
RT–11 Volume and File Formats
Manual

Order Number AA–PD6PA–TC

August 1991

This manual describes the format of RT–11 disk and magtape volumes and the RT–11 file
formats. This information will be most useful to system programmers, but it provides
valuable background information for application programmers as well.

Revision/Update Information: This manual replaces Chapters 8 and 9 of the RT–11
Software Support Manual.

Operating System: RT–11 Version 5.6

Digital Equipment Corporation
Maynard, Massachusetts

First Printing, August 1991

The information in this document is subject to change without notice and should not be construed as
a commitment by Digital Equipment Corporation.

Digital Equipment Corporation assumes no responsibility for any errors that may appear in this
document.

Any software described in this document is furnished under a license and may be used or copied only
in accordance with the terms of such license. No responsibility is assumed for the use or reliability of
software or equipment that is not supplied by Digital Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to restrictions as
set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227–7013.

© Digital Equipment Corporation 1991
All rights reserved. Printed in U.S.A.

The Reader’s Comments form at the end of this document requests your critical evaluation to assist in
preparing future documentation.

The following are trademarks of Digital Equipment Corporation: CTS–300, DDCMP, DECnet, DECUS,
DECwriter, DIBOL, MASSBUS, MicroPDP–11, Micro/RSX, PDP, Professional, Q-bus, RSTS, RSX, RT–
11, RTEM–11, UNIBUS, VMS, VT, and the DIGITAL Logo.

S561

This document was prepared using VAX DOCUMENT, Version 1.2.

Contents

Preface ix

Chapter 1 Disk and Tape Formats

1.1 Random-Access Volumes . 1–1
1.1.1 Home Block . 1–2
1.1.2 Directory Structure . 1–4
1.1.2.1 Directory Segment Header Format . 1–5
1.1.2.2 Directory Entry Format . 1–5
1.1.2.3 File Protection . 1–9
1.1.2.4 Sample Directory Segment . 1–9
1.1.3 File Storage on Random-Access Volumes . 1–12
1.1.4 Size and Number of Files . 1–15
1.1.5 Splitting a Directory Segment . 1–16
1.1.6 How to Recover Data When the Directory Is Corrupted . 1–20
1.1.6.1 Examine Segment 1 . 1–20
1.1.6.2 Follow the Chain of Segments . 1–20
1.1.6.3 Remove the Data from the Good Segments . 1–22
1.1.6.4 Remove the Data from the Bad Segment . 1–22
1.1.7 BUP Volumes . 1–22
1.1.8 Large (Partitioned) Disks . 1–23
1.1.9 Interchange Diskette Format . 1–24
1.2 Sequential-Access Volumes . 1–26
1.2.1 Magtape Structure . 1–26
1.2.1.1 RT–11 File-Structured Magtape Format . 1–27
1.2.1.2 BUP Magtape Format . 1–32
1.2.2 RT–11/VMS Magtape File Interchange . 1–37

Chapter 2 File Formats

2.1 Logical Disk File Format (.DSK) . 2–1
2.2 Object File Format (.OBJ) . 2–2
2.2.1 Global Symbol Directory Block (GSD) . 2–7
2.2.1.1 Module Name (Entry Type 0) . 2–8
2.2.1.2 Control Section Name (Entry Type 1) . 2–9
2.2.1.3 Internal Symbol Name (Entry Type 2) . 2–10
2.2.1.4 Transfer Address (Entry Type 3) . 2–10
2.2.1.5 Global Symbol Name (Entry Type 4) . 2–11
2.2.1.6 Program Section Name (Entry Type 5) . 2–12

iii

2.2.1.7 Program Version Identification (Entry Type 6) . 2–13
2.2.1.8 Mapped Array Declaration (Entry Type 7) . 2–14
2.2.2 End of Global Symbol Directory Block (ENDGSD) . 2–14
2.2.3 Text Information Block (TXT) . 2–15
2.2.4 Relocation Directory Block (RLD) . 2–15
2.2.4.1 Internal Relocation (Entry Type 1) . 2–18
2.2.4.2 Global Relocation (Entry Type 2) . 2–18
2.2.4.3 Internal Displaced Relocation (Entry Type 3) . 2–19
2.2.4.4 Global Displaced Relocation (Entry Type 4) . 2–19
2.2.4.5 Global Additive Relocation (Entry Type 5) . 2–20
2.2.4.6 Global Additive Displaced Relocation (Entry Type 6) . 2–20
2.2.4.7 Location Counter Definition (Entry Type 7) . 2–21
2.2.4.8 Location Counter Modification (Entry Type 10) . 2–21
2.2.4.9 Program Limits (Entry Type 11) . 2–21
2.2.4.10 P-sect Relocation (Entry Type 12) . 2–22
2.2.4.11 P-sect Displaced Relocation (Entry Type 14) . 2–22
2.2.4.12 P-sect Additive Relocation (Entry Type 15) . 2–23
2.2.4.13 P-sect Additive Displaced Relocation (Entry Type 16) . 2–23
2.2.4.14 Complex Relocation (Entry Type 17) . 2–24
2.2.5 Internal Symbol Directory Block (ISD) . 2–26
2.2.6 End Of Module Block (ENDMOD) . 2–26
2.3 Symbol Table Definition File Format (.STB) . 2–26
2.4 Library File Format (.OBJ and .MLB) . 2–27
2.4.1 Library Header Format . 2–28
2.4.2 Library Directories . 2–30
2.4.3 Library End Block Format . 2–31
2.5 Absolute Binary File Format (.LDA) . 2–31
2.6 Standard Save Image File Format (.SAV) . 2–32
2.7 Extended Save Image File Format (.SAV) . 2–36
2.8 Relocatable File Format (.REL) . 2–39
2.8.1 .REL Files Without Overlays . 2–41
2.8.2 .REL Files with Overlays . 2–42
2.9 Stream ASCII File Format . 2–44
2.9.1 Defining a Line or Record . 2–44
2.9.2 End-of-File . 2–44
2.10 CREF File Format . 2–45
2.11 BUP Saveset Section Definition Block Format . 2–46
2.12 Error Log File Formats . 2–47
2.12.1 Error Log Disk File Format . 2–48

Index

iv

Figures

1–1 Random-Access Volume . 1–2
1–2 Home Block Format . 1–3
1–3 Volume Directory Segment Format . 1–4
1–4 Directory Entry Format . 1–6
1–5 Directory Entry Status Word Format . 1–6
1–6 Date Word Format . 1–9
1–7 Directory Listings . 1–10
1–8 RT–11 Directory Segment . 1–11
1–9 Random-Access Volume with Two Permanent Files . 1–13
1–10 Random-Access Volume with One Tentative File . 1–14
1–11 Random-Access Volume with Two Tentative Files . 1–14
1–12 Random-Access Volume with Four Permanent Files . 1–14
1–13 Storing a New File . 1–16
1–14 Full Directory Segment . 1–17
1–15 Directory Before Splitting . 1–18
1–16 Directory After Splitting . 1–18
1–17 Directory Links . 1–19
1–18 Worksheet for a Directory Chain with Four Segments . 1–21
1–19 Worksheet for a Directory Chain with Nine Segments . 1–21
1–20 MSCP Disk Block Number . 1–23
1–21 FSM Magtape Label and Header Formats . 1–28
1–22 BUP Magtape Label and Header Formats . 1–33
2–1 Object Module Processing . 2–3
2–2 Modules Concatenated by Byte . 2–4
2–3 Formatted Binary Format . 2–5
2–4 General Object Module Format . 2–6
2–5 Global Symbol Directory Data Block . 2–8
2–6 Module Name Entry Format (Entry Type 0) . 2–9
2–7 Control Section Name Entry Format (Entry Type 1) . 2–9
2–8 Internal Symbol Name Entry Format (Entry Type 2) . 2–10
2–9 Transfer Address Entry Format (Entry Type 3) . 2–10
2–10 Global Symbol Name Entry Format (Entry Type 4) . 2–11
2–11 P-sect Name Entry Format (Entry Type 5) . 2–12
2–12 Program Version Identification Entry Format (Entry Type 6) 2–13
2–13 Mapped Array Declaration Entry Format (Entry Type 7) . 2–14
2–14 End of GSD Data Block . 2–14
2–15 Text Information Data Block . 2–15
2–16 Relocation Directory Data Block . 2–16
2–17 Internal Relocation (Entry Type 1) . 2–18
2–18 Global Relocation (Entry Type 2) . 2–18
2–19 Internal Displaced Relocation (Entry Type 3) . 2–19
2–20 Global Displaced Relocation (Entry Type 4) . 2–19
2–21 Global Additive Relocation (Entry Type 5) . 2–20

v

2–22 Global Additive Displaced Relocation (Entry Type 6) . 2–20
2–23 Location Counter Definition (Entry Type 7) . 2–21
2–24 Location Counter Modification (Entry Type 10) . 2–21
2–25 Program Limits (Entry Type 11) . 2–22
2–26 P-sect Relocation (Entry Type 12) . 2–22
2–27 P-sect Displaced Relocation (Entry Type 14) . 2–23
2–28 P-sect Additive Relocation (Entry Type 15) . 2–23
2–29 P-sect Additive Displaced Relocation (Entry Type 16) . 2–24
2–30 Complex Relocation (Entry Type 17) . 2–26
2–31 Internal Symbol Directory Data Block . 2–26
2–32 End of Module Data Block . 2–26
2–33 .STB File Format . 2–27
2–34 Library File Format (.OBJ and .MAC) . 2–28
2–35 Library Directory Format (.OBJ) . 2–30
2–36 Library End Block Format . 2–31
2–37 Absolute Binary Format (.LDA) . 2–33
2–38 Extended Save Image File Format . 2–37
2–39 .REL File Without Overlays . 2–41
2–40 Root Relocation Information Format . 2–42
2–41 .REL File with Overlays . 2–43
2–42 Overlay Segment Relocation Block . 2–44
2–43 Error Logging Subsystem . 2–48
2–44 ERRLOG.DAT Format . 2–50

Tables

1–1 Home Block Contents . 1–3
1–2 Directory Segment Header Words . 1–5
1–3 Directory Entry Status Word Values . 1–7
1–4 Interchange Diskette Sector 7 . 1–24
1–5 Interchange Diskette Sectors 8 Through 26 . 1–25
1–6 RT–11 File-Structured Magtape Labels . 1–30
1–7 BUP Magtape Labels . 1–34
2–1 RT–11 Data Blocks . 2–5
2–2 Entries in GSD Blocks . 2–7
2–3 Flag Bits for Global Symbol Name Entry . 2–11
2–4 Flag Bits for P-sect Name Entry . 2–12
2–5 Valid Entry Types for RLD Blocks . 2–17
2–6 Bit Assignments for the RLD Command Byte . 2–17
2–7 Operation Codes for Complex Relocation . 2–24
2–8 Object Library Header Format . 2–29
2–9 Macro Library Header Format . 2–29
2–10 Information in Block 0 of a .SAV Image . 2–34
2–11 Job Definition Word ($JSX) Bit Definitions . 2–35
2–12 Identifying Overlay Handlers in SV.CVH . 2–36

vi

2–13 Overlay Definition Word (SV.CVH) Bit Definitions . 2–36
2–14 Information in Absolute Block 0 (D-Space Header) of Extended .SAV Image 2–37
2–15 Information in Relative Block 0 (I-Space Header) of Extended .SAV Image 2–39
2–16 Information in Block 0 of a .REL Image . 2–39
2–17 CREF Chain Interface Specification . 2–45
2–18 Entry Format for CREF Input File . 2–46
2–19 Contents of Block 0 of a BUP Saveset Section . 2–46

vii

Preface

Document Structure

This manual is divided into two chapters:

• Chapter 1 describes the file structure for all disk and magtape volumes that
RT–11 supports.

• Chapter 2 alphabetically presents information about the structure of supported
file formats.

Audience

This manual is written for those users of the RT–11 operating system who want to
understand the structure of RT–11 volume and file formats.

Conventions

The following conventions are used in this manual.

Convention Meaning

Black print In examples, black print indicates output lines or prompting
characters that the system displays. For example:

.BACKUP/INITIALIZE DL0:F*.FOR DU1:WRK

Mount output volume in DU1:; continue? Y

Red print In examples, red print indicates user input.

Braces ({ }) In command syntax examples, braces enclose options that are
mutually exclusive. You can choose only one option from the
group of options that appear in braces.

Brackets ([]) Square brackets in a format line represent optional parameters,
qualifiers, or values, unless otherwise specified.

Lowercase
characters

In command syntax examples, lowercase characters represent
elements of a command for which you supply a value. For
example:

DELETE filespec

ix

Convention Meaning

UPPERCASE
characters

In command syntax examples, uppercase characters represent
elements of a command that should be entered exactly as given.

RET RET in examples represents the RETURN key. Unless
the manual indicates otherwise, terminate all commands or
command strings by pressing RET .

CTRL/x CTRL/x indicates a control key sequence. While pressing the key
labeled Ctrl, press another key. For example: CTRL/C

Associated Documents

Basic Books

• Introduction to RT–11

• Guide to RT–11 Documentation

• PDP–11 Keypad Editor User’s Guide

• PDP–11 Keypad Editor Reference Card

• RT–11 Commands Manual

• RT–11 Quick Reference Manual

• RT–11 Master Index

• RT–11 System Message Manual

• RT–11 System Release Notes

Installation Specific Books

• RT–11 Automatic Installation Guide

• RT–11 Installation Guide

• RT–11 System Generation Guide

Programmer Oriented Books

• RT–11 IND Control Files Manual

• RT–11 System Utilities Manual

• RT–11 System Macro Library Manual

• RT–11 System Subroutine Library Manual

• RT–11 System Internals Manual

• RT–11 Device Handlers Manual

x

• DBG–11 Symbolic Debugger User’s Guide

xi

Chapter 1

Disk and Tape Formats

RT–11 stores files under assigned file names on file-structured volumes. RT–11
volumes that are file-structured include all disks, diskettes, and magtapes.

Disks and diskettes are directory-structured volumes; they have a series of directory
segments at the beginning of the volume. The directory segments contain entries
describing the names, lengths, and creation dates of files on the volume. Because the
directory is at the beginning of the volume, you can access any file, no matter where
it is located, without reading any other files. For this reason, directory-structured
volumes are sometimes called random-access or block-replaceable volumes.

Magtapes are file-structured volumes that do not have a directory at the beginning
of the volume. While they do store some directory information at the beginning of
each file, you must read the entire volume to obtain all the information about all
the files. Because you must read the files in order, one after the other, magtapes are
also called sequential-access volumes.

This chapter shows how RT–11 stores files on both random-access and sequential-
access volumes. It also describes the contents of a volume directory and shows how
to recover information from a random-access volume whose directory is corrupted.

1.1 Random-Access Volumes

A random-access volume consists of a series of 25610-word blocks where blocks 0
through 5 are reserved for system use and cannot be used for data storage. The
volume directory begins at block 6. Figure 1–1 shows the format of a random-access
volume.

Disk and Tape Formats 1–1

Figure 1–1: Random-Access Volume

Octal
Block Number Contents

Reserved

Home Block (Reserved)

Reserved

Reserved

Reserved

Reserved

Directory Segment 1

Directory Segment 2

Directory Segment n

Stored Data

End of Volume

0

10

Files

.

.

.

.

.

.

1

11

2

x+1

3

4

5

6

7

.

.

.

x

1.1.1 Home Block

Block 1 of a random-access volume, called the home block, contains information
about the volume and its owner. Figure 1–2 and Table 1–1 show the home block
format and contents.

1–2 RT–11 Volume and File Formats Manual

Figure 1–2: Home Block Format

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
70 1 2 3 4 5 6 7

000
040
100
140
200
240
300
340
400
440
500
540
600
640
700
740

a
a
a
a
b
b

j

a
a
a
a
b
b

j

a
a
a
a
b
c

j

a
a
a
a
b
c

j

a
a
a
a
b
c

j

a
a
a
a
b
c

j

a
a
a
a
b
c

j

a
a
a
a
b
c

j

a
a
a
a
b
c

k

a
a
a
a
b
c

k

a
a
a
a
b
c

f
k

a
a
a
a
b
c

f
k

a
a
a
a
b
c

g
k

a
a
a
a
b
c

g
k

a
a
a
a
b
c

h
k

a
a
a
a
b
c

h
k

a
a
a
a
b
c

i
k

a
a
a
a
b
c

i
k

a
a
a
a
b
c

i
k

a
a
a
a
b
c

i
k

a
a
a
a
b

i

a
a
a
a
b

i

a
a
a
a
b

i
l

a
a
a
a
b

i
l

a
a
a
a
a
b

d
i

a
a
a
a
a
b

d
i

a
a
a
a

b

e
i

a
a
a
a

b

e
i

a
a
a
a
b
b

j

a
a
a
a
b
b

j

a
a
a
a
b
b

j

a
a
a
a
b
b

j

Table 1–1: Home Block Contents

Field Location Contents Default

a 000–2018 Bad block replacement
table

b 204–2518 INITIALIZE/RESTORE
data area

c 252–2738 BUP information area If BUP volume: "BUQ" and 9 spaces; binary
volume number in byte 2668

d 700–7018 (Reserved for Digital) 000000

e 702–7038 (Reserved for Digital) 000000

f 722–7238 Pack cluster size 000001

g 724–7258 Block number of first
directory segment

000006

h 726–7278 System version Radix–50 "V3A"

i 730–7438 Volume Identification "RT11A" and seven spaces

j 744–7578 Owner name 1210 spaces

k 760–7738 System Identification "DECRT11A" and four spaces

l 776–7778 Checksum

Disk and Tape Formats 1–3

The checksum computation conforms to the FILES-11 On-Disk Structure Specification. It
is a simple additive checksum of all the other words in the home block and is computed
according to the following algorithm:

MOV Header__address,R0
CLR R1
MOV #255.,R2

10$: ADD (R0)+,R1
SOB R2,10$
MOV R1,@R0

The contents of all other areas in the home block are undefined and reserved for
future use by Digital.

