information in some system books is also used
by programmers. Keep this in mind when searching for information on
specific topics.

The Documentation Overview provides information on all of the books in the
DEC OSFIl documentation set.

Writing device drivers is a complex task; driver writers require knowledge in
a variety of areas. One way to acquire this knowledge is to have at least the
following categories of documentation available:

• Hardware documentation

• Bus-specific device driver documentation

• Programming tools documentation

• System management documentation

• Porting documentation

• Reference pages

The following sections list the documentation associated with each of these
categories.

Hardware Documentation
You should have available the hardware manual associated with the device
for which you are writing the device driver. Also, you should have access to
the manual that describes the architecture associated with the CPU that the
driver operates on, for example, the Alpha Architecture Reference Manual.

Bus-Specific Device Driver Documentation
Writing Device Drivers, Volume 1: Tutorial is the core book for developing
device drivers on DEC OSFIl. It contains information needed for developing
drivers on any bus that operates on Digital platforms. Writing Device
Drivers, Volume 2: Reference is a companion volume to the tutorial and
describes, in reference (man) page style, the header files, kernel interfaces,
data structures, and other interfaces used by device drivers. The following
books provide information about writing device drivers for a specific bus that
is beyond the scope of the core tutorial and reference:

• Writing EISA Bus Device Drivers

This manual provides information for systems engineers who write device
drivers for the EISA bus. The manual describes EISA bus-specific topics
including EISA bus architecture and kernel interfaces used by EISA bus
drivers.

xxxii About This Book

• Writing Device Drivers for the SCSI/CAM Architecture Interfaces

This manual provides information for systems engineers who write device
drivers for the SCSI/CAM Architecture interfaces.

The manual provides an overview of the DEC OSF/l SCSI/CAM
Architecture and describes User Agent routines, data structures, common
and generic routines and macros, error handling and debugging routines.
The manual includes information on configuration and installation.
Examples show how programmers can define SCSI/CAM device drivers
and write to the SCSI/CAM special I/O interface supplied by Digital to
process special SCSI I/O commands.

The manual also describes the SCSI/CAM Utility (SCU) used for
maintenance and diagnostics of SCSI peripheral devices and the CAM
subsystem.

• Writing TURBOchannel Device Drivers

This manual provides information for systems engineers who write device
drivers for the TURBOchannel. The manual describes TURBOchannel­
specific topics, including TURBOchannel architecture and kernel
interfaces used by TURBOchannel drivers.

Programming Tools Documentation
To create your device drivers, you use a number of programming
development tools and should have on hand the manuals that describe how to
use these tools. The following manuals provide information related to
programming tools used in the DEC OSFIl operating system environment:

• Kernel Debugging

This manual provides information on debugging a kernel and analyzing a
crash dump of a DEC OSFIl operating system. The manual provides an
overview of kernel debugging and crash dump analysis and describes the
tools used to perform these tasks. The manual includes examples with
commentary that show how to analyze a running kernel or crash dump.
The manual also describes how to write a kdbx utility extension and
how to use the various utilities for exercising disk, tape, memory, and
communications devices.

This manual is for system administrators responsible for managing the
operating system and for systems programmers writing applications and
device drivers for the operating system.

• Programming Support Tools

This manual describes several commands and utilities in the DEC OSFIl
system, including facilities for text manipulation, macro and program
generation, source file management, and software kit installation and

About This Book xxxiii

creation.

The commands and utilities described in this manual are intended
primarily for programmers, but some of them (such as grep, awk,
sed, and the Source Code Control System (SCCS)) are useful for other
users. This manual assumes that you are a moderately experienced user of
UNIX systems.

• Programmer's Guide

This manual describes the programming environment of the DEC OSFIl
operating system, with an emphasis on the C programming language.

This manual is for all programmers who use the DEC OSFIl operating
system to create or maintain programs in any supported language.

System Management Documentation
Refer to the System Administration book for information about building a
kernel and for general information on system administration. This manual
describes how to configure, use, and maintain the DEC OSFIl operating
system. It includes information on general day-to-day activities and tasks,
changing your system configuration, and locating and eliminating sources of
trouble.

This manual is for the system administrators responsible for managing the
operating system. It assumes a knowledge of operating system concepts,
commands, and configurations.

Porting Documentation
Refer to the DEC OSFll Migration Guide for a discussion of the differences
between the DEC OSFIl and UL TRIX operating systems. This manual
compares the DEC OSFIl operating system to the UL TRIX operating system
by describing the differences between the two systems.

This manual has three audiences, as follows:

• General users can read this manual to determine what differences exist
between using an UL TRIX system and using the DEC OSFIl system.

• System and network administrators can read this manual to determine
what differences exist between ULTRIX and DEC OSFIl system
administration.

• Programmers can read this manual to determine differences in the DEC
OSFIl programming environment and the UL TRIX programming
environment.

This manual assumes you are familiar with the UL TRIX operating system.

xxxiv About This Book

Reference Pages
The following provide reference (man) pages that are of interest to device
driver writers:

• Reference Pages Section 2

This section defines system calls (entries into the DEC OSF/} kernel) that
programmers use. The introduction to Section 2, intro(2), lists error
numbers with brief descriptions of their meanings. The introduction also
defines many of the terms used in this section. This section is for
programmers.

• Reference Pages Section 3

This section describes the routines available in DEC OSFIl programming
libraries, including the C library, Motif library, and X library. This
section is for programmers. In printed format, this section is divided into
volumes.

• Reference Pages Sections 4, 5, and 7

- Section 4 describes the format of system files and how the files are
used. The files described include assembler and link editor output,
system accounting, and file system formats. This section is for
programmers and system administrators.

- Section 5 contains miscellaneous information, including ASCII
character codes, mail-addressing formats, text-formatting macros, and
a description of the root file system. This section is for programmers
and system administrators.

- Section 7 describes special files, related device driver functions,
databases, and network support. This section is for programmers and
system administrators.

• Reference Pages Section 8

This section describes commands for system operation and maintenance.
It is for system administrators.

Reader's Comments
Digital welcomes your comments on this or any other DEC OSFIl manual.
You can send your comments in the following ways:

• Internet electronic mail:
readers comment@ravine.zk3.dec.com

• Fax: 603-881-0120 Attn: USG Documentation, ZK03-3/Y32

• A completed Reader's Comments form (postage paid, if mailed in the
United States). Two Reader's Comments forms are located at the back of

About This Book xxxv

each printed DEC OSFIl manual.

If you have suggestions for improving particular sections or find any errors,
please indicate the title, order number, and section numbers. Digital also
welcomes general comments.

Conventions
The following conventions are used in this book:

filename

but

[]

A vertical ellipsis indicates that a portion of an example that
would normally be present is not shown.

In syntax defip.itions, a horizontal ellipsis indicates that the
preceding item can be repeated one or more times.

In examples, syntax descriptions, and function definitions,
this typeface indicates variable values.

In function definitions and syntax definitions used in driver
configuration, this typeface is used to indicate names that you
must type exactly as shown.

In formal parameter declarations in function definitions and
in structure declarations, brackets indicate arrays. Brackets
are also used to specify ranges for device minor numbers and
device special files in stanza .loadable file fragments.
However, for the syntax definitions used in driver
configuration, these brackets indicate items that are optional.

Vertical bars separating items that appear in the syntax
definitions used in driver configuration indicate that you
choose one item from among those listed.

This book uses the word kernel "interface" instead of kernel "routine" or
kernel "macro" because, from the driver writer's point of view, it does not
matter whether the interface is a routine or a macro.

Summary of Changes and Additions
The following sections summarize the changes and additions made to each
chapter for this version of the book.

Chapter 2: Developing a Device Driver
The following list summarizes the changes and additions made to each
section in this chapter:

xxxvi About This Book

• Section 2.1.5: Providing a Description of the Device Registers

This section recommends that device drivers use two new interfaces to
access device registers: read _ io _port and wr i te _ io _port.

• Section 2.4.1: Control Status Register Issues

This section recommends that device drivers use the CSR 110 access
interfaces to read from and write to device registers.

• Section 2.4.2: Input/Output Copy Operation Issues

This section recommends that device drivers use the 110 copy interfaces
to perform I/O copy operations.

• Section 2.4.3: Direct Memory Access Operation Issues

This section recommends that device drivers use the DMA interfaces to
perform direct memory access operations.

• Section 2.4.7.1: Forcing a Barrier Between Load/Store Operations

This section uses the new interfaces read io port and
wr i te _ io _port in the code example. - -

• Section 2.4.7.2: After the CPU Has Prepared a Data Buffer in Memory

This section uses the new interface read io port in the code
example. - -

• Section 2.4.7.3: Before Attempting to Read Any Device CSRs

This section uses the new interface read io port in the code
example. - -

• Section 2.4.7.4: Between Writes

This section uses the new interface wr i te io _port in the code
example.

• Section 2.6.5: Checking Kernel Interfaces

The table in this section provides technical corrections to the remarks
column for the useracc interface.

Chapter 3: Analyzing the Structure of a Device Driver
The following list summarizes the changes and additions made to each
section in this chapter:

• Section 3.1.2.3: The devdriver.h Header File

This section mentions two new opaque data types: io handle t and
dma handle t.

• Section 3.1.4: Device Register Header File

This section describes and provides an example of another technique for

About This Book xxxvii

defining the registers of a device.

Chapter 4: Coding, Configuring, and Testing a Device Driver
The following list summarizes the changes and additions made to each
section in this chapter:

• Section 4.1.1: The nonereg.h Header File

This section uses the new technique for defining the registers of the
none device.

• Section 4.1.3: Autoconfiguration Support Declarations and Definitions
Section

This section contains a rewrite of code explanation items to reflect the use
of the new technique for defining the registers of the none device.

• Section 4.1.6.1: Implementing the noneprobe Interface

This section contains a rewrite of code explanation items to reflect the use
of the 110 handle, read _ io _port, and wr i te _ io _port.

• Section 4.1.8.2: Implementing the noneclose Interface

This section contains a rewrite of code explanation items to reflect the use
of the 110 handle and wr i te _ io _port.

Chapter 6: Hardware Components and Hardware Activities
Section 6.2.1, How a Device Driver Accesses Device Registers, contains a
rewrite to correct technical inaccuracies.

Chapter 7: Device Autoconfiguration
Section 7.4.6, The slot Member, contains a rewrite to correct technical
inaccuracies.

Chapter 9: Using Kernel Interfaces with Device Drivers
The following list summarizes the changes and additions made to each
section in this chapter:

• Section 9.1.3: Copying a Null-Terminated Character String

This section contains a rewrite of the code explanation item to make it
more technically accurate.

• Section 9.5.2: Printing Text to the Console and Error Logger

This section contains a rewrite of the code explanation item to make it
more technically accurate.

xxxviii About This Book

• Section 9.5.3: Putting a Calling Process to Sleep

This section contains a rewrite to correct technical inaccuracies.

• Section 9.7: Input/Output (I/O) Handle-Related Interfaces

This section introduces the I/O handle and the CSR I/O access and I/O
copy interface categories.

• Section 9.7.1.1: Reading Data from a Device Register

This section describes the new CSR I/O access interface
read _ io _port.

• Section 9.7.1.2: Writing Data to a Device Register

This section describes the new CSR I/O access interface
wr i te _ io _port.

• Section 9.7.2.1: Copying a B lock of Memory from I/O Address Space to
System Memory

This section describes the new I/O copy interface io _ copy in.

• Section 9.7.2.2: Copying a Block of Byte-Contiguous System Memory
to I/O Address Space

This section describes the new I/O copy interface io _ copyout.

• Section 9.7.2.3: Copying a Memory Block of I/O Address Space to
Another Memory Block of I/O Address Space

This section describes the new I/O copy interface io _ copy io.

• Section 9.8: DMA-Related Interfaces

This section introduces the DMA-related interfaces.

• Section 9.8.1: DMA Handle

This section introduces the DMA handle concept.

• Section 9.8.2: The sg_entry Structure

This section describes the data structure returned by some of the DMA­
related interfaces. This new data structure is called sg_ entry.

• Section 9.8.3: Allocating System Resources for DMA Data Transfers

This section describes the new DMA interface dma _map _ alloc.

• Section 9.8.4: Loading and Setting Allocated System Resources for
DMA Data Transfers

This section describes the new DMA interface dma _map_load.

• Section 9.8.5: Unloading System Resources for DMA Data Transfers

This section describes the new DMA interface dma _map_unload.

About This Book xxxix

• Section 9.8.6: Releasing and Deallocating Resources for DMA Data
Transfers

This section describes the new DMA interface dma _map _ dealloc.

• Section 9.8.7: Returning a Pointer to the Current Bus Address/Byte
Count Pair

This section describes the new DMA interface
dma_get_curr_sgentry.

• Section 9.8.8: Putting a New Bus Address/Byte Count Pair into the List

This section describes the new DMA interface
dma_put_curr_sgentry.

• Section 9.8.9: Returning a Kernel Segment Address of a DMA Buffer

This section describes the new DMA interface dma_kmap_buffer.

Chapter 10: Writing a Character Device Driver
The following list summarizes the changes and additions made to each
section in this chapter:

• Section 10.2: The cbreg.h Header File

This section contains a rewrite of code explanation items to reflect the use
of the new technique for defining the registers of the CB device.

• Section 10.3: Include Files Section

This section adds a define for DEV FUNNEL NULL, which the
/ dev / cb device driver uses to in@alize the d funnel member of the
cdevsw structure.

• Section 10.6: Local Structure and Variable Definitions Section

This section removes the pointer to the CB REGISTERS struture as a
member of the cb unit structure and replaces it with an 110 handle.
The associated code explanation item reflects this change.

• Section 10.8.2: Implementing the cbattach Interface

This section shows that the example driver uses the io handle t data
type to perform a type cast operation with the CB ADR -macro. The
associated code explanation item reflects this change.

• Section 10.11.1: Implementing the cbread Interface

This section updates the example code and its associated code explanation
item to reflect the use of the read _ io _port interface.

• Section 10.11.2: Implementing the cbwrite Interface

This section updates the example code and its associated code explanation
item to reflect the use of the wr i te _ io _port interface.

xl About This Book

• Section 10.12.2.3: Converting the Buffer Virtual Address

This section updates the example code and its associated code explanation
item to reflect the use of the vtop interface.

• Section 10.12.2.4: Converting the 32-Bit Physical Address

This section updates the example code and its associated code explanation
item to reflect the use of the wri te _ io _port interface.

• Section 10.13: Start Section

This section updates the example code and its associated code explanation
items to reflect the use of the read io port and wr i te io port
interfaces. - - - -

• Section 10.14.4: Performing an Interrupt Test

This section updates the example code and its associated code explanation
items to reflect the use of the read io port and wr i te io port
interfaces. - - - -

• Section 10.14.5: Returning a ROM Word, Updating the CSR, and
Stopping Increment of the Lights

This section updates the example code and its associated code explanation
items to reflect the use of the read io port and wr i te io port
interfaces. - - - -

Chapter 13: Device Driver Configuration Examples
Section 13.1.7, Providing the Contents of the Device Driver Kit, expands on
the specific contents that driver writers provide to their kit developers. Six
sections describe the following file fragments and files that become the
contents of the device driver kit:

• config. file file fragment

• f i 1 e s file fragment

• stanza .loadable file fragment

• stanza. static file fragment

• Device driver objects

Device driver load modules

Appendix A: Summary Tables
The following list summarizes the changes and additions made to each
section in this chapter:

About This Book xli

• Section A.1: List of Header Files

The table lists a new header file cpu. h.

• Section A.2: List of Kernel Support Interfaces

The table lists the following new kernel interfaces:

- dma_get_curr_sgentry

- dma_get_next_sgentry

- dma_get_private

- dma_kmap_buffer

- dma_map_alloc

- dma_map_dealloc

- dma_map_load

- dma_map_unload

- dma _min _boundary

- dma_put_curr_sgentry

- dma _put _prev _ sgentry

- dma_put_private

- drvr_register_shutdown

- io_copyin

- io_copyio

- io _ copyout

- io zero

IS KSEG VA

- KSEG TO PHYS

- PHYS TO KSEG

- read _ io _port

- vtop

- wr i te io _port

• Section A.3: List of Global Variables that Device Drivers Use

The table lists a new global variable page_size.

• Section A.4: List of Data Structures

The table lists a new data structure sg_ entry.

xlii About This Book

Appendix B: Device Driver Example Source Listings
Section B.I, Source Listing for the /dev/none Device Driver, reflects changes
made as a result of using the new interfaces read io port and
write_io_port. - -

Glossary
The following terms now appear in the glossary:

DMA handle

• I/O handle

About This Book xliii

Part 1 Overview

Introduction to Device Drivers 1

This chapter presents an overview of device drivers by discussing:

• The purpose of a device driver

• The types of device drivers

• Static versus loadable device drivers

• When a device driver is called

• The place of a device driver in DEC OSFIl

The chapter concludes with an example of how a device driver in DEC
OSFIl reads a single character.

1.1 Purpose of a Device Driver
The purpose of a device driver is to handle requests made by the kernel with
regard to a particular type of device. There is a well-defined and consistent
interface for the kernel to make these requests. By isolating device-specific
code in device drivers and by having a consistent interface to the kernel,
adding a new device is easier.

1.2 Types of Device Drivers
A device driver is a software module that resides within the DEC OSFIl
kernel and is the software interface to a hardware device or devices. A
hardware device is a peripheral, such as a disk controller, tape controller, or
network controller device. In general, there is one device driver for each type
of hardware device. Device drivers can be classified as:

• Block device drivers

• Character device drivers (including terminal drivers)

• Network device drivers

• Pseudodevice drivers

The following sections briefly discuss each type.

1.2.1 Block Device Driver
A block device driver is a driver that performs I/O by using file system
block-sized buffers from a buffer cache supplied by the kernel. The kernel
also provides for the device driver support interfaces that copy data between
the buffer cache and the address space of a process.

Block device drivers are particularly well-suited for disk drives, the most
common block devices. For block devices, all I/O occurs through the buffer
cache.

1.2.2 Character Device Driver
A character device driver does not handle input and output through the buffer
cache, so it is not tied to a single approach for handling I/O.

A character device driver can be used for a device such as a line printer that
handles one character at a time. However, character drivers are not limited to
performing I/O one character at a time (despite the name "character" driver).
For example, tape drivers frequently perform I/O in 10K chunks. You can
also use a character device driver when it is necessary to copy data directly to
or from a user process.

Because of their flexibility in handling I/O, many drivers are character
drivers. Line printers, interactive terminals, and graphics displays are
examples of devices that require character device drivers.

A terminal device driver is actually a character device driver that handles
input and output character processing for a variety of terminal devices. Like
any character device, a terminal device can accept or supply a stream of data
based on a request from a user process. It cannot be mounted as a file
system and, therefore, does not use data caching.

1.2.3 Network Device Driver
A network device driver attaches a network subsystem to a network interface,
prepares the network interface for operation, and governs the transmission
and reception of network frames over the network interface. This book does
not discuss network device drivers.

1.2.4 Pseudodevice Driver
Not all device drivers control physical hardware. Such device drivers are
called "pseudodevice" drivers. Like block and character device drivers,
pseudodevice drivers make use of the device driver interfaces. Unlike block
and character device drivers, pseudodevice drivers do not operate on a bus.
One example of a pseudodevice driver is the pseudoterminal or pty terminal
driver, which simulates a terminal device. The pty terminal driver is a

1-2 Introduction to Device Drivers

character device driver typically used for remote logins.

1.3 Static Versus Loadable Device Drivers
Traditional kernels require that device drivers be installed by performing
tasks that include rebuilding the kernel, shutting down the system, and
rebooting. In these kinds of environments, device drivers can be viewed as
static, that is, they are linked directly into the kernel at build time.
Historically, this was necessary because many kernel interfaces consisted of
static tables with no means of dynamic expansion. Thus, when changes are
made to these device drivers, the only way to link them into the kernel is to
go through the previously listed steps.

A design goal of OSFIl was to provide cleanly architected kernel interfaces
that would make it easier to add functionality to the kernel. To accomplish
the task of allowing functional enhancements at kernel run time rather than at
kernel build time, it was necessary for these kernel interfaces not to rely
exclusively on statically configured tables. Thus, a set of kernel subsystems
was defined.

A subsystem is a kernel module that defines a set of kernel framework
interfaces that allow for the dynamic configuration and unconfiguration
(adding and removal) of subsystem functionality. Examples of subsystems
include (but are not restricted to) device drivers, file systems, and network
protocols. The ability to dynamically add subsystem functionality is utilized
by loadable drivers to allow the driver to be configured and unconfigured
without the need for kernel rebuilds and reboots.

The DEC OSFIl operating system embraces and builds on this portability
and configurability philosophy by providing the ability for device drivers to
be installed dynamically at run time without having to rebuild the kernel,
shut down the system, and reboot. You must know the bus type and CPU
architecture when deciding to make your device driver loadable. For DEC
OSFIl, loadable drivers are not supported on the Alpha AXP architecture.
However, you might want to follow the approach taken by the example
drivers in this book and implement the loadable driver code now in
anticipation of future support.

1.4 When a Device Driver Is Called
Figure 1-1 shows that the kernel calls a device driver during:

• Autoconfiguration

The kernel calls a device driver at autoconfiguration time to determine
what devices are available and to initialize them.

Introduction to Device Drivers 1-3

• Input/output operations

The kernel calls a device driver to perfonn input/output (I/O) operations
on the device. These operations include opening the device to perfonn
reads and writes and closing the device.

• Interrupt handling

The kernel calls a device driver to handle interrupts from devices capable
of generating them.

• Special requests

The kernel calls a device driver to handle special requests through ioctl
calls.

• Reinitialization

The kernel calls a device driver to reinitialize the driver, the device, or
both when the bus (the path from the CPU to the device) is reset.

Figure 1-1: When the Kernel Calls a Device Driver

At autoconfiguration,
to determine availability
and to initialize

To perform I/O
resulting from
standard library
I/O calls

To handle interrupts
from the device
to say data

----I

is ready

To handle
special requests
such as an ioctl

On some buses,
to reset and reinitialize
the device

Device
Driver

Some of these requests, such as input or output, result directly or indirectly
from corresponding system calls in a user program. Other requests, such as
the calls at autoconfiguration time, do not result from system calls but from
activities that occur at boot time.

1-4 Introduction to Device Drivers

1.4.1 Place of a Device Driver in DEC OSF/1
Figure 1-2 shows the place of a device driver in DEC OSFIl relative to the
device:

User program or utility

A user program, or utility, makes calls on the kernel but never directly
calls a device driver.

• Kernel

The kernel runs in supervisor mode and does not communicate with a
device except through calls to a device driver.

Figure 1-2: Place of a Device Driver in DEC OSF/1

• Device driver

A device driver communicates with a device by reading and writing
through a bus to peripheral device registers.

• Bus

The bus is the data path between the main processor and the device
controller.

Introduction to Device Drivers 1-5

• Controller

A controller is a physical interface for controlling one or more devices.
A controller connects to a bus.

• Peripheral device

A peripheral device is a device that can be connected to a controller.
Disk and tape drives are examples of peripheral devices that can be
connected to the controller. Other devices (for example, the network)
may be integral to the controller.

The following sections describe these parts with an emphasis on how a
device driver relates to them.

1.4.2 User Program or Utility
User programs, or utilities, make system calls on the kernel that result in the
kernel making requests of a device driver. For example, a user program can
make a read system call, which calls the driver's read interface.

1.4.3 Kernel
The kernel makes requests to a device driver to perform operations on a
particular device. Some of these requests result directly from user program
requests. For example:

• Block 110 (open, strategy, close)

• Character 110 (open, write, close)

Autoconfiguration requests, such as probe and attach, do not result
directly from a user program, but result from activities performed by the
kernel. At boot time, for example, the kernel calls the driver's probe
interface.

A device driver may call on kernel support interfaces to support such tasks
as:

• Sleeping and waking (process rescheduling)

• Scheduling events

• Managing the buffer cache

• Moving or initializing data

• Configuring loadable drivers

1-6 Introduction to Device Drivers

1.4.4 Device Drivers
A device driver, run as part of the kernel software, manages each of the
device controllers on the system. Often, one device driver manages an entire
set of identical device controller interfaces. On DEC OSFIl, you can
configure more device drivers than there are physical devices configured into
the hardware system. At boot time, the autoconfiguration software can
determine which of the physical devices are accessible and functional and can
produce a correct run-time configuration for that instance of the running
kernel. Similarly, when a driver is dynamically loaded, the kernel performs
the configuration sequence for each instance of the physical device.

As stated previously, the kernel makes requests of a driver by calling the
driver's standard entry points (such as probe, attach, open, read,
wri te, close). In the case of VO requests such as read and wri te, it is
typical that the device causes an interrupt upon completion of each VO
operation. Thus, a wri te system call from a user program may result in
several calls on the interrupt entry point in addition to the original call
on the wr i te entry point. This is the case when the write request is
segmented into several partial transfers at the driver level.

Device drivers, in turn, make calls upon kernel support interfaces to perform
the tasks mentioned earlier.

The structure declaration giving the layout of the control registers for a
device is part of the source for a device driver. Device drivers, unlike the
rest of the kernel, can access and modify these registers.

1.4.5 Buses
When a device driver reads or writes to the hardware registers of a controller,
the data travels across a bus.

A bus is a physical communication path and an access protocol between a
processor and its peripherals. A bus standard, with a predefined set of logic
signals, timings, and connectors, provides a means by which many types of
device interfaces (controllers) can be built and easily combined within a
computer system. The term OPENbus refers to those buses whose
architectures and interfaces are publicly documented, allowing a vendor to
easily plug in hardware and software components. The TURBOchannel and
the VMEbus, for example, can be classified as having OPENbus
arc hi tectures.

Device driver writers must understand the bus that the device is connected to.
This book covers topics that all driver writers need to know regardless of the
bus. However, the TURBOchannel is the bus used for describing the
implementation of the / dev / none and / dev / cb example drivers.

Introduction to Device Drivers 1-7

1.4.6 Device Controller
A device controller is the hardware interface between the computer and a
peripheral device. Sometimes a controller handles several devices. In other
cases, a controller is integral to the device.

1.4.7 Peripheral Devices
A peripheral device is hardware, such as a disk controller, that connects to a
computer system. It can be controlled by commands from the computer and
can send data to the computer and receive data from it. Examples of
peripheral devices include:

• A data acquisition device, like a digitizer

• A line printer

• A disk or tape drive

1.5 Example of Reading a Character
This section provides an example of how DEC OSFIl processes a read
request of a single character in raw mode from a terminal. (Raw mode
returns single characters.) Although the example takes a simplified view of
character processing, it does illustrate how control can pass from a user
program to the kernel to the device driver. It also shows that interrupt
processing occurs asynchronously from other device driver activity. Figure
1-3 summarizes the flow of control between a user program, the kernel, the
device driver, and the hardware. The figure shows the following sequence of
events:

• A read request is made to the device driver (C-1 to C-3).

• The character is captured by the hardware (1-4 and 1-5).

• The interrupt is generated (1-6).

• The interrupt service interface handles the interrupt (1-7 to 1-9).

• The character is returned (C-10 to C-13).

Figure 1-3 provides a snapshot of the processing that occurs in the reading of
a single character. The following sections elaborate on this sequence.

1-8 Introduction to Device Drivers

Figure 1-3: Simple Character Driver Interrupt Example

Kernel

Device
Driver

Bus

~
13 -+ __ I

1
1
1
1
1

:C-11

Keyboard

gggggggfJ1l!?8g
~/iiiiiii':'~' iiiiiiiiiiiiiiiiiiiiiiiiiiii;f!!!(I;;;··············;·L u a a

: 1-4
..--------T

1

Keyboard Controller:
1
I
1
I
I
1
I
I
I
I

··············1·········

~ Device : 1-5
~ Register:
: ..

1
1
1
1
1
1

\\..---_-__ -_J ------,1
KEY

--.. = transfer data only
--. = transfer of control

1 = interrupt processing

C = calls and returns

Introduction to Device Drivers 1-9

1.5.1 A Read Request Is Made to the Device Driver
A user program issues a read system call (C-1). The figure shows that the
read system call passes three arguments: a file descriptor (the fd
argument), the character pointer to where the information is stored (the buf
argument), and an integer (the value 1) that tells the driver's read interface
how many bytes to read. The calling sequence is blocked inside the device
driver's read interface because the buffer where the data is stored is empty,
indicating that there are currently no characters available to satisfy the read.
The kernel's read interface makes a request of the device driver's read
interface to perform a read of the character based on the arguments passed by
the read system call (C-2). Essentially, the driver read interface is waiting
for a character to be typed at the terminal's keyboard. The currently blocked
process that caused the kernel to call the driver's read interface is not
running in the CPU (C-3).

1.5.2 The Character Is Captured by the Hardware
Later, a user types the letter "k" on the terminal keyboard (1-4). The letter
is stored in the device's data register (1-5).

1.5.3 The Interrupt Is Generated
When the user types a key, the console keyboard controller alters some
signals on the bus. This action notifies the CPU that something has changed
inside the console keyboard controller. This condition causes the CPU to
immediately start running the console keyboard controller's interrupt service
interface (1-6). The state of the interrupted process (either some other process
or the idle loop) is saved so that the process can be returned to its original
state as though it were never interrupted in the first place.

1.5.4 The Interrupt Service Interface Handles the Interrupt
The console device driver's interrupt service interface first checks the state of
the driver and notices that a pending read operation exists for the original
process. The console device driver manipulates the controller hardware by
way of the bus hardware in order to obtain the value of the character that was
typed. This character value was stored somewhere inside the console
controller's hardware (1-7). In this case, the value 107 (the ASCII
representation for the' 'k" character) is stored. The interrupt service
interface stores this character value into a buffer that is in a location known
to the rest of the console driver interfaces (1-8). It then awakens the original,
currently sleeping, process so that it is ready to run again (1-9). The interrupt
service interface returns, in effect restoring the interrupted process (not the
original process yet) so that it may continue where it left off.

1-10 Introduction to Device Drivers

1.5.5 The Character Is Returned
Later, the kernel's process scheduler notices that the original process is ready
to run, and so allows it to run. After the original process resumes running
(after the location where it was first blocked), it knows which buffer to look
at to obtain the typed character (C-I 0). It removes the character from this
buffer and puts it into the user's address space (C-II). The device driver's
read interface returns control to the kernel's read interface (C-12). The
kernel read interface returns control to the user program that previously
initiated the read request (C-13).

1.5.6 Summary of the Example
Although this example presents a somewhat simplified view of character
processing, it does illustrate how control passes from a user program to the
kernel to the device driver. It also shows clearly that interrupt processing
occurs asynchronously from other device driver activity.

Introduction to Device Drivers 1-11

Part 2 Anatomy of a Device Driver

Developing a Device Driver 2

This chapter discusses how you develop a device driver. Included is a simple
example called / dev / none, which is written by a fictitious third-party
driver company called EasyDriver Incorporated. The chapter uses worksheets
to illustrate the kinds of information you need to gather to make developing
the device driver easier. Appendix C provides these same worksheets for use
in developing your own device drivers. If you use the worksheets for your
driver development, consider organizing them in a device driver project
binder. This will make them available to systems engineers who need to
maintain the driver.

Specifically, the chapter describes the following tasks associated with
developing any device driver:

• Gathering information

• Designing the device driver

• Determining the structure allocation technique

• Understanding differences in CPU architectures

• Creating a device driver development environment

The chapter concludes with a section on porting device drivers. This task is
only for device driver writers who want to port device drivers from ULTRIX
to DEC OSFIl systems.

2.1 Gathering Information
The first task in writing a device driver is to gather pertinent information
about the host system and the device for which you are writing the driver.
You need to:

• Specify information about the host system

• Identify the conventions used in writing the driver

• Specify characteristics of the device

• Describe device usage

• Provide a description of the device registers

• Identify support in writing the driver

The following sections describe how you would fill out the worksheets
provided for each of these tasks, using the / dev / none device driver as an
example.

2.1.1 Specifying Information About the Host System
Figure 2-1 and Figure 2-2 show the host system information associated with
the / dev / none driver. As the worksheets show, you gather the following
information about the host system:

• The host CPU or CPUs your driver operates on

• The operating system or systems your driver operates on

• The bus or buses that your driver connects to

2.1.1.1 Specifying the Host CPU or CPUs on Which Your Driver
Operates

The / dev / none driver will be developed for use on a DEC 3000 Model
500 AXP Workstation.

The goal should always be to write any device driver to operate on more than
one CPU hardware platform, so you should be aware of any differences
presented by different CPU architectures. By identifying the hardware
platforms you want the driver to operate on, you can address any driver
design decisions related to the CPU hardware architecture. This
identification can help you determine whether one driver, with appropriate
conditional compilation statements, can handle the CPU hardware platforms
you want the driver to operate on. You might decide that it would be easier
to write two device drivers. Section 2.4 discusses some device driver design
issues that are affected by CPU architectures.

2-2 Developing a Device Driver

Figure 2-1: Host System Worksheet for /dev/none

HOST SYSTEM WORKSHEET

Specify the Host CPU

DEC 3000 Model 400 AXP Workstation
DEC 3000 Model 500 AXP Workstation
DEC 4000 Model 600 AXP Distributed/

Departmental Server
DEC 7000 Model 600 AXP Server
DEC 10000 Model 600 AXP Server

Other Alpha-based CPUs:

DECstation 5000 Model 100 D
DECstation 5000 Model 200 D
DECstation 5000 Model 300 D
DECstation 5400 D
DECstation 5500 D
DECstation 5900 D

Other MIPS-based CPUs:

D

D

Developing a Device Driver 2-3

Figure 2-2: Host System Worksheet for /dev/none (Cont.)

HOST SYSTEM WORKSHEET (Cont.)

D

D

D

D

D

E·I§9''''bi@i·]·I§FUi.i·U1M§.·M
DEC OSF/1

ULTRIX D

Other operating systems __________ _

TURBOchannel

VMEbus

Q-bus

UNIBUS

SCSI

D

D

D

D

Pseudodevice drivers D

Other buses ______________ _

2.1.1.2 Specifying the Operating System or Systems on Which Your
Driver Operates

The / dev / none driver will be developed for use on the DEC OSFIl
operating system. This is an important consideration because data structures
and kernel interfaces differ between operating systems. For example, device
drivers developed for DEC OSFIl systems might initialize a dr i ver
structure, while drivers developed for other versions of UNIX systems would
initialize a different structure. This identification can help you determine the
amount of work that is involved in porting an existing device driver from
some other UNIX operating system to the DEC OSFIl operating system.
Section 2.6 provides information to help you understand the tasks involved in

2-4 Developing a Device Driver

porting from ULTRIX to DEC OSF/) systems.

The host CPU types you select may dictate which host operating system you
can use. For example, V AX-based CPUs do not support the DEC OSFIl
operating system. When you choose a CPU type, ensure that it supports the
chosen operating system.

2.1.1.3 Specifying the Bus or Buses to Which Your Driver Connects

You must identify the bus that the device is connected to. Different buses
require different approaches to writing the driver. For example, a VMEbus
device driver writer must know how to allocate the VMEbus address space.
This task is not applicable for drivers that operate on other buses. For
example purposes, the / dev / none driver will be developed for use on the
TURBOchannel bus.

You must know the bus type and CPU architecture when deciding to make
your device driver loadable. For DEC OSFIl, loadable drivers are not
supported on the Alpha AXP architecture. However, you might want to
follow the approach taken by the example drivers in this book and implement
the loadable driver code now in anticipation of future support.

Note that the worksheet provides a space for pseudodevice drivers. A
pseudodevice driver, such as the pty terminal driver, is structured like any
other driver. The difference is that a pseudodevice driver does not operate on
a bus. This book does not specifically address pseudodevice drivers.

2.1.2 Identifying the Standards Used in Writing the Driver
Figure 2-3 and Figure 2-4 show the device driver conventions worksheet for
the / dev / none driver. As the worksheets show:

• You specify a naming scheme

• You choose an approach for writing comments and documentation

2.1.2.1 Specifying a Naming Scheme

The / dev / none driver uses the name none as the prefix for device driver
interface names. Device driver interfaces written for DEC OSFIl can use the
following naming conventions:

• A prefix that represents the name of some device. In this example, the
device is called none; therefore, each driver interface begins with that
prefix.

• The name of the interface, for example, open and close. Thus, the
example driver has interface names such as noneopen and
noneclose.

Developing a Device Driver 2-5

The / dev / none driver uses the name none as the prefix for data structures
internal to the device driver. These structures include the device register
structure and, possibly, a data structure to store driver-specific information.

The / dev / none driver uses the prefix DN for device driver constant names.
The prefix matches the first two characters in the driver name, / dev / none.
These constants can represent values or macros. For example, the constant
DN_ SIZE might represent the size of the device register area.

The previously described naming schemes are recommendations, not
requirements. The one naming requirement you must follow concerns the
name of the configure interface, which for the / dev / none driver is
none conf igure. This interface is the configuration entry point called
when the driver is dynamically loaded. For the configure interface, the
underscore character (_) must follow the driver's name. This underscore
character in the name is a requirement of the configuration process for
loadable drivers and is the aSF convention.

Before choosing a naming scheme, you have to make sure that these names
do not conflict with other driver interface and structure names. To help you
determine what names are currently used by the system, run the nm command
on the kernel image file. This image file is usually called /vmunix. If you
follow the third-party device driver configuration model described in Chapter
11, you will want to be particularly careful about choosing a naming scheme
to ensure that it does not conflict with other third-party driver vendors.

If you follow the third-party device driver configuration model, you also need
to choose a naming scheme for specifying device connectivity information in
the following files: system configuration file and the stanza. static file
fragment for static drivers and the stanza .loadable file fragment for
loadable drivers. A naming scheme is discussed along with these files in
Chapter 12. However, a brief discussion here can prepare you for a better
understanding of the naming scheme when you encounter it in Chapter 12.

Third-party driver writers may need to specify bus, controller, and device
information in the previously mentioned files. If you are supporting Digital
devices, you specify valid strings listed in the System Administration guide.
These strings represent the buses, controllers, and devices supported by
Digital.

If you are supporting non-Digital devices, you can select any string other
than those already chosen by Digital to represent the device. However,
without an exclusive naming scheme, your choices could conflict with other
third-party driver vendors. To avoid these conflicts, you can select a string
that includes the vendor and product names and, possibly, the version and
release numbers. This type of naming scheme minimizes the potential for
name conflicts. For example, the driver writers at EasyDriver Incorporated
might specify edgd for an internally developed device.

2-6 Developing a Device Driver

Figure 2-3: Device Driver Conventions Worksheet for /dev/none

DEVICE DRIVER CONVENTIONS WORKSHEET

Describe the naming scheme you are following for

1·,@t;j··ij@4i ··'Met;g'
The prefix for the /dev/none driver is none

1·14"t;j··ijN411tMii"g'
The prefix for structures internal to the

/dev/none driver is none

The naming scheme for device driver constants

is DN (for Device None)

I·M9MJa·j,j·m4M1N·eI(.jil·fiiit,j.M
The naming scheme for this information uses the

first two characters of the company name and

characters that represent the product name.

For devices supported by Digital. the naming scheme

follows that specified by Digital.

Developing a Device Driver 2-7

2.1.2.2 Choosing an Approach for Writing Comments and
Docu mentation

The / dev / none driver takes two approaches to supplying comments in the
driver code. In the first approach, the / dev / none driver contains no inline
comments. Instead, the following convention is used:
int unit = minor(dev); ill

[j] A number appears after a line of code in the / dev / none device driver
example. Following the example, a corresponding number appears that
contains an explanation of the associated line or lines. The device driver
examples in Chapter 4 and Chapter lOuse the first approach to make the
source code easier to read.

In the second approach, the / dev / none device driver supplies appropriate
inline comments. The source code listings in Appendix B use the second
approach.

In addition to providing background information and detailed explanations of
the / dev / none driver, this book also provides information on device driver
concepts, kernel interfaces, data structures, and so forth. Your approach to
writing device driver documentation may be different.

2-8 Developing a Device Driver

Figure 2-4: Device Driver Conventions Worksheet for /dev/none
(Cont.)

DEVICE DRIVER STANDARDS WORKSHEET (Cont.)

IW.MnYI'I'91iIN:fjWI.
The !dev/none device driver will take two

approaches for supplying comments:

1) The first approach has no inline comments
(source code examples in chapters)

2) The second approach uses inline comments
(source code examples in appendix)

The book that describes !dev/none also provides

information on driver concepts, device driver

interfaces, kernel structures, and so forth.

Developing a Device Driver 2-9

2.1.3 Specifying Characteristics of the Device
Figure 2-5 and Figure 2-6 show the device characteristics for the none
device associated with the / dev / none driver.

As the worksheets show, you specify the following characteristics associated
with the device:

• Whether the device is capable of block I/O

• Whether the device will support a file system

• Whether the device supports byte 'stream access

• Actions to be taken on interrupts

• How the device should be reset

• Other device characteristics

2.1.3.1 Specifying Whether the Device Is Capable of Block 1/0

If the device is capable of block I/O, then you would write a block device
driver. A block device is one that stores data on its media in a standard way.
For example, most disk drives store data in disk sectors (typically 512 bytes).
Tape drives sometimes store data in a standard size tape record.

Typically, block devices are random access devices (that is, disks) because
the file system does not always perform I/O to sequential disk sectors. Tape
devices are typically sequential access devices and, therefore, not suitable for
using as a block device.

The none device is not capable of handling blocks of data so the No box on
the worksheet is marked.

2-10 Developing a Device Driver

Figure 2-5: Device Characteristics Worksheet for the none
Device

DEVICE CHARACTERISTICS WORKSHEET

E].i49''''ttJm'HW"j·E'W1!I''mt!!MI9M
YES ¥ 1. The device is capable of block I/O c::::::J

2. The device will support a file system c::::::J ~
3. The device supports byte stream ~c::::::J access

Developing a Device Driver 2-11

2.1.3.2 Specifying Whether the Device Supports a File System

Most block devices can support file systems. If a block device supports a file
system, it must be able to map between file system blocks and the underlying
structure on the device. In DEC OSFIl, this mapping is accomplished
through partition tables.

The none device is not capable of supporting file systems, so the No box on
the worksheet is marked.

2.1.3.3 Specifying Whether the Device Supports Byte Stream Access

Most devices support byte stream access. This access can be viewed as
sequentially accessing data through the device. For example, a sequence of
characters typed at a terminal constitutes a byte stream. Most block devices
can also be accessed in this manner. When a block device is accessed as a
stream of bytes, the access is typically called' 'raw" access. When accessed
this way, the data on the block device is accessed sequentially without any
underlying structure being placed on the data (for example, disk sectors).

For the none device, the Yes box on the worksheet is marked.

2.1.3.4 Specifying Actions to Take on Interrupts

Use this space to summarize what the driver interrupt interfaces will do when
the device generates an interrupt. For example, a terminal type character
driver's interrupt service interface (lSI) can receive a character that was typed
on a user's keyboard. Typically, the lSI must determine the source of the
interrupt, respond to the interrupt (for example, by reading in the data), and
perform the appropriate actions to cause the interrupt to be dismissed.

Some other issues concerning interrupts are:

• Locking out interrupts when performing vulnerable operations

• Not locking out interrupts for an extended period of time

• Queueing the data so that handling of it can be interrupted

Because the none device has no underlying physical hardware, it cannot
generate interrupts. Therefore, this part of the worksheet is left blank.

2-12 Developing a Device Driver

Figure 2-6: Device Characteristics Worksheet for the none
Device (Cont.)

DEVICE CHARACTERISTICS WORKSHEET (Cont.)

e·I§9'''I·t·liJ''@iijl9¥1itt1!1PI.i,i41§M
This characteristic is of no concern to the

Idev/none driver

Developing a Device Driver 2-13

2.1.3.5 Specifying How to Reset the Device

If the bus that the device controller is connected to supports the reset
function, the device driver must be able to stop all current work and place the
device connected to the controller in a known, quiescent state.

For example purposes, the none device is connected to the TURBOchannel
bus. To keep the example driver simple, the reset function will not be
implemented as part of the I dev Inone device driver. Thus, this
characteristic is of no concern to the I dev I none device driver.

2.1.3.6 Specifying Other Device Characteristics

Use this space to identify other characteristics of the device that might
influence how you design your device driver.

2.1.4 Describing Device Usage
Figure 2-7 shows the device usage information for the none device
associated with the I dev I none driver. As the worksheet shows, you gather
the following information about device usage:

• The documentation you have on the device

• The number of instances of this device type that can reside on the system

• The purpose of the device

2-14 Developing a Device Driver

Figure 2-7: Device Usage Worksheet for the none Device

DEVICE USAGE WORKSHEET

List the documentation you have on the device
(the device documentation can help you answer
subsequent questions):

1. How many of this device type can reside on the system?

The dev/none driver supports four instances of the
none device

2. What will the device be used for?

Not applicable to the none device

Developing a Device Driver 2-15

2.1.4.1 Listing the Device Documentation

For a real device, you should have on hand the manual for the device that is
supplied by the manufacturer. The none device is a fictitious device;
therefore, this section of the worksheet is left blank.

2.1.4.2 Specifying the Number of Device Types to Reside on the
System

The number of devices that can be supported has a direct effect on the design
of the driver. If only one will be supported, the driver need not worry about
determining which device is being accessed. If a small number (for example,
2 - 5) is supported, the driver can use simple data structures and indexing to
keep track of device access. If a greater number is to be supported, the driver
must use more sophisticated methods to keep track of which device is being
accessed.

The I dev Inone driver is written to accommodate more than one instance.
It will allocate fixed storage for four instances of the none device.

2.1.4.3 Describing the Purpose of the Device

For this device usage item, enter a short description of the purpose of the
device. For example, the purpose of most disk devices is to provide storage
for user data and files. The purpose of most terminal devices is to provide a
means for interacting with users of the system.

This item is not applicable to the none device because it is a fictitious
device.

2.1.5 Providing a Description of the Device Registers
Figure 2-8 and Figure 2-9 show the device register information for the
I dev Inone driver. As the worksheets show, you gather the following
information about the device registers:

• A description or sketch of the layout of the device registers

The manual supplied with the device would most likely have the
following:

- The layout of the registers and their offset

- How the registers are used

The worksheet shows a structure definition of the device register for the
none device along with a comment as to its function. In previous
versions of DEC OSFIl, device drivers directly accessed the device
registers. With this version of DEC OSFIl, Digital recommends that
device drivers access the device registers by calling the read io port
and write_io_port interfaces. The Idev/none driver now accesses

2-16 Developing a Device Driver

the device registers for the none device by calling these interfaces. See
Section 9.7.1 for more information on read _ io _port and
wr i te _ io _port.

• A mapping of the device register with the memory address

Figure 2-8: Device Register Worksheet for /dev/none

DEVICE REGISTER WORKSHEET

typedef volatile struct {

1* 32-bit read/write CSR/LED register *1

int csr;

} noneJegisters;

Developing a Device Driver 2-17

Figure 2-9: Device Register Worksheet for /dev/none (Cont.)

DEVICE REGISTER WORKSHEET (Cont.)

Device Register Memory Address

csr base address + Ox2000

2-18 Developing a Device Driver

2.1.6 Identifying Support in Writing the Driver
Figure 2-10 shows the support associated with writing the / dev / none
driver.

Figure 2-10: Device Driver Support Worksheet for /dev/none

DEVICE DRIVER SUPPORT WORKSHEET

1. There is no driver for this device.
You are going to write it from scratch.

2. The driver for this device was previously
written for an UL TRIX system and the code
is available.

3. The driver for this device was previously
written for a UNIX system and the code
is available.

4. The driver for this device was previously
written for another operating system
and the code is available.

D

D

5. The existing device driver has documentation. D
If the answer is yes, specify the title
and location of documentation:

Title:-----------------
Location:. ______________ _

6. If the source code is available,
specify the location:

Location: ---------------

7. Identify any experts available whose
experience you can draw on for:
The device: Colonel Green
The design: Professor Plum

Expert's Name,
Number, Location:

The coding: Colonel Green, Mrs. White
The installation: Lieutenant Lemon, Colonel Green
The debugging: Professor Plum
The testing: Professor Plum

Developing a Device Driver 2-19

As the worksheet shows, you gather the following information about device
driver support:

• Whether you are writing the driver from scratch

Answering this question can help determine the amount of time you need
to spend writing the driver. Most device drivers are written by modifying
an existing device driver that contains similar functionality. However, if
source code for an existing driver is not available, it may take you more
time to develop the driver. The / dev / none driver will be developed
from scratch; therefore, the Yes box on the worksheet is marked.

• Whether the driver for the device was written previously for an ULTRIX
system

If the source code is available, you can update the device driver to reflect
the DEC OSFIl operating system. Section 2.6 provides information to
help you understand the tasks involved in porting from UL TRIX to DEC
OSFIl. In this case, no source code is available so the No box on the
worksheet is marked.

• Whether the driver for the device was written previously for a UNIX
system

If the source code is available, you can begin updating the device driver
by identifying areas that are different from DEC OSFIl. Other versions
of UNIX would probably have different data structures and some of the
kernel interfaces would probably behave differently and expect different
arguments. In this case, no source code is available so the No box on the
worksheet is marked.

• Whether the driver for the device was written previously for another
operating system

If the source code is available, you must study the differences between
writing a device driver on that operating system and on the DEC OSFIl
operating system. This would probably be more difficult than the
previous two situations. For the / dev / none device driver, the No box
is marked.

• Whether the existing driver has documentation

If the existing driver has documentation, specify the title and where it is
located. Look for chapters on data structures and the use of kernel
interfaces. These chapters might help in the porting task. For the
/ dev / none device driver, the No box is marked.

Location of the existing driver source code

This information is important. It allows systems engineers added to the
project to locate the source code quickly. This item is left blank for the
/ dev / none device driver.

2-20 Developing a Device Driver

• Experts available

Writing complex device drivers is always easier when you have access
not only to documentation but also to other device driver experts. The
worksheet shows the experts who helped in writing the I dev I none
device driver. Identifying your experts will make it easier for any future
driver writers who work on your driver projects.

2.2 Designing the Device Driver
After you gather information about the host system and the device, your next
task is to design the device driver. You need to:

• Specify the type of device driver

• Identify device driver entry points

The following sections describe how you would fill out the worksheets
provided for each of the above tasks, using the I dev / none device driver as
an example.

2.2.1 Specifying the Device Driver Type
Figure 2-11 shows the types of device drivers you can write on a DEC OSFIl
operating system. As the worksheet shows, you identify your driver as one
of the following:

• Block

• Character

• Block and character

• Network

When using the buffer cache to perform 1/0 on blocks of data, you use block
device drivers. Otherwise, you use character device drivers. Most device
drivers are character drivers. Some device drivers are both character and
block drivers. The network driver is another type of device driver. This book
does not discuss network device drivers. The Character box is marked for
the / dev / none device driver because it has no requirements to handle
blocks of data.

The worksheet also shows that these types of device drivers can be both
loadable and static. When a driver is both loadable and static, the system
manager decides at installation time whether to configure the driver as
loadable or static. By designing and writing the driver to be both loadable
and static, you offer customers maximum flexibility. Even though loadable
drivers are not currently supported on Alpha AXP systems, you may want to
design and implement the loadable driver-specific code.

Developing a Device Driver 2-21

The Loadable and Static boxes are marked for the / dev / none device
driver.

Figure 2-11: Device Driver Type Worksheet for /dev/none

DEVICE DRIVER TYPE WORKSHEET

E'W9''''uarJ.lj,iG'iNgM
Character

Block

Character and Block

Network

Loadable

Static

2-22 Developing a Device Driver

D

D

D

2.2.2 Identifying Device Driver Entry Points
Figure 2-12 shows the device driver entry points for the / dev / none device
driver. The worksheet is divided into parts because the possible entry points
vary depending on whether the driver is a block, character, or network driver.
Because the / dev / none driver is a character driver, the worksheet shows
the following entry points:

• noneprobe

This interface will determine if the device exists.

• nonecattach

•

•

•

This interface performs initialization for the none controller.

none_configure

This interface is the configuration entry point called when the driver is
dynamically loaded. For the configure interface, the underscore character
(_) must follow the driver's name. This underscore character in the name
is a requirement of the configuration process for loadable drivers and is
the OSF convention.

noneopen

This interface will turn on the open flag.

noneclose

This interface will turn off the open flag.

• noneread

This interface will return an EOF (end-of-file).

• nonewrite

This interface will add to the count the number of characters written.

• noneioctl

This interface will handle the following special requests:

- Reinitialize the count to zero

- Return the current count

• noneintr

This interface is a stub for future development

Chapter 3 shows you how to set up the interfaces associated with character
and block device drivers. Chapter 4 explains how the above interfaces are
implemented for the / dev / none driver.

You may want to describe the goals of the interfaces for your driver in a
more formal device driver development specification. Consider adding this
specification along with the worksheets to the device driver project binder.

Developing a Device Driver 2-23

Figure 2-12: Device Driver Entry Points Worksheet for /dev/none

DEVICE DRIVER ENTRY POINTS WORKSHEET

1:1$¥!iki§·§,Ii;'j·I.i·"M
Entry point: Name:

probe
slave
cattach
dattach
configure
open
close
strategy
ioctl
interrupt
psize
dump

'j,fiiFI§i§···i@§·§ .. ifi·i·'·"M
Entry point: Name:

probe noneprobe
slave
cattach nonecattach (stub)
dattach
configure none configure

open noneopen
close noneclose

strategy
ioctl noneioctl

stop
reset
read noneread

write nonewrite

mmap
interrupt noneintr (stub)

2-24 Developing a Device Driver

2.3 Determining the Structure Allocation Technique
Another design consideration is the technique you plan to use for allocating
data structures. Generally, there are two techniques you can follow: dynamic
allocation and static allocation. Dynamic allocation is the recommended
method; however, static allocation is discussed in this book because many
existing drivers allocate their data structures statically. Table 2-1 lists the
structure allocation techniques discussed in this book along with some
guidelines to help you choose the best method for your device drivers.
Sections that provide examples of each follow the table.

Table 2-1: Structure Allocation Technique Guidelines

Technique Guidelines for Using

Static
allocation
model 1

Static
allocation
model 2

Dynamic
allocation

Use this technique if you do not plan to
implement loadable device drivers now or
in the future.

Use this technique if you:

• Plan to implement loadable drivers now or in the future

• Know that the maximum number of devices is five or less

• Know that the driver does not use numerous data structures

Use this technique if you:

• Plan to implement loadable drivers now or in the future

• Know that the maximum number of devices is greater than five

• Know that the driver uses numerous data structures

2.3.1 Static Allocation Technique Model 1
The static allocation technique model 1 lets you statically allocate data
structures by using the compile time variable. The following code fragment
uses the none softe structure associated with the I dev Inone device
driver to illustrate the static allocation technique model 1:

/***
* softc structure used to compare static and *
* dynamic allocation techniques *
***/

Developing a Device Driver 2-25

struct none softc {
int-sc_openf;
int sc_count;

}; ill
int sc_state;

/**
* Declarations using the static technique * ~
**/

struct controller *noneinfo[NNONE];
struct none softc none_softc[NNONE];

III These lines define a structure called none softc, which is used to
share data between the different / dev / none device driver interfaces.
The members of this data structure are not important to the discussion of
the static allocation technique model 1.

I2l These declarations appear in the driver source none. c. The declarations
show that the main characteristic of this structure allocation technique is
the use of the compile time variable to size the structure arrays. Thus, in
the example, the array of pointers to controller structures and the
none softc structure array use the compile time variable NNONE.
Note that in the none softc structure array there is one structure for
each instance of the device as specified in the system configuration file.

The conf ig program defines the compile time variable for statically
configured drivers and stores it in the device driver header file. In the
example, the device driver header file created by conf ig would contain
the following entry if there were four devices on the system:
#define NNONE 4

Section 3.1.1 provides additional details about the device driver header
file and the compile time variable. The major drawback to statically
allocating the data structures is that the number of configured devices is
not available when loadable drivers are built. If you want your drivers to
be both static and loadable, you need to dynamically allocate the data
structures or statically allocate enough data structures to match the
maximum configuration.

2.3.2 Static Allocation Technique Model 2
The static allocation technique model 2 lets you statically allocate enough
data structures to accommodate the maximum configuration. To make access
to the data structures as easy as possible, you statically declare an array of

2-26 Developing a Device Driver

pointers to the data structures. The only difference between the static
allocation techniques is that static allocation technique model I uses the
compile time variable created by conf ig and static allocation technique
model 2 uses a constant that defines the maximum number of devices.

The following code fragment illustrates the static allocation model 2
technique:

/***
* structure declarations to illustrate static *
* allocation technique model 2 *
***/

#define MAX NONE 4 /* Define maximum number of */
/* devices */ [jJ

/**
* Use the constant to size the arrays * ~
**/

struct controller *noneinfo[MAX_NONE);
struct none softc none_softc[MAX_NONE);

11] If you knew that your device driver supported at most four instances of
some device (for example, four controllers), you would first declare a
constant to represent this maxium number. Thus, the example defines a
MAX_NONE constant and assigns it the maximum value 4.

You would probably want to declare this constant in a name data. c
file. See Section 3.1.5 for a description of the name_data:C file.

[2J The next two lines use the MAX NONE constant to size the respective
arrays. In the first line, MAX NONE sizes the array of pointers to
controller structures, and in the second line it sizes an array of
none softc structures.

The disadvantage of the static allocation model 2 technique is that, if you
have only one instance of the device on the system, you are wasting three of
the four declared none softc data structures. If the number of these data
structures does not exceed five and if they contain no more than a reasonable
number of data members, the static allocation model 2 technique technique is
acceptable.

2.3.3 Dynamic Allocation Technique
The previously described static allocation technique model 2 is suitable for
device drivers that support a small number of devices (five or less). Some
device drivers, however, support more than five devices and declare a

Developing a Device Driver 2-27

significant number of data structures that might contain a large amount of
data. For example, the Digital Storage Architecture (DSA) subsystem can
support up to 256 disks and at least 16 controllers. Clearly, it would not be
desirable to always allocate all the required data structures because for most
configurations there are not nearly that many devices present. Statically
allocating the maximum number of data structures would waste too much
space. The DSA subsystem and systems like it are good examples of where
dynamic configuration of the required data structures would be beneficial.

In this model of dynamically allocating the data structures, you need to:

• Determine the maximum configuration

• Statically declare an array of pointers to the data structures

• Allocate the data structures

• Access the members of the dynamically allocated data structures

• Free up the dynamically allocated memory

2.3.3.1 Determining the Maximum Configuration

The first task is to determine the maximum number of instances of the device
that can exist on your system. In the example, suppose that there can be a
maximum of 16 none devices. Thus, there is one driver that handles, at
most, 16 instances of the device. In this case, you could define a constant
similar to the following in the name_data. c file:

#define MAX NONE 16

2.3.3.2 Statically Declaring an Array of Pointers to the Data Structures

Your next task is to statically declare an array of pointers to the data
structures that will be used by the device driver. The example declares an
array of pointers to controller and none softc data structures as
follows: -

struct controller *noneinfo[MAX_NONE];
struct none_softc *none_softc[MAX_NONE];

These declarations are pointers to the data structures, not the data structures
themselves. Although this approach is not required, it is chosen for the
example because having the static array of pointers makes access to the data
structures easy.

2.3.3.3 Allocating the Data Structures

The next task is to allocate the data structures in the Autoconfiguration
Support Section of the device driver. This section is where you implement
the driver's probe, attach, and slave interfaces. The following

2-28 Developing a Device Driver

example shows how to allocate the data structures with the probe interface.

The driver's probe interface is called for each instance of the device that is
actually present on the system. This makes the probe interface one place to
dynamically allocate the data structures, as in the following example:

none probe (unit, ctlr)

{

caddr_t unit; /* Unit number of device */ ~
struct controller *ctlr;

if (unit> MAX_NONE) /* Is unit greater than 16? */ ~
return(O);

/***

}

* Allocate the softc structure associated *
* with this instance * @]
***/

if (none softc[unit] == (struct none softc *)NULL) {

}

none softc[unit] = kalloc(sizeof(struct none softc));
if (none_softc[unit] == (struct none softc *)NULL) {

return(O);
}

return(sizeof(struct none_reg));

[1] The device driver has been passed the unit number as a parameter to the
noneprobe interface. This uni t parameter tells you which instance of
the device you are referring to.

12] This if statement determines if there are more than 16 controllers. If
there are, noneprobe returns the value zero (0) to indicate an error.
Otherwise, it allocates the data structures.

@] Now you allocate the data structures associated with this instance. The
first if statement is a test to make sure that the noneprobe interface
has not already been called for this unit.

You then dynamically allocate the memory to accommodate the
none softe data structures by calling the kalloc interface and
passing to it the number of bytes to allocate.

The second if statement checks the return value from kalloc. The
return value is NULL if there is no memory available to be dynamically
allocated for this instance of the driver. The driver will not be
operational without its data structures. In this case, return the value zero
(0) to indicate that the driver's probe interface failed.

Developing a Device Driver 2-29

2.3.3.4 Accessing the Members of the Dynamically Allocated Data
Structures

After you dynamically allocate the data structures in the probe interface,
you need to correctly access them. When using the compile time variable to
size the arrays, the declaration looked like this:

struct none_softc none_softc[NNONE];

The declaration for dynamically allocating the data structures looks like this: .
struct none_softc *none_softc[MAX_NONE];

The difference is that one declares the actual data structures while the other
declares pointers to an array of the data structures. Thus, to access the data
structures, you must reference the data structures as an array of pointers:

j***
* Accessing statically allocated data *
* structures *
***j

struct controller *ctlr = noneinfo[unit];
struct none softc *sc = &none_softc[unit];

j***
* Accessing dynamically allocated data
* structures

*
*

***j
struct controller *ctlr = noneinfo[unit]; j* No change from *j

j* static allocation *j
struct none softc *sc = none_softc[unit]; j* Different from static *j

j* allocation *j

The reference to the none softe structures uses the address operator in the
static case. In the dynamiccase, the address operator is not used.

2.3.3.5 Freeing up the Dynamically Allocated Memory

Loadable drivers have a etlr unattaeh or a dev unattaeh interface.
When the driver is unloaded, these interfaces are called for each instance of
the controller or device present on the system. When these interfaces are
called, they should free up the dynamically allocated memory. For the
/dev/none device driver, the etlr_unattaeh interface frees up

2-30 Developing a Device Driver

memory as follows:

if (unit < MAX_NONE) {

/***
* Free up the dynamically allocated memory * ~
***/

if (none softc[unit] != (struct none softc *)NULL) {
kfree(none softc[unit] , sizeof(struct none softc));

/***
* Set the array element to NULL * ~
***/

none_softc[unit] = (struct none so ftc *)NULL;
}

}

[j] This example of a ctlr unattach interface uses uni t to refer to the
specific instance of the dnver / dev / none. The if statement is
included as a safety check. Note that the kfree interface is used to free
the memory previously allocated in a call to kalloc.

I2l After the dynamically allocated memory has been freed, the following
line sets the none softc array to NULL. This ensures that there will
be no dangling references to the memory.

2.4 Understanding CPU Issues That Influence Device
Driver Design
Whenever possible, you should design a device driver so that it can
accommodate peripheral devices that operate on more then one CPU
architecture. You need to consider the following issues to make your drivers
portable across CPU architectures. The discussion centers around Alpha
AXP and MIPS CPU platforms, but the topics may be applicable to other
CPU architectures:

• Control status register (CSR) access issues

• Input/output (I/O) copy operation issues

• Direct memory access (DMA) operation issues

• Memory mapping issues

• 64-bit versus 32-bit issues

• Loadable driver issues

Developing a Device Driver 2-31

• Memory barriers

2.4.1 Control Status Register Issues

Many device drivers based on UNIX access a device's control status register
(CSR) addresses directly through a device register structure. This method
involves declaring a device register structure that describes the device's
characteristics, which include a device's control status register. After
declaring the device register structure, the driver accesses the device's CSR
addresses through the member that maps to it. In the following code
fragment, the device driver accesses the none device's CSR address through
the status member of the device register structure:

/***
* Device register structure *
***/

typedef volatile struct {
int status;
int error;

}some_registers;

/***
* noneprobe interface *
***/

noneprobe(vbaddr, ctlr)
caddr t vbaddr; /* System virtual address for */

- /* the none device*/
struct controller *ctlr; /* controller structure */

/* for this unit */

/***
* Initialize pointer to none_registers *
* structure *
***/

register some_registers *reg = (struct some_registers *) vbaddr;

/***
* If device error, return 0 *
***/

if (reg->status & SOME_ERROR)
{

return(O);

/***
* Otherwise, initialize the csr *
***/

reg->status = 0;

There are some CPU architectures that do not allow you to access the device
CSR addresses directly. If you want to write your device driver to operate on

2-32 Developing a Device Driver

both types of CPU architectures, you can write one device driver with the
appropriate conditional compilation statements. You can also avoid the
potentially confusing proliferation of conditional compilation statements by
using the CSR I/O access kernel interfaces provided by DEC OSFIl to read
from and write to the device's CSR addresses. Because the CSR I/O access
interfaces are designed to be CPU hardware independent, their use not only
simplifies the readability of the driver, but also makes the driver more
portable across different CPU architectures and different CPU types within
the same architecture. Section 9.7.1 shows you how to use the CSR 1/0
access kernel interfaces to read from and write to the device's CSR
addresses.

2.4.2 Input/Output Copy Operation Issues
Inputloutput (1/0) copy operations can differ markedly from one device
driver to another because of the differences in CPU architectures. Using the
current techniques for performing I/O copy operations, you would probably
not be able to write one device driver that operates on more than one CPU
architecture or more than one CPU type within the same architecture. To
overcome this lack of portability when performing 110 copy operations, DEC
OSFIl provides generic kernel interfaces to the system-level interfaces
required by device drivers to perform an I/O copy operation. Because these
I/O copy interfaces are designed to be CPU hardware independent, their use
makes the driver more portable across different CPU architectures and more
than one CPU type within the same architecture. Section 9.7.2 shows you
how to call these I/O copy operation interfaces.

2.4.3 Direct Memory Access Operation Issues
Direct memory access (DMA) operations can differ markedly from one
device driver to another because of the DMA hardware support features for
buses on Alpha AXP systems and because of the diversity of the buses
themselves. Using the current techniques for performing DMA, you would
probably not be able to write one device driver that operates on more than
one CPU architecture or more than one CPU type within the same
architecture. To overcome this lack of portability when it comes to
performing DMA operations, DEC OSFIl provides generic kernel interfaces
to the system-level interfaces required by device drivers to perform a DMA
operation. These generic interfaces are typically called "mapping interfaces."
This is because their historical background is to acquire the hardware and
software resources needed to map contiguous I/O bus addresses and accesses
into discontiguous system memory addresses and accesses. Because these
interfaces are designed to be CPU hardware independent, their use makes the
driver more portable across different CPU architectures and more than one
CPU type within the same architecture.

Developing a Device Driver 2-33

Section 9.8 shows you how to use these mapping interfaces to achieve device
driver portability across different CPU architectures.

2.4.4 Memory Mapping Issues
Many device drivers based on UNIX provide a memory map section to
handle applications that make use of the rnmap system call. An application
calls rnmap to map a character device's memory into user address space.
Some CPU architectures, including some Alpha AXP CPU s, do not support
an application's use of the rnmap system call. If your device driver operates
only on CPUs that support the rnmap feature, you can continue writing a
memory map section. If, however, you want the device driver to operate on
CPUs that do not support the rnmap feature, you should design the device
driver so that it uses something other than a memory map section.

2.4.5 64-Bit Versus 32-Bit Issues
This section describes issues related to declaring data types for 32-bit and
64-bit CPU architectures. By paying careful attention to data types, you can
make your device drivers work on both 32-bit and 64-bit systems. Table 2-2
lists the C compiler data types and bit sizes for the MIPS 32-bit and the
Alpha AXP 64-bit CPUs.

Table 2-2: C Compiler Data Types and Bit Sizes

CType MIPS 32-Bit Data Size Alpha AXP 64-Bit Data Size

short 16 bits 16 bits

int 32 bits 32 bits

long 32 bits 64 bits

* (pointer) 32 bits 64 bits

long long 64 bits 64 bits

char 8 bits 8 bits

The following sections describe some common declaration situations:

• Declaring 32-bit variables

• Declaring 32-bit and 64-bit variables

• Declaring arguments to C interfaces (functions)

• Declaring register variables

2-34 Developing a Device Driver

• Performing bit operations on constants

• U sing NULL and zero (0) values

• Modifying type char

• Declaring bit fields

• Using printf formats

• Using mb and wbflush

• U sing the compiler keyword volatile

Note

The lusrlsys/includelio/common/iotypes.h file
defines constants used for 64-bit conversions. See Writing
Device Drivers, Volume 2: Reference for a description of the
contents of this file.

2.4.5.1 Declaring 32-Bit Variables

Declare any variable that you want to be 32 bits in size as type int, not type
long. The size of variables declared as type int is 32 bits on both the 32-
bit MIPS systems and the 64-bit Alpha AXP systems.

Look at any variables declared as type int in your existing device drivers to
determine if they hold an address. On Alpha AXP systems, sizeof
(int) is not equal to sizeof (char *).

In your existing device drivers, also look at any variable declared as type
long. If it must be 32 bits in size, you have to change the variable
declaration to type into

2.4.5.2 Declaring 32-Bit and 64-Bit Variables

If a variable should be 32 bits in size on a 32-bit MIPS system and 64 bits in
size on a 64-bit Alpha AXP system, declare it as type long.

2.4.5.3 Declaring Arguments to C Functions

Watch out for arguments to C interfaces (functions) where the argument is
not explicitly declared and typed. You should explicitly declare the formal
parameters to C interfaces; otherwise, their sizes may not match up with the
calling program. The default size is type int, which truncates 64-bit
addresses.

Developing a Device Driver 2-35

2.4.5.4 Declaring Register Variables

When you declare variables with the register keyword, the compiler
defaults its size to that of type into For example:
register somevariable;

Remember that these variable declarations also default to type in t. For
example:
unsigned somevariable;

Thus, if you want the variable to be 32 bits in size on both the 32-bit MIPS
and 64-bit Alpha AXP systems, the above declarations are correct. However,
if-you want the variable to be 32 bits in size on a 32-bit MIPS system and 64
bits in size on a 64-bit Alpha AXP system, declare the variables explicitly,
using the type long.

2.4.5.5 Performing Bit Operations on Constants

By default, constants are 32-bit quantities. When you perform shift or bit
operations on constants, the compiler gives 32-bit results. If you want a 64-
bit result, you must follow the constant with an L. Otherwise, you get a 32-
bit result. For example, the following is a left shift operation that uses the L:

long foo, bar;
foo = lL « bar;

2.4.5.6 Using NULL and Zero Values

U sing the value zero (0) where you should use the value NULL means that
you get a 32-bit constant. On Alpha AXP systems, this usage could mean
the value zero (0) in the low 32 bits and indeterminate bit values in the high
32 bits. Using NULL from the types. h file allows you to obtain the
correct value for both the MIPS and Alpha AXP CPU S.

2.4.5.7 Modifying Type char

Modifying a variable declared as type char is not atomic on Alpha AXP
systems. You will get a load of 32 or 64 bits and then byte operations to
extract, mask, and shift the byte, followed by a store of 32 or 64 bits.

2.4.5.8 Declaring Bit Fields

Bit fields declared as type int on Alpha AXP systems generate a load/store
of longword (32 bits). Bit fields declared as type long on Alpha AXP
systems generate a load/store of quadword (64 bits).

2-36 Developing a Device Driver

2.4.5.9 Using printf Formats
The printf formats %d and %x will print 32 bits of data. To obtain 64
bits of data, use %ld and %lx.

2.4.5.10 Using mb and wbflush

Device drivers used the wbflush interface in ULTRIX on MIPS CPUs.
You can continue to call wbflush because in DEC OSFIl it is aliased to
the rob interface for Alpha AXP CPU S. The remainder of this section
discusses when to call the rob interface on Alpha AXP CPU s.

In most situations that would require a cache flush on other CPU
architectures, call the rob (memory barrier) interface on DEC OSFIl Alpha
AXP. The reason is not that mb is equivalent to a cache flush (as it is not).
Rather, a common reason for doing a cache flush is to make data written by
the host CPU available in main memory for access by the DMA device or to
access from the host CPU data that was put in main memory by a DMA
device. In each case, on an Alpha AXP CPU you should synchronize with
that event by using a memory barrier.

A call to mb is occasionally needed even where a call to wbflush was not
needed. In general, a memory barrier causes loads/stores to be serialized (not
out-of-order), empties memory pipelines and write buffers, and assures that
the data cache is coherent.

You should use the rob interface to synchronize DMA buffers. Use it before
the host releases the buffer to the device and before the host accesses a buffer
filled by the device.

Alpha AXP CPUs do not guarantee to preserve write ordering, so memory
barriers are required between multiple writes to 110 registers where order is
important. The same is also true for read ordering.

Use the memory barrier to prevent writes from being collapsed in the write
buffer, that is, to prevent bytes, shorts, and ints from being merged into one
64-bit write.

Alpha AXP CPU s require that data caches be transparent. Because there is no
way to explicitly flush the data cache on an Alpha AXP platform, you need
not call rob before or after. The following code fragment illustrates the use
of a memory barrier:

bcopy (data, DMA_buffer, nbytes);
mb() ;
device->csr = GO;
mb() ;

Developing a Device Driver 2-37

Another example is presented in the following code fragment:

device_intr()
{

}

mb() ;
bcopy (DMA buffer, data, nbytes);

/* If we need to update a device register, do: */
mb() ;
device->csr = DONE;
mb() ;

Another way to look at this issue is to recognize that Alph(l. AXP CPU s
maintain cache coherency for you. However, Alpha AXP CPUs are free to
do the cache coherency in any manner and time. The events that cause you
to want to read buffers, or the events you want to trigger to release a buffer
you have written, are not guaranteed to occur at a time consistent with when
the hardware maintains cache coherency. You need the memory barrier to
achieve this synchronization.

2.4.5.11 Using the Compiler Keyword volatile

The volatile keyword prevents compiler optimizations from being
performed on data structures and variables; such actions could result in
unexpected behavior. The following example shows the use of the
volatile keyword on a device register structure:

typedef volatile struct {
unsigned adder;
unsigned pad!;
unsigned data;
unsigned pad2;
unsigned csr;
unsigned pad3; .
unsigned test;
unsigned pad4;

} CB_REGISTERS;

The following variables or data structures should be declared as volatile by
device drivers:

• Any variable or data structure that can be changed by a controller or
processor other than the system CPU

• Variables that correspond to hardware device registers

• Any variable or data structure shared with a controller or coprocessor

2-38 Developing a Device Driver

The purpose of using the volatile keyword on the example data structure
is to prevent compiler optimizations from being performed on it; such actions
could result in unexpected behavior.

2.4.6 Loadable Driver Issues
Although some CPUs do not support loadable drivers, you can implement
device drivers that are both loadable and static. In fact, you might want to
implement the loadable sections of the device driver now in anticipation that
the CPU will eventually support loadable drivers. Chapter 10 shows how to
implement a character device driver that is both loadable and static. This
driver is implemented in such a way that the differences between the loadable
and static versions of the driver are identified at run time and not at compile
time.

2.4.7 Memory Barriers
The Alpha AXP architecture, unlike traditional CPU architectures, does not
guarantee read/write ordering. That is, the memory subsystem is free to
complete read and write operations in any order that is optimal, without
regard for the order in which they were issued. Read/write ordering is not
the same as cache coherency, which is handled separately and is not an issue.
The Alpha AXP architecture also contains a write buffer (as do many high­
performance RISC CPUs, including the MIPS R3000). This write buffer can
coalesce multiple writes to identical or adjacent addresses into a single write,
effectively losing earlier write requests. Similarly, multiple reads to the same
identical or adjacent addresses can be coalesced into a single read.

This coalescing has implications for multiprocessor systems, as well as
systems with off-board I/O or DMA engines that can read or modify memory
asynchronously or that can require multiple writes to actually issue multiple
data items. The mb (memory barrier) interface guarantees ordering of
operations. The mb interface is derived from the MB instruction, which is
described in the Alpha Architecture Reference Manual.

The mb interface is a superset of the wbflush interface used on MIPS
CPUs. For compatibility, wbflush is aliased to mb in DEC OSFIl Alpha
AXP.

You call mb in a device driver under the following circumstances:

• To force a barrier between load/store operations

• After the CPU has prepared a data buffer in memory and before the
device driver tries to perform a DMA out of the buffer

• Before attempting to read any device CSRs after taking a device interrupt

• Between writes

Developing a Device Driver 2-39

Each of these is briefly discussed in the following sections.

Note

Device drivers and the DEC OSFIl operating system are the
primary users of the rob interface. However, some user
programs, such as a graphics program that directly maps the
frame buffer and manipulates registers, might need to call rob.
The DEC OSFIl operating system does not provide a C library
interface for rob. User programs that require use of rob should
use the following asro construct:
#include <c asm.h>

asm ("mb");

2.4.7.1 Forcing a Barrier Between Load/Store Operations

You can call the rob interface to force a barrier between load/store operations.
This call ensures that all previous load/store operations access memory or I/O
space before any subsequent load/store operations. The following call to rob
ensures that the first register is physically written before the load attempts to
read the second register. The call assumes that device is an I/O handle that
you can use to reference a device register located in bus address space (either
110 space or memory space). You can perform standard C mathematical
operations on the I/O handle. For example, this code fragment adds the 110
handle and general register 1 and general register 2 in the calls to
wr i te _ io _port and read _ io _port.

#define csr ° /* Command/Status register */
#define reg1 8 /* General register 1 */
#define reg2 16 /* General register 2 */

write io port(device + reg1, 8, 0, value); ill
mb (); I2r
next value = read_io_port(device + reg2, 8, 0); ~

[I Writes the first value to general register 1 by calling the
wr i te io port interface. In previous versions of this book, this code
fragmellt directly accessed the device registers. The code fragment now
follows the recommendation of accessing the device registers by calling

2-40 Developing a Device Driver

write io port. See Section 9.7.1.2 for a discussion of
wr i te = io =port.

121 Calls the rob interface to ensure that the write of the value is completed.

I3l Reads the new value from general register 2 by calling the
read io port interface. In previous versions of this book, this code
fragment dIrectly accessed the device registers. The code fragment now
follows the recommendation of accessing the device registers by calling
the read io port interface. See Section 9.7.1.1 for a discussion of
read _ i~port.

2.4.7.2 After the CPU Has Prepared a Data Buffer in Memory

You call the rob interface after the CPU has prepared a data buffer in memory
and before the device driver tries to perform a DMA out of the buffer. You
also call rob in device drivers that perform a DMA into memory and before
using the data in the DMA buffer. The following calls to rob ensure that data
is available (out of memory pipelines/write buffers) and that the data cache is
coherent. The call assumes that device is an 110 handle that you can use
to reference a device register located in bus address space (either 110 space or
memory space). You can perform standard C mathematical operations on the
110 handle. For example, this code fragment adds the 110 handle and the
command/status register in the call to read _ io _port.

#define csr ° /* Command/status register */
#define reg1 8 /* General register 1 */
#define reg2 16 /* General register 2 */

io handle t device;

bcopy (data, dma buf); ill
rob (); [2] -
write_io_port(device + csr, 8, 0, START_DMA); ~

/* or */ ~

if (read io port(device + csr, 8, 0) I DMA_DONE)
rob (); -

bcopy (dma_buf, data);
}

ill Writes the data into the DMA buffer.

Developing a Device Driver 2-41

12I Calls the rob interface to ensure that the write of the data is completed.

\al Issues the start command to the device.

~ This sequence of code presents another way to accomplish the same
thing. In previous versions of this book, this code fragment directly
accessed the device registers. The code fragment now follows the
recommendation of accessing the device registers by calling the
read io port interface. See Section 9.7.1.1 for a discussion of
read:= io :=port.

If the DMA is finished:

- Calls the rob interface to ensure that the buffer is correct

- Gets the data from the DMA buffer

2.4.7.3 Before Attempting to Read Any Device CSRs

You call the rob interface before attempting to read any device CSRs after
taking a device interrupt. The call assumes that device is an I/O handle
that you can use to reference a device register located in bus address space
(either I/O space or memory space). You can perform standard C
mathematical operations on the I/O handle. For example, this code fragment
adds the I/O handle and the command/status register in the call to
read _ io _port.

#define csr 0 /* Command/Status register */
#define reg1 8 /* General register 1 */
#define reg2 16 /* General register 2 */

io handle t device;

device_intr()
{

mb(); ill
stat = read io_port(device + csr, 8, 0); ~

/* or */ IaI

mb() ;
bcopy (dma_buf, data);

}

ill Calls the rob interface to ensure that the device CSR write completes.

2-42 Developing a Device Driver

121 Reads the status from the device. In previous versions of this book, this
code fragment directly accessed the device registers. The code fragment
now follows the recommendation of accessing the device registers by
calling the read io port interface. See Section 9.7.1.1 for a
discussion of read _ fo _port.

13.1 This sequence of code presents another way to accomplish the same
thing. It calls the mb interface to ensure that the buffer is correct. It then
gets the data from the DMA buffer by calling the bcopy interface.

Note

DEC OSFIl on Alpha AXP provides a memory barrier in the
interrupt stream before calling any device interrupt service
interfaces. Thus, a call to rob is not strictly necessary in the
device interrupt case. For performance reasons in the device
interrupt case, you can omit the call to mb.

2.4.7.4 Between Writes

You call the mb interface between writes if you do not want a write buffer to
collapse the writes (merge bytes/shorts/ints/quads or reorder). The call
assumes that device is an 110 handle that you can use to reference a device
register located in bus address space (either 110 space or memory space).
You can perform standard C mathematical operations on the 110 handle. For
example, this code fragment adds the 110 handle and general register 1 and

. general register 2 in the calls to wr i te _ io _port.

#define csr 0 /* Command/Status register */
#define reg1 8 /* General register 1 */
#define reg2 16 /* General register 2 */

io handle t device;

*ptr = value; [j]
rob (); I2l
*(ptr+1) = value2; ~

/* or */ ~

write_io_port(device + reg1, 8, 0, value);

Developing a Device Driver 2-43

rob ();
write_io_port(device + reg2, 8, 0, value2);

ill Writes the first location.

I2l Calls the rnb interface to force a write out of the write buffer.

13I Writes the second location.

l4l This sequence of code illustrates an example more specifically tailored to
device drivers. Note that this use of mb is exactly equivalent to
wbflush.

In previous versions of this book, this code fragment directly accessed the
device registers. The code fragment now follows the recommendation of
accessing the device registers by calling the write io port interface.
See Section 9.7.1.2 for a discussion ofwrite_io_port. This
sequence:

- Writes the first location by calling wr i te _ io _port.

- Calls mb to force a write out of the write buffer

- Writes the second location by calling wr i te _ io _port a second
time.

Note

The Alpha Architecture Reference Manual (1992 edition) has a
technical error in the description of the MB instruction. It
specifies that MB is needed only on multiprocessor systems. This
statement is not accurate. The MB instruction must be used in
any system to guarantee correctly ordered access to I/O registers
or memory that can be accessed via off-board DMA. All such
off-board I/O and DMA engines are considered "processors" in
the Alpha AXP's definition of multiprocessor.

2.5 Creating a Device Driver Development and Kitting
Environment
When you are ready to write your driver, you will probably want to design a
logical directory structure to hold the different files associated with the
driver. Chapter 11 discusses the device driver configuration models and
provides examples of driver development environments suitable for the
third-party and traditional device driver configuration models.

2-44 Developing a Device Driver

2.6 Porting UL TRIX Device Drivers to the DEC OSF/1
Operating System
This section discusses the tasks you need to perform when porting device
drivers from the ULTRIX operating system (running on Digital hardware) to
the DEC OSFIl operating system (also running on Digital hardware). The
section does not discuss how to port drivers running on other UNIX
operating systems, such as System V, or running on other hardware
platforms, such as Sun Microsystems. Specifically, you need to:

• Write test suites

• Check header files

• Review device driver configuration

• Check driver interfaces

• Check kernel interfaces

• Check data structures

These tasks are discussed in the following sections.

2.6.1 Writing Test Suites
Porting a device driver requires that you understand the hardware device and
the associated driver you want to port. One way to learn about the hardware
device and its associated driver is to run a test suite, if it exists, on the
machine and the operating system you are porting from (the source machine
and the source operating system). If the test suite does not exist, you need to
write a full test suite for that device on the source machine and the source
operating system. For example, if you port a device driver written for a
Digital CPU running the UL TRIX operating system, write the full test suite
on that Digital CPU.

Write the test suite so that only minimal changes are necessary when you
move it to the Digital CPU running the DEC OSFIl operating system you are
porting to (the target machine and the target operating system). The test suite
represents a cross section of your users, and they should not have to modify
their applications to work with the ported driver. You need to have both the
source machine and source operating system and the target machine and
target operating system on a network or make them accessible through a
common interface, such as the Small Computer System Interface (SCSI).

After writing the test suite on the source machine, move the driver and the
test suite to the target machine. Move only the • c and the • h files that were
created for the driver. Do not copy any header or binary executable files
because these files on the source machine will. probably not be compatible on
the target machine.

Developing a Device Driver 2-45

2.6.2 Checking Header Files
Check the header files in the driver you want to port with those in the DEC
OSFIl device drivers. Section 3.1 provides information on the header files
used in DEC OSFIl, including those header files related to loadable device
drivers. Writing Device Drivers, Volume 2: Reference provides reference
(man) page-style descriptions of the header files most frequently used by
DEC OSFIl device drivers.

The following example summarizes the differences in the way header files are
included in device drivers on ULTRIX and DEC OSFIl systems:

/* Header Files Included in ULTRIX */ m
#include " •. /h/types.h"

/* Header Files Included in DEC OSF/l */ m
#include <sys/types.h>

111 This example shows that drivers written for DEC OSFIl use left «) and
right (» angle brackets, instead of the begin (") and end (") quotes used
in ULTRIX pathnames. Note also that the location of the file has
changed for DEC OSFIl.

2.6.3 Reviewing Device Driver Configuration
Device driver configuration on ULTRIX systems follows what this book
refers to as the traditional model. The DEC OSFIl operating system
supports both the traditional model and the third-party device driver
configuration model, as described in Chapter 11. Chapter 13 gives examples
on configuring drivers by using both the third-party and the traditional
models.

2.6.4 Checking Driver Interfaces
You need to check the driver interfaces used in ULTRIX device drivers and
to compare them with those used in DEC OSFIl device drivers. Writing
Device Drivers, Volume 2: Reference provides reference (man) page-style
descriptions of the driver interfaces used by DEC OSFIl device drivers. Use
this information to compare the interface's behavior, number and type of
arguments, return values, and so forth with its associated ULTRIX driver
interface.

2-46 Developing a Device Driver

2.6.5 Checking Kernel Interfaces
You need to check the kernel interfaces used in UL TRIX device drivers and
to compare them with those used in DEC OSFIl device drivers. Writing
Device Drivers, Volume 2: Reference provides reference (man) page-style
descriptions of the kernel interfaces used by DEC OSF/l device drivers. Use
this information to compare the interface's behavior, number and type of
arguments, return values, and so forth with its associated UL TRIX kernel
interface. Table 2-3 lists some of these differences.

Table 2-3: Highlights of Differences Between DEC OSF/1 and
ULTRIX Kernel Interfaces

Kernel I nterface Remarks

BADADDR Device drivers written for UL TRIX systems use the BADADDR
interface in the autoconfiguration section to determine if a device
is present on the system. You can use BADADDR in device
drivers that are configured statically on DEC OSF/I. However,
you cannot use BADADDR in device drivers that are configured as
loadable on DEC OSFIl.

bufflush

KM ALLOe

KM FREE

printf
interfaces

selwakeup

Loadable device drivers cannot call the BADADDR interface
because it is usable only in the early stages of system booting.
Loadable device drivers are loaded during the multiboot stage. If
your driver is both loadable and static, you can declare a variable
and use it to control any differences in the tasks performed by the
loadable and static drivers. Thus, the static driver can still call
BADADDR.

Section 4.1.6.1
shows how noneprobe uses such a variable called
none_is _dynamic.

ULTRIX BSD device drivers written for platforms based on
MIPS use the bu f flu s h interface. This interface is not used for
platforms based on Alpha AXP. Therefore, delete this interface
from your device driver.

Replace calls to KM ALLoe with calls to kalloc. Note that
kalloc does not zero out memory.

Replace calls to KM _FREE with calls to kfree.

ULTRIX device drivers can call cprintf, mprintf, printf,
and uprintf. DEC OSFIl device drivers can call printf and
uprintf.

The selwakeup interface is not used in DEC OSFIl. Replace
calls to selwakeup with calls to select wakeup. Note that
the formal parameters for the two interfaces are different.

Developing a Device Driver 2-47

Table 2-3: (continued)

Kernel Interface Remarks

useracc The useracc interface is obsolete on DEC aSF/I. If you called
useracc with vslock, replace both interfaces with a call to
vm map pageable. Typically, the useracc interface was
called by the driver's xxstrategy interface. In most cases, the
driver's xxstrategy interface would be called indirectly from
the physio interface (in response to read and write system
calls or file-system access). In DEC aSFIl, the physio
interface verifies access permissions to the user buffer and locks
down the memory. For this reason, in existing drivers that may
have historically called useracc, it is no longer necessary to
perform such a check and subsequent locking of memory with
vslock. The general rule is that any interface called from the
physio interface (that is, the driver's xxstrategy interface)
should not call useracc or its replacement
vm map pageable because the phys io interface performs
those functions.

If you called useracc prior to accessing user data, replace it
with calls to copyin and copyout to access user space.
Calling useracc simply verifies access permissions to the
specified memory at the time the useracc interface is called. It
is possible that immediately after the useracc interface has
returned back to the driver that the corresponding memory could
be invalid. The memory could be invalid if it was swapped out
or otherwise remapped by the virtual memory management
portion of the kernel. Therefore, a driver should not assume that
the memory region whose access permissions are verified through
a call to useracc is persistent. In DEC aSFIl, calls to
useracc are either unnecessary (as previously explained) or
should be replaced by direct calls to vm map pageable. This
interface performs functions for both venfying access permissions
and for locking down the memory so that it cannot be invalidated
until it is unlocked by subsequent calls to vm map page able
for this memory reigon. - -

vslock The vslock interface is obsolete on DEC aSF/I. Therefore,
replace calls to vslock with calls to vm _map _pageable.

vsunlock The vsunlock interface is obsolete on DEC aSFIl. Therefore,
replace calls to vsunlock with calls to vm _map _pageable.

2-48 Developing a Device Driver

2.6.6 Checking Data Structures
You need to check the data structures used in ULTRIX device drivers and
compare them to those used in DEC OSFIl device drivers. Writing Device
Drivers, Volume 2: Reference provides reference (man) page-style
descriptions of the data structures used by DEC OSFIl device drivers. Use
this information to compare the data structure's members with its associated
UL TRIX data structure. Table 2-4 lists some of these differences.

Table 2-4: Highlights of Differences Between DEC OSF/1 and
ULTRIX Data Structures

Data Structure Remarks

uba ctlr Replace references to the uba ctlr structure and its associated
members with references to the controller structure and its
associated members.

uba device

uba driver

Replace references to the uba device structure and its
associated members with references to the device structure and
its associated members. Make sure that the reference is to a
slave, for example, a disk or tape drive. If the reference is to a
controller, reference the controller structure, not the device
structure.

Replace references to the uba dr i ver structure and its
associated members with references to the dr i ver structure and
its associated members.

Developing a Device Driver 2-49

Analyzing the Structure of a Device 3
Driver

Before implementing the sample device driver discussed in the previous
chapter, you need to understand the sections of a DEC OSFIl device driver.
Analyzing the sections of a device driver gives you the opportunity to learn
how to set up the device driver interfaces in preparation for writing your own
device drivers. This chapter mentions some structures (for example, the
device structure) you may not be familiar with yet. However, to learn how
to set up the device driver interfaces, you do not need an intimate
understanding of the structures. Chapter 7 discusses these structures.

The sections that make up a DEC OSFIl device driver differ depending on
whether the driver is a block, character, or network driver. Figure 3-1
illustrates the sections that a character device driver can contain and the
possible sections for a block device driver. Device drivers are not required to
use all of the sections and more complex drivers can have additional sections.

Both types of drivers contain:

• An include files section

• A declarations section

• An autoconfiguration support section

• A configure section (only for loadable drivers)

• An open and close device section

• An ioctl section

• An interrupt section

The block device driver can also contain a strategy section, a psize section,
and a dump section.

The character device driver contains the following sections not contained in a
block device driver:

• A read and write device section

• A reset section

• A stop section

• A select section

• A memory map section (only for CPUs that include map registers)

Each device driver section is described in the following sections. For
convenience in referring to the names for the driver interfaces, the chapter
uses the prefix xx. For example, xxprobe refers to a probe interface for
some XX device.

3-2 Analyzing the Structure of a Device Driver

Figure 3-1: Sections of a Character Device Driver and a Block
Device Driver

Character Device Driver Block Device Driver

/* Include Files Section */ /* Include Files Section */

/* Declarations Section * / /* Declarations Section */

/* Autoconfiguration Support Section */ /* Autoconfiguration Support Section */

/* Configure Section */ /* Configure Section */

/* Open and Close Device Section */ /* Open and Close Device Section */

/* ioctl Section */ /* ioctl Section */

/* Interrupt Section */ /* Interrupt Section */

/* Read and Write Device Section * /
/* Strategy Section */

/* Reset Section * /
/* psize Section * /

/* Stop Section */
/* Dump Section */

/* Select Section * /

/* Memory Map (mmap) Section */

Analyzing the Structure of a Device Driver 3-3

3.1 Include Files Section
Data structures and constant values are defined in header files that you
include in the include files section of the driver source code. The number
and types of header files you specify in the include files section vary,
depending on such things as what structures, constants, and kernel interfaces
your device driver references. You need to be familiar with:

• The device driver header file

• The common driver header files

• The loadable driver header files

• The device register header file

• The name data. c file

The following sections describe these categories of header files. Writing
Device Drivers, Volume 2: Reference provides reference (man) page-style
descriptions of the header files most frequently used by DEC OSFIl device
drivers.

3.1.1 Device Driver Header File
The device driver header file contains #define statements for as many
devices as are configured into the system. This file is generated by the
conf ig program during static configuration of the device driver. This file
need not be included if you configure the driver as a loadable driver.

The conf ig program creates the name for this file by using the name of the
controller or device that you specify in the system configuration file. For
example, if you specified rd as the device in the system configuration file,
conf ig creates a header file called rd. h. The following example shows
the possible contents for the rd. h device driver header file:

#define NRD 1

The config program creates a compile time variable, in this example NRD,
which defines how many devices exist on the system. This variable is set to
the value zero (0) to indicate that no devices exist on the system. It is set to
a specific number, for example 4, to indicate that four devices exist on the
system. Many existing ULTRIX-based drivers use this compile-time variable
in device driver code to refer to the number of this type of device on the
system. This usage most frequently occurs in structure array declarations and
in condition (for example, if and while) statements.

3-4 Analyzing the Structure of a Device Driver

3.1.2 Common Driver Header Files
The following example lists the header files most frequently used by device
drivers:

#include <sys/types.h>
#include <sys/errno.h>
#include <io/common/devdriver.h>
#include <sys/uio.h>
#include <machine/cpu.h>

The example shows that device drivers should not use explicit pathnames.
Using angle brackets « and» means you will not have to make changes to
your device driver if the file path changes.

The following sections contain brief descriptions of the previously listed
common driver header files.

3.1.2.1 The types.h Header File

The header file /usr/sys/include/sys/types.h defines system data
types used to declare members in the data structures referenced by device
drivers. Table 3-1 lists the system data types most frequently used by device
drivers.

Table 3-1: System Data Types Frequently Used by Device
Drivers

Data Type

daddr t

caddr t

ina t

dev t

off t

paddr_t

time t

u short

Meaning

Block device address

Main memory virtual address

Inode index

Device major and minor numbers

File offset

Main memory physical address

System time

unsigned short

The /usr / sys/ include/ sys/types. h header file includes the file
/mach/machine/vm types. h. This file defines the data type
vm offset t, which driver writers should use when addresses are treated
as arithmetic quantities (that is, as ints and longs). The vm offset t data
type is defined as unsigned long on Alpha AXP and as unsigned

Analyzing the Structure of a Device Driver 3-5

int on MIPS.

3.1.2.2 The errno.h Header File

The header file /usr/sys/include/sys/errno.h defines the error
codes returned to a user process by a device driver. Examples of these error
codes include E INVAL (invalid argument), ENODEV (no such device), and
EIO (110 error).

3.1.2.3 The devdriver.h Header File

The header file /usr/sys/include/io/common/devdriver.h
defines structures, constants, data types, and external interfaces used by
device drivers and the autoconfiguration software. Two opaque data types
that you can use to make your device drivers more portable are
io handle t and dma handle t. See Section 9.7 for a discussion of
the 1/0 handle.

3.1.2.4 The uio.h Header File

The header file /usr/sys/include/sys/uio.h contains the definition
of the uio structure. The kernel sets up and uses the uio structures to read
and write data. Character device drivers include this file because they may
reference the uio structure.

3.1.3 Loadable Driver Header Files
You need to include the following files related to loadable device drivers:
#include <sys/conf.h>
#include <sys/sysconfig.h>

The following sections contain brief descriptions of these files.

3.1.3.1 The conf.h Header File

The header file /usr/sys/include/sys/conf.h defines the bdevsw
(block device switch) and cdevsw (character device switch) tables. This file
should be included by loadable block and character device drivers because
these drivers define and then initialize entry points for the bdevsw and
cdevsw tables. In the case of loadable device drivers, the driver then passes
the initialized structure to the bdevsw add or cdevsw add kernel
interfaces. Section 8.2 describes the device switch tables~

3-6 Analyzing the Structure of a Device Driver

3.1.3.2 The sysconfig.h Header File

The header file lusrlsys/include/sys/sysconfig. h defines
operation codes and data structures used in loadable device driver
configuration. The operation codes define the action to be performed by the
driver configure interface. Examples of the operation types include
configure, unconfigure, and query. This file also defines many of the
constants that are shared between the device driver method and the drivers
themselves. Within this file also appears the declaration of the data structure
that is passed to and returned from the driver's configure interface. Section
3.4 shows how to set up the configure interface.

3.1.4 Device Register Header File
The device register header file contains any public declarations used by the
device driver. This file usually contains the device register structure
associated with the device. A device register structure is a C structure whose
members map to the registers of some device. These registers are often
referred to as the device's control status register or CSR addresses. The
device driver writer creates the device register header file.

The following example shows a device register structure contained in a
device register header file for a device driver written for a TURBOchannel
test board:
typedef volatile struct {

unsigned adder;
unsigned padl;
unsigned data;
unsigned pad2;
unsigned csr;
unsigned pad3;
unsigned test;
unsigned pad4;

CB_REGISTERS;

The example shows the use of the compiler keyword volatile. Section
2.4.5.11 provides guidelines for which variables and data strucures device
drivers should declare as volatile.

The device register structure is most often used in device drivers that directly
access a device's CSR addresses. There are some CPU architectures that do
not allow you to access the device CSR addresses directly. If you want to
write your device driver to operate on both types of CPU architectures, you
can write one device driver with the appropriate conditional compilation
statements. You can also avoid the potentially confusing proliferation of
conditional compilation statements by using the CSR I/O access kernel
interfaces provided by DEC OSFIl to read from and write to the device's
CSR addresses. Because the CSR I/O access interfaces are designed to be
CPU hardware independent, their use not only simplifies the readability of

Analyzing the Structure of a Device Driver 3-7

3.1.5

the driver, but also makes the driver more portable across different CPU
architectures and different CPU types within the same architecture. Section
9.7.1 shows you how to use the CSR I/O access kernel interfaces to read
from and write to the device's CSR addresses.

This technique of calling kernel interfaces to access a device's CSR addresses
also requires defining the registers of a device, usually through constants that
map to these device registers. The following example shows the device
register definitions contained in a device register header file for a device
driver that uses the kernel interfaces to access a device's CSR addresses:
j***
* Define offsets to nvram device registers *
***j

#define ENVRAM CSR OxcOO j* CSR *j
#define ENVRAM BAT Oxc04 j* Battery Disconnect *j
#define ENVRAM HIBASE Oxc08 j* Ext. Mem Config *j
#define ENVRAM CONFIG OxcOc j* EISA config reg *j
#define ENVRAM ID Oxc80 j* EISA ID reg *j
#define ENVRAM CTRL Oxc84 j* EISA control *j
#define ENVRAM DMAO Oxc88 j* DMA addr reg o *j
#define ENVRAM DMAI Oxc8c j* DMA addr reg 1 *j

The name data.c File -

The name_data. c file provides a convenient place to size the data
structures and data structure arrays that device drivers use. In addition, the
file can contain definitions that third-party driver writers might want their
customers to change. This file is particularly convenient for third-party
driver writers who do not want to ship device driver sources. The device
driver writer creates the name data. c file.

The name argument is usually based on the device name. For example, the
none device's name data. c file is called none data. c. The CB
device's name data. c file is called cb data. ~ The edgd device's
name_data. c file would be called edgd _data. c.

The name data. c files supplied by Digital Equipment Corporation are
found in the lusr I sys I data directory. The following example illustrates
some of the name data.c files contained in the lusrlsys/data
directory for DECOSF/l:

audit data.c
autoconf data.c
binlog_data.c
cam data.c
cam-special data.c
ci data.c -
cippd_data.c

ga_data.c
gvp_data.c
gw_screen_data.c
gx data.c
if-fta data.c
if fza data.c
if In data.c

np_data.c
pmap_data.c
presto_data.c
scc data.c
scs data.c
sysap data.c
tc_option_data.c

Third-party device driver writers can place their name data. c file in a
products directory with all of the other files they plan to ship to customers.

3-8 Analyzing the Structure of a Device Driver

Figure 11-2 shows a sample directory structure for the fictitious driver
development company, EasyDriver Incorporated.

3.2 Declarations Section
The declarations section of a block or character device driver contains:

• Definitions of symbolic names

• Variable declarations

• Structure declarations

• Declarations of driver interfaces

The following example shows the declarations section for a device driver.
The example provides declarations and initializations that would be provided
in any device driver:
/* Definitions of symbolic names */
define MAX XFR 4

/* Variable declarations */
extern int hz;

/* Structure declarations */
struct controller *cbinfo[NCB];

/* Declarations of driver interfaces */
int cbstart(), cbprobe(), cbattach(), cbstrategy(), cbminphys();

Note the compile time variable NCB is used to size the array of pointers to
controller structures. This usage is an example of statically allocating
data structures. Section 2.3 provides information to help you choose an
appropriate data structure allocation technique.

3.3 Autoconfiguration Support Section
When DEC OSFIl boots, the kernel determines what devices are connected
to the computer. After finding a device, the kernel initializes it so that the
device can be used at a later time. The probe interface determines if a
particular device is present and the attach interface initializes the device.

The system performs a functionally equivalent process when a loadable
driver is configured. A loadable driver, like the static driver, has a probe,

Analyzing the Structure of a Device Driver 3-9

attach, and possibly a slave interface. From the device driver writer's point
of view, these interfaces are the same for static and loadable drivers.

The autoconfiguration support section of a device driver contains the code
that implements these interfaces and the section applies to both character and
block device drivers. It can contain:

• A probe interface

• A slave interface

• An attach interface

For loadable drivers, the autoconfiguration support section also contains a
controller unattach or a device unattach interface, which is called when the
driver is unloaded. You define the entry point for each of these interfaces in
the dr i ver structure. Section 7.6 describes the dr i ver structure. The
following sections show you how to set up each of these interfaces.

3.3.1 Setting Up the Probe Interface
The way you set up a probe interface depends on the bus on which the driver
operates. The following code fragment shows you how to set up a probe
interface for a driver that operates on a TURBOchannel bus:

xxprobe(addr, ctlr)
caddr t addr;
struct controller *ctlr;

{

j* System virtual address *j
j* Pointer to controller *j
j* structure *j

j* Variable and structure declarations *j

j* Code to perform necessary checks *j

}

The code fragment declares the two arguments associated with a probe
interface that operates on a TURBOchannel bus. To learn what arguments
you would specify for other buses, see the bus-specific device driver manual.
The code fragment also sets up the sections where you declare local variables
and structures and where you write the code to implement the probe
interface.

Section 4.1.6.1 shows you how to implement a probe interface for the
/ dev / none device driver. Section 10.8.1 shows you how to implement a
probe interface for a character device driver that operates on a
TURBOchannel bus. Writing Device Drivers, Volume 2: Reference provides
a reference (man) page that gives additional information on the arguments

3-10 Analyzing the Structure of a Device Driver

and tasks associated with an xxprobe interface.

3.3.2 Setting Up the Slave Interface
A device driver's slave interface is called only for a controller that has slave
devices connected to it. This interface is called once for each slave attached
to the controller. The way you set up a slave interface depends on the bus on
which the driver operates. The following code fragment shows you how to
set up a slave interface for a driver that operates on a TURBOchannel bus:

xxslave(device, addr)
struct device *device;
caddr t addr;
{

j* Pointer to device structure *j
j* System virtual address *j

j* Variable and structure declarations *j

j* Code to check that the device is valid *j

The code fragment declares the two arguments associated with a slave
interface that operates on a TURBOchannel bus. To learn what arguments
you would specify for other buses, see the bus-specific device driver manual.
The code fragment also sets up the sections where you declare local variables
and structures and where you write the code to implement the slave interface.
Writing Device Drivers, Volume 2: Reference provides a reference (man)
page that gives additional information on the arguments and tasks associated
with an xxslave interface.

3.3.3 Setting Up the Attach Interface
A device driver's attach interface establishes communication with the device.
There are two attach interfaces: an xxcattach interface for controller­
specific initialization (called once for each controller) and an xxdattach
interface for device-specific initialization (called once for each slave device
connected to a controller). The following code fragment shows you how to
set up an xxdattach interface:

xxdattach(device)
struct *device; j* Pointer to device structure *j
{

j* Variable and structure declarations *j

j* Code to perform tasks associated with establishing *j

Analyzing the Structure of a Device Driver 3-11

/* communication with the device */

}

The code fragment declares the argument associated with a device attach
interface. If the controller attach interface were used, you would be passed a
pointer to a controller structure. The code fragment also sets up the
sections where you declare local variables and structures and where you write
the code to implement the device attach interface.

Section 4.1.6.2 shows you how to implement an attach interface for the
I dev I none device driver. Section 10.8.2 shows you how to implement an
attach interface for a character device driver that operates on a
TURBOchannel bus. Writing Device Drivers, Volume 2: Reference provides
a reference (man) page that gives additional information on the arguments
and tasks associated with the xxcattach and xxdattach interfaces.

3.3.4 Setting Up the Controller Unattach Interface
A device driver's controller unattach interface removes the specified
controller structure from the list of controllers it handles. The following
code fragment shows you how to set up a controller unattach interface:

xxctrl unattach(bus struct, ctlr struct)
struct-bus *bus struct; 7* Pointer to bus structure */
struct controller *ctlr struct; /* Pointer to controller */

- /* structure */
{

/* Variable and structure declarations */

/* Code to perform controller unattach tasks */

}

The code fragment declares the two arguments associated with a controller
unattach interface. The code fragment also sets up the sections where you
declare local variables and structures and where you write the code to
implement the controller unattach interface.

Section 4.1.6.3 shows how to implement a controller unattach interface for
the I dev Inone device driver. Section 10.8.3 shows how to implement a
controller unattach interface for a character device driver that operates on a
TURBOchannel bus.

3-12 Analyzing the Structure of a Device Driver

Writing Device Drivers, Volume 2: Reference provides a reference (man)
page that gives additional information on the arguments and tasks associated
with an xxctrl unattach interface.

3.3.5 Setting Up the Device Unattach Interface
A device driver's device unattach interface removes the specified device
structure from the list of devices it handles. The following code fragment
shows you how to set up a device unattach interface:

xxdev unattach{ctlr struct, dev struct)
struct controller *ctlr struct;- /* Pointer to controller */

- /* structure */
struct device *dev_struct; /* Pointer to device */

/* structure */
{

/* Variable and structure declarations */

/* Code to perform device unattach tasks */

}

The code fragment declares the two arguments associated with a device
unattach interface that operates on a TURBOchannel bus. The code fragment
also sets up the sections where you declare local variables and structures and
where you write the code to implement the device unattach interface.

Writing Device Drivers, Volume 2: Reference provides a reference (man)
page that gives additional information on the arguments and tasks associated
with an xxdev unattach interface.

3.4 Configure Section
The configure section applies to the loadable versions of both character and
block device drivers and it contains a configure interface. A device driver's
configure interface is called as a result of a user-level request to dynamically
load a device driver. The following code fragment shows you how to set up
a configure interface:

xx_configure {optype, indata,
sysconfig op t optype;
device config t *indata;
size t-indatalen;

indatalen, outdata, outdatalen)
/* Configure operation */
/* Input data structure */
/* Size of input data */
/* structure */

Analyzing the Structure of a Device Driver 3-13

device config t *outdata;
size_t-outdatalen;
{

/* Output data structure */
/* Output data structure */

/* Variable and structure declarations */

/* Code to perform configure tasks */

}

The code fragment declares the five arguments associated with a configure
interface. The code fragment also sets up the sections where you declare local
variables and structures and where you write the code to implement the
configure interface.

Section 4.1.7.1 shows you how to set up the configure interface for the
I dev Inone device driver. Section 10.9.1 shows you how to implement a
configure interface for a character device driver that operates on a
TURBOchannel bus. Writing Device Drivers, Volume 2: Reference provides
a reference (man) page that gives additional information on the arguments
and tasks associated with an xx _ conf igure interface.

3.5 Open and Close Device Section
The open and close device section applies to both character and block device
drivers. This section contains:

• An open interface

• A close interface

You specify the entry for the driver's open and close interfaces in the
bdevsw for block device drivers and the cdevsw for character device
drivers. Section 8.2 describes the device switch tables. The following
sections discuss how to set up each of these interfaces.

3.5.1 Setting Up the Open Interface
A device driver's open interface is called as the result of an open system
call. The following code fragment shows you how to set up an open
interface:

3-14 Analyzing the Structure of a Device Driver

xxopen(dev, flag, format)
dev t dev; /* Major/minor device number */
int-flag; /* Flags from /usr/sys/h/file.h */
int format; /* Format of special device */
{

/* Variable and structure declarations */

/* Code to open the device */

}

The code fragment declares the three arguments associated with an open
interface that operates on any bus. The code fragment also sets up the
sections where you declare local variables and structures and where you write
the code to implement the open interface.

Section 4.1.8.1 shows you how to implement an open interface for the
/ dev / none device driver. Section 10.10.1 shows you how to implement
an open interface for a character device driver that operates on a
TURBOchannel bus. Writing Device Drivers, Volume 2: Reference provides
a reference (man) page that gives additional information on the arguments
and tasks associated with an xxopen interface.

3.5.2 Setting Up the Close Interface
The open interface is called every time that any user initiates an action that
invokes the open system call. The close interface, however, is called only
when the last user initiates an action that closes the device. The reason for
this difference is to allow the driver to take some special action when there is
no work left to perform. The following code fragment shows you how to set
up a close interface:

xxclose(dev, flag, format)
dev t dev; /* Major/minor device number */
int-flag; /* Flags from /usr/sys/h/file.h */
int format; /* Format of special device */
{

/* Variable and structure declarations */

/* Code to correctly close the device */

}

Analyzing the Structure of a Device Driver 3-15

The code fragment declares the three arguments associated with a close
interface that operates on any bus. It also sets up the sections where you
declare local variables and structures and where you write the code to
implement the close interface.

Section 4.1.8.2 shows you how to implement a close interface for the
/ dev / none device driver. Section 10.10.2 shows you how to implement a
close interface for a character device driver that operates on a
TURBOchannel bus. Writing Device Drivers, Volume 2: Reference provides
a reference (man) page that gives additional information on the arguments
and tasks associated with an xxclose interface.

3.6 Read and Write Device Section
The read and write device section applies only to character device drivers.
This section contains:

• A read interface

• A write interface

You specify the entry for the driver's read and write interfaces in the
cdevsw table. Section 8.2.1 describes the cdevsw table. The following
sections discuss how to set up both of these interfaces.

3.6.1 Setting Up the Read Interface
The read interface is called from the 1/0 system as the result of a read
system call. The following code fragment shows you how to set up a read
interface:

xxread(dev, uio)
dev_t dev; /* Major/minor device number */
struct uio *uio; /* Pointer to uio structure */
{

/* Variable and structure declarations */

/* Code to read data from the device */

}

The code fragment declares the two arguments associated with a read
interface that operates on any bus. It also sets up the sections where you
declare local variables and structures and where you write the code to
implement the read interface.

3-16 Analyzing the Structure of a Device Driver

Section 4.1.9.1 shows you how to implement a read interface for the
I dev I none device driver. Section 10.11.1 shows you how to implement a
read interface for a character device driver that operates on a TURBOchannel
bus. Writing Device Drivers, Volume 2: Reference provides a reference
(man) page that gives additional information on the arguments and tasks
associated with an xxread interface.

3.6.2 Setting Up the Write Interface
The write interface is called from the VO system as the result of a wr i te
system call. The following code fragment shows you how to set up a write
interface:

xxwrite(dev, uio)
dev t dev; /* Major/minor device number */
struct uio *uio; /* Pointer to uio structure */
{

/* Variable and structure declarations */

/* Code to write data to the device */
}

The code fragment declares the two arguments associated with a write
interface that operates on any bus. It also sets up the sections where you
declare local variables and structures and where you write the code to
implement the write interface.

Section 4.1.9.2 shows you how to implement a write interface for the
I dev Inone device driver. Section 10.11.2 shows you how to implement a
write interface for a character device driver that operates on a
TURBOchannel bus. Writing Device Drivers, Volume 2: Reference provides
a reference (man) page that gives additional information on the arguments
and tasks associated with an xxwr i te interface.

3.7 The ioctl Section
The ioctl interface typically performs all device-related operations other
than read or write operations. A device driver's ioctl interface is called as
a result of an ioctl system call. Only those ioctl commands that are
device specific or that require action on the part of the device driver result in
a call to the driver's ioctl interface. You specify the entry for the driver's
ioctl interface in the cdevsw table for character drivers and in the
bdevsw table for block device drivers. Section 8.2 describes the device
switch tables. The following code fragment shows you how to set up an
ioct 1 interface:

Analyzing the Structure of a Device Driver 3-17

xxioctl(dev, cmd,
dev t dev;
unsIgned int cmd;
caddr t data;
int flag;
{

data, flag)
/* Major/minor device number */
/* The ioctl command */
/* ioctl command-specified data */
/* Access mode of the device */

/* Variable and structure declarations */

/* Code to perform device-related operations */

}

The code fragment declares the four arguments associated with an ioctl
interface that operates on any bus. It also sets up the sections where you
declare local variables and structures and where you write the code to
implement the ioctl interface.

Section 4.1.11 shows you how to implement an ioctl interface for the
Idev/none device driver. Section 10.14 shows you how to implement an
ioctl interface for a character device driver that operates on a
TURBOchannel bus. Writing Device Drivers, Volume 2: Reference provides
a reference (man) page that gives additional information on the arguments
and tasks associated with an xxioctl interface.

3.8 Strategy Section
The strategy section applies to block device drivers and contains a
strategy interface. However, character device drivers can also contain a
strategy interface that is called by the character driver's read and
wr i te interfaces.

The strategy interface performs block I/O for block devices and initiates read
and write operations for character devices. You specify the entry point for
the strategy interface in the bdevsw table. Section 8.2.2 describes the
bdevsw table. For character drivers, you do not specify the entry point for
the strategy interface because it is called only by the character driver's
read and wr i te interfaces. There is no entry point defined in the cdevsw
table. The following code fragment shows you how to set up a strategy
interface:

3-18 Analyzing the Structure of a Device Driver

xxstrategy(bp)
struct buf *bPi /* Pointer to buf structure */
{

/* Variable and structure declarations */

/* Code to perform block I/O or read/write operations */

}

The code fragment declares the argument associated with a strategy interface
that operates on any bus. It also sets up the sections where you declare local
variables and structures and where you write the code to implement the
strategy interface.

Section 10.12 shows you how to implement a strategy interface for a
character device driver that operates on a TURBOchannel bus. Writing
Device Drivers, Volume 2: Reference provides a reference (man) page that
gives additional information on the arguments and tasks associated with an
xxstrategy interface.

3.9 Stop Section
The stop section applies only to character device drivers and it contains a
stop interface. The stop interface is used by terminal device drivers to
suspend transmission on a specified line. You specify the entry for a driver's
stop interface in the cdevsw table.' Section 8.2.1 describes the cdevsw
table.

The following code fragment shows you how to set up a stop interface:

xxstop(tp, flag)
struct tty *tPi /* Pointer to tty structure */
int flagi /* Output flag */
{

/* Variable and structure declarations */

/* Code to suspend transmission on the specified line */

}

The code fragment declares the two arguments associated with a stop
interface that operates on any bus. It also sets up the sections where you
declare local variables and structures and where you write the code to
implement the stop interface.

Analyzing the Structure of a Device Driver 3-19

Writing Device Drivers, Volume 2: Reference provides a reference (man)
page that gives additional information on the arguments and tasks associated
with an xxs top interface.

3.10 Reset Section
The reset section applies only to character device drivers and it contains a
reset interface. The reset interface is used to force a device reset to place the
device in a known state after a bus reset. You specify the entry for a driver's
reset interface in the cdevsw table. Section 8.2.1 describes the cdevsw
table. The following code fragment shows you how to set up a reset
interface:

xxreset(busnum)
int busnum; /* Logical unit number of bus */
{

/* Variable and structure declarations */

/* Code to force the device to reset */

}

The code fragment declares the argument associated with a reset interface
that operates on any bus. It also sets up the sections where you declare local
variables and structures and where you write the code to implement the reset
interface.

Writing Device Drivers, Volume 2: Reference provides a reference (man)
page that gives additional information on the arguments and tasks associated
with an xxreset interface.

3.11 Interrupt Section
The interrupt section applies to both character and block device drivers and it
contains an interrupt service interface (lSI). The interrupt service interface is
called as a result of a hardware interrupt. For static drivers, you specify the
entry point for the interrupt service interface in the system configuration file.
Section 12.2 describes the system configuration file. For loadable drivers,
you specify the entry point for the interrupt service interface through the
handler add and handler enable kernel interfaces.

The following code fragment shows you how to set up an interrupt service
interface:

3-20 Analyzing the Structure of a Device Driver

xxintr(parameter)
caddr t parameter; /* Logical controller number */
{

/* Variable and structure declarations */

/* Code to handle a hardware interrupt */

}

The code fragment declares the argument associated with an interrupt service
interface that operates on any bus. The code fragment also sets up the
sections where you declare local variables and structures and where you write
the code to implement the interrupt service interface.

Section 10.16 shows you how to implement an interrupt service interface for
a character device driver that operates on a TURBOchannel bus. Writing
Device Drivers, Volume 2: Reference provides a reference (man) page that
gives additional information on the arguments and tasks associated with an
xxintr interface. It also provides information on the handler interfaces.

