1.5.4

1.5.5

2.1.1
2.1.2
2.1.3
2.1.4

CONTENTS

CHAPTER 1

INTRODUCTION -

REFERENCE DOCUMENTS

REQUIRED 339 SYSTEM PROGRAMS

SYSTEM DESCRIPTION

339

339

Easy Man/Machine Interaction

SOFTWARE OPERATIONS

DISPLAY DEVICE

Programmable Display Area
Program-controlled CRT Characteristics
Scale

Intensity

Blink Control Function

Light Pen Control Function
Dimensioning Displays

Character Generation

CHAPTER 2

GRAPHIC SUBPROGRAM ROUTINES

SUBPICTURE ROUTINES

LINE Subroutine

" TEXT Subroutine

COPY Subroutine
PRAMTR Subroutine

GRAPH Subroutine

2.2.1

BLANK Subroutine
UNBLNK Subroutine
MAIN DISPLAY FILE ROUTINES
DINIT (Display Initialize) Subroutine
DCLOSE (Display Terminate) -Subroutine
SETPT (Set Point) Subroutine
PLOT Subroutine
DELETE Function
REPLOT Function
RSETPT Subroutine
INPUT SUBPROGRAMS
LTPN Functions
PBTN Function
TRACK Subroutine
RELOCATABLE DISPLAY FILES
DYSET Subroutine

DYLINK Subroutine

CHAPTER 3
SYSTEM I1I/0 DEVICE HANDLER
LEGAL FUNCTIONS
.INIT (Initialize) Macro
INITIALIZATION SETTINGS
.READ Macro
-WRITE Macro
.WAIT Macro
.WAITR Macro

.CLOSE Macro

3.2 IGNORED FUNCTIONS

3.3 LEGAL DATA MODES

APPENDIX A

SAMPLE PROGRAMS

House Display Program
Tracking Program

Read and Display Slides
LIST OF TABLES

Table 1-2, Required 339 System Programs
Table 2-1, Mnemonics Commonly Used in 339 Call

Statement Descriptions
LIST OF ILLUSTRATIONS

Figure 1-1 339 Graphics Software Operations
Figure 1-2 339 Graphics System Display Area
Figure 1-3 Programmable Display Area

Figure 1-4 Scale Settings

Figure A-1 House Display Image

Type 339 Buffered Display System

CHAPTER 1

INTRODUCTION

The PDP-9/339 Graphics Subprogram Package consists of a group of
subroutines and functions which may be called by user programs
written in FORTRAN IV or Macro-9. Its purpose is to provide a
simplified means of using the 339 graphic display device without
requiring detailed familiarity with the hardware. Its function
is to compile display commands at the direction of the user and
allow him to define display elements and direct the linking, dis-

playing, deleting, etc., of those elements.

With the exception of Section 3, this manual is concerned with
the 339 Graphics Subprogram Software Package and its use in

developing 339 display source programs in FORTRAN IV.

Section 3 presents a description of the 339 System I/0O Device

Handler and the MACROs which comprise it.

The subprograms which make up the 339 Graphics package méy be
called using MACRO-9 .GLOBL pseudo-ops as well as FORTRAN IV
CALL statements. Therefore, the MACRO equivalent of each CALL
statement described is also given. All programming procedures

described, however, are applicable to FORTRAN-level programs only.

Detailed descriptions of the 339 hardware and the development of
assembly-language source programs for the 339 are given in the
339 User's Manual and associated PDP-9 ADVANCED Softwarc System

Manuals (refer to Table 1-1).

1.1 REFERENCE DOCUMENTS

The available documents which contain information useful in pro-
gramming the 339 Programmed Buffered Display System are listed

and described briefly in Table 1-1.

Table 1-1. Applicable Reference Documents
DOCUMENT DESCRIPTION
1. 339 Programmed Buffered Contains descriptions of the physical
Display User's Handbook and functional characteristics of the
DEC-09-16FA-D 339 Display System and presents the

Symbolic Codes ﬁnique to the 339 which
are used in addition to the MACRO-9
" codes for the preparation of 339
assembly languagc programs.
2. PDP-9 ASSEMBLER Provides the information required for
DEC-9A-AMZA-D the preparation of MACRO-9 Assembly
language source programs.
3. PDP-9 FORTRAN 1V Provides the reader with the informa-
DEC-~9A~-KFZA-D tion required to prepare FORTRAN IV
programs for compilation and execution

within the PDP-9 ADVANCED Software

System.

4., PDP-9 Keybdard Monitor Provides kéyboard operating instructions
Guide and procedures for PDP-9 ADVANCED Soft-
DEC-9A-MKFA-D ware System Programs.

5. PDP-9 Utility Manual Contains individual detailed descrip-
DEC-9A-GUAB-D tions of the Utility programs supplied

with the PDP-9 ADVANCED Software System.

1.2 REQUIRED 339 SYSTEM PROGRAMS

The programs which must be loaded into the system to provide the

capabilities described in this manual arc listed in Table 1-2.

These programs are assembled by MACRO-9 or 9A into relocatable

binary files which may be loadedAby the Linking Loader.

System

program UPDATE-9 (refer to Utility Manual) may be used to incor-

porate these programs into either the System Library or a User

Library; if they are to be included in the System Library, all

unused device handlers and routines must be removed to provide

space.

Table 1-2,

Program Name

DYA. 4

MAINFL

SUBPIC (for VC38,
or SUBPVA for VA39)
INTPT

TRCK2

BLANK

DYLDR

DYCHR

Required 339 System Programs

Capabilities

All 1/0 Macros (.INIT, .READ,
.WRITE, .WAIT, .WAITR, .CLOSE

DINIT, DCLOSE, SETPT, PLOT,
RSETPT, REPLOT, DELETE

LINE, TEXT, COPY, PRAMTR,
GRAPH

LTPN, PBTN

TRACK

BLANK, UNBLNK

DYSET, DYLINK

Character Table for VC38 (Loaded
by the Monitor switch "vC38 ON")

Length

1033
6557,

650
8
42410

6564
4257,
272g

4578
303lo

46
3879

2768
19010

6774
44710

1.3 SYSTEM DESCRIPTION

The Type 339 Programmed Buffered Display (Frontispiece) is an
on-line system manufactured by Digital Equipment Corporation for
operator observation, manipulation, énd alteration of computer-
stored data. The display system consists of a precision incre-
mental CRT display, display control logic, light pen, pushbutton
control box, and interface logic for communication with a PDP-9
computer. The computer processor and the display control logic

share the computer memory, and are interdependent as a system.

The computer system furnishes rapid data storage and retrieval of
data for display as dots, lines, curves, or characters (optional)
on the face of the CRT. The operator caﬁ manipulate or alter the
data by using the light pen, pushbutton control box, or the keys

and switches on the computer conscle.

The Type 339 Programmed Buffered Display interfaces to the PDP-9
general purpose computer through the qptional Direct Memory Access
Channel Multiplexer Adapter, Type DMO09A. The result is a multi-
processor system in which both the display processor and the com-
puter's central processor operate out of the same core memory on

a time-shared basis.

The direct memory access channel (DMA) interface permits the 339
Display to operate from the PDP-9 memory, obtaining its instruc-
tions on a cycle-stealing basis while allowing the PDP-9 to process
a completely separate program. The PDP-9 can quickly interrupt this
program, to service real-time interrupts generated by the operator,

the display, or other external devices. The use of a common memory

for the display and the PDP-9 allows the computer to update the

display files quickly, with a minimum of communication problems.

The 339 display system executes instructions contained in lists
(groups of consecutive locations) in the shared memory. These
lists are compiled from FORTRAN or symbolic language (MACRO-9)

source programs or are loaded into memory from an external source.

Once a display program is loaded and compiled, the PDP-9 supplies
the starting address of the list to the 339 display system and
commands the display to begin. At this point, the PDP-9 is free
to e#ecute a completely separate program, pausing only to service
interrupts caused by the display light pen, pushbutton control box,

or other external source.

Display programs may consist of continuous loops of instruction or
of Chains comprised of several widely scattered lists. In either
case the display is kept running continuously by the use of jump or
jump~-to-subroutine instructions which can be used to (1) direct

the display processor, (2) proceed to the next list, or (3)
return to the beginning of the current list. Skip instructions,
used by the type 339 display, cause the display processor to test
for specified conditions and to branch to different programs if the

conditions are met.

1.3.1 Easy Man/Machine Interaction

The Type 339 standard input features, the light pen and pushbutton

control box, provide the user with versatile means of communication

with the display system. The light pen allows the operator to
"point" to a particular portion of the display and indicate that a
change is desired. With tracking subroutines, the light pen can

be used to "draw" lines and figures.

The pushbutton control box also provides a simple means of com-
munication with the system. It features 12 pushbuttons, in two
banks of 6 buttons each, a manual reset button for each bank,

and a manual interrupt button that can be used to cause a PDP-9

program interrupt.

The activation of any pushbutton is sensed by the computer which
then enters an interrupt mode. In the interrupt mode the processor
will perform any operation specified as the response to the activated

pushbutton.

1.4 339 SOFTWARE OPERATIONS

‘A functional block diagram illusﬁrating the overall software
operations performéd in the 339 system is shown in Figure 1~1. The
FORTRAN 1V programs devised by the user will consist of standard
FORTRAN IV statements and calls for routines unique to the 339
Graphics system:

1) MAIN DISPLAY FILE ROUTINES - Calls for these routines
together with the standard FORTRAN IV statements will, when com-
piled, build a "Main Display File" in a portion of the PDP—9.memory
assigned to the 339 Display system. The commands contained by this
file will, during execution of the program, link together individual
Subpicture Display Files into a CRT display command chain which will

cause the desired image to be displayed.

INPUT '

/
FORTRAN PROGRAM ROUTINES
\\ LTPN I
PBTN
TRACK l
fcalls) (Calls) o
P! |
. . - P o
MAIN DISPLAY FILE SUBPICTURE ROUTINES " I
ROUTINES LINE .
DINIT TEXT vy
DCLOSE COPY | l
SETPT PRAMTR] !
PLOT BLANK] |
DELETE UNBLNK ! |
REPLOT :
RSETPT : il '
(Generate File)
—— — — — — .__.___.H_.____.
(Call)
)SUBPICTURE]
MAIN DISPLAY DISPLAY FILE | ’ ‘
FILE !
(Return) Y ll l
 J !
/|SUBPICTURE l
DISPLAY FILE Vo
vl 339 '
(Return) ' -
S, NI — <
N
(Drives)
CONTROL
BOX ' .
(Generate Interrupt
CRT DISPLAY and Modification)
LIGHT
PEN

Figure 1-1, 339 Graphics Software Operations

2) SUBPICTURE ROUTINES - Calls for these routines together
with standard FORTRAN statements will, when compiled, form
individual self-contained Subpicture Display Files. Each sub-
picture file contains all of the commands needed to generate a
specific image on the 339 display CRT. These files are accessed
by the Main Display File in any required order or sequence during
the execution of the display program. The Subpicture files are
normally programmed and compiled separately from the Main Display
File program to build a library of accessible graphics (i.e. complete
or partial pictorial images) from which complex images may be

formed.

3) INPUT ROUTINES - Calls for 339 input subroutines which
permit ﬁhe use of the light pen.and pushbuttons may be made in the
FORTRAN program to direct display operétions. These are used to
control the flow of the program upon the occurrence of light pen
or pushbutton interrupts. In this way program paths can be activated
which mddify the display command chain and, therefore, modify the

picture.

1.5 '339 DISPLAY DEVICE

The 339 system uses a l6-inch Cathode Ray Tube (CRT) which provides
a usable display area 9 3/8 by 9 3/8 inches in size as its display

device.

For programming purposes, the CRT display area (face) may be con-
sidered a dot matrix comprised of over a million (1024 by 1024)
illuminable points (dots) spaced at about 0.0l inch intervals (see

Figure 1-2). For display purposes, the matrix dots are illuminated,

<—— 1024 POINTS —f@»
-9 3/8 INCH —————P>

ee oo e 0D *
T X | e & @
) * 0 1024
L ® POINTS
VIEWING AREA (i.e.
CRT Display)

9 3/8

® | INCH

. .
™ o0 ¢
o0 o o 0 @

This area consists of
a matrix of 1024 X 1024
illuminable points

Figure 1-2, 339 Graphics System Display Area

selectively, by an electron beam generated within the CRT. The
illumination of a series of dots in any direction results in a
visually continuous line of uniform resolution. Images are
developed on the 339 CRT display by the controlled generation and
positioning of the CRT electron beam in direct response to a

programmed instruction list processed by the 339 system.

1.5.1 Programmable Display Area (Refer to Figure 1-3)

Although the CRT display area is physically limited to a9 3/8 by
9 3/8 inch area, the hardware capabilities of the 339 system permit

the user to develop images up to 8 times the display area in size.

