
The Organization Engine� Virtual Data

Integration

James S� Miller �DEC�CRL�
Carl Niedner �DEC�HCABU�

Jack London �Fox Chase Cancer Center�

Digital Equipment Corporation
Cambridge Research Lab

CRL ���� April ��� ����

�

Digital Equipment Corporation has four research facilities: the Systems Research Center and the
Western Research Laboratory, both in Palo Alto, California; the Paris Research Laboratory, in
Paris; and the Cambridge Research Laboratory, in Cambridge, Massachusetts.

The Cambridge laboratory became operational in 1988 and is located at One Kendall Square,
near MIT. CRL engages in computing research to extend the state of the computing art in areas
likely to be important to Digital and its customers in future years. CRL’s main focus is applica-
tions technology; that is, the creation of knowledge and tools useful for the preparation of impor-
tant classes of applications.

CRL Technical Reports can be ordered by electronic mail. To receive instructions, send a mes-
sage to one of the following addresses, with the word help in the Subject line:

On Digital’s EASYnet: CRL::TECHREPORTS
On the Internet: techreports@crl.dec.com

This work may not be copied or reproduced for any commercial purpose. Permission to copy without payment is
granted for non-profit educational and research purposes provided all such copies include a notice that such copy-
ing is by permission of the Cambridge Research Lab of Digital Equipment Corporation, an acknowledgment of the
authors to the work, and all applicable portions of the copyright notice.

The Digital logo is a trademark of Digital Equipment Corporation.

Cambridge Research Laboratory
One Kendall Square
Cambridge, Massachusetts 02139

�

The Organization Engine� Virtual Data

Integration

James S� Miller �DEC�CRL�
Carl Niedner �DEC�HCABU�

Jack London �Fox Chase Cancer Center�

Digital Equipment Corporation
Cambridge Research Lab

CRL ���� April ��� ����

Abstract

The Organization Engine is an early example of Virtual Data Integration �
providing the appearance of integration at the desktop without modifying exist�
ing infrastructure	 Starting with the Organization Engine� eight programming
days were needed to provide uniform desktop access to a CODASYL�compliant
hospital information system and to a MUMPS�based radiology information sys�
tem
the technique is equally e�ective for relational and other data bases�	
The resulting tool provides a seamless integration of these two systems� image
storage� pre�recorded audio� and document storage	 In addition to providing
uniform access� the tool also allows healthcare providers to organize the data to
suit their individual needs	

The key to this easy integration lies in two simple techniques
 the trans�
formation of data from all sources into a single� homogeneous representation�
and the use of simple customization �les to describe new object types and for�
mats	 The approach is su�ciently general to allow the integration of applications
which present external interfaces of radically di�erent forms	 Two such forms
are discussed here
 data map publication and transactions	

c�Digital Equipment Corporation ����	 All rights reserved	

� INTRODUCTION� THE CHALLENGE OF INTEGRATION �

� Introduction� The Challenge of Integration

Most healthcare institutions today must struggle with a profusion of disparate
systems� each carefully designed for a single speci�c purpose	 Unfortunately� the
majority of healthcare providers require information dispersed among these var�
ious systems	 Worse yet� at times of greatest need data is likely to be required
from the widest variety of systems	 Historically� several approaches to solving
this problem have been tried
 speci�c pair�wise solutions
e	g	� one vendor�s lab
system to another�s billing system�� agglomeration
constructing a centralized
replica of portions of distributed departmental datasets�� interfacing standards

HL�� MEDIX�	 None of these approaches allows the solution to be on the indi�
vidual�s desk and hence tailored for
and possibly by� the individual	 Virtual
data integration is the apparent integration of information at the desktop�
without modi�cation to the existing infrastructure of niche applications� custom
and standard interface protocols� and organizational boundaries	

All of the current approaches to solving the integration problem alleviate
some of the problem� but they still su�er from several drawbacks

�	 None of them provides uniform access to the data	 The user must still
be aware of the origin of the data� and must deal with data from di�erent
sources in di�erent ways	

�	 None of them provides customized organization of the data	 Each
individual application program still speci�es the way in which its data is
accessed and viewed	 In particular� it is not possible to intersperse data
from one source with data from another	

�	 None of them provides user extensibility to accommodate user prefer�
ences or new data types	

