September 1977

This document describes the operating procedures for the FORTRAN IV
Compiler and Object Time System (OTS) for the operating systems listed
below. In conjunction with the PDP-11 FORTRAN Language Reference
Manual (AA-5935B-TC), this document provides the information required
to write and run a FORTRAN 1V program under the operating systemns
listed below,

Con/ s Z ‘74»(23“057’% How 4

4

?O;ZT

RT-11/RSTS/E
FORTRAN IV User’s Guide

Order No. DEC-11-LRRUB-A-D

SUPERSESSION/UPDATE INFORMATION: This document completely supersedes the
document of the same name, Order No.
DEC-11-LRRUA-B-D, for Version 2 of
PDP-11 FORTRAN IV.

OPERATING SYSTEM AND VERSION: RT-11 v03
RSTS/E V06B
SOFTWARE VERSION: FORTRAN 1V V02

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754,

digital equipment corporation - maynard, massachusetts

First Printing, December 1975
Revised: September 1977

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use

or reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright C) 1975, 1977 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0s/8

DECUS EDUSYSTEM PHA

UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-10
DECCOMM DECSYSTEM=-20 TYPESET~11

10/77-34

CONTENTS

Page
PREFACE vii
CHAPTER 1 OPERATING PROCEDURES 1-1
1.1 USING THE FORTRAN IV SYSTEM 1-1
1.1.1 Compiler Generated Code 1-1
1.1.1.1 Code Options 1-2
1.1.1.2 Code Selection and Error Messages 1-3
1.1.2 File Name Specifications 1-3
1.1.3 Locating a File 1-7
1.2 RUNNING THE FORTRAN IV COMPILER 1-7
1.2.1 Under RT-11 (with Keyboard Monitor Commands) 1-7
1.2.1.1 Under RSTS/E 1-8
1.2.2 Compiler Options (Switches) 1-9
1.2.3 Listing Formats 1-12
1.2.3.1 Options Listing 1-15
1.2.3.2 Source Listing 1-15
1.2.3.3 Storage Map Listing 1-15
1.2.3.4 Generated Code Listing 1-15
1.2.3.5 Compilation Statistics 1-15
1.2.4 Compiler Memory Requirements 1-16
1.2.4.1 Compiler Memory Requirements Under RT-11 1-16
1.2.4.2 Compiler Memory Requirements Under RSTS/E 1-16
1.3 LINKING PROCEDURES 1-17
1.3.1 Linking Under RT-11 1-17
1.3.2 Linking Under RSTS/E 1-20
1.4 LIBRARY USAGE 1-24
l.4.1 Overlay Usage 1-25
1.4.2 Stand-Alone FORTRAN 1-27
1.5 EXECUTION PROCEDURES 1-28
1.5.1 Execution Under RT-11 1-28
1.5.2 Execution Under RSTS/E 1=28
1.6 DEBUGGING A FORTRAN IV PROGRAM 1-29
CHAPTER 2 FORTRAN IV OPERATING ENVIRONMENT 2-1
2.1 FORTRAN 1V OBJECT TIME SYSTEM 2-1
2.2 OBJECT CODE 2-1
2.2.1 Processor-Defined Functions 2-3
2.2.2 VIRTUAL Array Options (RT-11 Only) 2-3
2.2.3 NOVIR.OBJ 2-4
2.2.4 VIRP.OBJ 2-4
2.2.5 VIRNP.OBJ 2=5
2.2.6 Converting a Program to VIRTUAL 2-5
2.3 SUBPROGRAM LINKAGE 2-9
2.3.1 Subprogram Register Usage 2-10
2.4 VECTORED ARRAYS 2-11
2.5 PROGRAM SECTIONS 2-13
2.5.1 Compiled Code PSECT Usage 2-13
2.5.2 Common Block PSECT Usage 2-14

iii

CONTENTS (Cont.)

Page

2.5.3 OTS Library PSECT Usage 2-14

2.5.4 Ordering of PSECTs in Executable Programs 2-15

2.6 TRACEBACK FEATURE 2-17

2.7 RUNTIME MEMORY ORGANIZATION (RT-11 ONLY) 2-18

CHAPTER 3 FORTRAN IV SPECIFIC CHARACTERISTICS 3-1
3.1 OPEN/CLOSE STATEMENT RESTRICTIONS 3-1

3.1.1 Keyword Constraints 3-2

3.2 SOURCE LINES 3-3

3.3 VARIABLE NAMES 3-4

3.4 INITIALIZATION OF COMMON VARIABLES 3-4

3.5 CONTINUATION LINES 3-4

3.6 STOP AND PAUSE STATEMENTS 3-4

3.7 DEVICE/FILE DEFAULT ASSIGNMENTS 3-5

3.8 MAXIMUM RECORD LENGTHS 3-6

3.9 DIRECT-ACCESS I/O 3-6

3.9.1 DEFINE FILE Statement 3-6

3.9.2 Creating Direct-Access Files 3-6

3.10 INPUT/OUTPUT FORMATS 3-7

3.10.1 Formatted I/0 3-7

3.10.2 Unformatted I/0O 3-7

3.10.3 Direct-Access I/0 3-8

3.11 MIXED MODE COMPARISONS 3-8

CHAPTER 4 INCREASING FORTRAN IV PROGRAMMING EFFICIENCY 4-1
4.1 FACTORS AFFECTING PROGRAM EFFICIENCY 4-1

4.2 INCREASING COMPILATION EFFECTIVENESS 4-1

4.3 PROGRAMMING TECHNIQUES 4-5

CHAPTER 5 CONCISE COMMAND LANGUAGE OPTION 5-1
5.1 INTRODUCTION TO THE RSTS/E FORTRAN IV CCL OPTION 5-1

5.2 COMMAND INTERFACE 5-1

5.2.1 CCL Command Restrictions 5-2

5.2.2 CCL Command Comparison 5-2

APPENDIX A FORTRAN DATA REPRESENTATION A~1
A.l INTEGER FORMAT A-1

A.2 FLOATING-POINT FORMATS A-1

A.2.1 REAL Format (2-Word Floating Point) A-2

A.2.2 DOUBLE PRECISION Format (4-Word Floating

Point) A=-2

A.2.3 COMPLEX Format A-2

A.3 LOGICAL*1 FORMAT A-3

A.4 HOLLERITH FORMAT A=3

A.5 LOGICAL FORMAT A-3

A.6 RADIX~50 FORMAT A-4

APPENDIX B LIBRARY SUBROUTINES B-1
B.1l LIBRARY SUBROUTINE SUMMARY B~1

B.2 ASSIGN B-2

B.3 OPEN (RSTS/E ONLY) B-4

B.4 CLOSE B-6

iv

CONTENTS (Cont.)

Page
B.5 DATE B-~6
B.6 IDATE B-7
B.7 EXIT B=-7
B.8 USEREX B-7
B.9 RANDU, RAN B-7
B.10 SETERR B~-8
B.1l1l ERRTST B-8
B.1l2 ERRSNS B-9
B.1l3 UNLOCK B-9
APPENDIX C FORTRAN IV ERROR DIAGNOSTICS c-1
c.1 COMPILER ERROR DIAGNOSTICS c-1
c.1l.1 Errors Reported by the Initial Phase of the
Compiler c-2
c.1l.2 Errors Reported by Secondary Phases of the
Compiler c-3
c.1l.3 Warning Diagnostics c-12
c.l.4 Fatal Compiler Error Diagnostics c-13
C.2 OBJECT TIME SYSTEM ERROR DIAGNOSTICS Cc-15
APPENDIX D COMPATIBILITY WITH OTHER PDP-11 LANGUAGE
PROCESSORS D-1
D.1 FORTRAN IV COMPATIBILITY WITH FTN V08.04 D-1
D.1l.1 Language Differences D-1
D.1.2 Implementation Differences D=2
D.2 DIFFERENCES BETWEEN FORTRAN IV-PLUS AND
FORTRAN IV D=3
D.2.1 Language Differences D-3
D.2.2 Implementation Differences D-3
D.3 RSTS/E FORTRAN IV FILE COMPATIBILITY D-4
D.3.1 Sequential Stream ASCII Files D-4
D.3.2 Virtual Array Files D-5
D.3.3 BASIC-PLUS Record I/0 Files D-6
D.3.4 COBOL Files D~7
D.3.5 IAM Files D=7
INDEX Indax-1
FIGURES
FIGURE 1-1 Steps in Compiling and Executing a FORTRAN
IV Program 1-1
1-2 A Sample Compilation Listing 1-13
1-3 Finding the Base Address Section 1-30
2-1 Array Vectoring 2-12
2-2 The Traceback Feature 2-17
2-3 RT-11 8K System Runtime Memory Organization 2-1%

CONTENTS (Cont.)

TABLES

TABLE

Valid Options vs. Configuration

Threaded Code Error Messages

Device Specifications

File Name Types (Extensions)

File Protection Codes

Compiler Options (Switches)

Linker Options Available Under RT-11
Linker Options (Switches) Under RSTS/E
Comparison of Threaded and Inline Code for
the Statement: TI=J*K+REAL

Return Value Convention for Function
Subprograms

Compiler Organization of Program Sections
Organization of OTS Library Modules
Keyword Constraints Under RT-11 and RSTS/E
FORTRAN Logical Device Assignments
ASCII/Radix~50 Equivalents

[| | U |
N oo JoumbsewN -

N b b b bt

N
i

TYEYY
|
NS W

vi

]
NV UL WN

)

= e

PREFACE

This document provides information necessary to compile, link,
execute, and debug a FORTRAN program under the RT-11 and RSTS/E
operating systems. Chapter 1 describes the operating procedures.
Chapter 2 provides information about the Object Time System (OTS).
This system is a collection of routines, selectively linked to the
user's program, which perform certain arithmetic, input/output, and
system dependent service operations. It also detects and reports
run—-time error conditions. Chapter 3 describes system dependent
information not included in the PDP-11 FORTRAN Language Reference
Manual. Chapter 4 contains programming suggestions for increasing the
effectiveness and efficiency of RT-11/RSTS/E FORTRAN 1IV. Chapter 5

describes the Concise Command Language option for RSTS/E. The
Appendices provide reference information about internal data
representations, system subroutines, error diagnostics, and

compatibility of FORTRAN IV with other PDP-11 FORTRAN processors.
Intended Audience

This manual should be used only after some knowledge of the FORTRAN
language, as implemented on the PDP-11, has been acquired. The
associated document which can be used for this purpose is the PDP-11
FORTRAN Language Reference Manual. The user should also be familiar
with the operating system as described in either the RT-11 System
User's Guide or the RSTS/E System User's Guide. The RSTS/E
Documentation Directory and the RT-11 Documentation Directory contain
additional information on the respective documentation sets.

DOCUMENTATION CONVENTIONS

All monitor and system program command lines are terminated by
pressing the RETURN key. Since this is a non-printing character, at
certain places in the text the notation RET represents the RETURN key.

In examples of keyboard dialogue, monitor output - and program output
are underlined; user input is not.

In format descriptions, upper-case characters represent information
that must be entered exactly as shown; lower-case characters
represent variable information that must be supplied by the user.

Some special keyboard characters require that the CTRL (control) key
be pressed simultaneously with a second character. These characters
are denoted by ~ (up arrow); e.g., "2 (CTRL Z).

Ellipsis marks (...) indicate the omission of one or more words within
a passage and show that the passage continues in the same vein.

vii

CHAPTER 1

OPERATING PROCEDURES

1.1 USING THE FORTRAN IV SYSTEM

Figure 1-1 outlines the steps required to prepare a FORTRAN IV source
program for execution wunder the RT-1l1 or RSTS/E executive: (1)
compilation, (2) linking, and (3) execution.

LIBRARIES

SYSTEM
(LIBRARIES

SOURCE MPILER _ OBJECT 7 . MEMORY EXECUTING
PROGRAM co B MODULE HINK IMAGE PROGRAM

1 2 3

l\i—is.r}; Lﬁ_—

Figure 1-1 Steps in Compiling and Executing a FORTRAN IV Program

Step 1 in Figure 1-1 is initiated by running the FORTRAN 1V Compiler,
FORTRAN, accompanied by a command string that describes the input and
output files, and desired options to be used by the compiler. The
compiler generates an object file which must be linked by the linker
prior to execution.

Step 2 is initiated by running the 1linker, LINK, accompanied by a
similar command string. The linker combines all program units and the
necessary routines from the FORTRAN Library, and generates a memory
image file.

Step 3 is initiated by the monitor RUN command for both RT-11 and
RSTS/E.

1.1.1 Compiler Generated Code

The FORTRAN IV compiler translates the symbolic (FORTRAN) program into
an object program in binary form, resulting in machine instructions.
If you find that procedures and instructions in a high level language
like FORTRAN sometimes restrict your freedom to handle data as you

OPERATING PROCEDURES

would like, you can insert an assembly language routine as you find it
desirable. This process is covered more fully in 2.3.

The FORTRAN IV compiler produces two types of object code for a
program:

inline (PDP-11 machine language); and
threaded (linked OTS references).

See 2.2 for a further description of the object code produced. The
default value assumed for the /CODE (or /I) option (see 1.1.1.1) is
determined at installation time to satisfy the configuration in which
the compiler is installed.

1.1.1.1 Code Options - Inline code is selected for RT-11 through the
keyboard monitor command* options /CODE:EAE, /CODE:EIS, or /CODE:FIS;
and for RSTS/E through options /I:EAE, /I:EIS, or /I:FIS. Throughout
this guide, the RT-11 option is given first, followed by the RSTS/E
equivalent in parentheses. Thus: /NOLINENUMBERS (/S). Take care to
select the option suitable to the available hardware configuration.
Some configurations will not support execution of inline code. Table
1-1 shows valid options for certain configurations.

Table 1-1
Valid Options vs Configuration

Hardware Arithmetic Options Valid Code Options
Hardware
Configuration KEV11 KE1l-A KE11=-B KE1l-E KE1l-F /CODE : (/1:)
11/04, 11/05 - NO NO - - THR
11/10

11/15, 11/20 - YES YES - - EAE or THR
11/03 or LSI-11 NO - - - - THR

YES - - - - EIS, FIS or THR
11/35 or 11/40 - NO NO NO NO THR

- YES NO NO NO EAE or THR

- NO YES NO NO EAE or THR

- NO NO YES NO EIS or THR

- NO NO YES YES EIS, FIS or THR

11/34, 11/45,
11/55, 11/50, EIS is standard on these processors EIS or THR

11/70, 11/60

* These English-language commands communicate with the RT-11
operating system and control the monitor. They perform file
maintenance, library maintenance, handler modification, program
development, and program execution.

1-2

OPERATING PROCEDURES

1.1.1.2 Code Selection and Error Messages - When, the compiler
produces inline code (/CODE: [/I:] followed by EAE or EIS or FIS) the
object program executes at greater speed and generally uses less
physical memory. Inline code achieves this optimization, in part, by
omitting instructions to detect or report certain error conditions.
However, you can generate code for error checking by including the
/CODE:THR (/I:THR) option in the compiler command line. Table 1-2
demonstrates the diagnostic benefits of the threaded code option.

Table 1-2
Threaded Code Error Messagdes

Error Result
inline code threaded code
1. The result of an No diagnostic message A fatal error occurs
integer multiply is produced. and the diagnostic
operation can not Execution continues message: "?Err 1
be expressed as a and the result of the Integer Overflow" is
one-word integer. operation is truncated produced.

to sixteen bits.

2. A divide by zero No diagnostic message A fatal error occurs
occurs during integer is produced and the and the diagnostic
arithmetic. result of the operation message "?Err 2

is undefined. Integer zero divide"

is produced.

3. The value of the No diagnostic message The warning diagnostic i
arithmetic expression is produced. Execution "?Err 4 Computed GOTO |
of a computed GOTO is continues at the next out of range" is
less than 1 or greater| executable statement. produced. Execution
than the number of resumes at the next
labels in the 1list. executable statement.

1.1.2 Pile Name Specifications

The FORTRAN and LINK commands, respectively, pass file name
specifications to the FORTRAN IV compiler and linker. The designator
.typ (type) 1is wused for RT-11. The RSTS/E equivalent 1is .ext
(extension). See - Table 1-3 for device specifications, and Section
1.2.2 for compiler options.

Each file name specification (filespec) has the form:

RT-11 RSTS/E
dev:filnam.typ dev:[p,pn]l filnam.ext<prot>/sw
where

dev: is an optional 2~ to 3-character name specifying a
legal device code as shown in Table 1-3 for a
logical device name. If the device code is
omitted, the default storage (DK:) is used for
RT-11 and the public structure (SY:) is wused for
RSTS/E.

filnam is any 1- to 6-character alphanumeric file name.

OPERATING PROCEDURES

.typ (RT-11) is any 0- to 3-character alphanumeric extension.
.ext (RSTS/E)

If one is not specified, the FORTRAN IV Compiler
supplies, by default, certain extensions as shown
in Table 1-4.

The following apply to RSTS/E only:

[p,pnl is a RSTS/E project (p), programmer number (pn)
which 1is used to identify the account under which
the file is stored.

<prot> is a RSTS/E protection code restricting access to
a file. The degree of restriction is determined
by a code or combination of codes as shown in
Table 1-5. Protection codes have effect only on
output files.

/8w is an RSTS/E option and consists of either or both
the following RSTS/E file specification switches.
(Refer to the RSTS/E Programming Manual for
further information.)

/CL:n set clustersize of (output) file to n.
/MO:n use mode n when opening the file.

The protection code is a string of one to three decimal digits
enclosed by angle brackets <> and determines the file's degree of
protection on two levels: the actions - reading, writing, and
deleting - against which it is protected, and the user or class of
users against whom it is protected. There are three such user
classes, which the system recognizes by project-programmer numbers

1. The individual user (owner)
who is recognized by his programmer number: [200,25].

2. The user's project group
which 1is recognized by the user's project number :
[200,25],([200,57],[200,70].

3. All other users on the system
who are recognized by the existence of valid
project-programmer numbers: [225,60],[250,35],[254,10].

Typically, a file's total protection code is the sum of the desired
combination of individual codes. A data file with protection
<60> - the wusual system default - is protected against reading,
writing, and deleting by all users except its owner: <60>=4+8+16+32.
For detailed information, see the RSTS/E System User's Guide.

OPERATING PROCEDURES

System User's Guide and

the RSTS/E System User's Guide.

Table 1-3
Device Specifications
Device RT-11 RSTS/E
Card reader CR: CR:
TAll cassette (n=0 or 1) CTn: -
Default storage DK: SY:
RK11/RK05 (n=0 to 7) RKn: DKn:
RK611/RK06 (n=0 to 7) DMn: DMn:
RP02 or RP03 disk (n=0 to 7) DPn: DPn:
RP04, RP05 or RP06 disk (n=0 to 7) - DBn:
RJS03/4 disk (n=0 to 7) DSn: DSn:
TCll DECtape (n=0 to 7) DTn: DTn:
RX01 floppy disk DXn: (0 to 3) DXn: (0 to 7)
Line printer (n=0 to 7) LP LPn:
TULl6 magtape (n=0 to 7) MMn: MMn:
TU10 or TS03 magtape (n=0 to 7) MTn: MTn:
Combined punch and reader PC: -
High speed paper tape punch PC: PP:
High speed paper tape reader PC: PR:
RF11 fixed-head disk drive RF: DFO0:
System device SY: SY:
Specified unit from which the
system was bootstrapped S¥n: SYO:
Current user | TT: KB:
terminal TT: or TI:
Auxiliary terminal TTn: -
For more information on device specifications refer to the RT-11

F

OPERATING PROCEDURES

Table 1-4
ile Name Types (Extensions)

(the assumed type (extension) on the Input File is .FOR)

Default Type (Extension)

File on Output File
Object file .OBJ
Listing file .LST
Load Map file .MAP
Save Image file . SAV
Absolute Binary file .LDA (/L)
Relocatable Image file .REL (/R)

(RT-11 only)

Table 1-5
File Protection Codes
Code Meaning
1 Read protection against owner
2 Write protection against owner
4 Read protection against owner's project group
8 Write protection against owner's project group
16 Read protection against all others who do not
have owner's project number
32 Write protection against all others who do not
have owner's project number
64 Executable program: can be run only
Individual codes added to the compiled
protection <64> have meanings different from
those of the data file protection codes above.
These compiled codes follow:
1 Execute protection against owner
2 Read and write protection against owner
4 Execute protection against owner's project
group
8 Read and write protection against owner's
project group
16 Execute protection against all others who do
not have owner's project number
32 Read and write protection against all others
who do not have owner's project number
128 Program with temporary privileges {(normally
occurs only when file's protection includes
<64>).

OPERATING PROCEDURES

1.1.3 Locating a File

The FORTRAN IV compiler locates a file by searching the specified
device for the file name with the specified file type (RT-11), or
extension (RSTS/E). The compiler searches default storage (public
structure on RSTS/E) when the device is not specified and assumes .FOR
when a file type or extension is not specified.

Under the RSTS/E operating system, the computer seeks the specified
account [project, programmer] number. When the account number is not
specified, the compiler searches the current user's directory and
proceeds to the system library [1,2] if the file is not in the user's
directory The protection code identifies the read and write access

CLiCLl il Y e +1iC Qle 2QellLLlL1Eeo riLe

to be granted the user of the located file. If a protection code is
not specified on output, the system default code (usually 60) is used.

If the file cannot be located or is protected against the user, the
compiler prints the following message:

?FORTRAN-F~FILE NOT FOUND
A similar form of this message appears if a file name specification

given to a utility program (e.g., MACRO, LINK, etc.) references a file
which cannot be found or is protected against the user.

1.2 RUNNING THE FORTRAN IV COMPILER

The FORTRAN IV Compiler and Linker accept a command string of the
form:

output = input/option {(/sw)

where:
output is the output file name specification(s).
input is the input file name specification(s).
/option {RT-11) is one or more options used to reguest certain
/sw (RSTS/E) functions from the FORTRAN IV Compiler and

Linker, Options are covered in Section 1.2.2.
Options may be appended to any file specification
in the command string.

Note that imbedded blanks are not permitted in command string
specifications.

1.2.1 Under RT-1l1l (with Keyboard Monitor Commands)

To compile a FORTRAN program either of these commands is given:
FORTRAN[/option...] filespec|[/option...][...filespec[/option...]]

or

FORTRAN[/option...]
FILES? filespec[/option...][...filespec[/option...]]

(where filespec represents a source file to be compiled).

OPERATING PROCEDURES

When more than one file is listed for a single compilation, separate
the files by plus (+) signs. FORTRAN will create an output file with
the same name as the first input file and give it a .0OBJ file type.
However, if you separate the input files by commas, FORTRAN will
produce a .0OBJ file for each input file listed.

For example:
FORTRAN/LIST/SHOW:ALL/NOLINENUMBERS TEST1+TEST2

compiles TESTL.FOR and TEST2.FOR together and produces TEST1.0BJ. A
listing of the compilation complete with source, storage map and code
listings will be sent to the line printer device, LP:. Generation of
Internal Sequence Numbers (ISN's) in the object program will be
disabled.

1.2.1.1 Under RSTS/E - To compile a FORTRAN program the command 1is
given:

RUN $SFORTRAN
*

The FORTRAN IV Compiler then prints an asterisk (*) to indicate that
it is ready to accept a command string.

The FORTRAN IV Compiler can produce two output files: an object file
and a listing file. As many as six FORTRAN IV source language files
are permitted as input files. If multiple input files are given, they
are considered to be logically concatenated. However, source lines
must not be broken over file boundaries.

An input file which resides on a random-access device can contain more
than one program unit. The object code for all program units to be
concatenated at LINK time goes to the resulting single object file.

A sample FORTRAN IV Compiler command sequence is shown below:

RUN SFORTRAN
*OBJECT,LIST=FILEl

This command string directs the compiler to take the source file
FILE1.FOR from the current account on the public structure, and output
the files LIST.LST and OBJECT.OBJ to the current account on the public
structure.

Either of the compiler output files can be eliminated by omitting 1its
file specification from the command string. For example:

RUN $FORTRAN
*FILE1=FILE1

produces FILEL.OBJ on the default device but no listing file, while
*,LP:=FILE1l

produces a listing on the line printer, but no object module output.

OPERATING PROCEDURES

1.2.2 Compiler Options (Switches)

The FORTRAN IV Compiler command strings wutilize specified options
{switches) of either octal or decimal values on the input and output
file specifications. Any option of the form /S:n causes n to be
interpreted as an octal value (as long as n contains only the digit
0-7); whereas, /S:n. causes n to be interpreted as a decimal value.
RT-11 and RSTS/E FORTRAN 1V Compiler options (switches) are described
in Table 1-6.

Table 1-6

e

o et e &
m Options (Switches)*®

(defaults are determined at installation time)

RT-11 RSTS/E
Option Switch Explanation
/ALLOCATE:n - Used after the /OBJECT or /LIST
option to guarantee space for a
maximum file size of n blocks.
/CODE: xxx /I:xxx Selects type of object code to be
generated. Defaults to wvalue
selected at installation. The
g valid values are:
% EAE (selects EAE hardware)
| EIS (selects EIS hardware)
f FIS (selects EIS and FIS
i ; hardware)
THR (selects threaded code)
/DIAGNOSE /B Enables expanded listings of
compiler internal diagnostic
information.
/EXTEND /E Allow source line input from
columns 73-80.
/HEADER /0 Prints an "Options~In~Effect"
section prefacing the listing.
/14 . /T . Default to two word integers (I*4) |
(normally defaults to one word
integers (I*2)).
|
/LINENUMBERS - | Indicates Internal Sequence
i Numbers are to be included in the
| executable program for routine
| diagnostics.
|
/LIST[:filespec] - | Generates a listing. A file name
! can be optionally specified.
/NOLINENUMBERS /S ! Suppress dgeneration of Internal
% Sequence Numbers.