For programming purposes, the available (programmable) drawing area
may be considered as a 75 by 75 inch sheet of paper on which one or

more images may be developed.

Viewing any part of the programmable drawing area is accomplished
by program features which, in effect, cause the "drawing sheet" to
move under the viewing window (i.e. CRT display) to any desired

position.

1.5.2 Program-controlled CRT Characteristics

Display Scale and Intensity are variable display characteristics
which must be specified by the programmer in each display program.
Two control functions, Light Pen on/off and Blink on/off are also

programmable.

1.5.3 Scale
As previously described, images are generated on the display CRT by

the controlled intensification of points within the display dot

l§———————— 75 INCHES Do

--= TOTAL PROGRAMMABLE AREA
' 75 x 75 inches
! (8 x 8 viewing areas)

-———1'

95

INCHES
S VIEWING AREA (CRT CISPLAY)
9 3/8 by 9 3/8 INCHES
RN 1 = e "' = i
{ ! ' : {
9 3/8 f ' [] H ! 1
INCH [. 3 ; ! | ; | Y
.ﬂ93/8L1

Figure 1-3, Programmable Display Area

matrix. Scale controls the amount of space to be left between the
intensified dots during a display operation. There are 4 possible
scale settings (0,1,2, and 3); the settings and the manner in which

each affects the display are illustrated in Figure 1-4.

Figure 1-4, Scale Settings

Scale Point Spacing Intensify
0 ® © o o o o o o ° o Every
1 ®e O @€ O e O e O e O 2nd
2 ¢ O O 0O e O O O e O 4th
3 e O O O O O O O e o 8th

As illustrated in Figure 1-4, scale settings affect both the size
and appearance of displayed lines or symbols. For example, at a
setting of 3, each point will be distinguishable; at a setting of
either 0 of 1, however, lines and symbols will appear to be continu-

ous.

1.5.4 Intensity

The intensity at which selected matrix dots are to be illuminated
during a display operation is specified by the user at any one of
-eight possible settings. The available settings range in increasing
brightness from 0 to 7 with 0 setting being not visible, and 7 very

bright.

Scale and intensity settings are interrelated and must be carefully
selected to insure that the best possible display image is obtained.

Scale setting affects the length of the line proportionately, since

1-12

the increments given are actually a count of intensified points
rather than absolute points. Therefore, it affects the intensity

in inverse proportion since fewer points are glowing. . Thus if the
intensity of a line must remain constant with a change in scale set-
ting, the intensity setting must be changed by an equal amount. At
a scale setting of 2, the points are clearly separated and the

effect on intensity becomes secondary.

1.5.5 Blink Control Function

The ability to cause a displayed image or portion of the image to
blink on and off at a visually discernible rate is a function which

may be specified by the programmer.

The display "Blink" feature may be specified for any display file
whether it represents an entire display or specific portion of a
display. This feature is particularly useful when it is necessary

to draw attention to specific displayed items.

The blink on/off control element is represented by an integer
variable the value of which could, if desired, be made a function

of the state of one of the control pushbuttons on the 339 control

box.

1.5.6 .Light Pen Control Function

The ability to use the light pen supplied with the 339 system is
also a programmed function; the user must specify if the light pen
is to be enabled or disabled throughout the display operation or is

to be controlled from the 339 control box.

the increments given are actually a count of intensified points
rather than absolute points. Therefore, it affects the intensity

in inverse proportion since fewer points are glowing. . Thus if the
intensity of a line must remain constant with a change in scale set-
ting, the intensity setting must be changed by an equal amount. At
a scale setting of 2, the points are clearly separated and the

effect on intensity becomes secondary.

1.5.5 Blink Control Function

The ability to cause a displayed image or portion of the image to
blink on and off at a visually discernible rate is a function which

may be specified by the programmer.

The display "Blink" feature may be specified for any display file
whether it represents an entire display or specific portion of a
display. This feature is particularly useful when it is necessary

to draw attention to specific displayed items.

The blink on/off control element is represented by an integer
variable the value of which could, if desired, be made a function

of the state of one of the control pushbuttons on the 339 control

box.

1.5.6 Light Pen Control Function

The ability to use the light pen supplied with the 339 system is
also a programmed function; the user must specify if the light pen
is to be enabled or disabled throughout the display operation or is

to be controlled from the 339 control box.

1.5.7 Dimensioning Displays

In progfamming displays, the dimensions of the graphic clements used
to form the picture are specified in terms of Display CRT Raster
Units. The basic Raster Unit is defined as the distance between any

two of the display CRT matrix illuminable points.

A Display Raster Unit, however, is seen as the distance between any
two sequentially illuminated dots of a display. The size of a Dis-
play Raster Unit is directly dependent on the SCALE setting speci-

fied for the picture being developed.

In relation to display dimensions, SCALE settings are to be regarded

as distance multipliers; the manner in which a specified dimension
(e.g. 109 Raster Units) varies in actual displayed length according

to each of the possible SCALE séttings is illustrated in Table 1-3.
Table 1-3, Dimensional Effect of SCALE Secttings.

SCALE SPECIFIED DISPLAYED LENGTH IN VIEWED LENGTH

SETTING DIMENSION BASIC RASTER UNITS IN INCHES
0 109 109 l-inch
1 109 219 2-inches
2 109 436 4-inches
3 109 872 8-inches

1.5.8 Character Generation

Characters and symbols may be generated by subroutines; however, the
use of optional character generators VC38 or VA38 greatly simplifies

this task.

The 339 Graphics Software package contains a subprogram which allows

the use of either character generator, if present.

CHAPTER 2

GRAPHIC SUBPROGRAM ROUTINES

This section contains detailed descriptions of the FORTRAN IV CALL
statements required for each 339 Graphic Subprogram. Each descrip-
tion also includes the equivalent statements needed to call the

subprogram in MACRO-9.

All display file storage is supplied by the user in the form of
dimensioned integer arrays. To facilitate storage management, the
first location of each display file contains the length of the file.
Limited reuse of storage is provided for in Main Display File rou-
tines REPLOT and DELETE. The storage requirements of each CALL which
adds commands to a file are indiéated in the description given of the

CALL.

Some of the mnemonics used to represent arguments in the descriptions

of the CALL statements‘are listed and defined in Table 2-1.

Table 2-1,

1)

2)

3)

4)

Mnemonics

deltay

deltax

it

pname

Mnemonics Commonly Used in 339 CALL Statement Descriptions

Definition
An INTEGER number or variable which repre-
sents in "raster units" the amount the CRT
beam is to be displaced from its current
position in a vertical direction. This
quantity is signed to indicate the direction
of displacement.

i.e.

+
it

move beam up

move beam down

[
il

Same as deltay except that the indicated
displacement is made on the horizontal
plane and the directions indicated by the
sign are:

+

move beam right

move beam left.

This variable is restricted to the INTEGER
values 1 and 0 to indicate if the CRT beam
movement is to be visible. (It = 1) to

draw a line, or invisible (It = 0).

The subpicture display files generated by

the compilation of the Graphic Subpicture
CALLS are stored in dimension arrays speci-
fied by the user. An INTEGER variable, pname,
represents the first element of the array

specified to store the commands generated in

from the statement
argument lists; if
dropped, the last

given value for pname

will be assumed.

5) featr

6) wvalue

7) mainfl

8) cname

pnrname is alwavs represconted as

a subscripted variable; it will contain the
length of the file and is the variable by
which the file is referenced in later manipu-
lations.

An INTEGER number which identifies a featurc
of the CRT display to be specified in the CALL
(i.e. 1 = SCALE, 2 = Intensity, 3 = light
pen, and 4 = Blink;.

A single INTEGER digit which indicates what
value or setting is specified for the selected
display feature.

Similar to pname, the value of mainfl repre-
sents the first array element of the dimen-
sioned‘array specified by the user to store

a Main Display File. Mainfl is represented

as a subscripted INTEGER variable, it contains
the length of the file and is the variable

by which the file is referenced.

An INTEGER which identifies the location or
first location which contains the display

command(s) generated by the CALL in which

cname is an argument.

2.1 SUBPICTURE ROUTINES

The 339 subpicture routines generate files of executable display
commands which are identified and manipulated as separate graphi-
cal entities (i.e. Subéicture Display Files). The identity of a
subpicture file is the address of its first location (pname) and
is given as an argument in all calls to the subpicture routines.
The calls are self-contained; they permit simultaneous generation
of subpictures with each referenced subpicture left in displayable

form so that it can be manipulated dynamically while displaying.

The first location of a subpicture (pname) contains its current

length; this value must be @ when the first reference to the Sub-

picture Display file is made. After the first reference, the

value of pname is maintained by the subpicture routine.

Since display files are generated and stored in arrays dimensioned
by the user, they are fully accessible to the user and can be

written out or read in using FORTRAN unformatted I1I/0 statements.

Storage overhead for each Subpicture Display File is three words:

“the first word contains the file length, the second is used for con-

trol and the third (last in file) contains the 339 display command

POP (subpicture return).

2.1.1 LINE Subroutine

The LINE subroutine adds to the specified subpicture file the com-
mands necessary to draw a line (beam intensified) or move the beam
(not intensified) through a specified displacement from the curfent
beam position.
a. Form
(1) FORTRAN: CALL LINE (deltay, deltax, It[zpname)

(2) Macro-9:

.GLOBL LINE

JMS * LINE

JMP .+5
.DSA deltay
.DSA deltax
DSA It

EDSA pnaﬂﬂ

b. Input Variables

(1) deltay = Vertical component of beam displacement in
raster units (integer).

(2) deltax = Horizontal component of beam displacement
in raster units (integer).

(3) It = Line type (integer).

1 wvisible
0 invisible

(4) pname is the first location of this subpicture display
file. It is the name by which the subpicture
is referred to in later manipulation. For
example, if a subpicture is to start in the
dimensioned array ELEMNT, the calls to LINE
building that subpicture are of the form CALL
LINE (deltay, deltax, 1lt, ELEMNT(1l)) (integer).

c. Output Variables
pnanme = Current length of this subpicture file. 1In the

example above, the location ELEMNT (l) contains
the length of the file. '

d. Description

(1)

LINE adds three commands to the display file:

VEC!EDS (vector mode, cnter data state)
deltay
deltax (encape-Lo-conbrol-stabe Lit on)

(2) If it immediately follows another LINE call, LINE
clcars the preceding escape bit and adds 2 commands
to the display file:

deltay
deltax (escape bit on)

{3) The number of commands added to the display file is

added to the contents of logation pname.
e. Restrictions

(1) Deltay and deltax are signed integers, the magnitudes
of which must not exceed 1023.

(2) Pname must contain zero before the first call referenc-
ing it. :

(3) Sufficient space must follow pname to contain the

subpicture file.

f. Example. The following two statements illustrate the use of

the LINE subroutine to draw straight and sloped lines:

(1)

(2)

Draw a vertical line: Display

' Vert. lihe
CALL LINE(50,0,1,ILINE (1)) 50 Raster units

long
<— Starting point

Draw a sloped line:

CALL LINE(200,-300,1,ILINE(1)) x = -300

Starting point

2.1.2 TEXT Subroutine

This subroutine call may be used only in 339 systems which contain

an optional character generator (VC38 or VA38).

The TEXT subroutine adds to the specified subpicture file the com-
mands necessary to display the identified text string, starting at
the current beam position. These are in the format determined by
whichever of the optional character generators (VC 38 or VA38) is

used.

The standard text font is drawn on a 5 x 7 dot matrix. FEach character

causes an increment of 7 raster units to the X position of the beam.

a. Form

(1) FORTRAN: CALL TEXT (str, n Epname)

(2) Macro-9

.GLOBL - TEXT
JMS* TEXT
JMP .+4

.DSA str

.DSA n

EDSA pnamﬂ

b. Input Variables
(1) str identifies the dimensioned real array which
contains the string of characters to be dis-
played in IOPS ASCII (Hollerith) form (five
7-bit characters per word). ’

(2) n is an integer number representing the total
number of characters to be displayed.

(3) pname is the first location of this subpicture file,
as in LINE, above.

c. Output Variables
pname = Current length of this file.
.d. Description

(1) TEXT adds to the assembled display file two commands

plus the character string at two characters per word:

CHAR!EDS (character mode, enter data state)
Cl c2

Cn .
Ce (escape-to-control-state character)
(2) If this TEXT call immediately follows a previous TEXT
call, TEXT inserts only the new character string
above the escape character.