3.12 Select Section
The select section applies only to character device drivers and it contains a
select interface. A device driver's select interface is called to determine
whether data is available for reading and whether space is available for
writing data. You specify the entry point for a driver's select interface in the
cdevsw table. Section 8.2.1 describes the cdevsw table. Because the
/ dev / none and / dev / cb device drivers do not implement a select
section, the following code fragment not only shows you how to set up a
select interface, but it also illustrates some typical tasks. For example
purposes, the example refers to some xx device.

xxselect(dev, events, revents, scanning)
dey t dey; rn
short *events; ~
short *revents; ~
int scanning; ~

{
int nread; ~
struct xxdevstruct *xxdevice; ~

xxdevice = xxdevs[minor(dev)]; ~

/***
* Poll for input reads *
***/

if (*events & POLLNORM) { ~
if (scanning) { ~

nread = xxnread(dev); ~

Analyzing the Structure of a Device Driver 3-21

if (nread > 0)
*revents 1= POLLNORM; ff]

else
select_enqueue(xxdevice); ~

} else
select_dequeue(xxdevice); ~

/***
* Poll for output write *
***/

if (*events & POLLOUT) { ~
if (scanning) { ~

if (xxnwrite(dev» ~
*revents 1= POLLOUT; ~

else
select_enqueue(xxdevice); ~

} else
select_dequeue(xxdevice); ~

return (0); ~

ill Declares an argument that specifies the major and minor device numbers
for a specific xx device. The minor device number is used to determine
the logical unit number for the xx device on which the select call is to be
performed.

I2J Declares a pointer to an argument that specifies the events to be polled
on. This argument is an input to the device driver. The caller of select is
the user level process that issued the select system call. The select
system call then calls the driver's xxselect interface. The kernel can
set this argument to the bitwise inclusive OR of one or more of the
polling bit masks defined in the file
/usr/sys/include/sys/poll.h: POLLNORM,POLLOUT,and
POLLPRI.

1.31 Declares a pointer to an argument that specifies the events that are ready.
The driver writer sets this value in the driver's xxselect interface.
The driver writer can set this argument to the bitwise inclusive OR of one
or more of the polling bit masks defined in
/usr/sys/include/sys/poll.h: POLLNVAL,POLLHUP,
POLLNORM, and POLLOUT.

14I Declares an argument that specifies the initiation and termination of a
select call. The kernel sets this argument to the value 1 to indicate
initiation of a select call. The caller of select is the user level process
that issued the select system call. The select system call then calls
the driver's xxselect interface.

~ Declares a variable to contain the number of characters available for
input.

3-22 Analyzing the Structure of a Device Driver

[§1 Declares a pointer to a data structure that is specific to the xx driver.

IZI For the purposes of this example, assume that the xx driver has declared
a static array of xx device-specific data structures, one structure for each
instance of the device. Assume that the array is called xxdevs.

In this line, a pointer is established to point to the specific
xxdevstruct data structure associated with this xx device. Note the
use of the minor interface to obtain the device minor number associated
with this xx device.

[B] Determines if the kernel set the read input select bit, which indicates that
the caller of select wants to know if input data is available on this device.
The caller of select is the user level process that issued the select
system call. The select system call then calls the driver's xxselect
interface.

[9] If the kernel sets this argument to the value 1 (true), then a select call is
being initiated.

[Q] For the purpose of this example, assume that the xx driver has a separate
interface called xxnread, which returns the count of the number of
characters available for input.

II1l If the count is greater than zero (0), there are characters available for
input. Set the read input select bit in the pointer to the revents
argument. The select call can complete without waiting for input to be
available.

II2l If the count is not greater than zero (0), there are no characters available
for input. Call the select enqueue interface to allow the select call
to remember that a caller of select wants to be notified when input is
available to be read. This interface takes one argument: a pointer to a
sel queue t structure. One of the members of this structure is a
pointer to an event. Thus, this line passes the pointer to the xxdevice
structure, which identifies this instance of the xx device. The
select enqueue interface adds the current thread to the list of threads
waiting for a select event on this xx device. When input is available, the
select can complete.

At a different interface in the xxdriver (typically, either the interrupt
section or an interface called by the interrupt section) when new input has
been received on the device, the driver calls the select wakeup
interface. The driver passes to it the same parameter passed to
select enqueue to notify the upper levels of the select system
call that the caller of select can now be notified that the driver has new
input available to be read.

[3] Executes when the kernel sets the scanning parameter to the value zero
(0). This indicates that the upper level select system call code is no
longer interested in being notified when input is available on this device.

Analyzing the Structure of a Device Driver 3-23

The xxdriver calls the select dequeue interface to remove any
instances of this xx device registered as waiting for notification of input.

11!1 Determines if the kernel set the write output select bit, which indicates
that the caller of select wants to know if the device is ready to accept data
to be output. Typically, this involves verifying that the device's output
buffers have sufficient space to accept additional characters to be
transmitted.

[j]] If the kernel sets the scanning argument to the value 1 (true), then a
select call is being initiated.

[§] For the purpose of this example, assume that the xx driver has a separate
interface called xxnwr i te, which returns a nonzero value if the device
is in a state where it is ready to output data.

ffZI To indicate that this instance of the xx device is ready to accept
additional output, sets the reven t s argument to the polling bit
POLLOUT.

[j]] The device is not ready to accept additional output. Therefore, the xx
driver calls the select enqueue interface to cause the select call to
later be notified when the device is ready to accept output. At a different
interface in the xxdriver (typically, either the interrupt section or an
interface called by the interrupt section) after previous output
transmission has completed, the driver calls the select wakeup
interface. The driver passes to it the same parameter passed to
select enqueue to notify the upper levels of the select system
call that the caller of select can now be notified that the driver has new
output available to be written.

~ If the kernel sets the scanning argument to the value zero (false), then
a select call is being terminated. This indicates that the upper level
select system call code is no longer interested in being notified when
the device is ready to accept output characters. The xxdr i ver calls the
select dequeue interface to remove any instances of this xx device
registered as waiting for notification of output ready status.

I2Q] The value zero (0) is returned to indicate that the driver's xxselect
interface completed successfully.

Writing Device Drivers, Volume 2: Reference provides a reference (man)
page that gives additional information on the arguments and tasks associated
with an xxselect interface.

3.13 Dump Section
The dump section applies only to block device drivers and it contains a dump
interface. A device driver's dump interface is called to copy system memory
to the dump device. You specify the entry point for a driver's dump

3-24 Analyzing the Structure of a Device Driver

interface in the bdevsw table. Section 8.2.2 describes the bdevsw table.
The following code fragment shows you how to set up a dump interface:

xxdump(dumpdev)
dev_t dumpdev; j* Device to dump system memory to *j
{

j* variable and structure declarations *j

j* Code to copy system memory to the dump device *j

}

The code fragment declares the argument associated with a dump interface
that operates on any bus. It also sets up the sections where you declare local
variables and structures and where you write the code to implement the dump
interface.

Writing Device Drivers, Volume 2: Reference provides a reference (man)
page that gives additional information on the arguments and tasks associated
with an xxdump interface.

3.14 The psize Section
The psize section applies only to block device drivers and it contains a psize
interface. A device driver's psize interface is called to return the size of a
disk partition. You specify the entry point for a driver's psize interface in the
bdevsw table. Section 8.2.2 describes the bdevsw table. The following
code fragment shows you how to set up a psize interface:

xxpsize(dev)
dev t dev; j* Device and partition for which size *j

- j* is requested *j
{

j* variable and structure declarations *j

j* Code to return the size of a disk partition *j

}

The code fragment declares the argument associated with a psize interface
that operates on any bus. It also sets up the sections where you declare local
variables and structures and where you write the code to implement the psize
interface.

Analyzing the Structure of a Device Driver 3-25

Writing Device Drivers, Volume 2: Reference provides a reference (man)
page that gives additional information on the arguments and tasks associated
with an xxpsize interface.

3.15 Memory Map Section
Some Alpha AXP CPUs do not support an application's use of the mmap
system call. Therefore, if you are writing a device driver that operates on
such CPUs, you need to use a mechanism other than the memory map
interface. The memory map section applies only to character device drivers,
and it contains a memory map interface. The memory map interface is
invoked by the kernel as the result of an application calling the mmap system
call. You specify the entry for the driver's xxmmap interface in the cdevsw
table. Section 8.2.1 describes the cdevsw table. The following code
fragment shows you how to set up a memory map interface:

xxmmap(dev, offset, prot)
dev t dev; /* Major/minor device number */
off-t offset; /* Offset into device memory */
int-prot; /* Protection flag */
{

/* Variable and structure declarations */

/* Code to map kernel space to user space */

}

The code fragment declares the three arguments associated with a memory
map interface that operates on any bus. It also sets up the sections where you
declare local variables and structures and where you write the code to
implement the memory map interface. Writing Device Drivers, Volume 2:
Reference provides a reference (man) page that gives additional information
on the arguments and tasks associated with an xxmmap interface.

3-26 Analyzing the Structure of a Device Driver

Coding, Configuring, and Testing a 4
Device Driver

The previous chapter showed you how to set up the interfaces associated with
a device driver. This chapter shows you how to implement some of those
interfaces for the I dev Inane device driver. Specifically, the chapter shows
you how to:

Code a device driver

• Configure a device drivier

• Test a device driver

4.1 Coding a Device Driver
The I dev I none device driver is a simple device driver that performs the
following tasks:

• Determines if the none device exists on the system

Checks to ensure that the open request is unique and marks the device as
open

• Copies data from the specified address space to the device

• Obtains and clears the count of bytes previously written to the device

• Closes the device

• Implements the tasks associated with the loadable version of the driver

Note that the I dev I none driver is implemented as one driver that can be
configured either as a loadable or static driver.

The I dev I none device driver references some structures (for example, the
driver structure) you may not be familiar with yet. However, to
understand this simple device driver you do not need an intimate
understanding of the structures.

For convenience in learning how this driver is implemented, the source code
is divided into parts. Table 4-1 lists the parts of the I dev I none device
driver and the sections of the chapter where each is described. For those who
prefer to read the I dev I none source code with inline comments, see
Section B.1.

Table 4-1: Parts of the /dev/none Device Driver

Part Section

The nonereg.h Header File Section 4.1.1

Include Files Section Section 4.1.2

Autoconfiguration Support Declarations and Section 4.1.3
Definitions Section

Loadable Driver Configuration Support Section 4.1.4
Declarations and Definitions Section

Loadable Driver Local Structure and Section 4.1.5
Variable Definitions Section

The Autoconfiguration Support Section

Loadable Device Driver Section

Open and Close Device Section

Read and Write Device Section

Interrupt Section

The ioctl Section

4-2 Coding, Configuring, and Testing a Device Driver

Section 4.1.6

Section 4.1.7

Section 4.1.8

Section 4.1.9

Section 4.1.10

Section 4.1.11

4.1.1 The nonereg.h Header File
The nonereg . h file is the device register header file for the / dev / none
device driver. It contains public declarations and the device register structure
for the none device. The following declarations are applicable to the
loadable or static version of the driver:

#define DN GETCOUNT _10R(O,l,int) ill
#define DN CLRCOUNT 10(0,2) ~

#define NONE_CSR ° ~
[j] Uses the lOR macro to construct an ioctl macro called

ON GETCOUNT. The lOR macro defines ioctl types for situations
where data is transferred from the kernel into the user's buffer.
Typically, this data consists of device control or status information
returned to the application program. Writing Device Drivers, Volume 2:
Reference provides reference (man) page style descriptions of the 10,

lOR, lOW, and 10WR ioctl macros. -

Section 4.1.11 shows how the noneioctl interface uses
ON GETCOUNT.

!21 Uses the 10 macro to construct an ioctl macro called
ON CLRCOUNT. The 10 macro defines ioctl types for situations
where no data is actuallY transferred between the application program and
the kernel. For example, this could occur in a device control operation.
Section 4.1.11 shows how the noneioctl interface uses
ON CLRCOUNT.

~ Defines the device register offset for the none device. All real devices
have registers and the offsets defining the layout of these registers is
usually defined in the device register header file. Although the none
device is not a real device, the example shows how a device register
offset would be defined.

The NONE _ CSR offset is a 64-bit read/write CSRlLED register.

Coding, Configuring, and Testing a Device Driver 4-3

4.1.2 Include Files Section
This section is applicable to the loadable or static version of the
/ dev / none device driver. It identifies the following header files needed by
the / dev / none device driver:

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/ioctl.h>
#include <sys/tty.h>
#include <sys/user.h>
#include <sys/proc.h>
#include <sys/map.h>
#include <sys/buf.h>
#include <sys/vm.h>
#include <sys/file.h>
#include <sys/uio.h>
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/conf.h>
#include <sys/kernel.h>
#include <sys/devio.h>
#include <hal/cpuconf.h>
#include <sys/exec.h>
#include <io/common/devdriver.h>
#include <sys/sysconfig.h>
#include <io/dec/tc/tc.h>
#include <machine/cpu.h>

#include <kits/ESAIOO/nonereg.h> m
#define NNONE 4 ~

[j] Includes the device register header file, which is discussed in Section
4.1.1. The directory specification adheres to the third-party device driver
configuration model discussed in Section 11.1.2. If the traditional device
driver configuration model is followed, the directory specification is
<io/Easylnc/nonereg. h>. The directory specification you make
here depends on where you put the device register file.

The above lines include the common header files.

Writing Device Drivers, Volume 2: Reference provides reference (man)
page-style descriptions of the header files most frequently used by DEC
OSFIl device drivers.

12.1 Defines a constant called NNONE that is used to allocate data structures
needed by the / dev / none driver. There can be at most four instances
of the none controller on the system. This value represents a small
number of instances of the driver on the system and the data structures
themselves are not large, so it is acceptable to allocate for the maximum
configuration. This example uses the static allocation model 2 technique

4-4 Coding, Configuring, and Testing a Device Driver

described in Section 2.3.2. Note that you could also define this constant
in a name data. c file.

Coding, Configuring, and Testing a Device Driver 4-5

4.1.3 Autoconfiguration Support Declarations and Definitions
Section

This section is applicable to the loadable or static version of the
/ dev / none device driver. It contains the following declarations needed by
the / dev / none device driver. The decision as to whether it is loadable or
static is made at run time by the system manager and not at compile time by
the driver writer. Thus, the driver writer can implement one device driver
that is loadable or static.

#define DN RESET 0001 ill
#define DN ERROR 0002 ~

#define DN OPEN 1 ~
#define DN CLOSE ° ~
int noneprobe(), nonecattach(), noneintr()i
int noneopen(), noneclose(), noneread(), nonewrite()i
int noneioctl(), none_ctlr_unattach()i ~

struct controller *noneinfo[NNONE]i ~

struct driver nonedriver = {
none probe ,

} i 1ZI

0,
nonecattach,
0,
0,
0,
0,
0,
"none" ,
noneinfo,
0,
0,
0,
0,
0,
none_ctlr_unattach,

°
struct none softc {

int sc=openfi
int sc_counti
int sc_statei

none_softc[NNONE]i ~

[j] Declares a constant called DN RESET to indicate that the specified none
device is ready for data transfer. Section 4.1.6.1 shows that the
noneprobe interface uses this constant to set the NONE _ CSR device

4-6 Coding, Configuring, and Testing a Device Driver

register offset associated with a specific none device. If this driver
operated on actual hardware, setting the ON RESET bit could force the
device to reset. -

I2J Declares a constant called ON ERROR to indicate when an error occurs.
Section 4.1.6.1 shows that the-noneprobe interface uses this constant in
a bitwise AND operation with the NONE CSR device register offset
associated with a specific none device. An actual hardware device could
set this bit in the NONE CSR device register offset to indicate that an
error condition occurred.

~ Declares a constant called ON OPEN to represent the device open bit.
Section 4.1.8.1 shows that the-noneopen interface uses this constant to
set the open bit for a specific none device. This bit represents the
driver's software state.

~ Declares a constant called ON CLOSE to represent the device close bit.
Section 4.1.8.2 shows that the-nonec lose interface uses this constant to
clear the open bit for a specific none device. This bit represents the
driver's software state.

[5] Declares the driver interfaces for the / dev / none driver. Note that the
nonecattach and noneintr interfaces are merely stubs. These
interfaces have no associated code but are declared here to handle any
future development.

I§] Declares an array of pointers to controller structures and calls it
noneinfo. The controller structure represents an instance of a
controller entity, one that connects logically to a bus. A controller can
control devices that are directly connected or can perform some other
controlling operation, such as a network interface or terminal controller
operation. Section 7.4 describes the controller structure.

Note that the NNONE constant is used to represent the maximum number
of none controllers. This number is used to size the array of pointers to
controller structures.

IZI Declares and initializes the dr i ver structure called nonedr i ver.
This structure is used to connect the driver entry points and other
information to the DEC OSFIl code. This structure is used primarily
during autoconfiguration. Some members of this structure are not used
by the /dev/none device driver. Section 7.6 describes the driver
structure.

The value zero (0) indicates that the / dev / none driver does not make
use of a specific member of the driver structure. The following list
describes those members initialized to a nonzero value by the example
driver:

- The driver's probe interface, noneprobe. Section 4.1.6.1 shows
how to implement noneprobe.

Coding, Configuring, and Testing a Device Driver 4-7

- The driver's cattach interface, nonecattach. The none device
does not need an attach interface. However, Section 4.1.6.2 provides
a nonecattach interface stub for future expansion.

- The string none, which is the name of the device.

- The value none info, which references the array of pointers to the
previously declared controller structures. You index this array
with the controller number as specified in the ctlr num member of
the controller structure. -

- The driver's controller unattach interface, none ctlr unattach.
The none ctlr unattach interface removes the controller
structure aSSociated with specific none devices from the list of
controller structures that it handles. Section 4.1.6.3 shows how
to implement none_ctlr_unattach.

~ Declares an array of softc structures and calls it none softc. Like
noneinfo, the none softc structure's size is the value represented
by the NNONE constant The softc structure is found in many device
drivers to allow driver interfaces to share data. The none softc
structure contains the following members:

sc_openf

Stores a constant value that indicates the none device is open. This
member is set by the noneopen and noneclose interfaces in
Section 4.1.8.1 and Section 4.1.8.2.

sc count

Stores the count of characters. This member is set by the
nonewri te and noneioctl interfaces in Section 4.1.9.2 and
Section 4.1.11.

sc state

Stores a constant value that indicates the state the driver is in. This
member is not currently used, but may be used in a future
implementation of the example.

4-8 Coding, Configuring, and Testing a Device Driver

4.1.4 Loadable Driver Configuration Support Declarations and
Definitions Section

This section is applicable only to the loadable version of the / dev / none
device driver. It contains the following declarations used by the loadable
version of the / dev / none device driver:

extern int nodev(), nulldev(); ill
extern ihandler id t handler add(), handler del();
extern ihandler-id-t handler-enable(), handler_disable(); ~
ihandler_id_t none=id_t[NNONE); ~

#define DN BUSNAME "tc" ~

struct tc option none option snippet [) =
/***/
{
/* module
/* name
/* ------
{ "NONE
{

}; l§]

driver intr b4 itr aft
name probe attach type

adpt
config

"none" , 0, 1, 'C' , O},
} /* Null terminator in the */

/* table */

int num_none = 0; ~

*/
*/
*/

ill Declares external references for the nodev and nulldev interfaces,
which are used to initialize members of the cdevsw table under specific
circumstances. The cdevsw add kernel interface, called by the driver's
none configure interface,- initializes the cdevsw table. Section
8.2.1 provides a description of the cdevsw table and examples of the
nodev and nulldev interfaces.

12] Declares an external reference for the handler add interface, which
registers the interrupt service interface for the loadable driver. Note also
the declarations of the external references for the handler del,
handler enable, and handler disable interfaces. -Section
4.1.6.1 shOWs how the noneprobe interface calls handler_add.

[3] Declares an array of IDs used to deregister the interrupt handlers. Note
that the NNONE constant is used to represent the maximum number of
none controllers. This number is used to size the array of IDs. Thus,
there is one ID per none device. Section 4.1.6.1 shows how
noneprobe uses the none _ id _ t array.

~ Defines a constant that represents a 2-character string that indicates this is
a driver that operates on the TURBOchannel bus. This constant is passed
as an argument to the ldbl stanza resolver,
ldbl_ctlr_configure~andldbf_ctlr_unconfigure

Coding, Configuring, and Testing a Device Driver 4-9

interfaces. This bus name is used in calls to the configuration code.
Other bus types can use a different name. Section 4.1.7.2 shows how to
call ldbl stanza resolver and ldbl ctlr conf igure.
Section 4.f7.3 shows how to call1dbl_ctlr_unconfigure.

[5] Declares a variable called none is dynamic and initializes it to the
value zero (0). This variable is usedto control any differences in the
tasks performed by the static and loadable versions of the / dev / none
device driver at run time. Thus, the / dev / none driver can be compiled
once for the loadable and static versions. The decision as to whether it is
loadable or static is made at run time by the system manager and not at
compile time by the driver writer.

Section 4.1.6.1 shows how noneprobe uses none is dynamic.
Section 4.1.6.3 shows how none ctlr unattach uses
none is dynamic. Section 4"1.7.2 shows how none configure
uses none-=-is_dynamic. -

[§J These lines are specific to drivers written for the TURBOchannel bus.
Other bus types may use a different mechanism.

Declares a tc option table snippet that includes an entry for the loadable
version of this driver. For the static version, a similar entry is made in
the tc option table located in the tc option data. c file. The
entry in the tc option table is used only when the driver is configured
statically; the none option snippet entry is used only when the
driver is configured dynamicallY.

The tc option option table contains the bus-specific ROM module
name for the driver. This information forms the bus-specific parameter
that is passed to the ldbl stanza resolver interface to search for
matches in the tc option table. The tc option table is used by the
bus configuration mterfaces associated with the TURBOchannel bus.

The items in the tc option table snippet are identical to those in the
tc _option table. These items have the following meanings:

- module name

In this column, you specify the device name in the ROM on the
hardware device. The module name can be up to 8 characters in
length. You must blank-pad the name to 8 bytes for those names that
are less than 8 characters in length. Thus, the entry for the
/ dev / none driver consists of the letters' 'NONE" followed by four
spaces.

- driver name

In this column, you specify the driver name as it appears in the
Module Config Name field of the stanza .loadable file
fragment~ In this example, the driver name is none. Because you

4-10 Coding, Configuring, and Testing a Device Driver

specify the same name in the Module Config Name field and the
driver name field of the tc option snippet tabIe, the bus
configuration code initializes the correct controller and device
structures during device autoconfiguration for loadable drivers.

- intr _b4 probe

In this column, you specify whether the device needs interrupts
enabled during execution of the driver's probe interface. A zero (0)
value indicates that the device does not need interrupts enabled; a
value of 1 indicates that the device needs interrupts enabled. In the
example, the value zero (0) is specified to indicate that the none
device does not need interrupts enabled.

- itr _aft attach

In this column, you specify whether the device needs interrupts
enabled after the driver's probe and attach interfaces complete.
A zero (0) value indicates that the device does not need interrupts
enabled; a value of 1 indicates that the device needs interrupts
enabled. In the example, the value 1 is specified to indicate that the
none device needs interrupts enabled after its noneprobe and
nonecattach interfaces complete.

- type

In this column, you specify the type of device: C (controller) or A
(adapter). In the example, the value C is specified.

- adpt config

If the device in the type column is A (adapter), you specify the name
of the interface to configure the adapter. Otherwise, you specify the
value zero (0). In the example, the value zero (0) is specified because
the device in the previous column is a controller. Section 4.1.7.2
shows how the none_configure interface uses
none_option_snippet.

1ZI Declares a variable called num none to store the count on the number of
controllers probed during autoconfiguration. This variable is initialized to
the value zero (0) to indicate that no instances of the controller have been
initialized yet. Section 4.1.6.3 shows how none ctlr unattach
uses this variable. Section 4.1.7.2 shows how none configure uses
this variable. -

Coding, Configuring, and Testing a Device Driver 4-11

4.1.5 Loadable Driver Local Structure and Variable Definitions
Section

This section is applicable only to the loadable version of the I dev I none
device driver. It contains the following declaration of the I dev I none
driver's cdevsw entry that will be dynamically added to the cdevsw table:

int none config = FALSE; ill
dev_t none_devno = NODEV; ~

struct cdevsw none_cdevsw_entry {
noneopen,
noneclose,
noneread,
nonewrite,
noneioctl,
nodev,
nodev,
0,
nodev,
0,
DEV FUNNEL NULL

}; ~

ill Declares a variable called none config to store state flags indicating
whether the I dev I none driverls configured as a loadable driver. The
none config variable is initialized to the value FALSE. Section
4.1.7.2 shows that none configure sets none config to the value
TRUE to indicate that the-I dev Inone driver has SUccessfully configured
as a loadable driver. Section 4.1.7.3 shows that none configure sets
none config to the value FALSE to indicate that the Idev/none
driver has successfully unconfigured.

I2J Declares a variable called none devno to store the cdevsw table entry
slot to use. The none devno variable is initialized to the value NODEV
to indicate that no major number for the device has been assigned.
Section 4.1.7.2 shows that none conf igure sets none devno to the
table entry slot. - -

@I Declares and initializes the cdevsw structure called
none cdevsw entry. Section 8.2.1 describes the cdevsw table.
The fOllowing list describes those members initialized to a nonzero value
by the I dev I none device driver:

- The driver's open interface, noneopen. Section 4.1.8.1 shows how
to implement noneopen.

- The driver's close interface, noneclose. Section 4.1.8.2 shows
how to implement noneclose.

4-12 Coding, Configuring, and Testing a Device Driver

- The driver's read interface, noneread. Section 4.1.9.1 shows how
to implement none read.

- The driver's write interface, nonewrite. Section 4.1.9.2 shows
how to implement nonewr i teo

- The driver's ioctl interface, noneioctl. Section 4.1.11 shows
how to implement noneioctl.

4.1.6 The Autoconfiguration Support Section
This section is applicable to the loadable or static version of the
I dev Inone device driver. The decision as to whether it is loadable or
static is made at run time by the system manager and not at compile time by
the driver writer. Thus, the driver writer can implement one device driver
that is loadable or static. Table 4-2 lists the interfaces implemented as part
of The Autoconfiguration Support Section along with the sections in the book
where each is described.

Table 4-2: Interfaces Implemented as Part of the
Autoconfiguration Support Section

Part

Implementing the noneprobe Interface

Implementing the nonecattach Interface

Implementing the none_ctlcunattach
Interface

Section

Section 4.1.6.1

Section 4.1.6.2

Section 4.1.6.3

Coding, Configuring, and Testing a Device Driver 4-13

4.1.6.1 Implementing the noneprobe Interface

The noneprobe interface is applicable to the loadable or static version of
the / dev / none device driver. It is called from the operating system
configuration code during boot time. However, there are specific tasks
associated with the loadable or static version of the driver. These tasks are
identified by a conditional if statement that tests the none is dynamic
variable. The interface's main task is to determine whether any none
devices exist on the system. For the loadable version of the driver,
noneprobe also calls the appropriate interfaces to register the interrupt
handlers for the loadable driver.

For the static version, noneprobe calls the BADADDR interface to
determine if the device is present. If the device is present, noneprobe
returns the size of the device register structure. If the device is not present,
noneprobe returns the value zero (0).

The following code implements the noneprobe interface:

noneprobe(addrl, ctlr)
io handle t addrl; m
struct controller *ctlr; ~

ihandler t handler; ~
struct tc intr info info; ~
int unit ~ ctlr->ctlr num; ~
register io_handle_t reg = addrl; ~

if (none_is_dynamic) { ~

else

handler.ih_bus = ctlr->bus_hd; ~

info.configuration_st = (caddr_t)ctlr; ~

info.config_type = TC_CTLR; [ru

info.intr = noneintr; ~

info.param = (caddr_t)unit; ~

handler.ih_bus_info = (char *)&info; ~

none id t[unit] = handler add(&handler); ~
if (none_id_t[unit] == NULL) { ~

return(O);

if (handler enable(none id t[unit]) != 0) { ~
handler_del(none_id_t[unit]);
return(O);

if (BADADDR((caddr_t) reg + NONE_CSR, sizeof(long)) !=O)

return (0);
}1iZI

4-14 Coding, Configuring, and Testing a Device Driver

write io port(reg + NONE CSR, 8, 0, DN_RESET); [ru
wbflush(); - ~

if(read_io_port(reg + NONE_CSR, 8, 0) & DN_ERROR)
{

return (0);
}~

write io port(reg + NONE CSR, 8, 0, 0); ~
wbflush(); ~ -

return (1); ~

[j] Declares an addr 1 argument that specifies an 1/0 handle that you can
use to reference a device register located in bus address space (either I/O
space or memory space). This I/O handle references the device's 1/0
address space for the bus where the read operation originates from (in
calls to the read io port interface) and where the write operation
occurs (in calls tothe wri te _ io _port interface).

In previous versions of this book, this first argument was of type
caddr t. The argument specified the system virtual address (SV A) that
corresponds to the base slot address. The interpretation of this argument
depends on the bus that your driver operates on. Although there is no
real bus connected to the / dev / none driver, the example uses
arguments associated with a TURBOchannel bus. Other buses may
require a different argument in this position.

121 Declares a pointer to a controller structure. Again, the argument
specified in this position of the noneprobe interface depends on the bus
the driver operates on.

@] Declares an ihandler t data structure called handler to contain
information associated wIth the / dev / none device driver interrupt
handling. Section 7.8 describes the ihandler t structure. The
noneprobe interface initializes two members Of this data structure.
This line is applicable only to the loadable version of the / dev / none
device driver.

~ Declares a tc intr info data structure called info. This interrupt
handler structure is for use by loadable drivers. Section 7.9 describes the
tc intr info structure,

[5] Declares a uni t variable and initializes it to the controller number. This
controller number identifies the specific none controller that is being
probed.

The controller number is contained in the ctlr num member of the
controller structure associated with this none device. Section 7.4.3
describes the ctlr num member. This line is applicable only to the
loadable version of the / dev / none device driver.

Coding, Configuring, and Testing a Device Driver 4-15

[§] Declares a variable called reg and initializes it to the I/O handle passed
to the driver's probe interface by the bus configuration code. In this case,
the I/O handle describes the system virtual address (SV A) for the none
device.

I.ZI Registers the interrupt handlers if none is dynamic evaluates to a
nonzero value, indicating that the / dev 7 none device driver is loadable.
Because this driver is also static, the driver writer must specify the
interrupt handler, noneintr,in the system configuration file or the
stanza. static file fragment. Section 12.2.1.2 describes how to
specify the interrupt handlers in the system configuration file and the
stanza. static file fragment.

The none is dynamic variable contains a value to control any
differences In tasks performed by the static or loadable version of the
/ dev / none device driver. This approach means that any differences are
made at run time and not at compile time. The none is dynamic
variable is initialized and set by the none conf igure interface,
discussed in Section 4.1.7.2. -

The items from 8 - 16 are applicable only to the loadable version of the
driver.

~ Specifies the bus that this controller is attached to. The bus hd member
of the controller structure contains a pointer to the bus structure
that this controller is connected to. After the initialization, the ih bus
member of the ihandler t structure contains the pointer to the bus
structure associated with the / dev / none device driver.

[9] Sets the configuration st member of the info data structure to
the pointer to the controller structure associated with this none
device. This controller structure is the one for which an associated
interrupt will be written.

This line also performs a type-casting operation that converts ctlr
(which is of type pointer to a controller structure) to be of type
caddr_ t, the type of the configuratiol1_ st member.

[Q] Sets the config type member of the info data structure to the
constant TC CTLR, which identifies the / dev / none driver type as a
controller. -

IITI Sets the intr member of the info data structure to noneintr, the
/ dev / none device driver's interrupt service interface.

[11J Sets the pararn member of the info data structure to the controller
number for the controller structure associated with this none
device.

This line also performs a type-casting operation that converts uni t
(which is of type int) to be of type caddr _ t, the type of the pararn

4-16 Coding, Configuring, and Testing a Device Driver

member.

~ Sets the ih bus info member of the handler data structure to the
address of the buS:-specific information structure, info.

This line also performs a type-casting operation that converts info
(which is of type ihandler t) to be of type char *, the type of the
ih bus info member. -

- -
I1AI Calls the handler add interface and saves its return value for use later

by the handler del interface. The handler add interface takes
one argument: a pointer to an ihandler t data structure, which in the
example is the initialized handler structure.

This interface returns an opaque ihandler id t key, which is a
unique number used to identify the interrupt serVICe interfaces to be acted
on by subsequent calls to handler del, handler disable, and
handler enable. Note that this key is stored in the none id t
array, whiCh was declared in Section 4.1.4. Section 4.1.6.3 shows how to
call handler del and handler disable.

~ If the return value from handler add equals NULL, returns a failure
status to indicate that there are no mterrupt service interfaces for the
/ dev / none driver.

[j]] If the handler enable interface returns a nonzero value, returns the
value zero (0) to Indicate that it could not enable a previously registered
interrupt service interface. The handler enable interface takes one
argument: a pointer to the interrupt servicelnterface's entry in the
interrupt table. In this example, this ID is contained in the none _ id _ t
array.

If the call to handler enable failed, removes the previously
registered interrupt handler by calling handler_del prior to returning
an error status.

Items 17 - 23 are applicable only to the static version of the
/ dev / none driver.

lIZl The next sequence of code calls the BADADDR interface to determine if
the device is present. The BADADDR interface takes three arguments.
However, only two are needed in this call. The first argument specifies
the address of the device whose existence you want to check and the
second argument specifies the length of the data to be checked. In this
call to BADADDR, the I/O handle plus the NONE CSR device register
offset maps to the 64-bit control/status register for this none device. The
length is the value returned by the sizeof operator, in this case the
number of bytes needed to contain a value of type long.

Because the first argument to BADADDR is of type caddr _ t, this line
also performs a type-casting operation that converts the type of the reg

Coding, Configuring, and Testing a Device Driver 4-17

variable (which is of type io _handle _ t) to type caddr _ t.

If a device is present, BADADDR returns the value zero (0).

[jjJ Calls the write io port interface to write the bit represented by the
constant DN RESET to the none device's controllstatus register. This bit
instructs thedevice to reset itself in preparation for data transfer
operations. The wr i te _ io _port interface takes four arguments:

- The first argument specifies an I/O handle that you can use to
reference a device register located in bus address space (either I/O
space or memory space). This I/O handle references a device register
in the bus address space where the write operation occurs. In this
call, the / dev / none driver specifies the device's I/O address space
by adding the 1/0 handle (stored in the reg variable) to the device
register offset (represented by the NONE _ CSR bit).

- The second argument specifies the width (in bytes) of the data to be
written. Valid values are 1,2,3,4, and 8. Not all CPU platforms
support all of these values. In this call, the / dev / none driver
passes the value 8.

- The third argument specifies flags to indicate special processing
requests. Because this argument is not currently used, the
/ dev / none driver passes the value 0 (zero).

- The fourth argument specifies the data to be written to the specified
device register in bus address space. In this call, the / dev / none
driver passes the bit represented by the constant DN _RESET.

~ Calls the kernel interface wbflush to ensure that a write to I/O space
has completed.

l2Q] If the result of the bitwise AND operation produces a nonzero value (that
is, the error bit is set), then noneprobe returns the value zero (0) to the
configuration code to indicate that the device is broken. To determine if
the error bit is set, the / dev / none driver reads the device register by
calling the read io port interface. The read io port interface
takes three arguments: - -

- The first argument specifies an I/O handle that you can use to
reference a device register located in bus address space (either I/O
space or memory space). This I/O handle references a device register
in the bus address space where the read operation originates. In this
call, the / dev / none driver specifies the device's I/O address space
by adding the I/O handle (stored in the reg variable) to the device
register offset (represented by the NONE _ CSR bit).

- The second argument specifies the width (in bytes) of the data to be
read. Valid values are 1,2,3,4, and 8. Not all CPU platforms
support all of these values. In this call, the / dev / none driver

4-18 Coding, Configuring, and Testing a Device Driver

passes the value 8.

- The third argument specifies flags to indicate special processing
requests. Currently, no flags are used. Because this argument is not
currently used, the /dev/none driver passes the value 0 (zero).

I21J If the result of the bitwise AND operation produces a zero value (that is,
the error bit is not set), then none probe initializes the device's
CSR/LED register to the value zero (0) by calling the write io port
interface. The / dev / none driver passes the same argumentsto -
wr i te io port as in the previous call except for the fourth argument.
In this call, wr i te _io _port passes the value 0 to the fourth argument.

122] The wbflush interface is called a second time to ensure that a write to
1/0 space has completed.

~ The noneprobe interface returns to the autoconfiguration code a
nonzero value, which indicates that the device is present.

Coding, Configuring, and Testing a Device Driver 4-19

4.1.6.2 Implementing the nonecattach Interface

The nonecattach interface has no code associated with it and is included
as a stub for future expansion. It would be applicable to the loadable or
static version of the / dev / none device driver.

nonecattach(ctlr)
struct controller *ctlr; rn
{

/* Attach interface goes here. */

return;

[j] The none device does not need an attach interface. However, this line
shows that your cattach interface would declare a pointer to a
controller structure. Your device driver could then send any
information contained in this structure to the controller. Section 7.4
describes the controller structure.

4-20 Coding, Configuring, and Testing a Device Driver

4.1.6.3 Implementing the none_ctlr _unattach Interface

The none ctlr unattach interface is a loadable driver-specific interface
called indirectly from the bus code when a system manager specifies that the
loadable driver is to be unloaded. In other words, this interface would never
be called if the / dev / none device driver were configured as a static driver
because static drivers cannot be unconfigured. This interface's main tasks are
to deregister the interrupt handlers associated with the / dev / none device
driver and to remove the specified controller structure from the list of
controllers the / dev / none driver handles.

The following code implements the none _ ctlr _ unattach interface:

int none ctlr unattach(bus, ctlr)
struct bus *bus; m
struct controller *ctlr; ~

{

}

register int unit = ctlr->ctlr_num; ~

if ((unit> num_none) I I (unit < 0)) { ~
return(l);

if (none_is_dynamic
return(l);

}

0) { ~

if (handler_disable(none_id_t[unit]) 1= 0) { ~
return(l);

}

if (handler_del(none_id_t[unit]) 1= 0) { 0
return(l);

}

return (0); ~

[j] Declares a pointer to a bus structure and calls it bus. The bus structure
represents an instance of a bus entity. A bus is a real or imagined entity
to which other buses or controllers are logically attached. All systems
have at least one bus, the system bus, even though the bus may not
actually exist physically. The term controller here refers both to devices
that control slave devices (for example, disk and tape controllers) and to
devices that stand alone (for example, terminal or network controllers).
Section 7.3 describes the bus structure.

!21 Declares a pointer to a controller structure and calls it ctlr. This
controller structure is the one you want to remove from the list of
controllers handled by the / dev / none device driver. Section 7.4
describes the controller structure.

Coding, Configuring, and Testing a Device Driver 4-21

[3] Declares a uni t variable and initializes it to the controller number. This
controller number identifies the specific none controller whose
associated controller structure is to be removed from the list of
controllers handled by the / dev / none driver. Section 7.4.3 describes
the ctlr nurn member.

The controller number is contained in the ctlr nurn member of the
controller structure associated with this none device.

~ If the controller number is greater than the number of controllers found
by the noneprobe interface or the number of controllers is less than
zero, returns the value 1 to the bus code to indicate an error.

This sequence of code validates the controller number. The num none
variable contains the number of instances of the none controller found
by the noneprobe interface. Section 4.1.6.1 describes the
implementation of noneprobe.

~ If none is dynamic is equal to the value zero (0), returns the value 1
to the bus code to indicate an error.

This sequence of code validates whether the / dev / none driver is a
loadable driver. The none is dynamic variable contains a value to
control any differences in tasks performed by the static or loadable
version of the / dev / none device driver. This approach means that any
differences are made at run time and not at compile time. The
none is dynamic variable is initialized and set by the
none == configure interface, discussed in Section 4.1.7.2.

[§J If the return value from the call to the handler disable interface is
not equal to the value zero (0), returns the value f to the bus code to
indicate an error. Otherwise, the handler disable interface makes
the / dev / none device driver's previously registered interrupt service
interfaces unavailable to the system. Section 9.6.4 provides additional
information on handler disable.

This sequence of code is executed if none is dynamic is not equal to
the value zero (0), indicating that the / dev/ none device driver is a
loadable driver. The handler disable interface takes one argument:
a pointer to the interrupt service's entry in the interrupt table. In this call,
the ID is accessed through the none id t array. Section 4.1.6.1 shows
that handler add fills in this arraY, Note that the uni t variable is
used as an index to identify the interrupt service interface associated with
a specific controller structure. Section 4.1.6.1 shows that
noneprobe initializes this variable to the controller number.

III If the return value from the call to the handler del interface is not
equal to the value zero (0), returns the value 1 to the bus code to indicate
an error, Otherwise, the handler del interface deregisters the
/ dev / none device driver's interrupt service interface from the bus-

4-22 Coding, Configuring, and Testing a Device Driver

specific interrupt dispatching algorithm. Section 9.6.4 provides additional
information on handler del.

This sequence of code is executed if none is dynamic is not equal to
the value zero (0), indicating that the / devl none device driver is a
loadable driver. The handler del interface takes the same argument
as the handler disable intei'face: a pointer to the interrupt service's
entry in the interrupt table.

~ Returns the value zero (0) to the bus code upon successful completion of
the tasks performed by the none_ctlr_unattach interface.

4.1.7 Loadable Device Driver Section
This section is applicable only to the loadable version of the / dev / none
device driver. It implements the none configure interface. Table 4-3
lists the tasks associated with implementing the Loadable Device Driver
Section along with the sections in the book where each task is described.

Table 4-3: Loadable Device Driver Section

Part

Setting Up the none_configure Interface

Configuring (Loading) the /dev/none
Device Driver

Unconfiguring (Unloading) the /dev/none
Device Driver

Querying the /dev/none Device Driver

Section

Section 4.1.7.1

Section 4.1.7.2

Section 4.1.7.3

Section 4.1.7.4

Coding, Configuring, and Testing a Device Driver 4-23

4.1.7.1 Setting Up the none_configure Interface

The following code shows how to set up the none _ conf igure interface:

none configure(op,indata,indatalen,outdata,outdatalen)
sysconfig op top; ill

{

device config t *indata; ~
size t-indatalen; ~
device config t *outdata; ~
size_t-outdatalen; I5l

dev t
int
int

cdevno; I§]
retval; lZl
i· , I8l

[II Declares an argument called op to contain a constant that describes the
configuration operation to be performed on the loadable driver. This
argument is used in a switch statement and evaluates to one of the
following valid constants: SYSCONFIG _CONFIGURE,
SYSCONFIG_UNCONFIGURE,orSYSCONFIG_QUERY.

121 Declares a pointer to a device config t data structure called
indata that consists of inputs to the none configure interface.
This data structure is filled in by the device driver method of cfgmgr.
The device config t data structure is used to represent a variety of
information, including the I dev Inone driver's major number
requirements. Section 7.11 describes the device _ config_ t structure.

~ Declares an argument called indatalen to store the size of this input
data structure (in bytes).

~ Declares a pointer to a device config t data structure called
outdata that is filled in by the-I dev Inane device driver. This data
structure contains a variety of information, including the return values
from the Idev/none driver to cfgmgr. This returned information
contains the major number assigned to the none device.

[5] Declares an argument called outdatalen to store the size of this
output data structure (in bytes).

I§] Declares a variable called cdevno to store the major device number for
the none device.

IZl Declares a variable called retval to store the return value from the
cdevsw del interface.

IS] Declares a variable called i used in the for loop when
none _ conf igure unloads the loadable driver.

4-24 Coding, Configuring, and Testing a Device Driver

4.1.7.2 Configuring (Loading) the /dev/none Device Driver

The following code shows how to implement the loadable driver's configure
or loading operation. This section of code executes when the system
manager requests that the I dev Inane device driver be dynamically
configured.

switch (op) {

case SYSCONFIG_CONFIGURE: ill

if (indata->dc dsflags & IH DRV DYNAMIC)

} 121
none_is_dynamic = 1;

if (nune_is_dynamic) { ~

if (strlen(indata->config name) <= 0) {
printf(flnone_configure, null config name.\n fl);
return(EINVAL);

} ~

if (ldbl stanza resolver(indata->config name,

} !Zl

DN BDSNAME,-&nonedriver, -
(caddr_t *)none_option_snippet) 1= 0) {
return(EINVAL);

} ~

if (ldbl ctlr configure(DN BUSNAME,
LDBL WILDNUM, indata->config name,
&nonedriver, 0)) { -
return(EINVAL);

} ~

if (num_none == 0) {
return (EINVAL) ;

cdevno = makedev(indata->dc cmajnum,
(indata->dc cmajnum-== -1)?-1:0); ~

cdevno = cdevsw add(cdevno,&none cdevsw entry); ~
if (cdevno == NODEV) { --

return(ENODEV) ;
}[Q]

none_devno = cdevno; ff]

outdata->dc_cmajnum = major(none_devno); ~

outdata->dc_begunit

outdata->dc numunit

outdata->dc version

outdata->dc_dsflags

O' ,
num_none;

DRIVER_BUILD_LEVEL;

indata->dc_dsflags;

outdata->dc_bmajnum = NODEV;

outdata->dc errcode 0;
outdata->dc_ihflags 0;
outdata->dc ihlevel 0;

Coding, Configuring, and Testing a Device Driver 4-25

none config = TRUE; ~
break;

[1] Specifies the SYSCONFIG CONFIGURE constant to indicate that this
section of code implementsthe configure loadable driver operation. The
file lusrlsys/include/sys/sysconfig.h contains the definition
of this constant.

121 If the device switch configuration flag is set to the IH DRV DYNAMIC
bit, then this is the loadable version of the driver. To Indicate this
condition, sets the none is dynamic variable to 1. The file
lusrlsys/includelsys7sysconfig.h contains the definition of
this constant.

The device switch configuration flag is set by the device driver method of
cfgmgr in the dc dsflags member of the input data structure,
indata. This ifstatement is included because it is possible for a static
driver to call the configure interface.

~ If this is the loadable version of the driver, calls the strlen kernel
interface.

~ If the number of characters returned by strlen is less than or equal to
zero:

- Calls printf to print a message indicating that no device driver
name was specified in the stanza .loadable file fragment. The
absence of a device driver name in stanza .loadable indicates
that the driver name cannot be determined. The driver name is
required for the configuration of the loadable driver. In this case, the
interface must return an error status.

Section 12.6 describes the stanza file format and syntax.

- Returns the constant E I NVAL to indicate an invalid argument. This
constant is defined in the file
lusrlsys/include/sys/errno.h. This error return value
gets indirectly passed back to cfgmgr.

The strlen interface takes one argument: a pointer to an array of
characters terminated by a null character. In this call, the array of
characters is the config name member of the pointer to the indata
input data structure. This-member is set by the driver method of
cfgmgr, which obtains the driver's configuration name from the
Module Config Name field in the stanza .loadable file
fragment:- Because the driver's configuration name is a required field in
the stanza .loadable file fragment, the driver must return an error if
the name does not exist. Section 9.1.5 provides additional information on
strlen. Section 12.6.2.19 describes the Module Config Name
field. - -

4-26 Coding, Configuring, and Testing a Device Driver

[§] If the ldbl stanza resolver kernel interface returns a value not
equal to zero' it did not tind matches in the tc s lot table. This
condition indicates that no instances of the controller exist on the bus. It
returns the constant EINVAL to indicate an invalid argument. Otherwise,
ldbl stanza resolver allows the device driver to merge the
system configunuion data specified in the stanza .loadable file
fragment into the hardware topology tree created at static configuration
time. The ldbl_stanza _ resol ver interface takes four arguments:

- The name of the driver specified by the driver writer in the
stanza. loadable file fragment

In this call, the driver name is obtained from the config name
member of the pointer to the indata input data structure~

- The name of the parent bu s structure associated with this controller

In this call, the constant DN BUSNAME represents the characters
"tc", indicating that the parent bus structure is a TURBOchannel
bus. The bus structure name is obtained from the config program.

- A pointer to the driver structure for the controlling device driver

In this call, the address of the nonedr i ver structure is passed.

- A bus-specific parameter

The bus-specific parameter for a TURBOchannel bus is usually a
tc option snippet table. In this call, the address of the
none option snippet table is passed. This table contains the
appropriate entryfor the loadable version of the / dev / none device
driver. Section 4.1.4 shows the declaration of this table.

Note that a type-casting operation converts
none option snippet (which is of type struct
tc option) tobe of type caddr t *, the type of the bus-specific
argument. However, ldbl stanza resolver does not do
anything with this argumentbut pass It to the bus configuration code
that performs the correct type-casting operation to handle
none option snippet. Section 9.6.5 provides additional
information on ldbl stanza resolver.

[§] Calls the ldbl ctlr conf igure interface to cause the driver's
noneprobe interface to be called once for each instance of the
controller found on the system. If ldbl ctlr configure fails, it
returns the constant EINVAL. The ldbC ctl~ conf igure interface
takes five arguments:

- The bus name

In this call, the bus name "tc" is represented by the DN_ BUSNAME
constant.

Coding, Configuring, and Testing a Device Driver 4-27

- The bus number

In this call, the bus number is represented by the wildcard constant
LDBL WILDNUM. This usage allows for the configuration of all
instances of the none device present on the system. This constant is
defined in the file
lusrlsys/include/io/common/devdriver.h.

- The name of the controlling device driver .

In this call, this name is obtained from the conf ig_ name member
of the inda ta input data structure.

- A pointer to the driver structure for the controlling device driver,
which in this call is nonedriver.

- Miscellaneous flags from
lusrlsys/include/io/common/devdriver_loadable.h

In this call, the value zero (0) is passed to indicate that no flags are
specified.

IZI If the noneprobe interface does not find any controllers, sets the
variable that keeps count of the number of controllers found to the value
zero (0) and returns the constant E INVAL to indicate no controllers were
found.

~ Calls the makedev interface, which makes a device number of type
dev t based on the specified major and minor numbers. Upon
successful completion, makedev returns the major number for this none
device in the cdevno variable. Note that the driver configuration is
performed before obtaining the device major number to prevent user level
programs from gaining access to the I dev Inone driver's entry points in
the cdevsw.

The makedev interface takes two arguments. The first argument is the
major number for the device, which in this call is obtained from the
dc cmajnum member of the pointer to the indata input data structure
associated with this device.

The second argument is the minor number for the device, which in this
call is also obtained from the dc cmajnum member, indicating that the
major and minor numbers are identical. This interface does not make use
of the minor number. Writing Device Drivers, Volume 2: Reference
provides a reference (man) page-style description of makedev.

~ Calls the cdevsw add interface to add the driver entry points for the
I dev I none driver to the cdevsw table. This interface takes two
arguments. The first argument specifies the device switch table entry
(slot) to use. This entry represents the requested major number. In this
call, the slot to use was obtained in a previous call to makedev. The
second argument is the character device switch structure that contains the

4-28 Coding, Configuring, and Testing a Device Driver

character device driver's entry points. In this call, this structure is called
none edevsw entry. Upon successful completion, edevsw add
returns the device number associated with the device switch table~
Section 9.6.2 provides additional information on edevsw _add.

I1.OJ If the device number associated with the device switch table is equal to
the constant NODEV, returns the error constant ENODEV. The NODEV
constant indicates that the requested major number is currently in use or
that the edevsw table is currently full. The NODEV constant is defined
in /usr/sys/inelude/sys/param.h, and
/usr/sys/inelude/sys/errno.h contains the ENODEV constant.

[.1] Stores the edevsw table entry slot for this none device in the
none devno variable. Section 4.1.7.3 shows that edevsw del uses
this slot value when the device is unconfigured.

l11I This line and the following lines set up the pointer to the outdata
output data structure to contain the returned information from the driver
configuration. The e f gmgr program uses this information to determine
whether the driver was successfully configured and what device special
files need to be created. The e f gmgr program initializes the output data
structure as follows:

- Sets de emaj num to the major number for this device by calling the
major Interface. In this call, the number of the device is contained
in the none devno variable. Section 9.9.2 provides additional
information on major.

- Sets de beguni t to the first minor device number in the range. In
this case, the first minor number is zero (0).

- Sets de numuni t to the number of instances of the controller found
by the noneprobe interface. In this case, this number is contained
in the num none variable, which was incremented by noneprobe
upon locadng each controller on the system.

- Sets de version to the version of the kernel interfaces that the
driver was compiled to. This member is examined by efgmgr upon
driver loading to ensure compatibility. In this call, the version is
specified with the constant DRIVER BUILD LEVEL, which is
defined in /usr / sys/ inelude/sys/ syseonfig. h.

- Sets de ds f lags to the device switch configuration flags that were
passed to the input data structure by efgmgr.

- Sets de bmajnum to the constant NODEV. The none device is a
character device and, therefore, has no block device major number.

- Because the de erreode, de ihf lags, and de ihlevel
members are not used, sets them to the value zero (0).

Coding, Configuring, and Testing a Device Driver 4-29

~ Sets the state flag to indicate that the / dev / none device driver is now
configured as a loadable device driver.

4-30 Coding, Configuring, and Testing a Device Driver

4.1.7.3 Unconfiguring (Unloading) the /dev/none Device Driver

The following code shows how to implement the loadable driver's
unconfigure or unloading operation. This section of code executes when the
system manager requests that the currently loadable / dev / none device
driver be unconfigured.

case SYSCONFIG UNCONFIGURE: ~

if (none_config 1= TRUE)
return(EINVAL);

} ~

for (i = 0; i < num none; i++) {
if (none_softc[i].sc_openf 1= 0) {

return(EBUSY);
} ~

retval = cdevsw_del(none_devno);
if (retval) {

return(ESRCH);
} ~

if (none_is_dynamic) { ~

if (ldbl ctlr unconfigure(DN BUSNAME,
LDBL_WILDNUM, &nonedriver,
LDBL_WILDNAME, LDBL_WILDNUM) 1= 0) { ~

return(ESRCH);

none_config = FALSE; ~
break;

[j] Specifies the SYSCONFIG UNCONFIGURE constant to indicate that this
section of code implementsthe unconfigure operation of the loadable
driver. The file /usr / sys/ include/ sys/ sysconfig. h contains
the definition of this constant.

121 If the / dev / none device driver is not currently configured as a loadable
driver, fails the unconfiguration by returning the constant E INVAL. This
error code is defined in /usr / sys/ include/ sys/errno. h.

~ Prevents the system manager from unloading the device driver if it is
currently active. To determine if the driver is active, checks the
sc openf member of this none device's none softc structure to
determine if the device is opened. If so, returns the constant EBUSY.
This error code is defined in /usr/sys/include/sys/errno.h.

~ Calls the cdevsw del interface to delete the /dev/none driver's
entry points from the cdevsw table.

The cdevsw del interface takes one argument: the device switch table
entry (slot) to-use. In this call, the slot is contained in the none _ devno

Coding, Configuring, and Testing a Device Driver 4-31

variable, which was set when the driver was configured. If
cdevsw del fails, returns ESRCH to indicate that the driver is not
currently present in the cdevsw table.

15] If none is dynamic evaluates to TRUE, calls the
ldbl ctlr- unconfigure interface to unconfigure the specified
controller. Section 4.1.7.2 shows that the none is dynamic variable
was previously set to TRUE (the value 1) when the driver was
configured.

[§] If the Idbl ctlr unconfigure interface returns a nonzero value,
returns the error constant ESRCH to indicate that it did not successfully
unconfigure the specified controller. Otherwise, unconfigures the
controller. A call to this interface results in a call to the driver's
none ctlr unattach interface for each instance of the controller.
Section 4.1.63 describes none ctlr unattach.

The ldbl_ ctlr _ unconf igure interface takes five arguments:

- The bus name

In this call, the bus name is represented by the constant
DN BUSNAME.

The bus number

In this call, the wildcard constant indicates that the interface
ldbl ctlr unconf igure deregisters all instances of the
controllers connected to the TURBOchannel bus.

- A pointer to the driver structure for the controlling device driver,
which in this call is nonedr i ver

The controller name and controller number

In this call, the wildcard constants indicate that
ldbl ctlr unconfigure scans all controller structures.
Section 9.6.6provides additional information on
ldbl_ ctlr _ unconf igure.

III Sets the none config variable to the value FALSE to indicate that the
/ dev / none device driver is now unconfigured.

4-32 Coding, Configuring, and Testing a Device Driver

4.1.7.4 Querying the Idev/none Device Driver

The following code shows how to implement the loadable driver's query
operation. This section of code executes when the system manager requests a
query of information associated with the loadable version of the driver.

}

}

case SYSCONFIG_QUERY: ill

if (none_config != TRUE) {
return(EINVAL);

} I2l
outdata->dc cmajnum = major(none_devno);
outdata->dc-bmajnum = NODEV;
outdata->dc-begunit = 0;
outdata->dc-numunit num_none;
outdata->dc version DRIVER BUILD_LEVEL;
break;

default:
return (EINVAL); @]

return(0); ~

ill Specifies the SYSCONFIG QUERY constant to indicate that this section
of code implements the query operation of the loadable driver. The file
/usr/sys/include/sys/sysconfig.h contains the definition of
this constant.

[2J Fails the query if the driver is not currently configured as a loadable
driver. Otherwise, sets the following members of the outdata output
data structure:

- Sets dc cmajnum to the major number for this device by calling the
major Interface.

- Sets dc bmajnum to the constant NODEV. The none device is a
character device and, therefore, has no block device major number.

- Sets dc beguni t to the first minor device number in the range. In
this case,- the first minor number is zero (0).

- Sets dc numuni t to the number of instances of the controller found
by the noneprobe interface. In this case, this number is contained
in the num none variable, which was incremented by noneprobe
upon locatmg each controller on the system.

- Sets dc vers ion to the version of the kernel interfaces that the
driver was compiled to. This member is examined by cfgmgr upon
driver loading to ensure compatibility. In this call, the version is
specified with the constant DRIVER BUILD LEVEL, which is
defined in /usr / sys/ include/ sys/ sysconfig. h.

Coding, Configuring, and Testing a Device Driver 4-33

I.aI Defines an unknown operation type and returns the error constant
E I NVAL to indicate this condition. This section of code is called if the
ap argument is set to anything other than SYSCONFIG _CONFIGURE,
SYSCONFIG_UNCONFIGURE,orSYSCONFIG_QUERY.

@ To indicate that the I dev Inane driver's none configure interface
completed successfully, the value zero (0) is returned.

4.1.8 Open and Close Device Section
This section is applicable to the loadable or static version of the
I dev Inane device driver. The decision as to whether it is loadable or
static is made at run time by the system manager and not at compile time by
the driver writer. Thus, the driver writer can implement one device driver
that is loadable or static. Table 4-4 lists the two interfaces implemented as
part of the Open and Close Device Section along with the sections in the
book where each is described.

Table 4-4: Interfaces Implemented as Part of the Open and Close
Device Section

Part

Implementing the noneopen Interface

Implementing the nonec1ose Interface

4-34 Coding, Configuring, and Testing a Device Driver

Section

Section 4.1.8.1

Section 4.1.8.2

4.1.8.1 Implementing the noneopen Interface

The noneopen interface is called as the result of an open system call. The
following code implements a noneopen interface, which performs the
following tasks: checks to ensure that the open is unique, marks the device as
open, and returns the value zero (0) to the open system call to indicate
success:

noneopen(dev, flag, format)
dev t dev; [j]
int-flag; I2l
int format; @I

}

register int unit = minor(dev); ~

struct controller *ctlr = noneinfo[unit]; ~

struct none softc *sc = &none_softc[unit]; ~

if(unit >= NNONE)
return ENOOEV; ~

if (sc->sc openf == ON OPEN)
return (EBUSY); iI

if ((ctlr !=O) && (ctlr->alive & ALV_ALIVE»
{

}

sc->sc openf = ON_OPEN;
return"(0); I9l

else return(ENXIO); ~

[j] Declares an argument that specifies the major and minor device numbers
for a specific none device. The minor device number is used to
determine the logical unit number for the none device that is to be
opened.

!21 Declares an argument to contain flag bits from the file
lusr I sys I includel sys I file. h. These flags indicate whether the
device is being opened for reading, writing, or both.

@] Declares an argument to contain a constant that identifies whether the
device is a character or a block device. These constants are defined in
lusrlsys/include/sys/mode.h.

~ Declares a un i t variable and initializes it to the device minor number.
Note the use of the minor interface to obtain the device minor number.

The minor interface takes one argument: the number of the device for
which an associated device minor number will be obtained. The minor
number is encoded in the dev argument. Section 9.9.3 provides
additional information on minor.

Coding, Configuring, and Testing a Device Driver 4-35

~ Declares a pointer to a controller structure and calls it ctlr.
Initializes ctlr to the controller structure associated with this
none device. The minor device number, uni t, is used as an index into
the array of controller structures to determine which controller
structure is associated with this none device.

I§] Declares a pointer to a none softc structure and calls it sc.
Initializes sc to the address Of the none softc structure associated
with this none device. The minor device number, uni t, is used as an
index into the array of none so ftc structures to determine which
none softc structure is associated with this none device.

111 The none device requires no real work to open; therefore, the code could
simply ignore the call and return the value zero (0). To demonstrate
some of the checking that a real driver might perform, the example
provides code that checks to be sure that the device exists.

If the device minor number, uni t, is greater than or equal to the number
of devices configured by the system, returns the error code ENODEV,
which indicates no such device on the system. This error code is defined
~ /usr/sys/include/sys/errno.h

[8] If the sc openf member of the sc pointer is equal to DN OPEN,
returns the error code EBUSY, which indicates that the none device has
already been opened. This error code is defined in
/usr/sys/include/sys/errno.h. This example test is used to
ensure that this unit of the driver can be opened only once at a time. This
type of open is referred to as an exclusive access open.

[9] If the ctlr pointer is not equal to 0 and the alive member of ctlr
has the ALV ALIVE bit set, then the device exists. If this isthe case, the
noneopen Interface sets the sc openf member of the sc pointer to
the open bit DN_ OPEN and returns 0 to indicate a successful open.

[QJ If the device does not exist, noneopen returns the error code ENXIO,
which indicates that the device does not exist. This error code is defined
~ /usr/sys/include/sys/errno.h

4-36 Coding, Configuring, and Testing a Device Driver

4.1.8.2 Implementing the noneclose Interface

The noneclose interface uses the same arguments as noneopen, gets the
device minor number in the same way, and initializes the controller and
none softc structures identically. The purpose of noneclose is to turn
off theopen flag for the specified none device. The following code
implements the noneclose interface:

noneclose(dev, flag, format)
dev t dev; III
int-flag; [2J
int format; ~
{

}

register int unit = minor(dev); @
struct controller *ctlr = noneinfo[unit]; ~

struct none softc *sc = &none_softc[unit]; ~

register io handle t reg =
(io_handle_t) ctlr=>addr; ~

sc->sc_openf = DN_CLOSE; ~

write_io_port(reg + NONE_CSR, 8, 0, 0); ~

wbflush (); [Q]

return (0); !II]

ill Like the noneopen interface, the noneclose interface declares an
argument that specifies the major and minor numbers for a specific none
device. The minor device number is used to determine the logical unit
number for the none device to be closed.

121 Like the noneopen interface, the noneclose interface also declares an
argument to contain flag bits from the file
lusrlsys/include/sys/file.h. Typically, a driver's close
interface does not make use of this argument.

@] Although the format argument is shown here, a driver's close
interface does not typically make use of this argument.

~ Declares a uni t variable and initializes it to the device minor number.
Note the use of the minor interface to obtain the device minor number.

The minor interface takes one argument: the number of the device for
which an associated device minor number will be obtained. The minor
number is encoded in the dev argument. Section 9.9.3 provides
additional information on minor.

15] Declares a pointer to a controller structure and calls it ctlr.
Initializes ctlr to the controller structure associated with this

Coding, Configuring, and Testing a Device Driver 4-37

none device. The minor device number, uni t, is used as an index into
the array of controller structures to determine which controller
structure is associated with this none device.

[§] Declares a pointer to a none so ftc structure and calls it sc.
Initializes sc to the address Of the none softe structure associated
with this none device. The minor device number, uni t, is used as an
index into the array of none softe structures to determine which
none softc structure is associated with this none device.

111 Section 4.1.6.1 shows that the I dev I none device driver stored the VO
handle passed to its probe interface in the reg variable. The
I dev I none device driver now initializes reg to the system virtual
address (SV A) for the none device. This address is obtained from the
addr member of the controller structure associated with this none
device. Because the data types are different, this line performs a type­
casting operation that converts the addr member (which is of type
caddr _ t) to be of type io _handle _ t.

~ Turns off the open flag by setting the sc openf member of the sc
pointer to the close bit DN CLOSE. This action frees up the unit so that
subsequent calls to noneopen will succeed.

[9] The none device is not a real device and therefore would not initiate
interrupts. However, this line shows how to turn off interrupts by writing
the value zero (0) to the device's control/status register. To accomplish
the write operation, the I dev I none device driver calls the
wr i te _ io _port interface. The wr i te _ io _port interface takes four
arguments:

- The first argument specifies an VO handle that you can use to
reference a device register located in bus address space (either I/O
space or memory space). This VO handle references a device register
in the bus address space where the write operation occurs. In this
call, the Idev/none driver specifies the device's VO address space
by adding the system virtual address (SV A) (stored in the reg
variable) to the device register offset (represented by the NONE CSR
bW. -

- The second argument specifies the width (in bytes) of the data to be
written. Valid values are 1,2, 3,4, and 8. Not all CPU platforms
support all of these values. In this call, the I dev Inone driver
passes the value 8.

- The third argument specifies flags to indicate special processing
requests. Because this argument is not currently used, the
I dev Inone driver passes the value 0 (zero).

- The fourth argument specifies the data to be written to the specified
device register in bus address space. In this call, the I dev I none

4-38 Coding, Configuring, and Testing a Device Driver

driver passes the value zero (0).

[Q] Calls the kernel interface wbf 1 ush to ensure that a write to 110 space
has completed.

[1] The noneclose interface returns the value 0 to the close system call
to indicate a successful close of the none device.

4.1.9 Read and Write Device Section
This section is applicable to the loadable or static version of the
/ dev / none device driver. The decision as to whether it is loadable or
static is made at run time by the system manager and not at compile time by
the driver writer. Thus, the driver writer can implement one device driver
that is loadable or static. Table 4-5 lists the two interfaces implemented as
part of the Read and Write Device Section along with the sections in the
book where each is described.

Table 4-5: Interfaces Implemented As Part of the Read and Write
Device Section

Part

Implementing the noneread Interface

Implementing the nonewrite Interface

Section

Section 4.1.9.1

Section 4.1.9.2

Coding, Configuring, and Testing a Device Driver 4-39

4.1.9.1 Implementing the noneread Interface

The noneread interface simply returns success to the read system call
because the I dev Inone driver always returns EOF (End Of File) on read
operations. The following code implements the noneread interface:

noneread(dev, uio, flag)
dev t dev; W
struct uio *uio; ~
int flag;
{

}
ret urn (0); @]

I1J Declares an argument that specifies the major and minor device numbers
for a specific none device. The minor device number is used to
determine the logical unit number for the none device on which the read
operation is performed.

121 Declares a pointer to a uio structure. This structure contains the
information for transferring data to and from the address space of the
user's process. You typically pass this pointer unmodified to the
uiomove or physio kernel interface.

@! Returns success to the read system call. Because the I dev I none
driver always returns EOF on read operations, the noneread interface
simply returns O. More complicated drivers would need to copy data
from the device into the address space pointed to by the uio structure.

4-40 Coding, Configuring, and Testing a Device Driver

4.1.9.2 Implementing the nonewrite Interface

The nonewr i te interface copies data from the address space pointed to by
the uio structure to the device. Upon a successful write, nonewr i te
returns the value zero (0) to the write system call. The following code
implements the nonewr i te interface:

nonewrite(dev, uio, flag)
dev t dev; rn
struct uio *uio; ~
int flag;

int unit = minor(dev);

struct controller *ctlr = noneinfo[unit]; ~

}

struct none so ftc *sc

unsigned int count;

struct iovec *iov;

&none_softc[unit]; ~

while{uio->uio resid > 0) { ~
iov = uio=>uio iov; ~
if{iov->iov_len == 0) { ~

uio->uio_iov++;

}

uio->uio iovcnt--;
if{uio->uio_iovcnt < 0) ffTI

panic ("none write");
continue;

count = iov->iov_len; ~

iov->iov base += count; ~
iov->iov-len -= count; ~
uio->uio-offset += count; ~
uio->uio=resid -= count; ~

sc->sc count +=count; ~
}
return (O);

[§]

I1l

11] Declares an argument that specifies the major and minor device numbers
for a specific none device. The minor device number is used to
determine the logical unit number for the device on which the write
operation is performed.

12] Declares a pointer to a uio structure. This structure contains the
information for transferring data to and from the address space of the
user's process. You typically pass this pointer unmodified to the
uiomove or physio kernel interface.

Coding, Configuring, and Testing a Device Driver 4-41

~ Declares a uni t variable and initializes it to the device minor number.
Note the use of the minor interface to obtain the device minor number.

The minor interface takes one argument: the number of the device for
which an associated device minor number will be obtained. The minor
number is encoded in the dev argument.

~ Declares a pointer to a controller structure and calls it ctlr.
Initializes ctlr to the controller structure associated with this
none device. The minor device number, uni t, is used as an index into
the array of controller structures to determine which controller
structure is associated with this none device.

[§] Declares a pointer to a none so ftc structure and calls it sc.
Initializes sc to the address Of the none softc structure associated
with this none device. The minor device number, uni t, is used as an
index into the array of none softc structures to determine which
none softc structure is associated with this none device.

I§I Declares a variable that stores the size of the write request.

III Declares a pointer to an iovec structure and calls it iov.

~ Checks the size of the remaining logical buffer (represented by the
uio resid member) to determine if nonewri te must copy data from
the address space pointed to by the uio structure to the device. The loop
continues until all the bytes of data are copied to the device.

~ Sets the iov pointer to the address of the current logical buffer segment
(represented by the uio _ iov member).

[Q] If the remaining size of the current segment (represented by the
iov len member) is equal to 0, increments the address of the current
logical buffer segment (represented by the uio iov member) and
decrements the number of remaining logical buffer segments (represented
by the uio_iovcnt member).

[jJ If the number of remaining logical buffer segments is less than 0, there is
no data to write; therefore, calls the panic interface to cause a system
crash and displays the message' 'none write" on the console terminal.
This code represents an error condition that should never occur.

[12] Sets the count variable to the number of bytes contained in the current
segment (represented by the iov len member). This value is the size
of the write request. -

~ Adds the number of bytes in the write request to the address of the
current byte within the logical buffer segment (represented by the
iov _base member).

[.4J Subtracts the number of bytes in the write request from the current
segment (represented by the iov _len member).

4-42 Coding, Configuring, and Testing a Device Driver

!I51 Adds the number of bytes in the write request to the current offset into
the full logical buffer (represented by the uio _off set member).

[§] Subtracts the number of bytes in the write request from the size of the
remaining logical buffer (represented by the uio _ resid member).

ffIl Adds the number of bytes in the write request to the sc count member
of the sc pointer. When there are no more bytes, nonewri te returns
the value zero (0) to indicate a successful write. Otherwise, it returns an
appropriate error code that identifies the problem. You obtain the error
codes from the file /usr / sys/ include/ sys/ errno. h. Because
there is no physical device associated with / dev / none, nonewr i te
does not actually copy data anywhere.

Coding, Configuring, and Testing a Device Driver 4-43

4.1.10 Interrupt Section
The interrupt entry point for the I dev I none device driver is a stub because
there is no physical device to generate an interrupt. However, most devices
can generate interrupts. For example, a terminal might generate an interrupt
when a character is keyed into it. There is an interrupt entry point for those
drivers that are written for devices that generate interrupts. There are a
number of important issues relating to interrupts, which are discussed in
Section 2.1.3.4. Some devices generate more than one type of interrupt.
Thus, drivers controlling these devices can contain more than one interrupt
section.

For the I dev Inone driver, these issues are not relevant because there are
no interrupts, but they will be important for most drivers.

The following shows the interrupt section for the I dev I none device driver:

noneintr(unit)
int unit; [j]

{

struct controller *ctlr = noneinfo[unit]; ~
struct none softc *sc = &none_softc[unit];

/* Code to perform the interrupt */

}

I1J Declares a uni t argument that specifies the logical unit number for this
none device. This logical unit number would have been previously
specified in the system configuration file.

I2J This line and the following line show some of the typical data structures
you would define for an interrupt interface.

4-44 Coding, Configuring, and Testing a Device Driver

4.1.11 The ioctl Section
This section is applicable to the loadable or static version of the
I dev I none device driver. The decision as to whether it is loadable or
static is made at run time by the system manager and not at compile time by
the driver writer. Thus, the driver writer can implement one device driver
that is loadable or static. The ioctl section implements the noneioctl
interface, which obtains and clears the count of bytes that was previously
written by nonewr i teo When a user program issues the command to
obtain the count, the I dev Inone driver returns the count through the data
pointer passed to the noneioctl interface. When a user program asks to
clear the count, the I dev I none driver does so. The following code
implements the noneioctl interface:

noneioctl(dev, cmd,
dev t dev;

data,
ffl
[2J

flag)

unsIgned int cmd;
caddr t data; tal

~ int flag;

{

}

int unit = minor(dev); ~

int *res; 1§]

struct none softc *sc = &none_softc[unit]; ~

res = (int *) data; i

if(cmd == DN_GETCOUNT)
*res = sc->sc_count; ~

if(cmd == DN_CLRCOUNT)
sc->sc count = 0;

return (0); lIT]

ill Declares an argument that specifies the major and minor device numbers
for a specific none device. The minor device number is used to
determine the logical unit number for the none device on which the ioctl
operation is to be performed.

~ Declares an argument to contain the ioctl command as specified in
lusr I sys I includel sys I ioctl. h or in another include file that
you define.

13] Declares a pointer to the ioctl command-specified data that is to be
passed to the device driver or filled in by the device driver. This
argument is a kernel address. The size of this data cannot exceed the size
of a page. At least 128 bytes is guaranteed. Any size between 128 bytes
and the page size may fail if memory cannot be allocated. The particular

Coding, Configuring, and Testing a Device Driver 4-45

ioctl command implicitly determines the action to be taken. The
ioctl system call performs all the necessary copy operations to move
data to and from user space.

~ Declares an argument that holds the access mode of the device. The
access modes are represented by flag constants defined in
lusrlsys/include/sys/file.h.

~ Declares a uni t variable and initializes it to the device minor number.
Note the use of the minor interface to obtain the device minor number.

The minor interface takes one argument: the number of the device for
which an associated device minor number will be obtained. The minor
number is encoded in the dev argument. Section 9.9.3 provides
additional information on minor.

I§] Declares a pointer to a variable that will store the character count. The
nonewri te interface stores this character count in the sc count
member of the softc structure associated with this none device.

IZI Declares a pointer to a none. softc structure and calls it sc.
Initializes sc to the address Of the none softc structure associated
with this none device. The minor device number, uni t, is used as an
index into the array of none softc structures to determine which·
none softc structure is associated with this none device.

iii Sets the res variable to point to the kernel memory allocated by the
ioctl system call. The ioctl system call copies the data to and from
user address space.

Because the data types are different, this line performs a type-casting
operation that converts the data argument (which is of type caddr t)
to be of type pointer to an into -

~ If the ioctl command is equal to the DN GETCOUNT macro, sets res
to the number of bytes in the write request~ This count was previously
set by the nonewri te interface in the sc _count member of the sc
pointer.

[OJ If the ioctl command is equal to the DN CLRCOUNT macro, sets the
count of characters written to the device tothe value O. This line has the
effect of clearing the sc count member of the softc structure associated
with this none device. -

[j] Returns success to the ioctl system call.

4.2 . Configuring the Device Driver
The DEC OSFIl operating system provides two models for configuring
device drivers: the third-party device driver configuration model and the
traditional device driver configuration model. Chapter 11 describes each of

4-46 Coding, Configuring, and Testing a Device Driver

these models. Chapter 12 reviews the files associated with configuring
device drivers and describes the syntaxes and mechanisms used to populate
these files. Chapter 13 provides instructions for configuring the / dev / none
device driver, using the third-party and the traditional models.

4.3 Testing a Device Driver
One way to test a device driver is to write a test program. Implementing the
test program involves the following tasks:

• Writing the test program

• Deciding on more rigorous testing

• Tracking down problems in testing

Each of these tasks is discussed in the following sections.

4.3.1 Writing the Test Program.
The test program for the / dev / none device driver performs the following
tasks:

• Opens the none device for both reading and writing.

• Gets the count of bytes written to the device.

• Writes 100 bytes.

• Gets the byte count a second time. The byte count should be 100 more
than the first time.

• Resets the count to the value zero (0).

• Gets the count again, to verify that the reset worked.

• Tries to read 100 bytes. The test program should not be able to read any
because / dev / none returns EOF on a read.

The test program follows:

/***
* testdevnone.c - Test program for /dev/none *
* driver *
***/

/***

*
* Author: Digital Equipment Corporation

*

*
*
*

***/
/***
* INCLUDE FILES *
* *
***/

/***

Coding, Configuring, and Testing a Device Driver 4-47

*
*
* Header files required by testdevnone.c

*
*

*
*
*
*
*

***/

#include <stdio.h>
#include <sys/ioctl.h> ill
#include <sys/file.h>
#include <sys/limits.h>
#include <kits/ESA100/nonereg.h> ~

char buf [100] ; tal
main()
{

int d; ~
int count; [5]

if ((d = open(II /dev/none" ,O_RDWR))
{

}

perror("/dev/none");
exit(l);

ioctl(d,DN GETCOUNT,&count); 0
printf (" saw %d bytes \n ", count); ~

write(d,&buf[0],100); ~
printf("wrote 100 bytes\n"); ffQ]

ioctl(d,DN GETCOUNT,&count)i ~
printf(IIsaw %d bytes\n",count); I12l
ioctl(d,DN CLRCOUNT,&count); ~
printf(IIset count\n")i [H]

ioctl(d,DN GETCOUNT,&count); ~
printf(-;;-saw %d bytes\n",count);

count = read(d,&buf[O],lOO); ~

-1) I§]

printf("was able to read %d bytes\n",count); l11l
exit(O) i Ml

}

I1J Includes the ioctl. h header file because the test program uses the
ioctl macros defined in the device register header file nonereg . h.

[2] Includes the device register header file, which is discussed in Section
4.1.1. The directory specification adheres to the third-party device driver
configuration model discussed in Section 11.1.2. If the traditional device
driver configuration model is followed, the directory specification is
<io/Easylnc/nonereg. h>. The directory specification you make
here depends on where you put the device register file.

4-48 Coding, Configuring, and Testing a Device Driver

@I Declares an array containing 100 character elements. This array is used
to store the 100 bytes written by the nonewri te interface.

~ Declares a variable to contain the return from the open system call.

~ Declares a variable to store the character count.

[§] Calls the open system call, which in this example opens the device for
read/write operations. The example passes two arguments. The first
argument is the pathname that identifies the file to be opened. In the
example, / dev / none is passed. This path causes the kernel to:

- Look up / dev / none in the file system

- Notice that / dev / none is a character-special device

- Look up the driver entry for / dev / none in the cdevsw table

- Locate the pointer to the noneopen interface that was put there
when the cdevsw table was edited for the static version of the driver
or inserted by the cdevsw add kernel interface for the loadable
version of the driver. -

- Call the noneopen interface, passing to it a data structure that
describes the device being opened

The second argument is a flag to tell the kernel how to open the file. In
the example, the constant 0 RDWR is passed. This constant tells the
kernel to open / dev / none for reading and writing.

If the open system call executes successfully, it opens the device and
returns a nonnegative value to the test program. However, if the system
call fails, the kernel (in cooperation with the driver's noneopen
interface) will have set the global variable errno to a constant value that
describes the error. If an error occurs, the test program prints the error,
using the perror interface, and quits.

IZI After the device is opened, gets the initial character count that was
written to it. Although the count should be zero, it may not be if other
users have already written data to the device.

Remember that the noneioctl interface in the driver is used to read or
clear the count of characters written to / dev / none. Here, the ioct 1
system call is used to read the count of characters written to the device.
The kernel notices that the file associated with the descriptor d is actually
a special file, looks up its ioctl interface in the cdevsw table, and
invokes the driver's noneioctl interface. The kernel copies the return
value from noneioctl back to the count variable defined in the test
program because the bitmask for DN_ GETCOUNT instructs it to do so.

[D] Calls the printf interface to display on the console terminal a message
indicating the number of bytes.

Coding, Configuring, and Testing a Device Driver 4-49

~ Writes 100 bytes of data to / dev / none. The kernel invokes
nonewr i te because the file descriptor d is associated with a special
file. The nonewr i te interface counts these characters.

[j]] Calls the printf interface to display on the console terminal a message
indicating that nonewr i te wrote 100 bytes.

l1II Reads the count of characters written to the device now. The count
should be 100 higher than it was in the previous section of code. The
noneioctl interface is used exactly the same as it was to get the initial
count.

lI2I Calls the printf interface to display on the console terminal the
number of bytes.

Ijj The next test is to clear the count of characters written to the none
device. The DN CLRCOUNT macro is used to accomplish this task. This
time, no data will be returned by the device driver, so the kernel will not
copy any data back to the test program. All three arguments are passed
to the ioctl system call for the sake of correctness. When this ioctl
call returns, the test program expects the current count to be the value
zero (0).

[H] Calls the printf interface to display the message "set count" on the
console terminal.

[j]] To determine if the previous code cleared the count to 0, the test program
reads the characters from the none device again. The printf interface
is used to display the count.

[§] One design goal for the / dev / none device driver is that it should
always return EOF on read operations. The test program checks this
action by trying to read 100 bytes from the device. If the design goal
was met, the read system call should return zero (0) bytes.

The test program passes three arguments to the read system call. The
first argument is the file descriptor. The second argument points to where
the data is stored. The final argument tells how many bytes to read, in
this example 100 bytes. As discussed previously, the kernel notices that
the file descriptor d is associated with a device and finds the cdevsw
entry for the device's read interface, noneread. The kernel calls
noneread to service the read request. The number of bytes successfully
read is returned by the read system call.

IIZI The printf interface prints the number of bytes that were read.

~ The test program exits and the kernel automatically calls the
noneclose interface.

The following shows the output from a sample run of the test program,

4-50 Coding, Configuring, and Testing a Device Driver

which verifies that the driver is working correctly:

saw 0 bytes
wrote 100 bytes
saw 100 bytes
set count
saw 0 bytes
was able to read 0 bytes

4.3.2 Deciding on More Rigorous Testing
The test program for the / dev / none device driver can be expanded to do
even more complete testing. For example, the test program could check the
character count between each of several writes.

Because / dev / none is a simple driver, the test program is relatively
straightforward. More complicated drivers require more complicated test
programs, but the strategy is the same: for each interface you provide in the
driver, test it independently from the other interfaces.

4.3.3 Hints for Tracking Problems in Testing
If the driver fails to behave as expected, you need to track down the problem
and correct it. Here are several aids and hints:

• Refer to the Kernel Debugging for guidelines in debugging the driver.

• Use the printf kernel interface to display descriptive messages on the
console terminal when the driver calls different interfaces. The messages
that appear on the console should give you some insight into the problem.
The sys log utility also logs these messages into a message file.

You cannot use the printf interface to debug all driver types. For
example, printf frequently is not useful in debugging terminal drivers
because use of the terminal driver may be required to display the contents
of printf to the terminal.

• Recompile and reinstall the kernel.

• Rerun the test program with the reinstalled kernel.

• Use synchronous traces of flow and variables where practical.

• Do not use synchronous traces in the interrupt handler. This means you
should not use the printf interface in the interrupt handler.

• Use asynchronous traces where synchronous traces cannot be used.

Figure 4-1 shows the device driver testing worksheet for the / dev / none
device driver. This worksheet is provided in Appendix C for use in
identifying the scope of your driver test programs.

Coding, Configuring, and Testing a Device Driver 4-51

Figure 4-1: Testing Worksheet for /dev/none

DEVICE DRIVER TESTING WORKSHEET

E·I§§''''.tiid·J.ij·'''rt¥'''9g'W'U'Fi"M

1. The test program checks all entry pOints ~~
2. The test program checks all ioctl c11'o

requests separately

3. The test program checks multiple devices 0

4. The test program was run with multiple 0
users using the device

5. The test program includes debug code 0
to check for impossible situations

6. The test program tests which entry points 0
are available through the system call interface

4-52 Coding, Configuring, and Testing a Device Driver

c11'
c11'

Lt1'

Memory

Part 3 Hardware Environment

The Bus

Device Device
Registers

Central Processor

Hardware-Independent Model and 5
Device Drivers

One of the goals of an open systems environment is to provide hardware and
software platforms that promote the use of standards. By adhering to a set of
standard interfaces, these platforms make it easier for third-party application
programmers to write applications that can run on a variety of operating
systems and hardware. This open systems environment can also make it
easier for systems engineers to write device drivers for numerous peripheral
devices that operate on this same variety of operating systems and hardware.

The hardware-independent model describes the hardware and software
components that make up an open systems environment. This chapter
provides an overview of the hardware-independent model and shows how it
relates to device drivers. Although you do not need to know all of the details
of this model, a high-level discussion can help to clarify how device drivers
fit into the independent model.

Figure 5-1 shows that the hardware-independent model consists of a:

• Hardware-independent subsystem

• Hardware-dependent subsystem

• Bus support subsystem

• Device driver subsystem

The sections following Figure 5-1 briefly describe these subsystems as they
relate to device drivers.

Figure 5-1: Hardware-Independent Model

User Programs
Shells
Utilities

Hardware-Independent Subsystem

D E
IX
GT
I E
T N
AS

L b
N
S

r~
~----------•. ~--~~------------------~ ~ I

Hardware­
Dependent
Subsystem

....

I

Bus -
Support
Subsystem

5.1 Hardware-Independent Subsystem

Device
Driver
Subsystem

-

The hardware-independent subsystem contains all of the hardware­
independent pieces of an operating system, including the hardware­
independent kernel interfaces, user programs, shells, and utilities. The Open
Software Foundation (OSF) provides the hardware-independent subsystem.
As the figure shows, however, this subsystem also contains extensions and
enhancements made by Digital Equipment Corporation. Examples of these
extensions are DECnet and support for CDROM file systems.

Writing device drivers becomes easier in such an open systems environment
because the system design standardizes interfaces and data structures
whenever possible. For example, the hardware-independent subsystem
contains those kernel interfaces (such as kalloc and timeout) and data
structures (such as buf and uio) that are not affected by the hardware. On
the other hand, those interfaces (such as fubyte and suword) and data
structures (such as the timer and memory management structures) affected by

5-2 Hardware-Independent Model and Device Drivers

the hardware are contained in the hardware-dependent subsystem.

Figure 5-1 shows that the hardware-independent subsystem communicates
with:

• The hardware-dependent subsystem

The hardware-independent subsystem communicates with the hardware­
dependent subsystem by calling interfaces and referencing data structures
and global variables provided by the hardware-dependent subsystem.

• The device driver subsystem

The hardware-independent subsystem communicates with the device
driver subsystem by using specific data structures to make calls into the
device driver subsystem. These data structures are the device switch
tables bdevsw and cdevsw.

5.2 Hardware-Dependent Subsystem
The hardware-dependent subsystem contains all of the hardware-dependent
pieces of an operating system with the exception of device drivers. This
subsystem provides the code that supports a specific CPU platform and,
therefore, is implemented by specific vendors. In the case of Digital
Equipment Corporation, this code supports the Alpha AXP architecture.
However, code could be written to support other CPU architectures. Writing
device drivers becomes easier in such an open systems environment because
the CPU-specific changes are hidden in the hardware-dependent layer, so
minimal or no changes would need to be made to device drivers.

Figure 5-1 shows that the hardware-dependent subsystem communicates
with:

• The hardware-independent subsystem

The hardware-independent subsystem initiates communication with the
hardware-dependent subsystem by calling interfaces and referencing data
structures and global variables provided by the hardware-dependent
subsystem.

• The device driver subsystem

The device driver subsystem initiates communication with the hardware­
dependent subsystem by calling some of the same interfaces and
referencing some of the same data structures as the hardware-independent
subsystem.

• The bus support subsystem

The hardware-dependent subsystem initiates communication with the bus
support subsystem by calling the bus configuration interfaces. The bus
support subsystem also initiates communication with the device driver by

Hardware-Independent Model and Device Drivers 5-3

calling the driver's autoconfiguration entry points. These entry points are
the driver's probe, attach, and slave interfaces.

5.3 Bus Support Subsystem
The bus support subsystem contains all of the bus adapter-specific code.
Many buses provide interfaces that are publicly documented and, therefore,
allow vendors to more easily plug in hardware and software components.
However, the way one vendor implements the bus-specific code can be
different from another vendor. For example, the implementation of the
VMEbus on Digital RISC systems is different from Sun Microsystem's
implementation of the VMEbus. Isolating the bus-specific code and data
structures into a bus support subsystem makes it easier for independent
software vendors to implement different bus adapters.

Figure 5-1 shows that the bus support subsystem communicates with:

• The hardware-dependent subsystem

The bus support subsystem communicates with the hardware-dependent
subsystem by calling interfaces and referencing data structures and global
variables provided by the hardware-dependent subsystem.

• The device driver subsystem

The bus support subsystem communicates with the device driver
subsystem during device autoconfiguration through the driver's probe,
slave, and attach interfaces. In addition, the bus support subsystem
provides interfaces that allow drivers to perform bus-specific tasks.

5.4 Device Driver Subsystem
The device driver subsystem contains all of the driver-specific code. This
subsystem is also supplied by Digital Equipment Corporation, and it includes
device drivers for hardware supported by Digital. Third-party device driver
writers would place their drivers in the device driver subsystem.

Figure 5-1 shows that the device driver subsystem communicates with:

• The hardware-dependent subsystem

The device driver subsystem communicates with the hardware-dependent
subsystem by calling interfaces and referencing data structures and global
variables provided by the hardware-dependent subsystem.

• The bus support subsystem

The device driver subsystem communicates with the bus support
subsystem during device autoconfiguration. This is accomplished through
the driver's probe, slave, and attach interfaces. In addition, device

5-4 Hardware-Independent Model and Device Drivers

drivers can call bus-specific interfaces to perform a variety of tasks. For
example, a TURBOchannel device driver calls the
tc enable option interface to enable a device's interrupt line to the
CPU. Other buses have their own specific interfaces that drivers use to
communicate with this subsystem.

• The hardware-independent subsystem

The device driver subsystem communicates with the hardware­
independent subsystem through calls to interfaces and data structures
provided by the hardware-independent subsystem.

Hardware-Independent Model and Device Drivers 5-5

Hardware Components and Hardware 6
Activities

This chapter discusses the hardware environment from the point of view of
the device driver writer. Specifically, the chapter describes the following
hardware components:

• The central processing unit (CPU)

• The bus

• The device

The chapter also discusses a variety of hardware activities that are of interest
to you when writing device drivers.

6.1 Hardware Components
Figure 6-1 shows the following hardware components:

• The central processing unit (CPU)

• Memory

• The bus

• The device

Each of these components is discussed briefly following Figure 6-1.

Figure 6-1: Hardware Components of Interest to a Device Driver
Writer

Central Processor

I---------------~

Memory: virtual,locatio,n :
: of device register:
L _______________ I

Device

6.1.1 Central Processing Unit
The central processing unit (CPU) is the main computational unit in a
computer and the one that executes instructions. The CPU is of interest to
device driver writers because its associated architecture influences the design
of the driver. Writing device drivers for OPENbus architectures in an open
systems environment means that you may need to become familiar with a
variety of CPU architectures, such as Alpha AXP and MIPS. Section 2.4
describes the CPU issues that influence the design of device drivers.

6.1.2 Memory
Figure 6-1 shows that both the kernel and device drivers reside in memory,
as does the kernel interrupt code that determines what driver will handle each
interrupt from a device. The device driver accesses device registers (often
referred to as control status register or CSR addresses) as though they were in
memory; however, these registers are not really in memory but are located in

6-2 Hardware Components and Hardware Activities

the device. Figure 6-1 shows this arrangment by identifying a virtual
location for the device registers. The hardware manual for the device you are
writing the driver for should describe these device register addresses or
offsets.

You need to include the addresses assigned to these device registers in one of
the following places:

• The device driver

For the TURBOchannel bus, the address is based on the slot and is
provided to the device driver through the probe interface. A device
driver that operates on the TURBOchannel accesses the device registers
by referencing the location that results from the base address (determined
by the slot the device is plugged into) plus the register offset address.

• The system configuration file

You (or the system manager) specify the device register addresses in the
system configuration file when you configure a static device driver.
Section 12.2.1.2 discusses the syntax used to describe a device's register
addresses in the system configuration file. For loadable drivers, you
specify the device register addresses in the driver's probe interface and
pass them through a call to the handler_add interface.

For some buses (for example, the VMEbus), you may need to change the
device register address because another device is using the address. If so,
some change will also need to be made to the device. The hardware
manual for the device should state how this change can be accomplished.

6.1.3 Bus
The bus is the path for all communication among the CPU, memory, and
devices. Thus, when a device driver reads from or writes to a device's
registers, the information transfer is by way of the bus. If you write device
drivers for OPEN systems, you will probably need to know about a variety of
buses, including the following:

• TURBOchannel

• VMEbus

• SCSI

There are three situations when the bus is of concern to you:

• When specifying which bus a device is on

• When writing probe and s lave interfaces

• When direct memory access (DMA) is done by a device

Hardware Components and Hardware Activities 6-3

Each of these situations is briefly considered in the following sections.

6.1.3.1 Specifying Which Bus a Device Is On

For the most part, you can think of the bus as a single path, but at kernel
configuration time this view is not adequate. The bus, as used in this book,
includes:

• The system bus

• Other buses attached to the system bus, for example, a VMEbus

When adding a device driver, you very well may be adding a device to the
system. If you are, you will need to know what bus to attach its device
controller to.

You specify which bus a device controller is connected to in the following
files:

• The system configuration file, for static drivers that follow the traditional
device driver configuration model. Section 11.2 describes the traditional
device driver configuration model and Section 12.2.1.2 discusses the
syntax for specifying which bus is connected to a device controller.

• The conf ig . file file fragment, for static device drivers that follow
the third-party device driver configuration model. Section 11.1 describes
the third-party device driver configuration model. Section 11.1.2.3
discusses the conf ig. file fragment. Section 12.2.1.2 discusses the
syntax for specifying which bus is connected to a device controller.

• The stanza .loadable file fragment, for loadable drivers that follow
the third-party device driver configuration model. Section 11.1.2.5
describes this file and Section 12.6.2.21 explains the syntax for specifying
which bus is connected to a device controller.

6.1.3.2 When Writing probe and slave Interfaces

When writing probe and slave interfaces, you need to consider the bus on
which the driver will operate. The bus affects the formal parameters you
specify for these interfaces. Section 3.3.1 and Section 3.3.2 show you how
to set up probe and slave interfaces for the TURBOchannel bus. See the
bus-specific driver manual to learn how to set up these interfaces for the bus
your driver operates on.

6.1.3.3 When Direct Memory Access (DMA) Is Done by a Device

Some devices are capable of directly accessing memory, generally to transfer
large blocks of data. Section 6.1.4.5 discusses DMA as it relates to devices.

6-4 Hardware Components and Hardware Activities

6.1.4 Device
A device (often referred to as a peripheral device) can be a printer, an
acquisition device, terminal, and so forth. Whatever the device is, it has:

• One or more device registers for communicating with other hardware

• The ability (in most devices) to generate interrupts

Major distinctions between devices are the type of device (block, character,
or network) and whether the device is capable of directly accessing memory.
A direct memory access (DMA) device is one that can directly access (read
from and write to) CPU memory, without CPU intervention. Non-DMA
devices cannot directly access CPU memory.

The following sections briefly discuss the device registers, block and
character devices, network devices, and DMA and non-DMA devices.

6.1.4.1 Device Registers

A device register is commonly referred to as a control status register, or
CSR. The device register can be used to:

• Control what a device does

• Report the status of a device

• Transfer data to or from the device

The device register can be in the device or in a separate controller. In most
cases, the location of the device register is of no concern to the device driver
writer.

The types of device registers can vary widely, depending on the device used.
Most devices have multiple registers. A device register can be read-only,
such as for device status or the results of an I/O operation, or it can be a
write-only command/control register, or it can be both readable and
writeable.

It is often the case that after writing to a read/write register, the subsequent
read from it will return a completely different value. The read value will be
defined to be a status or result, while the write value will be command or
control information to the device. In many cases, reading a control status
register once will clear that register's values. A second read may, in fact,
return unexpected or unwanted results. See the documentation for the device
to determine if this situation exists.

6.1.4.2 Block and Character Devices

A block device is one that is designed to operate in terms of the block I/O
supported by DEC OSFIl. It is accessed through the buffer cache. A block
device has an associated block device driver that performs 110 by using file

Hardware Components and Hardware Activities 6-5

system block-sized buffers from a buffer cache supplied by the kernel. Block
device drivers are particularly well-suited for disk drives, the most common
block devices.

A character device is any device that can have streams of characters read
from or written to it. A character device has a character device driver
associated with it that can be used for a device such as a line printer that
handles one character at a time. However, character drivers are not limited to
performing UO a single character at a time (despite the name' 'character"
driver). For example, tape drivers frequently perform I/O in 1 OK chunks. A
character device driver can also be used where it is necessary to copy data
directly to or from a user process. Because of their flexibility in handling
UO, many drivers are character drivers. Line printers, interactive terminals,
and graphics displays are examples of devices that require character device
drivers.

6.1.4.3 Terminal Devices

A terminal device is a special type of character device that can have streams
of characters read from or written to it. Terminal devices have terminal
(character) device drivers associated with them. A terminal device driver is
actually a character device driver that handles input and output character
processing for a variety of terminal devices. Like any character device, a
terminal device can accept or supply a stream of data based on a request from
a user process. It cannot be mounted as a file system and, therefore, does not
use data caching.

6.1.4.4 Network Devices

A network device is any device associated with network activities and is
responsible for both transmitting and receiving frames to and from the
network medium. Network devices have network device drivers associated
with them. A network device driver attaches a network subsystem to a
network interface, prepares the network interface for operation, and governs
the transmission and reception of network frames over the network interface.

6.1.4.5 DMA and non-DMA Devices

A direct memory access (DMA) device is one that can directly access (read
from and write to) CPU memory, without CPU intervention. Non-DMA
devices cannot directly access CPU memory. The object of DMA is faster
data transfer. When character drivers perform DMA, they do it to or from
the user's address space. When block drivers perform DMA, they do it to or
from the buffer cache.

6-6 Hardware Components and Hardware Activities

6.2 Hardware Activities
When writing device drivers, you need to consider the following hardware­
related activities:

• How a device driver accesses device registers

• How the device uses the registers

• How the device driver interrupts the CPU

The following sections discuss each of these activities as they relate to device
drivers.

6.2.1 How a Device Driver Accesses Device Registers
Alpha AXP CPU platforms vary in the mechanisms available to access
device registers. Some platforms, such as the DEC 4000 and DEC 7000
series, use the mailbox mechanism. Other platforms, such as the DEC 3000
series, allow "direct" access to device registers through special address
spaces. The following discussion applies to those platforms that use special
address spaces.

Alpha AXP CPUs can access longwords (32 bits) and quadwords (64 bits)
atomically. However, many devices have CSRs that are only 16- or 8-bits
wide. Program fragments accessing those CSRs will actually be sequences of
Alpha AXP instructions that fetch longwords and mask out bytes. For
example, for adjacent 16-bit CSRs this longword access is probably not what
is intended. The fetch of the longword may result in the reading of multiple
CSRs, with unwanted side effects.

6.2.2 How the Device Uses the Registers
Devices use their registers to report status and to return data. DMA devices
can move data to or from memory directly. DMA device drivers typically
request this type of data transfer by:

• Writing a base address and a count of characters in the device register to
specify what data to move

• Setting a bit that requests that the transfer begin

The device requests access to memory and then manages a sequence of data
transfers to memory. Upon completion of the transfer, the device:

Sets a bit indicating that the transfer is done

• Issues an interrupt

You do not need to know the details of how the device and the bus interact
to handle these transfers of data. However, you do need to know the exact
register fields to use to make the request. This information should be in the

Hardware Components and Hardware Activities 6-7

hardware manual for the device.

6.2.3 How the Device Driver Interrupts the CPU
The specifics of how interrupts are generated varies from bus to bus and even
from CPU architecture to CPU architecture. The following is a general
description of how interrupts are processed by the kernel on some systems.
The important point to remember is that the end result of an interrupt is the
calling of the device driver's interrupt handling interface.

When a device generates an interrupt, it also provides an interrupt index.
This interrupt index is passed by the bus to the kernel assembly language
interface that does initial handling of interrupts. That interface uses the
interrupt index to determine which entry in the interrupt vector table contains
the address of the interrupt interface for the device driver that handles this
device. Among other things, the assembly language interface uses that
address to transfer control to the appropriate driver. The conf ig program
adds a static device driver's interrupt service interface to the system interrupt
vector table. A loadable driver's interrupt service interface is added to this
table through a call to the handler_add interface.

6.3 Parts of the System Accessing Hardware
There are only two parts of the system that access hardware. These are:

• The bus support subsystem

There are specific bus support interfaces that access the device registers of
the bus adapter.

• The device driver subsystem

There are specific device driver interfaces that access the device registers
of specific devices attached to a controller.

6-8 Hardware Components and Hardware Activities

Part 4 Kernel Environment

Device Autoconfiguration 7

Autoconfiguration is a process that determines what hardware actually exists
during the current instance of the running kernel. This chapter discusses the
events that occur during the autoconfiguration of devices, with an emphasis
on how autoconfiguration relates to static and loadable drivers. In addition,
the chapter provides detailed information on the data structures related to
autoconfiguration. The chapter frequently uses the generic term
autoconfiguration software. The autoconfiguration software consists of the
programs that accomplish the tasks associated with the events that occur
during the autoconfiguration of devices. In most cases, it is not necessary for
device driver writers to know the specific programs that execute during
au toconfigurati on.

Specifically, this chapter discusses:

•

•

•

•

•

•

•

•

•

•

•

Files used by the autoconfiguration software

The autoconfiguration process

The bus structure

The controller structure

The device structure

The driver structure

The port structure

The ihandler _ t structure (for loadable drivers)

The tc _ intr _info structure (for loadable drivers)

The handler_key structure (for loadable drivers)

The device _ conf ig_ t structure (for loadable drivers)

7.1 Files Used by the Autoconfiguration Software
The autoconfiguration software reads the following files pertinent to device
drivers during the autoconfiguration process:

• The config. file file fragment and/or the system configuration file
(for static device drivers)

The config. file file fragment and the system configuration file

(sometimes referred to as the NAME file) identify, among other things,
device connectivity information. Section 12.2 describes the parts of these
files pertinent to device drivers and provides details on the syntaxes that
specify each current or planned device on the system.

• The /etc/sysconfigtab database (for loadable device drivers)

The sysconfigtab database contains the information provided in the
stanza .loadable file fragments. This information is appended to
the sysconf igtab database during installation of the device driver kit.

The stanza .loadable file fragment contains an entry for each device
driver, providing such information as the driver's name, location of the
loadable object, device connectivity information, and device special file
information. Parts of the stanza .loadable file fragment are
functionally similar to the system configuration file in that it uses a subset
of the syntaxes used in the system configuration file to specify each
current or planned device on the system. Section 12.6 describes the valid
device syntaxes for the stanza .loadable file fragment.

The following example shows a sample system configuration file and a
sample / etc/ sysconfigtab database:

/* Example system configuration file */

bus tcO at nexus

controller fbO at tcO vector fbintr

controller ipiO at tcO vector ipiintr

device disk ipl at ipiO unit 1

device disk ip2 at ipiO unit 2

bus vbaO at tcO slot 2 vector vbaerrors

controller skO at vbaO csr Ox8000 vector skintr Oxc8

bus vbal at tcO slot 1

controller cbO at vbal csr Ox80001000 vector cbintr Ox45

/* Example sysconfigtab database */

Module_Config2 controller fbO at tcO

Module_Config3 controller ipiO at tcO

Module_Config4 device disk ipl at ipiO unit 1

Module_Config5 device disk ip2 at ipiO unit 2

The two samples are shown together so that you can clearly see the
similarities and differences. Note that these samples show only a subset of
all the possible syntaxes.

The autoconfiguration software uses the information in this system
configuration file and database to create the associated bus, controller,
and device structures. These structures are designed so that they are
generic enough to handle not only autoconfiguration for static and loadable

7-2 Device Autoconfiguration

drivers but also to simplify configuration management. It is important to
note that the kernel doubly links these structures top-down and bottom-up to
make the traversal of the configuration tree more efficient. Section 7.2
discusses the links the kernel makes between these structures during the
autoconfiguration process.

Figure 7-1 shows the structures created by the autoconfiguration software
after it reads the sample system configuration file and sysconf igtab
database. Of course, the autoconfiguration software does not store these
structures in memory with the structure names as identified in the figure.
These names and the figure are used to make it easier to understand how
these structures are created and manipulated.

Device Autoconfiguration 7-3

Figure 7-1: Structures Created from the Example

Structure Arrays Created from Example System Configuration File

struct bus bus_list [1 = struct controller controlieUist [1 =
{

struct device device_list [1 =
{ {

{ vba 1_struct

}; }; };

Individual Structures Created from Example sysconfigtab Database

struct controller ipiO_struct struct device ip1_struct

}; };

struct controller fbO_struct struct device ip2_struct

}; };

The following sections discuss the similarities and differences between the
structures created by the autoconfiguration software for static and loadable
drivers.

7-4 Device Autoconfiguration

7.1.1 For bus Structures
For each bus (specified with the bus keyword in the system configuration
file), the autoconfiguration software creates an array of bus structures called
bus list, which it stores in ioconf . c. As the figure shows, the
autoconfiguration software fills this array with the bus structures it finds in
the system configuration file: tcO struct, vbaO struct, and
vba 1 s truct. - -

Similarly, for each bus (specified with the bus keyword in the
stanza. loadable file fragment), the autoconfiguration software
dynamically creates individual bus structures, instead of an array, and stores
these structures in memory. As the figure shows, tcO struct is not
created during the autoconfiguration of loadable drivers'" The system bus
would have already been created during the autoconfiguration of static
drivers. In this example, tcO struct already exists in the bus list
array. The system bus must be in the system configuration file because a
loadable system bus is not supported. Here, the controller structures are
dynamically created and linked through the pointer to the system bus
structure that was statically allocated in bus list. Because tcO struct
represents the system bus, there is no need tospecify it in the -
stanza. loadable file fragment. However, if the system bus was not
specified in the system configuration file (for static drivers), no bus
structures are created. The autoconfiguration software always detects a
system bus during autoconfiguration of loadable drivers.

7.1.2 For controller Structures
For each controller (specified with the controller keyword in the system
configuration file), the autoconfiguration software creates an array of
controller structures called controller list, which it stores in
ioconf . c. As the figure shows, the autocont1guration software fills this
array with the controller structures it finds in the system configuration
file: fbO_struct, ipiO_struct, skO_struct, and cbO struct.

Similarly, for each controller (also specified with the controller keyword
in the stanza .loadable file fragment), the autoconfiguration software
dynamically creates individual controller structures, instead of an array,
and stores these structures in memory. As the figure shows, the
autoconfiguration software creates the controller structures it finds in the
stanza .loadable file fragment: fbO _struct and ipiO _struct.

7.1.3 For device Structures
For each device (specified with the device keyword in the system
configuration file), the autoconfiguration software creates an array of
device structures called device_list, which it stores in ioconf. c.

Device Autoconfiguration 7-5

As the figure shows, the autoconfiguration software fills this array with the
device structures it finds in the system configuration file: ipl struct
and ip2 _ struct. -

Similarly, for each device (also specified with the device keyword in the
stanza .loadable file fragment), the autoconfiguration software
dynamically creates individual device structures, instead of an array, and
stores these structures in memory. As the figure shows, the autoconfiguration
software creates the device structures it finds in the stanza .loadable
file fragment: ipl_struct and ip2_struct.

7.2 Autoconfiguration Process
When the kernel boots, the autoconfiguration software determines what
hardware actually exists during the current instance of the running kernel.
System managers often create (compile and link) kernels that define the
greatest possible amount and variety of hardware available on the system.
For example, a large and complex system with many bus adapters might
alternately run a certain device on one bus adapter at a certain time and on
another bus adapter later on for testing purposes.

The following sections describe autoconfiguration from the static and
loadable driver points of view.

7.2.1 Autoconfiguration for Static Device Drivers
This section describes autoconfiguration from the point of view of static
device drivers. When the kernel boots, the autoconfiguration software
configures all the buses on the system by performing the following tasks:

• Locating the bu s structure for the system bus

• Calling the level 1 bus configuration interfaces

• Configuring all devices

• Calling the level 1 configuration interfaces for any other buses

• Calling the level 2 configuration interfaces for any other buses

• Creating a system configuration tree

Each of these tasks is discussed in the following sections.

7.2.1.1 Locating the bus Structure for the System Bus

The autoconfiguration software searches bus list, the array of bus
structures created from the system configuration file, to locate the structure
for the system bus. The system bus structure is identified with a
backpointer of -1 indicating that it is connected to the keyword nexus in
the system configuration file. The nexus keyword indicates the top of the

7-6 Device Autoconfiguration

system configuration tree.

All systems have a system bus, even if there is no physical bus. For
example, workstations that do not have a physical bus have a logical ibus
to which the on board devices are connected.

7.2.1.2 Calling the Level 1 Bus Configuration Interfaces

After the autoconfiguration software locates the bus structure for the system
bus, it calls the level 1 bus configuration interface specified in the bus
structure. If a bus supports autoconfiguration (that is, the devices support a
device type identifier and the bus supports a well-defined search algorithm),
the autoconfiguration software searches controller list, the array of
controller structures created from the system configuration file, to locate
a match for each controller on the system bus. If a match is found, the
controller structure for that controller is linked to the bus structure and
a back link to the bus structure is placed in the controller structure.
This action continues until all controllers have been configured.

If the bus does not support autoconfiguration, the controller list array
is searched for controllers that were attached to the bus in the system
configuration file. In both cases, the driver's probe interface (as specified
in the dr i ver structure) for each device is called to verify the existence of
the controller. If the probe interface returns success, the controller's
attach interface (if one exists) is called.

7.2.1.3 Configuring All Devices

After a successful probe, the autoconfiguration software searches
device list, the array of device structures created from the system
configuratIon file, to locate a match for each device connected to a controller.
If a match is found, the device structure is connected to its respective
controller structure. For each device found, the autoconfiguration
software calls the driver's slave and attach interfaces.

7.2.1.4 Calling the Level 1 Configuration Interfaces for Any Other
Buses

Any other buses located during the configuration of the system bus are
handled in the same manner. The level 1 configuration interface for each bus
is called at this time. All configured buses are also connected by means of a
linked list.

Device Autoconfiguration 7-7

7.2.1.5 Calling the Level 2 Configuration Interfaces for Any Other
Buses

After all the buses have been configured, the autoconfiguration software calls
the system bus level 2 configuration interface specified in the bus structure.
This interface then calls the level 2 configuration interface for each directly
connected bus. Each of those buses performs any second pass configuration
work and calls the level 2 configuration interface of any connected bus.

7.2.1.6 Creating a System Configuration Tree

The end result of this process is to have a completely connected tree that
represents the current system configuration. Note that there may be buses,
controllers, and devices that are not connected. This indicates the entity was
not physically connected on this system.

Figure 7-2 shows the configuration tree the autoconfiguration software would
create, based on the entries in the example system configuration file. The
figure shows the members of the bus, controller, and device
structures used to establish the correct links.

7-8 Device Autoconfiguration

Figure 7-2: Configuration Tree Based on Example System
Configuration File

r-+'-'-'-'-'-'-'''-' ,
I .

!-.-.-.-.-.-......... -.-.-.-.-.-.-.-.-... -.-.-.~-.-.-.-.-.-.-._.-•. _.-! -'-'-'-'"1 I
I, J. ~ !

j+ bus_hd (0) f, bus_hd 1 bus_hd _._.J ~
i nxt_bus (0) ~ I. nxt_bus ----I nxCbus (0) i
!- . .A ctlr_list i ctlr list ctlr_list ~ !
I bus_list - i bus_list (0) bus_list (0) I
i +. i
i ,. i
i struct bus i struct bus struct bus i
i tcO_struct i vbaO_struct vba1_struct !
.. i I
iii

! i._ _._._._._ _._."1 t
! i i L._._._._._._._._._ _._._._._._._._._._ ... _., i i

L..-..-Iw__------,T i i i
,.. bus_hd _I ~ bus_hd ~ L bus_hd I--b_U_S-_h_d ___ --t

nxt_ctlr ~J nxCctlr (0) nxt_ctlr (0) nxt_ctlr (0)

dev_list (0) .i dev_list ~ dev_list (0) dev_list (0)

struct controller
fbO_struct

I

+ i struct controller

i
!

r·-·-·-·-·-·-·-·-·-·-·-~·J-·"'·-·-·-·-·-·-·-·-·""'·-·"1
I ... !

I I
i i
i i

! + .A .
I I
L._ j

~

nxCdev nxt dey (0)

ctlr_hd ctlr_hd r-'-'-'

struct device struct device
ip1_struct ip2_struct

struct controller struct controller
skO struct

The following text provides information on how to traverse this configuration
tree.

Pointing to the bus Structure to Which This Bus Is Connected

The bu s hd member specifies a pointer to the bus structure that this bus is
connected to. The vbaO and vbal buses are both connected to the system
bus. The autoconfiguration software establishes this connection by setting
each bus _ hd member to the address of the system bus structure,

Device Autoconfiguration 7-9

tcO struct. Figure 7-2 uses a broken arrow to show the setting of the
bus -hd members.

The system bus is not connected to any other bus and the figure indicates
that, as a result, the autoconfiguration software sets this bus hd member to
the value zero (0). -

Pointing to the Next Bus at This Level

The nxt bus member specifies a pointer to the next bus at this level. The
vbal bus follows the vbaO bus, thus making it the next bus at this level.
The autoconfiguration software establishes this relationship by setting the
nxt bus member of vbaO struct to the address of vbal struct.
Figure 7-2 uses a solid arrow-to show the setting of the nxt _bus member.

No buses follow the system bus and the vbal bus and the figure indicates
that, as a result, the autoconfiguration software sets their nxt bus members
to the value zero (0). -

Pointing to a Linked List of Controllers Connected to This Bus

The ctlr list member specifies a linked list of controllers connected to
this bus. The tbO and ipiO controllers are connected to the system bus.
The autoconfiguration software establishes the linked list by setting the
ctlr list member of tcO struct to the address of tbO struct.
Figure-7-2 uses a solid arrow to show the setting of the ctlr list
memb~. -

The skO controller is connected to the vbaO bus and the cbO controller is
connected to the vba 1 bus. As it did with the system bus, the
autoconfiguration software establishes the linked lists by setting the
ctlr list member for each bus to the address of its associated
controller structure. Figure 7-2 uses a solid arrow to show the setting of
the ctlr list members.

Pointing to the Linked List of Buses Connected to This Bus

The bu s 1 i s t member specifies a linked list of buses connected to this
bus. The-vbaO and vbal buses are connected to the system bus. The
autoconfiguration software establishes the linked list by setting the
bus list member of tcO struct to the address of vbaO struct.
Figure 7-2 uses a solid arrow-to show the setting of the bus_list member.

The vbaO and vbal buses do not have a linked list of buses and the figure
indicates that, as a result, the autoconfiguration software sets their
bus_list members to the value zero (0).

7-10 Device Autoconfiguration

Pointing to the bus Structure to Which This Controller Is Connected

The bus hd member appears not only in the bus structure, but also in the
controller structure. In this case, bus hd specifies a pointer to the bus
structure that this controller is connected to~ The fbO and ipiO controllers
are connected to the system bus. The autoconfiguration software establishes
the backpointer to the system bus by setting the bus hd members of
fbO struct and ipiO struct to the address oftcO struct. Figure
7 -2 uses a broken arrow to show the setting of the backpointer.

The skO and cbO controllers are connected to the vbaO and vbal buses.
The autoconfiguration software establishes these backpointers by setting the
bus hd members of skO struct and cbO struct to the address of
theirassociated bus structures. Figure 7-2 uses a broken arrow to show the
setting of these backpointers.

Pointing to the Next Controller at This Level

The nxt ctlr member specifies a pointer to the next controller at this
level. The ipiO controller follows the fbO controller, thus making it the
next controller at this level. The autoconfiguration software establishes this
relationship by setting the nxt ctlr member of fbO struct to the
address of ipiO struct. Figure 7-2 uses a solid arrow to show this. No
controllers follow the ipiO controller and the figure indicates that, as a
result, the autoconfiguration software sets the nxt ctlr member of
ipiO_struct to the value zero (0). -

The skO and cbO controllers are the only controllers at their respective
levels and the figure indicates that, as a result, the autoconfiguration software
sets their nxt _ ctlr members to the value zero (0).

Pointing to the Linked List of Devices Connected to This Controller

The dev 1 i s t member specifies a linked list of devices connected to this
controllef." The ipiO controller has two devices connected to it: device
ipl and device ip2. The autoconfiguration software establishes the linked
list by setting the dev list member of ipiO struct to the address of
ipl struct. Figure7-2 uses a solid arrow toshow the setting of the
linked list.

Because the fbO, skO, and cbO controllers have no connected devices,
Figure 7-2 shows that the autoconfiguration software sets the dev _list
member in their respective structures to the value zero (0).

Device Autoconfiguration 7-11

Pointing to the Next Device at This Level

The nxt dev member specifies a pointer to the next device at this level.
The ip2device follows the ipl device, thus making it the next device at
this level. The autoconfiguration software establishes this relationship by
setting the nxt dev member of ipl struct to the address of
ip2 struct.-Figure 7-2 uses a solid arrow to show the setting of the
nxt - dev member.

Because there are no devices that follow device ip2, Figure 7-2 shows that
the autoconfiguration software sets the nxt dev member of ip2 struct
to the value zero (0). - -

Pointing to the controller Structure to Which This Device Is Connected

The ctlr hd member specifies a pointer to the controller structure that this
device is connected to. Both the ipl and ip2 devices are connected to the
same controller, ipiO. The autoconfiguration software establishes these
backpointers by setting the ctlr hd member of ipl struct and
ip2 struct to the address of {PiO struct. FigUre 7-2 uses a broken
arrow to show the setting of the backpOinters.

7.2.2 Autoconfiguration for Loadable Device Drivers
Figure 7-3 shows the configuration tree the autoconfiguration software would
create, based on the entries in the sysconfigtab database (which is built
from entries specified in stanza .loadable file fragments) presented in
Section 7.1. The figure shows the members of the bus, controller, and
device structures used to establish the correct links. Note that the system
bus, tc 0 s truct, was previously created during the autoconfiguration of
static devIce drivers.