* RT-11 users may use the RSTS/E switch when the compiler is
invoked with the RUN command.

(continued on next page)

1-9

OPERATING PROCEDURES

Table 1-6 (Cont.)

Compiler Options (Switches)*

(defaults are determined at installation time)

RT-11
Option

RSTS/E
Switch

Explanation

/NOOBJECT

*

/NOOPTIMIZE: xxx

/NOSWAP

/NOVECTORS

/OBJECT[:filespec]

/ONDEBUG

/OPTIMIZE: Xxx

/Q

/M:xxx

/U
/v

/D

/P:xxx

Does not generate object files.

Inhibits printing names of program
units (from program, FUNCTION,
SUBROUTINE, and BLOCK DATA
statements) as each program unit
is compiled. Note that .MAIN.
refers to the main program; and
.DATA. refers to an unnamed BLOCK
DATA.

Used to disable certain
optimizations. This option takes
multiple arguments, chosen from
the following list:

SPD disable optimization for
program speed. Optimization
will now take place for
minimal program size.

CSE disable common subexpression
elimination.

STR disable strength reduction
optimization.

BND disable global register
bindings for inline code
generation.

Disable USR swapping at runtime.

Suppress array vectoring of
multi-dimensional arrays.

Produces an object file (default).
The destination for the object
file can be optionally specified.

Compile lines with a "D" in column
one (for debugging purposes).

Selects optimization 1level with
value supplied. Used to enable
certain optimizations when
desired.

SPD Optimize for speed of object
program execution as opposed
to minimal program size.

CSE enable common subexpression
elimination.

* RT-11 users may use

the RSTS/E switch when the compiler |is
invoked with the RUN command.

(continued on next page)

1-10

OPERATING PROCEDURES

Table 1-6 (Cont.)
Compiler Options (Switches)*
(defaults are determined at installation time)

RT-11 RSTS/E
Option Switch Explanation

STR enable strength reduction
optimization.

BND enable global register
bindings for inline code
generation.

* /2 Causes pure code and pure data
sections to take RO (read-only)
attribute.

/RECORD:n /R:n Specifies the maximum record
length (in bytes) on runtime I1/0
(4<n<4095).
/SHOW[:n] /Li:nj Specifies the 1
The argument n
follows:

ing options.
s encoded s

0 or null - list diagnostics only

1 or SRC - list source program
and diagnostics only

2 or MAP ~ list storage map and
diagnostics only

4 or COD - list generated code
and diagnostics only

Any combination of the above 1list
options may be specified by
summing the numeric argument
values for the desired 1list
options. For example:

7 or ALL

requests a source listing, a
storage map, and a generated code
listing. If this option is
omitted, the default option is
/SHOW:3, (/L:3) source and storage
map.

/STATISTICS /A Print compilation statistics.

/ SWAP - Allows the USR to swap over the
FORTRAN program (default).

/UNITS:n /N:n Allows a maximum of n
simultaneously open I/0 channels
at run-time (1<n<15).

* RT-11 users may use the RSTS/E switch when the compiler is
invoked with the RUN command.

(continued on next page)

1-11

OPERATING PROCEDURES

Table 1-6 (Cont.)
Compiler Options (Switches)*
(defaults are determined at installation time)

RT-11 RSTS/E
Option Switch Explanation

/VECTORS - Uses tables to access
multi-dimensional arrays
(default).

/WARNINGS /W Enable compiler warning
diagnostics; used in conjunction
with /SHOW (/L) option.

* /X XXX Indicates cross-compilation for

the target environment specified.
Compiler diagnostic messages will
be generated as if compilation had
occurred under the foreign
environment. Values are:

RT (selects RT-11)
RST (selects RSTS/E)
RSX (selects RSX-11)

* RT-1ll users may use the RSTS/E switch when the compiler is
invoked with the RUN command.

1.2.3 Listing Formats

You can direct the compiler to furnish any combination of five
optional sections in the compilation 1listing. Use the options
(switches) described in Section 1.2.2 to call for the 1list of
options-in-effect, the generated code and the compiler statistics.
The source program and the storage map are included by default.
Figure 1-2 describes each section and gives an example of the
information included.

1-12

FORTRAN 1V
yEX2=EX2/LtALL/L

OFTIONS IN EFFEC

FORTRAN IV

Q001 INTE
0002 REAL
Q003 COMF
Q004 DOUE
0005 DATA
Q006 REAL
0907 DRLE
2008 IMAG
00079 WRIT
o010 10 FORM
Q011 STOF
0012 END
FORTRAN IV

lLocal Variabless
Name Ture OfF
DELE RXx8 Q00
REAL Rx4 000

Subroutinesy Fun

Name Tare Na
CHMFLXY Cx8

OPERATING PROCEDURES

vo2.01 Wed 03-Aud-77 09100113
tTHR/Q/A
TS

SOURCE

MAF

CORE
NOLEAFPYEAR
NOREADONLY

LRECL=0136

STAT

ISNS
NOCOL 80

USRSWAF
NODIAGNOSE
NOINTEGERX4

NLCHN=064
NODERUG

VECTOR
NOWARN

CODE:THR

OFTIM:SFDICSEISTRIBNDIFEF

1.0G

Vo2.01 Wed 03-Aug-77 09100113

GER INT
REAL
LEX IMAG
I.E PRECISION DELE
INT/100/
= INT/2 + G,
= REAL/2. +3.14185924653500
= CMFLX(REALy 3.21)
E (35:,10) IMAG
AT(IX,2F8.5)

Storage Mar for Frodram Unit MAIN.

LFGECT $DATA» Size = 000030 (

set Name Ture 0Offset Name
020 IMAG Cx8 000010 INT

004

FAGE 001

Offaet
000002

ctionsy Statement and Frocessor-Defined Functions:

me Ture Name Ture Name

Figure 1-2 A Sample Compilation Listing

Ture

OPERATING PROCEDURES

FORTRAN IV Generated Code for Prosgram Umit .MAIN.

Statement #0004

000006 LSN$ 000004
Q000012 MOISMS S$DATA+#000002
000016 DIIS$IS $000002
000022 CFI%

000024 ADF$IS $040640
Q00030 MOF$SM $DATA+$#000004

Statement #0007

000034 I1SN$

0000346 MOF$MS S$DATA+$000004

000042 DIF$IS #040400

000046 CDF%

000050 AID$MS S$DATAF+E000020
000054 MOD$SM $DATA+F000020

Statement #0008

000040 ISN%

000042 RELS$ $DATAF+4000030

Q00066 RELS$ $DATA+¥000004

000072 CaAL$ 000002 CHMPLX+$#000000
Q00100 MOU$RM $DATA+¥000010

Statement #0009
000104 ISNS$

000106 RELS$ $DATAP+#0000146
000112 RELS% $DATAF+3000010

000116 IFWS
000120 RELS% $DATA+#000010
000124 TVC%
000126 EOL$

Statement #0011

000130 LSN$ #000013

000134 STP%

Comrilation Statistics?

Sumbol table size! 00091 words
Internal form size! 00039 words

Free dunamic memoru! 22254 words

Compilation time! 00:00:02

Figure 1-2 (Cont.) A Sample Compilation Listing

OPERATING PROCEDURES

1.2.3.1 Options Listing - Use the options-in-effect list as a quick
reference to the status of each possible compiler option. Those
preceded by 'NO' are not in effect. The maximum number of logical
units that can be concurrently open (NLCHN) and the maximum record
length (LRECL) are given as the default values or the values specified
by the /UNITS:n (/N:n) and /RECORD:n (/R:n) options respectively. The
day of the week, date, and time of compilation and a copy of the
compiler command string for identification purposes are also
furnished.

1.2.3.2 Source Listing - This section lists the source program as it
appeared in the input file. The compiler adds internal sequenc
numbers for easier reference. Note that internal sequence numbers are
not always incremented by 1. For example, the statement following a
logical IF has an internal sequence number two greater than that of
the 1IF, because the compiler assigns one for the comparison and one
for the associated statement.

1.2.3.3 Storage Map Listing - This section lists all symbolic names
referenced by the program unit. Local variables are allocated in the
SDATA psect. The addresses of parameter variables and arrays are
placed in the $DATA psect at subroutine invocation and are denoted by
"@" preceding the offset or section name. The 1listing includes the
symbolic name, data type, usage, psect and offset. 1In the case of
COMMON blocks, VIRTUAL arrays and array names, the 1listing includes
the defined size in bytes (octal) and words (decimal) as well as the
dimensions.

NOTE

Blank COMMON is described as COMMON
BLOCK / / in the storage map, but is
located on a LINK map as a PSECT named
L5888,

1.2.3.4 Generated Code Listing - This section contains a symbolic
representation of the object code generated by the compiler (see
Section 2.2) and includes a location offset 1into psect $CODE, the
symbolic Object Time System (0TS) routine name and routine arguments
of threaded code; and the equivalent assembler code for the inline
code. When the /DIAGNOSE (/B) compiler option is used, the right-hand
column of the inline generated code listing shows those registers
available for use following an operation. The code generated for each
statement provides easy cross reference by showing the same internal
sequence number (ISN) as was specified in the source program listing.

1.2.3.5 Compilation Statistics - This section provides a report on
memory usage during the compilation process and elapsed wall-clock
time for the compilation.

OPERATING PROCEDURES

1.2.4 Compiler Memory Requirements

RT-11 and RSTS/E differ in the amount of memory available to each for
compilation, and the options available for obtaining additional space.
Under RT-11, device handlers and the symbol table require a portion of
memory during compilation. When more memory is required after
minimizing the number of different physical devices and variable names
specified, you can segment the program into program units small enough
to compile in the available space.

Under RSTS/E, you acquire additional space by switching from a
non-privileged to a privileged account, increasing the system swap
maximum, or segmenting the program. These options and the amount of
memory available are treated in greater detail in the following
subsections.

1.2.4.1 Compiler Memory Requirements Under RT-11 - During
compilation, the following must reside in main memory: the RT-11
Resident Monitor (RMON), the compiler root segment, one overlay
region, the stack, and the required device handlers (other than the
handler for the system device which is included in the RMON). Note
that FORTRAN will dynamically load device handlers required for
compilation. The remaining memory provides for the symbol table and
the internal representation of the program. 1In a machine with 8K
words of memory, this allows the compilation of a program unit as
large as several hundred statements. However, if the compiler runs
out of memory during compilation, an error message is delivered to the
user's terminal; see Section C.l. The program must be divided into
two or more program units, each small enough to compile 1in the
available memory.

Since device handlers and the symbol table must be resident in memory
during compilation, minimize the number of different physical devices
specified in the command string and reduce the number of variable
names to increase the amount of memory available for object code
generation.

1.2.4.2 Compiler Memory Requirements Under RSTS/E - The RSTS/E
FORTRAN IV compiler acquires the maximum free memory (up to 28K words)
allocated to the current user. The private memory maximum for the
user's account will never exceed the SWAP MAX currently set by the
system manager who may also restrict the dynamic memory requested by
FORTRAN IV for every user.

If the compiler runs out of free space during a compilation, an error
message 1is delivered to the user's terminal; see Section C.l. 1In
this case, you can take several actions to accommodate the
compilation:

1. 1If the compilation was attempted by a non-privileged user
whose private swap maximum is smaller than the system swap
maximum, the compilation may proceed, but under a privileged
account. This may allow the compiler to acquire a larger
memory area. Or, you can request the system manager to
increase the private swap maximum.

2. If a compilation terminates with insufficient space under a
privileged account, do either of the following:

OPERATING PROCEDURES

a. Ask the system manager to increase the FORTRAN
compilation size limit to accommodate large compilations,
or

b. segment the program unit into two or mocre smaller program
units, and reduce the number of variables, arrays, and
constants to save compiler symbol table space.

1.3 LINKING PROCEDURES
When SYSLIB is created under RT-11 or RSTS/E to include FORLIB, the
/LINKLIBRARY:FORLIB (/F) option is redundant, because FORLIB now is
part of SYSLIB and is not called separately.

1.3.1 Linking Under RT-11l

The RT-11 linker, LINK, combines one or more user-written program
units with selected routines from any user libraries and the default
FORTRAN IV OTS Library to form the default system subroutine library,
SYSLIB. LINK generates a single runnable memory image file and an
optional load map from the one or more object files created by the
MACRO assembler or the FORTRAN IV compiler.

The default types for the executable file are .SAV for a background or
mapped environment program; and .REL for a foreground program. The
default output device is DK:.

The default name of the .SAV or .REL file 1is that of the first
concatenated input object file specified. When FORLIB resides in
SYSLIB, the required elements of the FORTRAN library will be linked
automatically since any undefined global references are correlated and
resolved through SYSLIB.
The LINK command adheres to the following syntax:

LINK[/option...] filespec[/option...][,...filespec[/option...]]
or

LINK [/option...]
FILE? filespec[/option...][,...filespec(/option...]]

where "filespec" represents the file to be linked and "options" are
those described in Table 1-~7.

Table 1-7
Linker Options Available Under RT-11
Option Explanation
/ALLOCATE:n Guarantees space for a maximum file of n
blocks.
/BOTTOM:n Specifies a bottom address for a background
program.

(continued on next page)

1-17

OPERATING PROCEDURES

Table 1-7 (Cont.)

Linker Options Available Under RT-11

Option

Explanation

/BOUNDARY:value

/DEBUG[:filespec]
/EXECUTE [: filespec]

/EXTEND:n

/FILL:n

/FOREGROUND
[:stacksize]

/INCLUDE

/LDA

/LIBRARY

/LINKLIBRARY:filespec

/MAP[:filespec]

/NOEXECUTE

Starts a specific program section on a
particular address boundary. Argument
value, must be a power of 2. Prompts you:

Boundary section?
Enter name of section, then RET.
Links ODT to the linked program.
Designates the executable file.

Extends a program section to octal value n.
Prompt:

Extend section?

Initializes unused locations in the load
module to n (an octal value).

Generates a .REL file for a foreground
link.

Allows subsequent entry at the keyboard of
global symbols to be taken from any library
and included in the linking process. When
the /INCLUDE option is typed, the linker
prints:

Library search?

Reply with the list of global symbols to be
included in the 1load module. Press the
carriage return key (RET) to enter each
symbol in the list.

Produces executable file in LDA format for
use with the Absolute Loader.

Same as /LINKLIBRARY. (Included for
compatibility with other systems.)

This option 1is 1ignored wunless a file
specification is typed. The file
specification is included as an object
module library in the linking operation.

Produces a link map on the 1listing device
LP: or in the file specified.

Does not create a .SAV file.

(continued on next page)

OPERATING PROCEDURES

Table 1-7 (Cont.)
Linker Options Available Under RT-11

Option Explanation
/PROMPT Causes the LINKer and LIBRarian to prompt
for CsI formatted commands. The

LINKer/LIBRarian treat the command strings
as continuation 1lines until a // is seen.
/PROMPT is equivalent to // mode of
continuation. Use this option to specify
overlays, e.g.

.LINK/PROMPT ROOT
*OVR1/0:1
*OVR2/0:1
*QVR3/0:2
*OQVR4/0:2//

This creates 2 overlay regions with 2
segments each.

/ROUND:n Rounds up a section so that the root is a
whole number multiple of n (a power of 2).
Prompt:

Round section:

/RUN For background 3jobs only, executes the
resulting SAV file.

/SLOWLY Allows largest memory area for symbol
table.

/STACK[:n] Modifies the stack address (default is loc.

42). Give an octal value (:nnnnnn) or else
system prompts for a global symbol:

IS 1
Stack symbol?

/TRANSFER|[:n] Prompts for a global symbol to be used as
the starting address of the program. The
user can specify a starting address
(represented by n}. :

/WIDE Sets the number of columns for the width of
the 1link map to 6. The default width is
normally 3 for an 80 column wide listing.

Examples of linker options under RT-11 are:

1) LINK A,B,C links A.OBJ, B.OBJ, and C.0OBJ on DK: and
creates A.SAV on DK:

2) LINK/MAP A links A.OBJ and creates A.SAV on DK: and a
map on LP:

3) LINK A,B,C/MAP:RK1:/EXE:RKO:
links A.0BJ, B.OBJ, and C.OBJ. The map
A.MAP goes to RKl: and the executable file
A.SAV goes to RKO:.

1-19

OPERATING PROCEDURES

4) LINK/MAP B,C,D,E/LINKLIBRARY:LIB/EXE:FOO0
links B.OBJ, C.OBJ, D.OBJ, E.OBJ and the
library LIB.OBJ to create FOO.SAV on DK:
and a map on LP:.

1.3.2 Linking Under RSTS/E
The LINK command under RSTS/E has the form:

RUN S$SLINK
* command string

The command string has the following format:

dev:binout,dev:mapout=dev:objl,dev:obj2,.../sl/s2/s3

where:

dev: is a random access device for the save image output
file (binout), and any appropriate device in all other
instances. If dev: is not specified, the default
device 1is assumed. If the output is to be LDA format
(i.e., the /L switch was used), the output file need
not be on a random-access device.

binout is the name to be assigned to the linker's save image,
or LDA format output file. This file is optional; if
not specified, no binary output is produced. (Save
image is the assumed output format unless the /L switch
is used.)

mapout is the optional load map file.

objl,... are files of one or more object modules to be input to
the linker (these may be library files).

/sl/s2/s3 are optional switches as explained in Table 1-8.
An example of the LINK command format as used with FORTRAN IV follows:

RUN $LINK
*LOAD,MAP=MAIN,SUB1,SUB2/F

This command string requests LINK to combine the object module
MAIN.OBJ with the object modules SUB1.0BJ and SUB2.0BJ into the single
save image file LOAD.SAV. A load map file MAP.MAP is also produced.
All files are on the public structure.

The switch, /F, specifies that the default FORTRAN Library in the
system library account [1,2] on the public structure, SY:FORLIB.OBJ,
is to be searched for any routines that are not found in the other
object modules. These include any 1library functions, system
subroutines, or object time system routines. Note that the switch
alone, without the explicit file specification, causes the default
FORTRAN Library to be searched. This switch should be included if any
of the object modules specified in the command string were created by
the FORTRAN Compiler. This switch can be omitted, however, if the
FORTRAN Library file specification, SY:SFORLIB, is explicitly included
in the command string or if FORLLB has been installed under the name
SYSLIB as illustrated in the following example.

RUN S$LINK

FTAAT MATD=WA TN
*LOAD, MAP=MAIN

OPERATING PROCEDURES

The optional load map file specification, if included, requests the
linker to output a 1list of module names, common blocks and global
symbols together with their absolute memory address assignments.

See the RSTS/E FORTRAN IV Utilities Manual for a more detailed
description of LINK. Refer to Chapter 5 of this Guide for an
alternative procedure for invoking LINK.

Table 1-8
Linker Options (Switches) Under RSTS/E

Option
(Switch) Command
Name Line Meaning

/A First Alphabetizes the entries in the load map.

/B:n First Bottom address of program is indicated as
n. The bottom address determines the
amount of stack (SP) space available to the
program being 1linked. The default bottom
is 1000 (octal) , which provides
approximately 80 words of stack. This can
be increased by specifying the /B switch
with an argument greater than 1000 (octal).

/C Any Continues input specification on another
command line. Used also with /O.

/E:n First Allows a specified program section to be
extended to the value given. When the /E
switch is specified, the linker prints:

EXTEND SECTION? pname

Reply with the name of the program section
whose length then becomes greater than or
equal to the value given. It will be
"greater than" when the object code
requires a space larger than the value
specified.

/F First Instructs the linker = to use the default
FORTRAN library, FORLIB.OBJ, to resolve any
undefined global references. Note that
this option is not specified in the command
line when FORLIB has been incorporated into
SYSLIB.

/H:n First Specifies the top (highest) address to be
used by the relocatable code in the load
module. The high value must be specified
or the error message /H NO VALUE will be
returned. The high value must be an !
unsigned even octal number. If the value
is odd, /H ODD VALUE error is returned. If
the value is not 1large enough for the
relocatable code, /H VALUE TOO LOW error
message is returned.

_

(continued on next page)

OPERATING PROCEDURES

Table 1-8 (Cont.)

Linker Options (Switches) Under RSTS/E

Option
(Switch)
Name

Command
Line

Meaning

/I

/K:n

/L

/M or
/M:n

/0:n

/R

/S

/T or
/Ts:n

First

First

First

First

Any but
the first

First

First

First

Use care with the /H switch because most
RT-11 programs use the free memory above
the relocatable code as a dynamic working
area for I/0 buffers, device handlers,
symbol tables, etc. The size of this area
varies with different memory configurations
as programs linked to a high address may
not run in a system with less physical
memory. /R, /B, and /H are mutually
exclusive and give the error /x~BAD SWITCH.
/H is the counterpart to /B.

Includes in the core image, (see Section
1.3.3), the library object modules that
declare the specified global symbols.

Intended for RSTS/E; not normally used for
RT-11. ©Puts the specified value in word 56
of the image file block 0. This value
states that the program requires nK words
of memory. Range for the required value is
1 through 28.

Produces an output file in LDA format.

Specifies the stack address at the terminal
keyboard or via n.

Indicates that the program has an overlay
structure: n specifies the overlay region
to which the module is assigned.

(RT-11 only). Produces an output file in
relocatable image format for execution as a
foreground job.

Allows the maximum amount of space in
memory to be available for the linker's
symbol table. (This switch should only be
used when a particular link stream causes a
symbol table overflow.)

Specifies the transfer address at terminal
keyboard or as the octal value for the
switch.

(continued on next page)

OPERATING PROCEDURES

Table 1-8 (Cont.)

Linker Options (Switches) Under RSTS/E

Option
(Switch)
Name

Command
Line

Meaning

/U:n

/W:n

/X

/7 or
/Z:n

First

First

First

First

Prompts the user with "ROUND SECTION": The
user replies with the name of the program
section to be rounded up, which must be in
the root segment. The value given must be
a power of 2. The specified section will
be rounded up to a size which is a whole
number multiple of n. Example would be to
make the first overlay start on a block
boundary (/U:1000) so that the root section
and the first overlay region can be read in
with onlv one read. If the specified
section is not found, the error message
will be "ROUND SECTION NOT FOUND".

Specifies the width of the map to be
produced. The value is the number of ENTRY
ADDR combinations to print across the page.
If no /W is given, the default is 3 (normal
for 80 column paper). If only /W is given,
n defaults to 6 which is ideal for a 132
column page. Useful range is 1 through 7.

Intended for RSTS/E; not normally used for
RT-11. Meaning: do not output (Xmit) the
bitmap if code below 400. Locations
360-377 in block 0 of the load module are
used for the bitmap. The 1linker normally
stores the program usage bits in these
eight words. Each bit represents on
256-word block of memory. This information
is used by the R, RUN, and GET commands
when loading the program. Therefore care
should be exercised in using this switch.

zero the unused 1locations 1in the 1load
module, (e.g., those locations specified by
.BLKW or .BLKB). If the optional value n
is given, the unused locations are Ffilled
with the value n. This can help to
eliminate random results due to errors
referencing uninitialized memory. Zeroing
unused locations is the default case. /Z:n
need be used only when some value other
than =zero must be stored in unused
locations. If the switch is not used the
contents of locations referenced, but not
initialized, by the program are undefined.

(continued on next page)

OPERATING PROCEDURES

Table 1-8 (Cont.)
Linker Options (Switches) Under RSTS/E

Option
(Switch) Command
Name Line Meaning
// First This method provides an alternative to the
and /C (Continue) switch which must be given on
last every line except the last. The // switch

allows additional lines of command string
input. // is typed on the first command
line and the 1linker will «continue to
request input until the next occurrence of
//. The second occurrence of // terminates
specification of command string input. The
second occurrence may be on the last
command line with an object filename or on
a command line by itself.

CAUTION: The use of /C and // can not be
mixed in a 1link command string input
sequence.

Example:
.R LINK

*LINK,LP:=LINKO/B:500/W//
*LNKOV1/0:1

*LNKOV8/0:1//

1.4 LIBRARY USAGE

You can create a library of commonly used assembly language and
FORTRAN functions and subroutines through the system program, LIBR,
which provides for library creation and modification. The Librarian
chapter of the RT-11 System User's Guide or the RSTS/E FORTRAN IV
Utilities Manual describes the LIBR program in detail.

Include a library file in the LINK command string simply by adding the
file specification to the input file list. LINK recognizes the file
as a library file and links only the required routines. The LINK
command string;

*LOAD=MAIN, LIB1/F

requests LINK to combine MAIN.OBJ with any required functions or
subroutines contained in LIB1.OBJ. The default FORTRAN system
library, FORLIB.OBJ ($FORLIB.OBJ on RSTS/E}, is then searched for any
other required routines. Note that /F is not specified (hence FORLIB
will not be searched) if FORLIB has been incorporated into SYSLIB. At
this point, any unresolved GLOBALS are resolved through SYSLIB. The
entire memory image is output to the file LOAD.SAV.

OPERATING PROCEDURES

If the /F option or switch is used, all wuser «created libraries are
searched before the default FORTRAN system 1library, FORLIB.OBJ
($FORLIB.OBJ on RSTS/E). Consult the Linker chapter of the RT-11
System User’s Guide for a detailed description of multi-library global

resolution.

If the linker fails for lack of symbol table space, use the /S linker
option in your next attempt. This could slow the linking process, but
it allows the maximum possible symbol table space.

To maintain the integrity of the DEC-distributed FORTRAN Library,
create a user library rather than modifying or adding to the FORTRAN
Library (FORLIB) or to the System Library (SYSLIB).

