BASIC/RTii

Language Reference
Manual '
Order No. DEC-11-LBACA-E-D

digital equipment corporation - maynard. massachusetts

First Printing, Sept. 1973
Revised, Dec. 1973
Revised, June, 1974
Revised, Oct. 1974
Revised, Oct. 1976

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use or
reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright (C) 1973, 1974, 1976 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0s/8

DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX

COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-10

DECCOMM DECsystem-20 TYPESET-11

77715

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CONTENTS

1 INTRODUCTION

1.1 LOADING AND RUNNING BASIC

2 RT-11 BASIC ARITHMETIC

2.1 NUMBERS

2.2 VARIABLES

2.3 SUBSCRIPTED VARIABLES
2.4 EXPRESSIONS

2.5 ARITHMETIC OPERATIONS
2.5

2.5

.1 Priority of Arithmetic Operations
2 Relational Operators

3 RT-11 BASIC STRINGS

3.1 STRINGS

3.2 STRING VARIABLE

3.2.1 Subscripted String Variables
3.3

3.3

3.3

STRING OPERATIONS
.1 Concatenation
2 Relational Operatiocns

4 IMMEDIATE MODE OPERATIONS

USE OF IMMEDIATE MODE FOR STATEMENT EXECUTION
PROGRAM DEBUGGING
MULTIPLE STATEMENTS PER LINE

4.4 RESTRICTIONS ON IMMEDIATE MODE

RT-11 BASIC STATEMENTS

wm

STATEMENT NUMBERS
REMARK STATEMENT
THE ASSIGNMENT STATEMENT - LET
THE DIMENSION STATEMENT - DIM

INPUT/OUTPUT STATEMENTS
PRINT Statement
1 Printing Variables
2 Printing Strings
.3 Use of Comma and Semicolon ("," and ";")
4
5

[S2 B }
. . D .

Selecting Output Device
PRINT Statement - TAB Function
INPUT Statement
.1 Selecting Input Devices
DATA Statement
READ Statement

L S)

.
(S S, NS REC, E, W, I C, B0, I, R U VSR oS B
,

oottt 1,
.

iii

Page
vii

ur 0
] 1
=

(S E S, IS, E, O, O G RO O, R R R V)
!
HHWOWOO~TOUIE S W N -

oo

CHAPTER

CHAPTER

oo v
. L I) . L[]

U n
o o o o
“« e e
w N

O WO VY o0 00 00

o
" e
w N+

« ¢ e s s

HFHERWOOOVOM & W

|l]

O OO OGN O
AN
O e e
. . .

.
w W [\%}

(o))
.
[

RESTORE Statement
RANDOMIZE Statement

PROGRAM CONTROL
GO TO Statement
IF THEN, IF GO TO and IF END Statements
FOR-NEXT Statements
GOSUB and RETURN Statements

PROGRAM TERMINATION
END Statement
STOP Statement
CHAIN Statement

FILE CONTROL
OPEN Statement
CLOSE Statement
OVERLAY Statement

BASIC/RT-11 FUNCTIONS

ARITHMETIC FUNCTIONS
Sine and Cosine Functions, SIN(x) and COS (x)
Arctangent Function, ATN(x)
Square Root Function, SQR(x)
Exponential Function, EXP(x)
Logarithm Function, LOG(x)
Absolute Function, ABS(x)
Integer Function, INT(x)
Random Number Function, RND (x)
Sign Function, SGN (x)
Binary Function, BIN (x$)
Octal Function, OCT(x$)

USER DEFINED FUNCTIONS

STRING FUNCTIONS
User-Defined String Functions

EDITING COMMANDS

SCRATCH COMMAND

OLD COMMAND

LIST/LISTNH COMMANDS

SAVE COMMAND

REPLACE COMMAND

RUN/RUNNH COMMANDS

CLEAR COMMAND

RENAME COMMAND

NEW COMMAND

iv

O\O\O\O\O\O\TO\G’\G\O’\O\
VOO BWNNDH

N
[
[
o

6-15

[=)]
]
[
(o))

CHAPTER 8

CHAPTER 9
CHAPTER 10
APPENDIX A |
APPENDIX B

APPENDIC C

C
C
APPENDIX D
APPENDIX E

F

APPENDIX

APPENDIX G

INDEX

USING ASSEMBLY LANGUAGE ROUTINES WITH BASIC
CALL STATEMENT

SYSTEM FUNCTION TABLE

WRITING ASSEMBLY LANGUAGE ROUTINES
Sample User Functions

SYSTEM ROUTINES IN BASIC

REPRESENTATION OF NUMBERS IN BASIC

REPRESENTATION OF STRINGS IN BASIC

FORMAT OF TRANSLATED BASIC PROGRAM
Symbol Table Format

Translated Code

BACKGROUND ASSEMBLY LANGUAGE ROUTINE

ERROR MESSAGES

DEMONSTRATION PROGRAMS
BOOTSTRAPPING THE RT-11 SYSTEM
ASCII CHARACTER SET
STATEMENTS, COMMANDS, FUNCTIONS
RT-11 BASIC STATEMENTS
COMMANDS

FUNCTIONS

GETARG, STORE, SSTORE LISTING
BASIC ERROR MESSAGES
ASSEMBLING AND LINKING BASIC

ASSEMBLING BASIC/RT11
Floating Point Math Package

LINKING BASIC/RT11l
Linking BASIC/RT11 With User Functions

BASIC CORE MAP

Index-1

PREFACE

This document describes the operating procedures for the BASIC/RT11l
program and the features of the BASIC/RT11 language.

The user should be somewhat familiar with the standard BASIC language.
If the user 1is totally unfamiliar with BASIC it is suggested that a
BASIC primer be read prior to using this document. The BASIC language
as it pertains to BASIC/RT1l is described in Chapters 5 and 6.
Chapters 1, 2, 3 and 4 provide an introduction to BASIC/RT11 operating
procedures, arithmetic and string operations. Editing commands, error
messages and demonstration programs are covered in Chapters 7, 9 and
10.

The experienced BASIC user should pay particular attention to the
description of operating procedures (Chapter 1) and the use of
assembly language routines (Chapter 8) and the summary of statements,
commands and functions (Appendix D).

NEW AND CHANGED INFORMATION

This revision of the manual incorporates the update DEC-11-LBACA-D-DN3,
which removes the description of the laboratory and graphics extensions
and corrects technical errors.

A description of the laboratory and graphics extensions which are
available for use with BASIC/RT-11 can be found in the following
manuals:

o BASIC-11 Lab Extensions User's Guide
(DEC-11-LBEPA~-A-D)

® BASIC-11 Graphics Extensions User's Guide
{DEC-11-LBGEA-A-D)

vii

CHAPTER 1

INTRODUCTION

BASIC/RT11 is a single-user, conversational programming language which
uses simple English-type statements and familiar mathematical
notations to perform an operation, BASIC is one of the simplest
computer languages to learn and once learned has the facility of
advanced techniques to perform more intricate manipulations or express
a problem more efficiently.

BASIC/RT11 interfaces with the RT=-11 Monitor to provide powerful
sequential and random-access file capabilities and allows the user to
save and retrieve programs from peripheral devices. BASIC/RT1]1 has
provision for alphanumeric character string I/0 and string variables
(12K or larger systems) and allows user defined functions and assembly
language subroutine calls from user BASIC programs.

i.1 LOADING AND RUNNING BASIC

BASIC is loaded under the control of the RT-1l1 monitor (Refer to the
RT~11 System Reference Manual (DEC-11-ORUGA-A-D) for additional
information on the RT-1l1l system), by typing:

R BASIC

and the RETURN key.

Through replies to the initial dialogue, BASIC allows selection of the
functions to be loaded. Selectively loading functions maximizes space
available for the user's program by removing unwanted functions from
core,

When BASIC is first loaded with the R command, the dialogue described
below is printed. This is once-only dialcgue and deoes not occur

again.
BASIC prints:

BASIC V01-05 (or current version)
*

and awaits specification on inclusion of the optional functions shown
below. Refer to Chapter 6 for information on these functions.
Depending on the response (carriage return, A, N or I) made to this
message, all functions (carriage return or A) are included, none of
the functions (N) are included or the functions are listed and may be
individually selected for inclusion (I).

Selectively excluding functions can provide space for up to 20 or 30
additional user program lines,

Reply with one of the following codes:

Code Explanation

A Loads all of the optional functions

Zirriage

return

N Loads none of the optional functions

1 Allows the functions to be specified individually

If any character other than a carriage return, A, N, or I is typed,
the message is repeated. If the reply is I, BASIC prints

Y-YES N=NO
RND:

to allow specification of each function to be loaded as part of BASIC/
RT11.

Reply with a Y or N for the RND function and each additional function
as the names are printed. The optional functions are:

String BASIC No String

RND RND
ABS ABS
SGN SGN
BIN BIN
ocr oCT

POS
SEG$
VAL
TRMS
STRS

Each exclusion of a function provides room for between two and five
additional program lines., Excluding the POS and SEGS functions
provides approximately ten additional lines each.

If a "user function" has been linked (Refer to Appendix F) into BASIC
(to be referenced by a CALL statement) BASIC prints:

USER FNS LOADED
BASIC then prints the message
READY

and waits for a command or program line to be typed (refer to Chapter
4).

Typing CTRL/C at any time returns BASIC to the RT-11 Monitor. To

continue BASIC after a CTRL/C return to the monitor, type the Monitor
command REENTER (RE). BASIC will then print the READY message.

1-2

The program in core when the CTRL/C was executed is retained. Thus,
user program execution may be terminated at any time without
destroying the user program.

CHAPTER 2

RT-11 BASIC ARITHMETIC

2.1 NUMBERS

BASIC treats all numbers (real and integer) as decimal numbers~~that
is, it accepts any decimal number, and assumes a decimal point after
an integer. The advantage of treating all numbers as decimal numbers
is that any number or symbol can be used in any mathematical
expression without regard to its type. Numbers used must be in the
approximate range 10—38<N<10+38,

In addition to integer and real formats, a third format is recognized
and accepted by BASIC. This format is called exponential or E-type
notation, and in this format, a number is expressed as a decimal
number times some power of 10. The form is:

XXEn

where E represents "times 10 to the power of"; thus the number is
read: "xx times 10 to the power of n", For example:

23.4E2 = 23.4*10° = 2340

Data may be input in any one or all three of these forms. Results of
computations are output as decimals if they are within the range
.01<n<999999; otherwise, they are output in E format. Numbers are
stored up to 24 bits of significance. If a number with more than 24
bits is entered, it is rounded and stored as 24 bits. BASIC handles
six significant digits in normal operation and prints 6 decimal digits
as illustrated below:

Value Typed In Value Output By BASIC
.01 .01
.0099 9.90000E-03
999999 999999
1000000 1.00000E+06

BASIC automatically suppresses the printing of leading and trailing
zeros in integer and decimal numbers, and, as can be seen from the
preceding examples, formats all exponential numbers in the form:

(sign) xX.xxxxxXE(+ or -=)n
where x represents the number carried to six decimal places, E stands
for "times 10 to the power of", and n represents the exponential
value. For example:

-3.47021E+08 is equal to -347,021,000
7.26000E-04 is equal to .000726

Floating point format is wused when storing and calculating most
numbers.,

However, if the number entered is an integer, it is handled as .an
integer unless the operation being performed requires that it be

changed to floating point. Multiply and divide operations require
this transformation but addition and subtraction of integer quantities
less than 215 in magnitude is done with the corresponding single
machine instruction. Thus, maintaining numbers in (or converting
numbers to) integer form may significantly increase the speed of
arithmetic expression evaluation.

NOTE

Because core size limitations prohibit the storage
of infinite binary numbers, some numbers cannot be
expressed exactly in BASIC/RT. Accuracy is
approximately 5-1/2 digits, and errors in the 6th
digit can occur. For example, .999998 as a result
of some functions may be equal to 1.
Discrepancies of this type are magnified when such
a number is used in mathematical operations.

2.2 VARIABLES

A variable in BASIC is an algebraic symbol representing a number, and
is formed by a single 1letter or a letter optionally followed by a
single digit. For example:

Acceptable Variables Unacceptable Variables
I 2C - a digit cannot begin a variable.,
B3 AB -~ two or more letters cannot form a
variable.,
X 11 - numbers alone cannot form a
variable.

Subscripted and string variables are described in later sections. The
user may assign values to variables either by indicating the values in
a LET statement, or by inputting the values as data in an INPUT
statement or by a READ statement; these operations are discussed in
Chapter 5.

The value assigned to a variable does not change until the next time a
statement is encountered that contains a new value for that variable.
All variables are set equal to zero (0) before program execution. It
is only necessary to assign a value to a variable when an initial
value other than zero is required. However, good programming practice
would be to set variables equal to 0 wherever necessary. This ensures
that later changes or additions will not misinterpret values.

2.3 SUBSCRIPTED VARIABLES

In addition to the simple variables described in section 2.2, BASIC
allows the use of subscripted variables, Subscripted variables
provide additional computing capabilities for dealing with 1lists,
tables, matrices, or any set of related variables. In BASIC,
variables are allowed one or two subscripts.

The name of a subscripted variable is any acceptable BASIC variable
name followed by one or two integer expressions (within the range
0-32767) in parentheses. For example, a list might be described as
A(I) where I goes from 0 to 5 as shown below:

A(0),A(1),A(2),A(3),A(4) ,A(5)

This allows reference to each of the six elements in the list, and can
be considered a one-dimensional algebraic matrix as follows:

A(0)

A(l)

A(2)

A(3)

A(4)

A(5)

A two-dimensional matrix B(I,J) can be defined in a similar manner:

B(0,0),B(0,1) ,B(0,2) ,.00,B(0,3),...,B(I,J)

and graphically illustrated as follows:

B(0,0) B(0,1) B(0,2) B(0,3) / i\ B(0,J)

B(1,0) B(1,1) B(1,2) B(1,3) \ \B(l,J)
B(2,0) B(2,1) B(2,2) B(2,3) \ ;B(Z,J)
B(3,0) B(3,1) B(3,2) B(3,3) / \ B(3,J)

. . - .

B(I,0) | B(I,1) | B(I,2) B(I.a)/‘)B‘(I.J)

Subscripts used with subscripted variables throughout a program can be
explicitly stated or be any legal expression. If the value of the
expression is non-integer, the value is truncated so that only the
subscript is an integer,

It is possible to use the same variable name as both a subscripted and
unsubscripted variable, Both A and A(I) are valid variables and can
be used in the same program., The variable A has no relationship to
any element of the matrix A(I). However, BASIC will not accept the
same variable name as both a singly and a doubly subscripted variable
name in the same program.

Use of subscripted variables requires a dimension (DIM) statement to
define the maximum number of elements in a matrix. ("Matrix" is the
general term used in this manual +to describe all elements of a

subscripted variable.) The DIM statement is discussed in paragraph
5.4,

If a subscripted variable is wused without appearing in a DIM
statement, it is assumed to be dimensioned to length 10 in each
dimension (that is, having eleven elements in each dimension, 0
through 10). However, all matrices should be correctly dimensioned in
a program,

2.4 EXPRESSIONS
An expression is a group of symbols which can be evaluated by BASIC.
Expressions are composed of numbers, variables, functions, or a

combination of the preceding separated by arithmetic or relational
operators.

The following are examples of expressions acceptable to BASIC:

Arithmetic Expressions

4
A7* (B+2+1)

Not all kinds of expressions can be used in all statements, as is
explained in the sections describing the individual statements,

2.5 ARITHMETIC OPERATIONS

BASIC performs addition, subtraction, multiplication, division and
exponentiation. Formulas to be evaluated are represented in a format
similar to standard mathmetical notation. The five operators used in
writing most formulas are:

Symbol
Operator Example Meaning
+ A+ B Add B to A
- A - B Subtract B from A
* A*B Multiply A by B
/ A/ B Divide A by B
4 A+ B Exponentiation (Raise A to the Bth

power)

Unary plus and minus are also allowed, e.g., the - in the =-A+B or the
+ in +X-Y, Unary plus is ignored. Unary minus is treated as
explained below,.

2.5.1 Priority of Arithmetic Operations

When more than one operation is to be performed in a single formula,
as 1is most often the case, rules are observed as to the precedence of
the operators.

In any given mathematical formula, BASIC performs the arithmetic
operations in the following order of evaluation:

1. Parentheses receive top priority. Any expression within
parentheses is evaluated before an unparenthesized
expression.

2, 1In the absence of parentheses, the order of priority is:

a. Unary minus

b. Exponentiation (proceeds from left to right).

c. Multiplication and Division (of equal priority).
d. Addition and Subtraction (of equal priority).

3. 1If either 1 or 2 above does not clearly designate the order
of priority, then the evaluation of expressions proceeds from

left to right.

The expression A4B4C is evaluated from left to right as follows:

l. AtB step 1

2. (result of step 1)+C answer

The expression A/B*C is also evaluated from 1left to right since
multiplication and division are of equal priority:

1. A/B step 1
2. (result of step 1l)*C = answer

The expression A+B*CtD is evaluated as:

1. ¢ctD = step 1
2. (result of step 1)*B = step 2
3. (result of step 2)+A = answer

Parentheses may be nested, or enclosed by a second set (or more) of
parentheses. In this case, the expression within the innermost
parentheses is evaluated first, and then the next innermost, and so
on, until all have been evaluated.
In the following example:

A=7* ((Bt2+4) /X)

The order of priority is:

1, Bt2 = step 1
2. (result of step 1)+4 = step 2
3. (result of step 2)/X = step 3
4. (result of step 3)*7 = A

Parentheses also prevent any confusion or doubt as to how the
expression is evaluated. For example:

A*B+2/7+B/C*D*2
((A*B+2) /7)+((B/C) *D*2)

Both of these formulas are executed in the same way, but the second is
easier to understand.

Spaces may be used in a similar manner. Since the BASIC interpreter
ignores spaces (except when enclosed in quotation marks), the two
statements:

10 LET B = D%2 + 1
10LETB=D42+1

are identical, but spaces in the first statement provide ease in

reading. When the statement is subsequently listed, extra spaces are
ignored.

2.5.2 Relational Operators

Relational operators allow comparison of two values and are wused to
compare arithmetic expressions or strings in an IF...THEN statement.
The relational operators are:

Mathematical BASIC

Symbol Symbol Example Meaning
= = A=B A is equal to B.
< < A<B A is less than B.
< <= or =< A<=B A is less than or equal to B.
> > A>B A is greater than B.
> >= or => A>=B g is greater than or equal to
7 < > or> < A><B A is not equal to B.

The symbols =<, =>, >< are accepted by BASIC but are converted to <=,
>= and <> and are shown in that form in a listing.

CHAPTER 3

RT-11 BASIC STRINGS

3.1 STRINGS

The previous chapters describe the manipulation of numerical
information only; however, BASIC also processes information in the
form of character strings. A string, in this context, is a sequence
of characters treated as a unit. A string can be composed of
alphabetic, numeric, or special characters. (A character string may
contain letters, numbers, spaces, or any combination of characters.) A
character string can be 255 characters long. However, the LINE FEED
key cannot be used to type a string on two or more terminal lines.

3.2 STRING VARIABLES

Any variable name followed by a dollar sign {$) character indicates a
string variable., For example:

AS
C7s

are simple string variables and can be used, for example, as follows:

LET A$="HELLO"
PRINT AS

Note that the string variable A$ is separate and distinct from the
variable A.

3.2.,1 Subscripted String Variables

Any list or matrix variable name followed by the $ character denotes
the string form of that variable., For example:

v$(n) M2S$ (n)
CS (m,n) Gl$ (m,n)

where m and n indicate the position of the matrix element within the
whole.

The same name can be used as a numeric variable and as a string
variable in the same program with the restriction that a
one~dimensional and a two-dimensional matrix cannot have the same name
in the same program. For example:

A A(n)
AS AS(m,n)

can all be used in the same program, but

A(n) and A(m,n)
or
A$(n) and AS$(m,n)

cannot.

String 1lists and matrices are defined with the DIM statement
(paragraph 5.4), as are numerical lists and matrices.

In BASIC without strings, string variables are illegal.

3.3 STRING OPERATIONS

3.3.1 Concatenation

Concatenation puts one string after another without any intervening
characters. It is specified by an ampersand (&) and works only with
strings. The maximum length of a concatenated string is 255
characters.

For example:

10 READ AS$, BS, C$

20 DATA "11","33","22"
30 PRINT A$&CS$&BS

40 END

RUNNH

112233

3.3.2 Relational Operations

When applied to string operands, the relational operators indicate
alphabetic sequence. The comparison is done, character by character,
left to right, on the ASCII value. For example:

55 IF AS$<B$ THEN 100

When line 55 is executed, the first characters of each string (A$ and
BS) are compared; if they are the same, then the second characters of
each string are compared and so on until the characters differ. If
the character in A$ is less than the character in B$ then execution
continues at line 100. Otherwise, execution continues at the next
statement in sequence. Essentially the strings are compared. for
alphabetic order. Table 3-1 contains a 1list of the relational
operators and their string interpretations.

In any string comparison, trailing blanks are ignored (i.e., "ABC" |is
equivalent to "ABC ").

Table 3-1

Relational Operators Used With

String Variables

Operator Example Meaning

= A$ = BS The strings A$ and B$ are alphabetically
equal.

< AS$ < BS The string A$ alphabetically precedes
BS.

> AS$>BS The string AS$ alphabetically follows BS.

<= or = A$ <= BS$ The string A$ 1is equivalent to or
precedes B$ in alphabetical sequence.

>= or => AS$ > = BS The string A$ is equivalent to or
follows BS$ in alphabetical sequence.

<> or >< AS$ <> BS$ The strings AS and BS are not

alphabetically equal.

CHAPTER 4

4,1 USE OF IMMEDIATE MODE FOR STATEMENT EXECUTION

It is not necessary to write a complete program to use BASIC, Most of
the statements discussed in this manual can be included in a program

L e P e |

for later execution or given on-line as commands, which are
immediately executed by the BASIC processor. This latter facility
makes BASIC an extremely powerful calculator.

BASIC distinguishes between lines entered for 1later execution and
those entered for immediate execution solely on the presence (or
absence) of a line number. Statements which begin with 1line numbers
are stored; statements without line numbers are executed immediately
upon being entered to the system. Thus the line:

10 PRINT "THIS IS A PDP-11"

produces no action at the console upon entry, while the statement:
PRINT "THIS IS A PDP-11"

causes the immediate output:

THIS IS A PDP-11

4.2 PROGRAM DEBUGGING

Immediate mode operation is especially useful in two areas: program
debugging and the performance of simple calculations in situations
which do not occur with sufficient frequency or with sufficient
complications to justify writing a program.