�	 They require extensive
and expensive� custom programming and contin�
ual program maintenance	

Any realistic solution to the healthcare integration problem must address
a speci�c set of requirements	 First and foremost� it must solve these four
problems	 Second� it must capitalize on existing infrastructure � very few in�
stitutions can a�ord to discard their existing information technology investment	
Third� it must be evolutionary and inexpensive	 The Organization Engine is a
prototype designed to demonstrate that virtual data integration satis�es all of
these requirements	

The key to virtual data integration is providing each user with a single view
of all data � regardless of such details as the data�s location� storage format�
metadata model� and so on � without disturbing the implementation of the
various systems that manage the data	 The choice of this single view is at the
root of a successful virtual data integration e�ort	 The Organization Engine

� INTRODUCTION� THE CHALLENGE OF INTEGRATION �

explores one particular user view
 all data is composed of a set of �elds� each
�eld has a value and an icon� the icons are used to indicate a user�tailorable
combination of the operations that can be performed on the �eld�s value and
the origin of the data	 For example� the Organization Engine provides icons for
�folders� of user�con�gured data� as well as �folders containing medical reports
as �led in the hospital�s medical computing system	�

The current Organization Engine prototype is connected to two pre�existing
healthcare applications as well as a variety of desktop utilities that deal with
multimedia datatypes
�les of sound� clinical images� document images� �at
text� and structured text�	 Extending the set of datatypes is straightforward

see Section �	��	 Most of this paper is devoted to the considerably harder
task of integrating existing healthcare applications� which is demonstrated by
examining the techniques used to integrate the DECrad radiology information
system and the Fox Chase Cancer Center�s medical computing service
MCS�	

DECrad

DECrad provides hospital radiology departments with patient registra�
tion functions� exam tracking and scheduling� diagnostic report and �lm
library management operations� accounting functions� and management
reporting	 DECrad is implemented in Digital Standard MUMPS
DSM��
running on Digital�s VAX�VMS platform	

DECrad�s history is illustrative of the integration trend described in the
introduction	 Initially it operated in isolation� providing departmental
management functions but no ability to present its information outside
the radiology department	 An increasing awareness of the need to share
data led to the implementation of a proprietary protocol used by DECrad
to communicate with other hospital units about the essential events in
the life cycle of a radiology exam	 Lacking standards� a number of other
healthcare vendors adopted the protocol despite its proprietary nature	
Recently� a drive for de jure standardization of similar interface proto�
cols has produced
among others� the HL� standard� and DECrad now
supports this standard	

MCS

The Medical Computer System developed at the Fox Chase Cancer Center

FCCC� provides standard hospital information system functionality� as
well as capabilities that are of speci�c value in the treatment of cancer
patients	 The MCS provides the sta� at FCCC with the ability to register
patients� perform patient admissions� discharges� and transfers� transcribe
radiology reports� histories� physicals� and discharge summaries� schedule
diagnostic procedures and outpatient visits� and track the location of pa�
tient medical record charts and radiology �lms	 Interfaces were written
to purchased systems for pharmacy and clinical laboratory� and data on
patient services provided are passed over a local area network to a pur�

� THE ORGANIZATION ENGINE �

chased hospital billing package	 Oncology�speci�c features include cancer
staging� available treatment display� drug side�e�ect information� and pre�
and post�diagnostic �workup� guidelines	

Development of the MCS began in ���� on a Digital VAX cluster platform
with character cell terminals	 Digital�s DBMS network model CODASYL
database product was used	 The MCS was built as a central clearing�
house and repository for all clinical information	 It is a typical exam�
ple of the �agglomeration� approach	 In ���� a migration was initiated
to a distributed network of Reduced Instruction Set Computers
RISC�
with X�terminals as clinical workstations	 Radiology images from CT
and MRI are available at the X�terminals� along with text and graphics	
The databases still remain on the VAX cluster� which is now e�ectively a
database server	 Database transactions pass between the RISC machines
and the VAX cluster using an in�house developed protocol	