1.4.1 Overlay Usage

Use the overlay feature of the linker to segment the memory image soO
that the entire program is not memory resident at one time. This
allows the execution of a program too large for the available memory.

An overlay structure consists of a root segment and one or more
overlay regions. The root segment contains the FORTRAN IV main
program, blank COMMON, subroutines, function subprograms, and any
.PSECT that has the GLB attribute and is referenced from more than one
segment. An overlay region is an area of memory allocated for two or
more overlay segments, only one of which can be resident at one time.
An overlay segment consists of one or more subroutines or function
subprograms.

When a call is made at runtime to a routine in an overlay segment, the
overlay handler verifies that the segment is resident in its overlay
region. If the segment is in memory, control passes to the routine.
If the segment is not resident, the overlay handler reads the overlay
segment from the memory image file into the specified overlay region.
This destroys the previous overlay segment in that overlay region.
Control then passes to the routine. Under RT-11, when the overlay
program runs from a non-system device, the handler must be loaded via
the LOAD command.

Give careful consideration to placing routines when you divide a
FORTRAN IV program into a root segment and overlay regions, and
subsequently divide each overlay region into overlay segments.
Remember that it is illegal to call a routine located in a different
overlay segment in the same overlay region, or an overlay region with
a lower numeric value (as specified by the linker overlay /O:n), than
the calling routine. Divide each overlay region into overlay segments
that never need to be resident simultaneously.

The FORTRAN IV main program unit must be placed in the root segment.

In an overlay environment, subroutine calls and function subprogram
references must refer only to one of the following:

1. A FORTRAN library routine (e.g. ASSIGN, DCOS).

2. A FORTRAN or assembly language routine contained in the root
segment.

3. A FORTRAN or assembly language routine contained in the same
overlay segment as the calling routine.

OPERATING PROCEDURES

4. A FORTRAN or assembly language routine contained in a segment
whose region number 1is greater than that of the calling
routine.

In an overlay environment, COMMON blocks must be placed so that they
are resident when referenced. Blank COMMON is always resident since
it is always placed in the root segment. All named COMMON must be
placed either in the root segment, or into the segment whose region
number is the lowest of all segments that reference the COMMON block.
A named COMMON block cannot be referenced by two segments in the same
region unless the COMMON block appears in a segment of a lower region
number. The linker automatically places a COMMON block into the root
segment if it is referenced by the FORTRAN IV main program or a
subprogram that is located in the root segment. Otherwise, the linker
places a COMMON block in the first segment encountered in the linker
command string that references that COMMON block.

All COMMON blocks that are data initialized (by use of DATA
statements) must be so initialized in the segment in which they are
placed.

The entire overlay initialization process is handled by LINK. The
command format outlined below (and further explained in the Linker
Chapter of the RT-11 System User's Guide or the RSTS/E FORTRAN IV
Utilities Manual) 1is used to describe the overlay structure to the
linker. LINK combines the runtime overlay handler with the user
program, making the overlay process completely transparent to the
user's program.

The size of the overlay region is automatically computed to be large
enough to contain the largest overlay segment in that overlay region.

The root segment and all overlay segments are contained in the memory
image file generated by LINK.

Two options are used to specify the overlay structure to LINK. The
overlay option is of the form:

/0:n
where n is an octal number specifying the overlay region number. The
command continuation option has two forms

/C and //

/C at the end of each continuation line allows the user to continue
long command strings on the next line of input. // is used at the end
of the first line and again at the end of the last line of input (see
Table 1-8).

The first line of the LINK overlay structure command string should
contain, as the input list, all object modules that are to be included
in the root segment. This line should be terminated with the /C
option. The /O:n option cannot appear in the first line of the
command string. If all modules which are to be placed in the root
segment cannot be specified on the first command line, additional
modules can be specified on subsequent command lines, each ending with
a /C. The entire root segment must be specified before any overlays.

OPERATING PROCEDURES

All subsequent lines of the command string should be terminated with
the /O:n option (switch) specifying an overlay region and/or the /C
option (switch). The presence of only the /C option (switch)
specifies that this is a continuation of the previous line and
therefore, a continuation of the specification of that overlay
segment. The object modules on each line, or set of continuation
lines, constitute an overlay segment and share the specified overlay
region with all other segments in the same numeric value overlay
region. All but the last line of the command string should contain
the /C option (switch).

For example, assuming that FORLIB has be
given the following overlay structure des

“il ==0LW2lIy L¥VCci.a

1t into SYSLIB, and
l. A main program and the object module SUBl are to occupy the
root segment.

2. The object module SUB2 is to share an overlay region with the
object module SUB3 (never co-resident).

3. The object modules SUB4 and SUB5 are to share a second
overlay region with the object modules SUB6 and SUB7.

The following command string could be used:

(RT-11) (RSTS/E)
.LINK/PROMPT/EXE: LOAD MAIN+SUB1 RUN SLINK
*SUB2/0:1/C *LOAD=MAIN,SUB1l/C
*SUB3/0:1/C *SUB2/0:1/C
*SUB4/0:2/C *SUB3/0:1/C
*SUB5/C *SUB4/0:2/C
*SUB6/0:2/C *SUB5/C
*SUB7// *3UB6/0:2/C

*SUB7

1.4.2 stand-Alone FORTRAN

You can develop FORTRAN programs under the RT-11 or RSTS/E FORTRAN IV
systems and receive output in an absolute binary format for execution
on a satellite machine with minimum peripherals. The satellite
machine needs only a minimum of 4K words of memory and only a
paper—tape reader for program loading.

You can also use the stand-alone FORTRAN capability to construct
Read-Only Memory (ROM) applications programs. See 2.5.4 for more
details on ROM environments.

When operating in the stand-alone environment, the terminal is the
only input/output device supported by FORTRAN-level input/output.
Other devices or equipment interfaces can be supported by appropriate
user-written assembly language subroutines.

To generate a stand-alone program, the source program units should be
compiled as usual. At 1link time, special options are specified to
generate a stand-alone program. The /L option must be included in the
LINK command strin to cause an absolute binary format (LDA) output
file to be generated. The /I option must also be given to allow a
special module to be requested from the FORTRAN IV Library. This
module is:

$SIMRT FORTRAN IV system simulator.

OPERATING PROCEDURES

Since the library used must reflect the hardware arithmetic options
available on the satellite machine, you must be careful to use the
proper FORTRAN IV Library. Hence, the system default library
(SY:FORLIB.OBJ), which 1is wused when the /F option (switch) is
specified to LINK, may not be appropriate. Consult with the system
manager (RSTS/E users) or the FORTRAN IV Installation Guide (RT-11
users) for information on the various libraries.

The following command sequence generates a file LOAD.LDA, which can be
punched on paper tape and loaded, using the Absolute Loader, on any
PDP-11.

(RT-11) (RSTS/E)

.LINK/LDA/INCLUDE/EXE:LOAD MAIN+SUBS RUN SLINK
*LOAD,LP:=MAIN,SUBS/F/L/I

LIBRARY SEARCH? $SIMRT <CR> LIBRARY SEARCH? SSIMRT

<CR>

<CR> <CR>

*7C *°C

. READY

1.5 EXECUTION PROCEDURES

1.5.1 Execution Under RT-11

Use the monitor RUN command to start execution of the memory image
file generated by LINK. The command:

.RUN dev:filespec
causes the file on the device (DEV:) to be 1loaded into memory and
executed. Filespec.sav is the file name specification as described in
1.1.1.
The following example takes three FORTRAN source files containing a
main program and several subroutines through the procedures necessary
to compile, link, and execute that program:

.FORTRAN/LIST MAIN+SUB,SUBT

.LINK/MAP MAIN,SUBT

.RUN MAIN
This searches SYSLIB when any undefined references are present. (The

FORTRAN OTS 1is assumed to have been incorporated into SYSLIB upon
system installation.) '

1.5.2 Execution Under RSTS/E

The following command starts -execution of the memory image file
generated by link:

RUN filespec

1-28

OPERATING PROCEDURES

Where no extension is specified in filespec, the following search
occurs:

Beginning with the first Run Time System (RTS) in the monitor's
RTS 1list* and progressing sequentially through the list, the
monitor will append each RTS's default "executable~file"
extension to the filename given in filespec and search for the
file in the appropriate directory. When a satisfactory extension
is found, the associated RTS is used to execute the file.

For example, a user has two files on his account,

‘:—I

a
SAMPL Al

an

SAMPLE . SAV
and the default RTS is BASIC-PLUS.
Typing

RUN SAMPLE
will cause SAMPLE.BAC to begin execution.
To execute SAMPLE.SAV, the extension must be given explicitly:

RUN SAMPLE.SAV
At the start of execution of a FORTRAN program, an internal
initialization routine will determine exactly how much memory is
required by the program from two parameters:

1. /N:xxx switch (number of logical units)

2. /R:xxx switch {(maximum record length)

If necessary, additional memory is acquired to meet these
requirements.

1.6 DEBUGGING A FORTRAN IV PROGRAM

The "debug line" capability of FORTRAN IV is effective in debugging
because it allows a FORTRAN statement to be conditionally compiled.
Here are some suggestions for using‘that capability.

Try to locate the statement in error by typing out intermediate values
and results. Place a "D" in column one of each source line you have
added for debugging purposes. These lines will not be compiled unless
you specify the debug option (/D for RSTS/E, and the keyboard monitor
command option /ONDEBUG for RT-11) in the compiler command string.
The program can be recompiled without the /D option after the problem
has been corrected. All the debugging statements will be treated as
comments. :

Use the operating system's ODT debugging aid for inline code.

* The ordering of RTS in the list will be displayed by typing the
SYSTAT/R command to RSTS/E. The resulting display is the entire
contents, in order, of the monitor's RTS 1list with associated
executable file extensions.

OPERATING PROCEDURES

ODT debugging requires the generated code listing for the program (see
Section 1.2.2, /L or /SHOW listing control option). The resulting
numbers printed in the left margin of the 1listing are the octal
offsets of the 1listed machine instructions within the local PSECT
$CODE.

Note that only one base address is listed for $CODE in the LINK map
when multiple program units are present. To find the base of $CODE
for a specific sub=-program unit, locate the address of the entry point
to the unit.

The variables and data items referenced symbolically in the generated
code listing are located in the PSECT $DATA at the offsets indicated
by the storage map section of the compiler. All local $DATA sections
are formed into a single allocation on the link map when multiple
programs units are linked to form a single executable program. To
find the base address section for a particular program unit, examine
the word at offset 4 in the unit's $CODE section. This value will be
the address of the base of the unit's pure data section ($SDATAP).
Examining the word at offset 6 from the $DATAP section will give the
base address of the associated $DATA impure section. See Figure 1-3.

$CODE Section $DATAP Section $DATA Section

m Program Unit Name

m+2 in RAD50
SUBR::! JSR R4, $SOTH m+4, # of arguments

+2 $$0TIS m+6 .WORD $DATA +n
WORD $DATAP+m

EN

+

",

-7 ~7

NOTE: Only one of the following will be found in any program or subprogram unit.
MAIN:: JSR R4, $OTI - threaded main program

SUBR:: JSR R4, $OTIS -threaded SUBR or FUNCT

MAIN:: JSR R4, $30T! -inline main program

SUBR:: JSR R4, $30TIS-inline SUBR or FUNCT

Figure 1-3 Finding the Base Address Section

CHAPTER 2

FORTRAN IV OPERATING ENVIRONMENT

2.1 FORTRAN IV OBJECT TIME SYSTEM

The PDP-11 FORTRAN IV Object Time System (OTS) provides the user with
a library of common sequences of PDP-11 machine instructions invoked
by compiled FORTRAN programs. OTS consists of many small functional
modules from which the compiler selects only those required to
implement the FORTRAN program. The required sequences are integrated
with the compiler generated code during linkage to form the executable
program. For example, if the user program performs only sequential
access, formatted 1I/0, none of the direct-access I/0 routines is
included.

The FORTRAN IV OTS comprises the following:

1. Mathematics routines, including the FORTRAN 1V library
functions and other arithmetic routines (e.g., floating-point
routines).

2. Miscellaneous utility routines (RANDU, DATE, SETERR, etc.),
3. Routines which handle various types of FORTRAN I/0.

4. Error handling routines which process arithmetic errors, I/0
errors, and system errors, and

5. Miscellaneous routines required by the compiled code.

2.2 OBJECT CODE

The FORTRAN IV compiler translates programs written in the symbolic
PDP-11 FORTRAN language into "object code" (machine language). The
resulting object modules, combined with required modules from the
FORTRAN v oTs, form executable programs of PDP-11 machine
instructions.

The compiler produces two distinctly different types of object
programs by generating either threaded code or inline code.

When you select inline code (through the options
/CODE: [/I:] EAE, EIS, or FIS), the compiler produces the one-to-one
PDP-11 machine instructions required for the specific arithmetic
hardware 1in the system configuration. Symbolic FORTRAN library
routines are referenced to perform only those functions which <cannot
be achieved in short sequences of machine instructions. A program
compiled through an inline code option produces an object program
which conforms specifically to the type of hardware selected at
compilation time.

2-1

FORTRAN IV OPERATING ENVIRONMENT

When threaded «code 1is generated (through the /CODE:THR [/I:THR]
option), the object program produced uses a symbolic library routine
to perform each operation required for program execution; the
executable program consists of a "threaded" list of the addresses of
library routines and appropriate operand addresses. This type of code
generation produces an object module which operates independently of
hardware arithmetic configuration. It may be combined with any of the
FORTRAN IV OTS 1libraries to produce a valid executable program for
each type of arithmetic hardware without any need for recompilation.

Consider the following when you decide whether to wuse inline or
threaded code.

When the program does not contain REAL*4, REAL*8, or COMPLEX*8
arithmetic operations

1. 1Inline code always executes faster than threaded.

2. The differences in size between inline and threaded programs
are slight.

When the program contains 1large amounts of REAL*4, REAL*8, and
COMPLEX*8 arithmetic (scientific computation)

1. Threaded code is much smaller than inline code.
2. Execution speed is nearly the same for both.
See Table 2-1.
Table 2-1

Comparison of Threaded and Inline Code
for the Statement: I=J*K+REAL

Threaded Code Inline Code
For FIS For EIS* For EAE
MOISMS J MOV J,R1 MOV J,R1 MOV #SEAE,R5**
MUISMS K MUL K,R1l MUL K,R1 MOV J,(R5)+
MOV K,@R5

MOV R1,-(SP) MOV R1,-(SP) MOV -(R5),-(SP)
CFI3 JSR PC,S8CVTIF JSR PC,SCVTIF JSR PBC,SCVTIF
ADFSMS REAL*** | MOV REAL+2,-(SP) JSR R5,$PSH3F MOV REAL+2,-(SP)

MOV REAL,-(SP) .WORD REAL MOV REAL,-(SP)

FADD SP .WORD SADDF JSR PC, SADDF
CIFS JSR PC,SCVTFI JSR PC,SCVTFI JSR PC,$CVTFI
MOISSM I MOV (sp)+,1 MOV (SP)+,1I MOV (sp)+,1

* The /NOOPTIMIZE:SPD (/M:SPD) option is used to optimize for space.

** SEAE represents the address of the KE1l-A (or =-B) accumulator
register (AC).

***Note that the threaded code sequence for this floating point
addition requires only two words of memory plus the size of the ADFS$MS
routine, whereas the inline code uses five words (FIS) or four or six
words (EIS, EAE) according to the setting of the SPD optimizer option.

This demonstrates the savings in storage in wusing threaded code for
floating-point operations.

2-2

FORTRAN 1V OPERATING ENVIRONMENT

2.2.1 Processor-Defined Functions

The compiler generates code inline for the following processor-defined
functions {PDF's):

Function Definition
IABS(I) Integer absolute value

IDIM(I,J) Integer positive difference
ISIGN(I,J) Integer transfer of sign

MOD(I,J) Integer remainder

MINO (I, J) Integer minimum of Integer list
MAXG({I,J) Integer maximum from Integer list
IFIX(A) Real to integer conversion

FLOAT (I) Integer to Real conversion
REAL(C) Complex to Real conversion, obtain real part
DBLE (A) Real to Double conversion

SNGL (A) Double to Real conversion

Since the code for a PDF is generated by the compiler, no global
reference to the function name is produced. A problem could arise
when the function call is to be interpreted as a call to a
user-written routine. To force the compiler to treat the apparent PDF
call as a reference to a user routine, specify the routine as external
to the program with an EXTERNAL statement.

For example, when compiling the statement:
I = IABS(J)

code equivalent to the following is produced:

MOV J, I

BPL 1s

NEG I
1$: ...

By including the statement
EXTERNAL IABS
code equivalent to the following will be produced:

.GLOBL IABS

MOV #3,-(SP)
MOV #1,-(SP)
MOV SP,R5

JSR PC,IABS

CMP (SP)+, (SP)+
MOV RO, I

2.2.2 VIRTUAL Array Options (RT-11 Only)

The VIRTUAL statement declares arrays which are assigned space outside
the program's address space and are manipulated through the VIRTUAL
array facility of FORTRAN IV. VIRTUAL allows arrays to be stored in
large data areas which are accessed at high speed. The VIRTUAL array
statement is supported for RT-11l, but is not currently available under
RSTS/E. See Appendix D of the FORTRAN Language Reference Manual for
detailed VIRTUAL information.

2-3

FORTRAN IV OPERATING ENVIRONMENT

VIRTUAL arrays are limited only by the number of elements, not by the
total storage available. Under RT-11, all memory above the initial
28K words is available for VIRTUAL array storage. Except for the size
of physical memory, there is no limit to the number or to the total
size of all VIRTUAL arrays a program can access. The maximum number
of elements in a VIRTUAL array is 32767. Thus the largest LOGICAL*1
VIRTUAL array is 16K words, or 32767 bytes. The 1largest REAL*8
VIRTUAL array is 128K words or 262136 bytes. This is a total of 32767
elements, each of which occupies 8 bytes. The limit is 32767 elements
because FORTRAN IV requires array subscripts to be positive integers.

VIRTUAL support for RT-11 uses the Program Logical Address Space
(PLAS) extensions for FB monitor with KT-11 support. The FORTRAN OTS
directly manipulates the KT-11 mapping registers to provide VIRTUAL
support for RT-11 Single Job and FB monitors without KT-11 support.

All VIRTUAL arrays declared in a program unit are allocated in a
.VSECT, a type of program section. The compiler concurrently
generates a .VSECT additive type of relocation as it references the
VIRTUAL array in the object program.

The .VSECT program section is unnamed and has the "concatenate"
attribute. This allows the accumulating of all VIRTUAL storage
requirements for a linked job or task as the concatenation of the
.VSECTS.

The syntax of the VIRTUAL statement is identical to that of the
DIMENSION statement and involves only substituting the keyword VIRTUAL
for the keyword DIMENSION. However, there is a significant semantic
difference between the two because of the limitations imposed on the
DIMENSION statement. Local arrays declared by the DIMENSION statement
are limited by the maximum memory available to the program. Section
2.2.6 demonstrates how to convert an existing program to use the
VIRTUAL feature. The three VIRTUAL array options available in
building the RT-11 OTS are:

NOVIR.OBJ
VIRP.OBJ
VIRNP.OBJ

2.2.3 NOVIR.OBJ

This module specifies nc VIRTUAL array support and is intended for the
user who prefers to optimize the size of FORLIB rather than use
VIRTUAL array support. When NOVIR.OBJ is included in the library all
references to the VIRTUAL array routines (made by the compiler when
VIRTUAL arrays are available) will remain unresolved by LINK.

2.2.4 VIRP.OBJ

This module is for PLAS support and requires both the XM Monitor and
EIS (or FIS or FPU) hardware for program execution. Failure to adhere
to these requirements will result in runtime error #64 -- VIRTUAL
array initialization failure. VIRP uses the 4K words of VIRTUAL
memory addresses starting at 160000 octal -- normally the PDP-11 1I/0
page == for a window. For this reason, programs using VIRP support
may not reference the I/O page. Programs linked with VIRTUAL support
must be run as privileged jobs. Note that this is the default for
.SAV files output by LINK.

FORTRAN IV OPERATING ENVIRONMENT

The program initialization code uses the PLAS LALLOC directive to
allocate a region of the required size from the extended memory pool.
This region is a contiguous section of physical memory large enough to
include all VIRTUAL arrays declared in the executable program.

NOTE

Failure to allocate a region of the
proper size will result in a FATAL
routine FORTRAN error message.

A window of 4K words initially maps the first 4K words of the VIRTUAL
array region. When a VIRTUAL array element lies outside the window,
the PLAS .REMAP directive causes a window-turn operation to allow
access.

2.2.5 VIRNP.OBJ

This module provides VIRTUAL array support for the Single Job {(sJ) and
the Foreground/Background (FB) monitors. VIRNP supports full 11/70
22-bit addressing capability. The largest amount of VIRTUAL memory
available is 4068K words (4096K minus 28K). VIRNP supports the KT1l
Memory Management Unit directly, mapping the job and RT-11 to kernel
space and the VIRTUAL array to user space. The module turns on the
KT1l1 immediately before a VIRTUAL array fetch/store, and off
immediately after; thus keeping KT1ll mapping overhead to a minimum.

When VIRNP support is used under the FB monitor, the foreground and
the background jobs cannot use VIRTUAL arrays concurrently, because
both will reference the same region of extended memory for array
storage. The XM monitor and PLAS VIRTUAL support must be used when
two concurrent jobs require access to VIRTUAL arrays.

2.2.6 Converting a Program to VIRTUAL

First, be sure to observe the usage restrictions for VIRTUAL covered
in Appendix D of the PDP-11 FORTRAN Language Reference Manual. To
convert the existing program, declare the arrays by using the VIRTUAL
instead of +the DIMENSION statement. The program dces not require
additional access coding.

The following example illustrates a deneral, minimum-effort program
conversion.

1. Identify the non-VIRTUAL arrays that are to be converted to
VIRTUAL arrays.

2. Locate the DIMENSION and the type declaration statements in
which these arrays are declared. Replace DIMENSION
statements with equivalent VIRTUAL statements. Replace
array-declarative type declaration statements with VIRTUAL
statements to define the array dimensions, and remove the
dimensioning information from the type declaration
statements.

FORTRAN IV OPERATING ENVIRONMENT

3. Compile the program. Observe all compilation errors; these
will occur where the syntax restrictions outlined in the
PDP-11 FORTRAN Language Reference Manual have been violated.
In Some cases, you may need to reformulate the data
structures to use VIRTUAL arrays effectively.

4. Check the code to ensure that VIRTUAL array parameters are
passed correctly to subprograms.

a. If the argument list of a subprogram call includes an
unsubscripted VIRTUAL array name, the argument list of
the SUBROUTINE or FUNCTION statement must have an
unsubscripted VIRTUAL array name in its corresponding
dummy argument. This establishes access to the VIRTUAL
array for the subprogram. The declaration of the VIRTUAL
array in the subprogram must be dimensionally compatible
with the VIRTUAL declaration in the calling program. All
changes to the VIRTUAL array that occurred dur ing
subprogram execution are retained when control returns to
the calling program.

When you pass entire arrays as subprogram parameters, be
certain that the matching arguments are defined as both
VIRTUAL or both non-VIRTUAL. Mismatches of array types
are not detectable at either compilation or execution
time, and the results are undefined.

b. If the argument list of a subprogram reference includes a
reference to a VIRTUAL array element, the matching formal
parameter in the SUBROUTINE or FUNCTION statement must be
a non-VIRTUAL variable. Value assignments to the formal
parameter occurring within the subprogram do not alter
the stored value of the VIRTUAL array element in the
calling program. To alter the value of that element, the
calling program must include a separate assignment
statement that references the VIRTUAL array element
directly.

The following example demonstrates the process of changing non-VIRTUAL
arrays to VIRTUAL arrays.

DIMENSION A(1000,20)
INTEGER*2 B(1000)

DATA B/1000*0/

CALL ABC(A,B,1000,20)

WRITE (2,%) (A(I,1),I=1,1000)
END

SUBROUTINE ABC(X,Y,N,M)
DIMENSION X(N,M)
INTEGER*2 Y (N)
po 10, I1=1,N

10 X(I,1)=Y(I)
RETURN
END

This program contains two arrays, named A and B.

rror

Array A is declared in a DIMENSION statement and 1is of
data type. Thus, substituting the keyword VIRTUAL £
DIMENSION is sufficient for its conversion.

th defaul
t keywer

0 r

e
he

o

FORTRAN IV OPERATING ENVIRONMENT

Note, however, that array B and its dimensions is declared in a type
declaration statement (in the second line of the program).

To convert B into a VIRTUAL array, its declarator must be moved to a
VIRTUAL statement; also, the variable B must remain in the type
declaration statement, but without a dimension specification.

A and B are both passed to subroutine ABC as arrays, rather than array
elements. Thus the associated subroutine parameters must also be
converted to VIRTUAL arrays.

The following compiled listing illustrates the program after the first
phase of the conversion.

FORTRAN IV voz.01 Wed 03-Aug-77 092:00:120 FAGE 001
0001 VIRTUAL A(1000+20)s R(1000)

Q002 INTEGERX2 R

Q003 DATA R/1000%0/

0004 CALL ABC(A»E»1000520)

G005 WRITE(2yX)(A(L,1)»1=1,1000)

Q004 END

FORTRAN IV Disgrostics for FProgram Unit +MAIN.