In order to facilitate debugging a program, STOP statements can be
liberally placed throughout the program. Each STOP statement causes
the program to halt, at which time the various data wvalues can be
examined and perhaps changed in immediate mode. The

GO TO xXxXXXX

command is used to continue program execution (where =xxxxXx 1is the
number of the next program line to be executed). The values assigned
to variables when the RUN command was executed remain intact wuntil a
Scratch, Clear, or another RUN Command is executed.

When using immediate mode, nearly all the standard statements can be
used to generate or print results., If the STOP occurs in the middle
of a FOR loop, modifications cannot be made to the section of the
program which precedes the FOR.

If CTRL/C is used to halt program execution, the GO TO command can be
used to continue execution but since CTRL/C does not print the number
of the line where execution stopped, it is difficult to know where to

resume the program.

4,3 MULTIPLE STATEMENTS PER LINE

Multiple statements can be used on a single line in immediate mode.
For example:

A=1 \PRINT A
1

On a LT33 or LT35 terminal, type a SHIFT/L to produce the backslash
character.

Program loops are allowed in immediate mode; thus a table of square
roots can be produced as follows:

FOR I=1 TO 10\PRINT I,SQR(I)\NEXT I
1 1
1.41421
1.73205
2
2.23607
2.44949
2.64575
2.82843
3
3.16228

HWOO-JOAULAEWN

o

4.4 RESTRICTIONS ON IMMEDIATE MODE

Certain commands, while not illegal, make no logical sense when used
in immediate mode. Commands in this category are DEF, DIM, DATA and
RANDOMIZE,

The INPUT statement is illegal in immediate mode and its use results
in the ?ILN error message.

Also, since user functions are not defined until the program is
executed, function references in immediate mode cause an error unless
the program containing the definition was previously executed.

Thus the following dialogue might result if a function was defined in
a user program and then referenced in immediate mode.

10 DEF FNA(X) = X42 + 2*X\REM SAVED STATEMENT
PRINT FNA(1)\REM IMMEDIATE MODE

2UFN
READY
but if the sequence of statements is:

RUNNH
READY

PRINT FNA(1)
3

the immediate mode statement is executed,

If output files are opened in immediate mode, a CLOSE command must be
issued or the last block of data may not be written,

Note that virtual files can be edited by selectively modifying values
in immediate mode. For example,
OPEN "PFILE"™ AS FI
VF1(137)=12.6

PRINT VF1(212)
12,1

@

CLOSE

td
<«

I
z

=t

CHAPTER 5

RT-11 BASIC STATEMENTS

A user program 1is composed of 1lines of statements containing
instructions to BASIC, Each line of the program begins with a line
number that identifies ‘that line as a statement and indicates the
order of statement execution. Each statement starts with an English

word specifying the type of operation to be performed. Statement
lines are terminated with the RETURN kev which is non-nrintin

______ are terminate 1@ RETURN key s non-printing,

5.1 STATEMENT NUMBERS

A 1-5 digit statement number is placed at the beginning of each line
in a BASIC program. BASIC executes the statements in a program in
numerically consecutive order regardless of the order in which they
were typed. Statement numbers must be within the range 1 to 65532,
When first writing a program, it is advisable to number 1lines in
increments of five or ten to allow insertion of forgotten or
additional 1lines when debugging the program. If there are no
available 1lines for insertion of statements, the user program can be
resequenced. (Refer to Chapter 10, program #4 for a resequence
example.)

All BASIC statements and computations must be written on a single
line; they cannot be continued onto a following line. However, more
than one statement may be written on a single line when each statement
after the first is preceded by a backslash. For example:

10 INPUT A,B,C
is a single statement line, whereas
20 LET X=11 \PRINT X,Y,Z\ IF X=A THEN 10

is a multiple statement line containing three statements: LET, PRINT,
and IF. Most statements may be used anywhere in a multiple statement
line; exceptions are noted in the discussion of each statement, Only
the first statement on a line can (and must) have a line number. It
should be remembered that program control cannot be transferred to a
statement within a line, but only to the first statement of a line.

Typing a statement number with no statement after it causes the
previous statement with the same number to be deleted.

5.2 REMARK STATEMENT

It is often desirable to insert notes and messages within a user
program. Such data as the name and purpose of the program, how to use
it, how certain parts of the program work, and expected results at
various points are useful things to have present in the program for
ready reference by anyone using that program.

The REMARK or REM statement is used to insert remarks or comments into
a program without these comments affecting execution. Remarks do,
however, use core area which may be needed by an exceptionally long
program,

The REMARK statement must be preceded by a line number except when the
REMARK statement is used in a multiple statement line, where it can
only be the last statement. The message itself can contain any print-
ing character on the keyboard. BASIC completely ignores anything on a
line following the letters REM. (The line number of a REM statement
can be used in a GO TO or GOSUB statement, see sections 5.7.1 and
5.7.4, as the destination of a jump in the program execution.) Typical
REM statements are shown below:

10 REM- THIS PROGRAM COMPUTES THE
11 REM- ROOTS OF A QUADRATIC EQUATION

5.3 THE ASSIGNMENT STATEMENT - LET

The LET statement assigns the value of the expression to the specified
variable, The general format of the LET statement is:

LET variable = expression

where variable is a numeric or string variable and expression is an
arithmetic or string expression. All items in the statement must be
either string or numeric; they cannot be mixed. The word LET is
optional.

The LET statement does not indicate algebraic equality, but performs
calculations within the expression (if any) and assigns the value to
the variable.

The meaning of the equal (=) sign should be clarified. In algebraic
notation, the formula X=X+1 is meaningless. However, in BASIC (and
most computer languages), the equal sign designates replacement rather
than equality. Thus, this formula is actually translated: "add one
to the current value of X and store the new result back in the same
variable X". Whatever value has previously been assigned to X will be
combined with the value 1. An expression such as A=B+C instructs the
computer to add the values of B and C and store the result in a third
variable A. The variable A is not being evaluated in terms of any
previously assigned value, but only in terms of B and C. Therefore,
if A has been assigned any value prior to its use in this statement,
the old value is lost; it is instead replaced by the value B+C,

The LET statement can also be used to set a value in a virtual memory
file element as follows:

LET VFn(i)=expression
Examples:
LET X=2 Assigns the value 2 to the variable X,
LET X=X+1+Y Adds 1 to the current value of X then adds

the wvalue of Y to that result and assigns
that value to X. '

LET B$="STRING" :
Assigns the characters "STRING" to the string

xrmemt =1 o D&
Vval lale Do,

5.4 THE DIMENSION STATEMENT - DIM

The DIMension statement reserves space for lists and tables used by
the program. The DIM statement is of the form:

DIM variable(n), variable(n,m), variable$(n), variable$(n,m)

where variables specified are indicated with their maximum subscript
value(n) or values(n,m).

For example:

10 DIM X(5), Y(4,2), A(10,10)
12 DIM I4(100), AS(25)

Only integer constants (such as 5 or 5070) can be used in DIM
statements to define the size of a matrix. Variables cannot be used
to specify the bounds of arrays. Any number of matrices can be
defined in a single DIM statement as long as their representations are
separated by commas.

The first element of every matrix is automatically assumed to have a
subscript of zero. Dimensioning A(6,10) sets up room for a matrix
with 7 rows and 11 columns. This zero element is illustrated in the
following program:

10 REM - MATRIX CHECK PROGRAM
20 DIM A(6,10)
30 FOR I=0 TO
40 LET A(I,O0)
50 FOR J=0 TO 10

60 LET A{0,J) = J

70 PRINT A(I,J);

80 NEXT J \ PRINT\NEXT I

o

I

90 END
RUNNH
01 2 3 4 5 6 7 8 9 10
l1 0 0 0 0 0 00 0 0 O
2 0 0 0 0 0 0 0 0 0 O
3 6 0 6 0 0 0 0 o0 0 o
4 0 0 0 60 0 0 0 0 O O
5 0 0 0 0 0 0 0 0 0 O
6 0 0 0 0 0 0 0 0 0 O
READY

Notice that a variable has a value of zero until it is assigned
another value.

Whenever an array is dimensioned (m,n), the matrix is allocated m+l by
n+l elements. Core space can be conserved by using the 0th element of
the matrix.

For example, DIM A(5,9) dimensions a 6 x 10 matrix which would then be
referenced beginning with the A(0,0) element.

The size and number of matrices which can be defined depend upon the
amount of storage space available.

A DIM statement can be placed anywhere in a multiple statement 1line
and can appear anywhere in the programn. A matrix can only be
dimensioned once. DIM statements need not appear prior to the first
reference to an array, although DIM statements are generally among the
first statements of a program to allow them to be easily found if any
alterations are later required.

All arrays specified in DIM statements are allocated space when the
RUN command is executed.

5.5 INPUT/OUTPUT STATEMENTS

Input/Output (I/0) statements, such as PRINT, INPUT, and READ, bring
data into and output results or data from a program during execution.

5.5.1 PRINT Statement

The PRINT statement is used to output data to the terminal. The
general format of the PRINT statement is:

PRINT list
The list is optional and can contain expressions, text strings, or
both. Elements of the 1list must be separated by appropriate
delimiters (space, comma, semicolon).
When used without the list, the PRINT statement:

25 PRINT

causes a blank 1line to be output on the terminal (a carriage
return/line feed operation is performed).

5.5.1.1 Printing Variables

PRINT statements can be used to perform calculations and print
results, Any expression within the list is evaluated before a value
is printed. For example,

10 LET A=1\ LET B=2\ LET C=3+A
20 PRINT

30 PRINT A+B+C

RUNNH

7

READY

All numbers are printed
space for positive) and

The PRINT statement can

with a preceding sign (minus for negative and

a following blank space.

be used anywhere in a multiple statement line.

For example:

A\ A=A+5\ PRINT\ PRINT A

10 a=1\ P \=A+5\ PRINT\ PRINT A

INT

prints the following on the terminal when executed:

1
6
READY

Notice that the terminal performs a carriage return/line feed at the
end of each PRINT statement. Thus the first PRINT statement outputs a
1l and a carriage return/line feed; the second PRINT statement, the
blank 1line; and the third PRINT statement, a 6 and another carriage
return/line feed.,

5.5.1.2 Printing Strings

The PRINT statement can be used to print a message or string of
characters, either alone or together with the evaluation and printing
of numeric values. Characters are indicated for printing by enclosing
them in single or double quotation marks (therefore each type of
quotation mark can only be printed if surrounded by the other type of
quotation mark). For example:

"TIME'S UP"
* "NEVERMORE" *

10 PRINT
20 PRINT
RUNNH

TIME'S UP
"NEVERMORE"

READY
As another example, consider the following line:
40 PRINT "AVERAGE GRADE IS";X
which prints the following (where X is equal to 83.4):
AVERAGE GRADE IS 83,4
the
and

the
are

When a character string is printed, only the characters between
quotes appear; no leading or trailing spaces are added. Leading
trailing spaces can be added within the quotation marks wusing
keyboard space bar; spaces appear in the printout exactly as they

typed within the quotation marks.

When a comma separates a text string from another PRINT list item, the
item is printed at the beginning of the next available print zone
(refer to paragraph 5.5.1.3). Semicolons separating text strings from
other items are ignored. Thus, the previous example could be
expressed as:

40 PRINT "AVERAGE GRADE IS" X

and the same printout would result, A comma or semicolon appearing as
the 1last item of a PRINT 1list always suppresses the carriage
return/line feed operation.

BASIC does an automatic carriage return/line feed if a string is
printing past column 72.

Although string variables are illegal in the BASIC without strings,
literal strings may be used in a PRINT statement,

5.5.1.3 Use of Comma and Semicolon ("," and ";")

BASIC considers the terminal printer to be divided into five zones of
fourteen columns each. When an item in a PRINT statement is followed
by a comma, the next value to be prlnted appears in the next available
print zone. For example:

10 LET A=3\ LET B=2
20 PRINT A,B,A+B,A*B,A-B,B-A

When the preceding lines are executed, the following is printed:

3 2 5 6 1
-1

Notice that the sixth element in the PRINT 1list is printed as the
first entry on a new 1line, since the five print zones of the
72-character line were already used.

Two commas together in a PRINT statement cause a print 2zone to be
skipped. For example:

10 LET A=1\ LET B=2

20 PRINT A,B,,A+B

RUNNH

1 2 3

READY

If the last item in a PRINT statement is followed by a comma, no
carriage return/line feed is output, and the next value to be printed
(by a later PRINT statement) appears in the next available print zone.
For example:

10 A=1\B=2\C=3

20 PRINT A,\PRINT B\ PRINT C
RUNNH

1 2

3

READY
If a tighter packing of printed wvalues is desired, the semicolon
character can be used in place of the comma. A semicolon causes no
further spaces to be output. A comma causes the print head to move at
least one space to the next print zone or possibly perform a carriage
return/line feed. The following example shows the effects of the

semicolon and comma.

13 LET A=1\ B=2\ C=3
28 PRINT A3B;3Cs
38 PRINT A+13B+13C+1]
44 PRINT A,BsC
99 END
RUNNH
1 2 3 2 3 4
1 2 3

READY

The following example demonstrates the use of the formatting
characters , and ; with text strings:

113 LET X=119a59\G=87\a=85.44\N=26
123 PRINT "wO0."X,"GRADE ="G3"AVE. ='a3
133 PRINT "NO. IN CLASS ="N

9@@3 END

RUNNH
N0« 119853 GRADE = 87 AVE. = 83.44 NO. IN CLASS = 26

READY

5.5.1.4 Selecting Output Device

The PRINT statement can also be used to select a particular output
file. The form of the statement is:

PRINT #expression:expression list

where expression has the value 0 to 7. If the value of the expression
is 0, output is to the terminal; otherwise, the output is to the
sequential file which was opened as logical unit (expression). (See
section 5.9.1, OPEN statement.) Output is formatted exactly as if
done by the PRINT statement. The colon (:) is required when variables
follow the expression.

If a file written by the PRINT statement is to be later read by the
INPUT statement then the necessary separating commas must be
specified (within quotation marks) in a PRINT statement with more
than one item in the PRINT list.

Examples:

10 OPEN "LP:" FOR OUTPUT AS FILE #2

20 OPEN "DTO: DATA" FOR OUTPUT AS FILE %7
30 PRINT #0: "OUTPUT TO TERMINAL"

40 PRINT #2: "OUTPUT TO LINE PRINTER"

50 PRINT #7: 10,",",20,",",30

If the line printer is not on line when a
BASIC program is attempting to output to it,
BASIC will wait for the line printer to be
put on line and will then start or continue
its output.

5.5.1.5 PRINT Statement - TAB Function

The TAB function is wused in a PRINT statement to space to the
specified column on the output device. The columns on the output
devices are numbered 0 to 71.

The form of the command is:
PRINT TAB(x):

where (x) is the column number in the range 0-255. If x exceeds 71,
however, consecutive subtractions of 72 are done until the number of
spaces to be output is less than or equal to 71, If the column number
specified is greater than 255 or negative, the error message ?ARG is
printed. If (x) is non-integer, only the integer portion of the
number is used.

If the column number (x) specified is less than or equal to the
current column number, printing starts at the current position.

The PRINT TAB(x) statement can be used with any output device which
can be specified in a PRINT statement (refer to paragraph 5.5.1.4).

Examples:

PRINT #0: TAB(5):; Spaces to column 5 of the terminal paper
and prints next output beginning at
column 5. If ; is missing, the output
of the next PRINT statement executed
begins at the left margin of the next
line.

PRINT #2: TAB(80); Outputs 8 spaces on the 1line printer

assumning #2 previously opened.

5.5.2 INPUT Statement
The INPUT statement is used when data is to be input from the terminal
keyboard or a file during program execution. The form of the
statement is:

INPUT list

where list is a list of variable names separated by commas. Refer to
paragraph 5.5.2.1 for data input from files.

wWhen an INPUT statement is executed, BASIC prints a question mark (?)
on the terminal and waits for data to be input.

BASIC inputs the next number from the input stream, saves the value as
a numeric value. Numbers input on the same line must be separated by
commas. If the data is alphabetic, BASIC inputs all characters up to
a carriage return.

For example:

10 INPUT A,B,C

causes BASIC to pause during execution, print a question mark, and
wait for input of three numeric values separated by commas. The
values are input to the computer by typing the RETURN key.

If too few values are entered, BASIC prints another ? to indicate that
more data is needed and waits for the additional data to be entered.
If too many values are typed, the excess data on that line is ignored.
The strings entered in response to the INPUT statement cannot be
continued on another line since string input is terminated by the
RETURN key.

When there are several values to be entered via the INPUT statement,
it is helpful to print a message explaining the data needed.

For example:

10 PRINT "YOUR AGE IS ";
20 INPUT A

30 PRINT "SOC. SEC, #";
40 INPUT B

5.5.2.,1 Selecting Input Devices

The INPUT statement also allows the selection of a particular input
device. The form of the statement is:

INPUT #expression:list

where expression has the value 0 to 7. If the value is equal to 0,
the terminal is the input device., If the value is not 0, input is
read from the sequential file with the logical unit number expression
(assigned by the OPEN statement). If the value is not within the
range 0 - 7 or was not specified in an OPEN statement, the error
message ?DCE (Device Channel Error) results. A question mark is not
output when this form of the INPUT statement is used.

Excess data on an input line is ignored. If the data is insufficient
to fill the list, BASIC looks for more data on the next line.

The colon (:) is required when variables follow the expression.

Examples:

OPEN "PR:" FOR INPUT AS FILE #1
INPUT #1:A,B

This statement causes BASIC/RT1l to input data from the high speed
paper tape reader and store the data in variables A and B.

INPUT #0: X,Y,Z

Input data from the terminal and store in variables X, Y and 2.
Logical unit 0 defaults to the terminal.

5.5.3 DATA Statement

The DATA statement is used in conjunction with the READ statement to
enter data into an executing program. One statement is never used
without the other. The form of the statement is:

DATA data list

where the data list contains the numbers or strings to be assigned to
the variables 1listed in a READ statement., Individual items in the
data list are separated by commas; strings must be enclosed 1in
quotation marks.

For example,

150 DATA 4,7.2,3
170 DATA 1.34E-3, 3.17311,"ABC"

The location of DATA statements is arbitrary as long as they appear in
the correct order; however, it is good practice to collect all DATA
statements near the end of the program for fast reference when
checking a program.

When the RUN command is executed, BASIC searches for the first DATA
statement and saves a pointer to its location. Each time a READ
statement is encountered in the program, the next value in the data
statement is assigned to a variable., If there are no more values in
that DATA statement, BASIC looks for the next DATA statement. If
control is transferred to a DATA statement, the statement is ignored.

5.5.4 READ Statement

A READ statement assigns the next available element in a DATA
statement to the first variable in its list. Then it assigns the
next available element in a DATA statement to the next variable

in its list until all variables have been satisfied. The elements
in the DATA statement must be in the correct order by type; if a
string element is found where a number element is expected, or
vice versa, the error message ?NSM is output. The READ statement
is of the form:

READ variable list

The items in the variable list may be simple variable names or string
variable names or subscripted variables and are separated by commas.
For example,

READ Al,A2,B$,B1,C(3,5),D$(1)

Since data must be read before it can be used in a program, READ
statements generally occur near the beginning of the program. A READ
statement can be placed anywhere in a multiple statement line.

If an element in a data list is neither a number nor a string
enclosed in quotes, the message ?BDR is printed. All subsequent
READ's cause the ?00D message. If there is no data available in
the data table for the READ to store, the message ?00D is printed.

Items in the data list in excess of those needed by the program's READ
statements are ignored.

5.5.5 RESTORE Statement

The RESTORE statement resets the DATA 1list or specified sequential
file (previously opened for input) to the beginning. RESTORE is of
the form:

RESTORE #n

where n is a digit in the range 1 to 7. If #n is omitted, the
DATA 1list is reset to its start. When a digit is
specified, the appropriate input sequential file is
repositioned to its start. (Refer to Section 5.9 for
types of files.)

Examples:
30 RESTORE

causes the next READ statement following line 30 to begin reading data
from the first DATA statement in the program, regardless of where the
last value was found.

100 RESTORE #2

repositions the input sequential file associated with logical unit #2
to the beginning.

A further example of the use of RESTORE follows:

15 READ B,C,D

.

55 RESTORE
60 READ E,F,G

80 DATA 6,3,4,7,9,2

iOO END

The READ statements in lines 15 and 60 both read the first three data
values provided in line 80. (If the RESTORE statement had not been
inserted before line 60, then the second READ would pick up data in
line 80 starting with the fourth value.)

Since the values are being read as though for the first time, the same
variable names may be used the second time through the data, if
desired. To skip unwanted values, replacement, oOr dummy, variables
may be inserted. For example:

1 REM - PROGRAM TO ILLUSTRATE USE OF RESTORE
20 READ N

25 PRINT "VALUES OF X ARE:"

30 FOR I=1 TO N

40 READ X

50 PRINT X,

60 NEXT I

70 RESTORE

185 PRINT

190 PRINT "SECOND LIST OF X VALUES"

200 PRINT "FOLLOWING RESTORE STATEMENT:"
210 FOR I=1 TO N

220 READ X

230 PRINT X,

240 NEXT I

250 DATA 4,1,2

251 DATA 3,4

300 END
RUNNH
VALUES OF X ARE:
1 2 3 4

SECOND LIST OF X VALUES
FOLLOWING RESTORE STATEMENT:

4 1 2 3
READY

The second time the data values are read, the first X picks up the
value originally assigned to N in line 20, and as a result, BASIC
prints:

4 1 2 3

To circumvent this, a dummy variable could be inserted to pick up and
store the first value. This variable would not be represented in the
PRINT statement, so the output would be the same each time through the
list.

5.6 RANDOMIZE Statement

The RANDOMIZE statement causes the random number generator to
calculate different random numbers every time the program is run.
When executed, RANDOMIZE causes the RND function (explained in Chapter
6) to choose a random starting value to produce random results. The
RANDOMIZE statement is written as

RANDOMIZE
RANDOMIZE may be placed anywhere in the program. It is good practice
to completely debug a program before inserting the RANDOMIZE
statement,

The following program demonstrates the use of the RANDOMIZE statement.,

10 REM -~ RANDOM NUMBERS USING RANDOMIZE.
15 RANDOMIZE

5-12

25 PRINT "“RANDOMIZED NUMBERS:"
30 FORI =1 TO 4
40 PRINT RND{0),

50 NEXT I
60 END
RUNNH
RANDOMIZED NUMBERS:
.7785034E~1 .1632385 .2787781 .2035217
READY
RUNNH
RANDOMIZED NUMBERS:
.8417053 .1678467E-2 .4347229 5932312
READY
RUNNH
RANDOMIZED NUMBERS:
.6651917 .2846375 .7210999 .7648621
READY

Removing the RANDOMIZE statement and changing line 25:

15
25 PRINT "REPRODUCIBLE RANDOM NUMBER SET."

program output is as follows.