1.1.2 Directory Structure

The directory consists of a series of two-block segments. Each segment is 51210 words
long and contains information about files such as name, length, and creation date.
A directory can have from 1 to 3110 segments. You can display the default number of
directory segments on an initialized volume by issuing the DIRECTORY/SUMMARY
command. You can change the size of the directory area during volume initialization
by specifying the number of directory segments. Use the INITIALIZE/SEGMENTS:n
command, or DUP with the /Z/N:n options. (See the RT–11 Commands Manual for
more information on the INITIALIZE command. See the RT–11 Installation Guide
for a patch that changes the default number of segments.)

In general, you require more segments if you need to store many small files on a
large volume. However, the minimal number of segments reduces the size of the
directory area and you obtain more space to store large files on a smaller volume.
The default number of directory segments is a compromise.

Each directory segment consists of a five-word header plus a number of entries
containing file information. Each segment ends with an end-of-segment marker.
Figure 1–3 shows the general format of a volume directory segment.

Figure 1–3: Volume Directory Segment Format

5−Word Header

Entries
.
.
.

Marker
End−of−segment

1–4 RT–11 Volume and File Formats Manual

1.1.2.1 Directory Segment Header Format

Each directory segment contains a five-word header, which leaves the remaining
50710 words of the two-block segment for directory entries. Table 1–2 describes the
contents of the header words.

Table 1–2: Directory Segment Header Words

Word Contents

1 The total number of segments in this directory. The valid range is from 1
through 3110. If you do not specify the number of segments you require when
you initialize the volume, DUP uses the default number of segments for that
volume.

2 The segment number of the next logical directory segment. The directory is a
linked list of segments and this word is the link between the current segment
and the next logical segment. If this word is 0, there are no more segments in
the list.

3 The number of the highest segment currently in use. RT–11 increments this
counter each time it opens a new segment. Note that the system maintains
this counter in word 3 of the header only for the first directory segment. It
completely ignores the third word of the header of the other segments.

4 The number of extra bytes per directory entry, always an unsigned, even octal
number. See Section 1.1.2.2 for more information.

5 The block number on the volume where the actual stored data identified by this
segment begins.

1.1.2.2 Directory Entry Format

The remainder of the directory segment consists of one or more directory entries
followed by an end-of-segment marker. Figure 1–4 shows the format of a directory
entry.

The first word of each directory entry is the status word, which describes the
condition of the file identified by that directory entry. The high-order byte of the
status word contains information on the current state of file. The low-order byte can
identify a file class. Figure 1–5 shows the format of the status word and Table 1–3
describes the contents.

File Type
RT–11 uses three kinds of directory entries to describe the type of file:

• tentative entries

• empty entries

• permanent entries

Disk and Tape Formats 1–5

Figure 1–4: Directory Entry Format

Status Word

File Name (chars 1−3)
in Radix−50

(1 to 3 characters)

Total File Length

Channel #

Creation Date

.

.

.

File Name (chars 4−6)
in Radix−50

Job #

Optional Extra Words

File Type

in Radix−50

Figure 1–5: Directory Entry Status Word Format

Type of File File Class

You can think of the three types of entry as describing areas that are categorized
as temporary data, available space on the volume, or permanent data. The volume
directory contains at all times sufficient entries to describe the entire volume.

A tentative file is a file that is in the process of being created. When a program
issues the .ENTER programmed request, for example, it creates a tentative file.
The program must issue a .CLOSE programmed request to make the tentative file
permanent. If you do not eventually close a tentative file, the system deletes it. The
DIR utility program lists tentative files that appear in directories as <UNUSED>
files.

An empty entry defines an area of the volume that is available for use. Thus, when
you delete a file, you obtain an empty area. DIR lists an empty area as <UNUSED>,
followed by its length.

A permanent file is a tentative file that has been closed with the .CLOSE
programmed request. Permanent files are unique – that is, only one file can exist
with a specific name and file type on a volume. If another file exists with the
same name and type when the program closes the current tentative file, the monitor
deletes the first file as part of the .CLOSE routine, thus replacing the old file with

1–6 RT–11 Volume and File Formats Manual

the new file. DIR lists permanent files that appear in directories by their file names,
file types, sizes, and creation dates.

The file class information in the low byte of the status word either marks a file as
having particular characteristics or identifies the file as a member of a particular
group of files. At present, only one bit is used; the rest are reserved for future use
by Digital.

The prefix block bit indicates that the file contains at least one prefix block. Prefix
blocks are optional information blocks that precede a file’s information blocks and
begin at logical block 0 of a file. The utility or application using the prefix blocks
must set bit E.PRE in the status word, create the prefix blocks, and maintain them.
RT–11 provides no special support for prefix blocks.

Any utility that needs to store information about a file with the file can use prefix
blocks. All previous and current utilities and applications can continue to read and
write files without regard for prefix block functionality. Prefix block functionality
need not concern you unless you write an application that uses it.

The structure of prefix blocks reserved for use by RT–11 and the recommended
structure for user applications is as follows:

• The low byte of the first word of the first prefix block contains the number of
prefix blocks in the file.

The high bit of the high byte indicates whether the prefix blocks were created
by distributed RT–11 software of a user application. If the high bit is clear (0),
distributed RT–11 software created the prefix blocks; if set (1), a user application
created them.

• The second and third words of the first block contain a Radix–50 format identifier.

• Subsequent words in the prefix blocks are application-dependent.

Table 1–3 lists the valid values for the bytes of the status word and their meanings.
All undefined bits in the directory entry status word remain reserved for Digital.

Table 1–3: Directory Entry Status Word Values

Value Mnemonic Meaning

High Byte Values, Expressed as a Word

0004008 E.TENT Tentative file.

0010008 E.MPTY Empty area. RT–11 does not use the name, file type, or date fields
in the directory entry for an empty area.

0020008 E.PERM Permanent file.

Disk and Tape Formats 1–7

Table 1–3 (Cont.): Directory Entry Status Word Values

Value Mnemonic Meaning

High Byte Values, Expressed as a Word

0040008 E.EOS End-of-segment marker. RT–11 uses this marker to determine
when it has reached the end of the directory segment during a
directory search. Note that an end-of-segment marker can appear
as the last word of a segment. It does not have to be followed by a
name, file type, or other entry information.

0400008 E.READ Protected by monitor from write operations from .WRITE request;
not protected from any special function operations or deletions.

1000008 E.PROT Protected permanent file (see Section 1.1.2.3). Only a permanent
file can be protected.

Low Byte Values, Expressed as a Word

000020 E.PRE Prefix block indicator. Indicates the presence of at least one prefix
block in this file.

The second, third, and fourth words in a directory entry contain the file name and file
type in Radix–50. For empty area, RT–11 normally ignores these words. However,
the DIR /Q option (or the monitor DIRECTORY command with the /DELETED
option) lists the names and file types of deleted files.

The fifth word in a directory entry contains the total file length, which consists of the
number of blocks the file occupies on the volume. Attempts to read or write outside
the limits of the file result in an end-of-file error.

The sixth word in a directory entry contains the channel number and sometimes the
job number as well. RT–11 uses this information only for tentative files. A tentative
file is associated with a job in one of two ways, depending on which RT–11 monitor
is running.

The low byte of the sixth word of the directory entry contains the channel number.
The high byte of the sixth word contains the number of the job that is opening the file.
The job number is required to identify the correct tentative file during the .CLOSE
operation. It is also necessary because several jobs can have files open using the
same channel number.

NOTE
RT–11 uses the sixth word (job number and channel
number word) only when the file is tentative. Once
the file becomes permanent, RT–11 no longer uses the
word. The function of the sixth word while the file is
permanent is reserved for future use by Digital.

1–8 RT–11 Volume and File Formats Manual

The seventh word of a directory entry contains the file’s creation date. When a
program creates a tentative file by issuing the .ENTER programmed request, the
system moves the system date word into the creation date slot for the entry. The
date word is 0 if you did not enter a date with the DATE monitor command.

User programs can take advantage of the Age bits (bits 14 and 15) to extend the
directory date by 3210 year increments. Support for Age bits is not available
in any RT–11 monitor or utility, but is included in the DATE/DATE4Y, IDATE,
IDCOMP, and IGTDIR subroutines and functions. The base year for calculation
is incremented by the Age bit values (0-3) and is 1972, 2004, 2036, and 2068,
respectively. Figure 1–6 shows the format of the date word.

Figure 1–6: Date Word Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Age
0−3

Year minus 1972
minus 32 X Age

All Numbers
Are Decimal

Month, 1−12 Day, 1−31

Normally, directory entries are seven words long, but by using DUP with the /Z:n
option, you can allocate extra words for each entry when you initialize the volume.
The fourth word of the directory header contains the number of extra bytes you
specify. Although DUP lets you allocate extra words, RT–11 provides no means to
easily manipulate this extra information. Any program that needs to access these
words must perform its own operations on the RT–11 directory. In addition, programs
that manipulate the directory should use bit test (BIT) instructions, rather than
compare (CMP) instructions.

1.1.2.3 File Protection

RT–11 provides a mechanism to prevent a file from being deleted. A file is protected
when the high bit of its status word is set. Only permanent files can be protected.
You can protect and unprotect files by using the PIP /R option or the monitor
RENAME command. Note that a protected file is not protected against modification,
only against deletion. For more information, see the RT–11 Commands Manual.

1.1.2.4 Sample Directory Segment

The directory listing shown in Figure 1–7 describes an RX50 diskette with 10 files.

Figure 1–8 shows the contents of segment 1 of the diskette directory, obtained by
dumping absolute block number 6 of the volume.

Disk and Tape Formats 1–9

Figure 1–7: Directory Listings

DIRECTORY/FULL DU0:

12-Jul-88
SWAP .SYS 27 03-Sep-86 RT11XM.SYS 107 03-Sep-86
< UNUSED > 93 DUX .SYS 5 03-Sep-86
PIP .SAV 30 03-Sep-86 DUP .SAV 49 03-Sep-86
DIR .SAV 19 03-Sep-86 KED .SAV 58 03-Sep-86
MACRO .SAV 63 13-Nov-87 LINK .SAV 49 03-Sep-86
CREF .SAV 6 13-Nov-87 < UNUSED > 280
10 Files, 413 Blocks
373 Free blocks

DIRECTORY/SUMMARY DU0:

11-Jul-88

10 Files in segment 1

4 Available segments, 1 in use

10 Files, 413 blocks
373 Free blocks

1–10 RT–11 Volume and File Formats Manual

Figure 1–8: RT–11 Directory Segment

Header:

Entries:

4
0
1
0

Four segments available
No next segment
Highest open is #1
No extra bytes per entry
Files start at volume block 16 octal

Permanent file
Radix−50 for SWA
Radix−50 for P
Radix−50 for SYS
33 octal blocks long
Used only for tentative files
Created on 3−Sep−86

Permanent file
Radix−50 for RT1
Radix−50 for 1XM
Radix−50 for SYS
153 octal blocks long
Used only for tentative files
Created on 3−Sep−86

Empty area (the file RT11FB.SYS was deleted)
Radix−50 for RT1
Radix−50 for 1FB
Radix−50 for SYS
135 octal blocks long
Used only for tentative files
Created on 3−Sep−86

Permanent file
Radix−50 for DUX
Radix−50 for spaces
Radix−50 for SYS
5 octal blocks long
Used only for tentative files
Created on 3−Sep−86

Permanent file
Radix−50 for PIP
Radix−50 for spaces
Radix−50 for SAV
36 octal blocks long
Used only for tentative files
Created on 3−Sep−86

Permanent file
Radix−50 for DUP
Radix−50 for spaces
Radix−50 for SAV
61 octal blocks long
Used only for tentative files
Created on 3−Sep−86

Permanent file
Radix−50 for DIR
Radix−50 for spaces
Radix−50 for SAV
23 octal blocks long
Used only for tentative files
Created on 3−Sep−86

16

2000
75131
62000
75273

22156

142615

153

−
33

2000
71677

141262

135

−

36

1000

75273

22156

−

61

2000

71677

0

23

2000

75273

22156

5
−

2000

16140

75273

22156

0

2000

62570

73376

22156
−

16130

73376

22156

0

15172

73376

22156

−

0

−

Figure 1–8 (continued on next page)

Disk and Tape Formats 1–11

Figure 1–8 (Cont.): RT–11 Directory Segment

2000 Permanent file
Radix−50 for KED
Radix−50 for spaces
Radix−50 for SAV
72 octal blocks long
Used only for tentative files
Created on 3−Sep−86

Permanent file
Radix−50 for MAC
Radix−50 for RO
Radix−50 for SAV
75 octal blocks long
Used only for tentative files

42614

73376

22156

0

72

87

000325
063471
023364

430

2000

Created on 13−Nov

Permanent file
Radix−50 for LIN
Radix−50 for K
Radix−50 for SAV
61 octal blocks long
Used only for tentative files
Created on 3−Sep−86

Permanent file
Radix−50 for CRE
Radix−50 for F
Radix−50 for SAV
6 octal blocks long
Used only for tentative files

50553
71330
73376

26657

−

77

87

2000

Created on 13−Nov

46166
42300
73376

22156

−

61

2000

Empty area (never used since initialization)
Radix−50 for EM (stored at initialization)
Radix−50 for PTY (stored at initialization)
Radix−50 for FIL (stored at initialization)
430 octal blocks long
Used only for tentative files
(the date is not significant)

End−of−segment marker

12625
22600
73376

26657

−

1000

6
−

4000

−
−

To find the starting block of a particular file, first find the directory segment
containing the entry for that file. Then, take the starting block number in the fifth
word of that directory segment and add the length of each permanent, tentative,
and empty entry in the directory before your file. For example, in Figure 1–8 the
permanent file RT11XM.SYS begins at block number 518 on the volume; word 5
shows 168 and the previous entry, SWAP.SYS, is 338 blocks long.

1.1.3 File Storage on Random-Access Volumes

RT–11 uses the three types of directory entry mentioned previously to completely
describe the contents of a random-access volume. All files reside on contiguous
blocks. There are advantages and disadvantages to this method of storing data.

1–12 RT–11 Volume and File Formats Manual

When data is stored in contiguous blocks, I/O is more efficient. Transfers to large
buffers are handled directly by the hardware for certain disks; seeks between blocks
and program interrupts between blocks are eliminated. File data is processed simply
and efficiently since the data is not encumbered by link words in each block. Routines
to maintain the directory are relatively small because the directory structure is
simple. File operations, such as open, delete, and close, are performed quickly with
few disk accesses, because only the directory must be accessed, and not additional
bitmaps or retrieval pointers.

One disadvantage of this method of storing data is that a volume can become
fragmented, requiring a squeeze operation to consolidate its free space. Another
is that once a file is closed, a running program cannot easily increase its size.
Only a small number of output files can be opened simultaneously, even on a large
volume, unless the limits of the file sizes are known in advance. Finally, this scheme
precludes the use of multiple and hierarchical directories.

Figure 1–9 shows a simplified diagram of a random-access volume that has a total
of 2508 blocks of space available for files after blocks 0 through 5 and the directory
are accounted for. The volume in the figure has two permanent files and one empty
area stored on it.

Figure 1–9: Random-Access Volume with Two Permanent Files

Permanent
80 Blocks

Empty Permanent
20 Blocks150 Blocks

When you create a file, your program must specify a size for the file in the .ENTER
programmed request. If you know the exact number of blocks required, you can use
that number in the request. RT–11 will use a best-fit algorithm and attempt to put
the file in a free space that exactly matches the size requested or, failing that, in the
free space that most closely matches the size requested.

If you do not know the actual size, as is often the case, the space you specify should be
large enough to accommodate all the data possible. Two special cases for the .ENTER
programmed request let you do this easily. In the first case, a length argument of 0
allocates for the file either one-half the largest space available, or the second largest
space, whichever is bigger; in the second case, a length argument of –1 allocates the
largest space possible on the volume.

The monitor creates a tentative file on the volume with the length you specified.
The tentative file must always be followed by an empty area to enable the system to
recover unused space if less data is written to the file than you originally estimated.
Figure 1–10 shows an example of a tentative file whose allocated size is 1008 blocks.
Note that the total amount of space on the volume, 2508 blocks in this case, remains
constant.

Disk and Tape Formats 1–13

Figure 1–10: Random-Access Volume with One Tentative File

Permanent
80 Blocks

Tentative
100 Blocks

Empty Permanent
20 Blocks50 Blocks

Suppose, for example, that while the file is being created by one program, another
program enters a new file, allocating 258 blocks for it. The volume would appear as
shown in Figure 1–11. Remember that every tentative file must be followed by an
empty area.

Figure 1–11: Random-Access Volume with Two Tentative Files

Permanent
80 Blocks

Tentative
100 Blocks

Empty
0 Blocks

Tentative
25 Blocks

Empty
25 Blocks

Permanent
20 Blocks

When a program finishes writing data to the volume, it closes the tentative file with
the .CLOSE programmed request. RT–11 then makes the tentative file permanent.
The length of the file is the actual size of the data that was written. The size of the
empty area is its original size plus any unused space from the tentative file.

Figure 1–12 shows the same volume after both tentative files are closed. The first
file’s actual length is 758 blocks, and the second file’s length is 108 blocks.

Figure 1–12: Random-Access Volume with Four Permanent Files

Permanent
80 Blocks

Permanent
75 Blocks

Empty
25 Blocks

Permanent
10 Blocks

Empty
40 Blocks

Permanent
20 Blocks

Because of this method of storing files, it is impossible in RT–11 to extend the size
of an existing file from within a running program. To make an existing file appear
to be bigger, you can read the existing file; allocate a new, larger tentative file; and
write both the old and the new data to the new file. You can then delete the old file.