In lirne 0003» Error: Usage of variable *"B" invalid

FORTRAN IV Storade Mar for Frogram Umit JMAIN,

l.ocal Variahlesy FSECT $DATAy Size = (000006 (3. words)

Name Ture 0Offset Name Ture (Offset Name Ture QOffget
I Ix2 000000

YIRTUAL Arrauss Total Size = 00240200 (41024, words)

Name Ture Offset i e G @ [limensions

A RX4 Vec 00000000 00234200 40000.) (10005207

B Ix2 00234200 Q000372¢ (1000.,) (1Q00)

Subroutinesy Functionsy Statement and Frocessor-llefined Funetions:
Name Ture Name Ture Name Ture Nameg Ture Nam= Tysa
ARC Rx4 : :

FORTRAN IV V02,01 Werd 03-Aud~77 09100122 FAGE 001
0001 SUBROUTINE ABRC(XsYsMsN)

0002 VIRTUAL Y(N)r X(NeM)

Q003 INTEGERX2 Y

0004 00 10s I=1sN

Q005 10 X(Is1)d=YC(I)

Q00046 RETURN

0007 END

FORTRAN IV Storage Mae for Frogram Unit ARC

l.ocal Variablesy JFSECT $DATAs Size = 000012 (S, words)

Name Ture Offset Name Ture Offset Nzme Ture (Offset
I I%x2 Q00010 M Ix2 @ 000004 N IX2 @ 000006
VIRTUAL Arrausr Total Size = 00000000 (0, words)

2-7

FORTRAN IV OPERATING ENVIRONMENT

Name Ture Offset — ——we——-—- Siz@=mm—————— Dimensions
X RX4 @ 000000 XKKXK C XXXX) (NsM)
Y Ix2 @ 000002 XKk K XkkX) (N

Note that the main program compilation causes an error message. DATA
statements must not refer to VIRTUAL arrays. The user substitutes a
DO loop to achieve the same result.

The following listing shows the program after the conversion is
completed.

FORTRAN IV v02.01 Wed 03-Aus-77 0931003125 FAGE 001
0001 VIRTUAL AC1000,20)r R(1000)

Q002 INTEGERX2 R

0003 DO Sy I=1+1000

0004 5 B(I)=0

0005 CALL ABC{(AyE»1000,20)

0006 WRITE(2+s%)(A(I>»1)sI=1+1000)

Q007 END

FORTRAN IV Storage Mar for Frodrem Unit .MAIN.

lLocal Variasblesy .FSECT $DATAy Size = 000006 (3, words)

Name Ture Offset Name Ture Offset Name Ture Offset
I Ix2 Q00000

VIRTUAL Arrauss Total Size = 00240200 (41024, words)

Name Ture Offset — ~——-einms Size—==mm——— Dimensions
A R¥4 Vec 00000000 00234200 (40000.) (1000520)
B I%x2 00234200 00003720 <« 1000.) (1000)

Subroutiress Functionsr Statement aznd Frocessor-llefined Functions?

Name Ture Mame Ture Name Ture Name Ture Name Ture
ARC R*%4

FORTRAN IV vo2.01 Wed 03~-Aug-77 09:00:27 FAGE 001
0001 SUBROUTINE ARC(X»YsMsN)

0002 VIRTUAL Y(N)y X(NsM)

0003 INTEGER¥2 Y

Q004 DO 10y I=1sN

0005 10 X{Iv1)=Y(I)

Q006 RETURN

0007 END

FORTRAN IV Storade Mar for Frogram Unit ARC

l.ocal Variabless, .PSECT $UATA» Size = 000012 (5. words)

Name Ture Offset Name Ture Offset Name Ture Offset
I Ix2 000010 ™ I¥2 @ 000004 N IX2 @ 000008
VIRTUAL Arrauss Total Size = 00000000 ¢ O, words)

Name Ture Offset ~—————u Sizgm—m———— Dimensions

X RX4 Ic] Q00000 KoKk ok O kdokk) (NsM)

Y I*2 @ 000002 XKk C 0 XKkk) (N

FORTRAN IV OPERATING ENVIRONMENT

2.3 SUBPROGRAM LINKAGE

~mT1 <
cally for 11 subp
r

The 1linking process operates identi ro
in FORTRAN IV and in as

i
including those written by the wuse
language.

The following instruction passes control to the subprogram:
JSR PC, routine

Register 5 (R5) contains the address of an argument list having the
following format:

Rb +

undefined # of arguments

address of argument #1

address of argument #2

* e o o

address of argument #n

The value -1 is stored in the argument list as the address of any null
arguments. Null arguments 1in CALL statements appear as successive
commas, e.9., CALL SUB (A,,B)

NOTE
Be certain that the called program does
not modify the argument list passed by
the calling program to a subprogram.
The instruction
RTS PC
returns control to the calling program.
The following is an example of argument transmission: An assembly
language subroutine 1is written to sum all integer arguments it finds
in each parameter list, and to return the result to the FORTRAN IV
program as the value of a final, additional argument. The FORTRAN
CALL statements which invoke this routine take the form:
CALL IADD(numl,num2,...,numn,isum)
where numl through numn represent a variable number of integer

quantities to be summed, and isum represents the variable or array
element into which the sum is to be placed.

FORTRAN IV OPERATING ENVIRONMENT

Given the following MACRO-11 subprogram:

.TITLE ADDER

.GLOBL IADD
IADD: MOV (R5)+,R0 ;GET # OF ARGUMENTS

CLR R1 ;PREPARE WORKING REG.

DECB RO ;FIND # OF TERMS TO ADD
1s: ADD @(R5)+,R1 ;ADD NEXT TERM

DECB RO ;s DECREMENT COUNTER

BNE 1s ;LOOP IF NOT DONE

MOV R1,@(R5)+ ;RETURN RESULT

RTS PC ;s RETURN CONTROL

the sequence of FORTRAN IV calls:

CALL IADD(1,5,7,I)
CALL IADD(15,30,10,20,5,J)

would cause the variable I to be given the value 13, and the variable
J to be assigned the value 80.

2.3.1 Subprogram Register Usage

A subprogram that is called by a FORTRAN IV program need not preserve
any registers. However, the contents of the hardware stack must be
kept such that each 'push' onto the stack is matched by a ‘'pop' from
the stack prior to exiting from the routine.

User-written assembly language programs that call FORTRAN v
subprograms must preserve any pertinent registers before calling the
FORTRAN IV routine and restore the registers, if necessary, upon
return.

Function subprograms return a single result in the hardware registers.
The register assignments for returning the different variable types
are listed in Table 2-2.

Table 2-2
Return Value Convention for Function Subprograms

Type Result in
INTEGER*2
LOGICAL*1
RO
INTEGER*4
LOGICAL*4 RO -- low-order result
Rl -- high-order result
REAL RO =-- high-order result
Rl -- low-order result
DOUBLE
PRECISION RO -- highest-order result
Rl =--
R2 ~--
R3 -- lowest-order result
COMPLEX RO == high-order real result

Rl =-- low-order real result
RZ == high-order imaginary result
R3 -- low-order imaginary result

FORTRAN IV OPERATING ENVIRONMENT

In addition, assembly language subprograms which use the FPll Floating
Point unit may be required to save and restore the FPU status.
FORTRAN IV assumes that the FPU status is set by default to:

e Short Floating mode (SETF)
@ Short Integer mode (SETI)
e Floating Truncate mode

Should the assembly language routine modify these defaults, it must
preserve the FPU status on entry by executing the following

instruction:
STFPS -(sP)

and restore the status (prior to returning to the calling program) by
executing the instruction:

LDFPS (SP)+

2.4 VECTORED ARRAYS

Array vectoring decreases the time necessary to reference elements of
a multi-dimensional array by using additional memory to store the
array.

Since multi-dimensional arrays are stored sequentially in memory,
certain address calculations determine the location of individual
elements. Typically, a mapping function performs this calculation.
For example, to locate the element LIST(1,2,3) in an array dimensioned
LIST(4,5,6), use a function equivalent to the following. This
function identifies a location as an offset from the origin of the
array storage.

(sl-1) + d1 * (s2 - 1) + d1 * d2 * (s3 - 1) =
(0) +4 =* (1)+ 4 *5* (2) = 44
where si subscript i

di = dimension i

Since such a mapping function requires multiplication operation(s),
and some PDP-11 hardware configurations do not have the MUL
instruction, the compiler can reduce execution time at the expense of
memory storage by "vectoring" some arrays.

Since array vectors map only the declared dimensions of the array, you
must ensure that references to arrays are within their declared
bounds. A reference outside the declared bounds of a vectored array
causes unpredictable results (e.g. a program interrupt). You must
give particular attention to arrays passed to subprograms where the
dimensions declared in the subprogram differ from those specified in
the calling program. In such cases, two sets of vectors are created:

one for the calling program and one for the subprogram. The
subprogram vectors map only that portion of the array declared by the
subprogram. (The PDP-11 FORTRAN Language Reference Manual contains

more information on dimensions.)

2-11

FORTRAN IV OPERATING ENVIRONMENT

A specific element in a vectored array can be located by a simplified
mapping function, without the need for multiplication. Instead, a
table lookup determines the 1location. For example, a vectored,
two-dimensional array B(5,6) automatically has associated with it a
one-dimensional vector that would contain relative pointers to each
column of array B. The location of the element B(m,n), relative to
the beginning of the array, could then be computed as:

Vector(n) + m

using only addition operations. Figure 2-1 depicts the array
vectoring process.

Array B (5,6) Associated
Vector

B(1l,1) Pl 0 Pl

B(2,1) 5 P2

B(3,1) 10 P3

B(4,1) 15 p4

B(5,1) 20 P5

B(1l,2) P2 25 P6

B(2,2)

B(3,2)

. The location of element B(m,n) =

Vector(n) + m

B(1,6) P6

B(2,6) e.g. the location of B(4,3) =

B(3,6)

B(4,6) Vector (3) + 4 = 10 + 4 = 14

B(5,6)

Figure 2-1 Array Vectoring

The compiler bases the decision to vector a multi-dimensional array on
the computed ratio of the space required to vector the array to the
total storage space it requires. The array is not vectored if this
ratio is greater than 25 percent. A standard mapping function is used
instead. Arrays with adjustable dimensions are never vectored.
Vectored arrays are noted as such in the storage map listing.

The compiler option /NOVECTORS (/V) suppresses all array vectoring.

The amount of memory required to vector an array is the sum of all
array dimensions except the first. For example, the array X(50,10,30)
requires 10+30=40 words of vector table. Note that the array V(5,100)
requires 100 words of vector storage, whereas the array Y(100,5)
requires only 5 words of vector storage. It is good programming
practice to place an array's largest dimension first when it will be
vectored.

Wherever pcssible, vector tables are shared among several different
arrays. The compiler arranges shareable vectors under the following
conditions:

1. Arrays are in the same program unit.
2. For the ith dimension vector to be shared by the arrays,

dimensions to the 1left of the ith dimension must be
equivalent in each array.

2-12

FORTRAN IV OPERATING ENVIRONMENT

share a 20 word vector for the second dimension that contains the
values 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140,
150, 160, 170, 180, 190, of which the array A uses only the first ten
elements.

2.5 PROGRAM SECTIONS

Program Sections (PSECTS) contain code and data and are identified by
unigue names as segments of the object program. The atiributes
associated with each PSECT direct the Link utility to combine several
separately compiled FORTRAN program units, assembly language modules,
and library routines into an executable program. The following

attributes are associated with these sections:

Concatenate (CON) or Overlay (OVR)
Data (D) or Instruction (1)
Global (GBL) or Local (LCL)
Relocatable (REL) or Absolute (ABS)
Read/Write (RW) or Read-Only (RO)

2.5.1 Compiled Code PSECT Usage

The compiler organizes compiled output into three program sections
which have the names, attributes and contents shown in Table 2-2.

Table 2-3
Compiler Organization of Program Sections
Section
Name Attributes Contents
SCODE RW*, I, LCL, REL, All executable code, including
CON threaded and inline, for a
‘ program unit
$DATAP RW*, D, LCL, REL, Pure data (e.g. constants,
CON FORMATs, array vectors) which
cannot change during program
execution,
SDATA Rw, D, LCL, REL, Impure data, variables, temporary
CON storage, and arrays used in the
FORTRAN program.

* The RO/RW attribute for sections S$SCODE and $DATAP is controlled
by the compiler /Z command option. See Section 1.2.2.

When named PSECTS with the CON attribute are concatenated by the LINK
utility, all PSECTS with the same name are allocated together
beginning at the same address. The length of the resulting PSECT is
the sum of the individual sections so defined.

2-13

FORTRAN IV OPERATING ENVIRONMENT

2.5.2 Common Block PSECT Usage
FORTRAN COMMON storage is placed into named PSECTs. The PSECT name is
identical to the COMMON block name specified in the FORTRAN program.
PSECTs used for COMMON storage are given the attributes RW, D, GBL,
REL, OVR.
For example, the statement:

COMMON /X/ A,B,C

produces the equivalent of the following MACRO-11 code:

.PSECT X, RW, D, GBL, REL, OVR
Az .BLKW 2
B: . BLKW 2
C: .BLKW 2

FORTRAN blank COMMON uses the @ section name .S$$$S.; thus the
statement:

COMMON C,B /X/ A
produces the equivalent of:

.PSECT .$$$S., RW, D, GBL, REL, OVR
C: .BLKW 2
B: .BLKW 2

.PSECT X, RW, D, GBL, REL, OVR
A: .BLKW 2

When named PSECTs with the OVR attribute are combined by the LINK
utility, all PSECTs with the same name are allocated together
beginning at the same address. The resulting PSECT has a length that
is the maximum of the individual sections so combined.

2.5.3 OTS Library PSECT Usage

Modules included in the OTS library and referenced by the compiled
program are segmented into five program sections as shown in Table
2-3.

Table 2-4
Organization of OTS Library Modules
Section
Name Attributes Contents

OTSSI RW, I, LCL, REL, All pure code and data for the
CON module.

0TSSP RW, D, GBL, REL, Pure tables of addresses of other
OVR OTS library modules.

OTSS$D RW, D, LCL, REL, Pure data referenced by the
CON module.

0TS $S RW, D, LCL, REL, Scratch storage referenced by the
CON module.

0TS SO RW, I, LCL, REL, OTS routines sensitive to USR
CON swapping.

2-14

FORTRAN IV OPERATING ENVIRONMENT

2.5.4 Ordering of PSECTs in Executable Programs

The order in which program sections are allocated in the executable
program is controlled by the order in which they are first presented
to the LINK utility.

Applications which are sensitive to this ordering typically separate
those sections which contain read-only information (such as executable
code and pure data) from impure sections containing variables.

The main program unit of a FORTRAN program (normally the first object
program in sequence presented to LINK) declares the following PSECT

ordering:

Section Name Attributes
OTSS$I RW, I, LCL, REL, CON
OTS$P RW, D, GBL, REL, OVR
SYSSI RW, I, LCL, REL, CON
USERSI Rw, I, LCL, REL, CON
SCODE RW, I, LCL, REL, CON
0OTSSO RW, I, LCL, REL, CON
SYSSO RW, I, LCL, REL, CON
SDATAP Rw, D, LCL, REL, CON
OTSS$D RW, D, LCL, REL, CON
OTSS$S RW, D, LCL, REL, CON
SYSSS RW, D, LCL, REL, CON
SDATA RW, D, LCL, REL, CON
USERSD RW, D, LCL, REL, CON
. 5588, RW, D, GBL, REL, OVR
Other COMMON Blocks RW, D, GBL, REL, OVR

In the RT-11 environment, the User Service Routine (USR} may swap over
pure code, but must not be loaded over constants or impure data which
may be passed as arguments to it.

The above ordering collects all pure sections before impure data in
memory and USR may safely swap over sections $CODE, OTSS$SI, OTSSP,
SYS$I, and USERSI.

Assembly-language routines used in applications sensitive to PSEC

ordering, should wuse the same program sections as output by the
compiler for this purpose. That is, place pure code and read-only
data in section USERS$I, and all impure storage in section USERS$D.
This will ensure that the assembly-language routines will participate
in the separation of code and data. :

Note that the ordering of PSECTs in an overlay program will follow the
guidelines herein for each overlay segment (i.e., the root segment
will contain pure sections followed by impure, and each overlay
segment will have a similar separation of pure and impure internal to
its structure).

In overlay environments, PSECTs with the GBL attribute will be
allocated in the root segment if they are referenced by more than one
overlay segment in the same region.

To build a Read-Only-Memory (ROM) based application, include sections
$CCODE, O0OTSS$I, OQTSsp, SYsy,, USERS$I, SDATAP, OTS$0O, and OTS$D in the
read-only memory. Use the "round section" capability of the LINK
utility to increase the size of the section OTS$D to round the base
address of section OTS$S up to the first available read-write memory
location following the ROM.

2-15

PORTRAN IV OPERATING ENVIRONMENT

ROM based applications created 1in this manner must obey these
programming restrictions:

l. Variables or arrays may not be data-initialized. Use
assignment statements instead.

2. Formatted READ statements may not transfer ASCII data into
Hollerith fields in the FORMAT statement itself. 1Instead,
place the data in a variable or array.

The PSECT ordering specified by the compiler may not be suitable for
some applications. The user can define ordering by creating a
MACRO-11 source file which contains only PSECT declarations. The
order in which the declarations appear in this file will be the order
in which the sections will be allocated in the executable program. Be
sure that the attributes specified in this file agree with those
assigned by the compiler.

The MACRO-11l source file containing the desired ordering must be
assembled and used as the first input file in the LINK command.

The above technique allows the use of data-initialized COMMON blocks
in ROM applications (if the program does not attempt to modify the
values in these COMMON blocks, which will be placed in read-only
memory) . The new ordering defined by the MACRO-1l1l source file should
then be:

.PSECT OTSSI RW, I, LCL, REL, CON
.PSECT 0TSSP RW, D, GBL, REL, OVR
.PSECT SYSSI Rw, I, LCL, REL, CON
.PSECT USERSI RwW, I, LCL, REL, CON
.PSECT SCODE RW, I, LCL, REL, CON
.PSECT 0OTSS$O RW, I, LCL, REL, CON
.PSECT SYSSO RwW, I, LCL, REL, CON
.PSECT SDATAP RW, D, LCL, REL, CON
.PSECT coml RW, D, GBL, REL, OVR
.PSECT com2 RW, D, GBL, REL, OVR
.PSECT comn RW, D, GBL, REL, OVR
.PSECT OTSS$D RW, D, LCL, REL, CON
.PSECT OTSSS RW, D, LCL, REL, CON
.PSECT SYSSS RwW, D, LCL, REL, CON
.PSECT $DATA RW, D, LCL, REL, CON
.PSECT USERSD RwW, D, LCL, REL, CON
.PSECT .$588. RW, D, GBL, REL, OVR
where coml, com2, ..., comn represent the names of the read-only

COMMON blocks which will contain pure data.

2-16

FORTRAN IV OPERATING ENVIRONMENT

2.6 TRACEBACK FEATURE

The traceback feature included in RT-11/RSTS/E FORTRAN IV fatal
runtime error messages locates the actual program unit and line number
of a runtime error. Immediately following the error message, the
error handler lists the line number and program unit name in which the
error occurred. If the program wunit is a SUBROUTINE or FUNCTION
subprogram, the error handler traces back to the calling program unit
and displays the name of that program unit and the line number where
the call occurred. This process continues until the calling sequence
has been traced back to a specific line number in the main program.
This allows an exact determination of the location of an error even if

the error occurs in a deeply nested subroutine.

0001 A=0.0

0002 CALL SUB1(a)

0003 CALL EXIT

0004 END

0001 SUBROUTINE SUB1 (B)

0002 CALL SUB2 (B)

0003 RETURN

0004 END

0001 SUBROUTINE SUB2(C)

0002 CALL SUB3 (C)

0003 RETURN

0004 END

0001 SUBROUTINE SUB3 (D)

0002 E=1.0

0003 F=E/D

0004 RETURN

0005 END

Trace back of Fatal Error:

?ERR 12 FLOATING ZERO DIVIDE
IN ROUTINE "SUB3 " LINE 3
FROM ROUTINE "SuUB2 " LINE ?
FROM ROUTINE "SUB1 " LINE 2
FROM ROUTINE ".MAIN." LINE 2

Figure 2-2 The Traceback Feature

Note in Figure 2-2 that the line number in the traceback of routine
'SUB2' is simply a question mark (?). This is because the module was
compiled with the /NOLINENUMBERS option (/S) in effect (see Section
1.2.2).

2-17

FORTRAN IV OPERATING ENVIRONMENT

2.7 RUNTIME MEMORY ORGANIZATION (RT-11 ONLY)

The runtime memory organization in both a USR (User Service Routines)
swapping system and a USR resident system operates as shown in Figure
2-3. When user-written interrupt handling routines are linked with a
FORTRAN IV program, avoid USR swapping over the interrupt routines and
any associated data. The USR is swapped in above the interrupt
vectors at location $$OTSI, and extends about 2K words from that point
(see Figure 2-3). Interrupt routines must therefore be 1loaded above
the area used for USR swapping when the USR will be actively swapped.
Unless explicitly disabled by the compiler option /NOSWAP (/U), the
USR is actively swapped.

Some runtime memory segments are fixed in size. These include the
resident monitor, the OTS work area, the stack and interrupt vector
areas, and, in the USR resident system, the User Service Routine area.

Other runtime memory segments vary in length in accordance with the
length of the user program. The device handlers, channel tables, and
I/0 buffers are allocated space dynamically. Only those handlers
needed for currently active devices are resident. 1I/0 buffers are
allocated and deallocated as required.

However, there is a limit to the amount of space that can be allocated
to the varying length memory segments. In an 8K swapping system,
approximately 5K words are available; in an 8K resident system, the
total is approximately 3K words.

If a large FORTRAN IV program cannot be run in the amount of memory
available, reduce the size of a runtime memory segment to allow
successful program execution. Use overlay capabilities (see Section
1l.4.1) to reduce the amount of memory needed for the user program.
Minimize the number of different physical devices used for I/0 to
reduce the number of handlers that must be resident. When the program
finishes I/0 to a file, close it by using the CALL CLOSE routine (see
Section B.4) or the CLOSE statement thereby reallocating the buffer
space to any new file to be opened.

2~18

FORTRAN IV OPERATING ENVIRONMENT

37777 37777
RMON RMON
OTS WORK Usk
AREA
;
136 BYTE
LINE BUFFER 0TS WORK
AREA
CHANNEL TABLES
;
DEVICE HANDLER 136 BYTE
NDLERS LINE BUFFER
' CHANNEL TABLES
! DEVICE HANDLERS
~BK < i
JOBUFFERS | b —=
? Lw3K
0TS 1/0 BUFFERS
_________ 0TS
USR
PROGRAM
P PROGRAM
1000 STACK 1000 STACK
VECTORS VECTORS
0 0
SWAPPING SYSTEM RESIDENT SYSTEM

Figure 2-3 RT-11 8K System Runtime Memory Organization

CHAPTER 3

FORTRAN IV SPECIFIC CHARACTERISTICS

This chapter applies specifically to the FORTRAN IV language as it
operates under the RT-11 and RSTS/E systems. The material presented
here both relaxes the restrictions imposed by the PDP-11 FORTRAN
Language Reference Manual and provides additional material essential
to RT-11 and RSTS/E users but not covered in the Manual.

Note that these deviations from the FORTRAN syntax requirements of the
Manual apply only to RT-11 and RSTS/E. Your resulting program cannot
be freely transported to another operating system without «careful
planning for that system's peculiarities and language requirements.
RT-11/RSTS/E FORTRAN IV relaxes the strict statement ordering
specifications of the Manual and makes only the following three
statement ordering requirements.

1. The first non-comment line in a subprogram must be a
FUNCTION, SUBROUTINE or BLOCK DATA statement.

2. The last line in a program unit must be an END statement.

3. Statement functions must be defined before they are
referenced.

If you do not follow the statement ordering requirements of the

Manual, you can have a warning diagnostic included with the source
listing by using the /WARNINGS option (/W).

3.1 OPEN/CLOSE STATEMENT RESTRICTIONS
Although the OPEN and CLOSE statements have an optional "ERR=label®
error exit, only the following OPEN/CLOSE error conditions will cause
control to be passed to "label":

Syntax error in filespec for NAME=

File not found NAME=

OPEN (UNIT=n, ...) when a file is already open on unit n

CLOSE (UNIT=n, ...) when no file is open on unit n

CLOSE (UNIT=n, DISPOSE='PRINT', ...) RSTS/E only - when an error

occurs from sending the file toc QUEMAN

FORTRAN IV SPECIFIC CHARACTERISTICS

3.1.1 Keyword Constraints

Valid keywords in the FORTRAN IV OPEN/CLOSE statements are the same
for RT-11 and RSTS/E as those described in the FORTRAN Language
Reference Manual.

However, since FORTRAN IV does not support some keywords and options
under RT-11 and RSTS/E, certain constraints must be recognized in
constructing OPEN/CLOSE statements. These constraints are shown in
Table 3-1.

Table 3-1
Keyword Constraints Under RT-11 and RSTS/E

Keyword RT-11 RSTS/E
ACCESS="APPEND"| Not supported. Results Appends data to the end of an
in error at compile- existing file.

time and at run-time.

BUFFERCOUNT= Specifies the number of Accepted, but ignored. The
bc buffers (1 or 2) to be used RSTS/E file system does not
when outputting data on the support multiple buffering.

logical unit. If not speci-
fied, one buffer is

allocated.
BUFFERSIZE= Not supported. Results in Same
bs error at compile-time

and run—time.

CARRIAGE Formatted files must have Same
CONTROL the attribute 'FORTRAN' or
*LIST'. Unformatted or

random access files must
have the attribute 'NONE’'.