The remainder of this paper describes the Organization Engine prototype
system	 Section � describes the basic toolkit provided by the Organization
Engine	 It is this basic set of software that allowed the prototype to be con�
structed in eight programming days	 The Organization Engine assumes that it
has on�line access to its data sources� and Section � describes some of the issues
surrounding the choice of network protocols	 The majority of the integration
work is spent designing and building the small pieces of code that connects
the Organization Engine with a particular data source � the server applica�
tion programming interface
�server API��	 Section � describes two generally
applicable models for server APIs and o�ers comparisons which may be use�
ful to system designers facing virtual data integration problems	 The �nal two
sections contain observations� measurements� and conclusions	

� The Organization Engine

The Organization Engine began as a research project in Digital�s Cambridge
Research Laboratory	 The goal was to provide a software base for use in ex�
ploring the issues that arise from dealing with vast quantities of data� primarily
located in �legacy repositories� � pre�existing systems that merge raw data
with structuring information in individual� idiosyncratic ways	 The software is
divided into three distinct pieces� two of which were stable over a variety of
information sources� and the third carefully tailored to each speci�c repository	
The two generic pieces were a user interface
described in Section �	�� and an
integration toolkit
Section �	�� which provides the connection between the user
view of data and a transmission protocol	 The repository�speci�c component
implements this transmission protocol for a particular data repository	 The de�
sign and implementation of the repository�speci�c component is the subject of
Section �	

� THE ORGANIZATION ENGINE �

��� User Interface

In building the Organization Engine prototype� care was taken to de�ne an
abstraction barrier
modularity boundary� between the user interface and the
underlying integration system	 This modularity allows the researchers to mod�
ify the user interface without a�ecting the implementation of the integration
system� and vice versa	 The choice of the initial user interface was thus seen as
a �trial balloon� rather than an integral aspect of the design of the system	

The user interface of the prototype Organization Engine is built to encourage
users to think about navigation
browsing� rather than search
querying� as a
means of locating information	 The goal is to make it natural for users to think
of placing information in multiple places so that locating it later will be easy	
�Copying� an object actually means copying a reference to the object� so it is
very fast and e�cient	 In fact� the implementation of the system allows some
simple queries to be constructed and executed through this browsing interface�
but the user is unaware of these queries	 From the user�s perspective� the
interface looks very much like a set of �blotters�� each of which is similar to the
MacintoshtmFinder or MS�DOS WindowstmDesktop	 The blotter contains
various named icons corresponding to data objects� with the shape of the icon
re�ecting the operations that can be performed on the data and�or the origin
of the data	

Using the mouse to double�click on an icon activates the icon	 The meaning
of �activate� is quite �exible	 A simple text �le is used to customize the user
interface� it maps the name of an icon to the operation that should be performed
when it is activated	 There is a standard operation that can be used to activate
an icon to reveal another blotter
i	e	 to make the icon behave like a folder�	
Another pair of operations allows a speci�c application to be run
the application
name is in the customization �le� and given either the name of the icon of the
contents of the icon as a command argument	 This mechanism makes it very
simple to add new data types to the system
 a new icon is designed and installed�
and the customization �le is edited to map that icon to the application that can
handle the data type	

The Organization Engine�s user interface is the focus of ongoing research	
In particular� the ability to browse through data is rather limited in the current
interface� and the lack of good query facilities limits its applicability	 Finding a
new metaphor that encompasses both is under active investigation	

��� The Integration Toolkit

At the core of the Organization Engine is a toolkit that is used to connect
the user interface with a wide variety of di�erent data sources	 See Figure �	
The user interface communicates with this toolkit through an API that allows
the user interface to ask for the �eld names within a record� for each of those
ask for the contents and type of the �eld	 It also allows the creation of new

� THE ORGANIZATION ENGINE �

records� �elds within records� modi�cation of �eld contents and so forth	 The
user interface speci�es a record by providing a record identi�er which it has
previously received from the central toolkit
as the value of a �eld of some
record� or one of a set of �magic� identi�ers that each data source speci�es as
the roots from which other records can be located	

User Interface

Records� �elds
UIDs

Organization Engine

Tool Kit

Cookies
Stored data

DECrad FCCC Other

MCS

Figure �
 Structure of the Organization Engine

The central toolkit is responsible for converting these operations into a
smaller set that communicate back to the actual source of the data	 There
are only six operations at this end
 initiate a connection with a data source�
get a record
from the data source into the Organization Engine�� create a new
record� replace the contents of an entire record� replace the contents of a sin�
gle �eld of a record� and close the connection to the data source	 The toolkit
communicates with the data source by specifying an identi�er for records which
previously came from that data source � just as the user interface communi�
cates with the toolkit itself	