7-12 Device Autoconfiguration

Figure 7-3: Configuration Tree for Loadable Drivers Based on
Example sysconfigtab

r' • , ,
i , , ,
i • ,

.. ...
bus_hd (0)

nxCbus (0)

ctlr _list

bus_list

struct bus
tcO_struct

,
i
i'-'-'-~'-'-'-'-'-'-'-'-'-'~'-'-"
i i
i i
~ ,

l--_bU_S ___ h_d __ I~·J. If, ._._. bus_hd _._.j

nxt ct,r..li nxCctlr (0)

dey list

struct controller
fbO_struct

... .. ,
i ,
+ , , ,

dey list

struct controller
ipiO_struct

r·-·-·~·-·-·-·-·-·-·-·-·-·~··'-+·-·-·-·-·-·-·-·-.·-·-·-.,
i i • • ..

nxCdev
, ..

nxCdev , ,
L. ._.j - ctrl hd ctrl_hd r--

struct device struct device
ip1_struct ip2_device

7.3 The bus Structure
The bus structure represents an instance of a bus entity. A bus is a real or
imagined entity to which other buses or controllers are logically attached.
All systems have at least one bus, the system bus, even though the bus may
not actually exist physically. The term controller here refers both to devices
that control slave devices (for example, disk and tape controllers) and to
devices that stand alone (for example, terminal or network controllers). You
(or the system manager) specify a bus entity as follows:

Device Autoconfiguration 7-13

• For static drivers

Specify a valid syntax for the bus in the con fig. f i 1 e file fragment or
the system configuration file.

• For loadable drivers

Specify a valid syntax for the bus in the stanza .loadable file
fragment.

Chapter 11 discusses the device driver configuration models. Chapter 12
describes the valid syntaxes for a bus specification in these files. Chapter 13
provides examples of how to configure device drivers.

Table 7-1 lists the members of the bu s structure along with their associated
data types.

Table 7-1: Members of the bus Structure

Member Name

bus mbox

bus hd

nxt bus

ctlr list

bus list

bus_type

bus name

bus num

slot

connect bus

connect num

confll

confl2

pname

port

intr

alive

framework

driver name

private

7-14 Device Autoconfiguration

Data Type

u_Iong

struct bus *

struct bus *

struct controller *

struct bus *

int

char *

int

int

char *

int

int (*confll)()

int (*confI2)()

char *

struct port *

int (**intr)()

int

struct bus framework *

char *

void * [8]

Table 7-1: (continued)

Member Name Data Type

conn_priv

rsvd

void * [8]

void * [7]

The following sections discuss all of these members except for bus hd,
nxt bus, ctlr list, and bus list, which are presented in Section
7.2.1~6. Writing Device Drivers, Volume 2: Reference provides a reference
(man) page-style description of this data structure.

7.3.1 The bus_mbox Member
The bus mbox member specifies a pointer to the mailbox data structure for
hardwareplatforms that access 110 space through hardware mailboxes. This
member is set by the adapter code. As the adapter code probes the buses, the
first bus that has a mailbox allocates the initial software mailbox data
structure and sets its bus mbox pointer to that data structure. As the
adapter code continues to probe for buses and controllers, the MBOX GET
macro allocates the ctlr mbox members for devices accessed by -
mailboxes. Typically, this macro is called in the controller configuration
interface after the controller data structure has been found, but before
probing the controller. The following code fragment gives an idea of the
tasks that occur prior to calling the MBOX _GET macro:

config_con(name, node, bus)
{

register struct controller *ctlri

if((ctlr = get ctlr(name, node, bus->bus name, bus->bus_num» I I
/* other wildcards here */ -

(ctlr = get_ctlr(name, -I, "*", -99») {

/***
* Found the controller *
***/

int savebusnum;
char *savebusname;
int saveslot;

if(ctlr->alive & ALV ALIVE)
printf("config con: %s%d aliveO,

ctlr->ctlr_name, ctlr->ctlr_num);
return(stat);

Device Autoconfiguration 7-15

savebusnum = ctlr->bus num;
savebusname = ctlr->bus_name;
saves lot = ctlr->slot;
ctlr->bus name = bus->bus name;
ctlr->bus=num = bus->bus_num;
ctlr->slot = node;

/***
*
*
*
*

Allocate and initialize a software
mailbox data structure for the
controller if it is attached to a
bus that is accessed by mailboxes

*
*
*
*

***/
MBOX_GET(bus, ctlr);

/***
* Now get the controller's driver structure *
* and probe *
***/

7.3.2 The bus_type Member
The bus type member specifies the type of bus. The devdri ver. h file
defines constants that represent a variety of bus types.

For the example system configuration file, Figure 7-4 shows that the
autoconfiguration software sets the bus type member of tcO struct to
BUS TC (a TURBOchannel bus). Likewise, the autoconfiguratwn software
sets the bus type members of vba struct and vbal struct to
BUS_VME (a-VMEbus). - -

Similarly for loadable drivers, the autoconfiguration software sets the
bus _type members for any buses in the sysconf igtab database.

Device driver writers seldom need to reference this member. However, bus
adapter driver writers might reference this member in their bus adapter code.

7-16 Device Autoconfiguration

Figure 7-4: The bus_type Member Initialized

BUS IBUS

BUS TC

BUS VME f-

BUS CI

struct bus {

&\foaO struct,
BUS_Te,
"te",

,
-1,

0,
0,
0,
ALV_ALiVE,

devdriver.h

struct bus {
0,
&fftcbO_struct,
&\foa1_struct,
&skO struct,
0,
BUS_VME,
"\foa",

0,
0,
"\fbaerrors"
ALV_AUVE,

struct bus {
0,
&.mcoO_struet

0,
BUS_VME,
"\fba" ,

0,
0,
0,
ALV.AUVE,

7.3.3 The bus_name and bus_num Members
The bus name member specifies the bus name. The bus num member
specifies the bus number of this bus. -

You (or the system manager) specify the bus name and the bus number by
using the keyword bus followed by a character string and number that
represent the bus name and bus number. You enter these values in the
config. file file fragment or the system configuration file for static
drivers and the stanza .loadable file fragment for loadable drivers. For

Device Autoconfiguration 7-17

example, tc ° specifies a TURBOchannel bus with a bus number of zero (0).

Figure 7-5 shows the values in the example system configuration file that the
autoconfiguration software parses to obtain the bus name and bus number. It
also shows that the autoconfiguration software sets the bu s name and
bus_num members to these values for tcO_struct, vbaO_struct, and
vbal struct.

The autoconfiguration software performs a similar parsing operation in the
sysconf igtab database for loadable drivers to obtain the bus name and
bus number and to initialize the associated bus name and bus num
members.

Device driver writers seldom need to reference the bus name and
bus num members in their device drivers. Instead, drIVer writers often pass
a pomter to a bus structure to the handler interfaces, and the interrupt
handlers use the information contained in these members.

7-18 Device Autoconfiguration

Figure 7-5: The bus_name and bus_num Members Initialized

system configuration file

at nexus
at tcO vector fbintr
at tcO vector ipiintr
at ipiO unit 1
at ipiO unit 2
at tcO slot 2 vector vbaerrors
at vbaO csr Ox8000 vector skintr Oxc8

.-=7=-:-~a~t ~t~c:';O;=-' slot 1

struet bus {
0,
0,
0,
&:fbO struet,
&vbaO_struet,
BUS TC,
"te",
0,
-1,
u n ,
-1,
teeonfi1,
teeonfl2,

at vbal csr Ox80001000 vector cbintr Ox45

struet bus {
0,
&ftebO _ struet,
&vbai struet,
&skO_struet,
0,
BUS_VME,
"vba",
0,
2,
"te",
0,
vbaeonf!1,
vbaeol1f!2,

struet bus {
0,
&ftebO_struet,
0,
&ebO_struet,
0,
BUS_._VME,
"vba" ,
1,
i,
"te",

0,
0,
0,
AL\I. ... AUVE,

7.3.4 The slot, connect_bus, and connect_num Members
The slot member specifies the bus slot or node number. The
connect bus member specifies the name of the bus that this bus is
connected to. The connect num member specifies the number of the bus
that this bus is connected to. -

You (or the system manager) specify the bus slot or node number by using
the slot keyword followed by a valid number. You specify the bus name
and bus number that this bus is connected to by using the keyword at

Device Autoconfiguration 7-19

followed by a character string or the wildcard character (a question mark (?»,
and number that represent the bus name and bus number. For static drivers,
if the bus is the system bus, you use the keyword nexus. For loadable
drivers, you never identify the system bus with this keyword because the
autoconfiguration software always assumes there is a system bus. Because it
is not valid for the system bus to be loadable, the nexus keyword is invalid
for loadable drivers. You enter these values in the conf ig . file file
fragment or the system configuration file for static drivers and the
stanza .loadable file fragment for loadable drivers.

Figure 7-6 shows the values in the example system configuration file that the
autoconfiguration software parses to obtain the bus slot, bus name, and bus
number for the system bus. The autoconfiguration software uses the keyword
nexu s to identify the system bus. Because the slot number is not specified
in the system configuration file, the s lot member of the system bus
structure, tc 0 s truct, defaults to the value -1. Because the system bus is
not connected to any other bus, the autoconfiguration software sets its
connect bus member to the null string and its connect num member
to the value -1. -

Figure 7-6 also shows the values in the example system configuration file
that the autoconfiguration software parses to obtain the bus slot, bus name,
and bus number for the other specified buses. It uses the keyword slot to
set the slot member for vba struct and vbal struct to the values 2
and 1. It also sets the connect bus and connect num members of
vba _ struct and vbal_ struct to the values tc ana zero (0).

The autoconfiguration software performs a similar parsing operation in the
sysconf igtab database to obtain the slot, bus name, and bus number and
to initialize the associated slot, bus name, and bus num members. The
only difference is that the autoconfiguration software locates the system bus
by name (for example, the string tc represents a TURBOchannel bus),
without using the nexus keyword.

Device driver writers seldom need to reference these members in their device
drivers. However, bus adapter driver writers might reference these members
in their bus adapter code.

7-20 Device Autoconfiguration

Figure 7-6: The slot, connect_bus, and connect_num Members
Initialized

bus tcO at
controller fbO at
controller ipiO at
device disk ip1 at
device disk ip2 at
bus vbaO at
controller skO at
bus vba1 at
controller cbO at