(3) The number of commands added to the file is added to
the contents of pname.

e. Restrictions.
(1) Pname must contain zero (@) before the first call
referencing it. : '

(2) sufficient space must follow pname to contain the
subpicture file.

f. Example
The following statements illustrate the manner ip which
text to be displayed is setup and called:
(1) Setup for "339_ASSABEThALLEY"
DIMENSION ADDR(4)

DATA ADDR(l)/5H339UA/,ADDR(2)/5HSSABE/,ADDR(3)/SHTUALL/,
-1 ADDR(4)/2HEY/

(2) CALL statement to display text

- CALL TEXT (ADDR(1),17,IPIC(1))

2.1.3 COPY Subroutine

The COPY subroutine enables two or more subpicture display files to
be linked together to generate a composite display image. This sub-
routine adds to one subpicture display file the commands necessaryrto
link it to a second subpicture with the second display file starting
at the last beam position specified by the first subpicture.
a. TForm
(1) FORTRAN: CALL COPY (pnamel Epnamé])

(2) Macro-9:

.GLOBL COPY
JMS * COPY
JMP .+3
.DSA pnamel

EDSA pnam%

b. Input Variables

(1) pnamel is the first location (name) of the subpicture
to be copied (integer).

(2) pname is the first location (name) of this subpicture
display file, as in LINE above.

c. Output Variables
pname = Current length of this file.
d. Description
(1) COPY adds two commands to the display file:

PJMP (display subpicture jump)
pnamel+2

(2) 2 is added to the contents of pnamel.
e. Restrictions

(1) Pnamel need not be defined when COPY is called, but
must be a defined subpicture when pname is displayed.

(2) Pname must contain zero (@) before the first call
referencing it.

(3) Sufficient space must follow pname to contain the
subpicture file.

f. Example
The statement
CALL COPY (WINDOW(1l) ,HOUSE (1))
adds a call to the WINDOW subpicture file to the file

identified as HOUSE.

2.1.4 PRAMTR Subroutine

The PRAMTR subroutine allows the user to add to the specified sub-
picture file the commands necessary to set scale and intensity for
the display or to turn on or off light pen sensitivity and the blink

circuit.

The scale setting determines the proximity of intensified points in
a line:

Every point is intensificd

Every other point is intensified
Every fourth point is intensified
Every eighth point is intensified

WO

This setting affects the length of the line proportionately, since
the increments given in the LINE call are actually a count of
intensified points rather than absolute points. It also afféects the
intensity, in inverse proportion, since fewer points are glowing.
Thus if the intensity of a line must remain constant with a change
in scale setting, the intensity setting must be changed by an equal
amount. At a scale setting of 2, the points are clearly separated

and the effect on intensity becomes secondary.

More than one feature, each with its corresponding settings, may be
specified in a PRAMTR CALL statement by using the following technique:

(1) Add together the integer code numbers which identify the

selected features and assign this value to the variable
Example: for scale (1) and intensity (2) featr will have
the value 3.

(2) List the desired settings, as arguments, in ascending
order according to the values of the numeric assigned to
their corresponding features (the argument list 3,2,6
would specify a value of 2 for scale (#1) and of 6 for
intensity (42)).

a. Form |
(1) FORTRAN:

A. (one feature) CALL PRAMTR (featr,valuelzpname)
B. {more tﬁan one feature and setting)
‘CALL PRAMTR (featr(s),valuelEvaluo2...Jl}pnamc)

"(2) Macro-9:

.GLOBL MODE

JMS* MODE

JMP . +N Where: N = 2+ (number of

.DSA featr features specified) +1
.DSA value if pname is given

.DSA pname

b. Input Variables
(1) featr = Feature of the display being set (integer):

set scale

set intensity

set light pen sensitivity (on or off)
set blink (on or off)

R b N

]

(2) wvalue The value to which featr is set (integer):

Featr Possible Values

1 (scale) 0 (low) - 3 {high)
2 {intensity) 0 (low)- 7 {(high)

4 {light pen) 1 = on
0 = off

8 (blink) 1 = on
0 = off

(3) Pname is the first location of this subpicture filé,
Aas in LINE, above.
c. Output Variables
pname = Current length of this file.
d. Description
(1) The PRAMTR subroutine‘adds one or more commands to the

display file depending on the type of argument list
used:

SC value or
INT wvalue or
LPON if value = 1, LPOF if value
BKON if value = 1,. BKOF if value

or

I
oo
~

(2) 1 is added to the contents of location pname,
e. Restrictions

(1) This subroutine must be used with care, since the
setting given is in effect until explicitly changed
in this or some other part of the display. Thus, if
the blink is turned on at the beginning of a sub-
picture, it must be turned off at the end in order
that only that subpicture blinks. Otherwise the
whole display will blink.

(2) Pname must contain zero (@) before the first call
referencing it.

(3} Sufficient space must follow pname to contaln the
subpicture file.

f. Examples:

(1) The following single feature statement:
CALL PRAMTR (2,7 ,HOUSE(1))
specifies an intensity (2) level of 7 for the subpicture
display file starting at the first location of array
HOUSE.

(2) The following multiple-feature statement:
CALL PRAMTR (SCALE+INT+LPEN,f#,4,1,IN(1))
specifies the values @ and 4 for display SCALE and
INT (intensity) features, turns the optional light pen

on (LPEN = 4) for the execution of the subpicture dis-
play file which starts at location 1 of array IN.

2.1.5 GRAPH Subroutine

The GRAPH subroutine adds to the specified subpicture file the com-
mands necessary to display in graph form thg identified set of data
points. One coordinate is . sequentially sct at the valuc of cach
data point. The other coordinate is then automatically incremented
by one (in the current scale), leaving the bcam positioned one
increment past the end of the graph. Note that axis and labelling
‘must be provided separately.

a. Form:

(1) FORTRAN: CALL GRAPH (dta,n,a [pname)

(2) Macro-9:

.GLOBL GRAPH
JMS* GRAPH
JMP .+5
.DSA dta
.DSA n
.DSA a
EDSA pnamﬂ

b. Input Variables

(1) dta contains the set of data points, onc per word, in
the range 0 to 1023 (integer).

(2) n = number of data points to be displayed (integer).
(3) a indicates which axis to imcrement.

= increment x, set y to data values

1l = increment y, set x to data values

(4) pname is the first location of this subpicture file,
as in LINE, abové. ‘

c. Output variables
- pname = current length of this file.
d. Description

(1) GRAPH adds to the display file one command plus the
data set, at one value per word:

GRAPH!EDS (graph mode, enter data state)
VAL1
VAL2

VALn (escape bit on)

(2) If this GRAPH call immediately follows a previous
GRAPH call, the escape bit is cleared and the new
data points only are added to the file. The escape
bit is then set in the last of the new data points.

(3) The number of commands added to the file is added to
the contents of pname.

Restrictions

General restrictions only (see LINE).

Example

The following program illustrates the use of the GRAPH
and other subroutines.

C TEST PROGRAM Fik THE GRAPH SUBROUTINE
C FTST1w
COPYRIGHT 1969, DIGITAL FWUIPMENT CORP,, MAYNARD, MASS,
INTEGES SINaV(390),Y(200)
NDIMENSTION TITL(1@A) ,MAINFL(20)
DATA TITL(A),TITL(2),TITL(3),TITL(4)/5HTHIS ,
1 S5HIS A ,SHSINE ,5HWAVE./ .
C SET JP INTFGER ARRAY OF VALUES TO BE PLUTTED
10 Xz,
no 22 1=1,240
Y(I)=1FIX(SIN(X)#256,)+512
X=X+ ,AR2F

20 CONTINUE
C SET P SUB-PICTURE TO PLOT THOSE VALUES
SINWV (1) =¢

CALL PHAMTR(3,2,7,SINWV(1))

CALL LINF(%,450,1)

CALL LINE(258,-458,7)

CALL LINF(-%00,6,1)

CALL LINF(250,R,0)

CALL PrAMTR(1,1)

CALL GKAPH(Y(1),100,0)

CALL GFAPH(Y(101),10@,4,SINWV(1))
CALL LINF(-20,-200,9)

CALL TFEXT(TITL(1),2®)

C SET 0 MAlN LISHLAY FILE TO NISPLAY THF (RAPH
MATNFL(1)Y =
CaLt IxIT(MAINFLCT))
CALL SITPT(512,2u8)
CALL PLOTC(w,STNWY (1))
PAUSFE 1 :
CALL DL oSE(MAINFL(1))
PALISE
(SS9 20 AR
Fib

2.1.6 BLANK Subroutine

The BLANK subroutine is used to prevent the displaying of any copy
of this subpicture. The diéplay file length is not changed.
a. Form
{1) FORTRAN: CALL BLANK (pname)

(2) Macro-9:

.GLOBL BLANK
JMS* BLANK
JMP .42

.DSA pname

b. 1Input Variables

pname is the subpicture to be BLANKed.
"¢. Output Variables

None.

d. Description

(1) The command in location pname+2 (the first executable
command in the display file) is moved to location
pname+1l.

(2) The command POP (display subpicture return) is inserted
at location pname+2.

2.1.7

Restrictions
(1) Pname must be a defined subpicture file.

(2) BLANK has no meaning as the first call referring to
pname.

Example
The following statement prevents the subpicture display
file starting at the first location of array IPIC from
being displayed.

CALL BLANK (IPIC(1))

UNBLNK Subroutine

The UNBLNK subroutine reverses the action of the BLANK subroutine,

allowing a previously BLANKed subpicture to be displayed.

a.

Form
(1) FORTRAN: CALL UNBLNK (pname)

(2) Macro-9:

.GLOBL UNBLNK
JMS* UNBLNK
JMP .42

.DSA pname

Input Variables

pname is the subpicture to be UNBLNKed.

Output Variables

None,

Description

The command in location. pname+l (placed there by a call to
BLANK) is moved to location pname+2, overlaying the POP that
was there.

Restrictions

(1) Pname must be a defined subpicture file.

(2) A call to UNBLNK must have been preceded by a call
to BLANK.

f. Example

The folloWing statement will enable the previously blanked

subpicture IPIC (refer to "f." of 2.1.6) to be displayed;

CALL UNBLNK (IPIC(1))

2.2 MAIN DISPLAY FILE ROUTINES

These routines are used to generate the display main file, to which
the display controller is directed when initiating display, and

which is presumed to be calling upon the subpicture files generated
with the routines described above. As is the case with subpicture
files, storage used for the main file is supplied by the calling
program as a dimensioned array. That array is identified by only

one call to the initializer‘(DINIT) and is implicit in all other calls.
These calls assume that reference is made to the storage identified
by DINIT. They are concerned, however, with the identification of
each entry to the main display file. Thus each call has as an
optional argument the location of the display code generated by that
particular call which provides a "handle" to that particular graphic
entity. This provides the flexibility required to build and modify_

a display file in an interactive environment. It also enables the
user to perform limited storage management. Each routine that adds
commands to the file inserts a word count corresponding to this call,
and each change or deletion of commands updates this local word count.
Thus, small blocks of storage containing unneeded commands can bé

reused.

As with subpicture files, the name of a main display file is its first
location, which contains the length of the file and is updated by

each call that changes that length. If a new file is to be generated,
the first location must contain zero before any display routines refer

2-17

to it. The remaining three words of storage overhead in a main file
are the second word, rescrved for control, and the last two words,
which contain a JUMP to the beginning of the file. The local word
counts keeping track of groups of commands are kept in the high-order
6 bits of the PDP-9 word, since the display uses only the low-order

12 bits.

2.2.1 DINIT (Display Initialize)} Subroutine

The DINIT subroutine initializes the display via device number
(.DAT slot) 10. The 339 Device Handler must be associated with .DAT
slot 10 as DINIT contains .IODEV 10, which causes the device handler
tied to .DAT slot 10 to be loaded. It can be used to set up for a
new display main file, to start up an old one, or to start up any
previouslyvdefined subpicture as the current main file.

a. Form

(1) FORTRAN: CALL DINIT (mainfl)

(2) Macro-9:

.GLOBL DINIT
JMS* DINIT
JMP . 42

.DSA mainfl

b. Input Variables

mainfl is the first location of the main display file. Like
pname, it is an element of a dimensioned array (integer).

c. Output Variables

Location mainfl contains the length of the display file. This
is updated by all Main File Routines.

d. Description

(1) Determine display length from contents of mainfl (new
display file if mainfl = 0).

(2) Insert

JUMP
mainfl+?2

at end of file.
(3) 1Initialize display.

(4) Start the display running at mainfl+2.

e. Restrictions
(1) If a new display file is being formed, location mainfl
must contain zero. If this is a previously defined
file, mainfl contains the file length and must not be
altered. .

(2) Sufficient storage must follow mainfl to accommodate
the display file to be generated at any one time.

-(3) Only one main display file can be running at any one
time.

f. Example
The following statement initializes the execution of the
Main Display File starting at the first location of array
MAINFL.