There is one important feature to notice about these interfaces
 the side in
possession of the data always speci�es the identi�er for the data	 Thus� the user
interface can only use identi�ers that it received from the Organization Engine
toolkit
or special tokens�� and the Organization Engine toolkit can only use
identi�ers it received from the data source
or special tokens�	 The Organiza�
tion Engine does not merely pass on these identi�ers unchanged	 Instead� it
combines the identi�er with a marker that allows it to identify the data source
that produced the identi�er	 We refer to the identi�ers passed between the Or�
ganization Engine and the data source as cookies� and the identi�er passed
between the Organization Engine and the user interface as object IDs	 Thus�
an object ID consists of two parts
 a data source identi�er and a cookie belong�
ing to that data source	 This technique resembles dynamic data typing� tagged
records� and some object�oriented programming implementations	

� COMMUNICATIONS AND INTERCONNECTION �

The toolkit is intended as a body of code that must be extended to be useful	
For each new data source� two things must be provided to integrate into the
Organization Engine framework	 The �rst is a service identi�er to be used by
the Organization Engine to refer to data from the new source of information	
This can be either allocated by some form of universal naming authority
such
as the ISO unique identi�er name space� or simply be local to this installation
of the Organization Engine� as the implementor prefers	 The second is a body
of code� typically small� which implements the six operations required by the
Organization Engine toolkit of the data source	 The next two sections provide
some guidance in designing and building this code	

� Communications and Interconnection

The single most important property of the communication mechanism is that
it must be invisible to the user	 There is probably no component of an overall
system less interesting to the typical healthcare professional than the networks
on which it is based	 There is no set of problems less interesting to that profes�
sional than di�culties arising from interconnecting systems or networks	 These
mechanisms are very properly viewed as the portion of the system that the
programming sta� should hide	

The Organization Engine prototype gives only a small amount of help or
guidance here	 First� the protocol used to connect to data sources is deliberately
simple
 six commands
open� get� create� reply� modify� close�	 The protocol
makes no commitment to the location of the client�server split
 any reformatting
work can be done either at the user�s workstation
where the Organization
Engine toolkit runs� or at the data source	 The names of �elds in individual
records can be coded on either the client or server � for data sources where
the format is �xed it is reasonable to put this burden on the user�s desktop� for
those where records are not predictably formatted it must go at the data source	
The network transmission protocol is not speci�ed by the toolkit� so this choice�
too� can be made as part of the per�data�source integration code	

The current Organization Engine prototype has already adopted two dif�
ferent interconnection styles
 one uses Remote Procedure Call to connect the
toolkit to the data source� and the other uses DECnet task�to�task	 Each of
these mechanisms has advantages depending on the nature of the network and
the data source	 RPC is preferred when the network environment is multi�
platform or multi�protocol� or if large amounts of data must be moved between
the Organization Engine client and the data source server	 DECnet task�to�
task works well between two machines that both support DECnet and where
the data to be moved is always in small amounts of predictable format	

� SERVER INTERFACE MODELS �

� Server Interface Models

The hardest part of integrating a new data source using the Organization Engine
toolkit is designing the overall structure of the server	 This section describes two
broad classes of server API architectures� the transaction�oriented model
and the data map publication
DMP� model� and provides a comparison of
the two that can assist in choosing between them	

Inquiry 1

Inquiry 2

Inquiry 3 Service
 1

Service
 2

Service
 3

A
P
I

D
r
i
v
e
r

Response 1

Response 2

Response 3

Application

Application
Database

Figure �
 Transaction�Oriented Server

A transaction�oriented server allows information to be retrieved through a
speci�c set of inquiry and reply transactions	 Each inquiry message speci�es
the key values needed to retrieve the data� the type of the message determines
the nature of the data retrieved	 These servers are implemented by a top�level
driver that determines the type of inquiry and dispatches routines to gather
and format the information into the correct response	 Such a server contains a
separate code path for each inquiry message	 Figure � shows the components
of a transaction�oriented server	