struet bus {

BUS_Te,
"tc",
0,
-1,
II II ,
-1,

system configuration file

vector fbintr
vector ipiintr
unit 1

2
2 vector vbaerrors

~~~x~OOO vector skintr OxcS 
1 
x 0001000 vector cbin r Ox45 

struet bus { 
0, 

0, 
2,~-"'" 
"te", 
0, 
voacon111, 
voacon1i2, 
0, 
0, 

struet bus 

truet, 

E, 

1, 
1, 
"te" , 
0, 
vbaconf!1, 
vbaconf!2, 
0, 
0, 
0, 
AlV_AliVE, 

0[8], 
0[8], 
0[8] 

} vba1_struet 

7.3.5 The confl1 and confl2 Members 
The conf 11 member specifies a pointer to an entry point of the level 1 bus 
configuration interface. The conf12 member specifies a pointer to an entry 
point of the level 2 bus configuration interface. These interfaces are not 
typically used by device driver writers, but by systems engineers who want to 
implement a configuration procedure for a specific bus. 

Device Autoconfiguration 7-21 



Figure 7-7 shows that the autoconfiguration software initializes the conf 11 
and conf12 members of the tcO struct, vbaO struct, and 
vba1 struct to their respective level 1 and level2 bus configuration 
interfaces. 

The autoconfiguration software obtains the names of these interfaces by using 
the bus name and appending the string confl1 or confl2. Thus, 
tcconfl1 and tcconf12 are the levelland level 2 bus configuration 
interfaces for the system bus, tcO _ struct. 

The autoconfiguration software performs a similar operation by using entries 
in the sysconfigtab database to initialize the confl1 and conf12 
members of the associated bus structures. 

7-22 Device Autoconfiguration 



Figure 7-7: The confl1 and confl2 Members Initialized 

system configuration file 

bus nexus 
controller 0 tcO vector fbintr 
controller ipiO tcO vector ipiintr 
device disk ipl ipiO unit 1 
device disk i 2 ipiO unit 2 
bus vba tcO slot 2 vector vbaerrors 
controller vbaO csr Ox8000 vector skintr Oxc8 
bus ~--.......-I"'O slot 1 
controller c v al csr Ox8000l000 vector cbintr Ox45 

struct bus { 
0, 
0, 
0, 
MbO _ struet, 
&vbaO_struet, 
BUS_Te, 
"te", 
0, 
-1, 
n u , 
-1, 
tcconfl1, 
tcconfl2, 

0[8], 
0[8], 
0[8] 

} tcO_struct 

struct bus { 
0, 
MtcbO_struet, 
&vba 1_ struet, 
&skO_struet, 
0, 
BUS .... VME, 
"vba", 
0, 
2, 
"te", 
0, 
vbaconfl1, 
vbaconfl2, 

0[8], 
0[8], 
0[8] 

} vbaO_struct 

7.3.6 The pname and port Members 

struct bus { 
0, 
&TtebO .... struet, 
0, 
&ebO_struet, 
0, 
BUS_VME, 
"vba", 
i , 
1, 
"te" , 
0, 
vbaconfl1, 
vbaconfl2, 
0, 
0, 
0, 
ALV_AUVE, 

0[8], 
0[8], 
0[8] 

} vba1_struct 

The pname member specifies a pointer to the port name for this bus, if 
applicable. The port member specifies a pointer to the port structure for 
this bus, if applicable. 

You (or the system manager) specify the port name by using the port 
keyword followed by a string that represents the name of the port. You enter 
this keyword and string in the config. file file fragment or system 
configuration file for static drivers. This keyword is not currently supported 

Device Autoconfiguration 7-23 



for loadable drivers; therefore, you cannot specify it in the 
stanza. loadable file fragment. 

Figure 7-8 shows that the autoconfiguration software sets these members for 
all of the structures to the value zero (0) to indicate that no port was specified 
in the system configuration file. If port names were specified, the 
autoconfiguration software would initialize the pnarne and port members 
for all of the example bus structures to the specified values. 

Device driver writers do not reference these members in their device drivers. 
However, bus adapter writers use the port structure to implement the 
initialization for a class of devices or controllers that have common 
characteristics. 

7-24 Device Autoconfiguration 



7.3.7 

Figure 7-8: The pname and port Members Initialized 

bus tcO at nexus 
controller fhO at tcO vector fbintr 
controller ipiO at tcO vector ipiintr 
device disk ipl at ipiO unit 1 
device disk ip2 at ipiO unit 2 
bus vbaO at teO slot 2 vector vbaerrors 
controller skO at vbaO csr Ox8000 vector skintr Oxc8 
bus vbal at teO slot 1 
controller cbO at vba1 car Ox80001000 vector ebintr Ox45 

struct bus { struct bus { struct bus { 

0, 0, 0, 
0, &ftcbO._struet, &ftebO_struet, 
0, &vba1_struct, 0, 
MbO_struet, &sI<O_struet, &ebO_struct, 
&vbaO._struct, 0, 
EHJS_TC, i3U~LVME, 
"te", "vba'\ 
0, 1, 
-1, 1, 
n H "tc", , 
-1, 0, 
teeonfl1, vbaconf!l, 
tcconf!2, vbaconf!2, 
0, 0, 0, 
0, 0, 0, 
0, "vbaerrors" 0, 
AlV_AlIVE, AlV_AlIVE, AlV_AlIVE, 

0, 
codriver, 

0[8], 0[8], 0[8], 
0[8], 0[8], 0[8], 
0[8] 0[8] 0[8] 

} tcO_struct } vbaO_struct } vba1_struct 

The intr Member 
The in tr member specifies an array that contains an entry point or points 
for the bus interrupt interfaces. You specify the bus interrupt interface or 
interfaces by using the vector keyword followed by a string that represents 
the name of the bus interrupt interface. You enter this keyword and string in 
the config. file file fragment or system configuration file for static 
drivers. 

Device Autoconfiguration 7-25 



A loadable driver knows the name of its bus interrupt interface. The loadable 
driver uses the handler add and handler enable interfaces to 
register its interrupt handlers. 

Figure 7-9 shows that the autoconfiguration software initializes this member 
to the value vbaerrors for vbaO struct. The figure also shows that 
the autoconfiguration software initializes this member for all of the other 
structures in the example to the value zero (0) because there are no bus 
interrupt interfaces associated with these buses. 

Device driver writers seldom need to reference this member in their device 
drivers. However, bus adapter driver writers might use this member in their 
bus adapter code to reference the interrupt handlers that handle error 
interrupts related to the bus. 

7-26 Device Autoconfiguration 



Figure 7-9: The intr Member Initialized 

bus tcO at 
controller fbO at 
controller ipiO at 
device disk ipl at 
device disk ip2 at 
bus vbaO at 
controller skO at 
bus vbal at 
controller cbO at 

struct bus { 
0, 
0, 
0, 
&fbO ..... struct, 
&vbaO_struet, 
BUS .... .TC, 
"te", 

, 
-1, 

0, 
0, 

system configuration file 

vector fbintr 
vector ipiintr 
unit 1 

nexus 
tcO 
tcO 
ipiO 
ipiO 
tcO 
vbaO 
tcO 
vbal 

unit 2 
slot 2 vector r,;v:j;b:;a-;er~r~o:;;r:;s;l----......!~ 
csr Ox8000 vec or s 1n r Oxc8 
slot 1 
csr Ox80001000vector cbintr Ox4S 

struct bus { 
0, 
&ftcbO_.struct, 
&vba1 ..... struct, 
&skO_struct, 

0, 
0, 

struct bus { 
0, 
&ftcbO_struct, 

0, 
AlVjtUVE, 

'------+ "vbaerrors" 
AlV_AUVE, 
0, 

0, 
0, 
0, 
AlV .... AUVE, 

skdriver, 

7.3.8 The alive Member 
The alive member specifies a flag word to indicate the current status of the 
bus. This member is set by the system to the bitwise inclusive OR of the 
valid alive bits defined in 
/usr/sys/include/io/common/devdriver.h. 

For the example system configuration file, Figure 7-10 shows that the 
auto configuration software initializes the alive member for all of the 
example bus structures to the bit ALV _ALIVE. This bit indicates that the 

Device Autoconfiguration 7-27 



device is present and configured on the system. 

Similarly for loadable drivers, the autoconfiguration software (specifically, 
the ldbl stanza resolver interface) sets the alive member for any 
buses in the sysconfigtab database to the bitwise inclusive OR of the 
valid alive bits defined in 
/usr / sys / include/ io/ cornmon/ devdri ver. h. The following list 
shows the valid alive bits that loadable and static drivers can use: 

AL V FREE The bus is not yet processed. 

ALV ALIVE The bus is alive and configured. 

ALV PRES The bus is present but not yet configured. 

ALV NOCNFG The bus is not to be configured. 

ALV LOADABLE The bus is present and resolved as loadable. 

ALV NOSIZER The sizer program should ignore these bus 
structures. This bit is set for loadable drivers. 
It indicates that this bus structure is not part of 
the static configuration. 

ALV RONLY The device is read-only. This bit is set for static 
drivers if the corresponding entry is specified in 
the stanza. static file fragment or system 
configuration file. This bit is not supported for 
loadable drivers. 

ALV WONLY The device is write-only. This bit is set for 
static drivers if the corresponding entry is 
specified in the stanza. static file fragment 
or system configuration file. This bit is not 
supported for loadable drivers. 

7-28 Device Autoconfiguration 



Figure 7-10: The alive Member Initialized 

ALV FREE 

ALV ALIVE 

ALV PRES 

ALV NOCNFG 

ALV WONLY 

ALV RONLY 

struct bus { 
0, 
0, 
0, 
MbO __ struet, 
&vbaO __ struet, 
BUS_Te, 
"te", 
0, 
-1, 
Ie n , 
-1, 
teeonr!l, 
teeonr!2, 
0, 
0, 
0, 
ALV_ALlVE, 

devdriver.h 

struct bus { 

&vbal_struet, 
&skO ..... struet, 
0, 
BUS_VME, 
"vba", 

0, 
vbaeonfil, 
vbaeonfi2, 
0, 
0, 
""basHors" 
ALV_ALIVE, 

struct bus { 

0, 
&ebO ... struet, 
0, 
BUS_VME, 
"vba", 

0, 
0, 
0, 
ALV_ALlVE, 

7.3.9 The framework and driver_name Members 
The framework member specifies a pointer to the bus framework 
structure. This structure contains pointers to bus interfaces for loadable 
device drivers. These interfaces provide dynamic extensions to bus 
functionality. They are used in the auto configuration of loadable drivers to 
perform bus-specific tasks, such as the registration of interrupt handlers. The 
framework member is initialized by the bus adapter driver. Device driver 
writers seldom need to reference this member in their device drivers. 
However, bus adapter driver writers might reference this member in their bus 

Device Autoconfiguration 7-29 



adapter code. 

The dr i ver name member specifies the name of the controlling device 
driver. For the example system configuration file, Figure 7-11 shows that the 
autoconfiguration software initializes the dr i ver name members for the 
example bus structures to the addresses of their respective controlling device 
drivers: fbdriver, skdriver, and cbdriver. The autoconfiguration 
software obtains the driver names by using the controller name and 
appending the string dr i ver to it. 

Similarly for loadable drivers, the autoconfiguration software sets the 
dr i ver name members to xxdr i ver, where xx is the driver name as 
specifiedby the Module Config Name field in the stanza .loadable 
file fragment. The followIng example shows one such entry: 

In this case, the autoconfiguration software sets the dr i ver name member 
to cbdriver. -

Device driver writers seldom need to reference this member in their device 
drivers. However, bus adapter driver writers might reference this member in 
their bus adapter code. 

7-30 Device Autoconfiguration 



Figure 7-11: The framework and driver_name Members 
Initialized 

system configuration file 

bus at nexus 
controller fb at tcO vector fbintr 
controller 1P10 at tcO vector ipiintr 
device disk ipl at ipiO unit 1 
device disk ip2 at ipiO unit 2 
bus ,..JZ.b..pO at tcO slot 2 vector vbaerrors 
controlle l..!!!J> at vbaO csr Ox8000 vector skintr Oxc8 
bus 1 at tcO slot 1 
controlle &-~~vbal csr Ox80001000 vector cbintr Ox45 

struct bus { struct bus { struct bus { 
0, 0, 0, 
0, &ftebO _struet, &ftcbO_struet, 
0, &vba1 ... struct, 
&fbO ... struet, &skO_struet, 
&vbaO __ struet, 0, 
BUS .... TC, BUS_VME, 
"te" , "vba", 
0, 

:1/ , 
-1, 0, 0, 
teecmfi1, vbaeonfl1, vbaconf!1, 
tceonfl2, vbaconf!2, vbaconfl2, 

ALV_AUVE, 
0, 0, 0, 
fbdriver, skdriver, cbdriver, 
0[8], 

} tcO_struct } vbaO_struct } vba1_struct 

7.3.10 The private, conn_priv, and rsvd Members 
The private member specifies private storage for use by this bus or bus 
class. The conn pr i v member specifies private storage for use by the bus 
that this bus is connected to. The rsvd member is reserved for future 
expansion of the data structure. 

For the example system configuration file, Figure 7-12 shows that the system 
initializes these members for all of the structures to the value zero (0). The 

Device Autoconfiguration 7-31 



code controlling the bus can use these members for any storage purposes. 
The conn pr i v member is often used by TUROBchannel bus writers as an 
index to the tc _option table. 

Figure 7-12: The private, conn_priv, and rsvd Members 
Initialized 

bus 
controller 
controller 
device disk 
device disk 
bus 
controller 
bus 
controller 

struct bus { 

, 
-1, 

0[8], 
0[8], 
0[8] 

} tcO_struct 

tcO 
fbO 

skO 
vhal 
chO 

at nexus 
at tcO vector fhintr 
at tcO vector ipiintr 
at ipiO unit 1 
at unit :2 
at slot :2 vector vhaerrors 
at vbaO csr OxSOOO vector skintr OxcS 
at tcO slot 1 
at vhal csr Ox80001000 vector chintr Ox45 

struct bus { 

0, 
0, 

0[8], 
0[8], 
0[8] 

} vbaO_struct 

struct bus { 
0, 
MtcbO_struct, 

0[8], 
0[8], 
0[8] 

} vba1_struct 

7.4 The controller Structure 
The controller structure represents an instance of a controller entity, one 
that connects logically to a bus. A controller can control devices that are 
directly connected or can perform some other controlling operation, such as a 

7-32 Device Autoconfiguration 



network interface or terminal controller operation. You (or the system 
manager) specify a controller entity as follows: 

• For static drivers 

Specify a valid syntax for the controller in the config. file file 
fragment or the system configuration file. 

• For loadable drivers 

Specify a valid syntax for the controller in the stanza. loadable file 
fragment. 

Chapter 11 discusses the device driver configuration models. Chapter 12 
describes the valid syntaxes for a controller specification. Chapter 13 
provides examples of how to configure device drivers. 

Table 7-2 lists the members of the controller structure along with their 
associated data types. 

Table 7-2: Members of the controller Structure 

Member Name 

ctlr mbox 

bus hd 

nxt ctlr 

dev list 

driver 

ctlr_type 

ctlr name 

ctlr num 

bus name 

bus num 

rctlr 

slot 

alive 

pname 

port 

intr 

addr 

addr2 

Data Type 

u_long 

struct bus * 

struct controller * 

struct device * 

struct driver * 

int 

char * 

int 

char * 

int 

int 

int 

int 

char * 

struct port * 

int (**intr) () 

caddr t 

caddr t 

Device Autoconfiguration 7-33 



Table 7-2: (continued) 

Member Name Data Type 

flags 

bus_priority 

ivnum 

priority 

cmd 

physaddr 

physaddr2 

private 

conn_priv 

rsvd 

int 

int 

int 

int 

int 

caddr t 

caddr t 

void * 
void * 
void * 

[ 8 ] 

[ 8 ] 

[ 8 ] 

The following sections discuss all of these members except for bus hd, 
nxt ctlr, and dev list, which are presented in Section 7.2.1.6: 
Writing Device Drivers, Volume 2: Reference provides a reference (man) 
page-style description of this data structure. 

7.4.1 The ctlr_mbox Member 
The ctlr mbox member specifies a pointer to the mailbox data structure 
for hardware platforms that access I/O space through hardware mailboxes. 
This member is set by the adapter code. As the adapter code probes the 
buses, the first bus that has a mailbox allocates the initial software mailbox 
data structure and sets its bu s mbox pointer to that data structure. As the 
adapter code continues to probe for buses and controllers, the MBOX GET 
macro allocates the ctlr mbox members for devices accessed by -
mailboxes. Typically, this macro is called in the controller configuration 
interface after the controller data structure has been found, but before 
probing the controller. The following code fragment gives an idea of the 
tasks that occur prior to calling the MBOX _GET macro: 

config_con(name, node, bus) 
{ 

register struct controller *ctlr; 

if((ctlr = get ctlr(name, node, bus->bus name, bus->bus_num)) I I 
/* other wildcards here */ -

(ctlr = get_ctlr(name, -1, "*", -99))) { 

7-34 Device Autoconfiguration 



/*************************************************** 
* Found the controller * 
***************************************************/ 

int savebusnum; 
char *savebusname; 
int saveslot; 

if(ctlr->alive & ALV ALIVE) { 
printf("confIg con: %s%d aliveO, 

ctlr->ctlr_name, ctlr->ctlr_num); 
return(stat); 

savebusnum = ctlr->bus_num; 
savebusname = ctlr->bus name; 
saveslot = ctlr->slot; -
ctlr->bus name = bus->bus name; 
ctlr->bus-num = bus->bus num; 
ctlr->slot = node; -

/*************************************************** 
* Allocate and initialize a software * 
* 
* 
* 

mailbox data structure for the 
controller if it is attached to a 
bus that is accessed by mailboxes 

* 
* 
* 

***************************************************/ 
MBOX_GET(bus, ctlr); 

/*************************************************** 
* Now get the controller's driver structure * 
* and probe * 
***************************************************/ 

7.4.2 The driver Member 
The dr i ver member specifies a pointer to the dr i ver structure for this 
controller. The device driver writer initializes a dr i ver structure, usually 
in the Declarations Section of the driver. 

For the example system configuration file, Figure 7-13 shows that the 
autoconfiguration software initializes the dr i ver member for the example 
controller structures to their respective controlling device drivers: 
fbdriver, ipidriver, skdriver, and cbdriver. The 
autoconfiguration software obtains the driver names by using the keyword for 
the controller and appending the string driver to it. 

Similarly for loadable drivers, the driver writer provides the device driver 
name in the Configure Section of the device driver by calling the 
ldbl stanza resolver and ldbl ctlr configure interfaces. 
Thus, the autoconfiguration software setS-the dr1. ver members for any 
controllers specified in the sysconf igtab database to the name specified 
by the driver writer. 

Device Autoconfiguration 7-35 



Figure 7-13: The driver Member Initialized 

system configuration file 

bus ~O at nexus 
controller ~O at tcO vector fbintr 
controller rr;pnO at teO vector ipiintr 
device diskTpl' at ipiO unit 1 
device disk ip2 at ipiO unit 2 
bus vbaO at tcO slot 2 vector vbaerrors 
controller '~--~~~.~~-vvu~aLu~~~~r Ox8000 vector skintr Oxc8 
bus al at tcO s ot 1 
controller c at vbal c;r Ox80001000 vector cbintr Ox45 

struct controller{ 

&ipifU&;truct, 
0, 
&fbdriver, 
0, 
"10", 
0, 
Htcl~ , 

0, 
0, 

-1, 
AlV_AUVE, 
0, 
0, 
"fbintr" 
0, 
0, 
0, 
0, 
0, 
0. 
0, 
0, 
0, 
Or8], 
O[S), 

0[81 
}fbO_struct 

struct controller{ 
0, 
&tcO_struet, 
0, 
&ip1 .... struct, 

7-+ &ipidriver, 
0. 
"ipi", 
0, 
J1tc il ~ 

0, 
0. 

-1, 
AL\/AUVE, 
0, 
0, 
"ipiintr", 
0, 
0, 
0, 
0, 
0, 
0, 
0, 
0, 

O[S], 
0(8) 

}ipiO_struct 

struct controller{ 

0, 
&vbaO .... struct, 
0, 
0, 

-~ &skdriver, 
0, 
"sk", 
0, 
"voa", 
0, 
0, 
2, 
ALV.AUVE, 
0, 
0, 
"skintr", 
OxBOOO, 
0, 
0, 
0, 
OxeB, 
0, 
0, 
oxexxxxxx, 

O[BJ, 
0[81 

}skO_struct 

struct controller{ 

0, 
vbal_struct, 
0, 
0, 

~&Cbdriver 
0, 
"C!>", 
0, 
"vba" , 
1 , 
0, 
1 , 
ALV .. AUVE, 
0, 
0, 
"cointr" , 
Ox8000'l000, 
0, 
0, 
0, 
Ox45, 
0, 
0. 
OxSxxxxxx, 

0(8), 
0[8] 

}cbO_struct 

7.4.3 The ctlr_type, ctlr_name, and ctlr_num Members 
The ctlr type member specifies the controller type. The ctlr name 
member specifies the controller name. The ctlr num member specifies the 
controller number. -

The ctlr type member is not currently used by the autoconfiguration 
software. Thus, Figure 7-14 shows that in the example system configuration 
file, the autoconfiguration software initializes the ctlr type members for 
the example controller structures to the value zero (0). 

7-36 Device Autoconfiguration 



You (or the system manager) specify the controller name and the controller 
number by using the keyword controller followed by a character string 
and number that represent the controller name and controller number. You 
enter these values in the config. file file fragment or the system 
configuration file for static drivers and the stanza .loadable file 
fragment for loadable drivers. For example, fbO specifies a graphics frame 
buffer controller with a controller number of zero (0). 

Figure 7-14 shows the values in the example system configuration file that 
the autoconfiguration software parses to obtain the controller name and 
controller number. It also shows that the autoconfiguration software sets the 
ctlr name and ctlr num members to these values for fbO struct, 
ipiO=struct, skO_struct, and cbO_struct. -

The autoconfiguration software performs a similar parsing operation in the 
sysconf igtab database for loadable drivers to obtain the controller name 
and controller number and to initialize the associated ctlr name and 
ctlr num members. 

Driver writers are unlikely to use the ctlr name member. Driver writers 
often use the ctlr num member as an index to identify which instance of 
the controller the request is for. The / dev / none and / dev / cb device 
drivers illustrate the use of the ctlr num member. 

Device Autoconfiguration 7-37 



Figure 7-14: The ctlr_type, ctlr_name, and ctlr_num Members 
Initialized 

~ ______________ ---,J system configuration file L 
I bus .J:.c.Q. at nexus 
I controller LflRJ at tcO vector fbintr 

controller l.l.plJO I at tcO vector ipiintr 
device disK .l.pT at ipiO unit 1 
device disk ip2 at ipiO unit 2 
bus vb~ at tcO slot 2 vector vbaerrors 
controller ~~ a-c VUClU CS~ Ox8000 vector skintr Oxc8 
bus at tcO slbt 1 
controller c Q. at vbal cs~ Ox80001000 vector cbintr Ox45 

struct controller{ 

&ipiO_struct, 
0, 
&fbdriver, 
0, 

~"fb" 
~o, ' 

"te" , 
0, 
0, 

-1, 
ALVALlVE, 
0, 
0, 
"fblntr" 
0, 
0, 
0, 
0, 
0, 
0, 
0, 
0, 
0, 
Or8J, 
Or8], 
0[8] 

}fbO_struct 

struct controller{ 

0, 
&tcO_struct, 
0, 
&ip1_struct, 
&ipidriver, 
0, 

~"ipi", 
~O, 

0, 

0, 
0, 
"ip!ll1lr", 
0, 
0, 
0, 
0, 
0, 
0, 
0, 
0, 
0, 
0[3], 
0[3], 
0[8] 

}ipiO_struct 

struct controller{ 

0, 
&vba(LGtruet, 
0, 
0, 
&skdriver, 
0, 

f--~ "sk" 
40, ' 

"'loa", 
0, 
0, 
2, 
ALV_ALlVE, 
0, 
0, 
"sklntr", 
OxSOOO, 
0, 
0, 
0, 
Oxe3, 
0, 
0, 
Ox8xxxxxx, 

0[3], 
0[8] 

}skO_struct 

7.4.4 The bus_name and bus_num Members 

struct controller{ 

0. 
vba1 __ struet, 
0, 
0, 
&ebdriver 
0, 

-;-"'Cb" 
~O, ' 

"vba", 
'1, 
0, 
'1, 
ALV_ALlVE, 
0, 
0, 
"cbintr", 
Ox80001000, 
0, 
0, 
0, 
0)(45, 
0, 
0, 
Ox8xxxxxx, 
O. 
0[8J, 
0[8], 
0[3J 

}cbO_struct 

The bus name member specifies the name of the bus to which this 
controller is connected. The bus num member specifies the number of the 
bus to which this controller is connected. 

7-38 Device Autoconfiguration 



You (or the system manager) specify the bus name and the bus number by 
using the keyword at followed by a character string and number that 
represent the bus name and bus number. You enter these values in the 
config. file file fragment or the system configuration file for static 
drivers and the stanza. loadable file fragment for loadable drivers. For 
example, tc 0 specifies a TURBOchannel bus with a bus number of zero (0). 

Figure 7-15 shows the values in the example system configuration file that 
the autoconfiguration software parses to obtain the bus name and bus number. 
It also shows that the autoconfiguration software sets the bus name and 
bus num members to these values for fbO struct, ipiO-struct, 
skO =: struct, and cbO _ struct. - -

The autoconfiguration software performs a similar parsing operation in the 
sysconf igtab database for loadable drivers to obtain the bus name and 
bus number and to initialize the associated bus name and bus num 
members. 

Device driver writers seldom need to reference these members in their device 
drivers. However, bus adapter driver writers might reference these members 
in their bus adapter code. 

Device Autoconfiguration 7-39 



Figure 7-15: The bus_name and bus_num Members Initialized 

system configuration file 

bus t.cO at. ..na.x.u.s 
I cont.roller fbO at. ~ vect.or fbint.r 

F"""':'---:cs-:0:-:n:;t.r.:r:-:o~1~1i"ie~rr1~·. P~1~' O~ ... aL~' t.,,-lt;.;~c;J:P;..,.J1 vect.or ipi in t.r 
dev1ce d1sk ipl at. 1p1U unit. 1 
device disk ip2 at. ipiO unit. 2 
bus vbaO at. t.cO slot. 2 vect.or vbaerrors 
cont.roller skO at." csr OxSOOO vect.or skint.r OxcS 
bus vbal at. slot. 1 
cont.roller cbO at. b csr OxS0001000 vect.or cbint.r Ox45 

struct controller{ 

0, 
&tcO_struct, 

&ipil:U.truct, 
0, 
&fbdriver, 
0, 
"fo", 
0, 

~"tc" 
~o, ' 

O. 
-1, 

ALV .... AUVE, 
0, 
0, 
"fbiotr" 
0, 
0, 
0, 
0, 
0, 
0, 
0, 
0, 
0, 
0[8], 
0[8], 
0[8] 

}fbO_struct 

struct controller{ 

0, 
&tcO .... struct, 
0, 
&ipi_struct, 
&ipidriver, 
0, 
"ipi", 
0, 

~"tc" 
":""""0, ' 

0, 
-1, 

ALV_AUVE, 
0, 
0, 
"/pilnt!''', 
0, 
0, 
0, 
0, 
0, 
0, 
0, 
0, 
0, 
0[8], 
0[8], 
0[8] 

}ipiO_struct 

7.4.5 The rctlr Member 

struct controller{ 

0, 
&vbaO_struct, 
0, 
0, 
&skdriver, 
0, 
"sk", 
0, r.--. "vba" 

40, ' 
0, 
2, 
ALV_AUVE, 
0, 
0, 
"skin!r", 
OdOOO, 
0, 
0, 
0, 
Oxc8, 
0, 
0, 
Ox8xxxxxx, 
0, 
OfS], 
0[8J, 
0[8J 

}skO_struct 

struct controller{ 

0, 
"hal .... struct, 
0, 
0, 
&cbdriver 
0, 
"cb", 
0, 

~"vba" 
~1, ' 

0, 
1, 
ALV,_AUVE, 
0, 
0, 
"cbintr", 
Ox80001000, 
0, 
0, 
0, 
Ox45, 
0, 
0, 
OxSxxxxxx, 
0, 
0[8], 
Or8], 
0[8] 

}cbO_struct 

The rctlr member specifies the remote controller number (for example, the 
SCSI ID). 

You (or the system manager) specify the remote controller number by using 
the rctlr keyword followed by a number. You enter this keyword and 
number in the config. file file fragment or system configuration file for 

7-40 Device Autoconfiguration 



static drivers and the stanza. loadable file fragment for loadable 
drivers. 

Figure 7-16 shows that the example system configuration file does not 
contain an entry for the remote controller. Therefore, the autoconfiguration 
software sets this member to the value zero (0) for each of the controller 
structures. 

Device Autoconfiguration 7-41 



7.4.6 

Figure 7-16: The rctlr Member Initialized 

bus tcO 
controller fbO 
controller ipiO 
device disk ipl 
device disk ip2 
bus vbaO 
controller skO 
bus vbal 
controller cbO 

struct controller{ 

0, 
&tcO_struct, 

&ipiO_strllct, 
0, 
&fbdriver, 
0, 
"fb", 
0, 
"te", 
0, 
0, 
-1, 
AlVALiVE, 
0, 
0, 
"1olntr" 
0, 
0, 
0, 
0, 
0, 
0, 
0, 
0, 
0, 
0[8], 
0[3], 
0[8] 

}fbO_struct 

at 
at 
at 
at 
at 
at 
at 
at 
at 

nexus 
teO 
tcO 
ipiO 

vbaO 
tcO 
vbal 

struct controller{ 

0, 
&tcO .... struct, 
.Q, 

0, 
"ipi", 
0, 
Htc B ~ 
0, 
0, 
-1, 
AlV_ALiVE, 
0, 
0, 
"Ipiintr", 
0, 
0, 
0, 
0, 
0, 
0, 
0, 
0, 
0, 
OrS], 

0(8], 
0[8] 

}ipiO_struct 

The slot Member 

system configuration file 

vector fbintr 
vector ipiintr 
unit 1 
unit 2 
slot 2 vector vbaerrors 
csr Ox8000 vector skintr Oxc8 
slot 1 
csr Ox80001000 vector cbintr Ox45 

struct controller{ struct controller{ 

0, 0, 
&voaO._struct, vbai .... struet, 
0, 0, 
0, 
&skdriver, " .... 

"" ........... n;" 

0, 0, 
"SkH, "co", 
0, 0, 
"voa", "voa", 
0, i , 
0, 0, 
2, 1, 
AlV_AlIVE, ALV_ALIVE, 
0, 0, 
0, 0, 
"s!dntr" , "ebintr", 
Ox8000, 0)(80001000, 
0, 0, 
0, 0, 
0, 0, 
Oxe8, 0)(45, 
0, 0, 
0, 0, 
Ox3x)()(xx)(, 0)(8x)(x)(xx, 

0, 
0[8], 

0[8], 0[8], 
0[8] 0[8] 

}skO_struct }cbO_struct 

The s lot member specifies the bus slot or node number. Figure 7-17 shows 
that the example system configuration file does not contain an entry for the 
slot. Because no slots were specified for the controllers connected to these 
buses, the kernel sets the s lot member to the value -1 for each of the 
controller structures. 

7-42 Device Autoconfiguration 



Figure 7-17: The slot Member Initialized 

----------_.'-----,----
system configuration file 

bus tcO 
controller fbO 
controller ipiO 
device disk ipl 
device disk ip2 
bus vbaO 
controller skO 
bus vbal 
controller cbO 

struct controller{ 

0, 
&tcO, .. struct, 
&ipiOstruct, 
0, 
&fbdriver, 
0, 
"fb", 
0, 
HtcU, 
0, 
0, 

-1, 
ALV~AUVE, 

0, 
0, 
"fbintr" 
0, 
0, 
0, 
0, 
0, 
0, 
0, 
0, 
0, 
o[a], 
0[8], 
0(8] 

}fbO_struct 

at 
at 
at 
at 
at 
at 
at 
at 
at 

nexus 
tcO 
tcO 
ipiO 
ipiO 
tcO 
vbaO 
tcO 
vbal 

struct controller{ 

0, 
&tcO~struct, 

0, 
&ip1_struct, 
&ipidriver, 
0, 
"ipl", 
0, 
t~tc!~~ 

0, 
0, 

-1, 
ALV~AUVE, 
0, 
0, 
"ipiintr", 
0, 
0, 
0, 
0, 
0, 
0, 
0, 
0, 
0, 
0[8], 
0[8], 
0[8] 

}ipiO~struct 

7.4.7 The alive Member 

vector fbintr 
vector ipiintr 
unit 1 
unit 2 
slot 2 vector vbaerrors 
csr OxSOOO vector skintr OxcS 
slot 1 
csr Ox80001000 vector cbintr Ox45 

struct controller{ struct controller{ 

0, 0, 
&\lbaO~struct, vbai .... struct. 
0, 0, 
0, 0, 
&skdriver, &cbdrlver 

0, 
"co", 

0, 0, 
"yba" , "\lba", 
0, 1 , 
0, 0, 

-1, -1, 
ALV~ALiVE, AlV_ALlVE, 
0, 0, 
0, 0, 
"sl<intr", "cbintr" , 
oxaooo, Ox80001000, 
0, 0, 
0, 0, 
0, 0, 
Oxcs, 0)(45, 
0, 0, 
0, 0, 
oxaXXXXX)(, Ox8xxxxxx, 
0, 0, 
0[8], o[a], 
0[8}, 0[8], 
0[8] 0[8] 

}skO_struct }cbO_struct 

The alive member specifies a flag word to indicate the current status of the 
controller. Figure 7-18 shows that the autoconfiguration software sets the 
alive member for all of the example controller structures to the bit 
ALV ALIVE. The autoconfiguration software obtains this and the other 
alive-bits in the file devdr i ver . h. 

Similarly for loadable drivers, the autoconfiguration software (specifically, 
the ldbl_stanza_resolver interface) sets the alive member for any 

Device Autoconfiguration 7-43 



controllers in the sysconf igtab database to the bitwise inclusive OR of 
the valid alive bits defined in 
/usr /sys/ include/ io/common/devdriver. h. The following list 
shows the valid alive bits that loadable and static drivers can use: 

ALV FREE The controller is not yet processed. 

ALV ALIVE The controller is alive and configured. 

ALV PRES The controller is present but not yet configured. 

ALV NOCNFG The controller is not to be configured. 

ALV LOADABLE The controller is present and resolved as 
loadable. 

ALV NOSIZER The sizer program should ignore these 
controller structures. This bit is set for 
loadable drivers. It indicates that this 
controller structure is not part of the static 
configuration. 

ALV RONLY 

ALV WONLY 

The device is read-only. This bit is set for static 
drivers if the corresponding entry is specified in 
the stanza. static file fragment or system 
configuration file. This bit is not supported for 
loadable drivers. 

The device is write-only. This bit is set for 
static drivers if the corresponding entry is 
specified in the stanza. static file fragment 
or system configuration file. This bit is not 
supported for loadable drivers. 

Digital does not make use of the functionality associated with the 
ALV RONLY and ALV WONLY bits. However, the config program 
supports the functionality for third-party driver writers who test for the bits 
and perform the corresponding logic. 

The following examples show situations where third-party driver writers 
could use the functionality associated with the ALV RONLYand 
ALV WONLY bits: -

• You might be implementing a device driver to handle a disk that can be 
write protected (logically) much the same way as a write-protect button 
works. Because SCSI disks do not have write-protect buttons, the entry 
in the system configuration file or stanza. static file fragment could 
look like this: 

readonly device disk rz7 at ascO drive 56 

• You might now have a device that crashes the system every time the 
system touches it while booting multiuser. You suspect a hardware 

7-44 Device Autoconfiguration 



problem with a disk and you are waiting for field service, but you need 
the system immediately. However, you do not know the bad disk is in 
the critical path. One solution is to mark the disk as not to be configured 
in the system configuration file, build a kernel, and boot multiuser until 
field service fixes the problem. Following is the entry in the system 
configuration file: 

not device disk rz6 at ascO drive 55 

• The following entry in the system configuration file passes a flag to the 
driver indicating that a terminal device is for display-only, will not accept 
input, and is a write-only device: 

writeonly device dmbO at vaxbi? node? flags Oxff 
vector dmbsint dmbaint dmblint 

Device Autoconfiguration 7-45 



Figure 7-18: The alive Member Initialized 

devdriver.h 

ALV FREE 
ALV ALIVE 

ALV PRES 
ALV_LOADABLE 

• 
-

struet eontroller{ struet eontroller{ struet eontroller{ struet eontroller{ 

0, 0, 0, 0, 
&teO_struct, &tcO ... struct, &\tbaO_struet, \lbal ..... struct, 
&ipiO_struct, 0, 0, 0, 
0, &ip1_struet, 0, 0, 
&fbdriver, &ipidriver, &skdriver, &eodriver 
0, 0, 0, 
"fo", "ipi", "cb", 
0, 0, 0, 0, 
i!te!! ~ "te U

, "\fba", "\tba", 
0, 0, 0, i , 
0, 0, 0, 0, 

-1, -1, 2, 1, 
L....:--+- ALV_ALlVE, ALV_ALlVE,+ AL V _ALIVE,+- ~ ALV _ALIVE, 

0, 0, 0, 0, 
0, 0, 0, 0, 
"fbintr" "ipUnt!''', "skint,", "cointr" , 
0, 0, Ox8000, Ox80001000, 
0, 0, 0, 0, 
0, 0, 0, 0, 
0, 0, 0, 
0, 0, Oxe8, 
0, 0, 0, 0, 
0, 0, 0, 0, 
0, 0, Ox8xxxxxx, Ox8xxxxxx, 
0, 0, 0, 0, 
0[81, O[B], 0[8], 0(8], 
0[8], 0[8], 0[8], 0[8], 
O[B} 0[8J 0[8] O[8J 

}fbO_struet }ipiO_struet }skO_struet }ebO_struet 

7.4.8 The pname and port Members 
The pname member specifies a pointer to the port name for this controller, if 
applicable. The port member specifies a pointer to the port structure for 
this controller, if applicable. 

You (or the system manager) specify the port name by using the port 
keyword followed by a string that represents the name of the port. You enter 

7-46 Device Autoconfiguration 



this keyword and string in the conf ig. file file fragment or system 
configuration file for static drivers. This keyword is not currently supported 
for loadable drivers; therefore, you cannot specify it in the 
stanza .loadable file fragment. 

Figure 7-19 shows that the autoconfiguration software sets these members for 
all of the structures to the value zero (0) to indicate that no port was specified 
in the system configuration file. If port names were specified, the 
autoconfiguration software would initialize the pname and port members 
for all of the example controller structures to the specified values. 

Device driver writers do not reference these members in their device drivers. 
However, bus adapter writers use the port structure to implement the 
initialization for a class of devices or controllers that have common 
characteristics. 

Device Autoconfiguration 7-47 



7.4.9 

Figure 7-19: The pname and port Members Initialized 

system configuration file 

bus tcO at nexus 
controller fbO at tcO vector fbintr 
controller at tcO vector ipiintr 
device disk at ipiO unit 1 
device disk at unit :2 
bus at slot 2 vector 
controller skO at vbaO csr Ox8000 vector OxcS 
bus vba! at tcO slot ! 
controller cbO at vba! csr OxS0001000 vector cbintr Ox45 

struct controller{ struct controller{ struct controller{ struct controller{ 

~'tcO_strm:::t 
&ipiO_struct, 0, 0, 0, 
0, 0, 0, 
&fbdriver, &skdriver, &cbdriver 
0, 0, 0, 
"fb", "ipi", "co", 
0, 0, 0, 0, 
"tc", BtcH, "vba", "vba", 
0, 0, 0, i , 
0, 0, 0, 0, 

-1, -1, 2, 1, 
ALV.AUVE, ALV_AUVE, AlV_AUVE, ALV_ALlVE, 
0, 0, 0, 0, 
0, 0, 0, 0, 
"fbintr" "ipiint,", "skin!r", "cbin!'" , 
0, 0, Ox8000, 0)(80001000, 
0, 0, 0, 0, 
0, 0, 0, 0, 
0, 0, 0, 0, 
0, 0, OxeS, Ox45, 
0, 0, 0, 0, 
0, 0, 0, 0, 
0, 0, OxSxxxxxx, OxSxxxxxx, 
0, 0, 0, 0, 
O[S], 0[3], 0(3), 0[3], 
0[8], 0[3], 0[3], ors]' 
0(3J or81 or81 0[81 

}fbO_struct }ipiO_struct }skO_struct }cbO_struct 

The intr Member 
The intr member specifies an array that contains one or more entry points 
for the controller interrupt interfaces. Figure 7-20 shows that the 
autoconfiguration software initializes the intr members to fbintr for 
fbO struct, ipiintr for ipiO struct, skintr for skO struct, 
and cbintr for cbO struct. The autoconfiguration software obtains 

7-48 Device Autoconfiguration 



these names following the keyword vector in the example system 
configuration file. 

For loadable drivers, the intr members of these data structures would be set 
up indirectly through calls to the handler_add interface. 

Figure 7-20: The intr Member Initialized 

I system configuration file 

nexus I 
tcO Ivectorlfbintrl 
tcO ~vectorl1p11ntrl 
ipiO un1'C.1 
ipiO unit 2 

bus tcO at 
controller fbO at 
controller ipiO at 
device disk ipl at 
device disk ip2 at 
bus vbaO at 
controller skO at 
bus vbal at 
controller cbO at 

tcO slot 2 vectt;J~o~lrt....l~-1L:lW~~:..L..., 
vbaO csr ox8000lvector Iskintr IOxc8 

struct controller{ 

&ipiO_struct, 
0, 
&foorlv0;, 
0, 
"fb", 
0, 
"te", 
0, 

0, 
"fbintr" , 
0. 
0, 
0, 
0, 
0. 
0, 
0, 
0, 
0, 
0[8J, 
0[81, 
0[8] 

}fbO_struct 

vbal csr Ox8000100olvectorlcbintrlOx45 
tcO ~lot 1 

r---------' 

struct controller{ 

0, 
&tcO_struct. 
0, 
&ip1 .... struct, 
&ipidriver, 
0, 
"ip!", 
0, 
ate", 
0, 

ALV_AUVE, 
0, 
0, 

....:..-. "ipiintr", 
0, 
0, 
0, 
0, 
0, 
0, 
0, 
0, 
0, 
0[8J, 
0[8], 
0[8] 

}ipiO_struct 

struct controller{ 

0, 
&V!:UlO_struet, 
0, 
0, 
&skdrhrer, 
0, 
HskB ~ 
0, 
"vba" , 
0, 
0, 
2, 
ALV ... ALlVE, 
O. 
0, 

~"skintr", 
Ox8000, 
0, 
0, 
0, 
0, 
O. 
0, 
Ox8xxxxxx. 
0, 
0[8], 
0[8], 
0[8] 

}skO_struct 

struct controller{ 

0, 
v!;H'.Il_struct, 
0, 
0, 
&cbddv0r 
0, 
"cb", 
0, 
"voa", 
1 , 
0, 
i , 
AlV_AUVE, 
0, 
0, 

":""""'"cbintr", 
Ox80001000, 
0, 
0, 
0, 
0, 
0, 
0, 
Ox8xxxxxx, 
0, 
0[8], 

0[8], 
0[8] 

}cbO_struct 

Device Autoconfiguration 7-49 



7.4.10 The addr and addr2 Members 
The addr member specifies the address of the device registers or memory. 
Figure 7-21 shows that the autoconfiguration software uses the value 
following the csr keyword in the system configuration file to obtain the 
address. This address is the first control status register (CSR) for the CPU. 
Thus, the autoconfiguration software initializes the addr member to the 
value zero (0) for fbO struct and ipiO struct because no CSR 
addresses were specified. It initializes the addr members for skO struct 
and cbO struct to the values Ox8000 and Ox80001000. -

The addr2 member specifies an optional second virtual address for this 
controller. This member is set if there are two CSR spaces. Figure 7-21 
shows that because no second CSR address was specified, the 
autoconfiguration software initializes all of the addr2 members to the value 
zero (0). The autoconfiguration software would obtain the second CSR 
address from the csr2 keyword. 

Note that the addresses that appear in these members may not be the values 
specified in the system configuration file because the kernel could perform an 
address mapping operation to produce different values. 

7-50 Device Autoconfiguration 



Figure 7-21: The addr and addr2 Members Initialized 

r--______________ ----II system configuration file L 
nexus 
tcO vector fbintr 
tcO vector ipiintr 
ipiO unit 1 
ipiO unit 2 

bus tcO at 
controller fbO at 
controller ipiO at 
device disk ipl at 
device disk ip2 at 
bus vbaO at 
controller skO at 
bus vbal at 
controller cbO at 

tcO slot 2 vector vbaerrors 

struct controller{ 
0, 
&tcO_struct, 

&IpHU.lruct, 
0, 
&fbdriver, 
0, 
"fb", 
0, 
"te", 
0, 
0, Oxe8, 

-1, 
ALV .. AUVE,. 
0, 
0, 
"fbinty", 
0, 
0, 
0, 
0, 
0, 
0, 
0, 
0, 
0, 
0(81, 
Or8], 
0[3] 

}fbO_struct 

vbaO rl csr IOx8000 I vector skintr Oxc8 
tcO slot 1 
vbal I csrlOx80001000 Ivector cbintr Ox45 

~--~=~~~~I~~~ 
struct controller{ 

0, 

&tcO ... struct, 
0, 
&ip1_struct, 
&ipidrlver, 
0, 
"Ipi", 
0, 
"te", 
0, 

ALV_AUVE, 
0, 
0, 
"ipiintr" , 
0, 
0, 
0, 
0, 
0, 
0, 
0, 
0, 
0, 
0[8], 
0[8], 
O[S] 

}ipiO_struct 

struct controller{ 

0, 

0, 
0, 
&skdriver, 

0, 
"voa", 
0, 
0, 
2, 
ALV_ALiVE, 
0, 
0, 
"skintr" , 

~Ox8000, 
0, 
0, 
0, 
Oxcs, 
0, 
0, 
OXSxxxxxx, 
0, 
0[8J, 
0[81, 
0[3] 

}skO_struct 

struct controller{ 

0, 
"bel ... struet, 
0, 
0, 
&ebdriver 
0, 
"eb", 
0, 
"\I'ha" , 
i , 
0, 
1, 
ALV_AUVE, 
0, 
0, 
"cbintr", 

":""""Ox80001000, 
0, 
0, 
0, 
Ox45, 
0, 
0, 
OxSxxxxxx, 
0, 
0(8], 
Or8], 
0[3J 

}cbO_struct 

7.4.11 The flags Member 
The flags member specifies controller-specific flags. The driver writer (or 
system manager) can specify controller-specific flags by using the flags 
keyword. Thus, the autoconfiguration software initializes the flags 
member with the value that follows the flags keyword in the system 
configuration file. 

Device Autoconfiguration 7-51 



Figure 7-22 shows that, because no controller-specific flags were specified in 
the example system configuration file, the autoconfiguration software 
initializes the flags members for all of the controller structures to the 
value zero (0). 

Figure 7-22: The flags Member Initialized 

bus tcO 
controller fbO 
controller ipiO 
device disk ip1 
device disk ip2 
bus vbaO 
controller skO 
bus vbal 
controller cbO 

struct controller{ 

0, 
&teO_struet, 
&ipiO_struct, 
0, 
&fbdriver, 
0, 
"fb", 
0, 
"te", 
0, 
0, 

-1., 
ALV_AUVE, 
0, 
0, 
"fbintr" 
0, 
0, 
0, 
0, 
0, 
0, 
0, 
0, 
0, 
0[8], 
O[S], 

0[8J 
}fbO_struct 

7-52 Device Autoconfiguration 

at 
at 
at 
at 
at 
at 
at 
at 
at 

nexus 
tcO 
tcO 
ipiO 
ipiO 
tcO 
vbaO 
tcO 
vbal 

struct controller{ 

0, 
&tcO_struct, 
0, 
Blip! _struct, 
&ipidriver, 
0, 
"ipi", 
0, 
"te", 
0, 
0, 

-1, 
ALV .. ALlVE, 
0, 
0, 
"ipiintr", 
0, 
0, 
0, 
0, 
0, 
0, 
0, 
0, 
0, 
0[8], 
0[81, 
0[8] 

}ipiO_struct 

vector fbintr 
vector ipiintr 
unit 1 
unit 2 
slot 2 vector 
csr OxSOOO vector OxcS 
slot 1 
csr OxSOOOIOOO vector cbintr Ox45 

struct controller{ struct controller{ 

0, 0, 
&vbaO .... stnwt, vbai._strl.lct, 
0, 0, 
0, 0, 
&skdriver, &cbdriver 

0, 
"eb", 

0, 0, 
"voa", "\fba", 
0, 1 , 
0, 0, 
2, i, 
ALV_AUVE, ALV .... AUVE, 
0, 0, 
0, 0, 
"skintr", "cbintr", 
Ox8000, OxSOOOI000, 
0, 0, 
0, 0, 

0, 0, 
0, 0, 
Ox8xxxxxx, Ox8xxxxxx, 
0, 0, 
0[8], 0[8], 
0[8], 0[8J, 
0[8] 0[8] 

}skO_struct }cbO_struct 



7.4.12 The bus_priority Member 
The bus priority member specifies the configured VMEbus priority 
level of the device. Only drivers operating on the VMEbus use this member. 
You (or the system manager) can specify the bus priority by using the 
pr ior i t y keyword. Thus, the autoconfiguration software initializes the 
bus priority member with the value that follows the priority 
keyWOrd in the system configuration file. 

Figure 7-23 shows that because no bus priorities were specified in the 
example system configuration file, the autoconfiguration software initializes 
the bus priority members for all of the controller structures to the 
value zero (0). 

Device Autoconfiguration 7-53 



7.4.13 

Figure 7-23: The bus_priority Member Initialized 

bus tcO 
controller fbO 
controller ipiO 
device disk ipl 
device disk ip2 
bus vbaO 
cont.roller skO 
bus vbal 
controller cbO 

struct controller{ 

0, 
&tcO_struct, 

&ipiO_struct, 
0, 
&fodriver, 
0, 
!lfb", 
0, 
UtcU, 
0, 

ALV ... AUVE, 
0, 
0, 
"fbintr", 
0, 
0, 
0, 
0, 
0, 
0, 
0, 
0, 
0, 
OrS], 

0(8J, 
O[S} 

}fbO_struct 

at 
at 
at 
at 
at. 
at. 
at 
at 
at. 

nexus 
tcO 
tcO 
ipiO 

vhaO 
tcO 
vhal 

struct controller{ 

0, 
&tcO .... struct, 
0, 

0, 
"ip!", 
0, 
!ItcH, 
0, 
0, 

-1, 
ALV_AUVE, 
0, 
0, 
"ipiintr", 
0, 
0, 
0, 
0, 
0, 
0, 
0, 
0, 
0, 
O[S], 

}ipiO_struct 

The ivnum Member 

vect.or fbint.r 
vector ipiintr 
unit 1 
unit. .2 
slot :2 vector vbaerrors 
csr Ox8000 vector skintr Oxc8 
slot. 1. 
csr Ox80001000 vector chint.r Ox45 

struct controller{ struct controller{ 

0, 0, 
&vlnlO_struct, "01'.11 ... struct, 
0, 0, 
0, 
&skdriver, 

0, 
"cb", 

0, 0, 
"voa", "vila", 
0, 1 , 
0, 0, 
2, 1 , 
ALV_ALlVE, ALV_ALlVE, 
0, 0, 
0, 
"skintr". 
oxeooo, Ox80001000, 
0, 0, 
0, 0, 
0, 0, 
Oxe8, Ox45, 
0, 0, 
0, 0, 
Ox8xxxxxx, OxBxxxxxx, 
0, 0, 
0[81, OrS], 

O[SJ, 0(8], 

0[8] O[SJ 
}skO_struct }cbO_struct 

The ivnum member specifies an interrupt vector number. Only drivers 
operating on the VMEbus use this member. The device driver writer can 
specify an interrupt vector number after the interrupt interface in the system 
configuration file. Thus, the autoconfiguration software initializes the i vnum 
member with the value that follows the interrupt interface in the system 

7-54 Device Autoconfiguration 



configuration file. 

Figure 7-24 shows the values in the example system configuration file that 
the autoconfiguration software parses to obtain the interrupt vector numbers. 
It also shows that the autoconfiguration software sets the i vnum members to 
these values for skO struct and cbO struct. Because no interrupt 
vector numbers were specified in the example system configuration file for 
fbO struct and ipiO struct, the autoconfiguration software 
initializes their i vnum members to the value zero (0). 

Device Autoconfiguration 7-55 



7.4.14 

Figure 7-24: The ivnum Member Initialized 

bus tcO 
controller fbO 
controller ipiO 
device disk ipl 
device disk ip2 
bus vbaO 
controller skO 
bus vbal 
controller cbO 

struet eontroller{ 

&ipW_struct, 
0, 
&fbdrlver, 
0, 
"fb", 
0, 
HteU, 
0, 
0, 

0, 
0, 
"fbintr", 
0, 
0, 
0, 
0, 
0, 
0, 
0, 
0, 
0, 
0[8], 
0[81, 
0[8] 

}fbO_struet 

at 
at 
at 
at 
at 
at 
at 
at 
at 

nexus 
tcO 
tcO 
ipiO 
ipiO 
tcO 
vbaO 
tcO 
vbal 

struet eontroller{ 

0, 

0, 
"Ipi", 
0, 
uie u ~ 

0, 
0, 

0, 
0, 
"ipiintr", 
0, 
0, 
0, 
O. 
0, 
0, 
0, 
0, 

0[8], 
0[8J 

}ipiO_struct 

The priority Member 

system configuration file 

vector fbintr 
vector ipiintr 
unit 1 
unit 2 
slot 2 vector vbaerrors 
csr Ox8000 vector skintr 
slot 1 
csr Ox8000l000 vector cbintr Ox45 

struet eontroller{ struet eontroller{ 

0, 0, 
0, 
&skdrivt'!r, 
0, 0, 
"sk", "cb", 
0, 0, 
"yba", "\fba", 
0, i , 
0, 0, 
2, 1, 
ALV_AUVE, ALV __ AUVE, 
0, 0, 
0, 0, 
"skintr" , "cbintr", 
Ox8000, Ox80001000, 
0, 0, 
0, 0, 
0, 0, 
OxeS, Ox45, 
0, 0, 
0, 0, 
Ox8xxxxxx, Ox8xxxxxx, 

0[8], 0[8], 
O[S} 0(8) 

}skO_struct }cbO_struct 

The pr ior i ty member specifies the system priority level (spl) to block 
interrupts from this device. Only drivers operating on the VMEbus use this 
member. Thus, the autoconfiguration software initializes the priority 
member with an appropriate value based on the value stored in the 
bus_priori ty member (if specified) and the system implementation. 

7-56 Device Autoconfiguration 



You use this value as an argument to the splx interface to block interrupts 
for the device. Thus, the autoconfiguration software initializes the 
priori ty member with an appropriate value based on the value stored in 
the bus priority member (if specified) and the system implementation. 
The driver writer uses this value as an argument to the splx interface to 
block interrupts for the device. Figure 7-25 shows that the autoconfiguration 
software sets the members for all of the controller structures to the value 
zero (0). 

Device Autoconfiguration 7-57 



Figure 7-25: The priority Member Initialized 

system configuration file 

bus tcO at nexus 
controller fbO at tcO vector fbintr 
controller at tcO vector ipiintr 
device disk at ipiO unit 1 
device disk at unit .2 
bus at slot 2 vector vbaerrors 
controller skO at vbaO csr Ox8000 vector skintr Oxc8 
bus vbal at tcO slot 1 
controller cbO at vbal csr Ox80001000 vector cbintr Ox45 

struct controller{ struct controller{ struct controller{ struct controller{ 

&lpiO_struct, 0, 0, 0, 
0, 0, 0, 
&fbdriver, &skddver. &.cbdriver 
O. 0, 0, 
"tb" , "lpi", "cb", 
0, 0, 0, 0, 
"te", "te", "'lfba" , "\lba", 
0, 0, 1 , 
0, 0, 0, 

2, I, 
ALV_AUVE, ALV __ AUVE, 

0, 0, 0, 0, 
0, 0, 0, 0. 
"fbintr" , "ipiintr", "skintr", "cbintr", 
0, 0, 0)(8000, Ox30001000, 
0, 0, 0, 0, 
0, O. 0, 0, 
0, 0, 0, 0, 
0, fI, Oxc8, Ox45, 
0, 0, 0, 0, 
0, 0, 0, O. 
0, 0, OxSxxxxxx, Ox8xxxxxx. 
0, 0, 0, 0, 
0[8], 0[8], 0[8], 0[8], 
0[3], 0[3], 0(8}, 0(81, 
0[8] 0[81 0[8] 0[81 

}fbO_struct }ipiO_struct }skO_struct }cbO_struct 

7.4.15 The cmd Member 
The cmd member specifies a field that is not currently used. 

7-58 Device Autoconfiguration 



7.4.16 The physaddr and physaddr2 Members 
The physaddr member specifies the physical address that corresponds to 
the virtual address set in the addr member. Because no CSR addresses 
were specified for fbO struct and ipiO struct, Figure 7-26 shows 
that the autoconfiguration software initializestheir physaddr members to 
the value zero (0). The figure also shows that the autoconfiguration software 
uses the CSR addresses specified after the csr keywords to calculate 
corresponding physical addresses and to use them to initialize the 
physaddr members for skO _struct and cbO _struct. 

The physaddr2 member specifies the physical address that corresponds to 
the virtual address set in the addr 2 member. The autoconfiguration 
software would use the CSR addresses specified after the addr 2 keyword to 
calculate a corresponding second physical address. Because no second CSR 
addresses were specified in the example system configuration file, Figure 
7-26 shows that the autoconfiguration software initializes the physaddr2 
members for all of the controller structures to the value zero (0). 

Note that the addresses that appear in these members may not be the values 
specified in the system configuration file because the kernel could perform an 
address mapping operation to produce a different value. 

Device Autoconfiguration 7-59 



Figure 7-26: The physaddr and physaddr2 Members Initialized 

r--_______________ ........ I system configuration file L 
bus tcO 
controller fbO 
controller ipiO 
device disk ipl 
device disk ip2 
bus vbaO 
controller skO 
bus vbal 
controller cbO 

at nexus 
at tcO vector fbintr 
at tcO vector ipiintr 
at ipiO unit 1 
at ipiO unit 2 
at tcO slot 2 vector vbaerrors 
at vbaO rf csr Ox8000 Jvector skintr Oxc8 
at tcO s_lot:l 
at vballl csrl Ox80001000 Ivector cbintr Ox45 

---I~~---.-------1-.--, 
struct controller{ struct controller{ struct controller{ struct controller{ 

0, 0, 0, 0, 
&tcO .... struct, &tco .... stfuct, &vbaO_struct, vbai ..... struct. 
&ipHLstruct, 0, 0, 0, 
0, 0, 0, 
&fbdriver, '" &skdriver, &chdriver ""'1-""" '~"" 
0, 0, 0, 
"fo", "ipi", "cb", 
0, 0, 0, 0, 
IStc tf 

il' BtcU 
J "voa" , "vba", 

0, 0, 0, j , 

0, 0, 0, 0, 
-1, -1, 2, 1, 

ALV .. AUVE, ALV_AUVE, AlV_AUVE, ALV_ALlVE, 
0, 0, 0, 0, 
0, 0, 0, 0, 
"folntr" , "!piintr", "skintr", "cDin!r", 
0, 0, Ox8000, Ox80001000, 
0, 0, 0, 0, 
0, 0, 0, 0, 
0, 0, 0, 0, 
0, 0, Oxe8, 0)(45, 
0, 0, 0, 0, 
0, 0, 0, 0, 
0, 0, ~ Ox8xxxxxx, ~Ox8xxxxxx, 
0, 0, 0, 0, 
0[8J, 0[8J, 0[8], 0(8), 

0[8J, 0(8), 0[8], 0[8}, 

0[8] 0[8] 0[8] 0[8J 
}fbO_struct }ipiO_struct }skO_struct }cbO_struct 

7.4.17 The private, conn_priv, and rsvd Members 
The private member specifies private storage for use by this controller or 
controller type. For the example system configuration file, Figure 7-27 
shows that the autoconfiguration software initializes these members for all of 
the structures to the value zero (0). The code controlling the controller can 
use these members for any storage purpose. 

7-60 Device Autoconfiguration 



The conn pr i v member specifies private storage for use by the bus that 
this controller is connected to. Figure 7-27 shows that the autoconfiguration 
software initializes these members for all of the structures to the value zero 
(0). 

The rsvd member is reserved for future expansion of the data structure. 

Figure 7-27: The private, conn_priv, and rsvd Members 
Initialized 

system configuration file 

bus tcO at nexus 
controller fbO at tcO vector fbintr 
controller at tcO vector ipiintr 
device disk at ipiO unit 1 
device disk at unit :2 
bus at slot 2 vector vbaerrors 
controller skO at vbaO csr Ox8000 vector skintr OxeS 
bus vba1 at teO slot 1 
controller cbO at vbal esr Ox80001000 vector chintr Ox45 

struct controller{ struct controller{ struct controller{ struct controller{ 

0, 0, 0, 0, 
&tcO_struct, &tcO .... strw::t, &VIHIO_struct, \fbal .... struct, 
&iplO_stn.!ct, 0, 0, 0, 
0, &ip1_struct, 0, 0, 
&fbdriver, &ipidriver, &skdriver, &cbdriver 
0, 0, 0, 0, 
"tb" , "ip!", "sk", "cb", 
0, 0, 0, 0, 
UtcH ~ "tc" , "vba" , "vba", 
0, 0, 0, 1 , 

0, 0, 
2, 1 , 

ALVALlVE, AL V _ALIVE. ALV_AUVE, AL V _ALIVE, 
0, 0, 0, 0, 
0, 0, 0, 0, 
"fhinty" , "ipiintr" , "skintr" , "cbin!r" , 
0, 0, OdOOO, Ox80001000, 
0, 0, 0, 0, 
0, 0, 0, 0, 
0, 0, 0, 0, 
0, 0, OxeS, Ox45, 
0, 0, 0, 0, 
0, 0, 
0, 0, 
0, 0, 0, 0, 
0[8], 0[8], 0[8], 0[8], 

0[8], 0[8], 0[8], 0[8], 
0[8] 0[8] 0[8] 0[8] 

}fbO_struct }ipiO_struct }skO_struct }cbO_struct 

Device Autoconfiguration 7-61 



7.5 The device Structure 
The device structure represents an instance of a device entity. A device is 
an entity that connects to and is controlled by a controller. A device does not 
connect directly to a bus. You (or the system manager) specify a device 
entity in the system configuration file as follows: 

• For static drivers 

Specify a valid syntax for the device in the config. file file fragment 
or the system configuration file 

• For loadable drivers 

Specify a valid syntax for the device in the stanza .loadable file 
fragment. 

Chapter 11 discusses the device driver configuration models. Chapter 12 
describes the valid syntaxes for a device specification. Chapter 13 provides 
examples of how to configure device drivers. 

Table 7-3 lists the members of the device structure along with their 
associated data types. 

Table 7-3: Members of the device Structure 

Member Name Data Type 

nxt dev struct device * 
ctlr hd struct controller * 
dev_type char * 
dev name char * 
logunit int 

unit int 

ctlr name char * 
ctlr num int 

alive int 

private void * [ 8 ] 

conn_priv void * [ 8 ] 

rsvd void * [ 8 ] 

The following sections discuss all of these members except for nxt dev, 
and ctlr hd, which are presented in Section 7.2.1.6. Writing Device 
Drivers, Volume 2: Reference provides a reference (man) page-style 

7-62 Device Autoconfiguration 



description of this data structure. 

7.5.1 The dey_type and deY_name Members 
The dev type member specifies the device type (for example, disk and 
tape). The dev name member specifies the device name type. You (or the 
system manager) specify the device type by using any string and the device 
name by using any string up to a maximum of eight characters. For example, 
the string disk can indicate that the device is a disk and the string ip can 
indicate that this is an ip disk. For loadable drivers, the only supported 
strings are disk and tape. 

Figure 7-28 shows the lines in the system configuration file that the 
autoconfiguration software parses to obtain the device type and device name 
for the specified devices. It sets the dev type members of ipl struct 
and ip2 struct to the value disk. The autoconfiguration softWare also 
sets the dev _name members to the string ip. 

Device Autoconfiguration 7-63 



Figure 7-28: The dey_type and deY_name Members Initialized 

system configuration file 

nexus 
tcO vector £bintr 
tcO vector ipiintr 
ipiO unit 1 
.. unit 2 

~~:..J~~=--a~t~~:"'-1 slot 2 vector vbaerrors 

struct device { 

'----+ "disk", 
'-----+ "ip", 

1, 
1, 

at csr Ox8000 vector skintr Oxc8 
at slot 1 
at csr Ox8000l000 vector cbintr Ox45 

litruct device { 

0, 
&ipiO_struct, 
"disk", 

10...-__ """ "ip", 
2, 
2, 

7.5.2 The logunit and unit Members 
The loguni t member specifies the device logical unit number. The unit 
member specifies the device physical unit number. You (or the system 
manager) specify the logical unit number by using a valid number after the 
device name string and the physical unit number by using a valid number 
after the keyword unit. 

Figure 7-29 shows the lines in the system configuration file that the 
autoconfiguration software parses to obtain the logical unit number and the 
physical unit number for the specified devices. It sets the loguni t 
members of ipl_struct and ip2_struct to the values 1 and 2. 

The figure also shows that the autoconfiguration software sets the uni t 
members for these structures to 1 and 2. 

7-64 Device Autoconfiguration 



Figure 7-29: The logunit and unit Members Initialized 

bus at nexus 
controller at tcO 
controller ip' at tcO 
device disk i 1 at ipiO 
device disk i 2 i--t1!r't:----.ipiO 
bus vbaO at tcO 
controller skO at vbaO 
bus vbal at tcO 
controller cbO at vbal 

struct de ce { 

8dp1_s uet~ 
&ipi(Ls fuet, 
"disk", 

}ip1_struct 

-

system configuration file 

baerrors 
or skintr OxcS 

7.5.3 The ctlr_name and ctlr_num Members 
The ctlr name member specifies the name of the controller that this 
device is connected to. The ctlr num member specifies the number of the 
controller that this device is connected to. You (or the system manager) 
specify the controller name and the controller number by using the keyword 
a t followed by a character string and number that represent the controller 
name and controller number. For example, the character string ipi 
represents a controller supported by Digital. You enter these values in the 
conf ig . file file fragment or the system configuration file for static 
drivers and the stanza .loadable file fragment for loadable drivers. 

Figure 7-30 shows the values in the system configuration file that the 
autoconfiguration software parses to obtain the controller name and the 
controller number for the specified devices. It sets the ctlr name 
members of ipl_struct and ip2_struct to the string ipi because 

Device Autoconfiguration 7-65 



both devices are connected to the same controller. 

The figure also shows that the autoconfiguration software sets the 
ctlr _ num members for these structures to the value zero (0). 

Figure 7-30: The ctlr_name and ctlr_num Members Initialized 

system configuration file 

bus tcO at nexus 
controller fbO at tcO vector fbintr 
controller ipiO -=:a.::.t_r-t.:;:.;c=-O~ vector ipiintr 
device disk ipl at . 0 unit 1 
device disk ip2 at . 0 unit 2 
bus vbaO at 0 slot 2 vector vbaerrors 
controller skO at 0 csr Ox8000 vector skintr Oxc8 
bus vbal at 0 slot 1 
controller cbO at csr Ox80001000 vector cbintr Ox45 

struct device { 

"disk", 

1, 
1, 
"ipi", 4---1 

0,4---..... 
ALV __ AUVE, 

}ip1_struct 

-

7.5.4 The alive Member 

struct device { 

0, 

"iI''', 
2, 
2, 

I-------."ipi", 
1000-------.. 0, 

ALV_AUVE, 

The al i ve member specifies a flag word to indicate the current status of the 
device. Figure 7-31 shows that the autoconfiguration software sets the 
alive member for both of the example device structures to the bit 
ALV ALIVE. The autoconfiguration software obtains this and the other 
alivebits in the file /usr/sys/include/io/common/devdriver.h. 

7-66 Device Autoconfiguration 



Figure 7-31: The alive Member Initialized 

devdriver.h 

ALV FREE 

ALV ALIVE 1-------. 
ALV_PRES 

ALV LOADABLE 

struct device { 

"disk", 

1, 
1, 
"ip!", 
0, 

!.---+ ALV _ALIVE, 

}ip1_struct 

struct device { 

0, 
&ipiO_ .. struct, 
"disk", 

2, 
2, 

0, 
!.---+ ALV _ALIVE, 

7.5.5 The private, conn_priv, and rsvd Members 
The pr iva te member specifies private storage for use by this device or 
device class. The conn priv member specifies private storage for use by 
the controller that this device is connected to. 

The rsvd member is reserved for future expansion of the data structure. For 
the example system configuration file, Figure 7-32 shows that the 
autoconfiguration· software initializes these members for all of the structures 
to the value zero (0). The code controlling the device can use these members 
for any storage purposes. 

Device Autoconfiguration 7-67 



Figure 7-32: The private, conn_priv, rsvd Members Initialized 

bus tcO at 
controller :tbO at 
controller at 
device disk at 
device disk at 
bus at 
controller skO at 
bus vba1 at 
controller cbO at 

struct device { 

!lip", 
1, 
1, 

0, 
AlV_AlIVE, 
0[8], 
0[8], 
0[8] 

}ip1_struct 

nexus 
tcO 
tcO 
ipiO 

vbaO 
tcO 
vbal 

7.6 The driver Structure 

vector fbintr 
vector ipiintr 
unit 1 
unit :2 
slot :2 vector vbaerrors 
csr OxSOOO vector skintr OxcS 
slot 1 
csr OxSOOOlOOO vector cbintr Ox45 

struct device { 

0, 

2, 
2, 

0, 
AlV_AlIVE, 
0[8], 
0[8], 
0[8] 

}ip2_struct 

The dr i ver structure defines driver entry points and other driver-specific 
information. You declare and initialize an instance of this structure in the 
device driver. The bus configuration code uses the entry points defined in 
this structure during system configuration. The bus configuration code fills 
in the dev list and ctlr list arrays. These arrays (members of the 
device and controller structures) are used by the driver interfaces to 
get the structures for specific devices or controllers. 

Table 7-4 lists the members of the driver structure along with their 
associated data types. 

7-68 Device Autoconfiguration 



Table 7-4: Members of the driver Structure 

Member Name 

probe 

slave 

cattach 

dattach 

go 

addr list 

dev name 

dev list 

ctlr name 

ctlr list 

xclu 

addrl size 

addrl_atype 

addr2 size 

addr2_atype 

ctlr unattach 

dev unattach 

Data Type 

int (*probe) ( ) 

int (*slave)() 

int (*cattach) ( ) 

int (*dattach)() 

int (*gO) ( ) 

caddr t * 

char * 

struct device ** 

char * 

struct controller ** 

short 

int 

int 

int 

int 

int (*ctlr_unattach)() 

int (*dev_unattach)() 

The following sections discuss all of these members. Writing Device 
Drivers, Volume 2: Reference provides a reference (man) page-style 
description of this data structure. 

7.6.1 The probe, slave, cattach, dattach, and go Members 
The probe member specifies a pointer to the driver's probe interface, 
which is called to verify that the controller exists. The slave member 
specifies a pointer to the driver's slave interface, which is called once for 
each device connected to the controller. 

The cattach member specifies a pointer to the driver's cattach 
interface, which is called to allow controller-specific initialization. This 
pointer can be set to NULL. The dattach member specifies a pointer to 
the driver's dattach interface, which is called once for each slave call 
that returns success. The da t tach interface is used for device-specific 
initialization. This pointer can be set to NULL. 

Device Autoconfiguration 7-69 



The go member specifies a pointer to the driver's go interface, which is not 
currently used. Figure 7-33 shows that the driver writer initializes these 
members to the values contained in the cbdr i ver structure. This data 
structure appears in cb. c, the source file for the / dev / cb device driver. 

Figure 7-33: The probe, slave, cattach, dattach, and go Members 
Initialized 

devdriver.h cb.c 

struct driver { struct driver cbdriver { 

}; 

int (*probe) ( ); ... ---------.. cbprobe, 

int (*slave) ( );.. • 0, 

int (*cattach) ( ); .. • cbattach, 

int (*dattach) ( ); .. • 0, 

int (*go) ( );.. • 0, 

caddr_t *addr_list; 

char *dev_name; 

struct device**dev_list; 

char *ctlr_name; 
struct controller **ctlr _list; 

short xclu; 

int addr1_size; 

int addr1_atype; 

int addr2_size; 

int addr2_atype; 

int (*ctlr_unattach) ( ); 

int (*dev_unattach) ( ); 

}; 

0, 

0, 

0, 
liebl!, 

cbinfo, 

0, 

0, 

0, 

0, 

0, 

cb_ctlr _unattach, 

o 

7.6.2 The addr_list Member 
The addr list member specifies a list of optional CSR addresses. Figure 
7-34 shows that the driver writer initializes this member to the value zero (0) 
because this entry is not used for TURBOchannel device drivers. 

7-70 Device Autoconfiguration 



Figure 7-34: The addr_list Member Initialized 

devdriver.h cb.c 

struct driver { struct driver cbdriver { 

}; 

int (*probe) ( ); cbprobe, 

int (*slave) ( ); 0, 

int (*cattach) ( ); cbattach, 
int (*dattach) ( ); 0, 

int (*go) ( ); 0, 

caddr_t *addr_list; ..... ----------~ 0, 

char *dev_name; 0, 

struct device**dev_list; 0, 

char *ctlr _name; 
struct controller **ctlr _list; 

short xclu; 

int addr1_size; 

int addr1_atype; 

int addr2_size; 

int addr2_atype; 

int (*ctlr_unattach) ( ); 

int (*dev_unattach) ( ); 
}; 

cbinfo, 

0, 

0, 

0, 

0, 

0, 

cb_ctlr _unattach, 

° 

7.6.3 The dey _name and dey _list Members 
The dev name member specifies the name of the device connected to this 
controller. The dev 1 i s t member specifies an array of pointers to device 
structures currently connected to this controller. This member is indexed 
through the loguni t member of the device structure associated with this 
device. Figure 7-35 shows that the driver writer initializes these members to 
the value zero (0), which indicates that there is no device connected to the 
controller and that there is no array of pointers to device structures. 

Device Autoconfiguration 7-71 



Figure 7-35: The deY_name and dev_list Members Initialized 

devdriver.h cb.c 

struct driver { struct driver cbdriver { 

int (*probe) ( ); cbprobe, 

int (*slave) ( ); 0, 

int (*cattach) ( ); cbattach, 

int (*dattach) ( ); 0, 

int (*90 ) ( ); 0, 

caddct *addr_list; 0, 

char *dev_name; •• -------.~ 0, 

~ struct device**dev_list; •• ------+ 
char *ctlr_name; 
struct controller **ctlr_list; 

short xclu; 

int addr1_size; 

int addr1_atype; 

int addr2_size; 

int addr2_atype; 

int (*ctlr_unattach) ( ); 

int (*dev_unattach) ( ); 

}; }; 

0, 
liebl!, 

cbinfo, 

0, 

0, 

0, 

0, 

0, 

cb_ctlr _unattach, 

° 

7.6.4 The ctlr_name and ctlr_list Members 
The ctlr name member specifies the controller name. The ctlr list 
member specifies an array of pointers to controller structures. This 
member is used when mUltiple controllers are controlled by a single device 
driver. This member is indexed through the ctlr num member of the 
controller structure associated with this device:- Figure 7-36 shows that 
the driver writer initializes these members to the values cb and cbinfo. 

7-72 Device Autoconfiguration 



Figure 7-36: The ctlr_name and ctlr_list Members Initialized 

devdriver.h cb.c 

struct driver { struct driver cbdriver { 

int (*probe) ( ); cbprobe, 

int (*slave) ( ); 0, 

int (*cattach) ( ); cbattach, 
int (*dattach) ( ); 0, 

int (*go) ( ); 0, 

caddct *addr_list; 0, 

char *dev_name; 0, 

struct device**dev_list; 0, 

char *ctlr_name; .~-----... "cb", 
struct controller **ctlr_list; .~-----... cbinfo, 

short xclu; 0, 

int addr1_size; 0, 

int addr1_atype; 0, 

int addr2_size; 0, 

int addr2_atype; 0, 

int (*ctlr_unattach) ( ); cb_ctlr_unattach, 

int (*dev_unattach) ( ); ° 
}; }; 

7.6.5 The xclu Member 
The xclu member specifies a field that is not currently used. Figure 7-37 
shows that the driver writer initializes this member to the value zero (0). 

Device Autoconfiguration 7-73 



Figure 7-37: The xclu Member Initialized 

devdriver.h cb.c 

struct driver { 

int (*probe) ( ); 

struct driver cbdriver { 

cbprobe, 

int (*slave) ( ); 

int (*cattach) ( ); 
int (*dattach) ( ); 

int (*go) ( ); 

caddr_t *addclist; 

char *dev_name; 

struct device**dev_list; 

char *ctlr_name; 

0, 

cbattach, 

0, 

0, 

0, 

0, 

0, 

struct controller **ctlr _list; cbinfo, 
short xclu; 44111-------~~ 0, 

}; 

int addr1_size; 

int addr1_atype; 

int addr2_size; 

int addr2_atype; 

int (*ctlcunattach) ( ); 

int (*dev_unattach) ( ); 
}; 

0, 

0, 

0, 

0, 

cb_ctlr_unattach, 

° 

7.6.6 The addr1_size, addr1_atype, addr2_size, and addr2_atype 
Members 

The addrl size member specifies the size (in bytes) of the first control 
status register (CSR) area. This area is usually the control status register of 
the device. Only drivers operating on the VMEbus use this member. The 
addr 1 at ype member specifies the address space and data size of the first 
CSR area. Only drivers operating on the VMEbus use this member. 

The addr2 size member specifies the size (in bytes) of the second CSR 
area. This area is usually the data area that the system uses with devices that 
have two separate CSR areas. Only drivers operating on the VMEbus use 
this member. The addr2 atype member specifies the address space and 
data size of the second CSR area. Only drivers operating on the VMEbus 
use this member. Figure 7-38 shows that the driver writer initializes these 
members to the value zero (0) to indicate that they are not used by the 

7-74 Device Autoconfiguration 



/dev/cb driver. 

Figure 7-38: The addr1_size, addr1_atype, addr2_size, and 
addr2_atype Members Initialized 

devdriver.h cb.c 

struct driver { 

int (*probe) ( ); 

struct driver cbdriver { 

cbprobe, 

int (*slave) ( ); 0, 

int (*cattach) ( ); cbattach, 
int (*dattach) ( ); 

int (*90) ( ); 

caddct *addr_list; 

char *dev_name; 

struct device**dev_list; 

char *ctlr_name; 

0, 

0, 

0, 

0, 

0, 

"cb", 

struct controller **ctlr_list; cbinfo, 

short xclu; 0, 

int addr1_size; •• -------+. 0, 

int addr1_atype; • • 0, 

int addr2_size;. • 0, 

int addr2_atype; .. • 0, 

int (*ctlr_unattach) ( ); cb_ctlr_unattach, 

int (*dev_unattach) ( ); ° 
}; }; 

7.6.7 The ctlr_unattach and dev_unattach Members 
The ctlr unattach member specifies a pointer to the controller's 
unattach interface. Loadable driver use the controller unattach interface. The 
dev unattach member specifies a pointer to the device's unattach 
interface. Loadable driver use the device unattach interface. Figure 7-39 
shows that the driver writer initializes the ctlr unattach member to the 
interface cb ctlr unattach. The driver wnier initializes the 
dev unattach member to the value zero (0) to indicate that there is no 
device unattach interface. 

Device Autoconfiguration 7-75 



Figure 7-39: The ctlr_unattach and dev_unattach Members 
Initialized 

devdriver.h cb.c 

struct driver { 

int (*probe) ( ); 

struct driver cbdriver { 

cbprobe, 

int (*slave) ( ); 

int (*cattach) ( ); 
int (*dattach) ( ); 

int (*go) ( ); 

caddr_t *addclist; 

char *dev_name; 

struct device**dev _list; 

char *ctlr_name; 

0, 

cbattach, 

0, 

0, 

0, 

0, 

0, 

struct controller **ctlr _list; cbinfo, 

short xclu; 0, 

int addr1_size; 0, 

int addr1_atype; 0, 

int addr2_size; 0, 

int addr2_atype; 0, 

int (*ctlr_unattach) (); .. 411-----.. ~ cb_ctlr_unattach, 

int (*dev_unattach) ( ); .. ~ ° 
}; }; 

7.7 The port Structure 
The port structure contains information about a port. 

Table 7-5 lists the member of the port structure along with its associated 
data type. 

Table 7-5: The Member of the port Structure 

Member Name Data Type 

conf int (*conf) () 

7-76 Device Autoconfiguration 



The conf member specifies a pointer to the configuration interface for this 
port. 

7.8 The ihandler _t Structure 
The ihandler t structure contains information associated with device 
driver interrupt handling. Loadable drivers use this data structure. This 
model of interrupt dispatching uses the bus as the means of interrupt 
dispatching for all drivers. For this reason, all of the information needed to 
register an interrupt is considered to be bus-specific. As a result, no attempt 
is made to represent all the possible permutations within the ihandler t 
data structure. -

Table 7-6 lists the members of the ihandler t structure along with their 
associated data types. -

Table 7-6: Members of the ihandler_t Structure 

Member Name 

ih id 

ih bus 

ih bus info 

Data Type 

ihandler id t 

struct bus * 
char * 

The ih_ id member specifies a unique ID. 

The ih bus member specifies a pointer to the bus structure associated with 
this devIce driver. This member is needed because the interrupt dispatching 
methodology requires that the bus be responsible for dispatching interrupts in 
a bus-specific manner. 

The ih bus info member specifies bus registration information. Each 
bus type could have different mechanisms for registering interrupt handlers 
on that bus. Thus, the ih bus info member contains the bus-specific 
information needed to regISter the interrupt handlers. 

For example, on a TURBOchannel bus, the bus-specific information might 
consist of: 

• An interrupt service interface 

• A parameter passed to the interrupt service interface 

• A slot number 

Device driver writers pass the ihandler t structure to the 
handler_add interface to specify how interrupt handlers are to be 

Device Autoconfiguration 7-77 



registered with the bus-specific interrupt dispatcher. This task is usually 
done within the driver's probe interface. The following code fragment 
shows how the / dev / cb driver uses the ihandler t data structure: 

ihandler t handler; ~ 

struct tc intr info info; ~ 

handler.ih bus ctlr->bus_hd; ~ 

handler.ih bus info = (char *)&info; ~ 

[j] Declares an array of IDs used to deregister the interrupt handlers. The 
NCB constant represents the maximum number of CB controllers. This 
number sizes the array of IDs. Thus, there is one ID per CB device. 

Section 10.5 contains the declaration of this array of IDs. 

121 Declares an ihandler t data structure called handler to contain 
information associated wIth the / dev / cb device driver interrupt 
handling. 

~ Declares a tc intr info data structure called info. Note that the 
ih bus infu member is set to the address of this structure. 

~ Specifies the bus that this controller is attached to. The bu s hd member 
of the controller structure contains a pointer to the bus structure 
that this controller is connected to. After the initialization, the ih bus 
member of the ihandler t structure contains the pointer to the bus 
structure associated with the / dev / cb device driver. 

~ Sets the ih bus info member of the handler data structure to the 
address of the buS=-specific information structure, info. This setting is 
necessary because registration of the interrupt handlers will indirectly call 
bus-specific interrupt registration interfaces. 

!§] Calls the .L "handler_add" interface and saves its return value for use 
later by the handler_del interface. The handler add interface 

7-78 Device Autoconfiguration 



takes one argument: a pointer to an ihandler t data structure, which 
in the example is the initialized handler structure. Section 10.8.1 
provides additional information on the use of the ihandler _ t structure 
with the handler interfaces. 

7.9 The tc_intr_info Structure 
The tc intr info structure contains interrupt handler information for 
device ccmtrollers connected to the TURBOchannel bus. Loadable drivers 
initialize the members of the tc intr info structure, usually in the 
driver's probe interface. - -

Table 7-7 lists the members of the tc intr info structure with their 
associated data types. 

Table 7-7: Members of the tc_intr_info Structure 

Member Name Data Type 

configuration_ st caddr t 

intr int (*intr)() 

param caddr t 

config_type unsigned int 

The configuration st member specifies a pointer to the bus or 
controller structure for which an associated interrupt handler is written. 

The intr member specifies a pointer to the interrupt handler for the 
specified bus or controller. 

The pararn member specifies a member whose contents are passed to the 
interrupt service interface. 

The conf ig type member specifies the driver type. You can set this 
member to one of the following constants defined in 
/usr / sys/ include/ io/dec/tc/tc. h: TC _ CTLR (controller) 
TC _ ADPT (bus), TC _DEV (device). 

Device Autoconfiguration 7-79 



The following code fragment shows how the / dev / cb driver uses the 
tc intr info data structure: 

struct tc intr info info; ill 

info. configuration st = (caddr t)ctlr; ~ 
info.config type =-TC CTLR; ~ -
info.intr =-cbintr; @f 
info.param = (caddr_t)unit; ~ 

!II Declares a tc intr info data structure called info. Note that the 
ih bus infu member was set to the address of this structure in the 
code fragment presented in Section 7.8. 

121 Sets the configuration st member of the info data structure to 
the pointer to the controller structure associated with this CB device. 
This controller structure is the one for which an associated interrupt 
will be written. 

@] Sets the config type member of the info data structure to the 
constant TC CTLR, which identifies the / dev / cb driver type as a 
TURBOchannel controller. 

@ Sets the intr member of the info data structure to cbintr, the 
/ dev / cb device driver's interrupt service interface (lSI). 

§] Sets the param member of the info data structure to the controller 
number for the controller structure associated with this CB device. 
Once the driver is operational and interrupts are generated, the cbintr 
interface is called with the controller number, which specifies which 
instance of the controller the interrupt is associated with. Section 10.8.1 
provides additional information on the use of the tc intr info 
structure members. - -

7.10 The handler_key Structure 
The handler key structure contains handler-specific information. This 
structure is allocated by the handler add interface, which device drivers 
call to register the driver's interrupt service interfaces. This structure 
contains all of the information needed for the bus-specific implementations of 
iliehandler del,handler disable,andhandler enable 
interfaces. Table 7-8 lists the members of the handler key structure 
along with their associated data types. -

7-80 Device Autoconfiguration 



Table 7-8: Members of the handler_key Structure 

Member Name 

next 

prev 

bus 

bus id t 

state 

key 

lock 

Data Type 

struct handler_key * 
struct handler_key * 
struct bus * 
ihandler id t 

unsigned int 

ihandler id t 

lock data t 

The next member specifies a pointer to the next handler entry. 

The prev member specifies a pointer to the previous handler entry. 

The bus member specifies a pointer to a bus structure. The bus member is 
used to find pointers to the bus-specific implementations of handler_del, 
handler_disable, and handler_enable. 

The bus id t member specifies a bus-specific unique key. The 
bus id-t member allows the bus-specific implementation to identify 
which particular interrupt to act upon. 

The state member specifies state information. You can set this member to 
the constant IH STATE ENABLED. 

The key member specifies a unique key for this entry. 

The lock member specifies the symmetric multiprocessor (SMP) lock. 

The device driver writer does not initialize any of the members of 
handler_key. 

7.11 The device_confi9_t Structure 
The device config t structure contains device configuration 
information and is the pnmary mechanism of communication between 
cfgmgr (the configuration manager daemon) and the device driver's 
conf igure interface. 

Table 7-9 lists the members of the device conf ig t structure with their 
associated data types. --

Device Autoconfiguration 7-81 



Table 7-9: Members of the device_confi9_t Structure 

Member Name Data Type 

dc version uint 

dc errcode uint 

dC_bmajnum long 

dc_cmajnum long 

dc_begunit long 

dc numunit long 

dc_dsflags long 

dc ihflags long -
dc ihlevel long 

config_name char 

The dc vers ion member specifies the version of the kernel interfaces that 
you compiled the driver with. This member is an output field. This member 
is examined by cfgmgr upon driver loading to ensure compatibility. You 
can set this member to the constant DRIVER BUILD LEVEL, which is 
defined in /usr / sys/ include/ sys/ sysconfig. h. 

The dc errcode member specifies additional error information. This 
memberis an output field. The driver's configure interface can set this 
member to a specific error code indicating exactly why the configuration 
operation failed. Currently, this member is not used. 

The dc bmaj num member specifies the preferred major number for the 
block device. This member is both an input and an output field. Upon entry 
to the driver's conf igure interface, this member is set to specify the 
desired major number in the bdevsw table. The driver's configure 
interface passes the major number to bdevsw add, which registers the 
device driver's entry points. As an output field, dc bmajnum specifies the 
major number that was actually assigned to the driver. 

The dc cmajnum member specifies the preferred major number for the 
character device. This member is both an input and an output field. Upon 
entry to the driver's configure interface, this member is set to specify the 
desired major number in the cdevsw table. The driver's configure 
interface passes the major number to cdevsw add, which registers the 
device driver's entry points. -

As an output field, dc cmajnum specifies the major number that was 
actually assigned to the driver. The dc beguni t member specifies the first 
minor device number in the range. This member is an output field. The 

7-82 Device Autoconfiguration 



device driver's configure interface sets this member to be the first minor 
number used to create the device special files for the driver. Currently, the 
driver method portion of cfgmgr does not examine this member because the 
driver's minor number requirements are obtained from the entry in the 
stanza .loadable file fragment. 

The dc numuni t member specifies the number of minor device numbers. 
This member is an output field. The device driver's conf igure interface 
sets this member to the number of minor numbers used to represent this 
dri ver. Currently, the driver method portion of c f gmg r does not examine 
this member because the driver's minor number requirements are obtained 
from the entry in the stanza. loadable file fragment. 

The dc dsflags member specifies device switch configuration flags. This 
memberis an input field that consists of a set of bit masks used to specify 
driver attributes. The device driver configuration method portion of cfgmgr 
can set this member to IH DRV DYNAMIC or IH DRV SAMEMAJOR. The 
IH DRV DYNAMIC bit mask specifies that the driver has been dynamically 
loaded. The IH DRV SAMEMAJOR bit mask specifies that the driver needs 
to use the same majornumber in both the bdevsw and cdevsw tables. In 
this case, to obtain its major numbers the driver's conf igure interface 
should call the dualdevsw add interface. 

The dc _ ihflags member specifies a field for future use. 

The dc _ ihlevel member specifies a field for future use. 

The config name member specifies the driver's configuration name. This 
member is an Input field. The device driver configuration method portion of 
cfgmgr sets this member to the string name specified by the 
Module Config Name field in the driver's stanza entry in the 
stanza :-loadable file fragment. The driver's conf igure interface 
passes this name to the ldbl stanza resolver and 
ldbl ctlr configure interfaces tolocate the driver's configuration 
information. The maximum name length is 80 bytes. 

The following code fragment shows how the / dev / cb driver uses the 
device _ conf ig_ t data structure: 

outdata->dc cmajnum = major(cb_devno); 
outdata->dc-begunit 0; 
outdata->dc-numunit num_cb; 

Device Autoconfiguration 7-83 



outdata->dc version DRIVER BUILD LEVEL; 
outdata->dc-dsflags indata=>dc_dsflags; 
outdata->dc=bmajnum = NODEV; 
outdata->dc errcode 0; 
outdata->dc-ihflags = 0; 
outdata->dc-ihlevel = 0; 

Section 10.9.2 provides additional information on these members as they are 
initialized by the / dev / cb device driver. 

7-84 Device Autoconfiguration 



Data Structures Used in 1/0 Operations 8 

Data structures are the mechanism used to pass information between the DEC 
OSFIl kernel and device driver interfaces. This chapter describes the data 
structures used in input/output (I/O) operations. Specifically, the chapter 
discusses: 

• The buf structure 

• The device switch tables 

• The uio structure 

• Buffer cache management 

• The interrupt code 

• Bus resource management 

8.1 The buf Structure 
The buf structure describes arbitrary I/O, but is usually associated with 
block I/O and physio. A systemwide pool of buf structures exists for 
block I/O; however, many device drivers also include locally defined buf 
structures for use with the physio kernel interface. The buf structure does 
not contain data. Instead, it contains information about where the data 
resides and information about the types of I/O operations. You need to be 
familiar with the following topics associated with the buf structure: 

• U sing the systemwide pool of bu f structures 

Declaring locally defined bu f structures 

• Understanding buf structure members used by device drivers 

8.1.1 Using the Systemwide Pool of but Structures 
The following code fragment shows how the / dev / cb driver discussed in 
Chapter lOuses the systemwide pool of buf structures with the 



cbminphys interface: 

cbminphys(bp) 
register struct buf *bp; ill 
{ 

[1] Declares a pointer to a buf structure called bp. The cbminphys 
interface references the systemwide pool of buf structures to perform a 
variety of tasks, including checking the size of the requested transfer. 

8.1.2 Declaring Locally Defined buf Structures 
The following code fragment shows how the / dev / cb driver discussed in 
Chapter 10 declares an array of locally defined buf structures and references 
it with the cbattach interface: 

#define NCB TC_OPTION_SLOTS ill 

struct buf cbbuf[NCB]; ~ 

cbattach(ctlr) 
struct controller *ctlr; ~ 
{ 
struct cb unit *cb; ~ 

cb->cbbuf = &cbbuf[ctlr->ctlr_num]; ~ 

[1] The NCB constant is used to allocate the buf structures associated with 
the CB devices that currently exist on the system. Section 10.3 shows 
that this constant is defined in the Include Files Section of the / dev / cb 
device driver. 

121 Declares an array of buf structures called cbbuf. The NCB constant is 
used to allocate the buf structures for the maximum number of CB 
devices that currently exist on the system. Thus, there is one buf 
structure per CB device. Section 10.6 shows that this array is declared in 
the Local Structure and Variable Definitions Section of the / dev / cb 
driver. 

[3J Declares a pointer to a controller structure associated with a specific 
CB device. The ctlr num member of this pointer is used as an index 
to obtain a specific CB device's associated buf structure. 

8-2 Data Structures Used in I/O Operations 



~ Declares a pointer to the cb unit data structure associated with this CB 
device. Section 10.6 shows the declaration of this data structure. It 
contains members that store such information as whether the CB device is 
opened and the CB device's TC slot number. It also declares a pointer to 
the cbbuf structure. 

[§] Sets the buffer structure address (the cbbuf member of this CB device's 
cb unit structure) to the address of this CB device's buf structure. 
The ctlr num member is used as an index into the array of buf 
structures associated with this CB device. 

8.1.3 Understanding buf Structure Members Used by Device 
Drivers 

Table 8-1 lists those members of the buf structure with their associated data 
types that device drivers might reference. 

Table 8-1: Members of the buf Structure 

Member Name Data Type 

b_flags int 

b forw struct buf * 

b back struct buf * 

av forw struct buf * 

av back struct buf * 

b bcount int 

b error short 

b dev dev t 

b un.b addr caddr t 

b Iblkno daddr t 

b blkno daddr t 

b resid int 

b iodone void (*b_iodone) ( ) 

b_proc struct proc * 

Writing Device Drivers, Volume 2: Reference provides a reference (man) 
page-style description of this data structure. The following sections discuss 
all of these members. 

Data Structures Used in 1/0 Operations 8-3 



8.1.3.1 The b_flags Member 

The b,_ flags member specifies binary status flags. These flags indicate 
how a request is to be handled and the current status of the request. These 
status flags are defined in buf • h and get set by various parts of the kernel. 
The flags supply the device driver with information about the I/O operation. 

The device driver can also send information back to the kernel by setting 
b flags. Table 8-2 lists the binary status flags applicable to device 
drIvers. 

Table 8-2: Binary Status Flags Applicable to Device Drivers 

Flag 

BREAD 

B DONE 

B ERROR 

B BUSY 

B PHYS 

B WANTED 

Meaning 

This flag is set if the operation is read and 
cleared if the operation is write. 

This flag is cleared when a request is passed to 
a driver strategy interface. The device 
driver writer must call iodone to mark a 
buffer as completed. 

This flag specifies that an error occurred on this 
data transfer. Device drivers set this flag if an 
error occurs. 

This flag indicates that the buffer is in use. 

This flag indicates that the associated data is in 
user address space. 

If this flag is set, it indicates that some process 
is waiting for this buffer. The device driver 
should issue a call to the wakeup interface 
when the buffer is freed by the current process. 
The driver passes the address of the buffer as an 
argument to wakeup. 

8.1.3.2 The b_forw and b_back Members 

The b forw and b back members specify a file system buffer hash chain. 
When the kernel performs an I/O operation on a buffer, the buf structures 
are not on any list. Device driver writers sometimes use these members to 
link buf structures to lists. 

8-4 Data Structures Used in I/O Operations 



8.1.3.3 The av _forw and av _back Members 

The av forw and av back members specify the position on the free list if 
the b flags memberls not set to B BUSY. The kernel initializes these 
members. However, when the driver gets use of the buf structure, these 
members are available for local use by the device driver. 

8.1.3.4 The b_bcount and b_error Members 

The b bcount member specifies the size of the requested transfer (in 
bytes):- This member is initialized by the kernel as the result of an 110 
request. The driver writer references this member to determine the size of 
the 110 request. This member is often used in the driver's strategy 
interface. 

The b error member specifies that an error occurred on this data transfer. 
This member is set to an error code if the b flags member bit was set. 
The driver writer sets this member with the errors defined in the file 
errno.h. 

8.1.3.5 The b_dev Member 

The b dev member specifies the special device to which the transfer is 
directed. The data type for this member is dev t, which maps to major and 
minor construction macros. The device driver Writer should not access the 
dev t bits directly. Instead, the driver writer should use the major and 
minor interfaces to obtain the major and minor numbers for a special 
device. These numbers are specified by the driver writer in the 
stanza. static file fragment for static drivers and the 
stanza. loadable file fragment for loadable drivers. Chapter 11 
describes these file fragments. 

8.1.3.6 The b_un.b_addr Member 

The b un. b addr member specifies the address at which to pull or push 
the data. This member is set by the kernel and is the main memory address 
where the 110 occurs. Driver writers use this member when their drivers 
need to perform DMA operations. It tells the driver where the data comes 
from and goes to in memory. 

8.1.3.7 The b_lblkno and b_blkno Members 

The b lblkno member specifies the logical block number. The b blkno 
member specifies the block number on the partition of a disk or on the file 
system. The b blkno member is set by the kernel and it indicates the 
starting block number on the device where the 110 operation is to begin. 
This member is used only with block devices. For disk devices, this member 

Data Structures Used in I/O Operations 8-5 



is the block number relative to the start of the partition. 

8.1.3.8 The b_resid and b_iodone Members 

The b resid member specifies (in bytes) the data not transferred because 
of some error. The b iodone member specifies the interface called by 
iodone. The device-driver calls iodone at the completion of an I/O 
operation. The driver calls the iodone interface, which calls the interface 
pointed to by the b iodone member. The driver writer does not need to 
know anything about the interface pointed to by this argument. 

8.1.3.9 The b_proc Member 

The b proc member specifies a pointer to the proc structure that 
represents the process performing the I/O. A device driver operating on the 
TURBOchannel bus might reference b proc in the tc loadmap interface 
in order to get the proper physical addresses into the map registers. 

8.2 Device Switch Tables 
Associated with each device is a unique device number consisting of a major 
number and a minor number. The major number is used as an index into one 
of two device switch tables: the cdevsw table for character devices or the 
bdevsw table for block devices. The device switch tables are located in the 
file lusrlsys/iolcommon/conf .c. 

The device switch tables have the following characteristics: 

They are arrays of structures that contain device driver entry points. 
These entry points are actually the addresses of the specific interfaces 
within the drivers. 

• They may contain stubs for device driver entry points for devices that do 
not exist on a specific machine. 

The location in the table corresponds to the device major number. 

The lusrlsys/iolcommon/conf.c text file is built into the kernel to 
initialize the bdevsw and cdevsw tables. These tables contain entries for 
all statically configured drivers. The kernel sizes these tables to include a 
number of unused entries that will be used at kernel run time to represent 
loadable drivers. Therefore, loadable device drivers are entered into the 
memory-resident versions of the bdevsw and cdevsw tables and do not 
appear in the text file lusrlsys/iolcommon/conf .c. 

The following sections describe the cdevsw and bdevsw tables. 

8-6 Data Structures Used in 110 Operations 



8.2.1 Character Device Switch Table 
The character device switch, or cdevsw, table is an array of data structures 
that contains pointers to device driver entry points for each character device 
supported by the system. In addition, the table can contain stubs for device 
driver entry points for character mode devices that do not exist or entry 
points not used by a device dri ver. 

The following shows the cdevsw structure defined in 
lusrlsys/include/sys/conf.h: 
struct cdevsw 

} ; 

int 
int 
int 
int 
int 
int 
int 
struct 
int 
int 
int 

(*d_open)(); 
(*d_close)(); 
(*d read) (); 
(*d-write)(); 
(*d::)octl) ( ) ; 
(*d_stop)(); 
(*d_reset)(); 

tty *d_ttys; 
(*d_select)(); 
( * d mmap) ( ) ; 
d_funnel; /* serial code compatibility */ 

There are two methods for adding device driver interfaces to the cdevsw 
table, depending on whether the system manager chooses to install the device 
driver dynamically or statically. Figure 8-1 shows how the device driver 
interfaces associated with the loadable version of the I dev I cb driver are 
added to the cdevsw table. As the figure shows, the driver writer declares 
and initializes a structure called cb cdevsw entry that is of type 
cdevsw. This data structure is usually declared in a section of the driver 
that contains declarations and definitions used by the loadable version of the 
driver. Section 10.7 shows that the I dev I cb driver declares and initializes 
cb cdevsw entry in the Loadable Driver Local Structure and Variable 
Definitions Section. 

Data Structures Used in I/O Operations 8-7 



Figure 8-1: Adding Entries to the cdevsw Table for Loadable 
Drivers 

cb.c 

struct cdevsw cb_cdevsw_entry={ 
cbopen, 

cdevno=cdevsw_add 
(cdevno, & cb_cdevsw_entry); 

cbclose, \ ) 
Y cbread, 

cbwrite, 
cbioctl, 
nodev, 
nodev, 
0, 
nodev, 
0, 
DEV _FUNNEL_NULL, 

}; 

In-memor cdevsw table 

struct cdevsw cdevsw[MAX_CDEVSW]= 
{ 

{ cnopen, cnclose, cnread, cnwrite, 1*0*/ 
cnioctl, nulldev, nulldev, cons, 
cnselect, cnmmap, DEV _FUNNEL_NULL }, 

{ dtiopen, dticlose, dtiread, dtiwrite, 1*25*/ 
dtiioctl, dtistop, dtireset, 0, 
dtiselect, nodev, DEV _FUNNEL_NULL }, 

{ cbopen, cbclose, cbread, cbwrite, 1*26*/ 4---1 

cbioctl, nodev, nodev, 0, 
nodev, 0, DEV _FUNNEL_NULL }, 

}; 

The figure also shows that the driver writer uses cdevsw add as the 
mechanism for adding the driver interfaces to the cdevsw table. The first 
argument to cdevsw add is the major number associated with the CB 
device. The second argument is the address of the previously initialized 
cb _ cdevsw _entry structure. 

Furthermore, the figure shows that when the loadable version of the driver is 
configured, cdevsw add locates the position in the table corresponding to 
the major number, which in this example is 26, and adds the entries from 

8-8 Data Structures Used in I/O Operations 



cb cdevsw entry. Note that the cdevsw add interface adds the 
driver's entry points into the in-memory resident cdevsw table. It does not 
change the /usr/sys/io/common/conf.c file, which is used to build 
the kernel. Thus, the driver's entry points are dynamically added to the 
cdevsw table for loadable drivers. 

The loadable version of the driver usually calls the cdevsw add interface 
in a Loadable Device Driver Section. Section 10.9.2 describes in detail the 
section of the / dev / cb driver that calls cdevsw add. 

For static drivers that follow the traditional device driver configuration 
model, the device driver interfaces are added by the device driver writer by 
manually editing the cdevsw table. For static drivers that follow the third­
party device driver configuration model, the device driver interfaces are 
added by the config program as shown in Figure 8-2. 

As the figure shows, conf ig parses the appropriate driver interface entries 
in the stanza. static file fragment, locates the appropriate major device 
number (in this case 26), and adds these entries to the table. 

The following sections discuss the members of the cdevsw structure. 

Data Structures Used in 1/0 Operations 8-9 



Figure 8-2: Adding Entries to the cdevsw Table for Static Drivers 

stanza.static 

Device_Char_Open = cbopen 
Device_ChacClose = cbclose 
Device_Char_Read = cbread 
Device_Char_Write = cbwrite 
Device_Chacloctl = cbioctl 
Device_ChacStop = nodev 
Device_Char_Reset = nodev 
Device_Chac Ttys = 0 
Device_ChacSelect = nodev 
Device_Char_Mmap = 0 
Device_Char_Funnel = DEV_FUNNEl_NUll 

conf.c 

struct cdevsw cdevsw[MAX_CDEVSW]= 
{ 

{cnopen, cnclose, cnread, cnwrite, 1*0*/ 
cnioctl, nulldev, nulldev, cons, 
cnselect, cnmmap, DEV _FUNNEL_NULL }, 

{ dtiopen, dticlose, dtiread, dtiwrite, 1*25*/ 
dtiioctl, dtistop, dtireset, 0, 
dtiselect, nodev, DEV _FUNNEL_NULL }, 

'---~{ cbopen, cbclose, cbread, cbwrite, 1*26*/ 
cbioctl, nodev, nodev, 0, 
nodev, 0, DEV _FUNNEL_NULL }, 

8.2.1.1 The d_open and d_close Members 

The d open member specifies a pointer to an entry point for the driver's 
open Interface, which opens a device. As shown in Figure 8-1 and Figure 
8-2, the d open member is initialized to cbopen for both the dynamically 
configured and statically configured / dev / cb driver. 

The cdevsw add interface is used to dynamically assign device major 
numbers to loadable character device drivers. The cdevsw add interface 
checks the d _ open member to determine if the entry is available to be 

8-10 Data Structures Used in I/O Operations 



assigned a dynamic major device number. If your device driver does not 
have an open interface, you must set this member to nulldev to tell 
cdevsw add that the entry is not available for dynamic assignment of the 
device major number. 

The d close member specifies a pointer to an entry point for the driver's 
close interface, which closes a device. As shown in Figure 8-1 and Figure 
8-2, the d close member is initialized to cbclose for the dynamically 
configuredand statically configured / dev / cb driver. 

8.2.1.2 The d_read and d_write Members 

The d read member specifies a pointer to an entry point for the driver's 
readinterface, which reads characters or raw data. As shown in Figure 8-1 
and Figure 8-2, the d read member is initialized to cbread for both the 
dynamically configured and statically configured / dev / cb driver. 

The d write member specifies a pointer to an entry point for the driver's 
wr i te interface, which writes characters or raw data. As shown in Figure 
8-1 and Figure 8-2, the d write member is initialized to cbwrite for 
both the dynamically configured and statically configured / dev / cb driver. 

8.2.1.3 The d_ioctl and d_stop Members 

The d ioctl member specifies a pointer to an entry point for the driver's 
ioctl interface, which performs special functions or I/O control. As shown 
in Figure 8-1 and Figure 8-2, the d ioctl memberis initialized to 
cbioctl for both the dynamicallyconfigured and statically configured 
/ dev / cb driver. 

The d stop member specifies a pointer to an entry point for the driver's 
stop Interface, which suspends other processing on behalf of the current 
process. The d stop member is typically used only for terminal drivers. 
As shown in Figure 8-1 and Figure 8-2, the d stop member is initialized to 
nodev for both the dynamically configured and statically configured 
/ dev / cb driver. The nodev entry calls the nodev interface, which 
returns an ENODEV (error, no such device ). You should specify nodev when 
it is not appropriate to call that interface for a particular driver. For example, 
a device driver written for a write-only printer has no need for a read 
interface. Therefore, the read entry point would contain a nodev entry. In 
this example, it is not appropriate to call a stop interface for the / dev / cb 
driver; therefore, the nodev entry is specified. 

You could also specify nulldev. The nulldev entry calls the nulldev 
interface, which returns the value zero (0). You should specify nulldev 
when it is appropriate for the interface to be called, but the driver does not 
need to perform any actions to support the interface. If the s top interface 
had no functionality for the / dev / cb device, the nulldev entry would 

Data Structures Used in 1/0 Operations 8-11 



have been specified instead of nodev. 

8.2.1.4 The d_reset and d_ttys Members 

The d reset member specifies a pointer to an entry point for the driver's 
reset interface, which stops all current work and places the device 
connected to the controller in a known, quiescent state. As shown in Figur~ 
8-1 and Figure 8-2, the d reset member is initialized to nodev for both 
the dynamically configured and statically configured / dev / cb driver. The 
nodev entry calls the nodev interface, which returns an ENODEV (error, no 
such device). You should specify nodev when it is not appropriate to call 
that interface for a particular driver. For example, a device driver written for 
a write-only printer has no need for a read interface. Therefore, the read 
entry point would contain a nodev entry. In this example, it is not 
appropriate to call a reset interface for the / dev / cb driver; therefore, the 
nodev entry is specified. 

The d ttys member specifies a pointer to driver private data. As shown in 
Figure-8-1 and Figure 8-2, the d ttys member is initialized to the value 
zero (0) for both the dynamicallyconfigured and statically configured 
/ dev / cb driver. The value zero (0) indicates that the / dev / cb device 
does not support the d ttys member. A possible value for this member is 
an array of tty data structures. A tty data structure is associated with 
terminal device drivers, which are not discussed in this book. 

8.2.1.5 The d_select and d_mmap Members 

The d select member specifies a pointer to an entry point for the driver's 
select interface, which determines if a call to a read or write interface will 
block. As shown in Figure 8-1 and Figure 8-2, the d select member is 
initialized to nodev for both the dynamically configured and statically 
configured / dev / cb driver. The nodev entry calls the nodev interface, 
which returns an ENODEV (error, no such device). You should specify 
nodev when it is not appropriate to call that interface for a particular driver. 
For example, a device driver written for a write-only printer has no need for a 
read interface. Therefore, the read entry point would contain a nodev 
entry. In this example, it is not appropriate to call a select interface for 
the / dev / cb driver; therefore, the nodev entry is specified. 

The d mmap member specifies a pointer to an entry point for the driver's 
mmap Interface, which maps kernel memory to user address space. As 
shown in Figure 8-1 and Figure 8-2, the d mmap member is initialized to the 
value zero (0) for both the dynamically configured and statically configured 
/ dev / cb driver. 

8-12 Data Structures Used in 1/0 Operations 



8.2.1.6 The d_funnel Member 

The d funnel member schedules a device driver onto a CPU in a 
multiprocessor configuration. Because multiprocessor configurations are not 
supported on DEC OSFIl, set this member to the constant 
DEV FUNNEL NULL. As shown in Figure 8-1 and Figure 8-2, the 
d funnel member is initialized to DEV FUNNEL NULL for both the 
dynamically configured and statically configured / dev / cb device driver. 

8.2.2 Block Device Switch Table 
The block device switch, or bdevsw, table is an array of data structures that 
contains pointers to device driver entry points for each block mode device 
supported by the system. In addition, the table can contain stubs for device 
driver entry points for block mode devices that do not exist or entry points 
not used by a device driver. 

The following shows the bdevsw structure defined in 
/usr/sys/include/sys/conf.h: 

struct bdevsw 
{ 

} ; 

int 
int 
int 
int 
int 
int 
int 
int 

( * d open) ( ) ; 
(*d:=close)(); 
(*d strategy)(); 
(*d-dump) (); 
(*d:=psize)(); 
d flags; 
(*d ioctl)(); 
d_funnel; /* serial code compatibility */ 

The way the bdevsw table gets filled in differs, depending on whether the 
system manager configures the loadable or static version of the driver. 
Before discussing the members of the bdevsw data structure, it is useful to 
describe how entries are added to the bdevsw table for loadable and static 
drivers. 

The method for adding device driver interfaces to the bdevsw table differs, 
depending on whether the system manager chooses to install the device 
driver dynamically or statically. Figure 8-3 shows how the device driver 
interfaces are added to the bdevsw table when the system manager 
dynamically configures the dkip driver. As the figure shows. the driver 
writer declares and initializes a structure called dkip bdevsw entry that 
is of type bdevsw. This data structure is usually declared in a section of the 
driver that contains declarations and definitions used by the loadable version 
of the driver. 

The figure also shows that the driver writer uses bdevsw add as the 
mechanism for adding the driver interfaces to the bdevsw table. The first 
argument to bdevsw _add is the major number associated with the dkip 

Data Structures Used in I/O Operations 8-13 



device. The second argument is the address of the previously initialized 
dkip bdevsw entry structure. Furthermore, the figure shows that when 
the loadable verSIon of the driver is configured, bdevsw add locates the 
major device number in the table, which in this example Is zero (0), and adds 
the entries from dkip bdevsw entry. Note that the bdevsw add 
interface adds the driver's entry points into the in-memory residentbdevsw 
table. It does not change the lusrlsys/io/comrnon/conf.c file, which 
is used to build the kernel. Thus, the driver's entry points are dynamically 
added to the bdevsw table for loadable drivers. 

Figure 8-3: Adding Entries to the bdevsw Table for Loadable 
Drivers 

dkip.c 

struct bdevsw dkip_bdevsw_entry 
dkipopen, 

bdevno = bdevsw_add 
(bdevno, & dkip_bdevsw_entry) 

nulldev, 
dkipstrategy, 
dkipdump, 
dkipsize, 
0, 
nodev, 
DEV _FUNNEL_NULL 
}, 

In-memory bdevsw table 

struct bdevsw bdevsw[MAX_BDEVSW] = 
{ 

l ) 
Y 

{dkipopen, nulldev, dkipstrategy, dkipdump, 1*0*/4------' 
dkipsize, 0, nodev, DEV _FUNNEL_NULL}, 

{tmscpopen, tmscpclose, tmscpstrategy, nodev, 1*15*/ 
0, B_TAPE, nodev, DEV_FUNNEL_NULL}, 

}; 

8-14 Data Structures Used in I/O Operations 



For static drivers that follow the traditional device driver configuration 
model, the device driver interfaces are added by the device driver writer by 
manually editing the bdevsw table. For static drivers that follow the third­
party device driver configuration model, the device driver interfaces are 
added by the config program as shown in Figure 8-4. 

Figure 8-4: Adding Entries to the bdevsw Table for Static 
Drivers 

stanza.static 

Device_Block_Open = 
Device_Block_Close = 
Device_Block_Strategy = 
Device_Block_Dump = 
Device_Block_Psize = 
Device_Block_Flags = 
Device_Block_loctl = 
Device_Block_Funnel = 

dkipopen 
nulldev 
dkipstrategy 
dkipdump 
dkipsize 
o 
nodev 
DEV _FUNNEL_NULL 

conf.c 

struct bdevsw bdevsw[MAX_BDEVSW] = 
{ 
{dkipopen, nulldev, dkipstrategy, dkipdump, /*0*/ 
dkipsize, 0, nodev, DEV_FUNNEL_NULL}, 

{tmscpopen, tmscpclose, tmscpstrategy, nodev, 1*15*/ 
0, B_TAPE, nodev, DEV_FUNNEL_NULL}, 

}; 

As the figure shows, conf ig parses the appropriate driver interface entries 
in the stanza. static file fragment, locates the appropriate major device 
number (in this case 0), and adds these entries to the table. 

The following sections discuss the members of the bdevsw structure. 

Data Structures Used in I/O Operations 8-15 



8.2.2.1 The d_open and d_close Members 

The d open member specifies a pointer to an entry point for the driver's 
open Interface, which opens a device. As shown in Figure 8-3 and Figure 
8-4, the d open member is initialized to dkipopen and tmscpopen for 
both the dynamically configured and statically configured dkip and tmscp 
drivers. 

The bdevsw add interface is used to dynamically assign device major 
numbers to loadable block device drivers. The bdevsw add interface 
checks the d open member to determine if the entry is available to be 
assigned a dynamic major device number. If your device driver does not 
have an open interface, you must set this member to nulldev to tell 
bdevsw add that the entry is not available for dynamic assignment of the 
device major number. 

The d close member specifies a pointer to an entry point for the driver's 
close interface, which closes a device. As shown in Figure 8-3 and Figure 
8-4, the d close member is initialized to nulldev for both the 
dynamically configured and statically configured dkip driver. The 
nulldev entry calls the nulldev interface, which returns the value zero 
(0). You should specify nulldev when it is appropriate for the interface to 
be called, but the driver does not need to perform any actions to support the 
interface. The close interface has no functionality for the dkip device; 
therefore, the nulldev entry is specified. 

The figure also shows that d close is initialized to tmscpclose for both 
the dynamically configured and statically configured tmscp driver. 

8.2.2.2 The d_strategy and d_dump Members 

The d strategy member specifies the device driver's strategy interface for 
the device. As shown in Figure 8-3 and Figure 8-4, the d strategy 
member is initialized to dkipstrategy and tmscpstrategy for both 
the dynamically configured and statically configured dkip and tmscp 
drivers. 

The d dump member specifies a pointer to an entry point for the driver's 
dump Interface, which is used for panic dumps of the system image. As 
shown in Figure 8-3 and Figure 8-4, the d dump member is initialized to 
dkipdump for both the dynamically configured and statically configured 
dkip driver and to nodev for both the dynamically configured and 
statically configured tmscp driver. The nodev entry calls the nodev 
interface, which returns an ENODEV (error, no such device). You should 
specify nodev when it is not appropriate to call that interface for a particular 
driver. In this example, it is not appropriate to call a dump interface for the 
tmscp driver; therefore, the nodev entry is specified. 

8-16 Data Structures Used in 1/0 Operations 



8.2.2.3 The d_psize and d_flags Members 

The d psize member specifies a pointer to an entry point for the driver's 
pSize interface, which returns the size in physical blocks of a device (disk 
partition). As shown in Figure 8-3 and Figure 8-4, the d psize member is 
initialized to dkipsize for both the dynamically configured and statically 
configured dkip driver. The figure also shows that d ps ize is initialized 
to the value zero (0) for both the dynamically configured and statically 
configured tmscp driver. The value zero (0) indicates that the tmscp 
device does not support disk partitions (because it is a tape device). 

The d flags member specifies device-related flags. For tape drivers, this 
member gets set to the flag B TAPE. This flag is set in the b flags 
member of the buf structure~The B TAPE flag determines Whether to use 
delayed writes, which are not allowedfor tape devices. For all other drivers, 
this member is set to the value zero (0). As shown in Figure 8-3 and Figure 
8-4, the d f lags member is initialized to the value zero (0) for both the 
dynamically configured and statically configured dkip driver. The figure 
also shows that for the tmscp driver the d f lags member is initialized to 
the constant B TAPE. -

8.2.2.4 The d ioctl and d_funnel Members 

The d ioctl member specifies a pointer to an entry point for the driver's 
ioctI interface, which performs special functions or 110 control. As shown 
in Figure 8-3 and Figure 8-4, the d ioctl member is initialized to nodev 
for both the dynamically configuredand statically configured dkip and 
tmscp drivers. The nodev entry calls the nodev interface, which returns 
an ENODEV (error, no such device). You should specify nodev when it is 
not appropriate to call that interface for a particular driver. In this example, 
it is not appropriate to call an ioctl interface for the dkip and tmscp 
block drivers; therefore, the nodev entry is specified. 

The d funnel member schedules a device driver onto a CPU in a 
multiprocessor configuration. Because multiprocessor configurations are not 
supported on DEC OSFIl, set this member to the constant 
DEV FUNNEL NULL. As shown in Figure 8-3 and Figure 8-4, the 
d funnel member is initialized to the constant DEV FUNNEL NULL for 
bOth the dynamically configured and statically configured dkip and tmscp 
drivers. 

8.3 The uio Structure 
The uio structure describes 110, either single vector or multiple vectors. 
Typically, device drivers do not manipulate the members of this structure. 
However, the structure is presented here for the purpose of understanding the 
uiomove kernel interface, which operates on the members of the uio 

Data Structures Used in I/O Operations 8-17 



structure. Table 8-3 lists the members of the uio structure along with their 
associated data types that you might need to understand. 

Table 8-3: Members of the uio Structure 

Member Name Data Type 

uio iov struct iovec * 
uio iovcnt int 

uio offset off t 

uio_segflg enurn uio seg -
uio resid int 

uio rw enurn uio rw 

8.3.1 The uio_iov and uio_iovcnt Members 
The uio iov member specifies a pointer to the first iovec structure. The 
iovec structure has two members: one that specifies the address of the 
segment and another that specifies the size of the segment. The system 
allocates contiguously the iovec structures for a given transfer. 

The uio iovcnt member specifies the number of iovec structures for 
this transfer. 

8.3.2 The uio_offset and uio_segflg Members 
The uio _offset member specifies the offset within the file. 

The uio segflg member specifies the segment type. This member can be 
set to one of the following values: UIO USERSPACE (the segment is from 
the user data space), UIO SYSSPACE (the segment is from the system 
space), or UIO _ USERISPACE (the segment is from the user I space). 

8.3.3 The uio_resid and uio_rw Members 
The uio resid member specifies the number of bytes that still need to be 
transferred. 

The uio rw member specifies whether the transfer is a read or a write. 
This memher is set by read and wr i te system calls according to the 
corresponding field in the file descriptor. This member can be set to one of 
the following values: UIO READ (read transfer) or UIO WRITE (write 
transfer). - -

8-18 Data Structures Used in I/O Operations 



8.4 Buffer Cache Management 
When the file system deals with regular files, directories, and block devices, 
the I/O requests are serviced through the buffer cache system. Because the 
buffer cache deals with fixed-size buffers, it is often necessary to translate the 
user's request for I/O into buffer-size pieces called blocks. Only in the case 
where the size of the user's I/O matches a block and aligns to a block 
boundary will the underlying request match with the user's size. A large I/O 
request will be broken down into many block requests, with each block 
request going to the buffer cache system separately. Both read and write 
requests smaller than a block force the file system to request a read of the 
entire block and deal with the small read or write in the buffer. 

Regular files and directories go through an extra translation process to map 
their logical block number into the physical blocks of the disk device. This 
mapping process itself can generate block requests to the buffer cache system 
to deal with file extension or to obtain or modify indirect file system blocks. 

Buffer reads and buffer writes do not necessarily cause I/O to occur. In the 
case of buffer reads, the request can be satisfied by data already in the cache. 
On the other hand, buffer writes can modify or replace data in the cache, but 
the physical write might be delayed. U sing a buffer cache enhances 
performance because data that changes often in the cache does not require a 
physical write for each change. 

The nature of the buffer cache system's delayed physical VO requires that 
each buffer request, or each block read or write, be a self contained I/O 
request to the device driver's strategy interface. The buffer cache system 
and the block device driver strategy interface cannot assume any 
particular process context; therefore, the context of the process must be 
severed from the I/O request. The buffer passed to the buffer interface has all 
of the context necessary to perform the I/O. 

8.4.1 Buffer Header 
I/O requests come from a buffer cache interface as follows: 

(*bdevsw[major] (dev)].d_strategy) (bp); 

The bdevsw table is referenced and the appropriate driver interface is called 
through the block device's major number. The driver's strategy interface 
is passed a pointer to a bu f structure. 

8.5 Interrupt Code 
When the kernel interrupt interface that does the initial handling of interrupts 
receives an interrupt, it: 

Data Structures Used in I/O Operations 8-19 



• Saves the state of the CPU (for example, the registers) 

• Sets up the argument list for the call to the driver (that is, the unit 
number) 

• Transfers control to the appropriate driver, based on the interrupt vector 
index provided by the bus 

Upon return from the driver's interrupt service interface, the kernel restores 
the state of the CPU to allow previously running processes to run. 

8-20 Data Structures Used in I/O Operations 



Using Kernel Interfaces with Device 9 
Drivers 

This chapter discusses the kernel interfaces most commonly used by device 
drivers and provides code fragments to illustrate how to call these interfaces 
in device drivers. These code fragments and associated descriptions 
supplement the reference (man) page-style descriptions for these and the 
other kernel interfaces presented in Writing Device Drivers, Volume 2: 
Reference. Specifically, the chapter discusses the following: 

• String interfaces 

• Virtual memory interfaces 

• Data copying interfaces 

• Hardware-related interfaces 

• Kernel-related interfaces 

• Loadable driver interfaces 

• Input/output (I/O) handle-related interfaces 

• Direct memory access related interfaces 

• Miscellaneous interfaces 

9.1 String Interfaces 
String interfaces allow device drivers to: 

• Compare two null-terminated strings 

• Compare two strings by using a specified number of characters 

• Copy a null-terminated character string 

• Copy a null-terminated character string with a specified limit 

• Return the number of characters in a null-terminated string 

The following sections describe the kernel interfaces that perform these tasks. 

9.1.1 Comparing Two Null-Terminated Strings 
To compare two null-terminated character strings, call the s trcmp interface. 



The following code fragment shows a call to s trcmp: 

register struct device *device; 
struct controller *ctlr; 

if (strcmp(device->ctlr_name, ctlr->ctlr_name)) { ill 

} 

I1J Shows that the strcmp interface takes two arguments. The first 
argument specifies a pointer to a string (an array of characters terminated 
by a null character). In this example, this is the controller name pointed 
to by the ctlr name member of the pointer to the device structure. 
The second argllinent also specifies a pointer to a string (an array of 
characters terminated by a null character). In the example, this is the 
controller name pointed to by the ctlr name member of the pointer to 
the controller structure. -

The code fragment sets up a condition statement that performs some tasks 
based on the results of the comparison. Figure 9-1 shows how s trcmp 
compares two sample character string values in the code fragment. In 
item 1, strcmp compares the two controller names and returns the value 
zero (0) because strcmp performed a lexicographical comparison 
between the two strings and they were identical. 

In item 2, s trcmp returns an integer that is less than zero because the 
lexicographical comparison indicates that the characters in the first 
controller name, fb, come before the letters in the second controller 
name, ipi. 

9-2 Using Kernel Interfaces with Device Drivers 



Figure 9-1: Results of the strcmp Interface 

strings are equal 

~ 
I ipi I I ipi I Jreturns 0 

CD if (strcmp (device -> ctlr_name, ctlr -> ctlr_name)) 

string 1 < string2 

~ 
I fb I I ipi I Jreturns integer < 0 

@ if (strcmp (device -> ctlr_name, ctlr -> ctlr_name)) 

9.1.2 Comparing Two Strings by Using a Specified Number of 
Characters 

To compare two strings by using a specified number of characters, call the 
s trncmp interface. The following code fragment shows a call to 
strncmp: 

register struct device *device; 

if( (strncmp(device->dev_name, "rz" , 2) o )) [j] 

ill Shows that the strncmp interface takes three arguments. The first 
argument specifies a pointer to a string (an array of characters terminated 
by a null character). In the example, this is the device name pointed to 
by the dev name member of the pointer to the device structure. The 
second argument also specifies a pointer to a string (an array of characters 
terminated by a null character). In the example, this is the character 
string rz. The third argument specifies the number of bytes to be 
compared. In the example, the number of bytes to compare is 2. 

The code fragment sets up a condition statement that performs some tasks 
based on the results of the comparison. Figure 9-2 shows how strncmp 
compares two sample character string values in the code fragment. In 

Using Kernel Interfaces with Device Drivers 9-3 



item 1, strncmp compares the first two characters of the device name 
none with the string rz and returns an integer less than the value zero 
(0). The reason for this is that strncmp makes a lexicographical 
comparison between the two strings and the string no comes before the 
string rz. In item 2, strncmp compares the first two characters of the 
device name rz3a with the string rz and returns the value zero (0). The 
reason for this is that s trncmp makes a lexicographical comparison 
between the two strings and the string rz is equal to the string rz. 

Figure 9-2: Results of the strncmp Interface 

compares first two characters 

,Q:! 
L __ - I n 

if ((strncmp (device->dev_name, "rz", 2) == 0) 
'--_____ -1 

n 
I rza I L _____ I 

® if ((strncmp (device->dev_name, "rz", 2) == 0) 

returns 
integer<O 
string 1 <string2 

returns 0 
string 1 =string2 
for 2bytes 

9.1.3 Copying a Null-Terminated Character String 
To copy a null-terminated character string, call the s trcpy interface. The 
following code fragment shows a call to s trcpy: 

struct tc slot tc slot[TC IOSLOTS]; m 
char curr=module_name[TC_ROMNAMLEN + 1]; ~ 

strcpy(tc_slot[i].modulename, curr_module_name); ~ 

!II Declares an array of tc _slot structures of size TC IOSLOTS. 

121 Declares a variable to store the module name from the ROM of a device 
on the TURBOchannel bus. 

9-4 Using Kernel Interfaces with Device Drivers 



~ Shows that the strcpy interface takes two arguments. The first 
argument specifies a pointer to a buffer large enough to hold the string to 
be copied. In the example, this buffer is the modulename member of 
the tc s lot structure associated with the specified bus. The second 
argument specifies a pointer to a string (an array of characters terminated 
by a null character). This is the string to be copied to the buffer specified 
by the first argument. In the example, this is the module name from the 
ROM, which is stored in the curr _module_name variable. 

Figure 9-3 shows how strcpy copies a sample value in the code 
fragment. The interface copies the string CB (the value contained in 
curr module name) to the modulename member of the tc slot 
structure associated with the specified bus. This member is presumed 
large enough to store the character string. The s trcpy interface returns 
the pointer to the location following the end of the destination buffer. 

Figure 9-3: Results of the strcpy Interface 

cbslot 

U CB 

strcpy (tc_slot[i]. modulename, curr _module_name); 

struct tc_slot cbslot{ 

char modulename[TC_ROMNAMELEN+ 1] 

9.1.4 Copying a Null-Terminated Character String with a Specified 
Limit 

To copy a null-terminated character string with a specified limit, call the 
strncpy interface. The following code fragment shows a call to 
strncpy: 

register struct device *device; 
char * buffer; 

strncpy(buffer, device->dev_name, 2); ill 

Using Kernel Interfaces with Device Drivers 9-5 



if (buffer somevalue) 

ffl Shows that strncpy takes three arguments. The first argument specifies 
a pointer to a buffer of at least the same number of bytes as specified in 
the third argument. In the example, this is the pointer to the buffer 
variable. The second argument specifies a pointer to a string (an array of 
characters terminated by a null character). This is the character string to 
be copied and in the example is the value pointed to by the dev name 
member of the pointer to the device structure. The third argument 
specifies the number of characters to copy, which in the example is two 
characters. 

The code fragment sets up a condition statement that performs some tasks 
based on the characters stored in the pointer to the buffer variable. 

Figure 9-4 shows how strncpy copies a sample value in the code 
fragment. The interface copies the first two characters of the string none 
(the value pointed to by the dev name member of the pointer to the 
device structure). The strncpy interface stops copying after it copies 
a null character or the number of characters specified in the third 
argument, whichever comes first. 

The figure also shows that strncpy returns a pointer to the /NULL 
character at the end of the first string (or to the location following the last 
copied character if there is no NULL). The copied string will not be null 
terminated if its length is greater than or equal to the number of 
characters specified in the third argument. 

Figure 9-4: Results of the strncpy Interface 

~ :--CS------: 
no I none I 

~ : I : 
strncpy (buffer, device-> : dev_name,:2) 

!..----------~ 

returns pointer to INull at end of destination string 

9.1.5 Returning the Number of Characters in a Null-Terminated 
String 

To return the number of characters in a null-terminated character string, call 
the strlen interface. The following code fragment shows a call to 

9-6 Using Kernel Interfaces with Device Drivers 



strlen: 

char *strptri 

if ((strlen(strptr)) > 1) ill 

ill Shows that the strlen interface takes one argument, which specifies a 
pointer to a string (an array of characters terminated by a null character). 
In the example, this pointer is the variable strptr. 

The code fragment sets up a condition statement that performs some tasks 
based on the length of the string. Figure 9-5 shows how strlen checks 
the number of characters in a sample string in the code fragment. As the 
figure shows, strlen returns the number of characters pointed to by the 
strptr variable, which in the code fragment is four. Note that 
strlen does not count the terminating null character. 

Figure 9-5: Results of the strlen Interface 

4 

if ((strlen(strptr)) > 1) 

!TTl 
* strptr=name'\O' 

9.2 Virtual Memory Interfaces 
The virtual memory interfaces allow device drivers to: 

• Allocate a section of kernel virtual memory 

• Return previously allocated kernel virtual memory 

• Perform nonblocking allocation of kernel virtual memory 

The following sections describe the kernel interfaces that perform these tasks. 

Using Kernel Interfaces with Device Drivers 9-7 



9.2.1 Allocating a Section of Kernel Virtual Memory 
To allocate a variable-sized section of kernel virtual memory, call the 
kalloc interface. This interface is often used to dynamically allocate data 
structures in the driver's probe interface. See Section 2.3.3.3 for an 
example of how to use kalloc to accomplish this task. 

The following code fragment shows a call to kalloc: 

struct device *device; 
struct device *new_dev; 

new dev (struct device *) kalloc{sizeof (struct device)); 
II] 

II] Shows that the kalloc interface takes one argument: the number of 
bytes of memory to allocate. To allocate the number of bytes associated 
with a device structure, the code fragment uses the sizeof operator. 

The return type of kalloc is defined as caddr t. Because the data 
types of the return values are different, the code fragment performs a 
type-casting operation that converts the return type to be a pointer to a 
device structure. 

If this call to kalloc completes successfully, it returns the address of 
the memory where the device structure was allocated. If the memory 
allocation request cannot be fulfilled, kalloc returns the value zero (0). 

9.2.2 Returning Previously Allocated Kernel Virtual Memory 
To free a previously allocated section of kernel virtual memory, call the 
kf ree interface. This interface is used to free the memory space that was 
previously allocated by kalloc or kget. The following code fragment 
shows a call to kfree: 

struct device *device; 
struct device *new_dev; 

kfree{new_dev, sizeof (struct device)); II] 

9-8 Using Kernel Interfaces with Device Drivers 



[j] Shows that the kfree interface takes two arguments. The first argument 
is a pointer to the memory to be freed. In the code fragment, this is the 
pointer to the device structure whose associated memory was allocated 
in a previous call to kalloc. 

The second argument specifies the size (in bytes) of the memory to free. 
In the example, this size is expressed through the use of the sizeof 
operator. In this example, kfree frees the size previously allocated for 
the device structure. 

9.2.3 Performing Nonblocking Allocation of Kernel Virtual 
Memory 

To perform nonblocking allocation of a variable-sized section of kernel 
virtual memory, call the kget interface. The major difference between 
kget and kalloc is that kget is intended for use by nonblocking code, 
such as interrupt service interfaces. The following code fragment shows a 
call to kget: 

struct cb unit *cb; 
struct cb-unit *return; 

return (struct cb unit *) kget{sizeof (struct cb_unit)); 
ill 

[j] Shows that the kget interface takes one argument, which is the number 
of bytes to allocate. To allocate the number of bytes associated with a 
cb _ uni t structure, the code fragment uses the sizeof operator. 

The return type of kget is defined as caddr t. Because the data types 
of the return values are different, the code fragment performs a type­
casting operation that converts the return type to be a pointer to a 
cb unit structure. 

If this call to kget completes successfully, it returns the address of the 
memory where the cb unit structure was allocated. If no memory is 
available, kget returns the value zero (0). 

You call kfree to free kernel virtual memory previously allocated with 
kget. Make sure that the pointer to the memory to be freed was 

Using Kernel Interfaces with Device Drivers 9-9 



previously set in a call to kget. 

9.3 Data Copying Interfaces 
The data copying interfaces allow device drivers to: 

• Copy a series of bytes with a specified limit 

• Zero a block of memory 

• Copy data from user address space to kernel address space 

• Copy data from kernel address space to user address space 

• Move data between user virtual space and system virtual space 

The following sections describe the kernel interfaces that perform these tasks. 

9.3.1 Copying a Series of Bytes with a Specified Limit 
To copy a series of bytes with a specified limit, call the bcopy interface. 
The following code fragment shows a call to bcopy: 

struct tc slot tc_slot[TC_IOSLOTS)i ill 

char *cp i I2l 

bcopy(tc_slot[index).modulename, cp, TC ROMNAMLEN + 1); ~ 

ill Declares an array of tc _slot structures of size TC IOSLOTS. 

12.1 Declares a pointer to a buffer that stores the bytes of data copied from the 
first argument. 

[3l Shows that the bcopy interface takes three arguments. The first 
argument is a pointer to a byte string (array of characters). In the 
example, this array is the modulename member of the tc slot 
structure associated with this bus. -

The second argument is a pointer to a buffer that is at least the size 
specified in the third argument. In the example, this buffer is represented 
by the pointer to the cp variable. 

The third argument is the number of bytes to be copied. In the example, 
the number of bytes is contained in the constant TC _ROMNAMLEN. 

9-10 Using Kernel Interfaces with Device Drivers 



Figure 9-6 shows how bcopy copies a series of bytes by using a sample 
value in the code fragment. As the figure shows, bcopy copies the 
characters CB to the buffer cpo No check is made for null bytes. The 
copy is nondestructive; that is, the address ranges of the first two 
arguments can overlap. 

Figure 9-6: Results of the bcopy Interface 

CB 

bcopy(tc_slot[index].modulename, cp, TC_ROMNAMELEN+ 1); 

struct tc_slot cbslot{ . 
char modulename[TC_ROMNAMELEN+ 1] 

buffer CP 

CB 

}; 

9.3.2 Zeroing a Block of Memory 
To zero a block of memory, call the bzero or blkclr interface. The 
following code fragment shows a call to bzero. (The blkclr interface has 
the same arguments.) 

struct bus *new_bus; 

bzero(new_bus, sizeof(struct bus)); ill 

III Shows that the bzero interface takes two arguments. The first argument 
is a pointer to a string whose size is at least the size specified in the 
second argument. In the example, the first argument is a pointer to a 
bus structure. 

The second argument is the number of bytes to be zeroed. In the 

Using Kernel Interfaces with Device Drivers 9-11 



example, this size is expressed through the use of the sizeof operator, 
which returns the size of a bu s structure. 

In the example, bzero zeroes the number of bytes associated with the 
size of the bus structure, starting at the address specified by new_bus. 

The blkclr interface performs the equivalent task. 

9.3.3 Copying Data from User Address Space to Kernel Address 
Space 

To copy data from the unprotected user address space to the protected kernel 
address space, call the copy in interface. The following code fragment 
shows a call to copyin: 

register struct buf *bp; 
int err; 
caddr t buff_addr; 
caddr-t kern_addr; 

if (err copyin(buff_addr,kern_addr,bp->b_resid)) { ill 

[j] Shows that the copy in interface takes three arguments. The first 
argument specifies the address in user space of the data to be copied. In 
the example, this address is the user buffer's address. 

The second argument specifies the address in kernel space to copy the 
data to. In the example, this address is the address of the kernel buffer. 

The third argument specifies the number of bytes to copy. In the 
example, the number of bytes is contained in the b re s id member of 
the pointer to the buf structure. -

The code fragment sets up a condition statement that performs some tasks 
based on whether copyin executes successfully. Figure 9-7 shows how 
copyin copies data from user address space to kernel address space by 
using sample data. 

As the figure shows, copyin copies the data from the unprotected user 
address space, starting at the address specified by buff addr to the 
protected kernel address space specified by kern addr. The number of 
bytes is indicated by the b resid member. Thefigure also shows that 
copyin returns the value zero (0) upon successful completion. If the 
address in user address space could not be accessed, copy in returns the 

9-12 Using Kernel Interfaces with Device Drivers 



error EFAULT. 

Figure 9-7: Results of the copyin Interface 

I I I I L-J J ~~~~ns~ccess 
if (err=copyin(bufCaddr, kern_addr, bp -> b_resid)) 

I 
User Address Space Kernel Address Space 

I 

-

I 12345 

~ 12345 I 

9.3.4 Copying Data from Kernel Address Space to User Address 
Space 

To copy data from the protected kernel address space to the unprotected user 
address space, call the copyou t interface. The following code fragment 
shows a call to copyout: 

register struct buf *bp; 
int err; 
caddr t buff_addr; 
caddr t kern_addr; 

if (err copyout(kern_addr,buff_addr,bp->b_resid» { ill 

ill Shows that the copyou t interface takes three arguments. The first 
argument specifies the address in kernel space of the data to be copied. 
In the example, this address is the kernel buffer's address, which is stored 

Using Kernel Interfaces with Device Drivers 9-13 



in the kern _ addr argument. 

The second argument specifies the address in user space to copy the data 
to. In the example, this address is the user buffer's virtual address, which 
is stored in the buff _ addr argument. 

The third argument specifies the number of bytes to copy. In the 
example, the number of bytes is contained in the b resid member of 
the pointer to the buf structure. -

Figure 9-8 shows the results of copyout, based on the code fragment. 
As the figure shows, copyout copies the data from the protected kernel 
address space, starting at the address specified by kern addr to the 
unprotected user address space specified by buff addr. The number 
of bytes is indicated by the b resid member. The figure also shows 
that copyou t returns the valUe zero (0) upon successful completion. If 
the address in kernel address space could not be accessed or if the 
number of bytes to copy is invalid, copyout returns the error EFAULT. 

Figure 9-8: Results of the copyout Interface 

I II I ~ Jreturno 
upon success 

if (err=copyout(kern_addr, bufCaddr, bp -> b_resid)) 

User Address Space Kernel Address Space 

12345 I~ 
• 
I 

~ 

I 12345 
I 

I 

9.3.5 Moving Data Between User Virtual Space and System 
Vi rtual Space 

To move data between user virtual and system virtual space, call the 
uiomove interface. The following code fragment shows a call to 

9-14 Using Kernel Interfaces with Device Drivers 



uiomove: 

struct uio *uiOi 
register struct buf *bPi 
int erri 
int cnti 
unsigned tmpi 

err = uiomove(&tmp,cnt,uio)i ill 

111 Shows that the uiomove interface takes three arguments. The first 
argument specifies a pointer to the kernel buffer in system virtual space. 
The second argument specifies the number of bytes of data to be moved. 
In this example, the number of bytes to be moved is stored in the en t 
variable. The third argument specifies a pointer to a uio structure. This 
structure describes the current position within a logical user buffer in user 
virtual space. Section 10.11.1 shows how you use uiomove with the 
/ dev / cb device driver. 

9.4 Hardware-Related Interfaces 
The hardware-related interfaces allow device drivers to perform the following 
tasks related to the hardware: 

• Check the read accessibility of addressed data 

• Delay the calling interface a specified number of microseconds 

• Set the interrupt priority mask 

The following sections describe the kernel interfaces that perform these tasks. 

9.4.1 Checking the Read Accessibility of Addressed Data 
To check the read accessibility of addressed data, call the BADADDR 
interface. The following code fragment shows a call to this interface: 

caddr_t addrl; 

typedef volatile struct 
int csr; 

}none_registers; 

Using Kernel Interfaces with Device Drivers 9-15 



register struct none registers *reg = (struct none registers *) addrl; 
if (BADADDR( (caddr_t) &reg->csr, sizeof(int)) 1=0) rn 
{ 

I1J Shows that the BADADDR interface takes two arguments. The first 
argument specifies the address of the device registers or memory. In the 
example, this address is that of the csr member of the reg pointer. 
This member maps to the 32-bit control/status register for this none 
device. 

The second argument specifies the length (in bytes) of the data to be 
checked. Valid values are 1, 2, and 4 on 32-bit machines and 4 and 8 on 
64-bit machines. In the example, the length is the value returned by the 
sizeof operator - the number of bytes needed to contain a value of 
type into The reason for this is the csr member is of type into 

Although it is not shown in this example, BADADDR can take an optional 
third argument. This third argument specifies a pointer to a 
bus ctlr common structure. You cast this argument as a pointer to 
either a bus-or controller structure. 

The BADADDR interface generates a call to a machine-dependent interface 
that does a read access check of the data at the supplied address and 
dismisses any machine check exception that may result from the 
attempted access. You call this interface to probe for memory or I/O 
devices at a specified address during device autoconfiguration. 

The BADADDR interface returns the value zero (0) if the data is accessible 
and nonzero if the data is not accessible. 

This line also sets up a condition statement that performs some tasks 
based on BADADDR determining if the data stored in csr is accessible. 

Loadable device drivers cannot call the BADADDR interface because it is 
usable only in the early stages of system booting. Loadable device 
drivers are loaded during the multiboot stage. If your driver is both 
loadable and static, you can declare a variable and use it to control any 
differences in the tasks performed by the loadable and static drivers. 
Thus, the static driver can still call BADADDR. 

9.4.2 Delaying the Calling Interface a Specified Number of 
Microseconds 

To delay the calling interface a specified number of microseconds, call the 

9-16 Using Kernel Interfaces with Device Drivers 



DELAY interface. The following code fragment shows a call to this interface: 

DELAY(lOOOO) [] 

[1] Shows that the DELAY interface takes one argument: the number of 
microseconds for the calling process to spin. 

The DELAY interface delays the calling interface a specified number of 
microseconds. DELAY spins, waiting for the specified number of 
microseconds to pass before continuing execution. In the example, there 
is a 10000-microsecond (10 millisecond) delay. The range of delays is 
system dependent, due to its relation to the granularity of the system 
clock. The system defines the number of clock ticks per second in the hz 
variable. Specifying any value smaller than 11hz to the DELAY interface 
results in an unpredictable delay. For any delay value, the actual delay 
may vary by plus or minus one clock tick. 

Using the DELAY interface is discouraged because the processor will be 
consumed for the specified time interval and therefore is unavailable to 
service other processes. In cases where device drivers need timing 
mechanisms, you should use the sleep and timeout interfaces instead 
of the DELAY interface. The most common usage of the DELAY interface 
is in the system boot path. Using DELAY in the boot path is often 
acceptable because there are no other processes in contention for the 
processor. 

9.4.3 Setting the Interrupt Priority Mask 
To set the interrupt priority mask to a specified level, call one of the spl 
interfaces. Table 9-1 summarizes the uses for the different spl interfaces. 

Table 9-1: Uses for spllnterfaces 

spl Interface 

getspl 

splbio 

splclock 

spldevhigh 

splextreme 

Meaning 

Gets the spl value 

Masks all disk and tape controller interrupts 

Masks all hardware clock interrupts 

Masks all device and software interrupts 

Blocks against all but halt interrupts 

Using Kernel Interfaces with Device Drivers 9-17 



Table 9-1: (continued) 

spl Interface 

spIhigh 

splimp 

spInet 

spInone 

splsched 

splsoftclock 

spItty 

spIvm 

spIx 

Meaning 

Mask all interrupts except for realtime devices, machine 
checks, and halt interrupts 

Masks all Ethernet hardware interrupts 

Masks all network software interrupts 

Unmasks (enables) all interrupts 

Masks all scheduling interrupts (usually hardware clock) 

Masks all software clock interrupts 

Masks all tty (terminal device) interrupts 

Masks all virtual memory clock interrupts 

Resets the CPU priority to the level specified by the 
argument 

The spl interfaces set the CPU priority to various interrupt levels. The 
current CPU priority level determines which types of interrupts are masked 
(disabled) and which are unmasked (enabled). Historically, seven levels of 
interrupts were supported, with eight different spl interfaces to handle the 
possible cases. For example, calling splO would unmask all interrupts and 
calling sp17 would mask all interrupts. Calling an spl interface between 0 
and 7 would mask out all interrupts at that level and at all lower levels. 

Specific interrupt levels were assigned for different device types. For 
example, before handling a given interrupt, a device driver would set the 
CPU priority level to mask all other interrupts of the same level or lower. 
This setting meant that the device driver could be interrupted only by 
interrupt requests from devices of a higher priority. 

DEC OSFIl supports the naming of spl interfaces to indicate the associated 
device types. Named spl interfaces make it easier to determine which 
interface should be used to set the priority level for a given device type. 

The following code fragment illustrates the use of spl interfaces as part of a 
disk strategy interface: 

int S; 

s = splbio ( ); [j] 

9-18 Using Kernel Interfaces with Device Drivers 



[Code to deal with data that can be modified by the disk interrupt 
code] 
splx(s); I2l 

ill Calls the spIbia interface to mask (disable) all disk interrupts. This 
interface does not take an argument. 

I2l Calls the spIx interface to reset the CPU priority to the level specified 
by the s argument. Note that the one argument associated with spIx is 
a CPU priority level, which in the example is the value returned by 
spIbia. (The spIx interface is the only one of the spl interfaces that 
takes an argument.) Upon successful completion, each spl interface 
returns an integer value that represents the CPU priority level that existed 
before it was changed by a call to the specified spl interface. 

The binding of any spl interface with a specific CPU priority level is 
highly machine dependent. With the exceptions of the spIhigh and 
spInane interfaces, knowledge of the explicit bindings is not required 
to create new device drivers. You always use spIhigh to mask 
(disable) all interrupts and spInane to unmask (enable) all interrupts. 

9.5 Kernel-Related Interfaces 
The kernel-related interfaces allow device drivers to: 

• 

• 

• 

• 

• 

Cause a system crash 

Print text to the console and error logger 

Put a calling process to sleep 

Wake up a sleeping process 

Initialize a callout queue element 

Remove the scheduled interface from the callout queues 

The following sections describe the kernel interfaces that perform these tasks. 

9.5.1 Causing a System Crash 
To cause a system crash, call the panic interface. The following code 
fragment shows a call to this interface: 

panic("vba: no adapter error vector"); ffi 

Using Kernel Interfaces with Device Drivers 9-19 



[] Shows that panic takes one argument. This argument specifies the 
message you want the panic interface to display on the console 
terminal. 

The panic interface causes a system crash, usually because of fatal 
errors. It sends to the console terminal and error logger the specified 
message and, possibly, other system-dependent information (for example, 
register dumps). It also causes a crash dump to be generated. After 
displaying the message, panic reboots the system if the console 
envrionment variables are set appropriately. If these console environment 
variables are not set correctly, the system sits at the halt prompt after a 
system panic. 

9.5.2 Printing Text to the Console and Error Logger 
To print text to the console terminal and the error logger, call the printf 
interface. The kernel printf interface is a scaled-down version of the C 
library printf interface. The printf interface prints diagnostic 
information directly on the console terminal and writes ASCII text to the 
error logger. Because printf is not interrupt driven, all system activities 
are suspended when you call it. Only a limited number of characters 
(currently 128) can be sent to the console display during each call to any 
section of a driver. The reason is that the characters are buffered until the 
driver returns to the kernel, at which time they are actually sent to the 
console display. If more than 128 characters are sent to the console display, 
the storage pointer may wrap around, discarding all previous characters; or it 
may discard all characters following the first 128. 

If you need to see the results on the console terminal, limit the message size 
to the maximum of 128 whenever you send a message from within the driver. 
However, printf also stores the messages in an error log file. You can 
view the text of this error log file by using the uerf command. See the 
reference (man) page for this command. The messages are easier to read if 
you use uerf with the -0 terse option. The following code fragment 
shows a call to this interface: 

#ifdef CB DEBUG 
printf("CBprobe @ %8x, vbaddr = %8x, ctlr = %8x\n",cbprobe,vbaddr,ctlr); [1] 
#endif /*CB DEBUG*/ 

[] Shows a typical use for the printf interface in the debugging of device 
drivers. The example shows that printf takes two arguments. The 

9-20 Using Kernel Interfaces with Device Drivers 



first argument specifies a pointer to a string that contains two types of 
objects. One object is ordinary characters such as "hello, world", which 
are copied to the output stream. The other object is a conversion 
specification such as %d, %0, or %x. 

The second argument specifies the argument list. In this example, the 
argument list consists of the arguments cbprobe, vbaddr, and ctlr. 

The DEC OSFIl operating system also supports the uprintf interface. 
The uprintf interface prints to the current user's terminal. This 
interface should never be called by interrupt interfaces. It does not 
perform any space checking, so you should not use this interface to print 
verbose messages. The uprintf interface does not log messages to the 
error logger. 

9.5.3 Putting a Calling Process to Sleep 
To put a calling process to sleep, call the sleep interface. The sleep and 
wakeup pair of interfaces block and then wake up a process. Generally, 
device drivers call these interfaces to wait for the transfer to complete an 
interrupt from the device. That is, the wr i te interface of the device driver 
sleeps on the address of a known location, and the device's interrupt service 
interface wakes the process when the device interrupts. It is the 
responsibility of the wakened process to check if the condition for which it 
was sleeping has been removed. 

The following code fragment shows a call to this interface: 

sleep(&ctlr->bus_name, PCATCH); ~ 

[j] Shows that the sleep interface takes two arguments. The first argument 
specifies a unique address associated with the calling thread to be put to 
sleep. In this example, the sleepinterface puts the calling process to 
sleep on the address of the bus that this controller is connected to. 

The second argument specifies whether the sleep request is interruptible. 
Setting this argument to the PCATCH flag causes the process to sleep in 
an interruptible state. Not setting the PCATCH flag causes the process to 
sleep in an uninterruptible state. The example sets the PCATCH flag to 
indicate that the sleep request is interruptible. 

Using Kernel Interfaces with Device Drivers 9-21 



9.5.4 Waking Up a Sleeping Process 
To wake up all processes sleeping on a specified address, call the wakeup 
interface. The following code fragment shows a call to this interface: 

wakeup(&ctlr->bus_name); rn 

[jJ Shows that the wakeup interface takes one argument. This argument 
specifies the address on which the wakeup is to be issued. In the 
example, this address is that of the bus name associated with the bus this 
controller is connected to. This address was specified in a previous call 
to the sleep interface. All processes sleeping on this address are 
wakened. 

9.5.5 Initializing a Callout Queue Element 
To initialize a callout queue element, call the timeout interface. The 
following code fragment shows a call to this interface: 

#define CBlncSec 1 

cb = &cb_unit[unit]; 

timeout(cbincled, (caddr_t)cb, CBlncSec*hz); rn 

[jJ Shows that the timeout interface takes three arguments. The first 
argument specifies a pointer to the interface to be called. In the example, 
timeout will call the cbincled interface on the interrupt stack (not in 
processor context) as dispatched from the softclock interface. 

The second argument specifies a single argument to be passed to the 
called interface. In the example, this argument is the pointer to the CB 
device's cb unit data structure. This argument is passed to the 
cbincledlnterface. Because the data types of the arguments are 
different, the code fragment performs a type-casting operation that 
converts the argument type to be of type caddr _ t. 

9-22 Using Kernel Interfaces with Device Drivers 



The third argument specifies the amount of time to delay before calling 
the specified interface. Time is expressed as time (in seconds) * hz. In 
the example, the constant CBlncSec is used with the hz global variable 
to determine the amount of time before timeout calls cbincled. The 
global variable hz contains the number of clock ticks per second. This 
variable is a second's worth of clock ticks. The example illustrates a 1-
second delay. 

9.5.6 Removing the Scheduled Interface from the Callout Queues 
To remove the scheduled interfaces from the callout queues, call the 
untimeout interfaces. The following code fragment shows a call to this 