CALL DINIT (MAINFL (1))

2.2.2 DCLOSE (Display Terminate) Subroutine

The DCLOSE subroutine is used to end a display. It also converts

"the main file specified into a subpicture file by replacing the JUMP

to the starting location by a POP command. This allows it to be

used by any subsequently generated main file, as subpicture mainfl.
a. Form

(1) FORTRAN: CALL DCLOSE (mainfl)

2-19 -

(2) Macro-9:

. GLOBL DCLOSE
JMS* DCLOSE
JMP .+2

.DSA mainfl

b. Input Variables

mainfl is the starting location of the main display file
being closed.

c. Output Variables
None,
d. Description
(1) Stop running the display dovicc..
(2) Insert POP at the last location of the display file.
e. Restrictions
None.
f. Example
The following statement will end the display initiated by
the statement given in the example "f." of 2.2.1.

CALL DCLOSE (MAINFL (1))

2.2.3 SETPT (Set Point) Subroutine

The SETPT subroutine is used to locate the beam on the display sur-
face in absolute display coordinates (raster units). The beam is
not intensified with this call.
a. Form
(1) FORTRAN: CALL SETPT (y,xl}cname)

(2) Macro-9:

.GLOBL SETPT
JMS* SETPT
JMP .+4
.DSA Yy
.DSA X
EDSA cnamﬂ

b.

C.

d.

Input Variables

(1)
(2)

Vertical coordinate of beam location.

y

i

X Horizontal coordinate of beam location.

Output Variables

(1)

cname = Location of the group of display commands
generated by this call (Integer Variable),

Description

(1)

(2)

"SETPT adds three commands to the main file:

POINT!EDS (point mode, enter data state)

y
X

The number 03 is entered into the high-order six
bits of the control state command (POINT!EDS).

The value 3 is added to the contents of location

(3)
mainfl.

(4) The location of the POINT!LDS is stored in cname
(if given).

Restrictions

(1) The values x and y must be positive integers, and
their values must not exceed 1023.

(2) This call causes the beam to be given an absolute

(3)

location, as opposed to a relative displacement. This-
action effectively severs any following parts of the
display from any preceding parts. If a section of

the display is completely defined in terms of relative
vectors, then its location on the display surface
depends on where the beam was initially located, and
it can be made to move as a unit by changing the
initial setting. Giving the beam an absolute location
disregards any previous motion and serves as a new
reference point in the display.

Cname is an optional output of this subroutine.
Using the same variable name as one used in a
previous call will destroy the previous contents.

f. Example
The following statement establishes an absolute beam

position at matrix coordinates y=10, x=10 of the display.

CALL SETPT (14,19)

2.2.4 PLOT Subroutine

The PLOT subroutine is the prime active agent in the generation
of the main display file. There are three forms of calls correspond-
ing to the three subpicture routines, COPY, LINE, and PRAMTR. They
are used to cause the displaying of predefined (but not necessarily
complete) subpictures and individual lines, and to introduce appro-
priate display control commands. In all cases, the requested
display or control function is identified as a separate entity
and may be manipulated independently of the rest of the display.
A. PLOT a Subpicture

a. Form

(1) FORTRAN: CALL PLOT (Q,pname[}cname)

(2) Macro-9:

.GLOBL - PLOT
JMS * PLOT
JMP .+4
.DSA (g
.DSA pname
EDSA cnamﬂ

b. Input Variables

pname is the name (first location) of the subpicture to
be displayed.

c. Output Variables

cname = Location of the group of display commands generated
by this call.

d. Description
(1) Two commands are added to the main display file:

PIJMP (display subpicture jump)
pname+2

2-22

(2) The number 02 is entered into the high-order six
bits of the PJMP.

(3) The value 02 is added to the contents of mainfl.
(4) The location of the PJMP is stored in cname (if given) .
Restriction
As in SETPT, cname is an outpuﬁ and multiple use of the
same variable name will destroy previous contents. |
Example

CALL PLOT (COPI,HOUSE(1l) ,MAIN) where:
COPI has been assigned the integer - value @ by a DATA
statement; HOUSE identifies the subpicture file to be
displayed and MAIN is an optional variable by which this

display may be referenced.

B. PLOT a Line (or reposition the beam)

Q.

Form
(1) FORTRAN: CALL PLOT (l,deltay,deltax,Itl}cname f

(2) Macro-9:

.GLOBL PLOT
JMS* PLOT
JMP .+6
.DSA (I
.DSA deltay
.DSA deltax
.DSA It
EDSA cname]

Input Variables

(1) deltay = Vertical displacement through which the beam
is to move.

(2) deltax = Horizontal displacement through which the
beam is to move.

(3) It = Line type.
1 visible

0 invisible

c. Output Variables
cname = Location of the group of display commands generated
by this call.

d. Description

(1) Three commands are added to the main display file:

VEC!EDS (vector mode, enter data state)
deltay (intensify bit = LT)
deltax (escape bit on)

(2) The number 03 is entered into the high-order six bits
of the VEC!EDS.

(3) The value 03 is added to the contents of mainfl.
(4) The location of the VEC!EDS is stored in cname (if given).

e. Restrictions

(1) Deltay and deltax are signed decimal integers not to
exceed 1023.

(2) As in SETPT, cname is an output and multiple use of
the same variable name will destroy previous contents.

f. Example
CALL PLOT (LYNE,1@gd@,189,0N,IEDGE(1))
where LYNE and ON have assigned values of 1 and IEDGE(1l) is

a display identifier to be used for later reference to this

line.

C. PLOT a Control Command
a. Form
(1) FORTRAN: CALL PLOT (2,featr,value[}cnamé])

(2) Macro-9:
. GLOBL PLOT

JMS* PLOT
JMP ++5
.DSA (2
.DSA featr
.DSA value
EDSA cname:l

b.

£.

Input Variables

featr , value.

NOTE
The variables featr and value must be
specified in the same manner as for
PRAMTR statements. Refer to paragraph
2.1.4 for detailed information.

Output Variables

cname = Location of the group of display commands generated.
by this call.

Description

(1)

(2)

(3)

(4)

This subroutine adds one or more commands to the
display file depending on the type of argument list
used:

SC value or
INT value or

LPON if value=1, LPOF if value=0 or
BKON if wvalue=1l, BKOF if value-0

The number 01 or more is entered into the high-order
six bits of the command.

The value 01 or more is added to the contents of mainfl.

The location of the command is stored in cname (if given).

Restrictions

(1)

(2)

This call must be used with care, since the setting given
is in effect until explicitly changed in this or some
other part of the display. Thus if the blink is turned
on before calling a subpicture, it must be turned off
after the call in order that only that subpicture blinks.
Otherwise, the whole display will blink.

As in SETPT, cname is an output and multiple use of the
same variable name will destroy previous contents.

Example

(1)

Single-feature statement

CALL PLOT (2,8,1)

2.2.5

(2) Multiple-feature statement
CALL PLOT(PRAM,SCALE+INT+LPEN,@,4,1,IN)

cstablishes the values @ and 4 for display feature
SCALE and INT, turns the light pen option (LPEN) on,
and specifies the location IN as the first location
of the array containing the display code generated
by this statement (PRAM = 2),

DELETE Function

The function DELETE is used to delete from the main display file any

display entity formed by a single call to a main file subprogram and

assigned to cname. If cname does not point to the beginning of such

a display entity, the DELETE fails and has no effect on the display

file.
a.

(1)

(2)

Form
FORTRAN : i = DELETE (cname)
or CALL DELETE (cname)

Macro-9:
.GLOBL DELETE
JMS* DELETE
JMP .42
.DSA cname
DAC i /if desired

Input Variables
cname = Location of the group of display commands to be
deleted.

Output Variables

i = Boolean'success indicator;
.TRUE. successful deletion-.
.FALSE. unsuccessful deletion.
Description

(1) Check if cname points to a display entity; do nothing
if not.

(2) Replace all commands in this group by display
no-operation (NOP) commands.

(3) Insert sequential numbers in the high-order six
bits of immediately adjacent free storage locations,
starting from the bottom of this group and moving up
in the display file.
e. Restrictions
None -
f. Example
CALL DELETE (NAME(2))
Deletes from the main display file the display entity whose

first command is pointed at or identified by the second

element of array NAME.

2.2.6 REPLOT Function

The function REPLOT allows use to be hade of previously defined
locations in the main display file. This can serve two purposes:

(1) to reuse locations freed by DELETE, and (2) to change an exist-
ing group of display commands. REPLOT checks whether the group being
inserted is longer than the space pointed at by cname. ' If it is,

the REPLOT fails and the display file is not affected. By manipulat-
ing cname, smaller groups can be packed into the space formerly used
by a larger group. For example, up to three control commands could
be inserted into the space left by a DELETEd LINE group. There are
three forms of calls to REPLOT, each of which is the same as the

corresponding call to PLOT.

It is important to note that while cname is an optional output of
PLOT it is a required input of REPLOT since it identifies the loca-
tions to be modified in the main display file It also must be
recognized that cname must have been given as an argument to a PLQf

call for it to be available for REPLOT.

2-27

A. REPLOT a subpicture
a. Form
(1) FORTRAN: i = REPLOT (f,pname,cname)
or CALL REPLOT (copy,pname,cname)
(2) Macro-9:

.GLOBL REPLOT

JMS* REPLOT

JMP .44

.DSA (g

.DSA pname

.DsA chame.

DAC i /if desired

b. Input Variables

(1) pname is the name (first location) of the subpicture
to be displayed.

(2) cname = Location in which to store the display commands
generated.

c. Output Variables

i = Logical success indicator.

.TRUE. REPLOT successful,
.FALSE. not enough room at location pointed
to by cname, no actien.

NOTE: If the above form is used, both i and
REPLOT must be declared as LOGICAL in a type
statement.

d. Description

(1) Check if cname points to a large enough block; do nothing
if not. :

(2) 1Insert two commands at the location pointed to by cname:

PIMP
pnhame+2

(3) The number 02 1is entered into the high-order six bits
of the PJOMP.

(4) Subtract 2 from the sequential numbers in the high-order
six bits of any adjacent free storage locations above
this.

(5) 1Insert NOP's in any remaining locations belonging to
a former command group at this address.

e. Restrictions
None .
f. Example
CALL REPLOT (Q,SLIDE(M),NAME)
where @ indicates the function (i.e. subpicture), M
represents the first location of the subpicture display
file (in array SLIDE) and NAME identifies the location in
the display file into which this line is to be inserted.
B. REPLOT a line (or reposition the beam)
a. Form
(1) FORTRAN: i = REPLOT (1l,deltay,deltax,It,cname)

or CALL REPLOT (line,deltay,deltax,It,cname)

(2) Macro-9:

.GLOBL REPLOT

JMS* REPLOT

JMP .+6

.DSA (1

.DSA deltay

.DSA deltax

.DSA It

.DSA cname

DAC i /if desired

b. Input Variables

(1) deltay = Vertical displacement through which the beam
1s to move.

(2) deltax = Horizontal displacement through which the
beam is to move.

(3) It = Line type.
1 visible
0 invisible
(4) cname = Location in which to store the display

commands generated.

c. Output Variables,

i = Logical success indicator.
.TRUE. REPLOT successful,
.FALSE. not enough room at location pointed

at by cname, no action.

NOTE: If the above form is used, both
i and REPLOT must be declared as LOGICAL
in a type statement.

d. Description

(1) Check if cname points to a.large enough block, do
nothing if it does not.

(2) Insert three commands at the location pointed to
by cname:

VEC!EDS (vector mode, -enter data state)
deltay (intensify bit = It)
deltax (escape bit on)

(3) The number 03 1is entered into the high-order six
bits of the VEC!EDS.

(4) Subtract the value 3 from the sequential numbers
in the high order six bits of any adjacent free
storage locations above this.

(5) Insert NOPs in any remaining locations belonging to
a former command group at this address.

e. Restrictions
Deltay and deltax are signed decimal integers not to
exceed 1023.

f. Example

CALL REPLOT (LYNE,Y,X,0OFF,DISPL)

where the first four arguments are aésigned the values 1, 50,
50 and 0 respectively, causing the beam to be moved, not
intensified, up 50 raster units and to the right 50 raster
units. DISPL identifies the location in the display file

into which this line is to be inserted.

C.

REPLOT a Control Command

a. Form

(1) FORTRAN: i =

Z

REPLOT (i)featr,value,cname) or

CALL REPLOT (mode,featr,value,cname)

(2) Macro-9:

.GLOBL REPLOT

JIMS* REPLOT

JMP .+5

.DSA (2

.DSA featr

.DSA value

.DSA cnhame

DAC i /if desired

b. Input Variables

featr, value.

NOTE: The variables featr and value must be
specified in the same manner as for PRAMTR
statement. Refer to paragraph 2.1.4 for
detailed information.

c. Output Variable

i = Logical success indicator,

.TRUE. REPLOT successful.
.FALSE. not enough room at location pointed
to by cname, no action.
NOTE: If the above form is used, both i

and REPLOT must be declared LOGICAL in a
type statement.

d. Description

to a large enough block
do nothing if it does not.