The CREATE/EXTENSION command (DUP /T option) is an easy way to extend the
size of an existing file. However, to use this option, you must have an empty file
with sufficient space in it immediately following the data file.

1–14 RT–11 Volume and File Formats Manual

1.1.4 Size and Number of Files

The number of files you can store on an RT–11 volume depends on the number of
segments in the volume’s directory and the number of extra words per entry. If you
use no extra words, each segment can contain 7210 entries. However, the maximum
number of entries includes three that are reserved by the operating system and not
available to the user. These three entries in each segment are for end-of-segment,
empty (but reserved), and a reserved entry for use when creating a tentative file.
Therefore, the maximum number of usable entries per directory segment is 6910.

The maximum number of directory segments on any RT–11 volume is 3110. Use the
following formula to calculate the theoretical maximum number of directory entries,
and thus, the maximum number of files.

512 - 5
31 * ------- - 3

7 + N

N represents the number of extra information words per directory entry. If N is 0,
the maximum number of files you can store on the volume is 224210.

Note that all divisions are integer and the remainder should be discarded.

If you store files sequentially (that is, one immediately after another) without
deleting any files, roughly one-half of the theoretical maximum number of files will
fit on the volume before a directory overflow occurs. This situation results from the
way RT–11 handles filled directory segments.

When a directory segment becomes full and it is necessary to open a new segment,
the monitor moves approximately one-half of the directory entries of the filled
segment to the new segment. Thus, when the final segment is full, all previous
segments have approximately one-half of their total capacity. See Section 1.1.5 for
a detailed explanation of how RT–11 splits a directory segment.

If you add files continually to a volume without issuing the SQUEEZE monitor
command, you can use the following formula to compute the maximum number of
entries, and thus, the maximum number of files.

S
(M - 1) * - + S

2

M represents the maximum number of segments.

S can be computed from the following formula:

512 - 5
S = ------- - 3

7 + N

N represents the number of extra information words per entry.

You can realize the theoretical total of directory entries (see the first formula, above)
by compressing the volume (using the DUP /S option or the monitor SQUEEZE
command) when the directory fills up. DUP packs the directory segments as well as
the physical volume.

Disk and Tape Formats 1–15

1.1.5 Splitting a Directory Segment

Whenever RT–11 stores a new file on a volume, it searches through the directory for
an empty area that is large enough to accommodate the new tentative file. When it
finds a suitable empty area, it creates the new file as a tentative file followed by an
empty area, sliding the rest of the directory entries down to make room for the new
entry. Figure 1–13 shows how RT–11 stores a new file as a tentative file followed by
an empty area.

Figure 1–13: Storing a New File

Before
Block 6

After
Block 6

Segment 1 Segment 1

Header Header

.

.

.

.

.

. .
.
.

.

.

.

Permanent 1 Permanent 1

Permanent 2 Permanent 2

Permanent 3 Permanent 3

Empty Tentative

Permanent 4 Empty

End−of−segment Permanent 4

End of block 7

End−of−segment

End of block 7

This procedure works properly as long as the empty entry and the entries following
it can move downward. However, if the segment is full, the monitor must split
the segment, if possible, to store the new entry. Figure 1–14 illustrates a directory
segment that is full.

First, the monitor checks the header for the number of segments available. If there
are none, a directory full error results and the monitor cannot store the new file.
You can squeeze the volume at this point to pack the directory segments and try the
operation again.

If there is another directory segment available, the monitor divides the current
segment by first finding a permanent or tentative entry near the middle of the
segment and saving its first word. In place of the first word, the monitor puts an
end-of-segment marker. It then saves the current link information, links the current

1–16 RT–11 Volume and File Formats Manual

Figure 1–14: Full Directory Segment

Block 6
Segment 1

Header

. More Entries

.

.

.

.

.

Permanent 1

Permanent 2

Permanent 3

Permanent 4

Permanent 5

End−of−segment,
End of Block 7

segment to the next available segment, and writes the current segment back to the
volume.

Next, the monitor restores the first word of the middle entry to the copy of the
segment that is still in memory, and restores the link information. It slides the
middle entry and all the entries following it to the top of the segment. Then, the
monitor writes this segment to the volume as the next available segment. Finally,
the monitor reads segment 1 into memory and updates the information in its header.
At this point, control passes to the top of the .ENTER routine, and the monitor begins
its search again for a suitable empty entry to accommodate the new file.

Figures 1–15 and 1–16 summarize the process of splitting a directory segment. In
this example, segment 1 was the only segment in use. It contained an empty entry
but did not have room for a tentative entry in addition to the empty one. After the
split, segments 1 and 2 are both about half full.

After a directory segment splits, the monitor can store the new file in either the new
segment or the old one, depending on which segment now contains the empty area.
In Figure 1–16, the empty area is in segment 2.

Thus far, the link words seem superfluous since the segments are always in
numerical order. However, consider a situation in which four segments are available:
segment 1 fills and overflows into segment 2; segment 2 fills and overflows into
segment 3; segments 1, 2, and 3 are half full, and they are linked in the order in
which they are located on the volume (blocks 6, 10, and 12). The picture changes if
you delete a large file from segment 2, leaving a large empty entry, and add a lot of

Disk and Tape Formats 1–17

Figure 1–15: Directory Before Splitting

Highest Segment in Use: 1
Number of Segments Available: 2

Block 6 Block 10
Segment 1 Segment 2

Header

End of Block 11
Eend of Block 7

Permanent 1

Permanent 2

Permanent 3

Permanent 4

Permanent 5

Empty

Permanent 6

Permanent 7

End−of−segment,

Figure 1–16: Directory After Splitting

Highest Segment in Use: 2
Number of Segments Available: 2

Block 6 Block 10
Segment 1 Segment 2

Link
Header Header

.

.

.

.

.

.

.

.

.

.

.

.

Permanent 1 Permanent 5

Permanent 2 Empty

Permanent 3 Permanent 6

Permanent 4 Permanent 7

End−of−segment End−of−segment

End of Block 7 End of Block 11

small files to the volume. Segment 2 now fills up and overflows into the next free
segment, segment 4, so that the links become visibly significant: segment 1 links
to 2, segment 2 links to 4, and segment 4 links to 3 because segment 2 previously
linked to 3. Figure 1–17 illustrates this example.

1–18 RT–11 Volume and File Formats Manual

Figure 1–17: Directory Links

Highest Segment in Use: 3
Number of Segments Available: 4

Block 6 Block 10 Block 12
Segment 1 Segment 2 Segment 3

Link Link

Block 14
Segment 4

Link

Link

Highest Segment in Use: 4
Number of Segments Available: 4

Block 6 Block 10 Block 12
Segment 1 Segment 2 Segment 3

Link

The process of splitting a directory segment in half when it is full may seem
unnecessarily complicated. In fact, if many files are simply copied to a disk, a
directory full error will occur when the directory is only half full. A squeeze will
be required to consolidate the half-full directory segments before more files can be
copied to the disk. However, splitting a directory segment reduces the amount of
directory entry shuffling that occurs as files are added and deleted on a volume,
thereby improving overall efficiency.

Refer back to Figure 1–15. Assume the empty entry between PERMANENT-5 and
PERMANENT-6 represents 1008 blocks of free disk space and that directory splitting
is not done. If a program makes a directory entry for a new 258-block file, the
directory entry for the file PERMANENT-7 must be moved to directory segment 2 to
make room in segment 1 for the entry for PERMANENT-5A and an empty entry of
758 blocks. If the program makes another directory entry for another 258-block file,
the file PERMANENT-6 must be moved to segment 2 to make room for the entry
PERMANENT-5B and an empty entry of 508 blocks. In other words, each time a new
directory entry occurs in segment 1, segment 2 must be updated as well, requiring
an extra disk read and write.

If a directory segment is split when full, however, this problem does not occur as
readily. Consider Figure 1–16 and observe what has happened. When a program
creates the new 258-block file PERMANENT-5A, only directory segment 2 must be
updated. No directory shuffling is required. If the file PERMANENT-4 is deleted
and replaced with two or more files, directory segment 1 has room to accommodate
the new file entries. Because directory splitting moves several directory entries from
one segment to another at one time, any given directory operation is far less likely
to require access to more than one directory segment. Directory splitting reduces
dramatically the number of disk accesses required, on average, and improves overall
directory efficiency.

Disk and Tape Formats 1–19

1.1.6 How to Recover Data When the Directory Is Corrupted

One of the most frustrating experiences a programmer can have is to lose data on
a volume because a block in the volume directory becomes bad or because another
user writes over the directory. Usually, the files on the volume are intact, but the
directory entries for some of the files have been destroyed. This section presents
some guidelines you can follow to recover as much data as possible from a volume
with a corrupted directory.

1.1.6.1 Examine Segment 1

First, determine whether segment 1 of the directory is bad. Remember, segment 1
occupies physical blocks 6 and 7 of the volume. To examine segment 1, mount the
volume and issue the DIRECTORY command.

If you get an immediate ?MON-F-Directory I/O error or ?MON-F-Dir I/O err
message, you know that segment 1 is bad. This leaves you with two alternatives:
you can reformat and reinitialize the volume (the volume is reusable if a bad block
scan shows no bad blocks in the directory area); or, if you are desperate to recover the
data on the volume, you can open the volume in non-file-structured mode with TECO
and search for data that resembles source code or other ASCII information that
looks familiar. This kind of search is a tedious process; you probably shouldn’t even
consider it unless you have a video terminal to use with TECO. See Section 1.1.6.4
for information on removing a file from the volume.

If the DIRECTORY monitor command gives you at least a partial directory listing,
you will be able to recover some of the information from the volume by issuing
the DIRECTORY/SUMMARY monitor command. The /SUMMARY option lists
information up to but not including the bad segment. To recover as many files
as possible, you must repair the directory by linking around the bad segment.

1.1.6.2 Follow the Chain of Segments

Use SIPP to open the volume in non-file-structured mode. Look first at location
60008, which is the start of the header for directory segment 1. It contains the
total number of segments available. Location 60028 contains the number of the
next segment, and location 60048 shows the highest segment in use. (To review the
directory header words and their meanings, see Table 1–2.)

To find the absolute location of the next segment, multiply the link word by 20008
and add 40008. For example, if the link word is 2, the next segment starts at location
100008 on the volume. Chain your way through the segments by opening the next
segment and following its link word. As you go, make a worksheet for the link
information, according to the format shown in Figure 1–18. Continue chaining until
you have accounted for all the segments. Remember that segment 1 is always the
first segment—that is, nothing links to it. The last segment has does not link and
contains 0.

In Figure 1–18, segment 3 must link to 0—that is, it is the last segment since all the
others have been accounted for already. To repair this directory, modify the header

1–20 RT–11 Volume and File Formats Manual

Figure 1–18: Worksheet for a Directory Chain with Four Segments

Highest segment in use: 4
Number of segments available: 4

Linked to:

1 2

Segment:

2 4

4 3(bad)

3(bad) ?

Figure 1–19: Worksheet for a Directory Chain with Nine Segments

Highest segment in use: 9
Number of segments available: 9

Linked to:

1 2

Segment:

2 5

5 4

4 8

8 7(bad)

7(bad) ?

3 0

6 9

9 3

of segment 4 so that the link word contains 0 instead of 3. This eliminates segment
3 from the chain. Section 1.1.6.3 describes how to remove the files from the volume.

Figure 1–19 shows a more complicated example. In this case the bad segment is not
the last one in the directory.

In a situation of the kind shown in Figure 1–19, you can follow the chain from
segment 1 through segment 8, which points to the bad segment. To continue from
that point, enter in the left column the lowest segment number not yet accounted

Disk and Tape Formats 1–21

for and follow its link. Remember, if a segment links to 0, it is the last segment in
the directory. Continue until all the segments are accounted for in the left column.

When you finish, the number that is missing from the right column is the segment to
which the bad segment links. In Figure 1–19, this is segment 6. As in the previous
example, use SIPP to link around the bad segment. In this case, change the link
word in segment 8 to point to segment 6, thus removing segment 7 from the chain.

1.1.6.3 Remove the Data from the Good Segments

Once you have eliminated the bad segment by linking around it, you are ready to
save the files whose entries appear in the good segments. Use the monitor COPY
command to copy the files to a good volume. The following command, for example,
copies all the files from one diskette to another:

COPY DU2:*.* DU3: RET

This procedure removes all the files from the volume except those whose entries
appear in the bad segment.

1.1.6.4 Remove the Data from the Bad Segment

You can sometimes save files whose entries appear in the bad segment by using
SIPP and DUP. If, when you open the segment with SIPP, block 1 of the segment
is unreadable, you should probably stop because chances are that even if block 2 of
the segment is readable, it contains old data that is not valid.

If you can read block 1, decode the header and the entries according to the diagram
in Figure 1–4. Continuing with SIPP, try to locate the files on the volume.
(Section 1.1.2.4 explains how to locate a file on the volume.) Once you establish
the starting and ending blocks of a specific file, run DUP and use the following
command sequence to transfer the file to a new volume:

output-filespec=input-volume:/G:startblock/E:endblock/I/F

You can use the following keyboard monitor command to achieve the same results:
COPY/DEVICE/FILES input-volume/START:startblock/END:endblock output-filespec

When you have finished removing files from the volume, you can return it to another
user (if someone wrote over the directory); or, you can reformat and initialize it (if
there was a bad block in the directory area). If reformatting does not remove the
bad block, label the volume clearly so you do not accidentally use it again.

1.1.7 BUP Volumes

BUP-initialized disks are nonbootable RT–11 file-structured volumes with one
directory segment and a special BUP identifier in the home block (see Section 1.1.1).
Structurally, they are essentially identical to other RT–11 volumes. BUP, during
restoration operations, checks for the special BUP identifier in the home block as
part of its verification procedure to ensure that savesets consisting of multiple file
sections are of the proper length and in the proper sequence.

Section 2.11 describes the format of BUP savesets and file sections.

1–22 RT–11 Volume and File Formats Manual

1.1.8 Large (Partitioned) Disks

RT–11’s directory structure allows a block number up to 16 bits (65,53510) long.
Many of today’s disks, however, have more than 65,535 blocks. To utilize the full
capacity of these disks, RT–11 does disk partitioning.

Disk partition numbers allow RT–11 to use disks having more than 65,535 blocks.
The disk partition number can be thought of as a high-order block number, as shown
in Figure 1–20.

Figure 1–20: MSCP Disk Block Number

| 24 Bits = MSCP Block Number |

Partition |

|

RT Block Number
Number
8 Bits 16 Bits

|

|

|

|

If a disk has more than 65,535 blocks, the RT–11 device handler for that disk divides
the disk into logical partitions of 65,535 1 blocks each. An RT–11 disk handler for
a partitioned disk can, in theory, support up to 256 disk partitions. Therefore, the
largest disk RT–11 can access has 256*65,535 blocks. To an RT–11 user, such a
disk would appear to be 256 separate 65,535-block disks, each disk having its own
directory.

Even though full MSCP supports block numbers of up to 32 bits, current RT–11
MSCP handlers for partitioned disks (for example, DU) support a block number of
no more than 24 bits, because the handlers store the partition numbers as bytes.
However, the partition number entries in the handler’s translation table could be
expanded to word entries if desired and 32-bit block numbers supported with no
particular difficulty. Refer to RT–11 System Internals Manual for details of the format
of the DU handler’s translation table.

1 Although RT–11 block numbers can be 0 through 1777778, or a total of 65,53610 blocks (2000008, or 000000 in 16 bits
since the 17th bit is lost), the size of a partition is defined as 65,53510 blocks (1777778), with RT–11 block numbers 0
through 177776. This avoids the problem of 16-bit overflow when dealing with the partition size. Because the partition
number is added onto the left of the RT–11 block number to give the MSCP block number, one block between each partition
is unused. The list below gives the block numbers of the first three partitions:
Partition Block Numbers

0 000000–177776, block 177777 unused
1 200000–377776, block 377777 unused
2 400000–577776, block 577777 unused

Disk and Tape Formats 1–23

1.1.9 Interchange Diskette Format

You can use the FILEX /U option (or the monitor COPY/INTERCHANGE command)
to transfer data between RT–11 volumes and interchange diskettes. An interchange
diskette, also known as an IBM floppy disk, consists of 7710 tracks. Each track
contains 2610 sectors, and you can store one record of 128 or fewer characters per
sector, using EBCDIC format.

Track 0 of the diskette is reserved for dataset labels, which are a form of directory.
The functions of the sectors of track 0 are as follows.

Sectors 1 through 4 are reserved by IBM for system use. There are 80 blanks per
sector.

Positions 1 through 1310 of sector 5 are used to record the identity of an error track.
Positions 1 through 5 contain ERMAP to identify the sector as an error map. Sector
5 is not supported by RT–11.

Sector 6 is reserved by IBM for system use. It contains 80 blanks.

Sector 7 is the volume label. Positions 1 through 4 (bytes 0 through 3) contain VOL1
in EBCDIC. This identifies the diskette as an IBM floppy. Within Digital, these four
bytes identify the system that wrote the diskette. RT–11 stores RT11 here. Other
fields in sector 7 identify the diskette, its format, and its owner, and indicate whether
or not the diskette uses standard labels. Table 1–4 describes the contents of sector
7.

Table 1–4: Interchange Diskette Sector 7

Octal Decimal Byte Contents

0 1 V

1 2 O

2 3 L

3 4 1

4 5 Bytes 5 through 10 contain the volume ID field. The ID consists
of one to six digits or letters (left-justified); unused positions must
contain blanks.