RUNNH
REPRODUCIBLE RANDOM NUMBER SET.

.0407319 .528293 .803172 .0643915
READY
RUNNH
REPRODUCIBLE RANDOM NUMBER SET.

.0407319 .528293 .803172 .0643915
READY
RUNNH
REPRODUCIBLE RANDOM NUMBER SET.

.0407319 .528293 .803172 .0643915
READY

5.7 PROGRAM CONTROL

The statements described in the following paragraphs cause the
execution of a program to jump to a different line either
unconditionally or depending upon some condition within the program.

5.7.1 GO TO Statement

The GO TO statement is used when it is desired to unconditionally
transfer to some line other than the next sequential line in the
program. In other words, a GO TO statement causes an immediate jump
to a specified line, out of the normal consecutive line number order
of execution. The general format of the statement is as follows:

GO TO line number

The line number to which the program jumps can be either greater or
less than the current 1line number. It 1is thus possible to jump
forward or backward within a program.

For example,

10 LET A=2

20 GO TO 50

30 LET A=SQR(A+14)
50 PRINT A,A*A

causes the following to be printed:
2 4

When the program encounters line 20, control transfers to 1line 50;
line 50 is executed, control then continues to the line following line
50. Line 30 is never executed. Any number of lines can be skipped in
either direction.

When written as part of a multiple statement line, GO TO should always
be the 1last statement on the line (except for REM statements), since
any statement following the GO TO on the same line is never executed,
For example:

110 LET A=ATN(B2)\ PRINT A\ GO TO 50

5.7.2 1IF THEN, IF GO TO and IF END Statements

The IF THEN statement is used to transfer conditionally from the
normal consecutive order of statement numbers, depending upon the
truth of some mathematical relation or relations. The basic format of
the IF statement is as follows:

THEN
IF expression rel.op. expression <' ‘3 line number
Go To/

where expression is an arithmetic or string expression,
Expressions cannot be mixed; both must be
string or both must be numeric. Numeric
comparisons are handled as described in
Section 2,5,2. String comparisons are
performed on the ASCII values of the strings
as described in Section 3.3.2.

rel.op. is one of the relational operators described
in section 2.5.2.

line number is the line of the program to which control
is conditionally passed,

If the relation is true, control passes to the line number specified,
If the relation is false, control passes to the next statement in
sequence.

Examples:

ides a special form of the IF statement used to detect

an end of file condition on a sequential file. The form of the
statement is:

THEN
IF END # line number
GO TO

where #n represents the logical file number.

If the next input statement executed for the sequential file (#n)
would detect an end of file (and an OUT OF DATA error message) then
the branch to the 1line number is taken. The following example
illustrates the use of the IF END statement:

10 OPEN "TEST" AS FILE #l
20 IF END #1 THEN 100

30 INPUT #1l: AS

40 PRINT AS

50 GO TO 20

100 PRINT "END OF FILE"
110 STOP

The program prints out the contents of the ASCII file “TEST.DAT",
ed

PP B I
follow by the message

END OF FILE

5.7.3 FOR-NEXT Statements
FOR and NEXT statements define the beginning and end of a program
lcop. (A loop is a set of instructions which are repeated over and
over again, each time being modified in some way until a terminal
condition is reached.) The FOR statement is of the form:

FOR variable = expressionl TO expression2 STEP expression3
where

variable must be a nonsubscripted numeric variable.

expression is an —arithmetic - ' expression - - which may be
noninteger.

The variable is the index; expressionl is the initial value of the
index; expression2, the index terminal value (the value which the
index reaches before execution of the loop halts) and expression3, the
increment value.

For positive STEP values, the loop is executed until the control
variable 1is greater than its final value. For negative STEP values,
the loop continues until the control variable is less than its final
value,

For example:
15 FOR K=2 TO 20 STEP 2

causes program execution of the designated loop as long as K is less
than or equal to 20. Each time through the loop, K is incremented by
2, so the loop is executed a total of 10 times. When K=20, program
control passes to the line following the associated NEXT statement.

The NEXT statement signals the end of the loop which began with the
FOR statement, The NEXT statement is of the form:

NEXT variable

where the variable is the same variable specified in the FOR
statement. There must be only one NEXT statement for each FOR
statement. Together the FOR and NEXT statements define the boundaries
of the program 1loop. When execution encounters the NEXT statement,
the computer adds the STEP expression value to the variable and checks
to see if the variable is still less than or equal to the terminal
expression value. When the variable exceeds the terminal expression
value, control falls through the loop to the statement following the
NEXT statement.

If the STEP expression and the word STEP are omitted from the FOR
statement, +1 is the assumed value. Since +1 is a common STEP value,
that portion of the statement is frequently omitted.

The expressions within the FOR statement are evaluated once upon
initial entry to the 1loop. The test for completion of the loop is
made prior to each execution of the loop. (If the test fails
initially, the loop is never executed.)

The index variable can be modified within the loop. When control
falls through the loop, the index variable retains the last value used
within the loop.

The following is a demonstration of a simple FOR-NEXT loop. The loop
is executed 10 times; the value of I is 10 when control leaves the
loop; and +1 is the assumed STEP value:

10 FOR I=1 TO 10
20 PRINT I
30 NEXT I
40 PRINT I

The loop itself is lines 10 through 30. The numbers 1 through 10 are
printed when the loop is executed. After I=10, control passes to line
40 which causes 10 to be printed again., If line 10 had been:

10 FOR I = 10 TO 1 STEP -1

the value printed by line 40 would be 1.

10 FOR I = 2 TO 44 STEP 2
20 LET I = 44
30 NEXT I

The above loop is only executed once since the value of I=44 has been
reached and the termination condition is satisfied.

If, however, the initial value of the variable is greater than the
terminal value, the loop is not executed at all. The loop set up by
the statement:

10 FOR I = 20 TO 2 STEP 2

will not be executed, although a statement like the following will
initialize execution of a loop properly:

10 FOR I=20 TO 2 STEP -2

FOR loops can be nested but not overlapped. The depth of nesting
depends upon the amount of user storage space available (in other
words, upon the size of the user program and the amount of core
available). Nesting is a programming technique in which one or more
loops are completely within another loop. The field of one loop (the
numbered lines from the FOR statement to the corresponding NEXT
statement, inclusive) must not cross the field of another loop.

ACCEPTABLE NESTING UNACCEPTABLE NESTING
TECHNIQUES TECHNIQUES

Two Level Nesting

FOR Il =1 TO 10 FOR I1 =1 TO 10
r FOR I2 = 1 TO 10 FOR I2 = 1 TO 10
L NEXT I2 I_NEXT Il
FOR I3 =1 TO 10 NEXT I2
NEXT I3
NEXT Il
Three Level Nesting
~ FOR I1 = 1 TO 10 FOR Il = 1 TO 10
FOR I2 = 1 TO 10 FOR I2 = 1 TO 10
FOR I3 = 1 TO 10 FOR I3 =1 TO 10
NEXT I3 NEXT I3
FOR I4 = 1 TO 10 FOR I4 =1 TO 10
NEXT I4 NEXT I4
L NEXT 12 NEXT Il
NEXT Il NEXT I2

An example of nested FOR-NEXT loops is shown below:

5 DIM X(5,10)

10 FOR A=l TO 5

20 FOR B=2 TO 10 STEP 2
30 LET X(A,B)= A+B

40 NEXT B
50 NEXT A
55 PRINT X(5,10)

When the above statements are executed, BASIC prints 15 when 1line 55
is processed.,

It is possible to exit from a FOR-NEXT loop without the control
variable reaching the termination value, A conditional or
unconditional transfer can be used to leave a loop. Control can only
transfer into a 1loop which had been left earlier without being
completed, ensuring that termination and STEP values are assigned.

Both FOR and NEXT statements can appear anywhere in a multiple
statement line. For example:

10 FOR I=1 TO 10 STEP 5\ NEXT I\ PRINT "I=";I
causes:
I= 6

to be printed when executed.

5.7.4 GOSUB and RETURN Statements

The GOSUB statement causes execution of a block of statements called a
subroutine, The RETURN statement causes program control to return to
the statement following the GOSUB.

A subroutine is a section of code performing some operation required
at more than one point in the program. Sometimes a complicated I/0O
operation for a volume of data, a mathematical evaluation which is too
complex for a user-defined function, or any number of other processes
may be best performed in a subroutine.

More than one subroutine can be used in a single program, in which
case they can be placed one after another at the end of the program
(in line number sequence). A useful practice is to assign distinctive
line numbers to subroutines; for example, if the main program uses
line number 0 up to 199, use 200 and 300 as the first numbers of two
subroutines.

Subroutines are usually placed physically at the end of a program
before DATA statements, if any, and always before the END statement.,
The program begins execution and continues until it encounters a GOSUB
statement of the form:

GOSUB line number
where the line number following the word GOSUB is that of the first
line of the subroutine. Control then transfers to that line of the
subroutine., For example:

50 GOSUB 200

Ul
[}

18

Control is transferred to line 200 in the wuser program. The first
line in the subroutine can be a remark or any executable statement.

Having reached the 1line containing a GOSUB statement, control
transfers to the 1line indicated after GOSUB; the subroutine is
processed until BASIC encounters a RETURN statement of the form:

RETURN

which causes control to return to the statement following the calling
GOSUB statenent. A subroutine is always exited via a RETURN
statement.

Before transferring to the subroutine, BASIC internally records the
next sequential statement to be processed after the GOSUB statement;
the RETURN statement is a signal to transfer control to this
statement. In this way, no matter how many subroutines there are or
how many times they are called, BASIC always knows where to transfer
control next. The following program demonstrates the use of GOSUB and

RETURN.

1l REM - THIS PROGRAM ILLUSTRATES GOSUB AND RETURN
10 DEF FNA(X)= ABS(INT(X))

20 INPUT A,B,C

30 GOSUB 100

40 LET A=FNA(A)

0 LET B=FNA(B)
60 LET C=FNA(C)
70 PRINT
80 GOSUB 100
90 sTOP

100 REM - THIS SUBROUTINE PRINTS OUT THE SOLUTIONS

110 REM - OF THE EQUATION: AXt2 + BX + C =0

120 PRINT "THE EQUATION IS " A "kXP2 + " BY"*X + " C
130 LET D=B*B - 4*A*C

140 IF D<>0 THEN 170

150 PRINT "ONLY ONE SOLUTION... X="; =~B/(2*A)

160 RETURN

170 IF D<0 THEN 200

180 PRINT "TWO SOLUTIONS...X =(";

185 PRINT (=-B+SOR(D))/(2*A);") AND ("; (~=B-SQR(D))/(2*A;")"
190 RETURN

200 PRINT "IMAGINARY SOLUTION...X=(";

205 PRINT =B/ (2*A);"+"; SQR(-D)/(2*A);"I) AND (";

207 PRINT ~B/(2*A);"-="; SQR(=D)/(2*A);"*I)"

210 RETURN

900 END

Subroutines can be nested; that is, one subroutine can call another
subroutine. If the execution of a subroutine encounters a RETURN
statement, it returns control to the line following the GOSUB which
called that subroutine. Therefore, a subroutine can call another
subroutine, even itself., Subroutines can be entered at any point and
can have more than one RETURN statement. It is possible to transfer
to the beginning or any part of a subroutine; multiple entry points
and RETURNs make a subroutine more versatile. Up to 20 levels of
GOSUB nesting are allowed.

5.8 PROGRAM TERMINATION
The STOP and END statements are used to terminate program execution.

The CHAIN statement also causes execution to cease but in addition,
loads and executes a previously stored program,

5.8.1 END Statement

The END statement is the last statement in a BASIC program and is of
the form:

END

The line number of the END statement must be the largest 1line number
in the program, since any lines having line numbers greater than that
of the END statement are not executed (although they are saved with
the SAVE command. The END statement is optional. When an END
statement is executed, program execution stops; all open files are
automatically closed. If the program does not have an END or STOP
statement, the open files are not closed.

5.8.2 STOP Statement

The STOP statement causes termination of program execution and can
occur several times throughout a single program with conditional jumps
determining the actual end of the program. The STOP statement is of
the form:

STOP
and causes the message:
STOP AT LINE nnn
where nnn is the statement number of the STOP statement,
Execution of a STOP statement causes the message:
READY
to be printed on the terminal and all open files are automatically

closed, This signals that the execution of a program has been
terminated or completed, and BASIC is able to accept further input,

5.8.3 CHAIN Statement

The CHAIN statement terminates execution of the program currently in
core then loads and executes the specified program. The execution of
this previously stored program begins at the lowest line number unless
another line number is specified. This allows a large program to be

broken into segments and then 1linked together for execution with
CHAIN,

The form of the command is
CHAIN “"dev:filnam.ext" LINE number

The file descriptor (dev: filnam.ext) may be a literal string or a
non-subscripted string variable name.
CHAIN closes all files which are open then opens and closes the

program file containing the program to be executed. The default
extension is .BAS.

All variables used in the current program are erased when the CHAIN
statement 1is executed. If variables are to be passed to the next
program, they must be stored in a file which is then read by the new
program.

Examples:
CHAIN "DT1:PARTZ2" LINE 10

Halts execution of current program then loads program, PART2.BAS, from
DECtape unit 1 and begins execution at line 10.

5.9 FILE CONTROL

Any RT-11 file may be used or created by a BASIC program, including
EDIT and MACRO files. A file may be used in one of two ways: first as
an ASCII "sequential" file, as if it were typed at the terminal. Here
are examples of statements which access sequential files:

INPUT #1: AS, B, C

PRINT #2: "ANSWERS:" X;Y
Alternatively, a file may be used as a random-access binary "virtual
memory" file, as if each item were an element of a large array. The
following are examples of statements which access virtual memory
files.

LET A= (VF1(I)+VF1(J))/2
LET VF2 (K)=A*3*SIN(X)

A virtual memory file may consist of string or numeric data, as
explained below.

A sequential data file is limited in its applications and depends upon
a strictly sequential treatment of I/O. With virtual data storage,
reference can be made to any element within the £file regardless of
where that element resides.

The file control statements, OPEN and CLOSE, provide access to
sequential and virtual memory files.

The OVERLAY statement overlays the program currently in memory with
the specified file and continues execution.

NOTE

If a disk or DECtape is the device in an
OPEN, CLOSE, OVERLAY, or CHAIN statement
or OLD, SAVE, or REPLACE command (see
Chapter 7) and the device is not on line
a ?M-DIR I/O ERR? will be printed and
control will return to the RT-11 monitor
which will give an ?ILL CMD? message to
the first command input. BASIC may then
be reloaded by the RUN command but the
stored program will be lost. This also
occurs when a device is WRITE locked and
the BASIC program attempts to output to it.

5.9.1 OPEN Statement

The OPEN statement opens files for input or output by the BASIC
program and has two forms, one for sequential files and one for
virtual,

For sequential files, the format is:

INPUT
OPEN "dev:filnam.ext" FOR{: AS FILE $digit DOUBLE BUF
OouUTP
where "“dev: filnam.ext" may be a literal string or a scalar

string variable name.

digit is a logical unit number in the range
1-7. The maximum number of files which
may be opened at one time is 14 (7
sequential and 7 virtual).

If FOR OUTPUT or FOR INPUT is not included in the specification, the
file is open for input. If the file name is omitted, the current
program name is used. Thus, if the program name is TEST, then the
statement to open file #1 will open the file DK:TEST.DAT. If the
extension is omitted, .DAT (data) is assumed.

This form of the statement opens the specified file (or a non-file
structured device) as a sequential ASCII file with logical unit number
<expression>. The file is either for input or output as specified.
Once opened, an input file may be read by the INPUT # statement, and
an output file may be written by the PRINT # statement.

The OPEN statement can be used to specify the number of blocks to be
assigned to an output file on disk or DECtape in the form:

»+« OUTPUT (blocks) ..

Each block holds 512 ASCII characters including carriage return and
line feed. If the program then attempts to write past the end of the
file created, the message ?FTS (File Too Short) results., If the
number of blocks is not specified, one half of the largest available
group of blocks is used.

There is a 256-word input/output buffer associated with every file.
Output to a file actually occurs only after the buffer is filled or
the file is closed. For example, execution of a PRINT # statement
where the device is the line printer will produce no visible output
until the buffer is filled or the file is closed. DOUBLE BUF is op-
tional and if specified a second 256-word I/0 buffer is allotted to
the file. Using DOUBLE BUF improves the execution speed of programs
with extensive I/0 but requires more memory.

Examples:

OPEN "ABC" FOR OUTPUT(5) AS FILE #1)
Creates ABC.DAT on disk as logical

file 1 and allocates 5 blocks.

LET A$=XYZ
OPEN AS$ AS FILE #2 DOUBLE BUF)
Opens disk file XYZ.DAT as logical

file 2 and allocates two 256-word
I/0 buffers for input.

OPEN "ALTO.MAC" FOR INPUT AS FILE #3
Opens disk file ALTO.MAC as logical
file 3 for input.

OPEN "LP:" FOR OUTPUT AS FILE #1l
Opens the specified device "LP:"
for output as file #1. If FOR
OUTPUT were not specified, input
would be assumed and an error
message would result since the line
printer is a write-only device.

The virtual memory file OPEN statement has the form:
i . ,, INPUT . . .
OPEN "dev:filnam.ext" FOR{ ypyp AS FILE VFnx (dimension)=string length

where

dev: filnam.ext may be a literal string or a scalar
string variable.

n is a number in the range 1-7
representing the wvirtual file logical
unit number, The maximum number of
files which may be opened at one time is
14 (7 sequential and 7 virtual).

X is the type of virtual file as follows:
type File data type
blank The file consists of 2-word
or floating=point numbers.
null
% The file consists of 1l-word signed
integers.
$ The file consists of strings of a given

length. This 1length is 32 characters,
unless otherwise specified.

{(dimension) is maximum subscript to be wused in
referencing the virtual file.

=string length may be included for string virtual files
to indicate the length of the strings in
the file, The values which can be
specified are 1,2,4,8,16,32,64 and 128,
The default value is 32,

This form of the statement opens the specified file as the virtual
file VFn. This special file is distinct from a sequential file
<digit>.

If FOR OUTPUT is specified, the system allocates blocks to accommodate
the maximum dimension specified. Any previous file with the same name
will be deleted. FOR OUTPUT should only be specified to create a new
file. To allow output to an existing virtual file neither FOR INPUT
nor FOR OUTPUT should be specified. If the device cannot accommodate

5-23

the blocks specified, the message ?NER (Not Enough Room) results. As
with sequential files, the number of blocks to be assigned to an
output file can be specified after the phrase FOR OUTPUT. The number
of blocks so specified overrides the maximum subscript specified if
any. If neither is specified, the largest block number written
becomes the length of the file.

The following table can be used to calculate the number of blocks
needed for a file.

file type # bytes per element # elements per block

blank (floating point) 4 128

% (integer) 2 256
$ 32 16
$=1 1 512
$=2 2 256
$=4 4 128
$=8 8 64
$=16 16 32
$=32 32 16
$=64 64 8
$=128 128 4

If the phrase FOR INPUT is included, then the file is write-protected;
it may only be read by the program. If the phrase FOR OUTPUT is
specified, a new file is created and can be used for input or output.
If FOR INPUT or FOR OUTPUT is not specified an existing file is opened
for input and/or output.

Once a virtual file has been opened, its elements may be used as any
other variables in the BASIC program. A virtual file element may only
be set by an assignment statement.

Examples:

OPEN "TEST"™ AS FILE VF1$(2000)=8
Opens the file TEST.DAT on disk as
virtual memory £file 1 containing 2000
string elements; each one 8 bytes long.
This file is now available for input and
output operations., A program reference
to file element 2001 causes an error.

OPEN "TEST" FOR OUTPUT AS FILE VF2$(500)
Creates a file TEST.DAT on disk for
output as virtual memory file 2 with 500
string elements, each 32 bytes long.

OPEN "TEST" FOR INPUT AS FILE VF3
Opens the file TEST.DAT for input only
operations as virtual memory file 3, it
consists of floating point numbers.

LET A$="TEST"

OPEN A$ FOR OUTPUT (10) AS FILE VF4%(50)
Creates the file TEST,DAT and opens it
for input or output as virtual memory
file 4 with 10 blocks. The number of
blocks overrides the number of elements
(50).

These files can then be used in BASIC operations as follows:

ET A = B + VF3(I)/2

Uses the value of virtual file element
VF3(I) in computing an expression.

PRINT "VARIABLE", N, VF4(N)
Uses the value of integer virtual memory
file element VF4(N) in a print list,

LET VF3(2*N+1) = (A + B)/2
Sets the value of virtual memory file

element VF3(2*N+l) to the value of the
expression (A+B)/2.

LET VF1(10) = "ABCD"
Sets the value of string virtual memory
file element VF1(10) to "“ABCD". The
string will be truncated or lengthened
and filled with blanks to the

appropriate length, as specified in the
OPEN statement.

5.9.2 CLOSE Statement
The CLOSE statement closes the logical file specified and has the form
CLOSE file identification

where file identification contains the file numbers of the form:

#n for sequential files
VFn for virtual memory files

where n is a digit in the range 1 to 7.

If no file identification is specified, all open files are closed.

If a file is referenced after a CLOSE, the message ?FNO (File Not
Open) is printed.

NOTE

In addition to CLOSE, the SCRATCH, NEW, OLD
and CLEAR commands, the END, STOP and CHAIN
statements and the ?FIO error routine close
all open file when executed.

Examples:

CLOSE #1 Closes the sequential file associated
with logical unit 1.

CLOSE VF3 Closes the virtual memory file
associated with logical unit 3.

5-25

5.9.3 OVERLAY Statement

The OVERLAY statement causes the program currently in core to be
"overlaid" or merged with the specified file, which also contains a
BASIC program.

The form of the OVERLAY statement is:
OVERLAY "file descriptor"

All variables and arrays defined keep their current values. All data
files remain open. If a program line in the new program has a line
number identical to one in the current program, the current program
line is replaced by the new program line. After the overlaid program
has been merged with the current program, execution continues at the
first program 1line which now follows the statement number of the
OVERLAY statement. Thus, programs can be segmented into separate
files as with the CHAIN statement, and data can be communicated among
segments in the arrays, and a very long program can be divided up into
several smaller overlay segments.

The new program must not contain DIM, RANDOMIZE, or DEF statements.
If a DEF statement in the current program is overlaid, the function
will no longer be defined.