(1) Check whether cname points
(i.e., to a free location);

commands to
of argument

(2) The REPLOT subroutine adds one or more
the display file depending on the type
list used:

SC value or

INT value or
LPON if value
BKON if value

1, LOPF if value =
1, BKOF if value =

. or

il
o o

2-31

(3) The number 01 or more is entered in the high-order
six bits of that command.

(4) Subtract 1 or more from the sequential numbers in
: the high-order six bits of any adjacent free
storage locations above this.
€. Restrictions
This call must be used with care, since the setting given is
in effect until explicitly changed in this or some other part
of the display. Thus if the blink is turned on before calling
a subpicture, it must be turned off after the call in order
that only that subpicture blinks. Otherwise the whole display
will blink.
f. Example
CALL REPLOT (PRAM,BLINK,I,IBL1)
where the first two arguments are assigned the values 2 and
8 respectively, I may represent either ON or OFF, and IBL1l

identifies the location in the display file into which this

line is to be inserted.

2.2.7 RSETPT (Set Point) Subroutine

The function RSETPT permits absolute beam locations previously
defined by SETPT to be redefined. This function can be used in the
same mannér as REPLOT to reuse any deleted locations or to change
any existing group of commands. The same checking of needed space
versus available space as is done by REPLOT takes place in RSETPT.
a. Form |
(1) FORTRAN: i = RSETPT (y,Xx,cname) or

CALL RSETPT (y,x,cname)

(2) Macro-9:

.GLOBL RSETPT

JMS * RSETPT

JMP .+4

.DSA Y

.DSA X

.DSA cname

DAC i /if desired

b. Input Variables

(L) vy = Vertical coordinate of beam location,
(2) x = Horizontal coordinate of beam location,
(3) cname = Location in which to put the display

commands that are generated.

c. Output Variables
i = Logical success indicator

.TRUE. RSETPT successful.
.FALSE. Not enough room at location
pointed to by cname, no action.

NOTE: If the above form is used, both
i and REPLOT must be declared LOGICAL
in a type statement.

d. Description

(1) Check if cname points to a large enough block, do
nothing if it does not.

(2) Insert three commands at the location pointed to
by cname:

POINT:!EDS

Y
X

(3) The number 03 is entered into the high-order six
bits of the POINT!EDS.

(4) Subtract 3 from the sequential numbers in the high-
order six bits of any adjacent free storage locations
above this.

(5) 1Insert NOP's in any remaining locations belonging to
a former command group at this address.

c. Restrictions

(1) x and y must be positive integers, the value of which
must not exceed 1023.

(2) This call causes the beam to be given an absolute
location, as opposed to a relative displacement.
This effectively severs any following parts of the
display from any preceding parts. If a section of
the display is completely defined in terms of relative
vectors, then its location on the display surface
depends on where the beam was initially located, and
it can be made to move as a unit by changing the
initial setting. Giving the beam an absolute location
disregards any previous motion and serves as a new
reference point in the display.

f. Example
CALL RSEPT(1¢,14,NAME)
where the value of 1f is assigned to the x and y

coordinates and NAME identifies the loéation into the

display file into which this line is to be inserted.

2.3 INPUT SUBPROGRAMS

Input subprograms enable the user program to deal with display console
interaction using the light pen and pushbuttons. These routines can
inform the user whether there has been a light pen or pushbutton
action and, if so, the appropriate information is returned. The

user program is not (logically) interrupted when such action occurs.
Light pen or pushbutton action at the console merely causes an indica-
tor to be set in the corresponding routine, and this may affect the
user's flow of control at his discretion. The light pen tracking
routine provides a somewhat different use of the light pen, allowing

the user to control input and generation of graphics.

2.3.1 LTPN Functions

The function LTPN is used to determine whether a light pen hit has

occurred. If it has not, the function returns an indicator to this

effect. If it has, the logical (name of the display element hit)
and physical (y and x raster coordinates) location of the light pen
and the status of the pushbutton box are returned as well as the
indicator- that a hit has occurred. For example, this routine may
be used as a switch in a FORTRAN logical IF statement (see item "f").
The IF could bganch to itself if no hit has occurred, or to the
user's light pen hit processing code if a hit has occurred.

a. Form

(1) FORTRAN: i = LTPN(y,x,cname,pb)

NOTE: The variable i, LTPN, and pb
must be declared LOGICAL in a type

statement.

(2) Macro-9:
.GLOBL LTPN
JMS* LTPN
JMP .+5
.DSA y
.DSA X
.DSA cname
.DSA pb
DAC i

b. 1Input Variables
None

c. Output Variables

(1) i = Logical indicator.
.TRUE. 1 @ light pen hit has occurred,
.FALSE. no light pen hit has occurred.

(2) vy = Vertical coordinate of light pen position,
(0 <y <1023 raster units),.

(3) x = Horizontal coordinate of light pen position,

(0 < x < 1023 raster units),

]

(4) cname Location in the main display file of the
group of commands causing this entity to be

displayed.

1 .
If i = .FALSE. items (2) through (5) have no meaning.

d.

{(5) pb represents an array each element of which will
contain either the logical .T. or .F. corresponding
to ON or OFF for each of the 12 control box push-
buttons.

Description

(1) Issue a read on light pen interrupt to the display
device handler.

(2) Return if no interrupt was posted.

(3) Read display registers and translate into display
file locations.

Restrictions

Care must be taken when using this routine in conjunction
with the Main Display File routines. Because of conflict-
ing requests to the 339 Device Handler, the Main File
routines clear the request for pending light pen interrupts.
Thereafter, pntil LTPN has been called again, a light pen

interrupt is not recognized. Thus, in the sequence

A I = LTPN(...)
B CALL REPLOT(...)
(3 I = LTPN(...)

a light pen interrupt occurring between A and B will set

I = .TRUE., but will have no effect on the segment between
B and C.

Example

The following statement illustrates the use of LTPN as a
switch in a FORTRAN IF statemenf:

IF(LTPN(LPY,LPX,NAME,PB)) GO TO 149

[
I

36

In the above statement, if a hit has occurred (LTPN
is .TRUE.) the y and x coordinates of the hit, the

name of the display element detected and the status
of the pushbutton control box are indicated and the

program is directed to execute statement 18¢.

2.3.2 PBTN Function

The function PBTN is used to determine whether a pushbutton or the
manual interrupt button has been depressed. This function works
like LTPN, in that it answers the question, "Has the expected action
taken place?" The user program then decides what to do, based on
the answer.
a. Form
(1) FORTRAN: 1 = PBTN (pb)
(2) Macro-9:

.GLOBL PBTN

JMS* PBTN
JMP .+2
.DsSA " pb
DAC i

b. Input Variables
None.
c. Output Variables
(1) i = Logical indicator.

.TRUE. = a button was pushed.
.FALSE. = no button was pushed.

(2) pb represents an array each element of which will
contain either the logical .T. or .F. corresponding
to ON or OFF for each of the 12 control box push-
buttons.

d. Description

(1) Issue a read on pushbutton or manual 1nterrupt to
the display device handler.

(2) Return if no interrupt was posted.
(3) Read pushbutton status register.

e. Restrictions
Care must be taken when using this routine in conjunction
with the Main Display File routines. Because of conflict-
ing requests to the 339 Device Handler, the Main File
routines clear the request for pending pushbutton
interrupts. Thereafter, until PBTN has been called again,

a pushbutton interrupt is not recognized. Thus in the

sequence
A I = PBTN (PB)
B CALL REPLOT(...)
C I = PBTN(PB)

a pushbutton interrupt occurring between A and B will set
I = .TRUE., but will have no effect on the segment between

B and C.

2.3.3 TRACK Subroutine

The TRACK subroutine is used for light pen tracking. Calling TRACK
causes the proper linkage to be set up to the main display file, and
a tracking pattern is displayed which will follow the motion of the
light pen. This routine remains in control, displaying and moving
the tracking pattern, until any pushbutton or the manual interrupt
button is depre§sed. At this point, control is returned to the user
program with the physical location of the trackihg pattern indicator

point and the status of the pushbutton box. The tracking pattern

will continue to be displayed, but it will not track the light pen
until TRACK is called again. If desired, the user can DELETE the
tracking pattern; he can also BLANK or UNBLNK the display file
TRCK if he has declared EXTERNAL or .GLOBL TRCK. When calling
A TRACK, the starting location of the tracking pattern can be
specified, and the indicator point can be constrained against
horizontal movement, vertical movement, or any movement (to move
the tracking pattern away from the point); by setting the appropriate
starting coordinate negative.
a. Form
(1} FORTRAN: CALL TRACK (ty,ix,cname,pb)
I = TRACK(iy,ix,CNAME,pb)

(2) Macro-9:

.GLOBL TRACK
.JMS TRACK
JMP .+5
.DSA Yy
.DSA X
.DSA cname
.DSA pb
.DAC I

b. Input Variables

(1) vy = Vertical coordinate in raster units of the

tracking pattern initial position. If

negative, the indicator point is constrained
to horizontal motion at this vertical
coordinate.

(2) x = Horizontal coordinate in raster units of
the tracking pattern initial position. If
negative, the indicator point is constrained

to vertical motion at this horizontal
coordinate.

2-39

(3) cname = Location in the main display file of the
group of commands causing the tracking
pattern to be displayed.

0 Add those commands to the display file,

non-0 Those commands are in the file and
pointed to by cname (if cname con-
tains any other value the tracking
pattern commands are not inserted
and I is set to .FALSE.)

c. Output Variables
(1) I = Logical success indicator.

.TRUE. TRACK was inserted.

HoH

.FALSE. cname points to some unknown
location.
(2) vy = Present position vertical coordinate in

raster units of the tracking pattern
indicator point. If input y was negative
(constrained), neither sign nor magnitude
has changed.

(3) x = Present position horizontal coordinate in
raster units of the indicator point. If
input x was negative (constrained), neither
sign nor magnitude has changed.

(4) cname Location in the main display file of the
group of commands causing the tracking

pattern to be displayed.

(5) pb represents an array each element of which

will contain either the logical .T or .F
corresponding to ON or OFF for each of the
12 control box pushbuttons.

d. Description

(1) Insert starting position and constraints in tracking
pattern display file.

(2) If input cname = 0

(a) Five commands are added to the main display file:

PJIMP

TRCK :

POINT!EDS These commands return the
Y beam to the main part of
X the display.

(b) The number 05 is entered into the high-order
six bits of the PJMP.

(c) The value 5 is added to the contents of the
first location of the main display file, mainfl.

(d) The location of the PJMP is stored in cname.
If input cname points to a PJMP TRCK, go to item (3).

If input cname points to anything else, set
I = .FALSE. and return to user.

(3) 1Issue a read on light pen, pushbutton, or manual
interrupt to the display device handler.

(4) If a light pen hit occurs on the tracking pattern,
move it in the appropriate direction and return to
item (3).
(5) If a pushbutton or manual interrupt occurs, read the
indicator point position and the pb values
and return to the user program.
e. Restrictions
The values y and x are decimal integers not to exceed
1023 in magnitude.
f. Example

CALL TRACK (Y2,X2,NAME(l) ,PB)

2.4 RELOCATABLE DISPLAY FILES

The subroutines DYSET and DYLINK are used to allow display main or
subpicture files, which refer to each other (via COPY or PLOT
(g,...), to be output and input relocatably. Prior to ou;putting,
interdependent display files and their user-assigned ASCII names

are listed as arguments in a call to DYSET, which converts each sub-
picture call to the ASCII name of the subpicture being called.v
After input, and prior to displaying, a corresponding call is made
to DYLINK, which uses the listed ASCII names to reinstate the
appropriate subpicture calls. Note that a display file cannot be
displayed after having been processed by DYSET; DYLINK must be

used to return it to displayable form.

2-41

2.4.1 DYSET Subroutinc

The DYSLT Subroutine converts subpicture calls to a symbolic form
independent of core memory location, using specified ASCII strings.
a. Form
(J) FORTRAN: CALL DYSET (PNAMEl,ASCIIl,...,PNAMEN,ASCIIN)

(2) Macro-9:

. GLOBL DYSET

JMS* DYSET

JMP 2*N+.+1 Where N is the
.DSA PNAME number of display
.DSA ASCII1 files in the call.
.DSA PNAMEN

.DSA ASCIIN

b. Input Variables:

(1) The PNAMEs are the first locations of the inter-
dependent display files, both calling and called.

(2) The ASCIIs are the names of real arrays containing
9 characters of 5/7 IOPS ASCII (which may be used for
file names on output).

c. Output Variables:
None |
d. Description:
(1) DYSET searches each listed display file (PNAME) for
PIJMPs. When it finds one, it appends the ASCII name
of the file being called to the file being searched,

if that name is not already there. -

(2) The operand of the PIJMP is made a relative pointer
to the ASCII name of the called display file.