12 11 Access code. Must be blank to permit access to diskette.

13 12 Bytes 12 through 37 are reserved by IBM.

45 38 Bytes 38 through 51 contain the owner ID field. Not all systems
use this field.

63 52 Bytes 52 through 76 are reserved by IBM.

1–24 RT–11 Volume and File Formats Manual

Table 1–4 (Cont.): Interchange Diskette Sector 7

Octal Decimal Byte Contents

114 77 Bytes 77 and 78 are the record sequence field, or interleave factor.

115 78 Two blanks represent 1:1 interleave.

116 79 Reserved by IBM.

117 80 Label version field. W indicates standard labels.

Sectors 8 through 26 are the dataset labels. They are 40 words long and contain
directory information. Table 1–5 describes the contents of sectors 8 through 26.

Table 1–5: Interchange Diskette Sectors 8 Through 26

Octal Decimal Byte Contents

0 1 H

1 2 D

2 3 R

3 4 1

4 5 Reserved.

5 6 Bytes 6 through 13 contain the user name for the dataset (the file
label).

15 14 Bytes 14 through 22 are reserved.

26 23 Bytes 23 through 27 contain the block/record length. The default
is 80, but 128 is possible.

33 28 Reserved.

34 29 Bytes 29 and 30 contain two EBCDIC characters representing the
track number of the beginning of data.

36 31 EBCDIC 0 (3608).

37 32 Bytes 32 and 33 contain two EBCDIC characters representing the
sector number of the beginning of data.

41 34 Reserved.

42 35 Bytes 35 and 36 contain two EBCDIC characters representing the
number of the last track reserved for this dataset.

44 37 EBCDIC 0 (3608).

45 38 Bytes 38 and 39 contain two EBCDIC characters representing the
number of the last sector reserved for this dataset.

47 40 Reserved.

50 41 Bypass indicator.

Disk and Tape Formats 1–25

Table 1–5 (Cont.): Interchange Diskette Sectors 8 Through 26

Octal Decimal Byte Contents

51 42 Dataset security.

52 43 Write protect.

53 44 Blank for data interchange (1008).

54 45 Multi-volume indicator: C=Continued, L=Last, Blank=Not
continued.

55 46 Bytes 46 and 47 contain the volume sequence number.

57 48 Bytes 48 and 49 contain the creation year (such as 80).

61 50 Bytes 50 and 51 contain the creation month.

63 52 Bytes 52 and 53 contain the creation day.

65 54 Bytes 54 through 66 are reserved.

102 67 Bytes 67 through 72 contain the expiration date (in the same
format as the creation date).

110 73 Verify mark: V=Dataset verified, Blank=Not verified.

111 74 Reserved.

112 75 Bytes 75 through 79 contain the number of the next unused track
and sector within this dataset.

113 76 Bytes 75 and 76 contain the track number.

114 77 EBCDIC 0 (3608).

115 78 Bytes 78 and 79 contain the number of the next unused sector.

117 80 Reserved.

1.2 Sequential-Access Volumes

RT–11 magtape volumes are file-structured and sequentially accessed (not random-
accessed). This section describes the magtape formats and file structures. At the
end of this section is a procedure you can use to copy magtapes between the RT–11
and VMS operating systems.

1.2.1 Magtape Structure

RT–11 supports two types of magtape formats. They are quite similar to each other
and are both based on ANSI Standard X3.27–1978, File Structure and Labeling of
Magnetic Tapes for Information Interchange.

If you read or write files on a magtape using an RT–11 utility such as PIP, or
from your own assembly-language program using .LOOKUP, .ENTER, .READ, and
.WRITE, you use the file-structured magtape handler. File-structured magtape
handlers contain the FSM, the file structure module. RT–11’s file-structured magtape
handler creates and recognizes tape labels on magtapes that it writes.

1–26 RT–11 Volume and File Formats Manual

BUP, the backup utility program, bypasses the FSM in magtape handlers and uses its
own file structure module. Therefore, if you write files on a magtape using BUP, the
resulting tape will be somewhat different from one created using the file-structured
magtape handler.

The following sections describe each tape format in detail.

1.2.1.1 RT–11 File-Structured Magtape Format

This section describes the magtape format read and written by the file-structured
magtape handler.

RT–11 file-structured magtape implementation includes the following restrictions.
Features and restrictions for BUP-written magtapes are described in the RT–11
System Utilities Manual:

• There is no EOV (end-of-volume) support. This means that no file can continue
from the end of one tape volume to another volume.

• RT–11 does not ignore noise blocks on input.

• RT–11 assumes that data is written in records of 51210 characters per block. The
logical record size equals the physical record size.

NOTE
The hardware magtape handler (as opposed to
the file-structured magtape handler) can read
data in any format. You can also make use
of .SPFUN programmed requests and the file-
structured magtape handler to read tapes with data
in a nonstandard format (see the RT–11 Device
Handlers Manual for details). The RT–11 utility
programs, such as PIP, DUP, and DIR, can only read
and write tapes in the standard RT–11 format of
51210-character blocks.

• RT–11 does not check access fields and therefore provides no volume protection.

Figure 1–21 is a dump of tape written by the file-structured magtape handler (FSM).
The VOL1 block, however, is actually written by DUP (not by FSM) when you INIT
the magtape. Prior to RT–11 Version 5.5, DUP and FSM always made label records
of 512 bytes, but only the first 80 bytes were used. Characters in positions 81–512
were undefined. Magtape labels created in that format were not transportable to
other operating systems, such as VMS.

Since V5.5, those label blocks are physically 80 characters (40 words) long,
making them transportable to a VAX processor running the VMS operating system.
The procedure to transport magtapes created by RT–11 to VMS is described in
Section 1.2.2.

If necessary, a customization patch for DUP.SAV allows you to make old-style 256-
word labels. If you use the patch, bytes 81–512 in VOL1 records (written by DUP)
are initialized to spaces. Bytes 81–512 in HDR1 and EOF1 labels (written by FSM),

Disk and Tape Formats 1–27

however, are still undefined. Magtapes containing such labels are not transportable
to VMS.

Figure 1–21: FSM Magtape Label and Header Formats

*** MTFMGR: DB MU0:, 256. Words, (Base 8) ***
047526 030514 052122 030461 020101 020040 020040 020040 *VOL1RT11A *
020040 020040 020040 020040 020040 020040 020040 020040 * *
020040 020040 042040 041045 020040 020040 020040 020040 * D%BHAMILTON*
020040 020061 020040 020040 020040 020040 020040 020040 * 1 *
020040 020040 020040 020040 020040 020040 020040 031440 * 3*

*** MTFMGR: DB MU0:, 256. Words, (Base 8) ***
042110 030522 042532 047522 042105 055056 055132 020040 *HDR1FILE.DAT *
020040 020040 051040 030524 040461 030040 030060 030061 * RT11A 00010*
030060 030060 030060 030061 020060 030060 030060 020060 *001000100 00000 *
030060 030060 020060 030060 030060 030060 042504 051103 *00000 000000DECR*
030524 040461 020040 020040 020040 020040 020040 020040 *T11A *

** Tape Mark **

DATA AREA - 256-word fixed-length blocks. These blocks are exactly
the same as the disk files that they represent.

** Tape Mark **

*** MTFMGR: DB MU0:, 256. Words, (Base 8) ***
047505 030506 042532 047522 042105 055056 055132 020040 *EOF1FILE.DAT *
020040 020040 051040 030524 040461 030040 030060 030061 * RT11A 00010*
030060 030060 030060 030061 020060 030060 030060 020060 *001000100 00000 *
030060 030060 020060 030060 030060 030060 042504 051103 *00000 000007DECR*
030524 040461 020040 020040 020040 020040 020040 020040 *T11A *

** Tape Mark **

** Tape Mark **

** Tape Mark **

Note that the 000007 in the EOF1 label in Figure 1–21 indicates that there are 7
data blocks in the data area.

In the following examples, an asterisk (*) represents a tape mark. The structure of
the actual tape mark depends on the encoding scheme that the hardware uses. A
typical nine-channel NRZ tape mark consists of one tape character (238) followed by
seven blank spaces and an LRCC (238). Consult the hardware manual for your own
tape volume if the format of the tape mark is important to you.

A file stored on magtape has the following format:

HDR1
*
data
*
EOF1
*

A volume containing a single file has the following format:

1–28 RT–11 Volume and File Formats Manual

VOL1
HDR1
*
data
*
EOF1
*
*
*

A volume containing two files has the following format:

VOL1
HDR1
*
data
*
EOF1
*
HDR1
*
data
*
EOF1
*
*
*

A double tape mark following an EOF1 * label indicates logical end of tape. (Note
that the EOF1 label is considered to consist of the actual EOF1 information plus a
single tape mark.)

A magtape that has been initialized has the following format:

VOL1
HDR1
*
*
EOF1
*
*
*

A bootable magtape is a multifile volume that has the following format:

VOL1
BOOT
HDR1
*
data
*
EOF1
*
*
*

To create an RT–11 bootable magtape, you must copy the primary bootstrap by
using the INITIALIZE/FILE:primboot command, where primboot is MBOOT for 8

Disk and Tape Formats 1–29

bpi and TMSCP magtapes or MBOT16 for 16 bpi magtapes. The primary bootstrap
is represented by BOOT in the format given for a bootable magtape. It occupies a
25610-word physical block. The first real file on the tape must be the secondary
bootstrap, the file MSBOOT.BOT. If the tape is designed to allow another user
to create another bootable magtape, you should copy the primary bootstrap file
(MBOOT.BOT or MBOT16.BOT) to the tape, as a file. (This is in addition to copying
it into the boot block at the beginning of the tape.) More detailed instructions for
building bootable magtapes are in the RT–11 System Internals Manual.

The primary and secondary bootstraps inspect the I/O page for the presence of
standard magtape volume registers to determine which type of magtape controller
is available. Make sure that other peripheral volumes on your system do not
use addresses in the I/O page normally used by another magtape controller. The
bootstraps might attempt to use the magtape controller assigned to those addresses
rather than the magtape controller actually installed on your system.

Each label on the tape (as shown in the formats of the various magtape structures)
is a separate record, 80 bytes long, and each byte in the label contains an ASCII
character. (That is, if the content of a byte is listed as 1, the byte contains the ASCII
code for 1, not the octal value 1.) Table 1–6 shows the contents of the 80 bytes in
the three labels. Note that with the older version of RT–11, the VOL1, HDR1, and
EOF1 labels occupied a full 25610-word block each, of which only the first 80 bytes
were meaningful.

Table 1–6: RT–11 File-Structured Magtape Labels

Character
Position
in
Label Field Name

Length
of Field Contents

Volume Header Label (VOL1)

1–3 Label identifier 3 VOL

4 Label number 1 1

5–10 Volume identifier 6 Volume label. If you do not specify a volume
ID at initialization time, the default is
RT11A SP

11 Accessibility 1 SP

12–37 Reserved 26 (Spaces)

38–50 Owner identifier 13 Positions 38–40 = D%B (This means tape
was written by DEC PDP–11.)
Positions 41–50 = Owner name. Maximum
is 10 characters; default is (spaces).

51 DEC standard ver-
sion

1 1

1–30 RT–11 Volume and File Formats Manual

Table 1–6 (Cont.): RT–11 File-Structured Magtape Labels

Character
Position
in
Label Field Name

Length
of Field Contents

Volume Header Label (VOL1)

52–79 Reserved 28 (Spaces)

80 Label standard ver-
sion

1 3

File Header Label (HDR1)

1–3 Label identifier 3 HDR

4 Label number 1 1

5–21 File identifier 17 The six-character ASCII file name, dot,
three-character file type. This field is left
justified and followed by spaces. Do not pad
the file name or type.

22–27 File set identifier 6 RT11A SP

28–31 File section num-
ber

4 0001

32–35 File sequence num-
ber

4 First file on tape has 0001. This value is
incremented by 1 for each succeeding file.
On a newly initialized tape, this value is
0000.

36–39 Generation number 4 0001

40–41 Generation version 2 00

42–47 Creation date 6 SP followed by (year*1000) + day in ASCII;
SP followed by 00000 if no date. For
example, 2/1/90 is stored as SP 90032.

48–53 Expiration date 6 SP followed by 00000 indicates an expired
file.

54 Accessibility 1 SP

55–60 Block count 6 000000

61–73 System code 13 DECRT11A SP followed by spaces.

74–80 Reserved 7 (Spaces)

Disk and Tape Formats 1–31

Table 1–6 (Cont.): RT–11 File-Structured Magtape Labels

Character
Position
in
Label Field Name

Length
of Field Contents

First End-of-File Label (EOF1). This label is the same as the HDR1 label, with the
following exceptions:

1–3 Label identifier 3 EOF

55–60 Block count 6 Number of data blocks since the preceding
HDR1 label, unless you issue an .SPFUN
programmed request. If you issue
.SPFUNs, the block count is 0. However, if
the only special function operations you do
are 25610-word .SPFUN writes, the block
count is accurate.

1.2.1.2 BUP Magtape Format

The magtape format used by BUP, the Backup Utility Program, is not quite the
same as the RT–11 file-structured magtape format used by PIP, DUP, and so on.
BUP bypasses the file-structured magtape handler and writes its own tape labels.
You can mount a magtape written by BUP on a VAX or other system that supports
ANSI-format magtapes, and read the BUP saveset from the tape. Note, however,
that VMS will read the entire BUP saveset as a single file. You have to extract
individual RT–11 files from the saveset file with the VMS EXCHANGE utility.

Figure 1–22 and Table 1–7 illustrate the format of labels on a BUP magtape. Some
of the contents in these records is fixed, while other parts are variable. For example,
DECRT11BUP is always recorded in a BUP tape VOL1 label, but BACKUP.BUP is
an arbitrary saveset name given by the user. Similarly, 88159 in the HDR1 record
is a date code indicating that the file was made on the 159th day of 1988.

1–32 RT–11 Volume and File Formats Manual

Figure 1–22: BUP Magtape Label and Header Formats

VOLUME LABEL:

047526 030514 052122 052502 020120 020040 020040 020040 *VOL1RTBUP *
020040 020040 020040 020040 042504 051103 030524 041061 * DECRT11B*
050125 033065 020060 020040 020040 020040 020040 020040 *UP560 *
020040 020040 020040 020040 020040 020040 020040 020040 * *
020040 020040 020040 020040 020040 020040 020040 032040 * 4*

HEADER_1 LABEL:

042110 030522 040502 045503 050125 041056 050125 020040 *HDR1BACKUP.BUP *
020040 020040 051040 041124 050125 030040 030060 030061 * RTBUP 00010*
030060 030061 030060 030061 020060 034070 032461 020071 *001000100 88159 *
030060 030060 020060 030060 030060 030060 042504 051103 *00000 000000DECR*
030524 041061 050125 033065 020060 020040 020040 020040 *T11BUP560 *

HEADER_2 LABEL:

042110 031122 030106 030064 033071 030060 030465 020062 *HDR2F0409600512 *
030060 032460 033470 031064 030060 030060 030060 030060 *0005874200000000*
020040 020040 020040 020040 020040 020040 020040 020040 * *
020040 030060 020040 020040 020040 020040 020040 020040 * 00 *
020040 020040 020040 020040 020040 020040 020040 020040 * *

** Tape Mark **

FILE SECTION DATA AREA CONTAINING CONSECUTIVE DISK BLOCKS, BLOCKING
FACTOR=8 (PHYSICAL RECORD SIZE=2048 WORDS, EACH RECORD CONTAINS
EIGHT 256-WORD BLOCKS)

** Tape Mark **

END_OF_FILE_1 (OR END_OF_VOLUME_2) LABEL:

047505 030506 040502 045503 050125 041056 050125 020040 *EOF1BACKUP.BUP *
020040 020040 051040 041124 050125 030040 030060 030061 * RTBUP 00010*
030060 030061 030060 030061 020060 034070 032461 020071 *001000100 88159 *
030060 030060 020060 030060 031467 031464 042504 051103 *00000 007343DECR*
030524 041061 050125 033065 020060 020040 020040 020040 *T11BUP560 *

END_OF_FILE_2 (OR END_OF_VOLUME_2) LABEL:

047505 031106 030106 030064 033071 030060 030465 020062 *EOF2F0409600512 *
030060 032460 033470 031064 030060 032460 033470 031064 *0005874200058742*
020040 020040 020040 020040 020040 020040 020040 020040 * *
020040 030060 020040 020040 020040 020040 020040 020040 * 00 *
020040 020040 020040 020040 020040 020040 020040 020040 * *

** Tape Mark **
[** Tape Mark **] if end of tape
[** Tape Mark **] " " " "

OR HDR1, if another file section begins.

Disk and Tape Formats 1–33

Table 1–7: BUP Magtape Labels

Character
Position
in
Label Field Name

Length
of Field Contents

Volume Header Label (VOL1)

1–3 Label identifier 3 VOL

4 Label number 1 1

5–10 Volume identifier 6 Volume label. The label of the first volume
of a BUP saveset is RTBUP; the label on
the second volume is RTBU02, the third is
RTBU03, etc.

11 Accessibility 1 SP

12–24 Reserved 13 (Spaces)

25–37 Implementation
identifier

13 DECRT11BUPnnn, where nnn is a 3-digit
version number. This identifier also appears
in HDR1, EOF1, and EOV1 labels.

38–51 Owner identifier 14 (Spaces)

52–79 Reserved 28 (Spaces)

80 Label standard
version

1 4

File Header Label (HDR1)

1–3 Label identifier 3 HDR

4 Label number 1 1

5–21 File identifier 17 BACKUP.BUP plus seven spaces

22–27 File set identi-
fier

6 RTBUP SP

28–31 File section num-
ber

4 0001

32–35 File sequence num-
ber

4 First file on tape has 0001. This value is
incremented by 1 for each succeeding file. On
a newly initialized tape, this value is 0000

36–39 Generation num-
ber

4 0001

40–41 Generation ver-
sion

2 00

1–34 RT–11 Volume and File Formats Manual

Table 1–7 (Cont.): BUP Magtape Labels

Character
Position
in
Label Field Name

Length
of Field Contents

File Header Label (HDR1)

42–47 Creation date 6 SP followed by (year*1000) + number of the
day in ASCII; SP followed by 00000 if no date.
For example, SP 88032 represents February
1, 1988.