As an example:

Main Program

10 DIM A (100)
20 FOR I = 0 TO 100
30 LET A (I) = SQR (I)
40 NEXT I
50 DEF FNS(I) = SQR (A (I))
60 OPEN "LP:" FOR OUTPUT AS FILE #1
100 FOR I = 0 TO 100
110 PRINT #1: A (I),
120 NEXT I
900 OVERLAY "OV1"
910 GO TO 100

Overlay Section, file OV1,BAS

100 PRINT #1: "FIRST OVERLAY"
110 FOR J = 0 TO 100

120 PRINT #l: FNS(J),

130 NEXT J

140 STOP

Execution of the main program sets the elements of A to the square
root of I; the function FNS(I) is set to the square root of A(I), or
the fourth root of I. The main program then prints out the elements
of A on the line printer.
The execution of the OVERLAY statement causes the file

"DK:0V1,BAS"

to be edited into the program.

The program in memcry is now:

10 DIM A(100)

200 FOR I = 0 TO 100

30 LET A(I) = SQR({I)

40 NEXT I

50 DEF FNS(I) = SQR (A(I))

60 OPEN "LP:" AS FILE #1
100 PRINT #1: "FIRST OVERLAY"
110 FOR J = 1 TO 100
120 PRINT #1l: FNS (J),
130 NEXT J
140 STOP
900 OVERLAY "OV1"
910 GO TO 100

Control now passes to statement 910, which is the first statement fol-
lowing statement 900 in the merged program.

Execution at statement 100 causes
"FIRST OVERLAY"

to be printed, followed by the fourth roots of the numbers from 0 to
100.

Finally, "STOP AT LINE 140" is output at the terminal.

An overlay statement executed in the immediate mode (without a line
number) will act like an OLD command, except that the program cur-
rently in core is not scratched. Instead, the program lines in the
specified file will be edited into the program, just as if they were
typed in via the console.

A very useful application of this feature is when the BASIC programmer
has a "library" of GOSUB subroutines to edit into his program. The
procedure is as follows.

Type in the BASIC program as if there were subroutines at specific
(high) statement numbers such as 1000, 2000, etc. Then SAVE the pro-
gram. The next step is to resequence the required library routines
using the BASIC program RESEQ (see Chapter 10) so that they begin at
the correct statement numbers. Then read in the saved program again
with the OLD command. Finally, edit in the subroutines with immediate
mode OVERLAY statements such as

OVERLAY "SUBL"
OVERLAY "SUB2"

Finally, a REPLACE command will update the saved program.

5-27

CHAPTER 6

BASIC/RT-11 FUNCTIONS

6.1 ARITHMETIC FUNCTIONS

BASIC provides eleven functions to perform certain standard
mathematical operations such as square roots, logarithms, etc.

These functions have three-~letter calil names followed by a
parenthesized argument. They are pre-defined and may be used anywhere
in a program.

Call Name ‘ Function

ABS (x) Returns the absolute value of x.

ATN (x) Returns the arctangent of x as an angle in
radians in range + or - pi/2.

BIN (x8) Computes the integer value from a string
of blanks (ignored), zeroes, and ones (binary
integer).

COos (x) Returns the cosine of x radians.

EXP (x) Returns the value of etx where e=2.71828...

INT (x) Returns the greatest integer less than or
equal to x, (INT(-.5)=-1).

LOG(x) Returns the natural logarithm of x.

OCT (x$) Computes an integer value from a string of

blanks (ignored) and digits from 0 to 7
(octal integer).

RND (x) Returns a random number greater than or equal
to 0 and less than 1.

SGN (x) Returns a value indicating the sign of x.

SIN (x) Returns the sine of x radians.

SOR(x) Returns the square root of x.

TAB (x) Causes the terminal type head to tab to

column number x. Valid in PRINT statement
only (refer to paragraph 5.5.1.5).

The argument x to the functions can be a constant, a variable, an
expression, or another function. A square bracket cannot be used as
the first enclosing character for the argument x, e.g., SIN[x] is
illegal.

Function calls, consisting of the function name followed by a
parenthesized argument, can be used as expressions or as elements of
expressions anywhere that expressions are legal.

Values produced by the functions SIN(x), COS(x), ATN(x), SOR(x),
EXP(x), and LOG(x) have six significant digits.

6.1l.1 Sine and Cosine Functions, SIN(x) and COS(x)

The sine and cosine functions require an argument angle expressed in
radian measure. If the angle is stated in degrees, conversion to
radians may be done using the identity:

<radians> = <degrees> (pi/180)

In the following example program, 3.14159265 1is wused as a nominal
value for pi. P is set equal to this value at line 20. At line 40
the above relationship is used (in the expression within the LET
statement) to convert the input value into radians.

10 REM - CONVERT ANGLE (X) TO RADIANS, AND
11 REM - FIND SIN AND COS
20 LET P = 3.14159265
25 PRINT "DEGREES", "RADIANS", "SINE", "COSINE"
30 INPUT X
40 LET Y = X*P/180
60 PRINT X, Y, SIN(Y), COS(Y)
70 GO TO 30
RUNNH
DEGREES RADIANS SINE COSINE
20
0 0 0 1
210
10 .174533 .173648 .984808
220
20 .349066 .34202 .939693
230
30 .523598 .5 .866025
2360 ‘
360 6.28319 ~3.7457E=07 1
245
45 .785398 .707107 .707107
24C
.REENTER
READY

6.1.2 Arctangent Function, ATN(x)

The arctangent function returns a value in radian measure, in the
range +pi/2 to -pi/2 corresponding to the value of a tangent supplied
as the argument (X).

In the following program, input is an angle in degrees. Degrees are
then converted to radians at line 40. At line 50 the radian value (Y)
is used with the SIN and COS functions to derive the tangent of the
input angle according to the identity:

SIN(X)
TAN(X) = —0

Cos (X)

At line 70 the tangent value, 2, is supplied as argument to the ATN
function to derive the value found in coiumn 4 of the printout under
the label ATN(X). Also in line 70 the radian value of the arctangent
function is converted back to degrees and printed in the fifth column
of the printout as a check against the input value shown in the first
column,

10 LET P = 3.14159265

20 PRINT "SUPPLY AN ANGLE IN DEGREES"
25 PRINT *ANGLE®,*ANGLE",*TAN(X)","ATAN(X)","ATAN(X)"
26 PRINT " (DEGS)"," (RADS)",,," (DEGS)"
30 INPUT X

40 LET Y = X*P/180

45 IF ABS(COS(Y))<.01 THEN 100

50 LET Z = SIN(Y)/COS(Y)

70 PRINT X,Y,Z,ATN(Z) ,ATN(Z)*180/P

85 PRINT

90 GO TO 30

100 PRINT "ANGLE ERROR"

110 GO TO 30

RUNNH

SUPPLY AN ANGLE IN DEGREES
ANGLE ANGLE TAN (X) ATAN (X) ATAN (X)
(DEGS) (RADS) {DEGS)
20

0 0 0 0 0
245

45 .785398 .999999 .785398 45
210

10 .174533 .176327 .174533 10
24C

« REENTER

READY

Note that the tangent of an odd multiple of pi/2 radians is not
defined. Since the «cosine of such an angle is 0, the statement on
line 50 would be dividing by 0 and the statement on line 45 checks for
an angle close to the odd multiple of pi/2 radians to circumvent this
problem,

6.1.3 Square Root Function, SQR(x)

This function derives the square root of any positive value as shown
below.

10 INPUT X
20 LET X =
30 PRINT X
40 GO TO 10
RUNNH

216

SQR(X)

4
2100

10
21000

31.6228
2123456789

11111.1
217

4,12311
?25E2

50
21970

44,3847
24C
«REENTER
READY

6.1.4 Exponential Function, EXP (x)

The exponential function raises the number e to the power x. EXP is
the inverse of the LOG function. The relationship is

LOG(EXP (X)) = X

The following program prints the exponential equivalent of an input
value. Note that the output values derived below are used as input to
the LOG function in Section 6.1.5.

19 INPUT X
28 PRINT EXP(X)
40 GO TO 14

99 END
RUNNH
24

54.5981
210

22626.5
29.421836

12345

?4.6@8517

190
225

7+20B49E+106
21C

«REENTER

READY
6.1.5 Logarithm Function, LOG(x)
The LOG function derives the logarithm to the base e of a given value.
In the following program at line 20, the LOG function is used to

convert an input value to its logarithmic equivalent.

10 INPUT X
20 PRINT LOG(X)

30 GO TO

RUNNH
254,59815
4

222026.47
10
212345
9.42101
2100

4,60517

?.720049E
25

21C

« REENTER
READY

10

11

Logarithms to the base e may easily be converted to any other base
using the following formula:

log N
e
log N=
a
log a
e
where a represents the

illustrates conversion to the base 10.

1 REM -
5 PRINT
15 INPUT
17 PRINT
20 PRINT
40 PRINT
50 GO TO
60 END
RUNNH
VALUE

24

4

2250

250

25

5

260

60

2100

100

?tC

+« REENTER
READY

desired Dbase. The

following

CONVERT BASE E LOG TO BASE 10 LOG.
"yALUE" ,"BASE E LOG","BASE 10 LOG"

X
X,

LOG(X) ,

LOG (X) /LOG(10)

15

BASE E LOG

1.38629
5.52146
1.60944
4,09434

4,60517

BASE 10 LOG

.60206
2,39794
.69897
1.77815
2

program

An attempt to do a LOG(0) or logarithm of a negative number causes the

?ARG error message.

6-5

6.1.6 Absolute Function, ABS(x)

The ABS function returns an absolute value for any input value.
Absolute value is always positive. 1In the following program, various
input values are converted to their absolute values and printed.

10 INPUT X
20 LET X = ABS(X)
30 PRINT X
40 GO TO 10
RUNNH
2-35.7
35.7
22
2
?25E10
2,50000E+11
2105555567
1.05556E+08
210,.12345
10,1234
?-44,555566668899
44,5556
24C
« REENTER
READY

6.1.7 Integer Function, INT(x)

The integer function returns the value of the greatest integer not
greater than x. For example:

PRINT INT(34.67)
34

PRINT INT(-5.1)
-6

The INT of a negative number is a negative number with the same or
larger absolute value, i.e., the same or smaller algebraic value. For
example:

PRINT INT (=-23.45)
-24

PRINT INT(~-14,39)
-15

PRINT INT(~-11)
-11

The INT function can be used to round numbers to the nearest integer,
using INT(X+.5). For example:

PRINT INT(34.67+.5)
35

PRINT INT(-5.1+.5)

-5

INT (X) can also be used to round to any given decimal place or
integral power of 10, by using the following expression as an
argument:

(X*10tD+.5) /101D
where D is an integer supplied by the user.

10 REM - INT FUNCTION EXAMPLE.

15 PRINT

20 PRINT "NUMBER TO BE ROUNDED:"

25 INPUT A

40 PRINT "NO. OF DECIMAL PLACES:"
45 INPUT D

60 LET B = INT(A*10+D + .5)/10%D

70 PRINT "A ROUNDED = " B

80 GO TO 15

90 END

RUNNH

NUMBER TO BE ROUNDED:
?55.65842

NO. OF DECIMAL PLACES:
22

A ROUNDED = 55.66

NUMBER TO BE ROUNDED:
?78.375

NO. OF DECIMAL PLACES:
?-2

A ROUNDED = 100

NUMBER TO BE ROUNDED:
267,38

NO. OF DECIMAL PLACES:
-1

A ROUNDED = 70

NUMBER TO BE ROUNDED:
?2tC

« REENTER

READY

6.1.8 Random Number Function, RND(x)

The random number function produces a random number, or random number
set, between 0 and 1. If the RANDOMIZE statement is not present in
the program; the numbers are reproducible in the same order for later
checking of a program. The argument (x) is not used and can be any
number (but cannot be a string expression); it serves only to
standardize all BASIC function representations. The form. RND is also
legal. For example:

10 REM - RANDOM NUMBER EXAMPLE,
25 PRINT "RANDOM NUMBERS:"

30 FOR I =1 TO 15

40 PRINT RND(O0),

50 NEXT I

60 END

RUNNH

RANDOM NUMBERS:
.1002502 .9648132 .8866272 .6364441 .8390198
.3061218 .285553 .9582214 .1793518 4521179
.9854126E~1 ,5221863 2462463 .7778015 .450592

READY

To obtain random digits from 0 to 9, change line 40 to read:
40 PRINT INT(10*RND(0)),

and run the program again. This time the results will be printed as
follows.

RUNNH
RANDOM NUMBERS:
1 9 8 6 8
3 2 9 1 4
0 5 2 7 4
READY

It is possible to generate random numbers over a given range, If the
open range (A,B) is desired, use the expression:

(B=A) *RND(0) +A
to produce a random number in the range A<n<B.,

The following program produces a random number set in the open range
4,6 (the extremes, 4 and 6, are never reached).

10 REM - RANDOM NUMBER SET IN OPEN RANGE 4,6.
20 FOR B = 1 TO 15

30 LET A = (6-4) * RND(0) +4

40 PRINT A,

50 NEXT B

60 END

RUNNH
4.2005 5.92962 5.77325 5.27288 5.67804
4.61224 4.57110 5.91644 4.35870 4,90423
4,19708 5.04437 4.,49249 5.55560 4.90118

READY

6.1.9 Sign Function, SGN(x)

The sign function returns the value 1 if x is a positive value, 0 if x
is 0, and -1 if x is negative. For example:

PRINT SGN(3.42)
1

PRINT SGN(-42)
-1

PRINT SGN(23-23)
0

The following example program illustrates the use of the SGN function.

10 REM- SGN FUNCTION EXAMPLE,

20 READ A,B,C

25 PRINT "A = "A, "B = "B, "C = "C

30 PRINT "SGN(A) ="SGN(A), “"SGN(B) ="SGN(B),
40 PRINT "SGN(C) ="SGN(C)

50 DATA -7.32, .44, 0

60 END

RUNNH

A = -7.32 B = .44 cC = 0

SGN (a) ==1 SGN(B) =1 SGN(C) = 0

READY

6.1.10 Binary Function, BIN(xS$)

The BIN function computes the integer value of a string of 1l's and
0's. Spaces are ignored (allowing input in convenient bit groupings),
and the parentheses around the argument are not required.

For example,

PRINT BIN ('100101001*‘)
297

The binary number is treated as a signed 2's complement integer and its
absolute value may not be larger than 215-1.

For example,

PRINT BIN ('1 111 111 111 111 111')

-1
6.1.11 Octal Function, OCT (x$)
The OCT function computes an integer value from a string of blanks
(ignored) and digits from 0 to 7. Spaces are ignored (allowing input
in convenient spacing), and the parentheses around the argument are
not required.

For example,

PRINT OCT ('177777")
-1

The number is treated as a signed 2's complement and its absolute value
may not be larger than 215-1.

6-9

6.2 USER DEFINED FUNCTIONS

In some programs it may be necessary to execute the same sequence of
statements or mathematical formulas in several different places.
BASIC allows definition of unique operations or expressions and the
calling of these functions in the same way as the square root or trig
functions.

These user-defined functions consist of a function name: the first two
letters of which are FN followed by a third letter. For example:

legal illegal
FNA FNAl
FN2

Each function is defined once and the definition may appear anywhere
in the program. The defining or DEF statement is formed as follows:

DEF FNa (variable list) = expression
where a is an alphabetic character which becomes part
of the function name. The expression,
however, need not contain all the arguments.

variable list may consist of one to five dummy variables.

expression (to the right of the equal sign) may contain
the variables named in the variable list.

For example:
10 DEF FNA(S) = S+2
causes a later statement:
20 LET R=FNA (4) + 1
to be evaluated as R=17. As another example:

50 DEF FNB(A,B) = A+Xt2
60 LET Y=FNB(14.4,R3)

causes the function to be evaluated using the current value of the
variable X squared +14.4. 1In this case the dummy argument B (which
becomes the actual argument R3 in the function call) is unused.

The two following programs
Program #1:

10 DEF FNS(A) = AtA
20 FOR I=1 TO 5

30 PRINT I, FNS(I)
40 NEXT I

50 END

Program #2:

10 DEF FNS(X) = XtX
20 FOR I=1 TO 5
30 PRINT I, FNS({I)
40 NEXT I
50 END
cause the same output:
RUNNH
1 1
2 4
3 27
4 256
5 3125
READY

The arguments in the DEF statement can be seen to have no
significance; they are strictly dummy variables. (A DEF statement
with no arguments is illegal.) The function itself can be defined in
the DEF statement in terms of numbers, variables, other functions, or
mathematical expressions. For example:

10 DEF FNA(X) Xt24+3*%X+4
20 DEF FNB(X) FNA(X)/2 + FNA(X)
30 DEF FNC(X) SQR(X+4) +1

The statement in which the user-defined function appears can have that
function combined with numbers, variables, other functions, or
mathematical expressions., For example:

40 LET R = FNA(X+Y+Z) *N/(Y*2+D)

A user-defined function can be a function of one to five variables, as
shown below:

25 DEF FNL(X,Y,Z) = SQR(xX%2 + ¥t2 + 212)

A later statement in a program containing the above user-defined
function might look like the following:

55 LET B = FNL(D,L,R)
where D, L, and R have some values in the program.
The number of arguments with which a user-defined function is called
must a&agree with the number of arguments with which it was defined.

For example:

10 DEF FNA (X) = X*2 + X/2
20 PRINT FNA(3,2)

causes the error message:
?ARG AT LINE 20
When calling a user~defined function, the parenthesized arguments can

be any legal expressions. The value of each expression is substituted
for the corresponding function variable. For example:

10 DEF FNZ (X)=X*2
20 LET A=2
30 PRINT FNZ(2+A)

line 30 causes 16 to be printed.

If the same function name is defined more than once, an error message
is printed.

10 DEF FNX(X)=X*2
20 DEF FNX(X)=X+X
$IDF AT LINE 20

and the program cannot be executed until corrected.

The function variable need not appear in the function expression as
shown below:

10 DEF FNA (X) = 4 +2
20 LET R = FNA(10)+1
30 PRINT R
40 END
RUNNH

7

The program in Figure 6-1 contains examples of a multi-variable DEF
statement in lines 10, 25, and 40,

! REM MODULUS ARITHMETIC PROGRAM
5 REM FIND X MOD M

18 DEF FNM(X,M)=X-M*INT(X/M)

15 REM

26 REM FIND A+B MOD M

25 DEF FNA(A,B,M)=FNM(A+B,M)

36 REM

35 REM FIND A%B MOD M

484 DEF FNB(A,B,M)=FNM(A*B,M)

41 REM

45 PRINT

5@ PRINT "ADDITION AND MULTIPLICATION TABLES MOD M*
55 PRINT “GIVE ME AN M"3\INPUT M
6@ PRINT \PRINT "ADDITION TABLES MOD 'M
65 GOSUB 808

78 FOR I=8 TO M-l

75 PRINT I3" '3

83 FOR J=8 TO M-l

85 PRINT FNA(I,J.M)3

93 NEXT J\PRINT \NEXT 1

188 PRINT \PRINT \

118 PRINT “MULTIPLICATION TABLES MOD "M
126 GOSUB 800

138 FOR I=@ TO M=~1

148 PRINT I3" 5

154 FOR J=0 TO M-1

168 PRINT FNB(Il,dJ,M);

178 NEXT JN\PRINT \NEXT I

188 STOP

8@ REM SUBROUTINE FOLLOWS:

813 PRINT \PRINT TAB(5):;8@;

824 FOR I=1 TO M-l

830 PRINT I3\NEXT I\PRINT

84@ FOR I=1 TO 3xM+4

856 PRINT "-"3;\NEXT I\PRINT

868 RETURN

878 END

Figure 6-1 Modulus Arithmetic

RUNNH

ADDITION AND MULTIPLICATION TABLES MOD M
GIVE ME AN M?7

ADDITION TABLES MOD 7

LA N IR -~ I]
[BF AT VI~ Y

MULTIPLICATION TABLES MOD 7

6 1 2 3 4 S5 6
2 g @8 0 ¢ 6 @8 @
i 8 1 2 3 4 5 6
2 a 2 4 6 1 3 5
3 a 3 6 2 5 1 4
4 @ 4 1 5 2 6 3
5 8 5 3 1 6 4 2
6 a 6 5 4 3 2 1

STOP AT LINE 186

READY

Figure 6-1 (Cont.) Modulus Arithmetic

[e))
]

14

6.3 STRING FUNCTIONS

Like the intrinsic mathematical functions (e.g., SIN, LOG), BASIC
contains various functions for use with character strings. These
functions allow the program to concatenate two strings, access part of
a string, determine the number of characters in a string, generate a
character string corresponding to a given number or vice versa, search
for a substring within a larger string, and perform other useful
operations. The various functions available are summarized in Table

6-10
Table 6-1

=g PR AN § 4L 04 VN N8

ASC(x$) Returns the seven-bit internal code for the
one-character string (x$) as a decimal
number. If the argument is a null string or
contains more than one character, the ?ARG
error message is output.

CHRS (x) Generates a one-character string having the
ASCII value of x where x is a number greater
than or equal to 0 and less than or equal to
255, Refer to Appendix B, For example:
CHRS$(65) is equivalent to "A". Arguments
greater than 127 are treated modulo 128,
only one character can be generated.

DATS Returns the current date, as set by the RT-11
Monitor, in the form 07-MAY-73.

LEN (x$) Returns the number of characters in the
string x$ (including trailing blanks). For
example:

PRINT LEN(AS)
26

POS (x$,vS$,2) Searches for and returns the position of the
first occurrence of y$ in x$ starting with
the zth position. If the string y$ is not
found in the string x$, then 0 is returned.
If x$ is a null string, 0 is returned. If y$
is a null string, the character position of
z is returned.

SEGS (x$,y,2) Returns the string of characters in positiong
y through z in x§.

If v =<0, 1 is assumed.

If z =< 0, a null string is returned. If

z > the length of (x$), the string to end of
x$ is returned.

If z < y, a null string is returned.

If y > LEN(x$), a null string is returned.

Table 6-1 (Cont.)

String Functions

Function Code Meaning

STRS (x) Returns the string which represents the
numeric value of x as it would be printed by
a PRINT statement but without a leading or
trailing blank.

TRMS (XS) Returns X$ with trailing blanks removed
(trimmed) .

VAL (xS$) Returns the number represented by the string
XS$. If x$ does not represent a number, the
?ARG error message is output.

In the above examples, x$ and y$ represent any legal string
expressions and X, y, and 2z represent any legal arithmetic
expressions.

6.3.1 User-Defined String Functions

Character string functions can be written in the same way as numeric
functions., (See Section 6.2.)