interface: 

untimeout(cbincled, (caddr_t)cb); ill 

III Shows that the untimeout interface takes two arguments. The first 
argument specifies a pointer to the interface to be removed from the 
callout queues. In the example, untimeout removes the cbincled 
interface from the callout queues. This interface was placed on the 
callout queue in a previous call to the timeout interface. 

The second argument specifies a single argument to be passed to the 
called interface. In the example, this argument is the pointer to the CB 
device's cb unit data structure. It matches the parameter that was 
passed in a previous call to timeout. Because the data types of the 
arguments are different, the code fragment performs a type-casting 
operation that converts the argument type to be of type caddr _ t. 

The argument is used to uniquely identify which timeout to remove. This 
is useful if more than one process has called timeout with the same 
interface argument. 

9.6 Loadable Driver Interfaces 
The loadable driver interfaces allow loadable drivers to perform a variety of 
tasks specific to loadable drivers. The most commonly performed loadable 
driver tasks are to: 

• Add or delete entry points in the bdevsw table 

• Add or delete entry points in the cdevsw table 

Using Kernel Interfaces with Device Drivers 9-23 



• 

• 

• 

• 

• 

Add or delete entry points to the bdevsw and cdevsw tables 

Register and deregister a driver's interrupt service interface 

Enable and disable a driver's interrupt service interface 

Merge the configuration data 

Configure and unconfigure the specified controller 

9.6.1 Adding or Deleting Entry Points in the bdevsw Table 
To dynamically add entry points to the bdevsw (block device switch) table 
for loadable drivers, call the bdevsw add interface. The following code 
fragment shows a call to bdevsw _ add: 

struct bdevsw dkip bdevsw entry { 

} ; 

dkipopen,- -
nulldev, 
dkipstrategy, 
dkipdump, 
dkipsize, 
0, 
nodev, 
DEV FUNNEL NULL 

dev t dkip_devno; 

bdevno bdevsw_add(bdevno,&dkip_bdevsw_entry); ill 

dkip_devno bdevno; ~ 

[1] Shows that bdevsw add takes two arguments. The first argument 
specifies the device number to use for the bdevsw device switch table 
entry (slot). In this example, the device number is stored in the bdevno 
variable. The device number is usually obtained in a previous call to the 
rnakedev interface. 

The second argument specifies the block device switch structure that 
contains the block device driver's entry points. In this example, the 
dkip bdevsw entry structure contains the device drive entry points 
for a dkip driver. 

9-24 Using Kernel Interfaces with Device Drivers 



Figure 9-9 shows the results of bdevsw add, based on the code 
fragment. This code would appear in thedriver source, dkip. c. As the 
figure shows, bdevsw add identifies as zero the device number for the 
dkip device and adds 'the driver entry points contained in the 
dkip bdevsw entry structure. The bdevsw add interface adds the 
driver'S entry poInts into the in-memory resident bdevsw table. It does 
not change the lusrlsys/io/common/conf.c file, which is used to 
build the kernel. Thus, the driver's entry points are dynamically added to 
the bdevsw table for loadable drivers. 

Upon successful completion, bdevsw add returns the device number 
associated with the entry in the bdevsw table. In the example, the 
device number is the value zero (0). 

121 Stores the table entry slot for this device in the dkip devno variable 
for use later by the bdevsw _ de 1 interface. -

Using Kernel Interfaces with Device Drivers 9-25 



Figure 9-9: Results of the bdevsw_add Interface 

dkip.c dkip.c 

struct bdevsw dkip_bdevsw = { 

dkipopen, 
~bdevno = bdevsw_add 

(bdevno, &dkip_bdevsw_entry); 

nulldev, 
dkipstrategy, 
dkipdump, 
dkipsize, 
0, 
nodev, 
DEV _FUNNEL_NULL 

}; 

In-memory bdevsw table 

struct bdevsw bdevsw[MAX_BDEVSWJ = 
{ 

l ) 

returns 
device 
number 

{dkipopen, nulldev, dkipstrategy, dkipdump, /*0*/ -------' 
dkipsize, 0, nodev, DEV _FUNNEL_NULL 

}, 

}; 

To dynamically delete entry points from the bdevsw (block device switch) 
table, call the bdevsw de 1 interface. The following code fragment shows 
a call to bdevsw dei: 

int retval; 

retval bdevsw_del(dkip_devno); ffi 

ill Shows that bdevsw del takes one argument: the device number 
specified in a previoUS call to bdevsw add. This number was stored in 
the dkip _ devno variable. -

9-26 Using Kernel Interfaces with Device Drivers 



Figure 9-10 shows the results of bdevsw de 1, based on the code 
fragment. As the figure shows, bdevsw del identifies as zero the 
device number for the dkip device and deletes the driver entry points 
from the bdevsw table. The bdevsw del interface deletes the driver's 
entry points from the in-memory resident bdevsw table. It does not 
change the /usr / sys / io/ common/ conf. c file, which is used to 
build the kernel. Thus, the driver's entry points are dynamically deleted 
from the bdevsw table for loadable drivers. 

Upon successful completion, bdevsw _del returns the value zero (0). 

Figure 9-10: Results of the bdevsw_del Interface 

r~.;-~~ = bdevsw_del (dkip_devno) ; 

returns 0 for L 
successful completion removes from table---, 

In-memory bdevsw table 

struct bdevsw bdevsw[MAX_BDEVSW] = 

{dkipopen, nulldev, dkipstrategy, dkipdump, /*0*/ 4-------' 

dkipsize, 0, nodev, DEV _FUNNEL_NULL 
}, 

}; 

9.6.2 Adding or Deleting Entry Points in the cdevsw Table 
To dynamically add entry points to the cdevsw (character device switch) 
table for loadable drivers, call the cdevsw add interface. The following 
code fragment shows a call to cdevsw _add: 

struct cdevsw cb cdevsw entry = { 
cbopen, - -
cbclose, 
cbread, 
cbwrite, 
cbioctl, 
nodev, 

Using Kernel Interfaces with Device Drivers 9-27 



} ; 

nodev, 
0, 
nodev, 
0, 

° 

dev t cb_cdevno; 

cdevno cdevsw_add(cdevno,&cb_cdevsw_entry); ill 

cb devno = cdevno; ~ 

III Shows that cdevsw add takes two arguments. The first argument 
specifies the device number to use for the cdevsw device switch table 
entry (slot). In this example, the device number is stored in the cdevno 
variable. The device number is usually obtained in a previous call to the 
makedev interface. 

The second argument specifies the character device switch structure that 
contains the character device driver's entry points. In this example, the 
cb cdevsw entry structure contains the device drive entry points for 
the -/ dev / cb driver. 

Figure 9-11 shows the results of cdevsw add, based on the code 
fragment. This code would appear in the driver source, cb. c. As the 
figure shows, cdevsw add identifies as 26 the device number for the 
CB device and adds the-driver entry points contained in the 
cb cdevsw entry structure. The cdevsw add interface adds the 
driver's entry points into the in-memory resideiii cdevsw table. It does 
not change the /usr/sys/io/common/conf.c file, which is used to 
build the kernel. Thus, the driver's entry points are dynamically added to 
the cdevsw table for loadable drivers. 

Upon successful completion, cdevsw add returns the device number 
associated with the entry in the cdevsw table. In the example, the 
device number is the value 26. 

12] Stores the table entry slot for this CB device in the cb cdevno variable 
for use later by the cdevsw _del interface. -

9-28 Using Kernel Interfaces with Device Drivers 



Figure 9-11: Results of the cdevsw_add Interface 

cb.c cb.c 

struct cdevsw cb_cdevsw_entry={ 
cbopen, 

cdevno = cdevsw_add (cdevno, &cb_cdevsw_entry) 
A \ Y ) 

cbclose, 
cbread, 
cbwrite, 
cbioctl, 
nodev, 
nodev, 
0, 
nodev, 
0, 
DEV _FUNNEL_NULL 

}; 

In-memory cdevsw table 

struct cdevsw cdevsw[MAX.CDEVSW]= 
{ 

'------+{ cbopen, cbclose, cbread, cbwrite, 1*26*/ 
cbioctl, nodev, nodev, 0, 
nodev,O, DEV_FUNNEL_NULL}, 

}; 

returns device number 

To dynamically delete entry points from the cdevsw (character device 
switch) table, call the cdevsw del interface. The following code fragment 
shows a call to cdevsw del:-

int retval; 

retval cdevsw_del(cb_cdevno); m 

ill Shows that cdevsw de 1 takes one argument: the device number 
specified in a previoUs call to cdevsw add. This number was stored in 
the cb cdevno variable. -

Figure 9-12 shows the results of cdevsw _del, based on the code 

Using Kernel Interfaces with Device Drivers 9-29 



fragment. As the figure shows, cdevsw del identifies as 26 the device 
number for the CB device and deletes the-driver entry points from the 
cdevsw table. The cdevsw del interface deletes the driver's entry 
points from the in-memory reSident cdevsw table. It does not change 
the lusrlsys/io/common/conf.c file, which is used to build the 
kernel. Thus, the driver's entry points are dynamically deleted from the 
cdevsw table for loadable drivers. 

Upon successful completion, cdevsw _add returns the value zero (0). 

Figure 9-12: Results of the cdevsw_dellnterface 

~~e~~1 = cdevsw_del(cb_cdevno) ; 

I ,~ 

returns 0 for 
successful completion 

In-memory cdevsw table 
"~~"---"-'~~-----*-"! 

struct cdevsw cdevsw[MAX_CDEVSW] = 

L--___ {cbopen, cbclose, cbread, cbwrite, /*26*/ 
cbioctl, nodev, nodev, 0, -----' 
nodev, 0, DEV _FUNNEL_NULL }, 

}; 

9.6.3 Registering and Enabling a Driver's Interrupt Service 
Interface 

An interrupt service interface is a device driver routine that handles hardware 
interrupts. Driver writers implementing static-only device drivers specify a 
device driver's interrupt service interface in the system configuration file if 
they are following the traditional device driver configuration model and in 
the config. file file fragment if they are following the third-party device 
driver configuration model. Chapter 11 describes both models. 

Loadable device drivers, unlike static device drivers, must call a number of 
kernel interfaces to register, deregister, enable, and disable a device driver's 
interrupt service interface. This section discusses how to register and enable 
a driver's interrupt service interface. Section 9.6.4 discusses how to 

9-30 Using Kernel Interfaces with Device Drivers 



deregister and disable a driver's interrupt service interface. 

To register a device driver's interrupt service interface, call the 
handler add interface. To enable a device driver's interrupt service 
interface, call the handler enable interface. The handler add and 
handler enable interfaces are usually called in the Autoconfiguration 
Support Section of the device driver. The following code fragment and 
discussion focus on the data structures and arguments used in the calls to 
these interfaces. Section 10.8.1 discusses in more detail how these interfaces 
are implemented for the / dev / cb device driver. 

ihandler t handler; ~ 
struct tc intr info info; ~ 
int unit - ctlr->ctlr_num; ~ 

info.intr cbintr; ~ 

handler.ih bus info (char *)&info; ~ 

cb_id_t[unit] handler_add(&handler); ~ 

if (handler_enable(cb id t[unit]) 1= 0) ~ 

I1J Declares an array of IDs that are unique numbers for identifying interrupt 
service interfaces to be acted on by subsequent calls to 
handler enable, handler disable, and handler del. This 
array is filkd with the return values from handler add. These return 
values are opaque keys of type ihandler _ id _ t. -

121 Declares an ihandler t data structure called handler to contain 
information associated wIth the / dev / cb device driver interrupt 
handling. Section 7.8 describes the ihandler _ t structure. 

@! Declares a tc intr info data structure called info. Loadable 
drivers operatmg on the TURBOchannel bus use this interrupt handler 
structure. Section 7.9 describes the tc intr info structure. 

USing Kernel Interfaces with Device Drivers 9-31 



~ Declares a uni t variable and initializes it to the controller number. 

~ Sets the intr member of the info data structure to the pointer to the 
driver's interrupt interface, cbintr. 

!§] Sets the ih bus info member of the handler data structure to the 
address of the buS:-specific information structure, info. 

111 Shows that the handler add interface takes one argument. This 
argument specifies a pointer to an ihandler t data structure. In this 
example, the address of the declared ihandler _ t structure is passed. 

The handler add interface registers a device driver's interrupt service 
interface and its associated ihandler t data structure to the bus­
specific interrupt-dispatching algorithm~ The ih bus member of the 
ihandler t structure specifies the parent bus structure for the bus 
controlling the driver being loaded. For controller devices, 
handler add sets ih bus to the address of the bus structure for the 
bus the controller resides on. 

The handler add interface returns an opaque ihandler id t key, 
which is a unique number used to identify the interrupt service interfaces 
to be acted on by subsequent calls to handler del, 
handler disable, and handler enable. To implement this 
ihandler id t key, each call to handler add causes the 
handler _key data structure to be allocated. -

In the example, handler add returns this opaque ihandler id t 
key to the array of IDs. - - -

~ Shows that the handler enable interface takes one argument. This 
argument specifies a pointer to the interrupt service interface's entry in 
the interrupt table. In the example, handler enable is passed the 
IDs that were returned by handler_add. -

The handler enable interface marks that interrupts are enabled and 
can be dispatched to the driver's interrupt service interfaces, as registered 
in a previous call to handler add. The id argument passed to 
handler enable is used tocall a bus-specific 
adp handler enable interface to perform the bus-specific tasks 
needed to enablethe interrupt service interfaces. 

Upon successful completion, handler enable returns the value zero 
(0). Otherwise, it returns the value -1. -

9.6.4 Deregistering and Disabling a Driver's Interrupt Service 
Interface 

The deregistration of interrupt handlers consists of two calls. The first is a 
call to the handler_disable interface to disable any further interrupts. 

9-32 Using Kernel Interfaces with Device Drivers 



The second call is to the handler del interface to remove the interrupt 
service interfaces. The following code fragments show calls to these 
interfaces: 

if (handler_disable(cb id t[unit]) l= 0) { m 

[1] Shows that the handler disable interface takes one argument. This 
argument specifies a pointer to the interrupt service interface's entry in 
the interrupt table. In the example, handler disable is passed the 
IDs that were returned by handler_add. -

The handler disable interface makes the driver's previously 
registered interrupt service interfaces unavailable to the system. You 
must call handler disable prior to calling handler del. The 
handler disable interface uses the id argument to call a bus­
specific ad!> handler disable interface to perform the bus-specific 
tasks neededto disable the interrupt service interfaces. 

Upon successful completion, handler disable returns the value zero 
(0). Otherwise, it returns the value -1. -

121 Shows that the handler del interface takes the same argument as 
handler disable. The handler del interface uses the id 
argument to call a bus-specific adp handler del interface to remove 
the driver's interrupt service interface. Deregistration of an interrupt 
interface can consist of replacing it with the stray interface to indicate 
that interrupts are no longer expected from this device. The stray 
interface is a generic interface used as the interrupt handler when there is 
no corresponding interrupt service interface. 

The handler del interface deregisters a device driver's interrupt 
service interface from the bus-specific interrupt-dispatching algorithm. In 
addition, the interface unlinks the handler key structure associated 
with the interrupt interface. Prior to deleting the interrupt interface, the 
device driver should have disabled it by calling handler disable. If 
the interrupt interface was not disabled, handler_del returns an error. 

Upon successful completion, handler del returns the value zero (0). 
Otherwise, it returns the value -1. -

Using Kernel Interfaces with Device Drivers 9-33 



9.6.5 Merging the Configuration Data 
To merge the configuration data, call the ldbl stanza resolver 
interface. This interface is generally called in the section of the driver that 
implements the tasks associated with the configurable (loadable) driver. 
Section 10.9.2 discusses in more detail how this interface is implemented for 
the / dev / cb device driver: The following code fragment shows a call to 
this interface: 

#define CB BUSNAME "tc" 

struct driver cbdriver cbprobe, 0, cbattach, 0, 0, 0, 0, 0, 
"cb", cbinfo, 0, 0, 0, 0, 0, 
cb_ctlr_unattach, ° }; 

/* module driver intr b4 itr aft adpt */ -
/* name name probe attach type config */ 
/* ------- ------- */ 
{ "CB "cb" , ° , 1 , 'c' , o} , 
{ } /* Null terminator in the table */ 

} ; 

if (ldbl_stanza_resolver(indata->config_name, 
CB BUSNAME, &cbdriver, 

} [1] 

(caddr_t *)cb_option_snippet) 1= 0) { 
return(EINVAL); 

ill Shows that the ldbl stanza resolver interface takes four 
arguments: 

A driver_name argument 

The first argument specifies the driver name that was entered as the 
stanza entry in the stanza. loadable file fragment. The example 
passes the conf ig name member of the pointer to the 
device conf ig -t data structure. This member contains the name 
of the controlling device driver, which in the example is the cb 
driver. The name cb was entered in the stanza .loadable file 
fragment. 

9-34 Using Kernel Interfaces with Device Drivers 



- A paren t _bus argument 

The second argument specifies the name of the parent bus structure. 
This name is obtained from the conf ig program. The example 
specifies that this is a TURBOchannel bus by passing the constant 
CB BUSNAME. This constant is defined as the characters tc. 

- A driver_struct argument 

The third argument specifies a pointer to the driver structure for 
the controlling device driver. The example passes the address of the 
cbdr i ver structure, which the code fragment shows was previously 
initialized in the driver. 

- A bus _param argument 

The fourth argument specifies a bus-specific parameter. The example 
passes a snippet table, the bus-specific parameter most commonly 
passed for the TURBOchannel bus. The example shows that the 
snippet table is initialized in the driver. The snippet table adheres to 
the same format found in the tc option data. c table for static 
drivers. --

The Idbl stanza resolver interface allows device drivers to 
merge the system configuration data specified in the 
stanza .loadable file fragment into the hardware topology tree 
created at static configuration time. This operation results in a kernel 
memory resident hardware topology tree that consists of both loadable 
and static drivers. The driver later calls the Idbl ctlr configure 
interface, which accesses this hardware topology tree. Forthis reason, 
Idbl stanza resolver is called prior to 
Idbl-ctlr configure. Part of this operation involves calling a 
bus-specific configuration resolver interface that searches for devices that 
can be autoconfigured. The parent bus argument is used to locate 
these bus-specific configuration resolver interfaces. The config 
program passes the value in the config name member of the 
device _ conf ig_ t data structure. -

The conf ig_ resol ver interface can return the following values: 

ESUCCESS 
The interface successfully merged the configuration data. 

ENOMEM 
The system was unable to allocate enough memory to complete the 
resolver operations. 

LDBL ENOBUS 
The specified parent bus structure does not exist. 

USing Kernel Interfaces with Device Drivers 9-35 



9.6.6 Configuring and Unconfiguring the Specified Controller 
To configure the specified controller, call the ldbl ctlr configure 
interface. This interface is generally called in the section of the driver that 
implements the tasks associated with the configurable (loadable) driver. The 
following code fragment shows a call to this interface. Section 10.9.2 
discusses in more detail how this interface is implemented for the / dev / cb 
device driver. 

#define CB_BUSNAME "te" 

struet driver ebdriver = { ebprobe, 0, ebattaeh, 0, 0, 0, 0, 0, 
"eb", ebinfo, 0, 0, 0, 0, 0, 
eb_etlr_unattaeh, 0 }; 

if (ldbl etlr eonfigure(CB BUSNAME, LDBL WILDNUM, indata->config_name, 
- - &ebdriver, 0)) {­

return(EINVAL); 
} ill 

[1] Shows that the ldbl_ ctlr _ conf igure interface takes five 
arguments: 

- The first argument specifies the bus name. The example specifies that 
this is a TURBOchannel bus by passing the constant CB BUSNAME. 
This constant is defined as the characters tc. -

- The second argument specifies the bus number. The example passes 
the wildcard constant LDBL WILDNUM, which indicates that all 
instances of the controller should be configured. This constant is 
defined in the file 
/usr/sys/include/io/common/devdriver.h. 

- The third argument specifies the name of the controlling device 
driver. The example passes the config name member of the 
pointer to the device config t datastructure. This member 
contains the name of the controlling device driver, which in the 
example is the / dev / cb driver. 

- The fourth argument specifies a pointer to the dr i ver structure for 
the controlling device driver. The example passes the address of the 
cbdr i ver structure, which the code fragment shows was previously 

9-36 Using Kernel Interfaces with Device Drivers 



initialized in the driver. 

- The fifth argument specifies miscellaneous flags contained in the file 
/usr/sys/include/io/common/devdriver loadable.h. 
The example passes the value zero (0) to indicate thatno flags are 
being passed. 

If ldbl ctlr conf igure returns an unsuccessful status (a nonzero 
value), the driver aborts the configuration operation by returning 
EINVAL. 

Call the ldbl ctlr unconfigure interface to unconfigure the specified 
controller. ThIS interface is generally called in the section of the driver that 
implements the tasks associated with the unconfiguration of the loadable 
driver. Section 10.9.3 discusses in more detail how this interface is 
implemented for the / dev / cb device driver. 

#define CB BUSNAME "tc" 

struct driver cbdriver = { cbprobe, 0, cbattach, 0, 0, 0, 0, 0, 
"cb", cbinfo, 0, 0, 0, 0, 0, 
cb_ctlr_unattach, ° }i 

if (ldbl ctlr unconfigure(CB BUSNAME, LDBL WILDNUM, &cbdriver, 
- - LDBL_WILDNAME, LDBL_WILDNUM) 1= 0) { m 

[jJ Shows that the ldbl_ ctlr _ unconfigure interface takes five 
arguments: 

- The first argument specifies the bus name. The example specifies that 
this is a TURBOchannel bus by passing the constant CB BUSNAME. 
This constant is defined as the characters tc. -

- The second argument specifies the bus number. The example passes 
the wildcard constant LDBL WILDNUM to indicate that 
ldbl_ ctlr _ unconf igure will match any controller. 

- The third argument specifies a pointer to the dr i ver structure for 
the controlling device driver. The example passes the address of the 
cbdr i ver structure, which the code fragment shows was previously 
initialized in the driver. 

- The fourth argument specifies the controller name. You can pass the 
controller name as it was specified in the stanza .loadable file 
fragment, or you can pass the wildcard constant LDBL WILDNAME to 
indicate that you want the interface to scan all controller 

Using Kernel Interfaces with Device Drivers 9-37 



structures. The example passes the wildcard constant. 

- The fifth argument specifies the controller number. You can pass the 
controller number as it was specified in the stanza .loadable file 
fragment, or you can pass the wildcard constant LDBL WILDNUM to 
indicate that you want the interface to scan all controller 
structures. The example passes the wildcard constant. 

The call to ldbl ctlr unconf igure indirectly results in a call to the 
driver's cb ctlr unattach interface, which deregisters the driver's 
interrupt handlers. -

9.7 Input/Output (I/O) Handle-Related Interfaces 
To provide device driver binary compatibility across different bus 
architectures, different CPU architectures, and different CPU types within the 
same CPU architecture, DEC OSFIl represents 110 bus address spaces 
through an 110 handle. An 110 handle is a data entity that is of type 
io handle t. Device drivers use the 110 handle to reference bus address 
space (either i/o space or memory space). The bus configuration code passes 
the 110 handle to the device driver's xxprobe interface during device 
autoconfiguration. An 110 handle has similar properties as memory-mapped 
registers on other UNIX-based systems (for example, TURBOchannel base 
address regions on ULTRIX Mips). 

You can perform standard C mathematical operations on the 110 handle. For 
example, you can add an offset to or subtract an offset from the I/O handle. 
The following list points out restrictions on the use of the I/O handle: 

• You cannot add two I/O handles. 

• You cannot pass an 110 handle directly to the PHYS _ TO _ KSEG interface . 

Device drivers needing a local bus address can mask out the lower bits of the 
110 handle. 

One purpose of the I/O handle is to hide CPU -specific architecture 
idiosyncracies that describe how to access a device's control status registers 
(CSRs) and how to perform 110 copy operations. For example, rather than 
performing an 110 copy operation according to a specific CPU architecture, 
you call an 110 copy interface that uses the 110 handle. The use of the 110 
handle guarantees device driver portability across those CPUs on which the 
110 copy interface is implemented. 

The following categories of kernel interfaces use an 110 handle: 

• Control status register (CSR) 110 access interfaces 

• 110 copy interfaces 

9-38 Using Kernel Interfaces with Device Drivers 



The following sections discuss how the interfaces associated with each 
category use the I/O handle. 

9.7.1 Control Status Register (CSR) Input/Output (I/O) Access 
Interfaces 

As discussed in Section 2.4.1, one of the issues that influences device driver 
design is whether to read from and write to a device's control status register 
(CSR) addresses by directly accessing its device registers. To help you write 
more portable device drivers, Digital provides a number of kernel interfaces 
that allow you to read from and write to a device's CSR addresses without 
directly accessing its device registers. Specifically, these interfaces allow you 
to: 

• Read data from a device register 

• Write data to a device register 

The following sections describe the kernel interfaces that perform these tasks. 

9.7.1.1 Reading Data from a Device Register 

To read data from a device register located in bus address space, call the 
read io port interface. The read io port interface is a generic 
interface that maps to a bus- and machine-specific interface that actually 
performs the read operation. Using this interface to read data from a device 
register makes the device driver more portable across different bus 
architectures, different CPU architectures, and different CPU types within the 
same CPU architecture. 

The following code fragment shows a call to read _ io _port: 

struct xx softc { 

iohandle t iohandle; m 

} ; 

xxprobe(addr, ctlr) 
iohandle_t addr; ~ 
struct controller *ctlr; 

{ 
register struct xx softc *sc; ~ 

Using Kernel Interfaces with Device Drivers 9-39 



u_long hw_id; ~ 

sc->iohandle addr; ~ 

xxwrite(dev, uio, flag) 
dev_t dev; 

{ 

} 

register struct uio *uio; 
int flag; 

hw id read_io_port(sc->iohandle, 4, 0); ~ 

[jJ Defines a softc structure that contains a member that stores the I/O 
handle. Typically, you define the softc structure in a name data. c 
file. -

121 The bus configuration code passes an I/O handle to the example driver's 
xxprobe interface. An I/O handle is a data entity that is of type 
io handle t. Assume that this example driver operates on a bus that 
passes the I/Ohandle to the probe interface's first argument. The 
arguments you pass to the probe interface differ according to the bus on 
which the driver operates. See the bus-specific device driver manual, 
which describes the probe interface as it applies to the specific bus. 

@! Declares a pointer to a softc structure and calls it sc. The example 
device driver uses the iohandle member of the sc pointer to store the 
I/O handle for use in future calls to the CSR I/O access kernel interfaces. 

~ Declares a variable called hw id to store the data returned by 
read_io_port. -

15I Stores the I/O handle passed in by the bus configuration code in the 
iohandle member of the sc pointer. 

I§I Calls read io port in the xxwr i te interface to read a longword (32 
bits) from adevlce register located in the bus I/O address space. The 
read _io _port interface takes three arguments: 

- The first argument specifies an I/O handle that you can use to 
reference a device register located in bus address space (either I/O 
space or memory space). This I/O handle references a device register 
in the bus address space where the read operation originates. 

You can perform standard C mathematical operations on the I/O 
handle. For example, you can add an offset to or subtract an offset 
from the I/O handle. In the example, the I/O handle passed to 

9-40 Using Kernel Interfaces with Device Drivers 



read io port is the one passed to xxprobe and stored in the 
iohandle member of the sc pointer. 

The second argument specifies the width (in bytes) of the data to be 
read. Valid values are I, 2, 3, 4, and 8. Not all CPU platforms 
support all of these values. The example driver passes the value 4 for 
the width. 

The third argument specifies flags to indicate special processing 
requests. Currently, no flags are used. Because there are not flags, 
the example driver passes the value zero (0). 

Upon successful completion, read io port returns the requested data 
from the device register located in the bus address space: a byte (8 bits), a 
word (16 bits), a longword (32 bits), or a quadword (64 bits). This interface 
returns data justified to the low-order byte lane. For example, a byte (8 bits) 
is always returned in byte lane 0 and a word (16 bits) is always returned in 
byte lanes 0 and 1. 

In this example, read _ io _port returns a longword. 

The previous example shows how a device driver reads data from a device 
register by directly calling read io port. Another way to read data from 
a device register is to use read 1.0 port to construct driver-specific 
macros, as in the following example: 

#define xx ID Oxe80 ill 
#define XX-CSR OxeOO 
#define XX-BAT Oxe04 
#define XX-HIBASE Oxe08 
#define XX CONFIG OxeOe 
#define XX-ID Oxe80 
#define XX=CTRL Oxe84 

struet xx_softe { 

iohandle t iohandle; 

} ; 

#define XX_READ_D8(a) read_io_port(se->iohandle I (io_handle_t)a, 1, 0) ~ 
#define XX READ D16(a) read io port(se->iohandle I (io handle t)a, 2, 0) 
#define XX=READ=D32 (a) read=io=port(se->iohandle I (io=handle=t)a, 4, 0) 

xxprobe(addr,etlr) 

Using Kernel Interfaces with Device Drivers 9-41 



iohandle t addri 
struct controller *ctlri 

{ 

register struct xx softc *SCi 
unsigned int hw_id; 

sc->iohandle = addri ~ 

[1] Defines offsets to the device registers. Typically, you define these device 
register offesets in a device register header file. 

121 Constructs driver-specific macros by using the read io port 
interface. The macros construct the first argument by ORIng the 1/0 
handle and a device register offset for some xx device. To obtain the 
correct offset with large offsets like Oxc84, you may need to perform an 
addition operation instead of an OR operation. 

~ Calls the xx READ D 32 macro to read a longword from the device 
register assoCIated wIth the xx _ID offset. 

9.7.1.2 Writing Data to a Device Register 

To write data to a device register located in bus address space, call the 
wr i te io port interface. The wr i te io port interface is a generic 
interface that maps to a bus- and machine-specific interface that actually 
performs the write operation. Using this interface to write data to a device 
register makes the device driver more portable across different bus 
architectures, different CPU architectures, and different CPU types within the 
same CPU architecture. 

The following code fragment shows a call to wr i te io port from a 
device driver's xxprobe interface to write data to some device register 
located in the bus 110 address space: 

struet xx safte { 

iahandle t iahandle; ill 

9-42 Using Kernel Interfaces with Device Drivers 



} ; 

xxprobe(addr, ctlr) 
iohandle_t addr; ~ 
struct controller *ctlr; 

{ 
register struct xx so ftc *sc; ~ 

sc->iohandle addr; ~ 

xxwrite(dev, uio, flag) 
dev t dev; 

{ 

regIster struct uio *uio; 
int flag; 

write_io_port(sc->iohandle, 4, BUS_lO, Oxl); ~ 

[jJ Defines a softc structure that contains a member that stores the 110 
handle. Typically, you define the softc structure in a name data. c 
file. -

121 The bus configuration code passes an 110 handle to the example driver's 
xxprobe interface. An 110 handle is a data entity that is of type 
io handle t. Assume that this example driver operates on a bus that 
passes the 1/0-handle to the probe interface's first argument. The 
arguments you pass to the probe interface differ according to the bus on 
which the driver operates. See the bus-specific device driver manual, 
which describes the probe interface as it applies to the specific bus. 

@] Declares a pointer to a softc structure and calls it sc. The example 
device driver uses the iohandle member of the sc pointer to store the 
1/0 handle for use in future calls to the CSR 110 access kernel interfaces. 

~ Stores the I/O handle passed in by the bus configuration code in the 
iohandle member of the sc pointer. 

1£ Calls wr i te io port in the xxwr i te interface to write a longword 
(32 bits) to a device register located in the bus 1/0 address space. The 
wr i te _ io _port interface takes four arguments: 

- The first argument specifies an 110 handle that you can use to 
reference a device register located in bus address space (either I/O 
space or memory space). This 1/0 handle references a device register 

Using Kernel Interfaces with Device Drivers 9-43 



in the bus address space where the write operation occurs. 

You can perform standard C mathematical operations on the I/O 
handle. For example, you can add an offset to or subtract an offset 
from the I/O handle. In the example, the I/O handle passed to 
wr i te io port is the one passed to xxprobe and stored in the 
iOhandle -member of the sc pointer. 

The second argument specifies the width (in bytes) of the data to be 
written. Valid values are 1, 2, 3, 4, and 8. Not all CPU platforms 
support all of these values. The example driver passes the value 4 for 
the width. 

The third argument specifies flags to indicate special processing 
requests. Currently, no flags are used. Because no flags are used, the 
example driver passes the value zero (0). 

The fourth argument specifies the data to be written to the specified 
device register in bus address space. The example driver passes the 
value Oxl. 

The wr i te _ io _port interface has no return value. 

The previous example shows how a device driver writes data to a device 
register by directly calling wr i te io port. Another way to write data to 
a device register is to use wr i te "10 port to construct driver-specific 
macros, as in the following examPie: -

#define xx ID Oxe80 ~ 
#define XX-CSR OxeOO 
#define XX-BAT Oxe04 
#define XX-HIBASE Oxe08 
#define XX-CONFIG OxeOe 
#define XX-ID Oxe80 
#define XX-CTRL Oxe84 

struct xx softe 

iohandle t iohandle; 

} ; 

. 
#define XX_WRITE_D8(a,d) write_io_port(se->iohandle I (io_handle_t)a, 1, 0, d) ~ 
#define XX WRITE D16(a) write io port(se->iohandle I (io handle t)a, 2, 0, d) 
#define XX=WRITE=D32(a) write=io=port(se->iohandle I (io=handle=t)a, 4, 0, d) 

9-44 Using Kernel Interfaces with Device Drivers 



xxprobe(addr,ctlr) 
iohandle_t addri 

{ 
struct controller *ctlri 

register struct xx_softc *SCi 

sc->iohandle = addri ~ 

[1] Defines offsets to the device registers. Typically, you define these device 
register offesets in a device register header file. 

121 Constructs driver-specific macros by using the wr i te io port 
interface. Note that the macros construct the first argurnent"hy ORing the 
I/O handle and a device register offset for some xx device. To obtain the 
correct offset with large offsets like Oxc84, you may need to perform an 
addition operation instead of an OR operation. 

~ Calls the xx WRITE D32 macro to write the value zero (0) to the 
device register associated with the xx_ ID offset. 

9.7.2 Input/Output (I/O) Copy Interfaces 

DEC OSFIl provides several generic interfaces to copy a block of memory to 
or from I/O space. These generic interfaces map to bus- and machine­
specific interfaces that actually perform the copy operation. Using these 
interfaces to copy a block of memory to or from I/O space makes the device 
driver more portable across different CPU architectures and differenct CPU 
types within the same architecture. These generic interfaces allow device 
drivers to: 

• Copy a block of memory from I/O address space to system memory 

• Copy a block of byte-contiguous system memory to I/O address space 

• Copy a memory block of I/O address space to another memory block of 
I/O address space 

Each of these interfaces is discussed in the following sections. 

Using Kernel Interfaces with Device Drivers 9-45 



9.7.2.1 Copying a Block of Memory from 1/0 Address Space to System 
Memory 

To copy data from bus address space to system memory, call the 
io copyin interface. The io copyin interface is a generic interface that 
maps to a machine-specific interface that actually performs the copy from bus 
address space to system memory. Using io copyin to perform the copy 
operation makes the device driver more portable across different CPU 
architectures and different CPU types within the same architecture. 

The following code fragment shows a call to io copyin to copy the 
memory block: -

struct xx softc { 

iohandle t iohandle; ill 

} ; 

xxprobe(addr, ctlr) 
iohandle t addr; ~ 
struct controller *ctlr; 

{ 
register struct xx softc *sc; ~ 
int ret_val; ~ 

sc->iohandle addr; [5] 

xxwrite(dev, uio, flag) 
dev_t dev; 

{ 

} 

register struct uio *uio; 
int flag; 

char * buf; 
buf = (char *)kalloc(PAGE SIZE); 
ret val io_copyin(sc->iohandle, buf, PAGE_SIZE); ~ 

9-46 Using Kernel Interfaces with Device Drivers 



III Defines a softc structure that contains a member that stores the I/O 
handle. Typically, you define the softc structure in a name data. c 
file. --

121 The bus configuration code passes an I/O handle to the example driver's 
xxprobe interface. An I/O handle is a data entity that is of type 
io handle t. Assume that this example driver operates on a bus that 
passes the I/O--handle to the probe interface's first argument. The 
arguments you pass to the probe interface differ according to the bus on 
which the driver operates. See the bus-specific device driver manual, 
which describes the probe interface as it applies to the specific bus. 

~ Declares a pointer to a softc structure and calls it sc. The example 
device driver uses the iohandle member of the sc pointer to store the 
1/0 handle for use in future calls to the CSR I/O access kernel interfaces. 

~ Declares a variable called ret __ val to store the value returned by 
io __ copyin. 

~ Stores the 1/0 handle passed in by the bus configuration code in the 
iohandle member of the sc pointer. 

[§] Calls io copyin in the xxwri te interface to copy a block of memory 
from I/Oaddress space to system memory. The io copyin interface 
takes three arguments: --

- The first argument specifies an I/O handle that you can use to 
reference a device register located in bus address space (either I/O 
space or memory space). For io copyin, the 1/0 handle identifies 
the location in bus address space where the copy originates. You can 
perform standard C mathematical operations on the I/O handle. For 
example, you can add an offset to or subtract an offset from the 1/0 
handle. 

In the example, the I/O handle passed to io copy in is the one 
passed to xxprobe and stored in the iohandle member of the sc 
pointer. 

- The second argument specifies the kernel virtual address where 
io __ copy in copies the data to in system memory. 

The example calls the kalloc interface to obtain the kernel virtual 
address where io __ copyin copies the data to in system memory. 

- The third argument specifies the number of bytes in the data block to 
be copied. The interface assumes that the buffer associated with the 
data block is physically contiguous. 

The example uses the PAGE SIZE constant for the number of bytes 
in the memory block to be copied. 

Upon successful completion, io copyin returns lOA OKAY. It 
returns the value -Ion failure. -- --

Using Kernel Interfaces with Device Drivers 9-47 



9.7.2.2 Copying a Block of Byte-Contiguous System Memory to 110 
Address Space 

To copy data from system memory to bus address space, call the 
io copyou t interface. The io copyou t interface is a generic interface 
that maps to a bus- and machine-specific interface that actually performs the 
copy to bus address space. Using io copyout to perform the copy 
operation makes the device driver more portable across different CPU 
architectures and different CPU types within the same architecture. 

The following code fragment shows a call to io copyout to copy the 
memory block: -

struct xx softc { 

iohandle t iohandle; ill 

} ; 

xxprobe(addr, ctlr) 
iohandle_t addr; ~ 
struct controller *ctlr; 

{ 
register struct xx softc *sc; ~ 
int ret_val; ~ 

sc->iohandle addr; [5] 

xxwrite(dev, uio, flag) 
dev_t dev; 

{ 

} 

register struct uio *uio; 
int flag; 

char * buf; 
buf = (char *)kalloc(PAGE SIZE); 
ret val io_copyout(buf, sc->iohandle, PAGE_SIZE); ~ 

9-48 Using Kernel Interfaces with Device Drivers 



ill Defines a so ftc structure that contains a member that stores the I/O 
handle. Typically, you define the softc structure in a name data. c 
file. -

121 The bus configuration code passes an I/O handle to the example driver's 
xxprobe interface. An 1/0 handle is a data entity that is of type 
io handle t. Assume that this example driver operates on a bus that 
passes the I/O-handle to the probe interface's first argument. The 
arguments you pass to the probe interface differ according to the bus on 
which the driver operates. See the bus-specific device driver manual, 
which describes the probe interface as it applies to the specific bus. 

@! Declares a pointer to a softc structure and calls it sc. The example 
device driver uses the iohandle member of the sc pointer to store the 
I/O handle for use in future calls to the CSR I/O access kernel interfaces. 

~ Declares a variable called ret_val to store the value returned by 
io _ copyou t. 

15] Stores the I/O handle passed in by the bus configuration code in the 
iohandle member of the sc pointer. 

I§] Calls io copyout in the xxwri te interface to copy a block of byte­
contiguoUs system memory to 1/0 address space. The io copyout 
interface takes three arguments: -

- The first argument specifies the kernel virtual address where the copy 
originates from in system memory. 

The example calls the kalloc interface to obtain the kernel virtual 
address where the copy originates from in system memory. 

- The second argument specifies an I/O handle that you can use to 
reference a device register located in bus address space (either I/O 
space or memory space). For io copyout, the I/O handle 
identifies the location in bus address space where the copy occurs. 
You can perform standard C mathematical operations on the I/O 
handle. For example, you can add an offset to or subtract an offset 
from the 1/0 handle. 

In the example, the I/O handle passed to io copyout is the one 
passed to xxprobe and stored in the iOhandle member of the sc 
pointer. 

- The third argument specifies the number of bytes in the data block to 
be copied. The interface assumes that the buffer associated with the 
data block is physically contiguous. 

The example uses the PAGE SIZE constant for the number of bytes 
in the memory block to be copied. 

Upon successful completion, io copyout returns lOA OKAY. It 
returns the value -Ion failure. - -

Using Kernel Interfaces with Device Drivers 9-49 



9.7.2.3 Copying a Memory Block of 1/0 Address Space to Another 
Memory Block of 1/0 Address Space 

To copy data from one location in bus address space to another location in 
bus address space, call the io copyio interface. The io copyio 
interface is a generic interface that maps to a bus- and machlne-specific 
interface that actually performs the copy of data from one location in bus 
address space to another location in bus address space. Using io copyio 
to perform the copy operation makes the device driver more portable across 
different CPU architectures and different CPU types within the same 
architecture. 

The following code fragment shows a call to io copyio to copy the 
memory block: -

struct xx softc { 

iohandle t iohandle; ill 

} ; 

xxprobe(addr, ctlr) 
iohandle_t addr; ~ 
struct controller *ctlr; 

{ 
register struct xx so ftc *sc; ~ 
int ret_val; ~ 

sc->iohandle addr; ~ 

xxwrite(dev, uio, flag) 
dev_t dev; 

{ 

register struct uio *uio; 
int flag; 

ret val io_copyio(sc->iohandle, sc->iohandle, PAGE_SIZE); l§] 

9-50 Using Kernel Interfaces with Device Drivers 



III Defines a softc structure that contains a member that stores the I/O 
handle. Typically, you define the softc structure in a name data. c 
file. -

121 The bus configuration code passes an I/O handle to the example driver's 
xxprobe interface. An I/O handle is a data entity that is of type 
io handle t. Assume that this example driver operates on a bus that 
passes the I/O-handle to the probe interface's first argument. The 
arguments you pass to the probe interface differ according to the bus on 
which the driver operates. See the bus-specific device driver manual, 
which describes the probe interface as it applies to the specific bus. 

@] Declares a pointer to a softc structure and calls it sc. The example 
device driver uses the iohandle member of the sc pointer to store the 
I/O handle for use in future calls to the CSR I/O access kernel interfaces. 

~ Declares a variable called ret _val to store the value returned by 
io_copyio. 

~ Stores the I/O handle passed in by the bus configuration code in the 
iohandle member of the sc pointer. 

I§] Calls io copy io in the xxwr i te interface to copy a memory block of 
I/O address space to another memory block of I/O address space. The 
io _ copy io interface takes three arguments: 

- The first argument specifies an I/O handle that you can use to 
reference a device register located in bus address space (either I/O 
space or memory space). For io copyio, this I/O handle identifies 
the location in bus address space where the copy originates. You can 
perform standard C mathematical operations on the I/O handle. For 
example, you can add an offset to or subtract an offset from the I/O 
handle. 

In the example, the I/O handle passed to io copyio is the one 
passed to xxprobe and stored in the iohandle member of the sc 
pointer. 

- The second argument specifies an I/O handle that you can use to 
reference a device register located in bus address space (either I/O 
space or memory space). In this case, the I/O handle identifies the 
location in bus address space where the copy occurs. In the example, 
the I/O handles passed to io copyio is the one passed to 
xxprobe and stored in the rohandle member of the sc pointer. 

- The third argument specifies the number of bytes in the data block to 
be copied. The interface assumes that the buffer associated with the 
data block is physically contiguous. The example uses the 
PAGE SIZE constant for the number of bytes in the memory block 
to be copied. 

Using Kernel Interfaces with Device Drivers 9-51 



Upon successful completion, io copyio returns rOA OKAY. It 
returns the value -Ion failure. - -

9.8 DMA-Related Interfaces 
As discussed in Section 2.4.3, one of the issues that influences device driver 
design is the technique for performing direct memory access (DMA) 
operations. Whenever possible, you should design device drivers so that they 
can accommodate DMA devices connected to different buses operating on a 
variety of Alpha AXP CPU s. The different buses can require different 
methods for accessing bus I/O addresses and the different Alpha AXP CPU s 
can have a variety of DMA hardware support features. 

To help you overcome the differences in DMA operations across the different 
buses and Alpha AXP CPU s, DEC OSFIl provides a package of mapping 
interfaces. The mapping interfaces provide a generic abstraction to the kernel­
and system-level mapping data structures and to the mapping interfaces that 
actually perform the DMA transfer operation. This work includes acquiring 
the hardware and software resources needed to map contiguous I/O bus 
addresses (accesses) into discontiguous system memory addresses (accesses). 

Using the mapping interfaces makes device drivers more portable between 
major releases of the DEC OSFIl operating system (and different hardware 
support for I/O buses) because it masks out any future changes in the kernel­
and system-level DMA mapping data structures. Specifically, these 
interfaces allow you to: 

• Allocate system resources for DMA data transfers 

• Load and set allocated system resources for DMA data transfers 

• Unload system resources for DMA data transfers 

• Release and deallocate resources for DMA data transfers 

The DMA mapping package also provides convenience interfaces that allow 
you to: 

• Return a pointer to the current bus address/byte count pair 

• Put a new bus address/byte count pair into the list 

• Return a kernel segment (kseg) address of a DMA buffer 

The following sections describe the kernel interfaces that perform these tasks 
and also discuss the DMA handle and the sg entry data structure 
associated with these DMA interfaces. -

9-52 Using Kernel Interfaces with Device Drivers 



9.8.1 DMA Handle 
To provide device driver binary compatibility across different bus 
architectures, different CPU architectures, and different CPU types within the 
same CPU architecture, DEC OSFIl represents DMA resources through a 
DMA handle. A DMA handle is a data entity that is of type 
dma handle t. This handle provides the information to access bus 
address/byte count pairs. Device drivers can view this handle as the tag to 
the allocated system resources needed to perform a direct memory access 
(DMA) operation. 

9.8.2 The sg_entry Structure 
The 8g entry data structure contains two members: ba and be. These 
members represent a bus address/byte count pair for a contiguous block of an 
I/O buffer mapped onto a controller's bus memory space. The byte count 
indicates the number of bytes that the address is contiguously valid for on the 
controller's bus address space. Consider a list entry that has its ba member 
set to aaaa and its be member set to nnnn. In this case, the device can 
perform a contiguous DMA data transfer starting at bus address aaaa and 
ending at bus address aaaa +nnnn-lo 

Table 9-2 lists the members of the 8g entry structure along with their 
associated data types. -

Table 9-2: Members of the s9_entry Structure 

Member Name 

ba 

be 

Data Type 

bus addr t 

u_long 

The ba member stores an I/O bus address. 

The be member stores the byte count associated with the I/O bus address. 
This byte count indicates the contiguous addresses that are valid on this bus. 

9.8.3 Allocating System Resources for DMA Data Transfers 
To allocate resources for DMA data transfers, call the dma map alloe 
interface. Using the dma map alloe interface makes device drivers more 
portable between DMA hardware mapping implementations across different 
hardware platforms because it masks out any future changes in the kernel­
and system-level DMA mapping data structures. 

Using Kernel Interfaces with Device Drivers 9-53 



The following code fragment taken from a / dev / fd device driver shows the 
four arguments associated with the call to dma map alloc. Two of the 
arguments passed to dma map alloc are defined as members of an 
fdcam c las s data structure.-

#define SECTOR SIZE 512 

struct fdcam class 

struct controller *ctlr; 
} ; 

struct fdcam class* fcp = &fc_O; 

if (dma map alloc(SECTOR SIZE, fcp->ctlr, &fcp->&fc_dma_handle, 
- - DMA_SLEEP) == 0) { m 

[1] Shows that dma_map_alloc takes four arguments: 

The first argument specifies the maximum size (in bytes) of the data 
to be transferred during the DMA transfer operation. The kernel uses 
this size to determine the resources (mapping registers, 110 channels, 
and other software resources) to allocate. 

In this example, the byte_count is the value defined by the 
SECTOR SIZE constant. 

The second argument specifies a pointer to the controller 
structure associated with this controller. The interface uses this 
pointer to obtain the bus-specific interfaces and data structures that it 
needs to allocate the necessary mapping resources. In this example, 
ctlr p is the value stored in the ctlr member. Assume that the 
/ dev 7 fd driver previously set the ctlr member to the 
controller structure pointer associated with this device at probe 
time. 

The third argument specifies a pointer to a handle to DMA resources 
associated with the mapping of an in-memory 110 buffer onto a 

9-54 Using Kernel Interfaces with Device Drivers 



controller's 110 bus. This handle provides the information to access 
bus address/byte count pairs. A bus address/byte count pair is 
represented by the ba and be members of an sg entry structure 
pointer. Device drivers can view this handle as the tag to the 
allocated system resources needed to perform a direct memory access 
(DMA) operation. The dma map alloe interface returns to this 
variable the address of the DMA handle. The device driver uses this 
address in a call to dma map load. The dma map alloe 
interface returns to this variable the address of the DMA handle. The 
device driver uses this address in a call to dma _map_load. 

In this example, the DMA handle appears as a member in the 
fdeam elass data structure. 

- The fourth argument specifies special conditions that the device driver 
wants the system to perform. 

In this example, the bit represented by the DMA SLEEP constant is 
passed. This bit puts the process to sleep if thesystem cannot 
allocate the necessary resources to perform a data transfer of size 
byte_count at the time the driver called the interface. 

The code fragment sets up a condition statement that performs some tasks 
based on the value returned by dma map alloe. Upon successful 
completion, dma map alloe returns a byte count (in bytes) that indicates 
the DMA transfersize Tt can map. It returns the value zero (0) to indicate a 
failure. 

9.8.4 Loading and Setting Allocated System Resources for DMA 
Data Transfers 

To load and set allocated system resources for DMA data transfers, call the 
dma map load interface. The dma map load interface is a generic 
interface t11at maps to a bus- and machIne-specific interface that actually 
performs the loading and setting of system resources for DMA data transfers. 
Using this interface in DMA read and write operations makes the device 
driver more portable across different bus architectures, different CPU 
architectures, and differenct CPU types within the same CPU architecture. 

The following code fragment taken from a / dev / fd device driver shows the 
seven arguments associated with the call to dma map load. Note that the 
arguments passed to dma map load are defined as members of an 
fdeam elass data structure.The /dev/fd driver shows an example of 

Using Kernel Interfaces with Device Drivers 9-55 



fixed preallocated DMA resources. 

#define SECTOR SIZE 512 

struct fdcam class 

int rw count; 
unsigned char *rw_buf; 
struct proc *rw proc; 
dma handle t dma_handle; 

struct controller *ctlr; 
} ; 

struct fdcam class* fcp fsb->fcp; 

flags = (fcp->rw op == OP READ) ? DMA IN : DMA OUT; 
if (dma map load(fcp->rw count * SECTOR SIZE, fcp->rw buf, 

- - fcp->rw-proc, fcp->ctlr, fcp->dma handle, 0, 
flags) ~= 0) { ill -

III Shows that dma _map _load takes seven arguments: 

- The first argument specifies the maximum size (in bytes) of the data 
to be transferred during the DMA transfer operation. The kernel uses 
this size to determine the resources (mapping registers, I/O channels, 
and other software resources) to allocate, load, and set. In this 
example, the size is the result of the SECTOR SIZE and the value 
stored in rw count. Assume that the / dev7 fd driver previously 
set the rw count member to some value. 

The second argument specifies the virtual address where the DMA 
transfer occurs. The interface uses this address with the pointer to the 
proc structure to obtain the physical addresses of the system 
memory pages to load into DMA mapping resources. In this 
example, the virtual address is the value stored in the rw buf 
member. Assume that the / dev / fd driver previously set the 
rw count member to some value. 

9-56 Using Kernel Interfaces with Device Drivers 



- The third argument specifies a pointer to the proc structure 
associated with the valid context for the virtual address passed in the 
second argument. The interface uses this pointer to retrieve the pmap 
that is needed to translate this virtual address to a physical address. If 
proc y is equal to zero (0), the address is a kernel address. In this 
example, proc y is the value stored in the rw _proc member. 
Assume that the / dev / fd driver previously set the rw proc 
member to some value. -

- The fourth argument specifies a pointer to the controller structure 
associated with this controller. The dma map load interface uses 
the pointer to get the bus-specific interfaces and data structures that it 
needs to load and set the necessary mapping resources. In this 
example, ctlry is the value stored in the ctlr member. Assume 
that the / dev / fd driver previously set the ctlr member to the 
controller structure pointer associated with this device at probe 
time. 

- The fifth argument specifies a pointer to a handle to DMA resources 
associated with the mapping of an in-memory I/O buffer onto a 
controller's I/O bus. This handle provides the information to access 
bus address/byte count pairs. A bus address/byte count pair is 
represented by the ba and bc members of an s g en try structure 
pointer. Device drivers can view this handle as the tag to the 
allocated system resources needed to perform a direct memory access 
(DMA) operation. 

Typically, the device driver passes an argument of type 
dma handle t *. In this example, the / dev / fd device driver 
simply passes the address of the DMA handle that is a member of the 
fdcam class structure. 

- The sixth argument specifies the maximum-size byte-count value that 
should be stored in the bc members of the sg entry structures. In 
this example, the / dev / fd driver passes the Value zero (0). 

- The seventh argument specifies special conditions that the device 
driver wants the system to perform. In this example, flags is 
DMA IN if rw op evaluates to TRUE (that is, this is a DMA read 
operation). The DMA IN bit indicates that the system should perform 
a DMA write into core memory. Otherwise, flags is DMA OUT if 
rw op evaluates to FALSE (that is, this is a DMA write operation). 
The DMA OUT bit indicates that the system should perform a DMA 
read from-main core memory. 

The code fragment sets up a condition statement that performs some tasks 
based on the value returned by dma map load. Upon successful 
completion, dma map load returns a bYte count (in bytes) that indicates 
the DMA transfersize It can support. It returns the value zero (0) to indicate 

Using Kernel Interfaces with Device Drivers 9-57 



a failure. 

9.8.5 Unloading System Resources for DMA Data Transfers 
To unload the resources that were loaded and set up in a previous call to 
dma map load, call the dma map unload interface. The 
dma - map -unload interface is a generic interface that maps to a bus- and 
machIne-specific interface that actually performs the unloading of system 
resources associated with DMA data transfers. Using this interface in DMA 
read and write operations makes the device driver more portable across 
different bus architectures, different CPU architectures, and differenct CPU 
types within the same CPU architecture. 

The following code fragment taken from a / dev / fd device driver shows the 
two arguments associated with the call to dma map unload. One of the 
arguments passed to dma map unload is defined as a member of an 
fdcam class data structure.-

struct fdcarn class { 

char rw_use_drnai 

drna handle t drna_handlei 

} i 

struct fdcarn class* fcp fsb->fcPi 

if (fcp->rw use drna) { 
drna_rnap=unload(O, fcp->drna_handle)i 

} ill 

[1] Shows that dma _map_unload takes two arguments: 

- To cause a deallocation of DMA mapping resources, set this argument 
to the special condition bit DMA _ DEALLOC. 

9-58 Using Kernel Interfaces with Device Drivers 



This bit setting is analogous to setting the dma _ handl e y argument 
to the value zero (0) for dma _map _load to allocate the DMA 
mapping resources. 

In this example, the / dev / fd driver passes the value zero (0) to 
indicate that it did not want to deallocate the DMA mapping 
resources. 

- The second argument specifies a handle to DMA resources associated 
with the mapping of an in-memory I/O buffer onto a controller's I/O 
bus. This handle provides the information to access bus address/byte 
count pairs. A bus address/byte count pair is represented by the ba 
and bc members of an sg entry structure pointer. Device drivers 
can view this handle as the-tag to the allocated system resources 
needed to perform a direct memory access (DMA) operation. In this 
example, the / dev / fd device driver simply passes the DMA handle 
that is a member of the fdcam class structure. 

The code fragment sets up a condition statement that calls 
dma map unload if the rw use dma evaluates to a nonzero (true) 
value. Upon successful compietion, dma map unload returns the value 1. 
Otherwise, it returns the value zero (0). - -

A call to dma map unload does not release or deallocate the resources 
that were allocated in a previous call to dma map alloc unless the driver 
sets the flags argument to the DM..~_DEALLOC bIt. 

9.8.6 Releasing and Deallocating Resources for DMA Data 
Transfers 

To release and deallocate the resources that were allocated in a previous call 
to dma map alloc, call the dma map dealloc interface. Using the 
dma map dealloc interface makes deVIce drivers more portable between 
DMA hardware mapping implementations across different hardware 
platforms because it masks out any future changes in the kernel- and system­
level DMA mapping data structures. 

The following code fragment taken from a /dev/fd device driver shows the 
argument associated with the call to dma map dealloc. This argument is 
defined as a member of an fdcam class data structure. 

struct fdcam class { 

Using Kernel Interfaces with Device Drivers 9-59 



dma handle t dma_handle; 

} ; 

struct fdcam class* fcp; 

if (fcp->rw use dma) { 
dma map-dealloc(fcp->dma handle P)i 

} ill - - -

III Shows that dma map dealloc takes one argument: a handle to DMA 
resources associated WIth the mapping of an in-memory I/O buffer onto a 
controller's I/O bus. This handle provides the information to access bus 
address/byte count pairs. A bus address/byte count pair is represented by 
the ba and be members of an sg entry structure pointer. Device 
drivers can view this handle as the tag to the allocated system resources 
needed to perform a direct memory access (DMA) operation. 

In this example, the / dev / fd device driver simply passes the DMA 
handle that is a member of the fdcam class structure. 

The code fragment sets up a condition statement that calls 
dma map dealloe if the rw use dma evaluates to a nonzero (true) 
value. Upon successful completion, dma map dealloe returns the value 
1. Otherwise, it returns the value zero (Of -

9.8.7 Returning a Pointer to the Current Bus Address/Byte Count 
Pair 

The DMA handle provides device drivers with a tag to the allocated system 
resources needed to perform a direct memory access (DMA) operation. In 
particular, the handle provides the information for drivers to access bus 
address/byte count pairs. The system maintains arrays of sg entry data 
structures. Some device drivers may need to traverse the arrays of 
sg entry data structures to obtain specific bus address/byte count pairs. 
TheDMA mapping package provides two convenience interfaces that allow 
you to traverse the discontinuous sets of sg_ entry arrays: 

• The dma get eurr sgentry interface returns a pointer to an 
sg entry data struchire. A device driver can use this pointer to retrieve 
the current bus address/byte count pair for the mapping of a block of an 

9-60 Using Kernel Interfaces with Device Drivers 



in-memory 110 buffer onto the controller's 110 bus. 

• The dma get next sgentry interface returns a pointer to an 
sg entry data structure. A device driver can use this pointer to retrieve 
the next valid bus address/byte count pair for the mapping of a block of 
an in-memory I/O buffer onto the controller's I/O bus. 

The following example shows the similarities and differences between the 
calls to dma _get _ curr _ sgentry and dma _get_next _ sgentry: 

dma handle t dma handle; ill 
sg entry t-sgentry curr; ~ 
vm-offset t address curr; ~ 
long count_curr; ~ -

address curr = (vm offset t)sgentry curr->ba; ~ 
count curr = sgentry_curr=>bc - 1; ~ 

dma handle t dma handle; ill 
sg entry t-sgentry next; ~ 
vm-offset t address next; ~ 
long count_next; ~ -

address next = (vm offset t)sgentry next->ba; ~ 
count_next = sgentry_next=>bc - 1; ~ 

[jJ Declare a DMA handle called dma handle. The example passes this 
DMA handle to the dma get curr sgentry and 
dma _get_next _ sgentry mterfaces. 

12I Declare pointers to sg entry structures called sgentry curr and 
sgentry next. The example uses these pointers to storethe 
sg_ entry structure pointers in the array returned by 
dma _get _ curr _ sgentry and dma _get_next _ sgentry. 

[3] Declare variables called address curr and address next to store 
the bus addresses associated with the sg entry structure pointers 
returned by dma _get _ curr _ sgentry and 
dma_get_next_sgentry. 

Using Kernel Interfaces with Device Drivers 9-61 



~ Declare variables called count curr and count next to store the 
byte counts associated with the sg entry structure pointers returned by 
dma _get _ eurr _ sgentry and dma _get_next _ sgentry. 

[§] Call the dma get eurr sgentry and dma get next sgentry 
interfaces passing to them the DMA handle. Tills argument specifies a 
handle to DMA resources associated with the mapping of an in-memory 
va buffer onto a controller's va bus. This handle provides the 
information to access bus address/byte count pairs. A bus address/byte 
count pair is represented by the ba and be members of an sg entry 
structure pointer. Device drivers can view this handle as the tag to the 
allocated system resources needed to perform a direct memory access 
(DMA) operation. 

!§] Set the address curr and address next variables to the bus 
addresses associated with the sg entry structure pointers returned by 
dma get eurr sgentry and dma get next sgentry. In the 
call to dma get -eurr s gen try, tIlls bus address is associated with 
the last sg -entry structure pointer that the system read in the array. In 
the call to dma get next sgentry, this bus address is associated 
with the next vaiid sg_ entry structure pointer in the array. 

1ZI Set the count curr and count next variables to the byte counts 
associated withthe sg entry structure pointers returned by 
dma get eurr sgentry and dma get next sgentry. In the 
call to dma get -eurr sgentry, tIlls byte counGs associated with 
the last sg -entry structure pointer that the system read in the array. In 
the call to dma get next sgentry, this byte count is associated 
with the next vaiid sg_ entry structure pointer in the array. 

9.8.8 Putting a New Bus Address/Byte Count Pair into the List 
The DMA handle provides device drivers with a tag to the allocated system 
resources needed to perform a direct memory access (DMA) operation. In 
particular, the handle provides the information for drivers to access bus 
address/byte count pairs. The system maintains arrays of sg entry data 
structures. Some device drivers may need to traverse the arrays of 
sg entry data structures to put new bus address/byte count pair values into 
theba and be members of specific sg entry structures. The DMA 
mapping package provides two convenIence interfaces that allow you to 
traverse the discontinuous sets of sg_ entry arrays: 

• The dma put eurr sgentry interface puts new bus address/byte 
count values into the ba and be members for the last s g en try 
structure pointer in the list read by the system. This interface patches an 
existing bus address/byte count pair due to an unexpected interruption in 
a DMA transfer. 

9-62 Using Kernel Interfaces with Device Drivers 



• The drna put prev sgentry interface puts a new bus address/byte 
count entry into the existing bus address/byte count pair pointed to by the 
DMA handle passed in by you. This interface enables device drivers to 
patch existing bus address/byte count pairs due to an unexpected 
interruption in a DMA transfer. 

The following code fragment shows the similarities and differences between 
the calls to drna _put _ curr _ sgentry and drna _put _prev _ sgentry: 

dma handle_t dma_handle; ill 
sg entry t sgentry curr; ~ 
int ret_curr; ~ -

Call kalloc ~ 

Call dma_map_Ioad a second time ~ 

Set the ba & bc members ~ 

Call dma_map_dealloc ~ 

dma_handle_t dma_handle; ill 
sg entry t sgentry prev; ~ 
int ret_prev; ~ -

Call kalloc ~ 

Call dma_map_Ioad a second time ~ 

Using Kernel Interfaces with Device Drivers 9-63 



Set the ba & be members ~ 

[1] Declare a DMA handle called dma handle. The example passes this 
DMA handle to the dma put eurr sgentryand 
dma _put _prev _ sgentry mterfaces. 

I2l Declare pointers to sg entry structures called sgentry eurr and 
sgentry prevo The example uses these pointers to storethe new bus 
address/byte count pairs passed to dma _put _ eurr _ sgentry and 
dma_put_prev_sgentry. 

@] Declare variables to store the values returned by 
dma _put _ eurr _ sgentry and dma _put _prev _ sgentry. 

~ Call the dma map load interface to load and set the allocated system 
resources for DMA -data transfers 

15] Call the kalloe interface to allocate a temporary storage buffer. 

[§] Call dma map load a second time to load and set the allocated system 
resources for the temporary storage buffer. The example makes this 
second call to dma map load to obtain a valid map of the temporary 
storage buffer into the system. 

11.1 Set the ba and be members of the respective sg entry structures to 
the values returned to the ba and be members associated with this 
mapped buffer. 

[ij] Call the dma put eurr sgentry and dma put prev sgentry 
interfaces, passing to them the DMA handle andthe sg entry 
structures containing the new bus address/byte count parr values. 

~ Call the dma map dealloe interface to release and deallocate the 
resources for DMA -data transfers associated with the temporary mapped 
buffer. The example makes this call after the system transfers the patched 
bus address/byte count pair. This call is required to keep the hardware 
mapping resources valid during the DMA data transfer. 

9.8.9 Returning a Kernel Segment Address of a DMA Buffer 
To return a kernel segment (kseg) address of a DMA buffer, call the 
dma kmap buffer interface. The dma kmap buffer interface takes 
an offset variable and returns a kernel segmeni(kseg) address. The device 

9-64 Using Kernel Interfaces with Device Drivers 



driver can use this kseg address to copy and save the data at the offset in the 
buffer. The following code fragment shows a call to dma _ kmap _buffer: 

dma handle t dma handle; 
u long offset; -
vrn offset t kseg_addr; 

I1J The dma_kmap_buffer interface takes two arguments: 

- The first argument specifies a handle to DMA resources associated 
with the mapping of an in-memory 110 buffer onto a controller's I/O 
bus. This handle provides the information to access bus address/byte 
count pairs. A bus address/byte count pair is represented by the ba 
and be members of an sg entry structure pointer. Device drivers 
can view this handle as the-tag to the allocated system resources 
needed to perform a direct memory access (DMA) operation. The 
example passes the DMA handle to dma_kmap_buffer. 

- The second argument specifies a byte count offset from the virtual 
address passed as the virt addr argument of the dma map load 
interface. This virtual address specifies the beginning ofa process's 
(or kernel) buffer that a DMA transfer operation is done to/from. A 
device driver determines the smallest DMA transfer size by calling 
the dma min boundary interface. The offset specifies the 
number 'Of bytes a DMA engine moved. This number is less than the 
number of bytes loaded by the dma _map _load interface. 

Upon successful completion, dma kmap buffer returns a kseg address of 
the byte offset pointed to by the addition 'Of the following two values: 

virt addr + offset 

where: 

• virt addr is the virtual address passed to the virt addr argument 
ofdma_map_load -

• offset is the offset passed to the 0 f f set argument of 
dma_kmap_buffer 

The dma kmap buffer interface returns the value zero (0) to indicate 
failure to retrieve the kseg addess. 

Using Kernel Interfaces with Device Drivers 9-65 



9.9 Miscellaneous Interfaces 
The miscellaneous interfaces allow device drivers to: 

• Indicate that I/O is complete 

Get the device major number 

• Get the device minor number 

• Implement raw I/O 

The following sections describe the kernel interfaces that perform these tasks. 

9.9.1 Indicating that I/O is Complete 
To indicate that I/O is complete, call the iodone interface. The following 
code fragment shows a call to this interface. The code fragment verifies read 
or write access to the user's buffer before beginning the DMA operation. 

} 

bp->b error = EACCES; 
bp->b-flags 1= B ERROR; 
iodone(bp); [j] -
return; 

[j] Shows that iodone takes one argument. This argument specifies a 
pointer to a buf structure. The iodone interface indicates that I/O is 
complete and reschedules the process that initiated the I/O. 

9.9.2 Getting the Device Major Number 
To get the device major number, call the rna j or interface. The following 
code fragment shows a call to this interface. This code fragment would 
appear in the section of the driver source that handles the tasks associated 
with the loadable driver. 

dev t cb devno = NODEV; ill 

cb devno cdevno; ~ 

9-66 Using Kernel Interfaces with Device Drivers 



outdata->dc_cmajnum = major(cb_devno); ~ 

I1J Initializes the variable cb devno, which stores the number of the device 
whose associated major number you want to obtain. The constant 
NODEV indicates that no device number has yet been assigned. 

12I Sets the cb devno variable to the device number for this device. The 
device number was obtained in a call to the cdevsw add interface. 

@! Declares a pointer to a device _ config_ t data structure. 

14I Shows that the rna j or interface takes one argument. This argument 
specifies the number of the device whose associated major device number 
the rna j or interface will obtain. In the example, the device number is 
stored in the cb devno variable. Upon successful completion, rna j or 
returns the major number portion of the dev t passed as the argument. 
In this example, the major device number is Stored in the dc cmaj num 
of the pointer to the device _ config_ t data structure. -

9.9.3 Getting the Device Minor Number 
To get the device minor number, call the minor interface. The following 
code fragment shows a call to this interface: 

int unit = minor(dev); rn 

I1J Shows that the minor interface takes one argument. This argument 
specifies the number of the device whose associated minor device number 
the minor interface will obtain. Upon successful completion, minor 
returns the minor number portion of the dev _ t passed as the argument. 

9.9.4 Implementing Raw 1/0 
To implement raw I/O, call the physio interface. This interface maps the 
raw I/O request directly into the user buffer, without using bcopy. The 
memory pages in the user address space are locked while the transfer is 
processed. 

Using Kernel Interfaces with Device Drivers 9-67 



The following code fragment shows a call to this interface: 

. 
return(physio(cbstrategy,cb->cbbuf,dev,B_READ,cbminphys,uio)); ~ 

ill Shows that physio takes six arguments: 

- The first argument specifies the device driver's strategy interface for 
the device. In this call, cbstrategy is the strategy interface for the 
/ dev / cb device driver. 

- The second argument specifies a pointer to a bu f structure. This 
structure contains information such as the binary status flags, the 
major/minor device numbers, and the address of the associated buffer. 
This buffer is always a special buffer header owned exclusively by the 
device for handling I/O requests. 

In this call, the address of the bu f structure associated with this CB 
device is passed. 

- The third argument specifies the device number. In this call, the CB 
device's number is passed. 

- The fourth argument specifies the read/write flag. In this call, the 
binary status flag B READ is passed. This flag is set if the operation 
is read and cleared If the operation is write. 

- The fifth argument specifies a pointer to a minphys interface. In 
this call, the cbminphys interface is passed. 

- The sixth argument specifies a pointer to a uio structure. This 
structure describes the current position within a logical user buffer in 
user virtual space. 

9-68 Using Kernel Interfaces with Device Drivers 



Part 5 Device Driver Example 

cbclose(dev, flag, format) 
dey t dey; 
int-flag; 
int format; 
{ 

int unit = minor(dev); 
cb unit[unit).opened = 0; 
return (0); 
} 





Writing a Character Device Driver 10 

The / dev / none device driver described in Chapter 4 had no real device or 
bus associated with it. All real device drivers are written for some device 
that operates on a specific bus. This chapter provides you with an 
opportunity to study a real device driver called / dev / cb. The / dev / cb 
device driver provides a simple interface to the TURBOchannel test board. 
The / dev / cb device driver operates on a TURBOchannel bus and 
implements many of the character device driver interfaces described in 
Chapter 3. It also implements other sections needed by the TURBOchannel 
test board. 

The chapter begins with an overview of the tasks performed by the 
/ dev / cb device driver. Following this overview are sections that describe 
each piece of the / dev / cb device driver. Table 10-1 lists the parts of the 
/ dev / cb device driver and the sections of the chapter where each is 
described. 

Table 10-1: Parts of the Idev/cb Device Driver 

Tasks Section 

The cbreg.h Header File Section 10.2 

Include Files Section Section 10.3 

Autoconfiguration Support Declarations and Section 10.4 
Definitions Section 

Loadable Driver Configuration Support Section 10.5 
Declarations and Definitions Section 

Local Structure and Variable Definitions Section 10.6 
Section 

Loadable Driver Local Structure and 
Variable Definitions Section 

Autoconfiguration Support Section 

Loadable Device Driver Section 

Section 10.7 

Section 10.8 

Section 10.9 



Table 10-1: (continued) 

Tasks Section 

Open and Close Device Section 

Read and Write Device Section 

Strategy Section 

Start Section 

The ioctl Section 

Increment LED Section 

Interrupt Section 

Section 10.10 

Section 10.11 

Section 10.12 

Section 10.13 

Section 10.14 

Section 10.15 

Section 10.16 

The source code uses the following convention: 
extern int hz; ill 

[1] Numbers appear after each line or lines of code in the / dev / cb device 
driver example. Following the example, a corresponding number appears 
that contains an explanation for the associated line or lines. The source 
code does not contain any inline comments. For those who prefer to read 
the / dev / cb driver source code in its entirety with the inline comments, 
see Section B .2. 

10.1 Overview of the Idev/cb Device Driver 
The / dev / cb device driver is a character driver that implements a test 
board on the TURBOchannel bus. The TURBOchannel test board is a 
minimal implementation of all the TURBOchannel hardware functions: 
programmed 110, DMA read, DMA write, and 1/0 readlwrite conflict testing. 
The software view of the board consists of: 

• An EPROM address space 

• A 32-bit ADDRESS register with bits scrambled for direct use as a 
TURBOchannel direct memory access (DMA) address 

• A 32-bit DATA register used for programmed 1/0 and as the holding 
register for DMA 

• A I6-bit register used to control four light emitting diodes (LEDs) on the 
TURBOchannel option card, a I-bit TEST register, and a I6-bit control 
status register (CSR) 

All registers must be accessed as 32-bit longwords, even when they are not 
implemented as 32 bits. The CSR contains bits to enable option DMA read 
testing, conflict signal testing, I/O interrupt testing, and option DMA write 

10-2 Writing a Character Device Driver 



testing. The CSR also contains a bit that indicates that one or more of the 
tests are enabled, 4-byte mask flag bits, and a DMA done bit. 

The / dev / cb device driver: 

• Reads from the data register on the test board to words in system memory 

• Writes to the data register on the test board from words in system 
memory 

• Tests the interrupt logic on the test board 

• Reads one 32-bit word from the test board address (ROM/register) space 
into system memory 

• Updates, reads, and returns the 32-bit CSR value 

• Starts and stops clock-driven incrementing of the four spare LEDs on the 
board 

Writing a Character Device Driver 10-3 



10.2 The cbreg.h Header File 
The cbreg • h file is the device register header file for the / dev / cb device 
driver. It contains public declarations and the device register offset 
definitions for the TURBOchannel test board (the CB device). The following 
declarations are applicable to both the loadable and static versions of the 
driver: 

#define CB REL LOC Ox00040000 m 
#define CB-ADR(n) ((io handle t)(n + CB REL LOC)) ~ 
#define CB=SCRAMBLE(x)-(((unsigned)x«3)&-(Ox1f)) I (((unsigned)x»29)&Ox1f) ~ 

#define CB INTERUPT OxOeOO ~ 
#define CB-CONFLICT OxOdOO ~ 
#define CB DMA RD OxObOO ~ 
#define CB-DMA-WR Ox0700 ~ 
#define CB=DMA=DONE Ox0010 ~ 

#define CBPIO IO('v' ,0) ~ 
#define CBDMA -IO('v' ,1) ~ 
#define CBINT =IO('V' ,2) [] 

#define CBROM IOWR('v',3,int) ~ 
#define CBCSR =IOR('V' ,4,int) ~ 

#define CBINC IO('v' ,5) ~ 
#define CBSTP =IO('v',6) ~ 

#define CB ADDER 
#define CB-DATA 
#define CB CSR 
#define CB-TEST 

OxO [§] 
Ox4 ITIl 
Ox8 [j]] 
OxC ~ 

[1] Defines a constant called CB REL LOC. 

121 Defines a macro called CB ADR that the cbattach interface calls to 
convert the register offset to the kernel virtual address. The data type 
specified in the type cast operation is of type io handle t. Section 
10.8.2 shows how cbattach calls this macro. - -

~ Defines a macro called CB SCRAMBLE that the cbstrategy interface 
calls to discard the low-order 2 bits of the physical address while 
scrambling the rest of the address. Section 10.12.2.4 shows how 
cbstrategy calls this macro. 

@ Defines a constant called CB INTERUPT that is used to set bits 9, 10, 
and 11 of the CSR. SectionlO.14.4 shows how the cbioctl interface 
uses this constant when it performs interrupt testing. 

~ Defines a constant called CB CONFLICT that is used to set bits 9, 8, 
10, and 11 of the CSR. This constant is not currently used. 

[§] Defines a constant called CB DMA RD that is used to set bits 10, 8, 9, 
and 11 of the CSR. SectionlO.12~2.4 shows how the cbstrategy 
interface uses this constant to set up the direct memory access (DMA) 

10-4 Writing a Character Device Driver 



enable bits. 

III Defines a constant called CB DMA WR that is used to set the bits 11, 8, 
9, and 10 of the CSR. SectIOn 10J2.2.4 shows how the cbstrategy 
interface uses this constant when converting the buffer virtual address. 

iii Defines a constant called CB DMA DONE for use by the cbstart 
interface's timeout loop. Section fO.13 shows how cbstart uses this 
constant in the timeout loop. 

I.9J Uses the 10 macro to construct an ioctl macro called CBPIO. The 
10 macro defines ioctl types for situations where no data is actually 

transferred between the application program and the kernel. For example, 
this could occur in a device control operation. Writing Device Drivers, 
Volume 2: Reference provides information on the _10, _ lOR, _lOW, and 

IOWR ioctl macros. 

The cbread, cbwri te, and cbioctl interfaces use CBPIO to set the 
iomode member of the cb unit structure for this CB device to the 
programmed I/O (PIO) reador write code. Section 10.11.1 shows how 
the cbread interface uses this ioct1. Section 10.11.2 shows how the 
cbwr i te interface uses this ioct 1. Section 10.14.3 shows how the 
cbioctl interface uses this ioct1. 

[qj Uses the 10 macro to construct an ioctl macro called CBDMA. The 
cbread,-cbwri te, and cbioctl interfaces use CBDMA to set the 
iomode member of the cb unit structure for this CB device to the 
DMA I/O read or write code.- Section 10.11.1 shows how the cbread 
interface uses this ioct1. Section 10.11.2 shows how the cbwri te 
interface uses this ioct1. Section 10.14.3 shows how the cbioctl 
interface uses this ioct1. 

[j] Uses the 10 macro to construct an ioctl macro called CBINT. 
Section fO.14.4 shows how the cbioctl interface uses CBINT to 
perform interrupt tests. 

I11l Uses the IOWR macro to construct an ioctl macro called CBROM. 
The IOWR macro defines ioctl types for situations where data is 
transferred from the user's buffer into the kernel. The driver then 
performs the 'appropriate ioctl operation and returns data of the same 
size back up to the user level application. Typically, this data consists of 
device control or status information passed to the driver from the 
application program. Section 10.14.5 shows how the cbioctl interface 
uses CBROM to perform a variety of tasks. 

[3J Uses the lOR macro to construct an ioctl macro called CBCSR. The 
lOR macro defines ioctl types for situations where data is transferred 

from the kernel into the user's buffer. Typically, this data consists of 
device control or status information returned to the application program. 
Section 10.14.5 shows how the cbioctl interface uses lOR to 

Writing a Character Device Driver 10-5 



perform a variety of tasks. 

[H] Uses the 10 macro to construct an ioctl macro called CBINC. 
Section 1'0.14.2 shows how the cbioctl interface uses CBINC when it 
starts to increment the lights. 

[5] Uses the 10 macro to construct an ioctl macro called CBSTP. 
Section 1'0.14.5 shows how cbioctl uses CBSTP when it stops 
incrementing the lights. 

[§] Defines the device register offset definitions for the CB device. The 
device registers are aligned on longword (32-bit) boundaries, even when 
they are implemented with less than 32 bits. The CB ADDER device 
register offset represents the 32-bit read/write DMA address register. The 
CB ADDER and the following device register offset definitions show the 
new technique for defining the registers of a device. Previous versions of 
the / dev / cb device driver defined a device register structure called 
CB REGISTERS. The /dev/cb driver used the members of this data 
structure to directly access the device registers of the CB device. 

By defining device register offset definitions, the / dev / cb driver can 
use the read io port and wr i te io port interfaces to access the 
device registers o{ihe CB device. ThIS makes the / dev / cb driver more 
portable across different bus architectures, different CPU architectures, 
and different CPU types within the same CPU architecture. 

Section 10.12.2.4 shows the use of CB ADDER in a call to 
wr i te _ io _port. 

IIZI Represents the 32-bit read/write data register. Section 10.11.1 shows the 
use of CB DATA in a call to read io port. Section 10.11.2 shows 
the use ofCB _DATA in a call to wcl t~ io _port. 

[1j Represents the 16-bit read/write CSRlLED register. Section 10.13, 
Section 10.15, Section 10.14.4, and Section 10.14.5 show the use of 
CB _ CSR in calls to read _ io _port and wr i te _ io _port. 

[j]] Represents the go bit set by the cbwr i te interface and cleared by the 
cbread interface. Section 10.13 and Section 10.14.4 show the use of 
CB TEST in calls to read io port and wri te io port. Section 
10.16 shows the use of CB _TEST in a call to read-=. io-='port. 

10-6 Writing a Character Device Driver 



10.3 Include Files Section 
This section is applicable to the loadable or static version of the / dev / cb 
device driver. It identifies the following header files needed by the 
/ dev / cb device driver: 

#include <sys/param.h> 
#include <sys/ioctl.h> 
#include <sys/user.h> 
#include <sys/proc.h> 
#include <hal/cpuconf.h> 
#include <sys/vm.h> 
#include <sys/buf.h> 
#include <sys/errno.h> 
#include <sys/conf.h> 
#include <sys/file.h> 
#include <sys/uio.h> 
#include <sys/types.h> 

#include <io/common/devdriver.h> 
#include <sys/sysconfig.h> 
#include <io/dec/tc/tc.h> 

#include <kits/ESB100/cbreg.h> rn 
#define NCB TC_OPTION_SLOTS ~ 

ill Includes the device register header file, which contains the definitions of 
the device register offsets for the CB device. Section 10.2 shows the 
definitions of the device register offsets. The directory specification 
adheres to the third-party device driver configuration model discussed in 
Section 11.1.2. If the traditional device driver configuration model was 
followed, the directory specification would be 
<io/EasyInc / cbreg. h>. The directory specification you make here 
depends on where you put the device register file. Writing Device 
Drivers, Volume 2: Reference provides reference (man) page-style 
descriptions of the header files most frequently used by DEC OSFIl 
device drivers. 

[2J Defines a constant called NCB that is used to allocate data structures 
needed by the / dev / cb driver. The define uses the constant 
TC OPTION SLOTS, which is defined in 
/usr / sys/Include/ io/ dec/tc/tc. h. There can be at most 
three instances of the CB controller on the system. This is a small 
number of instances of the driver on the system and the data structures 
themselves are not large, so it is acceptable to allocate for the maximum 
configuration. This example uses the static allocation technique model 2 
described in Section 2.3.2. You could also define this constant in a 
name data. c file. 

Writing a Character Device Driver 10-7 



10.4 Autoconfiguration Support Declarations and 
Definitions Section 

This section is applicable to the loadable or static version of the / dev / cb 
device driver. It contains the following declarations needed by the / dev / cb 
device driver: 

extern int hz; ~ 

int cbprobe(), cbattach(), cbintr(), cbopen(), cbclose(); 
int cbread(), cbwrite(), cbioctl(), cbstart(), cbminphys(); 
int cbincled(), cb_ctlr_unattach(), cbstrategy(); ~ 

struct controller *cbinfo[NCB]; ~ 

struct driver cbdriver = 
cbprobe, 

}; 14I 

0, 
cbattach, 
0, 
0, 
0, 
0, 
0, 
"cb", 
cbinfo, 
0, 
0, 
0, 
0, 
0, 
cb_ctlr_unattach, 

° 
[j] Declares the global variable h z to store the number of clock ticks per 

second. The hz global variable is typically used with the timeout 
kernel interface to schedule interfaces to be run at the time stored in the 
variable. Section 10.14.2 shows how cbioctl uses this global variable. 
Section 10.15 shows how cbincled uses this variable. 

12I Declares the driver interfaces for the / dev / cb device driver. 

~ Declares an array of pointers to controller structures and calls it 
cbinfo. The controller structure represents an instance of a 
controller entity, one that connects logically to a bus. A controller can 
control devices that are directly connected or can perform some other 
controlling operation, such as a network interface or terminal controller 
operation. Section 7.4 describes the controller structure. 

The NCB constant is used to represent the maximum number of CB 
controllers. This number is used to size the array of pointers to 
controller structures. If you are writing a new device driver (as 
opposed to porting an existing driver, which is the case for the / dev / cb 

10-8 Writing a Character Device Driver 



driver), dynamically allocate the data structures as needed by calling the 
kalloc interface. See Section 2.3.3 for a discussion of this technique. 
The structures for the / dev / cb driver are not dynamically allocated. 

14I Declares and initializes the dr i ver structure and calls it cbdr i ver. 
The value zero (0) indicates that the / dev / cb driver does not make use 
of a specific member of the dr i ver structure. The following list 
describes those members initialized to a nonzero value by the / dev / cb 
device driver. Section 7.6 describes the driver structure. 

- The driver's probe interface, cbprobe. Section 10.8.1 shows how to 
implement cbprobe. 

- The driver's cattach interface, cbattach. Section 10.8.2 shows 
how to implement cba t tach. 

- The value cb, which is the name of the ~evice. 

- The value cbinfo, which references the array of pointers to the 
previously declared controller structures. You index this array 
with the controller number as specified in the ctlr num member of 
the controller structure. -

- The driver's controller unattach interface, cb ctlr unattach. 
The cb ctlr unattach interface removes the controller 
structure assocIated with the TURBOchannel test board from the list 
of controller structures that it handles. Section 10.8.3 shows how 
to implement cb ctlr unattach. Loadable drivers use the 
controller un attach interface. 

Writing a Character Device Driver 10-9 



10.5 Loadable Driver Configuration Support 
Declarations and Definitions Section 

This section contains the following declarations used by the / dev / cb 
device driver when it is configured as a loadable driver: 

extern int nodev(), nulldev(); m 
extern ihandler id t handler add(), handler del(); 
extern ihandler-id-t handler-enable(), handler disable(); ~ 
ihandler_id_t cb_id_t[NCB]; - ~ -

#define CB BUSNAME "tc" ~ 

int cb_is_dynamic = 0; ~ 

struct tc_option cb_option_snippet [] = 
{ 

}; I§] 

/* 
/* 
/* 
{ 

{ 

module 
name 

"CB 

int num cb = 0; ~ 

driver 
name 

"cb", 

intr b4 itr aft 
probe attach type 

adpt */ 
config */ 

*/ 
0, 1, 'C', O}, 

} /* Null terminator in the table */ 

I1J Declares external references for the nadev and nulldev interfaces, 
which are used to initialize members of the cdevsw table under specific 
circumstances. The cdevsw add kernel interface, called by the driver's 
cb canf igure interface, imtializes the cdevsw table. Section 8.2.1 
provides a description of the cdevsw table and examples of the nadev 
and nulldev interfaces. 

[2J Declares an external reference for the handler add interface, which 
registers the interrupt service interface for the loadable driver. Note also 
the declarations of the external references for the handler del, 
handler enable, and handler disable interfaces. Section 
10.8.1 shows how the cbprabe interface calls handler_add. 

~ Declares an array of IDs used to deregister the interrupt handlers. The 
NCB constant represents the maximum number of CB controllers. This 
number sizes the array of IDs. Thus, there is one ID per CB device. 
Section 10.8.1 shows how cbprabe uses cb_id_t. 

If you are writing a new device driver (as opposed to porting an existing 
driver, which is the case for the / dev / cb driver), dynamically allocate 
the data structures as needed by calling the kallac interface. 

~ Defines a constant that represents a 2-character string that indicates this is 
a driver that operates on the TURBOchannel bus. This constant is passed 
as an argument to the ldbl stanza resal ver, 
ldbl ctlr canfigure~and ldbl ctlr uncanfigure 
interfaces. Tills bus name is used in calls to the configuration code. 
Other bus types can use a different name. Section 10.9.2 shows how to 

10-10 Writing a Character Device Driver 



call ldbl stanza resolver and ldbl ctlr configure. 
Section I 0~9.3 showS-how to call ldbl_ ctlr _ unconf igure. 

[5] Declares a variable called cb is dynamic and initializes it to the 
value zero (0). This variable IS used to control any differences in the 
tasks performed by the / dev / cb device driver when it is configured as a 
loadable or static driver. Thus, the / dev / cb driver can be compiled 
once. The decision as to whether it is loadable or static is made at kernel 
configuration by the system manager and not at compile time by the 
driver writer. 

Section 10.8.1 shows how cbprobe uses cb is dynamic. Section 
10.8.3 shows how cb ctlr unattach uses cb is dynamic. 
Section 10.9.2 shows how cb-=:" configure uses Cb _ is_dynamic. 

!§] These lines are specific to drivers written for the TURBOchannel bus. 
Other bus types may use a different mechanism. 

Declares a tc option table snippet that includes an entry for the loadable 
version of this driver. For the static version, a similar entry is made in 
the tc option table located in the tc option data. c file. The 
entry in tc option data. c is used only whenthe driver is 
configured Statically; the cb option snippet entry is used only 
when the driver is configured dynamicaily. 

The tc option option table contains the bus-specific ROM module 
name for the driver. This information forms the bus-specific parameter 
that is passed to the ldbl stanza resolver interface to search for 
matches in the tc optiOn table. The tc option table is used by the 
bus configuration mterfaces associated with the TURBOchannel bus. 

The items in the tc option table snippet have the following meanings: 

- module name 

In this column, you specify the device name in the ROM on the 
hardware device. The module name must be no more than seven 
characters in length, but you must blank-pad the name to 8 bytes. 
The module name can be up to 8 characters in length. You must 
blank-pad the name to 8 bytes for those names that are less than 8 
characters in length. Thus, the entry for the / dev / cb driver consists 
of the letters "CB" followed by six spaces. 

- dri ver name 

In this column, you specify the driver name as it appears in the 
Module Config Name field of the stanza .loadable file 
fragment~ In this example, the driver name is cb. Because you 
specify the same name in the Module Config Name field and the 
driver name field of the tc option snippet table, the bus 
configuration code initializes the correct controller and device 

Writing a Character Device Driver 10-11 



structures during device autoconfiguration for loadable drivers. 
Section 12.6.2.19 describes the Module _ Config_ Name field. 

- intr_b4 probe 

In this column, you specify whether the device needs interrupts 
enabled during execution of the driver's probe interface. A zero (0) 
value indicates that the device does not need interrupts enabled; a 
value of 1 indicates that the device needs interrupts enabled. In the 
example, the value zero (0) is specified to indicate that the CB device 
does not need interrupts enabled. 

- itr_aft attach 

In this column, you specify whether the device needs interrupts 
enabled after the driver's probe and attach interfaces complete. 
A zero (0) value indicates that the device does not need interrupts 
enabled; a value of 1 indicates that the device needs interrupts 
enabled. In the example, the value 1 is specified to indicate that the 
CB device needs interrupts enabled after its cbprobe and 
cbattach interfaces complete. 

- type 

In this column, you specify the type of device: C (controller) or A 
(adapter). In the example, the value C is specified. 

- adptconfig 

If the device in the type column is A (adapter), you specify the name 
of the interface to configure the adapter. Otherwise, you specify the 
value zero (0). In the example, the value zero (0) is specified because 
the device in the previous column is a controller. Section 10.9.2 
shows how the cb conf igure interface uses 
cb_option_snilPpet. 

III Declares a variable called n um cb to store the count on the number of 
controllers probed during autoconfiguration. This variable is initialized to 
the value zero (0) to indicate that no instances of the controller have been 
initialized yet. Section 10.8.1 shows how cbprobe uses this variable. 
Section 10.8.3 shows how cb ctlr unattach uses this variable. 
Section 10.9.2 shows how cb == confIgure uses this variable. 

10-12 Writing a Character Device Driver 



10.6 Local Structure and Variable Definitions Section 
This section is applicable to the loadable or static version of the I dev I cb 
device driver. It contains the such declarations as the following cb unit 
data structure: -

struct buf cbbuf[NCB]; rn 
unsigned tmpbuffer; ~ 

struct cb unit { 
int attached; 
int opened; 
int iomode; 
int intrflag; 
int ledflag; 
int adapter; 
caddr t cbad; 
io_handle_t cbr; 
struct buf *cbbuf; 

cb_unit[NCB]; ~ 

#define MAX_XFR 4 ~ 

ill Declares an array of buf structures and calls it cbbuf. Section 8.1 
describes the bu f structure. 

The NCB constant is used to represent the maximum number of CB 
devices. This number is used to size the array of buf structures. Thus, 
there is one buf structure per CB device. Section 10.8.2 shows how 
cbattach references the buf structure. Section 10.11.1 and Section 
10.11.2 show the buf structure passed as an argument to the physio 
kernel interface. 

121 Declares a one-word buffer called tmpbuffer. Section 10.12.2.2 shows 
how the cbstrategy interface uses this variable to store the internal 
buffer virtual address. 

13] Declares an array of cb unit data structures. Again, the NCB constant 
is used to represent the maximum number of CB devices. This number is 
used to size the array of cb unit structures. Thus, there is one 
cb _ uni t structure per CB device. 

The cba t tach interface initializes some of the members of the 
cb unit data structure, and all of the other I dev I cb driver interfaces 
reference cb unit. 

The following list describes the members contained in this structure: 

- attached 

Stores a value to indicate that the specified CB device is attached. 
Section 10.8.2 shows that the cbattach interface sets this member 
to a value that indicates the device is attached. 

Writing a Character Device Driver 10-13 



- opened 

Stores a value to indicate that the specified CB device is opened. 
Section 10.10.1 shows that the cbopen interface sets this member to 
a value that indicates the device is open; and Section 10.10.2 shows 
that the cbclose interface clears the value to indicate the device is 
closed. 

- iomode 

Stores the read/write mode to one of the bits represented by these 
constants defined in cbreg . h: CBPIO (programmed I/O) and 
CBDMA (DMA I/O read code). Section 10.14.3 shows that the 
cbioctl interface sets this member to these constants. 

- intrflag 

Stores a flag value used to test for an interrupt. Section 10.16 shows 
that cbintr sets the interrupt flag; and Section 10.14.4 shows that 
cbioctl clears the interrupt flag. 

- ledflag 

Stores a flag value for the LED increment function. Section 10.9.3 
shows that cb configure turns off the LED increment function; 
and Section 10-:-14.2 shows that cbioctl sets the LED increment 
flag. Section 10.14.5 shows that cbioct 1 sets the flag so that it 
turns off the LED increment function. 

- adapter 

Stores the TC slot number. Section 10.8.2 shows that cbattach 
sets this member to the slot number for this CB controller. 

- cbad 

Stores the ROM base address. Section 10.8.2 shows that cbattach 
sets this member to the address of the data to be checked for read 
accessibility. 

- cbr 

Stores the I/O handle for the device registers associated with this CB 
device. An I/O handle is a data entity that is of type io handle t. 
You pass this I/O handle to the read io port and - -
write io port interfaces. Section 10].2 shows that cbattach 
sets this member to point to this CB device's registers. Section 10.2 
shows the declaration of the device register offsets used with the I/O 
handle. 

- cbbuf 

Stores a pointer to a buf structure. Section 10.8.2 shows that 
cbattach sets this member to point to this CB device's buffer 

10-14 Writing a Character Device Driver 



header. 

~ Defines a constant called MAX XFR that specifies the maximum chunk of 
data (in bytes) that can be transferred in read and write operations. 
Section 10.11.1 shows how cbread uses MAX XFR; and Section 
10.11.2 shows how cbwr i te uses this constant. Section 10.12.1 shows 
that the cbminphys interface uses this constant to set the b bcount 
member of the buf structure associated with this CB device.-

Writing a Character Device Driver 10-15 



10.7 Loadable Driver Local Structure and Variable 
Definitions Section 

This section is applicable only to the loadable version of the / dev / cb 
device driver. It contains declarations of the driver interfaces that were 
previously declared in Section 10.4. 

lt also contains the following declaration of the / dev / cb driver's cdevsw 
entry that will be dynamically added to the cdevsw table: 

int cb config = FALSE; ~ 
dev_t cb_devno = NODEV; ~ 

struct cdevsw cb_cdevsw_entry = 
cbopen, 
cbclose, 
cbread, 
cbwrite, 
cbioctl, 
nodev, 
nodev, 
0, 
nodev, 
nodev, 
DEV FUNNEL NULL 

}; I3l - -

#define CB_DEBUG ~ 
#undef CB_DEBUGx 

[1] Declares a variable called cb config to store state flags that indicate 
whether the / dev / cb driverls configured as a loadable driver. The 
cb config variable is initialized to the value FALSE to indicate the 
driver defaults to being statically configured. Section 10.9.2 shows that 
cb configure sets cb config to the value TRUE to indicate that 
the / dev / cb driver has SUccessfully configured as a loadable driver. 
Section 10.9.3 shows that cb configure sets cb config to the 
value FALSE to indicate that the / dev / cb driver has successfully 
unconfigured. 

121 Declares a variable called cb devno to store the cdevsw table entry 
slot to use. The cb devno variable is initialized to the value NODEV to 
indicate that no major number for the device has been assigned. Section 
10.9.2 shows that cb configure sets cb devno to the table entry 
slot. - -

@I Declares and initializes the cdevsw structure called 
cb cdevsw entry. Section 10.9.2 shows that cdevsw add uses 
cb -cdevsw - entry to add the / dev / cb driver interfaces to the in­
memory cdevsw table. 

The following list describes those members initialized to a nonzero value 

10-16 Writing a Character Device Driver 



by the / dev / cb device driver: 

- The driver's open interface, cbopen. Section 10.10.1 shows how to 
implement cbopen. 

- The driver's close interface, cbclose. Section 10.10.2 shows 
how to implement cbclose. 

- The driver's read interface, cbread. Section 10.11.1 shows how to 
implement cbread. 

- The driver's wr i te interface, cbwr i teo Section 10.11.2 shows 
how to implement cbwr i teo 

- The driver's ioctl interface, cbioctl. Section 10.14.1 shows 
how to implement cbioctl. 

Section 8.2.1 describes the cdevsw table. 

~ Uses two of the C preprocessor statements to define and undefine debug 
constants. The / dev / cb device driver contains numerous conditional 
compilation debug statements. This section shows only one of these 
statements. However, the source code listing in Section B.2 contains all 
the debug code. 

Writing a Character Device Driver 10-17 



10.8 Autoconfiguration Support Section 
This section is applicable to the loadable or static version of the / dev / cb 
device driver. Table 10-2 lists the three interfaces implemented as part of the 
Autoconfiguration Support Section, along with the sections in the book where 
each is described. 

Table 10-2: Interfaces Implemented as Part of the· 
Autoconfiguration Support Section 

Interface Section 

Implementing the cbprobe Interface Section 10.8.1 

Implementing the cbattach Interface Section 10.8.2 

Implementing the cb_ctlcunattach Interface Section 10.8.3 

10-18 Writing a Character Device Driver 



10.8.1 Implementing the cbprobe Interface 
The cbprobe interface is applicable to both the loadable and static versions 
of the / dev / cb device driver. However, there are some tasks associated 
only with loadable drivers. These tasks are identified by a conditional if 
statement that tests the cb is dynamic variable. The cbprobe 
interface's main task is to determine whether any CB devices exist on the 
system. For the loadable version of the driver, cbprobe also calls the 
appropriate interfaces to register the interrupt handlers for the loadable driver. 
The following code implements the cbprobe interface: 

cbprobe(vbaddr, ctlr) 
caddr_t vbaddr; m 
struct controller *ctlr; ~ 

ihandler t handler; ~ 
struct tc intr info info; ~ 
int unit = ctlr->ctlr_num; ~ 

/*************************************************** 
* DEBUG STATEMENT * 
***************************************************/ 

#ifdef CB DEBUG ~ 
printf("CBprobe @ %8x, vbaddr = %8x, ctlr = %8x\n",cbprobe,vbaddr,ctlr); 
#endif /* CB DEBUG */ 

if (cb_is_dynamic) { ~ 

handler.ih bus = ctlr->bus_hd; ~ 

info.configuration_st = (caddr_t)ctlr; ~ 

info.config_type = TC_CTLR; ~ 

info.intr = cbintr; ~ 

info.param = (caddr_t)unit; ~ 

handler.ih_bus_info = (char *)&info; ~ 

cb id t[unit] = handler add(&handler); ~ 
if-(ch_id_t[unit] == NULL) { ~ 

return(O); 

if (handler enable(cb id t[unit]) != 0) { ~ 
handler_del(cb=id=t[unit]); ~ 

num_cb++; [j]j 

return ( 1 ); I.m 

return(O); 

Writing a Character Device Driver 10-19 



[j] Declares a vbaddr argument that specifies the system virtual address 
(SVA) that corresponds to the base address of the slot. This line is 
applicable to the loadable or static version of the / dev / cb device driver. 

121 Declares a pointer to the controller structure associated with this CB 
device. The controller structure represents an instance of a 
controller entity, one that connects logically to a bus. A controller can 
control devices that are directly connected or can perform some other 
controlling operation, such as a network interface or terminal controller 
operation. This line is applicable to the loadable or static version of the 
/ dev / cb device driver. Section 7.4 describes the controller 
structure. 

~ Declares an ihandler t data structure called handler to contain 
information associated WIth the / dev / cb device driver interrupt 
handling. Section 7.8 describes the ihandler t structure. The 
cbprobe interface initializes two members of this data structure. This 
line is applicable only to the loadable version of the / dev / cb device 
driver. 

[4] Declares a tc intr info data structure called info. Section 7.9 
describes the tc intr info structure. 

~ Declares a uni t variable and initializes it to the controller number. This 
controller number identifies the specific CB controller that is being 
probed. 

The controller number is contained in the ctlr num member of the 
controller structure associated with this CB device. Section 7.4.3 
describes the ctlr num member. This member is used as an index into 
a variety of tables to retrieve information about this instance of the CB 
device. 

!§] Calls the printf interface to print information useful for debugging 
purposes. This line is executed only during debugging of the / dev / cb 
driver. 

Only a limited number of characters (currently 128) can be sent to the 
console display during each call to any section of a driver. The reason is 
that the characters are buffered until the driver returns to the kernel, at 
which time they are actually sent to the console display. If more than 
128 characters are sent to the console display, the storage pointer may 
wrap around, discarding all previous characters; or it may discard all 
characters following the first 128. 

If you need to see the results on the console terminal, limit the message 
size to the maximum of 128 whenever you send a message from within 
the driver. However, printf also stores the messages in an error log 
file. You can view the text of this error log file by using the uerf 
command. See the reference (man) page for this command. The 

10-20 Writing a Character Device Driver 



messages are easier to read if you use uerf with the -0 terse option. 

This line is applicable to the loadable or static version of the I dev I cb 
device driver. 

1ZI Registers the interrupt handlers if cb is dynamic evaluates to a 
nonzero value, indicating that the I dev IC'b device driver was 
dynamically loaded. If the driver was statically configured, the interrupt 
handlers have already been registered through the con fig program. 

The cb is dynamic variable contains a value to control any 
differences in tasks performed by the static and loadable versions of the 
I dev I cb device driver. This approach means that any differences are 
made at run time and not at compile time. The cb is dynamic 
variable was previously initialized and set by the cb configure 
interface, discussed in Section 10.9.2. -

Items 8 - 18 are applicable only if the driver was dynamically loaded. 
These steps accomplish the setup of the driver's interrupt handler. 

~ Specifies the bus that this controller is attached to. The bus hd member 
of the controller structure contains a pointer to the bus structure 
that this controller is connected to. After the initialization, the ih bus 
member of the ihandler t structure contains the pointer to the bus 
structure associated with the I dev I cb device driver. 

~ Sets the configuration st member of the info data structure to 
the pointer to the controller structure associated with this CB device. 
This controller structure is the one for which an associated interrupt 
will be written. 

This line also performs a type-casting operation that converts ctlr 
(which is of type pointer to a controller structure) to be of type 
caddr_t, the type of the configuration_st member. 

lIOl Sets the conf ig type member of the info data structure to the 
constant TC CTLR, which identifies the I dev I cb driver type as a 
TURBOchannel controller. 

I1II Sets the intr member of the info data structure to cbintr, the 
I dev I cb device driver's interrupt service interface (ISI). 

II2.I Sets the pararn member of the info data structure to the controller 
number for the controller structure associated with this CB device. 
Once the driver is operational and interrupts are generated, the cbintr 
interface is called with the controller number, which specifies which 
instance of the controller the interrupt is associated with. 

This line also performs a type-casting operation that converts uni t 
(which is of type int) to be of type caddr t, the type of the pararn 
member. -

Writing a Character Device Driver 10-21 



[1]] Sets the ih bus info member of the handler data structure to the 
address of the buS-specific information structure, info. This setting is 
necessary because registration of the interrupt handlers will indirectly call 
bus-specific interrupt registration interfaces. 

This line also performs a type-casting operation that converts info 
(which is of type ihandler t) to be of type char *, the type of the 
ih bus info member. -- -

[4] Calls the .L "handler_add" interface and saves its return value for use 
later by the handler del interface. The handler add interface 
takes one argument: a pointer to an ihandler t data structure, which 
in the example is the initialized handler structure. 

This interface returns an opaque ihandler id t key, which is a 
unique number used to identify the interrupt serVICe interfaces to be acted 
on by subsequent calls to handler del, handler disable, and 
handler enable. Note that this key is stored in the cb id t array 
(indexed by the unit number), which was declared in Section 105. 
Section 10.8.3 shows how to call handler del and 
handler disable. 

\j]J If the return value from handler add equals NULL, returns a failure 
status to indicate that registration of the interrupt handler failed. 

II§] If the handler enable interface returns a nonzero value, returns the 
value zero (0) to Indicate that it could not enable a previously registered 
interrupt service interface. The handler enable interface takes one 
argument: a pointer to the interrupt servicelnterface's entry in the 
interrupt table. In this example, the ID associated with the interrupt entry 
is contained in the cb _ i d _ t array. 

lIZ! If the call to handler enable failed, removes the previously 
registered interrupt handler by calling handler_del prior to returning 
an error status. 

[j]] Increments the number of instances of this controller found on the 
system. 

[1]] The cbprobe interface simply returns the value 1 to indicate success 
status because the TURBOchannel initialization code already verified that 
the device was present. 

. 10-22 Writing a Character Device Driver 



10.8.2 Implementing the cbattach Interface 
The cbattach interface is applicable to both the loadable and static 
versions of the / dev / cb device driver. Its main task is to perform 
controller-specific initialization. The following code implements the 
cbattach interface: 

cbattach(ctlr) 
struct controller *ctlri rn 
{ 

struct cb_unit *cbi ~ 

cb = &cb_unit[ctlr->ctlr_nUm]i ~ 

cb->attached = 1i ~ 

cb->adapter = ctlr->sloti ~ 

cb->cbad = ctlr->addri ~ 

cb->cbr = (io handle t)CB ADR(ctlr->addr)i ~ 
cb->cbbuf = &cbbuf[ctlr->ctlr_nUm]i ~ 

[j] Declares a pointer to the controller structure associated with this CB 
device. The controller structure represents an instance of a 
controller entity, one that connects logically to a bus. A controller can 
control devices that are directly connected or can perform some other 
controlling operation, such as a network interface or terminal controller 
operation. Section 7.4 describes the controller structure. 

I2l Declares a pointer to the cb unit data structure associated with this CB 
device and calls it cb. SectIOn 10.6 shows the declaration of cb unit. 

@] Sets the pointer to the cb unit structure to the address of the unit data 
structure associated with this CB device. The ctlr num member of the 
controller structure pointed to by ctlr holds the controller number 
for the controller associated with this CB device. Thus, this member is 
used as an index into the array of cb unit structures to set the instance 
representing this CB device. -

~ Indicates that this CB device is attached to its associated controller by 
setting the attached member of the device's associated cb unit 
structure to the value 1. -

!5] Sets this CB device's TURBOchannel slot number by setting the 
adapter member of this CB device's cb unit structure to the slot 
number contained in the slot member o(t"he device's controller 
structure. Section 7.4.6 describes the s lot member. 

I§] Sets the base address of the device ROM. This location is the address of 
the data to be checked for read accessibility. The cbattach interface 
accomplishes this task by setting the cbad member of this CB device's 
cb unit structure to the address contained in the addr member of its 

Writing a Character Device Driver 10-23 



controller structure. 

IZI Sets the pointer to the CB device's registers. The cbattach interface 
accomplishes this task by setting the cbr member of this device's 
cb unit structure to the register address calculated by the CB ADR 
macro. The cbr member is an 110 handle. An 110 handle is a data 
entity that is of type io _handle _ t. 

Note that CB ADR takes as an argument the address of the data to be 
checked for read accessibility, which in this case is stored in the addr 
member of the controller structure. Section 10.2 shows the 
definition of the CB ADR macro. 

When CB ADR completes execution, the cb->cbr pointer is set to the 
base address plus 20000 hexadecimal because the CB device registers are 
located at that offset from the base address. 

i Sets the buffer structure address (the cbbuf member of this CB device's 
cb unit structure) to the address of this CB device's buf structure. 
Agmn, the ctlr num member is used as an index into the array of buf 
structures associated with this CB device. 

10-24 Writing a Character Device Driver 



10.8.3 Implementing the cb_ctlr _unattach Interface 
The cb ctlr unattach interface is a loadable driver-specific interface 
called indirectly from the bus code when a system manager specifies that the 
loadable driver is to be unloaded. In other words, this interface would never 
be called if the / dev / cb device driver were configured as a static driver 
because static drivers cannot be unconfigured. The cb ctlr unattach 
interface's main tasks are to deregister the interrupt halldlers aSSociated with 
the / dev / cb device driver and to remove the specified controller 
structure from the list of controllers the / dev / cb driver handles. 

The following code implements the cb _ ctlr _ unat tach interface: 

int cb ctlr unattach(bus, ctlr) 
struct bus *buSi m 
struct controller *ctlri ~ 

register int unit = ctlr->ctlr_numi ~ 

if ((unit> num_cb) II (unit < 0» { ~ 
return(l); 

if (cb_is_dynamic == 0) { ~ 
return(l); 

if (handler_disable(cb_id_t[unit]) 1= 0) { ~ 
return(l); 

if (handler del(cb_id_t[unit]) 1= 0) { ~ 
return ( 1); 

} 

return( 0); IaI 

ill Declares a pointer to a bus structure and calls it bus. The bus structure 
represents an instance of a bus entity. A bus is a real or imagined entity 
to which other buses or controllers are logically attached. All systems 
have at least one bus, the system bus, even though the bus may not 
actually exist physically. The term controller here refers both to devices 
that control slave devices (for example, disk and tape controllers) and to 
devices that stand alone (for example, terminal or network controllers). 
Section 7.3 describes the bus structure. 

121 Declares a pointer to a controller structure and calls it ctlr. This 
controller structure is the one you want to remove from the list of 
controllers handled by the / dev / cb device driver. Section 7.4 describes 
the controller structure. 

[3] Declares a uni t variable and initializes it to the controller number. This 
controller number identifies the specific CB controller whose associated 

Writing a Character Device Driver 10-25 



controller structure is to be removed from the list of controllers 
handled by the / dev / cb driver. Section 7.4.3 describes the ctlr num 
member. -

The controller number is contained in the ctlr num member of the 
controller structure associated with this CB device. 

~ If the controller number is greater than the number of controllers found 
by the cbprobe interface or the number of controllers is less than zero, 
returns the value 1 to the bus code to indicate an error. This sequence of 
code validates the controller number. The n um cb variable contains the 
number of instances of the CB controller found by the cbprobe 
interface. Section 10.8.1 describes the implementation of cbprobe. 

1.51 If cb is dynamic is equal to the value zero (0), returns the value 1 to 
the bus code to indicate an error. This sequence of code validates 
whether the / dev / cb driver was dynamically loaded. The 
cb is dynamic variable contains a value to control any differences in 
tasks performed by the static and loadable versions of the / dev / cb 
device driver. This approach means that any differences are made at run 
time and not at compile time. The cb is dynamic variable was 
previously initialized and set by the cb_ conf igure interface, discussed 
in Section 10.9.2. 

[§] If the return value from the call to the handler disable interface is 
not equal to the value zero (0), returns the value f to the bus code to 
indicate an error. Otherwise, the handler disable interface makes 
the / dev / cb device driver's previously registered interrupt service 
interfaces unavailable to the system. Section 9.6.4 provides additional 
information on handler disable. 

III If the return value from the call to the handler del interface is not 
equal to the value zero (0), returns the value 1 to the bus code to indicate 
an error. Otherwise, the handler del interface deregisters the 
/ dev / cb device driver's interrupt service interface from the bus-specific 
interrupt dispatching algorithm. Section 9.6.4 provides additional 
information on handler del. 

The handler del interface takes the same argument as the 
handler disable interface: a pointer to the interrupt service's entry 
in the interrupt table. 

~ Returns the value zero (0) to the bus code upon successful completion of 
the tasks performed by the cb_ctlr_unattach interface. 

10-26 Writing a Character Device Driver 



10.9 Loadable Device Driver Section 
This section is applicable only to the loadable version of the / dev / cb 
device driver. It implements the cb conf igure interface. Table 10-3 
lists the tasks associated with implementing the Loadable Device Driver 
Section, along with the sections in the book where each task is described. 

Table 10-3: Tasks Associated with Implementing the Loadable 
Device Driver Section 

Tasks 

Setting Up the cb_configure Interface 

Configuring (Loading) the Idev/cb Device 
Driver 

Unconfiguring (Unloading) the Idev/cb 
Device Driver 

Querying the Idev/cb Device Driver 

Section 

Section 10.9.1 

Section 10.9.2 

Section 10.9.3 

Section 10.9.4 

Writing a Character Device Driver 10-27 



10.9.1 Setting Up the cb_configure Interface 
The following code shows how to set up the cb _ conf igure interface: 

cb configure(op,indata,indatalen,outdata,outdatalen) 
-sysconfig op top; rn 

device config t *indata; ~ 
size t-indatalen; ~ 
device config t *outdata; ~ 
size_t-outdatalen; ~ 

dev t cdevno; ~ 
int- retval; ~ 
int i; lSI 
struct cb unit *cb; ~ 
int cbincled(); ~ 

ill Declares an argument called op to contain a constant that describes the 
configuration operation to be performed on the loadable driver. This 
argument is used in a switch statement and evaluates to one of the 
following valid constants: SYSCONFIG _CONFIGURE, 
SYSCONFIG_UNCONFIGURE,orSYSCONFIG_QUERY. 

I2J Declares a pointer to a device config t data structure called 
indata that consists of inputs to the cb configure interface. This 
data structure is filled in by the device driver method of c f grngr. The 
device config t data structure is used to represent a variety of 
information, includiiig the / dev / cb driver's major number 
requirements. Writing Device Drivers, Volume 2: Reference provides a 
reference (man) page-style description of the device _ config_ t 
structure. 

I.3J Declares an argument called indatalen to store the size of this input 
data structure (in bytes). 

~ Declares a pointer to a data structure called outdata that is filled in by 
the / dev / cb driver. This data structure contains a variety of 
information, including the "return values" from the / dev / cb driver to 
cfgrngr. This returned information contains the major number assigned 
to the CB device. 

15] Declares an argument called outdatalen to store the size of this 
output data structure (in bytes). 

[§] Declares a variable called cdevno to store the major device number for 
the CB device. 

III Declares a variable called retval to store the return value from the 
cdevsw del interface. 

~ Declares a variable called i to be used in the for loop when 
cb _configure unloads the loadable driver. 

10-28 Writing a Character Device Driver 



iii Declares a pointer to the cb unit data structure associated with this CB 
device and calls it cb. Section 10.6 shows the declaration of cb unit. 

[Q] Declares a forward reference to the cbincled interface. Section 10.15 
shows the implementation of cbincled. 

Writing a Character Device Driver 10-29 



10.9.2 Configuring (Loading) the Idev/cb Device Driver 
The following code shows how to implement the configurable (loadable) 
version of the / dev / cb device driver: 

switch (op) { 

case SYSCONFIG_CONFIGURE: ill 

if (indata->dc dsflags & IH DRV DYNAMIC) 
cb_is_dynamic = 1; -

if (cb_is_dynamic) { ~ 

} IZl 

if (strlen(indata->config name) <= 0) { 
printf("cb_configure, null config name.\n"); 
return(EINVAL); 

if (ldbl stanza resolver(indata->config name, 
CB BUSNAME, &cbdriver, -
(caddr_t *)cb_option_snippet) 1= 0) { 
return(EINVAL); 

if (ldbl ctlr configure(CB BUSNAME, 
LDBL WILDNUM, indata->config name, 
&cbdriver, 0)) { -
return(EINVAL); 

} I§] 

if (num_cb == 0) { 
return(EINVAL); 

cdevno = makedev(indata->dc cmajnum, 
(indata->dc cmajnum-== -1)?-1:0); ~ 

cdevno = cdevsw add(cdevno,&cb cdevsw entry); ~ 
if (cdevno == NODEV) { - -

return(ENODEV); 
}[QI 

cb_devno = cdevno; ff] 

outdata->dc_cmajnum = major(cb_devno); ~ 

outdata->dc_begunit 0; 

outdata->dc numunit num_cb; 

outdata->dc version DRIVER_BUILD_LEVEL; 

outdata->dc_dsflags indata->dc_dsflags; 

outdata->dc_bmajnum NODEV; 

outdata->dc errcode 0 
outdata->dc-ihflags 0 
outdata->dc-ihlevel 0 

cb_config = TRUE; ~ 
break; 

10-30 Writing a Character Device Driver 



!II Specifies the SYSCONFIG CONFIGURE constant to indicate that this 
section of code implementsthe configure loadable driver operation. The 
file lusr I sys I inc lude I sys I sysconfig. h contains the definition 
of this constant. 

I2J If the device switch configuration flag is set to the IH DRV DYNAMIC 
bit, then this is the loadable version of the driver. To Indicate this state, 
sets the cb is dynamic variable to I. The file 
lusrlsySiinclude/sys/sysconfig.h contains the definition of 
this constant. 

The device switch configuration flag is set by the device driver method of 
cfgmgr in the dc dsflags member of the input data structure, 
indata. This ifstatement is included because it is possible for a static 
driver to call the conf igure interface. 

@] If this is the loadable version of the driver, calls the strlen kernel 
interface. 

~ If the number of characters returned by strlen is less than or equal to 
zero: 

- Calls printf to print a message indicating that no device driver 
name was specified in the stanza .loadable file fragment. The 
absence of a device driver name in stanza. loadable indicates 
that the driver name cannot be determined. The driver name is 
required for the configuration of the loadable driver. In this case, the 
interface must return an error status. 

Section 12.6 describes the s tanz a file format and syntax. 

- Returns the constant E I NVAL to indicate an invalid argument. This 
constant is defined in the file 
lusr I sysl includel sysl errno. h. This error return value 
gets indirectly passed back to cfgmgr. 

The strlen interface takes one argument: a pointer to an array of 
characters terminated by a null character. In this call, the array of 
characters is the conf ig name member of the pointer to the indata 
input data structure. This-member is set by the driver method of 
cfgmgr, which obtains the driver's configuration name from the 
Module Config Name field in the stanza .loadable file 
fragment~ Because the driver's configuration name is a required field in 
the stanza .loadable file fragment, the driver must return an error if 
the name does not exist. Section 9.1.5 provides additional information on 
strlen. Section 12.6.2.19 describes the Module Config Name 
field. - -

Writing a Character Device Driver 10-31 



15] If the ldbl stanza resolver kernel interface returns a value not 
equal to zerO. it did not find matches in the tc s lot table. This 
condition indicates that no instances of the controller exist on the bus. It 
returns the constant E I NVAL to indicate an invalid argument. Otherwise, 
ldbl stanza resolver allows the device driver to merge the 
system configuration data specified in the stanza .loadable file 
fragment into the hardware topology tree created at static configuration 
time. 

The ldbl_stanza_resolver interface takes four arguments: 

- The name of the driver specified by the driver writer in the 
stanza. loadable file fragment 

In this call, the driver name is obtained from the config name 
member of the pointer to the inda ta input data structure~ 

- The name of the parent bus structure associated with this controller 

In this call, the constant CB BUSNAME represents the characters "tc" 
indicating that the parent bus structure is a TURBOchannel bus. The 
bus structure name is obtained from the config program. 

- A pointer to the driver structure for the controlling device driver 

In this call, the address of the cbdr i ver structure is passed. 

- A bus-specific parameter 

The bus-specific parameter for a TURBOchannel bus is usually a 
tc option snippet table. The snippet table is identical in format to 
the tc option table defined in the tc option data. c file. In 
this call, the address of the cb option-snippet table is passed. 
This table contains the appropnate entry for the loadable version of 
the / dev / cb device driver. Section 10.5 shows the declaration of 
this table. 

Note that a type-casting operation converts cb option snippet 
(which is of type struct tc option) to be of type eaddr t *, 
the type of the bus-specific argument. However, -
ldbl stanza resolver does not do anything with this 
argument but paSS it to the bus configuration code, which performs 
the correct type-casting operation to handle cb option snippet. 
Section 9.6.5 provides additional information on -
ldbl stanza resolver. 

I§] Calls the ldbl ctlr configure interface to cause the driver's 
cbprobe interface to be called once for each instance of the controller 
found on the system. If the call to ldbl ctlr conf igure fails, 
returns the constant EINVAL. The ldbl-ctlr-configure interface 
takes five arguments: - -

10-32 Writing a Character Device Driver 



- The bus name 

In this call, the bus name is represented by the CB BUSNAME 
constant, which maps to the character string tc. -

- The bus number 

In this call, the bus number is represented by the wildcard constant 
LDBL WILDNUM. This wild card allows for the configuration of all 
instances of the CB device present on the system. This constant is 
defined in the file 
/usr/sys/include/io/common/devdriver.h. 

- The name of the controlling device driver 

In this call, this name is obtained from the conf ig name member 
of the indata input data structure. -

- A pointer to the driver structure for the controlling device driver 

In this call, the controlling device driver is cbdriver. 

- Miscellaneous flags from 
/usr/sys/include/io/common/devdriver_loadable.h 

In this call, the value zero (0) is passed to indicate that no flags are 
specified. 

IZJ If the cbprobe interface does not find any controllers, sets the variable 
that keeps count of the number of controllers found to the value zero (0) 
and returns the constant E INVAL to indicate no controllers were found. 

~ Calls the makedev interface, which makes a device number of type 
dev t based on the specified major and minor numbers. Upon 
successful completion, makedev returns the major number for this CB 
device in the cdevno variable. Note that the driver configuration is 
performed before obtaining the device major number to prevent user-level 
programs from gaining access to the / dev / cb driver's entry points in 
the cdevsw table. 

The makedev interface takes two arguments. The first argument is the 
major number for the device, which in this call is obtained from the 
dc cmaj num member of the pointer to the indata input data structure 
associated with this device. 

The second argument is the minor number for the device, which in this 
call is also obtained from the dc cmajnum member, indicating that the 
major and minor numbers are identical. This interface does not make use 
of the minor number. Writing Device Drivers, Volume 2: Reference 
provides a reference (man) page-style description of makedev. 

[9] Calls the cdevsw add interface to add the driver entry points for the 
/ dev / cb driver to the cdevsw table. This interface takes two 
arguments. The first argument specifies the device switch table entry 

Writing a Character Device Driver 10-33 



(slot) to use. This entry represents the requested major number. In this 
call, the slot to use was obtained in a previous call to makedev. The 
second argument is the character device switch structure that contains the 
character device driver's entry points. In this call, this structure is called 
eb edevsw entry. Upon successful completion, edevsw add 
retUrns the device number associated with the device switch table. 
Section 9.6.2 provides additional information on edevsw _add. 

[Q] If the device number associated with the device switch table is equal to 
the constant NODE V, returns the error constant ENODEV. The NODEV 
constant indicates that the requested major number is currently in use or 
that the edevsw table is currently full. The NODEV constant is defined 
in /usr / sys / inel ude/ sys /param. h, and 
/usr/sys/inelude/sys/errno.h contains the ENODEV constant. 

[1jJ Stores the edevsw table entry slot for this CB device in the cb devno 
variable. Section 10.9.3 shows that edevsw del uses this slotvalue 
when the device is unconfigured. 

ff2] This line and the following lines set up the pointer to the ou tda ta 
output data structure to contain the returned information from the driver 
configuration. The e f gmgr program uses this information to determine 
whether the driver was successfully configured and what device special 
files need to be created. The efgmgr program initializes the output data 
structure as follows: 

Sets de ema j num to the major number for this device by calling the 
rna j or interface. In this call, the number of the device is contained 
in the cb devno variable. Section 9.9.2 provides additional 
information on major. 

- Sets de beguni t to the first minor device number in the range. In 
this case, the first minor number is zero (0). 

- Sets de numuni t to the number of instances of the controller found 
by the ebprobe interface. In this case, this number is contained in 
the n um cb variable, which was incremented by ebprobe upon 
locating each controller on the system. 

- Sets de version to the version of the kernel interfaces that the 
driver was compiled to. This member is examined by efgmgr upon 
driver loading to ensure compatibility. In this call, the version is 
specified with the constant DRIVER BUILD LEVEL, which is 
defined in /usr / sys/ inelude/sys/ syseonfig. h. 

- Sets de dsflags to the device switch configuration flags that were 
passed to the input data structure by efgmgr. 

- Sets de bmajnum to the constant NODEV. The CB device is a 
character device and, therefore, has no block device major number. 

10-34 Writing a Character Device Driver 



- Because the de erreode, de ihf lags, and de ihlevel 
members are not used, sets themto the value zero (0). 

[j]] Sets the state flag to indicate that the / dev / eb device driver is now 
configured as a loadable device driver. 

Writing a Character Device Driver 10-35 



10.9.3 Unconfiguring (Unloading) the Idev/cb Device Driver 
The following code shows how to implement the unconfiguration of the 
loadable version of the / dev / cb device driver: 

case SYSCONFIG UNCONFIGURE: m 
if (cb_config != TRUE) { 

return(EINVAL); 
} I2l 

for (i = 0; i < num cb; i++) { 
if (cb_unit[i].opened != 0) { 

return(EBUSY); 
} ~ 

for (i = 0; i < num cb; i++) { ~ 
cb = &cb_unit[i]; 
cb->ledflag = 0; 
untimeout(cbincled, (caddr_t)cb); 

retval = cdevsw del(cb devno); 
if (retval) {- -
return(ESRCH); 
} ~ 

if (cb_is_dynamic) { ~ 

if (ldbl ctlr unconfigure(CB BUSNAME, 
LDBL_WILDNUM, &cbdriver, 
LDBL_WILDNAME, LDBL_WILDNUM) != 0) { ~ 

return(ESRCH); 

cb_config = FALSE; ~ 
break; 

ill Specifies the SYSCONFIG UNCONFIGURE constant to indicate that this 
section of code implementsthe unconfigure operation of the loadable 
driver. The file /usr / sys/ include/ sys/ sysconfig. h contains 
the definition of this constant. 

!2l If the / dev / cb device driver is not currently configured as a loadable 
driver, fails the unconfiguration by returning the constant E INVAL. This 
error code is defined in /usr/sys/include/sys/errno.h. 

13] Prevents the system manager from unloading the device driver, if it is 
currently active. Check the opened member of this CB device's 
cb unit structure to determine if the device is opened and thus active. 
If the device is opened, return the constant EBUSY. This error code is 
defined in /usr/sys/include/sys/errno.h. 

10-36 Writing a Character Device Driver 



~ As long as the variable i is less than the number of controllers found by 
cbprobe, executes the following: 

- Specifies the cb _ uni t structure associated with this CB device. 

- Turns off the LED increment function. 

This is accomplished by setting the member of the cb unit 
structure that stores the LED increment function flag. The reason for 
turning off this function is to ensure that the driver is quiescent. If 
this function is not turned off, the cbinc led interface could be 
called after its timeout interval expires. If an attempt to execute a 
driver interface that had already been unloaded is made, a system 
panic could result. 

- Calls the untimeout kernel interface to remove the scheduled 
interface from the callout queues. 

When this call to untimeout is made, the driver does not know if 
there are any pending calls on the callout queues. If there are any 
pending calls, they are removed from the callout queues. If there are 
no pending calls, untimeout simply returns. 

The un timeou t interface takes two arguments. The first argument 
is a pointer to the interface to be removed from the callout queues, 
which in this call is cbincled. The second argument is a single 
argument passed to the called interface, which is cbincled. In this 
call, this single argument is the pointer to the cb unit structure 
associated with this CB device. -

Note that a type-casting operation converts cb (which is of type 
cb unit) to be of type caddr t, the type of the single argument. 
Section 9.5.6 provides additionailnformation on untimeout. 

~ Calls the cdevsw del interface to delete the / dev / cb driver's entry 
points from the cdevsw table. This task is done prior to calling 
ldbl ctlr unconfigure to prevent access to the device in the 
middle of unconfiguring the driver. If cdevsw del returns a nonzero 
value, it returns the error constant ESRCH to indicate there was no such 
slot in the cdevsw table. Otherwise, it deletes the driver's entry points. 
Section 9.6.1 provides additional information on the cdevsw del 
interface. -

The cdevsw del interface takes one argument: the device switch table 
entry (slot) touse. In this call, the slot is contained in the cb devno 
variable, which was set when the driver was configured. -

I.§] If cb is dynamic evaluates to TRUE, calls the 
ldbl ctlr unconfigure interface to unconfigure the specified 
controller. Section 10.9.2 shows that the cb is dynamic variable was 
previously set to TRUE (the value 1) when the dnver was configured. 

Writing a Character Device Driver 10-37 



IZI If the ldbl ctlr unconfigure interface returns a nonzero value, 
returns the error constant ESRCH to indicate that it did not successfully 
unconfigure the specified controller. Otherwise, unconfigures the 
controller. A call to this interface results in a call to the driver's 
cb ctlr unattach interface for each instance of the controller. 
Section 10~.3 describes cb ctlr unattach. 

The ldbl_ ctlr _ unconf igure interface takes five arguments: 

- The bus name 

In this call, the bus name is represented by the constant 
CB BUSNAME. 

- The bus number 

In this call, the wildcard constant indicates that the interface 
ldbl ctlr unconf igure deregisters all instances of the 
controllers connected to the TURBOchannel bus. 

- A pointer to the driver structure for the controlling device driver 

In this case, the controlling device driver is cbdri ver. 

- The controller name and controller number 

In this call, the wildcard constants indicate that 
ldbl ctlr unconfigure scans all controller structures. 
Section 9.6.6provides additional information on 
ldbl_ctlr_unconfigure. 

~ Sets the cb config variable to the value FALSE to indicate that the 
/ dev / cb device driver is now unconfigured. 

10-38 Writing a Character Device Driver 



10.9.4 Querying the Idev/cb Device Driver 
The following code sh<;>ws how to implement the query section of a loadable 
device driver. This section of code executes when the system manager 
requests a query of information associated with the loadable version of the 
driver. 

case SYSCONFIG_QUERY: rn 
if (cb_config 1= TRUE) 

return (EINVAL) ; 
} ~ 
outdata->dc cmajnum = major(cb devno); 
outdata->dc-bmajnum = NODEV; -
outdata->dc-begunit = 0; 
outdata->dc=numunit = num_cb; 
outdata->dc version = DRIVER_BUILD_LEVEL; 
break; 

default: 
return(EINVAL); 131 

return( 0); ~ 

ill Specifies the SYSCONFIG QUERY constant to indicate that this section 
of code implements the query operation of the loadable driver. The file 
lusrlsys/inelude/sys/syseonfig.h contains the definition of 
this constant. 

I2J Fails the query if the driver is not currently configured as a loadable 
driver. Otherwise, sets the following members of the outdata output 
data structure: 

Sets de emajnum to the major number for this device by calling the 
rna j or Interface. In this call, the number of the device is contained 
in the cb devno variable. Section 9.9.2 provides additional 
information on major. 

Sets de bmajnum to the constant NODEV. The CB device is a 
character device and, therefore, has no block device major number. 

Sets de beguni t to the first minor device number in the range. In 
this case,- the first minor number is zero (0). 

Sets de numuni t to the number of instances of the controller found 
by the ebprobe interface. In this case, this number is contained in 
the n um cb variable, which was incremented by ebprobe upon 
locating each controller on the system. 

Sets de version to the version of the kernel interfaces that the 
driver was compiled to. This member is examined by efgmgr upon 
driver loading to ensure compatibility. In this call, the version is 

Writing a Character Device Driver 10-39 



specified with the constant DRIVER BUILD LEVEL, which is 
defined in /usr /sys/ include/sys/ sysconfig. h. 

~ Defines an unknown operation type and returns the error constant 
E INVAL to indicate this condition. This section of code is called if the 
op argument is set to anything other than SYSCONFIG _CONFIGURE, 
SYSCONFIG_UNCONFIGURE,orSYSCONFIG_QUERY. 

~ To indicate that the / dev / cb driver's cb configure interface 
completed successfully, returns the value zero (0) is returned. 

10-40 Writing a Character Device Driver 



10.10 Open and Close Device Section 
This section is applicable to the loadable or static version of the / dev / cb 
device driver. Table 10-4 lists the two interfaces implemented as part of the 
Open and Close Device Section along with the sections in the book where 
each is described. 

Table 10-4: Interfaces Implemented as Part of the Open and 
Close Device Section 

Interfaces 

Implementing the cbopen Interface 

Implementing the cbc10se Interface 

Section 

Section 10.10.1 

Section 10.10.2 

Writing a Character Device Driver 10-41 



10.10.1 Implementing the cbopen Interface 
This section is applicable to the loadable or static version of the / dev / cb 
device driver. The following code implements the cbopen interface: 

cbopen(dev, flag, format) 
dev_t dev; ffl 
int flag; I2l 
int format; ~ 

int unit = minor(dev); ~ 

if ((unit> NCB) I I !cb unit[unit].attached) 
return(ENXIO); ~ 

cb unit[unit].opened = 1; ~ 
return(O); ~ 

ff] Declares an argument that specifies the major and minor device numbers 
for a specific CB device. The minor device number is used to determine 
the logical unit number for the CB device that is to be opened. 

121 Declares an argument to contain flag bits from the file 
/usr/sys/include/sys/file.h. These flags indicate whether the 
device is being opened for reading, writing, or both. 

~ Declares an argument that specifies the format of the special device to be 
opened. The format argument is used by a driver that has both block 
and character interfaces and uses the same open interface in both the 
bdevsw and cdevsw tables. The driver uses this argument to 
distinguish the type of device being opened. The cbopen interface does 
not use this argument. 

~ Declares a uni t variable and initializes it to the device minor number. 
Note the use of the minor interface to obtain the device minor number. 

The minor interface takes one argument: the number of the device for 
which an associated device minor number will be obtained. The minor 
number is encoded in the dev argument. 

~ If the device minor number is greater than the number of CB devices 
configured in this system OR if this CB device is not attached, returns the 
error code ENXIO, which indicates no such device or address. This error 
code is defined in /usr/sys/include/sys/errno.h. 

The NCB constant is used in the comparison of the uni t variable. This 
constant defines the maximum number of CB devices configured on this 
system. 

The line also checks the attached member of this CB device's 
cb unit structure. Section 10.8.2 shows that the cbattach interface 
set this member to the value 1. 

10-42 Writing a Character Device Driver 



I§] If the previous line evaluates to FALSE, sets the opened member of this 
CB device's cb unit structure to the value 1 to indicate that this CB 
device is open and ready for operation. Section 10.6 shows the 
declaration of the cb unit data structure. 

IZI Returns success to the open system call, indicating a successful open of 
this CB device. 

Writing a Character Device Driver 10-43 



10.10.2 Implementing the cbclose Interface 
This section is applicable to the loadable or static version of the I dev I cb 
device driver. The following code implements the cbclose interface: 

cbclose(dev, flag, format) 
dev t dev; [jJ 
int-flag; 121 
int format; 131 

int unit = minor(dev); ~ 
cb_unit[unit).opened = 0; ~ 
return(O)i ~ 

[j] Declares an argument that specifies the major and minor device numbers 
for a specific CB device. The minor device number is used to determine 
the logical unit number for the CB device that is to be closed. 

12] Declares an argument to contain flag bits from the file 
lusrlsys/include/sys/file .h. The cbclose interface does 
not use this argument. 

~ Declares an argument that specifies the format of the special device to be 
closed. The format argument is used by a driver that has both block 
and character interfaces and uses the same close interface in both the 
bdevsw and cdevsw tables. The driver uses this argument to 
distinguish the type of device being closed. 

The cbclose interface does not use this argument. 

~ Declares a uni t variable and initializes it to the device minor number. 
Note the use of the minor interface to obtain the device minor number. 

The minor interface takes one argument: the number of the device for 
which an associated device minor number will be obtained. The minor 
number is encoded in the dev argument. 

~ Sets the opened member of this CB device's cb unit structure to the 
value 0, indicating that this CB device is now closed. Section 10.6 shows 
the declaration of the cb uni t data structure. 

!§] Returns success to the close system call, indicating a successful close 
of this CB device. 

10-44 Writing a Character Device Driver 



10.11 Read and Write Device Section 
This section is applicable to the loadable or static version of the / dev / cb 
device driver. Table 10-5 lists the interfaces implemented as part of the Read 
and Write Device Section along with the sections in the book where each is 
described. 

Table 10-5: Interfaces Implemented as Part of the Read and 
Write Device Section 

Interfaces 

Implementing the cbread Interface 

Implementing the cbwrite Interface 

Section 

Section 10.11.1 

Section 10.11.2 

Writing a Character Device Driver 10-45 



10.11.1 Implementing the cbread Interface 
This section is applicable to the loadable or static version of the / dev / cb 
device driver. The following code implements the cbread interface: 

cbread(dev, uio, flag) 
dev t dev; rn 
struct uio *uio; ~ 
int flag; 

unsigned tmp; @I 
int cnt, err; ~ 
int unit = minor(dev); ~ 
struct cb_unit *cb; ~ 

err = 0; IZI 
cb = &cb unit[unit]; ~ 
if(cb->iomode == CBPIO) { ~ 

while((cnt = uio->uio_resid) && (err == 0» { ~ 

if(cnt > MAX XFR)cnt = MAX XFR; a] 
tmp = read_io_port(cb->cbr-' CB_DATA, 

4, 
0) ;[1]] 

err = uiomove(&tmp,cnt,uio); ~ 
} 

return ( err); [HI 
} 

else if(cb->iomode == CBDMA) ~ 

return (physio(cbstrategy, cb->cbbuf ,dev,B_READ,cbminphy s,uio»; 

[j] Declares an argument that specifies the major and minor device numbers 
for a specific CB device. The minor device number is used to determine 
the logical unit number for the CB device on which the read operation is 
performed. 

121 Declares a pointer to a uio structure. This structure contains the 
information for transferring data to and from the address space of the 
user's process. You typically pass this pointer unmodified to the 
uiomove or physio kernel interface. This driver passes the pointer to 
both interfaces. 

[aJ Declares a variable called tmp to store the 32-bit read/write data register. 
This variable is passed as an argument to the uiomove kernel interface. 