48–53 Expiration date 6 SP followed by 00000 indicates no date.

54 Accessibility 1 SP

55–60 Block count 6 000000

61–73 Implementation
identifier

13 DECRT11BUP560

74–80 Reserved 7 (Spaces)

Second File Header Label (HDR2)

1–3 Label identifier 3 HDR

4 Label number 1 2

5 Record format 1 F (indicates fixed-length records)

6–10 Block length 5 04096

11–15 Record length 5 00512

16 1 Reserved

17–24 Saveset size in
blocks

8 Decimal value

25–32 Next block num-
ber

8 Decimal value; in the final EOF2 label, this
number equals the saveset size.

33–50 Reserved 17 Spaces

51–52 Offset length 2 00

53–80 Reserved 27 Spaces

Disk and Tape Formats 1–35

Table 1–7 (Cont.): BUP Magtape Labels

Character
Position
in
Label Field Name

Length
of Field Contents

First End-of-File Label (EOF1). This label is the same as the HDR1 label, with the
following exceptions:

1–3 Label identifier 3 EOF

55–60 Block count 6 Number of data blocks since the preceding
HDR1 label, unless you issue an .SPFUN
programmed request. If you issue .SPFUNs,
the block count is 0. However, if the only
special function operations you do are 25610-
word .SPFUN writes, the block count is
accurate.

Second End-of-File Label (EOF2)

1–3 Label identifier 2 EOF

4 Label number 1 2

5 Record format 1 F

6–10 Block length 5 04096

11–15 Record length 5 00512

16 Reserved 1 SP

17–24 Saveset size 8

25–32 Next block num-
ber

8

33–50 Reserved 17 Spaces

51–52 Reserved 2 00

53–80 Reserved 27 Spaces

A backup saveset is recorded as one or more file sections. Only one file section for
each tape volume is associated with a particular saveset.

EOV labels replace EOF labels when physical end-of-tape is encountered and a
saveset continues on subsequent volume(s). In this case, the next volume always
begins with the next saveset (file) section in sequence.

Label records are all 80 characters in length, both logically and physically.

VOL1 labels have the following characteristics:

1–36 RT–11 Volume and File Formats Manual

• The first volume in a saveset contains a VOL1 label that identifies the tape with
name RTBUP. Subsequent volumes are identified with names RTBU02, RTBU03,
and so forth.

• The implementation identifier is DECRT11BUPxxx, where xxx is a 3-digit version
number. This identifier is also recorded in the HDR1, EOF1 and EOV1 labels.

Notes about HDR1, EOF1 and EOV1 labels:

• Expiration date is not specified

Notes about HDR2, EOF2 and EOV2 labels:

• Character position 16 is blank and reserved for future use.

• Character positions 17–24 contain an 8-digit saveset size in blocks.

• Character positions 25–32 contain an 8-digit "next" block number. This number
equals the saveset size on the final EOF2 label.

1.2.2 RT–11/VMS Magtape File Interchange

Because of changes that were made to how the FSM represents file names in the
HDR1 and EOF1 label name fields, RT–11 magtapes are more compatible with
the VMS operating system ANSI magtape implementation. The format change
is backwards compatible with RT–11 utilities and, using the information provided
below, allows text files to be transferred between the RT–11 and VMS operating
systems.

Text files to be transferred between RT–11 and VMS must be enclosed in an RT–11
logical disk, as the logical disk file format is compatible with both operating systems
and can be conveniently transferred in either direction by using magtape media.

The VMS EXCHANGE utility is used for format translation when files are
transferred in either direction. Use EXCHANGE to create an RT–11 logical disk
on a VAX computer when transferring files from the VMS system to RT–11. When
transferring files from the RT–11 system to VMS, use EXCHANGE to convert files
on the RT–11 logical disk from RT–11 format to VMS format. Because EXCHANGE
utility characteristics could change with a future VMS release, you should consult
the VMS documentation if any questions arise with using EXCHANGE.

The following example illustrates transferring files from a computer running RT–11
to a VAX computer running the VMS operating system:

1. Create and mount a logical disk of sufficient size to contain those files you want
to transfer. Then, copy the files to the logical disk. In the following commands,
LOGDSK.DSK is the logical disk, LD0 is logical disk unit, and dev:files.ext are
those files you want to transfer. You then copy the logical disk to an initialized
magtape volume, MU0:

Disk and Tape Formats 1–37

.CREATE LOGDSK.DSK/ALLOCATE:nnnnnn

.MOUNT LD0: LOGDSK.DSK

.INITIALIZE LD0:

.COPY dev:files.ext LD0:

.INITIALIZE MU0:

.COPY LOGDSK.DSK MU0:

As an alternative, you could use the following BACKUP command to achieve the
same result:

.BACKUP/INITIALIZE/NOQUERY dev:files.ext MU0:LOGDSK.DSK

2. Carry the magtape volume to the computer running VMS, mount the volume,
log on to the VMS system, and enter the following:

$ ALLOCATE MUA0:

If the files were placed in LD0 by the COPY command, issue the following
command:

$ MOUNT/OVERRIDE=OWNER/BLOCKSIZE=512 MUA0: RT11A

If the files were placed in LD0 by the BACKUP command, issue the following
command:

$ MOUNT/OVERRIDE=OWNER MUA0: RTBUP

3. After mounting MUA0, issue the following commands:

$ COPY MUA0:LOGDSK.DSK *
$ EXCHANGE
EXCHANGE> MOUNT/VIRTUAL LD: LOGDSK.DSK
EXCHANGE> DIR LD:
EXCHANGE> COPY LD: *.* *
EXCHANGE> CTRL/Z

$ DISMOUNT MUA0:

The following example illustrates transferring files from a VAX computer running
the VMS operating system to a PDP–11 computer running RT–11:

1. Use EXCHANGE to convert and copy VMS format files (vmsfiles.*) to an RT–11
format logical disk file (LOGDSK.DSK):

$ EXCHANGE
EXCHANGE> INITIALIZE/CREATE LOGDSK.DSK/ALLOC:nnnnnn
EXCHANGE> MOUNT/VIRTUAL LD: LOGDSK.DSK
EXCHANGE> COPY vmsfiles.* LD:
EXCHANGE> CTRL/Z

$

2. Initialize and mount a magtape (MUA0), and specify a 512-byte blocksize:

$ ALLOCATE MUA0:
$ INITIALIZE/OVERRIDE=OWNER MUA0: RTTAPE
$ MOUNT/BLOCKSIZE=512 MUA0: RTTAPE

3. Copy the logical disk file, LOGDSK.DSK, to the magtape and dismount the
magtape:

1–38 RT–11 Volume and File Formats Manual

$ COPY LOGDSK.DSK MUA0:
$ DISMOUNT MUA0:

4. Carry the magtape MUA0 to the RT–11 system and mount it. Transfer the logical
disk file, LOGDSK.DSK, to a disk with sufficient space, and then perform regular
RT–11 operations to retrieve the files it contains.

Disk and Tape Formats 1–39

Chapter 2

File Formats

This chapter describes the formats of various RT–11 files. It contains information
on the following file types:

• Logical disk files (.DSK)

• Object files (.OBJ)

• Symbol table definition files (.STB)

• Library files (.OBJ and .MLB)

• Absolute binary files (.LDA)

• Standard save image files (.SAV)

• Extended (I–D space) save image files (.SAV)

• Relocatable files (.REL)

• Stream ASCII files (such as .MAC, .FOR, and so on)

• CREF files

• BUP saveset files (.BUP)

• Error log files

2.1 Logical Disk File Format (.DSK)

A logical disk file looks exactly like a random-access volume image (Figure 1–1);
block 0 of a logical disk file corresponds to block 0 of a random-access volume, block
1 of a logical disk file corresponds to the home block (block 1) of a random-access
volume, and so on. If a logical disk contains a bootable device image, blocks 0 and 2
through 5 contain the primary and secondary bootstrap for LD as the system device.

A logical disk file contains a standard RT–11 directory, as described in Chapter 1,
beginning in block 6 of the logical disk file. The directory entries point to files stored
in the space between the end of the logical disk’s last directory segment and the
end of the logical disk file. All files stored in a logical disk file (.SAV, .OBJ, .LST,
and so on) have the same format as they would if they were stored directly on a
random-access volume.

In effect, a logical disk file is an image of a random-access volume; all descriptions
of random-access volumes in Section 1.1 apply to logical disk files.

File Formats 2–1

2.2 Object File Format (.OBJ)

An object module is a file containing a program or routine in a binary, relocatable
form. Object files normally have a .OBJ file type. In a MACRO–11 program,
one module is defined as the unit of code enclosed by the .TITLE and .END pair
of directives. MACRO–11 takes the module name from the .TITLE statement.
Language processors, such as MACRO–11 and FORTRAN IV, produce object
modules; the Linker processes object modules to make runnable programs in .SAV,
.LDA, or .REL format. The librarian can also process object files to produce
library files, which the Linker can then use. Figure 2–1 illustrates object module
processing.

Although you can combine many different object modules to form one file, each object
module remains complete and independent. However, when the librarian combines
object modules into a library, the modules are no longer independent. Instead, they
are concatenated and become part of the library’s structure.

The librarian concatenates modules by byte rather than by word in order to save
space. For example, suppose a library is to consist of two modules and the first
module contains an odd number of bytes. The librarian adds the second module
to the library behind the first module and positions the first byte of the second
module as the high-order byte of the last word of the first module. As a result of
this procedure, one byte is saved in the library.

To understand byte concatenation, think of the modules as a stream of bytes, rather
than as a stream of two-byte words. Figure 2–2 shows how two five-byte modules
would be concatenated. Module 1 and module 2 are shown both as bytes and as
words.

2–2 RT–11 Volume and File Formats Manual

Figure 2–1: Object Module Processing

Source
Program

Source
Program

Source
Program.

.

.FOR .MAC .xxx

FORTRAN IV
Compiler

MACRO−11
Assembler

User−written
Language
Processor

Object
Modules
.OBJ

Librarian

Library
File
.OBJ

File

Program

Linker

Save
Image
File .SAV

Absolute
Binary
File .LDA

Relative
File .REL

File Formats 2–3

Figure 2–2: Modules Concatenated by Byte

Bytes: Words:
Module 1:

Module 2:

1 2 1

Module 1:

Module 2:

Bytes: Words:
Concatenated modules, Module 1 followed by Module 2:

2 4 3

Module 1:

Module 2:

3

2

5

4

4

1

5

2

3

1

4

5

2

1

1

3

3

3

4

5

5

5

2

1

4

2

3

4

5

1

2

3

4

5

The rest of Section 2.2 contains information on the composition of object modules
that is more detailed than most programmers require. However, if you intend to
write a language processor, a Linker program, or a program to dump and interpret
object modules, you should read this material carefully. If you are writing a language
processor and want its output to be processed by the RT–11 Linker, be sure that the
processor produces object modules compatible with those described here. Since this
section documents the object modules produced by MACRO–11 and FORTRAN IV,
you could also use this information to write your own Linker program.

2–4 RT–11 Volume and File Formats Manual

Object modules are made up of formatted binary blocks. A formatted binary block
is a sequence of 8-bit bytes (stored in an RT–11 file or by some other means) that is
arranged as shown in Figure 2–3.

Figure 2–3: Formatted Binary Format

Byte containing octal value 1

Low−order byte of length
Length

Data bytes

Checksum byte

Byte containing octal value 0

High−order byte of length

Each formatted binary block has its length stored within it. The length includes
all bytes of the block except the checksum byte. The checksum byte is the negative
of the sum of all preceding bytes. Formatted binary blocks may be separated by a
variable number of null (0) bytes.

The ‘‘data bytes’’ portion of each formatted binary block contains the actual object
module information. RT–11 uses and recognizes eight types of data blocks. The
information in these blocks guides the Linker as it translates object code into a
runnable program. Table 2–1 lists the eight types of data blocks.

Table 2–1: RT–11 Data Blocks

Identification
Code Block Type Function

1 GSD Holds the Global Symbol Directory information.

2 ENDGSD Signals the end of Global Symbol Directory blocks in
a module.

3 TXT Holds the actual binary text of the program.

4 RLD Holds Relocation Directory information.

5 ISD Holds the Internal Symbol Directory information (not
supported by RT–11).

6 ENDMOD Signals the end of the object module.

7 Librarian
header

Holds the status of the library file (see Section 2.4.1).

File Formats 2–5

Table 2–1 (Cont.): RT–11 Data Blocks

Identification
Code Block Type Function

10 Librarian end Signals the end of the library file (see Section 2.4.3).

An object module must begin with a Global Symbol Directory (GSD) block and end
with an End of Module (ENDMOD) block. Additional GSD blocks can occur anywhere
in the file, but must appear before an End of Global Symbol Directory (ENDGSD)
block. An ENDGSD block must appear before the ENDMOD block, and at least
one Relocation Directory (RLD) block must appear before the first Text Information
(TXT) block. Additional RLD and TXT blocks can appear anywhere in the file. The
Internal Symbol Directory (ISD) block can appear anywhere in the file between the
initial GSD and ENDMOD blocks. Figure 2–4 shows a general scheme for an object
module.

Figure 2–4: General Object Module Format

GSD Initial GSD

Initial Relocation Directory

Additional GSD

Text Information

Text Information

Relocation Directory

Additional GSD

End of GSD

Internal Symbol Directory

Internal Symbol Directory

Text Information

Text Information

Text Information

Relocation Directory

End of Module

.

.

.

ENDGSD

RLD

ENDMOD

GSD

TXT

TXT

RLD

GSD

ISD

ISD

TXT

TXT

TXT

RLD

2–6 RT–11 Volume and File Formats Manual

You must declare all program sections (p-sects, v-sects, and c-sects) defined in a
module in GSD items. The size word of each program section definition should
contain the size in bytes to be reserved for the section. If you declare a program
section more than once in a single object module, the Linker uses the largest declared
size for that section. All global symbols that are defined in a given program section
must appear in the GSD items immediately following the definition item of that
program section.

A special program section, called the absolute section . ABS., is allocated by the
Linker, beginning at location 0 of memory. Immediately after the GSD item that
defines the absolute section, declare all global symbols that contain absolute (non-
relocatable) values. If you do not want to allocate any memory space for the absolute
section, specify zero as its size word. You can do this even if absolute global symbol
definitions occur after it.

You must declare in GSD items those global symbols that are referenced but not
defined in the current object module. These global references may appear in any GSD
item except the very first, which contains the module name. In MACRO, referenced
globals are listed in a GSD block under the . ABS. p-sect. They always have the
p-sect definition preceding them.

Note that when a 16-bit word is stored as part of the information in a data block, it
is always stored as two consecutive 8-bit bytes, with the low-order byte first.

Object module data blocks vary in length. The first byte in a data block is a code that
identifies the type of data block. The codes range from 0 through 108, as Table 2–1
shows. The format of the rest of the information in the data block depends on the
type of data block.

The following sections describe in detail the format of the data blocks.

2.2.1 Global Symbol Directory Block (GSD)

Global Symbol Directory blocks contain all the information the Linker needs to
assign addresses to global symbols and to allocate the memory a job requires.
Table 2–2 shows the eight types of entries that GSD blocks can contain.

Table 2–2: Entries in GSD Blocks

Entry
Type Description

0 Module Name

1 Control Section Name (c-sect)

2 Internal Symbol Name

3 Transfer Address

4 Global Symbol Name

5 Program Section Name (p-sect)

File Formats 2–7

Table 2–2 (Cont.): Entries in GSD Blocks

Entry
Type Description

6 Program Version Identification (IDENT)

7 Mapped Array Declaration (v-sect)

Each entry type is represented by four words in the GSD data block. The first two
words contain six Radix–50 characters. The third word contains a flag byte and the
entry type identification. The fourth word contains additional information about the
entry. Figure 2–5 illustrates the format of the GSD data block and the entry types.

Figure 2–5: Global Symbol Directory Data Block

0 Data Block Code
(GSD = 1)

Radix−50 Name
(2 words)

Entry Type Flags

Value

.

.

.

.

.

.

Radix−50 Name
(2 words)

Entry Type Flags

Value

Radix−50 Name
(2 words)

Entry Type Flags

Value

The following sections describe the entry types for GSD data blocks.

2.2.1.1 Module Name (Entry Type 0)

The module name entry, illustrated in Figure 2–6, declares the name of the object
module. The name need not be unique with respect to other object modules because
modules are identified by file, not module name. However, only one module name
declaration can occur in a single object module.

2–8 RT–11 Volume and File Formats Manual

Figure 2–6: Module Name Entry Format (Entry Type 0)

Module

Name

0 0

0

2.2.1.2 Control Section Name (Entry Type 1)

The control section name entry (see Figure 2–7) declares the name of a control
section. The Linker converts control sections—which include a-sects, blank c-sects,
and named c-sects—to p-sects. For compatibility with other systems, the Linker
processes a-sects and both forms of c-sects. See Section 2.2.1.6 for the entry the
Linker generates for a .PSECT statement.