DISPOSE= Results in a compile-time Causes the file to be printed

'PRINT' error, as no system-wide by the system line printer
line printer spooling is spooler under direction of
provided. Queue Manager ("QUEMAN").

The FORTRAN "QUEMAN" request
includes these attributes:
DEVICE= LPO
PRIORITY= 128
FILETYPE= 0 (EMB) or 1 (FTN)
whichever describes the file

type.
EXTENDSIZE= Not supported. Results in Specifies the cluster size for
es error at compile-time and the file. The cluster size
at run-time. value is the first power of

two greater than or equal to
es. If this value is less than
pack cluster size, or if
EXTEND SIZE is not specified,
the pack cluster size is
assumed.

(continued on next page)

FORTRAN IV SPECIFIC CHARACTERISTICS

Table 3-1 (Cont.)
Keyword Constraints Under RT-11 and RSTS/E
Keyword RT-11 RSTS/E

FORM= Not allowed on direct- Same

'FORMATTED' access files.

INITIALSIZE= The default initial allo- The default initial alloca-

is cation is the larger of tion is zero blocks. The file
two areas: the second is dynamically extended as
largest empty area; or one required for write operations.
half of the largest area.
INITIALSIZE controls the
entire allocation for the
file since extension is
not supported.

MAXREC= The size of the initial Same

mr allocation made for a
direct-access file is the
larger of two parameters:
INITIALSIZE or the product
of MAXREC and RECORDSIZE.

NOSPANBLOCKS Not supported; error Accepted, but ignored. The
RSTS/E file system does not
support NOSPANBLOCKS.

RECORDSIZE Must be specified for Same
direct-access files.

SHARED i Not supported. Results in Causes the file to be opened
error at compile-time in "UPDATE" mode (mode=1l) for
and at run-time. shared access by enabling

i disk block locks. See also the
; CALL UNLOCK system routine.
(App B)

3.2

SOURCE LINES

A valid RT-11/RSTS/E FORTRAN IV source line consists of the following:

1. An optional, one to five character, numeric statement

followed by

label,

2. sufficient blanks to position the next character at column

(if

not a continuation line)

or column 6

(for continuations;

a continuation signal character will be typed)

a tab character followed by any non-alphabetic

or

signal continuation,

a tab character,

or

if the line is not a continuation,

character to

FORTRAN IV SPECIFIC CHARACTERISTICS

3. a wvalid FORTRAN statement, or the continuation of a
statement, and

4. an optional comment field delimited on the 1left by an
exclamation point (!).

Totally blank records (a source line of only a carriage return-line
feed combination) are 1ignored on input. If a line is not totally
blank, it must contain a FORTRAN statement.

3.3 VARIABLE NAMES

RT-11/RSTS/E FORTRAN IV allows variable names to exceed six
characters. However, only the first six characters are significant
and should be unique among all variable names in the program unit. A
warning diagnostic occurs for each variable name which exceeds six
characters in length. The diagnostic is enabled if the /WARNINGS
option (W) is included in the compiler command string.

3.4 INITIALIZATION OF COMMON VARIABLES

RT-11/RSTS/E FORTRAN IV allows any variables in COMMON, - including
blank COMMON, to be initialized in any program unit by use of the DATA
statement.

3.5 CONTINUATION LINES

ne is assumed to be a continuation line if the first character,

A li
following a tab on an input line to the compiler, is non-alphabetic.

1
ol

RT-11/RSTS/E FORTRAN IV does not place any limits on the number of
continuation lines that a statement may contain.

3.6 STOP AND PAUSE STATEMENTS
The PAUSE statement causes the execution of a program to be
temporarily suspended by typing the word PAUSE and the contents of the
text string (if any) on the wuser's terminal. To resume program
execution, type a carriage return.
For example, use of the FORTRAN statement:

PAUSE 'MOUNT A NEW TAPE'
causes the following line to be printed at the user's terminal:

PAUSE -- MOUNT A NEW TAPE
Execution of the STOP statement closes all files and returns control

to the operating system. To terminate a program execution without
printing the STOP message, use CALL EXIT. (See Section B.7.)

FORTRAN IV SPECIFIC CHARACTERISTICS

The STOP statement causes the following output to be printed:
STOP —-- text

where text is the optional text string from the source statement.

3.7 DEVICE/FILE DEFAULT ASSIGNMENTS

The device and filename default assignments are listed in Table 3-2.
The default device assignments can be changed prior to execution by

: 1 o~ L L : Py L - o -
i : ™ ACC TN ammanAd
using the OPEN statement or the monitor ASSIGN command.

The monitor command:
.ASSIGN LP: 7

connects logical unit 7 to a physical device, the line printer. The
device and filename assignments can be changed at execution time by
use of the ASSIGN system subroutine or the FORTRAN OPEN statement.
Valid logical unit numbers other than those listed below (10-99) are
assigned to the system default device (public structure on RSTS/E).
The default filename conventions hold for logical units not listed
below, e.g., unit number 49 will have a default filename of FTN49.DAT.
Refer to the RT-11 System User's Guide or the RSTS/E System User's
Guide.

Table 3-2
FORTRAN Logical Device Assignments
Logical Unit Default Device Default Filename
Number
1 System disk, or FTN1.DAT
public structure SY:
2 Default Device FTN2.DAT
3 Default Device FTN3.DAT
4 Default Device FTN4.DAT
5 Terminal, TT: (Input) FTN5.DAT
6 Line printer, LP: FTN6.DAT
7 Terminal, TT: (Output) - FTN7.DAT
; 8 High-speed paper
tape reader, PC: FTN8.DAT
9 High-speed paper
tape punch, PC: FTNS.DAT

Although any combination of valid logical unit numbers can be used,
there is an imposed maximum number of units that can be simultaneously
active. By default, six logical units can be concurrently active.
The number can be changed by use of the /UNITS option (/N) in the
compiler command string while compiling the main program unit (see
Section 1.2.2).

A formatted READ statement of the form:
READ f,list
is equivalent to:

READ(1,f) list

FORTRAN IV SPECIFIC CHARACTERISTICS

For all purposes these two forms function identically. For example,
assigning logical unit number 1 to the terminal, in both cases, causes
input to come from the terminal.

The ACCEPT, TYPE, and PRINT statements also have similar functional
analogies. Assigning devices to 1logical units 5, 7, and 6 affects
respectively the ACCEPT, TYPE, and PRINT statements.

3.8 MAXIMUM RECORD LENGTHS

The line buffer allocated to temporarily store I/0 records 1is by
default 136 Dbytes. This restricts all I/0 records in formatted I/0
statements to a maximum of 136 characters. The size of this buffer,
and consequently the maximum record length, can be changed by
including the /RECORD option (/R) in the compiler command string while
compiling the main program unit. The maximum size of the line buffer
is 4095 bytes (7777 octal).

3.9 DIRECT-ACCESS I/O

RT-11/RSTS/E FORTRAN IV allows creation and modification of
direct-access files.

3.9.1 DEFINE FILE Statement

The first parenthesized argument in a DEFINE FILE statement specifies
the 1length, 1in records, of the direct-access file being initialized.
However, if the statement is part of a file creation procedure, this
value may not 'be readily available. RT-11/RSTS/E FORTRAN IV allows
some extra flexibility in this situation. Under RT-11, a file 1length
specification of =zero records causes a large contiguous file to be
allocated initially and the unused portion to be automatically
de-allocated when the file is closed. The "END=" construction is
particularly useful in this situation for determining the actual
length of the file.

Under RSTS/E a file length specification of zero records causes the
file to be extended dynamically as required by the highest record
number referenced during program execution, if the record size 1s an
exact multiple of 256. The DEFINE FILE statement must not be used
with the OPEN statement. The OPEN statement specifies a recordsize in
units of 2 words; whereas the DEFINE FILE statement specifies a
recordsize in units of 1 word.

3.9.2 Creating Direct-Access Files

The first I/0 operation performed on a direct-access file during file
creation must be a WRITE operation. A READ or FIND operation under
such circumstances produces a fatal error condition.

FORTRAN IV SPECIFIC CHARACTERISTICS

3.10 INPUT/OUTPUT FORMATS

RT=11/RSTS/E FORTRAN IV allows formatted input and output for
transferring of ASCII files. Unformatted and direct-access input and
output are available for transferring binary records.

Some run-time errors can be intercepted and control transferred to a
pre-determined program 1label by use of the ERR= parameter. This
parameter can be specified in the READ, WRITE, ENCODE or DECODE
statements. Note that a count n error will become fatal on the nth
occurrence of the error.

The following errors can be intercepted:

ERROR ERROR

NUMBER TYPE MESSAGE
5 Count 3 Input conversion error
23 Fatal Hardware I1/0 error
45 Fatal Incompatible variable and format
46 Fatal Infinite format loop

3.10.1 Pormatted 1/0

The formatted input/output routines read or write variable-length,
formatted ASCII records. A record consists of a number of ASCII
characters, transmitted under «control of a format specification,
followed by a record separator character(s).

On input, the parity bit of each input character is removed, (set to
zero); only the 7-bit ASCII character is transferred. On output, the
parity bit is written as a zero.

On output to a printing device (KB:, TT:, or LP:), the record
separator appended to each record consists of a carriage return
character. The carriage return can be suppressed by use of the "$"
format separator character in the FORMAT statement (see Chapter 6 of
the PDP-11 FORTRAN Language Reference Manual). The first character of
each record 1is deleted from the record and 1is interpreted as a
carriage control character.

3.10.2 Unformatted I/0

When unformatted I/O routines read or write variable-length binary
records, they add control and file positioning information to the user
data. The control information is contained in each block of the file
and allows file positioning through auxiliary I/O statements, e.g.,
BACKSPACE. The block consists of 256 words, numbered from 0 to 255,
and contains a directory describing the records that end in the block.
The directory begins at word 254 and builds backward towards the start
of the block. Word 255 is the number of records that end in the
block; bit #15 indicates end-of-file (EOF) for the file. Each
directory entry 1is one word long and points to the end of a record;
its high order bit flags an end of file record.

3-7

FORTRAN IV SPECIFIC CHARACTERISTICS

As an example:

Assume the last 3 words (in octal) of block 0 of an wunformatted file
to be:

100040, 40, 2

and the last 4 words (in octal) of block 1 of the same unformatted
file to be:

106, 56, 46, 100003
This is interpreted as follows:

Block 0 contains records 1, 2 and the start of record 3. Record 1
extends from block 0, byte 0 to (but not including) block 0, byte 40.
Record 2 is an ENDFILE record, denoted by bit #15 being on in the end
of record pointer; ENDFILE records have no length. Record 3 spans
blocks beginning at block 0, byte 40 and extending tc (but not
including) block 1, byte 46. Block 1 also contains records 4 (byte 46
to 56) and record 5 (byte 56 to 106). Since the high order bit of
word 255 of block 1 is set, this file contains only 5 records.

This file format is unigque to FORTRAN, and may not be easily accessed
by programs written in another language. To read or write a file
constructed in a programming language other than FORTRAN, use
formatted I/0 for ASCII data and direct-access I/0 for binary data.

3.10.3 Direct-Access 1/0

The direct-access input/output routines read or write fixed-length,
binary records. The logical record structure for a direct-access file
is determined by the DEFINE FILE statement or the /RECORDSIZE option
in the OPEN statement. The records contain only the specified data;
no control information or record separators are used.

The direct-access record structure is independent of the physical
block size of the I/0 device. However, more efficient operation

results if the record size is an exact divisor or multiple of 256
words.

3.11 MIXED MODE COMPARISONS
When comparing a single precision number to a double precision number,
the double precision number may appear to be not equal to the single
precision number in magnitude even though they should be equal. For
example:

DOUBLE PRECISION D

A=55.1

D=55.1D0

IF(A.LT.D)STOP

3-8

FORTRAN IV SPECIFIC CHARACTERISTICS

In the example above A compares less than D because 55.1 1is a
repeating binary fraction. Before the comparison, the 24 bit
fractional (mantissa) part of A is extended with 32 zero bits. These
low order 32 bits are now less than the low order 32 bits of D, and D
therefore compares greater than A. With some other values (e.g.,
5.51), the single precision value will compare greater than the double
precision value owing to the conversion rounding conventions in going
from double to single precision.

CHAPTER 4

INCREASING FORTRAN IV PROGRAMMING EFFICIENCY

4.1 FACTORS AFFECTING PROGRAM EFFICIENCY

This chapter is directed to the programmer who is interested in
minimizing program execution time or storage space requirements.

The relative efficiency of an RT-11/RSTS/E FORTRAN IV object program
derives from several factors which fall into two classes:

1. The way in which the programmer codes the source program, and
2. the way in which the compiler treats the source program.

These two factors are interrelated. Compiler optimizations can be
increased by certain programming techniques in the source program.
The programmer should code his source program so as to utilize those
FORTRAN constructs which the compiler handles most efficiently.

Section 4.2 deals with the situations in which the compiler generates
the most efficient code. Section 4.3, Programming Techniques,
contains hints on improving programming efficiency.

Each topic discussed in the following section is flagged with one of
the following remarks:

(space) indicates that the primary functicn of the
discussion is to minimize program memory
requirements.

(time) indicates that the primary concern is minimization

of execution time.

A particular topic can have both designations, indicating a savings in
both space and time.

4.2 INCREASING COMPILATION EFFECTIVENESS

The following 12 programming suggestions will increase compilation
effectiveness.

1. Using the Optimizer effectively (space,time)
Avoiding certain programming constructs allows the optimizer
greater freedom to discover common subexpressions in source

programs. Specifically, avoid the following situation:

. Usage of egquivalenced and COMMON variables, and
SUBROUTINE and FUNCTION dummy arguments.

INCREASING FORTRAN 1V PROGRAMMING EFFICIENCY

Passing arguments to subprograms (space, time)

To minimize overhead in FUNCTION and SUBROUTINE calls,
parameters should be passed in COMMON blocks rather than
standard argument lists. Variables in COMMON are handled as
efficiently as local variables.

Minimizing the number of elements in the argument list {by
placing others in COMMON) reduces the time required to
execute the transfer of control to the called routine.

Statement functions (time)

Arithmetic and logical statement functions are implemented as
internal FUNCTION subprograms. Hence, all suggestions
concerning argument lists apply to statement functions also.

Minimizing array vector table storage (space)

The RT-11/RSTS/E FORTRAN IV array vectoring feature is
designed to decrease the time required to compute the address
associated with an element of a multi-dimensional array by
precomputing certain of the multiplication operations
involved. The values precomputed are stored in a table
called the "vector" for the particular array dimension. It
is desirable to minimize the space allocated to these
vectors.

The following steps can be taken by the programmer to reduce
the space required for array vectors:

° Specify the largest dimensions first in the statement
which allocates the array. This minimizes the number of
vector table entries. as the first dimension 1is never
vectored. For example,

INTEGER A(350,10) requires 10 words to vector
INTEGER A(10,350) requires 350 words to vector

The compiler computes a space tradeoff factor which
relates the number of words required for vector storage
to the number of words required to store the array. If
this tradeoff 1is favorable (i.e., the vector table is
small compared to the array), the array is vectored.
Therefore, the proper ordering of dimensions not only
saves table space for all vectored arrays, but can also
cause other arrays to be made eligible for vectoring.

] Try to keep similar arrays dimensioned in the same order.
This will cause certain arrays to share vector tables.
For example:

INTEGER A(9,4,5), B(9,4,7), C(9,8)

all share the same two vectors, one for the second array
dimension and one for the third. The vector for the
second dimension will have eight elements (@ 1 word each)
because C has the largest second dimension, 8.
Similarly, the vector for the third dimension has seven
elements.

INCREASING FORTRAN IV PROGRAMMING EFFICIENCY

In the general case, two arrays share a vector table for
dimension i if each dimension less than i in each array
is identical to the same dimension for the other array.
In the example given above, arrays A, B, and C share the
vector for the second dimension because each array has a
first dimension equal to 9.

° Vectoring can be disabled completely by specifying the
/VECTORS (/V) option in the command string to the
compiler. This causes no vector tables to be generated,
but the resulting program executes more slowly than with
vectoring. This tradeoff can be made if array usage is
not heavy in speed-critical sections of the program, or

if space is the primary goal.
Multi-Dimensioned array usage (time)

When using multi-dimensional arrays, the number of specified
variable subscripts affects the time required to make the
array reference. Therefore, the following steps can be taken
to optimize array references:

® Use arrays with as few dimensions as possible.

° Use constant subscripts whenever possible. Constant
subscripts are computed during compilation and require no
extra operations at execution time.

) Make totally constant array references wherever
appropriate. These references receive the highest level
of optimization. For example,

I =1
A(I) = 0.0

is not as efficient as

ormer case requires a runtime subscript operation;
he latter, the compiler can calculate the address of
he first element of array A at compilation time.

Formatted input/output (space,time)

RT-11/RSTS/E FORTRAN IV precompiles and compacts FORMAT
statements that are presented in the source program. This
affects the space required to store the format at runtime,
and the speed of the input/output operations which make use
of the format.

For this reason, object-time formats (i.e., those formats
that are specified in arrays rather than as FORMAT
statements) are considerably less efficient.

Data type selection (space,time)

Due to the addressing modes of the PDP-11 processors and
various optimization considerations internal to FORTRAN IV,
more efficient code can be generated for certain data types
than for others. Specifically:

10.

INCREASING FORTRAN IV PROGRAMMING EFFICIENCY

° Use the INTEGER data type wherever possible.
RT-11/RSTS/E FORTRAN IV performs extensive optimizations
on this data type.

° Use REAL*4 rather than DOUBLE PRECISION (REAL*8) wherever
possible. Single-precision operations are significantly
faster than double-precision, and storage space is saved.

° Avoid unnecessary mode-mixing. For example:

A =0.0
is preferable to
A =0

° Use two REAL*4 variables rather than a COMPLEX*8 if usage
of COMPLEX variables in the program is not heavy. REAL*4
operations receive more optimization than COMPLEX
operations.

Testing "flag" variables (space)

Wherever possible, comparisions with zero should be used.

Comparing any data type to a zero value is a special case

which requires less executable code. An example of such a

case is the following:

IF (I .LT. 1) GOTO 100
requires more code than,
IF (I .LE. 0) GOTO 100

*2, *¥*2 QOperations (time)

Explicitly specifying *2 when doubling the value of an

expression, or **2 yhen squaring the value of an expression

can lead to more efficient code. For example:
A = (B + ARRAY(C))**2

is preferable to
A = (B + ARRAY(C)) * (B + ARRAY(C))

despite the fact that (B + ARRAY(C)) is computed only once in

either case. Note that this applies only to expression

values; 1I**2 is as efficient as I*I.

Compilation options (space)

To minimize the space required for program execution, the
following options should be supplied to the compiler:

/NOLINENUMBERS (/S) to suppress line number traceback
/VECTORS (/V) to suppress all array vectoring

INCREASING FORTRAN IV PROGRAMMING EFFICIENCY

In addition, the /I4 (/T) (two-word integer default) option
should not be specified unless required. Specifying the
/NOOPTIMIZE:xxx option (/M:xxXx) can reduce storage
requirements, but the result is not predictable when it is
based on a simple survey of the source program. Try
different settings of /NOOPTIMIZE:xxx (/M:xxx) to determine
which is optimal. Note that some settings (e.g., SPD,BND)
have no effect on the threaded code generator.
/NOOPTIMIZE:SPD disables the SPEED optimizer which is
equivalent to enabling the SIZE optimizer.

The /NOSWAP (/U) OPTION should not be specified if it is not
required (i,e., no user-written interrupt or completion
routines exist in the linked program).

Specify minimal values for the /UNITS (/N) and /RECORDS (/R)
compiler options to conserve space at execution time. The
JUNITS (/N) value should be the number of logical units that
can be concurrently active. Set the /RECORDS (/R) option to
the maximum formatted record length plus two (for the
carriage return-line feed combination which can accompany a
record) .

Compilation options {time)

[
N

Specify the following compiler options to optimize an object
program for execution time.

/NOLINENUMBERS (/S) to suppress line number traceback

/NOSWAP (/U) to prevent the USR (RT-11 file
service routines) from swapping at
runtime (RT-11 only; ignored under
RSTS/E)

Do not specify the following options since global
optimization and array vectoring speed program execution.

/NOOPTIMIZE:xxx (/M:xxx) will disable compiler optimization
/NOVECTORS (/V) will disable array vectoring

4.3 PROGRAMMING TECHNIQUES

The following examples compare different programming methods. These
comparisons show more efficient programming techniques available to
the user. While both methods are correct for the particular

operation, the technique on the right has been found more efficient
than the technique on the left.

1. Make use of the increment parameter in DO loops:

INEFFICIENT EFFICIENT
DIMENSION A(20) DIMENSION A(20)
DO 100 1I=1,10 DO 100 1=2,20,2
A(2*I)=B A(I)=B

100 CONTINUE 100 CONTINUE

In the inefficient example, an additional calculation is
performed (i.e., 2*I) each time through the loop. These
calculations are avoided in the efficient example by having
the count incremented by two.

INCREASING FORTRAN IV PROGRAMMING EFFICIENCY

Avoid placing calculations within loops whenever possible:

INEFFICIENT EFFICIENT
DO 10 1=1,20 TEMP1=B*C
DO 20 J=1,50 DO 10 1=1,20
20 A(J)=A(J)+I*B*C TEMP2=I*TEMP1
10 CONTINUE DO 20 J=1,50

20 A(J)=A(J)+TEMP2
10 CONTINUE

The calculation (B*C) within the 1loop of the inefficient
example is evaluated 1000 times. Calculations are handled
more economically when done outside the 1loop. In the
efficient example, 980 "FLOATS" and 1979 floating multiplies
were saved by performing the (B*C and I) calculations outside
the loop.

Proper nesting of DO loops can increase speed by minimizing
the loop initialization.

INEFFICIENT EFFICIENT
DIMENSION A(100,10) DIMENSION A(100,10)
DO 60 I=1,100 DO 60 J=1,10
DO 60 J=1,10 DO 60 I=1,100

60 A(I,J)=B 60 A(I,J)=B

In the first example, the inner DO loop is initialized 100
times, while in the efficient example it is only initialized
10 times.

The most efficient way to zero a large array, or to set each
element to some value, is to equivalence it to a
single~dimension array. This technique is even useful for
copying large, multi-dimensional arrays.

INEFFICIENT EFFICIENT
INTEGER A(20,100) INTEGER A (20,100)
DO 20 I=1,100 REAL*8 ATEMP (500)
DO 20 J=1,20 EQUIVALENCE (A,ATEMP)
20 A(J,I)=0 DO 20 1=1,500

20 ATEMP(I)=0.0DO0

The efficient example makes use of the 8 bytes in REAL*8 and,
by equivalencing, places 4 integers in the array and zeroes
them in one operation, thus quartering the number of
iterations.

Do as much calculation in INTEGER mode as possible.
INEFFICIENT EFFICIENT
A=B+I+J A=B+ (I+J)

Also, do as much calculation in REAL mode when the dominant
mode of an expression is DOUBLE PRECISION or COMPLEX.
Calculation is most efficient in integer mode, less efficient
in REAL mode, and 1least efficient in DOUBLE PRECISION or
COMPLEX. Remember, in the absence of parentheses, evaluation
generally proceeds from left to right.

INCREASING FORTRAN 1V PROGRAMMING EFFICIENCY

6. Use COMMON to pass arguments and return results of
subprograms whenever possible.

INEFFICIENT EFFICIENT
COMMON/SUBRA/A,B,C,D,E
COMMON /FUNCTA/Y, 2
CALL SUBR(A,B,C,D,E) CALL SUBR
X=FUNCT (Y, Z) X=FUNCT ()
CALI SUBR{A,B,C,D,E) CALL SUBR
END END
SUBROUTINE SUBR(A,B,C,D,E) SUBROUTINE SUBR
. COMMON/SUBRA/A,B,C,D,E
END .
END
FUNCTION FUNCT(Y,Z) FUNCTION FOUNCT
. COMMON/FUNCTA/Y, Z
END .
END

COMMON is handled more efficiently than formal argument
lists. Generally, it is possible to use COMMON for argument
passage if a subprogram is referenced from only one place, or
if it is always referenced with the same actual arguments.

NOTE

In PDP-11 FORTRAN IV, function subprograms are not
required to have arguments, but they must have empty

parentheses for the compiler to recognize, €.g.,
IGETC() .

7. Avoid division within programs wherever possible.
INEFFICIENT EFFICIENT
A=B/2. A= B*.5

Multiplication is faster than division and thus saves
execution time.

CHAPTER 5

CONCISE COMMAND LANGUAGE OPTION

5.1 INTRODUCTION TO THE RSTS/E FORTRAN IV CCL OPTION

The Concise Command Language (CCL) commands provide an alternative
method for invoking RSTS/E system programs. CCL commands allow a user
to run a system program by specifying a single command for the program
to execute. The user types the CCL command and the program command on
one line and enters it to the system. The system loads the program
into the wuser's Jjob area and writes the program command to the core
common area. This operation destroys the current contents of the
user's Jjob area. The program runs, reads the command from the core
common area, and executes. If an error is encountered, the program
prints a related message and terminates. CCL options are available
for the following system programs: FORTRAN, LINK, AND MACRO.

RSTS/E users should contact the system manager for the availability of
these commands on their system.

5.2 COMMAND INTERFACE
The CCL command to invoke the FORTRAN IV Compiler has the form:
FOR command line
where
command line has the form: output = input/sw
The output and input filename specifications
are described in Section 1.1.1; the compiler
switches are described in Section 1.2.1.
The command to invoke the linker, LINK, has the form:
LINK cocmmand line
where
command line has the form: output = input/sw
The output and input filename specifications
and switch options are described in Section
1.3.