~ Declares a variable called en t to store the number of bytes of data that 
still need to be transferred. This variable is passed as an argument to the 
uiomove interface. 

Declares a variable called err to store the return value from uiomove. 

10-46 Writing a Character Device Driver 



~ Declares a uni t variable and initializes it to the device minor number. 
Note the use of the minor interface to obtain the device minor number. 

The minor interface takes one argument: the number of the device for 
which an associated device minor number will be obtained. The minor 
number is encoded in the dev argument. 

The uni t variable is used to select the CB board to be accessed for the 
read operation. 

[§] Declares a pointer to the cb unit data structure associated with this CB 
device and calls it cb. Sectwn 10.6 shows the declaration of cb uni t. 

IZI Initializes the err variable to the value zero (0) to indicate no error has 
occurred yet. 

[8] Sets the pointer to the cb unit structure to the address of the unit data 
structure associated with this CB device. The uni t variable contains this 
CB device's minor number. Thus, this argument is used as an index into 
the array of cb _ uni t structures associated with this CB device. 

I9l If the I/O mode bit is CBPIO, then this is a programmed I/O read 
operation. This bit is set in the iomode member of the pointer to the 
cb unit data structure associated with this CB device. 

For a programmed I/O read operation, the contents of the data register on 
the TURBOchannel test board are read into a 32-bit local variable. Then 
the contents of that variable are moved into the buffer in the user's virtual 
address space with the uiomove interface. 

[j]] Sets up a while loop that allows the uiomove interface to transfer 
bytes from the TURBOchannel test board data register to the user's buffer 
until all of the requested bytes are moved or until an error occurs. 

The uio resid member of the pointer to the uio structure specifies 
the number of bytes that still need to be transferred. 

This task must be accomplished by the while loop because the 
TURBOchannel test board data register can supply only a maximum of 
MAX XFR bytes at a time. The MAX XFR constant was previously 
defined as 4 bytes. This loop may not be required by other devices. 

[IT] If the number of bytes that still need to be transferred is greater than 4, 
then forces en t to contain 4 bytes of data. This code causes a read of 
more than 4 bytes to be divided into a number of 4-byte maximum 
transfers with a final transfer of 4 bytes or less. 

lI2l Reads the 32-bit read/write data register by calling the read io port 
interface. This register value is defined by the CB DATA deVIce register 
offset associated with this CB device. The read lo port interface is 
a generic interface that maps to a bus- and machine-specific interface that 
actually performs the read operation. Using this interface to read data 
from a device register makes the device driver more portable across 

Writing a Character Device Driver 10-47 



different bus architectures, different CPU architectures, and different CPU 
types within the same CPU architecture. The read io port interface 
takes three arguments: - -

- The first argument specifies an 110 handle that you can use to 
reference a device register located in bus address space (either 110 
space or memory space). This 110 handle references a device register 
in the bus address space where the read operation originates. You can 
perform standard C mathematical operations on the 110 handle. In 
this call, the / dev / cb driver ORs the 110 handle with the 32-bit 
read/write data register represented by CB _DATA. 

- The second argument specifies the width (in bytes) of the data to be 
read. Valid values are 1, 2, 3,4, and 8. Not all CPU platforms 
support all of these values. In this call, the / dev / cb driver passes 
the value 4. 

- The third argument specifies flags to indicate special processing 
requests. In this call, the / dev / cb driver passes the value zero (0). 

Upon successful completion, read io port returns the data read from the 
32-bit read/write data register to the-tmp variable. 

[j]] Calls the uiomove interface to move the bytes read from the 
TURBOchannel data register in system virtual space to the user's buffer 
in user space. The maximum number of bytes moved is 4 and 
uio resid is updated as each move is completed. The uiomove 
interface takes three arguments: 

- A pointer to the kernel buffer in system virtual space 

In this call, this pointer is the 32-bit read/write data contained in the 
tmp variable. 

- The number of bytes to be moved 

In this call, the number of bytes to move is contained in the en t 
variable, which is always 4 bytes. 

- A pointer to a uio structure 

This structure describes the current position within a logical user 
buffer in user virtual space. Section 9.3.5 provides additional 
information on uiomove. 

~ Returns a zero (0) value whenever the user virtual space described by the 
uio structure is accessible and the data is successfully moved. 
Otherwise, it returns an EFAULT error value. 

[j]] If the 110 mode bit is CBDMA, then this is a DMA 110 read operation. 
This bit is set in the iomode member of the pointer to the cb unit 
data structure associated with this CB device. -

For a DMA 110 read operation, the physio kernel interface and the 

10-48 Writing a Character Device Driver 



/ dev / cb driver's cbstrategy and cbminphys interfaces are called 
to transfer the contents of the data register on the TURBOchannel test 
board into the buffer in the user's virtual address space. Because only a 
single word of 4 bytes can be transferred at a time, both modes of reading 
include code to limit the read to chunks with a maximum of 4 bytes each. 
Reading more than 4 bytes will propagate the contents of the data register 
throughout the words of the user's buffer. 

The physio interface takes six arguments: 

- A pointer to the driver's strategy interface 

In this call, the driver's strategy interface is cbstrategy. 
Section 10.12.2 shows how to set up the cbstrategy interface. 

- A pointer to a bu f structure 

In this call, the bu f structure is the one associated with this CB 
device. This structure contains information such as the binary status 
flags, the major/minor device numbers, and the address of the 
associated buffer. This buffer is always a special buffer header owned 
exclusively by the device for handling 110 requests. Section 8.1 
describes the bu f structure. 

- The device number, which in this call is contained in the dev 
argument. 

- The read/write flag 

In this call the read/write flag is the constant B _ READ. 

- A pointer to the minphys interface 

In this call, the driver's minphys interface is cbminphys. Section 
10.12.1 shows how to set up the cbminphys interface. 

- A pointer to a uio structure 

Writing a Character Device Driver 10-49 



10.11.2 Implementing the cbwrite Interface 
This section is applicable to the loadable or static version of the / dev / cb 
device driver. The following code implements the cbwri te interface: 

cbwrite(dev, uio, flag) 
dev t dev; rn 
struct uio *uio; ~ 
int flag; 
{ 

unsigned tmp; tal 
int cnt, err; ~ 
int unit = minor(dev); ~ 
struct cb_unit *cb; ~ 

err = 0; III 
cb = &cb unit[unit]; ~ 
if(cb->iomode == CBPIO) { ~ 

while((cnt = uio->uio resid) && (err == 0)) { ffm 
if(cnt > MAX_XFR)Cnt = MAX_XFR; ff] 

err = uiomove(&tmp,cnt,uio); ~ 
write_io_port(cb->cbr I CB_DATA, 

return ( err); !.HI 
} 

else if(cb->iomode == CBDMA) ~ 

4, 
0, 
tmp); [j]J 

return(physio(cbstrategy,cb->cbbuf,dev,B_WRITE,cbminphys,uio)); 

[I Declares an argument that specifies the major and minor device numbers 
for a specific CB device. The minor device number is used to determine 
the logical unit number for the CB device on which the write operation is 
performed. 

12I Declares a pointer to a uio structure. This structure contains the 
information for transferring data to and from the address space of the 
user's process. You typically pass this pointer unmodified to the 
uiomove or physio kernel interface. This driver passes the pointer to 
both interfaces. 

~ Declares a variable called tmp to store the 32-bit read/write data register. 
This variable is passed as an argument to the uiomove kernel interface. 

~ Declares a variable called en t to store the number of bytes of data that 
still need to be transferred. This variable is passed as an argument to the 
uiomove interface. 

Declares a variable called err to store the return value from uiomove. 

10-50 Writing a Character Device Driver 



~ Declares a un i t variable and initializes it to the device minor number. 
Note the use of the minor interface to obtain the device minor number. 

The minor interface takes one argument: the number of the device for 
which an associated device minor number will be obtained. The minor 
number is encoded in the dev argument. 

The uni t variable is used to select the TURBOchannel test board to be 
accessed for the write operation. 

[§] Declares a pointer to the cb unit data structure associated with this CB 
device and calls it cb. SectIOn 10.6 shows the declaration of cb unit. 

III Initializes the err variable to the value zero (0) to indicate no error has 
occurred yet. 

lSI Sets the pointer to the cb unit structure to the address of the unit data 
structure associated with this CB device. The uni t variable contains this 
CB device's minor number. Thus, this argument is used as an index into 
the array of cb _ uni t structures associated with this CB device. 

191 If the I/O mode bit is CBPlO, then this is a programmed I/O write 
operation. This bit is set in the iomode member of the pointer to the 
cb unit data structure associated with this CB device. 

For a programmed I/O write operation, the contents of one word from the 
buffer in the user's virtual address space are moved to a 32-bit local 
variable by calling the uiomove interface. Then the contents of that 
variable are moved to the data register on the CB test board. 

l10I Sets up a while loop that allows the uiomove interface to transfer 
bytes from the user's buffer to the TURBOchannel test board data register 
until all of the requested bytes are moved or until an error occurs. 

The uio resid member of the pointer to the uio structure specifies 
the number of bytes that still need to be transferred. 

This task must be accomplished by the while loop because the 
TURBOchannel test board data register can accept only a maximum of 
MAX XFR bytes at a time. The MAX XFR constant was previously 
defined as 4 bytes. This loop may nOt be required by other devices. 

[j] If the number of bytes that still need to be transferred is greater than 4, 
then forces en t to contain 4 bytes of data. This code causes a write of 
more than 4 bytes to be divided into a number of 4-byte maximum 
transfers with a final transfer of 4 bytes or less. 

ff2I Calls the uiomove interface to move the bytes from the user's buffer to 
the local variable, tmp. The maximum number of bytes moved is 4 and 
uio resid is updated as each move is completed. The uiomove 
interface takes the same three arguments as described for cbread. 

Writing a Character Device Driver 10-51 



[3J Writes the data to the 32-bit readlwrite data register by calling the 
wr i te io port interface. This register value is defined by the 
CB DATA device register offset associated with this CB device. The 
wrIte io port interface is a generic interface that maps to a bus- and 
machine-specific interface that actually performs the write operation. 
Using this interface to write data to a device register makes the device 
driver more portable across different bus architectures, different CPU 
architectures, and different CPU types within the same CPU architecture. 
The wr i te _ io _port interface takes four arguments: 

- The first argument specifies an 110 handle that you can use to 
reference a device register located in bus address space (either 110 
space or memory space). This 110 handle references a device register 
in the bus address space where the write operation occurs. You can 
perform standard C mathematical operations on the 110 handle. In 
this call, the / dev / cb driver ORs the 1/0 handle with the 32-bit 
readlwrite data register represented by CB _DATA. 

- The second argument specifies the width (in bytes) of the data to be 
written. Valid values are 1, 2, 3, 4, and 8. Not all CPU platforms 
support all of these values. In this call, the / dev / cb driver passes 
the value 4. 

- The third argument specifies flags to indicate special processing 
requests. In this call, the / dev / cb driver passes the value zero (0). 

- The fourth argument specifies the data to be written to the specified 
device register in bus address space. In this call, the / dev / cb driver 
passes the value stored in the tmp variable. Section 10.11.1 shows 
that the read io port interface stored this value in the tmp 
variable. --

[HJ Returns a zero (0) value whenever the user virtual space described by the 
uio structure is accessible and the data is successfully moved. 
Otherwise, it returns an EFAULT error value. 

[1]] If the 110 mode bit is CBDMA, then this is a DMA 1/0 write operation. 
This bit is set in the iomode member of the pointer to the cb unit 
data structure associated with this CB device. -

For a DMA 1/0 write operation, the physio kernel interface and the 
/ dev / cb driver's cbstrategy and cbminphys interfaces are called 
to transfer the contents of the buffer in the user's virtual address space to 
the data register on the TURBOchannel test board. Because only a single 
word of 4 bytes can be transferred at a time, both modes of reading 
include code to limit the write to chunks with a maximum of 4 bytes. 
Writing more than 4 bytes has limited usefulness because all the words in 
the user's buffer will be written into the single data register on the test 
board. 

10-52 Writing a Character Device Driver 



This call to the phys io interface takes the same arguments as those 
passed to cbread except the read/write flag is B _WRITE instead of 
BREAD. 

Writing a Character Device Driver 10-53 



1 0.12 Strategy Section 
Table 10-6 lists the tasks associated with implementing the Strategy Section 
along with the sections in the book where each task is described. 

Table 10-6: Tasks Associated with Implementing the Strategy 
Section 

Tasks 

Setting Up the cbminphys Interface 

Setting Up the cbstrategy Interface 

Initializing the buf Structure for Transfer 

Testing the Low Order Two Bits and Using 
the Internal Buffer 

Converting the Buffer Virtual Address 

Converting the 32-Bit Physical Address 

Starting I/O and Checking for Time Outs 

10-54 Writing a Character Device Driver 

Section 

Section 10.12.1 

Section 10.12.2 

Section 10.12.2.1 

Section 10.12.2.2 

Section 10.12.2.3 

Section 10.12.2.4 

Section 10.12.2.5 



10.12.1 Setting Up the cbminphys Interface 
This section is applicable to the loadable or static version of the / dev / cb 
device driver. The following code sets up the cbrninphys interface, whose 
major task is to bound the data transfer size to four bytes: 

cbminphys(bp) 
register struct buf *bp; rn 
{ 

if (bp->b bcount > MAX XFR) ~ 
bp->b_bcount =-MAX_XFR; 

return; 

[j] Declares a pointer to a buf structure and calls it bp. Section 8.1 
describes the buf structure. 

!2l If the size of the requested transfer is greater than 4 bytes, sets the 
b _ bcount member of bp to 4 bytes and returns. 

The b bcount member stores the size of the requested transfer (in 
bytes)~ 

In the call to physio, the driver writer passes cbrninphys as the 
interface to call to check for size limitations. Section 10.11.1 and Section 
10.11.2 discuss the call to physio. 

Writing a Character Device Driver 10-55 



10.12.2 Setting Up the cbstrategy Interface 
This section is applicable to the loadable or static version of the / dev / cb 
device driver. It sets up the cbstrategy interface, which performs the 
following tasks: 

• Initializes the buf structure for data transfer 

• Tests the low-order 2 bits and uses the internal buffer 

• Performs a DMA write 

• Converts the buffer virtual address 

• Converts the 32-bit physical address 

• Starts 110 and checks for timeouts 

Section 10.11.1 and Section 10.11.2 show that cbread and cbwr i te call 
the cbstrategy interface. The following code implements the 
cbstrategy interface: 

cbstrategy(bp) 
register struct buf *bp; ill 

{ 
register int unit = minor(bp->b_dev); ~ 

register struct controller *ctlr; ~ 
struct cb unit *cb; ~ 
caddr t buff addr; I§] 
caddr-t virt-addr; ~ 
unsigned phys addr; ~ 
int cmd; - 181 
int err; ~ 
int status; ~ 
unsigned lowbits; ff] 
unsigned tmp; ~ 
int s; ~ 

ctlr = cbinfo[unit]; ~ 

ill Declares a pointer to a buf structure and calls it bp. Section 8.1 
describes the bu f structure. 

12] Gets the minor device number and stores it in the uni t variable. 

The minor kernel interface is used to obtain the minor device number 
associated with this CB device. The minor interface takes one argument: 
the number of the device for which the minor device needs to be 
obtained. In this call, the device number is stored in th~ b dev member 
of the buf structure associated with this CB device. -

13] Declares a pointer to a controller structure and calls it ctlr. 
Section 7.4 describes the controller structure. 

~ Declares a pointer to the cb unit data structure associated with this CB 
device and calls it cb. SectIOn 10.6 shows the declaration of cb unit. 

10-56 Writing a Character Device Driver 



I§J Declares a variable called buff addr that stores the user buffer's 
virtual address. Section 10.12.22 shows that buff addr is passed to 
the copyin kernel interface. Section 10.12.2.5 shows that buff addr 
is passed to the copyout kernel interface. -

I§] Declares a variable called virt addr that stores the user buffer's 
virtual address. Section 1 0.12.i'2 shows that v irt addr is passed to 
the copyin kernel interface. Section 10.12.2.3 shows that v irt addr 
is passed to the vtop kernel interface. Section 10.12.2.5 shows that 
v irt _ addr is passed to the copyout kernel interface. 

IZJ Declares a variable called phys addr that stores the user buffer's 
physical address. Section 10.122.3 shows that this variable stores the 
value returned by the vtop kernel interface. 

~ Declares a variable called cmd that stores the current command for the 
TURBOchannel test board. Section 10.12.2.4 shows that the commands 
are represented by the constants CB _ DMA _ RD and CB _ DMA _ WR. 

[9] Declares a variable called err that stores the error status returned by 
cbstart. 

[QJ Declares a variable called status to store the value associated with the 
16-bit read/write CSRlLED register. This value is obtained by calling the 
read io port interface. This variable is used by cbstrategy in a 
CB _DEBUG statement, which is shown in Section B.2. 

[j]] Declares a variable called lowbi ts to store the low 2 virtual address 
bits. Section 10.12.2.2 and Section 10.12.2.5 show how this variable is 
used. 

lI2I Declares a temporary holding variable called tmp. Section 10.12.2.4 
shows that this variable is used by the CB _SCRAMBLE macro. 

[j]] Declares a temporary holding variable called s. Section 10.12.2.4 shows 
that the splbio kernel interface uses this variable to store its return 
value. 

[jA] Sets the pointer to the controller structure to its associated CB 
device. Note that uni t, which now contains this CB device's minor 
device number, is used as an index into the array of controller 
structures to obtain the controller structure associated with this 
device. 

Writing a Character Device Driver 10-57 



10.12.2.1 Initializing the buf Structure for Transfer 

The following code initializes the buf structure for transfer: 

bp->b_resid = bp->b_bcount; ill 

bp->av_forw = 0; ~ 

cb = &cb_unit[unit]; @I 

virt addr = bp->b un.b addr; ~ 
buff=addr = virt_addr;- ~ 

[j] Initializes the bytes not transferred. This is done in case the transfer fails 
at a later time. The b resid member of the pointer to the buf 
structure stores the data (in bytes) not transferred because of some error. 
The b bcount member stores the size of the requested transfer, in 
bytes.-

12] Clears the buffer queue forward link. The av forw member stores the 
position on the free list if the b_flags member is not set to B_BUSY. 

[3] Sets the pointer to the cb unit structure to the address of the unit data 
structure associated with this CB device. The uni t variable contains this 
CB device's minor number. Thus, this argument is used as an index into 
the array of cb unit structures associated with this CB device. Section 
10.12.2 shows how the minor interface initializes unit to the device's 
minor number. 

~ Sets the v irt addr variable to the buffer's virtual address. The 
operating system software sets this address in the b addr member of the 
union member b _ un in the pointer to the bu f structure. 

I5J Copies the buffer's virtual address into the buff addr variable for use 
by the driver. -

10-58 Writing a Character Device Driver 



10.12.2.2 Testing the Low Order Two Bits and Using the Internal Buffer 

Direct memory access (DMA) on the TURBOchannel test board can be done 
only with full words and must be aligned on word boundaries. Because the 
user's buffer can be aligned on any byte boundary, the /dev/cb driver code 
must check for and handle the cases where the buffer is not word aligned. In 
this context, word aligned means that the address is evenly divisible by 4, 
where a word is a 4-byte entity. Any address that is word aligned has its 
lowest order 2 bits set to zeroes. (If the TURBOchannel interface hardware 
included special hardware to handle nonword-aligned transfers, this checking 
would not have to be performed.) If the user's buffer is not word aligned, the 
driver can: 

• Exit with an error 

• Take some action to assure the words are aligned on the transfer 

Because virtual-to-physical mapping is done on a page basis, the low-order 2 
bits of the virtual address of the user's buffer are also the low 2 bits of the 
physical address of the user's buffer. The buffer alignment can be 
determined by examining the low 2 bits of the virtual buffer address. If these 
2 bits are nonzero, the buffer is not word aligned and the driver must take the 
desired action. 

The following code tests the low-order 2 bits: 

if ((lowbits = (unsigned)virt addr & 3) 1= 0) { rn 
virt_addr = (caddr_t)(&tmpbuffer); ~ 

} 

if ( 1 (bp->b flags&B READ) ) { ~ 
tmpbuffer = 0 ; 

if (err =copyin(buff addr,virt addr,bp->b resid)) { ~ 
bp->b error = -err; ~ -
bp->b-flags 1= B_ERROR; ~ 
iodone(bp); ~ 
return; ~ 

[j] This bitwise AND operation uses the low-order 2 bits of the buffer virtual 
address as the word-aligned indicator for this transfer. If the result of the 
bitwise AND operation is nonzero, the user's buffer is not word aligned 
and the next line gets executed. 

Section 10.12.2.1 shows that the v irt addr variable gets set to the 
buffer's virtual address. Because virt- addr is of type caddr t and 
lowbi ts is of type unsigned, the cOde performs the appropriate 
type-casting operation. 

I2l Because the user's buffer is not word aligned, use the internal buffer, 
tmpbuffer. This line replaces the current user buffer virtual address 

Writing a Character Device Driver 10-59 



with the internal buffer virtual address. The phys io kernel interface 
updates the current user buffer virtual address as each word is transferred. 
Because DMA to the TUROBchannel test board can be done only a word 
at a time, the internal buffer needs to be only a single word. 

~ If the transfer type is a write, clears the one-word temporary buffer 
tmpbuffer. 

@ Calls the copyin kernel interface to copy data from the user address 
space to the kernel address space. The copy in kernel interface takes 
three arguments: 

- The address in user space of the data to be copied 

In this call, the address of the data is stored in the buff addr 
variable, which is set in Section 10.12.2.1. -

- The address in kernel space to copy the data to 

In this call, the address in kernel space is stored in the v irt addr 
variable, which is set in Section 10.12.2.2. -

- The number of bytes to copy 

In this call, the number of bytes to copy is stored in the b resid 
member of the pointer to the buf structure. Section 10.12.2.1 shows 
the initialization of this member. 

15.1 Upon success, copyin returns the value zero (0). Otherwise, it returns 
EFAULT to indicate that the address specified in buff addr could not 
be accessed. This line sets the b error member of the pointer to the 
buf structure to the value returned in err. Section 10.11.2 shows that 
err was initialized to the value zero (0) to indicate that no error has yet 
occurred. 

!§] Sets b _flags to the bitwise inclusive OR of the read and error bits. 

I1J Calls the iodone kernel interface to indicate that the 110 operation is 
complete. This interface takes one argument: a pointer to a bu f 
structure. Section 9.9.1 provides additional information on the iodone 
kernel interface. 

18I Returns with an error to physio, which was called by cbwrite. 
Section 10.11.2 shows the call to ph ys io. 

10-60 Writing a Character Device Driver 



10.12.2.3 Converting the Buffer Virtual Address 

The following code for the cbstrategy interface converts the buffer 
virtual address to a physical address for DMA by calling the vtop interface. 
In previous versions of this book, the / dev / cb driver made calls to the 
IS KSEG VA,KSEG TO PHYS, IS SEGO VA,pmap kernel,and 
pmap extract interfaces to accomPlish this task. It now accomplishes 
this task by making one call to vtop. 

[j] Converts the buffer virtual address to a physical address for DMA. This 
interface takes two arguments: 

- The first argument specifies a pointer to a proc structure. The vtop 
interface uses the proc structure pointer to obtain the pmap. In this 
call, the / dev / cb driver passes the b proc member of the buf 
structure pointer associated with this CB device. The b proc 
member specifies a pointer to the proc structure that represents the 
process performing the I/O. 

- The second argument specifies the virtual address that vtop converts 
to a physical address. In this call, the / dev / cb driver passes the 
value stored in v irt addr. 

Upon successful completion, vtop returns the physical address associated 
with the specified kernel virtual address. 

Writing a Character Device Driver 10-61 



10.12.2.4 Converting the 32-Bit Physical Address 

The following code uses the CB SCRAMBLE macro to convert the 32-bit 
physical address to a form suitable for use in the DMA operation: 

tmp = CB SCRAMBLE(phys addr); rn 
write_io=port(cb->cbr T CB_ADDER, 

4, 
0, 
tmp); 12I 

if (bp->b_flagS&B_READ) ~ 
cmd = CB_DMA_WR; 

else 
cmd = CB_DMA_RD; 

s = splbio ( ) ; ~ 

ill Converts the 32-bit physical address (actually the low 32 bits of the 34-
bit physical address) from the linear form to the condensed form used by 
DMA to pack 34 address bits onto 32 board lines. TURBOchannel DMA 
can be done only with full words and must be aligned on word 
boundaries. The CB SCRAMBLE macro discards the low-order 2 bits of 
the physical address while scrambling the rest of the address. Therefore, 
anything that is going to be done to resolve this address must be done 
before calling CB _SCRAMBLE. 

I2l Writes the data to the 32-bit read/write DMA address register by calling 
the wr i te io port interface. This register value is defined by the 
CB ADDERdeVlce register offset associated with this CB device. The 
wrIte io port interface is a generic interface that maps to a bus- and 
machine-specific interface that actually performs the write operation. 
U sing this interface to write data to a device register makes the device 
driver more portable across different bus architectures, different CPU 
architectures, and different CPU types within the same CPU architecture. 
The wri te _ io _port interface takes four arguments: 

- The first argument specifies an I/O handle that you can use to 
reference a device register located in bus address space (either I/O 
space or memory space). This I/O handle references a device register 
in the bus address space where the write operation occurs. You can 
perform standard C mathematical operations on the I/O handle. In 
this call, the / dev / cb driver ORs the I/O handle with the 32-bit 
read/write DMA address register represented by CB _ADDER. 

- The second argument specifies the width (in bytes) of the data to be 
written. Valid values are 1,2,3,4, and 8. Not all CPU platforms 
support all of these values. In this call, the / dev / cb driver passes 
the value 4. 

- The third argument specifies flags to indicate special processing 
requests. In this call, the / dev / cb driver passes the value zero (0). 

10-62 Writing a Character Device Driver 



- The fourth argument specifies the data to be written to the specified 
device register in bus address space. In this call, the / dev / cb driver 
passes the value returned by CB _SCRAMBLE in the tmp variable. 

@] If the read bit is set, initializes the cmd argument to the DMA write bit, 
which is defined in the cbreg • h file. This bit indicates a write to 
memory. 

Otherwise, if the read bit is not set, initializes the cmd argument to the 
DMA read bit, which also is defined in the cbreg • h file. This bit 
indicates a read from memory. 

@ Calls the splbio interface to mask (disable) all controller interrupts. 
The value returned by splbio is an integer value that represents the 
CPU priority level that existed prior to the call. The return value stored 
in s becomes the argument passed to splx, which is discussed in 
Section 10.12.2.5. 

Writing a Character Device Driver 10-63 



10.12.2.5 Starting 1/0 and Checking for Time Outs 

The following code starts the I/O and checks for timeouts: 

err = cbstart(cmd,cb); rn 
splx(s); !21 

if(err <= 0) { ~ 

bp->b error = Ero; 
bp->b=flags \= B_ERROR; 
iodone ( bp ) ; 
return; 
} 

else { ~ 

if (lowbits)!=O && bp->b_flagS&B_READ) { ~ 

if (err = copyout(virt addr,buff addr,bp->b resid)) { ~ 
bp->b error = err; - -

bp->b_flags \= B_ERROR; 

bp->b_resid = 0; ~ 

iodone(bp); ~ 

return; 

ill Starts the I/O by calling the driver's cbs tart interface, passing to it the 
current command for the test board and the address of the cb unit data 
structure associated with this CB device. 

Section 10.13 describes the cbstart driver interface. 

The cmd argument is set either to CB DMA WR (the write to memory bit) 
or to CB _DMA _ RD (the read from memory bIt). 

I2l Restores the CPU priority by calling the splx kernel interface, passing 
to it the value returned in a previous call to splbio. This value is an 
integer that represents the CPU priority level that existed before the call 
to splbio. 

~ If the return value from cbs tart is the value zero (0), the DMA 
operation did not complete within the timeout period. In this case, do the 
following: 

- Set the b error member in the buf structure pointer to indicate 
that an I/O error occurred. This error flag, ErO, is defined in 
/usr/sys/include/sys/errno.h. 

- Set the b f lags member in the buf structure pointer to indicate 
that an error occurred on this data transfer. 

- Call the iodone kernel interface to indicate that the 110 transfer is 
complete. The iodone interface takes one argument: a pointer to a 

10-64 Writing a Character Device Driver 



bu f structure. The iodone interface reschedules the process that 
initiated the I/O. 

~ Returns the error status. 

[SJ Else, executes the following lines because the DMA completed 
successfully. 

I§I If a read was attempted to an unaligned user buffer, calls copyout to 
copy the bytes that were read into the user buffer. 

III If the copyout kernel interface was unable to copy data from kernel 
address space to user address space, do the following: 

- Set the b error member in the buf structure pointer to the value 
returned by copyou t. This value indicates that the kernel address 
specified in the first argument could not be accessed or that the 
number of bytes to copy specified in the third argument is invalid. 

- Set the b f lags member in the buf structure pointer to indicate an 
error occurred on this data transfer. 

\ 

~ Sets the b resid member in the buf structure pointer to the value zero 
(0) to indicate that the read or write operation has completed. 

I9J Calls iodone to indicate that the 110 transfer is complete and to initiate 
the return status. 

Writing a Character Device Driver 10-65 



10.13 Start Section 
The cbstart interface is applicable to both the loadable and static versions 
of the I dev I cb device driver. The interface's main task is to load the CSR 
register of the TURBOchannel test board. Because the cbincled interface 
increments the LEDs in the high 4 bits of the 16-bit CSR register, cbstart 
always loads the 4 bits into whatever value it will be storing into the CSR 
before doing the actual storage operation. The cbstart interface is called 
with system interrupts disabled; thus, cbinc led is not called while 
cbstart is incrementing. 

The following shows the implementation of the cbstart interface: 

int cbstart(cmd,cb) 
int cmd; [j] 
struct cb_unit *cb; ~ 
{ 

int timecnt; ~ 
int status; ~ 

cmd = (read_io_port(cb->cbr I CB CSR, 
4, 
O)&OxfOOO)1 (cmd&Oxfff); ~ 

status read_io_port(cb->cbr CB_TEST, 
4, 

wbflush( ); 

4, 
0, 
cmd); 111 

~ 

0); !61 

write_io_port(cb->cbr CB_TEST, 
4, 
0, 
0); ~ 

wbflush(); 

timecnt = 10; ff] 
status = read_io_port(cb->cbr I CB_CSR, 

4, 
0); [j]] 

while«!(status & CB DMA DONE)) && timecnt > 0) { ~ 
write_io_port(cb=>cbr CB_CSR, 

4, 
0, 
cmd) ; 

wbflush() ; 
status = read_io_port(cb->cbr CB_CSR, 

4, 
0) ; 

10-66 Writing a Character Device Driver 



timecnt --; 
} 

return(timecnt); ~ 

ffJ Declares a variable to contain the current command for the test board. 
Section 10.12.2.4 shows that cmd was set to CB DMA WR or 
CB DMA RD. 

121 Declares a pointer to the cb unit data structure associated with this CB 
device and calls it cb. SectIOn 10.6 shows the declaration of cb unit. 

@I Declares a variable to contain the timeout loop count. 

~ Declares a variable to contain the CSR contents for status checking. 

~ Sets the cmd variable to the logical or high 4 LED bits and the command 
to be performed by calling the read io port interface. The 
read io port interface is a genenc interface that maps to a bus- and 
machine-specific interface that actually performs the read operation. 
U sing this interface to read data from a device register makes the device 
driver more portable across different bus architectures, different CPU 
architectures, and different CPU types within the same CPU architecture. 
Reads the test register by calling the read io port interface. On the 
CB device, reading the test register clears the gobit. The test register is 
defined by the CB TEST device register offset associated with this CB 
device. The read_ io _port interface takes three arguments: 

- The first argument specifies an I/O handle that you can use to 
reference a device register located in bus address space (either I/O 
space or memory space). This I/O handle references a device register 
in the bus address space where the read operation originates. You can 
perform standard C mathematical operations on the I/O handle. In 
this call, the / dev / cb driver ORs the I/O handle with the go bit 
represented by CB _ TE ST. 

- The second argument specifies the width (in bytes) of the data to be 
read. Valid values are 1,2,3,4, and 8. Not all CPU platforms 
support all of these values. In this call, the / dev / cb driver passes 
the value 4. 

- The third argument specifies flags to indicate special processing 
requests. In this call, the / dev / cb driver passes the value zero (0). 

Upon successful completion, read io port returns the data read from the 
go bit register to the status variable. -

[§] Reads the test register by calling the read io port interface. On the 
CB device, reading the test register clears the gobit. This call to 
read io port is the same as the previous call except that here the 
/ dev 7 cb driver ORs the I/O handle with the go bit represented by the 

Writing a Character Device Driver 10-67 



CB _TEST device register offset. 

IZl Writes the data to the specified location by calling the wr i te io port 
interface. This location is the result of the ORing of the 110 handle with 
the 16-bit read/write CSRlLED register value. This register value is 
defined by the CB CSR device register offset associated with this CB 
device. The wr i te io port interface is a generic interface that maps 
to a bus- and machine-specific interface that actually performs the write 
operation. Using this interface to write data to a device register makes 
the device driver more portable across different bus architectures, 
different CPU architectures, and different CPU types within the same 
CPU architecture. The wr i te _ io _port interface takes four 
arguments: 

- The first argument specifies an 110 handle that you can use to 
reference a device register located in bus address space (either 110 
space or memory space). This I/O handle references a device register 
in the bus address space where the write operation occurs. You can 
perform standard C mathematical operations on the 110 handle. In 
this call, the / dev / cb driver ORs the I/O handle with the 16-bit 
read/write CSR/LED register represented by CB _ CSR. 

- The second argument specifies the width (in bytes) of the data to be 
written. Valid values are 1,2, 3, 4, and 8. Not all CPU platforms 
support all of these values. In this call, the / dev / cb driver passes 
the value 4. 

- The third argument specifies flags to indicate special processing 
requests. In this call, the / dev / cb driver passes the value zero (0). 

- The fourth argument specifies the data to be written to the specified 
device register in bus address space. In this call, the / dev / cb driver 
passes the value stored in the cmd variable. 

[i] Calls the wbf 1 ush kernel interface to ensure that a write to 110 space 
has completed. 

~ Writes the value zero (0) to the specified location by calling the 
wr i te io port interface. This call is the same as the previous call 
except fur the values passed to the first and fourth arguments. For the 
first argument, the location is the result of ORing the 110 handle with the 
go bit device register offset. This register value is defined by the 
CB TEST device register offset associated with this CB device. For the 
fourth argument, the data to be written is the value zero (0). Writing zero 
(0) to this device register has the effect of setting the go bit. 

[j]J The wb flu s h interface is called a second time to ensure that a write to 
110 space has completed. 

[j] Initializes the timeout loop counter variable, timecnt, to the value 10. 

10-68 Writing a Character Device Driver 



II2I Reads the status for this CB device from the specified location by calling 
the read io port interface. This call passes the same values as a 
previous call. For the first argument, the location of the read operation is 
the result of ORing the I/O handle with the 16-bit read/write CSR/LED 
register represented by CB _ CSR. 

~ Spins until the DMA completes or the timeout loop counter expires. 
Then: 

- Writes a value to the specified location by calling the 
wr i te io port interface. This call is the same as previous calls. 
For the first argument, the location is the result of ORing the I/O 
handle with the 16-bit read/write CSR/LED device register offset. 
This register value is defined by the CB CSR device register offset 
associated with this CB device. For the fourth argument, the data to 
be written is stored in the cmd variable. 

- Calls wbflush a third time to ensure that a write to I/O space has 
completed. 

- Reads the status for this CB device from the specified location by 
calling the read io port interface. This call passes the same 
values as a previOUs call. For the first argument, the location of the 
read operation is the result of ORing the I/O handle with the 16-bit 
read/write CSRlLED register represented by CB _ CSR. 

- Decrements the counter 

[1A] Returns the timeout count. If the command was successful, cbstart 
returns a nonzero value. If the loop exits because of a timeout, 
cbs tart returns a zero (0) value. 

Writing a Character Device Driver 10-69 



10.14 The ioctl Section 
Table 10-7 lists the tasks associated with implementing the The ioctl Section, 
along with the sections in the book where each task is described. 

Table 10-7: Tasks Associated with Implementing the The ioctl 
Section 

Part 

Setting Up the cbioctl Interface 

Incrementing the Lights 

Setting the I/O Mode 

Performing an Interrupt Test 

Returning a ROM Word, Updating the 
CSR, and Stopping Increment of the Lights 

10-70 Writing a Character Device Driver 

Section 

Section 10.14.1 

Section 10.14.2 

Section 10.14.3 

Section 10.14.4 

Section 10.14.5 



10.14.1 Setting Up the cbioctl Interface 
This section is applicable to the loadable or static version of the I dev I cb 
device driver. The following code sets up the cbioctl interface: 

#define CBlncSec 1 rn 

cbioctl(dev, cmd, data, flag) 
dev t dev; ~ 
unsigned int cmd; ~ 
int *data; ~ 
int flag; ~ 

int tmp; ~ 
int *addr; ~ 
int timecnt; ~ 
int unit = minor(dev); ~ 
struct cb unit *cb; ~ 
int cbincled ( ) ; [j] 

cb = &cb_unit[unit]; ~ 

[1] Defines a constant called CBlncSec that indicates the number of 
seconds between increments of the TURBOchannel test board lights. 
Section 10.14.2 shows that this constant is passed to the timeout kernel 
interface. 

[2J Declares an argument that specifies the major and minor device numbers 
for a specific CB device. The minor device number is used to determine 
the logical unit number for the CB device on which the ioctl operation 
is to be performed. 

~ Declares an argument that specifies the ioctl command in the file 
lusrlsys/incIude/sys/ioctl.h or in another include file 
defined by the device driver writer. There are two types of ioctl 
commands. One type is supported by all drivers of a given class. 
Another type is specific to a given device. The values of the cmd 
argument are defined by using the IO, lOR, lOW, and IOWR 
macros. Section 10.2 shows that the foliOwing Toctl com-mands are 
defined in the cbreg. h file: CBPIO, CBDMA, CBINT, CBROM, CBCSR, 
CBINC, and CBSTP. 

~ Declares a pointer to ioctl command-specific data that is to be passed 
to the device driver or filled in by the device driver. This argument is a 
kernel address. The size of this data cannot exceed the size of a page. At 
least 128 bytes is guaranteed. Any size between 128 bytes and the page 
size may fail if memory cannot be allocated. The particular ioctl 
command implicitly determines the action to be taken. The ioctl 
system call performs all the necessary copy operations to move data to 
and from user space. 

Section 10.14.5 shows how cbioctl initializes the data argument. 

Writing a Character Device Driver 10-71 



~ Declares an argument that specifies the access mode of the device. This 
argument is not used by the / dev / cb driver. 

[§] Declares a temporary holding variable called tmp. 

IZI Declares a pointer to a variable called addr that is used for word access 
to the TURBOchannel test board. Section 10.14.5 shows that this 
variable is used with the da ta argument. 

IS] Declares a variable called timecnt. Section 10.14.4 shows that this 
variable is used in the timeout loop count. 

~ Declares a uni t variable and initializes it to the device minor number. 
Note the use of the minor interface to obtain the device minor number. 

The minor interface takes one argument: the number of the device for 
which an associated device minor number will be obtained. The minor 
number is encoded in the dev argument. 

The uni t variable is used to select the TURBOchannel test board to be 
accessed for the ioct 1 operation. 

lIQ] Declares a pointer to the cb unit data structure associated with this CB 
device and calls it cb. SectIOn 10.6 shows the declaration of cb unit. 

[jJ Declares a forward reference to the cbincled interface. Section 10.15 
shows the implementation of cbincled. 

[j]] Sets the pointer to the cb unit structure to the address of the unit data 
structure associated with this CB device. 

10-72 Writing a Character Device Driver 



10.14.2 Incrementing the Lights 
The following code starts incrementing the lights on the TURBOchannel test 
board: 

switch(cmd&OxFF) { rn 
case CBINC: ~ 

if(cb->ledflag == 0) { ~ 
cb->ledflag++; ~ 
timeout(cbincled, (caddr_t)cb, CBlncSec*hz); ~ 

break; 

III Uses the cmd argument to perform the appropriate ioctl operation. 

[2J When cmd evaluates to CBINC, the ioctl operation starts incrementing 
the lights on the TURBOchannel test board. 

13] If the increment function has not started, executes the next two lines. 
This line of code determines the start of the increment function by 
checking the ledf lag member of the CB structure associated with this 
CB device. 

~ Sets the flag for the LED increment function. 

~ Starts the timer by calling the timeout kernel interface. The timeout 
kernel interface takes three arguments: 

- The first argument is a pointer to the interface to call, which in this 
case is cbincled. 

- The second argument is a single argument to be passed to the 
interface specified by the first argument when it is called. In this 
example, the single argument is the pointer to the cb unit data 
structure associated with this CB device. Because the-second 
argument to timeout is of type caddr _ t, the code performs the 
appropriate type-casting operation. 

- The third argument is the amount of time to delay before calling the 
cbincled interface. The constant CBIncSec represents some 
amount of time in seconds. 

The timeout interface initializes a callout queue element. Section 9.5.5 
provides additional information on timeout. 

Writing a Character Device Driver 10-73 



10.14.3 Setting the 1/0 Mode 
The following code sets the 110 mode for the ioctl operations to either 
programmed I/O or DMA 110: 

case CBPIO: 
cb->iomode = CBPIO; 
break; 

case CBDMA: 
cb->iomode = CBDMA; 
break; 

[j] 

ill When cmd evaluates to CBPIO, the ioctl operation sets the 110 mode 
to programmed 110 for this CB device. 

121 When cmd evaluates to CBDMA, the ioctl operation sets the I/O mode 
to DMA I/O for this CB device. 

10-74 Writing a Character Device Driver 



10.14.4 Performing an Interrupt Test 
The following code tests the interrupt operation: 

case CBINT: ~ 
timecnt = 10; ~ 
cb->intrflag = 0; ~ 

tmp = read_io_port(cb->cbr CB_TEST, 
4, 
0); ~ 

tmp = CB_INTERUPT! (read_io_port(cb->cbr CB_CSR, 
4, 
O)&OxfOOO); 151 

write_io_port(cb->cbr ! CB_CSR, 
4, 
0, 
tmp); I§] 

wbflush( ); lZl 
write_io_port(cb->cbr ! CB_TEST, 

4, 
0, 
1); ~ 

wbflush() ; 

while ((cb->intrflag == 0) && (timecnt > 0)) { ~ 
write_io_port(cb->cbr ! CB_CSR, 

4, 

wbflush() ; 
timecnt --; 

0, 
tmp) ; 

tmp = read_io_port(cb->cbr CB_TEST, 
4, 
0); ffj] 

return(timecnt == 0); ~ 

[jJ When cmd evaluates to CBINT, the ioctl operation performs an 
interrupt test. 

121 Initializes the timeout loop count variable, timecnt, to the value 10. 

[3] Clears the interrupt flag by setting the intrflag member of the 
cb unit structure associated with this CB device to the value zero (0). 
Section 10.14.1 shows the declaration of the pointer to the cb unit 
data structure called cb. -

~ Clears the go bit by calling the read io port interface. The 
read io port interface is a generIC interface that maps to a bus- and 
maChine-specific interface that actually performs the read operation. 
U sing this interface to read data from a device register makes the device 
driver more portable across different bus architectures, different CPU 
architectures, and different CPU types within the same CPU architecture. 
The read _ io _port interface takes three arguments: 

Writing a Character Device Driver 10-75 



- The first argument specifies an 1/0 handle that you can use to 
reference a device register located in bus address space (either I/O 
space or memory space). This 1/0 handle references a device register 
in the bus address space where the read operation originates. You can 
perform standard C mathematical operations on the I/O handle. In 
this call, the / dev / cb driver ORs the I/O handle with the go bit 
device register represented by CB _TEST. 

- The second argument specifies the width (in bytes) of the data to be 
read. Valid values are 1, 2, 3, 4, and 8. Not all CPU platforms 
support all of these values. In this call, the / dev / cb driver passes 
the value 4. 

- The third argument specifies flags to indicate special processing 
requests. In this call, the / dev / cb driver passes the value zero (0). 

Upon successful completion, read io port returns the data read from the 
go bit device register to the tmp v an abie. 

15] Performs a bitwise inclusive OR operation that assigns the 16-bit 
readlwrite CSRlLED register to the temporary holding variable. This 
operation uses two values. The first value is represented by the constant 
CB INTERUPT. Section 10.2 shows that this constant is currently 
defIDed as OxOeOO. The second value is the result of the bitwise AND 
operation of the value returned by read io port and the value 
OxfOOO. These 4 bits contain the current LED state. 

The result of these operations produces the value, which is assigned to 
the tmp variable. 

[§] Calls the wr i te io port interface to load enables and LEDs. The 
wr i te _ io _port interface takes four arguments: 

- The first argument specifies an 1/0 handle that you can use to 
reference a device register located in bus address space (either I/O 
space or memory space). This I/O handle references a device register 
in the bus address space where the write operation occurs. You can 
perform standard C mathematical operations on the I/O handle. In 
this call, the / dev / cb driver ORs the I/O handle with the 16-bit 
readlwrite CSRlLED register represented by CB _ CSR. 

- The second argument specifies the width (in bytes) of the data to be 
written. Valid values are 1, 2, 3,4, and 8. Not all CPU platforms 
support all of these values. In this call, the / dev / cb driver passes 
the value 4. 

- The third argument specifies flags to indicate special processing 
requests. In this call, the / dev / cb driver passes the value zero (0). 

- The fourth argument specifies the data to be written to the specified 
device register in bus address space. In this call, the / dev / cb driver 

10-76 Writing a Character Device Driver 



passes the value stored in the tmp variable. This value is the bit 
calculated by the CB _ INTERUPT macro and the current LED state. 

!ZI Calls the wbflush kernel interface to ensure that a write to 110 space 
has completed. 

~ Writes the value 1 to the specified location by calling the 
wr i te io port interface. This call is the same as previous calls. For 
the firstargument, the location is the result of ORing the 110 handle with 
the go bit device register offset. This register value is defined by the 
CB TEST device register offset associated with this CB device. For the 
fourth argument, the data to be written is the value 1. 

[9] Calls wbflush again to ensure that a write to 110 space has completed. 

[j]] Note that the interrupt flag, cb->intrflag, is set to a nonzero value 
by cbintr if an interrupt is received. See Section 10.16 for a 
discussion of cbintr. 

While the interrupt flag is equal to the value zero (0) and the timeout loop 
count variable is greater than zero (0), executes the following statements: 

- Updates the status of the 16-bit readlwrite CSRlLED register by 
calling the write _ io _port interface. 

- Calls wbflush again to ensure that a write to 1/0 space has 
completed. 

- Decrements the timeout loop count variable. 

This section of code executes until the interrupt flag is set and the timeout 
loop counter expires. 

[j] Ensures that the go bit is cleared by calling the read io port 
interface. - -

[2] Returns to the ioctl system call. If the interrupt was started before the 
timeout loop count expired, cbioctl returns a zero (0) value to indicate 
success. If the timeout count expires, cbioctl returns a nonzero (1) 
value to indicate failure. 

Writing a Character Device Driver 10-77 



10.14.5 Returning a ROM Word, Updating the eSR, and Stopping 
Increment of the Lights 

The following code returns a ROM word, updates the CSR, and then stops 
incrementing the lights on the TURBOchannel test board: 

case CBROM&OxFF: ill 

tmp = *data; ~ 
if(tmp < 0 I I tmp >= 32768*4+4*4) ~ 

return(-tmp); 
tmp «= 1; 
addr = (int *)&(cb->cbad[tmp]); ~ 
*data = *addr; ~ 
break; 

case CBCSR&OxFF: ~ 
write_io_port(cb->cbr CB_CSR, 

4, 
0, 
read_io_port(cb->cbr CB_CSR, 

4, 
0) ); 1ZI 

wbflush(); ~ 
*data = read_io_port(cb->cbr CB_CSR, 

4, 
0); ~ 

break; 

case CBSTP: ~ 
cb->ledflag = 0; 
break; 

return ( 0 ); [j] 

[I When cmd evaluates to CBROM, the ioctl operation returns a ROM 
word for this CB device by executing the statements from 2 - 5. 

121 Gets the specified byte offset from the argument that is a kernel address. 

@!. If the byte offset is not in the valid range of 32k words + 4 registers, 
returns the byte offset to the ioctl system call to indicate that it is out 
of range. 

I!I Gets the ROM base address from the cbad member of the CB structure 
associated with this CB device. 

The cbad member provides the base address of the ROM. Because 
cbad is type cast as an int *, the tmp variable is used as an index to 
determine how many bytes to go into the ROM, and the resulting address 
is used to fetch the contents. 

!§] Returns the word from the TURBOchannel test board. 

[§] When cmd evaluates to CBCSR, the ioctl operation updates and returns 
the CSR for this CB device by executing the statements from 7 - 9. 

10-78 Writing a Character Device Driver 



III Reads from and writes to this CB device's 16-bit read/write CSR/LED 
register by calling the read io port and wr i te io port 
interfaces. - - - -

~ Calls the wbf 1 ush kernel interface to ensure that a write to I/O space 
has completed. 

~ Returns the CSR from the TURBOchannel test board by calling the 
read _ io _port interface. 

II2I When cmd evaluates to CBSTP, the ioctl operation stops incrementing 
the lights on the next timeout by clearing the LED increment function 
flag. 

ffII Upon successful completion, cbioctl returns the value zero (0) to the 
ioctl system call. 

Writing a Character Device Driver 10-79 



10.15 Increment LED Section 
The cbinc led interface is applicable to the loadable or static versions of 
the / dev / cb device driver. It is called by the softclock kernel interface 
CBlncSec seconds after the last timeout call. If the increment flag is still 
set, cbincled increments the pattern in the high four LEDs of the 
LED/CSR register and restarts the timeout to recall later. 

The following code shows the implementation of the cbincled interface: 

cbincled(cb) 
struct cb unit *cb; rn 

int tmp; 

tmp = read_io_port(cb->cbr I CB_CSR, 
4, 
0) ; 
tmp -= OxlOOO; 

write_io_port(cb->cbr I CB_CSR, 
4, 
0, 
tmp); 121 

if(cb->ledflag != 0) { ~ 

return; 

timeout (cbincled, (caddr_t)cb, CBlncSec*hz); 
} 

[jJ Declares a pointer to the cb unit data structure associated with this CB 
device and calls it cb. SectIOn 10.6 shows the declaration of cb unit. 

This argument is specified in the callout to the timeout interface. 

12.1 Calls the read io port and wr i te io port interfaces to 
increment the lights~ Because the LEDsare on when a bit is zero (0), a 
subtraction is done to accomplish the increment. 

~ If the increment function flag is still set, restarts the timer by calling the 
timeout kernel interface and returns to softclock. 

The increment function flag is stored in the ledf lag member of the 
cb unit data structure associated with this CB device. 

The timeout kernel interface takes three arguments: 

- The first argument is a pointer to the interface to call, which in this 
case is cbincled. 

- The second argument is a single argument to be passed to the 
interface specified by the first argument when it is called. In this 
example, the single argument is the pointer to the cb unit data 
structure associated with this CB device. Because the-second 
argument to timeout is of type caddr _ t, the code performs the 

10-80 Writing a Character Device Driver 



appropriate type-casting operation. 

- The third argument is the amount of time to delay before calling the 
cbincled interface. The constant CBlncSec represents some 
amount of time in seconds. 

The timeout interface initializes a callout queue element. Section 9.5.5 
provides additional information on timeout. 

Writing a Character Device Driver 10-81 



10.16 Interrupt Section 
The cbintr interface is applicable to the loadable or static versions of the 
/ dev / cb device driver. The interface's tasks are to clear the go bit and set 
a flag to indicate that an interrupt occurred. The following code shows the 
implementation of the cbintr interface: 

cbintr(ctlr) 
int ctlr; [1] 
{ 

int tmpi ~ 
struct cb unit *cbi ~ 
cb = &cb unit[ctlr)i ~ 
tmp = read_io_port(cb->cbr CB_TEST, 

4, 
0); [5] 

cb->intrflag++i ~ 

return; 111 

ill Declares a variable to contain the controller number, which is passed in 
by the operating system interrupt code. 

I2l Declares a temporary variable to hold the go bit. 

~ Declares a pointer to the cb unit data structure associated with this CB 
device and calls it cb. SectIOn 10.6 shows the declaration of cb unit. 

~ Sets the pointer to the cb unit structure to the address of the unit data 
structure associated with this CB device. The ctlr argument is used as 
an index into the array of cb unit structures associated with this CB 
device. -

[5] Calls the read io port interface to read the test register to clear the 
go bit. The read Io port interface is a generic interface that maps to 
a bus- and machine-specific interface that actually performs the read 
operation. Using this interface to read data from a device register makes 
the device driver more portable across different bus architectures, 
different CPU architectures, and different CPU types within the same 
CPU architecture. The read _ io _port interface takes three arguments: 

The first argument specifies an VO handle that you can use to 
reference a device register located in bus address space (either VO 
space or memory space). This I/O handle references a device register 
in the bus address space where the read operation originates. You can 
perform standard C mathematical operations on the VO handle. In 
this call, the / dev / cb driver ORs the VO handle with the go bit 
device register represented by CB _TEST. 

- The second argument specifies the width (in bytes) of the data to be 
read. Valid values are 1, 2, 3, 4, and 8. Not all CPU platforms 

10-82 Writing a Character Device Driver 



support all of these values. In this call, the / dev / cb driver passes 
the value 4. 

- The third argument specifies flags to indicate special processing 
requests. In this call, the / dev / cb driver passes the value zero (0). 

Upon successful completion, read io port returns the data read from the 
go bit device register to the tmp vanabie. 

[§] Sets the interrupt flag to indicate that an interrupt occurred. 

The flag value is contained in the intrf lag member of the cb unit 
data structure associated with this CB device. -

III Returns to the operating system interrupt code. 

Writing a Character Device Driver 10-83 





Part 6 Device Driver Configuration 

Traditional 
Model 

% vi conf.c 

% vi files.file 

% vi NAME 





Device Driver Configuration Models 11 

Device driver configuration is the process of incorporating device drivers into 
the kernel and making them available to system management and other 
utilities. Do not confuse device driver configuration with device 
autoconfiguration. The former is for incorporating device drivers into the 
kernel; the latter is what occurs when the kernel boots. Chapter 7 describes 
device autoconfiguration. 

The DEC OSFIl operating system provides two models for configuring 
device drivers: 

• The third-party device driver configuration model 

This model is recommended for third-party device driver writers who 
want to ship loadable and static drivers to customers running Digital's 
DEC OSFIl operating system. Customers then use a variety of system 
management utilities that automatically configure the static and loadable 
drivers. 

• The traditional device driver configuration model 

This model is suitable for driver writers (or system managers) who 
simply want to configure static and loadable drivers, without going 
through the kit-building process. For example, device driver writers 
developing a driver in a classroom setting may want to use this model. 
This model is also suitable for driver writers following the third-party 
model during the initial stages of driver development. Driver writers or 
system managers manually perform many of the tasks that otherwise are 
automated in the third-party device driver configuration model. 

The following sections describe each of these models. This chapter uses a 
fictitious device driver development company called EasyDriver Incorporated 
to illustrate the approach third-party driver developers can take to configure 
their drivers. 

11.1 Third-Party Device Driver Configuration Model 
The third-party device driver configuration model provides tools that 
customers use to automate the installation of third-party device drivers. 
These customers can use the automated mechanism to: 



• Install the device driver any time after the installation of the operating 
system 

• Install the device driver without manual edits to system files 

• Install static or loadable device drivers 

• Integrate into the driver configuration site-specific tasks that are not 
currently handled by the config program 

This model requires that third-party driver writers provide a device driver kit 
to their customers. Figure 11-1 shows the tasks and groups of people 
involved in the third-party device driver kit delivery process. 

11-2 Device Driver Configuration Models 



Figure 11-1: Third-Party Device Driver Kit Delivery Process 

Device Creates driver 
Driver development 
Writer environment and 

Creates driver kit 
development 
environment: 

writes the driver: 

Kit 
Developer 

Customer 
(System 
Manager) 

Prepares the device driver 
kit for the customer 

Loads the device driver 
kit and runs setld to install it 

Provides the contents 
of the device driver kit: 

The figure shows that the third-party device driver kit delivery process 
involves at least three different audiences: the device driver writer, the kit 
developer, and the system manager (who, from the device driver writer's 
point of view, is the customer). In addition to showing the groups of people, 
Figure 11-1 also shows the tasks each group does to deliver the device driver: 

• The device driver writer creates a driver development environment and 
writes and tests the driver. 

• The device driver writer creates a driver kit development environment. 

• The device driver writer provides the contents of the device driver kit. 

Device Driver Configuration Models 11-3 



• The kit developer prepares the device driver kit. 

• The customer loads the device driver kit and runs setld. 

The following sections describe these tasks in more detail. Because these 
tasks encompass more than one group of people, the following discussions 
explicitly identify the group typically associated with the specific tasks. 

11.1.1 Creating a Driver Development Environment and Writing 
the Driver 

The first task of the driver writer is to write the device driver, using the 
design and development techniques described in the previous chapters of this 
book. During the initial stages of driver development, driver writers are 
probably not interested in going through the kit-building process. Therefore, 
during the initial driver development stages driver writers can follow the 
traditional device driver configuration model described in Section 11.2. This 
model presents a development environment that makes it possible for driver 
writers to design, write, test, rewrite, and configure the driver without going 
through the kit building process. 

The driver writers at EasyDriver Incorporated perform their initial driver 
development by using the traditional model. Their development directory 
structure is discussed in Section 11.2. 

11.1.2 Creating a Driver Kit Development Environment 
When all device driver testing (following the traditional model) is complete, 
the driver writer works with the kit developer to create a driver kit 
development environment. The driver writers for EasyDriver Incorporated 
work with their kit developers to create the kit development environment 
shown in Figure 11-2. 

A directory structure, such as the one shown in Figure 11-2, helps the kit 
developer to prepare the kit and the driver writer to test the driver under 
conditions similar to those experienced by customers. Figure 11-2 contrasts 
the directories and files related to the system with the directories and files 
related to the driver kit development environment. 

11-4 Device Driver Configuration Models 



Figure 11-2: Driver Kit Development Environment for EasyDriver 
Incorporated 

GENERIC CONRAD .products.list GENERIC.list CONRAD.list conf.c 

files stanza.loadable stanza.static nonereg.h 

config.file none.o none.c none_kmod 

files stanza.loadable 

config.file cb.o stanza.static cbreg.h 

The directories and files related to EasyDriver Incorporated's system are as 
follows: 

• The lusrlsys/conf directory 

This directory contains files that define the kernel configuration for the 
generic (all-encompassing) and target machine kernels. In the 
I usr I sys I conf directory for EasyDriver Incorporated, the generic 
kernel is called GENERIC, and the target machine kernel is called 
CONRAD. This directory also contains the. products .list file and, 
optionally, a GENERIC .list or CONRAD .list file. 

Device Driver Configuration Models 11-5 



• A /usr/sys/data directory 

This directory contains the name data. c files supplied by Digital. An 
example of one such file is tc _option_data. c. 

• A /usr / sys / io/ common directory 

This directory contains the conf . c template file, which contains the 
bdevsw and cdevsw tables. 

The directories and files related to EasyDriver Incorporated's driver kit 
development environment (identified in darker type in the figure) are as 
follows: 

• A /usr / sys /ki ts directory 

This directory contains subdirectories that represent each of the driver 
products developed by EasyDriver Incorporated. Figure 11-2 shows two 
such directories: ESAIOO and ESBIOO. 

Driver writers can follow the naming conventions described in the 
Programming Support Tools book. The driver writers at EasyDriver 
Incorporated adhere to these conventions by specifying directory names 
based on three-character product and version codes. Thus, the driver 
writers at EasyDriver Incorporated use the product codes ESA and ESB to 
represent the directories that contain the files associated with the 
/ dev / none and / dev / cb drivers. The version code 100 indicates 
that this is Version 1.0 of the driver products. 

• A /usr/sys/kits/ESAIOO directory 

This directory contains the configuration-related file fragments, driver 
load modules (for loadable drivers), driver object files (for static drivers), 
and, optionally, driver source code for the / dev / none device driver that 
EasyDriver Incorporated ships to their customers. 

• A /usr/sys/kits/ESBIOO directory 

This directory contains the configuration-related file fragments, driver 
load modules (for loadable drivers), driver object files (for static drivers), 
and, optionally, driver source code for the / dev / cb device driver that 
EasyDriver Incorporated ships to their customers. 

The following sections describe these files. 

11.1.2.1 The lusrlsys/conf/NAME File 

The /usr/sys/conf/NAME file (referred to as the system configuration 
file) is an ASCII text file that defines the components of the system. The 
system configuration file name, NAME, is usually the name of the system. By 
convention, the system configuration file name is capitalized. There can be 
more than one system configuration file defined in /usr/sys/conf, each 

11-6 Device Driver Configuration Models 



with a capitalized name. As Figure 11-2 shows, EasyDriver Incorporated has 
two system configuration files: GENERIC and CONRAD. Customers, too, 
can have more than one system configuration file to represent different 
configurations. 

The GENERIC system configuration file supplied by Digital contains all the 
possible software and hardware options available to DEC OSFIl systems and 
includes all supported Digital devices. The GENERIC system configuration 
file is used to build a kernel that represents all possible combinations of 
statically configured drivers that Digital supports. This kernel is booted 
during the operating system installation and is often referred to as the generic 
kernel. While running the generic kernel, the installation software determines 
which subset of all possible device drivers should be used to build a target 
kernel to match the hardware attached to the system being installed. 

The installation software builds a tailored system configuration file to match 
the hardware present by calling the sizer program. This tailored system 
configuration file is later used by doconf ig to create a tailored kernel. 

Device driver writers following the third-party model do not supply complete 
system configuration files to their customers. Rather, they supply entries in 
the conf ig . file file fragment that is located in the vendor-specific 
directory and is a logical extension to the system configuration file found in 
/usr/sys/conf. For the /dev/cb driver product, the vendor-specific 
directory is /usr/sys/kits/ESBIOO. Section 12.2 describes the 
syntaxes driver writers use to specify the necessary information in the 
config. file file fragment. 

11.1.2.2 The .products.list and NAME.list Files 

The /usr / sys / conf / . products. list file (for static drivers) stores 
information about static device driver layered products. The NAME .list 
file is a copy of the. products .list file that is created when the system 
manager installs the device driver kit supplied by a third-party vendor. 
Device driver writers and kit developers do not supply either of these files; 
however, an understanding of these files can help during third-party kit 
development and testing. 

Figure 11-3 shows the relationship between these two files during kit 
installation: 

1. The system manager loads the device driver kit and runs the setld 
utility. 

2. The setld utility reads the device driver kit and calls the subset control 
program (SCP) provided by the kit developer. The SCP contains path 
specifications for all of the files related to the driver product. For 
example, Figure 11-3 shows the path and one file associated with the 
/ dev / cb driver product. 

Device Driver Configuration Models 11-7 



3. The SCP calls the / sbin/kreg utility, which registers the product on 
the customer's system. This action makes the device driver product 
available to system management-related programs such as doconfig 
and config. 

Figure 11-3: Comparison of .products.list File and NAME.list 

Kit Installation Builds System 

Subset Control Program 
® 

IESB100/config.file sbin/kreg 

® 

Customer's .productlist file 

lusrlsys/kits/ESB 1001: ... 
® 

lusrlsys/kits/ESB100/: ... 

4. As the figure shows, the SCP calls / sbin/kreg and supplies it with the 
driver path to where the files related to the / dev / cb driver product are 
located. The / sbin/kreg utility registers the path along with other 
supporting information into the customer's. products .list file. The 
three dots in the figure indicate that the supporting information is 
contained in other fields in the entry. The key piece of information for 
the driver writer and the kit developer is the location of the files 
associated with the driver product. 

11-8 Device Driver Configuration Models 



5. The doconfig program, run by the system manager, reads the 
. products .list file and copies it to a file of the form NAME .list . 
The NAME variable usually specifies the name of the system configuration 
file. For example, TIGRIS .list would be the name for the file that 
contains information about static device drivers for the customer system 
described by the system configuration file called TIGRIS. 

The fields contained in the lusrlsys/confl .products .list file are 
described in Section 12.4. 

Customers can edit the NAME .list file to exclude a driver entry, thus 
removing the entry's associated functionality from the rebuilt kernel. 
Otherwise, customers always get the driver products as they are specified in 
the lusr I sysl conf I . products .list file. Customers should never 
edit the lusr I sys I conf I . products .list file directly. Instead, 
customers make required changes by using the kreg utility or by editing the 
NAME .list file. 

11.1.2.3 The config.file File Fragment 

The config. file file fragment (for static drivers) can be viewed as a 
"mini" system configuration file, as shown in Figure 11-4. The figure 
shows the relationship between a config. file file fragment from 
EasyDriver Incorporated and a customer system configuration file called 
TIGRIS. The config. file file fragment from EasyDriver Incorporated 
contains device definition keywords and callout keyword definitions for the 
static driver products. The customer's system configuration file contains not 
only these categories of keywords, but also additional ones. Although 
config. file can also contain these other keywords, the driver writers at 
EasyDriver Incorporated specify only keywords related to their device driver 
product and needed by their customers. 

Furthermore, Figure 11-4 shows that the conf ig program run by the 
customer reads the information contained in both files and makes the options 
specified in them available to the system. The figure shows that config 
does not append the information in config. file to the system 
configuration file, but rather creates a virtual system configuration file of the 
entries contained in both files. The config program does not alter the 
supplied third-party config. file file fragment or the customer's system 
configuration file. 

Device Driver Configuration Models 11-9 



Figure 11-4: Comparison of config.file File Fragment and 
System Configuration File 

reads file 

reads file 

3rd party config.file 

#Device definition keywords 

#Callout keyword definitions 

virtual system configuration file 

/ 
/ 

TIGRIS 
(Customer system 

configuration file) 

#Global keywords 
" 

" #System definition 
#keyword 

" 

" 
#Optional keyword 
#definitions 

#Make option 
# keywords 

Callout keyword 
#definitions 

#Device"definition 
# keywords 

/ #pseudo':'device keyword 
#definitions 

However, driver writers must be particularly careful about choosing 
appropriate naming conventions for such items as the device connectivity 
information to avoid name conflicts with other third-party driver vendors. 
One suggestion is to use extensions to names that minimize the chances for 
conflict. These extensions could include any combination of the company 
initials, product name, version number, and release number. For example, 
the driver writers at EasyDriver Incorporated might specify edcb for an 
internally developed device. The prefix ed represents the company name and 
cb is the name of the device. 

11-10 Device Driver Configuration Models 



Section 12.2 discusses the syntaxes used by driver writers to populate the 
conf ig . file file fragment with device- and callout-related information. 

11.1.2.4 The files File 

The files file fragment (for static drivers) can be viewed as a "mini" 
files file, as shown in Figure 11-5. The figure shows the relationship 
between a files file fragment from EasyDriver Incorporated and a 
customer's files file. The files file fragment (for static drivers) from 
EasyDriver Incorporated contains the following information about the static 
driver products: 

• The location of the source code associated with the product drivers 

• Tags indicating when the product drivers are to be loaded into the kernel 

• Whether the source code or the binary form of the product drivers is 
supplied to the customer 

The customer's files file contains similar entries for other device drivers. 
To have the conf ig program automatically generate the appropriate rules to 
build the drivers, the driver writer must specify the appropriate information in 
the files file fragment. 

Figure 11-5 shows that the conf ig program run by the customer reads both 
files files and makes the information specified in them available to the 
system. The figure also shows that conf ig does not append the information 
in the supplied files file fragment to the customer's files file, but rather 
creates a virtual files file of the entries contained in both files. It does not 
alter the supplied third-party files file fragment or the customer's files 
file. 

This automated mechanism relieves the customer from having to make 
tedious and potentially error-prone changes to the files file. Driver writers 
must be particularly careful about choosing unique path and file names in this· 
file. 

Section 12.5 describes the syntaxes used to specify the previously described 
information. 

Device Driver Configuration Models 11-11 



Figure 11-5: Comparison of files File Fragment and Customer's 
files File 

Customer files file 

/*Product driver entry*/ /*Driver entries*/ 

/*Additional driver entries*/ 

virtual files file 

11.1.2.5 The stanza.loadable File Fragment 

The stanza .loadable file fragment (for loadable drivers) can be viewed 
as a "mini" sysconfigtab database, as shown in Figure 11-6. The 
figure shows the relationship between a stanza .loadable file fragment 
from EasyDriver Incorporated and a customer /etc/sysconfigtab 
database. The stanza. loadable file fragment from EasyDriver 

11-12 Device Driver Configuration Models 



Incorporated contains such items as device connectivity information, the 
driver's major number requirements, the names and minor numbers of the 
device special files, arid the permissions and directory name where the device 
special files reside. The customer's /etc/sysconfigtab database 
contains not only these categories of information, but also additional ones 
that can represent other loadable drivers. The driver writers at EasyDriver 
Incorporated specify only options related to their device driver product and 
needed by their customers. 

Furthermore, Figure 11-6 shows that the sysconfigdb utility appends the 
information contained in the stanza .loadable file fragment to the 
customer's /etc/sysconfigtab database. 

Figure 11-6: Comparison of stanza.loadable File Fragment and 
sysconfigtab Database 

3rd party 
stanza.loadable file fragment 

#Method information supplied 

#Module information supplied 

#Device major and minor number information 
#supplied 

#Device directory information supplied 

#Device connectivity information supplied 

appends 
information 

I 

Customer sysconf igtab 
Database 

#Method information 

#Module information 

#Device major and minor number 
#Information 

#Device directory information 

#Device connectivity information 

... ... 

This automated mechanism relieves the customer from having to make 
tedious and potentially error-prone changes to the / etc / sysconf igtab 

Device Driver Configuration Models 11-13 



database. However, driver writers must be particularly careful about 
choosing appropriate naming conventions for s~ch items as the device 
connectivity information to avoid name conflicts with other third-party driver 
vendors. One suggestion is to use extensions to names that minimize the 
chances for conflict. These extensions could include any combination of the 
company initials, product name, version number, and release number. For 
example, the driver writers at EasyDriver Incorporated might specify edcb 
for an internally developed device. The prefix ed represents the company 
name and cb is the name of the device. 

Section 12.6 discusses the syntaxes that driver writers use to populate the 
stanza. loadable file fragment. 

11.1.2.6 The stanza.static File Fragment 

The stanza. static file fragment (for static drivers) contains such items 
as the driver's major number requirements, the names and minor numbers of 
the device special files, the permissions and directory name where the device 
special files reside, and the driver interface names to be added to the 
bdevsw and cdevsw tables. 

The kmknod utility uses the information in this file fragment to dynamically 
create device special files for static device drivers. 

Section 12.6 discusses the syntaxes that driver writers use to populate the 
stanza. static file fragment. 

11.1.2.7 The name_data.c File 

The name data. c file (for static drivers) provides a convenient place to 
size the data structures and data structure arrays that static device drivers use. 
In addition, this file can contain definitions that customers can change. The 
name argument is usually based on the device name. For example, the 
none device's name data. c file is called none data. c. The CB 
device's name data. c file is called cb data. c: The edgd device's 
name data. c file would be called edgd data. c. See Section 3.1.5 for 
more mformation on this file and how it reiates to loadable drivers. 

11.1.2.8 Files Related to the Device Driver Product 

The driver writer also supplies files related to the device driver product. For 
the static device driver product, these can include the driver header files, 
which have • h extensions; source files, which have • 6 extensions; and the 
driver object files, which have .0 extensions. 

The device driver object files are the actual executables associated with the 
static device driver. To supply the device driver objects and the device driver 
source code, driver writers specify the valid syntaxes in a files file 

11-14 Device Driver Configuration Models 



fragment. Section 12.5 discusses these syntaxes. 

For the loadable device driver product the driver writer supplies the driver 
load modules, which have _ kmod extensions. 

11.1.2.9 The conf.c File 

The lusrlsys/io/common/conf.c file contains the bdevsw and 
cdevsw tables. The method for adding device driver interfaces to these 
tables differs according to whether the driver is static or loadable: 

• For static drivers 

The driver writer provides the driver interfaces in the stanza. static 
file fragment. The config program reads the stanza. static file 
fragment to obtain these interface names and then automatically adds 
them to these tables for the driver product. Section 12.8 describes how to 
provide this information for static drivers. 

• For loadable drivers 

Loadable drivers use the devsw interfaces to add the interfaces to the 
bdevsw and cdevsw tables. Section 9.6 describes how to use these 
interfaces. 

• For drivers implemented as static and loadable 

If the driver is implemented as both a loadable and a static driver, the 
driver writer implements the devsw interfaces and specifies the driver 
interface names in the stanza. static file fragment. During the 
installation of the product drivers, an appropriate prompt would request 
that the customer specify whether the driver is to be installed as a 
loadable or static driver. The device driver kit can provide a software 
subset for the static device driver product and a software subset for the 
loadable driver product. The customer can then choose to install either 
the static or the loadable driver product. 

11.1.3 Providing the Contents of the Device Driver Kit 
The driver writer provides specific items that the kit developer uses as the 
contents of the device driver kit. These items consist of the files and file 
fragments discussed in the previous sections. These files and file fragments 
contain information necessary for system managers (customers) to configure 
the loadable or static drivers into their systems. Table 11-1 summarizes the 
files and file fragments the kit developer needs to supply on the device driver 
kit. The table has the following columns: 

• File 

Contains the name of the file or file fragment. 

Device Driver Configuration Models 11-15 



• Static drivers (source) 

A "Yes" appears in this column if the file or file fragment should be 
supplied with static drivers supplied as source. Otherwise, a "No" 
appears. 

• Static drivers (binary) 

A "Yes" appears in this column if the file or file fragment should be 
supplied with static drivers supplied as binary. Otherwise, a "No" 
appears. 

• Loadable drivers (binary) 

A "Yes" appears in this column if the file or file fragment should be 
supplied with loadable drivers supplied as binary. Otherwise, a "No" 
appears. 

Note 

The third-party device driver configuration model does not 
currently support shipping loadable drivers as source and 
building them at the customer site. Therefore, the table omits a 
column for loadable drivers (source). 

Table 11-1: Contents of Device Driver Kit 

File Static Static Loadable 
Drivers Drivers Drivers 
(Source) (Binary) (Binary) 

config.file Yes Yes No 
file fragment 

files file Yes Yes No 
fragment 

stanza.loadable No No Yes 
file fragment 

stanza. static Yes Yes No 
file fragment 

name data.c Yes Yes No 

driver headers Yes No* No 

driver sources Yes No No 

dri ver objects No Yes No 

driver load No No Yes 
modules 

11-16 Device Driver Configuration Models 



Table 11-1: (continued) 

File 

Subset Control 
Program (SCP) 

Static 
Drivers 
(Source) 

Yes 

* But Yes if needed by data.c 

Static 
Drivers 
(Binary) 

Yes 

Loadable 
Drivers 
(Binary) 

Yes 

11.1.4 Preparing the Device Driver Kit 
The kit developer prepares the distribution medium, which in Figure 11-1 is a 
CDROM. See the Programming Support Tools book for a discussion of the 
media supported by Digital's setld architecture. 

In this book, the distribution medium is referred to as the device driver kit. 
It consists of a hierarchical group of the files and directories provided by the 
device driver writer. It is the responsibility of the driver writer to work with 
the kit developer to determine how the files and directories are grouped 
within the hierarchy. The driver writers for EasyDriver Incorporated worked 
with their kit developers to create the directory structure shown in Figure 
11-2. 

The kit developer performs the appropriate tasks for preparing the device 
driver kit to be used with the setld utility. One of these tasks is to write a 
subset control program (SCP) that installs and manages software subsets. In 
addition, this SCP calls / sbin/kreg (for static drivers), which is the utility 
that registers a subset as a kernel build module and fills the 
/usr / sys/ conf / . products .list file. For loadable drivers, the SCP 
calls the sysconfigdb utility, which maintains and manages the 
/ etc / sysconf igtab database. 

The kit developer should refer to the Programming Support Tools book, 
which contains information about preparing software distribution kits that are 
compatible with the setld utility. The setld utility installs and manages 
DEC OSFIl software kits and layered product kits. 

Section 12.9 provides an example SCP written by EasyDriver Incorporated. 

11.1.5 Loading the Distribution Medium and Running setld 
To install the device driver kit at the customer site, the system manager 
(customer) loads the device driver kit and runs setld. This utility transfers 
the contents of the kit to the customer's file system at a known location, as 
determined by the device driver kit. The setld utility then calls the SCP 

Device Driver Configu ration Models 11-17 



supplied by the third-party vendor. 

If the driver can be both statically configured and dynamically loaded, the 
SCP must prompt the system manager to choose. If the system manager 
chooses static, the SCP calls the kreg utility. The kreg utility creates a 
lusr I sys I conf I • products .list file or updates an existing one. If 
the system manager chooses loadable, the SCP calls the sysconfigdb 
utility. The sysconfigdb utility maintains and manages the 
I etc I sysconf igtab database. 

Both the kreg and sysconf igdb utilities examine the files that were 
transferred from the device driver kit to determine if the system has the 
subset loaded or if it has previously been registered. 

Table 11-2 summarizes the system management tools that customers use to 
automatically configure device drivers. Third-party driver writers may want 
to understand the events that occur when the system manager configures the 
driver as a static or loadable driver. The sections following the table are 
designed to promote an understanding of these events. 

Table 11-2: Summary of System Management Tools 

Tool 

doconfig 

cfgrngr 

krnknod 

kreg 

sysconfig 

sysconfigdb 

Description 

Creates a new or modifies an existing system configuration 
file, copies. products .list to NAME .list, creates the 
device special files for static drivers, and builds a new DEC 
OSPII kernel. (The doconf ig program calls conf ig, 
which actually performs many of the tasks mentioned.) 

Works with kloadsrv, the kernel load server, to manage 
loadable device drivers. 

Uses the information from the stanza. static file 
fragment to dynamically create device special files for static 
device drivers at boot time. 

Maintains the /sys/conf/ .product.list system file, 
which registers static device driver products. 

Modifies the loadable subsystem configuration. This 
modification provides a user interface to the cfgrngr 
daemon. 

Maintains the sysconf igdb database. The driver stanza 
entries in the stanza .loadable file fragment are 
appended to this database. 

11-18 Device Driver Configuration Models 



11.1.5.1 Installing Static Device Drivers 

Figure 11-7 shows the events that occur when the system manager installs a 
static device driver. The events start after the system manager loads the 
device driver kit and runs setld. 

1. The system manager runs the doconfig program (which calls config) 
to generate a system configuration file (shown as NAME in the figure) and 
to generate a kernel that contains the statically linked drivers. 

2. The config program reads the lusrlsys/confl .products .list 
file and copies it to the NAME. list file. It uses the entries in 
NAME .list to locate and use the supplied entries contained in the 
config. file and files file fragments and any source and/or object 
files. 

3. The config program reads the stanza. static file fragment to 
determine the driver's major and minor number requirements and the 
system configuration file, NAME, to determine the device options and 
other system parameters. It also saves the device special file 
characteristics. 

4. After determining the major number requirements, conf ig automatically 
edits the lusrlsys/io/common/conf.c file to place the driver's 
entry points in the bdevsw and/or cdevsw tables. The assigned major 
number is saved in a kernel-resident table for later use. 

5. The config program completes the kernel makefile to include the 
new static device driver. 

After doconfig builds the kernel and the system manager boots the 
system, the third-party static device driver is configured into the kernel. 
There is an entry in the ini ttab file that is referenced at boot time to 
cause the kmknod utility to run. This utility creates the device special 
files for this driver so that the customer's utilities can access this third­
party device driver. 

6. The kmknod utility references the kernel-resident table of assigned major 
numbers to determine what major number has been assigned to this 
driver. It also gets the device characteristics from this table. All of the 
other information needed to do the mknods for the device special file 
was specified in the stanza. static file fragment. 

At this point, the driver is fully configured, the device special files have 
been created, and the kernel is running. 

Device Driver Configuration Models 11-19 



Figure 11-7: Sequence of Events for Installation of Static Drivers 

11.1.5.2 Installing Loadable Device Drivers 

Figure 11-8 shows the events that occur when the system manager installs a 
loadable device driver. The events start after the system manager loads the 
device driver kit. The SCP requests that the system manager specify the 
driver be installed as loadable. The following events occur: 

1. The SCP calls the sysconf igdb utility. 

The SCP calls sysconfigdb, which adds the entries contained in the 
stanza.loadable file fragment to the /etc/sysconfigtab 
database. 

The sysconfigdb utility can be called to add the driver to the list of 
drivers that are automatically configured each time the system boots. At 
this point, the loadable driver has been installed on the system. 

2. The SCP calls the sysconf ig utility. 

Although the loadable driver has been installed on the system, it is not 
currently loaded into the kernel and is therefore not usable by user level 
programs. To load the installed loadable driver, the system manager (or 
the SCP) runs the sysconfig utility. 

3. The sysconfig utility calls the cfgmgr daemon. 

The sysconfig utility passes the name of the driver to load to the 

11-20 Device Driver Configuration Models 



cfgmgr daemon through a socket connection. The cfgmgr daemon 
searches the global stanza database, / etc / sysconfigtab, to fetch the 
stanza entry for the driver. One of the fields of the stanza entry identifies 
the loadable module as a device driver. This information causes the 
cfgmgr daemon to use the device driver-specific portion (referred to as 
the driver method) to perform the specific loading tasks (such as, creating 
the necessary device special files). 

4. The cfgmgr daemon calls kloadsrv. 

Another field in the stanza entry lists the pathname of the loadable object 
(the driver itself). The cfgmgr daemon calls the kernel loader utility 
kloadsrv to load the driver's object into the kernel's address space. 

5. The kloadsrv utility calls the driver's configure interface. 

After loading the driver's object, kloadsrv calls the device driver's 
configure interface. The driver's configure interface causes the driver to 
be linked into the autoconfiguration-related data structures: bus, 
controller, and device. The driver's interrupt interface is 
registered. The configure interface also calls a bdevsw add or 
cdevsw add interface to provide a major number for this driver. The 
assignment of a major number includes adding the driver's entry points 
into the bdevsw and/or cdevsw tables. 

6. The driver's configure interface returns a data structure 

The driver's configure interface returns a data structure that contains, 
among other things, the major number or numbers assigned to the driver. 
This return information is passed back to the cfgmgr daemon. 

Device Driver Configuration Models 11-21 



Figure 11-8: Sequence of Events for Installation of Loadable 
Drivers 

(---------------~ 
: stanza.loadable : 

'------~-------' 

,'-------------~, 

: sysconfigtab : 
: stanza : 
I I 

: database : 

',-----:------j 

cfgmgr@ 

SCP 

sysconfig 

system administrator 
runs setld 

}OCket 
(j) 
performs consistency check and then 
creates device special files 

cfgmgr generic portion 

Methods: 

I driver II fs II streams 
® 
returns data structure 

.---~---.@ 

calls foo_configure 
loadable object: 

foo_configure() 
{ 

call kernel framework 
kernel entry points 

® 
returns 
through 
sysconfig 

7. The c f gmgr daemon performs a consistency check and then creates 
device special files. 

Once the driver has been loaded into the kernel's address space and prior 
to creating the device special files for this driver, a consistency check is 
performed to delete any device special files of the same name or the same 
driver type and major number. 

11-22 Device Driver Configuration Models 



The cfgmgr daemon then creates the device special tiles associated with 
the device by taking the major number returned from the driver's 
configure interface and the information contained in the driver's stanza 
entry to do the appropriate mknod calls. 

8. The cfgmgr daemon returns through sysconfig 

The cfgmgr daemon returns through sysconfig and the driver 
loading is complete. User level utilities can now access the driver. 

11.2 Traditional Device Driver Configuration Model 
The traditional device driver configuration model provides a manual 
mechanism for driver writers or system managers to configure device drivers 
into the kernel. One advantage of the traditional model is that no device 
driver kit is needed. Thus, the driver writer can configure the driver almost 
immediately. The traditional model is particularly suited to a classroom 
situation, where the goal of the class is to learn how to write device drivers. 
It is also suited to driver writers following the third-party model during the 
initial stages of driver development. 

The end result of the traditional and third-party models is the same. The 
disadvantage of the traditional model is that it does not take advantage of the 
automated driver installation interfaces. Thus, the traditional model is 
potentially error prone. 

This model requires that driver writers perform the tasks shown in Figure 
11-9. The figure shows that the traditional driver configuration model 
involves only the device driver writer. The third-party driver configuration 
model is different in that it involves at least three groups of people. Figure 
11-9 also shows the following tasks performed by the driver writer: 

• Creating a driver development environment and writing the driver 

• Configuring the device driver 

The sections following Figure 11-9 describe these tasks in detail. 

Device Driver Configuration Models 11-23 



Figure 11-9: Tasks for Traditional Model 

Device Creates driver development 
Driver environment and writes driver 

Writer 

Configures the driver by manually 
editing files and running config 

11.2.1 Creating a Driver Development Environment and Writing 
the Driver 

The device driver writer creates a driver development environment and writes 
the device driver by using the information and techniques described in the 
previous chapters of this book. Figure 11-10 shows the development 
environment for EasyDriver Incorporated, using the traditional driver 
configuration model. 

11-24 Device Driver Configuration Models 



Figure 11-10: Driver Development Environment for EasyDriver 
Incorporated Using the Traditional Model 

BINARY alpha GENERIC CONRAD tc_option_data.c none_data.c cb_data.c 

I 
files 

cb_kmod none_kmod cb.c cb.o cbreg.h none.c none.o nonereg.h 

The figure shows the following directory structure: 

• The /usr / sys / conf directory 

This directory contains files that define the kernel configuration for the 
generic (all-encompassing) and target machine kernels. In the 
/usr/sys/conf directory for EasyDriver Incorporated, the generic 
kernel is called GENERIC, and the target machine kernel is called 
CONRAD. The /usr / sys / conf /BINARY system configuration file is 
shown here because the traditional model requires that entries be added to 
accommodate loadable device drivers. 

• A /usr/sys/conf/alpha directory 

This directory contains the files file. 

• A /usr/sys/data directory 

This directory contains the name data. c files supplied by Digital. An 
example of one such file is tc option data. c. The figure also 
shows that EasyDriver Incorporated uses this directory to contain the 
name data. c files associated with their device drivers. 

Device Driver Configuration Models 11-25 



• A lusrlsys/io/EasyInc directory 

This directory contains the source code, object, header, and load module 
files for the drivers developed by EasyDriver Incorporated. 

The following sections describe each of these files. Some of these files were 
discussed in the sections related to the third-party driver configuration model. 
The following sections discuss these same files from the traditional model 
point of view. 

11.2.1.1 The lusrlsys/conf/NAME File 

The lusr I sysl conf INAME file (referred to as the system configuration 
file) is an ASCII text file that defines the components of the system. The 
system configuration file name, NAME, is usually the name of the system. By 
convention, the system configuration file name is capitalized. A device 
driver writer can have more than one system configuration file defined in . 
lusrlsys/conf, each with a capitalized name. As Figure 11-10 shows, 
EasyDriver Incorporated has two system configuration files: GENERIC and 
CONRAD. In addition, there is a system configuration file called 
lusrlsys/conf/BINARY. 

The GENERIC system configuration file supplied by Digital contains all the 
possible software and hardware options available to DEC OSFIl systems and 
includes all supported Digital devices. The GENERIC system configuration 
file is used to build a kernel that represents all possible combinations of 
statically configured drivers that Digital supports. This kernel is booted 
during the operating system installation and is often referred to as the generic 
kernel. While running the generic kernel, the installation software determines 
which subset of all possible device drivers should be used to build a target 
kernel to match the hardware attached to the system being installed. 

The installation software builds a tailored system configuration file to match 
the hardware present by calling the sizer program. This tailored system 
configuration file is later used by doconf ig to create a tailored kernel. 

The BINARY system configuration file supplied by Digital contains a subset 
of all the possible software and hardware options available to DEC OSFIl 
systems. 

In the traditional model, device driver writers manually edit the system 
configuration file to specify device connectivity information associated with 
the static device driver. For loadable drivers, device driver writers manually 
edit the BINARY system configuration file to cause an independent load 
module (for example, the cb kmod module) to be created. This step 
contrasts with static device dnvers where the driver itself is incorporated into 
the tailored kernel. Thus, driver writers modify the BINARY system 
configuration file for loadable drivers and the system configuration file for 
static drivers. Section 12.2 describes the syntaxes driver writers use to 

11-26 Device Driver Configuration Models 



specify the necessary information in the system configuration file. 

11.2.1.2 The files File 

The device driver writer manually edits the files file, which contains the 
following information: 

• Driver source code location 

• Under what conditions the driver is to be statically configured 

• Whether the device driver sources are supplied 

Section 12.5 describes the syntaxes used to specify this information. Note 
that in the traditional device driver configuration model, the device driver 
writer specifies information in the files file for both loadable and static 
device drivers. This information is necessary to construct the driver object 
file for static drivers and the kernel load module for loadable drivers. 

The file s file can reside in one of several directories, based on the 
architecture. For example: 

conf/alpha/files 

conf/mips/files 

There may also be one files file for each kernel built. In this case, the 
files file takes the name of the system configuration file. For example: 

conf/files.TIGRIS 

conf/files.EUPHRATES 

The driver writers at EasyDriver Incorporated chose to locate their files in the 
lusr I sys I conf I alpha directory. 

11.2.1.3 The name_data.c File 

The name data. c file provides a convenient place to size the data 
structures and data structure arrays used by static device drivers. The name 
argument is usually based on the device name. For example, the none 
device's name data. c file is called none data. c. The CB device's 
name data. c file is called cb data. c. The edgd device's 
name -data. c file would be called edgd data. c. See Section 3.1.5 for 
more mJormation on this file and how it reiates to static drivers. 

11.2.1.4 Driver Header, Source, Object, and Load Module Files 

The driver writer creates a directory to contain the files related to the device 
driver. For the static device driver product, these can include the driver 
header files, which have • h extensions; source files, which have • c 
extensions; and the driver object files, which have. 0 extensions. The device 
driver object files are the actual driver executables. Figure 11-10 shows that 

Device Driver Configuration Models 11-27 



driver writers for EasyDriver Incorporated place these files in the 
/usr / sys/ io/Easylnc directory. 

For the loadable device driver product, there are driver load modules, which 
have kmod extensions. 

11-28 Device Driver Configuration Models 



12.1 

Device Driver Configuration 
Syntaxes and Mechanisms 12 

The previous chapter described the third-party and traditional device driver 
configuration models, which included brief descriptions of the file fragments 
the driver writer needs to supply on the device driver kit for the third-party 
model and the files the driver writer manually edits for the traditional model. 
This chapter reviews these files and describes the syntaxes and mechanisms 
used to populate them. 

Specifically, the chapter discusses how to: 

• 

• 

• 

• 

• 

• 

• 

• 

Review device driver configuration-related files 

Specify information in the config. file file fragment and system 
configuration file 

Understand the format of the NAME .list file 

Specify information in the files file fragment and files file 

Specify information in the stanza files 

Specify information in the name_data. c file 

Specify information in the conf . c file 

Supply the subset control program (SCP) 

Reviewing Device Driver Configuration-Related 
Files 

Table 12-1 reviews the files and file fragments related to device driver 
configuration and provides a summary of how the driver writer populates 
these files with the necessary information. Subsequent sections in the chapter 
describe the actual syntaxes and mechanisms used to populate these files and 
file fragments. The table also indicates whether the file is applicable to the 
third-party or traditional model. 



Table 12-1: Contents of Device Driver Configuration-Related 
Files 

File 

system 
configuration 
file 

config.file 
file fragment 

BINARY system 
configuration 
file 

NAME. list 
file 

files file 

files file 
fragment 

Information/Mechanisms 

For static drivers, specify a valid syntax for 
the device connectivity information 
contained in this file. 

This file is not applicable to loadable 
drivers. 

For static drivers, specify a valid syntax for 
the device connectivity and callout 
information contained in this file. 

This file is not applicable to loadable 
drivers. 

For loadable drivers, specify a valid syntax 
to ensure that loadable drivers build 
successfully. 

This file is not applicable to static drivers. 

For static drivers, contains such information 
as where the files for the driver product are 
located. This file is not supplied on the 
device driver kit. 

This file is not applicable to loadable 
drivers. 

For static drivers, specify a valid syntax for 
when the driver is to be loaded into the 
kernel, the location of the driver source 
code, and whether the driver sources are 
supplied. 

For loadable drivers using the traditional 
model, specify a valid syntax for when the 
driver source is to be compiled into a 
dynamic load module and the location of 
the driver source code. 

This file is not applicable to loadable 
drivers shipped in binary form. 

For static drivers shipped in source form, 
specify a valid syntax for when the driver is 
to be loaded into the kernel, the location of 
the driver source code, and whether the 
driver sources are supplied. 

This file is not applicable to loadable 
drivers shipped in binary form. 

12-2 Device Driver Configuration Syntaxes and Mechanisms 

Third-Party 
Model 

No 

Yes 

No 

Yes 

No 

Yes 

Traditional 
Model 

Yes 

No 

Yes 

No 

Yes 

No 



Table 12-1: 

File 

stanza.loadable 
file fragment 

stanza. static 
file fragment 

A 
name data.c 
file 

driver sources 
and driver 
objects 

conf.c 

(continued) 

Information/Mechanisms 

For loadable drivers, specify a valid syntax 
for device connectivity information, the 
driver's major number requirements, the 
names and minor numbers of the device 
special files, and the permissions and 
directory name where the device special 
files are created. 

This file fragment is not applicable to static 
drivers. 

For static drivers, specify a valid syntax for 
the driver's major number requirements, the 
names and minor numbers of the device 
special files, the permissions and directory 
name where the device special files reside, 
and the driver interfaces to be added to the 
bdevsw and cdevsw tables. 

This file is not applicable to loadable 
drivers. 

For static drivers, specify data structure 
sizes in this file. Loadable drivers should 
dynamically allocate memory to 
accommodate data structure sizes. 

The driver writer supplies the. c (optional), 
• h (optional), .0 (for static drivers), and 
_ kmod (for loadable drivers) driver files. 

For static drivers using the traditional 
model, edit the conf • c file with the device 
driver entry points in the appropriate 
devsw table. 

For static drivers using the third-party 
model, use a valid syntax in the 
stanza. static file fragment to 
automatically add device driver entry points 
to the bdevsw and cdevsw tables. 

This file is not used for loadable drivers. 
Instead, for loadable drivers, use the 
bdevsw add and cdevsw add - -
interfaces to dynamically add device driver 
entry points to the in-memory bdevsw and 
cdevsw tables. 

Third-Party 
Model 

Yes 

Yes 

Yes 

Yes 

No 

Traditional 
Model 

Yes 

No 

Yes 

Yes 

Yes 

Device Driver Configuration Syntaxes and Mechanisms 12-3 



Table 12-1: (continued) 

File 

Subset Control 
Program (SCP) 

Information/Mechanisms 

The kit developer writes an SCP that 
installs and manages the files and file 
fragments supplied to customers. 

Third-Party 
Model 

Yes 

12.2 Specifying Information in the config.file File 
Fragment and the System Configuration File 

Traditional 
Model 

No 

The config. file file fragment uses the same syntax as the system 
configuration file to specify device connectivity information and command 
callout options. For the third-party model, driver writers specify in 
config. file only the information needed for their driver product. For 
the traditional model, driver writers manually edit the system configuration 
file to include the necessary information. The following sections discuss the 
syntaxes for the device options and the callout options available to device 
driver writers. For descriptions of the other options and definitions that 
could be specified in these files, see the System Administration guide. 

12.2.1 Specifying Device Definitions 
The device definition keywords, part of the config. file file fragment and 
the system configuration file, contain descriptions of each current or planned 
device on the system. That is, these definitions describe such things as bus, 
controller, disk, and tape mnemonics and logical unit numbers for devices 
connected to the system. When the system is initially configured, the 
doconfig and sizer utilities identify all of the devices supplied by 
Digital that are attached to the system and place their associated entries in the 
specified system configuration file. 

For the third-party driver configuration model, device driver writers must 
make their device definitions available to their customer's system through the 
config. file file fragment. For the traditional model, driver writers must 
manually edit the system configuration file to make the appropriate device 
definitions. In either case, the keywords and values for making these entries 
are identical. 

Device driver writers must know the syntax for making: 

• A bus specification 

• A controller specification 

12-4 Device Driver Configuration Syntaxes and Mechanisms 



• A device specification 

The syntaxes for each category are discussed in the following sections. 
Section 12.2.1.4 provides examples of the device options syntaxes for the CB 
and none devices. 

12.2.1.1 Bus Specification 

The following is the syntax for specifying a bus in the config. file file 
fragment and the system configuration file: 

bus bus_name# at bus_connection# 

bus 
The keyword that precedes a bus name and its associated unit number. 

bus name# 

at 

Specifies the name and number of the bus. The bus name can be any 
string. For buses supported by Digital, the bus name is one of the valid 
strings listed in the System Administration guide. For example, the 
string tc represents a TURBOchannel bus. 

Third-party driver writers who write drivers that operate on non-Digital 
buses can select a string that might include the vendor and product 
names. The string could also include version and release numbers. This 
type of naming scheme reduces the chance of name conflicts with other 
vendors. For example, the driver writers at EasyDriver Incorporated 
might specify edgb for an internally developed bus. 

The number for a bus is any positive integer, for example, 0 or 1. 

The keyword that precedes the bus connection. 

bus connection# 
Specifies the name and number of the bus that this bus is connected to. 
The keyword nexus indicates that the specified bus is the system bus. 

A wildcard syntax for the bus specification is also allowed, as shown in 
the following example: 

bus tc? ill 
bus tc? at nexus ~ 

ill Specifies any TURBOchannel bus. 

121 Specifies the top-level or system bus. 

Device Driver Configuration Syntaxes and Mechanisms 12-5 



12.2.1.2 Controller Specification 

The following is the syntax for specifying a controller in the config. file 
file fragment and the system configuration file: 

controller ctlr_name# at bU8_name# [ csr addr] [flags fla9_ value ] [slot 810t# ] 
vector vec ... 

controller 
The keyword that precedes a controller name and its associated logical 
unit number. A controller identifies either a physical or logical 
connection with zero or more slaves (that is, disk and tape drives) 
attached to it. 

ctlr name# 

at 

Specifies the controller's name and associated logical unit number. The 
controller name can be any string. For controllers supplied by Digital, 
the controller name is one of the valid strings listed in the System 
Administration guide. For example, the string hse represents an HSC 
controller. 

Third-party driver writers who write drivers for non-Digital controllers 
can select a string that might include the vendor and product names. 
The string could also include version and release numbers. This type of 
naming scheme reduces the chance of name conflicts with other vendors. 
For example, the driver writers at EasyDriver Incorporated might specify 
edge for an internally developed controller. 

The logical unit number for a controller is any positive integer, for 
example, 0 or 1. 

The keyword that precedes the bus to which the controller is connected. 

bus name# 
Specifies the name and number of the bus the controller is connected to. 
The bus name can be any string. For buses supported by Digital, the 
bus name is one of the valid strings listed in the System Administration 
guide. For example, the string te represents a TURBOchannel bus. 

Third-party driver writers who write drivers that operate on non-Digital 
buses can select a string that might include the vendor and product 
names. The string could also include version and release numbers. This 
type of naming scheme reduces the chance of name conflicts with other 
vendors. For example, the driver writers at EasyDriver Incorporated 
might specify edge for an internally developed controller. 

A wildcard syntax for the bus specification is also allowed, as shown in 

12-6 Device Driver Configuration Syntaxes and Mechanisms 



csr 

the following example: 

controller siiO at tc? rn 
controller siiO at * ~ 

I1J Specifies an instance of a controller of type s ii attached to any 
TURBOchannel bus. 

12] Specifies an instance of a controller of type sii attached to any bus 
type (that is, not restricted to a TURBOchannel bus). 

Specifies an optional keyword that precedes a control status register 
value for some device. 

addr 
Specifies the address of the control status register for the device. This 
address is required if the csr keyword was specified. 

flags 
An optional keyword that precedes some value that directs the system to 
perform some request. 

flag value 
Specifies the value for the flag. Possible values are decimal numbers 
and hexadecimal numbers. 

The format of the hexadecimal number is Oxnn , where nn is a 
hexadecimal number consisting of digits from a to 9 inclusive and of the 
letters a to f inclusive. 

slot 
The keyword that precedes the bus slot or node number. 

slot# 
Specifies the bus slot or node number. 

vector 
Specifies the keyword that precedes the name or names of the interrupt 
handlers for the device. This keyword is for static drivers. Loadable 
drivers register their interrupt handlers through the handler add and 
handler enable interfaces. Section 9.6.3 shows how to register the 
interrupt service interface for the / dev / cb driver by calling 
handler add and handler enable. 

vee . .. 
Specifies the name or names of the interrupt handlers for the device. 

Device Driver Configuration Syntaxes and Mechanisms 12-7 



12.2.1.3 Device Specification 

The following is the syntax for specifying a device (for example, disk or 
tape) in the config. file file fragment and the system configuration file: 

device device_spec device_name# at ctlr_name# drive phys# 

device 
The keyword that precedes the string that identifies the device. 

device spec 
SpeCifies a keyword that precedes a device name and its logical unit 
number. This keyword can be any string. Digital uses the keywords 
disk and tape to represent disk and tape devices. 

device name# 

at 

SpeCifies the device's name and associated logical unit number. The 
device name can be any string. For devices supported by Digital, the 
device name is one of the valid strings listed in the System 
Administration guide. For example, the strings ra and tz represent 
SCSI disk and tape drives supported by Digital. 

Third-party driver writers who write drivers that operate on non-Digital 
devices can select a string that might include the vendor and product 
names. The string could also include version and release numbers. This 
type of naming scheme reduces the chance of name conflicts with other 
vendors. For example, the driver writers at EasyDriver Incorporated 
might specify edgd for an internally developed disk device. 

The logical unit number for a disk drive is any positive integer, for 
example, 0 or 1. 

The keyword that precedes the controller to which the device is 
attached. 

ctlr name# 
Specifies the name and logical unit number of the controller to which 
the device is attached. The controller name can be any string. For 
controllers supplied by Digital, the controller name is one of the valid 
strings listed in the System Administration guide. For example, the 
string hsc represents an HSC controller. 

Third-party driver writers who write drivers for non-Digital controllers 
can select a string that might include the vendor and product names. 
The string could also include version and release numbers. This type of 
naming scheme reduces the chance of name conflicts with other vendors. 
For example, the driver writers at EasyDriver Incorporated might specify 
edgc for an internally developed controller. 

The logical unit number for a controller is any positive integer, for 

12-8 Device Driver Configuration Syntaxes and Mechanisms 



example, a or 1. 

drive 
The keyword that precedes the physical unit number of the device. 

phys# 
Specifies the physical unit number of the device, if required. 

12.2.1.4 Device Options Syntaxes Example 

The driver writers from EasyDriver Incorporated supply the following 
conf ig. file file fragment to their customers. This file fragment shows 
entries for the none and CB device controllers, which operate on the 
customer's TURBOchannel bus: 

# Entries in config.file for none and CB devices 

controller noneO at tc? vector noneintr ill 
controller cbO at tc? vector cbintr ~ 

11] Indicates that the CB controller is connected to the customer's 
TURBOchannel bus. Note the use of the wildcard character to indicate 
that the none controller can be connected to any TURBOchannel bus. 

The interrupt handler for the / dev / none device driver controlling the 
none controller is called noneintr. The interrupt handler is placed 
here for the static version of the / dev / none driver. The loadable 
version of the / dev / none driver registers the interrupt handler through 
the handler add and handler enable interfaces. Section 4.1.6.1 
shows how to register noneintr by calling handler_add and 
handler enable. 

[2J Indicates that the / dev / cb controller is connected to the customer's 
TURBOchannel bus. The interrupt handler, cbintr, is placed here for 
the static version of the / dev / cb driver. The loadable version of the 
/ dev / cb driver registers the interrupt handler through the 
handler add and handler enable interfaces. Section 10.8.1 
shows how-to register cbintr by calling handler_add and 
handler enable. 

Following the traditional device driver configuration model, the driver writers 
at EasyDriver Incorporated edit their system configuration file with the 
following entries: 

controller noneO at tcO slot? vector noneintr 

controller cbO at tcO slot? vector cbintr 

Device Driver Configuration Syntaxes and Mechanisms 12-9 



Note that the slot keyword is used because these controllers are connected 
to the TURBOchannel bus. 

12.2.2 Specifying Callouts 
The callout keyword provides driver writers with a mechanism for 
handling customer-specific tasks related to driver configuration that are not 
currently handled by the config program. The config. file file 
fragment and the system configuration file can contain one or more callout 
keyword definitions that invoke a subprocess. While the subprocess 
executes, config suspends its execution. It resumes execution when the 
subprocess completes. 

The driver writer can invoke any subprocess with a callout keyword. The 
following list describes issues to consider when using the callout mechanism: 

• Ensure that the command is in the search path or specify the full 
pathname. 

• Ensure that system resources, such as memory, disks, or tapes are 
available. 

• The subprocess must handle all error conditions because the conf ig 
program behaves as if the subprocess always succeeds. 

• If more than one callout is used with the same keyword value, the order 
of execution is determined by the order in the system configuration file 
from top to bottom. 

The callout keyword specifies the point in the configuration sequence at 
which to invoke the subprocess. The subprocess that is called out has the 
CONFIG NAME environment variable set to specify the system configuration 
file that called it. 

Table 12-2 describes the callout keywords and the times at which they are 
invoked by config. 

Table 12-2: The callout Keywords 

callout Keyword 

at start 

Usage 

After config has parsed the system configuration file 
syntax, but before processing any other input such as 
stanza. static file fragments 

12-10 Device Driver Configuration Syntaxes and Mechanisms 



Table 12-2: (continued) 

callout Keyword Usage 

at exit Immediately before conf ig exits, regardless of its exit 
status 

at success Before the at exit process, if specified, and only if 
config exits-with a success exit status 

before h Before conf ig creates any * . h files 

after h After conf ig creates any * . h files 

before c Before conf ig creates any * . c files 

after c After conf ig creates any * . c files 

before makef ile Before conf ig creates the makef ile 

after makef ile After conf ig creates the makef ile 

before conf Before config creates the lusrlsys/NAMElconf.c file 

after conf After config creates the lusrlsys/NAMElconf.c file 

The following example shows one possible entry in a config. file file 
fragment and system configuration file: 

bus tcO at nexus? 
callout after_c " .. /bin/mktcdata" ill 

[] In this example, the callout keyword invokes a subprocess (C 
program) called rnktcdata. The purpose of rnktcdata is to 
automatically add third-party devices registered through the kreg utility 
to the tc _option table. 

12.3 Specifying Information in the BINARY System 
Configuration File 

To build a loadable driver load module, using the traditional device driver 
configuration model, the BINARY system configuration file must be edited. 
The following syntax specifies a loadable driver entry in the BINARY system 
configuration file: 

pseudo-device drivecname dynamic drivecname 

Device Driver Configuration Syntaxes and Mechanisms 12-11 



pseudo-device 
Specifies a keyword that causes the appropriate makefile to be 
generated for the specified device driver. 

driver name 
SpeCIfies the name of the loadable driver. This name is the 
entry name that was specified in the stanza .loadable file 
fragment. 

dynamic 
The keyword that specifies that the device driver is built as a dynamic 
load module (loadable driver). 

The following example shows an entry for the I dev I cb device driver: 

pseudo-device cb dynamic cb 

12.4 Understanding the Format of the NAMEJist File 
In the third-party device driver configuration model, the kreg utility sets up 
the. products .list and NAME .list files on the customer's system. 
Although third-party driver writers and kit developers do not supply these 
files, it is useful to understand the files' format. Note that these files are not 
used by driver writers following the traditional device driver configuration 
model. Figure 12-1 shows the format of such a file for Easy Dri ver 
Incorporated. 

Figure 12-1: A NAME.list File for EasyDriver Incorporated 

Driver files path field Date field Product name field 

I I I 
/usr/sys/kits/ESA 100:EASYDRV200:9311171344:EasyDriverlnc:TURBOtestboard: 1.0 

I I I I U 
Subset ID field Company name field Product version field 

The figure shows that the NAME .list file has fields separated by colons (:), 
as follows: 

• Driver files path field 

The driver files path field contains the path that points to the location of 
the files associated with the driver product, which in the figure is 
lusr I sys Iki ts IESAl 0 O. The value in the driver files path field 
must be unique. 

12-12 Device Driver Configuration Syntaxes and Mechanisms 



• Subset ID field 

The subset ID field contains the subset ID associated with the setld 
utility, which in the figure is EASYDRV200. 

• Date field 

The date field contains the date when the product is ready for distribution. 
The date has the form yymmddhhmm, where yy represents the year, mm 
represents the month, hh represents the hour (24-hour time), and mm 
represents the minutes. For EasyDriver Incorporated, the date field 
translates to: 

November 17, 1993 1:44 PM 

• Company name field 

The company name field contains the company's name, which in the 
figure is abbreviated to EasyDriverInc. 

• Product name field 

The product name field contains the name of the product, which in the 
figure is TURBOte s tboard. 

• Product version field 

The product version field contains the version number of the product, 
which in the figure is 1.0. 

Note that the configuration software (namely, the config program) uses 
the information only in the path field. Although editing the NAME .list 
file is not supported, it is possible for driver writers to add an entry to 
this file. Doing so would be useful if for some reason the driver writer 
did not want to use the setld utility for kit processing. 

12.5 Specifying Information in the files File Fragment 
and fi les Fi Ie 

The files file fragment contains the same kind of information that appears 
in the files file. For the third-party model, driver writers specify in the 
files file fragment only the information needed for their driver product. 
For the traditional model, driver writers manually edit the files file to 
include the necessary information. 

The following syntax specifies an entry in the files file fragment and the 
files file for static device drivers: 

path_name optional key_string I standard device-driver Binary I Notbinary 

Device Driver Configuration Syntaxes and Mechanisms 12-13 



The following syntax specifies an entry in the files file for loadable device 
drivers: 

path_name optional key_string I standard device-driver iCdynamic key_string 
Binary 

path name 
Specifies the file specification indicating where the device driver sources 
reside. 

optional 
This keyword indicates that this software module will be included in 
those kernels whose system configuration files specify the 
key _string that follows the keyword optional. 

standard 
This keyword indicates that this software module will be included in 
every kernel. 

device-driver 
The keyword device-driver directs the config program to create 
the makefile entry that builds the kernel object so that the C compiler 
builds the object code unoptimized. This keyword is mandatory for all 
device driver entries. 

if dynamic 
-The if dynamic keyword marks the specified device driver source 

files suCh that the resulting object files can be built as either static or 
loadable. 

Binary 
The Binary keyword causes symbolic links to be made to existing 
object modules. 

Notbinary 
The Notbinary keyword causes the config program to create a 
makefile that compiles the object from source. Static device drivers 
written by third-party vendors can use either keyword, depending on 
whether they want to supply the driver sources or to compile their 
name_data. c files, if shipped. 

Loadable drivers written by third-party vendors must use the Binary 
keyword, as shown in the syntax. 

The following examples show how the driver writers at EasyDriver 
Incorporated specify entries in the files file fragment (third-party model) 
and the files file (traditional model) for the static versions of the 

12-14 Device Driver Configuration Syntaxes and Mechanisms 



I dey I none and I dey I cb dri verso 

# This example illustrates the third-party model 
# by showing a files file fragment for static 
# drivers developed by EasyDriver Incorporated. 

ESA100/none.c standard none device-driver if_dynamic none Binary ~ 

ESB100/cb.c optional cb device-driver Binary ~ 

# This example illustrates the traditional model 
# by showing a files file for static drivers 
# developed by EasyDriver Incorporated. 

io/EasyInc/none.c standard none device-driver Notbinary ~ 

io/EasyInc/cb.c optional cb device-driver Binary ~ 

[j] In the third-party model example, shows that the I dey I none device 
driver object is located in the directory ESAIOO. The kreg utility puts 
the path lusrlsys/kits/ESAIOO in the customer's 
. products .list file. 

The corresponding line in the traditional model example shows that the 
I dey I none device driver object is located in the directory 
lusrlsys/io/Easylnc. In both cases, the name of the driver source 
is none. C. 

In the third-party model example, the standard keyword indicates that 
the I dey I none driver will be included in every customer kernel. In the 
traditional model example, the standard keyword indicates that the 
I dey Inone driver will be included in every kernel at EasyDriver 
Incorporated. 

The dey ice-dr i ver keyword used in both model examples indicates 
to config that the driver is built with compiler optimization turned off. 

The Notbinary keyword indicates that the none. c file will be 
supplied to customers. 

I2l In both the third-party and traditional models, shows the syntax for the 
I dey I cb driver. The syntax is identical to that specified for the 
I dey I none driver except that in both models it uses the optional 
and Binary keywords. 

The optional keyword indicates that the I dey I cb driver will be 
included in those kernels whose system configuration files specify cb as 
a device entry. 

The Binary keyword indicates that the cb. c file will not be compiled 
and need not exist but that the kernel links in a supplied cb. 0 object file. 

The following example show how the driver writers at EasyDriver 
Incorporated specify entries in the files file (traditional model) for the 

Device Driver Configuration Syntaxes and Mechanisms 12-15 



loadable versions of the I dev I none and I dev I cb drivers. 
# This example illustrates the traditional model 
# by showing a files file for loadable drivers 
# developed by EasyDriver Incorporated. 

io!EasyInc!none.c optional none device-driver if_dynamic none Binary rn 
io!EasyInc!cb.c optional cb device-driver if_dynamic cb Binar~ 

III In the traditional model example, shows that the I dev I none device 
driver object is located in the directory io/Easylnc. 

The optional keyword indicates that the I dev Inone device driver 
driver will be included in those kernels whose system configuration files 
specify none as a device entry. 

The device-driver keyword used in both model examples indicates 
to conf ig that the driver is built with compiler optimization turned off. 

The if dynamic keyword marks the Idev/none device driver source 
files suCh that the resulting object files can be built as either static or 
loadable. 

The Binary keyword causes symbolic links to be made to existing load 
modules. 

12] Specifies the keywords for the I dev I cb driver. They are the same as 
the ones used for the I dev I none driver. 

12.6 Specifying Information in the stanza Files 

Device driver writers must understand the following topics associated with 
the stanza files: 

• Stanza file format 

• Stanza file syntax 

Section 12.6.3 provides examples of the syntaxes for the stanza. static 
and stanza .loadable file fragments. 

12.6.1 Stanza File Format 
Figure 12-2 shows the format associated with the fields in the stanza files 
separated by colons (:). It also shows that the syntax for a stanza entry 
contains: 

• entry_name 

Specifies the name of the device driver. The figure shows one sample 
driver entry called tdc. 

Typically, each driver contains a separate stanza entry. If more than one 

12-16 Device Driver Configuration Syntaxes and Mechanisms 



stanza entry is supplied in a single stanza. loadable or 
stanza. static file fragment, separate them with one or more blank 
lines. 

Third-party driver writers who write drivers for non-Digital controllers 
can select a name that might include the vendor and product names. The 
string could also include version and release numbers. This type of 
naming scheme reduces the chance of name conflicts with other third­
party drivers. For example, the driver writers at EasyDriver Incorporated 
might specify edgd for a device driver developed for an internally 
developed device. 

• Comments 

A number sign (#) at the beginning of a line indicates a comment. You 
can include comments at the beginning or the end of a driver stanza 
entry. The figure shows an example of a comment at the beginning of 
the entry for the tdc driver. Comments are not allowed within the body 
of the stanza entry. 

• Trailing blanks 

Tabs are allowed at the beginning or end of lines and, as the figure 
shows, trailing blanks are allowed at the end of lines. 

• Attribute name and Attribute value 

Specifies a valid stanza field. The figure shows that a valid stanza entry 
consists of a keyword that identifies the field, an equal sign (=) separator, 
and one or more values. The values can be strings (as in the figure) or 
valid keywords described in this book. 

Driver writers interested in learning about the other valid stanza keywords 
should see sysconf igtab in Reference Pages Sections 4, 5, and 7. 

• New lines 

The figure also shows that a new line terminates an attribute name and 
value pair. 

The following list describes restrictions associated with a 
stanza .loadable and stanza. static file fragment: 

• An individual stanza entry can be a maximum of 40960 bytes in length. 
The system ignores all bytes in excess of this limit. 

• An individual line (attribute) within a stanza entry cannot exceed 500 
bytes. 

• An individual stanza entry cannot consist of over 2048 lines (attributes). 

• At least one blank line is required between stanza entries. 

Device Driver Configuration Syntaxes and Mechanisms 12-17 



Note 

At least one blank line is required at the end of the 
stanza .loadable and stanza. static files. 

Figure 12-2: Format of the Stanza Files 

trailing blanks 

1 comment 

~ 
#The following illustrates a stanza 

tdc :.4----, 

entry L--JL-J 

i terminate with 
colon (:) 

Subsystem Description = Test driver method t - i t 
attribute 1_name equal sign 

as separator 

new line to terminate 
attribute name and value pair 

12.6.2 Stanza File Syntax 

attribute 1_ value 

Table 12-3 lists the stanza file fields driver writers must be familiar with. 
The table has the following columns: 

• Field 

This column lists the stanza field. 

• stanza.loadable 

A Yes appears in this column if the field is applicable to the 
stanza .loadable file fragment. Otherwise, a No appears. 

• stanza. static 

A Yes appears in this column if the field is applicable to the 
stanza. static file fragment. Otherwise, a No appears. 

12-18 Device Driver Configuration Syntaxes and Mechanisms 



Table 12-3: The stanza File Fields 

Field stanza.loadable stanza.static 

Subsystem_Description Yes Yes 

Method Name Yes No 
Method_Type Yes No 
Method Path Yes No 
Module_Type Yes No 
Module Path Yes No 
Device Dir Yes Yes 

Device Subdir Yes Yes 

Device Block Subdir Yes Yes 

Device Char Subdir Yes Yes 

Device_Major_Req Yes Yes 

Device_Block_Major Yes Yes 

Device Block Minor Yes Yes 

Device Block Files Yes Yes 

Device_Char_Major Yes Yes 

Device Char Minor Yes Yes 

Device Char Files Yes Yes 

Device User Yes Yes 

Device_Group Yes Yes 

Device Mode Yes Yes 

Module_Config Name Yes Yes -
Module_Config Yes Yes 

Device_Block_Open No Yes 

Device Block Close No Yes 

Device_Block_Strategy No Yes 

Device_Block_Dump No Yes 

Device Block Psize No Yes 

Device_Block_Flags No Yes 

Device Block Ioctl No Yes 

Device Block Funnel No Yes 

Device_Char_Open No Yes 

Device Char Close No Yes 

Device Driver Configuration Syntaxes and Mechanisms 12-19 



Table 12-3: (continued) 

Field stanza.loadable stanza.static 

Device Char Read No Yes 

Device Char write No Yes 

Device Char Ioctl No Yes 

Device_Char_Stop No Yes 

Device Char Reset No Yes 

Device_Char_Ttys No Yes 

Device Char Select No Yes 

Device_Char_Mmap No Yes 

Device Char Funnel No Yes 

Device_Char_Segmap No Yes 

Device_Char_Flags No Yes 

Each of the fields from Subsystem Description to Module Config 
is discussed in the following sectionS. The remainder of the fields are related 
to the conf . c file; therefore, they are discussed in Section 12.8.2. Note that 
you can include fields that are not used because the system ignores them. 

12.6.2.1 Subsystem_Description Field 

The following is the syntax for specifying the Subsystem Description 
field in the stanza .loadable or stanza. static filefragment: 

Subsystem_Description = description 

The Subsystem Description field is optional, and it specifies a short 
literal string used as a description. If specified in the stanza. static file, 
the description is used as the comment in the entry to the bdevsw or 
cdevsw table. 

12.6.2.2 Method_Name Field 

The following syntax specifies the Method Name field in a 
stanza .loadable file fragment: -

Method_Name = device 

The Method Name field is required, and it specifies a unique logical name 
of the configuration method associated with the subsystem. The method 
name is used by the c f gmgr daemon to dispatch to the appropriate 
subsystem a specific method to perform subsystem loading. The only valid 

12-20 Device Driver Configuration Syntaxes and Mechanisms 



value for the loadable device driver subsystem is device. 

12.6.2.3 Method_Type Field 

The following syntax specifies the Method Type field in a 
stanza .loadable file fragment: -

Method_Type = Static 

The Method Type field is required. Because the driver method is 
statically builtinto the c f gmgr daemon, this field must be specified as 
Static. 

12.6.2.4 Method Path Field 

The following syntax specifies the Method Path field in a 
stanza .loadable file fragment: -

The Method Path field specifies the file pathname for the configuration 
method object module. Because the driver method specified for 
Method_Type is Static, this field must be specified as None. 

12.6.2.5 Module_Type Field 

The following syntax specifies the Module Type field in a 
stanza. loadable file fragment: -

Module_Type = Dynamic I Static 

The Module Type field is required, and it specifies a subsystem type of 
Dynamic or Static. The Dynamic type indicates that the driver 
subsystem is a loadable module. Loadable device drivers should specify this 
value type. 

The Static type indicates that the driver subsystem is statically configured 
into the kernel. This type enables statically configured subsystems to be 
included in the global stanza database, /etc/sysconfigtab, and to be 
controlled by the cfgmgr daemon. 

12.6.2.6 Module_Path Field 

The following syntax specifies the Module Path field in a 
stanza .loadable file fragment: -

Device Driver Configuration Syntaxes and Mechanisms 12-21 



The Module Path field specifies the full pathname where the loadable 
driver subsystem resides. This field is required if Dynamic is specified in 
the Module_Type field. 

12.6.2.7 Device_Dir Field 

The following syntax specifies the Device Dir field in the 
stanza .loadable and stanza. static file fragments: 

Device_Dir = directory 

The Device Dir field is optional, and it specifies a valid directory 
specification fur the location of the device special files. This directory is 
typically / dev for both block and character devices. If you do not specify a 
directory for this field, it defaults to / dev for both block and character 
devices. 

12.6.2.8 Device_Subdir Field 

The following syntax specifies the Device Subdir field in the 
stanza .loadable and stanza. static file fragments: 

Oevice_Subdir = subdirectory 

The Device Subdir field is optional, and it is appended to the directory 
specified or defaulted to in the Device Dir field. The Device Subdir 
field specifies a single directory locationfor the placement of the device 
special files associated with both character and block drivers. If you do not 
specify a directory for this field, the device special files are placed in the 
directory specified or defaulted to in the Device _Dir field. 

If the device special files for both block and character drivers should not 
reside in a single directory, use the Device Block Subdir and 
Device Char Subdir fields. --

12.6.2.9 Device_Block_Subdir Field 

The following syntax specifies the Device Block Subdir field in the 
stanza .loadable and stanza. static file fragments: 

Device_Block_Subdir = subdirectory 

The Device Block Subdir field is optional, and it specifies a 
subdirectory tOr the directory specified in Device Dir. The 
Device Block Subdir field overrides any directory specification made 
in the Device Subdir field for device special files associated with block 
device drivers. This directory is used to place the device special files for 
block drivers to keep them separate from the device special files for character 

12-22 Device Driver Configuration Syntaxes and Mechanisms 



drivers. If you do not specify a directory for this field, the device special 
files are placed in the directory specified or defaulted to in the Device Dir 
field and the Device _Subdir field, if specified. -

If the device special files for block device drivers should reside in the same 
directory as the device special files for character drivers, use the 
Device Subdir field. 

12.6.2.10 Device_Char_Subdir Field 

The following syntax specifies the Device Char Subdir field in the 
stanza .loadable and stanza. static file fragments: 

Device_Char_Subdir = subdirectory 

The Device Char Subdir field is optional, and it specifies a 
subdirectory fur the dIrectory specified in Device Dir. The 
Device Char Subdir field overrides any directory specification made in 
the DeviCe SUbdir field for device special files associated with character 
device drivers. This directory is used to place the device special files for 
character drivers to keep them separate from the device special files for block 
drivers. If you do not specify a directory for this field, the device special 
files are placed in the directory specified or defaulted to in the Device Dir 
field and the Device _Subdir field, if specified. -

If the device special files for character device drivers should reside in the 
same directory as the device special files for block drivers, use the 
Device Subdir field. 

12.6.2.11 Device_Major _Req Field 

The following syntax specifies the Device Maj or Req field in the 
stanza .loadable and stanza. static file fragments: 

Device_Major _Req = None I Same 

The Device Major Req field is optional, and it specifies the 
requirements that relate to major number assignment. Specify None or omit 
this field if there are no major number requirements. 

Specify Same if the driver needs the same major number in both the 
bdevsw and cdevsw tables. If Same is specified, the values of the 
Device Block Major and Device Char Major fields must be 
identical.-OtherwIse, the attempt to loadthe driver fails. 

Device Driver Configuration Syntaxes and Mechanisms 12-23 



12.6.2.12 Device_Block_Major Field 

The following syntax specifies the Device Block Major field in the 
stanza .loadable and stanza. static file fragments: 

Device_Block_Major = Any I major# 

The Device Block Major field is required only if the driver is a block 
device driver,and it specifies the block major number for the device driver. 
Specify the value Any, which indicates that the system dynamically assigns 
the next available block device major number; or, specify a number (for 
example, 24) and the system assigns this major number to the driver if it is 
not currently in use. If the specified number is in use, the attempt to 
dynamically load the driver fails. 

12.6.2.13 Device_Block_Minor Field 

The following syntax specifies the Device Block Minor field in the 
stanza .loadable and stanza. static file fragments: 

Device_Block_Minor = minor# 

The Device Block Minor field is optional, and it specifies the minor 
numbers usedto create the device special files for the driver. Each minor 
number must be paired with a file name specified in the 
Device Block Files field. 

The following example shows four ways to specify the block device minor 
numbers: 

# One device minor number ill 
Device Block Minor = 1 

# More than one device minor number ~ 
Device_Block_Minor = 0,1,2,3 

# A range of device minor numbers ~ 
Device_Block_Minor = [0-10] 

# More than one range of device minor numbers ~ 
Device_Block_Minor = [0-10],[21-30] 

ill To specify a single device minor number, simply specify the number. 
The device minor number must be a positive integer that cannot exceed 
99999. A maximum of 512 device special files can be created for a 
device major number, unless a driver is both a block and character device. 
In this case, the maximum is 1024 device special files (512 for the block 
and 512 for the character drivers). 

121 To specify more than one device minor number, specify the numbers 
separated by commas. Each device minor number must be greater than 
the one previously specified. 

12-24 Device Driver Configuration Syntaxes and Mechanisms 



~ To specify a range of device minor numbers, enclose the range within 
brackets ([J) and separate the beginning and ending values with a dash 
(-). The following rules apply to numbers specified in a range: 

- The ending number must be greater than the beginning number, as in 
the example. Thus, [10-0] is an invalid range specification. 

- The numbers specified in the range must be greater than the value 
zero (0). Thus, [-1-10] is also an invalid range specification 
because the first number is less than the value zero (0). 

- The largest allowable number in the range is 99999. 

- A maximum of 512 device special files can be created for any device 
major number. Thus, [0-511] and [1000-1500] are valid range 
specifications while [0-600] is invalid. 

~ To specify more than one range of device minor numbers, enclose the 
first range within brackets ([J) and separate the range with a dash (-). 
Follow the first range with a comma (,). Specify the second range in the 
same manner as the first and omit the comma (unless there are additional 
ranges). 

12.6.2.14 Device_Block_Files Field 

The following syntax specifies the Device Block Files field in the 
stanza .loadable and stanza. static file fragments: 

Device_Block_Files = devspecialfilename 

The Device Block Files field is optional, and it specifies the device 
special files to be created. Each device special file name must be paired with 
a minor number specified in the Device Block Minor field. If a driver 
is both a block and character driver, specify devicespecial files in both the 
Device Block Files and Device Char Files fields. 

The following example shows four ways to specify the block device special 
file names: 

# One device special file name ~ 
Device Block Files = rzl 

# More than one device special file name ~ 
Device_Block_Files = rzl,rz2,rz3 

# A range of device special file names ~ 
Device_Block_Files = rzl[a-h] 

# More than one range of device special file names ~ 
Device_Block_Files ~ rzl[a-h],rz2[a-h] 

[j] To specify a single file name, simply specify the name. 

Device Driver Configuration Syntaxes and Mechanisms 12-25 



12I To specify more than one file name, specify the names separated by 
commas. 

13] To specify a range of file names, enclose the range within brackets ([]) 
and separate the beginning and ending names with a dash (-). The 
following rules apply to letters specified in a range: 

Both letters must be either lowercase or uppercase. Thus, [a-h] or 
[A-H] are valid range specifications while [A-h] and [a-H] are 
invalid. 

Only one letter is allowed in the range specification, as in the 
example. Thus, [aa-hh] is not a valid range specification. 

- The ending letter must be greater than the beginning letter. Thus, 
[ z-a] is not a valid range specification. 

~ To specify more than one range of file names, enclose the first range 
within brackets ([]) and separate the range with a dash (-). Follow the 
first range with a comma (,). Specify the second range in the same 
manner as the first and omit the comma (unless there are additional 
ranges). 

As stated previously, the Device Block Files field must be paired with 
corresponding minor numbers speCIfied in the Device Block Minor 
field. The ranges for each must represent an equal number of file-to-minor 
number associations. The following example shows a correct match: 
Device Block Files = rzO[a-h] 
Device=Block=Minor = [0-7] 

The following shows an invalid match: 

Device Block Files = rzO[a-c] 
Device=Block=Minor = [0-7] 

The following shows a match using more than one range. Note that the gap 
in the minor numbers is valid: 

Device Block Files = rzO[a-h],rz1[a-h],rz2[a-h],rt5[a-h] 
Device=Block=Minor = [0-7],[8-15],[16-23],[40-47] 

The number of files must equal the number of minor numbers, just as in a 
single range specification. 

In addition, the maximum number of devices is 512. Thus, the following 
range specifications are invalid: 

Device Block Files = rzO[0-300],rz1[301-600] 
Device-Block-Minor = [0-300],[301-600] 

- - . 
If you violate any of the previously discussed rules, none of the device 
special files will be created. 

12-26 Device Driver Configuration Syntaxes and Mechanisms 



12.6.2.15 Device_Char_Major Field 

The following syntax specifies the Device Char Major field in the 
stanza .loadable and stanza. static file fragments: 

Device_Char_Major = Any I major# 

The Device Char Major field is required only if the driver is a character 
driver and it specifiesthe character major number for the device driver. 
Specify the value Any, which indicates that the system dynamically assigns 
the next available character device major number. or, specify a number (for 
example, 24) and the system assigns this major number to the driver if it is 
not currently in use. If the specified number is in use, the attempt to 
dynamically load the driver fails. 

12.6.2.16 Device_Char_Minor Field 

The following syntax specifies the Dev ice Char Minor field in the 
stanza .loadable and stanza. static file fragments: 

The Device Char Minor field is optional, and it specifies the minor 
numbers usedto create the device special files for the driver. Each minor 
number must be paired with a file name specified in the 
Device Char Files field. 

The following example shows four ways to specify the character device 
minor numbers: 

# One device minor number ill 
Device Char Minor = 1 

# More than one device minor number ~ 
Device_Char_Minor = 0,1,2,3 

# A range of device minor numbers ~ 
Device_Char_Minor = [0-10] 