User-defined string functions return character string values, although
both' numeric and string values can be used as arguments to the
function.

10 DEF FNL(A$,X)=A$&STRS (X)
The following function combines two strings into one string:

10 DEF FNC(X$,Y$)=X$&¥S

Numbers cannot be used as arguments in a function where strings are
expected or vice versa, Line 80 is unacceptable:

10 DEF FNA(AS) = CHRS (LEN(AS)+1)
80 LET Z=FNA(4)

The message:
?NSM AT LINE 80

is printed.

CHAPTER 7

EDITING COMMANDS

BASIC provides key commands which can be used to halt program
execution, erase characters or delete lines. Table 7-1 provides an
explanation of each of the key commands.

Table 7-1

Key Commands

Key Explanation

CTRL/C Interrupts execution of a command or program and
returns control to the RT-11 monitor BASIC can be
restarted without loss of the current program by
using the monitor RE command.

A control command is typed by holding down the
CTRL key while typing the letter key.

CTRL/O Stops output on the terminal but does not halt
execution until an input statement is encountered
or the program terminates. If CTRL/O is typed
again, type out resumes., If desired, immediate
mode statements can be used to print the results
of the program after a CTRL/O suppresses output.

(Shift 0) Deletes the last character typed and echoes as a
or backarrow on the terminal. For example,
RUBOUT

RT-11 BASC*IC
RUBOUT typed here.
Spaces as well as characters may be erased. On a

VI05 or an LA30, the underscore key (-) is used
instead of RUBOUT to delete characters.

ALTMODE Deletes the entire current line (provided the
or RETURN key has not been typed). BASIC displays
CTRL/U

DELETED

at the end of the line. For example:
OS BASIC DELETED
4
ALTMODE typed here.

On some terminals, the ESCAPE key must be used,

If the RETURN key has already been typed, a program 1line can be
corrected by typing the appropriate line number and retyping the line
correctly.

The line can be deleted by typing the RETURN key immediately after the
line number; removing both the line number and line from the program.

If the line number of a line not needing correction is accidentally
typed, the RUBOUT key (also SHIFT/O, ALTMODE, ESC or CTRL/U) may be
used to delete the number(s); then the correct number can be typed.
Assume the line:

10 IF A>5 GO TO 230

is correct. A line 15 is to be inserted, but
10 LET

is typed by mistake. The correction is made as follows:
10 LET<«<<+++5 LET X=X-3

Line 10 remains unchanged, and line 15 is entered.,

Following an attempt to run a program, error messages may be output on
the terminal indicating illegal characters or formats, or other user
errors in the program. Most errors can be corrected by typing the
line number(s) and the correction(s) and then rerunning the program.
As many changes or corrections as desired may be made before each
program run,

The following editing commands are entered in immediate mode and
terminated by the RETURN Kkey. These commands are used to erase a
program in core, assign a program name and 1list, punch or run a
program,

7.1 SCRATCH COMMAND

The SCRATCH (or SCR) command clears the storage area set up by BASIC
(refer to Appendix G)., This deletes any commands, programs arrays,
strings or symbols currently stored by BASIC.

SCRATCH should be used before entering a new program from the terminal
keyboard to be sure no old program lines will be mixed into the new
program and to clear out the symbol table area.

Example:
SCR

READY
10 READ A

.
.

clears the storage area and inserts the program being input at the
keyboard.

7.2 OLD COMMAND

The OLD command (OLD) erases the contents of the storage area (SCRATCH
and CLEAR) and inputs the program via the specified device.

The form of the command is:
OLD "dev:filnam.ext"

If the file descriptor (dev:filnam.ext) is not specified as part of the
OLD command, BASIC prints:

ATy TITT T ATAMT
Vil il NAVLT™

and waits for the file description and the return key. Type the name

of the file containing the BASIC program (4o not enclose the filename
in quotation marks). If a filename is not entered, BASIC assumes the

name NONAME.
In the examples of OLD commands that follow, the computer printout is
underlined

OLD
OLD FILE NAME--TESTI1

clears user area and inputs program TEST1.BAS from Disk (DK).
OLD "DT1:PROG1"
clears user area and inputs program PROG1l.BAS from DECtape unit 1.

OLD "PR:RESEQ"
clears user area and inputs the program RESEQ from the high speed paper
tape reader.
7.3 LIST/LISTNH COMMANDS
The LIST command prints the specified lines of the user program cur-
rently in memory on the terminal. The program name, date and the
BASIC version number are output as a header line for the lines being
listed. The form of the LIST command is:

LIST statement no.-statement no.

Several variations of the LIST command can be used:

LIST statement no. Lists only the specified line.

LIST-statement no. Lists from the beginning of the pro-
gram to and including the specified
line.

LIST statement no.-
LIST statement no.-END Lists from the specified line to the
end of the program.

LIST statement no.-statement no.
Lists the specified section of the
program,

If no statement number is specified, the entire program is listed. If
the statement number specified does not exist, the first line of the
program is listed.

Typing LIST followed by the statement number causes the header line
and the line specified to be listed. The LISTNH command also prints
the lines currently in core but suppresses the header line.

Type CTRL/O (depress the CTRL key and type the O key) to suppress an
undesired listing. BASIC returns to the READY message when command
execution is complete.

The lines listed may differ slightly from those entered because:

1. Certain characters while acceptable to BASIC are stored in a
standard manner when they appear outside of quotation marks.

Character Character
typed stored

])

{ (

=< <=

=> >=

>< <>

2. Literals are stored to 24 bits of accuracy. Those with more
than 24 bits are truncated to 24 bits.

3. Although literal storage is 24 bits, output is truncated to 6
decimal digits.

4. Literals are output in standard BASIC format, regardless of
how they were input, for example,

10 LET X=3.0+1.0000001
20 PRINT X-1E7

LIST

10 LET X=3+1

20 PRINT X-1.00000E+07

5. Spaces in the input program are ignored, except within
strings and REM statements. The LIST command prints the
program with spaces inserted to separate keywords and line
numbers from numeric information. The 1listed program is
therefore easier to read. In the case of an IF...GO TO
statement, no space is typed before the GO TO keyword.

Examples:

LISTNH 100 lists line 100,

LIST=-10 lists the header line and the program lines
up to line 10.

LIST 10~-20 lists the header line and lines 10 to 20 of
the program in memory.

7.4 SAVE COMMAND
The SAVE command creates an ASCII file and saves the BASIC program
currently in memory as specified in the file descriptor. A SAVEd
program can be retrieved with the OLD command or CHAIN or OVERLAY
statement, The form of the command is:

SAVE "dev:filnam.ext"

If no file descriptor is specified, it is assumed to be DK: name.BAS
where name is the current program name.

The SAVE command can be used to list the program currently in memory
on the line printer.

If the file specified already exists, then the error message
?RPL or USE REPLACE

is typed on the console.

Examples:
SAVE "DT1:PROG1" outputs program in core to DECtape unit as
PROG1l.BAS.
SAVE outputs program to the system device with
current program name, and extension BAS.
SAVE "LP:" lists the program on the line printer.

7.5 REPLACE COMMAND

The REPLACE command is just like the SAVE command, except that it
replaces, or updates a file previously created by SAVE. The
destinction between creation and replacement of files prevents the
user from inadvertently destroying programs which he has previously
saved.

The form of the command is
REPLACE "dev: filnam.ext"

If no file descriptor is specified, it is assumed to be DK:filnam,bas
where filnam is the current program name.

7.6 RUN/RUNNH COMMANDS

After the user program is entered into memory, it can be executed by
typing the command

RUN

and the RETURN key. The RUN command causes a header 1line (program
name, date and BASIC version number) to be printed before the program
is executed.

When BASIC is first loaded or when a SCR command is executed, the user
program name is set to NONAME until a RENAME command is executed.

The program is scanned; arrays are created in core and then the
program is executed. Any appropriate error messages are printed and
when the END or STOP statement is encountered, execution halts and a
message 1is printed. Execution of a program can be halted before
executing an END or STOP statement by using the CTRL/C, RE combination
to return BASIC to a READY message.

After execution, the variables used in a program remain accessible for
use in immediate mode until a SCRATCH, CLEAR or another RUN command is
executed.

The RUNNH command also executes the program in core but suppresses the
header 1line.

Example:
RUN
PROG1 03-JUN-73 BASIC V01-05
10

RUNNH
10

7.7 CLEAR COMMAND
The CLEAR command clears the contents of the user array and string
buffers. This command is generally used when a program has been
executed and then edited. Before it is rerun, the array and string
buffers are set to zeros and nulls by the CLEAR command to provide
more memory.
These buffers will be filled again when the RUN command is executed.
Example:

10 A=10

20 PRINT A

CLEAR

READY

RUNNH
10

READY

7.8 RENAME COMMAND

The RENAME command assigns the specified name to the program currently
in memory. The form of the command is:

RENAME "filnam"

followed by the RETURN key. The filnam is optional and if not

EROF RO L= 0} Y.

specified BASIC responds with

Type the 1 to 6 character program name (don't enclose the name in
quotation marks) followed by a carriage return. If a device or
extension are specified with the file name they are ignored. The
characters in the program name may consist of A-Z or 1-9.

If more than 6 characters are entered, the excess characters are
ignored. Blanks are also ignored. If no name is specified in answer
to the FILE NAME message, the default name, NONAME, is wused. The
program itself does not change.

7.9 NEW COMMAND

The NEW command clears the storage area set up by BASIC (same as
SCRATCH) and assigns the specified name to the program currently in
memory (same as RENAME).

The form of the command is:

NEW "filnam"

If the file name is not specified as part of the NEW command, BASIC
prints:

NEW FILE NAME=--

and waits for the file name and RETURN key to be typed. Type the file
name, (do not enclose in quotation marks) and the RETURN key. If
specified, device or extension are ignored.

CHAPTER 8

USING ASSEMBLY LANGUAGE
ROUTINES WITH BASIC

RT-11 BASIC has a facility which allows experienced PDP-1l1 assembly
language programmers to interface their own assembly language routines
to BASIC. This facility permits the user to add functions to BASIC
which can operate directly on special purpose peripheral devices.
This chapter describes in some detail the internal characteristics of
BASIC during the execution of a BASIC program, and is intended to
serve as a programming quide for the creation of such user-coded
assembly language functions, This material assumes the user is
familiar with PDP-11 assembly language. For additional information on
this subject, refer to the RT-11 System Reference Manual

DEC-11-ORUGA=-A-D.,

The CALL statement is used to reference these assembly language
routines from the BASIC program.

8.1 CALL STATEMENT

The CALL statement can be inserted anywhere in the BASIC program and
has the form:

CALL string expression (argument list)

Where string expression specifies the name (up to 4 characters)
assigned to the assembly language
routine to be called. This name is
assigned via the System Function Table,
as described in Section 8.2, The
routine named must be linked with the
BASIC system with the Linker,

argument list is the optional list of arguments to the
assembly language routine, separated by
commas. There may be any number of
arguments to a routine, as long as the
CALL statement fits on one line, The
elements of the argument 1list are
expressions, variable names, and array
elements. These may include values
passed to the user routine, and
variables set by it.

In BASIC without strings, string variables are not allowed but a
literal string, enclosed in quotes, may be used in the CALL statement,

Examples:

CALL "AND" (A,B,C) Calls the routine assigned the name AND
in the System Function Table which sets
the wvariable C to the value of A ANDed
with the value of B.

CALL "OR" (A,B,C) Calls the routine named OR, which OR's
the values of A and B, storing the
result in C.

LET F$="REV"

CALL (FS$) (AS,BS) Calls the routine named REV which sets
the string B$ equal to the string A$
with the characters in reverse order.,

8.2 SYSTEM FUNCTION TABLE

For a routine to be accessible from the CALL statement, it must be
defined in the special System Function Table. The first word of the
BASICR CSECT contains the address of this table. The table consists
of a series of 3-word entries, followed by a 0 byte indicating the end
of the table. Each entry defines one user routine. The first two
words of the entry contain the ASCII characters of the routine name to
be used in the CALL statement. Those names with 1less than four
characters are followed with 0 bytes to fill the remainder of the two
words. The third word of the entry contains the address of the
function.

The following source program generates a system functon table based on
the sample CALL statements in section 8.1:

; FUNCTION TABLE DEFINITION
.GLOBL ANDFN, ORFN, REVFN
+CSECT BASICR
« WORD FUNTAB
.CSECT FUN1

FUNTAB:
.ASCII 'AND' sASCII NAME OF FUNCTION
«BYTE 0 ; (4 BYTES)
«WORD ANDFN ;ADDRESS OF FUNCTION ROUTINE
.ASCII 'OR'
«BYTE 0,0

«WORD ORFN
«ASCII 'REV'
+«BYTE 0
«WORD REVFN
; INSERT NEW ENTRIES HERE
.BYTE 0 ;END-TABLE FLAG
+END

To produce a BASIC system with the functions defined in the example,
link the following modules with LINK,

BASICR Basic object modules, starting at location 400

BASICE

BASICX

FPMP Object module (floating point math package)

FUN1 Object module, produced from the above source.

FUN2 Object module produced from the source in section

8.3.1.

GETARG Object module, produced from the source shown in
Appendix H.

BASICH BASIC High object module.
Use the LINK command string:
*BASIC=BASICR,FPMP,BASICE,BASICX/B:400/C

*FUN1,FUN2,GETARG,BASICH

8.3 WRITING ASSEMBLY LANGUAGE ROUTINES

The user's assembly language routine must interface with the BASIC
system to pass its arguments to and from the calling BASIC program.

If the user's routine does not accept a variable number of arguments,
then the general subroutines GETARG,STORE, and SSTORE, which are
listed in Appendix H, may be used to interface the user routines with
BASIC. The routine GETARG checks the syntax of the CALL statement,
and the 6 argument types. It accesses the routine arguments as
specified in the CALL statement, and stores references to them in a
table, addressed by RO.

Argument Type Stored in table at (R0)
1 - Input numeric expression two words, the expression
value
2 - Output numeric target variable three words, wused by STORE
subroutine
3 - Input string expression zero words are stored in

table, string pointer is
returned on the stack

N
I

Output string target variable three words, used by SSTORE
subroutine

To store target variables (argument types 2 and 4), the wuser routine
addresses the corresponding three-word entry in the table set up by
GETARG and calls the subroutine STORE for numeric target variables,
and SSTORE for string target variables. The examples in section 8.3.1
show how these routines are used.

Once the user routine has called GETARG to reference its arguments, it
may use any registers except R5 for calculations. The routine must
return via an “RTS PC" instruction, with the stack unchanged.

The GETARG, STORE, and SSTORE subroutines assume that all arguments to
the user routines will be in the CALL statement. In the case of a
user routine which handles optional arguments, it may use the system
subroutines described below in section 8.4 to pass the arguments to
and from BASIC. Each of the routines named is a .GLOBL symbol.

When the CALL statement is executed, the user's assembly language
routine is called by the instruction:

JSR PC, routine address

When the user routine is entered, these registers contain information
about the calling sequence:

Rl is a pointer to the translated code of the CALL
statement., (See section 8.7 for the format of the
translated code.)

If the routine has an argument list, Rl points to
the 1l-byte token (refer to section 8.7.2 for an
explanation of tokens) which represents the left
parenthesis in the calling sequence. This token
has the value .LPAR.

R1
¥
CALL "AND" (A,B,C)

The l-byte values of code bytes (tokens) .LPAR,
.COMMA and L.RPAR (right parenthesis) are global
symbols, These are not the same as the ASCII
representation of these characters.,

R4 Contains the low limit of the stack. If the stack
is wused heavily, the function must check that it
never goes below this 1limit, (If it does,
transfer control to ERRPDL, a global location in
BASIC.)

R5 Contains the address of the "user area", which
must be preserved for all calls to BASIC
subroutines.

Once the argument references are no longer required by the function RO
through R5 may be used in any way. RO, R2, and R3 need not be
preserved in any case.

The function may use the stack, but must return via an
RTS PC
instruction with the stack unchanged.

The user routine can not use the TRAP instruction, as it is reserved
for use by the BASIC system program.

A user routine which does not use the GETARG subroutine should verify
the syntax of the invoking CALL statement by checking that the left
parenthesis, comma and right parenthesis tokens are contained in the
code where expected. (.LPAR, .COMMA and ,RPAR are the global values
of these l-byte tokens, respectively.)

In general, arguments which are expression values are passed to the
user by the subroutine EVAL, as described in section 8.4. The program
can then obtain the wvalue of the expression from the floating
accumulator or FAC (FAC1l(R5) and FAC2(R5)).

8-4

Arguments are passed from the user routine back to BASIC by first
calling GETVAR to address the target variable and then calling STOVAR
for numeric results and STOSVAR for string results to store the new
value in the BASIC variable. These routines are also described in
section 8.4.

The example in section 8.3.1 contains the code for both of these types
of argument transfer.

8.3.1 Sample User Functions

The following source program shows how the routines AND, OR and REV in
the example above would interface with the BASIC system to pass their
arguments to the calling program. Each of the system subroutines used
in the example is described in section 8.4.

; FUN2 - SAMPLE USER FUNCTIONS
LTITLE FUN2
.GLOBL ANDFN, ORFN, REVFN
.GLOBL GETARG, STORE, SSTORE
RO=%0
Rl=%1

R3=%3
R4=%4
R5=%5
SP=%6
PC=%7
FAC1=40
FAC2=42

“e we w

"AND" (A,B,C)

ANDFN: MOV #TABLE , RO ;ADDRESS VARIABLE STORAGE AREA
JSR PC,GETARG ;CHECK SYNTAX AND SET ARGS
LBYTE 1,1,2,0 ; (ARG TYPES)
.EVEN
MOV #FAC1,R3 _
ADD R5,R3 ;ADDRESS FAC1(R5) IN R3
MOV Al,R2
CoM R2
MOV B1, (R3)
BIC R2, (R3)+ ;FAC1(R5) IS Al (AND) Bl
MOV A2,R2
COM R2
MoV B2, (R3)
BIC R2, (R3) ;FAC2 (R5) IS A2 (AND) B2
MoV #C,RO ;ADDRESS C
JSR PC,STORE ;STORE FAC1,FAC2 IN C
RTS PC

; "OR" (a,B,C)

ORFN: MOV #TABLE, RO ;ADDRESS ARGUMENT TABLE
JSR PC,GETARG ;CHECK SYNTAX AND GET ARGS
.BYTE 1,1,2,0 ; (ARG TYPES)
.EVEN
MOV #FAC1,R3 ;ADDRESS FAC1(R5) IN R3

: " REvll
REVFN:

REV1:

7
«=TABLE

~e

ADD
MoV
BIS
MOV
BIS
MOV
JSR

(A$,BS)
MoV
JSR
.BYTE

+.EVEN
CMP

BEQ
CLR
MOV
BISB
CMPB
DEC
Mov
ADD
CMP
BLOS
MOVB
MOVB
MOVB
DEC
BR
MoV

JSR

RTS

ARGUMENT AREA

«WORD
« WORD
+WORD
«WORD
- WORD

+WORD

.END

R5,R3
Al, (R3)
Bl,(R3)+
A2, (R3)
B2, (R3)
$#C,RO
PC,STORE
PC

#TABLE, RO
PC,GETARG
3,4,0

(SP) , #=1

REVX

R2

(sp) ,R3
(R3)+,R2
(R3)+, (R3) +
RrR2

R3,R0
R2,R0
RO,R3
REVX

(RO) ,R1
(R3) , (RO)
R1l, (R3) +
R2

REV1

#BS, RO

PC, SSTORE

PC

;FAC1(R5) IS Al (OR) Bl
;FAC2(R5) IS A2 (OR) B2

;ADDRESS C
;STORE FAC1l,FAC2 IN C

;ADDRESS ARG AREA
sCHECK SYNTAX AND GET ARGS
; (ARG TYPES)

;CHECK NULL STRING

3R2 IS STRING LENGTH

sR3 ADDRESSES CHARS
;ADDRESS NEXT PAIR OF BYTES
;TO SWITCH

;CHECK DONE--REACHED MIDDLE

;EXCHANGE ANOTHER PAIR
;OF BYTES

;ADDRESS BS$

;STORE STRING ON STACK

;VALUE OF A (2 WORDS)
;VALUE OF B (2 WORDS)

;ADDRESS OF C (3 WORDS)

;POINTER TO A$ IS ON STACK
;ADDRESS OF B$ (3 WORDS)

8.4 SYSTEM ROUTINES IN BASIC

The routines described below are all global symbols and are available

+n +thae nanvr Fuinesds

LU LT uocTi

Routine Name
(Global)

BOMB

ERRPDL

ERRSYN

ERRARG

EVAL

AT .
LUl eLarViio .

call

TRAP 0
.ASCIZ ‘'MESSAGE'
.EVEN

JMP ERRPDL

JMP ERRSYN

JMP ERRARG

JSR PC,EVAL

Description

This routine stops execution of
the BASIC program and types the
message:

?MESSAGE AT LINE XXXX

If the $LONGER option is specified,
the bl character is omitted.
BASIC then types the READY message.

Called when the stack pointer (SP)
goes below the value in R4. Causes
execution to halt and types out
?ETC AT LINE xxxxx. There are 20
extra "buffer" words on the stack.
If the user routine will definitely
not use more than this many words
on the stack, the routine need not
check for a stack overflow.

Syntax error. Stops execution and
prints out ?SYN AT LINE XXXXX.

Argument error. Stops execution
and prints out ?ARG AT LINE XXXXX.

Evaluate expression. Rl points to
the start of the expression in the
code. EVAL sets the carry bit as
follows:

carry = 0: The expression is
numeric,

The value of the expression is
contained in the floating
accumulator (FACl and FAC2).

carry = l: A string expression.

If the string is non-null, the top
of the stack is an indirect pointer
to the string. (See section 8.6
for the format of string
variables.)

If the string is null, the top of
the stack is the value 177777.

In both cases, R1 is moved to point
to the byte following the
expression in the code. If it
detects an error in the expression,
EVAL branches to the appropriate
error routine.