You can define .ASECT and .CSECT statements in terms of .PSECT statements, as
follows:

For a blank c-sect, define a p-sect with the following attributes:

.PSECT ,RW,I,LCL,REL,CON

For a named c-sect, the p-sect definition is:

.PSECT name,RW,I,GBL,REL,OVR

For an a-sect, the p-sect definition is:

.PSECT . ABS.,RW,I,GBL,ABS,OVR

The Linker processes a-sects and c-sects as p-sects with the fixed attributes defined
above.

Figure 2–7: Control Section Name Entry Format (Entry Type 1)

Control Section

Name

1 Ignored

Maximum Length

File Formats 2–9

2.2.1.3 Internal Symbol Name (Entry Type 2)

The internal symbol name entry (see Figure 2–8) declares the name of an internal
symbol with respect to the module. Because the Linker does not support internal
symbol tables, the detailed format of this entry is not defined. If the Linker
encounters an internal symbol entry while reading the GSD, it ignores it.

Figure 2–8: Internal Symbol Name Entry Format (Entry Type 2)

Symbol

Name

2 0

Undefined

2.2.1.4 Transfer Address (Entry Type 3)

The transfer address entry (see Figure 2–9) declares the transfer address of a module
relative to a p-sect. The first two words of the entry define the name of the p-sect.
The fourth word indicates the relative offset from the beginning of that p-sect. If no
transfer address is declared in a module, do not specify the transfer address entry
in the GSD, or specify a transfer address 000001 relative to the default absolute
(. ABS.) psect.

To begin execution of a program within a particular object module of a program,
specify the starting address to the Linker as the transfer address. The Linker passes
the first even transfer address it encounters to RT–11 as the program’s starting
address. Whenever the resulting program executes, the start address indicates the
first executable instruction. If there is no transfer address (if, for example, you did
not specify one with the .END directive in a MACRO–11 program), or if all transfer
addresses are odd, the resulting program does not self-start when you run it.

Figure 2–9: Transfer Address Entry Format (Entry Type 3)

Symbol

Name

3 0

Offset

2–10 RT–11 Volume and File Formats Manual

NOTE
When the p-sect is absolute, Offset is the actual transfer
address if it is not equal to 000001.

2.2.1.5 Global Symbol Name (Entry Type 4)

The global symbol name entry (see Figure 2–10) declares either a global reference
or a definition. All definition entries must appear after the declaration of the p-sect
under which they are defined, and before the declaration of another p-sect. Global
references can appear anywhere within the GSD.

Figure 2–10: Global Symbol Name Entry Format (Entry Type 4)

Symbol

Name

4 Flags

Value

The first two words of the entry define the name of the global symbol. The flag byte
declares the attributes of the symbol. The fourth word contains the value of the
symbol relative to the p-sect under which it is defined.

The flag byte of the symbol declaration entry has the bit assignments shown in
Table 2–3. Bits 1, 2, 4, 6, and 7 are not used by the RT–11 Linker.

Table 2–3: Flag Bits for Global Symbol Name Entry

Bit Meaning

0 Weak Qualifier
0 = Strong (normal) symbol
1 = Weak symbol

3 Definition
0 = Global symbol reference
1 = Global symbol definition

5 Relocation
0 = Absolute symbol value
1 = Relative symbol value

File Formats 2–11

2.2.1.6 Program Section Name (Entry Type 5)

The p-sect name entry (see Figure 2–11) declares the name of a p-sect and its
maximum length in the module. It also uses the flag byte to declare the attributes
of the p-sect. The default attributes of the p-sect (blank or named with no attributes
specified) are as follows:

.PSECT ,RW,I,LCL,REL,CON

Figure 2–11: P-sect Name Entry Format (Entry Type 5)

P−sect

Name

5 Flags

Maximum Length

NOTE
The length of all absolute sections is zero.

GSD records must be constructed so that after a p-sect name has been declared, all
global symbol definitions pertaining to it must appear before another p-sect name
is declared. Global symbols are declared by symbol declaration entries. Thus,
the normal format is a series of p-sect names, each followed by optional symbol
declarations.

Table 2–4 shows the bit assignments of the flag byte. Bits 1 and 3 are not used by
the RT–11 Linker.

Table 2–4: Flag Bits for P-sect Name Entry

Bit Meaning

0 Save (Root Allocation)
0 = P-sect scope is determined by the value of bit 6.
1 = P-sect is allocated in the root and its scope is global regardless of the value of bit
6.

2 Allocation
0 = P-sect references are to be concatenated with other references to the same p-sect
to form the total amount of memory allocated to the section.
1 = P-sect references are to be overlaid. The total amount of memory allocated to the
p-sect is the size of the largest request made by individual references to the same
p-sect.

2–12 RT–11 Volume and File Formats Manual

Table 2–4 (Cont.): Flag Bits for P-sect Name Entry

Bit Meaning

4 Access (not supported by RT–11 monitors)
0 = P-sect has read/write access.
1 = P-sect has read-only access.

5 Relocation
0 = P-sect is absolute and requires no relocation.
1 = P-sect is relocatable and references to the control section must have a relocation
bias added before they become absolute.

6 Scope
0 = The scope of the p-sect is local. References to the same p-sect will be collected
only within the overlay segment in which the p-sect is defined.
1 = The scope of the p-sect is global. References to the p-sect are collected across
overlay segment boundaries.

7 Type
0 = The p-sect contains instruction (I) references. Concatenation of this p-sect will
be by word boundary. Globals will be given overlay control blocks.
1 = The p-sect contains data (D) references. Concatenation of this p-sect will be by
byte boundary. Globals will not go through the overlay handler.

2.2.1.7 Program Version Identification (Entry Type 6)

The program version identification entry (see Figure 2–12) declares the version of the
module. The Linker saves the version identification, or IDENT, of the first module
that defines a nonblank version. It then includes this identification on the memory
allocation map.

The first two words of the entry contain the version identification. The Linker does
not use either the flag byte or the fourth word because they contain no meaningful
information.

Figure 2–12: Program Version Identification Entry Format (Entry Type 6)

Symbol

Name

6 0

0

File Formats 2–13

2.2.1.8 Mapped Array Declaration (Entry Type 7)

The mapped array declaration (see Figure 2–13) allocates space within the mapped
array area of the job’s memory. The Linker adds the array name to the list of p-sect
names, and subsequent RLD blocks can reference it. The Linker adds the length
(in units of 32-word blocks) to the job’s mapped array allocation. It rounds up the
total amount of memory allocated to each mapped array to the nearest 256-word
boundary. The contents of the flag byte are reserved and assumed to be zero. (Only
the FORTRAN IV compiler produces this v-sect.)

The Linker processes a v-sect as a p-sect with the following attributes:

.PSECT . VIR.,RW,D,GBL,REL,CON

The size is equal to the number of 3210-word blocks required. If the length is zero,
the segment is the root. There must never be any globals under this section, which
starts at a base of 0.

NOTE
One additional address window is allocated whenever a
mapped array is declared.

Figure 2–13: Mapped Array Declaration Entry Format (Entry Type 7)

Mapped Array

Name

7 Reserved

Length

2.2.2 End of Global Symbol Directory Block (ENDGSD)

The end of global symbol directory block (see Figure 2–14) declares that no other
GSD blocks are contained in this module. Exactly one end of GSD block must appear
in every object module. The length of the data block is one word.

Figure 2–14: End of GSD Data Block

0 Data Block Code
(ENDGSD = 2)

2–14 RT–11 Volume and File Formats Manual

2.2.3 Text Information Block (TXT)

The text information block (see Figure 2–15) contains a byte string of information
that the Linker writes directly into the output file. The block consists of a load
address followed by the byte string.

Text records can contain words or bytes of information whose final contents have not
yet been determined. This information is bound by a relocation directory block that
immediately follows the text block. If the text block does not need modification, then
a relocation directory block is not needed. Thus, multiple text blocks can appear in
sequence before encountering a relocation directory block.

The load address of the text block is specified as an offset from the current p-sect
base. At least one relocation directory block must precede the first text block. This
RLD block must declare the current p-sect.

Figure 2–15: Text Information Data Block

0 Data Block Code
(TXT = 3)

Load Address

Text Text

.

.

.

Text Text

Text Text

Text Text

Text Text

Text Text

2.2.4 Relocation Directory Block (RLD)

Relocation directory blocks (see Figure 2–16) contain the information the Linker
needs to relocate and link the preceding text information block. Every module must
have at least one relocation directory block that precedes the first text information
block. The first block does not modify a preceding text block. Instead, it defines the
current p-sect and location.

Relocation directory blocks can contain 14 types of entries. These entries are
classified as relocation, or location modification entries. Table 2–5 lists the valid
entry types.

File Formats 2–15

Figure 2–16: Relocation Directory Data Block

0 Data Block Code
(RLD = 4)

Displacement

.

.

.

.

.

.

Information

Command

Information

Displacement

Information

Information

Information

Information

Information

Information

Information

Command

Information

Information

Command

Information

Information

Information

Information

Information

Information

Displacement

Information

Information

Information

2–16 RT–11 Volume and File Formats Manual

Table 2–5: Valid Entry Types for RLD Blocks

Entry
Type Description

1 Internal Relocation

2 Global Relocation

3 Internal Displaced Relocation

4 Global Displaced Relocation

5 Global Additive Relocation

6 Global Additive Displaced Relocation

7 Location Counter Definition

10 Location Counter Modification

11 Program Limits (.LIMIT)

12 P-sect Relocation

13 Not used

14 P-sect Displaced Relocation

15 P-sect Additive Relocation

16 P-sect Additive Displaced Relocation

17 Complex Relocation

Each type of entry is represented by a command byte, which specifies the type of
entry and the word or byte modification. This byte is followed by a displacement
byte and then by the information required for the particular type of entry. The
displacement byte, when added to the value calculated from the load address of the
preceding text information block, yields the virtual address in the image that is to
be modified. The command byte of each entry has the bit assignments shown in
Table 2–6. The following sections describe the valid entry types for the RLD data
block.

Table 2–6: Bit Assignments for the RLD Command Byte

Bit Meaning

0–6 Specify the type of entry. Although there is room to specify 128 command types, only
1410 are currently implemented in the RT–11 Linker.

7 Modification (the B bit in Figures 2–17 through 2–30). This feature is not supported
by RT–11, and the bit is ignored if set. The RT–11 Linker supports word relocation,
not byte relocation.
0 = The command modifies an entire word.
1 = The command modifies only one byte.

File Formats 2–17

2.2.4.1 Internal Relocation (Entry Type 1)

This type of entry (see Figure 2–17) relocates a direct pointer to an address within
a module. The Linker adds the current p-sect base address to a specified constant
and writes the result into the output file at the calculated address—that is, it adds
a displacement byte to the value calculated from the load address of the preceding
text block.

For example:

A: MOV #A,R0

or

.WORD A

Figure 2–17: Internal Relocation (Entry Type 1)

Displacement B 1

Constant

2.2.4.2 Global Relocation (Entry Type 2)

This type of entry (see Figure 2–18) relocates a direct pointer to a global symbol.
The Linker obtains the definition of the global symbol and writes the result into the
output file at the calculated address.

For example:

MOV #GLOBAL,R0

or

.WORD GLOBAL

Figure 2–18: Global Relocation (Entry Type 2)

Displacement B 2

Symbol Name

2–18 RT–11 Volume and File Formats Manual

2.2.4.3 Internal Displaced Relocation (Entry Type 3)

This type of entry (see Figure 2–19) relocates a relative reference to an absolute
address from within a relocatable control section. The Linker subtracts from the
specified constant the address plus 2 into which the relocated value is to be written.
The Linker then writes the result into the output file at the calculated address.

For example:

CLR 177550

or

MOV 177550,R0

Figure 2–19: Internal Displaced Relocation (Entry Type 3)

Displacement B 3

Constant

2.2.4.4 Global Displaced Relocation (Entry Type 4)

This type of entry (see Figure 2–20) relocates a relative reference to a global symbol.
The Linker obtains the definition of the global symbol and subtracts from the
definition value the address plus 2 into which the relocated value is to be written.
It then writes the result into the output file at the calculated address.

For example:

CLR GLOBAL

or

MOV GLOBAL,R0

Figure 2–20: Global Displaced Relocation (Entry Type 4)

Displacement B 4

Symbol Name

File Formats 2–19

2.2.4.5 Global Additive Relocation (Entry Type 5)

This type of entry (see Figure 2–21) relocates a direct pointer to a global symbol
with an additive constant. The Linker obtains the definition of the global, adds the
specified constant, and then writes the resultant value into the output file at the
calculated address.

For example:

MOV #GLOBAL+2,R0

or

.WORD GLOBAL-4

Figure 2–21: Global Additive Relocation (Entry Type 5)

Displacement B 5

Symbol Name

Constant

2.2.4.6 Global Additive Displaced Relocation (Entry Type 6)

This type of entry (see Figure 2–22) relocates a reference to a global symbol with
an additive constant. The Linker obtains the definition of the global symbol and
adds the specified constant to the definition value. The Linker subtracts from the
resultant additive value the address plus 2 into which the relocated value is to be
written. It then writes the result into the output file at the calculated address.

For example:

CLR GLOBAL+2

or

MOV GLOBAL-5,R0

Figure 2–22: Global Additive Displaced Relocation (Entry Type 6)

Displacement B 6

Symbol Name

Constant

2–20 RT–11 Volume and File Formats Manual

2.2.4.7 Location Counter Definition (Entry Type 7)

This type of entry (see Figure 2–23) declares a current p-sect and location counter
value. The Linker stores the control base as the current control section. It adds the
current control section base to the specified constant and stores the result as the
current location counter value.

Figure 2–23: Location Counter Definition (Entry Type 7)

0 B 7

Section Name

Constant

2.2.4.8 Location Counter Modification (Entry Type 10)

This type of entry (see Figure 2–24) modifies the current location counter. The Linker
adds the current p-sect base to the specified constant and stores the result as the
current location counter.

For example:

.=.+N

or

.BLKB N

Figure 2–24: Location Counter Modification (Entry Type 10)

0 B 10

Constant

2.2.4.9 Program Limits (Entry Type 11)

This type of entry (see Figure 2–25) is generated by the .LIMIT assembler directive.
The Linker obtains the first address above the header, which is normally the
beginning of the stack, and the highest address allocated to the job. It then writes
these addresses into the output file at the calculated address and the following
location, respectively.

For example:

.LIMIT

File Formats 2–21

Figure 2–25: Program Limits (Entry Type 11)

Displacement B 11

2.2.4.10 P-sect Relocation (Entry Type 12)

This type of entry (see Figure 2–26) relocates a direct pointer to the beginning
address of another p-sect (other than the p-sect in which the reference is made)
within a module. The Linker obtains the current base address of the specified p-sect
and writes it into the output file at the calculated address.

For example:

.PSECT A
B:

.

.

.

.PSECT C
MOV #B,R0

or

.WORD B

Figure 2–26: P-sect Relocation (Entry Type 12)

Displacement B 12

Section Name

2.2.4.11 P-sect Displaced Relocation (Entry Type 14)

This type of entry (see Figure 2–27) relocates a relative reference to the beginning
address of another p-sect within a module. The Linker obtains the current base
address of the specified p-sect. It then subtracts from the base value the address
plus 2 into which the relocated value is to be written and writes the result into the
output file at the calculated address.

For example:

.PSECT A
B:

.

.

.

.PSECT C
MOV B,R0

2–22 RT–11 Volume and File Formats Manual

Figure 2–27: P-sect Displaced Relocation (Entry Type 14)

Displacement B 14

Section Name

Figure 2–28: P-sect Additive Relocation (Entry Type 15)

Displacement B 15

Section Name

Constant

2.2.4.12 P-sect Additive Relocation (Entry Type 15)

This type of entry (see Figure 2–28) relocates a direct pointer to an address in another
p-sect within a module. The Linker obtains the current base address of the specified
p-sect. It adds the base to the specified constant and then writes the result into the
output file at the calculated address.

For example:

.PSECT A
B:

.

.

.
C:

.

.

.

.PSECT D
MOV #B+10,R0
MOV #C,R0

or

.WORD B+10

.WORD C

2.2.4.13 P-sect Additive Displaced Relocation (Entry Type 16)

This type of entry (see Figure 2–29) relocates a relative reference to an address in
another p-sect within a module. The Linker obtains the current base address of the
specified p-sect and adds it to the specified constant. Next, it subtracts from the
resultant additive value the address plus 2 into which the relocated value is to be
written. It writes the final result into the output file at the calculated address.

File Formats 2–23

For example:

.PSECT A
B:

.

.

.
C:

.

.

.

.PSECT D
MOV B+10,R0
MOV C,R0

Figure 2–29: P-sect Additive Displaced Relocation (Entry Type 16)

Displacement B 16

Section Name

Constant

2.2.4.14 Complex Relocation (Entry Type 17)

This type of entry (see Figure 2–30) resolves a complex relocation expression. A
complex relocation expression is one in which any of the MACRO–11 binary or
unary operations are permitted with any type of argument, regardless of whether
the argument is unresolved global, relocatable to any p-sect base, absolute, or a
complex relocatable subexpression.

The RLD command word is followed by a string of numerically specified operation
codes and arguments. The operation codes each occupy one byte and the entire RLD
command must fit in a single data block. Table 2–7 shows the list of valid operation
codes. Note that complex relocation on foreground links causes a warning message
from the Linker. The results of complex relocation will be correct if no relocatable
symbols are involved.

Table 2–7: Operation Codes for Complex Relocation

Code Description

0 No operation

1 Addition (+)

2 Subtraction (–)

3 Multiplication (*)

2–24 RT–11 Volume and File Formats Manual

Table 2–7 (Cont.): Operation Codes for Complex Relocation

Code Description

4 Division (/)

5 Logical AND (&)

6 Logical inclusive OR (!)

7 Exclusive OR

10 Negation (–)

11 Complement (^C)

12 Store result (command termination)

13 Store result with displaced relocation (command termination)

16 Fetch global symbol. It is followed by four bytes containing the symbol name in
Radix–50 representation.

17 Fetch relocatable value. It is followed by one byte containing the section number,
and two bytes containing the offset within the section.