# More than one range of device minor numbers ~ 
Device_Char_Minor = [0-10],[21-30] 

II] To specify a single device minor number, simply specify the number. 
The device minor number must be a positive integer that cannot exceed 
99999. A maximum of 512 device special files can be created for a 
device major number, unless a driver is both a block and character device. 
In this case, the maximum is 1024 device special files (512 for the block 
and 512 for the character drivers). 

121 To specify more than one device minor number, specify the numbers 
separated by commas. Each device minor number must be greater than 
the one previously specified. 

Device Driver Configuration Syntaxes and Mechanisms 12-27 



13] To specify a range of device minor numbers, enclose the range within 
brackets ([D and separate the beginning and ending values with a dash 
(-). The following rules apply to numbers specified in a range: 

- The ending number must be greater than the beginning number, as in 
the example. Thus, [10-0] is an invalid range specification. 

- The numbers specified in the range must be greater than the value 
zero (0). Thus, [-1-10] is also an invalid range specification 
because the first number is less than the value zero (0). 

- The largest allowable number in the range is 99999. 

- A maximum of 512 device special files can be created for any device 
major number. Thus, [0-511] and [1000-1500] are valid range 
specifications while [0-600] is invalid. 

~ To specify more than one range of device minor numbers, enclose the 
first range within brackets ([D and separate the range with a dash (-). 
Follow the first range with a comma (,). Specify the second range in the 
same manner as the first and omit the comma (unless there are additional 
ranges). 

12.6.2.17 Device_Char_Files Field 

The following syntax specifies the Device Char Files field in the 
stanza .loadable and stanza. static file fragments: 

Device_Char _Files = devspecialfilename 

The Device Char Files field is optional, and it specifies the device 
special files tobe created. Each device special file name must be paired with 
a minor number specified in the Device Char Minor field. If a driver is 
both a block and character driver, specify device special files in both the 
Device Block Files and Device Char Files fields. 

The following example shows four ways to specify the character device 
special file names: 

# One device special file name m 
Device Char Files = rrzl 

# More than one device special file name ~ 
Device_Char_Files = rrzl,rrz2,rrz3 

# A range of device special file names ~ 
Device_Char_Files = rrzl[l-lO] 

# More than one range of device special file names ~ 
Device_Char_Files = rrzl[a-h],rrz2[i-t] 

[j] To specify a single file name, simply specify the name. 

12-28 Device Driver Configuration Syntaxes and Mechanisms 



121 To specify more than one file name, specify the names separated by 
commas. 

131 To specify a range of file names, enclose the range within brackets ([]) 
and separate the beginning and ending names with a dash (-). The 
following rules apply to letters specified in a range: 

- Both letters must be either lowercase or uppercase. Thus, [a-h] or 
[A-H] are valid range specifications while [A-h] and [a-H] are 
invalid. 

- Only one letter is allowed in the range specification, as in the 
example. Thus, [aa-hh] is not a valid range specification. 

- The ending letter must be greater than the beginning letter. Thus, 
[ z -a] is not a valid range specification. 

~ To specify more than one range of file names, enclose the first range 
within brackets ([]) and separate the range with a dash (-). Follow the 
first range with a comma (,). Specify the second range in the same 
manner as the first and omit the comma (unless there are additional 
ranges). 

As stated previously, the Device Char Files field must be paired with 
corresponding minor numbers speCIfied inthe Device Char Minor field. 
The ranges for each must represent an equal number offtle-to-minor number 
associations. The following example shows a correct match: 

Device Char Files = rrzO[a-h] 
Device=char=Minor = [0-7] 

The following shows an invalid match: 

Device Char Files = rrzO[a-c] 
Device=char=Minor = [0-7] 

The following shows a match using more than one range. Note that the gap 
in the minor numbers is valid: 

Device Char Files = rrzO[a-h],rrz1[a-h],rrz2[a-h],rrt5[a-h] 
Device=char=Minor = [0-7],[8-15],[16-23],[40-47] 

The number of files must equal the number of minor numbers, just as in a 
single range specification. 

In addition, the maximum number of devices is 512. Thus, the following 
range specifications are invalid: 

Device Char Files = rrzO[0-300],rrz1[301-600] 
Device=char=Minor = [0-300],[301-600] 

If you violate any of the previously discussed rules, none of the device 
special files will be created. 

Device Driver Configuration Syntaxes and Mechanisms 12-29 



12.6.2.18 Device_User, Device_Group, and Device_Mode Fields 

The following is the syntax for specifying the Device User, 
Device Group, and Device Mode fields for blockand character device 
special fiies in stanza .loadable and stanza. static file fragments: 

Device_User = name 
Device_Group = group 
Device_Mode = mode 

If these optional fields are omitted, the system uses the values specified in the 
default stanza entry of the /etc/sysconfigtab database to create the 
device special files for loadable drivers. The system does not use the values 
specified in / etc / sysconf igtab for static drivers. 

The Device User field is optional, and it specifies the user ID (DID) that 
owns the devICe special files for block and character devices. You can 
specify a decimal number or a string of alphabetic characters. The default is 
the value zero (0). 

The Device Group field is optional, and it specifies the group ID (GID) to 
which the deVIce special files associated with the block and character devices 
belong. You can specify a decimal number or a string of alphabetic 
characters. The default is the value zero (0). 

The Device Mode field is optional, and it specifies the protection mode for 
the device special files. You must specify an octal number. The default is 
the octal number 0664. . 

12.6.2.19 Module_Confi9_Name Field 

The following is the syntax for specifying the Module Config Name 
field in stanza .loadable and stanza. static tile fragments: 

Module_Confi9_Name = name 

The Module Conf ig Name field specifies the driver name. This field can 
be set to the same namethat was specified for the entry name field in the 
stanza .loadable and stanza. static file fragments. The following 
list describes the interpretation of this field for loadable and static drivers: 

• For loadable drivers 

This field is used to identify the driver's configuration NAME and is 
required only if the Module _ Conf ig field is specified. 

• For static drivers 

This field is required because it indicates that this stanza entry is to be 
added through the use of the automated configuration tools. If no driver 
name is specified in this field, the entire stanza entry is skipped. Ignoring 
the entire stanza entry is not considered an error, and no error message 

12-30 Device Driver Configuration Syntaxes and Mechanisms 



will be generated. 

12.6.2.20 Module_Config Field for Bus Specification 

The following syntax specifies the Module Config field for buses in the 
stanza. loadable file fragment. This fIeld is not used for static drivers 
because device connectivity information for static drivers is specified in the 
conf ig. file file fragment or the system configuration file. Section 12.2 
describes the syntax for specifying the device connectivity information in the 
config. file file fragment and the system configuration file. 

Module_Confign = device_connectivity_info 

The Module Config field is optional, and it specifies the device 
connectivity information. The n argument is a number in the range of 0 to 
499, for example, Module Config2. The 
device connectivi ty info argument has the following format for 
bus specIfication. Note that this format is a subset of those used in the 
config. file file fragment and the system configuration file. 

bus bus_name# at bus_connection# 

bus 
The keyword that precedes a bus name and its associated unit number. 

bus name# 

at 

Specifies the name and number of the bus. The bus name can be any 
string. For buses supported by Digital, the bus name is one of the valid 
strings listed in the System Administration guide. For example, the 
string tc represents a TURBOchannel bus. 

Third-party driver writers who write drivers that operate on non-Digital 
buses can select a string that might include the vendor and product 
names. The string could also include version and release numbers. This 
type of naming scheme reduces the chance of name conflicts with .other 
vendors. 

The number for a bus is any positive integer, for example, 0 or 1. 

The keyword that precedes the bus connection. 

bus connection# 
Specifies the name and number of the bus that this bus is connected to. 
The bus name can be any string. For buses supported by Digital, the 
bus name is one of the valid strings listed in the System Administration 
guide. For example, the string tc represents a TURBOchannel bus. 

Third-party driver writers who write drivers that operate on non-Digital 
buses can select a string that might include the vendor and product 

Device Driver Configuration Syntaxes and Mechanisms 12-31 



names. The string could also include version and release numbers. This 
type of naming scheme reduces the chance of name conflicts with other 
vendors. 

The number for a bus is any positive integer, for example, a or 1. 

A wildcard syntax for the bus specification is also allowed, as shown in 
the following example: 

bus te? ill 
bus teO at bus tel ~ 

III Specifies any TURBOchannel bus. 

[2J Specifies TURBOchannel bus number 1 is connected to 
TURBOchannel bus number O. 

12.6.2.21 Module_Config Field for Controller Specification 

The following syntax specifies the Module Conf ig field for controllers in 
the stanza .loadable file fragment. ThIS field is not used for static 
drivers because device connectivity information for static drivers is specified 
in the config. file file fragment or the system configuration file. Section 
12.2 describes the syntax for specifying the device connectivity information 
in the conf ig . file file fragment and the system configuration file. 

Module_Confign = device_connectivity_info 

The Module Conf ig field is optional, and it specifies the device 
connectivity information. The n argument is a number in the range of a to 
499, for example, Module Config2. The 
device connectivity info argument has the following format for 
controllerspecification. Note that this format is a subset of those used in the 
config. file file fragment and the system configuration file. 

controller ctlr_name# at bus_name [slot slot# ] 

controller 
The keyword that precedes a controller name and its associated logical 
unit number. A controller identifies either a physical or logical 
connection with zero or more slaves (that is, disk and tape drives) 
attached to it. 

ctlr name# 
Specifies the controller's name and associated logical unit number. The 
controller name can be any string. For controllers supplied by Digital, 
the controller name is one of the valid strings listed in the System 
Administration guide. For example, the string hsc represents an HSC 
controller. 

12-32 Device Driver Configuration Syntaxes and Mechanisms 



at 

Third-party driver writers who write drivers for non-Digital controllers 
can select a string that might include the vendor and product names. 
The string could also include version and release numbers. This type of 
naming scheme reduces the chance of name conflicts with other vendors. 
For example, the driver writers at EasyDriver Incorporated might specify 
edge for an internally developed controller. 

The logical unit number for a controller is any positive integer, for 
example, 0 or 1. 

The keyword that precedes the bus to which the controller is connected. 

bus name# 
Specifies the name and number of the bus the controller is connected to. 
The bus name can be any string that matches the previously specified 
string for the bus entry as describe in Section 12.6.2.20. For buses 
supported by Digital, the bus name is one of the valid strings listed in 
the System Administration guide. For example, the string te represents 
a TURBOchannel bus. 

Third-party driver writers who write drivers that operate on non-Digital 
buses can select a string that might include the vendor and product 
names. The string could also include version and release numbers. This 
type of naming scheme reduces the chance of name conflicts with other 
vendors. 

A wildcard syntax for the bus specification is also allowed, as shown in 
the following example: 

controller siiO at tc? ill 
controller siiO at * ~ 

ill Specifies an instance of a controller of type sii attached to any 
TURBOchannel bus. 

I2l Specifies an instance of a controller of type sii attached to any bus 
type (that is, not restricted to a TURBOchannel bus). 

slot 
The keyword that precedes the bus slot or node number. 

slot# 
Specifies the bus slot or node number. 

12.6.2.22 Module_Config Field for Device Specification 

The following syntax specifies the Module Config field for devices. This 
field is not used for static drivers because device connectivity information for 
static drivers is specified in the eonfig. file file fragment or the system 

Device Driver Configuration Syntaxes and Mechanisms 12-33 



configuration file. Section 12.2 describes the syntax for specifying the device 
connectivity information in the config. file file fragment and the system 
configuration file. 

Module_Confign = device_connectivity_info 

The Module Conf ig field is optional, and it specifies the device 
connectivity information. The n argument is a number in the range of 0 to 
499, for example, Module Config2. The 
device connectivity info argument has the following format for 
device specification. Note that this format is a subset of those used in the 
config. file file fragment and the system configuration file. 

device device_spec device_name# at ctlr_name# drive phys# 

device 
The keyword that precedes the string that identifies the device. 

device spec 
SpeCIfies a keyword that precedes a device name and its logical unit 
number. This keyword can be any string. Digital uses the keywords 
disk and tape to represent disk and tape devices. 

device name# 

at 

SpeCIfies the device's name and associated logical unit number. The 
device name can be any string. For devices supported by Digital, the 
device name is one of the valid strings listed in the System 
Administration guide. For example, the strings ra and tz represent 
SCSI disk and tape drives supported by Digital. 

Third-party driver writers who write drivers that operate on non-Digital 
devices can select a string that might include the vendor and product 
names. The string could also include version and release numbers. This 
type of naming scheme reduces the chance of name conflicts with other 
vendors. For example, the driver writers at EasyDriver Incorporated 
might specify edgd for an internally developed disk device. 

The logical unit number for a disk drive is any positive integer, for 
example,O or 1. 

The keyword that precedes the controller to which the device is 
attached. 

ctlr name# 
Specifies the name and logical unit number of the controller to which 
the device is attached. The controller name can be any string that 
matches the previously specified string for the controller entry as 
described in Section 12.6.2.21. For controllers supplied by Digital, the 
controller name is one of the valid strings listed in the System 

12-34 Device Driver Configuration Syntaxes and Mechanisms 



Administration guide. For example, the string hse represents an HSC 
controller. 

Third-party driver writers who write drivers for non-Digital controllers 
can select a string that might include the vendor and product names. 
The string could also include version and release numbers. This type of 
naming scheme reduces the chance of name conflicts with other vendors. 
For example, the driver writers at EasyDriver Incorporated might specify 
edge for an internally developed controller. 

The logical unit number for a controller is any positive integer, for 
example, 0 or 1. 

drive 
The keyword that precedes the physical unit number of the device. 

phys# 
Specifies the physical unit number of the device, if required. 

12.6.3 Stanza File Fragment Examples 
The following example shows a stanza .loadable file fragment for the 
/ dev / none device driver. The driver writers at EasyDriver Incorporated 
create this file in the directory / usr / sys /ki ts /ESAI 0 0, as discussed in 
Section 11.1.2. 
none: 

Subsystem Description none device driver 
Method Name device 
Method-Type Static 
Method-path None 
Module-Type 
Module-path 

Dynamic 
/usr/sys/kits/ESA100/none_kmod 

Module Config Name = none 
Module-Configl = controller noneO at tc* 
Device-Dir = /dev 
Device-Char Major Any 
Device-Char-Minor 0 
Device-Char-Files none 
Device User = root 
Device-Group = 0 
Device-Mode = 666 

The following example shows a stanza .loadable file fragment for the 
/ dev / eb device driver. The driver writers at EasyDriver Incorporated 
create this file in the directory /usr/sys/kits/ESBIOO, as discussed in 

Device Driver Configuration Syntaxes and Mechanisms 12-35 



Section 11.1.2. 
cb: 

Subsystem Description cb device driver 
Method Name device 
Method-Type Static 
Method-Path None 
Module-Type Dynamic 
Module-path /usr/sys/kits/ESBIOO/cb kmod 
Module Config Name = cb -
Module-Configl = controller cb at tc* 
Device-Dir = /dev 
Device-Char Major Any 
Device-Char-Minor 0 
Device-Char-Files cb 
Device-User-= root 
Device-Group = 0 
Device-Mode = 666 

The following example shows a stanza. static file fragment for the 
Idev/none device driver. The driver writers at EasyDriver Incorporated 
create this file in the directory lusr I sys Iki ts IESAI ° 0, as discussed in 
Section 11.1.2. For descriptions of the fields that contain the driver 
interfaces, see Section 12.8.2. 
none: 

Subsystem Description = none device driver 
Module Config Name = none 
Device-Char Major Any 
Device-Char-Minor = 0 
Device-Char-Files = none 
Device-Char-Open = noneopen 
Device-Char-Close = noneclose 
Device-Char-Read = noneread 
Device-Char-Write = nonewrite 
Device-Char-roctl = noneioctl 
Device-Char-Stop = nodev 
Device-Char-Reset = nodev 
Device-Char-Ttys = 0 
Device-Char-Select = nodev 
Device-Char-Mmap = nodev 
Device-Char-Funnel DEV FUNNEL NULL - -

The following example shows a stanza. static file fragment for the 
I dev I cb device driver. The driver writers at EasyDriver Incorporated 
create this file in the directory lusrlsys/kits/ESBIOO, as discussed in 
Section 11.1.2. For descriptions of the fields that contain the driver 

12-36 Device Driver Configuration Syntaxes and Mechanisms 



interfaces, see Section 12.8.2. 

cb: 
Subsystem Description cb device driver 
Module Config Name = cb 
Device-Char Major = Any 
Device-Char-Minor = 0 
Device-Char-Files = cb 
Device-Char-Open = cbopen 
Device-Char-Close = cbclose 
Device-Char-Read = cbread 
Device-Char-Write = cbwrite 
Device-Char-roctl = cbioctl 
Device-Char-Stop = nodev 
Device-Char-Reset = nodev 
Device-Char-Ttys = 0 
Device-Char-Select = nodev 
Device-Char-Mmap = nodev 
Device-Char-Funnel DEV FUNNEL NULL 

12.7 Specifying Information in the name_data.c File 
A name data. c file is compiled when the kernel is made and it is usually 
used to Size data structures for static-only drivers. The name data. c file 
is typically not used for loadable drivers. Driver writers are encouraged to 
dynamically allocate data structures, as described in Section 2.3. 

The name argument is usually based on the device name. For example, the 
none device's name data. c file is called none data. c. The CB 
device's name data. c file is called cb data. c: The edgd device's 
name_data. c file would be called edgd _data. c. 

12.8 Specifying Information in the conf.c File 
The conf . c file contains two device switch tables called bdevsw and 
cdevsw. Section 8.2.1 and Section 8.2.2 describe in detail each of the 
members contained in these tables. This section is concerned with the 
mechanisms used by device driver writers to populate the device switch 
tables with the device driver entry points associated with their device drivers. 
The mechanisms are as follows: 

• For static drivers 

For the third-party model, specify the device driver entry points in the 
stanza. static file fragment. For the traditional model, edit the 
bdevsw and/or cdevsw tables in the conf . c file with the driver entry 
points. 

Device Driver Configuration Syntaxes and Mechanisms 12-37 



• For loadable drivers 

For block device drivers, add the entry points to the bdevsw table by 
calling the bdevsw add interface in the configure section of the device 
driver. -

For character device drivers, add the entry points to the cdevsw table by 
calling the cdevsw add interface in the configure section of the device 
driver. -

The following sections show you how to populate the cdevsw table by 
using the cdevsw add interface for loadable drivers and the 
stanza. static-file fragment for static drivers. 

12.8.1 Using cdevsw_add to Add Entries to the cdevsw Table 
The following code fragment shows how a loadable driver uses the 
cdevsw add interface to add a character device driver's entry points into 
the cdeVsw table. This code fragment would appear in the configure section 
of the dev.ice driver. 
/* Device switch structure for dynamic configuration */ 

#include <sys/conf.h> 

struct cdevsw 
cbopen, 
cbclose, 
cbread, 
cbwrite, 
cbioctl, 
nodev, 
nodev, 

} ; 

0, 
nodev, 
nodev, 
DEV FUNNEL 

cdevno 

cb cdevsw entry = { m 
- /oJ..' d-open */ 

/* d-close */ 
/* d-read */ 
j* d-write *j 
/* d-ioctl */ 
/* d-stop */ 
/* d-reset */ 
/* d-ttys */ 
/* d-select */ 
/* d-mmap *j 

NULL /* d-funnel */ 

[j] Declares a cdevsw structure called cb cdevsw entry and initializes 
it to the device driver entry points assoCiated with the / dev / cb device 
driver. 

12-38 Device Driver Configuration Syntaxes and Mechanisms 



The cdevsw and bdevsw structures are defined in 
/usr/sys/include/sys/conf.h. 

121 Calls the cdevsw add interface to register the device driver entry 
points indicated in the comments in the cb cdevsw entry structure. 
The code fragment shows that the first argument is the device switch 
table entry (slot) to use. This slot would be obtained in a previous call to 
the makedev interface. Section 10.9.2 provides more details on how 
this is accomplished in the / dev / cb driver. The first argument 
represents the device driver's major number requirements. For most 
drivers, this argument is set in the stanza entry in such a way that the 
next available major number gets assigned. 

The second argument is the address of the previously initialized 
cb cdevsw entry data structure. This structure is dynamically added 
to the cdevsw table by the cdevsw add interface. The cdevsw add 
interface adds the driver's entry pointS" to the in-memory resident -
cdevsw table. 

Upon return from the call to cdevsw add, the cdevno variable is set 
to the assigned device major number. If this value is NODEV, the call to 
cdevsw add failed. This prevents the driver from being configured as 
a loadabie driver. 

U sing the bdevsw add interface is the same as using cdevsw add, 
except that the entrIes get filled in the in-memory resident bdevsw table 
instead of the in-memory resident cdevsw table. The device driver writer 
would initialize a structure of type bdevsw with the block driver's entry 
points. 

12.8.2 Using the stanza.static File Fragment to Add Entries to the 
Device Switch Tables 

The following describes the syntax used for adding static device driver 
interfaces to the bdevsw table. 

Device_Block_Open = d_open 
Device_Block_Close = d_ close 
Device_Block_Strategy = d_strategy 
Device_Block_Dump = d_dump 
Device_Block_Psize = d_psize 
Device_Block_Flags = d_flags 
Device_Block_loctl = d_ioctl 
Device_Block_Funnel = d_funnel 

Device Driver Configuration Syntaxes and Mechanisms 12-39 



Device_Block_Open 

Device Block Close 

Device_Block_Strategy 

Device_Block_Dump 

Device Block Psize 

Device_Block_Flags 

Device Block Ioctl 

Device Block Funnel 

Specifies the block driver's open interface. 

Specifies the block driver's close interface. 

Specifies the block driver's strategy 
interface. 

Specifies the block driver's dump interface. 

Specifies the block driver's psize interface. 

Specifies whether this is an SVR4 DDIIDKI 
compliant device driver. Set this field to 
the constant B DDIDKI to indicate that 
this is an SVR4 DDIIDKI compliant device 
driver. 

Specifies the block driver's ioctl 
interface. 

Schedules a device driver onto a CPU in a 
multiprocessor configuration. Because 
multiprocessor configurations are not 
supported on DEC OSFIl, set this field to 
the constant DEV FUNNEL NULL. 

The following syntax is used to add static device driver interfaces to the 
cdevsw table. Any field not present is filled in with the nulldev 
interface. No particular field is required, but at least one must be present. 

Device_Char_Open = d_open 
Device_Char_Close = d_close 
Device_Char_Read = d_read 
Device_Char_Write = d_write 
Device_Char_loctl = d_ioctl 
Device_Char_Stop = d_stop 
Device_Char_Reset = d_reset 
Device_Char_ Ttys = d_ttys 
Device_Char_Select = d_select 
Device_Char_Mmap = d_mmap 
Device_Char_Funnel = d_funnel 
Device_Char_Segmap = d_segmap 
Device_Char_Flags = d_flags 

Device Char Close 

Device Char Read 

Specifies the character driver's open 
interface. 

Specifies the character driver's close 
interface. 

Specifies the character driver's read 
interface. 

12-40 Device Driver Configuration Syntaxes and Mechanisms 



Device Char Write Specifies the character driver's write 
interface. 

Device Char Ioctl Specifies the character driver's ioctl 
interface. 

Device_Char_Stop Specifies the character driver's stop 
interface. 

Device Char Reset Specifies the character driver's reset 
interface. 

Device_Char _ Ttys Specifies the character driver's private data. 
Only terminal drivers use this field. 

Device Char Select Specifies the character driver's select 
interface. 

Device _Char _ Mmap Specifies the character driver's memory 
map interface. 

Device Char Funnel Schedules a device driver onto a CPU in a 
multiprocessor configuration. Because 
multiprocessor configurations are not 
supported on DEC OSFIl, set this field to 
the constant DEV FUNNEL NULL. 

Device_Char _ Segmap Specifies the segmap entry point. 

Device_Char _Flags Specifies whether this is an SVR4 DDIIDKI 
compliant device driver. Set this field to 
the constant C DDIDKI to indicate that 
this is an SVR4 DDIIDKI compliant device 
driver. 

12.9 Supplying the Subset Control Program 
Digital provides the tools for creating kits for device driver products as part 
of the standard operating system distribution. These tools are described in 
the Programming Support Tools book. The kit developer at EasyDriver 
Incorporated reads the Programming Support Tools book to learn how to 
create a kit for the device driver products developed by EasyDriver 
Incorporated. The following list summarizes the steps in the kit-building 
process: 

1. Understand the syntax of the setld utility. 

2. Understand the files used by the setld utility. 

3. Become familiar with the steps the setld utility performs when a 
system manager loads, configures, verifies, and removes the software 
subset or subsets on the device driver kit by invoking the appropriate 
option. 

Device Driver Configuration Syntaxes and Mechanisms 12-41 



4. Learn how to effectively use the file system. 

5. Create a kit for the setld utility. This step involves creating a subset 
control program (SCP) that performs special tasks beyond the basic 
installation managed by setld and building the kit. 

The SCP is the program used with the setld utility to register third-party 
device driver subsets. After reading the information on creating and 
managing software product kits in the Programming Support Tools book, the 
kit developer at EasyDriver Incorporated decides on the strategy to follow for 
writing the SCPs associated with the driver products. The strategy you 
choose depends on how you want to market your device driver products. 
The following list presents some strategies for writing the SCP: 

• Write one SCP for a kit that contains the software subset associated with 
the static I dev I none device driver. 

• Write one SCP for a kit that contains the software subset associated with 
the loadable I dev Inane device driver. 

• Write one SCP for a kit that contains the software subset associated with 
the static I dev I cb device driver. 

• Write one SCP for a kit that contains the software subset associated with 
the loadable I dev I cb device driver. 

• Write one SCP for a kit that contains the software subsets associated with 
both the static and loadable versions of the I dev I none device driver. 

• Write one SCP for a kit that contains the software subsets associated with 
both the static and loadable versions of the I dev I cb device driver. 

The following example provides the SCP for the kit that contains the 
software subsets associated with both the static and loadable versions of the 
I dev I cb device driver: 

#!/sbin/sh [1] 
# 
# 
# CB.scp - install files associated with the loadable and static 
# cb device driver product ~ 
# 

echo "*********** CB Device Driver Product Installation Menu ***********" 
echo "*********** 
echo "1. Install the static cb device driver subset." 
echo "2. Delete the static cb device driver subset." 
echo "3. Install the loadable cb device driver subset." 
echo "4. Delete the loadable cb device driver subset." 

echo" Type the number corresponding to your choice [] " @I 

read answer 
case ${answer} in 

1) 
case "$ACT" in ~ 

12-42 Device Driver Configuration Syntaxes and Mechanisms 

***********" 



# Register the files associated with the static CB 
# device driver product. 
kreg -1 EasyDriverlnc EASYDRVCBSTATICIOO /usr/sys/kits/ESBIOO ~ 

# Reminder 
echo "The CB device driver is installed on your system." 
echo "Before your utilities can make use of the driver, you" 
echo "must build a new kernel by running doconfig." 111 

2 ) 
POST_D) 181 
kreg -d EASYDRVCBSTATICIOO ~ 

echo "The CB device driver is no longer on the system." IIOI 
echo "Remember to build a new kernel to remove the CB driver" 
echo "functionality." 

3) 
POST L) !TIl 
# Add the files associated with the loadable CB device 
# driver product to the customer's sysconfigtab database 
sysconfigdb -a -f /usr/sys/kits/ESBIOO/stanza.loadable cb ~ 

# Cause the CB device driver to be automatically loaded each time 
# the system reboots 
sysconfigdb -on cb ~ 

# Load the CB device driver and create the device special files 
sysconfig -c cb ~ 

echo "The CB device driver was added to your global stanza" 
echo "database (sysconfigtab) and will automatically be loaded" 
echo "each time the system reboots." ~ 

4 ) 
POST D) II§] 
# Make sure the CB device driver is not currently loaded 
sysconfig -u cb ~ 

# Remove the CB device driver from the automatic startup list 
sysconfigdb -off cb ~ 

# Delete the CB device driver's stanza entry from the global 
# stanza database 
sysconfigdb -d cb ~ 

esac 
exit 0 

[jJ The kit developer for EasyDriver Incorporated follows Digital's 
recommendation to write the SCP as a script for / sbin/ sh. Note that 
the kit developer supplies a menu of choices for installing or deleting the 
subsets associated with the / dev / cb device driver product. You would 
probably also want to supply an installation booklet that walks the 
customer through the installation and the deletion of the subsets. 

Device Driver Configuration Syntaxes and Mechanisms 12-43 



12I The name of this SCP is CB. scp and it copies the files associated with 
the static and loadable versions of the / dev / cb device driver to a 
specific directory on the customer's system. It can also delete the subsets 
after they have been installed. 

I3l To install the software subsets associated with the / dev / cb driver 
product, the system manager enters the value 1. 

~ The ACT environment variable is set by setld when it invokes the SCPo 
In this SCP, the ACT environment variable can take the value POST _Lor 
POST D. 

15] Specifies an ACT environment variable setting that indicates the tasks to 
be performed after loading the software subset. For the static / dev / cb 
device driver, the kreg utility performs these tasks. 

!§] The kreg utility registers a device driver product by creating the 
/usr / sys / conf / • products .list file on the customer's system. 
This file contains registration information associated with the static 
device driver product. In this call to kreg, the following flag and 
arguments are passed: 

- The -1 flag 

This flag indicates that the subset was loaded and it directs kreg to 
register this device driver layered product as a new kernel extension. 

- The company name 

The company name is EasyDriverlnc. The kreg utility places 
this name in the company name field of the customer's 
/usr/sys/conf/.products.listfi~. 

- The software subset name 

The software subset name for this device driver product is 
EASYDRVCBSTATICIOO. The subset name consists of the product 
code EASYDRV, the subset mnemonic CBSTATIC, and the 3-digit 
version code 100. The kreg utility extracts information from the 
specified subset data and loads it into the customer's 
/usr / sys / conf / • products .list file. 

- The directory name 

The directory on the customer's system where kreg copies the files 
associated with this driver product is /usr/sys/kits/ESB100. 
The kreg utility places this directory in the driver files path field of 
the customer's /usr / sys / conf / • products .list file. 

IZI This message displays on the console terminal after the files contained on 
the kit have been copied to the appropriate directory. 

~ To delete the software subsets associated with the / dev / cb driver 
product that were previously installed, the system manager enters the 

12-44 Device Driver Configuration Syntaxes and Mechanisms 



value 2 at the prompt Type the number corresponding to 
your choice []. The ACT environment variable is set to POST D 
by setld when it invokes the SCPo The POST D variable indicatesthe 
tasks to be performed when deleting the software subset. The kreg 
utility performs these tasks. 

[9] In this call to kreg, the following flag and argument are passed: 

- The -d flag 

This flag deletes the entry for the specified layered product from the 
customer's /usr/sys/conf/ • products .list file when the 
customer removes the subset from the system. 

- The software subset name 

The software subset name, EASYDRVCBSTATICI 00, indicates that 
the static / dev / cb device driver product is to be removed from the 
customer's /usr/sys/conf/ • products .list file. 

[j]] This message displays on the console terminal after the entry for the 
device driver product has been removed from the customer's 
/usr/sys/conf/.products.listfik. 

II1J To add the software subsets associated with the loadable / dev / cb driver 
product, the system manager enters the value 3 at the prompt Type the 
number corresponding to your choice []. The ACT 
environment variable is set to POST L by setld when it invokes the 
SCPo The POST L variable indicates the tasks to be performed after 
loading the software subset. 

For the loadable / dev / cb device driver, the sysconf igdb utility 
performs these tasks. 

[2J The sysconf igdb utility maintains and manages the 
/ etc/ sysconfigtab data base. For each driver product, this data 
base contains such items as device connectivity information, the driver's 
major number requirements, the names and minor numbers of the device 
special files, and the permissions and directory name where the device 
special files reside. In this call to sysconfigdb the following flags 
and arguments are passed: 

- The -a flag 

Specifies that sysconf igdb add the device driver entry to the 
customer's /etc/sysconfigtab database. 

- The -f flag 

Specifies the flag that precedes the name of the stanza .loadable 
file fragment whose device driver entry is to be added to the 
/ etc / sysconf igtab database. This flag is used with the -a flag. 

Device Driver Configuration Syntaxes and Mechanisms 12-45 



- The stanza .loadable file fragment 

The kit developer at EasyDriver Incorporated specifies 
/usr/sys/kits/ESBIOO/stanza.loadable to indicate the 
location of the stanza .loadable file fragment for the / dev / cb 
driver. 

- The device driver name 

The kit developer at EasyDriver Incorporated specifies cb as the 
name of the driver whose associated information is added to the 
/ etc / sysconf igtab database. Note that this name is obtained 
from the entry name field of the stanza .loadable file 
fragment, as described in Section 12.6.1. 

[3] The kit developer at EasyDriver Incorporated calls sysconf igdb a 
second time with the -on flag, which causes the loadable / dev / cb 
device driver to be automatically loaded each time the customer reboots 
the system. The name of the driver as specified in the 
stanza .loadable file fragment follows the flag. 

[jAJ The kit developer at EasyDriver Incorporated calls the sysconf ig 
utility with the -c flag, which configures the loadable / dev / cb device 
driver into the running system and creates the device special files. The 
name of the driver as specified in the stanza .loadable file follows 
the flag. 

fj]] This message displays on the console terminal after sysconfigdb and 
sysconfig have performed their tasks. 

[§] To delete the software subsets associated with the loadable / dev / cb 
driver product that were previously installed, the system manager enters 
the value 4 at the prompt Type the number corresponding to 
your choice []. The ACT environment variable is set to POST D 
by setld when it invokes the SCPo The POST D variable indicates the 
tasks to be performed when deleting the softwaresubset. 

These tasks are performed by the sysconfig and sysconfigdb 
utilities. 

lIZI The kit developer at EasyDriver Incorporated calls the sysconf ig 
utility with the -u flag, which unconfigures the loadable / dev / cb 
device driver from the running system. The name of the driver as 
specified in the stanza .loadable file fragment follows the flag. 

[jj] The kit developer at EasyDriver Incorporated calls the sysconf igdb 
utility with the -of f flag, which causes the loadable / dev / cb device 
driver to not be automatically configured during an early phase of system 
startup. It removes the / dev / cb driver from the automatic entry in 
the customer's /etc/sysconfigtab database. 

12-46 Device Driver Configuration Syntaxes and Mechanisms 



The name of the driver as specified in the stanza .loadable file 
fragment follows the flag. 

[9] The kit developer at EasyDriver Incorporated calls the sysconf igdb 
utility with the -d flag, which deletes the loadable / dev / cb device 
driver from the customer's / etc / sysconf igtab database. The name 
of the driver as specified in the stanza .loadable file fragment 
follows the flag. 

Device Driver Configuration Syntaxes and Mechanisms 12-47 





Device Driver Configuration 
Examples 13 

This chapter ties together the device driver configuration models presented in 
Chapter 11 and the device driver syntaxes and mechanisms presented in 
Chapter 12 by walking you through device driver configuration as it is 
accomplished by EasyDriver Incorporated. You can choose to follow this 
model or devise an alternate one that matches your device driver 
development environment. Figure 13-1 shows the steps the driver writer, kit 
developer, and system manager perform at EasyDriver Incorporated to 
configure the / dev / none and / dev / cb device drivers. 



Figure 13-1: Device Driver Configuration as Done by EasyDriver 
Incorporated 

Device 
Driver 
Writer 

Kit 

TraditiOna/{ 
Model 

Third-party { 
Model 

Device Driver Development Phase 

Create driver development environment 
Write the device driver 
Configure the static device driver 
Configure the loadable device driver 
Test the device driver 
Create driver kit development environment 

Provide contents of device driver kit 

Developer Device Driver Kit Development Phase 

Third-party { Write the SCP 

System 
Manager 

Model Prepare the device driver kit 

config.file fragment 
files file fragment 
stanza.loadable file fragment 

1 
Device Driver Installation Phase 

Third-party { Load the device driver kit 
Model Run setld 

~ generates .0 files 

-. generates _kmod files 

As the figure shows, EasyDriver Incorporated organizes its driver 
development into a: 

• Device driver development phase 

• Kit development phase 

• Driver installation phase 

Note that the figure identifies the audiences expected to complete each of the 
tasks. The figure also identifies which tasks are associated with the 
traditional and third-party device driver configuration models. The tasks 
associated with each phase are discussed in the following sections. 

13-2 Device Driver Configuration Examples 



13.1 Device Driver Development Phase 
The device driver writers at EasyDriver Incorporated perform the following 
tasks during the device driver development phase: 

• Create the device driver development environment 

• Write the device driver 

• Configure the static device driver 

• Configure the loadable device driver 

• Test the device driver 

• Create the device driver kit development environment 

• Provide the contents of the device driver kit 

13.1.1 Creating the Device Driver Development Environment 
The driver writers at EasyDriver Incorporated create a device driver 
development environment following the traditional device driver 
configuration model discussed in Section 11.2. This section discusses one 
possible directory structure for locating the files associated with the device 
driver. 

Follow the guidelines presented in Section 11.2 to create a driver 
development environment suitable to your needs. 

13.1.2 Writing the Device Driver 
The driver writers at EasyDriver Incorporated write their device drivers, 
using the techniques described in this book. They use the guidelines 
presented in Section 2.1.2.1 for naming the device driver source file. For the 
/ dev / none device driver, the source file is called none. c. For the 
/ dev / cb device driver, the source file is called cb. c. 

Follow the guidelines presented in Section 2.1.2.1 for naming your device 
driver source files. 

13.1.3 Configuring the Static Device Driver 
The driver writers at EasyDriver Incorporated configure the static versions of 
the / dev / none and / dev / cb device drivers by following the steps 
provided by the traditional device driver configuration model: 

1. Make an entry in the tc option data. c table (TURBOchannel 
specific). --

2. Compile and link the static device driver. 

Device Driver Configuration Examples 13-3 



3. Back up the new kernel. 

The steps described in the following sections apply to device drivers written 
for the TURBOchannel bus. These steps might differ for drivers written for 
other buses. See the bus-specific device driver manual on how to configure 
drivers for the specific bus, using the traditional model. 

13.1.3.1 Step 1: Make an Entry in the tc_option_data.c Table 

The driver writers at EasyDriver Incorporated make an entry in the 
tc option table, located in the 
/usr / sys / data/tc option data. c file. The tc option table 
provides a mapping between the device name in the read-only memory 
(ROM) on the hardware device module and the driver in the DEC OSFIl 
kernel. This step is specific to drivers written for the TURBOchannel bus. 
Other buses may require some other task to be performed. 

The following shows the tc option table in the Digital-provided 
tc _option_data. c file: -
struct tc _option tc _option [ ] = 
{ 

/* module driver intr b4 itr aft adpt */ 
/* name name probe attach type config */ 
/* ------- ------- */ 

{ "PMTNV-AA", "nvtc" , 0, 1, 'C' , O}, /* TCNVRAM */ 
{ "PMAP-AA " "nvtc" , 0, 1, 'C' , O}, /* TCNVRAM temp */ 
{ "PMAD-AA " ''In'', 0, 1, 'C' , O}, /* Lance */ 
{ "PMAF-AA " "fza", 1 , 1 , 'C' , O}, /* FDDI */ 
{ "PMAF-FA " "fta", 0, 1, 'C' , O}, /* FDDI */ 
{ "PMAZ-AA " "asc" , 0, 1, 'C' , O}, /* SCSI */ 
{ "PMAZ-DS " "asc", 1 , 1 , 'A' , tscsiconf}, /* TCDS */ 
{ "PMAZB-AA" , "asc" , 1 , 1, 'A' , tscsiconf}, /* TCDS */ 
{ "PMAZB-AB", "asc", 1 , 1 , 'A' , tscsiconf}, /* TCDS */ 
{ "PMAG-BA " , "fb", 0, 0, 'C' , O}, /* CFB */ 
{ "PMAG-AA " , "fb", 0, 0, 'C' , O}, /* MFB */ 
{ "PMAGB-BA" , "fb", 0, 1, 'C' , O}, /* SFB */ 
{ "PMAG-RO " "fb", 0, 0, 'C' , O}, /* RO*/ 
{ "PMAG-JA " "fb", 0, 0, 'C' , O}, /* RO*/ 
{ "PMAG-CA " , "px", 0, 1 , 'C' , O}, /* 2DA */ 
{ "PMAG-DA " "px", 0, 1, 'C' , O}, /* LM-3DA */ 
{ "PMAG-FA " , "px", 0, 1, 'C' , O}, /* HE-3DA */ 
{ "PMAG-FB " "px", 0, 1, 'C' , O}, /* HE+3DA */ 
{ "PMAGB-FA", "px", 0, 1, 'C' , O}, /* HE+3DA */ 
{ "PMAGB-FB", "px", 0, 1, 'C' , O}, /* HE+3DA */ 
{ "PMAGZ-PV", "pv", 0, 1, 'C' , O}, /* PV+3DA */ 
#ifdef mips 
{ "PMABV-AA" , "vba", 1 , 1, 'A' , xviaconf}, /* VME */ 
{ "CITCA-AA", ricin, 0, 1, 'A' , tcciconf},/* CI */ 
#endif /* mips */ 

/* 
* Do not delete any table entries above this line or your system 
* will not configure properly. 

13-4 Device Driver Configuration Examples 



* 
* Add any new controllers or devices here. 
* Remember, the module name must be blank padded to 8 bytes. 
*/ 

/* 
%%%Used by mktcdata as placemarker for automatic installation 

*/ 

/* 
* Do not delete this null entry, which terminates the table or your 
* system will not configure properly. 
*/ 
{ /* Null terminator in the table */ 
} ; 

The items in the tc _option table have the following meanings: 

module name 
In this column, you specify the device name in the ROM on the 
hardware device. You must blank-pad the names to 8 bytes. 

driver name 
In this column, you specify the driver name as it appears in the system 
configuration file. 

intr _b4 probe 
In this column, you specify whether the device needs interrupts enabled 
during execution of the driver's probe interface. A zero (0) value 
indicates that the device does not need interrupts enabled; a value of 1 
indicates that the device needs interrupts enabled. 

itr_aft attach 

type 

In this column, you specify whether the device needs interrupts enabled 
after the driver's probe and attach interfaces complete. A zero (0) 
value indicates that the device does not need interrupts enabled; a value 
of 1 indicates that the device needs interrupts enabled. 

In this column, you specify the type of device: C (controller) or A 
(adapter). 

adptconfig 
If the device in the type column is A (adapter), you specify the name of 
the interface to configure the adapter. Otherwise, you specify the value 
zero (0). 

Device Driver Configuration Examples 13-5 



The entries for the / dev / none and / dev / cb drivers are as follows: 
{ "NONE 

{ "CB 

"none", 0, 1, ' C', O}, / * None * / 
", "cb", 0, 1, ' C', O}, / * cb * / 

Make similar entries in this table if your device driver operates on the 
TURBOchannel bus. 

13.1.3.2 Step 2: Compile and Link the Static Device Driver 

To compile and link the static device driver, the driver writers at EasyDriver 
Incorporated perform the following tasks: 

• Back up files. 

• Make an entry in the system configuration file. 

• Add the driver source to the files file. 

• Declare the device driver entry points in 
/usr/sys/io/common/conf.c. 

• Modify the bdevsw or cdevsw table. 

• Run the config program. 

• Create a new kernel. 

Each of these tasks is discussed in the following sections. 

Step 2a: Back Up Files 

The driver writers at EasyDriver Incorporateduse the traditional device driver 
configuration model to configure their device drivers during the initial stages 
of development. Because they will later test the third-party device driver 
configuration model, the driver writers do not want to make permanent edits 
to their system configuration file, files file, and conf . c file. If your 
driver development environment resembles that of EasyDriver Incorporated, 
you will probably want to back up these files. The following shows one way 
to accomplish this task: 
%cd /usr/sys/conf/CONRAD 
%cp CONRAD CONRAD. save 
%cd /usr/sys/conf/Alpha 
%cp files files.save 
%cd /usr/sys/io/common 
%cp conf.c conf.c.save 

Step 2b: Make an Entry in the System Configuration File 

Make an entry in /usr/sys/conf/NAME, the system configuration file, to 
add the device to the system. The NAME variable represents the name of the 
system you want to configure, for example, CONRAD. Because the 

13-6 Device Driver Configuration Examples 



I dev Inone and I dev I cb drivers are developed for use on the 
TURBOchannel bus, the device entry must follow the syntaxes associated 
with the TURBOchannel, as follows: 

controller noneO at tcO slot? vector noneintr 
controller cbO at tcO slot? vector cbintr 

Step 2c: Add the Driver Source to the files File 

Make an entry in lusr I sys I conf I Alphal files as either Binary (no 
driver sources are supplied) or Notbinary (driver sources are supplied). 
The following example shows the entries for the I dev I none and I dev I cb 
device drivers without source code: 

io/Easylnc/none.c optional none device-driver Binary 
io/Easylnc/cb.c optional cb device-driver Binary 

The following example shows the eIltries for the I dev I none and I dev I cb 
device drivers with source code: 

io/Easylnc/none.c optional none device-driver Notbinary 
io/Easylnc/cb.c optional cb device-driver Notbinary 

Step 2d: Declare the Device Driver Entry Points in conf.c 

Declare the device driver entry points for your device by editing the 
lusrlsys/io/common/conf.c file. The following example shows the 
device driver interface declarations for the I dev I none and I dev I cb 
device drivers: 

#include <none.h> 
#if NNONE > 0 
int 
int 
#else 
#define 
#define 
#define 
#define 
#define 
#define 

noneopen(),noneclose(),noneread(),nonewrite(),noneioctl(); 
nonereset ( ) ; 

none open 
noneclose 
noneread 
nonewrite 
noneioctl 
nonereset 

#include <cb.h> 
#if NCB > 0 

nodev 
nodev 
nodev 
nodev 
nodev 
nodev 

int 
int 
#else 
#define 
#define 
#define 

cbopen(),cbclose(),cbread(),cbwrite(),cbioctl(); 
cbselect(),cbmmap(); 

cbopen 
cbclose 
cbread 

nodev 
nodev 
nodev 

Device Driver Configuration Examples 13-7 



#define cbwrite 
#define cbioctl 
#define cbselect 
#define cbmrnap 

nodev 
nodev 
nodev 
nodev 

First, you include the device driver header file that was created by conf ig. 
The conf ig program creates this header file by using the name of the 
controller or device that you specified in the system configuration file. In 
this example, the header files are none. hand cb • h. These names indicate 
that the characters "none" and "cb" were previously specified for these 
devices in the system configuration file. 

Next, you declare the device driver interfaces that were defined in the 
bdevsw or cdevsw table if the device constant (or constants) are greater 
than zero, which indicates that the device was actually in the system 
configuration file. The device constant was also created by conf ig in the 
following way: 

• It locates the name of the controller or device that you specified in the 
system configuration file. 

• It converts the lowercase name to uppercase. 

• It appends the uppercase name to the letter "N." 

In this example, the device constants are NNONE and NCB and the none and 
cb interfaces defined in the cdevsw table are declared to be of type into 
Otherwise, if the device is not actually in the system configuration file, you 
declare the entry points as nodev. 

Step 2e: Modify the bdevsw or cdevsw Table 

To modify the bdevsw or cdevsw table, edit the 
/usr/sys/io/comrnon/conf. c file and search for struct bdevsw or 
struct cdevsw. Add your entries to the end of the table. The easiest 
way to add entries to the tables is to copy the previous entry, change the 
driver entry point names, and increment the comment by 1. The number in 
your comment is your device major number. Keep this number for use in a 
subsequent step. The following example shows the entries for the 
/ dev /none and / dev / cb device drivers along with the entry that precedes 
them: 

struct cdevsw cdevsw[MAX_CDEVSW] 
{ 

/* STREAMS clone device */ 
{clone open, nodev, nodev, nodev, /*32*/ 
nodev:- nodev, nodev, 0 , 
nodev, nodev, DEV FUNNEL NULL }, 

13-8 Device Driver Configuration Examples 



/* Example none device */ 
{noneopen, noneclose, 
noneioctl, nodev, 
nodev, nodev, 

/* cb device */ 
{cbopen, cbclose, 

noneread, nonewrite, /*33*/ 
nodev, 0, 

DEV FUNNEL NULL }, 

cbread, cbwrite, /*34*/ 
cbioctl, nodev, 
nodev, nodev, 

nodev 0, 
DEV FUNNEL NULL }, 

Step 2f: Run config on the System Configuration File 

Run config on the system configuration file from the /usr / sys/ conf 
directory. 

In the following example, conf ig is run on the system called CONRAD: 

%cd /sys/conf 
%./config CONRAD 

Step 2g: Create a Device Special File 

Create a device special for your device, using the mknod command. The 
following example shows the entries for the devices associated with the 
/ dev / none and / dev / cb device drivers: 
% mknod /dev/none c 33 a ~ 
% mknod /dev/cb c 34 1 ~ 

[jJ The first entry describes the none device. The letter c represents 
character device, as opposed to b for block device. The number 33 is the 
major number you were told to record when you added the device to the 
cdevsw table. The value zero (0) is the minor number associated with 
this device. 

[2J The second entry describes the / dev / cb device. The number 34 is the 
major number and 1 is the minor number. 

Step 2h: Create a New Kernel 

Create a new kernel by going to the /usr / sys /NAME directory, which was 
created by conf ig. 

The driver writers at EasyDriver Incorporated specify the following; you 

Device Driver Configuration Examples 13-9 



would specify something similar: 
%cd /usr/sys/CONRAD 
%make depend 
%make 

Some common errors encountered when creating a new kernel are coding 
errors, especially if the driver was defined as Notbinary. In addition, you 
may obtain errors from the system configuration file, the files file, and the 
conf . c file. 

13.1.3.3 Step 3: Back Up the New Kernel 

If a new kernel was built successfully, you may still want to back up the 
existing kernel and then place the new kernel in /vrnunix, as in the 
following example: 
% mv Ivmunix Ivmunix.sav 

% cp vrnunix Ivmunix 

Use the following steps in Section 13.1.3.2 for specific modifications: 

• After modifying any driver source code, start with step 2g. 

• To add a new device, start with step 2e. 

• To change vectors, perform steps 2a, 2d, 2g, and 3. 

• To add entry points, perform steps 2c, 2d, 2e, 2g, and 3. 

13.1.4 Configuring the Loadable Device Driver 
The driver writers at EasyDriver Incorporated now configure the loadable 
versions of the / dev / none and / dev / cb device drivers by following the 
steps provided by the traditional device driver configuration model: 

1. Create a stanza. loadable file fragment. 

2. Compile and link the device driver. 

3. Run the sysconfigdb utility. 

4. Run the sysconfig utility 

The steps described in the following sections apply to device drivers written 
for the TURBOchannel bus. These steps might differ for drivers written for 
other buses. See the bus-specific device driver manual on how to configure 
drivers for the specific bus, using the traditional model. 

13.1.4.1 Step 1: Create a stanza.loadable File Fragment 

Create a stanza. loadable file fragment for each of your driver products. 
Section 12.6 discusses the format and syntaxes associated with the 
stanza. loadable file fragment. The driver writers at EasyDriver 

13-10 Device Driver Configuration Examples 



Incorporated create the following stanza. loadable file fragment for the 
I dev Inone device driver: 
none: 

Subsystem Description 
Method Name device 
Method-Type Static 
Method-path None 
Module-Type Dynamic 

none device driver 

Module-path /usr/sys/kits/ESA100/none_kmod 
Module-config Name = none 
Module-Configl = controller noneO at tc* 
Device-Dir = /dev 
Device-Char Major Any 
Device-Char-Minor 0 
Device-Char-Files none 
Device-User-= root 
Device-Group = 0 
Device-Mode = 666 

They also create the following stanza .loadable file fragment for the 
I dev I cb device driver: 
cb: 

Subsystem Description cb device driver 
Method Name device 
Method-Type Static 
Method-path None 
Module Type Dynamic 
Module-path /usr/sys/kits/ESB100/cb kmod 
Module Config Name = cb -
Module-Configl = controller cb at tc* 
Device-Dir = /dev 
Device-Char Major Any 
Device-Char-Minor 0 
Device-Char-Files cb 
Device-User-= root 
Device-Group = 0 
Device-Mode = 666 

13.1.4.2 Step 2: Compile and Link the Device Driver 

To compile and link the loadable device driver, perform the following tasks: 

• Add the driver source to the files file. 

• Make an entry in the BINARY system configuration file. 

• Run the config program. 

Device Driver Configuration Examples 13-11 



• Rebuild the BINARY makefile. 

• Build the driver load module. 

Each of these tasks is discussed in the following sections. 

Step 2a: Add the Driver Source to the files File 

Make an entry in / usr / sys / conf / alpha/ files as Binary (no driver 
sources are supplied). The following example shows the entries for the 
/ dev / none and / dev / cb device drivers without source code: 
io/Easylnc/none.c optional none device-driver if_dynamic none 
Binary 
io/Easylnc/cb.c optional cb device-driver if_dynamic cb Binary 

Note that the specification for a loadable driver in the files file is identical 
to that for a static driver except for the use of the keyword if dynamic 
followed by the key string. This keyword marks the specIfied device 
driver source files such that the resulting object files can be built as either 
static or loadable. 

Step 2b: Make an Entry in the BINARY System Configuration File 

For the static versions of the / dev / none and / dev / cb device drivers, you 
made appropriate entries in the system configuration file that added their 
associated devices to the system. The conf ig program uses these entries to 
create a system configuration tree and interrupt handler description for the 
static kernel. You do not describe loadable device drivers in the system 
configuration file in the same way as static drivers. The reason for this is 
loadable drivers are dynamically added to the system configuration tree and 
their interrupt handlers are dynamically registered. In addition, entries for 
loadable drivers are specified in the BINARY system configuration file. The 
following shows the entries in the BINARY system configuration file for the 
/ dev / none and / dev / cb device drivers: 
pseudo-device none dynamic none 
pseudo-device cb dynamic cb 

The use of the keyword pseudo-device ensures that the appropriate 
makefile is generated. The dynamic keyword specifies that the device 
driver is built as a dynamic load module (loadable driver). 

13-12 Device Driver Configuration Examples 



Step 2c: Run config on the System Configuration File 

Run config on the BINARY system configuration file from the 
lusr I sys I conf directory, as follows: 
%cd /sys/conf 
%./config BINARY 

Step 2d: Construct the BINARY makefile 

This step rebuilds the makefile in the lusrlsys/BINARY directory. 
This directory was created by the config program. This makefile 
specifies the operations needed to build the load module for the driver. 
These operations include the syntax used to compile and link the driver. 

To build the makefile for the Idev/none and CB device drivers, the 
driver writers at EasyDriver Incorporated specify the following commands: 
%cd /usr/sys/BINARY 
%make depend 

Use this example as a guide to specify the correct instruction and command 
for rebuilding your makefile. 

Step 2e: Build the Driver Load Module 

After the makefile has been rebuilt in lusr I sys/BINARY, you build 
the driver load module by calling make followed by the device driver name, 
as specified in the stanza .loadable file fragment. To build the driver 
load modules for the I dev I none and I dev I cb device drivers, the driver 
writers at EasyDriver Incorporated specify the following commands: 
%cd /usr/sys/BINARY 
%make none 
%make cb 

Upon successfully completing the previously described steps, the driver 
writers at EasyDriver Incorporated notice two device driver load modules in 
lusrlsys/BINARY: none_kmod and cb_kmod. 

Use this example as a guide to specify the correct commands for building the 
driver load modules for your device drivers. Note the resulting load 
modules, which are of the form xx kmod, where xx represents the name of 
your device driver and kmod is the extension that identifies the load 
module. -

13.1.4.3 Step 3: Run the sysconfigdb Utility 

You use the sysconf igdb utility to manage and maintain 
I etc I sysconf igtab, the global stanza database. This database contains 
the information specified in the stanza .loadable file fragment for the 
loadable driver. To add the information contained in the 

Device Driver Configuration Examples 13-13 



stanza.loadable file fragments for the Idev/none and Idev/cb 
device drivers, the driver writers at EasyDriver Incorporated specify the 
following commands: 

%sysconfigdb -a -f /usr/sys/kits/ESAIOO/stanza.loadable none 
%sysconfigdb -a -f /usr/sys/kits/ESBIOO/stanza.loadable cb 

The -a and -f flags cause sysconfigdb to add the information contained 
in the stanza.loadable file fragments for the Idev/none and 
I dev I cb device drivers to EasyDriver Incorporated's 
letc/sysconfigtab database. See the Reference Pages Section 8 for 
additional information on the sysconf igdb utility and its associated flags. 

Use this example as a guide to specify the correct command for adding the 
informaton contained in the stanza .loadable file fragments associated 
with your device drivers to your I etc I sysconf igtab database. 

13.1.4.4 Step 4: Run the sysconfig Utility 

To dynamically configure the device driver and create the corresponding 
device special files, use the sysconf ig utility. To dynamically configure 
the I dev I none and I dev I cb device drivers and create their corresponding 
device special files, the driver writers at EasyDriver Incorporated specify the 
following commands: 
%sysconfig -c none 
%sysconfig -c cb 

As the example shows, the -c flag causes sysconfig to configure the 
I dev Inone and I dev I cb device drivers into the running system and 
create the device special files. See the Reference Pages Section 8 for 
additional information on the sysconfig utility and its associated flags. 

Use this example as a guide to specify the correct command for configuring 
your device drivers into the running system and creating the device special 
files. 

To verify that their device drivers are currently configured, the driver writers 
at EasyDriver Incorporated specify the following command: 
%sysconfig -q none 
%sysconfig -q cb 

The -q flag causes sysconfig to display information about the 
Idev/none and Idev/cb device drivers. Use this example as a guide to 
specify the correct command for querying your device drivers. 

To iteratively develop the loadable driver, you can unload the driver, make 
changes to the device driver source, compile and link the driver, and then 
load the driver again. You can unload the driver by using the sysconf ig 

13-14 Device Driver Configuration Examples 



utility as follows: 
%sysconfig -u none 

To rebuild the loadable driver, follow Step 2e: Build the Driver Load 
Module. To reload the loadable driver, follow Step 4: Run the sysconfig 
Utility. 

13.1.5 Testing the Device Driver 
The driver writers at EasyDriver Incorporated test the device driver to ensure 
that it works with the associated utilities on the DEC OSFIl operating 
system. They repeat the previously described tasks until the device driver 
works. This ends the device driver development phase. 

You will probably perform similar testing and will most likely repeat the 
previous tasks just like the device driver writers at EasyDriver Incorporated. 

13.1.6 Creating the Device Driver Kit Development Environment 
The driver writers at EasyDriver Incorporated are now ready to create the 
device driver kit development environment that was discussed in Section 
11.1.2. Create your driver kit development environment by following the 
recommendations provided in that section. 

13.1.7 Providing the Contents of the Device Driver Kit 
The driver writers at EasyDriver Incorporated plan to supply their customers 
with the static and loadable binary versions of the / dev / none and 
/ dev / cb device drivers. Thus, they provide to their kit developers the 
following file fragments and files that become the contents of the device 
driver kit: 

• config. file file fragment 

• files file fragment 

• stanza .loadable file fragment 

• stanza. static file fragment 

• Device driver objects 

• Device driver load modules 

Because the driver writers at EasyDriver Incorporated are shipping the binary 
versions of the device drivers, they do not provide the header or source files 
for the / dev / none and / dev / cb device drivers. Note, also, that they are 
not supplying any name data. c files because they did not dynamically 
allocate any data structures. See Section 11.1.3 for the table that summarizes 
the files and file fragments supplied to the kit developer, based on whether 

Device Driver Configuration Examples 13-15 



the driver is shipped in source or binary versions. 

The following sections show the contents of these files as they apply to the 
driver products for EasyDriver Incorporated. 

13.1.7.1 Providing the Contents of the config.file File Fragment 

For the static binary versions of the / dev / none and / dev / cb device 
drivers, the driver writers at EasyDriver Incorporated provide the following 
config. file file fragment to their kit developers: 
# Entries in config.file for none and CB devices 

controller noneO at tc? vector noneintr 
controller cbO at tc? vector cbintr 

13.1.7.2 Providing the Contents of the files File Fragment 

For the static binary versions of the / dev / none and / dev / cb device 
drivers, the driver writers at EasyDriver Incorporated provide the following 
files file fragment to their kit developers: 
# This example illustrates the third-party model 
# by showing a files file fragment for static 
# drivers developed by EasyDriver Incorporated. 

ESAIOO/none.c standard none device-driver if_dynamic none Binary 

ESBIOO/cb.c standard cb device-driver if_dynamic cb Binary 

13.1.7.3 Providing the Contents of the stanza.loadable File Fragment 

For the loadable binary versions of the / dev / none and / dev / cb device 
drivers, the driver writers at EasyDriver Incorporated provide the following 
stanza. loadable file fragment to their kit developers: 
none: 

Subsystem Description = none device driver 
Method Name device 
Method-Type Static 
Method-Path None 
Module-Type Dynamic 
Module-Path /usr/sys/kits/ESAIOO/none_kmod 
Module-config Name = none 
Module-Configl = controller noneO at tc* 
Device-Dir = /dev 
Device-Char Major Any 
Device-Char-Minor 0 
Device-Char-Files none 
Device-User-= root 
Device-Group = 0 
Device-Mode = 666 

13-16 Device Driver Configuration Examples 



cb: 
Subsystem Description cb device driver 
Method Name device 
Method-Type Static 
Method-Path None 
Module-Type Dynamic 
Module-Path lusrlsys/kits/ESBIOO/cb_kmod 
Module-Config Name = cb 
Module-ConfigI = controller cb at tc* 
Device-Dir"= Idev 
Device-Char Major Any 
Device-Char-Minor 0 
Device-Char-Piles cb 
Device-User-= root 
Device-Group = 0 
Device-Mode = 666 

13.1.7.4 Providing the Contents of the stanza.static File Fragment 

For the static binary versions of the / dev / none and / dev / cb device 
drivers, the driver writers at EasyDriver Incorporated provide the following 
stanza. static file fragment to their kit developers: 

none: 
Subsystem Description = none device driver 
Module Config Name = none 
Device-Char Major Any 
Device-Char-Minor = 0 
Device Char-Files = none 
Device-Char-open = noneopen 
Device-Char-Close = noneclose 
Device-Char-Read = noneread 
Device Char Write = nonewrite 
Device-Char-roctl = noneioctl 
Device-Char-Stop = nodev 
Device-Char-Reset = nodev 
Device Char-Ttys = 0 
Device-Char-Select = nodev 
Device-Char-Mmap = nodev 
Device-Char-Funnel DEV FUNNEL NULL 

Device Driver Configuration Examples 13-17 



cb: 
Subsystem Description = cb device driver 
Module Config Name = cb 
Device-Char Major Any 
Device-Char-Minor = 0 
Device-Char-Files = cb 
Device Char-Open = cbopen 
Device-Char-Close = cbclose 
Device-Char-Read = cbread 
Device-Char-Write = cbwrite 
Device-Char-Ioctl = cbioctl 
Device Char-Stop = nodev 
Device-Char-Reset = nodev 
Device-Char-Ttys = 0 
Device-Char-Select = nodev 
Device Char Mmap = nodev 
Device-Char-Funnel DEV FUNNEL NULL 

13.1.7.5 Providing the Device Driver Object Files 

For the static binary versions of the / dev / none and / dev / cb device 
drivers, the driver writers at EasyDriver Incorporated provide the following 
device driver object files. These object files were created as a result of 
following the steps beginning in Section 13.1.3.1. 

• none.o 

• cb.o 

13.1.7.6 Providing the Device Driver Load Modules 

For the loadable binary versions of the / dev / none and / dev / cb device 
drivers, the driver writers at EasyDriver Incorporated provide the following 
device driver load modules. These load modules were created as a result of 
following the steps beginning in Section 13.1.4.1. 

• none kmod 

• cb kmod 

13.2 Device Driver Kit Development Phase 
The kit developer at EasyDriver Incorporated performs the following tasks 
during the device driver kit development phase: 

• Writes the SCPo 

• Prepares the device driver kit. 

13-18 Device Driver Configuration Examples 



13.2.1 Writing the SCP 
As part of the kit development phase, the kit developer at EasyDriver 
Incorporated writes a subset control program (SCP) such as the one described 
in Section 12.9. Your kit developers can use that example as a guide for 
writing their own SCPs. In addition, they can refer to the Programming 
Support Tools book for details on writing an SCPo 

13.2.2 Preparing the Device Driver Kit 
As part of the kit development phase, the kit developer at EasyDriver 
Incorporated prepares the device driver kit, following the guidelines 
presented in Section 11.104. This section refers to the Programming Support 
Tools book, which provides complete details about preparing software 
distribution kits that are compatible with the setld utility. 

Your kit developers can also follow the guidelines presented in that section to 
prepare their device driver kits. 

13.3 Device Driver Installation Phase 
The system manager at EasyDriver Incorporated performs the following tasks 
to install the I dev I none and I dev I cb device drivers: 

• Restores the backed up files 

• Loads the device driver kit. 

• Runs the setld utility. 

13.3.1 Restoring the Backed Up Files 
The driver writers at EasyDriver Incorporated previously used the traditional 
device driver configuration model to configure their device drivers during the 
initial stages of development. They backed-up their system configuration 
file, files file, and conf . c file, to avoid making permanent edits. Before 
loading the device driver kit, the system manager at EasyDriver Incorporated 
restores the previously backed-up files. If you previously backed up these 
files, you will probably want to restore them at this time. The following 
shows one way to accomplish this task: 

%cd /usr/sys/conf/CONRAD 
%mv CONRAD. save CONRAD 
%cd /usr/sys/conf/Alpha 
%mv files.save files. 
%cd /usr/sys/io/common 
%mv conf.c.save conf.c 

Device Driver Configuration Examples 13-19 



13.3.2 Loading the Device Driver Kit 
The system manager at EasyDriver Incorporated loads the device driver kit, 
following instructions provided by the device driver writers and kit 
developer. The system manager ensures that the instructions are clear and 
concise and that the installation of the device drivers is successful. 

You can perform similar testing by having your system manager install the 
device driver kit. You can also provide instructions on how to install the kit. 

13.3.3 Running the setld Utility 
The system manager at EasyDriver Incorporated is instructed to type the 
following command: 
set1d -1 /dev/rmtOh 

The setld utility invokes the subset control program (SCP) that copies the 
driver-related files from the kit to the customer's system. The driver writers 
at EasyDriver Incorporated created the SCP that was discussed in Section 
12.9. That SCP displays a prompt that asks whether to install the static or 
loadable version of the I dev I cb device driver. If the static version is 
selected, the SCP calls the kreg utility, which does the following: 

• Registers the device driver product by creating the 
lusr I sys I conf I . products .list file on the system. This file 
contains registration information associated with the static device driver 
product. 

• Loads the data that controls how to include the device driver product in 
the kernel build process. 

After these tasks are complete, the SCP instructs you to run doconfig to 
build a new kernel and thus make the I dev I cb driver available to the 
system utilities. The driver writers at EasyDriver Incorporated run 
doconfig, which automatically does all of the tasks described in the 
traditional model. 

If the loadable version is selected, the SCP calls the sysconfigdb utility, 
which does the following: 

• Adds the files associated with the loadable I dev I cb device driver 
product to the I etc I sysconf igtab database. 

• Causes the I dev I cb device driver to be automatically loaded each time 
the system reboots. 

13-20 Device Driver Configuration Examples 



The SCP also calls the sysconf ig utility, which does the following: 

• Loads the / dev / cb device driver and creates the device special files. 

• Displays a prompt indicating that the / dev / cb device driver was added 
to the / etc / sysconf igtab database and that the loadable driver will 
automatically be loaded each time the system reboots. 

Device Driver Configuration Examples 13-21 





Part 7 Appendixes 





Summary Tables 

This appendix presents tables that summarize: 

• Header files 

• Kernel interfaces 

• ioctl commands 

• Global variables 

• Data structures 

• Device driver interfaces 

• Bus configuration interfaces 

A 

A.1 List of Header Fi les 
Table A-I lists the header files related to device drivers, along with short 
descriptions of their contents. For convenience, the files are listed in 
alphabetical order. Note that device drivers should include header files that 
use the relative pathname instead of the explicit pathname. For example, 
although buf.h resides in /usr/sys/include/sys/buf .h, device 
drivers should include it as: 
<sys/buf.h> 

Chapter 1 of Writing Device Drivers, Volume 2: Reference provides reference 
(man) page descriptions of the header files listed in the table. 

Table A-1: Summary Descriptions of Header Files 

Header File Contents 

buf.h 

conf.h 

cpu.h 

devdriver.h 

Defines the buf structure. 

Defines the bdevsw (block device switch) and cdevsw (character 
device switch) tables. 

Defines structures and constants related to the CPU. 

Defines the structures, constants, and external interfaces that device 
drivers and the autoconfiguration software use. 



Table A-1: (continued) 

Header File Contents 

devdriver loadable.h 

devio.h 

disklabel.h 

errno.h 

fcntl.h 

ioctl.h 

iotypes.h 

kernel.h 

map.h 

mman.h 

mode.h 

mtio.h 

param.h 

poll.h 

proc.h 

sched_prim.h 

security.h 

sysconfig.h 

systm.h 

time.h 

types.h 

uio.h 

user.h 

vm.h 

vmmac.h 

A-2 Summary Tables 

Defines constants and declares external functions associated with 
loadable drivers. 

Defines common structures and definitions for device drivers and 
ioctl requests. 

Defines structures and macros that operate on DEC OSFIl disk labels. 

Defines the error codes returned to a user process by a device driver. 

Defines I/O mode flags supplied by user programs to open and 
fcntl system calls. 

Defines commands for ioctl interfaces in different device drivers. 

Defines constants used for 64-bit conversions. 

Defines global variables that the kernel uses. 

Defines structures associated with resource allocation maps. 

Defines constants associated with the mmap kernel interface. 

Defines constants that driver interfaces use. 

Defines commands and structures for magnetic tape operations. 

Defines constants and interfaces that the kernel uses. 

Defines polling bit masks. 

Defines the proc structure, which defines a user process. 

Defines scheduling interfaces. 

Defines structures, constants, and data types that UNIX security 
software uses. 

Defines operation codes and data structures used in loadable device 
driver configuration. 

Defines generic kernel global variables. 

Contains structures and symbolic names that time-related interfaces 
use. 

Defines system data types and major and minor device interfaces. 

Contains the definition of the uio structure. 

Defines the user structure. 

Contains a sequence of include statements that includes all of the 
virtual memory-related files. 

Contains definitions for byte conversions. 



A.2 List of Kernel Support Interfaces 
Table A-2 lists the kernel interfaces used by device drivers. Chapter 2 of 
Writing Device Drivers, Volume 2: Reference provides reference (man) page 
descriptions of the kernel interfaces listed in the table. 

Note 

Device drivers use the following header files most frequently: 

#include <sys/types.h> 
#include <sys/errno.h> 
#include <io/common/devdriver.h> 
#include <sys/uio.h> 
#include <machine/cpu.h> 

Table A-2: Summary Descriptions of Kernel Support Interfaces 

Kernel Interface Summary Description 

BADADDR Probes the address during device autoconfiguration. 

bcmp Compares two byte strings. 

bcopy Copies a series of bytes with a specified limit. 

bdevsw add Adds entry points in the block device switch table. 

bdevsw del Deletes entry points from the block device switch table. 

blkclr Zeros a block of memory. 

btop Converts a virtual address to a kernel page frame number. 

BUF LOCK Locks the specified I/O buffer. 

BUF UNLOCK Unlocks the specified 1/0 buffer. 

bzero Zeros a block of memory. 

cdevsw add Adds entry points in the character device switch table. 

cdevsw del Deletes entry points from the character device switch table. 

copy in Copies data from a user address space to a kernel address space. 

copyinstr Copies a null-terminated string from a user address space to a 
kernel address space. 

copyou t Copies data from a kernel address space to a user address space. 

copyoutstr Copies a null-terminated string from a kernel address space to a 
user address space. 

copystr Copies a null-terminated character string with a specified limit. 

copy to _phys Copies data from a virtual address to a physical address. 

DELAY Delays the calling interface a specified number of microseconds. 

Summary Tables A-3 



Table A-2: (continued) 

Kernel Interface 

disable_option 

dma_get_curr_sgentry 

dma_get_next_sgentry 

dma_get_private 

dma_kmap_buffer 

dma_map_alloc 

dma_map_dealloc 

dma_map_Ioad 

dma_rnap_unload 

dma_min_boundary 

dma_put_curr_sgentry 

dma_put_prev_sgentry 

dma_put_private 

do_config 

drvr_register_shutdown 

dualdevsw add 

dualdevsw del 

enable_option 

ffs 

fubyte 

fuibyte 

fuiword 

fuword 

get_config 

gsignal 

handler add 

handler del 

handler disable 

handler enable 

htonl 

htons 

A-4 Summary Tables 

Summary Description 

Disables a device's interrupt line to the processor. 

Returns a pointer to the current sg_ entry. 

Returns a pointer to the next sg_ entry. 

Gets a data element from the DMA private storage space. 

Returns a kernel segment (kseg) address of a DMA buffer. 

Allocates resources for DMA data transfers. 

Releases and deallocates resources for DMA data transfers. 

Loads and sets allocated system resources for DMA data transfers. 

Unloads system DMA resources. 

Returns system-level information. 

Puts a new bus addresslbyte count in the linked list of sg_ entry 
structures. 

Puts a new bus address and byte count. 

Stores a data element in the DMA private storage space. 

Initializes board to its assigned configuration. 

Registers or deregisters a shutdown interface. 

Adds entry points to the block device switch and character device 
switch tables. 

Deletes entry points from the block device switch and character 
device switch tables. 

Enables a device's interrupt line to the processor. 

Finds the first set bit in a mask. 

Returns a byte from user data address space. 

Returns a byte from user data address space. 

Returns a word from user data address space. 

Returns a word from user data address space. 

Returns assigned configuration data for a device. 

Sends a signal to a process group. 

Registers a device driver's interrupt service interface. 

Deregisters a device driver's interrupt service interface. 

Disables a previously registered interrupt service interface. 

Enables a previously registered interrupt service interface. 

Converts longword values from host-to-network byte order. 

Converts word values from host-to-network byte order. 



Table A-2: (continued) 

Kernel Interface 

insque 

io_copyin 

io_copyio 

io_copyout 

iozero 

iodone 

IS KSEG VA 

kalloc 

kfree 

kget 

KSEG TO PHYS 

ldbl_ctlr_configure 

ldbl_ctlr_unconfigure 

ldbl stanza resolver 

major 

makedev 

mb 

minor 

minphys 

ntohl 

ntohs 

ovbcopy 

panic 

physio 

PHYS TO KSEG 

pmap_extract 

pmap_kernel 

pmap_set_modify 

printf 

privileged 

psignal 

remque 

Summary Description 

Adds an element to the queue. 

Copies data from bus address space to system memory. 

Copies data from bus address space to bus address space. 

Copies data from system memory to bus address space. 

Zeros a block of memory in bus address space. 

Indicates that I/O is complete. 

Determines if the specified address is located in the kernel 
unmapped address space. 

Allocates a variable-sized section of kernel virtual memory. 

Returns previously allocated memory. 

Performs nonblocking allocation of variable-size kernel memory. 

Converts a kernel unmapped virtual address to a physical address. 

Configures the specified controller. 

Unconfigures the specified controller. 

Merges the configuration data. 

Returns the device major number. 

Returns a dev t. 

Performs a memory barrier. 

Returns the device minor number. 

Bounds the data transfer size. 

Converts longword values from network-to-host byte order. 

Converts word values from network-to-host byte order. 

Copies a byte string with a specified limit. 

Causes a system crash. 

Implements raw 110. 

Converts a physical address to a kernel unmapped virtual address. 

Extracts a physical page address. 

Returns the physical map handle for the kernel. 

Sets the modify bits of the specified physical page. 

Prints text to the console and the error logger. 

Checks for proper privileges. 

Sends a signal to a process. 

Removes an element from the queue. 

Summary Tables A-5 



Table A-2: (continued) 

Kernel Interface 

read_io_port 

rmalloc 

rmfree 

rmget 

rminit 

round_page 

select_dequeue 

select_dequeue_all 

select_enqueue 

select_wakeup 

sleep 

spl 

strcmp 

strcpy 

strlen 

strncmp 

strncpy 

subyte 

suibyte 

suiword 

suser 

suword 

svatophys 

swap_lw_bytes 

swap_word_bytes 

swap_words 

timeout 

trunc_page 

uiomove 

untimeout 

uprintf 

vm_map_pageable 

vtop 

A-6 Summary Tables 

Summary Description 

Reads data from a device register. 

Allocates size units from the given resource map. 

Frees space previously allocated into the specified resource map. 

Allocates size units from the given resource map. 

Initializes a resource map. 

Rounds the specified address. 

Removes the last thread waiting for an event. 

Removes all kernel threads waiting for an event. 

Adds the current kernel thread. 

Wakes up a kernel thread. 

Puts a calling process to sleep. 

Sets the processor priority to mask different levels of interrupts. 

Compares two null-terminated character strings. 

Copies a null-terminated character string. 

Returns the number of characters in a null-terminated string. 

Compares two strings, using a specified number of characters. 

Copies a null-terminated character string with a specified limit. 

Writes a byte into user data address space. 

Writes a byte into user data address space. 

Writes a word into user data address space. 

Checks whether the current user is the superuser. 

Writes a word into user data address space. 

Converts a system virtual address to a physical address. 

Performs a longword byte swap. 

Performs a short word byte swap. 

Performs a word byte swap. 

Initializes a callout queue element. 

Truncates the specified address. 

Moves data between user and system virtual space. 

Removes the scheduled interface from the callout queues. 

Nonsleeping kernel printf function. 

Sets pageability of the specified address range. 

Converts a kernel pmap/virtual address pair to a physical address. 



Table A-2: (continued) 

Kernel Interface Summary Description 

wakeup 

wbflush 

Wakes up all processes sleeping on a specified address. 

Ensures a write to 110 space has completed. 

write_io_port Writes data to a device register. 

A.3 List of Global Variables that Device Drivers Use 
Table A-3 summarizes the global variables used by device drivers. Chapter 2 
of Writing Device Drivers, Volume 2: Reference provides reference (man) 
page descriptions of the global variables listed in the table. 

Table A-3: Summary Descriptions of Global Variables 

Global Variable Summary Description 

cpu 

hz 

Provides a unique logical processor type family identifier. 

Stores the number of clock ticks per second. 

Ibolt 

page_size 

Periodic wakeup mechanism. 

Virtual page size. 

A.4 List of Data Structures 
Table A-4 summarizes the structures that device drivers use. Chapter 3 of 
Writing Device Drivers, Volume 2: Reference provides reference (man) page 
descriptions of the structures listed in the table. 

Table A-4: Summary Descriptions of Data Structures 

Structure Name 

bdevsw 

buf 

bus 

Meaning 

Defines a device driver's entry points in the 
block device switch table. 

Describes arbitrary I/O. 

Represents an instance of a bus entity. 

Summary Tables A-7 



Table A-4: (continued) 

Structure Name 

cdevsw 

controller 

device 

device_config_t 

driver 

handler_key 

ihandler t 

port 

sg_entry 

tc intr info 

uio 

Meaning 

Defines a device driver's entry points in the 
character device switch table. 

Represents an instance of a controller entity. 

Represents an instance of a device entity. 

Contains device configuration information. 

Defines driver entry points and other driver­
specific information. 

Contains handler-specific information. 

Contains information associated with device 
driver interrupt handling. 

Contains information about a port. 

Contains bus address/byte count pairs. 

Contains interrupt handler information. 

Describes I/O, either single vector or multiple 
vectors. 

A.S List of Device Driver Interfaces 
Table A-5 summarizes the interfaces that device drivers use. Chapter 4 of 
Writing Device Drivers, Volume 2: Reference provides reference (man) page 
descriptions of the driver interfaces listed in the table. The table has the 
following columns: 

• Interface 

This column lists the driver interface name. 

• Entry point 

This column lists the structure (or file) where the driver writer defines the 
entry point for the device driver interface. 

• Character 

A Yes appears in this column if the interface is applicable to a character 
device. Otherwise, N/A (not applicable) appears. 

• Block 

A Yes appears in this column if the interface is applicable to a block 
device. Otherwise, N/A (not applicable) appears. 

A-a Summary Tables 



Table A-S: Summary of Block and Character Device Driver 
Interfaces 

Interface Entry Point Character Block 

cattach driver Yes Yes 

dattach driver Yes Yes 

close bdevsw, Yes Yes 
cdevsw 

configure N/A Yes Yes 

ctrl unattach driver Yes Yes 

dev unattach driver Yes Yes 

dump bdevsw N/A Yes 

intr system Yes Yes 
configuration 
file ( static 
drivers) 

handler add 
and 
handler enable 
(loadable 
drivers) 

ioctl bdevsw, Yes Yes 
cdevsw 

mmap cdevsw Yes N/A 

open bdevsw, Yes Yes 
cdevsw 

probe driver Yes Yes 

psize bdevsw N/A Yes 

read cdevsw Yes N/A 

reset cdevsw Yes N/A 

select cdevsw Yes N/A 

slave driver Yes Yes 

stop cdevsw Yes N/A 

strategy bdevsw N/A Yes 

write cdevsw Yes N/A 

Summary Tables A-9 



A.6 List of Bus Configuration Interfaces 
Table A-6 summarizes the bus configuration interfaces related to device 
drivers. Chapter 4 of Writing Device Drivers, Volume 2: Reference provides 
reference (man) page descriptions of the bus configuration interfaces listed in 
the table. 

Table A-6: Summary Description of Bus Configuration Interfaces 

Bus Interface Summary Description 

adp_handler_add Registers a driver's interrupt service interface. 

adp _handler_del Deregisters a driver's interrupt service interface. 

bus search 

config_resolver 

conn bus 

conn ctlr 

conn device 

ctlr_configure 

ctlr search 

ctlr_unconfigure 

get_bus 

get_ctlr 

get_ctlr_num 

get_device 

get_sys_bus 

perf_init 

xxconfll 

xxconfl2 

A-10 Summary Tables 

Signifies that the driver's interrupt service interface is not 
callable. 

Signifies that the driver's interrupt service interface is now 
callable. 

Searches a bus structure for specified values. 

Configures TURBOchannel buses. 

Connects bus structures. 

Connects a controller structure to a bus structure. 

Connects a device structure to a controller structure. 

Performs the tasks necessary to make the controller available. 

Searches for a controller structure connected to a specific 
bus. 

Performs the tasks necessary to make the controller 
unavailable. 

Searches the static bus _list array for a bus structure. 

Searches the static ctlr _list array for a controller 
structure. 

Gets a controller structure that matches the specified 
controller name and number. 

Searches for the next device in a controller structure. 

Returns a pointer to a system bus structure. 

Initializes the performance structure for a disk device. 

Configures the specified bus. 

Configures the specified bus. 



B.1 

Device Driver Example Source 
Listings 

This appendix contains source listings for the following: 

• The I dev I none device driver 

• The I dev I cb device driver 

Source Listing for the /dev/none Device Driver 

j*************************************************** 

* * 
* 
* 
* 

Copyright (c) 1993 by 
Digital Equipment Corporation, Maynard, MA 

All rights reserved. 

* 
* 
* 

* * 
* This software is furnished under the terms and * 
* conditions of the TURBOchannel Technology * 
* license and may be used and copied only in * 
* accordance with the terms of such license and * 
* with the inclusion of the above copyright * 
* notice. No title to and ownership of the * 
* software is hereby transferred. * 
* * 
* The information in this software is subject to * 
* change without notice and should not be * 
* construed as a commitment by Digital Equipment * 
* Corporation. * 
* * 
* Digital assumes no responsibility for the use * 
* or reliability of its software on equipment * 
* which is not supplied by Digital. * 
***************************************************j 

j*************************************************** 
* nonereg.h Header file for none.c 13-Apr-1993 * 
* * 
* * 
* Define ioctl macros for the none driver. * 
***************************************************j 

#define DN GETCOUNT 
#define DN-CLRCOUNT 

_10R(0,1,int) 
10(0,2) 

j*************************************************** 

B 



* 
* Device register structure for a none device. 

* 

* 
* 
* 

***************************************************/ 

#define NONE CSR 0 /* 64-bit read/write CSR/LED register */ 

/*************************************************** 
* none.c Driver for none device 13-Apr-1993 * 
* 
* The /dev/none device driver is an example 
* driver that supports a fictitious "none" 
* device. 

* 

* 
* 
* 
* 
* 

***************************************************/ 
/*************************************************** 
* Tim Burke, Mark Parenti, and Al Wojtas * 
* Digital Device Driver Project * 
* * 
***************************************************/ 

/*************************************************** 
* Include Files Section * 
***************************************************/ 

/*************************************************** 
* Common driver header files * 
***************************************************/ 

#include <sys/param.h> 
#include <sys/systm.h> 
#include <sys/ioctl.h> 
#include <sys/tty.h> 
#include <sys/user.h> 
#include <sys/proc.h> 
#include <sys/map.h> 
#include <sys/buf.h> 
#include <sys/vrn.h> 
#include <sys/file.h> 
#include <sys/uio.h> 
#include <sys/types.h> 
#include <sys/errno.h> 
#include <sys/conf.h> 
#include <sys/kernel.h> 
#include <sys/devio.h> 
#include <hal/cpuconf.h> 
#include <sys/exec.h> 
#include <io/common/devdriver.h> 
#include <sys/sysconfig.h> 
#include <io/dec/tc/tc.h> 
#include <machine/cpu.h> 

#include <kits/ESAI00/nonereg.h> /* Device register header file */ 

/*************************************************** 

8-2 Device Driver Example Source Listings 



* Data structure sizing approach * 
*************************************************** 

* * 
* The following define will be used to allocate * 
* data structures needed by the /dev/none driver. * 
* There can be at most 4 instances of the none * 
* controller on the system. This is a small * 
* number of instances of the driver and the data * 
* structures themselves are not large, so it is * 
* acceptable to allocate for the maximum * 
* configuration. * 
***************************************************/ 

#define NNONE 4 

/*************************************************** 
* Autoconfiguration Support Declarations and * 
* Definitions Section * 
***************************************************/ 

/*************************************************** 
* Device register address * 
***************************************************/ 

/*************************************************** 
* Bits for csr member * 
***************************************************/ 

#define DN RESET 0001 /* Device ready for data transfer */ 
#define DN-ERROR 0002 /* Indicate error */ 

/*************************************************** 
* Defines for softc structure * 
***************************************************/ 

#define DN OPEN 1 /* Device open bit */ 
#define DN CLOSE 0 /* Device close bit */ 

/*************************************************** 
* Forward declarations of driver interfaces * 
***************************************************/ 

int noneprobe(), nonecattach(), noneintr(); 
int noneopen(), noneclose(),' noneread(), nonewrite(); 
int noneioctl(), none_ctlr_unattach(); 

/*************************************************** 
* controller and driver Structures * 
***************************************************/ 

/*************************************************** 
* Declare an array of pointers to controller 
* structures 

* 
* 

***************************************************/ 

struct controller *noneinfo[NNONE]; 

Device Driver Example Source Listings 8-3 



/*************************************************** 
* Declare and initialize driver structure * 
***************************************************/ 

struct driver nonedriver = { 
noneprobe, 

} ; 

0, 
nonecattach, 
0, 
0, 
0, 
0, 
0, 
"none", 
noneinfo, 
0, 
0, 
0, 
0, 
0, 
none_ctlr_unattach, 

° 

/* probe */ 
/* slave */ 
/* cattach */ 
/* dattach */ 
/* go */ 
/* addr list */ 
/* dev name */ 
/* dev-list */ 
/* ctlr name */ 
/* ctlr-list */ 
/* xclu-*/ 
/* addrl size */ 
/* addrl-atype */ 
/* addr2-size */ 
/* addr2-atype */ 
/* ctlr unattach */ 
/* dev unattach */ 

/*************************************************** 
* Declare softc structure * 
***************************************************/ 

struct none softc { 
int sc-openf; /* Open flag */ 
int sc-count; /* Count of characters written to device */ 
int sc=state; /* Device state,not currently used */ 

} none_softC[NNONE]; 

/*************************************************** 
* Loadable Driver Configuration Support * 
* Declarations and Definitions Section * 
***************************************************/ 

/*************************************************** 
* External function references. These are needed * 
* for the cdevsw declaration. The handler add * 
* interface is used to register the interrupt * 
* service interface for the loadable driver. The * 
* none id t array contains "id's" that are used * 
* to deregister the interrupt handlers. * 
***************************************************/ 

extern int nodev(), nulldev(); 
extern ihandler id t handler add(), handler del(); 
extern ihandler-id-t handler-enable(), handler_disable(); 
ihandler_id_t none=id_t[NNONE]; 

#define DN BUSNAME "tc" /* This is a TURBOchannel driver */ 

8-4 Device Driver Example Source Listings 



/*************************************************** 
* The variable none is dynamic will be used to * 
* control any differences in functions performed * 
* by the static and loadable versions of the * 
* driver. In this manner any differences are * 
* made on a run-time basis and not on a * 
* compile-time basis. * 
***************************************************/ 

int none is_dynamic = 0; 

/*************************************************** 
* When the driver isloadable it may not have an * 
* entry in the statically built tc option * 
* table (tc option data.c). It is-not an error * 
* if this entry already existed in the table. * 
* The entry in tc option data.c is only used when * 
* the driver is configured statically; the entry * 
* below is only used when the driver is * 
* configured dynamically. * 
* * 
* This table contains the bus specific ROM module * 
* name for the driver. This information forms * 
* the bus-specific parameter that is passed to * 
* the ldbl stanza resolver interface to look for * 
* matches In the tc slot table. * 
***************************************************/ 

struct tc option none option snippet [] = 

/***************************************************/ 

driver intr b4 itr aft adpt 
{ 
/* 
/* 
/* 
{ 

module 
name name probe attach type config 

------ ------- ------- ------
"NONE "none" , 0, 1, 'C' , O}, 

{ } /* Null terminator in the */ 
/* table */ 

} ; 

*/ 
*/ 
*/ 

int num_none = 0; /* Count on the number of controllers probed */ 

/*************************************************** 
* Loadable Driver Local Structure and Variable * 
* Definitions Section * 
***************************************************/ 

int none config = FALSE; /* State flags indicating driver configured 
dev_t none_devno = NODEV; /* No major number assigned yet. */ 

/*************************************************** 
* Device switch structure for dynamic * 
* configuration. The following is a definition * 

Device Driver Example Source Listings 8-5 



* of the cdevsw entry that will be dynamically * 
* added for the loadable driver. For this reason * 
* the loadable driver does not need to have its * 
* entry points statically configured into conf.c. * 
***************************************************/ 

struct cdevsw none cdevsw entry = { 
noneopen, - 7* d open */ 
noneclose, /* d-close */ 
noneread, /* d-read */ 
nonewrite, /* d-write */ 
noneioctl, /* d-ioctl */ 
nodev, /* d-stop */ 
nodev, /* d-reset */ 
0, /* d-ttys */ 
node v , /* d-select */ 
0, /* d-mmap */ 
DEV FUNNEL NULL /* d-funnel */ 

} ; 

/*************************************************** 
* Autoconfiguration Support Section * 
***************************************************/ 

/*************************************************** 

* * 
* * 
*--------------- noneprobe -----------------------* 
***************************************************/ 

/*************************************************** 
* Probe Interface * 
*************************************************** 

* * 
* The noneprobe interface is called from the * 
* operating system configuration code during boot * 
* time. The noneprobe interface calls the * 
* BADADDR interface to determine if the device is * 
* present. If the device is present, noneprobe 
* returns the size of the device register 
* structure. If the device is not present, 
* noneprobe returns O. 

* 
* 
* 
* 

***************************************************/ 

noneprobe(addrl, ctlr) 
io handle t addrl; /* I/O handle passed to the /dev/none */ 
/*-driver7 s probe interface */ 
struct controller *ctlr; /* Pointer to controller structure */ 

/*************************************************** 

* * 
* These data structures will be used to register * 
* the interrupt handler for the loadable driver. * 

8-6 Device Driver Example Source Listings 



* * 
****************************************************/ 

ihandler t handler; 
struct tc intr info info; 
int unit ~ ctlr->ctlr num; 
register io_handle t reg = addrl; 

/*************************************************** 
* If the driver has been statically configured, * 
* then the interrupt handlers have already been * 
* registered via the config generated scb vec. * 
* Otherwise, the driver has been loaded and it * 
* is necessary to register the interrupt handlers * 
* here. * 
***************************************************/ 

/*************************************************** 
* Specify the bus that this controller is 
* attached to. 

* 
* 

***************************************************/ 

handler.ih bus ctlr->bus_hd; 

/*************************************************** 
* Set up the fields of the TC specific bus info * 
* structure and specify the controller number * 
***************************************************/ 

info.configuration_st (caddr_t)ctlr; 

/*************************************************** 
* Specifies the driver type as a controller * 
***************************************************/ 

/*************************************************** 
* Specifies the interrupt service interface (lSI) * 
***************************************************/ 

info.intr noneintr; 

/*************************************************** 
* This parameter will be passed to the lSI * 
***************************************************/ 

info.param (caddr_t)uniti 

/*************************************************** 

Device Driver Example Source Listings 8-7 



* The address of the bus specific info structure. * 
***************************************************/ 

handler.ih bus info = (char *)&info; 

/*************************************************** 
* Save off the return id from handler add. This * 
* id will be used later to deregister-the * 
* handler. * 
***************************************************/ 

none id t[unit] = handler add(&handler); 
if (none_id_t[unit] == NULL) { 

return(O); /* Return failure status */ 

if (handler enable(none id t[unit]) 1= 0) { 
handler del(none id t[unit]); 
return(O); /* Return failure status */ 

/*************************************************** 
* Determine if the device is present by calling * 
* the BADADDR interface. If the device is * 
* present, return o. Otherwise, reset the * 
* device and assure that a write to I/O * 
* space completes. * 
***************************************************/ 

else 
if (BADADDR( (caddr_t) reg + NONE_CSR, sizeof(long)) 1=0) 
{ 

return (0); 

write_io_port(reg + NONE CSR, 8, 0, DN RESET); /* Reset the device */ 
wbflush(); - /* Ensure a write to I/O space completes */ 

/*************************************************** 
* If the error bit is set, noneprobe returns 0 to * 
* the configuration code. Otherwise, it * 
* calls write io port and calls wbflush to assure * 
* that a write to I/O space completes. * 
***************************************************/ 

if(read_io_port(reg + NONE_CSR, 8, 0) & DN_ERROR) 
{ 

return (0); 

write io port(reg + NONE CSR, 8, 0, 0); /* Write to the CSR/LED register */ 
wbflush(); /* Ensure a write to I/O space completes */ 

/*************************************************** 
* Return a nonzero value. The device is present. * 
***************************************************/ 

return (1); 

8-8 Device Driver Example Source Listings 



/*************************************************** 
* Attach Interface * 
***************************************************/ 

/*************************************************** 
* 
* 

* 
* 

*--------------- nonecattach ---------------------* 
* * 
* * 
* The nonecattach interface does not currently * 
* perform any tasks. It is provided here as a * 
* stub for future development. * 
***************************************************/ 

nonecattach(ctlr) 
struct controller *ctlr; /* Pointer to controller struct */ 
{ 

/* Attach interface goes here. */ 
return; 

/*************************************************** 
*------------ none ctlr unattach ---------------- * 
* 
* loadable driver specific interface called 
* indirectly from the bus code when a driver is 
* being unloaded. 
* 
* Returns 0 on success, non-zero (1) on error. 

* 
* 
* 
* 
* 
* 

***************************************************/ 

int none ctlr unattach(bus, ctlr) 
struct bus *bus; /* Pointer to bus structure */ 
struct controller *ctlr; /* Pointer to controller structure */ 

register int unit ctlr->ctlr_num; 

/*************************************************** 
* Validate the unit number * 
***************************************************/ 

if ((unit> num none) I I (unit < 0)) 
return(l); /* Return error status */ 

} 

/*************************************************** 
* This interface should never be called for a * 
* static driver. The reason is that the static * 
* driver does not do a handler add in the first * 
*' place. * 
***************************************************/ 

Device Driver Example Source Listings 8-9 



if (none is dynamic == 0) { 
return(l); /* Return error status */ 

} 

/*************************************************** 

} 

* The deregistration of interrupt handlers * 
* consists of a call to handler disable to * 
* disable any further interrupts. Then, call * 
* handler del to remove the lSI. * 
***************************************************/ 

if (handler disable(none id t[unit]) 1= 0) { 
return(l); /* Return error status */ 

} 

if (handler del(none id t[unit]) 1= 0) { 
return(l); /* Return error status */ 

} 
return(O); /* Return success status */ 

/*************************************************** 
* Loadable Device Driver Section * 
***************************************************/ 

/*************************************************** 
*------------------ none configure ----------------* 
***************************************************/ 

/*************************************************** 
* The none configure interface is called to * 
* configure a loadable driver. This interface is * 
* also called to configure, unconfigure, and * 
* query the driver. These operations are * 
* differentiated by the "op" parameter. * 
***************************************************/ 

none configure(op,indata,indatalen,outdata,outdatalen) 

{ 

sysconfig op t 0Pi /* Configure operation */ 
device config t *indata; /* Input data structure */ 
size t-indatalen; /* Size of input data structure */ 
device config t *outdata; /* Output data structure */ 
size_t-outdatalen; /* Size of output data structure */ 

dev t 
int 
int 

cdevno; 
retval; 
i; 

8-10 Device Driver Example Source Listings 



switch (op) { 

/*************************************************** 

* 
* 

Configure (load) the driver. * 
* 

***************************************************/ 

case SYSCONFIG CONFIGURE: 

/*************************************************** 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

The configure interface could be * 
called for either a static or loadable * 
driver. For this reason it is not 
possible to conclude that the driver 
is being dynamically loaded merely 
because the configure interface has 
been entered. To see if the driver 
is dynamically configured check the 
flags field. If this is set, then 
set a driver global variable to 
indicate the driver is loaded. 

* 
* 
* 
* 
* 
* 
* 
* 
* 

***************************************************/ 

if (indata->dc dsflags & IH DRV DYNAMIC) 
none_is_dynamic = 1; -

/*************************************************** 
* 
* 
* 
* 

Sanity check on the config name. * 
If it is null the resolver and * 
configure code won't know what to * 
look for. * 

***************************************************/ 

if (strlen(indata->config name) <= 0) { 
printf("none_configure, null config name.\n"); 
return(EINVAL); 

} 

/*************************************************** 
* Call the resolver to look for * 

* 
* 
* 
* 

matches to the module's rom name * 
in the tc slot table. This will * 
add the controller data structure * 
into the topology tree. * 

***************************************************/ 

if (ldbl stanza resolver(indata->config name, 
DN BUSNAME,-&nonedriver, -
(caddr_t *)none_option_snippet) != 0) { 
return(EINVAL); 

} 

/*************************************************** 

Device Driver Example Source Listings 8-11 



* 
* 
* 
* 
* 

Call the configuration code to * 
cause the driver's probe interface * 
to be called once for each instance * 
of the controller found on the * 
system. * 

***************************************************/ 

if (ldbl ctlr configure(DN BUSNAME, 
LDBL WILDNUM, indata->config name, 
&nonedriver, 0)) { -
return(EINVAL); 

} 

/*************************************************** 
* The above call should have called * 
* the driver's probe interface for * 
* each instance of the controller. * 
* If there were no controllers found * 
* then fail the driver configure * 
* operation. * 
***************************************************/ 

if (num_none == 0) { 
return(EINVAL); 

/*************************************************** 
* Perform the driver configuration * 
* above prior to getting the major * 
* number so that user level programs do * 
* not have access to the driver's * 
* 
* 
* 
* 
* 
* 

entry points in cdevsw prior to the 
completion of the topology and 
interrupt configuration. 

Register the driver's cdevsw entry 
points and obtain the major number 

* 
* 
* 
* 
* 
* 

***************************************************/ 

cdevno = makedev(indata->dc cmajnum, 
(indata->dc_cmajnum-== -1)?-1:0); 

cdevno = cdevsw add(cdevno,&none cdevsw entry); 
if (cdevno == NODEV) { --

/*************************************************** 
* The call to cdevsw add could fail if * 
* the driver is requesting a specific * 
* major number and that number is * 
* currently in use, or if the cdevsw * 
* table is currently full. * 
***************************************************/ 

return (ENODEV) ; 

8-12 Device Driver Example Source Listings 



/*************************************************** 
* Stash away the dev t so that it can * 
* be used later to unconfigure the * 
* device. Save off the minor number * 
* information. This will be returned * 
* by the query call. * 
***************************************************/ 

none devno cdevno; 

/*************************************************** 
* Set up the "outdata" structure to * 
* contain the returned information * 
* from driver configuration. This * 
* will be used by cfgmgr to determine * 
* what device special files need to be * 
* created. * 
* 
* 
* 
* 

This member specifies the major 
number that was assigned to this 
driver. 

* 
* 
* 
* 

***************************************************/ 

outdata->dc_cmajnum major(none_devno); 

/*************************************************** 
* This member indicates that the * 
* beginning minor number will be zero. * 
***************************************************/ 

outdata->dc_begunit 0; 

/*************************************************** 
* Specifies the number of instances of * 
* the controller that were located. * 
***************************************************/ 

outdata->dc numunit num_none; 

/*************************************************** 
* This member specifies the revision of * 
* kernel interfaces that the driver was * 
* 
* 
* 

compiled to. The member will be 
examined upon driver loading to 
ensure compatibility. 

* 
* 
* 

***************************************************/ 

outdata->dc version 

/*************************************************** 
* This flags member is unused. Return * 
* the flags that were passed as input * 
* parameters. * 
***************************************************/ 

Device Driver Example Source Listings 8-13 



outdata->dc_dsflags = indata->dc_dsflags; 

j*************************************************** 
* This is a character driver. For this * 
* 
* 

reason no block major number is 
assigned. 

* 
* 

***************************************************j 

outdata->dc_bmajnum = NODEV; 

j*************************************************** 

* 
* 
* 

The following members are not used by * 
this driver. Set them to zero to that * 
they will have defined values. * 

***************************************************j 

outdata->dc errcode 
outdata->dc-ihflags 
outdata->dc-ihlevel 

o· , 
o· , 
o· , 

j*************************************************** 

* 
* 
* 

Set this state field to indicate that * 
the driver has successfully * 
configured. * 

***************************************************j 

none config = TRUE; 
break; 

j*************************************************** 
* Unconfigure (unload) the driver. * 
***************************************************j 

case SYSCONFIG UNCONFIGURE: 

j*************************************************** 
* DEBUG STATEMENT * 
***************************************************j 

#ifdef NONE DEBUG 
printf("none configure: SYSCONFIG UNCONFIGURE.\n"); 
#endif j* NONE DEBUG *j -
j*************************************************** 

* 
* 

Fail the unconfiguration if the driver * 
is not currently configured. * 

***************************************************j 

if (none_config 1= TRUE) 
return(EINVAL); 

} 

j*************************************************** 

* 
* 
* 

Do not allow the driver to be unloaded * 
if it is currently active. To see if * 
the driver is active look to see if * 

8-14 Device Driver Example Source Listings 



* any users have the device open. * 
***************************************************/ 

for (i = 0; i < num none; i++) { 
if (none_softc[ij.sc_openf != 0) { 

return(EBUSY); 

/*************************************************** 
* Call cdevsw del to remove the driver * 
* entry points from the in-memory resident * 
* cdevsw table. This is done prior to * 
* deleting the loadable configuration * 
* and handlers to prevent users from * 
* accessing the device in the middle of * 
* deconfigure operation. * 
***************************************************/ 

retval = cdevsw del(none devno); 
if (retval) { - -

return(ESRCH); 

/*************************************************** 
* Deregister the driver's configuration * 
* data structures from the hardware * 
* 
* 

topology and cause the interrupt handlers * 
to be deleted. * 

***************************************************/ 

/*************************************************** 
* The bus number is wildcarded to * 
* 
* 
* 
* 
* 
* 
* 
* 
* 

deregister on all instances of the tc * 
bus. The controller name and number are * 
wildcarded. This causes all instances * 
that match the specified driver structure * 
to be deregistered. Through the bus * 
specific code, this interface results * 
in a call to the none ctlr unattach * 
interface for each instance of the * 
controller. * 

***************************************************/ 

if (ldbl ctlr unconfigure(DN BUSNAME, 
LDBLj~ILDNUM, &nonedriver, 
LDBL_WILDNAME, LDBL_WILDNUM) != 0) { 

/*************************************************** 
* DEBUG STATEMENT * 
***************************************************/ 

#ifdef NONE DEBUG 
printf("none configure:ldbl ctlr unconfigure failed.\n"); 
#endif /* NONE DEBUG */ - -

Device Driver Example Source Listings 8-15 



} 

none_config 
break; 

return(ESRCH); 

FALSE; 

/*************************************************** 
* Driver Query. Return configuration * 
* information. For a query * 
* operation, the indata members are * 
* not looked at. Rather, the outdata * 
* members are filled in similarly to * 
* what was done at the end of the * 
* configure interface. * 
***************************************************/ 

case SYSCONFIG_QUERY: 

/*************************************************** 

* 
* 

Fail the query if the driver is 
not currently configured. 

* 
* 

***************************************************/ 

} 

if (none_config != TRUE) 
return(EINVAL); 

} 
outdata->dc cmajnum 
outdata->dc-bmajnum 
outdata->dc-begunit 
outdata->dc-numunit 
outdata->dc-version 
break; 

major(none_devno); 
NODEV; 
O· , 
num_none; 
DRIVER BUILD_LEVEL; 

default: /* Unknown operation type */ 
return(EINVAL); 

/*************************************************** 
* The driver's configure interface has * 
* completed successfully. Return a success * 
* status. * 
***************************************************/ 

return(O); 
} 

8-16 Device Driver Example Source Listings 



/*************************************************** 
* Open and Close Device Section * 
***************************************************/ 

/*************************************************** 
* * 
* * 
* * 
*----------------- noneopen --------------------- * 
* * 
* * 
* * 
* The noneopen interface is called as the result * 
* of an open system call. The noneopen interface * 
* checks to ensure that the open is unique, * 
* marks the device as open, and returns the * 
* value zero (0) to the open system call to * 
* indicate success. * 
***************************************************/ 

none open (dev, flag, format) 
dev t dev; 
int-flag; 
int format; 
{ 

/* Major/minor device number */ 
/* Flags from /usr/sys/h/file.h */ 
/* Format of special device */ 

/*************************************************** 
* Perform the following initializations: * 

* * 
* (1) Initialize unit to the minor device number * 
* (2) Initialize the pointer to the controller * 
* structure associated with this none device * 
* (3) Initialize the pointer to the none softc * 
* structure associated with this none * 

* device * 
***************************************************/ 

register int unit = minor(dev); 

struct controller *ctlr = noneinfo[unit); 

struct none softc *sc = &none_softc[unit); 

/*************************************************** 
* If the device does not exist, return no such * 
* device. * 
***************************************************/ 

if(unit >= NNONE) 
return ENODEV; 

/*************************************************** 
* Make sure the open is unique * 
***************************************************/ 

if (sc->sc_openf == DN_OPEN) 
return (EBUSY); 

/*************************************************** 
* If device is initialized, set sc_openf and * 

Device Driver Example Source Listings 8-17 



* return 0 to indicate success. Otherwise, the * 
* device does not exist. Return an error code. * 
***************************************************/ 

if ((ctlr 1=0) && (ctlr->alive & ALV_ALIVE)) 
{ 

} 

sc->sc_openf 
return(O); 

DN_OPEN; 

/*************************************************** 
* Return an error code to indicate device does * 
* not exist. * 
***************************************************/ 

else return(ENXIO); 
} 

/*************************************************** 
* Close Interface * 
***************************************************/ 

/*************************************************** 

* * 
* * 
*--------------- noneclose -----------------------* 
* 
* 
* 

* 
* 
* 

* The noneclose interface uses the same arguments * 
* as noneopen; gets the device minor number in * 
* the same way; and initializes the device and * 
* none softc structures identically. The purpose * 
* of noneclose is to turn off the open flag for * 
* the specified none device. * 
***************************************************/ 

noneclose(dev, flag, format) 
dev t dev; /* Major/minor device number */ 
int-flag; /* Flags from /usr/sys/h/file.h */ 
int format; /* Format of special device */ 
{ 

/*************************************************** 
* Perform the following initializations: * 
* * 
* (1 ) Initialize unit to the minor device number * 
* (2 ) Initialize the pointer to the controller * 
* structure associated with this none device * 
* (3 ) Initialize the pointer to the none softc * -
* structure associated with this none * 
* device * 
* (4 ) Initialize the pointer to the device * 
* register structure. * 
***************************************************/ 

register int unit = minor(dev); 

struct controller *ctlr = noneinfo[unit]; 

struct none softc *sc = &none_softc[unit]; 

8-18 Device Driver Example Source Listings 



register io handle t reg = 
(io_handle_t) ctlr=>addri 

/*************************************************** 
* Turn off the open flag for the specified device * 
***************************************************/ 

sc->sc_openf = ON_CLOSE; 

/*************************************************** 
* Turn off interrupts * 
***************************************************/ 

write_io_port(reg + NONE_CSR, 8, 0, 0); 

/*************************************************** 
* Assure that write to r/o space completes * 
***************************************************/ 

wbflush( ); 

/*************************************************** 
* Return success * 
***************************************************/ 

return(O); 
} 

/*************************************************** 
* Read and Write Device Section * 
***************************************************/ 

/*************************************************** 

* 
* 

* 
* 

*--------------- noneread ------------------------* 
* 
* 
* 
* The noneread interface simply returns success 
* to the read system call because the /dev/none 
* driver always returns EOF on read operations. 

* 
* 
* 
* 
* 
* 

***************************************************/ 

noneread(dev, uio, flag) 
dev t dev; /* Major/minor device number */ 
struct uio *uio; /* Pointer to uio structure */ 
int flag; /* Access mode of device */ 
{ 

return (0); /* Return success */ 
} 

Device Driver Example Source Listings 8-19 



/*************************************************** 
* Write Interface * 
* 
* 

* 
* 

*--------------- nonewrite -----------------------* 
* * 
* * 
* * 
* The nonewrite interface takes the same formal * 
* parameters as the noneread interface. The * 
* nonewrite interface, however, copies data from * 
* the address space pointed to by the uio * 
* structure to the device. Upon a successful * 
* write, nonewrite returns the value zero (0) to * 
* the write system call. * 
***************************************************/ 

nonewrite(dev, uio, flag) 
dev t dev; /* Major/minor device number */ 
struct uio *uio; /* Pointer to uio structure */ 
int flag; /* Access mode of device */ 

{ 

/*************************************************** 
* Perform the following initializations and * 
* declarations: * 
* * 
* (1) Initialize unit to the minor device number * 
* (2) Initialize the pointer to the controller * 
* structure associated with this none device * 
* (3) Initialize the pointer to the none softc * 
* structure associated with this none device * 
* (4) Declare a count variable to store thei * 
* size of the write request * 
* (5) Declare a pointer to an iovec structure * 
***************************************************/ 

int unit = minor(dev); 

struct controller *ctlr = noneinfo[unit); 

struct none softc *sc 

unsigned int count; 

struct iovec *iov; 

&none_softc[unit); 

/*************************************************** 
* While true, get the next I/O vector * 
***************************************************/ 

while(uio->uio_resid > 0) { 
iov = uio->uio iov; 
if(iov->iov_len == 0) { 

uio->uio_iov++; 
uio->uio iovcnt--; 
if(uio->uio_iovcnt < 0) 

panic("none write"); 

8-20 Device Driver Example Source Listings 



continue; 
} 

/*************************************************** 
* Figure out how big the write request is * 
***************************************************/ 

count = iov->iov_len; 

/*************************************************** 
* Note that the data is consumed * 
***************************************************/ 

iov->iov base += count; 
iov->iov-len -= count; 
uio->uio-offset += count; 
uio->uio=resid -= count; 

/*************************************************** 
* Count the bytes written * 
***************************************************/ 

sc->sc count +=count; 
} 
return (0); 

} 

/*************************************************** 
* Interrupt Section * 

* 
* 

* 
* 

*--------------- noneintr ------------------------* 
* * 
* * 
* * 
* The noneintr interface does not currently * 
* perform any tasks. It is provided here as a * 
* stub for future development. The noneintr * 
* interface does nothing because there is no * 
* real physical device to generate an interrupt. * 
***************************************************/ 

noneintr(unit) 
int unit; /* Logical unit number for device */ 

{ 

/*************************************************** 
* Declare and initialize structures * 
***************************************************/ 

struct controller *ctlr = noneinfo[unit]; 
struct none softc *sc = &none_softc[unit]; 

/* Code to perform the interrupt */ 

} 

Device Driver Example Source Listings 8-21 



/*************************************************** 
* ioctl Section * 

* 
* 

* 
* 

*--------------- noneioctl -----------------------* 
* 
* 
* 
* The noneioctl interface obtains and clears the 
* count of bytes that was previously written by 
* nonewrite. When a user program issues the 
* command to obtain the count, the /dev/none 
* driver returns the count through the data 
* pointer passed to the noneioctl interface. 
* When a user program asks to clear the count, 
* the /dev/none driver does so. 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

***************************************************/ 

data, flag) noneioctl(dev, cmd, 
dev t dev; 
unsIgned int cmd; 
caddr t data; 

/* Major/minor device number */ 
/* The ioctl command */ 

int flag; 
/* ioctl command-specified data */ 
/* Access mode of the device */ 

/*************************************************** 
* Perform the following initializations and * 
* declarations: * 
* (1) Initialize unit to the minor device number * 
* (2) Declare a pointer to variable that stores * 
* the character count. * 
* (3) Initialize the pointer to the none softc * 
* structure associated with this none device * 
***************************************************/ 

int unit = minor(dev); 

int *res; 

struct none_softc *sc = &none_softc[unit); 

/*************************************************** 
* For GETCOUNT operations, set the res variable * 
* to point to the kernel memory allocated by the * 
* ioctl system call. The ioctl system call * 
* copies the data to and from user address space. * 
***************************************************/ 

res = (int *) data; 

/*************************************************** 
* Save the count, if necessary * 
***************************************************/ 

if(cmd == DN_GETCOUNT) 
*res = sc->sc_count; 

/*************************************************** 
* Clear the count, if necessary * 

8-22 Device Driver Example Source Listings 



***************************************************/ 

if(cmd == DN_CLRCOUNT) 
sc->sc_count = 0; 

/*************************************************** 
* Success * 
***************************************************/ 

return (0); 
} 

Device Driver Example Source Listings 8-23 



B.2 Source Listing for the Idev/cb Device Driver 
/*************************************************** 
* cbreg.h 

* 
Header file for cb.c 17-Nov-1993 * 

* 
***************************************************/ 

/*************************************************** 

* * 
* 
* 
* 

Copyright (c) 1993 by 
Digital Equipment Corporation, Maynard, MA 

All rights reserved. 

* 
* 
* 

* * 
* This software is furnished under the terms and * 
* conditions of the TURBOchannel Technology * 
* license and may be used and copied only in * 
* accordance with the terms of such license and * 
* with the inclusion of the above copyright * 
* notice. No title to and ownership of the * 
* software is hereby transferred. * 
* * 
* The information in this software is subject to * 
* change without notice and should not be * 
* construed as a commitment by Digital Equipment * 
* Corporation. * 
* * 
* Digital assumes no responsibility for the use * 
* or reliability of its software on equipment * 
* which is not supplied by Digital. * 
***************************************************/ 

/*************************************************** 

* * 
* Define an offset of registers from base address * 
* of option; a macro to convert register offset * 
* to kernel virtual address; and a macro to * 
* scramble physical address to TC DMA address. * 
***************************************************/ 

#define CB REL LOC Ox00040000 
#define CB-ADR(n) ((io handle t)(n + CB REL LOC» 
#define CB=SCRAMBLE(x)-(((unslgned)x«3)&-(Oxlf» I (((unsigned)x»29)&Oxlf) 

/*************************************************** 
* TURBOchannel test board CSR Enable and Status * 
* bits 

* 
* 
* 

***************************************************/ 

#define CB INTERUPT OxOeOO /* Bits: 8 = 0; 9, 10 & 11 
#define CB CONFLICT OxOdOO /* Bits: 9 = 0; 8, 10 & 11 
#define CB DMA RD OxObOO /* Bits: 10 = 0; 8, 9 & 11 
#define CB DMA WR Ox0700 /* Bits: 11 = 0; 8, 9 & 10 
#define CB DMA DONE OxOOl0 /* Use in timeout loop */ 

/*************************************************** 
* Define ioctl macros for the cb driver. * 
* * 

8-24 Device Driver Example Source Listings 

1 */ 
1 */ 
1 */ 
1 */ 



***************************************************/ 

#define CBPIO IO('v' ,0) /* Set Read/Write mode to PIO */ 
#define CBDMA _IO('v' ,1) /* Set Read/Write mode to DMA */ 
#define CBINT _IO('v' ,2) /* Perform Interrupt test */ 

#define CBROM 
#define CBCSR 

IOWR('v',3,int) /* Return specified word */ 
=IOR('V',4,int) /* Update & return CSR word */ 

#define CBINC 
#define CBSTP 

IO('v' ,5) /* Start incrementing lights */ 
=IO('V' ,6) /* stop incrementing lights */ 

/*************************************************** 
* Register offset definitions for a CB device. * 
* The registers are aligned on longword (32-bit) * 
* boundaries, even when they are implemented with * 
* less than 32 bits. * 
* * 
***************************************************/ 

#define CB ADDER 
#define CB DATA 
#define CB CSR 
#define CB TEST 

OxO /* 32-bit read/write DMA address register */ 
Ox4 /* 32-bit read/write data register */ 
Ox8 /* 16-bit read/write CSR/LED register */ 
OxC /* Go bit: Write sets and Read Clears */ 

/*************************************************** 

* * 
* 
* 
* 

Copyright (c) 1993 by 
Digital Equipment Corporation, Maynard, MA 

All rights reserved. 

* 
* 
* 

* * 
* This software is furnished under the terms and * 
* conditions of the TURBOchannel Technology * 
* license and may be used and copied only in * 
* accordance with the terms of such license and * 
* with the inclusion of the above copyright * 
* notice. No title to and ownership of the * 
* software is hereby transferred. * 
* * 
* The information in this software is subject to * 
* change without notice and should not be * 
* construed as a commitment by Digital Equipment * 
* Corporation. * 
* * 
* Digital assumes no responsibility for the use * 
* or reliability of its software on equipment * 
* which is not supplied by Digital. * 
***************************************************/ 

/*************************************************** 
* * 
* The /dev/cb device driver operates on a * 
* TURBOchannel (TC) bus. The device it controls * 
* is called a TURBOchannel test board. The * 
* TURBOchannel test board is a minimal * 
* implementation of all TURBOchannel hardware * 
* functions: * 
* * 
* 
* 

o Programmed I/O (PIO) 
o Direct Memory Access (DMA) read 

* 
* 

Device Driver Example Source Listings 8-25 



* 
* 
* 

o DMA write 
o Input/Output (I/O) read/write conflict 

testing 

* 
* 
* 

* * 
* The software view of the board consists of: * 
* * 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

o An EPROM address space 
o A 32-bit ADDRESS register with bits 

scrambled for direct use as a TC 
DMA address 

o A 32-bit DATA register used for 
programmed I/O and as the holding 
register for DMA 

o A I6-bit Light Emitting Diode (LED)/ 
Control Status Register (CSR) 

o A I-bit TEST register 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

* * 
* All registers MUST be accessed as 32-bit * 
* longwords, even when they are not implemented * 
* as 32 bits. The CSR contains bits to enable * 
* option DMA read testing, conflict signal * 
* testing, I/O interrupt testing, and option * 
* DMA write testing. It also contains a bit to * 
* indicate that one or more of the tests are * 
* enabled, 4 byte mask flag bits, and a DMA * 
* done bit. * 
***************************************************/ 

/*************************************************** 
* This example DEC OSF/I driver provides a * 
* simple interface to the TURBOchannel test * 
* board. It: * 
* * 
* (a) Reads from the data register on the * 
* test board to words in system memory * 
* (b) writes to the data register on the test * 
* board from words in system memory * 
* (c) Tests the interrupt logic on the * 
* test board * 
* 
* 
* 
* 
* 
* 
* 
* 
* 

(d) Reads one 32-bit word from the test 
board address (ROM/register) space into 
system memory 

(e) Updates, reads, and returns the 32-bit 
CSR value 

(f) Starts and stops clock-driven 
incrementing of the four spare LEDs on 
the board. 

* ioctl calls are used to: 

* 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

* (a) Set the I/O mode to Programmed I/O * 
* (the default) * 
* (b) Set the I/O mode to DMA I/O * 
* (c) Enable a single interrupt test * 
* (d) Read one 32-bit word from the test * 
* board address (ROM/register) space * 
* (e) Start clock-driven incrementing of the * 
* 4 spare LEDs on the board or * 
* (f) Stop clock-driven incrementing of the 4 * 
* spare LEDs on the board. * 
* * 

8-26 Device Driver Example Source Listings 



* Standard read and write calls are used to * 
* perform the data register reads and writes. * 
***************************************************/ 

/*************************************************** 
* Larry Robinson and Jim Crapuchettes, Digital * 
* TRIADD Program. Ported to DEC OSF/I by Mark * 
* Parenti, Digital. Made loadable on DEC OSF/l* 
* by Tim Burke, Digital, and Jeff Anuszczyk, 
* formerly of Digital. 

* 
* 

***************************************************/ 

/*************************************************** 
* Include Files Section * 

* * 
***************************************************/ 

/*************************************************** 
* Define a constant called NCB that is used to 
* allocate the data structures needed by the 
* /dev/cb driver. Note that the define uses the 
* TC OPTION SLOTS constant, which is defined in 
* tc~h. There can be at most three instances of 
* the CB controller on the system. This is a 
* small number of instances of the device on the 
* system and the data structures themselves are 
* not large, so it is acceptable to allocate for 
* the maximum configuration. This is an example 
* of the static allocation technique model 2. 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

***************************************************/ 

/*************************************************** 
* The following include files assume that the * 
* current directory is a subdirectory of * 
* /usr/sys. * 

***************************************************/ 

#include <sys/param.h> 
#include <sys/ioctl.h> 
#include <sys/user.h> 
#include <sys/proc.h> 
#include <hal/cpuconf.h> 
#include <sys/vrn.h> 
#include <sys/buf.h> 
#include <sys/errno.h> 
#include <sys/conf.h> 
#include <sys/file.h> 
#include <sys/uio.h> 
#include <sys/types.h> 

#include <io/common/devdriver.h> 
#include <sys/sysconfig.h> 
#include <io/dec/tc/tc.h> 

#include <kits/ESBIOO/cbreg.h> /* Device register header file */ 

#define NCB TC OPTION SLOTS 

Device Driver Example Source Listings 8-27 



/*************************************************** 
* Autoconfiguration Support Declarations and * 
* Definitions Section * 
***************************************************/ 

extern int hZi /* System clock ticks per second */ 

/*************************************************** 
* Do forward declaration of driver entry points * 
* and define information structures for driver * 
* structure definition and initialization below. * 
***************************************************/ 

int cbprobe(), cbattach(), cbintr(), cbopen(), cbclose(); 
int cbread(), cbwrite(), cbioctl(), cbstart(), cbminphys(); 
int cbincled(), cb_ctlr_unattach(), cbstrategy(); 

/*************************************************** 
* Declare an array of pointers to controller 
* structures 

* 
* 

***************************************************/ 

struct controller *cbinfo[NCB]; 

/*************************************************** 
* Define and initialize the driver structure for * 
* this driver. It is used to connect the driver * 
* entry points and other information to the * 
* DEC OSF/l code. The driver structure is * 
* used primarily during Autoconfiguration. Note * 
* that the "slave" and "go" entry points do not * 
* exist in this driver and that a number of the * 
* members of the structure are not used because * 
* this is a driver that operates on the * 
* TURBOchannel bus (not on the VMEbus or some * 
* other bus). * 
***************************************************/ 

struct driver cbdriver { 
cbprobe, /* probe */ 
0, /* slave */ 
cbattach, /* cattach */ 
0, /* dattach */ 
0, /* go */ 
0, /* addr list */ 
0, /* dev name */ 
0, /* dev-list */ 
"cb", /* ctlr name */ 
cbinfo, /* ctlr-list */ 
0, /* xclu-*/ 
0, /* addrl size */ 
0, /* addr(~atype * / 
0, /* addr2 size */ 
0, /* addr2:=atype */ 
cb ctlr_unattach, /* ctlr unattach */ 
a - /* dev_unattach */ 

} ; 

8-28 Device Driver Example Source Listings 



/*************************************************** 
* Loadable Driver Configuration Support * 
* Declarations and Definitions Section * 
***************************************************/ 

/*************************************************** 
* External function references. These are needed * 
* for the cdevsw declaration. The handler add * 
* interface is used to register the interrupt * 
* service interface for the loadable driver. The * 
* cb id t array contains "id's" that are used to * 
* deregister the interrupt handlers. * 
***************************************************/ 

extern int nodev(), nulldev(); 
extern ihandler id t handler add(), handler del(); 
extern ihandler-id-t handler-enable(), handler_disable(); 
ihandler_id_t ch_id_t[NCB]; -

#define CB BUSNAME "tc" /* This is a TURBOchannel driver */ 

/*************************************************** 
* The variable cb is dynamic will be used to * 
* control any differences in functions performed * 
* by the static and loadable versions of the * 
* driver. In this manner any differences are * 
* made on a run-time basis and not on a compile * 
* time basis. * 
***************************************************/ 

/*************************************************** 
* When the driver is loadable it may not have an * 
* entry in the statically built tc option * 
* table (located in tc option data~c). It is not * 
* an error if this entry already existed in the * 
* table. The entry in tc option data.c is used * 
* only when the driver is-configured statically. * 
* The entry below is used only when the driver is * 
* configured dynamically. * 

{ 

* * 
* This table contains the bus specific ROM module * 
* name for the driver. This information forms * 
* the bus-specific parameter that is passed to * 
* the ldbl stanza resolver interface to look for * 
* matches in the tc slot table. * 
***************************************************/ 

/* module 
/* name 
/* 
{ "CB 

driver 
name 

"cb" , 

intr b4 
probe 
-------

0, 

itr aft 
attach type 
-------

1, 'c' , 

adpt 
config 

O}, 

*/ 
*/ 
*/ 

Device Driver Example Source Listings 8-29 



/* Null terminator in the table */ 
} ; 

int num cb 0; /* Count on the number of controllers probed */ 

/*************************************************** 
* Local structure and Variable Definitions * 
* Section * 
***************************************************/ 

/*************************************************** 
* Declare an array of buffer headers, 1 per * 
* CB unit * 
***************************************************/ 

struct buf cbbuf[NCB]; 

unsigned tmpbuffer; /* Temporary one-word buffer for cbstart */ 

/*************************************************** 
* Structure declaration for a CB unit. It * 
* contains status, pointers, and I/O mode for a * 
* single CB device. * 
***************************************************/ 

struct cb unit { /* All items are "for this unit": */ 
int attached; /* An attach was done */ 
int opened; /* An open was done */ 
int iomode; /* Read/write mode (PIO/DMA) */ 
int intrflag; /* Flag for interrupt test */ 
int ledflag; /* Flag for LED increment function */ 
int adapter; /* TC slot number */ 
caddr t cbad; /* ROM base address */ 
io handle t cbr; /* I/O handle for device registers */ 
struct bUf *cbbuf; /* Buffer structure address */ 

} cb_unit[NCB]; 

#define MAX_XFR 4 /* Maximum transfer chunk in bytes */ 

/*************************************************** 
* Loadable Driver Local Structure and Variable * 
* Definitions Section * 
***************************************************/ 

int cb config = FALSE; /* State flags indicating driver configured */ 
dev_t cb_devno = NODEV; /* No major number assigned yet. */ 

/*************************************************** 
* Device switch structure for dynamic * 
* configuration. The following is a definition of * 
* the cdevsw entry that will be dynamically added * 
* for the loadable driver. For this reason the * 
* loadable driver does not need to have its entry * 
* points statically configured into conf.c. * 
***************************************************/ 

struct cdevsw cb_cdevsw_entry 

8-30 Device Driver Example Source Listings 



} ; 

cbopen, 
cbclose, 
cbread, 
cbwrite, 
cbioctl, 
nodev, 
nodev, 
0, 
nodev, 
nodev, 
DEV FUNNEL NULL - -

/* d open */ 
/* d-close */ 
/* d-read */ 
/* d-write */ 
/* d-ioctl */ 
/* d-stop */ 
/* d-reset */ 
/* d-ttys */ 
/* d-select */ 
/* d-mmap */ 
/* (~funnel */ 

/*************************************************** 
* WARNING ON USE OF printf FOR DEBUGGING 

* 
* Only a limited number of characters (system 
* release dependent; currently, seems to be 128) 
* can be sent to the "console" display during 
* each call to any section of a driver. This is 
* because the characters are buffered until the 

* 
* 
* 
* 
* 
* 
* 

* driver returns to the kernel, at which time * 
* they are actually sent to the "console". If * 
* more than this number of characters are sent to * 
* the "console", the storage pointer may wrap * 
* around, discarding all previous characters, or * 
* it may discard all following characters! (Also * 
* system release dependent.) Limit "console" * 
* output from within the driver if you need to * 
* see the results in the console window. * 
* However, 'printf' from within a driver also * 
* puts the messages into the error log file. * 
* The text can be viewed with 'uerf'. See the * 
* Juerf' man page for more information. The * 
* "-0 terse" option makes the messages easier to * 
* read by removing the time stamp information. * 

* * 
* WARNING ON USE OF printf FOR DEBUGGING * 
***************************************************/ 

#define CB DEBUG /* Define debug constants */ 
#undef CB DEBUGx /* Disable xtra debug */ 

/*************************************************** 
* Autoconfiguration Support Section * 
***************************************************/ 

/*************************************************** 

* 
* 

* 
* 

*--------------- cbprobe -------------------------* 
***************************************************/ 

cbprobe{vbaddr, ctlr) 
caddr t vbaddr; 
struct controller *ctlr; 

/* Virtual base address of slot */ 
/* controller structure for this unit */ 

Device Driver Example Source Listings 8-31 



/*************************************************** 
* * 
* These data structures will be used to register * 
* the interrupt handler for the loadable driver. * 
* * 
****************************************************/ 

ihandler t handler; 
struct tc intr info info; 
int unit ~ ctlr->ctlr_num; 

/*************************************************** 
* Call printf during debug * 
***************************************************/ 

/*************************************************** 
* DEBUG STATEMENT * 
***************************************************/ 

#ifdef CB_DEBUG 
printf("CBprobe @ %8x, vbaddr = %8x, ctlr = %8x\n",cbprobe,vbaddr,ctlr); 
#endif /* CB_DEBUG */ 

/*************************************************** 
* If the driver has been statically configured, * 
* then the interrupt handlers have already been * 
* registered via the config generated scb vec. * 
* Otherwise, the driver has been loaded and it * 
* is necessary to register the interrupt handlers * 
* here. * 
***************************************************/ 

/*************************************************** 
* DEBUG STATEMENT * 
***************************************************/ 

#ifdef CB DEBUG 
printf("CBprobe: perform loadable driver config of unit %d\n",unit); 
#endif /* CB_DEBUG */ 

/*************************************************** 
* Specify the bus that this controller is * 
* attached to. * 
***************************************************/ 

handler.ih_bus = ctlr->bus~hd; 

/*************************************************** 
* Set up the fields of the TC specific bus info * 
* structure and specify the controller number * 
***************************************************/ 

info.configuration_st (caddr_t)ctlri 

8-32 Device Driver Example Source Listings 



/*************************************************** 
* Specifies the driver type as a controller * 
***************************************************/ 

info.config_type 

/*************************************************** 
* Specifies the interrupt service interface (lSI) * 
***************************************************/ 

info.intr cbintr; 

/*************************************************** 
* This parameter will be passed to the lSI * 
***************************************************/ 

info.param = (caddr_t)unit; 

/*************************************************** 
* The address of the bus specific info structure. * 
***************************************************/ 

handler.ih bus info = (char *)&info; 

/*************************************************** 
* Save off the return id from handler add. This * 
* id will be used later to deregister-the * 
* handler. * 
***************************************************/ 

cb id t[unit] = handler add(&handler); 
if-(ch_id_t[unit] == NULL) { 

/*************************************************** 
* DEBUG STATEMENT * 
***************************************************/ 

#ifdef CB DEBUG 
printf(IICBprobe: handler add failed.\n"); 
#endif /* CB DEBUG */ -

return(O); /* Return failure status */ 

if (handler enable(cb id t[unit]) 1= 0) { 
handler_del(cb=id=t[unit]); 

/*************************************************** 
* DEBUG STATEMENT * 
***************************************************/ 

#ifdef CB_DEBUG 
printf("CBprobe: handler enable failed.\n"); 
#endif /* CB_DEBUG */ -

return(O); /* Return failure status */ 

Device Driver Example Source Listings 8-33 



else { 
j*************************************************** 
* DEBUG STATEMENT * 
***************************************************j 

#ifdef CB DEBUG 
printf("CBprobe: driver not loadable!\n"); 
#endif j* CB DEBUG *j 

} 

j*************************************************** 
* Increment the number of instances of this * 
* controller. * 
***************************************************j 

j*************************************************** 
* DEBUG STATEMENT * 
***************************************************j 

#ifdef CB DEBUG 
printf("CBprobe: return success.\n"); 
#endif /* CB_DEBUG *j 

return(l); j* Assume ok since TC ROM probe worked *j 

j*************************************************** 
*-------------- cbattach -------------------------* 
***************************************************/ 

cbattach(ctlr) 
struct controller *ctlr; j* controller structure for this unit *j 
{ 

struct cb_unit *cb; /* Pointer to unit data structure */ 

j*************************************************** 
* Set up per-unit data structure for this device * 
***************************************************j 

cb = &cb_unit[ctlr->ctlr_num]; /* Point to this device's structure *j 

cb->attached = 1; /* Indicate device is attached */ 

cb->adapter = ctlr->slot; j* Set the adapter (slot) number *j 

cb->cbad = ctlr->addr; j* Set base of device ROM */ 

cb->cbr = (io handle t)CB ADR(ctlr->addr); /* Point to device's registers */ 
cb->cbbuf &cbbuf[ctlr->ctlr num]; j* Point to device's 

- buffer header *j 

8-34 Device Driver Example Source Listings 



/*************************************************** 
*------------ cb ctlr unattach -------------------* 

* * 
* loadable driver specific interface called * 
* indirectly from the bus code when a driver is * 
* being unloaded. * 

* * 
* Returns 0 on success, non-zero (1) on error. * 
***************************************************/ 

int cb ctlr unattach(bus, ctlr) 
struct bus *bus; /* Pointer to bus structure */ 
struct controller *ctlr; /* Pointer to controller structure */ 

register int unit = ctlr->ctlr_num; 

/*************************************************** 
* Validate the unit number * 
***************************************************/ 

if ((unit> num_cb) I I (unit < 0)) { 
return(l); /* Return error status */ 

/*************************************************** 
* This interface should never be called for a * 
* static driver. The reason is that the static * 
* driver does not do a handler add in the first * 
* place. * 
***************************************************/ 

if (cb is dynamic == 0) { 
- return(l); /* Return error status */ 

/*************************************************** 
* The deregistration of interrupt handlers * 
* consists of a call to handler disable to * 
* disable any further interrupts. Then, call * 
* handler del to remove the lSI. * 
***************************************************/ 

if (handler disable(cb id t[unit]) != 0) { 
return(l); /* Return error status */ 

if (handler del(cb id t[unit]) != 0) { 
return(l);-/*-Return error status */ 

} 
return(O); /* Return success status */ 

Device Driver Example Source Listings 8-35 



/*************************************************** 
* Loadable Device Driver Section * 
***************************************************/ 

/*************************************************** 
*------------------ cb configure -----------------* 
***************************************************/ 

/*************************************************** 
* The cb configure interface is called to * 
* configure a loadable driver. This interface * 
* is also called to configure, unconfigure, and * 
* query the driver. These operations are * 
* differentiated by the "op" parameter. * 
***************************************************/ 

cb configure(op,indata,indatalen,outdata,outdatalen) 
-sysconfig op t 0Pi /* Configure operation */ 

device config t *indatai /* Input data structure */ 
size t-indataleni /* Size of input data structure */ 
device config t *outdatai /* Output data structure */ 
size_t-outdataleni /* Size of output data structure */ 

dev t 
int-

cdevnoi 
retvali 

int ii 
struct cb unit *cbi /* Pointer to unit data structure */ 
int cbincled()i /* Forward reference function */ 

switch (op) { 

/*************************************************** 
* Configure (load) the driver. * 

* * 
***************************************************/ 

case SYSCONFIG CONFIGURE: 
/*************************************************** 

* DEBUG STATEMENT * 
***************************************************/ 

#ifdef CB DEBUG 
printf("cb configure: SYSCONFIG_CONFIGURE.\n")i 
#endif /* CB_DEBUG */ 

/*************************************************** 
* The configure interface could be * 
* called for either a static or loadable * 