8-7

Routine Name
(Global)

GETVAR

MSG

STOVAR

STOSVAR

call

JSR PC,GETVAR

JSR R1,MSG
.ASCIZ 'MESSAGE'
.EVEN

JSR PC,STOVAR

JSR PC,STOSVAR

Description

Address variable or array element.
R2 must contain the address of the
symbol table entry for the variable
and R1 must point to the next byte
beyond the second byte of the sym-
bol table offset on call. GETVAR
looks up and saves the address of
the variable reference, so that a
subsequent STOVAR or STOSVAR will
store a value in the addressed vari-
able. GETVAR destroys the FAC when
addressing an array element; Rl is
left unchanged unless the variable
is subscripted, in which case Rl is
advanced past the right parenthesis.
To address the symbol table entry,
precede the GETVAR call with the
code:

MOVB (R1)+,R2 ;FIRST BYTE OF

; OFFSET
BMI ESYN ; IF NEGATIVE, ERROR
SWAB R2
BISB (R1)+,R2 ;GET 2ND HALF OF
; OFFSET
ADD (R5) ,R2 ;ADD BASE OF SYMBOL
; TABLE

Print message on console. Prints
the ASCII characters specified after
the JSR instruction up to the O0-byte.
MSG prints only those characters
specified in the calling sequence
plus padding characters specific to
the terminal in use. The calling
program must insert a carriage re-
turn where required. MSG clears

the CTRL/0O condition.

Store numeric variable. Stores the
FAC in the variable or array element
last referenced by GETVAR. If it
was a string variable, STOVAR stops
execution of the program, and pro-
duces the ?NSM error message.

Store string variable. Stores the
top of the stack in the variable or
array element last referenced by
GETVAR, and pops one word from the
stack. If it was a numeric variable,
STOSVAR stops execution of the pro-
gram and produces the ?NSM error
message.

Routine Name

(Global) Call
INT JSR PC_.INT
MAKEST JSR PC,MAKEST

Description

Integerize the FAC. Sets the value
of the FAC to the greatest integer
contained in the previous contents
of the FAC. The number is
expressed in the BASIC integer
format if possible.

Make non-null string variable. The
top of the stack contains the

length of the string to be created.

R2 contains an indirect pointer to
(the start of the ASCIT characters
to £fill the string) =3, MAKEST
returns an indirect pointer to the
string on the top of the stack.

(Called MAKESTR in sources.)

In addition, the user program may call the following FPMP-1ll routines,
which are documented in the FPMP-11l User‘s Manual (DEC-11-NFPMA-A=~D).

$SPOLSH Enter "Polish Mode"

SIR Integer-to-Real Conversion
$MLR Multiply Real

$DVR Divide Real

$ADR Add Real

SSBR Subtract Real

SIN Sine Function

cos Cosine Function

SQRT Square Root Function

ALOG Logarithm Function (Base e)
ATAN Arctangent Function

EXp Exponentiation Function

The following list contains all the .GLOBL symbols available to the

user's assembly language
future releases of BASIC,

routines, Other .,GLOBL's may not exist in

GLOBL Symbol Description
BOMB Error routine, called by TRAP 0
ERRARG Argument error
ERRPDL Stack overflow error
ERRSYN Syntax error
EVAL Evaluate expression

8-9

GLOBL Symbol Description

GETVAR Address variable

INT Integerize floating accumulator
MAKEST Create a string

MSG Print a message on the terminal
NUMSGN Convert from numeric to ASCII
STOSVAR Store string variable

STOVAR Store numeric variable

~COMMA comma token R

. DQUOT double quote token "

.EOL end-line token \
+LPAR left-parenthesis token (

« RPAR right-barenthesis token)

. SQUOT single quote token '

The offset of system variables in the "user area" starts at the address

contained in R5. The most commonly-used user offsets are described
below:
User area offset Description
SYMBOLS = 0 Address of symbol table
CODE = 16 Address of stored program
LINE = 20 Address of input line buffer
VARSAVE = 22 Saved symbol table entry address
SS1SAVE = 24 Saved first array subscript
SS2SAVE = 26 Saved second array subscript
LINENO = 30 Line number being executed
FAC1l = 40 Floating accumulator, upper word
FAC2 = 42 Floating accumulator, lower word
PROGNM = 142 Program name, 6 ASCII bytes

8.5 REPRESENTATION OF NUMBERS IN BASIC

The value stored in the floating accumulator (FACLl(R5) and FAC2(R5))
by EVAL is always two words long: FAC1(R5) contains the high-order,
and FAC2(R5), the low-order portion. If FACL(RS) is non-zero, then
the number is stored as a two-word floating-point number, in this
format:

Word Bit(s) Description
FAC1 (R5) 15 Sign bit, set if the number is
negative.
14-7 Exponent, with a bias of 200 octal.
6-0 The second through eighth

significant bits of mantissa. The
first significant bit is always an
assumed 1.

FAC2 (R5) 15-0 The 9th through 24th significant
bits of mantissa.

If FAC1(R5) is zero then FACZ(R5) contains the integer value of the
number in 2's complement form. Note that the integers from -32,768 to
+32,768 do not have a unique representation: they may be stored in the

floating-point or integer form. For example, the number represented
by

FACl: 40640 ;Floating-point "5"
FAC2: 0

has the same wvalue as

FACl: 0
FAC2: 5 ; Integer "5"

The subroutine INT, described in sections 6.1.7 and 8.4, converts a
number from the floating point representation to an integer.

8.6 REPRESENTATION OF STRINGS IN BASIC

Non-null strings are represented as follows:

Byte (s) Contents

0 The length of the string, N

1 and 2 An internal "back-pointer" used by BASIC. Do
not change this value.

3 to 0(2+N) The ASCII characters of the string

3+N The length of the string, N

A null string is not stored in BASIC; rather, the indirect pointer to
the string has the value 177777.

8.7 FORMAT OF TRANSLATED BASIC PROGRAM

When the user inputs a BASIC program, the BASIC system does not store
the program exactly as it is typed or read from the input file,
Instead, it translates the program to an intermediate form which can
be used in two different ways. The intermediate code can be
"un-translated" by the LIST or SAVE commands to produce an ASCII
program which looks very similar to the input program, or the
translated code can be very quickly interpreted by the RUN command to
provide swift execution of a program under BASIC/RT-11.

8.7.1 Symbol Table Format
As the BASIC program is input, the system builds a symbol table in
core at the indirect address 0(R5). There are four different types of
symbol table entries, as shown in Table 8-1.

Table 8-~1

Symbol Table Entries

Symbol Table Description
Definition
Line Number This entry is two words long, with this format:

Word 1: Line number as an unsigned l6é~bit
integer.

The highest number allowed is 177774
octal or 65,532 decimal.

Word 2: The address of the specified line in the
stored translated program.

Numeric Scalar This is five words long, with this format:

Word 1: Constant 177775

Word 2: High=-order Scalar Value

Word 3: Low-order Scalar Value

Word 4: Constant 0

Word 5: ASCII scalar name, the second byte is 0
if the name is only one character.

Numeric Array This entry is five words long, with this format:

Word 1: Constant 177776

Word 2: Address of array

Word 3: Maximum value of first subscript (SSIMAX
below)

Word 4: Maximum value of second subscript or -1
if the array is singly-dimensioned

(Continued on next page)
8-12

Table 8-1 (Cont.)
Symbol Table Entries

Symbol Table
Definition Description

Word 5: ASCII name

The scalar with the same name as an array is
stored internally as the first element of the
array. The address of the array is actually the
address of this element., The arrays are stored
with the first subscript varying the fastest; each

b R .
element of the array takes up two words.

The address of the (M,N) element in the array is
the array address plus the quantity:

4* (N*SS1IMAX+M+1)
String This entry is five words long, with this format:

Word 1: Constant 177777

Word 2: Array Address, or string pointer, if
Word 3=-1

Word 3: Maximum value of first subscript (SS1IMAX
below), or -1 if not a string array

Word 4: Maximum value of second subscript, or -1
if the array is singly-dimensioned or
scalar

Word 5: ASCII string name, with the st
character omitted

Strings and string arrays are stored as l-word
pointers to the strings, or the flag 177777 for a
null string. If a string is dimensioned or used
as a string array, the scalar string with the same
name is stored as the first entry in an array.
Otherwise, the pointer to the scalar string is
stored directly in the symbol table entry, as
indicated above. The address of the pointer to
the (M,N) element in the array is then the array
address plus the quantity:

2% (N*SS1MAX+M+1)

8.7.2 Translated Code

After the line is input, the TRAN subroutine is called to translate it
to the internal format. TRAN scans the input line from left to right,
and translates it as described below.

All references to line numbers or variable names are stored as the
two-byte offset into the symbol table of the entry for that variable
name. The symbol table entries for all numeric variables are
initially scalars, and are changed to dimensioned arrays when the RUN
statement is executed. This two~byte offset is, of course, not
negative; therefore, it may be distinguished from the "keyword tokens"
described below. It is not necessarily aligned to a word boundary.

8-13

All sequences of characters used as a single unit by the BASIC
language are defined as "Keywords". The following are examples of
keywords:

LET

INPUT
STEP

+

(

)

SIN(

GO TO
RANDOMIZE

TRAN scans the characters in the program line for the occurrence of
any of the keywords, disregarding blanks. When one is found, the
corresponding l-byte system "token" is stored in the saved program.
Thus, only one byte in the stored program is required to store such
keywords as GOSUB and RANDOMIZE. All of the tokens have the
high-order bit set.

At the end of every line in the code, there is a special ".EOL" token.
At the end of the program there is an ".EOF" token.

The values of the tokens may be found in a listing of BASIC. Since
they are only used internally, some of the values may be different for
different versions of BASIC,

When an integer literal is encountered in the program following a
GOSuUB, GO TO, THEN, LIST, or LISTNH keyword, or as the first element
on a line, it is stored as a symbol table reference to a line number
entry.

When TRAN finds any other literal numeric value in the input program
line, it stores it in the translated program in one of the following
forms:

1-Byte Literal An integer constant in the range 0-255 is stored
as two bytes in the translated program:

Byte l: constant 375
Byte 2: l-byte value

l-word Literal An integer constant with an absolute value less
than 32,768 which 1is not in the range 0-255 is
stored as three bytes in the translated program:

Byte 1l: Constant 376
Bytes 2-3: 2-byte value

2-word literal Any other numeric constant is stored as five bytes
in the translated program:

Byte 1: constant 374

Bytes 2-5: 4-byte floating point value of
the literal, as described in
section 8.5.

Certain Keywords translate into tokens which are followed by special
“extra bytes" when they are translated, as described below.

Keyword Translated code

''or " When the first quote character is encocuntered, TRAN outputs
the corresponding token, followed by a .TEXT token, with the
value 377. Next follow all of the ASCITI characters in the
program line up to the closing quote character. Finally,
TRAN outputs a 0 byte and a matching close-quote token to
the translated program.

FN A special byte is placed in the translated code after the FN
token. It contains a function number to represent the
function name, as follows:

Function Number

(octal) Function Name
0 FNA
2 FNB
4 FNC
6 FND
62 FNZ
NEXT Ten extra bytes are output to the translated code following

the NEXT statement; these are required at execution time for
the proper nesting of FOR-NEXT loops.

REM The REM token in the code is followed by a .TEXT token, and
then the remaining characters on the line.

Any sequence of characters which cannot be translated into a token,
and is not a symbol table reference or literal, is translated as the
.TEXT token, followed by the remaining characters on the 1line. The
BASIC language does not allow a program to have two variable names
together without a character in between, If this occurs, the
remainder of the line will be translated as described above. When any
such translated program line is executed, it will produce a syntax
error.

8.8 BACKGROUND ASSEMBLY LANGUAGE ROUTINE

BASIC/RT11 provides for the execution of a "background®™ assembly
language subroutine during its idle-time, that is, when it is waiting
for terminal input. An example of such a background routine is one
that displays data from an array on a CRT. This array could be filled
with data by CALL statements, and displayed by the background
subroutine. The background subroutine is called by a JSR PC
instruction. It must preserve all register contents, and exit with
the stack intact. This subroutine should be of limited duration, such
as one loop through the display buffer. In the case of a long
idle-time, the subroutine will be evoked many times. The routine may
use the same GLOBL symbols as one called by the CALL statement, but
there are no arguments passed to or from BASIC.

To use a background subroutine, it must be linked with BASIC, and the
address of the subroutine must be specified in the word following the
function table address (FNTBL) in the CSECT BASICR. If no background
routine is specified, the contents of this word should not be changed.
The following source code generates the information necessary to
include a background subroutine, BKG:

+CSECT BASICR

e=.+2 ;s SKIP OVER FNTBL

+« WORD BKG sADDRESS OF BACKGROUND ROUTINE

. CSECT BKGMOD

BKG: ;s START OF BACKGROUND RTN

RTS PC

+END
To create a version of BASIC with this module included, assemble it as
the object module BKGMOD., It may then be linked by the LINK command
string:

*BASIC.BKG=BASICR,FPMP,BASICE,BASICX/B:400/C
*BKGMOD, BASICH

CHAPTER 9

ERROR MESSAGES

When BASIC encounters an error, execution of the command or statement
in error halts, An error message and then the READY message are
printed.

The BASIC error messages are printed in one of the following formats:

message
or
message AT LINE XxXXxXX

where xxxxx is the line number of the statement containing the error.
Error messages in immediate mode do not include AT LINE xxxxx. Table
9-1 1lists the error messages produced by BASIC. Normally the
abbreviated message is printed unless long messages are specified at
assembly. (Refer to Appendix F.)

Table S-1

BASIC Error Messages

Abbrevia-
tion Message Explanation

?ARG ARGUMENT ERROR AT LINE xXXXXX
Arguments in a function call do not
match, in number or in type, the
arguments defined for the function,

?ATL ARRAYS TOO LARGE AT LINE XXXXX
There is not enough room in the core
available for the arrays specified in
the DIM statements,

?BDR BAD DATA READ AT LINE XXXXX
Item input from DATA statement 1list by
READ statement is bad.

?BRT BAD DATA-RETYPE FROM ERROR
Item entered to input statement is bad.

2BSO BUFFER STORAGE OVERFLOW
Not enough room available in file
buffers.

?DCE DEVICE CHANNEL ERROR AT LINE xxXXXX
The device channel number specified for
a sequential or virtual memory file is
out of range (1-7) or has been opened,
or OPEN statement tried to open a virtual
memory file on a non-file structured
device.

?DNR DEVICE NOT READY An I/0 device referenced -by an OLD, |
SAVE, or PRINT command is not on-line or
the file does not contain any legal
BASIC program lines.

(Continued on next page)

Table 9-1 (Cont.)

BASIC Error Messages

Abbrevia- .
tion Message Explanation

2DV0 DIVISION BY 0 AT LINE XXXXX
Program attempted to divide some
quantity by 0.

?ETC EXPRESSION TOO COMPLEX AT LINE XXXXX
The expression being evaluated caused
the stack to overflow usually because
the parentheses are nested too deeply.

The degree of complexity that produces
this error varies, according to the
amount of space available in the stack
at the time. Breaking the statement up
into several simpler ones eliminates the

error.

?FDE FILE DATA ERROR Tried to write an element on an integer
virtual memory file outside the range
(x)<32,768,

?FIO FILE I/0 ERROR An I/O0 error occurred. All files are

automatically closed.

2FNF FILE NOT FOUND The file requested was not found on the
specified device.

?FNO FILE NOT OPEN The sequentjal or virtual memory file
referenced is not open.,

?FTS FILE TOO SHORT The sequential file space allocated to
an output file is inadequate.

2FWN FOR WITHOUT NEXT AT LINE XXXXX
The program contains a FOR statement
without a corresponding NEXT statement
to terminate the loop.

?GND GOSUBS NESTED TOO DEEPLY AT LINE XXXXX
Program GOSUB nested to more than 20
levels.

2IDF ILLEGAL DEF AT LINE XXXXX

The define function statement contains
an error.,

?IDM ILLEGAL DIM AT LINE xXxXXXX
Syntax error in a dimension statement.

2ILN ILLEGAL NOW Execution of INPUT statement was
attempted in immediate mode.

?2ILR ILLEGAL READ Tried to read on a sequential file open
for output.

?LTL LINE TOO LONG The line being typed is longer than 120
characters; the line buffer overflows.

(Continued on next page)
9-2

Table 9-1 (Cont.)
BASIC Error Messages

Abbrevia-
tion

Message Explanation

?NBF

?NER

?NPR

?NSM

200D

?0VF

?PTB

NEXT BEFORE FOR AT LINE XXXXX
The NEXT statement corresponding to
a FOR statement precedes the FOR
statement.

NOT ENOUGH ROOM There is not enough room on the
lected device for the specified num-
ber of output blocks.

se-

NO PROGRAM The RUN command has been specified,
but no program has been typed in.

NUMBERS AND STRINGS MIXED AT LINE XXXXX
String and numeric variables may not
appear in the same expression, nor
may they be set = to each other; for
example, AS$=2.

OUT OF DATA AT LINE xXXXX
The data list was exhausted and a
READ requested additional data.

OVERFLOW AT LINE XXXXX The result of a computation is too
large for the computer to handle.

PROGRAM TOO BIG The line just entered caused the
program to exceed the user code area.

RETURN BEFORE GOSUB AT LINE XXXXX
A RETURN was encountered before exe-
cution of a GOSUB statement.

?RPL USE REPLACE File already exists. Use REPLACE

2580

?STL

?SYN

command .

SUBSCRIPT OUT OF BOUNDS AT LINE XXXXX
The subscript computed is greater
than 32,767 or is outside the bounds
defined in the DIM statement.

STRING STORAGE OVERFLOW AT LINE XXXXX
There is not enough core available to
store all the strings used in the
program.

STRING TOO LONG AT LINE XXXXX
The maximum length of a string in a
BASIC statement is 255 characters.

SYNTAX ERROR AT LINE XXXXX
The program has encountered an unrec-
ognizakle statement. Common examples
of syntax errors are misspelled com-
mands and unmatched parentheses, and
other typographical errors.

(Continued on next page)

July 1976

Table 9-1 (Cont.)

BASIC Error Messages

Abbrevia-
tion Message Explanation

2TLT LINE TOO LONG TO TRANSLATE
' Lines are translated as entered and the
line just entered exceeds the area
available for translation.

?2UFN UNDEFINED FUNCTION AT LINE xxXxXX
The function called was not defined by

the program or was not loaded with
BASIC,

2ULN UNDEFINED LINE NUMBER AT LINE XXXXX
The line number specified in an IF, GO
TO or GOSUB statement does not exist
anywhere in the program.

WLO WRITE LOCKOUT Tried to write on a sequential or
virtual file opened for input only.

?+ER 4+ ERROR AT LINE XXXXX
The program tried to compute the value
At+B, where A is less than 0 and B is not
an integer. This produces a complex
number which 1is not represented in
BASIC.

When the message ?DNR AT LINE xxxxx is printed because the device
referenced is not on-line, turn the device on and issue a GO TO xXxXXxX
statement. Execution of the program resumes at the 1line (xxxxx)
specified. This message may also indicate that a program file does
not contain any legal BASIC program lines.

When the message 200D AT LINE xxxxX 1is printed because the file
referenced by an INPUT#1 statement is not ready, prepare the file and
issue a GO TO statement to resume execution.

Function Errors

The following errors can occur when a function is called improperly.

?ARG The argument used is the wrong type. For
example, the argument was numeric and the
function expected a string expression.

?SYN The wrong number of arguments was used in a
function, or the wrong character was used to
separate them. For example, PRINT SIN(X,Y)
will produce a syntax error.

In addition, the functions give the errors listed below.

FNa(...) 2UFN The function a has not been defined (function
cannot be defined by an immediate mode
statement).

RND or RND(X) No errors

SIN(X) No errors

9-4

COS(X)
SQR(X)

ATN (X)

EXP (X)

LOG (X)

ABS (X)

INT (X)

SGN (X)

TAB (X)

LEN (A$)
ASC(AS)

CHRS$ (X)

POS (A$,BS,N)
SEGS (AS$,N1,N2)
VAL (A$)

STRS (X)

TRMS (AS)

BIN (X$)

OCT (X$)

?ARG

?4ER

?ARG

?ARG

?ARG

?ARG

2ARG

?ARG

No errors

X is negative

No errors

X is greater than 87

X is negative or 0

No errors

No errors

No errors

X is not in the range 0<x<256

No errors

A$ is not a string of length 1

X is not in the range 0<x<256

No errors

No errors

A$ is not a valid numeric expression
No errors

No errors

Character other than blank, 0 or 1 in string

Character other than blank or 0 through 7

CHAPTER 10

DEMONSTRATION PROGRAMS

PROGRAM #1:

50 REM PROGRAM TO CALCULATE E BY AN INFINITE SERIES
100 LET E=1

110 LET I=I+1
120 LET D=1

130 FOR J=1 TO I
140 LET D=D*J
150 NEXT J

160 LET E=E+1/D
170 PRINT E

180 GO TO 110
999 END

RUNNH

2

2.5
2,66666
2.70833
2.71666
2.71805
2,71825
2.71827
2.71828
2.71828
2.71828
2,71828

PROGRAM #2:

50 REM PROGRAM TO ROUND OFF DECIMAL NUMBERS
100 PRINT "WHAT NUMBER DO YOU WISH TO ROUND OFF";
110 INPUT N

120 PRINT "TO HOW MANY PLACES";:

130 INPUT Y

140 PRINT

150 LET A=INT(N*104Y+0.5)/(1041Y)

160 PRINT N "=" A "TO" Y "DECIMAL PLACES."

170 PRINT

180 GO TO 100

190 END

RUNNH

WHAT NUMBER DO YOU WISH TO ROUND OFF?56.0237
TO HOW MANY PLACES?2

56,0237 = 56,02 TO 2 DECIMAL PLACES.

WHAT NUMBER DO YOU WISH TO ROUND QFF?8.449
TO HOW MANY PLACES?1

8.449 = 8.4 TO 1 DECIMAL PLACES,

WHAT NUMBER DO YOU WISH TO ROUND OFF?3.685
TO HOW MANY PLACES?2

3.685 = 3,69 TO 2 DECIMAL PLACES.

WHAT NUMBER DO YOU WISH TO ROUND OFF?23.67449
TO HOW MANY PLACES?2

3.67499 = 3.67 TO 2 DECIMAL PLACES,

PROGRAM #3:

5 REM PROGRAM TO PLOT SINE WAVE
10 FOR X=0 TO 19 STEP .25

20 LET Q=30+30*SIN(X)

30 FOR B=1 TO Q

40 PRINT " ";

50 NEXT B

60 PRINT "X"

70 NEXT X

80 END

PROGRAM #4:

The following BASIC program uses another BASIC program file as data,
and resequences its line numbers.