A DMP server makes use of a �map� of its application dataset which is
distinct from the application itself	 The data map represents a publishable
subset of both the data elements in the application dataset and the relationships
between those elements	 The server uses this information to allow clients to
browse at will among the published information	 The top�level server code based
on this model is more complex than the corresponding code for a transaction�
oriented server	 However� making the map explicit allows the server to be
independent of the number and nature of data elements accessible through it	
Figure � shows the components of a DMP server	

� SERVER INTERFACE MODELS �

-2-

Application
Database

Data
MapInquiry

Response

API

Figure �
 Data Map Publication Server

The choice between these two models is a trade�o�
 neither is clearly superior
to the other	 The decision must be made along three distinct dimensions� and
evaluated for each data source to be integrated

Initial vs� continuing development cost�

The transaction model is easily built� and corresponds directly and nat�
urally to many existing applications	 Extending this model �across the
network� to desktop computers is relatively easy� and this was precisely
the approach taken by the Fox Chase Cancer Center in building their
medical computing system	 The DMP model requires a more complex
initial system� since it requires code to implement and interpret the data
map	 Over time� however� the �exibility inherent in simply changing a
data structure
the map� as opposed to writing new code
for new trans�
actions� can become a dominant factor in development costs	 In fact� the
DECrad integration allows the data map to be changed while the interface
is in use� and desktop users may see the e�ects of the change as soon as
their next interaction	

Control vs� �exibility�

If two di�erent transactions consult the same underlying table� a trans�
action�oriented server can easily implement distinct access controls for the
operations� while a DMP server would be almost powerless to enforce the
distinction	 On the other hand� the DMP model allows clients to browse
the data in any order that they �nd useful	

� SERVER INTERFACE MODELS �

Performance A transaction�oriented server can achieve better throughput
than a comparable DMP server� since the former dispatches retrieval and
formatting code depending on the input message� while the latter must
�interpret� the map	 The performance di�erence depends largely on the
complexity of the path that must be interpreted by the DMP server� and
to a smaller degree on the complexity of the map itself	

The transaction�oriented server model is easily implemented and well un�
derstood	 The data map publication model� however� is less familiar and bears
closer examination	 At �rst� it may appear that the data map publication model
requires access to metadata� a feature frequently unavailable in existing systems	
Yet even in a database that supports metadata� the published map may or may
not be derivable from the standard metadata	 The remainder of this section
describes the general requirements a DMP server places on the data source	

The key concept in the DMP model is the data map� and this in turn de�
pends on the concept of data names
 the association of a unique name with a
particular class of information	 Given a dataname and any prerequisite informa�
tion for that particular dataname� it must be possible to locate the method for
retrieving all values
instances� of that class	 Instances of information classes
may be either singly� or multiply�valued	 This de�nition of the dataname con�
cept accords with the usage of the term generally accepted in the context of
fourth�generation data dictionary environments	

In addition� a data map describes an application dataset by associating with
each dataname the attributes and values necessary to navigate the dataset	 With
respect to any attribute� the dataname to which it pertains may be termed its
subject	 Similarly� any values the attribute assumes for a given subject may be
termed its objects relative to that subject	 The following list describes several
of the most important attributes used in constructing data maps

has�dependent
 object data name is a dependent of subject data name� i	e	�
the value of the object data name cannot be evaluated without knowing
the value of the subject data name	 The value of the object of a has�
dependent attribute �becomes available for inspection� when the subject
dataname�s value is known	

reference for datanames with a single value� the object of this attributes
speci�es a retrieval method	

next�value�method for datanames with multiple values� the object of this
attribute speci�es a method for iterating through all of the values	

pointer�to indicates this dataname is an �invisible link� between two other
datanames	 When the subject of this attribute is encountered as a depen�
dent� its value should be assigned to the object dataname� and the object�s
dependents should be evaluated instead of the subject�s	

� OBSERVATIONS AND MEASUREMENTS ��

It is convenient to represent the datamap as a three level hierarchical index
in which subjects point to attributes� which point to values	 This representa�
tion scheme is an instance of the entity�attribute�value data model	 In such a
hierarchy� either all attributes for a given subject� or all objects for a speci�c
attribute of a subject� can be retrieved quickly	 For example� when an Orga�
nization Engine user selects an object� this scheme allows the DMP server to
retrieve quickly all data names to be evaluated for display	 The DMP server
accomplishes this task by retrieving all objects of the has�dependent attribute
for the data name corresponding to the selected object	