The command to invoke MACRO has the form:

MACRO command line

CONCISE COMMAND LANGUAGE OPTION

where

command line has the form: output = input/sw
The output and input filename specifications
and switch options are described in Section
2.7 of the RSTS/E FORTRAN IV Utilities Manual
and Section 5.7 of the RT-11 System Reference
Manual.

5.2.1 CCL Command Restrictions

Several switch options included in the LINK utility are not acceptable
to the LINK CCL command line. These switch option restrictions do not
apply to the "RUN SLINK" invocation of the linker utility but only to
one line of input to the LINK CCL command. The restricted switches
are the following:

/C continue input specification on multiple lines

/E extend PSECT

/1 include requested library modules

/M specify stack address as global symbol
(/M:n form is acceptable)

/0 indicate overlay structure

/T specify transfer address as global symbol
(/T:n form is acceptable)

/U round PSECT

// indefinite continuation

5.2.2 CCL Command Comparison

The following example illustrates the two methods available to the
user for «creating a source and assembly program, as well as linking
and execution.

CONCISE COMMAND LANGUAGE OPTION

RSTS/E Command String
RUN SFORTRAN
*MAIN=MAIN,SUBR/S
*"7
READY
RUN S$SMACRO
*MACSUB=MACSUB

ERRORS DETECTED:0

FREE CORE: 1024 WORDS
*"7

READY

RUN SLINK
*PROG=MAIN,MACSUB/F

*"7
READY

RUN PROG

READY
MACRO MACSUB=MACSUB

ERRORS DETECTED:O0
FREE CORE: 1024 WORDS

READY

LINK PROG=MAIN,MACSUB/F

READY

RUN PROG

5-3

APPENDIX A

A.l1 INTEGER FORMAT

Sign
0=+
1=—
15 14 0

Binary number

Integers are stored in a two's complement representation. If the /I4
(/T) compiler option (see Section 1.2.1) is used, an integer is
assigned two words, although only the low order word (i.e., the word
having the 1lower address) is significant. By default, integers will
be assigned to a single storage word. Explicit length integer
specifications (INTEGER*2 and INTEGER*4) will always take precedence
over the setting of the /I4 (/T) option. 1Integer constants must lie
in the range ~32767 to +32767. For example:

+22
-7

000026 (octal)
177771 (octal)

A.2 FLOATING-POINT FORMATS

The exponent for both 2-word and 4-word floating-point formats 1is
stored in excess 128 (200(octal)) notation. Binary exponents from
~128 to +127 are represented by the binary equivalents of 0 through
255 (0 through 377 (octal)). Fractions are represented in
sign-magnitude notation with 'the bindry radix point to the left.
Numbers are assumed to be normalized and, therefore, the most
significant bit is not stored because of redundancy (this 1is called
hidden bit normalization). This bit is assumed to be a 1 unless the
exponent is 0 {(corresponding to 2-128) in which case it is assumed to
be 0., The value 0 is represented by two or four words of zeros. For
example, +1.0 would be represented by:

40200
0

in the 2-word format, or:

0200

OO C

in the 4-word format.

140640

0

FORTRAN DATA REPRESENTATION

in the 2-word format, or:

140640

0
0
0

in the 4-word format.

=5 would be:

A.2.1 REAL Format (2-Word Floating Point)

Sign
=+ H
word 1: 0 Binary excess High-order mantissa
1=— 128 exponent
15 14 7 6 0
word 2: Low-order mantissa
15 0

Since the
giving an
accuracy) .

high-order bit of the mantissa is always 1, it is discarded,
effective precision of 24 bits (or approximately 7 digits of

The magnitude range lies between approximately .29 X 10-38
and .17 X 1039.

A.2.2 DOUBLE PRECISION Format (4-Word Floating Point)

Sign
word 1: 1= fégagp?::;z High-order mantissa
15 14 7 6 0
word 2: | Low-order mantissa I
15 0
word 3: r Lower-order mantissa |
15 0
word 4: | Lowest-order mantissa l
15 0

The effective precision is 56 bits (or approximately 17 decimal digits
of accuracy).

1039.

A.2.3 COMPLEX Format

The magnitude range lies between .29 X 10-38 and .17 X

word 1:

Sign
_.+ 1
0= Binary excess High-order mantissa
=— 128 exponent
15 14 7 8 0

Real part

FORTRAN DATA REPRESENTATION

word 2: Low-order mantissa
15 0
Sign
. 0=+ Binary excess . .
word 3: . 128 exponent High-order mantissa
15 14 7] 0
Imaginary
Part
word 4: Low-order mantissa
15 0
A.3 LOGICAL*1 FORMAT
r Data item
7 0
Any non-zero value is considered to have a logical value of .TRUE.

The range of numbers from +1
LOGICAL*1l array elements are stored in adjacent bytes.

format.

A.4 HOLLERITH FORMAT

27 to -128 can be represented in LOGICAL*1

word 1 char 2 char 1
15 8 7 0
word 2: [char 4 char 3 J
15 8 7 0
r blank=40 (octal) char n (n<255) J
15 8 7 0
Hollerith constants are stored internally, one character per byte.

Hollerith values are
associated data item,

A.5 LOGICAL FORMAT

padded
if necessary.

on the right with blanks to £fill the

15 8 7 0
True: word 1 [unspecified 377 __|
15 0

word 2 I unspecified 4]

15 8 7 0

False: word 1 r unspecified I 000 J
15 0
word 2 [unspecified l
1 |

Logical (LOGICAL*4) data items are treated as LOGICAL*1 values for use

with
order byte is considered to
expressions.

arithmetic and logical operators.

Any non-zero value in the low

have a logical value of true 1in logical

FORTRAN DATA REPRESENTATION

A.6 RADIX-50 FORMAT

Radix~50 character set

Character Octal Radix-50
ASCII Equivalent Equivalent
space 40 0

A-7 101-132 1-32
$ 44 33
. 56 34
unused 35
0-9 60-71 36-47

The following table provides a convenient means of translating between
the ASCII character set and its Radix-50 equivalents. For example,
given the ASCII string X2B, the Radix-50 equivalent is (arithmetic is
performed in octal):

X =113000
2 =002400
B=000002
X2B=115402
Table aA-1
ASCII/Radix~50 Equivalents
Single Char.
or Second Third
First Char. Character Character
space 000000 space 000000 space 000000
A 003100 A 000050 A 000001
B 006200 B 000120 B 000002
C 011300 C 000170 C 000003
D 014400 D 000240 D 000004
E 017500 E 000310 E 000005
F 022600 F 000360 F 000006
G 025700 G 000430 G 000007
H 031000 H 000500 H 000010
I 034100 I 000550 I 000011
J 037200 J 000620 J 000012
¥ 042200 K 00067¢C K 000013
L 045400 L 000740 L 000014
M 050500 M 001010 M 000015
N 053600 N 001060 N 000016
0 056700 0 001130 0 000017
P 062000 P 001200 P 000020
Q 065100 Q 001250 Q 000021
R 070200 R 001320 R 000022
S 073300 S 001370 S 000023
T 076400 T 001440 T 000024
U 101500 U 001510 U 000025
V 104600 VvV 001560 Vv 000026
W 107700 W 001630 W 000027
x 113000 x 001700 x 000030
v 116100 y 001750 y 000031
z 121200 z 002020 z 000032
$ 124300 $ 002070 $ 000033

(continued on next page)

FORTRAN DATA REPRESENTATION

Table A-1 (Cont.)
ASCII/Radix~50 Equivalents

Single Char.
or Second Third
First Char. Character Character
127400 . 002140 . 000034
unused 132500 unused 002210 unused 000035

0 135600 0 002260 0 000036
1 1407606 1 002330 1 000037
2 144000 2 002400 2 000040
3 147100 3 002450 3 000041
4 152200 4 002520 4 000042
5 155300 5 002570 5 000043
6 160400 6 002640 6 000044
7 163500 7 002710 7 000045
8 166600 8 002760 8 000046
9 171700 9 003030 9 000047

APPENDIX B

LIBRARY SUBROUTINES

B.1l LIBRARY SUBROUTINE SUMMARY

In addition to the functions intrinsic to the FORTRAN IV system, there
are subroutines in the FORTRAN library which the user can call in the
same manner as a user-written subroutine. These subroutines are:

ASSIGN

OPEN

CLOSE

DATE

IDATE

EXIT

USEREX

RANDU,

RAN

SETERR

ERRTST

ERRSNS

UNLOCK

allows specification at run-time of the filename or
device and filename to be associated with a FORTRAN IV
logical unit number.

(RSTS/E only) causes the specified file to be opened and
associated with a particular FORTRAN IV logical unit.

closes the specified 1logical unit after writing any
active buffers to the file.

returns a 9-byte string containing the ASCII
representation of the current date.

returns three integer values representing the current
month, day, and year.

terminates the execution of a program and returns control
to the executive.

allows specification of a routine to be invoked as part
of program termination.

returns a pseudo random-real number with a uniform
distribution between 0 and 1.

allows the user to set a count specifying the number of
times to ignore a certain error condition.

allows the user program to monitor the types of errors
detected during program execution.

allows the user program to obtain information about the
most recent error that has occurred during program
execution.

(RSTS/E only). Unlocks the disk block currently held for
update on the file open for shared access on the logical
unit specified.

LIBRARY SUBROUTINES

B.2 ASSIGN

The CALL ASSIGN statement should not be used in conjunction with the
CALL OPEN statement. 1In proper context, the ASSIGN subroutine allows
the association of device and filename information with a logical unit
number. The ASSIGN call, if present, must be executed before the
logical unit is opened for I/O operations (by READ or WRITE) for
sequential-access files, or before the associated DEFINE FILE
statement for random-access files. The assignment remains in effect
until the end of the program or until the file is closed by CALL CLOSE
or the CLOSE statement, and a new CALL ASSIGN performed. The call to
ASSIGN has the general form:

CALL ASSIGN(n, name, icnt, mode, control, numbuf)

CALL ASSIGN requires only the first argument, all others are optional,
and if omitted, are replaced by the default values as noted in the
argument descriptions. However, if any argument is to be included,
all arguments that precede it must also be included.

NOTE

Under RSTS/E, any project-programmer
number or protection code information
supplied to CALL ASSIGN is ignored. If
the ability to supply such information
is desired, CALL OPEN should be used.

A description of the arguments to the ASSIGN routine follows:

n logical unit number expressed as an integer constant or
variable.
name "Hollerith or literal string containing any standard

RT-11 or RSTS/E file specification. If the device is
not specified, then the device remains unchanged from
the default assignments. If a filename 1is not
specified, the default names, as described in Section
3.7, are used. The three options which can be included
in the file specification are:

/N specifies no carriage <control translation.
This option overrides the wvalue of the
'control' argument.

/C specifies carriage control translation. This
option overrides the value of the 'control'
argument.

/B:n specifies the number of buffers, n, to use
for I/0 operations. The single argument, n,
should be of wvalue 1 or 2. This option

overrides the value of the 'numbuf' argument.
Multi-buffering 1is not suppor ted under
RSTS/E.

If name is simply a device specification, the device is
opened 1in a non-file structured manner, and the device
is treated in a non-file structured manner.

Indiscriminate use of this feature on directqQry devices

q b
such as disk or DECtape can be dange

the directory structure).

3 Aamarnns
roug {i.e., damage

B-2

icnt

mode

control

numbuf

LIBRARY SUBROUTINES

specifies the number of characters in the string
‘name‘ . If ‘"icnt' 1is zero, the string ‘'name' is
processed until the first blank or null character is
encountered. If 'icnt' is negative, program execution
is temporarily suspended. A prompt character (*) is
sent to the terminal, and a filename specification,
with the same form as 'name' above, terminated by a
carriage return, is accepted from the keyboard.

specifies the method of opening the file on this unit.
This argument can be one of the following:

‘RDO’ the file is read only. A fatal error occurs
if a FORTRAN write is attempted on this unit.
If the specified file does not exist, runtime
error 28 (OPEN FAILED FOR FILE) is reported.

'NEW' a new file of the specified name is created;
this file does not become permanent until the
associated logical unit is <closed via the
CALL CLOSE routine, the CLOSE statement or
program termination. If execution is aborted
by typing CTRL"C, the file is not preserved.

'OLD’ the file already exists. If the specified
file does not exist, runtime error 28 (OPEN
FAILED FOR FILE) is reported.

'SCR' the file is only to be used temporarily and
is deleted when it is closed.

If this argument is omitted, the default is determined
by the first I/0 operation performed on that unit. If
a WRITE operation is the first I/0 operation performed
on that unit, 'NEW' is assumed. 1If a READ operation is
first, 'OLD' is assumed.

specifies whether carriage control translation is to
occur. This argument can be one of the following:

'NC' all characters are output exactly as
specified. The record is preceeded by a line
feed character and followed by a carriage
return character.

'CC! the character in column one of all output
records 1is treated as a carriage control
character. (See the PDP-11 FORTRAN Language
Reference Manual.)

If not specifically changed by the CALL ASSIGN
subroutines, the terminal and line printer assume by
default 'CC', and all other devices assume 'NC'.

specifies the number of internal buffers to be used for
the I/0 operation. A value of 1 is appropriate under
normal circumstances. If this argument is omitted, one
internal buffer 1s used. Multi-buffering is not
supported under RSTS/E.

LIBRARY SUBROUTINES

B.3 OPEN (RSTS/E ONLY)

The CALL OPEN statement should not be used 1in conjunction with the
OPEN statement. The subroutine OPEN is an extension of the ASSIGN
routine for RSTS/E. OPEN allows a specified file to be opened and
associated with a particular FORTRAN logical unit. In the OPEN call,
all arguments (except "n" and "name") are optional and will default if
not specified. However, if any argument 1is to be included, all
arguments that precede it must also be included.

A description of the arguments to the OPEN subroutine follows:

CALL OPEN (n, name, icnt, disp, control, numbuf, iotype, p, pn, prot,
mode, cluster)

where

n is the integer specification of the logical unit to be
associated with the file.

name is a variable, array, or quoted string, whose contents
specify the name (and possibly the project-programmer
number and protection code) of the file to be opened.

icnt is an integer value which controls the interpretation
of the 'name' argument, If ‘'icnt' is positive, it
specifies the number of characters to be taken from the
'name' argument as the filename string. If 'icnt' is
zero, 'name' is scanned until the first blank or null
character is encountered. If a negative value is given
for ‘'icnt', program execution is temporarily suspended,
a prompt character (*) is sent to the terminal, and a
filename specification, terminated by a carriage
return, is accepted from the keyboard.

disp is a string specification of the disposition of the
file on this unit. This argument can be one of the
following:

'RDO' the file is read only. A fatal error occurs if a
FORTRAN write is attempted on this unit. If the
specified file does not exist, runtime error 28
(OPEN FAILED FOR FILE) is reported.

'NEW' a new file of the specified name 1is created;
this file does not become permanent until the
associated logical unit is closed via the CALL
CLOSE routine, the CLOSE statement or program
termination. If execution is aborted by typing
CTRL"C, the file is not preserved.

'OLD' the file is assumed to exist. If the file is not
found in the specified directory, or is protected
against access by the wuser, a fatal error
results.

'SCR' the file is only to be used temporarily and will
be deleted when it is closed.

If this argument is not given, the default is set to
'NEW'.

control

numbuf

iotype

pn

prot

mode

cluster

LIBRARY SUBROUTINES

is a string argument which specifies whether carriage
control translation is to occur. This argument can be
one of the following:

'NC' all characters are output exactly as specified.
The record is preceded by a line feed character
and followed by a carriage return character.

'CC' the character in column one of all output records
is treated as a carriage control character. (See
the PDP-11 FORTRAN Language Reference Manual.)

specifically changed by the OPEN routine; the

t
er's terminal and the line printer assume by default
C', and all other devices assume 'NC'.

retained for argument list compatibility with the RT-11
ASSIGN system subroutine; has no function under RSTS/E
and should be omitted or given the value 1.

is a string argument which specifies theraype of
input/output operations to be performed on a unit.
This argument can be one of the following:

'FOR' the unit 1is to be opened for formatted

input/output.

'UNF' the unit is to be opened for unformatted
input/output.

'RAN' the wunit is to be opened for random-access
input/output.

If this argument 1is not specified, it defaults to
'FOR'.

is an integer value giving the default project code to
be used (in conjunction with the "pn" argument) if no
project-programmer number specification is found in
llnamell

)
)
)
i
)
3
)
]
J
)
g
]
1
I
]
t
)
2
d
)
3
]
)
{
)
)
)
r-nm

to be assumed if no PLUJCbL—HLUngmmcL achl
appears in "name".

is an integer value specifying the protection code to
be assigned by default if no protection code indication
occurs in "name". This argument takes effect only on
output files.

is an integer specification of the RSTS/E mode to be
used on opening the file (refer to the RSTS/E
Programming Manual for device-specific mode
information).

is an integer specification of the cluster size to be
assigned to the file to be opened. This argument only
takes effect on output files (i.e., files with the
'NEW' or 'SCR' attribute).

LIBRARY SUBROUTINES

B.4 CLOSE

The user has the option of the CALL CLOSE routine and the CLOSE
statement. The CALL CLOSE routine is a subset of the CLOSE statement
(see the PDP-11 FORTRAN Language Reference Manual). CLOSE explicitly
closes any file open on the specified logical unit. If the file was
open for output, any partially filled buffers are written to the file
before closing it., After the execution of CALL CLOSE, any buffers
associated with the 1logical unit are freed for reuse and all
information supplied in any previous CALL ASSIGN for the logical unit
is deleted. The logical unit is thus free to be associated with
another file.

An implicit CLOSE operation is performed on all open 1logical units
when a program terminates (due to a fatal error condition, or the
execution of STOP or CALL EXIT).
The format of the call is:

CALL CLOSE (ilun)

where ilun is an integer constant, variable, array element, or
expression specifying the logical unit to be closed.

B.5 DATE
The DATE subroutine can be used in a FORTRAN program to obtain the
current date as set within the system. The DATE subroutine is called
as follows:

CALL DATE (array)
where array is a predefined array able to contain a 9-byte string.
The array specification in the call can be expressed as the array name
alone:

CALL DATE (a)

in which the first three elements of the real array a are used to hold
the date string, or:

CALL DATE (a{i))

which causes the 9-byte string to begin at the i(th) element of the
array a.

The date is returned as a 9-byte (9-character) string in the form:
dd-mmm-yy
where:
dd is the 2-digit date
mmm is the 3-letter month specification
Yy is the last two digits of the year

For example:

25-DEC-76

LIBRARY SUBROUTINES

B.6 IDATE
IDATE returns three integer values representing the current month,
day, and year. The call has the form:

CALL IDATE(i,],k)

If the current date were March 19, 1976 the values of the integer
variables upon return would be:

i=3
i =19
k = 76

B.7 EXIT
A call to the EXIT subroutine, in the form:
CALL EXIT

is equivalent to the STOP statement except that no message appears on
the wuser's terminal in that it causes program termination, closes all
files, and returns to the monitor; wunlike the STOP statement, it does
not print a STOP message.

B.8 USEREX

USEREX is a subroutine which allows specification of a routine to
which control 1is passed as part of program termination. This allows
disabling of interrupts enabled in non-FORTRAN routines. If these
interrupts are not disabled prior to program exit the integrity of the
operating system cannot be assured. The form of the subroutine call
is:

CALL USEREX (name)

where 'name' is the routine to which control is passed and should
appear in an EXTERNAL statement somewhere in the program unit.
Control is transferred with a JMP instruction after all procedures
required for FORTRAN IV program termination have been completed. The
transfer of control takes place instead of the normal return to the
monitor. Thus, if the user desires to have control passed back to the
monitor, the routine specified by USEREX must perform the proper exit
procedures.

B.9 RANDU,RAN

The random number generator can be called as a subroutine, RANDU, or
as an intrinsic function, RAN. The subroutine call is performed as
follows:

CALL RANDU (i(l) ,i(2) ,x)

LIBRARY SUBROUTINES

where i(l) and i(2) are previously defined integer variables and x is
the real variable name, in which a random number between 0 and 1 is
returned. i(l) and i(2) should be initially set to 0. i(l) and 1i(2)
are updated to a new generator base during each call. Resetting i(1l)
and i(2) to 0 repeats the random number sequence. The values of i(1l)
and i(2) have a special form; only 0 or saved values of i(l) and i(2)
should be stored in these variables.

Use of the random number subroutines is similar to the use of the RAN
function where:

Xx=RAN(i(1) ,1i(2))

is the functional form of the random number generator.

B.10 SETERR

SETERR allows the user to specify the disposition of certain OTS
detected error conditions. Only OTS error diagnostics 1 - 16 should
be changed from their default error classification (see Section C.2).
If errors 0 or 20 - 69 are changed from the default classification of
FATAL, execution continues but in an undetermined state. The form of
the call is:

CALL SETERR (number ,ncount)
where 'number' is an integer variable or expression specifying the OTS

error number (see Section C.2), and 'ncount' is a LOGICAL*1l variable
or expression with one of the following values:

Value Meaning

0 Ignore all occurrences after logging them on the user
terminal.

1 First occurrence of the error will be fatal.

2-127 The nth occurrence of the error will be fatal; the
first n-l1 occurrences will be logged on the user
terminal.

128-255 Ignore all occurrences of the error.

B.11 ERRTST

ERRTST allows the user program to monitor the types of errors detected
during program execution. The general form of the call is:

CALL ERRTST (ierr,ires)

ierr is an INTEGER*2 quantity specifying the error number for which
the test is to be done.

ires is an INTEGER*2 variable or array element which is to receive the
status of the error.

ires=1 if an error has occurred
ires=2 if an error has not occurred

11 to ERRTST will reset the flag governing the specified error

B-8

LIBRARY SUBROUTINES

B.12 ERRSNS

ERRSNS allows specifying from zero to two arguments. When ERRSNS 1is
called with =zero arguments, previous error data is cleared, thus
allowing testing for errors in certain program sections. The general
call is:

CALL ERRSNS (ires,iunit)
ires is an INTEGER*2 variable or array element into which the numeric
code for the most recent error will be stored. A zero will be stored
if there is no error.
iunit is an INTEGER*2 variable or array element into which the logical

unit number of input/output errors will be stored, if the most recent
error was input/output related.

B.13 UNLOCK

The UNLOCK routine is for RSTS/E only. It unlocks the disk block
being held for wupdate on the file open for shared access on the
specified logical unit. The general form of the call is:

CALL UNLOCK (iunit)

iunit is an INTEGER*2 expression specifying the logical unit on which
the disk file containing the locked block is open.

APPENDIX C

C.1 COMPILER ERROR DIAGNOSTICS

The FORTRAN IV Compiler, while reading and processing the FORTRAN
source program, can detect syntax errors (or errors in general form)
such as unmatched parentheses, illegal characters, unrecognizable key
words, missing or illegal statement parameters.

The error diagnostics are generally clear in specifying the exact
nature of the error. 1In most cases, a check of the general form of
the statement in question as described in the PDP-11 FORTRAN Language
Reference Manual will help determine the location of the error.

Some of the most common causes of syntax errors, however, are typing
mistakes. A typing mistake can sometimes cause the compiler to give
very misleading error diagnostics. The user should note, and take
care to avoid, the following common typing mistakes:

1. Missing commas or parentheses in a complicated expression or
FORMAT Statement.

2. Misspelling of particular instances of variable names. If
the compiler does not detect this error (it usually cannot),
execution may also be affected.

3. An inadvertent line continuation signal on the line following
the statement in error.

4. If the user terminal does not clearly differentiate between 0
(zero) and the 1letter O, what appear to be identical
~spellings of variable names may not appear so té the
compiler, and what appears to be a constant expression may

not appear so to the compiler.

If any error or warning conditions are detected in a compilation, the
following message is printed on the initiating terminal:

?FORTRAN-I-[name]Errors:n,Warnings:m

where:

[name] is the 6-character name of the program unit being
compiled. .MAIN. is the default name of the main
program if no program statement is used. The default
name for BLOCK DATA program units is .DATA..

n represents the number of error-class mességes (i.e.,

those messages that cause the statement in question to
be deleted).

FORTRAN IV ERROR DIAGNOSTICS

m represents the number of warning-class messages (i.e.,
those messages indicating conditions that can be
ignored or corrected, such as missing END statements or
questionable programming practices). Note that some
warning conditions will only be detected if the /W
switch is specified, (see Section C.1.3.).

The next three sections describe the initial phase and secondary phase
error diagnostics and the fatal FORTRAN IV Compiler error diagnostics.

The following is an example of a FORTRAN IV program with diagnostics
issued by the compiler.

FORTRAN IV V02,01 Wed 03-Aug-77 09100105 FAGE Q01
0001 DOURLE FRECISION DELE DELEZ2

0002 NATA INT/100/ DBLEZ2/500./

0003 DBLE2 = INT/2 + 5. + DBLE

Q004 WRITEs(4210) DRLE,DRLE

Q005 10 FORMAT(IX»2F12,6)

Q006 10 STOP

*RKKK M

0007 INTEGER INT

0008 END

FORTRAN IV lisgrnostics for Program Unit MAIN,
In line 0004y Error: Surtax error

FORTRAN IV Storade Mar for Frodram Unit +MAIN.

lLocal Variablesys .FSECT $DATA» Size = 000024 (10. words)

Name Ture 0Offset Name Ture 0Offset Nzame Ture Offset
DRLE R%4 000020 DRLEDE RXx8 000010 DRLEZ RX%4 00004
INT Ix2 000002

C.1l.1 Errors Reported by the Initial Phase of the Compiler

Some of the easily recognizable FORTRAN syntax errors are detected by
the initial phase c¢f the compiler. Errcrs that cause the statement in

question to be aborted are tabulated in the ERROR count, whereas those
that are correctable by the compiler are counted as WARNINGS.