(3) The contents of PNAME (the display file length) are .
increased by 4 each time an ASCII name is appended
to the file. '

e. Restrictions:
(L) Spacce provided for a display file must include 4

locations for each subpicture call it makes, if it
is to be set up for reclocation.

(2) Display commands must not be added to a display
file nor can it be displayed once it has been
processed by DYSET, or until after it has been ‘
processed by DYLINK. (Thus DYSET must be called
after DCLOSE for a main display file.)

(3) It is the user's responsibility to list all
relevant display files when calling DYSET. The
subroutine does not check the list for complete-
ness in order to allow multiple calls to it.

2.4.2 DYLINK Subroutine

The DYLINK Subroutine converts ASCII disp}ay file names to sub-
picture calls on the corresponding diﬁplay files.
a. Form
(1) FORTRAN: CALL DYLINK (PNAME1l,ASCIIl,...,PNAMEN,ASCIIN)

(2) Macro-9:

.GLOBL DYLINK

JMS * DYLINK Where N is the
JIMP 2*N+.+1 number of display
.DSA PNAME 1 files in the call.
.DSA ASCII1

.DSA PNAMEN

.DSA ASCIIN

b. Input Variables

(1) The PNAMEs are the first locations of the inter-
dependent display files, both calling and called.

(2) The ASCIIs are the names of real arrays containing
9 characters of 5/7 IOPS ASCII (which may be used
for file names on output).

c. Output Variableé
None ,
- d. Description
(1) DYLINK searches each listed display file for PJMPs.
When it finds one it searches the argument list

for a pointer to an ASCII string equal to the one
pointed at by the operand of the PJIMP.

(2)

The operand of the PJMP is replaced by the
address of the corresponding subpicture file,
obtained from the argument list.

(3) The contents of PNAME (the display file length)
are reduced to the actual number of display
commands in the file (excluding the ASCII blocks).

e. Restrictions
(1) It is the user's responsibility to list all

relevant display files when calling DYLINK. The
subroutine does not check the argument list for
completeness, to allow multiple calls.

f. Example

(1)

Display files have been created in integer arrays
ID1 and ID2. 1ID1 uses files starting at ID2(1)
and ID2(47) as subpictures (via calls to COPY).

It is required to write the files out relocatably,
on logical unit number 5.

DIMENSION TITL1(2), TITL2(2), TITL3(2)
DATA TITLl1(l), TITL1(2)/5HPICT1, 4H BIN/,
1 TITL2(1l), TITL2(2)/5HPICT2, 4H BIN/,
2 TITL3(l), TITL3(2)/5HPICT3, 4H BIN/

CALL DCLOSE (ID1(1))

CALL DYSET (IDl(l),TITLl,IDZ(l),TITLZ,ID2(47),TITL3)
CALL ENTER (5,TITL1)

J=ID1(1)+1

WRITE (5)

(ID1(1), 1I=1,J)

CALL CLOSE (5,TITL1)

CALL ENTER (5,TITL2)

WRITE (5) (ID2(l), I=1,46

CALL CLOSE (5,TITL2)
CALL ENTER (5,TITL3)
J=ID2(47)+1

WRITE (5) (ID2(l), I=47,J)

CALL CLOSE (5,TITL3)

2-44

(2) These display files are now to be input from unit 5
into array IA. The same DIMENSION and DATA
statements as shown in (1) are required.

CALL SEEK (5,TITLL)

READ (5)J,(IA(I+1), I=1,J)
ID (1)=J

CALL CLOSE (5,TITLL1)

CALL SEEK (5,TITL2)

K=J+2

READ (5)J, (IA(I+K), I=1,J)
IA(K)+J

CALL CLOSE (5,TITL2)

CALL SEEK (5,TITL3)

L=J+2

READ (5)J, (IA(I+L),I+1,J)
IA(L)=J

CALL CLOSE (5,TITL3)

CALL DYLINK (IA(1),TITL1,IA(K),TITL2,IA(L),TITL3)
CALL DINIT (IA(1l))

CHAPTER 3

SYSTEM I/0 DEVICE HANDLER

The 339 Graphic Display Device Handler provides an interface
between the usecr and the hardware which conforms to the con-
ventions of the Input/Output and Keyboard Monitor Systems, as

described in DEC manual Monitors, Advanced Software System,

Doc. No. DEC-9A-MAD@Z-D. Input or output functions are initiated
by standard user program commands and all.display interrupt
management is done automatically>by the handler. The primary
goals of the device handler are to relieve the user from writing
his own device handling subprograms and to centralize all direct
communication between the PDP-9 and the display controller. To
start up a display, the user generates a display file consisting

of display commands as described in the Programmed Buffered Display

Type 339 User's Handbook, then calls the device handler to start it

3

running. To interact with it, the device handler is used to read
display controller registers and to dispatch on appropriate

interrupts.

3.1 LEGAL. FUNCTIONS

3.1.1 L.INIT (Initialize) Macro

The macro .INIT causes the display to be initialized and must be
given before any other I/0 macro to the display is issued. The
display is initialized according to five words of standard settings
contained in the handler. The user may optionally substitute his

own settings for the latter four of these. The first of the five

words contains the location of the pushdown pointer list, which

is supplied by the Monitor. This location is returned to the

user by the .INIT call.

The device handler is connected to the Monitor interrupt system
(PIC or API) in the same manner as other system device handlers.
a. Form
JINIT a,f,r

b. Variables

a = Device Assignment Table (.DAT) slot number (in octal)-.
‘ f = Initialization flag:
0 use standard display initialization-
1 user's initialization is pointed to by r.
rl = Optional pointer to user's initialization settings.
c. Expansion
LOC CAL =f5_g +a9;17
LOC+1 1
LOC+2 r
LOC+3 n /location of pushdown pointer 1list.

lIf f=1, r points to a block of four words containing initial
settings for (a) Display status, (b) Pushbuttons 0 through 5,

(c) Pushbuttons 6 through 11, (d) Character generator. If

the character generator word is f#, the standard setting described
in sub-paragraph d. (1) (e) and the system character tables are
used. For a detailed description of these settings refer to
3.1.1.1, items a, b, and c.

d. Description

(1) 1Initialize display (as described for the IOT's
prescnted in a. through c¢. of 3.1.1.1); normal
settings are:

(a) Pushdown Pointer points to the location of
thie Pushdown Pointer List in the Monitor area.
(b) Display status is set to

1.
2,
3.

4.

~N oy

.

(D

disable edge flag interrupts

enable light pen interrupts

reenable light pen cne data request

after hit

allow full 13 bit x and y beam position
registers

enable the intensification bit in data state
inhibit edge flags

enable pushbutton interrupts

enable internal stop interrupts

(c) Pushbuttons 0 through 5 are set to 0 (off).
(d) Pushbuttons 6 through 11 are set to 0 (off),
(e) Character generator is set to

1
2.
3.

lower case

6-bit code

high-order six bits of the character
routines' starting address, within the
Monitor. This assumes the use of the
optional VC38 Character Generator. If
the VA38 Character Generator is used,
no special settings are required and
Step (e) is omitted,

(2) Return Pushdown Pointer list location to LOC+3.

(3) Connect handler to PIC or API.

(4) Clear the read-busy switch.

NOTE:

If f=g and r=1l, clearing the read—buéy

switch is the only action taken by the handler.

3.1.1.1 INITIALIZATION SETTINGS - The standard settings and character

tables for IOTs , SIC, LBF, and SCG are those used for the initializa-

tion of the display.

A complete description of each of these IOTs

is given in the following:

a. SIC 700665 Set Initial Conditions - SIC sets up a number

of status registers in the display. The instruction

enables four display flags onto the interrupt line, sets

the page size to 10, 11, 12, or 13 bits in x and y and
light pen conditions. One of three options is available

in the cvent the display is resumed after a light pen hit.
The light pen can be left on; it can be turned off com-
pletely; or it can be turned off until the completion of
the present command, then automatically turned back on at
the next data request. A register tells the display to
ignore all edge flags; therefore, when the position register
overflows, the edge flag is inhibited and the display con-
tinues in a normal fashion. Another register overrides the
intensification bit in data state, causing all beam move-
ments to be intensified. This feature is used principally

for diagnostic purposes.

SIC
Internal
. ol nterna
Edge L.P. L.P. Resume ' . ' . Intensify|Inhibit| P.B. Stap
Inter= | Inter= Ootions Y Dimension X Dimension All Edge | Inter-
ptions . Inter-
rupt rupt Points | Flags | rupt
rupt
6 7 8 2 10 B 12 13 14 15 16 17
‘Bits Interpretation
6 Enable edge flag interrupt
7 Enable light pen flag interrupt
8 If bit is a 0, do not disable light pen after the resume; if bit isa 1, bit 9
indicates when to reenable the light pen
9 If bit is a O, reenable light pen on the first data request after the display is
resumed. If bit is a 1, the light pen hit is equivalent to a LPOF command.
10,11 Set y dimension
00: 9.375 in. (10 bits)
01: 18.75 in. (11 bits)
10: 37.5 in. (12 bits)
11: 75.0 in. (13 bits)
12,13 Set x dimension, same as y
14 Intensify all points
15 Inhibit edge flags
16 Enable interrupt on pushbutton hit
17 v Enable interrupt on internal stop flag

3-4

LBF 700705 Load Break Field - This instruction has two

functions. First, it loads the break field register when
initializing the display; second, it sets the pushbutténs.
Both functions have enable bits so that one may be
executed without the other. 1If neither enable bit is up,
the IOT pulses have other meanings (STPD-700704 and

SPES-700701) .

Break Field . Pushbuttons

6 7 8 9 10 11 12 13 14 15 16 17

Bits ‘ Interpretation

6 Enable change of break field

7,8,9 New break field

10 Enable change of pushbuttons

B If bit is a O, set pushbuttons 0-5 according to AC bits 12-17; if bitisa 1,

set pushbuttons 6-11 according to AC bits 12-17.

12-17 New pushbutton states.

b. SCG 700743 Set Character Generator -SCG sets the SAR,
Case and CHSZ.
Spare Case | CHSZ} Spare SAR

6 7 8 9 10 11 12 13 14 15 16 17

Bit(s) v "~ Interpretation

6,7,8 Spare

9 Sct case O-lower 64

1-upper 64
10 Set code size 0-6 bit character format
1-7 bit character format
1 Spare
12-17 Starting address register

3-5

3.1.2 .READ Macro

The .READ macro is used for input to the user program from the hard-
ware registers of the display controller. It provides the capabil-
ity to read specified display registers at any time, or in response
to specified interrupts. The user may select standard groups of
registers to be read, in response to each possible display interrupt
flag, or he may indicate his own grouping of flags and registers.
This is done with an optional descriptive word following the .READ
macro. The first six bits of that word indicate which interrupts
are of interest, and the next 10 indicate the registers to read if

any of those interrupts are set.

.READ results in loading into the user-specified buffer a descriptive
word of the same form as the optional argument, with only one of the
first six bits turned on to indicate which interrupt flag actually
was set. The next 10 bits indicate which registers were read, and
the contents of those registers are stored in the following words of
the buffer. Only one .READ is serviced at a time.. If no interrupts
are specified, results are returned immediately and another .READ can
be honored. If any interrupts are specified, results are not returned
until an interrupt has occurred. The user specifies an interrupt
flag count (i.e. the number of set flags specified to be of interest);
the .READ will accumulate this flag count before it finishes enter-
ing the specified number of descriptive-word data groups into the
buffer. Note that more than one flag may be set at interrupt time,
depending on which flags have been enabled_onto the interrupt line.

A .READ given in the interim has the effect of a .WAIT, that is, the
user program waits until the first .READ is completed, then accepts

the second one and proceeds.

Form

.READ a, m, 1, w

nstd /optiocnal word describing non-standard groups

Variables

.DAT slot number.

a
m = Type of read

0 Read PDP, S1, S2, PB now (no interrupt).

1 Read PDP, XP, YP, DAC, PB if light pen interrupt
flag is set.

2 Read PDP, XP, YP, DAC, PB if manual interrupt flag
is set.

3 Read PDP, XP, YP DAC, PB if pushbutton interrupt
flag is set.

4 Read PDP, XP, YP, DAC, PB if edge flag interrupt
flag is set.

5 Read PDP, XP, YP, DAC, PB if internal stop
interrupt flag is set.

6 Read PDP, XP, YP, DAC, PB if external stop interrupt
flag is set.

7 nstd specifies registers and interrupt flags as

follows:
bit 0 on service light pen interrupt.
bit 1 on service manual interrupt.
bit 2 on service pushbutton interrupt.
bit 3 on service edge flag interrupt.
bit 4 on service internal stop interrupt.
bit 5 on service external stop interrupt.
bit 6 on read Pushdown Pointer (PDP).
bit 7 on read X-position register (XP).
bit 8 on read Y-position register (YP.
bit 9 on read Display Address Counter (DAC).

bit 10 on read Status 1 (S1).

bit 11 on read Status 2 (S2).