� Observations and Measurements

Experience to date has been far better than expected for a �rst attempt at
combining a research prototype with pre�existing systems	 The low investment
required
eight programmer days for two systems� con�rms that the virtual data
integration approach is an important approach to solving a major problem in
healthcare information systems	 The prototype is more than adequate for its
intended purpose as a demonstration system	 Initial indications are that the
prototype might be useful in solving existing healthcare integration problems	
With the low cost of integrating with other systems� the Organization Engine
provides an interesting base for experimental user interfaces as well	

Quantitative performance characterization con�rms that DMP servers can
pay in performance for their superior �exibility	 In an informal benchmark�
the DECrad server retrieval logic� the only prototype component easily thus
characterized� exhibited a nearly linear relationship between number of entities
retrieved and elapsed CPU time	 A MicroVAX II CPU
�	� VAX Units of
Processing
VUPs�� or approximately �	� MIPS� required an average of �	��
VUP�seconds per retrieved entity
with a standard deviation of �	��� VUP�
seconds�	

Qualitative results are mixed	 The MicroVAX II system measured objec�
tively provided unacceptable user performance
 on the order of �fteen elapsed
seconds to retrieve a moderately�sized patient record� Results were quite di�er�
ent� however� on the faster VAX ��������
�� VUPs�	 There� the prototype
exhibited apparently instantaneous response when retrieving similar patient
records� despite the addition of a number of items that would tend to impede
performance
 retrieval included the invocation of the Organization Engine client
RPC stub� two�way DECnet transmission on a moderately�loaded network� ac�
tivation of the DECrad RPC server� and internal task�to�task communication
between server processes� in addition to the retrieval logic tasks tested in the
trial described above	 It is important to note that both the qualitative and
the quantitative results presented here were obtained without the bene�t of any
system tuning� and should not be used to predict operational characteristics of
live systems	

� CONCLUSIONS ��

� Conclusions

A data map publication
DMP� server� which allows client applications to
browse the public parts of a data set� provides a �exible base for virtual data
integration	 Building a DMP server is initially more di�cult than building a
transaction�oriented server� but the evolutionary path is simpler	 It is possi�
ble to implement a DMP server for any application dataset that possesses the
following characteristics

� the ability to obtain a value from a dataset� given a singly�valued dataname
and a list of prerequisite datanames and associated values

� the ability to iterate
without duplication� over the values for a multiply�
valued dataname� with prerequisite information

� the ability to store a the published data map� including prerequisite
de�
pendency� information� and invisible pointers	

Because a DMP server inherently requires the ability to interpret data map
paths at runtime� it can be less e�cient than a transaction�oriented server	 It
is not yet clear how serious this performance di�erence is in practice	 Future
work will both quantify this di�erence and reduce its current level	

Underlying this work is the toolkit provided by the Organization Engine	
The structure of this toolkit has proven quite robust and is the main reason our
modest labor investment in integration has been so e�ective	 The Organization
Engine provides a strong modularity boundary between the user interface and
the underlying integration toolkit� allowing the replacement of the user interface
without an overhaul of the entire system	 The integration toolkit at the heart of
the Organization Engine provides little more than the glue necessary to connect
this user interface API with the simpler API used to connect with a data source	
The user interface boundary deals with object identi�ers
a data source identi�er
and a �cookie� belonging to that data source�� and provides an abstraction of
records with �elds	 At the data source interface� the abstraction is one based
on �cookies� and six fundamental operations
 get� create� modify� replace� open
connection� and close connection	

The virtual data integration method represents an e�ective� low�risk means
for healthcare institutions to improve dramatically the accessibility of critical
information without jeopardizing existing technology investments	 The sys�
tem described in the preceding sections is a prototype� not a �nished product	
Several issues remain to be addressed in future prototypes and pilot implemen�
tations� including security� multiplatform clients� inter�institution integration�
client modi�cation of server data� and others	 However� the Organization En�
gine prototype presented here is exciting evidence that virtual data integration
may help to solve some of the most critical information problems in healthcare
today	