* 
* 
* 
* 
* 
* 
* 
* 
* 

driver. For this reason it is not 
possible to conclude that the driver 
is being dynamically loaded merely 
because the configure interface has 
been entered. To see if the driver 
is dynamically configured check the 
flags field. If this is set, then 
set a driver global variable to 
indicate the driver is loaded. 

* 
* 
* 
* 
* 
* 
* 
* 
* 

***************************************************/ 

8-36 Device Driver Example Source Listings 



if (indata->dc dsflags & IH DRV DYNAMIC) 
cb_is_dynamic = 1; - -

j*************************************************** 
* Sanity check on the config name. * 
* If it is null the resolver and * 

* 
* 

configure code won't know what to * 
look for. * 

***************************************************j 

if (strlen(indata->config name) <= 0) { 
printf("cb_configure, null config name.\n"); 
return(EINVAL); 

j*************************************************** 
* Call the resolver to look for * 
* matches to the module's rom name * 
* in the tc slot table. This will * 
* add the controller data structure * 
* into the topology tree. * 
***************************************************j 

if (ldbl stanza resolver(indata->config name, 
CB BUSNAME, &cbdriver, -
(caddr_t *)cb_option_snippet) 1= 0) { 
return(EINVAL); 

j*************************************************** 
* Call the configuration code to * 
* cause the driver's probe interface * 
* to be called once for each instance * 
* of the controller found on the * 

* system. * 
***************************************************j 

if (ldbl ctlr configure(CB BUSNAME, 
LDBL WILDNUM, indata->config name, 
&cbdriver, 0)) { -
return(EINVAL); 

j*************************************************** 
* The above call should have called * 
* the driver's probe interface for * 
* each instance of the controller. * 
* If there were no controllers found * 
* then fail the driver configure * 
* operation. * 
***************************************************j 

0) { 

Device Driver Example Source Listings 8-37 



/*************************************************** 
* DEBUG STATEMENT * 
***************************************************/ 

#ifdef CB DEBUG 
printf(IIcb configure: no controllers found.\n"); 
#endif /* CB DEBUG */ 

return(EINVAL); 

/*************************************************** 
* Perform the driver configuration * 
* above prior to getting the major * 
* number so that user level programs do * 
* not have access to the driver's * 
* entry points in cdevsw prior to the * 
* completion of the topology and * 
* interrupt configuration. * 
* * 
* Register the driver's cdevsw entry * 
* points and obtain the major number * 
***************************************************/ 

cdevno = makedev(indata->dc cmajnum, 
(indata->dc cmajnum-== -1)?-1:0); 

cdevno = cdevsw add(cdevno,&cb cdevsw entry); 
if (cdevno == NODEV) { - -

/*************************************************** 
* The call to cdevsw add could fail if * 
* the driver is requesting a specific * 
* major number and that number is * 
* currently in use, or if the cdevsw * 
* table is currently full. * 
***************************************************/ 

return (ENODEV) ; 

/*************************************************** 
* Stash away the dev t so that it can * 
* be used later to unconfigure the * 
* device. Save off the minor number * 
* information. This will be returned * 
* by the query call. * 
***************************************************/ 

cb devno cdevno; 

/*************t************************************* 
* Set up the "outdata" structure to * 
* contain the returned information * 
* from driver configuration. This * 
* will be used by cfgmgr to determine * 
* what device special files need to be * 

8-38 Device Driver Example Source Listings 



* created. * 
* * 
* This member specifies the major * 
* number that was assigned to this * 
* driver. * 
***************************************************/ 

outdata->dc_cmajnum major(cb_devno); 

/*************************************************** 
* This member indicates that the * 
* beginning minor number will be zero. * 
***************************************************/ 

outdata->dc_begunit = 0; 

/*************************************************** 
* Specifies the number of instances of * 
* the controller that were located. * 
***************************************************/ 

outdata->dc numunit 

/*************************************************** 
* This member specifies the revision of * 
* kernel interfaces that the driver was * 
* compiled to. The member will be * 
* examined upon driver loading to * 
* ensure compatibility. * 
***************************************************/ 

outdata->dc version 

/*************************************************** 
* This flags member is unused. Return * 
* the flags that were passed as input * 
* parameters. * 
***************************************************/ 

outdata->dc_dsflags indata->dc_dsflags; 

/*************************************************** 
* This is a character driver. For this * 
* 
* 

reason no block major number is 
assigned. 

* 
* 

***************************************************/ 

outdata->dc_bmajnum = NODEV; 

/*************************************************** 
* 
* 
* 

The following members are not used by * 
this driver. Set them to zero to that * 
they will have defined values. * 

***************************************************/ 

Device Driver Example Source Listings 8-39 



outdata->dc errcode 
outdata->dc-ihflags 
outdata->dc-ihlevel 

0; 
0; 
0; 

/*************************************************** 
* Set this state field to indicate that * 
* 
* 

the driver has successfully 
configured. 

* 
* 

***************************************************/ 

cb config = TRUE; 
break; 

/*************************************************** 
* Unconfigure (unload) the driver. * 
***************************************************/ 

case SYSCONFIG UNCONFIGURE: 

/*************************************************** 
* DEBUG STATEMENT * 
***************************************************/ 

#ifdef CB DEBUG 
printf("cb configure: SYSCONFIG UNCONFIGURE.\n"); 
#endif /* CB DEBUG */ -
/*************************************************** 
* Fail the unconfiguration if the driver * 
* is not currently configured. * 
***************************************************/ 

if (cb_config != TRUE) { 
return(EINVAL); 

/*************************************************** 
* Do not allow the driver to be unloaded * 
* 
* 
* 

if it is currently active. To see if * 
the driver is active look to see if * 
any users have the device open. * 

***************************************************/ 

/*************************************************** 
* Do not allow the driver to be unloaded * 
* 
* 
* 

if it is currently active. To see if * 
the driver is active look to see if any * 
users have the device open. * 

***************************************************/ 

for (i = 0; i < num cb; i++) { 
if (cb_unit[i].opened != 0) { 

return(EBUSY); 

8-40 Device Driver Example Source Listings 



/*************************************************** 
* Turn off the LED increment function. * 
* This is needed to ensure that the driver * 
* 
* 
* 
* 
* 
* 
* 

is quiescent. If this was not done, the * 
cbincled interface could be called later * 
after its timeout interval had expired. * 
This could then try to execute an * 
interface of this driver which had * 
already been unloaded, resulting in a * 
system panic. * 

***************************************************/ 

for (i = 0; i < num cb; i++) 
cb = &cb unit[i]; 
cb->ledflag = 0; 
untimeout(cbincled, (caddr_t)cb); 

/*************************************************** 
* Call cdevsw del to remove the driver * 
* entry points from the in-memory resident * 
* cdevsw table. This is done prior to * 
* deleting the loadable configuration * 
* and handlers to prevent users from * 
* accessing the device in the middle of * 
* deconfigure operation. * 
***************************************************/ 

retval = cdevsw del(cb devno); 
if (retval) {- -
return(ESRCH); 
} 

/*************************************************** 
* 
* 
* 
* 

Deregister the driver's configuration * 
data structures from the hardware * 
topology and cause the interrupt handlers * 
to be deleted. * 

***************************************************/ 

/*************************************************** 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

The bus number is wildcarded to 
deregister on all instances of the tc 
bus. The controller name and number is 
wildcarded. This causes all instances 

* 
* 
* 
* 

that match the specified driver structure * 
to be deregistered. Through the bus * 
specific code, this interface call will * 
result in a call to the cb ctlr unattach * 
interface for each instance of the * 
controller. * 

***************************************************/ 

Device Driver Example Source Listings 8-41 



LDBL_WILDNUM, &cbdriver, 
LDBL_WILDNAME, LDBL_WILDNUM) 1= 0) { 

/*************************************************** 
* DEBUG STATEMENT * 
***************************************************/ 

#ifdef CB DEBUG 
printf("cb configure:ldbl ctlr unconfigure failed.\n"); 
#endif /* CB_DEBUG */ - -

cb_config 
break; 

return(ESRCH); 

FALSE; 

j*************************************************** 
* Driver Query. Return configuration * 
* information. For a query * 
* operation, the indata members are * 
* not looked at. Rather, the outdata * 
* members are filled in similarly to * 
* what was done at the end of the * 
* configure interface. * 
***************************************************/ 

case SYSCONFIG_QUERY: 

/*************************************************** 
* Fail the query if the driver is * 
* not currently configured. * 
***************************************************/ 

if (cb_config 1= TRUE) { 
return(EINVAL) ; 

outdata->dc cmajnum 
outdata->dc-bmajnum 
outdata->dc-begunit 
outdata->dc-numunit 
outdata->dc-version 
break; 

major(cb_devno); 
NODEV; 
0; 
num_cb; 
DRIVER BUILD_LEVEL; 

default: /* Unknown operation type */ 
return(EINVAL); 

/*************************************************** 
* The driver's configure interface has * 
* completed successfully. Return a success * 
* status. * 
***************************************************/ 

return(O); 

8-42 Device Driver Example Source Listings 



/*************************************************** 
* Open and Close Device Section * 
***************************************************/ 

/*************************************************** 
*---------------- cbopen -------------------------* 
***************************************************/ 

flag, format) cbopen(dev, 
dev t dev; 
int-flag; 
int format; 
{ 

/* Major/minor device number */ 
/* Flags from /usr/sys/h/file.h */ 
/* Format of special device */ 

/*************************************************** 
* Get device (unit) number * 
***************************************************/ 

int unit = minor(dev); 

/*************************************************** 
* Error if unit number too big or if unit * 
* not attached * 
***************************************************/ 

if ((unit> NCB) I I !cb_unit[unit].attached) 
return(ENXIO); 

cb_unit[unit].opened = 1; /* All ok, indicate device opened */ 
return(O); /* Return success! */ 

/*************************************************** 
*---------------- cbclose ------------------------* 
***************************************************/ 

cbclose(dev, flag, format) 
dev t dev; /* Major/minor device number */ 
int-flag; /* Flags from /usr/sys/h/file.h */ 
int format; /* Format of special device */ 

int unit = minor(dev); 
cb_unit[unit].opened 
return(O); 

/* Get device (unit) number */ 
0; /* Indicate device closed */ 

/* Return success! */ 

/*************************************************** 
* Read and Write Device section * 
***************************************************/ 

/*************************************************** 
*---------------- cbread -------------------------* 
***************************************************/ 

cbread(dev, uio, flag) 
dev t dev; /* Major/minor device numbers */ 
struct uio *uio; /* I/O descriptor structure */ 
int flag; /* Access mode of device */ 

unsigned tmp; 
int cnt, err; 
int unit = minor(dev); 
struct cb unit *cb; 

/* Get device (unit) number */ 
/* Pointer to unit data structure */ 

Device Driver Example Source Listings 8-43 



/*************************************************** 
* To do the read, the device index (unit number) * 
* is used to select the TC test board to be * 
* accessed and the mode setting within the * 
* controller structure for that unit is tested * 
* to determine whether to do a programmed read or * 
* a DMA read. For a programmed read, the * 
* contents of the data register on the test board * 
* are read into a 32-bit local variable and then * 
* the contents of that variable are moved into * 
* the buffer in the user's virtual address space * 
* with the uiomove interface. * 
* * 
* For a DMA read, the system's physio interface * 
* and the driver's strategy and minphys * 
* interfaces are used to transfer the contents of * 
* the data register on the test board into the * 
* buffer in the user's virtual address space. * 
* * 
* Note that since only a single word of 4 * 
* (the constant MAX_XFR) bytes can be transferred * 
* at a time, both modes of reading include code * 
* to limit the read to chunks with a maximum of * 
* MAX XFR bytes each and that reading more than * 
* MAX-XFR bytes will propagate the contents of * 
* the-data register throughout the words of the * 
* user's buffer. * 
***************************************************/ 

err = 0; 
cb = &cb unit[unit]; 
if(cb->iomode == CBPIO) 

/* Initialize for no error (yet) */ 
/* Set pointer to unit's structure */ 
/* Programmed I/O read code */ 

/*************************************************** 
* Transfer bytes from the test board data * 
* register to the user's buffer until all * 
* requested bytes are moved or an error occurs. * 
* This must be done as a loop because the source * 
* (the board data register) can supply only * 
* MAX XFR bytes at a time. The loop may not be * 
* required for other devices. * 
***************************************************/ 

while«cnt = uio->uio_resid) && (err 

/*************************************************** 
* Force count for THIS "section" to be less than * 
* or equal to MAX XFR bytes (the size of the data * 
* buffer on the test board). This causes a read * 
* of more than MAX XFR bytes to be chopped up * 
* into a number MAX XFR-byte transfers with a * 
* final transfer of-MAX XFR bytes or less. * 
***************************************************/ 

if(cnt > MAX XFR)cnt = MAX XFR; 

0)) { 

tmp = read_io_port(cb->cbr-I CB_DATA, 
4, 
0);/* Read data */ 

8-44 Device Driver Example Source Listings 



/*************************************************** 
* Move bytes read from the data register to the * 
* user's buffer. Note that: * 
* 
* (a) 

* 
* (b) 
* 

The maximum number of bytes moved is 
MAX XFR for each call due to the code 
above. 
The uio structure is updated as each 
move is done. 

* 
* 
* 
* 
* 
* 

* * 
* Thus, uio->uio resid will be updated for the * 
* "while" statement above. * 
***************************************************/ 

err = uiomove(&tmp,cnt,uio); 

return(err); 
} 

/* register */ 

else if(cb->iomode == CBDMA) /* DMA I/O read code */ 

/*************************************************** 
* Transfer bytes from the test board data * 
* register to the user's buffer until all * 
* requested bytes are moved or an error occurs. * 
* The driver's strategy and minphys interfaces * 
* account for the fact that the source (the board * 
* data register) can supply only 4 bytes at a * 
* time and the physio interface loops as required * 
* to transfer all requested bytes. * 
***************************************************/ 

return(physio(cbstrategy,cb->cbbuf,dev,B_READ,cbminphys,uio)); 

/*************************************************** 
*---------------- cbwrite ------------------------* 
***************************************************/ 

cbwrite(dev, uio, flag) 
dev t dev; /* Major/minor device numbers */ 
struct uio *uio; /* I/O descriptor structure */ 
int flag; /* Access mode of device */ 

unsigned tmp; 
int cnt, err; 
int unit = minor(dev); 
struct cb_unit *cb; 

/* Get device (unit) number */ 
/* Pointer to unit data structure */ 

/*************************************************** 
* To do the write, the device index (unit number) * 
* is used to select the TC test board to be * 
* accessed and the mode setting within the * 
* controller structure for that unit is tested to * 

Device Driver Example Source Listings 8-45 



* determine whether to do a programmed write or a * 
* DMA write. * 
* * 
* For a programmed write, the contents of one * 
* word from the buffer in the user's virtual * 
* address space are moved to a 32-bit local * 
* variable with the uiomove interface and the * 
* contents of that variable are moved to the data * 
* register on the test board. * 
* * 
* For a DMA write, the system's physio interface * 
* and the driver's strategy and minphys * 
* interfaces are used to transfer the contents of * 
* the buffer in the user's virtual address space * 
* to the data register on the test board. * 
* * 
* Note that since only a single word of 4 * 
* (MAX XFR) bytes can be transferred at a time, * 
* both-modes of reading include code to limit the * 
* write to chunks with a maximum of MAX XFR * 
* bytes. Note that writing more than MAX XFR * 
* bytes has limited usefulness since all the * 
* words of the user's buffer will be written into * 
* the single data register on the test board. * 
***************************************************/ 

err = Oi 
cb = &cb unit[unit]i 
if(cb->iomode == CBPIO) 

/* Initialize for no error (yet) */ 
/* Set pointer to unit's structure */ 
/* Programmed I/O write code */ 

/*************************************************** 
* Transfer bytes from the user's buffer to the * 
* test board data register until all requested * 
* bytes are moved or an error occurs. This must * 
* be done as a loop because the destination * 
* (the board data register) can accept only 4 * 
* bytes at a time. The loop may not be required * 
* for other devices. * 
***************************************************/ 

while((cnt = uio->uio resid) && (err == 0)) { 
if(cnt > MAX_XFR)Cnt = MAX_XFRi /* Copy data register */ 

/*************************************************** 
* Move bytes to write from the user's buffer to * 
* the local variable. Note that: * 
* 
* 
* 
* 

(a) The maximum number of bytes moved is 
MAX XFR for each call due to the above 
code. 

* 
* 
* 
* 

* (b) The uio structure is updated as each move * 
* is done. Thus, uio->uio resid will be * 
* updated for the above "while" statement. * 
***************************************************/ 

err = uiomove(&tmp,cnt,uio)i 
write_io_port(cb->cbr I CB_DATA, 

8-46 Device Driver Example Source Listings 



return(err); 
} 

4, 
0, 
tmp); /* write data 

to register */ 

else if(cb->iomode == CBDMA) /* DMA I/O write code */ 

/*************************************************** 
* Transfer bytes from the user's buffer to the * 
* test board data register until all requested * 
* bytes are moved or an error occurs. The * 
* driver's strategy and minphys interfaces * 
* account for the fact that the destination * 
* (the board data register) can take only MAX XFR * 
* bytes at a time and the physio interface loops * 
* as required to transfer all requested bytes. * 
***************************************************/ 

return(physio(cbstrategy,cb->cbbuf,dev,B_WRITE,cbminphys,uio)); 

/*************************************************** 
* Strategy Section * 
***************************************************/ 

/*************************************************** 
*---------------- cbminphys ----------------------* 
***************************************************/ 

cbminphys(bp) 
register struct buf *bp; /* Pointer to buf structure */ 
{ 

if (bp->b bcount > MAX XFR) 
bp->b_bcount MAX_XFR; /* Maximum transfer 

is 4 bytes */ 
return; 

j*************************************************** 
*---------------- cbstrategy ---------------------* 
***************************************************/ 

cbstrategy(bp) 
register struct buf *bpi /* Pointer to buf structure */ 
{ 

register int unit = minor(bp->b dev); /* Get device 
- (unit) number */ 

register struct controller *ctlr; /* Pointer to 
controller struct */ 

struct cb unit *cb; 
caddr t buff addr; 
caddr-t virt-addr; 
unsigned phys addr; 
int cmd; -

/* Pointer to unit data structure */ 
/* User buffer's virtual address */ 
/* User buffer's virtual address */ 
/* User buffer's physical address */ 
/* Current command for test board */ 

Device Driver Example Source Listings 8-47 



int err; 
int status; 
unsigned lowbits; 
unsigned tmp; 
int s; 

/* Error status from uiomove */ 
/* CSR contents for status checking */ 
/* Low 2 virtual address bits */ 
/* Temporary holding variable */ 
/* Temporary holding variable */ 

#ifdef CB DEBUG 
char *vtype; 

#endif /* CB_DEBUG */ 
/* String pointer for debug */ 

ctlr = cbinfo[unit]; /* Set pointer to unit's structure */ 

/*************************************************** 
* The buffer is accessible, initialize buffer * 
* structure for transfer. * 
***************************************************/ 

bp->b_resid = bp->b_bcount; /* Initialize bytes not xferred */ 
bp->av_forw = 0; /* Clear buffer queue forward link */ 

cb = &cb_unit[unit]; /* Set pointer to unit's structure */ 

virt addr bp->b un.b addr; /* Get buffer's virtual address */ 
buff=addr = virt_addr;- /* and copy it for internal use */ 

/*************************************************** 
* DEBUG STATEMENT * 
***************************************************/ 

#ifdef CB DEBUG 
printf("\n"); /* Line between */ 

/* cbstrategy calls */ 
#endif /* CB_DEBUG */ 

/*************************************************** 
* NOTE * 
*************************************************** 
* TURBOchannel DMA can ONLY be done with FULL * 
* WORDS and MUST be aligned on WORD boundariest * 
* Since the user's buffer can be aligned on any * 
* byte boundary, the driver code MUST check for * 
* and handle the cases where the buffer is NOT * 
* word aligned (unless, of course, the * 
* TURBOchannel interface hardware includes * 
* special hardware to handle non-word-aligned * 
* transfers. The test board does NOT have any * 
* such hardware). If the user's buffer is NOT * 
* word-aligned, the driver can: * 
* * 
* 
* 
* 
* 

(a) Exit with an error or 
(b) Take some action to word-align the 

transfer. 

* 
* 
* 
* 

* Since virtual to physical mapping is done on a * 
* page basis, the low 2 bits of the virtual * 
* address of the user's buffer are also the low 2 * 
* bits of the physical address of the user's * 
* buffer and the buffer alignment can be * 

8-48 Device Driver Example Source Listings 



* determined by examining the low 2 bits of the * 
* virtual buffer address. If these 2 bits are * 
* nonzero, the buffer is not word-aligned and the * 
* driver must take the desired action. * 
***************************************************/ 

/*************************************************** 
* Use the low-order 2 bits of the buffer virtual * 
* address as the word-aligned indicator for this * 
* transfer. If they are non-zero, the user's * 
* buffer is not word-aligned and an internal * 
* buffer must be used, so replace the current * 
* user buffer virtual address (it is updated by * 
* physio as each word is transferred) with the * 
* internal buffer virtual address. Since DMA to * 
* the board can only be done a word at a time, * 
* the internal buffer only needs to be a single * 
* word. * 
***************************************************/ 

if ((lowbits = (unsigned)virt_addr & 3) != 0) { /* Test low 
2 bits */ 

virt addr = (caddr_t)(&tmpbuffer); /* Use internal 
buffer */ 

/*************************************************** 
* DEBUG STATEMENT * 
***************************************************/ 

#ifdef CB DEBUG 
printf ("Bd %8x (%d) \n" ,buff addr ,bp->b resid); 
#endif /* CB_DEBUG */ - -

/*************************************************** 
* If the tranfer type is a "write" * 
* (program => device), then clear the local * 
* one-word temporary buffer (in case less * 
* than 4 bytes), move the user's data bytes to * 
* the local temporary buffer and return error * 
* status if an error occurs. The DMA "write" * 
* will be done from the temporary buffer. * 
* 
* NOTE 

* 
* 

*************************************************** 
* Don't use B WRITE to test for a write. It is * 
* defined as O-(zero). You MUST use the * 
* complement of test for BREAD! * 
***************************************************/ 

if ( !(bp->b flags&B READ) ) { /* Move now for "write" */ 
tmpbuffer ~ 0 ; /* Clear the whole word */ 

/*************************************************** 
* DEBUG STATEMENT * 

Device Driver Example Source Listings 8-49 



***************************************************/ 
#ifdef CB DEBUG 
printf( "CI\n"); 
#endif /* CB DEBUG */ 

if (err = copyin(buff addr,virt addr,bp->b resid)) 
bp->b error =-err; ~/* See cbwrite */ 
bp->b-flags 1= B ERROR; /* error code */ 
iodone(bp); /* Signal I/O done */ 
return; /* Return error. */ 

/*************************************************** 
* Convert the buffer virtual address to a * 
* physical address for DMA by calling the vtop * 
* interface. * 
***************************************************/ 

phys_addr vtop(bp->b_proc, virt_addr); 

/*************************************************** 
* Convert the 32-bit physical address (actually * 
* the low 32 bits of the 34-bit physical address) * 
* from the linear form to the condensed form * 
* used by DMA to pack 34 address bits onto 32 * 
* board lines. * 
* * 
***************************************************/ 

/*************************************************** 
* WARNING NOTE * 
*************************************************** 
* * 
* TURBOchannel DMA can ONLY be done with FULL * 
* WORDS and MUST be aligned on WORD boundaries! * 
* The CB SCRAMBLE macro DISCARDS the low-order * 
* 2 bits of the physical address while scrambling * 
* the rest of the address! Therefore, anything * 
* that is going to be done to resolve this issue * 
* must be done BEFORE CB SCRAMBLE is used. * 
***************************************************/ 

tmp = CB SCRAMBLE(phys addr); 
write_io=port(cb->cbr T CB_ADDER, 

4, 
0, 
tmp); 

/*************************************************** 
* DEBUG STATEMENT * 
***************************************************/ 

#ifdef CB DEBUG 
printf("%i %8x= %4s\n",vtype,virt addr,virt addr); 
printf("ph %8x sc %8x Pr %8x\n",phys_addr,tmp,bp->b_proc); 

8-50 Device Driver Example Source Listings 



#endif /* CB DEBUG */ 

if (bp->b_flagS&B_READ) 
cmd CB_DMA_WR; 

/* Set up the DMA enable bits: 
/* Read = "Write to memory" */ 

else 
cmd CB_DMA_RD; 

s = splbio(); 

/* Write = "Read from memory" 

/* Raise priority 

/*************************************************** 
* Although not required in this driver since it * 
* is only called from the following line, the * 
* "start I/O" interface is called as a function * 
* to separate its functionality from the strategy * 
* interface. This is the typical form it will * 
* have in other drivers. * 
***************************************************/ 

*/ 

err = cbstart(cmd,cb); 
splx(s); 

/* Start I/O operation */ 
/* Restore priority */ 

/*************************************************** 
* If the cbstart "timed out" ("err" count not * 
* positive), return error. If the loop did not * 
* "time out", set the bytes remaining to zero to * 
* return with success. * 
***************************************************/ 

if(err <= 0) { /* Check return value from cbstart*/ 

/*************************************************** 
* DEBUG STATEMENT * 
***************************************************/ 

#ifdef CB DEBUG 
printf("err %2d CSR %4x\n",err, 

(read_io_port(cb->cbr I CB_CSR, 
#endif /* CB DEBUG */ 

4, 0) )&Oxffff); 

*/ 

*/ 

bp->b error = EIO; 
bp->b-flags 1,= B_ERROR; 
iodone ( bp) ; 

/* Set "I/O error on device", */ 

return; 
} 

else { 

/* return access error & error flag */ 
/* Signal I/O done */ 
/* Return with error. */ 

/*************************************************** 
* DEBUG STATEMENT * 
***************************************************/ 

#ifdef CB DEBUG 
tmp = read_io_port(cb->cbr I CB DATA, 

4, 
/* Get data */ 
/* register */ 
/* to display */ 

status 
0) ; 

read_io_port(cb->cbr I CB_CSR, /* Get */ 
4, 
0) ; 

/* status */ 
/* from */ 

Device Driver Example Source Listings 8-51 



printf("%2d CSR %4x d %8x= %4s\n",err, 
status&Oxffff,tmp,&tmp); 

#endif /* CB DEBUG */ 

/*************************************************** 
* Did not time out: DMA transfer worked. Test the * 
* low-order 2 bits of the buffer virtual address * 
* and the transfer mode gain. If the low 2 bits * 
* are nonzero, then the user's buffer was not * 
* word-aligned and the internal buffer was used. * 
* If the tranfer.type is a "read" * 
* (device => program), then move the user's data * 
* from the local one-word temporary buffer and * 
* return error status if an error occurs. The * 
* DMA "read" has been done into the temporary * 
* buffer. * 
***************************************************/ 

/* CSR */ 

if ( (lowbits)!=O && bp->b_flagS&B_READ) { /* Move if 
"read" * / 

/*************************************************** 
* DEBUG STATEMENT * 
***************************************************/ 

#ifdef CB DEBUG 
printf( "Co\n"); 

#endif /* CB DEBUG */ 

if (err = copyout(virt addr,buff addr,bp->b resid)) 
bp->b error = err; /* See cbread */ 

bp->b_flags 1= B_ERROR; /* error code */ 

} 
bp->b_resid 0; /* DMA complete, clear remainder */ 

iodone ( bp ) ; 

return; 

/* Indicate done on this buffer */ 

/*************************************************** 

* Start Section * 
***************************************************/ 

/*************************************************** 
*---------------- cbs tart ------------------------* 
* * 
* NOTE on CSR usage: cbstart, cbioctl, and * 
* cbincled are the only interfaces that load the * 
* CSR register of the board. Since cbincled * 
* increments the LEDs in the high 4 bits of the * 
* 16-bit CSR register, cbstart and cbioctl always * 
* load the 4 bits into whatever value they will * 
* be storing into the CSR before they do the * 
* actual store. Note also that cbstart is called * 

8-52 Device Driver Example Source Listings 



* with system interrupts disabled, so cbincled * 
* should not be called while cbs tart is * 
* incrementing. * 
***************************************************/ 

int cbstart(cmd,cb) 
int cmd; j* Current command for test board 
struct cb unit *cb; /* Pointer to unit data structure 

int timecnt; /* Timeout loop count *j 
int status; /* CSR contents for status checking 

/*************************************************** 

* DEBUG STATEMENT * 
***************************************************/ 

#ifdef 

#endif 

CB DEBUGx 
printf( "\n"); /* Blank line *j 

j* between cbs tart */ 
j* calls */ 

CB DEBUGx 

cmd (read_io_port(cb->cbr! CB_CSR, 
4, 

*/ 
*/ 

*/ 

O)&OxfOOO) I (cmd&Oxfff); /* High 4 LED bits */ 
/* into cmd */ 

status read_io_port(cb->cbr I CB_TEST, 
4, 
0); /* Read "test" reg to */ 

/* clear "go" bit */ 

write_io_port(cb->cbr CB_CSR, 
4, 
0, 
cmd); j* Load CSR with enable bit(s) */ 

wbflush(); j* Synchronize with CSR write *j 

j*************************************************** 
* DEBUG STATEMENT * 
***************************************************/ 

#ifdef CB DEBUGx 
printf("Chk CSR %4x\n", (read_io_port(cb->cbr I CB_CSR, 

#endif CB DEBUGx 

write io_port(cb->cbr 
4, 
0, 

CB_TEST, 

0); /* Write "test" reg *j 
/* to set "go" bit *j 

4, 
O))&Oxffff); 

wbflush() ; /* Synchronize with test 
reg write */ 

timecnt = 10; j* Initialize timeout 
loop counter */ 

status = read_io_port(cb->cbr I CB_CSR, 
4, 
0); /* Get status from CSR */ 

Device Driver Example Source Listings 8-53 



/*************************************************** 
* DEBUG STATEMENT * 
***************************************************/ 

#ifdef CB DEBUG 
printf("%2d CSR %4x\n",timecnt, 

(read_io_port(cb->cbr I CB_CSR, 4, O))&Oxffff); 
#endif /* CB DEBUG */ 

/*************************************************** 
* Wait for DMA done bit set or timeout loop * 
* counter to expire. This driver has avery * 
* short timeout period because the board * 
* should respond within a few machine cycles if * 
* it is not broken. Thus, the simple timeout * 
* loop below takes less time than calling a * 
* system interface. In most drivers, where * 
* timeout periods are greater than a few cycles, * 
* timeout is done using the sleep, wakeup, * 
* timeout, and untimeout kernel interfaces. See * 
* the CBINC (increment LED) code in cbioctl and * 
* cbincled below for an example of using timeout * 
* for repetitive timing. * 
***************************************************/ 

while((!(status & CB DMA DONE)) && timecnt > 0) { 
write_io_port(cb=>cbr I CB_CSR, 

4, 
0, 
cmd); /* Write to */ 

/* update status */ 
wbflush(); /* Synchronize with 

CSR write */ 
status = read_io_port(cb->cbr I CB_CSR, 

4, 
0); /* Get status from CSR again */ 

timecnt /* Decrement counter */ 

/*************************************************** 
* Return "timeout" count as function result. * 
***************************************************/ 

return(timecnt); 

/*************************************************** 
* ioctl Section * 
***************************************************/ 

/*************************************************** 
*---------------- cbioctl ------------------------* 
***************************************************/ 

/*************************************************** 
* See NOTE on CSR usage at beginning of cbstart. * 
***************************************************/ 

8-54 Device Driver Example Source Listings 



#define CBlncSec 1 /* Number of seconds between 
increments of lights */ 

cbioctl(dev, cmd, 
dev t dev; 
unsIgned int cmd; 
int *data; 

data, flag) 
/* Major/minor device number */ 
/* The ioctl command */ 
/* ioctl command-specified data */ 
/* Access mode of the device */ int flag; 

int tmp; 
int *addr; 
int timecnt; 
int unit = minor(dev); 
struct cb unit *cb; 
int cbinc led ( ) ; 

cb = &cb_unit[unit]; 

switch(cmd&OxFF) { 
case CBINC: 

/* A destination word for throw-aways */ 
/* Pointer for word access to board */ 
/* Timeout loop count */ 
/* Get device (unit) number */ 
/* Pointer to unit data structure */ 
/* Forward reference interface */ 

/* Set pointer to unit's structure */ 

/* Determine operation to do: */ 
/* Start incrementing lights */ 

/*************************************************** 

* DEBUG STATEMENT * 
***************************************************/ 

#ifdef CB DEBUG 
printf("\nCBioctl: CBINC ledflag = %d\n",cb->ledflag); 
#endif /* CB_DEBUG */ 

if(cb->ledflag == 0) { /* If not started, */ 
cb->ledflag++; /* Set flag & start timer */ 
timeout (cbincled, (caddr_t)cb, CBlncSec*hz); 

break; 

case CBPIO: 
cb->iomode 
break; 

case CBDMA: 
cb->iomode 
break; 

CBPIO; 

CBDMA; 

/* Set mode: programmed I/O */ 
/* Just set I/O mode for unit */ 

/* Set mode: DMA I/O */ 
/* Just set I/O mode for unit */ 

case CBINT: /* Do interrupt test */ 
timecnt = 10; /* Initialize timeout counter */ 
cb->intrflag = 0; /* Clear interrupt flag */ 

tmp = read_io_port(cb->cbr I CB_TEST, 
4, 
0); /* Clear "go" bit */ 

tmp CB_INTERUPTI (read_io_port(cb->cbr I CB_CSR, 
4, 
O)&OxfOOO); /* New value */ 

write io_port(cb->cbr I CB_CSR, 
4, 
0, 
tmp); /* Load enables & LEDs */ 

wbflush( ) ; 

write_io_port(cb->cbr 
4, 
0, 

/* Synch. with CSR write */ 

CB_TEST, 

Device Driver Example Source Listings 8-55 



1); /* Set the "go" bit */ 
wbflush() ; /* Synch. with test write */ 

/*************************************************** 
* wait for interrupt flag * 
* to set or timeout loop * 
* counter to expire. * 
***************************************************/ 

while ((cb->intrflag == 0) && (timecnt > 0)) { 

tmp 

write_io_port(cb->cbr I CB_CSR, 

wbflush() ; 
timecnt --; 

4, 
0, 
tmp); /* write to update status */ 

/* Synch. with CSR write */ 
/* Decrement counter */ 

read io port(cb->cbr CB_TEST, 
- - 4, 

0); /* Be sure "go" bit is clear */ 

/*************************************************** 

* DEBUG STATEMENT * 
***************************************************/ 

#ifdef CB DEBUG 
printf("\nCBioctl: CBINT timecnt %d\n",timecnt); 

#endif /* CB DEBUG */ 

return(timecnt 0) ; /* Success if non-zero count */ 

case CBROM&OxFF: /* Return a ROM word */ 
tmp = *data; /* Get specified byte offset */ 
if(tmp < 0 I I tmp >= 32768*4+4*4) /* 32k wrds + 4 regs */ 

return(-tmp); /* Offset is out of range */ 
tmp «= 1; /* Double address offset */ 
addr = (int *)&(cb->cbad[tmp]); /* Get byte address */ 
*data = *addr; /* Return word from board */ 
break; 

case CBCSR&OxFF: /* Update and return CSR */ 
write_io_port(cb->cbr CB_CSR, 

4, 
0, 
read io_port(cb->cbr I CB_CSR, 

4, 
0)); /* Read/write to update */ 

wbflush(); /* Synch. with CSR write */ 
*data = read_io_port(cb->cbr I CB_CSR, 

4, 
0); /* Return CSR from board */ 

break; 

case CBSTP: /* Stop incrementing lights */ 

/*************************************************** 
* DEBUG STATEMENT * 
***************************************************/ 

#ifdef CB DEBUG 
printf("\nCBioctl: CBSTP called\n"); 

#endif /* CB DEBUG */ 

8-56 Device Driver Example Source Listings 



return(O); 

cb->ledflag 
break; 

0; /* Stop on next timeout */ 

/*************************************************** 
* Increment LED Section * 
***************************************************/ 

/*************************************************** 

* * 
*---------------- cbincled -----------------------* 
***************************************************/ 

/*************************************************** 
* This interface is called by the system * 
* softclock interface CBIncSec seconds after the * 
* last call to the timeout interface. If the * 
* increment flag is still set, increment the * 
* pattern in the high 4 LEDs of the LED/CSR * 
* register and restart the timeout to recall * 
* later. * 

* * 
* NOTE * 
*************************************************** 
* Because the LEDs are on when a bit is 0, use a * 
* subtract to do the increment. * 

* * 
* Also, see NOTE on CSR usage at the * 
* beginning of cbstart. * 
***************************************************/ 

cbincled(cb) 
struct cb unit *cb; /* Pointer to unit data structure */ 

int tmp; 

tmp read_io_port(cb->cbr 
4, 
0) ; 
tmp -= OxlOOO; 

write_io_port(cb->cbr I CB_CSR, 
4, 
0, 

if(cb->ledflag 1= 0) { 
timeout (cbincled, 
} 

tmp); /* "Increment" lights */ 
/* If still set, */ 

(caddr_t)cb, CBIncSec*hz); /* restart timer */ 

return; 

Device Driver Example Source Listings 8-57 



/*************************************************** 
* Device Interrupt Handler section * 
***************************************************/ 

/*************************************************** 
*---------------- cbintr ---------------------~---* 
***************************************************/ 

cbintr(ctlr) 
int ctlr; /* Index for controller structure */ 

int tmp; 
struct cb unit *cb; /* Pointer to unit data structure */ 
cb = &cb unit[ctlr]; /* Point to this device's structure */ 
tmp = read_io_port(cb->cbr I CB_TEST, 

4, 
0); /* Read test reg to clear "go" bit */ 

cb->intrflag++; /* Set flag to tell it happened */ 

/*************************************************** 
* DEBUG STATEMENT * 
***************************************************/ 

#ifdef CB DEBUG 
printf("\nCBintr interrupt, ctlr = %d\n",ctlr); /* Show interrupt */ 
#endif /* CB_DEBUG */ 

return; 

8-58 Device Driver Example Source Listings 



Device Driver Development C 
Worksheets 

This appendix provides worksheets that you can use to help you gather 
information about designing, coding, installing, and testing a device driver. 
Chapter 2 explains how to fill out these worksheets. You may make copies 
of these worksheets. 



HOST SYSTEM WORKSHEET 

Specify the Host CPU 

.4ffl;Si·kM4·C94it_ 
DEC 3000 Model 400 AXP Workstation D 

DEC 3000 Model 500 AXP Workstation D 
DEC 4000 Model 600 AXP Distributed/ D 

Departmental Server 

DEC 7000 Model 600 AXP Server D 
DEC 10000 Model 600 AXP Server D 

Other Alpha-based CPUs: 

DECstation 5000 Model 100 D 
DECstation 5000 Model 200 D 
DECstation 5000 Model 300 D 
DECstation 5400 D 
DECstation 5500 D 
DECstation 5900 D 

Other MIPS-based CPUs: 

C-2 Device Driver Development Worksheets 



HOST SYSTEM WORKSHEET (Cont.) 

.,'IU§ia4i'4Dffl(4§1!'ii~ 

CJ 

CJ 

CJ 

CJ 

CJ 

E·i49'ijIUjU·t1,·,·i§F"i,i·ift1i§". 
DEC OSF/1 

ULTRIX 

CJ 

CJ 

Other operating systems 

TURBOchannel CJ 

VMEbus CJ 

Q-bus CJ 

UNIBUS CJ 
SCSI CJ 
Pseudodevice drivers CJ 

Other buses 

Device Driver Development Worksheets C-3 



DEVICE DRIVER CONVENTIONS WORKSHEET 

Describe the naming scheme you are following for 

't14"tQ4·n"'4i,;.metl*_ 

'114"tI4· dP'411',!t§i!ii¥i. 

'114'Jtlj·nW4*1,';?16i;'t-. 

'll@'$4a·'i1h4i,m'gmt,'ji,ij"'.'i. 

C-4 Device Driver Development Worksheets 



DEVICE DRIVER CONVENTIONS WORKSHEET (Cont.) 

Device Driver Development Worksheets C-5 



DEVICE CHARACTERISTICS WORKSHEET 

YES NO 
1. The device is capable of block I/O c=J c=J 

2. The device will support a file system c=J c=J 

3. The device supports byte stream 
access 

C-6 Device Driver Development Worksheets 



DEVICE CHARACTERISTICS WORKSHEET (Cont.) 

I I 

Device Driver Development Worksheets C-7 



DEVICE USAGE WORKSHEET 

List the documentation you have on the device 
(the device documentation can help you answer 
subsequent questions): 

1. How many of this device type can reside on the system? 

2. What will the device be used for? 

C-8 Device Driver Development Worksheets 



DEVICE REGISTER WORKSHEET 

Device Driver Development Worksheets C-9 



DEVICE REGISTER WORKSHEET (Cont.) 

Device Register Memory Address 

C-10 Device Driver Development Worksheets 



DEVICE DRIVER SUPPORT WORKSHEET 

1:111$11' •• 
YES NO 

1. There is no driver for this device. c=J c=J 
You are going to write it from scratch. 

2. The driver for this device was previously c=J c=J 
written for an UL TRIX system and the code 
is available. 

3. The driver for this device was previously c=J c=J 
written for a UNIX system and the code 
is available. 

4. The driver for this device was previously c=J c=J 
written for another operating system 
and the code is available. 

5. The existing device driver has documentation. c=J c=J 

If the answer is yes, specify the title 
and location of documentation: 

Title: -' ----------------
Location: ______________ _ 

6. If the source code is available, 
specify the location: 

Location: ______________ _ 

7. Identify any experts available whose 
experience you can draw on for: 

The device: 
The design: 
The coding: 

Expert's Name, 
Number, Location: 

The installation: ______________ _ 

The debugging: ------------------­
The testing: 

Device Driver Development Worksheets C-11 



DEVICE DRIVER TYPE WORKSHEET 

Character CJ 

Block CJ 

Character and Block CJ 

Network CJ 

Loadable 

Static 

C-12 Device Driver Development Worksheets 



DEVICE DRIVER ENTRY POINTS WORKSHEET 

Entry point: Name: 
probe 
slave 
cattach 
dattach 
configure 
open 
close 
strategy 
ioctl 
interrupt 
psize 
dump 

'3 '6'2'4 (A '·d CIA 'A hi fi .t·"n ? 
Entry point: Name: 

probe 
slave 
cattach 
dattach 
configure 
open 
close 
strategy 
ioctl 
stop 
reset 
read 
write 
mmap 
interru t 

Device Driver Development Worksheets C-13 



DEVICE DRIVER TESTING WORKSHEET 

I[ 

YES NO 
1. The test program checks all entry points CJ CJ 

2. The test program checks all ioctl CJ CJ 
requests separately 

3. The test program checks multiple devices CJ CJ 

4. The test program was run with multiple CJ CJ 
users using the device 

5. The test program includes debug code CJ CJ 
to check for impossible situations 

6. The test program tests which entry points CJ CJ 
are available through the system call interface 

C-14 Device Driver Development Worksheets 



Glossary 

autoconfiguration 
Autoconfiguration is a process that determines what hardware actually 
exists during the current instance of the running kernel. 

autoconfiguration software 
The autoconfiguration software consists of the programs that accomplish 
the tasks associated with the events that occur during the 
autoconfiguration of devices. In most cases, it is not necessary for 
device driver writers to know the specific programs that execute during 
autoconfiguration. 

bdevsw table 
The block device switch, or bdevsw, table is an array of data structures 
that contains pointers to device driver entry points for each block mode 
device supported by the system. In addition, the table can contain stubs 
for device driver entry points for block mode devices that do not exist or 
entry points not used by a device driver. See also cdevsw table and 
device switch table. 

block device 
A block device is a device that is designed to operate in terms of the 
block I/O supported by DEC OSFIl. It is accessed through the buffer 
cache. A block device has a block device driver associated with it. 

block device driver 
A block device driver is a driver that performs I/O by using file system 
block-sized buffers from a buffer cache supplied by the kernel. Block 
device drivers are particularly well-suited for disk drives, the most 
common block devices. 

buffer cache 
A buffer cache is supplied by the kernel and contains file system block­
sized buffers. Block device drivers use these buffers in I/O operations. 

buf structure 
The buf structure describes arbitrary I/O, but is usually associated with 
block 1/0 and physio. 



bus 
A bus is a physical communication path and an access protocol between 
a processor and its peripherals. A bus standard, with a predefined set of 
logic signals, timings, and connectors, provides a means by which many 
types of device interfaces (controllers) can be built and easily combined 
within a computer system. See also OPENbus. 

bus structure 
The bus structure represents an instance of a bus entity. A bus is a real 
or imagined entity to which other buses or controllers are logically 
attached. All systems have at least one bus, the system bus, even 
though the bus may not actually exist physically. The term controller 
here refers both to devices that control slave devices (for e?(ample, disk 
and tape controllers) and to devices that stand alone (for example, 
terminal or network controllers). 

bus support subsystem 
The bus support subsystem contains all of the bus adapter-specific code. 
Isolating the bus-specific code and data structures into a bus support 
subsystem makes it easier for independent software vendors to 
implement different bus adapters. 

The bus support subsystem communicates with the hardware-dependent 
and device driver subsystems of the hardware-independent model. 

busy wait time 
Busy wait time is the amount of CPU time expended on waiting for a 
simple lock to become free. 

cdevsw table 
The character device switch, or cdevsw, table is an array of data 
structures that contains pointers to device driver entry points for each 
character device supported by the system. In addition, the table can 
contain stubs for device driver entry points for character mode devices 
that do not exist or entry points not used by a device driver. See also 
bdevsw table and device switch table. 

central processing unit 
The central processing unit (CPU) is the main computational unit in a 
computer and the one that executes instructions. The CPU is of interest 
to device driver writers because its associated architecture influences the 
design of the driver. For example, CPUs can have different mechanisms 
for handling memory mapping. 

cfgmgr daemon 
The c f gmgr daemon is a system management process that works with 
kloadsrv, the kernel load server, to manage loadable device drivers. 

character device 
A character device is any device that can have streams of characters read 

Glossary-2 



from or written to it. A character device has a character device driver 
associated with it. 

character device driver 
A character device driver is a driver that can use a variety of approaches 
to handle I/O. A character device driver can accept or supply a stream 
of data based on a request from a user process. A character device 
driver can be used for a device such as a line printer that handles one 
character at a time. However, character drivers are not limited to 
performing 1/0 one character at a time (despite the name "character" 
driver). For example, tape drivers frequently perform I/O in 10K 
chunks. You can also use a character device driver when it is necessary 
to copy data directly to or from a user process. 

Because of their flexibility in handling 1/0, many drivers are character 
drivers. Line printers, interactive terminals, and graphics displays are 
examples of devices that require character device drivers. 

compile time variable 
The compile time variable defines how many devices exist on the 
system and is created by the conf ig program for use by static device 
drivers. 

config.file file fragment 
The config. file file fragment can be viewed as a "mini" system 
configuration file. It is the mechanism by which third-party driver 
writers supply device connectivity, callout keywords, and other 
information related to their static device driver product and needed by 
their customers. 

config program 
The conf ig program is a system management tool that doconf ig 
calls. The conf ig program either creates a new or modifies an 
existing system configuration file, copies. products. list to 
NAME .list, creates the device special files for static drivers, and 
builds a new DEC OSFIl kernel. 

control status register (CSR) 
See device register. 

controller 
A device controller is the hardware interface between the computer and 
a peripheral device. Sometimes a controller handles several devices. In 
other cases, a controller is integral to the device. 

controller structure 
The controller structure represents an instance of a controller entity, 
one that connects logically to a bus. A controller can control devices 
that are directly connected or can perform some other controlling 
operation, such as a network interface or terminal controller operation. 

Glossary-3 



daemon 
A daemon is a system management process that controls a variety of 
kernel tasks. 

See also cfgmgr daemon. 

data structure 
Data structures are the mechanism used to pass information between the 
DEC OSFIl kernel and device driver interfaces. 

device auto configuration 
See autoconfiguration. 

device controller 
See controller. 

device driver 
A device driver is a software module that resides within the DEC OSFIl 
kernel and is the software interface to a hardware device or devices. 
The purpose of a device driver is to handle requests made by the kernel 
with regard to a particular type of device. See also block device driver, 
character device driver, and network device driver. 

device driver configuration 
Device driver configuration is the process of incorporating device drivers 
into the kernel and making them available to system management and 
other utilities. There are two configuration models: the third-party and 
the traditional device driver configuration models. 

See also third-party device driver configuration model and 
traditional device driver configuration model. 

device driver header file 
The device driver header file contains #def ine statements for as many 
devices as are configured into the system. This file is generated by the 
conf ig program during static configuration of the device driver. This 
file need not be included if you configure the driver as a loadable driver. 

device driver kit 
The device driver kit contains the files associated with a device driver 
product. These files contain information necessary for system managers 
(customers) to configure loadable or static drivers into their systems. 

device driver subsystem 

Glossary-4 

The device driver subsystem contains all of the driver-specific code. 
The device driver subsystem communicates with the hardware­
dependent, bus support, and hardware-independent subsystems of the 
hardware-independent model. 

See also bus support subsystem, hardware-dependent subsystem, 
and hardware-independent subsystem. 



device register 
A device register is commonly referred to as a control status register, or 
CSR. The device register can be used to: 

• Control what a device does 

• Report the status of a device 

• Transfer data to or from the device 

device register header file 
The device register header file contains any public declarations used by 
the device driver. This file usually contains the device register structure 
associated with the device. 

device register structure 
A device register structure is a C structure whose members map to the 
registers of some device. These registers are often referred to as the 
device's control status register or CSR addresses. The device register 
structure is usually defined in the device register header file. 

device structure 
The device structure represents an instance of a device entity. A 
device is an entity that connects to and is controlled by a controller. A 
device does not connect directly to a bus. 

device switch table 
The device switch tables, bdevsw for block devices and cdevsw for 
character devices, have the following characteristics: 

• They are arrays of structures that contain device driver entry points. 
These entry points are actually the addresses of the specific 
interfaces within the drivers. 

• They may contain stubs for device driver entry points for devices 
that do not exist on a specific machine. 

• The location in the table corresponds to the device major number. 

See also bdevsw table and cdevsw table. 

direct memory access 
Direct memory access (DMA) describes the ability of a device to 
directly access (read from and write to) CPU memory, without CPU 
intervention. 

direct memory access (DMA) device 
A direct memory access (DMA) device is one that can directly access 
(read from and write to) CPU memory, without CPU intervention. 
Non-DMA devices cannot directly access CPU memory. 

Glossary-5 



DMA handle 
Specifies a handle to DMA resources associated with the mapping of an 
in-memory 110 buffer onto a controller's 110 bus. This handle provides 
the information to access bus address/byte count pairs. A bus 
address/byte count pair is represented by the ba and be members of an 
sg entry structure pointer. Device drivers can view this handle as 
the tag to the allocated system resources needed to perform a direct 
memory access (DMA) operation. 

doconfig 
The doeonf ig program is a system management tool that calls 
eonfig. See config program. 

driver structure 
The dr i ver structure defines driver entry points and other driver­
specific information. You declare and initialize an instance of this 
structure in the device driver. 

GENERIC system configuration file 
The GENERIC system configuration file supplied by Digital contains all 
the possible software and hardware options available to DEC OSFIl 
systems and includes all supported Digital devices. The GENERIC 
system configuration file is used to build a kernel that represents all 
possible combinations of statically configured drivers that Digital 
supports. 

hardware device 
See peripheral device. 

hardware-dependent subsystem 
The hardware-dependent subsystem contains all of the hardware­
dependent pieces of an operating system with the exception of device 
drivers. This subsystem provides the code that supports a specific CPU 
platform and, therefore, is implemented by specific vendors. 

The hardware-dependent subsystem communicates with the hardware­
independent subsystem, device driver subsystem, and bus support 
subsystem of the hardware-independent model. 

hardware-independent model 
The hardware-independent model describes the hardware and software 
components that make up an open systems environment. Specifically, 
these hardware and software components are contained in a hardware­
independent subsystem, hardware-dependent subsystem, bus support 
subsystem, and device driver subsystem. 

hardware-independent subsystem 

Glossary-6 

The hardware-independent subsystem contains all of the hardware­
independent pieces of an operating system, including the hardware­
independent kernel interfaces, user programs, shells, and utilities. The 



Open Software Foundation (OSF) provides the hardware-independent 
subsystem. This subsystem can contain extensions and enhancements 
made by vendor companies, including Digital Equipment Corporation. 

The hardware-independent subsystem communicates with the hardware­
dependent subsystem, bus support subsystem, and device driver 
subsystem of the hardware-independent model. 

ihandler _id_t key 
The ihandler id t key is a unique number used to identify 
interrupt service Interlaces to be acted on by subsequent calls to the 
handler enable, handler disable, and handler del kernel 
interfaces.- - -

ihandler _t structure 
The ihandler t structure contains information associated with device 
driver interrupt handling. Loadable drivers use this data structure. 

interrupt service interface (lSI) 
An interrupt service interface is a device driver routine that handles 
hardware interrupts. Driver writers implementing static-only device 
drivers specify a device driver's interrupt service interface in the system 
configuration file if they are following the traditional device driver 
configuration model and in the config. file file fragment if they are 
following the third-party device driver configuration model. 

Loadable device drivers, unlike static device drivers, must call a number 
of kernel interfaces to register, deregister, enable, and disable a device 
driver's interrupt service interface. 

ioconf.c file 
The ioconf . c file contains the bus list, controller list, 
and device list arrays created by the config program for static 
device drivers during the autoconfiguration process. 

110 handle 
An I/O handle is a data entity that is of type io handle t. This 110 
handle provides device drivers with bus address Information. The bus 
configuration code passes the 110 handle to the device driver's 
xxprobe interface during device autoconfiguration. 

kernel 
The kernel is a software entity that runs in supervisor mode and does 
not communicate with a device except through calls to a device driver. 

kernel framework 
See subsystem. 

Glossary-7 



kloadsrv 
The kernel loader daemon is used with the c f gmgr daemon to load the 
specified loadable device driver into the kernel address space and to 
resolve external references. See also cfgmgr daemon. 

kmknod 
The kmknod utility is a system management tool that uses the 
information from the stanza. static file fragment to dynamically 
create device special files for static device drivers at boot time. 

kreg utility 
The kreg utility is a system management tool that maintains the 
/ sys / conf / . product. list system file, which registers static 
device driver products. 

loadable device driver 
A loadable device driver is a driver (block or character) that is linked 
dynamically into the kernel at run time. This type of device driver is 
installed without having to rebuild the kernel, shut down the system, and 
reboot. See also static device driver. 

load module 
A load module is the executable image of a loadable device driver. 

method 
A method is a subsystem specific portion of the c f gmgr daemon. For 
example, the device method is the portion of the c f gmgr daemon that 
handles loadable device drivers. 

name_data.c file 
The name data. c file provides a convenient place to size the data 
structures and data structure arrays that device drivers use. In addition, 
the file can contain definitions that third-party driver writers might want 
their customers to change. This file is particularly convenient for third­
party driver writers who do not want to ship device driver sources. 

NAME. list file 
The NAME .list file is a copy of the. products .list file that is 
created when the system manager installs the device driver kit supplied 
by a third-party vendor. 

network device 
A network device is any device associated with network activities and is 
responsible for both transmitting and receiving frames to and from the 
network medium. Network devices have network device drivers 
associated with them. 

network device driver 

Glossary-8 

A network device driver attaches a network subsystem to a network 
interface, prepares the network interface for operation, and governs the 



transmission and reception of network frames over the network 
interface. 

nexus 
The nexus keyword indicates the top of the system configuration tree. 

OPEN bus 
The term OPENbus refers to those buses whose architectures and 
interfaces are publicly documented, allowing a vendor to easily plug in 
hardware and software components. The TURBOchannel and the 
VMEbus, for example, can be classified as having OPENbus 
archi tectures. 

open systems 
The term open systems refers to an environment with hardware and 
software platforms that promote the use of standards. By adhering to a 
set of standard interfaces, these platforms make it easier for third-party 
programmers to write applications that can run on a variety of operating 
systems and hardware. This open systems environment can also make it 
easier for systems engineers to write device drivers for numerous 
peripheral devices that operate on this same variety of operating systems 
and hardware. 

peripheral device 
A peripheral device is hardware, such as a disk controller, that connects 
to a computer system. It can be controlled by commands from the 
computer and can send data to the computer and receive data from it. 

port structure 
The port structure contains information about a port. 

.products.list file 
The lusrlsys/confl . products .list file (for static drivers) 
stores information about static device driver layered products. 

pseudodevice driver 
A pseudodevice driver, such as the pty terminal driver, is structured 
like any other driver. The difference is that a pseudodevice driver does 
not operate on a bus. 

resource 

setld 

A resource, from the device driver's point of view, is data or a code 
block that can be manipulated by more than one thread. If the resource 
is data, it can be stored in variables (global and local) and data structure 
members. 

The setld utility allows the transfer of the contents of the device 
driver kit to a customer's system on DEC OSFIl. 

Glossary-9 



stanza.loadable file fragment 
The stanza .loadable file fragment can be viewed as a "mini" 
sysconfigtab database because it contains some of the same 
information. The stanza .loadable file fragment contains an entry 
for each device driver, providing such information as the driver's name, 
location of the loadable object, device connectivity information, and 
device special file information. Parts of the stanza .loadable file 
fragment are functionally similar to the system configuration file in that 
it uses a subset of the syntaxes used in the system configuration file to 
specify each current or planned device on the system. 

stanza.static file fragment 
The stanza. static file fragment (for static drivers) contains such 
items as the driver's major number requirements, the names and minor 
numbers of the device special files, the permissions and directory name 
where the device special files reside, and the driver interface names to 
be added to the bdevsw and cdevsw tables. 

static device driver 
A static device driver is a driver (block, character, or network) that is 
linked directly into the kernel. This type of device driver must be 
installed by completing tasks that include rebuilding the kernel, shutting 
down the system, and rebooting. See also loadable device driver. 

subset control program (SCP) 
A subset control program (SCP) is a program written by the kit 
developer that contains path specifications for all of the files related to 
the driver product. The SCP is invoked by setld during the 
installation of the device driver kit. 

subsystem 
A subsystem is a kernel module that defines a set of kernel framework 
interfaces that allow for the dynamic configuration and unconfiguration 
(adding and removal) of subsystem functionality. Examples of 
subsystems include (but are not restricted to) device drivers, file 
systems, and network protocols. The ability to dynamically add 
subsystem functionality is utilized by loadable drivers to allow the 
driver to be configured and unconfigured without the need for kernel 
rebuilds and reboots. 

sysconfig 
The sysconf ig utility is a system management tool that modifies the 
loadable subsystem configuration. This modification provides a user 
interface to the c f gmgr daemon. 

sysconfigdb 

Glossary-10 

The sysconf igdb utility is a system management tool that maintains 
the sysconfigdb database. The driver stanza entries in the 



stanza .loadable file fragment are appended to this database. 

sysconfigtab database 
The sysconf igtab database contains the information provided in the 
stanza. loadable file fragments. This information is appended to 
the sysconfigtab database during installation of the device driver 
kit. 

system configuration file 
The system configuration file is an ASCII text file that defines the 
components of the system. These components are described using valid 
keywords such as those that identify device definitions, callout 
definitions, and pseudodevice definitions. 

system configuration tree 
The system configuration tree represents the result of the 
autoconfiguration process, after the autoconfiguration software reads the 
entries in the system configuration file (for static drivers) and the 
sysconfigtab database (for loadable drivers). For static drivers, the 
result is a correctly linked list of bus, controller, and device 
structures. As loadable drivers are dynamically loaded, their bus, 
controller, and device structures are linked into the system 
configuration tree. 

tc_intr _info structure 
The tc intr info structure contains interrupt handler information 
for device controllers connected to the TURBOchannel bus. Loadable 
drivers initialize the members of the tc intr info structure, usually 
in the driver's probe interface. - -

terminal device 
A terminal device is a special type of character device that can have 
streams of characters read from or written to it. Terminal devices have 
terminal (character) device drivers associated with them. 

terminal device driver 
A terminal device driver is actually a character device driver that 
handles input and output character processing for a variety of terminal 
devices. Like any character device, a terminal device can accept or 
supply a stream of data based on a request from a user process. It 
cannot be mounted as a file system and, therefore, does not use data 
caching. 

third-party device driver configuration model 
This model is recommended for third-party device driver writers who 
want to ship loadable and static drivers to customers running Digital's 
DEC OSFIl operating system. The third-party device driver 
configuration model provides tools that customers use to automate the 
installation of third-party device drivers. This model requires that 

Glossary-11 



third-party driver writers provide a device driver kit to their customers. 

traditional device driver configuration model 
The traditional device driver configuration model provides a manual 
mechanism for driver writers or system managers to configure device 
drivers into the kernel. One advantage of the traditional model is that 
no device driver kit is needed. The disadvantage is that the traditional 
model is not automated and potentially error prone. 

TURBOchannel test board 
The TURBOchannel test board is a minimal implementation of all the 
TURBOchannel hardware functions: programmed 1/0, DMA read, DMA 
write, and 110 read/write conflict testing. The / dev / cb device driver 
provides a simple interface to the functions provided by the 
TURBOchannel test board. 

uio structure 
The uio structure describes 110, either single vector or multiple vectors. 
Typically, device drivers do not manipulate the members of this 
structure. 

user program 

Glossary-12 

A user program is a software module that allows a user of the DEC 
OSFIl operating system to perform some task. For example, the 1 s 
user program allows users to list the files contained in a specific 
directory. User programs make system calls to the kernel that result in 
the kernel making requests of a device driver. A user program never 
directly calls a device driver. 



A 

ACT environment variable 

use in SCP, 12--44 

adapter member 

formal description of cb_unit structure field, 

10-14 

addr member 

formal description of controller structure 

field,7-50 

initialized for static drivers, 7-51 f 

used as an argument to CB_ADR macro in 

cbattach interface, 10-24 

used to set base address of device ROM in 

cbattach interface, 10-24 

addr variable 

declared as pointer by cbioctl for word 

access to TURBOchannel test board, 

10-72 

addr2 member 

formal description of controller structure 

field,7-50 

initialized for static drivers, 7-51 f 

addrl_atype member 

formal description of driver structure field, 

7-74 

addr2_atype member 

formal description of driver structure field, 

7-75 

addrl_atype member 

initialized for cb driver, 7-75f 

addr2_atype member 

initialized for cb driver, 7-75f 

addrl_size member 

Index 

formal description of driver structure field, 

7-74 

addr2_size member 

formal description of driver structure field, 

7-74 

addrl_size member 

initialized for cb driver, 7-75f 

addr2_size member 

initialized for cb driver, 7-75f 

addr_list member 

formal description of driver structure field, 

7-70 

initialized for cb driver, 7-7lf 

alive member 

alive bit values from devdriver.h, 7-28, 7--44 

formal description of bus structure field, 

7-27 

formal description of controller structure 

field, 7--43 

formal description of device structure field, 

7-66 

initialized for static drivers, 7-29f, 7--46f, 

7-67f 



allocating system resources for DMA 

by calling dma_map_alloc kernel interface, 

9-53 

AL V _ALIVE constant 

alive bit for bus structure alive member, 

7-28 

AL V_FREE constant 

alive bit for bus structure alive member, 

7-28 

alive bit for controller structure alive 

member, 7-44 

AL V _LOADABLE constant 

alive bit for bus structure alive member, 

7-28 

alive bit for controller structure alive 

member, 7-44 

AL V _NOCNFG constant 

alive bit for bus structure alive member, 

7-28 

alive bit for controller structure alive 

member, 7-44 

AL V _NOSIZER constant 

alive bit for bus structure alive member, 

7-28 

alive bit for controller structure alive 

member, 7-44 

AL V _PRES constant 

alive bit for bus structure alive member, 

7-28 

alive bit for controller structure alive 

member, 7-44 

ALV _RONL Y constant 

alive bit for bus structure alive member, 

7-28 

alive bit for controller structure alive 

member, 7-44 

Index-2 

AL V _ WONL Y constant 

alive bit for bus structure alive member, 

7-28 

alive bit for controller structure alive 

member, 7-44 

attach interface 

called by autoconfiguration software for each 

device found, 7-7 

called by autoconfiguration software on 

success of probe interface, 7-7 

setting up xxcattach for controller-specific 

initialization in autoconfiguration 

support section, 3-11 

setting up xxdattach for device-specific 

initialization in autoconfiguration 

support section, 3-11 

attached member 

cb_unit structure field checked by cbopen, 

10-42 

formal description of cb_unit structure field, 

10-13 

autoconfiguration 

declarations and definitions 

description of code example for cb driver, 

10-8 to 10-9 

defined, I 

for loadable drivers, 7-12 

creation of system configuration tree, 

7-13f 

for static drivers, 7-6 

call level I bus configuration interfaces, 

7-7 

call level 1 configuration interfaces for 

other buses, 7-7 

call level 2 configuration interfaces, 7-8 

configure all devices, 7-7 



autoconfiguration (cont.) 

for static drivers (cont.) 

creation of system configuration tree, 

7-9f 

locate bus structure for system bus, 7-6 

autoconfiguration software 

defined, I 

dynamically creates individual bus structures, 

7-5 

dynamically creates individual controller 

structures, 7-5 

dynamically creates individual device 

structures, 7-6 

reads files related to device drivers during 

autoconfiguration process, 7-1 

statically creates array of bus structures, 7-5 

statically creates array of controller 

structures, 7-5 

statically creates array of device structures, 

7-5 

autoconfiguration support section 

description, 3-9 

av _back member 

formal description of buf structure field, 8-5 

av 30rw member 

B 

buf structure field cleared by cbstrategy, 

10-58 

formal description of buf structure field, 8-5 

b_back member 

formal description of buf structure field, 8-4 

b_bcount member 

buf structure field used by cbminphys, 10-55 

buf structure field used by cbstrategy to 

initialize b_resid member, 10-58 

b_bcount member (cont.) 

formal description of buf structure field, 8-5 

b_blkno member 

formal description of buf structure field, 8-5 

B_BUSY constant 

formal description of binary status flag for 

b_flags member of buf structure, 8-4 

relationship to av _forw and av _back buf 

structure members, 8-5 

b_dev member 

buf structure field used by cbstrategy, 10-56 

formal description of buf structure field, 8-5 

B_DONE constant 

formal description of binary status flag for 

b_flags member of buf structure, 8-4 

B_ERROR constant 

formal description of binary status flag for 

b_flags member of buf structure, 8-4 

b_error member 

buf structure field set by cbstrategy, 10-60 

formal description of buf structure field, 8-5 

b_ftags member 

buf structure field set by cbstrategy, 10-60 

discussion of B_TAPE flag, 8-17 

formal description of buf structure field, 8-4 

b_forw member 

formal description of buf structure field, 8-4 

b_iodone member 

formal description of buf structure field, 8-6 

b_Iblkno member 

formal description of buf structure field, 8-5 

B _PHYS constant 

formal description of binary status flag for 

b_flags member of buf structure, 8-4 

b_proc member 

formal description of buf structure field, 8-6 

Index-3 



B _READ constant 

formal description of binary status flag for 

b_flags member of buf structure, 8-4 

b _resid member 

buf structure field initialized by cbstrategy, 

10-58 

formal description of buf structure field, 8-6 

use as argument with copyin kernel interface, 

9-12 

B _TAPE constant 

formal description of binary status flag for 

b_flags member of buf structure, 8-17 

b_un.b_addr member 

formal description of buf structure field, 8-5 

B_ WANTED constant 

formal description of binary status flag for 

b_flags member of buf structure, 8-4 

BADADDR kernel interface 

explanation of code fragment, 9-16 

bcopy kernel interface 

explanation of code fragment, 9-10 

results of example calls, 9-11 f 

bdevsw structure 

defined in conf.h, 8-13 

example of initializing with bdevsw _add 

kernel interface, 9-24 

bdevsw table 

adding device driver interfaces to, for 

loadable drivers, 8-14f 

adding device driver interfaces to, for static 

drivers, 8-15f 

adding entries to, with bdevsw _add kernel 

interface, 9-24 

characteristics of, 8-6 

defined, I 

defined in conf.h, 3-6 

Index-4 

bdevsw table (cont.) 

deleting entries from, with bdevsw _del 

kernel interface, 9-26 

formal description, 8-13 

bdevsw _add kernel interface 

checking d_open member of bdevsw 

structure, 8-16 

explanation of code fragment, 9-24 

results of example call, 9-26f 

bdevsw _del kernel interface 

explanation of code fragment, 9-26 

results of example call, 9-27f 

binary status flags 

formal descriptions of, 8-4t 

specified by b_flags member of buf structure, 

8-4 

BINARY system configuration file 

specifying information related to loadable 

drivers, 12-11 

bit issues 

declarations 

of arguments to C functions, 2-35 

of 32-bit and 64-bit sized variables, 2-35 

of bit fields, 2-36 

of 32-bit signed variables, 2-35 

of register variables, 2-36 

modifying type char, 2-36 

performing bit operations on constants, 2-36 

size 

C compiler data types and bit sizes, 2-34t 

using NULL and zero values, 2-36 

using printf formats, 2-37 

using wbflush, 2-37 

block device 

comparison with character device, 6-5 

defined, I 



block device driver 

compared with character device driver, 3-1 

defined, I 

introductory discussion and examples of, 1-2 

sections of, 3-3f 

specification of during driver development, 

2-21 

block device switch table 

See .bdevsw table 

buf structure 

declared as pointer by cbminphys, 10-55 

declared as pointer by cbstrategy, 10-56 

defined, 2 

formal description, 8-1 

list of member names and data types, 8-3t 

locally defined code example, 8-2 

using in systemwide pool code example, 8-2 

buf.h file 

defines binary status flags used by b_flags 

member of buf structure, 8-4 

bufCaddr variable 

declared by cbstrategy to store user buffer's 

virtual address, 10-57 

set by cbstrategy, 10-58 

buffer cache 

contains block-sized buffers used by block 

drivers in 1/0 operations, 1-2 

defined, I 

example of 1/0 requests from, 8-19 

management of, 8-19 

use of dri ver strategy interface, 8-19 

bus 

See also OPENbus 

consideration of, when writing probe and 

slave interfaces, 6-4 

defined, 2 

bus (cont.) 

discussion of issues related to driver 

development, 2-5 

discussion of specifying which bus a device 

is on, 6-4 

relationship to device driver, 1-7, 6-3 

specifying syntax in config.file file fragment, 

12-5 

specifying syntax in stanza.loadable file 

fragment, 12-31 

specifying syntax in system configuration 

file, 12-5 

bus configuration interfaces 

summary descriptions, A-lOt 

bus member 

formal description of handleckey structure 

field, 7-81 

bus structure 

declared as pointer in cb_ctlcunattach 

interface, 10-25 

defined, 2 

level I bus configuration interface called by 

autoconfiguration software, 7-7 

list of member names and data types, 7-14t 

system bus identified with a backpointer of 

-1,7-7 

bus support subsystem 

accessing device registers of bus adapter, 6-8 

communication with the device driver 

subsystem, 5-4 

communication with the hardware-dependent 

subsystem, 5-4 

defined, 2 

discussion of relationship to implementing 

new buses, 5-4 

discussion of relationship to tailoring existing 

buses, 5-4 

Index-5 



bus_hd member 

example of use in system configuration tree 

for static drivers, 7-10, 7-11 

used to initialize ih_bus member in cbprobe 

interface, 10-21 

bus_id_t member 

formal description of handleckey structure 

field,7-81 

bus_list array, 7-5 

bus_list member 

example of use in system configuration tree 

for static drivers, 7-10 

bus_mbox member 

formal description of bus structure field, 

7-16 

bus_name member 

formal description of bus structure field, 

7-17 

formal description of controller structure 

field,7-38 

initialized for static drivers, 7-19f, 7-40f 

bus_num member 

formal description of bus structure field, 

7-17 

formal description of controller structure 

field,7-38 

initialized for static drivers, 7-19f, 7-40f 

bus_priority member 

formal description of controller structure 

field,7-53 

initialized for static drivers, 7-54f 

BUS_TC constant 

used to initialize bus_type member for 

example bus structure, 7-16 

bus_type member 

formal description of bus structure field, 

7-16 

Index-6 

bus_type member (cont.) 

initialized for static drivers, 7-17f 

BUS_ VME constant 

used to initialize bus_type member for 

example bus structures, 7-16 

busy wait time 

defined,2 

byte string 

copying bcopy kernel interface, 9-10 

bzero kernel interface 

explanation of code fragment, 9-11 

c 
caddr_t data type 

description, 3-5 

callout keywords 

example of call in config.file file fragment, 

12-11 

example of call in system configuration file, 

12-11 

list of and usage, 12-10t 

cattach member 

formal description of driver structure field, 

7-69 

initialized for cb driver, 7-70f 

cb device driver 

autoconfiguration support declarations and 

definitions section, 10-8 

autoconfiguration support section, 10-18 

cbreg.h file, 10-4 

convention used in example code, 10-2 

include files section, 10-7 

increment LED section, 10-80 

interfaces implemented as part of 

autoconfiguration support section, 

1O-18t 



cb device driver (cont.) 

interfaces implemented as part of open and 

close device section, 10-41 t 

interfaces implemented as paIl of read and 

write device section, 10-45t 

interrupt section, 10-82 

ioctl section, 10-70 

loadable device driver section, 10-27 

loadable driver configuration support 

declarations and definitions section, 

10-10 

loadable driver local structures and variable 

definitions section, 10-16 

local structure and variable definitions 

section, 10-13 

open and close device section, 10-41 

overview, 10-2 

parts, 10-1 t 

read and write device section, 10-45 

simple interface to TURBOchannel test 

board. 10-1 

start section, 10-66 

strategy section, 10-54 

tasks associated with implementing ioctl 

section, 1O-70t 

tasks associated with implementing loadable 

device driver section, 10-27t 

tasks associated with implementing strategy 

section, 10-54t 

CB_ADDER device register offset 

defined in cbreg.h file, 10-6. 

CB_ADR macro 

called in cbattach interface, 10-24 

defined in cbreg.h file, 10-4 

CB_BUSNAME constant 

definition in cb device driver, 10-11 

cb_cdevsw _entry structure 

declaration and initialization in cb device 

driver, 10-16 

cb_config variable 

declaration and initialization in cb device 

driver, 10-16 

set to FALSE by cb_configure, 10-38 

set to TRUE by cb_configure, 10-35 

cb_configure interface 

configuring (loading) tasks 

description of code example for cb driver, 

10-31 to 10-35 

description of code example for cb driver, 

10-28 to 10-29 

discussion of arguments, 10-28 

discussion of return value, 10-40 

querying tasks 

description of code example for cb driver, 

10-39 to 10-40 

unconfiguring (unloading) tasks 

description of code example for cb driver, 

10-36 to 10-38 

CB_CONFLICT constant 

defined in cbreg.h file, 10-4 

CB_CSR device register offset 

defined in cbreg.h file, 10-6 

cb_ctlcunattach interface 

called as a result of call to 

IdbLcticunconfigure, 10-38 

description of code example for cb driver, 

10-25 to 10-26 

discussion of return value, 10-26 

eB_DATA device register offset 

defined in cbreg.h file, 10-6 

CB_DEBUG constant 

definition of debug constant in cb device 

driver, 10-17 

Index-7 



cb_devno variable 

declaration and initialization in cb device 

driver, 10-16 

used by cb_configure to store cdevsw table 

entry slot, 10-34 

CB_DMA_DONE constant 

defined in cbreg.h file, 10-5 

CB_DMA_RD constant 

defined in cbreg.h file, 10-5 

CB_DMA_ WR constant 

defined in cbreg.h file, 10-5 

cb_id_t array 

declaration in cb device driver, 10-10 

used as an argument to handlecenable in 

cbprobe interface, 10-22 

used in code fragment discussion of 

ihandlect structure, 7-78 

used to store return from handlecadd in 

cbprobe interface, 10-22 

CB_INTERUPT macro 

defined in cbreg.h file, 10-4 

cb_is_dynamic variable 

declaration and initialization in cb device 

driver, 10-11 

determines whether to call 

Idbl_ctlcunconfigure, 10-37 

set by cb_configure to indicate loadable 

version of driver, 10-31 

to control differences in tasks performed by 

loadable and static versions of cb 

device driver, 10-21 

used by cb_ctlcunattach to validate loadable 

driver, 10-26 

used to increment the number of instances of 

controller, 10-22 

Index-8 

CB_REL_LOC constant 

defined in cbreg.h file, 10-4 

CB_SCRAMBLE macro 

defined in cbreg.h file, 10-4 

CB _TEST device register offset 

defined in cbreg.h file, 10-6 

cb_unit data structure 

declared in locally defined buf structure code 

example, 8-3 

cb_unit structure 

declared as pointer by cb_configure interface, 

10-29 

declared as pointer by cbintr, 10-82 

declared as pointer by cbioctl, 10-72, 10-80 

declared as pointer by cbread, 10-47 

declared as pointer by cbstart, 10-67 

declared as pointer by cbstrategy, 10-56 

declared as pointer by cbwrite, 10-51 

declared as pointer in cbattach interface, 

10-23 

definition and member descriptions, 10-13 

set to address of unit data structure by 

cbstrategy, 10-58 

setting of adapter member in cbattach 

interface, 10-23 

setting of attached member in cbattach 

interface, 10-23 

setting of cbad member in cbattach interface, 

10-24 

setting of cbr member in cbattach interface, 

10-24 

use of opened member to determine if cb 

driver is active, 10-36 

cbad member 

formal description of cb_unit structure field, 

10-14 



cbattach interface 

description of code example for cb driver, 

10-23 to 10-24 

forward declaration reference, 10-8 

cbbuf array 

declaration in cb device driver, 10-13 

cbbuf member 

formal description of cb_unit structure field, 

10-15 

cbclose interface 

declaration and discussion of arguments, 

10-44 

description of code example for cb driver, 

10-44 

discussion of return value, 10-44 

forward declaration reference, 10-8 

CBCSR constant 

used by cbioctl to update and return CSR, 

10-78 

CBCSR ioctl 

defined in cbreg.h file, 10-6 

CBDMA constant 

used by cbioctl to set I/O mode to DMA I/O, 

10-74 

used by cbread to determine a DMA read 

operation, 10-48 

used by cbwrite to determine a DMA read 

operation, 10-52 

CBDMA ioetl 

defined in cbreg.h file, 10-5 

cbdriver structure 

declaration and initialization in cb device 

driver, 10-9 

CBINC constant 

used by cbioctl to start incrementing lights, 

10-73 

CBINC ioctl 

defined in cbreg.h file, 10-6 

cbincled interface 

description of code example for cb driver, 

10-80 to 10-81 

forward declaration reference, 10-8 

forward declaration reference in cb_configure 

interface, 10-29 

forward declaration reference in cbioctl, 

10-72 

CBIncSec constant 

defined by cbioctl to indicate number of 

seconds between increments, 10-71 

cbinfo array 

declaration in cb device driver, 10-8 

CBINT constant 

used by cbioctl to perform interrupt test, 

10-75 

CBINT ioctl 

defined in cbreg.h file, 10-5 

cbintr interface 

description of code example for cb driver, 

10-82 to 10-83 

forward declaration reference, 10-8 

used as value in intr member of tc_intcinfo 

structure, 10-21 

cbioctl interface 

declaration and discussion of arguments, 

10-71 

declaration in cb device driver, 10-8 

discussion of return value, 10-77, 10-79 

forward declaration reference, 10-8 

incrementing the lights 

description of code example for cb driver, 

10-73 

perform an interrupt test 

Index-9 



cbioctl interface (cont.) 

perform an interrupt test (cont.) 

description of code example for cb driver, 

10-75 to 10-77 

return a ROM word,update the CSR, and 

stop incrementing the lights 

description of code example for cb driver, 

10-78 to 10-79 

set the I/O mode 

description of code example for cb driver, 

10-74 

setting up 

description of code example for cb driver, 

10-71 to 10-72 

cbminphys interface 

declaration and discussion of argument, 

10-55 

description of code example for cb driver, 

10-55 

forward declaration reference, 10-8 

cbminphys kernel interface 

references buf structure in systemwide pool 

code example, 8-2 

cbmmap interface 

forward declaration reference, 10-8 

cbopen interface 

declaration and discussion of arguments, 

10-42 

description of code example for cb driver, 

10-42 to 10-43 

discussion of return value, 10-43 

forward declaration reference, 10-8 

CBPIO constant 

used by cbioctl to set I/O mode to 

programmed I/O, 10-74 

used by cbread to determine a programmed 

Index-10 

I/O read operation 

CBPIO constant (cont.) 

used by cbread to determine a programmed 

I/O read operation (cont.) 

Book Title (cont.) 

10-47 (cont.) 

(cont.) , 10-47 

used by cbwrite to determine a programmed 

I/O read operation, 10-51 

CBPIO ioctl 

defined in cbreg.h file, 10-5 

cbprobe interface 

declaration and description of arguments, 

10-20 

description of code example for cb driver, 

10-19 to 10-22 

discussion of return value, 10-22 

forward declaration reference, 10-8 

cbr member 

formal description of cb_unit structure field, 

10-14 

cbread interface 

declaration and discussion of arguments, 

10-46 

description of code example for cb driver, 

10-46 to 10-49 

forward declaration reference, 10-8 

cbreg.h file 

description of code example for cb driver, 

10-4 to 10-6 

device register header file for cb device 

driver, 10-4 

CBROM constant 

used by cbioctl to return ROM word, 10-78 

CBROM ioctl 

defined in cbreg.h file, 10-5 



cbstart interface 

declaration and discussion of arguments, 

10-67 

description of code example for cb driver, 

10-67 to 10-69 

forward declaration reference, 10-8 

CBSTP constant 

used by cbioctl to stop incrementing lights, 

10-79 

CBSTP ioctl 

defined in cbreg.h file, 10-6 

cbstrategy interface 

convert 32-bit physical address 

description of code example for cb driver, 

10-62 to 10-63 

convert buffer virtual address 

description of code example for cb driver, 

10-61 

declaration and discussion of argument, 

10-56 

initialize buffer structure for transfer 

description of code example for cb driver, 

10-58 

setting up 

description of code example for cb driver, 

10-56 to 10-57 

start 110 and check for timeouts 

description of code example for cb driver, 

10-64 to 10-65 

test low order two bits and use internal buffer 

description of code example for cb driver, 

10-59 to 10-60 

cbwrite interface 

declaration and discussion of arguments, 

10-50 

description of code example for cb driver, 

10-50 to 10-53 

cbwrite interface (cont.) 

forward declaration reference, 10-8 

cdevsw structure 

defined in conf.h, 8-7 

example of initializing with cdevsw _add 

kernel interface, 9-28 

cdevsw table 

adding device driver interfaces to, for 

loadable drivers, 8-8f 

adding device driver interfaces to, for static 

drivers, 8-lOf 

adding entries to, with cdevsw _add kernel 

interface, 9-27 

characteristics of, 8-6 

defined, 2 

defined in conf.h, 3-6 

deleting entries from, with cdevsw _del 

kernel interface, 9-29 

formal description, 8-7 

cdevsw _add kernel interface 

checking d_open member of cdevsw 

structure, 8-1 1 

discussion of arguments as related to call by 

cb_configure, 10-33 

explanation of code fragment, 9-28 

results of example call, 9-29f 

cdevsw _del kernel interface 

discussion of arguments as related to call by 

cb_configure, 10-37 

explanation of code fragment, 9-29 

results of example call, 9-30f 

central processing unit 

defined,2 

discussion of architectural issues related to 

driver development, 2-2 

dri ver design issues 

Index-11 



central processing unit (cont.) 

dri ver design issues (cont.) 

64-bit versus 32-bit, 2-34 

device control status register (CSR) 

access, 2-32 

DMA operations, 2-33 

I/O copy operations, 2-33 

loadable drivers, 2-39 

memory barrier, 2-39 

memory mapping, 2-34 

interrupts generated on, 6-8 

relationship to device driver, 6-2 

cfgmgr daemon 

creating device special files associated with 

device, 11-23 

defined, 2 

fetching stanza entry for device driver, 11-21 

cfgmgr program 

examines dc_version member, I 0~34, 10-40 

sets device switch configuration flag, 10-31 

character device 

defined, 3 

discussion of, 6-6 

character device driver 

compared with block device driver, 3-1 

defined, 3 

introductory discussion and examples of, 1-2 

sections of, 3-3f 

simple interrupt example, 1-9f 

specification of during driver development, 

2-21 

written for devices that handle one character 

at a time, 1-2 

character device switch table 

See cdevsw table 

Index-12 

close device section 

description, 3-14 

close interface 

relationship to d_close member of bdevsw 

structure, 8-16 

relationship to d_close member of cdevsw 

structure, 8-1 I 

setting up xxclose in open and close device 

section, 3-15 

close system call 

discussion of value returned by cbclose, 

10-44 

cmd member 

formal description of controller structure 

field,7-58 

cmd variable 

declared by cbioctl to store ioctl command, 

10-71 

declared by cbs tart to store current command 

fot TURBOchannel test board, 10-67 

declared by cbstrategy to store current 

command for TURBOchannel test 

board, 10-57 

used by cbioctl to perform appropriate ioctl 

operation, 10-73 

cnt variable 

declared by cbread to store number of bytes 

still to be transferred, 10-46 

declared by cbwrite to store number of bytes 

still to be transferred, 10-50 

common directory 

description and relationship to third-party 

configuration model, 11-6 

compile tirlie variable 

d¢fine<:i,3 

disco.ssionof creation by config program, 
··34 



compile time variable (cont.) 

discussion of use by static device drivers, 

3-4 

compiler keyword 

See volatile keyword 

conf directory 

description and relationship to third-party 

configuration model. 11-5 

conf member 

formal description, 7-77 

conf.c file 

automatically edited by config program, 

11-19 

contains device switch structures, 8-6 

description and relationship to third-party 

configuration model. 11-15 

conf.h file 

contains definition of bdevsw structure, 8-13 

contains definition of cdevsw structure, 8-7 

conf.h header file 

defines bdevsw and cdevsw tables, 3-6 

config program 

completing kernel makefile, 11-19 

copying . products.list to N AME.list. I 1-19 

creating device driver header file, 3-4 

defined, 3 

editing conf.c to place the driver's entry 

points, 11-19 

reading stanza. static to determine major and 

minor number requirements, I 1-19 

reading system configuration file to device 

options, 11-19 

con fig. file file fragment 

compared with system configuration file, 

ll-lOf 

contents supplied to kit developers at 

EasyDriver Incorporated 

config.file file fragment (cont.) 

contents supplied to kit developers at 

EasyDriver Incorporated (cont.) 

Book Title (cont.) 

13-16 (cont.) 

(cont.) , 13-16 

defined, 3 

description and relationship to third-party 

configuration model, 11-9 

read by autoconfiguration software during 

autoconfiguration process, 7-1 

relationship to third-party configuration 

model. 11-7 

specifying a bus in, 12-5 

specifying a controller in, 12-6 

specifying a device in, 12-8 

specifying device definitions in, 12-5 

specifying information in. 12-4 

config_name member 

formal description of device_config_t 

structure field, 7-83 

config_type member 

formal description of tc_intr_info structure 

field,7-79 

set to TC_CTLR constant in cbprobe 

interface, 10-21 

configuration_st member 

formal description of tc_intcinfo structure 

field,7-79 

configure interface 

setting up xxconfigure in configure section, 

3-13 

configure section 

description, 3-13 

Index-13 



configuring 

loadable device drivers using the traditional 

model, 13-10 

static device drivers using the traditional 

model, 13-3 

contll member 

formal description of bus structure field, 

7-21 

contl2 member 

formal description of bus structure field, 

7-21 

contll member 

initialized for static drivers, 7-23f 

contl2 member 

initialized for static drivers. 7-23f 

conn_priv member 

formal description of bus structure field, 

7-31 

formal description of controller structure 

field, 7-61 

formal description of device structure field, 

7-67 

initialized for static drivers, 7-32f, 7-61 f, 

7-68f 

connecCbus member 

formal description of bus structure field, 

7-19 

initialized for static drivers, 7-21 f 

connecCnum member 

formal description of bus structure field, 

7-19 

initialized for static drivers, 7-21 f 

control status register (CSR) 

See device register 

controller 

defined, 3 

Index-14 

controller (cont.) 

relationship to device driver, 1-8 

specifying syntax in config.file file fragment, 

12-6 

specifying syntax in stanza.loadable file 

fragment, 12-32 

specifying syntax in system configuration 

file, 12-6 

controller structure 

declared as pointer by cbstrategy, 10-56 

declared as pointer in cb_ctlcunattach 

interface, 10-25 

declared as pointer in cbattach interface. 

10-23 

defined,4 

linked to bus structure by autoconfiguration 

software. 7-7 

list of member names and data types, 7-33t 

controller unattach interface 

setting up ctrLunattach in autoconfiguration 

support section, 3-12 

controlleclist array, 7-5 

copyin kernel interface 

discussion of arguments as related to call by 

cbstrategy. 10-60 

discussion of return values, 10-60 

explanation of code fragment, 9-12 

results of example call, 9-13f 

copying a memory block 

to another 110 address space with io_copyio 

kernel interface, 9-50 

to 110 address space with io_copyout kernel 

interface, 9-48 

to system memory with io_copyin kernel 

interface. 9-46 



copyout kernel interface 

explanation of code fragment, 9-13 

results of example call, 9-14f 

CPU 

See central processing unit 

CSR 

See device register 

CSR access interface 

category of kernel interface, 9-39 

ctlr_hd member 

example of use in system configuration tree 

for static drivers, 7-12 

ctlclist member 

example of use in system configuration tree 

for static drivers, 7-10 

formal description of driver structure field, 

7-72 

initialized for cb driver, 7-73f 

ctlr _mbox member 

formal description of controller structure 

field,7-34 

ctlr_name member 

formal description of controller structure 

field,7-36 

formal description of device structure field, 

7-65 

formal description of driver structure field, 

7-72 

initialized for cb driver, 7-73f 

initialized for static drivers, 7-38f, 7-66f 

ctlr_num member 

formal description of controller structure 

field,7-36 

formal description of device structure field, 

7-65 

initialized for static drivers, 7-38f, 7-66f 

ctlr_num member (cont.) 

used as an index in locally defined buf 

structure code example, 8-2 

used to initialize unit variable in 

cb_ctlr_unattach interface, 10-26 

ctlr_type member 

formal description of controller structure 

field,7-36 

initialized for static drivers, 7-38f 

ctlr _unattach member 

formal description of driver structure field, 

7-75 

initialized for cb driver, 7-76f 

ctrl_unattach interface 

example code fragment, 3-12 

D 

d_close member 

formal description of bdevsw structure field, 

8-16 

formal description of cdevsw structure field, 

8-11 

nulldev interface as value, 8-16 

d_dump member 

formal description of bdevsw structure field, 

8-16 

nodev interface as value, 8-16 

d_f1ags member 

formal description of bdevsw structure field, 

8-17 

d_funnel member 

formal description of bdevsw structure field, 

8-17 

formal description of cdevsw structure field, 

8-13 

relationship to a multiprocessing driver, 8-17 

Index-15 



d_funnel member (cont.) 

relationship to an SMP driver, 8-13 

d_ioctl member 

formal description of bdevsw structure field, 

8-17 

formal description of cdevsw structure field, 

8-11 

node v interface as value, 8-17 

d_mmap member 

formal description of cdevsw structure field, 

8-12 

d_open member 

formal description of bdevsw structure field, 

8-16 

formal description of cdevsw structure field, 

8-10 

d_psize member 

formal description of bdevsw structure field, 

8-17 

d_read member 

formal description of cdevsw structure field, 

8-11 

d_reset member 

formal description of cdevsw structure field, 

8-12 

nodev interface as value, 8-12 

d_select member 

formal description of cdevsw structure field, 

8-12 

nodev interface as value, 8-12 

d_stop member 

formal description of cdevsw structure field, 

8-11 

node v interface as value, 8-11 

nulldev interface as value, 8-12 

Index-16 

d_strategy member 

formal description of bdevsw structure field, 

8-16 

d_ttys member 

formal description of cdevsw structure field, 

8-12 

tty structure as possible value, 8-12 

d_ write member 

formal description of cdevsw structure field, 

8-11 

daddr_t data type 

description, 3-5 

daemon 

defined,4 

data copying interface 

category of kernel interface, 9-10 

data directory 

description and relationship to third-party 

configuration model, 11-6 

data structure 

defined,4 

data variable 

declared as pointer by cbioctl to store ioctl 

command-specific data, 10-71 

dattach member 

formal description of driver structure field, 

7-69 

initialized for cb driver, 7-70f 

dc_begunit member 

device30nfig_t structure field initialized by 

cb_configure, 10-34, 10-39 

formal description of device30nfig_t 

structure field, 7-83 

dc_bmajnum member 

device_config_t structure field initialized by 

cb30nfigure, 10-39 



dc_bmajnum member (cont.) 

formal description of device30nfig_t 

structure field, 7-82 

dc_cmajnum member 

device_config_t structure field initialized by 

cb30nfigure, 10-34, 10-39 

formal description of device_config_t 

structure field, 7-82 

dc_dsflags member 

device_config_t structure field initialized by 

cb_configure, 10-34 

formal description of device_config_t 

structure field, 7-83 

set by cfgmgr program, 10-31 

dc_errcode member 

device_config_t structure field initialized by 

cb_configure, 10-34 

formal description of device_config_t 

structure field, 7-82 

dc_ihflags member 

device_config_t structure field initialized by 

cb_configure, 10-34 

dc_ihlevel member 

device_config_t structure field initialized by 

cb_configure, 10-34 

formal description of device_config_t 

structure field, 7-83 

dc_numunit member 

device_config_t structure field initialized by 

cb30nfigure, 10-34, 10-39 

dc_version member 

device_config_t structure field initialized by 

cb_configure, 10-34, 10-40 

formal description of device_config_t 

structure field, 7-82 

deallocating system resources for DMA 

by calling dma_map_dealloc kernel interface, 

9-59 

DEC 3000 Model 500 AXP Workstation 

host CPU on which Idev/none driver operates 

on, 2-2 

declarations section 

description, 3-9 

DELA Y kernel interface 

explanation of code fragment, 9-17 

dey argument 

declared by cbclose, 10-44 

declared by cbioctI, 10-71 

declared by cbopen, 10-42 

declared by cbread, 10-46 

declared by cbwrite, 10-50 

DEV _FUNNEL_NULL constant 

used as value for d_funnel member of 

bdevsw structure, 8-17 

used as value for d_funnel member of 

cdevsw structure, 8-13 

dey _list member 

example of use in system configuration tree 

for static drivers, 7-11 

formal description of driver structure field, 

7-71 

initialized for cb driver, 7-72f 

dey _name member 

formal description of device structure field, 

7-63 

formal description of driver structure field, 

7-71 

initialized for cb driver, 7-72f 

dey _t data type 

description, 3-5 

type for b_dev member of buf structure, 8-5 

Index-17 



dev _type member 

formal description of device structure field, 

7-63 

initialized for static drivers, 7-64f 

dev _unattach member 

formal description of driver structure field, 

7-75 

initialized for cb driver, 7-76f 

devdriver.h header file 

defines alive bits, 7-27, 7-43, 7-66 

defines constants representing bus types, 

7-16 

defines structures used by device drivers, 3-6 

device 

See peripheral device 

characteristics 

discussion of actions to be taken on 

interrupts, 2-12 

discussion of block 110 support during 

driver development, 2-10 

discussion of byte stream access support 

during driver development, 2-12 

discussion of file system support during 

driver development, 2-12 

discussion of how to reset device, 2-14 

specifying syntax in config.file file fragment, 

12-8 

specifying syntax in stanza.loadable file 

fragment, 12-33 

specifying syntax in system configuration 

file, 12-8 

usage 

describing purpose of, 2-16 

listing of device documentation, 2-16 

specifying number of device types, 2-16 

Index-18 

device autoconfiguration 

See autoconfiguration 

device controller 

See controller 

device driver 

See also block device driver 

See also character device driver 

See also network device driver 

See also pseudodevice driver 

autoconfiguration support section, 4-13 

declarations section, 4-6 

defined, 4 

entry points 

specifying during driver development, 

2-23 

example of reading a character, 1-8 

open and close device section, 4-34 

place in DEC OSFIl, 1-5f 

read and write device section, 4-39 

relationship to kernel, 1-7 

sections 

autoconfiguration support, 3-9 

configure, 3-13 

declarations, 3-9 

dump, 3-24 

include files, 3-4 

interrupt, 3-20 

ioctl,3-17 

memory map, 3-26 

open and close device, 3-14 

psize,3-25 

read and write device, 3-16 

reset, 3-20 

select, 3-21 

stop, 3-19 

strategy, 3-18 



device driver (cont.) 

support 

contacting driver experts, 2-21 

locating existing documentation, 2-20 

locating existing source code, 2-20 

using source code for a UNIX driver, 

2-20 

using source code for an ULTRIX driver, 

2-20 

using source code for driver written for 

another operating system, 2-20 

writing from scratch, 2-20 

the interrupt section, 4-44 

the ioctI section, 4--4S 

to handle requests made by the kernel, 1-1 

types of, 1-1 

when called by the kernel, 1-4f 

device driver configuration 

contents of configuration-related files, 12-2t 

defined,4 

third-party model 

audiences, 11--4 

creating driver development environment, 

11--4 

creating driver kit development 

environment, 11--4 

device driver kit delivery process, 11-3f 

example driver kit development 

environment, II-Sf 

writing the driver, 11-4 

traditional model 

development environment, 11-2Sf 

tasks associated with, 11-24f 

using the traditional model to configure 

loadable device drivers, 13-10 

using the traditional model to configure static 

device dri vers 

device driver configuration (cont.) 

using the traditional model to configure static 

device drivers (cont.) 

Book Title (cont.) 

13-3 (cont.) 

(cont.) , 13-3 

device driver development 

comments 

discussion of approaches for writing, 2-8 

tasks 

creating driver development and kitting 

environment, 2--44 

describing usage of device, 2-14 

determining structure allocation 

technique, 2-25 

identifying conventions used in writing, 

2-S, 2-9 

identifying driver entry points, 2-23 

identifying support in writing, 2-19 

providing description of device registers, 

2-16 

specifying characteristics of device, 2-10 

specifying information about host system, 

2-2 

specifying type of driver, 2-21 

structure allocation technique guidelines, 

2-2St 

understanding CPU issues affecting driver 

design, 2-31 

worksheets 

device characteristics for none device, 

2-1lf, 2-13f 

device driver conventions for Idev/none, 

2-7f 

device driver entry points for Idev/none, 

2-24f 

Index-19 



device driver development (cont.) 

worksheets (cont.) 

device driver support for Idev Inone, 2-19f 

device driver type for Idev/none, 2-22f 

device register for none device, 2-17f 

device usage for none device, 2-15f 

host system for Idev/none, 2-3f, 2-4f 

device driver header file 

defined,4 

discussion of creation by config program, 

3-4 

example of contents, 3-4 

device driver kit 

contents of, 11-16t 

defined,4 

preparation of, 11-17 

summary of steps in creating, 12-41 

device driver subsystem 

accessing device registers of specific devices, 

6-8 

communication with the bus support 

subsystem, 5-5 

communication with the hardware-dependent 

subsystem, 5-4 

communication with the hardware­

independent subsystem, 5-5 

defined, 5 

device register 

accessed by device drivers, 6-7 

defined, 5 

discussion of, 6-5 

discussion of including in device driver, 6-3 

discussion of including in system 

configuration file, 6-3 

mapping of with memory address, 2-16 

reading data from by calling read_io_port 

Index-20 

kernel interface 

device register (cont.) 

reading data from by calling read_io_port 

kernel interface (cont.) 

Book Title (cont.) 

9-39 (cont.) 

(cont.) ,9-39 

sketching layout of, 2-16 

used by the device, 6-7 

writing data to by calling write_io_port 

kernel interface, 9-42 

device register header file 

defined,S 

discussion and example of contents, 3-7 

for the cb device driver, 10-4 

device register structure 

defined,S 

discussion and example of, 3-7 

device structure 

connected to associated controller structure 

by autoconfiguration software, 7-7 

defined,S 

list of member names and data types, 7-62t 

device switch tables 

See also bdevsw table 

See also cdevsw table 

defined,S 

formal description, 8-6 

device unattach interface 

setting up xxdev _unattach in 

autoconfiguration support section, 

3-13 

Device_Block_Files field 

syntax description, 12-25 

Device_Block_Major field 

syntax description, 12-24 



Device_Block_Minor field 

syntax description, 12-24 

Device_Block_Subdir field 

syntax description, 12-22 

Device_ Char_Files field 

syntax description, 12-28 

Device_ ChacMajor field 

syntax description, 12-27 

Device_Char_Minor field 

syntax description, 12-27 

Device_Char_Subdir field 

syntax description, 12-23 

device_config_t structure 

declared as pointer by cb30nfigure interface, 

10-28 

initialized by cb_configure, 10-34 

list of member names and data types, 7-82t 

Device_Dir field 

syntax description, 12-22 

Device_Group field 

syntax description, 12-30 

device_list array, 7-5 

Device_Major_Req field 

syntax description, 12-23 

Device_Mode field 

syntax description, 12-30 

Device_Subdir field 

syntax description, 12-22 

Device_User field 

syntax description, 12-30 

direct memory access 

See DMA 

direct memory access device 

See also DMA device 

discussion of, 6-6 

disk partition 

block number, 8-6 

logical block number, 8-6 

DMA 

allocating system resources by calling 

dma_map_alloc kernel interface, 9-53 

defined, 5 

discussion of how to accomplish, on 

TURBOchannel test board, 10-59 

kernel interfaces related to, 9-52 

loading and setting allocated system 

resources by calling dma_map_Ioad 

kernel interface, 9-55 

releasing and deallocating system resources 

by calling dma_map_dealloc kernel 

interface, 9-59 

returning a kernel segment address by calling 

dma_kmap_buffer kernel interface, 

9-64 

unloading system resources by calling 

dma_map_unload kernel interface, 

9-58 

use of b_un.b_addr member to perform, 8-5 

DMA device 

defined,5 

DMA handle 

defined,6 

description, 9-53 

dma~eCcurr_sgentry kernel interface 

explanation of code fragment, 9-61 

dma~eCnexCsgentry kernel interface 

explanation of code fragment, 9-61 

dma_handle_t data type 

defined in devdriver.h, 3-6 

dma_map_alloc kernel interface 

explanation of code fragment, 9-54 

Index-21 



dma_map_dealloc kernel interface 

explanation of code fragment, 9-60 

dma_map_load kernel interface 

explanation of code fragment, 9-56 

dma_map_unload kernel interface 

explanation of code fragment, 9-58 

dma_put_curr_sgentry kernel interface 

explanation of code fragment, 9-63 

dma_put_prev_sgentry kernel interface 

explanation of code fragment, 9-63 

doconfig 

copying .products.list file to NAME.list file, 

11-9 

defined,6 

used by system manager to generate system 

configuration file, 11-19 

driver interfaces 

list of, A-9t 

driver member 

formal description of controller structure 

field, 7-35 

initialized for static drivers, 7-36f 

driver structure 

defined,6 

list of member names and data types, 7-69t 

DRIVER_BUILD_LEVEL constant 

used by cb_configure to initialize dc_version 

member, 10-34, 10-40 

drivecname member 

formal description of bus structure field, 

7-30 

initialized for static drivers, 7-31 f 

dump interface 

relationship to d_dump member of bdevsw 

structure, 8-16 

setting up xxdump in dump section, 3-24 

Index-22 

dump section 

description, 3-24 

E 

EBUSY error code 

to indicate cb driver not currently configured 

as loadable, 10-36 

EFAULT error code 

possible value returned by copyin, 10-60 

possible value returned by uiomove, 10-48, 

10-52 

EINV AL error code 

description, 3-6 

to indicate cb driver not currently configured 

as loadable, 10-36 

to indicate invalid argument in cb_configure, 

10-31 

used by cb_configure to define unknown 

operation type, 10-40 

EIO error code 

description, 3-6 

ENODEV constant 

discussion of use by cb_configure, 10-34, 

10-39 

ENODEV error code 

description, 3-6 

ENXIO error code 

used by cbopen to indicate no such device, 

10-42 

err variable 

declared by cbread to store return value from 

uiomove, 10-46 

declared by cbstrategy to store return value 

from uiomove, 10-57 

declared by cbwrite to store return value 

from uiomove, 10-50 



errno.h file 

defines ENXIO error code used by cbopen, 

10-42 

defines error codes, 10-31 

defines error codes returned to user process 

by device driver, 3-6 

defines error codes used for b_error member, 

8-5 

ESRCH error code 

discussion of use by cdevsw _del, 10-37 

F 
file.h file 

defines flag bits used by cbopen, 10-42 

files file 

comparison with customer files file, 11-12f 

description and relationship to third-party 

configuration model, II-II 

description and relationship to traditional 

configuration model, 11-27 

files file fragment 

contents supplied to kit developers at 

Easy Dri ver Incorporated, 13-16 

description and relationship to third-party 

configuration model, 11-11 

examples of, 12-15 

flag argument 

declared by cbioctl to store device access 

mode, 10-72 

declared by cbopen, 10-42 

flags member 

formal description of controller structure 

field,7-51 

initialized for static drivers, 7-52f 

framework member 

formal description of bus structure field, 

7-29 

framework member (cant.) 

initialized for static drivers, 7-31 f 

G 
GENERIC system configuration file 

defined, 6 

global variables 

summary descriptions, A-7t 

go member 

H 

formal description of driver structure field, 

7-69 

handler_add kernel interface 

description of call in cbprobe interface, 

10-22 

explanation of code fragment, 9-31 

external declaration in cb device driver, 

10-10 

handlecdel kernel interface 

discussion of argument in call by 

cb_ctIcunattach, 10-26 

handler_disable kernel interface 

discussion of argument in call by 

cb_ctIcunattach, 10-26 

handlecenable kernel interface 

description of call in cbprobe interface, 

10-22 

explanation of code fragment, 9-31 

handleckey structure 

list of member names and data types, 7-81 t 

hardware activities 

related to device drivers, 6-7 

hardware components 

central processing unit, 6-2 

Index-23 



hardware components (cont.) 

of interest to device driver writers, 6-2f 

hardware device 

See also peripheral device 

hardware interrupt 

causes driver's interrupt service interface to 

be called, 3-20 

hardware-dependent subsystem 

communication with the bus support 

subsystem, 5--4 

communication with the device driver 

subsystem, 5-3 

communication with the hardware­

independent subsystem, 5-3 

defined,6 

discussion of relationship to writing device 

drivers, 5-3 

hardware-independent model 

components of, 5-2f 

defined,6 

hardware-independent subsystem 

communication with the device driver 

subsystem, 5-3 

communication with the hardware-dependent 

subsystem, 5-3 

defined, 7 

discussion of relationship to writing device 

drivers, 5-2 

hardware-related interface 

category of kernel interface, 9-15 

header files 

description of code example for cb driver, 

10-7 to 10-8 

discussion of common driver, 3-5 

discussion of conf.h, 3-6 

discussion of devdriver.h, 3-6 

Index-24 

header files (cont.) 

discussion of device driver, 3--4 

discussion of device register, 3-7 

discussion of errno.h, 3-6 

discussion of loadable driver, 3-6 

discussion of name_data.c, 3-8 

discussion of number and types included in 

device driver, 3--4 

discussion of sysconfig.h, 3-7 

discussion of uio.h, 3-6 

example for /dev/none driver, 4--4 

example of commonly used by device 

drivers, 3-5 

list of with summary descriptions, A-I t 

recommendations on using angle brackets « 
and» in explicit pathnames, 3-5 

relationship to third-party configuration 

model, 11-14 

relationship to traditional configuration 

model, 11-27 

host CPU 

See central processing unit 

hz global variable 

external declaration in cb device driver, 10-8 

110 handle 

defined, 7 

description, 9-38 

ih_bus member 

formal description of ihandlect structure 

field,7-77 

ih_bus_info member 

formal description of ihandlect structure 

field,7-77 



IH_DRV _DYNAMIC bit 

discussion of used by cb_configure, 10-31 

ih_id member 

formal description of ihandlect structure 

field, 7-77 

ihandler_id_t key 

defined, 7 

ihandler_t structure 

code fragment example, 7-78 

declaration in cbprobe interface, 10-20 

defined,7 

initializing ih_bus member in cbprobe 

interface, 10-21 

list of member names and data types, 7-77t 

passed as an argument to handlecadd kernel 

interface, 9-31 

setting of ih_bus_info member in cbprobe 

interface, 10-22 

include file 

See header files 

inittab entry 

causes kmknod to run, 1 1 -19 

ino_t data type 

description, 3-5 

interrupt code 

discussion of how kernel handles interrupts, 

8-19 

interrupt section 

description, 3-20 

interrupt service interface 

defined, 7 

discussion of how to specify for loadable and 

static drivers, 9-30 

enabling with handlecenable kernel 

interface, 9-31 

registering with handlecadd kernel interface, 

9-31 

interrupt service interface (cont.) 

setting up xxintr in interrupt section, 3-20 

intr member 

formal description of bus structure field, 

7-25 

formal description of controller structure 

field,7-48 

formal description of tc_intcinfo structure 

field,7-79 

initialized for static drivers, 7-27f, 7-49f 

intrftag member 

cb_unit structure field cleared by cbioctl, 

10-75 

cb_unit structure field set by cbintr, 10-83 

formal description of cb_unit structure field, 

10-14 

io_copyin kernel interface 

explanation of code fragment, 9-47 

io_copyio kernel interface 

explanation of code fragment, 9-50 

io_copyout kernel interface 

explanation of code fragment, 9-48 

io_handle_t data type 

defined in devdriver.h, 3-6 

ioconf.c file 

defined, 7 

stores bus_list array created by 

autoconfiguration software, 7-5 

stores controlleclist array created by 

autoconfiguration software, 7-5 

stores device_list array created by 

autoconfiguration software, 7-5 

ioctl interface 

relationship to d_ioctl member of bdevsw 

structure, 8-17 

relationship to d_ioctl member of cdevsw 

structure, 8-11 

Index-25 



ioctl interface (cont.) 

setting up xxioctl in ioctl section, 3-17 

ioctl section 

descri ption, 3-17 

ioctl system call 

causes driver's ioctl interface to be called, 

3-17 

discussion of value returned by cbioctl, 

10-77, 10-79 

iodone kernel interface 

discussion of argument as related to call by 

cbstrategy, 10-60 

relationship to b_iodone member of buf 

structure, 8-6 

iomode member 

cb_unit structure field used by cbread, 

10-47, 10-48 

cb_unit structure field used by cbwrite, 

10-51, 10-52 

formal description of cb_unit structure field, 

10-14 

ivnum member 

K 

formal description of controller structure 

field,7-54 

initialized for static drivers, 7-56f 

kalloc kernel interface 

ex.planation of code fragment, 9-8 

to dynamically allocate memory, 2-29 

kernel 

defined,7 

relationship to device driver, 1-6 

kernel address space 

copying from with copyout kernel interface, 

9-13 

Index-26 

kernel framework 

defined,7 

kernel interface 

categories, 9-1 

commonly used by device drivers, 9-1 

kernel support interfaces 

summary descriptions for I/O support 

interfaces, A-3t 

kernel-related interface 

category of kernel interface, 9-1 9 

key member 

formal description of handleckey structure 

field,7-81 

kfree kernel interface 

explanation of code fragment, 9-9 

to free dynamically allocated memory, 2-31 

kget kernel interface 

explanation of code fragment, 9-9 

kits directory 

description and relationship to third-party 

configuration model, 11-6 

kloadsrv 

defined, 8 

kloadsrv utility 

loading driver's object into the kernel's 

address space, 11-21 

kmknod 

defined, 8 

referencing kernel resident table, 11-19 

uses stanza. static to dynamically create 

device special files, 11-14 

kreg 

copying driver path to .products.list, 11-8 

defined,8 

parsing the SCP for the driver paths file field, 

11-8 



kreg (cont.) 

use of in SCP, 12-44 

L 

ldbl_ctlr _configure kernel interface 

discussion of arguments as related to call by 

cb_configure, 10-32 

IdbCctlr_unconfigure interface 

called after the call to cdevsw_del, 10-37 

IdbCctlr_unconfigure kernel interface 

discussion of arguments as related to call by 

cb30nfigure, 10-38 

IdbCstanza_resolver kernel interface 

discussion of arguments as related to call by 

cb_configure, 10-32 

ledftag member 

cb_unit structure field set by cbioctI, 10-73 

formal description of cb_unit structure field, 

10-14 

load module 

contents supplied to kit developers at 

EasyDriver Incorporated, 13-18 

defined, 8 

relationship to third-party configuration 

model, 11-14 

relationship to traditional configuration 

model, 11-27 

loadable device driver 

comparison with static device driver, 1-3 

declarations and definitions 

description of code example for cb driver, 

10-10 to 10-12 

defined,8 

local structure and variable definitions 

description of code example for cb driver, 

10-16 to 10-17 

loadable device driver (cont.) 

specification of during driver development, 

2-22 

supported buses, 2-5 

supported CPUs, 2-5 

where to specify device driver interrupt 

service interface, 9-30 

loadable driver interface 

category of kernel interface, 9-23 

loadble device driver 

steps for installing, 11-22f 

loading allocated system resources for DMA 

by calling dma_map_load kernel interface, 

9-55 

lock member 

formal description of handleckey structure 

field,7-81 

logunit member 

formal description of device structure field, 

7-64 

initialized for static drivers, 7-65f 

lowbits variable 

M 

declared by cbstrategy to store low 2 virtual 

address bits, 10-57 

set by cbstrategy, 10-59 

major kernel interface 

called by cb_configure to initialize 

dc_cmajnum member, 10-34, 10-39 

makedevkernel interface 

discussion of arguments as related to call by 

cb_configure, 10-33 

makefile 

completed by config program, 11-19 

Index-27 



MAX_XFR constant 

definition in cb device driver, 10-15 

used by cbread to transfer maximum bytes, 

10-47 

used by cbwrite to transfer maximum bytes, 

10-51 

nnb kernel interface 

use as an alternative to wbflush on Alpha 

AXP systems, 2-37 

used to synchronize DMA buffers, 2-37 

nnennory 

relationship to device driver, 6-2 

zeroing with bzero kernel interface, 9-11 

nnennory barrier 

discussion of, 2-39 

discussion of mb interface on Alpha AXP 

systems, 2-37 

nnennory block 

copying a memory block to 1/0 space with 

io_copyin kernel interface, 9-46 

copying with io_copyio kernel interface, 

9-50 

copying with io_copyout kernel interface, 

9-48 

nnethod 

defined, 8 

Method_Nanne field 

syntax description, 12-20 

Method_Path field 

syntax description, 12-21 

Method_Type field 

syntax description, 12-21 

nninor kernel interface 

discussion of argument as related to call by 

cbclose, 10-44 

discussion of argument as related to call by 

cbopen, 10-42 

Index-28 

nninor kernel interface (cont.) 

discussion of argument as related to call by 

cbread, 10-47 

discussion of argument as related to call by 

cbstrategy, 10-56 

discussion of argument as related to call by 

cbwrite, 10-51 

nniscellaneous interface 

category of kernel interface, 9-66 

nnnnap interface 

relationship to d_mmap member of cdevsw 

structure, 8-12 

setting up xxmmap in memory map section, 

3-26 

nnnnap systenn call 

causes kernel to invoke driver's memory map 

interface, 3-26 

restrictions on some CPU architectures, 3-26 

Module_ Config field 

syntax description for bus specification, 

12-31 

syntax description for controller 

specification, 12-32 

syntax description for device specification, 

12-33 

Module_Config_Nanne field 

syntax description, 12-30 

Module_Path field 

syntax description, 12-21 

Module_Type field 

syntax description, 12-21 



N 
name_data.c file 

defined, 8 

name_data.c header file 

description and relationship to third-party 

configuration model, 11-14 

description and relationship to traditional 

configuration model, 11-27 

discussion and example of contents, 3-8 

NAME. list file 

compared with .products.list, 11-8f 

defined, 8 

description and relationship to third-party 

configuration model, 11-7 

format of, 12-12f 

naming scheme 

conventions 

for config.file file fragment, 11-10 

for device connectivity information, 2-6 

for driver interfaces, 2-5 

for none_configure, 2-6 

for stanza.loadable file fragment, 11-14 

for structures internal to drivers, 2-6 

use of nm command to determine names 

currently used by system, 2-6 

NCB array 

declaration of in locally defined buf 

structures code example, 8-2 

NCB compile time variable 

used to illustrate sizing of controller 

structures, 3-9 

NCB constant 

used in comparison of unit variable, 10-42 

used to allocate in locally defined buf 

structures code example, 8-2 

used to size array of pointers to controller 

structures, 10-9 

NCB constant (cont.) 

used to size cb_id_t array, 10- IO 

used to size cb_unit structure, 10- I3 

used to size cbbuf array, 10- I3 

network device 

defined, 8 

discussion of, 6-6 

network device driver 

defined, 9 

introductory discussion of, 1-2 

specification of during driver development, 

2-21 

next member 

formal description of handleckey structure 

field,7-81 

nexus 

defined, 9 

nmcommand 

used to determine names currently used by 

system, 2-6 

NODEV constant 

discussion of use by cb_configure, 10-34 

nodev interface 

external declaration in cb device driver, 

10-10 

use as value for d_dump member of bdevsw 

structure, 8-16 

use as value for d_ioctl member of bdevsw 

structure, 8-17 

use as value for d_reset member of cdevsw 

structure, 8-12 

use as value for d_select member of cdevsw 

structure, 8-12 

use as value for d_stop member of cdevsw 

structure, 8-11 

Index-29 



none device driver 

convention used in example code, 2-8 

none30nfigure driver interface 

discussion of naming requirement, 2-6 

null-terminated character string 

comparison of with strcmp kernel interface, 

9-1 

copying of with strncpy kernel interface, 

9-4, 9-5 

returning with strlen kernel interface, 9-6 

nulldev interface 

external declaration in cb device driver, 

10-10 

use as value for d310se member of bdevsw 

structure, 8-16 

use as value for d_stop member of cdevsw 

structure, 8-12 

num_cb variable 

declaration and initialization in cb device 

driver, 10-12 

used by cb_configure to initialize 

dc_numunit member, 10-34, 10-39 

nxCctlr member 

example of use in system configuration tree 

for static drivers, 7-11 

nxCdev member 

o 

example of use in system configuration tree 

for static drivers, 7-12 

object file 

contents supplied to kit developers at 

EasyDriver Incorporated, 13-18 

relationship to third-party configuration 

model, 11-14 

relationship to traditional configuration 

model, 11-27 

Index-30 

ofet data type 

description, 3-5 

open device section 

description, 3-14 

open interface 

relationship to d_open member of bdevsw 

structure, 8-16 

relationship to d_open member of cdevsw 

structure, 8-10 

setting up xxopen in open and close device 

section, 3-14 

open system call 

causes driver's open interface to be called, 

3-14 

discussion of value returned by cbopen, 

10-43 

open systems 

defined, 9 

discussion of goals, 5-1 

OPENbus 

defined,9 

TURBOchannel as an open architecture, 1-7 

VMEbus as an open architecture, 1-7 

opened member 

cb_unit structure field set by cbclose, 10-44 

cb_unit structure field set by cbopen, 10-43 

formal description of cb_unit structure field, 

10-14 

operating system 

discussion of issues related to driver 

development, 2-4 



p 

paddr _t data type 

description, 3-5 

param member 

formal description of tc_intr_info structure 

field, 7-79 

peripheral device 

defined, 9 

discussion of distinctions, 6-5 

relationship to device driver, 1-8 

phys_addr variable 

declared by cbstrategy to store user buffer's 

physical address, 10-57 

physaddr member 

formal description of controller structure 

field, 7-59 

initialized for static drivers, 7-60f 

physaddr2 member 

formal description of controller structure 

field, 7-59 

initialized for static drivers, 7-60f 

physical address 

declaration of associated variable by 

cbstrategy, 10-57 

physio kernel interface 

discussion of arguments as related to call by 

cbread, 10-49 

discussion of arguments as related to call by 

cbwrite,. 10-53 

pname member 

formal description of bus structure field, 

7-23 

formal description of controller structure 

field, 7-46 

initialized for static drivers, 7-25f, 7-48f 

port member 

formal description of bus structure field, 

7-23 

formal description of controller structure 

field,7-46 

initialized for static drivers, 7-25f, 7-48f 

port structure 

defined, 9 

member name and data type, 7-76t 

porting 

di fferences 

between DEC OSFII and ULTRIX data 

structures, 2-49t 

between DEC OSFII and ULTRIX kernel 

interfaces, 2-47t 

tasks 

checking data structures, 2-49 

checking driver interfaces, 2-46 

checking header files, 2-46 

checking kernel interfaces, 2-47 

reviewing device driver configuration, 

2-46 

writing test suites, 2-45 

prev member 

formal description of handleckey structure 

field, 7-81 

printf kernel interface 

called in cbprobe interface for debugging 

purposes, 10-20 

note on character limit, 10-21 

use of terse option, 10-21 

priority member 

formal description of controller structure 

field,7-56 

initialized for static drivers, 7-58f 

Index-31 



private member 

formal description of bus structure field, 

7-31 

formal description of controller structure 

field,7-60 

formal description of device structure field, 

7-67 

initialized for static drivers, 7-32f, 7-6lf, 

7-68f 

probe interface 

called by autoconfiguration software to verify 

existence of controller, 7-7 

formal parameters affected by bus, 6-4 

setting up xxprobe in autoconfiguration 

support section, 3-10 

probe member 

formal description of driver structure field, 

7-69 

initialized for cb driver, 7-70f 

.products.list file 

compared with NAME.list, 11-8f 

defined,9 

description and relationship to third-party 

configuration model, 11-7 

format of, 12-12f 

providing 

device driver load modules for EasyDriver 

Incorporated, 13-18 

device driver object files for EasyDriver 

Incorporated, 13-18 

information in config.file file fragment for 

EasyDriver Incorporated, 13-16 

information in files file fragment for 

EasyDriver Incorporated, 13-16 

information in stanza.loadable file fragment 

for Easy Dri ver Incorporated, 13-16 

Index-32 

providing (cont.) 

information in stanza.static file fragment for 

EasyDriver Incorporated, 13-17 

pseudo device driver 

defined,9 

pseudo terminal driver 

See pty terminal driver 

pseudodevice driver 

discussion of issues related to driver 

development, 2-5 

introductory discussion and examples of, 1-2 

psize interface 

relationship to d_psize member of bdevsw 

structure, 8-17 

setting up xxpsize in psize section, 3-25 

psize section 

description, 3-25 

pty terminal driver 

pseudodevice driver that simulates terminal 

device, 1-3 

putting a new bus addresslbyte count pair in 

the list 

R 

by calling dma_puCcurcsgentry kernel 

interface, 9-62 

by calling dma_pucprev _sgentry kernel 

interface, 9-62 

raw mode 

processing of a read request that results in 

return of a single character, 1-8 

rctlr member 

formal description of controller structure 

field,7-40 

initialized for static drivers, 7-42f 



read device section 

description, 3-16 

read interface 

relationship to d_read member of cdevsw 

structure, 8-1 I 

setting up xxread in read and write device 

section, 3-16 

read system call 

causes driver's read interface to be called, 

3-16 

discussion of arguments passed as a result of 

a call by user program, 1-10 

read_io_port interface 

called by cbincled interface, 10-80 

called ~y cbintr interface, 10-82 

called by cbioctl interface, 10-75 

called by cbread interface, 10-48 

called by cbstart interface, 10-67 

read_io_port kernel interface 

explanation of code fragment, 9-40 

read/write data register 

stored in tmp variable by cbread, 10-46 

stored in tmp variable by cbwrite, 10-50 

reading data from a device register 

by calling read_io_port kernel interface, 

9-39 

releasing system resources for DMA 

by calling dma_map_dealloc kernel interface, 

9-59 

reset function 

discussion of device driver tasks during 

driver development, 2-14 

reset interface 

relationship to d_reset member of cdevsw 

structure, 8-12 

setting up xxreset in reset section, 3-20 

reset section 

description, 3-20 

resource 

defined, 9 

returning a kernel segment address 

by calling dma_kmap_buffer kernel interface, 

9-64 

returning a pointer to sg_entry structure 

by calling dma_geccurcsgentry kernel 

interface, 9-60 

by calling dma~ecnexcsgentry kernel 

interface, 9-60 

reviewing 

device driver configuration-related files, 12-1 

rsvd member 

5 

formal description of bus structure field, 

7-31 

formal description of controller structure 

field,7-61 

formal description of device structure field, 

7-67 

initialized for static drivers, 7-32f, 7-61 f, 

7-68f 

SCP 
calling kreg, 11-8 

defined, 10 

example for cb device driver, 12-42 

select interface 

relationship to d_select member of cdevsw 

structure, 8-12 

setting up xxselect in select section, 3-21 

select section 

description, 3-21 

Index-33 



setld 

calling SCP, 11-7 

defined, 10 

reading device driver kit, 11-7 

setting allocated system resources for DMA 

by calling dma_map_load kernel interface, 

9-55 

sg_entry data structure 

description, 9-53 

sg_entry structure 

list of member names and data types, 9-53t 

sizeof operator 

use with kfree kernel interface, 9-9 

use with kget kernel interface, 9-9 

slave interface 

called by autoconfiguration software for each 

device found, 7-7 

formal parameters affected by bus, 6-4 

setting up xxslave in autoconfiguration 

support section, 3-11 

slave member 

formal description of driver structure field, 

7-69 

initialized for cb driver, 7-70f 

slot member 

formal description of bus structure field, 

7-19 

formal description of controller structure 

field,7-42 

initialized for static drivers, 7-2lf, 7-43f 

used to set TC slot number in cbattach 

interface, 10-23 

softclock interface 

calls cbinc1ed after last timeout call, 10--80 

source file 

relationship to third-party configuration 

model, 11-14 

Index-34 

source file (cont.) 

relationship to traditional configuration 

model, 11-27 

special device 

relationship to b_dev member of buf 

structure, 8-5 

specifying bus syntax 

in config.file file fragment, 12-5 

in system configuration file, 12-5 

specifying call outs 

in config.file file fragment, 12-10 

in system configuration file, 12-10 

specifying controller syntax 

in config.file file fragment, 12-6 

in system configuration file, 12-6 

specifying device definitions 

in the config.file file fragment, 12-4 

in the system configuration file, 12-4 

specifying device syntax 

in config.file file fragment, 12-8 

in system configuration file, 12-8 

specifying information 

in files file, 12-13 

in files file fragment, 12-13 

in stanza.loadable file fragment, 12-16 

in the BINARY system configuration file, 

12-11 

in the config.file file fragment, 12-4 

in the system configuration file, 12-4 

stanza. static file fragment, 12-16 

spl interfaces 

summarized list of, 9-18t 

splbio kernel interface 

explanation of code fragment, 9-19 

splx kernel interface 

explanation of code fragment, 9-19 



stanza.loadable file fragment 

comparison with sysconfigtab database, 

11-13f 

contents supplied to kit developers at 

EasyDriver Incorporated, 13-17 

defined, IO 

description and relationship to third-party 

configuration model, 11-12 

example of contents for EasyDriver 

Incorporated, 13-18 

examples of, 12-35 

format of, 12-18f 

list of fields, 12-19t 

restrictions, 12-18 

specifying a bus in, 12-31 

specifying a controller in, 12-32 

specifying a device in, 12-33 

specifying information in, 12-16 

stanza.static file fragment 

defined, 10 

description and relationship to third-party 

configuration model, 11-14 

examples of, 12-36 

format of, 12-18f 

restrictions, 12-18 

specifying information in, 12-16 

static device driver 

comparison with loadable device driver, 1-3 

defined, 10 

specification of during driver development, 

2-22 

steps for installing, 11-19f 

use of compile time variable, 3-4 

where to specify device driver interrupt 

service interface, 9-30 

status variable 

declared by cbstrategy to store 16-bit 

read/write CSRlLED register, 10-57 

stop interface 

relationship to d_stop member of cdevsw 

structure, 8-11 

setting up xxstop in stop section, 3-19 

stop section 

description, 3-19 

strategy interface 

often uses b_bcount member of buf structure, 

8-5 

relationship to d_strategy member of bdevsw 

structure, 8-16, 8-19 

relationship to the buffer cache, 8-19 

setting up xx strategy in strategy section, 

3-18 

strategy section 

description, 3-18 

strcmp kernel interface 

explanation of code fragment, 9-2 

results of example calls, 9-3f 

strcpy kernel interface 

explanation of code fragment, 9-4 

results of example call, 9-Sf 

string interface 

category of kernel interface, 9-1 

string operation 

comparing null-terminated character string 

using strcmp kernel interface, 9-1 

comparing two strings using strncmp kernel 

interface, 9-3 

copying null-terminated character string 

using strcpy kernel interface, 9-4 

copying null-terminated character string 

using strncpy kernel interface, 9-5 

Index-35 



string operation (cont.) 

returning number of characters using strlen 

kernel interface, 9-6 

strlen kernel interface 

discussion of arguments as related to call by 

cb_configure, 10-31 

explanation of code fragment, 9-7 

results of example call, 9-7f 

strncmp kernel interface 

explanation of code fragment, 9-3 

results of example calls, 9-4f 

strncpy kernel interface 

explanation of code fragment, 9-6 

results of example call, 9-6f 

structure 

allocation 

using dynamic allocation technique, 2-27 

using static allocation technique model I, 

2-25 

using static allocation technique model 2, 

2-26 

local structure and variable definitions 

description of code example for cb driver, 

10-13 to 10-15 

summary descriptions, A-7t 

used in I/O operations, 8-1 

Subset Control Program 

See SCP 

subsystem 

defined, 10 

Subsystem_Description field 

syntax description, 12-20 

supplying an SCP for cb device driver, 12-42 

sysconfig 

defined, 10 

Index-3S 

SYSCONFIG_CONFIGURE constant 

used by cb_configure to implement loadable 

version of cb driver, 10-31 

sysconfig.h file 

defines SYSCONFIG_CONFIGURE 

constant, 10-31 

defines SYSCONFIG_QUERY constant, 

10-39 

defines SYSCONFIG_ UNCONFIGURE 

constant, 10-36 

sysconfig.h header file 

defines operation codes and data structures 

used in loadable driver configuration, 

3-7 

SYSCONFIG_QUERY constant 

used by cb_configure to implement query of 

loadable version of cb driver, 10-39 

SYSCONFIG_UNCONFIGURE constant 

used by cb_configure to implement 

unconfiguration of loadable version of 

cb driver, 10-36 

sysconfigdb 

adds stanza.Ioadable to sysconfigtab 

database, 11-20 

defined, II 

sysconfigtab database 

comparison with stanza.Ioadable file 

fragment, 11-13f 

defined, II 

example, 7-2 

individual structures created from example, 

7-4f 

read by autoconfiguration software during 

autoconfiguration process, 7-2 

system bus 

See bus structure 



system configuration file 

compared with config.file file fragment, 

11-IOf 

defined, II 

description and relationship to third-party 

configuration model, I 1-6 

description and relationship to traditional 

configuration model, 11-26 

example, 7-2 

read by autoconfiguration software during 

autoconfiguration process, 7-1 

specifying a bus in, 12-5 

specifying a controller in, 12-6 

specifying a device in, 12-8 

specifying device definitions in, 12-5 

specifying information in, 12-4 

structure arrays created from example, 7-4f 

system configuration tree 

defined, 11 

traversal for static drivers 

point to bus structure this bus is 

connected to, 7-9 

point to bus structure this controller is 

connected to, 7-11 

point to controller structure this device is 

connected to, 7-12 

point to linked list of buses connected to 

this bus, 7-10 

point to linked list of controllers 

connected to this bus, 7-10 

point to linked list of devices connected 

to this controller, 7-11 

point to next bus at this level, 7-10 

point to next ~ontroller at this level, 7-11 

point to next device at this level, 7-12 

system management 

T 

summary of tools used in third-party model 

driver configuration, II-I8t 

TC_CTLR constant 

identifies driver type as controller in cbprobe 

interface, 10-21 

tc_intcinfo structure 

code fragment example, 7-80 

declaration in cbprobe interface, 10-20 

defined, II 

initializing configuration_st member in 

cbprobe interface, 10-21 

list of member names and data types, 7-79t 

setting of intr member in cbprobe interface, 

10-21 

setting of param member in cbprobe 

interface, 10-21 

tc_option table 

declaration and initialization in cb device 

driver, 10-11 

used by TURBOchannel bus writers as an 

index to conn_priv member, 7-32 

terminal device 

defined, 11 

discussion of, 6-6 

terminal device driver 

defined, 11 

introductory discussion and examples of, 1-2 

written for terminal devices that can accept 

or supply a stream of data, 1-2 

third-party device driver configuration model 

defined, 12 

time_t data type 

description, 3-5 

Index-37 



timeout interface 

discussion of arguments as related to call by 

cbioctl, 10-73, 10-81 

tmp variable 

declared by cbread to store 32-bit read/write 

data register, 10-46 

declared by cbwrite to store 32-bit read/write 

data register, 10-50 

tmpbldfer variable 

cleared by cbstrategy, 10-60 

declaration in cb device driver, 10-13 

set by cbstrategy, 10-60 

traditional device driver configuration model 

defined, 12 

using to configure static device drivers, 13-3 

tty structure 

as a possible value for d_ttys member of 

cdevsw structure, 8-12 

TURBOchannel bus 

setting up a probe interface, 3-10 

setting up a slave interface, 3-11 

TURBOchannel test board 

defined, 12 

discussion of how to accomplish DMA on, 

10-59 

simple interface provided by cb device 

driver, 10-1 

software view, 10-2 

type casting operations 

to convert ctlr for cb driver, 10-21 

to convert unit variable in cbprobe interface, 

10-21 

type-casting operation 

with kget kernel interface, 9-9 

types.h file 

defines system data types frequently used by 

Index-3S 

device drivers 

types.h file (cont.) 

u 

defines system data types frequently used by 

device dri vers (cont.) 

Book Title (cont.) 

3-5t (cont.) 

(cont.) ,3-5t 

u_short data type 

description, 3-5 

uio structure 

declared as pointer by cbread, 10-46 

declared as pointer by cbwrite, 10-50 

defined, 12 

formal description, 8-17 

list of member names and data types, 8-18t 

uio.h header file 

defines uio data structure, 3-6 

uio_iov member 

formal description of uio structure field, 8-18 

uio_iovcnt member 

formal description of uio structure field, 8-18 

uio_offset member 

formal description of uio structure field, 8-18 

uio_resid member 

formal description of uio structure field, 8-18 

uio structure field used by cbread, 10-47 

uio structure field used by cbwrite, 10-51 

uio_rw member 

formal description of uio structure field, 8-18 

uio_segflg member 

formal description of uio structure field, 8-18 

uiomove kernel interface 

discussion of arguments as related to call by 

cbread, 10-48 



uiomove kernel interface (cont.) 

discussion of return values, 10-48, 10-52 

explanation of code fragment, 9-15 

unit member 

formal description of device structure field, 

7-64 

initialized for static drivers, 7-65f 

unit variable 

initialized to controller number in cbprobe 

interface, 10-20 

initialized to device minor number by 

cbclose, 10-44 

initialized to device minor number by 

cbioctl, 10-72 

initialized to device minor number by 

cbopen, 10-42 

initialized to device minor number by cbread, 

10-47 

initialized to device minor number by 

cbstrategy, 10-56 

initialized to device minor number by 

cbwrite, 10-51 

unloading system resources for DMA 

by calling dma_map_unload kernel interface, 

9-58 

untimeout interface 

discussion of arguments as related to call by 

cb_configure, 10-37 

user address space 

copying from, with copyin kernel interface, 

9-12 

user program 

defined, 12 

relationship to device driver, 1-6 

v 
virCaddr variable 

declared by cbstrategy to store user buffer's 

virtual address, 10-57 

set to buffer's villual address by cbstrategy, 

10-58 

virtual address 

declaration of associated variable by 

cbstrategy, 10-57 

virtual memory 

allocating a variable-sized section with kalloc 

kernel interface, 9-8 

freeing a variable-sized section with kalloc 

kernel interface, 9-8 

performing nonblocking allocation with kget 

kernel interface, 9-9 

virtual memory interface 

category of kernel interface, 9-7 

virtual space 

moving data between user and system with 

uiomove kernel interface, 9-14 

volatile keyword 

compiler keyword, 2-38 

criteria for declaring variables and data 

structures, 2-38 

w 
wbflush kernel interface 

called by cbioctl, 10-77, 10-79 

use of mb interface as alternative on Alpha 

AXP systems, 2-37 

write device section 

description, 3-16 

write interface 

relationship to d_ write member of cdevsw 

structure, 8-11 

Index-39 



write interface (cont.) 

setting up xxwrite in read and write device 

section, 3-17 

write system call 

causes driver's write interface to be called, 

3-17 

write_io_port interface 

called by cbincled interface, 10-80 

called by cbioctl interface, 10-76 

called by cbstart interface, 10-68 

called by cbstrategy interface, 10-62 

called by cbwrite interface, lO-52 

write_io_port kernel interface 

explanation of code fragment, 9-43 

writing data to a device register 

by calling write_io_port kernel interface, 

9-42 

writing SCP for cb device driver, 12-42 

x 
xclu member 

formal description of driver structure field, 

7-73 

initialized for cb driver, 7-74f 

xxclose interface 

example code fragment, 3-16 

xxconfigure interface 

example code fragment, 3-14 

xxdattach interface 

example code fragment, 3-12 

xxdev _unattach interface 

example code fragment, 3-13 

xxdump interface 

example code fragment, 3-25 

xxintr interface 

example code fragment, 3-21 

Index-40 

xxioctl interface 

example code fragment, 3-18 

xxmmap interface 

example code fragment, 3-26 

xxopen interface 

example code fragment, 3-15 

xxprobe interface 

example code fragment, 3-10 

xxpsize interface 

example code fragment, 3-25 

xx read interface 

example code fragment, 3-16 

xxreset interface 

example code fragment, 3-20 

xxselect interface 

example, 3-22 

xxslave interface 

example code fragment, 3-11 

xxstop interface 

example code fragment, 3-19 

xxstrategy interface 

example code fragment, 3-19 

xxwrite interface 

example code fragment, 3-17 



How to Order Additional Documentation 

Technical Support 
If you need help deciding which documentation best meets your needs, call 800-DIGITAL 
(800-344-4825) before placing your electronic, telephone, or direct mail order. 

Electronic Orders 
To place an order at the Electronic Store, dial 800-234- I 998 using a 1200- or 2400-bps 
modem from anywhere in the USA, Canada, or Puerto Rico. If you need assistance using the 
Electronic Store, call 800-DIGITAL (800-344-4825). 

Telephone and Direct Mail Orders 

Your Location 

Continental USA, 
Alaska, or Hawaii 

Puerto Rico 

Canada 

International 

InternaP 

Call 

800-DIGITAL 

809-754-7575 

800-267-6215 

Contact 

Digital Equipment Corporation 
P.O. Box CS2008 
Nashua, New Hampshire 03061 

Local Digital subsidiary 

Digital Equipment of Canada 
Attn: DECdirect Operations KA0212 
P.O. Box 13000 
100 Herzberg Road 
Kanata, Ontario, Canada K2K 2A6 

Local Digital subsidiary or 
approved distributor 

SSB Order Processing - NQO/V 19 
or 
U. S. Software Supply Business 
Digital Equipment Corporation 
10 Cotton Road 
Nashua, NH 03063-1260 

a For internal orders, you must submit an Internal Software Order Form (EN -01740-07). 





Reader's Comments DEC OSF/1 
Writing Device Drivers, Volume 1: Tutorial 

AA-PUBVB-TE 

Please use this postage-paid form to comment on this manual. If you require a written reply 
to a software problem and are eligible to receive one under Software Performance Report 
(SPR) service, submit your comments on an SPR form. 

Thank you for your assistance. 

Please rate this manual: 
Accuracy (software works as manual says) 
Completeness (enough information) 
Clarity (easy to understand) 
Organization (structure of subject matter) 
Figures (useful) 
Examples (useful) 
Index (ability to find topic) 
Page layout (easy to find information) 

What would you like to see more/less of? 

What do you like best about this manual? 

What do you like least about this manual? 

Excellent 
D 
D 
D 
D 
D 
D 
D 
D 

Please list errors you have found in this manual: 

Page Description 

Additional comments or suggestions to improve this manual: 

Good 
D 
D 
D 
D 
D 
D 
D 
D 

Fair 
o o 
o 
o o 
o 
o 
o 

Poor 
D 
D 
D 
D 
D 
D 
D 
D 

What version of the software described by this manual are you using? ______ _ 

Name/Title 
Company 
Mailing Address 

Dept. 

___________ Email __________ Phone 

Date ____ _ 



- - - - Do Not Tear - Fold Here and Tape . - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - --

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO.33 MAYNARD MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE 

DIGITAL EQUIPMENT CORPORATION 
OPEN SOFTWARE PUBLICATIONS MANAGER 
ZK03-3/Y32 
110 SPIT BROOK ROAD 
NASHUA NH 03062-9987 

1IIIIIIIIIIIIIIIIIIIIIIhi h h Illh 11111111111111111 

- - - Do Not Tear - Fold Here 

No Postage 
Necessary 

if Mailed in the 
United States 

Cut 
Along 
Dotted 
Line 



Reader's Comments DEC OSF/1 
Writing Device Drivers, Volume 1: Tutorial 

AA-PUBVB-TE 

Please use this postage-paid form to comment on this manual. If you require a written reply 
to a software problem and are eligible to receive one under Software Performance Report 
(SPR) service, submit your comments on an SPR form. 

Thank you for your assistance. 

Please rate this manual: 
Accuracy (software works as manual says) 
Completeness (enough information) 
Clarity (easy to understand) 
Organization (structure of subject matter) 
Figures (useful) 
Examples (useful) 
Index (ability to find topic) 
Page layout (easy to find information) 

What would you like to see more/less of? 

What do you like best about this manual? 

What do you like least about this manual? 

Excellent 
o o 
o 
o 
o 
o 
o 
o 

Please list errors you have found in this manual: 

Page Description 

Additional comments or suggestions to improve this manual: 

Good 
o o 
o 
o 
o 
o 
o o 

Fair 
o o 
o 
o 
o 
o 
o o 

Poor 
o o 
o 
o 
o o 
o 
o 

What version of the software described by this manual are you using? ______ _ 

Name/Title __________________ Dept. 

Company Date 
Mailing Address ___________________________ _ 
___________ Email __________ Phone 



- - - - Do Not Tear - Fold Here and Tape . - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - , 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO.33 MAYNARD MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE 

DIGITAL EQUIPMENT CORPORATION 
OPEN SOFTWARE PUBLICATIONS MANAGER 
ZK03-3/Y32 
110 SPIT BROOK ROAD 
NASHUA NH 03062-9987 

111 •• 11.111 nllllll •••• II I 1111 II.h .1111.1 ••• II I h.1 

- - - Do Not Tear - Fold Here 

No Postage 

Necessary 

if Mailed in the 

United States 

Cut 
Along 
Dotted 
Line 