.bit 12 on read Pushbuttons (PB).

bit 13 on read Slave Group 1 (SGl).

bit 14 on read Slave Group 2 (5G2).

bit 15 on read Character Generator (CG).
bit 16 on no registers are read.

1 = Return buffer address
C(l) = Descriptive word showing what this interrupt

was and which registers were read in the order
listed above.

- C(l+1) = Contents of first register actually read.
C(1+2) = Contents of second register read, etc.
w = Interrupt count, number of interrupt occurrences this

.READ will service before finishing.

3-7

c. Lxpansion

LOC CAL+m6_8 tag_y9
LOC+1 10
LOC+2 1
.DEC
LOC+3 -W /decimal
LOC+4 nstd
d. Description

(1) Wait for previously requested interrupt(s) to occur.

(2) Load user's previous .READ buffer with descriptive
word and data.

(3) Determine interrupts to service and registers
for current .READ.

(4) Turn on Input Busy flag.

3.1.3 .WRITE Macro

The macro .WRITE is used to transmit information from the user
program to the display controller. Once a displgy file has been
generated, its location is passed on to the display controller by
a call to .WRITE, and the display starts up. .WRITE is also used
to stop the display, by issuing an external stop, and to restart
the display if it has been stopped. A .WRITE to the display is
completed immediately and requires no waiting, since this only
involves issuing I0Ts to the display. Executing a list of display
commands 1is a continuing process and does not end until the user
specifically ends it.

a. Form

.WRITE a, m, 1, w

b. Variables

Il

a .DAT slot number (octal).

It

m Type of write

0 restart display (L not required) .
1 resume display after internal stop,

NOTE: The display is automatically resumed
after light pen or edge violation interrupts.

2 stop display (issue external stop).
4 start display pointed at by 1.

1 Display file starting address.

w Not used by this macro.
c. Expansion
LOC CAL+mg_g +ag_17
LOC+1 11
LOC+2 1
.DEC
LOC+3 -w /decimal
d. Description
Determine function requested and issue cofresponding
I0Ts.
It should be noted that there are no restrictions regarding the
manner in which the user may generate a display file. He is
responsible for its contents and ﬁeaning, as well as such details
as ending the file with a JUMP to its beginning to keep the image
refreshed. One problem that frequently occurs is that of storage
for display files, which tend to become large very rapidly. A
solution to this problem is the use of a bulk storage device for
temporary storage of these files. For example, a file-oriented

device, such as DECtape, could be used very conveniently to store

display filces by name; these files would then be read into core
storage immediately before displaying. Each such file could be
generated and then written on a DECtape by the sequence

.INIT DECtape

.ENTER filename

.WRITE (in Dump Mode)

.CLOSE DECtape
This procedure uses Dump mode in order to leave the display file
in the same format in which it was generated. Retrieval of the
file would be accomplished by the sequence

.INIT DECtape

.SEEK filename

.READ (in Dump Mode)

.CLOSE DECtape
A .WRITE to the display device handler, using the same buffer

pointer, would then start the displav running.

Another approach would‘be to store several display files as one
storage file. In this case, the .INIT DECtape and ENTER filename
would refer to the storage file rather than an individual display
file. A .WRITE, in Dump mode, would be given for each display file
to be output. Such an approach requires the user to keep his own
word counts (which could be done by creating a word, containing the
length of the display file, at the beginning of each file). Re-
trieval, in this case, is performed by an .INIT DECtape and a .SEEK
filename, followed by a segquence of

.READ count word

.READ number of words specified by count

word into display buffer

for each display file making up the storage file.

3.1.4 .WAIT Macro
The WAIT macro is used to synchronize the user program with the
interrupt activity of the display. .WAIT is only defined with
respect to JREAD. If a .WAIT is given, the user program waits
until the previous .READ has completed, that is, the specified
number of interrupts has occhred. If the previous .READ specified
more than one kind of interrupt flag, the descriptive wérd(s) in
the input buffer can be interrogated to determine what flags were
set. .WAIT does not initiate any display activity.

a. ﬁorm

.WAIT a

b. Variables

a = .DAT slot number (octal).
c. Expansion
LOC CAL +ag_q
LOC+1 12

a. Description
(1) Allow previous .READ to complete.

(2) Load user's previous .READ buffer with descriptive
word and data.

(3) Turn off Input Busy flag.

3.1.5 L.WAITR Macro .

The .WAITR macro is used for the same purpose as the .WAIT macro,
also allowing the user program to proceed in line if the previous
-.READ is complecte. If it is not complete, control is given to

the location in the user program specified by the .WAITR call.

This allows the uscr to branch to some other part of his program
while waiting for Lthe (READ to finish. The user must continue to
check for completion by pcriodicaliy issuing .WAITRs or by issuing
a JWAIT. ‘ ’
a. Form
.WAITR a, addr
b. Variablés
a = .DAT slot number (octal),

addr = location in the user program to branch to if
input is not complete.

c. Expansion

LOC CAL +1000+aq_j-

LOC+1 12
LOC+2 addr

d. Description
(1) Branch on .READ incomplete to addr.

(2} Load user's previous .READ buffer with descriptive
word and data. :

(3) Turn Input Busy flag off.

3.1.6 - .CLOSE Macro

The .CLOSIE macro is uscd to terminate the current display. External
stop énd Clear Flags IOTs are issued. It ig up to the user to save
the display file if desired.
a. Form
.CLOSE a
b. Va;iables :

a = .DAT slot number (octal).

3.2

&

d.

Expansion
LOC CAL +a
9-17
Description
End currcent display.,

T

IGNORED FUNCTIONS

The following System I/0 macros are ignored by the 339 Display

Devige Handler:

a.

b.

C.

hé

JDLETE

. RENAM

.FSTAT

.ENTER

.CLEAR

~MTAPE

.SEEK

. TRAN

LEGAL DATA MODES

a.

Output - The data output to the display must be a valid
display file, consisting of display commands in both
control state and data state, as described in the

Programmed Buffer Display Type 339 User's Handbook. The

handler does no data conversion.
Input -~ Input from the display consists of the contents

of the various hardware registers in the display

~controller. These registers are described in the

Programmed Buffer Display Type 339 User's Hanabook.

APPLENDIX A
SAMPLE PROGRAMS
This appendix contains three self-annotated listings of 339

Graphics display programs written in FORTRAN IV using the routines

described in this manual.

HOUSE DISPLAY PROGRAM
The following program listing contains the Subpicture and
Main Display File programs required to generate the "house",

image shown in Figure A-1l.

| —

339 AS3ABET D
ALt EY

Figure A-1, House Display Image

C SAMPLE FORTRAY PROGRAM USING SUBPICTURF,MATN FILF AND INPUT ROUTINES
C FNISTY - TO TEST DISPLAY FILE LOAD/UNL UMD - .
COPYRINHT 19~4 DICGTTAL EQUIPMENT CORP,,MAYMARyY, MASS,
INTEGER ~1M50W,HOUSE
INTEGES ', UFF,SCALE,BLINK,COP],Y,X
INTEGEN MATNFLL,ENGE,NISPL,RL1,PrAM
LOG1CAL Y3,FPRTN,LTPN
INTECH & (400),8(120),C(40)
CNIMERSTOM SAMLI(2), SAM2L?2), SAMS(Z)
DIMEDS T wlNDGd(4ﬂ),HUUQE(l?D).AUDN(4),HUUPT(?).MINPT(2)
NIMERS iy “AINFL(ag),EHGE(4).Ph(12)
DATA Sa41(1), SAMI(2)/8HNDISPL, 41131/,
1 SAFZ201),SaM2(2)Y/SHDISPL, 4HPBIN/,
2 SAMA(1), SAM3I(2)Y/5HDISPL,4R3IH] v/
DATA ani»(1)/9H33%9 A/.ADUR(?)/%H“SAGF/.AHDH(K)/bHT ALL/,
1TADOR (A)Y /2HEY Y/, .
2 HOLUPT(1),MOURPT(2)/5HHOUSE , 4H SIN/Z, AINPT(1), WINPT (2)/
X hHe v aHWB TN/
TUATA LY b ,ON,SCALE/3#1/ ,PRAM, IMT /2827 ,0FF,COP1/2%0/,RBLINK
, 1 /47, ,x/22508/,I.PEN/A4/
C CLFEa¢ FIRST LOal[ONS OF WINDOW AND HOUSE T INDICATF NEW FILES.
VINDOW))=
. HOUSF (1) =4 :
C DRAn VERTICAL cAr s OF WINDOW (ORIGINZUPPER LEFT CiRWNER)
5 ag 11 = 1,3
CALLL LT oo (=15¢,W,1,WINDOW(1))
IF (1.r%.3) GO T 24
CALL LINE (150,51, m)

14 COMTIaIE .
C LRAwW HURTAONTAL =aws OF wINDOW (RETURNS TO O<[GIN)
v by ¢ 1 = 1,4 '

CCALL LTab (4,=-144,1)
IF ¢ [.re,4) GO TO 4%
CALL LIikE (%0,147,0)

I CONT I Ny
C ORIGIN UF HOUSH zLOWER LEFT CORNER
40 ' CAlLL LTvt (4,504, 1,HOUSE(L1))

CALL LIk (%83,4,1)
CALL LI&F (w,=544,1)
CALL LI~ (-583,7,1,HO0USF(1))
C POSIIIfw AFAF +UK LETTEKRS
CCALL LTaE (108,25,0)
C DRAw 17 CHARACTERS FROM ADDR., CHARACTERS AKE PLOTTFUD ON
c oA B#7 SPAOT MATRIX WITH 2 RASTER iwlTS RETWFEN, 1787=
Cc 119 FASTER UNITS OF HEAM DISPLACGHEMFANT IN X. (0 IN Y)
CoCallL Tr T (aDDR1),11)
CALL THXT(AULDR(3),7,HOUSE(1))
C CENTER AA[LHUX GLVER ADDRESS
CALL LINE (50,-25,0)
CALL LINF (#,-50,1)
CALL LINF (25,4,1)
Call LINF (n,50,1)
'"-ALL Ll (‘25.”:1)
C Run OIR)
CatL LInd (=150,117,¢)
CabL LiF (209,4,1)

]

c

CALL LIxt (4,100,1)
CALL) NF (‘2““;”;1)
Catl. LInFE (¥5,-95,0)
cab L L]y (lmn”;1rHU“SF(1))
CALL LIad (o,10,1)
vALL Lbar (=18,0,1)
GALL LNy (a.=14,1)
NRAW wl gk ' 5 :
© CALL Pea®TROINT, 7, HOUSF (1))
CALL LinF (405,-245,0)
DALL ey (NINQON(l))
CALL L Tre* (/l:dei.W)
TALL COrY (WHINDOW(1))
CALL PeaTROINT,S)
DRAw i‘(» Y)
O LALL LINE (20,185,8)
CAaLL LINF (2€Q,-275,1)
. CALL LTyd (=200,-275,1)
DRAN AL TEHNA
CALL LInt (102,4%0,0)
CALL LINF (10@3,4.,1)
CALL LINF (A,-52,0)
CALL LINE (v,100,1)
CcaLbL LINF (=1d,=-4¢,4)
CALL LINF (4,-29,1)
CALL LINF (~12,-15,8)
CALL LTt (‘.":Sﬁlj)
CLOSF FIGURE (RELM BACK TO ORIGIN)
CALL LiInk (-7300,-414,0)
USE 4ali FILF anD INPUT KROUTINFS WITH SU~PICTUKES MANDE ABOVE
INITIALT#E DISPLAY, SET SCALE=#, INTENSITY=4
MAINFLC1) =@
CALL UINTT(MAINFL(1))
CALL PLOT (PRAM,SCALE+INT+LPEN,d,4,1,IN) "
DRANW HA(KGROHN“
CALL SFTRT(1#, 1M)
CALL FLOT(LYNE,149®3,100,0N,ENGF (1))
CALL PLOTC(ILLYNE,®,880,0N,EDGE(2))
CALL PLOT(LYNE,-10041,108,0N,EDGE(3))
CALL" PLOT(LYNE, U--lﬂﬂﬂ ON,EDGE(4))
LOCATE AND UIRAW HOUSE
CALL PLUT(LYNE,S?,58,0FF,DISPL)
CALL PLOT(PRAM#BLINK,ON,RBL1)
CALL PLOT(COPI,HOUSE(1),MAIN)
CALL PLUT(PRAM,HBLINK,OFF)
WAIT HERE FOK PUSHRUTTON HIT

20w IF (PBTN(PR))Y GU TO 4¢0

c

[F (LTPNCLPY,LPX,NAME,PB)) GO TU 140
GO 10 2ue
PBS «“RITES AMD READ NINDON AND HOUSE ANU RESTARTS

420 IF (kFR(s)) GO TO 419

C
. C
C

PB4 WRITES AND RFADS MAINFL,WINDOW AND HHUSE ALL -TOGETHER,
[F (IPB(5)) GO TO 41%

PR3 ARITES & KFADS MAINFL & HOUSE, THEN HUUHE AND WINDOW,
IF (PE(4)Y) GO TO 416

PB2 ADDS AMOTHER CALL TO THE WINNOW, THEN WRITES & READS ALL FILES,

IF (FPE(3)) GO TO 417

C PB1 RESTARTS FRum THE BEGINNING, TO RE Di'NF HEFORE EACH TEST,

410

416

IF (FH(?2)) GO TOU 418

GO T gpv

CALL BCtOoST (MAINFL(1)) .
CALL gYSt T (HOQUSF (1), SAM1, WINpaW(1), SAM?)
CAatL T8 2 (5,5AM1) .