9@ REM « PROGRAM YO RESEQUENCE HBASIC PROGRAMS
1828 OIM L(500),M(500),K$(2)

110 READ D

120 DATA So@e

130 READ K$(@),KS$(1),KS$(2)

14@ DATA "GO TO ","THEN M,"GOSuUB "

1S@ PRINT "RESEQUENCE"

162 PRINT "QLD FILE":

170 INPUT PS

180 PRINT U"NEw FILE"JN\NREM w» MAY WAVE SAME NAME
190 INPUT QS

200 PRINT "START INPUT LINE, START QUTPUT LINE, INTERVAL SIZE"j
210 INPUT LOB,LL,18

222 IF QS<>"" THEN 230 \LET QS=P$

230 LET PSaPS&",BASH

240 LET QO8wu8s",BAS"

260 IF Li<>2 THEN 270 \LET L1519

@72 IF Iie»0 THEN 282 \LET Iisi1@

280 OPEN P$ AS FILE #%

290 LET Csel

300 IF END »{ THEN 410

318 INPUT #1538

320 LET LesiL2+1]

330 LET T=POS(LS," ",)

340 LET SSsSEGS(LS,1,T=1)

352 LET SsavVAL(SS)

10-2

3@ IF S<..8 THEN 3@

370 LET CaCey

38@ IF C>D THEN 2¢e2p

396 LET L(C)=s

422 GO TO 3pa

410 LET S=INT(L1)

422 FQOR 1= TO C

430 LET M{I})=$

442 IF 8>65532 THEN 2010

45@ LET SsS+I1

460 NEXT I

470 RESTORE #1

48@ OPEN GS FOR OUTPUT AS FILE s2
492 OPEN "LPI1" FOR QUTPUT AS FILE #3
500 FOR Isy T0 L2

510 INRPUT #11L8

520 LET C2sPOS(LS," ¥,1)mw!

$30 LEY Ci=}

540 GOSUB 10228

SSQ FOR Js@ T0 2

$ed LET Cisy

§72 LET C1=POS(LS,KS(J),C1

580 IF Cis0 THEN 700

590 LET CiaC1eLEN(KS(J))

602 LET C2sPOS(LS," ",C1) =}

610 LET EaPQS(LS,"\",C1)

622 IF E<»d THEN 632 \LET E=2S6
630 LET QlePOSILS,"*v,C1)

640 LET Q2s=POSCLS,*"e,C1)

650 IF C2¢«>»3@ THEN 660 \LET C2sfe1
662 1F (EeQ1)*Q1>2 THEN S70

670 IF (E=«Q2)#Q2>2 THEN 572

680 GOSUB g

692 GO TO S70

T8 NEXTY J

710 PRINT #2:LS

720 PRINT #33.8

T30 NEXT-!

742 PRINT HDONEM\STOP

1022 LET SS=SEGS(LS,Ci,C2)

10103 LET SsvAL(S8S)

1220 IF S>=L 0 THEN 1232 \RETURN
1230 FOR k®Q 1O C

1840 IF L(X)=8 THEN 1270

1050 NEXT K

1060 RETURN

1272 LET L1SaSEGS(LS,1,C1i=Y)
1080 LET L35=SEGS(LS,CP+1,256)
1092 LET L2SsSTRS(M(K))

1108 LEY LSs{SEL28&L3S

1110 RETURN

2000 PRINT "T00 MANY LINESU\STOP
2218 PRINT "LINE NO, TOO BIG"\STOP
2020 END

10-3

PROGRAM #5:

140
118
128
130
140
196
200
210
220
234
249
259
2649
278
280
299
388
3190
320
348
350
368
379
380
1800
1685
1018
1920
143@
1340
1458
19608
1870
14802
1094
11006
1119
1128
1130

PRINT *'OCTAL DUMP"\REM THIS PROGRAM PRINTS AN OCTAL
PRINT "FILE NAME"3;\REM DUMP OF THE SPECIFIED FILE
INPUT F$
PRINT "START BLOCK., #BLOCKS"
INPUT Bl,B2
OPEN F$ FOR INPUT AS FILE VFIZX
OPEN *LP:"™ FOR OUTPUT AS FILE #1
PRINT #1:"0CTAL DUMP OF FILE “;F$
FOR B=Bl TO Bl+B2-1
PRINT #1
PRINT #1:"BLOCK";B
FOR L=8 TO OCT'37’
LET V=Lx*x16
GOSUB 10606
PRINT #1:SEG$(VS$,4,6)3"/";3
FOR S=6 TO 7
LET VU=VF1(B*256+L*8+5)
GOSUB 10069
NEXT S
PRINT #1
NEXT L
PRINT #1
NEXT B
STOP
LET VI1=V\REM THIS SUBROUTINE CONVERTS
REM INTEGER V
LET V$=""\REM TO ASCII STRING V$,WHICH
LET V1$='@"'\REM IS THE OCTAL VALUE OF V
IF V>=@ THEN 1068 \REM USES V1,V2,V3,V1%,V28
LET V1=V1+2t15\REM V 1S PRESERVED
LET V1s="1"
FOR I=1 TO 5
LET V3=INT(Vi/8)
LET V2%=STRS$(V1-U3%8)
LET V$=V23%4&V$
LET VI=V3
NEXT 1
LET V$=V18&V$
RETURN

9333 END

10-4

APPENDIX A
BOOTSTRAPPING THE RT-11 SYSTEM

Complete bootstrapping instructions may be found in section 2.1 of the
RT-11 SYSTEM REFERENCE MANUAL (DEC-11-ORUGA-C-D). For the user's con-
venience the instructions for systems with the BM792-YB hardware boot-
strap follow:

1. Write-enable unit @ of the system device.

2. Press the HALT switch.

3. Load 1731¢¢ in the Switch Register.

4, Press the ADDR switch.

5. Load 177486 in Switch Register (177344 for DECtape)
and press START.

The system responds with

Enter the DATE command, for example
.DA 11-SEP-73
and then
.R BASIC
If the RT-11 system is already in core, just type:

.R BASIC

APPENDIX B

ASCII CHARACTER SET

ASCII

7-BIT

OCTAL

CODE CHAR.
000 NUL
001 SOH
002 STX
003 ETX
004 EOT
005 ENQ
006 ACK
007 BEL
010 BS
011 HT
012 LF
013 vT
014 FF
015 CR
016 SO
017 SI
020 DLE
021 pCl
022 DC2
023 DC3
024 DC4
025 NAK
026 SYN
027 ETB
030 CAN
031 EM
032 SUB
033 ESC
034 FS
035 GS
036 RS
037 US
040 SP
041 !
042 "
043 $
044 $
045 %
046 &
047 '
050 (
051)
052 *
053 +
054 ,
055 -
056 .
057 /

ASCII
7-BIT
OCTAL
CODE CHAR.

060
061
062
063
064
065
066
067
070
071
072
073
074
075
076
077
100-
101
102
103
104
105
106
107
110
111
112
113
114
115
116
117
120
121
122
123
124
125
126
127
130
131
132
133
134
135
136
137
140
141
142
143
144
145
146
147
150
151
152

[=— .—-.No-<>¢2<c:l-3mwlO’UOZZt"7.‘QHEQ’HMUOW>@-0Vll Ase e WOONOWUMIBWNFHO

Ll el To B o W1 B o T o B o 2 11}

ASCII
7-BIT
OCTAL
CODE CHAR.

153
154

155
156
157
160
161
162
163
164
165
166
167
170
171
172
173
174
175
176
177 DEL

(=2

—N X S d St QT OB H

APPENDIX C

STATEMENTS, COMMANDS, FUNCTIONS

C.l1 RT-11 BASIC STATEMENTS

The following summary of BASIC statements defines the general format
for the statement and gives a brief explanation of its use.

CALL "function name" (argument list)
Used to call assembly language user
functions from a BASIC program,

CHAIN "dev:filnam.ext" LINE number
Terminates execution of wuser program,
loads and executes the specified program
starting at the line number if included.

VFn
CLOSE Closes the logical file specified. If
no file is specified, closes all files
#n which are open.
DATA data list Used in conjunction with READ to input

data into an executing program.

DEF FNfunction (argument)=expression
Defines a user function to be used in
the program.

DIM variable(n), variable (n,m),variable$(n),variable$ (n,m)
Reserves space for 1lists and tables
according to subscripts specified after
variable name.

END Placed at the physical end of the
program to terminate program execution.

FOR variable = expressionl TO expression2 STEP expression3
Sets up a loop to be executed the
specified number of times.

GOSUB line number Used to transfer control to the first
line of a subroutine.

GO TO line number Used to unconditionally transfer control
to other than the next sequential line
in the program.

IF expression rel.op. expression|THEN line number
GO TO
Used to conditionally transfer control
to the specified line of the program.

IF END #n /THEN line number
GO TO Used to test for end file on sequential

input file #n.

INPUT list

INPUT #expression: list

[LET] variable = expression

[LET] VFn(i)=expression

NEXT variable

INPUT

OPEN file [%OR OUTPUT

OUTPUT

Used to input data from the terminal
keyboard or papertape reader.

Inputs from a particular device.

Used to assign a value to the specified
variable(s).

Used to set the value of a virtual

memory file element,

Placed at the end of a FOR loop to
return control to the FOR statement.

}] [(b)] AS FILE #digit [DOUBLE BUF]

Opens a sequential file for input or out-
put as specified. File may be of the form
"dev:filnam.ext" or may be a scalar string
variable. The number of blocks can be spec-
ified by b.

OPEN file [FOR {INPUT }] [(b)] AS FILE VFdigitx (dimension) =string length

OVERLAY "file descriptor"

PRINT list

PRINT "text"

PRINT #expression: expression

PRINT TAB(x);

RANDOMIZE

READ variable list

Opens a virtual memorvy file for input or
output. X represents the type of file:
floating point (blank), integer (%), or
character strings ($). File may be of
the form "dev:fil.ext" or may be a scalar
string variable. The number of blocks
can be specified by b.

Used to overlay or merge program
currently in core with specified file
and continue execution.

Used to output data to the terminal.
The list can contain expressions or text
strings.

Used to print a message or a string of
characters.

list
Outputs to a particular output device,
as specified in an OPEN statement.

Used to space to the specified column.

Causes the random number generator to
calculate different random numbers every
time the program is run,

Used to assign the values listed in a
DATA statement to the specified
variables.

REM comment Used to insert explanatory comments into
a BASIC program,

RESTORE Used to reset data block pointer so the
same data can be used again.

RESTORE #n Rewinds the input sequential file #n to
the beginning.

RETURN Used to return program control to the
statement following the last GOSUB
statement.

STOP Used at the logical end of the program
to terminate execution.

C.2 Commands

The following key commands halt program execution, erase characters or
delete 1lines.

Key Explanation
ALTMODE Deletes the entire current line. Echoes DELETED

message (same as CTRL/U). On some terminals the
ESC key rust be used.

CTRL/C Interrupts execution of a command or program and
returns control to the RT-11 monitor. BASIC can
be restarted without loss of the current program
by using the monitor RE command.

CTRL /O Stops output to terminal and returns BASIC to
READY message when program or command execution is
completed.

CTRL/U Deletes the entire current line. Echoes DELETED

message (same as ALTMODE) .

+ (SHIFT/O) Deletes the 1last character +typed and
echoes a backarrow (same as RUBOUT). On VT05 or
LA30 use the underscore (-) key.

RUBOUT Deletes the last character typed and echoes a
backarrow (same as <).

The following commands 1list, punch, erase, execute and save the
program currently in core.

Command Explanation

CLEAR Sets the array and string buffers to nulls
and zeroes.

LIST Prints the user program currently in core on
the terminal.

LIST line number

LIST -line number

LIST line number- [END]

Command Explanation
LIST line number-line number

Types out the specified program 1line(s) on
the terminal.

LISTNH 1line number

LISTNH -line number

LISTNH line number- [END]
LISTNH line number-line number

Lists the lines associated with the specified
numbers but does not print a header line.

NEW "filnam" Does a SCRatch and sets the current program
name to the one specified.

OLD"file" Does a SCRatch and inputs the program from
the specified file.

RENAME "filnam" Changes the current program name to the one
specified.

REPLACE "dev:filnam.ext"
Replaces the specified file with the current

program,
RUN Executes the program in core.
RUNNH Executes the program in core area but does

not print a header line.

SAVE "dev:filnam.ext"
Outputs the program in core as the specified
file.

SCRatch Erases the entire storage area.

C.3 Functions

The following functions perform standard mathematical operations in
BASIC.

Name Explanation
ABS (x) Returns the absolute value of x.
ATN (x) Returns the arctangent of x as an angle in radians

in the range + or - pi/2.

BIN (x$) Computes the integer value from a string of blanks,
1's and 0's.

COS (x) Returns the cosine of x radians.

EXP (x) Returns the value of e+x where e=2,71828,

INT (%) Returns the greatest integer less than or equal to
X.

Name

5
(7]
Z

OCT (x$)

RND(x)

SGN (x)

ASC(x$)

CHRS (x)

DATS

LEN (x$)

POS (x$,v$,2)

SEGS (x$,v,2)

STRS (x)

TRMS (x§)

VAL (x$)

Explanation
Returns the natural logarithm of x.

Computes an integer value from a string of blanks
and digits from 0 to 7.

Returns a random number between 0 and 1.
Returns a value indicating the sign of x.
Returns the sine of x radians.

ST LR

Causes the terminal type head to tab to column
number Xx.

The string functions are:

Returns as a decimal number the seven-bit internal
code- for the one-character string (xS).

Generates a one-character string having the ASCII
value of x.

Returns the current date in the format 07-MAY-73.

Returns the number of characters in the string

(x8).

Searches for and returns the position of the first
occurrence of y$ in x$ starting with the zth
position.

Returns the string of characters in positions y

:
through z in x$.

Returns the string which represents the numeric
value of x.

Returns X$ without trailing blanks.

Returns the number represented by the string (x$).

APPENDIX D

4 GETARG, STORE, SSTORE : SUBROUTINES FOR
} LINKAGE OF ASSEMBLER SUBROUTINES TO BASIC
'

JTITLE GETARG 29=AUG=73

LGLOBL GETARG, STORE

LGLOBL EVAL, GETVAR, ERRARG, ERRSYN
.GLOBL LLPAR, ,CUMMA, ,RPAR, ,EOL
LELOBL STOVAR, .SQUOT, .DQALOT
JIFNDF SNOSTR

.GLOBL SSTORE, STOSVAR

LENDC 7SNOSTR

LCSECT GET

1
JENQSTR = i sDELETE *3* TO ASSEMBLE FOR
} jBASIC WITH NO STRINGS
RZ=X0
Ri=z%1
Re2=%2
RXa%3
R4s%4
RSz%S
SP=%6
PC=%7
NVAL=4
+ IFOF SNOSTR
NVAL=3
<ENDC JENOSTR
LTEXT=377
FACi=do
FAC2=4d2
VARSAVaR2?2

'--.--------—----—-----.----O-----------------.---------.---

7 SUBROUTINE
H

MO WE WS WS WS WD WE NS WS WS WM WS WS UG RD WS WS W W WD VS WS Wy wm W W

GETARG: MQV
Move
BLE
CMPB
BNE
BR

GETY: CMPB
BNE

GET2: CMP
BHI
ASL
MOV
MoV
MOV

CALLED BY MOV #TABLE,R?
JSR PC,GETARG
oBYTE N1 ,N2,,,./?
+EVEN
WHERE TABLE IS THE ADDRESS OF A
TABLE TO HOLD THE ARG REFERENCES,
Ni,N2,ETC, INDICATE THE ARG TYPES:
1 INPUT NUMERIC EXPRESSION, 2
(THE EXPRESSION VALUE) ARE
STORED IN TABLE,
2 OUTPUT NUMERIC VARIABLE, 3 WORDS
ARE STORED IN TABLE,
STRING VERSION QNLY:
3 INPUT STRING EXPRESSION, NO WORDS
ARE STORED IN TABLE, THE STRING
POINTER IS ON THE STACK,
4 QUTPUT STRING VARIABLE, 3 WORDS
ARE STORED IN TABLE,
NO STRING VERSION:
3 INPUT STRING LITERAL, 2 WORDS
ARE STORED IN TABLE, WORD { CON=
TAINS THE START OF THE ASCII STRING,
WORD 2 CONTAINS THE LENGTH OF THE
STRING IN BYTES,

CHECKS THE SYNTAX OF THE CALLING
STATEMENT AND FINDS THE REGUESTED
ARGUMENT REFERENCES, STORING THEM
CONSECUTIVELY IN TABLE,

(SP)+,R3
(R3)+,R2

GETX
(R1)+,#,LPAR
GETERS

GETe
(R1)+,#,C0MMA
GETERS

R2, 8NV AL
GETERA

R2

RD,R0S

R3,R3S
BRTAB=2(R2),PC

FADDR OF CALL IN R3
PGET {ST BYTE IN R2

PNQ ARGS, EXIT

ICHECK STARTING *(*
INO, SYNTAX ERROR
JENTER L OQP

JCHECK *,* BETWEEN ARGS
JNO, SYNTAX ERROR
1CHECK VALID BYTE

1SAVE REGS

JBRANCH TO ROUTINE

j NUMERIC EXPRESSION

NUMEXP: JSR PC,EVAL
8Cs GETERA
MoV R@S;,Ra
MOV FACi1{RS),{R3)+
MOy FAC2(RS), (R@)+
BR NXTARG

{ STRING EXPRESSION

STREXPS
<IFNDF SNOSTR
JSR PC,EVAL
BCC GETERA
Mov R@S,RO
BR NXTARG
+ENDC FBNQSTR
«IFDF gNDSTR
Mave (R1)+,=(SP)
CMPB (SP),#.5Q0U0T
BER STRI
CMPB (sP),#,0QU0T
BNE GETERS

STR1: CMPB (R1)+,#,TEXT
BNE GETERS
MOV RBS,RQ2
MoV Ri,(RB)+
CLR R2

STR2: T8TE (R1)+
BEG STR3
INC Re
BR STR2

STR3s MOV R2, (RD) +
CMPB (8P)+, (R1)+
BMNE GETERS
BR NXTARG
<ENDC FENOSTR

) NUMERIC TARGET VARIABLE

NUMVAR: CLR = (SF)
«IFNDF SNOSTR
BR - VARY
1 STRING TARGET VARIABLE
STRVAR: MOV R2,=(SP)
«ENLC JSNOSTR
VAR MOVB (R1)+,R2
BMI GETERS
SWAR Re
BISH (R1)+,R2
ADD (RS),R2
JSR PC,GETVAR
MOV R@PS,RQ
MOV R5,R2
ADD #VARSAV,R2
MQV (R2) ,R3
MOV (R2) 4, (R@)+
MOV (R2)+, (RR)+
MOy (R2), (RR)+
TST (SP)+
BNE VAR2
CMpP (R3) =14
BEQ GETERA
BR NXTARG
VAR2! CMP (R3), %=1
BNE GETERA

JEVALUATE]
}STRING IS BAD :
JRESTORE TARLE POINTER

§SAVE VALUE

FEVALUATE]
sNUMERIC IS BAD

Iz s MmN WA M

JRESTORE TABLE POIN

$L0O0K FOR STRING LITERAL
$CHECK QUOTE CHAR,

JCHECK TEXT TOKEN NEXT
JRESTORE TABLE POINTER

$SAVE STRING ADDRESS IN TABLE
INOW FIND LENGTH

{END OF STRING IS BYTE @0
$COUNT

PSAVE LENGTH IN TABLE
JCHECK MATCHING CLOSE QUOTE

JREMEMBER IT?$S NUMERIC

JREMEMBER IT*S STRING
IGET SYMTAB REF IN R2

$ADDRESS VARIABLE
JRESTORE TABLE POINTER
JADDRESS VARSAV

$SAVE A COPY

JMOVE 3 WORDS INTO TABLE
§STRING OR NUM

JNUMERIC, CHECK TYPE AGREES

} GO TO NEXT ARGUMENT

NXTARG:

GETX:

RDS:
R3S:
GETERAS
GETERSS
BRTABS

MoV
MOVE
BGT
CMPH
BNE
CMPH
BNE
INC
ASR
ASL
JMP
«WORD
<WOARD
JMP
JMP

. WORD
«WORD
2WORD
o« IFNDF
+WORD
»ENDC

R3S,R3
(R3)+,Re
GET!
(R1)+,2 , RPAR
GETERS
(R1)+,# EOL
GETERS
R3

R®3

R3

(R3)

%]

@

ERRARG
ERRSYN
NUMEXP
NUMV AR
STREXP
SNOSTR
STRVAR
ISNQSTR

JGET NEXT BYTE IN R2
FLOOP TILL BYTE IS @
JCHECK CLOSING *)°

FAND END=LINE TOKEN

IMAKE SURE R3 IS EVEN

t SUBROUTINE °STORE® CALLED BY JSR PC,STORE

] R2 POINTS TO 3=WORD ARG REFERENCE
i SET UP BY GETVAR
? SAVES THE VALUE OF THE FAC
H IN THE SPECIFIED NUMERIC VARIABLE
STORE: MOV RS,R2 JADDRESS VARSAV
ADD #VARSAV,R2
MOV (RB)*+, (R2)+ 1MOVE FROM TABLE TO USER AREA
MDYV (R2)+, (R2)+
MOV (RQ), (R2)
JSR PC,STOYAR FSTCRE 1T
RTS PC

» IFNDF §NOSTR
} SUBROUTINE f§STORE’ CALLED BY JSR PC,8STORE
} R@ POINTS TO 3=WORD ARG REFERENCE
! SET UP BY GETVAR
! STRING POINTER IS AT THE TOPF OF STK
H SAVES THE STRING AT TOP OF STK
! IN THE SPECIFIED STRING VARIABLE
8

STORE: MOV RS,R2
ADD #VARSAV,R2 JADDRESS VARSAV
MOY (R@)+, (R2)+ JMOVE FROM TBL TO USER AREA
MOV (RD)+, (R2) +
MoV (R3), (R2)
MOV (8P),R3 JSWITCH RETURN & STRING PTR
MOV 2(SP), (SP)
MOV R3,2(SP)
JSR PC,STOSVAR JSTORE STRING
RTS PC $RETURN
+ENDC 7SNOSTR
.END

APPENDIX E
BASIC ERROR MESSAGES

Abbrevia-
tion Message Explanation

?ARG ARGUMENT ERROR AT LINE XxXXXX
Arguments in a function call do
match, in number or in type,
arguments defined for the function.

?ATL ARRAYS TOO LARGE AT LINE XXXXX
There is not enough room in the

not
the

core

available for the arrays specified in

the DIM statements.

2BDR BAD DATA READ AT LINE XXXXX

Item input from DATA statement 1list by

READ statement is bad.

2?BRT BAD DATA-RETYPE FROM ERROR

Item entered to input statement is bad,

?BSO BUFFER STORAGE OVERFLOW at line xxxxx
Not enough room available in
buffers.

?DCE DEVICE CHANNEL ERROR AT LINE XXXXX
The device channel number specified

file

for

a sequential or virtual memory file is

out of range (1-7), or tried to open

a

virtual memory file on a non-file

structured device,

?DNR DEVICE NOT READY An OLD command read a file which did not

have any BASIC statements.