20 Fetch constant. It is followed by two bytes containing the constant.

The STORE commands (codes 12 and 13) indicate that the value is to be written
into the output file at the calculated address.

The Linker evaluates all operands as 16-bit signed quantities using two’s
complement arithmetic. The results are equivalent to expressions that are evaluated
internally by the assembler. Note the following rules:

1. An attempt to divide by 0 yields a 0 result. The Linker issues a warning message.

2. All results are truncated from the left in order to fit into 16 bits. No diagnostic
is issued if the number was too large. If the result modifies a byte, the Linker
checks for truncation errors. (Byte operations are not allowed.)

3. All operations are perfomed on relocated (additive) or absolute 16-bit quantities.
PC displacement is applied to the result only.

For example:

.PSECT ALPHA
A:

.

.

.

.PSECT BETA
B:

.

.

.
MOV #A+B-<G1/G2&^C<177120!G3>>,R1

File Formats 2–25

Figure 2–30: Complex Relocation (Entry Type 17)

Displacement B 17

Complex String

12

2.2.5 Internal Symbol Directory Block (ISD)

Internal symbol directory blocks (see Figure 2–31) declare definitions of symbols that
are local to a module. The Linker does not support this feature; therefore, a detailed
data block format is not documented here. If the Linker encounters this type of data
block, it ignores it.

Figure 2–31: Internal Symbol Directory Data Block

0 Data Block Code
(ISD = 5)

Not specified

2.2.6 End Of Module Block (ENDMOD)

The end of module block (see Figure 2–32) declares the end of an object module.
Exactly one end of module record must appear in each object module. It is one word
long.

Figure 2–32: End of Module Data Block

0 Data Block Code
(ENDMOD = 6)

2.3 Symbol Table Definition File Format (.STB)

The RT–11 Linker can produce a symbol table (.STB) file as its third output file.
The text of the .STB file consists of global symbol table definitions. For example, if
the source file contains X = = 10, the .STB file contains X = 10. Or, if the source file
contains A = FOO, the .STB file contains the address of FOO.

The .STB file can serve as a communication link between a background and a
foreground job. This communication comes about when you link the background job
and obtain a .STB file as output. Then, when you link the foreground job, include
the .STB file as one of the input files. The foreground job is then able to reference

2–26 RT–11 Volume and File Formats Manual

symbols used by the background job. Similarly, you can use the .STB file to create
a communication link between a program and a symbolic debugger.

The internal format of the .STB file consists entirely of Global Symbol Directory
(GSD) data blocks followed by one End of Global Symbol Directory (ENDGSD) data
block and one End of Module (ENDMOD) data block. Figure 2–33 illustrates the
.STB file format.

Figure 2–33: .STB File Format

Module Name Entry
(GSD Type 0)

Program Version Identification Entry

Control Section Name Entry

These are all absolute and contain

ENDGSD Data Block

only definitions.

− Optional −

A zero−length CSECT with name . ABS.

Global Symbol Name Entries

ENDMOD Data Block

(GSD Type 6)

(GSD Type 1)

(GSD Type 4)

2.4 Library File Format (.OBJ and .MLB)

A library file contains concatenated modules and some additional information. RT–
11 supports object and macro libraries. Object libraries usually have an .OBJ file
type; macro libraries usually have a .MLB file type.

The modules in an object or macro library file are preceded by a Library Header
Block and Library Directory, and are followed by the Library End Block, or trailer.
Figure 2–34 shows the format of an object or macro library file.

Diagrams of each component in the library file structure are included in the sections
that follow. See the RT–11 System Utilities Manual for information on using the
librarian.

File Formats 2–27

Figure 2–34: Library File Format (.OBJ and .MAC)

Library Header

Directory

Concatenated Modules
(First module starts
on a block boundary.)

Library End Trailer Block

2.4.1 Library Header Format

The library header describes the status of the file. Of the two tables that follow,
Table 2–8 shows the contents of the object library header and Table 2–9 shows the
contents of the macro library header.

All numeric values shown are octal. The date and time, which are in standard RT–11
format, are the date and time the library was created. This information is displayed
when the library is listed.

2–28 RT–11 Volume and File Formats Manual

Table 2–8: Object Library Header Format

Offset Contents Description

0 1 Library header block code

2 42

4 7 Librarian code

6 500 Library version number

10 0 1 if library created with /X option

12 Date in RT–11 format (0 if none)

14 Time expressed in two words

16

20 0 Reserved

22 0 Reserved

24 0 Reserved

26 10 Directory relative start address

30 Number of bytes in directory and header

32 0 Reserved

34 Next insert relative block number

36 Next byte within block

40 Directory starts here

Table 2–9: Macro Library Header Format

Offset Contents Description

0 1001 Library type and ID code

2 500 Library version number

4 0 Reserved

6 Date in RT–11 format (0 if none)

10 Time expressed in two words

12

14 0 Reserved

16 0 Reserved

20 0 Reserved

22 0 Reserved

File Formats 2–29

Table 2–9 (Cont.): Macro Library Header Format

Offset Contents Description

24 0 Reserved

26 0 Reserved

30 0 Reserved

32 10 Size of directory entries

34 Directory starting relative block number

36 Number of directory entries allocated; default is 200

40 Number of directory entries available

2.4.2 Library Directories

There are two kinds of library directories: for object libraries, the directory is an
Entry Point Table (EPT); for macro libraries, the directory is a Macro Name Table
(MNT). The EPT directory (see Table 2–8 for the header format) consists of 4-word
entries that contain information related to all modules in the library file.

Note that if you use the librarian /N option for object libraries to include module
names, bit 15 of the relative block number word is set to 1. If you invoke the
librarian with the monitor LIBRARY command, module names are never included.

Figure 2–35: Library Directory Format (.OBJ)

Symbol characters 1−3 (Radix−50)

Block number relative to start of file

Relative byte in block
(9 bits)

Symbol characters 4−6 (Radix−50)

Reserved
(7 bits)

In the library directory, the symbol characters represent the entry point or the macro
name. The relative byte maximum is 7778.

The object library directory starts on the first word after the library header, word 408.
The object library directory is only long enough to accommodate the exact number of
modules in the library and space for this directory is not preallocated. The directory
is kept in memory during librarian operations, and the amount of available memory
is the only limiting factor on the maximum size of the directory. Reserved locations
in the header and at the end of the directory—those not used by the directory—are
zero filled. Modules follow the directory and they are stored beginning in the next
block after the directory.

2–30 RT–11 Volume and File Formats Manual

The macro library directory starts on a block boundary, relative block 1 of the library
file. (See Table 2–9 for the header format) Its size is preallocated. The default size
is two blocks, but you can change this by using the librarian /M option. Unused
entries in the directory are filled with –1. Macro files are stored starting on the
block boundary after the directory. This is relative block 3 of the library file if you
use the default directory size.

Modules in libraries are concatenated by byte. (See Figure 2–2 for an example of
byte concatenation.) This means that a module can start on an odd address. When
this occurs, the Linker shifts the module to an even address at link time.

2.4.3 Library End Block Format

Following all modules in an object or macro library is a specially coded Library End
Block, or trailer, which signifies the end of the file (see Figure 2–36).

Figure 2–36: Library End Block Format

1 Data block header

Data block length

Library End Block code

Reserved, must be 0

Checksum byte

10

357

0

10

2.5 Absolute Binary File Format (.LDA)

Both the Linker /L option and the keyboard monitor LINK command /LDA option
produce output files in an absolute binary format. Such a format is suitable for
down-line loading of programs, for loading stand-alone application programs, and as
input to special programs that put code into ROM (Read-Only Memory).

Absolute binary format, shown in Figure 2–37, consists of a sequence of data blocks,
where each block represents the data to be loaded into a specific portion of memory.
The data portion of each block consists of the absolute load address of the block,
followed by the absolute data bytes to be loaded into memory beginning at the load
address. There can be as many data blocks as necessary in an .LDA file. The last
block of the file is special because it contains only the program start address, or
transfer address, in its data portion. If this address is even, the Absolute Loader
passes control to the loaded program at this address. If the address is odd (that is,
if the program has no transfer address, or the transfer address was specified as a
byte boundary), the loader halts after loading. The final block of the .LDA file is
recognized by the fact that its length is six bytes.

File Formats 2–31

The general procedure for loading a program that will execute in a stand-alone
environment is as follows:

1. Using the console microcode, load the Bootstrap Loader into memory. If the
processor does not contain console microcode, you must toggle the Bootstrap
Loader into memory.

2. Using the Bootstrap Loader, load the Absolute Loader into memory.

3. Using the Absolute Loader, load the .LDA file into memory and begin execution.

Most PDP–11 processors contain console microcode that make step 1 unnecessary.
The procedure for loading stand-alone programs is described in the Microcomputer
Processor Handbook. LSI–11/23 computer systems do not have bootstrap loader
microcode and require the use of steps 1 and 2.

The Bootstrap Loader is printed on the PDP–11 Programming Card, which is part
of every RT–11 distribution kit.

The load module’s data blocks contain only absolute binary load data and absolute
load addresses. All global references have been resolved and the Linker has
performed the appropriate relocation.

2.6 Standard Save Image File Format (.SAV)

Standard save images do not support separated I–D space. Standard save images
can be run in the background environment under any monitor and as virtual jobs in
the foreground or system job environment under mapped monitors. Save image files
normally have a .SAV file type. This format is an image of the program exactly as it
would appear in memory. (Block 0—the first 256-word unit—of the file corresponds to
memory locations 0–776, block 1 to locations 1000–1776, and so on.) See Table 2–10
for the contents of block 0 of a standard .SAV file. (Note that not all locations are
used for each link; for example, whether the job is for a mapped environment or
whether it is overlaid affect block 0.) See also the RT–11 System Utilities Manual
for more information on the load modules created by the Linker.

2–32 RT–11 Volume and File Formats Manual

Figure 2–37: Absolute Binary Format (.LDA)

First data block

1

BCL Low−order eight bits of byte count

High−order eight bits of byte count

Low−order byte of absolute load address

High−order byte of load address

of data bytes in the block

Data bytes

Checksum byte

intermediate blocks.

Intermediate data blocks

0

BCH

Low byte of start address, or odd number

High byte of start address, or odd number

This pattern is repeated for al+

Data bytes

Checksum byte

Last data block

1

ADL

Checksum byte

0

ADH

1

.

.

.

0

BCL

6

BCH

0

ADL

ADH

.

.

.

JL

JH

File Formats 2–33

Table 2–10: Information in Block 0 of a .SAV Image

Offset Contents

0 VIR in Radix–50 if the Linker /V option was used.

2 Virtual high limit if Linker /V option was used.

4 Job definition word ($JSX) bits. See Table 2–11 for bit definitions.

6 Reserved

10 Reserved

12 Reserved

14 BPT trap PC(mapped monitors only)

16 BPT trap PSW (mapped monitors only)

20 IOT trap PC (mapped monitors only)

22 IOT trap PSW (mapped monitors only)

24 Reserved

26 Reserved

30 Reserved

32 Overlay definition word (SV.CVH) bits. See tables 2–12 and 2–13 for bit
definitions.

34 Trap vector PC (TRAP)

36 Trap vector PSW (TRAP)

40 Program’s relative start address

42 Initial location of stack pointer (changed by /M option)

44 Job Status Word

46 USR swap address

50 Program’s high limit

52-62 Reserved

64 Address of overlay handler table for overlaid files

66 Address of start of window definition blocks (if /V used)

70–356 Reserved

360–377 Bitmap area

Location 4 in block 0 contains the job definition word, $JSX. The low three bits
in $JSX define certain characteristics about how the program can be loaded and
whether the program can be run under VBGEXE. The other bits in $JSX pertain
only to programs that support separated I–D space addressing and Supervisor mode.
See Table 2–11 for a description of the $JSX bits.

2–34 RT–11 Volume and File Formats Manual

In overlaid programs, location 32 in absolute block 0 contains the overlay definition
word, SV.CVH. The low 5 bits in SV.CVH define the overlay handler and describe
the overlay handler characteristics. The high 3 bits in the low byte are reserved and
the high byte contains the edit level for the overlay handler source file (and are of
no concern to the user). See Table 2–12 for the bit mask that defines each overlay
handler and Table 2–13 for a description of the SV.CVH bits.

Locations 360–377 are the CCB and are are restricted for use by the system. The
Linker stores the program memory usage bits in these eight words, which are called a
bitmap. Each bit represents one 256-word block of memory and is set if the program
occupies any part of that block of memory. Bit 7 of byte 360 corresponds to locations
0 through 777; bit 6 of byte 360 corresponds to locations 1000 through 1777, and so
on. The monitor uses this information when it loads the program.

The monitor commands R and RUN load and start a program stored in a .SAV file.
(The RUN command is actually a combination of the GET and START commands.)
First, the Keyboard Monitor reads block 0 of the .SAV file into an internal USR buffer.
It extracts information from locations 40–64 and 360–377 (the bitmap, described
above). Using the protection bitmap (called LOWMAP), which resides in RMON,
KMON checks each word in block 0 of the file. It does not load locations that are
protected, such as location 54 and the device interrupt vectors. It loads unprotected
locations into memory from the USR buffer. Next, KMON sets location 50 to the top
of usable memory, or to the top of the user program, whichever is greater.

If the RUN command (or the GET command) was issued, KMON checks the bitmap
from locations 360–377 of the .SAV file. For each bit that is set, it loads the
corresponding block of the .SAV file into memory. However, if KMON is in memory
space that the program needs to use, KMON puts the block of the .SAV file into a
USR buffer and then moves it to the file SWAP.SYS.

Finally, when it is time to begin execution of the program, KMON transfers control to
RMON. RMON reads the parts of the program, if any, that are stored in SWAP.SYS
into memory, where they overlay KMON and possibly the USR. The monitor keeps
track of the fact that KMON (and perhaps the USR) are swapped out, and execution
of the program begins.

Table 2–11: Job Definition Word ($JSX) Bit Definitions

Bit Mask Symbol Meaning

000001 REQID$ Job requires separated I–D space.

000002 USEID$ Job uses separated I–D space, if possible.

000004 REQSM$ Job requires Supervisor mode support.

000010 USESM$ Job uses Supervisor mode, if possible.

000020 ALL64$.SETTOP under VBGEXE supported to top of memory (-2).

000040 IOPAG$ IOPAGE region under VBGEXE is mapped to PAR7.

File Formats 2–35

Table 2–11 (Cont.): Job Definition Word ($JSX) Bit Definitions

Bit Mask Symbol Meaning

000100 NOVBG$ Job cannot be run under VBGEXE.

000200 VBGEX$ Job can be run under VBGEXE.

000400-
100000

Reserved.

Table 2–12: Identifying Overlay Handlers in SV.CVH

Bit Mask Overlay Handler

000001 OHANDL

000003 VHANDL

000012 XHANDL

000027 ZHANDL

Table 2–13: Overlay Definition Word (SV.CVH) Bit Definitions

Bit Mask Symbol Meaning

000001 CVH.DK Supports disk-type (/O) overlays

000002 CVH.MP Supports virtual-type (/V) overlays

000004 CVH.ID Supports separated I–D space and Supervisor Mode

000010 CVH.XH Supports single virtual-type overlay only

000020 CVH.LO Program loader (VBGEXE) initializes /O overlay area

000040-
000200

Reserved

000400-
100000

CVH.ED The edit level of the overlay handlers source file (for Digital
internal use only).

2.7 Extended Save Image File Format (.SAV)

Support for separated I–D space addressing produces the extended save image file
format. Such a job has an odd transfer address that stops it from being run as a
standard save image.

The extended save image file format differs from the standard in a number of ways,
as illustrated in the following diagram. There is a header for the D-space segments
followed by one for the I-space segments. There is a root for each address space and
each root contains an overlay handler for that address space. Note also that the
D-space header is loaded at physical block 0, while the I-space header is loaded at
virtual block 0 (defined at location 40).

2–36 RT–11 Volume and File Formats Manual

Figure 2–38: Extended Save Image File Format

0
D−Space Header

D−Space Root
(includes overlay handler)

D−Space Segment 1

D−Space Segment 2

D−Space Segment n

I−Space Header

I−Space Root
(includes overlay handler)

I−Space Segment 1

I−Space Segment 2

I−Space Segment n

The contents of the D-space header (absolute block 0 of the save image) are described
in Table 2–14. The contents of the I-space header are described in Table 2–15. In
Table 2–14 note particularly locations 4, 30, 40, and 60.

LINK couples each I-space segment with a corresponding D-space segment (if there is
a corresponding D-space segment). The coupling is identified by a segment number
(segnum) that is stored in the following 3-word routine at the beginning of each
I-space segment:

MOV (PC)+,R0
.WORD #12.*segnum
RETURN

As mentioned, there need not be a corresponding D-space segment for each I-space
segment. Further, there is no segment identifier in D-space segments; they are
identified only by an entry in the overlay handler table and the corresponding I-
space segment.

Table 2–14: Information in Absolute Block 0 (D-Space Header) of Extended .SAV
Image

Offset Contents

0 VIR in Radix–50 if the Linker /V option was used.

2 Virtual high limit if Linker /V option was used.

4 Job definition word ($JSX) bits. See Table 2–11 for bit definitions.

6 Reserved

File Formats 2–37

Table 2–14 (Cont.): Information in Absolute Block 0 (D-Space Header) of
Extended .SAV Image

Offset Contents

10 Reserved

12 Reserved

14 BPT trap PC

16 BPT trap PSW

20 IOT trap PC

22 IOT trap PSW

24 Reserved

26 Reserved

30 Contains 000000 or 100000.
If 000000, all system subroutines linked into program support separated I–D
space. Program can be run.
If 100000, at least one system subroutine which cannot support separated I–
D space has been linked into the program. Program cannot be run; VBGEXE
returns an error at attempt to run program.