I =HOUSE (1) +1

WRTTE (5) (A0USE(J),Jd=1,1)
f=wltitiw(1)+1

ARTITE (9) (wINDOW(J),J=1,1)

CALL CLu*E (5, SaMl)

CALL. SFe™ (35, SAM1) ,

*ELU (=) T, (B(J+1), J=1.,1)

(1) =1 ; .

READ (%) J,(C(K+1),K=1,J)

C(1)=4 _

CALL CLOSE (5, SaM1)

CALL LYLIVK (B(1), SAM1, C(1), SaM2)
CALL DINIT(MAINFL(1))

CALL HEPLOT €¢@,8(1),MAIN)

GO TG 24

CALL [CLOCSE(MAINFLC(1))

CALL LYSFT(MAINFL(1),SAM1,HOUSE(1),SaM2,WINDOW(1),SAM3)
CALL EXTFR(5,SAM1) ’
I=MATMFL(1)+1

WRITE(S)(HHAINFLCY) ,Jd=1, 1)

I=HOUSF (1) +1

WRITE (=) (HOUSECY) , J=1,1)

I=wIPMONWC1)+1 . :

WRITE (%) (AINDOW(J),J=1,1)

CALL CLUSF(5,SAM1)

CALL SEFK(5,SAM1)

REAU(SY(1,(A(J+1),J=1,11)

A(1)=11

READ (%) I1, (B(J+1), J=1,11)

K(1)=11

REAL (%) 11, (C(J+1), J=1,11)

C(1)=11

CALL CLOSE(S,SAMY1)Y

CALL UYLINK(A(1),SAM1,B(1),SAM?,((1),SAM3)

CALL UINIT(ACL))

GO TG 2av

" CALL DCLUSF(MAINFLALL1))

CALL JYSFT(MAINFL(1),SAM1,HOUSF(1),54aM2)

CCALL DYSET(HOUSE(1),SAM2,WINDOW(1),5AM3)

CALL ENTFR(5,SAM1)
[=MAINFL{1)+1
WRITF(S)(MAINFL(J),Jd=1,1)
[=HOUSF (1) +1

WRITF () (HOUSE(J),J=1,1)
T=WINGOW(T1)+1

WRITE (5) (WINDOW(J),J=1,1)
CALL CLOSE(%,SAM1)

CALL SFEK(5,SAML)
READ(S)IY, (ACJ+1),0=1,11)
AC1)=11

KEAD (5) 11, (B(J+1), J=1,11)

#1)=11
READ (5) 11, (C(J+1), J=1,11)
Ce1)=11
CalL CLOSE (%, SAMT)
CALL RYLINARCACL),SAMI,B(1),$5AM2)
CALL DYLINK(B(1),SAM2,C(1),5AM3)
CALL utlwl(Toaly))
. GO TO D
417 CALL SFETPT(463,245)
CALL PLOT (v, WINDOW(1))
FAUSE ’
0 TG 419
41d Cal.L DCLESF
SGO TU pa ‘
C PB14 Ok MUOVES THF HUUSF TO THE RIGHT 1w RASTFR UNITS UP TO THE ENGE
42¢ IF (PH(11)) X=MINP(4GA, X+10)
CTRHY Or: MOVES IT LEFT 1y UNITS
. IF (FHU1Y)) X=MAX@(25,%X-10)
C PB7 < Bgr MUVE [T LEFT AND RIGHT TEN UNITS
FE(FH(9)) YMING(260,Y+10)
_ "IF (FR(B)) Y=MAXA(A,Y-10)
C P86 UN TURN> QFF THE BLINKING
IF (PiH(7)) GO TO 60

I=0N
GO Tu 74
60 =0FF
78 CALL RFPLOT(LYNE,Y,X,0FF,DISPL)

_ CALL RFPLOT(PRAM,BLINK,1,BL1)
C GO HACRK _AND wWAIT FOR THE NEXT RUTTON PUSH

U SO R

C PRUCFSS LIGHT FPEN W]T

100 IF (NAMFE JFd. FDGEC1)) Y=MINN(26.,LPY)
IF (NAME JEQ, EOGE(4)) X=MINC(AuA,LPX)
GO TG 74
END

A-6

TRACKING PROGRAM

The following program is an example of the manner in which the

FORTRAN Tracking subroutines may be employed in the operation of

- the 339 Graphics System.

C SAMPLE FOURTRAL PHOFHAM USING THE TRACKING SURROUTINE ,
C FNTST7?
PUPYH[fHT 1960, DIGITAL EQUIPMENT CORP,, MAYNARD, MASS,
- INTEGEP (1.X2.Y1.Y2.Y3.X3
Lucleat ¥y, LTPN, REPLOT
DIMERS T MAINFL(2010),PR(12),NAME(S)
C SET 1P STakT UF NISPLAY
QA Xi=lva
Yi=1v
MATNFL(1)=m
Y2=Y1
X2=x1
CALL DINIT (MAINFLC(1)) -
C SET “CalE =zv, [NTENSITY=S
CAl L H[‘JT(?;7:@:5'1)
CALL SEFTRT(Y1,X1)
L) 4 1=1,8

NAME ([)=n!
89 CONTT GUE
i In=1
1ve ' LT=1

C NISPLAY TRACKING PATTERN WITH GIVEN COORNINATES,
CAaLL THACK(Y2,X2,NAME(1),PR)

C CONTROL COMES HERE WHEN A PUSHRUTTON OR MANUAL INTFRRUPT 1S HIT,
- 105) IF (PH(9)) GO TO 8
X2=1AHS(XD)
GO Th 110

C PRy COMSTRAINS X (MAKES THE DOT MOVE VERTICALLY
8 X2==1AFS(X?)
11v IF (PR(14)) GO TO 9
. Y2=1AHS(YD)
G T 111
C PBY COMSTRAINS Y (MAKES THE DoOT MOVE HORTZONTALLY)
9 Y2==-T1AKES(Y?))
111 IF (PH(11)) GO T0 14
I'fF (FR(12)) GO TO 11
IF (PH4(1)) GO TO 1
IF (PR(%))Y GO TO. 4

“A-7

C PR7 HESTARTS The DISPLAY FILF.
IF (PR{n)Y) GO TOU 9@
GO TO 190

C PR1Iv MAKES TNVISIBLE LINES,

iv LT=w

C PHI1YL MaKES VISIHLFE LINFS,

11) CALL PLOT(1,TABS(Y2)-Y1,]ABS(X2)~X1,LT,NAMF3)
[F (MAINFL(1)Y ,GF, 200¢) PAUSE 123
i S b)
X3=X1

Y1=]&RS(Y?2)
X1=[AaKS(12)
GO T 144 i
C PHe CAUSES LINFS TO BRE DELETED., PB1 RETUFNS TO TRACKING,
1 . [F ¢.nNOT, (LTPNONY,NX,NAME2,PH))) GU TO 1
: IF (FH(2)) 60 TO 108
IF (NaMEZ NE, ‘NAME3) GO TO 12%
CALL OFLFTF(NAME2)

Yl:f&

X1=X4

o0 To 1 o
C 2848 REMOVES THE INTENSITY BIT FROM Y AN THFE ESCAPE BIT FROM X
124 [=NAFED-MAINFL(144) +1

Y3I=MAINFL(I#+#1)=-20148
K3=MAINFI (1+2)-248
3 CONVERT STIGN-MAGNITUNE TO 2'S COMPLEMENT.
IF (Y3 .GE. 1024) Y3=-(Y3-1424)
IF (X3 ,GE, 1324) X3=-(X3=1024)
IF (REPLOT(1,Y3,X3,4,NAME2)) GO TO 1

~

PALSF
C PB4 INSERTS AWOTHER CALL TO TRACKING,
4 InN=IN+1
IF (IN=5) %,5,100
5 CALL TRACK(Y2,X2,NAME(IN),PB)
LT=1

GO TO 195
END

. A
READ AND DISPLAY SLIDES

The following cxample program demonstrates the manner in which
a series of Subpicture Display Files may be selected and dis-

played using the 339 System as a "slide projector".

C FJCL 1948 pEe=0 - 32y SEMINAR SLIDES.
C SLInES I
C 439 sSLINF PRUJECTOR : . - -
COPYRTILHT 14rn, H1C]TAL EQUIPMENT CORP,, MAYNARD, MASS,
: InTr ik SLINF, NUMMY
L froar + TN, PH .
NEMed b B4 (12),SLIDE(250A) , SLNM(2) ,MAINFL(50),DUMMY (R),
1 SLide 1 (21), NUMNM(2) ,LNG(15)
EXTeEkRunl, TRCK -
DATA SEw=1(L),SLNML(2),SLNML1(3),SLMM1(4),SILNML(5),SLNMY(6)
1 /85000, 4H BIN,S5HSLID1,4H BIN,3HSILINZ2,4H RIN/,
2 Sethr107),3LNM1(8) ,SLNM1(9) ,SLAMLI(14),SLNML1(11),SLNMLI(12)
3 /%S 11:3,4H RIN,5ASLID4,4H BIN,5HSLINS,4H RIN/,)
4 SLmM1(194),;SLNMTI(14),SLNM1I(15),5LNM1(16),SLNMI(17),SLNM1(18)
b /ool 1Nk, 4H RIN,5HSLID7,4H BIN,S5HSLINB,4H RIN/,
A O SLERT(19), SLNMLI(20) /5HSLING,4n RIN/
BATA g ML), DUMNM(?) /5HDUMMY , 44 RN/
C SET P A POLETER TH EACH SLIDE NAME
NSL[hir=1
HMiN=1
Ny 11 M=1,NSLIDE
SLNM(1)=SLNMT (24aM=1)
SUNM(2)=SLNMML1(28M)
CAtLL SEEK(S,SLNM)
LNG M) =i
RE&Ir (%) L
LP=L+nN=-1
READ (5) (SLIDF(J) 4 J=NN,LP)
MN=zLH o+ .
CALL CLUSE(5,SLNM)
11 CONT I mUE
C REAI DUMMY SUB-PICTURE
) CalL SFEK(5,DUMNM)
KEAD (%) L '
READ (5) (NUMMY(I),I=1,L)
CALL CLOSE(5,DUMNM)

C START UP MAIN FILE AND GET SET TO PICK SLIDES FROM PUSHBUTTONS,
MAINFL(1)=0
CALL DINIT(MAINFL(1))
CALL SFTPT(1080,15)
CALL PLUT(2,3,1,7)
CALL PLOT(®,SLIDEC(1),NAME)
CALL PLUOT(2,DUMMY(1),NAME2)

NAMEZ =0
10 IF (,NOT,(PBTN(PR))) GO TO 1@
15 . K= - .
: DU 2 1=6,12
L=12-1
IF (PH(])) K=K+2eal
20 CONTINUE
IF (K ,EQ, ¥) GO T0 10
39 . IF (K ,GT, NSLIDE) GO TO 1@
M= NG(K)

IF (K L,EG, 7) GO TO 609

IF (k ,EN. 18) GO TO 908

CALL REPLOT(@,SLIDE(M),NAME)

GO TU 14 o
C SHOW SLINS AND SLIN7? TOGETHER WHEN SLIN6 IS REQUFSTED
600 N=LNG(5)

© - CALL RFPLOT(@,SLIDE(M),NAME)
CALL RFPLOT(®,SLIDE(N),NAME2)

616 . IF (.NOT,(PBTN(PB))) GO TO 610
CALL DFLETE(NAME?)
.60 TO 15

C SHOW TRACKING PATTERN. WITH SLID9

*27%%} CALL RFPLOT(@,SLIDE(M),NAME)

_ IF (NAME3) 910,920,910

910 CALL UNBLNK(TRCK)

924¢ CALL TRACK(SBG.SBG,NAHE},PB)
CALL BLANK(TRCK)
G0 TO 15
END