?2DV0 DIVISION BY 0 AT LINE xXXXXX
Program attempted to divide
quantity by 0.

?ETC EXPRESSION TOO COMPLEX AT LINE XXXXX

some

The expression being evaluated caused
the stack to overflow usually because
the parentheses are nested too deeply.

The degree of complexity that produces

this error varies according to
amount of space available in the

the

stack

at the time. Breaking the statement up
into several simpler ones eliminates the

error.

?FDE FILE DATA ERROR AT LINE XXXXX

Tried to write an element on an integer
virtual memory file outside the range

(x)<32,768.
2FIO0 FILE I/O ERROR AT LINE XXXXX

An I/O error occurred. All files are

automatically closed.

Abbrevia-

tion

?FNF

?FTS

2GND

?IDF

?2IDM

?LTL

?NBF

?NER

?NPR

?NSM

Message Explanation

FILE NOT FOUND AT LINE xXxxXX
The file requested was not found on the
specified device.

FILE NOT OPEN AT LINE xxxXXX
The sequential or virtual memory file
referenced is not open.

FILE TOO SHORT AT LINE XXXXX
The sequential file space allocated to
an output file is inadequate.

FOR WITHOUT NEXT AT LINE XXXXX
The program contains a FOR statement
without a corresponding NEXT statement
to terminate the loop.

GOSUBS NESTED TOO DEEPLY AT LINE XXXXX
Program GOSUBS nested to more than 20
levels.

ILLEGAL DEF AT LINE xXXXX
The DEF statement contains an error.

ILLEGAL DIM AT LINE XXXXX
Syntax error in a dimension statement.

ILLEGAL NOW AN ATTEMPT WAS MADE TO EXECUTE AN INPUT
statement in immediate mode.

ILLEGAL READ AT LINE XXXXX
Tried to open a write-only device for
input or tried to read on a sequential
file open for output.

LINE TOO LONG The line being typed is longer than 120
characters; the line buffer overflows.

NEXT BEFORE FOR AT LINE XXXXX
The NEXT statement corresponding to a
FOR statement precedes the FOR
statement,

NOT ENOUGH ROOM AT LINE XXXXX
There is not enough room on the selected
device for the specified number of
output blocks.

NO PROGRAM The RUN command has been specified, but
no program has been typed in.

NUMBERS AND STRINGS MIXED AT LINE XXXXX
String and numeric variables may not
appear 1in the same expression, nor may
they be set equal to each other as in
AS$=2,

Abbrevia-
tion

“)

CCD

?20VF

?PTR

?RPL

?S0B

?5S0

?8TL

?S5YN

?TLT

2UFN

?ULN

?WLO

Message Explanation
QUT OF DATA AT LINE XXXXX

The data list was exhausted and a READ
requested additional data.

OVERFLOW AT LINE xxxxX The result of a computation is too
large for the computer to handle.

PROGRAM TOO BIG The line just entered caused the pro-
c

coad tha itear ~oda arvas
eea uiie user -Ode arca.

H

RETURN BEFORE GOSUB AT LINE XXXXX

A RETURN was encountered before execu-
tion of a GOSUB statement.

USE REPLACE File already exists. Use REPLACE com-
mand.

SUBSCRIPT OUT OF BOUNDS AT LINE XXXXX
The subscript computed is greater than
32,767 or is outside the bounds defined
in the DIM statement.

STRING STORAGE OVERFLOW AT LINE XXXXX
There is not encugh core available to
store all the strings used in the pro-
gram.

STRING TOO LONG AT LINE XXXXX
The maximum length of a string in a
BASIC statement is 255 characters.

SYNTAX ERROR AT LINE XXXXX
The program has encountered an unrec-
ognizable statement. Common examples
of syntax errors are misspelled com-
mands and unmatched parentheses, and
other typographical errors.

LINE TOO LONG TO TRANSLATE
Lines are translated as entered and the
line just entered exceeds the area
available for translation.

UNDEFINED FUNCTION AT LINE XXXXX
The function called was not defined by
the program or was not loaded with
BASIC.

UNDEFINED LINE NUMBER AT LINE XXXXX
The line number specified in an IF, GO
TO or GOSUB statement does not exist
anywhere in the program.

WRITE LOCKOUT AT LINE XXXXX v
Tried to open a read-only device for
output, or tried to write on a sequen-
tial or virtual file opened for input
only.

Abbrevia-

tion Message Explanation
24ER 4+ERROR AT LINE xXXXX

Function Errors

The program tried to compute the value
AtB, where A is less than 0 and B is not
an integer. This produces a complex
number which is not represented in
BASIC.

The following errors can occur when a function is called improperly.

?ARG

The argument used is the wrong type. For
example, the argument was numeric and the
function expected a string expression.

The wrong number of arguments was used in a
function, or the wrong character was used to
separate them. For example, PRINT SIN(X,Y)
produces a syntax error.

In addition, the functions give the errors listed below.

FNa(...)

RND or RND(X)
SIN(X)
COs (X)
SQR(X)
ATN (X)
EXP (X)
LOG (X)
ABS (X)
INT (X)
SGN (X)

TAB(X)

LEN (AS)
ASC(AS)

CHRS (X)

?UFN

?ARG

?4ER

?ARG

?ARG

?ARG

The function a has not been defined (function
cannot be defined by an immediate mode
statement) .

No errors

No errors

No errors

X is negative

No errors

X is greater than 87

X is negative or 0

No errors

No errors

No errors

X is not in the range 0<x<256

No errors
A$ is not a string of length 1

X is not in the range 05£x<256

DATS No errors

POS(AS$,BS,N) No errors

SEGS$(AS$,N1,N2) No errors

TRMS (AS) No errors

VAL (AS) ?ARG A$ is not a valid numeric expression

STRS (X) No errors

BIN (x$) ?ARG Character other than blank, 0 or 1 in string

")
]
w
9]

. .
Character other than blank or ¢ throcugh 7 i

string

APPENDIX F

ASSEMBLING AND LINKING BASIC

F.l ASSEMBLING BASIC/RT11

The source program of BASIC/RT11l consists of three source files:
A 16K system is required to assemble BASIC.

BASICL.MAC
BASICH.MAC
FPMP .MAC

It is necessary to create the files BASICR, BASICE, and BASICX which
consist of only one line of code each. They specify the conditionals
necessary to assemble BASICL into the three object modules BASICR.OBJ,
BASICE.OBJ and BASICX,.OBJ.

They are created using the EDIT program, as follows:

C) Represents the Altmode key
.R EDIT :
*EWBASICR.MAC () B

* IBASICR=1

OR:24OJO)

.R EDIT

*EWBASICE.MAC (®) ®
*IBASICE=1
® = ®

.R EDIT
*EWBASICX.MAC () B
*IBASICX=1

® Ex

If any other options are desired, include the conditionals for them
in these files. For example:

$NOSTR=1 ;NO STRINGS

SLONGER=1 ; LONG ERROR MESSAGES
SNOVF=1 ;NO VIRTUAL MEMORY FILES
$NOPOW=1 ;NO POWER-FAIL OPTION
$STKSZ=n ;PROGRAM STACK SIZE

;IN BYTES (DEFAULT IS
;200 (OCTAL) BYTES

If BASIC is to run on an 8K system, the $NOSTR conditional must be
specified.

For example, to create a BASIC with no strings, no virtual memory files,
and a stack size of 300 (octal) the BASICR, BASICE, and BASICX files
should be created using the EDIT program, as follows

.R EDIT
*EWBASICR.MAC ©®
*IBASICR=1
SNOSTR=1
$NOVF=1
$STKSZ=300

@Ex®®

.R EDIT
*EWBASICE.MAC @ @
*IBASICE=1

SNOSTR=1

SNOVF=1

SEfcc

.R EDIT
*EWBASICX.MAC @ @
*IBASICX=1
$NOSTR=1
$SNOVF=1
$STKSZ=300

EX

(:) represents the Altmode key.
To assemble Basic, type the following as input to the MACRO Assembler:
*BASICR=BASICR,BASICL
*BASICE=BASICE,BASICL
*BASICX=BASICX,BASICL
*BASICH=BASICH
*FPMP=FPMP

This produces the five object modules

BASICR BASIC Root section

BASICE BASIC Edit overlay

BASICX BASIC EXecution overlay

FPMP Floating Point Math Package

BASICH BASIC High section, with once-~only

code and optional functions

F.1l.1 Floating Point Math Package

Assembly of the FPMP source file produces a "standard" FPMP for BASIC,
which runs on any PDP-11, but will not make use of special arithmetic
hardware. All of the routines needed for the full complement of BASIC
arithmetic functions are included. A non-standard FPMP may be speci-
fied, as outlined in the table below:

FPMP Assembly Parameters

Parameter Default Value Description
MIN undefined Define to eliminate code for BASIC

functions SIN, COS, SQR, and ATN.
When linked, the functions are
listed as "undefined references".
However, when executed by a BASIC
program, they produce a ?UFN
(UNDEFINED FUNCTION) error.

Parameter Default Value Description -

FPU undefined Define to assemble a version for
the PDP-11/45 FPU hardware.

EAE undefined Defined to assemble for the EAE
hardware.
MULDIV undefined Define to assemble for the

PDP-11/40 extended instruction
set (EIS) or the 11/45 processor.

If MIN is defined, then the following parameters may be specified
to include the SIN, COS, ATN, and SQR functions, selectively

CND$37 1 Define (only if MIN is specified)
to include the code for the SIN

JR Fanan e~
and C0S functions.

CND$39 1 Define (only if MIN is specified)
to include the code for the ATN
function.

CND$41 1 Define (only if MIN is specified)
to include the code for the SQOR
function.

To assemble the Floating Point Match Package with conditionals it is
necessary to use the EDIT program to either insert the conditionals

in the beginning of the FPMP MAC file or create a new file, FPMPC.MAC
which will be assembled with FPMP.MAC. For example, to create the

FPMP with the ATN function excluded, with the SIN, COS, and SQR function
included, and to run with the EAE hardware, the file FPMPC.MAC is
created by the EDIT program, as follows:

.R EDIT
*EWFPMPC.MAC ®
*IMIN=1

EAE=1

CND$37=1
CND$41=1

®@Ex@®®
The MACRO assembly instructions would then be:

*BASICR=BASICR,BASICL
*BASICE=BASICE,BASICL
*BASICX=BASICX,BASICL
*FPMP=FPMPC , FPMP

F.2 LINKING BASIC/RT11

The five object modules (BASICR, BASICE, BASICX, FPMP, BASICH) may be
linked with or without an overlay structure. The overlay option has
the advgntage that sections of BASIC which are not required at the
same time occupy the same core space alternately when they are used;
tpe disadvantage is that BASIC will run somewhat slower, and there
will be I/O time spent when switching overlay segments in and out of

core. When.BASIC is linked to run in an 8K system, it must use the
overlay option,

To link BASIC without overlays, type the following command

the Linker (LINK):

:BASIC}BASIC=BASICR,FPMP,BASICE,BASICX,BASICH/B:4¢¢

To link BASIC with overlays, use this LINK command sequence:

2BASIC,BASIC=BASICR,FPMP/T/B:40Q/C
TRANSFER ADDRESS =

GO

*BASICE/0:1/C

*BASICX/0:1/C

*BASICH/O:2

F.2.1 Linking BASIC/RT1l1 with User Functions

string to

The System Function Table address used by the CALL statement to link
the user's assembly language routines must be set in the first word of

the BASICR control section.

The source code for the System Function Table and the actual function
routines must be broken into two separate source files.
file FUN1 consists of the System Function Table definition, with this

general outline:

Function entry points
.GLOBL FN1l, FN2

«CSECT BASICR
«WORD FUNTAB

+.CSECT FUN1
FUNTAB: (function table entries for FN1,FN2,...)

The source and file FUN2 consists of the code
routines, with this general outline:

.GLOBL FN1,FN2,...
«CSECT FUN2

(The user function routines)

for the

The source

function

To link BASIC with the user functions in a non-overlay system, type
this command string to the Linker:

*FUN1,FUN2[,GETARG] ,BASICH

GETARG is the general argument interface module listed in Appendix H.
In an overlay system, there are two possible ways in which to 1link
BASIC with the user functions.

If the user function routines contain no data which must be preserved
from one function call to the next, that is, if the code for the
routines may be refreshed at the beginning of each function call, then
the routines may be incorporated into the execution overlay by using
this LINK command string:

*BASIC,BASIC=BASICR,FPMP,FUN1/T/B:488/C
TRANSFER ADDRESS =

GO

*BASICE/0:1/C
*BASICX,FUN2[,GETARG] /0:1/C

*BASICH/0:2

In this case, the function routines (in the module FUN2) occupy space
in the first overlay segment which is normally unused, since the Edit
overlay segment (BASICE) is about 250 words longer in the 8K no-string
system than the Execution overlay segment (BASICX). These first 250
words of storage are "free" in this case.

In the case where FUN2 may not be read in anew whenever it is used,
type this command string to the Linker:

*BASIC=BASICR,FPMP,FUN1,FUN2/T/B:488/C
TRANSFER ADDRESS =

GO

*BASICE/0:1/C

*BASICX[,GETARG] /0:1/C

*BASICH/O:2

There are three additional object modules (FPMP.FPU, FPMP.EAE, FPMP.EIS)
which allow BASIC/RT11l to be linked for special arithmetic hardware.

Processor Replace FPMP.OBJ With
EAE hardware FPMP .EAE

PDP-11/40 extended FPMP.EIS

processor or PDP-11/45

processor

PDP-11/45 FPU FPMP.FPU

hardware

APPENDIX G

BASIC CORE MAP

BASIC stores a user program in core in the following format:

Arrays

Strings

Symbol Table

User Code

The symbol table and user code area are created when the program is
entered. When the RUN command is given the user program is scanned
and arrays are set up. The string buffer is created during program
execution.

The SCRatch command (refer to paragraph 7.1) clears all the user code,
symbol table, strings and arrays from core. The CLEAR command clears
the arrays and strings but does not affect the user code or symbol
table.

The total amount of core storage required to store a BASIC program
depends upon the following parameters:

Parameter Definition Examples
L Number of lines in the BASIC program
K Number of keywords per line
R Number of symbol references per line.

There are 3 symbol references in the line:
LET A=B*C+1l

S Total number of symbols used in the program.
Il Total number of integer literals in the
range 0 x 255
FOR I=1 TO N

I2 Total number of integer literals
in the range =~32,768<x<0 or 256<x<32,767

LET X=50000
F Number of non-integer literals and

integer literals not in the above ranges
LET Y=X*2.5

Parameter Definition Examples

T Total number of literal strings in the
program
LET A$="ABC"
C Total number of characters inside
quotation marks (literal strings)
(C=3 IN THE
ABOVE LINE)

The number of bytes required to store the program is then:
L*(K + 2*R + 7) + 10*S + 2*I1 + 3*I2 + 5*F + 2%T + C+ 1
When the BASIC program is running, the following additional array and
string storage is required. For each numeric array, the number of
bytes allocated is
4* (SS1MAX+2)
for a singly-dimensioned array.
or
4*[(SS1MAX+1) * (SS2MAX+1) +1]
for a doubly-dimensioned array.
Where SS1IMAX and SS2MAX are the maximum values of the first and second
array subscripts, respectively. For each string array, the number of
bytes allocated is
2* (SS1MAX+2)
for a singly-dimensioned array or
2* [(SS1IMAX+1) * (SS2MAX+1) +1]

for a doubly-dimensioned array.

Where SS1MAX and SS2MAX are the maximum values of the first and second
array subscripts, respectively.

For each non-null string scalar or array element of length N currently
defined in the BASIC program, N+4 bytes of string storage are
required.

Arithmetic,
Functions, 6-1
Operations, 2-4

ASC Function, 6-15

Assembly,
Instructions, F-1

Language routines, 8-1, 8-3

Assignment Statement, 5-2
ATN Function,; 6-=2
Background Subroutine, 8-15
BIN Function, 6-9

BOMB system routine, 8-7
Buffers,

CALL Statement, 8-1
CHAIN Statement, 5-20
CHR Function, 6-15
CLEAR command, 7-6
CLOSE Statement, 5-=25
Comma usage, 5-6
Command summary, C=3
Commands, Key, 7-1
Concatenation, 3-2
Conditional Transfer, 5-14
Core map, G-1

COS Function, 6-2
CTRL/C Command, 1-2

DAT Function, 6-15

DATA Statement, 5-10

Debugging, Program, 4-1

Demonstration programs,
10=1

bialogue; 1l-1

Dimension Statement, 5-=3

END Statement, 5-20

ERRARG system routine, 8-7
Error message summary, E-1
Error messages, 9-1

ERRPDL system routine, 8-7
ERRSYN system routine, 8-7
EVAL system routine, 8-7
EXP Function, 6-4
Exponential format, 2-1
Expressions, 2-4

File control, 5-21
Files,

Sequential, 5-21

Virtual memory, 5-21
Floating point format, 2-1
FOR loops, nested, 5-17
FOR Statement, 5-15
FPMP routines, 8-9
Function arguments, 6-1
Function selection, 1-1
Function summary, C-4

Functions
ABS, 6-6
ASC, 6-15
ATN, 6-2
BIN, 6-9
CHR, 6-15
Ccos, 6-2
EXP, 6-4
INT, 6-6
LEN, -6-15
oG, 6-4
ocT, 6-9
POS, 6-15
RND' 6-7
SEG, 6-15
SGN, 6-1
SIN, 6-2
SQR, 6-3
STR, 6-16
TAB, 6-1
TRM, 6-16
VAL, 6-16

Functions,

Arithmetic, 6-1

Optional, 1-2

String, 6-15

User defined, 6-10

User defined string, 6-16
Functions system routines,

Sample user, 8-3

GETVAR system routine, 8-8
GO TO Statement, 5-13
GOSUB nesting, 5-19

GOSUB Statement, 5-18

I1/0 Buffers, 5-22

IF END Statement, 5-14

IF GO TO Statement, 5-14

IF THEN Statement, 5-14

Immediate mode restrictions,
4=2

Immediate statement
execution, 4-=1

Input device selection, 5-9

INPUT Statement, 5-8

Input/Output Statements,
5-4

INT Function, 6-6

INT system routine, 8-9

Integer Numbers, 2-1

Key Commands, 7-1

Leading and Trailing Zeroes,
2-1

LEN Function, 6-15

LET Statement, 5-2

Linking instructions, F-3

Index-1

LIST command, 7-3
LISTNH command, 7-3
Load procedure, A-1
Loading BASIC, 1-1
LOG Function, 6-4
Loop, Program, 5-15

MAKEST system routine, 8-9
Monitor,
Return to the, 1-2
MSG system routine, 8-8
Multiple statements,
immediate mode, 4-2

Nested FOR loops, 5-17
NEW command, 7-7
NEXT Statement, 5-15
Numbers, 8-11

Integer, 2-1
NUMSGN system routine, 8-8

OCT Function, 6-9

OLD command, 7-3

OPEN Statement, 5-=22

Optional Functions, 1-2

Output device selection,
5-7

OVERLAY Statement, 5-26

POS Function, 6-15
Power off, 1-3
PRINT Statement, 5-4
Printing Strings, 5-5
Printing Variables, 5-4
Program,
Control, 5-13
Debugging, 4-1
Loop, 5-15
Termination, 5-20

RANDOMIZE Statement, 5-12
READ Statement, 5-10
Real Numbers, 2-1
Relational operations,
strings, 3-2
Relational operators, 2-6
REMARK Statement, 5-1
RENAME command, 7-7
REPLACE command, 7-5
RESTORE, 5-11
Restrictions,

Immediate mode, 4-2
RETURN Statement, 5-18
Return to the Monitor, 1-2
RND Function, 6-7
RUN command, 7-6
RUNNH command, 7-6

Sample user functions
system routines, 8-3
SAVE command, 7-4
SCRATCH commands, 7-2
SEG Function, 6-15
Semicolon (;) usage, 5-6
Sequential Files, 5-21
SGN Function, 6-1
SIN Function, 6~2
SQR Function, 6-3
Statement, 5-11

Assignment, 5-2

CALL, 8-1

CHAIN, 5-20

CLOSE, 5-25

DATA, 5-10

Dimension, 5-3

END, 5-20

FOR, 5-15

GO TO, 5-13

GOSuUB, 5-~18

IF END, 5-14

IF GO TO, 5-14

IF THEN, 5-14

Immediate execution, 4-1

INPUT, 5-8

LET, 5-=2

NEXT, 5-15

OPEN, 5-22

OVERLAY, 5-26

PRINT, 5-4

RANDOMIZE, 5-12

READ, 5-10

REMARK, 5-1

RETURN, 5-18

STOP, 5-20

Summary, C-1
Statements,

Input/Output, 5-4
STEP values, 5-16
STOP Statement, 5-20
STOSVAR system routine, 8-8
STOVAR system routine, 8-8
STR Function, 6-16
String functions, 6-15

User defined, 6-16
String operations, 3-2
String Variables,

Subscripted, 3-1
Strings, 3-1, 8~-11

Printing, 5=5
Subroutine,

Background, 8-15
Subroutine execution, 5-18
Subscripted String

Variables, 3-1
Subscripted Variables, 2-2
Symbol table format, 8-12
System function table, 8-2
System routines,

Sample user functions, 8-3

Index-2

BASIC/RT11 Language
Reference Manual
DEC-11-LBACA-E~-D

READER'S COMMENTS

NOTE: This form is for document comments only. Problems
with software should be reported on a Software
Performance Report (SPR) form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please cut along this line.

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience
Student programmer

000000

Non-programmer interested in computer concepts and capabilities

Name Date
Organization.
Street
City State Zip Code
or
Country

If you require a written reply, please check here. Ej

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Fold Here

Do Not Tear - Fold Here and Staple

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

Postage will be paid by:

Software Communications
P. O. Box P
Maynard, Massachusetts

01754

digital equipment corporation

	001
	002
	003
	004
	005
	006
	007
	01-01
	01-02
	01-03
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	03-01
	03-02
	03-03
	04-01
	04-02
	04-03
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	09-01
	09-02
	09-03
	09-04
	09-05
	10-01
	10-02
	10-03
	10-04
	A-01
	B-01
	B-02
	B-03
	C-01
	C-02
	C-03
	C-04
	C-05
	D-01
	D-02
	D-03
	D-04
	D-05
	E-01
	E-02
	E-03
	E-04
	E-05
	F-01
	F-02
	F-03
	F-04
	F-05
	G-01
	G-02
	Index-1
	Index-2
	replyA
	replyB
	xBack