The error diagnostics are printed after the source statement to which

they apply (the L error diagnostic is an exception). The general form
of the diagnostic is as follows:

kkkkk o

Where ¢ is a code letter whose meaning is described below:

FORTRAN IV ERROR DIAGNOSTICS

INITIAL PHASE ERROR DIAGNOSTICS

Code Letter ’ Description
B Columns 1-5 of a continuation line are not blank.
Columns 1-5 of a continuation line must be blank
except for a possible 'D' in column 1; the

columns are ignored (WARNING).

C Illegal continuation. Comments cannot be
continued and the first line of any program unit
cannot be a continuation line. If a line consists

only of a carriage return-line feed combinaticn,

then it is considered to be a blank line. If it
has a 1label field then it must have a statement
field. The line is ignored (WARNING).

E Missing END statement. An END statement is
supplied by the compiler if end-of-file is
encountered (WARNING).

H Hollerith string or quoted 1literal string is
longer than 255 <characters or 1longer than the
remainder of the statement; the statement 1is
ignored.

I Non-FORTRAN character used. The line contains a

character that is not in the FORTRAN character set
and is not used in a Hollerith string or comment
line. The character is ignored (WARNING).

K Illegal statement label definition. Illegal
(non-numeric) character in statement label; the
illegal statement label is ignored (WARNING).

L Line too long to print. There are more than 80
characters (including spaces and tabs) in a line.
Note: this diagnostic is issued preceding the
line containing too many characters. The line is
truncated to 80 characters (WARNING).

M Multiply defined 1label. The label 1is ignored
(WARNING) .
P Statement contains unbalanced parentheses. The

statement is -ignored.

S Syntax error. Multiple equal signs, etc. The
statement is not of the general FORTRAN statement
form; the statement is ignored.

9] Statement could not be identified as a 1legal
FORTRAN statement. The statement is ignored.

C.1.2 Errors Reported by Secondary Phases of the Compiler

Those compiler error diagnostics not reported by the initial phase of
the compiler appear immediately after the source 1listing and
immediately before the storage map. Since the diagnostics appear
after the entire source program has been listed, they must designate
the statement to which they apply by using the internal sequence
numbers assigned by the compiler.

FORTRAN IV ERROR DIAGNOSTICS

The general form of the diagnostic is:

Error:
IN LINE nnnn, text
warning:

Where nnnn is the 1internal sequence number of the statement in
guestion, and text is a short description of the error.

Below, listed alphabetically, are the error diagnostics. Included
with each -‘diagnostic 1is a brief explanation. Refer to the PDP-11
FORTRAN Language Reference Manual for information to help correct the
error.

The notation **** gignifies that a particular variable name or
statement label appears at that place in the text.

SECONDARY PHASE ERROR DIAGNOSTICS

ACCESS='APPEND' ILLEGAL UNDER RT-11
The ACCESS='APPEND' option has been specified for a
program to be executed under RT-11. 'APPEND' is not
supported in the RT-11 environment. Rework the program
as required.

ACCESS='DIRECT' REQUIRES FORM='UNFORMATTED'
FORM='FORMATTED' has been specified for a direct access
file. FORTRAN IV supports only unformatted direct
access input/output. Correct the program logic.

ACCESS='DIRECT' REQUIRES RECORDSIZE= FOR RT-11 AND RSTS/E
No RECORDSIZE specification was found when attempting
to open a direct-access file. Add the required
RECORDSIZE= specification to the OPEN statement.

ADJUSTABLE DIMENSIONS ILLEGAL FOR ARRAY ****
An adjustable array was not a dummy argument in a
subprogram or the adjustable dimensions were not
integer dummy arguments in the subprogram. A dimension
of one is used. Correct the source program.

ARRAY EXCEEDS MAXIMUM SIZE or

ARRAY **** EXCEEDS MAXIMUM SIZE
The storage required for a single array or for all
arrays in total is more than is physically addressable
(>32K words). This particular error may reference
either the actual statement containing the array in
qguestion, or the first statement in the program unit.
Correct the statement in error or reduce the space
necessary for array storage.

ARRAY **** HAS TOO MANY DIMENSIONS

An array has more than seven dimensions. Correct the
program. The 1legal range for dimensions is one to
seven.

ASSOCIATEVARIABLE ILLEGAL FOR SEQUENTIAL FILE
The OPEN statement in question specifies an associated
variable for a non-direct-access file. This is usually
caused by failure to specify ACCESS='DIRECT' for a
direct-access file. Add ACCESS='DIRECT', or delete the
ASSOCIATEVARIABLE clause.

FORTRAN IV ERROR DIAGNOSTICS

* ATTEMPTS TCO EXTEND COMMON BLOCK BACKWARDS

While attempting to EQUIVALENCE arrays in COMMON, an
attempt was made to extend COMMON past the recognized
beginning of COMMON storage. Correct the program
logic.

COMMCN BLOCK EXCEEDS MAXIMUM SIZE

An attempt was made to allocate more space to COMMON
than 1is physically addressable (>32k words). Correct
the statement in error.

IN FORMAT STATEMENT NOT IN RANGE

An integer constant in a FORMAT statement was not in
the proper range. Check that all integer constants are
within the legal range (1 to 255).

DANGLING OPERATOR
An operator (+,-,*,/, etc.) is missing an operand.
Example: I=J+. Correct the statement in error.

DEFECTIVE DOTTED KEYWORD
A dotted relational operator was not recognized or
there is a possible misuse of decimal point. Check the
format for relational operators; correct the statement
in error.

DEFINE FILE MODE MUST BE 'U'
The third argument inside parentheses in a DEFINE FILE
statement is not 'U' (unformatted). Correct the mode
specification.

DISPOSE='PRINT' IS IGNORED UNDER RT-11
The OPEN statement requests spooling of a file in the
RT-11 environment, which does not provide spooling
services. Change the specification to DISPOSE='SAVE'.
The file may be printed after program termination using
the keyboard monitor PRINT command.

DO TERMINATOR **** PRECEDES DO STATEMENT
The statement specified as the terminator of a DO loop
did not appear after the DO statement. Correct the
program logic.

EXPECTING LEFT PARENTHESIS AFTER ****
An array name or function name reference 1is not
followed by a left parenthesis. Correct the statement
so that the left parenthesis is included.

EXPECTING LEFT PARENTHESIS AFTER SUBPROGRAM NAME
A SUBROUTINE or FUNCTION name occurs without an
argument list specification. Check for a typographical
error, or the use of the same name for a local variable
and a subprogram.

EXTENDSIZE= KEYWORD IS NOT SUPPORTED UNDER RT-11
An EXTENDSIZE specification appears in a program to be
executed under RT-11; file extension is not supported
in this environment. Correct the program logic.

FORTRAN IV ERROR DIAGNOSTICS

EXTRA CHARACTERS AT END OF STATEMENT

All the necessary information for a syntactically
correct FORTRAN statement has been found on this line,
but more information exists. Check that a comma is not
missing from the 1line or that an wunintentional
continuation signal does not appear on the next line.

FLOATING CONSTANT NOT IN RANGE

A floating constant in an expression is too close to
zero to be represented in the internal format. Use
zero if possible.

FORMATTED FILE REQUIRES 'FORTRAN' OR 'LIST' UNDER RT-11 AND

RSTS/E

A CARRIAGECONTROL='NONE' specification was given for a
formatted file. Specify either 'FORTRAN' or 'LIST' for
the desired carriage control.

FORM="'UNFORMATTED' REQUIRES 'NONE' UNDER RT-11 AND RSTS/E

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

A CARRIAGECONTROL='FORTRAN' or 'LIST' specification was
given for an unformatted file. Remove the
CARRIAGECONTROL specification.

ADJACENT OPERATOR
Two operators (*,/, logical operators, etc.) are
illegally placed next to each other. Example: I/*J.
Correct the statement in error.

CHARACTERS IN EXPRESSION
An illegal character has been found in an expression.
Check for a typographical error in the statement.

DO TERMINATOR ORDERING AT LABEL *#***
DC loops are nested improperly. Verify that the range
of each DO loop lies completely within the range of the
next outer loop.

DO TERMINATOR STATEMENT **%%
A DO statement terminator was not valid. Verify that
the DO statement terminator is not a GOTO, arithmetic
IF, RETURN, another DO statement, or logical IF
containing one of these statements.

ELEMENT IN I/0 LIST
An item, expression, or implied DO specifier in an 1I/0
list is of illegal syntax. Correct the I/0 list.

ENCODE/DECODE FORMAT SPECIFIER
The format specification (second argument inside
parentheses) in an ENCODE/DECODE statement is not a
FORMAT statement label or array name. Correct the
FORMAT specification.

ENCODE/DECODE LENGTH EXPRESSION
The length specificaticn {first argument inside
parentheses) in an ENCODE or DECODE statement is not an
integer expression. Correct the length expression.

ENCODE/DECODE TARGET
The third argument inside parentheses in an ENCODE or
DECODE statement 1is not the name of an array, array
element, or variable. Correct the target
specification.

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

INTEGER

INVALID

INVALID

INVALID

INVALID

INVALID

FORTRAN IV ERROR DIAGNOSTICS

INITIAL VALUE EXPRESSION IN DO STATEMENT
A valid integer expression does not follow the equals
sign in a DO statement. Correct the initial value
expression.

STATEMENT IN BLOCK DATA
An illegal statement was found in a BLOCK DATA
subprogram. Verify that a FORMAT or executable
statement does not occur in a BLOCK DATA subprogram.

STATEMENT ON LOGICAL IF

The statement contained in a logical IF was not valid.
Verify that the statement is not ancther logical IF or

DO statement.

SUBSCRIPTS OR SUBPROGRAM ARGUMENT
An illegal element occurred within a subscript list or
argument 1list to a subprogram. Correct the erroneous
statement.

TYPE FOR OPERATOR
An illegal variable type has been used with an
exponentiation or 1logical operator. Check that the
variable type is valid for the operation in question.

USAGE OF OR MISSING LEFT PARENTHESIS
A left parenthesis was required but not found, or a
variable reference or constant is illegally followed by
a left parenthesis. Correct the format of the
statement in error.

OVERF LOW
An integer constant or expression value is outside the
range =32767 to +32767. Correct the value of the
integer constant or expression so that it falls within
the legal range (=32767 to +32767).

COMPLEX CONSTANT

A complex constant has been improperly formed. Correct
the statement in error.

DIMENSIONS FOR ARRAY ***%*
An attempt was made, while dimensioning an array, to
explicitly specify =zero as one of the dimensions.
Verify that zero is not used as a dimensicn.

END= OR ERR= KEYWORD
The END= or ERR= specification in an input/output
statement is 1incorrectly formatted. Check for a
typographical error in the statement.

EQUIVALENCE
An illegal EQUIVALENCE, or EQUIVALENCE that is
contradictory to a previous EQUIVALENCE, was
encountered. Correct the program logic.

FORMAT SPECIFIER

A format specifier was illegally used. Correct the
statement so that the format specifier is the label of
a FORMAT statement or an array name.

FORTRAN IV ERROR DIAGNOSTICS

INVALID IMPLICIT RANGE SPECIFIER
An illegal implicit range specifier, (i.e.,
non-alphabetic specifier, or specifier range in reverse
alphabetic order), was encountered. Verify that the
implicit range specifier indicates alphabetic
characters in alphabetic order.

INVALID LOGICAL UNIT
A logical unit reference was incorrect. Correct the
logical unit reference so that it 1is an integer
variable or constant in the range 1 to 99.

INVALID OCTAL CONSTANT
An octal constant is too 1large or contains a digit
other than 0-7. Correct the constant so that it
contains only legal digits that fall within the octal
range 0 to 177777.

INVALID OPTIONAL LENGTH SPECIFIER
A data type declaration optional length specifier is
illegal. For example, REAL*4 and REAL*8 are legal, but
REAL*6 is not. Correct the statement so that it
contains only a valid data type declaration length.

INVALID RADIX-50 CONSTANT
An illegal character was detected in a RADIX-50
constant. Verify that only characters from the
RADIX-50 character set are used in a RADIX-50 constant.

INVALID STATEMENT LABEL REFERENCE

Reference has been made to a statement number that is
of 1illegal <construction. For example, GOTO 999999 is
illegal since the statement number is too long. Check
that the statement number consists of one to five
decimal digits placed in the first five columns of a
statement's initial 1line and that it does not contain
only zeroes.

INVALID SUBROUTINE OR FUNCTION NAME
A name used in a CALL statement or function reference
is not wvalid. For example, use of an array name in a
CALL statement routine name reference 1is illegal.
Verify that the name specified 1in the statement is
spelled correctly.

INVALID TARGET FOR ASSIGNMENT
The left side of an arithmetic assignment statement is
not a variable name or array element reference.
Correct the statement in error.

INVALID TYPE SPECIFIER
An unrecognizable data type was used. Verify that the
data type indicated is valid.

INVALID USAG

E OF SUBROUTINE OR FUNCTION NAME

A function name appeared in a DIMENSION, COMMON, DATA,
or EQUIVALENCE or data type declaration statement.
Correct the statement in error.

INVALTD VARTABLE NAME
A variable name contains an illegal character, is
missing, or does not begin with an alphabetic
character. Correct the statement in error.

FORTRAN IV ERROR DIAGNOSTICS

LABEL ON DECLARATIVE STATEMENT

MISSING

MISSING

MISSING

MISSING

MISSING

MISSING

MISSING

MISSING

MISSING

MISSING

MISSING

A label was found on a declarative statement. Correct
the program so that declarative statements do not have
labels.

ASSIGNMENT OPERATOR
The first operator seen in an arithmetic assignment
statement was not an equal sign (=). For example,
I+J=K. Correct the arithmetic assignment statement in
error.

coMMA
The comma delimiter was expected but not found.
Correct the format of the statement in error.

COMMA IN OPEN OR CLOSE KEYWORD LIST

Two options in an OPEN/CLOSE keyword 1list are not
separated by a comma. Check for a typographical error
in the statement.

DELIMITER IN EXPRESSION
Two operands have been placed next to each other in an
expression with no operator between them. Correct the
statement in error.

EXPRESSION
A required expression (for example, the limit
expression in a DO statement) was omitted. Correct the
syntax of the statement.

LABEL
A statement label was expected but not found. For
example, ASSIGN J TO I is illegal; a valid statement
label reference should precede 'TO' but does not.
Verify that the reference preceding 'TO' is a valid
statement label of an executable statement in the same
program unit as the ASSIGN statement.

LABEL LIST AFTER COMMA

In an assigned GOTO statement, the integer variable was
followed by a comma but no list was found. Check for a

typographical error in the statement.

LEFT PARENTHESIS AFTER OPEN OR CLOSE
An OPEN or CLOSE statement does not have a left
parenthesis . preceding .the keyword list. Check for a
typographical error in the statement.

OPERATOR AFTER EXPRESSION
An expression was not terminated by a comma, right
parenthesis, or other operator. Check for a
typographical error in the statement.

QUOTATION MARK
In a FIND statement, the logical unit number and record
number were not separated by a single quotation mark.
Correct the statement in error.

RIGHT PARENTHESIS
A right parenthesis was expected but not found. For
example, READ(5,100,) is illegal; the first non-blank
character after the format reference should be a right
parenthesis but 1is not. Correct the format of the
statement in error.

FORTRAN IV ERROR DIAGNOSTICS

MISSING 'TO' IN ASSIGN STATEMENT
The keyword 'TO! does not follow the label
specification in an ASSIGN statement. Check for a
typographical error in the statement.

MISSING VALUE FOR KEYWORD IN OPEN OR CLOSE STATEMENT
A keyword requiring a value was specified without a
value. Correct the syntax of the statement.

MISSING VARIABLE
A variable was expected, but not found. For example,
ASSIGN 100 TO 1 1is illegal; a variable name should
follow the 'TO' but does not. Verify that the
reference following 'TO' 1is a valid integer variable
name.

MISSING VARIABLE OR CONSTANT
An operand (variable or constant) was expected but a
delimiter (comma, parenthesis, etc.) was found. For
example, WRITE() is 1illegal; a unit number should
follow the open parenthesis, but a delimiter (close
parenthesis) 1is encountered instead. Correct the
format of the statement in error.

MODES OF VARIABLE **** AND DATA ITEM DIFFER
The data type of each variable and its associated data
list item must agree in a DATA Statement. Correct the
format of the items in the DATA statement.

MULTIPLE DECLARATION FOR VARIABLE ****
A variable appeared in more than one data type
declaration statement or dimensioning statement.
Subsequent declarations are ignored. Correct the
program logic.

MULTIPLE DECLARATION OF OPEN OR CLOSE KEYWORD
A keyword has been specified more than once in a single
OPEN or CLOSE statement. Remove the incorrect or
duplicate reference to the keyword.

NOSPANBLOCKS KEYWORD IS IGNORED UNDER RT-11 AND RSTS/E
A NOSPANBLOCKS specification was included in an OPEN
statement. Delete the NOSPANBLOCKS specification from
the statement.

OPEN OR CLOSE KEYWORD VALUE MUST BE QUOTED STRING
A keyword which requires a quoted-string value was
given an expression value. Correct the syntax of the
statement.

OPEN OR CLOSE STATEMENT REQUIRES UNIT= SPECIFIER
No UNIT= specification is present in the OPEN or CLOSE
statement in question to select the desired logical
unit. Add the UNIT= specification to the s”"Dtement.

PARENTHESES NESTED TOO DEEPLY
Group repeats in a FORMAT statement have been nested
too deeply. Limit group repeats to eight levels of
nesting.

P-SCALE FACTOR NOT IN RANGE -127 TO +127
P-scale factors were not in the range =127 to +127,
Correct the statement in error.

FORTRAN IV ERROR DIAGNOSTICS

REFERENCE TO INCORRECT TYPE OF LABEL **#%%
A statement label reference that should be a label on a
FORMAT statement 1is not such a label, or a statement
label reference that should be a label on an executable
statement 1is not such a label. Correct the pregram
logic.

REFERENCE TO UNDEFINED STATEMENT LABEL
A reference has been made to a statement label that has
not been defined anywhere in the program unit. Correct
the program logic. -

SHARED KEYWORD IS IGNORED UNDER RT-11
A SHARED specification was included in a program to be
executed under RT-11. Delete the SHARED specification
from the statement.

STATEMENT MUST BE UNLABELED
A DATA, SUBROUTINE, FUNCTION, BLOCK DATA, arithmetic
statement function definition, or declarative statement
was labeled. Correct the statement in error.

STATEMENT TOO COMPLEX
An arithmetic statement function has more than ten
dummy arguments or the statement 1is too 1long to
compile. Verify that the number of dummy arguments in
an arithmetic statement does not exceed ten; break
long statements into two or more smaller statements.

SUBROUTINE OR FUNCTION STATEMENT MUST BE FIRST
A SUBROUTINE, FUNCTION or BLOCK DATA statement 1is not
the first statement in a program unit. Ensure that, if
present, these statements appear first in a program
unit.

SUBSCRIPT OF ARRAY *#*%% NOT IN RANGE
Array subscripts that are constants or constant
expressions are found to be outside the bounds of the
array's dimensions. The operation in question is
aborted. Correct the program.

SYNTAX ERROR
The general form of the statement was not fodrmatted
correctly. Check the general format of the statement
in error and correct the program.

SYNTAX ERROR IN INTEGER OR FLOATING CONSTANT
An integer or floating constant has been incorrectly
formed. For example, 1.23.4 1is an illegal floating
censtant because it contains two decimal points.
Correct the format of the integer or floating constant
in question.

SYNTAX ERROR IN LABEL LIST
The list of labels for an assigned or computed GOTO
statement is improperly formatted, or contains a
reference to an entity which is not the label on an
executable statement. Correct the format of the list.

UNARY OPERATOR HAS TOO MANY OPERANDS
Two operands have been specified for an operator (such
as .NOT.) which accepts only one operand. Check for a
typographical error in the statement.

c-11

FORTRAN IV ERROR DIAGNOSTICS

UNLABELED FORMAT STATEMENT
A FORMAT statement was not labeled. Correct the FORMAT
statement in error by assigning it the proper label.

UNRECOGNIZED KEYWORD IN OPEN OR CLOSE STATEMENT
The OPEN or CLOSE statement in question contains a
keyword which is not recognized by the compiler. Check
for a misspelling or typographical error in the
keywords used in the statement.

UNRECOGNIZED VALUE FOR OPEN OR CLOSE KEYWORD
A keyword which requires a quoted-string value was
specified with an unrecognized value string. For
example, DISPOSE = 'SURE'. Specify a valid value for
the keyword.

USAGE OF VARIABLE **** INVALID
An attempt was made to EXTERNAL a common variable, an
array variable, or a dummy argument. Or an attempt was
made to place in COMMON a dummy argument or external
name. Correct the program logic.

VALUE OF CONSTANT NOT IN RANGE
An integer constant in the designated source program
line exceeds the maximum unsigned value (65535). This
error is also printed if an invalid dimension is
specified for an array or if the exponent of a floating
point constant is too large. Correct the statement in
error.

VARIABLE **** INVALID IN ADJUSTABLE DIMENSION
A variable used as an adjustable dimension was not an
integer dummy argument in the subprogram unit. Correct
the program.

WRONG NUMBER OF OPERANDS FOR BINARY OPERATOR
An operator which requires two operands was specified
with only one operand. Example: I=*J. Check for a
typographical error in the statement.

WRONG NUMBER OF SUBSCRIPTS FOR ARRAY ***%
An array reference does not have the same number of
subscripts as specified when the array was dimensioned.
Correct the statement in error.

C.1.3 Warning Diagnostics

Warning diagnostics report conditions which are not true error
conditions, but which can be potentially dangerous at execution time,
or can present compatibility problems with FORTRAN compilers running
on other DEC operating systems. The warning diagnostics are normally
suppressed, but can be enabled by use of the /WARNINGS (/W) compiler
option. The form and placement of the warning diagnostics are the
same as those for the secondary phase error diagnostics (see Section
C.1.2). A listing of the warning diagnostics follows:

c-12

FORTRAN IV ERROR DIAGNOSTICS

ADJUSTABLE DIMENSIONS ILLEGAL FOR ARRAY ****
Adjustable arrays must be parameter arrays in a
subprogram, and the adjustable dimensions must be
integer dummy arguments in the subprogram. Any
variation from this rule will cause a dimension of 1 to
be used and this warning message to be issued.

LOOP ENTRY AT LABEL **** PRECLUDES OPTIMIZATIONS

A transfer of control occurs from outside the
containing DO 1loop to the label indicated. This may
indicate a programming error (if the loop does not have
extended range). Possible optimization of the loop in
question is not attempted. If optimization of the loop
is desired, make sure that labels occurring within the
body of the DO loop are referenced only from within
that loop.

MODIFICATION OF **** PRECLUDES OPTIMIZATIONS
The indicated variable, which is wused as a control
parameter of a DO loop, is modified within the body of
that 1loop. Possible optimization of the 1loop in
question is not attempted. If optimization of the loop
is desired, correct the program logic to not modify any
of the loop control parameters in the body of the loop.

NON-STANDARD STATEMENT ORDERING
Although the FORTRAN IV Compiler has less-restrictive
statement ordering requirements than those outlined in
Chapter 7 of the PDP-11 FORTRAN Language Reference
Manual, non-adherence to the stricter requirements may
cause error conditions on other FORTRAN compilers. See
Section 3.1 of this document.

VARIABLE **** TS NOT WORD ALIGNED
Placing a non-LOGICAL*l1 variable or array after a
LOGICAL*1 variable or array in COMMON or equivalencing
non-LOGICAL*1 variables or arrays to LOGICAL*1
variables or arrays can cause this condition. An
attempt to reference the variable at runtime will cause
an error condition.

VARIABLE **** NAME EXCEEDS SIX CHARACTERS
A variable name of more than six characters was
specified. The first six characters were used as the
true variable name. Other FORTRAN compilers may treat
thisg &g an error condition. See Section 3.2 of this
document.

C.1l.4 Fatal Compiler Error Diagnostics

Listed below are the fatal compiler error diagnostics. These
diagnostics, which are sent directly to the initiating terminal,
report hardware error conditions, conditions which may require
rewriting of the source program, and compiler errors which may require
attention from your Software Support Representative.

?FORTRAN-F-CODE GENERATION STACK OVERFLOW
A statement 1is too complex to process. Simplify
complex statements.

FORTRAN IV ERROR DIAGNOSTICS

?FORTRAN-F~-COMPILER FATAL ERROR, ANALYSIS FOLLOWS
Some type of unexpected error was encountered by
FORTRAN. Please send the console listing with a copy
of your program (on some machine-readable medium) with
an SPR report.

?FORTRAN-F-CONSTANT SUBSCRIPT STACK OVERFLOW
Too many constant subscripts have been employed in a
statement. Simplify the statement.

?FORTRAN-F-DEVICE FULL
There is insufficient room available on an output
device specified to create the object or listing files
required. Make more space available on the device by
deleting unnecessary files and/or using the SQUEEZE
command, or by redirecting the object on listing files
to another device.

?FORTRAN-F-DYNAMIC MEMORY OVERFLOW
The program unit currently being compiled cannot be
processed in the available memory space., Break the
program unit in question into smaller subprograms, or
recompile on a larger machine.

?FORTRAN-F~ERROR READING SOURCE FILE
An unrecoverable error occurred while the compiler was
attempting to read a source program input file.
Correct the hardware problem and recompile.