32 Overlay definition word (SV.CVH) bits. See tables 2–12 and 2–13 for bit
definitions.

34 Trap vector PC (TRAP)

36 Trap vector PSW (TRAP)

40 Value of 2*blknum+1, where blknum is the relative file block number of the
I-space CCB (first block after D-space blocks).

42 Initial location of stack pointer (changed by /M option)

44 Job Status Word

46 USR swap address

50 Program’s high limit

52 Reserved.

54 Reserved.

56 Reserved.

2–38 RT–11 Volume and File Formats Manual

Table 2–14 (Cont.): Information in Absolute Block 0 (D-Space Header) of
Extended .SAV Image

Offset Contents

60 Contains <IDS> in Radix–50 to indicate separated I–D space job.

62 Reserved.

64 Address of overlay handler table for overlaid files

66 Address of start of window definition blocks (if /V used)

70–356 Reserved

360–377 CCB (core control block) bitmap area

Table 2–15: Information in Relative Block 0 (I-Space Header) of Extended .SAV
Image

Offset Contents

0–36 Contain 000000

40 Program’s relative start address (interpreted as a User mode I-space virtual
address.)

42–46 Contain 000000

50 Program’s I-space high limit

52–356 Contain 000000

360–377 I-space CCB (core control block) bitmap area

2.8 Relocatable File Format (.REL)

To link a foreground job, use the Linker /R option or the keyboard monitor LINK
command with the /FOREGROUND option. This causes the Linker to produce
output in a linked, relocatable format, with a .REL file type. Note that system
files are also stored in relocatable format. The only difference is that system files
use a file type of .SYS instead of .REL.

Table 2–16: Information in Block 0 of a .REL Image

Offset Contents

0 VIR in Radix–50 if the Linker /V option was used.

2 Virtual high limit if Linker /V option was used.

4 Job definition word ($JSX) bits. See Table 2–11 for bit definitions.

6 Reserved

File Formats 2–39

Table 2–16 (Cont.): Information in Block 0 of a .REL Image

Offset Contents

10 Reserved

12 Reserved

14 BPT trap PC(mapped monitors only)

16 BPT trap PSW (mapped monitors only)

20 IOT trap PC (mapped monitors only)

22 IOT trap PSW (mapped monitors only)

24 Reserved

26 Reserved

30 Reserved

32 Overlay definition word (SV.CVH) bits. See tables 2–12 and 2–13 for bit
definitions.

34 Trap vector PC (TRAP)

36 Trap vector PSW (TRAP)

40 Program’s relative start address

42 Initial location of stack pointer (changed by /M option)

44 Job Status Word

46 USR swap address

50 Program’s high limit

52 Size of program’s root segment, in bytes.

54 Stack size, in bytes (changed by /R:n option).

56 Size of overlay region, in bytes (0 if not overlaid)

60 .REL file ID (REL in Radix–50)

62 Relative block number for start of relocation information

64 Address of overlay handler table for overlaid files

66 Address of start of window definition blocks (if /V used)

70–356 Reserved

360–377 Bitmap area

The object modules used to create a .REL file are linked as if they were a background
.SAV image, with a base of 1000. This permits you to use .ASECT directives to store
information in locations 0 through 777 in .REL files. All global references have been
resolved. The Linker does not relocate the .REL file at link time; it merely includes
relocation information to be used at FRUN time. The relocation information in the

2–40 RT–11 Volume and File Formats Manual

file is used to determine which words in the program must be relocated when the
job is installed in memory.

There are two types of .REL files to consider: those programs with overlay segments,
and those without them.

2.8.1 .REL Files Without Overlays

A .REL file for a program without overlays appears as shown in Figure 2–39.

Figure 2–39: .REL File Without Overlays

Block Program Relocation
information0 text

Block 0 (relative to the start of the file) contains the information shown in Table 2–10.
Some of this information is used by the FRUN processor.

In the case of a program without overlays, the FRUN processor performs the
following general steps to install a foreground job.

1. It reads block 0 of the file into an internal monitor buffer.

2. It obtains the amount of memory required for the job from location 528 of block
0 of the file, and allocates the space in memory by moving KMON and the USR
down.

3. It reads the program text into the allocated space.

4. It reads the relocation information into an internal buffer.

5. It relocates the locations indicated in the relocation information area by adding
or subtracting the relocation quantity. This quantity is the starting address the
job occupies in memory, adjusted by the relocation base of the file. .REL files are
linked with a base of 1000.

The relocation information consists of a list of addresses relative to the start of the
user’s program. The monitor scans the list, and for each relative address computes
an actual address. That address is then loaded with its original contents plus or
minus the relocation constant. The relocation information is shown in Figure 2–40.

In Figure 2–40, bits 0 through 14 represent the relative address to relocate divided by
2. This implies that relocation is always done on a word boundary, which is indeed
the case. Bit 15 indicates the type of relocation to perform—positive or negative.
The relocation constant (which is the load address of the program) is added to or
subtracted from the indicated location depending on the sense of bit 15; 0 implies
addition, while 1 implies subtraction. A full 16-bit word is the original contents. The

File Formats 2–41

Figure 2–40: Root Relocation Information Format

15 14 0

Original contents

.

Relative word offset

Original contents

.

Relative word offset

.

.

−2

value 177776, or –2, terminates the list of relocation information for a file without
overlays.

2.8.2 .REL Files with Overlays

When you include overlays in a program, in addition to relocating the root segment,
the FRUN processor must also relocate the overlay segments. Since overlays are not
permanently memory resident but are read in from the file as needed, they require
an additional operation. FRUN relocates each overlay segment and rewrites it into
the file before the program begins execution. (Therefore, the volume containing
the file must be write-enabled.) Thus, when the overlay is called into memory
during program execution, it is correct. This process takes place each time you run
an overlaid file with FRUN or SRUN. The relocation information for overlaid files
contains both the list of addresses to be modified and the original contents of each
location. This allows the file to be executed again after the first usage. It is necessary
to preserve the original contents in case some change has occurred in the operating
environment. Examples of these changes include using a different monitor version,
running on a system with a different amount of memory, and having a different set
of device handlers or system jobs resident in memory. Figure 2–41 shows a .REL file
with overlays. Refer to Figure 2–40 and Figure 2–42 for more detail of the relocation
information.

In the case of a .REL file with overlays, location 56 of block 0 of the .REL file contains
the size in bytes of all the overlay regions. FRUN adds this size to the size of the
program base segment (in location 52) to allocate space for the job.

2–42 RT–11 Volume and File Formats Manual

Figure 2–41: .REL File with Overlays

Block 0 .REL Control Block

Overlay handler and tables

Root relocation information

End of root relocation information

Overlay segment 1 relocation information

End of overlay 1 relocation information

Overlay segment N relocation information

Root

.

.

.

−1

Present if there is extra root information,
such as relocation overlay handler information.

Segment

End of all relocation information

text

.

.

.

−1

Overlay
1 data

−1

Overlay
N data

−2

After FRUN relocates the program base (root) code, it reads each existing overlay
into the program overlay region in memory, relocates it using the overlay relocation
information, and then writes it back into the file.

The root relocation information section is terminated with a –1. This –1 is also an
indication that an overlay segment relocation block follows.

The relocation is relative to the start of the program and is interpreted as if it were
in a file without overlays (that is, bit 15 indicates the type of relocation, and the
displacement is the true displacement divided by 2). Encountering –1 indicates that
a new overlay region begins here; a –2 indicates the termination of all relocation
information.

File Formats 2–43

Figure 2–42: Overlay Segment Relocation Block

Overlay block number Start of overlay relative to start of file.
(Value is 0 if this is extra root information.)

Size of overlay in words. (Value is 0 if this
is extra root information.)

Overlay size

Relative word offset

Text to relocate

.

.

.

.

.

.

Relative word offset

Text to relocate

Relative word offset

Text to relocate

2.9 Stream ASCII File Format

Source files, such as MACRO–11 and FORTRAN IV programs, and text files that
you create with an editor are in stream ASCII format. These files consist of a series
of bytes, each byte representing an ASCII character. Stream ASCII files have no
special headers or end blocks, nor do they include any formatted binary blocks.

2.9.1 Defining a Line or Record

RT–11 typically defines a line of input as a string of characters terminated by a
linefeed (0128) or formfeed (0148). Some programs also define vertical tab (0138)
as a line terminator. In RT–11, linefeeds generally come as part of a carriage
return/linefeed pair (the RETURN key), but treating carriage-return (0158) as a line
terminator can cause complications in some programming applications and should
be avoided. For example, treating carriage return as a line terminator makes it more
difficult to do overprinting. Instead, consider the linefeed to be the line or record
terminator.

2.9.2 End-of-File

Although not required, an 0328, or CTRL/Z character, may terminate a stream ASCII
file. When you use PIP with the /A option (or when you use the monitor COPY/ASCII
command) to copy an ASCII file, PIP expects to find a CTRL/Z at the end of the file.
If there is an embedded CTRL/Z character within the file, PIP considers the CTRL/Z
to mark the file’s end, and any characters following the CTRL/Z are ignored. When
you use PIP in its default mode (image) or when you use the monitor COPY command
without any option to copy an ASCII file, PIP does not look for a CTRL/Z character.
It simply copies blocks until it reaches the end of the file.

2–44 RT–11 Volume and File Formats Manual

Programs that process stream ASCII files should ignore nulls (0008). Many programs
that write ASCII files fill the remainder of the last block of the file with nulls instead
of appending a CTRL/Z. When reading such a file, a program can read all the data in
the file, ignore the trailing nulls, then receive an end-of-file error from RT–11 when
it tries to read beyond the last block of the file.

2.10 CREF File Format

The RT–11 CREF program produces a cross-reference listing. You can only run
CREF indirectly—that is, by chaining to it from another program, such as your own
language processor. CREF appends its cross-reference table to the listing file your
calling program creates.

To chain to CREF, you must first store some information in the chain communication
area (absolute locations 500 through 776) of the calling program. Table 2–17 lists
the information that CREF requires.

Table 2–17: CREF Chain Interface Specification

Location Contents Description

500 .RAD50 /SY / The file specification to call CREF:

502 .RAD50 /CRE/

504 .RAD50 /F /

506 .RAD50 /SAV/

510 RT–11 channel number of output file

512 Radix–50 name of output device

514 Highest output block number written, plus 1

516 RT–11 channel number of input file

520 Radix–50 name of input device

522 Highest input block number written, plus 1

524 Listing format: 0 = 80 columns, –1 = 132

526 .RAD50 /dev/ Program to chain back to. (If this value is zero, CREF closes
the listing file and exits.)

530 .RAD50 /fil/

532 .RAD50 /nam/

534 .RAD50 /typ/

536–776 .ASCIZ string for CREF to use as title line (no page number)

The input file you supply to CREF must consist of 1210-byte entries, one entry for
each reference to a symbol. Table 2–18 shows the format of the entries.

File Formats 2–45

Table 2–18: Entry Format for CREF Input File

Octal
Byte Offset Value

0 Section descriptor:
Bits 0 through 4 contain an alphabetic character for CREF to use as the section
name. The ASCII value is stripped to 5 bits.
Bits 5 through 7 contain the section number. This number controls the order of
the sections.

1–6 The ASCII name of the symbol.

7–10 The page number, in binary. Put –1 here if you are not using page numbers.

11–12 The line number, in binary.

13 A one-character identifier for CREF to print next to this reference. Typically,
this character is used to identify a destructive reference or a definitional
reference.

2.11 BUP Saveset Section Definition Block Format

A BUP saveset consists of at least one section; more that one section is created if the
saveset spans more than one output volume. Each section is a complete, protected
RT–11 file. Block 0 of each section contains information for that section that BUP
uses in directory and restoration operations. Table 2–19 describes the contents of a
BUP saveset block 0.

Table 2–19: Contents of Block 0 of a BUP Saveset Section

Starting
Offset Contents

0–1 Number of definition blocks (currently = 1)

2–5 Radix–50 "BUP" and three spaces

6–7 Major version number of BUP that created the file section

10–11 Minor version number of BUP that created the file section

12–17 Reserved (zero)

20–21 First three characters of filename, in Radix–50

22–23 Last three characters of filename, in Radix–50

24–25 File type, in Radix–50

26–27 Reserved (zero)

30–31 First file section length

32–33 Intermediate file section lengths

34–35 Last file section length

2–46 RT–11 Volume and File Formats Manual

Table 2–19 (Cont.): Contents of Block 0 of a BUP Saveset Section

Starting
Offset Contents

36–37 Total saveset length (without definition blocks)

40–41 Number of file sections in saveset

42–43 Section number of this file section

44–45 Reserved (zero)

46–47 Date of backup (RT–11 date word format)

50–57 Time of backup (four words: HOUR, MINUTES, SECONDS, TICKS)

60–177 CSI command line that created the saveset

200–777 Reserved (zero)

2.12 Error Log File Formats

Device handlers that support error logging call the error logger through a monitor
pointer on each successful I/O transfer as well as on each error. The copy code in
the error logger retrieves, or copies, the appropriate information from the handler,
storing it in the error log input buffer in the error logger’s memory area. The error
log job is suspended until the copy routine puts some data into the input buffer, at
which point the monitor resumes the error log job so it can process the new data.

The error log job remains suspended until the error log input buffer has filled to
20010 or more words of the 25610-word total buffer size. The copy code portion of the
EL job informs the monitor of this by setting the carry bit on return. Thus the error
log job is resumed by the monitor only when the error log input buffer contains a
sizeable amount of information to be processed.

For device errors, cache errors, and memory parity errors, the error logger first
creates or updates the unit statistics information in the copy of the disk file header
that is in memory. The EL job (disk output code) stores error records in the disk
output buffer (one of two buffers, since double-buffering is used) until a 25610-word
block is full. That is, it stores records until the buffer cannot contain the next record.
Then it writes the updated header record and the accumulated error records to a
disk file called ERRLOG.DAT. Figure 2–43 describes the error logging subsystem.

For successful I/O transfers, the error logger first creates or updates the unit
statistics information in the copy of the disk file header that is in memory, as it
does with device and memory errors. It writes the updated header to disk only after
1010 good I/O transfers have been logged.

File Formats 2–47

Figure 2–43: Error Logging Subsystem

2.12.1 Error Log Disk File Format

The error log disk file is called ERRLOG.DAT. Figure 2–44 shows its format.

The first part of the figure describes the contents of block 0, the header block. For
each device on which error logging is done, there is a statistics record (a 7-word
entry) in block 0. Since the number of records is a variable SYSGEN parameter, the
pointer at the beginning of block 0 points to the end of these device-specific records
in block 0.

The second part of the figure, beginning with block 1, describes the 256-word blocks
containing error records. The data in these records will vary depending on the
situation. The blocks can contain statistics on device errors, memory errors, or both,

2–48 RT–11 Volume and File Formats Manual

depending on the error logging you have enabled and the order in which error-logging
events happen.

The low byte of the first word for both Device Error and Memory Error Reports
contains the record size. Records are contiguous within blocks and, therefore, the
size of this error record field is an offset to the next record in the block. The final
record in each block contains a -1 in the size field, indicating that the next record in
the file begins at the first word of the next block.

The Unit Number field in the Device Error Record and the Parity ID field in the
Memory Error Record indicate the kind of error (Device or Memory) which is being
reported. If the field contains a value equal to or greater than zero, the report is
for a device error and the field contains the device unit number reporting the error.
If the value in the field is less than zero, the report is for a memory error and the
values have the following meaning:

–2 for a memory error

–3 for a cache error

–4 for both memory and cache error

File Formats 2–49

Figure 2–44: ERRLOG.DAT Format

Block 0 of ERRLOG.DAT

Pointer to the Header Summary section in Block 0

Device ID Unit Number

Number of error records logged

Number of errors received Records
For Each
Error−LoggingREAD successes

(Two words) ice

Total number of errors received (including occasions when
the error logger was unable to record the error data)

Number of cache parity errors

Block number for start of next record

Offset within the block for the next record

Configuration word 1 (monitor fixed offset 300)

Date of initialization

(Two words)

Number of memory parity errors

Next physical record number

De

WRITE successes
(Two words)

Count of missed records (not recorded because the error
logger input buffers were full)

Maximum size of error file, in blocks

Configuration word 2 (monitor fixed offset 370)

Time of initialization

Header
Summary
Section

Count of missed records (not recorded because ERRLOG.DAT
was full)

Count of missed records (not recorded because start up or
shut down was in progress)

Figure 2–44 (continued on next page)

2–50 RT–11 Volume and File Formats Manual

Figure 2–44 (Cont.): ERRLOG.DAT Format

Data Blocks Beginning with Block 1

Physical Record Number Size of This Error Record

Device ID Unit Number

Number of occurrences of this
error with identical registers

Date of entry

(Two words)

Physical block number (Q.BLKN) For Each
Device
ErrorUser buffer address (Q.BUFF)

Word count (Q.WCNT)

(The device registers)
.
.
.

Size of this error record

Number of memory registers Parity ID

Number of occurrences of this error with the same PC

Date of entry

PC

MPR1

(Information for up to 16 memory registers:)

Memory system error register (if cache is present)

Cache control register (if cache is present)

Hit/Miss register (if cache is present)

Total number of retries Number of registers to log

Retry Count

Time of entry

PAR1 value (Q.PAR) −− XM only

For Each
Memory
Error

Address of MPR1

.

.

.

Time of entry

PSW

Physical record number

(Two words)

File Formats 2–51