?FORTRAN-F-ERROR WRITING LISTING FILE
An unrecoverable error occurred while the compiler was
attempting to write the listing output file. Make sure
that the output device 1is write-enabled, and that
sufficient free space exists on the device for the
output file. Recompile the program.

?FORTRAN-F-ERROR WRITING OBJECT FILE
An unrecoverable error occurred while the compiler was
attempting to write the object program output file.
Make sure that the output device is write—enabled, and
that sufficient free space exists on the device for the
output file. Recompile the program.

?FORTRAN-F-FILE NOT FOUND
An input file specified in the command string was not
found. Correct the comnmand tring to refer to an
existing file.

-
=]

?FORTRAN-F-HELP FILE NOT FOQUND
The FORTRAN IV help file, SY:FORTRA.HLP, was not
present on the system device when the help switch was
given to the compiler. No help information is
available. Replace the file from the FORTRAN
distribution medium if help information is required.

?FORTRAN-F-ILLEGAL VALUE FOR /% SWITCH
An illegal value has been specified for a compiler
command string switch. Refer to 1.2.2 for compiler
option information.

?FORTRAN-F-ILLEGAL COMMAND
The command string presented to the compiler was
illegal in format. Correct the command string.

FORTRAN IV ERROR DIAGNOSTICS

?FORTRAN~F~ILLEGAL DEVICE
A device specification in a compiler command string was
illegal. Correct the command string.

?FORTRAN-F=-OPTIMIZER STACK CVERFLOW
A statement is too complex to process, or too many
common subexpressions occurred in one basic block of
the source program. Simplify complex statements.

?FORTRAN-F-SUBEXPRESSION STACK OVERFLOW
An attempt was made to compile a statement which could
overflow the runtime stack at execution time. Simplify
complex statements.

?FORTRAN-F~-UNKNOWN SWITCH-/x
An illegal switch has been specified in the compiler
command string. Refer to 1.2.2 for compiler option
information.

C.2 OBJECT TIME SYSTEM ERROR DIAGNOSTICS

The Object Time System detects certain I/0, arithmetic, and system
failure error conditions and reports them on the user terminal. These
error diagnostics are printed in either a long or short form.

The short form of the message appears as:

?ERR nn
where nn is a decimal error identification number.
The long form of the message appears as:

?ERR nn text

where nn is a decimal error identification number and text is a short
error description.

Aafairlde macanc~a £ 1 mk }-\O-—J— nnnnnnn vyeavr maAr 1A ~Aan

The default message 1Iorm is 1o ong. 11 C message €rror moauie can
be 1linked to the program by using the /I linker switch. The module
named $SHORT should be included from the FORTRAN library.

There are four classes of OTS error conditions. Each error condition

is - -assigned to---one - of - these--classes.. -An error condition
classification for the error codes 1-16 can be changed by using the
system subroutine SETERR. (See Section B.10). Error codes 0 and

20-69 should not be changed from their FATAL classification or
indeterminable results will occur. The classifications are:

IGNORE the error is detected but no error message is sent
to the terminal. Execution continues.

WARNING the error message is sent to the terminal and
execution continues.

FATAL the error message is sent to the terminal and
execution is terminated.

COUNT:n the error message is sent to the terminal and
execution continues until the nth occurrence of
the error, at which time the error will be treated
as FATAL.

FORTRAN IV ERROR DIAGNOSTICS

If a program is terminated by a fatal error condition, active files
may not be closed. Under RT-11, when control is returned to the
Monitor, a CLOSE command can be given to close all active files,
although some of the output to these active files may have been lost.

The OTS error diagnostics are listed below along with the error type
and a brief explanation, where necessary.

Error Error Message
number type
0 FATAL NON-FORTRAN ERROR CALL

This message indicates an error condition (not
internal to the FORTRAN run-time system) that may
have been caused by one of four situations:

(RT-11 only)

1. A foreground 3job wusing SYSLIB completion
routines was not allocated enough space (using
the FRUN /N option) for the initial call to a
completion routine.

Check Chapter 4 (SYSTEM SUBROUTINE LIBRARY) of
the RT-11 Advanced Programmers Guide for the
formula used to allocate more space.

09300 (RT-11 only)
2. There was not sufficient memory for the
background job.

Make more memory available by unloading
unnecessary handlers, deleting unwanted files,
compressing the device.

(RT-11 only)

3. Under the single-job monitor, a SYSLIB
completion routine interrupted another
completion routine.

Use the FB Monitor to allow more than one
active completion routine.

4. An assembly 1language module 1linked with a
FORTRAN program issued a TRAP instruction with
an error code that was not recognized by the
FORTRAN error handler.

Check the program logic.

1 FATAL INTEGER OVERFLOW
During an integer multiplication, division, or
exponentiation operation, the value of the result
exceeded 32767 in magnitude.
Correct the program logic.

2 FATAL INTEGER ZERO DIVIDE
During an integer mode arithmetic operation, an
attempt was made to divide by zero.

Correct the program logic.

Error
number

(%]

[
o

11

12

Error
type

FATAL

WARNING

IGNORE

IGNORE

FATAL

PORTRAN IV ERROR DIAGNOSTICS

Message

COMPILER GENERATED ERROR

An attempt was made to execute a FORTRAN statement
in which the compiler had previously detected
errors.

Consult the program 1listing generated by the
compiler (if one was requested) and correct the
program for the errors detected at compile time.

COMPUTED GOTO OUT OF RANGE

The value of the integer variable or expression in
a computed GOTO statement was less than 1 or
greater than the number of statement label
references in the list.

Control is passed to the next executable
statement. Examine the source program and correct
the program logic.

INPUT CONVERSION ERROR
During a formatted input operation, an illegal
character was detected in an input field.

A value of zero is returned. Examine the input
data and correct the invalid record.

OUTPUT CONVERSION ERROR

During a formatted output operation, the value of
a particular number could not be output in the
specified field length without loss of significant
digits.

The field is filled with asterisks ('*'). Correct
the FORMAT statement to allow a greater field

I

g an arithmetic operation, the absolute value
of a floating-point expression exceeded the
largest representable real number.

A value of zero 'is returned. Correct the program
logic.

FLOATING UNDERFLOW

During an arithmetic operation, the absolute value
of a floating-point expression became less than
the smallest representable real number.

The real number is replaced with a value of zero.
Correct the program logic.

FLOATING ZERO DIVIDE
During a REAL mode arithmetic operation an attempt
was made to divide by zero.

The result of the operation is set to zero.
Correct the program logic.

Cc-17

Error
number

13

14

15

l6

Error
type

COUNT: 3

FATAL

FATAL

FATAL

FORTRAN IV ERROR DIAGNOSTICS

Message

SQRT OF NEGATIVE NUMBER
An attempt was made to take the square root of a
negative number.

The result 1is replaced by zero. Correct the
program logic.

UNDEFINED EXPONENTIATION OPERATION

An attempt was made to perform an illegal
exponentiation operation. (For example =3.**.5 is
illegal because the result would be an imaginary
number.)

The result of the operation 1is set to zero.
Correct the program logic.

LOG OF ZERO OR NEGATIVE NUMBER
An attempt was made to take the 1logarithm of a
negative number or zero.

The result of the operation 1is set to zero.
Correct the program logic.

WRONG NUMBER OF ARGUMENTS

One of the FORTRAN Library functions, or one of
the system subroutines which checks for such an
occurrence, was called with an improper number of
arguments.

Check the format of the particular library
function or system subroutine call, and correct
the call.

The following error diagnostics should not be changed from the FATAL
classification by use of the system subroutine SETERR:

20

21

22

FATAL

FATAL

FATAL

INVALID LOGICAL UNIT NUMBER
An illegal logical unit number was specified in an
I/0 statement.

A logical unit number must be an integer within
the range 1 to 99. Correct the statement in
error.

OUT OF AVAILABLE LOGICAL UNITS
An attempt was made to have too many logical units
simultaneously open for I/O.

The maximum number of active logical units is six
by default. To 1increase the maximum, recompile
the main program using the /UNITS (/N) option to
specify a larger number of available channels.

INPUT RECORD TOO LONG

During an input operation, a record was
encountered that was longer than the maximum
record length.

Cc-18

Error
number

23

24

25

26

Error
type

FATAL

FATAL

FATAL

FATAL

FORTRAN IV ERROR DIAGNOSTICS

Message

The default maximum record length is 136 (decimal)
bytes. To increase the maximum, recompile the
main program using the /RECORDS (/R) option to
specify a larger run-time record buffer (the legal
range is 4 to 4095).

HARDWARE I/0 ERROR
A hardware error was detected during an I/0
operation.

Check the volume for an off-line or write-locked
condition, and retry the operation. Try another
unit or drive if possible, or use another device.

ATTEMPT TO READ/WRITE PAST END OF FILE

During a sequential READ operation, an attempt was
made to read beyond the last record of the file.
During a random-access READ, this message
indicates that an attempt was made to reference a
record number that was not within the bounds of
the file.

Use the "END=" parameter to detect this condition,
or correct the program logic so that no request is
made for a record outside the bounds of the file.

During a WRITE operation, this message indicates
that the space available for the file is
insufficient.

{(RT-11 action

Try to make more file space available by deleting
unnecessary files and compressing the device, or
by using another device.

{RSTS/E action)

This condition is equivalent to the "NO ROOM FOR
USER ON DEVICE" system error. Make more space
available by deleting files from the current
account, or use another device.

ATTEMPT TO READ AFTER WRITE

An attempt was made to read after writing on a
sequential file 1located on a file-structured
device.

A write operation must be followed by a REWIND or
BACKSPACE before a read operation can be
performed. Correct the program logic.

RECURSIVE I/0 NOT ALLOWED

An expression in the I/O list of a WRITE statement
caused initiation of another READ or WRITE
operation. (This can happen if a FUNCTION that
per forms I/0 is referenced within*an expression in
an I/0 list.)

Correct the program logic.

c-19

Error
number

27

28

29

30

31

32

Error
type

FATAL

FATAL

FATAL

FATAL

FATAL

FATAT,

FORTRAN IV ERROR DIAGNOSTICS

Message

ATTEMPT TO USE DEVICE NOT IN SYSTEM
An attempt was made to access a device that was
not legal for the system in use.

Use the system ASSIGN command to create the
required logical device name, or change the
statement in error.

OPEN FAILED FOR FILE
The file specified was not found, or there was no
room on the device.

Verify that the file exists as specified. Delete
unnecessary files from the device, or use another
device.

NO ROOM FOR DEVICE HANDLER (RT-11 only)
There was not enough free memory left to
accommodate a specific device handler.

Move the file to the system device or to a device
whose handler 1is resident. Make more memory
available by wunloading unnecessary handlers,
unloading the foreground job, using the single-job
Monitor, or SET USR SWAP, if possible.

NO ROOM FOR BUFFERS
There was not enough free memory left to set up
required I/0 buffers.

(RT-11 only)

Reduce the number of logical units that are open
simultaneously at the time of the error. If using
double buffering or if another file 1is currently
open, use single buffering. Make more memory
available by unloading unnecessary handlers,
unloading the foreground job, using the single-job
Monitor, or SET USR SWAP, if possible.

(RSTS/E only)

Increase the space available for buffering by
specifying the appropriate value for the /K switch
to LINK, or reduce the number of logical units
that are open simultaneously at the time of the
error.

NO AVAILABLE I/0 CHANNEL

More than the maximum number of channels available
to the FORTRAN IV run-time system (15 for RT-11;
14 for RSTS/E, exclusive of the terminal) were
requested to be simultanecusly copened for I/0C.

Close any logical wunits previously opened that
need not be open at this time.

FMTD-UNFMTD-RANDOM I/0 TO SAME FILE

An attempt was made to perform any combination of
formatted, unformatted, or random access I/0 to
the same file.

Correct the program logic.

C-20

Error
number

33

34

35

36

37

38

Error
type

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FORTRAN IV ERROR DIAGNOSTICS

Message

ATTEMPT TO READ PAST END OF RECORD
An attempt was made to read a larger record than
actually existed in a file.

Check the construction of the data file; correct
the program logic.

UNFMTD I/0 TO TT OR LP
An attempt was made to perform an unform

i1 QLLRliupo n

rma
write operation on the terminal or line printe

r

~A
u

" er

Assign the logical wunit in gquestion to the
appropriate device using the ASSIGN system
command, the OPEN statement, the ASSIGN or OPEN
FORTRAN library routine, or (RT-11 only) the
IASIGN SYSLIB routine.

ATTEMPT TO OUTPUT TO READ ONLY FILE
An attempt was made to write on a file designated
as read-only.

Check the OPEN statement, the ASSIGN or OPEN
(RSTS/E only) system routine or IASIGN SYSLIB
function (RT-11 only) to ensure that the correct
arguments were used. Check for a possible
programming error.

BAD FILE SPECIFICATION STRING

The Hollerith or 1literal string specifying the
device/filename OPEN statement, in the CALL ASSIGN
or CALL OPEN system subroutine could not be
interpreted.

Check the format of the OPEN statement, CALL
ASSIGN or CALL OPEN statement.

RANDOM ACCESS READ/WRITE BEFORE DEFINE FILE
A random-access read or write operation was
attempted before a DEFINE FILE was performed.

Correct the program so that the DEFINE FILE
operation is executed 'before any random-access
read or write operation.

RANDOM I/0 NOT ALLOWED ON TT OR LP
Random~access I/0 was illegally attempted on the
terminal or line printer.

Assign the 1logical unit in question to the
appropriate device wusing the ASSIGN keyboard
monitor command, OPEN statement, the ASSIGN or
OPEN FORTRAN library routine, or (RT-11 only) the
IASIGN SYSLIB routine.

RECORD LARGER THAN RECORD SIZE IN DEFINE FILE

A record was encountered that was larger than that
specified in the DEFINE FILE statement for a
random-access file.

Shorten the I/0 1list or redefine the file
specifying larger records.

Cc-21

Error
number

40

41

42

43

44

45

46

Error
type

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FATAL

FORTRAN IV ERROR DIAGNOSTICS

Message

REQUEST FOR A BLOCK LARGER THAN 65535
An attempt was made to reference an absolute disk
block address greater than 65535.

Correct the program logic.

DEFINE FILE ATTEMPTED ON AN OPEN UNIT
A file was open on a unit and another DEFINE FILE
was attempted on that unit.

Close the open file wusing the CLOSE statement
before attempting another DEFINE FILE.

MEMORY OVERFLOW COMPILING OBJECT TIME FORMAT
The OTS ran out of free memory while scanning an
array format generated at run-time.

(RT-11 only)

Use a FORMAT statement specification at
compile-time rather than object-time formatting,
or make more memory available by unloading
unnecessary handlers, unloading the foreground job
if possible, using the single-job Monitor, or SET
USR SWAP, if possible.

(RSTS/E only)

Use a FORMAT statement specification at
compile-time rather than object-time formatting,
or allocate more space by using the /K switch +to
LINK.

SYNTAX ERROR IN OBJECT TIME FORMAT
A syntax error was encountered while the OTS was
scanning an array format generated at run-time.

Correct the programming error.

2ND RECORD REQUEST IN ENCODE/DECODE
An attempt was made to use ENCODE and DECODE on
more than one record.

Correct the FORMAT statement associated with the
ENCODE or DECODE so that it specifies only one
record.

INCOMPATIBLE VARIABLE AND FORMAT TYPES

An attempt was made to output a real variable with
an integer field descriptor or an integer variable
with a real field descriptor.

Correct the FORMAT statement associated with the
READ or WRITE, ENCODE or DECODE.

INFINITE FORMAT LOOP

The format associated with an I/0 statement, which
includes an I/O list, had no field descriptors to
use in transferring those variables.

Correct the FORMAT statement in error.

3 m

f

o]

7O

47

48

49

50

51

59

60

M
o]

Error
type

FATAL

FATAL

FATAL

FATAL

FATAL

WARNING

FATAL

FORTRAN IV ERROR DIAGNOSTICS

Message

ATTEMPT TO STORE OUTSIDE PARTITION (RT-11 only)

In an attempt to store data into a subscripted
variable, the address calculated for the array
element in question did not lie within the section
of memory allocated to the job. The subscript in
question was out-of-bounds. (This message is
issued only when bounds checking modules have been
installed in FORLIB and threaded code is selected

at compile time.)
Correct the program logic.

UNIT ALREADY OPEN
An attempt was made to perform an illegal
operation on an open file.

ENDFILE ON RANDOM FILE
An ENDFILE statement contains a unit number of a
file which is open as a random-access file.

KEYWORD VALUE ERROR IN OPEN STATEMENT
A numeric value specified for a keyword in the
OPEN statement is not within the accepted range.

Check the expression in the OPEN statement, and
modify to yield a valid value.

INCONSISTENT OPEN/CLOSE STATEMENT SPECIFICATIONS
The specifications in an OPEN or subsequent CLOSE
statement have indicated one or more of the
following:

a. A 'NEW' or 'SCRATCH' file which is 'READONLY'.
b. '"APPEND' to a 'NEW', 'SCRATCH', or 'READONLY'

file.
c. 'SAVE' or 'PRINT' of a 'SCRATCH' file.
d. 'DELETE' or 'PRINT' of a '‘READONLY’ file.

Correct the OPEN or CLOSE statement to remove the
conflict.

USR NOT LOCKRED (RT-11"only)

This message is issued when the FORTRAN program is
started. If the program was running in the
foreground, the /NOSWAP option was used during
compilation, and the USR was swapping (i.e., a SET
USR NOSWAP command has not been done).

Re~examine the intent of the /NOSWAP option at
compile time and either compile without /NOSWAP or
issue a SET USR NOSWAP command.

STACK OVERFLOWED

The hardware stack overflowed. More stack space
may be required for subprogram calls and opening
of file. Proper traceback is impaired. This
message occurs in the background only.

Allocate additional space by using the /BOTTOM

(/B) option at link-time. Check for a programming
error.

Cc-23

Error Error

number type
61 FATAL
62 FATAL
63 FATAL
64 FATAL

FORTRAN IV ERROR DIAGNOSTICS

Message

ILLEGAL MEMORY REFERENCE
Some type of bus error occurred, most probably an
illegal memory address reference.

If an assembly language routine was called, check
for a coding error in the routine. Otherwise,
insure that the correct FORTRAN library was
called.

FORTRAN START FAIL

The program was loaded into memory but there was
not enough free memory remaining for the OTS to
initialize work space and buffers.

(RT-11 only)

If running a background job, make more memory
available by unloading unnecessary handlers, using
the single~job Monitor. If running a foreground
job, specify a larger value using the FRUN /N
option. Refer to Chapter 4 (SYSTEM SUBROUTINE
LIBRARY) of the RT-11 Advanced Programmer's Guide
for the correct formula.

(RSTS/E only)
Allocate more space by using the /K switch to
LINK.

ILLEGAL INSTRUCTION

The program attempted to execute an illegal
instruction (e.g., floating=-point arithmetic
instruction on a machine with no floating—-point
hardware) .

If an assembly language routine was called, check
for a coding error in the routine. Otherwise,
ensure that the correct FORTRAN library was
called.

VIRTUAL ARRAY INITIALIZATION FAILURE
a) The total storage requirements for VIRTUAL
rrays in the program exceeds the currentliy

available memory on the system.

b) Another job is currently using VIRTUAL support
under the FB or SJ monitor.

c) PLAS VIRTUAL array support is attempted under
the FB or SJ monitor.

-
n

d) Any non-PLAS VIRTUAL array Support
attempted under the XM monitor.

e) PLAS support is attempted without EIS
hardware.

PORTRAN IV ERROR DIAGNOSTICS

Error Error Message
number type

If another job is currently executing (under XM
monitor with PLAS VIRTUAL support), make sure that
the total VIRTUAL storage demands for both
programs are satisfied by the available memory on
the machine.

Reduce VIRTUAL storage requirements by decreasing
the size of VIRTUAL arrays declared 1in the

65 FATAL VIRTUAL ARRAY MAPPING ERROR
An attempt has been made to reference outside the
bounds of the extended memory region allocated to
VIRTUAL arrays in this program, probably caused by
a subscript out-of-bounds.

Verify that the subscripts of the VIRTUAL arrays
referenced in the statement indicated are within
the declared bounds.

66 FATAL UNSUPPORTED OPEN/CLOSE KEYWORD OR OPTION
A keyword or keyword value in the OPEN or CLOSE
statement indicated is invalid under this
particular operating system.

Refer to Section 3.1.1 for system—-dependent
restrictions.

67 WARNING UNSUPPORTED OPEN/CLOSE KEYWORD OR OPTION
A keyword or keyword value in the OPEN or CLOSE
statement indicated is not meaningful in the
current operating system environment.

The presence of the keyword or option is ignored.
68 FATAL DIRECT ACCESS RECORD SIZE ERROR
The size of a direct-access record exceeds 32767
double words.
Correct the program logic.
69 FATAL Cannot send to QUEMAN (RSTS/E only). An error

occurred when closing a file with attribute
DISPOSE='PRINT'.

APPENDIX D

COMPATIBILITY WITH OTHER PDP-11 LANGUAGE PROCESSORS

FORTRAN IV is a new implementation of FORTRAN for the PDP-11,
available under RT-11, RSTS/E, RSX~11M, RSX-11D and IAS. It has been
designed to be upward compatible with FORTRAN IV PLUS (F4P) and
compatible with the earlier FORTRAN (FTN) on DOS-11 and RSX~-11D V4A.
However, some differences exist as a result of:

1. correcting deficiencies in FTN FORTRAN.

2. language specification decisions necessary to promote the
goal of an upward compatible line of FORTRANS, and

3. providing significant extensions to FTN FORTRAN in a manner
consistent with the FORTRAN language, the ANSI FORTRAN
Standard and existing FORTRANS.

D.1 FORTRAN IV COMPATIBILITY WITH FTN V08.04

This section summarizes differences which may affect conversion from
FTN to FORTRAN 1IV.

Items marked with an asterisk (*) denote differences from FTN which
are common to both FORTRAN IV PLUS (F4P) and FORTRAN IV.

D.l.1 Language Differences

*1. FTN permits transfer of control to FORMAT statements, which
execute as CONTINUE statements. FORTRAN IV does not, and
issues compile-time error messages.

*2. FTN V07.14 provided an uncounted form for Radix-50 constants
used in DATA statements. V08.04 added the counted form and
promised de~support of the uncounted form. Only the counted
form is provided in FORTRAN 1IV.

3. In FORTRAN IV, the syntax of the IMPLICIT statement 1is
different from that required by FTN.

4. FTN provides expressions in FORMAT statements (called
variable format expressions); FORTRAN IV does not.

COMPATIBILITY WITH OTHER PDP-11 LANGUAGE PROCESSORS

D.1.2 Implementation Differences

*]1. PTN allows both formatted and unformatted records in the same
file by means of the MXDFUF subroutine call. This feature is
not supported in FORTRAN IV.

*2. The FTN service subroutines PDUMP and SETPDU are not provided
in FORTRAN 1IV. Similar but more flexible debugging output
may be obtained by using WRITE statements in debug lines.

*3, The TRCLIB library for statement level execution tracing is
not available in FORTRAN IV.

*4, Under PTN, Q format returns the number of characters in the
input record (i.e., the record length) independent of the
current scan position. Under FORTRAN IV, Q format returns
the number of characters remaining in the input record
following the scan position. The record length may be
obtained by using the Q format first in the format
specification.

*5, FTN performs the following actions when opening a unit for
direct access I/0: first it checks if a file already exists;
if so, it uses it, if not, it creates a new file for use.

In FORTRAN IV, the type of open depends on whether a READ or
WRITE statement is causing the open operation. If it is a
READ, then the file must already exist or an error results.
If it is a WRITE, then a new file is created.

*6, The implementation of error handling in FORTRAN IV is
significantly different from that in FTN. 1In particular, the
use of error classes for controlling error handling is
replaced by control over each individual error condition.

*7. FTN does not compile format specifications for wuse at
run—time, whereas FORTRAN IV does. One difference results:

Format specifications stored in arrays are recompiled at
run-time each time they are used. If an H format is used
in a READ statement to read data into the format itself,
that data does not get copied back into the original
array. Hence, it will not be available on a subsequent
use of that array as a format specification. This is in
accord with the ANSI FORTRAN language specification.

This consideration does not apply to format specifications
defined in FORMAT statements.

*8, FTN implements the ENDFILE statement as a close operation.
FORTRAN IV implements the ENDFILE statement by writing an end
of file record in a file.

9. FORTRAN IV checks that the labels used in an assigned GOTO
are valid 1labels in the program unit, but it does not check
at run-time whether an assigned label is in the list in the
GOTO statement. FTN checks at run-time.

10. The FTN /~ON compiler option switch causes two-word
allocation (instead of one-word allocation) of all INTEGER
and LOGICAL variables. The similar FORTRAN IV 14 (/T)
compiler option affects allocation of unspecified size
INTEGER variables only; unspecified LOGICAL variables are
always allocated two words in FORTRAN IV.

COMPATIBILITY WITH OTHER PDP-11 LANGUAGE PROCESSORS

11. The FTN and F4P implementations of adjustable dummy arrays
copy dummy argument dimension variables into an internal
array descriptor upon entry to a subprogram. A subsequent
assignment to a dummy argument dimension variable within that
subprogram does not affect the array subscript calculation.

FORTRAN IV does not use array descriptor blocks but rather
references dummy argument dimension variables directly during
subscript calculations. Hence, an assignment to a dummy
argument dimension variable will affect array subscript
calculations.

12. PTN, in contrast to FORTRAN IV and F4P, does no